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Abstract:
The capabilities to monitor the Earth's surface, notably in urban and built-up areas, for

example in the framework of the protection from environmental disasters such as �oods or

earthquakes, play important roles in multiple social, economic, and human viewpoints. In

this framework, accurate and time-e�cient classi�cation methods are important tools re-

quired to support the rapid and reliable assessment of ground changes and damages induced

by a disaster, in particular when an extensive area has been a�ected. Given the substan-

tial amount and variety of data available currently from last generation very-high resolu-

tion (VHR) satellite missions such as Plèiades, COSMO-SkyMed, or RadarSat-2, the main

methodological di�culty is to develop classi�ers that are powerful and �exible enough to

utilize the bene�ts of multi-band, multi-resolution, multi-date, and possibly multi-sensor in-

put imagery. With the proposed approaches, multi-date/multi-sensor and multi-resolution

fusion is based on explicit statistical modeling. The method combines a joint statisti-

cal model of multi-sensor and multi-temporal images through hierarchical Markov random

�eld (MRF) modeling, leading to statistical supervised classi�cation approaches. We have

developed novel hierarchical Markov random �eld models, based on the marginal posterior

modes (MPM) criterion, that support information extraction from multi-temporal and/or

multi-sensor information and allow the joint supervised classi�cation of multiple images

taken over the same area at di�erent times, from di�erent sensors, and/or at di�erent

spatial resolutions. The developed methods have been experimentally validated with com-

plex optical multi-spectral (Plèiades), X-band SAR (COSMO-Skymed), and C-band SAR

(RadarSat-2) imagery taken from the Haiti site. The experimental results suggest that the

methods are able to provide accurate classi�cation maps from input heterogeneous imagery.

Experimental results and comparisons with the state of the art suggests the e�ectiveness of

the proposed approaches in fusing multiple information sources for classi�cation purposes.

Indeed, the proposed techniques were demonstrated to be advantageous in terms of classi-

�cation accuracy on the test set, spatial regularity of the classi�cation maps, minimization

of spatial artifacts, and tradeo� with respect to computation time.

Keywords: Satellite images, image time series, multi-resolution, multi-sensor,
quad-tree, classi�cation, hierarchical Markov random �elds, MPM.



Résumé
Les moyens mis en oeuvre pour surveiller la surface de la Terre, notamment les zones ur-

baines, en cas de catastrophes naturelles telles que les inondations ou les tremblements de

terre, et pour évaluer l'impact de ces événements, jouent un rôle primordial du point de vue

sociètal, économique et humain. Dans ce cadre, des méthodes de classi�cation prècises et

e�caces sont des outils particulièrement importants pour aider à l'évaluation rapide et �-

able des changements au sol et des dommages provoqués. Étant données l'énorme quantité

et la variété des données haute Résolution (HR) disponibles grâce aux missions satelli-

taires de dernière génération et de di�érents types telles que Pléiades, COSMO-SkyMed ou

RadarSat-2 la principale di�culté est de trouver un classi�eur qui puisse prendre en compte

des données multi-bande, multi-résolution, multi-date et éventuellement multi-capteur tout

en gardant un temps de calcul acceptable. Les approches de classi�cation multi-date/multi-

capteur et multi-résolution sont fondées sur une modélisation statistique explicite. En fait, le

modèle développé consiste en un classi�eur bayésien supervisé qui combine un modèle statis-

tique conditionnel par classe intégrant des informations pixel par pixel à la même résolution

et un champ de Markov hiérarchique fusionnant l'information spatio-temporelle et multi-

résolutions, en se basant sur le critère des Modes Marginales a Posteriori (MPM en anglais),

qui vise à a�ecter à chaque pixel l'étiquette optimale en maximisant récursivement la prob-

abilité marginale a posteriori, étant donné l'ensemble des observations multi-temporelles

ou multi-capteur. Les méthodes développées ont été validées expérimentalement avec des

séries temporelles d'images optiques (Pléiades), Radar en bande X (COSMO-SkyMed), et

Radar en bande C (RADARSAT-2) prisent sur Haiti. Lorsqu'elle est appliquée à des images

à haute résolution, la méthode proposée donne une précision globale de la classi�cation de

valeur élevée avec un temps de calcul raisonnable grâce à la structure hiérarchique utilisée.

En e�et, les techniques proposées se sont montrées avantageuses en termes de précision de

la classi�cation sur l'ensemble des échantillons de validation, la régularité spatiale des cartes

de classi�cation, la minimisation des artefacts spatiales causé par la structure hiérarchique

utilisée, et le compromis par rapport au temps de calcul.

Mots-clés: Images satellitaires, series temporelles, multi-résolution, multi-
capteur, quad-arbre, classi�cation, champs de Markov hiérarchiques, MPM.
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Introduction

Earthquakes, tsunamis, �oods, �res and volcanic eruptions are among the many
natural disasters we are exposed to on Earth. As well as being dangerous to
humans, these events play important roles in multiple social, economic, and human
viewpoints. Faced with such phenomena, there is a crucial need for adequate
and rapid damage assessment. However, when an extensive area is a�ected, the
assessment of the damage becomes a complex and time consuming task, usually
conduced by human experts. Nonetheless, the capabilities to monitor the Earth's
surface using computer vision algorithms, notably in urban and built-up areas, for
environmental disasters and to assess the ground e�ects and damage of such events
play important roles. Given a monitored area, remote sensing allows elements at
risk to be identi�ed and their vulnerabilities to be quanti�ed. After a disaster
actually occurs, this prior extracted information can be combined with results of
multi-temporal remote sensing image analysis, ancillary information, and possible
physically-based modeling to estimate damage [Serpico et al., 2012].

In this framework, accurate and time-e�cient classi�cation methods for single-
date and multi-temporal imagery are important tools required to support rapid and
reliable extraction of information on a monitored region, especially when an exten-
sive area is considered. Given the substantial amount and variety of data available
currently from last-generation very-high resolution (VHR) satellite missions, the
main di�culty is to develop a classi�er that utilizes the bene�ts of multi-resolution,
multi-date, multi-sensor, and multi-frequency input imagery. From an application-
oriented viewpoint, the goal is to take advantage of this variety of input sources to
maximize accuracy and e�ectiveness of the resulting thematic mapping products.
From a methodological viewpoint, this goal claims for the development of novel data
fusion techniques that are �exible enough to support the joint classi�cation of im-
ages collected on the same area by di�erent sensors at di�erent times and associated
with multiple spatial resolutions and wavelength ranges. In this manuscript, this fu-
sion problem is addressed by developing four novel techniques, whose common trait
is a mathematical formalization based on hierarchical Markov random �eld (MRF)
models. On the one hand, the use of multi-resolution and multi-band imagery has
been previously shown to optimize the classi�cation results in terms of accuracy and
computation time, and on the other hand, the integration of the temporal dimension
into a classi�cation scheme can both enhance the results in terms of reliability and
capture the evolution in time of the monitored area. However, the joint problem of
the fusion of several distinct data modalities (e.g., both multi-resolution and multi-
temporal or multi-sensor) has been much more scarcely addressed in the remote
sensing literature so far. The next paragraphs brie�y summarize the key ideas of
the developed methods and how their presentations are organized within the various
chapters of the thesis.



6 List of Figures

Addressed problems and thesis organization

In this manuscript, a set of hierarchical methods to fuse multi-date, multi-resolution,
multi-sensor, and multi-frequency remote sensing imagery for supervised classi�ca-
tion is developed and experimentally validated with challenging multi-modal im-
agery from the topical test site of Haiti.

Chapter 1

This chapter presents an introduction to remote sensing images and the di�erent
sensors and their properties, with a special focus on optical and synthetic aperture
radar (SAR) data: how do the sensors work, what are the possible sensor variants,
what are their advantages, weaknesses, uses, and what properties of a given scene are
observed with them, are among the items recalled in this chapter. The motivation
to jointly use heterogeneous sensors is also discussed.

Chapter 2

This chapter summarizes various approaches to data fusion proposed in the litera-
ture with regard to multi-modal remote sensing imagery for classi�cation purposes.
First, a variety of multi-scale and multi-resolution fusion approaches are reviewed.
Then, the complementarity between various sensors, especially when operating in
the microwave and optical ranges, is stressed by presenting several models used in
the literature. Finally, a thorough review of multi-temporal remote sensing image
analysis methods is presented.

Chapter 3

This chapter provides all necessary background about MRFs, such as probabilis-
tic image models and methodological tools for classi�cation, and gives a Bayesian
justi�cation for the form of their energy functions. In addition, the graphical rep-
resentation of MRFs is detailed in order to point out an important class of MRF
models that rely on a probabilistic causality concept captured by the factorization
of the prior distribution in term of causal transitions.

Chapter 4

The objective of this chapter is to describe multi-resolution classi�cation techniques
based on hierarchical MRFs using quad-tree structures. The use of quad-trees to
model scale-to-scale interactions is justi�ed by their causality properties over scale
and by the possibility of employing a fast optimization method. However, these
structures may induce blocky artifacts in the �nal classi�cation map. This chapter
also presents several techniques to mitigate such undesirable e�ect.
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Chapter 5

During this chapter, a novel framework for joint multi-temporal and multi-resolution
classi�cation is presented. Multi-date and multi-resolution image classi�cation is
based on explicit statistical modeling through a hierarchical MRF. The proposed
model allows both the input data collected at multiple resolutions and additional
multi-scale features derived through wavelets to be fused. The described approach
consists of a supervised Bayesian classi�er that combines (i) a joint class-conditional
statistical model for pixel-wise information and (ii) a hierarchical MRF for spatio-
temporal and multi-resolution contextual information. Step (i) addresses the mod-
eling of the statistics of the spectral channels acquired at each resolution and con-
ditioned to each class. Step (ii) consists of integrating this statistical modeling in
a hierarchical Markov random �eld for each date. A novel element of the proposed
approach is the use of multiple quad-trees in cascade, each one being associated
with each new available image at di�erent dates, to characterize the temporal cor-
relations associated with distinct images in the input time series. The transition
probabilities between the scales and between di�erent dates determine the hierar-
chical MRF because they formalize the causality of the statistical interactions in-
volved. Inference and probability density modeling are accomplished by integrating
the marginal posterior mode (MPM) criterion, the modi�ed Metropolis dynamics
(MMD) energy minimization technique, �nite Gaussian mixture models, and the
stochastic expectation-maximization (SEM) algorithm. Experimental results using
multi-temporal and multi-resolution Pléiades images on Haiti by employing this new
hierarchical model for time series classi�cation are presented.

Chapter 6

In this chapter, two methods are proposed for the joint supervised classi�cation of
multi-sensor images including SAR and optical components and acquired at multiple
spatial resolutions. The rationale of both approaches is to take bene�t of the data
fusion capabilities of hierarchical MRFs while the computation of the joint statistics
of optical and SAR data, for which no closed form parametric models are available,
is avoided. A novel approach, based on multiple quad-trees in cascade, to multi-
sensor and multi-resolution fusion is described. In this framework, the �rst proposed
method addresses the general problem of the joint classi�cation of a SAR and an op-
tical image acquired over the same area at high spatial resolutions. For each sensor,
one of these two input images is associated with a separate quad-tree structure on
the basis of its resolution. The proposed approach formalizes a supervised Bayesian
classi�er within this multiple quad-tree topology that combines a class-conditional
statistical model for pixel-wise information and a hierarchical MRF for multi-sensor
and multi-resolution contextual information. The second proposed method focuses
on the speci�c case of the fusion of multi-frequency SAR data collected by the
COSMO-SkyMed (X band) and RADARSAT-2 (C band) sensors together with op-
tical Pléiades data. A multiple quad-tree structure is used again but optical and
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SAR data are jointly included in each quad-tree to take bene�t of both the best
resolution available from each sensor and the synergy between the data o�ered by
these opical space-borne missions for Earth observation.

Chapter 7

Throughout this chapter, the quad-tree approach is extended and a novel contextual
multi-scale technique is proposed in order to classify multi-resolution remote sens-
ing data, incorporate spatial contextual information, and mitigate possible blocky
artifacts while keeping the causality of the hierarchical model. This is accomplished
by proposing a novel integrated technique that combines the hierarchical MRF and
Markov mesh approaches to take bene�t of their causality properties in the scale
and spatial domains, respectively. The focus is on the fusion of multi-resolution
and spatial-contextual information for the supervised classi�cation of single-date
imagery. A novel formulation of the MPM criterion is developed and a preliminary
experimental analysis is conducted.

Conclusion and perspectives

In this chapter, conclusions on the proposed methods are drawn, along with com-
ments on their possible relevance in the current remote sensing framework, and
future possible extensions are brie�y outlined.
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1.1 Remote sensing system

Remote sensing is the discipline whose goal is to obtain information about an ob-
ject, area or phenomenon through the analysis of data acquired by a device which is
not in physical contact with the object being investigated [Lillesand et al., 2014]. In
modern usage and in the application to Earth observation (EO) the term generally
refers to the use of aerial or satellite sensor technologies, using various categories of
sensors; we remotely collect data that may be analyzed to obtain information about
the object under investigation. The remotely collected data can be of many forms
that are potentially available from the energy �led arising from the Earth's surface
including spectral, spatial and temporal �elds [Landgrebe, 2005]. The variations of
these �elds implies variations in force distributions (for example measuring Gravity
from a moving aircraft), acoustic wave distributions (for instance using torque and
tire pressure sensors in automotive applications) or electromagnetic energy distribu-
tions (for example via radar sensors on-board arti�cial satellites). Though Gravity
and acoustic �elds are useful for this purpose within many applications, we will
focus on the electromagnetic energy sensors that are currently being operated from
airborne and space-borne platforms to gather information remotely from the Earth
surface. Figure 1.1 schematically illustrates the generalized processes and elements
involved in Earth observation system. As the �gure shows, the system may be
divided into three basic parts: the scene, the sensor, and the processing system.

The scene is the part of the system to be analyzed, it lies in front of the sensor and
consists of the Earth's surface and its atmosphere. This portion of the system
is characterized by not being under human control during all the observation
process.

The sensor is the part of the system that collects the data to be analyzed. There
are mainly two sensor categories : Passive sensors which measure re�ected
sunlight that was emitted from the sun and active sensors which have their
own source of "illumination" and measure re�ected (backscattered) energy.
Furthermore, sensors may be carried on either an airborne (aircraft, drone)
or space-borne (satellite) platforms depending on the use of the prospective
images. The sensor system is usually under human control especially during
the system design phase.

The processing system is the part of the system control whose goal is to extract
information from control the data provided by the sensor. The capability of
current remote sensors to generate data far exceeds the current capacity to
handle these data. Processing data provided by sensors into an interpretable
format can be an e�ort entailing considerable thought, instrumentation, time,
experience, and reference data. Human intervention in data processing is and
will mostly continue to be essential to the productive application of remote
sensing information. This processing can be done partly on board and partly
in ground stations.
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Figure 1.1: The generalized processes and elements involved in Earth observation system.
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In the remainder of this chapter, the basic principles underlying the remote sensing
process are discussed. The fundamentals of electromagnetic energy are considered
by going through the interaction of the energy with the atmosphere and with Earth
surface. These basics will permit to conceptualize the main technologies in remote
sensing systems according to the electromagnetic wavelength range being used.

1.2 Energy sources and radiation principles

Visible light is only one of many forms of electromagnetic energy. Other familiar
forms are invisible electromagnetic radiations, such as radio waves, ultraviolet rays
and X-rays. All this energy follows the basic wave theory. As shown in Figure 1.2
this theory describes electromagnetic energy as a traveling wave through space in
a rippling electric and magnetic �eld at the velocity of light, c. the distance from
one wave peak to the next one is the wavelength λ and the number of peaks passing
a �xed point in space per unit time is the wave frequency ν. The amplitude of an
electromagnetic wave is the height of the wave crest above the undisturbed position.

Figure 1.2: An electromagnetic wave.

In remote sensing it is most common to characterize electromagnetic waves by
their wavelength location within the electromagnetic spectrum (Figure 1.3) which
ranges from the shorter wavelengths (including Gamma and X-rays) to the longer
wavelengths (including microwaves and broadcast radio waves). There are several
regions of the electromagnetic spectrum which are useful for remote sensing because
�rst, they can be related to Earth observation applications and second, the atmo-
sphere is relatively transparent in those ranges (see below). The visible portion of
the plot in Figure 1.3 is an extremely small one, since the spectral sensitivity of the
human eye extends only from approximately 0.4 µm to 0.7 µm. There are a lot of
radiations around us which are "invisible" to our eyes, but can be detected by other
remote sensing instruments and used to our advantage.The portion of the spectrum
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of more recent interest to remote sensing is the microwave region from about 1 mm
to 1 m. This covers the longest wavelengths that are commonly used for remote
sensing. The use of such a range is not arbitrary. In fact some wavelengths are
inaccessible as a result of interaction of the wave with the atmosphere and Earth
surface features.

Figure 1.3: The electromagnetic spectum.

1.3 Interactions with the atmosphere

Irrespective of its source, the radiations used for remote sensing (i.e., passive VIS-
NIR (radiation from the sun) and active radar (radiation from the sensor)) have to
travel some distance through the atmosphere before they reach the Earth's surface.
Because of their variety, particles and gases in the atmosphere can a�ect the incom-
ing light and radiation. These e�ects are principally caused through the mechanisms
of atmospheric scattering and absorption [Lillesand et al., 2014].

Scattering
Scattering is the (deterministically unpredictable) di�usion of the electromag-
netic radiation caused by the interaction with particles in the atmosphere.
According to the size of particles in interaction, there are three types of scat-
tering.

1. Rayleigh scattering is common when radiation interacts with atmospheric
molecules and other tiny particles that are very small in diameter com-
pared to the wavelength of the interacting radiation. Rayleigh scatter is
one of the primary causes of "haze" in imagery.

2. Mie scattering occurs when atmospheric particle diameters are just about
the same size as the wavelength of the radiation being sensed. Water
vapor and dust are common causes of Mie scattering which tends to
in�uence longer wavelengths than those a�ected by Rayleigh scattering.
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3. Non-selective scattering is the most bothersome phenomenon especially
for optical sensors. This occurs when the diameters of particles causing
scatter are much larger than the wavelength of the energy being sensed.
Water droplets and large dust particles can cause this type of scattering.
They commonly have a diameter in the range 5 to 100 µm and scatter all
visible wavelength. Non-selective scattering gets its name from the fact
that equal quantities of blue, green, and red lights are scattered, hence
fog and clouds appear white in optical images.

(a)

(b)

(c)

Figure 1.4: Spectral characteristics of (a) nominal black-body energy sources, (b)
atmospheric e�ects, and (c) sensing systems.

Absorption
In contrast to scattering, this phenomenon causes molecules in the atmosphere
to absorb energy at various wavelengths. The most e�cient absorbers of solar
radiation in this regard are water vapor, carbon dioxide, and ozone. Because
these gases tend to absorb electromagnetic energy in speci�c wavelength bands,
they strongly in�uence "where we look" spectrally with any given remote sens-
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ing system. The wavelength ranges in which the atmosphere is particularly
transmissive of energy are referred to as atmospheric windows. Figure 1.4 (a)
shows the two most common energy/radiation sources (the sun and the Earth).
In Figure 1.4 (b), spectral regions in which the atmosphere blocks energy are
shaded. Accordingly, only non-blocked spectral regions could be used for re-
mote sensing. The important point to note from Figure 1.4 is the interdepen-
dence between the primary sources of electromagnetic energy, the atmospheric
windows through which source energy may be transmitted to and from sur-
face features, and the spectral sensitivity of the sensors available to detect and
record the energy.

1.4 Energy interactions with Earth surface features

Radiation that is not absorbed or scattered in the atmosphere can reach and interact
with the Earth's surface, as shown in Figure 1.5. There are three fundamental energy
interactions that can take place when energy is incident (I) upon the surface. Various
fractions of the energy are re�ected (R), absorbed (A), and/or transmitted (T). The
total incident energy will interact with the surface in one or more of these three
ways. The proportions of each will depend on the wavelength of the energy and the
material and condition of the feature.

Figure 1.5: Basic interactions between electromagnetic energy and Earth surface
feature.

By measuring the energy that is re�ected (or emitted) by targets on the Earth's
surface over a variety of di�erent wavelengths, we can build up a spectral response
for that object. By comparing the response patterns of di�erent features we may be
able to distinguish between them, where we might not be able to, if we only compared
them at one wavelength. For example, water and vegetation may re�ect somewhat
similarly in the visible wavelengths but are almost always separable in the near-
infrared (see Figure 1.6). Knowing where to "look" spectrally and understanding
the factors which in�uence the spectral response of the features of interest are critical
to correctly interpret the interaction of electromagnetic radiation with the surface.
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Figure 1.6: Spectral re�ectance of vegetation and water.

1.5 Temporal domain

Heretofore, all these interaction (in the atmosphere or with the Earth surface fea-
tures) are made in a �xed time. Despite our tendency to consider Earth as static,
it is actually a dynamic and ever-changing planet. Spectral response can be quite
variable, even for the same target type, and can also vary with time (e.g. "green-
ness" of leaves, see Figure 1.7) and location. Therefore the temporal domain play a
primary role in remote sensing analysis

Figure 1.7: Spectral re�ectance of oak leaves.
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1.6 Satellites and sensors properties

1.6.1 Characteristics of remote sensing images

Before we go further in the remaining of this chapter, which focuses in more de-
tail on sensors and their characteristics, we need to de�ne and understand a few
fundamental terms and concepts associated with remote sensing images.

Spatial Resolution, Pixel Size, and Scale
The detail discernible in an image is dependent on the spatial resolution of the
sensor and refers to the size of the smallest possible spatial feature that can be
detected. Indeed, a remote sensing image could be represented and displayed
in a digital format by subdividing the image into small equal-sized and shaped
areas, called picture elements or pixels, and representing the brightness of each
area with a numeric value quantized on a �nite set of levels. It is important
to distinguish between pixel size and spatial resolution - they are not inter-
changeable. In fact, If a sensor has a spatial resolution of 1m and an image
from that sensor is displayed at full resolution with ideally no blurring, each
pixel represents an area of 1m× 1m on the ground. In this case the pixel size
and resolution are the same. However, it is possible to display an image with
a pixel size di�erent than the resolution. More generally, image acquisition
introduces a (possibly small but nonzero) blurring due to the point spread
function of the sensor. Images where only large features are visible are said to
have coarse or low resolution. In �ne or high resolution images, small objects
can be detected.

Spectral Resolution
As shown in the beginning of the current section, di�erent classes of features
and details in an image taken by a passive sensor can often be distinguished on
the basis of their responses over distinct wavelength ranges. Thus, one would
require a sensor which could distinguish broad wavelength ranges. At this
point, spectral resolution describes the ability of a sensor to de�ne �ne wave-
length intervals. The �ner the spectral resolution, the narrower the wavelength
range for a particular channel or band.

Radiometric resolution
While the arrangement of pixels describes the spatial structure of an image,
the radiometric resolution describe the precision with which the measurement
taken on each pixel of an image is described. It is usually expressed in terms of
the number of quantization levels or a the corresponding number of bits used to
code these quantization levels with a binary format. Thus, the di�erence in the
level of detail discernible depends on the number of bits used in representing
the energy recorded.

Temporal Resolution
The concept of temporal resolution is important in a space-borne remote sens-
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ing system, since remote sensing satellite generally re-visit the same imaged
area after one entire orbit cycle. Indeed, the absolute temporal resolution of
a remote sensing system is expressed in terms of the period of time needed to
re-image the exact same area at the same viewing angle. Contemporary high
resolution satellite missions of Earth obsefrvation usually provide a pointing
functionality, i.e., the viewed area can be pointed (to some extent) on basis
of user/operator's choice. In this case, temporal resolution and revisit time
become non-periodic and generally irregular.

1.6.2 Passive vs. Active Sensing

As mentioned in section 1.1, remote sensing systems which measure energy that
is naturally available from the sun are called passive sensors. Passive sensors can
only be used to detect energy when the naturally occurring energy is available.
For all re�ected energy, this can only take place during the time when the sun
is illuminating the Earth. Active sensors, on the other hand, provide their own
energy source for illumination. The sensor emits radiation which is directed toward
the target to be investigated. The radiation re�ected from that target is detected
and measured by the sensor. Forthwith, an increasing amount and variety of last-
generation very-high-resolution satellite missions are available. Figure 1.8 shows the
rapid growth of the number of observation systems operating in both optical and
microwave spectrum as well as their performance in term of resolutions.

1.6.3 Passive sensors operating in the optical spectrum

This section focuses on satellite systems that operate within the optical spectrum.
Optical remote sensing makes use of visible, near infrared and short-wave infrared
sensors to form images of the Earth's surface by detecting the solar radiation re-
�ected from targets on the ground. Di�erent materials re�ect and absorb di�erently
at di�erent wavelengths. Thus, the targets can be di�erentiated by their spectral
re�ectance signatures in the remotely sensed images. Optical remote sensing sys-
tems are classi�ed into the following types, depending on the number of spectral
bands used in the imaging process.

Panchromatic imaging system : The sensor is a single channel detector sensi-
tive to radiation within a broad wavelength range usually encompassing the
visible range and possibly part of the near-infrared range.

Multi-spectral imaging system : The sensor is a multichannel detector with a
few spectral bands. Each channel is sensitive to radiation within a relatively
broad wavelength band. The resulting image is a multilayer image.

Hyper-spectral imaging system : A hyper-spectral imaging system is also
known as an "imaging spectrometer". it acquires images in about a hundred
or more very narrow spectral bands.
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(a) Systems operating in optical spectrum

(b) Systems operating in microwave spectrum

Figure 1.8: The growth of the number of observation systems operating in both
optical and microwave spectrum [http://rsde.fbk.eu/]

http://rsde.fbk.eu/
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As shown in Figure 1.8, Earth observation data are becoming available at in-
creasingly �ner resolutions. Very High Resolution (VHR) satellite imagery already
in existence or due to be launched in the near future o�ers sub-meter resolution.
In the remaining of this section we present the main characteristics of the optical
sensors whose images were used during the Ph.D.

Pléiades

The Pléiades system was designed under the French-Italian ORFEO program (Op-
tical & Radar Federated Earth Observation) between 2001 and 2003. The Pléiades
constellation is composed of two very-high-resolution optical satellites that provide
the coverage of Earth's surface with a repeat cycle of 26 days. The panchromatic
and multispectral datasets are available separately or can be purchased as fused
(pan-sharpened) at 0.5m of resolution. The main characteristics of the Pléiades
system are reported in Table 1.1

GeoEye

GeoEye-1 is a very high resolution satellite that was launched in 2008 from Van-
denberg Airbase and is owned and operated by DigitalGlobe Inc (CO, USA). The
satellite collects image data down to a pixel resolution of 0.41 m. The panchro-
matic and multispectral datasets are available separately or can be purchased as
fused (pan-sharpened) at 0.41m. The main characteristics of the GeoEye system
are reported in Table 1.2

1.6.4 Active sensors operating in the microwave spectrum

An increasing amount of valuable resource information is being acquired by sen-
sors that operate in the microwave portion of the electromagnetic spectrum. Active
imaging RADAR systems are generally considered to include microwaves with wave-
length from 1 mm to 1 m and are the subject of this section (for more details refer
to [Henderson et al., 1998]). From a remote sensing standpoint, there are tree op-
erational characteristic that distinct microwave radiation.

1. Active sensors based on microwaves are independent of the natural source of
illumination. Therefore, microwave satellites acquire images during daytime
as well at night.

2. Based on the scattering phenomena detailed in section 1.3, microwaves can
penetrate the atmosphere in all weather conditions, including haze light rain,
snow, cloud and smoke, depending on the wavelengths involved.

3. There is no direct relationship between microwaves scattered bye the Earth
surface to their counterparts in the visible portion of the spectrum. For in-
stance, surface that appear "rough" in the visible portion of the spectrum may
be "smooth" as seen by microwaves.
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Number of Satellites Twins (Pléiades 1A and Pléiades 1B)

Launch

• Pléiades 1A: 16th December 2012;

• Pléiades 1B: Q4 2012

Altitude 694km
Type Sun-synchronous, 10:30 AM descending node
Period 98.79 minutes
Inclination 98.2◦

Cycle 26 days

Spectral Bands

• Pan: 0.47-0.83 µm;

• Blue = 0.43-0.55 µm,

• Green = 0.50-0.62 µm,

• Red = 0.59-0.71 µm,

• Near Infrared (NIR) = 0.74-0.94 µm

Ground Sampling Distance
• Panchromatic: 0.7m;

• Multispectral: 2.8m

Product Resolution
• Panchromatic: 0.5m;

• Multispectral: 2.0m

Swath Width 20km at nadir
Radiometric resolution 12 bits per pixel

Table 1.1: Main characteristics of the Pléiades satellites. [http://www.geo-
airbusds.com/pleiades/]
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Number of Satellites One
Launch GeoEye, September 6, 2008
Altitude 694km
Type Sun-synchronous, 10:30 AM descending node
Period 98 minutes
Inclination 98.2◦

Cycle 26 days

Spectral Bands

• Pan: 0.45-0.80 µm;

• Blue = 0.45-0.51 µm,

• Green = 0.51-0.58 µm,

• Red = 0.65-0.69 µm,

• Near Infrared (NIR) = 0.78-0.92 µm

Product Resolution
• Panchromatic: 0.41m;

• Multispectral: 1.65m

Swath Width 15.3km at nadir
Radiometric resolution 11 bits per pixel

Table 1.2: Main characteristics of the GeoEye satellite.
[http://global.digitalglobe.com/]
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As a further comparison, the visible part of the electromagnetic spectrum can
be said to include the red, green, and blue spectral regions. Similarly, the active
microwaves region includes X, C, L and K among others, that refer ti speci�c seg-
ments of the microwave portion of the electromagnetic spectrum. To illustrate, an
X band system would be a radar that operates at a single wavelength within this
band (e.g., 3.2 cm.). A speci�c RADAR technique is used for remote sensing: Syn-
thetic Aperture Radar (SAR) imaging, in which microwave pulses are transmitted
by an antenna towards the Earth surface. The microwave energy scattered back to
the spacecraft is measured. The SAR makes use of the radar principle to form an
image with acceptably �ne spatial resolution by utilizing the motion of the satellite
on the orbit. In the following of this section the basics of SAR are recalled (for a
more detailed explanation of SAR the reader could refer to [Armin and Fred, 2004]).
A SAR system produces a two-dimensional image. One dimension in the image is
called range and is related to of the distance from the radar to the target. The
range is determined by measuring the time from the transmission of a pulse to the
reception of the corresponding echo from a target. The range resolution is deter-
mined by the transmitted pulse width and waveform, (i.e., narrow pulses yield �ne
range resolution) and by suitably �ltering to echo signal (pulse compression). The
second dimension is called azimuth and is perpendicular to the range direction. To
obtain �ne azimuth resolution, a physically large antenna would be needed to focus
the transmitted and received energy into a sharp beam. The sharpness of the beam
de�nes the azimuth resolution. The SAR techniques exploit the theory of antenna
arrays and of the Doppler e�ect to improve azimuth resolution.
When discussing microwave energy, the polarization of the radiation is also impor-
tant. Polarization refers to the orientation of the electric �eld with respect to an
orthonormal basis perpendicular to the direction of irradiation. Most radar sen-
sors are designed to transmit microwave radiation either horizontally polarized (H)
or vertically polarized (V). Similarly, the antenna receives either the horizontally
or vertically polarized component of the backscattered �eld, and some radars can
receive both.

COSMO-SkyMed

COSMO-SkyMed is an Italian satellite constellation commissioned and operated
by the Italian space agency (ASI). It consists of 4 medium-size satellites, each one
equipped with a microwave high-resolution synthetic aperture radar (SAR) oper-
ating in X-band (wavelength of 3.2 cm), having 600 km single side access ground
area, orbiting in a sun-synchronous orbit at 620km height over the Earth surface,
with the capability to change attitude in order to acquire images at both right and
left sides of the satellite ground track. As shown in Figure 1.9 and Table 1.3 several
combinations between image size and spatial resolution have been chosen:

• A Spotlight mode, for 1m resolution over small images;

• Two Stripmap modes, for approximately 3m resolution over tenth of km im-
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ages;

• Two ScanSAR for medium to coarse (100 m) resolution over large swath.

Figure 1.9: The 3 acquisition modes of COSMO-SkyMed Satellite ( c© ASI)

Spotlight Stripmap ScanSAR
HIMAGE Ping Pong Wide Region Huge Region

Polarisation Single Single Dual Single Single
Swath [kmxkm] 10 x 10 40 x 40 30 x 30 100 x 100 200 x 200
Resolution [m] 1 3 15 30 100

Table 1.3: Fundamental characteristics of CSK operational modes.
[http://www.cosmo-skymed.it/en/index.htm]

RADARSAT-2

Radarsat-2 is a Canadan commercial Earth observation satellite operated by the
Canadian Space Agency (CSA). It utilizes a synthetic aperture radar (SAR) sen-
sor to image the Earth at a single microwave wavelength, in the C-band (wave-
length of 5.6 cm). Figure 1.10 gives a visual representation of the coverage area of
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RADARSAT-2 imaging mode along the sub-satellite ground track, as well as the
satellite velocity vector. The beam modes are shown in order of decreasing coverage
area:

• Low Resolution Mode (100m);

• Medium Resolution Mode and Low Noise / Ship Detection Mode (50m);

• Medium Resolution Mode (30m);

• Medium Resolution Mode and Quad-Pol Mode (16m);

• High Resolution Mode (5m);

• Very High Resolution Mode (3m);

• Spotlight Mode (1m).

Figure 1.10: The acquisition modes of Radarsat-2 Satellite ( c© CSA)

1.7 Remote sensing applications

Satellite information is fundamentally important to solve some of the major chal-
lenges of our time. For issues ranging from defense, weather prediction, and mineral
exploration to applications as diverse as civil protection, risk management, urban
mapping, precision agriculture, commercial �shing and infrastructure management.
Remote sensing provides a wealth of information at a global scale. Accordingly, an
informed decision can be made by involving many processing tasks including:
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Otho-recti�cation Warp an image to its location on the Earth.

Image Classi�cation Categorization of pixels based on re�ectance into di�erent
land cover classes.

Spectral Analysis by employing a small number of carefully chosen spectral bands
spread across the visible and infrared regions of the electromagnetic spectrum.
For example, using non-visible parts of the electromagnetic spectrum to de-
termine if a forest is healthy.

Multi-resolution Analysis To enhance results and to use all available data at
their di�erent spatial resolution

Multi-temporal Analysis by using the valuable spatio-temporal information re-
sulting from multi-temporal image acquisitions in order to analyze phenomena
happened on the Earth surface during a given time period.

Change Detection To determine the changes from images taken at di�erent times
on the same area.
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2.1 Data fusion in Remote sensing

The literature in data fusion is extensive, indicating the intense interest in this topic
(highlighted by the sharp increase in the number of papers published in the major
remote sensing journals, and the increasing number of related sessions in interna-
tional conferences). In fact, data fusion gave rise to a continuing tradition in remote
sensing, since Earth observation is by de�nition dynamic (thus implying the multi-
temporal capability of remote sensing sensors), multi-resolution (multiple spatial
and spectral resolutions) and related to di�erent physical quantities (thus requiring
multi-view/multi-sensor capability) [Clark and Yuille, 2013, Waltz et al., 1990].

Data fusion is de�ned di�erently depending on the �nal goal of the user.
In fact, [Pohl and van Genderen, 2014, Li et al., 1995] considered data fusion in
remote sensing as the combination of two some algorithms. This may include,
multi-resolution fusion and pansharpening techniques with the aim is to obtain
multi-spectral images of increased spatial resolution [Vivone et al., 2015], resolution
blending that consists in providing time series of data at their maximum spatial
and spectral resolutions (referred to as parallel pansharpening in a multi-temporal
domain) [Huang and Song, 2012] and data fusion for missing information recon-

struction by using complementary data [Wang and Liang, 2014].
An alternative perspective is to de�ne data fusion in remote sensing as a decision
fusion technique which combines the information that is obtained from di�erent
data sets and provides su�cient generalization capability [Wald, 1999]. According
to this de�nition, any type of image processing that combines two or more data sets,
such as image classi�cation or atmospheric correction or application of vegetation
indices, should be considered data fusion.

Within the former de�nition, various procedures of data fusion techniques have
been proposed in the literature with regard to, on the one hand, the application

requirements such as the availability of ground reference data, the collected prior
information and/or some ancillary data that can be used in the development of the
system according to a multi-source processing architecture. On the other hand, it
is important to properly understand the user needs with respect to economic costs,
processing time and performance. Figure 2.1 summarizes the general architecture
of a data fusion techniques.

2.2 Multi-sensor and multi-resolution approaches

2.2.1 Multi-resolution approaches

As exposed before, the availability of remote sensing imagery of varying resolution
has increased. Merging images of di�ering spatial resolution has become a signi�cant
operation in the �eld of digital remote sensing. A variety of di�erent multi-scale fu-
sion approaches have been developed since the late 80s. In the following we give an
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Figure 2.1: General data fusion architecture.
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excerpt on the most common approaches found in the literature. We divided them
into the two groups, (i) transformation techniques and (ii) modeling techniques.
Methods in (i) consist in replacing the entire set of multi-scale infor-
mation by a single composite representation which incorporates all rele-
vant data. The multiscale transformations usually employ Pyramid Trans-
forms [Burt, 1984], the Discrete Wavelet Transform (DWT) [Piella, 2003,
Forster et al., 2004, Zhang and Hong, 2005], the Undecimated Wavelet Transform
(UWT) [Rockinger, 1996, Chibani and Houacine, 2003], the Dual-Tree Complex
Wavelet Transform (DTCWT) [Demirel and Anbarjafari, 2010, Iqbal et al., 2013],
the Curvelet Transform (CVT) [Nencini et al., 2007, Choi et al., 2005], the Con-
tourlet Transform (ConT)[ALEjaily et al., 2008, Shah et al., 2008] and the Nonsub-
sampled Contourlet Transform (NSCT) [Yang et al., 2007].
(ii) includes multi-scale approaches with a focus on the use of coarser resolution of
the data set in order to obtain fast computational algorithms. In a seminal papers
[Basseville et al., 1992a, Basseville et al., 1992b] the basis for multi-scale autore-
gressive modeling in dyadic trees was introduced. Since, straightforward approaches
were performed to deal with multi-resolution images using trees [Pérez, 1993,
Kato, 1995, Laferté et al., 2000, Chardin, 2000, Voisin, 2012, Hedhli et al., 2014b].
Due to their importance, the subsequent chapters provide a more detailed view on
the use of multi-scale modeling on trees. However, a detailed review of some of these
methods could be found in [Gra�gne et al., 1995, Willsky, 2002].

2.2.2 Multi-sensor approaches

Multi-sensor analysis is a process dealing with data and information from mul-
tiple sensors to achieve re�ned/improved information as compared to the result
that could be obtained by using data from only one individual source (see
[Hall and Llinas, 2001, Waltz et al., 1990, Pohl, 1998]). The classi�cation accuracy
of remote sensing images, for instance, is improved when multiple source image data
are introduced to the processing (e.g., [Nguyen et al., 2011, Gamba et al., 2011,
Dousset and Gourmelon, 2003, Hedhli et al., 2015]). Images from microwave and
optical sensors provide complementary information that helps in discriminating the
di�erent classes. Several procedures have been introduced in the literature includ-
ing, on one hand, post-classi�cation techniques in which, �rst, the two data sets are
separately segmented, and then the joint classi�cation is produced by using, for ex-
ample, random forest (RF) (e.g., [Waske and van der Linden, 2008]), support vector
machine(SVM) with ad-hoc kernels [Muñoz-Marí et al., 2010], arti�cial neural net-
works (ANN) [Mas and Flores, 2008]. On the other hand, other methods directly
classify the combined multi-sensor data by using for instance, statistical mixture
models (e.g., [Dousset and Gourmelon, 2003, Voisin et al., 2012, Prendes, 2015]),
entropy based techniques (e.g., [Roberts et al., 2008]), fuzzy analysis (e.g.,
[Benz, 1999, Stroppiana et al., 2015]). Further more, for complex data, especially
when dealing with urban areas, radar images can contribute to di�erent re�ectance
due to di�erences in surface roughness, shape and moisture content of the observed
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ground cover(e.g., [Brunner et al., 2010]). The use of multi-sensor data in image
classi�cation becomes more and more popular with the increased availability of
sophisticated software and hardware facilities to handle the increasing volumes of
data. The decision on which technique is the most suitable is very much driven by
the application and the typology of input remote sensing data.

Figure 2.2: Multi-temporal method categorization.

2.3 Multi-temporal analysis approaches

As discussed in Chapter 1, satellite remote sensors for Earth observation have
the capability to visit the same geographic area several times. Several sur-
vey papers provide thorough reviews of multi-temporal remote sensing image
analysis methods, [Singh, 1989] classi�es these approaches into two categories:
(1) comparative analysis of independently produced classi�cations for di�erent
dates [Johnson and Kasischke, 1998, Sziranyi and Shadaydeh, 2014] and (2) simul-
taneous analysis of multi-temporal data [Bazi et al., 2005, Hedhli et al., 2014b,
Singh et al., 2014]. Whereas, [Malila, 1980] points out two other basic approaches
for multi-temporal analysis: (1) classi�cation approaches [Hoberg et al., 2015,
Hedhli et al., 2014b, Melgani and Serpico, 2003] and (2) change measurement
(strati�cation) [Benedek et al., 2015, Gamba et al., 2006]. [Petitjean et al., 2011]
slightly changes the focus by centering the de�nitions more on a tempo-
ral scale and brings out three main usages of the time dimension: (1)
time as identi�er: time is only used to identify the information, i.e., there
is no ordering between the images of the series [Melgani and Serpico, 2003,
Hoberg et al., 2015]; (2) pairwise time ordering: time is used to structure the
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images, pairwise [Liu et al., 2012, Bovolo and Bruzzone, 2008]; (3) time ordering
the sequence: time is used to structure the image series [Petitjean et al., 2011,
Weber et al., 2012, Hedhli et al., 2014a, Hedhli et al., 2014b]. Other scientists
[Nelson, 1983], [Milne, 1988] and [Coppin et al., 2004] have employed more sophis-
ticate multi-class schemes. In the following of this section, the categorization in
[Bovolo and Bruzzone, 2015] is adopted. Hereafter, we present the most often used
methods in the literature that deal with multi-temporal data by classifying them
into two main categories as shown in Figure 2.2

2.3.1 Multi-temporal fusion at feature level

the aim of these methods is to generate new features (i.e., change indices in a
bi-temporal image pairs) that highlight multi-temporal information, and then to
extract changes occurred in the temporal series or to perform more sophisticated
analysis such as assessing, monitoring, and predicting the dynamics of natural land
covers. Further more, fusion at feature level is characterized by several particular
factors that render ine�ective some of the multi-temporal image analysis techniques
typically used in other application domains. Nonetheless, pre-processing steps are
mandatory. As shown in the general schema of data pre-processing illustrated in
Figure 2.3 these steps may include:

• Radiometric Correction: Multi-temporal image series are generally im-
pacted by di�erences in light conditions, sensor calibration, and ground mois-
ture. These last items might be considered a legitimate ground change, though
di�erences in light and atmospheric conditions between images, for instance,
can be mitigated by applying radiometric calibration to the temporal series.
In the literature there are two major calibration approaches depending on the
particular application considered and on the speci�c information available.
The �rst one is the Absolute Calibration which consists in transforming the
quantized pixel intensities (digital numbers) into the corresponding ground re-
�ectance values by employing radiometric transfer models [Kurum et al., 2011,
Biswas et al., 2013, Montopoli et al., 2013] or regression algorithms applied to
ground-re�ectance measurements collected during the data acquisition phase
[Henderson et al., 1998, Gordon and Morel, 2012, Bernstein et al., 2012]. The
second category widely used is the Relative Calibration which directly modi�es
the histograms, so that the same gray levels values in images can represent
similar re�ectance values [Gadallah et al., 2000, Tokola et al., 1999]

• Geometric Corrections & Image Registration: Non-perfect alignment
(registration Moise) and di�erent acquisition conditions (view angle, shad-
ows, . . . ) are common problems within the considered image time series. In
fact, it is not possible to obtain perfect alignment between multi-temporal
images. This is mainly due to local defects in the geometries of the im-
ages which result in a very critical source of noise called registration noise

[Maes et al., 1997, Le Moigne et al., 2011].
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• Image Filtering: This step is not mandatory and depends on the speci�c
sensor and on the quality of the images. A wide variety of �ltering tech-
niques are used in remote sensing (see for instance [Schowengerdt, 2006]). In
the case of optical images one way to create a smoothed image time series
is to use multi-point smoothing functions, such as moving averages or poly-
nomial �lters([Udelhoven, 2011, Savitzky and Golay, 1964, Chen et al., 2004].
The task is more delicate with SAR images since they are inherently af-
fected by multiplicative speckle noise. Therefore, many adaptive �lters
for speckle reduction have been proposed. Using for instance, Frost �lter
which models the scene re�ectivity [Frost et al., 1982], Kuan Filter based
on the minimum mean-square error (MMSE) criterion [Kuan et al., 1985],
two-dimensional Kalman �lter satisfying a causal Auto-Regressive model
[Azimi-Sadjadi and Bannour, 1991], Gamma MAP �lter based on a Bayesian
analysis of the image statistics where both signal and speckle noise fol-
low a Gamma distribution [Baraldi and Parmiggiani, 1995], and wavelet
transform as a powerful tool for recovering SAR images from noisy data
[Fukuda and Hirosawa, 1999].

Figure 2.3: General schema of data pre-processing.

Then, after the pre-processing operations a broad range of methods can be applied
in order to extract temporal information at feature level that depend essentially on
the type of the sensor used. indeed, the noise model in optical images acquired
by passive sensors is usually considered additive and the natural classes tends to
follow a Gaussian distribution [Richards, 2013]. The speckle in SAR amplitude and
intensity images, which is generated within the scattering phenomenon, acts through
a multiplicative model. Table 2.1 and Table 2.2 summarize feature level methods
using optical and SAR images, respectively.
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Technique Descriptions & Examples
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encing

Fusion is mainly performed by the di�er-
ence operator applied to one spectral band
[Sowell, 1992].

Change Vector Analysis
(CVA)

Fusion is mainly performed by the di�er-
ence operator applied to multiple spectral
bands. A variety of CVA techniques
have been developed, (e.g., Change Vec-
tor Analysis [Lambin and Strahlers, 1994,
Melgani et al., 2002], Compressed Change
Vector Analysis [Marchesi et al., 2010],
Polar Change Vector Analysis
[Bovolo and Bruzzone, 2007] ...).

Regression

Establishes relationships between bi-temporal
images, then estimates pixel values of the
second-date image by use of a regression func-
tion, and subtracts the regressed image from
the �rst-date image [JHA and Unni, 1994,
Esbensen et al., 1992].

Transformation

Reduces data redundancy between bands
and emphasizes di�erent information
in the derived components using for in-
stance Principal component analysis (PCA)
[Deng et al., 2008], Tasseled Cap Transforma-
tion [Healey et al., 2005], or Gram-Schmidt
Transformation [Rosa et al., 2015].

Multi-scale/resolution features

For example, a multi-resolution analysis
with wavelet transforms applied to image
di�erencing results enabled the extraction
of changed sites according to size classes.
[Carvalho et al., 2001, Moser et al., 2011]

Unsupervised Bayesian framework

Use automatic techniques based on both im-
plicit or explicit parameter estimation in an
unsupervised framework, and perform the
multi-temporal analysis with either a con-
text sensitive or insensitive method (e.g.,
[Hame et al., 1998, Melgani et al., 2002]).

Fuzzy theory

The threshold selection is performed us-
ing fuzzy theory by assuming that the
gray tone image processes some ambiguity
(e.g., [Du et al., 2013, Madanian et al., 2014,
Gamba and Dell'Acqua, 2003])

Table 2.1: Multi-temporal techniques at the feature level using optical images.
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Technique Descriptions & Examples

Image (log-)ratio

Calculates the ratio of registered images in
order to reduce the multiplicative distortions
common within SAR images due to speckle
noise (e.g., [Bazi et al., 2005]).

Information theoretical & similarity
measures

A wide variety of distance functions
and similarity measures have been
used for multi-temporal analysis us-
ing SAR images, such as, Kullback-
Leibler distance [Aspert et al., 2007,
Inglada and Mercier, 2007], mutual in-
formation [Cui and Datcu, 2012], variational
information [Gueguen et al., 2010], relative
entropy [Martinis and Twele, 2010], etc.

Additional speci�c fusion operators

Several features are speci�c for SAR imagery
such as : Backscattering coe�cient, cloud de-
composition (or H-α decomposition), polari-
metric signatures, etc. Diverse method arise
from the analysis of these features : di�erence
of scattering matrices [Touzi et al., 2009],
change indices [Hachicha et al., 2011],
contrast ratio (or Rayleigh quotient)
[Molinier and Rauste, 2007], Bartlett test
[Kersten et al., 2005], etc.

Table 2.2: Multi-temporal techniques at the feature level using SAR images.

2.3.2 Multi-temporal fusion at decision level

Decision or interpretation level analysis induces methods that use value-added data
where the input images are processed individually for information extraction. the
obtained information is then combined applying decision rules to reinforce com-
mon interpretation, resolve di�erences and provide a better understanding of the
observed data. Most prior studies of multi-temporal analysis have involved classi�-
cation techniques which actually combine the change detection and change identi-
�cation aspects of using information to update resource surveys. Other aspects of
classi�cation are the requirements of training and additional ground truth for su-
pervised or unsupervised classi�cation of images. Image transformation, vegetation
indices, advanced classi�cation methods and integration of di�erent data sources are
often used to improve classi�cation results. Table 2.3 summarizes the methods using
multi-temporal information at the decision level based on classi�cation approaches.

In the present manuscript, we will focus on supervised classi�cation methods for
multi-source data. These methods have the advantage of being applicable to two or
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Technique Descriptions & Examples

Post-classi�cation comparison

To minimize impacts of atmospheric, sen-
sor and environmental di�erences between
images in time series, these techniques
separately classify the multi-temporal
data into thematic maps, then imple-
ment comparison of the classi�ed im-
ages, pixel by pixel [Serra et al., 2003,
Van de Voorde et al., 2007,
Manandhar et al., 2009].

Combined classi�cation

Such methods are based on a single anal-
ysis of a combined data set of two or
more dates. Two Bayesian approaches
can generally be adopted for this purpose.
The 'cascade' classi�er (e.g., [Swain, 1978,
Hedhli et al., 2014b]) removes the coupling
between the spectral and temporal dimen-
sions and classi�es each image in the in-
put series on the basis of itself and of
the previous images. The 'mutual' ap-
proach classi�es each image on the basis
of the previous and the subsequent im-
ages in the series, (e.g., [Hoberg et al., 2015,
Melgani and Serpico, 2003]). The two ap-
proaches are basically complementary in
terms of applicability: online processing
can be feasible within the cascade domain,
whereas the mutual domain can be generally
more appropriate for batch processing.

Arti�cial neural networks (ANN)

ANN is a nonparametric supervised method
and has the ability to estimate the proper-
ties of data based on the training samples. A
back-propagation algorithm is often used to
train the Multi-Layer Perceptron (MLP) neu-
ral network model (e.g., [Miller et al., 1995,
Bruzzone et al., 1999]).

Other change multi-temporal tech-
niques

Include spatial statistics-based method, Bio-
physical parameter method, Hybrid change
detection, Unsupervised methods, Data min-
ing approaches, multi-resolution techniques.

Table 2.3: Multi-temporal techniques at the decision level images.
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more images taken by single or multiple sensors at the same or at di�erent spatial
resolutions. The available images are temporally and spatially correlated. In fact,
temporal and spatial contextual constraints are unavoidable in multi-temporal data
interpretation. Within this framework, Markovian Models provide a convenient and
consistent way of modeling context-dependent spatio-temporal entities originated
from multiple information sources, such as images in multi-temporal, multi-sensor,
and multi-resolution context. In the next chapter, we introduce the basis of the
contextual classi�cation using Markovian models.
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3.1 Inverse problems and contextual information

Change detection, image classi�cation, image restoration are many examples
that show the number and diversity of inverse problem in image processing
[Neelamani, 2003]. These problems can be regarded as the process that estimates
hidden informations (i.e., latent variables) x (e.g., land cover class labels) from ob-

servations y (e.g., satellite data) attached to a set of nodes (e.g., pixels) S. Solutions
to inverse problems are based on models that link labels to the given observation.
These problems are often ill-posed in the sense of Hadamard1, due to the loss of infor-
mation that occurs when forming the observations. To overcome this ill-posedness, a
major approach is to promote certain types of solutions by imposing prior knowledge
on the labels, which may include, for instance, contextual priors that favor a spatial
regularization of the considered signals. To stress this aspect, many issues of im-
age analysis can be modeled and coped with by designing suitable energy functions
U(x, y) which capture the interactions between the unknown variables x = {xs}s∈S
to be estimated, and the observed variables y = {ys}s∈S , while incorporating the
desired prior characterization.

3.1.1 The Ising model

Inspired from ferromagnetism, the simplest theoretical description of the interaction
between variables is called the Ising model. Our starting point is a lattice, which
is a �nite set of regularly spaced points in a space of dimension d = 1, 2 or 3. In
dimension 1 we simply have a string of points on line, which can be enumerated
from 1 to N . At each point there is a spin which is either up or down at any given
con�guration ω = {ωi}1≤i≤N as shown in Figure 3.1. In this context each spin is a
function:

δi(ω) =

{
1 if ωi is up

−1 if ωi is down

An energy U is then assigned to each con�guration:

U(ω) = −α
∑
i

δi(ω)− β
∑
i,j

δi(ω)δj(ω). (3.1)

The �rst term represents the in�uence of each spin on the energy, regardless of the
other spins. The second term represents the energy contribution caused by the spin
interactions. If β > 0, the interaction tend to keep neighboring spins in the same
direction (attractive case) otherwise, neighboring spins with opposite orientations
are favored (repulsive case) [Parisi, 1988, Baxter, 2007].

1Well-posedness of a problem stems from a de�nition given by [Hadamard, 1923].A problem,

involving some mathematical model of physical phenomena, is Hadamard well-posed if a solution

exists, is unique and its behavior changes continuously with the initial conditions ; otherwise, it is

ill-posed.
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Figure 3.1: One dimensional Ising model.

3.1.2 The Potts model

The Potts model [Li, 2009] is a generalization of the Ising model to more than two
states per point. The Potts model consists of N spins that are placed on a lattice; at
each point i the spin takes one of q possible values, distributed uniformly about the
circle, at angles θi = 2πN

q , exemples are shown in Figure 3.2. Then, the interaction
between two neighboring spins i and j is characterized by the angle Θij between
them. Thus, a generalization of (3.1) is given by:

U(ω) = −α
∑
i

δi(ω)− β
∑
i,j

Θij(ω). (3.2)

Figure 3.2: System of spins in the Potts model.

This energy model is encountered in various �elds (e.g., statistical physics,
multivariate statistics, combinatorial optimization, arti�cial intelligence). We are
here interested in its use in Markovian priors as a regularization term.

3.2 General characteristics of Markovian image models

In probability theory and statistics, Markovian models refer to the �nite memory
stochastic processes. A Markov chain is the simplest Markovian model and is widely
used in one-dimensional signal processing, queuing theory, and image processing as
well.
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De�nition 3.2.1 (Markov chain) A Markov chain is a sequence of random vari-

ables X = (Xi)
N
i=1 that satisfy the Markov property, i.e., such that the distribution of

the present state given the entire past can be restricted to the distribution conditioned

only to the most recent past sample. Formally:

∀i > 1, p(Xi | Xi−1, · · · , X1) = p(Xi | Xi−1). (3.3)

Spatial Markov Random Fields (MRFs) were formulated by [Besag, 1974] and
have become popular image processing tools with [Geman and Geman, 1984]. These
models are based on the de�nition of a local neighborhood system.

De�nition 3.2.2 (Neighborhood system and clique) Let us denote as S a �-

nite set. The elements of S are named sites. Each site s ∈ S is associated with a

set of neighbors Vs ⊂ S such as:

• s /∈ Vs, ∀s ∈ S

• s ∈ Vt ⇔ t ∈ Vs,∀s, t ∈ S

N = {Vs, s ∈ S} is called a neighborhood system.

A subset c ⊆ S is a clique if every pair of distinct sites in c are neighbors.

C denotes the set of cliques.

In image processing applications, the set S of sites often coincides with the pixel

lattice, and each site is consequently a pixel. In the case of region-based image

analysis, the set S may include regions obtained by a segmentation algorithm. For

example, in the former case, the set of neighbors of site s in a regular lattice S is

commonly de�ned as

Vs = {r, d(s, r) 6 o},

where o is the order of the neighborhood system, and d() is the Euclidean distance.

Figure 3.3 illustrates the neighborhood systems for o = 1 and 2 and their correspond-

ing cliques.
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(a) (b)

Figure 3.3: Neighborhood systems: (a) �rst-order; (b) second-order.

De�nition 3.2.3 (Markov random �eld) Let Xbe a collection of random vari-

ables X indexed by the elements of a set of sites S. X is a Markov random �eld

(MRF) with respect to a neighborhood system N on S if:

∀s ∈ S, p(Xs | Xt, t 6= s) = p(Xs | Xt, t ∈ Vs). (3.4)

Local speci�cations are given by the probabilities p(Xs = xs | Xt = xt, t ∈ Vs).

The de�nition of Markov �elds is very local. Nevertheless, the success of Markov
�elds is largely due to their capability to also provide an expression of the global
distribution p(X). A theoretical result about the equivalence between Markov ran-
dom �elds and Gibbs distributions is given by the Hammersley-Cli�ord theorem
[Besag, 1974].

Theorem 3.2.1 (Hammersley-Cli�ord) Let us denote as X a random �eld

indexed by a set S with respect to the neighborhood system N

X is a Markov random �eld with respect to N
⇔

X is a Gibbs �eld with respect to N

De�nition 3.2.4 (Gibbs �elds) X is a Gibbs �eld (GF) indexed by a set S with

respect to the neighborhood system N if:

p(X = x) =
1

Z
e−U(x), (3.5)
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where Z is a normalization constant (called partition function), and U n energy

function that can be decomposed into a sum of potentials associated with the set of

cliques C:
U(x) =

∑
c∈C

Vc(x). (3.6)

Equivalently, the joint distribution of x factorizes into a product of positive factor

potentials:

p(x) =
1

Z

∏
c∈C

gc(x), (3.7)

where gc = e−Vc .

3.3 Inference and Bayesian estimation

We now focus on the mathematical formulation of MRF-based image classi�cation.
The aim of the classi�cation is to estimate a set of hidden labels X (e.g., land cover
class labels) given a set of observations Y (e.g., satellite data) attached to the set
of nodes (pixels) S . Each label occupies a value in the set Λ = {0, 1, · · · ,M − 1}.
The con�guration space Ω = Λ|S| is the set of all global discrete labeling.

x = {xs}s∈S and y = {ys}s∈S denote realizations of the random �elds of the
class labels and observations of all nodes. In this context, we consider the problem
of inferring the "best" con�guration x ∈ Ω given the observation y. This leads
naturally to an inference problem in which the posterior distribution for the possible
realization x, given the observations y, is computed via Bayes's formula as :

p(X = x|Y = y) ∝ p(Y = y|X = x)p(X = x). (3.8)

In (B.1), p(X = x) is the prior distribution over con�gurations. In other words, the
distribution of the possible realizations of X in the absence of any observations. For
convenience, (B.1) is abbreviated to:

p(x|y) ∝ p(y|x)p(x). (3.9)

Similar less cumbersome notations will be used in the following whenever possible.
According to (3.9), when both the prior distribution p(x) and the likelihood function
p(y|x) are given, the optimal solution that can be estimated from these sources of
knowledge is the Bayes labeling. Bayes's theorem can only be applied when all these
distributions are suitable. However, it is not uncommon for the resulting posterior

to be a valid probability distribution. In this case, the posterior expected loss (i.e.,
Bayes risk) is typically well de�ned and �nite:

R(x?) =
∑
x∈Ω

C(x?, x)p(x|y), (3.10)

where C is the cost function penalizing the discrepancy between the estimated con-
�guration and the "ideal" random con�guration. Indeed, The standard Bayesian
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formulation of the inference problem consists of minimizing the Bayes risk which is
referred to as the generalized Bayes estimator :

xopt = arg min
x?∈Ω

R(x?) = arg min
x?∈Ω

∑
x∈Ω

C(x?, x)p(x|y). (3.11)

3.3.1 Bayesian estimators

Among the di�erent cost functions employed, three have been widely used in the
literature:

Maximum A Posteriori (MAP) estimate

This algorithm aims to exactly estimate the maximum a posteriori (MAP) con�gu-
ration. The cost function of this algorithm is de�ned by the following:

CMAP (x?, x) = 1− δ(x?, x), (3.12)

where δ is the Kronecker delta. This function has the identical cost for all con�gu-
rations of x? di�erent from x.
From Equations (3.10) and (3.12), the Bayes's risk is:

R(x) = 1− p(x|y). (3.13)

Minimizing (3.13) is equivalent to maximizing the posterior probability. Therefore,
the minimal risk estimate is:

xMAP = argmax
x∈Ω

p(x|y) = argmax
x∈Ω

p(y|x)p(x), (3.14)

In addition, if X is a Markovian process and according to the Markov-Gibbs
equivalence evoked in theorem (3.2.1), the MAP estimate results in the minimization
of an energy function as:

xMAP = argmin
x∈Ω

[U(y|x) + U(x)], (3.15)

where U(x) is the energy function associated with the MRF X, and U(y|x) =

−lnp(y|x).

Marginal a Posteriori Modes (MPM) estimate

The cost function associated with the MPM is the following:

CMPM (x?, x) =
∑
s∈S

[1− δ(x?s, xs)], (3.16)

which is related to the number of sites . Thus, the MPM criterion o�ers the possi-
bility of penalizing errors according to their number, a property that makes it espe-
cially appealing for image segmentation and classi�cation. The resulting Bayesian
estimator is given by the following:

∀s ∈ S, xMPM
s = argmax

xs∈Λ
p(xs|y), (3.17)
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Mean Field (MF) estimate

A third cost function that may be considered is the MF estimator using the following
cost function:

CMF (x?, x) =
∑
s∈S

(x?s − xs)2, (3.18)

The resulting Bayesian estimator is given by the following:

∀s ∈ S, xMF
s =

∑
x∈Ω

xsp(x|y) = E[xs|Y = y], (3.19)

which is nothing else but the conditional expectation of X given Y = y which ex-
plains the terminology "mean �eld". Note that, each label takes values in the set
Λ = {1, 2, . . . ,M}. In most usual applications to image classi�cation and segmenta-
tion, theseM possible labels are meant as symbols that indicateM possible classes.
In the case of the MF criterion, they are also meant in their numeric sense as M
integer numbers.

3.3.2 Optimization approaches

Given the Bayesian justi�cation about the form of the cost function that was pre-
sented in the previous section, we now turn into the matter of how to obtain the
optimal solution in a Markovian framework. For general MRFs, this problem is NP-
hard and so �nding the optimal solution is far from being an easy task to achieve.
As the full list of MRF optimization techniques is vast, we refer here only to a
selected and very small subset of these methods. A thorough review is reported
in [Li, 2009, Kato and Zerubia, 2012]. In the following, we will brie�y describe the
main optimization techniques for MRF models.

Simulated annealing and Markov Chain Monte Carlo (MCMC) methods

Actually, MCMC techniques which can be used for sampling any type of distribu-
tion. However, thanks to a procedure named simulated annealing ([�ern�y, 1985,
Go�e et al., 1994]), sampling can be also used for optimization purposes with MRF
models. Simulated annealing is inspired by an analogy with metallurgy, in which
slow cooling (annealing) is used to produce metal that is tougher than that which
is produced from rapid cooling. When a Markov chain simulation (typically a
Metropolis sampler [Metropolis et al., 1953]) is used to sample a Gibbs distribu-
tion, the analogous procedure is to introduce a temperature parameter T into the
Gibbs distribution. The temperature is gradually reduced from a very high initial
value to a value close to zero. On one hand, when T is large the sampler can move
freely through the state space, thus escaping poor local minima. On the other hand,
when the temperature is close to zero the distribution is concentrated in the region
near the global minimum and so sampling becomes equivalent to optimization. The
rationale is that, as T is gradually decreased, one will be able to approach the global
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minimum. Asymptotically, simulated annealing guarantees to extract the global op-
timum provided that the temperature follows an appropriate decreasing schedule.
This, however, requires in�nite time in practice and so only local minima can be
usually estimated.

Iterated Conditional Modes (ICM)

Iterated Conditional Modes (ICM) is another deterministic optimization technique
which has been proposed by Besag [Besag, 1974, Besag, 1986]. ICM tries to maxi-
mize the joint probability of an MRF by maximizing local conditional probabilities
sequentially. More speci�cally, at each step of the algorithm, a MRF node is chosen
(under raster scanning) and that node is then assigned the label which minimizes
the energy of the MRF under the condition that all other nodes keep their labels
�xed. This is repeated for all nodes of the MRF until convergence i.e. until the
energy cannot decrease further. The main disadvantage of ICM is that it is greedy
and very sensitive to initialization. Therefore, unless a good initial estimate is given
to ICM, it can easily get trapped to poor local minima. Highest Con�dence First
(HCF) is a deterministic algorithm which tries to improve ICM and has been pro-
posed by Chou and Brown [Chou and Brown, 1990]. Its feature is that it processes
the nodes of the MRF in a speci�c order. To this end, it introduces an uncommitted
label and then uses a certain strategy for choosing which MRF node "to committ"
next. Experimental results show that HCF is, on the whole, better than ICM with
respect to the task of minimizing the energy of an MRF.

Graph-cuts

Graph cuts are considered e�ective approaches for solving the energy minimization
problems in computer vision. [Boykov and Jolly, 2001] proposed methods to solve
MAP-MRF using graph-cut algorithms and they showed that MAP-MRF estimate
is equivalent to min-cut problems on a graph [Boykov and Kolmogorov, 2001]. This
equivalence makes graph cuts extremely important. They showed that using max-
�ow min-cut graph algorithms it is possible to solve some class of energy functions
with MAP-MRF framework.

Other MRF optimization techniques

Before �nishing this section, we mention some other techniques, which have also
been used in computer vision for the optimization of MRF methods.
Another class of techniques, resembling the way simulated annealing works,
are the so-called continuation methods with graduated non convexity (GNC)
[Blake and Zisserman, 1987] being one such example. In these methods the role of
the temperature is played by another parameter γ. In this case, the intractable
non-convex energy function is approximated by a sequence of energy functions
parameterized by this parameter γ. When γ is large the energy function becomes
strictly convex and so locating the global optimum is easy. However, as γ decreases,
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the energy function becomes non-convex and local minima are starting to appear.
The hope is that if γ is gradually decreased, then by tracking the sequence of local
minima we will be able to locate the global optimum at the end. Unfortunately,
however, continuation methods cannot provide any optimality guarantees about
their solutions, except for certain special cases.

Another technique, which has also been widely used is the relaxation labeling
method ([Ishikawa, 2003, Faugeras and Berthod, 1981, Rosenfeld et al., 1976]).
The idea of relaxation labeling is to replace the discrete labels with continuous ones
that must lie on a high dimensional simplex. In this way, the problem of optimizing
a discrete MRF is converted into a constrained continuous optimization problem,
which can then be solved using standard gradient descent techniques.

Finally, we should note that another class of optimization techniques are the
so-called genetic algorithms ([Goldberg and Holland, 1988, Holland, 1975]). These
are optimization methods which are inspired by the principle of natural evolution in
the biological world and try to simulate the evolutionary process: in a population
of individuals, those who possess the highest goodness-of-�t values are the ones
who �nally survive. Although genetic algorithms are general purpose optimization
methods and were found e�ective in many applications, their main disadvantage is
that they are mostly based on heuristic procedures.

3.4 Graphical representation of Markovian models

The theory of Markovian models, as a part of the theory of random processes,
shows a strong bonding with graphs. Formally, a graph G is a pair of sets (S,E),
where S is the set of vertices (nodes) and E is the set of edges, formed by pairs of
vertices. In this framework, it is natural to describe a family of random variables
by a set of sites that constitute the nodes of the graph that represent the random
process. One of the advantages of using graphs in a probabilistic framework is the
possibility of immediate visual interpretation of the relationships between variables
that expresses di�erent dependencies among the nodes; that is why we can talk
about dependency graphs. The underlying probability distributions of Markovian
models can be represented in a graphical form, this is why these models are often
called probabilistic graphical models [Bishop, 2006]. A probabilistic graphical model
is a diagrammatic representation of a probability distribution. In such a graph there
is a node for each random variable. The absence of an edge between two variables
represents conditional independence between those variables.

De�nition 3.4.1 (Conditional independence) Conditional independence

means that two random variables X and Y are independent given a third random

variable Z (denoted as, X ⊥ Y | Z), i.e., if they are independent in their conditional

probability distribution, formally :

p(X,Y | Z) = p(X | Z)p(Y | Z)
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Conditional independence is an important concept as it can be used to decompose
complex probability distributions into a product of factors, each consisting of the
subset of corresponding random variables.

In the case of a regular lattice, the graph takes a particularly simple form called
Markov blanket as shown in Figure 3.4: a node is conditionally independent of all
other nodes when conditioned only on the neighboring nodes. Thus, the Markov
blanket of a node simply consists of the set of all neighboring nodes.

Figure 3.4: First order Markov blanket.

3.4.1 Dependency graph

Let us denote X a Markovian process. To re�ect the interaction structure induced
by the energy function U(X = x), one could de�ne a dependency graph as follows:

De�nition 3.4.2 (Dependency graph) With the same notation as in Section 3.2

the dependency graph associated with the energy decomposition U(x) =
∑
c∈C

Vc(x) is

the graph G = (S, E) such as:

∀{s, t} ⊂ S
(s, t) ∈ E ⇔ ∃c ∈ C : (s, t) ∈ c.

In other word, given a neighborhood system N = {Vs, s ∈ S}:

t ∈ Vs ⇔ (s, t) ∈ E.

See [Lauritzen, 1996, Lauritzen et al., 1990, Whittaker, 2009] for more discussion
about dependency graphs and their semantics.

3.4.2 Graphical interpretation

In this section, we examine the structural transformations generated on indepen-
dence graphs by the following basic operations.

Freezing

The independences can be read o� from the graph by freezing a subset of variables.
As shown in Figure 3.5, an alternative way to view the conditional independence
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between to subsets of vertices A and B conditioned to C (A ⊥ B | C), is to imagine
removing all nodes in set C from the graph together with any links that connect to
those nodes. We then ask if there exists a path that connects any node in A to any
node in B. If there are no such path, then the conditional independence property
holds.

Figure 3.5: Graphical consequence of the conditional independence.

Summing and maximizing

Summing and maximizing act similar way as freezing on the graph. Indeed, It
has been established in [Perez and Heitz, 1996] that, given a Markovian process, X
associated to a graph G(S,E), the marginal p(xA) for some subset A ⊂ S has an
independence graph G′, in which two sites are neighbors if they are neighbors in G,
or if they belong to the neighborhood of a same connected component A = S \ A.
This results from the summation of p(x) = p(xA, xA) with respect to xA which
provides the related marginal distribution [Fieguth, 2010].
As a consequence of this result, from a graphical viewpoint, a dependency graph of
the marginal distribution p(xA) is derived from the dependency graph associated
with the joint distribution p(x) by removing all nodes a ∈ A and then by making
all neighbors of a mutually neighbor as shown in Figure3.6.

Figure 3.6: Graphical consequence of summing/maximizing out the variables in A.

Using the graphical representation, probabilistic causal models have
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been already thoroughly studied [Luettgen et al., 1994, Pérez et al., 2000,
Laferté et al., 2000, Willsky, 2002]. The classes of causal autoregressive
�elds [Luettgen et al., 1994], unilateral MRFs [Devijver, 1988], mesh MRFs
[Razlighi et al., 2009, Youse� and Kehtarnavaz, 2011], and mutually compatible
MRFs on bidimensional lattices [Laferté et al., 2000, Voisin et al., 2014] have thus
been introduced. These models rely on a probabilistic causality concept captured
by the factorization of p(x) in terms of causal transition kernels [Whittaker, 2009].
In the following of this chapter, we shall recall the basics of causality that could be
applied to Markovian Processes.

3.5 Causality

To introduce the concept of causality, it is necessary to de�ne an order over the set
of sites S. In such a way, we characterize the past of a site s, as the set of nodes
preceding s. For example, is S is a regular two-dimensional lattice, the past of a site
(pixel) s located on the rth row and c column can be de�ned as the set of all the
pixels located from the �rst and the (r − 1)th rows and of all the pixels located in
the rth row from the �rst to the (c− 1)th column [Devijver, 1988] . More examples
will be mentioned later with regard to hierarchical MRFs.
Given the ordered set S = {1, · · · , s− 1, s, s+ 1, · · · , N}, the past of the site s
will be denoted as pa(s) = {i ∈ S : i < s}. Thus, the causality is used to de�ne
a subset of sites ∂s ⊆ pa(s) that satis�es the following property ([Lauritzen, 1996,
Whittaker, 2009, Lauritzen et al., 1990]):

∀s > 1, p(xs | xpa(s)) = p(xs | x∂s). (3.20)

If (3.20) holds, one can break the joint distribution p(x = x1, · · · , xN ) as a product
of the conditional probabilities over the past neighborhood. Formally:

p(x) = p(x1)
N∏
s=2

p(xs | xpa(s)) = p(x1)
N∏
s=2

p(xs | x∂s) (3.21)

The most remarkable implication of (3.21) is the absence of a normalization
constant, which helps to easily perform e�cient and non-iterative forward recursive
sampling of this Markov chain-type distribution. By "non-iterative", it is meant
here that a solution x is obtained directly, i.e., without generating a sequence
{xk}∞k=0 of solutions that converge to x.

In the case of a Markovian process indexed by an ordered set S, denoting as
U(x) =

∑
c∈C Vc(x) the energy function with the dependency graph G = (S, N )

and given the nice properties o�ered by causality, the question that arises is to
whether we can determine if a Markov process is causal on the sole basis of a small
past neighborhood ∂s de�ned as:

∀s, ∂s ⊆ Vs ∩ pa(s).
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Before continuing, let us rearrange the potential product
∏
c∈C gc such as:∏

c∈C
gc =

∏
1≤i≤N

gi,

where gi is the product of gc's for all c containing i and no further site j (i.e., j > i).
the joint distribution (3.21) becomes:

p(x) = p(x1)
N∏
i=2

gi(xi, x∂i), (3.22)

where by de�nition of gi, ∂i ⊆ Vi ∩ pa(i). However, by successively considering
marginals of vectors xpa(N), xpa(N−1), · · · , x1), [Chardin, 2000] established func-
tional cases where causal representation turns out to be at least as local as the
original non-causal one (i.e., ∂i = Vi ∩ pa(i)).

3.5.1 Functional characterization of the causality

As shown in the Section 3.4.2, the construction of the dependency graph associated
with a marginal distribution p(x1, · · · , xi) from the dependency graph associated
with the joint distribution p(x1, · · · , xN ) involves the creation of edges between
nodes neighboring the set of removed sites. However, in certain cases depending
on the expression of the factors under concern, simpli�cations might occur in the
marginal p(x1, · · · , xi), leading to a simpler independence graph [Pérez, 1993].

Proposition 3.5.1 (Functional characterization) We denote by X a Marko-

vian process with the joint distribution p(x) = p(x1)
N∏
i=2

gi(xi, x∂i), where

∂i = Vi ∩ pa(i).

X is causal according to ∂i, if ∀i,
N∏
i=2

gi(xi, x∂i) is a constant with refer to xi .

3.5.2 Graphical characterization of the causality

Graphical considerations allow to point out an important class of interaction models
for which the functional characterization of the causality systematically holds. In
fact, the graphical viewpoint allows in some cases to identify at �rst glance (without
need of any computational or probabilistic argument) interaction structures that
support causal models.

Proposition 3.5.2 (Graphical characterization) We denote by X a Markovian

process admitting G as an independence graph with the joint distribution p(X = x) =

p(x1)
N∏
i=2

gi(xi, x∂i), where ∂i = Vi ∩ pa(i).

X is causal according to ∂i, if ∀i, ∂i = Vi ∩ pa(i) is a complete graph2.
2A complete graph is a simple undirected graph in which every pair of distinct vertices is

connected by a unique edge.
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Again, the bene�t of dependency graph is highlighted because it allows for a
visual immediate identi�cation of certain causal models. In fact, it has been shown
in [Whittaker, 2009] that graphs satisfying the graphical characterization in Propo-
sition 3.5.2 with respect to an ordered set are triangulated (or chordal), i.e., they
contain no cycles of length 4 without a chord. Examples of triangulated graphs are
shown in Figure 3.7.

Figure 3.7: Examples of triangulated graphs.

3.5.3 Causal Optimization techniques on Markov chain

Let us denote {(Xt, Yt)}t∈[1,n] a hidden Markov chain that respects the graph in
Figure 3.8

Figure 3.8: Hidden Markov chain.

where f(., .) denote the transition probabilities and the e(., .) are emission prob-
abilities. Formally :

f(i, j) = p(Xt = i|Xt−1 = j); e(k, l) = p(Xt = k|Yt = l) (3.23)

For the sake of argument, all random variables in (3.23) are assumed discrete but
extensions to the continuous observation variables y are rather straightforward. Be-
cause of its causal nature, the graph generated by Markov chain allows obtaining
the posterior distribution of the hidden variables e�ciently using a two stage mes-
sage passing algorithm. In the particular context of the hidden Markov model,
this is known as the forward-backward (F-B) algorithm which is an example of dy-
namic programing3 [Rabiner et al., 1989]. There are several variants of the basic

3Dynamic programing refers to optimization methods that allows an exact inference technique

[Bellman, 1956].
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F-B technique [Jordan, 2003]. In the following, we shall focus on the most widely
used algorithms.

Viterbi algorithm

The general form of the F-B algorithm can be used to do inference on individual
states, which represent hidden variables, of the Markov chain given a sequence of
observations. However, in many applications, the hidden variables have some mean-
ingful interpretations, so it is often of interest to �nd the most probable sequence
of hidden states for a given observation set. This is what the Viterbi algorithm
does ([Viterbi, 1967, David-Forney, 1973]). Formally, the goal of this algorithm is
to compute recursively the best sequence x of the hidden variables that maximize
the posterior distribution:

x? = argmax
x

p(X = x|Y = y) (3.24)

= argmax
x

p(X = x, Y = y)

First let us consider the following proposition:

Proposition 3.5.3

∀a, b and ∀ u, v bounded above functions:

if u(a) > 0 and v(a, b) > 0 then:

max
a,b

[u(a)v(a, b)] = max
a

[
u(a) max

b
v(a, b)

]
At time t, let us consider all the paths in the sequence of states that recognize the
observations until time t, (Y1 = y1, . . . , Yt = yt) and where the last state is equal to
xt (Xt = xt). Then, one could introduce th following quantity:

δt(xt) = max
x1,...,xt−1

p(Y1 = y1, . . . , Yt = yt, X1 = x1, . . . , Xt−1 = xt−1, Xt = xt),

(3.25)
For convenience, (3.25) is abbreviated to:

δt(xt) = max
x1,...,xt−1

p(y1, . . . , yt−1, x1, . . . , xt−1, xt), (3.26)

which represents the probability of the best path from those previously considered.
Next, under conditional independence assumptions derived from the graph in Fig-
ure 3.8 and using Proposition 3.5.3 one could compute (3.25) recursively as follows:

δt(xt) = max
x1,...,xt−1

p(y1, . . . , yt, x1, . . . , xt−1, xt) (3.27)

= max
x1,...,xt−1

[p(yt|xt)p(xt|xt−1)p(y1, . . . , yt, x1, . . . , xt−1)]

= max
xt−1

[p(yt|xt)p(xt|xt−1) max
x1,...,xt−2

p(y1, . . . , yt, x1, . . . , xt−1)]

= max
xt−1

[e(yt, xt)f(xt, xt−1)δt−1(xt−1)],
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which gives the following recursion:

δt(xt) = e(yt, xt) max
xt−1

[f(xt, xt−1)δt−1(xt−1)], (3.28)

where
δ1(x1) = p(y1, x1) = p(x1)e(y1, x1) (3.29)

which gives

x?t = arg(δt(xt)) (3.30)

x?t = argmax
xt−1

[f(xt, xt−1)δt−1(xt−1)]

Algorithm 3.5.1 (Viterbi Algorithm)

	 Initialization
δ1(x1) = p(x1)e(y1, x1).

⇒ Forward pass
∀t ∈ {2, . . . , n}:

δt(xt) = e(yt, xt) max
xt−1

[f(xt, xt−1)δt−1(xt−1)]

x?t = argmax
xt−1

[f(xt, xt−1)δt−1(xt−1)]

⇐ Backward pass
Construction of the optimal path x as a sequence of the optimal states computed

during the forward step.

Baum-Welch algorithm

[Baum et al., 1970] tried to solve the problem of estimating the optimal sequence
based on a likelihood criterion :

Lt = p(xt, y) (3.31)

x?t = argmax
xt
Lt

Then, Forward and Backward probabilities have been introduced via the decompo-
sition of (3.32):

Lt = p(xt)p(y|xt) (3.32)

= p(xt, y1, . . . , yt)× p(yt+1, . . . , yn|xt)
= Ft × Bt
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where Ft and Bt are computed recursively as follows:

Ft = p(xt, y1, . . . , yt) (3.33)

=
∑
xt−1

p(xt, xt−1, y1, . . . , yt)

=
∑
xt−1

p(xt, yt|xt−1)p(xt−1, y1, . . . , yt−1)

=
∑
xt−1

p(yt|xt)p(xt|xt−1)Ft−1

= e(yt|xt)
∑
xt−1

f(xt, xt−1)Ft−1

Bt = p(yt+1, . . . , yn|xt) (3.34)

=
∑
xt+1

p(xt+1, yt+1, . . . , yn|xt)

=
∑
xt+1

p(xt+1|xt)p(yt+1, . . . , yn|xt+1)

=
∑
xt+1

f(xt+1, xt)p(yt+1|xt+1)p(yt+2, . . . , yn|xt+1)

=
∑
xt+1

f(xt+1, xt)e(yt+1, xt+1)Bt+1
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Algorithm 3.5.2 (Baum-Welch algorithm)

⇒ Forward pass

Initialization
F1 = p(x1, y1) = e(x1, y1)p(x1)

Recursion ∀t ∈ {2, . . . , n}:
Ft = e(yt, xt)

∑
xt−1

f(xt, xt−1)Ft−1

⇐ Backward pass

Initialization
Bn = 1

x?n = argmax
xn
Fn

Recursion ∀t ∈ {n− 1, . . . , 2}:
Bt =

∑
xt+1

f(xt+1, xt)e(yt+1, xt+1)Bt+1

x?t = argmax
xn
Bt ×Fn

In the following chapter, we will focus on causal models on Markov �elds via the
particular case of tree structures as they are triangulated by de�nition and do not
include cycles.
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4.1 Basic model structure

The objective of this chapter is to describe multi-resolution classi�cation techniques
based on hierarchical Markovian modeling. These methods have two requirements
for accomplishing this task:

(i) the method should be able to handle the data acquired at di�erent resolutions

(ii) the method should provide a structure that can easily handle the interactions
between di�erent images in the input data set.

Parallel multi-grid (or pyramidal) schemes are one of the possible approaches
satisfying requirement (i). The pyramid structure is a type of signal
representation in which images are organized according to their resolutions
[Jolion and Rosenfeld, 2012] (see Figure 4.1), i.e., a pyramid P is a stack of im-
ages In for which the scale n ∈ [0, R] and R is the height of the pyramid. An
element of this pyramid is called a node and may correspond to a pixel or a group
of pixels in the image domain.

Figure 4.1: Images are organized according to their resolutions in a pyramid struc-
ture.

To handle requirement (ii), we de�ne for each node of the pyramid a
set of links to other nodes to model scale-to-scale interactions. The the-
ory of multi-scale signals has been widely studied, and their representations
naturally lead to models of signals on trees. Among others, dyadic trees
(e.g., [Basseville et al., 1992a, Basseville et al., 1992b]) and quad-trees (e.g.,
[Pérez et al., 2000, Laferté et al., 2000, Chardin, 2000, Voisin et al., 2014]) have
been proposed as attractive candidates for modeling these scale-to-scale interactions
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(a)

(b)

Figure 4.2: (a) A typical example of a tree; (b) tree structure that models the
interaction between images in the pyramid structure.
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in mono-dimensional and bi-dimensional signals, respectively. As discussed in the
section 3.5.2 of the previous chapter, the selection of these structures is justi�ed
by their causality properties over scale and by the possibility of employing a fast
optimization method. Furthermore, the inference technique using tree structures
is much simpler than the techniques for other triangulated graphs because of
the acyclic (i.e., loop-free) property. A useful interpretation makes use of the
relationship between directed graphical models and undirected ones. In a directed
graphical model, the quantities that must be speci�ed include the conditional
distribution at each node given the values of all of its parents (where s− is a parent
of s if there is a directed edge from s− to s). It is straightforward to convert
a directed graphical model into an undirected one, but the construction of a
directed graphical model equivalent to an undirected one is generally very complex
and, in fact, requires de�ning new node and edge sets where the nodes consist of
entire cliques of nodes of the original undirected graph. For a tree, however, the
construction of a directed graphical model from an undirected one is trivial and in
fact does not change the nodes of the graph nor the graphical structure (except that
edges become directed rather than undirected). Speci�cally, consider an undirected
graphical model over a tree and choose any node to designate as the "root" node.
Consider then "hanging" the tree from this node i.e., redraw the graph with the
root node at the top level, with its neighbors at the next level, etc. For example,
in Figure 4.2 (a), we have labeled one node, s−, in Figure 4.2 (b) as the root node
of the considered tree.

Let us denote a generic node on the speci�c case of a quad-tree as s and the �nite
set of all nodes as S(s ∈ S). Each node is a pixel in one of the levels of the tree.
The set of nodes is then hierarchically partitioned, (i.e., S = S0 ∪ S1 ∪ . . . ∪ SR)
where Sn indicates the subset of nodes associated with the nth level of the tree
(n = 0, 1, . . . , R), n = R denotes the root of the tree (coarsest resolution) and n = 0

indicates its leaves (�nest resolution).
In the considered structure, a parent-child relationship can be de�ned: an upward
shift operator δ such that s− = δ(s) is the parent of node s. The operator δ is not
one-to-one, but four-to-one because each parent has four o�spring (because of the
quad-tree structure). We de�ne the forward shift operator β such that s+ = β(s) is
the set of all the descendants of s, the interchange operator α is de�ned as between
the nodes in the identical scale, and d(s) is the set including s and all its descendants
in the tree as illustrated in Figure 4.2 (b). This framework allows data at di�erent
resolutions and di�erent spectral bands to be fused.

4.2 Estimation and inference algorithm on quad-tree

4.2.1 Problem statement

The described hierarchical structure allows, in a natural way, the use of an explicit
statistical model through a hierarchical Markov random �eld formulation using a
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set of random �elds, which are associated with the di�erent scales, and exploiting
the operators de�ned above on the quad-tree structure. Therefore, let us denote the
class label of site s as a discrete random variable xs and its value as ωs (s ∈ S).
If there are M classes in the considered scene, then each label occupies a value
in the set Λ = {0, 1, . . . ,M − 1} (i.e., xs, ωs ∈ Λ). The class labels of all pixels
can be collected in a set X = {xs}s∈S of random �elds Xn = {xs}s∈Sn associated
with each scale n, where Sn is the related set of lattice points. The corresponding
con�guration at scale n and can be represented as ωn = (ωs)s∈Sn . The con�guration
space Ω = Λ|S| is the set of all global discrete labelings (i.e., X ∈ Ω).
One could then assume the following to �t a MRF model to the aforementioned
hierarchical structure:

(i) The fundamental assumption of the model is that the sequence of random �elds
from coarse to �ne scales forms a Markov chain over scale :

p(Xn = ωn|Xq = ωq, q > n) = p(Xn = ωn|Xn+1 = ωn+1). (4.1)

For convenience (4.1) is abbreviated to:

p(xn|xq, q > n) = p(xn|xn+1). (4.2)

(ii) The transition probabilities of this Markov chain factorize so that the compo-
nents (pixels or node s) of Xn are mutually independent given the components
of Xn+1 :

p(Xn = ωn|Xn+1 = ωn+1) =
∏
s∈Sn

p(xs = ωs|xs− = ωs−). (4.3)

Again for convenience purpose (5.2) is abbreviated to:

p(xn|xn+1) =
∏
s∈Sn

p(xs|xs−). (4.4)

Using the quad-tree structure allows bene�ting from the good properties dis-
cussed in the Section 4.1 (i.e., causality) and applying non-iterative algorithms,
thus resulting in a decrease in computational time compared to iterative optimiza-
tion procedures over graphs. As shown in Chapter 3, several Bayesian approaches
are o�ered to solve this inference problem by minimizing the Bayes risk (see 3.10).

Among the di�erent classi�cation algorithms employed on a quad-tree structure
in the literature, two have been widely used and match the MAP and MPM criteria,
respectively. The �rst algorithm aims to exactly estimate the MAP con�guration,
the resulting estimator is given by 3.15. The second algorithm produces the
con�guration that maximizes at each site s the a posteriori marginal, the resulting
estimator is given by 3.17.
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To better highlight the di�erence between these two criteria and their implica-
tions in the application to quad-trees, let us recall the formulation of the cost func-
tions associated with the MAP and MPM (see equations 3.12 and 3.16 in Chapter 3).
The cost function of MAP is de�ned by the following:

CMAP (x?, x) = 1− δ(x?, x) = 1−
∏
s∈S

δ(x?s, xs). (4.5)

This function implies identical cost for all con�gurations of x? (di�erent from x).
the MAP estimator of the label �eld X is given by the following:

xMAP = argmax
x∈Ω

p(x|y), (4.6)

This combinatorial optimization problem can be resolved by using a Kalman-
like �lter [Willsky, 2002], owing to the formal similarity between MRF models
and the Viterbi algorithm [David-Forney, 1973]. The extension of the Viterbi
algorithm, which computes the exact MAP estimate of X given Y = y on the
quad-tree has been introduced by [Dawid, 1992] (see Section 3.3.1) in the context
of probabilistic expert systems, and [Laferté et al., 2000] in the context of image
classi�cation by proposing a non-iterative algorithm on the quad-tree. However,
in the application to quad-trees, these algorithms exhibit two main shortcomings.
First, computationally, they are known to be a�ected by under�ow problems
because of the small probabilities involved. Second, according to (4.5), the MAP
cost function penalizes the discrepancies between con�gurations regardless of their
corresponding scales, an undesirable property from the viewpoint of segmentation,
labeling, and classi�cation. Speci�cally, an error at a coarser scale will be paid the
same cost as an error at a �ner scale whereas it is desirable to have a higher cost
for errors at coarser levels because they may generally lead to the misclassi�cation
of groups of pixels at level 0 (e.g., one pixel at the root corresponds to 4R pixels at
the �nest scale).

On the contrary, the MPM criterion is based on a criterion function that aims at
segmentation accuracy and allows errors on distinct scales to be penalized di�erently
[Laferté et al., 2000, Kato and Zerubia, 2012]. The cost function is:

CMPM (x?, x) =
∑
s∈S

[1− δ(x?s, xs)], (4.7)

which is related to the number of sites s ∈ S such that x?s 6= xs. The MPM
criterion penalizes errors according to their number, at the scale at which they
occur. The Bayesian estimator resulting from (4.7) is given by the following:

∀s ∈ S, xMPM
s = argmax

xs∈Λ
p(xs|y), (4.8)

Furthermore, as shown in [Marroquin et al., 1987, Bouman, 1991], MPMwell adapts
the estimator to the quad-tree topology. Indeed, because the tree is acyclic, the la-
bels are estimated recursively by MPM through a forward-backward algorithm simi-
lar to the classical Baum andWelch algorithm for Markov chains [Baum et al., 1970].



4.2. Estimation and inference algorithm on quad-tree 65

In the following of this thesis MPM criterion is chosen to address inference problems
on the quad-tree structures.

4.2.2 MPM inference

The starting point of the original procedure introduced in [Laferté et al., 2000] lies
in the expression of the posterior marginal p(xs|y) as a function of the posterior
marginal at the parent node p(xs− |y). Formally it has been shown that under some
independence conditional assumptions detailed in [Laferté et al., 2000]:

p(xs|y) =
∑
xs−

p(xs, xs− |yd(s))∑
xs

p(xs, xs− |yd(s))
p(xs− |y). (4.9)

Where yd(s) is the vector collecting the observations of all the descendants of site
s ∈ Sn, n = 0, 1, . . . , R − 1. This yields a top-down recursion whereas the posterior
marginal is initialized at the root node as well as the probabilities p(xs, xs− |yd(s))

are made available. Moreover, these probabilities can be computed as:

p(xs, xs− |yd(s)) =
p(xs|xs−)p(xs−)

p(xs)
p(xs|yd(s)), (4.10)

where another conditional independence assumption has been used, p(xs|xs−) is the
transition probability over scale, and p(xs), p(xs−) are the prior marginals computed
using a simple top down recursion:

p(xs) =
∑
xs−

p(xs|xs−) p(xs−). (4.11)

A bottom-up pass allows to compute the partial posterior marginals p(xs|yd(s)) in
4.10. [Laferté et al., 2000] proved that these marginals could be expressed as a
recursion over scales (s ∈ Sn, n = 1, 2, . . . , R):

p(xs|yd(s)) ∝ p(ys|xs)p(xs)
∏
t∈s+

∑
xt

p(xt|yd(t))

p(xt)
p(xt|xs), (4.12)

where p(ys|xs) are the pixelwise class-conditional PDFs of the image data at each
node of the quad-tree. Note that the product over the children set is actually absent
at the leaves of the tree (i.e., s ∈ S0) in which the partial posterior marginals are
computed directly:

p(xs|ys) ∝ p(ys|xs) p(xs). (4.13)

The whole procedure is summarized in Figure 4.3 and Algorithm 4.2.1.
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(a)

(b)

Figure 4.3: The recursive algorithm on the quad-tree via the MPM criterion
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Algorithm 4.2.1 (MPM estimation on the quad-tree)

	 Preliminary pass
A preliminary top-down recursion is performed to compute the prior

probabilities using (4.11).

⇑ Bottom-up pass
This step provides the distributions p(xs|yd(s)) and p(xs, xs− |yd(s)) via

(4.10) and (4.12) respectively.

⇓ Top-down pass
This downward recursion reassembles the complete posterior marginals

using (4.9) and then deduces the MPM solution via (4.8).

4.3 Blocky artifacts and further extensions of the hier-

archical model

4.3.1 Blocky artifacts

The tree structure induces non-stationarity in space: the distribution at the leaves
is not invariant with respect to the δ operator, since the correlation between two
variables depends on the "distance" to their common ancestor in the tree. This
may result in "blocky" artifacts in the �nal classi�cation map. This phenomenon
can be explained by the fact that two neighboring sites at a given scale may not
have the same parent. In this case, a boundary is more likely to appear than when
they are linked by a parent node. This artifact has been reported in several papers
[Bouman, 1991, Chou et al., 1993, Luettgen et al., 1994, Fieguth et al., 1998,
Laferté et al., 2000]. Figure 4.4 shows the blocky artifacts where the method in
[Laferté et al., 2000] was applied using the MPM criterion at varying levels of the
quad-tree (R = 1, 2, 3) using Pléiades images.

Several techniques have been proposed to circumvent such undesired e�ects.
For example, a posteriori smoothing was developed in [Luettgen et al., 1994] us-
ing a multi-scale regularization (MR) algorithm [Chou, 1991]. Another way to al-
leviate these e�ects was to de�ne a tree structure with overlapping data leaves
[Irving et al., 1997]. Further methods consists in using hierarchical graph struc-
tures that are more complex than usual trees [Bouman, 1991, Kato et al., 1996,
Comer and Delp, 1999]. Unfortunately, in these cases, the practical advantages
of the tree structure are then partly or completely lost. Finally, other scien-
tists avoided the block artifacts by using semi-iterative algorithms in which the
prior distribution was computed iteratively on the quad-tree (prior smoothing)
[Chardin, 2000, Voisin, 2012]. Some of these algorithms are described in the next
section.
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(a) Pléiades data c©CNES

distribution, Airbus DS

(2011)

(b) R=2

(c) R=3 (d) R=4

Figure 4.4: Blocky artifacts using the method proposed in [Laferté et al., 2000]
using the MPM criterion at varying hight of the quad-tree.
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4.3.2 Other techniques using trees

4.3.2.1 Kato et al.'s method

[Kato et al., 1996] consider a more complex graph (called 3D pyramidal MRF) in
which the original quad-tree is combined with a spatial lattice neighborhood at each
level as shown in Figure 4.5.

Figure 4.5: Neighborhood system in [Kato et al., 1996].

This results in an interleaved model whose manipulation is iterative. The infer-
ence is conducted using a parallel relaxation scheme [Besag, 1986] which is based on
a modi�ed annealing procedure (multi-temperature annealing [Kato et al., 1996])
where temperature is kept high at the coarse levels of the structure, thus, enabling
the algorithm to be less sensitive to local minima. This approach provides accurate
classi�cation results but is computationally demanding.

4.3.2.2 Chardin et al.'s method

[Chardin, 2000, Chardin and Pérez, 1999] investigated an extension of the hierarchi-
cal stochastic model described in [Laferté et al., 2000] by taking bene�t from both
the spatial and the hierarchical prior model, combine a causal hierarchical prior on
trees with a non-causal spatial prior at the coarsest level of the hierarchy: it is a
Markov random �eld attached to the nodes of a truncated tree as shown in Figure
4.6. The proposed hybrid structure leads to semi-iterative algorithms which mix
exact non-iterative procedures on sub-trees and iterative procedures on the grid at
the top of the structure.
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(a) Quad-tree

(b) Hybrid structure

Figure 4.6: Two hierarchical structures: (a) quad-tree with three levels; (b) trun-
cated tree with two levels proposed by [Chardin, 2000, Chardin and Pérez, 1999].

4.3.2.3 Voisin et al.'s method

[Voisin, 2012, Voisin et al., 2014] enhanced the classi�cation technique in
[Laferté et al., 2000] by better estimating the prior at the coarsest scale through a
case-speci�c prior update algorithm. Thus, a MPM estimation on a R-scale tree is
performed �rst by choosing an uniform prior, and then by using the preliminary
results as a new prior. Next, a smaller tree of scale R − 1 is considered to which
the MPM algorithm is applied to estimate a new prior. This step is repeated
iteratively until scale 0 is reached. The scheme of this algorithm is given in
Figure 4.7. This method improves robustness with respect to blocky artifacts
as compared to the original method in [Laferté et al., 2000], thus increasing the
accuracy when compared to the basic MPM tree as experimentally demonstrated
in [Voisin et al., 2014].
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Figure 4.7: MPM estimation on the quad-tree as proposed in [Voisin, 2012,
Voisin et al., 2014] In this representation, R = 2.

The main advantage of algorithms which use quad-tree structures is their ca-
pabilities to built non-iterative procedures when the causality property holds. In
particular, a recursive procedure on a quad-tree is feasible for the marginal poste-
rior modes (MPM) criterion. Then the aim is to maximize the posterior marginal at
each site s. Because the tree is acyclic, the labels are estimated recursively through
a forward-backward algorithm similar to the classical Baum and Welch technique
for Markov chain described in algorithm 3.5.3. In practice, the use of one quad-tree
structure with the MPM criterion often yields "blocky" e�ects as shown in Fig-
ure 4.4. This phenomenon can be explained by the fact that two neighboring sites
at a given scale may not have the same parent. This undesirable e�ect can be re-
duced using some modi�cation as in the algorithms described in the previous section.
In the next chapters, several other hierarchical MRF models based on quad-tree will
be introduced to support multi-resolution, multi-temporal, multi-sensor data, and
to incorporate spatial contextual info either at the root or in all levels of the trees.
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5.1 Multi-temporal structure

In the previous chapter (section 4.1) the basic quad-tree model was described. A
generic node was denoted as s and the �nite set of all nodes was denoted as S(s ∈ S).
In such a structure (see Figure 4.2), a parent-child relationship was de�ned:

δ: is the upward shift operator such that s− = δ(s) is the parent of node s.

β: is the forward shift operator such that s+ = β(s) is the set of the descendants
of s.

α: is the interchange operator between the nodes at the same scale.

d(s): is the set including s and all its descendants in the tree.

This framework allows data at di�erent resolutions and di�erent spectral bands to
be fused. A novel element of the �rst proposed approach which is methodologically
described and experimentally validated in this chapter, is the multi-temporal
aspect. Therefore, multiple pyramids and quad-trees are employed in a cascade,
each pyramid being associated with the set of images available at a di�erent
date to characterize the temporal correlations associated with distinct images in
the input time series, while still supporting the classi�cation of data acquired
at multiple spatial resolutions. For this purpose, this extended multi-temporal
quad-tree structure is endowed with new operators to link between the nodes across
di�erent dates, and is combined with multi-scale wavelet feature extraction. We
de�ne an upward shift operator $ such that s= = $(s) is the parent of node s
in the previous date of the time series. Furthermore, we de�ne an interchange
operator σ between the nodes at the identical scale and identical position but
from consecutive dates to characterize the temporal correlation between images
given at di�erent dates (see Figure 5.1). This multi-temporal hierarchical struc-
ture is aimed at supporting the joint classi�cation of both multi-temporal and
multi-resolution input images. This implies that, if only one image is available on
a certain acquisition time, then it will be included at the �nest resolution layer
(level 0) of the corresponding quad-tree. Hence, the intrinsic resolution of the
image will be the �nest resolution of the quad-tree of that date. All other levels
of the tree will be �lled in using wavelet transforms [Mallat, 2008] of the input image.

If images corresponding to multiple resolutions are available on a certain time,
a scenario that occurs, for example, when there are both higher resolution panchro-
matic and coarser resolution multi-spectral data, then each single-resolution input
image is included in a separate level of the quad-tree. In this case, an assumption
implicit in the quad-tree topology is that the spatial resolutions of the input im-
ages are related by a power-of-2 relationship. This condition is satis�ed with minor
approximations by most current multi-resolution space-borne optical sensors (see
Chapter 1), so it is currently only a mild restriction from an operational viewpoint.
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Figure 5.1: Multi-temporal hierarchical structure.

After the input images are included in the layers corresponding to their spatial res-
olutions, level 0 of the quad-tree corresponds to the �nest-resolution input image,
while some intermediate levels generally remain empty and are �lled in using wavelet
transforms of the images from the lower (�ner resolution) layers. For example, if
an IKONOS acquisition composed of a panchromatic component at 1-m resolution
and a multi-spectral component at 4-m resolution is used on a certain date, then
the �nest resolution of the quad-tree is 1 m, the panchromatic and multi-spectral
images are included at levels 0 and 2, respectively, and level 1 is computed as a
wavelet transform of the panchromatic data at level 0.
The proposed hierarchical structure allows, in a natural way, the use of an explicit
statistical model through a hierarchical Markov random �eld formulation using a se-
ries of random �elds at varying scales and times, using the operators de�ned above,
on the consecutive quad-trees.
Let us denote the class label of site s as a discrete random variable xs and its value
as ωs(s ∈ S = ∪Snt , where t and n refer to the corresponding time and scale respec-
tively ). If there areM classes in the considered scene, then each label takes a value
in the set Λ = {0, 1, . . . ,M − 1}. The class labels of all pixels can be collected in a
set X = {xs}s∈S of random �elds X nt = {xs}s∈Snt associated with each scale n and
date t, where Snt is the related set of lattice points. The corresponding con�guration
at scale n and date t can be represented as ωnt = {ωs}s∈Snt . The con�guration space
Ω = Λ|S| is the set of all global discrete labelings (i.e., X ∈ Ω).
We then assume the following to �t an MRF model to the aforementioned hierar-
chical structure:

(i) The fundamental assumption of the model is that the sequence of random �elds
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from coarse to �ne scales form a Markov chain over scale and time:

p(X nt = ωnt |X qp = ωq, p < t, q > n) = p(X nt = ωnt |X n+1
t = ωn+1

t ,X n+1
t−1 = ωn+1

t−1 ).

(5.1)

(ii) The transition probabilities of this Markov chain factorize so that the compo-
nents (pixels or nodes s) of X nt are mutually independent given the components
of X n+1

t and X n+1
t−1 :

p(X nt = ωnt |X n+1
t = ωn+1

t ,X n+1
t−1 = ωn+1

t−1 ) =
∏
s∈Sn

p(xs = ωs|xs− = ωs− , xs= = ωs=).

(5.2)
In the next section, an extended version of the MPM estimator will be discussed

using the proposed multi-temporal hierarchical structure.

5.2 Multitemporal MPM inference

In the proposed approach, the posterior marginal p(xs|y) of the label of each spatio-
temporal node s is expressed as a function of the posterior marginal p(xs|y) of the
parent node s− in the corresponding quad-tree and the posterior marginal p(xs|y) of
the parent node s= in the quad-tree associated with the previous date to characterize
the temporal correlations associated, at di�erent scales, with distinct images in the
input time series. The posterior marginal of each spatio-temporal site s can be
written as follows:

p(xs|y) =
∑

xs− ,xs=

p(xs, xs− , xs= |yd(s))∑
xs
p(xs, xs− , xs= |yd(s))

p(xs− |y)p(xs= |y) (5.3)

where bold fonts denote the marginal posteriors of interest to the MPM.
Proof of equation (5.3):

p(xs|y) =
∑

xs− ,xs=

p(xs|xs− , xs= , y)p(xs− , xs= |y)

=
∑

xs− ,xs=

p(xs|xs− , xs= , yd(s))p(xs− , xs= |y)

=
∑

xs− ,xs=

p(xs, xs− , xs= |yd(s))∑
xs
p(xs, xs− , xs= |yd(s))

p(xs− , xs= |y)

=
∑

xs− ,xs=

p(xs, xs− , xs= |yd(s))∑
xs
p(xs, xs− , xs= |yd(s))

p(xs− |y)p(xs= |y),

The equalities across rows 1 and 2, and across rows 3 and 4, derive from two
conditional independence assumptions:
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A1. The label xs, given the labels of the parents xs− and xs= at the same and
the previous dates, depends only on the observations yd(s) of site s and of its
descendants and not on the observations of the other sites, i.e.,

p(xs|xs− , xs= , y) = p(xs|xs− , xs= , yd(s))

A2. Given the observations y, the label of the parent s− of a site s at the same
date is independent on the label of the parent s= at the previous date, i.e.,

p(xs− , xs= |y) = p(xs− |y)p(xs= |y)

These assumptions are analogous to the conditional independence assumptions that
are commonly accepted when dealing with (hierarchical or single-scale) MRF-based
image analysis, and have been mentioned in the previous chapters. They are used
within the proposed method for analytical convenience.

The formulation in (5.3) allows calculating recursively the posterior marginal
p(xs|y) at each spatio-temporal node s while the probabilities p(xs, xs− , xs= |yd(s))

are produced. Thus, this simpli�es to the determination of the other probabilities
based on the following equation:

p(xs, xs− , xs= |yd(s)) = p(xs|xs− , xs=).
p(xs− |xs=)p(xs=)

p(xs)
p(xs|yd(s)) (5.4)

In (5.4), the �rst factor p(xs|xs− , xs=) corresponds to the child-parent transition
probability; p(xs) is the prior probability; p(xs− |xs=) is the temporal transition
probability at the same scale; and p(xs|yd(s)) is the partial posterior marginal
probability.

Proof of equation (5.4):

p(xs, xs− , xs= |yd(s)) = p(xs− , xs= |xs, yd(s)) p(xs|yd(s))

= p(xs− , xs= |xs) p(xs|yd(s))

=
p(xs|xs− , xs=) p(xs− , xs=)

p(xs)
p(xs|yd(s))

= p(xs|xs− , xs=)
p(xs− |xs=)p(xs=)

p(xs)
p(xs|yd(s))

where the equality across rows 1 and 2 derives from the following assumption:

A3. The distribution of the labels xs− and xs= of the parents of a site s are inde-
pendent on the observations yd(s) of the descendants of s, when conditioned
to the label xs of s, i.e.,
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p(xs− , xs= |xs, yd(s)) = p(xs− , xs= |xs)

To compute these probabilities, we bene�t from the hierarchical structure de�ned
above and use three recursive passes on the quad-tree, including one bottom-up and
two top-down passes. For the sake of brevity, only the steps associated with a pair
of images acquired at two di�erent times (t = 0 and t = 1) are explained in the
following (see Figure 5.2). The recursive extension to more than two acquisition
times is straightforward.

5.2.1 Time t = 0: single-time MPM.

According to the cascade approach, �rst, classi�cation is performed at time t=0
using a single-date MPM as shown in chapter 4, in which the labeling is obtained
recursively over scales through a top-down stage and a bottom-up stage. Details
of this single-date formulation can be found in [Laferté et al., 2000] and has been
recalled in Section 4.2. We only recall that the process is initialized by prede�ning
the pixelwise prior probability distribution at the root of the corresponding quad-
tree, i.e., p(xs), s ∈ SR0 . This initialization is required to begin a top-down recursion
and compute the priors at all levels of the quad-tree at time 0. A simple initial-
ization strategy is to use a uniform prior distribution on Λ. Here, to incorporate
spatial contextual information and mitigate possible blocky artifacts, a case-speci�c
initialization strategy is applied that makes use of a spatial MRF model: a neigh-
borhood system is de�ned on the lattice SR0 in the root at time 0, and for each
pixel s ∈ SR0 , the unconditional prior p(xs) is replaced by the local conditional prior
p(xs|xs′ , s′ ∼ s, s′ ∈ SR0 ), where s ∼ s′ denotes that the sites s and s′ are neighbors.
This choice generally provides a biased prior-probability estimate but favors spatial
adaptivity, a desired property when working with high resolution images in which
spatial details are common.
The well-known Potts MRF model, which favors the same labeling in homogeneous
image regions, is used [Li, 2009, Kato and Zerubia, 2012], i.e.:

p(xs|xs′ , s′ ∼ s, s′ ∈ SR0 ) ∝ exp(β
∑
s∼s′

δ(xs, xs′)) (5.5)

where β is a positive spatial smoothness parameter. Several methods have been
proposed to optimize the value of this parameter including the maximization of
the pseudo-likelihood function over the training set [Geman and Geman, 1984]. In
[Chardin, 2000] also combined a hierarchical structure and the Potts model, leading
to a semi-iterative technique in which the Potts component is used to compute a
unique prior distribution for each scale. On the contrary, here, we use the Potts
model to de�ne a local characteristic for each node of the root level to maximize
spatial adaptivity.

As a result of single-time processing at time t = 0, the posterior marginal p(xs|y)

is known for each pixel of the corresponding quad-tree; p(xs|yd(s)), in which yd(s)
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denotes the collection of the observations of all quad-tree sites that are descendants
of site s, is also derived as a by-product (s ∈ Sn0 , n = 0, 1, . . . , R). Details can be
found in [Laferté et al., 2000] and in Section 4.2.

5.2.2 Time t = 1: �rst top-down pass.

In the proposed method, the recursive top-down/bottom-up formulation used for
the single-time case in Chapter 4 is extended to the multi-temporal classi�cation at
time t = 1. In this case as well, �rst, the prior distribution on the root lattice, i.e.,
p(xs), s ∈ SR1 , has to be de�ned to initialize a top-down pass. Following the cascade
approach, at time t = 1, we take bene�t of the inference conducted at time t = 0:
for each pixel s ∈ SR1 on the root lattice at t = 1, the unconditional prior p(xs) is
initialized as the posterior marginal p(xσ(s)|yd[σ(s)]), which corresponds to the same
pixel σ(s) ∈ SR0 in the root lattice SR0 at t = 0 (blue arrow labeled with the number
one in Figure 5.2) and has been computed as a by-product of the single-date MPM
application at time t = 0.

After initializing the prior in the root, a top-down pass (blue arrow labeled with
the number two in Figure 5.2) is performed for each �ner level n < R at time t = 1.
The prior-probability distribution is derived as a function of the prior-probability
distribution at the parent level and of the transition probabilities from the parent
to the current level (s ∈ Sn1 , n = 0, 1, . . . , R− 1):

p(xs) =
∑
xs−

p(xs|xs−) p(xs−). (5.6)

This derivation favors an identical parent-child labeling and models the statistical
interactions between consecutive levels of the quad-tree. We model the transition
probability in the form introduced by [Bouman, 1991], i.e., (s ∈ Sn1 , n = 0, 1, . . . , R−
1):

p(xs|xs−) =


θ xs = xs−

1− θ
M − 1

xs 6= xs−
(5.7)

where θ is a parameter ranging in [ 1
M , 1]. As a result of the �rst top-down pass, the

prior distribution p(xs) is derived for each pixel s (s ∈ Sn1 , n = 0, 1, . . . , R) of each
level of the quad-tree at time t = 1.

5.2.3 Time t = 1: bottom-up pass.

A bottom-up pass recursion is then performed to estimate the joint probabilities
p(xs, xs− , xs= |yd(s)) starting from the leaves of the quad-tree at time t = 1 and
proceeding until the root is reached based on the factorization in equation (5.4). In
addition to priors, which have been computed in the previous top-down pass, three
sets of probabilities are required to compute this factorization:

(i) the set of temporal transition probabilities at the same scale p(xs− |xs=);
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(ii) the child-parent transition probability p(xs|xs− , xs=);

(iii) the partial posterior marginals p(xs|yd(s)).

Details of the calculation of (i) and (ii) are shown in Section 5.3.2. Concerning (iii),
[Laferté et al., 2000] proved the following (s ∈ Sn1 , n = 1, 2, . . . , R):

p(xs|yd(s)) ∝ p(ys|xs)p(xs)
∏
u∈s+

∑
xu

p(xu|yd(u))

p(xu)
p(xu|xs), (5.8)

Thus, the bottom-up pass is a recursion that estimates p(xs|yd(s)). It starts from
the leaves of the quad-tree in which the partial posterior marginals are computed
via (green arrow labeled with the number 1 in Figure 5.2):

p(xs|ys) ∝ p(ys|xs)p(xs), (5.9)

and then proceeds until the root is reached using equation (5.8) (green arrow la-
beled with the number two in Figure 5.2). Equation (5.8) involves the pixelwise
class-conditional PDFs p(ys|xs) of the image data at each node of each quad-tree
(see Section 5.3.1). As a result of the bottom-up pass, we now have all needed
probabilities to compute p(xs, xs− , xs= |yd(s)) at each level of the quad-tree.

5.2.4 Time t = 1: second top-down pass.

According to equation (5.3), �rst, the posterior marginal is initialized at the root
of time t = 1 (red arrow labeled with the number one in Figure 5.2). For this
purpose, we initialize p(xs|y) as p(xs|yd(s)) for s ∈ SR1 , as in the usual single-date
formulations of MPM. Then, the posterior p(xs|y) at each pixel s for all other tree
levels at time t = 1 (s ∈ Sn1 , n = 0, 1, . . . , R− 1) can be easily computed recursively
in a top-down pass (red arrow labeled with the number two in Figure 5.2) using the
formulation in equation (5.3).

5.2.5 Both times: combination with MMD.

At each time t ∈ {0, 1}, the aforementioned steps lead to the computation of the
posterior marginal p(xs|y) on each pixel (s ∈ Snt , n = 0, 1, . . . , R). In principle,
the class label xs that maximizes p(xs|y) over the �nite set Λ of classes could be
selected and assigned to s. This is a feasible procedure but is often avoided in the
literature of hierarchical MRFs because of its computational burden (linear with
respect to the number of classes and the number of sites for all scales and times)
and of possible blocky artifacts. As an alternate approach, here, a case-speci�c
formulation of the modi�ed Metropolis dynamics (MMD) [Kato, 1995] is applied
separately for each scale and time. Speci�cally, in the case of the root layer of the
quad-tree corresponding to each time t, MMD is used to minimize the following
energy with respect to the label con�guration XRt = {xs}s∈SRt :

U(XRt |y) = −
∑
s∈SRt

log p(xs|y)− β
∑

s∼s′∈SRt

δ(xs, xs′) (5.10)
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where the �rst term is expressed in terms of the pixel-wise posteriors computed
by MPM and the second contribution is due to the Potts model on the root of the
tree. In the case of each other layer n = 0, 1, . . . , R− 1, no Potts model is used and
MMD is applied to minimize:

U(XRt |y) = −
∑
s∈SRt

log p(xs|y) (5.11)

This means that, in this case, MMD is equivalent to iteratively selecting a ran-
dom subset of pixels for which random replacements in class membership are at-
tempted. In all cases, the iterative procedure of MMD is repeated until the di�erence
in energy on consecutive iterations goes below a prede�ned threshold (which was
set to 10−4 in the experiments). In the case of the root layer, the solutions obtained
using MMD and maximizing p(xs|y) directly intrinsically di�er because the former
takes into account spatial context through the Potts model while the latter does not.
In the case of the other layers, MMD basically acts as a randomized version of the
maximization of p(xs|y) on every pixel. Computationally, the number of iterations
of MMD that su�ces to reach convergence is usually signi�cantly smaller than the
number of individual operations leading to the maximization of p(xs|y) on every
pixel with respect to the class label. Accordingly, MMD is expected to be advan-
tageous from a computational viewpoint. This is consistent with various previous
works using MPM on hierarchical MRF models (see, e.g., [Pérez et al., 2000] that
combines MPM and ICM; and [Voisin et al., 2014] for MPM and MMD).

Figure 5.2: Multi-date MPM estimation on the quad-tree: R=2 and two dates.
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5.3 Pixelwise class-conditional PDFs and transition

Probabilities

5.3.1 Pixelwise class-conditional PDFs

Given a training set for each input date, for each class m, scale n and acquisition
time t we model the corresponding class-conditional marginal PDF p(ys|xs = m)

using �nite mixtures of independent distributions:

p(ys|xs = m) =

Kmnt∑
i=1

πmnti Fmnti (ys|θmnti ), ∀s ∈ Snt (5.12)

where πmnti are the mixing proportions, θmnti is the set of the parameters of the
ith PDF mixture component of class m at scale level n and time t, and Fmnti is the
corresponding parametric family (n = 0, 1, . . . , R;m = 0, 1, . . . ,M − 1; t = 0, 1).
When the data at scale level n and time t is an optical image, the class-conditional
marginal PDF pmnt(y|m) related to each class m is modeled by a multivariate
Gaussian mixture [Figueiredo and Jain, 2002] with a set of parameters θmnti =

{µmnti , Σmnt
i } associated with the corresponding means and covariance matrices.

Formally the component i of the multivariate Gaussian mixture is given by (for ease
of notation the subscripts m,n, and t are dropped):

pi(y|m) = (2π)−
d
2 |Σi|−

1
2 exp [−1

2
(y − µi)TΣ−1

i (y − µi)] (5.13)

This Gaussian assumption, especially when combined with a �nite mixture is a
well-known and widely accepted model for the statistics of optical data. Thanks to
the linearity of the wavelet operator, the same assumption also holds for the resulting
transformed levels of the quad-tree. The use of �nite mixtures instead of single PDFs
o�ers the possibility to consider heterogeneous PDFs, usually re�ecting the contribu-
tions of di�erent materials present in each class. This class heterogeneity is relevant
when we address VHR images. The parameters of the mixture model θmnti in the
Gaussian mixture are estimated through the stochastic expectation maximization
(SEM) algorithm [Celeux et al., 1996], which is an iterative stochastic parameter
estimation algorithm developed for problems characterized by data incompleteness
and approaching, under suitable assumptions, maximum likelihood estimates. For
each scale and time, SEM is separately applied to the training samples of each class
to estimate the related parameters as shown in Figure 5.3 using the algorithm 5.3.1.
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(a) Training set of urban area class

(b) Urban area modeling

Figure 5.3: Example of PDF modeling using the SEM algorithm on a panchromatic
Pléiades image acquired on Port-au-Prince, Haiti, c©CNES, distribution Airbus DS.
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Algorithm 5.3.1 (Stochastic Expectation Maximization (SEM) algorithm)

For each class m ∈ {0, 1, . . . ,M}, time t ∈ {0, 1}, and scale n ∈ {0, 1, . . . , R} and at

each iteration j ∈ [1, jmax], dropping the subscripts m,n, and t for ease of notation:

E-step:
For each observation yk, k ∈ [1,N ] and the ith mixture component, i ∈ [1,K],

posterior probability estimation:

τ ji (yk) =
πji p(yk|µ

j
i , Σ

j
i )

K∑
l=1

πjl p(yk|µ
j
l , Σ

j
l )

;

S-step:
A label sj(yk) is associated to each training yk of the considered class by using

the previous posterior estimation {τ ji (yk) : i ∈ [1,K]};

M-step:
For each mixture component i, the proportions and the parameters at the iter-

ation j + 1 are given by:

πj+1
i =

Qji
N

µj+1
i = 1

Qji

N∑
k=1

yτ ji (yk)

Σj+1
i = 1

Qji

N∑
k=1

τ ji (yk)(y − µj+1
i )(y − µj+1

i )T

where Qji is the set of samples assigned to the ith mixture component in the

S-step.

5.3.2 Transition probabilities

The transition probabilities between consecutive scales and consecutive dates deter-
mine the properties of the hierarchical MRF because they formalize the causality of
the statistical interactions involved. Therefore, they must be carefully de�ned. In
the proposed method, two types of probabilities involve time:

(i) The First is the set of temporal transition probabilities at the identical
scale p(xs− |xs=), which are estimated using a speci�c formulation of the
expectation-maximization (EM) algorithm [Figueiredo and Jain, 2002]. An
iterative �xed-point EM-like algorithm is performed to estimate the prior
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joint probabilities p(xs− , xs=) for each scale n, and the temporal transi-
tion probabilities are then derived [Bruzzone et al., 1999]. The probabilities
p(xs− = m, xs= = m′) , where m and m′ range in Λ = {0, 1, . . . ,M − 1},
are regarded as the elements of an M ×M matrix J , which is computed by
maximizing the following pseudo-likelihood (n = 0, 1, . . . , R):

L(J) =
∏
s∈Sn1

∑
xs−

∑
xs=

p(xs− , xs=)p(ys− , ys= |xs− , xs=) (5.14)

The recursive equation to be used to maximize the pseudo-likelihood in (5.14)
is the following:

pk+1(xs− , xs=) ∝
∑
s∈Sn1

pk(xs− , xs=)p(ys− |xs−)p(ys= |xs=)∑
xs−

∑
xs=

pk(xs− , xs=)p(ys− |xs−)p(ys= |xs=)
(5.15)

where pk(xs− , xs=) is the iterative joint probability estimate at the kth EM
iteration, and N is the total number of pixels. These estimates are initialized
by assigning equal probabilities to each pair of classes:

p0(xs− , xs=) =
1

M2
(5.16)

(ii) The second type of transition probabilities that involve time is the child-parent
transition probability p(xs|xs− , xs=) . To our knowledge, a case-speci�c formu-
lation of EM is not available for inter-scale transition probabilities. However,
parametrically modeling these probabilities have demonstrated an e�ective
choice in the case of single-date classi�cation as it yielded accurate results to
be obtained [Laferté et al., 2000, Voisin et al., 2012]. Indeed, we extend here
the algorithm proposed in [Baum et al., 1970], which favors the identity be-
tween the children and parents (in the current and previous dates), all other
transitions being unlikely:

p(xs|xs−) =



θ xs = xs− = xs=

ϕ ((xs = xs−) or (xs = xs−)) andxs= 6= xs−

1− θ
M − 1

xs 6= xs− and xs 6= xs= and xs− = xs=

1− 2ϕ

M − 2
xs 6= xs−and xs 6= xs=and xs− 6= xs=

(5.17)

with the parameters θ > 1
M and 1

M < ϕ < 1/2. Here, θ has the same meaning
as in equation (5.6), and the same parameter value is used in both transition
probabilities.
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5.4 Experimental results

5.4.1 Data sets and experimental setup

In this section, we discuss the results of the experimental validation of the developed
multi-temporal and multi-resolution classi�er on two datasets (examples are shown
in Figures 5.4 and 5.5):

• A three-date series of panchromatic and multispectral Pléiades images ac-
quired over Port-au-Prince (Haiti) in 2011, 2012, and 2013.

• Two pan-sharpened GeoEye acquisitions acquired over Port-au-Prince (Haiti)
in 2009 and 2010.

(a) 2011 (b) 2012 (c) 2013

Figure 5.4: Examples of images time series acquired over Port-au-Prince (Haiti)
by Pléiades satellite c©CNES, distribution Airbus DS.

(a) 2009 (b) 2010

Figure 5.5: Examples of images time series acquired over Port-au-Prince (Haiti)
by GeoEye satellite c©GeoEye.

Five land cover classes have been considered for both data sets: urban (red), water
(blue), vegetation (green), bare soil (yellow), and containers (purple). We note that
these classes represent semantically high level land covers. However, a classi�cation
map associated with more detailed classes can be produced when a sophisticated
ground truth is available. In the present work, manually annotated non-overlapping
training and test sets were selected in homogeneous areas (as shown in Figure 5.6 and
Table 5.4.1). Spatially disjoint training and test areas were used in all experiments
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to minimize correlation between training and test samples and to prevent possible
optimistic biases in accuracy assessment.

(a) (b)

Figure 5.6: Ground truth for the Pléiades image acquired in 2013 (a) training set,
(b) test set.

class name and color ] of pixels in training set ] of pixels in test set
Water 49 057 45 790
Urban 75 508 72 327

Vegetation 50 688 27 086
Bare soil 29 333 25 541
Container 16 064 14 652

Table 5.1: Number of training and test samples on the panchromatic pixel lattice
of the Pléiades image (1600 x1000 pixels) acquired in 2013

In the case of the Pléiades images, the �nest resolution of the multi-resolution
pyramid (level 0) was set equal to the �nest resolution of the input panchromatic
images (i.e., 0.5 m). Co-registered multi-spectral images (at 2 m) were integrated in
level 2 of the pyramid. To �ll level 1 of each quad-tree, a wavelet decomposition of
each panchromatic image was used. As a preliminary experiment, the combination
of the proposed method with numerous wavelet operators, including Daubechies,
biorthogonal, and reverse biorthogonal wavelets, symlets, and coi�ets of various or-
ders [Mallat, 2008], was examined. The results were similar, and the main di�erence
relied on the level of smoothness of the �nal classi�cation map. On one hand, as
shown in Figure 5.7, the average of the overall accuracies obtained on the test sets
of all individual dates was remarkably stable as a function of the selection of the
wavelet operator, suggesting that this selection is not critical in the application of
the proposed approach. On the other hand, an exception was represented by the
Daubechies wavelets of order 10 (db10) whose combination with the proposed multi-
resolution method resulted in higher accuracies than the other considered wavelet
transforms. This wavelet operator will be used in all other experiments discussed in
this dissertation (see Figure 5.7).
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Figure 5.7: Average of the overall accuracies obtained on the test sets of all indi-
vidual dates results using several wavelet families.

The GeoEye image resolution is 0.5 meter (the �nest resolution of the multi-
resolution pyramid). Comments similar to those reported for the experiments with
Pléiades images regarding the selection of the wavelet operator hold here as well,
and db10 was used to �ll level 1 and level 2 of the pyramid.

As discussed in Section 5.2, the proposed method depends on four parameters,
i.e., β in (B.9), θ in (5.7) and (5.17), ϕ in (5.17), and R. the classi�cation results
included in this manuscript were obtained using the following parameter values:
β = 0.8, θ = 0.85, ϕ = 0.48, and R = 2, i.e., three levels in each quad-tree. Including
more decomposition levels generally helps in discriminating homogeneous land covers
but might result in the removal of small-size image details (see Figure 4.4). Indeed,
with R = 2, the classi�cation map is generated at 50-cm spatial resolution for both
data sets, while the coarsest scale corresponds to 2-m resolution. Including coarser-
resolution features would generally favor spatial smoothness but may progressively
hinder the capability to discriminate classes characterized by spatial details such
as "buildings" and "containers." The value of β was automatically optimized by
applying the well-known pseudo-likelihood method [Besag, 1974] to the training
samples. Accordingly, a user/operator does not have to perform a trial-and-error
procedure to set β. In general, a lower value of β prevents spatial over-smoothing
at the price of an accuracy decrease on test samples located inside homogeneous
regions associated with the same thematic class. As β is automatically optimized,
the only free parameters are θ and ϕ. According to (5.17), θ is the probability that
a site, its parent at the same date and its parent at the previous date share the same
class label; ϕ is the probability that a site shares the same label of one of the two
parents while the parents disagree. For (5.17) to de�ne a probability distribution,
θ and ϕ can take values in [0, 1] and [0, 0.5], respectively, in the case of M = 5

classes. Figures 5.8 and 5.9 show the behavior of the overall accuracy (OA) of the
proposed method on the test set as each one of these two parameters range in these
intervals while the other parameter is �xed to the aforementioned reference values
(i.e., θ = 0.85 and ϕ = 0.48).
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(a) (b)

Figure 5.8: Overall accuracy of the proposed method on the test set of the Pléiades
data set as a function of the parameters (a) ϕ and (b) θ.

(a) Detail on the Pléiades im-

age

(b) ϕ = 0.45 and θ = 0.7

(c) ϕ = 0.2 and θ = 0.85 (d) ϕ = 0.45 and θ = 0.85

Figure 5.9: Details of the the classi�cation maps obtained by the proposed method
when applied to the Pléiades data set with di�erent values ϕ and θ.

On one hand, these plots suggest that the method is sensitive to the values
of θ and ϕ. This is an expected result because they involve the causality of the
model. On the other hand, limited sensitivity was observed and OA remained
higher than approximately 85% as long as ϕ and θ were larger than 0.4 and 0.85,
respectively. On the contrary, it was basically for relatively extreme and not
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meaningful values of θ or ϕ that poor values of OA were obtained. For example,
ϕ = 0.2 implies that there is a 15% probability that the labels of a site and of its
two parents are all di�erent (see (5.17) with M = 5). Because of the very high
inter-scale and temporal correlations associated with the multi-resolution data sets,
this event is highly unlikely, and ϕ = 0.2 yields to signi�cantly overestimating
its chances of occurring in the classi�cation process, thus a�ecting OA. Similarly,
θ = 0.5 implies a 12.5% probability that the parents of a site at the two dates
agree on a certain class membership but the site disagrees, another outcome
that is very unlikely because of inter-scale correlation and whose probability is
overestimated. Therefore, although the proposed method is overall sensitive to θ
and ϕ, the experimental analysis suggests that the meaning of the two parameters
in relation to inter-scale and temporal correlation allows a user/operator to rather
easily determine values of or ranges on these parameters that lead to accurate
classi�cation maps. Preliminary experiments also pointed out that the use of the
MMD optimization technique resulted in a signi�cant reduction in the number
of iterations needed to estimate the class label of each pixel as compared to the
direct maximization of the posterior marginals. To reach convergence in the case
of one single level of a quad-tree including 1600 × 1000 pixels and 5 classes, MMD
required fewer than 1000 iterations. We recall that, in each MMD iteration, one
individual pixel is examined. On the contrary, the direct choice of the class label
that maximizes the posterior marginal on each pixel required to iterate over all
1600× 1000 pixels and 5 classes, thus taking a much longer time.

The results obtained by the proposed method were compared to those generated
by:

(i) the technique in [Laferté et al., 2000], used as a multi-resolution single-date
benchmark in both its (a) MPM- and (b) MAP-based formulations;

(ii) the MRF-based algorithm proposed in [Melgani and Serpico, 2003], used as
single-resolution multi-temporal benchmark;

(iii) a contextual combination of the K nearest neighbor and MRF-based ap-
proaches, used as a single-resolution single-date benchmark;

(iv) the well-known K-means clustering technique, used as a basic unsupervised
benchmark.

The results of the proposed and previous techniques are reported in the following
subsection along with further details on their applications.

5.4.2 Experimental Results and comparisons

In this section, we present the classi�cation maps and discuss the corresponding
classi�cation accuracies that were obtained on the test set. Figure 5.11 and Ta-
ble 5.2 refer to the results obtained using Pléiades images, and Figure 5.12 and
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Table 5.3 regard those obtained from the GeoEye acquisitions. All computation
times reported in the tables refer to a C++ implementation on an Intel i7 quad-
core (2.40 GHz) 8-GB-RAM 64-bit Linux system. The analysis of the classi�cation
maps has suggested that the proposed hierarchical method leads to accurate re-
sults. In particular, several experimental comparisons were performed with methods
exploiting multi- or single-resolution, multi- or single-date, supervised or unsuper-
vised approaches. First, the results of the proposed technique were compared to
the separate hierarchical classi�cation results obtained at individual dates using the
multi-resolution single-time method in [Laferté et al., 2000], in both its MPM (Fig-
ure 5.11(c) and Figure 5.12(c)) and MAP (see Figure 5.11(d) and Figure 5.12(d))
formulations and using a 3 level pyramid with the following parameters: β = 0.8 and
θ = 0.85. We recall that several extensions of the method in [Laferté et al., 2000]
have been developed including the approach presented in [Voisin et al., 2012] for the
speci�c case of multi-sensor classi�cation and based on the integration of the hier-
archical MRF model of [Laferté et al., 2000] with copula functions for merging data
from both optical and SAR sensors within the same pyramid. In the present thesis,
the focus is on multi-temporal classi�cation with optical images and not on multi-
sensor fusion. Accordingly, we used the original method in [Laferté et al., 2000]
for comparison purposes. The results of the comparison show the e�ectiveness of
the proposed multi-temporal hierarchical model in fusing the temporal, spatial, and
multi-resolution information associated with the input data (see Table ??). In prac-
tice, the use of one quad-tree structure with the MPM criterion yields "blocky"
segmentation (see Figure 5.10 (a)). This phenomenon can be explained by the fact
that two neighboring sites at a given scale may not have the same parent. In this
case, a boundary appears more easily than when they are linked by a parent node.
These blocky artifacts are avoided by the use of the multi-temporal hierarchical
structure proposed in this thesis in which causal relationships between parents and
o�spring in the same quad-tree are relaxed by the introduction of other causal re-
lationships over time and scale (see Figure 5.10(b)). One of the main sources of
misclassi�cation in the single-date results is the confusion between the "urban" and
"vegetation" classes. This misclassi�cation is reduced in the multi-temporal classi-
�cation obtained by the proposed method because of the modeling of the temporal
relationships among the input multi-resolution data. Furthermore, as expected,
the MAP criterion was poorly e�ective when applied to the considered hierarchical
structure because errors were propagated from the root to the leaves and led to se-
vere misclassi�cations, especially regarding the classes that most strongly overlap in
the feature space (e.g., "urban" and "containers"; see Figures 5.11(d) and 5.12(d)).
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(a) (b)

Figure 5.10: (a) Blocky artifacts obtained using quad-tree structure via MPM
formulation, (b) reduction of these blocky artifacts using the proposed method.

Second, in the context of multi-temporal classi�cation, the proposed classi�er
was compared to the multi-temporal single-resolution MRF-based method proposed
in [Melgani and Serpico, 2003]. It uses the mutual approach and consists in per-
forming a bidirectional exchange of the temporal information between the (non-
hierarchical) single-time MRF models associated with consecutive images in the se-
quence. In the form of an appropriate energy function, each single-time MRF model
integrates three types of information (spectral, spatial contextual, and temporal con-
textual) using a multilayer perceptron (MLP) neural network to extract the spectral
information. The results reported in Table 5.3 show that a better exploitation of
the spatio-temporal information allowed the proposed cascade multi-resolution ap-
proach to provide more accurate results than the previous mutual single-resolution
approach in [Melgani and Serpico, 2003]. More generally, the mutual approach re-
duces the risk of propagating the classi�cation error between consecutive dates,
while the use of the hierarchical schema provided more accurate classi�cation maps,
at least, on the considered data sets. Furthermore, because of the hierarchical as-
pects and the non-iterative algorithm, only few minutes were necessary to obtain
satisfactory results using the proposed approach compared to those obtained by the
mutual approach that required a much longer computation time (several hours). Ac-
cording to the formulation of the method in [Melgani and Serpico, 2003], this time
included the times required to compute the texture features from the given image
time series, to train and apply an MLP neural network for the image of each date
using the back-propagation algorithm, and to estimate the parameters of the cor-
responding MRF model using the case-speci�c parameter optimization procedure
in [Ibáñez and Simó, 2003]. The classi�cation maps obtained using the well-known
K-nearest-neighbors (K-NN) method are also shown in Figures 5.11(h) and 5.12(h).
K-NN was used as a benchmark non-parametric classi�er. It is non-contextual, so
to perform a fair comparison between the proposed method and a spatial-contextual
technique, it was combined with an MRF model. A hidden MRF whose unary term
was expressed in terms of the pixelwise posterior probabilities estimated by K-NN
and whose contextual term was represented by an isotropic Potts model was used.
K = 30 was estimated by cross validation on the training set, and the smooth-
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ing parameter of the Potts model was optimized using the automatic method in
[Serpico and Moser, 2006], which is based on the Ho-Kashyap algorithm. The nu-
merical results on the test sets suggest that this single-scale MRF-based method (see
Tables 5.2 and 5.3) leads to rather poor accuracy and severe spatial oversmoothing
as shown in Figures 5.11(g) and 5.12(g). This is consistent with the fact that this
combined K-NN + MRF classi�er is intrinsically single-resolution and single-date,
and can exploit neither the multi-resolution nor the multi-temporal structure of the
input data set. In the map in Figure 5.12(g), obtained from GeoEye data, the com-
bined K-NN + MRF well discriminated the "water" and "urban" classes but almost
did not identify the other thematic classes due to the strong spectral overlapping
and the imbalance between the training sample sizes of these classes. Finally, a
further comparison was performed between the results of the proposed method and
those of an unsupervised algorithm. K-means was used for this benchmark com-
parison as a well-known consolidated approach, and was applied with K = 5. This
number of clusters was used to match the number of classes in each data set. The
clusters obtained by K-means generally do not coincide with the thematic classes
of a supervised classi�cation problem. An alternate strategy could be to, �rst, ap-
ply K-means using a signi�cantly larger number of clusters, and then, perform a
cluster-to-class assignment either manually or on the basis of the training set. In
either case, this assignment would incorporate prior knowledge. This experiment
was meant as a benchmark comparison with an unsupervised method using no prior
knowledge. Accordingly, the simple choice K = 5 was accepted. As expected due to
its unsupervised, non-contextual, and single-resolution formulation, K-means per-
formed the worst in terms of classi�cation accuracy, while it exhibited the lowest
computation time (see Figures 5.11(h), 5.12(h)).
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(a) Pléiades image (2013) (b) Ground Truth (training+test sets)

(c) [Laferté et al., 2000] (with MPM) (d) [Laferté et al., 2000] (with MAP)

(e) [Melgani and Serpico, 2003] (f) The proposed method

(g) K-NN+MRF (h) K-means

Figure 5.11: Classi�cation maps obtained from Pléiades data set, ( c©CNES distri-
bution Airbus DS).
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(a) GeoEye image (2010) (b) Ground Truth (training+test sets)

(c) [Laferté et al., 2000] (with MPM) (d) [Laferté et al., 2000] (with MAP)

(e) [Melgani and Serpico, 2003] (f) The proposed method

(g) K-NN+MRF (h) K-means

Figure 5.12: Classi�cation maps obtained from GeoEye data set ( c©GeoEye).
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urban water vegetation bare soil containers over all computation time
Proposed method 81.62 100 90.69 92.82 62.82 85,59 480 seconds

method in [Laferté et al., 2000] using MPM criterion 77.45 88.62 72.59 86.02 57.02 76.34 160 seconds
method in [Laferté et al., 2000] using MAP criterion 56.14 100 81.90 87.02 73.21 79.65 220 seconds

method in [Melgani and Serpico, 2003] 80.63 100 86.33 87.61 69.61 84.83 ≈ 1 hour
K-NN + MRF 96.84 92.42 47.15 71.83 16.75 64.99 90 seconds

K-means 12.37 98.63 59.18 91.66 29.42 58.25 20 seconds

Table 5.2: Classi�cation accuracies on the test set of the Pléiades dataset: class accuracies, overall accuracy, and computation time.
Experiments were conducted using one (1600x1000) image at level 0, one (800x500) image at level 1 and four (400x250) bands at
level 2 on an Intel i7 quad-core (2.40 GHz) 8-GB-RAM 64-bit Linux system.

urban water vegetation bare soil containers over all computation time
Proposed method 87.59 100 98.12 72.82 82.27 88,16 345 seconds

method in [Laferté et al., 2000] using MPM criterion 77.45 100 88.34 66.22 67.87 79.97 160 seconds
method in [Laferté et al., 2000] using MAP criterion 64.52 100 92.15 85.62 49.47 78.35 140 seconds

method in [Melgani and Serpico, 2003] 80.63 100 89.79 70.54 74.29 83,05 ≈ 1 hour
K-NN + MRF 100 100 0 0 12.28 42.45 40 seconds

K-means 88.97 100 88.14 45.6 36.96 71.93 15 seconds

Table 5.3: Classi�cation accuracies on the test set of the GeoEye dataset: class accuracies, overall accuracy, and computation time.
Experiments were conducted using one (1600x800) image at level 0, one (800x400) image at level 1 and one (400x200) bands at level
2 on an Intel i7 quad-core (2.40 GHz) 8-GB-RAM 64-bit Linux system.
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In the proposed method, multi-date and multi-resolution fusion is based on ex-
plicit statistical modeling. The method combines a joint statistical model of the
considered input optical images through hierarchical Markov random �eld modeling,
leading to a statistical supervised classi�cation approach. We have developed a novel
MPM-based hierarchical Markov random �eld model that considers multi-temporal
information and, thus, supports the joint supervised classi�cation of multiple im-
ages taken over the same area at di�erent times and di�erent spatial resolutions. We
analyzed the results obtained with the proposed method through experiments with
multi-temporal Pléiades and GeoEye data sets. The experimental results show that
the method is able to provide accurate classi�cation maps. The proposed algorithm
was compared to a previous single-date multi-resolution method and a previous
multi-date single-resolution one, both based on MRF models associated with suit-
able (hierarchical or single-scale) pixel lattices, and a couple of well-known classi�ers
including a contextual combination of the K nearest neighbor and MRF-based ap-
proaches, used as a single-resolution single-date benchmark; and the K-means clus-
tering technique, used as a basic unsupervised benchmark. The proposed technique
has been advantageous in terms of the classi�cation accuracy on the test set, the spa-
tial regularity of the classi�cation maps, the minimization of spatial artifacts, and
the tradeo� with respect to computation time. These results show the e�ectiveness
of the algorithm in fusing both multi-temporal and multi-resolution information for
supervised classi�cation purposes and con�rm that MRF models represent a power-
ful fusion tool in remote sensing. The computational advantages of the hierarchical
MRFs, for which exact recursive formulations of the MPM decision rule are feasible
with no need for time-expensive Metropolis or Gibbs sampling procedures, has also
been con�rmed by the experimental results of the proposed method and those of the
benchmark single-resolution or multi-resolution classi�ers. The proposed method is
based on an MRF model on a case-speci�c topology that comprises multiple hier-
archical quad-trees, each associated with an acquisition date. Wavelet transforms
are used to �ll in those levels of each quad-tree that are associated with input re-
mote sensing imagery. The selection of the wavelet operator among a large family
of possible transforms was not critical because most transforms lead to classi�ca-
tion results with similar accuracies. Nevertheless, Daubechies wavelets of order 10
yielded higher accuracies than the other considered transforms. One main advan-
tage of the proposed classi�er is that it can be extended to be used for optical data,
synthetic aperture radar (e.g., COSMO-SkyMed, or RADARSAT-2) or multi-sensor
data. The extension to the multi-sensor case will be discussed in the next chapter.
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6.1 Multi-sensor PDF modeling

As discussed in Chapter 1, the availability of di�erent kind of sensors is very ad-
vantageous for land cover mapping applications. It allows us to capture a wide
variety of properties of the objects contained in a scene as measured by each sensor.
These properties can be exploited to extract richer information about the imaged
area. In particular, as previously discussed, the opportunity of joint availability of
SAR and optical images can possibly o�er high resolution, all-weather, day/night,
short revisit time data, polarimetric, and, multi-frequency acquisition capabilities.
This potential is especially emphasized by current and forthcoming satellite missions
for EO; e.g., Sentinel, Pléiades, GeoEye, COSMO-SkyMed (CSK), RADARSAT-2
(RS2) and TerraSAR-X, which convey a huge potential for multi-sensor optical and
SAR observation. They allow a spatially distributed and temporally repetitive view
of the monitored area at the multiple spatial scales. However, the use of multi-source
image analysis for land cover classi�cation purposes has been mostly addressed so
far by focusing on single-resolution multi-sensor optical-SAR imagery whereas the
joint use of multi-sensor and multi-resolution capabilities has been more scarcely
investigated. A general discussion of the classical literature on multi-sensor optical-
SAR image classi�cation has been presented in Section 2.2. This approach bears the
obvious advantage of simplicity but is, in general, suboptimal. From a methodolog-
ical viewpoint, when multi-sensor (optical and SAR) or multi-resolution images of
a given scene are available, using them separately discards part of the correlations
among these multiple data sources and, most importantly, their complementarity.
As illustrated in Figure 6.1, SAR and multi-spectral images exhibit complementary

Figure 6.1: Sensitivity to cloud cover and object size using di�erent wavelength
range.

properties in terms of wavelength range (active microwave vs. passive visible and
infrared), noisy behavior (often strong in SAR due to speckle, usually less critical in
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optical imagery), feasibility of photo-interpretation (usually easier with optical than
with SAR data), impact of atmospheric conditions and cloud cover (strong for opti-
cal acquisitions, and almost negligible for SAR) and sensitivity to Sun-illumination
(strong for optical imagery and negligible for SAR). This makes the joint use of HR
optical and SAR imagery particularly interesting for many applications related to
environmental monitoring and risk management.
Within this framework, there is a de�nite need for classi�cation methods that au-
tomatically correlate di�erent sets of images taken on the same area from di�erent
sensors and at di�erent resolutions. One way to address this problem is to re-
sort to an explicit statistical modeling by �nding a joint probability distribution
given the class-conditional marginal PDFs of the data collected by each sensor (see
Figure 6.2). The joint statistics can be designed by resorting to meta-Gaussian dis-
tributions [Storvik et al., 2009], multivariate statistics such as multivariate copulas
[Voisin et al., 2014], or non-parametric density estimators [Fukunaga, 2013]. How-
ever, employing heterogeneous data (SAR-optical in our case) makes the task of
�nding an appropriate multivariate statistical model complex, time demanding, and
possibly prone to over-�tting.

Figure 6.2: Multivariate statistical modeling.

In this chapter, two methods are proposed for the joint supervised classi�cation
of multi-sensor images including SAR and optical components, acquired at multi-
ple spatial resolutions. The rationale of both approaches is to take bene�t of the
data fusion capabilities of hierarchical MRFs and to avoid the computation of joint
statistics. A novel approach, based on multiple quad-trees in cascade, applied to
multi-sensor and multi-resolution fusion is described. In the �rst proposed method,
for each sensor, the input image is associated with a separate quad-tree structure
on the basis of its resolution. The goal is to jointly classify a SAR and an optical
image acquired over the same area. The proposed approach formalizes a supervised
Bayesian classi�er within this multiple quad-tree topology that combines a class-
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conditional statistical model for pixel-wise information and a hierarchical MRF for
multi-sensor and multi-resolution contextual information.
The second proposed method focuses on the speci�c case of the fusion of multi-
frequency SAR data collected by the COSMO-SkyMed (X band) and RADARSAT-2
(C band) sensors together with optical Pléiades data. A multiple quad-tree struc-
ture is used again but optical and SAR data are jointly included in each quad-tree
to take bene�t of the �nest resolution available from each sensor. Compared to the
�rst proposed method, which considers the fusion of data from generally arbitrary
SAR and optical sensors, this second method focuses on a speci�c combination of
space-borne SAR and optical sensors to investigate the synergy among the multi-
frequency and multi-resolution information they provide.
Given a training set for each input data, for each class m, scale n and sensor, we
model the corresponding class-conditional marginal using �nite mixtures of inde-
pendent gray level distributions as detailed in Section 5.3.1. The mixture modeling
is performed depending on the di�erent types of remote sensing imagery used in
the study. Indeed, when the input data at the nth scale level is an optical image,
class-conditional marginal PDF related to each class m can be modeled by a Gaus-
sian mixture model. On the opposite, SAR acquisitions are known to be a�ected by
speckle. For this reason, we use appropriate SAR speci�c models for such images,
such as the generalized Gamma distribution [Li et al., 2011]:

p(y|θmn) = p(y|νmn, σmn, κmn) =
νmn

σmnΓ(κmn)

(
y

σmn

)κmnνmn−1

exp

{
−
(

y

σmn

)νmn

,

}
(6.1)

where νmn, σmn and κmn are the related parameters and Γ(.) is the Gamma
function. A wide variety of PDF families can be deduced from (6.1) by varying the
parameters. This includes: Rayleigh (νmn = 2, κmn = 1), Nakagami (νmn = 1),
log-normal (κmn 7−→ ∞) and (κmn = 1). The evolution of the probability density
of the generalized Gamma distribution as function of each individual variable, the
two other being �xed is given in Figure 6.3.

The parameters of the mixture model for both SAR and optical images are
estimated through the SEM algorithm (see Algorithm 5.3.1).

6.2 The �rst proposed multi-sensor hierarchical model

6.2.1 methodology

In this section, the �rst proposed method for SAR-optical multi-resolution classi�ca-
tion based on a hierarchical Markovian model is presented. Let an optical image and
a SAR image, acquired at the same time over the same area, be given, together with
a training map characterizing M thematic classes. The multi-temporal structure
developed in the previous chapter (see Section 5.1) is adapted in order to handle the
heterogeneous data acquired by di�erent sensors with di�erent physical properties.
The novelty in the proposed approach is the use of multiple quad-trees in cascade
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Figure 6.3: The evolution of the probability density of the generalized Gamma
distribution as a function of σmn (a), νmn (b), and κmn (c).

(see Figure 6.4), each associated with the set of images given by one speci�c sen-
sor. In this respect, this method takes bene�t of the capability of a multi-quad-tree
structure to fuse the information associated with correlated data sources, a capabil-
ity that has been exploited for multi-temporal image classi�cation in the previous
chapter and is investigated in the multi-sensor case here. This approach also aims at
exploiting the multi-scale information that is typically associated with either SAR
or optical HR imagery by using a hierarchical MRF.
It is worth recalling that, here as in the case of multi-temporal images, the proposed
hierarchical structure implies a constraint among the resolutions of the input multi-
sensor images at the various levels of the pyramid. The choice of quad-tree topology
imposes a factor of 2 between the spatial resolutions of the images at two successive
levels. The "empty" levels are again �lled in through a wavelet decomposition of
the images associated with the �ner levels.
The quad-tree structure allows in a very natural way the use of an explicit sta-
tistical modeling through a hierarchical Markov random �eld formulation using a
series of random �elds at varying scales, resolutions, and sensors, on the basis of the
transitions de�ned on the quad-trees as shown in Figure 6.4.

Accordingly, the formulation of MPM developed in Section 5.2 is used through
multiple quad-trees in cascade, while here each quad-tree is biunivocally associated
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Figure 6.4: Multi-sensor hierarchical structure.

with the data acquired by one individual sensor. Speci�cally, the posterior marginal
p(xs|y) of the label of each site s in the quad-tree related to the optical sensor
is expressed as a function not only of the posterior marginal of the parent node
p(xs− |y) in the same quad-tree but also of the posterior marginal of the parent node
in the quad-tree associated with SAR images p(xs= |y) as shown in (6.2), with the
aim to characterize the SAR-optical correlations associated, at di�erent scales, with
distinct images in the input multi-source data i.e.:

p(xs|y) =
∑

xs− ,xs=

p(xs, xs− , xs= |yd(s))∑
xs
p(xs, xs− , xs= |yd(s))

p(xs− |y)p(xs= |y) (6.2)

To compute these probabilities, we take bene�t from the hierarchical structure
de�ned above and we use two recursive passes on the quad-tree, referred to as
"bottom-up" and "top-down" passes as substantiated in Algorithm 6.2.1.
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Algorithm 6.2.1 (Multi-sensor hierarchical technique)

Quad-tree associated with SAR images
The classi�cation is done at the �rst quad-tree composed by the SAR image

and of the corresponding wavelet transforms, using the classical MPM using

the Algorithm 4.2.1

Quad-tree associated with optical images

� Initialization, (s ∈ SR
opt):

To estimate the prior in the root given the resulting classi�cation

map, we use a spatial Markovian model which takes into account

the contextual information given by SAR images (as detailed in

the case of multi-temporal, see Section 5.2.1) in the estimation of

the prior probability distribution associated with the quad-tree of

the optical images.

⇓ Top-down pass I, (s ∈ Sn
opt,n = 0,1, . . . ,R− 1):

p(xs) =
∑
xs−

p(xs|xs−) p(xs−)

� Initialization, (s ∈ S0
opt): p(xs|yd(s)) ∝ p(ys|xs)p(xs)

⇑ Bottom-up pass, (s ∈ Sn
opt,n = 1, . . . ,R):

p(xs|yd(s)) ∝ p(ys|xs)p(xs)
∏
u∈s+

∑
xu

p(xu|yd(u))

p(xu)
p(xu|xs)

� Initialization, (s ∈ SR
opt): p(xs|y) = p(xs|yd(s))

⇓ Top-down pass II, (s ∈ Sn
opt,n = 0,1, . . . ,R− 1):

p(xs|y) =
∑

xs− ,xs=

p(xs,xs− ,xs= |yd(s))∑
xs
p(xs,xs− ,xs= |yd(s))

p(xs− |y)p(xs= |y)

6.2.2 Experimental results

Experiments are discussed regarding two datasets collected over Port-au-Prince
(Haiti) including:

(i) A single polarization single-look CSK image, 2010 ( c©ASI; Figure 6.5(a)) with
HH polarization, stripmap acquisition modality, and 2.5-m pixel spacing;
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(ii) a coregistered GeoEye RGB acquisition, 2010 ( c©GeoEye; Figure 6.5(a)(b)).

(a) (b)

Figure 6.5: (a) SAR image ( c©ASI), (b) one channel from the optical image
( c©GeoEye)

Multi-scale features are extracted through 2D discrete wavelet transform. As in
the case of multi-temporal image classi�cation, preliminary experiments suggested
Daubechies wavelets of order 10 as an appropriate choice. Five land cover classes
have been considered: urban (red), water (blue), vegetation (green), soil (yellow)
and containers (purple).

We compare the proposed method with the classi�cation results obtained using
the following techniques:

(1) Separate hierarchical classi�cations of the images provided by the two sensors
(Figure 6.6(b) for optical and Figure 6.6(c) for SAR). In this case, the classi-
�cation is obtained recursively over the scales by combining the approach in
[Laferté et al., 2000] with the same PDF estimation algorithms described in
Section 5.3.1 for optical and SAR data. We recall that the use of quad-tree
structure in MPM scheme may yield "blockly" segmentations (details can be
found in [Laferté et al., 2000] and Section 4.2).

(2) The multi-sensor multiscale method proposed in [Voisin et al., 2014], in which a
model for the multivariate joint class-conditional statistics of the co-registered
input images at each resolution is designed by resorting to multivariate copu-
las. The estimated joint probability density function is plugged into a hierar-
chical Markovian model based on a quad-tree structure (see Figure 6.6(d)).

(3) The multisensor single-scale approach in [Storvik et al., 2009] (see Fig-
ure 6.6(e)), in which the likelihood term is constructed by merging generalized
Gamma (for SAR) and Gaussian (for optical) marginals into a meta-Gaussian
distribution. The classi�cation is obtained by the maximum likelihood rule.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.6: (a) ground truth map (including training and test areas), (b) hierar-
chical MRF-based classi�cation obtained for the optical image, using the method
in [Laferté et al., 2000], (c) hierarchical MRF-based classi�cation obtained for the
SAR image, using method in [Laferté et al., 2000] with generalized Gamma class-
conditional PDFs, (d) result of the multi-sensor and multi-resolution method in
[Voisin et al., 2014], (e) result of the multi-sensor method in [Storvik et al., 2009],
(f) hierarchical MRF-based classi�cation obtained by the proposed multi-sensor and
multi-resolution method.
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water urban vegetation bare soil containers over all computation time
Proposed method 100 78.12 89.46 98.78 47.12 82.69 254 seconds

method in [Storvik et al., 2009] 99.95 97.32 90.81 96.22 37.25 79.44 298 seconds
method in [Voisin et al., 2014] 100 75.24 87.16 98.89 49.31 82.12 668 seconds

Table 6.1: Classi�cation accuracies for the Port-au-Prince dataset. Experiments were conducted on an Intel i7 quad-core (2.40 GHz)
8-GB-RAM 64-bit Linux system.
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The resulting classi�cation maps show that the proposed hierarchical method leads
to accurate results, especially as compared to separate hierarchical classi�cations of
the images provided by the two sensors (see Figures 6.6(b),(c)). Indeed, experimen-
tal results obtained by using only SAR data accurately detect roads and containers,
while the results generated by using only optical data better discriminate classes
that are spatially homogenous. The proposed method e�ectively takes bene�t from
both SAR and optical imagery, and allows generating a classi�cation result that vi-
sually well discriminates all classes in the considered HR data set. It is interesting to
notice that the detection of the "containers" class, which is generally very overlap-
ping with other urban or built-up classes in the feature space, improves signi�cantly
compared to the method in [Voisin et al., 2014], in which the classi�cation map is
over smoothed (see Figure 6.6(d)). Compared to the previous multi-sensor classi-
�cation method in [Storvik et al., 2009] (see Figure 6.6(e) and Table 6.1), which is
based on transformations of the input features to a common jointly Gaussian do-
main, the proposed algorithm provides a spatially more regular classi�cation result,
thanks to contextual MRF modeling and wavelet feature extraction. There is an
improvement using the proposed method compared to the hierarchical multi-sensor
method in [Voisin et al., 2014] (see Figure 6.6(d)) and Table 6.1) in terms of accu-
racy and computation time. For this method, the main source of misclassi�cation
is the container area, where asphalt is erroneously classi�ed as vegetation. More-
over, with the proposed method, we avoid the computation of joint PDFs, while
copulas are used in [Storvik et al., 2009] and meta-Gaussian distributions are used
in [Voisin et al., 2014]. This choice results in reducing the computation time (see
Table 6.1).

6.3 The second proposed multi-sensor hierarchical

model

6.3.1 Methodology

The second proposed method addresses a speci�c problem of multi-sensor optical-
SAR fusion focused on exploiting the synergy between current space missions for
EO carrying HR optical and SAR payloads. The joint use of COSMO-SkyMed,
RADARSAT-2, and Pléiades images is investigated with the aim of taking bene�t
from the related multi-frequency information (radar X band, radar C band, optical
VNIR band). The interest of this speci�c study is further enforced by the role of
these sensors in the area of HR remote sensing. All the three sensors support multiple
spatial resolutions up to 0.5 m for Pléiades, approximately 1 m for COSMO-SkyMed
(in its spotlight mode), and around 1.5 m of pixel spacing for RADARSAT-2 (in
its ultra�ne mode). To both bene�t from the multi-sensor and multi-frequency
information they convey and ensure the capability of mapping land cover at the
�nest of the available spatial resolutions, a case-speci�c hierarchical MRF based on
a double quad-tree is proposed The approach extends the recent method proposed in
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the previous chapter and section, which focused on multi-resolution/multi-temporal
image classi�cation to a multi-scale and multi-sensor model that fuses the spatial,
multi-resolution, multi-sensor, and multi-frequency information conveyed by input
images collected by CSK, RS2, and one optical sensor (Pléiades) at multiple spatial
resolutions. For each of the two SAR sensors, the input images are inserted in a
separate quad-tree on the basis of their spatial resolutions. These resolutions are
expected to be coarser than the �nest resolution that can be achieved using Pléiades
data. Therefore, the input Pléiades image is embedded in the nest-resolution levels
(i.e., the leaves) of both quad-trees. Empty levels of each quad-tree are �lled in using
wavelet transforms of the Pléiades data (see Figure 6.7). Then, Algorithm 6.2.1 is
applied to compute recursively the posterior marginal of each site, while Gaussian
and generalized Gamma PDFs are used to estimate the class-conditional statistics
of the optical and SAR channels, respectively (and of the wavelet features derived
from them).

Figure 6.7: Multi-sensor hierarchical structure (case 2).

6.3.2 Experimental results

In this section, we discuss the results of the experimental validation of the developed
model on two datasets acquired over Port-au-Prince (Haiti) using:

(i) a panchromatic Pléiades acquisition at 0.5m resolution (Pléiades, c©CNES dis-
tribution Airbus DS, 2011), shown in Figures 6.8(a) and 6.9(a).

(ii) a CSK image ( c©ASI, 2011), X band, HH polarization, Spotlight mode (1m
resolution), geocoded, singlelook, shown in Figures 6.8(b) and 6.9(b).
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(a) (b) (c)

Figure 6.8: First site used for experiments: (a) Pléiades ( c©CNES distribution
Airbus DS), (b) CSK ( c©ASI), and (c) RS2 images ( c©CSA).

(iii) a RS2 image ( c©CSA, 2011), C band, HH polarization, Ultra-Fine mode (1.56
m pixel spacing), geocoded, single-look, shown in Figures 6.8(c) and 6.9(c).

The RS2 image comes at 1.56 m pixel spacing. To �t with the dyadic decom-
position imposed by the quad-tree, we slightly resampled the data to obtain the
0.5 = 2 /4 m resolution. Down sampling from 1.56 to 2 m is expected to have a
minor impact on the classi�cation map, because the resampling ratio is quite close
to unity. Five classes are considered: urban (red), water (blue), low vegetation
(green), sand (yellow) and containers (purple). We present the �nal classi�cation
maps in Figures 6.10 and 6.11 and the corresponding classi�cation accuracies on the
test samples in Table 6.2. To the best of our knowledge, none of the previously de-
veloped application-speci�c methods allows a direct integration of multi-resolution,
multi-frequency, and multi-sensor optical-SAR data without major pre- or post-
processing. The results obtained by the proposed multisensor hierarchical method,
see Figures 6.10(d) and 6.11(d), lead to a detailed classi�cation with a remarkable
level of classi�cation map regularity. The main source of misclassi�cation is the con-
tainer area, where containers are partly classi�ed as urban. This is consistent with
the fact that no texture features are used as input to the considered hierarchical
MRF. In Table 6.2 we compare numerically the results obtained with the proposed
hierarchical method when considering either only Pléiades, or both SAR (CSK or
RS2) and optical images. We observe an improvement related to the combination of
the two SAR images, in particular in the urban areas for which the joint use of CSK
and RS2 acquisition represents a signi�cant source of discriminative information.
More speci�cally, we have observed that the optical image has a relevant e�ect in
the sand and vegetation discrimination, and the SAR acquisitions are jointly very
helpful to detect the urban area. This con�rms the potential of exploiting the syn-
ergy of the data provided by the CSK and RS2 missions with respect to each other
and to the imagery collected by space-borne optical HR cameras.
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(a)

(b)

(c)

Figure 6.9: Second site used for experiments: (a) Pléiades ( c©CNES distribution
Airbus DS), (b) CSK ( c©ASI), and (c) RS2 images ( c©CSA).
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(a) (b)

(c) (d)

Figure 6.10: (a) Result using a only optical Pléiades images, (b) Result using both
Pléiades and CSK acquisitions, (c) Result using both Pléiades and RS2 acquisitions
(d) Result using all sensors.
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(a)

(b)

(c)

(d)

Figure 6.11: (a) Result using a only optical Pléiades images, (b) Result using both
Pléiades and CSK acquisitions, (c) Result using both Pléiades and RS2 acquisitions
(d) Result using all sensors.
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water urban vegetation bare soil containers over all
Only Pléiades 100 61.66 81.69 82.82 56.72 76.57
Pléiades + CSK 100 44.32 83.54 74.75 49.12 70.34
Pléiades + RS2 92.56 44.85 79.85 78.62 42.15 67.60

Pléiades + RS2 + CSK 90.79 91.45 82.59 81.02 54.85 80.14

Table 6.2: Classi�cation accuracies of results. Experiments were conducted on an Intel i7 quad-core (2.40 GHz) 8-GB-RAM 64-bit
Linux system.
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In the proposed method, multi-sensor and multi-resolution fusion is based on ex-
plicit statistical modeling. It combines a marginal statistical model of the considered
input optical and SAR images, through hierarchical Markov random �eld modeling
based on quad-trees in cascade, leading to a statistical supervised classi�cation ap-
proach. We have developed a novel multi-source MPM-based hierarchical Markov
random �eld model that takes into account both SAR and optical information and
leads to improved robustness of the classi�er. When applied to a several challenging
high-resolution data sets associated with urban and semi-urban test sites, the pro-
posed method gives high overall classi�cation accuracy with a small computation
time (a few minutes).
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7.1 Markov mesh random �eld

As discussed in Chapter 4 probabilistic causal image models have been thoroughly
studied since the early 90's through hierarchical MRFs on quad-trees. These models
rely on a causality concept captured by the factorization of the prior distribution in
terms of causal transition probabilities. In practice, this structure tends to generate
"blocky" e�ects in the �nal classi�cation map. Several techniques have been intro-
duced in Section 4.3.2 that could mitigate such undesired e�ects. However, in these
methods, the practical advantages of the tree structure (i.e., causality) are then par-
tially (e.g., [Chardin and Pérez, 1999]) or completely lost (e.g., [Kato et al., 1996],
because of the spatial interactions introduced in the respective models). In this chap-
ter, the quad-tree approach is extended and a novel contextual multi-scale technique
is proposed in order to classify multi-resolution remote sensing data that incor-
porate spatial contextual information and mitigate possible blocky artifacts while
keeping the causality of the hierarchical model. Here, the focus is on the fusion of
multi-resolution and spatial-contextual information for the supervised classi�cation
of single-date imagery. For this purpose, let us mention another important class
of random �elds. Markov mesh random �elds (MMRFs), or causal Markov Ran-
dom Fields that are also known as Unilateral MRFs (UMRFs) were �rst recalled
in [Abend et al., 1965, Besag, 1972, Pickard, 1980]. As indicated in Chapter 3, im-
ages are usually modeled on a �nite rectangular lattice with each site s ∈ S being
associated with one or more random variables.

Figure 7.1: Regular rectangular lattice X of size m× n

To build a causal process on this lattice, an order over the set of sites S, i.e., a
well-de�ned characterization of the "past" of a site s as a set of nodes preceding
s (see Section 3.5) is implicitly required. As shown in 7.1, Xi,j is a random
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(a) Second order MMRF

(b) Third order MMRF

Figure 7.2: Causal neighborhood.

variable associated with a site si,j located at the coordinates (i, j) ∈ [1, n]× [1,m].
X = X11, X12, . . . , Xmn represents the corresponding random �eld.

The probability that the random variable Xi,j takes on the value xi,j is denoted
by p(Xi,j = xi,j) , for ease of notation this probability is abbreviated as p(xi,j) and
the global probability is denoted by p(X = x) = p(X11 = x11, X12 = x12, . . . , Xmn =

xmn) and abbreviated as p(x). In this context, X is said to be an MMRF if:

p(xi,j |pa(si,j)) = p(xi,j |∂(si,j)) (7.1)

where, pa(si,j) = {Xa,b|a < i and b < j} is considered to be the past of Xi,j and
∂(si,j) is a subset of pa(si,j) that presents an unilateral neighborhood of si,j
Thus, X is a MMRF with the neighborhood size of 2 if (see Figure 7.2):

p(xi,j |pa(si,j)) = p(xi,j |xi−1,j , xi,j−1) (7.2)

As shown previously in Section 3.5, if this property is assumed, then the joint
probability is equal to the product of the probabilities of each pixel in the lattice,
each probability being conditional to the small subset of the past of the correspond-
ing site. Formally:
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p(x) =
m∏
i=1

n∏
j=1

p(xi,j |xi−1,j , xi,j−1) (7.3)

where the required boundary adjustment is ful�lled by assuming the sites outside
of the �nite lattice to be zero. This factorization is what makes this model attractive.
[Abend et al., 1965] proved that a MMRF is also a MRF while the inverse does not
necessary holds, i.e., MMRFs form a causal subclass of MRFs.

In this chapter, a novel classi�cation method is proposed by integrating an ex-
plicit hierarchical graph-based classi�er, which uses a quad-tree structure to model
multi-scale interactions, and an MMRF to deal with pixel wise contextual infor-
mation in the same scale. The choices of a quad-tree and an MMRF allow taking
bene�t from their good analytical properties (especially causality) and consequently
apply non-iterative algorithms that fuse multi-resolution and spatial-contextual in-
formation for classi�cation purposes.

7.2 Methodology

7.2.1 Combined Structure

In this dissertation, a novel hybrid structure that combines a spatial grid using a
causal MMRF and a hierarchical MRF via quad-tree is employed to circumvents
the blocky artifacts of quad-tree-based methods and incorporate spatial contextual
information in each scale. The starting point is to give an order on the set of all
nodes S. For each scale of the quad-tree, a causal MMRF is integrated into the
hierarchical structure. Accordingly, a node s at each level of the quad-tree except
the root depends on one parent (at the level just above) and three neighbors (at the
same level). For each pixel in the root level, there is no parent node and only the
neighbors remains. The shapes of the neighborhoods of the pixels in the top and
left borders of each lattice at each scale of the pyramid are obviously adapted to the
image borders. The resulting dependence graph is shown in Figure 7.3.

7.2.2 MPM inference

Again, when the causality property holds, non-iterative classi�cation algorithms can
be applied. In particular, a recursive procedure on a quad-tree is feasible for the
MPM criterion, in which the aim is to maximize the posterior marginal at each site
s:

∀s ∈ S, x?s = argmax
xs∈Λ

p(xs|y), (7.4)

which produces the con�guration that maximizes the a posteriori marginal
p(xs|y) over the �nite set Λ of thematic classes.
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(a) Graphical model for the hierarchical Markov Mesh

(b) hierarchical structure

Figure 7.3: Hybrid structure that combines a spatial grid using a causal MMRF
and a hierarchical MRF via quad-tree.
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To resolve recursively the optimization problem in (7.4), one could use the
same conditional independence assumptions developed in Section 5.2 for the multi-
temporal model, the posterior marginal p(xs|y) of the label of each node s could be
expressed as a function of the posterior marginal p(xs− |y) of the parent node s− in
the quad-tree and the posterior marginals p(xs̃|y) where s̃ is each one of the sites in
the set ∂(s) of the three causal neighbors of s. Formally:

p(xs|y) =
∑

xs− ,∂(s)

p(xs, xs− , x∂(s)|yd(s))∑
xs
p(xs, xs− , x∂(s)|yd(s))

p(xs− |y)
∏

s̃∈∂(s)

p(xs̃|y) (7.5)

where bold fonts denote the marginal posteriors of interest to the MPM, as usual.
Proof of equation (7.5):

p(xs|y) =
∑
xs−

p(xs|xs− , y)p(xs− |y)

=
∑
xs−

∑
∂(s)

p(xs|xs− , x∂(s), y)p(x∂(s)|y)

 p(xs− |y)

=
∑
xs−

∑
∂(s)

p(xs, xs− , x∂(s)|yd(s))∑
xs
p(xs, xs− , x∂(s)|yd(s))

p(x∂(s)|y)

 p(xs− |y)

=
∑
xs−

∑
∂(s)

p(xs, xs− , x∂(s)|yd(s))∑
xs
p(xs, xs− , x∂(s)|yd(s))

∏
s̃∈∂(s)

p(xs̃|y)

 p(xs− |y)

=
∑

xs− ,∂(s)

p(xs, xs− , x∂(s)|yd(s))∑
xs
p(xs, xs− , x∂(s)|yd(s))

p(xs− |y)
∏
s̃∈∂(s)

p(xs̃|y)

The equalities across rows 1 and 2 and across rows 3 and 4 derive from two condi-
tional independence assumptions:

A1. the distribution of the labels (xs, xs− , x∂(s)) given all the observations y can
be restricted to the distribution conditioned only to the descendants of site s;

A2. the labels s̃ of the causal neighbors ∂(s) are independent when conditioned to
the data y.

These assumptions are analogous to the conditional independence assumptions that
are commonly accepted when dealing with (hierarchical or single-scale) MRF-based
image analysis, and have been mentioned in the previous chapters. They are used
within the proposed method for analytical convenience.

The formulation in (7.5) allows calculating recursively the posterior marginal
p(xs|y) at each node s while the probabilities p(xs, xs− , x∂(s)|yd(s)) are produced.
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Thus, this simpli�es to the determination of the other probabilities based on:

p(xs, xs− , x∂(s)|yd(s)) =
p(xs|xs−)p(xs−)

p(xs)

 ∏
s̃∈∂(s)

p(xs|xs̃)p(xs̃)
p(xs)

 p(xs|yd(s)) (7.6)

In (7.6), the �rst factor p(xs|xs−) corresponds to the child-parent transition proba-
bility; p(xs) is the prior probability; p(xs|xs̃) is the causal neighborhood transition
probability in the same scale; and p(xs|yd(s)) is the partial posterior marginal prob-
ability.
Proof of equation (7.6):

p(xs, xs− , x∂(s)|yd(s)) = p(xs− , x∂(s)|xs)p(xs|yd(s))

= p(xs− |xs)p(x∂(s)|xs)p(xs|yd(s))

= p(xs− |xs)

 ∏
s̃∈∂(s)

p(xs̃|xs)

 p(xs|yd(s))

=
p(xs|xs−)p(xs−)

p(xs)

 ∏
s̃∈∂(s)

p(xs|xs̃)p(xs̃)
p(xs)

 p(xs|yd(s))

where the equality across rows 1 and 2 and across rows 2 and 3 derives from the
following assumptions:

A3. The distribution of the labels xs− and x∂s are independent on the observations
yd(s) of the descendants of s, when conditioned to the label xs of s i.e.,

p(xs− , x∂s|xs, yd(s)) = p(xs− , x∂s|xs) (row 1)

A4. The distribution of the labels xs− and x∂s are independent when conditioned
to xs i.e.,

p(xs− , x∂(s)|xs) = p(xs− |xs)p(x∂(s)|xs) (from row 1 to row 2)

A5. The distribution of the labels xs− and xs̃ are independent when conditioned to
xs, i.e.,

p(xs− , x∂(s)|xs) = p(xs− |xs)p(x∂(s)|xs) (from row 2 to row 3)

These results allow the recursive technique in Algorithm 7.2.1 to be formulated. It
provides a generalization of the hierarchical MRF-based classi�cation method pro-
posed in [Laferté et al., 2000] and of the multi-temporal technique in Chapter 3 that
allows spatial-contextual information to be incorporated through the MMRF com-
ponent, in addition to multi-resolution information through the quad-tree hierarchy.
For transition probabilities and class-conditional PDFs, the same models and esti-
mates as in Chapter 4, which are based on the model described in [Bouman, 1991],
on �nite Gaussian mixtures, and on SEM, are extended here as well.
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Algorithm 7.2.1 (Contextual hierarchical technique)

� Initialization, (s ∈ SR):
De�nition of the inter-scale transition probability p(xs|xs−) using the

formulation introduced in [Bouman, 1991], and extension of the same

formulation to the inter-neighborhood transition probability p(xs|xs̃).
Initialization of the prior p(xs) at the root s ∈ SR using Potts model as

discussed in Section 5.2.1.

⇓ Top-down pass I, (s ∈ Sn,n = 0,1, . . . ,R− 1):

p(xs) =
∑
xs−

p(xs|xs−) p(xs−)

� Initialization, (s ∈ S0): p(xs|yd(s)) ∝ p(ys|xs)p(xs)

⇑ Bottom-up pass, (s ∈ Sn,n = 1, . . . ,R):

p(xs|yd(s)) ∝ p(ys|xs)p(xs)
∏

u∈s+

∑
xu

p(xu|yd(u))
p(xu)

p(xu|xs)

� Initialization, (s ∈ SR): p(xs|y) = p(xs|yd(s))

The likelihood term p(ys|xs) is estimated using a �nite Gaussian mixture as

in Section 5.3.1

⇓ Top-down pass II, (s ∈ Sn,n = 0,1, . . . ,R− 1):

p(xs|y) =
∑

xs− ,x∂(s)

p(xs,xs− ,x∂(s)|yd(s))∑
xs

p(xs,xs− ,xs= |yd(s))
p(xs− |y)

∏
s̃∈∂(s)

p(xs̃|y)

7.3 Experimental results

In this section, we discuss preliminary results of the experimental validation of the
developed contextual hierarchical classi�er based on MMRF, using panchromatic
and multi-spectral Pléiades images acquired over Port-au-Prince (Haiti). The
�nest resolution of the multi-resolution pyramid (level 0) was set equal to the
�nest resolution of the input panchromatic images (i.e. 0.5 m). Co-registered
multi-spectral images (at 2 m) were integrated at level 2 of the pyramid. To �ll
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level 1, a wavelet decomposition of the panchromatic image was used. Five land
cover classes have been considered: urban (red), water (blue), vegetation (green),
soil (yellow) and containers (purple). In the present work, manually annotated
(provided by an expert) non-overlapping training and test sets were selected in
homogeneous areas. Spatially disjoint training and test areas were used. As shown
in Figures 7.5, 7.4 and Table 7.1, the resulting classi�cation map shows that the
proposed hierarchical method leads to accurate results, especially as compared to
the original hierarchical classi�cation technique based on the MPM criterion in
[Laferté et al., 2000] which yields to "blocky" classi�cation (see Figures 7.5(b) and
7.4 (b)). These blocky artifacts are mitigated by incorporating spatial contextual
information. The proposed method was also compared to an extended version
of the method in [Laferté et al., 2000] in which the blocky artifacts were reduced
by employing a prior update technique in the top-down step of the hierarchical
algorithm as described in [Voisin et al., 2014]. Comparing to this method, the
proposed technique obtains higher accuracies especially over the urban area
included in the imaged scene as shown in Figures 7.4, 7.5 and Table 7.1.

The proposed method is aimed at performing hierarchical classi�cation using
input multi-resolution imagery. It combines a causal hierarchical MRF model us-
ing a quad-tree and a Markov mesh to preserve contextual information at each
scale by applying a non-iterative classi�cation algorithm using the MPM criterion.
Experimental results with HR satellite imagery suggest that the method allows
to e�ectively incorporates spatial information in the hierarchical classi�cation pro-
cess and provides higher accuracies than previous benchmark techniques. However,
Considering the above, it is noted that MMRFs and their lattice models have the
following weakness: MMRFs are corner-dependent and consequently the proposed
hierarchical MRF model based on them are not necessarily symmetric (there exists
an irregularity issue with this MMRF based method due to the fact that each pixel
depend on a non-symmetric neighborhood, as highlighted with black arrows in Fig-
ures 7.4, 7.5). To circumvent this drawback several techniques have been introduced
recently in the literature. Quadrilateral Markov Random Field (QMRF) was intro-
duced in [Razlighi et al., 2009], in which, the non-regularity problem is avoided by
enforcing all four MMRF with respect to di�erent corners of the lattice into a new
�eld de�nition; however, the model was non-symmetric. To overcome these limi-
tations from both mathematical and practical points of view, [Youse� et al., 2013]
established a new random �eld, a symmetric, corner-independent, and isotropic im-
age model which incorporates the dependency of a pixel on all its neighbors using
a Symmetric Markov Mesh Random Field (SMMRF). This can be reached by scan-
ning the lattice based on a speci�c scheme as detailed in [Youse� et al., 2013]. The
integration of SMMRF with an hierarchical MRF could be an interesting direction
of further research.
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(a) (b)

(c) (d)

Figure 7.4: classi�cation maps of optical(pléiades) image (a) using the original
method proposed in [Laferté et al., 2000] (b), the proposed method (c) and the
method in [Voisin et al., 2014] (d).
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(a) (b)

(c) (d)

Figure 7.5: classi�cation maps of optical(pléiades) image (a) using the original
method proposed in [Laferté et al., 2000] (b), the proposed method (c) and method
in [Voisin et al., 2014] (d).
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water urban vegetation containers soil over all computation time
Proposed method 100 92 89 81 94 91 147 seconds

method in [Laferté et al., 2000] 100 62 76 72 91 80 120 seconds
method in [Voisin et al., 2014] 100 74 83 86 92 87 154 seconds

Table 7.1: Results obtained using the Pléiades dataset: class accuracies, overall accuracy, and computation time.



Conclusion and perspectives

Conclusion

Contemporary satellite missions for Earth observation through optical (panchro-
matic and multi-spectral) and SAR sensors currently o�er unprecedented
observation capabilities, thanks to the attained very high spatial resolutions (up
to a few dozens of centimeters), the short revisit times, and the joint availability
of data with di�erent spatial resolutions and coverages. In this framework, the
present Ph.D. thesis focused on the development of novel multi-modal data
fusion techniques for the joint supervised classi�cation of images collected on the
same geographical area at di�erent times by distinct sensors at multiple spatial
resolutions in di�erent wavelength ranges. Several challenging methodological
problems have been addressed to support the joint exploitation of multiple remote
sensing data modalities at once for the generation of thematic classi�cation results.
The mathematical formalizations of the proposed techniques are rooted in the area
of hierarchical multi-scale and causal random �elds. They aim at taking bene�t
from the complementary information conveyed by remote sensing observations with
diverse resolutions, sensors, frequencies, and acquisition times, at formulating their
fusion in a �exible and analytically rigorous way.

Joint multi-date and multi-resolution fusion of optical data was addressed
on basis of explicit statistical modeling. The method combined a joint model
of the input images through hierarchical MRF modeling, leading to a statistical
supervised classi�cation approach. A novel MPM-based hierarchical Markov
random �eld model was developed by considering multi-temporal information and,
thus, supporting the classi�cation of multiple images taken over the same area
at di�erent times and di�erent spatial resolutions, a problem that has been very
scarcely addressed so far in the data fusion literature. The results obtained by the
proposed method were analyzed through experiments with multi-temporal Pléiades
and GeoEye data sets. The experimental results showed that the method was able
to provide accurate classi�cation maps on both data sets. Indeed, the technique
was demonstrated to be advantageous in terms of the classi�cation accuracy on
the test set, the spatial regularity of the classi�cation maps, the minimization of
spatial artifacts, and the tradeo� with respect to computation time as compared
to previous benchmark methods that model multi-resolution or multi-temporal
or spatial-contextual information. These results suggest the e�ectiveness of the
algorithm in fusing both multi-temporal and multi-resolution information for
supervised classi�cation purposes and con�rm that MRF models represent powerful
fusion tools in remote sensing.
The methodological rationale of this multi-temporal analysis method has been
extended to the case of multi-sensor image classi�cation. The proposed method
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addressed the problem of joint supervised classi�cation of multi-sensor images
including SAR and optical components acquired at multiple spatial resolutions. A
novel approach, based on multiple quad-trees in cascade, to multi-sensor and multi-
resolution fusion was developed. This approach formalizes a supervised Bayesian
classi�er within this multiple quad-tree topology that combines a class-conditional
statistical model for pixel-wise information and a hierarchical MRF for multi-sensor
and multi-resolution contextual information. Moreover, a focus on the speci�c case
of the fusion of multi-frequency SAR data collected by the COSMO-SkyMed (X
band) and RADARSAT-2 (C band) sensors together with multi-spectral Pléiades
data was relevant to investigate the synergy among the multi-frequency SAR and
multi-resolution information provided by these sensors.
Furthermore, another causal technique has been developed by combining a causal
hierarchical MRF model using a quad-tree and a Markov mesh to preserve
contextual information at each scale, classify multi-resolution remote sensing data,
incorporate spatial contextual information, and mitigate possible blocky artifacts
while keeping the causality of the hierarchical model and applying a non-iterative
algorithm using the MPM criterion. Experimental results with HR satellite imagery
showed that the method allows to e�ectively incorporate spatial information in
the hierarchical classi�cation process and provides higher accuracies than previous
benchmark techniques.

The computational advantages of the hierarchical MRFs, for which exact re-
cursive formulations of the MPM decision rule are feasible with no need for time-
expensive Metropolis or Gibbs sampling procedures, have been con�rmed by the
experimental results of the proposed methods. All the techniques developed in
this thesis are based on MRF models on a speci�c topology that comprises multiple
hierarchical quad-trees, each associated with an acquisition date, a sensor, or a com-
bination of sensors. This topology is �exible enough to natively incorporate images
related to distinct spatial resolutions, acquisition times, and sensors. It can also
accommodate the use of further multi-scale features. Wavelet transforms are used
to �ll in those levels of each quad-tree that are not natively associated with input
remote sensing data. The selection of the wavelet operator among a large family
of possible transforms is not critical because most transforms lead to classi�cation
results with similar accuracies. Nevertheless, Daubechies wavelets of order 10 yields
higher accuracies than the other considered transforms.

Perspectives

Automation of the selection of the wavelet operator

As a future extension of the proposed methods, the automation of the selec-
tion of the wavelet operator using, for example, a dictionary of multiple trans-
forms [Moser et al., 2011] could be incorporated in the developed models. Sim-
ilarly, the pseudo-likelihood method was used to optimize the smoothing pa-
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rameter of the Potts spatial component of the proposed MRF model. Alter-
nate parameter estimation algorithms based, for example, on mean-square error
[Serpico and Moser, 2006], stochastic gradient [Younes, 1988], or Monte-Carlo tech-
niques [Ibáñez and Simó, 2003] could be integrated in the proposed method to ad-
dress the optimization of this parameter and of the parameters involved in the
transition probabilities across multiple scales, times, or sensors. The accuracy of
the proposed method was found sensitive to these parameters. However, the experi-
mental results suggested that, based on the meaning of these parameters in relation
to temporal and inter-scale correlations, it is not di�cult for a user/operator to
identify ranges on their values that lead to meaningful models of the transition
probabilities and yield accurate results.

SMMRF and quad-tree

Markov mesh random �elds and their lattice models exhibit a well-known weak-
ness, i.e., they are "corner-dependent". Consequently, the proposed integration
of a hierarchical MRF and a spatial Markov mesh model does not necessarily
exhibit an anisotropic behavior and can be a�ected by the use of a non-regular
(non-symmetric) neighborhood. To mitigate this drawback several techniques have
been recently introduced in the literature. Quadrilateral MRFs were introduced
in [Razlighi et al., 2009], in which the non-regularity problem is avoided by using
four Markov meshes related to the di�erent corners of the lattice and enforcing
them into a unique �eld de�nition; however, the model is still non-symmetric.
To overcome these limitations from both mathematical and practical points of
view, [Youse� et al., 2013] established a new random �eld: a symmetric, corner-
independent, and isotropic model that incorporates the dependency of a pixel on all
its neighbors using a symmetric Markov mesh random �eld. The integration of this
approach with the proposed hierarchical techniques could be an interesting direction
of further research.

Semantic classi�cation

In this thesis, the number of classes for the proposed methods has been kept �xed
for all levels of the hierarchical structure. On one hand, this is common practice
in supervised image classi�cation. On the other hand, especially when VHR data
are considered, di�erent types of land cover classes may be appreciated at di�erent
resolutions. Therefore, a further extension of this work would be to de�ne di�erent
sets of classes at distinct levels of the pyramid and introduce a hierarchical link
between these classes according to their semantic meanings. A pixel-level classi�-
cation may not exceed the spectral signature or backscattering features resulting
from the biophysical and geophysical properties of each individual pixel, but the
neighborhood of the pixel brings substantial information that can be used to re-
construct landscape units and functional areas. Then, a vertical strategy could be
applied: each pixel could be assigned to an elementary class, corresponding to the
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related ground material, and each group of pixels constitutes classes as a mixture of
these material classes. Therefore, a pixel may belong to di�erent classes according
to the spatial resolution of the image in which it belongs, and a semantic relation-
ship between classes may be de�ned and would critically involve the availability
of multi-resolution ground truth data. The extension of the proposed hierarchical
MRF model to this case-speci�c typology of soft classi�cation, for example based on
fuzzy reasoning, will be a further challenging generalization of the work described
in this thesis.
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Résumé éto�é

Les moyens mis en oeuvre pour surveiller la surface de la Terre, notamment les
zones urbaines, en cas de catastrophes naturelles telles que les inondations ou
les tremblements de terre, et pour évaluer l'impact de ces événements, jouent
un rôle primordial du point de vue sociétal, économique et humain. De très
nombreux usages (scienti�ques, civils et militaires) sont faits de ces données. Les
satellites ont eu une contribution importante et unique dans certains domaines
dont l'évaluation et la surveillance de l'environnement (déforestation, pollution,
pollution lumineuse, urbanisation et périurbanisation, fragmentation écologique,
érosion, etc.). Dans ce cadre, des méthodes de classi�cation précises et e�caces
sont des outils particulièrement importants pour aider à l'évaluation rapide et �able
des changements au sol et des dommages provoqués.
Étant données l'énorme quantité et la variété des données disponibles grâce aux
missions satellitaires de dernière génération et de di�érents types, la principale
di�culté est de trouver un classi�eur qui puisse prendre en compte des données
multi-bande, multi-résolution, multi-date, et éventuellement multi-capteur, tout en
gardant un temps de calcul raisonnable.
Considérant une série d'images satellitaires, un modèle multi-source est proposé
a�n de fusionner les informations spatiales, temporelles et multi-résolution. A cette
�n, deux approches bayésiennes peuvent être adoptées : un classi�eur en cascade
obtenu en supprimant le couplage entre les dimensions spatiales et temporelles,
et en classi�ant chaque image de la série sur la base d'elle-même et des images
précédentes ou l'approche mutuelle qui classi�e chaque image sur la base des
images précédentes et ultérieures. L'approche en cascade est adoptée dans cet
thése a�n de préserver l'ordre temporel des images et d'améliorer la classi�cation à
chaque nouvelle donnée disponible. La méthode proposée aborde le problème de la
classi�cation multi-temporelle et multi-résolution dans laquelle, la fusion multi-date
et multi-résolution est fondée sur une modélisation statistique explicite au travers
d'un modèle hiérarchique de champs de Markov (MRF) fusionnant l'information
spatio-temporelle et multi-résolution.

Classi�eur hiérarchique proposé

L'objectif de la classi�cation est d'estimer un ensemble d'étiquettes cachées X
sachant un ensemble d'observations Y attachées à l'ensemble des noeuds (pixels) S.
Chaque étiquette a une valeur dans l'ensemble des étiquettes, Λ = {0, 1, ...,M − 1}.
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L'espace des con�gurations Ω = Λ|S| est l'ensemble de toutes les con�gurations pos-
sibles.
X = {xs}s∈S , xs ∈ Λ et Y = {ys}s∈S sont considérés comme des processus aléa-
toires. Dans ce contexte, nous étudions le problème d'inférence de la meilleure
con�guration x̂ de X dans Ω. La formulation bayésienne de ce problème d'inférence
consiste à minimiser le coût d'erreur de segmentation selon un critère choisi :

x̂ = arg min
x′∈Ω

∑
x∈Ω

C(x, x′)p(x|y) (B.1)

où C(., .) est le coût pénalisant l'écart entre la con�guration estimée et la con�gura-
tion aléatoire idéale.
Parmi les di�érents algorithmes de classi�cation bayésienne à minimum d'erreur,
deux critères ont été largement utilisés. Le premier vise à estimer le maximum a
posteriori (MAP) où la con�guration optimale est obtenue par :

x̂MAP = arg min
x∈Ω

p(x|y) (B.2)

Cela en remplaçant dans (B.1) la fonction du coût suivante :

C(x, x′) = 1− δ(x, x′)

= 1−
R∏
n=0

δ(xn, x′n) (B.3)

(dans le cadre hiérarchique)

où R est le nombre de niveaux de la pyramide et δ est le symbole de Kronecker.
Cette fonction de coût est égale à 1 si une erreur de classi�cation apparaît dans
un niveau quelconque de la pyramide. Par conséquence, cette fonction pénalise les
erreurs indépendamment de l'échelle à laquelle elles se produisent, ce qui n'est pas
très intéressant pour des méthodes de classi�cation hiérarchiques et ne compte pas
le nombre total d'erreurs.
Le second critère très utilisé dans la littérature est celui des Modes Marginales a
Posteriori (MPM en anglais) dont la fonction du coût est dé�nie par:

C(x, x′) =
∑
s∈S

1− δ(xs, x′s) (B.4)

L'utilisation de cette fonction o�re l'avantage de pénaliser les erreurs en fonction de
leur nombre et de l'échelle à laquelle elles se produisent: par exemple, une erreur à
une échelle grossière est plus fortement pénalisée qu'une erreur à une échelle plus
�ne. L'estimateur bayésien résultant est dé�ni pour chaque pixel s par:

∀s ∈ S, x̂s = arg max
xs∈Λ

p(xs|y) (B.5)

Parmis les méthodes utilisées pour résoudre ce problème d'optimisation, on distingue
la méthode fondée sur la structure quad-arbre employée par [Laferté et al., 2000]
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qui vise à a�ecter à chaque pixel s l'étiquette optimale x̂s, en maximisant récur-
sivement la probabilité marginale a posteriori p(xs|y), cela en exprimant la prob-
abilité marginale du pixel s à travers la probabilité marginale p(xs− |y) du parent
s−. Malgré ses performances en temps de calcul et en précision, l'utilisation de cet
algorithme conduit à des artéfacts de blocs [Laferté et al., 2000]. Ce phénoméne
peut être expliqué par le fait que, à une échelle donnée, deux pixels voisins, peu-
vent ne pas avoir le même parent. Dans ce cas, une limite apparaît beaucoup plus
facilement que s'ils étaient liés au même parent ou s'il existait d'autres liaisons en-
tre les pixels à des échelles consécutives. A�n d'éviter ces artéfacts, nous pouvons
utiliser une structure hiérarchique plus connectée dans laquelle la liaison causale
ascendant-descendant dans la même pyramide n'est pas l'unique liaison entre les
niveaux consécutifs (cf. par exemple [Bouman, 1991]).
Dans ce contexte, une nouvelle formulation de l'algorithme fondé sur le critère MPM
est proposée en utilisant la structure hiérarchique en cascade dé�nie dans la partie
??. La probabilité marginale a posteriori p(xs|y) de chaque pixel s, est exprimée non
seulement à travers la probabilité marginale a posteriori p(xs− |y) du parent s−, mais
aussi à travers la probabilité marginale a posteriori p(xs= |y) du parent à une source
antérieure s= a�n de caractériser les corrélations entre des images consécutives de
la structure en cascade dé�nie et éviter ainsi les artéfacts de blocs :

p(xs|y) =
∑
s−,s=

p(xs|xs− , xs= , y).p(xs− , xs= |y)

=
∑
s−,s=

p(xs|xs− , xs= , yd(s)).p(xs− , xs= |y)

=
∑
s−,s=

A . p(xs− , xs= |y)

=
∑
s−,s=

A . p(xs− |y).p(xs= |y) (B.6)

où

A = p(xs|xs− , xs= , yd(s))

=
p(xs, xs− , xs= |yd(s))∑
s p(xs, xs− , xs= |yd(s))

(B.7)

Il est à noter que les équations dans (B.6) impliquent deux hypothèses
d'indépendance conditionnelle:

• pour le passage de la ligne 1 à la ligne 2 dans (B.6) : étant donné les étiquettes
xs− et xs= , l'étiquette xs ne dépend pas de tout l'ensemble d'observations y,
elle dépend seulement des observations attachées à s et à ses descendants ce
qui implique que :

p(xs|xs− , xs= , y) = p(xs|xs− , xs= , yd(s))



138 Appendix B. Résumé éto�é

• pour le passage de la ligne 3 à la ligne 4 dans (B.6) : les étiquettes xs− et xs=
sont indépendantes, étant donné l'ensemble d'observation y, ce qui implique :

p(xs− , xs= |y) = p(xs− |y).p(xs= |y)

Il reste à calculer les probabilités jointes p(xs, xs− , xs= |yd(s)) évoquées dans (B.7)
qui peuvent être déterminées en estimant les probabilités introduites dans la fac-
torisation suivante :

p(xs, xs− , xs= |yd(s)) = (B.8)

p(xs|xs− , xs=).
p(xs− |xs= ).p(xs= )

p(xs)
.p(xs|yd(s))

incluant :

• des probabilités a priori (p(xs=) et p(xs)),

• des probabilités inter-échelle et/ou multi-source (p(xs|xs−) et p(xs|xs− , xs=)),

• des probabilités a posteriori partielles p(xs|yd(s)).

Par la suite, à chaque nouvelle donnée t (nouvelle image à une date di�érente ou
acquise par un capteur di�érent), pour estimer la probabilité marginale a posteri-
ori p(xs|y), il su�t de calculer les probabilités évoqueés dans (B.8). A cet e�et,
l'approche proposée se déroule en trois passes récursives, descendante (1), ascen-
dante (1) et descendante (2)

Passe descendante (1) : estimation des probabilités a priori

A�n de calculer les probabilités a priori dans la pyramide P (à une nouvelle date
t dans le cadre multi-temporel ou avec un nouveau capteur c dans le cadre multi-
capteur), nous procédons à une passe descendante, en commençant par estimer les
probabilités a priori à la résolution la plus grossière. Pour ce faire, nous utilisons
la carte de classi�cation obtenue en utilisant la structure hiérarchique en cascade
jusqu'à la pyramide P−1 en considérant un modèle markovien spatial qui conduit à
une meilleure estimation de l'a priori. Ainsi, en utilisant le théorème de Hammersley-
Cli�ord, nous pouvons dé�nir un a priori local pour chaque pixel s à la résolution
la plus grossière comme étant un modèle de Potts décrit ci-dessous :

p(xs|xs′ , s′ ∼ s) ∝ exp

(
−β

∑
s∼s′

δ (xs, ss′)

)
(B.9)

Où δ(.) est le symbole de Kronecker, s ∼ s′ signi�e que s et s′ sont voisins par
rapport à un système de voisinage donné et β est un paramètre de lissage, de signe
positif pour faire décroitre l'énergie lorsque les étiquettes sont identiques.
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Puis, une passe descendante est e�ectuée pour calculer les probabilités a priori à
chaque niveau du quad-arbre en utilisant la formulation récursive suivante :

p(xs) =
∑
s−

p(xs|xs−) · p(xs−) (B.10)

Les probabilités de transition inter-échelle au sein de l'arbre p(xs|xs−) peuvent être
calculées indépendamment de telle sorte que xs appartienne à la même classe que
son ascendant xs− .

Passe ascendante (1) : estimation des probabilités jointes

En se basant sur (B.8), les probabilités jointes p(xs, xs− , xs= |yd(s)) sont déterminées
par :

• les probabilités a priori p(xs), déjà estimées lors de la passe descendante précé-
dente,

• les probabilités inter-échelle et/ou inter-pyramide p(xs|xs−) et p(xs|xs− , xs=),
qui peuvent être calculées en favorisant l'appartenance des pixels concernés à
une même classe;

• les probabilités a posteriori partielles p(xs|yd(s)) qui peuvent être calculées
moyennant une passe ascendante en utilisant la formulation introduite par
[Laferté et al., 2000]:

p(xs|yd(s)) ∝ p(ys|xs) · p(xs) ·
∏
s̃∈s+

∑
s̃

p(xs̃|yd(s̃))

p(xs̃)
· p(xs̃, xs) (B.11)

Les probabilités a posteriori partielles nécessitent l'estimation d'un modèle statis-
tique conditionnel par classe combinant des informations pixel par pixel, à la même
résolution pour le calcul de p(ys|xs). Cela peut se faire en traitant la modélisation
des probabilités marginales des images acquises à chaque résolution, conditionnées
à chaque classe.

Passe descendante (2) : Probabilité a posteriori et optimisation

Connaissant les probabilités jointes calculées dans la partie précédente, nous procé-
dons à une passe descendante dans laquelle les probabilités marginales a posteriori
p(xs|y) sont estimées en utilisant (B.6), puis maximisées par un algorithme de
Metropolis modi�é [Kato et al., 1996].

Dans les méthodes proposées, la fusion multi-résolution, multi-temporelle ou
multi-capteur est fondée sur une modélisation statistique explicite au travers d'un
modèle hiérarchique de champs de Markov. La nouveauté principale de l'approche
est l'utilisation en cascade de plusieurs quad-arbres, chacun étant associé à une
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nouvelle image disponible, en vue de caractériser les corrélations temporelles ou
spatiales associées à des images distinctes. Lorsqu'elle est appliquée à des images à
haute résolution, la méthode proposée donne une précision globale de la classi�cation
de valeur élevée avec un temps de calcul raisonnable grâce à la structure hiérarchique
utilisée.
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