

Implication of NO in the regulation of ascorbate recycling in tomato fruits (Solanum lycopersicum, cv micro-Tom) and in response to an environmental stress

Sanders Junglee

► To cite this version:

Sanders Junglee. Implication of NO in the regulation of ascorbate recycling in tomato fruits (Solanum lycopersicum, cv micro-Tom) and in response to an environmental stress. Agricultural sciences. Université d'Avignon, 2014. English. NNT: 2014AVIG0660. tel-01333842

HAL Id: tel-01333842 https://theses.hal.science/tel-01333842

Submitted on 20 Jun2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

ACADEMIE D'AIX-MARSEILLE UNIVERSITE D'AVIGNON ET DES PAYS DE VAUCLUSE

THESE

Présentée pour obtenir le grade de **Docteur en Sciences** de l'Université d'Avignon et des Pays de Vaucluse

Spécialité : Sciences Agronomiques

Implication de NO dans la régulation du recyclage de l'ascorbate dans les fruits de tomate (Solanum lycopersicum, cv micro-Tom) et en réponse à une contrainte environnementale

Par Sanders JUNGLEE

Soutenue le 19 juin 2014 devant le jury composé de:

Pierre Baldet, Chargé de Recherches INRA, Bordeaux	Rapporteur
Mondher Bouzayen, Professeur, INP-ENSAT, Toulouse	Rapporteur
Emmanuel Baudouin, Maitre de Conférences, UPMC, Paris VI	Examinateur
Luc Bidel, Chargé de Recherches INRA, Montpellier	Examinateur
Rebecca Stevens, Chargé de Recherches INRA, Avignon	Examinatrice
Félicie Lauri, Maître de conférences, UAPV	Directrice de thèse
Laurent Urban, Professeur, UAPV	Directeur de thèse

Ecole doctorale : ED 536, Sciences et Agrosciences-UAPV d'Avignon

Laboratoire d'accueil : EA4279, Laboratoire de Physiologie des Fruits et Légumes, UAPV, Campus agrosciences, 84916 Avignon.

Remerciemetrs

Je tiens tout d'abord à remercier mes Directeurs de thèse, Félicie Lauri-Lopez et Laurent Urban, pour la qualité de leur encadrement et leur disponibilité pendant ces trois ans et demi. Ce manuscrit n'aurait pu être réalisé sans leurs conseils et leurs corrections.

Merci Félicie de m'avoir fait confiance pour mon stage de master 2 ou j'ai eu le plaisir de travailler avec Mathieu Lechaudel et Jacques Joas. Stage qui m'a conforté dans l'idée de continuer dans la recherche. Je te remercie d'autant plus que tu avais réitéré ta confiance et moi en me confiant la conduite de ce travail de thèse. Travailler avec toi fut très enrichissant à tout les niveaux aussi bien humainement que professionnellement. Je te remercie pour toutes les techniques auxquelles tu m'as formée malgré ton emploi du temps très chargé. Je te remercie également pour ta grande disponibilité quand je débarquais dans votre bureau avec toutes mes données et nombreuses questions. Merci pour ces moments de science passionnants et enrichissants. Merci Laurent d'avoir accepter de co-diriger cette thèse. Je te remercie également pour le temps que tu m'as accordé notamment et de m'avoir permis de profiter de tes connaissances. Un grand merci a tout les deux pour tout ce que vous m'avez apporté et surtout pour votre patience. Je tiens aussi à remercier Huguette Sallanon de m'avoir donné l'opportunité de réaliser ce travail de thèse dans son équipe, et de m'avoir soutenu et conseillé pour différentes manips notamment pour la microscopie à fluorescence et pour mon déplacement au Pays-Bas. Je vous remercie d'avoir cru en notre projet et de nous avoir toujours soutenus.

Je remercie également Messieurs Mondher Bouzayen et Pierre Baldet d'avoir accepté d'être rapporteurs de cette thèse ainsi que Madame Rebeca Stevens et Messieurs Luc Bidel et Emmanuel Baudouin d'avoir acceptés d'être examinateurs de cette thèse.

Un grand merci à Capucine Massot et Hélène Gautier qui furent les premières à m'accueillir au sein d'un laboratoire de recherche et transmis le virus de la recherche.

Un grand merci également à Florence Léautier (Flo) et Emmanuelle Arnoux (Manu) pour le côté administratif de cette thèse et à Franck Lacroix (Francky) et Véronique Vidal pour le côté matériel. Je vous ai bien embêté avec mes listes à rallonge de commande à passer souvent en urgence. Merci pour votre accueil toujours chaleureux.

Merci à Claude Chamary notre ancien gardien qui a du supporter mes départs tardifs du bureau durant ses derniers mois de travail (vive la retraite cloclo). Sans oublier notre Rolande internationale qui venait souvent prendre des nouvelles de ses petits thésards. Je remercie le Professeur Mohammed El Maataoui pour sa disponibilité et pour tous ses conseils. Merci pour tout ce temps que vous m'avez accordé pour les observations de microscopie à fluorescence. Travailler avec vous a été un réel plaisir aussi bien intellectuellement que humainement. En licence vous faisiez parti de ces profs qui m'ont donné l'envie de continuer dans le domaine végétale et travailler avec vous a été un réel privilège et honneur.

Merci également à Emílie Roussel pour son excellent travail de stage qui m'a permís d'optímiser ces deux mois d'été au combien important.

Un grand merci pour le travail accompli par Kim Rimbault. Merci pour ton implication dans ce travail, pour toutes ces heures passées devant la paillasse pour la validation des puces.

Mes remerciements vont aussi à mes ancien collègues co-locataire de bureau pour ces moments de franche rígolades; ces matínées à suer et à grelotter grâce a notre super co-gestion de la clim. Je vous remercie également pour les discussions pas toujours scientífiques mais ô combien intéressantes. Toutes nos grandes discussions qui finissaient généralement par des schémas sur notre super tableau. Merci pour ces échanges tellement riches de part nos horizons souvent si éloignés. Que de bon souvenirs durant ces années passées à vos cotés sans oublié "nos repas de thésards et de stagiaires". Ainsi grand mercí à Madí, Phrutya, Ousama, Hilaríon, Chayma et Kím. Spéciale dédicace pour tout les stagiaires que j'ai eu le plaisir de côtoyer durant ces années, notamment Jean-Baptiste (j'ai pensé au p:-)), Meredith, Thalia, Ursula merci pour votre bonne humeur et nos grandes discussions scientifique. Je tiens aussi à remercie nos prédécesseurs thésards, Claire la rebelle et Benjamin pour m'avoir si bien accueilli dans leur bureau et aíder à me familiariser avec le fonctionnement des locaux. Je te remercie d'autant plus Claire car j'ai eu le plaisir de travailler avec toi notamment pour la préparation des TP. Le travail avec toi est plaisant car efficace et qu'est-ce qu'on a bien rígolé.

Je remercie aussi les différents thésards avec qui j'ai pu échanger, et qui m'ont permis de relativiser l'état d'avancement de mon travail : Laure (forf-girl), Jean-François, Solène et Céline. Vive les journées de formation CIES!!!

MERCI Sandrine, ma Sandrinette, notre super technicienne. mon petit soleil, toujours souriante même dans les moments durs. Je te remercie pour ta gentillesse et ta patience à mon égard. Travailler avec toi fut vraiment agréable, ta réactivité et efficacité m'ont toujours épaté, j'espère que tu n'aura pas d'autre thésards casse pieds comme moi de si tôt. "Sandrinette tu sais ou je pourrais trouver ceci, Sandrinette tu pourras venir nous aider à 3h du matin pour disséquer des tomates ou alors passer des heures devant l'ordinateur pour la microscopie" et j'en passe. Et aussi un énorme merci pour le temps que tu a passé à relire mon manuscrit et corriger mes nombreuses fautes. Sandrinette ne va pas sans Mellaman (Saad), que dire appart un énorme merci pour tout. Merci d'avoir supporté mes horaires tardifs, merci pour ces fous rires, ta disponibilité et surtout merci ta présence.

Je remercie également tous ceux qui n'ayant pas directement participé à la thèse, ont contribué à sa réalisation de part leurs conseils et soutiens : David Roux, Jawaad Aarouf, Florence Charles et Véronique Vidal. David merci d'avoir contribué à la bonne ambiance de travail (j'ai toujours le pistolet à eau!).

Merci à Caroline Martin avec qui j'ai apprécié replonger dans le monde de la zoologie et la classification pendant mes heures de monitorat. Merci également au directeur du département de biologie Fabien Monet et les responsables des L2 et L3 Séverine Suchail et Christophe Mazzia de pour leur souplesse et compréhension avec les moniteurs.

Je remercie enfin ma famille, et tout particulièrement ma compagne Sydné qui m'ont soutenu pendant toutes ces années, si je suis arrivé au bout de ce projet c'est en grande partie grâce à toi, merci pour ta compréhension et ton soutien.

Enfin je dédie ce travail à toutes ma famille qui a toujours été la pour moi. A mon père qui a travaillé très dur pour ses quatre enfants. Merci papa de m'avoir inculqué ces valeurs qui te sont si chères. A ma mère qui a toujours été la pour nous et qui a su caché sa tristesse de me voir partir si loin pour mes études. A mon frère et mes sœurs qui soutiennent leur petit frère depuis toujours, merci à vous qui avez toujours été la pour moi. A ma belle maman Christine, papilou et mamilou. A ma moitié Sydné et mon fils adoré Tim, je vous aime.

"Your mind is a garden, your thoughts are the seeds, you can grow flowers or you can grow weeds."

Résumé

A cours du développement du fruit, son statut oxydatif évolue entraînant une évolution concomitante des activités enzymatiques antioxydantes et ceci en interaction avec des hormones impliquées dans le développement et la maturation du fruit. Ces enzymes antioxydantes sont la superoxyde dismutase (SOD) et la Catalase (CAT) mais également de celles du cycle d'Haliwell-Asada (ascorbate peroxydase (APX), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR) et gluthation reductase (GR) impliquées également dans le recyclage de l'ascorbate. L'objectif de la thèse est de comprendre les interactions existant entre le stress oxydatif induit par les stress environnementaux au niveau des organes végétatifs et le recyclage de l'ascorbate dans les fruits de tomate (cv Micro-Tom).

Dans une première partie nous montrons qu'un déficit hydrique contrôlé et rapide induit une diminution du potentiel hydrique foliaire (Ψ h) sans aucun symptôme de stress photo-oxydatif détectable au niveau du PSII après 24h et sans que le statut hydrique du fruit ne soit affecté. Dans ces conditions, on observe toutefois une augmentation du H₂O₂ dans les fruits et une augmentation de l'activité des enzymes antioxydantes et de celles impliquées de recyclage de l'ascorbate. Par ailleurs, nous montrons une production de NO et de ABA en réponse au stress dans la plante. La localisation de NO a été réalisée par microscopie à fluorescence en utilisant la nouvelle sonde NO, la NO550 (mise au point pendant le doctorat).

Afin de déterminer si NO est responsable de la mise en place de la réponse antioxydante du fruits en interaction avec l'ABA et H_2O_2 , une approche pharmacologique a été réalisée. Les résultats montrent une augmentation des activités de ces enzymes en présence de ces trois molécules, avec une plus forte augmentation en présence de NO à chaque fois. Par ailleurs, nous confirmons que l'ABA induit la synthèse de NO dans le fruit et non l'inverse. On peut conclure de cette analyse que l'ABA induit par le déficit hydrique est responsable de la synthèse de NO dans les fruits et ce signal va induire l'activation des enzymes antioxydantes en association avec H_2O_2 .

Finalement, une approche transcriptomique a été réalisée pour étudier d'une part les gènes induits par NO et les gènes induits par le déficit hydrique au travers du NO. Les résultats suggèrent que le NO est à la croisée de la réponse au stress biotique et abiotiques et pourrait être utilisé pour acclimater les plantes au stress biotiques.

Mots clés : Acide abscissique, antioxydants, ascorbate, déficit hydrique, oxyde nitrique, tomate

Abstract

Oxidative status alongside with antioxidant enzymes activities constantly evolve during fruit development. This evolution is closely related to hormones involved in fruit development and maturation. The antioxidant enzymes are superoxide dismutase (SOD) and Catalase (CAT) as well as those of Haliwell-Asada cycle (ascorbate peroxydase (APX), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR) and gluthation reductase (GR) which are also implicated in ascorbate recycling. The objective of this work is to decipher the interactions between oxidative stress induced by environmental stress in vegetative organs and ascorbate recycling in tomato fruits (cv Micro-Tom).

Results obtained show that a rapid and controlled water deficit result in a fall in water potential $(L\Psi_w)$ whereas other water parameters remained unaffected and without any photo-oxidative symptoms detected in PS II after 24 hours. However we observed alongside an increase in H₂O₂ and of the activity of antioxidant enzymes as well as those involved in ascorbate recycling. Furthermore an increase in NO and ABA production was also detected in the plants in response to the stress. NO localisation was realised using fluorescence microscopy using the newly synthesised NO probe NO550 (developed during the thesis).

We used a pharmacological approach in order to determine if NO is responsible of the set up of the antioxidant response together with ABA and H_2O_2 . Results show an increase in the activity of the enzymes in contact with the three molecules with every time a greater increase with NO. Furthermore, we show that ABA induces NO production. Those results made us conclude that ABA production induced by the water deficit is responsible of NO synthesis in fruits and may have the action of a signal with activates antioxidant enzymes with the collaboration of H_2O_2 .

A microarray analysis was also conducted in order to study the genes induced by NO and the genes induced by water deficit through NO. Results suggest that NO is at the cross road of the response towards biotic and abiotic stress and might be a useful tool to acclimatize plant to stressful conditions.

Key words : Abscissic acid, antioxidant, ascorbate, nitric oxide, tomato, water stress

Liste des abréviations

ABA = Acide abscissique AGPI = Acide Gras Polyinsaturés **AO** = Ascorbate oxydase **APX** = Ascorbate Peroxydase **ARN** = Acide ribonucléique **AsA** = Acide ascorbique AsC = AscorbateCAT = Catalase**Chla** = Chlorophylle a **Chla*** = Chlorophylle a excitée **Chlb** = Chlorophylle b CuZnSOD = SOD à cuivre et à zinc **DAA** = Jours après anthèse **DAF =** Jours après floraison **DHA** = Dehydroascorbate **DHAR** = Dehydroascorbate Reductase **DKG** = acide 2,3-diketoglutonique **ERA =** Espèces Réactives de l'Azote **ERO** = Espèces Réactives de l'Oxygène **FAD** = Flavine Adénine Dinucléotide oxydée FADH₂ = Flavine Adénine Dinucléotide réduite FeSOD = SOD à fer**GalLDH** = L-galactono-1,4-lactone déshydrogénase **GME** = GDP-D-Mannose-3,5-épimérase **GMP** = GDP-D-Mannose pyrophosphorylase **GR** = Glutathion Réductase **GSH** = Glutathion réduit **GSSG** = Glutathion oxydé $\mathbf{L}^{\cdot} = radical lipidique$ LH = acide gras polyinsaturé **LOO**[•] = lipoperhydoxyle **LOOH** = Hydroxyperoxyde lipidique LOX = Lipoxygénase **MDA** = Malondialdehyde **MDHA =** Monodéhydroascorbate **MDHAR =** Monodéhydroascorbate réductase **MnSOD** = SOD à manganèse **NADP** = Nicotinamide Adenine Dinucléotide phosphate

NADPH = Nicotinamide Adenine
Dinucléotide réduite phosphate
NBT = Nitro Blue Tétrazolium
NO = Oxyde nitrique
NOX = NADPH Oxydase
PCR : Réaction de polymérisation en chaîne
PSI = Photosystème I
PSII = Photosystème II
RT = Transcription inverse
-SH = groupement thiol (ou sulfhydrile)
SOD = Superoxyde Dismutase
TBA = Acide thiobarbiturique
U = Unit

Table des matières	
Introduction général	1
1. Synthèse bibliographique	6
1.1. Les plantes face à leur environnement : adaptation à des conditions parfois stressante	s 6
1.1.1. Les espèces réactives de l'oxygène (ERO):	7
1.1.2. Stress oxydant	8
1.1.3. Les systèmes antioxydants	9
1.2. L'Acide ascorbique	11
1.2.2. Synthèse de l'ascorbate chez les végétaux	12
1.2.3. Recyclage de l'ascorbate et le maintien du statut redox	13
1.3. Le monoxyde d'azote ou oxyde nitrique (NO)	14
1.3.1. Synthèse du NO	14
1.3.2. Le NO et les stress abiotiques chez les végétaux : Interactions ABA, H_2O_2 et	NO17
Interactions entre le NO et l'acide jasmonique et l'acide salycilique	21
1.3.4. Méthodes de détection de l'oxyde nitrique	25
Chapitre 2 Matériels et méthodes	34
2.1. Matériel végétal et conditions de culture :	34
2.2. Conditions et application des différents traitements :	35
2.3. Culture des fruits détachés et traitements:	35
2.4. Analyses	36
2.4.1. Paramètres hydriques :	36
2.4.2. Activité du photosystème II :	37
2.4.3. Détermination de la teneur en H_2O_2 :	37
2.4.4. Teneur en Acide abscissique :	38
2.4.5. Teneur en MDA :	38
2.4.6. Quantification de l'oxyde nitrique par laser à cascade quantique (QCL) :	39
2.4.7. Localisation du NO par microscopie à fluorescence :	39
2.4.8. Activités enzymatiques antioxydants :	39
2.4.9. Détermination des teneurs en Ascorbate et dehydroascorbate :	41
2.5. Extraction et analyse des acides nucléiques :	41
2.5.1. Extraction des ARN totaux :	41
2.5.2. Puces à ADN	42
2.5.3. Validation des analyses transcriptomiques par qPCR en temps réel	44

2.5.3 Etapes préliminaires permettant de normaliser l'étude qPCR 44
2.6. Analyses statistiques :
2.7 Amélioration de la technique de mesure du peroxyde d'hydrogène par spectrométrie 47
Chapitre 3-1. Le mercure induit la synthèse de NO et ABA et l'activation du système de défense antioxydant dans le fruit de tomate
Chapitre 3-2. Ensemble l'acide abscissique, le peroxyde d'hydrogène et le NO influent sur les systèmes de défense antioxydants de fruits détachés de tomate (<i>Solanum lycopersicum</i> L, CV Microtom)
Chapitre 3-3. Analyse transcriptomique de la réponse de fruits de tomates après à l'oxyde nitrique et à un déficit hydrique
Discussion générale et conclusion 142
Perspectives
Annexes

Introduction général

Contexte de la thèse

La tomate représente des enjeux économiques et agronomiques majeurs. En effet, au niveau mondial, la surface cultivée en tomate est d'environ 4.6 millions d'hectares et la production s'élève à près de 161,7 millions de tonnes (FAO, 2012). La tomate se place au premier rang des fruits et légumes produits et consommés dans le monde, consommation en constante augmentation chaque année et atteint 21 kg/an/personne. De ce fait, la tomate est devenu un organisme modèle pour l'étude de nombreux processus biologiques comme le développement et la maturation ainsi que pour l'étude des interactions plante-environnement. De plus, la tomate est caractérisée par sa richesse en antioxydants (le lycopène, le β -carotène et la vitamine C), connus pour leurs implications dans la lutte contre les maladies cardiovasculaires, certains cancers et d'autres maladies liées au vieillissement.

L'acide ascorbique (AsA) se présente sous trois formes : une forme réduite l'ascorbate (AsC) et deux formes oxydées, le radical monodehydroascorbate (MDHA) et le dehydroascorbate (DHA). Dans la plupart des fonctions cellulaires, l'ascorbate agit en tant que donneur d'électrons pour des réactions d'oxydo-réduction. Cependant, il peut aussi agir directement en éliminant les espèces réactives de l'oxygène (ERO) produites par le métabolisme cellulaire. Les ERO causent des dommages oxydatifs important en interagissant avec des macromolécules telles que les protéines, les lipides ou l'ADN. L'ascorbate, en piégeant les ERO, préviendrait ainsi des maladies cardiaques (athérosclérose), des inflammations chroniques et des maladies neurodégénératives (maladies d'Alzheimer et de Parkinson) puisqu'elle joue un rôle dans la protection des cellules contre le stress oxydatif (Poiroux-Gonord et al., 2010). La vitamine C est non seulement essentielle pour l'Homme mais elle est aussi vitale pour les végétaux qui la synthétisent. L'ascorbate joue un rôle important dans les processus physiologiques des plantes en agissant également en tant qu'antioxydant contre les ERO produites essentiellement lors du dysfonctionnement du métabolisme cellulaire (photosynthèse, respiration, ...), résultant généralement d'un stress environnemental tel que la sécheresse, le froid ou encore l'ozone. En effet, chez les végétaux, l'ascorbate est capable d'éliminer des espèces radicalaires de l'oxygène et notamment le peroxyde d'hydrogène (H₂O₂) en faisant intervenir une enzyme particulière spécifique du règne végétal l'ascorbate peroxydase (APX). Cette réaction d'oxydo-réduction conduit à la formation de DHA et/ou de MDHA qui seront à leur tour réduits en ascorbate par la monodehydroascorbate réductase (MDHAR), la dehydroascorbate réductase (DHAR) et la

glutathion réductase (GR). Ce recyclage est une fonction essentielle pour la cellule végétale car il permet de lutter contre les ERO produits dans la cellule, et de contrôler de l'accumulation de l'ascorbate.

Suite au réchauffement climatique, la sécheresse est un phénomène environnemental qui va augmenter en fréquence, intensité et distribution géographique (Smith et al., 2009). La sécheresse influence fortement la croissance et le développement des végétaux. Les conséquences de la sécheresse sont généralement considérées comme négatives car ses effets sur la conductance stomatique et la photosynthèse induisent une diminution de la productivité des cultures. Cependant, le stress n'a pas que des cotés négatifs. En effet, il a été démontré que le stress en général et plus précisément, un déficit hydrique modéré, pouvait positivement influencer le métabolisme secondaire des fruits et légumes avec des bienfaits potentiels pour les consommateurs. La concentration de métabolites secondaires tels que les vitamines ou les polyphénols peut augmenter chez les végétaux lorsque ces derniers font face à des contraintes environnementales (Murshed R, 2008a, 2013a). En réponse au déficit hydrique, le plant de tomate subit un stress oxydatif et le système antioxydant du fruit de tomate est activé (Murshed et al., 2013b). On observe en effet une augmentation des teneurs en ascorbate et une augmentation des activités des enzymes détoxifiantes telles que la SOD et la Catalase mais également de celles du cycle d'Haliwell-Asada (APX, DHAR, MDHAR). Ce système antioxydant permet l'adaptation du fruit à la contrainte oxydative et il est mis en place en réponse au déficit hydrique. Ces résultats ont conduit à des questionnements sur les mécanismes mis en place dans les réponses de défense face à un stress hydrique. Notamment, sur l'existence d'un signal "stress" pouvant provenir des parties végétatives (feuilles ou racines) en réponse au déficit hydrique et transféré au fruit pour mettre en place les systèmes de défense avant qu'il ne subisse le stress. Les candidats susceptibles de ces signaux, l'oxyde nitrique (NO), l'acide abscissique (ABA) et le peroxyde d'hydrogène (H2O2) semblent être de bons candidats.

Objectifs de la thèse

L'objectif du travail qui a été effectué durant mon doctorat a été d'étudier l'implication du NO dans la réponse des fruits au déficit hydrique et son role dans l'induction des systèmes antioxydants des fruits. Le plan de recherche suivi pour répondre à mes objectifs a été le suivant :

1. Déterminer si un déficit hydrique induit rapidement la mise en place des systèmes de défense dans le fruit et provoque la synthèse de NO (voir chapitre 3-1). La détection de NO a été réalisée par microscopie à fluorescence en utilisant la nouvelle sonde NO, la NO₅₅₀ (détection, mise au point pendant le doctorat) et par spectrométrie laser à cascade quantique (QCL) au Pays Bas (Radbound University).

2. Vérifier si le NO est responsable de la mise en place de la réponse antioxydante du fruit en interaction avec l'ABA et H_2O_2 (à des doses correspondant à la quantité détectée dans les fruits soumis au déficit hydrique). Une approche pharmacologique a été mise en place sur des fruits de tomates mis en culture sur milieu nutritif liquide Murashige and Skoog (voir Chapitre III-2).

3. Identifier d'autres gènes induits par NO dans le fruit de tomate. Pour cela, nous avons utilisé de puces à ADN (Agilent, technique bicolor), où nous avons mis en évidence les gènes induits après 4h de traitement au NO (Chapitre III-3).

Plan de la thèse

Ce manuscrit est organisé en 6 chapitres principaux. Le chapitre I est une synthèse bibliographique du sujet traité durant ma thèse. L'objectif de cette synthèse est de présenter en particulier: les systèmes de défense antioxydants (enzymatique et non enzymatique) mis en place en réponse aux stress abiotiques, un état des connaissance sur l'oxyde nitrique, une molécule de signalisation importante. Cette revue bibliographique est complétée pour certains points particuliers dans les introductions des articles.

Le chapitre II expose le matériel et les principales méthodes utilisées pour mener mes travaux expérimentaux Nous verrons successivement le matériel végétal et ses conditions de cultures et d'application des stress, aussi des descriptions des méthodes utilisées pour caractériser les effets du stress, quantifier l'ascorbate et étudier l'expression des gènes. Enfin sera présenté le protocole mis au point pour le dosage de H₂O₂, présenté sous la forme d'un article publié dans American Journal of Analytical Chemistry.

Les résultats de mes recherches (chapitre III) sont présentés sous la forme de trois sous chapitres indépendants. Le chapitre III-1 décrit sous la forme d'un article, les effets du mercure sur les paramètres oxydatifs et les systèmes antioxydants dans les feuilles et les fruits de tomate d'une part et sur la production d'oxyde nitrique d'autre part.

Le chapitre III-2 présente les effets de l'acide abscissique, $l'H_2O_2$ et l'oxyde nitrique sur le fonctionnement des systèmes antioxydants, cette dernière partie est également rédigée sous la forme d'un article soumis à Journal of Plant Physiology

Enfin, le chapitre III-3, présente l'étude transcriptomique réalisée pour rechercher les gènes cibles du NO et les gènes induit par le déficit hydrique au travers du NO.

Enfin, une discussion générale des travaux présentés et des perspectives viennent conclure ce manuscrit.

En réponse à une contrainte saline ou hydrique, le plant de tomate subit un stress oxydatif et le système antioxydant du fruit de tomate est activé (Murshed et al, 2013). On observe alors, une augmentation des teneurs en vitamine C et une augmentation des activités des enzymes détoxifiantes tels que la SOD et la Catalase mais également de celles du cycle d'Haliwell-Asada (APX, DHAR, MDHAR) **dépendant du stade physiologique du fruit et de l'intensité du stress**. Par ailleurs, il a été montré que cet ensemble d'enzymes est également induit dans des fruits dont les symptômes et marqueurs de stress ne sont pas détectables alors que les feuilles subissent un stress oxydatif avéré (Murshed et al, 2013). Ceci pouvait suggérer d'une part que le système antioxydant est suffisant pour maintenir les stress oxydant du fruit ou qu'un signal " stress " pouvait être induit dans les parties végétatives (feuilles ou racines) en réponse au traitement et transféré au fruit pour mettre en place les systèmes de défense avant qu'il ne subisse le stress. Parmi ces signaux, l'oxyde nitrique (NO) et le peroxyde d'hydrogène semblent être de bons candidats.

Chapitre I : Synthèse bibliographique

1. Synthèse bibliographique

1.1. Les plantes face à leur environnement : adaptation à des conditions parfois stressantes

Les végétaux peuvent être confrontés à des changements de leurs conditions environnementales qui vont être néfastes pour leur développement. Ces conditions si elles sont défavorables, peuvent avoir des conséquences allant de la baisse de rendement jusqu'à la perte complète des récoltes. On parle de situation de "stress" lorsques ces facteurs externes sont capables d'induire un effet potentiellement nuisible sur les organismes vivants mais peut également être utilisée pour décrire l'effet nuisible lui-même.. On distingue respectivement les stress de types biotiques et abiotiques (bios = vie en grec) selon qu'ils sont dus à des organismes vivants (insectes, virus, bactéries..) ou à d'autres facteurs (sécheresse, froid, métaux lourds..). (Figure 1).

Un des principaux effets de ces conditions de stress est l'augmentation de la production d'espèces réactive de l'oxygène (ERO) au sein des plantes. Les ERO peuvent être des radicaux, mais aussi des molécules non radicalaires et leur nature instable les rendent particulièrement réactif et sont capables de provoquer des dégâts cellulaires importants.

Figure 1 Principaux stress environnementaux

1.1.1. Les espèces réactives de l'oxygène (ERO):

L'oxygène (O_2) est un élément indispensable à la vie des organismes aérobies. Ces organismes utilisent l'oxygène pour oxyder les substrats riches en carbone et en hydrogène ou pour synthétiser les substrats carbonés dans le cas des végétaux. Ces processus s'accompagnent de la formation d'intermédiaires radicalaires très réactifs connus sous le nom espèces réactives de l'oxygène (ERO). Les ERO sont des molécules contenant de l'oxygène mais dont la réactivité est bien supérieure à celle de la molécule d'O2. Dans les conditions optimales de croissance des végétaux, de nombreux processus biochimiques métaboliques produisent des ERO. Le système de transport d'électrons lié à la photosynthèse est la source majeure de formes réactives de l'oxygène dans les tissus végétaux (Asada, 1999). L'existence de ces formes réactives apparaît comme une conséquence inévitable du fonctionnement de ce système de transport d'électrons. Dans les cellules végétales, l'activation de l'oxygène peut également se produire dans d'autres compartiments et organites : mitochondries, peroxysomes, réticulum et parois cellulaires. La réduction de l'oxygène quadruplet, qui donne de l'eau, est la dernière étape réactionnelle du transport d'électrons dans la mitochondrie ; elle est catalysée par la cytochrome oxydase. En marge de ce métabolisme normal de l'oxygène, l'anion superoxyde, le peroxyde d'hydrogène et des radicaux hydroxyles peuvent être les produits du métabolisme propre des mitochondries (Elstner, 1982). Le tableau 1 présente les différents ERO et la figure 2 présente les principaux effets de ces derniers.

Anion superoxyde (O ₂) -	L'anion radicalaire superoxyde (O ₂ ⁻) n'est pas très réactif mais constitue un des radicaux précurseurs pouvant être activés en autres espèces plus réactives. Résulte de la capture d'un électron par la molécule d'O ₂ lors de réactions endergoniques. Peut aussi être produit lors de réactions d'oxydation enzymatiques ou spontanées.
Peroxyde d'hydrogène -	Formé par dismutation de l'anion superoxyde et
(H2O2)	par addition d'un second électron sur l'anion superoxyde en donnant l'ion peroxyde $O_2^{2^2}$. Cet ion est protoné immédiatement en H ₂ O ₂ dans les conditions de pH physiologique, compte tenu du pKa très élevé de H ₂ O ₂ .
Radical hydroxyle (OH') - - -	Il résulte de la fission homolytique de la liaison O- O dans la molécule de peroxyde d'hydrogène. Sa concentration intracellulaire est en général très faible, mais elle peut atteindre des taux très supérieurs localement, en particulier dans les mitochondries et les peroxysomes
L'oxygène singulet (¹ O ₂) -	L'oxygène singulet (¹ O ₂) est une autre espèce oxygénée très réactive. C'est une molécule à l'état excité qui peut réagir avec différents accepteurs d'électrons pour produire des peroxydes. Il est formé lors de réductions photochimiques et de thermolyse des endoperoxydes.

Tableau 1 : Principales espèces réactives de l'oxygène et leurs spécificités.

1.1.2. Stress oxydant

Les stress environnementaux comme la sécheresse, la salinité, la présence de métaux lourds, la chaleur, le froid, la toxicité des ions, ainsi que les stress biotiques (l'infection fongique et dommages causés par les insectes) induisent la production d'ERO générant alors un stress oxydant à l'origine de changements dans le fonctionnement cellulaire et tissulaire. Le stress oxydant est défini comme un désequilibre entre les prooxydants et les antioxydants, en faveur des premiers, conduisant à des dommages potentiels (Sies, 1997b). Lorsque la quantité d'espèces réactives de l'oxygène (ERO) générée dépasse les capacités antioxydantes de l'organisme, la toxicité des ERO s'exprime par de nombreux aspects, et en particulier par la perturbation de nombreux processus physiologiques comme la photosynthèse (Sies, 1997b; Smirnoff, 1998; Langebartels et al., 2002). Cette toxicité s'explique par la réactivité des ERO, en particulier celle du radical hydroxyle (OH[°]), envers les macromolécules biologiques. Le stress oxydant chez les végétaux a fait l'objet de très nombreuses revues bibliographiques

(Bartosz, 1997; Bolwell et Wojtaszek, 1997; Van Breusegem et al., 2001; Potters et al., 2002; Schutzendubel et Polle, 2002; Blokhina et al., 2003; Apel et Hirt, 2004; Foyer et Noctor, 2005a; Pitzschke et al., 2006; Wormuth et al., 2007) et de plusieurs livres (Inze et Montagu, 2001; Smirnoff et al., 2005).

Figure 2 Principaux effets des espèces réactives de l'oxygène

1.1.3. Les systèmes antioxydants

Les systèmes de défense antioxydants incluent des enzymes antioxydantes et des métabolites antioxydants. Les mécanismes de détoxification des ERO existent chez toutes les plantes et peuvent donc être classés en deux catégories selon qu'ils sont de nature enzymatique ou non enzymatique. Le tableau 2 résume les différents antioxydants que l'on peut croiser chez les végétaux.

Systèmes enzymatiques

Superoxyde dismutases (SOD)

Les plantes possèdent trois types de SOD qui contiennent des groupements prosthétiques et renferment des métaux différents : du fer (FeSOD), du manganèse (MnSOD) ou du cuivre et du zinc (CuZnSOD).

Toutes catalysent la dismutation de deux anions superoxydes en dioxygène et peroxyde d'hydrogène.

 $O_2^- + O_2^- + 2H^+ \longrightarrow H_2O_2 + O_2$

Localisation :

<u>MnSOD</u> - principalement dans la matrice de la mitochondrie (del Río et al., 2003), matrice des glyoxysomes (Sandalio and Del Río, 1988), peroxysomes des cellules foliaires (Rodríguez-Serrano et al., 2007).

FeSOD - stroma des chloroplastes (Asada, 2000), matrices des peroxysomes et des mitochondries (Droillard and Paulin, 1990), fraction cytosolique des racines nodulées (Moran et al., 2003). **CuZnSOD** - sous forme libre dans le cytosol (Bowler et al., 1994), les peroxysomes ou l'apoplaste (Corpas et al., 1998). Une CuZnSOD est également liée à la membrane du thylakoïde au niveau du PSI (Ogawa et al., 1995).

Catalase (CAT)

Elle catalyse la dismutation de deux molécules de peroxyde d'hydrogène en 2 molécules d'eau et une molécule de dioxygène (Willekens et al., 1995). $H_2O_2 + H_2O_2 \rightarrow O_2 + 2H_2O$

Localisation : dans les peroxysomes (Mullen et al., 1997; Petrova et al., 2004),

Glutathion peroxydase (GPX)

Catalyse la réduction du peroxyde d'hydrogène 2GSH+H₂O₂ →GSSG + 2H₂O Localisation : Paroi cellulaire, mitochondrie et chloroplastes (Navrot et al., 2006)

SYSTEME ASADA-FOYER-HALLIWELL :

Ascorbate peroxydase (APX)

L'APX catalyse la réduction du peroxyde d'hydrogène en utilisant l'ascorbate comme co-substrat. 2ASA+H₂O₂ →MDHA + 2H₂O

Localisation : dans tous les compartiments cellulaires, dans le cytosol et dans l'apoplaste, sous forme soluble ou liée aux membranes (Asada, 1999, 2006; Foyer and Noctor, 2000; Mittler, 2002).

Dehydroascorbate réductase (DHAR)

Dehydroascorbate + 2GSH \rightarrow ascorbate + GSSH Cytosol (Dalton et al., 1993), chloroplastes (Hossain and Asada, 1984; Hossain *et al.*, 1984), mitochondries (Jimenez A., 1997) et peroxysomes (Jimenez A., 1997)

Monodehydroascorbate réductase (MDHAR)

La MDHAR appartient à une famille multigénique : 6 chez Arabidopsis et 3 chez la tomate Monodehydroascorbate + NADPH + $H^+ \rightarrow ascorbate + NADP^+$

Cytosol (Dalton et al., 1993), chloroplastes (Hossain and Asada, 1984; Hossain *et al.*, 1984), mitochondries (Jimenez A., 1997) et peroxysomes (Jimenez A., 1997)

Glutathion réductase (GR)

 $\text{GSSH} + \text{NADPH} + \text{H}^{+} \rightarrow 2\text{GSH} + \text{NADP}^{+}$

Cytosol (Dalton et al., 1993), chloroplastes (Hossain and Asada, 1984; Hossain *et al.*, 1984), mitochondries (Jimenez A., 1997) et peroxysomes (Jimenez A., 1997)

Systèmes non enzymatiques

Le glutathion (GSH)

Le GSH peut directement réduire l' H_2O_2 mais également d'autres ERO, des hydroperoxydes organiques et des peroxydes lipidiques

 $H_2O_2 + 2 \text{ GSH} \rightarrow \text{GSSG} + 2 H_2O$

 $ROOH + 2 GSH \rightarrow ROH + GSSG + H_2O$

Un autre rôle important du GSH dans la régulation des ERO est son implication dans la régénération de l'ascorbate.

Localisation : cytosol, vacuole, chloroplastes et mitochondries (Noctor et al., 2012), apoplaste ???

La vitamine E

Le terme de vitamine E désigne un groupe de composés lipophiles possédant l'activité biologique de l' α -tocophérol. La vitamine E un antioxydant clé dans la protection de l'intégrité des membranes, en particulier celles des chloroplastes. Il protège également les pigments photosynthétiques, participant ainsi à la protection de l'appareil photosynthétique. Majoritairement présent dans les plastes (Munné-Bosch and Alegre, 2002).

Les polyphénols antioxydants

La majorité des polyphénols antioxydants appartiennent aux familles des flavonoïdes, de tanins ellagiques et de tanins hydrolysables, acides phénoliques et coumarines

Principalement présent au niveau des parois cellulaires, vacuoles, mais aussi en plus faible concentration au niveau du noyau et de la membrane plasmique.

Les caroténoïdes

Ils jouent le rôle de pigments accessoires de l'antenne collectrice des photosystèmes. En dehors de cette implication dans le processus photosynthétique, les caroténoïdes associés au PSII ou à l'antenne collectrice, participent à la protection de l'appareil photosynthétique contre les ERO. Présent essentiellement dans les chloroplastes et chromoplastes (Fanciullino et al., 2013).

La vitamine C

Elle peut réagir directement avec des ERO tels que l'oxygène singulet (${}^{1}O_{2}$) et les radicaux d'hydroxyle (OH⁻) (Asada, 1992).

Présent dans tous les tissus végétaux à l'exception de ceux des graines sèches. (Franceschi and Tarlyn, 2002; Hancock *et al.*, 2003).

Tableau 2 : Principaux antioxydants enzymatiques et non enzymatiques chez les végétaux

1.2. L'Acide ascorbique

L'acide ascorbique (AsA) est le nom donné pour désigner la vitamine C. Cette vitamine hydrosoluble est la plus abondante chez les végétaux et suscite l'intérêt de nombreux

scientifiques, notamment pour ses nombreuses vertus pour la santé humaine. Elle renforce et protège le système immunitaire, aide à lutter contre les radicaux libres, permet de réduire les risques de maladies cardiovasculaires et participe aussi au bon fonctionnement du système nerveux. Du point de vue structural, l'AsA est l'une des vitamines les plus simples, elle est associée à un sucre en C6, le 1-4 Aldono lactone. On la retrouve souvent sous la forme d'ascorbate (AsC) après qu'elle ait perdu un atome d'hydrogène. L'ascorbate qui est la forme réduite de la vitamine C s'oxyde facilement en monodehydroascorbate (MDHA) son radical, qui lui-même peut s'oxyder en dehydroascorbate (DHA). Ainsi, on retrouve souvent la vitamine C sous ces trois formes aussi bien chez les hommes que chez les plantes. A l'exception des graines sèches, on peut trouver l'ascorbate dans tous les tissues végétaux (De Gara et al., 1997). On retrouve l'AsC en plus forte concentration dans les feuilles que dans les fruits où il peut atteindre des concentrations allant de 10 à 300 mM (Smirnoff, 2000).

1.2.2. Synthèse de l'ascorbate chez les végétaux

Bien qu'il existe une seule voie de synthèse de vitamine C dans le règne animal, on peut en compter quatre chez les végétaux (Agius et al., 2003; Lorence et al., 2004; Wheeler et al., 1998; Wolucka and Van Montagu, 2003). De ces voies, la voie D-mannose/L-galactose (L-Gal) aussi connue comme la voie de Smirnoff-Wheeler est la principale (Wheeler et al., 1998). Les trois premières étapes ne sont pas spécifiques à la voie de biosynthèse de l'ascorbate, elles sont impliquées dans des voies qui participent au métabolisme primaire du carbone. La première étape utilise comme substrat le D-glucose-6- phosphate qui est converti par la glucose phosphate isomérase en D-fructose-6-phosphate. La seconde réaction consiste en l'isomérisation du fructose-6-phosphate en D-mannose-6- phosphate par la mannose-6phosphate isomérase. L'étape suivante catalysée par la phosphomannose mutase converti le D-mannose-6-phosphate en D-mannose-1-phosphate. Puis la conversion du D-mannose-1-P en GDP-D-mannose, catalysée par la GDP-D-mannose pyrophosphorylase. La réaction suivante, catalysée par la GDP-D-Mannose-3,5-épimérase conduit à l'épimérisation du GDP-D-mannose en GDP-L-galactose. Il est important de noter que suite à la synthèse du GDP-Lgalactose deux intermédiaires ont été identifiés, le L-galactose-1- phosphate et le L-galactose. Le L-galactose est ensuite converti par la L-galactose déshydrogénase en L-galactono-1,4lactone. La dernière étape de la voie de biosynthèse de l'ascorbate proposée par (Wheeler et al., 1998) est catalysée par la L-galactono-1,4-lactone déshydrogénase, qui convertit la Lgalactono-1,4-lactone en ascorbate (Figure 3).

Figure 3 Schéma décrivant les voies de biosynthèse de l'acide L-ascorbique et leur connection possibles chez les plantes (réaction 1-13) et chez les animaux (réaction 14-23) 1: glucose phosphate isomérase, 2: Phosphomannose isomérase, 3: Phosphomannose mutase, 4: GDP-mannose pyrophosphorylase, 5: GDP-mannose-3-5- épimérase, 6: GDP-galactose pyrophosphatase, 7: Galacose-1-P phosphatase, 8: L-galactose déhydrogénase, 9: L-galactono-1,4-lactone déhydrogénase, 10: méthyl estérase, 11: D-galacturonate réductase, 12: aldono-lactonase, 13: *myo*-inositol, 14: phosphoglucomutase, 15: UDP-glucose pyrophosphorylase, 16: UDP-glucose déhydrogénase, 17: acide UDP-glucuronique pyrophosphatase, 18: acide glucuronique réductase, 19: D-glucuronolactonase, 20: acide L-glucuronique réductase, 21: gulono-1,4-lactone hydrolase, 22: L-gulono-1,4-lactone oxydase, 23: Non enzymatique. Le point d'interrogation indique que l'enzyme de cette réaction n'est pas encore connue. Source https://www.bordeaux.inra.fr/umr619/ukG2_area_02.htm

1.2.3. Recyclage de l'ascorbate et le maintien du statut redox

L'ascorbate peut réagir directement avec des ERO telles que l'oxygène singulet (${}^{1}O_{2}$), les radicaux d'hydroxyle (OH⁻) et indirectement avec le H₂O₂ par le biais de l'ascorbate peroxydase (APX) (Asada, 1992). Dans les deux cas, l'AsC se retrouve oxydé en monodehydroascorbate (MDHA) qui est instable et se disproportionne relativement rapidement en dehydroascorbate (DHA). Le maintien du pool d'ascorbate réduit est assuré par un ensemble d'enzymes plus communément connues sous le nom d'enzymes du cycle ascorbate-glutathion. Ces enzymes sont notamment la monodehydroascorbate reductase (MDHAR) qui est responsable de la réduction de la MDHA en AsC et la dehydroascorbate reductase (DHAR) responsable quant à elle de la réduction de la DHA en AsC. La première étant directement dépendante de NADPH et la dernière indirectement au travers du glutathion réductase qui est NADPH dépendante. Cependant il y a des situations où l'AsC n'est pas totalement recyclé et le DHA est alors dégradé en Acide 2,3-Diketogulonique (Bode et al., 1990) et en oxalate et thréonate (Fry, 2004)(Figure 4).

Figure 4. Schéma décrivant l'intervention de l'acide ascorbique dans l'élimination de H_2O_2 et les enzymes impliquées dans son recyclage.

1.3. Le monoxyde d'azote ou oxyde nitrique (NO)

L'oxyde nitrique est une espèce réactive de l'azote (ERA), c'est une espèce radicalaire gazeuse. Cette molécule a attiré l'attention de bon nombre de chercheurs à travers le monde depuis qu'elle a été reconnue comme molécule de l'année en 1992 et a valu le prix Nobel aux chercheurs; Robert F. Furchgott, PhD, Louis J. Ignarro, PhD, and Ferid Murad, MD, PhD pour leurs travaux sur du tissu cardiovasculaire en 1998 (SoRelle, 1998).

Chez les animaux, le monoxyde d'azote ou oxyde nitrique (NO) est un médiateur physiologique important dans des fonctions aussi diverses que le contrôle de la pression sanguine, la neurotransmission, l'apoptose et la défense de l'organisme. NO est une molécule simple mais sa biochimie est relativement complexe. Avec un électron célibataire le NO est un radical (NO⁻). Le NO⁻ peut être converti en ion nitrosium (NO⁺) et en anion nitroxyl (NO⁻). Le NO est un radical lipophile qui peut diffuser à travers les membranes plasmiques et le cytoplasme à la vitesse de 50 μ m s⁻¹ avec une solubilité de 1.9 mM (Shamsul Hayat, 2009). La durée de vie du NO est d'environ 10 secondes (Pfeiffer S, 1999). Ainsi le NO peut parcourir une distance de 500 μ m dans les tissus.

1.3.1. Synthèse du NO

Dans les cellules animales, le NO peut être produit par l'action de l'oxyde nitrique synthase (NOS) en présence de L-Arginine, d'oxygène et de NADPH (voie non encore découverte chez les végétaux). NO peut aussi être synthétisé de façon non enzymatique par la réduction de NO_2^- à pH acide dans les parois cellulaires (Bethke et al., 2004). Le NO peut

aussi être un produit dérivé de la dénitrification, de l'assimilation de nitrate et/ou de la respiration nitrate (Wojtaszek 2000). L'ion ammonium NH_4^+ est la source majeure d'oxyde nitreux (N₂O) émis dans l'atmosphère et ce dernier après oxydation peut donner du NO et du dioxyde d'azote NO₂ (Wojtaszek 2000) (Figure 5). Cependant la source majeure de NO semble provenir de la nitrate réductase NADPH dépendante (Kaiser *et al.*, 2010; Meyer *et al.*, 2005; Rockel *et al.*, 2002; Yamasaki *et al.*, 1999).

Figure 5 Schéma décrivant les sources potentielles de l'oxyde nitrique d'après (Wojtaszek, 2000), orange sources chimique, vert sources bacterienne et bleu sources enzymatique.

La Nitrate réductase comme source de NO

La voie d'assimilation du nitrate comprend la réduction du nitrate en nitrite dans le cytoplasme par la nitrate réductase (NR) utilisant le NADPH. Le Nitrite est transporté dans le stroma des chloroplastes où la nitrite réductase (NiR) le réduit en ammonium (NH_4^+). La réduction du nitrite requiert la forme réduite de la ferrédoxine qui est un produit de la chaîne de transport d'électrons de la photosynthèse (équations ci-dessous)

$$NO_{3}^{-} + NAD(P)H + H^{+} \xrightarrow{NR} NO_{2}^{-} + NAD(P)^{+} + H_{2}O$$

$$NO_{2}^{-} + 6 \text{ ferrédoxine}_{red} + 8 H_{3}O^{+} \xrightarrow{NiR} NH_{4}^{+} + 6 \text{ ferrédoxine}_{ox} + 10 H_{2}O$$

Chez *Arabidopsis thaliana*, la NR est codée par 2 gènes Nia1 et Nia2, Nia2 assurant 90% de l'activité totale de la NR (Wilkinson and Crawford, 1991). Elle peut aussi catalyser la réduction de nitrite en NO via la réaction suivante :

La NR représente une source importante de NO pour la plante, comme le démontre la très faible synthèse de NO chez les doubles mutants nia (Gupta et al., 2012).. Différents paramètres affectent la production de NO par la NR. La synthèse de NO par la NR nécessite des concentrations faibles en nitrate et fortes en nitrite, car la constante d'affinité de la NR pour le nitrite est relativement élevée (Km _{nitrite} = 100μ M) alors que le nitrate peut agir en tant qu'inhibiteur compétitif efficace de part sa faible constante de dissociation (Ki = 50μ M) (Rockel et al., 2002). Ceci est confirmé par l'accumulation de NO dans les lignées antisens de nitrite réductase (NiR) (Morot-Gaudry-Talarmain et al., 2002).

Le nitrite nécessaire pour la production de NO ne s'accumule pas dans les cellules sous des conditions de lumière optimale pour la photosynthèse, car il est transformé en ammonium par le NiR (Sakihama et al., 2002). En absence de lumière, Yamasaki et al., (1999) ont démontré que l'activité de la NR pouvait basculer vers la production de NO au dépend du NAD(P)H, illustré dans la figure 6.

Figure 6 Schéma décrivant (a) la production d'ammonium dans le chloroplaste par la nitrite réductase en condition de lumière. (b) la production du NO par la nitrate réductase, en présence d'excès de nitrite et en absence de lumière au niveau chloroplastique d'après Sakihama et al. (2002).

1.3.2. Le NO et les stress abiotiques chez les végétaux : Interactions ABA, H₂O₂ et NO

Chez les plantes, plusieurs études ont montré que le NO était impliqué dans un nombre important de stress aussi bien biotiques que abiotiques. Notamment, un traitement au NO augmente la tolérance face au stress salin chez de jeunes plants de riz (Uchida et al., 2002), induit la germination et la croissance racinaire de jeunes plants de lupin jaune (Kopyra and Gwóźdź, 2003) et augmente la croissance et le poids sec chez le maïs (Zhang *et al.*, 2006b). Le NO est impliqué également dans la défense contre les rayonnements UV-B. Chez la pomme de terre un traitement au NO avant un traitement aux UV-B augmente l'activité des

Chapitre I : Synthèse bibliographique

enzymes antioxydantes et le développement des tubercules de pomme de terre (Shi et al., 2005). De même, dans des feuilles de jeunes pousses de maïs, il a été démontré que le NO pouvait agir en synergie avec les ERO pour induire la production d'éthylène comme une réponse de défense face aux UV-B (He et al., 2005). Le NO interviendrait aussi lors de stress thermique comme le démontre (Leshem, 2000) qui révèle une surproduction de NO chez la luzerne suite à une courte période de stress thermiques. L'utilisation du NO pour protéger les plantes d'un stress thermique a fait l'objet d'un brevet montrant qu'un prétraitement au NO augmentait la tolérance de plantules de maïs, de tomate et de blé au froid (Lamattina et al., 2001). Un traitement au NO peut également réduire les effets de métaux lourds chez le végétaux comme le suggèrent les travaux de (Kopyra and Gwózdz, 2003) où une application de NO exogène favorise la germination et la croissance racinaire chez le lupin jaune en présence de métaux lourds (plomb et cadmium). En parallèle une augmentation de l'activité de la SOD, la CAT et l'APX dans les plantules traitées au NO a été détectée. A contrario, dans des racines de plants de maïs, un traitement avec du NO provoque une diminution significative de la peroxydation lipidique et de la teneur en H₂O₂ (Singh et al., 2008).

Des études sur l'adaptation des plantes face à la sécheresse ont révélé une surproduction de NO dans des plants de petit pois et de tabac soumis à un déficit hydrique (García-Mata and Lamattina, 2001; Leshem and Haramaty, 1996). Depuis, de nombreuses études ont été menées sur l'implication de cette molécule dans le stress hydrique. Il a été ainsi montré que l'application de NO exogène augmente la tolérance au stress hydrique chez les feuilles et plantules de blé en induisant la fermeture stomatique et ainsi limitant la transpiration (García-Mata and Lamattina, 2001). Ces effets ont été annulés par l'application d'un piégeur de NO le 2-(4-Carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO). Dans des feuilles de maïs, l'augmentation de l'activité des enzymes antioxydants telles que la SOD, l'APX et la GR, induite par un stress hydrique a été supprimée par l'application d'inhibiteur de la NR. Ces résultats suggèrent premièrement une implication du NO dans l'induction de l'activité de ces enzymes et deuxièmement une production potentielle de NO à partir de la NR (Sang et al., 2008a). L'acide abscissique, impliquée notamment dans la fermeture stomatique (Mittelheuser, 1969), est l'une des premières phytohormones synthétisées au cours d'un déficit hydrique. Il a de plus été démontré que ce dernier n'agissait pas seul dans la médiation de la fermeture stomatique mais en collaboration avec le peroxyde d'hydrogène et le NO. En effet Kwak et al., (2003) et Bright et al., (2006) révèlent une activation des NADPH oxydases par l'ABA, qui conduit à une production d'ERO et

notamment de H_2O_2 . Le H_2O_2 ainsi produit activerait la production de NO au travers de la NR, qui à son tour activerait des protéines kinases activées par des agents mitogènes (MAPK) qui conduisent à la fermeture stomatique (Figure 7).

Figure 7 : Interaction entre ABA, H_2O_2 et le NO dans l'induction de la fermeture stomatique d'après Yu et al. (2014). RBOHF et RBOHD: respiratory burst oxidases F et D, NR: nitrate réductase.

Le déficit hydrique induit la perte de turgescence des cellules ce qui provoque la synthèse de l'acide abscissique (ABA). Ce dernier induit la synthèse de H₂O₂ à l'aide de NAD(P)H oxydase, via une voie de signalisation impliquant des récepteurs ABA, Ca²⁺/calmoduline, la protéine kinase OST1 et d'autres composés encore non identifiés. Le H₂O₂ induit la synthèse de NO au travers de la nitrate réductase. Le NO ainsi produit entrainerait la fermeture des stomates par l'intermédiaire des protéines kinases activées par des agents mitogènes (MAPKs), de la guanosine monophosphate cyclique (GMP cyclique) et des ions calciques Ca²⁺. L'ABA peut aussi provoquer la fermeture des stomates et l'augmentation des activités antioxydantes sans l'intervention du NO (Corpas 2004; Neill et al. 2008). L'ABA joue un rôle important dans le mouvement stomatique permettant de limiter les pertes en eau par évapotranspiration (Schroeder et al., 2001a; Kwak et al., 2008). De nombreux travaux ont porté sur le rôle de l'ABA au niveau de la cellule de garde (MacRobbie, 1998; Assmann and Wang, 2001; Hossain et al., 2011). La fermeture du stomate résulte d'une réduction de la pression de turgescence au niveau des cellules de garde occasionnée par un efflux d'ions K⁺ et d'anions (Cl⁻, malate...), par la conversion du saccharose en amidon, de composés osmotiquement inactifs ou par l'efflux d'eau (MacRobbie, 1998). Les canaux ioniques de la cellule de garde constituent donc des acteurs essentiels dans le contrôle des mouvements stomatiques. La perception de l'ABA au niveau de la cellule de garde entraine une augmentation de la concentration cellulaire en calcium via l'activation de canaux calciques entrants et une activation de canaux anioniques sortants de types S (pour Slow Anion Channel). L'efflux massif d'anions conduit à la dépolarisation de la membrane plasmique et à l'activation de canaux potassiques sortants, dont le canal GORK (Becker et al., 2003; Hosy et al., 2003; Sirichandra et al., 2009) alors que l'augmentation de la concentration cellulaire en calcium entraine l'inactivation des canaux potassiques entrants (encore appelés K+ Inward Rectifiyng Channels) KAT1, KAT2, AKT1 ou AKT2 (Pilot et al., 2001; Leonhardt et al., 2004; Ivashikina et al., 2005; Kwak et al., 2008). L'efflux de potassium ainsi généré entraine une sortie d'eau, et la perte de turgescence des cellules de garde conduit alors à la fermeture de stomates (Schroeder et al., 2001b; MacRobbie, 2006).

L'ABA et le NO sont impliqués dans un nombre important de processus physiologiques dans la plante, allant de la croissance racinaire (Zhang et al., 2010) jusqu'au mouvement stomatique (Neill et al., 2002). Des études suggèrent que la production de NO induite par l'ABA conduisant à la fermeture stomatique se ferait sous l'influence de H₂O₂ par l'activation de NADPH oxydases (RBOHD et RBOHF) (Bright et al., 2006). Une étude chez le maïs a aussi révélé qu'une augmentation de la production de H_2O_2 sous l'influence d'ABA résultait en une surproduction de NO et que ce dernier induisait une activation des protéines kinases de type MAPK) et la surexpression ainsi que l'activité d'enzymes antioxydantes (Zhang et al., 2007). Dans une étude plus récente, il a aussi été démontré que l'ABA et le NO pouvaient avoir des effets sur la teneur en antioxydants. En effet, augmenter la teneur en ABA en surexprimant le gène 9-cis-epoxycarotenoid dioxygenase (SgNCED1) chez le tabac induit une augmentation de la concentration en H₂O₂ et NO dans les cellules du mésophylle et les cellules de garde. Ceci a pour conséquence une augmentation de la transcription et de l'activité d'enzymes antioxydantes telles que la glutathione reductase (GR), la superoxyde dismutase (SOD), l'ascorbate peroxydase (APX) et la catalase (CAT). Une augmentation en H₂O₂ était aussi nécessaire pour augmenter le niveau de NO suggérant que le H₂O₂ est impliqué dans la médiation de la réponse de l'ABA au travers de la signalisation NO (Zhang et al., 2009). Ce mécanisme a aussi été décrite chez le chiendent (Cynodon dactylon) où il a été démontré que le NO se présentait en aval du H₂O₂ lors de l'induction de la SOD et la CAT (Lu et al., 2009). Cependant d'autres voies de signalisation peuvent être impliquées. Par exemple, le système calcium/calmoduline dont l'activité a été détecté à la fois en amont et en aval de la production du NO par l'ABA et le H₂O₂ (Sang et al., 2008b). Plus récemment, il a été suggéré que le NO pouvait influencer la sensibilité des cellules végétales face à l'ABA

grâce à de triple mutants présentant de faible teneur en NO (Lozano-Juste and León, 2010). Les graines présentaient une forte dormance, une augmentation de la germination et une hypersensibilité à l'ABA lors de la fermeture stomatique. Il a aussi été démontré que l'ABA et le NO étaient impliqués dans l'adaptation à la radiation UV-B dans des feuilles de Maïs. En effet, des mutants déficients en ABA (viviparous 14: vp14) présentaient une plus forte sensibilité à la radiation et un apport exogène en ABA pouvait limiter les dommages (Tossi et al., 2009). L'augmentation de la teneur en H₂O₂ et NO bien que notable était plus faible chez les mutants et leur accumulation fût restaurée suite à une application d'ABA. Les auteurs ont conclu que l'UV-B déclenchait une augmentation en ABA, accompagnée d'une surproduction de NO, limitant les dommages cellulaires (Hancock et al., 2011).

Interactions entre le NO et l'acide jasmonique et l'acide salycilique

Le NO peut agir sur la médiation d'apoptose au travers de la cytokinine (Neill et al., 2003). Il a aussi été démontré que l'auxine favorisait la synthèse de NO dans les racines de plants de concombre Cucumis sativus (Pagnussat et al., 2003). Cependant l'interaction entre le NO et l'éthylène lors de la maturation et la sénescence des tissus végétaux suggère une action antagoniste des deux gaz (del Río et al., 2004; Lamattina et al., 2003; Leshem et al., 1998). En 2002 Orozco-Cardenas and Ryan (Orozco-Cardenas, 2002) ont démontré que le NO bloquait la production de H_2O_2 induit par l'acide jasmonique (JA) dans les feuilles de tomates Solanum lycopersicum. Plusieurs points mettent en évidence une relation entre le NO et l'acide salicylique (SA) dans la défense des plantes. L'application de NO sur des feuilles de tabac et d'Arabidopsis thaliana provoque une augmentation de SA endogène (Jörg Durner, Wendehenne, et Klessig 1998)(Huang et al. 2004). Chez le tabac, cette augmentation induit l'expression des gènes PR (pathogenesis related) et implique l'induction du gène de la PAL (phenylalanine ammonia lyase). De plus, des piégeurs de NO atténuent la résistance systémique acquise induite par SA. Chez le tabac transgénique, le gène bactérien nahG qui code l'enzyme salicylate hydroxylase, responsable de la dégradation de SA, supprime les effets des donneurs de NO. Ces derniers, normalement réduisent les lésions causées par le virus de la mosaïque du tabac. Ces résultats suggèrent une action synergétique du NO et de SA.

Récemment, il a été suggéré que le NO jouait un rôle dans la voie de signalisation de JA lors de réponses à un stress mécanique. Chez la tomate, la synthèse de H_2O_2 et de gènes de défense après une blessure est inhibée par le NO (Orozco-Cardenas 2002). Cette inhibition est indépendante de SA qui est antagoniste à l'action ou la synthèse de JA. Ainsi, face à une

blessure le NO peut interagir directement avec la voie du JA en aval de la synthèse de JA et en amont de la synthèse de H_2O_2 . En accord avec cette possibilité, des donneurs de NO réduisent ou retardent la production de H_2O_2 induit par JA suite à une blessure chez la patate douce (Jih, Chen, et Jeng 2003). De plus, il a été démontré que suite à un traitement au JA ou après une blessure, qu'il y a une production de NO dans les cellules épidermiques de la patate douce et d'*A. thaliana* et que l'application de NO exogène induisait tous les gènes requis pour la biosynthèse de JA (Jih, Chen, et Jeng 2003; Huang et al. 2004). Des plants mutants *nahG* pour SA traités avec du NO montrent une surexpression des gènes impliqués dans la production de JA, suggérant l'intervention de SA dans la régulation de la synthèse de JA par NO (Wendehenne, Jörg Durner, et Klessig 2004).

Les modifications post-transcriptionelles induites par le NO peuvent jouer un rôle important dans la médiation de l'action des phytohormones. Premièrement, le NO peut agir directement sur les facteurs de transcription ou par l'intermédiaire de protéines nitrosylées ou nitrées. Le NO peut ainsi influencer le niveau d'expression des gènes impliqués dans le métabolisme, le transport ou la transmission du signal des phytohormones. Deuxièmement, le NO peut directement agir sur les protéines impliquées dans la production et la distribution des phytohormones ainsi que dans leur voie de signalisation. Finalement, une réaction chimique directement entre le NO et les phytohormones peut induire une modification de leurs activités Figure 11) (Freschi, 2013).

Figure 8 Interactions possible entre le NO et les phytohormomes. (A) En agissant sur les facteurs de transcription. (B) Par modification post-transcriptionelle des protéines. (C) en agissant directement sur les phytohormones (Freschi, 2013)

1.3.3. Le NO et les modifications post traductionnelles

La perception de signal NO et son mode de transmission n'ont pas encore été entièrement vérifiés (Hancock et al., 2011). Cependant il a été démontré que le NO pouvait interagir avec une vaste gamme de protéines, via la modification directe de leur structure. Au travers de la modification chimique des protéines cibles, le NO peut altérer leurs activités et fonctions cellulaires, menant en fin de compte à la transmission d'un message. Ce radical peut exercer ses fonctions *via* la modification post-traductionnelle de protéines possédant des métaux de transition, des résidus cystéines ou tyrosines stratégiques (Stamler *et al.*, 1992). Ce processus, appelé nitrosation ou nitration, suivant le mécanisme mis en jeu, est associé à la forte réactivité de NO dans les contextes biologiques et contribue à l'activation ou à l'inhibition des protéines concernées. Parmi les modifications post-traductionnelles impliquant le NO, la modification covalente de résidus de cystéine par le processus connu sous le nom de S-nitrosylation paraît comme étant un mécanisme relativement important dans la médiation de la signalisation NO. Ces trois mécanismes sont décrits plus en détail cidessous.

Rôle du NO dans le contrôle de l'activité des protéines:

S-nitrosylation

Dans la cellule, le NO peut réagir avec des thiols réduits pour former des Snitrosothiols (RSNO). Cette réaction est plus connue sous le nom de nitrosylation ; Snitrosylation dans le cas des protéines et N-nitrosylation pour les acides aminés. La réaction du NO avec le glutathion (GSH) pour donner le S-nitrosoglutathion (GSNO) représente une réaction biologique très importante. La S-nitrosylation consiste en la liaison du NO avec un groupement cystéine d'une protéine. Cette réaction peut affecter la fonction de cette dernière (Figure 8). Ainsi le NO peut intervenir dans des régulations post-transcriptionelles au travers de la S-nitrosylation (Lindermayr et al., 2005). La S-nitrosylation permet aussi au NO de se déplacer dans les végétaux. Etant plus stable, les RSNO ne réagissent pas avec l'oxygène à la différence du NO⁻, très réactif, qui forme des peroxynitrites. Ainsi sa durée de vie passe de quelques secondes à quelques heures. Cette réaction étant réversible, le NO peut être libéré après une relativement longue distance (Baudouin and Hancock, 2014).

Figure 9 Représentation schématique de la formation du complexe S-Nitrosothiol suite à la réaction entre le résidu cystéine d'une protéine et le NO.

La nitration de la tyrosine

La nitration de la tyrosine consiste en l'addition d'un groupement NO₂ à la tyrosine libre ou attachée à une chaine polypeptidique. Cette réaction est due à l'action du peroxynitrite sur la chaine aromatique de la tyrosine pour donner la 3-nitrotyrosine (Figure 9). La tyrosine nitrosylée est habituellement utilisée chez l'homme comme marqueur pathologique ou marqueur de stress nitrosatif. Plusieurs études ont démontrées que la nitrotyrosine pouvait aussi être utilisée comme marqueur de stress nitrosatif chez les végétaux (Francisco J Corpas, 2009; Gong and Yuan, 2006; Rubbo and Radi, 2008; Saito et al., 2006; Y. Morot-Gaudry-Talarmain, 2002). Depuis longtemps cette réaction a été considérée comme étant irréversible mais de récentes études ont démontré que la dénitrification de la tyrosine pouvait se faire de facon enzymatique ou non enzymatique (Abello et al., 2009; Astier and Lindermayr, 2012; Vandelle and Delledonne, 2011). En plus de sa fonction de marqueur de stress, il a été démontré que la nitration de la tyrosine peut avoir un effet stimulant ou inhibant sur la protéine cible. Par exemple, la MnSOD et la glutathion s-transferase sont inhibées par cette réaction (Quijano et al., 2001) alors que l'activité de la cytochrome c augmente (Cassina et al., 2000). De plus la nitration de la tyrosine peut intervenir dans l'activation et le transport de protéines kinases C (Balafanova et al., 2002).

Figure 10 Représentation schématique de la nitration de la tyrosine pour donner la 3-nitrotyrosine.

Nitrosylation métallique

En plus de la S-nitrosylation et de la nitration de la tyrosine, il existe une troisième modification post-transcriptionelle qui peut être induite par le NO. Celle-ci implique la liaison du NO avec le métal de transition d'une métalloprotéine (Figure 10). Un des meilleurs exemples de nitrosylation métallique est l'activation de la guanylate cyclase (enzyme héminique avec un atome de fer lié à des atomes d'azote) dans le système animal (Ignarro, 2000). Cette activation provoque la transformation de la guanosine triphosphate (GTP) en guanosine monophosphate cyclique (GMPc). Chez les végétaux, la GMPc est reconnu comme étant un intermédiaire dans un grand nombre de processus induit par le NO, comme le développement racinaire (Pagnussat et al., 2003), la respiration mitochondriale (Wang et al., 2010), le fonctionnement des nodules (Keyster et al., 2010) et les réponses de défense (Durner et al., 1998). Cependant, la régulation de la GMPc par la nitrosylation métallique n'a pas été entièrement élucidée chez les végétaux.

Figure 11 Représentation schématique de la nitrosylation métallique

1.3.4. Méthodes de détection de l'oxyde nitrique

L'oxyde nitrique est une molécule à l'état gazeux et très instable ce qui rend sa détection et sa quantification fastidieuses (Luis A. del R1´oa, F. Javier Corpasa, Juan B. Barrosob 2004). Les principales méthodes utilisées jusque-là sont la chromatographie gazeuse et la spectrométrie de masse (Neill *et al.*, 2003). la mesure par spectrophotométrie reposant

Chapitre I : Synthèse bibliographique

sur la conversion de l'oxyhémoglobine en méthémoglobine (Orozco-Cardenas, 2002), la spectrométrie photoacoustique laser (Leshem and Pinchasov, 2000), spectrométrie de résonance paramagnétique électronique (Caro and Puntarulo, 1998; Corpas, 2004; Corpas *et al.*, 2004b; Corpas *et al.*, 2001; Pagnussat *et al.*, 2002), l'électrode à oxyde nitrique (Leshem and Haramaty, 1996; Yamasaki *et al.*, 2001) et la chemiluminescence (del Río *et al.*, 2003; Morot-Gaudry-Talarmain *et al.*, 2002).

Pour des approches microscopiques, l'utilisation du 4,5-diaminofluorescéine diacétate (DAF-2 DA) en tant que sonde fluorescente est devenue une technique très répandue dans la détection de NO chez les végétaux (Corpas, 2004; Nakatsubo *et al.*, 1998). Cette sonde permet une détection en temps réel de NO avec une bonne résolution spatiale (Foissner *et al.*, 2000; Gould *et al.*, 2003; Lamattina *et al.*, 2003). Cependant le DAF-2 DA présente des inconvénients pour la détection de NO chez les végétaux Dans cette section sont présentées les différentes techniques couramment utilisées pour la détection du NO. Nous présentons aussi une nouvelle sonde le NO₅₅₀, qui a été synthétisée en 2010 (Yang *et al.*, 2010) et que nous avons pu utiliser en remplacement de la sonde DAF-2-DA.

(i) Test oxyhémoglobine

Le test oxyhémoglobine repose sur le principe de la spectroscopie. La réaction en l'oxyhémoglobine (HbO₂) et le NO produit de la methémoglobine (MetHb) et du nitrate (NO₃). Cette réaction induit un changement de la longueur d'onde d'absorption de la solution de 415-421 nm (HbO₂) à 401 nm (MetHb). La limite de détection de cette technique est de 1.3 - 2.8 nM (Murphy and Noack, 1994). Cette technique n'est plus vraiment utilisée pour des raisons pratiques. En effet, la production de HbO₂ est assez compliquée car cela implique une réaction d'oxygénation de l'hémoglobine suivie de l'isolation de l'oxyhémoglobine par chromatographie. De plus, les ERO peuvent aussi oxyder le HbO₂ et ainsi fausser la détection. De surcroît, cette technique dépend aussi du pH, ce qui est un réel inconvénient considérant la grande variabilité de pH dans les différents organes, tissues ou même cellules végétales. L'interférence avec les protéines hémiques peut aussi être une source d'erreur lors des dosages de NO par cette technique.

(ii) La réaction de Griess

La réaction de Griess est l'une des techniques des plus répandues pour le dosage de NO et il est souvent utilisé sous forme de Kit prêt à l'emploi. Cette technique a été utilisée pour la première fois par Johann Peter Griess (1829–1888), un chimiste Allemand qui a
découvert qu'en faisant réagir le nitrite (NO₂) avec de l'acide sulphanilique et de l' α naphthylamine en condition acide, il se produit un colorant azoïque. Cette réaction de base reste inchangée sauf que maintenant on utilise du sulfaniliamide et de l'éthylènediamine naphtyl (NED) pour réagir avec le NO₂. Le colorant azoïque hydrosoluble résultant de cette réaction peut être quantifié par spectroscopie à 520 nm. Le NO peut être oxydé en NO₂ généralement par le trioxyde de chrome (CrO₃). Ainsi, le dosage de NO par la réaction de Griess est une méthode de dosage indirecte (Figure 12). Le NO₂ peut être de nouveau oxydé en nitrate NO₃ mais ce dernier ne produit pas un colorant azoïque et la cinétique de l'oxydation de NO₂ est tellement lente qu'elle est considérée comme insignifiante.

Figure 12 Méthode de détection de NO par la réaction de Griess, A L'oxyde nitrique (NO) est oxydé par du trioxyde de chrome en nitrite (NO_2^-), NO_2^- réagit avec sulfanilamide to pour donner un réactif diazoïque intermédiaire qui ensuite réagit avec l'éthylènediamine naphtyl (NED) pour donner le colorant azoïque final qui est quantifié par son absorbance à 540nm. B Installation mise en place par (Vitecek et al., 2008) pour mesurer le NO dégagé par les plantes. Source (Mur et al., 2011).

(iii) Résonance de spin électronique

Le principe de la résonance de spin électronique (RSE), aussi connu sous le nom de résonance paramagnétique électronique (RPE) est basé sur la propriété des électrons non-appariés à absorber, puis réémettre l'énergie d'un rayonnement électromagnétique lorsqu'ils sont placés dans un champ magnétique (Figure 13). L'électron possède un mouvement de rotation sur lui-même caractérisé par un nombre quantique de spin dont les valeurs propres $\pm 1/2$ correspondent aux deux orientations qu'il peut prendre dans un champ magnétique. L'une parallèle au champ, l'autre antiparallèle. Deux niveaux énergétiques en résultent,

niveaux entre lesquels des transitions peuvent être induites. Le but de la résonance paramagnétique électronique RPE est précisément d'étudier ces transitions. Comme le RSE ne détecte que les espèces radicalaires, il est particulièrement approprié pour la détection de NO. Cependant, vu la nature éphémère du NO, l'utilisation d'un spin trap, qui augmente la longévité du radical, s'avère nécessaire (NO' + ST \rightarrow NO–ST). Le spin trap le plus souvent utilisé dans le cas du NO est le Dithiocarbamate de fer ST (Fe(S₂CN-R R')₂), (R et R' peuvent représentés des groupements méthyle ou éthyle ou des acides aminés type sarcosine ou glutamine) (Weaver et al., 2005). La limite de détection du RSE est de l'ordre du pmol (Weaver et al., 2005).

Figure 13 Dispositif nécessaire pour la détection de NO par la résonance de spin électronique (RSE) ou résonance paramagnétique électronique (RPE).

(iv) Electrode de détection du NO

Cette électrode est composée essentiellement d'une pipette de verre contenant 30 mM NaCl/0.3 nM HCl dont on a scellé l'ouverture avec une fine membrane de caoutchouc (chloroprène), d'acétate de cellulose, de collodion/polystyrène, de polytétrafluoroethylène (PTFE) ou de phénylènediamine. Cette fine membrane est perméable au NO mais aussi à l'O₂. Ce dernier est réduit à la surface d'une électrode de platine interne (cathode), laquelle est gardée à un voltage négatif contre une électrode d'argent (anode) à l'intérieur de la pipette. On peut donc détecter la réduction de l'oxygène par la technique ampérométrique, si l'électrode de platine est gardée à un voltage de -0.9 V. Comme le NO possède un même potentiel de

réduction, on peut le détecter par cette même électrode dans des conditions d'anaérobie pour que l'oxygène n'interfère pas dans le signal (Davies and Zhang, 2008).

(v) La chemiluminescence

Le principe repose sur la production de lumière lors de la réaction du gaz NO avec l'ozone (O₃). Cette technique est très spécifique au NO, puisque peu de composés gazeux réagissent avec ce composé pour produire de la lumière. La réaction entre le NO et O₃ produit du dioxyde d'azote excité (NO_{2*}), qui émet un photon pour revenir à l'état fondamental. La lumière émise à une longueur d'onde inférieure à 600 nm, mesurée par un tube photomultiplicateur, est proportionnelle à la concentration de NO. Cette technique peut aussi être réalisée avec de l'ozone ou des composés sulfurés dont les réactions émettent respectivement à 440-470 et < 400 nm, ainsi la sensibilité avec le O₃ reste la plus importante. La chemiluminescence présente une limite de détection excellente, de l'ordre de 20-50 pmol (Byrnes et al., 1996). Cette technique demande peu d'équipement et est très largement utilisée par les végétalistes pour la détection de NO (Figure 14).

Figure 14 Détection de NO par chemiluminescence d'après (Mur et al., 2011), PMT: tube photomultiplicateur.

(vi) Spectromètre laser à cascade quantique (QCL)

L'équipe du laboratoire de Trace Gas Facility à l'université de Radboud de Nimègue au Pays Bas a mis au point une méthode de mesure de NO par spectromètre laser à cascade quantique (QCL). Nous avons eu le privilège d'être parmi les premiers à pouvoir utiliser cette technique pour doser le NO sur nos plants de tomates. Cette technique a pu être développée grâce aux avancées sur les méthodes de refroidissement des lasers dans la détection de gaz. La nouvelle méthode de refroidissement thermoélectrique, en remplacement de la méthode cryogénique (Cristescu et al., 2008), a permis à l'équipe de l'université de Radboud de mettre au point une machine compacte, robuste, et sensible, avec une faible demande en énergie. Le détecteur inclut un QCL, une cellule multipasse et un détecteur de lumière à température ambiante. La longueur d'onde d'émission du laser a été choisie afin de correspond au mieux à l'absorption ro-vibrationnel du NO. Le laser a un rendement de 10 mW et sa température est maintenue à -25° C par un refroidisseur Peltier. L'échantillon gazeux à analyser est absorbé par le système dans une cellule multipasse au rythme de 1 l/h. Dans la cellule, l'échantillon interagit avec la lumière en subissant de multiples réflexions afin d'augmenter la distance d'interaction jusqu'à 76 m (Figure 15). La concentration de NO est déterminée en mesurant la lumière absorbée par l'échantillon. La limite de détection est de 0.5 ppb par seconde. Avant les mesures, le système est calibré par un mélange de 100 ppb NO dans de l'azote (N₂) (Mandon et al., 2012).

Figure 15 Détection de NO par spectromètre laser à cascade quantique (QCL) d'après (Cristescu et al., 2008)

(vii) Sonde Diaminofluorescéine (DAF)

Les sondes DAF ont été utilisées depuis plus d'une décennie dans bon nombre d'études sur la détection de NO. Ces sondes peuvent être facilement accessibles dans le commerce et permettent de détecter le NO par microscopie à fluorescence. Les sondes DAF réagissent avec le trioxyde d'azote N_2O_3 , un produit de l'oxydation de NO, pour une forte augmentation de fluorescence. Ces sondes sont commercialisées sous forme de diacétate (DAF- 2DA), facilement absorbable par les cellules vivantes. Une fois dans la cellule, le groupement diacétate est éliminé par des estérases pour donner du DAF-2 qui est imperméable à la membrane plasmique. Le DAF-2 ainsi piégé dans la cellule réagit avec le N_2O_3 pour produire du triazole hautement fluorescent (DAF-2T) (Figure 16).

Cependant certaines molécules peuvent affecter la fluorescence de DAF-2DA. En effet il a été démontré que l'AsA avec son pouvoir antioxydant pouvait réduire la concentration de N_2O_3 et ainsi, l'intensité de la fluorescence. De plus le DAF-2 peut réagir avec le DHA et l'AsA pour produire des composés avec un profil de fluorescence similaire au DAF-2T (Zhang et al., 2002).

Figure 16 Détection de NO par la sonde à fluorescence DAF-2-DA, (a) équation de la réaction pour donner le composé fluorescent triazolofluorescéine et (b) résultat obtenu avec la sonde dans du tissu du péricarpe de fruit de tomate au stade vert mature.

(viii) Sonde NO 550

Chapitre I : Synthèse bibliographique

Le NO 550 est une sonde fluorescente récemment synthétisée (Yang et al., 2010). Cette sonde est spécifique pour le NO car le chromophore et le fluorophore ne s'assemble qu'en présence de ce dernier. Le NO 550 présente une émission maximale à 550 nm pour une excitation entre 440 et 470 nm. Ces caractéristiques présentent un réel avantage pour la microscopie optique à fluorescence car il existe des filtres spécifiques pour ces longueurs d'ondes facilement accessibles. Le NO 550 présente une augmentation linéaire en fonction de la concentration de NO avec une excellente corrélation linéaire ($R^2 = 0.997$). La cinétique de la réaction entre le NO et NO 550 est très rapide, le taux maximal de fluorescence est atteint après 20 secondes de contact (Figure 17). Cette rapide cinétique s'avère très importante étant donné la courte durée de vie de NO dans les cellules. De plus, le NO550 est pH indépendant contrairement à la fluorescéine, ce qui présente un réel avantage étant donné que le pH varie grandement au niveau tissulaire ou même cellulaire (Yang et al., 2010)

Figure 17 Caractéristique du NO 550 avec (A) Absorption maximale de la sonde après excitation, (B) Corrélation entre la concentration de NO et l'intensité de fluorescence et (C) Cinétique de la réaction entre le NO et la sonde. D'après (Yang et al., 2010)

Figure 18 Réaction entre le NO et la sonde NO550 pour donner le composé fluorescent AZO550. D'après (Yang et al., 2010)

Chapitre II Matériels et Méthodes

Chapitre 2 Matériels et méthodes

2.1. Matériel végétal et conditions de culture :

Les expérimentations ont été menées sur la variété de tomate Micro-Tom. Il s'agit d'une variété de type déterminé, qui a l'avantage d'être de petite taille (10-20 centimètres) et qui a un cycle de développement rapide (70-90 jours) (Meissner et al., 1997, 2000 ; Scott et Harbaugh, 1989).

Le semis des graines a été réalisé sur du papier filtre stérile humide et placé à l'abri de la lumière. A l'émergence des deux feuilles cotylédonaires, les germinations ont été placées dans une chambre de culture maintenue à $25 \pm 2^{\circ}$ C pendant la journée et $20 \pm 2^{\circ}$ C pendant la nuit avec une photopériode de 16h/8h jour/nuit et une humidité relative de 60 ± 5 %. L'intensité lumineuse de 300 μ mol.m⁻².s⁻¹ était assurée par des tubes fluorescents neutres.

Quinze jours après le semis des graines, le repiquage des jeunes plantules (stade deux feuilles vraies) a été effectué dans des terrines contenant du terreau. Les plantes, âgées de 30 jours, ont ensuite été repiquées dans des pots en plastique (4 litres, 21 cm hauteur x 17.5 cm diamètre), contenant du terreau. Les pots ont été placés dans une serre en verre orientée Nord-Sud. La température était d'environ 28° C pendant la journée et 18° C pendant la nuit, la photopériode de 16 heures de lumière et 8 heures d'obscurité, l'humidité relative de 60-70 % et l'intensité lumineuse de 400 μ mol.m⁻².s⁻¹. Des lampes au sodium ont été utilisées pour assurer un éclairage palliatif pour porter la photopériode à 16 heures.

Les plantes ont été fertilisées hebdomadairement avec un engrais universel dont la composition en macronutriments est de 6% azote total dont 2.1% azote nitrique ou nitrate (NO₃⁻), 1.4% azote ammoniacal ou ammonium (NH₄⁺) et 2.5% azote uréique (CO (NH₂)₂), 6% d'anhydrique phosphorique (P₂O₅) et micronutriment 0.01% Bore (B), 0.002% cuivre (Cu), 0.05 fer (Fe), 0.02% Manganèse (Mn), 0.001% Molybdate (MO), 0.0125% Zinc (Zn). Les plantes ont été arrosées quotidiennement à la capacité au champ.

Les bourgeons axillaires végétatifs ont été systématiquement enlevés au cours de l'expérimentation. Un ébourgeonnage de la première inflorescence a été effectué afin d'éviter l'apparition de petits fruits. La culture a été protégée contre les aleurodes *Trialeurode vaporariorum*, les acariens *Tetranychus cinnabarinus* et les thrips *Frankliniella occidentalis* par un filet de protection anti insectes (BIOTHRIPS 346) de chez texinov Agrotextiles mis en place dans la serre.

2.2. Conditions et application des différents traitements :

Au moment de l'anthèse, les fleurs ont été marquées afin de déterminer de l'âge de fruits. Les fruits ont été récoltés deux heures après le début de la photopériode, période où le flux d'eau est encore assuré uniquement par la poussée racinaire, indépendamment de l'évapotranspiration. Pour les différentes expérimentations, les fruits ont été récoltés au stade vert mature (35-40 jours après anthèse). Six fruits par traitement ont été récoltés à partir de différents plants de façon aléatoire dans la serre afin de limiter les biais dus à l'exposition à la lumière et à la température.

Un déficit hydrique contrôlé et rapide a été réalisé en utilisant du mercure pour bloquer le flux d'eau par le xylème vers le fruit et les feuilles. Après 24h de traitement, on agit essentiellement sur la poussée racinaire qui diminue fortement en inhibant une partie des aquaporines. Le traitement mercure a été appliqué, par irrigation avec des solutions de $HgCl_2$ de manière à obtenir des concentrations de 2, 5 et 10 ppm de Hg par pot. Les plants témoins ont été arrosés avec de l'eau.

Les prélèvements des fruits, pédoncules, feuilles et tiges des plantes stressées et témoins (six plantes de chaque traitement) ont été effectués 24 et 48 heures après l'application des différentes doses de mercure. Les fruits ont été récoltés au stade de développement vert mature (35-40 jours après anthèse) et vidés de leur contenu loculaire. Ensuite, ils ont été congelés dans de l'azote liquide et stockés à -80°C. L'expérimentation a été répétée trois fois. Une fois récoltés, les tissus nécessaires à l'étude microscopique sont prélevés sur les différents organes.

2.3. Culture des fruits détachés et traitements:

Six fruits au stade vert mature ont été récoltés sur six plants différents de façon aléatoire dans la serre. Le pédicelle de chaque fruit est immédiatement plongé dans la solution nutritive « Murashige and Skoog » (MS) contenant 4% de sucrose. Les fruits ont ensuite été préadaptés pendant 24 h dans une chambre de culture maintenue à $25 \pm 2^{\circ}$ C pendant la journée et $20 \pm 2^{\circ}$ C pendant la nuit avec une photopériode de 16h/8h jour/nuit avec une humidité relative de 60 ± 5 %. L'intensité lumineuse de 400 µmol.m⁻².s⁻¹ était assurée par des tubes fluorescents. Après 24h, les différents traitements ont été appliqués aux fruits détachés directement dans la solution nutritive. Les traitements ont été appliqués 2 heures après le début du cycle jour dans les chambres.

Les traitements appliqués :

- Six fruits en contact avec 0.5 mM nitroprussiate de sodium (SNP) un donneur efficace d'oxyde nitrique (NO).
- 2. Six fruits en contact avec 0.05 mM nitroprussiate de sodium (SNP).

- 3. Six fruits en contact avec 0.5 mM SNP + 1mM 2-(4-Carboxyphenyl)-4,4,5,5 tetramethylimidazoline-l-oxyl-3-oxide (cPTIO), un piègeur de NO.
- 4. Six fruits en contact avec 0.05 mM SNP + 1mM cPTIO,
- 5. Six fruits en contact avec MS + 1 mM cPTIO (C + cPTIO).
- 6. Six fruits en contact avec 0.1 mM d'acide abscissique (ABA).
- 7. Six fruits en contact avec 0.1 mM d'acide abscissique + 1 mM cPTIO (ABA + cPTIO).
- 8. Six fruits en contact avec 0.5 mM de peroxyde hydrogène (H₂O₂).
- 9. Six fruits en contact avec 0.5 mM de peroxyde hydrogène + 1 mM cPTIO (H_2O_2 + cPTIO).
- 10. Six fruits uniquement en contact du milieu nutritif MS (Contrôle).

Toutes les solutions ont été préparées avec du milieu MS. Un contact permanent entre la solution nutritive et les pédicelles a été assuré durant toute la durée de l'expérimentation. Après 4 heures, 8 heures, 12 heures et 24 heures. Suite aux différents traitements, les tissus nécessaires à l'étude microscopique sont prélevés sur les fruits. Ensuite, ils ont été plongés dans de l'azote liquide et stockés à -80°C. L'expérimentation a été répétée trois fois.

2.4. Analyses

2.4.1. Paramètres hydriques :

 Ψ_{feuille} : Le potentiel hydrique des feuilles des plantes témoins et stressées a été mesuré en utilisant une chambre à pression selon la méthode de Scholander et al. (1965).

 Ψ_{fruit} : Le potentiel hydrique des fruits a été mesuré à l'aide d'un HR-33T Point de rosée microvolt mètre, connecté à des C-52 chambres (Wescor Inc, Logan, Utah, USA).

 $F\Psi_{0}$: Le potentiel osmotique des fruits a été mesuré en utilisant un nanoosmomètre (VAPRO, Vapor Pressure Osmometer, WESCOR).

FW : La masse de matière fraîche des feuilles et des fruits a été déterminée juste après la récolte.

 \mathbf{DW} : La masse de matière sèche a été mesurée après séchage de la matière fraîche à 100 ° C pendant 72 h.

WC: La teneur en eau a été déterminée à partir des masses fraîches (FW) et sèches (DW) selon l'équation : $WC = [FW-DW] / FW \times 100$.

La teneur en matière sèche est calculée selon l'équation : TMS = $(DW \times 100) / FW$.

2.4.2. Activité du photosystème II :

L'émission de la fluorescence de la chlorophylle a, permet l'évaluation de l'activité du photosystème II. Cette mesure a été réalisée à l'aide d'un Handy Plant Efficiency Analyser (Handy-PEA, Hansatech Ltd, UK). Avant les mesures, les feuilles sont pré-adaptées à l'obscurité en plaçant des pinces sur ces dernières en position fermée pendant 30 minutes (n= 9 par traitements. La fluorescence est induite par une lumière rouge de 600 w/m² produite par trois diodes placées dans la tête de mesure. Cette tête de mesure est placée sur les pinces, et immédiatement après les 30 min d'adaptation à l'obscurité, la pince est mise en position ouverte et la mesure est effectuée. L'acquisition des données à la longueur d'onde de 730 nm se fait pendant une seconde : toutes les 10 μ s pendant les deux premières millisecondes et ensuite chaque milliseconde. Les paramètres OJIP ont été calculés d'après (Strasser et al., 2010) et présentés dans le tableau ci-dessus :

Flux d'énergie perçu par le centre réactionnel (RC)

Taux de réduction de (TR0/RC) ou (M0/VJ) = (ABS/ RC) (Fv/Fm)

Taux de transport d'électrons au delà de QA $^-$ (ET0/RC) or (TR0/RC) (1 - VJ) = (TR0/RC) (ET0/TR0)

Taux d'absorption de photon (ABS/RC) = (TR0/RC) / [(Fm – F0) /Fm]

Taux de dissipation de la chaleur (DI0/RC) = (ABS / RC) - (TR0 / RC)

Efficacités (ou ratios de flux)

Efficacité maximale avec laquelle un photon absorbé résulte en la réduction de QA (TR0/ABS) ou (TR0/RC) / (ABS/RC) = (Fm- F0) / Fm

Efficacité maximale avec laquelle un photon absorbé résulte au transport d'électron au-delà de QA⁻ (ET0/ABS) = (ET0/RC) / (ABS/ RC)

Densité de centre réactionnel fonctionnel par aire de feuille en section (RC/ABS) = (RC/TR0) (TR0/ABS)

Indice de performance

Efficacité de réduction de QA et conversion d'énergie pour le transport d'électrons (PIabs) = [RC/ABS] [(TR0/ABS) / (F0/Fm)] [(ET0/TR0) / VJ]

Tableau 3 Les paramètres OJIP ont été calculé d'après (Strasser et al., 2010)

2.4.3. Détermination de la teneur en H₂O₂ :

La teneur en H_2O_2 a été déterminée par spectrophotométrie d'après la méthode de Velikova avec des modifications majeures :

De la poudre broyée et congelée (150 mg) a été homogénéisée pendant 10 minutes à 4°C à l'abri de la lumière, avec 1 mL de solution fraîchement préparée contenant 0.25 ml d'acide trichloracétique (TCA) 0,1% (p/v), 0.5 ml de KI 1M et 0.25 ml de tampon phosphate 10 mM (pH 8 pour les fruits et 5.8 pour les feuilles et pédicelles). Des contrôles avec le KI remplacé par de l'eau ont été réalisés en parallèle afin d'éliminer des mesures de bruit de fond de la coloration naturelle des matrices végétales. Les homogénats sont centrifugés à 12 000 *g* pendant 15 minutes à 4° C et 200 µl de surnageant sont déposés en triplicat sur une plaque en quartz de 96-puits. La plaque est mise à incuber à 20-22°C pendant 20 minutes à l'abri de la lumière. Chaque plaque contient également des quantités croissantes de H₂O₂ pour générer une courbe d'étalonnage. Après agitation, l'absorption est lue à 350 nm au lieu de 390 nm dans un lecteur micro-plaque (PowerWave HT Microplate Spectrophotometer de BioTek). Cette adaptation a été publiée dans American Journal of Analytical Chemistry (Junglee et al, 2014, 5, 730-736)

2.4.4. Teneur en Acide abscissique :

La teneur en ABA a été déterminée par un test immunologique et à l'aide du kit Phytodetek competitive Enzyme-linked immuno sorbent assay (ELISA) kit (Agdia, Elkhart, In, USA). De la poudre de tissus broyés (100 mg) est homogénéisée dans 1 mL de tampon TBS (Tris Buffered Saline) pendant 10 min à 4°C. Les homogénats sont ensuite centrifugés à 15 000 g, pendant 15 min, à 4 °C. Le surnageant a été dilué si nécessaire dans du tampon TBS et déposé en triplicat dans la microplaque de 96 puits fournie dans le kit. Après 1 heure d'incubation à 37°C, l'absorbance est lue à 405 nm. La détermination de la teneur en ABA est réalisée en suivant les instructions du fabriquant.

2.4.5. Teneur en MDA :

Pour la mesure de la peroxydation des lipides dans les fruits et les feuilles, le test de l'acide thiobarbiturique (TBA), qui détermine la teneur en MDA en tant que produit final de la peroxydation lipidique (Murshed et al., 2008a), a été utilisé. De la poudre congelée de fruits ou de feuilles (150 mg) est homogénéisée dans 1 mL de TCA 0,1% (p:v) solution. L'homogénat est centrifugé à 12 000 g pendant 15 min, puis 500 µl de surnageant est ajouté à 1 ml de TBA 0,5% (p:v) dans du TCA 20% (p:v) dans un tube à vis. Le mélange est incubé à 100°C pendant 30 min. Ensuite, la réaction est arrêtée dans un bain de glace. Les tubes sont légèrement agités et 200 µL de chaque tube sont placés en triplicat dans une microplaque de 96 puits. L'absorption est lue à 532 nm dans un lecteur micro-plaque (PowerWave HT Microplate Spectrophotometer de BioTek). La valeur d'absorption non-spécifique à 600 nm est aussi lue puis soustraite et la concentration du complexe MDA-TBA (pigment rouge) est calculée à partir du coefficient d'extinction de 155 mM⁻¹.cm⁻¹.

2.4.6. Quantification de l'oxyde nitrique par laser à cascade quantique (QCL) :

La production de NO a été suivie par un spectromètre laser à cascade quantique (QCL) développé dans le laboratoire Life Science Trace Gas Facility de l'université de Radbound au Pays Bas (Mandon et al., 2012). Le détecteur inclut un QCL, une cellule multipass et un détecteur de lumière à température ambiante. La longueur d'onde d'émission du laser a été choisie afin de correspondre au mieux à l'absorption ro-vibrationnel du NO. Le laser a un rendement de 10 mW et est maintenue à -25° C par un refroidisseur peltier. Le NO à quantifier est absorbé par le système dans une cellule multipass au rythme de 1 L/h. La concentration de NO est déterminée en mesurant la lumière absorbée par l'échantillon. La limite de détection est de 0.5 ppbv par seconde. Avant les mesures, le système est calibré par un mélange de 100 ppbv NO dans de l'azote (N₂).

2.4.7. Localisation du NO par microscopie à fluorescence :

Des segments de tissus de 10 mm × 4 mm × 4 mm ont été réalisés à partir des tissus étudiés. Ils ont été mis à incuber pendant 1h à 25°C à l'obscurité avec 10 μ M de NO₅₅₀ (Yang *et al.*, 2010) préparé dans 10 mM Tris HCl, pH 7.4. Ensuite, les segments ont été rincés à deux reprises dans du tampon Tris HCl. Pour chaque traitement, des segments de tissues ont été mis à incuber dans 10 mM Tris HCl, pH 7.4 pendant 1h à 25°C à l'obscurité, comme témoins négatifs. De fines sections ont été réalisées à main levée à partir des segments, sous lumière tamisée. Les sections ont été déposées entre lame et lamelle dans 50% glycérol/PBS (v/v). Les lames ont été montées sur un microscope (Leica DM2000) équipé de filtres I3 (excitation à 450-490 nm; émission 520 nm). Les images ont été prises avec une caméra digitale Leica DF300X. Trois différentes sections ont été analysées par fruit, et 3 fruits ont été utilisés par traitement.. Les images ont ensuite été analysées avec le logiciel image J 1.43 (Maryland, USA).

2.4.8. Activités enzymatiques antioxydants :

Les activités enzymatiques de la superoxyde dismutase (SOD), de la catalase (CAT), de l'ascorbate peroxydase (APX), de la monodehydroascorbate reductase (MDHAR), de la dehydroascorbate reductase (DHAR) et de la glutathion réductase (GR) ont été déterminées selon le protocole mis au point au laboratoire par Murshed et al (2008).

2.4.8.1. Extraction des enzymes :

Les protéines ont été extraites par homogénéisation de 0,20 à 0,25 g de poudre congelée de fruits dans 1 mL de 50 mM tampon MES/KOH, pH6.0, et qui contient : 40 mM KCl, 2 mM CaCl₂ et 1 mM d'ascorbate (AsA). L'homogénat a été centrifugé à 16000 g, pendant 15 min, à 4° C, et

l'activité enzymatique du surnageant est immédiatement mesurée (Murshed et al., 2008b). La concentration en protéines de chaque échantillon a été dosée par la méthode de Bradford (1976).

2.4.8.2. Détermination des activités enzymatiques:

Toutes les activités enzymatiques ont été déterminées par réactions cinétiques, avec un volume final de 200 μ l, excepté la SOD (1000 μ l) à 25 ° C (Murshed et al., 2008b).

APX : Milieu réactionnel composé de tampon phosphate de potassium à 50 mM (pH 7.0); d'AsA à 0,25 mM, de 10 μ L d'extrait enzymatique et d'H₂O₂ à 5 mM. L'activité a été déterminée en mesurant la disparition de l'ascorbate à 290 nm pendant 5 minutes et calculée à partir du coefficient d'extinction de 2.8 mM⁻¹. cm⁻¹ (Murshed et al., 2008b).

DHAR : Milieu réactionnel composé de tampon HEPES à 50 mM (pH 7,0), d'EDTA à 0,1 mM, de glutathion réduit (GSH) à 2,5 mM, de DHA à 0.2 mM et de 10 μ L d'extrait enzymatique. L'activité a été déterminée en mesurant l'augmentation de la vitesse de réaction à 265 nm pendant 5 minutes, et calculée à partir du coefficient d'extinction de 14,0 mM⁻¹. cm⁻¹ (Murshed et al., 2008b).

MDHAR : Milieu réactionnel composé de tampon HEPES à 100 mM (pH 7,6), d'AsA à 2,5 mM, de NADH à 0,25 mM, de 20 μ L d'extrait enzymatique et de 0,4 unité d'ascorbate oxydase (AO). L'activité a été déterminée en mesurant la diminution de la vitesse de réaction à 340 nm, pendant 5 minutes, et calculée à partir du coefficient d'extinction de 6.22 mM⁻¹. cm⁻¹ (Murshed et al., 2008b).

GR : Milieu réactionnel composé de tampon HEPES à 50 mM (pH 8,0), d'EDTA à 0,5 mM, de NADPH à 0,25 mM, de 30 μ L d'extrait enzymatique et de glutathion oxydé (GSSG) à 0,5 mM. L'activité a été déterminée en mesurant la diminution de la vitesse de réaction à 340 nm pendant 5 minutes, et calculée à partir du coefficient d'extinction de 6.22 mM⁻¹. cm⁻¹ (Murshed et al., 2008b).

CAT : Milieu réactionnel composé de tampon phosphate de potassium à 50 mM (pH 7,0), d'H₂O₂ à 15 mM, et de 20 μ L d'extrait enzymatique, selon la méthode adaptée de Aebi (1984). L'activité a été déterminée en mesurant la diminution de la vitesse de réaction à 240 nm et calculée à partir du coefficient d'extinction de 43.6 M⁻¹. cm⁻¹.

SOD : L'activité a été déterminée selon la méthode modifiée de Dhindsa et al. (1981) dans un milieu réactionnel de 1000 μ l composé de tampon phosphate de potassium à 50 mM (pH 7,8), de méthionine à 13 mM, de nitro bleu tétrazolium (NBT) à 75 μ M, de d'EDTA à 0,1 mM, de 10 μ L d'extrait enzymatique et de riboflavine à 2 μ M. Les tubes ont été légèrement agités et trois aliquotes de 200 μ L de chaque tube ont été placés dans une plaque de 96 puits. Chaque plaque contenait également 0.3, 0.6, 0.9, 1.2, 1.5 et 1.8 U de SOD commerciale (from bovine liver, Sigma-Aldrich, St.

Louis, MO, USA) pour générer une courbe d'étalonnage. Les plaques ont ensuite été placées sous une lumière blanche (Horizon, Model Apollo, Lincolnshire, IL, USA) pendant 5 min afin de produire l'anion superoxyde par photooxydation de la riboflavine. Puis l'absorbance a été lue à 560 nm dans un lecteur micro-plaque. La SOD dans l'extrait inhibe la réduction photochimique de NBT en bleu formazan. L'activité a été calculée en unités de SOD à partir de la courbe d'étalonnage.

2.4.9. Détermination des teneurs en Ascorbate et dehydroascorbate :

Les concentrations d'ascorbate réduit (AsA) et de dehydroascorbate (forme oxydée) (DHA) ont été déterminées selon le protocole de Kampfenkel et al. (1995) modifié pour une détermination en micro-plaque (Murshed et al., 2008a). AsA et DHA ont été extraits par l'homogénéisation de 100 mg de poudre congelée de fruits ou de feuilles dans 1 mL de 6% TCA (p:v). L'homogénat est centrifugé à 16000 g pendant 15 min à 4°C. Les surnageants ont été utilisés pour la détermination de l'ascorbate total (AsA + DHA) et AsA.

Pour la détermination de l'ascorbate total, 10 μ L de l'extrait ont été ajoutés à 10 μ L de 10 mM DL-Dithiothreitol (DTT) et 20 μ L de tampon phosphate 0,2 mM (pH 7,4). Après 15 min d'incubation à 42° C, 10 μ L de N-Ethylmaleimide (NEM) 0,5% (p:v) ont été ajoutés. Après 1 min d'incubation à température ambiante, 150 μ L d'un réactif préparé juste avant l'utilisation en mélangeant 50 μ L de 10% (p:v) TCA, 40 μ L de 42% (v:v) de l'acide orthophosphorique (H₃PO₄), 40 μ L de 4% (p:v) 2.2-bipyridyl dissous dans l'éthanol (70%) et 20 μ L de 3% (p:v) de chlorure ferrique est rajouté. Après incubation à 42° C pendant 40 min, l'absorbance est lue à 525 nm dans un lecteur micro-plaque. Pour la détermination de l'AsA, la même réaction a été utilisée, en remplaçant le DTT et le NEM par du tampon phosphate (0,2 M, pH 7,4). La concentration de DHA a été estimée à partir de la différence entre l'ascorbate total et l'AsA. Chaque plaque contient également du L-acide ascorbique commercial pour générer une courbe d'étalonnage.

2.5. Extraction et analyse des acides nucléiques :

2.5.1. Extraction des ARN totaux :

Les ARN totaux ont été extraits à partir 100 mg de poudre congelée avec le kit RNeasy Plant Mini Kit (QIAGEN) selon les instructions du fabricant. Le tampon RLT a été utilisé pour les fruits et le tampon RLC pour les feuilles et pédoncules. La quantité d'ARN extraits a ensuite été évaluée en mesurant la densité optique (DO) à 260 nm à l'aide d'un spectrophotomètre NanoVueTM plus. Afin de vérifier l'intégrité des ARN, une électrophorèse en gel d'agarose à 1% a été effectuée. Trois extractions indépendantes des ARN totaux ont été effectuées pour chaque traitement ou stade de développement et les extraits ont été stockés à -80 ° C.

2.5.2. Puces à ADN

Pour chaque traitement, quatre fruits au stade vert mature ont été récoltés à partir de quatre plants différents de façon aléatoire dans la serre. Le pédicelle de chaque fruit est immédiatement plongé dans une solution nutritive Murashige and Skoog (MS) contenant 4% de sucrose. Les fruits ont ensuite été mis en adaptation pendant 24 h dans une chambre de culture maintenue à $25 \pm 2^{\circ}$ C pendant la journée et $20 \pm 2^{\circ}$ C pendant la nuit avec une photopériode de 16h/8h jour/nuit et une humidité relative de 60 ± 5 %. L'intensité lumineuse de 400 µmol.m⁻².s⁻¹ était assurée par des tubes fluorescents neutres. Un jour après la récolte, les différents traitements ont été appliqués aux fruits détachés. Les traitements ont été appliqués 2 heures après le début du cycle jour dans les chambres pendant 4 heures comme décrit précédemment.

Nous avons 3 conditions réalisées chacune en quadruplicats donc 12 échantillons :

- 1. Quatre fruits en contact avec 0.05 mM nitroprussiate de sodium (SNP) un donneur efficace d'oxyde nitrique (NO).
- Quatre fruits mis en condition de stress hydrique par un traitement avec du polyéthylène glycol (PEG) 10%.
- 3. Quatre fruits uniquement en contact avec le milieu nutritif MS (Contrôle).

A la fin des traitements, les fruits ont été broyés dans de l'azote liquide et stockés à -80°C. Une fois les ARN des 12 échantillons extraits, ils ont été envoyés à l'institut de génétique et de biologie moléculaire et cellulaire (IGBMC) à Strasbourg pour la réalisation et l'analyse du transcriptome de tomate en conditions témoin, de déficit hydrique et de traitement NO.

Chaque échantillon a été co-hybridé avec une référence commune à tous les 'arrays' qui était constituée d'un pool de l'ensemble de nos 12 ARN en quantité égale. Le protocole utilisé pour le marquage des échantillons était "Two-Color Microarray-Based Gene Expression Analysis- Low Input Quick Amp Labeling" version 6.5, May 2010. Le protocole utilisé pour la lecture des lames sur un scanner C d'Agilent, était Agilent G3_GX_2Color (scan resolution : 3 µm, Tiff : 20 bit). Les images ont été analysées dans Feature Extraction avec le protocole GE2_1010_Sep10.

Paramètres de filtrage utilisés :

- P value ttest NOvsTM < 0.05
- P value ttest SHvsTM < 0.05
- Niveau de surexpression NO vs TM > 1.5
- Niveau de surexpression SH vs TM > 1.5
- Niveau de sousexpression NO vs TM < 0.5
- Niveau de sousexpression SH vs TM < 0.5

Les séquences des gènes sélectionnés ont été comparées à la base de données GenBank (http://www.ncbi.nlm.nih.gov/), en réalisant un blast (http://blast.ncbi.nlm.nih.gov/Blast.cgi), afin de déterminer leurs fonctions. Cette étape fut très importante car le génome de la tomate a été sequencé après la réalisation de notre analyse transcriptomique. Les séquences présentant au moins 40 % de recouvrement, une p-value <0.05, et un score maximum d'identité ont été choisies.

2.5.3. Validation des analyses transcriptomiques par qPCR en temps réel

2.5.2.1. Synthèse des ADNc par reverse transcription :

La rétrotranscription des ARNm a été réalisée avec le kit Reverse Transcriptase Core KitTM (Eurogentec) en suivant scrupuleusement les instructions du fabricant, (120 ng ARN total). Trois séries de rétrotranscription ont été réalisées, les cDNA obtenus ont été regroupés, et homogénéisés. Enfin, ces cDNA, dilués de moitié, ont constitué la matrice de travail et ont été conservés à -80°C.

2.5.2.3. Amplification de gènes par réaction de polymérisation en chaine en temps réel (qPCR)

La validation des résultats obtenus par la puce à ADN a été réalisée par une amplification en temps réel qPCR de 6 gènes d'intérêts, normalisés avec deux gènes de référence Sand (SGN-U316474) et ef (X53043) préalablement choisi comme étant les plus stables dans nos conditions d'expérimentation, en utilisant le kit " Mesa green qPCR MasterMix plus" (Eurogentec).

Le volume réactionnel de 25 μ L, contient : 15 ng d'ADNc matrice, 200 nM d'amorces spécifiques (sens et antisens), 12.5 μ l de tampon réactionnel contenant : des dNTPs, dont dUTP, la Meteor taq DNA polymerase, du MgCl₂ (4 mM finale), du Sybr® green I, un stabilisateur et de la fluorescéine, et 10 μ l d'eau ultrapure stérile.

Les réactions de qPCR (thermocycler, Mastercycler®ep realplex) sont réalisées selon le programme suivant : dénaturation 95°C à 5 min ; 60 cycles [dénaturation : 95°C, 15 sec ; hybridation : température variable selon les amorces, 20 sec ; élongation : 72°C, 40 sec]. Une étape de courbe de fusion " melting curve " est également ajoutée afin de vérifier la spécificité du produit d'amplification pour chaque réaction. Les produits d'amplification ont également été déposés sur gel d'agarose 1% afin de s'assurer de la taille des amplicons obtenus.

Quatre réplicats biologiques et trois réplicats techniques ont été réalisés pour cette expérimentation.

2.5.3 Etapes préliminaires permettant de normaliser l'étude qPCR

Selon le guide de MIQE (Bustin et al., 2009; Derveaux et al., 2010)

- Préparation des ARN dans un même volume, mêmes conditions pour la reverse transcription

- Matrice de même volume et concentration pour les réactions de qPCR (12 ng/µl)
- Amorces vérifiées par la réalisation d'une courbe de fusion "melting curve"

- Sélection de gènes de référence pour l'interprétation des résultats et vérification de leur stabilité par le logiciel GenNorm (http://medgen.ugent.be/~jvdesomp/genorm/) et Normfinder.

2.5.3.1 Choix des amorces spécifiques pour la PCR en temps réel

Des amorces spécifiques des gènes (sens et antisens) de 19 à 25 nucléotides ont été réalisées sur les séquences nucléotidiques correspondant aux gènes d'intérêt et de référence. En particulier, les amorces ont été réalisées afin de prendre en compte la portion de séquence nucléotidique utilisée comme sonde pour les puces à ADN. Les règles classiques de réalisation d'amorces ont été utilisées: pourcentage de résidus G et C d'environ 50 %, température d'hybridation des oligonucléotides à la matrice d'ADN, Tm 60°C +/- 2 (validée par un test de gradient de températures), pas de séquences répétées de nucléotides, ni de séquences palindromiques. Afin de vérifier la qualité des amorces, le logiciel Netprimer (http://www.premierbiosoft.com/netprimer/) et DNA man® ont été utilisés permettant de détecter d'éventuelles formations d'épingle à cheveux, de dimère d'amorces et de calculer la Tm.

2.5.3.2 Quantification relative de l'expression des gènes

L'expression relative du gène d'intérêt a été normalisée à l'aide de deux gènes de référence préalablement sélectionnés (Sand et Ef) selon le rapport (Pfaffl. 2001):

 $((E_{cible})^{\Delta Ct cible (témoin-traité)}) / ((E'_{ref})^{\Delta Ct ref (témoin-traité)})$

Où E et E' sont respectivement, les efficacités d'amplification du gène cible et du gène de référence et Ct, le nombre de cycles auquel la fluorescence atteint une valeur seuil fixée par l'appareil.

2.6. Analyses statistiques :

Les résultats sont exprimés par des moyennes avec erreur standard (\pm SE). Les tests statistiques ont été réalisés avec le logiciel R 2.12.2 (www.cran.rproject.org). Dans un premier temps, un test de Tukey a été réalisé pour détecter des différences statistiques parmi les traitements. Dans un second temps, la différence statistique entre deux traitements a été effectuée par le test t de Student (p<0.05). Pour les analyses des puces à ADN, le test de Student a été utilisé (p<0.05) afin d'identifier les gènes changeant de façon significative entre les groupes.

 Table 1: Séquences des amorces spécifiques des gènes cibles. Tailles des fragments amplifiés par PCR et numéro d'accession sont également indiqués. NO(+) : traitement NO, WD : déficit hydrique

Expression	Description		Séquence (5'→3')	Taille	N°Accession
puce				amplicon b	р
NO(+)	Monogalactosyl	sens	CGA GTT CAC GTC TTC ATT TTC A	216	AK320909
	diacylglycerol synthase 2	antisens	C CGA CTA ACC AAG GAT CGG		
NO(+)	13 lipoxygenase	sens	TCG GAG AAA TTG AAG GAA CTT G	225	AK246936
		antisens	AG GAC CTA TTA GTA CAT TTG GGT AGC		
NO(+)	3-ketoacyl CoA thiolase	sens	CGA GGG GAT GCT GTA GAT GA	224	AK322858
		antisens	AAC AGG ACT TCC CTT CCA TTG		
NO et WD	Agmatine	sens	AGA CAA CTT GCC CAC CTT CAA	162	AK327374
(+)	coumaroyltransferase	antisens	TC CCT TGC GCT TAG CAA TG		
NO(+)	Acetylornithine deacetylase	sens	GCC AAA GCT ACT GAA GAG GTT G	263	AK328079
		antisens	ACG AAC ATT GAG ATG GAT GCT		
WD (+)	(OPR1) 12-oxophytodienoate	sens	CGA GCT GAT CTT GTT GCG	271	AK324415
	reductase 1	antisens	GGG CAT GAG TAT TAT TGG GAG T		
WD (+)	(OPR3) 12-oxophytodienoate	sens	G GCA CAA GGT GAT GCT GAT	250	BT014368
	reductase 3	antisens	TG CCC AAC AAA ATC AGG TTT		
NO(+)	Basic Blue Protein	sens	GGC GGT GAA TAA AGG TGG T	223	GO372888
	(Plantacyanin)	antisens	A CCA ACA TAG GTG ACA CAT GAT AGA		

2.7 Amélioration de la technique de mesure du peroxyde d'hydrogène par spectrométrie.

La section 2.7 présente, sous la forme d'un article accepté dans le journal "Americal Journal of Analytical Chemistry", les travaux réalisés pour améliorer le dosage du peroxyde d'hydrogène (H₂O₂) par une technique de spectrométrie proposée par Velikova et al (2000), très utilisée en biologie végétale. Suite aux difficultés auxquelles nous avons été confrontés lors du dosage du peroxyde d'hydrogène (H₂O₂), nous avons étudié dans le détail cette méthode de dosage. Cette technique comprend le suivi, par spectrométrie, de l'apparition du triiode (I₃), produit de la réaction de l'iode avec H₂O₂. Au cours de cette étude, nous nous sommes rendus compte que la longueur d'onde utilisée n'était pas la plus adaptée pour suivre la cinétique de cette réaction. En effet, la plus forte absorption a été détectée à 350 nm et non à 390 nm. Cependant, le dosage de H₂O₂ restait impossible pour certains échantillons de fruits et de feuilles, même après modification de la longueur d'onde (passage de 390 nm à 350 nm). Une étude plus approfondie a permis de mettre en avant que le pH de la réaction dépendait de l'organe étudié. Effectivement, un meilleur signal a été détecté à pH 8 pour les fruits et à pH 5.8 pour les feuilles. De plus, cette étude a révélé l'importance de prendre en compte la coloration naturelle des tissus. En effet, nous avons constaté que la coloration naturelle des tissus influence grandement les résultats et peut induire une surestimation de la teneur en H₂O₂. Afin de remédier à ce problème, nous conseillons l'utilisation de contrôles sans réactif (KI), dans le but de pouvoir soustraire la coloration naturelle des tissus à celle de la réaction.

Résumé

Dans cette étude nous présentons une optimisation d'une technique colorimétrique pour le dosage du peroxyde d'hydrogène en utilisant l'iodure de potassium (KI). Notre méthode est basée sur l'utilisation d'un tampon unique pour l'extraction et la réaction. Cette technique évite la dégradation du H_2O_2 par des antioxydants lors de l'extraction et l'utilisation de contrôle sans KI permet d'éliminer la coloration naturelle des tissus. Le pH du tampon réactionnel a aussi été modifié car nous avons noté que l'efficacité de la réaction dépendait du pH d'un organe à l'autre. Avec cette méthode peu coûteuse, il est possible d'analyser 12 échantillons biologiques en triplicatas avec blancs, contrôle et gamme étalon.

Optimized Assay for Hydrogen Peroxide Determination in Plant Tissue Using Potassium Iodide

Sanders Junglee, Laurent Urban, Huguette Sallanon, Félicie Lopez-Lauri

Laboratoire de Physiologie des Fruits et Légumes, Université d'Avignon et des Pays du Vaucluse, Avignon, France Email: felicie.lauri@univ-avignon.fr

Received 7 June 2014; revised 23 July 2014; accepted 6 August 2014

Copyright © 2014 by authors and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/

© Open Access

Abstract

Here, we present an optimization of colorimetric determination of hydrogen peroxide content in plants using potassium iodide. Our method is based on a one step buffer (extraction and reaction) for the determination of H_2O_2 in different plant tissues and overcomes interference of soluble antioxidant and color background. A particular attention is paid to buffer pH shown to be tissue dependent. With this inexpensive microplate method, it is possible to analyze 12 experimental samples in about 45 min all in triplicates, with blanks, controls and standard curve.

Keywords

Hydrogen Peroxide, Potassium Iodide, One Step, Microplate, Inexpensive

1. Introduction

Hydrogen peroxide (H_2O_2) is commonly produced in plants during normal physiological processes and in response to stress situations [1]. The quantitative determination of hydrogen peroxide is important in numerous studies since H_2O_2 is involved in oxidative cellular damages as well as in signalling processes [2] [3]. Owing to its importance, numerous methods and kits have been developed based on spectrophotometry, chemiluminescence [4], enzymatic method [5] and electrochemistry [6]. However, some of these methods are very expensive. Several years ago, an economic colorimetric method has been described for the determination of H_2O_2 [7] and it is widely used in the field of plant biology [8]-[10]. This method is based on potassium iodide (KI) oxidation by H_2O_2 in acidic medium according to the following equations:

$$2I^- + 2H^+ + H_2O_2 \rightarrow I_2 + 2H_2O$$

How to cite this paper: Junglee, S., Urban, L., Sallanon, H. and Lopez-Lauri, F. (2014) Optimized Assay for Hydrogen Peroxide Determination in Plant Tissue Using Potassium Iodide. *American Journal of Analytical Chemistry*, **5**, 730-736. <u>http://dx.doi.org/10.4236/ajac.2014.511081</u>

$I_2 + I^- \rightarrow I_3^-$

When hydrogen peroxide is added to colorless solution of potassium iodide (KI), the iodide ions (I^-) are slowly oxidized in iodine (I_2). In presence of iodide, iodine reacts to form triiodide (I_3^-) resulting in a yellowish solution. Therefore hydrogen peroxide could be quantified by spectrophotometric method by following I_3^- absorption. In the method described by Velikova *et al.* (2000), H₂O₂ determination relies on absorbance at 390 nm. However, the triiodide absorbs at 285 and 350 nm as presented in Figure 1(a). Although the peak observed at 285 nm presents greater sensitivity, the peak at 350 nm has been used in this study. Indeed plant tissues show important absorption at 285 nm, which can interfere with the assay (Figure 1(b), Figure 1(c)). Plant extracts have a colour background to take into account and contain molecules that interfere with H₂O₂ determination. Figure 1(b) and Figure 1(c) show no difference between the reaction spectra from tomato fruit and leaf extracts with KI or not. The purpose of this work was to optimize the iodometric assay for plant tissues.

Commonly, metabolite determination is made through two major steps: extraction of molecules from tissue and quantification of molecule of interest from this extract. However using the two-step protocol, H_2O_2 might be destroyed by ascorbic acid, which is an efficient H_2O_2 scavenger [11], during extraction step and may be underestimated or cannot be quantified at all (Table 1(a)). So, we proposed an alternative one-step method.

Table 1. (a) H_2O_2 concentration measured in absence and presence of 1 nmole ascorbic acid added before KI or together with KI; (b) Influence of the ratio of tomato tissue to buffer on hydrogen peroxide concentration. Statistical significance was determined with student t-test (p < 0.05) with "R" 2.12.2 statistical software (<u>www.cran.rproject.org</u>); (c) Hydrogen peroxide content in fruits and leaves of tomato plants treated or not with HgCl₂ using the optimized protocol. Statistical significance was determined by student t-test (p < 0.05) with "R" 2.12.2 statistical software (<u>www.cran.rproject.org</u>); (c) Hydrogen peroxide content in fruits and leaves of tomato plants treated or not with HgCl₂ using the optimized protocol. Statistical significance was determined by student t-test (p < 0.05) with "R" 2.12.2 statistical software (<u>www.cran.rproject.org</u>).

(a)

	Measured H ₂ O ₂ concentration (nmole)			
Expected H_2O_2 concentration (nmole)	1 nmol ASA added before KI	1 nmol ASA added together with KI		
0	0.00 ± 0.00	0.00 ± 0.01		
1	0.00 ± 0.00	0.82 ± 0.04		
2	0.00 ± 0.00	1.78 ± 0.13		
3	0.32 ± 0.00	2.68 ± 0.13		
4	1.46 ± 0.09	3.65 ± 0.03		
5	2.43 ± 0.03	4.44 ± 0.06		
6	3.33 ± 0.01	5.75 ± 0.10		

(b)

mg FW/ml		H_2O_2 (nmol/g)
50	491.20 ± 18.74^{a}	
100	528.86 ± 0.61^{a} 612.10 ± 17.53^{b}	
150		
200	584.33 ± 12.45^{a}	
250	$377.96 \pm 15.78^{\circ}$	
	(c)	
Organ	Treatment	H ₂ O ₂ (nmol/gFW)
F. 4	Control	77.16 ± 9.07^{a}
Fruits	5 ppm HgCl ₂	175.73 ± 5.79^{b}
	Control	472.57 ± 8.73^{a}
Leaves	5 ppm HgCl ₂	836.97 ± 9.85 ^b

(a)

(b)

Figure 1. (a) Absorption spectra of I_3^- ions resulting from hydrogen peroxide (H₂O₂) reaction with potassium iodide (KI 1 M) using different H₂O₂ concentrations in 0.1% TCA. Inset shows calibration curve with slopes for hydrogen peroxide quantification measured at 350 and 390 nm at pH 7; (b) Absorption spectra of hydrogen peroxide (H₂O₂) reaction with potassium iodide (KI 1 M) in 0.1% TCA at pH 7 with Velikova *et al.* (2000) method. Fruit: Fruit homogenate in presence of KI. Fruit control: Fruit homogenate in absence of KI. Each value represents mean ± standard deviation; (c) Absorption spectra of hydrogen peroxide (H₂O₂) reaction with potassium iodide (KI 1 M) in 0.1% TCA at pH 7 with velassium iodide (KI 1 M) in 0.1% TCA is pH 7 with velassium iodide (KI 1 M) in 0.1% TCA is pH 7 with v

2. Materials and Methods

The protocol is as follows: tomato fruits were harvested, immediately frozen in liquid nitrogen, ground and the powder stored at -80°C until H₂O₂ determination assay. Frozen powder (150 mg) was directly homogenized with 1 ml of solution containing 0.25 ml Trichloroacetic acid (TCA) (0.1% (w:v)), 0.5 ml KI (1 M) and 0.25 ml potassium phosphate buffer (10 mM, pH adapted to studied tissue) at 4°C for 10 min (one-step buffer: extraction and colorimetric reaction combined). At the same time, for every sample, a control was prepared with H₂O instead of KI for tissue coloration background. Good care was taken to protect samples and solutions from light. The homogenate was centrifuged at $12,000 \times g$ for 15 min at 4°C. 200 µL of supernatant from each tube were placed in UV-microplate wells and left to incubate at room temperature (20°C - 22°C) for 20 min. Samples and blanks were analyzed in triplicate. A calibration curve obtained with H_2O_2 standard solutions prepared in 0.1% TCA was used for quantification (Figure 1(a)). The microplate reader used is a Power Wave HT microplate spectrophotometer from BioTek (France) equipped with an internal temperature incubator and shaker for kinetic and spectrum analysis. We used the KC4 data software to check the reader and to analyze reactions. To optimize the protocol, assays have been done by modifying pH of phosphate buffer. As shown in Figure 2(a), tomato fruit extracts exhibited maximum absorbance at 350 nm in 10 mM potassium phosphate buffer solution at pH 8. For tomato leaves the most efficient buffer for the reaction was at pH 5.8 (Figure 2(c)). The kinetic of the reaction was not modified by the modification of the buffer pH as shown in Figure 2(b) and Figure 2(d).

In addition, the influence of the ratio of tomato exocarp to "one-step buffer" was made in order to select the

ratio that resulted in maximal H_2O_2 determination (Table 1(b)). The best ratio adapted to our sample was found to be between 150 and 200 mg for 1 ml of buffer. Recovery assays with 20 nmol/ml H_2O_2 made to complete the method revealed 100% recovery in 100, 150 and 200 mg. In order to confirm the efficiency of our assay, we compared the H_2O_2 contents in fruits (30 days after anthesis) and mature leaves from control plants and plants exposed to $HgCl_2$ (5 ppm) for 24 h, using the new protocol. The results are presented in Table 1(c).

3. Conclusion

This optimized spectrophotometric method based on a one-step buffer (extraction and reaction) is suitable and

Figure 2. (a) Absorption spectra of hydrogen peroxide (H_2O_2) reaction with potassium iodide (KI 1 M) in fruits in 0.1% TCA at pH 5.8, pH 7 and pH 8. Highlighting better absorbance of fruit samples at pH 8 together with an absence of pH interference in background tissue coloration. Each value represents mean ± standard deviation; (b) Reaction kinetic of reaction between hydrogen peroxide (H_2O_2) and potassium iodide (KI 1 M) at pH 8 showing end of reaction after 20 min; (c) Absorption spectra of hydrogen peroxide (H_2O_2) reaction with potassium iodide (KI 1 M) in leaves in 0.1% TCA at pH 5.8, pH 7 and pH 8. Highlighting better absorbance of leaf samples at pH 5.8 together with an absence of pH interference in background tissue coloration. Each value represents mean ± standard deviation; (d) Reaction kinetic of reaction between hydrogen peroxide (H_2O_2) and potassium iodide (KI 1 M) at pH 5.8 together with an absence of pH interference in background tissue coloration. Each value represents mean ± standard deviation; (d) Reaction kinetic of reaction between hydrogen peroxide (H_2O_2) and potassium iodide (KI 1 M) at pH 5.8 showing end of reaction after 20 min.

reliable for the determination of H_2O_2 in different plant tissues. Indeed, this method allows overcoming interference of soluble antioxidant and color background. With this inexpensive microplate method, it is possible to analyze 12 experimental samples in about 45 min all in triplicates, with blanks, controls and standard curve.

References

- Foyer, C.H. and Shigeoka, S. (2011) Understanding Oxidative Stress and Antioxidant Functions to Enhance Photosynthesis. *Plant Physiology*, 155, 93-100. <u>http://dx.doi.org/10.1104/pp.110.166181</u>
- [2] Neill, S., Desikan, R. and Hancock, J. (2002) Hydrogen Peroxide Signalling. *Current Opinion in Plant Biology*, 5, 388-395. <u>http://dx.doi.org/10.1016/S1369-5266(02)00282-0</u>
- [3] Apel, K. and Hirt, H. (2004) Reactive Oxygen Species: Metabolism, Oxidative Stress, and Signal Transduction. Annual Review of Plant Biology, 55, 373-399. <u>http://dx.doi.org/10.1146/annurev.arplant.55.031903.141701</u>
- [4] Lu, S., Song, J. and Campbell-Palmer, L. (2009) A Modified Chemiluminescence Method for Hydrogen Peroxide Determination in Apple Fruit Tissues. *Scientia Horticulturae*, **120**, 336-341. http://dx.doi.org/10.1016/j.scienta.2008.11.003
- [5] Nagaraja, P., Shivakumar, A. and Shrestha, A.K. (2009) Quantification of Hydrogen Peroxide and Glucose Using 3-Methyl-2-benzothiazolinonehydrazone Hydrochloride with 10,11-Dihydro-5H-benz(b,f)azepine as Chromogenic Probe. *Analytical Biochemistry*, **395**, 231-236. <u>http://dx.doi.org/10.1016/j.ab.2009.07.053</u>
- [6] Liu, X. and Zweier, J.L. (2001) A Real-Time Electrochemical Technique for Measurement of Cellular Hydrogen Peroxide Generation and Consumption: Evaluation in Human Polymorphonuclear Leukocytes. *Free Radical Biology and Medicine*, 31, 894-901. <u>http://dx.doi.org/10.1016/S0891-5849(01)00665-7</u>
- [7] Velikova, V., Yordanov, I. and Edreva, A. (2000) Oxidative Stress and Some Antioxidant Systems in Acid Rain-Treated Bean Plants: Protective Role of Exogenous Polyamines. *Plant Science*, **151**, 59-66. http://dx.doi.org/10.1016/S0168-9452(99)00197-1
- [8] Sengupta, D., Guha, A. and Reddy, A.R. (2013) Interdependence of Plant Water Status with Photosynthetic Performance and Root Defense Responses in *Vigna radiata* (L.) Wilczek under Progressive Drought Stress and Recovery. *Journal* of Photochemistry and Photobiology B: Biology, **127**, 170-181. <u>http://dx.doi.org/10.1016/j.jphotobiol.2013.08.004</u>
- [9] Girotto, E., Ceretta, C.A., Rossato, L.V., Farias, J.G., Tiecher, T.L., De Conti, L., Schmatz, R., Brunetto, G., Schetinger, M.R.C. and Nicoloso, F.T. (2013) Triggered Antioxidant Defense Mechanism in Maize Grown in Soil with Accumulation of Cu and Zn Due to Intensive Application of Pig Slurry. *Ecotoxicology and Environmental Safety*, 93, 145-155. http://dx.doi.org/10.1016/j.ecoenv.2013.03.021
- [10] Nounjan, N., Nghia, P.T. and Theerakulpisut, P. (2012) Exogenous Proline and Trehalose Promote Recovery of Rice Seedlings from Salt-Stress and Differentially Modulate Antioxidant Enzymes and Expression of Related Genes. *Journal of Plant Physiology*, **169**, 596-604. <u>http://dx.doi.org/10.1016/j.jplph.2012.01.004</u>
- [11] Noctor, G. and Foyer, C. (1998) Ascorbate and Glutathione: Keeping Active Oxygen under Control. Annual Review of Plant Physiology and Plant Molecular Biology, 49, 249-279. <u>http://dx.doi.org/10.1146/annurev.arplant.49.1.249</u>

IIIIII II

 \checkmark

Scientific Research Publishing (SCIRP) is one of the largest Open Access journal publishers. It is currently publishing more than 200 open access, online, peer-reviewed journals covering a wide range of academic disciplines. SCIRP serves the worldwide academic communities and contributes to the progress and application of science with its publication.

Other selected journals from SCIRP are listed as below. Submit your manuscript to us via either submit@scirp.org or Online Submission Portal.

Chapitre 3-1. Le mercure induit la synthèse de NO et ABA et l'activation du système de défense antioxydant dans le fruit de tomate

Le chapitre 3-1 présente, sous forme d'un article soumis dans le journal "Journal of Experimental Botany", les travaux réalisés dans le but de déterminer si l'oxyde nitrique est impliqué dans la réponse du fruit à un déficit hydrique rapide et contrôlé appliqué au plant de tomate. Suite aux précédente études réalisées par l'équipe (Murshed R, 2008a; Murshed et al., 2013a, b) sur l'impact des stress hydriques et salins sur les systèmes antioxydants, nous nous sommes intéressés à cette molécules signal et à l'acide abscissique. Cette étude a également pour objectif de déterminer si la mise en place du système de défense est liée à un phénomène adaptatif ou à une réponse précoce du fruit, au stress subit par l'appareil végétatif. Le déficit hydrique a été provoqué par l'inhibition de l'activité des aquaporines avec du chlorure de mercure (HgCl₂). Le traitement a été appliqué deux heures après le début de la photopériode, et les mesures ont été effectuées 24h après. A l'initiation de la photopériode, l'absorption et le flux d'eau dans la plante sont essentiellement assurés par la poussée racinaire, avec une contribution négligeable de la transpiration (Javot et al., 2003; Lopez et al., 2003; Maggio and Joly, 1995). L'inhibition des aquaporines par le HgCl₂ a permis d'atteindre des conditions de stress hydrique rapide. Le NO et l'ABA jouent un rôle important dans la réponse au stress hydrique chez les végétaux. En effet, il est maintenant clairement établi que l'ABA intervient dans la fermeture stomatique afin de réduire l'évapotranspiration lors d'un manque d'eau ressenti par les végétaux. Cependant, des études ont démontré que ce dernier pouvait aussi induire l'activation d'enzymes antioxydantes au cours de périodes stressantes pour la plante (Bellaire et al., 2000). L'oxyde nitrique, à qui de nombreuses études chez les végétaux ont été consacrées durant ces quinze dernières années, est fortement lié aux conditions dites de stress. De plus, il a été montré qu'il pouvait exister une forte relation entre ces deux molécules (Hancock et al., 2011). Les indicateurs hydriques (potentiel hydrique, potentiel osmotique et teneur en eau), le H₂O₂, le MDA et la teneur en AsA ont été mesurés. Les activités des enzymes antioxydantes SOD, CAT, APX, MDHAR, DHAR et GR ont été suivies.

Nous avons constaté une augmentation de la teneur en H_2O_2 dans tous les organes des plantes soumises aux traitements $HgCl_2$. Seule la concentration en MDA dans le péricarpe des fruits après le déficit hydrique n'a pas changé. Suite aux traitements, Les activités des enzymes antioxydantes ont augmenté significativement dans les fruits des plants soumis aux traitements durant 24h. Nous avons aussi constaté un accroissement de la teneur en ABA dans les feuilles et les

pédicelles. Le taux de NO émis par les feuilles et les fruits est plus important chez les plants soumis au déficit hydrique, avec de plus fortes valeurs pendant la nuit. Nos observations démontrent que le déficit hydrique cause synthèse de NO et une altération rapide du statut redox dans les plants de tomate. De plus, la modification du système antioxydant dans les fruits indique que le NO et/ou l'ABA pourrait participer au maintien du statut redox dans les fruits. Cette étude indique qu'au cours d'un déficit hydrique, le système antioxydant dans les fruits peut être activé, même en l'absence de symptômes de déficit hydrique dans ces derniers (les potentiels hydrique et osmotiques, les teneurs en MDA, en AsA ne sont pas affectées par les traitements). Au travers d'une approche pharmacologique, nous confirmons également, que le NO est impliqué dans l'activation des enzymes antioxydantes dans les fruits.

Hindering root pressure stimulates NO and ABA synthesis along with antioxidant defense systems in tomato fruits (*Solanum lycopersicum* L, cv. Micro-Tom)

Running title : Rapid water deficit stimulates NO and ABA synthesis and antioxidant defense systems in tomato fruits.

Authors: Sanders JUNGLEE^{1,4}, Ramzi MURSHED^{1,2}, Laurent URBAN¹, Sandrine LAURENT¹, Mohamed EL MAÂTAOUI¹, Julien MANDON³, Huguette SALLANON¹, Simona M. CRISTESCU³, Félicie LOPEZ-LAURI¹.

Addresses:

¹Laboratoire de Physiologie des Fruits et Légumes, UMR QualiSud, Université d'Avignon et des Pays du Vaucluse, Avignon, France.

² Current address: Department of Horticulture, Faculty of Agriculture, Damascus University, Damascus, Syria

³ Life Science Trace Gas Facility, Radboud University Nijmegen, Heijendaalseweg 135, 6525 AJ Nijmegen, The Netherlands

⁴ Corresponding Author

Abstract

The effects of a rapid water deficit obtained by mercury treatments on water status, hydrogen peroxide (H₂O₂) and malonyldialdehyde (MDA) contents and the total ascorbate pool size were studied in leaves, fruit pedicels and pericarps of tomato (*Solanum lycopersicum* L. cv. Micro-Tom). The activities of antioxidant enzyme: superoxide dismutase and catalase, as well as the activities of the enzymes of ascorbate-glutathione cycle were investigated. Water deficit treatments induced a decline in predawn leaf water potential (Ψ_{leaf}) and other parameters of water status of fruits, leaves and fruit pedicels of treated plants remained unaffected. H₂O₂ concentration increased in leaves and fruit pedicels and pericarp of treated plants while we observed no lipid peroxidation of the membranes in those organs except in the pedicels. Antioxidant enzymes activities increased significantly as a consequence of mercury treatments. Abscissic acid (ABA) concentration increased in the leaves and pedicel except in the fruit pericarp. An increase in nitric oxide (NO) production was also observed in different organs. Our observations indicate that water deficit

quickly changed oxidative status of the tomato plants. Modification of antioxidant enzyme systems in the fruits indicates that NO and/or ABA signalling pathways could participate to control the oxidative status of fruits. This study presents the first results demonstrating that water deficit may positively influence the antioxidant system in tomato fruits in the absence of symptoms of water stress. This study also provides evidence of the involvement of NO in the observed effect of water stress on the antioxidant system in fruits.

Keywords: Antioxidant enzymes; Ascorbate; Mercury; Oxidative stress; Abscissic acid; Nitric oxide; *Solanum lycopersicum* L.

Introduction

Drought, one of the most important environmental factors influencing plant growth and development, will increase in frequency, intensity and geographic expanse as a consequence of global climate change (Smith *et al.*, 2009). Drought is generally considered negative because it is believed that the associated decreases in stomatal conductance and net photosynthesis will necessarily result in a decrease in crop production. Fortunately, there are not only bad news associated with stress. It has been suggested that stress in general, and moderate drought in particular, could be exploited to positively influence the secondary metabolism of fruits and vegetables, potentially benefitting consumers in terms of the concentrations of phytochemicals, i.e., vitamins and other compounds that exert protective effects against cardiovascular diseases, metabolic diseases, neurodegenerative diseases and cancers (Poiroux-Gonord et al., 2010).

Plants cannot escape and must adapt to water shortage. Responses vary from rapid physiological adjustments allowing for temporary survival to long-term biological adaptations, such as root development. One of the first important effects of water deficit is the induction of oxidative stress in plants by interfering with electron transport in the chloroplasts and mitochondria, leading to the overproduction of reactive oxygen species (ROS) (Apel and Hirt, 2004; Mittler, 2002). Excessive ROS cause lipid peroxidation and enzyme inactivation, resulting in cell damage (Halliwell, 2006). Fortunately plants possess antioxidant defense systems to minimize excessive levels of ROS to protect them against oxidative damages. The enzymatic scavenging system is composed of superoxide dismutase (SOD), the first line of defense against ROS (Gomez *et al.*, 2004), catalase (CAT) (Willekens *et al.*, 1995) and the enzymes of the ascorbate-glutathione cycle (ascorbate peroxidase, monodehydroascorbate reductase, dehydroascorbate reductase and glutathione reductase) (Asada, 2006). Antioxidant compounds such as ascorbate, glutathione, α -

tocopherol, phenolic compounds and carotenoids can act directly as free radical scavengers and also play important roles in detoxification (Foyer and Noctor, 2005). The induction of antioxidant systems and compounds constitutes a part of plants' strategies to cope with adverse conditions, as demonstrated by several works (Grene, 2002; Mittler, 2002; Murshed R, 2008a; Suzuki and Mittler, 2006). As exposed by Fanciullino *et al.* (2014), the production of ROS associated with stress can directly or indirectly exert a positive effect on the secondary metabolism of plants. Such a mechanism could be exploited even for fruit crops that represent a major source of phytochemicals (Davey et al., 2000), including ascorbate, which is essential for humans, who have lost the capacity to synthesize this compound.

Poiroux-Gonord et al. (2013) observed in citrus that photooxidative stress in leaves can influence the antioxidant metabolism as well as the primary and secondary metabolisms in nearby fruits, thereby increasing the concentration of carotenoids. The observation of (Poiroux-Gonord et al., 2013) raises the question of the involved signalling mechanisms. Signal transmission among plant organs has emerged recently as an important issue in plant physiology, and several important mechanisms have been unveiled (Baudouin, 2011; Baxter et al., 2013; Kachroo and Robin, 2013; Mittler et al., 2011; Møller and Sweetlove, 2010; Neill et al., 2002a; Raghavendra et al., 2010; Suzuki et al., 2011). In this study, we focused specifically on i) Nitric oxide (NO), because NO is a major effector of the antioxidant response and, moreover, interacts with ABA (Hancock et al., 2011) and ii) Abscisic acid (ABA), because ABA is a major component of the response of plants to water stress and has a demonstrated role in the regulation of antioxidant enzymes (Bellaire et al., 2000). The mechanism of the induction of antioxidant enzymes by ABA has been well documented; several studies suggest that ABA induces the production of other signalling molecules, such as H₂O₂ (Bright et al., 2006; Kwak et al., 2003) and NO, which in turn mediate the enhancement of antioxidant enzyme activities in addition to numerous other physiological processes in plants (Hancock et al., 2011; Lamattina et al., 2003; Neill et al., 2008; Wendehenne et al., 2004; Wendehenne et al., 2001; Zhang et al., 2007). NO, a reactive nitrogen species, has attracted considerable attention in the last decade. NO is believed to act as a signalling molecule that mediates the responses to both biotic and abiotic stresses in plants (Mur et al., 2013; Neill et al., 2008; Wendehenne et al., 2004; Wendehenne et al., 2001). Several studies suggest that NO plays an important role in protecting plants from oxidative stress (Beligni and Lamattina, 1999; Correa-Aragunde et al., 2008; García-Mata and Lamattina, 2001; Martin et al., 2009; Tossi et al., 2009). Furthermore, NO can also directly interact with ROS, such as H_2O_2 and O_2^- , with the effect of producing the less-reactive peroxynitrite, thus limiting oxidative damages; however, the latter can

also interfere with the tyrosine residues in proteins, inducing post-transcriptional changes and modifying the enzyme activity (Francisco J Corpas, 2009; Neill *et al.*, 2003).

Our objective was to test the hypothesis that either ABA or NO is involved in the short-term response of tomato fruits to a water deficit. A rapid water deficit was achieved by inhibiting root water transport using mercuric chloride (HgCl₂) and collecting measurements early in the morning when the transpirational pull is minimal and the water transport is attributable to root pressure (Lopez *et al.*, 2003; Maggio and Joly, 1995a). HgCl₂ blocks most aquaporins and rapidly inhibits root conductivity and, consequently, water uptake and radial water flow (Javot et al., 2003; Zhang and Tyerman, 1999). Accordingly, the initial effects of HgCl₂ could be very similar to those experienced by plants during drought (Maggio and Joly, 1995b; Zhang and Tyerman, 1999). We measured the plant water status and enzymes of the antioxidant systems activity in leaves and fruits. This study presents the first results demonstrating that water deficit may positively influence the antioxidant system in tomato fruits in the absence of symptoms of water stress. This study also provides evidence of the involvement of NO in the observed effect of water stress on the antioxidant system in fruits.

Materials and methods

Plant growth and treatments

Tomato (*Solanum lycopersicum* L, cv. Micro-tom) culture was conducted as previously described (Murshed *et al.*, 2013a). The controlled growth chamber conditions were a 16/8 h light/dark cycle, a photosynthetic photon flux density (PPFD) of 300 μ mol. m⁻².s⁻¹, a relative humidity of 60 ± 5% and a day/night temperature of 25/20°C. At the time of anthesis, the flowers were tagged to determine the fruit age in order to ensure treatment and harvest at the mature green (MG) stage. Two hours after the beginning of the light period, mercury treatments (0, 2, 5 and 10 ppm) were applied to 3-month-old plants. Root water transport involves aquaporins, which have water channel activity and facilitate radial water flow. After 24 and 48 h of treatment, the mature leaves close to the tomato bunch, pedicels and MG fruit pericarps (40 DAF fully developed green fruit) were collected, immediately frozen in liquid nitrogen, ground and stored at -80°C.

Leaf and fruit water parameters

Chapitre 3-1 : Le mercure induit la synthèse de NO et ABA et l'activation du système de défense antioxydant dans le fruit de tomate

The leaf water potential (Ψ_{leaf}) was measured using a pressure chamber according to (Scholander *et al.*, 1965). The fruit water potential (Ψ_{fruit}) was measured using a water potential system (PS Ψ PROTM) (Wescor Inc., Logan, Utah, USA) attached to C-52 chambers. The fruit osmotic potential (F Ψ_0) was measured using a NanoOsmometer (VAPRO, Vapor Pressure Osmometer, WESCOR). The mature green fruits and mature leaves close to the tomato bunch were collected 2 h after sunrise for these measurements. The fresh weight (FW) was determined immediately after harvest. The dry weight (DW) was measured after drying at 70°C for 72 h. The tissue water contents (TWC) were determined as TWC = [FW-DW]/FWx100.

Leaf chlorophyll a fluorescence transients- JIP test

Leaf chlorophyll *a* (Chl*a*) fluorescence transients were measured on dark-adapted (30 min) mature leaves close to fruit bunches using a Handy Plant Efficiency Analyzer (Handy-PEA, Hansatech Ltd, UK). The fluorescence OJIP parameters, which allowed us to evaluate the impact of the water stress on the photosynthetic apparatus were calculated automatically according to (Strasser *et al.*, 2010) (Supporting Information, Table S1).

Determination of the ascorbate and dehydroascorbate contents

The total ascorbate (AsA plus DHA) and dehydroascorbate (DHA) contents were determined from 150-mg samples according to (Murshed *et al.*, 2013a, b).

Determination of antioxidant enzyme activities

The protein extraction was performed according to (Murshed *et al.*, 2008). The enzymatic activities of APX, DHAR, MDHAR, GR, SOD and CAT were measured as described by (Murshed *et al.*, 2008; Murshed *et al.*, 2013a). The proteins were quantified using Bradford's method (1976).

Determination of the hydrogen peroxide content

The leaf, pedicel and pericarp H_2O_2 levels were determined using the protocol of (Velikova et al 2000) adapted for the leaf, pedicels and fruit pericarps as follows:
Frozen powder (150 mg) was homogenized with 1 mL of freshly prepared solution containing 0.25 mL trichloroacetic acid (TCA) (0.1% (w:v)), 0.5 mL KI (1 M) and 0.25 mL potassium phosphate buffer (10 mM, pH 8 for the fruits and pH 5.8 for the leaves and pedicels) at 4°C for 10 min (one-step buffer: extraction and colorimetric reaction combined). Every sample had a control with KI replaced by H₂O that was run in parallel to subtract the natural tissue coloration background. The homogenate was centrifuged at 12,000 × *g* for 15 min at 4°C, and 200-µL aliquots of the supernatant were placed in UV-microplate wells and left to incubate at room temperature (20 -22°C) for 20 min. The plate was briefly vortexed, and the absorbance readings were taken at 350 nm in a microplate reader (PowerWave HT Microplate Spectrophotometer from BioTek). The samples and blanks were analyzed in triplicate. The sample H₂O₂ content was determined using the standard curve after removing the background value.

Determination of lipid peroxidation

To determine the level of lipid peroxidation, the thiobarbituric acid (TBA) test, which determines the malonyldialdehyde (MDA) content, was used according to (Murshed *et al.*, 2013a).

Determination of abscisic acid content.

The free ABA content was determined using the Phytodetek competitive enzyme-linked immunosorbent assay (ELISA) kit (Agdia, Elkhart, In, USA) following manufacturer's instructions. Frozen tissue powder (100 mg) was homogenized in 1 mL TBS buffer solution for 10 min at 4°C. After centrifugation (15,000 x g, 15 min, 4°C), the supernatants were diluted 20-fold in TBS buffer and analyzed for free ABA.

NO quantification by quantum cascade laser (QCL)-based detection

NO production from the fruits and leaves of mature tomato plants was quantified using a quantum cascade laser (QCL)-based sensor (Mandon et al., 2012) that was developed at the Radbound University (Life Science Trace Gas Facility) in The Netherlands. The sensor includes a QCL-emitting 5-µm light, a multipass cell and a room-temperature light detector. The emission wavelength of the laser was selected to probe a strong ro-vibrational absorption line of NO. The laser was maintained at -25°C by a Peltier cooler and delivered a continuous output power of 10 mW. The gas sample for analysis is sucked by the system into the multipass cell at a flow rate of 1 l/h. In the cell, the sample interacts with the light-producing multiple reflections to increase the interaction distance to 76 m. The concentration of NO is determined by measuring the amount of

light that is absorbed by the sample with a detection limit of 0.5 ppbv. Before acquiring the measurements, the system was calibrated with a standard of 100 ppbv NO in N_2 . QCL allows a sensitivity of 0.8 ppbv in 1 s. The main advantage of this NO detection system is the possibility for long-term automated operation and low ventilation rate over the sample (max. 5 L/h), which is required in plant biology.

The measurements were collected 24 h before and after the beginning of the drought treatments using 3 mature green tomato fruits per plant from 3 different plants. The plants that were irrigated with water served as controls for this experiment.

Measurements were also collected from sodium nitroprusside (SNP) prepared in Murashige and Skoog basal medium (MS) with the objective of determining the correct concentration needed to emit NO close to the level that is emitted by the tomato plants. The measurements were performed for 24 h (16 h/8 h day/night cycle) under cool, white fluorescent lamps supplying 300 μ mol photons.m⁻².s⁻¹.

NO imaging by fluorescence microscopy

To localize the *in situ* NO production, we used a fluorescence microscopy technique with an NO-specific probe. After each treatment, regular sections of approximately 10 mm x 4 mm x 4 mm were excised from the pericarps, placentas, pedicels, stems and mature leaves with the midrib. These tissues were incubated in the dark at 25°C in 10 mM Tris-HCl (pH 7.4) containing 10 μ M of the specific membrane-permeable NO₅₅₀ probe (Yang *et al.*, 2010) for 1 hour. The sections were then rinsed twice in the buffer solution, and free-hand sections were collected with a razor blade under subdued light. The sections were mounted in 50% glycerol in PBS (v:v) on microscope slides (Corpas *et al.*, 2004), coverslipped and immediately examined under epifluorescence using a Leica DMR light microscope equipped with an I3 filter (blue light excitation at 450-490 nm; emission 520 nm). The sections that were incubated in 10 mM Tris-HCl alone served as negative controls. All of the images were captured using a Leica DFC300 FX digital camera at x20, and 3 different sections were analyzed from each fruit or leaf ensuring a 9-fold repetition per treatment. The linear levels were adjusted in every image using the public domain Java image-processing program ImageJ 1.43 version (Maryland, USA) (Patakas *et al.*, 2010).

Effects of exogenous NO on antioxidant enzymes

Fruits at the mature green stage (MG) were harvested from non-stressed plants between 9 and 10 a.m., and the pedicel of each fruit was placed in MS solution containing 4%

sucrose. We ensured that the pedicel was in close contact with the culture medium. The cultures were kept at $25/20^{\circ}$ C for 24 h for adaptation under cool white fluorescent lamps providing 300 µmol photons.m⁻².s⁻¹. The following day, two hours after the start of the light cycle in the culture chamber, different treatments were applied to the fruits through the pedicel. All of the compounds that were tested in this trial were supplied in a MS solution. The concentration of SNP that was used in this assay corresponds to the maximal NO that was detected by the QCL analyzer, which corresponds to approximately 12 ppb with an SNP concentration of 0.5 mM as shown in fig 1.

- 6 fruits were treated with 0.5 mM SNP, an efficient NO donor, to follow the action of NO;
- 6 fruits were treated with 0.5 mM SNP + 1 mM 2-(4-carboxyphenyl)-4,4,5,5 tetramethylimidazoline-l-oxyl-3-oxide (cPTIO), an NO scavenger;
- 6 fruits were treated with 1 mM 2-(4-carboxyphenyl)-4,4,5,5 tetramethylimidazoline-l-oxyl 3-oxide (cPTIO); and
- 6 control fruits were maintained in an MS solution.

Statistical analysis

The experiment was repeated three times, and the values that are presented are the mean derivatives of the three experiments. Each result is expressed as a mean with the standard error (\pm SE). The statistical significance was determined by heteroscedastic two-tailed Student's t-test (P<0.05) using the "R" 2.12.2 statistical software (www.cran.rproject.org).

RESULTS

Leaf and fruit water parameters

To investigate whether the inhibition of the morning water flow affected the water parameters of the plants, the fruit and leaf water potential were determined. For the control plants and plants under drought conditions, the fruit water potential (Ψ_{fruit}), fruit osmotic potential (F Ψ_{O}) and fruit water content (FWC) remained unchanged (at P<0.05). The drought treatments induced a significant decrease only in the leaf water potential (Ψ_{leaf}), and this decrease was correlated with the HgCl₂ concentrations (Table 1).

Table 1: Fruit water potential (Ψ_{fruit}), fruit osmotic potential ($\Psi_{\Box fruit}$), leaf water potential (Ψ_{Leaf}) and water content of fruits (FWC), leaves (LWC) of plants treated with 0, 2, 5 and 10 ppm of HgCl₂ for 24 and 48 hours. Values are the mean (± S.E.) of six replicates, and different letters within columns indicate significant differences according to a heteroscedastic two tailed Student t-test (P<0.05).

	HgCl₂ (ppm)	FΨ _w (MPa)	FΨ _o (MPa)	FWC (%)	LΨ _w (MPa)	LWC (%)
24h	0	- 0.45 ± 0.04 ^a	- 0.72 ± 0.01 ^a	94.2 ± 0.5 ^a	- 0.34 ± 0.02 ^a	91.1 ± 0.4 ^a
	2	- 0.38 ± 0.09 ª	- 0.68 ± 0.03 ^a	94.3 ± 0.4 ^a	- 0.48 ± 0.02 ^b	91.2 ± 1.8 ª
	5	- 0.48 ± 0.10 [°]	- 0.77 ± 0.03 ^a	93.9 ± 0.5 ^a	- 0.63 ± 0.03 ^c	91.7± 0.6 ^ª
	10	-0.41 ± 0.02^{a}	- 0.83 ± 0.01 ^a	94.6 ± 0.4^{a}	- 1.15 ± 0.07 ^d	91.2 ± 0.3^{a}

Values are the mean (± S.E.) of five replicates, and different letters within columns indicate

significant differences (P<0.05).

Leaf chlorophyll a fluorescence transients- JIP test

The chlorophyll *a* fluorescence transients (OJIP transients) were used to evaluate the damage of the leaf photosynthetic apparatus under water deficit during the treatment. As shown in Table 2, the JIP test parameters were not significantly affected in response to the water deficit

treatments. The performance index (PI), which describes the energy conservation between photons that were absorbed by PSII and the reduction of electron acceptors, did not change in any treatment.

Table 2: Effects of Mercuric Chloride (HgCl₂) treatments on *Solanum lycopersicum* L, cv."Microtom" evaluated by parameters derived from the JIP-test from the OJIP transient exhibited by dark-adapted leaves of plants grown with 0 (control), 2, 5 and 10 ppm HgCl₂.

HgCl ₂	Fv/Fm						
(ppm)	(TR ₀ /AB)	Pi	ET ₀ /ABS	ABS/RC	TR₀/RC	ET₀/RC	DI ₀ /RC
	0.85 ±	4.72 ±	0.33 ±	0.78 ±	0.66 ±	0.259 ±	0.12 ±
0	0.001 ^a	0.168 ^ª	0.002 ^a	0.02 ^a	0.02 ^a	0.005 ^a	0.003 ^a
	0.85 ±	5.22 ±	0.34 ±	0.73 ±	0.62 ±	0.247 ±	0.11 ±
2	0.002 ^a	0.199 [°]	0.003 ^a	0.02 ^a	0.02 ^ª	0.006 ^ª	0.003 ^a
	0.85 ±	4.99 ±	0.33 ±	0.75 ±	0.64 ±	0.250 ±	0.11 ±
5	0.002 ^a	0.337 ^a	0.003 ^a	0.03 ^ª	0.03 ^ª	0.009 ^ª	0.004 ^a
	0.85 ±	5.39 ±	0.34 ±	0.72 ±	0.61 ±	0.243 ±	0.11 ±
10	0.001 ^a	0.346 ^a	0.003 ^a	0.03 ^a	0.03 ^ª	0.009 ^a	0.005 ^ª

Values are the mean (± S.E.) of five replicates, and different letters within columns indicate significant differences (P<0.05).

Quantum cascade laser (QCL)-based NO detection

The short-term water deficit induced an overproduction of NO in tomato leaves and fruits compared to that of the controls 24 h after the beginning the experiment, as shown in Fig. 1A-B. Both organs presented a gradual increase in NO emission with a significant burst in the middle of the dark period after the induction of the water stress. The NO production was higher during the night period. The presented results are those of the intermediate 5 ppm HgCl₂ treatment.

Figure 1: Nitric Oxide production in (A) fruits and (B) leaves of tomato plants exposed to water deficit followed by quantum cascade lasers (QCL) based detection. NO content is expressed in ppb and each points corresponds to 50 smoothing points.

NO detection and localization by fluorescence microcopy

The involvement of NO in the plant response to water deficit was also investigated using fluorescence microscopy using the new NO probe NO_{550} . In fruits, a generalized increase in green fluorescence has been detected in water stressed plants. Red fluorescence was detected in the chlorophyll-rich mature green fruits as in the leaves, stems and pedicels. Only certain cell types exhibited higher green fluorescence. We noticed a significant increase in the fluorescence in the outer epidermal cells of the pericarps [Fig. 2A(i) and A(ii)] alongside with the vascular tissues [compare Fig. 2A(iii) and A(iv)] and the inner epidermal cells [compare Fig. 2A(v) and A(vi)]. A

noticeable increase in green fluorescence was also observed in the parenchyma cells around those areas. Spots of green fluorescence were visible in the chloroplasts of the inner epidermal cells [Fig. 2A(vii); arrows]. The placental tissues and columella also responded positively to the water deficit treatments, with the more distinguishable increase in the placental epidermal cells [compare Fig. 3B(i) and B(ii)] and vascular tissues [compare Fig. 3B(iii) and B(iv)] and a spread of green fluorescence in the surrounding parenchyma cells. Sections from the pedicels show an increase in green fluorescence in the epidermal and underlying cells as well as in the trichomes in the treated plants [compare Fig. 4C(i) and C(ii)]. In the vascular tissue, no significant difference in fluorescence was detected [compare Fig. 4C(iii) and C(iv)]. In the stem tissues, a significant enhancement in green fluorescence was observed in the epidermal cells with a boost at the level of the trichomes in those plants under water deficit [compare Fig. 5D(i) and D(ii)]. However, the vascular region did not exhibit an increase in green fluorescence in the treated plants [compare Fig. 5D(iii) and D(iv)]. An overall increase in fluorescence was observed in the leaf blade sections in the plants under water deficit compared to the control plants. The regions showing particularly higher fluorescence were the lower epidermal cells [compare Fig. 6E(i) and(ii)] and vascular tissues [compare Fig. 6E(iv) and E(v)]. We also noticed an intense fluorescence in the stomatal guard cells [Fig. 6E(iii); arrow] and a slight increase in the palisade mesophyll cells. The negative controls without the fluorochrome exhibited only natural autofluorescence: green fluorescence in lignified cells and red fluorescence in chlorophyll (Supplemental data Fig. S1-S5).

Figure 2: Nitric Oxide production revealed by epifluorescence microscopy through 10 μ M NO₅₅₀ probe in fruit pericarp (A) from tomato plants treated with 5 ppm HgCl2 and 0 ppm HgCl2 (control). A(i), (ii) outer epidermis, A(iii), (iv) vascular tissue, A(v), (vi) inner epidermis of the pericarp, and A(vii) a high magnification of the region of the inner epidermal cells showing fluorescing chloroplasts (arrows). Each image represents the green (left), red (center) and the sum of both color channels (right) in order to highlight the distribution of the green fluorescence in the different organs. Linear levels were adjusted in all images using ImageJ 1.43 version. E : Epidermis, P : Parenchyma, VT : Vascular tissue.

 Chapitre 3-1 : Le mercure induit la synthèse de NO et ABA et l'activation du système de défense antioxydant dans le fruit de tomate

 A(i) Oppm Green

 Red
 Merged

Figure 3 Nitric Oxide production revealed by epifluorescence microscopy through 10 μ M NO₅₅₀ probe in (B) columella and placental tissue of tomato plants treated with 5 ppm HgCl₂ and 0 ppm HgCl₂ (control). B (i), (ii) placenta epidermis, B (iii), (iv) vascular tissue. Each image represents the green (left), red (center) and the sum of both color channels (right) in order to highlight the distribution of the green fluorescence in the different organs. Linear levels were adjusted in all images using ImageJ 1.43 version. E : Epidermis, P : Parenchyma, VT : Vascular tissue.

Figure 4 Nitric Oxide production revealed by epifluorescence microscopy through 10 μ M NO₅₅₀ probe in pedicels (C) from tomato plants treated with 5 ppm HgCl₂ and 0 ppm HgCl₂ (control). C(i), C(ii) outer epidermis, C(iii), C(iv) vascular tissues. Each image represents the green (left), red (center) and the sum of both color channels (right) in order to highlight the distribution of the green fluorescence in the different organs. Linear levels were adjusted in all images using ImageJ 1.43 version. E : Epidermis, TC : Trichomes or glandular hairs and VT : Vascular tissue.

Figure 5: Nitric Oxide production revealed by epifluorescence microscopy through 10 μ M NO₅₅₀ probe in the stem (D) from tomato plants treated with 5 ppm HgCl₂ and 0 ppm HgCl₂ (control). D(i), B(ii) outer epidermis, D(iii), D(iv) vascular tissues. Each image represents the green (left), red (center) and the sum of both color channels (right) in order to highlight the distribution of the green fluorescence in the different organs. Linear levels were adjusted in all images using ImageJ 1.43 version. E : Epidermis, C : Cortex, TC : Trichomes or glandular hairs and VT : Vascular tissue.

Figure 6: Nitric Oxide production revealed by epifluorescence microscopy through 10 μ M NO₅₅₀ probe in the leaf tissues (E) from tomato plants treated with 5 ppm HgCl₂ and 0 ppm HgCl₂ (control). E(i), E(ii) lower epidermis of the lead blade, E(iii) represents a zoom(x2) of stomatal guard cells presented in E(ii) and E(iv), E(v) vascular tissue. Each image represents the green (left), red (center) and the sum of both color channels (right) in order to highlight the distribution of the green fluorescence in the different organs. Linear levels were adjusted in all images using ImageJ 1.43 version. E : Epidermis, M : Mesophyll and VT : Vascular tissue.

H_2O_2 and MDA accumulation

Although short-term water deficit did not affect the water parameters of the fruits, we evaluated the oxidative stress in tomato plants. Therefore, we determined the H_2O_2 contents, lipid peroxidation and the antioxidant status of fruits, pedicels and leaves.

In the fruit pericarps, a 133% increase in the H_2O_2 content was observed between the controls and the 2- and 5-ppm-treated plants with no significant difference between the latter two. However, a less significant increase was observed in the 10-ppm-treated pericarps, but the level was still 53% higher than that of the controls after 24 h (Table 3). After 24 h of treatment, the membrane lipid peroxidation levels remained constant in the fruit pericarp.

In the fruit pedicels that were exposed for 24 h, the 2, 5 and 10 ppm treatments increased the H_2O_2 content by 91%, 172% and 227 %, respectively, compared to that of the controls. Regarding the MDA content, a 28% increase was observed with the 2 ppm treatment, and up to a 100% increase was observed in the 5 and 10 ppm treatments.

The H_2O_2 content in the leaves was not significantly affected by the 2 ppm $HgCl_2$ exposure (at P<0.05) after 24 h. A 25% increase in the H_2O_2 content was observed in the leaves of the plants that were treated with 5 and 10 ppm $HgCl_2$ (Table 3). After 24 h of treatment, the membrane lipid peroxidation levels remained constant in the fruits and leaves.

Table 3: H_2O_2 (nmol. g^{-1} FW) and malonyldialdehyde (MDA; nmol. g^{-1} FW) contents in fruit pericarps, leaves and fruit pedicels of control plants (C) and plants treated with 2, 5 and 10 ppm of HgCl₂ for 24 hours. Values are the mean (± S.E.) of six replicates, and different letters within columns indicate significant differences according to a heteroscedastic two tailed Student t-test (P<0.05).

		H ₂ O ₂ (nml/gFW)			MDA (nmol/gFW)		
	HgCl ₂	Fruit	Fruit	Leaves	Fruit	Fruit	Leaves
	(ppm)	pericarps	pedicels		pericarps	pedicels	
24h	0	77.2 ±	361.2 ±	849.4 ±	34.74 ±	7.87 ±	34.04 ±
		0.7 ^ª	31.3 [°]	17.6 [°]	5.24 ^ª	0.19 [°]	0.19 ^ª
	2	180.0 ±	688.2 ±	804.2 ±	34.37 ±	10.12 ±	33.19 ±
		21.1 ^b	73.1 ^b	34.2 ^ª	6.83 ^ª	0.95 ^b	0.95 ^ª
	5	175.7 ±	985.2 ±	1081.7 ±	35.13 ±	15.82 ±	33.36 ±
		30.3 ^b	69.9 [°]	107.6 ^b	6.62 ^ª	0.53 ^c	0.53 ^ª
	10	118.3 ±	1183.5 ±	1013.5 ±	37.04 ±	15.57 ±	32.16 ±
		15.3 ^c	98.3 ^d	87.3 ^b	3.21 ^ª	0.28 ^c	1.42 ^ª

Values are the mean (± S.E.) of five replicates, and different letters within columns indicate significant differences (P<0.05).

Antioxidant system in the fruit pericarps after rapid water deficit

In mature green fruits, the AsA and DHA concentrations were not affected by every water deficit treatment in the plants that were treated for 24 h (Table 4).

The AsA concentration of the leaves and fruit pedicels increased at all Hg concentrations except in the leaves of the plants that were treated by 2 ppm HgCl₂ for 24 h (Table 4). The DHA concentration in the leaves decreased at all Hg concentrations in the plants that were treated for 24 h (Table 4). In the fruit pedicels, the DHA concentration increased at all concentrations of Hg except at 2 ppm HgCl₂ in the plants that were treated for 24 h.

Organs	Hg (ppm)	AsA	DHA
Fruit pericarp	0	2.11 ± 0.07 ^a	0.26 ±0. 05 ^a
	2	1.82 ± 0.14 ^a	0.21 ± 0.03^{a}
	5	2.04 ± 0.09 ^a	0.26 ± 0.01^{a}
	10	2.05 ± 0.21^{a}	0.24 ± 0.03^{a}
Fruit pedicel	0	0.71 ± 0.02 ^a	1.38 ± 0.03 ^a
	2	1.39 ± 0.04 ^b	1.46 ± 0.04^{a}
	5	1.23 ± 0.06 ^b	1.83 ± 0.07 ^b
	10	1.18 ± 0.02 ^b	2.77 ± 0.5 ^c
Leaf	0	2.75 ± 0.09 ^a	2.44 ± 0.07^{a}
	2	3.25 ±0.12 ^a	2.01 ± 0.10^{b}
	5	4.16 ± 0.08 b	1.40 ± 0.07 ^c
	10	4.36 ± 0.13 ^b	1.13 ± 0.08 ^c

Table 4: Ascorbate (AsA) and dehydroascorbate (DHA) concentrations (μ mol. g⁻¹ FW) and Total AsA (AsA + DHA) in fruit pericarp, pedicels and leaves of control plants (C) and plants treated with 2, 5 and 10 ppm of HgCl₂ for 24 hours. Values are the mean (± S.E.) of five replicates, and different letters within columns indicate significant differences according to a heteroscedastic two tailed

The fruits from the drought-stressed plants exhibited increased SOD, CAT and APX activities under water deficit (Fig. 7A-B). The MDHAR, DHAR and GR activities also increased in every water deficit treatment (Fig. 7C-D).

Figure 7: Activity of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR) and glutathione reductase (GR) in mature green pericarp (Mature green, fruit age was between 35 and 40 DAF), of control plants (C) and plants treated by 2, 5, and 10 ppm of HgCl₂ for 24 hours. Values are the mean (± S.E.) of five replicates, and different letters indicate significant differences according to Student t-test (P<0.05).

ABA contents in the tomato plants after rapid water deficit.

As presented in (Fig. 8), the ABA content in the pericarps of the fruits increased by 33% during the water deficit treatments compared to that of the controls. In the pedicels, a twofold increase in the ABA concentration was measured in the plants under water deficit. In the leaves, the ABA content also increased significantly following water deficit compared to that of the controls.

Figure 8: ABA content in leaves (LF), pedicels (PD) and pericarp (PR). Different letters indicate a statistical difference (P<0.05) among treatments within a given organ according to student t-test.

Antioxidant system in the fruit pericarps after exogenous NO application

Compared to that of the control (C), the 0.5 mM SNP treatments caused an up to 14-fold increase in the APX activity after 4, 8, 12 and 24 h of treatment. The fruits that were treated with 0.5 mM SNP + 1 mM cPTIO (SNP + cPTIO) also had an increased APX activity after 4, 8 and 24 h. The C + cPTIO treatment presented an APX activity that was similar to that of the controls (refer to fig 9.). The MDHAR activity in the fruits that were treated with 0.5 mM SNP increased after 4, 8 and 24 h. The SNP + cPTIO treatments presented a higher MDHAR activity than that of the controls after 4, 8, 12 and 24 h. The C + cPTIO treatments caused a decrease after 4 h and no significant difference for the remaining periods (refer to Fig. 9). The DHAR activity increased up to 12-fold compared to that of the C in the 0.5 mM SNP treatment after 4, 8, 12 and 24 h. The fruits that were in contact with SNP + cPTIO also had a higher DHAR activity after 4, 8 and 24 h of treatment. The C + cPTIO treatments displayed a similar DHAR activity as that of the control fruits (refer to Fig. 9). Ascorbate, the substrate for APX, also significantly decreased during the NO treatments, and the DHAR and MDHAR activities reached such high levels that the dehydroascorbate content was no longer detectable in those samples (table 5).

Figure 9: Activity of ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR) in mature green pericarp (Mature green, fruit age was between 35 and 40 DAF), of control plants (C) and plants treated by 0.5 mM SNP, 0.5 mM SNP + 1 mM cPTIO and C + 1 mM cPTIO for 24 hours. Values are the mean (\pm S.E.) of 6 replicates, and different letters indicate significant differences according to Student t-test (P<0.05).

Chapitre 3-1 : Le mercure induit la synthèse de NO et ABA et l'activation du système de défense antioxydant dans le fruit de tomate

		ASA	DHA
OH	С	0.97 ± 0.03 ^a	0.16 ± 0.04^{a}
4H	С	1.17 ± 0.03^{a}	0.18 ± 0.02^{a}
	SNP	1.12 ± 0.04^{a}	-
	C + cPTIO	1.28 ± 0.03^{b}	0.12 ± 0.02^{b}
	SNP + cPTIO	1.15 ± 0.05 ^a	$0.05 \pm 0.01^{\circ}$
8H	С	1.17 ± 0.03 ^a	0.25 ± 0.02^{a}
	SNP	0.82 ± 0.04^{b}	-
	C + cPTIO	$1.37 \pm 0.03^{\circ}$	0.15 ± 0.01^{b}
	SNP + cPTIO	1.01 ± 0.04^{b}	$0.08 \pm 0.01^{\circ}$
12H	С	1.30 ± 0.03^{a}	0.09 ± 0.01^{a}
	SNP	0.94 ± 0.03^{b}	0.02 ± 0.01^{b}
	C + cPTIO	$1.18 \pm 0.02^{\circ}$	0.08 ± 0.02^{a}
	SNP + cPTIO	0.78 ± 0.07^{d}	$0.15 \pm 0.01^{\circ}$
24H	С	1.34 ± 0.03^{a}	0.23 ± 0.03^{a}
	SNP	0.83 ± 0.03^{b}	0.39 ± 0.02^{b}
	C + cPTIO	$1.51 \pm 0.04^{\circ}$	$0.03 \pm 0.00^{\circ}$
	SNP + cPTIO	0.91 ± 0.05^{b}	$0.03 \pm 0.00^{\circ}$

Table 5: Ascorbate (AsA) and dehydroascorbate (DHA) concentrations (μ mol. g⁻¹ FW) in fruit pericarp, of detached fruits treated with 0.5 mM SNP, an efficient NO donor (SNP), 0.5 mM SNP + 1 mM cPTIO an efficient NO scavenger (SNP + cPTIO), 1 mM cPTIO (C + cPTIO) and controls in MS solution (C) for 24 hours. Values are the mean (± S.E.) of five replicates, and different letters within columns indicate significant differences according to an heteroscedastic two tailed Student ttest (P<0.05).

DISCUSSION

A rapid water deficit was achieved by mercury treatment

One of the challenges of this study was to create a rapid water stress to observe a short-term response, i.e., before complex adaptive mechanisms can set in. This issue is of paramount importance as far as NO is concerned because NO participates in many mechanisms. This challenge was overcome by blocking aquaporins and, consequently, the water flux due to root pressure using different concentrations of HgCl₂ early in the morning when the transpirational pull is minimal (Lopez *et al.*, 2003; Maggio and Joly, 1995a). As shown here, a significant decrease in the water flux and leaf water potential Ψ_{leaf} after 24 h of treatment was observed, suggesting that leaves were subjected to HgCl₂-induced water deficit (Table 1). An analysis of photosystem II based on chlorophyll *a* OJIP transients did not present any change induced by the water deficit (Table 2). These results suggest that the applied water deficit was so rapid that the photosynthetic apparatus was not affected. Furthermore, the fruit water potential (Ψ_{fruit}), fruit osmotic potential (F Ψ_{O}) and fruit water content (FWC) were also not affected (Table 1).

The fruits were not directly affected by the water deficit but showed enhanced antioxidant activities

Oxidative damages in plant cells may occur as a consequence of the accumulation of ROS (Foyer and Noctor, 2005). The malonyldialdehyde (MDA) and H_2O_2 concentrations were measured in the leaves, pedicels and fruit pericarps as indicators of oxidative stress (Mittler, 2002). We found that the water deficit increased the H_2O_2 contents in the leaves, fruit pedicels and pericarps after 24 h (Table 2). However, the increase in the H_2O_2 concentration that was observed in the fruit pericarps did not affect the lipid peroxidation, which remained constant. The modification of oxidative status could be explained by the increase in the activities of the antioxidant enzymes catalase and ascorbate peroxidase in the pericarp, which were able to limit the oxidative damage. Furthermore, the absence of mercury in the fruits (data not shown) suggests that the activation of an antioxidative defense in the fruit is not a consequence of mercury cell contamination but arguably of the HgCl₂-associated water deficit.

Water deficit induced an over production of NO in the fruits and leaves during the dark period

QCL-based detection revealed increased NO production during the night period both in the leaves and fruits, with a higher induction after water deficit. The increased production of NO in the absence of light could be explained by the capacity of nitrate reductase (NR) to produce NO in the

presence of high nitrite concentrations in photosynthetic organisms as first demonstrated by (Sakihama et al., 2002). The reduction of nitrite by nitrite reductase (NiR) to ammonium ions (NH_4^+) requires the reduced form of ferredoxin, which is provided by the photosynthetic electron transport system. Therefore, nitrite is not present in the cells at high concentrations under light conditions when photosynthesis produces the reducing equivalents. Therefore, the reduced production of NO during the light period could be explained by rapid nitrite consumption due to the NiR activity. The detection of NO in the chloroplasts [Fig 2 A (vii).] further supports a possible chloroplastic source of NO.

Overproduction of NO was detected in tomato fruits, leaves and pedicels by fluorescence microscopy

Nitric oxide, one of the key reactive nitrogen species, is involved in various physiological and biochemical processes and plays a prominent role in the activation of various environmental stress responses in plant species (Delledonne *et al.*, 2002). We chose to follow its production using fluorescence microscopy and quantum cascade laser-based detection. We used the NO₅₅₀ probe instead of the widely used DAF-2-DA for fluorescence microscopy due to several problems with the latter, particularly including the oxidation of DAF-2-DA by ROS, which produces a free radical that can directly react with NO (Jourd'heuil, 2002). Furthermore, other molecules, such as ascorbate and DHA, interact with DAF to produce fluorescent products (Zhang *et al.*, 2002). NO₅₅₀ also has the advantage of a much higher specificity that is achieved via the assembly of the chromophore/fluorophore of the probe only upon contact with NO. Finally, NO₅₅₀ is completely pH-independent, which represents a significant advantage given the range of pH that is exhibited across different organs and cell compartments (Yang *et al.*, 2010).

In our study, fluorescence microscopy revealed the presence of NO in the inner and outer epidermal cells and vascular tissues of the fruit pericarps. Furthermore, green fluorescent spots showed chloroplastic NO in the inner epidermal cells [Fig 2 A (vii)]. These results suggest that NO was produced in the fruits, possibly from a chloroplastic source. Regarding the placental tissue and the columella region, NO was detected in and around the vascular and epidermal cells [Fig 3]. The presence of NO in and around vascular tissues supports the hypothesis of Corpas et al., (2004), who postulated long distance signalling by NO and its potential implication in cell expansion. In the pedicel and stem sections, NO was mainly present in the epidermal cells and trichomes [Fig 4 C(ii) and Fig 5 D(ii)] as previously described by (Gould *et al.*, 2003). The trichomes are involved in the emission of isoprenes, terpenes, alkanes, alkenes, alcohols, esters, carbonyls and acids under normal

physiological and stressful conditions (Kesselmeier and Staudt, 1999; Lin and Wagner, 1994; Zador and Jones, 1986). As the trichomes are among the first organs known to respond to a biotic stress, namely during insect attack (Lin *et al.*, 1987), our results suggest that the trichomes could also respond to abiotic stress and do so more specifically via an overproduction of NO. The presence of NO in guard cells [Fig. 6 E (iii)] has been reported in several studies, where NO was shown to be involved in their function along with other signalling molecules, such as ABA and H_2O_2 (Bright et al., 2006; Corpas, 2004; García-Mata and Lamattina, 2003; García-Mata and Lamattina, 2002; Neill et al., 2002b).

Mechanisms that may explain the NO protective action against oxidative damage have been widely reported. First, NO might directly detoxify ROS, such as superoxide radicals, to form peroxynitrite, which is less reactive, thereby limiting cellular damage (Martinez *et al.*, 2000). Second, NO could function as a signalling molecule that activates cellular antioxidant enzymes (Huang *et al.*, 2002; Shi *et al.*, 2005). Contradictory data are present in the literature about NO action on antioxidant enzymes. NO has inhibitory effects on APX and CAT in tobacco leaves (Clark *et al.*, 2000; De Pinto *et al.*, 2006), while it overexpresses different APX isoforms and induces their activities in barley seedlings and soybean roots nodules (Chen et al., 2010; Keyster et al., 2011). Furthermore, NO has a positive impact on SOD activity under NaCl stress in leaves (Fan *et al.*, 2007). The enzymes DHAR, which is involved in the ascorbate cycle, and CAT also show an increase in activity after NO treatment under Fe deficiency (Ding *et al.*, 2008). An increase in the ascorbate levels in rice and sunflower leaves was also reported by Hsu and Kao (2004) and Laspina *et al.* (2005) after NO application.

Rapid water deficit increased the ABA concentration

The increase in the ABA concentration in the leaves (Fig 8) is consistent with the literature. It has been repeatedly shown that ABA is involved as a secondary messenger capable of inducing antioxidant defenses under water deficit (Chinnusamy et al., 2008; Christmann et al., 2007; Hubbard et al., 2010; Kim et al., 2010). The ABA concentration may also increase in the fruit pedicels and pericarps and play an important role during osmotic stress in plants (Anderson et al., 1994; Bellaire et al., 2000; Bueno et al., 1998; Chinnusamy et al., 2008; Hubbard et al., 2010; Jiang and Zhang, 2001; Kim et al., 2010; Prasad et al., 1994). Moreover, it was recently established that NO and ABA are closely associated in numerous plant functions as reviewed by (Hancock et al., 2011). ABA and NO have synergistic effects in increasing the activities of SOD, CAT and APX in *Stylosanthes guianensis*. In the leaves, stomatal closure by ABA is dependent not only on H_2O_2 but

also on NO (Bright et al., 2006; Desikan et al., 2004; Neill et al., 2002c). As reviewed in (Yu *et al.*, 2014), it has been suggested that after water stress, ABA accumulates, leading to the activation of NADPH oxidases, namely RBOHD and RBOHF (respiratory burst oxidase homolog D and F, respectively), resulting in ROS production (Bright *et al.*, 2006; Kwak *et al.*, 2003). The H_2O_2 that is generated by this oxidative burst is thought to stimulate NO synthesis via the enzyme nitrate reductase (NR) (Desikan *et al.*, 2002), possibly requiring *Arabidopsis thaliana* nitric oxide-associated protein 1 (AtNOA1) (Bright *et al.*, 2006). NO has been proposed to activate mitogen activated protein kinase (MAPK) signalling cascades, inducing stomatal closure (Zhang *et al.*, 2007). The activation of MAPK by NO can also upregulate the expression of genes encoding antioxidant enzymes as proposed by (Lamattina *et al.*, 2003) and (Lu *et al.*, 2009).

Water deficit induced an enhancement of the antioxidant enzymes in the tomato fruits

Because the susceptibility to oxidative stress is a function of the overall balance between the production of oxidants and the antioxidant mechanisms (Foyer *et al.*, 1994), we analyzed the activity of antioxidant enzymes and the ascorbate content in the fruits that were harvested from plants that were submitted to water deficit treatments. After 24 h, an increase in the SOD activity in the treated fruits was observed at all of the HgCl₂ concentrations compared to that of the control fruits (Fig. 7A). This increase in the SOD activity may be considered circumstantial evidence for the enhanced production of ROS in the fruit cells. The increase in the CAT activity (Fig. 7B) is consistent with the requirement to eliminate the H₂O₂ that is produced by the enhanced SOD activity during drought treatments.

The activity of APX, which is able to scavenge the H_2O_2 that is produced by SOD and is involved in the ascorbate-glutathione cycle, also increased during water stress (Fig. 7B). This increase in the APX activity with the water deficit treatments agrees with the observations of mung beans by Shaw (1995) related to the role of APX in the detoxification of H_2O_2 . The increase in the activities of SOD, CAT and APX in the fruits of tomato plants that were grown under water stress provides circumstantial evidence for the tolerance mechanisms that were developed by the plant. The increase in the CAT and APX activities in the fruits may indeed contribute to lowering the H_2O_2 and consequently MDA contents in the fruits. The APX detoxification involves the enzymes MDHAR, DHAR and GR (Ishikawa *et al.*, 2006). We observed that the MDHAR activity increased markedly (Fig. 7C), suggesting that the AsA regeneration by MDHAR increases as a consequence of water deficit. The DHAR activity was higher in the fruits that were treated with each HgCl₂ concentration than that of the control fruits (Fig. 7D), suggesting that the water deficit stimulates the conversion of DHA back to AsA via the action of DHAR. In addition, this result would suggest that the AsA and glutathione pools are well coupled through the mediation of DHAR. Consistent with what is known about the functioning of the ascorbate-glutathione cycle, glutathione reductase, which regenerates GSSH into reduced glutathione (GSH), presents an increased activity as a consequence of water stress (Fig. 7D). Furthermore, our observations indicate that antioxidant enzymes are the first line of defense during a rapid water deficit and that AsA participates in longer adaptation mechanisms as indicated by (Murshed *et al.*, 2013).

In conclusion, in this study, we demonstrated an overproduction of NO and ABA in tomato fruits in response to a rapid water deficit. We also noticed changes in the oxidative parameters (H_2O_2 and MDA contents) and in the antioxidant systems, enzymatic (SOD, APX, MDHAR, DHAR, GR and CAT) and non-enzymatic (AsA and DHA), with the short-term water deficit. These results indicate that water deficit quickly caused a change in oxidative status in the tomato plants. Modification of antioxidant enzyme system in the fruits indicates that NO and/or ABA signalling pathways could participate to maintain fruit ROS homeostasis. This hypothesis has been partly confirmed by the increase in the activities of the antioxidant enzymes that are involved in ascorbate recycling after exogenous NO application. However, further study involving exogenously applied ABA or even H_2O_2 may help shed additional light on this complex signalling network.

Supporting information :

Figure S1 : Negative control of Nitric Oxide production revealed by epifluorescence microscopy in absence of NO_{550} probe in fruits (A') from tomato plants treated with 5 ppm HgCl2 and 0 ppm HgCl2 (control). A'(i), (ii) outer epidermis, A'(iii), (iv) vascular tissue and A'(v), (vi) inner epidermis of the pericarp. Each image represents the green (left), red (centre) and the sum of both color channels (right) in order to highlight the distribution of the green fluorescence in the different organs. Linear levels were adjusted in all images using ImageJ 1.43 version. E : Epidermis, P : Parenchyma, VT : Vascular tissue.

Figure S2 : Negative control of Nitric Oxide production revealed by epifluorescence microscopy in absence of NO₅₅₀ probe in (B') columella and placantal tissue of tomato plants treated with 5 ppm HgCl₂ and 0 ppm HgCl₂ (control). B'(i), (ii) placenta epidermis, B'(iii), (iv) vascular tissue. Each image represents the green (left), red (centre) and the sum of both color channels (right) in order to highlight the distribution of the green fluorescence in the different organs. Linear levels were adjusted in all images using ImageJ 1.43 version. E : Epidermis, P : Parenchyma, VT : Vascular tissue.

Figure S3 : Negative control of Nitric Oxide production revealed by epifluorescence microscopy in absence of NO₅₅₀ probe in pedicels (C') from tomato plants treated with 5 ppm HgCl₂ and 0 ppm HgCl₂ (control). C'(i), C'(ii) outer epidermis, C'(iii), C'(iv) vascular tissues. Each image represents the green (left), red (centre) and the sum of both color channels (right) in order to highlight the distribution of the green fluorescence in the different organs. Linear levels were adjusted in all images using ImageJ 1.43 version. E : Epidermis, VT : Vascular Tissue.

Figure S4 : Negative control of Nitric Oxide production revealed by epifluorescence microscopy in absence of NO₅₅₀ probe in the stem (D') from tomato plants treated with 5 ppm HgCl₂ and 0 ppm HgCl₂ (control). D'(i), D'(ii) outer epidermis, D'(iii), D'(iv) vascular tissues. Each image represents the green (left), red (centre) and the sum of both color channels (right) in order to highlight the distribution of the green fluorescence in the different organs. Linear levels were adjusted in all images using ImageJ 1.43 version. E : Epidermis, C : Cortex, TC :Trichomes or glandular hairs and VT : Vascular Tissue.

Figure S5 : Negative control of Nitric Oxide production revealed by epifluorescence microscopy in absence of NO_{550} probe in the leaf tissues (D') from tomato plants treated with 5 ppm HgCl₂ and 0 ppm HgCl₂ (control). D'(i), D'(ii) lower epidermis of the lead blade and D'(iv), D'(v) vascular tissue. Each image represents the green (left), red (centre) and the sum of both color channels (right) in order to highlight the distribution of the green fluorescence in the different organs. Linear levels were adjusted in all images using ImageJ 1.43 version. E : Epidermis, M : Mesophyll, VT : Vascular tissue.

 Chapitre 3-1 : Le mercure induit la synthèse de NO et ABA et l'activation du système de défense antioxydant dans le fruit de tomate

 Oppm
 Green
 Red
 Merged

Table S1: Listing of the JIP-test parameters used in the present study with explanations and formulae calculated using data extracted from the fluorescence transient.

Observed rate of QA reduction (TR0/RC) or (M0/VJ) = (ABS/ RC) (Fv/Fm)

Rate of electron transport beyond QA⁻ (ETO/RC) or (TRO/RC) (1 - VJ) = (TRO/RC) (ETO/TRO)

Rate of photon absorption (ABS/RC) = (TRO/RC) / [(Fm - FO) / Fm]

Rate of heat dissipation (DIO/RC) = (ABS / RC) - (TRO / RC)

Efficiencies (or flux ratios)

Maximum efficiency with which an absorbed photon results in QA reduction (TR0/ABS) or (TR0/RC) / (ABS/RC) = (Fm-F0) / Fm

Efficiency with which an absorbed photon results in electron transport beyond QA⁻ (ETO/ABS) = (ETO/RC) / (ABS/ RC)

Density of reaction centers per chlorophyll Functional reaction centers per cross-sectional leaf area (RC/ABS) = (RC/TRO) (TRO/ABS)

Performance index

Compound function of light energy absorption, efficiency of QA reduced and conversion energy to electron transport (Plabs) = [RC/ABS] [(TR0/ABS) / (F0/Fm)] [(ET0/TR0) / VJ]

Anderson MD, Prasad TK, Martin BA, Stewart CR. 1994. Differential Gene Expression in Chilling-Acclimated Maize Seedlings and Evidence for the Involvement of Abscisic Acid in Chilling Tolerance. *Plant Physiology* **105**, 331-339.

Apel K, Hirt H. 2004. REACTIVE OXYGEN SPECIES: Metabolism, Oxidative Stress, and Signal Transduction. *Annual Review of Plant Biology* **55**, 373-399.

Asada K. 2006. Production and Scavenging of Reactive Oxygen Species in Chloroplasts and Their Functions. *Plant Physiology* **141**, 391-396.

Baudouin E. 2011. The language of nitric oxide signalling. *Plant Biology* **13**, 233-242.

Baxter A, Mittler R, Suzuki N. 2013. ROS as key players in plant stress signalling. *Journal of Experimental Botany*.

Beligni MV, Lamattina L. 1999. Nitric oxide counteracts cytotoxic processes mediated by reactive oxygen species in plant tissues. *Planta* **208**, 337-344.

Bellaire BA, Carmody J, Braud J, Gossett DR, Banks SW, Cranlucas M, Fowler TE. 2000. Involvement of abscisic acid-dependent and — Independent pathways in the upregulation of antioxidant enzyme activity during NaCl stress in cotton callus tissue. *Free Radical Research* **33**, 531-545.

Bright J, Desikan R, Hancock JT, Weir IS, Neill SJ. 2006. ABA-induced NO generation and stomatal closure in Arabidopsis are dependent on H2O2 synthesis. *The Plant Journal* **45**, 113-122.

Bueno P, Piqueras A, Kurepa J, Savouré A, Verbruggen N, Van Montagu M, Inzé D. 1998. Expression of antioxidant enzymes in response to abscisic acid and high osmoticum in tobacco BY-2 cell cultures. *Plant Science* **138**, 27-34.

Chen F, Wang F, Sun H, Cai Y, Mao W, Zhang G, Vincze E, Wu F. 2010. Genotype-Dependent Effect of Exogenous Nitric Oxide on Cd-induced Changes in Antioxidative Metabolism, Ultrastructure, and Photosynthetic Performance in Barley Seedlings (Hordeum vulgare). *Journal of Plant Growth Regulation* **29**, 394-408.

Chinnusamy V, Gong Z, Zhu J-K. 2008. Abscisic Acid-mediated Epigenetic Processes in Plant Development and Stress Responses. *Journal of Integrative Plant Biology* **50**, 1187-1195.

Christmann A, Weiler EW, Steudle E, Grill E. 2007. A hydraulic signal in root-to-shoot signalling of water shortage. *The Plant Journal* **52**, 167-174.

Clark D, Durner J, Navarre DA, Klessig DF. 2000. Nitric Oxide Inhibition of Tobacco Catalase and Ascorbate Peroxidase. *Molecular Plant-Microbe Interactions* **13**, 1380-1384.

Corpas FJ. 2004. Cellular and Subcellular Localization of Endogenous Nitric Oxide in Young and Senescent Pea Plants. *Plant Physiology* **136**, 2722-2733.

Corpas FJ, Barroso JB, Carreras A, Quirós M, León AM, Romero-Puertas MC, Esteban FJ, Valderrama R, Palma JM, Sandalio LM, Gómez M, del Río LA. 2004. Cellular and Subcellular Localization of Endogenous Nitric Oxide in Young and Senescent Pea Plants. *Plant Physiology* **136**, 2722-2733.

Correa-Aragunde N, Lombardo C, Lamattina L. 2008. Nitric oxide: an active nitrogen molecule that modulates cellulose synthesis in tomato roots. *New Phytologist* **179**, 386-396.

Davey MW, Montagu MV, Inzé D, Sanmartin M, Kanellis A, Smirnoff N, Benzie IJJ, Strain JJ, Favell D, Fletcher J. 2000. Plant L-ascorbic acid: chemistry, function, metabolism, bioavailability and effects of processing. *Journal of the Science of Food and Agriculture* **80**, 825-860.

De Pinto MC, Paradiso A, Leonetti P, De Gara L. 2006. Hydrogen peroxide, nitric oxide and cytosolic ascorbate peroxidase at the crossroad between defence and cell death. *The Plant Journal* **48**, 784-795.

Delledonne M, Murgia I, Ederle D, Sbicego PF, Biondani A, Polverari A, Lamb C. 2002. Reactive oxygen intermediates modulate nitric oxide signaling in the plant hypersensitive disease-resistance response. *Plant Physiology and Biochemistry* **40**, 605-610.

Desikan R, Cheung MK, Bright J, Henson D, Hancock JT, Neill SJ. 2004. ABA, hydrogen peroxide and nitric oxide signalling in stomatal guard cells. *Journal of Experimental Botany* **55**, 205-212.

Desikan R, Griffiths R, Hancock J, Neill S. 2002. A new role for an old enzyme: Nitrate reductasemediated nitric oxide generation is required for abscisic acid-induced stomatal closure in Arabidopsis thaliana. *Proceedings of the National Academy of Sciences* **99**, 16314-16318.

Ding F, Wang X-f, Shi Q-h, Wang M-l, Yang F-j, Gao Q-h. 2008. Exogenous Nitric Oxide Alleviated the Inhibition of Photosynthesis and Antioxidant Enzyme Activities in Iron-Deficient Chinese Cabbage (Brassica chinensis L.). *Agricultural Sciences in China* **7**, 168-179.

Fan H, Guo S, Jiao Y, Zhang R, Li J. 2007. Effects of exogenous nitric oxide on growth, active oxygen species metabolism, and photosynthetic characteristics in cucumber seedlings under NaCl stress. *Frontiers of Agriculture in China* **1**, 308-314.

Fanciullino AL, Bidel LPR, Urban L. 2014. Carotenoid responses to environmental stimuli: integrating redox and carbon controls into a fruit model. *Plant, Cell & Environment* **37**, 273-289.

Foyer CH, Lelandais M, Kunert KJ. 1994. Photooxidative stress in plants. *Physiologia Plantarum* 92, 696-717.

Foyer CH, Noctor G. 2005. Redox Homeostasis and Antioxidant Signaling: A Metabolic Interface between Stress Perception and Physiological Responses. *The Plant Cell Online* **17**, 1866-1875.

Francisco J Corpas MC, Marina Leterrier, Juan B Barroso. 2009. Protein tyrosine nitration. A new challenge in plants. *Plant Signaling Behavior* **4**, 920–923.

García-Mata C, Lamattina L. 2003. Abscisic acid, nitric oxide and stomatal closure - is nitrate reductase one of the missing links? *Trends in Plant Science* **8**, 20-26.

García-Mata C, Lamattina L. 2001. Nitric Oxide Induces Stomatal Closure and Enhances the Adaptive Plant Responses against Drought Stress. *PLANT PHYSIOLOGY* **126**, 1196-1204.

García-Mata C, Lamattina L. 2002. Nitric Oxide and Abscisic Acid Cross Talk in Guard Cells. *Plant Physiology* **128**, 790-792.

Gomez LD, Noctor G, Knight MR, Foyer CH. 2004. Regulation of calcium signalling and gene expression by glutathione. *Journal of Experimental Botany* **55**, 1851-1859.

Gould KS, Lamotte O, Klinguer A, Pugin A, Wendehenne D. 2003. Nitric oxide production in tobacco leaf cells: a generalized stress response? *Plant, Cell & Environment* **26**, 1851-1862.

Grene R. 2002. Oxidative Stress and Acclimation Mechanisms in Plants. *The Arabidopsis Book*, e0036.

Halliwell B. 2006. Reactive Species and Antioxidants. Redox Biology Is a Fundamental Theme of Aerobic Life. *Plant Physiology* **141**, 312-322.

Hancock JT, Neill SJ, Wilson ID. 2011. Nitric oxide and ABA in the control of plant function. *Plant Science* **181**, 555-559.

Hsu Y, Kao C. 2004. Cadmium toxicity is reduced by nitric oxide in rice leaves. *Plant Growth Regulation* 42, 227-238.

Huang X, von Rad U, Durner J, x000F, rg. 2002. Nitric oxide induces transcriptional activation of the nitric oxide-tolerant alternative oxidase in Arabidopsis suspension cells. *Planta* **215**, 914-923.

Hubbard KE, Nishimura N, Hitomi K, Getzoff ED, Schroeder JI. 2010. Early abscisic acid signal transduction mechanisms: newly discovered components and newly emerging questions. *Genes & Development* 24, 1695-1708.

Ishikawa T, Dowdle J, Smirnoff N. 2006. Progress in manipulating ascorbic acid biosynthesis and accumulation in plants. *Physiologia Plantarum* **126**, 343-355.

Javot H, Lauvergeat V, Santoni V, Martin-Laurent F, Güçlü J, Vinh J, Heyes J, Franck KI, Schäffner AR, Bouchez D, Maurel C. 2003. Role of a Single Aquaporin Isoform in Root Water Uptake. *The Plant Cell Online* **15**, 509-522.

Jiang M, Zhang J. 2001. Effect of Abscisic Acid on Active Oxygen Species, Antioxidative Defence System and Oxidative Damage in Leaves of Maize Seedlings. *Plant and Cell Physiology* **42**, 1265-1273.

Jourd'heuil D. 2002. Increased nitric oxide-dependent nitrosylation of 4,5-diaminofluorescein by oxidants: implications for the measurement of intracellular nitric oxide. *Free Radical Biology and Medicine* **33**, 676-684.

Kachroo A, Robin GP. 2013. Systemic signaling during plant defense. *Current Opinion in Plant Biology* **16**, 527-533.

Kesselmeier J, Staudt M. 1999. Biogenic Volatile Organic Compounds (VOC): An Overview on Emission, Physiology and Ecology. *Journal of Atmospheric Chemistry* **33**, 23-88.

Keyster M, Klein A, Egbich I, Jacobs A, Ludidi N. 2011. Nitric oxide increases the enzymatic activity of three ascorbate peroxidase isoforms in soybean root nodules. *Plant Signaling & Behavior* **6**, 956-961.

Kim T-H, Böhmer M, Hu H, Nishimura N, Schroeder JI. 2010. Guard Cell Signal Transduction Network: Advances in Understanding Abscisic Acid, CO2, and Ca2+ Signaling. *Annual Review of Plant Biology* **61**, 561-591.

Kwak JM, Mori IC, Pei Z-M, Leonhardt N, Torres MA, Dangl JL, Bloom RE, Bodde S, Jones JDG, Schroeder JI. 2003. NADPH oxidase AtrohD and AtrohF genes function in ROS-dependent ABA signaling in Arabidopsis. *The EMBO Journal* **22**, 2623-2633.

Lamattina L, García-Mata C, Graziano M, Pagnussat G. 2003. NITRIC OXIDE: The Versatility of an Extensive Signal Molecule. *Annual Review of Plant Biology* **54**, 109-136.

Laspina NV, Groppa MD, Tomaro ML, Benavides MP. 2005. Nitric oxide protects sunflower leaves against Cd-induced oxidative stress. *Plant Science* **169**, 323-330.

Lin SH, Trumble J, Kumamoto J. 1987. Activity of volatile compounds in glandular trichomes of Lycopersicon species against two insect herbivores. *Journal of Chemical Ecology* **13**, 837-850.

Lin Y, Wagner GJ. 1994. Surface disposition and stability of pest-interactive, trichome-exuded diterpenes and sucrose esters of tobacco. *Journal of Chemical Ecology* **20**, 1907-1921.

Lopez F, Bousser A, Sissoëff I, Gaspar M, Lachaise B, Hoarau J, Mahé A. 2003. Diurnal Regulation of Water Transport and Aquaporin Gene Expression in Maize Roots: Contribution of PIP2 Proteins. *Plant and Cell Physiology* **44**, 1384-1395.

Lu S, Su W, Li H, Guo Z. 2009. Abscisic acid improves drought tolerance of triploid bermudagrass and involves H2O2- and NO-induced antioxidant enzyme activities. *Plant Physiology and Biochemistry* **47**, 132-138.

Maggio A, Joly RJ. 1995a. Effects of Mercuric Chloride on the Hydraulic Conductivity of Tomato Root Systems (Evidence for a Channel-Mediated Water Pathway). *Plant Physiology* **109**, 331-335.

Maggio A, Joly RJ. 1995b. Effects of mercuric chloride on the hydraulic conductivity of tomato root systems Evidence for a channel-mediated water pathway. *Plant Physiol.* **109**, 331-335.

Mandon J, Högman M, Merkus PJFM, van Amsterdam J, Harren FJM, Cristescu SM. 2012. Exhaled nitric oxide monitoring by quantum cascade laser: comparison with chemiluminescent and electrochemical sensors. *Journal of Biomedical Optics* **17**, 017003-017001.

Martin M, Colman M, Gomezcasati D, Lamattina L, Zabaleta E. 2009. Nitric oxide accumulation is required to protect against iron-mediated oxidative stress in frataxin-deficient Arabidopsis plants. *FEBS Letters* **583**, 542-548.

Martinez GR, Di Mascio P, Bonini MG, Augusto O, Briviba K, Sies H, Maurer P, Röthlisberger U, Herold S, Koppenol WH. 2000. Peroxynitrite does not decompose to singlet oxygen (1∆gO2) and nitroxyl (NO–). *Proceedings of the National Academy of Sciences* **97**, 10307-10312.

Mittler R. 2002. Oxidative stress, antioxidants and stress tolerance. *Trends in Plant Science* **7**, 405-410.

Mittler R, Vanderauwera S, Suzuki N, Miller G, Tognetti VB, Vandepoele K, Gollery M, Shulaev V, Van Breusegem F. 2011. ROS signaling: the new wave? *Trends in Plant Science* **16**, 300-309.

Møller IM, Sweetlove LJ. 2010. ROS signalling - specificity is required. *Trends in Plant Science* **15**, 370-374.

Mur LAJ, Mandon J, Persijn S, Cristescu SM, Moshkov IE, Novikova GV, Hall MA, Harren FJM, Hebelstrup KH, Gupta KJ. 2013. Nitric oxide in plants: an assessment of the current state of knowledge. *AoB Plants* **5**.

Murshed R L-LF, Keller C, Monnet F, Sallanon H. 2008a. Acclimation to Drought Stress Enhances Oxidative Stress Tolerance in Solanum lycopersicum L. Fruits. *Plant Stress* **2**, 145-151.

Murshed R, Lopez-Lauri F, Sallanon H. 2008. Microplate quantification of enzymes of the plant ascorbate-glutathione cycle. *Analytical Biochemistry*, 320-322.

Murshed R, Lopez-Lauri F, Sallanon H. 2013a. Effect of salt stress on tomato fruit antioxidant systems depends on fruit development stage. *Physiology and Molecular Biology of Plants*, 1-15.

Murshed R, Lopez-Lauri F, Sallanon H. 2013b. Effect of water stress on antioxidant systems and oxidative parameters in fruits of tomato (Solanum lycopersicon L, cv. Micro-tom). *Physiology and Molecular Biology of Plants*, 1-16.

Neill S, Barros R, Bright J, Desikan R, Hancock J, Harrison J, Morris P, Ribeiro D, Wilson I. 2008. Nitric oxide, stomatal closure, and abiotic stress. *Journal of Experimental Botany* **59**, 165-176.

Neill S, Desikan R, Hancock J. 2002a. Hydrogen peroxide signalling. *Current Opinion in Plant Biology* **5**, 388-395.

Neill SJ, Desikan R, Clarke A, Hancock JT. 2002b. Nitric Oxide Is a Novel Component of Abscisic Acid Signaling in Stomatal Guard Cells. *Plant Physiology* **128**, 13-16.

Neill SJ, Desikan R, Clarke A, Hurst RD, Hancock JT. 2002c. Hydrogen peroxide and nitric oxide as signalling molecules in plants. *Journal of Experimental Botany* **53**, 1237-1247.

Neill SJ, Desikan R, Hancock JT. 2003. Nitric oxide signalling in plants. New Phytologist 159, 11-35.

Patakas A, Zotos A, Beis A. 2010. Production, localisation and possible roles of nitric oxide in drought-stressed grapevines. *Australian Journal of Grape and Wine Research* **16**, 203-209.

Poiroux-Gonord F, Bidel LPR, Fanciullino A-L, Gautier Hln, Lauri-Lopez Fl, Urban L. 2010. Health Benefits of Vitamins and Secondary Metabolites of Fruits and Vegetables and Prospects To Increase Their Concentrations by Agronomic Approaches. *Journal of Agricultural and Food Chemistry* **58**, 12065-12082.

Poiroux-Gonord F, Santini J, Fanciullino A-L, Lopez-Lauri F, Giannettini J, Sallanon H, Berti L, Urban L. 2013. Metabolism in orange fruits is driven by photooxidative stress in the leaves. *Physiologia Plantarum* **149**, 175-187.
Prasad TK, Anderson MD, Stewart CR. 1994. Acclimation, Hydrogen Peroxide, and Abscisic Acid Protect Mitochondria against Irreversible Chilling Injury in Maize Seedlings. *Plant Physiology* **105**, 619-627.

Raghavendra AS, Gonugunta VK, Christmann A, Grill E. 2010. ABA perception and signalling. *Trends in Plant Science* **15**, 395-401.

Sakihama Y, Nakamura S, Yamasaki H. 2002. Nitric Oxide Production Mediated by Nitrate Reductase in the Green Alga Chlamydomonas reinhardtii: an Alternative NO Production Pathway in Photosynthetic Organisms. *Plant and Cell Physiology* **43**, 290-297.

Scholander PF, Bradstreet ED, Hemmingsen EA, Hammel HT. 1965. Sap Pressure in Vascular Plants: Negative hydrostatic pressure can be measured in plants. *Science* **148**, 339-346.

Shaw BP. 1995. Effects of mercury and cadmium on the activities of antioxidative enzymes in the seedlings of Phaseolus aureus. *Biologia Plantarum* **37**, 587-596.

Shi S, Wang G, Wang Y, Zhang L, Zhang L. 2005. Protective effect of nitric oxide against oxidative stress under ultraviolet-B radiation. *Nitric Oxide* **13**, 1-9.

Smith JB, Schneider SH, Oppenheimer M, Yohe GW, Hare W, Mastrandrea MD, Patwardhan A, Burton I, Corfee-Morlot J, Magadza CHD, Füssel H-M, Pittock AB, Rahman A, Suarez A, van Ypersele J-P. 2009. Assessing dangerous climate change through an update of the Intergovernmental Panel on Climate Change (IPCC) "reasons for concern". *Proceedings of the National Academy of Sciences* **106**, 4133-4137.

Strasser RJ, Tsimilli-Michael M, Qiang S, Goltsev V. 2010. Simultaneous in vivo recording of prompt and delayed fluorescence and 820-nm reflection changes during drying and after rehydration of the resurrection plant Haberlea rhodopensis. *Biochimica et Biophysica Acta (BBA) - Bioenergetics* **1797**, 1313-1326.

Suzuki N, Miller G, Morales J, Shulaev V, Torres MA, Mittler R. 2011. Respiratory burst oxidases: the engines of ROS signaling. *Current Opinion in Plant Biology* **14**, 691-699.

Suzuki N, Mittler R. 2006. Reactive oxygen species and temperature stresses: A delicate balance between signalling and destruction. *Physiologia Plantarum* **126**, 45-51.

Tossi V, Lamattina L, Cassia R. 2009. An increase in the concentration of abscisic acid is critical for nitric oxide-mediated plant adaptive responses to UV-B irradiation. *New Phytologist* **181**, 871-879.

Wendehenne D, Durner J, Klessig DF. 2004. Nitric oxide: a new player in plant signalling and defence responses. *Current Opinion in Plant Biology* **7**, 449-455.

Wendehenne D, Pugin A, Klessig DF, Durner J. 2001. Nitric oxide: comparative synthesis and signaling in animal and plant cells. *Trends in Plant Science* **6**, 177-183.

Willekens H, Inzé D, Montagu M, Camp W. 1995. Catalases in plants. *Molecular Breeding* 1, 207-228.

Yang Y, Seidlits SK, Adams MM, Lynch VM, Schmidt CE, Anslyn EV, Shear JB. 2010. A Highly Selective Low-Background Fluorescent Imaging Agent for Nitric Oxide. *Journal of the American Chemical Society* **132**, 13114-13116.

Yu M, Lamattina L, Spoel SH, Loake GJ. 2014. Nitric oxide function in plant biology: a redox cue in deconvolution. *New Phytologist*, n/a-n/a.

Zador E, Jones D. 1986. The Biosynthesis of a Novel Nicotine Alkaloid in the Trichomes of Nicotiana stocktonii. *Plant Physiology* **82**, 479-484.

Zhang A, Jiang M, Zhang J, Ding H, Xu S, Hu X, Tan M. 2007. Nitric oxide induced by hydrogen peroxide mediates abscisic acid-induced activation of the mitogen-activated protein kinase cascade involved in antioxidant defense in maize leaves. *New Phytologist* **175**, 36-50.

Zhang W-H, Tyerman SD. 1999. Inhibition of Water Channels by HgCl2 in Intact Wheat Root Cells. *Plant Physiology* **120**, 849-858.

Zhang X, Kim W-S, Hatcher N, Potgieter K, Moroz LL, Gillette R, Sweedler JV. 2002. Interfering with Nitric Oxide Measurements: 4,5-DIAMINOFLUORESCEIN REACTS WITH DEHYDROASCORBIC ACID AND ASCORBIC ACID. *Journal of Biological Chemistry* **277**, 48472-48478.

Murshed R, Lopez-Lauri F, Sallanon H. 2013. Effect of water stress on antioxidant systems and oxidative parameters in fruits of tomato (Solanum lycopersicon L, cv. Micro-tom). *Physiology and Molecular Biology of Plants*, 1-16.

Chapitre 3-2. Ensemble l'acide abscissique, le peroxyde d'hydrogène et le NO influent sur les systèmes de défense antioxydants de fruits détachés de tomate (*Solanum lycopersicum* L, CV Microtom)

Ce sous chapitre présente, sous forme d'un article soumis au Journal of Plant Physiology, les travaux menés sur l'implication de molécules signal telles que le NO, l'ABA et l'H₂O₂ dans l'induction des antioxydants impliqués dans le recyclage de la vitamine C.

Dans le chapitre précédent, nous avons démontré qu'un déficit hydrique induit par le mercure pouvait influencer les systèmes antioxydants dans des fruits exempts de symptôme de stress. Nous avons aussi constaté une forte induction de molécules signal telles que le NO, l'ABA ou encore l'H2O2 au cours de ces traitements. Ces résultats nous ont suggéré une implication possible de ces molécules dans la transmission d'un signal des parties végétatives présentant des symptômes de stress vers les fruits, afin de permettre à ces derniers de se protéger. Pour tester cette hypothèse, nous avons adopté une approche pharmacologique sur des fruits de tomate détachés dans des milieux contenant, de l'ABA, de l'H2O2, un donneur d'oxyde nitrique le SNP et un piégeur de NO, le cPTIO seul ou en présence des autres molécules. Nous avons par la suite suivi les activités des enzymes de recyclage de la vitamine C, ainsi que la concentration de cette dernière dans les fruits ayant subi différents traitements. Dans ces mêmes fruits, nous avons aussi dosé l'ABA et le H2O2. La production du NO a été déterminée par microscopie à fluorescence. Nous avons alors noté une augmentation de NO dans le péricarpe et la zone placentaire des fruits traités avec de l'ABA et du H₂O₂. Les fruits traités avec du H₂O₂ présentaient à chaque fois une plus forte augmentation de la production de NO. Après l'addition de cPTIO aux traitements, une diminution significative de NO a été détectée dans les fruits. Les activités des enzymes antioxydantes impliquées dans le recyclage de l'ascorbate (APX, DHAR et MDHAR) ont été positivement affectées par les traitements avec le donneur de NO, et nous avons noté, par rapport au traitement témoin, une augmentation d'activité jusqu'à 18 fois supérieures pour l'enzyme APX. Etant donné qu'il n'y avait pas de différence dans l'induction des enzymes antioxydantes pour les deux concentrations de SNP, nous avons choisi de tester uniquement l'effet de la concentration de 0.05 mM SNP sur la teneur en ABA et H2O2.Cette dose a aussi été choisi afin de se rapprocher au plus près de la teneur en NO de type signalisation, potentiellement présente au sein des tissus végétaux. De tous les traitements appliqués, la teneur en ABA a été affectée uniquement par les traitements H_2O_2 et H_2O_2 + cPTIO, où une diminution de cette teneur a été mesurée. Le traitement ABA a induit une diminution en H_2O_2 après 8 et 12 heures de traitement, sans impacter l'activité de l'APX. Toutefois, le traitement ABA a induit une augmentation de l'activité du MDHAR et DHAR, la teneur en AsA et DHA. Nous avons aussi constaté une diminution significative de l'ABA suite au traitement H_2O_2 . Ce dernier a aussi induit une augmentation des activités des enzymes APX, MDHAR et DHAR.

Au travers de cette étude, nous avons démontré qu'il existait une forte interaction entre les différentes molécules signal NO, ABA et H_2O_2 dans le maintient du statut redox dans les fruits de tomate. Ce contrôle implique notamment les enzymes de recyclage de la vitamine C, qui jouent un rôle très important pour lutter contre les ERO produites dans la cellule, et également pour le contrôle de l'accumulation de la vitamine C.

Nitric oxide in conjunction with abscisic acid and hydrogen peroxide influences antioxidant defence systems in off-the-vine tomato fruits (*Solanum lycopersicum* L, CV Microtom)

Authors: Sanders JUNGLEE^{1,3}, Ramzi MURSHED^{1,2}, Laurent URBAN¹, Sandrine LAURENT¹, Mohamed EL MAÂTAOUI¹, , Huguette SALLANON¹, Félicie LOPEZ-LAURI¹.

Addresses:

¹ Laboratoire de Physiologie des Fruits et Légumes, UMR QualiSud, Université d'Avignon et des Pays du Vaucluse, Avignon, France.

² Current address: Department of Horticulture, Faculty of Agriculture, Damascus University, Damascus, Syria

³ Corresponding Author

Abstract

Rapid physiological responses and the involvement of specific signalling molecules were investigated in tomato fruits (*Solanum lycopersicum* L. cv. Micro-Tom). A pharmacological study using detached mature green fruits was conducted to determine involvement of nitric oxide (NO), abscissic acid (ABA) and hydrogen peroxide (H_2O_2). Activity of antioxidant enzymes of ascorbate-glutathione cycle along with the total ascorbate pool size were measured. The H_2O_2 , NO, ABA and malonyldialdehyde (MDA) contents were studied in fruit pericarps. Fluorescence microscopy revealed an overproduction of NO after ABA and H_2O_2 treatments. Ascorbate recycling was positively influenced by NO treatment. By contrast to H_2O_2 , NO did not affect ABA content in detached fruits and H_2O_2 positively impacted antioxidant enzymes. In this study we have shown that there is a close interaction between signalling molecules; NO, ABA and H_2O_2 , in the maintenance of fruit redox homeostasis namely through the activation of antioxidant enzymes involved in ascorbate recycling (APX, MDHAR and DHAR).

1. Introduction

Environmental stresses may positively affect plants physiology by stimulating their defence mechanisms (Fujita *et al.*, 2006; Murshed R, 2008a; Tattini *et al.*, 2004). Many studies have been conducted on this particular topic with the objective of enhancing global plant metabolism and ultimately crop production (Beckers and Conrath, 2007; Conrath *et al.*, 2002). Survival under stressful conditions depends on the plant's ability to perceive the stimulus, generate and transmit a signal in order to induce various chemical and physiological changes (Bohnert and Jensen, 1996; Métraux *et al.*, 1990; Yamaguchi-Shinozaki, 1997). The first evidence of a systemic signalling during an abiotic stress was presented by (Karpinski et al., 1999) in *Arabidopsis thaliana* during a photooxidative stress. This hypothesis was also supported by (Poiroux-Gonord et al., 2013) who observed that antioxidant metabolism, and both the primary and secondary metabolisms are influenced in the pulp of orange fruits when photooxidative stress is imposed to nearby leaves.

Furthermore we observed in a previous study that a rapid water deficit was capable of inducing water stress symptoms in tomato leaves without affecting the water status of fruits (under review). Oxidative stress symptom like lipid peroxidation was observed in all organs with the exception of fruits and they presented enhanced activity of antioxidant enzymes as well as increased concentrations in NO, ABA and H_2O_2 . Here, we hypothesize that the stimulation of antioxidant mechanisms in fruit pericarp from drought-stressed plants involves at least one of these molecules. So far, ROS (especially H_2O_2) have emerged as being the best candidate in the mediation of such signals (Mittler et al., 2011) but recently other molecules like abscisic acid (ABA) and nitric oxide (NO) have emerged as potent stress sensors and coordinators of stress responses (Baudouin, 2011; Hancock *et al.*, 2011; Lu *et al.*, 2009; Raghavendra *et al.*, 2010). Furthermore besides H_2O_2 and O_2^- , ABA (Tuteja, 2007b) and NO (Corpas et al., 2001) were also found to play important roles in the mediation of antioxidant responses to both biotic and abiotic stresses in plants.

In addition to causing or exacerbating cellular damage, ROS can act as ubiquitous signal molecules in higher plants, either directly or indirectly, through the shifts in redox status they provoke. ROS are indeed central components in stress responses. ROS accumulation is sensed as an alarm signal that initiates preemptive defense responses. ROS serve an important signalling function, providing information about changes in the external

environment (Foyer and Shigeoka, 2011). There is compelling evidence about the biological activity of ROS and more specifically of H_2O_2 as a signal molecule in plants (Dat *et al.*, 2000; Overmyer *et al.*, 2003; Hung *et al.*, 2005). Available information suggests that H_2O_2 directly regulates the expression of numerous genes, some of which are involved in plant defenses, including those encoding antioxidant enzymes and modulators of H_2O_2 production (Kovtun et al., 2000), as well as of signaling proteins such as kinase, phosphatase, and transcription factors (Møller and Sweetlove, 2010; Mubarakshina *et al.*, 2010).

ABA is a plant stress hormone and an important signalling molecule that plays a plethora of roles in regulating plant adaptive responses to various environmental stresses (Cutler et al., 2010). ABA participates in diverse physiological and developmental processes from the whole plant (Zhang and Davies, 1991) to the cellular level (Yamaguchi-Shinozaki, 1997). It has been suggested that the stress-induced up-regulation of antioxidant enzyme activity involves both an ABA-dependent and an ABA-independent pathway (Bellaire et al., 2000). Although the mechanism of induction of antioxidant enzymes by ABA has not yet been elucidated, several studies suggest that ABA induces the production of other signalling molecules such as H_2O_2 and NO, which in turn stimulates the activity of antioxidant enzymes (Jiang and Zhang, 2003; Zhang *et al.*, 2007; Zhang *et al.*, 2006a; Zhou *et al.*, 2005).

NO is a molecule which has attracted much attention during the last decade. It is believed to act as a signal molecule mediating responses to both biotic and abiotic stresses in plants (Mur *et al.*, 2013; Neill *et al.*, 2008; Wendehenne *et al.*, 2004; Wendehenne *et al.*, 2001). Several studies suggest that NO plays a role in protecting plants from oxidative stress (Beligni and Lamattina, 1999; Correa-Aragunde *et al.*, 2008; García-Mata and Lamattina, 2001; Martin *et al.*, 2009; Tossi *et al.*, 2009). Given the essential role of NO in stress adaptation, it is likely that this highly reactive and diffusible gaseous molecule affects the transcription of numerous genes related to defence (Addicott FT, 1983; Polverari *et al.*, 2003). Furthermore NO can also directly interact with H_2O_2 and O_2^- with the effect of producing the lesser reactive peroxynitrite (Neill et al., 2003). Furthermore, peroxynitrite may behave as a potent modulator of signal transduction pathways by influencing the activity of tyrosine-nitrated proteins (Vandelle and Delledonne, 2011).

Plants cannot escape and have to adapt to water shortage. Responses vary from rapid physiological adjustments allowing for temporary survival, to long-term biological adaptations. Enhancement of antioxidant enzymes associated with the ascorbate cycle, namely

APX, MDHAR and DHAR forms part of transient changes experienced by plants during water stress. In this study we are dealing with rapid physiological responses and the involvement of specific signalling molecules. A pharmacological study using detached tomato fruits was conducted to determine involvement of NO, ABA and H_2O_2 . We targeted fruits because as exposed by Fanciullino et al. (2014), the production of reactive oxygen species associated with stress can directly or indirectly exert a positive effect on the secondary metabolism of plants. Such a mechanism could be exploited even for fruit crops which represent a major source of phytochemicals (Davey et al., 2000), including ascorbate which is essential to humans who have lost the capacity to synthetize it.

Materials and Methods

Plant material and growing conditions

Tomato seeds (*Solanum lycopersicum* L, cv. 'Micro-tom') (INRA Avignon, France) were sown in plastic trays filled with peat. When the first true leaf appeared, seedlings were transferred into 4 L plastic pots. Plants were placed in a greenhouse under a 16/8 h light/dark cycle with a relative humidity of $60 \pm 5\%$ and a day/night temperature of 25/20°C.

Plants were watered daily with an amount of water equal to quantity lost by evapotranspiration and were irrigated twice a week with a nutrient solution containing the following micronutrients (μ M): 8 MnCl₂, 0.5 CuSO₄.5H₂O, 1.4 ZnSO₄, 46 H₃BO₃, 0.25 Na₂MoO₄.2H₂O, 0.6 Fe-EDDHA chelate; and the following macronutrients (mM): 4.1 KNO₃, 3.4 Ca(NO₃)₂.4H₂O, 0.9 K₂SO₄, 1 MgSO₄.7H₂O and 1.5 KH₂PO₄. At the time of anthesis, flowers were tagged for fruit age determination.

Culture of tomato fruits

Fruits at the mature green stage (MG) were harvested between 9 and 10 a.m. and the pedicel of each fruit was put in a Murashige and Skoog basal medium (MS) containing 4 % sucrose. We ensured that the pedicel was in close contact with the culture medium. The cultures were placed at $25/20^{\circ}$ C for 24h for adaptation, under cool white fluorescent lamps providing 300 µmol photons.m⁻².s⁻¹. The following day, two hours after the start of the light cycle in the culture chamber, different treatments were applied to the fruits through the pedicel. All the compounds tested in this trial were supplied in a MS solution. Preliminary tests have been conducted to choose doses close to natural physiological concentrations.

- 6 fruits treated with 0.5mM and 0.05mM sodium nitroprusside (SNP), an efficient NO donor, in order to follow the action of NO;
- 6 fruits treated with 0.5mM SNP + 1mM 2-(4-Carboxyphenyl)-4,4,5,5 tetramethylimidazoline-l-oxyl-3-oxide (cPTIO), an NO scavenger;
- 6 fruits treated with 0.05mM SNP + 1mM cPTIO;
- 6 fruits treated with MS + 1mM cPTIO (C + cPTIO);
- 6 fruits treated with 0.1 mM abscisic acid (ABA);
- 6 fruits treated with 0.1 mM abscisic acid + 1 mM cPTIO (ABA + cPTIO);
- 6 fruits treated with 0.5 mM hydrogen peroxide (H_2O_2) ;
- 6 fruits treated with 0.5 mM hydrogen peroxide + 1 mM cPTIO ($H_2O_2 + cPTIO$);
- 6 fruits were dipped in MS nutritive solution for control.

For each condition, MG fruits were harvested from 6 different plants randomly distributed in the green house, and after treatment immediately frozen in liquid nitrogen and ground. The powder was stored at -80°C. Pericarp tissue of the harvested fruits was obtained by removing the locule tissues and seeds. Fruits used for microscopic investigations were immediately examined after the different treatments.

Determination of ascorbate and dehydroascorbate contents

Total ascorbate (AsA + DHA) and dehydroascorbate (DHA) contents were measured following the method of (Murshed *et al.*, 2013a, b). A 0.25 g sample of frozen tomato fruit powder was homogenized in 1 mL of cold 6 % (w/v) trichloroacetic acid (TCA). The homogenate was centrifuged at 16000 × g for 15 min at 4 °C. The supernatant was used for total ascorbate and AsA determination.

Determination of antioxidant enzyme activities

Protein extraction was performed according to (Murshed et al., 2008). Frozen fruit powder (250 mg) was homogenized at 4°C in 1 ml of 50 mM MES/ KOH buffer (pH 6.0), containing 40 mM KCl, 2 mM CaCl₂, and 1 mM AsA. The homogenate was centrifuged at 16 000 g for 15 min at 4°C, and the supernatant was used immediately for enzyme activity assays. Proteins were quantified using Bradford's method (1976). All enzyme activities were determined in IN ? 200 μ L volume kinetic reactions at 25 °C, using a micro-plate reader. APX, DHAR and MDHAR activities were measured as described by (Murshed et al., 2008).

Determination of hydrogen peroxide content

Frozen powder (150 mg) was directly homogenized with 1 ml of solution containing 0.25 ml trichloroacetic acid (TCA) (0.1% (w:v)), 0.5 ml KI (1M) and 0.25 ml potassium phosphate buffer (10 mM, pH 8) at 4°C for 10 min (one-step buffer: extraction and colorimetric reaction combined). At the same time, for every sample, a control was prepared with H₂O instead of KI for tissue coloration background. We took care to protect samples and solutions from light. The homogenate was centrifuged at 12,000 × g for 15 min at 4°C. 200 μ L of supernatant from each tube was placed in UV-microplate wells and left to incubate at room temperature (20 -22°C) for 20 min. Samples and blanks were analyzed in triplicate. A calibration curve obtained with H₂O₂ standard solutions prepared in 0.1 % TCA was used for quantification. The microplate reader used was a PowerWave HT microplate spectrophotometer from BioTek (France) fitted with an internal temperature incubator and a shaker for kinetic and spectrum analysis. KC4 data software was used to check the reader and to analyze reactions.

Determination of abscisic acid content

Free ABA content was determined using the Phytodetek competitive Enzyme-linked immuno sorbent assay (ELISA) kit (Agdia, Elkhart, In, USA). We followed the manufacturer's instructions. Frozen tissue powder (100 mg) was extracted with 1 mL TBS buffer solution for 10 min in ice and centrifuged at 15000 x g for 15 min at 4°C. Then, the supernatants were diluted in TBS buffer and analysed for free ABA using the immunological ABA assay.

NO imaging by fluorescence microscopy

After the different treatments, regular pieces of about 10 mm x 4 mm x 4 mm were taken from the pericarp. Tissue pieces were incubated in the dark at 25°C for 1 hour in 10 mM Tris-HCl (pH 7,4) containing 10 μ M of the specific membrane permeable NO₅₅₀ probe (Yang et al., 2010). The tissue pieces were then rinsed twice in the buffer solution and free hand sections were taken with a razor blade under subdued light. The sections were mounted

in 50% glycerol in PBS (v:v) on microscope slides (Corpas, 2004), and immediately examined under epifluorescence using a Leica DM2000 light microscope, equipped with a I3 filter (blue light excitation at 450-490 nm; emission 520 nm). Sections incubated in 10 mM Tris-HCl alone served as negative controls. All images were captured using a Leica DF300X digital camera at \times 20 and three different sections were analysed for each fruit or leaf (n = 9). Linear levels were adjusted in all images using a public domain Java image processing program ImageJ 1.43 version (Maryland, USA) (Patakas et al., 2010).

Quantum cascade lasers (QCL) based detection

NO production was followed using a Quantum cascade laser (QCL) based sensor (Mandon et al., 2012) developed at the Radbound University (Life Science Trace Gas Facility) in the Netherlands. The sensor includes a QCL emitting 5 μ m light, a multipass-cell and a room-temperature light detector. The emission wavelength of the laser was chosen to probe a strong ro-vibrational absorption line of NO. The laser is maintained at -25°C by a Peltier cooler and delivers a continuous output power of 10 mW. The gas sample to analyse is suck by the system into the multipass-cell at a flow rate of 1 l/h. In the cell, the sample is interacting with the light producing multiple reflexions in order to increase the interaction distance to 76 m. The concentration of NO is determined by measuring the amount of light absorbed by the sample with a detection limit of 0.5 ppbv. Before measurements, the system was calibrated with a standard of 100 ppbv NO in N₂.

The measurements were performed for 24 h (16 h/8 h day/night cycle) under cool white fluorescent lamps supplying 300 μ mol photons.m⁻².s⁻¹. Measurements were performed on 0.05mM SNP, 0.5mM SNP and SNP + cPTIO treatments conditioned in MS solution with the objective of measuring the production of NO by 0.05 mM SNP compared to 0.5 mM SNP.

Statistical analysis

All data presented represent means of 6 repetitions by treatment. Measurements were repeated 3 times. The results are expressed as means \pm standard error (SE). Statistical significance was determined by heteroscedastic two tailed Student t-test (P<0.05) using "R" 2.12.2 statistical software (www.cran.rproject.org).

Results and discussion

Fluorescence microscopy revealed an overproduction of NO after ABA and H₂O₂ treatments

To detect NO by fluorescence microscopy, we have chosen to use NO₅₅₀ probe instead of the widely used DAF-2-DA because of several problems assigned to the latter. More specifically, the oxidation of DAF-2-DA by ROS may result in the production of a free radical that can directly react with NO (Jourd'heuil, 2002). Furthermore other molecules like ascorbate and DHA were also shown to interact with DAF to give fluorescent products (Zhang et al., 2002). NO₅₅₀ has also the advantage of showing a much higher specificity than DAF-2-DA, which results from the fact that the chromophore and fluorophore of the probe assemble only upon contact with NO. Finally NO₅₅₀ is completely pH-independent which represents a significant advantage given the range of pH exhibited in different organs or even cell compartments (Yang et al., 2010). We observed an increase of fluorescence in the outer and inner epidermal cells of the pericarp after treatments with ABA and H₂O₂ compared to the controls (refer to figure 7A-B). A noticeable increase in fluorescence was also observed around vascular tissues and parenchyma cells after ABA and H₂O₂ treatments (refer to figure 7C). The placental tissues and columella also displayed an increase in fluorescence at the level of the inner epidermal cells and vascular tissues in presence of ABA and H₂O₂ (refer to figure 7D-E). In all cases H₂O₂ treatments caused a more important increase in fluorescence than ABA. In presence of cPTIO in addition to ABA or H₂O₂ a noticeable decrease in fluorescence was observed in all these regions. A close relationship was revealed between ABA, H₂O₂ and NO. Recent studies have shown that during water deficit, the overproduction of ABA may result in the activation of NADPH oxidases increasing H₂O₂ production which may ultimately activate nitrate reductase enzymes responsible of NO production (Yu et al., 2014). To explain our observations, it may be hypothesized that H₂O₂ induced greater NO production by acting directly on NR compared to ABA which has to pass through a supplemental step through the activation of NADPH oxidases.

Ascorbate recycling is positively influenced by NO treatment

NO, one of the key reactive nitrogen species, is involved in various physiological processes and plays a prominent role in the activation of various environmental stress responses in plant species (Delledonne et al., 2001). NO can counteract oxidative damage and has a protective effect against a large range of stressful conditions (Beligni and Lamattina, 2001, 2002; Lin *et al.*, 2011). Two mechanisms that may explain NO protective action against oxidative damage have been widely reported. Firstly, NO might detoxify ROS directly, such

as superoxide radicals, to form peroxynitrite, which is less toxic and thus less damaging to cells (Martinez et al., 2000). Secondly, NO acts as a signalling molecule, which activates cellular antioxidant enzymes (Baudouin, 2011; Huang et al., 2002; Shi et al., 2005). Treatments with the NO donor (SNP) resulted in an increase in APX, MDHAR and DHAR activity (figures 2-4). This observation is in agreement with earlier observations showing that exogenous supply of NO provides resistance to a large range of abiotic stresses (Delledonne et al., 2001; Singh et al., 2009). A sharp increase, up to 18 times, in APX activity was detected after NO treatments. The most substantial increase was measured in the middle of the light period, after 8 hours of treatment, and it gradually decreased until 24 hours (figure 2(i)). This sequential response to NO is consistent with the observations made by (Agrawal et al., 2003) on APX2 gene in rice seedlings (OSAPX2). The activation of APX by NO was further confirmed by the marked decrease in H₂O₂ content we observed after 8 and 12 hours of NO treatment. Ascorbate, the substrate for APX, also significantly decreased during NO treatments and DHAR and MDHAR activities reached such high levels that dehydroascorbate content was not detectable in those samples. Our observation is consistent with similar observations of a stimulating effect of NO on APX activity made in barley seedlings and sunflower leaves exposed to Cadmium Chloride (CdCl₂) (Chen et al., 2010; Laspina et al., 2005). Nevertheless our observations stay in contrast with the observations of (Clark et al., 2000) who observed an NO-associated decrease in APX activity in tobacco plants. MDHAR activity was also strongly influenced by NO and followed the same trend than APX (figure 2(a)) and DHAR enzyme activity increased up to 12 times, when compared to C, with nitric oxide treatment. Our results are in agreement with those of (Xie et al., 2008) who also found a stimulating effect of NO on MDHAR and DHAR activities. The lower activity of all three enzymes in fruits treated with SNP + cPTIO (NO donor and scavenger simultaneously) and the observation that the activities returned to normal level in MS + cPTIO supports the hypothesis that NO enhances the up regulation of antioxidant enzymes (figures 2(a), 3(a) and 4(a)).

By contrast to H_2O_2 , NO did not affect ABA content in detached fruits

As no significant difference in the ascorbate recycling between the two SNP concentrations was observed, only 0.05mM SNP was applied in the experiment with the objective of reaching reach NO concentrations normally present in plant tissues in response to water deficit (personal communication). As shown in figure 5(a) 0.05mM SNP and SNP +

cPTIO had no significant impact on ABA content in the fruits. Fruits treated with exogeneous ABA presented higher ABA concentrations confirming the entry of the hormone [figure 1(b)]. Abscisic acid content decreased by approximately 2 times compared to control in H_2O_2 and H_2O_2 + cPTIO treatments [figure 5(b)]. ABA is thought to be involved as a secondary messenger in the cellular signaling process leading to the stimulation of antioxidant defenses under stress. See (Lee and Luan, 2012) for a review. In our study, we observed a significant decrease in H₂O₂ content 8 and 12 hours after the ABA treatment [figure 6(b)], whereas there was no significant impact on APX activity [figure 2(ii)]. This seems consistent with the view developed by (Ye et al., 2011) who suggest that ABA may play an important role in the fine tuning of H₂O₂ by modulating catalase genes. On the other hand, ABA treatments resulted in an increase in MDHAR and DHAR activity, and ultimately AsA and DHA contents. Interestingly we observed a significant decrease in ABA content after H₂O₂ application. These results are in line with the observation of a stimulating role of H₂O₂ in ABA catabolism and seed germination (Liu et al., 2010). Such observations suggest a negative feedback control of ABA by H_2O_2 . The emerging view is that a high H_2O_2 concentration results in ABA breakdown and the stimulation of the activity of antioxidant enzymes. This is consistent with the idea that up-regulation of antioxidant enzyme activities by stress may be controlled by an ABA-dependent signal transduction pathway and that this pathway is regulated by ROS concentration (Bellaire et al., 2000) and namely through the activation of NAPDH oxidases (Yu et al., 2014). Within the same line of thinking, it has been suggested that ABA may act, among others, by generating oxidative stress in plant cells. ABA can indeed be at the origin of an increase in the production of superoxide ions (O₂ $^{-}$) (Jiang and Zhang, 2001) and H₂O₂ (Guan et al., 2000).

H_2O_2 positively impacted antioxidant enzymes

The capacity of H_2O_2 to act as an intracellular signaling molecule is illustrated by its role in the systemic response of plants to excess light (Karpinski et al., 1999), pathogens (Bolwell, 1999) and physical damage (Orozco-Cárdenas et al., 2001). H_2O_2 acts as a stress signal at low concentrations and has a proven role in modulating gene expression (Mittler *et al.*, 2011; Møller and Sweetlove, 2010). For instance, it has been observed that exogenous application of H_2O_2 together with ABA increases chilling tolerance in mung beans (Yu et al., 2003). In acclimation studies conducted by (de Azevedo Neto et al., 2005), it has been found that addition of H_2O_2 to the nutrient solution results in increased salt tolerance in maize

through the stimulation of the activities of antioxidants and the reduction of peroxidation of membrane lipids in leaves and roots. Our own observations show that treatment of fruits with H_2O_2 results in an increase in H_2O_2 content [figure 1 (c)], and APX activity [figure 2 (c)]. H_2O_2 also influenced the ascorbate–glutathione cycle, which is responsible for removal of excess ROS in cells; it moreover influenced the AsA and DHA concentrations [Table 1 (c)] as well as the activities of MDHAR and DHAR [figure 3 (c), 4 (c)]. We eventually observed an important increase in NO production in the presence of H_2O_2 through microscopic observations using the fluorescent probe NO550 (refer to figure 7A-E). This strongly supports the hypothesis that H_2O_2 serves as the early transduction molecule that switches "on" antioxidants in response to environmental stress. The H_2O_2 -induced up-regulation of antioxidant enzyme activity was not only rapid, it was also sustained for 24 hours [figure 2 (c), 4(c)].

In this study we have shown that there is a close interaction between signalling molecules; NO, ABA and H_2O_2 , in the maintenance of fruit homeostasis namely through the activation of antioxidant enzymes involved in ascorbate recycling (APX, MDHAR and DHAR). Additional research is required for elucidating the mechanism of each pathway with more details. The first part of this study is currently being carried out by our team through a microarray experiment with detached fruits treated with NO and under water deficit.

Table 1 (a): Ascorbate (AsA) and dehydroascorbate (DHA) concentrations (µmol g ⁻¹ FW) in fruit	pericarp of
control detached fruits with pedicels dipped in MS solution(C) and treated fruits with pedicels dipped	d in 0.5 mM
SNP, 0.05 mM SNP, MS + 1 mM cPTIO and 0.5 mM SNP + 1 mM cPTIO for 4h, 8h and 12h. Va	alues are the
mean (± S.E.) of five replicates, and different letters indicate statistical difference (P<0.05) between	n treatments
according to heteroscedastic two tailed Student t-test.	

		Ascorbate µmol/g FW	Dehydroascorbate µmol/g FW
ОН	С	0.97 ± 0.03^{a}	0.16 ± 0.04^{a}
4H	С	1.17 ± 0.03 ^b	$0.18 \pm 0.02^{\circ}$
	SNP 0.05	1.07 ± 0.07 ^b	-
	SNP 0.5	1.12 ± 0.04^{b}	-
	C + cPTIO	$1.28 \pm 0.03^{\circ}$	$0.12 \pm 0.02^{\circ}$
	SNP 0.5 + cPTIO	1.15 ± 0.05^{b}	0.05 ± 0.01^{b}
8H	С	1.17 ± 0.03^{b}	$0.25 \pm 0.02^{\circ}$
	SNP 0.05	1.20 ± 0.08^{b}	-
	SNP 0.5	0.82 ± 0.04^{d}	-
	C + cPTIO	1.37 ± 0.03^{e}	0.15 ± 0.01^{d}

	SNP 0.5 + cPTIO	1.01 ± 0.04^{a}	0.08 ± 0.01^{e}
12H	С	1.30 ± 0.03^{b}	0.09 ± 0.01^{e}
	SNP 0.05	0.85 ± 0.02^{d}	0.02 ± 0.01^{a}
	SNP 0.5	0.94 ± 0.03^{d}	0.02 ± 0.01^{b}
	C + cPTIO	1.18 ± 0.02^{b}	0.08 ± 0.02^{a}
	SNP 0.5 + cPTIO	0.78 ± 0.07^{d}	0.15 ± 0.01^{f}
24H	С	$1.34 \pm 0.03^{\circ}$	0.13 ± 0.03^{d}
	SNP 0.05	0.77 ± 0.02^{d}	0.44 ± 0.05^{g}
	SNP 0.5	0.83 ± 0.03^{d}	0.39 ± 0.02^{g}
	C + cPTIO	1.51 ± 0.04^{f}	0.03 ± 0.00^{b}
	SNP 0.5 + cPTIO	0.91 ± 0.05^{d}	0.03 ± 0.00^{b}

Chapitre 3-2 : ABA, H₂O₂ et NO influent sur les systèmes de défense antioxydants de fruits détachés de tomate

Table 1 (b): Ascorbate (AsA) and dehydroascorbate (DHA) concentrations (μ mol g⁻¹ FW) in fruit pericarp of control detached fruits with pedicels dipped in 0.1 mM ABA, MS + 1 mM cPTIO and 0.1 mM ABA + 1 mM cPTIO for 4h, 8h, 12h and 24h. Values are the mean (\pm S.E.) of five replicates, and different letters indicate statistical difference (P<0.05) between treatments according to heteroscedastic two tailed Student t-test.

		Ascorbate µmol/g FW	Dehydroascorbate μmol/g FW
0h	С	0.97 ± 0.03^{a}	0.16 ± 0.04^{a}
4h	С	1.17 ± 0.03^{b}	0.18 ± 0.02^{a}
	ABA	$1.41 \pm 0.03^{\circ}$	0.25 ± 0.02^{b}
	C + cPTIO	1.28 ± 0.03^{d}	0.12 ± 0.02^{a}
	ABA + cPTIO	1.19 ± 0.04^{b}	0.22 ± 0.02^{ab}
8h	С	1.17 ± 0.03^{d}	0.25 ± 0.02^{ab}
	ABA	1.69 ± 0.03^{e}	0.28 ± 0.04^{ab}
	C + cPTIO	$1.37 \pm 0.03^{\circ}$	0.15 ± 0.01^{a}
	ABA + cPTIO	1.34 ± 0.06^{cd}	0.15 ± 0.01^{a}
12h	С	1.30 ± 0.03^{d}	$0.09 \pm 0.01^{\circ}$
	ABA	1.10 ± 0.06^{b}	0.12 ± 0.04^{a}
	C + cPTIO	1.18 ± 0.02^{b}	0.18 ± 0.02^{a}
	ABA + cPTIO	$1.38 \pm 0.05^{\circ}$	0.23 ± 0.02^{ab}
24h	С	1.34 ± 0.03 ^{cd}	0.23 ± 0.03^{ab}
	ABA	$1.39 \pm 0.04^{\circ}$	0.23 ± 0.01^{ab}
	C + cPTIO	$1.51 \pm 0.04^{\circ}$	$0.09 \pm 0.00^{\circ}$
	ABA + cPTIO	1.32 ± 0.06^{b}	0.13 ± 0.02^{a}

Table 1 (c): Ascorbate (AsA) and dehydroascorbate (DHA) concentrations (μ mol g⁻¹ FW) in fruit pericarp of control detached fruits with pedicels dipped in MS solution(C) and treated fruits with pedicels dipped in 0.5 mM H₂O₂, MS + 1 mM cPTIO and 0.5 mM H₂O₂ + 1 mM cPTIO for 4h, 8h, 12h, 16h (middle of dark period) and 24h. Values are the mean (± S.E.) of five replicates, and different letters indicate statistical difference (P<0.05) between treatments according to heteroscedastic two tailed Student t-test.

		Ascorbate µmol/g FW	Dehydroascorbate μmol/g FW
0h		0.07 ± 0.02^{a}	0.16 ± 0.04^{a}
UN 4b	C	0.97 ± 0.03 1 17 + 0 03 ^b	0.10 ± 0.04 0.18 ± 0.02 ^b
40	H2O2	1.17 ± 0.03 1.48 ± 0.07^{c}	0.18 ± 0.02^{b} 0.21 ± 0.02^{b}
	C + cPTIO	1.28 ± 0.03^{d}	$0.12 \pm 0.02^{\circ}$
	H2O2 + cPTIO	$1.42 \pm 0.04^{\circ}$	0.23 ± 0.02^{b}
8h	С	1.17 ± 0.03^{d}	0.25 ± 0.02^{b}
	H2O2	1.22 ± 0.06^{d}	$0.31 \pm 0.01^{\circ}$
	C + cPTIO	$1.37 \pm 0.03 d^{c}$	0.15 ± 0.01^{a}
	H2O2 + cPTIO	1.27 ± 0.03^{d}	$0.36 \pm 0.03^{\circ}$
12h	С	1.30 ± 0.03^{d}	0.09 ± 0.01^{e}
	H2O2	1.19 ± 0.06^{d}	$0.29 \pm 0.01^{\circ}$
	C + cPTIO	1.18 ± 0.02^{d}	0.18 ± 0.02^{b}
	H2O2 + cPTIO	1.24 ± 0.03^{d}	0.37 ± 0.01^{f}
24h	С	1.34 ± 0.03^{d}	0.23 ± 0.03^{b}
	H2O2	1.63 ± 0.05^{e}	0.22 ± 0.01^{b}
	C + cPTIO	1.51 ± 0.04^{f}	0.09 ± 0.00^{e}
	H2O2 + cPTIO	1.32 ± 0.09d ^c	$0.32 \pm 0.02^{\circ}$

Figure 1: (a) Nitric oxide measured from 0.5 mM SNP, 0.05 mM SNP, 0.5 mM SNP + 1 mM cPTIO, 0.05 mM SNP + 1 mM cPTIO and MS solution followed by a Quantum cascade lasers (QCL). (b) ABA content in detached fruits with pedicels dipped in MS solution(C), 0.1 mM ABA and 0.1 mM ABA + 1 mM cPTIO treatments for 4h, 8h, 12h and 24h. (c) H_2O_2 content in detached fruits with pedicels dipped in MS solution(C), 0.5 mM H_2O_2 and 0.5 mM $H_2O_2 + 1$ mM cPTIO treatments for 4h, 8h, 12h and 24h.

Figure 2: Activity of ascorbate peroxidase (APX) in mature green pericarp (fruit age between 35 and 40 DAF).

(a) 0.5 mM SNP, 0.05 mM SNP, MS + 1 mM cPTIO and 0.5 mM SNP + 1 mM cPTIO for 4h, 8h, 12h and 24h.

(b) 0.1 mM ABA, MS + 1 mM cPTIO and 0.1 mM ABA + 1 mM cPTIO for 4h, 8h, 12h and 24h.

(c) $0.5 \text{ mM H}_2\text{O}_2$, MS + 1 mM cPTIO and $0.5 \text{ mM H}_2\text{O}_2$ + 1 mM cPTIO for 4h, 8h, 12h and 24h.

Chapitre 3-2 : ABA, H₂O₂ et NO influent sur les systèmes de défense antioxydants de fruits détachés de tomate

Figure 3: Activity of monodehydroascorbate reductase (MDHAR) in mature green pericarp (fruit age between 35 and 40 DAF).

(a) 0.5 mM SNP, 0.05 mM SNP, MS + 1 mM cPTIO and 0.5 mM SNP + 1 mM cPTIO for 4h, 8h, 12h and 24h.

(b) 0.1 mM ABA, MS + 1 mM cPTIO and 0.1 mM ABA + 1 mM cPTIO for 4h, 8h, 12h and 24h.

(c) 0.5 mM H_2O_2 , MS + 1 mM cPTIO and 0.5 mM H_2O_2 + 1 mM cPTIO for 4h, 8h, 12h and 24h. Values are expressed as means with standard error (± SE) and different letters indicate significant differences according to heteroscedastic two tailed Student t-test (P<0.05).

Chapitre 3-2 : ABA, H₂O₂ et NO influent sur les systèmes de défense antioxydants de fruits détachés de tomate

Figure 4: Activity of dehydroascorbate reductase (DHAR) in mature green pericarp (fruit age between 35 and 40 DAF).

(a) 0.5 mM SNP, 0.05 mM SNP, MS + 1 mM cPTIO and 0.5 mM SNP + 1 mM cPTIO for 4h, 8h, 12h and 24h.

(b) 0.1 mM ABA, MS + 1 mM cPTIO and 0.1 mM ABA + 1 mM cPTIO for 4h, 8h, 12h and 24h.

(c) 0.5 mM H_2O_2 , MS + 1 mM cPTIO and 0.5 mM H_2O_2 + 1 mM cPTIO for 4h, 8h, 12h and 24h.

Figure 5: ABA content (nmole. g⁻¹ FW) in mature green pericarp (fruit age between 35 and 40 DAF).
(a) 0.05 mM SNP, 0.05 mM SNP, MS + 1 mM cPTIO and 0.5 mM SNP + 1 mM cPTIO for 4h, 8h and 12h.
(b) 0.5 mM H₂O₂, MS + 1 mM cPTIO and 0.5 mM H₂O₂ + 1 mM cPTIO for 4h, 8h, 12h and 24h.

Figure 6: H₂O₂ content (nmole. g⁻¹ FW) in mature green pericarp (fruit age between 35 and 40 DAF). (a) 0.05 mM SNP, 0.05 mM SNP, MS + 1 mM cPTIO and 0.5 mM SNP + 1 mM cPTIO for 4h, 8h and 12h.

(b) 0.1 mM ABA, MS + 1 mM cPTIO and 0.1 mM ABA + 1 mM cPTIO for 4h, 8h, 12h and 24h.

Figure 7 A: Nitric Oxide production revealed by epifluorescence microscopy through 10 μ M NO₅₅₀ probe in outer epidermis of tomato fruit pericarp treated with 0.1 mM ABA, 0.1 mM, ABA + 1mM cPTIO, 0.5 mM H₂O₂ and 0.5 mM H₂O₂ + 1mM cPTIO. Each image represents green (left), red (center) and the sum of both color channels (right) to highlight the distribution of the green fluorescence in the different organs. Linear levels were adjusted in all images using ImageJ 1.43 version. E : Epidermis, P : Parenchyma.

Figure 7 B: Nitric Oxide production revealed by epifluorescence microscopy through 10 μ M NO₅₅₀ probe in inner epidermis of tomato fruit pericarp treated with 0.1 mM ABA, 0.1 mM, ABA + 1mM cPTIO, 0.5 mM H₂O₂ and 0.5 mM H₂O₂ + 1mM cPTIO. Each image represents green (left), red (center) and the sum of both color channels (right) to highlight the distribution of the green fluorescence in the different organs. Linear levels were adjusted in all images using ImageJ 1.43 version. E : Epidermis, P : Parenchyma.

Figure 7 C: Nitric Oxide production revealed by epifluorescence microscopy through 10 μ M NO₅₅₀ probe in vascular tissue of tomato fruit pericarp treated with 0.1 mM ABA, 0.1 mM, ABA + 1mM cPTIO, 0.5 mM H₂O₂ and 0.5 mM H₂O₂ + 1mM cPTIO. Each image represents green (left), red (center) and the sum of both color channels (right) to highlight the distribution of the green fluorescence in the different organs. Linear levels were adjusted in all images using ImageJ 1.43 version. VT : vascular tissue.

Figure 7 D: Nitric Oxide production revealed by epifluorescence microscopy through 10 μ M NO₅₅₀ probe in placenta epidermis of tomato fruit columella treated with 0.1 mM ABA, 0.1 mM, ABA + 1mM cPTIO, 0.5 mM H₂O₂, 0.5 mM H₂O₂ + 1mM cPTIO. Each image represents green (left), red (center) and the sum of both color channels (right) to highlight the distribution of the green fluorescence in the different organs. Linear levels were adjusted in all images using ImageJ 1.43 version. E : Epidermis.

Figure 7 E: Nitric Oxide production revealed by epifluorescence microscopy through 10 μ M NO₅₅₀ probe in vascular tissue of tomato fruit columella treated with 0.1 mM ABA, 0.1 mM, ABA + 1mM cPTIO, 0.5 mM H₂O₂ and 0.5 mM H₂O₂ + 1mM cPTIO. Each image represents green (left), red (center) and the sum of both color channels (right) to highlight the distribution of the green fluorescence in the different organs. Linear levels were adjusted in all images using ImageJ 1.43 version. VT : vascular tissue.

Addicott FT CH. History and introduction. In: Addicott FT, ed. Abscisic acid. New York, USA1983.

Agrawal GK, Jwa N-S, Iwahashi H, Rakwal R. Importance of ascorbate peroxidases OsAPX1 and OsAPX2 in the rice pathogen response pathways and growth and reproduction revealed by their transcriptional profiling. Gene. 2003;322:93-103.

Baudouin E. The language of nitric oxide signalling. Plant Biology. 2011;13:233-42.

Beckers GJM, Conrath U. Priming for stress resistance: from the lab to the field. Current Opinion in Plant Biology. 2007;10:425-31.

Beligni MV, Lamattina L. Nitric oxide counteracts cytotoxic processes mediated by reactive oxygen species in plant tissues. Planta. 1999;208:337-44.

Beligni MV, Lamattina L. Nitric oxide in plants: the history is just beginning. Plant, Cell & Environment. 2001;24:267-78.

Beligni MV, Lamattina L. Nitric oxide interferes with plant photo-oxidative stress by detoxifying reactive oxygen species. Plant, Cell & Environment. 2002;25:737-48.

Bellaire BA, Carmody J, Braud J, Gossett DR, Banks SW, Cranlucas M, et al. Involvement of abscisic acid-dependent and — Independent pathways in the upregulation of antioxidant enzyme activity during NaCl stress in cotton callus tissue. Free Radical Research. 2000;33:531-45.

Bohnert HJ, Jensen RG. Strategies for engineering water-stress tolerance in plants. Trends in Biotechnology. 1996;14:89-97.

Bolwell GP. Role of active oxygen species and NO in plant defence responses. Current Opinion in Plant Biology. 1999;2:287-94.

Chen F, Wang F, Sun H, Cai Y, Mao W, Zhang G, et al. Genotype-Dependent Effect of Exogenous Nitric Oxide on Cd-induced Changes in Antioxidative Metabolism, Ultrastructure, and Photosynthetic Performance in Barley Seedlings (Hordeum vulgare). J Plant Growth Regul. 2010;29:394-408.

Clark D, Durner J, Navarre DA, Klessig DF. Nitric Oxide Inhibition of Tobacco Catalase and Ascorbate Peroxidase. Molecular Plant-Microbe Interactions. 2000;13:1380-84.

Conrath U, Pieterse CMJ, Mauch-Mani B. Priming in plant–pathogen interactions. Trends in Plant Science. 2002;7:210-16.

Corpas FJ. Cellular and Subcellular Localization of Endogenous Nitric Oxide in Young and Senescent Pea Plants. PLANT PHYSIOLOGY. 2004;136:2722-33.

Corpas FJ, Barroso JB, del Río LA. Peroxisomes as a source of reactive oxygen species and nitric oxide signal molecules in plant cells. Trends in Plant Science. 2001;6:145-50.

Correa-Aragunde N, Lombardo C, Lamattina L. Nitric oxide: an active nitrogen molecule that modulates cellulose synthesis in tomato roots. New Phytologist. 2008;179:386-96.

Cutler SR, Rodriguez PL, Finkelstein RR, Abrams SR. Abscisic Acid: Emergence of a Core Signaling Network. In: Merchant S, Briggs WR, Ort D, editors. Annual Review of Plant Biology, Vol 612010. p. 651-79.

Dat J, Vandenabeele S, Vranová E, Van Montagu M, Inzé * D, Van Breusegem F. Dual action of the active oxygen species during plant stress responses. Cellular and Molecular Life Sciences. 2000;57:779-95.

Davey MW, Montagu MV, Inzé D, Sanmartin M, Kanellis A, Smirnoff N, et al. Plant L-ascorbic acid: chemistry, function, metabolism, bioavailability and effects of processing. Journal of the Science of Food and Agriculture. 2000;80:825-60.

de Azevedo Neto AD, Prisco JT, Enéas-Filho J, Rolim Medeiros J-V, Gomes-Filho E. Hydrogen peroxide pre-treatment induces salt-stress acclimation in maize plants. J Plant Physiol. 2005;162:1114-22.

Delledonne M, Zeier J, Marocco A, Lamb C. Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response. Proceedings of the National Academy of Sciences. 2001;98:13454-59.

Foyer CH, Shigeoka S. Understanding Oxidative Stress and Antioxidant Functions to Enhance Photosynthesis. Plant Physiology. 2011;155:93-100.

Fujita M, Fujita Y, Noutoshi Y, Takahashi F, Narusaka Y, Yamaguchi-Shinozaki K, et al. Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Current Opinion in Plant Biology. 2006;9:436-42.

García-Mata C, Lamattina L. Nitric Oxide Induces Stomatal Closure and Enhances the Adaptive Plant Responses against Drought Stress. PLANT PHYSIOLOGY. 2001;126:1196-204.

Guan LM, Zhao J, Scandalios JG. Cis-elements and trans-factors that regulate expression of the maize Cat1 antioxidant gene in response to ABA and osmotic stress: H2O2 is the likely intermediary signaling molecule for the response. The Plant Journal. 2000;22:87-95.

Hancock JT, Neill SJ, Wilson ID. Nitric oxide and ABA in the control of plant function. Plant Science. 2011;181:555-59.

Huang X, von Rad U, Durner J, x000F, rg. Nitric oxide induces transcriptional activation of the nitric oxide-tolerant alternative oxidase in Arabidopsis suspension cells. Planta. 2002;215:914-23.

Jiang M, Zhang J. Effect of Abscisic Acid on Active Oxygen Species, Antioxidative Defence System and Oxidative Damage in Leaves of Maize Seedlings. Plant and Cell Physiology. 2001;42:1265-73.

Jiang M, Zhang J. Cross-talk between calcium and reactive oxygen species originated from NADPH oxidase in abscisic acid-induced antioxidant defence in leaves of maize seedlings. Plant, Cell & Environment. 2003;26:929-39.

Jourd'heuil D. Increased nitric oxide-dependent nitrosylation of 4,5-diaminofluorescein by oxidants: implications for the measurement of intracellular nitric oxide. Free Radical Biology and Medicine. 2002;33:676-84.

Karpinski S, Reynolds H, Karpinska B, Wingsle G, Creissen G, Mullineaux P. Systemic Signaling and Acclimation in Response to Excess Excitation Energy in Arabidopsis. Science. 1999;284:654-57.

Kovtun Y, Chiu W-L, Tena G, Sheen J. Functional analysis of oxidative stress-activated mitogenactivated protein kinase cascade in plants. Proceedings of the National Academy of Sciences. 2000;97:2940-45.

Laspina NV, Groppa MD, Tomaro ML, Benavides MP. Nitric oxide protects sunflower leaves against Cd-induced oxidative stress. Plant Science. 2005;169:323-30.

Lee SC, Luan S. ABA signal transduction at the crossroad of biotic and abiotic stress responses. Plant, Cell & Environment. 2012;35:53-60.

Lin C-C, Jih P-J, Lin H-H, Lin J-S, Chang L-L, Shen Y-H, et al. Nitric oxide activates superoxide dismutase and ascorbate peroxidase to repress the cell death induced by wounding. Plant Mol Biol. 2011;77:235-49.

Liu Y, Ye N, Liu R, Chen M, Zhang J. H2O2 mediates the regulation of ABA catabolism and GA biosynthesis in Arabidopsis seed dormancy and germination. Journal of Experimental Botany. 2010;61:2979-90.

Lu S, Su W, Li H, Guo Z. Abscisic acid improves drought tolerance of triploid bermudagrass and involves H2O2- and NO-induced antioxidant enzyme activities. Plant Physiology and Biochemistry. 2009;47:132-38.

Mandon J, Högman M, Merkus PJFM, van Amsterdam J, Harren FJM, Cristescu SM. Exhaled nitric oxide monitoring by quantum cascade laser: comparison with chemiluminescent and electrochemical sensors. Journal of Biomedical Optics. 2012;17:017003-1.

Martin M, Colman M, Gomezcasati D, Lamattina L, Zabaleta E. Nitric oxide accumulation is required to protect against iron-mediated oxidative stress in frataxin-deficient Arabidopsis plants. FEBS Letters. 2009;583:542-48.

Martinez GR, Di Mascio P, Bonini MG, Augusto O, Briviba K, Sies H, et al. Peroxynitrite does not decompose to singlet oxygen ($1\Delta gO2$) and nitroxyl (NO–). Proceedings of the National Academy of Sciences. 2000;97:10307-12.

Métraux JP, Signer H, Ryals J, Ward E, Wyss-Benz M, Gaudin J, et al. Increase in Salicylic Acid at the Onset of Systemic Acquired Resistance in Cucumber. Science. 1990;250:1004-06.

Mittler R, Vanderauwera S, Suzuki N, Miller G, Tognetti VB, Vandepoele K, et al. ROS signaling: the new wave? Trends in Plant Science. 2011;16:300-09.

Møller IM, Sweetlove LJ. ROS signalling - specificity is required. Trends in Plant Science. 2010;15:370-74.

Mubarakshina MM, Ivanov BN, Naydov IA, Hillier W, Badger MR, Krieger-Liszkay A. Production and diffusion of chloroplastic H2O2 and its implication to signalling. Journal of Experimental Botany. 2010;61:3577-87.

Mur LAJ, Mandon J, Persijn S, Cristescu SM, Moshkov IE, Novikova GV, et al. Nitric oxide in plants: an assessment of the current state of knowledge. AoB Plants. 2013;5.

Murshed R L-LF, Keller C, Monnet F, Sallanon H. Acclimation to Drought Stress Enhances Oxidative Stress Tolerance in Solanum lycopersicum L. Fruits. Plant Stress. 2008a;2:145-51.

Murshed R, Lopez-Lauri F, Sallanon H. Microplate quantification of enzymes of the plant ascorbateglutathione cycle. Analytical Biochemistry. 2008:320-22.

Murshed R, Lopez-Lauri F, Sallanon H. Effect of salt stress on tomato fruit antioxidant systems depends on fruit development stage. Physiol Mol Biol Plants. 2013a:1-15.

Murshed R, Lopez-Lauri F, Sallanon H. Effect of water stress on antioxidant systems and oxidative parameters in fruits of tomato (Solanum lycopersicon L, cv. Micro-tom). Physiol Mol Biol Plants. 2013b:1-16.

Neill S, Barros R, Bright J, Desikan R, Hancock J, Harrison J, et al. Nitric oxide, stomatal closure, and abiotic stress. Journal of Experimental Botany. 2008;59:165-76.

Neill SJ, Desikan R, Hancock JT. Nitric oxide signalling in plants. New Phytologist. 2003;159:11-35.

Orozco-Cárdenas ML, Narváez-Vásquez J, Ryan CA. Hydrogen Peroxide Acts as a Second Messenger for the Induction of Defense Genes in Tomato Plants in Response to Wounding, Systemin, and Methyl Jasmonate. The Plant Cell Online. 2001;13:179-91.

Patakas AA, Zotos A, Beis AS. Production, localisation and possible roles of nitric oxide in droughtstressed grapevines. Australian Journal of Grape and Wine Research. 2010;16:203-09.

Poiroux-Gonord F, Santini J, Fanciullino A-L, Lopez-Lauri F, Giannettini J, Sallanon H, et al. Metabolism in orange fruits is driven by photooxidative stress in the leaves. Physiologia Plantarum. 2013;149:175-87.

Polverari A, Molesini B, Pezzotti M, Buonaurio R, Marte M, Delledonne M. Nitric Oxide-Mediated Transcriptional Changes in Arabidopsis thaliana. Molecular Plant-Microbe Interactions. 2003;16:1094-105.

Raghavendra AS, Gonugunta VK, Christmann A, Grill E. ABA perception and signalling. Trends in Plant Science. 2010;15:395-401.

Shi S, Wang G, Wang Y, Zhang L, Zhang L. Protective effect of nitric oxide against oxidative stress under ultraviolet-B radiation. Nitric Oxide. 2005;13:1-9.

Singh HP, Kaur S, Batish DR, Sharma VP, Sharma N, Kohli RK. Nitric oxide alleviates arsenic toxicity by reducing oxidative damage in the roots of Oryza sativa (rice). Nitric Oxide. 2009;20:289-97.

Tattini M, Galardi C, Pinelli P, Massai R, Remorini D, Agati G. Differential accumulation of flavonoids and hydroxycinnamates in leaves of Ligustrum vulgare under excess light and drought stress. New Phytologist. 2004;163:547-61.

Tossi V, Lamattina L, Cassia R. An increase in the concentration of abscisic acid is critical for nitric oxide-mediated plant adaptive responses to UV-B irradiation. New Phytologist. 2009;181:871-79.

Tuteja N. Abscisic Acid and Abiotic Stress Signaling. Plant signaling and behaviour. 2007;2(3):135-38.

Vandelle E, Delledonne M. Peroxynitrite formation and function in plants. Plant Science. 2011;181:534-39.

Wendehenne D, Durner J, Klessig DF. Nitric oxide: a new player in plant signalling and defence responses. Current Opinion in Plant Biology. 2004;7:449-55.

Wendehenne D, Pugin A, Klessig DF, Durner J. Nitric oxide: comparative synthesis and signaling in animal and plant cells. Trends in Plant Science. 2001;6:177-83.

Xie Y, Ling T, Han YI, Liu K, Zheng Q, Huang L, et al. Carbon monoxide enhances salt tolerance by nitric oxide-mediated maintenance of ion homeostasis and up-regulation of antioxidant defence in wheat seedling roots. Plant, Cell & Environment. 2008;31:1864-81.

Yamaguchi-Shinozaki KSaK. Gene Expression and Signal Transduction in Water-Stress Response. Plant Physiology. 1997;115(2):327-34.

Yang Y, Seidlits SK, Adams MM, Lynch VM, Schmidt CE, Anslyn EV, et al. A Highly Selective Low-Background Fluorescent Imaging Agent for Nitric Oxide. Journal of the American Chemical Society. 2010;132:13114-16.

Ye N, Zhu G, Liu Y, Li Y, Zhang J. ABA Controls H2O2 Accumulation Through the Induction of OsCATB in Rice Leaves Under Water Stress. Plant Cell Physiol. 2011;52:689 - 98.

Yu C-W, Murphy TM, Lin C-H. Hydrogen peroxide-induced chilling tolerance in mung beans mediated through ABA-independent glutathione accumulation. Functional Plant Biology. 2003;30:955-63.

Yu M, Lamattina L, Spoel SH, Loake GJ. Nitric oxide function in plant biology: a redox cue in deconvolution. New Phytologist. 2014:n/a-n/a.

Zhang A, Jiang M, Zhang J, Ding H, Xu S, Hu X, et al. Nitric oxide induced by hydrogen peroxide mediates abscisic acid-induced activation of the mitogen-activated protein kinase cascade involved in antioxidant defense in maize leaves. New Phytologist. 2007;175:36-50.

Zhang A, Jiang M, Zhang J, Tan M, Hu X. Mitogen-Activated Protein Kinase Is Involved in Abscisic Acid-Induced Antioxidant Defense and Acts Downstream of Reactive Oxygen Species Production in Leaves of Maize Plants. PLANT PHYSIOLOGY. 2006;141:475-87.

Zhang J, Davies WJ. Antitranspirant Activity in Xylem Sap of Maize Plants. Journal of Experimental Botany. 1991;42:317-21.

Zhang X, Kim W-S, Hatcher N, Potgieter K, Moroz LL, Gillette R, et al. Interfering with Nitric Oxide Measurements: 4,5-DIAMINOFLUORESCEIN REACTS WITH DEHYDROASCORBIC ACID AND ASCORBIC ACID. Journal of Biological Chemistry. 2002;277:48472-78.

Zhou B, Guo Z, Xing J, Huang B. Nitric oxide is involved in abscisic acid-induced antioxidant activities in Stylosanthes guianensis. Journal of Experimental Botany. 2005;56:3223-28.

Chapitre 3-3. Analyse transcriptomique de la réponse de fruits de tomates après à l'oxyde nitrique et à un déficit hydrique.

Le sous chapitre 3-3 présente les résultats préliminaires de l'analyse transcriptomique de la réponse de fruits de tomates détachés après un traitement à l'oxyde nitrique et à un déficit hydrique.

Nos précédentes études indiquent qu'au cours d'un déficit hydrique rapide, le système antioxydant dans les fruits peut être induit même en absence de symptôme de stress hydrique dans ces derniers. Nous avons également montré que le NO est induit en réponse au déficit hydrique et qu'il pourrait participer au maintien du statut redox dans les fruits de tomate.

L'objectif de la présente étude était de déterminer les gènes induits par NO dans les fruits de tomates d'une part et par le déficit hydrique d'autre part afin de mieux comprendre les mécanismes impliqués dans la signalisation NO dans le fruit en réponse au stress.

Résultats et discussion

Expression génique

L'analyse transcriptomique de fruits de tomates traités avec du NO et au déficit hydrique, montre après filtrage statistique que 1059 gènes sont significativement régulés dans les conditions testées (Figure 1). Le profil d'expression génique révélé dans les deux conditions testées montre une proportion plus importante de gènes sur-exprimés que sous exprimés. Après le traitement NO, l'expression de 97 gènes est régulée dont 92 gènes sont sur-exprimés (Figure 2 et Tableau 2. (annexes)) et 5 sont sous-exprimés (Figure 3 et Tableau 2 (annexes)). Le déficit hydrique quant à lui présente une régulation de 985 gènes dont 626 gènes sont sur-exprimés (Figure 4 et Tableau 3. (annexes)) et 359 sont sous-exprimés (Figure 5 et Tableau 4. (annexes)). La proportion de gènes régulés par les 2 traitements est plus importante lors d'un traitement au déficit hydrique.

Figure 1: Diagramme de Venn représentant les gènes différentiellement exprimés dans les conditions testées. Chaque cercle correspond à un traitement : NO (violet) et de déficit hydrique (bleu). Les gènes sur-exprimés au moins 1.5 fois figurent en rouge. En bas à droite de la figure est représenté l'effectif de gènes non affectés par un changement d'état.

Figure 2 Distribution des 92 gènes surexprimés par le traitement au NO d'après leur fonction.gènes surexprimés par le traitement au NO d'après leur fonction.

Figure 3 Distribution des 5 gènes sousexprimés par le traitement au NO d'après leur fonction.

Figure 4 Distribution des 626 gènes surexprimés par le traitement au déficit hydrique d'après leur fonction

Figure 5 Distribution des 359 gènes sousexprimés par le traitement de déficit hydrique d'après leur fonction.

Traitement NO et le déficit hydrique partagent 39 % de gènes de défense

De plus l'analyse transcriptomique de l'expression des gènes régulés par le traitement NO et un déficit hydrique révèle que 23 gènes sont régulés par le traitement NO mais également par le traitement hydrique. Le même profil de régulation a été observé dans les deux traitements avec une sur-expression de 21 gènes et une sous-expression deux 2 gènes. Ces résultats révélent une possible co-régulation de ces gènes impliqués dans 4 grandes fonctions : défense (~39 %), métabolisme (~30 %) et transport de l'eau (~13 %), processus de développement (~4 %) (Tableau. 1).

Les gènes de défense co-régulés par le NO et le stress hydrique supporte d'autant plus le rôle important joué par le NO dans la mise en place de système de défense au cours de conditions défavorables (Corpas *et al.*, 2011; Lin *et al.*, 2011; Xiong *et al.*, 2010; Yu *et al.*, 2014). De façon intéressante nous avons noté que l'APX cytosolique (APX1) faisait partie de cette sélection. Au cours de nos précédentes études, nous avons contasté de fortes augmenations de l'activité de l'APX induites par le NO. Cette augmentation au niveau transcriptionnel, nous confirme l'importance du NO dans la régulation de cette enzyme antioxydante qui est de plus intimement lié à l'ascorbate, son substrat. Parmi les gènes de défense co-régulés, nous pouvons compter des subtilisine-like protéases, des sérines protéases qui possèdent divers fonctions chez les végétaux en passant du développement jusqu'à la signalisation ainsi que dans la défense (Rautengarten C, 2005; Schaller, 2004). Il est intéressant de noter que ces protéases sont surtout associées au stress biotique, notamment au
travers de la surexpression de la tomato P69 au cours d'attaques de pathogènes (Jordá *et al.*, 1999; Vartapetian, 2011). Le monoterpène synthase 1 (MTS1) a été surexprimé de façon égale dans les deux traitements. Cette enzyme est impliqueé dans la voie de synthèse de terpénoïdes qui sont impliqués dans un nombre important de fonctions physiologiques. Les terpénes entrent dans la composition de certains phytohormones tels que les gibbérellines (GAs), l'ABA, les strigolactones et les cytokinines (Chen et al., 2011). Les terpènes sont aussi la première ligne de défense des végétaux contre les attaques de d'herbivores et de pathogènes (Miller et al., 2005).

Function	Accession number	Description	Fold change NO/TM (log2)	ttest TMvsNO	Fold Change SH/TM(log2)	Ttest TMvsSH
Water transport						
	BG130774	Aquaporin PIP2-1-like (LOC101248037), misc_RNA	1.146	0.02	2.3	0.009
	BG131363	Aquaporin PIP2-1-like (LOC101248037), misc_RNA	1.188	0.03	1.4	0.049
	BG626235	Aquaporin PIP2-1-like (LOC101247747), misc_RNA	0.674	0.03	0.9	0.008
Defense						
	AI775181	Cytosolic ascorbate peroxidase 1 (APX1), mRNA, complete cds	0.662	0.03	1	0.019
	AK327374	Agmatine coumaroyltransferase-2-like (LOC101244961), mRNA	0.689	0.01	2.1	0.001
	AK326126	Anthocyanidin 3-O-glucosyltransferase-like, transcript variant 3 (LOC101244316), mRNA	0.728	0.04	1.1	0.018
	EG553627	Disease resistance response protein 206-like (LOC101250552), mRNA	1.066	0.02	0.6	0.037
	MTS1/ AY840091	Monoterpene synthase 1 (MTS1) mRNA, complete cds	1.607	0.01	1.6	0.015
	GH623050	PCF0595x184 PAMP-elicited tomato leaf cDNA 5', mRNA	0.894	0.04	1.5	0.018
	TA38526_4081	Subtilisin-like protease-like (LOC101252447), mRNA	1.152	0.01	0.7	0.041
	BT013554	Subtilisin-like protease-like (LOC101252733), mRNA	0.965	0.01	0.6	0.046
	XTH6/AY497477	Xyloglucan endotransglucosylase-hydrolase XTH6, mRNA	0.616	0.01	1	0.001
Metabolism						
	DB710426	Arabidopsis thaliana Sulfite exporter TauE/SafE family protein mRNA, complete cds	1.237	0.02	1.4	0.026
	AK320876	Monothiol glutaredoxin-S1-like (LOC101250592), mRNA	0.889	0.04	1.1	0.041
	AJ320056	Polygalacturonase At1g48100-like (LOC101261316), mRNA	0.804	0.03	1.2	0.001
	TA55012_4081	Polygalacturonase At1g48100-like (LOC101261316), mRNA	1.26	0.04	1.9	0.002
	TPRP-F 1/ BT013052	Proline rich protein, transcript variant 2 (TPRP-F1), mRNA	2.454	0.01	1.5	0.033
	TPRP-F1/ BI932748	Proline rich protein, transcript variant 2 (TPRP-F1), mRNA	1.45	< 0.01	1.2	0.019
	AK319704	Salutaridinol 7-O-acetyltransferase-like (LOC101260610), mRNA	0.603	0.03	0.7	0.012
Others						
	BG127261	Pollen allergen Che a 1-like (LOC101262972), mRNA	0.74	0.03	0.9	0.011
	TA38992_4081	Uncharacterized LOC101258883 (LOC101258883), mRNA	1.139	0.03	1.3	0.046

Table1 Expression de gènes co-régulés par les traitements NO et déficit hydrique

Chapitre 3-3 : Analyse transcriptomique de la réponse de fruits de tomates au NO et à un déficit hydrique.

Down regulation								
Developmental processes	GT167928	Thaumatin-like protein-like (LOC101266146), mRNA	-2.07	0.01	-2.971	0.013		
	AK247664	Unknown	-1.6	0.01	-1.44	0.02		

L'acide jasmonique, le NO et le déficit hydrique

Au cours de cette étude nous avons également noté une surexpression de nombreux gènes impliqués dans la synthèse de l'acide jasmonique. Une partie de ces gènes étaient induits soit par le NO ou le stress hydrique (Figure 6). La synthèse de l'acide jasmonique est initiée par la dégradation d'acides gras polyinsaturés par des lipoxygénases (LOXs) (Wasternack, 2007). Ces acides d'acides gras polyinsaturés peuvent provenir de la monogalactosyldiacylglycerol (MGDG), un glycolipide important dans la composition de la membrane chloroplastique (Cyrille et al., 2011). Le traitement NO a aussi induit une surexpression de la 3-ketoacyl-CoA thiolase 2 (KAT2), la dernière enzyme de la voie de biosynthèse de JA (Cruz Castillo et al., 2004). La synthèse de l'acide jasmonique se déroule dans deux organites distincts dans la cellule, le choroplaste et le peroxisome. Dans le premier, le composé final est le 12-oxo-phytodienoic acid (OPDA) et celui-ci doit être transporté vers le peroxisome. Ce transport est assuré par des ABC transporter (Hayashi et al., 2002; Zolman et al., 2001) et nous avons noté une forte surexpression de ce transporteur au cour du stress hydrique. De plus, les gène 12-oxophytodienoate reductase 1 et 3 (OPRI et OPR3) qui sont responsables de la réduction de l'OPDA en 2S-3-oxo- 2(2'[Z]pentenyl)-cyclopentane-1-octanoate (OPC) (Breithaupt et al., 2006), l'étape avant l'intervention de la KAT sont aussi positivement régulé durant le déficit hydrique. Ces observations suggèrent que le NO participe dans la production de JA au cours d'un déficit hydrique.

Figure 6 Co-expression de gènes impliqués dans la voie de biosynthèse de l'acide jasmonique par le NO et le déficit hydrique.

Sand et Ef comme gène de référence

La précision et fiabilité des résultats obtenus par la mesure de l'expression de gènes en qPCR en temps réel nécessite, de prendre diverses précautions lors des étapes de pré et poste mesures listées dans le guide MIQE (Bustin et al., 2009). Parmi elles, le choix d'un gène de référence stable pour calculer la mesure relative de l'expression de gènes d'intérêt apparait être un prérequis indispensable afin d'éviter les erreurs d'interprétation des résultats pouvant être liés à des biais d'expérimentations (Vandelsomple et al., 2002 ; Bustin et al., 2009).

Dans ces conditions cinq gènes de références potentiels ont été évalués : 2 gènes de références classiques actine, act (FJ532351) et le facteur d'élongation, Ef (X53043) ; et 3 nouveaux gènes Tip41 (SGN-U321250), Sand (SGN-U316474) et Cac (SGN-U314153) issus de la banque Sol Genomics Network (SGN) et préalablement testés par (Exposito-Rodriguez et al., 2008) Exposito-Rodriguez et al., (2008) dans le cadre d'une étude sur le développement des tomates.

Les résultats d'expression en temps réel des gènes de référence obtenus dans les différentes conditions de l'expérimentation ont été soumis à 2 logiciels de traitements de données GeNorm (Vandesompele et al., 2002a) et Normfinder (Andersen et al., 2004) afin d'établir quel(s) sont les meilleurs gènes de références adaptés aux conditions expérimentales de l'étude.

Le premier logiciel a permis de classer les gènes de références selon leur stabilité d'expression, M (Fig 7). Les résultats obtenus montrent que les gènes de références Sand, Ef et Cac sont les plus stables tandis que l'actine est le gène présentant une expression peu stable dans les échantillons de l'expérimentation. Ces résultats ont été confirmés via le logiciel Normfinder où Sand a été déterminé comme étant le gène de référence le plus stable, avec une valeur de stabilité de 0.159 et l'actine le gène de référence le moins stable pour nos conditions expérimentales (0.226). Bien que classiquement utilisé dans de nombreuses études, l'actine ne doit être utilisé que lorsqu'il est stable dans l'ensemble des conditions expérimentales et doit être testé dans tout les cas afin d'éviter toutes erreurs d'interprétations. En effet il est admis depuis quelques années qu'il n'existe pas de gènes de référence universels, qui soient exprimés de façon stable, dans toutes les conditions et types de cellules étudiées (Brunner et al., 2004; Hruz et al., 2011). De plus l'utilisation d'un seul gène de référence a souvent été critiquée du fait du peu de stabilité des gènes de références et de la grande source d'erreur générée par l'utilisation d'un seule gène de référence non validé (de l'ordre de 3 fois dans 25 % des cas voir 6 fois dans 10 % des cas) (Vandesompele et al., 2002b). Le logiciel GeNorm a permis calculer la variation par paire de l'ensemble des gènes de références étudiés. (Vn/Vn+1) et de déterminer que 2 gènes de références doivent être utilisés pour que le calcul de l'expression relative des gènes d'intérêts soit le plus fiable en se basant sur une valeur seuil de 0.15 au-dessous de laquelle il n'est pas nécessaire d'ajouter un gène de référence aux plans expérimental (Vandesompele et al., 2002b)

Figure 7 Stabilité des gènes de références.

L'analyse du transcriptome montre que le NO induit très peu de gènes dans le fruit de tomate comparé au déficit hydrique. Cependant, un nombre relativement important de ces gènes est impliqué dans des systèmes de défense ou encore dans des voies métabolique importantes comme le transports d'eau. Ce résultas restent à être valider par qPCR, travail que nous avons entamer et qui sera prochainement exploitable. Cette étude a aussi permis d'évaluer les gènes de références les plus stables : Sand, Ef et Cac respectivement et quel était le nombre optimal de gènes de références nécessaires pour réaliser des calculs de l'expression relative de gènes d'intérêt.

Discussion générale et conclusion

L'objectif de ce travail de thèse était d'étudier l'implication de molécules signal telles que le NO et l'ABA dans les réponses des fruits de tomate (*Solanum lycopersicum* L.Cv Micro-Tom), soumis à un déficit hydrique rapide et contrôlé. Les concentrations de ces molécules ont été mesurées en condition de déficit hydrique. Les paramètres biochimiques étudiés étaient les paramètres oxydatifs (H₂O₂ et MDA), les activités des enzymes antioxydantes (SOD, CAT, APX, DHAR, MDHAR et GR) et les teneurs en vitamine C. Une analyse du transcriptome a été réalisée au regard de sa modulation par le NO et le déficit hydrique. Ce travail a permis de produire trois articles pouvant être potentiellement publiés dans des revus à comité de lecture. Les résultats expérimentaux sont discutés dans le texte qui suit afin de mettre en évidence les stratégies de réponse au stress oxydant provoqué par un déficit hydrique chez les fruits de tomate.

Un des défis de cette étude, était de provoquer un stress hydrique rapide afin de pouvoir suivre la réponse de la plante avant que les mécanismes adaptatifs ne se mettent en place. Ce critère nous semblait d'importance capitale car le NO ainsi que l'ABA participent dans un grand nombre de mécanisme biologique chez les végétaux (León et al., 2013). Ce défi a été relevé en inhibant l'activité des aquaporines avec du chlorure de mercure (HgCl₂), et par conséquence l'absorption et le flux d'eau assurés par la poussée racinaire (Lopez *et al.*, 2003; Maggio and Joly, 1995). La baisse significative du flux d'eau ainsi que la chute du potentiel hydrique au niveau des feuilles, a permis de confirmer que le HgCl₂ avait bien causé un déficit hydrique. De plus l'absence de perturbation au niveau du photosystème II a confirmé que le stress hydrique n'avait pas été affecté le fonctionnement et la structure de l'appareil photosynthétique.

Les teneurs en MDA et en H_2O_2 ont servi d'indicateurs du statut oxydatif dans cette étude. Nous avons noté qu'après 24h de déficit hydrique, la concentration en H_2O_2 avait augmentée dans les feuilles, les pédicelles et à moindre niveau dans les péricarpes des fruits entrainant une peroxydation des membranes des deux premiers organes. La protection des membranes peut être expliquée par l'augmentation de l'activité de la catalase et de l'APX que nous avons mesuré au niveau du péricarpe. De plus, l'absence de mercure dans les cellules des fruits soutient le fait que ce n'est pas une contamination au mercure qui a conduit à la mise en place du système de défense enzymatique, mais bien le déficit hydrique engendré par le blockage des aquaporines. Au cours de cette étude, nous avons non seulement détecté une surproduction de NO pendant les traitements au déficit hydrique, et notamment une sur production importante de NO pendant la nuit. Ce phénomène intéressant et la localisation de la production de NO dans les chloroplastes supportent la possible implication de la nitrate réductase (NR) dans la production de NO. En effet, il a été démontré qu'en plus de sa capacité à réduire le nitrate en nitrite, la NR pouvait aussi produire du NO (Rockel et al., 2002). A l'obscurité, l'activité de la nitrite réductase responsable de la réduction du nitrite, est fortement amoindrie à cause du manque de ferrédoxine apporté par la photosynthèse. L'augmentation de la production de NO pourrait s'expliquer par l'accumulation de nitrite qui est essentiel pour la NR dans la production de NO (Sakihama et al., 2002). Qui plus est la détection de NO au niveau chloroplastique par microscopie à fluorescence supporte d'avantage cette source potentielle de NO. L'étude microscopique de nos échantillons nous a aussi révélé la présence de NO au niveau des faisceaux vasculaires, ce qui va dans le sens de (Corpas et al., 2004a) Corpas et al., (2004) qui suggère une signalisation à longue distance par le NO au travers des vaisseaux conducteurs. Nous avons aussi détecté une induction de NO dans les cellules des trichomes, qui sont parmi les premiers à répondre à des attaques d'insectes (Lin et al., 1987) suggérant une possible intervention de ces derniers également au cours de stress hydrique. Nous avons aussi noté une surproduction de NO dans les cellules de garde où il a été démontré que le NO agissait en synergie avec l'ABA et le H₂O₂ dans leurs fonctionement (Bright et al., 2006; García-Mata and Lamattina, 2003; Neill et al., 2002). Au cours de notre étude, nous avons constaté une forte augmentation de l'activité des enzymes antioxydantes suite à un traitement au NO. Cependant, il y a des données contradictoires dans la littérature sur l'effet du NO. Clark et al., (2000) et De Pinto et al., (2006) déclarent que le NO a un effet inhibiteur sur l'activité de l'APX et la CAT chez le tabac alors que Chen et al., (2010) et Keyster et al., (2011) indiquent le contraire chez des plantules de blé et des nodules de Soja. L'augmentation de la concentration d'ABA dans les feuilles suite au traitement de déficit hydrique, est en accord avec de précédentes études (Chinnusamy et al., 2008; Christmann et al., 2007; Hubbard et al., 2010; Kim et al., 2010). Il est maintenant établi que le NO et l'ABA sont intimement liés dans un nombre important de fonctions physiologiques chez les végétaux (Hancock et al., 2011). Chez la luzerne (Stylosanthes guianensis), ces deux molécules ont révélé une action synergique dans l'augmentation de l'activité des enzymes SOD, CAT et APX.

Ce travail a permis de suivre les interactions entre trois molécules signal, le NO, l'ABA et le H_2O_2 , dans le maintient du statut redox dans des fruits détachés. Nous avons démontré la production de NO dans des fruits de tomate détachés traités avec de l'ABA et du H_2O_2 . Une plus forte production de NO a été notée en présence de H_2O_2 que d'ABA dans chaque fruit traité. Le mécanisme récemment décrit par (Yu et al., 2014) menant à la production de NO durant un

déficit hydrique peut aider à expliquer ce phénomène. Ils mettent en avant une augmentation de la concentration d'ABA au cours d'un déficit hydrique qui conduit à une activation de NADPH oxydase résultant à une production de H_2O_2 . Le H_2O_2 ainsi produit activerait la production de NO au travers de la NR qui à son tour activerait des protéines kinases activées par des agents mitogènes (MAPK).

Nous avons aussi révélé un fort impact du NO sur les enzymes de recyclage de l'ascorbate au cours de ce travail. Ces résultats vont dans le sens de la littérature où le NO est décrit comme un acteur important dans la mise en place de mécanismes de défense pour faire face à des conditions défavorables (Yu et al., 2014). L'augmentation de l'activité de l'APX par le NO a été confirmée par la baisse significative de H₂O₂, sa principale cible et de l'ascorbate son substrat, dans les fruits traités au SNP. Nous avons aussi noté une hausse telle de l'activité des enzymes MDHAR et DHAR dans ces derniers que la forme oxydée de l'ascorbate de dehydroascorbate n'était plus détectable. La participation du NO dans leur induction a été confirmée par les traitements au cPTIO où nous avons noté une baisse significative dans l'activité de ces enzymes pour atteindre le niveau des fruits non traités.

Le suivi de l'interaction entre les trois molécules a démontré une baisse significative de la teneur en H_2O_2 suite à un traitement à l'ABA, ce qui est consistant avec les observations de (Ye et al., 2011) qui suggèrent un contrôle de la teneur en H_2O_2 au travers de la régulation de gènes de la catalase. Cependant, nous avons aussi noté une diminution de la concentration en ABA suite au traitement H_2O_2 ce qui suggère une rétrocontrôle de la synthèse de l'ABA par ce dernier. Ainsi, à de fortes concentrations, le H_2O_2 conduit à la dégradation de l'ABA ainsi qu'à l'activation des enzymes antioxydantes. Ces résultats sont en accord avec l'hypothèse de Bellaire et al. (2000) qui propose une voie de signalisation par l'ABA peut être coordonnée par le H_2O_2 , notamment au travers de l'activation de NAPDH oxydases.

En conclusion, les études menées au cours de cette thèse ont permis de démontrer que le NO et l'ABA sont sollicités très tôt au cours d'un déficit hydrique. Nous avons aussi montré que tous les deux mais aussi le H_2O_2 pouvaient augmenter les activités des enzymes antioxydantes. De plus une forte relation semble exister entre ces trois molécules dans la mise en place de mécanismes adaptatifs au cours d'un déficit hydrique. Un de ces mécanismes que nous avons mis en lumière est le maintien du statut oxydatif dans les fruits au travers de la régulation d'enzymes antioxydantes impliquées dans le recyclage de l'ascorbate. L'analyse du transcriptome a permis de mettre en évidence les autres cibles de NO dans le fruit. En occurrence nous avons pu voir que

le NO pouvait participer dans la synthèse de phytohormone tel l'acide jasmonique mais aussi interagir avec d'autre hormone végétale comme l'éthylène ou l'ABA. Nous avons aussi pu démontrer que le NO pouvait intervenir dans la régulation du déficit hydrique non seulement en agissant sur l'expression de gène d'enzymes antioxydantes et leurs activités mais aussi au travers de la régulation des aquaporines. Les résultats obtenus au cours de nos différentes études sont schématisés dans la figure 19 mettant en lumière les interactions observées.

Figure 19 Schéma décrivant les principaux résultats obtenus au cours de ce travail de thèse et les interactions mise en lumières. — Etude du déficit hydrique sur la production du NO, de l'ABA et H_2O_2 . — Etude des effets de ces molécules signal sur fruits détachés. — Etude transcriptomique de l'effet du NO et du déficit hydrique sur des fruits détachés.

Perspectives

Lors du déficit hydrique provoqué par l'arrêt du flux d'eau racinaire, la feuille subit un stress oxydatif et une chute de son potentiel hydrique. Les fruits ne présentent pas de différence de potentiel hydrique, cependant, on observe une augmentation de l'activité du système antioxydant et une production de NO.

Nous avons ici initié l'étude de la signalisation en réponse au stress oxydatif induit par le déficit hydrique chez les fruits de tomate du cultivar Micro-Tom. Nous nous sommes particulièrement intéressés aux systèmes antioxydants, enzymatiques et non-enzymatiques. Nos travaux ont mis en évidence le rôle majeur joué par l'oxyde nitrique lors du stress et dans le maintien du statut oxydatif et son implication dans la régulation des enzymes du recyclage de la vitamine C et non dans sa synthèse. Sachant que le recyclage de la vitamine C peut contrôler sa concentration dans le fruit, un traitement au NO en post-récolte pourrait être utilisé pour améliorer sa qualité nutritionnelle.

Etant donné que nous avons noté une forte augmentation de la concentration en NO pendant la nuit en réponse au déficit hydrique, il serait intéressant de déterminer plus en détail son origine (localisation cellulaire, enzyme impliquée...) pendant cette période. Pour cela, il serait d'abord judicieux de valider l'implication de la nitrate réductase en suivant son activité en réponse aux traitements et ceci pendant les phases obscures et lumineuse de la photopériode. L'utilisation de mutants nitrate réductase, nia, pourrait être utile afin de confirmer l'implication de cette enzyme dans la synthèse du NO. Le cultivar Micro-Tom présente l'avantage de posséder une quantité relativement importante de mutants (Carvalho *et al.*, 2011). Ces mutants pourraient permettre de mieux comprendre les interactions existantes entre le NO, et les phytohormones et aider dans le déchiffrement de la voie de biosynthèse du NO. De plus, étant donné la précision de détection de la méthode mise en place par l'équipe du Trace Gas Facility de l'Université de Radbound, il serait intéressant de retourner faire des mesures de NO sur ces mutants et sur une autre variété de tomate commerciale.

L'analyse du transcriptome montre que le NO induit très peu de gènes dans le fruit de tomate. La régulation par le NO étant majoritairement de nature post transcriptionnelle, il serait intéressant de poursuivre les travaux pour identifier les protéines régulées par le NO via la nitrosylation et nitratation par une analyse protéomique en interaction avec l'ABA et H₂O₂. Ces dernières pourraient être complétées par une analyse transcriptomique de nouvelle génération ("nextgeneration sequencing technologies", (Metzker, 2010)); un outil qui pourrait s'avérer

particulièrement puissant pour les analyses d'expression compte tenu de la connaissance du génome de la tomate (International Tomato Sequencing Project, http://solgenomics.net/). Toutes ces études pourraient apporter des réponses sur le mécanisme de signalisation par le NO (son transport, ces cibles et son mode d'action).

L'acide abscissique, l'éthylène, le statut oxydatif et les conditions environnementales jouent un rôle clé dans la maturation des fruits climactériques. Etant donné que l'oxyde nitrique interagit avec ces quatre composantes, on peut se demander quel est le rôle de l'oxyde nitrique dans le contrôle de la maturation des fruits. Cet axe de recherche est à développer chez la tomate et d'autres fruits modèles et pourra contribuer à l'amélioration de la gestion de la maturation des fruits en post-récolte.

Etant donné que nous avons noté une forte augmentation de la concentration en NO pendant la nuit en réponse au déficit hydrique, il serait intéressant de déterminer plus en détail son origine (localisation cellulaire, enzyme impliquée...) pendant cette période. Pour cela, il serait d'abord judicieux de valider l'implication de la nitrate réductase en suivant son activité en réponse aux traitements et ceci pendant les phases obscures et lumineuse de la photopériode. L'utilisation de mutants nitrate réductase, nia, pourrait être utile afin de confirmer l'implication de cette enzyme dans la synthèse du NO. Le cultivar Micro-Tom présente l'avantage de posséder une quantité relativement importante de mutants (Carvalho *et al.*, 2011). Ces mutants pourraient permettre de mieux comprendre les interactions existantes entre le NO, et les phytohormones et aider dans le déchiffrement de la voie de biosynthèse du NO. De plus, étant donné la précision de détection de la méthode mise en place par l'équipe du Trace Gas Facility de l'Université de Radbound, il serait intéressant de retourner faire des mesures de NO sur ces mutants et sur une autre variété de tomate commerciale.

L'analyse du transcriptome montre que le NO induit très peu de gènes dans le fruit de tomate. La régulation par le NO étant majoritairement de nature post transcriptionnelle, il serait intéressant de poursuivre les travaux pour identifier les protéines régulées par le NO via la nitrosylation et nitratation par une analyse protéomique en interaction avec l'ABA et H₂O₂. Ces dernières pourraient être complétées par une analyse transcriptomique de nouvelle génération ("nextgeneration sequencing technologies", (Metzker, 2010)); un outil qui pourrait s'avérer particulièrement puissant pour les analyses d'expression compte tenu de la connaissance du génome de la tomate (International Tomato Sequencing Project, http://solgenomics.net/). Toutes ces études pourraient apporter des réponses sur le mécanisme de signalisation par le NO (son transport, ces cibles et son mode d'action).

Abello N, Kerstjens HAM, Postma DS, Bischoff R. 2009. Protein Tyrosine Nitration: Selectivity, Physicochemical and Biological Consequences, Denitration, and Proteomics Methods for the Identification of Tyrosine-Nitrated Proteins. *Journal of Proteome Research* **8**, 3222-3238.

Addicott FT CH. 1983. History and introduction. In: Addicott FT, ed. Abscisic acid. New York, USA.

Addicott FT, Lyon JL, Ohkuma K, Thiessen WE, Carns HR, Smith OE, Cornforth JW, Milborrow BV, Ryback G, Wareing PF. 1968. Abscisic acid: a new name for abscisin II (dormin). *Science* **159**, 1493.

Agius F, Gonzalez-Lamothe R, Caballero JL, Munoz-Blanco J, Botella MA, Valpuesta V. 2003. Engineering increased vitamin C levels in plants by overexpression of a D-galacturonic acid reductase. *Nat Biotechnol* **21**, 177-181.

Agrawal GK, Jwa N-S, Iwahashi H, Rakwal R. 2003. Importance of ascorbate peroxidases OsAPX1 and OsAPX2 in the rice pathogen response pathways and growth and reproduction revealed by their transcriptional profiling. *Gene* **322**, 93-103.

Andersen C, Jensen J, Orntoft T. 2004. Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. *Cancer Res* **64**, 5245 - 5250.

Asada K. 1992. Ascorbate peroxidase – a hydrogen peroxide-scavenging enzyme in plants. *Physiologia Plantarum* **85**, 235-241.

Asada K. 1999. THE WATER-WATER CYCLE IN CHLOROPLASTS: Scavenging of Active Oxygens and Dissipation of Excess Photons. *Annual Review of Plant Physiology and Plant Molecular Biology* **50**, 601-639.

Asada K. 2000. The water–water cycle as alternative photon and electron sinks. *Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences* **355**, 1419-1431.

Asada K. 2006. Production and Scavenging of Reactive Oxygen Species in Chloroplasts and Their Functions. *Plant Physiology* **141**, 391-396.

Astier J, Lindermayr C. 2012. Nitric Oxide-Dependent Posttranslational Modification in Plants: An Update. *International Journal of Molecular Sciences* **13**, 15193-15208.

В

Balafanova Z, Bolli R, Zhang J, Zheng Y, Pass JM, Bhatnagar A, Tang X-L, Wang O, Cardwell E, Ping P. 2002. Nitric oxide induces nitration of PKC facilitating translocation via enhanced RACK2 interactions: A novel mechanism of NO-triggered activation of PKC. *Journal of Biological Chemistry*.

Baudouin E. 2011. The language of nitric oxide signalling. *Plant Biology* **13**, 233-242.

Baudouin E, Hancock J. 2014. Nitric Oxide Signalling in Plants. Frontiers in Plant Science 4.

Beckers GJM, Conrath U. 2007. Priming for stress resistance: from the lab to the field. *Current Opinion in Plant Biology* **10**, 425-431.

Beligni MV, Lamattina L. 1999. Nitric oxide counteracts cytotoxic processes mediated by reactive oxygen species in plant tissues. *Planta* 208, 337-344.

Beligni MV, Lamattina L. 2001. Nitric oxide in plants: the history is just beginning. *Plant, Cell & Environment* 24, 267-278.

Beligni MV, Lamattina L. 2002. Nitric oxide interferes with plant photo-oxidative stress by detoxifying reactive oxygen species. *Plant, Cell & Environment* 25, 737-748.

Bellaire BA, Carmody J, Braud J, Gossett DR, Banks SW, Cranlucas M, Fowler TE. 2000. Involvement of abscisic acid-dependent and — Independent pathways in the upregulation of antioxidant enzyme activity during NaCl stress in cotton callus tissue. *Free Radical Research* **33**, 531-545.

Bethke PC, Badger MR, Jones RL. 2004. Apoplastic Synthesis of Nitric Oxide by Plant Tissues. *The Plant Cell Online* **16**, 332-341.

Bode AM, Cunningham L, Rose RC. 1990. Spontaneous decay of oxidized ascorbic acid (dehydro-L-ascorbic acid) evaluated by high-pressure liquid chromatography. *Clinical Chemistry* **36**, 1807-1809.

Bohnert HJ, Jensen RG. 1996. Strategies for engineering water-stress tolerance in plants. *Trends in Biotechnology* **14**, 89-97.

Bolwell GP. 1999. Role of active oxygen species and NO in plant defence responses. *Current Opinion in Plant Biology* **2**, 287-294.

Bowler C, Van Camp W, Van Montagu M, Inzé D, Asada K. 1994. Superoxide Dismutase in Plants. *Critical Reviews in Plant Sciences* 13, 199-218.

Breithaupt C, Kurzbauer R, Lilie H, Schaller A, Strassner J, Huber R, Macheroux P, Clausen T. 2006. Crystal structure of 12-oxophytodienoate reductase 3 from tomato: Self-inhibition by dimerization. *Proceedings of the National Academy of Sciences* **103**, 14337-14342.

Bright J, Desikan R, Hancock JT, Weir IS, Neill SJ. 2006. ABA-induced NO generation and stomatal closure in Arabidopsis are dependent on H2O2 synthesis. *The Plant Journal* **45**, 113-122.

Brunner A, Yakovlev I, Strauss S. 2004. Validating internal controls for quantitative plant gene expression studies. *BMC Plant Biol* **4**, 14.

Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT. 2009. The MIQE Guidelines: Minimum Information for Publication of Quantitative Real-Time PCR Experiments. *Clinical Chemistry* **55**, 611-622.

Byrnes CA, Bush A, Shinebourne EA. 1996. [44] Measuring expiratory nitric oxide in humans. In: Lester P, ed. *Methods in Enzymology*, Vol. Volume 269: Academic Press, 459-474.

С

Caro A, Puntarulo S. 1998. Nitric oxide decreases superoxide anion generation by microsomes from soybean embryonic axes. *Physiologia Plantarum* **104**, 357-364.

Carvalho R, Campos M, Pino L, Crestana S, Zsogon A, Lima J, Benedito V, Peres L. 2011. Convergence of developmental mutants into a single tomato model system: 'Micro-Tom' as an effective toolkit for plant development research. *Plant Methods* **7**, 18.

Cassina AM, Hodara R, Souza JM, Thomson L, Castro L, Ischiropoulos H, Freeman BA, Radi R. 2000. Cytochrome c Nitration by Peroxynitrite. *Journal of Biological Chemistry* **275**, 21409-21415.

Chen F, Tholl D, Bohlmann J, Pichersky E. 2011. The family of terpene synthases in plants: a mid-size family of genes for specialized metabolism that is highly diversified throughout the kingdom. *The Plant Journal* **66**, 212-229.

Chen F, Wang F, Sun H, Cai Y, Mao W, Zhang G, Vincze E, Wu F. 2010. Genotype-Dependent Effect of Exogenous Nitric Oxide on Cd-induced Changes in Antioxidative Metabolism, Ultrastructure, and Photosynthetic Performance in Barley Seedlings (Hordeum vulgare). *Journal of Plant Growth Regulation* **29**, 394-408.

Chinnusamy V, Gong Z, Zhu J-K. 2008. Abscisic Acid-mediated Epigenetic Processes in Plant Development and Stress Responses. *Journal of Integrative Plant Biology* **50**, 1187-1195.

Cho SH, von Schwartzenberg K, Quatrano R. 2009. The Role of Abscisic Acid in Stress Tolerance. *Annual Plant Reviews Volume 36: The Moss Physcomitrella patens*: Wiley-Blackwell, 282-297.

Christmann A, Weiler EW, Steudle E, Grill E. 2007. A hydraulic signal in root-to-shoot signalling of water shortage. *The Plant Journal* **52**, 167-174.

Clark D, Durner J, Navarre DA, Klessig DF. 2000. Nitric Oxide Inhibition of Tobacco Catalase and Ascorbate Peroxidase. *Molecular Plant-Microbe Interactions* **13**, 1380-1384.

Conrath U, Pieterse CMJ, Mauch-Mani B. 2002. Priming in plant–pathogen interactions. *Trends in Plant Science* **7**, 210-216.

Cornforth JW, Milborrow, B. V., Ryback, G., Wareing, P. F. 1965. Chemistry and Physiology of 'Dormins' In Sycamore: Identity of Sycamore 'Dormin' with Abscisin II. *Nature* **205**, 1269-1270.

Corpas FJ. 2004. Cellular and Subcellular Localization of Endogenous Nitric Oxide in Young and Senescent Pea Plants. *Plant Physiology* **136**, 2722-2733.

Corpas FJ, Barroso JB, Carreras A, Quirós M, León AM, Romero-Puertas MC, Esteban FJ, Valderrama R, Palma JM, Sandalio LM, Gómez M, del Río LA. 2004a. Cellular and Subcellular Localization of Endogenous Nitric Oxide in Young and Senescent Pea Plants. *Plant Physiology* **136**, 2722-2733.

Corpas FJ, Barroso JB, Del Río LA. 2004b. Enzymatic sources of nitric oxide in plant cells – beyond one protein–one function. *New Phytologist* **162**, 246-248.

Corpas FJ, Barroso JB, del Río LA. 2001. Peroxisomes as a source of reactive oxygen species and nitric oxide signal molecules in plant cells. *Trends in Plant Science* **6**, 145-150.

Corpas FJ, Leterrier M, Valderrama R, Airaki M, Chaki M, Palma JM, Barroso JB. 2011. Nitric oxide imbalance provokes a nitrosative response in plants under abiotic stress. *Plant Science* **181**, 604-611.

Corpas FJ, Sandalio LM, Del RÍO LA, Trelease RN. 1998. Copper–zinc superoxide dismutase is a constituent enzyme of the matrix of peroxisomes in the cotyledons of oilseed plants. *New Phytologist* **138**, 307-314.

Correa-Aragunde N, Lombardo C, Lamattina L. 2008. Nitric oxide: an active nitrogen molecule that modulates cellulose synthesis in tomato roots. *New Phytologist* **179**, 386-396.

Cristescu SM, Persijn ST, te Lintel Hekkert S, Harren FJM. 2008. Laser-based systems for trace gas detection in life sciences. *Applied Physics B* **92**, 343-349.

Cruz Castillo M, Martinez C, Buchala A, Metraux JP, Leon J. 2004. Gene-specific involvement of betaoxidation in wound-activated responses in Arabidopsis. *Plant Physiol* **135**, 85-94.

Cutler SR, Rodriguez PL, Finkelstein RR, Abrams SR. 2010. Abscisic Acid: Emergence of a Core Signaling Network. In: Merchant S, Briggs WR, Ort D, eds. *Annual Review of Plant Biology, Vol 61*, Vol. 61, 651-679.

Cyrille YB, Michael D, Aymeric R, Anne-Laure B, Nadia S, Hélène H, Samia A, Yoshiki Y-B, Juliette J, Emmanuelle D, Karen L, Olivier B, Laurent B, Jacques J, Jean-Christophe C, Denis F, Maryse AB, Bernard R, Roman L, Eric M. 2011. Chemical inhibitors of monogalactosyldiacylglycerol synthases in Arabidopsis thaliana. *Nature Chemical Biology* **7**, 834-842.

D

Dalton DA, Baird LM, Langeberg L, Taugher CY, Anyan WR, Vance CP, Sarath G. 1993. Subcellular Localization of Oxygen Defense Enzymes in Soybean (Glycine max [L.] Merr.) Root Nodules. *Plant Physiology* **102**, 481-489.

Dat J, Vandenabeele S, Vranová E, Van Montagu M, Inzé D, Van Breusegem F. 2000. Dual action of the active oxygen species during plant stress responses. *Cellular and Molecular Life Sciences* **57**, 779-795.

Davey MW, Montagu MV, Inzé D, Sanmartin M, Kanellis A, Smirnoff N, Benzie IJJ, Strain JJ, Favell D, Fletcher J. 2000. Plant L-ascorbic acid: chemistry, function, metabolism, bioavailability and effects of processing. *Journal of the Science of Food and Agriculture* **80**, 825-860.

Davies IR, Zhang X. 2008. Nitric Oxide Selective Electrodes. In: Robert KP, ed. *Methods in Enzymology*, Vol. Volume 436: Academic Press, 63-95.

De Azevedo Neto AD, Prisco JT, Enéas-Filho J, Rolim Medeiros J-V, Gomes-Filho E. 2005. Hydrogen peroxide pre-treatment induces salt-stress acclimation in maize plants. *Journal of Plant Physiology* **162**, 1114-1122.

De Gara L, de Pinto M, Arrigoni O. 1997. Ascorbate synthesis and ascorbate peroxidase activity during the early stage of wheat germination. *Physiol Plant* **100**, 894 - 900.

Del Río LA, Javier Corpas F, Barroso JB. 2004. Nitric oxide and nitric oxide synthase activity in plants. *Phytochemistry* **65**, 783-792.

Del Río LA, Sandalio LM, Altomare DA, Zilinskas BA. 2003. Mitochondrial and peroxisomal manganese superoxide dismutase: differential expression during leaf senescence. *Journal of Experimental Botany* **54**, 923-933.

Delledonne M, Zeier J, Marocco A, Lamb C. 2001. Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response. *Proceedings of the National Academy of Sciences* **98**, 13454-13459.

Derveaux S, Vandesompele J, Hellemans J. 2010. How to do successful gene expression analysis using real-time PCR. *Methods.* **50**, 227-230. doi: 210.1016/j.ymeth.2009.1011.1001. Epub 2009 Dec 1015.

Droillard M-J, Paulin A. 1990. Isozymes of Superoxide Dismutase in Mitochondria and Peroxisomes Isolated from Petals of Carnation (Dianthus caryophyllus) during Senescence. *Plant Physiology* **94**, 1187-1192.

Durner J, Wendehenne D, Klessig DF. 1998. Defense gene induction in tobacco by nitric oxide, cyclic GMP, and cyclic ADP-ribose. *Proceedings of the National Academy of Sciences of the United States of America* **95**, 10328-10333.

Е

Elstner EF. 1982. Oxygen Activation and Oxygen Toxicity. *Annual Review of Plant Physiology* **33**, 73-96. **Exposito-Rodriguez M, Borges A, Borges-Perez A, Perez J**. 2008. Selection of internal control genes for quantitative real-time RT-PCR studies during tomato development process. *BMC Plant Biology* **8**, 131.

F

Fanciullino AL, Bidel LPR, Urban L. 2013. Carotenoid responses to environmental stimuli: integrating redox and carbon controls into a fruit model. *Plant, Cell & Environment*, n/a-n/a.

Finkelstein RR, Gampala SSL, Rock CD. 2002. Abscisic Acid Signaling in Seeds and Seedlings. *The Plant Cell Online* 14, S15-S45.

Foissner I, Wendehenne D, Langebartels C, Durner J. 2000. In vivo imaging of an elicitor-induced nitric oxide burst in tobacco. *The Plant Journal* **23**, 817-824.

Foyer CH, Noctor G. 2000. Tansley Review No. 112. New Phytologist 146, 359-388.

Foyer CH, Shigeoka S. 2011. Understanding Oxidative Stress and Antioxidant Functions to Enhance Photosynthesis. *Plant Physiology* **155**, 93-100.

Franceschi VR, Tarlyn NM. 2002. I-Ascorbic Acid Is Accumulated in Source Leaf Phloem and Transported to Sink Tissues in Plants. *Plant Physiology* **130**, 649-656.

Francisco J Corpas MC, Marina Leterrier, Juan B Barroso. 2009. Protein tyrosine nitration. A new challenge in plants. *Plant Signaling Behavior* **4**, 920–923.

Freschi L. 2013. Nitric oxide and phytohormone interactions: current status and perspectives. *Frontiers in Plant Science* **4**.

Fujita M, Fujita Y, Noutoshi Y, Takahashi F, Narusaka Y, Yamaguchi-Shinozaki K, Shinozaki K. 2006. Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. *Current Opinion in Plant Biology* **9**, 436-442.

G

García-Mata C, Lamattina L. 2001. Nitric Oxide Induces Stomatal Closure and Enhances the Adaptive Plant Responses against Drought Stress. *Plant Physiology* **126**, 1196-1204.

García-Mata C, Lamattina L. 2003. Abscisic acid, nitric oxide and stomatal closure - is nitrate reductase one of the missing links? *Trends in Plant Science* **8**, 20-26.

Gong Y-W, Yuan Y-J. 2006. Nitric oxide mediates inactivation of glutathione S-transferase in suspension culture of Taxus cuspidata during shear stress. *Journal of Biotechnology* **123**, 185-192.

Gould KS, Lamotte O, Klinguer A, Pugin A, Wendehenne D. 2003. Nitric oxide production in tobacco leaf cells: a generalized stress response? *Plant, Cell & Environment* **26**, 1851-1862.

Guan LM, Zhao J, Scandalios JG. 2000. Cis-elements and trans-factors that regulate expression of the maize Cat1 antioxidant gene in response to ABA and osmotic stress: H2O2 is the likely intermediary signaling molecule for the response. *The Plant Journal* **22**, 87-95.

Gupta KJ, Shah JK, Brotman Y, Jahnke K, Willmitzer L, Kaiser WM, Bauwe H, Igamberdiev AU. 2012. Inhibition of aconitase by nitric oxide leads to induction of the alternative oxidase and to a shift of metabolism towards biosynthesis of amino acids. *Journal of Experimental Botany* **63**, 1773-1784.

Н

Hancock JT, Neill SJ, Wilson ID. 2011. Nitric oxide and ABA in the control of plant function. *Plant Science* **181**, 555-559.

Hancock R, McRae D, Haupt S, Viola R. 2003. Synthesis of L-ascorbic acid in the phloem. *BMC Plant Biol* **3**, 7.

Hayashi M, Nito K, Takei-Hoshi R, Yagi M, Kondo M, Suenaga A, Yamaya T, Nishimura M. 2002. Ped3p is a peroxisomal ATP-binding cassette transporter that might supply substrates for fatty acid betaoxidation. *Plant Cell Physiol* **43**, 1-11.

He J, Xu H, She X, Song X, Zhao W. 2005. The role and the interrelationship of hydrogen peroxide and nitric oxide in the UV-B-induced stomatal closure in broad bean. *Functional Plant Biology* **32**, 237-247.

Hossain MA, Asada K. 1984. Inactivation of Ascorbate Peroxidase in Spinach Chloroplasts on Dark Addition of Hydrogen Peroxide: Its Protection by Ascorbate. *Plant and Cell Physiology* **25**, 1285-1295.

Hossain MA, Nakano Y, Asada K. 1984. Monodehydroascorbate Reductase in Spinach Chloroplasts and Its Participation in Regeneration of Ascorbate for Scavenging Hydrogen Peroxide. *Plant and Cell Physiology* **25**, 385-395.

Hruz T, Wyss M, Docquier M, Pfaffl M, Masanetz S, Borghi L, Verbrugghe P, Kalaydjieva L, Bleuler S, Laule O, Descombes P, Gruissem W, Zimmermann P. 2011. RefGenes: identification of reliable and condition specific reference genes for RT-qPCR data normalization. *BMC Genomics* **12**, 156.

Huang X, von Rad U, Durner J, x000F, rg. 2002. Nitric oxide induces transcriptional activation of the nitric oxide-tolerant alternative oxidase in Arabidopsis suspension cells. *Planta* **215**, 914-923.

Hubbard KE, Nishimura N, Hitomi K, Getzoff ED, Schroeder JI. 2010. Early abscisic acid signal transduction mechanisms: newly discovered components and newly emerging questions. *Genes & Development* 24, 1695-1708.

L

Ignarro L J. 2000. *Nitric Oxide Biology and Pathobiology*. Academic press, Book, 1017 pages.

J

Javot H, Lauvergeat V, Santoni V, Martin-Laurent F, Güçlü J, Vinh J, Heyes J, Franck KI, Schäffner AR, Bouchez D, Maurel C. 2003. Role of a Single Aquaporin Isoform in Root Water Uptake. *The Plant Cell Online* **15**, 509-522.

Jiang M, Zhang J. 2001. Effect of Abscisic Acid on Active Oxygen Species, Antioxidative Defence System and Oxidative Damage in Leaves of Maize Seedlings. *Plant and Cell Physiology* **42**, 1265-1273.

Jiang M, Zhang J. 2003. Cross-talk between calcium and reactive oxygen species originated from NADPH oxidase in abscisic acid-induced antioxidant defence in leaves of maize seedlings. *Plant, Cell & Environment* **26**, 929-939.

Jimenez A. HJA, Del Rio. L. A., Sevilla F. 1997. Evidence for the presence of the ascorbate-glutathione cycle in mitochondria and peroxisomes of pea leaves. *Plant Physiology* **114**, 275-284.

Jordá L, Coego A, Conejero V, Vera P. 1999. A Genomic Cluster Containing Four Differentially Regulated Subtilisin-like Processing Protease Genes Is in Tomato Plants. *Journal of Biological Chemistry* **274**, 2360-2365.

Jourd'heuil D. 2002. Increased nitric oxide-dependent nitrosylation of 4,5-diaminofluorescein by oxidants: implications for the measurement of intracellular nitric oxide. *Free Radical Biology and Medicine* **33**, 676-684.

Kaiser WM, Planchet E, Rümer S. 2010. Nitrate Reductase and Nitric Oxide. *Annual Plant Reviews Volume 42*: Wiley-Blackwell, 127-145.

Karpinski S, Reynolds H, Karpinska B, Wingsle G, Creissen G, Mullineaux P. 1999. Systemic Signaling and Acclimation in Response to Excess Excitation Energy in Arabidopsis. *Science* **284**, 654-657.

Keyster M, Klein A, Ludidi N. 2010. Endogenous NO levels regulate nodule functioning: Potential role of cGMP in nodule functioning? *Plant Signaling & Behavior* **5**, 1679-1681.

Kim T-H, Böhmer M, Hu H, Nishimura N, Schroeder JI. 2010. Guard Cell Signal Transduction Network: Advances in Understanding Abscisic Acid, CO2, and Ca2+ Signaling. *Annual Review of Plant Biology* **61**, 561-591.

Kopyra M, Gwózdz EA. 2003. Nitric oxide stimulates seed germination and counteracts the inhibitory effect of heavy metals and salinity on root growth of Lupinus luteus. *Plant Physiology and Biochemistry* **41**, 1011-1017.

Kovtun Y, Chiu W-L, Tena G, Sheen J. 2000. Functional analysis of oxidative stress-activated mitogenactivated protein kinase cascade in plants. *Proceedings of the National Academy of Sciences* 97, 2940-2945.

Kwak JM, Mori IC, Pei Z-M, Leonhardt N, Torres MA, Dangl JL, Bloom RE, Bodde S, Jones JDG, Schroeder JI. 2003. NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis. *The EMBO Journal* **22**, 2623-2633.

L

Lamattina L, Beligni MV, Garcia-Mata C, Laxalt AM. 2001. Method of enhancing the metabolic function and the growing conditions of plants and seeds. Google Patents.

Lamattina L, García-Mata C, Graziano M, Pagnussat G. 2003. NITRIC OXIDE: The Versatility of an Extensive Signal Molecule. *Annual Review of Plant Biology* **54**, 109-136.

Laspina NV, Groppa MD, Tomaro ML, Benavides MP. 2005. Nitric oxide protects sunflower leaves against Cd-induced oxidative stress. *Plant Science* **169**, 323-330.

Lee SC, Luan S. 2012. ABA signal transduction at the crossroad of biotic and abiotic stress responses. *Plant, Cell & Environment* **35**, 53-60.

León J, Castillo MC, Coego A, Lozano-Juste J, Mir R. 2013. Diverse functional interactions between nitric oxide and abscisic acid in plant development and responses to stress. *Journal of Experimental Botany*.

Leshem YaY. 2000. *Nitric Oxide in plants. Occurence, function and use*. Dordrecht: Academic publisher **Leshem YaY, Pinchasov Y**. 2000. Non-invasive photoacoustic spectroscopic determination of relative endogenous nitric oxide and ethylene content stoichiometry during the ripening of strawberries Fragaria anannasa (Duch.) and avocados Persea americana (Mill.). *Journal of Experimental Botany* **51**, 1471-1473.

Leshem YY, Haramaty E. 1996. The characterization and contrasting effects of the nitric oxide free radical in vegetative stress and senescence of Pisum sativum Linn foliage. *Journal of Plant Physiology* **148**, 258-263.

Leshem YY, Wills RBH, Ku VV-V. 1998. Evidence for the function of the free radical gas -- nitric oxide (NO-) -- as an endogenous maturation and senescence regulating factor in higher plants. *Plant Physiology and Biochemistry* **36**, 825-833.

Lin C-C, Jih P-J, Lin H-H, Lin J-S, Chang L-L, Shen Y-H, Jeng S-T. 2011. Nitric oxide activates superoxide dismutase and ascorbate peroxidase to repress the cell death induced by wounding. *Plant Molecular Biology* **77**, 235-249.

Lin SH, Trumble J, Kumamoto J. 1987. Activity of volatile compounds in glandular trichomes ofLycopersicon species against two insect herbivores. *Journal of Chemical Ecology* **13**, 837-850.

Lindermayr C, Saalbach G, Durner J. 2005. Proteomic Identification of S-Nitrosylated Proteins in Arabidopsis. *Plant Physiology* **137**, 921-930.

Liu Y, Ye N, Liu R, Chen M, Zhang J. 2010. H2O2 mediates the regulation of ABA catabolism and GA biosynthesis in Arabidopsis seed dormancy and germination. *Journal of Experimental Botany* **61**, 2979-2990.

Lopez F, Bousser A, Sissoëff I, Gaspar M, Lachaise B, Hoarau J, Mahé A. 2003. Diurnal Regulation of Water Transport and Aquaporin Gene Expression in Maize Roots: Contribution of PIP2 Proteins. *Plant and Cell Physiology* **44**, 1384-1395.

Lorence A, Chevone BI, Mendes P, Nessler CL. 2004. myo-Inositol Oxygenase Offers a Possible Entry Point into Plant Ascorbate Biosynthesis. *Plant Physiol.* **134**, 1200-1205.

Lozano-Juste J, León J. 2010. Nitric oxide modulates sensitivity to ABA. *Plant Signaling & Behavior* 5, 314-316.

Lu S, Su W, Li H, Guo Z. 2009. Abscisic acid improves drought tolerance of triploid bermudagrass and involves H2O2- and NO-induced antioxidant enzyme activities. *Plant Physiology and Biochemistry* **47**, 132-138.

Μ

Maggio A, Joly RJ. 1995. Effects of Mercuric Chloride on the Hydraulic Conductivity of Tomato Root Systems (Evidence for a Channel-Mediated Water Pathway). *Plant Physiology* **109**, 331-335.

Meissner R., Jacobson Y., Melamed S., Levyatuv S., Shalev G., Ashri A., Elkind Y., Levy A. (1997) A new model system for tomato genetics. Plant J. 12: 1465-1472.

Mandon J, Högman M, Merkus PJFM, van Amsterdam J, Harren FJM, Cristescu SM. 2012. Exhaled nitric oxide monitoring by quantum cascade laser: comparison with chemiluminescent and electrochemical sensors. *Journal of Biomedical Optics* **17**, 017003-017001.

Martin M, Colman M, Gomezcasati D, Lamattina L, Zabaleta E. 2009. Nitric oxide accumulation is required to protect against iron-mediated oxidative stress in frataxin-deficient Arabidopsis plants. *FEBS Letters* **583**, 542-548.

Martinez GR, Di Mascio P, Bonini MG, Augusto O, Briviba K, Sies H, Maurer P, Röthlisberger U, Herold S, Koppenol WH. 2000. Peroxynitrite does not decompose to singlet oxygen (1∆gO2) and nitroxyl (NO–). *Proceedings of the National Academy of Sciences* **97**, 10307-10312.

Métraux JP, Signer H, Ryals J, Ward E, Wyss-Benz M, Gaudin J, Raschdorf K, Schmid E, Blum W, Inverardi B. 1990. Increase in Salicylic Acid at the Onset of Systemic Acquired Resistance in Cucumber. *Science* **250**, 1004-1006.

Metzker ML. 2010. Sequencing technologies - the next generation. *Nat Rev Genet.* **11**, 31-46. doi: 10.1038/nrg2626. Epub 2009 Dec 1038.

Meyer C, Lea U, Provan F, Kaiser W, Lillo C. 2005. Is nitrate reductase a major player in the plant NO (nitric oxide) game? *Photosynthesis Research* **83**, 181-189.

Milborrow BV. 2001. The pathway of biosynthesis of abscisic acid in vascular plants: a review of the present state of knowledge of ABA biosynthesis. *Journal of Experimental Botany* **52**, 1145-1164.

Miller B, Madilao LL, Ralph S, Bohlmann J. 2005. Insect-Induced Conifer Defense. White Pine Weevil and Methyl Jasmonate Induce Traumatic Resinosis, de Novo Formed Volatile Emissions, and Accumulation of Terpenoid Synthase and Putative Octadecanoid Pathway Transcripts in Sitka Spruce. *Plant Physiology* **137**, 369-382.

Mittelheuser CJ, Van Steveninck, R. F. M. 1969. Stomatal Closure and Inhibition of Transpiration induced by (RS)-Abscisic Acid. *Nature* **221**, 281-282.

Mittler R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science 7, 405-410.

Mittler R, Vanderauwera S, Suzuki N, Miller G, Tognetti VB, Vandepoele K, Gollery M, Shulaev V, Van Breusegem F. 2011. ROS signaling: the new wave? *Trends in Plant Science* **16**, 300-309.

Møller IM, Sweetlove LJ. 2010. ROS signalling - specificity is required. *Trends in Plant Science* **15**, 370-374.

Moran JF, James EK, Rubio MC, Sarath G, Klucas RV, Becana M. 2003. Functional Characterization and Expression of a Cytosolic Iron-Superoxide Dismutase from Cowpea Root Nodules. *Plant Physiology* **133**, 773-782.

Morot-Gaudry-Talarmain Y, Rockel P, Moureaux T, Quilleré I, Leydecker M, Kaiser W, Morot-Gaudry J. 2002. Nitrite accumulation and nitric oxide emission in relation to cellular signaling in nitrite reductase antisense tobacco. *Planta* **215**, 708-715.

Mubarakshina MM, Ivanov BN, Naydov IA, Hillier W, Badger MR, Krieger-Liszkay A. 2010. Production and diffusion of chloroplastic H2O2 and its implication to signalling. *Journal of Experimental Botany* **61**, 3577-3587.

Mullen RT, Lee MS, Trelease RN. 1997. Identification of the peroxisomal targeting signal for cottonseed catalase. *The Plant Journal* **12**, 313-322.

Munné-Bosch S, Alegre L. 2002. The Function of Tocopherols and Tocotrienols in Plants. *Critical Reviews in Plant Sciences* **21**, 31-57.

Mur LAJ, Mandon J, Cristescu SM, Harren FJM, Prats E. 2011. Methods of nitric oxide detection in plants: A commentary. *Plant Science* **181**, 509-519.

Mur LAJ, Mandon J, Persijn S, Cristescu SM, Moshkov IE, Novikova GV, Hall MA, Harren FJM, Hebelstrup KH, Gupta KJ. 2013. Nitric oxide in plants: an assessment of the current state of knowledge. *AoB Plants* **5**.

Murphy ME, Noack E. 1994.Nitric oxide assay using hemoglobin method. In: Lester P, ed. *Methods in Enzymology*, Vol. Volume 233: Academic Press, 240-250.

Murshed R, Lopez-Lauri F, Keller C, Monnet F, Sallanon H. 2008a. Acclimation to Drought Stress Enhances Oxidative Stress Tolerance in Solanum lycopersicum L. Fruits. *Plant Stress* 2, 145-151.

Murshed R, Lopez-Lauri F, Sallanon H. 2008. Microplate quantification of enzymes of the plant ascorbate-glutathione cycle. *Analytical Biochemistry*, 320-322.

Murshed R, Lopez-Lauri F, Sallanon H. 2013a. Effect of salt stress on tomato fruit antioxidant systems depends on fruit development stage. *Physiology and Molecular Biology of Plants*, 1-15.

Murshed R, Lopez-Lauri F, Sallanon H. 2013b. Effect of water stress on antioxidant systems and oxidative parameters in fruits of tomato (Solanum lycopersicon L, cv. Micro-tom). *Physiology and Molecular Biology of Plants*, 1-16.

Ν

Nakatsubo N, Kojima H, Kikuchi K, Nagoshi H, Hirata Y, Maeda D, Imai Y, Irimura T, Nagano T. 1998. Direct evidence of nitric oxide production from bovine aortic endothelial cells using new fluorescence indicators: diaminofluoresceins. *FEBS Letters* **427**, 263-266.

Navrot N, Collin V, Gualberto J, Gelhaye E, Hirasawa M, Rey P, Knaff DB, Issakidis E, Jacquot J-P, Rouhier N. 2006. Plant Glutathione Peroxidases Are Functional Peroxiredoxins Distributed in Several Subcellular Compartments and Regulated during Biotic and Abiotic Stresses. *Plant Physiology* **142**, 1364-1379.

Neill S, Barros R, Bright J, Desikan R, Hancock J, Harrison J, Morris P, Ribeiro D, Wilson I. 2008. Nitric oxide, stomatal closure, and abiotic stress. *Journal of Experimental Botany* **59**, 165-176.

Neill SJ, Desikan R, Clarke A, Hancock JT. 2002. Nitric Oxide Is a Novel Component of Abscisic Acid Signaling in Stomatal Guard Cells. *Plant Physiology* **128**, 13-16.

Neill SJ, Desikan R, Hancock JT. 2003. Nitric oxide signalling in plants. New Phytologist 159, 11-35.

Noctor G, Mhamdi A, Chaouch S, Han YI, Neukermans J, Marquez-Garcia B, Queval G, Foyer CH. 2012. Glutathione in plants: an integrated overview. *Plant, Cell & Environment* **35**, 454-484.

0

Ogawa Ki, Kanematsu S, Takabe K, Asada K. 1995. Attachment of CuZn-Superoxide Dismutase to Thylakoid Membranes at the Site of Superoxide Generation (PSI) in Spinach Chloroplasts: Detection by

Immuno-Gold Labeling After Rapid Freezing and Substitution Method. *Plant and Cell Physiology* **36**, 565-573.

Ohkuma K LJ, Addicott FT,Smith OE. 1963. Abscisin II, an abscission accelerating substance from young cotton fruit. *Science* **142**, 1592-1593.

Orozco-Cardenas ML. 2002. Nitric Oxide Negatively Modulates Wound Signaling in Tomato Plants. *Plant Physiology* **130**, 487-493.

Orozco-Cárdenas ML, Narváez-Vásquez J, Ryan CA. 2001. Hydrogen Peroxide Acts as a Second Messenger for the Induction of Defense Genes in Tomato Plants in Response to Wounding, Systemin, and Methyl Jasmonate. *The Plant Cell Online* **13**, 179-191.

Ρ

Pagnussat GC, Lanteri ML, Lamattina L. 2003. Nitric Oxide and Cyclic GMP Are Messengers in the Indole Acetic Acid-Induced Adventitious Rooting Process. *Plant Physiology* **132**, 1241-1248.

Pagnussat GC, Simontacchi M, Puntarulo S, Lamattina L. 2002. Nitric Oxide Is Required for Root Organogenesis. *Plant Physiology* **129**, 954-956.

Patakas AA, Zotos A, Beis AS. 2010. Production, localisation and possible roles of nitric oxide in droughtstressed grapevines. *Australian Journal of Grape and Wine Research* **16**, 203-209.

Petrova VY, Drescher D Fau - Kujumdzieva AV, Kujumdzieva Av Fau - Schmitt MJ, Schmitt MJ. 2004. Dual targeting of yeast catalase A to peroxisomes and mitochondria. *Biochem J* **380**, 393-400.

Pfeiffer S MB, and Hemmens B 1999. Nitric oxide: chemical puzzles posed by a biological messenger. *Angew Chem Int* **38**, 1715–1731.

Poiroux-Gonord F, Bidel LPR, Fanciullino A-L, Gautier Hln, Lauri-Lopez Fl, Urban L. 2010. Health Benefits of Vitamins and Secondary Metabolites of Fruits and Vegetables and Prospects To Increase Their Concentrations by Agronomic Approaches. *Journal of Agricultural and Food Chemistry* **58**, 12065-12082.

Poiroux-Gonord F, Santini J, Fanciullino A-L, Lopez-Lauri F, Giannettini J, Sallanon H, Berti L, Urban L. 2013. Metabolism in orange fruits is driven by photooxidative stress in the leaves. *Physiologia Plantarum* **149**, 175-187.

Polverari A, Molesini B, Pezzotti M, Buonaurio R, Marte M, Delledonne M. 2003. Nitric Oxide-Mediated Transcriptional Changes in Arabidopsis thaliana. *Molecular Plant-Microbe Interactions* **16**, 1094-1105.

Q

Quijano C, Hernandez-Saavedra D, Castro L, McCord JM, Freeman BA, Radi R. 2001. Reaction of Peroxynitrite with Mn-Superoxide Dismutase: ROLE OF THE METAL CENTER IN DECOMPOSITION KINETICS AND NITRATION. *Journal of Biological Chemistry* **276**, 11631-11638.

R

Raghavendra AS, Gonugunta VK, Christmann A, Grill E. 2010. ABA perception and signalling. *Trends in Plant Science* **15**, 395-401.

Rautengarten C SD, Büssis D, Stintzi A, Schaller A. 2005. Inferring Hypotheses on Functional Relationships of Genes: Analysis of the Arabidopsis thaliana Subtilase Gene Family. *PLoS Computational Biolology* **1**.

Rockel P, Strube F, Rockel A, Wildt J, Kaiser WM. 2002. Regulation of nitric oxide (NO) production by plant nitrate reductase in vivo and in vitro. *Journal of Experimental Botany* **53**, 103-110.

Rodríguez-Serrano M, Romero-Puertas MC, Pastori GM, Corpas FJ, Sandalio LM, del Río LA, Palma JM. 2007. Peroxisomal membrane manganese superoxide dismutase: characterization of the isozyme from watermelon (Citrullus lanatus Schrad.) cotyledons. *Journal of Experimental Botany* **58**, 2417-2427.

Rubbo H, Radi R. 2008. Protein and lipid nitration: Role in redox signaling and injury. *Biochimica et Biophysica Acta (BBA) - General Subjects* **1780**, 1318-1324.

Saito S, Yamamoto-Katou A, Yoshioka H, Doke N, Kawakita K. 2006. Peroxynitrite Generation and Tyrosine Nitration in Defense Responses in Tobacco BY-2 Cells. *Plant and Cell Physiology* **47**, 689-697.

Sakihama Y, Nakamura S, Yamasaki H. 2002. Nitric Oxide Production Mediated by Nitrate Reductase in the Green Alga Chlamydomonas reinhardtii: an Alternative NO Production Pathway in Photosynthetic Organisms. *Plant and Cell Physiology* **43**, 290-297.

Sandalio LM, Del Río LA. 1988. Intraorganellar Distribution of Superoxide Dismutase in Plant Peroxisomes (Glyoxysomes and Leaf Peroxisomes). *Plant Physiology* **88**, 1215-1218.

Sang J, Jiang M, Lin F, Xu S, Zhang A, Tan M. 2008a. Nitric Oxide Reduces Hydrogen Peroxide Accumulation Involved in Water Stress-induced Subcellular Anti-oxidant Defense in Maize Plants. *Journal of Integrative Plant Biology* **50**, 231-243.

Sang J, Zhang A, Lin F, Tan M, Jiang M. 2008b. Cross-talk between calcium-calmodulin and nitric oxide in abscisic acid signaling in leaves of maize plants. *Cell Res* **18**, 577-588.

Schaller A. 2004. A cut above the rest: the regulatory function of plant proteases. *Planta* **220**, 183-197. **Shamsul Hayat MM, John Pichtel, Agil Ahmad** 2009. *Nitric Oxide in Plant Physiology*.

Shi S, Wang G, Wang Y, Zhang L, Zhang L. 2005. Protective effect of nitric oxide against oxidative stress under ultraviolet-B radiation. *Nitric Oxide* **13**, 1-9.

Singh HP, Batish DR, Kaur G, Arora K, Kohli RK. 2008. Nitric oxide (as sodium nitroprusside) supplementation ameliorates Cd toxicity in hydroponically grown wheat roots. *Environmental and Experimental Botany* **63**, 158-167.

Singh HP, Kaur S, Batish DR, Sharma VP, Sharma N, Kohli RK. 2009. Nitric oxide alleviates arsenic toxicity by reducing oxidative damage in the roots of Oryza sativa (rice). *Nitric Oxide* **20**, 289-297.

Smirnoff N. 2000. Ascorbate biosynthesis and function in photoprotection. *Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences* **355**, 1455-1464.

Smith JB, Schneider SH, Oppenheimer M, Yohe GW, Hare W, Mastrandrea MD, Patwardhan A, Burton I, Corfee-Morlot J, Magadza CHD, Füssel H-M, Pittock AB, Rahman A, Suarez A, van Ypersele J-P. 2009. Assessing dangerous climate change through an update of the Intergovernmental Panel on Climate Change (IPCC) "reasons for concern". *Proceedings of the National Academy of Sciences* **106**, 4133-4137.

SoRelle R. 1998. Nobel Prize Awarded to Scientists for Nitric Oxide Discoveries. *Circulation* **98**, 2365-2366.

Strasser RJ, Tsimilli-Michael M, Qiang S, Goltsev V. 2010. Simultaneous in vivo recording of prompt and delayed fluorescence and 820-nm reflection changes during drying and after rehydration of the resurrection plant Haberlea rhodopensis. *Biochimica et Biophysica Acta (BBA) - Bioenergetics* **1797**, 1313-1326.

Т

Tattini M, Galardi C, Pinelli P, Massai R, Remorini D, Agati G. 2004. Differential accumulation of flavonoids and hydroxycinnamates in leaves of Ligustrum vulgare under excess light and drought stress. *New Phytologist* **163**, 547-561.

Tossi V, Lamattina L, Cassia R. 2009. An increase in the concentration of abscisic acid is critical for nitric oxide-mediated plant adaptive responses to UV-B irradiation. *New Phytologist* **181**, 871-879.

Tuteja N. 2007. Abscisic Acid and Abiotic Stress Signaling. Plant Signaling & Behavior 2, 135-138.

U

Uchida A, Jagendorf AT, Hibino T, Takabe T, Takabe T. 2002. Effects of hydrogen peroxide and nitric oxide on both salt and heat stress tolerance in rice. *Plant Science* **163**, 515-523.

V

Vahdati K, Jariteh, M., Niknam, V., Mirmasoumi, M. and Ebrahimzadeh, H. 2005. SOMATIC EMBRYOGENESIS AND EMBRYO MATURATION IN PERSIAN WALNUT. *Acta Horticulturae. (ISHS)*, 199-205. Vandelle E, Delledonne M. 2011. Peroxynitrite formation and function in plants. *Plant Science* 181, 534-539.

Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F. 2002. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. *Genome Biology* **3**, 0034.I - 0034.II.

Vartapetian AB, Tuzhikov, A I, Chichkova, N V, Taliansky, M, Wolpert, T J. 2011. A plant alternative to animal caspases: subtilisin-like proteases. 1289 - 1297.

Vitecek J, Reinohl V, Jones RL. 2008. Measuring NO Production by Plant Tissues and Suspension Cultured Cells. *Molecular Plant* **1**, 270-284.

W

Wang X, Li J, Liu J, He W, Bi Y. 2010. Nitric oxide increases mitochondrial respiration in a cGMP-dependent manner in the callus from Arabidopsis thaliana. *Nitric Oxide* 23, 242-250.

Wasternack C. 2007. Jasmonates: An Update on Biosynthesis, Signal Transduction and Action in Plant Stress Response, Growth and Development. *Annals of Botany* **100**, 681-697.

Weaver J, Porasuphatana S, Tsai P, Budzichowski T, Rosen GM. 2005. Spin trapping nitric oxide from neuronal nitric oxide synthase: A look at several iron–dithiocarbamate complexes. *Free Radical Research* **39**, 1027-1033.

Wendehenne D, Durner J, Klessig DF. 2004. Nitric oxide: a new player in plant signalling and defence responses. *Current Opinion in Plant Biology* **7**, 449-455.

Wendehenne D, Pugin A, Klessig DF, Durner J. 2001. Nitric oxide: comparative synthesis and signaling in animal and plant cells. *Trends in Plant Science* **6**, 177-183.

Wheeler G, Jones M, Smirnoff N. 1998. The biosynthetic pathway of vitamin C in higher plants. *Nature* **393**, 365 - 369.

Wilkinson JQ, Crawford NM. 1991. Identification of the Arabidopsis CHL3 gene as the nitrate reductase structural gene NIA2. *The Plant Cell Online* **3**, 461-471.

Willekens H, Inzé D, Montagu M, Camp W. 1995. Catalases in plants. *Molecular Breeding* 1, 207-228.

Wojtaszek P. 2000. Nitric oxide in plants: To NO or not to NO. Phytochemistry 54, 1-4.

Wolucka BA, Van Montagu M. 2003. GDP-Mannose 3',5'-Epimerase Forms GDP-L-gulose, a Putative Intermediate for the de Novo Biosynthesis of Vitamin C in Plants. *Journal of Biological Chemistry* **278**, 47483-47490.

Х

Xie Y, Ling T, Han YI, Liu K, Zheng Q, Huang L, Yuan X, He Z, Hu B, Fang LEI, Shen Z, Yang Q, Shen W. 2008. Carbon monoxide enhances salt tolerance by nitric oxide-mediated maintenance of ion homeostasis and up-regulation of antioxidant defence in wheat seedling roots. *Plant, Cell & Environment* **31**, 1864-1881.

Xiong J, Fu G, Tao L, Zhu C. 2010. Roles of nitric oxide in alleviating heavy metal toxicity in plants. *Archives of Biochemistry and Biophysics* **497**, 13-20.

Xiong L, Zhu J-K. 2003. Regulation of Abscisic Acid Biosynthesis. *Plant Physiology* **133**, 29-36.

Y

Kazuno Shinozaki and Kazuko Yamaguchi-Shinozaki. 1997. Gene Expression and Signal Transduction in Water-Stress Response. *PLANT PHYSIOLOGY* **115(2)**, 327-334.

Yamasaki H, Sakihama Y, Takahashi S. 1999. An alternative pathway for nitric oxide production in plants: new features of an old enzyme. *Trends in Plant Science* **4**, 128-129.

Yamasaki H, Shimoji H, Ohshiro Y, Sakihama Y. 2001. Inhibitory Effects of Nitric Oxide on Oxidative Phosphorylation in Plant Mitochondria. *Nitric Oxide* 5, 261-270.

Yang Y, Seidlits SK, Adams MM, Lynch VM, Schmidt CE, Anslyn EV, Shear JB. 2010. A Highly Selective Low-Background Fluorescent Imaging Agent for Nitric Oxide. *Journal of the American Chemical Society* **132**, 13114-13116.

Ye N, Jia L, Zhang J. 2012. ABA signal in rice under stress conditions. Rice 5, 1.

Ye N, Zhu G, Liu Y, Li Y, Zhang J. 2011. ABA Controls H2O2 Accumulation Through the Induction of OsCATB in Rice Leaves Under Water Stress. *Plant Cell Physiol* **52**, 689 - 698.

Yu C-W, Murphy TM, Lin C-H. 2003. Hydrogen peroxide-induced chilling tolerance in mung beans mediated through ABA-independent glutathione accumulation. *Functional Plant Biology* **30**, 955-963.

Yu M, Lamattina L, Spoel SH, Loake GJ. 2014. Nitric oxide function in plant biology: a redox cue in deconvolution. *New Phytologist*, 202:1142-56.

Ζ

Zhang A, Jiang M, Zhang J, Ding H, Xu S, Hu X, Tan M. 2007. Nitric oxide induced by hydrogen peroxide mediates abscisic acid-induced activation of the mitogen-activated protein kinase cascade involved in antioxidant defense in maize leaves. *New Phytologist* **175**, 36-50.

Zhang A, Jiang M, Zhang J, Tan M, Hu X. 2006a. Mitogen-Activated Protein Kinase Is Involved in Abscisic Acid-Induced Antioxidant Defense and Acts Downstream of Reactive Oxygen Species Production in Leaves of Maize Plants. *PLANT PHYSIOLOGY* **141**, 475-487.

Zhang H, Han W, De Smet I, Talboys P, Loya R, Hassan A, Rong H, Jürgens G, Paul Knox J, Wang M-H. 2010. ABA promotes quiescence of the quiescent centre and suppresses stem cell differentiation in the Arabidopsis primary root meristem. *The Plant Journal* **64**, 764-774.

Zhang J, Davies WJ. 1991. Antitranspirant Activity in Xylem Sap of Maize Plants. *Journal of Experimental Botany* **42**, 317-321.

Zhang X, Kim W-S, Hatcher N, Potgieter K, Moroz LL, Gillette R, Sweedler JV. 2002. Interfering with Nitric Oxide Measurements: 4,5-DIAMINOFLUORESCEIN REACTS WITH DEHYDROASCORBIC ACID AND ASCORBIC ACID. *Journal of Biological Chemistry* **277**, 48472-48478.

Zhang Y, Tan J, Guo Z, Lu S, He S, Shu WEI, Zhou B. 2009. Increased abscisic acid levels in transgenic tobacco over-expressing 9 cis-epoxycarotenoid dioxygenase influence H2O2 and NO production and antioxidant defences. *Plant, Cell & Environment* **32**, 509-519.

Zhang Y, Wang L, Liu Y, Zhang Q, Wei Q, Zhang W. 2006b. Nitric oxide enhances salt tolerance in maize seedlings through increasing activities of proton-pump and Na+/H+ antiport in the tonoplast. *Planta* **224**, 545-555.

Zhou B, Guo Z, Xing J, Huang B. 2005. Nitric oxide is involved in abscisic acid-induced antioxidant activities in Stylosanthes guianensis. *Journal of Experimental Botany* **56**, 3223-3228.

Zolman BK, Silva ID, Bartel B. 2001. The Arabidopsis pxa1 Mutant Is Defective in an ATP-Binding Cassette Transporter-Like Protein Required for Peroxisomal Fatty Acid β-Oxidation. *Plant Physiology* **127**, 1266-1278

		Up-regulation		
Function	Accession number	Description	Fold change NO/TM (log2)	ttest TMvsNO
Defense	AK327374	Agmatine coumaroyltransferase-2-like . mRNA	0.69	0.01
	FS187400	ALUMINUM SENSITIVE 3-like. mRNA	0.79	0.03
	AW624860	Caffeoyl-CoA O-methyltransferase 5-like . mRNA	0.73	0.04
	AI775181	Cytosolic ascorbate peroxidase 1 (APX1) mRNA. complete cds	0.66	0.03
	EG553627	Disease resistance response protein 206-like (LOC101250552). mRNA	1.07	0.02
	CK468696	Endochitinase PR4-like. transcript variant 1 (LOC101256086). mRNA	1.54	0.03
	L08830	Glucose-regulated protein 78 BiP (binding protein)/grp78). mRNA	0.79	0.01
	BT013586	Heat shock protein cognate 70 (hsc70). mRNA	0.89	0.02
	AK319505	Leucine aminopeptidase (lap 2) mRNA. complete cds	2.38	<0.01
	AW092456	Leucine aminopeptidase (lap2) mRNA	1.082	0.01
	lap2/U50152	Leucine aminopeptidase (lap2). mRNA	1.821	0.01
	MTS1/AY840091	Monoterpene synthase 1 (MTS1) mRNA. complete cds	1.607	0.01
	AK320876	Monothiol glutaredoxin-S1-like . mRNA	0.889	0.04
	GH623050	PCF0595x184 PAMP-elicited tomato leaf cDNA 5'. mRNA	0.894	0.04
	BF176457	Rust resistance protein rp3-1 (rp3-1) gene (Zea mays)	1.36	< 0.01
	AK319704	Salutaridinol 7-O-acetyltransferase-like . mRNA	0.60	0.03
	BP878428	Subtilisin-like protease	0.66	0.01
	TA38524_4081	Subtilisin-like protease	0.65	0.01
	BT013596	Subtilisin-like protease-like (LOC101252447). mRNA	1.31	0.01
	TA38526_4081	Subtilisin-like protease-like (LOC101252447). mRNA	1.15	0.01
	BT013554	Subtilisin-like protease-like. mRNA	0.97	0.01
	GO373150	Thioredoxin H4-like. transcript variant 2. mRNA	1.06	0.03

Table 2 Expression de gènes régulés par le NO

	M61914	Threonine deaminase (Td). mRNA	1.69	0.02
	AY497477	Xyloglucan endotransglucosylase-hydrolase XTH6 (XTH6). mRNA	0.62	0.01
Phytohormone interaction	BT013365	Auxin-induced in root cultures protein 12-like (LOC101262042). mRNA	1.63	< 0.01
	AK322858	3-ketoacyl-CoA thiolase 2. peroxisomal-like (LOC101262853). mRNA	1.38	0.01
	AW624950	Cytokinin hydroxylase-like (LOC101249999). mRNA	1.15	0.02
	AW932557	Cytokinin hydroxylase-like (LOC101249999). mRNA	0.63	0.02
	AW034241	Ethylene response factor 2 (ERF2).	0.69	0.01
	AI899031	E3 ubiquitin-protein ligase RMA1H1-like (LOC101253976). mRNA	0.82	0.04
	AK246936	Linoleate 13S-lipoxygenase 2-1. chloroplastic-like (LOC101262081). mRNA	0.98	0.03
	AK320909	Monogalactosyldiacylglycerol synthase 2. chloroplastic-like (LOC101263085). mRNA	1.27	0.01
	AK325274	Ubiquitin-conjugating enzyme E2 5A-like. transcript variant 2. mRNA	0.61	< 0.01
	BT013158	Polyphenol oxidase F. chloroplastic-like (LOC101259064). mRNA	0.88	0.01
Water transport	BG626235	Aquaporin PIP2-1-like (LOC101247747). misc_RNA	0.67	0.03
	BG130774	Aquaporin PIP2-1-like (LOC101248037). misc_RNA	1.15	0.02
	BG131363	Aquaporin PIP2-1-like (LOC101248037). misc_RNA	1.19	0.03
Transport	TA43112_4081	Amino acid permease 6-like (LOC101245454). misc_RNA	0.98	< 0.01
	AK324969	Amino acid permease 6-like (LOC101245454). misc_RNA	0.97	< 0.01
	AK320719	Arabidopsis thaliana Sulfite exporter TauE/SafE family protein (AT2G36630) mRNA. complete cds	0.75	0.01
	DB710426	Arabidopsis thaliana Sulfite exporter TauE/SafE family protein (AT2G36630) mRNA. complete cds	1.24	0.02
	AK323143	Nitrate transporter 1.3-like (LOC101253972). mRNA	0.83	0.03
	DY523780	Peptide/nitrate transporter At3g53960-like (LOC101265786). mRNA	0.60	< 0.01
	AK325198	Sodium-coupled neutral amino acid transporter 6-like (LOC101267241). mRNA	0.70	0.04
	AK322020	Vacuolar cation/proton exchanger 3-like (LOC101254519). misc_RNA	1.00	0.03
Siganlling	DB679261	Leucine-rich repeat receptor-like protein kinase At1g35710-like (LOC101265646). mRNA	1.29	< 0.01
Gene coding	BW692867	Transcription factor bHLH35-like (LOC101260639). mRNA	0.99	0.01
	AK330046	Transcription factor bHLH93-like (LOC101250473). mRNA	0.80	< 0.01
Metabolism	AK320937	Acetyl-CoA acetyltransferase. cytosolic 1-like (LOC101262830). mRNA	0.98	0.04

TA49162_4081	Acyl-protein thioesterase 2-like (LOC101261789). mRNA	1.40	0.02
AK328079	Acetylornithine deacetylase-like (LOC101268129). mRNA	0.89	0.04
TA38005_4081	Alcohol dehydrogenase (yfe37 gene)	1.12	0.03
AK322540	Alcohol dehydrogenase yfe37 protein (yfe37). mRNA	1.06	0.03
AK326126	Anthocyanidin 3-O-glucosyltransferase-like. transcript variant 1. mRNA	0.73	0.04
BI924430	Anthocyanidin 3-O-glucosyltransferase-like. transcript variant 4 . mRNA	0.71	0.03
AK319204	Beta-galactosidase STBG5 mRNA. complete cds	0.64	0.02
GO375337	Dihydrolipoyllysine-residue acetyltransferase component of pyruvate dehydrogenase complex-like (LOC101257857). mRNA	0.59	0.02
AK325683	Glucose-6-phosphate/phosphate translocator 1. chloroplastic-like. transcript variant 2 (LOC101255219). mRNA	0.68	0.04
AK321906	Heparanase-like protein 1-like (LOC101258638). mRNA	0.67	0.02
AI486498	Mitochondrial chaperone BCS1-A-like. transcript variant 1 (LOC101264174). mRNA	0.69	0.04
AW041380	Peptide-N4-(N-acetyl-beta-glucosaminyl)asparagine amidase A-like (LOC101260612). mRNA	0.66	< 0.01
AJ320056	Polygalacturonase At1g48100-like (LOC101261316). mRNA	0.80	0.03
TA55012_4081	Polygalacturonase At1g48100-like (LOC101261316). mRNA	1.26	0.04
AK320407	Polygalacturonase-like (LOC101247546). mRNA	1.03	0.04
AK325164	Polygalacturonase-like (LOC101255793). mRNA	0.66	0.03
TA37634_4081	Pyruvate decarboxylase 1-like (LOC102594418). mRNA	0.83	0.02
AK327017	Pyruvate decarboxylase isozyme 1-like (LOC101246495). mRNA	0.97	0.01
BM408837	Pyruvate decarboxylase isozyme 2-like (LOC101247173). mRNA	0.96	0.01
BE432268	Pyruvate decarboxylase isozyme 2-like (LOC101247173). mRNA	0.82	0.01
AK320267	S-acyltransferase At1g69420-like (LOC101254385). mRNA	0.83	0.01
AK326904	Solanum tuberosum fumarylacetoacetase-like (LOC102600793). mRNA	0.98	0.02
BT013546	Solanum tuberosum rho GTPase-activating protein 3-like (LOC102597681). transcript variant X1. mRNA	0.66	0.04
TA37569_4081	Aconitate hydratase. cytoplasmic-like. transcript variant 2. mRNA	0.59	0.05
AK326802	Adipocyte plasma membrane-associated protein-like (LOC101253341). mRNA	0.73	0.05

Miscellaneous

	BT013251	Arabidopsis thaliana phosphoglycerate mutase family protein mRNA. complete cds	1.45	< 0.01
	GO372888	Basic blue protein-like (plantacyanin) . mRNA	1.34	0.03
	TA39638_4081	Biotin carboxyl carrier protein of acetyl-CoA carboxylase-like. transcript variant 2 (LOC101263617). mRNA	0.68	0.05
	AI775310	Cell wall protein (LOC544097). mRNA	1.73	0.01
	FS193618	Cell wall protein (LOC544097). mRNA	1.69	0.02
	AK321887	Hop-interacting protein THI101 (LOC101055528). mRNA	1.47	0.02
	BG127261	pollen allergen Che a 1-like (LOC101262972). mRNA	0.74	0.03
	BT013052	Proline rich protein. transcript variant 1 (TPRP-F1). mRNA	2.45	0.01
	BI932748	Proline rich protein. transcript variant 2 (TPRP-F1). mRNA	1.45	< 0.01
	BG127002	Proline-rich protein DC2.15-like (LOC101251407). mRNA	1.50	< 0.01
	BT013974	RNA-binding protein Musashi homolog 2-like (LOC101267666). mRNA	0.64	0.04
	BW685140	Tonoplast intrinsic protein 4;1. complete cds.	0.75	0.01
	AI773289	Ubiquitin ligase activator of nfkb 1-A-like. transcript variant 2 (LOC101250130). mRNA ou cell wall protein (LOC544097). mRNA	1.62	0.01
Uncharacterized	BP905429	Uncharacterized LOC101247252 (LOC101247252), mRNA	1.23	0.04
	TA38992_4081	Uncharacterized LOC101258883 (LOC101258883), mRNA	1.14	0.03
	TA41413_4081	Uncharacterized LOC101266234 (LOC101266234), misc_RNA	2.04	< 0.01
	AI486910	Uncharacterized LOC101263194 (LOC101263194), misc_RNA	1.12	0.01
	GO375294	Unknown	1.27	0.01
		Down-regulation		
Defense	GT167928	Thaumatin-like protein-like (LOC101266146). mRNA	-2.07	0.01
Transport	AK322430	Molybdate transporter 2-like (LOC101255480). mRNA	-1.13	0.05
Uncharacterized	EG364346	Uncharacterized LOC101257758 (LOC101257758), mRNA	-1.04	0.03
Unknown	AI487032	Unknown	-1.08	0.01
	AK247664	Unknown	-1.6	0.01

Tableau 3 Expression de gènes sur-exprimés par le déficit hydrique

	SystematicName	Description	Fold Change SH/TM log2	ttest TMvsSH
Defense	AK323515	Activator of 90 kda Heat shock protein atpase homolog (LOC101256232), mRNA	0.70	<0.01
	BP882275	Agmatine coumaroyltransferase-2-like (LOC101244961), mRNA	2.00	<0.01
	AK327374	Agmatine coumaroyltransferase-2-like (LOC101244961), mRNA	2.10	<0.01
	BF113983	Aluminum-induced protein (AIP) mRNA, complete cds stem specific protein TSJT1-like (LOC 101253225)	0.80	0.02
	AW931653	Aluminum-induced protein (AIP) mRNA, complete cds stem specific protein TSJT1-like (LOC 101253225)	0.90	0.02
	TA44976_4081	Anthocyanidin 3-O-glucosyltransferase 5-like (LOC101261193), mRNA	3.40	<0.01
	AK319203	Anthocyanidin 3-O-glucosyltransferase 5-like (LOC101261193), mRNA	4.50	<0.01
	AK326126	Anthocyanidin 3-O-glucosyltransferase-like, transcript variant 1 (LOC101244316), mRNA	1.10	0.02
	BI924430	Anthocyanidin 3-O-glucosyltransferase-like, transcript variant 4 (LOC101244316), mRNA	1.20	0.01
	ES893497	Arabinogalactan peptide 14-like (LOC101246976), mRNA	1.70	0.02
	AK325098	Aspartic proteinase nepenthesin-1-like (LOC101254927), mRNA	1.20	0.03
	GO372806	Aspartic proteinase PCS1-like (LOC101262373), mRNA	1.00	0.01
	TA44457_4081	Aspartic proteinase PCS1-like (LOC101262373), mRNA	0.90	0.01
	AK322997	Bax inhibitor (BI-1), mRNA	0.60	0.03
	Y14809	Beta-carotene hydroxylase (crtr-b1), mRNA	0.80	0.01
	AW616042	Beta-galactosidase 16-like (LOC101268055), mRNA	0.80	0.02
	BT013139	Caffeoyl-coa O-methyltransferase 6-like (LOC101260278), mRNA	1.00	0.02
	DV103891	Class II small Heat shock protein Le-HSP17.6 mRNA, complete cds	2.10	0.03
	AK325209	CONSTANS 1 (CO1), mRNA.	1.60	<0.01
	BP895717	Cullin-1-like (LOC101249757), mRNA	0.80	0.01
	AI775181	Cytosolic ascorbate peroxidase 1 (APX1), mRNA	1.00	0.02
	AK323084	Cysteine proteinase RD21a-like (LOC101247912), mRNA	0.60	<0.01
	AF090115	Cytosolic class II small Heat shock protein HCT2 (HSP17.4) mRNA, complete cds	1.70	0.02
	EG553627	Disease resistance response protein 206-like (LOC101250552), mRNA	0.60	0.04

DB724834	E3 ubiquitin-protein ligase RMA1H1-like (LOC101262152), mRNA	0.80	0.04
BG124171	E3 ubiquitin-protein ligase RNF149-like (LOC101265573), mRNA	2.50	<0.01
AK247408	Glutaredoxin domain-containing cysteine-rich protein 1-like (LOC101252103), mRNA	2.00	<0.01
ES893872	Glutathione S-transferase/peroxidase (BI-GST/GPX), mRNA	1.20	0.01
TA37423_4081	Glutathione S-transferase/peroxidase (BI-GST/GPX), mRNA	1.20	0.01
DV104067	Heat shock cognate 70 kda protein-like (LOC101255164), mRNA	0.60	0.04
TA39592_4081	Heat shock cognate 70 kda protein-like (LOC101255164), mRNA	1.40	0.05
TA50993_4081	Heat shock cognate 70 kda protein-like (LOC101255164), mRNA	1.40	0.03
GO372865	Heat shock factor protein HSF30-like (LOC101266046), mRNA	1.10	0.01
AW218084	Heat shock protein 83-like, transcript variant 1 (LOC101260143), mRNA	1.30	0.01
AK319894	Heat shock protein 83-like, transcript variant 1 (LOC101260143), mRNA	1.50	0.04
BI930788	Heat shock protein 83-like, transcript variant 1 (LOC101260143), mRNA	1.80	0.01
AI780273	Heat shock protein 83-like, transcript variant 2 (LOC101260143), mRNA	1.70	0.02
BI934577	Heat shock protein 83-like, transcript variant 2 (LOC101260143), mRNA	1.70	0.02
TA37068_4081	Heat shock protein 83-like, transcript variant 2 (LOC101260143), mRNA	1.70	0.03
BG132741	Heat shock protein 90-like (LOC101254814), mRNA	0.80	0.01
Y17306	Homeodomain protein (h52), mRNA	0.90	0.03
BI924534	Hydroxypyruvate reductase (HPR), mRNA	0.70	0.03
BG644016	Hydroxypyruvate reductase (HPR), mRNA	0.70	<0.01
AI773018	Hydroxypyruvate reductase (HPR), mRNA	0.70	0.02
AK327271	Ipomoea batatas senescence-associated protein mRNA, complete cds	0.80	<0.01
GO374313	Isoflavone 2'-hydroxylase-like (LOC101268098), misc_RNA	0.80	0.02
AI897849	L-aspartate oxidase 1-like (LOC101264098), mRNA	0.90	0.04
TA36297_4081	Methionine rich arabinogalactan (LOC778328), mRNA	0.60	0.03
AY986470	Methionine rich arabinogalactan (LOC778328), mRNA	0.60	0.02
BI921309	Mitochondrial small Heat shock protein (MTSHP), mRNA	1.40	0.05
GO373759	Mitochondrial small Heat shock protein (MTSHP), mRNA	1.60	0.03
AY840091	Monoterpene synthase 1 (MTS1) mRNA, complete cds	1.60	0.02
TA46839_4081	Nucleoredoxin 1-like (LOC101250401), mRNA	1.50	0.05
DB692903	Patatin group A-3-like (LOC101245708), mRNA	0.90	0.01

AK322984	Patatin group A-3-like (LOC101245708), mRNA	1.00	0.01
AK320934	Pectinesterase 53-like (LOC101260795), mRNA	0.90	<0.01
AK325152	Peroxidase (cevi16), mRNA	0.70	0.04
AK324081	Peroxidase 47-like (LOC101263035), mRNA	0.70	<0.01
TA47500_4081	Peroxidase 9-like (LOC101264212), mRNA	3.00	0.04
AK320988	Phenylalanine ammonia-lyase-like (LOC101249824), mRNA	0.80	0.02
AK328495	Polygalacturonase (XOPG1), mRNA	0.70	0.03
AJ320056	Polygalacturonase At1g48100-like (LOC101261316), mRNA	1.20	<0.01
TA55012_4081	Polygalacturonase At1g48100-like (LOC101261316), mRNA	1.90	<0.01
DB698920	Populus EST from mild drought-stressed leaves	0.60	0.01
AK326169	Populus EST from mild drought-stressed leaves	0.60	0.01
AK247855	Populus EST from severe drought-stressed leaves	1.20	0.02
BM411207	Populus EST from severe drought-stressed opposite wood	1.10	0.04
TA55960_4081	Solanum tuberosum cellulose synthase-like protein E6-like (LOC102591207), mRNA	1.00	0.01
BT012735	Proline dehydrogenase (PDH), mRNA	1.50	<0.01
BT013418	Proline dehydrogenase 2, mitochondrial-like (LOC101268445), mRNA	1.20	<0.01
BG130649	Quinone oxidoreductase-like protein At1g23740, chloroplastic-like (LOC101250690), mRNA	0.70	0.01
TA37651_4081	Quinone oxidoreductase-like protein At1g23740, chloroplastic-like (LOC101250690), mRNA	1.00	0.01
BE462910	Quinone oxidoreductase-like protein At1g23740, chloroplastic-like (LOC101250690), mRNA	0.90	<0.01
TA37652_4081	Quinone oxidoreductase-like protein At1g23740, chloroplastic-like (LOC101250690), mRNA	0.90	<0.01
BT013014	Quinone oxidoreductase-like protein At1g23740, chloroplastic-like (LOC101250690), mRNA	0.80	0.01
FS198511	RPM1-interacting protein 4-like (LOC101254747), mRNA	0.60	0.04
AK329161	Salt tolerance-like protein At1g78600-like (LOC101251142), misc_RNA	1.40	<0.01
AK322957	Salt tolerance-like protein At1g78600-like (LOC101264380), mRNA	0.80	<0.01
TA36469_4081	Salt tolerance-like protein At1g78600-like (LOC101264380), mRNA	0.90	<0.01
BG129343	Salutaridinol 7-O-acetyltransferase-like (LOC101248087), mRNA	1.10	0.02
AK319704	Salutaridinol 7-O-acetyltransferase-like (LOC101260610), mRNA	0.70	0.01
X98930	SBT2 protein (SBT2), mRNA	0.80	0.01
AK328231	Secologanin synthase-like (LOC101256885), misc_RNA	0.80	<0.01

AI781350	Small Heat shock protein (MTSHP), mRNA	1.30	0.02
AI779761	Snakin-1-like (LOC101254978), mRNA	1.30	0.02
AI772989	Snakin-2-like (LOC101245301), mRNA	1.60	0.01
TA38853_4081	Solanum tuberosum 17.3 kda class II Heat shock protein-like (LOC102602952), mRNA	2.30	<0.01
TA49570_4081	Solanum tuberosum dirigent protein 17-like (LOC102603105), mRNA	0.80	<0.01
TA37091_4081	Solanum tuberosum spermine synthase-like (LOC102582757), mRNA	0.90	<0.01
TA38526_4081	Subtilisin-like protease-like (LOC101252447), mRNA	0.70	0.04
BT013554	Subtilisin-like protease-like (LOC101252733), mRNA	0.60	0.05
AK329391	Superoxide dismutase [Fe] (sodb gene)	0.60	0.01
AB193041	Tobamovirus multiplication 1 homolog (TH1), mRNA	0.70	<0.01
BT013031	Tropinone reductase 1-like (LOC101254516), mRNA	1.40	0.05
GO373736	Xyloglucan endotransglycosylase (BR1), mRNA	2.10	<0.01
DV103831	17.4 kda class III Heat shock protein-like (LOC101248279), mRNA	1.50	0.03
TA55226_4081	17.4 kda class III Heat shock protein-like (LOC101248279), mRNA	2.00	0.02
AI487775	3-phosphoshikimate 1-carboxyvinyltransferase, chloroplastic-like (LOC101265440), mRNA	0.60	<0.01
BG129236	3-phosphoshikimate 1-carboxyvinyltransferase, chloroplastic-like (LOC101265440), mRNA	0.60	<0.01
TA37481_4081	4-coumaratecoa ligase-like 10-like (LOC101251259), mRNA	1.70	<0.01
TA40686_4081	Gibberellin 3-beta-dioxygenase 1-like (LOC101244881), mRNA	0.61	0.01
AK322221	Auxin-induced protein 5NG4-like (LOC101257604), mRNA	0.63	0.02
BG126642	Auxin response factor 19-1 (ARF19-1) mRNA, complete cds	0.63	0.02
BP891299	Auxin-induced protein 15A-like (LOC101248336), mRNA	1.06	0.05
TA47646_4081	Auxin-induced protein 15A-like (LOC101248336), mRNA	1.19	0.03
AW092854	Auxin-induced protein X10A-like (LOC101250954), mRNA	0.66	0.01
AW094474	Populus trichocarpa SAUR family protein (SAUR26), mRNA	0.89	0.02
AI779691	Cytokinin riboside 5'-monophosphate phosphoribohydrolase LOG1-like (LOC101258855),	1.24	<0.01
AK322121	Cytokinin riboside 5'-monophosphate phosphoribohydrolase LOG1-like (LOC101258855), mRNA	1.38	<0.01
DB696712	IAA-amino acid hydrolase ILR1-like 4-like (LOC101249161), mRNA	0.86	0.05
AK322390	IAA-amino acid hydrolase ILR1-like 6-like, transcript variant 1 (LOC101267174), mRNA	1.07	0.01
BE462854	IAA-amino acid hydrolase ILR1-like 4-like (LOC101249161), mRNA	0.61	0.04

Phytohormone interaction

AK321149	Ninja-family protein AFP1-like (LOC101268860), mRNA	0.93	< 0.01
AK224857	Ninja-family protein AFP3-like (LOC101259390), mRNA	0.65	<0.01
BI934081	Ninja-family protein AFP3-like (LOC101259390), mRNA	0.71	<0.01
GT167123	Putative abscissis acid-induced protein HVA22-like proteine-like (LOC101252452), mRNA	0.96	0.01
AF096246	Ethylene-responsive transcriptional coactivator (ER24), mRNA	1.45	<0.01
A_96_P012211	Ethylene-responsive transcriptional coactivator (ER24), mRNA	1.47	<0.01
BG123944	Ricinus communis methyltransferase, putative, mRNA	0.59	0.02
AK323282	E3 ubiquitin-protein ligase RHA1B-like (LOC101250533), mRNA	0.86	0.04
AK327122	E3 ubiquitin-protein ligase HERC3-like (LOC101249643), mRNA	2.62	<0.01
BG129119	E3 SUMO-protein ligase MMS21-like (LOC101262030), mRNA	0.68	0.03
BE450306	12-oxophytodienoate reductase (OPR1), mRNA	0.84	<0.01
AK324415	12-oxophytodienoate reductase (OPR1), mRNA	0.88	<0.01
BT014368	12-oxophytodienoate reductase 3 (opr3), mRNA	0.68	0.05
AK324156	1-aminocyclopropane-1-carboxylate oxidase homolog (LOC101245098), mRNA	0.83	<0.01
BG126253	1-aminocyclopropane-1-carboxylate oxidase homolog (LOC101245098), mRNA	0.77	0.01
AB010991	3b-hydroxylase (3OH-1), mRNA	0.94	0.01
AK324692	ABA 8'-hydroxylase (CYP707A1), mRNA	0.84	<0.01
AW030959	Abscisic acid 8'-hydroxylase 3-like (LOC101266289), mRNA	0.69	0.01
AJ832097	Protein GAST1-like (LOC101248254), mRNA	2.06	<0.01
ES897009	Protein GAST1-like (LOC101248254), mRNA	2.30	<0.01
TA40169_4081	GAST1 gene	2.35	<0.01
TA36268_4081	Jasmonate ZIM-domain protein 3 (LOC100191114), mRNA	0.91	0.04
AJ832101	Cytosolic sulfotransferase 12-like (LOC101244856), mRNA	1.59	0.01
TA40819_4081	Cytosolic sulfotransferase 12-like (LOC101259437), mRNA	1.90	0.01
BI924590	Cytosolic sulfotransferase 12-like (LOC101259437), mRNA	1.86	0.01
BF098476	Ent-kaurenoic acid oxidase 2-like (LOC101252522), mRNA	0.77	<0.01
AK325269	MACPF domain-containing protein At1g14780-like (LOC101258984), mRNA	0.98	<0.01
DB718607	Chaperone protein ClpB1-like (LOC101254583), mRNA	1.53	0.01
TA45765_4081	Regulator of chromosome condensation-like (LOC101248324), mRNA	0.98	<0.01
BI935664	Aquaporin PIP2-4-like (LOC101258434), mRNA	0.64	0.01

Water transport

AK323759	Aquaporin PIP2-7-like (Aquaporin), mRNA	0.83	0.04
BI421759	Aquaporin PIP2-4-like (LOC101258434), mRNA	0.85	<0.01
BE353376	Aquaporin PIP2-7-like (Aquaporin), mRNA	0.87	0.03
AW221402	Aquaporin PIP2-4-like (LOC101258434), mRNA	0.87	0.01
AW626004	Aquaporin PIP-type (LOC100736527), mRNA	0.94	0.01
BG626235	Aquaporin PIP2-1-like (LOC101247747), misc_RNA	0.94	0.01
AK323977	Aquaporin (LOC100529106), mRNA	0.96	<0.01
A_96_P079109	Aquaporin PIP2-4-like (LOC101258434), mRNA	1.00	<0.01
TA38087_4081	Aquaporin PIP-type (LOC100736527), mRNA	1.05	<0.01
GO374090	Aquaporin PIP2-4-like (LOC101258434), mRNA	1.06	<0.01
AW218316	Aquaporin PIP-type (LOC100736527), mRNA	1.27	<0.01
TA38086_4081	Aquaporin PIP-type (LOC100736527), mRNA	1.46	<0.01
BG131363	Aquaporin PIP2-1-like (LOC101248037), misc_RNA	1.36	0.05
BG130774	Aquaporin PIP2-1-like (LOC101248037), misc_RNA	2.25	0.01
BI928964	Aquaporin PIP-type (LOC100736527), mRNA	1.38	<0.01
BG642681	Aquaporin PIP-type (LOC100736527), mRNA	1.50	<0.01
BG124486	Aquaporin PIP-type (LOC100736527), mRNA	1.66	<0.01
AK323926	Aquaporin TIP2-1-like (LOC101245626), mRNA	1.54	0.05
GO372753	Aquaporin-like (LOC778315), mRNA	0.61	0.01
AK320129	PIP1, plasmamembrane intrinsic protein 1,mRNA	1.34	<0.01
BT012927	PIP1;5 mRNA for plasmamembrane intrinsic protein 1;5, complete cds, clone:	1.11	<0.01
BG124239	ABC transporter G family member 22-like (LOC101267150), mRNA	1.14	<0.01
AI776820	ABC transporter G family member 22-like (LOC101267150), mRNA	0.80	<0.01
BG130241	Medicago truncatula ABC transporter-like protein (MTR_8g091710) mRNA, complete cds	0.68	0.01
AK328035	Anion transporter 6, chloroplastic-like (LOC101258970), mRNA	0.87	<0.01
AI772815	Arabidopsis thaliana putative receptor-interacting protein (PRIP) mRNA, complete cds	1.33	0.02
AK320292	Boron transporter 2-like (LOC101260863), mRNA	0.94	0.03
TA55799_4081	BRI1 kinase inhibitor 1-like (LOC102602293), mRNA	0.75	<0.01
BP909156	Calcium sensing receptor, chloroplastic-like (LOC101268560), mRNA	0.72	0.02
AK320451	Calcium sensing receptor, chloroplastic-like (LOC101268560), mRNA	0.73	0.01

Transport

AK329544	Calmodulin-like protein 5-like, transcript variant 1 (LOC101264550), mRNA	0.86	<0.01	
ES896896	Cation transport regulator-like protein 2-like, transcript variant 2 (LOC101259958), mRNA	0.81	0.02	
BP894679	Cation transport regulator-like protein 2-like, transcript variant 2 (LOC101259958), mRNA	0.67	0.05	
TA39036_4081	Cation transport regulator-like protein 2-like, transcript variant 2 (LOC101259958), mRNA	0.65	0.05	
TA39037_4081	Cation transport regulator-like protein 2-like, transcript variant 2 (LOC101259958), mRNA	0.64	0.04	
BP905163	Chloride channel protein CLC-b-like (LOC101249604), mRNA	0.68	0.04	
DB713750	Chloride channel protein CLC-c-like (LOC101262869), mRNA	0.59	<0.01	
GO373261	Dicarboxylate transporter 1, chloroplastic-like (LOC101250955), mRNA	0.76	<0.01	
BP876669	Folate-biopterin transporter 9, chloroplastic-like (LOC101266163), mRNA	1.19	<0.01	
DV105226	Glycerol-3-phosphate transporter 1-like (LOC101259222), mRNA	0.64	0.02	
DV105574	Glycerol-3-phosphate transporter 1-like (LOC101259222), mRNA	0.76	0.01	
DB712246	Inorganic phosphate transporter 2-1, chloroplastic-like (LOC101267311), mRNA	0.68	0.01	
AW443936	Lipid-transfer protein DIR1-like (LOC101253176), mRNA	0.63	0.02	
TA54078_4081	MATE efflux family protein 3, chloroplastic-like (LOC101258125), mRNA	0.60	0.02	
AK324009	Metal-nicotianamine transporter YSL2-like (LOC101256566), mRNA	0.75	<0.01	
AK321410	Nitrate transporter 1.1-like (LOC101254502), mRNA	1.98	0.02	
AK321245	Nitrate transporter 1.3-like (LOC101244598), mRNA	0.63	<0.01	
GO373180	Non-specific lipid-transfer protein-like protein At2g13820-like (LOC101247253), mRNA	1.22	0.02	
TA49528_4081	Non-specific lipid-transfer protein-like protein At2g13820-like (LOC101259446), mRNA	1.01	<0.01	
AW035075	Potassium channel SKOR-like (LOC101261922), mRNA	0.92	0.02	
AK324231	Putative lipid-transfer protein DIR1-like (LOC101252520), mRNA	2.80	0.01	
AK324564	Rho guanine nucleotide exchange factor 8-like, transcript variant 2 (LOC101256509),	1.36	<0.01	
AK322098	Ricinus communis calmodulin binding protein, putative, mRNA	1.02	<0.01	
AK321692	SIPIN2 mRNA for auxin efflux carrier, complete cds	0.72	<0.01	
BW687826	Solanum tuberosum vacuolar iron transporter homolog 4-like (LOC102581101), mRNA	0.86	<0.01	
TA46538_4081	Sugar phosphate/phosphate translocator At1g12500-like (LOC101256613), mRNA	0.65	0.01	
AI484723	Sulfate transporter 3.1-like (LOC101253320), mRNA	0.97	<0.01	
AW218685	Transmembrane protein 97-like (LOC101252004), mRNA	0.76	0.02	
DB682328	Vacuolar amino acid transporter 1-like (LOC101267002), mRNA	0.68	0.04	
AK322628	Very-long-chain (3R)-3-hydroxyacyl-[acyl-carrier protein] dehydratase PASTICCINO 2-like (LOC101245050), mRNA	0.76	<0.01	
	AK329544 ES896896 BP894679 TA39036_4081 TA39037_4081 BP905163 DB713750 G0373261 BP876669 DV105226 DV105574 DB712246 AW443936 TA54078_4081 AK321410 AK321425 G0373180 TA49528_4081 AK324231 AK324564 AK321692 BW687826 TA46538_4081 AI484723 AW218685 DB682328 AK322628	AK329544Calmodulin-like protein 5-like, transcript variant 1 (LOC101264550), mRNAES896896Cation transport regulator-like protein 2-like, transcript variant 2 (LOC101259958), mRNABP894679Cation transport regulator-like protein 2-like, transcript variant 2 (LOC101259958), mRNATA39036_4081Cation transport regulator-like protein 2-like, transcript variant 2 (LOC101259958), mRNABP305163Chloride channel protein CLC-b-like (LOC101249604), mRNABP305163Chloride channel protein CLC-clike (LOC101262869), mRNAG0373261Dicarboxylate transporter 9, chloroplastic-like (LOC101250955), mRNABP876669Folate-biopterin transporter 1-like (LOC101259222), mRNADV105226Glycerol-3-phosphate transporter 1-like (LOC101259222), mRNADV105274Glycerol-3-phosphate transporter 2-1, chloroplastic-like (LOC101267311), mRNAAK32409Mctal-nicotianamine transporter YSL2-like (LOC101255125), mRNAAK324009Mctal-nicotianamine transporter YSL2-like (LOC101255125), mRNAAK321410Nitrate transporter 1.3-like (LOC101254502), mRNAAK324454Non-specific lipid-transfer protein-like protein At2g13820-like (LOC101259346), mRNAAK32455Potassium channel SKOR-like (LOC1012615222), mRNAAK324564Rho guanine nucleotide exchange factor 8-like, transcript variant 2 (LOC10125509), mRNAAK32455Sleinine communis calmodulin binding protein, putative, mRNAAK324564Sloganine nucleotide exchange factor 8-like, transcript variant 2 (LOC101256509), mRNAAK324564Sloganine nucleotide exchange factor 8-like, transcript variant 2 (LOC10125509), mRNAAK324564Sloganine n	AK329544Calmodulin-like protein 5-like, transcript variant 1 (LOC101264550), mRNA0.86ES896896Cation transport regulator-like protein 2-like, transcript variant 2 (LOC101259958), mRNA0.81BP894679Cation transport regulator-like protein 2-like, transcript variant 2 (LOC101259958), mRNA0.65TA39037_4081Cation transport regulator-like protein 2-like, transcript variant 2 (LOC101259958), mRNA0.66BP905163Chloride channel protein CLC-b-like (LOC101249604), mRNA0.68BP313750Chloride channel protein CLC-b-like (LOC101259955), mRNA0.76B876669Folate-biopterin transporter 1, chloroplastic-like (LOC101259955), mRNA0.66B712266Glycerol-3-phosphate transporter 1-like (LOC101259222), mRNA0.64DV105276Glycerol-3-phosphate transporter 1-like (LOC101259222), mRNA0.66AK432409Lipid-transfer protein DIR1-like (LOC101253176), mRNA0.68AK324009MATE efflux family protein 3, chloroplastic-like (LOC101253125), mRNA0.67AK324009Matte transporter 1.1-like (LOC101254502), mRNA0.63AK324009Matte transporter 1.1-like (LOC101254502), mRNA0.63G0373180Non-specific lipid-transfer protein Al2g13820-like (LOC10127253), mRNA0.62G0373216Non-specific lipid-transfer protein Al2g13820-like (LOC10125594), mRNA0.63AK32409Notrate transporter 1.3-like (LOC10126520), mRNA0.63G0373180Non-specific lipid-transfer protein Al2g13820-like (LOC101275954), mRNA0.62GV33254Non-specific lipid-transfer protein DR1-like protein Al2g13820-like (LOC1012559	
Signalling	BI206321	Calcium-dependent protein kinase 16-like (LOC101260391), mRNA	0.61	<0.01
-------------	--------------	--	------	-------
	AK327767	CBL-interacting serine/threonine-protein kinase 14-like (LOC101254823), mRNA	0.89	0.04
	AK324829	CBL-interacting serine/threonine-protein kinase 7-like (LOC101264066), mRNA	0.71	0.03
	BG126719	CDPK-related kinase 1-like (LOC101266575), mRNA	0.64	<0.01
	AK326794	CDPK-related kinase 5-like (LOC101248827), mRNA	1.12	0.01
	AK328419	Serine/threonine-protein kinase HT1-like (LOC101257779), mRNA	0.80	0.01
	AK326695	Serine/threonine-protein kinase HT1-like (LOC101257779), mRNA	0.84	0.01
	BT013410	Receptor-like protein kinase At5g18500-like(LOC101247003), mRNA	0.71	0.02
	GO374700	Receptor protein kinase TMK1-like (LOC101250851), mRNA	1.26	<0.01
	BE462091	Solanum tuberosum CRIB domain-containing protein RIC6-like (LOC102583753), mRNA	0.85	<0.01
	AK328249	Inactive leucine-rich repeat receptor-like serine/threonine-protein kinase At1g60630-like (LOC101253993), mRNA	1.16	<0.01
	AK321086	inositol-tetrakisphosphate 1-kinase 1-like (LOC101262819), mRNA	0.63	0.03
	AK247612	Phytochrome kinase substrate1-like (LOC101264929), mRNA	1.69	0.01
	BP881745	Inactive receptor kinase At5g67200-like (LOC101244333), mRNA	0.68	0.02
	BP903231	Inactive leucine-rich repeat receptor-like protein kinase At3g03770-like (LOC101246580), mRNA	0.62	0.01
	AK325428	linactive leucine-rich repeat receptor-like protein kinase At3g03770-like (LOC101246580), mRNA	0.63	0.03
	BG128896	Cytochrome b5-like (LOC101248404), mRNA	0.64	0.01
	TA49039_4081	Cytochrome P450 71A2-like (LOC101247804), mRNA	0.74	0.01
	AK321285	Cytochrome P450 90B1-like (CYP90B3), mRNA	1.11	0.01
	AK323147	Cytochrome P450 98A2-like (LOC101246092), mRNA	0.67	0.01
	AK326158	Cytochrome P450 98A2-like (LOC101262367), mRNA	0.73	0.01
	BG734621	Cytochrome P450 98A2-like (LOC101262367), mRNA	0.62	0.03
Gene coding	AK328880	Alpha/beta fold family protein (LOC543933), mRNA	0.59	0.01
	FS197443	BTB/POZ and TAZ domain-containing protein 3-like (LOC101255717), mRNA	1.05	<0.01
	AK325290	BTB/POZ domain-containing protein At3g22104-like (LOC101268292), mRNA	0.67	<0.01
	AK327804	Calmodulin-binding transcription factor SR3 (LOC101055610), mRNA	0.64	<0.01
	TA56390_4081	Calmodulin-binding transcription factor SR3 (LOC101055610), mRNA	0.67	<0.01
	DB726405	Chaperone protein ClpB1-like (LOC101254583), mRNA	1.45	0.02
	BG129537	Chaperonin-like (LOC101244957), mRNA	0.92	0.03

AW648457	Chaperonin-like (LOC101244957), mRNA	0.92	<0.01
BG130004	Chaperonin-like (LOC101244957), mRNA	0.89	0.02
TA56844_4081	Cyclin-U1-1-like (LOC101248793), mRNA	1.63	0.05
AK326642	DnaJ homolog subfamily B member 11-like (LOC101246562), mRNA	0.65	0.03
TA56692_4081	DnaJ homolog subfamily B member 6-like (LOC101264671), mRNA	1.02	<0.01
AI483393	DnaJ protein homolog (LOC101259708), mRNA	1.30	<0.01
AK322252	DnaJ protein homolog (LOC101259708), mRNA	1.54	0.01
AK328315	Dof zinc finger protein DOF2.1-like (LOC101259641), mRNA	0.75	0.01
A_96_P256637	Dof zinc finger protein DOF5.2-like (LOC101243956), mRNA	1.37	<0.01
AK247208	Dof zinc finger protein DOF5.2-like (LOC101248009), mRNA	1.59	<0.01
BP880078	Early light inducible protein (ELIP) gene, complete cds	1.26	<0.01
TA36441_4081	Early light-induced protein, chloroplastic-like, transcript variant 2 (LOC101257109), mRNA	1.86	0.01
AK329686	Eli3 protein (Eli3), mRNA	1.56	0.04
BI933568	Elongation factor G, chloroplastic-like (LOC101245683), mRNA	0.67	0.01
AK325664	F-box protein At2g32560-like (LOC101262987), mRNA	0.74	<0.01
CD003514	F-box/FBD/LRR-repeat protein At3g52680-like (LOC101245081), mRNA	1.28	0.03
BG643500	GATA transcription factor 16-like (LOC101261657), mRNA	0.82	0.01
AW929554	GATA transcription factor 16-like (LOC101265416), mRNA	0.88	0.03
AK325514	GATA transcription factor 9-like (LOC101250294), mRNA	0.78	0.05
TA55999_4081	Golden 2-like 2 transcription factor (GLK2) mRNA, complete cds	1.21	<0.01
AK325394	Heme-binding-like protein At3g10130, chloroplastic-like (LOC101250355), mRNA	0.91	<0.01
ES896179	Histone chaperone ASF1A-like (LOC101263022), mRNA	0.88	0.04
BT013613	Homeobox-leucine zipper HD-ZIP protein (THOM1), mRNA	1.15	<0.01
AK322664	Homeobox-leucine zipper protein ATHB-16-like (LOC101257770), mRNA	0.63	0.05
AK321990	Homeobox-leucine zipper protein HAT22-like (LOC101246982), mRNA	0.90	0.01
AK325539	Hop-interacting protein THI043 (LOC101055524), mRNA	0.60	0.01
BI421679	LURP-one-related 4-like (LOC101262941), mRNA	1.02	0.03
AK320346	Multiprotein bridging factor ER24 (ER24) gene, promoter region and complete cds	1.51	<0.01
TA48344_4081	Pentatricopeptide repeat-containing protein At1g31920-like (LOC101257993), mRNA	1.17	0.01
BG129915	Pentatricopeptide repeat-containing protein At5g13770, chloroplastic-like (LOC101254893), mRNA	0.90	0.01

AK322333	Proline-rich protein DC2.15-like (LOC101263716), mRNA	1.32	0.05
TA38016_4081	Protein argonaute 2-like (LOC101249141), mRNA	0.64	<0.01
BI210024	Protein argonaute 2-like (LOC101249141), mRNA	0.64	<0.01
AK319264	Protein LHY-like (LOC101261662), mRNA	3.12	<0.01
TA55118_4081	Putative BAH domain-containing protein	0.66	0.03
TA45804_4081	Putative GEM-like protein 8-like (LOC101268672), mRNA	0.59	0.04
AK321664	RNA polymerase sigma factor sigE, chloroplastic/mitochondrial-like, transcript variant 1 (LOC101252660), mRNA	1.02	<0.01
AK325213	RNA-binding protein 42-like, transcript variant 1 (LOC101250408), mRNA	0.95	<0.01
BE432867	Solanum tuberosum replication protein A 70 kDa DNA-binding subunit B-like (LOC102599322), mRNA	0.69	<0.01
AK322829	Solanum tuberosum serine/arginine repetitive matrix protein 2-like (LOC102582203), mRNA	0.72	0.02
BT013478	Solanum tuberosum zinc finger protein JACKDAW-like (LOC102582589), mRNA	0.95	<0.01
X95296	Transcription factor (THM27), mRNA	0.70	0.04
AK319692	Transcription factor ASG4-like (LOC101253545), mRNA	2.14	<0.01
AK328260	Transcription factor ASG4-like (LOC101257705), mRNA	0.92	0.01
BF096555	Transcription factor bHLH80-like, transcript variant 1 (LOC101256189), mRNA	0.89	<0.01
AK320756	Transcription factor GLABRA 3-like (LOC101256795), mRNA	0.62	0.02
AK323291	Transcription factor MYB1R1-like (LOC101257759), mRNA	0.60	0.01
BP887357	Transcription factor PIF1-like (LOC101264668), mRNA	0.65	0.01
AK325659	Transcription factor PIF1-like (LOC101264668), mRNA	0.82	<0.01
AK324191	Zinc finger A20 and AN1 domain-containing stress-associated protein 4-like (LOC101260386), mRNA	0.63	0.02
AK320922	Zinc finger protein 622-like (LOC101267254), mRNA	0.85	0.05
TA56180_4081	Zinc finger protein CONSTANS-LIKE 4-like (LOC101268413), mRNA	0.69	0.05
TA36546_4081	AB hydrolase superfamily protein yfhm-like, transcript variant 2 (LOC101265883), mRNA	1.10	0.05
S70040	Acid invertase (AI), mRNA	0.80	0.03
EG553801	Adenosine deaminase-like protein-like (LOC101256716), mRNA	0.70	0.01
TA42535_4081	Adenosine deaminase-like protein-like (LOC101256716), mRNA	0.70	0.01
AK320536	Adenylyl-sulfate reductase (LOC544267), mRNA	1.10	<0.01
AK320617	Aldo-keto reductase family 4 member C10-like (LOC101256514), mRNA	0.70	<0.01
BI933656	Arogenate dehydratase/prephenate dehydratase 6, chloroplastic-like (LOC101247331), mRNA	0.70	<0.01

BI422058	Arogenate dehydratase/prephenate dehydratase 6, chloroplastic-like (LOC101247331), mRNA	0.80	<0.01
AK319388	ATP-dependent zinc metalloprotease ftsh-like (LOC101264625), mRNA	0.80	0.04
AW096551	Beta-amylase 3, chloroplastic-like (LOC101259175), mRNA	1.90	0.03
AI898798	Beta-amylase 3, chloroplastic-like (LOC101259175), mRNA	1.80	0.03
AB218598	Calnexin-like protein (CNX61.0), mRNA	0.60	0.02
GO375213	Carboxylesterase 13-like (LOC101253900), mRNA	1.10	0.05
BG628336	Carboxylesterase 13-like (LOC101253900), mRNA	1.10	0.04
TA53549_4081	Carboxylesterase 13-like (LOC101253900), mRNA	1.10	0.04
BG128069	CDGSH iron-sulfur domain-containing protein 2-like (LOC101244055), mRNA	2.00	<0.01
TA36396_4081	Cerasiforme acid invertase (TAI) mRNA, complete cds	0.60	0.05
AJ832091	Chlorophyll a/b-binding protein precursor (CAB4), mRNA	1.20	0.04
AK319645	Chlorophyll a/b-binding protein precursor (CAB4), mRNA	1.20	0.05
AK321243	Cinnamoyl-coa reductase (CCR2), mRNA	0.80	0.01
AK324917	Cinnamyl alcohol dehydrogenase 6-like (LOC101249426), mRNA	0.70	<0.01
AK328961	Dctp pyrophosphatase 1-like (LOC101256598), mRNA	0.90	0.01
AK320504	Endo-1,4-beta-glucanase (Cel3), mRNA	0.60	0.01
BE450960	Endoglucanase 11-like (LOC101267141), mRNA	0.90	<0.01
AK320821	Epimerase family protein slr1223-like (LOC101265865), mRNA	0.70	0.01
BP904830	FAD-dependent urate hydroxylase-like (LOC101248786), mRNA	1.10	0.05
DB717596	Ferredoxin, chloroplastic-like (LOC101248335), mRNA	1.30	0.01
GO372514	Ferredoxin-1, chloroplastic-like (LOC101265784), mRNA	2.30	0.01
GO376272	Ferredoxin-I (SEND33), mRNA	1.20	<0.01
BE353188	Ferredoxin-I (SEND33), mRNA	1.00	0.01
A_96_P082914	Ferric reduction oxidase 7, chloroplastic-like (LOC101246763), mRNA	0.80	<0.01
BM412000	Ferric reduction oxidase 7, chloroplastic-like (LOC101246763), mRNA	2.10	<0.01
AK319877	Ferric reduction oxidase 7, chloroplastic-like (LOC101246763), mRNA	2.10	<0.01
TA37563_4081	Ferritin-2, chloroplastic-like, transcript variant 2 (LOC101260346), mRNA	0.90	0.01
AK324297	Flavin-containing monooxygenase FMO GS-OX-like 3-like (LOC101254810), mRNA	0.70	<0.01
AK326318	GDP-L-galactose phosphorylase (GGP), mRNA	0.90	0.01
TA38323_4081	GDSL esterase/lipase At1g28590-like (LOC101257443), mRNA	1.50	0.04

DB684196	GDSL esterase/lipase At1g28590-like (LOC101257443), mRNA	1.60	0.04
AK324687	Glucan endo-1,3-beta-glucosidase-like protein 2-like (LOC101257693), mRNA	0.60	0.04
AB359915	Glutamate decarboxylase isoform3 (GAD3), mRNA	0.90	0.04
AK319584	Glutamine synthetase (gs), mRNA	0.60	0.05
AK323682	Glutathione S-transferase-like (LOC101256384), mRNA	0.70	0.02
TA35843_4081	Glutathione S-transferase-like (LOC101267923), misc_RNA	0.60	0.03
FS200359	Glutathione transferase GST 23-like (LOC101258000), mRNA	0.60	0.03
AK324229	Glyoxylate/hydroxypyruvate reductase A HPR2-like (LOC101243867), mRNA	0.60	0.04
AI780698	Haloacid dehalogenase (LOC100316880), mRNA	1.90	<0.01
TA46789_4081	Haloacid dehalogenase (LOC100316880), mRNA	2.00	<0.01
EU159405	Inositol-1,4,5-triphosphate-5-phosphatase (5PT4), mRNA	0.80	<0.01
CK714819	Lipase 1-like (LOC101251165), mRNA	0.90	0.01
Y08887	L-lactate dehydrogenase A-like (LOC101252012), mRNA	0.60	<0.01
AK329023	LOB domain-containing protein 37-like (LOC101258116), mRNA	1.20	<0.01
AK320285	Long chain acyl-coa synthetase 4-like (LOC101257097), mRNA	0.60	<0.01
AK329612	Long-chain-alcohol O-fatty-acyltransferase 3-like (LOC101262436), mRNA	0.70	0.02
AY007560	Lycopersicon esculentum putative glutathione S-transferase T3 mRNA, complete cds	0.80	<0.01
AY157317	Lycopersicon esculentum strain L402 omega-3 fatty acid desaturase (FAD) mRNA, complete cds	0.80	<0.01
AK323459	Lysm domain-containing GPI-anchored protein 2-like (LOC101253732), mRNA	0.80	<0.01
TA56883_4081	Lysosomal beta glucosidase-like, transcript variant 2 (LOC101266947), mRNA	0.80	<0.01
TA37909_4081	Magnesium-chelatase subunit chlh, chloroplastic-like (LOC101244176), mRNA	0.70	0.01
TA37910_4081	Magnesium-chelatase subunit chlh, chloroplastic-like (LOC101244176), mRNA	0.70	0.02
GO374728	Magnesium-chelatase subunit chlh, chloroplastic-like (LOC101244176), mRNA	0.70	0.01
AK321794	Magnesium-protoporphyrin IX monomethyl ester [oxidative] cyclase, chloroplastic-like (LOC101257518), mRNA	0.60	0.05
AK320322	Malate synthase, glyoxysomal-like (LOC101267395), mRNA	1.60	0.01
AW029915	Metallothiol transferase fosb-like (LOC101249440), mRNA	1.30	<0.01
AK328455	Methionine gamma-lyase-like (LOC101263926), mRNA	1.00	0.04
AK325348	Micro-Tom glycosyltransferase gene, complete cds	1.20	0.01
AW623531	Micro-Tom glycosyltransferase gene, complete cds	0.60	0.01
AK326454	Microtubule-associated protein 6-like (LOC101261948), mRNA	0.60	<0.01

BG135240	Microtubule-associated protein 6-like (LOC101261948), mRNA	0.90	<0.01
TA51541_4081	Miraculin-like (LOC101248784), mRNA	1.10	0.05
BT012718	Mitochondrial adenine nucleotide transporter ADNT1-like (LOC101268329), mRNA	0.80	<0.01
AK327014	Mitochondrial carnitine/acylcarnitine carrier-like protein-like (LOC101262875), mRNA	0.80	0.04
TA57097_4081	Monoglyceride lipase-like (LOC101249534), mRNA	1.00	0.02
TA51791_4081	Monoglyceride lipase-like (LOC101249534), mRNA	1.00	0.03
AI491144	Monoglyceride lipase-like (LOC101249534), mRNA	1.10	0.03
AK320876	Monothiol glutaredoxin-S1-like (LOC101250592), mRNA	1.10	0.04
TA36736_4081	Nicotiana tabacum gene for photosystem II oxygen evolving complex 23 kda polypeptide	0.70	0.03
TA56779_4081	NADP-dependent alkenal double bond reductase P2-like (LOC101260309), mRNA	1.80	0.03
TA36292_4081	NADPHcytochrome P450 reductase-like (LOC101247036), mRNA	1.10	<0.01
TA36310_4081	NADPHcytochrome P450 reductase-like (LOC101247036), mRNA	1.10	<0.01
BE433041	NADP-malic enzyme (ME1) mRNA, nuclear gene encoding chloroplast protein, complete cds	1.10	0.02
BE459732	NADP-malic enzyme (ME1), mRNA	0.70	<0.01
AF001269	NADP-malic enzyme (ME1), mRNA	0.80	<0.01
AW154840	Nicotiana tabacum phi-1 mRNA, complete cds	1.50	0.01
AK327649	Nicotinate phosphoribosyltransferase-like (LOC101264576), mRNA	0.70	0.01
BT014282	Omega-3 fatty acid desaturase (LOC100134915), mRNA	1.80	<0.01
AK319641	Omega-6 fatty acid desaturase, chloroplastic-like (LOC101265653), mRNA	1.20	0.01
TA39700_4081	Omega-6 fatty acid desaturase, chloroplastic-like (LOC101265653), mRNA	1.10	0.01
AF029349	Ornithine decarboxylase (ODC), mRNA	0.70	<0.01
AK325930	Psbp domain-containing protein 4, chloroplastic-like, transcript variant 2 (LOC101259835), mRNA	0.80	0.04
TA36250_4081	PSII polypeptide (PSBR), mRNA	0.70	0.03
AK323657	Pentatricopeptide repeat-containing protein At1g31920-like (LOC101257993), mRNA	1.20	0.01
AK329117	PHLOEM PROTEIN 2-LIKE A9-like (LOC101260710), mRNA	2.00	0.03
BG130811	Phosphoenolpyruvate carboxylase, housekeeping isozyme-like (LOC101248407), mRNA	0.60	<0.01
AK323891	Phosphoserine phosphatase 1-like (LOC101249322), mRNA	0.80	0.02
BI928029	Photosystem II 22 kda protein, chloroplastic-like (LOC101260830), mRNA	1.40	0.01
AK325903	Photosystem II 22 kda protein, chloroplastic-like (LOC101260830), mRNA	1.60	0.01
A_96_P075734	Photosystem II 22 kda protein, chloroplastic-like (LOC101260830), mRNA	1.50	0.01

AK322449	PREDICTED: Solanum tuberosum heme-binding-like protein At3g10130, chloroplastic-like (LOC102580389), transcript variant X1, mRNA	0.70	<0.01
TA54439_4081	PREDICTED: Solanum tuberosum phosphoenolpyruvate carboxylase-like (LOC102599595), mRNA	0.70	<0.01
BP876693	Probable cinnamyl alcohol dehydrogenase 9-like (LOC101263982), mRNA	1.00	0.04
AK320312	Protein DA1-related 1-like (LOC101261676), mRNA	0.60	<0.01
BP876774	Protein phosphatase 2C 16-like (LOC101265524), mRNA	0.70	<0.01
AK326415	Protein phosphatase 2C AHG3 homolog (PP2C-2), mRNA	0.90	0.01
X94946	Proteinase inhibitor II (cevi57), mRNA	0.70	0.02
BG127531	Protochlorophyllide-dependent translocon component 52, chloroplastic-like (LOC101255583), mRNA	0.80	0.01
AW934340	Protochlorophyllide-dependent translocon component 52, chloroplastic-like (LOC101255583), mRNA	0.60	0.05
BI927725	Protochlorophyllide-dependent translocon component 52, chloroplastic-like (LOC101255583). mRNA	0.90	0.03
BG643884	PROTON GRADIENT REGULATION 5, chloroplastic-like (LOC101262255), mRNA	1.40	<0.01
BF114134	Putative polyketide hydroxylase-like (LOC101256488), mRNA	0.60	<0.01
AK319347	Pyridoxal biosynthesis protein PDX1-like (LOC101257782), mRNA	1.20	<0.01
AK328390	Rhamnose biosynthetic enzyme 1-like (LOC101249663), mRNA	0.80	0.01
BT012795	Ribulose bisphosphate carboxylase/oxygenase activase 1, chloroplastic-like (LOC101250725), mRNA	2.70	<0.01
AK325923	Ribulose bisphosphate carboxylase/oxygenase activase, chloroplastic-like (LOC101249777), misc RNA	1.00	0.04
BG129244	Ribulose bisphosphate carboxylase/oxygenase activase, chloroplastic-like (LOC101249777), misc. RNA	1.20	0.03
BG128812	Ricinus communis ATATH13, putative, mRNA	0.80	<0.01
BE432318	Ricinus communis dihydroflavonal-4-reductase, putative, mRNA	0.70	0.01
AK319899	Ricinus communis N-acetyltransferase, putative, mRNA	3.60	<0.01
BG125447	Ripening regulated protein DDTFR19 (DDTFR19), mRNA	0.70	0.02
AK329992	S-adenosyl-L-methionine-dependent methyltransferase BCG_0775c-like (LOC101260430), mRNA	1.20	0.03
AK319251	S-adenosylmethionine decarboxylase 2 (SAMDC) gene, complete cds	1.00	0.01
TA36438_4081	S-adenosylmethionine decarboxylase proenzyme-like (LOC101260400), mRNA	0.70	0.03
A_96_P082314	S-adenosylmethionine decarboxylase proenzyme-like (LOC101260400), mRNA	1.00	<0.01
A_96_P084089	S-adenosylmethionine decarboxylase proenzyme-like (LOC101260400), mRNA	1.00	<0.01
AK320212	S-adenosylmethionine synthase 2-like, transcript variant 1 (LOC101247506), mRNA	1.20	0.03
BP886193	Serine carboxypeptidase-like 26-like (LOC101247667), mRNA	1.50	0.01

BG643750	Serine carboxypeptidase-like 26-like (LOC101247667), mRNA	1.30	0.02
AK325009	Serine carboxypeptidase-like 26-like (LOC101247667), mRNA	1.30	0.02
AK322534	Solanum tuberosum J domain-containing protein required for chloroplast accumulation response 1-like (LOC102591785), mRNA	1.60	<0.01
AI487343	Tryptophan synthase beta chain 2, chloroplastic-like (LOC101256422), mRNA	1.80	0.05
AW033682	U-box domain-containing protein 3-like, transcript variant 1 (LOC101260859), mRNA	0.60	<0.01
AI487448	U-box domain-containing protein 5-like (LOC101252663), mRNA	0.60	0.03
AK322902	UDP-glucose flavonoid 3-O-glucosyltransferase 6-like (LOC101258120), mRNA	1.00	<0.01
BF098125	UDP-glucuronate 4-epimerase 3-like (LOC101245594), mRNA	0.80	0.01
AW980071	UDP-glucuronate 4-epimerase 3-like (LOC101245594), mRNA	0.80	0.01
AK324742	UDP-glucuronic acid decarboxylase 1-like (LOC101246662), mRNA	0.60	0.02
AK325272	UDP-glycosyltransferase 75C1-like (LOC101248405), mRNA	0.90	<0.01
TA41168_4081	UDP-glycosyltransferase 75C1-like (LOC101250740), mRNA	0.45	<0.01
AK320474	UDP-glycosyltransferase 75C1-like (LOC101250740), mRNA	1.50	<0.01
AK322310	UDP-glycosyltransferase 75C1-like (LOC101251036), mRNA	1.60	0.02
BF051260	UDP-glycosyltransferase 76F1-like (LOC101259617), mRNA	0.80	<0.01
AK326066	UDP-glycosyltransferase 79B6-like (LOC101256480), mRNA	0.70	0.05
AK325472	UDP-glycosyltransferase 85A3-like (LOC101258650), mRNA	1.30	0.03
TA42265_4081	UDP-glycosyltransferase 86A1-like (LOC101261977), mRNA	0.80	0.01
AK324690	Very-long-chain enoyl-coa reductase-like (LOC101255353), mRNA	2.50	<0.01
BI921143	Xyloglucan endotransglucosylase/hydrolase protein 16-like (LOC101255416), mRNA	1.30	0.01
A_96_P085059	Xyloglucan endotransglucosylase/hydrolase protein 16-like (LOC101255416), mRNA	1.40	0.03
BI211145	Xyloglucan endotransglucosylase/hydrolase protein 16-like (LOC101261784)	1.30	0.03
AY497477	Xyloglucan endotransglucosylase-hydrolase XTH6 (XTH6), mRNA	1.00	<0.01
AK327871	Xyloglucan endotransglucosylase-hydrolase XTH9 (XTH9), mRNA	1.40	0.02
ES897086	Xyloglucan endotransglycosylase/hydrolase 16 protein (XTH16), mRNA	1.40	0.03
AK322426	Xyloglucan endotransglycosylase/hydrolase 16 protein (XTH16), mRNA	1.50	0.05
A_96_P030981	4-coumaratecoa ligase-like 10-like (LOC101251259), mRNA	1.70	0.01
AW154876	4-coumaratecoa ligase-like 10-like (LOC101251259), mRNA	0.70	<0.01
AK329281	4-coumaratecoa ligase-like 10-like (LOC101251259), mRNA	1.60	0.01
BI935243	5-methyltetrahydropteroyltriglutamatehomocysteine methyltransferase-like (LOC101264078), mRNA	0.70	0.02

	TA36189_4081	5-methyltetrahydropteroyltriglutamatehomocysteine methyltransferase-like (LOC101264078), mRNA	0.70	0.03
Miscellaneous	DQ056440	ACI112 protein (ACI112), mRNA	0.70	<0.01
	BP903575	40S ribosomal protein S21-2-like, transcript variant 2 (LOC101254027), mRNA	1.00	0.02
	BT013161	Adipocyte plasma membrane-associated protein-like (LOC101262624), partial mRNA	0.70	<0.01
	AI778706	Antirrhinum majus transposon Idle-61e09b, cultivar 165E, BAC clone 165EH3_61e09	1.20	<0.01
	AK319892	Arabidopsis thaliana dynein light chain type 1-like protein mRNA, complete cds	1.60	0.05
	AK327642	Autophagy-related protein 8C-like, transcript variant 2 (LOC101253062), mRNA	0.80	<0.01
	BT014225	BI1-like protein-like (LOC101265367), mRNA	0.80	0.03
	AK319341	BIPINNATA (BIP), mRNA	0.80	0.05
	AK247242	CASP-like protein RCOM_1206790-like (LOC101245554), mRNA	2.30	0.04
	AK326420	COBRA-like (LOC101252834), mRNA glycosylphosphatidylinositol-anchored proteins.	0.80	0.01
	AY490242	CONSTANS interacting protein 1 (CIP1), mRNA	0.90	<0.01
	AK327694	Cryptochrome DASH, chloroplastic/mitochondrial-like, transcript variant 2 (LOC101248230), mRNA	1.00	<0.01
	AK322048	Cyanidin-3-O-glucoside 2-O-glucuronosyltransferase-like (LOC101260725), mRNA	1.00	0.03
	EG553575	Dictyostelium discoideum AX4 hypothetical protein (DDB_G0280577) mRNA, complete cds	2.40	<0.01
	GT165424	Early light-induced protein, chloroplastic-like, transcript variant 2 (LOC101257109), mRNA	2.00	<0.01
	DB693623	Hydrophobic protein LTI6A-like (LOC101265868), mRNA	1.20	0.02
	TA52879_4081	Hydrophobic protein LTI6A-like (LOC101265868), mRNA	1.10	0.01
	DV105521	LURP-one-related 4-like (LOC101262941), mRNA	1.10	0.02
	AK321641	Meloidogyne-induced giant cell (DB140) protein mRNA, 3' end	1.40	0.02
	BI208128	NAC domain-containing protein 43-like (LOC101264451), mRNA	0.70	0.01
	AK323146	Nicotiana tabacum cdna-AFLP-fragment MBT41-420, cultivar Bright Yellow 2	0.80	0.04
	BG130060	NLP4-like (LOC101260431), mRNA	0.60	<0.01
	BI205947	Non-lysosomal glucosylceramidase-like (LOC101265793), misc_RNA	1.10	0.01
	AK325644	Nucleoredoxin 1-like (LOC101250401), mRNA	1.40	0.04
	AI778754	Oligopeptidase A-like (LOC101254150), mRNA	1.10	0.04
	BT013324	Peroxisomal membrane protein 11-4-like (LOC101259820), mRNA	1.50	0.03
	BG127261	Pollen allergen Che a 1-like (LOC101262972), mRNA	0.90	0.01
	BT013052	Proline rich protein, transcript variant 1 (TPRP-F1), mRNA	1.50	0.03
	BI932748	Proline rich protein, transcript variant 2 (TPRP-F1), mRNA	1.20	0.02

AK319777	Protein TRANSPARENT TESTA 12-like (LOC101257226), mRNA	0.60	0.01
BG128630	Pyridoxal biosynthesis protein PDX1-like (LOC101257782), mRNA	1.10	<0.01
BT014477	Replication protein A 32 kda subunit A-like (LOC101244966), mRNA	0.70	0.02
AK323326	Ricinus communis lipid binding protein, putative, mRNA, pertinent?	0.80	0.01
BT014378	Root phototropism protein 2-like (LOC101259171), mRNA	1.70	<0.01
BG627171	Root phototropism protein 2-like (LOC101259171), mRNA	1.70	<0.01
TA50449_4081	SERF-like protein-like (LOC101248689), mRNA	0.70	<0.01
AK327121	Solanum lycopersicum protein HOTHEAD-like (LOC101248806), mRNA	1.00	0.01
TA36862_4081	Solanum lycopersicum stem-specific protein TSJT1-like (LOC101253225), mRNA	0.90	0.02
TA54436_4081	solanum tuberosum A-agglutinin anchorage subunit-like (LOC102601442), mRNA	0.60	0.03
GH623050	Solanum tuberosum centrosome and spindle pole-associated protein 1-like	1.50	0.02
AK247024	Solanum tuberosum dentin sialophosphoprotein-like (LOC102583974), mRNA	0.90	<0.01
TA39101_4081	Solanum tuberosum dentin sialophosphoprotein-like (LOC102583974), mRNA	0.90	<0.01
BI923464	Solanum tuberosum dentin sialophosphoprotein-like (LOC102587531), mRNA	0.70	<0.01
AK327990	Solanum tuberosum DNA helicase MCM9-like (LOC102601275), mRNA	0.80	<0.01
TA36671_4081	Solanum tuberosum extensin-like (LOC102589385), mRNA	3.10	0.04
GO375025	Solanum tuberosum extensin-like (LOC102589385), mRNA	4.00	0.03
BI921979	Solanum tuberosum FK506-binding protein 4-like (LOC102584008), mRNA	1.10	<0.01
AK329744	Solanum tuberosum neurofilament medium polypeptide-like (LOC102586151), mRNA	1.10	0.05
GO374542	Solanum tuberosum neurofilament medium polypeptide-like (LOC102593471), mRNA	1.30	<0.01
TA54469_4081	Solanum tuberosum neurofilament medium polypeptide-like (LOC102593471), mRNA	1.40	0.01
TA39691_4081	Solanum tuberosum neurofilament medium polypeptide-like (LOC102593471), mRNA	1.20	0.01
AK247467	Solanum tuberosum protein CHUP1, chloroplastic-like (LOC102600315), mRNA	0.70	0.04
AW220044	Solanum tuberosum protein XRI1-like (LOC102603025), mRNA	0.80	0.03
BI924804	SPM1 protein (SPM1), mRNA	0.80	<0.01
BG132352	SPM1 protein (SPM1), mRNA	1.00	<0.01
AK324059	SPM1 protein (SPM1), mRNA	1.00	<0.01
AK328656	Stem-specific protein TSJT1-like (LOC101253225), mRNA	0.90	0.02
TC223309	Tc Rep: Early light inducible protein - (Tomato) (Lycopersicon esculentum), partial (87%) [TC223309]	1.90	0.01
TA36672_4081	Tc Rep: Ildd2t15-L - Lupinus luteus (European yellow lupin), partial (6%) [TC217379]	4.20	0.03

	TA36259_4081	Tc Rep: Major intrinsic protein - Solanum tuberosum (Potato), complete [TC221627]	0.90	<0.01
	A_96_P072094	THYLAKOID FORMATION1, chloroplastic-like (LOC101253003), mRNA	0.60	0.03
	AI777995	Transmembrane protein 189-like (LOC101252202), mRNA	1.60	<0.01
	BP908026	Transmembrane protein 189-like (LOC101252202), mRNA	1.90	<0.01
	BE450613	Transmembrane protein 56-like (LOC101247393), mRNA	0.60	0.01
	AK324793	3-epi-6-deoxocathasterone 23-monooxygenase-like (LOC101245605), mRNA	0.70	0.01
	DB701060	+)-neomenthol dehydrogenase-like (LOC101263847), mRNA	1.40	0.01
	BI206732	65-kda microtubule-associated protein 6-like (LOC101261948), mRNA	0.60	<0.01
	BE435174	65-kda microtubule-associated protein 6-like (LOC101261948), mRNA	0.70	<0.01
	AK319898	(+)-neomenthol dehydrogenase-like (LOC101268235), mRNA	1.40	0.01
Uncharacterized	AJ785007	Uncharacterized LOC101258063 (LOC101258063), mRNA	0.68	0.02
	AJ831584	Uncharacterized LOC101261626 (LOC101261626), mRNA	0.88	0.02
	AK247327	Uncharacterized LOC101265861 (LOC101265861), mRNA	1.00	0.02
	AK247503	Uncharacterized LOC101255972, transcript variant 2 (LOC101255972), mRNA	1.08	<0.01
	AK319299	Uncharacterized LOC101243731 (LOC101243731), mRNA	0.68	<0.01
	AK321256	Uncharacterized LOC101245722 (LOC101245722), mRNA	0.68	<0.01
	AK321821	Uncharacterized LOC101260460 (LOC101260460), mRNA	0.59	0.02
	AK322908	Uncharacterized LOC101255634, transcript variant 2 (LOC101255634), mRNA	1.31	<0.01
	AK323039	Uncharacterized LOC101263137 (LOC101263137), mRNA	0.74	<0.01
	AK323502	Uncharacterized LOC101267576 (LOC101267576), mRNA	0.67	0.01
	AK324141	Uncharacterized LOC101251354 (LOC101251354), mRNA	0.79	<0.01
	AK324509	Uncharacterized LOC101268836 (LOC101268836), mRNA	1.05	<0.01
	AK324791	Uncharacterized LOC101252420 (LOC101252420), mRNA	0.81	0.01
	AK325283	Uncharacterized LOC101248663 (LOC101248663), mRNA	1.15	0.02
	AK326164	Uncharacterized LOC101261020, transcript variant 2 (LOC101261020), MRNA	1.72	<0.01
	AK326490	Uncharacterized LOC101257764, transcript variant 2 (LOC101257764), mRNA	1.08	<0.01
	AK326646	Uncharacterized LOC101250492 (LOC101250492), mRNA	1.40	<0.01
	AK327647	Uncharacterized LOC101259889 (LOC101259889), mRNA	0.62	0.01
	BE459500	Uncharacterized LOC101266880 (LOC101266880), mRNA	0.70	0.01
	BF114055	Uncharacterized LOC101261020, transcript variant 1 (LOC101261020), mRNA	0.75	0.03

	BG128283	Uncharacterized LOC101262576 (LOC101262576), mRNA	0.61	0.01
	BP891941	Uncharacterized LOC101268835 (LOC101268835), mRNA	0.65	<0.01
	BP895477	Uncharacterized LOC101245536 (LOC101245536), mRNA	0.75	<0.01
	BP910533	Uncharacterized LOC101248189 (LOC101248189), mRNA	0.70	<0.01
	BT013396	Uncharacterized LOC101261020, transcript variant 2 (LOC101261020), mRNA	1.25	0.01
	BT013533	Uncharacterized LOC101247825 (LOC101247825), mRNA	1.56	<0.01
	BT014259	Uncharacterized LOC101245466 (LOC101245466), mRNA	3.83	0.04
	CK715404	Uncharacterized LOC101259774 (LOC101259774), mRNA	0.71	0.01
	DB696735	Uncharacterized LOC101260280 (LOC101260280), misc_RNA	1.00	0.01
	DB702331	Uncharacterized LOC101262449 (LOC101262449), mRNA	0.98	<0.01
	GO373949	Uncharacterized LOC101251913 (LOC101251913), mRNA	0.92	0.03
	TA36272_4081	Uncharacterized LOC101251468 (LOC101251468), mRNA	0.68	0.02
	TC229654	uncharacterized LOC101254182 (LOC101254182), mRNA	0.77	0.05
Unknown	A_96_P259452	Unknown	0.63	<0.01
	AI490307	Unknown	0.59	<0.01
	AI773375	Unknown	0.81	0.01
	AK224680	Unknown	0.84	<0.01
	AK247150	Unknown	0.87	0.02
	AK247433	Unknown	0.80	0.01
	AK247490	Unknown	0.60	0.01
	AK247495	Unknown	0.74	0.02
	AK247550	Unknown	1.19	0.02
	AK247566	Unknown	0.84	<0.01
	AK247973	Unknown	0.84	<0.01
	AK319405	Unknown	0.79	0.01
	AK319646	unknown	1.01	0.02
	AK319771	Unknown	0.68	0.04
	AK320244	Unknown	0.77	<0.01
	AK320878	Unknown	0.63	0.02
	AK320924	Unknown	0.74	0.01

 AK321473	Unknown	1.09	<0.01
AK321544	Unknown	0.70	0.02
AK321693	Unknown	0.59	0.01
AK321942	Unknown	0.87	<0.01
AK322388	Unknown	0.79	0.02
AK322695	Unknown	0.75	0.03
AK323069	Unknown	0.81	0.01
AK323519	Unknown	0.62	0.04
AK323773	Unknown	0.66	0.02
AK324348	Unknown	0.72	0.05
AK324366	Unknown	1.08	<0.01
AK326564	Unknown	1.18	<0.01
AK326792	Unknown	0.73	<0.01
AK326950	Unknown	0.73	0.05
AK327030	Unknown	0.65	<0.01
AK327099	Unknown	0.63	0.03
AK327442	Unknown	0.97	<0.01
AK327639	Unknown	0.62	0.01
AK328110	Unknown	1.97	<0.01
AK328156	Unknown	0.74	<0.01
AK328752	Unknown	1.48	0.01
AK328919	Unknown	1.01	0.02
AK329166	Unknown	0.69	0.03
AK329407	Unknown	1.42	0.02
AK330096	Unknown	0.67	0.03
AW033294	Unknown	0.63	<0.01
AW034552	Unknown	0.74	<0.01
AW041032	Unknown	0.64	0.05
AW093537	Unknown	0.67	0.01
AW650672	Unknown	0.74	0.01

 BF097466	Unknown	0.76	<0.01
BF097873	Unknown	0.67	<0.01
BG123437	Unknown	0.62	<0.01
BG134675	Unknown	1.14	0.02
BG643508	Unknown	0.93	v
BI210263	Unknown	0.76	0.02
BI921867	Unknown	1.02	0.01
BI935571	Unknown	1.41	<0.01
BM410579	Unknown	0.64	<0.01
BP887603	Unknown	0.60	0.03
BP890349	Unknown	0.65	0.02
BP901124	Unknown	0.83	0.02
BP904629	Unknown	1.36	<0.01
BT013647	Unknown	0.73	0.01
BW688547	Unknown	0.63	<0.01
BW688800	Unknown	1.49	<0.01
BW690708	Unknown	1.02	0.01
CD002245	Unknown	0.74	<0.01
DB684274	Unknown	0.99	<0.01
DB692340	Unknown	0.66	0.01
DB710426	Unknown	1.44	0.03
DY523465	Unknown	1.18	<0.01
ES894822	Unknown	0.59	0.01
FS205785	Unknown	2.17	<0.01
GO375886	Unknown	1.31	0.05
TA36060_4081	Unknown	1.20	0.02
TA38992_4081	Unknown	1.28	0.05
TA39002_4081	Unknown	0.89	0.01
TA39510_4081	unknown	0.72	<0.01
TA41726_4081	Unknown	1.14	0.01

Annexes

TA44300_40	081 Unknown	0.81	0.01
TA48890_40	081 Unknown	0.79	<0.01
TA49855_40	081 Unknown	0.68	0.05
TA50686_40	081 unknown	0.99	0.02
TA53396_40	081 Unknown	0.61	0.01
TA54252_40	081 unknown	0.73	0.03
TA55172_40	081 Unknown	1.08	0.01
TA55264_40	081 Unknown	1.47	0.04

Tableau 4 Expression de gènes sous-exprimés par le déficit hydrique

Function	SystematicName	Description	Fold Change SH/TM (log2)	ttest TMvsSH
Defense	E\$893737	Aspartic proteinase PCS1-like (LOC101261332), mRNA	-1.67	< 0.01
	AK323477	Bifunctional nuclease 1-like (LOC101247196), mRNA	-1.54	0.01
	AK323493	Bifunctional nuclease 2-like (LOC101247280), mRNA	-2.01	<0.01
	AK326221	Bifunctional nuclease 2-like (LOC101263903), mRNA	-1.31	<0.01
	A_96_P016436	Bifunctional nuclease 2-like (LOC101263903), mRNA	-1.32	<0.01
	AK322239	Caffeoyl-CoA O-methyltransferase At4g26220-like, transcript variant 2 (LOC101252173), mRNA	-1.71	<0.01
	AK320529	Catalase (cat1), mRNA	-1.36	0.04
	DY523553	Catalase (cat1), mRNA	-1.19	0.05
	AF172856	Cysteine protease TDI-65 (tdi-65), mRNA	-1.33	<0.01
	AF500011	Dehydration responsive element binding protein (DREB1), mRNA	-1.01	0.02
	TA52862_4081	Dehydration-responsive element-binding protein 2C-like (LOC101261712), mRNA	-1.83	<0.01
	TA51608_4081	Exoglucanase XynX-like (LOC101254249), mRNA	-1.56	<0.01
	AK323892	Feruloyl CoA ortho-hydroxylase 2-like (LOC101266300), mRNA	-1.18	<0.01
	AY082341	Glutathione S-transferase-like protein mRNA, complete cds	-1.16	<0.01
	DB689933	Glycoalkaloid metabolism 1 (GAME1), mRNA	-1.05	0.02
	AK323113	Glycoalkaloid metabolism 1 (GAME1), mRNA	-1.27	0.01
	AK325085	Heat shock factor protein HSF30-like (LOC101255223), mRNA	-1.93	<0.01
	AK328501	Heavy metal-associated isoprenylated plant protein 26-like (LOC101266875), mRNA	-1.33	<0.01
	BW691837	Heavy metal-associated isoprenylated plant protein 26-like (LOC101266875), mRNA	-1.29	<0.01
	GH622801	Hop-interacting protein THI012 (LOC101055512), mRNA	-1.45	0.02
	TA46892_4081	Late blight resistance protein homolog R1B-12-like (LOC101260638), mRNA	-1.48	<0.01
	DB727615	MACPF domain-containing protein At1g14780-like (LOC101264464), mRNA	-1.04	<0.01
	AK327920	MACPF domain-containing protein At1g14780-like (LOC101264464), mRNA	-1.42	<0.01
	BP909981	Metal tolerance protein 4-like (LOC101253924), mRNA	-1.68	<0.01

	AJ841791	mRNA for cysteine protease (cp gene)	-1.2	<0.01
	AK323625	NAD(P)H:quinone oxidoreductase-like (LOC101265773), mRNA	-1.93	0.01
	AK325607	Peroxisomal membrane protein PMP22-like (LOC101252154), mRNA	-1.64	<0.01
	TC219407	Phytochrome E (PHYE) gene, complete cds	-1.36	0.01
	AK320593	PLANT CADMIUM RESISTANCE 8-like (LOC101250516), mRNA	-1.05	0.04
	AK325496	pre-pro-cysteine proteinase (LOC544144), mRNA	-1.65	<0.01
	AW223778	pre-pro-cysteine proteinase (LOC544144), mRNA	-1.21	<0.01
	AK321754	Short-chain dehydrogenase reductase 3a-like (LOC101266112), mRNA	-1.74	<0.01
	AK321767	SNAP25 homologous protein SNAP33-like, transcript variant 2 (LOC101257479), mRNA	-1.43	<0.01
	AK321831	Subtilisin-like protease-like (LOC101264734), mRNA	-1.02	<0.01
	BT014006	Tetraspanin-8-like (LOC101258870), mRNA	-1.34	<0.01
	GT167928	Thaumatin-like protein-like (LOC101266146), mRNA	-2.97	0.01
	BW691659	Thebaine 6-O-demethylase-like (LOC101250715), mRNA	-2.57	<0.01
	AW033181	Thebaine 6-O-demethylase-like (LOC101250715), mRNA	-2.42	<0.01
	AK319677	Thiamine thiazole synthase 1, chloroplastic-like (LOC101257192), mRNA	-2.01	0.02
	BP889283	Thiamine thiazole synthase 1, chloroplastic-like (LOC101257192), mRNA	-1.52	0.04
	TA36717_4081	Thiamine thiazole synthase 1, chloroplastic-like (LOC101257192), mRNA	-1.82	0.01
	K03291	Tomato leaf wound-induced proteinase inhibitor II mRNA, complete cds	-1.81	<0.01
	U34808	TPSI1 protein (TPSI1), mRNA	-1.3	0.01
	AK321605	Vacuolar-processing enzyme-like (LOC101263441), mRNA	-1.86	0.03
	AW030144	Vacuolar-processing enzyme-like (LOC101263441), mRNA	-1.78	0.03
	AW224403	Vacuolar-processing enzyme-like (LOC101263441), mRNA	-1.57	0.04
	AK325520	Wound-induced protein 1-like, transcript variant 1 (LOC101265932), mRNA	-1.22	<0.01
Phytohormone interactions	AI780922	Auxin-repressed 12.5 kDa protein-like, transcript variant 1 (LOC101258429), mRNA	-1.2	0.03
	TA42075_4081	Auxin-repressed 12.5 kDa protein-like, transcript variant 2 (LOC101258429), mRNA	-1.3	0.02
	GO372423	Auxin-repressed 12.5 kDa protein-like, transcript variant 2 (LOC101258429), mRNA	-1.24	0.03
	AK321743	Ethylene-responsive late embryogenesis-like protein (ER5), mRNA	-2.22	0.04
	BT013066	E3 ubiquitin-protein ligase SINAT3-like (LOC101246723), mRNA	-1.99	<0.01
	AK320442	E3 ubiquitin-protein ligase HERC2-like (LOC101253214), mRNA	-1.22	<0.01
Transport	BI934999	Amino acid permease 7-like (LOC101267140), mRNA	-1.06	0.04

	TA48736_4081	Amino acid permease 7-like (LOC101267140), mRNA	-1.19	0.03	
	AW738564	Amino acid permease 7-like (LOC101267140), mRNA	-1.02	0.04	
	AK324392	Germin-like protein subfamily 1 member 7-like (LOC101250545), mRNA	-1.08	0.04	
	AK326693	Inorganic phosphate transporter 1-7-like (LOC101251622), mRNA	-1.53	0.04	
	TA56355_4081	Metal tolerance protein 4-like (LOC101253924), mRNA	-1.62	<0.01	
	BI206351	Monosaccharide-sensing protein 2-like (LOC101266118), mRNA	-1.03	<0.01	
	BG126202	Oligopeptide transporter 4-like (LOC101264515), mRNA	-1.43	0.01	
	DB723724	Oligopeptide transporter 4-like (LOC101264515), mRNA	-1.01	0.02	
	TA47268_4081	Plastidic ATP/ADP-transporter-like (LOC101263496), mRNA	-1.46	<0.01	
	AW737170	Potassium transporter 2-like (LOC101257865), mRNA	-1.15	<0.01	
	BT014248	Sodium/metabolite cotransporter BASS3, chloroplastic-like (LOC101255826), mRNA	-2.53	<0.01	
	AJ278765	Sugar transporter 3 protein (st3), mRNA	-1.07	0.01	
	AW621284	Zinc transporter 5-like (LOC101257981), mRNA	-1.9	<0.01	
Signalling	AW219873	calcium-dependent protein kinase 3-like (LOC101256200), mRNA	-1.42	<0.01	
	TA56626_4081	Uridine-cytidine kinase C-like (LOC101265909), mRNA	-1.49	<0.01	
	AW032389	Cysteine-rich receptor-like protein kinase 10-like (LOC101264391), mRNA	-1.29	0.05	
	TA55468_4081	Cysteine-rich receptor-like protein kinase 10-like (LOC101264391), mRNA	-2.41	0.04	
	BI206028	G-type lectin S-receptor-like serine/threonine-protein kinase At4g27290-like	-1.29	0.01	
	BI921097	G-type lectin S-receptor-like serine/threonine-protein kinase B120-like (LOC101264093),	-1.08	0.01	
	BI921677	G-type lectin S-receptor-like serine/threonine-protein kinase SD2-5-like (LOC101261932), mRNA	-1.1	0.03	
	AK320871	Inactive leucine-rich repeat receptor-like protein kinase At1g66830-like (LOC101265921), mRNA	-1.58	<0.01	
	AW221663	Inactive receptor kinase At1g27190-like (LOC101262073), mRNA	-1.12	<0.01	
	AK324079	Inositol-tetrakisphosphate 1-kinase 2-like (LOC101246342), mRNA	-1.92	0.01	
	AI773564	Leucine-rich repeat receptor-like protein kinase At5g49770-like (LOC101249023), mRNA	-1.04	<0.01	
	AW031816	LRR receptor-like serine/threonine-protein kinase At1g07650-like (LOC101267958),	-1.32	<0.01	
	DB703972	LRR receptor-like serine/threonine-protein kinase At1g53430-like (LOC101250352), mRNA	-1.99	<0.01	
	BT012838	Ribose-phosphate pyrophosphokinase 5, chloroplastic-like (LOC101263060), mRNA	-1.13	<0.01	
	BT013147	Receptor-like protein 12-like (LOC101266748), partial misc_RNA	-1.01	0.02	
	BI204564	Serine/threonine-protein kinase HT1-like (LOC101258727), mRNA	-1.89	0.02	

_

	TA56317_4081	Serine/threonine-protein kinase HT1-like (LOC101258727), mRNA	-1.04	0.01
	BM412481	Serine/threonine-protein kinase SRK2I-like (LOC101251432), mRNA	-2.75	<0.01
	AK329601	Serine/threonine-protein kinase SRK2I-like (LOC101251432), mRNA	-2.74	<0.01
	AK320114	SNF1-related protein kinase regulatory subunit gamma-1-like (LOC101262200), mRNA	-1.3	<0.01
	AW221379	SNF1-related protein kinase regulatory subunit gamma-1-like (LOC101262200), mRNA	-1.02	<0.01
	BI204057	STRUBBELIG-RECEPTOR FAMILY 3-like (LOC101255469), mRNA	-1.14	<0.01
	DB710856	STRUBBELIG-RECEPTOR FAMILY 3-like (LOC101255469), mRNA	-1.01	<0.01
	DB722899	Uridine-cytidine kinase C-like (LOC101265909), mRNA	-1.07	<0.01
	DB725058	Uridine-cytidine kinase C-like (LOC101265909), mRNA	-1.09	<0.01
	TA46506_4081	Uridine-cytidine kinase C-like (LOC101265909), mRNA	-1.35	<0.01
Gene coding	BT013967	29 kDa ribonucleoprotein A, chloroplastic-like (LOC101245790), mRNA	-2.14	<0.01
	TA37603_4081	29 kDa ribonucleoprotein A, chloroplastic-like (LOC101245790), mRNA	-2.02	<0.01
	BI931820	BTB/POZ and TAZ domain-containing protein 2-like (LOC101263123), mRNA	-1.21	0.02
	TA38987_4081	BTB/POZ and TAZ domain-containing protein 2-like (LOC101263123), mRNA	-1.39	0.01
	AK325083	Chaperone protein DnaJ-like (LOC101267064), mRNA	-2.09	<0.01
	AK322177	Dof zinc finger protein DOF5.4-like (LOC101263619), mRNA	-1.12	0.05
	AY306154	EuAP1 APETALA1-like MADS-box (LeAP1) mRNA, partial cds	-1.02	<0.01
	AK322654	F-box protein PP2-A15-like (LOC101248811), mRNA	-1.05	<0.01
	AK319852	F-box protein PP2-B15-like (LOC101262052), mRNA	-3.76	<0.01
	AK246918	Glycine-rich RNA-binding protein-like (GRP1), mRNA	-1.81	<0.01
	TA38872_4081	Glycine-rich RNA-binding protein-like (GRP1), mRNA	-1.72	<0.01
	AK247275	Golgi apparatus membrane protein TVP38-like (LOC101259866), mRNA	-1.03	<0.01
	TA39023_4081	H1 histone-like protein (LOC544142), mRNA	-1.48	<0.01
	AK329700	Homeobox-leucine zipper protein ATHB-12-like (LOC101264731), mRNA	-1.05	0.03
	TA40118_4081	Hop-interacting protein THI012 (LOC101055512), mRNA	-1.31	0.01
	AK329241	Inactive poly [ADP-ribose] polymerase SRO2-like (LOC101248971), mRNA	-2.03	0.01
	AK320444	Kynurenine formamidase-like (LOC101253534), mRNA	-1.11	0.02
	AB219070	LePCL1 mRNA, partial cds	-1.71	<0.01
	AK321177	Lysine-specific demethylase 8-like (LOC101251119), mRNA	-2.04	<0.01
	AK328446	MADS-box transcription factor MADS-MC (MADS-MC), mRNA	-1.02	<0.01

Z11842	mRNA for H1 histone-like protein (LOC544142), mRNA	-1.47	<0.01	
BI924714	Myosin-H heavy chain-like (LOC101261235), mRNA	-1.19	<0.01	
AK247342	Nuclear transcription factor Y subunit B-3-like (LOC101258170), mRNA	-3.06	<0.01	
AK322145	OSB2, chloroplastic-like (LOC101244412), mRNA	-2.05	<0.01	
BE434936	Pentatricopeptide repeat-containing protein At5g39980, chloroplastic-like (LOC101262164), mRNA	-1.14	<0.01	
BG130237	Phospholipase A2-alpha-like (LOC101252788), mRNA	-1.63	<0.01	
AK319443	Pollen-specific protein SF3-like (LOC101257855), mRNA	-1.19	0.04	
TA37830_4081	Protein TWIN LOV 1-like, transcript variant 2 (LOC101255122), mRNA	-2.54	<0.01	
BT013263	remorin 1 (rem-1), mRNA	-1.08	<0.01	
AK325617	RING-H2 zinc finger protein RHA4a-like (LOC101250143), mRNA	-2.52	<0.01	
AK320071	(S)-N-methylcoclaurine 3'-hydroxylase isozyme 1-like (LOC101267488), mRNA	-1.3	<0.01	
TA56783_4081	(S)-N-methylcoclaurine 3'-hydroxylase isozyme 2-like (LOC101244980), mRNA	-1.35	<0.01	
AK319263	Scarecrow-like transcription factor PAT1-like, transcript variant 3 (LOC101253917), mRNA	-1.22	<0.01	
BI933300	Sigma factor SigB regulation protein RsbQ-like (LOC101244450), mRNA	-1.15	0.02	
AK247759	Squamosa promoter-binding-like protein 12-like (LOC101246055), mRNA	-1.23	<0.01	
AK328323	TBC1 domain family member 2A-like, transcript variant 1 (LOC101250774), mRNA	-1.03	<0.01	
X60760	TDR8 protein (TDR8), mRNA	-3.05	0.01	
AW930771	Thioredoxin-like protein CDSP32, chloroplastic-like (LOC101248098), mRNA	-1.1	<0.01	
AK319594	Thioredoxin-like protein CDSP32, chloroplastic-like (LOC101248098), mRNA	-1.29	<0.01	
TA53950_4081	Transcription factor bHLH122-like (LOC101246034), mRNA	-1.03	0.04	
AK319828	Transcription factor JERF1 (JERF1), mRNA	-1.03	0.03	
AK247135	Transcription factor PIF1-like, transcript variant 2 (LOC101260141), mRNA	-2.56	<0.01	
TA37828_4081	TWIN LOV 1-like, transcript variant 2 (LOC101255122), mRNA	-1.82	<0.01	
AI775586	Two-component response regulator-like APRR1-like (LOC101259425), mRNA	-1.72	<0.01	
AW930845	Two-component response regulator-like APRR5-like (LOC101250283), mRNA	-2.82	<0.01	
TA42823_4081	Two-component response regulator-like PRR37-like (LOC101254785), mRNA	-1.18	<0.01	
AK247189	WPP domain-interacting tail-anchored protein 2-like (LOC101253895), mRNA	-1.42	<0.01	
AK324390	WRKY (LOC100191121), mRNA	-1.49	<0.01	
DB702647	WRKY (LOC100191121), mRNA	-1.08	<0.01	
BG129734	Zinc finger protein CONSTANS-LIKE 13-like (LOC101258781), mRNA	-1.21	<0.01	

	BT013685	Zinc finger protein CONSTANS-LIKE 13-like (LOC101258781), mRNA	-1.26	<0.01	
	DB726735	Zinc finger protein CONSTANS-LIKE 14-like (LOC101254090), mRNA	-2	<0.01	
	AW624869	Zinc finger protein CONSTANS-LIKE 9-like (LOC101257930), mRNA	-1.95	<0.01	
Metabolism	GO373529	2-oxoglutarate/Fe(II)-dependent dioxygenase-like (LOC101260084), mRNA	-1.15	<0.01	
	BG128890	33 kDa ribonucleoprotein, chloroplastic-like (LOC101245785), mRNA	-1.12	<0.01	
	AW223348	Acyltransferase-like protein At1g54570, chloroplastic-like (LOC101249584), mRNA	-1.21	0.01	
	AW738792	Acyltransferase-like protein At1g54570, chloroplastic-like (LOC101249584), mRNA	-1.18	0.01	
	AK320738	Adagio protein 3-like (LOC101256908), mRNA	-3.94	<0.01	
	AI777297	Alpha-1,6-mannosyl-glycoprotein 2-beta-N-acetylglucosaminyltransferase-like (LOC101259650), mRNA	-2.17	<0.01	
	AI776319	Alpha-amylase 3, chloroplastic-like (LOC101257661), mRNA	-1	0.03	
	BI203568	Alpha-amylase 3, chloroplastic-like (LOC101257661), mRNA	-1.09	0.02	
	DB718555	Alpha-galactosidase-like, transcript variant 2 (LOC101249542), mRNA	-1.54	<0.01	
	BE436349	Armadillo repeat-containing kinesin-like protein 1-like (LOC101268735), mRNA	-1.26	<0.01	
	TA38512_4081	Aspartic protease in guard cell-1 like SPARTIC PROTEASE IN GUARD CELL 1-like (LOC101254425), mRNA	-1.64	0.01	
	AK322716	ATP-dependent Clp protease ATP-binding subunit ClpX-like (LOC101258138), mRNA	-1.2	<0.01	
	AK326924	Bifunctional epoxide hydrolase 2-like (LOC101267266), mRNA	-1.22	0.01	
	BW692239	Calvin cycle protein CP12-2, chloroplastic-like (LOC101268314), mRNA	-4.24	<0.01	
	AK319742	Carboxylesterase 13-like (LOC101248522), mRNA	-2.21	<0.01	
	AK324351	Cathepsin B-like (LOC101251744), mRNA	-1.34	<0.01	
	AW031201	Cathepsin B-like (LOC101251744), mRNA	-1.05	<0.01	
	BP902763	Cell division protein FtsZ homolog 2-1, chloroplastic-like (LOC101260679), mRNA	-1.21	<0.01	
	TA56198_4081	Chaperonin 60 subunit beta 4, chloroplastic-like (LOC101250405), mRNA	-2.16	<0.01	
	AK328845	Chlorophyll a-b binding protein 13, chloroplastic-like (LOC101268123), mRNA	-1.82	0.03	
	BI211024	Chlorophyll(ide) b reductase NYC1, chloroplastic-like (LOC101258872), mRNA	-2.11	<0.01	
	BW687973	Chlorophyll(ide) b reductase NYC1, chloroplastic-like (LOC101258872), mRNA	-1.17	<0.01	
	TA43117_4081	Chlorophyll(ide) b reductase NYC1, chloroplastic-like (LOC101258872), mRNA	-1.58	<0.01	
	BT013523	Chlorophyllase-2, chloroplastic-like (LOC101258376), mRNA	-1.1	<0.01	
	TA39999_4081	Cytochrome P450 71A1-like (LOC101251878), mRNA	-2.34	0.01	
	BT012875	Cytochrome P450 71A4-like (LOC101248960), mRNA	-1.15	<0.01	
	AK320178	Cytochrome P450 83B1-like (LOC101252820), mRNA	-1.1	<0.01	

AK325197	d-3-phosphoglycerate dehydrogenase, chloroplastic-like (LOC101266918), mRNA	-1.41	0.01	-
AK321434	Delta(8)-fatty-acid desaturase-like, transcript variant 1 (LOC101257882), mRNA	-2.77	<0.01	
TA47235_4081	Delta(8)-fatty-acid desaturase-like, transcript variant 2 (LOC101257882), mRNA	-2.62	<0.01	
BT013361	DNA repair protein recA homolog 1, chloroplastic-like (LOC101261637), mRNA	-1.09	<0.01	
TA43837_4081	E3 ubiquitin-protein ligase RNF13-like (LOC101252295), mRNA	-1.42	<0.01	
AK320144	Ethanolamine-phosphate cytidylyltransferase-like (LOC101265643), mRNA	-1.09	0.01	
AI778102	Eukaryotic peptide chain release factor subunit 1-3-like (LOC102594296), transcript variant X4, mRNA	-1.03	0.04	
EG553286	F-box protein PP2-A13-like (LOC101266314), mRNA	-2.01	<0.01	
DB718694	Galactinolsucrose galactosyltransferase 6-like (LOC101266532), mRNA	-2.01	<0.01	
AK327260	Galactinolsucrose galactosyltransferase 6-like (LOC101266532), mRNA	-2.22	<0.01	
TA47600_4081	Gigantea IGANTEA-like (LOC101255788), mRNA	-2.26	<0.01	
AK326234	Glucuronosyltransferase PGSIP7-like (LOC101247438), partial mRNA	-1.01	<0.01	
AB359914/LeGAD2	Glutamate decarboxylase isoform2 (GAD2), mRNA	-1.53	0.01	
BW690043	Glutathione S-transferase U25-like (LOC101266488), mRNA	-1.13	0.01	
AK247597	LOV/LOV protein (LLP), mRNA	-1.49	<0.01	
TA53191_4081	Lysosomal beta glucosidase-like (LOC101247513), mRNA	-1.58	<0.01	
AI776349	Lysosomal beta glucosidase-like (LOC101247513), mRNA	-1.65	<0.01	
AK320412	Methyltransferase PMT15-like (LOC101260175), mRNA	-1.33	0.01	
DB711832	Mitochondrial pyruvate carrier 1-like, transcript variant 2 (LOC101244623), mRNA	-1.37	0.02	
DB694696	Nudix hydrolase 8-like (LOC101261537), mRNA	-2.6	<0.01	
AK323879	Nudix hydrolase 8-like (LOC101261537), mRNA	-3.01	<0.01	
AW035968	Pentatricopeptide repeat-containing protein At2g15690-like (LOC101254312), mRNA	-1.11	<0.01	
AW093542	Pentatricopeptide repeat-containing protein At2g35130-like (LOC101258029), mRNA	-1.79	<0.01	
CD002364	Phospholipid-transporting ATPase 3-like (LOC101243809), mRNA	-1	<0.01	
BG132138	Phosphomethylpyrimidine synthase, chloroplastic-like (LOC101264726), mRNA	-3.11	<0.01	
AK320808	Phosphomethylpyrimidine synthase, chloroplastic-like (LOC101264726), mRNA	-3.42	<0.01	
AK319522	Plastid quinol oxidase (LOC543670), mRNA	-1.48	<0.01	
AK247845	Protein TIFY 8-like, transcript variant 2 (LOC101244194), mRNA	-1.27	<0.01	
AK319568	Protochlorophyllide reductase A, chloroplastic-like (LOC101244717), mRNA	-1.21	0.02	
BT014189	Protochlorophyllide reductase, chloroplastic-like (LOC101248079), mRNA	-1.54	<0.01	

	TA38511_4081	Protochlorophyllide reductase, chloroplastic-like (LOC101248079), mRNA	-1.27	<0.01
	AK325324	PsbP domain-containing protein 5, chloroplastic-like (LOC101249944), mRNA	-1.21	<0.01
	BI929545	Putative late blight resistance protein homolog R1B-12-like (LOC101260638), mRNA	-1.38	<0.01
	BW686221	Pyruvate dehydrogenase E1 component subunit beta, mitochondrial-like (LOC101254693), mRNA	-1.18	<0.01
	BF114279	ras-related protein RABC2a-like (LOC101262581), mRNA	-1.24	<0.01
	AK325298	Ribonuclease J-like (LOC101264202), mRNA	-1.51	<0.01
	AI895114	Ribonuclease J-like (LOC101264202), mRNA	-1.16	<0.01
	A_96_P255557	Ribose-phosphate pyrophosphokinase 5, chloroplastic-like (LOC101263060), mRNA	-1.02	0.01
	AK325755	RING-H2 finger protein ATL10-like (LOC101257337), mRNA	-1.19	0.03
	BG125938	Sarcosine oxidase-like (LOC101265751), mRNA	-1.21	<0.01
	EF091574	SITCP3 mRNA, complete cds	-1.09	<0.01
	BG127201	Solanum lycopersicum chromosome 2 clone C02HBa0215M12, complete sequence	-1.15	<0.01
	BG129404	Solanum tuberosum eukaryotic peptide chain release factor subunit 1-3-like (LOC102594296). transcript variant X4. mRNA	-1.05	0.02
	BT012843	Starch synthase 1, chloroplastic/amyloplastic-like (LOC101259221), mRNA	-1.48	<0.01
	AK325328	Sterol 3-beta-glucosyltransferase-like, transcript variant 2 (LOC101258756), mRNA	-1.23	0.02
	BP894569	Sterol 3-beta-glucosyltransferase-like, transcript variant 2 (LOC101258756), mRNA	-1.15	0.03
	BP903584	Sterol 3-beta-glucosyltransferase-like, transcript variant 2 (LOC101258756), mRNA	-1.17	0.02
	BG129364	Thioredoxin-like 3-1, chloroplastic-like (LOC101255936), mRNA	-2.71	<0.01
	AK330123	Transmembrane ascorbate ferrireductase 3-like (LOC101259871), mRNA	-1.14	<0.01
	AK324636	UDP-glucose flavonoid 3-O-glucosyltransferase 3-like (LOC101259457), mRNA	-1.92	<0.01
	AK247627	Very-long-chain (3R)-3-hydroxyacyl-[acyl-carrier protein] dehydratase 2-like (LOC101262991), mRNA	-1.29	0.03
	AK246984	Zeatin O-glucosyltransferase-like (LOC101263304), mRNA	-1.88	<0.01
Miscellaneous	AK320566	Basic 7S globulin-like (LOC101255625), mRNA	-1.01	0.04
	BI931559	Dihydrolipoyl dehydrogenase-like (LOC101246429), mRNA	-1.46	0.02
	TA43977_4081	GIGANTEA-like (LOC102583457), transcript variant X1, mRNA	-1.36	<0.01
	BT012721	Histidine decarboxylase-like, transcript variant 1 (LOC101262912), mRNA	-1.16	<0.01
	DB681649	Oryzain alpha chain-like (LOC101247980), mRNA	-1.67	0.01
	AK320578	Oryzain alpha chain-like (LOC101247980), mRNA	-3.11	<0.01
	TA39585_4081	Oryzain alpha chain-like (LOC102587126), mRNA	-1.39	<0.01

	TA56109_4081	Prolyl endopeptidase-like (LOC101251470), mRNA	-1.66	0.01
	BE458854	Protein phosphatase 2C 27-like (LOC101252501), mRNA	-1.02	<0.01
	TA52385_4081	Protein phosphatase 2C 30-like (LOC101258862), mRNA	-1.69	<0.01
	AK325066	Protein phosphatase 2C 52-like (LOC101262828), mRNA	-1.02	0.02
	DB717279	Protein yippee-like (LOC101263985), mRNA	-1.04	0.04
	DB712501	SPIRAL1-like 1-like, transcript variant 2 (LOC101257849), mRNA	-1.24	0.01
	AI484160	Stem-specific protein TSJT1-like (LOC101258898), mRNA	-1.2	<0.01
	TA37557_4081	Stem-specific protein TSJT1-like (LOC101258898), mRNA	-1.18	<0.01
	GO374183	Stem-specific protein TSJT1-like (LOC101258898), mRNA	-1.13	<0.01
	AK327123	Tyrosine phosphatase (ptpkis1), mRNA	-1.16	<0.01
	BP890391	Xylosyltransferase 2-like (LOC101266675), mRNA	-1.12	0.04
Uncharacterized	AK325355	Uncharacterized LOC101243818 (LOC101243818), mRNA	-1.79	<0.01
	AK247340	Uncharacterized LOC101243975, transcript variant 2 (LOC101243975), mRNA	-2.33	<0.01
	AK247520	Uncharacterized LOC101244167 (LOC101244167), mRNA	-1.03	<0.01
	BW687578	Uncharacterized LOC101244731 (LOC101244731), mRNA	-2.68	0.04
	BG130590	Uncharacterized LOC101244747 (LOC101244747), mRNA	-2.34	<0.01
	BT013223	Uncharacterized LOC101244833 (LOC101244833), mRNA	-1.02	<0.01
	AK326028	Uncharacterized LOC101244879, transcript variant 2 (LOC101244879), mRNA	-1.74	<0.01
	AK324757	Uncharacterized LOC101245335 (LOC101245335), mRNA	-1.31	<0.01
	TA51424_4081	Uncharacterized LOC101245352, transcript variant 4 (LOC101245352), misc_RNA	-1.69	<0.01
	AK322810	Uncharacterized LOC101245497 (LOC101245497), mRNA	-1.73	<0.01
	BT013808	Uncharacterized LOC101245814, transcript variant 2 (LOC101245814), mRNA	-1.72	<0.01
	BP875651	Uncharacterized LOC101246400 (LOC101246400), mRNA	-1.69	0.02
	AK325468	Uncharacterized LOC101247272, transcript variant 1 (LOC101247272), mRNA	-1.26	<0.01
	AK320852	Uncharacterized LOC101247496 (LOC101247496), mRNA	-1.89	<0.01
	AW650208	Uncharacterized LOC101248693 (LOC101248693), mRNA	-1.22	<0.01
	AK328185	Uncharacterized LOC101248693 (LOC101248693), mRNA	-2.06	<0.01
	AK321949	Uncharacterized LOC101248759 (LOC101248759), mRNA	-1.58	<0.01
	AK325245	Uncharacterized LOC101249169 (LOC101249169), mRNA	-1.27	<0.01
	DB693763	Uncharacterized LOC101249462 (LOC101249462), misc_RNA	-1.53	<0.01

ES894678	Uncharacterized LOC101249515, transcript variant 2 (LOC101249515), misc_RNA	-1.51	<0.01
AK321639	Uncharacterized LOC101249886 (LOC101249886), mRNA	-1.23	<0.01
BI422106	Uncharacterized LOC101250190 (LOC101250190), mRNA	-1.19	<0.01
AK247314	Uncharacterized LOC101250420 (LOC101250420), mRNA	-1.12	0.01
BI205922	Uncharacterized LOC101250420 (LOC101250420), mRNA	-1.03	<0.01
BT014385	Uncharacterized LOC101250469, transcript variant 2 (LOC101250469), mRNA	-1.18	<0.01
AK327762	Uncharacterized LOC101250784 (LOC101250784), mRNA	-1.96	<0.01
TA47548_4081	Uncharacterized LOC101250946 (LOC101250946), mRNA	-1.34	<0.01
AK321531	Uncharacterized LOC101251542 (LOC101251542), mRNA	-1.39	0.01
BW689421	Uncharacterized LOC101251550 (LOC101251550), mRNA	-1.22	<0.01
BT012949	Uncharacterized LOC101251967 (LOC101251967), mRNA	-1.36	<0.01
BP909921	Uncharacterized LOC101251977 (LOC101251977), mRNA	-1.01	<0.01
AK247862	Uncharacterized LOC101252312 (LOC101252312), mRNA	-1.08	<0.01
BM412248	Uncharacterized LOC101253070 (LOC101253070), misc_RNA	-1.22	0.03
AK324128	Uncharacterized LOC101253429 (LOC101253429), mRNA	-1.85	0.01
AK320503	Uncharacterized LOC101253723 (LOC101253723), mRNA	-2.2	<0.01
TA54983_4081	Uncharacterized LOC101253889 (LOC101253889), mRNA	-4.29	<0.01
BT013342	Uncharacterized LOC101254049 (LOC101254049), mRNA	-1.56	0.04
TA44337_4081	Uncharacterized LOC101254049 (LOC101254049), mRNA	-1.43	0.04
AK327405	Uncharacterized LOC101254087 (LOC101254087), mRNA	-1.69	<0.01
AK327222	Uncharacterized LOC101254501 (LOC101254501), mRNA	-2.1	0.01
TA49062_4081	Uncharacterized LOC101254906 (LOC101254906), mRNA	-1.55	0.03
AK327947	Uncharacterized LOC101255248 (LOC101255248), mRNA	-3.27	<0.01
BP891968	Uncharacterized LOC101255610 (LOC101255610), misc_RNA	-1.63	<0.01
AK248063	Uncharacterized LOC101256151 (LOC101256151), mRNA	-1.56	0.01
AW092697	Uncharacterized LOC101256391 (LOC101256391), mRNA	-1.28	0.01
AW455241	Uncharacterized LOC101256391 (LOC101256391), mRNA	-1.28	0.02
AK328473	Uncharacterized LOC101257241 (LOC101257241), mRNA	-1.49	<0.01
AK247098	Uncharacterized LOC101257722 (LOC101257722), misc_RNA	-1.63	<0.01
BW692388	Uncharacterized LOC101258100 (LOC101258100), mRNA	-1.52	<0.01

AW442053	Uncharacterized LOC101258535, transcript variant 2 (LOC101258535), misc_RNA	-1.31	0.01
TA55773_4081	Uncharacterized LOC101259028 (LOC101259028), mRNA	-1	<0.01
AK320213	Uncharacterized LOC101259182 (LOC101259182), mRNA	-1	<0.01
DB698305	Uncharacterized LOC101259314 (LOC101259314), mRNA	-1.63	0.02
AI780624	Uncharacterized LOC101259555 (LOC101259555), mRNA	-2.38	0.01
AK323673	Uncharacterized LOC101259555 (LOC101259555), mRNA	-2.68	<0.01
AK320295	Uncharacterized LOC101259876 (LOC101259876), mRNA	-1.15	<0.01
AJ785260	Uncharacterized LOC101260002 (LOC101260002), mRNA	-1.02	0.01
BG125059	Uncharacterized LOC101260002 (LOC101260002), mRNA	-1.29	<0.01
AK321445	Uncharacterized LOC101260209, transcript variant 1 (LOC101260209), mRNA	-1.48	<0.01
BT013124	Uncharacterized LOC101260364, transcript variant 2 (LOC101260364), mRNA	-1.92	<0.01
BI927712	Uncharacterized LOC101261213 (LOC101261213), mRNA	-1.18	0.01
BI208088	Uncharacterized LOC101261288 (LOC101261288), mRNA	-1.04	0.04
AK326624	Uncharacterized LOC101261467 (LOC101261467), mRNA	-1.59	<0.01
AW222308	Uncharacterized LOC101261467 (LOC101261467), mRNA	-1.66	<0.01
AK328478	Uncharacterized LOC101261598 (LOC101261598), mRNA	-1.4	<0.01
A_96_P053791	Uncharacterized LOC101262473 (LOC101262473), mRNA	-1.01	<0.01
AK248060	Uncharacterized LOC101264074 (LOC101264074), mRNA	-1.9	<0.01
TA54232_4081	Uncharacterized LOC101264074 (LOC101264074), mRNA	-1.31	<0.01
AK325580	Uncharacterized LOC101264357 (LOC101264357), mRNA	-2	<0.01
BI927049	Uncharacterized LOC101264357 (LOC101264357), mRNA	-1.71	<0.01
AK324668	Uncharacterized LOC101264428 (LOC101264428), mRNA	-4.14	<0.01
AK247032	Uncharacterized LOC101265167 (LOC101265167), mRNA	-1.36	0.01
BG129414	Uncharacterized LOC101265380 (LOC101265380), mRNA	-5.18	<0.01
DB712787	Uncharacterized LOC101265380 (LOC101265380), mRNA	-4.59	<0.01
AK246163	Uncharacterized LOC101265590 (LOC101265590), mRNA	-1.13	<0.01
AK326747	Uncharacterized LOC101267365 (LOC101267365), mRNA	-1.77	0.01
AK247145	Uncharacterized LOC101267673 (LOC101267673), mRNA	-3.18	<0.01
BI208805	Uncharacterized LOC101267725 (LOC101267725), mRNA	-1.03	0.01
AK324949	Uncharacterized LOC101268102 (LOC101268102), misc_RNA	-1.05	0.03

	AK324840	Uncharacterized LOC101268531 (LOC101268531), mRNA	-1.34	<0.01	
	AK327975	Uncharacterized LOC102578457 (LOC102578457), transcript variant X5, mRNA	-1	<0.01	
	AK326617	Uncharacterized LOC101247860 (LOC101247860), mRNA	-1.43	0.01	
	TA42078_4081	Uncharacterized LOC101250756, transcript variant 2 (LOC101250756), mRNA	-1.56	0.03	
	BG734949	Uncharacterized LOC101246400 (LOC101246400), mRNA	-2.21	0.01	
	BI203632	Uncharacterized LOC101259403 (LOC101259403), mRNA	-1.26	<0.01	
	DB717184	Uncharacterized LOC101261148 (LOC101261148), mRNA	-1.92	<0.01	
	AK324767	Uncharacterized LOC101261444 (LOC101261444), mRNA	-2.36	<0.01	
	BT013134	Uncharacterized LOC101261737 (LOC101261737), mRNA	-4	<0.01	
	BE463104	Uncharacterized LOC101250038 (LOC101250038), mRNA	-1.15	<0.01	
	BI923074	Uncharacterized LOC101253557 (LOC101253557), mRNA	-1.03	<0.01	
	BI206201	Uncharacterized LOC101253557 (LOC101253557), mRNA	-1.02	0.03	
Unknown	AI483881	Unknown	-1.04	<0.01	
	AJ785359	Unknown	-1.36	0.03	
	AW222274	Unknown	-1.32	0.01	
	TA36792_4081	Unknown	-1.06	<0.01	
	A_96_P083304	Unknown	-1.8	<0.01	
	A_96_P262457	Unknown	-2.11	<0.01	
	AI486912	Unknown	-1.13	<0.01	
	AK247664	Unknown	-1.44	0.02	
	BG134337	Unknown	-1.07	<0.01	
	BM535082	Unknown	-1.06	0.01	
	BP879024	Unknown	-1.04	<0.01	
	CF243399	Unknown	-1.41	<0.01	
	DB725361	Unknown	-1.21	<0.01	
	GT163869	Unknown	-1.06	0.01	
	TA37716_4081	Unknown	-1.05	<0.01	
	TA38869_4081	Unknown	-1.03	<0.01	
	TA49109_4081	Unknown	-2.44	0.01	
	TA52230_4081	Unknown	-1.23	<0.01	

Annexes

TA54837_4081	Unknown	-1.26	0.01
AW929291	Unknown	-3.12	<0.01
BE432210	Unknown	-2.51	<0.01
TA56862_4081	Unknown	-1.44	<0.01
AW221111	Unknown	-1.72	<0.01
AK320770	Unknown	-1.91	<0.01

Résumé

A cours du développement du fruit, son statut oxydatif évolue entraînant une évolution concomitante des activités enzymatiques antioxydantes et ceci en interaction avec des hormones impliquées dans le développement et la maturation du fruit. Ces enzymes antioxydantes sont la superoxyde dismutase (SOD) et la Catalase (CAT) mais également de celles du cycle d'Haliwell-Asada (ascorbate peroxydase (APX), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR) et gluthation reductase (GR) impliquées également dans le recyclage de l'ascorbate. L'objectif de la thèse est de comprendre les interactions existant entre le stress oxydatif induit par les stress environnementaux au niveau des organes végétatifs et le recyclage de l'ascorbate dans les fruits de tomate (cv Micro-Tom).

Dans une première partie nous montrons qu'un déficit hydrique contrôlé et rapide induit une diminution du potentiel hydrique foliaire (Ψ h) sans aucun symptôme de stress photo-oxydatif détectable au niveau du PSII après 24h et sans que le statut hydrique du fruit ne soit affecté. Dans ces conditions, on observe toutefois une augmentation du H₂O₂ dans les fruits et une augmentation de l'activité des enzymes antioxydantes et de celles impliquées de recyclage de l'ascorbate. Par ailleurs, nous montrons une production de NO et de ABA en réponse au stress dans la plante. La localisation de NO a été réalisée par microscopie à fluorescence en utilisant la nouvelle sonde NO, la NO550 (mise au point pendant le doctorat).

Afin de déterminer si NO est responsable de la mise en place de la réponse antioxydante du fruits en interaction avec l'ABA et H_2O_2 , une approche pharmacologique a été réalisée. Les résultats montrent une augmentation des activités de ces enzymes en présence de ces trois molécules, avec une plus forte augmentation en présence de NO à chaque fois. Par ailleurs, nous confirmons que l'ABA induit la synthèse de NO dans le fruit et non l'inverse. On peut conclure de cette analyse que l'ABA induit par le déficit hydrique est responsable de la synthèse de NO dans les fruits et ce signal va induire l'activation des enzymes antioxydantes en association avec H_2O_2 .

Finalement, une approche transcriptomique a été réalisée pour étudier d'une part les gènes induits par NO et les gènes induits par le déficit hydrique au travers du NO. Les résultats suggèrent que le NO est à la croisée de la réponse au stress biotique et abiotiques et pourrait être utilisé pour acclimater les plantes au stress biotiques.

Mots clés : Acide abscissique, antioxydants, ascorbate, déficit hydrique, oxyde nitrique, tomate