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Abstract

Vision-based Advanced Driver Assistance Systems (ADAS) is a complex and chal-

lenging task in real world traffic scenarios. The ADAS aims at perceiving and

understanding the surrounding environment of the ego-vehicle and providing neces-

sary assistance for the drivers if facing some emergencies. In this thesis, we will only

focus on detecting and recognizing moving objects because they are more dangerous

than static ones. Detecting these objects, estimating their positions and recognizing

their categories are significantly important for ADAS and autonomous navigation.

Consequently, we propose to build a complete system for moving objects detection

and recognition based on vision sensors.

The proposed approach can detect any kinds of moving objects based on two ad-

jacent frames only. The core idea is to detect the moving pixels by using the Residual

Image Motion Flow (RIMF). The RIMF is defined as the residual image changes

caused by moving objects with compensated camera motion. In order to robustly

detect all kinds of motion and remove false positive detections, uncertainties in the

ego-motion estimation and disparity computation should also be considered. The

main steps of our general algorithm are the following: first, the relative camera pose

is estimated by minimizing the sum of the reprojection errors of matched features

and its covariance matrix is also calculated by using a first-order errors propaga-

tion strategy. Next, a motion likelihood for each pixel is obtained by propagating

the uncertainties of the ego-motion and disparity to the RIMF. Finally, the motion

likelihood and the depth gradient are used in a graph-cut-based approach to obtain

the moving objects segmentation. At the same time, the bounding boxes of moving

object are generated based on the U-disparity map.

After obtaining the bounding boxes of the moving object, we want to classify

the moving objects as a pedestrian or not. Compared to supervised classification

algorithms (such as boosting and SVM) which require a large amount of labeled

training instances, our proposed semi-supervised boosting algorithm is trained with

only a few labeled instances and many unlabeled instances. Firstly labeled instances
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are used to estimate the probabilistic class labels of the unlabeled instances using

Gaussian Mixture Models after a dimension reduction step performed via Princi-

pal Component Analysis. Then, we apply a boosting strategy on decision stumps

trained using the calculated soft labeled instances. The performances of the pro-

posed method are evaluated on several state-of-the-art classification datasets, as well

as on a pedestrian detection and recognition problem.

Finally, both our moving objects detection and recognition algorithms are tested

on the public images dataset KITTI and the experimental results show that the

proposed methods can achieve good performances in different urban scenarios.



Résumé

La mise en oeuvre de systèmes avancés d’aide à la conduite (ADAS) basés vision,

est une tâche complexe et difficile surtout d’un point de vue robustesse en condi-

tions d’utilisation réelles. Une des fonctionnalités des ADAS vise à percevoir et à

comprendre l’environnement de l’ego-véhicule et à fournir l’assistance nécessaire au

conducteur pour réagir à des situations d’urgence. Dans cette thèse, nous nous con-

centrons sur la détection et la reconnaissance des objets mobiles car leur dynamique

les rend plus imprévisibles et donc plus dangeureux. La détection de ces objets,

l’estimation de leurs positions et la reconnaissance de leurs catégories sont impor-

tants pour les ADAS et la navigation autonome. Par conséquent, nous proposons

de construire un système complet pour la détection des objets en mouvement et la

reconnaissance basées uniquement sur les capteurs de vision.

L’approche proposée permet de détecter tout type d’objets en mouvement en

fonction de deux méthodes complémentaires. L’idée de base est de détecter les ob-

jets mobiles par stéréovision en utilisant l’image résiduelle du mouvement apparent

(RIMF). La RIMF est définie comme l’image du mouvement apparent causé par le

déplacement des objets mobiles lorsque le mouvement de la caméra a été compensé.

Afin de détecter tous les mouvements de manière robuste et de supprimer les faux

positifs, les incertitudes liées à l’estimation de l’ego-mouvement et au calcul de la

disparité doivent être considérées. Les étapes principales de l’algorithme sont les

suivantes: premièrement, la pose relative de la caméra est estimée en minimisant

la somme des erreurs de reprojection des points d’intérêt appariées et la matrice de

covariance est alors calculée en utilisant une stratégie de propagation d’erreurs de

premier ordre. Ensuite, une vraisemblance de mouvement est calculée pour chaque

pixel en propageant les incertitudes sur l’ego-mouvement et la disparité par rapport

à la RIMF. Enfin, la probabilité de mouvement et le gradient de profondeur sont

utilisés pour minimiser une fonctionnelle d’énergie de manière à obtenir la segmen-

tation des objets en mouvement. Dans le même temps, les bôıtes englobantes des

objets mobiles sont générées en utilisant la carte des U-disparités.
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Après avoir obtenu la boite englobante de l’objet en mouvement, nous cherchons

à reconnâıtre si l’objet en mouvement est un piéton ou pas. Par rapport aux algo-

rithmes de classification supervisée (comme le boosting et les SVM) qui nécessitent

un grand nombre d’exemples d’apprentissage étiquetés, notre algorithme de boost-

ing semi-supervisé est entrâıné avec seulement quelques exemples étiquetés et de

nombreuses instances non étiquetées. Les exemples étiquetés sont d’abord utilisés

pour estimer les probabilités d’appartenance aux classes des exemples non étiquetés,

et ce à l’aide de modèles de mélange de gaussiennes après une étape de réduction

de dimension réalisée par une analyse en composantes principales. Ensuite, nous

appliquons une stratégie de boosting sur des arbres de décision entrâınés à l’aide

des instances étiquetées de manière probabiliste. Les performances de la méthode

proposée sont évaluées sur plusieurs jeux de données de classification de référence,

ainsi que sur la détection et la reconnaissance des piétons.

Enfin, l’algorithme de détection et de reconnaissances des objets en mouvement

est testé sur les images du jeux de données KITTI et les résultats expérimentaux

montrent que les méthodes proposées obtiennent de bonnes performances dans

différents scénarios de conduite en milieu urbain.



Contents

List of Symbols 1

Acronyms 3

List of Figures 7

1 Introduction 9

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.2.1 Moving Objects Detection . . . . . . . . . . . . . . . . . . . . 12

1.2.2 Pedestrian Recognition . . . . . . . . . . . . . . . . . . . . . 13

1.3 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.4 Organization of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . 15

2 Vision-Based Moving Object Detection 17

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.1.1 State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.1.2 Chapter Outline . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Vision-Based Moving Pixels Detection . . . . . . . . . . . . . . . . . 22

2.2.1 Ego-Motion Estimation . . . . . . . . . . . . . . . . . . . . . 23

2.2.2 Uncertainty Propagation . . . . . . . . . . . . . . . . . . . . . 27

2.2.3 Moving Pixel Detection . . . . . . . . . . . . . . . . . . . . . . 33

2.3 Moving Objects Segmentation . . . . . . . . . . . . . . . . . . . . . . 37

2.3.1 Segmentation Approach . . . . . . . . . . . . . . . . . . . . . 38

2.3.2 Graph-Cut Based Motion Segmentation . . . . . . . . . . . . 41

2.4 Regions of Interest Generation . . . . . . . . . . . . . . . . . . . . . 43

2.4.1 Detection Objects in 3D World Space . . . . . . . . . . . . . 43

2.4.2 U-Disparity Map Based ROI Generation . . . . . . . . . . . . 44

2.4.3 V-Disparity Map Based Clutter Reduction . . . . . . . . . . . 46



ii CONTENTS

2.5 Experimental Results on Real Data . . . . . . . . . . . . . . . . . . . 46

2.5.1 Moving Objects Detection Evaluation . . . . . . . . . . . . . . 47

2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3 Pedestrian Recognition 55

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.1.2 Chapter Outline . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.2 Features Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.2.2 State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.2.3 PCA-HOG Features . . . . . . . . . . . . . . . . . . . . . . . 61

3.3 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.3.2 State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.3.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.4.1 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.4.2 Classification on Classical Dataset . . . . . . . . . . . . . . . . 75

3.4.3 Pedestrian Recognition in Real Urban City Sequences . . . . . 87

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4 Conclusions and Perspectives 99

4.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.2 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

A Dense Feature Matching and Tracking 103

A.1 Dense Pixel Matching and Tracking . . . . . . . . . . . . . . . . . . . 104

A.1.1 Dense Pixel Matching . . . . . . . . . . . . . . . . . . . . . . 104

A.1.2 Dense Optical Flow Estimation . . . . . . . . . . . . . . . . . 105

B Sparse Key Point Extraction and Matching 106

B.1 Sparse Feature Extraction, Tracking and Matching . . . . . . . . . . 107

B.1.1 Bucketing-Based Feature Extraction . . . . . . . . . . . . . . 107

B.1.2 Feature-Based Stereo Matching . . . . . . . . . . . . . . . . . 108



CONTENTS iii

C Uncertainty Propagation 111

C.1 Basic Knowledge of Covariance Matrix Estimation . . . . . . . . . . . 112

C.1.1 Monte Carlo Method . . . . . . . . . . . . . . . . . . . . . . . 112

C.1.2 Covariance Matrix Using First Order Approximations . . . . 112

C.2 Uncertainty Propagation in Ego-Motion Estimation . . . . . . . . . . 114

C.3 Uncertainty Propagation for RIMF . . . . . . . . . . . . . . . . . . . 118

References 119





List of Symbols

Moving Object Detection

XW = (X, Y, Z, 1)T A homogenous 3D world point in world coordinate sys-

tem

XC = (X, Y, Z, 1)T A homogenous 3D world point in camera coordinate sys-

tem

x = (u, v, 1)T A homogenous 2D image point in 2D image coordinate

R and t Camera relative pose expressed by rotation and transla-

tion matrix

Θ = (rx, ry, rz, tx, ty, tz)T Camera relative pose expressed by roll, pitch, yaw angles

and translation vector.

K Camera intrinsic matrix

f The focal length of the camera (in pixels)

b Base line of the stereo vision system (in meters)

P(X, Y, Z) 3D point

p Corresponding image point projected from same 3D

point P

I Image frame

(ut,l, vt,l)
T 2D point location in image coordinate
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Chapter 1

Introduction

Contents

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.2.1 Moving Objects Detection . . . . . . . . . . . . . . . . . . 12

1.2.2 Pedestrian Recognition . . . . . . . . . . . . . . . . . . . 13

1.3 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . 14

1.4 Organization of the Thesis . . . . . . . . . . . . . . . . . . 15

1.1 Background

O
ver the past decades, many researchers from different research fields such as

robotics, automotive engineering and signal processing have been devoting them-

selves to the development of intelligent vehicle systems. Making the vehicles perceive

and understand their surrounding environment automatically is a challenging and

important task. Due to the improvement of the sensor technologies, processing

techniques and researchers’ contributions, several ADASs have been developed for

various purposes such as forward collision warning systems, parking assist systems,

blind spot detection systems and adaptive cruise control systems. Furthermore,

some fully autonomous vehicles have been also developed in last few years (see Fig.

(1.1). The driverless car in Fig. (1.1)-(a) belongs to the team of Stanford university,

while the Google’s driverless cars (Fig. (1.1)-(b)) are at the testing stage now.

As one of the most famous pioneers in the field of intelligent vehicles, this lat-

ter has been already tested on different US states roads these years. In August

2012, Google announced that they have completed over 300,000 miles without any
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accident. However, the excellent performances are mainly based on some expensive

equipments (about $150,000 in total), such as a $70,000 LIDAR (Light Detection

And Ranging) system, a Velodyne 64-beam lidar (as in Fig. (1.2)-(a)), etc. Based

on the Velodyne lidar, a detailed 3D environment map can be generated. Using this

local generated map together with high-resolution world maps, the car can drive it-

self with the help of other models such as lane, pedestrian and vehicles detection and

traffic lights recognition. Although the LIDAR sensors, which have the advantages

of high precision and independence of the ambient light conditions, are the most

widely used senors in intelligent vehicle systems, they come with some drawbacks

as listed below:

1. A high price. A good LIDAR with high resolution may be more expensive

than a car.

2. Slow refresh rates. Normally, a LIDAR builds the environment map by scan-

ning a scene, while the map is distorted by the movement of the host vehicle

and the motion of surrounding objects if the refresh rates is not high enough.

3. High energy consumption. The electrical power is limited in vehicles, while as

an active sensor, a LIDAR is power consuming.

Due to these drawbacks, some researchers move their attentions to other sensors,

such as cameras. Compared to other sensing systems, stereo vision based perception

systems are closer to the two eyes of human beings. Both of them build the 3D world

(a) Junior: Driverless car of Stanford University
in 2007

(b) Google’s Driverless Car in 2014

Figure 1.1: Examples of autonomous vehicles
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(a) Velodyne high definition Lidar-64
lasers

(b) Point Grey research’s stereo vision camera
systems: Bumblebee2

Figure 1.2: Examples of Lidar and camera sensors

by using 2D images from different views. Moreover, cameras have the following

properties:

1. Low price. A common webcamera with a moderate resolution only costs about

$10. Even a special 3D stereo vision camera costs about $500, which is also

much cheaper than a LIDAR system.

2. Color information. Chrominance of color images can be useful for detecting

and understanding different objects.

3. Semantic and geometric information. From high resolution and colored images,

traffic and brake lights, turn signals and lane lines can be recognized based on

different approaches. Lidar systems are expert in telling whether something

is there, while vision based systems are able to figure out what it is. In

addition, based on the computer vision theory, 3D environment map can also

be reconstructed from multi-view images.

4. Low energy consumption. Compared to active vision systems (LIDAR and

laser), passive vision systems (e.g., cameras) need less power to work.

Although the camera sensors have various advantages, they also have to face various

challenges. Algorithms development and computing power are two determining fac-

tors for the vision based systems. The computing problem is being figured out step

by step with the developing of multi-core computers, parallel computing techniques
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and Graphics Processing Unit (GPU) hardware. According to Moore’s law, over-

coming the problem of low computation efficiency is just the matter of time. The

development of new algorithms for computer vision is the real bottleneck for vision

based systems. Although facing these challenges, several specific sub-problems of

the whole environment perception systems have been well studied, and promising

results have been obtained, such as lane detection [1, 2], road detection [3, 4, 5],

detection of traffic sign [6, 7], pedestrians [8, 9] and of other vehicles [10].

1.2 Objectives

Among various challenges in the whole environment perception system, we focus

on the specific problem of moving object detection (MOD) and recognition in this

dissertation. Generally speaking, there are two main objectives in this thesis: first,

detect and segment the moving objects based on stereo images only; second, rec-

ognize these moving objects as pedestrian or non-pedestrian based on a recognition

step.

1.2.1 Moving Objects Detection

Moving objects are the most common traffic participants and the traffic acci-

dents are frequently caused by their abnormal behaviors. Although the problem of

moving objects detection in images has been widely studied in the field of computer

vision and various approaches have been proposed, it is still a challenging task when

cameras are installed on a mobile platform, such as mobile vehicle, robot, etc. In

this case, all the background is moving because of the movement of the camera. In

order to distinguish the real moving objects from the background, image changes

caused by camera motion should be compensated firstly. Here, the proposed algo-

rithm should be applied in urban environment through a stereo camera rig mounted

on the top of vehicle.

For a successful moving objects detection system, several requirements should be

satisfied. First of all, the system should be able to detect and segment any types of

motion in the images including partially moving objects, small moving objects and

partially occluded moving objects. Supervised learning based approaches have been

widely and successfully used for object detection. However, they face a big trouble to

detect partially or seriously occluded objects. These methods fail because features

used to train the classifiers describe an object as a whole in the training process,
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while the features of occluded object are different in the detection process due to

some parts of the object have been replaced by the foreground occlusions. Part-

based models [9] can solve the occlusion problem to some extent, however, they also

fail to detect seriously occluded objects.

Second, the system should be able to or has the possibility to be used in real

world applications. One essential requirement is that, for the detection in the current

frame, the algorithm can only use the images from current and past frames, while

the information from the future frames cannot be used. By taking this into account,

some methods based on the whole image sequence analysis [11, 12] cannot be used.

Computation efficiency is another crucial factor for the real applications. Compared

to mufti-frames based approaches [13, 14], detection based on two frames [15, 16]

can reduce the processing time.

1.2.2 Pedestrian Recognition

After obtaining the regions of interest (ROI) of the moving objects in the previous

detection step, furthermore, identifying the nature of them is also significant for

ADAS. With the help of these information, drivers or systems may make the right

decisions to reduce the possibility of accident. Additionally, we only recognize the

object as a pedestrian or not since they are the most vulnerable road users, but the

approach can be easily extended to cyclists, cars, etc.

Classification algorithms, such as boosting and SVM (Support vector machine),

are widely and successfully used for pedestrian detection and recognition. However,

the performance of a classifier highly depends on training samples. It is easy to

understand that the classifiers can achieve high detection rates when the training

and testing samples share the similar data distribution (e.g., obtained in similar

environments). However, generic classifiers trained using public dataset may exhibit

poor detection rates in some specific scenes due to several reasons: the testing and

training images are taken from different viewpoints, resolutions, light conditions,

etc. In other words, they share different data distributions. In fact, building labeled

training data on specific scenes requires a lot of extra labeling efforts and sometimes

it is not practical in many scenarios. On the other hand, unlabeled samples are more

easy to obtained by different approaches like foreground object detection [16, 12],

generic object detectors [17, 18, 19] (which are trained using public dataset), etc.

Therefore, the second objective of this thesis is to train a semi-supervised clas-

sifier with few labeled samples and a large amount of unlabeled instances and then

to improve the pedestrian recognition rates in some specific scenes.
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1.3 Thesis Contributions

In this thesis, an approach to detect and recognize moving objects from mobile

stereo vision is presented. The main contributions of our research are as following:

The first main contribution of this research lies in consideration of the uncertain-

ties in ego-motion estimation and disparity map calculation to estimate the pixel

motion likelihood. Uncertainties are inevitable in the whole MOD system and they

may result in a lot of false positive detections if they are ignored. Based on the

assumption of additive Gaussian noise, the covariance matrix of the ego-motion can

be computed by propagating the noise from the feature extraction and matching

process. Then the covariance matrix of RIMF is calculated for each pixel based on

the ego-motion covariance matrix, disparity uncertainty and pixel location noise via

a first-order error propagation strategy. The motion likelihood of each pixel can be

easily computed once the covariance matrix of the RIMF is known.

The combination of motion likelihood and depth value into a graph cut opti-

mization framework to segment the moving object is another contribution of this

thesis. After obtaining the motion likelihood of each pixel, a fixed threshold cannot

result in accurate detection performance, for example some false positive detections

which are caused by the uncertainties in the dense optical flow estimation process

at object boundaries.

In order to obtain a global segmentation of the moving objects, we resort to an

energy minimization framework, where the motion likelihood is taken as the data

term of the energy function and the depth values are used to build the boundary

regularization term. Finally, a global optimal solution is obtained by using the

graph-cut minimization algorithm.

The third contribution of this work comes from the soft label based boosting

algorithm which is trained by data with both soft and hard class labels. The soft

class labels are used to represent the hidden information of the unlabeled samples

and they can be estimated through clustering methods or other classifiers. In order

to train samples with soft class labels, a novel approach has been proposed under the

boosting framework. Decision trees are often used as weak classifier in the boosting

algorithm, however, the classical decision trees only take hard labeled samples as

inputs. Here, a variant of the decision trees which can take both soft and hard labeled

training samples has been applied. At the same time, cost-weighed classification

error is used to replace the 0-1 classification error to measure the classification

accuracy of an instance. The weak classifier has been iteratively learned by updating

the distribution weights of the training samples. The weights of the classifier are
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then computed according to the classification accuracy of each weak classifier.

Finally, the proposed MOD system has been tested on various image sequences

recorded in different traffic scenes including inner city streets, country roads, and

highway scenarios. Experimental results show that the proposed approach can effec-

tively detect different kinds of motion within a certain range (less than 40m), even

in some hard cases such as partial occlusion and degenerate motion1. At the same

time, the soft label based boosting classifier is also applied in each ROI to verify

whether there is a pedestrian inside or not. The recognition results show that the

proposed classifier gives better performances than a classifier trained using only few

labeled samples.

Parts of this thesis have been published in the following international conference

papers,

[1] Dingfu ZHOU, Benjamin Quost and Vincent Fremont. Soft Label Based Semi-

Supervised Boosting for Classification and Object Recognition. In Control,

Automation, Robotics and Vision, 2014 Proceedings, IEEE.

[2] Dingfu ZHOU, Vincent Fremont, Benjamin Quost and Bihao Wang. On Mod-

eling Ego-Motion Uncertainty for Moving Object Detection from a Mobile

Platform, In Intelligent Vehicles Symposium, 2014 Proceedings, IEEE, pages

1332-1338.

[3] Dingfu ZHOU, Vincent Fremont and Benjamin Quost. Moving Objects Detec-

tion and Credal Boosting Based Recognition in Urban Environments. Cyber-

netics and Intelligent Systems, IEEE Conference on, 2013, pages 24-29.

1.4 Organization of the Thesis

In this manuscript, we systematically introduce the methods, theoretical foun-

dation, experimental design, results and conclusion of the research. Vision-based

moving object detection is presented in Chapter 2, and semi-supervised boosting

based pedestrian recognition is described in Chapter 3.

A general introduction and an overview of works related to the MOD problem

in ADAS is given at the beginning of Chapter 2. The detailed descriptions of our

1The 3D object moves along the epipolar plane formed by the two camera centers and the object
itself, whereas its 2D projections move along the epipolar lines.
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proposed stereo-vision-based moving object detection are then introduced. Finally,

our approach is tested on several image sequences on public dataset and the exper-

imental results and analysis are provided.

In Chapter 3, a general description of pedestrian recognition features, boost-

ing and their application on semi-supervised learning is presented first. Then, the

proposed soft-label based semi-supervised boosting algorithm is introduced. Real

experiments on public datasets for classification and pedestrian recognition are pro-

vided, before a conclusion given at the end of the chapter.

Chapter 4 gives a conclusion of our research work as well as perspectives on

future research.
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2.1 Introduction

I
n this chapter, we study a state-of-the-art approach for ADAS focusing on the

problem of MOD in urban traffic environments. Detecting them from dynamic

scenes is a fundamental task for obstacle avoidance and path planning. Being able

to detect these moving objects and estimate their positions and dynamic information

is crucial for the development of ADAS and autonomous navigation. Traditionally,

mobile robotics research in navigation relies on the assumption of static environ-

ments, however, this assumption will easily collapse when other moving objects are

also involved in the environments. Therefore, robust MOD results can also help

to improve the performances of Simultaneous Localization and Mapping (SLAM)

[20] and Structure-from-Motion (SfM) [21] which are two basic research fields in

the robotics and intelligent vehicle systems to reconstruct the environment and the

motion of the vehicle.

Compared to highways, inner city traffic is more difficult, thus the task of ADAS

is more challenging and currently is still an unsolved problem. The roads in urban

city are crowded with different kinds traffic participants. Fig. (2.1) gives two typical

traffic scenes of the urban roads which include various moving objects such as cars,

buses, vans, pedestrians and cyclists. At the same time, the surrounding scenario

changes arbitrarily with the motion of ego-vehicle. In addition, illegal behaviors

are also common in inner city because of the complex traffic environment, such as

speeding, running the red light and illegal parking. Due to the reasons mentioned

above, the drivers should be cautious and careful in urban city. At the same time,

the ADAS are needed to provide help for them in some emergency circumstances.

2.1.1 State of the Art

Robust scene perception and MOD in urban environments attract many resarchers’

attention recently and a lot of works have been done by using different sensors.

Lidar systems can provide accurate 3D world points that can be used for ego-motion

estimation, 3D local grid map updating and moving objects detecting and tracking

in urban environment [22]. In [23], the moving objects are detected by fusing the

information from the Lidar range scanner and an enhanced map using the Dempster-

Shafer theory. In [24, 25], laser together with GPS and camera have been used for

vehicle localization and autonomous navigation. First, a sensor selection step that is

applied to validate the coherence of the observations from different sensors; then the

information provided by the validated sensors is fused with an unscented information
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(b) 

(a) 

Figure 2.1: Two typical traffic situations in inner city

filter. While Lidar sensors can directly provide important 3D points for the traffic

scene, it will also lose a lot of detailed information of the objects such as texture,

appearance and color, etc. This is why camera based systems have become popular

in the last few years. The recent works in [26, 27] shows that vision-based approaches

give promising results as well. Several vision-based MOD approaches are introduced

respectively as below according to the number of cameras they used.

Monocular Camera

Background subtraction is a widely used approach for detecting moving objects in

videos from static monocular camera. In this case, regions of interest can easily be

detected if the background model can be accurately built [28]. Adaptive Gaussian

Mixture Model is well known for background modeling by recursively updating the

Gaussian parameters and simultaneously setting the appropriate number of compo-

nents for each pixel [29]. However, background subtraction is generally based on a

static background hypothesis which is often not applicable in real outdoor scenes

due to wind, rain or illumination changes brought by weather. In addition, back-

ground subtraction can not be applied to handle the problem when the camera also

moves.

Detection becomes difficult when the camera and the surrounding objects move

simultaneously, because the camera and objects motions become coupled in the

apparent motion field. The epipolar constraint, such as the fundamental matrix, is
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a commonly used constraint for motion detection between two views [30]. By using

the epipolar constraint, a 3D point can be considered as moving if its projected 2D

pixel in the first view does not lie on the epipolar line induced by its matched pixel

in the second view. However, the epipolar constraint is not able to detect all kinds

of 3D motion, for example a special 3D motion which is called degenerate motion1

can not be detected. Additionally, an accurate estimate of fundamental matrix is

impossible when the camera undergoes a nearly pure translation between the two

views. Other constraints such as flow vector bound constraint [31, 32] together with

epipolar constraint have been used to detect the degenerate motion. If a scene point

moves with the degenerate motion, the direction of its optical flow will coincide with

epipolar lines. However, the length of its image motion can be predicted if its depth

information is known. Hence, the moving points can be distinguished if the real

optical flow violates the predicted image motion.

2D planar homography is another common used technique for detecting the mov-

ing objects [33, 13, 34, 35]. The homography is used as a global image motion model

to compensate the camera motion between two consecutive frames. Pixels which

are consistent with the homography matrix are recognized as the static planar back-

ground, while these inconsistent ones may belong to moving objects or to static 3D

structure with large depth variance (parallax pixels). In order to remove the par-

allax pixels, additional geometric constraints [33] or mean shift clustering strategy

[35] are necessary.

Stereo Camera Rig

Compared to monocular vision, stereo vision system (SVS) provides depth or dis-

parity information using images provided by the left and right cameras. Dense or

sparse depth/disparity maps which are computed by global [36] or semi-global [37]

matching approaches can be used to build 3D information of the environment. By

obtaining the 3D information, any kinds of motion can be detected theoretically,

even the case of degenerate motion mentioned above. In [38, 39], 3D points cloud

are reconstructed from linear stereo vision system first and then objects are detected

based on a spectral clustering technique from the 3D points. Common used methods

for MOD in stereo rig can be divided into sparse feature based [40, 41, 27] and dense

scene flow based approaches [42, 16, 43].

The sparse scene flow has been used to detect the moving objects in [41]. First,

1The 3D point moves along the epipolar plane formed by the two camera centers and the point
itself, whereas its 2D projections move along the epipolar lines.
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the scene flow for each world point is computed by using the matched and tracked

features in five stereo frames. Then the world points are clustered into different

groups according to their average velocities in the past five frames. Finally, global

nearest neighbor (GNN) based objects association is applied to refine the detection

by removing some false detections. Sparse feature based methods can be easily

realized in real-time applications. However, some moving objects can not be detected

if few features have been detected on them.

In [42], a prediction of the optical flow between two consecutive frames is cal-

culated based on a function of the current scene depth and ego-motion. From the

difference between the predicted and measured flow fields, large non-zero regions

are classified as potential moving objects. Although this motion detection scheme

provides dense results, the system may be prone to produce a large number of false

positives or miss detections due to the noise involved in the perception task. Two

other improved approaches have been developed in [43] and [16] to remove some

false detections by considering the uncertainties of 3D scene flow [43] and 2D real

optical flow [16] respectively. However, they just roughly model the uncertainty of

the ego-motion obtained from other sensors (GPS or IMU). In fact, the camera ego-

motion has a global influence on the predicted optical flow, therefore, its uncertainty

should be well considered to improve the detection performances.

Based on the related works [42, 43, 16] mentioned above, we proposed an im-

proved MOD approach which is only based on two consecutive stereo images, where

no other sensor information is required. Furthermore, we detail how the ego-motion

uncertainty may be taken into account to improve the predicted optical flow com-

putation. Then the ego-motion and disparity uncertainties are incorporated into a

probabilistic framework to compute the motion likelihood for each pixel. Finally, a

graph-cut framework is applied to segment the moving objects globally by using the

depth information and the motion likelihood.

2.1.2 Chapter Outline

Fig. (2.2) gives the outline of the proposed moving objects detection and segmen-

tation approach. This proposed approach can be divided into three main steps,

which have been shown in three different rectangles. The first step is presented in

Section 2.2, where motion likelihood for each pixel is computed by considering the

uncertainties in ego-motion estimation and disparity computation. Then a graph-

cut based objects segmentation is presented in Section 2.3. Third, bounding box

surrounding each object is generated in Section 2.4. Real experimental results on
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Figure 2.2: Framework of moving object detection and segmentation

public image sequences are presented in Section 2.5. Finally, the chapter ends with

a short conclusion.

2.2 Vision-Based Moving Pixels Detection

Moving objects detection using moving cameras is still an open problem in the field

of robotics and intelligent vehicles. The main difficulty is caused by the motion of

the cameras. Due to the change of camera relative pose, each pixels value in the

image sequences evolves in time. As said previously, the optical flow is generated by

both the camera motion and the real 3D objects’s motion. In order to obtain the

real objects motion, an intuitive idea is to compensate the camera motion first. In

order to describe the problem clearly, three motion flow based definitions are given:

– The Measured Optical Flow (MOF) represents the optical flow estimated us-

ing image processing techniques [44, 45]. Although the resulting flow is an

estimation of the real apparent motion, we consider it in the thesis as the real

optical flow given a confidence map on the obtained values.

– The Global Image Motion Flow (GIMF) represents the image pixel changes
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caused by the relative camera motion only. This global image motion flow can

be calculated for each image pixel using the relative camera motion and the

depth information from the disparity map.

– The Residual Image Motion Flow (RIMF) is used to measure the difference

between MOF and GIMF.

The RIMF can be used to distinguish between moving and non-moving pixels. In

order to calculate the RIMF, the MOF and GIMF should be computed first. One

can notice that the computation of the GIMF needs both the camera motion (ego-

motion) and depth value of the pixel. The computation of the dense optical flow

[44] and disparity map [46] are not involved in this work and we just used the results

from the existing methods. Detailed introduction of dense optical flow and disparity

is present in Appendix. A. The ego-motion of the camera has also to be estimated

from the images because no other sensors are used. In the following section, we will

introduce the estimation of the camera motion from two consecutive stereo pairs.

2.2.1 Ego-Motion Estimation

The stereo images are recorded by a SVS located on a mobile platform (vehicle

or robot). The whole SVS is considered to be fully calibrated. After the stereo

images rectification process [47], the left and right images are coplanar with only a

translation in the X axis of b value, known as the baseline. Additionally, the left and

right rectified images have identical focal length f and principal point coordinates

as p0 = (u0, v0). As depicted in Fig. (2.3), the world coordinate system origin is

assumed to be coincident with the left camera coordinate system origin. The Z-

axis coincides with the left camera optical axis and is pointing forward, the X- axis

is pointing right and Y -axis is pointing down. All the coordinate systems are right

handed.

At each time step, the two images are synchronously obtained from the left and

right cameras and two successive stereo image pairs (Fig. (2.3)) from the previ-

ous frame (at time t − 1) and the current frame (at time t) are considered. The

left image It−1,l in the previous frame is considered as the reference image. The

right image in previous frame and the left and right image in current frame are

represented as It−1,r, It,l and It,r respectively. A 3D point P in the previous and

current frames is noted P(Xt−1, Yt−1, Zt−1) and P(Xt, Yt, Zt) respectively. Then

we define (ut−1,l, vt−1,l), (ut−1,r, vt−1,r), (ut,l, vt,l) and (ut,r, vt,r) as the correspond-

ing image points in the previous and current stereo frames. We assume that the
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Figure 2.3: Coordinate frames of the stereo-vision system

stereo rig has undergone an unconstrained motion Θ = (rx, ry, rz, tz, ty, tz)
T between

the two successive frames, where rx, ry and rz are the rotational components and

t = (tx, ty, tz)
T is the translational component. Usually, rx, ry and rz are also known

as pitch, yaw and roll angles. This motion can also be written in the form of matrix

(R|t), where R(r) = Rx(rx)Ry(ry)Rz(rz) is the rotation matrix. Because no other

sensors than cameras are considered, the relative camera pose has to be estimated

based on the tracked and matched corresponding image points in the four images.

The techniques for tracking and matching key points in stereo rig are introduced in

the following section.

2.2.1.1 Tracking and Matching Key Points in Stereo Rig

As described in Fig. (2.4), the whole tracking and matching process in two consec-

utive stereo pairs can be divided into four main steps:

1. Extract key point (ut−1,l, vt−1,l) in reference image It−1,l based on the Alg.

(B.1) in Appendix B;

2. Search the matched point (ut−1,r, vt−1,r) for (ut−1,l, vt−1,l) in image It−1,r using

epipolar constraint ( Detailed steps are presented in Alg. (B.2) in Appendix

B) ;

3. Find the corresponding point (ut,l, vt,l) for (ut−1,l, vt−1,l) in image It,l by Lucas-

Kanade [48] tracking method and find the corresponding point (u1
t,r, v

1
t,r) for

(ut−1,r, vt−1,r) in image It,r by Lucas-Kanade [48] tracking method;
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4. Search the matched point (u2
t,r, v

2
t,r) for (ut,l, vt,l) in image It,r using epipolar

constraint (Detailed steps are presented in Alg. (B.2) of Appendix B) ;
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Figure 2.4: Tracking and matching feature point in stereo rig

Under ideal conditions, the tracked point (u1
t,r, v

1
t,r) and the matched point (u2

t,r, v
2
t,r)

should be identical if the tracking and matching processes are correct. However, the

uncertainty can not be avoided in both the tracking and stereo matching procedures.

Here, we propose to use the Euclidean distance between (u1
t,r, v

1
t,r) and (u2

t,r, v
2
t,r) to

measure the matching quality. Finally, only the points whose distance are below

0.5 pixel are accepted as correctly matched point and are packaged in p, where

pi = (uit−1,l, v
i
t−1,l, u

i
t−1,r, v

i
t−1,r, u

i
t,l, v

i
t,l, u

i
t,r, v

i
t,r)

T .

2.2.1.2 Ego-Motion Estimation

Once the key points are tracked and matched in the four views, the relative pose

of the camera can be estimated by minimizing the sum of the reprojection errors of

these key points. To do so, the 3D position of the feature point i in the previous

frame are first computed using triangulation and the camera intrinsic parameters: X i
t−1

Y i
t−1

Zi
t−1

 =
b

di

 uit−1,l − u0

vit−1,l − v0

f

 , (2.1)
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where di = uit−1,l − uit−1,r is the disparity value of point i. Then, the 3D point can

be transformed into the camera coordinate system at time t by applying the relative

motion of stereo rig as below:

 X i
t

Y i
t

Zi
t

 = R

 X i
t−1

Y i
t−1

Zi
t−1

+ t. (2.2)

Finally, the 3D points are reprojected into the current left image using the camera

intrinsic parameters and the perspective camera model [30]:

λ

 ûit,l
v̂it,l
1

 = K [R|t]


X i
t−1

Y i
t−1

Zi
t−1

1

 =
b

di
K [R|t]


uit−1,l − u0

vit−1,l − v0

f
di
b

 (2.3)

where, K =

 f 0 u0

0 f v0

0 0 1

 is the camera intrinsic parameters. In the same way, the

3D points are also reprojected into the current right image frame based on the right

camera projection matrix and their image coordinates are defined as (ûit,r, v̂
i
t,r). In

order to simplify the expression in the following, we use Prl and Prr to represent the

reprojection procedure of left and right image points (nonhomogeneous coordinate

form) described in Eq. (2.3) respectively. From Eq. (2.3), we can see that the image

points (ûit,l, v̂
i
t,l) and (ûit,r, v̂

i
t,r) in the current frame can be predicted by the image

point (uit−1,l, v
i
t−1,l), (uit−1,r, v

i
t−1,r) and K if we know the camera motion ( R | t ).

Rewriting Eq. (2.3) as a non-linear vectorial function f(.) as below:

x̂it = f(Θ,xit−1) =

[
Prl(K,R, t,xit−1)

Prr(K,R, t,xit−1)

]
, (2.4)

where x̂it = (ûit,l, v̂
i
t,l, û

i
t,r, v̂

i
t,r)

T are the predicted image points in current frame and

xit−1 = (uit−1,l, v
i
t−1,l, u

i
t−1,r, v

i
t−1,r)

T are the detected image points at previous frames.

The measured image points in current frame xit have also been obtained from track-

ing and matching strategies which have been discussed in Sec. (2.2.1.1). In gen-

eral, optimal camera motion vector Θ̂ can be obtained by minimizing the weighted

squared error of measurements and predictions as:
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Θ̂ = argmin
Θ

F (Θ,x) = argmin
Θ

N∑
i=1

‖xit − f(Θ,xit−1)‖2
Σ,∀i = 1 · · ·N. (2.5)

where xit = (uit,l, v
i
t,l, u

i
t,r, v

i
t,r)

T are the matched points in the current frame and ‖ . ‖2
Σ

stands for the squared Mahalanobis distance according to the covariance matrix Σ.

2.2.2 Uncertainty Propagation

Although the optimal motion vector Θ̂ can be obtained from the minimization of

Eq. (2.5), its accuracy also depends on the precision of the matched and tracked

features’ locations in the images. From the Eq. (2.4), the feature noise in xt−1 has

been propagated to predicted image points x̂t in current frame. From Eq. (2.5), we

can see that the uncertainty of the ego-motion parameters implicitly comes from the

noise of both the predicted and the matched image points (x̂t and xt) in the current

frame.

2.2.2.1 Statistical Model

Let’s define x = [xt−1,xt] ∈ R8N that represents all the key points and xt ∈ R4N ,

xt−1 ∈ R4N that represent the image points at current and previous time instants,

respectively. To be robust against outliers (mismatched features or features on

moving objects), a RANSAC (RANdom SAmple Consensus) strategy is applied to

estimate the relative pose between two successive frames. All inliers (whose squared

error of measurements and predictions is less than 1 pixel) are used for the further

estimation to get the final parameters of the ego-motion Θ. By assuming that all

inliers considered in the final optimization are good matched pixels features with

only additive Gaussian noise, the features follow a Gaussian probability density

function:

x ∼ N

( [
µxt−1

µxt

]
,

[
Σxt−1 0

0 Σxt

] )
, (2.6)

where µ and Σ are the mean and the covariance of the features at the current and

past time instants.

The Gauss-Newton optimization of Eq. (2.5) can converge rapidly if the starting

point is close to the optimal point and the final optimal result is close to the true

results. However, the optimal estimates always differ from the true ones (real camera
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motion) due to the noise in the observed values. For a real vision-based system, we

need both a robust estimation of the camera motion and a measurement of the

uncertainty associated with this solution. To estimate the parameters uncertainties,

the most classical approach is the sampling [49], such as Monte-Carlo approaches.

However, these methods are very slow, which is obviously a drawback for real-time

systems. Therefore, approximate approaches have been proposed to find a balance

between accuracy and efficiency.

2.2.2.2 Approximate Approach

In [50] and [49], the authors proposed a derivation of the covariance matrix using

the following model:

ΣΘ =

(
∂g

∂Θ

)−1(
∂g

∂x

)T
Σx

(
∂g

∂x

)(
∂g

∂Θ

)−T
(2.7)

where g(x,Θ) = ∂F (X,Θ)
∂Θ

is the gradient vector of F (Θ,x) respect to Θ and Σx, which

has been defined in Eq. (2.6), is the covariance matrix of the measured features at

current and previous frames. The partial derivatives, ∂g
∂Θ

and ∂g
∂x

of g(Θ,x) are

presented as below:

∂g

∂Θ
=
∂2F

∂Θ2
= 2

(
∂f

∂Θ

)T
Σ−1

xt

∂f

∂Θ
− 2

∂2f

∂Θ2
Σ−1

xt
(xt − f (Θ,xt−1)) (2.8)

∂g

∂x
=

∂2F

∂Θ∂x
=

(
∂2F
∂Θ∂xt

∂2F
∂Θ∂xt−1

)
=

(
−2Σ−1

xt

∂f
∂Θ

∂2F
∂Θ∂xt−1

)
(2.9)

∂2F

∂Θ∂xt−1

= 2

(
∂f

∂xt−1

)T
Σ−1

xt

∂f

∂Θ
− 2

∂2f

∂Θ∂xt−1

Σ−1
Xt

(xt − f (Θ,xt−1)) . (2.10)

The detailed calculation process is introduced in Appendix C.

First-Order Covariance Propagation

Equations (2.8) and (2.10) are both a sum of two terms, a first part with only first-

order derivatives and a second part which is the product of second-order derivatives

and the residual part xt − f(Θ,xt−1). If the final solution of Eq. (2.5) has a zero

residual or very small one, the last term from Eq. (2.8)-(2.10) can be removed to

get a first-order estimate as below:
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ΣΘ =

(
∂f

∂Θ

T

Σ−1
xt

∂f

∂Θ

)−1

+ ATΣxt−1A, (2.11)

where A = 1
2

(
∂f
∂Θ

T
Σ−1

xt

∂f
∂Θ

)−1 (
∂f
∂Θ

)T
Σ−1

xt

∂f
∂xt−1

. The first right-hand term of Eq.

(2.11) is the classical backward propagation approach [30]. Here, we call it partially

measured method because only the current frame feature noise has been considered

in it.

Second-Order Covariance Propagation

However, due to the noise of the measured features in the previous and the current

frames, the residuals of the final solution of Eq. (2.5) may not be zero. So a

second-order error propagation model which considers these residuals in the error

propagation will be more suitable. A second-order error propagation result can be

obtained by substituting Eq. (2.8, 2.10) into Eq. (2.7).

A general outline of the ego-motion estimation and its uncertainty computa-

tion can be found in Alg. (2.1) and the detailed estimation steps can be found in

Appendix C.

2.2.2.3 Simulation Experiments

In section 2.2.2, several methods have been introduced to estimate the covariance

matrix of ego-motion. In order to test their performances, we design the following

simulation experiments.

Monte Carlo Experiments In the simulation experiments, both the intrinsic

and extrinsic parameters of the stereo rig are known. The relative pose of the stereo

cameras between the previous and the current frame is fixed before generating the

image features. We first generate 3D space points according to a uniform distribu-

tion, those are then projected into the four images using the corresponding projection

matrices. Considering the previous left camera as the reference coordinate system,

the four projection matrices can be expressed respectively as: Pt−1,l = K[I|0],

Pt−1,r = K[I|s], Pt,l = K[R|t], Pt,r = K[R|t + s], where s = (−b, 0, 0)T is the

translation vector between the left and right cameras. The features that appear in

all the four camera images are kept. Then, a bucketing technique is applied to make

the features distributed uniformly in the image plane. Finally, five points in each

block are randomly selected to form the final measured features.
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Algorithm 2.1 Ego-motion extraction and error propagation

Input: - Stereo image pairs It−1,l ,It−1,r, It,l and It,r at previous and current frames;
- RANSAC iteration number N ;
- Gauss-Newton iterative end criterion ξ;
- Covariance matrix of Matched features;

Output: - Camera relative pose parameters Θ (or R and t) and its covariance ΣΘ;

1: I Compute the 3D point at previous frame using Eq. (2.3);
. RANSAC process to remove outliers;

2: for i = 1 do N . N is maximum RANSAC times
3: I Randomly select 3 matched features pairs;
4: I iter = 0;
5: while iter< 20 || Gauss-Newton increment > ξ do
6: I Compute Jacobian matrix and residual matrix;
7: I Update Θ using Gaussian-Newton iteration approach ;
8: end while
9: I Record Θ and inliers indexes if we have more inliers than before;

10: end for
11: I Refine the final parameters using all the inliers;

. Compute covariance matrix ΣΘ for Θ;
12: I Compute second partial derivatives of F (Θ,x) w.r.t. Θ using Eq. (2.8);
13: I Compute partial derivative of F (Θ,x) w.r.t. Θ and x using Eq. (2.9, 2.10);
14: I Compute the covariance matrix ΣΘ using Eq. (2.7);
15: I return Θ and ΣΘ



2.2 Vision-Based Moving Pixels Detection 31

0 50 100 150 200 250 300 350 400 450 500
0

0.5

1

1.5

2

2.5

3

3.5
x 10

−5 Optimal Test Number ( N )

Test Number ( N )

C
ov

ar
ia

nc
e 

M
at

rix
 A

bs
ol

ut
e 

D
iff

er
en

ce
 B

et
w

ee
n 

Ad
ja

ce
nt

 N
um

be
r o

f T
es

t

Figure 2.5: Optimal test number.

Monte-Carlo experiments are usually used to obtain the distribution of an un-

known probabilistic entity by repeatedly running simulations many times. When

the number N of times tends to infinity, the estimated parameter distribution con-

verges to the true one. However, a large number of experiments is time-consuming

and few experiments may be not enough to reflect the real distribution. Generally,

the covariance matrix will gradually converge to a constant value when N increases.

Here, we use the following absolute distance between two covariance matrices CN

and CN−1 to determine whether the Monte-Carlo experiments is more or less con-

verging to the constant value. Here, CN−1 and CN are the covariances computed

from the N − 1 and N experiments respectively.

AbsDis = max
i, j=1:m

|CN
i,j − CN−1

ij |, (2.12)

where i and j are the element’s subscripts of covariance matrix Cm×m. Fig. (2.5)

depicts the absolute distance changes with the increasing of the experiments number.

From Fig. (2.5), we can see that the covariance matrix has a large fluctuation when

N is small and this fluctuation decreases rapidly when N is large enough. Here we

choose N = 500 for the following experiments because AbsDis value is very close to

0 there.

A Monte-Carlo experiment is used to obtain an estimate of the covariance matrix

as the ground truth and the detailed procedure of Monte-Carlo experiment are

introduced in Appendix C. At each time, the measured features are generated using

Eq. (2.6) and used as inputs in Eq. (2.5) to obtain the optimal parameters in

Θ. Covariance matrices using the Monte-Carlo method can be calculated from N

independent estimates of Θ. The way to obtain the minimum number N is described
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in Fig. (2.5).
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Figure 2.6: Performance comparison with ground truth

Performances Comparison Simulation experiments have been considered to

compare the performances of four different approaches described in Section 2.2.2.

A qualitative comparison of these covariance estimates is shown in Fig. (2.6). Fig.

(2.6) displayed 95% confidence ellipses for covariance between rx and ty and covari-

ance between ty and tz in (a) and (b) respectively. In Fig. (2.6), the Monte-Carlo

experiment and partially measured method results are represented by the green

(dotted line) and blue (solid line) ellipses, while the black (dashed line) and red

(dash-dot line) curves represent the results from the first-order and second-order

methods respectively. The red dots are independent estimates of Θ from the Monte-

Carlo experiment. Fig. (2.6) clearly shows that the first and second-order methods

perform better than the partially measured technique. Second-order method per-

forms slightly superior to the first-order method and both perform almost as well

as the Monte-Carlo approach.

The covariances have also been quantitatively evaluated by counting the number

of samples from the true distribution (red dots in Fig. (2.6)) that lie within the 1,

2, and 3-σ probability contours. Ideally, this fraction is approximately equal to the

fraction of samples contained in the Monte-Carlo probability contours. In Fig. (2.7),

the y - axis represents the percentage of samples contained in the confidence regions.

From Fig. (2.7) we can also clearly see that first and second-order methods give

similar results as Monte-Carlo experiment while significantly better than classical

partially measured technique. From the simulation experiments above, we found

that the first and second-order methods can achieve as good results as the Monte-

Carlo approach. We used first-order method in all our experiments because first-

order method is much more efficient than second-order method with similar results.
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Figure 2.7: Performance evaluation

2.2.3 Moving Pixel Detection

In the beginning of Section 2.2, RIMF has been proposed to detect moving pixel.

In this section we will explicitly present how to calculate RIMF and how it can be

used for detection. In order to compute the RIMF, GIMF should be estimated first.

In addition, the uncertainty of RIMF can also be computed from the uncertainties

of the ego-motion and disparity.

2.2.3.1 Global Image Motion Flow

GIMF is used to represent the image motion flow caused by the camera motion.

Given a pixel position pt−1 = (ut−1, vt−1, 1)T in the previous image frame, we can

predict its image location pt = (ut, vt, 1)T in the current frame [30]:

pt = KRK−1pt−1 +
Kt

zt−1

. (2.13)

Theoretically, we can predict the image location correspondences of the 3D static

points in the current frame using the depth information at previous frame and the

relative motion information of the camera only. However, this prediction is only true

when the 3D point comes from the static objects; it does not hold for the moving

objects. Finally, the GIMF g = (gu, gv)
T for point (u, v) caused by the camera

motion can be expressed as:

g =

(
gu

gv

)
=

(
ut − ut−1

vt − vt−1

)
. (2.14)
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2.2.3.2 Residual Image Motion Flow

Then, assuming that the MOF estimated between the previous and current frame

at point (u, v) is m = (mu,mv)
T , the RIMF q = (qu, qv)

T is computed as:

q = g −m =

(
gu −mu

gv −mv

)
. (2.15)

Ideally, the RIMF should be zero for a static point, while it should be greater than

zero for moving points. The RIMF can be used as a cue to distinguish between

moving and non moving pixels. Simply comparing the RIMF absolute difference to

a fixed threshold, does not lead to a satisfying results to differentiate moving pixels

from static ones since points with different 3D world locations have different image

motions. Moreover, the estimated uncertainty, e.g. camera motion and pixel depth,

have different influences on the image points. Ignoring these uncertainties could

lead to a large number of false positive detections.

The uncertainty of the RIMF mainly comes from three parts. The first and the

most important one is the uncertainty from the camera motion estimation. It is

crucial because it has a global influence on each image pixel according to the Eq.

(2.13). In addition, it affects differently the pixel at different locations. Moreover,

different camera motions can give different influences on the RIMF results. For

example, if the camera undergoes a pure translation, all the optical flow for the

static objects will converge at a single point which is called the focus of expansion.

The second influence part is the error of the depth estimation and the last one is

the pixel location noise which results directly from the image noise (digital image

quantization, image rectification, etc).

In order to know how the uncertainty of the ego-motion estimation affects the

final RIMF calculation, a simulation experiment has been designed. First, we ran-

domly set the ego-motion value and a 5%2 Gaussian noise is added on each pa-

rameter. Then the GIMF and the RIMF are calculated using Eq. (2.13) and Eq.

(2.15). The simulation results are displayed in Fig. (2.8), where the ego-motion

vector is set as Θ =
(
−0.009, 0.007, −0.008, 0.052, 0.09, −0.20

)
. The sub-figures

(a), (b), (c) and (d) show the RIMF uncertainties resulting from the noise of the

different motion parameters. In order to simplify the simulation process, we assume

that the uncertainty only comes from one parameter at each time and the others

are accurate. The RIMF is computed based on Eq. (2.15). From these figures, we

2Here, we choose 5% because we want to prove that small uncertainty in the ego-motion esti-
mation can cause big error in RIMF results.
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can clearly see that the motion noise has more influence on the near points than

the far points. It also has more influence on the pixels at the borders than at the

center of the image when the camera undergoes a big motion in Z-axis between two

consecutive frames.

(a) 5% noise on rx (b) 5% noise on rz

(c) 5% noise on tx (d) 5% noise on tz

Figure 2.8: RIMF uncertainty generated by the ego-motion noise.

2.2.3.3 Motion Likelihood Image

As mentioned above, the noise of RIMF is different at changing image location,

and a fixed threshold does not lead to a satisfying solution to detect the moving

pixels. In order to handle this problem, the uncertainty in the RIMF is propagated

from the sensors to the final estimation using a first order Gaussian approximation.

As in Eq. (2.15), the RIMF is a function of camera motion Θ, the pixel location

(u, v) at previous frame, the disparity d and the measured optical flow (mu,mv).
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Here, the uncertainty of the measured optical flow is not considered in this work

because it only affects the detection result locally. Based on the forward covariance

propagation framework in [30], the RIMF covariance can be calculated up to a first-

order approximation as below:

ΣRIMF = JΣJT ,

where J represents the Jacobian matrix with respect to each input variable (e.g.,

the camera motion Θ, pixel position (u, v) and the disparity value d in the previous

frame) and Σ is the covariance matrix of all the input variables.

J =

(
∂qu
∂rx

∂qu
∂ry

∂qu
∂rz

∂pu
∂tx

∂qu
∂ty

∂qu
∂tz

∂qu
∂u

∂qu
∂v

∂qu
∂d

∂qv
∂rx

∂qv
∂ry

∂qv
∂rz

∂qv
∂tx

∂qv
∂ty

∂qv
∂tz

∂qv
∂u

∂qv
∂v

∂qv
∂d

)
(2.16)

Σ =

(
ΣΘ 06×3

03×6 Σo

)
,

where ΣΘ is the covariance matrix of the motion parameters which has been esti-

mated in the Section 2.2.2. Detailed information about the computation of J can

be found in Appendix C. Here, Σo = diag
(
σ2
u, σ2

v , σ2
d

)
, where σu and σv are

the variances which are used to describe the pixel quantization error of the camera

and σd describes the variance of the disparity value in its estimation process. In

[43], the authors proposed that the uncertainty of the disparity map could also be

considered as an approximate standard Gaussian Distribution and its variance can

be linearly approximated by:

σd(u, v) = σ0 + γUd(u, v), (2.17)

where σ0 and γ are two constant parameters and Ud(u, v) is the uncertainty on the

disparity value at position (u, v). Here, the matching cost is used as a confidence

measure of the disparity value (further details can be found in [51]). Compared to the

variance of each parameter in Σ, the covariance among the ego-motion parameters,

position and the disparity are negligible and the estimation process will not be an

easy task.

Based on the ΣRIMF estimated above, we can compute the likelihood of a flow

vector to be moving. Assuming a stationarity world and a Gaussian error propaga-

tion, a flow vector is assumed to follow a Gaussian distribution with zero mean and

covariance matrix ΣRIMF . Deviations from this assumption can be found by testing

this null hypothesis or the goodness of fit. At the same time, this testing can be
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done by evaluating the Mahalanobis distance [52] associated to the RIMF vector:

µq =
√

qTΣ−1
RIMFq, (2.18)

where q is the RIMF vector at a certain image location defined in Eq. (2.15).

Since µ2
q is χ2 distributed, the RIMF motion likelihood ξ(m) of RIMF vector can

be computed according to its µq value.

In Fig. (2.9), the sub-figures (a),(b),(c) and (d) are the motion likelihood images

which comes from the Mahalanobis distance µq. Green pixels are detected as static

and red as moving. In (a), two cyclists come from the opposite direction of the host

vehicle and a pedestrian moves in the same direction as the vehicle and three of

them have been well detected as moving. The shadow of the moving car in the glass

window has also been detected. In (b) and (c), all the moving pedestrians have been

detected but there are some false alarms on the ground which come from the MOF

errors in them. The results of (d) is good due to the small camera motion and all

the moving objects have been well detected.

(a) (b)

(c) (d)

Figure 2.9: Motion likelihood calculation based on the RIMF.

2.3 Moving Objects Segmentation

In the previous section, a motion likelihood for each pixel has been obtained based on

the RIMF and its covariance matrix. A likelihood threshold can be simply chosen to

distinguish moving pixels from the static ones. However, some detection noises also

exist because of the imperfect MOF. Fig. (2.10) shows some detection results using
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different fixed thresholds. For example, the motion likelihood image at frame 16 is

good and all the moving objects have been well detected, no matter which thresholds

are used. Despite that the motion likelihood image at frame 535 is well estimated,

it still has some noise on the edge of static objects due to the estimated optical flow

errors. A lower threshold results in both high true positives and high false positives,

oppositely a higher threshold may result in poor detection rate. Furthermore, we

can not choose an optimal threshold that fits to all situations.

Motion likelihood image at frame 16 Motion likelihood image at frame 535

Moving pixels detection using threshold 0.75Moving pixels detection using threshold 0.75

Moving pixels detection using threshold 0.9 Moving pixels detection using threshold 0.9

Figure 2.10: Moving pixels detection using different thresholds

2.3.1 Segmentation Approach

In order to effectively separate the motion foreground from the background, a seg-

mentation step is required to consider both the motion information and the image

appearance information. Usually, the segmentation of image into moving and sta-

tionary parts can be considered as a problem of assigning binary labels to each

pixel,

l(x) =

 1

0

, if pixel x is moving

, otherwise
. (2.19)

It aims to find an optimal solution to assign each pixel to moving or non-moving.

Several constraints should be considered for segmentation. Above of all, pixels with
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high motion likelihood should be assigned as moving. Secondly, adjacent pixels with

similar appearance and distance may belong to the same objects with the same

label, otherwise their labels should be different. By considering all the constraints,

the energy function can be built as

E(L) = Er(L) + λEb(L) (2.20)

where L = {l1, l2, · · · , lp} is a binary vector, p is the number of the pixels in the

image, li is defined in Eq. (2.19). The variables Er and Eb are respectively called

region and boundary terms. The parameter λ is used to weight the influence of both

of them.

2.3.1.1 Region Term

The region term Er captures the likelihood that the pixels belong to the moving

foreground or static background. In sub-section 2.2.3, the motion likelihood of each

pixel has been obtained, which can be used directly to build the region term of the

energy function:

Er = −
∑
x∈Ω

{l(x)ξm(x) + (1− l(x))ξs(x)}, (2.21)

where Ω represents the image domain, ξm is the motion likelihood and ξs is a fixed

prior likelihood to describe the point being static. If some prior motion information

of the scene is available, ξs could be set distinctively for different image regions.

This prior motion information may come from the detection results in the previous

frame or categories information on the objects (e.g., ground, building and trees

will be stationary while pedestrians, vehicles may be moving). It is common to

assume that all the image pixels share the same stationary likelihood ξs if no prior

is available.

2.3.1.2 Boundary Term

The boundary term is used to encourage similar neighboring pixels to be assigned

to the same label. In [53, 54, 43], color is used to measure the similarity between

neighboring pixels and give good performances when the foreground has different

colors with the background. In [55, 56], an approach fusing color and depth is

used for objects segmentation which succeeds when foreground has similar color

with the background. Intuitively, the depth information is very useful for objects
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Figure 2.11: Boundary cost function

segmentation. The moving objects usually have important differences with their

lateral background. However, the disparity map can not be directly used because

the disparity values are not uniform for all pixels (it is large for the close objects

and small for those that are far away). For those latter, even if the distance to

the background is large, the difference in disparity may be not distinguishable. If

an objects is at 50 m from the camera, and the background is at 5 m behind the

objects, the values in the disparity map are 6.8 pixels and 6.18 pixels, respectively

(we assume the baseline and the focal length of the stereo vision to be b = 0.5 m and

f = 680 pixels ). It is hard to get a good segmentation for such small differences.

On the other hand, it will become much easier for remote objects if we use the

reciprocal of disparity (in other words, the depth z = bf
d

, with d being the disparity

value).

Therefore, the boundary similarity can be defined as:

B(xi,xj) = exp(−σ(|z(xi)− z(xj)|) + α), (2.22)

where z(xi) and z(xj) represent the depth value at the point xi and xj. The function

B( . ) is a positive, monotonically decreasing according to the depth difference

between the neighboring pixels, in which σ and α are two parameters to control

the descent speed and peak value respectively. In Fig. (2.11), a bigger α value

gives a higher penalization cost to the depth difference, while the σ value controls

the change of cost with the increase of absolute depth difference. Here we use

value α = 0 because the cost value equals to 1 when the depth difference is zeros.

Meanwhile, we empirically set σ =
√

2 for all the sequences. So the energy for the

boundary term can be expressed as below:
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edge weight(cost)
s-link: ns → n(x) −ξm(x)
t-link: n(x)→ nt −ξs(x)

neighborhood: n(x̂)↔ n(x),
in which x̂ ∈ N4(x)

∑
x̂∈N4(x)

exp(−
√

2(|z(x̂)− z(x))|l(x̂)− l(x)|

Table 2.1: Weights of Edges in G(n, e)

Eb =
∑

Ω

∑
x̂∈N(x)

B(x̂,x)|l(x̂)− l(x)|, (2.23)

where N(x) is the neighborhood pixels of x. In order to reduce the computation

time, here we use the 4-connectivity including the upper, lower, left and right neigh-

borhoods of x.

2.3.2 Graph-Cut Based Motion Segmentation

Let’s rewrite the energy function 2.20 as below:

E(L) =
∑
x∈Ω

−l(x)ξm(x)− (1− l(x))ξs(x) + λ
∑

x̂∈N4(x)

exp(−
√

2(|z(x̂)− z(x)))|l(x̂)− l(x)|

 .

(2.24)

The minimization of this energy function can be realized using the graph-cut frame-

work. Usually, the original image is represented as a graph G(n, e), where, n is

defined as a set of vertices and e is the edge graph which connects two neighbour

vertices. The n vertices contain two different kinds of nodes: common nodes and

terminal nodes. A common node n(x) corresponds to each image pixel x; terminal

nodes are either the source ns or the sink nt. This kind of graph is also called s− t
graph. For the motion segmentation here, s represents the stationary background

while t represents foreground moving objects. Two kinds of edges exist: n-links and

t-links. The n-links connect one pixel to any other neighboring pixels, using either

4-connectivity or 8-connectivity. The t-links connect all the pixels nodes to the ter-

minal nodes. Each edge is assigned with a non-negative weight or cost. According

to the energy function of Eq. (2.24), individual edge costs are defined in Table 2.1.

A subset of edges c ∈ e is called a cut, if the terminal nodes are completely

separated after removing all the edges. The cost of the cut is denoted as |c|, which

is measured by summing up the costs of the cut (removed) edges. A minimum cut

is called min-cut, which is the cut with the minimum cost that can be computed

using min-cut/max-flow algorithms [57, 53].
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(e) (f) 

(c) (d) 

(a) (b) 

Figure 2.12: Segmentation results from different λ values. Sub-figure (a) is the motion
likelihood image and sub-figure (b) - (f) are the segmentation results when λ equals to
{0.25,0.5,0.75,2.0,5.0} respectively.

In Eq. (2.20), λ is used to balance the influence between the region and boundary

terms. Clearly, the segmentation results on the edges heavily depend on the weight

parameter λ. For a low value of λ, the segmentation is mainly on the motion

likelihood of a single pixel whereas a high value of λ value results in only small or

no segment at all. Figure (2.12) shows the segmentation results using different λ

values for the moving pedestrians. From Fig. (2.12), we can see that small edge

costs result in some error detections (as in (b)), while high edge costs result in small

regions (such as in (d), (e) and (f)). We choose λ = 0.5 for our experiments for two

reasons. First, the segmentation results should rely more on region term (motion

likelihood). When λ = 0.5, the largest boundary cost is only 0.5 for each pixel.

Second, the experimental results in Fig. (2.12) also show that λ = 0.5 gives the best

segmentation results.

In order to save computer memory and to improve the processing speed in the

graph-cut algorithm, a down-sampling technique is used. We take one pixel for each

four pixels in both row and column. Fig. (2.13) displays some segmentation results

using our proposed approach.



2.4 Regions of Interest Generation 43

(c) Motion likelihood image (d) Motion likelihood image 

(e) Segmentation result (f) Segmentation result

(a) Original frame (b) Original frame 

Figure 2.13: Graph-cut based moving objects segmentation results in two different frames.
Sub-figure (a) and (b) are the original images; (c) and (d) display the motion likelihood
for each pixel; (e) and (f) are the segmentation results when λ = 0.5.

2.4 Regions of Interest Generation

After the segmentation step, ROI should be generated for each objects for the next

recognition process. Because disparity values are available for each image pixel,

the spatial information could be constructed using Eq. (2.1) and then 3D ROI

can be generated for each potential moving objects. Additionally, some erroneously

detected pixels (e.g., shadows) can be eliminated by using the disparity value.

2.4.1 Detection Objects in 3D World Space

For our system, we mainly focus on a cubic detection space of 30 m (longitudinal),

20 m (lateral) and 3 m (height) in front of the vehicle. In this limited subspace, a

density map is constructed by projecting all the detected 3D moving points on the

xOz plane. The density map is associated with an accumulation buffer. A cell in

the accumulation buffer covers an area of 50 mm Ö 50 mm on the xOz plane. The

weights that the points add to the density map have a Gaussian repartition, with

the maximum at the center cell and decreasing in the neighboring cells. Because

points become sparser as we move away from the camera, the diameter of the patch

augments gradually with the increase of the distance. The size of the patch p is
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defined by the following strategy (as shown in Fig. (2.14)):

p =



1× 1 cell

2× 2 cells

4× 4 cells

6× 6 cells

z < 10m

10m < z < 15m

15m < z < 25m

25m < z < 31m

. (2.25)

After obtaining the density map, an empirical threshold is chosen so as to remove

sparse points, that could be mis-detected image pixels, e.g., shadow or objects bor-

ders. Here, a patch will be emptied if its point number is below a certain value.

Here we set 50 as the threshold empirically. The false alarms at objects boundary

are usually due to the error of the measured optical flow (smoothing constraint).

Fig. (2.15) shows some ROI generation results relying on the grid-based method.

Based on this approach, the shadow can be easily removed, such as in (c). In Fig.

(2.15)-(c), each color corresponds to one rough clustering in the disparity map.

X O

Z

10 m-10

10 m

15 m

25 m

31 m

… …

… …

… …

Figure 2.14: Grid map drawing in the XoZ plane

2.4.2 U-Disparity Map Based ROI Generation

In each cluster, the bounding box can be generated for every moving objects for the

next recognition step. Region growing is used to remove the redundant detection

and to integrate part detection using the dense disparity map. U-V disparity maps

[58, 59], which are two variants of the classical disparity map, are often used for road
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and obstacle detection. The U-disparity map has the same width than the original

image, which is formed by recording the number of the pixels who share the same

disparity value along each image column [59].

(b) segmentation result

(c) Grid-based rough object clustering

(g) Density map  

(d) U-disparity map 

(e) Bounding box generation  

(a) Original image

Figure 2.15: Bounding boxes generation from moving pixels segmentation

In the U-disparity map, an upright objects will form a horizontal line because

of the same disparity value. Each white horizontal line represents a corresponding

upright objects. This information can be effectively used to determine the width

of the objects. After getting the width of the bounding box, region growing is

applied to the neighborhood of the clustering group pixels based on the disparity

value. The pixels whose disparity values are between the minimum and maximum

disparity value of each cluster are considered to belong to the same objects. The

final bounding boxes of the moving objects are shown in Fig. (2.15)-(e).
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2.4.3 V-Disparity Map Based Clutter Reduction

According to [60], the real world height of the objects could be estimated as:

hi = hc +
(yi − y0)z cos θ

f
(2.26)

Here, hi and hc are the height of objects i and height of the camera respectively

in the world coordinate frame; the variable θ is the camera tilt angle and f is the

camera focal length; z is the depth of the objects; y0 and yi are the horizon position

and top of the objects in the image coordinate. Assuming that moving objects are

not higher than 3 meters, some obvious false positives may be filtered. For this

purpose, the horizontal position is first computed using the V-disparity map. Then,

the actual height of the objects hi is calculated using Eq. (2.26). Finally we retain

only the objects whose height is between 0.75m and 3m because the height of most

moving objects is in this range. Detailed steps can be found in Alg. (2.2).

Algorithm 2.2 Bounding Box Generation and Clutter Reduction

Input: - objects Bounding box;
- Camera height hc,camera tilt angle θ and camera focal length f ;
- The distance of objects to the camera z;
- Horizon position y0;

Output: - Real world height of the objects hi ;

1: I Compute the U- and V- disparity maps;
2: I According to its disparity value, each moving pixel could be assigned to

different upright objects using U-disparity map;
3: I Estimate horizontal line y0 and camera tilt θ from V-disparity map;
4: I Calculate real world height hi of the objects using horizontal line y0, camera

height hc and tilt angle θ as Eq. (2.26);
5: I Keep the detection result for whose hi is between 0.75 and 3m ;

2.5 Experimental Results on Real Data

Several KITTI video sequences3 have been chosen to test the moving objects detec-

tion and the segmentation approach. More details about the sensor setup and data

information can be found in [61, 62]. The actual objects labels and locations have

been provided in some of these sequences, which can be used to evaluate our mov-

ing objects detection algorithm. In order to test the effectiveness of our approach,

different environments of the sequences have been chosen for the evaluation.

3http://www.cvlibs.net/datasets/kitti/
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2.5.1 Moving Objects Detection Evaluation

In the KITTI datasets, the video sequences are acquired from a SVS installed on the

roof of a vehicle. Five different video sequences (10 frames per second) acquired in

different road situations were used to test our moving objects detection algorithm.

General information about these sequences are introduced below:

1. Four Inner city sequences have been selected: quiet city street, road inter-

sections and crowd city street. Some thumbnails can be found in Fig. (2.19)-

(a),(b),(c) and (d) respectively. In the inner city sequence, the host vehicle was

driven at a low speed (about 15 km/h) because of complex road conditions.

2. A campus sequence was used to test the performance of the approach when

the camera undergoes a big rotation around the Y - axis.

3. A suburban road sequence was used to test our sparse feature based moving

objects detection algorithm when the host vehicle drove at high speed.

Before presenting the experimental results, we review our detection algorithm as

in Fig. (2.16). First, the stereo disparity map [46] and optical flow (dense [63] or

sparse [64]) are computed before the moving objects detection steps. At the same

time, the relative camera pose between two consecutive frames and its covariance are

estimated as mentioned in sub-section (2.2.1) and (2.2.2). The standard deviation

of the features in Eq. (2.6) is empirically set to Σ =

[
0.75 0

0 0.75

]
pixel. Ideally

this value should be changed depending on the situation. Generally speaking, Σ

should get a high value when the vehicle has a high speed, and otherwise a lower

value should be set. In order to compute the variance of disparity in Eq. (2.17), we

set σ0 = 0.25 and γ = 0.075 empirically. In addition, the experimental results show

that the variance of disparity has limited influence on motion detection results.

2.5.1.1 Detection Performances

Fig. (2.16)-(a) displays the original image. Fig. (2.16)-(b) and (c) show the disparity

map and dense optical flow. Fig. (2.16)-(d) is the motion likelihood image, in which

the stationary and moving parts are respectively displayed in green and red. Fig.

(2.16)-(e) displays the segmentation results based on the graph-cut approach. Fig.

(2.16)-(f) shows the grid based moving objects clustering results and different colors

represent different point groups. Fig. (2.16)-(g) gives the bounding box generation

result, where the height of the objects can also be given.
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(a) Original image

(c) Optical flow

(e)  Segmentation results

(g) Bounding box generation 

(b)  Disparity map 

(d)  Motion likelihood

(f) Grid-based clustering 

Figure 2.16: Moving objects detection steps

Fig. (2.17) shows the detection results in the campus sequence. During this

sequence, the camera turned from left to right at a high speed. The vehicle direction

changes nearly of 90 degrees in 4.3 seconds. The experimental results show that our

algorithm can work well in this situation. The cyclists behind the trees far from the

camera can also be detected. In Fig. (2.17), the red ellipse highlights the missing

detection objects. This cyclist has not been detected by our algorithm because it

does not appear in the right camera and the 3D points can not be reconstructed in

the disparity map. Two pedestrians at the left boundary of the second image have

been included in one rectangle because they are inseparable in the disparity space.

We also tested our algorithm on a suburban highway sequence and the detection

results are displayed in Fig. (2.18). On the highway, both the ego-vehicle and the

objects vehicles move at a high speed, about 60 km/h. The frame rate of image

sequence is 10 frames per seconds. In this case, the dense optical flow approach

does not work well because of the high changes between the two successive frames.
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Campus Sequence 37

Figure 2.17: Detection results on a campus sequence.

Hierarchical based sparse feature tracking approach [48] can be used to handle this

problem. Features tracking and matching between the two stereo frames can be

realized by Alg. (B.2). A lower threshold is set in the feature extraction step to

make sure that we can obtain enough features on the moving objects. The opposite

direction driving vehicles were detected at a range of 40m, which remains sufficient

for an appropriate reaction of the driver. The white car moving in front of the

camera, was also properly detected even if it moves in the same direction as the ego

vehicle.

Fig. (2.19) displays the results obtained on four different inner city sequences. In

Fig. (2.19)-(a), cyclist sequence is captured around the corner of a quiet city street.

In this sequence, the moving van and the cyclist appear during all the frames. Both

of them have been detected by our approach in most of this sequence. The good

performance of our approach benefits from the low ego vehicle speed and the relative

simple street environment.

In Tab. (2.2), we give the evaluation results of our detection algorithm compared

to the ground truth. The cyclist sequence includes 154 frames and the ground truth

of the moving objects is given in Tab. (2.2). Here, only the moving objects whose



50 Chapter 2: Vision-Based Moving Object Detection

Road Sequence 16

Figure 2.18: Detection results on a suburban road.

distance is less than 30m are considered: thus the van is only considered in the first

87 frames. The evaluation method used in this thesis is briefly introduced below.

Let BBg be the ground truth for the bounding box and BBd be the bounding

box for the detected objects. A detected BBd{i} and a ground truth BBg{j} form

a potential match if they sufficiently overlap. Specifically, we employ the PASCAL

challenge [65] measure to evaluate the detection results:

α =
area(BBg{i} ∩BBd{j})
area(BBg{i} ∪BBd{j})

(2.27)

Usually a threshold α is chosen to determine whether the detection objects is

matched with the ground truth. Here we set α = 0.5 as in PASCAL challenge

[65]. In table (2.3), true positive represents the number of real moving objects

bounding boxes detected in the whole sequence. False positives mean static objects

that have been mis-detected as moving and false negatives are the moving objects

that have not been detected. The true static objects are not taken into account

because our algorithm focuses on detecting the moving objects only. The precision

and recall have also been computed to measure the performance of the algorithm.
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(a) Sequence 05 (b) Sequence 11

(d) Sequence 71(c) Sequence 17

Figure 2.19: Detection results on four different inner city sequences. (a) Cyclist se-
quence. (b) Crossroad 1. (3) Crossroad 2. (4) Crowded street

It obtained a precision of 82.7% along with a recall of 93.1% in the cyclist sequence.

objects Start frame End frame Number of frames 4

Van 1 87 87

Cyclist 1 154 154

Pedestrian 1 5 5

Table 2.2: Ground truth of cyclist sequence

Objects True positive False negative False positive5 Recall Precision

Van 76 11 6 6 6
Cyclist 151 3 6 6 6

Pedestrian 2 3 6 6 6
Total 229 17 48 0.931 0.827

Table 2.3: Detection results of cyclist sequence

4The number of frames that the objects appears in.



52 Chapter 2: Vision-Based Moving Object Detection

Recall =
True positive

True positive +False negative
= 0.931 (2.28)

Precision =
True positive

True positive +False positive
= 0.827 (2.29)

Fig. (2.19)- (b) and (c) show some detection results in two crossroads. The red

rectangle shows a false positive detection. The detections in these two sequences

are relatively easy because the ego vehicle is nearly stationary, waiting for the green

lights. Especially in crossroad 2, all the moving objects have been well detected by

our algorithm. The results of crossroad 1 and 2 are displayed in table (2.4) - (2.7).

Objects Start frame End frame Number of frames

Car1 56 60 5

Car2 95 118 24

Car3 104 138 35

Car4 115 157 43

Car5 127 139 13

Van 135 172 38

Bus 159 209 51

Table 2.4: Ground truth of crossroad 1

Objects True positive False negative False positive Recall Precision

Cars 100 20 6 6 6
Van 36 2 6 6 6
Bus 51 0 6 6 6

Total 187 22 79 0.895 0.703

Table 2.5: Detection results of crossroad 1

Objects Start frame End frame Number of frames

Car1 1 7 7

Car2 1 23 23

Car3 19 43 25

Car4 35 58 24

Table 2.6: Ground truth of crossroad 2

5Here, we only record the number of false positive detections in the whole sequence. It is hard
to say one false positive detection corresponding to a moving cyclist or to a moving van when both
of them appear in the image.
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Objects True positive False negative False positive Recall Precision

Cars 79 0 6 6 6
Total 79 0 0 1.00 1.00

Table 2.7: Detection results of crossroad 2

The last sequence we tested is taken in a crowded street. The host vehicle moves

slowly, which makes detecting moving objects easier. Slowly moving objects can

well be detected by our approach, even when they move on the epipolar plane.

Note that the algorithm also detected partially occluded objects because we use a

dense disparity and dense optical flow maps. Some false negative and false positive

detections happen in the real image sequences, as displayed in Fig. (2.19)- (d) (

red bounding box) due to reflections on windows in the scene. In this sequence, the

actual bounding box as of the objects have not been provided . We have built the

ground truth for the moving objects from frame 500 to frame 700. The evaluation

results are shown in Table (2.8)-(2.9).

Objects Start frame End frame Number of frames

Pedestrian1 530 700 171

Pedestrian2 560 640 81

Pedestrian3 500 580 81

Pedestrian4 500 506 7

Pedestrian5 500 670 171

Pedestrian6 540 610 71

Pedestrian7 550 590 41

Pedestrian8 550 640 91

Pedestrian9 590 660 71

Pedestrian10 630 700 71

Pedestrian11 672 700 29

Car1 630 700 71

Table 2.8: Ground truth of crowded street

Objects True positive False negative False positive Recall Precision

Total 923 33 83 0.965 0.917

Table 2.9: Detection results of crowded street

2.5.1.2 Computation Time

All the experiments have been realized on a standard laptop (Intel i7, 4 Core)

with Matlab R2014a processing environment. When the dense optical flow is used,
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the total average computational time is about 30 seconds for each frame. The

dense optical flow calculation step takes about 15 seconds. Around 10 seconds

are spent on the motion likelihood computation, 4 seconds on the graph-cut based

segmentation and 1 seconds on the bounding boxes generation. Computing ego-

motion and estimating the uncertainty only takes about 0.25 seconds. Although

our Matlab implementation is not real-time, it improves a lot when compared to

[66] (7 minutes per frame) and further accelerations could be achieved by C/C++

implementation with parallel/GPU computing.

2.6 Summary

In this chapter, an approach has been proposed to detect moving objects from two

consecutive stereo frames. The ego-motion uncertainty is estimated through a first-

order error propagation model that is used to obtain the motion likelihood for each

pixel. Pixels with a high motion likelihood and a similar depth are detected as

moving based on a graph-cut motion segmentation approach. Additionally, a fast

recognition of moving objects becomes possible based on the segmentation results.

Detection results in several different real video sequences show that our proposed

algorithm is robust with respect to global (camera motion) and local (optical flow)

noise. Furthermore, our approach works with all image pixels and arbitrarily moving

objects (including partially occluded) can be detected. Without any tracking strate-

gies, our detection approach gives a high recall rate and also exhibits an acceptable

precision rate in several public sequences.

However, much time consumption is a big problem of the proposed method due

to computation of the motion likelihood for every image pixel and the segmentation

with the graph-cut algorithm. In addition, the performance of MOD highly relies

on the results of dense optical flow and disparity maps. However, their estimation

in a complex dynamic environment (including other moving objects) often becomes

very difficult.
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3.1 Introduction

I
n Chapter 2, the bounding boxes of the moving objects have been generated,

and further information about these bounding boxes (such as categories, etc.)

should be provided for the ADAS. Here, we only consider whether there is or not

a pedestrian in the bounding box. Compared to the classical pedestrian detection

problem [67, 68, 69, 70], the difference here is that we do not need to search for ROI
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(the potential image patch of pedestrian) from the whole image. What we need to

do is to classify the features extracted from the bounding boxes.

3.1.1 Motivation

(a) (b)

(c) (d)

Color Similarity  Luminance Difference 

Occlusion Multiple sizes 

Figure 3.1: Pedestrian detection challenges

Pedestrian detection (or recognition) problem has been defined ten years ago,

and more than 40 methods [71] have been proposed to handle this task. During

the last decade, great progresses have been achieved due to improvement on both

the computer vision techniques and machine learning strategies. Although notable

achievements have been obtained by the contributions of many researchers, pedes-

trian detection is still an open problem in the computer vision community due to

different challenges. The first challenge is the dynamic background and the variable

appearances of the pedestrian. Detection in static scenes (e.g., video surveillance)

is easier than in dynamic scenes since the background and the view-point do not

change in time. This problem becomes much more complex when the cameras move,

especially in high cluttered urban environments. The high variance in appearance,

occlusions, and different poses, view points and distances present difficult problems

in pedestrian detection. Some examples1 are shown in Fig. (3.1). In real world

applications, environmental conditions are also a crucial factor for the pedestrian

detection and recognition systems. The image quality will be greatly reduced in bad

weather conditions, such as rain or fog (the first two images in Fig. (3.2)). Under

1All the images come from the KITTI dataset.
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Challenges in Pedestrian Detection

Figure 3.2: Challenges in pedestrian detection

low illumination conditions, images tend to become noisy and blurry induced by

long camera exposure times.

Most of the pedestrian detection systems can be divided into three main steps (as

shown in Fig. (3.3)): ROI generation, feature extraction and pedestrian classifica-

tion. Here, the ROI from the MOD step can be used for classification (recognition)

directly. After obtaining the ROI, the features, such as Histogram of oriented gra-

dients (HOG), are extracted from it to represent its image information. Then a

classifier is trained offline with a large amount of labeled (positive and negative)

instances based on these features. Usually, the performances of the classifiers highly

depends on the training data they used. Several public pedestrian datasets such as

MIT dataset [72], INRIA pedestrian dataset [67], Caltech data [18], CVC pedestrian

dataset [73, 74] and KITTI [61] have been widely used for the pedestrian detection.

Commonly, classifiers can achieve remarkable results if the training and testing in-

stances come from the same dataset. However, their performances are bad when

these examples come from different datasets. That is because the characteristic

of images from one sequence to another are generally different. These differences

(such as different image resolution, various background textures, etc) result in the

features extraction difference as well. For a specific traffic scene, it is usually bor-

ing or even impossible to build a new specific dataset by labeling a lot of training

instances manually. Semi-supervised learning approaches address this problem by

using a small number of labeled instances and many unlabeled instances because

they are cheap to obtain. Then, the class label for the unlabeled instances can be

constructed by fusing the outputs of several existed object detectors. In [75, 76],

the authors proposed to fuse the classification results from different experts based

on the belief function theory by using some combination rules. In this chapter, we

aim to develop a state-of-the-art semi-supervised pedestrian classification approach

in dynamic real-world environments.
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(a) ROI Generation (b) Feature Extraction (c) Classification

Figure 3.3: Outline of pedestrian detection

3.1.2 Chapter Outline

Labeled Training Samples + 

Unlabeled Training Samples  

Standard HOG Features 

Extraction

GMM based Soft Class 

Labels Estimation

Hard +Probabilistic Class 

Label 

Soft-Label Based Boosting Algorithm Parameters

Objects Bounding Boxes

Hypotheses Generation by 

Sliding Window Technique

Standard HOG Features 

Extraction

Pedestrian Recognition Results

Boosting Classifier Training Procedure Pedestrian Recognition  Procedure

PCA-HOG Features

Figure 3.4: Outline of soft-labeled based semi-supervised boosting for pedestrian recogni-
tion

In this chapter, we describe in detail the recognition part of our moving object de-

tection system, which is illustrated by Fig. (3.3). The left box is the semi-supervised

boosting classifier training procedure and the right box gives the process of pedes-

trian recognition part. The structure of this chapter is organized as follows. In the

beginning of Section 3.2, we first present the well known feature sets for pedestrian

detection, especially the HOG features. Then PCA-HOG (Principal Component
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Analysis-HOG) features which are used for soft label estimation are introduced in

the remaining section. In Section 3.3, a general review of classifiers for pedestrian

detection is presented first, then the proposed soft-label based boosting algorithm is

explained in details. Several classification and recognition experiments are designed

to test the effectiveness of the approach in Section 3.4. Finally, we give a general

conclusion on our pedestrian recognition work in Section 3.5.

3.2 Features Extraction

3.2.1 Motivation

The image features are extracted for the classification step in each object bounding

box. To achieve good classification performances, the image features should be

invariant to changes in illumination, differences in viewpoint and shifts in object

contours. Instead of using raw pixel intensities directly, one often uses some form

of more advanced local image descriptors from the image part corresponding to the

bounding box. The use of features has several advantages. First, features usually

have more discriminative information than image intensities, such as object edges,

motion, etc. Second, this strategy can be time saving because of the lower dimension

of the features compared to the original image pixels. For these reasons, computing

the most useful and efficient features for representing the pedestrians is crucial for

pedestrian detection. A general overview of the main features used for pedestrian

detection are introduced in the following paragraphs.

3.2.2 State of the Art

Local image representations have been widely used as feature sets for object detec-

tion and recognition. The basic idea is that the local image descriptors are extracted

around at a sparse set of salient image points, usually called points of interest or key

points. Generally, the descriptors are assembled together to construct a descriptor

vocabulary or codebook for a certain object category. Then, the object detection or

recognition is realized by matching new test images against this visual vocabulary.

SIFT (Scale Invariant Feature Transformation) [77], which can be considered as one

of the most famous local image gradient based descriptors, has been successfully

applied for image stitching [78] and object recognition [79]. In the SIFT descriptor,

first a local scale and a dominant orientation are obtained from the key-point detec-

tor. Then they are used to vote into orientation histograms with weighting strategy
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according to their gradient magnitudes.

Stimulated by the SIFT descriptor and shape contexts [80], HOG features [67]

have been proposed, which have been developed for pedestrian detection. HOG

features collect gradient information in local cells2 into histograms using tri-linear

interpolation, and normalize overlapping blocks (a block is squared image area which

includes four cells) composed of neighboring cells. Interpolation, local normaliza-

tion and histogram binning make the representation robust to changes in lighting

conditions and small variations in pose. Due to their remarkable performances for

pedestrian detection, several HOG based features have been proposed. In [81],

HOG and Local Binary Pattern have been combined together to form new feature

sets which are capable to handle partial occlusions. In this approach, global and

local detectors have been trained from the training data using linear SVM, where

global detectors are used for scanning the whole window, while part detectors are

applied for some special local regions. Evaluation results show visible improvements

over standard HOG on the INRIA Person data set [67].

Besides the appearance, other information are also used to built the features for

the pedestrian detection. In [68], the authors combine the flow and appearance of

oriented histogram features together to obtain better results than only appearance

based features, especially for the moving pedestrians. Furthermore, the disparity

[17] in stereo vision is also an important information that can be used for pedestrian

detection, because the foreground objects usually share different depth with the

background. Based on this idea, a new feature is proposed based on binocular

disparity. Besides the pedestrian itself, the context in its margin neighborhood

can also offer helpful information. In [82], local features of the pedestrian and the

neighborhood context are combined to construct a context descriptor; then, a so-

called context-boost iterative classification algorithm is applied for the classification

process. 3D geometric context [83], local pixel context [69] and shape context [84]

are all considered to form the pedestrian descriptors.

Although most of feature descriptors are computed by based on local information,

they can also be classified into global or part-based approaches depending on how

they combine the underlying features. Global approaches describe a people in a

fixed size window and the model is learned by sliding image windows from the

images and computing feature descriptors on these windows. Note that multiple

local regions (legs, shoulder, head, etc) have been included in the features of global

descriptors (e.g., HOG), however, the position of these regions is fixed and cannot

2small squared areas uniformly divided from the instance image.
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change between object instances. Usually, it is easy to train a classifier on the global

features due to their less complex models. A binary classifier can usually achieve

good detection performances for this kind of features, e.g., AdaBoost [85].

However, global approaches work poorly when the people are partially occluded,

overlap or some uncommon postures, such as sitting, squat or running. In this

case, part-based approaches which describe the people with different parts achieve

better results. Local parts may correspond to human limbs (semantic parts), head

or shoulder, typically discriminative image regions (e.g., [86]). Then, a detector or

weak classifier is trained for each local parts and their outputs are combined to get

the final decision. If an object is described into several parts, their spatial location-

relation should also be considered. A fixed spatial layout model is easy to handle

[87], however, a flexible spatial model [88, 89, 90] is much suitable for more complex

situations.

3.2.3 PCA-HOG Features

In this thesis, we adopt HOG features for the pedestrian recognition system due to

two reasons. First, they have been widely used for pedestrian detection and their

effectiveness have been well proved in different applications. Second, the objective of

this chapter is to train a semi-supervised classifier rather than to build new features

descriptors for pedestrian recognition. In order to exploit the latent information

of unlabeled instances, we estimate soft class labels for them based on the labeled

instances. However, it is difficult to estimate their labels using high dimension

HOG descriptors directly, thus PCA is applied as a tool to project them into a

lower dimension feature space.

3.2.3.1 Extraction of HOG

HOG features are calculated by taking well-normalized local histograms of image

gradient orientation in a dense grid. As shown in Fig. (3.5), we will introduce

how to compute the standard HOG descriptors [67] in a 64× 128 pedestrian image.

First, the image window is divided into cells of size of 8× 8 and for each cell a local

1-D histogram is accumulated by quantizing gradient directions or edge orientations

over all the pixels of the cell into 9 directions. In order to achieve invariance to

illumination, all the local histograms should be normalized in larger spatial regions

or “blocks” of size of 16×16 pixels. The normalization is processed by accumulating

a measure of the local histogram over a block and using the results to normalize all
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128 Pixels 
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Block-size  (16 , 16 )

Cell-size  (8 , 8 )
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Window-size  (128 , 64 )

(a) Cell, block, and window in HOG extraction (b) Displayed HOG de-
scriptors

Figure 3.5: HOG features extraction

of the cells in it. In each block, 4 cells are included. Typically each cell is shared

between several blocks (as shown in Fig. (3.5)), but their normalizations happened

in different blocks. Thus, one cell will appear several times in the final output

vector with different normalizations. This process seems redundant but the detection

results show that this improves the performances. The finally HOG descriptor is the

accumulation of the features from all the blocks of a dense overlapping grid covering

the whole detection window. A final HOG features of a 64× 128 window is a vector

of 3780 elements.

3.2.3.2 PCA-Feature Selection

According to [91], the extracted HOG features include redundant information and

using lower dimensional features leads to a model with fewer parameters and speeds

up the learning and detection algorithms. This issue of dimensionality reduction

(sometimes refereed to manifold learning) is also a significant problem across a wide

variety of information processing fields such as pattern recognition, data machine

learning, and data visualization. Various approaches have been proposed in the

past years, a comprehensive review of them can be found in [92]. Among all the

dimensionality reduction methods, PCA [93] is one of the most well known unsuper-

vised techniques and it has successfully been applied to numerous computer vision

problems [94]. PCA-HOG features have been used in [95] and [96] for pedestrian
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detection and people counting.

Principal Components Learning Because PCA is an unsupervised approach,

both labeled and unlabeled instances are used together to find the principal com-

ponents. Let the training data be represented in a n × D matrix X consisting in

n data-vectors xi, i = 1, · · · , n with dimensionality D. Vector xi is the HOG de-

scriptors of instance i. Typically, PCA wants to find a linear mapping to project

the high-dimensional data into a low-dimensional data, while this mapping should

maximize the amount of variance in the data. In mathematical terms, PCA aims at

finding a mapping Γ which maximizes ΓT cov(X)Γ, where cov(X) is the covariance

matrix of data X. This mapping Γ can be simply computed the d principal eigen-

vectors (i.e., principal components) of the covariance matrix. So Γ can be obtained

by solving the eigen equations of covariance matrix

cov(X)Γ = λΓ (3.1)

where, λ is the d principal eigenvalues of cov(X). Then the low-dimensional data

representation yi of data xi are computed by mapping Γ as

Y = ΓT (X− X̄) (3.2)

The low-dimensional features are called PCA-HOG features in the rest of the manuscript.

3.3 Classification

In Section 3.2, we have introduced how to extract features from an image window.

Then we should learn the parameters of a discriminant model (or decision boundary)

between the positive and the negative classes from the two classes training examples.

3.3.1 Motivation

Fully supervised methods always require a lot of labeled instances to reveal the

true interpretation of the data. They aim at learning a mapping from the input

data to the outputs. Generally, the performances of a supervised algorithm highly

depends on the supervisor (labeled instances). In many applications, obtaining suf-

ficient labeled instances for the fully supervised learning methods is difficult or even

impossible. However, collecting a large set of unlabeled data instances is usually
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easy, or in many applications cheap to obtain. Therefore, it is desirable to have

methods which require only a minimal supervision and are able to learn from both

labeled and unlabeled data. Semi-supervised learning deals with developing algo-

rithms which can use both labeled samples and unlabeled samples. Both supervised

and semi-supervised methods have achieved great success for classification problems.

A general reviews of the state of the art approaches is presented in following section.

3.3.2 State of the Art

3.3.2.1 Supervised Classifiers

Boosting The boosting algorithm [97, 85] is a widely used supervised classifier

for object detection. The main idea of the boosting algorithm is to built a strong

classifier by combining several weak learners ft(x). The output of the final decision

is given by

F (x) = sign(
M∑
t=1

αtft(x)) (3.3)

in which, the weak learner ft(x) corresponds to a very simple classifier (for instance a

stump, that is a decision tree with only one split); αt is the weight (confidence) of tth

weak learner, which is determined by the training error of this classifier. The weak

classifier is achieved sequentially by changing the weight distribution of the training

instances. Each training instance is associated with a weight. If this instance is

misclassified by the current weak learner, its weight will be increased in the next

iteration, otherwise the weight will be decreased. Thus, the weak learner will be

trained with a re-weighted data set and will focus more on the instances that are

hard to classify.

The original AdaBoost is also known as discrete AdaBoost because its outputs

are only discrete values in {+1,−1}. A variant has been called Real AdaBoost

[98] because the output of the classifiers could be a real value. This real value

is the probability that a given input instance belongs to a class, considering the

current weight distribution for the training set. Other modified versions, such as

gentle AdaBoost [99], LogitBoost [99] and FloatBoost [100] were also proposed and

a general overview of them can be found in [101].

In [102], the AdaBoost algorithm is trained by using the Haar-like features for

the face detection which gives not only robust detections but also real-time perfor-

mances. Based on their work, another AdaBoost approach has been proposed for
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pedestrian detection [103]. In their work, a real-time detection system has been

proposed by using the integral array representation [102] and boosted detector cas-

cades technique [104]. AdaBoost cascades [70, 105] are slow in the training process

to select feature encoding, but they obtain good performances in the run-time of

the final detectors.

Support Vector Machine SVM are proved to be a very powerful tool for the

pattern recognition (classification) in the last decades [106]. This approach attempts

to separate positive and negative instances with an optimal hyperplane, i.e., an

hyperplane maximizes the margin (gap) between both sets of instances in the feature

space. In [67], a linear SVM trained using HOG features, was successfully applied

for pedestrian detection. Other related pedestrian detection working with linear

SVM can be found in [107, 108, 109].

It was extended to nonlinear classification by applying the kernel trick [110]

and thus the data are mapped in a high-dimensional space using a kernel, in which

their margin are linearly separated. Compared to the linear SVM, non-linear version

reaches better performances. However, the computation cost and memory consump-

tion also increase rapidly. Owning to the development of the hardware, non-linear

SVMs has been also used for pedestrian classification in [111, 112, 113]. A recent

work presents efficient versions of non-linear SVMs by applying a specific class of

kernels [114].

Neural Networks The classification problem can be considered as a nonlinear

mapping process that maps an input features vector to output object classes’ space.

Neural networks with a back propagation learning algorithm are well known for su-

pervised classification and have been proved as an effective approach in pedestrian

recognition system. In [115], the authors use a mix of unsupervised and supervised

training to create a Convolutional Neural Network by extracting features directly

from raw pixel values. The results show good detection performances on INRIA,

ETH and TUD-Brussels datasets. Other works, such as [116, 117, 118], focus on

using deep architectures for learning the visibility relationship among overlapping

parts at multiple layers to handle the occlusion problem. A Switchable Deep Net-

work (SDN) is proposed in [119] for pedestrian detections. By using SDN, hierar-

chical features, salience maps, and mixture representations of different body parts

can be learned automatically together.
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3.3.2.2 Semi-Supervised Learning

In supervised learning, training instances are provided together with their cor-

responding class labels. This entirely differs from unsupervised learning, where

training instances are provided without class information. Semi-supervised learning

(SSL) is a trade-off between both algorithms [120, 121, 122]. In SSL, a classifier is

trained from both labeled and unlabeled instances, the amount of which is usually

much higher than that of the labeled instances. In general, SSL methods can be

categorized into transductive and inductive approaches. The goal of transductive

learning is to infer the correct labels for the given unlabeled training data only,

while an inductive learning approach aims to infer the correct mapping from data’s

feature space to the class label. However, the terms inductive and transductive

are frequently mixed up in recent literature, such as transductive support vector

machines (TSVM) [123] which share the property of inductive learning.

In SSL, one wants to improve a classifier by introducing large amounts of unla-

beled instances instead of using only a small number of labeled instances. However,

since there is no class label information for unlabeled data, most approaches attempt

to assign a pseudo class label for the unlabeled instances by using some underlying

structure assumptions, such as: the smooth assumption which assumes that data

should be classified to the same class if they are very close to each other. Under

this assumption, the decision boundary between the classes must pass through low

density regions; the cluster assumption, which assumes that data tend to be sep-

arated into different discrete clusters and data instances in the same cluster must

share the same label; the manifold assumption, which assumes that the marginal

distribution is supported on a Riemannian manifold and in other words, it means

that even if the data is observed in a d-dimensional feature space, the data really

lies on a lower-dimensional manifold governed by only a few degrees of freedom.

However, as mentioned in [121], additional unlabeled instances are not always

helpful to improve the classifier performances. Bad matching of problem structure

with model assumption can lead to a degradation of classifier performances [121].

Several works that theoretically revealed this issue [124, 125]. Since SSL has been

introduced, a lot of related approaches have been proposed. In the following, we

will give some of the most popular SSL approaches.

Boosting and SSL Several approaches have been proposed to extend boosting

to the semi-supervised setting, e.g., [126, 127, 128, 129]. Most of these approaches

try to add an unsupervised regularization term to the supervised loss function of
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boosting that penalizes decision boundaries passing through high density regions.

Different kinds of loss functions are built for the labeled and unlabeled instances

respectively. Some typical supervised boosting algorithms are introduced shortly

below.

Boosting with Regularization. SemiBoost [128] and semi-supervised regularized

boosting [130, 129] are two typical semi-supervised approaches. The former approach

uses the manifold and clustering assumptions to assign the pseudo class labels to

unlabeled instances. More precisely, the inconsistency between labeled and unla-

beled instances is used to construct the loss function for the unlabeled instances. In

[130, 129], the pseudo class label of an unlabeled instance is given under the margin

cost functional framework [131]. Both of these approaches have been applied in the

field of computer vision for objects detection [132] and facial expression recognition

[129].

Boosting with Prior Information. Other semi-supervised boosting methods are

based on using of prior information [133, 134, 135]. In some cases, the class labels

are assigned by the expert according to some background knowledge. This kind

of labeling is sometimes called soft labeling, and correspond to probability, belief

degree or outputs from other classifiers. The usual error loss functions cannot be

used to handle this kind of soft label. In this case, the relative entropy or Kullback-

Leibler divergence can be applied to measure the difference between the output of

the weak classifier and the soft class labels [126, 127, 133].

Self-Training, Co-Training and Multiview Learning Self-training is a com-

monly used approach for semi-supervised learning. In self-training, a classifier is

first trained with a small amount of labeled data using a supervised method. Then

this classifier is used to classify the unlabeled data. Finally, the unlabeled instances

which were classified with a high degree of confidence are added into training set,

together with their predicted labels.

Co-training [136] is a semi-supervised learning technique that requires two views

of the data. In the co-training algorithm, each example is assumed to be able to be

described by two different feature sets and either of them can provide different, but

complementary information about the instance. Initially two separate classifiers are

trained with the labeled data, on the two features sets respectively. Each classifier

then classifies the unlabeled data, and “teaches” the other classifier with the few

unlabeled examples (and the predicted labels) they feel the most confident with.

Each classifier is retrained with the additional training examples given by the other
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classifiers, and the process is repeated.

If more than two classifiers are used, the learning approach is referred to multi-

views learning. For example, tri-training [137] is an extension of co-training that uses

three classifiers instead of two. In [137], the authors have shown both theoretically

and empirically that tri-training requires weaker conditions in order to converge,

which makes it more applicable in practice.

3.3.3 Contributions

We present here our strategy for performing boosting from instances associated with

probabilitics labels. First, we present how decision trees can be induced from such

data. Then, we proceed with our soft label boosting procedure.

3.3.3.1 Boosting from Soft-Labeled Data

Soft-Label Decision Trees. In this section, we present how CART (Classifi-

cation And Regression Tree) [138] can be extended to handle training instances

associated with probabilistic class labels [139]. A decision tree is constructed by

recursively splitting the parents nodes into children nodes until one or several ter-

minal conditions are satisfied, such as instances falling into one of the children nodes

are less than a certain number. The Gini index is usually employed to quantify the

quality of a split and thus to find the optimal split values for constructing the deci-

sion tree [140]. The Gini index measures the node impurity by taking the diversity

within the class probability estimates for a node. For a tree node λt , the Gini index

G(λt) is computed as below:

G(λt) =
∑
l 6=k

pl(λt)pk(λt) = 1−
K∑
k=1

p2
k(λt) (3.4)

in which pk(λt), k = 1 · · ·K (K is the number of classes) is the class probability

for current node λt. For a classical decision tree, this probability can be simply

estimated by the frequency of each class k:

pk(λt) =
nkt
nt

(3.5)

where nkt is the number of instances of class k falling into node λt and nt = Σ
k
nkt

is the total amount of instances falling into node λt. The Gini index in Eq. (3.4)

depends upon the estimates of pk(λt). However, the computations of pk(λt) in
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Eq. (3.5) are not appropriate for learning sets with probabilistic label because the

class frequency within a node cannot be determined directly anymore, the class

information being not sure. In this case, the class frequencies can be estimated from

the training set by taking its expectation. Then, Eq. (3.5) can be replaced by

pk(λt) =
1

nt

nt∑
i=1

πi,k, (3.6)

where πi,k is the probability of xi belongs to class k. The class probability estimates

obtained from Eq. (3.6) can be used directly to compute the Gini index defined in

Eq. (3.4).

Fig. (3.6)-(a) shows a decision tree built by soft labeled instances. The structure

of the decision tree is the same as the classical decision tree, while a probability

vector is assigned for each leaf node. Fig. (3.6)-(b) describes the process of splitting

a parent node into two children nodes based on the optimal variable index j and

value xoj . Some detailed information about Gini index based node splitting for soft

training instances can be found in Algorithm 3.1.

(a) An Example of  Soft Labeled Based Decision Tree for 2 Classes (b) Gini Splitting Rule for Soft Label Based Decision Tree
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Figure 3.6: An simple example of soft label based decision tree for 2 classes

Misclassification Error Estimation. After that the decision tree has been con-

structed, it can be used to classify other test instances. For a test instance x, its

prediction class label is determined according to the leaf node in which the instance

falls. For a classical decision tree, each leaf node is associated with a hard class

label. Considering f(x) as the output of the classifier for x, the 0-1 classification

error for x is defined as below:
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Algorithm 3.1 Gini rule based node splitting

Input: - Training instances in node λt;

Output: - Node split parameters, variable index jo and value xkjo .

1: I Compute the Gini index G(λt) for node λt according to Eq. (3.4).
2: I Set 4imax = 0. . The maximum change of the impurity 4imax
3: I Search for best variable index jo and best value xkjo through all variables of

all instances.
4: for j = 1 do d . d is the dimension of feature vector
5: for k = 1 do nt . nt is the number training instance in node λt
6: I Set x0 = xkj , use the x0 as the optimal value to split node λt into two

parts.
7: ICompute Gini index G(λl), G(λr) for the left and right nodes λl, λr

according to Eq. (3.4) respectively;
8: ICompute the change of the impurity 4i from the parent node to

the children nodes based on 4i = G(λt) − plG(λl) − prG(λr), in which
pl = nl

nt
, pr = nr

nt
, nl and nr are the number of instances falling in left and

right nodes respectively.
9: if 4i>4imax then

10: I4imax = 4i; xkjo = x0, jo = j;
11: end if
12: end for
13: end for
14: I Split the node λt into left and right nodes based on the optimal index jo and

optimal value xkjo .
15: IOutput optimal split parameters: optimal variable index jo and value xkjo .



3.3 Classification 71

L0−1(y|f(x)) =

 1

0

if sign(f(x)) 6= y

otherwise
(3.7)

where y is the ground truth class label of instance x. However, the 0-1 classification

error can not be used directly for the case of soft labeled decision tree because

its output is a continuous value rather than a categorical class value. For binary

classification problems, the cost-weighted misclassification error for the instance x

can be expressed as below:

EY |X=xLc(Y |f(x)) = η(x)If(x)≤0.5 + (1− η(x))If(x)>0.5 (3.8)

where η(x) = P (Y = k|x) is considered as the posterior probability of class k given

x and the output f(x) is taken as an estimate of η(x). Icondition stands for the

indicator function (it is equal to 1 if the condition given is met, and 0 otherwise).

The conjunction “y = 1 & f(x) ≤ 0.5” describes the “false negatives” and “y = 0

& f(x) > 0.5” describes the “false positives”.

Compared to the cost-weighted misclassification error, other error criteria, such

as Expected Squared Error and Absolute Error:

EY |X=xLs(Y |f(x)) = η(x)(1− f(x))2 + (1− η(x))f 2(x) (3.9)

and

EY |X=xLa(Y |f(x)) = η(x)(1− f(x)) + (1− η(x))f(x) (3.10)

also can be used for measuring the classification error. Fig. (3.7) shows the four

different types of misclassification error for three different values of the posterior

probability of class 1 (0.975, 0.75, 0.5). The black real line presents the L0−1 loss,

whose values have been transferred by a logistic transform p(x) = ef(x)

ef(x)+e−f(x) . From

the first subfigure of Fig. (3.7), we can see that the cost weighted error is close to

0-1 classification error when η(x) has a high value. While the dotted green (absolute

error) and dashed blue (squared error) lines decrease with the increase of f(x) and

reach their minimum value at η(x), and then increase again. This variation trend can

be seen more clearly in the second subfigure of the first row when η(x) has a lower

value. At the same time, the misclassification penalization for the cost weighted

error has been reduced to η(x) while the penalization for the right classification

increases to 1−η(x). When η(x) = 0.5, which means that the instance has an equal

probability for class 1 and 2. In this case, the cost-weighted error criterion does not
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work because it gives the same penalization on both false and right classifications.

From the figure and analysis above, we can conclude that: cost weighted error works

well if the |η(x)−0.5| is large. The squared criterion and the absolute error are more

suitable for the class probability estimation than for the classification problems. In

the following, we will apply the cost-weighted misclassification error in our proposed

boosting algorithm to handle the training data with soft class labels.
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Figure 3.7: Different misclassification error estimate

We propose to boost the decision stumps trained using the soft labeled instances

as follows. We use the classical boosting algorithm, except for the classification

error of an instance x which is now quantified using Eq. (3.8) (with f(x) being

replaced by ht(x)). The classification error attached to the weak learners can now

be estimated by

εt =
1

N

N∑
i=1

wti .εxi
.
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Our soft label boosting approach is detailed in Alg. (3.2).

Algorithm 3.2 Soft label based Boosting algorithm

Input: - Training data (xi,πi), i = 1, · · · , N , πi,1 = P (yi = 1|xi);
- T , number of weak learners;
- Weak learners;

Output: - The final decision: H(xi) =

{
1,

0,

if
∑T

t=1 αt.ht(xi) ≥
1
2

∑T
t=1 αt

otherwise
.

1: I Initial instance weight vector: w1
i = 2 ∗ abs(πi,1 − 0.5).

2: for t = 0 do T . T is the number of weak learners
3: INormalization of instance weights: wti =

wt
i∑N

i=1 w
t
i

;

4: ITrain a weak classifier ht with distribution wti , get back a hypothesis
ht(.) : X → [0, 1];

5: ICalculate the expected classification error for instance xi: εxi
=

πi,1Iht(xi)≤0.5 + (1− πi,1)Iht(xi)≥0.5

6: ICalculate the expected error for the weak classifier ht: εt =
∑N

i=1w
t
i .εxi

7: I Set β(t) = εt
1−εt and αt = log 1

β(t)
;

8: IUpdate weight to each instance xi: w
t+1
i = wti .β(t)1−εxi

9: end for

10: IOutput the final decision: H(xi) =

{
1,

0,

if
∑T

t=1 αt.ht(xi) ≥ 1
2

∑T
t=1 αt

otherwise

Remarks

Our proposed soft label based boosting algorithm can take both hard and soft labeled

instances as inputs. If all the instances are hard labeled, it boils down to the original

AdaBoost algorithm. The soft label based decision tree can take both soft and hard

training instances. Additionally, Eq. (3.8) degenerate to 0-1 classification error

(which used in the classical AdaBoost algorithm) when the inputs are hard labeled

instances.

Furthermore, an instance with a probabilistic label η(x) close to the uniform

probability distribution (0.5 in binary classification) will have a significant classifi-

cation error even if it is well classified. As in Eq. (3.8), the classification error will

be η(x) (or 1− η(x)) when ht(xi) ≤ 0.5 (or ht(xi) > 0.5). This reflects the difficulty

to learn a classifier from instances with high uncertain information. In order to let

the classifier focus on the training instances with high confidence, we set the initial

weights of the instances to w1
i = 2 ∗ abs(πi1 − 0.5). For a hard labeled instance, the

initial weight is 1, while a 0 initial weight will be given to an instance who has equal

classes probabilities.
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3.3.3.2 Soft Class Label Estimation

The training data are expressed as D = DL+DU , where DL and DU are the labeled

and unlabeled instances respectively. DL = {(x1, y1), · · · , (xn, yn)} ⊆ X × Y, in

which xi ∈ Rd stands for the d-dimensional feature of ith instance, yi ∈ Y is the

class label and n is the number of labeled instances. Here, we only focus on the

binary classification problem, therefore Y = {−1,+1}. The unlabeled instances

are expressed as DU = {x1, · · · ,xm} ⊆ X, in which m is the number of unlabeled

instances. We also use N = m + n to represent the number of all the training

instances.

Gaussian Mixture Models. A GMM [141] is a parametric density estimation

technique, in which the distribution of the data is supposed to be a mixture of g

multivariate Gaussians:

p(x|Ψ) =
K∑
k=1

θk
1

(2π)
d
2 |Σk|

1
2

exp{−1

2
(x− µk)

TΣ−1
k (x− µk)} (3.11)

where, θk is the prior probability of the kth component of the model, µk a d × 1

mean vector and Σk is a d × d covariance matrix to be estimated. The covariance

matrices Σk can be of full or constrained to be diagonal, so that parameter estimation

requires less training data and is faster. GMMs estimation using both diagonal and

full covariance matrices has been investigated in this thesis. The detailed results are

presented in Section 3.4.2.1.

GMMs are classically estimated from unlabeled instances: Maximum Likelihood

Estimates (MLE) of the parameters are computed using the Expectation Maxi-

mization (EM) algorithm [142]. When labeled instances are available, they can be

integrated in the parameter estimation process. The advantage of using such labeled

instances is twofold. First, they can be used to compute (nontrivial) starting val-

ues for the parameters. Furthermore, they may guide the algorithm towards more

accurate MLE parameters, since additional information is taken into account.

Probabilistic Class Label Estimation For a binary classification problem, we

choose K = 2 to represent each class with a single Gaussian distribution. Therefore

we have 5 groups of parameters to be estimated (since θ1+θ2 = 1). Initial parameter

values Ψ0 = {θ0
k, µ

0
k,Σ

0
k} are obtained by computing the relative frequencies, the

mean vector and the covariance matrices using the corresponding labeled instances.

Then, MLE of the parameters are computed by applying the EM algorithm on all
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the data. This makes it possible to obtain posterior probability estimates for the

unlabeled data, that can then be used as soft labels in our boosting procedure.

3.4 Experimental Results

3.4.1 Benchmarks

In order to evaluate the effectiveness of the semi-supervised boosting algorithm,

three different kinds of datasets have been used. The first datasets we used are

the CVC [143] and INRIA [67] pedestrian datasets that have been widely used for

training supervised classifiers. The CVC datasets have 3172 positive (pedestrian)

and 15150 negative (non-pedestrian) instances while the INRIA datasets have 3542

positive and 4560 negative instances (randomly extracted from the negative images).

Second, the binary classification datasets LibSVM repository [144] was also used in

our experiments. Finally, we applied the approach on the real urban city sequences

for pedestrian recognition.

In the three experiments, all the instances are randomly separated into labeled

and unlabeled with a ratio value γ, which is defined as: γ = m/(m + n), where, n

and m represent the number of labeled and unlabeled instances respectively. For

pedestrian recognition experiments, the HOG features [67] are computed for each

instance first, then PCA is applied to reduce the feature dimensions. Then the

PCA-HOG features are used to estimate soft class labels for unlabeled instances.

And we use the original HOG features in classification process. We will introduce

the experiments in detail in the following sections.

3.4.2 Classification on Classical Dataset

First, we test the performances of soft class labels estimated by GMM model on

INRIA and CVC datasets. Then the soft class labels are used to evaluate the semi-

supervised boosting algorithm.

3.4.2.1 Soft-Label Estimation

In order to evaluate the performance of the label estimation, we proceed as follows:

each instance is assigned the class with the highest posterior probability. Then

we compute three different error indicates: the false negative rate: F neg=
m+

mis

m+ ,

the false positive rate: F pos=
m−mis

m−
and the average false rate: F ave=mmis

m
, where
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m+and m− are the number of positive and negative instances, while m+
mis, m

−
mis are

the number of positive and negative instances that have been misclassified by the

GMMs respectively. We use mmis = m+
mis +m−mis to represent the number of all the

misclassified instances. Details about the two different experiments are described in

the following sections.

In Experiment 1, only the CVC dataset is used. The γ values range from 0.15

to 0.95. At each value, four different feature dimensions d have been tested. In

Experiment 2, both the CVC and INRIA datasets are used in this experiment. We

always consider the instances from the CVC dataset as the labeled data while the

INRIA dataset is divided into unlabeled and labeled parts with a ratio γ.

In Experiment 1, all the instances come from the dataset while in Experiment

2 the instances comes from both the CVC and INRIA datasets. The experiment

2 is designed to test whether the GMMs can work if the labeled instances and the

unlabeled instances come from different datasets. Fig. (3.8) and (3.9) describe three

different error rates of the two experiments respectively. In the two figures, the solid

and dotted lines represent the results with the full and diagonal covariance matrices

in the GMM estimation process respectively.

Analysis and Conclusions

Considering the average clustering error rate in Experiment 1 (Fig. (3.8)-(a)), the

full matrix performs a little better than the diagonal matrix when there are enough

labeled instances γ < 0.5, but it decreases rapidly when the amount of unlabeled

instances increases. The performances of diagonal matrix keeps stable with the

decrease of labeled instances. The reason is that more labeled instances are needed

to accurately estimate the full matrices parameters; hence when the labeled instances

are large enough, full matrices give better clustering results than using only diagonal

ones. The performance of the full matrix drops rapidly with the decrease of the

amount of labeled instances, while the performance of using the diagonal matrices is

nearly unchanged. The average clustering error rate in Experiment 2 (Fig. (3.9)-(a))

has some differences compared to Experiment 1. The performances of the diagonal

matrix highly depends on the amount of selected feature dimension when the number

of unlabeled instances increases. The error rate obtained with full matrices only

increases a little with the number of unlabeled instances.

The second row of Fig. (3.8) and (3.9) give the false negative rates in Experi-

ments 1 and 2. From these two figures, we can see that the accuracy when using

full matrices (solid lines) is much higher than with diagonal matrices (dotted lines).
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(c) False positive rate in experiment 1

Figure 3.8: Performances of GMMs based Probabilistic class labels estimation in exper-
iment 1. In order to express succinctly, some abbreviations are used in figure legends:
F-pos: false positive error rate; F-neg: false negative error rate; F-ave: false average error
rate; {20,30,50,100} are the dimension of the PCA-HOG features.
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Figure 3.9: Performances of GMMs based probabilistic class labels estimation in exper-
iment 2. In order to express succinctly, some abbreviations are used in figure legends:
F-pos: false positive error rate; F-neg: false negative error rate; F-ave: false average error
rate; {20,30,50,100} are the dimension of the PCA-HOG features.
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From the plots in the third row of Fig. (3.8) and (3.9), we can conclude that the

diagonal matrices give much more stable results than the full matrices, especially

when the labeled instances are not sufficient. Through the above analysis, we also

find that full matrices are much more suitable for the distribution of the positive in-

stances while the diagonal matrices are better for the ones of the negative instances.

This phenomenon can be explained by the fact that the features of the positive

instances are likely concluded (because a pedestrian is included in each image in-

stance), so a full covariance matrices will give a better description of these features.

However, the negative instances are collected from various scenes that include dif-

ferent objects, such as building, trees, vehicles, road, sky etc. In this case, a general

diagonal covariance matrix may be much better for the negative instances than for

the positive ones.

Usually, the number of negative instances is more than the number of positive

instances for training pedestrian detectors. For example in CVC dataset, the number

of positive is 3172 while the negative is 15150. The performances of soft label

estimation on the negative instances are especially important. Therefore diagonal

matrices with a lower feature dimension are chosen for the following experiments

because they give better results than others.

The histograms in Fig. (3.10) to Fig. (3.13) show the distribution of estimated

posterior probabilities for actual class of the instances ( i.e., estimates of P (ω1|x)

for positive instances and P (ω2|x) for negative instances), where light bars and

dark bars represent the positive and negative classes respectively. In Experiment

1, we show results for rates of unlabeled instances of γ = 0.35 and γ = 0.95, with

four different numbers of features kept for PCA (Fig. (3.10) and Fig. (3.11)). In

Experiment 2, we consider γ = 0.6 and γ = 1.0, again for four different numbers of

features kept for PCA (Fig. (3.12 and Fig. (3.13)).

In these figures, we can found that most of the positive and negative instances

have been assigned to a high class probability (rightmost column in each sub-figure),

which means that our GMMs based approach is effective to estimate the soft class

labels for most of the unlabeled instances. From the Fig. (3.10) and Fig. (3.11)

of experiment 1, diagonal matrices give better results for negative instances than

full matrices; this superiority is more obvious when γ = 0.95. Full matrices give

to about 20% negative instances a high probability (more than 0.9) to the wrong

class. For the positive instances, the full matrix performs better, which can be seen

clearly in the rightmost light gray column in each sub-figures. However, only a small

ratio of positive instances have been given a high probability to negative class for
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(b) Full Matrix in Experiment 1
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(c) Diagonal Matrix in Experiment 1
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(d) Full Matrix in Experiment 1
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(e) Diagonal Matrix in Experiment 1
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(f) Full Matrix in Experiment 1
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(g) Diagonal Matrix in Experiment 1
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Figure 3.10: Distribution of estimated probabilistic class labels in experiment 1.
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(a) Diagonal Matrix in Experiment 1
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(b) Full Matrix in Experiment 1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
γ  = 95%, D = 30,Diagonal Covariance Matrix

 

 
positive sample
negative sample

(c) Diagonal Matrix in Experiment 1
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(d) Full Matrix in Experiment 1
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(e) Diagonal Matrix in Experiment 1
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(f) Full Matrix in Experiment 1
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(g) Diagonal Matrix in Experiment 1
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Figure 3.11: Distribution of estimated probabilistic class labels in experiment 1.
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(a) Diagonal Matrix in Experiment 2
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(b) Full Matrix in Experiment 2
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(c) Diagonal Matrix in Experiment 2
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(d) Full Matrix in Experiment 2
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(e) Diagonal Matrix in Experiment 2
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(f) Full Matrix in Experiment 2
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(g) Diagonal Matrix in Experiment 2
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Figure 3.12: Distribution of estimated probabilistic class labels in experiment 2.
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(a) Diagonal Matrix in Experiment 2
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(b) Full Matrix in Experiment 2
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(c) Diagonal Matrix in Experiment 2
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(d) Full Matrix in Experiment 2
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(e) Diagonal Matrix in Experiment 2
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(f) Full Matrix in Experiment 2
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(g) Diagonal Matrix in Experiment 2
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Figure 3.13: Distribution of estimated probabilistic class labels in experiment 2.
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both diagonal and full matrices. The clustering error of full matrices for positive

instances is smaller than that obtained with diagonal matrices.

The Fig. (3.12) and Fig. (3.13) give estimation results in the Experiment 2.

Compared to Experiment 1, both the full and diagonal matrices give inferior per-

formances for the negative instances because the negative instances in CVC dataset

and INRIA dataset are quite different. So it is not easy to use the labeled instances

in CVC to estimate the unlabeled instances in INRIA. Our proposed method also

gives a high probability to the right class (the columns at the rightmost of each

sub-figure). Similar with Experiment 1, full matrices perform better for the positive

instances and the diagonal matrices give superior results for negative instances in

experiment 2. The only difference is that the performances of diagonal matrices for

negative samples decrease with the increase of the PCA-HOG features’ dimensions

in experiment 2. It gives even worse results than full matrices when features’ di-

mensions equal 100. However, the performances of the diagonal matrix for positive

instances improve with the increase of the feature dimension.

Based on the analysis of the two experiments above, we can conclude that the di-

agonal matrices give relatively better results than the full matrices when the feature

dimensions are less than 50. Because it makes less error on the negative instances

and usually we have more negative instances in the training data. Finally, the

diagonal matrices give less average errors for all the instances (see in Fig. (3.8).

3.4.2.2 Pedestrian Classification

We took the INRIA pedestrian dataset to evaluate the algorithm for pedestrian

recognition. First, we randomly selected 75% of the whole data as the training

data and the rest was kept for testing. In our experiments, we let the amount of

labeled instances vary to test the robustness of our proposed approach. We followed

the method in [67] to represent each instance by a 3780-dimensional HOG feature.

Then a PCA has been applied to the resulting vector to obtain a 20-dimensional

feature for each. Guided by the labeled instances, the probabilistic class labels for

unlabeled training instances are estimated by GMMs using the EM algorithm. Here,

20 features were kept to estimate the soft class labels. In the boosting algorithm, the

original HOG features are used for recognition. The AdaBoost algorithm trained

with few labeled instances is taken as the baseline. Four different kinds of classifiers

have been designed in this experiment: classifier 1 is a classical AdaBoost classifier

trained using only few labeled instances; classifier 2 is a GMMs classifier using both

the labeled and unlabeled instances; classifier 3 is the proposed semi-supervised
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boosting classifier trained using labeled instances and all the unlabeled instances

with soft class label; classifier 4 is also the proposed semi-supervised boosting classi-

fier trained using all labeled and some selected unlabeled instances who have reliable

soft class labels. Classifier 1, 3 and 4 use stump decision trees as the weak learners.

Hard label decision trees are used in Classifier 1, while soft decision trees are applied

in both Classifier 3 and 4.

All the experiments have been repeated 5 times and we calculated the average

recognition rate to draw the Fig. (3.14). From this figure, we can see that the

recognition rate of Classifier 1 (blue line) increases with the increase of labeled

training instances, however, the recognition rate of Classifier 2 does not grow with

the increase of the labeled. The green line represents the performance of Classifier

3. Although it increases with the growth of labeled, it gives worse performances

than Classifier 1 which has been trained using only few labeled ones. Through this

experiment we found that the weak performances of Classifier 3 are mainly due to

the training instances who have been assigned with wrong probabilistic class labels,

which have a great influence on the recognition rate of Classifier 3.
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Figure 3.14: Average recognition rates with variances of four different classifiers. We
choose T = 500 for all boosting classifiers in this experiment.

In order to reduce this negative effect, we should remove these unlabeled in-

stances with these wrong probabilistic labels. Therefore, we considered a soft label
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to be reliable if its predicted class label using Classifier 1 and 2 are consistent.

Classifier 4 is trained using all the labeled instances and the instances with reli-

able probabilistic class labels. Although our strategy is not able to get rid of all the

wrong probabilistic instances from the training data, it still improves the recognition

rate significantly. This improvement can be seen from the red line of Fig. (3.14).

Comparing the red and blue lines in Fig. (3.14), we can find that our proposed

boosting algorithm with additional soft labeled instances gives a better recognition

rate (with a small variance )than the AdaBoost trained with only labeled instances.

3.4.2.3 Data Classification

Four different dataset have been chosen to test our algorithm. Table 3.4.2.3 gives a

general description of the data.

Dataset Size of the data Attribute dimension

Australian 690 14

Diabetes 768 8

Heart 270 13

Ionosphere 351 34

As in the previous section, all the data have been randomly divided into training

and testing sets with a proportion 3:1. In the training data, a small part of the train-

ing samples are selected as labeled samples and the rest are considered as unlabeled

samples. In this experiment, only three classifiers are designed: 1) classifier 1 is a

classical AdaBoost classifier trained using only few labeled samples, 2) classifier 2 is

a GMM classifier using both the labeled and unlabeled samples, 3) classifier 3 is the

proposed semi-supervised boosting classifier trained using all the labeled and some

selected unlabeled samples and the selection strategy is the same as in subsection

3.4.2.

For each dataset, the ratio of labeled samples changed from 0.15 to 0.55. Fig.

(3.15), show the classification rate of the four different datasets in each sub-figure

respectively. From the figure we can easily find that our proposed semi-supervised

boosting algorithm (red line) has a higher classification rate than classical AdaBoost

algorithm (blue line) most of the time. The additional unlabeled samples help to

improve the classification rate in our semi-supervised boosting algorithm.
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(b) Diabetes
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(c) Heart
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Figure 3.15: Classification rate of four different Dataset. All the experiments have been
repeated 50 times. We choose T = 100 for all boosting classifiers in this experiment.

3.4.3 Pedestrian Recognition in Real Urban City Sequences

Here, we apply our classification strategy to the bounding boxes obtained as ex-

plained in Section 2.4. The flow chart of our pedestrian recognition is reminded in

Fig. (3.16).

Object bounding box 

with the  size (w,h)

Sliding window for 

detection windows 

generation

Pedestrian 

recognition

 Region of interest with 

the size ))1(,)1(( hw  

Figure 3.16: Flow chart of pedestrian recognition



88 Chapter 3: Pedestrian Recognition

3.4.3.1 Detection Windows Generation

As in [8], the HOG features are usually extracted in a 64*128 standard detection

window with a 4 pixels margin in each side. In the training and testing procedures,

an arbitrary size of instance is resized to a 64*128 standard window. Since the

classifier is sensitive to the location of detection window, we can not obtain optimal

recognition results if we extract the HOG features from the objects bounding boxes

directly. The reasons for that are listed as below: first, the generated bounding

boxes may be not accurate. Partial and redundant detections (as in Fig. (3.17)-

(1)) may happen in the detection step. Second, more than one pedestrian may be

included in a single bounding box. Third, the positive training instances in public

dataset also include some background surrounding the pedestrians, which can be

seen clearly in Fig. (3.17)-(3).

(1) Partial and Redundant Detection (2) Grouped Detection 

(3) Positive Training Samples in INRIA Dataset  

Figure 3.17: Detection window generation

In order to reduce the influences of the third reason, an appropriate border

will be added to each bounding box with ratios α and β in horizontal and vertical

directions respectively. The red dashed boxes in first row of Fig. (3.17) are the

enlarged bounding boxes with the size of ((1 + 2α)w, (1 + 2β)h). In our experiments

we choose α = 0.25 and β = 0.15. Additionally, a sliding window strategy is
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employed in each bounding box to improve the recognition rate. Moreover, we have

two different sliding window strategies according to the type of bounding boxes:

single pedestrian or grouped ones. We use a ratio ρ = w
h

(w and h are the width and

height of the bounding box) to define the type of the bounding box. As the ratio ρ of

training instances (64×128 in [67] or 48×96 in [107]), we choose 0.5 as a threshold.

If ρ ≤ 0.5, the bounding box is considered as a single pedestrian, otherwise, it is

considered as a grouped bounding box. Sliding window strategies for single and

grouped pedestrians bounding box are described below.

For a single pedestrian bounding box, it is resized to a image of size 80*144 first.

Then the sliding detection windows (size 72*132) are obtained from this resized

image for HOG features extraction. The starting point is (1, 1), then detection

windows slide in both directions of the resized image with a same sliding stride s.

After the sliding window process, we have nd = x144−132
s

+ 1y ∗ x80−72
s

+ 1y detection

windows in each bounding box, where x.y is the nearest smallest integer value.

For a grouped pedestrians bounding box, the sliding window process has a little

difference in the horizontal direction. First, the bounding box is resized with a ratio

η, where η = 144
h

. Then the sliding detection windows (size 72*132) are obtained

from this resized image for HOG features extraction. Different from the single

pedestrian bounding box, the slide strides in horizontal and vertical directions are sx

and sy respectively. The number of detection windows nd for a grouped pedestrians

bounding box is computed as nd = x144−132
sy

+ 1y ∗ xw∗η−72
sx

+ 1y.

Figure 3.18: Pedestrian recognition

Fig. (3.18) gives the details of the pedestrian recognition process. The first row

is a bounding box result of the moving object detection. The second row shows

25 detections windows generated from one of the bounding boxes using our sliding
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Parameters Description Value

α additional border ratio in horizontal direction 0.15
β additional border ratio in vertical direction 0.25
ρ ratio threshold for single or grouped bounding box 0.5
s sliding stride for single bounding box 2 pixels
sx sliding stride in horizontal direction for grouped bounding box 4 pixels
sy sliding stride in vertical direction for grouped bounding box 2 pixels

Table 3.1: Parameters used in our experiments

window strategy. Tab. (3.1) gives the main parameters used in our experiments.

3.4.3.2 Pedestrian Recognition

Three different classifiers have been designed in this experiment for the pedestrian

recognition task.

– Classifier 1 is a classical AdaBoost classifier trained using only 200 labeled

instances.

– Classifier 2 is the classical AdaBoost classifier trained using all the 6076 labeled

instances.

– Classifier 3 is the proposed semi-supervised boosting classifier trained using

200 labeled instances and some reliable soft labeled instances.

All three classifiers use 500 stumps as weak learners. The table in Fig. (3.18) shows

the recognition results of the three classifiers in one frame, where the value 1 (or 2)

in the table means that this instance is a pedestrian (or a non-pedestrian). From

Fig. (3.18), we can see that the location of the detection window has a big influence

on the recognition result. Our sliding window strategy can reduce this influence.

A detection bounding box is considered as non-pedestrian if and only if all the

detection windows are detected as non-pedestrian. In other words, one detection

bounding box is considered to be a pedestrian as long as one detection window has

been recognized as a pedestrian.

3.4.3.3 Experimental Results

We have tested our pedestrian recognition classifiers in different KITTI urban city

sequences. Three detected bounding boxes are considered here, non-occlusion pedes-
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2: Non-Occluded Pedestrian 1: Partially Occluded Pedestrian 

3: Cyclist in Urban City 

Figure 3.19: Three different types of pedestrian in urban city

trian, partially occluded pedestrian and cyclist. Some examples of bounding boxes

are shown in Fig. (3.19).

In the first row of Fig. (3.19), the couple behind the baby carriage appears in

about 90 frames of this sequence. However, they are correctly detected in 68 frames

only by the moving object detection algorithm because they are far away from the

camera. The man crossing the road with a crutch appears in about 149 frames of this

sequence, while 144 bounding boxes have been generated for him in the detection

step. The cyclist in the second row has been detected in 154 frames. At the same

time, a van is also detected in 57 frames. Tab. (3.2) and (3.3) show the recognition

results of the two sequences respectively. We only consider recognition results of the

non-occluded people and the partially occluded couple in the first sequence, so we

do not have the true negative objects in Tab. (3.2). In the second sequence, a van

is taken as the true negative detections.

A bounding box is recorded as a true positive as long as one detection window is

verified as a pedestrian. From Tab. (3.2), we can see that classifier 2 gives the best

performances for both objects. Compared to the classifier 1, the classifier 3 performs

a little better. Tab. (3.3) displays the recognition results in the second sequence.
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Different Classifiers
Non-Occluded Pedestrian Occluded Pedestrian

True Positive False Negative True Positive False Negative

Classifier 1 116 28 54 14

Classifier 2 135 9 59 9

Classifier 3 122 22 55 13

Table 3.2: Pedestrian recognition results in sequence 1

Classifiers True Positive False Negative True Negative False Positive

Classifiers 1 143 4 53 4
Classifiers 2 147 0 57 0
Classifiers 3 147 0 57 0

Table 3.3: Pedestrian recognition results in sequence 2

In this sequence, 204 bounding boxes (147 cyclist and 57 van) are considered as

the inputs for our recognition step. From the table, we can see that our approach

performs as well as classifier 2. Compared to classifier 1, our classifier 3 gives a great

improvement, with more true detections and less false detections.

Fig. (3.20) - Fig. (3.22) give the recognition results in detail. As mentioned

above, 25 detection windows are generated for the single pedestrian bounding box

by using the sliding window strategy. Fig. (3.20)-(a) records the number of the

positive detection windows (np) which have been recognized as pedestrian by the

three classifiers in each frame. For a fair comparison, the parameter np for grouped

pedestrians bounding box should be multiplied by a coefficient 25/nd (nd is the

number of detection window in this bounding box). Obviously, the more positive

detection windows were made, the better the classifier is. In Fig. (3.20)-(a), the

X-axis represents the frame number and the y-axis gives the number of positive

detection windows np. The point with a 0 value at the y-axis means that the

bounding box is considered as a non-pedestrian by the classifier in this frame. The

diagrams of Fig. (3.20)-(b) record the percentage of frames (ϕ) whose np (positive

detection window number) is over a given value τ . In other words, ϕ can also be

considered as the right recognition rate if the τ is taken as the threshold of having

pedestrian or non-pedestrian in the bounding box.

From these figures, we can generally conclude that our approach (classifier 3)

gives better results than classifier 1, especially for the cyclist, which gives about

15% improvement on average. For the partially occluded pedestrians, the recogni-

tion rate of the proposed approach increases a lot as well when the τ value is not
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large. Although the recognition rates drop rapidly when τ value is above 4, classifier

3 still has a higher recognition rate than classifier 1. In Fig. (3.20), we find that all

the classifiers are inferior to recognize the non-occlusion pedestrians here. That is

because the pedestrian is always sideways in this sequence and the sideways pedes-

trian is hard to be recognized. Even in this case, our approach performs better than

classifier 1.

The pedestrian recognition is realized on a standard laptop (Intel i7, 4 Core)

with Matlab R2014a processing environment. The approach can achieve 0.5 seconds

per frame because only the ROIs generated from the MOD step are considered.

Compared to the classical sliding window technique in the whole image (18s per

frame), our approach has great improvement. Compared to the classical AdaBoost,

the proposed semi-supervised boosting algorithm requires more time for training

because of the increase of the unlabeled instances. However, the time increase in

training process is sustainable because the classifiers is trained offline in advance.

Furthermore, the time spent on recognition part of our proposed algorithm is similar

with the classical AdaBoost algorithm.

3.5 Conclusion

In this chapter, we proposed a semi-supervised boosting algorithm that uses few

labeled instances and a large number of unlabeled instances for pedestrian recogni-

tion.

We have proposed a boosting framework which takes both hard and soft labeled

instances together in training process. Compared to the classical boosting algorithm,

several modifications appear in our method: first, soft labeled based decision trees

have been employed as weak classifiers to replace the classical decision trees. Second,

the cost-weighted classification error is applied to measure the classification rate of

each weak classifier and this error is also used to update the distribution weight of

each training instance. These modifications can properly handle the soft labeled

instances in the training process.

Compared to other semi-supervised learning methods (such as, self-training)

which assign a pseudo hard label for each unlabeled instance, we give soft class labels

to the unlabeled instances in our approach. The advantages of soft class labels are

twofold: first, it can represent the uncertainty of instance such as partial object or

redundant background in the instance; second, it can represent the uncertainty in

the GMM based soft class label estimation process.
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We also showed that PCA-HOG features dimension reduction has a little in-

fluence on the results of soft class labels estimation. This interesting phenomenon

shows that it is possible to estimate soft class labels for pedestrian instances with

fewer features than using standard high dimensional HOG. Additionally, GMMs

can give right class labels for most of the unlabeled instances based on the reduced

PCA-HOG features, especially for the positives instance in the pedestrian recogni-

tion experiments.

Finally, our proposed approach has been tested on several public datasets and the

experimental results show that it can improve both the classification and pedestrian

recognition rates by adding soft labeled instances. In the real pedestrian recogni-

tion experiments, non-occluded, partly occluded and cyclists have been successfully

recognized respectively. Our proposed algorithm gives better recognition rates than

classifier trained based on only labeled instances in all the three cases and this

indicates that our approach has a good adaptation to various environments.
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(a) np for non-occluded pedestrian, np = −5 means that the object has not been detected in this
frame
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(b) Recognition rate for non-occluded pedestrian

Figure 3.20: Recognition performance of three classifiers for non-occluded pedestrian.
The point with values of -5 at y-axis means that the bounding box of the object is not
detected in this frame.
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(a) np for partly occluded pedestrian, np = −5 means that the object has not been detected in
this frame
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(b) Recognition rate for partly occluded pedestrian

Figure 3.21: Recognition performance of three classifiers for partly-occluded pedestrian.
The point with values of -5 at y-axis means that the bounding box of the object is not
detected in this frame.
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(a) np for cyclist, np = −5 means that the object has not been detected in this frame
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(b) Recognition rate for cyclist

Figure 3.22: Recognition performance of three classifiers for cyclist. The point with
values of -5 at y-axis means that the bounding box of the object is not detected in this
frame.
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4.1 Conclusions

T
his thesis addresses the problem of perceiving the surrounding environment of

the host vehicle using stereo image sequences in various traffic scenes. The pur-

pose work is included in the class of advanced driver assistance system (ADAS) for

intelligent vehicles. Recently, ADAS are still a challenge due to the complexity of

urban environments. Vision-based approaches play an important role in overcoming

these difficulties because of the rich texture, color and depth information in the im-

ages. Two elements are crucial in ADAS: the state of the host vehicle and the state

of the surrounding environment. The aims of this thesis is to detect the moving

objects in the surrounding environment and to provide their categories and location

information.

First of all, a general description of multi-modal based ADAS has been given at

the beginning of this manuscript. Then we give some advantages of using vision sen-

sors in ADAS compared to the use of Lidar sensors. In Chapter 2, our vision-based

moving object detection algorithm has been introduced in details. The state of the

art has been presented and an analysis of the advantages and drawbacks of the main

methods has been proposed. Then, we have presented an effective moving object

detection approach by modeling the uncertainties in ego-motion estimation and dis-

parity computation. First, the residual image motion flow (RIMF) is computed to
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distinguish the moving or not-moving pixels. Because of the non-uniform distribu-

tion of the RIMF over the whole image, some false positive alarms are generated if

a simple threshold is applied. In order to solve this problem, we calculate the mo-

tion likelihood of the RIMF for each pixel by using its covariance matrix, computed

using a Gaussian error propagation strategy. Then, the motion likelihood together

with the depth derivative is incorporated into a graph-cut optimization framework

to segment the moving objects. The effectiveness of our approach has been shown

on several public datasets. The experimental results show that our algorithm can

achieve satisfactory performances in different urban traffic scenes. Small moving ob-

jects, partially occluded moving objects and objects moving on the epipolar plane

can be detected. For an image with 375*1200 resolution, the proposed approach can

achieve about 30 seconds per frame.

In Chapter 3, the problem of pedestrian recognition has been introduced. We

first present the challenges and motivations for pedestrian detection and recogni-

tion issues. A general summary of the latest pedestrian recognition approaches has

been provided. Then we present our approach to address this issue. This approach

can be decomposed into three parts. First, we select features via a PCA-based

analysis of the HOG features. Then, the unlabeled training instances are clus-

tered using a Gaussian mixture model in order to compute the soft class labels.

Finally, a soft-label boosting algorithm is trained on the soft labeled training im-

ages. This algorithm consists in replacing the standard decision trees algorithm by

an approach which makes use of data with probabilistic labels. The error criterion

used classically in AdaBoost can be replaced by a cost-weighted error criterion. The

experimental results show that this semi-supervised approach gives good results on

classical datasets as well as on the real traffic sequences.

4.2 Perspectives

Vision-based advanced driver assistance systems, especially pedestrian protection

system, are still young and promising in the field of robotic and intelligent vehicles.

We consider the following for the future works.

Real-Time Application

Computation efficiency is a crucial requirement of a system for being applied in a

real environment setting. However, our system can not be implemented in real-time

due to the following reasons: first, dense optical flow and disparity map computa-
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tion is time consuming. Despite great improvements in image processing hardware,

parallel processing techniques and several technical breakthroughs in computer vi-

sion, approach satisfying both accurate and efficient computation have not been

developed yet. In order to reduce the system’s computation time, two alternatives

may be considerd. The first one is to develop new dense optical flow and disparity

map algorithms to reach the real time demand. Alternatively, 3D scene flow may be

computed directly for moving object detection, as a coupled approach for estimat-

ing the 3D geometry and motion densely at every pixel from two consecutive stereo

frames. Related work can be found in [145, 146, 15, 147, 148]. Our approach aims at

estimating the motion likelihood for each image pixel first, and then to segment the

moving objects based on this motion and structure information. In our approach,

dense optical flow computation costs about half of the execution time. Therefore, a

high-efficiency dense optical flow approach will highly reduce the execution time of

our approach. In addition, the motion likelihood computation costs about 10 sec-

onds each frame. Parallel processing technique can be applied in this step because

the computation process is independent of each pixel.

Object Tracking for Trajectories Construction

After we detect all the moving objects surrounding our host vehicle, their motion

trajectories should be constructed through tracking algorithms such as Kalman fil-

ter, Particle filter, Probability Hypothesis Density (PHD) filter or online learning

based methods. Based on their motion trajectories, the motion behaviors can be

easily analyzed and predicted. In the framework of tracking-by-detection, one object

trajectory will collapse if the object’s bounding box has not been generated in the

following several frames. However, we find some useful cues of the object’s location

in the motion likelihood image. Usually, the pixels of the object have higher motion

likelihoods than background pixels in the motion likelihood image even its bound-

ing box has not been generated. We can integrate this information into a tracking

approach [149] to improve our detection performances.

Boosting With Prior Information

In the future, we plan to design our boosting approach to improve the classifier’s

performance by using additional samples with weak prior knowledge (e.g., human

beliefs or uniform class probabilities). The theory of belief functions [150] is another

way of representing uncertain class information. Belief decision trees [151] and credal

boosting [152] have been proposed to handle the classification problem under the
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belief function framework. Additionally, the class labels of the training instances

could be assigned by combining or fusing several expert’s opinion [153, 154, 155]. A

modified boosting algorithm can be proposed by using these training samples with

credal class labels.
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A.1 Dense Pixel Matching and Tracking

Pixel matching and tracking are two common and crucial techniques in the field of

computer vision. Due to the rapid development in the image processing hardware,

dense approaches recieve more and more interest. A general overview of dense pixel

matching and tracking approaches is given in the following paragraphs.

A.1.1 Dense Pixel Matching

The crucial point of the matching algorithm is to solve the correspondence problem

between the left and right images. Although the stereo image rectification process

may reduce the search problem from 2D to 1D, it is also not an easy task due

to texture insufficient, luminance changes and views point (e.g. some parts of the

scene can only be seen in one camera). Alough amount of works have been proposed.

Some surveys of stereo vision algorithms can be found in [156, 157, 158]. In general

the stereo algorithms can be categorized into sparse and dense approaches. Dense

approaches gain popularity as the computational power grows. Dense approaches

draw more and more attention compared to sparse ones. They can be divided into

local and global methods based on the kinds of constraints (local or global) they

use.

Local Methods build constraints using a local surrounding area for a interest

pixel. Although local methods are efficient owning to their local constraints, they

are very sensitive to locally ambiguous regions in images such as regions with similar

textures or occlusions. Block matching, gradient methods and feature matching are

three typical strategies used in local methods. Block matching methods seek to esti-

mate the disparity for a pixel by building a small region (rectangle or circle window)

around this pixel in the left image and finding the optimal correspondent pixel in

the right image by comparing the similarity using a sliding window. The search

region reduces to 1D by using the epipolar constraint. Normalized cross correla-

tion (NCC), the sum of squared differences (SSD) metric and the sum of absolute

differences (SAD) are popular statistical methods for determining the similarity be-

tween two small image windows. Gradient-based methods seek to determine small

local disparities between two images by formulating a differential equation relating

motion and image brightness. For this purpose, the assumption is made that the

image brightness of a point in the scene is constant between the two views. Block

matching and gradient methods are well-known to be sensitive to depth disconti-

nuities, since the region of support near a discontinuity contains points from more
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than one depth. These methods are also sensitive to regions with uniform texture

in images. Feature-based methods seek to overcome these problems by limiting the

regions of support to specific reliable features in the images. The reader may refer

to [159, 160, 161, 162] for more infromation.

Global methods exploit global constraints in order to reduce sensitivity to occlu-

sion or texture uniformity. Global methods aim at building the optimal disparity

function by minimizing a global cost function. Usually this cost function combines

data and smoothness terms. Compared to local methods, global ones produce much

more accurate results, but are more time consuming and computational demanding.

Dynamic Programming techniques [163, 164], Graph Cuts (GC) [165, 166] and Be-

lief Propagation [167, 168] have been used to obtain the dense disparity map. An

approach called Semi-Global Matching [37, 169] has been proposed to solve the com-

putation efficiency. Many real time approaches [170, 171, 46] have been proposed so

far with the rapid development of parallel computing and the GPU processing.

A.1.2 Dense Optical Flow Estimation

The aim of optical flow estimation is to compute an approximation to the motion

field from time-varying image intensity. Due to its significance in the field of com-

puter vision, various approaches have been proposed. Dense optical flow was firstly

proposed by Horn and Schunck [172] in 1981. Since them many approaches have

been introduced to solve this problem. A general review of optical flow computation

and evaluation is introduced in [173, 174, 175]. The most common assumption used

in optical flow is brightness constancy assumption. However, this assumption does

not hold in some special cases, such as changes of illumination. Another ambiguity

in optical flow computation is caused by the aperture problem [176, 177], which

requires some additional motion information or assumptions to be provided. One

common assumption is the smoothness of the optical flow field which is known as

regularization. Depending on the type of the regularization, optical flow can be

categorized into feature-based approaches and the variational approaches. More

information of different dense optical flow approaches can be found in [178, 179].
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B.1 Sparse Feature Extraction, Tracking and Match-

ing

Key points are widely used to represent the image information in a sparse manner.

Indeed, key points can represent most of the meaningful information of the scene

and their processing is more efficient than handling all the image pixels. Usually,

key points appear at specific locations in the image, such as corners, blobs or edges.

These kinds of local image feature are often called key-points features or interest

points features, and correspond to the appearance of pixel patches around the point

location. Key-point features can be used to find a sparse set of corresponding points

in different images, often for camera relative pose estimation or for images align-

ments. Generally, key points detection and matching procure can be realized in

two stages. First is feature detection (extraction). The whole image is processed

to extract the most significant locations which are likely to match well in other im-

ages. Second is feature based matching and tracking. Indeed both of them aim to

find the corresponding points from one image to another. In stereo vision system,

the correspondence features can be searched along the epipolar line by using the

geometry constraint. Thanks to the stereo rectification process, the epipolar lines

coincide with the rows of the left and right images. For each feature, we search

among all candidates to find the best matching via a template blocking matching

strategy. Zero mean Normalized Cross-Correlation (ZNCC) [180] is used to measure

the similarity between template and original image blocks here because the normal-

ized methods can reduce the effects of luminance variation. For the tracking, we

used the classical Lucas-Kanade [48] method who has been proved to be robust and

fast.

B.1.1 Bucketing-Based Feature Extraction

In order to uniformly detect features, a bucketing technique is employed in our al-

gorithm. The whole image is divided into several non-overlapping blocks (see Fig.

(B.1)-(c)). In each subimage (block), we extract features respectively and keep 5

points. We can choose varying thresholds in different blocks according to the image

structure. This technique is beneficial in several ways. First of all, this technique

guarantees that the used features are well distributed along the z-axis. This results

in a precise estimation of the overall ego-motion of the vehicle. In addition, the key

points are uniformly distributed over the whole image. This is especially important
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(a) Harris feature extraction (b)Harris feature extraction

(c) Harris feature extraction, bucketing 

results (about 25 points in each block )

2.0ql 05.0ql

Figure B.1: Harris features extraction

in dynamic scenes including some moving objects. The bucketing technique guar-

antees that some image features are on the static background rather than all on the

moving objects. The details of this technique can be found in Alg. (B.1).

B.1.2 Feature-Based Stereo Matching

Here, we want to find the matched points between a rectified stereo image pair ( Il

and Ir ) corresponding to the left and right views of a scene. First, evenly distributed

features points pt−1,l are extracted in the left image Il based on Alg. (B.1). Then,

matched feature points are searched in the right image according to the epipolar

constraint and brightness similarity. The complete feature-based stereo matching

is summarized in Alg. (B.2). It takes into account the brightness information and

the geometrical constraints induced by the stereoscopic vision system. In real-time

applications, this algorithm can be easily implemented and parallelized.
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Algorithm B.1 Balanced features extraction

Input: - Image I
Parameters for features extraction:

- Size of the block bw and bh
- Minimum features in each block minN
- Initial feature quality threshold λql
- Maximum times of change the feature quality threshold maxIter

Output: - Balanced distributed features p in image I

1: I Divide the image into N subimages uniformly according to bw, bh
2: for i = 0 do N . Extract features in each subimage
3: IExtract features pi in ith subimage using the initial threshold λql and the

feature number is ni.
4: if 0.75 ∗minN ≤ ni ≤ 2∗minN then
5: IAdd pi into p;
6: else if ni< 0.75 ∗minN then
7: I iter = 0;λ1

ql = λql; n
′
i = ni;

8: while n′i < 0.75 ∗minN & iter <maxIter do
9: Iλ1

ql = 0.5∗λ1
ql; Extract features p′i in ith subimage using threshold

λ1
ql and the feature number is n′i;

10: I iter = iter + 1;
11: end while
12: IAdd p′i into p;
13: else
14: I iter = 0; λ1

ql = λql; n
′
i = ni;

15: while n′i > 2 ∗minN & iter <maxIter do
16: Iλ1

ql = 2∗λ1
ql; Extract features p′i in ith subimage using threshold λ1

ql

and the feature number is n′i;
17: I iter = iter + 1;
18: end while
19: IAdd p′i into p;
20: end if
21: end for
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Algorithm B.2 Feature-based stereo matching

Input: - Left image Il and right image Ir;
Parameters for Blocking Matching:

- Half block matching window size b× b;
- Matching point searching range[dmin, dmax];
- ZNCC minimum acceptable value thrzncc

Output: - Matched features pt−1 in left and right images;

1: I Extract features in Il based on Alg. (B.1), the features are pt−1,l and the
number is N ;

2: I blockSize = 2 ∗ b+ 1; image width W and height H
3: for i = 0 do N
4: I Get the u and v of pit−1,l

5: if u > b & u < W − b & v > b& v < H − b then
6: I The location of the block window: vmin = v − b, vmax = v + b,umin =
u− b, umax = u+ b;

7: IThe template image in Il: templae = Il(vmin : vmax, umin : umax) ;
8: I The searching range in Ir: numBlocks = min(dmax − dmin, u− b);
9: for j = 1 do numBlocks . Search for the best matching point in Ir

10: I block = Ir(vmin : vmax, umin − j : umax − j) ;
11: I Compute the ZNCC value znccj = ZNCC(template, block);
12: end for
13: I Find the index jo with the highest ZNCC value zncco;
14: if zncco > thrzncc then . We have found the matching point Ir
15: I The match point location is (u−jo, v) and save the matched point;
16: end if
17: else
18: I The matching point can not be found and move the next point;
19: end if
20: end for
21: I Return the matched feature points pt−1 ;
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C.1 Basic Knowledge of Covariance Matrix Esti-

mation

It is very important to understand how to propagate a random perturbation through

any algorithm step during parameters estimation process. Covariance matrix is one

basic measure to describe the size of the random perturbation resulted from the input

random noise. Generally, there are two kinds of methods to estimate covariance

matrix in the real computer vision problems. The first one is the Monte Carlo

method, which is easy and accurate but time consumption. Furthermore, it can only

provide a solution to one specific problem. Another approach is based on the first

order error propagation strategy, which uses a first-order Taylor series expansion

to linearize the nonlinear problems. Compared to the Monte Carlo method, this

method can give a close form solution but less accurate results.

C.1.1 Monte Carlo Method

Monte Carlo method is a ideal choice to test the validity of the first-order approxima-

tion methods, which can provide absolute confidence even for non-Gaussian distri-

bution. Monte Carlo method can be simply expressed as: given a function y =f(x)

and some (assumed perfectly known) data x, a large population of corrupted data

(x1 = x + r1,x2 = x + r2 · · · ,xn = x + rn) is created by repeatedly adding different

kinds of random noise ri to x. The distribution of y from the distribution of samples

yi = f(xi) is estimated from the large population of x. The covariance of y can be

obtained as follow:

Σy =
1

n

n∑
i=1

(yi − y)(yi − y)T (C.1)

in which, y = 1
n

n∑
i=1

yi. Note that the function f( . ) should to be known explicitly

and the vector y could be found using a numerical optimization algorithm. If the

probability density function (PDF) of the random noise ri is chosen to be the same as

the original data then it is possible to estimate the true PDF of y by the distribution

of the yi which has been found.

C.1.2 Covariance Matrix Using First Order Approximations

The inefficiency of Monte Carlo method is often a limitation in the practice appli-

cation. Additionally, a closed form of the covariance matrix is more convenient to
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analyze and understand the uncertainty in a real system. There are two general

solutions of the covariance matrices according to the form of function f( . ).

C.1.2.1 Explicit functions

Given an explicit continuously differentiable function f(x) and covariance matrix

Σxof data x , we aims at finding the covariance matrix Σy of the result y =f(x).

Taylor series expansion of f(x) around expected value x of x is shown as below:

f(x +4x) = f(x) +∇f(x)∆x + o(‖∆x‖2)

and the first order approximation to the covariance matrix for the estimated vector

y? = f(x) is give by:

Σy = E([f(x +4x)− y][f(x +4x)− y]T )

≈ E([f(x +4x)− y][f(x +4x)− y]T )

≈ E(∇f 4 x4 xT ) (C.2)

= ∇f Σx ∇fT

From Eq. (C.2), we can see that the covariance of the estimated value of y is only

determined by the variance of x and the Jacobian Matrix of function f( . ). Two

approximations have been introduced: the first one is y ≈ f(x), using the estimated

value of y? to replace for the respected value of y. This will bring some uncertainty

for the covariance matrix. Another one is the truncation of the Taylor series using

a linear approximation which also introduces some uncertainty.

C.1.2.2 Implicit function

The previous section describes how to calculate the covariance matrix when the

function f( . ) is known explicitly and the Jacobian matrix is easily to be obtained

by taking all the partial derivatives. However, in most cases of the computer vision

problems, the estimated parameters are obtained by using an iterative algorithm.

The object function defines an minimization between the data and results. We

want to estimate the sensitivity of the vector parameters which minimize the object

function of the original data to changes in the data. This problem is how to get the

Jacobian matrix from the implicit function. Assuming that the implicit function

(object function) is defined as:
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F (x,Θ) = 0 (C.3)

in which, Θ are the parameters needed to be estimated, x are the vector of observed

data using to estimate θ. Set

g(x,Θ) =
∂F

∂θ
(x,Θ) (C.4)

and the covariance matrix of the estimated parameters Θ̂ could be expressed as

below:

ΣΘ̂ =
∂g

∂Θ
(x̂, Θ̂)−1 ∂g

∂x

T

(x̂, Θ̂)) Σx
∂g

∂x
(x̂, Θ̂)

∂g

∂θ
(x̂, Θ̂)−1 (C.5)

x̂ represent the observed data vector produced by the unobserved vector x, x̂ =

x +4x. Θ̂ = Θ + ∆Θ, represents the estimated parameters vector which equals to

true unknown parameters Θ adding the random perturbation 4Θ propagated from

the 4x.

C.2 Uncertainty Propagation in Ego-Motion Es-

timation

Here, we rewrite the cost function of ego-motion estimation as below:

F (Θ,x) =
N∑
i=1

‖xit − x̂it‖2
Σ

xit

=
N∑
i=1

‖xit − f(Θ,xit−1)‖2
Σ

xit

∀i = 1 · · ·N, (C.6)

where xit = (uit,l, v
i
t,l, u

i
t,r, v

i
t,r)

T and xit−1 = (uit−1,l, v
i
t−1,l, u

i
t−1,r, v

i
t−1,r)

T are the matched

image points at previous and current frames; x̂it = (ûit,l, v̂
i
t,l, û

i
t,r, v̂

i
t,r)

T is the predicted

image points at current frame. The function f( . ) represents the projection of image

points from previous frame to current frame, which is expressed as:

x̂it = f(Θ,xit−1) =



r00fb(uit−1,l−u0)+r01fb(vit−1,l−v0)+r02f2b+diftx

r20b(uit−1,l−u0)+r21b(vit−1,l−v0)+r22fb+ditz
+ u0

r10fb(uit−1,l−u0)+r11fb(vit−1,l−v0)+r12f2b+difty

r20b(uit−1,l−u0)+r21b(vit−1,l−v0)+r22fb+ditz
+ v0

r00fb(uit−1,l−u0−di)+r01fb(vit−1,l−v0)+r02f2b+diftx

r20b(uit−1,l−u0−di)+r21b(vit−1,l−v0)+r22fb+ditz
+ u0

r10fb(uit−1,l−u0−di)+r11fb(vit−1,l−v0)+r12f2b+difty

r20b(uit−1,l−u0−di)+r21b(vit−1,l−v0)+r22fb+ditz
+ v0


, (C.7)

where
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– r00 = cos(ry)cos(rz)

– r01 = −cos(ry)sin(rz)

– r02 = sin(ry)

– r10 = sin(rx)sin(ry)cos(rz) + cos(rx)sin(rz)

– r11 = −sin(rx)sin(ry)sin(rz) + cos(rx)cos(rz)

– r12 = −sin(rx)cos(ry)

– r20 = −cos(rx)sin(ry)cos(rz) + sin(rx)sin(ry)

– r21 = cos(rx)sin(ry)sin(rz) + sin(rx)cos(rz)

– r22 = cos(rx)cos(ry)

Obviously, covariance matrix of Θ should be calculated using Eq. (C.5) as

ΣΘ =

(
∂g

∂Θ

)−1(
∂g

∂x

)T
Σx

(
∂g

∂x

)(
∂g

∂Θ

)−T
, (C.8)

where g(x,Θ) = ∂F (X,Θ)
∂Θ

is the gradient vector of F (Θ,x) of Θ and Σx.

According to Eq. (C.6), the lost function is a sum lost of N pair points. So

in order to simplify the formula expression and not lose generality, we are able to

only consider one pair point in the following covariance matrix computation steps.

Assume that

F ′(Θ,x) = ‖xt − f(Θ,xt−1)‖2
Σxt

= (xt − f(Θ,xt−1))TΣ−1
xt

(xt − f(Θ,xt−1))
, (C.9)

so g′(x,Θ) = ∂F ′(X,Θ)
∂Θ

can be expressed as

g′(x,Θ) = ∂((xt−f(Θ,xt−1))T )
∂Θ

Σ−1
xt

(xt − f(Θ,xt−1))+
∂(Σ−1

xt (xt−f(Θ,xt−1)))T

∂Θ
(xt − f(Θ,xt−1))

=
(

2∂(xt−f(Θ,xt−1))
∂Θ

)T
Σ−1

xt
(xt − f(Θ,xt−1))

= −2
(

2∂(f(Θ,xt−1))
∂Θ

)T
Σ−1

xt
(xt − f(Θ,xt−1))

(C.10)

After obtaining g′(x,Θ), the partial derivatives, ∂g′

∂Θ
and ∂g′

∂x
of g′(Θ,x) can be cal-

culated as:
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∂g′

∂Θ
=

∂(−2
(

2∂(xt−f(Θ,xt−1))

∂Θ

)T
Σ−1

xt (xt−f(Θ,xt−1)))

∂Θ

= −2∂
2(f(Θ,xt−1))

∂Θ2 Σ−1
xt

(xt − f(Θ,xt−1))−
2
∂(Σ−1

xt (xt−f(Θ,xt−1)))T

∂Θ
.∂(f(Θ,xt−1))

∂Θ

= 2( ∂f
∂Θ

)TΣ−1
xt

∂f
∂Θ
− 2 ∂2f

∂Θ2 Σ−1
xt

(xt − f(Θ,xt−1))

(C.11)

and

∂g′

∂x
=

(
∂g′

∂xt−1

∂g′

∂xt

)
=

 ∂(−2
[

2∂(f(Θ,xt−1))

∂Θ

]T
Σ−1

xt (xt−f(Θ,xt−1)))

∂xt−1

∂(−2
[

2∂(f(Θ,xt−1))

∂Θ

]T
Σ−1

xt (xt−f(Θ,xt−1)))

∂xt


=

(
2( ∂f

∂xt−1
)TΣ−1

xt

∂f
∂Θ
− 2 ∂2f

∂Θ∂xt−1
Σ−1

Xt
(xt − f(Θ,xt−1))

−2Σ−1
xt

∂f(Θ,xt−1)
∂Θ

) , (C.12)

where ∂f
∂Θ

and ∂f
∂xt−1

are the partial derivatives of f(.) which can be calculated ac-

cording to Eq. (C.7). Here, ∂f
∂Θ

is a 4× 6 matrix and ∂f
∂x

is a 4× 4 matrix, they are

calculated as:

∂f

∂Θ
|6×4 =


∂f1

∂rx

∂f1

∂ry

∂f1

∂rz

∂f1

∂tx

∂f1

∂ty

∂f1

∂tz
∂f2

∂rx

∂f2

∂ry

∂f2

∂rz

∂f2

∂tx

∂f2

∂ty

∂f2

∂tz
∂f3

∂rx

∂f3

∂ry

∂f3

∂rz

∂f3

∂tx

∂f3

∂ty

∂f3

∂tz
∂f4

∂rx

∂f4

∂ry

∂f4

∂rz

∂f4

∂tx

∂f4

∂ty

∂f4

∂tz

 (C.13)

and

∂f

∂xt−1

|4×4 =


∂f1

∂ut−1,l

∂f1

∂vt−1,l

∂f1

∂ut−1,r

∂f1

∂vt−1,r

∂f2

∂ut−1,l

∂f2

∂vt−1,l

∂f2

∂ut−1,r

∂f2

∂vt−1,r

∂f3

∂ut−1,l

∂f3

∂vt−1,l

∂f3

∂ut−1,r

∂f3

∂vt−1,r

∂f4

∂ut−1,l

∂f4

∂vt−1,l

∂f4

∂ut−1,r

∂f4

∂vt−1,r

 . (C.14)

where fi, i = 1, · · · , 4 represents element of row i in f(.). In order to save space, we

only give one example of calculating the element of ∂f
∂Θ

and ∂f
∂x

here. Other elements

can be computed in similar way.

∂f1

∂rx
=
∂
(
r00fb(uit−1,l−u0)+r01fb(vit−1,l−v0)+r02f2b+diftx

r20b(uit−1,l−u0)+r21b(vit−1,l−v0)+r22fb+ditz
+ u0

)
∂rx

(C.15)

and

∂f1

∂ut−1,l

=
∂
(
r00fb(uit−1,l−u0)+r01fb(vit−1,l−v0)+r02f2b+diftx

r20b(uit−1,l−u0)+r21b(vit−1,l−v0)+r22fb+ditz
+ u0

)
∂ut−1

. (C.16)
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In order to express simply, we assume that A = r00fb(u
i
t−1,l − u0) + r01fb(v

i
t−1,l −

v0) + r02f
2b + diftx and B = r20b(u

i
t−1,l − u0) + r21b(v

i
t−1,l − v0) + r22fb + ditz. So

Eq.(C.15) and Eq. (C.16) can be simplified as

∂f1

∂rx
=

∂A
∂rx
B + A ∂B

∂rx

(r20b(uit−1,l − u0) + r21b(vit−1,l − v0) + r22fb+ ditz)2
(C.17)

and

∂f1

∂ut−1,l

=

∂A
∂ut−1,l

B + A ∂B
∂ut−1,l

(r20b(uit−1,l − u0) + r21b(vit−1,l − v0) + r22fb+ ditz)2
. (C.18)

We can calculate ∂A
∂rx

, ∂B
∂rx

, ∂A
∂ut−1,l

and ∂B
∂ut−1,l

respectively as below:

∂A
∂rx

= ∂r00

∂rx
fb(uit−1,l − u0) + ∂r01

∂rx
fb(vit−1,l − v0) + ∂r02

∂rx
f 2b+ ∂(diftx)

∂rx

= 0
;

∂B
∂rx

= ∂r20

∂rx
b(uit−1,l − u0) + ∂r21

∂rx
b(vit−1,l − v0) + ∂r22

∂rx
fb+ ∂(ditz)

∂rx

= (sin(rx)sin(ry)cos(rz) + cos(rx)sin(ry)).b(u
i
t−1,l − u0)+

(−sin(rx)sin(ry)sin(rz) + cos(rx)cos(rz)).b(v
i
t−1,l − v0)− sin(rx)cos(ry).fb

;

(C.19)
∂A

∂ut−1,l
=

∂(r00fb(uit−1,l−u0)+r01fb(vit−1,l−v0)+r02f2b+diftx)

∂ut−1,l

= r00fb

= cos(ry)cos(rz)fb

(C.20)

and
∂B

∂ut−1,l
=

∂(r20b(uit−1,l−u0)+r21b(vit−1,l−v0)+r22fb+ditz)

∂ut−1,l

= r20b

= b.(−cos(rx)sin(ry)cos(rz) + sin(rx)sin(ry))

. (C.21)

Finally, substitute Eq. (C.9) and (C.10) into Eq. (C.8), the covariance matrix of Θ

can be obtained.
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C.3 Uncertainty Propagation for RIMF

We use (pu, pv)
T to represent the RIMF at location (u, v), which is defined as

RIMF (u, v) =

(
r00fb(ut−1−u0)+r01fb(vt−1−v0)+r02f2b+dftx
r20b(ut−1−u0)+r21b(vt−1−v0)+r22fb+dtz

− ut−1 + u0 −4u′
r10fb(ut−1−u0)+r11fb(vt−1−v0)+r12f2b+dfty
r20b(ut−1−u0)+r21b(vt−1−v0)+r22fb+dtz

− vt−1 + v0 −4v′

)
.

(C.22)

In order to calculate the covariance matrix ΣRIMF of RIMF , Eq. (C.5) should be

considered because the RIMF is represented as a explicit function in Eq. (C.22).

As described in Eq. (C.5), the Jacobian matrix J of RIMF with respect to each

input variable should be computed firstly.

J =

(
∂pu
∂rx

∂pu
∂ry

∂pu
∂rz

∂pu
∂tx

∂pu
∂ty

∂pu
∂tz

∂pu
∂u

∂pu
∂v

∂pu
∂d

∂pv
∂rx

∂pv
∂ry

∂pv
∂rz

∂pv
∂tx

∂pv
∂ty

∂pv
∂tz

∂pv
∂u

∂pv
∂v

∂pv
∂d

)
(C.23)

As in Sec. (C.2), here we just calculate several elements of J as examples and the

rest can be computed easily in the similar way. The first element ∂pu
∂rx

is computed

as below:

∂pu
∂rx

=
∂(

r00fb(ut−1−u0)+r01fb(vt−1−v0)+r02f
2b+dftx

r20b(ut−1−u0)+r21b(vt−1−v0)+r22fb+dtz
−ut−1+u0−4u′)

∂rx

=
∂(

r00fb(ut−1−u0)+r01fb(vt−1−v0)+r02f
2b+dftx

r20b(ut−1−u0)+r21b(vt−1−v0)+r22fb+dtz
+u0)

∂rx

. (C.24)

If we compare Eq. (C.24) with Eq. (C.15), we can easily find that they share

the same results. So ∂pu
∂rx

can be calculated using the similar way described in Sec.

(C.2). Similarly, other elements of J can also be calculated using the same way that

mentioned above.
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[55] Antonio HernÃ¡ndez-Vela, Nadezhda Zlateva, Alexander Marinov, Miguel

Reyes, Petia Radeva, Dimo Dimov, and Sergio Escalera. Graph cuts opti-

mization for multi-limb human segmentation in depth maps. In Computer

Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on, pages

726–732, 2012.

[56] Xiaoyan Dai. Automatic segmentation fusing color and depth. In Pattern

Recognition (ICPR), 21st International Conference on, pages 763–766, 2012.

[57] DM Greig, BT Porteous, and Allan H Seheult. Exact maximum a posteriori

estimation for binary images. Journal of the Royal Statistical Society. Series

B (Methodological), pages 271–279, 1989.

[58] Raphael Labayrade, Didier Aubert, and J-P Tarel. Real time obstacle de-

tection in stereovision on non flat road geometry through” v-disparity” rep-

resentation. In Intelligent Vehicle Symposium, 2002. IEEE, volume 2, pages

646–651. IEEE, 2002.

[59] Zhencheng Hu and Keiichi Uchimura. UV-disparity: an efficient algorithm for

stereovision based scene analysis. In Intelligent Vehicles Symposium, 2005.

Proceedings. IEEE, pages 48–54, 2005.



REFERENCES 125

[60] Derek Hoiem, Alexei A Efros, and Martial Hebert. Putting objects in per-

spective. International Journal of Computer Vision, 80(1):3–15, 2008.

[61] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for au-

tonomous driving? the kitti vision benchmark suite. In Computer Vision and

Pattern Recognition (CVPR), 2012 IEEE Conference on, pages 3354–3361.

IEEE, 2012.

[62] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel Urtasun. Vision

meets robotics: The kitti dataset. International Journal of Robotics Research

(IJRR), 2013.

[63] Ce Liu et al. Beyond pixels: exploring new representations and applications

for motion analysis. PhD thesis, Massachusetts Institute of Technology, 2009.

[64] Bruce D Lucas, Takeo Kanade, et al. An iterative image registration technique

with an application to stereo vision. In IJCAI, volume 81, pages 674–679, 1981.

[65] Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and

Andrew Zisserman. The pascal visual object classes (voc) challenge. Interna-

tional journal of computer vision, 88(2):303–338, 2010.

[66] Rahul Kumar Namdev, Abhijit Kundu, K Madhava Krishna, and CV Jawa-

har. Motion segmentation of multiple objects from a freely moving monocular

camera. In Robotics and Automation (ICRA), 2012 IEEE International Con-

ference on, pages 4092–4099. IEEE, 2012.

[67] N. Dalal and B. Triggs. Histograms of oriented gradients for human detec-

tion. In Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE

Computer Society Conference on, volume 1, pages 886–893, 2005.

[68] Navneet Dalal, Bill Triggs, and Cordelia Schmid. Human detection using

oriented histograms of flow and appearance. In Computer Vision–ECCV 2006,

pages 428–441. Springer, 2006.

[69] P. Sabzmeydani and G. Mori. Detecting pedestrians by learning shapelet

features. In Computer Vision and Pattern Recognition, 2007. CVPR’07. IEEE

Conference on, pages 1–8, 2007.

[70] S. Paisitkriangkrai, C. Shen, and J. Zhang. Fast pedestrian detection using

a cascade of boosted covariance features. Circuits and Systems for Video

Technology, IEEE Transactions on, 18:1140–1151, 2008.



126 REFERENCES

[71] R. Benenson, M. Omran, J. Hosang, , and B. Schiele. Ten years of pedestrian

detection, what have we learned? In ECCV, CVRSUAD workshop, 2014.

[72] C. Papageorgiou, T. Evgeniou, and T. Poggio. A trainable pedestrian de-

tection system. In Proceeding of Intelligent Vehicles, pages 241–246, October

1998.
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