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ABSTRACT

MARTINHO, L. B. Numerical modeling of electromagnetic coupling phenom-
ena in the vicinities of overhead power transmission lines. 117 p. The-
sis (PhD) — Universidade de São Paulo and Université Grenoble Alpes, 2016.

Electromagnetic coupling phenomena between overhead power transmis-
sion lines and other nearby structures are inevitable, especially in densely pop-
ulated areas. The undesired effects resulting from this proximity are manifold
and range from the establishment of hazardous potentials to the outbreak of
alternate current corrosion phenomena. The study of this class of problems is
necessary for ensuring security in the vicinities of the interaction zone and also
to preserve the integrity of the equipment and of the devices there present.
However, the complete modeling of this type of application requires the three-
-dimensional representation of the region of interest and needs specific numer-
ical methods for field computation. In this work, the modeling of problems aris-
ing from the flow of electrical currents in the ground (the so-called conductive
coupling) will be addressed with the finite element method. Those resulting
from the time variation of the electromagnetic fields (the so-called inductive
coupling) will be considered as well, and they will be treated with the gener-
alized PEEC (Partial Element Equivalent Circuit) method. More specifically, a
special boundary condition on the electric potential is proposed for truncating
the computational domain in the finite element analysis of conductive coupling
problems, and a complete PEEC formulation for modeling inductive coupling
problems is presented. Test configurations of increasing complexities are con-
sidered for validating the foregoing approaches. These works aim to provide
a contribution to the modeling of this class of problems, which tend to become
common with the expansion of power grids.

Keywords: High-voltage transmission lines. Electromagnetic coupling.
Grounding. Finite Element Method (FEM). Partial Element Equivalent Circuit
(PEEC) Method.



RÉSUMÉ

MARTINHO, L. B. Modélisation numérique des phénomènes de couplage élec-
tromagnétique dans les alentours des lignes aériennes de transmission d’éner-
gie. 117 p. Thèse (Doctorat) — Universidade de São Paulo et Université Gre-
noble Alpes, 2016. En anglais.

Les phénomènes de couplage électromagnétique entre les lignes aé-
riennes de transmission d’énergie et des structures voisines sont inévitables,
surtout dans les zones densément peuplées. Les effets indésirables décou-
lants de cette proximité sont variés, allant de l’établissement des tensions dan-
gereuses à l’apparition de phénomènes de corrosion dus au courant alternatif.
L’étude de cette classe de problèmes est nécessaire pour assurer la sécurité
dans les alentours de la zone d’interaction et aussi pour préserver l’intégrité
des équipements et des dispositifs présents. Cependant, la modélisation com-
plète de ce type d’application implique la représentation tridimensionnelle de
la région d’intérêt et nécessite des méthodes numériques de calcul de champs
spécifiques. Dans ces travaux, des problèmes liés à la circulation de courants
électriques dans le sol (ou de couplage dit conductif) seront abordés avec la
méthode des éléments finis. D’autres problèmes résultants de la variation tem-
porelle des champs électromagnétiques (ou de couplage dit inductif) seront
aussi considérés et traités avec la méthode PEEC (Partial Element Equiva-
lent Circuit) généralisée. Plus précisément, une condition limite particulière
sur le potentiel électrique est proposée pour tronquer le domaine de calcul
dans l’analyse par éléments finis des problèmes de couplage conductif et une
formulation PEEC complète pour la modélisation de problèmes de couplage in-
ductif est présentée. Des configurations tests de complexités croissantes sont
considérées pour valider les approches précédentes. Ces travaux visent ainsi
à apporter une contribution à la modélisation de cette classe de problèmes,
qui tendent à devenir communs avec l’expansion des réseaux électriques.

Mots-clefs : Lignes électriques à haute tension. Couplage électromagnétique.
Prise de terre. Méthode des éléments finis (MEF). Méthode PEEC (Partial ele-
ment equivalent circuit).



RESUMO

MARTINHO, L. B. Modelagem numérica de fenômenos de acoplamento eletro-
magnético nas imediações de linhas aéreas de transmissão de energia. 117 p.
Tese (Doutorado) — Universidade de São Paulo e Université Grenoble Alpes,
2016. Em inglês.

Fenômenos de acoplamento eletromagnético entre linhas aéreas de trans-
missão de energia e outras estruturas vizinhas são inevitáveis, sobretudo em
áreas densamente povoadas. Os efeitos indesejados decorrentes desta proxi-
midade são variados, indo desde o estabelecimento de potenciais perigosos
até o surgimento de processos de corrosão por corrente alternada. O estudo
desta classe de problemas é necessária para a garantia da segurança nas
imediações da zona de interação e também para se preservar a integridade
de equipamentos e dispositivos ali presentes. Entretanto, a modelagem com-
pleta deste tipo de aplicação requer a representação tridimensional da região
de interesse e necessita de métodos numéricos de cálculo de campos espe-
cíficos. Neste trabalho, serão abordadas as modelagens de problemas de-
correntes da circulação de correntes elétricas no solo (ditos de acoplamento
condutivo) com o método dos elementos finitos. Também serão considera-
dos problemas produzidos pela variação temporal dos campos eletromagnéti-
cos (ditos de acoplamento indutivo), que serão tratados com o método PEEC
(Partial Element Equivalent Circuit) generalizado. Mais especificamente, uma
condição de contorno particular sobre o potencial elétrico é proposta para o
truncamento do domínio de cálculo na análise de problemas de acoplamento
condutivo com o método dos elementos finitos, e uma formulação completa
tipo PEEC para a modelagem de problemas de acoplamento indutivo é apre-
sentada. Problemas teste de complexidades crescentes são considerados
para a validação das abordagens precedentes. Estes trabalhos visam forne-
cer desta forma uma contribuição à modelagem desta classe de problemas,
que tendem a se tornar comuns com a expansão das redes elétricas.

Palavras-chave: Linhas de transmissão em alta tensão. Acoplamento eletro-
magnético. Aterramento. Método dos elementos finitos (MEF). Método PEEC
(Partial Element Equivalent Circuit Method).
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1 INTRODUCTION

1.1 Presentation

The analysis of the electromagnetic coupling between an electric power

system and other nearby structures is a complex problem in electrical engi-

neering. Even though the physical phenomena taking part in this interaction

may be stated in terms of well-known electromagnetic effects, the practical

situations of interest tend to be elaborate.

For instance, a typical scenario of investigation would correspond to a rel-

atively narrow strip of land in which a long overhead power line shares a re-

stricted space with other utilities. Ordinary buildings and other urban structures

could be close to the overhead line as well, especially in subtransmission and

distribution circuits. Additionally, the right of way could also be approached

by working personnel or by other subjects. A real example of this situation is

shown in Figure 1.

In the aforementioned problems, the analyst or engineer is most frequently

concerned with safety issues arising from the proximity with the transmission

system. Another major interest is the investigation of the susceptibility of struc-

tures and devices to effects induced by the electromagnetic environment rep-

resented by the vicinities of the overhead line.

As a consequence of the complexities of these problems, numerical ap-
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Figure 1: An overhead line in close proximity with buildings and urban struc-
tures. The small yellow pole emerging from the ground surface marks the
existence of underground structures.

proaches are required in their modeling. In the most general case, objects

with arbitrary shapes and relative positions would coexist with the power line

in the right of way, leading to the need for a full 3-D model to well represent the

interactions between them.

This work aims to contribute with the numerical modeling of the latter cate-

gory of problems. In the subsequent sections, an overview of the general elec-

tromagnetic coupling problem with a power system will be provided, in order to

lay the groundwork for the following chapters. The structure and organization

of this document will be presented as well, together with establishing its scope
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and specific objectives.

1.2 Electromagnetic coupling phenomena in
power systems

The disturbances produced by the influence of a power system in its neigh-

boring structures are often classified into three main categories, each associ-

ated to a predominant interaction.

The first group is the one associated to the effects resulting from the time-

varying magnetic flux density field B, which is produced by the electric currents

flowing in the overhead conductors. These effects are conventionally named

inductive coupling phenomena. According to Faraday’s law of induction, the

time variation of this field brings about an induced electric field E in the sur-

roundings of the transmission line and an induced electric potential distribution

ϕ. The circulation of transient currents in the line is associated to faster rates of

change for B and tends to produce higher induced voltages as a consequence.

On the other hand, the steady state operation of the transmission line leads to

lower but sustained levels of induction.

Still during a transient or a fault, current components may be diverted from

the power system and drained to the soil. These current injections occur by

means of shield wires, metallic towers and their grounding structures, leading

to an overall rise of the electric potential in the region beneath the ground sur-

face. The associated electric field E and current density J distributions lead

to interactions that constitute a second group: the category of conductive cou-

pling phenomena.

Moreover, the sources supplying an overhead line contained in a right of

way impose both a particular voltage level between its phase conductors and



4

Figure 2: Excavation of a shared right of way for the maintenance of a buried
pipeline.

a corresponding impressed electric field E in their surroundings. The estab-

lishment of this time-varying electric field in the vicinities of the line may be

associated to displacement currents flowing through equivalent capacitances.

The effects emerging from this flow are commonly categorized as capacitive

coupling phenomena.

The electric field and the rise in the electric potential due to any of the three

mechanisms previously described constitute significant engineering concerns.

Touch voltages produced in metallic structures by either the inductive, capaci-

tive or conductive coupling with an overhead line may cause the flow of larger

than admissible currents through the human body, exceeding the accepted

thresholds of protection against electric shock. The same holds true for step

voltages arising from conductive coupling effects.

Utilities and other types of equipment may also suffer direct damage

from the action of inductive, conductive and capacitive coupling phenom-

ena. Among the structures frequently sheltered in a transmission line right

of way and susceptible to electromagnetic coupling phenomena are rails,

pipelines (Figure 2) and other devices attached to them such as cathodic pro-

tection systems.
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Figure 3: Examples of AC corrosion developed from small coating defects in
pipelines. Reproduced from (REVIE, 2015) under the permission of John Wiley
& Sons, Inc.

For instance, high electric potential gradients can deteriorate the protective

coating of pipelines and expose their metallic bodies to oxidation. Susceptible

electronic apparatus integrating cathodic protection systems may also be di-

rectly affected by intense fields. Even AC electrochemical corrosion phenom-

ena of metallic structures may be triggered in this particular environment by

the direct action of the fields induced by the overhead line (Figure 3).

Furthermore, insulating flange connections existing between two consec-

utive pipeline sections may be damaged by high electric fields, causing the

transfer of dangerous induced potentials to far away distances. High current

densities arising from the intense conductive coupling during a fault may even

pierce or perforate the metallic surfaces of underground pipelines buried close
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to a tower grounding system.

In any case, the quantification and the prediction of these effects require

the knowledge of the intensities of the electromagnetic fields taking part in the

phenomena. However, their direct determination by means of measurements

is only seldom feasible. Practical complications connected to establishing a

controlled measuring experiment in a live overhead line impose significant lim-

itations on the investigation efforts in this domain.

1.3 Objectives of this work

Taking into account the scenario previously portrayed, the alternative use

of computer models for numerically determining the physical quantities in-

volved in electromagnetic coupling phenomena becomes preeminent.

Nevertheless, the numerical modeling of this class of applications is chal-

lenging. The presence of large volumes of inactive air regions, the treatment of

semi-infinite domains and the difference in scale between electrodes or phase

conductors and the region actually represented in the vicinities of the overhead

line are all well-known modeling challenges in the domain of computational

electromagnetics.

Therefore, this work aims to contribute with the numerical modeling of this

class of applications. More specifically:

• The analysis of 3-D conductive coupling problems occurring in the vicini-

ties of an overhead line with the use of the Finite Element method

(FEM) will be proposed. This method has been successfully employed

for analyzing grounding arrangements for computing their equivalent

impedances, and will have its application extended to this broader class

of problems by the use of a particular boundary condition for treating
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semi-infinite soil domains.

• The analysis of 3-D inductive coupling problems with the generalized Par-

tial Element Equivalent Circuit (PEEC) method will be proposed as well.

This integral method will be adopted to circumvent some modeling diffi-

culties intrinsic to other numerical approaches and that play a significant

role in this context of applications, such as the discretization of thin con-

ductors and of large inactive air regions.

The analysis of capacitive coupling situations or the account of capacitive

effects are not contemplated in this work and are left for future developments.

We expect this work to help to lay the groundwork for the analysis of com-

plex, large scale three-dimensional electromagnetic coupling situations occur-

ring in the outskirts of overhead lines from the point of view of computational

electromagnetics.

1.4 Electromagnetic model

In order to achieve these objectives, the following chapters will discuss the

modeling of coupling phenomena and the solution of the numerical problems

arising from the proposed electromagnetic models. This section is devoted to

stating the basic relations governing the relevant electromagnetic effects for

later reference.

The coupling of an overhead transmission line with an arbitrary adjacent

system is governed by Maxwell’s equations. This is the case of all electromag-

netic phenomena in macroscopic media, and the categorization of coupling

effects into the three independent classes stated in section 1.2 is conceived

only as an aid to the analyst.
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Maxwell’s equations relate the electromagnetic fields to their ultimate

sources, which are the free electric volume charge density ρV and the elec-

tric current density distribution J. These equations are given below:

∇×E = −
∂B
∂t

; (1.1a)

∇×H = J +
∂D
∂t

; (1.1b)

∇ · B = 0 ; (1.1c)

∇ · D = ρV . (1.1d)

Each field occurring in the set of equations given by (1.1) is pairwise re-

lated to a counterpart by means of the appropriate constitutive relations of the

material media. As usual, the relationship between magnetic flux density B

and magnetic intensity H is written as

B = µH. (1.2)

For electric flux density D and for electric field intensity E,

D = εE. (1.3)

Similarly, Ohm’s law establishes the relationship between electric field E and

the current density J:

J = σE = ρ−1 E. (1.4)

In the most general case, electric permittivity ε, magnetic permeability µ,

electric conductivity σ and electric resistivity ρ = σ−1 are tensors reflecting the

particular behavior of the media. In the applications later considered in this

work, only simple scalar material properties will be taken into account.

The continuity equation for electric currents given by

∇ · J +
∂ρV

∂t
= 0 (1.5)
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is implied by (1.1b). Additionally, the absence of free magnetic poles expressed

by (1.1c) is consistent with the following definition of a magnetic vector poten-

tial A:

B = ∇×A. (1.6)

Seeing that the order of space and time derivatives may be interchanged,

Faraday’s induction law (1.1a) may be restated with the aid of (1.6) in the form

given below:

∇×

(
E +

∂A
∂t

)
= 0. (1.7)

This leads to the introduction of a scalar electric potential ϕ as well, since

the quantity in the left-hand side of (1.7) with a vanishing curl can be expressed

as the gradient of some scalar function:

E +
∂A
∂t

= −∇ϕ . (1.8)

The foregoing relations will be eventually retaken in the course of the next

chapters.

1.5 Organization of this document

This introduction will be followed by five other chapters, and the conceptual

separation of coupling phenomena into the categories described in section 1.2

is reflected in their organization.

Chapter 2 begins with a review of the technical literature concerned with

electromagnetic coupling phenomena in the context of power systems. Special

attention will be dedicated to numerical approaches employed in the analysis

of this class of applications.

The next two chapters will be devoted to the finite element analysis of con-
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ductive coupling phenomena in the vicinities of an overhead line. In chapter 3,

a special boundary condition will be proposed, in order to circumvent the mod-

eling difficulties related to the representation of a soil domain with open bound-

aries. This approach will be tested in chapter 4 in an assortment of cases of

application.

Chapter 5 is dedicated to modeling inductive coupling situations with the

generalized PEEC method. The solution of a particular inductive coupling prob-

lem will be considered, and the results will be confronted with the alternative

solutions obtained with the finite element method.

Finally, chapter 6 will conclude this document with a critical evaluation of

the developments. The proposition of possible extensions or future works will

be outlined as well.



11

2 BIBLIOGRAPHIC REVIEW

2.1 Introduction

The modeling of electromagnetic coupling phenomena involving overhead

lines in power systems has evolved over the course of time. Different ap-

proaches have been employed throughout the years, and in this chapter an

account of the research dedicated to its modeling will be presented.

This review is organized in three parts. The first two are mostly concerned

with the earliest theoretical developments and with the transition to a later pe-

riod characterized by the introduction of digital computers in this field of study.

These are followed by a section dedicated to the use of specific numerical

methods in this domain of applications, with emphasis on the Finite Element

Method (FEM) and the Partial Element Equivalent Circuit (PEEC) Method.

2.2 Early developments

While the turn of the nineteenth century to the twentieth is character-

ized by the consolidation of AC polyphase systems as the preferred power

transmission method, the ensuing decades observed a wide dissemination of

large-scale, high-voltage power grids all over the world. Not by chance, the

investigations concerned with the electromagnetic coupling between power

transmission systems and nearby structures may be traced back to that time.
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In that period, the diffusion of power transmission networks had already

resulted in their significant proximity with other systems, leading to the haz-

ardous effects discussed in section 1.2. In accordance with the resources then

available, the modeling attempts were based on purely analytical techniques.

For instance, classical works such as (CARSON, 1926) and (POLLACZEK,

1926; POLLACZEK, 1931) laid the groundwork for the analysis of the induc-

tive coupling between overhead lines and parallel structures in the presence

of a conductive soil. Similarly, works such as (OLLENDORFF, 1928) and (STE-

FANESCO; SCHLUMBERGER; SCHLUMBERGER, 1930) provided the basic tools for

investigating the flow of electrical currents in stratified soils and for analyzing

conductive coupling phenomena.

By the mid-twentieth century, the number and variety of systems coexist-

ing with power transmission utilities had grown to the point of being a source

of concern. The work by (SUNDE, 1949) belongs to this particular period and

compiles the methods of analysis available at the time in this domain of appli-

cations. Meanwhile, a better quantitative understanding of the risks of electric

shock was also attained (DALZIEL, 1956), reinforcing the care with working per-

sonnel in shared rights of way.

The growing concern with electromagnetic coupling problems is mani-

fested in the continuous discussion of related topics in the specialized litera-

ture (POHL, 1966; FAVEZ; GOUGEUIL, 1966; DAWALIBI; MUKHEDKAR, 1975). The

modeling of grounding electrodes and the study of coupling situations be-

tween overhead lines and underground parallel pipelines are among the ap-

plications most frequently considered. The continued and cumulative discus-

sions on these themes led different institutions to organize special research

commissions, which eventually produced an extensive technical documenta-

tion composed of reports (FRAZIER, 1984; DAWALIBI et al., 1988), engineering
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guides (CIGRÉ, 1995) and standards (CENELEC, 2012).

The second half of the twentieth century is marked by the advent of the dig-

ital computer as well, which influenced the modeling of this class of problems.

The resulting trends in the development of numerical techniques for analyzing

electromagnetic coupling with overhead lines will be covered in the following

section.

2.3 Trends in computer modeling

A first modeling trend that benefited from the increasing availability of com-

puter resources is expressed by the development of special purpose software

tools based on semi-analytical procedures. The approaches belonging to this

group may be regarded as computer implementations of the well-established

analytical techniques previously mentioned, which were frequently too labori-

ous to be of practical use without the aid of a computer.

The software solutions issued from this trend are particularly well suited to

the analysis of the inductive coupling between overhead lines and long parallel

structures, since they rely on the analytical evaluation of self and mutual induc-

tances. The computations are frequently organized in zones of approximate

parallelism and lead to the assembly of a large equivalent network of lumped

circuit elements (DAWALIBI, 1980; SOBRAL et al., 1991). The works by (DAWALIBI;

SOUTHEY, 1989) stand out in this category, since their contemporary software

implementations have become popular in specialized power engineering com-

munities and have found a commercial success (SES, 2015).

The second recognizable trend corresponds to the use of general numeri-

cal techniques to analyze electromagnetic problems. Early examples of efforts

in the discipline of computational electromagnetics include the works by (YEE,
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1966) with the Finite Difference Method and by (SILVESTER, 1969; SILVESTER;

CHARI, 1970) with the Finite Element Method. The Partial Element Equivalent

Circuit technique may be traced back to the work by (RUEHLI, 1974).

These pioneering works in the domain of computational electromagnetics

were concerned with specific problems, such as wave propagation, non-linear

magnetostatics and equivalent circuit determination. In spite of this, a diver-

sification in the use of the corresponding general numerical techniques was

eventually attained, reaching the analysis of electromagnetic coupling prob-

lems involving overhead lines in power systems. Some relevant applications

will be discussed in the following section.

2.4 Numerical analysis of conductive and induc-
tive coupling applications

The modeling of conductive coupling problems is closely related to the anal-

ysis of grounding systems. Various numerical techniques have been employed

to model this class of problems, ranging from integral approaches to the use of

the Finite Element Method.

The first works based on the FEM for analyzing grounding systems

were based on static nodal formulations (CARDOSO, 1994; TRLEP; HAMLER;

HRIBERNIK, 1998). Time harmonic formulations still based on nodal elements

were introduced by (NEKHOUL et al., 1995; NEKHOUL et al., 1996), and the use of

edge elements was introduced by (SILVA, 2006; SILVA et al., 2007). A compre-

hensive account on the development of FEM formulations for the analysis of

grounding systems is provided in (SILVA, 2006).

The modeling of this class of applications with the FEM has been preferred

by some analysts due to some of its intrinsic characteristics. Among the most
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significant ones is that FEM-based approaches lead to the solution of sparse

systems of equations, which are much more easily treatable from a numerical

point of view. The account of non-homogeneous and non-linear media with this

method tends to be simplified as well, when compared to integral approaches.

On the other hand, the standard FEM is not well adapted to the treat-

ment of open boundaries, which occur in the representation of underground re-

gions. As a consequence, several efforts have been undertaken to circumvent

these limitations. Simple domain truncation, infinite elements (ZIENKIEWICZ;

TAYLOR; ZHU, 2006; DHATT; TOUZOT; LEFRANÇOIS, 2007), coordinate transforma-

tions (STOHCHNIOL, 1992; CARDOSO, 1994) and the use of fictitious absorbers

(perfectly matched layers, or PML) on the outer boundaries of the represen-

tation (BERENGER, 1994; SILVA, 2006) are among the techniques employed

together with the FEM in this context. The inadequacy of these techniques to

the finite element analysis of complex conductive coupling situations will be

discussed in chapter 3, together with the proposal of an alternative scheme

adapted to this extended context of applications.

The finite element analysis of inductive coupling phenomena has been pro-

posed as well. The specific problems of application considered tend to be

limited to situations involving the parallelism of long structures with overhead

lines in a common right of way, in order to profit from 2-D FEM formulations. Ex-

amples can be found in the works by (SATSIOS; LABRIDIS; DOKOPOULOS, 1998)

and (CHRISTOFORIDIS; LABRIDIS; DOKOPOULOS, 2005).

General 3-D inductive coupling problems involving overhead lines are char-

acterized by large inactive volumes of air separating the phase wires (i.e. the

inductor) and the regions or devices subjected to induction. Since the FEM

cannot avoid the discretization of these inactive air regions, mesh generation

complications, large memory requirements and long computation times are to
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be expected in this case. On the other hand, integral approaches such as the

PEEC method are capable of modeling this kind of interaction without discretiz-

ing the air.

The classical PEEC method is particularly well-adapted to modeling de-

vices composed of interconnected parts, in which the current density is charac-

terized by a well-defined direction and by an approximately uniform intensity.

This is particularly the case of printed circuit board tracks, integrated circuits

interconnections and power electronic devices. Applications belonging to the

domain of power systems engineering are rare. Works modeling the transient

response of high-voltage towers and grounding systems to lightning strikes

by (ANTONINI; CRISTINA; ORLANDI, 1997) and by (YUTTHAGOWITH et al., 2011) are

among the few examples of applications of the PEEC method to this area.

More recently, generalized versions of the basic PEEC technique were pro-

posed using alternative approximations for the current density (NGUYEN et al.,

2014), allowing the treatment of eddy current problems in massive conductors

and the penetration of the method into other niches of application. An exten-

sive account of the development and of the use of the PEEC method and other

related techniques is provided by (NGUYEN, 2014).

2.5 Chapter summary

This chapter presented a brief and non-exhaustive account of the works

available in the technical literature concerned with modeling electromagnetic

coupling effects in power systems.

In the case of the finite element analysis of conductive coupling phenom-

ena, most of the applications can be said to be concerned with the analysis of

independent grounding systems, for which traditional domain truncation tech-
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niques are applicable. In the case of inductive coupling problems, the most

frequently analyzed situations involve the parallelism of elongated structures

with the overhead line along great distances.

The developments discussed from now on in the following chapters are ex-

pected to contribute to the numerical modeling of the electromagnetic phenom-

ena involved, as well as to better understanding such coupling interactions.
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3 CONDUCTIVE COUPLING MODELING

3.1 Introduction

This chapter analyzes the numerical modeling of conductive coupling prob-

lems in transmission line rights of way. As already discussed, this category

of problems derives from the injection of electrical currents in the soil, lead-

ing to the establishment of an electromagnetic field beneath the earth surface.

Living subjects roaming the vicinities of the region where the current injection

takes place may be exposed to dangerous effects; underground structures and

devices may be damaged.

The modeling of such a class of applications is closely related to the analy-

sis of grounding systems, since the electric currents diverted from an overhead

line are injected into the earth by means of earthing electrodes. As a conse-

quence, finite element method techniques already employed for modeling that

former class of applications may be extended and adapted in the analysis of

the latter.

The following sections will describe the problem in detail and will high-

light the complications involved in modeling conductive coupling phenomena

in comparison with the finite element analysis of a simple grounding system.

As will become clear, these difficulties are mostly concerned with the trunca-

tion of the computational domain and with the application of a representative
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boundary condition to its frontiers.

3.2 Distribution of fault currents diverted to the
ground during a contingency

Overhead transmission lines provide the interconnection between electric

power generation sites and electric power consumers. The length of the trans-

mission system is often considerable, and a great number of towers may be

required to span the distances involved. Along the path followed by the line,

each tower is anchored to the ground by its foundation and is electrically con-

nected to the earth by means of a grounding network.

While the energized conductors integrating the power transmission circuit

are supported by the towers and attached to them by means of insulators, a

complementary circuit composed of shield or guard wires is held at a higher

level and in direct contact with their metallic structures. These shield wires are

expected to protect the energized conductors from direct lightning strikes.

This particular configuration in which the tower structures are intercon-

nected by the shield wires makes an effective path for electric currents to flow

towards the earth during a contingency. In case of a lightning strike or during

the failure of an insulator in one of the towers, a complicated and non-trivial

pattern of electric currents is injected into the ground at the tower footings.

Figure 4 depicts a schematic representation of the situation just portrayed

and highlights the fact that the fault current may spread to distances far away

from the fault point. Each of the current components Ik flowing into the earth

may be regarded as a possible cause of conductive coupling phenomena in the

vicinities of the overhead line. Their intensities may be either determined by

a system-wide computation (DAWALIBI; BENSTED; MUKHEDKAR, 1981) or mea-
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Figure 4: Ground current distribution in a faulted overhead line.

sured directly by an appropriate experimental arrangement (SEBŐ; RÉGENI,

1963).

Even though this pattern {Ik} of injected currents can be predicted or de-

termined, its distribution along the large region traversed by the overhead line

makes it difficult to ascertain a priori the effective extent of the area subjected

to their influences. This represents a major difficulty for modeling this class of

electromagnetic phenomena with numerical methods, as will be discussed in

the next section.

3.3 Modeling the flow of electric currents in the
context of conductive coupling phenomena

The flow of electric currents in a three-dimensional domain can be investi-

gated with the aid of analytical and numerical techniques. In this section, the

modeling of this class of problems will be first described in general terms. The

adaptions to the analysis of conductive coupling phenomena in the vicinities of

a power system will be discussed thereafter.
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3.3.1 Formulation of the boundary value problem

Conductive coupling phenomena in transmission line rights of way can

be conveniently modeled as steady state electric conduction problems. Un-

der these circumstances, the time derivatives occurring in Maxwell’s equa-

tions (1.1) are neglected. As a consequence, the continuity equation ex-

pressed by (1.5) becomes simply

∇ · J = 0. (3.1)

The relationship between electric field E and scalar potential ϕ provided

by (1.8) is also reduced to

E = −∇ϕ. (3.2)

With the aid of (1.4) and (3.2), (3.1) can be recast in terms of ϕ, leading to

the following boundary value problem in a conductive domain Ω:

∇ · (−σ∇ϕ ) = 0 in Ω; (3.3a)

ϕ = ϕ0 in ΓD; (3.3b)

− σ∇ϕ · n = | J0 | in ΓN. (3.3c)

Equation (3.3a) requires boundary conditions to ensure the uniqueness of

its solution. These conditions are expressed by constraints (3.3b) and (3.3c),

which are defined upon two complementary surfaces denoted by ΓD and ΓN.

These surfaces together enclose the domain completely, and the unit vector

pointing outward from Ω on these boundaries is designated by n.

These facts are represented schematically in Figure 5. The constraint ex-

pressed by (3.3b) is a Dirichlet boundary condition enforcing a prescribed po-

tential ϕ0 upon ΓD, whereas (3.3c) is a Neumann boundary condition imposing
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Figure 5: Bounded conductive domain illustrating a steady state current con-
duction problem, excited by a current source.

a specified normal current density entering Ω through ΓN. This condition is

assumed to be homogeneous (i.e. | J0 | = 0) everywhere on ΓN, with the excep-

tion of ΓFP where current injection takes place (with index FP standing for “fault

points”).

This general definition of a boundary value problem may be employed to

investigate a wide range of applications that include conductive coupling phe-

nomena involving overhead lines in their rights of way. Figure 6 provides a

graphical representation of the associations that will be established in the fol-

lowing paragraphs between the abstract general problem depicted in Figure 5

and the situation shown in Figure 4.

Indeed, under the circumstances exposed in section 3.2, Ω may be asso-

ciated to an underground region of soil into which electric currents are fed by

means of grounding electrodes. The cross sections of these electrodes at the

ground surface are then identified with ΓFP and with the non-homogeneous

boundary condition (3.3c).
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Figure 6: Sketch of a transmission line right of way profile, showing the trun-
cated region (dark green) chosen as the conductive domain for modeling
steady state conduction phenomena.

The air-soil interface is a ΓN-type surface due to the continuity conditions

on the normal component of J. Moreover, displacement currents are nonex-

istent in the steady state, allowing the identification of this boundary with the

Neumann condition (3.3c) in its homogeneous version (| J0 | = 0).

The remaining boundary surface required to fully enclose Ω is completely

beneath the soil surface. It may be promptly identified with ΓD and its cor-

responding Dirichlet condition (3.3b). The choice of an appropriate electric

potential distribution ϕ0 on ΓD in this case is critical for obtaining a consistent

solution for the current flow inside Ω, and this subject will be the focus of the

following sections of this chapter.

3.3.2 Imposing a vanishing potential condition at infinity

The physical condition most frequently imposed on the analysis of prob-

lems involving the underground flow of electrical currents is that ϕ vanishes at

distances sufficiently far away from the current electrodes. Indeed, this condi-

tion is either implicitly or explicitly enforced in the analytical solution of simple
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grounding configurations.

In the framework of the boundary value problem established in the previ-

ous section, the enforcement of this condition corresponds to the assumptions

that boundary ΓD is located at infinity and that the Dirichlet constraint in (3.3b)

becomes homogeneous with ϕ0 = 0. As a consequence, domain Ω is reduced

to a half-space bounded only by the air-soil interface.

When numerical techniques are considered for dealing with complex but

secluded grounding systems, this condition of a vanishing electrical potential

may still be emulated. For instance, the finite element method relies upon the

discretization of a geometrical model of the region under analysis that must

be inevitably limited and finite. As a consequence, it cannot deal directly with

a boundary taken to infinity, but suitable techniques can enforce or at least

approximate the required physical condition for the potential.

Among the techniques available for circumventing this limitation, the sim-

plest one corresponds to the mere over-dimensioning of the computational

domain, which leads to an approximate solution. As seen on chapter 2, more

sophisticated methods include the use of spatial transformations (CARDOSO,

1994), infinite elements (ZIENKIEWICZ; TAYLOR; ZHU, 2006; DHATT; TOUZOT;

LEFRANÇOIS, 2007) and of perfectly matched layers (BÁRDI; BÍRÓ; PREIS, 1998).

However, the foregoing procedures are only formally acceptable when ap-

plied to the analysis of simple and secluded grounding systems. None of them

are strictly suitable for dealing with a transmission line right of way. The rea-

son behind these assertions is that any of these approaches would implicitly

neglect the contributions added by the current injections in every tower footing

left outside the geometrical model, as represented schematically in Figure 7.

To judge a priori whether or not the neglect of these current injections tak-
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Figure 7: Conductive domain delimited by the dotted line. The purple region is
the one where truncation techniques are to be applied (either PML or infinite
element).

ing place beyond the truncation boundaries would provide an acceptable ap-

proximation in the finite element analysis of a particular conductive coupling

problems is a difficult task. In order to avoid this dilemma, a procedure that

tries to take these current contributions into account is proposed in this chap-

ter.

The technique proposed consists in computing a non-homogeneous Dirich-

let boundary condition for every point lying on boundary ΓD by means of a con-

veniently defined function. The explicit form of this function will arise from the

investigation carried out in the following section.

3.4 Analytical solution and asymptotic behavior
of selected grounding arrangements

In the following subsections, the analytical solution of some selected prob-

lems will be considered. The intended objective is to make explicit the asymp-

totic behavior of the solutions obtained for ϕ at far away distances in different
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situations. The results will motivate the definition of a particular function ϕ0

defined on ΓD, in order to determine a more convenient version of the bound-

ary condition (3.3b) to analyze conductive coupling problems occurring in the

vicinities of a faulted transmission system.

Three particular configurations will be addressed:

• A point current source injecting current into the ground;

• A very long horizontal electrode buried deep under the soil surface and

• A finite vertical grounding rod driven into the soil.

3.4.1 The electric potential of a point current source

Firstly, let the problem of a point current source lying on the earth surface

be considered as shown in Figure 8. As discussed in the previous section, in

this case domain Ω corresponds to a semi-space bounded only by the interface

between the earth and the air, and ΓD is supposed to be far away from the point

source at infinity.

The point source is supposed to be located at the origin of a system of

coordinates and injects a total current I into Ω. This domain is supposed to

be composed by a homogeneous and isotropic soil of conductivity σS. In this

idealized situation, the total electric current I fed by the source into the medium

spreads towards infinity with a uniform distribution. Consequently, the geomet-

ric loci of constant current densities | J | are semi-spherical shells concentric to

the point source.

Any point located on one of these shells may be represented by a position

vector r. The current density evaluated at such a point will be accordingly

J (r) =
I

2π | r |2
r
| r |

. (3.4)
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Figure 8: A point current source lying on the soil surface.

The electric field E distribution associated to this current flow is related

to (3.4) by means of Ohm’s law (1.4). Since the electric potential at infinity is

assumed to be ϕ0 = 0, the integration of E along a convenient radial path yields

the electric potential at r :

ϕ (r) = −

r∫
∞

E (R) · dR = −
I

2π σS

r∫
∞

R
|R |3

· dR =
I

2π σS | r |
. (3.5)

This expression may be rewritten with the expansion of | r | into variables

ρ and z of a cylindrical system of coordinates centered at the point charge, as

shown below:

ϕ =
I

2π σS | r |
=

I

2π σS
√
ρ2 + z2

. (3.6)

Any of these expressions may be easily shown to satisfy the partial differ-

ential equation corresponding to (3.3a) by means of differentiation and direct

substitution.

As already emphasized, the previous expressions were obtained for a point

current source injecting a current I into a semi-infinite half-space Ω. If the re-

lated problem of a point current source inside a homogeneous and isotropic

medium unbounded in all directions was considered, an analogous expression

for the resulting electric scalar potential could be obtained by similar proce-
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dures. The result would be simply

ϕ =
I

4π σS | r |
=

I

4π σS
√
ρ2 + z2

, (3.7)

which is half of the potential predicted by (3.6).

Both (3.6) and (3.7) show that the potential of a point source varies in-

versely with the radial distance measured from the source.

3.4.2 The electric potential of a horizontally buried cylindri-
cal electrode

A second analytical problem will be considered in this section, which corre-

sponds to an idealization of a sufficiently long ground wire buried horizontally

and deep into the earth. It corresponds to a cylindrical conductor of infinite

length and radius R embedded in an unbounded soil domain Ω, as shown in

Figure 9.

The conductivities of the soil and of the conductor will be denoted by σS and

σC respectively. A cylindrical system of coordinates attached to the conductor

is also shown in Figure 9 and a direct electrical current I is injected in its origin.

This current travels through the conductor and is drained into the soil, leading

to an electric potential distribution ϕ that satisfies (3.3a).

Figure 9: The long cylindrical conductor embedded in an infinite medium ana-
lyzed by (OLLENDORFF, 1926).



29

It is convenient in this case to express electric potential ϕ in terms of a

piecewise-defined function, for which the region inside the conductor is distin-

guished from the soil. More specifically,

ϕ ( ρ, z) =


ϕC ( ρ, z) if ρ ≤ R,

ϕS ( ρ, z) if ρ ≥ R.
(3.8)

The functions defined in the two sub-regions are related to each other at

the interface between the conductor and the soil ( ρ = R) by means of the ap-

propriate continuity conditions. Electric potential ϕ and the normal component

of current density vector J must be single-valued in the interface. Taking (1.5)

into account, these conditions become

ϕC (R, z) = ϕS (R, z) , (3.9a)

σC
∂ϕc

∂ρ

∣∣∣∣∣
(ρ=R)

= σS
∂ϕS

∂ρ

∣∣∣∣∣
(ρ=R)

. (3.9b)

Additionally, these functions are expected to vanish at infinity as follows:

lim
z→∞

ϕC ( ρ, z) = 0 for ρ ≤ R, (3.10a)

lim
z→∞

ϕS ( ρ, z) = 0 for ρ ≥ R. (3.10b)

The boundary value problem previously described was investigated in de-

tail by (OLLENDORFF, 1926; OLLENDORFF, 1928). The analytical solutions ob-

tained are expressed by means of integrals involving Bessel and Hankel func-

tions, as expected in the case of Laplace problems involving symmetries about

an axis. In particular, the electric potential in the soil region was shown to be:

ϕS ( ρ, z) =
I

4πσSR

∫ ∞

0

2
πΛ

jH (1)
0

(
jΛ ρ

R

)
cos

(
Λ z

R

)
J0 ( jΛ) H (1)

0 ( jΛ) − σC
σS

J1 ( jΛ) H (1)
1 ( jΛ)

dΛ. (3.11)

The asymptotic behavior of this equation for positions far away from the
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conductor (i.e., ρ/R → ∞) may be obtained by taking the denominator of the

previous expression to the limit Λ → 0 (OLLENDORFF, 1926). This limiting pro-

cedure leads to

lim
ρ→∞

ϕS ( ρ, z) =
I

4πσSR

∫ ∞

0
jH (1)

0

(
jΛ
ρ

R

)
cos

(
Λ

z
R

)
dΛ. (3.12)

The integral representation provided by the previous equation can be re-

stated in terms of simple analytic functions. More specifically, it may be demon-

strated (BOLLIGER, 1917) that

I
4πσSR

∫ ∞

0
jH (1)

0

(
jΛ
ρ

R

)
cos

(
Λ

z
R

)
dΛ =

I

4π σS
√
ρ2 + z2

. (3.13)

The comparison of (3.13), (3.12) and (3.7) lead to the conclusion that the

asymptotic behavior of the electric potential produced by the cylindrical con-

ductor at far away distances is equivalent to the one of a point current source.

3.4.3 The electric potential of a vertically buried rod

The last problem analyzed in this series is shown schematically in Fig-

ure 10(a). It corresponds to a thin cylindrical conductor that is vertically driven

into the soil. This electrode drains a total current I and its length ` is much

longer than its radius R. This soil conductivity is once again represented by σS.

Among the different approaches for analyzing the behavior of the electric

potential arising in this case, the one provided by (RÜDENBERG, 1945) is partic-

ularly convenient to investigate its asymptotic behavior at distances far away

from the electrode. The procedure proposed in that work is partially adapted

in what follows to achieve this objective.

Instead of formally solving the boundary value problem in this case, the

procedure bases itself on the assumption that the current leaving the electrode



31

Figure 10: The grounding rod analyzed by (RÜDENBERG, 1945) (a), its sub-
stitution by point current sources (b) and some geometrical relations valid for
distant P (c).

and entering the soil is uniformly distributed along its length, and that the con-

tributions of an element of length of the rod to the total electric potential may

be added based on the principle of superposition of effects.

More specifically, the vertical electrode is replaced by a large number n

of point current sources evenly disposed along length `, each one injecting

a current I/n into the soil as depicted in Figure 10(b). Each point source is

accompanied by its corresponding image source placed symmetrically about

the earth surface in order to take into account the finiteness of the soil domain.
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Let then y be the distance between one of these point sources and a point

P lying on the soil surface. According to (3.7), the electric potential created by

each of these sources and at this point will then be

dϕ =
2

(I/n
)

4πσS y
, (3.14)

in which the extra multiplying factor 2 takes into account the contribution pro-

vided by the image source.

This distance y may be rewritten in terms of geometric parameter α, which

corresponds to the angle shown in Figure 10(b). According to the diagram of

Figure 10(c), for large n and for a point P far away from the rod, the following

relations hold true:

d` =
`

n
; sinα =

y dα
d`

; y =
` sinα
n dα

. (3.15)

As a consequence, the potential contribution provided by each point source

may be restated as

dϕ =
2

(I/n
)

4πσS
` sinα
n dα

=
I

2πσS `

dα
sinα

. (3.16)

The total potential resulting at point P can then be obtained by integration

along the rod, with limits going from α = β (the limiting angle shown in the

diagram, corresponding to the tip of the rod) to α = π/2:

ϕ =
I

2π σS `

π/2∫
β

1
sinα

dα =
I

2π σS `
ln

(
1 + cos β

sin β

)
. (3.17)

Furthermore, L’Hôpital’s rule may be employed to show that

lim
β→π/2

ln
(
1 + cos β

sin β

)
cos β

= 1. (3.18)
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As a consequence, and since β→ π/2 corresponds to the evaluation of the

potential at a point far away from the rod,

ϕ =
I

2π σS `
cos β. (3.19)

However, at large distances cos β = `/y ≈ `/ρ. This substitution into (3.19) finally

leads to

ϕ =
I

2π σS ρ
, (3.20)

which is once again identifiable with the potential created by a point

source (3.6).

3.5 Domain truncation by non-homogeneous
Dirichlet boundary condition

The results compiled in the previous section show that different problems

involving the dispersion of currents in the soil resulted in the same asymptotic

behavior for the electric potential, when positions far away from the point of

current injection are considered. In this sense, both grounding configurations

examined in sections 3.4.2 and 3.4.3 could be replaced by an equivalent point

current source injecting the same current into the soil if only outlying regions

were considered for evaluating the electric potential.

Additionally, the procedure employed in the analysis of section 3.4.3 intro-

duces the possibility of superposing the effects of point current sources in this

context of applications in order to compose or to build the solution of a more

complex problem.

These observations regarding the superposition of point current sources

suggest that similar concepts may be adopted to address the difficulties high-

lighted in section 3.3.2. If the foregoing notions are generalized, an alternate
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Figure 11: Schematic representation of domain Ω for computing the proposed
non-homogeneous Dirichlet boundary condition on ΓD.

scheme for determining the Dirichlet boundary condition (3.3b) upon ΓD can

be envisioned. The approach consists in replacing every tower or structure

injecting current in the ground by a point current source lying on the surface of

the earth. Each of these sources produces a potential distribution of the form

prescribed by (3.6). In the case of N such sources, the superposition of their

effects yields the following function ϕ0 defined upon ΓD:

ϕ0

(
P j

)
=

1
2πσS

N∑
k=1

Ik∣∣∣ r jk

∣∣∣ . (3.21)

Equation (3.21) computes the non-homogeneous Dirichlet boundary con-

dition ϕ0 for a generic point P j lying on ΓD, as Pm and Pn shown in Figure 11.

Distances
∣∣∣ r jk

∣∣∣ are evaluated between the k-th point source on the earth sur-

face and point P j on ΓD. As previously discussed in this chapter, quantities Ik

are the fault currents shown in Figure 4, which are supposed to be known in

advance.
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3.6 Solution of conductive coupling problems
with the finite element method

Complex conductive coupling problems require numerical solutions of their

associated boundary value problem. This section will then discuss the appli-

cation of the special Dirichlet boundary condition furnished by (3.21) in the

context of the finite element method.

Two particular finite element method formulations will be considered.

These formulations will be only briefly outlined in the following subsections,

since they are well-known numerical procedures. They are namely the clas-

sical electrokinetic formulation for solving the problem given by (3.3) and the

A − ϕ formulation. Both of them have been broadly documented in the special-

ized literature of computational electromagnetics.

Consequently, the reader interested in their full developments is referred

to references such as (ZIENKIEWICZ; TAYLOR; ZHU, 2006) and (BÍRÓ, 1999). The

reader is also referred to the work by (SILVA, 2006), in which specializations

of these formulations dedicated to the analysis of secluded grounding sys-

tems and to the computation of their equivalent impedances are presented

and thoroughly discussed. The incorporation of the specialized boundary con-

dition proposed in this chapter to the framework of this last reference may

be regarded as an extension to the treatment of non-secluded grounding ar-

rangements or, equivalently, to the analysis of conductive coupling problems

involving a nearby power system.

Details concerning the modeling of the thin conductors in grounding net-

works and the current excitation of the finite element model will be covered in

this section as well, for the sake of completeness.
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3.6.1 Incorporation of the specialized non-homogeneous
Dirichlet boundary condition

The use of (3.21) is convenient for solving (3.3) by the finite element

method. In this general context, a discretization of Ω in finite elements is re-

quired, and in the case of the electrokinetic formulation the following nodal

approximation for ϕ is adopted:

ϕe =

nn∑
i=1

ϕe
i Ne

i . (3.22)

Coefficients ϕe
i are the nodal values of ϕ, and Ne

i are the nodal shape func-

tions. The application of the Galerkin procedure to (3.3) with this approximation

ultimately leads to the assembly of a system of equations that has degrees of

freedom ϕe
i as its unknowns.

In this scenario, the application of (3.21) consists in identifying points P j

with the mesh nodes lying on boundary ΓD in order to compute their potentials.

The determination of their values allows eliminating the corresponding degrees

of freedom ϕi from the assembled system of equations and its subsequent

solution.

3.6.2 Generalization to other finite element formulations

The generalization of this boundary value procedure to other formulations

of the finite element method developed in terms of a scalar potential may be

proposed as well.

Indeed, even though the discussions carried out in this chapter were based

on the steady state hypothesis that led to a Laplace type problem, the flow

of electric currents in the soil could also have been described by a full wave

model. One of the possible approaches admits the sinusoidal variation of the
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electromagnetic fields with a frequency ω and employs the magnetic vector po-

tential A in conjunction with electric scalar potential ϕ to establish the following

differential equation in Ω:

∇× (ν∇×A) + σ̇ ( jωA + ∇ϕ) = 0. (3.23)

The potentials in (3.23) are regarded as complex quantities. They are re-

lated to each other and to the complex electromagnetic fields E and B by (1.6)

and (1.8). The material properties ν and σ̇ = σ + jωε are respectively the

reluctivity and the complex conductivity of the media in Ω.

As in section 3.6.1, the finite element analysis of a boundary value problem

governed by (3.23) also requires the approximations of A and ϕ inside the

elements of the mesh. For the case of the vector potential, this approximation

may be written as

Ae =

ne∑
i=1

ae
i ω

e
i , (3.24)

with ωe
i belonging to the space of vector edge shape functions and with scalars

ae
i representing degrees of freedom corresponding to the edges of the element.

The scalar electric potential, in turn, can be approximated as before by (3.22).

The application of the Galerkin residual procedure to (3.23) with the dis-

cretizations expressed by (3.22) and (3.24) leads to a formulation of the A − ϕ

type. As a consequence, the assembled system of equations resulting from

the application of the finite element technique to (3.23) will contain both edge

degrees of freedom ai and nodal degrees of freedom ϕi as unknowns.

The presence of the latter category of degrees of freedom allows applying

the very same boundary condition scheme previously described for eliminating

unknowns ϕi lying on boundary ΓD. The point source approximation is sup-

posed to remain valid for the substituted grounding electrode in frequency ω.
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Besides this assumption, currents Ik of (3.21) are supposed to correspond to

their complex phasor representations.

As for the magnetic vector potential A, its tangential component is con-

strained as follows:

n × A = 0 in Γ = ΓD ∪ ΓN. (3.25)

This is equivalent to imposing a null outgoing magnetic flux density on the

boundary (SILVA, 2006; SILVA et al., 2007) and corresponds to an homogeneous

Dirichlet boundary condition on the edge degrees of freedom ae
i .

3.6.3 Modeling of thin wires

According to the discussion of the preceding sections, the proposed sub-

stitution of the current-injecting structures with point current sources allows

computing a non-homogeneous Dirichlet boundary condition. It should be re-

marked, however, that no point source substitution is proposed to the actual

representation of the grounding electrodes or of any other structure injecting

a component of current into the soil, since such an approach would evidently

modify the field solution in Ω at short and intermediate distances from the con-

ductors.

On the other hand, the difference of scale between thin conductors and the

large dimensions of the soil domain Ω in conjunction with the large difference

between the conductivities of their materials is known to pose a challenge to

computations with the finite element method. In order to avoid the difficulties

arising in this context, such as the large storage requirements for the mesh and

the ill-conditioning of the resulting system of equations, the approach proposed

in (SILVA et al., 2011) may be adopted.

In summary, the thin conductors are supposed to behave as perfect con-
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ductors and are represented by lines in the geometrical model subjected to

discretization. As discussed in the previous reference, if the volume of a thin

conductor is omitted from the representation and is instead represented by a

line, the sizes of the elements in its immediate vicinity result strongly related to

the actual thin electrode radius. The setting of a suitable grid size in this region

is then employed to recall the proper cross section of the thin conductor. This

task may be addressed during the mesh generation step.

Additionally, proper constraints are prescribed for the degrees of freedom

linked to the lines representing the conductors. Current excitation by pre-com-

puted Ik is accomplished by means of non-homogeneous Neummann con-

ditions applied to boundaries ΓFP shown in Figure 5, as discussed in sec-

tion 3.3.1. These surfaces are made coincident with mesh nodes representing

the input points of the filamentary conductors by a limiting procedure (SILVA,

2006; SILVA et al., 2007). The perfect conductor behavior for the electrodes is

obtained by a floating condition enforced on its nodal degrees of freedom (i.e.

ϕi constant for every node along the line composing the filamentary conductor).

In the case of the A−ϕ formulation arising from (3.23), a null value for edge-re-

lated degrees of freedom ai is imposed along the conductor as well (SILVA,

2006; SILVA et al., 2007).

3.7 Chapter summary

This chapter presented the problem of conductive coupling phenomena tak-

ing place in the vicinities of a power system. The characteristics intrinsic to this

class of applications that hinder its statement as a boundary value problem in

a finite and closed domain were emphasized and were shown to be connected

with the presence of multiple sites of current injection in the ground.
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A procedure to compute a boundary condition for a truncated three-dimen-

sional boundary value problem representing a zone where conductive coupling

phenomena take place was then proposed by analyzing the analytical solu-

tions of selected grounding arrangements. The proposed scheme consists in

evaluating the electric potential at the underground boundary of the domain by

means of the superposition of the effects of point current sources replacing the

grounding electrodes actively injecting current in the ground. The potentials

obtained can then be employed as a non-homogeneous Dirichlet boundary

condition that can be incorporated in the finite element analysis of the corre-

sponding problem.

In the following chapter, several problems will be analyzed with the aid of

the technique proposed. The formulations of the finite element method pointed

out in section 3.6 and their specializations will be adopted in conjunction with

the boundary condition just proposed. The limitations of this approach and its

applicability to more complex problems will be investigated as well.
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4 CONDUCTIVE COUPLING APPLICATIONS

4.1 Introduction

In the previous chapter, the finite element analysis of conductive coupling

phenomena with the use of a special boundary condition was proposed. This

chapter now proceeds to the application of this technique.

According to section 3.5, the boundary condition procedure was derived

by induction from an assortment of analytical problems. As a consequence,

the assumptions adopted are expected to reflect into limitations affecting the

general applicability of the technique.

These assumptions will be made explicit and discussed in this chapter.

Some preliminary numerical problems will be proposed, in order to verify their

validity in general applications.

Once the impact of those limitations is identified, the discussion will move

on to the application of the technique to a more realistic situation. An actual

transmission line right of way will then be analyzed, so as to show the capabil-

ities of this approach.

It should be remarked that a significant part of the developments covered

in this chapter has been published in recent journals and conference proceed-

ings (MARTINHO et al., 2011; MARTINHO et al., 2014; MARTINHO; SILVA, 2015). This

chapter then provides a compilation of these results in a more direct and logical
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presentation.

4.2 Implicit assumptions and other general re-
marks

The boundary condition on the electric potential given by (3.21) relies upon

the asymptotic behavior of the response exhibited by a point current source

in steady state at far away distances. It also bears a conceptual dependence

upon the principle of superposition of effects and on a hypothesis of homoge-

neous soil.

In finite element applications, the fulfillment of these assumptions are re-

lated to the following aspects:

• Computational domain Ω is made sufficiently large.

• The eventual existence of buried structures or heterogeneities in the soil

does not disturb the distribution of the electric potential at large distances.

• All media involved exhibit linear behavior.

• The time variations of the sources are consistent with a steady state ap-

proximation.

The first two assumptions will be directly investigated in the following two

sections. Both the influence of the size of the computational domain and the

impact of buried structures will be examined in detail by means of the analysis

of a series of specially conceived conceptual problems. A third section dis-

cussing a problem designed to show the advantage of the proposed technique

in comparison with standard procedures for the finite element analysis with an

open boundary is also included.
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The strict satisfaction of the last two remaining aspects previously listed

requires the introduction of simplifications or a restriction on the scope of ap-

plication. For instance, the linear behavior of materials can only be ensured if

effects such as the ferromagnetism of metallic structures or the soil ionization

under intense surge currents are disregarded. Additionally, the steady state

approximation is incompatible with phenomena characterized by fast rates of

change, such as the current injection from a lightning discharge or the tran-

sients resulting from switching operations in the power system.

In face of these limitations, the problems analyzed in this chapter will tac-

itly assume the fulfillment of these two particular assumptions by considering

simple materials and the flow of currents with the characteristic frequency of

the power system (i.e. 60 Hz). It should be remarked, though, that a relax-

ation of these limitations and the use of concepts similar to the approach here

proposed have also been considered by other authors in extended contexts

of applications. For instance, (STOLL; CHEN; PILLING, 2004) also assumes a

1-D behavior of the fields beyond the truncation of the 3-D domain to compute

the high-frequency impedance of grounding electrodes by the Finite Difference

Method.

The last problem to be analyzed in this chapter is dedicated to a more

realistic situation involving several buried structures and concerned with the

investigation of the shielding effect produced by reinforcement bars sometimes

contained within constructions.

All the numerical solutions obtained in this chapter were produced accord-

ing to the techniques outlined in section 3.6, with software implementations that

could be classified as experimental or non-optimized. In this sense, no attempt

to exhaust the discussion of performance aspects of the numerical solutions is

undertaken. Alternatively, the goal of this chapter is to lay the groundwork for
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Figure 12: The grounding system under analysis and the parameterized do-
main for FEM computations.

future investigations in the numerical analysis of conductive coupling problems

with the finite element method (FEM).

4.3 Domain size and superposition of multiple
sources

The first configuration to be analyzed is shown in Figure 12 (MARTINHO et

al., 2011). Several computations involving this configuration were carried out in

order to establish a criterion for the dimensioning of the computational domain.

The grounding configuration represented in Figure 12 is composed of the

interconnection of three vertical rods, and the ensemble is subjected to a fault

current of 1 A and 60 Hz. Current injection takes place at point (0,0,0) in ac-



45

Figure 13: Earth surface electric potential for various values of parameter R
with the FEM and for the MCI.

cordance with the system of coordinates attached to the representation. The

A − ϕ formulation and the modeling approach for the electrodes described in

sections 3.6.2 and 3.6.3 were adopted.

The investigation is based on a parameterization of the computational do-

main in terms of dimension R, which is also depicted in Figure 12. Several

finite element method simulations were executed with different values of this

geometrical parameter R. The aim is to verify the influence of the domain size

on the validity of the point source approximation for calculating the non-homo-

geneous Dirichlet boundary conditions on the electric potential.

The results were compared with the solution given by the Method of Com-

plex Images (MCI) (FILHO; CARDOSO, 1999; CHOW; YANG; SRIVASTAVA, 1992),

an integral method that does not rely on domain discretization or truncation.

The behaviors of the electric potential along the line (y = 0, z = 0) on the soil

surface were plotted together in Figure 13 for comparison.
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Figure 14: Error on the earth electric potential in comparison with the MCI.

Figure 13 shows that for sufficiently large domains the point source ap-

proximation leads to results in very good agreement with the MCI. Figure 14

displays the error in the electric potential of each FEM simulation compared to

this reference solution along the same path. For the cases in which R = 10 m

and R = 300 m, errors lower than 4.5% were verified.

Greater insight into the effect of increasing the domain dimensions can

be achieved with the aid of the sequence of plots composed of parts (a), (b)

and (c) of Figure 15. These illustrations show the electric potential on the

soil surface for increasing values of R, when the proposed non-homogeneous

boundary condition is employed together with the A−ϕ formulation of the FEM

in the modeling.

The computation for R = 1 m on Figure 15(a) clearly shows that the domain

is too small for the point source approximation to be applicable. It leads to a

non-physical solution in which the electric potentials on the boundary may be

larger than the ground potential rise at the injection point (0,0,0). However, if a
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Figure 15: The behavior of the electric potential on the soil surface for different
values of parameter R. Coordinates on each plot are measured in meters.

sufficiently large domain is employed, the electric potential solution accommo-

dates itself into its expected distribution. This is the case in Figure 15(c).

Since the problem contained only a secluded grounding system, the ap-

plication of the non-homogeneous boundary condition did not involve the su-

perposition of multiple point current sources. In other words, the sum (3.21)

contains only one term. Let then a second problem be considered in which

two different grounding arrangements coexist in a limited space, as shown in
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Figure 16: Two sets of vertically buried electrodes. The soil was omitted for
clarity.

Figure 16 (MARTINHO et al., 2014).

In this new case, the same configuration of Figure 12 was repeated at

a position 2D = 12 m away. The two resulting arrangements are labeled “A”

and “B”. Grounding system A was once again subjected to a current of 1 A

and 60 Hz, while grounding system B received half of this current injection. A

geometrical representation in which the truncation boundary (i.e. the Dirichlet

boundary ΓD) was approximately 20D away from the electrodes (or 10 times

the separation 2D between the two grounding arrangements) was employed in

the FEM solution.

The electric potential on the soil surface along line (y = 0, z = 0) was

evaluated with the A−ϕ FEM formulation together with the proposed boundary

condition. The results were plotted with the corresponding MCI solution in a

single Cartesian plane, as shown in Figure 17. Errors no greater than 2.75%

were verified.

It becomes evident from Figures 13 to 17 that the proposed boundary con-
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Figure 17: Earth surface electric potential for two grounding systems close to
each other and subjected to unevenly distributed fault currents.

dition is valid only if the truncation boundary is placed at a sufficiently large

distance from the sources. The results collected from the two problems pre-

viously analyzed suggest that ΓD should be placed at distances a few times

larger than a characteristic dimension of the conductive coupling problem un-

der analysis.

The characteristic dimension for determining the domain size could be

taken as either the length ` of an individual rod or the separation 2D between

the two grounding arrangements. This information should be used with care

by the analyst to avoid non-physical solutions (in the case of sub-dimensioned

domains) or excessively large computational problems (in the case of over-di-

mensioning).
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4.4 Effects of buried objects

The investigation conducted in the previous section addressed the appro-

priate dimensioning of the computational domain that is required by the non-ho-

mogeneous Dirichlet boundary condition (NHDBC) approach. This section now

proposes an additional investigation, in order to verify the applicability of the

alternative NHDBC in situations that do not fulfill another of the basic assump-

tions implied in its use.

More specifically, and as already mentioned, a hypothesis of homogeneous

and isotropic soil is implicit in (3.21). As a consequence, some error should be

expected when the NHDBC is employed in the analysis of conductive cou-

pling problems containing additional structures embedded in soil domain Ω.

Since the existence of underground heterogeneities at shallow depths is quite

frequent in transmission line rights of way (as is the case of pipelines, valve

boxes or masonry structures), a simplified problem following these lines will

now be analyzed and discussed in detail (MARTINHO; SILVA, 2015).

The configuration in Figure 18 shows a vertical grounding rod similar to

the one considered in section 3.4.3 subjected to a fault current. Two buried

structures (a short box and a long cylinder) of the same material are placed in

its vicinities. The xy plane cuts both the cylinder and the box in two equal parts.

The relevant dimensions are indicated in Figure 18, along with the various

physical properties.

The electric potential on the soil surface was computed along the x axis

with two different approaches to truncate the domain: the NHDBC and infinite

elements in a scheme analogous to the one represented in Figure 7. For the

sake of convenience, both approaches were implemented for an electrokinetic

formulation of the FEM.
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Figure 18: Configuration to investigate the effects of soil heterogeneities (rep-
resented by the buried structures in blue) on the behavior of the NHDBC ap-
proach. The resistivity values considered for the soil and for the underground
structures are displayed above.

According to section 3.3.2, the infinite element technique is a well-estab-

lished procedure for modeling open boundaries in finite element analysis. Its

use relies on a modification of the Jacobian matrices of a layer of elements

placed in the outermost boundaries of the domain. These adapted Jacobian

matrices correspond to a transformation of coordinates that effectively map the

geometrical finite elements of that special region into a particular reference el-

ement that extends itself to infinity. The use of this Jacobian matrix during the

numerical integration of the local finite element matrices in conjunction with a

homogeneous Dirichlet boundary condition for the electric potential on trunca-

tion boundary ΓD results in the emulation of an open domain (DHATT; TOUZOT;

LEFRANÇOIS, 2007; ZIENKIEWICZ; TAYLOR; ZHU, 2006).

The problem under analysis is not affected by a neglect of additional

current sources left outside the computational domain, as discussed in sec-

tion 3.3.2. Therefore, the finite element analysis with the infinite element tech-

nique is taken as the benchmark for validating the NHDBC approach in the

case of a soil with buried objects.
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Figure 19: Comparison of the NHDBC approach with the use of infinite ele-
ments in the investigation of the effects of soil heterogeneities.

The errors in the electric potential for the NHDBC solution to the reference

solution were evaluated along the x axis for different combinations of soil and

heterogeneities resistivities. The graphs in Figure 19 keep the same system

of coordinates of Figure 18 and present the results for the region immediately

above the buried heterogeneities on the soil surface. The plot depicted in

Figure 19(a) displays the percent error of the NHDBC approach for the case

of insulating heterogeneities, when compared with the corresponding solution

obtained with infinite elements. Figure 19(b) makes the same comparison for

the case of conductive heterogeneities.

The following conclusions arise from the data expressed by the plots of

Figure 19:

• For a wide range of soil resistivities, the NHDBC approach is still very

accurate if highly resistive objects are embedded in the soil. A maximum

error below 2.4% for ρsoil = 1000 Ω.m was verified.

• When highly conductive heterogeneities are considered, significant er-

rors are verified in the surface electric potential distribution computed



53

Table 1: Performance of the System of Equations Solver†
(Insulating buried objects)

Soil resistivity NHDBC solution‡ ZIEs solution‡
10 Ω.m 304 340
100 Ω.m 292 336
1000 Ω.m 304 326

† BiCGStab, Jacobi preconditioning, tolerance = 10−5.
‡ Number of iterations to achieve convergence.

with the NHDBC approach.

• If heterogeneities of intermediate resistivity are considered, the NHDBC

approach may also be very accurate. This will still be the case when

their resistivities are in a range that is not far from the resistivity of the

surrounding medium. The situation would correspond to practically no

heterogeneities.

The results of Figure 19 were obtained with a mesh of tetrahedra and

prisms, composed of 37224 nodes. The system of equations could have been

solved with any appropriate method, and the BiCGStab algorithm was chosen

for convenience. Comparative information about its performance is available

in Table 1, for the case of insulating heterogeneities in which both techniques

provide similar solutions for the electric potential distribution. It may be verified

that the NHDBC technique led to a slightly smaller computational effort.

4.5 Effects of external currents

The motivation for introducing an alternative approach for dealing with a

semi-infinite domain in the context of conductive coupling problems involv-

ing overhead lines was discussed in section 3.3.2. It was argued that the

widespread techniques employed in addressing this category of problem with

the finite element method would inevitably neglect the effects of current injec-
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tion sites left outside the computational domain.

It may be shown that this neglect leads to a significant error in the electric

potential computed on the earth surface, which is one of the most relevant

physical quantities in this kind of investigation. However, one may verify that

better results can be obtained if the NHDBC is applied instead.

To make these assertions explicit, let the configuration of Figure 20

be considered, in which two neighboring vertical grounding rods are repre-

sented (MARTINHO; SILVA, 2015).

The soil is supposed to be homogeneous and the rods are subjected to two

independent current sources. A full, rigorous electrokinetic FEM model would

contain both rods embedded in a semi-infinite soil domain, represented by a

layer of infinite elements, as shown in Figure 20(a). Solutions for the electric

potential distribution following from this approach will be quoted from now on

as being produced by the “complete” model.

Still, if a detailed analysis of the potential distribution must be limited only to

the vicinities of the first grounding rod, a simplified representation could be pro-

posed as well, as depicted in Figure 20(b). This model neglects the existence

of the second grounding rod and the soil is also taken as a semi-infinite do-

main truncated by infinite elements. In opposition to the “complete” approach

previously defined, this model will be referred to as the “reduced” one.

The reduced model is conceived in the likeness of the scenario recovered

in the beginning of this section, which arises in the modeling of a complex

conductive coupling situation with any standard technique dedicated to treat-

ing the open boundary that forces the neglect of field sources left outside the

computational domain.

The application of the NHDBC scheme to the problem under analysis yields
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Figure 20: The complete (a) and reduced (b) models for the FEA of the problem
of two neighboring grounding rods.

the situation depicted in Figure 21. Here, the second grounding rod, which

lies outside the computational domain, is taken into account by means of an

additional point source in the summation given by (3.22), as would be the case

for the grounding grids of nearby transmission line towers in a right of way.

In order to compare this third approach with the well-established procedure

given by the reduced model, the electric potential distribution provided by the

complete model solution was fixed as a benchmark. The plot on Figure 22

thereby displays the behavior of the percent error in the electric potential be-
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Figure 21: The NHDBC applied to the problem of two neighbouring grounding
rods.

tween both the reduced and the NHDBC solutions and this reference. These

errors were evaluated along the x axis in the vicinities of the first grounding

rod, with several soil resistivities. The system of coordinates, the relevant ge-

ometrical parameters and the material properties employed in the simulations

are shown in Figures 20 and 21.

The following may be derived from Figure 22:

• Both the NHDBC and the reduced model yield low errors (≤ 0.7% in

all cases) for the ground potential rise at the point of current injection.

Hence, if only the equivalent grounding resistance during the fault is re-

quired, the two approaches provide equivalent results.

• If only positions located at distances of the order of a few times the rod

length (` = 3 m) are concerned (|x| ≤ 4` = 12 m), the NHDBC still provides

small errors (≤ 6.65%) for the electric potential. This is not the case for

the reduced model, which yields much larger errors (≤ 26.2%).
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Figure 22: Comparison of the NHDBC and reduced approaches with the com-
plete model for various values of soil resistivities (rod position: x = 0 m).

• The outskirts of the domain should be interpreted as a region lying

halfway to relevant structures left outside the computational domain (as

is the second grounding rod at x = 60 m). In this sense, they should be

preferably analyzed with the complete model. However, even in this un-

favorable region for both single rod approaches, the NHDBC procedure

yields smaller errors than the reduced model. At the border of the com-

putational domain the closest to the second grounding rod (x = 30 m),

the former leads to errors no greater than 11%, while the latter yields an

unacceptable error of almost 62%.

A similar behavior with results even more favorable to the use of the

NHDBC is verified when the same investigation is repeated for a path along

the z axis. It may be concluded then that the NHDBC technique provides a

better modeling approach for the problem of Figure 20. Ultimately, the facts

previously made explicit also suggest that similar results would also be verified

in more realistic conductive coupling problems, possibly involving other faulted
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transmission line towers and their grounding networks.

4.6 Application to a conductive coupling problem
in a transmission line right of way

In this section, a realistic application will be considered (MARTINHO et al.,

2014). The configuration under analysis is depicted in Figure 23. It shows

the surroundings of an area spanned by two towers of a transmission line

close to an underground pipeline section, which is made accessible to working

personnel inside a steel-reinforced masonry structure. The ground networks of

the towers have a particular configuration given by long conductors buried in a

direction parallel to the overhead line, which is sometimes called counterpoise

grounding.

The power system is supposed to be subjected to a fault that results in the

injection of components of power frequency current at the foundation of each

tower by the mechanism discussed in section 3.2. Their values are known in

advance from a previous system-wide computation, and are available together

with other relevant data in Figure 23.

The pipeline is buried at a depth of 1.04 m and the masonry structure has

the shape of a box with dimensions 4.0 m×3.35 m×2.4 m. It should be re-

marked that the pipeline is represented by a cylinder entirely composed of a

very resistive material, as is the case of the coatings normally employed for

protecting their metallic structures. This simplification together with the other

resistivity values employed (available in Figure 23) lead to a model in accor-

dance with the conclusions of section 4.4, as required for using the NHDBC

approach.

The aim of this problem is to investigate the mitigatory role played by the
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Figure 23: Underground structures sharing the transmission line right of way.

embedded steel reinforcements, that is, their ability to modify the electric po-

tential distribution next to the working area and to lessen both touch and step

voltages during the contingency.

The problem was solved with the A − ϕ edge formulation. Both the steel

reinforcements and the grounding networks were modeled with the aid of the

floating boundary condition technique outlined in section 3.6.3. Thus, a ge-

ometric model for the right of way represented in Figure 23 was created in

compliance with the dimensioning orientations established in section 4.3 and

discretized with a mesh of tetrahedra (with 4 nodes and 6 edges per tetrahe-

dron).

The application of the complete numerical scheme previously described

to this model yielded an algebraic system of equations with approximately

2 200 000 degrees of freedom. The solution of this system provided the elec-

tric potential distribution in domain Ω.

Figure 24 shows a general view of the computational domain after the so-
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Figure 24: Overview of the solution (a) and its equipotential surfaces (b).

lution and the equipotential surfaces of the electric potential distribution. Fig-

ure 25 displays the electric potential on the soil surface in the surroundings of

tower 2. The information given by this plot could be employed to evaluate step

voltages for this region of the transmission line right of way.

The investigation of the mitigatory effect of steel reinforcement bars is ac-

complished with the aid of Figure 26, in which a detail of the enclosure is

shown. Table 2 brings the results for touch voltages for three enclosure con-

Figure 25: Electric potential on the earth surface in the neighborhood of tower
2 (position coordinates measured in meters).



61

Figure 26: Detail of the masonry enclosure (a) and the plane of electric poten-
tial evaluation (b).

Table 2: Touch Potential Inside the Masonry Enclosure
Reinforcements configuration Touch Potential†

Corners and inner walls‡ 42.9 V
Inner corners only 58.7 V
No reinforcements 122.0 V

† For a subject stepping on the spot marked with an X in Figure 26(b)
and touching a perfectly grounded structure at 0 V.
‡ As depicted in Figure 26(a).

figurations, which differ from each other in the distribution and presence of

embedded steel reinforcement bars.

The results gathered in Table 2 confirm the expected influence of the steel

reinforcement bars, that is, their ability to lessen dangerous overvoltages in

the working area. The touch voltages quantified with the numerical scheme

described herein could then be considered for safety measures, or could be

employed in the project or design of a shared transmission line right of way.
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4.7 Chapter summary

This chapter presented a series of conductive coupling problems analyzed

with the FEM and the NHDBC. The limiting assumptions brought by the use of

this approach were analyzed by solving two test problems. The results allowed

ascertaining directives concerning the size of the computational domain and

provided the ground rules for determining the nature of the heterogeneities

buried in the soil that are compatible with the use of this technique.

A complementary test problem was analyzed as well, in order to confirm

the need of an alternative procedure such as the NHDBC to circumvent the

difficulties pointed out in section 3.3.2, which result from the use of conven-

tional modeling techniques for representing domains with open boundaries.

The same analysis showed that the use of the NHDBC approach can be ad-

vantageous in this context of conductive coupling applications.

Finally, a more practical conductive coupling application was considered,

in which the shielding effect provided by reinforcement bars embedded in a

buried masonry enclosure was simulated by means of a large-scale FEM com-

putation. This application illustrated the modeling possibilities granted by the

use of the NHDBC approach.

In the case of the preliminary applications of the proposed technique, the

validation of the computed results was obtained by confrontation with alter-

native numerical techniques. According to the case, the method of complex

images or the finite element method with the infinite element technique were

chosen as benchmark solutions.

Ideally, the validation of the results should also be carried out in the case

of section 4.6 by comparing them with measurements. However, the setting

up for the experimental validation of conductive coupling applications involving
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high voltage power systems corresponds to an elaborate enterprise and is far

beyond the scope of the current work.

The investigation of additional practical conductive coupling problems and

further research on numerical aspects of finite element solutions employing the

NHDBC approach are left for future works.
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5 INDUCTIVE COUPLING MODELING AND
APPLICATION

5.1 Introduction

In the two previous chapters, conductive coupling phenomena were con-

sidered and analyzed with the finite element method. This chapter proceeds

with the investigation of inductive coupling phenomena.

The inductive coupling between an overhead transmission line and other

nearby structures arises from the time-varying magnetic field induced by the

electric currents flowing in its conductors. If contingencies and transient con-

ditions are disregarded, these currents vary with the power system frequency,

which is either 50 Hz or 60 Hz depending on the national standard. In both

cases the time variations are sufficiently slow to result in negligible capacitive

and propagation effects.

On the other hand, these time rates of change are fast enough to yield rel-

evant inductive phenomena. The electric field induced by the line time-varying

magnetic field leads to an induced electric potential and to an induced current

density that may be dangerous to humans or affect the stability of suscepti-

ble structures. The resulting undesired effects are manifold, ranging from the

risk of electric shock to the continued alternate current corrosion of metallic

structures (CENELEC, 2012; CENELEC, 2013).

The modeling of this class of problems can be attained with well-known nu-
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merical procedures such as the FEM. In situations involving the parallelism of

long structures with the transmission line, as is the case of transportation rails

or underground pipelines, this method may be efficiently employed (CHRISTO-

FORIDIS; LABRIDIS; DOKOPOULOS, 2005). The shared right of way may be re-

duced to a representative 2-D model given by one of its cross-sections, leading

to numerical problems of reasonable size and complexity, even if large inactive

air regions and thin phase conductors need to be discretized.

The general problem is however given by an object of an arbitrary shape

and with an arbitrary position relative to the transmission line. The finite el-

ement analysis of these problems requires a 3-D model. As a result, both

the storage requirements and the computational run times associated to the

numerical procedure tend to increase greatly, turning the discretization of in-

active air regions and of thin conductors into heavy burdens that cannot be

avoided with classical FEM formulations.

In face of these difficulties, an approach based on an integral method is

proposed. More specifically, the use of an adapted version of the generalized

Partial Element Equivalent Circuit (PEEC) integral method (NGUYEN et al., 2014)

is considered.

Since the use of a PEEC-like method to model inductive coupling phenom-

ena in transmission line rights of way is an unconventional application of this

class of techniques, its formulation and the required adaptions will be covered

in this chapter. The numerical procedure will then be applied to a problem

involving two different orientations of an underground object subjected to the

influence of an overhead line. The results will be confronted with solutions

issued from the 2-D and 3-D FEM.



66

5.2 The generalized PEEC integral formulation

The generalized PEEC approach arises from a synthesis of concepts,

namely the classic PEEC method (RUEHLI, 1974) and the approximation of

field quantities of conservative flux by vector facet elements (BOSSAVIT, 1988).

The following subsections contain a fairly stand-alone presentation of this

integral formulation. For additional details on the generalized PEEC method

or on other related formulations, the reader is referred to (NGUYEN et al., 2014;

NGUYEN, 2014).

5.2.1 Derivation of the PEEC integral equation

In accordance with section 1.3, electric field E may be written in terms of

magnetic vector potential A and electric scalar potential ϕ. This statement is

confirmed by (1.8), which is repeated below for convenience:

E +
∂A
∂t

= −∇ϕ. (5.1)

In order to obtain the integral equation that establishes the basis of the

PEEC procedure, the left-hand side of (5.1) must be recast in terms of current

density J. The connection between E and J in a medium of conductivity σ is

given by Ohm’s law, according to (1.4). The dependence between fields A and

J is given by

A =
µ0

4π

∫
Ω

J
r

dΩ. (5.2)

In (5.2), Ω is a conductive domain containing the current density J. Dis-

tance r is measured between the evaluation point for A and an element of

volume dΩ. This expression neglects the time retardation of the magnetic vec-

tor potential (STRATTON, 2007; JACKSON, 1999), assuming quasi-static electro-
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magnetic fields. Magnetizations and electric polarizations of the media are not

taken into account.

From this point onwards, a sinusoidal time dependence with an angular

frequency ω will be assumed. The time dependent fields then become complex

quantities and the time derivative operator is substituted by jω. This said, the

substitution of (1.4) and (5.2) into (5.1) gives rise to

J
σ

+
µ0

4π
jω

∫
Ω

J
r

dΩ + ∇ϕ = 0, (5.3)

which is an integral equation relating the current density distribution and the

electric potential in the frequency domain.

5.2.2 Finite element approximation of the current density
field

Let conductive region Ω be now discretized with a mesh of finite elements in

order to approximate the current density distribution. The interpolation scheme

adopted is based on vector facet shape functions, to enforce the conservation

of the current flowing between element interfaces.

Inside a finite element e, the current density is approximated by the linear

combination of its facet shape functions we
j given by

Je =
∑

j

we
j Ie

j , (5.4)

where j spans the total number of facets of the element and the Ie
j are un-

known current values flowing through each facet. This physical meaning of the

coefficients Ie
j comes from the basic property of the facet shape functions given

by ∫
Γe

i

we
j · n dΓe

i = δi j, (5.5)

where indexes i and j are associated to facets; n represents the outward nor-
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mal vector of a facet Γe
i and δi j is the Kronecker delta.

The explicit analytical expressions we
j for the shape functions depend on

the element type (tetrahedra, hexahedra, etc.) (DULAR et al., 1994). These vec-

tor shape functions are defined to be null outside their corresponding element

e, that is, the shape functions from different elements are never overlapping.

This allows a global numbering of facets to be considered, so that the cur-

rent density approximation in the whole of Ω may be simply expressed as

J =
∑

j

w j I j, (5.6)

where index j now spans all the facets from the discretization and where su-

perscript e was dropped.

5.2.3 Galerkin projection

If (5.3) is rewritten in terms of the finite element approximation of the cur-

rent density field given by (5.6), its left-hand side will not be exactly null. The

following vector residual will be obtained instead:

R =

∑
j w j I j

σ
+
µ0

4π
jω

∫
Ω

∑
j w j I j

r
dΩ + ∇ϕ , 0. (5.7)

A system of equations in terms of the set of unknown facet currents
{
I j

}
may be assembled by minimizing this residual, in the sense provided by the

Galerkin method. The procedure consists in the computation of a set of

weighted residuals Ri, which are all set to zero. The weighting functions are

taken from the set of vector facet shape functions {wi} of the current density

approximation in Ω:

Ri =

∫
Ω

R · wi dΩ = 0. (5.8)

When taken together into account, the residuals Ri equaled to zero lead
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to the aforementioned system of equation. This system acquires the following

structure:

[Z] · [I] = ( [R] + jω [L] ) · [I] =
[
∆ϕ

]
. (5.9)

In (5.9), [I] is a column vector storing unknown facet currents I j. The gen-

eral entries of the other matrices in this system are:

Ri j =

∫
Ω

wi · w j

σ
dΩ , (5.10a)

Li j =
µ0

4π

∫
Ω

wi ·

(∫
Ω

w j

r
dΩ

)
dΩ and (5.10b)

∆ϕi = −

∫
Ω

wi · ∇ϕ dΩ. (5.10c)

5.2.4 Circuit interpretation

The notation adopted for the matrices in (5.9) and their general terms

in (5.10) suggest that an equivalent circuit may be proposed for the numerical

procedure just described. This is indeed the case, and this circuit interpretation

is obtained as follows:

• Each element in the finite element mesh is associated to a circuit node

placed in its centroid; the centroids of each facet lying on the boundaries

of Ω are associated to a circuit node as well.

• A facet i corresponds to a circuit branch of impedance Zii = Rii + jωLii,

calculated by (5.10a) and (5.10b) with i = j. This branch connects the

two nodes associated to the two mesh elements sharing facet i.

• A circuit branch is coupled to every other branch of the circuit by means

of a mutual inductance. The mutual inductance between a branch (or

facet) i and a branch j is calculated by (5.10b) with i , j.

Additionally, the right hand-side of (5.9) may be shown to be a vector of av-
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Figure 27: 2-D representation of the equivalence between the application of
the PEEC formulation to a mesh of hexahedra (a) and an electric circuit (b).
The mutual inductance couplings Li j are omitted.

eraged branch (or facet) voltage drops (NGUYEN et al., 2014). More specifically,

∆ϕi calculated by (5.10c) gives the difference between the averaged electric

potential ϕ of the two elements sharing facet i. For a facet lying on the border

of the domain, the same computation gives the difference between the aver-

aged electric potential of the only element containing the facet and the mean

electric potential of the boundary facet itself.

Figure 27 illustrates this circuit equivalence, which also allows the use of

electric circuit solver algorithms to solve the system of equations (5.9). The

motivations for such an approach are the following:

• The use of facet elements assures the conservation of current between

element interfaces. The use of an electrical circuit solver naturally en-

forces the conservation of current in the problem under analysis in a

global sense. Together they assure the solenoidal character of current

density field J predicted by (3.1), which follows from the neglect of dis-

placement currents or capacitive effects.
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• If the analysis is carried out by means of a circuit solver, the coupling

of the electromagnetic equations to a complementary external network

becomes straightforward. Interesting modeling possibilities arise from

this fact, as will be clarified in the application that follows.

Note that the circuit equations (5.9) are stated in terms of unknown branch

currents [I]. However, circuit solvers are conceived employing independent

loop currents or nodal tensions as unknowns, not branch currents and voltage

drops.

In this way, an independent loop search algorithm is employed to con-

vert the problem given by (5.9) into a well-posed form for mesh current anal-

ysis (NGUYEN et al., 2012). Clearly a transformation from independent loop

currents to branch currents is required after the solution of the equivalent elec-

tric circuit, to evaluate field quantities during the post-processing stage of the

analysis.

5.2.5 Other numerical issues

The assembly of the system given by (5.9) involves the numerical inte-

gration of the terms given by (5.10a) and (5.10b) for every facet of the finite

element mesh. These terms must be assembled to matrices [R] and [L] and

stored efficiently. This section discusses some related issues that arise in the

context of application of an integral method.

Matrix [R] is sparse, since (5.10a) is non-zero only when i and j are facets

belonging to the same mesh element. Thus, its terms are integrated and stored

in a rather conventional way, as in a traditional FEM code. On the other hand,

matrix [L] is dense due to the mutual inductance coupling between every two

branches of the equivalent network.
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This feature of the PEEC inductance matrix is shared with other integral

methods, and leads to some practical implementation difficulties that are ad-

dressed in the following paragraphs.

The numerical integration of expressions such as (5.10b) is costly from

a computational point of view. These integrations need a large number of

Gaussian quadrature points when compared to the numerical integration of

a conventional finite element matrix. Moreover, in the former the Gaussian

quadrature points must be chosen carefully, in order to prevent singularities of

the term G(r) = 1/r from taking part in the integrand.

In addition, the assembly time of a dense matrix [L] and the memory re-

quired for its storage tend to grow as O (n2), where n is the number of un-

knowns. The time required for solving the system of equations increases as

well. These fast-growing complexities end up quickly to make integral methods

unfeasible if special techniques are not employed.

Numerical compression techniques such as the Fast Multipole

Method (GREENGARD; ROKHLIN, 1987) are available to mitigate these diffi-

culties linked to the increased memory required and the long processing times

needed during the integration and assembly steps of integral methods. In the

present case, a different numerical scheme is adopted: the inductance matrix

[L] is compressed using the H-matrix scheme, and is treated with the Hybrid

Cross Approximation (HCA) technique (BÖRM; GRASEDYCK, 2005). A detailed

discussion of these numerical procedures is beyond the scope of this work.
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Figure 28: The transmission line right of way (a) and the conductive object
underground (b).

5.3 Application to the analysis of inductive cou-
plings with overhead lines

The basic generalized PEEC procedure requires adaptations for treating

inductive coupling phenomena in the vicinities of an overhead line.

The need for these adaptations will become clearer in this section, in which

a specific problem of application will be described. This description will be

followed by a discussion of the modifications carried out in the basic numerical

procedure for this class of applications.

5.3.1 Problem description

The configuration to be analyzed is shown in Figure 28, the right of way of

a three-phase transmission line where a conductive object of prismatic shape

is buried under the soil surface. Its phase conductors A, B and C carry a

balanced and symmetrical system of three-phase currents, and the relative

position between the line and the object is also shown in the figure. Additional

relevant physical information is available in Figure 28 as well.

The aim is to determine the current density distribution in the buried object,
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which is induced by the proximity with the overhead line. The problem depicted

in Figure 28 will be considered in two conditions. First, the longest dimension

of the buried object will be placed in parallel to the overhead line. In a second

analysis, the object will be rotated and positioned with its largest dimension

orthogonal to the overhead line.

A discussion about the solutions for this problem will be resumed in sec-

tion 5.4. The adaptations introduced in the PEEC approach to handle inductive

coupling situations involving transmission lines will be now outlined.

5.3.2 Adaptations on the basic procedure

The application of the PEEC formulation presented in section 5.2 to the

problem under analysis would require the inclusion of the three phase line con-

ductors into conductive region Ω, together with the soil and the object buried

in the right of way. As a consequence, their volume discretization with facet

elements would be required as well. This modeling alternative would result in

a large number of additional degrees of freedom (or unknown facet currents)

in the system of equation, leading to problems of intractable sizes, according

to the discussion contained in section 5.2.5.

An alternative approach is proposed to avoid this, involving the considera-

tion of two separate conductive regions. Figure 29 displays the decomposition

of Ω into two sub-regions. The first corresponds to a sufficiently large soil

volume ΩV, bounded by the earth surface and including the embedded under-

ground object. In ΩV, J is approximated by vector facet elements as described

in section 5.2.2, which can be associated to a space {vi} of vector facet func-

tions.

The second sub-region is given by transmission line ΩL, which is modeled
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Figure 29: The computational domain and its connections to the external cir-
cuit. The conductive object shown in Figure 28 is embedded inside the green
box of soil.

by line elements, each carrying a constant complex current and with one single

long element per phase conductor. This corresponds to adopting a space of

zero order interpolation functions {ui} with a pre-defined direction for describing

the current distribution in ΩL, thereby limiting the number of additional degrees

of freedom.

This procedure may be formally regarded as a coupling between the gener-

alized PEEC method (applied to the soil and the buried object) and the classi-

cal PEEC method (applied to the transmission line), as described in (NGUYEN,

2014).

With two different function spaces {vi} and {ui} for approximating the current

density distribution in Ω = ΩV ∪ ΩL, the assembly of the terms (5.10) into (5.9)

yields a system matrix partitioned into four blocks, as shown in Figure 30.
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Figure 30: Topology of the algebraic system of equations yielded by the modi-
fied PEEC formulation to the domain of Figure 29, showing a 4-block partition-
ing structure.

The terms to be assembled to the global system of equations are still given

by (5.10), but with the additional remark that now {wi} = {vi} ∪ {ui}.

The large matrix block [ΩV ×ΩV] corresponds to the soil and object interac-

tions. Therefore, its general terms become:

Ri j =

∫
Ω

vi · v j

σ
dΩ , (5.11a)

Li j =
µ0

4π

∫
Ω

vi ·

(∫
Ω

v j

r
dΩ

)
dΩ. (5.11b)

The sparsity properties of the resistive and inductive parts addressed in

section 5.2.5 remain valid for this block. Thus, (5.11b) leads to a dense matrix,

thereby requiring matrix compression.

Blocks [ΩV ×ΩL] and [ΩV ×ΩL]t are associated to the interactions between

the overhead line and the ensemble composed by the soil and its buried object.

Only the computation of one of this blocks needs to be actually carried out,

since the other one may be obtained by matrix transposition. The general
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terms of [ΩV ×ΩL], are then given by:

Ri j =

∫
Ω

vi · u j

σ
dΩ = 0, (5.12a)

Li j =
µ0

4π

∫
Ω

vi ·

(∫
Ω

u j

r
dΩ

)
dΩ. (5.12b)

The last block [ΩL ×ΩL] is associated to the interactions involving only

the phase conductors of the overhead line. The block may be promptly iden-

tified with the line impedance matrix, containing the phase conductors self-

-impedances in its main diagonal and the mutual impedances between phases

in the other positions.

For the line shown in Figure 28, this block is reduced to a small 3×3 matrix

that is particularly prone to the numerical integration difficulties discussed in

section 5.2.5, which were related to the evaluation of a singular integrand dur-

ing the Gaussian quadrature. Therefore, this last block is not integrated numer-

ically, but is instead substituted by an analytical computation of the three-phase

line impedance matrix. Details on the analytical computation of the impedance

matrix of an overhead line are widely available in reference manuals (LAFOR-

EST, 1982) or in power engineering textbooks (STEVENSON, 1982).

Figure 29 also shows a three-phase source providing current excitation

and the circuit interconnection between ΩV and ΩL. This external network is

introduced and treated only at the level of the electric circuit solver employed

for the solution. This possibility was previously quoted as one of the motiva-

tions for adopting the circuit solver approach for the solution of the system of

equations.

Note that the interconnections linking ΩV and ΩL establish an underground

path for the flow of zero-sequence current components (if an unbalanced oper-

ation condition is to be considered). The remaining facets on the boundary of
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ΩV not linked to the external circuit are subjected to a homogeneous Dirichlet

boundary condition (that is, null facet currents).

5.4 Application and Results

The application of the adapted PEEC approach was carried out for two

configurations of the problem of Figure 28, namely two different alignments

between the three-phase line and the object.

The difference between these two variants stands in their possibilities of be-

ing analyzed by an alternate 2-D model. The case in which the object is placed

in parallel to the overhead line belongs to a category of applications that can

be somehow reduced to a representative 2-D problem, while the orthogonal

variant does not.

Consequently, the 3-D PEEC solution of the former will be confronted with

the one issued from a simple and straightforward 2-D FEM approach. On

the other hand, the validation of the 3-D PEEC solution of the latter will be

accomplished with the aid of a full 3-D FEM model that suffers from some of

the complications listed in section 5.1.

For analyzing both cases with the generalized PEEC approach, structured

meshes of 5040 hexahedra were adopted for discretizing ΩV. Similarly, the com-

plete equivalent network arising from the PEEC numerical scheme for each

configuration had approximately 15000 branches and 9500 independent current

loops.

The 2-D and 3-D FEM computations adopted as benchmarks were per-

formed with the commercial FLUX software package (CEDRAT, 2015). The

implementation of the PEEC software tool was accomplished with the aid of

MIPSE, a Java library developed in G2ELAB (Laboratoire de Génie Électrique
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de Grenoble).

A detailed discussion on the two problems analyzed is given as follows.

For both cases, the efforts are concentrated on demonstrating the relative ac-

curacy of the PEEC approach in comparison with the FEM.

5.4.1 Parallel alignment and 2-D FEM validation

Provided that the length of the buried object (5` = 1 m) is several times

longer than its other dimensions (` = 0.2 m) and that its parallel alignment with

respect to the overhead line is considered, the PEEC solution obtained in the

mid-section of the buried object may be compared with a 2-D FEM computa-

tion.

The referred mid-section is highlighted in Figure 28(b), and the 2-D finite el-

ement solution assumes a buried object of infinite length and current density J

parallel to the transmission line. Notwithstanding these assumptions, the inter-

est in adopting a 2-D FEM computation as a benchmark lies in the possibility of

employing very fine discretization meshes while keeping the problem tractable

from a numerical point of view, which ultimately leads to accurate solutions.

Therefore, a magnetodynamic finite element simulation was carried out

with a very fine mesh of second order triangular elements, as seen in Fig-

ure 31(a). The current density yielded by this approach is given in Figure 31(b).

A profile of the structured mesh of hexahedra utilized in the 3-D PEEC com-

putations is shown in Figure 31(c). It should be noticed that this mesh is much

coarser when compared to the one employed in the 2-D finite element simula-

tion. This difference in the discretization approach is due to the peculiarities of

the PEEC method discussed in section 5.2.5, which easily make the treatment

of problems with a larger number of degrees of freedom unpractical in terms of
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Figure 31: Comparison of the discretization meshes and of the current density
distributions in the mid-section of the buried object for the 2-D FEM and the
3-D generalized PEEC method.

storage capacity and computation time.

A cut of the buried object through its mid-section with the current density

issued from the PEEC solution is also shown in Figure 29(d). A quantitative

comparison between this solution and its 2-D FEM counterpart shown in Fig-

ure 29(d) may be carried out in terms of two quantities, namely, the magni-

tude of the current density distribution in the object cross-section and its mean

value.

The support for the computation of the mean value was arbitrarily chosen

as a square patch located in the corner of the object cross-section, as shown
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Table 3: PEEC and 2-D FEM Comparison (parallel case)
2-D FEM PEEC % Deviation∗

| J |max
† 23.9 22.3 6.7

| J |mean
‡ 17.8 17.4 2.2

† Maximum current density in the object cross-section (A/m2).
‡ Computed in the left upper corner patch shown in Figure 31 (A/m2) .
∗ Between the PEEC value and the reference 2-D FEM solution.

in Figure 31. This patch is dimensioned in terms of skin-depth δ of the elec-

tromagnetic fields inside the buried object, namely about 0.205 m in the case

treated.

Table 3 gives the values assumed by these quantities. The percent devia-

tions of the PEEC solutions with respect to the 2-D finite element values are

available in this table as well. The analysis of these deviations shows that

a good agreement between the maximum current density | J |max computed

with the two different approaches was verified, and an even better accord

was obtained for the average values | J |mean evaluated over the highlighted

0.25 δ × 0.25 δ patch.

5.4.2 Orthogonal alignment and 3-D FEM validation

The second test case corresponds to the line and the object in an orthogo-

nal alignment. The resulting configuration can be handled by the PEEC tech-

nique as before, but the obtained current density distribution inside the object

is no longer comparable with the one issued from a 2-D finite element compu-

tation.

The spatial distribution of J inside the object resulting from the coupling

with the three-phase line and computed with the PEEC approach is shown in

Figure 32. Figure 33 brings a somewhat more quantitative view of the eddy

current loops established inside the object by showing the absolute value of
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Figure 32: Spatial distribution of the induced current density.

each component of J in its horizontal mid-section (z = −0.3 m).

The 3-D finite element solution for the problem corresponding to the or-

thogonal orientation is computationally demanding. A t − t0 − φ, circuit-coupled

formulation (MEUNIER; FLOCH; GUERIN, 2003; FLOCH et al., 2003) was employed

with a similar structured mesh of hexahedra as in the PEEC case, with the

remark that the FEM cannot avoid the discretization of the air regions.

With this method, the determination of an induced current distribution in

the buried object that remains insensitive to additional refinements in the dis-

cretization requires a very dense mesh of hexahedra, long computation times

and a large memory capacity. However, the maximum current density value in-

side the object may be approximated by an asymptotic value of approximately

21.85 A/m2. This limiting value is obtained by the 3-D FEM computation of the

maximum current density for a series of increasingly refined meshes and by
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Figure 33: Current density in the horizontal mid-section of the buried object.

extrapolation, as implied by Figure 34.

If this value | J |max = 21.85 A/m2 is fixed as a reference, the maximum cur-

rent densities computed with the PEEC scheme and the 3-D FEM may be com-

Figure 34: Determination of the asymptotic value of the maximum current den-
sity inside the buried object with the 3D-FEM (orthogonal case).
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Table 4: PEEC and 3-D FEM Comparison (orthogonal case)
Method Mesh size† | J |max

‡ % Deviation
Reference∗ - 21.85 0
3-D FEM 5880 19.30 11.67

PEEC 5040 21.20 2.97
† Number of elements in the discretization.
‡Maximum current density inside buried object (A/m2).
∗ Stable solution estimated by Figure 34.

pared. Table 4 provides this comparison between the two procedures when the

maximum current density values developed inside the underground object are

evaluated with practical and relatively coarse meshes, both containing a simi-

lar number of elements (≈ 5000 hexahedra). For a given mesh size, the PEEC

approach is verified to be able to provide a more accurate solution than the

3-D FEM.

A systematic performance comparison between the FEM and the general-

ized PEEC method in this class of applications is left for future works. Even

though the PEEC approach was shown to yield more accurate solutions with

coarser meshes, in the current state of developments the comparison of com-

putation times still tends to be biased towards the FEM. This is markedly the

case when large deviations from the reference value fixed in Figure 34 are

admissible.

5.5 Chapter summary

This chapter presented an approach based on the generalized PEEC

method for analyzing inductive coupling phenomena involving an overhead

power line and an underground conductive object. Two relative positions be-

tween the transmission line and the object have been considered, and the

current density distribution developed in the object was determined in each

case.
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The current density distribution obtained could provide base data for the

study of AC corrosion phenomena (REVIE, 2015; CENELEC, 2013). Moreover,

the electric potential solution in the domain Ω resulting from the circuit equiva-

lence discussed in section 5.2.4 could also be conveniently employed to eval-

uate dangerous induced overvoltages.

The solutions computed with the generalized PEEC approach were vali-

dated by comparison with 2-D and 3-D FEM models and accurate solutions

(i.e a small percent deviation from finite element analysis) were obtained with

the use of the PEEC approach. In face of these results, extensions of the basic

procedure could be envisaged. For instance, the use of more complex exter-

nal networks could be exploited in the investigation of other practical problems

arising in power engineering, such as the occurrence of a simultaneous fault

to earth in the three-phase line. The account of capacitive effects could be

introduced at the level of the external network as well, leading to interesting

model possibilities that would only became feasible in the context of the FEM

with the use of other formulations.

As quoted in section 5.4.2, a systematic performance comparison between

the generalized PEEC approach and the FEM is still to be made for this ap-

plication. Future works on numerical aspects such as improved integration

procedures, system assembly techniques and matrix pre-conditioning could

be envisioned and are expected to result in significant gains in performance.

It should still be remarked that the problems of application of in this chap-

ter considered only the case of a balanced system of three-phase currents

flowing in the phase conductors of the transmission line. Further work on this

subject also intends to investigate the case of unbalanced operation and the

consequent superposition of conductive coupling phenomena, resulting from

the flow of zero-sequence current components in the soil.
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6 CONCLUSIONS AND PERSPECTIVES

6.1 General remarks

In the previous chapters, the numerical modeling of electromagnetic cou-

pling phenomena resulting from the proximity with overhead power transmis-

sion lines has been addressed. Conductive and inductive phenomena were

modeled respectively with the Finite Element Method and with the generalized

Partial Element Equivalent Circuit Method. Additionally, problems of applica-

tion were considered in both cases.

The analyses of these two categories of applications were carried out with

the apparently restrictive assumption of a single and homogeneous resistivity

for the soil. Moreover, the boundary condition scheme proposed for truncating

the domain in conductive coupling applications even relies on this hypothesis,

as seen in chapter 3.

In the discussion whether or not this approach provides an adequate rep-

resentation of the soil, it should be remarked that the actual soil properties are

influenced by a broad range of factors such as moisture content, amount of dis-

solved salts, grain size and distribution, temperature, season of the year, etc.

This particular behavior turns the accurate modeling of the soil into a complex

and frequently unfruitful effort.

As a consequence, in the practice of power engineering, complex soil mod-
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els for real situations are often unavailable. On the other hand, the direct

determination of a single and apparent resistivity of the soil is a simple and

straightforward procedure. Typical values are also readily available for the

most common soil types. In this sense, the use of single-valued, homoge-

neous resistivity model imposes itself from a practical point of view, relaxing

that apparent constraint.

Nevertheless, the use of more elaborate soil models could be considered.

For instance, the use of a multilayered soil model in the inductive coupling

applications of chapter 5 is only a simple matter of representing the various

strata of soil in the computational domain. In the case of the conductive cou-

pling applications of chapter 4, an additional modification of (3.21) computing

the boundary condition on the electric potential would have to be considered

as well, and the results provided by (STEFANESCO; SCHLUMBERGER; SCHLUM-

BERGER, 1930) could be considered for this purpose.

Additional improvements or extensions to other modeling aspects pro-

posed in this work could be envisioned in a similar way. The investigation

of electromagnetic coupling phenomena in transmission line rights of ways is a

broad field of inquiry, and not surprisingly this subject could not be exhausted

in this work. This said, the following sections are devoted to recalling the main

achievements obtained with this thesis and to accounting new endeavors that

could follow from the current state of developments in this domain.

6.2 Contributions of this work

The developments achieved in the course of this work converge on provid-

ing means of simulating general coupling situations occurring in the vicinities

of an overhead line.
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The following main contributions could be highlighted among them:

• A special boundary condition for finite element formulations based on the

approximation of the electric scalar potential was proposed to address

the truncation of the computational domain. The numerical scheme al-

lows considering multiple sources of current injection into the soil, as

required in the investigation of complex conductive coupling situations

taking place in a right of way.

• The conditions of applicability of this boundary condition technique were

verified and shown to be related to the adequate dimensioning of the

computational domain and to the conductive character of buried hetero-

geneities. The scope of application was verified to be wide enough to

allow investigating real problems in power engineering, as shown in sec-

tion 4.6.

• The modeling of inductive coupling phenomena with the generalized

PEEC method was proposed. The results from this approach were

shown to be in accordance with a well-established finite element mod-

els even when relatively coarse meshes are employed.

• The choice of this integral method and its coupling with the classical

PEEC method avoided discretizing both inactive air regions and thin

phase conductors of the overhead line, which are recognized complica-

tions in the development of full 3-D models in computational electromag-

netics.

• A direct and simplified interface with external circuits was provided by

the choice of a PEEC-based approach for modeling inductive coupling

phenomena, giving rise to the possibility of integrating the 3-D model of
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a particular right of way with network analysis tools representing large

scale power systems.

6.3 Topics for later development

The following topics are suggestions for later developments and could be

considered for continuing the research carried out:

• Incorporation of other soil models in the finite element modeling of con-

ductive coupling problems (multilayered soils, account of soil ionization).

• Consideration of fast transient fault currents in conductive coupling phe-

nomena and time-domain simulation.

• Improving material modeling both in conductive and inductive coupling

applications, allowing the consideration of structures or devices with an

arbitrary composition in proximity with an overhead line.

• Enhancing the performance of the simulations based on the generalized

PEEC method by means of improved matrix compression techniques,

numerical integration procedures and matrix solvers.

• Comparison and validation of the results with measures issued from ded-

icated experimental arrangements in both conductive and inductive cou-

pling applications.

• Investigation of capacitive coupling problems or of capacitive effects ei-

ther by the introduction of capacitances in the external PEEC circuit or by

the use of an extended PEEC formulation.

• Simultaneous modeling of both conductive and inductive coupling phe-

nomena in a single simulation.
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• Modeling inductive coupling problems with alternative integral methods

such as the Boundary Element Method coupled with external circuits.

• Investigation of inductive coupling problems involving transmission lines

operating in unbalanced conditions, leading to the flow of zero-sequence

current components in the soil.
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