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Abstract

Image and video processing applications are characterized by the processing of a huge amount
of data. The design of such complex applications with traditional design methodologies at low-
level of abstraction causes increasing development costs. In order to resolve the above mentioned
challenges, Electronic System Level (ESL) synthesis or High-Level Synthesis (HLS) tools were
proposed. The basic premise is to model the behavior of the entire system using high-level
specifications, and to enable the automatic synthesis to low-level specifications for efficient im-
plementation in Field-Programmable Gate Array (FPGA). However, the main downside of the
HLS tools is the lack of the entire system consideration, i.e. the establishment of the communi-
cations between these components to achieve the system-level is not yet considered.
The purpose of this thesis is to raise the level of abstraction in the design of embedded sys-
tems to the system-level. A novel design flow was proposed that enables an efficient hardware
implementation of video processing applications described using a Domain Specific Language
(DSL) for dataflow programming. The design flow combines a dataflow compiler for generating
C-based HLS descriptions from a dataflow description and a C-to-gate synthesizer for generating
Register-Transfer Level (RTL) descriptions. The challenge of implementing the communication
channels of dataflow programs relying on Model of Computation (MoC) in FPGA is the mini-
mization of the communication overhead. In this issue, we introduced a new interface synthesis
approach that maps the large amounts of data that multimedia and image processing applica-
tions process, to shared memories on the FPGA. This leads to a tremendous decrease in the
latency and an increase in the throughput. These results were demonstrated upon the hardware
synthesis of the emerging High-Efficiency Video Coding (HEVC) standard.

Résumé

Les applications de traitement d’image et vidéo sont caractrisées par le traitement d’une grande
quantité de données. La conception de ces applications complexes avec des méthodologies de con-
ception traditionnelles bas niveau provoque l’augmentation des coûts de développement. Afin de
résoudre ces défis, des outils de synthèse haut niveau ont été proposés. Le principe de base est de
modéliser le comportement de l’ensemble du système en utilisant des spécifications haut niveau
afin de permettre la synthèse automatique vers des spécifications bas niveau pour implémentation
efficace en FPGA. Cependant, l’inconvénient principal de ces outils de synthèse haut niveau est
le manque de prise en compte de la totalité du système, c.-à-d. la création de la communication
entre les différents composants pour atteindre le niveau système n’est pas considérée.
Le but de cette thèse est d’élever le niveau d’abstraction dans la conception des systèmes em-
barqués au niveau système. Nous proposons un flot de conception qui permet une synthèse
matérielle efficace des applications de traitement vidéo décrites en utilisant un langage spécifique
à un domaine pour la programmation flot-de-données. Le flot de conception combine un compi-
lateur flot-de-données pour générer des descriptions à base de code C et d’un synthétiseur pour
générer des descriptions niveau de transfert de registre. Le défi majeur de l’implémentation
en FPGA des canaux de communication des programmes flot-de-données basés sur un modèle
de calcul est la minimisation des frais généraux de la communication. Pour celà, nous avons
introduit une nouvelle approche de synthèse de l’interface qui mappe les grandes quantités des
données vidéo, à travers des mémoires partagées sur FPGA. Ce qui conduit à une diminution
considérable de la latence et une augmentation du débit. Ces résultats ont été démontrés sur la
synthèse matérielle du standard vidéo émergent High-Efficiency Video Coding (HEVC).
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1
Introduction

“
If we knew what it was we were doing, it would not be called research, would
it? ”

Albert Einstein

1.1 Context and Motivation

This thesis presents a methodology for implementing video de-compression algorithms using
FPGA. The design of such complex systems is becoming extremely challenging due to several
factors.

Video compression algorithms are increasingly complex. Video compression is the core
technology used in multimedia-based consumer electronics products (i.e., embedded multimedia
systems) such as digital and cell-phone cameras, video surveillance systems and so on. Over the
years, the MPEG video coding standards have evolved from MPEG-1 to MPEG-4/Advanced
Video Coding (AVC) to HEVC. Moreover, video resolutions have increased from Quarter Com-
mon Interface Format (QCIF) (144p) to High Definition (HD) (1080p) to Ultra-High Defini-
tion (UHD) (4K and 8K), resulting in ∼ 1000× increase in resolution complexity relative to
QCIF. Besides higher resolutions, the key reason behind increasing video coding complexity is
the complex tool set of advanced video encoders. For example, unlike previous standards, the
state-of-the-art video coding standard HEVC adopts highly advanced encoding techniques to
achieve high compression efficiency for HD and UHD resolution videos at the cost of additional
computational complexity (∼ 3× relative to H.264).

Embedded systems design process has become remarkably difficult. Designing em-
bedded systems involves mapping the target application onto a given implementation architec-
ture. However, these systems have stringent requirements regarding size, performance, real-time
constraints, time-to-market and energy consumption. Therefore, meeting up these tight re-
quirements is a challenging task and requires new automation methodologies and ever more
efficient computational platforms. There are different possible hardware implementation plat-
forms ranging from processor based embedded systems (such as General-Purpose Processors
(GPPs), Digital Signal Processors (DSPs), multiprocessor System On Chips (MPSoCs), etc.)
to FPGAs and ASICs. The selection of an appropriate hardware depends upon the applica-
tions requirements. However, in order to handle computationally intensive, data-intensive and
real-time video compression applications, there is increasing need for very high computational
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1.2. PROBLEM STATEMENT AND CONTRIBUTIONS 2

power. So, what kind of hardware platform is best suited for the real-time application under
consideration? In contrast to processor based embedded systems, hardware implementations
based on FPGAs and ASICs have proved to be the right choice due to their massively parallel
processing exploitation which results in high speed processing.

Embedded system design faces a serious productivity gap. According to the Interna-
tional Technology Roadmap for Semiconductors (ITRS), improvements in the design productiv-
ity is not keeping pace with the improvements in semiconductor productivity. This gives rise
to an exponentially increasing ”design productivity gap” –the difference between the growth
rate of Integrated Circuits (ICs) complexity measured in terms of the number of logic gates or
transistors per chip and the growth rate of designer productivity offered by design methodologies
and tools.

Reference methodologies are no longer suitable. The traditional ways of providing
MPEG video coding specifications based on textual descriptions and on C/C + + monolithic
reference software specifications are becoming not suitable for parallel architectures. On the
one hand, such specification formalism do not enable designers to exploit the clear commonal-
ities between the different video CODECs, neither at the level of specification nor at the level
of implementation. On the other hand, mapping the C/C + + monolithic reference software
onto parallel architectures, such as FPGAs, means rewriting the source code completely in order
to distribute the computations on the different processing units, which is a tedious and time-
consuming task. In order to improve the re-use and time-to-market, there is a great need to
develop design and verification methodologies that will accelerate the current design process so
that the design productivity gap can be narrowed.

1.2 Problem Statement and Contributions

Many questions arise about suitable approaches to bridge the design productivity gap as well
as the gap between traditional sequential specifications and final parallel implementations. On
the one hand, according to the ITRS, enhancement in design productivity can be achieved by
increasing the level of abstraction beyond RTL and by employing design reuse strategies. On the
other hand, system-level design has emerged as a novel design methodology to fill the gap be-
tween specification and implementation in traditional methodologies. Raising abstraction level
to system-level allows the designer to handle the complexity of the entire system disregarding
low-level implementation details and thus results in fewer numbers of components to handle.
However, the key challenge in raising the level of abstraction to system-level is to deal with sys-
tem integration complexity and perform DSE, means that developers need to know how to pull
together the different components through efficient communication mechanisms while allowing
for system-level optimizations. Moreover, in system-level design, verification is critical in the
design process, which enables to assert that the system meets its intended requirements.
Within this context, and knowing the drawbacks of the past monolithic specification of video
standard, efforts have focused on standardizing a library of video coding components called
RVC. The key concept behind the standard is to be able to design a decoder at a higher level of
abstraction than the one provided by current monolithic C-based specifications, while ensuring
parallelism exploitation, modularity, reusability and reconfigurability. The RVC framework is
built upon a dataflow-based Domain Specific Language (DSL) known as RVC-CAL, a subset of
CAL. RVC is based on dynamic dataflow programming. The MoC used to specify the way data
is transferred and processed is known as DPN. The objective of this thesis is then to propose
a new rapid prototyping methodology of DPN-based dataflow programs on FPGAs. Several
issues could be raised namely how to translate the DPN-based programs into RTL descriptions
suitable for implementation in programmable hardware, while reducing the complexity and time-
to-market, and obtaining performance efficient implementation. Several works have sought to
address these issues, but provided only partial solutions for synthesis at the system-level.
Motivated by these developments, our contributions with respect to the challenges of implement-
ing dynamic dataflow programs onto FPGAs are as follows.

• First, we propose a novel automated design flow for rapid prototyping of RVC-based video
decoders, whereby a system-level design specified in RVC-CAL dataflow language is quickly
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translated to a hardware implementation. Indeed, we design image de-compression algo-
rithms using the actor oriented language under the RVC standard. Once the design is
achieved, we use a dataflow compilation infrastructure called Orcc to generate a C-based
code. Afterward, a Xilinx HLS tool called Vivado is used for an automatic generation of
synthesizable hardware implementation.

• Then, we propose a new interface synthesis method that enables the enhancement of the
implementation of the communication channels between components and therefore the en-
hancement of scheduling policies, aiming at optimizing performance metrics such as latency
and throughput of dataflow-based video decoders. Therefore, a new system level imple-
mentation is elaborated based on this optimized implementation of the communication and
scheduling mechanisms.

• Next, we investigate techniques as an aid for DSE for achieving high performance imple-
mentations by exploiting task or data-level parallelism at the system-level.

• Finally, we present a framework for system or component-level verification. Hence, we
have demonstrated the effectiveness of our proposed rapid prototyping by applying it to
an RVC-CAL implementation of the HEVC decoder, which is very challenging because it
typically involves high computational complexity and massive amounts of data processing.

1.3 Outline

This thesis is structured as follows.
Part I outlines the background to the study including its theoretical framework. Following the
thesis’s introduction, Chapter 2 entails an overview of trends and challenges in embedded sys-
tems design and the emergence of system-level design of embedded systems. Chapter 3 reviews
basic properties of the dataflow programming, introduces the MPEG-RVC framework as well as
its reference programming language and the semantics of the DPN model. Then, it summarizes
the existing HDL code generation approaches from dataflow representations.
Part II presents the major contributions of this thesis. In Chapter 4, a rapid prototyping method-
ology for DPN-based programs is presented. The proposed design flow combines a dataflow
compiler for generating C-based HLS descriptions from a dataflow description and a C-to-gate
synthesizer for generating RTL descriptions. The results obtained applying to an RVC-CAL
HEVC decoder are discussed. Chapter 5 presents optimization techniques by proposing new
interface synthesis method firstly and further by exploiting all the features of dynamic dataflow.
Chapter 6 concludes the two parts of this thesis and discusses directions for future work.
Part III provides supplementary information to this thesis. In Appendix A, we present a user
guide to the hardware generation from dataflow programs using our proposed design flow. Ap-
pendices B and C present all available HEVC test sequences and a summary of Vivado HLS
directives, respectively. Finally, Appendix D provides a brief explanation of the work presented
in this thesis in French.

1.4 Publications

The work presented in this thesis is partly published in the following publications.

International Journal paper
M. Abid, K. Jerbi, M. Raulet, O. Deforges, and M. Abid. Efficient system-level hardware
synthesis of dataflow programs using shared memory based FIFO: HEVC decoder case study.
submitted to the Journal of Signal Processing Systems (under review), 2015.

International Conference paper
M. Abid, K. Jerbi, M. Raulet, O. Deforges, and M. Abid. System level synthesis of dataflow
programs: HEVC decoder case study. In Electronic System Level Synthesis Conference (ES-
Lsyn), 2013, pages 16, May 2013.
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2
Fundamentals of Embedded Systems Design

“
Basic research is what I’m doing when I don’t know what I’m doing. ”

Wernher von Braun

2.1 Introduction

In this chapter, I will look at the emergence of system-level design of embedded systems whose
functionality involves real-time processing of media streams [Neuendorffer and Vissers, 2008],
e.g., streams containing video data. In order to justify the needs of system-level design and the
driving force behind its emergence, I must first set the stage for my study of embedded systems
design and highlight challenges and complexities involved in designing embedded systems in
Section 3.2. In section 2.3, I will give an overview of existing design methodologies linked to
various levels of abstraction at which design process can be approached. Moreover, a taxonomy
of design automation is developed by using the Y-chart [Gajski and Kuhn, 1983] as a reference
point. Section 2.4 and section 2.5 review the traditional design flows for embedded system design,
including a discussion of their limitations. Section 2.6 presents motivating trends towards using
system-level design.

2.2 The Embedded Systems Design

This section discusses some general aspects of embedded system design and highlights challenges
and complexities involved in designing embedded systems.

2.2.1 What is an embedded system?

Embedded systems are defined as information processing systems embedded into enclosing prod-
ucts such as cars, telecommunication or fabrication equipment. Such systems come with a large
number of common characteristics, including real-time constraints, and dependability as well as
efficiency requirements [Marwedel, 2006]. A particular class of embedded systems are real-time
systems. A real-time system is one in which the response to an event must occur within a specific
time, otherwise the system is considered to have failed [Dougherty and Laplante, 1995]. The
importance of embedded systems is growing continuously. That is, the evolution of embedded
systems parallels Moore’s Law [Moore, 1965] which states that the number of transistors on
Integrated Circuits (ICs) doubles approximately every two years. This IC technology advance
enabled the design of embedded systems on a single chip called System On Chip (SOC). A

7
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Routing channel

I/O Pad

Logic block

Figure 2.1: The basic FPGA structure: a logic block consists of a 4-input LUT, and a FF.

SOC is defined as a device which is designed and fabricated for a specific purpose, for exclusive
use by a specific owner [Amos et al., 2011]. In other words, a SOC is a single piece of silicon
that contains all circuits required to deliver a set of functions. It may include on-chip mem-
ory, embedded processor, peripheral interfaces, and other components necessary to achieve the
intended function. It may comprise more than one processor core, referred to as multiproces-
sor System On Chip (MPSoC), where each of the embedded core whill take care of different
sub-functions. SOCs can be implemented as Application-Specific Integrated Circuits (ASICs) or
using Field-Programmable Gate Arrays (FPGAs).

2.2.1.1 What is an ASIC?

An ASIC is a unique type of IC meant for a specific application. Developing an ASIC takes very
much time and is expensive. Furthermore, it is not possible to correct errors after fabrication.

2.2.1.2 What is a FPGA?

An FPGA is a reprogrammable IC, i.e it can be programmed for different algorithms after
fabrication. FPGA addresses the cost issues inherent in ASIC fabrication.

FPGA architecture 1 The basic structure of an FPGA is composed of the following elements:

• Look-up table (LUT): this element performs logic operations.

• Flip-Flop (FF): this register element stores the result of the LUT.

• Wires: these elements connect resources to one another.

• Input/Output (I/O) pads: these physically available ports get data in and out of the
FPGA.

The combination of these elements results in the basic FPGA architecture shown in Figure
2.1. The FPGA fabric includes embedded memory elements that can be used as Random-Access
Memory (RAM), Read-Only Memory (ROM), or shift registers. These elements are block RAMs
(BRAMs), LUTs, and shift registers.

• The BRAM is a dual-port RAM module instantiated into the FPGA fabric to provide
on-chip storage for a relatively large set of data. The two types of BRAM memories
available in a device can hold either 18 k or 36 k bits. The number of these memories
available is device specific. The dual-port nature of these memories allows for parallel,
same-clock-cycle access to different locations.

• The LUT is a small memory in which the contents of a truth table are written during
device configuration.

• The shift register is a chain of registers connected to each other. The purpose of this
structure is to provide data reuse along a computational path.

1http://www.xilinx.com
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Figure 2.2: Hybrid video encoder [Jacobs and Probell, 2007].

Commercial FPGA devices Since the release of the first Xilinx XC2064 commercial FPGA
in 1985, the market of FPGAs has been steadily growing. Xilinx and Altera are the two main
FPGA manufacturers. The latest FPGAs are Xilinx Virtex-7 and Altera Stratix-V which are
targeting highest performance and capacity. For instance, Virtex-7 FPGA delivers up to 2 million
programmable logic cells (LUTs) and offer more than 4Tbps of serial bandwidth.

FPGA parallelism Unlike processors, FPGAs are inherently parallel, so that different pro-
cessing operations do not have to compete for the same resources. Each independent processing
task is assigned to a specific section of the circuit, and can run independently without depending
on any other logic blocks. As a result, the performance of one part of the application is not
affected when additional processing is added. The parallel computing power of FPGA is well
suited for algorithms requiring high bandwidth and for the calculation of many operations in
parallel on video data such as real-time video processing algorithms.

2.2.2 Video compression in FPGA

For a video processing perspective, read-time can mean that the total processing per pixel must
be completed within a pixel sample time [Bailey, 2011]. Real-time video processing need in
embedded systems arises for video telephony, digital cameras, digital television, high definition
TV decoders, DVD players, video conferencing, internet video streaming and other systems. All
video storage and transmission mechanisms rely heavily on video compression and decompres-
sion systems (known as CODECs). To enable interoperability, most products use standards-
based digital video compression techniques. Video coding standards have evolved through the
development of the International Standardization Organization/International Electrotechnical
Commission (ISO/IEC) and International Telecommunication Union–Telecommunication sector
(ITU–T) standards. The ISO/IEC Moving Picture Experts Group (MPEG)–1 [ISO/IEC 11172-
2:1993], MPEG–4 Visual [ISO/IEC 14496-2:1999], and the ITU–T H.261 [ITU-T Rec. , 12/90],
H.263 [ITU-T Rec. H.263 , 03/96] are some of the popular international video compression
standards. The essential underlying technology in each of these video compression standards
is very similar and uses a hybrid video coding scheme (i.e., motion compensation, transform,
quantization, entropy coding) as illustrated in Figure 2.2. The standards differ in the applica-
tions they address. Each standard is tuned to perform optimally for a particular application in
terms of bit rates and computational requirements: MPEG–1 for CD–ROM, MPEG–4 Visual
for Television and Web environments, H.261 for videoconferencing, and H.263 for videophones.
The H.264/MPEG–4 Advanced Video Coding (AVC) [ITU-T Rec. H.264 and ISO/IEC 14496-
10], jointly developed by ITU–T Video Coding Experts Group (VCEG) and ISO/IEC MPEG,
provides up to 50% more bit rate reduction at the same quality of other existing standards.
As a result of this significant advancement in compression technology, H.264/ MPEG–4 AVC is
used in a wide variety of applications. The growing popularity of High Definition (HD) video,
and the emergence of beyond HD formats (e.g., 4k × 2k or 8k × 4k resolution) are creating
even stronger needs for coding efficiency superior to H.264/MPEG–4 AVC’s capabilities. Need
for a codec superior than H.264/MPEG–4 AVC was result in the newest video coding stan-
dard High-Efficiency Video Coding (HEVC) [Bross et al., 2012], which was finalized in 2013.
HEVC is based on the same structure as prior hybrid video codecs like H.264/MPEG–4 AVC
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but with enhancements in each coding stage. The goal of HEVC is to increase the compression
efficiency by 50% as compared to that of the H.264/MPEG–4 AVC. The higher compression rate
achieved in HEVC results in an increase in computational complexity for video encoding and
decoding. HEVC encoders are expected to be several times more complex than H.264/MPEG–
4 AVC encoders [Bossen et al., 2012]. There is also a slightly increase in the computational
complexity of video decoder. Due to the high computational complexity involved and to the
huge amount of data that needs to be processed, high processing power is required to satisfy
the real-time constraints. This can be more readily achieved through hardware parallelism.
Intuitively, reconfigurable hardware in the form of FPGA has been proposed as a way of ob-
taining high performance for video processing algorithms, even under real-time requirements.
Moreover, implementing video processing algorithms on reconfigurable hardware minimizes the
time-to-market cost, enables rapid prototyping of complex algorithms and simplifies debugging
and verification. Therefore, FPGAs are an ideal choice for implementation of real-time video
processing algorithms.

2.2.3 The embedded systems design challenges

Systems design is the process of deriving, from requirements, a model from which a system can
be generated more or less automatically. A model is an abstract representation of a system. For
example, software design is the process of deriving a program that can be compiled; hardware
design is the process of deriving a hardware description from which a circuit can be synthesized
[Henzinger and Sifakis, 2006]. So, why is it so hard to design the real-time embedded system?
The design of embedded systems is a challenging issue, for the following reasons:

2.2.3.1 Design constraints

1. Real-time constraints: embedded systems have to perform in real-time. If data is not
ready by a certain deadline, the system fails to perform correctly. Real-time constraints
are hard, if their violation causes the failure of the system functioning, and soft, otherwise.
In the field of embedded video compression systems, there are latency and throughput
constraints. The latency constraints states that the interval between the time Tavail, when
the input data are available to the system, and Tprod, when the corresponding output data
are produced must be less than the constraint ∆T .

Tprod − Tavail ≤ ∆T (2.1)

The throughput constraint states that the interval between the time T starting, when data
processing is starting, and T ending, when data processing is finished must be less than ∆T .

T ending − T starting ≤ ∆T (2.2)

2. Small size and weight : typically, embedded systems are physically located within some
larger device. Therefore, their shape and size may be dictated by the space available and
the connections to the mechanical components.

3. Low Power and low energy consumption: in mobile applications, embedded designs are
powered by batteries. This requires designs with low energy consumption. Power con-
sumption is important also in applications in which the large amounts of heat produced
during the circuit operation are difficult to be dispersed.

4. High-Performance: an embedded system should perform its functions and complete them
quickly and accurately.

5. Reliability constraints: embedded systems are often used in life critical applications that
is why reliability and safety are major requirements.

6. Low cost : embedded systems are very often mass products in highly competitive markets
and have to be shipped at a low manufacturing and design cost.

7. Short time-to-market : time-to-market is the length of time from the product idea concep-
tion until it is available for sale.
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Figure 2.3: Difference between design complexity and design productivity: the productivity gap.
Source: Sematech2

Embedded Video Codec Design Requirements and Constraints The key challenge for
embedded system design is how to implement a system that fulfills a desired functionality (e.g.,
video compression functionality) and simultaneously optimize the aforementioned design metrics
in a timely fashion. First, during design of such real-time embedded systems, ensuring temporal
correctness of their behavior is equally important as ensuring its functional correctness. Second,
the need to execute complex video processing algorithms under tight timing constraints implies
that the embedded systems have to be designed to sustain the ever-increasing computational
complexity and to be extremely high performance. Third, to be suitable for the deployment in
the consumer electronics products described in Section 2.2.2, these embedded systems must be
optimized to have low cost and low power/energy consumption.

2.2.3.2 Design productivity gap

The Semiconductor Industry Association (SIA)2 shows that a design productivity gap exists
between the available chip capacity and the current design capabilities. Figure 2.3 plots Moore’s
Law, together with the productivity growth, expressed in transistors per staff member per month
over the last decades. Due to improving engineering skills, an increase in the number of transis-
tors that one designer can handle can be observed. The pace at which the design productivity
increases is, however, much smaller than the slope of Moore’s Low. That is, whereas Moore’s
Low predicts that the chip capacity doubles every eighteen months, the hardware design produc-
tivity in the past few years is estimated to increase at 1.6× over the same period of time. As can
be seen from Figure 2.3, the design productivity gap originate from the 1980s. At that moment,
it became clear that it was no longer possible in digital design to cope with every transistor indi-
vidually. This ”design crisis” was the driven force behind the introduction of design abstraction
levels [Bell and Newell, 1971] together with well-defined design methodologies and the advent of
the automation of the design of electronic systems and circuits (Electronic Design Automation
(EDA)) [Lavagno et al., 2006]. Hence, design methodologies become a popular research topic to
tackle these aforementioned design challenges of embedded systems in the recent decade.

2.3 Hardware Design Methodologies

In order to explain the different design methodologies, I will use the Y-Chart, which was intro-
duced in 1983 by Gajski and Kuhn [Gajski and Kuhn, 1983] and refined by Walker and Thomas
[Walker and Thomas, 1985]. The Gajski-Kuhn Y-chart is depicted in Figure 2.4(a). This model
of design representation is described using three axes, each representing one of three domains of
description-behavioral, structural, and physical. The behavioral domain describes the behavior,
or functionality, of the design, ideally without any reference to the way this behavior is achieved
by an implementation. The structural domain describes the abstract implementation, or logical
structure, of the design as a hierarchy of components and their interconnections. The physical
domain describes the physical implementation of the design.

2Sematech Inc. International Technology Roadmap for Semiconductors (ITRS), 2004 update, design. http://
www.itrs.net, 2004.
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Figure 2.4: Gajski-Kuhn Y-chart.

2.3.1 Levels of abstraction

The concentric circles of the Y-chart represent the different levels of abstraction (Figure 2.4(a)).
The level of detail increases from the outside inward.

• System-level: defining the partitions of the system (as processes) and the communication
methods and interfaces between the partitions and the outside world. The system-level is
concerned with overall system structure and information flow.

• Algorithmic-level, behavioral-level or high-level: behavioral modeling with high-level pro-
gramming languages of the computation performed by an individual process, i.e., the way
it maps sequences of inputs to sequences of outputs.

• Register-Transfer Level (RTL): describing the circuit in terms of registers and the data
transfers between them using logical operations (combinational logic).

• Logic-level or gate-level: defining the behavior of RTL components with a set of intercon-
nected logic gates and flip-flops.

• Circuit-level or transistor-level: implementing the behavior of the logic gates with inter-
connected transistors.

The main components that can be found at the different levels of abstraction are represented
graphically in Figure 2.5. As an example, consider a binary counter. At the algorithmic-level,
we know that the counter increments its current value, producing a new value. At the next
lower level, we understand that to carry out this function, some sort of register is needed to
hold the value of the counter. We can state this idea using a register transfer statement such
as AC ← AC + 1. On the structural side, the register consists of gates and flip-flops, which
themselves consist of transistors [Null and Lobur, 2010].
The Y-chart provides also a convenient framework for the definition of design tasks. They can
be expressed as transitions between points on the axes of the chart as illustrated in Figure
2.4(b). Based on these transitions, the terms generation, extraction, synthesis and analysis can
be defined. Transitions from the structural domain to the physical domain are called generation,
reverse transitions are are called extraction, those from the behavioral to the structural domain
are called synthesis, and transitions in the opposite direction are called analysis. The task of
synthesis is to take the specifications of the behavior required for a system and a set of constraints
and goals to be satisfied and to find a structure that implements the behavior while satisfying
the goals and constraints [Mohanty et al., 2008]. The tasks of refinement and optimization
can be demonstrated on the Y-Chart as well. Refinement is represented by an arrow on the
behavioral axis from a high to a lower abstraction level. On the other hand, optimization can
be represented as an arrow at any point in the chart which points back to its starting point.
Thus, such optimization is a task that is performed in-place and can occur at any level in any
domain. In optimization, the basic functionality remains constant, but the quality of the design
(in terms of performance, area and power consumption for example) is improved.
The design methodology is declared as intersections of the domain axes and the abstraction



2.3. HARDWARE DESIGN METHODOLOGIES 13

(a) The main components at different abstrac-
tions levels in the Y-chart [Michel et al., 2012].

(b) Graphical representation of the main components at different levels of abstraction [Verhelst
and Dehaene, 2009].

Figure 2.5: Different representations of the main components at each abstraction level.

circles in the Y-chart. We will explain in the following some basic system design methodologies
related to the different abstraction levels in the Y-chart [Gajski et al., 2009].

2.3.2 Bottom-up methodology

The bottom-up design methodology starts from the lowest abstraction level, and each level
generates libraries for the next-higher abstraction level as highlighted in Figure 2.6(a). The
advantage of this methodology is that abstraction levels are clearly separated, each with its own
library. The disadvantage is that optimal library for a specific design is difficult to achieve since
parameters need to be tuned for all the library components at each level.

2.3.3 Top-down methodology

In contrast to bottom-up methodology, the top-down methodology starts with the highest ab-
straction level to convert from functional description of the system into system structure as
highlighted in Figure 2.6(b). The advantage of this approach is that high-level customization
is relatively easy without implementation details, and only a specific set of transistors and one
layout is needed for the whole process. The disadvantage is that it is difficult to get the accurate
performance metrics at the high abstraction levels without the layout information.

2.3.4 System design process

The Y-chart separation of concerns, i.e. separating application (behavior) from architecture
(structure) [Kienhuis et al., 1997], leads to the following five-step approach in the embedded
system design process which I detail in the following. In a top-down way, a design always
starts from system-level specifications and ends with a physical implementation of the system
as depicted in Figure 2.7. The bottom-up process works in reverse.

1. The requirements are the customer’s expectations about what the system has to achieve.
A system specification includes not only functional requirements-the operations to be per-



2.3. HARDWARE DESIGN METHODOLOGIES 14

Physical

StructuralBehavioral

start

(a) The bottom-up methodology.

Physical

StructuralBehavioral

Start

(b) The top-down methodology.

Figure 2.6: Design methodologies in the Y-chart.

System integration

Components

Architecture

Specification

Requirements

Bottom-up

design

Top-down

design

Figure 2.7: Major steps in the embedded systems design process [Wolf, 2008].

formed by the system but also nonfunctional requirements, including speed, power, and
manufacturing cost as explained in Section 2.2.3.1.

2. The specification states only what the system does, not how the system does things. Once
the specification is determined, the design process involving various levels of abstraction
is performed.

3. The architecture gives the system structure in terms of large components.

4. The architectural description tells us what components we need. The component design
effort builds those components in conformance to the architecture and specification.

5. After the components are built, the system integration puts together the components to
build a complete system.

For the rest of the manuscript, I focus on the top-down design methodology that transform a
given high-level system description into a detailed implementation.

2.3.5 Design flow and taxonomy of synthesis

The Y-chart also serves as a model of design synthesis using the multiple levels of abstraction
and the three domains of description. Design synthesis is a path through the Gajski-Kuhn Y-
chart from a high-level (of abstraction) behavioral domain description to a low-level physical
domain description. This design flow includes translating and building inter-domain links from
the behavioral to the structural to the physical domain, as well as adding enough additional
detail to produce a low-level description from a high-level one. Thus the end goal of design
synthesis (or design flow) is to produce a physical domain description at a low enough level
to be implemented in hardware [Walker and Thomas, 1985]. Many alternative flows through
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Figure 2.8: The evolution of design methodology adoption in the EDA industry 3.

the Y-chart are possible. We distinguish between transistor-level design, logic-level design, RTL
design, high-level design, and system-level design corresponding to the input on circuit-level,
logic-level, RTL, algorithmic-level and system-level, respectively.
We expand on all these design flows in the sections that follow, tracing thereby the EDA history
[Sangiovanni-Vincentelli, 2003] and the evolution of the design flow over the last decades [Jansen,
2003], aiming at increasing design productivity.

2.4 RTL Design

As shown in Figure 2.8, raising the level of abstraction is one of the major contributors to the
design productivity improvement. This chart shows the evolution of IC design from the mid-
1970s to the present. There were gradual advancements to the IC technology through Small
Scale Integration (SSI), Medium Scale Integration (MSI), Large Scale Integration (LSI), Very
Large Scale Integration (VLSI) technology that evolved in the 1970s and the most recent is Ultra
Large Scale Integration (ULSI) technology:

• SSI: contains less than ten logic gates per IC;

• MSI: contains ten to hundred logic gates per IC;

• LSI: contains hundred to ten thousand logic gates per IC;

• VLSI: contains more than ten thousand of logic gates per IC;

• ULSI: contains hundreds of thousands of logic gates per IC.

Since ICs were designed, optimized, and laid out by hand until the late 1960s, new Computer
Aided Design (CAD) tools appeared to automate the design process from the 1970s.
From the mid-1970s to the early 1980s, the first incarnation of design synthesis operated at the
transistor-level, and is called transistor-level design. At this level, designers used procedural
languages to construct and assemble parameterized building blocks. The basic building blocks
are transistors, resistors, capacitors, etc. The transistor-level design flow is shown in Figure
2.9(a). The behavioral description is done by a set of differential equations, whereas the phys-
ical description of the transistor-level comprises the detailed layout of components and their
interconnections. Simulation Program for Integrated Circuit Emphasis (SPICE) is used for the
transistor-level simulation to verify whether the logic design specified at the transistor-level will
behave the same as the functional specifications. Although SPICE simulation dramatically im-
proved designer productivity of ICs through the 1970s, they are merely verification tools and
design automation tools which are needed to speed up the design process and keep up with
Moore’s Law.

3http://www.accellera.org/resources/articles/icdesigntrans
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By the 1980s, using schematic editors for circuit capture designers were able to build graphs
constructed from standard cells-known as netlists, and automatically place them on the IC. The
logic-level design is shown in Figure 2.9(b). Typical building blocks include simple logic gates,
such as and, or, xor and 1-bit 2-to-1 multiplexer, and basic memory elements, such as latch and
flip-flop. The behavioral description is done by boolean equations. Automatic place and route
(P&R) tools emerged to bridge the gap between the structural and physical domains at the
logic-level (rather than at the transistor-level). Moving from the transistor-level design to the
logic-level design together with automating the circuit layout were important step toward im-
proving designer productivity. Moreover, by moving the functional verification of the circuit from
the transistor-level to the logic-level simulation speed were improved by factors of 100− 1000×
[Stroud et al., 2009; Gries and Keutzer, 2006]. However, designers found that manually entering
30−40, 000 gates was simply too time consuming. Worse to verify a system the entire gate-level
design had to be entered.
To address this issue, by the early 1990s the logic-level has been abstracted to the RTL which
has driven to an over-100× increase in designer productivity. The RTL synthesis automates
the implementation steps below the RTL. When designing at the RTL, designers needed only
to describe the logic transfer functions between registers. The detailed logic implementation of
those transfer functions need not be described. Hardware Description Languages (HDLs) have
been intended to model circuits at the RTL. Based upon these languages, logic synthesis or
RTL synthesis tools were developed. Designers were able to automatically transform HDL de-
scriptions of circuits at the RTL into gate-level netlists. The RTL design flow is represented in
Figure 2.9(c). In this design flow, the hardware designer would manually refine the behavioral
system specifications down to the RTL. From that point, RTL synthesis and P&R complete the
design flow.

2.4.1 What is a HDL?

The two principal HDLs currently used include Very High-Speed Integrated Circuits (VHSIC)
Hardware Description Language (VHDL) [IEEE 1076-200] and Verilog [IEEE 1463-2001]. While
their syntax is at least reminiscent of high-level software languages, the specification of a circuit
in an HDL is different from writing a software program. Software programs have a sequential
execution model in which correctness is defined as the execution of each instruction or function
in the order it is written. The movement of data is implicit and is left to the underling hardware.
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Table 2.1: Truth table of half adder.

A B sum carry
0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

Memory accesses are inferred, and processors provide implicit support for interfaces to memory.
By contrast, hardware designs consist of blocks of circuitry that all run concurrently. Data
movement is written explicitly into the model, in the form of wires and ports. Memory and
memory accesses must be explicitly declared and handled [Martinez et al., 2008]. Listing 2.1
shows the VHDL implementation of a 1-bit half adder along with its RTL implementation in
Figure 2.10. A half adder adds two input bits A and B and generates two outputs a carry and
sum. Table 2.1 shows the truth table of a half adder.

1 library IEEE;
2 use IEEE.STD_LOGIC_1164.ALL;
3 use IEEE.NUMERIC_STD.ALL;
4 entity halfadder is
5 Port ( A : in STD_LOGIC;
6 B : in STD_LOGIC;
7 sum : out STD_LOGIC;
8 carry : out STD_LOGIC);
9 end halfadder;

10 architecture Behavioral of halfadder is
11 begin
12 Process (A,B)
13 begin
14 sum <= A XOR B;
15 carry <= A AND B;
16 end process;
17 end Behavioral;

Listing 2.1: VHDL code of a 1-bit half adder.
Sum and carry are assigned in parallel

and2

carry1

I0

I1

O

Mxor_sum1

Mxor_sum1

Data(1:0) Result

adder:1

adder

A

B

carry

sum

Figure 2.10: RTL schematic of the 1-bit half
adder (logic synthesis with Xilinx ISE).

RTL design have several advantages over the traditional schematic-based design [Palnitkar, 2003]:

• Designs can be described at a higher level of abstraction by use of HDLs, without even
choosing a specific fabrication technology (technology-independent). If a new technology
emerges, designers do not need to redesign their circuit. They simply input the RTL
description to the logic synthesis tool and create a new gate-level netlist, using the new
fabrication technology.

• By describing designs in HDLs, functional verification can be done early in the design cycle.
Since designers work at the RTL, they can optimize and modify the RTL description until
it meets the desired functionality.

• Designing with HDLs is analogous to computer programming. A textual description with
comments is an easier way to develop and debug circuits. This also provides a concise
representation of the design, compared to gate-level schematics, which are almost incom-
prehensible for very complex designs.

2.4.2 What is wrong with RTL design and HDLs?

There are several issues in RTL design that are simply the result of how HDLs and synthesis
tools emerged. Traditional HDLs such as VHDL and Verilog lack many of the high-level and
abstraction facilities commonly found in modern mainstream languages such as C++ or Java
[Arcas-Abella et al., 2014]. As a consequence, this low-level style of coding requires significant
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Figure 2.11: Gasjki-Kuhn Y-Chart for HLS Design Flow.

hardware design knowledge and long development cycles. Moreover, low-level synthesis has
became tedious and error-prone for non-expert designers. It might also affect expert FPGA
designers from the productivity and cost points of view. As shown in Figure 2.8 4, since about
2005, IC designer productivity has stagnated. Moreover, given that the RTL design has been in
use for more than 15 years, it is no longer possible to consider it the forefront design approach
that is required to bring us new, exciting consumer and industrial electronic products. That is
why, HDLs are constrained to keep up with advances in ULSI technology [Null and Lobur, 2010].
It has become evident that the level of abstraction in IC design must be raised once again to
allow designers to think in terms of functions, processes, and systems, as opposed to worrying
about gates, signals, and wires. In early 2000s, the move to the next level of abstraction using
High-Level Synthesis (HLS) makes it possible to cope with the increasing design complexity and
get rid of hand-written HDLs.

2.5 HLS Design

This section presents a survey of the HLS design and highlights its advantages and limitations.
HLS, C synthesis, Electronic System Level (ESL) synthesis, algorithmic synthesis, or behav-
ioral synthesis improves design productivity by automating the refinement from an algorithmic
level specification of the behavior of a digital system to RTL description of the circuit in the
form of VHDL or verilog [McFarland et al., 1990a; Coussy and Morawiec, 2008; Martin et al.,
2010]. As can be seen on the Y-chart for HLS design flow (Figure 2.11), the transition from the
specifications to the start of the automated design flow becomes smaller now compared to the
RTL design [Meeus et al., 2012]. From that point, HLS, RTL synthesis and P&R complete the
design flow. HLS consists of a sequence of tasks [Andriamisaina et al., 2010]. First, the design
specification is written at the algorithmic level by a C-based high-level programming language
(whether ANSI C or C ++) [Gajski et al., 2010]. At this level the focus is on the computations
performed by an individual component and the way it maps sequences of inputs to sequences of
outputs. To illustrate, Listing 2.2 shows the C ++ specification of the half adder.

1 void HalfAdder(int A, int B, int& Sum, int& Carry)
2 {
3 Sum = A ˆ B;
4 Carry = A & B;
5 }

Listing 2.2: C ++ code to implement a half adder.

The second step consists in compiling the algorithmic high-level specification into an intermediate
representation in the form of various flow graphs such as Control Data Flow Graphs (CDFGs).
The following phases consist in operation scheduling, resource allocation and resource binding.
During operation scheduling, each operation is scheduled at time steps or clock cycles. Resource
allocation determines the type and the number of hardware resources (adders, multipliers, reg-
isters) that should be used to implement the design. Then in resource binding, each operation
is assigned to the allocated hardware components. Once allocation, scheduling and binding de-
cisions are made, the goal is to generate RTL architecture. Figure 2.12 illustrates the different
HLS phases.

4http://www.accellera.org/resources/articles/icdesigntrans
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Figure 2.12: Steps of HLS [Andriamisaina et al., 2010].

Several advantages arise from moving the design effort to higher abstraction levels and using
HLS in the design flow [McFarland et al., 1990b; Coussy and Takach, 2009].

• Shorter design cycle, which means that a product can be completed faster, decreasing the
design cost and the time-to-market.

• Fewer errors and shorter debugging time, since the synthesis process can be verified at the
high-level together with the shorter amount of code of high-level specifications.

• Design-Space Exploration (DSE), since HLS can produce RTL specifications that satisfy
different design constraints (refer to Section 2.2.3.1) from the same high-level specification.

• Documenting the design process, which means keeping tracks of design decisions and their
effects.

• Availability of IC technology to more people, as more design expertise is moved into the
synthesis task, allowing non-expert people to produce a chip.

Although C-based HLS has been gaining momentum to deal with the increasing design complex-
ity and to bridge the productivity gap [Sullivan et al., 2004], transforming a C-based language
into a hardware language has proven to be a great challenge. Edwards [Edwards, 2006] listed the
key challenges of synthesizing hardware from C-based languages. There exist languages issues
(concurrency model and types) as well as synthesis issues (specifying timing, communication
patterns, hints and constraints):

1. Concurrency is fundamental for efficient hardware (each step or computation is performed
by separate hardware), however C-based languages impose sequential semantics (each step
or computation is performed by reusing a central processor).

2. Timing constraints are also required for efficient hardware, but C-based languages do not
provide information about the execution time of each sequence of instructions.

3. Data types are another major difference between hardware and software languages. Whereas
software typically operates on integer and float variables or even complex data structures,
hardware requires flat structures on bit level.

4. Communication also presents a challenge. C’s memory model is a large undifferentiated
array of bytes, yet many small varied memories are most effective in hardware. There is
no dynamic memory allocation in hardware as communication channels and patterns need
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to be explicit. However, Communication channels and patterns do not exist in C-based
languages because they use pointers to dynamically allocate storage. These differences in
memory structure directly impact communication mechanisms between parallel processes.
Whereas software generally uses shared memory to communicate between processes, par-
allel processes are truly concurrent and can therefore communicate directly in hardware
systems, or through dedicated hardware such as First-In First-Out (FIFO) buffers.

5. Constraints and implementation hints are the two main ways to implement a construct
such as addition in hardware, but standard C has no such facility.

These languages and synthesis issues were addressed by introducing C-variants that are more
adapted to hardware implementations such as SpecC [Gajski et al., 2012], HardwareC [Ku and
Micheli, 1990], SystemC [Grotker, 2002] and Handel-C [Agi, 2007], as well as pragmas/directives
in most of the C-to-gates tools mentioned below.
Meeus et al. [Meeus et al., 2012] carried out a comparison between twelve different commercial
and open-source HLS tools based upon a set of criteria, encompassing design entry (source
language, documentation, code size), tool capabilities (support for data types, optimization and
verification), design implementation capabilities (ease of implementation and abstraction level)
and quality of results. In the following, I cite several C-based HLS tools that use the C-to-gates
paradigm and then I carefully examine a state-of-the-art HLS tool.

1. Academic C-based HLS tools include:

• SPARK from University of California, San Diego, [Gupta et al., 2003] which trans-
forms specifications in a small subset of C into RTL VHDL hardware models. How-
ever, there are limitations on the subset of the C language that SPARK accepts as
input such as lack of design hierarchy (e.g. subprograms) and of ”while” type of loops
[Anagnostopoulos et al., 2012].

• GAUT from the Université de Bretange Sud [Coussy et al., 2008], is a HLS tool
that is designed for Digital Signal Processing (DSP) applications. However, GAUT
is incapable of handling non-static loops.

• ROCCC from University of California, Riverside, [Villarreal et al., 2010] which is a
C to VHDL compilation tool. However, there are limitations on the subset of the C
language that ROCCC accepts as input such as lack of generic pointers, shifting by
a variable amount, non-for loops, and the ternary operator. Moreover, ROCCC does
not support the CHStone benchmarks test suite [Hara et al., 2009] which is a set of
12 C programs for testing the performance of different C-based HLS tools.

• LegUp from University of Toronto [Canis et al., 2011], is a HLS tool that accepts
the full standard of C as input and supports the CHStone benchmarks. However,
there are unsupported constructs such as dynamic memory allocation, floating point
operations and recursive function calls.

Academic HLS tools are interesting from a research point of view, however it’s risky to
use them in a commercial environment since they are generally unsupported in the longer
term.

2. Commercial C-based HLS tools include Synphony C5 compiler from Synopsis, Catapult C
6 from Calypto, Cynthesizer7 from Cadence, CyberWorkbench8 from NEC, C-to-Silicon9

from Cadence and Vivado HLS10 from Xilinx. Research in [Meeus et al., 2012] reveals an
under-performance as compared to autopilot an earlier form of Vivado HLS. For these
reasons, the Vivado HLS tool will be retained as the state-of-the-art HLS tool for the
low-level hardware synthesis in Chapters 4 and 5 and will be detailed in the following.

5http://www.synopsys.com/Tools/Implementation/RTLSynthesis/Pages/SynphonyC-Compiler.
aspx

6http://calypto.com/en/products/catapult/overview
7http://www.cadence.com/products/sd/cynthesizer/pages/default.aspx
8http://www.nec.com/en/global/prod/cwb/
9http://www.cadence.com/products/sd/silicon compiler/pages/default.aspx

10http://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
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Vivado HLS a state-of-the-art HLS tool In 2011 Xilinx acquired the AutoPilot
HLS tool developed by AutoESL, as a part of the Vivado Design Suite. Vivado HLS com-
piles C-based input languages to RTL, which can then be synthesized and implemented
onto the programmable logic of a Xilinx FPGA. Only minimal C-code modifications are
necessary to generate an RTL design. To enable concurrency, Vivado HLS provides auto-
matic pipelining for functions and loops. Vivado HLS converts each datatype to arbitrary-
precision datatypes. From there, algorithm and interface synthesis are performed on the
design. Vivado HLS supports the generation of several interface types. The Vivado HLS
tool also allows a fast DSE through pragmas/directives techniques in order to optimize
the design according to several design constraints. After generation of the code, a design
report is generated that estimate the clock period, the FPGA resource utilization, latency,
and throughput of the RTL implementation. The generation procedure can be approached
either using the Graphical User Interface (GUI) or command line interface with the help of
Tool Command Language (Tcl) commands. Vivado HLS provides a complete C validation
and verification environment including C and RTL simulation. Vivado HLS is significantly
easy to learn and use. It offers three perspectives to the developer. A debug perspective
where the C-based code can be checked for correctness. A synthesis perspective that al-
lows the developer to run simulations, synthesize and implement designs and view reports.
An analysis perspective that allows developers to analyze synthesis results after synthesis
completes. It turns out that Vivado HLS has a significant advantage since it speed up
productivity for the Xilinx 7 series devices (Artix-7, Kintex-7, and Virtex-7) and many
generations of FPGAs to come. In [Dubey et al., 2015], authors brought out the capability
of Xilinx Vivado HLS tool and elaborated a comparison with Legup based upon synthe-
sis results of the CHStone benchmarks. Moreover, the Berkeley Design Technology Inc.
(BDTI)11 certified and published report on the Vivado HLS tool efficiency relative to an
FPGA implementation created using hand-written RTL code. They concluded that the
quality of the design generated with Vivado HLS is comparable with a handcrafted RTL
design. These tool capabilities motivated us to consider Vivado HLS for low-level hardware
synthesis in Chapters 4 and 5.

Another important issue concerns the ability of HLS design to handle complex systems such as
real-time video processing algorithms. As real-time video processing systems have to operate
on huge amounts of data in little time, exploitation of parallelism is crucial in order to meet
real-time requirements (Section 2.2.2). Parallelism can be defined as the decomposition of the
computation into smaller pieces that can be executed in parallel. It requires that the compu-
tation is parallelizable, which means either the data used for the computation, or the task of
the computation can be somehow divided. We distinguish between data parallelism and task
parallelism in video processing applications [Culler et al., 1999]:

• Data parallelism: similar operation sequences or functions are performed on elements of
a large data structure.

• Task parallelism: entirely different calculations are performed concurrently on either the
same or different data.

Unfortunately, designing real-time video processing applications with monolithic sequential C-
based specifications is unsuitable for parallelism exploitation.
Another important problem arises in HLS design which is the HLS system integration (see para-
graph 2.3.4 in Section 2.3) into a SOC-based system. HLS is a component-based approach that
allows for high-level modeling and synthesis of hardware components, but challenges arise when
integrating them to the rest of the system. Other system components, like interconnects, inter-
faces, CPUs, and memory controllers are typically only available in HDLs and written at RTL.
Thus, to integrate an HLS design into a SOC, designers must manually connect a standard RTL
interface to the RTL of the HLS design, at the RTL. This manual effort of system integration
can downgrade the HLS-to-SOC flow and diminish the HLS productivity gains.
In order to help to reason about the problem of HLS system integration, the author of [Te-
ich, 2000] introduced a model extending the Y-chart, shown in Figure 2.13. This model tries to
concatenate existing abstraction levels and synthesis tasks. That is, vertical arrows indicate syn-
thesis task in each level of abstraction and horizontal arrows indicate the transfer of information

11http://www.bdti.com/MyBDTI/pubs/AutoPilot.pdf
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Figure 2.14: Gasjki-Kuhn Y-Chart for System-level Design Flow.

to the following lower level of abstraction. It tries also to put into perspective the system-level
as a new and important abstraction level for the design of ICs, since this level holds in indi-
vidual components and their interactions as well. In summary, solving the system integration
problem becomes a critical design bottleneck and requires once again moving to a higher-level
of abstraction. These aforementioned limitations of HLS design, combined with the limitations
of HLS tools themselves, are the main reasons behind the so-called system-level design.

2.6 System-Level Design

As explained in the previous section, raising the level of abstraction to the system-level is re-
quired in order to consider complete systems instead of individual components and to explicitly
express parallelism.
What. The system-level is the most abstract level. The system-level design flow starts with the
system-level synthesis (Figure 2.14). System-level synthesis is the transition from a system-level
specification to the algorithmic level. The result of this first synthesis step is a partitioning of
the system into subsystems, a set of communicating concurrent processes via channels (Figure
2.15). A behavioral description at the algorithmic level for each of these subsystems (i.e. HLS)

System

A

B

C

DProcesses

Communication channels

Figure 2.15: System-Level Synthesis.
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ensues. RTL synthesis and P&R complete the design flow.
How. System-level design [Sangiovanni-Vincentelli, 2007] advocates the use of Model of Com-
putations (MoCs) and the principle of separation of concerns.
What is a MoC? A MoC describes the way concurrent processes interact with each other, in an
abstract way. Edward Lee, who is largely responsible for drawing attention to MoCs, describe a
MoC as ”the laws of physics that govern component interactions” [Lee, 2002]. Typically, MoCs
are represented in a formal manner, using, for example, mathematical functions over domains,
set-theoretical notations, or combinations thereof. MoCs are inherently tied to abstracted defi-
nitions of functionality, i.e., processing of data, and order, i.e., notions of time and concurrency
[Gajski et al., 2009]. Edwards et al. [Edwards et al., 1997] and more recently Jantsch and
Sander [Jantsch and Sander, 2005] have reviewed the MoCs used for embedded system design.
In [Lee and Sangiovanni-vincentelli, 1998], Lee and Sangiovanni-Vincentelli present a framework
for comparing models of computation. We distinguish between:

• Process-based models including Kahn Process Networks (KPNs) [Kahn, 1974], Dataflow
Process Networks (DPNs) [Lee and Parks, 1995], Synchronous Dataflows (SDFs) [Lee and
Messerschmitt, 1987] and Communicating Sequential Processs (CSPs) [Hoare, 1978];

• State-based models including Finite-State Machines (FSMs) [Gajski, 1997] and Petri Nets
[Murata, 1989].

A KPN is a network of processes that communicate by means of unbounded FIFO queues with
blocking read and nonblocking write semantics. KPNs are a popular paradigm for the descrip-
tion and implementation of systems for the parallel processing of streaming data. For instance,
the COMPANN/LAURA approach [Stefanov et al., 2004] is based on the KPN MoC.
A DPN is a special case of KPNs, in which the behavior of each process (often called an actor)
can be divided into a sequence of execution steps called firings by Lee and Parks [Lee and Parks,
1995]. This model is widely used in both commercial and academic projects and tools such as
Synflow [Wipliez et al., 2012], the Ptolemy project from the University of California at Berkeley
[Brooks et al., 2005] and Yapi [Kock et al., 2000].
A SDF is a special variant of DPNs where the number of values read and written by each firing
of each process is constant, and does not depend on the data. The Gabriel System [Lee et al.,
1989] was one of the earliest examples of a design environment that supported the SDF MoC
for both simulation and code generation for DSP.
A CSP is an untimed MoC, in which processes synchronize based on the availability of data.
Unlike KPNs, there is no storage element at all between the connected processes.
Contrary to the sequential Von Neumann MoC [Von Neumann, 1945], where both program in-
structions and data are kept in electronic memory, embedded system design as a MoC differs
in its handling of concurrency through separation of concerns where computation and commu-
nication are separated within a system. Keutzer et al. [Keutzer et al., 2000] point out that
the ’orthogonalisation of concerns’ aims at breaking a complex problem into smaller, simpler
pieces. In other words, a MoC is a mathematical formalism that describes the computation and
communication semantics of processes independently. The computation semantics define how
actors act, and the communication semantics define how they react.
MoCs are also related to languages [Edwards, 2003]. Unlike general-purpose design languages
such as C++, SystemC, VHDL, and Verilog, system-level design languages are domain-specific.
The key characteristics of Domain Specific Languages (DSLs) is their focused expressive power
and being easier to write, analyze, and compile. A variety of DSLs [Hudak, 1996; van Deursen
et al., 2000] have evolved, each best suited to a particular problem domain. Examples of DSLs
that can be used for hardware design include Bluespec SystemVerilog (BSV)12and dataflow
programming languages [Dennis, 1974]:

• BSV is based on a new model of computation for hardware, where all behavior is described
as a set of rewrite rules, or guarded atomic actions.

• Dataflow programming is a programming paradigm that models a program as a directed
graph, representing the flow of data between nodes. Some common textual dataflow pro-
gramming languages include Lustre [Halbwachs et al., 1991], Signal [Benveniste et al.,

12http://wiki.bluespec.com/Home/BSV-Documentation
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1991], StreamIT [Thies et al., 2002] and Caltrop Actor Language (CAL) [Eker and Jan-
neck, 2003]. For example, Lustre and Signal rely on a SDF MoC. CAL relies on a DPN
MoC.

Why. The advantages of the system-level design includes: a) correctly and easily program
complex systems b) Raise design team productivity c) maximize design reuse d) explore design
space and appraise design metrics at early stage.
At the system-level, design reuse is improved and the opportunities for DSE are expanded by
developing the application separately from the architecture (as demonstrated in the Y-chart),
and then selecting a mapping of the application onto the architecture, as depicted in Figure
2.16. The performance of the mapped system is then evaluated. If it is found satisfactory, then
the design is finished. Otherwise, three different elements can be modified, the application, the
architecture, and the mapping of the application onto the architecture.

Dataflow programming for video processing As explained throughout this chapter, most
video processing algorithms are inherently parallel because they involve similar computations for
all pixels in an image. The highly computational and data-parallel nature of video processing
algorithms is well managed by hardware parallelism. Moreover, I have found that modeling
parallelism, both task and data parallelism, is mandatory for increasing the performance of
video processing algorithms. Since sequential video processing code is notoriously difficult to
parallelize, and since concurrency is explicitly exposed using a dataflow graph at a higher level
of abstraction, dataflow languages map well onto video processing algorithms [Sen et al., 2008;
Bhartacharyya et al., 2000] which can be directly implemented in FPGAs.
The next chapter is devoted to more detailed analysis of the dataflow approach, more precisely
the CAL dataflow approach, to representing embedded video compression algorithms from the
system-level.

2.7 Conclusion

Over the years, video compression algorithms have improved in their compression efficiency at
the expense of increased computational complexity. The design of such complex applications
poses challenges, due to the high volume of video data that need to be processed and especially
when hard real-time requirements are needed. For example, at real-time video rates of 25 frames
per second a single operation performed on every pixel of a 768× 576 PAL frame equates to 33
million operations per second. Nowadays, embedded systems are proven to successfully address
the computational complexity and real-time challenges, due to the inherent parallelism capabili-
ties they offer. The overall goal of IC design is two-fold: satisfying functional requirements while
optimizing design constraints. That is why, coding/decoding of the video, is now an important
issue in the field of embedded systems. However, the exponential increase in the number of



2.7. CONCLUSION 25

transistors on a chip, known as Moore’s Law, has lead to rapidly increasing the complexity of
IC design. This leads us to the well-known productivity gap –forecast by the ITRS– which is
the result of the disparity between the rapid paces at which design complexity has increased in
comparison to that of design productivity.
In order to shrink this productivity gap, EDA and CAD tools are required. Throughout this
chapter, raising the levels of abstraction was proved to be a viable way to better cope with the
design productivity gap. I have found that HDL-based and C-based design flows have increased
designer’s productivity. However, on one hand, the traditional HDL-based design flow is time
consuming and lack flexibility in terms of ease of modification. On the other hand, the C-based
design flow do not provide systematic facilities for modeling concurrency from a sequential spec-
ification. Additionally, many HLS tools only generate individual hardware components that the
user still needs to integrate into a system design manually. The above mentioned limitations re-
quire even higher level of abstraction by introducing the parallelism on the system-level, instead
of in the algorithmic-level. I have concluded the capability of MoCs and DSLs for explicitly
exploiting parallelism and the efficiency of dataflow languages to implement video decoders.
Therefore, in 2008, the MPEG used a dataflow language (CAL) to describe their new video
standard, the Reconfigurable Video Coding (RVC), which will be the subject of the next chapter.
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3
Dataflow Programming in the RVC Framework

“
Choose a job you love, and you will never have to work a day in your life. ”

Confucius

3.1 Introduction

Having argued in the previous chapter the efficiency of dataflow languages to implement video
decoders which can be directly implemented in FPGAs, this chapter reviews at first dataflow
programming in Section 3.2. The dataflow programs I consider in this thesis are dynamic
dataflow programs that behave according to the DPN. The vertices in a DPN are called actors
and are written with a DSL called RVC-CAL. RVC-CAL is a language that was standardized
by the RVC standard, and with which video coding tools are defined. Section 3.3 introduces
the RVC framework. Section 3.4 introduces the syntax and the semantics description of the
RVC-CAL language used to formalize RVC specifications. Section 3.5 describes the supporting
tools and discusses the drawbacks of related work from hardware implementation viewpoint.

3.2 Dataflow Programming

Dataflow programming is a programming paradigm whose execution model can be represented
by a directed graph (Figure 3.1), where the nodes represent computational units, called actors,
and the arcs represent streams of data, called tokens. Each node is an executable block that has
data inputs, performs transformations over it and then forwards it to the next block. A dataflow
application is then a composition of processing blocks, with one or more initial source blocks
and one or more ending blocks, linked by a directed edge [Sousa, 2012]. Dataflow programming
has been subject of study in the area of Software Engineering for more than 40 years, with
its origins being traced back at the Ph.D. thesis of Sutherland [Sutherland, 1966]. Sutherland

D

A

C

B

E

Figure 3.1: A dataflow graph containing five components interconnected using communication
channels.
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represents an arithmetic computation in both written and graphical forms to demonstrate the
importance of the graphical form. In the written form (Figure 3.2(a)) the operations must be
performed sequentially whereas in the graphical form (Figure 3.2(b)) there are three operations
that could be performed simultaneously. Afterward, the first dataflow programming language
and the first definition of how dataflow implementation should operate were presented by Dennis
in 1974 [Dennis, 1974].

Z = A x B + C
W = Z + 4
Y = Z²-(3Z + B)

(a) Written statement.

x

+

+

x

x

+

+

4

3

x

(C)

(B)

(A)

-1

(W)

(Y)

(b) Graphical statement.

Figure 3.2: The first dataflow representation as introduced by Sutherland in 1966 [Sutherland,
1966].

In addition to the fact that the representation of video decoding applications in a set of compu-
tational units interconnected by communication channel is quite straightforward, the following
features consolidate the dataflow programming to be an attractive candidate for designing par-
allel processing for video decoding applications.

• Concurrency: each node of a dataflow graph can be considered and executed indepen-
dently, thus more than one operation can be executed at once. Hence it is inherently
parallel and has the potential for massive parallelism. The ability of dataflow program-
ming paradigm to express explicit concurrency makes its an alternative to the imperative
sequential paradigm.

• Scalable parallelism [Carlsson et al., 2011]: as explained is Section 2.5, the performance
of video processing applications needs to be scalable through parallelism. In parallel com-
puting, a distinction is made between parallelism that scales with the size of the problem
(data parallelism) and parallelism that scales with the size of the program (task paral-
lelism). Dataflow has an inherent ability for parallelization. That is, scaling an algorithm
over larger amounts of data is a relatively well-understood problem that applies to dataflow
programs. Moreover a dataflow program has a straightforward parallel composition mecha-
nism, unlike von Neumann programs, that tends to lead to more parallelism as applications
grow in size.

• Modularity: the separation of concerns in system-level design (see Section 2.6) promotes
modularity and allows the application to be specified in hierarchical, reusable and recon-
figurable manners. Hierarchy, reusability and reconfigurability are simplified by dataflow
modeling.

– Hierarchy: a component of the network may represent another sub-network such as
the component B in Figure 3.3.

– Reusability: a single component can be used to specify several applications, or can
be used several time in the network which specifies the application, such as the com-
ponents A and C in Figure 3.3 that are both reused by the sub-network.

– Reconfigurability: a component can easily be replaced by another one while its inter-
faces (input and output ports) are strictly identical, such as the components D and
G in Figure 3.3.
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Figure 3.3: Modularity in dataflow graph.

• Portability: portability of video coding applications on different platforms becomes a
crucial issue and such property is not appropriately supported by the traditional sequen-
tial specification model and associated methodologies. However, high-level dataflow-based
descriptions aim to be compiled in lower-level languages (hardware as well as software)
from an unique high-level description of the application.

For these reasons together with the limitations of the C-based monolithic specifications discussed
in the previous chapter, the MPEG adopted a subset of the CAL dataflow programming language
as a specification language for video coding and decoding algorithms within the RVC framework.

3.3 The RVC Standard

3.3.1 Motivation and Objectives

Based on the dataflow paradigm, the ISO/IEC MPEG committee standardized the RVC [Mat-
tavelli et al., 2010] framework in 2009 for the specification of video codecs. The goal of the RVC
effort is to address the limitations of monolithic specifications (usually in the form of C/C++
programs) that no longer cope with the increased complexity of video coding standards and hide
the inherent parallelism of such data-driven, i.e., streaming applications. Moreover, such mono-
lithic specifications do not enable designers to exploit the commonalities between the different
video codecs (Section 2.2.2) and to produce timely specifications. The main objective of the
RVC standard is to make video codecs more reconfigurable, meaning that different codecs with
different configurations (e.g., different video coding standards, different profiles and/or levels,
different system requirements) can be build on the basis of a unified library of video coding
algorithms instead of monolithic algorithms [Lucarz et al., 2009].

3.3.2 Structure of the Standard

Two standards are defined within the context of the MPEG RVC framework:

• ISO/IEC23001-4 [ISO/IEC 23001-4], also called MPEG-B Part 4, defines the overall frame-
work as well as the standard languages that are used to specify a new codec configuration
of an RVC decoder including:

– The specification of the Functional Unit (FU) Network Language (FNL), which is
the language describing the network of one video decoder configuration. The FNL is
an eXtensible Markup Language (XML) dialect that provides the instantiation of the
FUs composing the codec, their parameterization, as well as the specification of the
connections. FNL is another name for the XML Dataflow Format (XDF). For the
network example of Figure 3.4, we have 2 FUs FU A and FU B. The corresponding XDF
code is presented in Listing 3.1. Each vertex or edge from the graphical representation
(Figure 3.4) corresponds to an element of the XML-based representation (Listing
3.1). For example, the vertex FU A represents one instance of an entity which
is identified by its Class composed of the package name, i.e. the localization of
the entity (test.example1.), and the name of the entity (Algo FU A). For this
instantiation, the parameter counter is set to 0. An edge represents a Connection,
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i.e. a communication channel, between two entities. An FNL defines 3 types of edges:
(1) between an input port of a network and an instance (input) (2) between an output
port of an instance and an input port of another instance (Connection) (3) between an
output port of an instance and the output port of a network (Output). A connection
may also be parametrized with a specific channel size. FNL allows also hierarchical
constructions, i.e. a FU can be described as a composition of other FUs.

– The specification of the RVC-Bitstream Syntax Description Language (BSDL) [ISO/IEC
23001-5], which is a subset of the standard MPEG BSDL, a language syntactically
describing the structure of the input encoded bitstream.

– The specification of the RVC-CAL, the language that is used to express the behavior
of each FU (Section 3.4).

• ISO/IEC23002-4 [ISO/IEC CD 23002-4], also called MPEG-C Part 4, specifies a normative
standard library of video coding algorithms employed in the current MPEG standards, the
Video Tool Library (VTL). VTL represents each coding tools from MPEG standards as
one FU. Each FU has a textual specification that provides its purpose and a reference
implementation expressed in RVC-CAL.

FU A FU BA
B

C

D

E
F

Bits YUV

Figure 3.4: RVC network example.

1 <?xml version="1.0" encoding="UTF-8"?>
2 <XDF name="Example">
3 <Input src="FU_A" src-port="A"/>
4 <Instance id="FU_A">
5 <Class name="test.example1.Algo_FU_A"/>
6 <Parameter name="counter">
7 <Expr kind="Literal" literal-kind="Integer" value="0"/>
8 </Parameter>
9 </Instance>

10 <Instance id="FU_B">
11 <Class name="test.example1.Algo_FU_B"/>
12 </Instance>
13 <Connection src="FU_A" src-port="B" dst="FU_B" ds -port="D"/>
14 <Connection src="FU_A" src-port="C" dst="FU_B" dst-port="E"/>
15 <Output src="FU_B" src-por ="F"/>
16 </XDF>

Listing 3.1: XDF code of Figure 3.4

3.3.3 Instantiation Process of a RVC Abstract Decoder Model (ADM)

Figure 3.5 depicts the process of instantiating an ADM in the RVC framework. In the norma-
tive part, the concept of the RVC framework revolves around the idea of associating a decoder
description –combining a Bitstream Syntax Description (BSD) written in the RVC-BSDL with
the FU Network Description (FND) written in the FNL– to the encoded video bitstream. The
decoder configuration process takes place by constructing the syntax parser (built from the BSD),
and the network of FUs (built from the FND) that is carried out by interconnecting coding tools
from the VTL. Proprietary FUs i.e. not standardized in MPEG-C part 4 can be added to
a decoder configuration as long as they respect the MPEG-B part 4 paradigm. The outcome
of this configuration process is a normative behavioral CAL model of a Profile of a decoder
in a MPEG standard, namely the ADM. This configuration corresponds to an oriented graph
where vertices are the required FUs and edges are the communication dependencies between
FUs. Figure 3.4 gives an example of a decoder configuration. The ADM is the conformance
point of a RVC decoder specification. Once the ADM is specified, it is up to the users to derive
the implementations of the ADM using nonnormative tools (Section 3.5) for direct and efficient
synthesis targeting hardware or multi-core platforms [Gorin et al., 2013].
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Figure 3.5: The conceptual process of deriving a decoding solution by means of normative and
nonnormative tools in the RVC framework [Mattavelli et al., 2010].

3.4 RVC-CAL Dataflow Programming

This section presents the RVC-CAL language and covers the syntax (Subsection 3.4.1) and
semantics, i.e. the different MoCs that can be represented with the language (Subsection 3.4.2).

3.4.1 RVC-CAL Language

CAL [Eker and Janneck, 2003; Eker et al., 2003] is a dataflow- and actor-oriented language that
was developed and initially specified as a subproject of the Ptolemy project at the University
of California at Berkeley. RVC-CAL, a subset of the original CAL language, is a DSL that has
been standardized by MPEG RVC as the reference programming language for describing FUs’
behavior. An actor in RVC-CAL represents an instantiation of an RVC FU.

Actor Structure An RVC-CAL actor is an entity that is conceptually separated into an
header and a body.

• The header describes the name, parameters, and port signature of the actor. For instance,
the header of the actor shown in Listing 3.2 defines an actor called Adder. This actor takes
one boolean parameter whose value is specified at runtime, when the actor is instantiated,
i.e. when it is initialized by the network that references it. The port signature of Adder
is two input ports A and B and an output port C.

1 actor Adder(bool checkValue) int A, int B ==> int C:
2

3 //body
4

5 end

Listing 3.2: Header of an RVC-CAL Actor.

• The body of the actor may be empty, or may contain state variables declarations, functions,
procedures, actions, priorities, and at most one FSM:
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action A:[a], B:[b] ==> C:[c]

guard

do

end

Scheduling information

Body

add.compute:

a = 10

c = a + b;

Figure 3.6: Scheduling information and body of an action.

– State variables can be used to define constants and to store the state of the actor they
are contained in. The first four lines of Listing 3.3 shows the three different ways of
declaring a state variable.

– RVC-CAL supports the common concepts that are traditionally used by procedu-
ral languages such as functions and procedures. Listing 3.3 shows an example of a
function and a procedure declaration.

1 // State v a r i a b l e s
2 i n t coeff = 32 ; // i n i t i l i a z e a constant
3 uint ( s i z e =4) num_bits := 0 ; // i n i t i a l i z e a va r i ab l e
4 uint ( s i z e =16) bits ;
5
6 // Functions
7 f unc t i on abs ( i n t ( s i z e =32) x ) −−> i n t ( s i z e =32) :
8 i f (x > 0) then x e l s e −x end
9 end

10
11 //Procedures
12 procedure max ( i n t a , i n t b )
13 var
14 i n t result := 0
15 begin
16 i f (a > b ) then
17 result := a ;
18 e l s e
19 result := b ;
20 end
21 end

Listing 3.3: State variables, functions and procedures declarations in RVC-CAL.

– The only entry points of an actor are its actions; functions and procedures can only
be called by an action. An action corresponds to a firing function, which describes,
in a procedural manner, the behavior of the actor during action’s execution or firing.
Figure 3.6 shows the syntax of an action definition. An action may be identified by
a tag, which is a list of identifiers separated by colons, where ta denotes the tag of
action a (e.g., add.compute). The scheduling information, that defines the criteria
for action to fire, involves:

1. the patterns of tokens read and written by a single action which are called input
pattern and output pattern;

2. firing conditions, called guards or peek pattern, that constraint action firings ac-
cording to the values of incoming tokens and/or state variables. Note that guard
conditions can ”peek” at the incoming tokens without actually consuming them.

The contents of an action, that are not scheduling information, are called its body,
and define what the action does. The body of an action is like a procedure in most
imperative programming languages, with local variables and imperative statements.
Statements may be conditionals (if/then/else), loops (for/while), calls to func-
tions and procedures, and assignments to local and state variables.
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– Priorities establish a partial-order between action tags. They have the form t1 > t2
> ... > tn . Priorities define the order in which actions are tested for schedulability
(lines 9− 11 of Listing 3.4).

– An FSM regulates the action firings according to state transitions in order to describe
the internal scheduling of an actor (lines 12− 17 of Listing 3.4).

1 ac to r Abs ( ) i n t ( s i z e =16) I
2 ==> uint ( s i z e =15) O , u int ( s i z e =1) S :
3 pos : a c t i on I : [ u ] ==> O : [ u ] end
4 neg : a c t i on I : [ u ] ==> O : [ u ]
5 guard u < 0
6 end
7 unsign : a c t i on ==> S : [ 0 ] end
8 sign : a c t i on ==> S : [ 1 ] end
9 p r i o r i t y

10 neg > pos ;
11 end
12 schedu le fsm s0 :
13 s0 (pos ) −−> s1 ;
14 s1 (unsign ) −−> s0 ;
15 s0 (neg ) −−> s2 ;
16 s2 (sign ) −−> s0 ;
17 end
18 end

Listing 3.4: An RVC-CAL actor example with priority and FSM.

Type System The type system is one of the major differences between the original CAL and
RVC-CAL. Whereas CAL keeps an abstract type system authorizing untyped data, RVC-CAL
defines a practical type system dedicated to the development of signal processing algorithms,
including:

• A logical data type which has two potential values true and false and is declared using
the keyword bool.

• Bit-accurate integer data types: an integer can be signed or unsigned, declared with the
int and uint keywords respectively. Moreover, the bit-width may be omitted, in which
case the type has a default bit-width, or it can be specified by an arbitrary expression. For
instance the type int(size=8) considers a signed integer coded on 8 bits.

• Floating-point types coded with 16, 32 and 64 bits, that are declared respectively using
the half, float and double keywords.

• A type to describe a sequence of characters, String.

• A list type that behaves more like an array type, and is declared with a given type and
size, such as List(type:int,size=8) that represents a list of 8 integers.

3.4.2 Representation of Different MoCs in RVC-CAL

RVC-CAL Semantics Figure 3.7 illustrates the principles of the RVC-CAL dataflow pro-
gramming model. In this model, FUs are implemented as actors containing a number of actions
and internal states. An actor is a modular component that encapsulates its own state. The
state of any actor is not shareable with other actors. Thus, an actor cannot modify the state
of another actor. The absence of shared state allows the actors to execute their actions while
avoiding race conditions on their state. Interactions between actors are only allowed through
FIFO channels, connected between ports of actors. The behavior of an actor is defined in terms
of a set of actions. The actions in an actor are atomic, which means that once action fires no
other action can fire until the previous is finished. An action firing is an indivisible quantum
of computation that corresponds to a mapping function of input tokens to output tokens. This
mapping is composed of three ordered and indivisible steps:

• consume input tokens;
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Figure 3.7: Pictorial representation of the RVC-CAL dataflow programming model [Amer et al.,
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Figure 3.8: Classification of dataflow MoCs with respect to expressiveness and analyzability
[Wipliez and Raulet, 2010].

• modify internal state;

• produce output tokens.

Each action of an actor may fire depending on four different conditions:

1. input token availability (i.e. there are enough tokens on all its input ports);

2. guard conditions (that evaluate actor’s internal state and peek into the input tokens’ value);

3. FSM based action scheduling;

4. action priorities (that describe which action shall be fired for when multiple actions are
eligible to fire).

The topology of a set of interconnected actors constitutes what is called a network of actors.
At the network level, the actors can work concurrently, each one executing their own sequential
operations. RVC-CAL also allows hierarchical system design, in which each actor can be specified
as a network of actors.
A MoC , i.e. the interpretation of a network of actors, determines its semantics-it determines
the result of the execution, as well as how this result is computed, by regulating the flow of data
as well as the flow of control among the actors in the network [Eker and Janneck, 2003].

Denotational Semantics of the MoC of RVC-CAL The dataflow model standardized in
MPEG RVC is based on the DPN [Lee and Parks, 1995]. This model is selected since it is the most
expressive model among other dataflow models, such as Parameterized Synchronous Dataflow
(PSDF) [Bhattacharya and Bhattacharyya, 2001], Cyclo-Static Dataflow (CSDF) [Bilsen et al.,
1995] or SDF [Lee and Messerschmitt, 1987] (Figure 3.8). Of course, the RVC-CAL supports
implementations of actors that can have a behavior that is data- and state-independent i.e. static
(SDF), state-dependent i.e. cyclo-static (CSDF), data-dependent i.e. quasi-static (PSDF), or
data- and state-dependent i.e. dynamic (DPN). In this thesis, my main focus is on the dynamic
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behavior.
RVC-CAL dataflow model respects the semantics of DPN. I define here the denotational semantic
used in [Lee and Parks, 1995]. DPNs are shown to be a special case of KPNs [Kahn, 1974]. A
DPN program is a network of dataflow actors that communicate through unidirectional FIFO
channels with unbounded capacity. DPNs are described by a graph G = (V,E), where V is a set
of dataflow actors, and E is a set of FIFO channels. Each channel e ∈ E carries a possibly infinite
sequence of tokens denoted X = [x1, x2, ...], where each xi is a token. We denote the empty
sequence as ⊥. We write X ⊆ Y to say sequence X is a prefix of sequence Y . E.g. [x1, x2] ⊆
[x1, x2, x3]. The set of all sequences is denoted as S and the set of n-tuples of sequences on the
n FIFO channels of an actor is denoted as Sn, that is X = {X1, X2, ..., Xn} ∈ Sn. Examples of
elements of S2 are s1 = [[x1, x2, x3],⊥] or s2 = [[x1], [x2]]. The length of a sequence is given by
|X|, similarly the length of an element s ∈ Sn is in turn noted as |s| = [|X1|, |X2|, ..., |Xn|]. For
instance, |s1| = [3, 0] and |s2| = [1, 1]. For actor α ∈ V , the sets inports(α) = {1, 2, ..., p} and
outports(α) = {1, 2, ..., q} denote input and output ports. Lee [Lee and Parks, 1995] extends
the KPN principle by introducing the notion of firing. Execution of a DPN is a possibly infinite
execution of its actors. The execution of a DPN actor is a sequence of atomic firings. Firings
of the actor can be represented with a firing function that maps a set of input sequences to
a set of output sequences, such as f : Sp → Sq. Actor α may have multiple firing functions
Fα = {f1, f2, .., fn} where fi : Sp → Sq for 1 ≤ i ≤ n. Each firing function fi ∈ Fα has an
associated firing rule. Hence, actor α has n firing rules Rα = {R1, R2, ..., Rn}, one for each
firing function. A firing function is enabled if and only if its firing rule is satisfied. A firing rule
Ri ∈ Rα is a finite sequence of patterns and specifies rules for each of the p input ports, given
as Ri = [Pi1, Pi2, ..., Pip] ∈ Sp. Each pattern Pij is an acceptable sequence of tokens in Ri on
one input j from the input p of an actor. For firing rule Ri to be satisfied, each pattern Pij

must form a prefix of the sequence of unconsumed tokens at input port j as Pij ⊆ Xj , for all
j = 1, ...p. The pattern Pij =⊥ is satisfied for any sequence, whereas the pattern Pij = [∗] is
satisfied for any sequence containing at least one token. The symbol ∗ denote a token wildcard.
E.g. consider an adder with two inputs. It has only one firing rule, R1 = {[∗], [∗]}, meaning
that each of the two inputs must have at least one token. Conclusively, instead of the context
switching found in the KPN model, the DPN can be executed by continuously scheduling actor
firings at run-time according to firing rules (dynamic scheduling).
I have stated that one essential benefit of the DPN model lies in its strong expressive power, so
as to simplify algorithm implementation for programmers and create efficient implementations.
This expressive power includes:

• The ability to describe data- and state-dependent behaviors: We call a firing rule data-
dependent if it has a rule whose patterns depend on values of input tokens. We call an
actor data-dependent if it has a data-dependent firing rule. We call a firing rule state-
dependent if it has a rule whose patterns depend on the value of the state of the actor.
We call an actor state-dependent if it has a state-dependent firing rule. State and data
dependencies allow us to implement dynamic actors whose input and output rates vary
between firings. To do so, the RVC-CAL language extends the DPN MoC by adding a
notion of guard to firing rules. Formally the guards of a firing rule are boolean predicates
that may depend on the input patterns, the actor state, or both, and must be true for
a firing rule to be satisfied. We define the guards of a firing rule with predicates that
return a set of valid sequences. Predicates are associated to the patterns of the rule so
that Gij is the guard predicate associated to the jth pattern of Ri. An interesting example
of a data-dependent actor is the Select actor in Listing 3.5, which has the firing rules
{R1, R2}, where

R1 = {[∗],⊥, [T ]} (3.1)

R2 = {⊥, [∗], [F ]} (3.2)

where T and F match true and false-valued booleans.

1 acto r Select ( ) i n t ( s i z e =8) A , i n t ( s i z e =8) B , bool S ==> i n t ( s i z e =8) output←↩
:

2 ac t i on A : [ v ] , S : [ sel ] ==> output : [ v ]
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3 guard sel
4 end
5 ac t i on B : [ v ] , S : [ sel ] ==> output : [ v ]
6 guard not sel
7 end
8 end

Listing 3.5: The Select actor in RVC-CAL.

• The ability to produce time-dependent behaviors: DPN places no restrictions on the de-
scription of actors, and as such it is possible to describe a time-dependent actor in that its
behavior depends on the time when the tokens are available. An actor is time-dependent
when a lower priority action requires fewer tokens than a higher priority action and their
guard expressions are not mutually exclusive [Wipliez and Raulet, 2012].

• The ability to express non-determinism: DPN adds non-determinism to the KPN model,
by allowing actors to test an input port for the absence or presence of data. Indeed, in
a KPN process, writes to a FIFO are non-blocking (they always succeed immediately),
but reads from a FIFO are blocking. This means that a process that attempts to read
from an empty input channel stalls until the buffer has sufficient tokens to satisfy the read.
Conversely, in a DPN actor, reads from a FIFO are non-blocking. This means an actor will
only read data from a FIFO if enough data is available, and a read returns immediately. As
a consequence, an actor need not be suspended when it cannot read. Listing 3.6 shows an
example of a non-determinate merge in RVC-CAL. Its behavior consists in moving tokens
whenever they arrive on any of its two inputs to its unique output. Hence, the output
sequence depends on the arrival times of the input tokens.

1 acto r merge ( ) i n t ( s i z e =8) A , i n t ( s i z e =8) B ==> i n t ( s i z e =8) output :
2 ac t i on A : [ v ] ==> output : [ v ] end
3 ac t i on B : [ v ] ==> output : [ v ] end
4 end

Listing 3.6: The merge actor in RVC-CAL.

3.5 RVC-CAL Code Generators and Related Work

The DPN MoC defined in the previous section makes it possible to get efficient implementations
of RVC specifications whatever the platform targeted. As explained in Section 3.3, the RVC
framework is informatively supported by several tools, which are code generators. These code
generators take the RVC ADM as input and generates respectively C/C++ code for software
targets and HDL code for hardware targets [Eker and Janneck, 2012].
CAL is historically supported by a Java interpreter integrated in Ptolemy II [Buck et al., 2002]
and in Moses [Esser and Janneck, 2001]. However, these two environments are currently updated
by the Open Dataflow environment (OpenDF) and the Open RVC-CAL Compiler (Orcc). I
reveal subsequently how an RVC-CAL dataflow program can be compiled to various target
languages, and emphasize on related work from the hardware implementation point of view and
their drawbacks. Figure 3.9 summarizes the existing hardware code generation tools supporting
RVC.

3.5.1 OpenDF

The OpenDF tool chain is open source and released under the Berkeley Software Distribu-
tion (BSD) license and consists of a simulator and compilers for hardware and software [Bhat-
tacharyya et al., 2008]. It is composed by two main parts: the front-end parses the CAL program
and generates an Intermediate Representation (IR) called XML Language-Independent Model
(XLIM). XLIM is an XML based format that represents CAL actors, at a level which is close
to machine instructions, in Static Single Assignment (SSA) form. The back-end then translates
XLIM into either C or HDL code:
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Figure 3.9: Non-standard tools for the automatic hardware code generation in the RVC frame-
work.

• OpenDF integrates a back-end, Xlim2C [von Platen, 2009], developed by Ericson as part of
the ACTORS project1, which translates an XLIM representation to a C program dedicated
to embedded platforms based on ARM processor. The tool flow from CAL to C in OpenDF
is also known as CAL2ARM as mentionned in workpackage D1b (CAL Mapping Tools) of
the ACTORS project.

• OpenForge acts as a back-end tool to generate a HDL representation from an XLIM one,
that targets Xilinx FPGAs. The tool flow from CAL to HDL in OpenDF is also known
as CAL2HDL [Janneck et al., 2008]. Each actor is translated separately into HDL and is
connected with FIFO buffers in the resulting RTL descriptions. That is, the final descrip-
tion is made up of a Verilog file for each actor and a VHDL file for the top: the highest
hierarchical representation of the design connections. The main issue with the CAL2HDL
tool chain is that the code generation does not support all the RVC-CAL structures (un-
signed integer types, procedures, loops and multi-token actions) and the generated code is
so difficult to manage and correct.
With the goal to overcome these issues, the OpenDF framework gave way to the Orcc
framework. I concentrate on the Orcc compiler in the next subsection as it is the basis of
my work.

3.5.2 Orcc

Started by Wipliez in 2009 [Wipliez, 2010], Orcc is an open-source toolkit for RVC-CAL dataflow
programs. Orcc is the successor of a first version of software code generator CAL2C [Roquier
et al., 2008a,b; Wipliez et al., 2008]. Orcc2 is a complete Integrated Development Environment
(IDE) based on Eclipse that embeds two editors for both actor and network programming, a
simulator, a debugger and a multi-target compiler. The primary purpose of Orcc is to provide
developers with a compiler infrastructure to allow software/hardware code to be generated from
RVC-CAL descriptions. The compilation procedure of Orcc is shown in Figure 3.10. The first
stage of the compiler, called front-end, is responsible of transforming RVC-CAL actors to
an IR of actors, which includes steps such as parsing, typing, semantic checking, and various
transformations. Parsing is done using the Xtext3 framework [Efftinge and Völter, 2006]. The
middle-end is the component that analyzes and transforms the IR actors and networks to
produce optimized IR actors and networks. The last stage of the compilation infrastructure is

1www.actors-project.eu
2http://orcc.sourceforge.net/.
3Xtext is available at http://www.eclipse.org/Xtext/.
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code generation, in which the back-end for a given language (e.g. C) generates code from a
hierarchical network and a set of IR actors. The back-end for a language L is called the ”L
back-end” (e.g. C back-end). Orcc does not generate assembly or executable code directly,
rather it generates source code that must be compiled by third-party tools, such as compilers
and synthesizers for this language. The code generation process is different for each back-end.
The different steps in the general code generation process, that a back-end can do, are listed
below:

1. Actor code generation: The first step is the transformations undergone by the IR of
actors, either generic transformations such as optimizations, or language-specific transfor-
mations necessary to generate code in a given language from the IR.

2. Network code generation: The second step is the transformations of the network, which
consist of closing the network by replacing parameters by their concrete values, flattening
a hierarchical network, and explicitly implementing broadcasts from a single output port
to several input ports.

3. Printing Code: The last step of code generation is printing code from IR actors and net-
works. It transforms an IR to a target language L in a textual form using a template-based
[Parr, 2004] pretty printer to automatic code formatting, Xtend 4, which is a simplified
programming language based on Java and fully integrated within Eclipse.

Orcc has currently several built-in back-ends that use the same specific IR:

• The C back-end [Wipliez, 2010; Wipliez et al., 2011; Yviquel, 2013] produces an applica-
tion described in portable ANSI C with multi-core ability.

• The Low Level Virtual Machine (LLVM) back-end [Gorin et al., 2011] generates
LLVM code for actors that can then be loaded on-demand along with an XDF network by
the Just-in-time Adaptive Decoder Engine (JADE).

• The Transport-Trigger Architecture (TTA) back-end [Yviquel et al., 2013] imple-
ments a full co-design for embedded multi-core platforms based on the TTA and generates
the software code executed on the processors using the TTA-based Co-design Environment
(TCE) as well as the hardware design that executes it.

• The XLIM back-end generates VHDL description using the OpenForge back-end. The
hardware code generator presented in more details in [Bezati et al., 2011] generates a
hardware description from CAL by translating Orcc’s IR to XLIM, and then compiling
XLIM to a HDL. The tool flow from CAL to HDL in Orcc is also known as ORC2HDL.
The restriction of this methodology is the lack of the support of multi-rate RVC-CAL
programs (i.e. the repeat construct is not supported). Although the solution proposed
by Jerbi et al. [Jerbi et al., 2012] to overcome this limitation, which is an automated
transformation of multirate RVC-CAL programs to single-rate programs, it leads to a
complex resulting code and performance reduction. Recent work [Bezati et al., 2013]
enhanced the ORC2HDL design flow, by directly feeding into OpenForge the IR’s Orcc,
known as Xronos. The main issue with this approach is the need to change some constructs
in the initial RVC-CAL code to be able to synthesize it.

4http://www.eclipse.org/xtend/.
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• The VHDL back-end: Another approach proposed by Siret et al. [Siret et al., 2010]
offers a new VHDL code generator by adding a new back-end to Orcc. Unfortunately, the
work lacked loop support and it was not finalized.

The Orcc project also maintains a repository of dataflow applications available for download5.

3.6 Conclusion

As discussed throughout Chapter 2, the drawbacks of existing video standards specifications
(whether with HDL-based or C-based languages) motivated the emergence of system-level de-
sign of embedded systems and revived the interest on dataflow programming for designing em-
bedded systems. In this context, the MPEG RVC standard has emerged as a new specification
formalism to design a video decoder at a system-level of abstraction by adopting the RVC-CAL
dataflow programming language, that behaves according to the DPN MoC. The RVC-CAL lan-
guage presents interesting features such as parallelism scalability, modularity and portability.
Moreover, the DPN MoC has the advantage of explicitly exposing concurrency and modeling
dynamic behavior, as found in video processing applications. While Chapter 3 described the
limitations of related work on the hardware implementation of an RVC ADM, the next chapter
describes the contributions of my thesis, that is to say the efficient and optimized hardware
implementation of dynamic dataflow programs in the RVC framework.

5https://github.com/orcc/orc-apps
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4
Toward Efficient Hardware Implementation of

RVC-based Video Decoders

“
You will come to know that what appears today to be a sacrifice will prove
instead to be the greatest investment that you will ever make. ”

Gordon B. Hinckley

4.1 Introduction

One of the research areas of the Image team of the Institute of Electronics and Telecommunica-
tions of Rennes (IETR) laboratory concerns the development of rapid prototyping methodologies
for parallel and embedded platforms. There are two central themes in rapid prototyping [Cooling
and Hughes, 1989]. The first one is a model to describe the behavior and the requirements of
systems. The second one is automatic methods and tools to quickly generate system prototypes
from the system models. Generating new prototypes and analyzing their characteristics allow
developers to identify critical issues of the prototype, and then to iteratively improve and refine
the developed embedded system.
In this chapter, we propose a fully automated design flow for rapid prototyping of RVC-based
video decoders, whereby a system-level design specified in RVC-CAL dataflow language is quickly
translated to a hardware implementation. Section 4.2 highlights the drawbacks of the XLIM
back-end and formulates our research issue. Section 4.3 details the proposed rapid prototyping
methodology. Section 4.4 presents rapid prototyping implementation results on the HEVC video
decoder.

4.2 Limitations of the Current Solution and Problem State-
ment

As related in Section 3.5.2, although hardware code generation from RVC-CAL dataflow pro-
grams has been first presented with the OpenDF framework [Janneck et al., 2008], the work of
[Bezati et al., 2011] presents an approach for unified hardware and software synthesis starting
from the same RVC-CAL specification. The purpose of this work is to use Orcc and generate
an XLIM code which is directly synthesizable with OpenForge. Figure 4.1 illustrates this com-
pilation flow. That is, the Orcc’s IR undergoes first a set of transformations such as inlining
of RVC-CAL functions and procedures, SSA transformations, Cast Adder and so on. After
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Figure 4.1: The compilation flow of the XLIM back-end [Bezati et al., 2011].
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Figure 4.2: Automatic M2M tokens transformation localization in the hardware generation flow
[Jerbi et al., 2012].

these transformations, the actors are printed in XML format respecting XLIM properties us-
ing a template engine called StringTemplate [Parr, 2004]. Then, OpenForge takes as input the
XLIM file and generates a Verilog file that represents the RVC-CAL actor with an asynchronous
handshake-style interface for each of its ports. Orcc generates a Top VHDL that connects the
Verilog generated actors with back-to-back or using FIFO buffers into a complete system.
However, one main limitation of the OpenForge synthesizer is the fact that it does not support
I/O multi-tokens reads/writes that consume/produce more than one token per execution. Multi-
tokens reads and writes are supported by the ”repeat” construct in RVC-CAL, as highlighted in
Listing 4.1 where the actor ”sum” consumes 5 tokens in its input and produces only one in its
output.

1 actor sum() int(size=8) IN ==> int(size=8) OUT :
2 add : action IN:[ i ] repeat 5 ==> OUT :[s]
3 var
4 int s : = 0
5 do
6 foreach int k in 0 .. 4 do
7 s := s + i[k] ;
8 end
9 end

10 end

Listing 4.1: A ”sum” actor written in RVC-CAL with the ”repeat” construct.

To overcome this issue, the work of [Jerbi, 2012] consists in automatically transforming the data
read/write processes from multi-tokens to mono-token while preserving the same actor behavior.
That is, the transformation detects the multi-tokens patterns of the actor and automatically
substitutes them with a set of actions that read in a mono-token way, and execute the body of
the action once the necessary tokens are present. This transformation involves the addition of an
FSM to properly manage this sequencing as well as internal buffers associated with read/write
indexes. All these required actions, variables and FSMs are both directly created and optimized
in the IR of Orcc before generating the XLIM as shown in Figure 4.2. This aspect of the
transformation localization in the conception flow is very important since it can be applied
on any back-end of Orcc, even if the resulting changes in the IR are intended for hardware
generation.

Although this solution has solved the main issue of the hardware generation flow from RVC-
CAL programs using Orcc and OpenForge, it may add excessive sequentialization of equivalent
actors states, resulting in overall performance and resource usage efficiency reduction. Moreover,
the code generation process was quite slow which will raise problems when dealing with more
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complex design than the AVC/H.264 decoder. However, it is valuable to investigate how to
support an efficient hardware implementation of the new emerging HEVC decoder from the
system-level. That is why this dissertation attempts to provide an alternative to the XLIM
back-end, which is rather a close to gate representation, and to the OpenForge synthesizer.

4.3 Rapid Prototyping Methodology

This section gives an overview of our rapid prototyping methodology to provide an efficient
hardware implementation of RVC-based video decoders. The aim of this work is to address
the limitations of the existing approaches to the prototyping of RVC-based video decoders as
complex as the HEVC decoder.

4.3.1 Outline of the Prototyping Process

As argued in Chapter 2, raising the level of abstraction to the system-level proved to be the
solution for closing the productivity gap in embedded system design. A well-defined design
flow enables interoperability and design automation for synthesis and verification in order to
achieve the required productivity gains. Our methodology is inspired by the Gajski Y-chart
and the Kienhuis Y-chart approaches (Figures 2.14 and 2.16) for system design and DSE. It
consists of a rapid prototyping implementation path from a system-level model based on the
RVC-CAL programming language down to synthesized system model and eventually a system
prototype [Abid et al., 2013]. The synthesized system model is rapidly generated using software
and hardware compilation tools. That is, the methodology combines the RVC-CAL compiler
Orcc, and the C-to-gate tool Vivado HLS from Xilinx. The reasons that govern our choice of the
C-to-gate tool was explained in Section 2.5. An overview of the proposed system-level design
flow is outlined in Figure 4.3. A typical system-level design flow is separated into two parts: a
front-end and a back-end. The following are the main steps of the presented methodology.

(a) The system design front-end (Orcc) takes a description of the application and target ar-
chitecture at its input. That is, applications are given in the form of a DPN MoC that
describes the actors behavior in RVC-CAL programming language. Target architectures
are given in the form of an XDF file that describes the network of one video decoder config-
uration. The RVC-CAL actors together with the XDF network form the ADM as explained
in Paragraph 3.3.3 of Section 3.3. The front-end encompasses automatic refinement for
both computation and communication separately as advocated by system-level design in
Section 2.6. At the output of the front-end, code generation then translates the RVC-CAL
description into the target language. We chose a subset of C as a target language which
is compliant with Vivado HLS. For this issue, we develop a new Orcc back-end that we
denoted the C-HLS back-end. Figure 4.4 depicts stage (a) in more details.

(b) In the back-end, C-based component models are synthesized down to RTL components in
the form of standard VHDL code such that they can feed into traditional logic and physical
synthesis processes. C-to-RTL HLS is provided by Vivado HLS synthesizer. Vivado HLS
and its coding styles are deeply discussed subsequently. Figure 4.5 depicts the Vivado HLS
design flow in more details.

(c) In the end, the desired result at the output of a system-level design flow is a physical system
prototype that is ready for further manufacturing. That is, using Xilinx tools a gate-
level description is created by logic synthesis from a RTL model. Then, physical synthesis
automates the placement of the gates in the FPGA and the routing of the inter-connections
between gates from a gate-level description, which produce a full FPGA configuration
bitstream.

When implementing our proposed system design flow, a number of questions arise: how to
preserve the DPN semantics when implementing DPN MoCs down to C-based code, how to
generate a C-based code compliant/synthesizable with Vivado HLS, how to preserve the abstract
system architecture in the system implementation, how to perform automatic validation and
verification of the functionality and performance of the complete design for automatic Design-
Space Exploration (DSE). We will try to answer to all these questions in the following sub-
sections.
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Figure 4.5: HLS stage (b) of Figure 4.3.

4.3.2 System-Level Synthesis using Orcc

This section details the system-level synthesis stage (a) of Figure 4.3. First we refer to the
Vivado HLS User Guide [XIL, 2014] for details on the supported and unsupported C constructs
by Vivado HLS, to be able to generate code for C-based HLS from RVC-CAL. Then we explain
the code generation process within Orcc including computation and communication refinement
with respect to the DPN MoC as a further consideration. We refer to Sub-section 3.5.2 for the
general code generation process within Orcc.

4.3.2.1 Vivado HLS Coding Style

While Vivado HLS supports a wide range of the C language, some constructs are not synthesiz-
able, including:

• Dynamic memory allocation: Vivado HLS does not support C++ objects that are dynami-
cally created or destroyed with function calls such as malloc(), alloc(), free(), new
and delete.

• System calls: all communication with the FPGA must be performed through the input
and output ports. There is no underlying Operating System (OS) (such as time() and
printf()) or OS operations (such as file read/write) in an FPGA. For example, print
statements are automatically ignored by Vivado HLS and there is no requirement to remove
them from the code.

• Pointers: despite the restriction on dynamic memory allocation, pointers are well-supported
by the Vivado HLS expect some cases:

– when pointers are accessed (read or written) multiple times in the same function.

– when using arrays of pointers, each pointer must point to a scalar or a scalar array
(not another pointer).

– Vivado HLS supports pointer casting between native C types but does not support
general pointer casting, for example casting between pointers to differing structure
types.

• Recursive functions: recursive functions cannot be synthesized.

One of the benefits of using a DSL like RVC-CAL dataflow language to generate code for C-based
HLS is the fact it does not support such aforementioned constructs, i.e. no dynamic memory
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allocation, no pointers, no system calls and no recursive functions. Additionally, RVC-CAL
dataflow networks are a natural abstraction of hardware architectures by providing hierarchical,
inherently parallel descriptions and by explicitly specifying interfaces and bit-accuracy (Section
3.4.1). Advantageously, Vivado HLS supports interface management and provides arbitrary
precision data type libraries for modeling data types with a specific width.
In the rest of this sub-section, scheduling policies and communication mechanisms are discussed.

4.3.2.2 Automatic Communication Refinement

Due to huge amounts of data, communication synthesis is a critical issue that has to be considered
extensively in order to obtain efficient implementations from system-level video processing appli-
cations. Consequently, the following paragraphs aim to address the communication refinement
step within Orcc. This step refines RVC-CAL communications to high-level communications in
the form of C code according to a particular communication mechanism.

Interface Specification At the system-level, the port signature of the Select actor of List-
ing 3.5 is three input ports A, B and S and one output port output. The C-HLS back-end
automatically translates this port signature into interface declaration in the C code as depicted
in Listing 4.2.

1 #include <hls_stream.h>
2 typedef signed char i8;//8-bit user defined type
3 // Input FIFOS
4 extern hls::stream<i8> myStream_A;// A stream declaration
5 extern hls::stream<i8> myStream_B;
6 extern hls::stream<bool> myStream_S;
7 // Output FIFOs
8 extern hls::stream<i8> myStream_Output;

Listing 4.2: The C declaration of the interface ports of the actor Select using explicit streaming.

We chose to use an explicit streaming communication mechanism with the Vivado HLS C++
template class hls::stream<> for modeling streaming data objects. That is, the C-HLS back-
end models interface ports as external variables using hls::stream<> that behaves like a FIFO
of infinite depth in the C code. There is no requirement to define the size of an hls::stream<>.
Streaming data objects are defined by specifying the type and variable name. For example, a 8-
bit integer type is defined and used to create a stream variable called myStream A in Listing 4.2.
The header file hls stream.h defines the hls::stream C++ class used to model streaming
data.

Read and Write operations With respect to the DPN MoC semantics, accesses to an
hls::stream<> object are non-blocking reads and writes as described in Sub-section 3.4.2
and are accomplished by means of class methods:

• Non-blocking write: this method attempts to push variable v into the streammyStream Output
(Listing 4.3).

1 i8 v;
2 myStream_Output.write_nb(v);

Listing 4.3: Usage of non-blocking write method.

• Non-blocking read: this method reads from the head of the stream myStream A and assigns
the values to the variable v (Listing 4.4).

1 i8 v;
2 myStream_A.read_nb(v);

Listing 4.4: Usage of non-blocking read method.
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4.3.2.3 Automatic Computation Refinement

The computation refinement step includes the addition of details about the action firing and the
scheduling of actions while preserving the DPN MoC semantics.

Action Firing As highlighted in Figure 3.6, each action consists of its scheduling information
(input, output and peek patterns) and its body. In the C-HLS back-end, the scheduling infor-
mation and body are implemented in two unrelated data structures. This separation allows the
schedulability of actions to be tested in parallel when generating hardware code. The code that
tests the schedulability of an action is put in a procedure (e.g., isSchedulable select a()),
and the body of an action is represented as another procedure (e.g., Select select a()). As
described in Sub-section 3.4.2, the interactions between firing rules and FIFO channels can be
summarized with the help of two functions:

• gets the number of tokens available in a FIFO.

• peeks at a fixed number of tokens from a FIFO.

However, once data is read from an hls::stream<>, it cannot be read again. In other words,
the information about the number of tokens in the input FIFO channel and their values is not
available. That is, the peek stays however limited to the first token of the FIFO channel and
thus reduces the support of dynamic dataflow programs. As described in the Vivado HLS User
Guide , the use of the hls::stream construct forces the developer to cache the data locally. To
do so, we used the automatic transformation in the core of Orcc proposed in [Jerbi, 2012], that
we denote M2M tokens transformation in the rest of this manuscript. As noted in Section 4.2,
we take advantage of the fact that the transformation can be applied on any back-end of Orcc.
The transformation creates internal circular buffers for every input port where tokens could be
stored and peeked, and managed by read and write indexes as depicted in Listing 4.5. The size
of these internal buffers is the nearest power-of-two to the number of tokens read from the input
pattern. The indexes and the buffer are created as global variables so they can be used by other
actions.

1 static bool S_buffer[1];
2 static i32 readIndex_S = 0;
3 static i32 writeIndex_S = 0;
4 static i8 A_buffer[1];
5 static i32 readIndex_A = 0;
6 static i32 writeIndex_A = 0;
7 static i8 B_buffer[1];
8 static i32 readIndex_B = 0;
9 static i32 writeIndex_B = 0;

Listing 4.5: Internal buffers creation for every input port with indexes management.

Then, the idea is to separate the input and output patterns from the action and create mono-
token actions that use these patterns. That is, an action is created (Listing 4.6) just to read data
from the input stream and put it in the internal circular buffer while increment the read index
(readIndex := readIndex+ n, where n is the number of tokens read from the input pattern).

1 static void Select_untagged_A() {
2 i8 A_Input;
3
4 myStream_A.read_nb(A_Input);
5 A_buffer[readIndex_A & 0] = A_Input;
6 readIndex_A = readIndex_A + 1;
7 }

Listing 4.6: Input pattern’s action creation.

Idem for the write index when consuming the data from the buffers (Listing 4.7).

1 static void Select_select_a() {
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2 i8 v;
3
4 v = A_buffer[0 + writeIndex_A & 0];
5 myStream_Output.write_nb(v);
6 writeIndex_A = writeIndex_A + 1;
7 }

Listing 4.7: Output pattern’s action creation.

Consequently, the difference between the read and the write indexes represents the number of
available tokens in each buffer and all the firing rules of the actions are related to this differ-
ence. This index difference is important in the schedulability of the created actions. Using this
methodology, the firing rules of Equations (3.1) and (3.2) are implemented in Equations (4.1)
to (4.4) by using indexes management as follow:

P1,1 = [readIndex A− writeIndex A >= 1] (4.1)

G1,3 = [S buffer[writeIndex S] = true] (4.2)

P2,2 = [readIndex B − writeIndex B >= 1] (4.3)

G2,3 = [S buffer[writeIndex S] = false] (4.4)

where P1,1 and G1,3 are the pattern and the guard of firing rule R1, whereas P2,2 and G2,3 are
the pattern and the guard of firing rule R2.

Action Scheduler Whereas the bodies of the actions are represented as a set of procedures
in C-HLS, the guards, priorities, FSM, together with tests for input tokens availability, are
represented in a special action selection procedure called the action scheduler. However, the
implementation of the action scheduler in C-HLS differs slightly from the DPN MoC by further
considering availability of output buffer space. Theoretically, the fact that writes are non-
blocking poses no problem since FIFOs have an unbounded capacity as described in Sub-section
3.4.2. However, in practice, memory is limited in physical systems. Therefore the scheduler
has to ensure that enough space is available in the output channels to allow the firing of the
action without blocking. In order to have a correct hardware implementation, it was imperative
to update the action scheduler to the Vivado HLS streams with fullness and emptiness tests.
Testing actions fireability of the Select actor is done by an action scheduler according to Listing
4.8, which is a reformulation of the conditions to fire an action as described in Listing 3.5. The
Select scheduler is updated to check the streams (not full or not empty) before writing or
reading data.

1 void Select_scheduler() {

2 if (!myStream_A.empty() &&
3 isSchedulable_untagged_A()) {
4 Select_untagged_A();
5 } else if (!myStream_B.empty() &&
6 isSchedulable_untagged_B()) {
7 Select_untagged_B();
8 } else if (!myStream_S.empty() &&
9 isSchedulable_untagged_S()) {

10 Select_untagged_S();
11 }
12 if (isSchedulable_select_a() &&
13 !myStream_output.full()) {
14 Select_select_a();
15 }else if (isSchedulable_select_b() &&

16 !myStream_output.full()) {
17 Select_select_b();
18 }
19 }

Listing 4.8: The action scheduler of the Select actor.
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Figure 4.6: The corresponding RTL implementation of the interface ports of the actor Select
using explicit streaming.
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4.3.3 HLS using Vivado HLS

This section details the HLS stage (b) of Figure 4.3. The goal of the Xilinx Vivado HLS tool is
to create RTL implementation in VHDL format for each C-HLS component. The Xilinx Vivado
HLS includes the steps described in Figure 2.12. HLS performs two distinct types of synthesis,
namely:

1. Algorithm synthesis takes the content of the actor and schedules the functional state-
ments into RTL statements over a number of clock cycles. Each function is synthesized
into a corresponding module or entity/architecture.

2. Interface synthesis operates on interface ports and transform them into RTL ports with
appropriate hand-shaking signals, allowing the actor to communicate with other actors in
the system. In this case, the hls::stream<> variables are automatically implemented as
ap fifo interfaces with read, write, full and empty ports. That is, when an hls::stream
is synthesized it is automatically implemented as a FIFO channel with a depth of 1. For the
Select actor, the C specification is synthesized into an RTL block with the ports shown
in Figure 4.6, where the Select scheduler is the top-level function for synthesis. The
timing behavior is shown in Figure 4.7.

Table 4.1 summarizes additional control signals generated by default by the Vivado HLS tool for
all designs. Note that Vivado HLS supports C simulation prior to synthesis to validate the C
algorithm and C/RTL co-simulation after synthesis to verify the RTL implementation, in order
to improve productivity.
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Table 4.1: By default all HLS generated designs have a master control interface.

Signal Description
ap clk signal from external clocking source
ap rst asynchronous (or synchronous) reset
ap start enables computation
ap done end of computation
ap idle RTL block is idle
ap ready RTL block is able to accept next computation
ap return the data in the ap return port is valid when ap done
din data inputs
dout data outputs

4.3.4 System-Level Integration

Yet, each actor is translated separately to VHDL code. In order to elaborate the system-level,
we take advantage of the fact that:

• Vivado HLS tool works well in generating hardware implementation from a unique actor
at the component level as explained in the previous sub-section.

• The dataflow networks in RVC are described using an XML-based language, as depicted
in Listing 3.1, that can be parsed to extract information about hand-shaking connections.

In addition, while the streams are declared and used as externals enabling the hardware com-
ponent to communicate with FIFOs, the FIFOs need to be physically generated. For this issue,
we modified and used a generic FIFO component defined in the literature of Vivado HLS as
illustrated in Figure 4.8(a). The bit width of the FIFO is put as generic to match the bit width
of the input and output data of the source and target actors. Hence, while each individual actor
is synthesized to VHDL code with the appropriate hand-shaking signals, the instantiation of
the VHDL actors and the connecting FIFOs is done in a top-level netlist file ”Top” in VHDL
generated automatically by Orcc. Thus, the system-level is obtained by connecting the VHDL
components with FIFO buffers and the different actors can fire in a parallel way (Actor schedul-
ing). Figure 4.8(b) depicts an example of a system-level elaboration between a source and a
target actor.
For a synchronous behavior, all clocks and reset signals are connected to those of the ”Top”
entity.

Actor Scheduling As remarked in Sub-section 3.4.2, DPNs must be scheduled dynamically,
i.e. actors are scheduled at runtime by an actor scheduler. However, unlike software scheduling
[Yviquel et al., 2011], we do not need to schedule the actors in hardware since all actors can run
in parallel. Actors are executed concurrently, each one is managed by its own action scheduler.
In other words, the actors compute their values at the same time whenever data is available on
their inputs, which implies that the resulting system is fully self-scheduled pursuant to the flow
of tokens.

4.3.5 Automatic Validation

Once having the system implementation, validation is needed to check its correctness through
simulation. Simulation is a dynamic process to validate the functionality and the metrics of the
model in terms of the execution output for given input vectors [Chen and Dömer, 2014].
For the validation of the generated design, Orcc supports automated test-bench generation for
all granularity levels of the network which means that we created a test bench for each actor,
each network and each sub-network. This approach revealed to be very important to accelerate
debugging and assessing the hardware generated implementation at both component and system
levels.
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(b) An example of a system-level elaboration at the RTL between a source and a target actor using explicit streaming.

Figure 4.8: System-level elaboration using explicit streaming.

4.4 Rapid Prototyping Results: HEVC Decoder Case Study

To demonstrate the applicability of our proposed rapid prototyping methodology, we automat-
ically synthesized an RVC-CAL implementation of a HEVC decoder application into FPGA
according to the system-level design flow of Figure 4.3. We chose the HEVC standard as this
is the latest video coding standard of the ITU–T VCEG and the ISO/IEC MPEG in a Joint
Collaborative Team on Video Coding (JCT–VC). The HEVC standard is formally known as
ISO/IEC MPEG-H Part 2 (ISO/IEC 23008−2) and ITU–T H.265. Moreover, the HEVC decoder
involves high computational complexity engine consuming a coded bit-stream on its input, and
producing video data (samples) on its output. At 30 frames of 1080p per second, this amounts
to 30 ∗ 1920 ∗ 1080 = approximately 62.2 million pixels per second. In the common YUV420
format, each pixel requires 1.5 bytes on average, which means the decoder has to produce 93.3
million bytes per second.

4.4.1 RVC-CAL Implementation of the HEVC Decoder

In the following, some key features of the HEVC coding design are first outlined, then the
RVC-CAL implementation of the HEVC decoder used in this work is described.

4.4.1.1 The HEVC standard

The HEVC standard [Sullivan et al., 2012; Sze et al., 2014] is designed to address essentially
all existing applications of H.264/MPEG-4 AVC (Sub-section 2.2.2). It aims to particularly
achieve multiple goals including coding efficiency (i.e. reducing bitrate requirements by half with
comparable image quality), supportability of increased video resolution and implementability
using parallel processing architectures. Just like all video compression standards since H.261,
the general structure of HEVC is based on the hybrid video coding scheme, illustrated in Figure
2.2, which uses transform coding for exploiting spatial redundancies and Motion Compensation
(MC) for exploiting temporal redundancies. In the following, only the decoding process is in the
scope of this study. Figure 4.9(b) depicts the typical block diagram of a HEVC video decoder
deduced from the HEVC video encoder diagram of Figure 4.9(a). Before detailing the blocks of
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Figure 4.9: HEVC encoder/decoder.
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the diagram, it is noteworthy that HEVC supports the quadtree-based block partitioning concept
[Kim et al., 2012] based on a Coding Tree Unit (CTU) instead of a macroblock. A macroblock
consists of a fixed-size 16 × 16 block of luma samples and two corresponding 8 × 8 blocks of
chroma samples as used in prior video standards. A CTU consists of a luma Coding Tree Block
(CTB), the corresponding chroma CTBs and syntax elements. The variable-size L×L of a luma
CTB can be chosen as L = 16, 32, or 64 samples, with a larger block size usually increasing the
coding efficiency. Each CTU is partitioned into Coding Units (CUs) recursively. A CU consists
of a one luma Coding Block (CU) and two chroma CUs. The decision whether to code a picture
area using interpicture (temporal) or intrapicture (spatial) prediction is made at the CU level.
Each CU has an associated partitioning into Prediction Units (PUs) for the purpose of prediction
and into a tree of Transform Units (TUs) for the purpose of transform. Similarly, each CU is
split into Prediction Blocks (PBs) and Transform Blocks (TBs). This variable-size, adaptive
approach is particularly suited to larger resolutions, such as 4k × 2k. Related with the picture
partitioning, HEVC uses different techniques to support parallel decoding and error resilience
namely slices, tiles and Wavefront Parallel Processing (WPP) [Chi et al., 2012]. Slices partition
a picture into groups of consecutive CTUs in raster scan order. Tiles split a picture horizontally
and vertically into rectangular regions that can independently be decoded/encoded. WPP splits
a picture into rows of CTUs.
A decoding algorithm receiving an HEVC compliant bit-stream on its input would typically
proceed as follows.

• Entropy Decoder: decodes the video syntax elements within the incoming video bit-
stream, using Context-Adaptive Binary Arithmetic Coding (CABAC) [Marpe et al., 2003].
CABAC in HEVC was designed for higher throughput. HEVC uses a Network Abstraction
Layer (NAL) unit based bit-stream structure [Sjberg et al., 2012], which is a logical data
packet where each syntax structure is placed [Sze and Marpe, 2014].

• Inverse Quantization and Transform: the quantized transform coefficients, that are
obtained at the output of the entropy decoder, are de-quantized based on the Uniform-
Reconstruction Quantization (URQ) scheme controlled by a Quantization Parameter (QP))
and inverse transformed using the Inverse Discrete Cosine Transform (IDCT), at the TU
level [Budagavi et al., 2014; De Souza et al., 2014].

• Intra-prediction: predicts the samples of a PB according to reference samples (samples
of its already decoded neighboring PBs in the current picture) and intra-prediction mode.
It supports 35 intra-prediction modes: 33 angular modes, planar mode and DC mode. Ref-
erence substitution and smoothing are applied on reference samples in some cases [Sullivan
et al., 2012; Lainema and Han, 2014].

• Inter-prediction: uses previously reconstructed pictures that are available in the De-
coding Picture Buffer (DPB) as reference for Motion Compensation (MC), as well as
Motion Vectors (MVs). Inter-prediction in performed on the PU level. MV is the result-
ing displacement between the area in the reference picture and the current PB. Regarding
fractional reference picture samples interpolation, MVs are applied in quarter-sample accu-
racy with a 7/8-tap filter for luma inter-prediction, and eighth-sample accuracy with 4-tap
filter for chroma inter-prediction. HEVC supports weighted prediction for both uni- and
bi-prediction. It allows for two MV modes which are Advanced Motion Vector Prediction
(AMVP) and merge mode [Sullivan et al., 2012; Bross et al., 2014].

• Picture Reconstruction: the reconstructed approximation of the residual samples re-
sulting from de-quantization and inverse transform are then added to the intra- or inter-
prediction samples to obtain the reconstructed CU.

• In-loop Filters: consist of a Deblocking Filter (DBF) followed by a Sampling Adap-
tative offset (SAO) that are applied to the reconstructed samples in the prediction loop
before storing them in the DPB [Norkin et al., 2014]. The DBF is intended to reduce the
blocking artifacts due to block-based coding. The SAO filter is intended to minimize the
reconstruction error, enhance edge sharpness and suppress banding and ringing artifacts.
While the DBF is only applied to the samples located at block boundaries, the SAO filter
is applied adaptively to all samples satisfying certain conditions, e.g., based on gradient
[Sullivan et al., 2012].
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Figure 4.10: Top-level RVC FNL description of the HEVC decoder.

The HEVC Profile Definition A profile defines a set of coding tools or algorithms that can
be used in generating a conforming bit-stream. Decoders conforming to a specific profile must
support all features in that profile. Version 1 [Rec. H.265 , 04/13] of the HEVC standard defines
3 profiles (Main, Main 10 and Main Still Picture).

Main profile supports a bit depth of 8 bits per sample and 4 : 2 : 0 chroma sampling and
employs the features described above.

Main 10 profile supports bit depth up to 10 bits with 4 : 2 : 0 chroma sampling.

Main Still Picture profile is a subset of of the Main profile for still image coding and thus
interpicture prediction is not supported.

Version 2 [Rec. H.265 , 10/14] of HEVC adds 21 range extensions profiles, two scalable extensions
profiles, and one multi-view profile. Version 3 [Rec. H.265 , 04/15] of HEVC adds the 3D Main
profile.

4.4.1.2 The RVC-CAL HEVC Decoder

In parallel with the standardization process, the MPEG-RVC working group has standardized 3
video decoders using the RVC framework –MPEG–4 Visual, H.264/MPEG–4 AVC and HEVC–
which are available in the Open RVC-CAL Applications (Orc–apps) open-source repository1. In
the following, the RVC-CAL implementation of the HEVC decoder has been employed. Figure
4.10 shows a top-level RVC FNL description of the HEVC decoder. It encompasses 4 FUs:
Source reads the video bit-stream from a file, HEVCDecoder is the main FU which is itself
a hierarchical composition of actors, Display visualizes the decoded bit-stream and Message
Digest 5 (MD5) verifies data integrity. An FNL description of the HEVCDecoder FU is
shown in Figure 4.11, which is composed of 30 FUs and totals up 32 actors. Table 4.2 outlines
the characteristics of the 10 FUs in the top of the hierarchy. Each FU is mapped to a common
decoder functional block of Figure 4.9(b). Note that the structure of the decoder can be edited
using Graphiti2, a generic graph editor delivered as an Eclipse plug-in.

4.4.1.3 Test Sequences

The JCT–VC common test conditions define a set of configurations [Bossen, Oct. 2012] used
in HEVC Test Model (HM) testing. These video sequences are compliant with different HM
versions, encoded at various bit-rates and defined according to the picture size.

• Three configurations including All Intra (AI), Random Access (RA) and Low Delay (LD).

– AI mode means that each image is coded as an Intra image without any prediction
related to any other image. This mode can provide the best video quality but its
compression efficiency is quite low.

1Orc–apps is available at:https://github.com/orcc/orc-apps
2Graphiti is available at: http://graphiti-editor.sf.net
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Figure 4.11: The RVC FNL description of the HEVC Decoder FU.

Table 4.2: Characteristics of the FUs of the HEVCDecoder FU.

FU hier. #FUs #actors Description
Algo parser no n/a 1 corresponds to the entropy decoder.
generateInfo yes 2 2 obtains the MVs, among other impor-

tant information.
xIT yes 26 21 implements the inverse transform and

quantization.
QpGen no n/a 1 obtains the QP for each TU.
IntraPrediction no n/a 1 implements the intra-prediction.
InterPrediction no n/a 1 implements the MC.
DecodingPictureBuffer no n/a 1 corresponds to the DPB.
SelectCU no n/a 1 computes the picture reconstruction.
DBFilter yes 2 2 corresponds to the DBF filter.
SAO no n/a 1 corresponds to the SAO filter.
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– RA mode means that inter image prediction tools are used inside a Group Of Pictures
(GOP). This is the most common mode because it can provide the best quality vs.
compression trade off.

– LD mode is mainly used for videoconferencing services in order to warranty that the
encoding delay will be compatible with an interactive service (that means using low
complexity and robust tools that can work with small buffers).

• Six classes of test sequences.

– A (4 sequences, 2560× 1600, 30 and 60 Frames per Second (Fps))

– B (5 sequences, 1920× 1080, 24–60 Fps)

– C (4 sequences, 832× 480, 30–60 Fps)

– D (5 sequences, 416× 240, 30–60 Fps)

– E (3 sequences, 1280× 720, 60 Fps)

– F (4 sequences, 832× 480–1280× 720, 20–50 Fps)

Class A to E test sequences are camera captured content and class F contains screen
content sequences. Please refer to Appendix B for video classes details3.

• Four QPs including 22, 27, 32 and 37, where a QP of 37 produces very poor quality and
high compression whereas a QP of 22 produces very low compression and high quality.

4.4.2 Optimization Metrics

In order to quantify the quality of our proposed design, two performance metrics are considered:
time and area (Sub-section 2.2.3.1).
The time performance metrics are timing, throughput and latency. The standard metrics for
timing are clock period and frequency. The maximum frequency of a FPGA design is determined
by the delay of its longest path, referred to as the Critical Path (CP). Throughput is the amount
of output samples per unit of time, measured in Samples per Second (Sps) or Fps. We can express
the throughput as:

(throughput) =
S

T ∗ C
. (4.5)

where S is the total number of output samples, T is the clock period and C is the number of
clock cycles required to compute the output samples. Latency is the time required, measured
in units of time (milliseconds (ms)), to compute an output sample for a corresponding input
sample.
Area is a measure of how many hardware resources are required to implement the design. Area
can be measured as a number or a percent of available resources. For our experiments, the
FPGA resource consumption (Sub-section 2.2.1.2) is given by the number of LUTs, FFs, slices,
BRAMs and DSP blocks.

4.4.3 Experimental Setup

The system-level design flow for rapid prototyping of dataflow programs (Figure 4.3) is imple-
mented using Orcc. Orcc is an open-source –under the BSD license– IDE based on Eclipse
supporting source-to-source code transformation (Sub-section 3.5.2). The implementation flow
(Appendix A) is summarized in Figure 4.12. The system-level specification is parsed into the
design flow based on user applied directives. After source-to-source code transformation, the
obtained C-HLS code is then synthesized and implemented using HLS and third-party tools.
We use Vivado 2014.3 from Xilinx as the state-of-the-art HLS tool. The RTL output is imple-
mented by Xilinx ISE 13.4 on the target FPGA platform Xilinx Virtex-7 (XC7V2000T package
FLG1925-1). The Virtex-7 XC7V2000T is the the largest device currently available: it contains
6.8 billion transistors, providing customers access to 2 million logic cells. Area consumption and
the CP delay are reported by ISE after P&R. ModelSim v10.1c is a package in Mentor Graphics
and is used for logic simulation of HDLs. Experiments was done on a 2.93 GHz Intel Centrino
Dual Core with 4 Go RAM running Windows 7 Professional.

3http://www.4ever-project.com/docs/files/4EVER HEVC.pdf
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Figure 4.12: Implementation flow.

4.4.4 Experimental Results

In the case study, we are implementing the RVC-CAL HEVC decoder (Main Still Picture profile)
into FPGA with the system-level design flow based on explicit streaming, that we denote the
Stream Design during experiments. In this chapter, we show that a simulated and synthesized
version of the RVC-CAL HEVC decoder (Main Still Picture profile) is rapidly obtained with
promising preliminary results. We present simulation and synthesis results for different bit-
streams encoded at different bit-rates (Figures 4.13(a), 4.13(b) and 4.13(d)):

• An AI Class-D HEVC video sequence BQSquare (416 × 240 image size, 60 Fps and QP
32).

• An AI and an RA Class-D HEVC video sequence BlowingBubbles (416 × 240 image
size, 50 Fps and QP 32).

• An AI Class-D HEVC video sequence RaceHorses (416×240 image size, 30 Fps and QP
22).

• An AI Class-B (HD) HEVC video sequence BasketballDrive (1920× 1080 image size,
50 Fps and QP 32).

The choice of such small video sequences resolution is advocated by the total amount of memory
required for HEVC decoding. Indeed, most of the memory is required for the DPB that holds
multiple pictures. That is why, the size of this buffer may be larger in HEVC for a given
maximum picture size, and could exceed the available memory of any FPGA. Although, we
tried to reduce this buffer by using low-resolution bit-streams, the DPB remains very memory
consuming. A possible solution in this case would be the use of an Synchronous Dynamic RAM
(SDRAM) which requires the development of a new Orcc back-end.

4.4.4.1 The Main Still Picture profile of HEVC case study

Simulation and synthesis results of the RVC-CAL HEVC decoder (Main Still Picture profile)
are shown in Tables 4.3 to 4.6 for a stimulus frequency of 50MHz. The FIFO channels are
bounded to 8192. As explained in Sub-section 4.3.5, the test infrastructure that we implemented
inside Orcc allows tests at different levels including system-level and component-level. Hence,
we simulated and synthesized some FUs of the RVC-CAL HEVC decoder (Main Still Picture
profile) in standalone fashion allowing workload analysis. The high latency of the RVC-CAL
HEVC decoder (Main Still Picture profile) using the Stream Design was expected since the
IntraPrediction and the SelectCU FUs store a big amount of tokens before starting the
processes. The throughput frequency can be far improved by exploiting Vivado HLS directives
that will be exposed in the following. We notice that this is a pioneer simulated and synthesized
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(a) BQSquare (416× 240 image size, 60
Fps and QP 32).

(b) BlowingBubbles (416× 240 image
size, 50 Fps and QP 32).

(c) RaceHorses (416 × 240 image size,
30 Fps and QP 22).

(d) BasketballDrive (1920×1080 im-
age size, 50 Fps and QP 32).

Figure 4.13: Decoded HEVC video sequences used in experiments.

Table 4.3: Time results for the RVC-CAL HEVC decoder (Main Still Picture profile) simulated
by the Stream Design for 3 frames of the BQSquare video sequence at 50MHz.

HEVCIntraDecoder

Latency (ms) 248.10

Sample Rate (Sps) 0.54× 106

Throughput (Fps) 3.66

Table 4.4: Maximum operating frequency and area consumption for the SelectCU and
IntraPrediction FUs of the RVC-CAL HEVC decoder (Main Still Picture profile) syn-
thesized by the Stream Design for 3 frames of the BQSquare video sequence on a Xilinx Virtex
7 platform (XC7V2000T) at 50MHz.

SelectCU IntraPrediction

Maximum frequency (MHz) 161.499 70.630

Number of Slice Registers 1400 6753

Number of Slice LUTs 2473 15692

Number of Block RAM/FIFO 9 23
1 Number of Slice Registers Available: 2443200 — 2 Number of Slice LUTs Available: 1221600 — 3 Number of Block

RAM/FIFO Available: 1292

Table 4.5: Time results for the RVC-CAL HEVC decoder (Main Still Picture profile) simulated
by the Stream Design for 3 frames of the BlowingBubbles video sequence at 50MHz.

HEVCIntraDecoder

Latency (ms) 250

Sample Rate (Sps) 0.81× 106

Throughput (Fps) 5

version of the RVC-CAL HEVC decoder (Main Still Picture profile) and the obtained results
can be considered a starting point.
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Table 4.6: Time results, maximum operating frequency and area consumption for the xIT,
Algo Parser and IntraPrediction FUs of the RVC-CAL HEVC decoder (Main Still Pic-
ture profile) synthesized by the Stream Design for 3 frames of the BlowingBubbles video
sequence on a Xilinx Virtex 7 platform (XC7V2000T) at 50MHz.

xIT Algo Parser IntraPrediction

Latency (ms) 0, 08602 0, 76672 0, 01986

Samples per second 4135831 2293599 2580387

Throughput (FPS) 27 15 17

Maximum frequency (MHZ) 86.417 84.863 70.630

Number of Slice Registers 1 14052 26956 6753

Number of Slice LUTs 2 218303 53106 15827

Number of Block RAM/FIFO 3 50 2208 23
1 Number of Slice Registers Available: 2443200 — 2 Number of Slice LUTs Available: 1221600 — 3 Number of Block

RAM/FIFO Available: 1292

Table 4.7: Throughput, latency and maximum frequency results on different operating frequen-
cies for the BlowingBubbles video sequence.

Frequency (MHz) 10 50 100 200 250

Latency (ms) 0.102 0.022 0.013 0.009 0.009
Throughput (Fps) 3 16 30 47 47
Maximum Frequency 69 68 108 162 129
Real Throughput (Fps) 22 22 32 37 23

4.4.4.2 The IntraPrediction FU Case Study

Table 4.7 shows the effect of operating frequency change on time performance of the Intra
Prediction FU, where clock frequency is varied from 10MHz to 250MHz. Understanding
of the effects of those variations is very important in the design of high performance digital
system, because these significantly affect the CP delay or the maximum operating frequency.
Our experiments affirmed that latency and throughput values are varying proportionally to the
operating frequency. That is to say, if we increase frequency from F to αF (α < 5), Latency is
decreased from L to L/α and throughput is increased from T to αT .

4.4.4.3 DSE Through Optimizations Directives

In this section, we show how to perform fast DSE with the SelectCU FU of the RVC-CAL
HEVC decoder as an example. To achieve this, we apply directive-based optimizations provided
by Vivado HLS. Our goal is to optimize the RTL designs produced by our proposed system-level
design flow to best adhere to designer-specified system goals such as area and/or performance
requirements. Exploring designs using Vivado HLS directive-based optimizations does not re-
quire the C-HLS code to be altered. These optimizations are specified as directives using Tcl
scripts, or can be embedded in the C-HLS source code at high-level. In our system-level design,
directives are automatically generated from the system-level using the template-based pretty
printer of Orcc. Then, a directives.tcl file containing the appropriate directives is auto-
matically created for each actor and executed in batch mode. We have afterward to experiment
with a variety of directives and determine through trial and error which directive will deliver an
improvement.
A summary of Vivado HLS directives can be found in Appendix C, classified by optimization
strategies (Area and/or time). For an in-depth explanation, please refer to [UG902 , v2015.2].
We examine in the following the most important directives that have been used in the optimiza-
tion of the SelectCU FU of the RVC-CAL HEVC decoder (Table 4.8):

1. Optimization 1 (Function Inlining): removes the function hierarchy and improves time
performance by reducing function call overhead. A function is inlined using the INLINE
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Table 4.8: Vivado HLS directive-based optimizations impact on the SelectCU FU of the
RVC-CAL HEVC decoder (Main Still Picture profile) synthesized by the Stream Design for
the RaceHorses video sequence on a Xilinx Virtex 7 platform (XC7V2000T) at 50MHz.

Latency (ms) Throughput (Fps) LUTs 1 Registers 2

No opt. 0.00686 26 38505 51889

Opt. 1 0.00686 41 38522 51955

Opt. 2 0.00564 62 29376 51889

Opt. 3 0.00754 41 30643 53319

Opt. 4 0.00582 43 60114 56673

Opt. 5 0.00516 71 43755 54205

Opt. 6 0.00564 62 31322 51886
1 Number of Slice LUTs Available: 1221600 — 2 Number of Slice Registers Available: 2443200

directive through the Tcl command set directive inline. The second line of Ta-
ble 4.8 shows a 1.57× throughput improvement after Function Inlining of the SelectCU
FU of the RVC-CAL HEVC decoder.

2. Optimization 2 (Loop Unrolling): transforms for-loop by creating multiple independent
operations rather than a single collection of operations, and enables all iterations to oc-
cur in parallel. A loop is unrolled using the UNROLL directive through the Tcl command
set directive unroll. The third line of Table 4.8 shows a 3.38× throughput improve-
ment and a 1.2× latency improvement after Loop Unrolling of the SelectCU FU of the
RVC-CAL HEVC decoder.

3. Optimization 3 (Array Mapping): combines multiple smaller arrays into a single large one
to help reduce BRAM resources. An array is mapped using the MAP directive through the
Tcl command set directive array map. The fourth line of Table 4.8 shows a 1.57×
throughput improvement and a decrease of 20% in area consumption after Array Mapping
of the SelectCU FU of the RVC-CAL HEVC decoder.

4. Optimization 4 (Array Partitioning): partitions large BRAM into smaller BRAMs or
into individual registers, to improve access to data and remove BRAMs bottlenecks.
An array is partitioned using the PARTITION directive through the Tcl command
set directive array partition. The fifth line of Table 4.8 shows a 1.65× improve-
ment in throughput against more than 50% increase in resource consumption after Array
Partitioning of the SelectCU FU of the RVC-CAL HEVC decoder.

5. Optimization 5 (Array Reshaping): creates a single new array with fewer elements but with
greater word-width and reduces the number of BRAM while still allowing the beneficial
attributes of partitioning: parallel access to the data. An array is reshaped using the
RESHAPE directive through the Tcl command set directive array reshape. The
sixth line of Table 4.8 shows a 2.73× improvement in throughput after Array Reshaping
of the SelectCU FU of the RVC-CAL HEVC decoder.

6. Optimization 6 (Binding): determines the effort level to use during the binding process
(Section 2.5) and can be used to globally minimize the number of operations used. Binding
is configured using the configuration config bind. The seventh line of Table 4.8 shows a
2.38× throughput improvement and a decrease of 18% in area consumption after Binding
of the SelectCU FU of the RVC-CAL HEVC decoder.

Ultimately, we come to several conclusions regarding the use of the Vivado HLS tool namely its
ability (1) to bring hardware design at higher abstraction level, (2) to increase design productivity
and (3) to allow fast DSE. DSE included partitioning a large RAM into smaller memories,
inlining functions, unrolling loops and binding operations, etc, which would be tedious in HDL.
In HDL designs, each scenario would likely cost an additional day of coding followed by then
testbench modification to verify correct functionality. However, with Vivado HLS these changes
took minutes and did not entail any major alteration of the source code. In other word, Vivado
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HLS allows a designer to focus more on the algorithms themselves rather than the low-level
implementation, which is error prone, difficult to modify and inflexible with future requirements.

4.5 Conclusion

The purpose of this chapter is to raise the level of abstraction in the design of embedded systems
to the system-level. A novel design flow was proposed that enables an efficient hardware imple-
mentation of video processing applications described using the RVC-CAL dataflow programming
language. Despite the huge advancements in HLS for FPGAs, designers are still required to have
detailed knowledge about coding techniques and the targeted architecture to achieve efficient
solutions. Moreover, the main downside of the HLS tools is the lack of the entire system con-
sideration. As a remedy, in this chapter, we proposed a design flow that combines a dataflow
compiler for generating C-based HLS descriptions from a dataflow description and a C-to-gate
synthesizer for generating RTL descriptions. The challenge of implementing the communication
channels of dataflow programs relying on MoC in FPGA is the minimization of the communi-
cation overhead. In this issue, we present in Chapter 5 a new interface synthesis approach that
maps the large amounts of data that multimedia and image processing applications process, to
shared memories on FPGA.
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5
Toward Optimized Hardware Implementation of

RVC-based Video Decoders

“
This is how you do it: you sit down at the keyboard and you put one word
after another until its done. It’s that easy, and that hard. ”

Neil Gaiman

5.1 Introduction

This dissertation deals with the hardware implementation of dataflow-based video decoders that
have been developed within the RVC framework. In Chapter 4, a fully automated design flow
methodology was proposed. That is, from RVC-based video decoders specifications, a dataflow
compilation infrastructure –Orcc– generates a C-based code, which is fed to a C-to-gate tool
–Xilinx Vivado HLS– to generate synthesizable hardware implementation. The raise of the ab-
straction level to the system-level, by the use of RVC-CAL, presents several advantages in the
design of video processing applications in terms of design productivity. Moreover, low-level im-
plementation details are no longer taken into account since only the architecture of the dataflow
program is considered at the system-level.
Nevertheless, the key issue in this design flow is the implementation and handling of FIFO chan-
nels, that may impact application performance in terms of both time and area. An appropriate
design willing to achieve efficient hardware implementation of RVC-CAL dataflow programs need
to minimize the unnecessary overhead introduced by FIFO accesses and scheduling of actions,
involved by dynamic dataflow model on which the RVC-CAL language is built. That is, an actor
is constituted by a set of actions that may fire according to the availability of tokens and to the
fulfillment of guards conditions. Afterward, a scheduling policy is defined to select one action to
fire.
The main contribution of this chapter is the enhancement of the implementation of the com-
munication channels between components. The goal is to optimize performance metrics such
as latency and throughput of dataflow-based video decoders. Therefore, the system-level design
flow presented in Chapter 4 is enhanced according to optimized communications and schedul-
ing. Section 5.2 highlights the limitations of the proposed C-HLS backend. The contribution
of this chapter is detailed in Section 5.3. Section 5.4 presents the results achieved using two
different RVC descriptions of the emerging HEVC standard: serial and parallel. We evince by
comparing test results how communication and scheduling overhead is reduced by an optimized
communication mechanism and scheduling policies.

77
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state 1start state 2

read Src

copy Src Dst

read Src

write done
write Dst

Figure 5.1: The FSM of the Transpose32× 32 actor.

5.2 Issues with Explicit Streaming

The first contribution of this dissertation, as described in Chapter 4, involves the design of
an automated tool-chain within the RVC framework that allows fast hardware generation from
system-level dataflow programs. In other words, the first primary goal is the correct and efficient
implementation of DPN-based programs onto FPGAs which was a challenging task. However,
in this proposed implementation, the overhead of the action scheduling and communication via
channels is considerable. The reason is the strong expressive power of the DPN MoC behind
dynamic dataflow programs, which states inter alia that both actors production and consumption
are not known a priori, i.e. actors can receive and send data at any rate, as explained in
Sub-section 3.4.2. Moreover, the M2M tokens transformation used to cache data locally in the
proposed solution with streams, as explained in Paragraph 4.3.2.3, modifies heavily the structure
of the actor by adding internal buffers for each input port. Besides, for each input port, it adds
an action for consuming input tokens from a stream and storing them into a local input buffer.
Then, it adds an action that performs the core computation, possibly fills a local output buffer for
each output port. Finally, it adds an action that writes the tokens toward the output stream, as
well as an FSM for coordinating these actions. In the worst-case scenario, if an actor consumes
n tokens from its input port and produces m tokens on its output port, we need to add at
least n +m+ 1 steps to fire an action. We illustrate this problem by considering the following
example. That is, the multi-rate token production and consumption is a recurring phenomenon
when dealing with blocks of pixels in video decoder, such as the transposition of 32 × 32 block
presented in Listing 5.1 that reads 1024 tokens from its input port Src and copies them in a
new order to its output port Dst.

1 package org.sc29.wg11.mpegh.part2.main.IT;
2

3 actor Transpose32x32 () int(size=16) Src
4 ==>
5 int(size=16) Dst
6 :
7

8 action Src:[ src ] repeat 1024 ==> Dst:[ dst ] repeat 1024
9 var

10 List(type:int(size=16), size=16) dst
11 do
12 Dst := [ src[ 32 * column + row ]:

for int row in 0 .. 31, for int column in 0 .. 31 ];
13 end
14 end

Listing 5.1: Transposition of a 32× 32 block in RVC-CAL

Considering the proposed solution with explicit streaming introduced in Chapter 4, the RVC-
CAL description of Listing 5.1 is translated into a C-HLS code whose action scheduler is illus-
trated in Figure 5.1. As presented in Sub-section 3.4.2, an action firing is an indivisible quantum
of computation composed of three ordered and indivisible steps as illustrated in Figure 5.1:
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1. Reading: the procedure read Src consumes input tokens in order from the input stream
and stores them into an internal input buffer. This procedure is executed 1024×.

2. Processing: the procedure copy Src Dst performs processing of tokens as defined in its
RVC-CAL description and fills an internal output buffer. Note that data processing is not
performed in order. This procedure is executed 1×.

3. Writing: the procedure write Dst consumes tokens from the internal output buffer and
writes them toward the output stream. This procedure is executed 1024×.

Although the proposed solution with streams respects the DPNMoC, it requires additional copies
between the streams and the internal buffers. Additionally, the consumption and production of
tokens are not done in parallel due to the sequential model of firing actions in an actor, which
can be a significant bottleneck for performances.
Hence, the second goal is the minimization of the communication and scheduling overhead.
In DPN MoC, the fact that actors are connected by passing tokens along channels, means that
communication is separated from the computation as evoked in Section 2.6. This is beneficial for
the system optimization since it enables us to focus on each concern independently – computation
and communication. Hence, we propose a novel approach for an optimized communication and
scheduling refinement to improve real-time performance constraints for video decoders.

5.3 Interface Synthesis Optimization

After explanation of how to model video decoders and how to synthesize them from a higher level
of abstraction in Chapter 4, this section addresses performance bottleneck introduced by both
the scheduling policy and the communication mechanism. This optimization has been integrated
in the design flow we have introduced in Chapter 4.

5.3.1 Shared-Memory Circular Buffer

The main bottleneck of the previous proposed solution with explicit streaming described in
Chapter 4 mainly lies on streaming interface which gives rise to communication overhead. To
tackle this problem, we enhanced the C-HLS backend by using implicit streaming rather than
explicit one. Thereby, interface ports are declared as external one-dimensional arrays so allowing
access to the external shared-memory as depicted in Listing 5.2 for the Select actor.

1 #define FIFO_SIZE 512
2 typedef signed char i8;
3 //Input FIFOS
4 extern i8 tab_A[FIFO_SIZE];
5 extern i8 tab_B[FIFO_SIZE];
6 extern bool tab_S[FIFO_SIZE];
7 //Output FIFOS
8 extern i8 tab_Output[FIFO_SIZE];

Listing 5.2: The C declaration of the interface ports of the actor Select using implicit
streaming.

Interface ports are defined by specifying the type, the variable name and the array size. For
example, a 8-bit integer type is defined and used to create an array called tab A of size 512
in Listing 5.2. The reason for using arrays of a fixed-size is that memory is limited in physical
systems and FIFOs size should be effectively specified. Estimation of minimal required FIFOs
size is impossible for dynamic dataflow models with timing and data dependencies. Therefore,
the general practice is that the FIFO size is initially guessed as the maximum communication
rate within the application and later increased if insufficient. For hardware designs, FIFOs size
setting out is valuable in that it impacts the resource usage, functionality and performance.
Having FIFOs that are too large consumes resources unnecessarily, which may increase the cost
of an implementation of a DPN specification. Having FIFOs that are too small may causes the
system to deadlock. Conversely, the resulting implementation may be slowed unnecessarily. The
issue of FIFO size optimization was addressed in [Brunet et al., 2013; Ab Rahman, 2014] based
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on critical path analysis of RVC-CAL dataflow programs.
In a fixed-size FIFO, writing and reading operations are concurrently executed. To mediate
actors’ communication with respect to the DPN semantic rules, bounded FIFOs are implemented
as circular buffers allocated in shared-memory. The data structure of a circular buffer consists
of a memory array and read and write indexes to array elements as presented in Listing 5.3 and
Figure 5.2. Both indexes are stored in unsigned integer variables.

1 struct FIFO {
2 tokenType tab_A[FIFO_SIZE];
3 unsigned int rIdx_A;
4 unsigned int wIdx_A;
5 };

Listing 5.3: Data structure of FIFO channel A of the actor Select.
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Figure 5.2: Conceptual view of a circular buffer.

Using circular buffers to implement FIFOs requires efficient index management. In the following,
writing process and reading process in the circular buffer are respectively expressed as producer
and consumer. As shown in Figure 5.3, the producer and consumer actors communicate ac-
cording to independent policies for reading and writing data to the FIFO while adhering to the
rule that only the producer actor modifies the write index and only the consumer actor modifies
the read index. Since an action firing is an indivisible quantum of computation, indexes are

producer
actor

consumer
actor

output port
input port

read index

write index

data array

shared memory

Figure 5.3: A shared-memory circular buffer used to mediate communication between actors
with respect to the DPN semantics.

incremented only once at the end of the action while preserving the DPN semantics. In other
words, the producer actor cannot access the FIFO involved by a reading process until the read
index is updated, and the consumer actor cannot access the FIFO involved by a writing process
until the write index is updated, as well.
Whereas writing and reading increase the indexes infinitely until the overflow of the variables,
fixed-size FIFO requires to use the modulo operation of FIFO SIZE to roll back to zeroth loca-
tion once the end of the array is reached. Since computing the modulo is costly on hardware, it
has been translated into a bit-and operation by forcing the size of the buffer to a power-of-two.
For the purpose to make the state of the read or write index visible by the producer or consumer
respectively, writing a copy of the read or write index respectively to a read or write index in
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shared memory is required. In other words, read and write indexes are transmitted at the end of
the action on external interface ports declared as one-dimensional arrays of size 1 (Listing 5.4).

1 extern unsigned int writeIdx_A[1];
2 extern unsigned int readIdx_A[1];
3
4 readIdx_A[0] = rIdx_A;
5 writeIdx_A[0] = wIdx_A;

Listing 5.4: Read and write indexes are stored on shared-memory one-dimensional arrays of size
1 for the actor Select.

Thereby, each producer/consumer actor manages its own index for writing/reading, but can get
access to both indexes’ states.
The difference between the code example of Listing 5.2 and that of Listing 4.2 lies on the
communication mechanism. When using arrays instead of streams as interface ports in the
generated C-HLS code, we get rid of adding internal buffers to cache data locally, and data are
pulled/pushed directly from/to the kth location of the array. In other words, accesses to the
FIFOs (i.e. store, load and peek operations) are carried out by accessing directly to the content
of the arrays as they are implemented as shared-memory and the additional copies to the internal
buffers are removed:

• Write operation is achieved by accessing the buffer according to write index updated just
once at the end of the action (Listing 5.5).

1 i8 v;
2 tab_Output[wIdx_Output & FIFO_SIZE] = v;
3 wIdx_Output = wIdx_Output + 1;

Listing 5.5: Write operation with implicit streaming.

• Read operation is achieved by accessing the buffer according to read index updated just
once at the end of the action (Listing 5.6).

1 i8 v;
2 v = tab_A[rIdx_A & FIFO_SIZE];
3 rIdx_A = rIdx_A + 1;

Listing 5.6: Read operation with implicit streaming.

• Peek operation is achieved by accessing the buffer directly without the update of the read
index, whereas peek operation with explicit streaming is carried out through the buffering
mechanism (Listing 5.7).

1 bool s;
2 s = tab_S[rIdx_S & FIFO_SIZE];

Listing 5.7: Peek operation with implicit streaming.

5.3.2 Scheduling Optimization

The overhead caused by the scheduling policies of the solution with explicit streaming can lead to
performance bottleneck. To overcome this issue, the action scheduler is optimized, as shown in
Listing 5.8 for the actor Select, so as to evaluate the firing rules that determine the fireability
of an action that way:

• The input pattern: every time there is data read, there has to be a check for the amount
of tokens required in the input channel (Line 2 in Listing 5.8).

• The peek pattern: every time there is a guard condition on the actor’s internal state and/or
a peek into the input tokens’ value, there has to be a check for the validity of the condition
(Line 4 in Listing 5.8).
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• The output pattern: every time there is a data write, there has to be a check for full buffer,
i.e. the availability of enough space in the output channel (Line 5 in Listing 5.8).

The unsigned difference (e.g. (wIdx A - rIdx A) for the actor Select) yields the number
of tokens placed in the shared-memory circular buffer and not yet retrieved, and thus indicates
the state of the buffer (empty or full) as highlighted in Listing 5.8. Using this methodology, the
firing rules of Equations (3.1) and (3.2) are implemented in Equations (5.1) to (5.6) by using
efficient indexes management of shared-memory circular buffer as follow:

P1,1 = [writeIdx A[0]− rIdx A >= 1] (5.1)

P1,3 = [writeIdx S[0]− rIdx S >= 1] (5.2)

G1,3 = [S buffer[readIndex S] = true] (5.3)

P2,2 = [writeIdxB [0]− rIdxB >= 1] (5.4)

P2,3 = [writeIdx2S[0]− rIdxS >= 1] (5.5)

G2,3 = [S buffer[readIndex S] = false] (5.6)

1 void Select_scheduler() {

2 if (writeIdx_A[0] - rIdx_A >= 1 &&
3 writeIdx_S[0] - rIdx_S >= 1 &&
4 isSchedulable_select_a()&&

5 (FIFO_SIZE - wIdx_output + readIdx_output[0] >= 1)){
6 Select_select_a();
7 }
8 else if (writeIdx_B[0] - rIdx_B >= 1 &&
9 writeIdx_S[0] - rIdx_S >= 1 &&

10 isSchedulable_select_b()) &&
11 (FIFO_SIZE - wIdx_output + readIdx_output[0] >= 1)){
12 Select_select_b();
13 }
14 }

Listing 5.8: The optimized action scheduler of the actor Select.

In case of success, the evaluation of the firing rule is followed by the firing of the associated
action (Line 6 in Listing 5.8).
The implementation of the action scheduler of the solution with explicit streaming and that
with implicit streaming, namely in case of multi-rate communication (e.g. Listing 5.1), shows
that the reading is done in parallel, in contrast to the serial reading resulting from the M2M
transformation. Besides, the parallel production of tokens uses non-blocking writes, which means
that the action fires only if the output FIFO has a space, thus eliminating the need to create
a new action just for the writing of tokens to FIFO as the M2M transformation does. Further,
the solution with implicit streaming requires neither additional copies between the streams and
the internal buffers as tokens are directly pulled/pushed from/to the shared-memory circular
buffer, nor an FSM for coordinating these steps as illustrated in 5.1 for explicit streaming. To
summarize, the three first steps of action firing (reading, processing and writing) are merged
together, thus reducing the number of instructions to fire an action. Moreover, the FIFO indexes
are updated after the action processing, thus letting the other actors use newly produced data
in parallel.

5.3.3 Synthesis of Arrays

As described in Sub-section 4.3.3, the HLS stage with Vivado HLS performs two distinct types
of synthesis upon the design: algorithm synthesis and interface synthesis. However, interface
ports with the solution with implicit streaming are implemented in the RTL as an ap memory
interface. This type of interface port is intended to communicate with a standard block RAM
resource within the FPGA with data, address, Chip-Enable (CE) and Write-Enable (WE) ports
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as illustrated in Figure 5.4 for the Select actor. In order to ensure array variables are targeted
at the correct memory type, we define the FPGA-specific hardware (single-port RAM) using the
set directive resource command of Vivado HLS for each array, e.g. set directive resource
-core RAM 1P "Select select a" tab A.

ap return

Select scheduler

ap start
ap done
ap idle
ap ready

ap rst
ap clk

tab Output address
tab Output ce
tab Output we

tab Output dout

tab A address
tab A ce

tab B address
tab B ce

tab S address
tab S ce

tab A din

tab B din

tab S din

Figure 5.4: The corresponding RTL implementation of the interface ports of the actor Select
using implicit streaming.

As each actor writing into and reading from a shared memory RAM knows each own write and
read index respectively (e.g. rIdx A and wIdx A for the actor Select), each corresponding
local variable is implemented in RTL as internal signal. Whereas, write and read one-dimensional
arrays (e.g. readIdx A[1] and writeIdx A[1] for the actor Select) where counts of the
number of tokens written to and read from the circular buffer are stored in shared-memory, are
implemented in the RTL as an ap memory interface with data, address, CE and WE ports as
well. The following timing diagram of Figure 5.5 describes the temporal behavior of the Select
actor using implicit streaming.

clk

t=0 t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8 t=9 t=10

tab B addr 0 1 2 3

tab B ce

tab B din XXX B1 B2 B3

readIdx B addr 0

readIdx B ce

readIdx B we

readIdx B dout 1 2 2 4

tab Output addr XXX 0 XXX 1 XXX 2 XXX

tab Output ce

tab Output we

tab Output dout XXX B1 XXX B2 XXX B3 XXX

writeIdx B addr 0

writeIdx B ce

writeIdx B we

writeIdx B dout 1 2 3 4

Figure 5.5: Timing behavior of ap memory interface ports of the actor Select.

5.3.4 System-Level Integration

RAM inference RAM inference is the process of synthesizing a memory block (RAM) from
a HDL program. By employing the template-based pretty printer of Orcc (Sub-section 3.5.2, we
write a VHDL code that properly declares and defines a dual-port RAM, using separate read and
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write ports (since two memory accesses can occur simultaneously) as illustrated in Figure 5.6.
Hence, the bit-width of the elements, the address bus width as well as the size of the memory
are automatically configured (Listing 5.9).

1 library ieee;
2 use ieee.std_logic_1164.all;
3 use ieee.std_logic_unsigned.all;
4 entity ram_tab is
5 generic(
6 dwidth : integer := 32;
7 awidth : integer := closestLog_2(fifoSize) ;
8 mem_size : integer := f i f o S i z e
9 );

10 port (
11 addr0 : in std_logic_vector(awidth-1 downto 0);
12 ce0 : in std_logic;
13 q0 : out std_logic_vector(dwidth-1 downto 0);
14 addr1 : in std_logic_vector(awidth-1 downto 0);
15 ce1 : in std_logic;
16 d1 : in std_logic_vector(dwidth-1 downto 0);
17 we1 : in std_logic;
18 clk : in std_logic
19 );
20 end entity;

Listing 5.9: RAM inference using pretty printing techniques in Orcc.

This step is crucial to explicitly associate the RTL descriptions of each actor with the dedicated
memory blocks, which we detail in the following.
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Figure 5.6: The RAM component implementation.

Through a straightforward translation of the RVC-CAL network into VHDL, the set of actors
components and block RAMs are instantiated and every dataflow connection is replaced with
the appropriate handshaking signals. As explained in Sub-section 4.3.4, we do not need to
schedule the actors in hardware since all actors can run in parallel pursuant to the flow of
tokens. Moreover, the size of each RAM is defined automatically according to the design in
order to avoid deadlock. Indeed, the RAM component is instantiated through inference by
adding a generic clause for the corresponding size (Listing 5.10).

1 connection.ramName : ram_tab
2 generic map (
3 dwidth => connection.fifoType.sizeInBits ,
4 awidth => closestLog_2(connection.safeSize) ,
5 mem_size => connection.safeSize )
6 port map (
7 clk => top_ap_clk,
8 addr0 => top_ connection.ramName_address0,
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9 ce0 => top_ connection.ramName _ce0,
10 q0 => top_ connection.ramName _q0,
11 addr1 => top_ connection.ramName_address1,
12 ce1 => top_ connection.ramName _ce1,
13 we1 => top_ connection.ramName _we1,
14 d1 => top_ connection.ramName _d1
15 );

Listing 5.10: RAM instantiation using pretty printing techniques in Orcc.

5.3.5 Test Infrastructure

Using pretty printing techniques, test benches are automatically generated in Orcc depending on
the need to evaluate the performance at the system-level or at the actor-level or at the action-
level. The test bench compares the outputs of the generated VHDL code with reference values.
These reference values correspond to the traces of the FIFOs generated using the C backend,
i.e. the tokens flowing within each FIFO buffer of the RVC-CAL actor-network are recorded as
FIFOs traces. In the following, we detail the elaborated test infrastructure inside the proposed
design flow:

1. In order to simulate an actor in a standalone fashion, a test infrastructure is carried out.
Actors that write/read into/from the memory buffer of an input/output port, respectively,
are added on either side of the current actor. As well, a test bench is generated for each
actor that accepts stimulus text files of each input and output port of the actor, i.e. the
FIFO traces are used to execute and analyze each RVC-CAL actor individually.

2. In order to identify the inefficient areas of the code which require optimization at the
actor-level, an action debug feature is added for each actor. This new feature provides a
Gantt-chart for each actor by recording the start and end of each action execution in order
to reveal the dependencies between actions.

3. In order to simulate the whole design, a test bench file is generated for the network. A
script, when executed, generates the hardware components of the whole network with a
single click. This enables to evaluate the global performance of the system.

5.4 Experimental Results

The goal of Section 5.4.1 is to firstly show the achieved improvements with the system-level design
flow based on implicit streaming, that we denote the RAM Design during experiments, on the
RVC-CAL HEVC decoder (Main Still Picture profile). Then, we demonstrate in Section 5.4.2
a simulated version of the RVC-CAL HEVC decoder (Main profile) followed by performance
bottleneck analysis and prospective Vivado HLS directive-based optimization. Finally, in Sec-
tions 5.4.3 and 5.4.4, we show how to exploit parallelism to improve performance. As case study,
we target 2 versions of an RVC-CAL HEVC video decoder. On the one hand, the standardized
serial RVC-CAL HEVC video decoder (Figure 4.11) denoted the Ref Design. On the other hand,
the parallel RVC-CAL HEVC video decoder denoted the YUV Design. The YUV Design is also
available in the Orc–apps open-source repository. As explained in Section 5.3.5, the test infras-
tructure that we implemented inside Orcc allows tests at different levels including system-level,
actor-level and action-level.

5.4.1 The Main Still Picture profile of HEVC case study

In this section, we implement the RVC-CAL HEVC decoder (Main Still Picture profile) into
FPGA with the RAM Design (explained in Section 5.3) to demonstrate performance improve-
ment compared to the Stream Design (explained in Section 4.3).

Stream Design vs. RAM Design We proceed by the logic simulation and synthesis of the
RVC-CAL HEVC decoder by the RAM Design as depicted in Tables 5.1 to 5.4. Compared to
Tables 4.3 to 4.6, simulation results show a throughput improvement with a speed-up factor of
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Table 5.1: Time results for the RVC-CAL HEVC decoder (Main Still Picture profile) simulated
by the RAM Design for 3 frames of the BQSquare video sequence at 50MHz.

HEVCIntraDecoder

Latency (ms) 64.83

Sample Rate (Sps) 2.71× 106

Throughput (Fps) 18.11

Table 5.2: Maximum operating frequency and area consumption for the SelectCU and
IntraPrediction FUs of the RVC-CAL HEVC decoder (Main Still Picture profile) syn-
thesized by the RAM Design for 3 frames of the BQSquare video sequence on a Xilinx Virtex
7 platform (XC7V2000T) at 50MHz.

SelectCU IntraPrediction

Maximum frequency (MHz) 161.160 70.630

Number of Slice Registers 1348 6443

Number of Slice LUTs 2494 15219

Number of Block RAM/FIFO 4 21
1 Number of Slice Registers Available: 2443200 — 2 Number of Slice LUTs Available: 1221600 — 3 Number of Block

RAM/FIFO Available: 1292

Table 5.3: Time results for the RVC-CAL HEVC decoder (Main Still Picture profile) simulated
by the RAM Design for 3 frames of the BlowingBubbles video sequence at 50MHz.

HEVCIntraDecoder

Latency (ms) 58

Sample Rate (Sps) 3.66× 106

Throughput (Fps) 24

5.2× as well as a latency improvement with a speed-up factor of 3.8× with the RAM Design
compared to the Stream Design. Indeed, the results largely depend on the replacement of the
copies between the streams and the internal buffers in the Stream Design, by a shared memory
communication in the optimized RAM Design. Besides, in the RAM Design, the three first steps
of action firing (Reading, processing and writing) are merged together, thus reducing the number
of instructions to implement an action. However, this number of instructions reduction remains
negligible ahead the number of lines of code of the Algo Parser FU due to the fine grained
communication rate, which explains the low values of the throughput of this FU (Column 3 of
Table 5.4). Moreover, the FIFO indexes are updated after the action processing, thus letting
the other actors using newly produced data in parallel. That is why the optimized design leads
to the achievement of good performance. There is however between 10% and 50% improvement
in resource consumption on average.

5.4.2 The Main profile of HEVC case study

According to the previous results, the RAM Design has lead to performance improvement com-
pared to the Stream Design since we enhanced communication and scheduling refinement in
hardware generation of dataflow-based video decoders. We notice however that the design is far
from meeting the designer-specified latency and throughput goals. So, to identify the inefficient
areas of the code which require optimization, we took the entire RVC-CAL HEVC decoder (Main
profile) and compiled it using the RAM Design. Then, we evaluated the hardware implementa-
tion for each actor independently in a standalone simulation (Table 5.5). Finally, we constructed
Gantt-chart for each actor by recording the start and end of each action execution and revealing
the dependencies between actions (Figure 5.8). The remainder of this section discuss also the
optimizations that we could perform to achieve the highest throughput, lowest latency FPGA
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Table 5.4: Time results, maximum operating frequency and area consumption for the xIT,
Algo Parser and IntraPrediction FUs of the RVC-CAL HEVC decoder (Main Still Pic-
ture profile) synthesized by the RAM Design for 3 frames of the BlowingBubbles video se-
quence on a Xilinx Virtex 7 platform (XC7V2000T) at 50MHz.

xIT Algo Parser IntraPrediction

Latency (ms) 0.03454 0.76384 0.01386

Sample Rate (Sps) 8470414 3495591 4668145

Throughput (FPS) 56 23 31

Maximum frequency (MHZ) 72.386 84.864 70.630

Number of Slice Registers 1 278201 26824 6488

Number of Slice LUTs 2 170212 56287 15210

Number of Block RAM/FIFO 3 96 2200 21
1 Number of Slice Registers Available: 2443200 — 2 Number of Slice LUTs Available: 1221600 — 3 Number of Block

RAM/FIFO Available: 1292

Table 5.5: Simulation results of the HEVC decoder (Main profile) for 10 frames of the
BlowingBubbles video sequence on a Xilinx Virtex 7 platform (XC7V2000T) at 50MHz..

Actors Latency (ms) Throughput (Sps) Throughput (Fps)
IntraPrediction 0.014 1563565.68 10.44
InterPrediction 1, 823 2173110, 003 14, 51
Algo Parser 0, 789 3118969, 44 20, 82
xIT 0, 942 9597782, 66 64, 08
SelectCu 0, 002 10000006, 68 66, 77
DBF 14, 209 5982586, 74 39, 95
SAO 13, 645 5805193, 43 38, 76
DPB 14, 529 10000006, 68 66, 77
HEVCInterDecoder 61, 67 1529111, 75 10, 21
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Latency Throughput

...
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HEVC Inter Decoder

Figure 5.7: Gantt-chart of the HEVC Inter Decoder.

implementation by applying Vivado HLS directive-based optimizations (Section 4.4.4.3) after
bottlenecks analysis.

5.4.2.1 Throughput Analysis

The overall throughput bottleneck is primarily due to the wait time between the last sample of
a picture till the first sample of the next picture is decoded, as illustrated in Figure 5.7. This
is evidenced by the fact that the DBF and the SAO filters are implemented with picture-based
processing, which needs the whole picture samples to be stored before filter process. This wait
time is taken into consideration in the overall throughput computation in Equation (4.5). That
is why a shorter wait time between decoded pictures would increase throughput.
Moreover, the results in Table 5.5 clearly show that the throughput evaluation of each actor in-
dependently is not equitably balanced. This difference can be partially explained by the fact that
the HEVC decoder is still being under development, especially concerning the complexity of the
actors. That is to say, the Algo Parser, the interPrediction and the IntraPrediction
FUs are by far the most complex actors in the network. Another explanation is the difference of
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granularity of the decomposition between the components of the decoder: the inverse transform
is hierarchical and designed with 21 actors (the xIT), while most of the other components are
designed with an unique actor.
Table 5.5 also shows that the IntraPrediction FU is a throughput bottleneck, which dictates
the overall throughput. Indeed, the IntraPrediction is done with neighboring blocks in the
same picture (spatial prediction). That is why the algorithm performs mostly iterative opera-
tions across windows in the picture. In order to achieve the required performance, we carefully
analyze each stage in the algorithm. The resulting Gantt-chart of the IntraPrediction FU
is shown in Figure 5.8(a), where the action getSamples launch reads input samples and the
action sendSamples launch writes output samples. The Gantt-chart shows that the through-
put bottleneck resides in the action sendSamples launch. There are two issues that limit the
throughput in this action:

• The action body contains 3 nested for-loops: By default loops are kept rolled in Vivado
HLS and one copy of the loop body is synthesized by using the same hardware resources and
re-used for each iteration. This ensures each iteration of the loop is sequentially executed.
That is why the for-loop should be unrolled to allow all operations to occur in parallel and
increase throughput.

• The action body contains also 3 ”reading from” arrays lumaComp, chComp u and chComp v.
Arrays are by default implemented as BRAMs in hardware which only has a maximum of
two data ports. This can limit the throughput. The throughput can be improved by parti-
tioning these arrays (BRAMs resources) into multiple smaller arrays (individual registers),
effectively increasing the number of ports.

5.4.2.2 Latency Analysis

At first, the important overall latency of the HEVCInterDecoder is due to the fact that the
DPB, the DBF and the SAO FUs store a big amount of tokens before starting the process
(Table 5.5). In order to further locate the latency bottleneck, we carefully analyze each action
of these actors through the Gantt-charts shwon in Figures 5.8(b) to 5.8(d) respectively. These
Gantt-charts take into account:

• The execution time of the actions that read input samples getPix, getBlk launch and
getCuPix launch, of these actors respectively.

• The execution time of the actions that write output samples sendCu luma launch,
sendSamples launch and sendSamples launch, of these actors respectively.

• The dependencies between the action that read input samples and the action that write
output sample.

Figures 5.8(b) to 5.8(d) show that there are strong data dependencies between the action that
reads input samples and the action that writes output samples, which causes a latency bottleneck.
The problem lies in the fact that the action that writes output sample requires all 149760 tokens
(equivalent to 416× 240 YUV picture size) to be ready before the computation can start. There
are two issues that limit the latency in the bodies of the actions getPix, getBlk launch and
getCuPix launch :

• Each action body contains 2 nested for-loops. Typically, it requires additional clock cycles
to move between rolled nested loops. It requires one clock cycle to move from an outer
loop to an inner loop and from an inner loop to an outer loop. So, the fewer the number
of transitions between loops, the less the time a design will take to start. Unrolling or
flattening a loop hierarchy allows loops to operate in parallel, which in turn decreases
latency.

• Each action body contains also an n-D (n ∈ {3, 4}) array pictureBuffer. Access to
arrays in Vivado HLS can create performance bottleneck since they are implemented as
BRAMs. Array partitioning can be used therefore to improve latency. Moreover the array
pictureBuffer creates data dependencies between loops inside actions. That is to say
the actions that write output samples and access the pictureBuffer array for read
cannot begin until the actions that read input samples have finished all write accesses to
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the array pictureBuffer. Data dependencies often prevent maximal parallelism and
minimal latency. The solution is to try ensure the actions that read input samples are
performed as early as possible.

• The action body of getCuPix launch contains in addition functions calls. We can reduce
function call overhead by removing all function hierarchy (inline) in order to improve
latency.

Time

getSamples launch

sendSamples launch

0, 00049 ms 114, 45817 ms

Latency Throughput

113, 90579 ms0, 01457 ms

(a) Gantt-chart of the IntraPrediction FU.
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(b) Gantt-chart of the DPB FU.
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(c) Gantt-chart of the DBF FU.
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Figure 5.8: Latency bottleneck analysis using Gantt-chart.

5.4.3 Task Parallelism Optimization

In the previous section, we explained how to analyze throughput and latency bottleneck in order
to apply Vivado HLS directive-based optimizations. In order to further improve the system per-
formance, optimizations of the dataflow program can be performed at the system-level. Indeed,
designers have the possibility to increase the level of parallelism by using refactoring techniques
of actors or actions. Refactoring of an actor/action essentially means splitting, replicating, or
modifying its computational elements such that an increase in parallelism is obtained. At the
level of actors, the xIT actor illustrated in Figure 5.9(a) is partitioned into the sub-network
illustrated in Figure 5.9(b). Each actor of the new sub-network performs a different set of opera-
tions, which typically requires the final merging of results as shown by the actor Block Merger.
Results in a real-time 50fps 1080p HEVC video sequence are shown in Table 5.6. Compared to
the original serial implementation of the xIT actor, the partitioned implementation achieves a
throughput improvement of roughly 4, 23× and a latency increase by 1, 17×, since additional
explicit parallelism is now exposed by partitioning the actor into several ones.

(a) (b)

Figure 5.9: Refactoring of the xIT actor.
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Table 5.6: Latency and sample rate improvement achieved when refactoring the xIT actor for
the BasketballDrive video sequence at 50MHz.

Serial xIT Parallel xIT

Latency (ms) 1, 17 0, 93
Sample Rate (Sps) 1, 20× 106 5, 10× 106

Figure 5.10: Example of the YUV-parallel split of the IntraPrediction FU.

5.4.4 Data parallelism optimization

5.4.4.1 YUV-Parallel RVC-CAL HEVC decoder

YUV-Parallel RVC-CAL HEVC decoder is also composed by 10 FUs as illustrated in Figure 4.11.
However, the so-called parallelism is due to the fact that the decoding process is split into three
parallel processes according to the color space components Y, U, and V. The YUV splitting is
applied to all FUs except the Algo Parser and the xIT FUs since the bit-stream of the three
layers is merged in the input video stream and it would be difficult to separate it. An example
of the YUV-parallel split of the IntraPrediction FU is illustrated in Figure 5.10. A simple
splitting of the YUV components can increase the theoretical performance by 33%.

5.4.4.2 Ref Design vs. YUV Design

System-level simulation By approaching the system at the system-level by using the RVC-
CAL dataflow language, the designer is better able to optimize not only the inter-actors commu-
nication but also to increase the level of parallelism. Table 5.7 compares the Ref Design to the
YUV Design. Difference between the parallel and serial version of the RVC-CAL HEVC decoder
is the content of token channels. For the parallel version, Y, U and V tokens are processed
in respective channel, whereas for the serial version, Y, U and V tokens are combined in one

Table 5.7: Time results comparison between the Ref Design and the YUV Design both simulated
by the RAM Design for 5 frames of the BlowingBubbles video sequence at 50MHz.

Ref Design YUV Design

Latency (ms) 64, 83 3, 98
Sample Rate (Sps) 2, 71× 106 3, 25× 106

Throughput (Fps) 18, 11 21, 71
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Figure 5.11: Graphical representation of the actors behavior of the YUV design simulation: The
frame decoding start and end times are recorded for each actor during the system simulation for
an image sequence of 5 frames.

Table 5.8: Time results of the YUV design (Main Still Picture Profile) synthesized by the RAM
design for an image sequence of 5 frames and a 16384 FIFO size.

ALgo Parser xIT IntraPrediction SelectCu

Latency (ms) 0, 76 0, 01 0, 005 1, 54
Sample Rate (Sps) 3, 09× 106 8, 46× 106 4, 5× 106 3, 28× 106

channel sequentially. Results show that the parallel version of the decoder introduces 16, 58%
increase in term of throughput and 93, 86% increase in term of latency over the serial one. Those
results show that the parallel decoder seems to be a better starting point when targeting hard-
ware implementations. In order to track the actors behavior in the system, the top-level test
bench allows us to build Gantt diagram by recording the decoding start and end times of the
current frame for each actor. Figure 5.11 presents Gantt diagram of the YUV-parallel RVC-CAL
HEVC decoder which supports the parallel and concurrent aspects when dealing with RVC-CAL
dataflow programs.

Actor-level simulation We evaluated also the hardware implementation for each actor of
the YUV-parallel HEVC decoder independently in a standalone simulation in Table 5.8. This
enables us to know the maximum throughput and the minimum latency reached by each actor
independently. Moreover, this enables us to know the bottleneck actors. Hence, The SelectCu
FU is clearly the bottleneck actor in the YUV Design since it is computationally complex. That
is why we do not meet the 33 % theoretical improvement compared to the RVC Design since
the SelectCu FU slows down the YUV Design.

Action-level simulation In order to improve latency and throughput, we carefully analyze
the algorithm of the SelectCu FU to identify actions that are latency and throughput bottle-
neck. To do so, we make use of the action debug feature explained in Section 5.3.5. There are
two issues that limit the latency and the throughput in the SelectCu FU, including:

• The action bodies contain for-loops: By default loops are kept rolled in Vivado HLS, and
one copy of the loop body is synthesized by using the same hardware resources and re-used
for each iteration. This ensures each iteration of the loop is sequentially executed. That is
why the for-loop should be unrolled to allow all operations to occur in parallel and increase
throughput.

• The action bodies contain in addition functions calls. We can reduce function call overhead
by removing all function hierarchy (inline) in order to improve the latency.

To circumvent these issues, the set directive inline and set directive unroll commands of vi-
vado HLS are applied on function calls and loops respectively. Improvement results are showed
in Table 5.9, with a gain of 32% in latency and throughput in the optimized SelectCu FU.
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Table 5.9: Vivado HLS Directives are applied to the SelectCu FU.

SelectCu Optimized SelectCu
Latency (ms) 1.54 1.04
Sample Rate (Sps) 3, 28× 106 4, 91× 106

5.4.5 Comparison with Other Works

5.4.5.1 System-level hardware synthesis versus hand-coded HDL of the HEVC
decoder

The purpose of this section is to compare the hardware synthesis from a dataflow-based HEVC
decoder with the RAM Design against a low-level HEVC architecture without SAO designed
by Tikekar et al. Tikekar et al. [2014]. In Tikekar et al. [2014], results for an ASIC test chip
are presented. The chip achieves 249 × 106 Sps decoding throughput for luma-only (3840 ×
2160)@30fps at 200 MHZ, which is equivalent to 41×106 Sps at 50 MHZ. This result shows that
the manual VHDL HEVC implementation of Tikekar et al. [2014] is faster when compared to
the automatically generated HDL with the proposed RAM Design. Indeed, the proposed design
flow achieves only 1.5×106 Sps decoding throughput for (416×240)@50fps at 50 MHZ targeting
the Virtex–7. One of the reasons why the implementation proposed in Tikekar et al. [2014]
is faster is that the optimizations are applied at very low-level. However, the most important
advantage with the proposed design flow (combining the Orcc compiler and the Vivado HLS
tool) consists on considering the system-level of abstraction, which allows better complexity
management, shorter development time and rapid system exploration. Moreover, it reduces the
time-to-market and improves the RTL quality and the final performance of the design.

5.4.5.2 Comparison with other alternative HLS for RVC-CAL

In relation to similar works in literature, we mentioned in Section 3.5 that the hardware synthe-
sis from RVC-CAL programs has gone through various evolution from the OpenDF framework
(CAL2HDL [Janneck et al., 2008]) to the Orcc framework (ORC2HDL [Bezati et al., 2011] and
Xronos [Bezati et al., 2013]). In my conference article [Abid et al., 2013], the simulation results
of the hardware implementation of the MPEG-4 Simple Profile (SP) decoder generated with the
proposed system-level design flow (Orcc + Vivado HLS) with explicit streaming (Chapter 4)
are compared to those obtained with the Xronos tool. Figure 5.12 shows the MPEG-4 Part 2
SP decoder as described within RVC. It is essentially composed of 4 main FUs: the parser, a
luminance component (Y) processing path, two chrominance component (U, V) processing paths
and a merger. Each of the path is composed by its texture decoding engine as well as its motion
compensation engine.

Texture decoding

Texture decoding

Texture decoding

Motion Compensation

Motion Compensation

Motion Compensation

Parser Merger
DecodedBitstream

Y

U

V data

Figure 5.12: RVC-CAL description of the MPEG-4 SP decoder.

The simulated performance values are given in Table 5.10 for a stimulus frequency of 50 MHZ.
Here, a Motion-MPEG stream consists of five QCIF images (176× 144 pixels) has been used to
obtain latency and throughput values. Considering the comparison in Table 5.10, our proposed
system-level design flow (Orcc + Vivado HLS) with explicit streaming is found to be more effi-
cient in terms of latency an less efficient in terms of throughput. Indeed, the design synthesized
by Vivado HLS has a speed up factor of 1.6 in terms of latency compared to Xronos. However,
Xronos has a speed up factor of 1.8 in terms of throughput compared to the design synthesized
by Vivado HLS. Here it should be noted that system-level design flow (Orcc + Vivado HLS)
with explicit streaming is employed. In view to maximize the total throughput, the system-level
design flow (Orcc + Vivado HLS) with implicit streaming proposed in this chapter would give
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considerable results. Moreover, not all advantages of Vivado HLS have been exploited. Unlike
Xronos , Vivado HLS offers directive-based optimizations that could be exploited to maximize
throughput.
Besides, we demonstrated a pioneer hardware implementation of the RVC-CAL HEVC decoder
with our proposed system-level design flow (Orcc + Vivado HLS) on Xilinx 7 Series FPGAs.
However, none of the related work on HLS for RVC-CAL has demonstrated a hardware im-
plementation of the RVC-CAL HEVC, and none has demonstrated the hardware synthesis on
Xilinx 7 Series FPGAs.

Table 5.10: MPEG-4 SP timing results.

Orcc + Vivado HLS Xronos

Latency (ms) 0, 158 0, 258

Throughput (Fps) 125 232

5.5 Conclusion

In this chapter, we proposed an enhanced hardware implementation of dataflow programs within
the RVC framework. When dealing with the hardware synthesis of dataflow programs in the
proposed design flow of Chapter 4, interface synthesis is the most important issue. Interface
synthesis can be defined as the realization of communication between components via hardware
resources and thus could very well be the bottleneck to meet performance requirements. More-
over, the resulting hardware should preserve the dataflow MoC semantics. A difference against
previous works is that our approach enhanced the hardware implementation of the communica-
tion channels in dataflow programs by using a shared memory (RAM) that behaves as a circular
buffer instead of a FIFO with additional storage elements. The experiments were performed on
the dataflow-based implementation of the HEVC decoder, which has been recently implemented.
Simulation results showed that the proposed implementation with RAM blocks has increased
throughput and reduced latency compared to the state-of-the-art implementation proposed in
Chapter 4. Another key feature of our proposed design flow is the ability to provide performance
improvement by refactoring of the RVC-CAL programs. In other words, modeling applications
at the system- level in the RVC framework eases system-level and component-level optimization
in favor of hardware implementation disregarding hardware details.
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6
Conclusion

In the context of an increased interest for dataflow programming for designing embedded sys-
tems, this thesis discusses system-level hardware synthesis of dataflow programs with HEVC as
study use case. Furthermore, this thesis addresses the problem of communication and scheduling
overhead caused by FIFO-based communication channels in dynamic dataflow programs. In the
following, we summarize the main contributions of this work while mentioning strengths and
limitations of our work at the end of each paragraph.

The first contribution of this research work is an original technique that raises the level of ab-
straction to the system-level in order to obtain RTL descriptions from dataflow descriptions.
First, we design image decompression algorithms using an actor oriented language under the
RVC framework (RVC-CAL). Once the design is achieved, we use a dataflow compilation infras-
tructure called Orcc to generate a C-based code. Afterward, a Xilinx HLS tool called Vivado HLS
is used for an automatic generation of synthesizable hardware implementation. The proposed
system-level approach for generating hardware description from dataflow programs involves the
implementation of a new C-HLS back-end of Orcc that considers the DPN-based model seman-
tics and which is synthesizable by the newly Xilinx Vivado HLS tool as detailed in Chapter 4.
That is, the functionality of the Vivado HLS tool was enhanced so it supports the entire system.
Moreover, the methodology used to adapt such tool to the constraints of DPN-based model
mainly the FIFO management was explained. The outcome of this contribution is threefold. On
the one hand, the essential aim of our proposed rapid prototyping methodology is to alleviate the
complexity gap problem and speed the time-to-market by quickly producing RTL descriptions
from system-level dataflow programs. That is, our proposed design flow for hardware generation
from system level is fully automated whatever the complexity of the application, which leads to
gain in development time compared with manual approach. On the other hand, our development
environment, known as Orcc, offers the possibility to translate the same system-level RVC-based
descriptions of video decoders into both hardware (C-HLS back-end) and software (C back-end)
equivalent descriptions intended for various platforms (FPGAs, MPSoC, respectively). Finally,
by using Vivado HLS, we can take advantage of Vivado HLS optimization directives which en-
ables easy and fast DSE to find the most-optimal implementation.

Chapter 5 emphasizes the second contribution of this research work. It consists of the enhance-
ment of the communication and scheduling mechanisms to minimize the unnecessary overhead
introduced by FIFO accesses and scheduling of actions, involved by dynamic dataflow model –on
which the RVC-CAL language is built. This contribution answers the following question: what is
the best way to connect components designed with RVC-CAL at the system-level while preserv-
ing dataflow programming features notably parallelism and concurrency? The main bottleneck
of the previous proposed solution described in Chapter 4 lies mainly on streaming interface
based on explicit streaming. To tackle this problem, we enhanced the C-HLS backend by using
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implicit streaming rather than explicit one. In other words, our approach enhanced the hard-
ware implementation of the communication channels in dataflow programs by using a shared
memory (RAM) that behaves as a circular buffer with efficient index management instead of a
FIFO with additional storage elements. Using dual-port block RAMs instead of FIFO buffers
has the advantage to enable parallelism by allowing access to a common storage array through
two independent access ports. Consequently, scheduling may take advantage of this by reading
from one port and writing via another. Moreover, using dual-port block RAMs results in higher
throughput and lower latency of RVC-CAL dataflow programs for hardware implementation.
The major obstacle we faced is the fact that these kind of low level interface optimizations re-
quire advanced hardware domain expertise and that was challenging for us as software developers.

Once interface synthesis optimization has been achieved, the third contribution of this research
work has been devoted to investigate system-level optimizations for increasing the efficiency and
performance of the hardware design. Hence, by exploiting all the features of CAL and dynamic
dataflow MoCs, we can optimize the high-level code by implementing task and data-level paral-
lelism using the refactoring of the RVC-CAL programs for DSE. Refactoring is the process of
changing the internal structure of a program through merging and splitting, while preserving its
behaviour. RVC-CAL specifications have the advantage to expose all the parallelism possibili-
ties intrinsic to video decoder applications. For this reason, refactoring involves application task
partitioning and data partitioning. Some advantages of refactoring are as follows. First, the
design space can be explored effectively for multiple criteria, including throughput and latency
for real-time decoding. Second, refactoring makes the code easier to change and is very efficient
in promoting better design and reuse, thus increasing design productivity.

The last contribution of this research work is to prove the applicability of our proposed rapid
prototyping methodology for dataflow programs and to apply all the optimization methodologies
evoked above. With the standardization of the new HEVC decoder, an RVC-CAL implementa-
tion of the HEVC decoder is also available as part of the standard. For that, an implementation of
the most recent video decoder HEVC via our proposed rapid prototyping methodology has been
demonstrated throughput the thesis. In Chapter 4, we have shown that a simulated hardware
implementation of the RVC-CAL HEVC decoder is rapidly obtained with promising preliminary
results. Although our proposed method compared to manual HDL approaches appears to be
less efficient in terms of area consumption and performance, we effectively achieved a pioneer
simulated hardware implementation of the most recent video coding standard HEVC with a
very short time to market, while overcoming high computational complexity intrinsic to HEVC.
Moreover, in Chapter 5, we have shown that when investigating optimization strategies whether
through task and data-parallelism implementation or through Vivado HLS directives-based op-
timizations, we could improve performance and area metrics of the hardware implementation of
the HEVC decoder. The obtained results after applying the proposed optimization strategies
motivate us to investigate future research directions.

Based on the results and conclusions drawn from each of our contributions, we detail perspec-
tives that would be interesting to explore.
A first important area of research is to ensure that the HEVC decoder achieves real-time perfor-
mance for 4K Ultra-High Definition (UHD) video using our proposed system-level design flow.
This can be achieved by exploring the design space for criteria such as throughput, latency
and resource by applying optimization strategies proposed in this thesis, and by considering a
solution for the DPB, the major memory bottleneck of the HEVC decoder. Additionally, we
could use block RAM for large sized memories and distributed RAM for small sized memories,
in order to avoid wastage of the space in RAM. Finally, we could minimize resource with buffer
size optimization strategies.

A second important area of research is hardware/software codesign. Codesign stands for the
joint design of software and hardware components from a single-application description. Since
our development environment Orcc offers the possibility to automatically generate both hard-
ware and software implementations from a unique RVC-CAL dataflow description, a codesign
flow could perform the mapping of the components onto the available computing resources.
That is, some FUs of the HEVC decoder are naturally suitable for software processing while
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others are naturally suitable for hardware processing. For example the entropy decoder FU
in the HEVC decoder executes a completely sequential algorithm with little computation and
therefore is suitable for operating on processor. Whereas the inverse quantization and transform
FU instantiates a large number of small actors with highly computational algorithms and thus
adapted to hardware processing as they require high performance. The shared memory architec-
ture (RAM) proposed in this thesis is the starting point that enables hardware-software codesign.

Another important area of research include using the frame-based implementation of the RVC-
CAL HEVC decoder, to benefit from the increased data parallelism of this design. A pioneer
dataflow description of the frame-based HEVC decoder has been recently developed by the Image
team of the IETR laboratory. Thanks to the modularity of dataflow modeling, the frame-based
parallelization is a duplication of the whole decoding process in order to enable the decoding of
frames in parallel. Theoretically, the frame-based approach will improve the performance of the
existing HEVC decoder by increasing the cadence through parallel frames decoding.

using a high-level synthesis tool enabled them to easily explore alternative architectures,
which often led to more efficient implementations.
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A
System-Level Design Flow: Tutorial

A.1 A User Guide for the C-HLS Backend: Steps and Re-
quirements

The purpose of this tutorial is to provide directions to obtain RTL descriptions from a system-
level dataflow description using Orcc and Xilinx Vivado HLS tool.

Step 1 Write a simple RVC-CAL program

Step 2 Compile RVC-CAL program to C-HLS and VHDL codes using Orcc’s C-HLS backend.

Step 3 Compile the C-HLS code to VHDL with Vivado HLS

Step 4 Synthesize the VHDL from Orcc and Vivado HLS to an FPGA using Xilinx ISE.

This compilation sequence is supported by the following software tools:

• Eclipse (with Orcc installed1)

• Xilinx ISE Design toolset

• Xilinx Vivado HLS

A.2 Write a Very Simple Network

A.2.1 Setup a New Orcc Projet

First of all you need to create a new Orcc project in Eclipse (File >New >Other...). You can
name it AddOrcc (Figures A.1(a) and A.1(b)). Then you can make a new package (File >New
>Package) (Figure A.1(c))

A.2.2 Implements Actors

You should implement each actor using the RVC-CAL language. For each actor, you have to
create a standard file in the right package. For example, the first actor to implement have to be
written in the file Add.cal and so on (Figure A.2).

1A user guide for Orcc installation is available at: http://orcc.sourceforge.net/getting-started/install-orcc/
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(a) (b)

(c)

Figure A.1: Step 1: How to create a new Orcc project.
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(a) (b)

(c) (d)

(e)

Figure A.2: Step 1: Source code of actors to implement in RVC-CAL.
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(a) (b)

(c)

Figure A.3: Step 1: How to build an Orcc network.

A.2.3 Build the Orcc Network

You have to create new Orcc Networks (File >New >Other...) (Figure A.3):

1. a top Network TopAddOrcc.xdf

2. a sub-network AddOrcc.xdf

Try to reproduce the following top network and sub-network using the palette on the right of
the network editor (Figure A.4):

• Instance Actor1 is associated to the actor Actor1.cal

• Instance Actor2 is associated to the actor Actor2.cal

• Instance Actor3 is associated to the actor Actor3.cal

• Instance AddOrcc is associated to the subnetwork AddOrcc.xdf

As for video decoder programming, Actor1 and Actor 2 import data and Actor3 prints the
results.
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(a) (b)

Figure A.4: Step 1: How to build an Orcc network.

Figure A.5: Step 2: How to run an XDF network using the C-HLS backend.

A.3 Compile RVC-CAL Program Using the C-HLS Back-
end

• Run >Run Configurations (Figure A.5)

• In Compilation settings >Backend, select HLS (Experimental).

• Specify an output folder: D:/addOrcc for example. A folder named HLSBackend will
be created automatically.

• In Options >compile XDF network, set the XDF name as org.ietr.addorcc.AddOrcc
(i.e. the sub-network):

If Orcc generation of the C-HLS Backend succeeded, the compilation console shows the output
of Figure A.6: Check the output folder HLSBackend and see what has been generated. The
actual C-HLS backend of Orcc generates several files namely (Figure A.7):

• batchCommand Folder:

1. Command.bat to generate HDL files using Vivado HLS for the Whole network.

Figure A.6: Step 2: Compilation console output.
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Figure A.7: Step 2: Content of the output folder HLSBackend.

2. Command Actor.bat to generate HDL files using Vivado HLS for one actor indi-
vidually.

• Actor.cpp: C HLS code of the corresponding actor –compatible with Vivado HLS

• Script Actor.tcl: will setup the Vivado HLS project: suProject Actor

• directive Actor.tcl: contains Vivado HLS directives for each actor

• TopVHDL folder: Contains VHDL files for system-level integration (NetworkTop.vhd)
and testbench (Network TopTestBench.vhd) for simulating the whole Network

• ActorTopVHDL folder: Contains VHDL files for actor-level integration (ActorTop.vhd)
and testbench (Actor TopTestBench.vhd) for simulating an actor in a standalone fash-
ion

• ram tab.vhd: VHDL model of a dual-port RAM for BRAM inference.

We will explain in what stage each file will be useful in the following steps.

A.4 Compile the C-HLS code to VHDL with Vivado HLS

In order to generate hardware components of the whole network AddOrcc.xdf, double click on
the file Command.bat under the BatchCommand folder. When running, this batch file will call
some files already generated by the Orcc’s C-HLS Backend. All the VHDL files will be copied
under the folder TopVHDL as shown in Figure A.8:

A.5 Synthesize the VHDL Using Xilinx ISE

• Create a new folder under the TopVHDL folder: name it for example: AdOrccISE

• In Xilinx ISE, File >New project (Figure A.9(a))

• Project >Add Source >and select all the VHDL files under the TopVHDL folder (Fig-
ure A.9(b))

• Set as Top Module the NetworkTop.vhd file (Figure A.10(a))

• Run Synthesize-XST (Figure A.10(b))

• Implement the design
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Figure A.8: Step 3: Files resulting from hardware synthesis.

(a) (b)

Figure A.9: Step 4: How to Synthesize the VHDL Using Xilinx ISE.

(a) (b)

Figure A.10: Step 4: How to Synthesize the VHDL Using Xilinx ISE.
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B
HEVC Test Sequences

class Size or type Sequence name Frame rate (Fps) Bit Depth QP
A 1600p (2K) Traffic 30 8 22

27
32
37

PeopleOnStreet 30 8 22
27
32
37

Nebuta 60 10 22
27
32
37

StreamLocomotive 60 10 22
27
32
37

B 1080p (HD) Kimono 24 8 22
27
32
37

ParkScene 24 8 22
27
32
37

Cactus 50 8 22
27
32
37

BQTerrace 60 8 22
27
32
37

BasketBallDrive 50 8 22
32
37

C 832 × 480 (WVGA) RaceHorses 30 8 22
27
32
37

BQMall 60 8 22
27
32
37

PartyScene 50 8 22
27
32
37

BasketBallDrill 50 8 22
27
32
37

D 416 × 240 (WQVGA) RaceHorses 30 8 22
27
32
37
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class Size or type Sequence name Frame rate (Fps) Bit Depth QP
BQSquare 60 8 22

27
32
37

BlowingBubbles 50 8 22
27
32
37

BasketBallPass 50 8 22
27
32
37

E 720p (Videoconference) FourPeople 60 8 22
27
32
37

Jhonny 60 8 22
27
32
37

KristenAndSara 60 8 22
27
32
37

F ScreenCapture BasketBallDrillText 50 8 22
27
32
37

ChinaSpeed 30 8 22
27
32
37

SlideEditing 30 8 22
27
32
37

SlideShow 20 8 22
27
32
37



C
Summary of Vivado HLS directives

Directives Area Throughput Latency

Function optimization

Reuse X
Inline - X X
Instantiate + X X
Dataflow X X
Pipeline X
Latency
Interface

Loop optimization

Unrolling X
Merging X
Flattening X
Dataflow
Pipelining X X
Dependence
Tripcount
Latency

Array optimization

Resource
Map X
Partition X
Reshape
Stream

Logic structures optimization

Operator selection
Controlling hardware resources X X X
Struct packing X X X
Expression balancing X
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D
Résumé en français

D.1 Contexte et Motivation

Cette thèse présente une méthodologie pour la mise en œuvre des algorithmes de compression
vidéo sur circuits logiques programmables (Field-Programmable Gate Array (FPGA)). La con-
ception de ces systèmes complexes devient extrêmement difficile en raison de plusieurs facteurs.

Les algorithmes de compression vidéo sont de plus en plus complexes. La compression
vidéo est le noyau de la technologie utilisée dans les produits électroniques grand public basés
multimédia (c.-à-d. les systèmes multimédia embarqués) tels que les caméras numériques, les
systèmes de surveillance vidéo et ainsi de suite. Au fil des ans, les normes Moving Picture Experts
Group (MPEG) de codage vidéo ont évolué à partir de MPEG-1, MPEG-4/Advanced Video
Coding (AVC) à au codage vidéo haute performance (High-Efficiency Video Coding (HEVC)).
En outre, les résolutions vidéo ont augmentées du format Quarter Common Interface Format
(QCIF) (144p) à la High Definition (HD) (1080p) à l’Ultra-High Definition (UHD) (4K et 8K),
résultant en une augmentation de la compléxité de résolution d’approximativement 1000× par
rapport à la QCIF. Outre une résolution plus élevée, la raison principale derrière la complexité
croissante des applications de codage vidéo est l’ensemble des outils complexes des codeurs
vidéo avancés. Par exemple, à la différence des normes précédentes, le standard de codage vidéo
HEVC adopte des techniques de codage très avancées afin d’atteindre un taux de compression
élevé pour les résolutions vidéo HD et UHD au prix d’une complexité de calcul additionnelle
(approximativement 3× par rapport au H.264).

Le processus de conception des systèmes embarqués est devenu remarquablement
difficile. La conception des systèmes embarqués implique la cartographie de l’application cible
sur une architecture d’implémentation donnée. Cependant, ces systèmes ont des exigences
strictes concernant la taille, la performance, les contraintes temps réel, le délai de mise sur
le marché et la consommation d’énergie, etc. Par conséquent, satisfaire ces exigences est une
tâche difficile et nécessite des nouvelles méthodologies d’automatisation et des plate-formes de
calcul de plus en plus efficaces. Il existe différentes plate-formes matérielles possibles allant des
systèmes embarqués à base de processeur (General-Purpose Processor (GPP), Digital Signal
Processor (DSP), multiprocessor System On Chip (MPSoC), etc.) aux FPGA et Application-
Specific Integrated Circuit (ASIC). Le choix d’un matériel approprié dépend des exigences des
applications. Toutefois, afin de traiter les applications de compression vidéo temps réel, qui
sont basées sur des algorithmes de calcul intensif, il ya un besoin croissant en puissance de
calcul. Alors, quel genre de plate-forme matérielle est le mieux adapté pour les applications
en temps réel sous considration? Contrairement aux systèmes embarqués basés processeur, les
implémentations matérielles sur FPGA et ASIC se sont révélées être le bon choix en raison de
leur architecture massivement parallèle qui résulte en un traitement à grande vitesse.
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La conception des systèmes embarqués est confrontée à un écart dans la pro-
ductivité. Selon la feuille de route pour le progrès technologique (International Technology
Roadmap for Semiconductors (ITRS)), le progrés de la productivité de conception ne suit pas le
rythme du progrés de la productivité des semi-conducteurs. Cela donne lieu à une augmentation
de ”l’écart dans la productivité de conception” de façon exponentielle –c.-à-d. la différence entre
le taux de croissance des circuits intégrés, mesuré en termes de nombre de portes logiques ou
transistors par puce, et le taux de croissance de la productivité du concepteur offerte par les
méthodologies et les outils de conception.

Les méthodologies de référence ne sont plus adaptées. Les moyens traditionnels de
spécifications des standards MPEG de codage vidéo, basés sur des descriptions textuelles et
sur des spécifications monolithiques C/C++, ne conviennent plus aux architectures parallèles.
D’une part, un tel formalisme de spécification ne permet pas aux concepteurs d’exploiter les
points communs clairs entre les différents codecs vidéo, ni au niveau de la spécification, ni
au niveau de l’implémentation. D’autre part, la cartographie des spécifications monolithiques
C/C++ sur des architectures parallèles, tels que les FPGAs, signifie la réécriture du code source
complètement afin de distribuer les calculs sur les différentes unités de traitement, ce qui est une
tâche fastidieuse et longue. Afin d’améliorer la réutilisation et le délai de mise sur le marché,
il ya un grand besoin de développer des méthodologies de conception et de vérification qui
permettront d’accélérer le processus de conception et de minimiser l’écart dans la productivité
de conception.

D.2 Énoncé du problème et contributions

Beaucoup de questions se posent au sujet des approches appropriées pour combler l’écart dans la
productivité de conception ainsi que l’écart entre les spécifications séquentielles traditionnelles et
les implémentations parallèles finales. D’une part, selon l’ ITRS, l’amélioration de la productivité
de conception peut être obtenu en élevant le niveau d’abstraction au-delà du niveau transfert
de registres (Register-Transfer Level (RTL)) et en employant des stratégies de conception par
réutilisation. D’autre part, la conception au niveau système a émergé comme une nouvelle
méthodologie de conception pour combler l’écart entre la spécification et l’implémentation dans
les méthodologies traditionnelles. En effet, élever le niveau d’abstraction au niveau système
permet au concepteur de gérer la complexité de l’ensemble du système sans tenir compte des
détails d’implémentation bas niveau et conduit donc à un nombre réduit de composants à gérer.
Cependant, le défi majeur à élever le niveau d’abstraction au niveau système est de traiter avec
la complexité d’intégration du système et d’ effectuer l’exploration de l’ espace de conception
(Design-Space Exploration (DSE)), ce qui signifie que les développeurs ont besoin de savoir
comment rassembler les différentes composantes à travers des mécanismes de communication
efficaces, tout en permettant des optimisations au niveau système. En outre, la vérification est
essentielle dans le processus de conception au niveau système, ce qui permet d’affirmer que le
système répond à ses besoins prévus.
Dans ce contexte, et en connaissant les inconvénients des spécifications monolithiques des stan-
dards de codage vidéo, les efforts ont porté sur la standardisation d’une bibliothèque de com-
posants de codage vidéo appelée norme de codage vidéo reconfigurable (Reconfigurable Video
Coding (RVC)). Le concept clé derrière la norme est d’être en mesure de concevoir un décodeur
à un niveau d’abstraction plus élevé que celui fourni par les spécifications monolithiques actuelles
en veillant à l’exploitation du parallélisme, la modularité, la réutilisation et la reconfiguration.
Le standard RVC est construit sur la base d’un langage spécifique à un domaine (Domain Specific
Language (DSL)) basé flot-de-données connu sous le nom de RVC-CAL, qui est un sous-ensemble
de Caltrop Actor Language (CAL). Le standard RVC est basé sur une programmation flot-de-
données dynamique. Le modèle de calcul (Model of Computation (MoC)), qui sert à spécifier
la manière dont les données sont transférées et traitées, est connu sous le nom de réseau de
processus flot-de-données (Dataflow Process Network (DPN)). L’objectif de cette thèse est alors
de proposer une nouvelle méthodologie de prototypage rapide sur des FPGAs des programmes
flot-de-données basés sur le modèle de calcul DPN. Plusieurs questions pourraient être soulevées
à savoir comment traduire les programmes fondés sur le modèle de calcul DPN en descriptions
RTL appropriées pour une implémentation matérielle efficace, tout en réduisant la complexité
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et le délai de mise sur le marché, et en obtenant des implémentations avec des performances
efficaces. Plusieurs travaux ont cherché à répondre à ces questions, mais ont fourni seulement
des solutions partielles pour la synthèse au niveau système.
Motivés par ces développements, nos contributions face aux défis de l’implémentation des pro-
grammes flot-de-données dynamiques sur FPGA sont comme suit.

• Premièrement, nous proposons un nouveau flot de conception automatisé pour le proto-
typage rapide des décodeurs vidéo basés sur RVC, au moyen duquel un modèle spécifié
dans le langage flot-de-données RVC-CAL au niveau système est rapidement traduit en
une implémentation matérielle. En effet, nous concevons les algorithmes de compression
vidéo en utilisant le langage orienté acteur selon la norme RVC. Une fois la conception
réalisée, nous utilisons une infrastructure de compilation flot-de-données appelée Open
RVC-CAL Compiler (Orcc) pour générer un code basé sur le language C. Par la suite, un
outil de Xilinx appelé Vivado High-Level Synthesis (HLS) est utilisé pour une génération
automatique d’une implémentation matérielle synthétisable.

• Ensuite, nous proposons une nouvelle méthode de synthèse de l’interface qui permet
l’amélioration de la mise en œuvre des voies de communication entre les composants et
en conséquence l’amélioration des politiques d’ordonnacement, visant ainsi à optimiser les
mesures de performance tels que la latence et le débit des décodeurs vidéo basés flot-
de-données. Par consquent, une nouvelle implémentation au niveau système est élaborée
sur la base de cette implémentation optimisée de la communication et des mécanismes
d’ordonnancement.

• Ensuite, nous étudions les techniques d’aide à l’exploration de l’espace de conception (DSE)
afin d’atteindre des implémentations de haute performance en exploitant le parallélisme
au niveau tâche ainsi que le parallélisme au niveau données, et ceci au niveau système.

• Enfin, nous présentons un cadre pour la vérification au niveau système ou au niveau com-
posant. Par consquent, nous démontrons l’efficacité de notre méthode de prototypage
rapide en l’appliquant à une implémentation RVC-CAL du décodeur HEVC, qui s’est
avéré une tâche très difficile, car le décodeur HEVC implique généralement une grande
complexité de calcul et des quantités massives de traitement de données.

D.3 Organisation du rapport de thèse

Cette thèse est structurée comme suit.
La première partie décrit le contexte de l’étude, y compris son cadre théorique. Le chapitre 2
comporte un aperçu des tendances et des défis rencontrés lors de la conception des systèmes
embarqués et de l’émergence de la conception au niveau système des systèmes embarqués. Le
chapitre 3 étudie les propriétés de base de la programmation flot-de-données, introduit le cadre
MPEG-RVC ainsi que son langage de programmation de référence et la sémantique du modèle
de calcul DPN. Ensuite, il résume les différentes approches existantes pour la génération du
code HDL à partir des représentations flot-de-données.
La deuxième partie présente les principales contributions de cette thèse. Dans le chapitre 4, une
méthodologie de prototypage rapide pour les programmes basés sur DPN est présentée. Le flot
de conception proposé combine un compilateur flot-de-données pour générer des descriptions de
synthèse de haut niveau (HLS) à base du code C à partir d’une description flot-de-données et un
synthesizeur C-à-RTL pour générer des descriptions RTL. Les résultats obtenus sur une descrip-
tion RVC-CAL du décodeur HEVC sont discutées. Le chapitre 5 présente quelques techniques
d’optimisation en proposant tout d’abord une nouvelle méthode de la synthèse de l’interface et
ensuite, en exploitant toutes les fonctionnalités de la programmation flot-de-données dynamique.
Le chapitre 6 conclut les deux parties de cette thèse et discute les perspectives de travaux futurs.
La troisième partie fournit des informations supplémentaires à cette thèse. Dans l’annexe A,
nous présentons un guide pour la génération de code en langage de description de matériel
(Hardware Description Language (HDL)) à partir de programmes flot-de-données selon le flot
de conception proposé. Les annexes ?? présentent toutes les séquences d’essais disponibles du
décodeur HEVC et un résumé des différentes directives de Vivado HLS, respectivement.
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Figure D.1: La norme RVC: La partie supérieure est le processus standard d’élaboration
d’une spécification abstraite, la partie inférieure est le processus non-standard de génération
des implémentations multi-cibles à partir de la spécification standard.

D.4 État de l’art

Dans cette section, nous donnons un bref aperçu des principaux concepts de base pour compren-
dre le travail présenté dans cette thèse.

D.4.1 Le paradigme de programmation flot-de-données

Contrairement au paradigme de programmation séquentielle, l’approche flot-de-données est un
paradigme de programmation qui modélise un programme comme un graphe orienté dans lequel
les nœuds correspondent à des unités de calcul et les arêtes représentent la direction des données
circulant entre les nœuds. D’une part, le comportement fonctionnel de chaque unité de calcul est
autonome et indépendant des autres unités de calcul, assurant ainsi la modularité, la réutilisation
et la reconfiguration et facilitant l’exploitation du parallélisme. D’autre part, la sémantique de
communication et de traitement des unités fonctionnelles (Functional Unit (FU)) est définie par
un modèle de calcul (Model of Computation (MoC)) tels que Kahn Process Network (KPN),
Synchronous Dataflow (SDF) et Dataflow Process Network (DPN) [Lee and Parks, 1995b]. Nous
examinons brièvement le modèle de calcul DPN car il constitue le modèle de calcul de base utilisé
par CAL, qui est un super-ensemble du langage RVC-CAL normalisé dans le cadre RVC.

D.4.2 La norme MPEG-RVC

Dans cette section, nous donnons un bref aperçu des concepts et les outils mis en place dans le
cadre RVC. Tout au long de cette étude, nous mettons en évidence les avantages obtenus de
l’adoption de RVC du point de vue implémentation matérielle. Basé sur le paradigme flot-
de-données, le comité de normalisation MPEG standardise la norme RVC en 2009 pour la
spécification des codecs vidéo. Le but de RVC est de remédier aux limitations des spécifications
monolithiques (généralement sous la forme de programmes C/C++) qui ne peuvent plus faire
face à la complexité croissante des normes de codage vidéo ni exprimer le parallélisme intrinsèque
de ces applications. En outre, ces spécifications monolithiques ne permettent pas aux concep-
teurs d’exploiter les points communs entre les différents codecs et de produire des spécifications
en temps opportun.
Essentiellement, modularité, réutilisabilité et reconfigurabilité sont les caractéristiques de la
norme RVC. La figure D.1 illustre comment un décodeur vidéo est conçu à un haut niveau
d’abstraction et comment les implémentations cibles sont génrés dans le cadre RVC. Au niveau
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Actor

FIFO Actions
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Interface Token

Figure D.2: Un modèle DPN est conçu comme un graphe orienté composé de sommets (c.-à-d.
acteurs) et les bords représentent des canaux de communication unidirectionnels basés sur le
principe FIFO.

spécification (la partie normative), le comportement fonctionnel et les entrées/sorties des unités
fonctionnelles (FUs) sont d’abord décritent en utilisant un langage de programmation orienté
acteur appelé RVC-CAL défini dans MPEG-B pt.4 (ISO/IEC 23001-4). La norme RVC four-
nit également une librairie normative d’outils vidéo (Video Tool Library (VTL)) définie dans
MPEG-C pt.4 (ISO/IEC 23002-4), qui contient toutes les unités fonctionnelles (FUs) nécessaires
pour décrire toutes les normes MPEG de codage vidéo. Les connexions entre les FUs sont ensuite
décritent pour former un réseau de FUs, exprimé en langage (FU Network Language (FNL)),
qui constitue la configuration d’un décodeur vidéo. Le langage FNL permet également une
configuration hiérarchique, à savoir un FU peut être décrit comme une composition d’autres
FUs. Enfin, les FUs et le réseau de FUs sont instanciés pour former un modèle de décodage
abstrait (Abstract Decoder Model (ADM)), qui est un modèle de comportement normatif du
décodeur. Au niveau de l’implémentation, l’ADM est utilisé pour créer automatiquement des
implémentations pour de multiples plates-formes cibles (logicielles et matérielles). Dans ce cadre,
plusieurs outils de synthèse permettant la génération automatique d’une spécification RVC exis-
tent comme un support non-normatif de la norme RVC. Dans ce qui suit, nous nous concentrons
sur l’implémentation matérielle dans le cadre RVC.

D.4.3 Le langage de programmation flot-de-données RVC-CAL et son
modèle de calcul

Le standard RVC est construit sur la base d’un langage spécifique à un domaine (DSL) basé
flot-de-données connu sous le nom RVC-CAL, un sous-ensemble de CAL [Eker and Janneck,
2003]. Le modèle de calcul (MoC) utilisé qui précise la façon dont les données sont transférées
et traitées est connu sous le nom de DPN [Lee and Parks, 1995a], un cas particulier de KPN
[Kahn, 1974]. Dans ce modèle, les FUs sont implementées en tant qu’acteurs contenant un certain
nombre d’actions et d’états internes. Dans DPN, le comportement des acteurs est dépendant
des données et les états internes d’un acteur sont complètement encapsulés et ne peuvent être
partagés avec d’autres acteurs. Ainsi, les acteurs s’exécutent simultanment et communiquent
avec les autres exclusivement à travers les ports (interfaces), via le passage de données le long
des canaux de communication illimités, unidirectionnels et basés sur le principe FIFO comme
illustré sur la figure D.2.
Cependant, les actions dans un acteur sont atomiques, ce qui signifie qu’une fois qu’une action
s’exécute, aucune autre action ne peut s’exécuter jusqu’à ce que la précédente ait terminée. Les
données qui sont échangées entre les acteurs sont appelés jetons. L’exécution d’une action est un
quantum indivisible de calcul qui correspond à une fonction de mappage des jetons d’entrée vers
des jetons de sortie. Cette cartographie est composée de trois étapes ordonnées et indivisibles:

• lire un nombre de jetons à partir des ports d’entrée de l’acteur;

• exécuter des transformations sur l’état interne de l’acteur (à savoir la procédure de calcul);

• écrire un nombre de jetons sur les ports de sortie de l’acteur.
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Chaque action d’un acteur peut s’exécuter selon quatre différentes conditions, appelées règles de
tir:

1. disponibilité des jetons d’entrée (c.-à-d. s’il y a suffisamment de jetons sur tous les ports
d’entrée);

2. les conditions d’exécution d’une action ”les guards” (qui évaluent l’état interne d’un acteur
et jettent un coup d’oeil dans la valeur des jetons d’entrée);

3. la machine d’états finis (Finite-State Machine (FSM)) qui ordonnance les actions d’un
acteur;

4. les priorités (qui décrivent l’action qui doit être congédiée lorsque plusieurs actions sont
éligibles à s’exc̀uter).

D.4.4 Travaux connexes en génération de code HDL à partir de pro-
grammes RVC-CAL

La complexité de la conception et les processus longs de vérification créent un goulot d’étranglement
pour les applications de codage vidéo. Afin de diminuer le délai de mise sur le marché, de nom-
breuses solutions ont été mises au point en élevant le niveau d’abstraction au niveau système
électronique (Electronic System Level (ESL)) [Martin et al., 2007].

systemlogic component

Figure D.3: Les différents niveaux d’abstraction.

Les niveaux d’abstraction communs qui sont utilisés pour la conception des circuits intégrés
numériques sont illustrés sur la figure D.3. Le niveau d’abstraction le plus élevé est le niveau
système, auquel la conception est faite en prenant l’ensemble du système en considération, non
seulement des composants individuels. En d’autres termes, les interactions entre les différents
composants sont examinés à un niveau d’abstraction plus élevé . Ensuite, au niveau composant,
une description algorithmique dans un langage haut niveau est synthétisée vers une description
RTL. Cette étape est communément appelée synthèse haut niveau (HLS). Dans ce qui suit, nous
examinons les différents outils disponibles pour la génération de code matériel, soit au niveau
composant ou au niveau système.

D.4.4.1 Conception au niveau composant

Au niveau composant, il existe plusieurs outils pour effectuer automatiquement la synthèse haut
niveau (HLS). En général, C est le langage de haut niveau utilisé. Ici, la HLS prend comme entrée
un modèle décrit en C, C++, ou SystemC, et en tant que sortie, elle génère une représentation
RTL correspondante en langage de description de matériel (HDL) tels que VHDL ou Verilog.
Dans ce cas, nous discutons des outils HLS comme Catapult C, C2H, Synphony, GAUT, etc.
Cependant, l’objectif de la compilation des applications réelles, décritent dans un langage tel
que C, en implémentations matérielles efficaces, s’accompagne de très fortes limitations puisque
l’ensemble du système n’est pas pris en considération.

D.4.4.2 Conception au niveau système

Nous présentons les flots de conception qui existent pour la mis en œuvre des applications RVC
sur des plates-formes matérielles en utilisant deux outils front-end: OpenDF [Bhattacharyya
et al., 2008] et Orcc [Wipliez, 2010].
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OpenDF OpenDF agit comme un outil front-end et génère un code XML Language-Independent
Model (XLIM) à partir d’un modèle CAL. Ensuite OpenForge agit comme un outil back-end
pour générer un code HDL à partir du modèle XLIM. Le flot de conception de CAL vers HDL
dans OpenDF est également connu sous le nom CAL2HDL [Janneck et al., 2008]. Le principal
problème avec OpenDF est que la génération de code ne fonctionne pas avec toutes les struc-
tures RVC-CAL et le code généré est si difficile à gérer et corriger. Dans le but de surmonter
ces problèmes, OpenDF a été remplacé par le compilateur Orcc.

Orcc est un environnement de développement intégré libre basé sur Eclipse et dédié à la
programmation flot-de-données. Le but principal de Orcc est de fournir aux développeurs une
infrastructure de compilation pour permettre la génération de code logiciel/matériel à partir
de descriptions flot-de-données. Dans ce cadre, l’approche proposée par Siret et al. [Siret
et al., 2012] offre un nouveau générateur de code matériel en ajoutant un nouveau backend
au compilateur Orcc. Malheureusement, le travail n’a pas été finalisé. Une autre approche
[Bezati et al., 2011] cherche à utiliser l’outil OpenForge comme backend du modèle XLIM généré
par Orcc. Le flot de conception de CAL vers HDL dans Orcc est également connu sous le
nom ORC2HDL. La limitation de cette méthodologie est le manque de support aux actions
multi-jetons dans les programmes RVC-CAL. Bien que la solution proposée par Jerbi et al.
[Jerbi et al., 2012] pour surmonter cette limitation, qui est une transformation automatique de
programmes RVC-CAL multicadence à des programmes à taux unique, elle conduit à un code
résultant complexe et la réduction de la performance. Des travaux récents [Bezati et al., 2013]
ont cherché à améliorer le flot de conception de ORC2HDL, en alimentant OpenForge par une
représentation intermédiaire (Intermediate Representation (IR)) générée par Orcc, connu sous
le nom xronos. Le principal problème avec cette approche est la nécessité de changer certaines
constructions dans le code RVC-CAL initial afin de pouvoir faire la synthèse.
Orcc est actuellement le plus largement utilisé pour la génération de code dans la communauté
RVC et il est également le choix de notre travail rapporté dans cette thèse.

D.5 Présentation du flot de conception niveau système
proposé

Nous avons proposé dans notre article de conférence [Abid et al., 2013] un flot de conception
complet illustré dans la figure D.4. Le compilateur Orcc génère un modèle basé sur C à partir
de programmes RVC-CAL, que nous avons qualifié backend C-HLS. Ensuite, Vivado HLS 1 de
Xilinx est utilisé comme outil HLS qui compile automatiquement le code basé sur C dans une
description RTL en HDL. Il s’avère que Vivado HLS a un avantage significatif puisqu’il accélère
la productivité pour les FPGAs Xilinx série 7 et pour de nombreuses générations des FPGAs à
venir. Le premier défi clé dans la mise en œuvre du flot de conception proposé est la génération
automatique d’un code C conforme à Vivado HLS et qui respecte la sémantique du modèle de
calcul DPN. Le deuxième défi clé est la synthèse automatique du système y compris la synthèse
de la communication. Tout au long du chapitre 4, nous avons détaillé les spécifications de la
génération du code C-HLS tout en respectant la sémantique du modèle de calcul DPN, afin de
garder le même comportement de l’acteur dans la description matérielle. Nous avons fourni la
méthodologie utilisée pour établir le niveau système en connectant avec précision les différents
composants matériels générés par Vivado HLS avec les composants FIFOs correspondants (figure
D.5).
La première caractéristique du backend C-HLS de Orcc est le fait qu’il ne contient pas des
constructions qui ne sont pas synthétisables telles que l’allocation dynamique de mémoire et les
pointeurs puisque les descriptions RVC-CAL ne supportent pas ce type de constructions. En
outre, le backend C-HLS respecte la sémantique du modèle de calcul DPN à travers la gestion
de la FIFO expliquée en détails dans ce qui suit.
En effet, l’accés aux FIFOs sont accomplies au moyen des méthodes definies dans la classe
hls::stream de Vivado HLS, utilisée pour définir les interfaces (streaming explicite). Cepen-
dant, la FIFO renvoie seulement deux informations sur son état: plein ou vide. L’information
sur le nombre de jetons présents dans la FIFO d’entrée et leurs valeurs n’est pas disponible. Afin

1http://www.xilinx.com/products/design-tools/vivado/integration/esl-design/
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Figure D.4: Flot de conception niveau système proposé.
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Figure D.5: Implémentation matérielle de la FIFO.
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Figure D.6: Implémentation matérielle de la RAM.

de respecter la sémantique du modèle de calcul DPN, la solution [Jerbi et al., 2012] était de créer
des buffers circulaires internes pour chaque port d’entrée où les jetons pourront être stockés, et
qui sont gérés par des indexes de lecture et d’écriture. Une action est crée juste pour lire les
données de la FIFO et les stocker dans le buffer circulaire interne en incrémentant les indexes
de lecture. Plus tard, la consommation des données à partir des buffers incrémente les indexes
d’écriture. Par conséquent, la différence entre les indexes de lecture et d’écriture correspond au
nombre de jetons disponibles dans chaque buffer et toutes les règles de tir des actions sont liées
à cette différence. La taille de ces buffers internes est la pluissance entière de 2 la plus proche
du nombre de jetons de lecture tandis que les FIFOs créés sont par défaut implémentées avec
une profondeur de 1.

D.6 Problématique du flot de conception proposé

Bien que cette implémentation respecte la sémantique du modèle de calcul DPN, le fait d’ajouter
des buffers internes pour chaque port d’entrée, alourdissent la structure de l’acteur. En effet,
pour chaque port d’entrée, on ajoute une action pour consommer les jetons d’une FIFO d’entrée
et les stocker dans une mémoire tampon locale. Ensuite, on ajoute une action qui effectue le
calcul de base et remplit une mémoire tampon locale pour chaque port de sortie. Enfin, on ajoute
une action qui écrit les jetons de la mémoire tampon locale vers les FIFOs de sortie, ainsi qu’une
machine d’état pour l’ordonnancement de ces actions, ce qui engendre des copies supplémentaires
entre les FIFOs et les buffers internes. En outre, la consommation et la production de jetons n’est
pas effectuée en parallèle en raison du modèle d’exécution séquentiel des actions d’un acteur, ce
qui augmente la latence et l’utilisation des ressources et réduit le débit.

D.7 Optimization de l’interface de communication

Cette section traite le goulot d’étranglement des performances introduit par l’infrastructure de
communication proposée. Nous proposons une implémentation optimisée de l’infrastructure de
communication (streaming explicite) dans la conception proposée précédemment, afin de min-
imiser les frais généraux engendrés par l’infrastructure de communication et d’ordonnancement.
Ainsi, nous avons amélioré le backend C-HLS en utilisant le streaming implicite plutôt que
explicite. Les ports de l’interface sont déclarés comme des buffers circulaires unidimensionnels
externes permettant ainsi l’accès à la mémoire externe. Au niveau RTL, ces buffers circulaires
sont convertis en blocs de mémoire (Random-Access Memory (RAM)) par la synthèse haut
niveau (HLS). Ce type d’interface est utilisé pour communiquer avec des éléments de mémoire
RAM comme ilustré à la figure D.6.
L’accés aux FIFOs est effectué en accédant directement au contenu des buffers puisqu’ ils sont mis
en œuvre comme mémoire partagée. En outre, l’utilisant des buffers circulaires pour implémenter
les FIFOs exige une gestion efficace des indexes. Ainsi, chaque acteur qui écrit/lit dans/du buffer
circulaire a son propre indexe d’écriture/lecture local. Afin d’éviter les situations de compétition,
les indexes sont incrémentés une seule fois à la fin de l’action. Dans le but de rendre l’état des
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Table D.1: Résultats temporels de l’implémentation du décodeur RVC CAL HEVC selon deux
flots de conception: Stream design vis-à-vis RAM design pour une séquence vidéo de 5 images
et une taille de FIFO de 16384.

Stream design RAM design

Latency (ms) 248, 10 64, 83
Sample Rate (Msps) 0, 54 2, 71
Throughput (Fps) 3, 66 18, 11

indexes visible par d’autres acteurs, les indexes locaux sont transmis à la fin de l’action vers des
interfaces externes déclarées comme des tableaux unidimensionnels de taille 1. Ainsi, chaque
acteur gère son propre indexe pour la lecture et/ou écriture, et peut avoir accès aux indexes des
autres acteurs.
L’ordonnanceur des actions est implémenté par une fonction, qui évalue les règles de tir, à savoir
les valeurs de jetons qui devrait être disponibles dans les canaux d’entrée ainsi que leurs nombres.
Cependant, l’information sur le nombre de jetons disponibles dans les canaux d’entrée n’est pas
disponible lorsqu’on traite avec des tampons. La comparaison des indexes de lecture et d’écriture
associées à chaque tampon est suffisante pour reconnâıtre l’état de la FIFO. Par conséquent, des
tests, pour détecter le moment auquel le nombre de jetions entrants nécessaires est disponible
ou quand une FIFO de sortie est pleine, sont ajoutés dans l’ordonnanceur d’actions. Ces tests
sont réalisés au moyen de la différence entre les indexes de lecture et d’écriture.

D.8 Cas d’étude: le décodeur HEVC

Pour démontrer l’applicabilité de notre méthodologie de prototypage rapide proposée, nous
implémentons automatiquement une description RVC-CAL du décodeur HEVC en FPGA selon
le flot de conception niveau système proposé de la figure D.4. Nous avons choisi la norme
HEVC vu que c’est la dernière norme au sein du groupe Joint Collaborative Team on Video
Coding (JCT–VC). Le décodeur HEVC implique l’utilisation d’algorithmes complexes consom-
mant un flux de bits en entrée, et produisant des données vidéo en sortie (Figure D.7). Une
représentation graphique de la description RVC-CAL du décodeur HEVC est illustrée à la figure
D.8, qui totalise 32 acteurs. Chaque acteur est mappé à un bloc fonctionnel du décodeur com-
mun. De cette manière, l’Algo Parser correspond au décodeur entropique, qui extrait les valeurs
nécessaires pour le traitement du prochain flux de données compressées. L’XiT, qui est à son
tour hiérarchique, met en œuvre la transformée inverse et la quantification. L’IntraPrediction
correspond à la prédiction spatiale. L’InterPrediction correspond à la prédiction temporelle.
Le SelectCu calcule la reconstruction de l’image. Le GenerateInfo obtient principalement les
vecteurs de mouvement. Le DecodingPictureBuffer correspond au tampon d’images décodées.
Deux filtres additionnels sont aussi définis, le Deblocking Filter (DBF) et le Sampling Adaptative
offset (SAO). Le premier a pour objectif de réduire la compléxité. Le second filtre est appliqué
après le deblocking et ajoute un offset en fonction de la valeur du pixel et des caractéristiques
de la région de l’image.
Pour les résultats expérimentaux, nous avons sélectionné 4 séquences vidéo à partir de la base
de données standard de HEVC. Pour l’implémentation FPGA, nous avons ciblé une plate-forme
Xilinx Virtex–7 (XC7V2000T package FLG1925–1) en utilisant Vivado HLS (Version 2014.3).
Afin de quantifier les performances de notre flot de conception proposé, trois indicateurs de
performance sont considérés qui sont le débit, la latence et la surface.
Pour démontrer l’amélioration de la performance, nous avons implémenté la description RVC
CAL du décodeur HEVC selon le flot de conception streaming explicite qu’on le nomme
Stream design d’une part et le flot de conception streaming implicite qu’on le nomme RAM
design d’autre part. Le débit et la latence de ces 2 designs sont compars dans le tableau D.1. Les
résultats de la simulation montrent que l’optimisation proposée avec le RAM design a augmenté
le débit d’un facteur d’accélération de 5, 2× et réduit la latence d’un facteur d’accélération de
3, 8× par rapport à l’implémentation du Stream design. En effet, les résultats dépendent large-
ment du remplacement de la copie des données entre les FIFOs et les tampons internes dans le
Stream design, par une mémoire partagée dans la conception optimisée RAM design.
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Figure D.7: Description RVC CAL au plus haut niveau du decodeur HEVC.

D.9 Conclusion et perspectives

Dans cette thèse, nous avons proposé une implémentation matérielle optimisée des canaux de
communication dans les programmes RVC-CAL en utilisant une mémoire partagée (RAM) qui
se comporte comme un buffer circulaire. Les résultats de simulation du décodeur HEVC avec
le flot de conception optimisé ont montré que l’implémentation proposée avec les Blocs RAM
a augmenté le débit et réduit la latence par rapport au flot de conception état-de-l’art. En
outre, le flot de conception proposé est entièrement automatique quel que soit la complexité de
l’application, ce qui conduit à un gain en temps de développement par rapport à l’approche
manuelle. Par ailleurs, une infrastructure de test complète a été mise en œuvre dans Orcc, qui
permet de simuler et analyser le design à un niveau de granularité souhaité (système, composant
ou action). Un autre élément clé de notre flot de conception proposé est la capacité d’améliorer
les performances par refactoring des programmes RVC-CAL. En d’autres termes, la modélisation
des applications de codage vidéo au niveau système dans le cadre RVC facilite l’optimisation
au niveau système et composant en faveur de l’implémentation matérielle en faisant abstraction
aux détails bas niveau.
Les directions pour des travaux futurs incluent l’application d’optimisations basées sur les direc-
tives Vivado HLS pour parvenir à une implémentation matérielle avec un débit plus élevé et une
latence plus faible. En outre, l’implémentation d’une mémoire partagée est le point de départ
qui permet une conception conjointe (co-design matériel/logiciel) pour les plateformes à base de
FPGA.
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Figure D.8: The RVC FNL description of the HEVC Decoder FU.
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Résumé

Les applications de traitement d’image et vidéo sont
caractérisées par le traitement d’une grande quantité de
données. La conception de ces applications complexes, avec
des méthodologies de conception traditionnelles bas niveau,
provoque l’augmentation des coûts de développement.

Afin de résoudre ces défis, des outils de synthèse haut niveau
ont été proposés. Le principe de base est de modéliser le
comportement de l’ensemble du système en utilisant des
spécifications haut niveau afin de permettre la synthèse
automatique vers des spécifications bas niveau pour
implémentation efficace en FPGA.

Cependant, l’inconvénient principal de ces outils de synthèse
haut niveau est le manque de prise en compte de la totalité du
système, c.-à-d. la création de la communication entre les
différents composants pour atteindre le niveau système n’est
pas considérée.

Le but de cette thèse est d’élever le niveau d’abstraction dans
la conception des systèmes embarqués au niveau système.
Nous proposons un flot de conception qui permet une synthèse
matérielle efficace des applications de traitement vidéo décrites
en utilisant un langage spécifique à un domaine pour la
programmation flot-de-données. Le flot de conception combine
un compilateur flot-de-données pour générer des descriptions à
base de code C et un synthétiseur pour générer des
descriptions niveau de transfert de registre.

Le défi majeur de l’implémentation en FPGA des canaux de
communication des programmes flot-de-données basés sur un
modèle de calcul est la minimisation des frais généraux de la
communication. Pour cela, nous avons introduit une nouvelle
approche de synthèse de l’interface qui mappe les grandes
quantités des données vidéo, à travers des mémoires
partagées sur FPGA. Ce qui conduit à une diminution
considérable de la latence et une augmentation du débit. Ces
résultats ont été démontrés sur la synthèse matérielle du
standard vidéo émergent High-Efficiency Video Coding (HEVC).

Abstract

Image and video processing applications are characterized by
the processing of a huge amount of data. The design of such
complex applications with traditional design methodologies,
which are at low-level of abstraction, causes increasing
development costs.

In order to resolve the above mentioned challenges, Electronic
System Level (ESL) synthesis or High-Level Synthesis (HLS)
tools were proposed. The basic premise is to model the
behavior of the entire system using high-level specifications,
and to enable the automatic synthesis to low-level specifications
for efficient implementation in Field-Programmable Gate Array
(FPGA).

However, the main downside of the HLS tools is the lack of the
entire system consideration, i.e. the establishment of the
communications between these components to achieve the
system-level is not yet considered.

The purpose of this thesis is to raise the level of abstraction in
the design of embedded systems to the system-level. A novel
design flow was proposed that enables an efficient hardware
implementation of video processing applications described
using a Domain Specific Language (DSL) for dataflow
programming. The design flow combines a dataflow compiler for
generating C-based HLS descriptions from a dataflow
description and a C-to-gate synthesizer for generating Register
Transfer Level (RTL) descriptions.

The challenge of implementing the communication channels of
dataflow programs relying on Model of Computation (MoC) in
FPGA is the minimization of the communication overhead. In
this issue, we introduced a new interface synthesis approach
that maps the large amounts of data that multimedia and image
processing applications process, to shared memories on the
FPGA. This leads to a tremendous decrease in the latency and
an increase in the throughput. These results were demonstrated
upon the hardware synthesis of the emerging High-Efficiency
Video Coding (HEVC) standard.




