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Introduction

In this thesis, we aim at building a general mathematical framework for order book modeling which enables us to link the macroscopic features of the price dynamics with the microscopic properties of the underlying asset. On the one hand, we want to shed light on some of the fundamental issues in order book modeling, such as the ergodicity of the order book and the role played by the tick value. On the other hand, our goal is also to provide relevant tools for market participants and regulators, helping them analyzing complex trading algorithms or effects of some regulatory measures.

Motivations

Can we explain the price dynamics of a stock from a microstructural point of view? This question is at the heart of market microstructure literature for decades. Many interesting results have been obtained and are nowadays used by practitioners as theoretical guidelines in the three main branches of high frequency trading: optimal execution, market making and statistical arbitrage. Such results usually aim at building a link between the high frequency dynamics of the the asset and the well established macroscopic features of the underlying stock. One of the most fascinating challenges in this context is to explain those links starting from the very finest microstructural scale, that of the limit order book. This limit order book modeling problem consists in establishing a tractable and relevant mathematical formulation for the market mechanics of order matching and order queueing, and for the complex behavior of market participants.

Although important advances have been made in the recent years about limit order book modeling, market participants still often find themselves in lack of applicable models when dealing with practical problems. In particular, in strong contrast to empirical findings, most existing limit order book models use an homogenous Poisson assumption on the order arrival process. Moreover, several models consider only the dynamics at the best bid/ask limits or assume constant bid-ask spread. These simplifications largely reduce the applicability of such models, as many algorithms used in practice operate on non-best limits and are very sensitive to their orders' priority in the queue. Our goal being to provide relevant tools for market participants and regulators, the first question we want to address in this thesis is obviously the following one: Question 1. How to build realistic order book models?

At the microscopic level, market activities are random and unpredictable. Yet when properly scaled in time, they exhibit many interesting regularities. For example, the price dynamics at the macroscopic level can be quite well approximated by a Brownian motion and the limit order book's average shape tends to follow the same distribution across different trading days.
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This last regularity is closely related to the ergodicity of the limit order book system. In our first chapter, we introduce a state-dependent order book model, the queue-reactive model, that is particularly suitable for large tick assets1 . This model is then extended to a more general Markovian framework, enabling us to deal with small tick assets and including most of the classical order book models. Thus we want to give an answer to the following important theoretical question for Markovian order book modeling: Question 2. In a general Markovian framework for limit order book modeling, what are the required conditions to obtain ergodic dynamics?

In our theoretical Markovian framework, market participants react differently under different market conditions. In the empirical study associated to the queue-reactive model, we find a strong contrast in traders behavior given various order book states, which validates our intuition that this state-dependent hypothesis is far more realistic than the traditional Poisson assumption. Interestingly, the estimated intensity functions for various assets for limit/market order insertion and limit order cancellation share many similarities. For example, the cancellation intensities are all found to be concave functions of the queue size, and the limit order insertion intensities at best limits tend to be essentially increasing functions. These common patterns can be seen as results of market participants intelligence. While they may be explained qualitatively by intuitive arguments such as the existence of market priority and risk of overrun, the following question remains very intricate: Question 3. How to get a quantitative agent-based approach enabling us to understand the behavior of market participants towards various states of the book and to retrieve the most important limit order book features?

One microstructural parameter having a strong influence on the trading practice of market participants is the tick value. We are particularly interested in this quantity since it is often considered the most relevant device to regulate the behavior of high frequency traders and to control market efficiency. Although several tick value change programs have been conducted in the recent years, most of them are designed using only empirical analysis and focus on the outcomes of the tick value modification in an ex post basis. Hence the effects of tick value changes have not been really understood and prediction tools enabling us to forecast the consequences of a tick value change are missing. Here we wish to fill this gap, with the aim to help market regulators to better determine the target tick values of such programs. Therefore we are considering the following question:

Question 4. How to predict the consequences of tick value changes?

Outline

This thesis is made of two main parts: order book modeling and tick size effects. Each question presented above corresponds to a chapter in one of these two parts.

In Part I, we present our work on order book modeling. In Chapter I, we answer Question 1 by building the queue-reactive model, in which state dependency is included in the order flow dynamics. We propose to split the order book modeling issue into two steps: i) dynamics of the order arrival processes around a constant reference price; ii) dynamics of the reference price. This enables us to design three different versions of the model, with various hypotheses on the 1. Part I: Limit Order Book Modeling information set used by market participants when making their trading decisions. Unlike the traditional Poisson assumption, order arrival intensities are assumed to be functions of the state of the order book. Estimation methods are provided and empirical studies are conducted on some large tick assets, showing that many macroscopic features can be explained adding state dependency in the order book dynamics. In particular, the distribution of the order book's state is very well explained in this framework. We then show how to use this model as a market simulator for analyzing complex trading algorithms.

The answer to Question 2 is given in Chapter II. We first extend the queue-reactive model to a general Markovian framework, including most classical order book models. This new framework, while respecting the double-auction mechanism of the order book, imposes very little constraints. For example, the order size is allowed to be random, with distribution depending again on the order book's state, and the reference price dynamics can also be linked to order book information such as the bid-ask imbalance. Ergodicity conditions in this framework are then discussed in details. Essentially, we show that if the incoming order flow (that is the limit order insertion rate) does not exceed the outgoing order flow (that is the sum of the market order and cancellation rates), then the order book state is an ergodic process. Furthermore, the price dynamics converges to a Brownian motion when properly rescaled.

Results about the role of the tick value are presented in Part II. To answer Question 4, we conduct in Chapter III an empirical study of the effects of tick value changes based on data from the Japanese tick size reduction pilot program between June 2013 and July 2014. We demonstrate that the approach introduced in [START_REF] Dayri | Large tick assets: implicit spread and optimal tick size[END_REF] allows for an ex ante assessment of the consequences of a tick value change on the microstructure of an asset. We focus on forecasting the future costs of market and limit orders after a tick value change and show that our predictions are very accurate. Furthermore, for each asset involved in the pilot program, we are able to define ex ante an optimal tick value.

We finally present in Chapter IV a preliminary attempt to answer Question 3. We split market participants into three types: informed traders, noise traders and market makers. Informed traders receive market information such as the current efficient price, which is hidden to noise traders. Market makers have also access to this information but with some delay, and they place limit orders when it is profitable. In a first model, we consider an idealized setting where the tick value constraint is removed, and assume that both informed traders and market makers have an infinite reaction speed to new information. In that case, we obtain a link between the price dynamics, the market volume and the equilibrium order book shape. We then study the effects of introducing the tick value constraint. We find that when the traded price becomes discrete, the priority value of a limit order can be properly defined and computed. Furthermore, the consequences of the uncertainty faced by market makers about the efficient price are discussed in our framework. We also provide insights on how a new piece of information is digested and propagated between informed traders and market makers and on the speed of order book recovery after a transaction.

We now give a rapid overview of the main results obtained in this thesis. Introduction a reasonable limit order book model. Existing models often assume zero intelligence for market participants and focus only on dynamics at best limits, see for example [START_REF] Smith | Statistical theory of the continuous double auction[END_REF] and [START_REF] Cont | Price dynamics in a Markovian limit order market[END_REF]. This largely reduces their appeal for practice. In this part, we aim at building a complete order book model in which limits several ticks away from the best ones are considered and where market participants act in an intelligent way towards various order book states.

In Chapter I, we introduce the queue-reactive model for order book dynamics. The key idea in this model is to split the order book modeling issue into two parts: the order arrival dynamics during period of constant reference price and the dynamics of the reference price. This approach enables us to deal with the strong dependencies between the different limits and to study the sensitivity of the trading activities towards various order book states. We show that the queue-reactive model explains very well the asymptotic distribution of the order book and demonstrate its applicability to assess complex trading algorithms by conducting a detailed analysis of two order placement tactics. The ergodicity conditions of an extended Markovian order book framework are discussed in Chapter II. We prove that the rescaled price process converges to a Brownian motion and the order book state to an invariant distribution under some very general assumptions.

The Queue-reactive Model

1.1.1 Dynamics of the limit order book in a period of constant reference price

We model the limit order book as a 2K dimensional vector, where K denotes the number of available limits on the bid and ask side. By defining the reference price p r e f as the center of these 2K limits and assuming it is constant, the limit order book dynamics can be described by a continuous time Markov jump process X (t ) = (Q -K (t ), ...,Q -1 (t ), ...,Q 1 (t ), ...,Q K (t )), where Q i (t ) is the number of available orders at the i-th limit. The quantity p r e f can be viewed as some current consensus price level and is used to index the limits. Three types of orders are considered: limit orders, cancellations and market orders, and their sizes are assumed to be constant for each limit (we set them here to one for simplicity). Under these assumptions, the infinitesimal generator matrix Q x,y of the process X (t ) can be written as follows (e i = (a -K , ..., a i , ..., a K ), where a j = 0 for j = i and a i = 1):

Q q,q+e i = f i (q)
Q q,q-e i = g i (q) Q q,q = -p∈Ω,p =q Q q,p Q q,p = 0, otherwise.

Ergodicity conditions

Write Ω for the state space of q. The two following assumptions are needed for the ergodicity of the process X (t ):

Assumption 1. (Negative individual drift) There exist a positive integer C bound and δ > 0, such that for all i and all q ∈ Ω, if q i > C bound , f i (q)g i (q) < -δ.

1. Part I: Limit Order Book Modeling Assumption 2. (Bound on the incoming flow) There exists a positive number H such that for any q ∈ Ω, i ∈[-K ,...,-1,1,...,K ] f i (q) ≤ H .

The first assumption states that the queue size of a limit should have a tendency to decrease when it becomes too large, while the second one ensures no explosion in the system. Under these two assumptions, we have the following ergodicity result for the 2K -dimensional queuing system with constant reference price, which will be the basis for our asymptotic study as well as for the estimation procedures.

Theorem 1. Under the above two assumptions, the 2K -dimensional Markov jump process X (t ) is ergodic.

Ergodicity conditions are discussed in more details in Chapter II.

The functions f i and g i model the state dependency of market participants' behavior. Then different assumptions on the information set used by traders lead to different models in the above framework. Three models are proposed to describe the order book dynamics under constant reference price.

Model I: Collection of independent queues

In Model I, we assume independence between the flows arriving at different limits:

f i (q) = λ L i (q i ) g i (q) = λ C i (q i ) + λ M i (q i ),
where λ L i , λ C i , λ M i correspond to the intensities of limit orders, cancellations and market orders respectively.

Model I enables us to study the influence of the target queue size on market participants' behavior. In our empirical study conducted on large tick stocks, we find the following interesting repetitive patterns on the intensity functions (we take K = 3 in our experiments, the estimated intensities for the stock France Telecom are shown in Figure .1):

• Limit order insertion: Q ±1 : The intensity of the limit order insertion process is approximately a constant function of the queue size, with a significantly smaller value at 0. This can be explained by the fact that creating a new best limit is viewed as risky (inserting a limit order in an empty queue creates a new best limit and the market participant placing this order is the only one standing at this price level).

Q ±2,3 : The intensity is approximately a decreasing function of the queue size. This interesting result probably reveals a quite common strategy used in practice: posting orders at the second limit when the corresponding queue size is small to seize priority.

• Limit order cancellation:

Q ±1 :
In contrast to the classical hypothesis of linearly increasing cancellation rate, see for example [START_REF] Cont | A stochastic model for order book dynamics[END_REF], the intensity of order cancellation is found to be an increasing concave function for Q ±1 . Such result can be explained by the Market order arrival intensity, Model I First limit Second limit Third limit Figure .1: Intensities at Q ±i , i = 1, 2, 3, France Telecom existence of the priority value, that is the advantage of a limit order compared with another limit order standing at the rear of the same queue. Actually, orders with lower priority are more likely to be canceled, see [START_REF] Gareche | A Fokker-Planck description for the queue dynamics of large tick stocks[END_REF].

Q ±2 : The rate of order cancellation attains more rapidly its asymptotic value, which is lower than that for Q ±1 . Compared to the first limit case, market participants at the second limit have even stronger intention not to cancel their orders when the queue size increases. This is probably due to the fact that these orders are less exposed to short term market trends than those posted at Q ±1 (since they are covered by the volume standing at Q ±1 and their price level is farther away from the reference price).

Q ±3 : The priority value is smaller at the third limit since it takes longer time for Q ±3 to become the best quote if it does. The rate of order cancellation increases almost linearly.

• Market orders:

Q ±1,2,3 : The rate decreases exponentially with the available volume at Q ±1,2,3 . This phenomena is easily explained by market participants "rushing for liquidity" when liquidity is rare, and "waiting for better price" when liquidity is abundant.

In Model I, each queue is actually a birth-death process whose invariant distribution can be computed explicitly: denote by π i the stationary distribution of the limit Q i , and define the arrival/departure ratio vector ρ i by

ρ i (n) = λ L i (n) (λ C i (n + 1) + λ M i (n + 1))
.

Then we have:

π i (n) = π i (0) n j =1
ρ i ( j -1)

π i (0) = 1 + ∞ n=1 n j =1
ρ i ( j -1) -1 . 2: Model I, invariant distributions of q ±1 , q ±2 , q ±3 , France Telecom In Figure .2, we compare the theoretical asymptotic distributions with the empirical distributions observed at Q ±1 ,Q ±2 ,Q ±3 , and with the invariant distributions from a Poisson model with constant limit/market order arrival rate and linear cancellation rate. The theoretical asymptotic distributions are found to be very good approximations of the empirical ones estimated from market data. This suggests that the empirical order book shape can be explained by the asymptotic equilibrium of order flow dynamics with state dependency.

Model II: Dependent case

In the dependent case, we differentiate best and non-best limits and also add dependence between the bid and ask limits. The generator of the process takes the following form:

f i (q) = λ L i (q) g i (q) = λ C i (q) + λ M
bu y (q)1 best ask(q)=i , if i > 0 g i (q) = λ C i (q) + λ M sel l (q)1 best bi d (q)=i , if i < 0.

Model II a : Two sets of dependent queues

In Model II a , we propose to consider λ L ±2 and λ C ±2 as functions of q ±2 and 1 q ±1 >0 . Intensities at Q i , i = ±2 remain functions of q i only. Thus, in the empirical study of Model II a , we focus on understanding market participants' behavior under two different situations: q ±1 = 0 and q ±1 > 0. One of our interesting findings is the following one on the limit order arrival process:

• Limit order insertion: both intensities are decreasing functions of the queue size. In the first case (q ±1 = 0), the limit order insertion intensity reaches very rapidly its asymptotic value. In the second case (q ±1 > 0), the intensity starts at a higher value for q 2 = 0 but continues to go down to a much lower value. This is likely related to the following arbitrage strategy: post passive orders at a non-best limit when its size is small, wait for this limit to eventually become the best limit and then gain the profit from having the priority value. For example, when the considered limit becomes the best one, one can decide to stay in the queue if its size is large enough to cover the risk of short term market trend, or to cancel the orders if the queue size is too small.
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The joint asymptotic distribution for the limit order book state (q 1 , q 2 ) can be computed numerically in Model II a , using the fact that it is a quasi-birth-and-death process, see [START_REF] Latouche | Introduction to matrix analytic methods in stochastic modeling[END_REF], and is found to be again a very good approximation of the empirical one.

Model II b : Modeling the bid-ask dependences

To study the interactions between the bid side and the ask side, we define the function S m,l (x) for representing four different ranges of values for the queue sizes (empty, small, usual and large):

S m,l (x) = Q 0 if x = 0 S m,l (x) = Q -if 0 < x ≤ m S m,l (x) = Q if m < x ≤ l S m,l (x) = Q + if x > l ,
for well chosen m and l .

In Model II b , market participants at Q ±1 adjust their behavior not only according to the target queue size, but also to the size of the opposite queue. The rates λ L ±1 and λ C ±1 are thus modeled as functions of q ±1 and S m,l (q ∓1 ). Regime switching at Q ±2 is kept in this model: λ L ±2 , λ C ±2 are assumed to be functions of q ±2 and 1 q ±1 >0 . Some remarks are in order:

• Limit order insertion: the limit order insertion rate is a decreasing function of the opposite queue size. In particular, when the opposite queue is empty, it is significantly larger. Indeed, in that case, the "efficient" price is likely to be closer to the opposite side. Therefore limit orders at the non empty first limit are likely to be profitable.

• Limit order cancellation: the cancellation rates for different ranges of Q -1 are similar in their forms but have different asymptotic values. This rate is not surprisingly a decreasing function of the liquidity level on the opposite side. Indeed, when this level becomes low, many market participants cancel their limit orders and send market orders since the market is likely to move in an unfavorable direction.

• Market orders: we see that when the liquidity available on the opposite side is abundant, more market orders are sent. Indeed, in that case, transactions at the target queue are relatively cheap as its price level is temporarily closer to the efficient price. In the special situation q -1 = 0, the price level at Q 1 can seem relatively attractive since it is much closer to the reference price than the opposite best price, which is in that case 1.5 ticks away from it. This explains why the market order intensity is larger when the opposite queue is empty than when its size is small.

Invariant distributions for the limit order book in Model II b can be obtained using Monte-Carlo simulations, and the comparison results with the empirically estimated ones are still very satisfactory.

1. Part I: Limit Order Book Modeling

A time consistent model with stochastic limit order book and dynamic reference price

We then propose a model accommodating a dynamic limit order book center: the queue-reactive model.

The queue-reactive model

Dynamics of the reference price is added by linking p r e f with the mid price p mi d : we assume that changes of p r e f are triggered by changes of the mid price with some probability θ. We also add another parameter θ r ei ni t to incorporate price jumps resulting from external information: in such case, the order book state is redrawn from some invariant distribution around the new reference price. These two parameters are calibrated using 10 min price volatility and the mean reversion ratio η from [START_REF] Robert | A new approach for the dynamics of ultra-highfrequency data: the model with uncertainty zones[END_REF].

Maximum mechanical volatility

When θ r ei ni t = 0, price fluctuations are only endogenously generated by the order book dynamics.

In such case, the volatility is an increasing function of θ and attains its maximum value when θ = 1. The associated volatility is called maximum mechanical volatility, and is found to be often smaller than the empirical volatility, which justifies the use of the parameter θ r ei ni t .

Order placement analysis

In practice, an execution algorithm gives answers to the two following questions:

• Order Scheduling: how to distribute the target volume across the trading horizon?

• Order Placement: how to send individual orders to the order book?

The first question is widely studied in the literature, see for example [START_REF] Bertsimas | Optimal control of execution costs for portfolios[END_REF]; [START_REF] Almgren | Optimal execution of portfolio transactions[END_REF]; [START_REF] Bouchard | Optimal control of trading algorithms: a general impulse control approach[END_REF]. Answers to it often rely on some "optimal trading curve", which depends mainly on intraday factors such as the average volume curve, the intraday volatility and the average market impact profile. The second question can be seen as the microstructural version of the first one, but is much more difficult to solve since the dynamics are more complex. Related academic works address the problem of determining the optimal order type (whether to send limit or market order) [START_REF] Harris | Market vs. limit orders: the SuperDOT evidence on order submission strategy[END_REF], or of finding the best position to place the order Laruelle, [START_REF] Laruelle | Optimal posting price of limit orders: learning by trading[END_REF]. In practice, order placement tactics are usually much more complex.

While most existing approaches for post-trade performance analysis focus on the overall performance, it is actually more reasonable to separate the order scheduling part from the order placement part. Performance of order placement tactics depends more on ultra-high frequency features such as the latency, the queue priority, bid-ask imbalance, etc, which have generally little influences over the choice of the "optimal trading curve". Moreover, the same order scheduling strategy can be coupled with different order placement tactics to build different execution algorithms. In such cases, it is important to be able to understand the pros and cons of each placement tactic so that an informed choice can be made to determine the best tactic under different market conditions.
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We present in this introduction an application example to show how the queue-reactive model can be used in the context of order placement analysis for sophisticated tactics.

Denote n tot al for the total quantity to execute and M for the number of trading slices. An order scheduling strategy gives the target quantity to be executed in each slice, denoted by n i ( M i =1 n i = n tot al ). Two types of order scheduling strategies, denoted by S1 and S2, are considered in this example:

• S1: A linear scheduling (n i = n tot al /M ), used for the VWAP benchmark (volume weighted average price).

• S2: An exponential scheduling n i = n tot al (e -(i -1)/4e -i /4 ), used for the benchmark S 0 (arrival price).

An order placement tactic can be seen as a predefined procedure of order management, ensuring the execution of the target quantity within the slice. The following two tactics will be considered in our analysis: in the i-th slice, both tactics post a limit order of size n i at the best offer queue at the beginning of the period, and send a market order with all the remaining quantity to complete the execution of the target volume at the end time of the slice. In between:

• T1 (Fire and forget): When p mi d (the mid price) changes, cancel the limit order and send a market order on the opposite side with all the remaining volume if any.

• T2 (Pegging to the best): When the best offer price changes or our order is the only remaining order at the best offer limit, cancel the order and repost all the remaining volume at the newly revealed best offer queue.

Performance measure

To understand the effects of order placement tactic on the execution's slippage, we propose the two following measures on an execution's performance: Slippage and Slippage where P t heo exec = M i =1 n i VWAP i represents the average execution price if the algorithm obtains the same price as the market VWAP in each trading slice. Essentially, Slippage measures the overall performance of the execution algorithm as a combination of order placement tactic and order scheduling strategy, while Slippage t heo measures the quality of the scheduling strategy alone and neglects the randomness in executed price due to the order placement tactic in each trading slice.

2000 simulations are launched for each couple of (S1/S2, T1/T2). We then estimate the probability density functions of Slippage t heo and Slippage. The results are shown in Figure .3. The simulation results suggest that the same order scheduling strategy can have very different performance when being coupled with different order placement tactics: T2 ("Pegging to the best") performs better than T1 ("Fire and forget") when being coupled with a linear scheduling strategy with VWAP benchmark, while T1 slightly outperforms T2 when an exponential scheduling strategy with arrival price benchmark is considered. By executing most of the target quantity via limit orders, T2 obtains on average a better price than that of a more market orders based 1. Part I: Limit Order Book Modeling tactic. However, at the same time, it creates a larger impact than T1 since the order stays longer in the queues. Note that market impact profiles for these two tactics can also be obtained using Monte-Carlo simulations.

A General Framework for Markovian Order Book Modeling

In Chapter II, we extend the queue-reactive model to a general Markovian framework.

Order book dynamics

We represent the order book X (t ) by two elements: its center position denoted by p r e f (which plays the same role as p r e f in the queue-reactive model) and its form [q -K , ..., q -1 , q 1 , ..., q K ]. The use of one unique reference price that is not directly observable from the order book state gives us flexibility for modeling the order book and enables us to differentiate two types of jumps in the order book dynamics: pure order book state jumps (for which the order book center p r e f stays invariant) and common jumps (jumps in which a reference price change is involved).

Pure order book jump

We assume that a pure order book jump can only happen at one specific queue at each jump time. Unlike the queue-reactive model, buy/sell limit orders are allowed to be inserted on both parts of the reference price. Moreover, the jump size is now random. Thus, in term of generator, we have, with 2K functions f i , g i : Introduction discretized p r e f (with tick value denoted by α) and model the jump rate of p r e f as function of the order book state q(t ):

q ∈Ω Q (q,p),(q ,p+α) = u(q) q ∈Ω Q (q,p),(q ,p-α) = d (q) q ∈Ω Q (q,p),(q ,p±nα) = 0, for n ≥ 2.

Note that when the order book center changes, the values of q i switches immediately to the value of one of its neighbors. We thus introduce two boundary distributions π -K and π K for generating new queue sizes at Q ±K as we keep only K limits on each side. As in the queuereactive model, we assume that q ±K is redrawn from some distribution (π i nc if p r e f increases, π d ec if it decreases) with some probability θ r ei ni t whenever a reference price jump happens. For q ∈ Ω (Ω denotes the state space of all possible order book shape) and l ∈ R, write q + = [q -K , ..., q -1 , q 1 , ..., q K -1 ], q -= [q -K -1 , ..., q -1 , q 1 , ..., q K ], [q + , l ] = [q -K , ..., q -1 , q 1 , ..., q K -1 , l ] and [l , q -] = [l , q -K -1 , ..., q -1 , q 1 , ..., q K ]. We have for any q, q , q such that q + = q + and q -= q -:

Q (q,p),([q + ,l ],p+α) = (1 -θ r ei ni t )u(q)π K (l ) + θ r ei ni t u(q)π i nc ([q + , l ]) Q (q,p),(q ,p+α) = θ r ei ni t u(q)π i nc (q ) Q (q,p),([l ,q -],p-α) = (1 -θ r ei ni t )d (q)π -K (l ) + θ r ei ni t d (q)π d ec ([l , q -]) Q (q,p),(q ,p-α) = θ r ei ni t d (q)π d ec (q ).

The infinitesimal generator matrix of the order book process

Gathering all the above hypotheses together, we obtain the following description for the infinitesimal generator matrix of the Markovian jump process X (t ): Assumption 3. For any q, q , q , q ∈ Ω, p, p ∈ α(0.5 + Z), n ∈ N + , l ∈ Z, such that q + = q + and q -= q -, the infinitesimal generator matrix Q of the process X (t ) is of the following form (with

2K functions f i , g i : Ω × N + → R + and 2 functions u, d : Ω → R + ) : Q (q,p),(q+ne i ,p) = f i (q, n) Q (q,p),(q-ne i ,p) = g i (q, n) Q (q,p),([q + ,l ],p+α) = (1 -θ r ei ni t )u(q)π K (l ) + θ r ei ni t u(q)π i nc ([q + , l ]) Q (q,p),(q ,p+α) = θ r ei ni t u(q)π i nc (q ) Q (q,p),([l ,q -],p-α) = (1 -θ r ei ni t )d (q)π -K (l ) + θ r ei ni t d (q)π d ec ([l , q -]) Q (q,p),(q ,p-α) = θ r ei ni t d (q)π d ec (q )
Q (q,p),(q,p) = -( q, p)∈Ω×α(0.5+Z),( q, p) =(q,p) Q (q,p),( q, p) Q (q,p),( q, p) = 0, otherwise.

Note that up to minor modifications, most classical order book models such as the zerointelligence model of [START_REF] Smith | Statistical theory of the continuous double auction[END_REF] and that of [START_REF] Cont | A stochastic model for order book dynamics[END_REF], and the queue-reactive model, can be included in this framework.

V-Uniform ergodicity

Constant reference price 1. Part I: Limit Order Book Modeling We now discuss ergodicity conditions for the Markovian process X (t ). V-uniform ergodicity implies the existence of a unique invariant distribution for the state vector q(t ), which is very useful in explaining the empirical order book distribution, as we have already seen in the queue-reactive model. We write

f * i (q) := n f i (q, n), g * i (q) := n g i (q, n),
and consider two probability measures on

N + l i (q, n) := f i (q, n) f * i (q) , k i (q, n) := g i (q, n) g * i (q)
, and their related moment-generating functions G f ,i ,q (z) and G g ,i ,q (z). We make the following assumptions:

Assumption 4. For any order book state q and any i ≥ i best ask , g i (q, n) = 0 for any n > q i and for any order book state q and any i ≤ i best bi d , f i (q, n) = 0 for any n > -q i . Assumption 5. There exists z * > 1 such that for any q and i , G f ,i ,q (z * ) < ∞ and G g ,i ,q (z * ) < ∞. Furthermore, there exists L > 0 such that for any i ,

lim z→1 + sup q [ f * i (q)G f ,i ,q (z)1 i >i best bi d + g * i (q)G g ,i ,q (z)1 i <i best ask ] < L.
Assumption 6. There exist r > 0 and U > 1 such that

lim z→1 + sup (q,i ):q i >U ,i ≥i best ask [ f * i (q) -g * i (q) 1 -G g ,i ,q (z -1 ) G f ,i ,q (z) -1 ] < -r lim z→1 + sup (q,i ):q i <-U ,i ≤i best bi d [g * i (q) -f * i (q)
Introduction For the embedded Markov chain q(n), defined as q(n) = q(J n ), with J n the time of the n-th jump, and q(J n ) the state of the LOB after this event, a different assumption is needed for its ergodicity. We write

a * i (q) = f * i (q) i [ f * i (q) + g * i (q)] , b * i (q) = g * i (q) i [ f * i (q) + g * i (q)]
,

for the proportions of queue size increases and decreases, and replace Assumption 6 by the following one.

Assumption 8. There exist r > 0 and U > 1 such that

lim z→1 + sup (q,i ):q i >U ,i ≥i best ask [a * i (q) -b * i (q) 1 -G g ,i ,q (z -1 ) G f ,i ,q (z) -1 ] < -r lim z→1 + sup (q,i ):q i <-U ,i ≤i best bi d [b * i (q) -a * i (q) 1 -G f ,i ,q (z -1 ) G g ,i ,q (z) -1 ] < -r.
Then we can prove the following theorem:

Theorem 3. When u = d ≡ 0, under Assumptions 4, 5, 7 and 8, the embedded discrete-time Markov chain q(n) is V-uniformly ergodic and positive Harris recurrent.

The main idea to prove the ergodicity of q is to design an appropriate Lyapunov function V , on which the following negative drift condition is satisfied for some γ > 0 and B > 0:

QV (q) := q =q Q q q [V (q ) -V (q)] ≤ -γV (q) + B.
Then the above theorems can be derived using Theorem 4.2 and Theorem 6.1 in [START_REF] Meyn | Stability of Markovian processes III: Foster-Lyapunov criteria for continuous-time processes[END_REF]. Note that the same kind of method is used in [START_REF] Abergel | A mathematical approach to order book modelling[END_REF] in order to show ergodicity properties of zero-intelligence order book models.

General case

For some z,U > 1, let

V z ([q, c]) = K i =-K ,i =0 z |q i |-U .
When p r e f is no longer constant, we make the two following additional assumptions:

Assumption 9. There exist z > 1 and L π > 0 such that for Q i nc , Q d ec , Q K , Q -K four random variables such that Q i nc ∼ π i nc , Q d ec ∼ π d ec , Q K ∼ π K and Q -K ∼ π -K : E[V z ([Q i nc , c])] + E[V z ([Q d ec , c])] + E[z |Q K |-U ] + E[z |Q -K |-U ] ≤ L π .
Assumption 10. There exists a finite set W ⊂ Ω such that the upper bound of the proportion of reference price jumps in any order book state q is smaller than one on Ω/W :

sup q∈Ω/W u(q) + d (q) i [ f * i (q) + g * i (q)] + u(q) + d (q) < 1.
1. Part I: Limit Order Book Modeling

Recall that q(n) represents the state of the order book after the n-th event and p r e f (n) is the reference price after the n-th event, we consider here the process of reference price increments c(n), defined as the reference price change at the n-th event:

c(n) = p r e f (n) -p r e f (n -1).
We have the following theorem on the ergodicity of the Markov chain

Y (n) = (q(n), c(n)):
Theorem 4. Under Assumptions 4, 5, 7, 8, 9 and 10, the embedded discrete-time Markov chain

Y (n) = (q(n), c(n)
) is V-uniformly ergodic and positive Harris recurrent.

Scaling limit

Another important element in order book modeling is the scaling limit of the price process. Let

N (t ) = inf{n, J n ≤ t }
be the number of events until time t , with the convention inf{ } = 0. Let Z (n) be the cumulative price change until the n-th event, that is Z (0) = 0 and for n ≥ 1:

Z (n) = n i =1 c(i ).
We have

Z (N (t )) = p r e f (t ) -p r e f (0).
Thus it represents the reference price at time t recentered its starting value. The following theorem shows that the rescaled price process Ŝ(n) (t ) := Z ( nt ) n in event time converges to a Brownian motion under the preceding assumptions: Theorem 5. Under Assumptions 4,5,7,8,9 and 10,if 

E π * [c(0)] = 0, then the series σ 2 = E π * [c 2 0 ] + 2 ∞ n=1 E π * [c 0 c n ],
converges absolutely, with π * the invariant distribution of (q(n), c(n)). Furthermore, if Y (0) ∼ π * , we have the following convergence in law in D[0, ∞):

Ŝ(n) (t ) n→∞ → σB (t ),
where B (t ) is a standard Brownian motion.

Consider now the following additional assumption:

Assumption 11. There exists some m > 0, such that

inf q∈Ω i ( f * i (q) + g * i (q)) + u(q) + d (q) > m.
Then we have the following result on the convergence of the rescaled reference price process in calendar time:

S(n) (t ) = Z N (nt )
n .
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Theorem 6. Let τ n be the inter-arrival time between the n-th and the (n-1)-th jumps of the Markov process X . Under Assumptions,4,5,7,8,9,10 and 11,the process (q(n)

, c(n), τ(n)) is positive Harris recurrent. Furthermore, if E π * [c(0)] = 0 and Y (0) ∼ π * , then S(n) (t ) n→∞ → σ E π * * [τ(1)] B (t ),
with π * * the invariant distribution of (q(n), c(n), τ(n)).

The above two theorems discuss the scaling limit of the underlying reference price process. For the more usual process such as p best bi d (t ), p best ask (t ) and p mi d (t ), the same result still apply since they are all bounded by 2K with respect to p r e f (t ).

Part II: Tick Value Effects

The tick value is the minimum price change imposed by the market designer on a traded asset. It is one of the most important structural parameters that affect the microstructure of the underlying asset and thus its macroscopic properties. In this part, we present our theoretical and empirical results in studying the role of tick size in high frequency trading.

The Effects of Tick Value Changes on Market Microstructure: Analysis of the 2014 Japanese Experiment

In Chapter III, we study the effects of tick value reduction for large tick assets. We aim at demonstrating that the approach introduced in Dayri and Rosenbaum (2012) allows for an ex ante assessment of the consequences of a tick value change on the microstructure of a large tick asset. The data of the Japanese tick value reduction pilot program are analyzed in light of this methodology. For these assets, the notion of implicit spread is introduced using the high frequency indicator η from the model with uncertainty zones of [START_REF] Robert | A new approach for the dynamics of ultra-highfrequency data: the model with uncertainty zones[END_REF]. This enables us to forecast the future cost of market and limit orders after a tick value change.

Our results are shown to be very accurate. Furthermore, we are able to define an "optimal tick value" for each asset that helps classify the assets according to the relevance of their tick value, before and after its modification.

Cost of trading and high frequency price dynamics

The high frequency indicator η

We propose to use a unique high frequency indicator, the parameter η (which can be easily estimated), to summarize the high frequency features of the asset. This indicator, already used in the queue-reactive model for calibration purpose, allows us to build an estimate for the relative cost of market orders and limit orders, and is directly linked to the tick size. In the first part of this chapter, we show why this indicator is far more subtle and suitable for microstructure analysis than any other measurement, like the ones based on the conventional bid-ask spread or on the market depth.

The model with uncertainty zones assumes the existence of a latent efficient price process X t , and that a transaction at a certain price level can happen only when the price level is close enough to the efficient price. This proximity is quantified by the parameter η: the distance between the possible transaction price and the efficient price must be smaller than α(1/2 + η),

2. Part II: Tick Value Effects with α the asset's tick value. The zone with width 2ηα around the mid price is called uncertainty zone. When the efficient price is inside it, both buy and sell market orders can occur.

Perceived tick size and cost of market orders

The parameter η measures the mean-reversion level of the transaction price due to the existence of the tick value. For large tick assets, η is also related to the perceived tick size of the asset by market participants: a small η (< 0.5) means that the tick value appears too large while a large η (> 0.5) means that it is considered too small, see [START_REF] Dayri | Large tick assets: implicit spread and optimal tick size[END_REF]. Knowing η also enables us to compute the cost of the orders. Take for example a market order at price P t leading to an upward price change at time t . The ex post expected cost of this order is given by:

P t -E[X ∞ |X t ] = α/2 -ηα.

Prediction of the cost of market and limit orders

Let us consider a large tick asset with current tick value α 0 and associated high frequency indicator η 0 . When the tick value is changed to α, the following prediction formula for the new value of η (and thus the cost of market and limit orders) can be established based on the invariance of the volatility with respect to the tick value:

η ∼ (η 0 + 0.1)( α 0 α ) 1/2 -0.1. (1) 
This formula, which is valid for large tick assets (η ≤ 0.5), enables us:

• To tell whether the asset will remain a large tick asset after the tick value change: if the predicted value of η is greater or equal than 0.5, the asset is predicted to become a small tick asset after the tick value change.

• To predict the new value of η: if the predicted value of η is smaller than 0.5, the above formula computes the estimated η after the tick value change.

The optimal tick value

Being able to predict the value of η after a tick value change not only helps the market designer to forecast the consequences of their measures on the market microstructure, but also paves the way for defining a notion of "optimal tick value". Although different market participants can have quite opposite views on what a good tick value is, there are in general two main objectives in a tick value change program:

• The bid-ask spread should be close to one tick, ensuring the presence of liquidity in the order book.

• Transaction costs should be close to zero for market orders. In that case, the market is efficient and market makers do not take advantage of the tick value to the detriment of final investors acting mainly as liquidity takers.

In our approach, an asset enjoys a relevant tick value if it is a large tick asset and its η parameter is close to 1/2. Thus we have the following formula for the optimal tick value: 

α opt = α 0 (η 0 + 0.

Classification of the stocks

The 55 stocks are classified according to their conventional spread S (in ticks) and to the level of market order cost. We first split the stocks into three groups:

• Small tick stocks: S > 1.6.

• Large tick stocks: S ≤ 1.5.

• Ambiguous cases: 1.5 < S ≤ 1.6.

The cost of market order being α/2 -ηα, we use the high frequency indicator η to distinguish between balanced stocks (for which the cost of market order is close to 0) and market makers favorable stocks (where market makers obtain significant profit from liquidity takers thanks to the large tick value):

• Balanced stocks: η ≥ 0.4.

• Market makers favorable stocks: η < 0.4.

A stock is considered to have a "suitable" tick value if it is both a large tick stock and a balanced stock. Note that all small tick stocks are considered as balanced stocks, but they do not have "suitable" tick value, their bid-ask spread (in ticks) being too large. Among the 55 stocks involved in the pilot program, only 5 of them are considered having a suitable tick value before the start of the program. This means that a tick value modification can be beneficial for the other 50 stocks.

Phase 0 -Phase 1

During Phase 1, 12 stocks being large tick assets in Phase 0 are involved in the tick value reduction program. These stocks are selected to test the prediction quality of Formula 1 on the new value of η in Phase 1 (η p 1 ). The predicted value η p 1 tells directly whether the asset will remain a large tick asset and whether it will be balanced after the tick value modification. We use the following criteria:

• If η p 1 ≥ 0.55, the asset is predicted to become a small tick asset after the tick value change.

• If η p 1 < 0.5, the asset is predicted to remain a large tick asset after the tick value change, with the forecast value for the new η being meaningful and given by η p 1 .

• We qualify the situation 0.5 ≤ η p 2. Part II: Tick Value Effects We obtain an average relative prediction error for η of 18% along with very tight confidence intervals for these 12 stocks in Phase 1. Having such accurate predictions, it is no surprise that we are also able to forecast the category an asset will belong to after the tick value modification with very high success rate (only 2 errors).

Phase 1 -Phase 2

More stocks (48) are affected in Phase 2 by the tick value reduction program. For these stocks, we conduct a similar analysis as the one for Phase 0 -Phase 1. An excellent accuracy is once again obtained for the prediction of η and the category of these stocks after the tick value modification: the average relative prediction error is reported to be less than 17%, with a success rate of 85% for the prediction of the stock's category. These results confirm the excellent prediction quality of Formula 1 and the ability of our methodology to forecast ex ante the consequences of a tick value change on the microscopic properties of the asset.

An Agent-based Model on Order Book Dynamics

In Chapter IV, we introduce a simple agent-based model on order book dynamics, which gives insights on the relationships between traded volume V , price volatility σ, tick size α, bid-ask spread φ and the order book equilibrium form L(x) (L(x) denotes the quantities of buying/selling orders between P (t ) and P (t ) + x, where P (t ) denotes the market underlying efficient price, whose role is equivalent to the role of p r e f in Part I).

Model with infinitesimal tick size

We assume that P (t ) = P 0 + Y (t ), with Y (t ) a compound Poisson process with jump rate λ i and size (denoted by B ) distribution ψ (defined on R). We impose E[B ] = 0 so that P (t ) is a martingale. In such case, we have σ :

= V[P (t )] t = λ i E[B 2 ],
where the term σ represents the macroscopic volatility.

Agents

We assume that there exist three types of traders in the market:

• One informed trader: the informed trader receives the value of the price jump size B right before it happens. He then sends his trades based on this information to gain profit. We assume that he can only send market orders.

• One noise trader: the noise trader sends random market orders to the market. We assume that these trades follows a compound Poisson process, with arrival rate λ u and volume distribution κ u in R (positive volume represents a buying order, while negative volume represents a selling order).

• Market makers: the market makers receive the value of the price jump size B right after it happens. They place limit orders and try to make profit. We assume that they are risk neutral.

The following greedy assumption on the informed trader's behavior enables us to link the informed trader's trade size Q i , the noise trader's trade size Q u , the price jump size B and the order book's cumulative shape L(x). We denote the repartition functions of B , Q u , Q i and Q
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(the unconditional trade size) respectively by F ψ (x), F κ u (x), F κ i (x) and F κ (x), and define the inverse cumulative order book shape function L -1 (q) := argmax

x {x|L(x) = q}.

Assumption 12. Based on the received value of B and the cumulative order book shape function L(x) provided by market makers, the informed trader sends his trade in a greedy way such that he wipes out all the available liquidity in the limit order book till the level P (t ) + B . Thus, his trade size Q i satisfies:

Q i = L(B ).
From the above assumption, we can prove the following theorem:

Theorem 7. The repartition functions F κ u (x), F κ i (x) and F κ (x) satisfy, with r = λ i λ i +λ u :

F κ i (q) = F ψ i (L -1 (q)) F κ (q) = r F κ i (q) + (1 -r )F κ u (q).

The equilibrium limit order book shape

We now study the behavior of market makers under the greedy assumption. Consider the profit of passive selling orders placed between P (t ) + x and P (t ) + x + δp for some x, δp > 0, given the fact that a buying transaction of size Q happens with Q ≥ L(x + δp), that is all these orders are executed. If the transaction comes from the informed trader, market makers who place these limit orders lose money due to the greedy assumption, and they gain profit if the transaction comes from the noise trader as the difference between the average executed price and the efficient price P (t ). We denote the conditional expected ex post gain of these orders by G(x, δp), and define the average profit per unit at x, denoted by G(x), as the limit of the average ex post profit of the passive orders placed between P (t ) + x and P (t ) + x + δp:

G(x) = lim δp→0 + G(x, δp) L(x + δp) -L(x)
.

A positive G(x) means that new limit orders at x are still profitable. As market makers are assumed to be risk neutral, it is natural to make the following zero profit assumption (with l (x) := L (x)):

Assumption 13. For every x ∈ R + , if L(x) > 0 and l (x) > 0, then the conditional expected average gain per unity of passive orders placed at x, given the fact that they are totally executed, is equal to 0, that is, when L(x) > 0 and l (x) > 0:

G(x) = 0.
Equivalently, we have:

x = r E[B 1 B >x ] 1 -F κ (L(x))
.

Unlike the traditional zero-profit assumption (such as that used in [START_REF] Glosten | Bid, ask and transaction prices in a specialist market with heterogeneously informed traders[END_REF]) which assumes that market makers make no profit at all, under the above assumption, "fast" market makers can still make profit from their limit orders placed before the equilibrium is attained due to the competition among them. This point will be made clearer when the tick value constraint is added.

The following theorem shows that the bid-ask spread emerges naturally from the above assumptions as well as an equilibrium cumulative order book shape:

2. Part II: Tick Value Effects Theorem 8. The cumulative limit order book shape function is uniquely determined. We have,

L(x) = 0, for x ∈ [-η, η],
where η is the unique solution of the following equation:

1 + r 2r = E[max ( B η , 1)].
Furthermore, for x > η:

L(x) = F -1 κ u ( 1 1 -r - r 1 -r E[max ( B x , 1)]),
and for x < -η:

L(x) = -F -1 κ u ( 1 1 -r - r 1 -r E[max ( B -x , 1)]).
In particular, the intrinsic bid-ask spread satisfies φ = 2η.

Actually, the existence of the informed trader prevents market makers from posting their limit orders too close to the efficient price: the expected profit of these orders is negative as they are very vulnerable to large price jumps. In our model, market makers can only make profit from the noise trades. The minimum distance η to which their limit orders start to make profit depends naturally on the proportion of noise trades as well as on the distribution of the price jump.

Tick size

Constrained bid-ask spread

When we constrain price changes by the tick size, the cumulative order book L(x) becomes a piece-wise constant function. We denote by G d (i ) the expected average gain of passive orders placed at the i-th limit given the fact that a transaction happens and they are completely executed. We make a similar zero profit assumption in such case. We write d := P (t ) -P (t ), with P (t ) the smallest possible price level that is greater or equal to the efficient price P (t ), and l d (i ) the number of limit orders placed at the i-th limit: Assumption 14. For every i ∈ N + , if l d (i ) > 0, then the conditional expected average gain of the passive orders placed at d + (i -1)α, given the fact that they are totally executed, is equal to 0, that is, when l d (i ) > 0:

G d (i ) = 0.
Equivalently, we have:

d + (i -1)α = r E[B 1 B ≥d +(i -1)α ] 1 -F κ (L d (d + (i -1)α)) .
When one limit is empty, its potential expected gain can be defined as the average gain/loss of an infinitesimal passive order placed at this limit, under the condition that it is executed completely. When the potential expected gain is positive, market makers naturally place new passive orders as these orders are profitable in expectation. This idea gives the following assumption: Assumption 15. For every i ∈ N + , if l d (i ) = 0, then the potential conditional expected average gain of the passive orders placed at d + (i -1)α, given the fact that they are totally executed, is less than or equal to 0, that is, when l d (i ) = 0:

G d (i ) ≤ 0.
Introduction Equivalently, we have:

d + (i -1)α ≤ r E[B 1 B ≥d +(i -1)α ] 1 -r F ψ (d + (i -1)α) -(1 -r )F κ u (max(0, L d (d + (i -2)α))
) .

One interesting theorem can be obtained from these assumptions. It suggests that the average bid-ask spread, which is now constrained by the tick size, is a linearly increasing function of the tick size α:

Theorem 9. The average bid-ask spread φ α satisfies the following equation:

φ α = α + φ,
where φ is the intrinsic bid-ask spread of the asset when the tick value is equal to 0.

The cumulative limit order book shape is shown to satisfy the following theorem: Theorem 10. The cumulative limit order book shape function is uniquely determined. We have,

l d (i ) = 0 for all -k d l < i < k d r ,
where k d l and k d r are two positive integers determined by the following equations:

k d r = 1 + η -d α , k d l = η + d α ,
where η is the unique solution of the following equation:

1 + r 2r = E[max ( B η , 1)].
For h ≥ k d r :

L d (d + (h -1)α) = F -1 κ u ( 1 1 -r - r 1 -r E[max ( B d + (h -1)α , 1)]), for h ≤ -k d l : L d (d + hα) = -F -1 κ u ( 1 1 -r - r 1 -r E[max ( B -d -hα , 1)]).

Priority value

The priority value, already discussed in the queue-reactive model to explain the concave cancellation rate, can be formulated in this model as the difference between the expected profit of the order placed on top and that placed at the bottom of the queue:

Theorem 11. The priority value at the i -th limit can be written as:

For i = k d r , Gd (i ) = E[B 1 B ≥d +(k d r -1)α ]{ 1 E[max( B d +(k d r -1)α , 1)] -F ψ (d + (k d r -1)α) - 1 1+r 2r -F ψ (d + (k d r -1)α) },
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for i > k d r , G d p (i ) = E[B 1 B ≥d +(i -1)α ]{ 1 E[max( B d +(i -1)α , 1)] -F ψ (d + (i -1)α) - 1 E[max( B d +(i -2)α , 1)] -F ψ (d + (i -1)α) }.
The above formulas can be easily generalized to compute the priority value of an order placed at any position in the queue.

Information propagation

We then discuss the case when the market makers no longer hold exact information on the price P (t ), and add a minimum reaction time between the moment when the informed trader receives the updated information and the moment when he sends orders to take the liquidity. We assume here that α = 0 in order to simplify our analysis.

The main question faced by market makers when they no longer know the value of P (t ) is whether they should refill the gaps in the order book once the liquidity has been taken by a market order. If the market order is sent by the noise trader, then market makers should send limit orders to refill the limit order book. But if the market order comes from the informed trader, refilling the order book leads to further losses to market makers as the newly inserted orders will probably again be consumed by the informed trader.

For a given market order of volume q (until the price level p ) at the moment t , write P (t -) the efficient price before this trade, which we assume is known to market makers. Immediately after this trade, the gain of a limit order placed between P (t -) + x and P (t -) + x + δp can be written as (ν i is a random variable with ν i = 1 if the last trade comes from the informed trader, ν i = 0 if the last trade comes from the noise trader):

g p (x, δp) = ν i g p (x, δp) + (1 -ν i )g (x, δp),
with g p (x, δp) representing the gain in the case of an informed transaction, and g (x, δp) that in the case of a noise transaction. Denote by L -(p ) the cumulative order book quantity right before the trade at the price level

P (t -) + p , r p = r (1-F ψ (p )) 1-r F ψ (p )-(1-r )F κ u (L -(p ))
and the best ask price a p (we consider a buy market order) right after the trade, we have the following theorem concerning the equilibrium order book state immediately after this trade: Theorem 12. Assume the reaction rate λ a is much larger than the information arrival rate λ i and noise trade arrival rate λ u , that is:

r i = λ i λ i + λ u + λ a ≈ 0 r u = λ u λ i + λ u + λ a ≈ 0.
(2)

The best ask price a p lies in the interval (r p , p ) and satisfies the following approximate equation:

Introduction 1 + r 2r ≈ (1 -r p ) E[B 1 B >a p ] a p -r p p + F ψ (a p ).
Moreover, the equilibrium order book state L(x) immediately after a transaction satisfies:

for x < p : L(x) ≈ F -1 κ u ( 1 1 -r - r (1 -r p )E[max(B, x)] -r r p (p -x)F ψ (x) (1 -r )(x -r p p ) ),
and for x ≥ p :

G p (x) = x -r p p - r (1 -r p )E[B 1 B >x ] 1 -r F ψ (x) -(1 -r )F κ u (L(x)) - r p r E[B 1 B >x-p ] 1 -r F ψ (x -p ) -(1 -r )F κ u (L(x)) .
In particular, at the trade price p , we have:

L(p ) ≈ F -1 κ u ( 1 1 -r - r 1 -r E[max( B p , 1)]) = L -(p ).
The above theorem gives lower and upper bounds on the new best bid/ask limit after a new transaction, as well as a description of the order book state around the transaction price p . In our setting, the cumulative number of orders stays almost the same at p immediately after the transaction. The new best bid/ask position depends on the volume of the last trade, but is strictly smaller than the transaction price (in the buying case).

Limit order book recovery speed

If the last trade is indeed an informed transaction, orders that are placed before p are exposed to the risk of being overrun once more by the informed trader. However, as the time advances, if no further trades arrive to take away these newly inserted orders, market makers may adjust their expected potential gain. Then the limit order book state will recover gradually to its original equilibrium state. These intuitions are formalized in the following theorem.

Let G p (x, δt ) denotes the conditional expected gain per unity at the price P -(t ) + x at the moment t + δt , given the fact that no trade has arrived in the market between t and t + δt . We write G p (x) for the conditional expected gain per unity given the fact that the last trade is issued by an informed trader, and G(x) represents the standard conditional expected average gain per unity. We have the following result:

Theorem 13. Given the fact that no trade arrives between (t , t + δt ]. We have, for x < p ,

G p (x, δt ) = r p δt Gp (x) + (1 -r p δt )G(x), with r p δt = 1 1 + 1-r p r p e λ a δt
.

Part II: Tick Value Effects

When δt → ∞, r p δt → 0, and G p (x, δt ) → G(x), that is, if the trade is intiated by the noise trader, the limit order book shape gradually recovers after this trade to its stationary state, with approximative speed ∼ e -λ a t .

Part I Limit Order Book Modelling 1 Introduction

Electronic limit order books (LOB for short), where market participants send their buy and sell orders via a continuous-time double auction system, are nowadays the dominant mode of exchange on financial markets. Consequently, understanding the LOB dynamics has become a fundamental issue. Indeed, a deep knowledge of the LOB's behavior enables policy makers to design relevant regulations, market makers to provide liquidity at cheaper prices, and investors to save transaction costs while mounting and unwinding their positions, thus reducing the cost of capital of listed companies. Furthermore, it can also provide insights on the macroscopic features of the price which emerges from the LOB.

In the seminal work on zero intelligence LOB models of [START_REF] Smith | Statistical theory of the continuous double auction[END_REF], a mean-field approach is suggested in order to study the properties of the LOB. In such models, the underlying assumption is that the order flows follow independent Poisson processes. Although this hypothesis is not really compatible with empirical observations, the authors show that its simplicity allows for the derivation of many interesting formulas, some of them being testable on market data. This work has been followed by numerous developments. For example, in [START_REF] Cont | A stochastic model for order book dynamics[END_REF], the probabilities of various order book related events are computed in this framework, whereas stability conditions of the system are studied in [START_REF] Abergel | A mathematical approach to order book modelling[END_REF]. We wish to extend this approach in two directions. On the one hand, we want our model to be more consistent with market data, so that we can give new insights on the dynamics of the LOB. On the other hand, we aim at providing a useful and relevant tool for market practitioners, notably in the perspective of transaction costs analysis.

Under the first in first out rule (which we assume in the sequel), a LOB can be considered as a high-dimensional queuing system, where orders arrive and depart randomly. We consider the three following types of orders:

• Limit orders: insertion of a new order in the LOB (a buy order at a lower price than the best ask price, or a sell order at a higher price than the best bid price).

• Cancellation orders: cancellation of an already existing order in the LOB.

• Market orders: consumption of available liquidity (a buy or sell order at the best available price).

In practice, market participants (or their algorithms) analyze many quantities before sending a given order at a given level. One of the most important variables in this decision process is probably the distance between their target price and their "reference market price", typically the midprice. This reference price is linked with the order flows since it is usually determined by the LOB state. This interconnection makes the design of LOB models quite intricate. To overcome this difficulty, we split the time interval of interest into periods of constant reference price, and consider two parts in our modeling. First, we study the LOB as a Markov queuing system during the time periods when the reference price is constant. Then, we investigate the dynamics of the reference price. Such a framework is particularly suitable for large tick assets1 , for which constant reference price periods are quite long and allow for accurate parameter estimations.

Two kinds of public information are available to market participants at the high frequency scale: the historical order flows and the current state of the LOB. In this paper, we are mostly interested in how the state of the LOB impacts market participants decisions. Surprisingly enough, this question has been rarely considered in the literature. Let us mention as an exception the interesting approach in [START_REF] Gareche | A Fokker-Planck description for the queue dynamics of large tick stocks[END_REF], where the impact of the LOB state on the queue dynamics is analyzed through PDE type arguments. Within periods of constant reference price, we model the LOB as a continuous-time Markov jump process, and estimate its infinitesimal generator matrix under various assumptions on the information set used by market participants. From these results, we are able to analyze how market participants react towards different configurations of the LOB. Furthermore, we provide the asymptotic distributions of the LOB. The level of realism of our approaches is assessed by comparing expected features from the models with empirical ones. Thus, all our developments are illustrated on two specific examples of large tick stocks on Euronext Paris: France Telecom and Alcatel-Lucent (in appendix).

In the second part of the paper, we extend our framework by allowing reference price moves, so that our model also accommodates macroscopic properties of the asset (roughly summarized by the volatility). Modifications of the reference price 2 will possibly occur provided one of the best queues is totally depleted or a new order is inserted within the spread. This model is called 2. Dynamics of the LOB in a period of constant reference price "queue-reactive model". In particular, it enables us to bring to light a quantity, the "maximal mechanical volatility", which represents the amount of price volatility generated by the generic randomness of the order flows. In practice, this parameter is typically smaller than the empirical volatility estimated from market data. The reason for this is simple: the market does not evolve like a closed physical system, where the only source of randomness would be the endogenous interactions between participants. It is also subject to external informations, such as the news, which increase the volatility of the price. Hence, it will be necessary to introduce an exogenous component within the queue-reactive model.

Throughout the paper, we illustrate the fact that many useful short term predictions can be computed in our framework: execution probabilities of passive orders, probability of price increase. . . More importantly, we show that the queue-reactive model turns out to be a very relevant market simulator, notably in view of the analysis of complex trading tactics, using for example a mixture of market and limit orders.

The paper is organized as follows. In Section 2, we consider periods when the reference price is constant. We first present a very general framework for the LOB dynamics and then introduce three specific models. The first one is a birth and death process in which the queues are assumed to be independent. In this setting, we are able to fully characterize the asymptotic behavior of the LOB. The second approach is a queuing system in which the bid and ask sides are independent, but the first two lines on each side can exhibit correlations. We show that this model can be seen as a quasi birth and death process (QBD for short) and thus admits a matrix geometric solution as its invariant distribution. In the last approach, we allow for cross dependences between bid and ask queues. An application of these models to the computation of execution probabilities is presented at the end of the same section. In Section 3, we investigate the dynamics of the reference price. In particular, we build the queue-reactive model which is a relevant LOB model for the whole time period of interest. We end this section by showing how our framework can be used for transaction costs and market impact analysis of high frequency trading strategies. A conclusion and some perspectives are given in Section 4. Some proofs and further empirical results are gathered in an appendix.

Dynamics of the LOB in a period of constant reference price

Within time periods when the reference price is constant, we consider three different models for the LOB. These models can be jointly introduced through the general framework we present now.

General Framework

In the general framework, the LOB is seen as a 2K -dimensional vector, where K denotes the number of available limits on each side3 , see Figure I.1. The reference price p r e f defines the center of the 2K -dimensional vector, and divides the LOB into two parts: the bid side [Q -i : i = 1, ..., K ] and the ask side

[Q i : i = 1, ..., K ],
where Q ±i 4 represents the limit at the distance i -0.5 ticks to the right (+i ) or to the left (-i ) of p r e f . The number of orders at Q i is denoted by q i . We assume that on the bid (resp. ask) side, market participants send buy (resp. sell) limit orders, cancel existing buy (resp. sell) orders and send sell (resp. buy) market orders. We consider a constant order size at each limit. However, the order sizes at the different limits are allowed to Figure I.1: Limit order book be different. In practice, these sizes can be chosen as the average event sizes observed at each limit Q i (AES i for short)5 .

The 2K -dimensional process X (t ) = (q -K (t ), ..., q -1 (t ), q 1 (t ), ..., q K (t )) is then modeled as a continuous-time Markov jump process in the countable state space Ω = N 2K , with jump size equal to one. For q = (q -K , ..., q -1 , q 1 , ..., q K ) ∈ Ω, and e i = (a -K , ..., a i , ..., a K ), where a j = 0 for j = i and a i = 1, the components Q q,p of the infinitesimal generator matrix Q of the process X (t ) are assumed to be of the following form:

Q q,q+e i = f i (q) Q q,q-e i = g i (q) Q q,q = - p∈Ω,p =q Q q,p Q q,p = 0, otherwise.
We now give a theoretical result on the ergodicity of the system under two very general assumptions. Let us denote by P q,p (t ) the transition probability from state q to state p in a time t . Recall that a Markov process in a countable state space is said to be ergodic if there exists a probability measure π that satisfies πP = π (π is called invariant measure) and for every q and p:

lim t →∞ P q,p (t ) = π p .
We consider the two following assumptions.

Assumption 16. (Negative individual drift)

There exist a positive integer C bound and δ > 0, such that for all i and all q ∈ Ω, if q i > C bound , f i (q)g i (q) < -δ.

Assumption 17. (Bound on the incoming flow) There exists a positive number H such that for any

q ∈ Ω, i ∈[-K ,...,-1,1,...,K ] f i (q) ≤ H .
Assumption 16 can be interpreted as follows: the queue size of a limit tends to decrease when it becomes too large. Assumption 17 ensures no explosion in the system: the order arrival speed stays bounded for any given state of the LOB. Under these two assumptions, we have the following ergodicity result for the 2K -dimensional queuing system. The proof is given in appendix.

Theorem 1. Under Assumptions 16 and 17, the 2K -dimensional Markov jump process X (t ) is ergodic.

This theorem is the basis for the asymptotic study of the LOB dynamics in the following sections.

Data description and estimation of the reference price

The database

The data used in our empirical studies are collected from Cheuvreux's6 LOB database, from January 2010 to March 2012, on Euronext Paris. It records the LOB data (prices, volume and number of orders) up to the fifth best limit on both sides, whenever the LOB state changes. Note that we remove market data corresponding to the first and last hour of trading, as these periods have usually specific features because of the opening/closing auction phases. Two large tick European stocks, France Telecom and Alcatel-Lucent, are studied and they exhibit very similar behaviors. Some characteristics of these two stocks are given in Table 1. We have chosen the stock France Telecom as illustration example for all the developments in the sequel. The results for Alcatel-Lucent can be found in appendix. Although only stocks are considered in this paper, our method applies also to other financial assets, such as interest rates or index futures (among which large tick assets are quite numerous, see [START_REF] Dayri | Large tick assets: implicit spread and optimal tick size[END_REF] 

Estimation of the reference price

As mentioned in the introduction, the estimation of a relevant reference price p r e f is the basis for defining the limits in the order book. Indeed, p r e f provides the center point of the LOB and thus the positions of the 2K limits. In our framework, if we write p i for the price level of the limit Q i , i = -K , ..., 1, 1, ..., K , we must have

p r e f = p 1 + p -1 2 .

I. The queue-reactive model

When the observed bid-ask spread is equal to one tick, p r e f is obviously taken as the midprice (denoted by p mi d ) and both Q 1 and Q -1 are non empty. When it is larger than one tick, several choices are possible for p r e f . We build p r e f from the data the following way: when the spread is odd (in tick unit), it is still natural to use p mi d as the LOB center:

p r e f = p mi d = (p best bi d + p best ask ) 2 .
When it is even, p mi d is no longer appropriate since it is now itself a possible position for order arrivals. In such case, we use either

p mi d + tick size 2 or p mi d - tick size 2 ,
choosing the one which is the closest to the previous value of p r e f . Note that more complex methods could be used for the estimation of p r e f , see for example [START_REF] Delattre | Estimating the efficient price from the order flow: a Brownian Cox process approach[END_REF].

Model I: Collection of independent queues

We now give a first simple LOB model around a fixed reference price.

Description of the model

In this model, we assume independence between the flows arriving at different limits in the LOB. Three types of orders are considered: limit orders, cancellations and market orders. We suppose that the intensities of these point processes at different limits are only functions of the target queue size (that is the available volume at the considered limit Q i ). Furthermore, at a given limit, conditional on the LOB state, the arrival processes of the three types of orders are taken independent. The values of these intensities are denoted by λ L i (n) (limit orders), λ C i (n)

(cancellations) and λ M i (n) (market orders) when q i = n. Moreover, the intensity functions at Q i and Q -i are chosen identical, considering the symmetry property of the LOB. We then have

λ L i (n) = λ L -i (n), λ C i (n) = λ C -i (n), λ M i (n) = λ M -i (n), and 
f i (q) = λ L i (q i ) g i (q) = λ C i (q i ) + λ M i (q i ).
In this model, market orders sent to Q i consume directly the volume available at Q i . Therefore, we can have a market order at the second limit while the first limit is not empty. However, for large tick assets, this assumption is reasonable as their market order flow is almost fully concentrated on first limits (Q ±1 ) and the estimated intensities of this flow at (Q ±i ), i = 1 are very small. Under these assumptions, the LOB becomes a collection of 2K independent queues, each of them being a birth and death process.

Empirical study: Collection of independent queues

In Model I, the intensities of the different queues can be estimated separately. The value of K is set to 3, as our numerical experiments show that for the considered stocks, both the dynamics and empirical distributions at Q ±i , i = 4, 5 are quite similar to that at Q ±3 . This value of K will also apply to other experiments in the paper. Market order arrival intensity, Model I First limit Second limit Third limit

Figure I.2: Intensities at Q ±i , i = 1, 2, 3, France Telecom
The estimation method goes as follows. We define an "event" ω as any modification of the queue size. For queue Q i , we record the waiting time ∆t i (ω) (in number of seconds) between the event ω and the preceding event at Q i , the type of the event T i (ω) and the queue size q i (ω) before the event. The queue size is then approximated by the smallest integer that is larger than or equal to the volume available at the queue, divided by the stock's average event size AES i at the corresponding queue. We set the "type" of the event ω the following way:

• T i (ω) ∈ E + for limit order insertion at Q i , • T i (ω) ∈ E -for limit order cancellation at Q i , • T i (ω) ∈ E t for market order at Q i .
When the reference price changes, we restart the recording process. Once we have collected

(∆t i (ω), T i (ω), q i (ω)) from historical data, it is easy to estimate λ L i (n), λ C i (n) and λ M i (n) by the maximum likelihood method: Λi (n) = mean(∆t i (ω)|q i (ω) = n) -1 λL i (n) = Λi (n) #{T i (ω) ∈ E + , q i (ω) = n} #{q i (ω) = n} λC i (n) = Λi (n) #{T i (ω) ∈ E -, q i (ω) = n} #{q i (ω) = n} λM i (n) = Λi (n) #{T i (ω) ∈ E t , q i (ω) = n} #{q i (ω) = n} ,
where "mean" denotes the empirical mean and #A the cardinality of the set A.

In Figure I.2, we present the estimated intensities. Data at Q i and Q -i are aggregated together (simply by combining the two collected samples) and confidence intervals (dotted lines) are computed using central limit approximations detailed in appendix. We now comment the obtained graphs.

Behaviors under the independence assumption

• Limit order insertion: Q ±1 : The intensity of the limit order insertion process is approximately a constant function of the queue size, with a significantly smaller value at 0. Note that inserting a limit order in an empty queue creates a new best limit and the market participant placing this order is the only one standing at this price level. Such action is often risky. Indeed, when the spread is different from one tick, one is quite uncertain about the position of the so-called "efficient" or "fair" price, see for example [START_REF] Delattre | Estimating the efficient price from the order flow: a Brownian Cox process approach[END_REF] for discussions on this notion. This smaller value can also be due to temporary realizations of the structural relation between the bid-ask spread and the volatility: if the spread is large because the inventory risk of market makers is high, the probability that anyone inserts a limit order in the spread is likely to be low, see among others [START_REF] Madhavan | Why do security prices change? A transaction-level analysis of NYSE stocks[END_REF], [START_REF] Avellaneda | High-frequency trading in a limit order book[END_REF], [START_REF] Wyart | Relation between bid-ask spread, impact and volatility in order-driven markets[END_REF] and [START_REF] Dayri | Large tick assets: implicit spread and optimal tick size[END_REF] for more details about market making and the relation between spread, volatility and inventory risk.

Q ±2 :
The intensity is now approximately a decreasing function of the queue size. This interesting result probably reveals a quite common strategy used in practice: posting orders at the second limit when the corresponding queue size is small to seize priority. More details on this strategy are given in Section 2.4.2.

Q ±3 : The intensity function shows similar properties to that at the second limit.

• Limit order cancellation:

Q ±1 :
The rate of order cancellation is an increasing concave function for q ±1 between 0 and 25, and becomes flat/slightly decreasing for larger values. This result is in contrast to the classical way to model this flow, where one often considers a linearly increasing cancellation rate, see for example [START_REF] Cont | A stochastic model for order book dynamics[END_REF]. On this first in first out market, the priority value, that is the advantage of a limit order compared with another limit order standing at the rear of the same queue, can be one of the reasons for this behavior. Indeed, the priority value is an increasing function of the queue size and orders having a high priority value are less likely to be canceled.

Q ±2 :
The rate of order cancellation attains more rapidly its asymptotic value, which is lower than for Q ±1 . Compared to the first limit case, market participants at the second limit have even stronger intention not to cancel their orders when the queue size increases. This is probably due to the fact that these orders are less exposed to short term market trends than those posted at Q ±1 (since they are covered by the volume standing at Q ±1 and their price level is farther away from the reference price).

Q ±3 : The priority value is smaller at the third limit since it takes longer time for Q ±3 to become the best quote if it does. The rate of order cancellation increases almost linearly for queue sizes larger than 3 AES 3 . We also find a quite large cancellation rate when the queue size is equal to one, which shows that market participants cancel their orders more quickly when they find themselves alone in the queue.

• Market orders:

Q ±1 :
The rate decreases exponentially with the available volume at Q ±1 . This phenomena is easily explained by market participants "rushing for liquidity" when liquidity is rare, and "waiting for better price" when liquidity is abundant.

Q ±2 :
In practice, market orders can arrive at Q ±2 only if Q ±1 = 0 (that is when Q ±2 is the best offer queue). The shape of the intensity is very similar to the one obtained in the case of Q ±1 . The values are of course much smaller.

Q ±3 : In some rare cases, one can still find some market orders arriving at Q ±3 (market orders occurring when the spread is large). The intensity function remains exponentially decreasing.

Asymptotic behavior under Model I

The invariant distribution of the LOB can be computed explicitly in Model I. We denote by π i the stationary distribution of the limit Q i , and define the arrival/departure ratio vector ρ i by

ρ i (n) = λ L i (n) (λ C i (n + 1) + λ M i (n + 1))
.

Then the following result for the invariant distribution is easily obtained, see for example [START_REF] Gross | Fundamentals of queuing theory[END_REF]:

π i (n) = π i (0) n j =1 ρ i ( j -1) π i (0) = 1 + ∞ n=1 n j =1 ρ i ( j -1) -1 .
Hence the long term behavior of the LOB is completely determined by ρ. This implies that two assets can have very different flow dynamics, but still the same invariant distribution provided that their arrival/departure ratios are the same.

We now compare the asymptotic results of the model with the empirical distributions observed at Q ±1 , Q ±2 and Q ±3 . To compute these empirical laws, we use a sampling frequency of 30 seconds (every 30 seconds, we look at the LOB and record its state)7 . The results are gathered in Figure I.3, as well as the invariant distributions from a Poisson model (constant limit/market order arrival rate, linear cancellation rate, parameters estimated from the same dataset).

One can see that the invariant distributions approximate very well the empirical distributions of the LOB. This shows that in order to explain the shape of the LOB, such mean-field type approach, where the LOB profile arises from interactions between the average behaviors of market participants, can be very relevant.

Model II: Dependent case

We now present some extensions of Model I. We assume here that buy/sell market orders consume volume at the best quote limits, defined as the first non empty ask/bid queue. Thus, we consider a buy market order process with intensity λ M bu y and a sell market order process with , q ±2 , q ±3 , France Telecom intensity λ M sel l . The limit order, cancellation, and market order arrival processes are assumed to be independent conditional on the LOB state. So we can write f i (q) and g i (q) in the following form:

f i (q) = λ L i (q) g i (q) = λ C i (q) + λ M bu y (q)1 best ask(q)=i , if i > 0 g i (q) = λ C i (q) + λ M sel l (q)1 best bi d (q)=i , if i < 0.
As for Model I, we consider some bid-ask symmetry, that is, for q = [q -3 , q -2 , q -1 , q 1 , q 2 , q 3 ], q = [q 3 , q 2 , q 1 , q -1 , q -2 , q -3 ] and i = 1, 2, 3, (q ) .

λ L i (q) = λ L -i (q ), λ M i (q) = λ M -i (q ) and λ M bu y (q) = λ M sel l

Model II a : Two sets of dependent queues

Institutional traders and brokers tend to place most of their limit orders at best limits, while many market makers, arbitragers and other high frequency traders stand also in queues beyond these best limits. This suggests for example that the dynamics at Q ±2 may not only depend on q ±2 , but also on whether or not Q ±1 is empty. We thus propose to use the following intensity functions for the queue Q ±2 : in this model, λ L ±2 and λ C ±2 are functions of q ±2 and 1 q ±1 >0 . Intensities at Q i , i = ±2 remain functions of q i only. For large tick assets, the probability that Q ±i , i ≥ 3 is the best limit is negligible. It is thus reasonable to also assume that market orders are only sent to Q ±1 and Q ±2 . This enables us to keep the independence property between Q ±3 and (Q ±1 ,Q ±2 ). When q ±1 > 0, the market order intensity λ M bu y/sel l is assumed to be a function of q ±1 ; when q ±1 = 0, it is a function of q ±2 only.

Model II a : Empirical study

In this empirical study, our goal is to understand how market participants make trading decisions at Q ±2 in two different situations: q ±1 = 0 and q ±1 > 0. Since we are now studying a twodimensional problem, the data recording process is slightly different. In particular, for (Q 1 ,Q 2 ), it goes as follows: we record the waiting times ∆t i (ω) between events that happen at Q 1 or Q 2 , the type of event T (ω) and the two queue sizes (q 1 (ω), q 2 (ω)) before the event. The maximum • Limit order insertion: Both curves are decreasing functions of the queue size. In the first case (q ±1 = 0), the limit order insertion intensity reaches very rapidly its asymptotic value. The relatively high value observed for q ±2 = 0 is probably due to the fact that for large tick assets, market makers rarely allow for spreads larger than 3 ticks. In the second case (q ±1 > 0), the intensity continues to go down to a much lower value. This is likely to be related to the arbitrage strategy introduced in Section 2.3.2: post passive orders at a non-best limit when its size is small, wait for this limit to eventually become the best limit and then gain the profit from having the priority value. For example, when the considered limit becomes the best one, one can decide to stay in the queue if its size is large enough to cover the risk of short term market trend, or to cancel the orders if the queue size is too small.

• Limit order cancellation: The cancellation rate is higher when q ±1 = 0. This can be related to the concentration of the trading activity at best limits. When q ±1 > 0, the cancellation rate is quite large when q ±2 = 1, as it is the case at Q ±3 (see Section 2.3.2).

• Market orders: No market order can arrive at Q ±2 when there are still limit orders at Q ±1 (cross limits large market orders that consume several limits are treated as several market orders that arrive sequentially at those limits within a very short time period). The market order arrival rate when Q ±2 is the best limit is not very different from that at Q ±1 , but shows a rather unexpected increasing trend when the queue size becomes larger than 5 AES 2 .

Figure I.5: Model II a : joint distribution of q 1 , q 2 , France Telecom

Model II a : Asymptotic behavior

Model II a belongs to a special class of Markov processes, called quasi birth and death processes (QBD). Their asymptotic behavior can be studied by the matrix geometric method. Definitions of QBD processes and explanations about the matrix geometric method can be found in appendix.

In Figure I.5, we show the theoretical joint distribution of (q 1 , q 2 ) for the stock France Telecom and compare it with the joint distribution estimated from empirical data. Here also, we see that the theoretical results provide a very satisfying approximation.

Model II b : Modeling bid-ask dependences

We now study the interactions between the bid queues and the ask queues. Let Q 0 , Q -, Q, Q + be four marks which represent in the following ranges of values for the queue sizes. Let m and l be two integers. We define the function S m,l (x):

S m,l (x) = Q 0 if x = 0 S m,l (x) = Q -if 0 < x ≤ m S m,l (x) = Q if m < x ≤ l S m,l (x) = Q + if x > l .
This function associates to a queue size x four possible ranges: empty: x = 0, small: x ∈ (0, m], usual: x ∈ (m, l ] and large: x ∈ (l , +∞). We set m as the 33% lower quantile and l as the 33% upper quantile of q ±1 (conditional on positive values). In this model, market participants at Q ±1 adjust their behavior not only according to the target queue size, but also to the size of the opposite queue. The rates λ L ±1 and λ C ±1 are therefore modeled as functions of q ±1 and S m,l (q ∓1 ). As in Model II a , we suppose that market orders consume volume at the best limits and are only sent to Q ±1 and Q ±2 . When q ±1 > 0, the market order intensity λ M bu y/sel l is assumed to be a function of q ±1 and S m,l (q ∓1 ). Regime switching at Q ±2 is kept in this model: λ L ±2 , λ C ±2 are assumed to be functions of 1 q ±1 >0 and q ±2 , and when q ±1 = 0, the market order intensity λ M bu y/sel l is modeled as a function of q ±2 . Under these assumptions, the 2K -dimensional problem is reduced to the study of the 4dimensional continuous-time Markov jump process (Q Queue Size (per average event size) Intensity (num per second) First limit, limit order insertion q(-1) = 0 0<q(-1)<=4 4 < q(-1) <= 9 q(-1) > 9 Queue Size (per average event size) Intensity (num per second) First limit, limit order cancellation q(-1) = 0 0<q(-1)<=4 4 < q(-1) <= 9 q(-1) > 9 First limit, market order insertion q(-1) = 0 0<q(-1)<=4 4 < q(-1) <= 9 q(-1) > 9

-2 ,Q -1 ,Q 1 ,Q 2 ). One important feature
Figure I.6: Intensities at Q 1 as functions of S m,l (q -1 ) and q 1 , France Telecom of this model is that the queues Q ±2 have no influence on the dynamics at Q ±1 . Therefore, we only need to study the 3-dimensional process

(Q -1 ,Q 1 ,Q 2 ) (or even the 2-dimensional process (Q -1 ,Q 1 )
if one is only interested in the dynamics at Q ±1 . Remark also that other choices for the specification of the intensity functions at Q ±1 are possible. For example, one can consider them as functions of the first level bid/ask imbalance, defined as q 1 -q -1 q 1 +q -1 , or simply as functions of the spread size.

Model II b : Empirical study

We focus here on the estimation of the intensity functions at Q ±1 . We consider the departure flow intensities λ C ±1 (q ±1 , S m,l (q ∓1 )) and λ M bu y/sel l (q ±1 , S m,l (q ∓1 )), and the arrival flow intensities λ L ±1 (q ±1 , S m,l (q ∓1 )). Using again the symmetry property of the LOB, we take λ L (x, y). We record the waiting times ∆t (ω) between events that happen at Q 1 or Q -1 , the types of event T (ω) and the two queue sizes (q 1 (ω), q -1 (ω)) before the event. Then we estimate these intensity functions using the maximum likelihood method. The results are shown in Figure I.6 (m = 4 AES 1 , l = 9 AES 1 )8 . Some remarks are in order:

1 (x, y) = λ L -1 (x, y), λ C 1 (x, y) = λ C -1 (x, y) and λ M sel l (x, y) = λ M bu y
• Limit order insertion: The limit order insertion rate is a decreasing function of the opposite queue size. In particular, we see that when the opposite queue is empty (pink curve), it is significantly larger. Indeed, in that case, the "efficient" price is likely to be closer to the opposite side. Therefore limit orders at the non empty first limit are likely to be profitable.

• Limit order cancellation: The cancellation rates for different ranges of Q -1 are similar in their forms but have different asymptotic values. This rate is not surprisingly a decreasing function of the liquidity level on the opposite side. Indeed, when this level becomes low, many market participants cancel their limit orders and send market orders since the market is likely to move in an unfavorable direction.

• Market orders: We see that when the liquidity available on the opposite side is abundant, more market orders are sent. Indeed, in that case, transactions at the target queue are : joint distribution of q -1 , q 1 , France Telecom relatively cheap as its price level is temporarily closer to the efficient price. In the special situation q -1 = 0, the price level at Q 1 can seem relatively attractive since it is much closer to the reference price than the opposite best price, which is in that case 2 ticks away from it. This explains why the market order intensity is larger when the opposite queue is empty than when its size is small. The difference between the two graphs comes from the relatively high probabilities of states of the form (x, y) with x and y both small in empirical data, which are somehow replaced by states of the form (x, 0) or (0, y) in the model. Indeed, in practice, a situation where one of the first queue is empty is not likely to remain long since it often leads to a reference price change. This effect is not taken into account in Model II b where the reference price is constant, but will be investigated in Model III in Section 3.1. We anticipate here by giving in Figure I.8 the joint distribution obtained when suitable moves of the reference price are added within the framework of Model II b (following the approach of Model III in Section 3.1). We now find that the simulated density becomes very close to the empirical one.

Model

Example of application: Probability of execution

The preceding models can be used to compute short term predictions about several important LOB related quantities. One relevant example is the probability of executing an order before the midprice moves. Suppose that at time t = 0, both Q 1 and Q -1 are not empty. Then a trader (called A) submits a buy limit order at Q -1 of size n 0 and waits in the queue until either the order is executed or the opposite queue Q 1 is totally depleted. The probability of execution can be computed in all of the three preceding models, using Monte-Carlo simulations.

There are two types of orders at Q -1 : orders placed before t = 0, thus having higher priority compared with the order of trader A, and orders placed after t = 0, having lower priority. When a market order arrives at Q -1 , the limit order with the highest priority is executed. Hence trader A's order starts being executed only when all orders placed at Q -1 before t = 0 have been 3. The queue-reactive model: a time consistent model with stochastic LOB and dynamic reference price Figure I.8: Model III: joint distribution of q -1 , q 1 , France Telecom either canceled or executed. When a cancellation event happens at Q -1 , the precise order being canceled is not clearly defined in our models. So, we need to make two additional assumptions for the cancellation process.

Assumption 18. When a cancellation event occurs at Q -1 , orders at Q -1 have the same probability of being canceled (except for the limit order submitted by trader A, which is never canceled).

Assumption 19. The cancellation intensity at

Q -1 is supposed to be equal to λ C 1 (q -1 ) q -1 -n 0 q -1 instead of λ C
1 (q -1 ), since the order placed by trader A is never canceled.

Orders with lower priority are actually more likely to be canceled, see [START_REF] Gareche | A Fokker-Planck description for the queue dynamics of large tick stocks[END_REF]. However, in order to investigate precisely this feature, we would need more detailed market data keeping records of the identifiers of the submitted and canceled orders. As a result, execution probabilities might be slightly overestimated using Assumptions 18 and 19. Simulation results (for n 0 = 1) are shown in Figure I.9, together with the predictions associated to a Poisson model that assumes a linearly increasing cancellation rate. We see that our three models give fairly similar execution probabilities, while the Poisson model clearly overestimates them.

The queue-reactive model: a time consistent model with stochastic LOB and dynamic reference price

We now wish to obtain a model which is relevant on the whole period of interest and provides useful applications.

Model III:

The queue-reactive model

Building the model

Let δ denote the tick value. We assume here that p r e f changes with some probability θ when some event modifies the midprice p mi d . More precisely, when p mi d increases/decreases9 , p r e f • The insertion of a buy limit order within the bid-ask spread while Q 1 is empty at the moment of this insertion, or the insertion of a sell limit order within the bid-ask spread while Q -1 is empty at the moment of this insertion.

• A cancellation of the last limit order at one of the best offer queues.

• A market order that consumes the last limit order at one of the best offer queues.

When p r e f changes, the value of q i switches immediately to the value of one of its neighbors (right if p r e f increases, left if it decreases). Thus, q ±1 becomes zero when p r e f decreases/increases. Recall that we keep records of the LOB up to the third limit. Consequently, the value for q ±3 when p r e f increases/decreases is drawn from its invariant measure. Note that the queue switching process must be handled very carefully: the average event sizes are not the same for different queues. So, when q i becomes q j , its new value should be re-normalized by the ratio between the two average event sizes at Q i and Q j .

To possibly incorporate external information, we moreover assume that with probability θ r ei ni t , the LOB state is redrawn from its invariant distribution around the new reference price when p r e f changes. The parameter θ r ei ni t can be understood as the percentage of price changes due to exogenous information. In this case, we consider that market participants readjust very quickly their order flows around the new reference price, as if a new state of the LOB was drawn from its invariant distribution. A similar approach has been used in [START_REF] Cont | Price dynamics in a Markovian limit order market[END_REF] in a model for best bid and best ask queues, in which θ r ei ni t is set to 1. Under these assumptions, the market dynamics is now modeled by a (2K + 1)-dimensional Markov process: X (t ) := (X (t ), p r e f (t )), in the countable state space Ω = N 2K × δN, where X (t ) = (q -K (t ), ..., q -1 (t ), q 1 (t ), ..., q K (t )) represents the available volumes at different limits.

In the sequel, Model I is used to describe the LOB dynamics during periods when p r e f is constant (very similar results are obtained in simulations using Model II a or II b ). The p r e f change probability θ and the LOB reinitialization probability θ r ei ni t are calibrated using the 10 

η = N c 2N a ,
where N c is the number of continuations of the estimated p r e f on the interval of interest (that is the number of consecutive moves in the same direction) and N a is the number of alternations (that is the number of consecutive moves in opposite directions) 10 . Indeed, the microstructure of large tick assets is well summarized by the parameter η, see [START_REF] Robert | A new approach for the dynamics of ultra-highfrequency data: the model with uncertainty zones[END_REF] and [START_REF] Dayri | Large tick assets: implicit spread and optimal tick size[END_REF] and the volatility is of course one of the most important low frequency statistics. In Figure I.10, we show the surfaces of the 10 min volatility and η for different values of θ and θ r ei ni t .

About the maximal mechanical volatility

Let us comment now the particular case where we take θ r ei ni t = 0. In such situation, Model III becomes a "purely order book driven model" since the price fluctuations are completely generated by the LOB dynamics. Our simulations show that under this setting, the maximal attainable volatility level (when θ = 1), which we call maximal mechanical volatility, is much lower than the empirical volatility (5 bps compared with 14 bps for the stock France Telecom). This suggests that endogenous LOB dynamics alone may not be enough for reproducing the market volatility. A closer look at these results shows that the model approximates actually quite well the average frequency of price changes, and that the small value of the mechanical volatility is mainly due to the strong mean reverting behavior of the price in this purely order book driven model. This is because of the often reversed bid-ask imbalance immediately after a change of p r e f . In Figure I.10, we can see that the mean reversion ratio η is equal to 0.08 when θ = 1, θ r ei ni t = 0, which is much smaller than the empirical ratio 0.39.

Example of application: Order placement analysis

We now show how the queue-reactive model can be used in the context of optimal trading. In the general framework of optimal execution, the trading horizon is split into small slices (typically 5-10 minutes) and an algorithm of execution determines the volume to be executed in each slice. This problem, often called "order scheduling problem", has been widely studied in the literature, see [START_REF] Bertsimas | Optimal control of execution costs for portfolios[END_REF]; [START_REF] Almgren | Optimal execution of portfolio transactions[END_REF]; Bouchard, Dang, and [START_REF] Bouchard | Optimal control of trading algorithms: a general impulse control approach[END_REF] for representative examples on this topic. In practice, another optimization issue, the "order placement problem", arises naturally once the order scheduling problem has been solved: how should the algorithm place orders to execute the target volume?

This second optimization problem can be seen as the microstructural version of the first one. However, it is much more difficult to solve. Indeed, the price dynamics can no longer be approximated by a Brownian motion at these (ultra) high frequency scales. Moreover, the queue priority plays an important role as well as other microstructural features of the asset such as the tick size, the state of the LOB and the trading speed. This in particular implies that execution strategies based on limit or market orders can lead to very different outcomes. Some papers investigate the consequences of using different types of order, see [START_REF] Harris | Market vs. limit orders: the SuperDOT evidence on order submission strategy[END_REF], while others aim at finding the best position to place limit orders, see Laruelle, [START_REF] Laruelle | Optimal posting price of limit orders: learning by trading[END_REF]. However, in practice, order placement tactics are usually more complex than the ones considered in the academic literature. For example, traders can hide their trading intentions by splitting furthermore the target volume within each slice. Also, they may start passively, sending limit orders, and then switch to market orders when some market conditions change or a stopping time criteria is met. Very few quantitative tools are available for the analysis of sophisticated tactics and one often needs to rely on so-called market replayers, in which the number of simulations is limited by that of the available trading days in the historical data. Moreover, the market impact, that is the average price drift due to our own trading between the beginning of the execution and a later time, is often neglected. In contrast, our framework is unlimited in number of simulations and is both relevant and easy to use in order to study market impact profiles and execution costs of complex placement tactics.

We write n tot al for the total quantity to execute and M for the number of slices. An order scheduling strategy gives the target quantity to be executed in each slice, denoted by n i (n i ≥ 0 and M i =1 n i = n tot al ). An order placement tactic can be seen as a predefined procedure of order management, ensuring the execution of the target quantity within the slice. Here, as illustration examples, we present two simple tactics, denoted by T1 and T2. In the i -th slice, both tactics post a limit order of size n i at the best offer queue at the beginning of the period, and send a market order with all the remaining quantity to complete the execution of the target volume at the end time of the slice. In between:

• T1 (Fire and forget): When p mi d changes, cancel the limit order and send a market order at the opposite side with all the remaining volume if any.

• T2 (Pegging to the best): When the best offer price changes or our order is the only remaining order at the best offer limit, cancel the order and repost all the remaining volume at the newly revealed best offer queue.

Since an order placement tactic is often specifically designed for a given order scheduling strategy, comparisons between two tactics should take into account the associated scheduling 3. The queue-reactive model: a time consistent model with stochastic LOB and dynamic reference price strategy, together with the target benchmark11 . Other parameters can also have influence when comparing two tactics, such as the total quantity to execute n tot al and the number of slices M .

To simplify our analysis, we simulate a buy order of size n tot al = 60 AES 1 , with M = 20 and the duration of each slice is fixed to 10 minutes (a total trading period of 3h20). We focus on two benchmarks: the VWAP on the total period (volume weighted average transaction price) and the arrival price S 0 (the midprice when the execution algorithm starts). Moreover, two types of order scheduling strategies, denoted by S1 and S2, are considered to partly reflect the diversity of optimal trading schemes:

• S1: A linear scheduling (n i = n tot al /M ), used for the VWAP benchmark.

• S2: An exponential scheduling n i = n tot al (e -(i -1)/4e -i /4 ), used for the benchmark S 0 .

Finally, note that Assumptions 18 and 19 are in force for the order cancellation processes.

Tactic performance analysis

The performance of an execution algorithm is often measured by its slippage, defined (for a buy order) by Slippage = P benchmar k -P exec P benchmar k .

To understand the effects of the order placement tactic on the execution's slippage, we define the theoretical scheduling slippage by:

P t heo exec = M i =1 n i VWAP i
Slippage t heo = P benchmar k -P t heo exec P benchmar k ,

where VWAP i denotes the volume weighted average transaction price of the i -th slice. Indeed, VWAP i is often considered as a simple proxy for the execution price in the slice when one focuses on the scheduling algorithm. Hence, Slippage t heo essentially measures the quality of the scheduling strategy and neglects the randomness in execution prices due to the order placement tactic12 . Note that here a market impact component is included in the computation of the theoretical scheduling slippage. This is because the value of VWAP i in each slice is obviously impacted by our execution.

We launched 2000 simulations for each couple of (S1/S2, T1/T2). The intensity functions estimated for the stock France Telecom are used in these simulations, as well as the two parameters θ = 0.7 and θ r ei ni t = 0.85 calibrated in Section 3.1. Furthermore, we use a standard kernel smoothing method when estimating the probability density functions of Slippage and forget") when being coupled with a linear scheduling strategy with VWAP benchmark, while T1 slightly outperforms T2 when an exponential scheduling strategy with arrival price benchmark is considered. In our setting, the limit orders change the queue sizes and therefore modify the behaviors of the order flows. Consequently they generate market impact. By constantly following the best offer queue until the total volume is filled, T2 achieves on average a higher passive execution rate (defined as the volume passively executed13 divided by the total executed volume). Thus, in each slice, it often obtains a better price than that of a more market orders based tactic. However, at the same time, it creates a larger impact than T1 since the order stays longer in the queues. This explains why the theoretical scheduling slippage of T2 is worse than that of T1 for an execution with arrival price benchmark using an exponential scheduling strategy.

Market impact profiles

We now study the market impact profiles of these two tactics. Recall that an order placement tactic has two parameters: the slice duration T and the quantity to execute n. In the following experiments, T is set to 10 minutes, and the value of n varies from 1 to 60 AES 1 . We denote by MI i (t , n) the market impact at time t of Tactic i with target quantity n, defined by: MI

i (t , n) = E[ S t -S 0
S 0 ], with S t the midprice at time t . We launched 2000 simulations for each value of n, t in the ranges 1-60 AES 1 and 1-600 seconds. Impact profiles are given in Figure I.12.

In agreement with the celebrated "square-root law", see [START_REF] Gatheral | No-dynamic-arbitrage and market impact[END_REF]; Toth, Lemperiere, Deremble, De Lataillade, Kockelkoren, and Bouchaud (2011a); Farmer, Gerig, Lillo, and Waelbroeck (2013), the market impact curves are concave both in time and volume. One can also see that the impact of T1 is quite instantaneous and depends essentially on the target quantity n, while the impact of T2 is a progressive process, depending both on the target quantity n and the time t . Remark that T2 seems suitable when dealing with small orders since its market impact is small and it has a higher passive execution rate than T1. If one needs to trade larger orders, T1 becomes probably more relevant since the cost of market impact is likely to outweigh the benefit from passive execution of T2. Finally, note that in our Markovian framework, no significant price relaxation (that is the fact that on average, after the completion of the execution of a buy 

Conclusion and perspectives

In this work, we have modeled market participants intelligence through their average behaviors towards various states of the LOB. This enabled us to analyze the different order flows and to design a suitable market simulator for practitioners, allowing notably to investigate the transaction costs of complex trading strategies. To our knowledge, our model is the first one where such pre-trade cost analysis is possible in a simple and efficient way.

Another important public information, the historical order flow, is not considered in this approach. Market order flows have been shown to be autocorrelated in several empirical studies, see for example [START_REF] Toth | Why is order flow so persistent?[END_REF]. Thus, adding such feature in our framework would probably be relevant. Another possible direction for future research would be to explain the shape of the estimated intensity functions in a more sophisticated way. For example, it would be interesting to design some agent based model where these repetitive patterns of the LOB dynamics would be reproduced, providing an even better understanding of the nature of these intensity curves.

Appendix

Proof of Theorem 1

Proof. For some z > 1, set

V (q) = K j =-K , j =0 z |q j -C bound | + .
For any q ∈ Ω, we have:

QV (q) = p =q Q q,p [V (p) -V (q)] = K i =-K ,i =0 [ f i (q)(z |q i +1-C bound | + -z |q i -C bound | + ) + g i (q)(z |q i -1-C bound | + -z |q i -C bound | + )] = K i =-K ,i =0 [ f i (q)1 q i ≥C bound z |q i -C bound | + (z -1) + g i (q)1 q i ≥C bound +1 z |q i -C bound | + ( 1 z -1)] = (z -1) K i =-K ,i =0 [ f i (q)1 q i ≥C bound - g i (q)1 q i ≥C bound +1 z ]z |q i -C bound | + = (z -1) i :q i =C bound f i (q) + (z -1) i :q i >C bound [ f i (q) - g i (q) z ]z q i -C bound . (I.1)
Under Assumption 16 and 17, we can find a z sufficiently close to 1 such that, if q i > C bound ,

f i (q) - g i (q) z < z -1 (-r + H (z -1)) = -r < 0.
So, from Equation (I.1), we have

QV (q) ≤ (z -1)H -(z -1) i :q i >C bound r z q i -C bound ≤ -(z -1)r i z |q i -C bound | + + (z -1)H + 2(z -1)r K ≤ -(z -1)r V (q) + (z -1)[H + 2r K z].
Thus X (t ) is V-uniformly ergodic. Then using Theorem 4.2 in [START_REF] Meyn | Stability of Markovian processes III: Foster-Lyapunov criteria for continuous-time processes[END_REF], X (t ) is Harris positive recurrent and has a finite invariant measure. Furthermore, by Theorem 3.6.2 in Norris (1998), the process X (t ) converges to its equilibrium and is therefore ergodic.

Computation of confidence intervals

When the queues are independent, by the central limit theorem, we have, with asymptotic probability 95% (we note pi

L (n) = #{T (ω)∈E + ,q i (ω)=n} #{q i (ω)=n}
):

Λ i (n) ∈ [ Λi (n) - 1.96 Λi (n) #{q i (ω) = n} , Λi (n) + 1.96 Λi (n) #{q i (ω) = n} ] λ L i (n) Λ i (n) ∈ [ pi L (n) - 1.96 pi L (n)(1 -pi L (n)) #{q i (ω) = n} , pi L (n) + 1.96 pi L (n)(1 -pi L (n)) #{q i (ω) = n} ].
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So, at least with probability 90%:

λ L i (n) ∈ [( Λi (n) - 1.96 Λi (n) #{q i (ω) = n} )( pi L (n) - 1.96 pi L (n)(1 -pi L (n)) #{q i (ω) = n} ) ( Λi (n) + 1.96 Λi (n) #{q i (ω) = n} )( pi L (n) + 1.96 pi L (n)(1 -pi L (n)) #{q i (ω) = n} )].
Similar results can be computed for λ C i and λ M i . The method used to compute confidence intervals of Model II a is quite similar. Confidence intervals are more difficult to compute in Model II b , and we use approximations by neglecting the possible intersections between the two sets:

{q 1 (ω) = n, S m,l (q -1 (ω)) ∈ s)} and {q -1 (ω) = n, S m,l (q 1 (ω)) ∈ s)}.

Quasi birth and death process

Definition 1. (Quasi birth and death process, from [START_REF] Latouche | Introduction to matrix analytic methods in stochastic modeling[END_REF]): A quasi birth and death (QBD) process is a bivariate Markov process with countable state space S = {(i , j ) : i ≥ 0, j = 0, 1, ..., m} where the first element i is called the level of the process, and the second element j is called the phase of the process. The parameter m can be either finite or infinite. The process is restricted in level jumps only to its nearest neighbors, meaning that the probability of jumping from level i directly to level l , l ≥ i + 2 or l ≤ i -2 is equal to zero.

We can easily see that the Markov process (q 1 , q 2 ) in Model II a is indeed a QBD process with countable phases. Its infinitesimal generator matrix is of the following form:

Q =      A (0) 1 A (0) 0 0 0 ... A (1) 2 A (1) 1 A (1) 0 0 ... 0 A (2) 2 A (2) 1 A (2) 0 ... ... ... ... ... ...     
, where the matrix A ( ) 0 encodes transitions from level q 1 = to level q 1 = + 1, matrix A ( ) 2 encodes transitions from level q 1 = to level q 1 = -1, and matrix A ( ) 1 encodes transitions within level q 1 = . More specifically, the element (i , j ) of A ( ) 0 is the transition rate from state (q 1 = , q 2 = i ) to state (q 1 = + 1, q 2 = j ), the element (i , j ) of A ( ) 2 is the transition rate from state (q 1 = , q 2 = i ) to state (q 1 = -1, q 2 = j ), and the element (i , j ) of A ( ) 1 is the transition rate from state (q 1 = , q 2 = i ) to state (q 1 = , q 2 = j ).

We write the intensity functions at Q 2 when q 1 = 0 with a ˜. For matrix A ( ) i , i = 0, 1, 2, we have:

A (k) 0 = λ L 1 (k)I , A (k) 2 = (λ C 1 (k) + λ M bu y (k))I , A (0) 1 =      -λ L 1 (0) -λL 2 (0) λL 2 (0) 0 ... λC 2 (1) + λM bu y (1) -λ L 1 (0) -λL 2 (1) -λC 2 (1) -λM bu y (1) λL 2 (1) ... 0 λC 2 (2) + λM bu y (2) -λ L 1 (0) -λL 2 (2) -λC 2 (2) -λM bu y (2) ... ... ... ... ...     
, and for k ≥ 1:

A (k) 1 =    -λ C 1 (k) -λ M bu y (k) -λ L 1 (k) -λ L 2 (0) λ L 2 (0) 0 ... λ C 2 (1) -λ C 1 (k) -λ M bu y (k) -λ L 1 (k) -λ L 2 (1) -λ C 2 (1) λ L 2 (1) ... ... ... ... ...    .
We define π i , j = P[q 1 = i , q 2 = j ] the stationary distribution of this QBD process, and:

π n = [π n,0 , π n,1 , ...] π = [π 0 , π 1 , ...].
We shall have:

πQ = 0 π1 = 1.
The dynamics of the two queues system (q 1 , q 2 ) is level dependent, meaning that its transition kernel depends on the value of q 1 . This makes the computation or approximation of its asymptotic behavior quite difficult. Thus we consider an additional assumption in order to turn (q 1 , q 2 ) into a so-called level independent QBD process. This is particularly interesting since it enables us to easily express the invariant measure in a matrix geometric form and to compute it numerically. The level independence property is defined by the fact that for i ≥ 1,

A (i ) 0 , A (i )
1 and A (i ) 2 do not depend on i and A (0) 0 = A (i ) 0 , see [START_REF] Latouche | Introduction to matrix analytic methods in stochastic modeling[END_REF]. Under the following assumption, this property is satisfied by (q 1 , q 2 ) in Model II a .

Assumption 20. (Independent Poisson flows at first limits)

There are two positive constants λ 1 and µ 1 , with λ 1 < µ 1 , such that for k ≥ 1:

λ C 1 (k) + λ M bu y (k) = µ 1 λ L 1 (k) = λ 1 λ L 1 (0) = λ 1 .
In practice, λ 1 and µ 1 are taken as the average values of the estimated intensity functions at first limits. Under this assumption, a quite simple numerical computation of the invariant distribution is possible. Generally speaking, QBD processes with finite phase (meaning that the value set of the second dimension, in our case q 2 , is finite) can be easily treated, see for example [START_REF] Latouche | Introduction to matrix analytic methods in stochastic modeling[END_REF]. In the infinite case, truncation methods must be applied to obtain approximate results. Thanks to the special structure of the generator in our model, one simple truncation method, called "first column augmentation by block", can be applied. Details of this truncation method can be found in [START_REF] Bean | Approximations to quasi-birth-and-death processes with infinite blocks[END_REF]. The mathlab toolbox SMCSolver, see [START_REF] Bini | Structured Markov chains solver: algorithms[END_REF], is used to compute the invariant measure.

Order Placement Tactic Analysis

In this section we gather our ideas on order placement tactic analysis related to Section 3.2. We use the following notations: M Number of slices. 

i := n * i -n i .
N i := i j =1 n i Cumulative target volume till the i -th slice.

N * i := i j =1 n *
i Cumulative executed volume till the i -th slice.

∆N i := N * i -N i .
p i Market VWAP (volumed weighted average price) in the i -th slice.

p * i Algorithm's VWAP in the i -th slice.

∆p i := p * i -p i .
σ i Price volatility in the i -th slice.

In practice, an execution algorithm gives answers to the two following question:

1. Order Scheduling: how to distribute the target volume across the trading horizon?

2. Order Placement: how to place individual orders to the LOB?

While most existing approaches for post-trade performance analysis focus on evaluating the overall performance, it is actually more reasonable to separate the order scheduling part from the order placement part: performance of order placement tactics depends mainly on ultra-high frequency factors such as the latency, the queue priority, bid-ask imbalance, which have generally little influences over the choice of the "optimal trading curve" determined by the order scheduling strategy. Moreover, the same order scheduling strategy can be coupled with different order placement tactics to build different execution algorithms. In such cases, it is important to be able to understand the pros and cons of each tactic so that an informed choice can be made to determine the best tactic under different market conditions.

Slippage Decomposition

To separate effects of order scheduling and order placement, we propose the following decomposition method (taking a VWAP benchmark (P benchmark = M i =1 v i V p i ) as an example, decomposition methods for other benchmark are similar): 

Slippage = M i =1 ( n * i n t ot al p * i -v i V p i ) P benchmark = M i =1 ( n i n t ot al -v i V )p i P benchmark + ( M i =1 δn i n t ot al p i + M i =1 n i n t ot al δp i + M i =1 δn i n t ot al δp i ) P benchmark = Slippage V + Slippage O Slippage V = M i =1 ( n i n t ot al -v i V )p i P benchmark Slippage O = M i =1 δn i n t

Volume Scheduling

Slippage V14 represents the quality of the volume scheduling strategy, its randomness comes from the randomness of the price process p i and the market volume curve m i . While traditional performance analysis uses often the deviation between the optimal trading curve and the realized market volume curve to quantify the VWAP execution's performance, we see clearly that here the quality of order scheduling depends not only on the difference between the vectors v i V and

m i
M , but also on the price process p i .

Order Placement

An order placement tactic can be seen as a (dynamic or statical) strategy of placing orders to markets with some target quantity and a limited trading horizon. Mathematically, it can be represented by three random processes: [ f (t ), p(t ), i (t )], where f (t ) denotes the fill rate (the executed quantity) of the tactic till time t , p(t ) denotes the tactic's relative performance with respect to the market till time t , and i (t ) denotes the market impact caused by the tactic. When other execution conditions, such as the target quantity and the duration, are equal, then we can further reduce the representation form of a placement tactic to three random variables [ f , p, i ]. The decomposition formula I.2 enables us to differentiate the contributions of three main aspects in an order placement tactics: tracking error, price improvement and the residual:

• Tracking Error: Tracking error measures the performance due to the deviation of the realized execution trading curve from the scheduled one. In the order placement analysis in Section 3.2, this term is equal to zero, as both tactics execute the exact amount assigned by the scheduling strategy in each trading slice. In practice, a good algorithm does not necessarily follows strictly the "optimal trading curve", since this often obliges the algorithm to send a lots of market orders, which is of course not the best way to obtain the liquidity. By allowing some deviations around the optimal curve, an algorithm can have a better performance (less aggressive orders + ability to auto-adjust its trading curve under different market conditions). Tracking error is closely linked with the fill rate ( f ) of the placement tactic.

• Price Improvement: Price improvement measures the placement tactic's ability of capturing cheap liquidities in the microscopic level. In general, placement tactics with higher aggressive ratio (defined as the percentage of quantities executed as market orders) have worse average price. Price improvement is closely linked with the relative performance p of the placement tactic.

• Residual: Residual measures the cross effects due to the dependencies between the fill rate f and the relative performance p.

Alcatel-Lucent

Results for the stock Alcatel-Lucent are presented in the following figures ( 

AES

AES i is defined as the average size of all events (including limit order insertion, cancellation and trades) at Q i , while ATS computes only the average size of all trade events. In Table I. Queue Size (per average event size) Intensity (num per second) First limit, limit order insertion q(-1) = 0 0<q(-1)<=2 2 < q(-1) <= 5 q(-1) > 5 Queue Size (per average event size) Intensity (num per second) First limit, limit order cancellation q(-1) = 0 0<q(-1)<=2 2 < q(-1) <= 5 q(-1) > 5 Queue Size (per average event size) Intensity (num per second) First limit, market order insertion q(-1) = 0 0<q(-1)<=2 2 < q(-1) <= 5 q(-1) > 5 Figure I.15: Intensities at Q 1 as functions of S m,l (q -1 ) and q 1 , Alcatel Lucent 

Introduction

Nowadays, most financial exchanges use a limit order book (LOB) mechanism. In these orderdriven markets, market participants send their buy and sell orders to a continuous-time double auction system, where orders are matched according to their price and time priority. Understanding the LOB dynamics is one of the fundamental issues in the field of market microstructure and leads to many interesting applications in optimal execution, design of electronic trading algorithms, minimization of market impact costs, short-term predictions and regulation. In the recent years, many works have been devoted to the description of order book dynamics. Order book models can be essentially divided into two types: economic models, where one focuses on the behaviors of individual agents and their optimal decisions, see for example [START_REF] Parlour | Price dynamics in limit order markets[END_REF], [START_REF] Foucault | Order flow composition and trading costs in a dynamic limit order market[END_REF] and [START_REF] Roşu | A dynamic model of the limit order book[END_REF]; statistical models, where the order flows are seen as random processes, see [START_REF] Smith | Statistical theory of the continuous double auction[END_REF], [START_REF] Cont | A stochastic model for order book dynamics[END_REF], [START_REF] Abergel | A mathematical approach to order book modelling[END_REF], [START_REF] Cont | Price dynamics in a Markovian limit order market[END_REF], [START_REF] Lakner | High frequency asymptotics for the limit order book[END_REF], Lachapelle, Lasry, [START_REF] Lachapelle | Efficiency of the price formation process in presence of high frequency participants: a mean field game analysis[END_REF], [START_REF] Bayer | A Functional Limit Theorem for Limit Order Books with State Dependent Price Dynamics[END_REF] and Abergel and Jedidi (2015). With the notable exception of Abergel and Jedidi (2015), where the authors consider the case of Hawkes-type dynamics, these models usually assume Poisson flows for the order arrival processes. Such assumption is mainly made for technical reasons, since it is well-known that it is not consistent with market data. In Huang, [START_REF] Huang | Simulating and analyzing order book data: The queue-reactive model[END_REF], the authors propose to replace the Poisson assumption by a state-dependent approach where the intensities of the flows depend on the state of the LOB. This model, called "Queue-reactive" model, provides new insights for the order book dynamics, such as market participants behaviors conditional on different states of the order book, the LOB's asymptotic form and the bid-ask spread distribution.

It is also a very relevant tool for practitioners in the perspective of transaction cost analysis of complex trading algorithms. In this paper, we aim at extending the Queue-reactive model to a more general framework, in which most of the existing statistical models can be included (up to minor modifications). Our goal is to give some theoretical results on the system's ergodicity as well as the asymptotic scaling limit of the price process.

In the LOB, price levels are discretized by a minimum price change unity called the tick value (denoted by α). Market participants can place their buy/sell orders at any level which is a multiple of the tick value and these orders will either stay in the LOB (a buy order with price lower than the current best ask price, or a sell order with price higher than the current best bid price, this type of orders being called "limit order"), or be matched with the existing orders in the LOB (this type of orders being called "market order"). The LOB, as its name suggests, is composed of all unmatched limit orders and can be seen as a (rough) approximation of the current microstructural supply and demand on the different price levels.

Current statistical models differ in their way of representing the LOB. In [START_REF] Cont | A stochastic model for order book dynamics[END_REF], the price grid is supposed to be finite (n mi n α, ..., n max α), and the LOB is represented by a n maxn mi n + 1 dimensional vector that records the buying/selling quantities at each of these price levels. In such representation, the different limits are indexed by their absolute price level. In practice, to cover the intra-day price range [p mi n , p max ], the dimension of the state space have to be at least p max -p mi n α + 11 , which is typically a very large number. Another way of representing the order book state is to use the relative indexing method. Following ideas from the Zero-intelligence model of [START_REF] Smith | Statistical theory of the continuous double auction[END_REF], [START_REF] Abergel | A mathematical approach to order book modelling[END_REF] propose to use the best bid and the best ask prices as two reference prices to index the limits. In that case, the LOB is made of the following elements: the two reference prices p best bi d and p best ask , and the limits around them which are two K dimensional vectors a (for the ask side) and b (for the bid side). The vector a = [a 1 , ..., a K ] records the limit sizes at the price levels [p best bi d + α, ..., p best bi d + K α], while the vector b = [b 1 , ..., b K ] records the limit sizes at the price levels [p best ask -α, ..., p best ask -K α]2 . In practice, observing a market depth of five ticks is usually considered enough for most trading purposes. Consequently, for a typical stock with spread size of order five ticks, the value of K should be generally of order 10 so that essential information from the LOB is captured. Thus, the use of these two reference prices reduces significantly the dimensionality of the state space. Note that in this representation, the index of a limit at a given price level is no longer constant. Therefore, appropriate boundary conditions must be defined to deal with price changes.

In this paper, we propose an original representation of the order book, using only one reference price which is not necessarily directly observable from the order book state. We view this reference price as sort of market consensus about the underlying "efficient" price used by market participants when making their trading decisions. We keep K limits on each side of the reference price and the LOB is fully described by a 2K + 1 dimensional vector, which is then modeled by a continuous-time Markov jump process. The use of this unique reference price gives us a lot of flexibility when modeling the order book. Since the reference price is no 1. Introduction longer directly determined by the order book state, we can differentiate two types of jumps in the Markov process: pure order book state jumps (jumps for which the reference price stays constant) and common jumps (jumps for which a reference price change is involved). For large tick assets3 , such decomposition is proved to be very relevant when studying the conditional dependences between the dynamics of the LOB and its state, see [START_REF] Huang | Simulating and analyzing order book data: The queue-reactive model[END_REF]. Moreover, in this framework, we are able to easily incorporate exogenous price movements into the order book dynamics. This can be simply done adding a reference price jump component which is independent of the order book state.

At the high frequency scale, the LOB state is one of the two public information that are accessible to traders and their automates (the other being the history of the order flows). Thus it plays a very important role in their trading decisions. In our framework , the LOB is assumed to be a continuous-time Markov jump process, and the influence of the LOB state on the incoming flows is modeled through a state-dependent infinitesimal generator matrix for the jump process. Indeed, in practice, traders essentially rely on information deduced from the current LOB state when deciding to send an order at a specific price level. Various simplifying assumptions on the information set used by traders can be considered in our framework in order to facilitate the empirical studies. The index of a limit, for example, is probably one of the most important elements in their decision process, as it gives the distance between the target price and the reference price. Influence of other variables, such as the target limit's size, its relative distance to the current best offer queues and the size of its opposite queue is studied in Huang, [START_REF] Huang | Simulating and analyzing order book data: The queue-reactive model[END_REF], and are shown to also have non-negligible effects on the dynamics of the order flows.

Under appropriate assumptions, the Queue-reactive model can be easily estimated using empirical data. It provides many interesting new insights on the origin of some micro-structural properties, such as the stylized empirical distribution of the LOB state. It has been shown in [START_REF] Bouchaud | Statistical properties of stock order books: empirical results and models[END_REF] that there exist some regularities in the order book's empirical form, that is the average value of the LOB state (a 2K dimensional vector in our model). From a theoretical point of view, these regularities are closely linked with the notion of ergodicity of the LOB system (the exact definition of ergodicity will be given in Section 3): Ergodicity ensures the convergence of the LOB state distribution towards an invariant probability measure. Thus the stylized form observed on market data might be explained by a law of large number type phenomenon for this invariant distribution. This hypothesis is supported by empirical studies in Huang, [START_REF] Huang | Simulating and analyzing order book data: The queue-reactive model[END_REF], in which the authors compare the theoretical asymptotic distributions in our model with empirical estimations, and show that they are very close. In Huang, [START_REF] Huang | Simulating and analyzing order book data: The queue-reactive model[END_REF], some assumptions are made to ensure the LOB system's ergodicity. In this paper, we want to generalize them in an extended framework where the volume of the orders is no longer constant and the influence of the order book state on the dynamics of the reference price may not be instantaneous.

Another important element in order book modeling is the asymptotic behavior of the price. Such analysis is very relevant as it provides useful insights on the price formation process, and links the dynamics at the microscopic level with macroscopic features of the asset, such as its volatility. We prove that in our framework, the rescaled reference price process converges to a Brownian motion. An expression for the macroscopic volatility in terms of the flow rates is derived using a functional central limit theorem together with the strong mixing property of the price increments, in the spirit of [START_REF] Abergel | A mathematical approach to order book modelling[END_REF]. The paper is organized as follows. In Section 2, we set up the general Markovian framework. Section 3 discusses the ergodicity properties of the model. The diffusive limit of the rescaled price process is stated in Section 4. Finally, in Section 5, we give some specific models which can be seen as particular cases of our framework. The technical proofs are gathered in an appendix.

A general Markovian framework

Representation of the order book

In our framework, the order book is made of two elements: the center position: a certain reference price (note that here the center position is not necessarily the mid price) and the shape of the book (the queue sizes around the reference price), see Figure II.1 for an example. The center position, denoted by p r e f ∈ {nα + 0.5α, n ∈ Z}4 , can be seen as the current consensus price level and is used to index the limits. We write Q ±i for the queue at the price level p r e f ± (i -0.5)α and denote its size by q ±i and its price by p i . Then the total order book's shape at time t is an infinite vector q(t ) = [..., q -k (t ), ...q -1 (t ), q 1 (t ), ..., q k (t ), ...], with q i ∈ Z, and |q i | is the number of orders at the limit Q i (q i < 0 if these orders are bid orders and q i > 0 if they are ask orders. Note that in such a representation, one can have q i ≥ 0 or q i < 0 for all i ). The LOB information at time t is therefore fully represented by X (t ) := (q(t ), p r e f (t )), t ≥ 0. To restrict the value of X (t ), we consider only K limits on each side, and thus have now q(t ) = [q -K (t ), ...q -1 (t ), q 1 (t ), ..., q K (t )] and X (t ) ∈ Z 2K × α(0.5 + Z).

The state space of q(t ) is actually smaller than Z 2K . More specifically, let us define

i best bi d (q) = max(-K -1, sup{i |q i < 0}) i best ask (q) = min(K + 1, inf{i |q i > 0}).

A general Markovian framework

The state space Ω of q(t ) is defined as the set of all q ∈ Z 2K , such that: for all i ∈ {-K , ..., K }, q i ≤ 0 if i ≤ i best bi d (q) and q i ≥ 0 if i ≥ i best ask (q).

Dynamics of the order book

In our general framework, we model the LOB vector X (t ) as a continuous-time Markov jump process, whose infinitesimal generator matrix Q will be given in Equation (II.4). We differentiate two types of jumps in the order book dynamics: pure order book state jumps (for which p r e f stays constant) and common jumps (for which a change in the value of p r e f is involved).

Pure order book state jump

There are three5 types of orders that interact directly with the order book and trigger pure order book state jumps:

• Limit orders: insertion of a new order in the order book (a buy order at a lower price than the best ask price, or a sell order at a higher price than the best bid price).

• Cancellation orders: cancellation of an already existing order in the order book.

• Market orders: consumption of available liquidity (a buy or sell order at the best available price).

In the seminal work of [START_REF] Smith | Statistical theory of the continuous double auction[END_REF], the arrival times of the above three types of orders at different price levels are assumed to be mutually independent and exponentially distributed. Furthermore, each order has unit size. In our approach, the size of the jumps, which represents the amount of volume inserted to/removed from the LOB for a given event, is random. Moreover, the arrival rate of a given jump is assumed to be function of the index of the target price, the current LOB state vector q(t ), the direction of the jump and its size. That is, for any q, q ∈ Ω (q = q ), p ∈ α(0.5 + Z), n ∈ N + and any e i = (a -K , ..., a i , ..., a K ) (a j = 0 for j = i and a i = 1), we have in cases where q + ne i ∈ Ω and qne i ∈ Ω:

Q (q,p),(q+ne i ,p) = f i (q, n) Q (q,p),(q-ne i ,p) = g i (q, n) Q(q,p),(q ,p) = 0, otherwise, (II.1)
where the f i and g i are 2K functions:

Ω × N + → R + .
Note that in (II.1), f i (q, n) and g i (q, n) have different meanings for different i and q. For example, when i ≥ i best ask , f i (q, n) represents the arrival rate of sell limit orders of size n, and g i (q, n) the sum of the rate of cancellations of size n and the arrival rate of market buy orders of size n.

When i ≤ i best bi d , the role of f i (q, n) and g i (q, n) are switched. Note also that q ± ne i is not always in the state space Ω even when q ∈ Ω. Thus some values of the functions f i and g i are not needed in Equation (II.1) and assumed to be equal to zero. Furthermore, so that there is no absorbing state, we assume

i n f i (q, n) + g i (q, n) > 0.

Common jumps

The reference price p r e f can be viewed as a consensus value on the "efficient" price and takes discretized values in α(0.5 + Z). In practice, this reference price is built based on two sets of information: the current state of the LOB and the historical order flows. We have in mind that p r e f moves in a Markovian manner, so its dynamics depends on the present information only, that is the current state of the LOB. In our framework, we restrict the price jump size to one tick at each time. We use two functions u, d : Ω → R + to describe respectively the rate of positive and negative jumps:

q ∈Ω Q (q,p),(q ,p+α) = u(q) q ∈Ω Q (q,p),(q ,p-α) = d (q) q ∈Ω Q (q,p),(q ,p±nα) = 0, for n ≥ 2. (II.2)
To understand Equation (II.2), let us first consider the following simple example where the LOB state information is summarized by the difference between the current value of p r e f and the mid price p mi d :

Example 1.

i mi d = (i best bi d + i best ask )/2, u(q) = θ 0 + θ 1 max(0, α(i mi d -0.5)) d (q) = θ 0 + θ 1 max(0, -α(i mi d + 0.5)),
with θ 0 ≥ 0 and θ 1 a positive constant representing the intensity of the adjustment of p r e f towards p mi d .

In the above example, we assume that the reference price jump rate depends on the deviation of the current value of p r e f from p mi d . Indeed, p mi d is often considered an approximation of the LOB center implied by its current state. We may also include other LOB information such as the available quantities at Q i best bi d and Q i best ask when defining u(q) and d (q). Such additional variables increase the complexity of our model but make it more realistic.

Remark 1. In the already mentioned Queue-reactive model, changes of p r e f are triggered by the order book events that modify p mi d , while in Equation (II.2), they are driven by the order book state. Although the Queue-reactive model cannot exactly be seen as a particular case of the framework presented in this paper (see Section 5), most of the theoretical results shown in Sections 3 and 4 still hold (with some minor modifications in some assumptions). In particular, one can prove the diffusive limit of the reference price in the Queue-reactive model applying almost the same method as that used here.

As soon as p r e f changes, the value of q i switches immediately to the value of one of its neighbors (right if p r e f increases, left if it decreases). As we keep only K limits on each side, two boundary distributions π -K and π K are introduced for generating the new queue sizes at Q -K (when p r e f decreases) and Q K (when p r e f increases). To possibly incorporate external information, we moreover assume that with probability θ r ei ni t , the LOB state vector q(t ) is redrawn from some distribution (π i nc if p r e f increases, π d ec if p r e f decreases) when p r e f changes. As shown in [START_REF] Huang | Simulating and analyzing order book data: The queue-reactive model[END_REF], models where price dynamics are 2. A general Markovian framework purely endogenous, driven by order flows only, are usually not able to reproduce some of the important macroscopic features of prices, such as the volatility. Thus the parameter θ r ei ni t can be understood as the percentage of price changes due to exogenous information, in which case market participants readjust very quickly their order flows around the new reference price, as if a new state of the LOB was drawn from its (invariant) distribution (ergodicity conditions are discussed in the next section).

For q ∈ Ω, we write q + = [q -K +1 , ..., q -1 , q 1 , ..., q K ], q -= [q -K , ..., q -1 , q 1 , ..., q K -1 ], [q + , l ] = [q -K +1 , ..., q -1 , q 1 , ..., q K , l ] and [l , q -] = [l , q -K , ..., q -1 , q 1 , ..., q K -1 ]. Under the above assumptions, we have for l ∈ Z and q, q , q ∈ Ω such that q + = q + and q -= q -:

Q (q,p),([q + ,l ],p+α) = (1 -θ r ei ni t )u(q)π K (l ) + θ r ei ni t u(q)π i nc ([q + , l ]) Q (q,p),(q ,p+α) = θ r ei ni t u(q)π i nc (q ) Q (q,p),([l ,q -],p-α) = (1 -θ r ei ni t )d (q)π -K (l ) + θ r ei ni t d (q)π d ec ([l , q -]) Q (q,p),(q ,p-α) = θ r ei ni t d (q)π d ec (q ).

(II.3)

The infinitesimal generator matrix of X (t ) Equations (II.1), (II.2) and (II.3) give a complete description of the infinitesimal generator matrix Q of the process X (t ), which is summarized in the following assumption.

Assumption 21. Let q, q , q , q ∈ Ω, p, p ∈ α(0.5 + Z), n ∈ N + , l ∈ Z be such that q + = q + and q -= q -. The process X (t ) is an irreducible Markov jump process with aperiodic embedded chain whose infinitesimal generator matrix Q is of the following form (with 2K functions f i , g i : Ω×N + → R + and two functions u, d : Ω → R + ) :

Q (q,p),(q+ne i ,p) = f i (q, n) Q (q,p),(q-ne i ,p) = g i (q, n) Q (q,p),([q + ,l ],p+α) = (1 -θ r ei ni t )u(q)π K (l ) + θ r ei ni t u(q)π i nc ([q + , l ]) Q (q,p),(q ,p+α) = θ r ei ni t u(q)π i nc (q ) Q (q,p),([l ,q -],p-α) = (1 -θ r ei ni t )d (q)π -K (l ) + θ r ei ni t d (q)π d ec ([l , q -]) Q (q,p),(q ,p-α) = θ r ei ni t d (q)π d ec (q )
Q (q,p),(q,p) = -( q, p)∈Ω×α(0.5+Z),( q, p) =(q,p) Q (q,p),( q, p) , Q (q,p),( q, p) = 0, otherwise.

(II.4)

Note that under Assumption (21), the dynamics of the process X (t ) is invariant under translations of the LOB center position: its infinitesimal matrix generator Q satisfies: Q (q 1 ,p 1 ),(q 2 ,p 1 +β) = Q (q 1 ,p 2 ),(q 2 ,p 2 +β) , for any q 1 , q 2 ∈ Ω, p 1 , p 2 ∈ α(0.5 + Z) and β ∈ αZ. One can also remark that in our framework, the order book state process q(t ) alone is also a continuous-time Markov jump process, whose ergodicity is discussed in the next section.

Comparison with existing models

The first major difference between our approach and the existing Markovian models in the literature is the introduction of state dependency in the order book dynamics. Most of the current order book models follow the "Zero-intelligence" framework, using Poisson flows for the processes of order arrivals. The Poisson assumption is clearly unrealistic, see for example the empirical results in Huang, [START_REF] Huang | Simulating and analyzing order book data: The queue-reactive model[END_REF]. In our framework, we propose to incorporate the strategic behaviors of market participants via a mean-field game approach, assuming their decisions depend on an underlying "efficient" price p r e f and on the LOB state vector q(t ). Note also that Equation (II.1) allows us to have jumps of random size in the order book's shape, while a constant jump size is often assumed in the other existing models.

We also introduce a new method of LOB representation using one unique reference price p r e f . Most models use the best bid and best ask prices as two reference prices for indexing the buy and sell limits. In such models, these reference prices are directly determined by the order book state. In particular, changes in the order book state are immediately carried on the values of these prices. In our framework, p r e f is not necessarily deduced from the order book state. Therefore, we can assume that changes in the order book state affect the value of p r e f with some delay rate (the functions u and d introduced in Equation (II.2)). Thanks to this original representation, we can naturally decompose the order book dynamics into two parts: a continuous-time multidimensional queuing system (Equation (I.1)) and the dynamics of its center, that is the reference price (Equations (II.2) and (II.3)). Compared with the Queue-reactive model introduced in Huang, [START_REF] Huang | Simulating and analyzing order book data: The queue-reactive model[END_REF], p r e f is no longer constrained within the bid-ask spread. This desirable feature gives us the possibility of separating the exogenous and endogenous parts in the price dynamics by choosing appropriate price jump rate functions u and d . For example, with the functions u and d of Example 1, one can interpret θ 0 as the exogenous part in the dynamics of p r e f and θ 1 as the intensity of the endogenous effects driving p r e f towards the current mid price level.

Ergodicity

In this section, we discuss ergodicity properties in our framework. To do so, we make some additional assumptions on the functions f i , g i , u and d . Let

P t (x, A) := P[Y (t ) ∈ A|Y (0) = x]
be the transition probability at time t of a continuous or discrete-time Markov process Y with state space Y . In this work, we say that the process Y is V-uniformly ergodic if there exists a coercive6 function V > 1, an invariant distribution π, r ∈ (0, 1) and R > ∞ such that for any x ∈ Y and t ∈ R + (or N + in discrete-time),

||P t (x, .) -π(.)|| V ≤ Rr t V (x), (II.5)
where we write ||.|| V for the V -norm of a signed measure, see [START_REF] Meyn | Stability of Markovian processes III: Foster-Lyapunov criteria for continuous-time processes[END_REF]Tweedie (1993, 2009). In continuous time, the main idea to prove such property is to design an appropriate Lyapunov function V : Y → (1, ∞), on which the following negative drift condition is satisfied for some 3. Ergodicity γ > 0 and B > 0:

QV (y) := y =y Q y y [V (y ) -V (y)] ≤ -γV (y) + B.
Then by Theorem 6.1 in [START_REF] Meyn | Stability of Markovian processes III: Foster-Lyapunov criteria for continuous-time processes[END_REF], the Markov process Y is non-explosive and V-uniformly ergodic. Furthermore, by Theorem 4.2 in [START_REF] Meyn | Stability of Markovian processes III: Foster-Lyapunov criteria for continuous-time processes[END_REF] it is positive Harris recurrent. Note that the same kind of method is used in [START_REF] Abergel | A mathematical approach to order book modelling[END_REF] in order to show ergodicity properties of Zero-intelligence models.

As mentioned in the introduction, the LOB's ergodicity implies here the existence of a unique invariant distribution for the state vector q. This is relevant for explaining the stylized empirical distribution of the LOB state. Mostly, as we will see in Section 4, the ergodicity analysis is the basis for proving the diffusive limit of the reference price process.

When p r e f stays constant

We first discuss the V-uniform ergodicity of the process q(t ) when assuming u(q) = d (q) = 0 in Equation (II.4). Recall that the unused values of f i (q, n) and g i (q, n) in the definition of the queue dynamics, that is when q ±ne i ∉ Ω, are set to zero. With the convention 0/0 = 0, we define

f * i (q) := n f i (q, n) g * i (q) := n g i (q, n) l i (q, n) := f i (q, n) f * i (q) k i (q, n) := g i (q, n) g * i (q) G f ,i ,q (z) := ∞ n=1 z n l i (q, n) G g ,i ,q (z) := ∞ n=1 z n k i (q, n).
Thus, when f * i (q) > 0 (resp. g * i (q) > 0), l i (q, .) (resp. k i (q, .)) is a probability measure on N + with moment-generating function G f ,i ,q (z) (resp. G g ,i ,q (z)). We make the four following assumptions.

Assumption 22. For any order book state q and any i ≥ i best ask , g i (q, n) = 0 for any n > q i and for any order book state q and any i ≤ i best bi d , f i (q, n) = 0 for any n > -q i . Assumption 23. There exists z * > 1 such that for any q and i , G f ,i ,q (z * ) < ∞ and G g ,i ,q (z * ) < ∞. Furthermore, there exists L > 0 such that for any i ,

lim z→1 + sup q [ f * i (q)G f ,i ,q (z)1 i >i best bi d + g * i (q)G g ,i ,q (z)1 i <i best ask ] < L.
Assumption 24. There exist r > 0 and U > 1 such that

lim z→1 + sup (q,i ):q i >U ,i ≥i best ask [ f * i (q) -g * i (q) 1 -G g ,i ,q (z -1 ) G f ,i ,q (z) -1 ] < -r lim z→1 + sup (q,i ):q i <-U ,i ≤i best bi d [g * i (q) -f * i (q) 1 -G f ,i ,q (z -1 ) G g ,i ,q (z) -1 ] < -r.
(II.6) Assumption 25. For any z > 1,

B f (z) := inf (q,i ):q i >U ,i ≥i best ask (G f ,i ,q (z) -1) > 0 B g (z) := inf (q,i ):q i <-U ,i ≤i best bi d (G g ,i ,q (z) -1) > 0.
To understand the practical meaning of these assumptions, let us consider the following example where the pure order book state jumps are assumed to have constant size equal to one. In such situation, the four assumptions above can be rewritten as follows and are much easier to interpret.

Example 2. LOB model with constant order size.

• For n ≥ 2, f i (q, n) = g i (q, n) = 0 for any q ∈ Ω.

• There exists L > 0 such that for any i ∈ {-K , ..., K } and q ∈ Ω,

f i (q, 1)1 i >i best bi d + g i (q, 1)1 i <i best ask < L.
• There exist r > 0 and U > 1 such that sup (q,i ):q i >U ,i ≥i best ask [ f i (q, 1)g i (q, 1)] < -r sup (q,i ):q i <-U ,i ≤i best bi d [g i (q, 1)f i (q, 1)] < -r.

Basically, Assumption 22 says that a bid/ask limit cannot become an ask/bid limit in a single queue update event, that is the queue size cannot revert its sign in a single jump7 . From Example 2, we see that Assumption 23 essentially states that the total intensity of the order insertion processes in the bid and ask side remains uniformly bounded with respect to the state of the LOB. Assumption 24, which is the most important for the system's ergodicity, forces the individual queue sizes |q i | to decrease when they become larger than a certain threshold. From these assumptions, we obtain the following theorem proved in appendix for the Markov process q(t ).

Theorem 1. When u = d = 0, under Assumptions 21,22,23,24 and 25, the continuous-time Markov jump process q(t ) is non-explosive, V-uniformly ergodic and positive Harris recurrent.

Consider now the embedded Markov chain q(n) defined by q(n) = q(J n ), where J n is the time of the n-th jump, and q(J n ) the state of the LOB after this event. The study of the embedded Markov chain is an important step in order to obtain the diffusivity of the price process in our setting. We write

a * i (q) = f * i (q) i [ f * i (q) + g * i (q)] , b * i (q) = g * i (q) i [ f * i (q) + g * i (q)]
,

for the proportions of queue size increases and decreases, and replace Assumption 24 by the following one.

Ergodicity

Assumption 26. There exist r > 0 and U > 1 such that

lim z→1 + sup (q,i ):q i >U ,i ≥i best ask [a * i (q) -b * i (q) 1 -G g ,i ,q (z -1 ) G f ,i ,q (z) -1 ] < -r lim z→1 + sup (q,i ):q i <-U ,i ≤i best bi d [b * i (q) -a * i (q) 1 -G f ,i ,q (z -1 ) G g ,i ,q (z) -1 ] < -r.
The following theorem is proved in appendix.

Theorem 2. When u = d = 0, under Assumptions 21, 22, 23, 25 and 26, the embedded discrete-time Markov chain q(n) is V-uniformly ergodic and positive Harris recurrent.

General case

We are now interested in the case where u and d are no longer fixed to 0. Recall that q(n) represents the state of the LOB after the n-th event and p r e f (n) is the reference price (the center of the LOB) after the n-th event. We thus consider here the process of reference price increments c(n) (since the reference price itself is of course not ergodic), defined as the reference price change at the n-th event:

c(n) = p r e f (n) -p r e f (n -1),
and the embedded chain

Y (n) = (q(n), c(n))
, n ∈ N, with c(0) an artificial starting value. The process Y (n) remains obviously Markovian. For some z > 1, let

V z ([q, c]) = K i =-K ,i =0 z |q i |-U .
We make two additional assumptions for the general case.

Assumption 27. There exist z > 1 and L π > 0 such that for

Q i nc , Q d ec , Q K , Q -K four random variables such that Q i nc ∼ π i nc , Q d ec ∼ π d ec , Q K ∼ π K and Q -K ∼ π -K : E[V z ([Q i nc , c])] + E[V z ([Q d ec , c])] + E[z |Q K |-U ] + E[z |Q -K |-U ] ≤ L π .
Assumption 28. There exists a finite set W ⊂ Ω such that the upper bound of the proportion of reference price jumps in any order book state q is smaller than one on Ω/W :

sup q∈Ω/W u(q) + d (q) i [ f * i (q) + g * i (q)] + u(q) + d (q) < 1.
Assumption 27 is technical and imposes some regularities on the four distributions π i nc , π d ec , π K and π -K . Assumption 28 ensures that a reference price change is not the only possible event except for a finite number of LOB states. Under these assumptions, we have the following theorem proved in appendix on the ergodicity of the embedded chain Y (n).

Theorem 3. Under Assumptions 21,22,23,25,26,27 and 28,the embedded 

discrete-time Markov chain Y (n) = (q(n), c(n)) is V-

Scaling limits

We are now interested in the scaling limit of the reference price process. Let J i be the time of the i -th jump of the process. Let

N (t ) = inf{n, J n ≤ t }
be the number of events until time t , with the convention inf{ } = 0. Let Z (n) be the cumulative price change until the n-th event, that is Z (0) = 0 and for n ≥ 1:

Z (n) = n i =1 c(i ).
We have

Z (N (t )) = p r e f (t ) -p r e f (0).
Thus it represents the reference price at time t recentered its starting value. We show in this section the diffusive behavior of Z (N (t )) as n tends to infinity.

Consider again the embedded chain Y (n) = (q(n), c(n)). From Theorem 3, Y (n) is V-uniformly ergodic towards an invariant distribution π * . We have the following theorem for the rescaled price process in event time

Ŝ(n) (t ) := Z ( nt ) n (π * is defined as the invariant distribution of the Markovian chain Y (n)).
Theorem 4. Under Assumptions 21,22,23,25,26,27 and 28,if 

E π * [c(0)] = 0, then the series σ 2 = E π * [c 2 0 ] + 2 ∞ n=1 E π * [c 0 c n ],
(II.7) converges absolutely, with π * the invariant distribution of (q(n), c(n)). Furthermore, if Y (0) ∼ π * , we have the following convergence in law in D[0, ∞):

Ŝ(n) (t ) n→∞ → σB (t ),
where B (t ) is a standard Brownian motion.

Proof. This theorem is a direct application of Theorem 19.1 in [START_REF] Billingsley | Convergence of probability measures[END_REF]. Indeed, the sequence c n is clearly stationary and ergodic in the sense of [START_REF] Billingsley | Convergence of probability measures[END_REF] (for example since it is stationary and mixing). Moreover, it has a finite second order moment and for all n,

E π * [c n ] = E π * [c 0 ] = 0.
Theorem 4 shows that in event time, the large scale limit of the reference price process is a Brownian motion. However, the most relevant question is that of the large scale limit of the reference price in calendar time. Thus we now consider the process

S(n) (t ) = Z N (nt ) n .
To prove the diffusivity of S(n) (t ), we need a last assumption which is a bound of the expected value on the waiting time between two events. Assumption 29. There exists some m > 0, such that

inf q∈Ω i ( f * i (q) + g * i (q)) + u(q) + d (q) > m.
5. Some specific models Let τ n be the inter-arrival time between the n-th and the (n -1)-th jumps of the Markov process X . We then have the following theorem proved in appendix for the long term behavior of the reference price in calendar time.

Theorem 5. Under Assumptions 21,22,23,25,26,27,28 and 29,the process (q(n)

, c(n), τ(n)) is positive Harris recurrent. Furthermore, if E π * [c(0)] = 0 and Y (0) ∼ π * , then S(n) (t ) n→∞ → σ E π * * [τ(1)] B (t ),
with π * * is the invariant distribution of (q(n), c(n), τ(n)) and σ defined in (II.7).

Theorem 5 discusses the scaling limit of the underlying reference price. However, the difference between this price and the more usual p best bi d (t ), p best ask (t ) or p mi d (t ) being bounded by 2K , the same result applies replacing the reference price by any of those prices.

Some specific models

The Markovian setting proposed in this work allows us for a wide range of possibilities for modeling order book dynamics. The goal of this section is to give some natural and tractable examples of models, essentially already introduced in the literature, which can be seen as particular cases of our general framework. Together with the dynamics of the models, we provide sufficient conditions so that the assumptions made in the previous sections are satisfied in these specific models. Thus the ergodicity and diffusive scaling properties apply in all these models.

Best bid/best ask Poisson model (Cont and De Larrard (2013))

The basic idea of this first model, inspired by that introduced in [START_REF] Cont | Price dynamics in a Markovian limit order market[END_REF], is to use a constant spread size (fixed to 1 tick) and to consider only two limits in the order book.

Example 3. Poisson model with K = 1.

• We take K = 1, θ r ei ni t = 1 and assume that the functions f i , g i , u and d have the following forms, with 0 < λ < µ < ∞:

f 1 (q, n) = λ1 n=1 g 1 (q, n) = µ1 q 1 >0 1 n=1 f -1 (q, n) = µ1 q -1 <0 1 n=1 g -1 (q, n) = λ1 n=1 u(q) = θ1 q 1 =0 d (q) = θ1 q -1 =0 .
• π i nc and π d ec satisfy Assumption 27 and for any q -1 > 0, q 1 ∈ Z,

π i nc (q -1 , q 1 ) = π d ec (q -1 , q 1 ) = 0,
for any q 1 < 0, q -1 ∈ Z, π i nc (q -1 , q 1 ) = π d ec (q -1 , q 1 ) = 0.

II. Markovian Order Book Models

Note that here, the boundary distributions π K and π -K are no longer needed, since the order book reinitialization probability θ r ei ni t is set to one.

In this model, the role of p r e f is very close to that of p mi d , which splits the order book into two parts: the bid side (Q -1 ) and the ask side (Q 1 ). The limit order insertion, cancellation and market order insertion processes are assumed to be independent Poisson processes. The size of these orders is assumed to be constant and p r e f jumps with rate 0 when none of the queues Q ±1 is empty, with rate θ to the right side when Q 1 is empty, with rate θ to the left side when Q -1 is empty. When the value of θ is very large, the price jump is almost instantaneous as soon as one of the two queues becomes empty. In that case, this model becomes very close to that proposed in [START_REF] Cont | Price dynamics in a Markovian limit order market[END_REF], where an infinite rate is used (note that the convergence of the rescaled price process can still be proved with some minor modifications in such case of infinite jump rate).

Poisson model with K > 1

It is natural to try to extend the previous Poisson model in order to include more queues in the order book and to allow for a spread size different from one tick. In such model, the role of p r e f is slightly different since it is not necessarily the mid price. Again, p r e f can be understood here as the underlying efficient price that determines the order arrival intensities at different price levels. Now buy/sell limit orders can be inserted both on the right side and on the left side of p r e f .

Example 4. Poisson model with K > 1.

• The functions f i , g i , u and d have the following forms, for i = -K , ..., K :

f i (q, 1) = λ i 1 i >i best bi d (q) + γ i 1 i =i best bi d (q) +µ i 1 i ≤i best bi d (q) 1 q i <0 g i (q, 1) = λ -i 1 i <i best ask (q) + γ -i 1 i =i best ask (q) +µ -i 1 i ≥i best ask (q) 1 q i >0 f i (q, n) = 0, for n > 1 g i (q, n) = 0, for n > 1 u(q) = θ i best ask (q) d (q) = θ -i best bi d (q) .
• π K , π -K , π i nc and π d ec satisfy Assumption 27.

• For any i ,j ∈ {-K , ..., K }, i < j , we have

µ -i > λ i > 0 0 ≤ θ i ≤ θ j .
Limit orders, cancellations and market orders (which consume the quantities at the best offer limits) are modeled by independent Poisson processes with different intensities λ bu y/sel l i , µ bu y/sel l i and γ bu y/sel l i , depending on the distance from their target price to p r e f . We assume bid-ask symmetry in this model, that is

λ bu y i = λ sel l -i , µ bu y i = µ sel l -i and γ bu y i = γ sel l i
, thus we omit the index buy/sell in the above equations. Remark that the intensity of the buy/sell market order flow at the best limit γ i is a function of i , that is the position of the best limit with respect to 5. Some specific models the reference price. This allows us to model the fact that market participants have different behaviors towards the best limit, depending on their evaluation of the reference price.

The reference price jump dynamics is modeled by a sequence of increasing rates θ i , i ∈ {-K , ..., K }. This means that the larger the index of the best ask queue, the larger the probability of p r e f to increase and the smaller the index of the best bid queue, the larger the probability of p r e f to decrease. Note that in this model, we no longer assume any specific value for the reinitialization probability θ r ei ni t and use Assumption 27 to impose some properties on the boundary distributions π K and π -K and the initialization distributions π i nc and π d ec .

Zero-intelligence model

We now present a different way of extending the Poisson model with K = 1 in order to include more queues in the order book. This modeling approach where two reference prices are used is called Zero-intelligence model and is introduced in Smith, [START_REF] Smith | Statistical theory of the continuous double auction[END_REF]. It is also considered in [START_REF] Abergel | A mathematical approach to order book modelling[END_REF] and is the basis of [START_REF] Cont | A stochastic model for order book dynamics[END_REF]. We define φ(i , j ) as the absolute distance (in number of ticks) between the queue Q i and Q j and make the three following assumptions.

Example 5. Zero-intelligence model.

• The functions f i , g i , u and d have the following forms, for i = -K , ..., K :

f i (q, 1) = λ φ(i ,i best bi d (q)) 1 i >i best bi d (q) + γ1 i =i best bi d (q) + |q i |µ φ(i ,i best ask (q)) 1 i ≤i best bi d (q)
g i (q, 1) = λ φ(i ,i best ask (q)) 1 i <i best ask (q) + γ1 i =i best ask (q) + |q i |µ φ(i ,i best bi d (q)) 1 i ≥i best ask (q) f i (q, n) = 0, for n > 1

g i (q, n) = 0, for n > 1 u(q) = θ i best ask (q) d (q) = θ -i best bi d (q) .
• π K , π -K , π i nc and π d ec satisfy Assumption 27.

• For any i ,j ∈ {-K , ..., K }, λ φ(i , j ) > 0 and µ φ(i , j ) > 0.

• For any i ,j ∈ {-K , ..., K }, i < j , we have

0 ≤ θ i ≤ θ j .
In this model, p r e f is no longer an underlying efficient price determining the order arrival intensities. These intensities now depend on the positions of two different prices: p best bi d and p best ask . Limit orders, cancellations and market orders are still described by independent Poisson processes. Buy/sell limit orders are inserted in the queues to the left/right side of the best ask/best bid price, with intensities depending on the distance between their price level and the best ask/best bid price (λ φ(i ,i best ask/best bi d ) ); cancellations of buy/sell orders are sent to the queues on the left/right side of the best ask/best bid price, with intensities being linear functions of the queue sizes (|q i |µ φ(i ,i best ask/best bi d ) ); market buy/sell orders are sent to the best ask/best bid queue, with intensity γ. The reference price p r e f now provides the center of the 2K dimensional moving frame representing the LOB's state and the same modeling approach as in Section 5.2 is used for its dynamics.

Queue-reactive model (Huang, Lehalle, and Rosenbaum (2013))

In [START_REF] Huang | Simulating and analyzing order book data: The queue-reactive model[END_REF], the Queue-reactive model for order books is introduced. This model takes into account the influence of the order book's state in determining the order arrival intensities (in a much more general way than considering only the position of the best bid and best ask queues). The Queue-reactive model assumes that no buy/sell limit order can be inserted on the right/left side of p r e f and uses the following assumption instead of Equation (II.2) for the dynamics of the jumps of p r e f . Assumption 30. Whenever p mi d increases (resp. decreases), p r e f increases (resp. decreases) by α with probability θ, provided that q 1 = 0 (resp. q -1 = 0) at that moment. Therefore, changes in the value of p r e f are possibly triggered by one of the three following events:

• The insertion of a buy (resp. sell) limit order within the bid-ask spread while Q 1 (resp. Q -1 is empty).

• The cancellation of the last limit order at one of the best offer queues.

• A market order which consumes the last limit order at one of the best offer queues.

With some minor modifications in the proof of Theorem 5, one can prove that the scaling limit of p r e f in the Queue-reactive model is a Brownian motion. As explained above, in this model, changes of p r e f are triggered by events that modify the mid price. Here we propose a slightly modified version of the Queue-reactive model8 by considering the following four assumptions (note that the state space Ω is reduced in that case to

Ω * := {q ∈ Ω, q i 1 i <0 ≤ 0, q i 1 i >0 ≥ 0}).
Example 6. Queue-reactive type model.

• The functions f i , g i , u and d have the following forms, for i = -K , ..., K :

f i (q, 1) = λ |i | (q i )1 i >0 + µ |i | (-q i )1 i <0 g i (q, 1) = λ |i | (-q i )1 i <0 + µ |i | (q i )1 i >0 f i (q, n) = 0, for n > 1 g i (q, n) = 0, for n > 1 u(q) = θ1 q 1 =0 d (q) = θ1 q -1 =0 , with λ |i | and µ |i | non-negative functions defined on N, with µ |i | (0) = 0. • We have sup i ∈{1,...,K },q i ∈N (λ i (q i )) < L < ∞.
• There exist r > 0 and U > 1 such that for any q i > U and any i ∈ {1, ..., K }:

λ i (q i ) -µ i (q i ) < -r.
• There exists m > 0 such that for any i ∈ {1, ..., N }:

inf q i ∈N [λ i (q i ) + µ i (q i )] > m .

Conclusion

Compared with Assumption 30, changes in p r e f are now driven by the relative position of the mid price in the current order book state. Nevertheless, we can see that the two approaches are quite similar. In this model, p r e f always stays between p best ask and p best bi d (since µ |i | (0) = 0 implies that the queue sizes on the left/right side of p r e f never become positive/negative). Such model gives us a much larger choice on the intensity functions λ |i | and µ |i | than when assuming Poisson flows. Furthermore, with enough data points, these functions can be estimated in a nonparametric way, as done in Huang, [START_REF] Huang | Simulating and analyzing order book data: The queue-reactive model[END_REF]. Finally the state-dependent approach provides us very interesting insights about the way the order book state influences market participants decisions and the mechanism making the empirical distribution of the order book arise from these decisions, see [START_REF] Huang | Simulating and analyzing order book data: The queue-reactive model[END_REF].

Conclusion

In this work, we extend the order book modeling approach proposed in Huang, [START_REF] Huang | Simulating and analyzing order book data: The queue-reactive model[END_REF] to a more general Markovian framework, allowing to take into account most relevant features of LOB dynamics such as:

• Dependencies between the order arrival processes and the LOB state.

• Endogenous movements of the underlying efficient price and influence of the LOB state on its dynamics.

• Exogenous movements of the underlying efficient price.

• Randomness in the size of the orders.

The ergodicity of the LOB system and the diffusive limit of the rescaled price process are established under general assumptions. Finally, to illustrate the usefulness and the relevance of our approach, several examples of classical models which can be seen as particular cases of our general framework are presented.

To get a fully satisfying model, a last step would probably be to allow for a non-Markovian component in the market order flow (since the Markov assumption is probably quite reasonable for the limit order and cancellation flows). This can for example be done using self-exciting processes, as in Abergel and Jedidi (2015). However, except for very specific cases (exponential Hawkes processes for example), adding such non-Markovian component would certainly require revising completely the mathematical approach to the model.

Appendix

Proof of Theorem 1

Let us denote by Q the infinitesimal generator matrix of q(t ) when u = d = 0. The infinite matrix Q has the following form:

Qq,q+ne i = f i (q, n) Qq,q-ne i = g i (q, n) Qq,q = - q∈Ω,q =q Qq,q
Qq,q = 0, otherwise.

For some 1 < z ≤ z * (recall that z * is defined in Assumption 23), let us consider the function

V (q) = K i =-K ,i =0 z |q i |-U .
Since q i ≥ 0 for i ≥ i best ask , q i ≤ 0 for i ≤ i best bi d and q i = 0 for i ∈ (i best bi d , i best ask ), we have

QV (q) := q =q Qqq [V (q ) -V (q)] = i ≤i best bi d ∞ n=1 [(z -q i +n-U -z -q i -U )g i (q, n) + (z |q i +n|-U -z -q i -U ) f i (q, n)] + i ≥i best ask ∞ n=1 [(z q i +n-U -z q i -U ) f i (q, n) + (z |q i -n|-U -z q i -U )g i (q, n)] + i ∈(i best bi d ,i best ask ) ∞ n=1 [(z n-U -z -U ) f i (q, n) + (z n-U -z -U )g i (q, n)].
Then by Assumption 22,

QV (q) = i ≤i best bi d ∞ n=1 [(z -q i +n-U -z -q i -U )g i (q, n) + (z -q i -n-U -z -q i -U ) f i (q, n)] + i ≥i best ask ∞ n=1 [(z q i +n-U -z q i -U ) f i (q, n) + (z q i -n-U -z q i -U )g i (q, n)] + i ∈(i best bi d ,i best ask ) ∞ n=1 [(z n-U -z -U ) f i (q, n) + (z n-U -z -U )g i (q, n)] = i ≤i best bi d z -q i -U ∞ n=1 (z n -1)[g i (q, n) - f i (q, n) z n ] + i ≥i best ask z q i -U ∞ n=1 (z n -1)[ f i (q, n) - g i (q, n) z n ] + i ∈(i best bi d ,i best ask ) z -U ∞ n=1 (z n -1)[ f i (q, n) + g i (q, n)].
Using the definition of G f ,i ,q (z), G g ,i ,q (z), f * i (q) and g * i (q), we get

QV (q) = i ≤i best bi d z -q i -U [g * i (q)(G g ,i ,q (z) -1) -f * i (q)(1 -G f ,i ,q (z -1 ))] + i ≥i best ask z q i -U [ f * i (q)(G f ,i ,q (z) -1) -g * i (q)(1 -G g ,i ,q (z -1 ))] + i ∈(i best bi d ,i best ask ) z -U [ f * i (q)(G f ,i ,q (z) -1) + g * i (q)(G g ,i ,q (z) -1)].
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Moreover, since for z > 1 we have G f /g ,i ,q (z -1 ) < 1 and G f /g ,i ,q (z) > 1, we obtain

QV (q) ≤ i :i ≤i best bi d ,q i <-U z -q i -U (G g ,i ,q (z) -1) g * i (q) -f * i (q) 1 -G f ,i ,q (z -1 )
G g ,i ,q (z) -1

+ i :i ≥i best ask ,q i >U z q i -U (G f ,i ,q (z) -1) f * i (q) -g * i (q) 1 -G g ,i ,q (z -1 ) G f ,i ,q (z) -1 + i :i ≤i best bi d ,q i ≥-U g * i (q)G g ,i ,q (z) + i :i ≥i best ask ,q i ≤U f * i (q)G f ,i ,q (z) + i ∈(i best bi d ,i best ask ) [ f * i (q)G f ,i ,q (z) + g * i (q)G g ,i ,q (z)] ≤ i :i ≤i best bi d ,q i <-U z -q i -U (G g ,i ,q (z) -1) g * i (q) -f * i (q) 1 -G f ,i ,q (z -1 )
G g ,i ,q (z) -1

+ i :i ≥i best ask ,q i >U z q i -U (G f ,i ,q (z) -1) f * i (q) -g * i (q) 1 -G g ,i ,q (z -1 ) G f ,i ,q (z) -1 + i [ f * i (q)G f ,i ,q (z)1 i >i best bi d + g * i (q)G g ,i ,q (z)1 i <i best ask ]. Now note that sup q [ f * i (q)G f ,i ,q (z)1 i >i best bi d + g * i (q)G g ,i ,q (z)1 i <i best ask ]
is an increasing function of z. Thus by Assumption 23, we can find z > 1 such that for any z ≤ z , q ∈ Ω and i ∈ [-K , ..., K ]:

f * i (q)G f ,i ,q (z)1 i >i best bi d + g * i (q)G g ,i ,q (z)1 i <i best ask < L.
From Assumption 24, we see that we can find some z with 1 < z ≤ z such that for any (q, i ), q i < -U , i ≤ i best bi d , for any 1 < z ≤ z:

g * i (q) -f * i (q) 1 -G f ,i ,q (z -1 ) G g ,i ,q (z) -1 < -r, (II.8)
and for any (q, i ), q i > U , i ≥ i best ask , for any 1 < z ≤ z:

f * i (q) -g * i (q) 1 -G g ,i ,q (z -1 ) G f ,i ,q (z) -1 < -r.
(II.9)

Thus taking z in the definition of the function V satisfying 2K z -U > 1 (so that the function V is coercive) and 1 < z ≤ z, we obtain

QV (q) ≤ -r i :i ≤i best bi d ,q i <-U z -q i -U (G g ,i ,q (z) -1) -r i :i ≥i best ask ,q i >U z q i -U (G f ,i ,q (z) -1) + 2K L. ≤ -r B g (z) i :i ≤i best bi d ,q i <-U z -q i -U -r B f (z) i :i ≥i best ask ,q i >U z q i -U + 2K L.
By Assumption 25, B := min(B g (z), B f (z)) > 0. Therefore we get II. Markovian Order Book Models

QV (q) ≤ -r B i :|q i |>U z |q i |-U + 2K L ≤ -r B i z |q i |-U + 2K (L + r B ) = -r BV (q) + 2K (L + r B ).
Finally, remark that in our setting, any compact set included in Ω is finite. A singleton being a petite set and a finite union of singletons remaining a petite set, see Proposition 5.5.5 in Meyn and Tweedie (2009), we get that all the compact sets are petite. Therefore by Theorem 6.1 in [START_REF] Meyn | Stability of Markovian processes III: Foster-Lyapunov criteria for continuous-time processes[END_REF], q(t ) is non-explosive and V-uniformly ergodic. Furthermore, by Theorem 4.2 in [START_REF] Meyn | Stability of Markovian processes III: Foster-Lyapunov criteria for continuous-time processes[END_REF] it is positive Harris recurrent.

Proof of Theorem 2

For some 1 < z ≤ z * , set again

V (q) = K i =-K ,i =0 z |q i |-U .
We write P q,q the transition probability from q to q . In the same way as in the preceding proof, we have

∆V (q) := q ∈Ω P q,q (V (q ) -V (q)) = i ≤i best bi d z -q i -U [b * i (q)(G g ,i ,q (z) -1) -a * i (q)(1 -G f ,i ,q (z -1 ))] + i ≥i best ask z q i -U [a * i (q)(G f ,i ,q (z) -1) -b * i (q)(1 -G g ,i ,q (z -1 ))] + i ∈(i best bi d ,i best ask ) z -U [a * i (q)(G f ,i ,q (z) -1) + b * i (q)(G g ,i ,q (z) -1)].
Following the same method as in the proof of Theorem 1, we can easily find 1 < z ≤ z * and B > 0 such that taking z = z in the definition of V , it is coercive and we get

∆V (q) ≤ -r V (q) + B.
Now define the set C := {q, r V (q) ≤ 2B }, C is obviously a finite set and is therefore petite. Furthermore, we have

∆V (q) ≤ - r 2 V (q) + B 1 q∈C .
Thus by Theorem 16.1.2 in Meyn and Tweedie (2009), q(n) is V-uniformly ergodic.

Eventually, the fact that the chain is positive Harris recurrent is deduced from Theorem 9.1.8 together with Theorem 15.0.1 in Meyn and Tweedie (2009).

7. Appendix

Proof of Theorem 3

For ease of notation, we write

V instead of V z . Let Q i nc , Q d ec , Q K , Q -K be four random variables such that Q i nc ∼ π i nc , Q d ec ∼ π d ec , Q K ∼ π K and Q -K ∼ π -K . We define u * (q) = u(q) i [ f * i (q) + g * i (q)] + u(q) + d (q) d * (q) = d (q) i [ f * i (q) + g * i (q)] + u(q) + d (q) n * (q) = i [ f * i (q) + g * i (q)] i [ f * i (q) + g * i (q)] + u(q) + d (q) E K = E[z Q K -U ] E -K = E[z Q -K -U ] E π i nc = E[V ([Q i nc , c])] E π d ec = E[V ([Q d ec , c])].
Remarking that V ([q, c]) does not depend on c, we write from now on V (q) instead of V ([q, c]). Moreover, we set P [q,c],[q ,c ] as the transition probability from state [q, c] to state [q , c ] and P q,q as the transition matrix of the embedded chain q(n) when u = d = 0. Using the form of the infinitesimal generator Q, we deduce

∆V ([q, c]) := (q ,c )∈Ω×{-α,α} P [q,c],[q ,c ] (V (q ) -V (q)) = n * (q) q ∈Ω P q,q (V (q ) -V (q)) +u * (q) (1 -θ r ei ni t )(E K -z |q -K |-U ) + θ r ei ni t (E π i nc -V (q)) +d * (q) (1 -θ r ei ni t )(E -K -z |q K |-U ) + θ r ei ni t (E π d ec -V (q)) .
By Assumption 27, we have

∆V ([q, c]) ≤ n * (q) q ∈Ω P q,q (V (q ) -V (q)) + 2L K + 2L π .
Then as in the proof of Theorem 2, we can find 1 < z ≤ z * and B > 0 such that taking z = z in the definition of V , it is coercive and we get

∆V (q) ≤ -n * (q)r V (q) + B n * (q) + 2L K + 2L π .
Moreover, Assumption 28 ensures that for any q except those belonging to the finite set W , n * (q) > M with M ∈ (0, 1]. Consequently,

∆V (q) ≤ -M r V (q) + B + 2L K + 2L π + ν1 [q,c]∈W ×{-α,α} ,
with ν > 0. Now define the set C := {[q, c], M r V (q) ≤ 2B + 4L K + 4L π }. Being finite, C ∪ W is a petite set and we have

∆V ([q, c]) ≤ - M r 2 V ([q, c]) + (B + 2L K + 2L π + ν)1 [q,c]∈C ∪W .
Hence from Theorem 16.1.2 in Meyn and Tweedie (2009), Y (n) is V-uniformly ergodic.

Eventually, the fact that the chain is positive Harris recurrent is deduced from Theorem 9.1.8 together with Theorem 15.0.1 in Meyn and Tweedie (2009).

Proof of Theorem 5 7.4.1 Preliminary lemma

We start with the following preliminary lemma.

Lemma 1. For the Markov chain (q(n), c(n), τ(n)), the Cartesian product of any finite set included in Ω × {-α, α} and R + is petite.

Proof. We first show that for any q ∈ Ω and c ∈ {-α, α}, the set q × c × R + is petite (actually small). We define the measure ν q,c,τ which is so that for any B ∈ B(Ω × {-α, α} × R + ), ν q,c,τ (B ) is the transition probability from [q, c, τ] to B in a single step:

ν q,c,τ (B ) = P [q,c,τ],B .
Recall that in our framework, the transition probabilities from (q(n), c(n), τ(n)) depend only on the value of q(n). So we can write ν q,c,τ (B ) as ν q (B ). In the sense of Equation (5.43) in Meyn and Tweedie (2009), the transition probability P [q,r,τ],B can be seen as a sampling kernel for the Markov chain (q(n), c(n), τ(n)), using the Dirac measure at point 1 on Z + as sampling measure. Moreover, for any τ ∈ R + and any B ∈ B(Ω × {-α, α} × R + ), we have

P [q,c,τ],B ≥ ν q (B ).
Therefore the set q × c × R + is petite. Then, as the union of two petite sets remains petite, see Proposition 5.5.5 in Meyn and Tweedie (2009), we have the result.

A law of large numbers

In the next proposition, we give a law of large numbers for the inter-arrival times, which is the key element to establish the diffusive behavior of the price in calendar time. Within the proof of this proposition, we show that (q(n), c(n), τ(n)) is positive Harris recurrent. Proposition 1. Let τ i be the inter-arrival time between the i -th and the i -1-th jumps of the Markov process X . Under Assumptions 22,23,25,26,27,28 and 29, almost surely, we have

1 n n i =1 τ i → n→∞ E π * * [τ(1)],
with π * * the invariant distribution of (q(n), c(n), τ(n)).

Proof. First we show that the Markov chain (q(n), c(n), τ(n)) is positive Harris recurrent. For the Markov chain (q(n), c(n)), we have already proved that a coercive function V can be found, such that the following drift condition is satisfied for some a > 0 and L < ∞:

∆V ([q, c]) ≤ -aV ([q, c]) + L. Now, for the Markov chain (q(n), c(n), τ(n)), take V * ([q, c, t ]) = V ([q, c]) + t .
With obvious notation, we have

∆V * ([q, c, t ]) = ∆V ([q, c]) + E [q,c,t ] [τ] -t ≤ -aV ([q, c]) + L + E x [τ] -t .

Appendix

Taking a = mi n(a, 1) and L = L + 1/m, using Assumption 29, we get

∆V * ([q, c, t ]) ≤ -aV ([q, c]) + L + 1/m -t ≤ -a [V ([q, c]) + t ] + L + 1/m ≤ -a V * ([q, c, t ]) + L . Now let C = {([q, c, t ]), a V * ([q, c, t ]) ≤ 2L }. We have ∆V * ([q, c, t ]) ≤ - a 2 V * ([q, c, t ]) + L 1 [q,c,t ]∈C .
According to Lemma 1, the set C is petite. Thus we can apply Theorem 15.0.1 in Meyn and Tweedie (2009) to deduce that the Markov chain (q(n), r (n), τ(n)) is positive recurrent and thus admits an invariant measure.

Now remark that the function V * is unbounded off petite sets (using Lemma 1 together with the fact that any subset of a petite set is itself petite). Consequently, Theorem 9.1.8 in Meyn and Tweedie (2009) enables us to obtain that the Markov chain (q(n), c(n), τ(n)) is Harris recurrent. Therefore it is positive Harris recurrent.

We end the proof thanks to Theorem 17.0.1 from Meyn and Tweedie (2009).

End of the proof of Theorem 5

We have

S(n) (t ) = Z ( t n/E π * * [τ(1)] ) n + Z (N (nt )) n - Z ( t n/E π * * [τ(1)] )
n .

According to Proposition 1, the sequence of processes N (nt )/n converges to t /E π * * [τ(1)]. Moreover, the limit of Z ( t n/E π * * [τ(1)] )/ n is continuous. Thus, using Skorohod representation theorem together with continuity properties in Skorohod topology, see Proposition VI.2.1 in [START_REF] Jacod | Limit theorems for stochastic processes[END_REF], we get that the second term on the right hand side of the above equality tends to zero. Finally, from Theorem 4, we get

Z ( t n/E π * * [τ(1)] ) n n→∞ → σ E π * * [τ(1)] B t .
Combining these two results, we obtain the weak convergence of the rescaled price process to a Brownian motion with variance σ 2 /E π * * [τ(1)], which concludes the proof.

Introduction

On January 14, 2014, the Tokyo Stock Exchange (TSE) launched the first phase of its pilot program on tick value1 modifications, reducing the tick value of the TOPIX 100 index stocks priced above ¥3000 by approximately 90% (see Section 3.1 for more details on this pilot program).

The second phase was implemented on July 22, 2014, targeting a sub-Yen tick value reduction for stocks of the TOPIX 100 index priced below ¥5000. The third phase of this program is expected to start in September 2015, when a new tick value table should be announced after the evaluation of the effects of the tick value reductions in the first two phases.

The tick value is probably the most relevant tool that can be used by exchanges and regulators in order to improve the trading quality and the robustness of the market structure, see [START_REF] Lehalle | Market Microstructure in Practice[END_REF]. Compared with other more controversial proposals, such as imposing a minimum resting time for orders to remain valid or using frequent batch auctions, setting a suitable tick value is in general considered to be a better way to control the growing activity of high frequency traders, which accounts nowadays for more than 40% of the total volume on equity markets. Indeed, a tick value change induces very little cost and is easily reversible if the outcome does not meet the market designer's expectations. Experiements 2014

The Tokyo Stock Exchange is not alone in its search for better tick values. In the United States, on August 26, 2014, the Securities and Exchange Commission announced a program aiming at widening tick values for stocks with small capitalization. A targeted 12 months pilot experiment will be implemented to assess the effects of such changes. In Europe, in May 2014, the European Securities and Markets Authority released a MiFID2/R discussion paper which proposes two options for a new harmonized tick value regime to be introduced across all trading venues. These two options are currently debated by European regulators.

Before the pilot program, most Japanese stocks were typical examples of large tick assets, that is assets whose bid-ask spread is almost always equal to one tick. The tick value being the lower bound for the bid-ask spread, when it is too large, the cost of market orders becomes very significant. This not only damages liquidity takers but also the "slow" liquidity providers who suffer from the intensification of the speed competition for gaining time priority in the order book queues, see [START_REF] Moallemi | The value of queue position in a limit order book[END_REF]. Although it is quite commonly accepted that it is preferable to reduce the tick value for these large tick assets, finding the appropriate tick value remains a very intricate problem. Indeed, most of the numerous works about the consequences of a tick value change are empirical and focus on the outcomes of this market design modification in an ex post basis, see for example [START_REF] Lau | Reducing tick size on the Stock Exchange of Singapore[END_REF], [START_REF] Ahn | Tick size, spread, and volume[END_REF], [START_REF] Bacidore | The impact of decimalization on market quality: An empirical investigation of the Toronto Stock Exchange[END_REF], [START_REF] Bessembinder | Tick size, spreads, and liquidity: An analysis of Nasdaq securities trading near ten dollars[END_REF], [START_REF] Goldstein | Eighths, sixteenths, and market depth: changes in tick size and liquidity provision on the NYSE[END_REF], [START_REF] Chung | Order handling rules, tick size, and the intraday pattern of bid-ask spreads for Nasdaq stocks[END_REF], [START_REF] Chung | Tick size and quote revisions on the NYSE[END_REF], [START_REF] Bourghelle | Why markets should not necessarily reduce the tick size[END_REF] and [START_REF] Wu | Impacts of tick size reduction on transaction costs[END_REF].

These studies have clearly shown that a change in the tick value may lead to significant implications for the bid-ask spread, the available volume in the order book and many other microstructural quantities. However, very few quantitative tools exist for predicting ex ante these effects. Consequently, exchanges and market regulators often rely on the trial and error approach in order to set appropriate tick values. The Japanese pilot experiment, in which the tick value reduction program is conducted in three phases, is one of such examples. Indeed, the effects of tick value changes in the first two phases are evaluated ex post to help the design of a new tick value table to be implemented in the last phase.

In [START_REF] Dayri | Large tick assets: implicit spread and optimal tick size[END_REF], the authors build a quantitative approach towards solving the crucial problems of forecasting the consequences of a tick value change and determining an optimal tick value. To that purpose, based on the model with uncertainty zones introduced in [START_REF] Robert | A new approach for the dynamics of ultra-highfrequency data: the model with uncertainty zones[END_REF], they use the key microstructural indicator η (half the ratio between price continuations and alternations, see Section 2) which summarizes the high frequency features of an asset. The paramount importance of the parameter η is due to the fact that there is a one to one bijection between its value and the cost of market and limit orders. We recall this connection in details in Section 2. Hence, measuring η allows us to classify stocks according to whether they are profitable for market makers or rather balanced. Furthermore, being able to predict the consequences of a tick value change on η means one can anticipate the new microstructural costs induced by this tick value modification, which is precisely what exchanges and regulation authorities need. Such predictions are possible using the approach in [START_REF] Dayri | Large tick assets: implicit spread and optimal tick size[END_REF] where explicit forecasting formulas for the parameter η are provided. Moreover, the way to set a tick value leading to an optimal η is also established (see Section 2 for our definition of optimality).

In this work, our goal is to show that the theoretical forecasting formulas in [START_REF] Dayri | Large tick assets: implicit spread and optimal tick size[END_REF] do enable us to predict ex ante the consequences of a tick value change on the microstructure of an asset, notably on the trading costs. To demonstrate this, we use 18 2. Cost of trading and high frequency price dynamics months of tick by tick market data from the TSE, including the whole year 2014 when the pilot program is in place. Very accurate results are obtained for the prediction of the parameter η. Thus, the approach in [START_REF] Dayri | Large tick assets: implicit spread and optimal tick size[END_REF] is proved to be indeed very helpful in both predicting the consequences of a tick value change and choosing an optimal tick value for large tick assets.

The paper is organized as follows. We recall in Section 2 the reading of the model with uncertainty zones as a mean to quantify the average cost of market and limit orders using the crucial microstructural indicator η. At the end of this section, we give the prediction formula for η after a tick value modification. Hence we provide a way to predict the change in the cost of market and limit orders induced by such modification. In Section 3, we consider the TSE pilot experiment on tick values. First, before the start of the program, we classify Japanese assets in two categories: stocks with costly market orders and stocks with balanced costs between market and limit orders. Note that the situation of costly limit orders is very unlikely. Indeed, in that case, market makers would increase their spread, what they can always do. Then we apply in the same section the forecasting methodology presented in Section 2. In particular, we predict whether a stock will change category after the tick value modification. We conclude in Section 4.

Cost of trading and high frequency price dynamics

The model with uncertainty zones: When the tick prevents price discovery

The model with uncertainty zones, introduced in [START_REF] Robert | A new approach for the dynamics of ultra-highfrequency data: the model with uncertainty zones[END_REF], is a high frequency model for the transaction prices of a large tick asset. It reproduces most macroscopic and microscopic stylized facts of price dynamics and is very suitable for the analysis of the role of the tick value in determining the microstructural features of an asset. This model assumes the existence of a latent efficient price X t , typically a martingale, and states that a transaction can occur at a given price level (on the tick grid) only provided this price level is close enough to the efficient price. This proximity is quantified by the parameter η: the distance between the potential transaction price and the efficient price has to be smaller than α/2+ηα, with α the tick value of the asset. Thus, for a large tick asset, assuming the efficient price lies within the one tick bid-ask spread [b, b + α], we have η ∈ [0, 1/2] and obtain three zones for the efficient price:

• If it lies between b and b + α(1/2 -η), transactions can only occur on the bid side (bid zone).

• If it lies between b + α(1/2 + η) and b + α, transactions can only occur on the ask side (ask zone).

• If it lies between b + α(1/2 -η) and b + α(1/2 + η), transactions can occur both on the bid and on the ask side (buy/sell or uncertainty zone).

These three zones are summarized in Figure III.1.

Estimation of η

The parameter η can be very easily estimated as follows. We define an alternation (resp. continuation) as a transaction price jump of one tick whose direction is opposite to (resp. the same as) the one of the preceding transaction price jump. Let N (a) and N (c) be respectively the number of alternations and continuations during the period [0, t ]. The estimator of η over [0, t ] is simply given by η = N (c) 2N (a) . Theoretical properties for this estimator are established in Robert and Rosenbaum (2012). Note that in Section 3, the estimated values of η over given time periods of several months will be given by the averages of the daily estimations of η over all the days of the periods.

Perceived tick size and cost of market orders

The parameter η controls the width of the uncertainty zones (which is 2ηα ; when the efficient price is inside this zone, investors cannot clearly decide if it is more relevant to buy or sell) and measures the bouncing intensity of the transaction price due to the existence of the tick value. It can actually be seen as an indicator for the perceived tick size of a large tick asset: A very small η (η 0.5) means that for market participants, the tick value appears much too large (in such case, it is necessary to be sharp in term of estimation of the efficient price to know if it is reasonable to buy or sell at a given time), while a η close to 1/2 is synonym of a suitable tick value (in such situation, the uncertainty zones almost correspond to the tick grid). To understand this, consider a market order of unit volume at price P t at time t . Its cost with respect to the efficient price is P t -X t . For a large tick asset, the average cost of such market order can be computed and is equal to see [START_REF] Dayri | Large tick assets: implicit spread and optimal tick size[END_REF]. The quantity α/2 -ηα is non negative provided η ≤ 0.5, a condition which is almost systematically satisfied by estimated values of η on large tick assets, see Figure III.2. Indeed, it would otherwise mean that on average, market makers lose money. This is not really possible since in such situation, they would simply increase their spread, what they can always do. Thus, when η < 0.5, market takers have to pay a fixed positive cost in order to get liquidity, while market makers gain profit by placing limit orders2 . This cost paid by liquidity takers is given by α/2 -ηα. Consequently, for large tick assets, the classical efficiency rule that assumes zero cost for both market and limit orders becomes irrelevant.

α/2 -ηα,

Implicit bid-ask spread and cost of limit orders

Within bid-ask quotes of the form [b, b + α], the width of the uncertainty zone represents the range of values for the efficient price X t where transactions can occur both at the best bid and the best ask side. The size of this range is 2ηα. Therefore, it is natural to view the quantity 2ηα as an implicit spread. This idea is fully supported by the regression analysis in [START_REF] Dayri | Large tick assets: implicit spread and optimal tick size[END_REF], which shows empirically that for large tick assets, ηα is proportional to the volatility per trade:

ηα ∼ c σ M , (III.1)
where σ denotes the square root of the daily integrated variance of the price, M the number of transactions per day and c a constant around one. Yet it is well-known that for small tick assets, for which the (conventional) spread can evolve freely and is not artificially bounded from below by the tick value, the average spread is proportional to the volatility per trade, see [START_REF] Madhavan | Why do security prices change? A transaction-level analysis of NYSE stocks[END_REF] (2008). This confirms that 2ηα can be interpreted as an implicit spread for a large tick asset.

Actually the fact that for small tick assets, the average spread S is proportional to the volatility per trade simply comes from the efficiency condition stating that market makers make on average zero profit due to competition. More precisely, to derive the spread-volatility per trade relation, let us consider a dichotomy between market makers using limit orders and market takers using market orders. In that case, the average profit and loss per trade of a typical market making strategy, which can be understood as that of a limit order, is essentially equal to S/2cσ/ M , see [START_REF] Wyart | Relation between bid-ask spread, impact and volatility in order-driven markets[END_REF]. Therefore, the efficiency assumption implies

S 2 ∼ c σ M .
In the case of a large tick asset, for which S = α, as seen in the previous subsection, market orders are costly, their cost being on average α/2 -ηα. Therefore the profit and loss of market makers, which is still S/2cσ/ M , is no longer zero. Indeed, it is precisely the cost paid by market takers. Consequently, we get

S/2 -c σ M = α/2 -c σ M = α/2 -ηα,
which leads to Equation (III.1). Importantly, this simple cost analysis and Equation (III.1) derived from it enable us to design simple prediction formulas for η after a change in the tick value.

Prediction of the cost of market and limit orders

Based on the fact that Equation (III.1) should hold for a large tick asset for any tick value, the authors in [START_REF] Dayri | Large tick assets: implicit spread and optimal tick size[END_REF] establish three prediction formulas for the new value of η, and therefore for the new cost of market and limit orders, after a change in the tick value of an asset. Each of the three formulas corresponds to different assumptions. For simplicity, we only present here a formula which does not require any prior regression analysis and assumes a linear shape for the cumulative latent liquidity.

Let us consider a large tick asset for which the current tick value is α 0 and associated is η 0 . Then, if the tick value is changed to α, the formula for the new parameter η gives:

η ∼ (η 0 + 0.1)( α 0 α ) 1/2 -0.1. (III.2)
We now comment this formula and its use to predict the new microstructural features of an asset after a tick value change:

• Formula (III.2) actually holds only provided the asset remains a large tick asset after the change in the tick value. However, due to the concurrence mechanism, market makers maintain a spread equal to one tick as long as they make profit from it, that is as long as η < 1/2. The value of η in the formula being decreasing with α, we get that Formula (III.2) holds provided α ≥ α * with α * = η 0 + 0.1 0.6 2 α 0 .

• Formula (III.2) enables us to tell whether the asset remains a large tick asset after the tick value change: if the forecast value of η is greater than 1/2 (that is α < α * ), the asset is predicted to become a small tick asset after the tick value modification. However, note that in that case, the forecast value of η cannot really be interpreted beyond this (becoming small tick or not).

Analysis of the Tokyo Stock Exchange pilot program on tick values

• If the predicted value of η is smaller than 1/2, Formula (III.2) provides the estimated η after the tick value change, and therefore the estimated cost of market and limit orders.

In particular, this allows us to tell ex ante whether a stock will become/remain favorable for market makers or exhibit balanced trading costs. This is probably the most relevant viewpoint in term of regulation.

What is a suitable tick value?

From a regulatory perspective, a tick value can probably be seen as suitable if:

• The bid-ask spread is close to one tick, ensuring the presence of liquidity in the order book.

• Transaction costs are close to zero for market orders. In that case, the market is efficient and market makers do not take advantage of the tick value to the detriment of final investors acting mainly as liquidity takers.

Thus, in our approach, an asset enjoys a relevant tick value if it is a large tick asset and its η parameter is close to 1/2. Indeed, recall that the cost of a market order for a large tick asset is α/2 -ηα.

Note that according to Formula (III.2), starting from a large tick asset, the optimal tick value can be obtained setting α = α * . With this optimality notion in mind, we conduct in the next section an empirical analysis of the Japanese pilot program on tick values.

Analysis of the Tokyo Stock Exchange pilot program on tick values

Data description

We use data from the 55 Japanese stocks of the TOPIX 100 index involved in the pilot program in 2014. Our database, provided by Capital Fund Management, records the time and price of every transaction, as well as the best bid and ask prices right before the transactions, from June 3, 2013 to December 30, 2014. We remove market data corresponding to the first and last hour of trading, as these periods have usually specific features due to the opening/closing auction. Three different phases are distinguished in this study:

• Phase 0 (before the pilot program): from June 3, 2013 to January 13, 2014. 

Classification of the stocks in Phase 0

In this work, we use the average spread in number of ticks, now denoted by S and estimated as the average value of the bid-ask spread right before a transaction, to classify the stocks into three groups:

• Small tick stocks: S > 1.6.

• Large tick stocks: S ≤ 1.5.

• Ambiguous case between large and small tick: 1.5 < S ≤ 1.6.

For large tick stocks, we use the parameter η to distinguish between balanced stocks, for which market orders are reasonably costly, and stocks where market makers (viewed again as an aggregated class) obtain significant profit from liquidity takers thanks to the tick value. We use the following criterion:

• Balanced stocks: η ≥ 0.4.

• Market makers favorable stocks: η < 0.4.

Note that small tick stocks will be considered balanced stocks. However, they do not fulfill the criteria for stocks having a suitable tick value, their spread being somehow too large.

For each of the 55 stocks, for Phase 0, we give in Table III.2 the average spread (S 0 ), the value of the η parameter (η 0 ) and tell whether the stock is large tick or not (Yes or No for the variable LTick 0 ) and whether it is balanced or not (Yes or No for the variable Bal 0 ).

We see that all the assets but one (Mitsubishi Estate Co Ltd) are large tick stocks in Phase 0. However, among the remaining 54 large tick stocks, only five of them are balanced: Chubu Electric Power Co Inc, Inpex Corp, Kirin Holdings Co Ltd, Kubota Corp and Sumitomo Electric Industries Ltd. According to our framework, no tick value modification was necessary for these five assets. However, a tick value reduction can be beneficial for the 49 other stocks, which somehow justifies the will of the TSE to launch the pilot program.

III. The Effect of Tick Value Changes on Market Microstructure: Analysis of the Japanese Experiements 2014

Phase 0 -Phase 1

We now test the prediction formula (III.2) between Phase 0 and Phase 1. We first select 12 stocks among the 55 stocks based on the following criteria:

• These stocks are large tick assets during Phase 0.

• These stocks are involved in the tick value reduction program during Phase 1.

• For every stock, days on which multiple tick values are used3 are removed from the database. We then choose the tick value right before the end of Phase 0 and the tick value right after the beginning of Phase 1 as two reference tick values. Stocks for which the numbers of days when the tick value is equal to its reference value in Phase 0 and Phase 1 are both greater than 10 are finally selected.

Twelve assets are remaining after this selection. For each of these stocks, based on the value of η in Phase 0 (η 0 ), we predict the new value of η in Phase 1 (η p 1 ) using Formula (III.2). We provide confidence intervals based on the 25% and 75% quantiles of the distribution of the estimated daily η in Phase 04 . We also forecast whether the asset will be large tick in Phase 1 (LTick p 1 ) and balanced in Phase 1 (Bal p 1 ). More precisely, considering a predicted η larger than 1/2 corresponds to an increase of the spread (recall that the situation η > 1/2 is not compatible with a one tick spread):

• If η p 1 ≥ 0.55, the asset is predicted to become a small tick asset after the tick value change.

• If η p 1 < 0.5, the asset is predicted to remain a large tick asset after the tick value change, with the forecast value for the new η being meaningful and given by η p 1 .

• We qualify the situation 0.5 ≤ η p 1 < 0.55 as an "ambiguous" case between large tick and small tick.

We compare the predictions to the actual quantities in Phase 1: η 1 , LTick 1 and Bal 1 . The results are given in Table III.3.

The obtained average relative prediction error for η 1 , that is the average of the |η p 1 -η 1 |/η 1 is less than 18%. This shows that thanks to Formula (III.2), we can forecast the new value of η, and therefore the new trading costs, with a good accuracy. Our prediction for η being quite sharp, it is no surprise that we are able to forecast whether or not a stock is going to remain large tick and whether it is balanced in Phase 1. For nine of the stocks, our forecast was that it would remain large tick, and seven of these predictions were correct (classifying the "ambiguous" case as correct). We also predicted that two of the assets would become small tick and both predictions were correct. Thus, the predictive power of our methodology is very high.

According to our optimality notion, three of the twelve stocks now enjoy a suitable tick value (balanced large tick stocks): Seven I Holdings Co Ltd, Takeda Pharmaceutical Co Ltd and Tokio Marine Holdings Inc. Such results could have been obtained ex ante using our approach. Indeed, following our methodology, a regulator or an exchange can anticipate the suitable way to operate a tick value change, especially when the goal is to decrease the tick value of an unbalanced stock. To end this subsection, as an illustration, we give in Figure III.3 detailed results about η for the stock Canon Inc. More precisely, we provide daily estimations of η for the last 3.5 months of Phase 0 and the first 3.5 months of Phase 1. We also add the average values of η during both phases together with our forecast for the value of η in Phase 1. We see on this example that our prediction is very close to the realized value.

Analysis of the

Phase 1 -Phase 2

The tick value reduction program affects much more stocks in Phase 2. Using the same selection criteria as previously (replacing Phase 0 by Phase 1 and Phase 1 by Phase 2), we find 48 stocks that are large tick assets during Phase 1 and have their tick value effectively reduced in Phase 2. Experiements 2014

We draw a similar analysis as the one for Phase 0-Phase 1. The results are given in Table III.4, where the index 1 is used to denote quantities in Phase 1 and the index 2 quantities in Phase 2.

Once again, we obtain an excellent accuracy for predicting the value of η in Phase 2 based on that in Phase 1. Indeed, the average relative error is here less than 17%. Among the 48 assets, 16 of them are predicted to become small tick stocks and all these predictions are correct. Moreover, 28 stocks are predicted to remain large tick and 23 of these predictions are correct (taking the ambiguous cases as correct). Regarding the fact of being balanced, more than 85% of our predictions are realised. Hence the study of the evolution of the market between Phase 1 and Phase 2 confirms what was found for Phase 0-Phase 1: our device based on η enables us to forecast ex ante the consequences of a change in the tick value on the market microstructure.

Note that after this second phase, the stocks Canon Inc, Chubu Electric Power Co Inc, Dalichi Sankyo Co Ltd, JX Holdings Inc, Komatsu Ltd and Mitsubishi Electric Corp seem to have a suitable tick value (balanced large tick stocks).

Conclusion

Based on data from the TSE pilot program, we have studied the effects of tick value changes on the microstructure of large tick stocks. This has been done using the microstructural parameter η which summarizes the high frequency features of a large tick asset, in particular the associated trading costs. The prediction formula suggested in [START_REF] Dayri | Large tick assets: implicit spread and optimal tick size[END_REF] for the new value of the parameter η after a tick value change has been tested using all the stocks of the Japanese experiment. We have compared the prediction results in Phase 1 and Phase 2 with the realized η, and shown that Formula (III.2) provides very accurate forecasts. In particular, we can predict ex ante whether a large tick stock will become a small tick stock after a tick value change and whether or not its associated trading costs will be balanced between market makers and liquidity takers.

This work validates the quantitative tools developed in [START_REF] Dayri | Large tick assets: implicit spread and optimal tick size[END_REF] for studying the consequences of a tick value modification. It provides detailed practical guidelines for market regulators and exchanges searching for optimal tick values. Indeed, it can help them choose suitable tick values without applying any trial and error method, which may largely reduce the duration and cost of pilot programs. Interestingly, the above simple framework allows us to deduce a link between efficient price dynamics, proportion of noise trades, market volume, bid-ask spread and the equilibrium LOB state. The question of how the bid-ask spread emerges from the behavior of market participants has been discussed by many researchers. It is generally accepted that the bid-ask spread is non zero because of the existence of three types of cost: order processing costs [START_REF] Huang | The components of the bid-ask spread: A general approach[END_REF]), inventory costs [START_REF] Ho | Optimal dealer pricing under transactions and return uncertainty[END_REF]) and adverse selection costs [START_REF] Glosten | Bid, ask and transaction prices in a specialist market with heterogeneously informed traders[END_REF]). In our framework, both the order processing costs and the inventory costs are neglected and we consider the bid-ask spread as a purely informational phenomenon as in [START_REF] Glosten | Bid, ask and transaction prices in a specialist market with heterogeneously informed traders[END_REF]. Under our settings, the bid-ask spread emerges naturally from the fact that limit orders placed too close to the efficient price have negative expected returns when being executed: the existence of the informed trader and the potential unexpected large price jumps prevent market makers from placing limit orders too close to the efficient price. Moreover, the equilibrium LOB state is shown as a direct consequence of the competition between market makers, which we believe should be closely linked with the invariant distribution of the LOB state discussed in Part I.

Conclusion

Although the tick value is assumed to be constant in most LOB models, it is clear that changes of the tick value will probably lead to significant changes in the microscopic features of the underlying asset. The effects of such changes are rarely discussed in the literature. In our model, the tick value is considered as one of the structural parameters. This enables the study of its roles in determining the LOB dynamics as well as the equilibrium state. The discretization of available price levels enables also a quantitative definition of the queue priority value in our framework, which is often termed only qualitatively as the advantages of an order placed on top of a queue compared to an order placed at the bottom. This chapter is organized as follows. In Section 2, we present the core agent-based model with zero tick value. Based on the greedy assumptions of the informed trader's behavior, a link is deduced between market volume, price jump and the cumulative LOB shape. We then make an additional assumption on the zero-profit of market makers, which enables us to compute explicitly the bid-ask spread as well as the equilibrium LOB shape. In Section 3, the case of non-zero tick value is considered. We show that the constrained bid-ask spread is equal to the sum of the intrinsic bid-ask spread (without the tick value constraint) and the imposed tick value constraint. The equilibrium LOB shape under positive tick value is also deduced and we give an explicit formulation that quantifies the priority value of any order at a queue. The framework is generalized to include the market makers' uncertainty on the efficient price in Section 5. In such case, we explain how the information is propagated from the informed trader to the market makers, and the effects of this uncertainty on the bid-ask spread when a transaction happens. The speed of LOB recovery is discussed at the end of this section, in which we show that the order book will gradually recover to its equilibrium state if the reaction time of the informed trader is short enough compared to the frequency of noise trade and of information arrival.

Basic Model

Price Dynamics

Denote P (t ) the market underlying efficient price, whose dynamics is described by the following equation:

Basic Model

P (t ) = P 0 + Y (t ),
where Y (t ) is a compound Poisson process with jump rate λ i and size distribution ψ (defined on R). We will denote B as the jump size of this process: B represents the price deviation once a jump happens, which follows the distribution ψ.

We have:

E[Y (t )] = λ i t E[B ].
So for the price process P (t ) to be a martingale, the average value of the deviation B is assumed to be equal to zero. In such case, we have V[P (t )] = λ i t E[B 2 ], where the term λ i E[B 2 ] represents the macroscopic volatility of the efficient price process and will be denoted by σ:

σ 2 = λ i E[B 2 ].
(IV.1) σ represents the fundamental volatility of the asset, due to the nature of incoming information, and can be considered as one of the invariant element in an asset's dynamics when other modifiable factors such as the tick value change.

Informed Trader, Noise Trader and Market Maker

Assume that there are three types of traders in the market:

• One informed trader: the informed trader receives the value of the price jump size B (and the efficient price P (t )) right before a price jump happens. He then sends his trades based on this information to gain profit. We assume that he can only send market orders.

• One noise trader: the noise trader sends random market orders to the market. We assume that these trades follows a compound Poisson process, with arrival rate λ u and volume distribution κ u in R (positive volume represents a buying order, while negative volume represents a selling order).

• Market makers: the market makers receives the value of the price jump size B (and the efficient price P (t )) right after a price jump happens. They place limit orders and try to make profit. We assume that they are risk neutral.

Firstly, we consider the case when the tick size is equal to 0. The LOB is composed of limit orders placed by market makers around the efficient price P (t ). We denote the cumulative available liquidities till P (t ) + x by L(x). L(x) represents the total quantities of the limit selling orders with price smaller or equal than P (t ) + x when x > 0, and the negative of the total quantities of the limit buying orders with price larger or equal than P (t )x when x < 0. This function L(x) will be called the cumulative LOB shape function.

Unlike the modeling approach used in [START_REF] Madhavan | Why do security prices change? A transaction-level analysis of NYSE stocks[END_REF] and [START_REF] Wyart | Relation between bid-ask spread, impact and volatility in order-driven markets[END_REF] where incoming order flows have non-zero impact on the concensus price's dynamics, the efficient price P (t ) is assumed to be independent of the order book dynamics in the above settings. In our framework, P (t ) should be considered as the long-term equilibrium price of the asset given current information, which changes only when new information arrives on the market. We consider the impact of order book events as the results of information propagation between market participants, which will be discussed in details in Section 5.

Some Assumptions

We first give some regularity assumptions. Let's denote the cumulative distribution function of B (the price jump size) by F ψ (x), and the cumulative distribution function of Q u (the noise trader's trade size) by F κ u (x).

Assumption 31. F ψ (x) and F κ u (x) are both differentiable. Their probability density functions will be denoted respectively by f ψ (x) and f κ u (x). f ψ (x) and f κ u (x) are both positive continuous functions, and for all x ∈ R (Buy-Sell Symmetry):

f ψ (-x) = f ψ (x) f κ u (-x) = f κ u (x).
Moreover,

E[|B |] < ∞ E[|Q u |] < ∞.
For the cumulative LOB shape function L(x), we assume: Assumption 32. The cumulative LOB shape function L(x) is a continuous increasing function with L(0) = 0. And for all x such that |L(x)| > 0, L(x) is differentiable, with l (x) = L (x) a continuous function in such cases.

We can thus define the following inverse cumulative LOB shape function L -1 (q) as:

L -1 (q) = argmax x {x|L(x) = q}.
(IV.2) Note that L -1 (q) is not continuous unless L(x) is strictly increasing.

Links between the Trade Size Q, Price Jump B and the LOB Cumulative Shape L(x)

Given the function L(x), we now specify the behavior of the informed trader in the following assumption. This assumption links the trade size Q i of the informed trader with the LOB cumulative shape L(x) and the price jump size B received by the informed trader.

Assumption 33. Based on the received value of B and the cumulative LOB shape function L(x) provided by the market makers, the informed trader sends his trade in a greedy way such that he wipes out all the available liquidities in the LOB till the level P (t ) + B , thus, his trade size Q i satisfies (Q i is positive for a buy order and negative for a sell order), given the information signal B and the function L(x):

Q i = L(B ).
Denote F κ i (x) the cumulative distribution function of the informed trader's trade size, F κ u (x) the cumulative distribution function of the noise trader's trade size, and F κ (x) the cumulative distribution function of the trader's trade size (both of the informed and noise trader), we have the following theorem (with r = λ i λ i +λ u , representing the proportion of informed trader's trade, recall that F ψ (x) is the cumulative distribution function of the price jump size B , and L -1 (q) the inverse function defined by Equation IV.2):

Theorem 1. The cumulative distribution functions F κ i (x), F κ u (x) and F κ (x) satisfy:

F κ i (q) = F ψ i (L -1 (q))
F κ (q) = r F κ i (q) + (1r )F κ u (q). (IV.3)

The Bid-Ask Spread and the Equilibrium LOB Shape

Now the question remains for the market makers to determine the function L(x), given the greedy behavior of the informed trader and the random behavior of the noise trader.

Let's consider the profit of passive selling orders placed between P (t )+x and P (t )+x +δp for some x, δp > 0, given the fact that these orders are totally executed. This conditional expected gain will be denoted by G(x, δp), and we have the following equation (with ν a random variable that is equal to 1 if the trade is initiated by the informed trader, 0 if it is initiated by the noise trader): If L(x) > 0 and L(x + δp) > L(x) for δp sufficiently small (or equivalently that for all δp > 0, sup s∈[x,x+δp] l (s) > 0, we can define the average profit per unity at x, denoted by G(x):

G(x) = lim δp→0 + G(x, δp) L(x + δp) -L(x) = x -r 1 -F κ i (L(x)) 1 -F κ (L(x)) E[B |B > x] = x - r E[B 1 B >x ] 1 -F κ (L(x)) = x - r E[B 1 B >x ] 1 -r F ψ (x) -(1 -r )F κ u (L(x))
.

It is easy to see that G(x) is a decreasing function of L(x), so that when G(x) is positive, the market makers will add new liquidities to the LOB (increase the value of L(x)), as they can still make profit in average. This kind of competition between market makers results in the following zero profit assumption: Assumption 34. For every x ∈ R + , if L(x) > 0 and l (x) > 0, then the conditional expected average gain per unity of passive orders placed at x, given the fact that they are totally executed, is equal to 0, that is, when L(x) > 0 and l (x) > 0:

G(x) = 0.
Equivalently, we have:

x = r E[B 1 B >x ] 1 -F κ (L(x))
.

(IV.4)

The case corresponding to passive buying orders can be similarly obtained:

Assumption 35. For every x ∈ R -, if L(x) < 0 and l (x) > 0, then the conditional expected average gain per unity of passive orders placed at x, given the fact that they are totally executed, is equal to 0, that is, when L(x) < 0 and l (x) > 0:

G(x) = 0.
Equivalently, we have:

x = r E[B 1 B <x ]
F κ (L(x)) .

(IV.5)

Remark 1. In the continuous case, it might be difficult to image how the competitions between different market makers happen. One can think of the case that every market maker specifies his own L(x) (cumulative liquidities that he provides till each price level), then Assumption 34 means that, when there is still space for future profit in x (G(x) > 0), other market makers will come to the market, and increase the liquidities in the LOB so that in the end, no further profit can be made by adding liquidities anywhere.

Remark 2. The above zero profit assumptions can also be seen as the generalized version of the zero profit assumption proposed in [START_REF] Glosten | Bid, ask and transaction prices in a specialist market with heterogeneously informed traders[END_REF], in which the zero profit is only assumed for the two best offer limits. It is also interesting to point out that, under this generalized zero profit assumption, those fast market makers can still make profit, as their orders are placed earlier in the LOB (this point will be made clearer in the discrete case).

Now considering the ask side of the limit order book. If L(x) > 0 for all x > 0, we shall have:

lim x→0 + G(x) = -r E[B 1 B >0 ] 1 -F κ (0) = -2r E[B 1 B >0 ] < 0.
As G(x) is a continuous function of x, there exists some δx > 0, such that for all x ∈ (0, δx), G(x) < 0. Then according to Assumption 34, we should have l (x) = 0 for all x ∈ (0, δx), which means that L(x) = 0 for all x ∈ (0, δx). This is clearly controversial. Now assume that L(x) = 0 till some positive value η, and that L(x) > 0, for all x > η. From Assumption 34, we have, for all x > η, if l (x) > 0:

x = r E[B 1 B >x ] 1 -r F ψ i (x) -(1 -r )F κ u (L(x))
.

Assumption 38. For every i ∈ N + , if l d (i ) = 0, then the potential conditional expected average gain of passive selling orders placed at d + (i -1)α, given the fact that they are totally executed, is less than or equal to 0, that is, when l d (i ) = 0: Gd (i ) ≤ 0.

Equivalently, we have:

d + (i -1)α ≤ r E[B 1 B ≥d +(i -1)α ] 1 -r F ψ (d + (i -1)α) -(1 -r )F κ u (max(0, L d (d + (i -2)α))
) .

Remark 1. We will see latter that Gd (i ) represents also the priority value of the first order placed at the i -th limit.

As for the bid side, we have the following two corresponding assumptions: Assumption 39. For every i ∈ N -, if l d (i ) < 0, then the conditional expected average gain of passive buying orders placed at d + i α, given the fact that they are totally executed, is equal to 0, that is, when l d (i ) < 0:

G d (i ) = 0.
Equivalently, we have:

d + i α = r E[B 1 B ≤d +i α ]
F κ (L d (d + i α)) .

(IV.9) Assumption 40. For every i ∈ N -, if l d (i ) = 0, then the potential conditional expected average gain of passive buying orders placed at d + i α, given the fact that they are totally executed, is less than or equal to 0, that is, when l d (i ) = 0: Gd (i ) ≤ 0.

Equivalently, we have:

d + i α ≥ r E[B 1 B ≤d +i α ] r F ψ (d + i α) + (1 -r )F κ u (min(0, L d (d + (i + 1)α))) .
As in the continuous case, let's consider the first non empty ask limit k d r , we should have:

d + (k d r -1)α = r E[B 1 B ≥d +(k d r -1)α ] 1 -F κ (l d (k d r )) d + (k d r -1)α > r E[B 1 B ≥d +(k d r -1)α ] 1 -F κ (0)
, which leads to:

F κ u (l d (k d r )) = 1 1 -r - r 1 -r E[max ( B d + (k d r -1)α
, 1)].

Generalization

know the value of the efficient price after this transaction, that is, market makers no longer obtain the information of the price jump B . Given a buying market order (we consider only the ask side of the LOB in the sequel for simplicity) of volume q (till the price level p ) at time t , assume now, that if this trade is issued by the informed trader, then after this trade, he is going to take any liquidities below the new efficient price p with some reaction time, distributed exponentially with rate r a . In such case, we have, immediately after a transaction, the gain of limit orders placed between x and x + δp can be written as (ν i is a random variable with ν i = 1 if the transaction comes from the informed trader, ν i = 0 if the transaction comes from the noise trader):

g p (x, δp) = ν i g p (x, δp) + (1 -ν i )g (x, δp),
where g p (x, δp) represents the gain in the case of an informed trade, and g (x, δp) that in the case of a noise trade.

Three different cases can happen when the trade is initiated by the informed trader given the fact that the limit orders placed between between x and x + δp are completely executed (and no other event happens in-between):

• e 1 : The limit orders are consumed by a noise trade.

• e 2 : The limit orders are consumed by an informed trade, due to the arrival of a new price jump.

• e 3 : The limit orders are consumed by an informed trade, without the arrival of a new price jump.

For g p (x, δp), we have (define 1 e i = 1 if event e i happens and = 0 otherwise, and denote by B new the new price jump): Thus, we have, if L(x) > 0 and L(x + δp) > L(x) for all δp sufficiently small, the average expected gain at the price x writes: For x < p :

Gp (x) = lim δp→0 +
Gp (x, δp)

L(x + δp) -L(x) = x -p - r i E[B new 1 B new >x-p ]
1r i F ψ (xp )r u F κ u (L(x)) .

For x ≥ p , we have:

Gp (x) = lim δp→0 + Gp (x, δp) L(x + δp) -L(x) = x -p - r E[B new 1 B new >x-p ] 1 -r F ψ (x -p ) -(1 -r )F κ u (L(x)
) .

And:

G(x) = lim δp→0 + G(x, δp) L(x + δp) -L(x) = x - r E[B new 1 B new >x ] 1 -r F ψ (x) -(1 -r )F κ u (L(x))
. 5. Generalization Theorem 7. If the informed trader is assumed to react to the new profitable liquidities with some exponentially distributed reaction time (with intensity λ a ) and the efficient price P (t -) is assumed to be known to the market makers, then under Assumption 31, 33 and 41, immediately after a buying transaction happens at the price P (t -) + p at time t , the cumulative LOB shape function satisfies: for every x ∈ R + , if L(x) > 0 and l (x) > 0, then G p (x) = 0. Moreover, if Assumption 42 applies, then the best ask price a p immediately after the transaction satisfies: r p p < a p < p .

And the cumulative LOB shape function L(x) can be approximated by the following equation when x < p :

L(x) ≈ F -1 κ u ( 1 1 -r - r (1 -r p )E[max(B, x)] -r r p (p -x)F ψ (x)
(1r )(xr p p ) ).

In particular, we have, for x = p :

L(p ) ≈ F -1 κ u ( 1 1 -r - r 1 -r E[max( B p , 1)]) = L -(p ),
with L -(p ) the cumulative LOB shape function right before the transaction at the price P (t -) + p .

Theorem 7 suggests that in such settings, the cumulative number of orders immediately after a trade event at p stayes almost the same, while there will be no quantities available between [p , p + δp) for some δp > 0, as the condition G p (x) = 0 cannot be satisfied for x ∈ [p , p + δp) due to the discontinuity of the value function at p . The question about how the LOB recovers to its previous state or converges to a new equilibrium state will be discussed latter.

Power-Law Distributed Information

We give here an example of power-law distributed information. When f ψ (x) = C x -γ for x ∈ ( , ∞), we can compute:

E[B |B > p ] = ∞ p x f ψ (x) 1 -F ψ (p ) d x = ∞ p
x -γ+1 (γ -1) p -γ+1 d x = (γ -1)p (γ -2) .

Thus:

r p = γ -2 γ -1 .
And:

1 + r 2r ≈ C (a p ) 2-γ γ-1 γ-2 a p -p + 1 - C (a p ) 1-γ γ -1 1 -r 2r ≈ C (a p ) 2-γ γ-1 γ-2 a p -p - C (a p ) 1-γ γ -1 1 -r 2r ≈ C (a p ) 1-γ ( a p γ-1 γ-2 a p -p - 1 γ -1
).

Let a p = r p p +x, then the best ask price a p satisfies the following equation in this example:

1r 2r ≈ C (a p ) 1-γ ( r p p x + r p ).

LOB Recovery Speed

Consider the average expected conditional gain of passive selling orders placed at x at time t + δt (denoted by G p (x, δt )), given the fact that no trade arrives between (t , t + δt ]. We have, similar to Equation IV.13, for x < p : When δt → ∞, r p δt → 0, and G p (x, δt ) → G(x), that is, if the trade is intiated by the noise trader, the LOB shape will gradually recover after this trade to its stationary state, with speed ∼ e -λ a t .

Conclusion and perspectives

In this chapter, we introduce an agent-based model on the LOB dynamics. Based on a greedy assumption on the behavior of the informed trader and a zero-profit assumption on the market makers, a link between the proportion of noise trade, bid-ask spread, dynamics of the efficient 6. Conclusion and perspectives price and the equilibrium LOB state is established. The effect of introducing the tick value constraint is then discussed, and we show that the constrained bid-ask spread is equal to the sum of the tick value and the intrinsic bid-ask spread that corresponds to the case of zero tick value. Price discretization also enables the explicit computation of the priority value when the tick value is positive. The model is then extended to study the consequence of adding the uncertainty on the efficient price on the market makers. Two main subjects are discussed in this generalized model: the information propagation between the informed trader and the market makers and the LOB recovery speed.

Although many interesting discoveries have been made in this chapter, a lots remain to be done. Till now, only market makers are allowed to insert limit orders, this is clearly unrealistic. In real market, the roles of the informed trader and that of the market makers are often mixed, as the informed trade has also the possibility of placing passive limit orders. By placing limit orders to the market, the informed trader may leak some information to the market makers, which may lead to an adjustment of their estimated value of the efficient price. The consequences of introducing such interactions are still unknown to us.
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  Figure I.7: Model II b : joint distribution of q -1 , q 1 , France Telecom

  II b : Asymptotic behavior Monte-Carlo simulations are used to obtain the theoretical invariant distribution of the LOB in Model II b . The theoretical and empirical joint distributions of Q -1 and Q 1 are shown in Figure I.7.
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  Figure III.1: The three different zones when the bid-ask is 100-101 and the tick value is equal to one. The red dotted lines are the limits of the uncertainty zone. The uncertainty zone inside the spread is the buy/sell zone. The upper dotted area is the ask zone and the lower dotted area is the bid zone.
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  Figure III.2: Daily values of η for all the assets of the TOPIX 100 index, for every day so that the daily average spread is smaller than two ticks, from 2013, June 3 to 2013, December 30.
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 3 Figure III.3: Daily estimations of η for the last 3.5 months of Phase 0 and the first 3.5 months of Phase 1 for the stock Canon Inc.

  sd s -[L(x + δp) -L(x)]E[νB |Q ≥ L(x + δp)] = x+δp x l (s)sd s -[L(x + δp) -L(x)]r 1 -F κ i (x + δp) 1 -F κ (L(x + δp)) E[B |B > x + δp].

  g p (x, δp) = 1 e 1 x+δp x l (s)(sp )d s + 1 e 2 [ x+δp x l (s)sd s -(L(x + δp) -L(x))(B new + p )] +1 e 3 [ x+δp x l (s)sd s -(L(x + δp) -L(x))p ] = x+δp x l (s)sd s -(L(x + δp) -L(x))p -1 e 2 (L(x + δp) -L(x))B new .As for g (x, δp), the event e 3 is not possible, we have:g (x, δp) = 1 e 1 x+δp x l (s)(s)d s + 1 e 2 [ x+δp x l (s)sd s -(L(x + δp) -L(x))B new ] = x+δp x l (s)sd s -1 e 2 (L(x + δp) -L(x))B new .We then compute the conditional expectations of these two gains.Gp (x, δp) = E[ g p (x, δp)|v i = 1] = x+δp x l (s)sd s -(L(x + δp) -L(x))p -(L(x + δp) -L(x))E[1 e 2 B new |v i = 1].IV. Intelligence and Randomness of Market Participants For x < p and x + δp < p , we have (denoter i = λ i λ i +λ u +λ a and r u = λ u λ i +λ u +λ a ): G p (x, δp) = x+δp x l (s)sd s -(L(x + δp) -L(x))p -(L(x + δp) -L(x)) r i E[B new 1 B new >x+δp-p ] 1r i F κ i (L(x + δp))r u F κ u (L(x + δp)) .For x ≥ p , we have:Gp (x, δp) = x+δp x l (s)sd s -(L(x + δp) -L(x))p -(L(x + δp) -L(x)) r E[B new 1 B new >x+δp-p ] 1r F κ i (L(x + δp)) -(1r )F κ u (L(x + δp)) .And:G(x, δp) = E[g (x, δp)|v i = 0] sd s -[L(x + δp) -L(x)] r E[B new 1 B new >x+δp ] 1r F ψ (x + δp) -(1r )F κ u (L(x + δp)).

Finally

  , we have, (denote L -(p ) as the cumulative LOB quantities right before the transaction at the price level p and denote r p = r (1-F ψ (p )) 1-r F ψ (p )-(1-r )F κ u (L -(p )) :

  conditional probability that the last transaction is sent by the informed trader, given the fact that no trade arrives between (t , t + δt ):r p δt = r p e -(λ i +λ u +λ a )δt r p e -(λ i +λ u +λ a )δt + (1r p )e -(λ i +λ u )δt = 1 1 + 1-r p r p e λ a δt, and Gp δt (x) the average expected conditional gain of passive selling orders placed at x at time t + δt in the case that the last transaction is an informed trade, G δt (x) that in the case of a noise trade. It is easy to see that G δt (x) = G(x) and Gp δt (x) = Gp (x), thus, for x < p : G p (x, δt ) = r p δt Gp (x) + (1r p δt )G(x).
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	Slippage =	P benchmar k -P exec P benchmar k	,
	Slippage t heo =	P benchmar k -P t heo exec P benchmar k	,

.2 Analysis of the Tokyo stock exchange pilot program on tick values

  

	Introduction		
	2.1The Tokyo stock exchange pilot program, in which 55 stocks are involved in a tick size reduction
	plan, consists in three phases: Phase 0 (before the pilot program), from June 3, 2013 to January
	13, 2014; Phase 1 (between the first and the second implementation of the tick value reduction
	program), from January 14, 2014 to July 21, 2014; Phase 2 (after the implementation of the second
	tick value reduction program), from July 22, 2014 to December 30, 2014. We assess the quality
	of the prediction formula on this experiment by predicting the outcomes of the first and second
	tick value reductions and comparing our forecasts to the empirical results.
	0.36	1) 2	.

  ).

	stock	average number of average number of average spread size
		orders per day	trades per day	(in number of ticks)
	France Telecom	159250	7282	1.43
	Alcatel Lucent	129400	8626	1.99

Table I.1: Data description
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Table III

 III . The Effect of Tick Value Changes on Market Microstructure: Analysis of the Japanese Experiements 2014

	Quoted price below (¥) Phase 0 tick value (¥) Phase 1 tick value (¥) Phase 2 tick value (¥)
	1,000	1	1	0.1
	3,000	1	1	0.5
	5,000	5	1	0.5
	10,000	10	1	1
	30,000	10	5	5
	50,000	50	5	5
	100,000	100	10	10
	300,000	100	50	50
	500,000	500	50	50
	1,000,000	1000	100	100
	3,000,000	1000	500	500
	5,000,000	5000	500	500
	10,000,000	10000	1000	1000
	30,000,000	10000	5000	5000
	50,000,000	50000	5000	5000
	Higher prices	100000	10000	10000
	• Phase 1 (from the first implementation of the tick value reduction program to the second
	one): from January 14, 2014 to July 21, 2014.		

• Phase 2 (after the second implementation of the tick value reduction program): from July 22, 2014 to December 30, 2014. The details of the pilot program are given in Table III.1. III.1: Tick value reduction table.

Table III .

 III Tokyo Stock Exchange pilot program on tick values 3: For the 12 selected stocks: Average spread and value of η in Phase 0 and Phase 1, categories in Phase 1, and predictions for η and the categories. The number of stars * in front of a company name represents the number of good predictions (one for being large tick or not,

	Company name	S 0	η 0	S 1	η 1	LTick 1	Bal 1	η	p 1	LTick 1 p	p 1 Bal
	**Astellas Pharma Inc	1.05	0.14	1.72	0.43	No	Yes	0.66 [0.50,0.71]	No	Yes
	**Canon Inc	1.04 0.06	1.13	0.23	Yes	No	0.26 [0.19,0.27]	Yes	No
	**Honda Motor Co Ltd	1.04	0.10	1.23	0.32	Yes	No	0.34 [0.26,0.37]	Yes	No
	**Japan Tobacco Inc	1.04	0.12	1.23	0.32	Yes	No	0.39 [0.26,0.41]	Yes	No
	**Mitsui Fudosan Co Ltd	1.07 0.23	1.95	0.66	No	Yes	0.63 [0.52,0.69]	No	Yes
	*Nippon Telegraph Telephone Corp	1.04 0.08	2.00 0.62	No	Yes	0.46 [0.35,0.51]	Yes	Yes
	(*)*Seven I Holdings Co Ltd	1.06	0.16	1.55	0.51 Ambiguous	Yes	0.49 [0.38,0.55]	Yes	Yes
	*Softbank Corp	1.05 0.06	1.85	0.50	No	Yes	0.40 [0.32,0.40]	Yes	Yes
	*Sumitomo Mitsui Financial Group Inc	1.15	0.08	1.33	0.34	Yes	No	0.47 [0.27,0.47]	Yes	Yes
	**Takeda Pharmaceutical Co Ltd	1.06	0.13	1.46	0.43	Yes	Yes	0.42 [0.28,0.45]	Yes	Yes
	(*)*Tokio Marine Holdings Inc	1.05	0.18	1.39	0.46	Yes	Yes	0.53 [0.41,0.57]	Ambiguous	Yes
	**Toyota Motor Corp	1.03 0.04	1.36	0.32	Yes	No	0.35 [0.27,0.33]	Yes	No

one for being balanced or not). A star between brackets (*) corresponds to an "ambiguous" case.

Table III .

 III 4: For the 48 selected stocks: Average spread and value of η in Phase 1 and Phase 2, categories in Phase 2, and predictions for η and the categories. The meaning of the stars in front of the company names is the same as for TableIII.3. 

	IV. Intelligence and Randomness of Market Participants								
	process.											
	Company Name	S 1	η 1	S 2	η 2	LTick 2	Bal 2	η	p 2	LTick	p 2	p 2 Bal
	**Aeon Co Ltd	1.03	0.12	1.16	0.16	Yes	No	0.21 [0.18,0.26]	Yes		No
	**Asahi Class Co Ltd	1.01	0.14	2.49 0.87	No	Yes	0.67 [0.52,0.82]	No		Yes
	**Asahi Kasei Corp	1.03 0.23	3.43	1.02	No	Yes	0.93 [0.76,1.07]	No		Yes
	**ANA Holdings Inc	1.00 0.02	1.37	0.30	Yes	No	0.29 [0.26,0.31]	Yes		No
	**Bank of Yokohama Ltd	1.02 0.22	3.28 0.98	No	Yes	0.92 [0.77,1.05]	No		Yes
	(*)Canon Inc	1.13	0.23	1.59	0.43 Ambiguous	Yes	0.36 [0.30,0.43]	Yes		No
	**Chubu Electric Power Co Inc	1.10	0.31	1.45	0.44	Yes	Yes	0.48 [0.40,0.55]	Yes		Yes
	**Daiwa Securities Group	1.02	0.19	3.42	1.09	No	Yes	0.81 [0.70,0.90]	No		Yes
	**Dai-ichi Life Insurance Co Ltd	1.08 0.25	1.35	0.35	Yes	No	0.39 [0.33,0.47]	Yes		No
	**Dalichi Sankyo Co Ltd	1.10	0.27	1.43	0.40	Yes	Yes	0.43 [0.35,0.50]	Yes		Yes
	**Fujitsu Ltd	1.01	0.16	2.80 0.97	No	Yes	0.72 [0.60,0.80]	No		Yes
	(*)*Hitachi Ltd	1.01	0.09	2.55	0.81	No	Yes	0.50 [0.42,0.58] Ambiguous	Yes
	*Honda Motor Co Ltd	1.23 0.32	1.69	0.49	No	Yes	0.49 [0.43,0.55]	Yes		Yes
	*Inpex Corp	1.08 0.25	1.34	0.37	Yes	No	0.40 [0.35,0.45]	Yes		Yes
	**ITOCHU Corp	1.03	0.13	1.17	0.24	Yes	No	0.23 [0.18,0.27]	Yes		No
	(*)*Japan Tobacco Inc	1.23 0.32	1.86	0.55	No	Yes	0.50 [0.40,0.57] Ambiguous	Yes
	(*)*JX Holdings Inc	1.01	0.07	1.52	0.41	Ambiguous	Yes	0.44 [0.38,0.50]	Yes		Yes
	**Kansai Electric Power Co Ltd	1.07 0.25	4.20	1.03	No	Yes	1.01 [0.86,1.17]	No		Yes
	*Kirin Holdings Co Ltd	1.10	0.29	1.31	0.34	Yes	No	0.45 [0.31,0.57]	Yes		Yes
	*Komatsu Ltd	1.10	0.24	1.50	0.46	Yes	Yes	0.39 [0.33,0.43]	Yes		No
	**Kubota Corp	1.15	0.37	1.69	0.59	No	Yes	0.57 [0.49,0.64]	No		Yes
	**Marubeni Corp	1.01	0.10	1.99	0.57	No	Yes	0.54 [0.44,0.62]	No		Yes
	*Mitsubishi Chemical Holdings	1.00 0.08	1.97	0.59	No	Yes	0.46 [0.36,0.52]	Yes		Yes
	**Mitsubishi Corp	1.05	0.18	1.40	0.36	Yes	No	0.29 [0.24,0.34]	Yes		No
	**Mitsubishi Electric Corp	1.08 0.29	1.50	0.49	Yes	Yes	0.45 [0.39,0.52]	Yes		Yes
	**Mitsubishi Estate Co Ltd	1.48 0.53	2.46 0.84	No	Yes	0.79 [0.71,0.89]	No		Yes
	**Mitsubishi Heavy Industries	1.01	0.11	2.42 0.80	No	Yes	0.56 [0.45,0.66]	No		Yes
	**Mitsubishi UFJ Financial Group Inc	1.00 0.03	1.44	0.32	Yes	No	0.30 [0.28,0.32]	Yes		No
	**Mitsui Co Ltd	1.04	0.14	1.18	0.21	Yes	No	0.24 [0.20,0.28]	Yes		No
	**Nippon Steel Sumitomo Metal Corp	1.00 0.03	1.29	0.31	Yes	No	0.30 [0.27,0.34]	Yes		No
	(*)*Nissan Motor Co Ltd	1.01	0.09	2.27 0.62	No	Yes	0.50 [0.42,0.58] Ambiguous	Yes
	Nomura Holdings Inc	1.00 0.05	1.90	0.51	No	Yes	0.36 [0.33,0.40]	Yes		No
	**NTT DoCoMo Inc	1.03	0.17	1.28	0.34	Yes	No	0.28 [0.24,0.32]	Yes		No
	**ORIX Corp	1.06 0.23	1.23	0.33	Yes	No	0.37 [0.32,0.42]	Yes		No
	**Osaka Gas Co Ltd	1.00	0.12	2.21	0.81	No	Yes	0.59 [0.47,0.70]	No		Yes
	**Panasonic Corp	1.03	0.14	1.19	0.22	Yes	No	0.24 [0.20,0.28]	Yes		No
	*Resona Holdings Inc	1.00 0.06	1.84	0.56	No	Yes	0.41 [0.36,0.45]	Yes		Yes
	**Ricoh Co Ltd	1.05 0.25	1.23	0.29	Yes	No	0.39 [0.33,0.46]	Yes		No
	**Sony Corp	1.04	0.16	1.49	0.37	Yes	No	0.26 [0.21,0.32]	Yes		No
	**Sumitomo Corp	1.03	0.14	1.17	0.20	Yes	No	0.24 [0.19,0.29]	Yes		No
	*Sumitomo Electric Industries	1.07 0.29	1.32	0.37	Yes	No	0.45 [0.36,0.53]	Yes		Yes
	(*)*Sumitomo Mitsui Financial Group Inc 1.33	0.34	1.92	0.59	No	Yes	0.52 [0.46,0.59] Ambiguous	Yes
	**Sumitomo Mitsui Trust Holdings Inc	1.00	0.12	1.74	0.62	No	Yes	0.59 [0.48,0.67]	No		Yes
	**Takeda Pharmaceutical Co	1.46 0.43	2.19	0.67	No	Yes	0.65 [0.56,0.73]	No		Yes
	**Tokio Marine Holdings Inc	1.39 0.46	2.10	0.70	No	Yes	0.70 [0.61,0.76]	No		Yes
	**Tokyo Gas Co Ltd	1.01	0.14	2.54	0.91	No	Yes	0.66 [0.55,0.76]	No		Yes
	**Toray Industries Inc	1.02	0.14	3.24 0.98	No	Yes	0.64 [0.51,0.77]	No		Yes
	Toshiba Corp	1.00 0.05	1.74	0.52	No	Yes	0.37 [0.31,0.42]	Yes		No

A large tick asset is defined as an asset whose bid-ask spread is almost always equal to one tick.

< 0.55 as an "ambiguous" case between large tick and small tick.

A large tick asset is defined as an asset whose bid-ask spread is almost always equal to one tick, see[START_REF] Dayri | Large tick assets: implicit spread and optimal tick size[END_REF]. In practice, our framework can be considered relevant for any asset whose average spread is smaller than

2.5 ticks. 2 Note that the reference price will not be exactly the midprice, see Section 2.2.

Note that an empty limit can be part of the LOB in our setting.

To simplify our notations, we write * i / * -i as * ±i , and * -i / * i as * ∓i .

In our framework, AES i is a more suitable choice than ATS (Average Trade Size) that computes only the average size of market orders, see Section 5.6 in appendix for more details.

Cheuvreux is a brokerage firm based in Paris, formerly a subsidiary of Crédit Agricole Corporate Investment Bank, and now merged with Kepler Capital Market.

Other sampling frequencies have also been tested and the estimated distributions are found to be very similar. These sampled data will also be used to estimate the joint distributions of the LOB limits in Model II a and II b .

Note that the computation of the confidence intervals becomes more intricate for this model and the results presented are slightly approximate ones, see details in appendix.

Note that in this model, p r e f does not necessarily match its estimated value using the method introduced in Section 2.2. However, for large tick assets, the difference is negligible.

Note that here we compute the mean reversion ratio of p r e f while the transaction price is usually considered.

In execution services, the client often wants the execution algorithm to target some specific price (the arrival price, the average market price during a predefined period,...). The quality of the execution is then assessed on the basis of the difference between the realized execution price and this target benchmark price.

See Section 5.4 in Appendix for a detailed discussion on placement tactic analysis

A buy execution is said to be passive if it occurs at the bid side of the LOB, aggressive if it occurs at the ask side of the LOB.

One may notice that Slippage t heo is exactly Slippage V in the above decomposition.

Of course if we choose n mi n = 1 and n max = ∞, we have a complete description of all the available buying/selling offers in the whole price grid αN.

Note that in this representation, there can be overlaps between the vector a and b when the bid-ask spread is larger than one tick.

A large tick asset is defined as an asset whose bid-ask spread is almost always equal to one tick.

For the generality of the framework, we allow for negative prices, however, in practice, the model should of course be used over a reasonably small time interval so that prices remain positive.

Four if we also consider the modification orders. We view modification orders as a combination of a cancellation and an insertion order that arrive in a very short time interval.

|V (x)| → +∞ as ||x|| → ∞.

This assumption is not really mandatory but is realistic and technically quite convenient.

Model I in Huang, Lehalle, and Rosenbaum (2013) is used to describe the queue dynamics during constant reference price periods.

The tick value is the minimum price variation allowed for an asset on a given market.

Of course this is true only considering the aggregated group of market makers. In practice, the gains of individual market makers are often small since there are several of them and the queues at the best bid and ask levels are quite long.

We recall that the tick value of a stock depends on its price, see TableIII.1.

The estimated η being the average of the daily estimations, in very few cases, the prediction can fall out of the confidence interval. Then we replace the prediction by the closest bound in the confidence interval.

An event can be either a trade sent by noise trader, or an information update B which may or may not trigger a trade, depending on whether |B | > |η| or not.
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CHAPTER II

A General Framework for Markovian Order Book Models Abstract

We present a general Markovian framework for order book modeling. Through our approach, we aim at providing a tool enabling to get a better understanding of the price formation process and of the link between microscopic and macroscopic features of financial assets.

To do so, we propose a new method of order book representation, and decompose the problem of order book modeling into two sub-problems: dynamics of a continuous-time double auction system with a fixed reference price; interactions between the double auction system and the reference price movements. State dependency is included in our framework by allowing the order flow intensities to depend on the order book state. Furthermore, contrary to most existing models, the impact of the order book updates on the reference price dynamics is not assumed to be instantaneous. We first prove that under general assumptions, our system is ergodic. Then we deduce the convergence towards a Brownian motion of the rescaled price process.

Part II

Tick Size Effects

CHAPTER III

The Effect of Tick Value Changes on Market Microstructure: Analysis of the Japanese Experiements 2014

Abstract

The tick value is a crucial component of market design and is often considered the most suitable tool to mitigate the effects of high frequency trading. The goal of this paper is to demonstrate that the approach introduced in [START_REF] Dayri | Large tick assets: implicit spread and optimal tick size[END_REF] allows for an ex ante assessment of the consequences of a tick value change on the microstructure of an asset.

To that purpose, we analyze the pilot program on tick value modifications started in 2014 by the Tokyo Stock Exchange in light of this methodology. We focus on forecasting the future cost of market and limit orders after a tick value change and show that our predictions are very accurate. Furthermore, for each asset involved in the pilot program, we are able to define (ex ante) an optimal tick value. This enables us to classify the stocks according to the relevance of their tick value, before and after its modification. 

Analysis of the

CHAPTER IV

Intelligence and Randomness of Market Participants 1 Introduction

In Part I, we have seen the advantages of state-dependent approach in order book modeling, as well as its application in explaining market participants' intelligence. This new concept has shown very promising results in explaining the links between the microscopic features (such as the order arrival intensities) and the macroscopic features (such as the intraday price volatility).

The Markovian framework proposed in Chapter II models the intelligence and randomness of market participants by a series of state-dependent functions (f i ,g i in Equation II.1) and imposes very little constraints on the specific forms of these functions. This choice, while enabling the framework to include most Markovian LOB models, leaves one important practical question unanswered: how to approximate these functions in real market?

In the queue-reactive model, this problem is tackled by taking a non-parametric (point-bypoint estimation) approach to approximate the order arrival intensities, in which the queue size (the state) is dicretized and truncated to a limited range. Such method requires a huge number of order book data and quickly becomes impossible when the dimension of state exceeds 3. Since many repetitive patterns have been identified in the shape of these functions on various assets, it is natural to consider the possibility of using parametric functions in describing the dynamics of order arrivals. In Chapter I, these patterns have been explained qualitatively using arguments such as the existence of priority value, the arbitrage opportunities and the adverse-selection risk, however, how to parameterize f i and g i so that they are capable of reproducing such patterns remains a challenging problem that we do not yet dispose a clear answer. In this chapter, we present a preliminary study of an agent-based model on the randomness and intelligence of market participants, which we believe will help understand the cause of state-dependencies in order arrival intensities and thus provide useful insights on the choice of parameterizations.

We assume the existence of three types of agents: the informed trader, the noise trader and market makers. The informed trader receives market information such as the jumps of the efficient price, which is hidden to the noise trader. He then takes advantage of this information to gain profit by sending market orders. Market makers receive also the same information but with some delay and they place limit orders as long as the average expected gain of such orders are positive (they are assumed to be risk-neutral). The informed trader and the market makers represent the "intelligent" part in order book dynamics, while the "random" part is represented by the noise trader who is assumed to send market orders according to a homogeneous Poisson

Basic Model

We shall have thus, for all x > η, if l (x) > 0:

(IV.6)

Now if there exists some x > η and δx > 0, such that l

then by the continuity of l (x) and L(x), we have:

By Assumption 31, we have L(x r ) > L(x l ). While by the fact that l (x) = 0 for all x ∈ [x l , x r ], we should have L(x r ) = L(x l ). These two results are clearly controversial. So either we have l (x) = 0 for all x ≥ x l , or such x and δx do not exist. For the first case, we should have

x , 1)]) for all x ∈ (η, x l ), thus l (x l ) > 0 by the continuity of f κ u (x), which is controversial to the fact that l (x l ) = 0. Thus for any x > η, and any δx > 0, one can always find a x ∈ [x , x + δx ] such that l (x) > 0. Then by the continuity of the function L(x), we have that Equation IV.6 holds for all x > η.

L(x) is thus a strictly increasing function when x ≥ η, and when x → η -:

Which means that:

The bid side case can be similarly obtained. The above arguments give the following theorem:

Theorem 2. By Assumption 31,32,33,34 and 35, the cumulative LOB shape function is uniquely determined and satisfies L(x) = -L(-x). Moreover, we have, L(x) = 0, for x ∈ [-η, η], where η is the unique solution of the following equation:

(IV.7)

And for x > η:

for x < -η:

In particular, the intrinsic bid-ask spread satisfies φ = 2η.

Variance per Trade

Consider now the price variance per trade (σ t r ) in our model. We have (Let's P i denotes the value of the efficient price after the i -th event 1 , and τ the number of events till the first trade after the i -th event):

.

By Equation IV.7, we have:

Thus,

.

For σ 2 t r ∼ η 2 (that is to have the linear relationship between the bid-ask spread and the volatility per trade), one must have: E[|B |1 |B |>η ] ∼ η -1 , which implies actually a power-low distribution of order -3 on the price jump size B .

Tick Size

In this section, we study the effects of introducing the tick size, denoted by α, that constraints the minimal price change unit. The same price dynamics described in the previous section still applies, but the cumulative LOB shape becomes now a piece-wise constant function L(x). Due to the price discretization, the discontinuity points of L(x) actually depends on the relative position of the current efficient price P (t ) in the price grid. To deal with this, the following notations will be used in this section. Let's denote the smallest possible price level that is greater than or equal to the current efficient price P (t ) by P (t ), and their relative distance by d := P (t )-P (t ). We have d ∈ [0, α), and the cumulative LOB shape function L(x) in such case will be denoted by L d (x) from now on, with l d (i ) representing the quantities placed at the i -th limit (i = 1 represents the closest price level that is larger or equal to P (t ), while i = -1 represents the closest price level that is smaller than P (t )).

Tick Size

Assumption 31 still applies in this case as well as the greedy behavior of the informed trader (Assumption 33). For the cumulative LOB shape function L d (x), we assume now: Assumption 36. The cumulative LOB shape function L d (x) is an increasing piece-wise constant function, with discontinuities at x = d + i α for i ∈ Z.

Given the value of d and the LOB shape L d (x), the trade size Q i of the informed trader when a new price deviation information B is received becomes a discrete value random variable, for which we can write the probability function as (for d > 0):

Constrained Bid-Ask Spread

Let's compute again the average gain of passive selling orders placed at different limits. We have, when l (i ) (the number of limit orders placed at the i -th limit) > 0, G d (i ) (the expected average gain of passive orders placed at the price level d +(i -1)α given the fact that they are completely executed, for i ∈ N + ) writes as:

G d (i ) can be understood as the expected gain of a newly inserted infinitesimal limit order at the i -th limit, under the condition that it is executed by some market order. It is natural to use the following zero profit assumption of passive orders at each price level: Assumption 37. For every i ∈ N + , if l d (i ) > 0, then the conditional expected average gain of passive selling orders placed at d + (i -1)α, given the fact that they are totally executed, is equal to 0, that is, when l d (i ) > 0:

Equivalently, we have:

(IV.8)

When l d (i ) = 0, we can define Gd (i ), the potential conditional expected average gain per unity of passive orders placed at d + (i -1)α by the following equation:

One can image that when the potential gain Gd (i ) is positive, market makers will place passive orders at the i -th limit. This idea gives the following assumption:

Tick Size

Thus for l d (k d r ) to be positive, we should have

, 1)], which means:

(IV.10) Equation IV.10 gives the necessary and sufficient condition for k d r . Compared with Equation IV.7, we have:

with the operator x defined as the smallest integer that is strictly larger than x, we have furthermore:

Similarly, for the first non-empty limit at the bid side, we shall have:

Thus the conditional constrained bid-ask spread φ d α , given the value of d , satisfies:

Assuming d is uniformly distributed between [0, α), we can compute the average value of the constrained bid-ask spread by integrating φ d α :

Denote u := η α , we have:

Write u = u i + u f , where u i represents the integral part of u, we have furthermore:

The above arguments are summarized in the following theorem, which proves that the discrete spread is a linearly increasing function of the tick size α in our framework: Theorem 3. The average constrained spread φ α when the tick size is equal to α, satisfies the following equation:

where φ is the intrinsic bid-ask spread of the asset when the tick value is equal to 0.

Also, the following theorem on the cumulative LOB shape can be established: Theorem 4. By Assumption 33,36,37,38,39 and 40, the cumulative LOB shape function is uniquely determined. We have, l d (i ) = 0 for all -k d l < i < k d r , where k d l and k d r are two positive integers determined by the following equations:

with η the unique solution of the following equation:

And for h ≥ k d r :

Daily Volume

Now let's consider the daily volume V before and after the introduction of the tick size (denote the latter by V α ). We have, the expected value of V satisfies:

In the previous discussion, we implicitly assume that the distribution of the noise trader's bet size does not depend on the cumulative LOB shape function L(x), while the informed trader's bet size distribution is linked with L(x) by Assumption 33. Note that from Theorem 2, we have an explicit expression of L(x). We have thus:

When the tick size is introduced, we shall have:

Where

Examples

We have, for d = 0:

Thus E[V α ] is a decreasing function of α, and we have:

Priority Value

Assumption 37 and 39 tell that the profit of the limit order placed at the bottom of each queue is equal to 0. Market makers may still make profit if their orders are placed before. The expected profit of the limit order placed on top of each limit is actually equal to the potential average gain Gd (i ) when L(x) is given. Considering the profit of a limit selling order placed on top of the i -th limit, we have, for i ≥ k d r :

This gives us the following theorem (formulas on the priority value of limit buying orders are similar and omitted here):

Theorem 5. The priority value at the i -th limit can be written as:

(IV.12)

Examples

Power-law Distributed Information

Assume that the absolute value of the price jump B follows a power-law distribution, that is:

Note that we should have γ > 3 to have a finite variance in price. The tick value is set to zero in the this example.

Fundamental Bid-Ask Spread

We have, in this case:

η and the ratio between the intensity of price jump and noise trade ( λ i λ u ) are related by the following relationship:

Cumulative LOB Shape

For the cumulative LOB shape function L(x), we have:

which means:

We can see that if L(x) ∼ x β , we shall have:

β and vice versa.

Generalization

Till now, market makers are assumed to obtain the exact information on the efficient price once after it has been known to the informed trader. This is obviously unrealistic as it neglects one important risk faced by market makers when placing limit orders: the uncertainty on the efficient price. In this section, we will study the case when such information is no longer available for market makers.

How Information is Digested

Let's reconsider the case of zero tick value. At the moment t , a buying transaction happens, let's assume that market makers hold only the exact information on the efficient price right before the transaction (denoted by P (t -), we set P (t -) = 0 without loss of generality), but no longer 5. Generalization

(IV.13) Note that Theorem 2 still applies for L -(p ), as the exact value of the efficient price right before the transaction is assumed to be known to the market makers. r p can thus be simplified as:

Using the above equation, we have, for x < p , since B new follows the save law as B :

and for x ≥ p :

Similar to Assumption 34, the competition between market makers results in the following generalized version of the zero-profit assumption: Assumption 41. For any x > 0, if L(x) > 0 and l (x) > 0, then the average conditional expected gain G c (x), defined as

, satisfies:

where G c (x, δp) is the conditional expected gain of passive orders placed between P (t )+ x and P (t )+ x + δp, given the facts that these orders are completely consumed by a market order.

Assumption 41 all together with the above arguments give the following theorem concerning the equilibrium cumulative LOB shape immediately after a transaction: Theorem 6. If the informed trader is assumed to react to the new profitable liquidities with some exponentially distributed reaction time (with intensity λ a ) and the efficient price P (t -) is assumed to be known to the market makers, then under Assumption 31, 33 and 41, immediately after a buying transaction happens at the price P (t -) + p at time t , the cumulative LOB shape function satisfies: for every x ∈ R + , if L(x) > 0 and l (x) > 0, then G p (x) = 0, that is:

1r i F ψ (xp )r u F κ u (L(x)) , for x ≥ p :

Consider now the new best ask price a p immediately after the transaction at price p . We shall have, if a p < p :

1r i F ψ (a pp )r u /2 .

To simplify our analysis, we make the following assumption on the informed trader's reaction speed:

Assumption 42. The reaction rate λ a of the informed trader is much larger than the information arrival rate λ i and the noise trade arrival rate λ u , that is:

We have, under the above assumption: We can see that when a p = p , (a pr p p ) > r (1-r p )E[B 1 B >a p ] 1-r F ψ (a p )-(1-r )/2 by the fact that p > η, so indeed a p < p when λ a is sufficiently large compared to λ u and λ i .

We have the following two approximations:

(a pr p p ) 1 + r 2r ≈ (1r p )E[B 1 B >a p ] + (a pr p p )F ψ (a p ),

a pr p p + F ψ (a p ).

We shall have thus, r p p < a p < p .

Under Assumption 42, the average conditional expected gain G p (x) when x < p can be approximated by:

.

(IV.14)

Replacing Equation IV.14 in the deduction of Theorem 6, we have: