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Introduction

Many who have never had an opportunity of

knowing any more about mathematics confound

it with arithmetic, and consider it an arid

science. In reality, however, it is a science

which requires a great amount of imagination.

Sofia Kovalevskaya1

This is a work in the domain of Computer Arithmetic. This is neither 100%

Mathematics nor pure Computer Science. The subject of Computer Arithmetic was

mostly developed and demanded with the appearing and spreading of modern com-

puters. However, the part of quote by S. Kovalevskaya “it is a science which requires

a great amount of imagination” concerns not only Mathematics but Computer Arith-

metic as well.

Floating-point Issues

We learn arithmetics during our first years at school: we start with basic operations

on integer numbers (+,−,×, /), then we learn real numbers, fractions, elementary

functions, matrices and operations on them. Arithmetic or arithmetics (in Greek

means number) is a branch of mathematics that studies numbers, their properties

and operations on them. Thus, computer arithmetic studies all these operations and

computations on machine’s numbers.

Mathematicians use real number (R) to model different processes in various fields:

finance, physics, engineering, space mechanics, etc. As there are irrational numbers

in the set R, not all real numbers are representable in machines. In fact, computations

are held on so-called floating-point (FP) numbers. This is a discrete set of numbers

that model R. As the length of computer-stored number is limited the real numbers

are somehow rounded, e.g. values for π, e. These roundings cannot be neglected as

they may bring serious errors. Each machine operation gives a rounded result, so is

1 Sofia Kovalevskaya (1850 - 1891) is the first major Russian female mathematician and the first

woman appointed to a full professorship in Northern Europe (Stockholm).

1



2 Introduction

executed with an error. Therefore in order to be sure in the results, serious analysis

is often required.

There are some famous FP bugs that led to serious consequences. For example,

in June 1994 a bug with FP division on some models of Intel’s Pentium processor

was discovered [21]. It gave only four correct digits as a result for this operation:

4 195 835

3 145 727
= 1.333739068902037589,

while the correct value is

4 195 835

3 145 727
= 1.333820449136241002

In December 1994 Intel decided to replace all flawed Pentium processors, and defec-

tive chips were given to the employees as key chains. This story costed Intel about

$475 million. In 1996 the first test flight of Ariane 5 rocket finished by crash in 37

seconds after the launch [60]. The reason of crash was a software bug: 64-bit floating

point value converted to 16-bit signed integer was too large to fit into destination

format.

Thus, software bugs and small rounding errors accumulated in several basic FP

operations during computing of some result may cause serious problems. Applied

research has interest in reliable results which can be obtained with some tricky

computation techniques. Computer Arithmetic is not only about basic arithmetic

operations (+,−,×, /), but about all the computations in FP.

FP Numbers and Standards

Roughly speaking, FP numbers are the numbers of the form

±m0m1m2 . . .mk−1 · βE,

where all the mi ∈ Z, 0 ≤ mi ≤ β − 1, the integer number m0m1m2 . . .mk−1 is

called mantissa or significand, E exponent and β ∈ Z is radix. The term “floating”

relates to fraction point: it may be placed anywhere in significand digits in number.

For instance, 12345 · 10−1 = 1234.5 and 12345 · 10−5 = 0.12345. Since 1985 we

have the IEEE754 Standard for FP arithmetic [42]. It declared how to store and

operate binary FP numbers. The basic arithmetic operations were mandatory, as

well as comparisons and conversion to other formats, to and from “human-readable”

decimal string representation.

Computers use binary numbers, while people are more used to operate in decimal.

An important problem in financial computations comes from radix conversion: finite

decimal number 0.1 is infinite in binary and therefore rounded. This rounding error

may influence the final result. Thus, there is a need in decimal FP arithmetic. The
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IEEE854 Standard published in 1987 was an attempt to unify decimal and binary

arithmetic [44]. However, it did not require any operations or formats as IEEE754

and was never implemented. Since 1985 hardware and software evolved, new oper-

ations appeared, programming languages supported new operations. Some of them,

as fused multiply-add (FMA) or heterogeneous arithmetic operations were funda-

mental for Computer Arithmetic. Therefore, in 2008 IEEE754 revision appeared: it

added decimal FP numbers, allowed to mix precisions in one operation (heteroge-

neous operations) and required an FMA. It also contained recommendation chapter

on correctly-rounded mathematical functions (exp, log, sin, etc).

Mathematical Functions Implementations

The main problem in implementation of mathematical functions is that their values

are transcendental, so they have infinite number of digits after fraction point, e.g.

e2 = 7.389056098930650227230427460575007813180315570 . . .

So, if we want a correct result up to some quantity of digits after a point how can

we get it? All the numbers that we can compute are only approximations of the real

transcendental result. Roughly speaking this is a description of the so-called Table

Maker’s dilemma that has to be solved to obtain correctly-rounded results. This is

not a trivial task and its solution may require the use of high-precise numbers or long

computational time [64,87]. So the 2008 revision of the Standard only recommends

correctly-rounded mathematical functions but does not require them.

The evaluation of mathematical functions is not a new problem and there are

already several libraries containing implementations of various functions: Intel’s

MKL [2], ARM’s mathlib [4], Sun’s libmcr, GNU glibc libm [32], CRlibm by ENS

Lyon [28], etc. They differ for instance by platforms, implementation language, re-

sults accuracy. Hardware manufacturers spend a lot of resources on optimization

of their libraries for any new processor. Open-Source versions may lag behind in

performance all the more as they have to support a much wider range of proces-

sors. However, the most accurate implementations are found in open-source efforts,

with several correctly rounded functions provided by libraries such as IBM LibUl-

tim [87] (now in the GNU glibc) and CRLibm [26]. All the existing mathematical

libraries (they are often called libms) are static: they contain only one implemen-

tation per function. Modern libms have to provide several versions of each math-

ematical function in some precision and a mechanism of choosing the appropriate

one. For example, some may be interested in “relatively slow” implementations and

correct results, others in fast and “dirty” functions. Till today there was no mean to

use non-standard implementations of mathematical functions and those who really

needed them were obliged to write their own code.
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We tried to estimate the quantity of all the possible choices for a libm, this

number is tremendously high and tends to infinity. Therefore, libms cannot stay

static, we propose to get function implementations “on demand” for some particular

specification. This task may be solved with a code generator for such flexible function

implementations. It should take a set of parameters and produce ready-to-use code.

Mixing the Decimal and Binary Worlds

Besides recommendations on mathematical functions IEEE745-2008 brought decimal

arithmetic and several new operations for binary. The worlds of decimal and binary

FP numbers intersect only in conversion operation: there must be a conversion from

binary FP formats to decimal FP numbers and one back, as well as conversion of

user’s input FP number in character sequence to FP format and back. The last

conversion existed also in first version of the standard and is known as a scanf/printf

operation in C programming language.

The 2008 revision allows us to mix numbers of different precisions within one op-

eration requiring so-called heterogeneous operations. However, there is no possibility

to mix numbers of different radices. As we have today for example machine-stored

binary constants and decimal numbers stored in banking databases, it becomes more

common to mix decimal and binary FP numbers in code. Thus, we use radix con-

versions (that produce rounded results) and then use homogeneous or heterogeneous

operations. Recent papers like [9] contain research on the first mixed-radix operation,

i.e. comparison. Mixed-radix operations might gain in accuracy and performance

in comparison with execution of conversion and the needed operation. The 2008

revision added about 280 operations mixing the precision, so it is quite natural to

assume one of the following revisions of the Standard adds even more operations

mixing numbers of different radices. Besides an attempt to implement mixed-radix

comparison there is a paper on atomic operation of radix conversion for IEEE754

mixed-radix arithmetic [55]. As FMA operation is now required, feasibility of its

implementation is a good start for research in mixed-radix arithmetic operations.

Implemented FMA gives addition, subtraction and multiplication. There are also

some algorithms for division and square root based on FMA [46,61,84].

Besides absence of mixed-radix operations, conversion from decimal character

sequence to binary FP number can be noticeably improved. This is about analogue

of scanf function in C language. Current implementations in glibc work only for

one rounding mode, while the Standard defines four of them (revision in 2008 added

fifth, optional for binary), it allocates memory and therefore it is not re-entrant. We

propose a novel algorithm independent of the current rounding mode. Its memory

consumption is known beforehand, so this can be reused for embedded systems.
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Contribution to the Research Field and Outline

This work has two main directions: the first one is code generation of parametrized

mathematical libraries and the second one is research in mixed-radix operations.

Both topics belong to the idea of improvement of the current FP environment with

the support of more operations. We provide all the needed definitions and back-

ground as well as an overview of existing methods in Chapter 1. Chapter 2 is

devoted to the research in function implementations and their automatic genera-

tion. We first cover in Section 2.1 the basic steps in manual implementation of

mathematical functions that are essential to know how to create the code generator.

Generally, there are three basic steps to implement a mathematical function: ar-

gument reduction (Section 2.1.1), approximation (Section 2.1.2) and reconstruction

(Section 2.1.3). All these steps are different for different functions, and the challenge

for the code generator is to execute them automatically. In Section 2.2 we present

our code generator highlighting its most important aspects. We perform detection of

algebraic properties of the function to reduce properly the argument (Section 2.2.3),

then additional reduction through domain splitting may be executed. We decrease

the number of split subdomains and get an arbitrary splitting that depends on the

function characteristics. This algorithm is explained in Section 2.2.4. One of the

goals for our code generator is to produce vectorizable code, that may be tricky with

arbitrary domain splitting. In Section 2.2.5 we propose a method to replace branch-

ing for domain decomposition by polynomial function. Particular algorithms for this

code generator were presented on internationally recognized conferences [51, 53, 54].

The entire work on generator [12] earned “best paper award” on 22nd IEEE Sympo-

sium on Computer Arithmetic ARITH22 in June 2015.

The second part of the work (Chapter 3) is devoted to research in mixed-radix

arithmetic. We start with the search of worst cases for mixed-radix FMA operation

in Section 3.4. This gives an estimation for hardness of its implementation. Then we

present our novel radix conversion algorithm [55] in Section 3.2. The ideas proposed

in that section are reused for the new algorithm on conversion from decimal character

sequence to a binary FP number, so the analogue for scanf function. Our improved

algorithm for scanf [51] is presented in Section 3.3. Less publications were done in

the field of mixed-radix arithmetic research, they are planned to be submitted after

thesis defense.





CHAPTER 1

State of the Art

As integer numbers are not sufficient in modeling and computation of various pro-

cesses, and the infinitely precise real numbers are not representable in computers,

floating-point (FP) numbers were invented as a machine model for real numbers.

Not all real numbers can be represented in FP and are therefore rounded:

π = 3.1415926535 . . .

The classical way of manipulating, rounding and storing of FP numbers is specified

in IEEE754 Standard [42] and is overviewed in this chapter. We explain here basic

bricks of FP arithmetic, provide the state of the art for subjects covered by this

thesis: elementary functions implementation and mixed-radix arithmetic (MRA),

and explain mathematical model used later in this work.

1.1 The Standard for FP Arithmetic

1.1.1 Brief Historical Review

Leonardo Torres y Quevedo [72] and Konrad Zuse are considered as the first in-

ventors of FP arithmetic [68]. Zuse’s computer Z3, built in 1941, was the first real

implementation of FP arithmetic [15]. Since then, various hardware implementations

of FP formats and operations appeared. They were not compatible between each

other; therefore numerical programs were not portable. In the end of 70s, Intel was

designing a FP co-processor and hired W. Kahan to develop a standard for all their

computations. Thereafter a draft for their new architecture design became the base

of the FP standard. Kahan pointed out in 1981 the need of a simple abstract model

for the machine’s computational environment [47]. After several years of discussions

the IEEE754 Standard was approved. Its first implementation on chip, the Intel

8087 was announced in 1980. The first Standard in FP arithmetic was published

in 1985. It defined binary FP formats, rounding modes, basic operations and be-

havior in different operations. Thus, human readable decimal numbers had to be

7



8 Chapter 1. State of the Art

sign

1 bit

exponent

w bits

mantissa trailing bits

k − 1 bits

Figure 1.1: IEEE754 FP format

rounded to binary. In 1987 IEEE854 Standard was announced [44]. It was focused

on numbers in radix two or ten, but unlike to IEEE754 did not specify any formats,

it mostly contained constraints on numbers and their parameters. It did not allow

to mix radices in one FP operation and was never implemented.

1.1.2 IEEE754-1985 Standard for Binary FP Numbers

The IEEE754-1985 Standard defines two basic binary formats: single and double

precision1. The basic formats are the most used and they correspond to types float

and double in C. Single precision numbers are represented on 32 bits, and double on

64 [42]. Each FP number is stored in three fields: sign, mantissa and exponent. The

first bit is a sign bit s, then there are w exponent bits and k − 1 mantissa trailing

bits as it is shown on Figure 1.1.

Generally, mantissas in precision k may be written as m0.m1m2 . . .mk−1. As only

binary formats are defined, all digits mi ∈ {0, 1}, therefore mantissas are usually

normalized so that the first digit m0 = 1. This bit is stored implicitly2. The rest is

called mantissa trailing bits and is stored as an integer number on k−1 bits. Positive

FP numbers are stored with a zero in the first bit, negative ones with a one.

Exponents are integer numbers that are stored on w bits. The IEEE754 FP

formats use biased exponents. The used bias is 2w−1 − 1 which means that the

numbers from the interval [1 − 2w−1; 2w−1] can be encoded in a field of w bits.

Actually, exponents take values from the interval [2− 2w−1; 2w−1− 1] and the values

1 − 2w−1 and 2w−1 are reserved for special inputs that are explained later. All the

upper-mentioned values associated with the IEEE754 formats are in Table 1.1.

In order clarify this paragraph, let us consider an example. The real number

23.5 is stored in single precision format as 0100 0001 1011 1100 0000 0000 0000

0000 or in hexadecimal 0x41bc0000. The first bit is zero, as the number is positive,

the next eight bits containing biased exponent are 100 0001 1 which is the number

131. So, to get the exponent value we subtract the bias and get 4. Mantissa trailing

bits are 011 1100 0000 0000 0000 0000 which is 3932160 in decimal. Thus, to get

our number from the IEEE754 encoding we compute the following

(−1)0 · 24 · (1 + 2−23 · 3932160)

1It also defines extended formats but the basic ones are used more often.
2The case when m0 = 0 is covered later.
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format single double single extended double extended

total length in bits 32 64 ≥ 43 ≥ 79

exponent field length, w 8 11 ≥ 11 ≥ 15

bias 127 1023 unspecified unspecified

Emin -126 -1022 ≤ −1022 ≤ −16382
Emax 127 1023 ≥ 1023 ≥ 16383

precision, k 24 53 ≥ 32 ≥ 64

Table 1.1: IEEE754 formats specification

Rounding Modes

Real numbers may have an infinitely long fraction part that is not representable in FP

as mantissas have finite length. In this case the real number is somewhere between

two adjacent FP numbers, thus we have to decide which of these two numbers should

represent it. This process is called rounding. The Standard defines four rounding

modes, the first three of which are called directed :

1. rounding up (rounding toward +∞), RU(x). The smallest FP number greater

than x is returned in this case.

2. rounding down (rounding toward −∞), RD(x). The largest FP number less

than x is returned.

3. rounding toward zero, RZ(x). For positive inputs returns RD(x), for negative

ones RU(x).

4. rounding to the nearest, RN(x). The closest FP number to x is returned. In

the case when x is exactly between two FP numbers, the number with the last

even mantissa digit is chosen.

Figure 1.2 illustrates these roundings. The thick vertical lines correspond to

FP numbers. The shorter thin lines in the middle of them are called midpoints.

The points where the rounding functions change are called rounding boundaries (or

x

RN(x)
RD(x)
RZ(x)

RU(x)

y

RD(y)
RZ(y)

RU(y)
RN(y)

0

Figure 1.2: IEEE754 FP roundings
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breakpoints). Directed roundings have the FP numbers as rounding boundaries, and

rounding to the nearest has midpoints as boundaries.

The computation result is called exact if it is a FP number, so when no rounding

is needed. Portability can be achieved with correctly rounded result, i.e. when it

matches a result computed with infinite precision and then rounded. If there is

no other FP number between the computed FP result and its exact version, such

rounding is called faithful [68].

Special Values and Denormalized Numbers

We mentioned that the extreme values of the exponent (all ones or all zeros) are

reserved for special data. With all ones in exponent field are stored infinities and

NaNs and with all zeros so-called denormalized numbers.

It may happen that the result of the operation is larger (or smaller) than the

largest (the least) representable FP number. The Standard defines special values for

such cases: infinities (both positive and negative) and NaNs (Not-a-Number). These

values are coded with all the ones in exponent field. If the mantissa field contains

only zeros, this corresponds to an infinity, if there is at least one non-zero bit, it

is a NaN. The last value is used in case when the result cannot be defined on real

numbers, e.g. division by zero or a square root of a negative number.

We considered earlier the case with normalized mantissas, so the first bit was im-

plicitly m0 = 1. The number 0.0 obviously cannot be stored this way. The IEEE754

Standard supports signed zeros, which are stored with zeros in both exponent and

mantissa fields. The least (in absolute value) FP number is 2Emin and has zero trail-

ing mantissa bits, the next one differs by one in the last trailing mantissa bit. Let

us compute a subtraction x− y, where x = 2Emin · 1.11 and y = 2Emin · 1.0, rounding

mode is RD. If we compute the result mathematically, it is x−y = 2Emin ·0.11, which

cannot be represented in notation with 1 in hidden mantissa bit (it is 2Emin−1 · 1.1)
and thus the result may be rounded to zero. This effect is called gradual (sometimes

graceful) underflow [38]. To avoid this denormalized numbers were introduced in

IEEE754 Standard. These numbers are encoded with the format’s minimal expo-

nent i.e. with zeros in exponent field and the mantissa’s hidden bit is 0. Thus, for

our example, the result of difference is representable in IEEE754 FP and is encoded

as 2Emin · 0.11. Inclusion of denormalized numbers guarantees that the result x − y

is non-zero when x 6= y.

As we described all values supported by IEEE754 we can consider now a “toy”

example set of binary IEEE754-like FP numbers. We use precision k = 3 and biased

exponent will be stored on three bits (so we can store exponents from [−4, 4]). For

normal numbers (with m0 = 1) the range of exponents is [−3, 3]. Thus, our set of FP

numbers contains 28 positive and 28 negative finite normal numbers (four variants

for mantissa trailing bits and seven exponents). The largest value of exponent E = 4

is reserved for infinities and NaNs. With the least exponent value E = −4 we encode
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0 2Emin

y xx− y

Figure 1.3: Gradual underflow zone is shown with gray

signed zero and six denormalized numbers: three positive and three negative. It has

also positive and negative infinity and NaNs.

Exceptions

The set of FP numbers is discrete and has maximum and minimum values. So, the

Standard also defines behavior when users operate on non-representable numbers

(e.g. larger then the maximal FP number or smaller than the least). Here is the list

of the supported exceptions:

1. Overflow occurs when we try to represent a number larger than the maximum

representable FP number.

2. Underflow occurs when we try to represent a number smaller than the minimal

representable FP number.

3. Invalid occurs when the input is invalid for an operation to be performed, e.g.√
−17.

4. Inexact occurs when the result of an operation cannot be represented exactly,

e.g.
√
17.

5. Division by zero occurs when a finite number is divided by zero.

When these exceptions are detected, they must be signaled. By default it is done

with corresponding processor’s flags, another option is a trap. Trap handler is a piece

of code ran when the exception occurs. The system provides default trap handlers

and there is a mechanism to use a custom trap handler [1, 74].

Operations

Due to Goldberg [38] a correctly-rounded result (CR) is obtained as if the computa-

tions were done with infinite precision and then rounded.

The Standard requires the four basic arithmetic operations (+,−,×,÷), remain-

der, squared root, rounding to integer in FP format, conversion between FP formats,

conversion between integer and FP formats, comparison of FP numbers and conver-

sion between binary FP formats and decimal strings to be implemented. The four

arithmetic operations and remainder have to be correctly-rounded. Algorithms for
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basic arithmetic operations may be found in [31, 41]. Besides the arithmetic opera-

tions square root may also be made CR. These operations use the finite quantity of

bits known in advance.

1.1.3 Table Maker’s Dilemma

A clever person solves a problem. A wise

person avoids it.

Albert Einstein3

A usual phenomenon in FP arithmetic is presented in this section. It occurs when

correctly-rounded result is the goal of implementation.

About the ulp measure

Roundings introduce some errors to the computational results. To make sure that

the result is reliable or accurate enough, these errors often have to be analyzed and

bounded. Suppose that x is a real number and X̂ its FP representation. Absolute

ε = |X̂ − x| or relative ε = | X̂
x
− 1| error may be computed.

Besides that an ulp function is often used. This abbreviation means unit in the

last place and it was introduced by W. Kahan in 1960: “ulp(x) is the gap between

the two FP numbers nearest to x, even if x is one of them”. According to J.-M.

Muller there are plenty of different definitions of ulp function [67]. We explain later

in Section 1.2 how to compute this ulp function, or the weight of the last bit.

What is a Table Maker’s Dilemma

The term Table Maker’s Dilemma (TMD) was first pointed by W. Kahan and we

cite it here [48]: “Nobody knows how much it would cost to compute yw correctly

rounded for every two floating-point arguments at which it does not over/underflow.

Instead, reputable math libraries compute elementary transcendental functions mostly

within slightly more than half an ulp and almost always well within one ulp. Why

can’t yw be rounded within half an ulp like SQRT? Because nobody knows how much

computation it would cost... No general way exists to predict how many extra digits

will have to be carried to compute a transcendental expression and round it correctly

to some preassigned number of digits. Even the fact (if true) that a finite number of

extra digits will ultimately suffice may be a deep theorem”.

Consider a transcendental function f . Its value f(x) cannot be computed exactly

as it is a transcendental number. It means that the real value f(x) has infinitely

3Albert Einstein (1879 - 1955) was a Nobel-prize awarded physicist, a “father” of modern the-

oretical physics. He is best known in popular culture for his mass–energy equivalence formula

E = mc2.
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f̂(x)

FP numbers

midpoint

RN(f(x))

Figure 1.4: The case of easy rounding

f̂(x)

FP numbers

midpoint

RN(f(x)) RN(f(x))

Figure 1.5: The case of hard rounding

long precision, but we may compute the function value only with some approximation

procedure and thus we get a finite-precision number f̂(x). The value f̂(x) has finite

accuracy m, probably much larger than k, precision of the format. We assume that

f̂(x) approximates the real value f(x) with an error bounded by β−m. The only

information we have about the value f(x) is the interval, where it belongs: it is

usually centered in f̂(x) and has length 2β−m. Consider an example in RN mode, so

the rounding boundaries are the midpoints. There are two situations possible and

they are shown on Figure 1.4 and Figure 1.5. The Figure 1.4 shows an example of

easy rounding and the Figure 1.5 an example of hard rounding. When the interval

that contains the real value f(x) includes a rounding boundary, we cannot decide to

which of the two nearest FP numbers the result should be rounded.

Hardness to Round and Worst Cases

Ziv proposed to increase the approximation precision m iteratively and recompute

f̂(x) until the interval for real function value does not contain rounding bound-

aries [87]. This strategy is often criticized as it is not known beforehand when the

computation stops. Let be ⋆ ∈ {RN,RD,RU,RZ} one of the rounding modes. If

we want to get correctly-rounded result, we have to be sure that the function returns

⋆(f(x)) and not just ⋆(f̂(x)). The TMD can be reformulated as the following ques-

tion [68]: can we make sure; if m is large enough that ⋆(f̂(x)) will always be equal

to ⋆(f(x))?

To get a positive answer to this question, our function f has to verify the following
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condition: the infinitely-precise value f(x) cannot be closer than β−m to a rounding

boundary. However, it may happen that some function values f(x) are rounding

boundaries. These values of x (in precision p), when the infinitely-precised mantissa

of f(x) is closest to a break-point are called worst cases for the TMD. The lowest

bound for m is called hardness to round.

Definition 1.1 (Hardness to round). For a given FP format of radix β, for a given

rounding mode, the hardness to round a function f on an interval [a, b] is the smallest

integer m such that ∀x ∈ [a, b] either f(x) is a break-point or the infinitely-precise

mantissa of f(x) is not within β−m from a break-point.

The TMD is solved if the lowest possible m and the worst cases are found. Some

worst cases search will be performed in the framework of this thesis (Section 3.4).

We do not review all the existing methods to solve it; we send the reader to [39,59,68]

for more details.

1.1.4 Evolution of the Standard

The IEEE754 Standard was a great achievement in Computer Arithmetic. It unified

all the approaches for FP implementations and thus was a beginning for research in

the area of FP arithmetic. However, it had certain disadvantages that were supposed

to be solved with the new version of the Standard in 2008 [43].

• financial computations suffer from rounding-off errors due to the use of binary

arithmetic: conversion from decimal to binary always contains an error. For

instance, decimal number 0.1 is infinite in binary 0.000110011(0011). This

problem was partially addressed with IEEE854 Standard. The IEEE754-2008

defined decimal FP formats and requires CR conversions between formats of

different radices

• for portability reasons the Standard required correct implementation of five

basic arithmetic operations, while behavior on some special cases for mathe-

matical functions is not defined. The new version of the Standard contains a

chapter of recommendations on CR mathematical functions. We would like to

emphasize that these are only recommendations, CR results are not required.

However, this chapter contains a list of special values and exceptions for ele-

mentary functions.

• since 1985 some new features were developed and therefore had to be standard-

ized too. For instance, in filter-processing and in computer graphics operations

similar to a× b± c are often used. As we know, each arithmetic operation in

FP computes the rounded result. Thus, performing multiplication and addi-

tion (subtraction) as two separate operations may lead to double rounding and
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an unwelcome error [6]. IEEE754-2008 added to the list of required operations

fused multiply-add (FMA) and heterogeneous arithmetic operations.

The IEEE754 Standard was being revised since early 2000s, and finally in 2008 a

new version was published. It brought decimal formats and operations over decimal

numbers, more than 200 new operations and recommendations on correctly-rounded

function implementations. We do not discuss here how the decimal numbers are

stored and manipulated, detailed explanations are in [22–24,43,68,79].

Among the operations not only FMA appeared, the IEEE754-2008 defines so-

called heterogeneous operations. The 1985 Standard declared operations on the FP

numbers of the same format. The 2008’s version allows us to mix the formats, for

instance, a 32-bit FP number can be a result of addition of 64-bit number with a

32-bit one. However, it does not allow the radices to be mixed within one operation.

The new standard renames the old binary formats: single precision is called binary32,

double precision is binary64, denormal numbers are now subnormals.

Besides the old rounding modes from 1985’s version, the 2008 revision added a

new mode: roundTiesToAway (RA(x)). This is a rounding to the nearest mode, but

in a case of midpoints the larger by magnitude value is returned. Binary implemen-

tations have roundTiesToEven mode as default and have to support also all three

directed roundings. The fifth rounding mode roundTiesToAway is not mandatory

for binary implementations, but is required for decimal.

The 2008 version of the Standard contains a recommendation chapter on correctly-

rounded transcendental functions. As we have seen, such implementations require

solving the TMD and for general case of transcendental function this solution is

unknown. However, there are several functions that may be implemented correctly

(already done in CRLibm [28]). The theses by D. Defour [27] and Ch. Lauter [56]

addressed correct implementations of mathematical functions. Current work is a

sequel of this work on automatic code generation for mathematical functions. Dif-

ference and similarity of ours approach and N. Brunie’s code generator [11] is more

detailed later and in [12].
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1.2 Mathematical Model for FP Arithmetic

The computer is important but not to

mathematics.

Paul Halmos4

This section contains a mathematical formalization of FP numbers that will be

used later in algorithm development (Section 3.2, Section 3.3, Section 3.4). The

Standard contains verbal descriptions of FP numbers in different formats. However,

these descriptions are not convenient to use in new algorithms or proofs because of

the lack of mathematical formalism. This model covers only finite normalized FP

numbers that can be all handled in the similar way, infinities and NaNs need to be

filtered out at the beginning of computations, subnormals need special treatment

and are handled separately. All the definitions and theorems are inspired by the

MPFR documentation [33].

Definition 1.2 (FP set). Let k ≥ 2, k ∈ N be an integer. Numbers from the set

Fk =
{
x = βEm |E,m ∈ Z, Emin ≤ E ≤ Emax, β

k−1 ≤ |m| ≤ βk − 1
}
∪ {0}

are called FP numbers of precision k in base β. The number E is called exponent

and m mantissa.

We are going to define the four FP rounding directions with the use of different

integer roundings. The floor function ⌊x⌋ returns the integer number, not larger than

x, the ceiling function ⌈x⌉ returns the integer not smaller than x, the third function

⌊x⌉ rounds x to the closest integer number. The fourth FP rounding is defined as a

combination of the two existing modes.

Definition 1.3 (Nearest integer). The rounding function ⌊·⌉ : R → Z satisfies the

following:

∀x ∈ R, |⌊x⌉ − x| ≤ 1/2

|⌊x⌉ − x| = 1/2⇒ ⌊x⌉ ∈ 2Z

The second line in this definition ensures that in the case when x is situated

between two integer numbers, the result of ⌊x⌉ is an even number.

Once we define the integer roundings we can define the FP roundings, that give a

FP approximation of a real number. To make these formulas look simpler, we define

first functions Ek(x) and ulpk(x).

4Paul Halmos (1916 - 2006) was a Hungarian-born American mathematician who was also

recognized as a great mathematical expositor. He has been the first to use the “tombstone” ( )

notation to signify the end of a proof, and this is generally agreed to be the case.
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Definition 1.4. Let be Ek(x) : R→ Z the function defined for some k ∈ N as

Ek(x) =
⌊
logβ |x|

⌋
− k + 1

Definition 1.5. Let be ulpk(x) : R→ R the function defined for some k ∈ N as

ulpk(x) = βEk(x)

Definition 1.6 (FP roundings). Let ◦k,∇k,∆k and ✄✁k : R → Fk be defined as

follows:

◦k(x) =




0 if x = 0

ulpk(x)
⌊

x
ulpk(x)

⌉
otherwise

∇k(x) =




0 if x = 0

ulpk(x)
⌊

x
ulpk(x)

⌋
otherwise

∆k(x) =




0 if x = 0

ulpk(x)
⌈

x
ulpk(x)

⌉
otherwise

✄✁k (x) =





0 if x = 0

∆k(x) x < 0

∇k(x) x > 0

The functions ◦k,∇k,∆k and ✄✁k are called respectively rounding-to-the-nearest,

rounding-down, rounding-up and rounding-to-zero for FP numbers in precision k.

This definition allows us to get the exponent and mantissa of the FP approxima-

tion of x like in Def. 1.2. For instance, let us represent a decimal number 12.345 as

a binary FP number in F24 (using ∇24(x) rounding). We start with computation of

E24(x):

E24(12.345) = ⌊log2 |12.345|⌋ − 24 + 1 = −20
Now we can compute ∇24(x):

∇24(12.345) = 2−20

⌊
12.345

2−20

⌋
= 2−20 · 12944670

In the computed representation exponent E = −20, mantissa is m = 12944670 and

is bounded by one binade [223, 224).

The same number 12.345 is encoded in IEEE754 single precision as

23 · 1.10001011000010100011110,

so its mantissa is m = 1+ 2−23(222 + 218 + 216 + 215 + 210 + 28 + 24 + 23 + 22 + 2) or

m = 1 + 2−23 · 4556062. Scaling the mantissa in IEEE754 representation by 223 and
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exponent by 2−23, matches the result of ∇24(12.345). Thus, there is the same idea

in the IEEE754 representation and Def. 1.2, the only difference is in the bounds of

mantissa: in our model we bound m by one binade [2k−1, 2k) and in IEEE754 it is in

[1, 2)5. Thus, the two representations are equivalent and one may be obtained from

the other by scaling mantissa.

Therefore, numbers of binary32 (single) format after scaling mantissa by 223

become binary numbers of F24, and the numbers of binary64 (double) format make

the set F53 from Def. 1.2 with scaling mantissa by 252. This mathematical model

does not take into account infinities and NaNs. All the algorithms for FP numbers

usually perform filtering of special cases first, thus, the resting numbers are described

by our model.

Property 1.1 (Factor of β). Let k ∈ N, k ≥ 2 be a precision. Let ⋆k ∈ {◦k,∇k,∆k ✄✁k}
be a rounding. Hence,

∀x ∈ R, ⋆k(β · x) = β⋆k (x)

Proof. The proof is based on the previous definitions. To start with, let us compute

Ek(β · x).
Ek(β · x) =

⌊
logβ |β · x|

⌋
=
⌊
logβ |x|+ 1

⌋
= Ek(x) + 1

Thus, the exponent of the FP representation of β · x is larger than this for x by one.

Consider the case with rounding down, for other modes this property is proven in

the same way.

∇k(β · x) = βEk(β·x)
⌊

β · x
βEk(β·x)

⌋
= β · βEk(x)

⌊
β · x

βEk(x)+1

⌋
= β · ∇k(x)

So, binary FP numbers may be scaled by two without changing the rounding,

and the decimal ones by ten.

Lemma 1.1 (Roundings and FP numbers). Let ⋆k ∈ {◦k,∇k,∆k,✄✁k} be a rounding

(as defined in Def. 1.6) and k ∈ N, k ≥ 2 be a precision. Hence,

∀x ∈ R, ⋆k(x) ∈ Fk.

Thus, rounding operations correspond to the common idea of rounding to a FP for-

mat. The lemma is applied to both binary and decimal FP numbers.

Proof. The proof is based on the definitions 1.2 - 1.6. We will prove this lemma for

binary numbers and rounding-to-the-nearest mode, for other roundings and bases

the same approach is used. The case x = 0 is trivial: ◦k(x) = 0 ∈ Fk. Otherwise by

the definition Def. 1.6 we have

◦k(x) = 2Ek(x)
⌊ x

2Ek(x)

⌉

5We remind that only normal IEEE754 numbers are considered in our model.
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It is clear that Ek(x) = ⌊log2 |x|⌋ − k + 1 ∈ Z. We also have

log2 |x| − 1 ≤ ⌊log2 |x|⌋ ≤ log2 |x|

Therefore, this may be rewritten for the powers of two:

|x| · 2−1 ≤ 2⌊log2 |x|⌋ ≤ |x|

We may multiply the inequality by 2−k+1 and get the following

|x| · 2−k ≤ 2⌊log2 |x|⌋−k+1 ≤ |x| · 2−k+1.

Using this inequality we may get the bounds for fraction |x|
2⌊log2 |x|⌋−k+1

2k−1 ≤
∣∣∣ x

2⌊log2 |x|⌋−k+1

∣∣∣ ≤ 2k

Thus, ◦k(x) ∈ Fk and the lemma is proven.
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1.3 Towards a Modern FP Environment

The IEEE754-2008 Standard brought some new aspects. It forced the research in

decimal FP arithmetic and required 354 operations for binary format in compar-

ison with 70 from the 1985 Standard (with requiring an FMA and heterogeneous

operations). The next revision might appear in 2018, and it might bring even more

operations. This work proposes to focus on two new aspects: to provide more flexi-

bility for mathematical functions and to include mixed-radix (MR) operations. More

flexibility means support of a huge family of implementations for each mathematical

function (implementations different by final accuracy, domain, etc.). Mixed-radix

operations should allow radices of inputs and output to be mixed without an extra

call to conversion that could give better performance or accuracy results.

1.3.1 Mathematical Functions Implementations

Computing a value of mathematical function at some point requires execution of a

sequence of arithmetical operations: as the functions are transcendental, we compute

only their approximations. Elementary functions (e.g. exp, log) are used as basic

bricks in various computing applications. The IEEE754-2008 Standard contains

already a chapter with recommendations for correctly-rounded functions, therefore

mathematical functions become the part of the FP environment. Software libraries

containing functions implementations are called libms.

Currently, there are plenty different libms for different platforms, languages, accu-

racies. There are Open-Source libraries and proprietary codes: Intel’s MKL, ARM’s

mathlib, Sun’s libmcr, GNU glibc libm [32], Newlib for embedded systems [85],

CRlibm by ENS Lyon [28] for correctly-rounded implementations, etc. Despite such

great choice of libraries, users are not all satisfied with the current offer. The existing

libraries are static and provide only one implementation per function and precision.

Users need more today, e.g. choice between latency and throughput, possibility to

change domains or to require final accuracy. There is a compromise between accuracy

and performance, and as TMD is hard to solve, correctly-rounded implementations

may suffer of the lack of performance in comparison with faithfully-rounded results.

The need of providing several implementation variants for each mathematical

function has been discussed since longtime6. Modern mathematical libraries should

contain several implementation variants of each mathematical function and a mech-

anism of choosing the right one. Profiling the SPICE circuit simulator shows that

it spends most of its time on the evaluation of elementary functions [49]. The same

holds for large-scale simulation and analysis code run at CERN [3, 45, 70]. So these

are the two “use-cases” for “quick and dirty” function implementations. Users may

6for example https://gcc.gnu.org/ml/gcc/2012-02/msg00469.html or https://gcc.gnu.

org/ml/gcc/2012-02/msg00298.html

https://gcc.gnu.org/ml/gcc/2012-02/msg00469.html
https://gcc.gnu.org/ml/gcc/2012-02/msg00298.html
https://gcc.gnu.org/ml/gcc/2012-02/msg00298.html
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be interested not only in CR or faithful implementations but also in codes that give

more exotic accuracy, e.g. 2−50 or 2−45 or even 2−15. Existing libraries may be im-

proved and enlarged not only in terms of accuracy: we may add performance options

(for compromise between latency and throughput), portability options (support of

some special instructions). Besides that, we may let users change the domain: for

small domains there is no need to handle infinities, NaNs, under/overflows and other

exceptions. Supporting all these choices means implementation of a tremendous

number of different variants for each mathematical function from a libm. It is also

desired that new flexible libms support even “non-standard” functions. The quantity

of all the implementation variants is tremendous and may be made infinite. That

makes the task of manual writing a new libm impossible and thus we need a code

generator to produce all these implementations. Code generators have already shown

their efficiency in mathematical software, e.g. ATLAS [86] project for linear algebra,

and the FFTW [34] and SPIRAL [71] projects for fast Fourier transforms.

Implementation of a libm requires extensive knowledge in numerical analysis, FP

computing, and probably architecture specification for optimization. This means

that some “exotic” libms may be developed by people without special (large) knowl-

edge of mathematical functions implementation or floating-point tricks [28]. Gen-

erating correct-by-construction implementations prevents from appearance of poor

implementations.

With such code generator we pass to a “higher” level of programming (writing

code to produce the code instead of direct result is usually called metaprogramming).

So we call this generator Metalibm. It is a part of the ANR7 Metalibm project [25]

that covers two basic aspects: code generation for mathematical functions and for

digital filters. Generation of digital filters is out of scope of the current work, we

focus only on function generation.

Since the existence of the project two main branches were developed: the one

described here, and the other one found in N. Brunie’s thesis [11]. N. Brunie’s version

was developed mainly as an assistance framework for libm developers: once all the

needed steps for function implementations are determined, the corresponding classes

and methods may be called. One of the motivations for it was lack of performance

of standard libms on Kalray’s processors, so for a specified processor it chooses the

right CPU instructions.

Our version was created to be a push-button generator with the support of black-

box functions: the tool takes a set of different parameters like final accuracy, domain,

etc. and the function itself. Roughly speaking, our generator does not know which

function it is generating (exp, log or other), but is able to establish its significant

algebraic properties on-the-fly. However, the both approaches are based on the same

idea: take a set of parameters for function implementation and generate correspond-

ing code automatically. It is hard to make a clear distinction between them and of

7ANR is an abbreviation for Agence National de Recherche for French National Research Agency
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course an interesting future concept is to combine the two generators into one [12].

Here and after we are going to use the word “Metalibm” for our version of code

generator.

1.3.2 Mixed-radix Arithmetic

Decimal FP arithmetic is used in financial computations to avoid rounding issues

when decimal inputs are transformed to binary. However, the overwhelming major-

ity of computer architecture is binary. It means that we mix binary and decimal

FP numbers inevitably. The IEEE754-2008 Standard required operations, rounding

modes, exceptions, etc. for each radix, so there are two FP worlds: binary and deci-

mal, and they only intersect in conversion operations. According to the Standard we

have to provide conversion from binary format to a decimal character sequence and

back, and when the decimal formats are available, then there should be conversions

in both directions in all formats between binary and decimal FP numbers. Opera-

tions that mix decimal and binary inputs are not yet specified. We propose to call

them mixed-radix (MR) operations. For instance, comparison between binary and

decimal numbers is already investigated [9]. Before specifying these operations we

must evaluate their feasibility and cost.

Research on mixed-radix operations started with Brisebarre’s et al. paper on

comparison of binary64 and decimal64 numbers [9]. Another existing paper in

mixed-radix arithmetic is about an atomic operation of radix conversion [55] and

this approach is explained in Section 3.2.

We start the research in mixed-radix arithmetic operations on FMA operation.

As mentioned, having an FMA implemented, we get mixed-radix addition (subtrac-

tion) and multiplication. It is also an often-used operation in polynomial evaluation,

in filter processing and computer graphics [40, 41, 83]. We start with evaluation of

the cost of mixed-radix FMA implementation, so we search its worst-cases (see Sec-

tion 3.4).

An interesting widely-used conversion operation is between decimal character

sequence and binary FP number. It is not a trivial operation as we are working with

an arbitrary user input. Therefore the user-given number may be of an arbitrarily

large precision, which makes computation of TMD worst cases impossible. The

existing scanf from glibc does not support all rounding modes and uses memory

allocation, which means it cannot be reused in embedded systems. In Section 3.3 a

new algorithm to transform user’s decimal string representation of FP numbers is

presented. It is re-entrant, works for all rounding modes and its memory consumption

is known beforehand.
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1.3.3 Conclusion

Transition from 1985 to 2008 version of the Standard brought about 280 new op-

erations, and we have noted several more useful operations for FP environment.

Inclusion of mixed-radix operations to the Standard means its enlarging up to 500

new operations. There is a growing interest in various implementations of mathe-

matical functions. The number of functions is huge, the number of their variants

tends to infinity, thus each new version of the Standard might require or at least

recommend more and more operations. This work paves the way to the research

in mixed-radix arithmetic and to optimization of generated mathematical functions

implementations.



CHAPTER 2

Automatic Implementation of

Mathematical Functions

Computing is kind of a mess. Your computer

doesn’t know where you are. It doesn’t know

what you’re doing. It doesn’t know what you

know.

Larry Page1

Existing mathematical libraries (which are called libms) provide code for evalu-

ation of mathematical functions. However, they are static as they give one imple-

mentation per function and too generalized: argument range is specified “as far as

the input and output format allows” and accuracy “as accurate as the output format

allows” [32]. This means that for a specific context or an application, the functions

in the libm are often overkill.

It was already mentioned that modern libms should contain several implemen-

tations of each mathematical function: e.g. for small domain, for large domain, for

various specified accuracies. Manual implementation of such a tremendous number of

all possible versions is not feasible that is why we aim to write a code generator [54].

To know how to generate code for mathematical functions, we review first the

basic steps for manual implementation (Section 2.1). There are usually three steps,

so-called argument reduction (Section 2.1.1), approximation (Section 2.1.2) and re-

construction (Section 2.1.3). Besides some routines on each of mentioned steps usu-

ally serious error analysis is required. We explain how to perform it on an example

of exponential function(Section 2.1.4).

Afterwards we explain how our code generator works (Section 2.2). It generates

the needed steps for function implementations automatically. Interesting non-trivial

1Larry Page (1973) is an American computer scientist and internet entrepreneur who co-founded

Google Inc. with Sergey Brin, is the corporation’s current CEO, is the inventor of PageRank,

Google’s best-known search ranking algorithm.
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algorithms are used to split domains [53] (see Section 2.2.4) and to replace branching

in reconstruction by polynomials [52] (see Section 2.2.5).

2.1 Background for Manual Implementation

A univariate mathematical function is called elementary if it consists of a finite

number of compositions, additions, subtractions, multiplications and divisions of

complex exponentials, logarithms, constants and n-th roots. Examples of elementary

functions are exp, log, trigonometric functions. Functions that are not elementary

are usually called special, e.g. Gamma function. The existing libms contain code to

evaluate elementary and several special functions (e.g. Gamma, Bessel, erf).

In order to understand the challenge of writing a code generator for mathematical

functions, it is useful to know how they are implemented manually. The hardware

provides FP additions, multiplications, comparisons, and memory for precomputed

tables. A generic technique exploiting all this is to approximate a function by tables

and polynomials (possibly piecewise).

Usually implementations of an elementary (mathematical) function consist of the

following steps [66]: filtering special cases (NaNs, infinities, numbers that produce

overflow/underflow and other exceptions), argument reduction, approximation and

reconstruction. We use simple if-else statements and comparisons to filter out the

inputs that produce non-finite result or exceptions. Implementing a function on some

domain requires its approximation on the same domain. Usually polynomials or

rational functions are used for approximations. As we know [16], the approximation

domain, degree and accuracy are related. So the smaller is the domain, smaller is

the degree and more accurate is the approximation. Thus, to use the approximations

of low degrees (that accumulate less FP round-off errors), the specified domain for

function implementation is usually reduced. After computing approximation on the

small domain, we perform the inverse transition that allows to evaluate the function

on the whole domain.

Metalibm relies on the existing software in numerical computations Sollya [18]

and Gappa [26] that will be detailed later. These tools deal well with polynomials and

are developed as basic bricks for mathematical functions generator. Sollya contains

useful routines for polynomial approximations and Gappa certifies accuracy of FP

code. This is the main reason why we focus on polynomial approximations.

The argument reduction step is based on algebraic properties of the function to be

implemented (see Section 2.1.1), reconstruction is then an inverse transformation.

Exploiting mathematical properties to reduce implementation domain means that

there does not exist any general argument reduction procedure that can be applied

to any type of the function. For some functions e.g. erf or functions purely defined

by ODE, we do not have such useful properties to reduce the domain. As we are still

interested in polynomials of small degree, piecewise approximations are used instead.
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x

f(x)

Argument reduction

Reconstruction

Polynomial Table

Reduced argument r Tabulation index i

x

f(x)

Domain splitting

Reconstruction

Polynomial Table

Subdomain index ix

Figure 2.1: Two basic schemes to implement a mathematical function

In this case, argument reduction is an execution of some domain splitting algorithm

and reconstruction is domain decomposition. To summarize, mathematical functions

are implemented within one of schemes shown on Figure 2.1. This is a classical

division of two approaches to implement mathematical function. In practice, we may

combine these schemes too. The naive example is a symmetric function like asin for

instance, its domain may be reduced twice first and then piecewise polynomials are

computed. We explain the mix of these schemes later in Section 2.2.2.

In the current section we review existing argument reduction procedures, tech-

niques to find and evaluate the approximation polynomial and how to perform error

analysis of the whole implementation.

2.1.1 Argument Reduction

As mentioned, the purpose of this step is to reduce the degree of polynomial ap-

proximation with the reduction of implementation domain. Figure 2.2 illustrates

exponential function with its two approximating polynomials. On the left there is a

polynomial computed for a small domain, on the right for a larger domain. On small

domains they almost match the function values, but for larger domain the error gets

larger. Argument reduction procedures usually depend on algebraic properties of

the function to be implemented, for instance ex+y = exey, log(xy) = log(x) + log(y),

sin(x + 2πk) = sin(x). As we mentioned, some functions do not have any useful

properties to reduce the domain and we use piecewise polynomial approximations



28 Chapter 2. Automatic Implementation of Mathematical Functions
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exp(x)

p2(x)

Figure 2.2: Polynomials approximating exp(x)

then. There are different ways to split the initial domain into several small subdo-

mains to get several polynomial approximations of small degree. We review these

methods later with the details on our splitting algorithm (Section 2.2.4) and here we

focus on several properties-based reduction schemes.

The goal for argument reduction is to represent the function value f(x) through

some function value g(r), where r is a reduced argument and has to be deduced from

x, we use different function g because it may not be the same as f . The way to reduce

argument for some functions is not unique and may depend on the requirements of

the implementation. We show how it is possible to reduce the argument on several

examples.

Exponential Function ex

The useful property of this function is that e(a+b) = ea·eb. We will try to represent the

value ex as a multiplication of 2E, E ∈ Z and 2r, |r| < 1/2, so we use representation

similar to Def. 1.2. The first term corresponds to the exponent of the result, and

the second one to the mantissa. This way, the exponential may be transformed as

follows:

ex = 2x log2 e = 2
x

ln 2 = 2⌊ x
ln 2⌉ · 2 x

ln 2
−⌊ x

ln 2⌉ = 2E · ex−E ln 2 = 2E · er (2.1)

Thus, exponent of the result is

E =
⌊ x

ln 2

⌉
, (2.2)
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and the reduced argument is

r = x− E · ln 2; r ∈
[
− ln 2

2
,
ln 2

2

]
(2.3)

With reduced memory cost, in late 80s-90s table-driven methods appeared [35,80–

82]. Tang’s method allows us to reduce the argument even more with a precomputed

table of 2t values [80]. Here we do almost the same as before. We start with

representing ex as a power of two, and then we multiply and divide this power by 2t:

ex = 2x log2 e = 2
x

ln 2 = 2
1
2t

·x·2t
ln 2 (2.4)

Then, we represent the fraction x·2t
ln 2

as

x · 2t
ln 2

= E +

(
x · 2t
ln 2

− E

)
, (2.5)

where the integer number E =
⌊
x·2t
ln 2

⌉
. This integer number E may be represented as

E = 2t ·m+ i, where m is an integral part of division E by 2t and i is the remainder,

so takes integer values from [0, 2t − 1]. We take r ∈
[
− ln 2

2
, ln 2

2

]
, then the expression

in brackets from (2.5) way be written as

r

ln(2)
=

(
x · 2t
ln 2

− E

)
.

Thus, coming back to (2.4) we have the following expression for exponential:

ex = 21/2
t·x·2t

ln 2 = 21/2
t·(2tm+i) · 21/2t·

r
ln(2)

Simplifying the expression and taking r∗ = r/2t we get

ex = 2m · 2i/2t · er∗

Thus, m is the new exponent of the result, values 2i/2
t

are precomputed and stored

in a table for i = 0, 1, . . . , 2t − 1. The reduced argument is

r∗ ∈
[
− ln 2

2t+1
,
ln 2

2t+1

]
.

Tang proposed to compute the approximation polynomial p for function er
∗−1, thus

the final expression for exponential is

ex = 2m · 2i/2t · (1 + p(r∗)). (2.6)
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Logarithm function ln(x)

Due to IEEE754 standard, we may decompose binary FP numbers to the form

x = 2E
′
m′ where 1 ≤ m′ < 2, E ∈ Z. Then, according to logarithm properties, we

get

ln(x) = E ′ ln(2) + ln(m′)

This simple direct decomposition cannot be used for final argument reduction: we

get catastrophic cancellations when E ′ = −1 and m′ is close to 2. Therefore, two

more enhancements are performed. Firstly, we decompose the number x differently,

so that x = 2Em where 1√
2
≤ m <

√
2.

E =

{
E ′ if m′ ≤

√
2

E ′ + 1 if m′ >
√
2

With such decomposition of argument x, we get

ln(x) = E ln(2) + ln(m),

where −1
2
ln 2 ≤ lnm ≤ 1

2
ln 2. Magnitude of the reduced argument is still large

and lnm cannot be approximated by a polynomial of low degree. We are going to

use tabulated values to reduce the argument even more. We use the first n bits of

mantissa m as index i to look up tabulated value ti that approximates 1/m. Taking

r = mti − 1 we get

lnm = ln(1 + r)− ln ti.

We approximate the value of ln(1 + r) by polynomial p(r) and then assigning li =

− ln ti, we get the final formula:

ln x = E ln 2 + p(r) + li.

The reduced argument is |r| < 2−n. Usually n is chosen between 6 and 8, which

makes two tables of 64 to 256 entries.

2.1.2 Polynomial Approximation

Once the implementation domain is somehow reduced, we can compute polynomial

coefficients to approximate g(r). There are different techniques to find this polyno-

mial. One of them is minimax polynomial. Infinite norm is usually defined with the

following formula:

‖f − p‖[a,b]∞ = max
a≤x≤b

|p(x)− f(x)|

Minimax approximation p for the function f minimizes this infinite norm.

We review the basic theorems used to find a minimax-like polynomial or to es-

tablish relation between the approximation accuracy, domain and polynomial de-

gree [16,17].
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Theorem 2.1 (Weierstraß, 1885). Let f be a continuous real-valued function on

[a, b] and if any ε > 0 is given, then there exists a polynomial p on [a, b] such that

‖f − p‖[a,b]∞ ≤ ε.

Proofs for the theorems may be found in [16].

This means that any continuous on [a, b] function may be approximated by a

polynomial as accurately as needed.

Theorem 2.2 (Chebychev’s alternance). Polynomial p is the best approximation of

continuous function f over an interval [a, b] if and only if there are at least n + 2

points x0 < x1 < . . . < xn+1 in [a, b] such that

f(xi)− p(xi) = α(−1)i‖f − p‖[a,b]∞ ,

where i = 0, 1, . . . , n+ 1 and α = 1 or α = −1 for all i at the same time.

These points x0, x1, . . . , xn+1 from the theorem are called Chebychev’s nodes. This

theorem about alternance shows that the sign of error for minimax polynomial of

degree n alternates and reaches its extrema n+2 times. The next theorem gives the

bounds for the optimal error of a minimax polynomial.

Theorem 2.3 (of de la Vallée-Poussin). Let f be a continuous function on [a, b],

p its approximation polynomial on n + 2 points x0 < x1 < · · · < xn+1 from [a, b]

such that the error |f − p| has a local extremum and its sign alternates between two

successive points xi, then the optimal error µ verifies

min
i=0,1...,n+1

|f(xi)− p(xi)| ≤ µ ≤ max
i=0,1...,n+1

|f(xi)− p(xi)|.

So, we have a theorem that establishes relation between approximation error,

domain and polynomial degree. Therefore, it may be used to make a decision if

domain splitting is needed.

Remez [73] proposed an iterative convergent algorithm to find a minimax-like

polynomial starting with Chebyshev nodes. It has quadratic convergence to a min-

imax polynomial when the function f is twice differentiable and with additional

conditions for approximation points xi [17]. We do not explain here the whole algo-

rithm, we just give a short overview. We start with n + 2 points x0, . . . , xn+1 from

[a, b]. Chebyshev nodes are often chosen on the first step [16]:

xi =
a+ b

2
+

b− a

2
cos

(
(n+ 1− i)π

n+ 1

)
, i = 0, . . . , n+ 1.

Then the following actions are repeated in a loop until the needed approxi-

mation accuracy is reached. First, an interpolation polynomial p of f has to be

computed on the chosen n + 2 points. Current accuracy of this polynomial is
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ε = maxi=0,...,n+1 |p(xi)−f(xi)|. We find a set of points M where the local maximum

of error |p − f | is reached. If the errors for each point in M alternate in sign and

have equal magnitude, the minimax polynomial is found. If not, we choose another

set of n+2 points and repeat the computations. The next set of points contains the

point ξ such that the error |p− f | reaches its global maximum.

Thus, this algorithm computes a sequence of polynomials p[j] that converges to

a minimax polynomial. A condition to stop the iterations is that the approximation

error on j-th step is less than the required accuracy. There is a FP modification of the

classical algorithm proposed in 1934 that produces FP coefficients for the specified

precisions [8]. This Remez-like algorithm is implemented in Sollya numerical tool and

therefore is used in Metalibm. To compute this polynomial we should also specify

the desired accuracy and polynomial degree.

For our example with exponential function, for an interval [1; 3], desired accuracy

10−5 and degree 7, the approximation polynomial with coefficients rounded to double

is

p(x) =4398690705538611 · 2−52 + 4976570300619493 · 2−52 · x
+ 42051858177809 · 2−47 · x2 + 26740262321023 · 2−46 · x3

− 6813315854891583 · 2−56 · x4 + 8849499087929315 · 2−57 · x5

− 6118517341039965 · 2−59 · x6 + 3499742641603825 · 2−61 · x7

Domain [1; 3] is quite large. Returning to the example from Section 2.1.1, we have

domain
[
− ln 2

32
, ln 2

32

]
, we may use the following polynomial of degree four.

p(x) =562949953421317 · 2−49 + 9007199249577219 · 2−53 · x
+ 9007199250265725 · 2−54 · x2 + 3002487796550777 · 2−54 · x3

+ 6004963853677043 · 2−57 · x4

Coefficients are rounded to double precision. Approximation error over the specified

domain determined with Sollya is about 2.48371 · 10−12.

Polynomial Evaluation

Finding polynomial coefficients for a good approximation is a mathematical problem.

In computer science we have to choose also a good evaluation scheme to implement.

For a polynomial of degree n all the evaluation schemes perform n additions (unless

some of the coefficients are zeros), so the main difference between them is in the

quantity of the multiplications.

It is clear that the direct computation of polynomial cannot be used: execution

of all the multiplications in this expression as

an x · x · . . . · x︸ ︷︷ ︸
n

+an−1 x · x · . . . · x︸ ︷︷ ︸
n−1

+ . . .+ a1x+ a0



2.1. Background for Manual Implementation 33

requires too many operations and therefore brings too many round-off errors. Accord-

ing to Mouilleron and Révy [65], for the polynomials with some specific properties

on the coefficients some non-trivial methods are applied (e.g. E-method [30], Estrin’s

method). For manual implementations the approximations are found manually, so

programmers choose the corresponding evaluation scheme depending on some prop-

erties of this polynomial. In general case, when there is no specific information about

the coefficients of the polynomial, Horner’s scheme is used.

2.1.3 Reconstruction

Argument reduction step is roughly speaking a transformation of f(x) to some g(r),

where r is reduced argument from a small domain and g is some function, may be

the same as f . Then this function g is approximated by a polynomial p on a small

domain for its argument r. Reconstruction is an inverse process: from polynomial

values on the small domain p(r) get the function values on the large initial domain

f(x). In the case of piecewise polynomial approximation, reconstruction is a domain

decomposition: we have to choose the corresponding polynomial coefficients for the

input x ∈ [a, b].

For our example with exponential function, reconstruction formula is

ex = 2E · 2i/2t · (1 + p(r)).

For piecewise approximations different domain decomposition techniques may be

applied. They depend on the domain splitting procedure used. If the domain was

split into N equal parts, we may use a linear function to determine the right index

of the set of polynomials {pi}N−1
i=0 .

2.1.4 Error Analysis

Mathematical libraries have to produce reliable results, therefore all arithmetic op-

erations used to get the function value have to be thoroughly analyzed: we perform

computations in FP arithmetic and round-off errors are accumulating on each step.

For function implementations there are three main error sources: approximation er-

ror εappr, polynomial evaluation error, and error from all other FP computations.

For functions with domain splitting there are only two error sources: polynomial

approximation and evaluation.

We explain how to perform error analysis continuing the example with exponen-

tial function. We compute it within the following formula

ex = 2E · 2i/2t · (1 + p(r)).

Polynomial p(r) is evaluated with some error εeval, thus we should replace p(r) in

the reconstruction formula by p(r)(1 + εeval). This polynomial approximates er − 1,
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thus we may write (er−1)(1+εeval)(1+εappr) instead of p(r). Tabulated values 2i/2
t

are FP numbers, thus they are computed with some error too, so we replace them

by 2i/2
t

(1 + εtbl).

Taking into account all these errors, we compute some êx = ex(1 + ε), and the

goal is to represent this ε through the mentioned errors. So, we rewrite the whole

expression for êx with all the errors:

êx = 2m · 2i/2t · (1 + εtbl) + 2m · 2i/2t · (er − 1)(1 + εtbl)(1 + εappr)(1 + εeval)

After multiplications and simplifications we get

êx = ex

(
1 +

2m · 2i/2t

ex
εtbl +

2m · 2i/2t · (er − 1)

ex

(
εtbl + εappr +

εeval +O
(
εtbl + εappr + εeval

))
)

Thus, the overall error of such function evaluation is

ε =
2m · 2i/2t

ex
εtbl +

2m · 2i/2t · (er − 1)

ex

(
εtbl + εappr + εeval +O(εtbl + εappr + εeval)

)

This allows us to perform forward and backward error analysis [41]. In forward

analysis we get an estimation or a bound for overall error when we know all the errors

εappr, εtbl, εeval. In backward error analysis we determine the bounds for εappr, εtbl, εeval
knowing only the final error ε.

There exist a software tool called Gappa for automatic certification of the ap-

proximation accuracy. We review it later in Section 2.2.2.
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2.2 Code Generation for Mathematical Functions

The idea of writing a Metalibm, a code generator for mathematical functions, ap-

peared first in [56], since then two different approaches were developed. They are

reviewed in Section 2.2.1.

2.2.1 Use Cases for Generators of Mathematical Functions

As it was mentioned, the two main use cases are distinguished and developed for

generator of mathematical function implementations. The first one targets the widest

audience of programmers. It is a push-button approach that tries to generate code

on a given domain and for a given precision for an arbitrary univariate function with

continuous derivatives up to some order.

The function may be specified as a mathematical expression, or even as an ex-

ternal library that is used as a black box. We call this approach the open-ended

approach, in the sense that the function that can be input to the generator is ar-

bitrary – which does not mean that the generator will always succeed in handling

it.

Here, the criterion of success is that the generated code is better than whatever

other approach the programmer would have to use (composition of libm function,

numerical integration if the function is defined by an integral, etc). “Better” may

mean faster, or more accurate, or better behaved in corner cases, etc.

Still, the libm is here to stay, and the needs of libm developments have to be

addressed too. Although, the techniques used in open-ended approach can eventually

be extended to capture all the functions of C11, it is currently not the case. There

is a lot of human expertise that cannot be yet automated. In particular, bivariate

functions as atan2 or pow, and some special functions, are currently out of reach.

The second use case focuses on assisting people who have this expertise, not yet

on replacing them. It targets a much narrower audience of programmers, those in

charge of providing the actual libm functionality to an operating system or compiler.

Here the criterion of success is that the generated code is of comparable quality to

hand-written code, but obtained much faster. This second use case can be viewed

as a pragmatic, bottom-up approach, where we embed existing hand-crafted code in

a framework to make it more generic. More details may be found in [11] and [12].

The first, open-ended use case is more ambitious, more high-level, and top-down

from the most abstract mathematical description of a function. This is a subject of

current work, the second one is N. Brunie’s version of Metalibm.

We start with a brief general overview of the open-ended generator, and formulate

its objectives (see Section 2.2.2). Then we explain how to perform automatically each

of previously described steps in function implementation (Section 2.2.3, Section 2.2.4,

Section 2.2.5). Current section is finished with examples, results and analysis of
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Metalibm’s perspectives in Section 2.2.7. Different aspects that will be explained in

this section, were published in [12,52–54].

2.2.2 Open-ended generator

We are going to produce code for various function specifications. We call them

function variants or sometimes flavors. Each flavor is determined by its parameters

(listed below) among which we find the function itself. So, Metalibm does not know in

the beginning which function it is generating. However, it should be able to evaluate

these functions over an interval with arbitrary accuracy. This enables exploiting

algebraic properties and generating code of comparable to glibc libm performance.

Parameter Set

We aim to give users more choices in implementations of libm functions. The most

important choices include specification of a function f , desired domain of imple-

mentation [a, b], requirements for accuracy of the result ε̄, limit for approximation

polynomial degree dmax and size of the table t (in case when table-driven argument

reduction is used). We cannot give any guidelines for the choice of these parameters,

it should be determined by user. There is no option to require CR implementations

for the moment, however there are two strategies for users if they need CR functions:

• require higher accuracy than needed for the worst case. Then manually patch

the generated code: perform rounding to the needed accuracy and test if such

result gives a CR function version;

• refer to CRlibm that implements efficiently CR functions from a usual libm.

One of the objectives for Metalibm is to support black-box function specifications:

create a generic generator for arbitrary function. There is no dictionary with fixed set

of the supported functions, user may provide code to evaluate some “exotic” function

over an interval with arbitrary accuracy. This has to be a function continuous with

its first few derivatives.

Toolkit for Function Generation

The aim of the generator is to create function implementations “accurate”2 and hence

“correct”3 by construction. There are already several existing tools useful in imple-

mentation of such generator (we have already mentioned them before). Sollya4 is

a numerical tool for reliable (safe) computations that contains different numerical

2at least not worse than the specified accuracy ε̄.
3not in the sense of CR
4http://sollya.gforge.inria.fr/

http://sollya.gforge.inria.fr/
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Figure 2.3: Metalibm scheme

algorithms implemented [18, 20]. For instance, state-of-the-art polynomial approxi-

mations [8], safe algorithms to compute εapprox = ‖f − p‖I∞ [19] as well as a scripting

language. As mentioned, it is important to handle FP error rigorously and to guar-

antee result’s accuracy. For manual implementations errors are managed manually,

for Metalibm we can use Gappa formal proof assistant [63]. Compared to [26], in the

present work the Gappa proof scripts are not written by hand, but generated along

with the C code. Interestingly, Gappa is itself a code generator (it generates Coq or

HOL formal proofs).

Three Levels of Code Generation

In the end of Section 2.1 we put the two basic schemes of mathematical function

implementation (see Figure 2.1). The first one contains the following steps: argument

reduction, approximation and reconstruction. The function is approximated by one

polynomial. The second scheme is for piecewise polynomial approximations and has

these steps: domain splitting, polynomial approximations and reconstruction that is

done usually with if-else statements. Roughly speaking, Metalibm combines these

two schemes and executes all the steps automatically. Despite it is a black-box

function generator, it performs specific argument reduction procedures that depend

on mathematical properties. So, it detects these properties automatically (will be

explained later how). The produced code is ready-to-use and the demanded accuracy

is guaranteed. To do this Metalibm chooses the precision of the internal computations

automatically: for highly-accurate flavors it may use double-double or triple-double

arithmetic [29,77]. This is equivalent to automatic error analysis as in Section 2.1.4.

The scheme of Metalibm code generation may be found on Figure 2.3. There are

three levels of code generation:
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• We start with detecting algebraic properties of functions (several examples

are explained later in Section 2.2.3). In case of success appropriate argument

reduction scheme is applied.

• It may happen that after argument reduction we cannot approximate the func-

tion with one polynomial with the given constraints (reduced domain, accuracy

and polynomial degree). We use piecewise-polynomial approximations. Thus,

domain has to be split into several subdomains. We decide if the splitting is

needed with the help of Theorem 2.3 given in Section 2.1.2. Our algorithm for

domain splitting is explained in Section 2.2.4.

• Finally, on the last level we have small domain (or subdomains) and we com-

pute the approximation polynomial (or polynomials) and generate Gappa proofs

for their approximation error. As function flavors are arbitrary, the approx-

imation polynomials are arbitrary too. Thus, Horner scheme is used for its

evaluation.

When the three basic steps are executed, the only thing left is to put together

all the performed actions into C code. On Figure 2.3 the block on the right may

contain different parts depending on the used generation levels and therefore on the

function specification, too. We discuss later on examples what is in the generated C

code.

2.2.3 Properties Detection and Argument Reduction

We have seen in Section 2.1.1 several algorithms of argument reduction. They reduce

the domain to a small one and for most of function flavors it becomes possible to use

only one approximation polynomial. Thus, we use memory just to save its coeffi-

cients. Domain splitting procedure produces several subdomains from the initial one

and computes polynomial approximations on each of the subdomains. In this case we

store the splitpoints as well as all the polynomial coefficients. Therefore, it is better

to use these property-based reduction algorithms than domain splitting for simple

functions. However, these algorithms depend on the function to be implemented.

The challenging point here is in construction of Metalibm: we tried to create a tool

that does everything automatically without knowledge of the function it is trying

to generate. The solution here is to detect automatically algebraic properties that

will define the corresponding argument reduction scheme. Here is a list of currently

detectable properties:

• exponential functions f(x+ y) = f(x)f(y);

• periodic f(x+ C) = f(x);

• logarithmic f(x) + f(y) = f(xy);
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• sinh-like functions family f(x) = βx − β−x;

• symmetric (both even and odd) f(x) = f(−x); f(x) = −f(x).

Other properties can be useful too and their detection may be easily added to Met-

alibm. The following examples of properties detection give an idea how this can be

done automatically.

Exponential Function Detection

To exploit a property f(x+y) = f(x)f(y) we first choose two distinct random points

ξ and η in [a, b], and the tool checks then if there exists |ε| < ε̄ such that f(ξ + η) =

f(ξ)f(η)(1 + ε). If not, the property is not true. Then we make a hypothesis that

the function f(x) to be implemented is f(x) = βx, with an unknown base β. The

generator knows neither the function, nor the base β. Applying logarithm to the

hypothesis equation allows us to find the base. Therefore,

β = exp

(
ln(f(ξ))

ξ

)

for some random ξ ∈ [a, b]. Only in this case it checks that the property is true up

to the required accuracy, by computing

ε̃ =

∥∥∥∥
βx

f(x)
− 1

∥∥∥∥
[a,b]

∞

and checking if ε̃ ≤ ε̄.

If the investigated function is exponential indeed, computation of this infinite

norm is problematic. The function g(x) = βx − f(x) will be wobbling around zero

staying in the band (−ε̄; ε̄). It is not the exact zero, as the computations are in FP

arithmetic. We accept hypothesis about f if the functions g + 2ε̄ and g − 2ε̄ do not

have zeros and stay in bands [ε̄, 3ε̄] and [−3ε̄,−ε̄] respectively.

Periodical Function Detection

The function f is called periodical with a period C if for the least constant C

there holds f(x + C) = f(x). The challenge for Metalibm is to find this period

automatically.

Detection of periodical function requires more function evaluations in comparison

with exponential detection. We start with a simple test: a function should have at

least two local extrema to be periodic. If it is the case we choose the smallest period

C from zeros of expression f(ξ + C) − f(ξ) for some random ξ ∈ [a, b]. It is done

in Metalibm with numerical zero search for expression f(ξ + C) − f(ξ) = 0. Final
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decision to admit that the function was periodic is done with the computation of

error ∥∥∥∥
f(x+ C)

f(x)
− 1

∥∥∥∥
[a,b]

∞
≤ ε̄.

The computation is done with the previously described technique.

Sinh-like family of functions

We have seen how to detect exponential functions family. Another interesting ex-

ample to detect and to generate is the family of functions f(x) = βx − β−x. When

β = e, f(x) = 2 sinh(x). This is a composite function and its domain (full domain

in mathematical sense) can be divided into five subdomains where the function can

be implemented in different ways. It cannot be implemented as a subtraction of two

exponentials around zero because of cancellations. For large (as well as for small)

arguments one of the addends gets too small, so depending on the desired final ac-

curacy, there are intervals, where only one exponential function should be returned.

This reduces execution time, while we evaluate one function instead of evaluating

two of them and performing subtraction.

The described family of functions is detected in the same way as exponentials, the

base β can be determined with a numerical search for zero of the following function

g(x) = f(x)− βx + β−x.

The admission of hypothesis happens as in previous cases if the function g(x)

stays small and bounded by (−ε̄, ε̄).
Argument reduction is performed as follows. Suppose here |β| > 1, then for values

x ≥ −0.5 logβ(ε̄/3), f(x) = βx. For x < 0.5 logβ(ε̄), f(x) = −β−x. For the case with

|β| < 1, subdomains can be defined in the similar way. The rest of the domain has

to be divided into three more intervals: in the case of cancellations around zero, we

approximate the expression βx − β−x by polynomial, and in two other symmetrical

parts of the interval we may compute directly βx − β−x. So, in order to implement

function f(x) = βx − β−x, Metalibm has to perform two recursive calls to generate

βx and β−x, build an approximation polynomial and put all the generated parts

together.

2.2.4 Domain Splitting and Approximation

Once algebraic property is detected an appropriate argument reduction is applied.

However, it may happen that after the first level of code generation argument still

needs to be reduced, for instance for symmetric functions. For some functions there

is no efficient argument reduction procedures. Thus, having constraint on maximum

allowable polynomial degree, the only way to reduce domain is to split it into several

parts. The evaluation scheme should be simple and deterministic, so the subdomains
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should not overlap. The need of splitting is checked on the second level of code

generation (Figure 2.3) and we detail later how.

The problem statement for splitting procedure may be formulated as follow-

ing: having a function f , an initial domain [a, b] and the constraint on approxima-

tion polynomial degree dmax, split the initial domain into non-overlapping intervals

I0, I1, . . . , IN so that on each of them we can approximate our function by a polyno-

mial of low degree d ≤ dmax. We also take a lower bound for the subdomain length

wmin, this parameter is added to the function flavor specification.

Splitting may be uniform, hierarchical [58] or arbitrary [53]. Uniform splitting

is relatively easy: having some large number N , we split the domain [a, b] into N

equal subdomains. This constant N may be too large if the function had in some

region derivatives or high magnitude. For these large values of N we get a lot of

subdomains. For regions where function derivative does not change a lot, uniform

splitting produces too many subdomains with approximation polynomials of low

degree. Thus, we may have a headroom between the actual polynomial degree and

dmax. Subdomains with low-degree polynomials might be merged together to increase

the degree and therefore to save time and memory on the approximation.

The unique constant N cannot be used for all the functions and their flavors, it is

inefficient. Different functions and even different flavors of the same function require

different quantity of subdomains. Thus, this N should depend on the flavor to be

implemented. Checking several splittings and merges of subdomains to determine

the best N for uniform splitting may be expensive.

The hierarchical approach is more adapted for function behavior and should be

easily implementable as lengths of subdomains are powers of two. Each time there

is a need to split the domain, it is split twice, so the subdomains form a binary

tree. Polynomial degrees are bounded with the parameter dmax, so it is quite natural

to approximate our function on each of the subdomains by a polynomial of this

maximal allowable degree. This means that the evaluation scheme would be the

same for each polynomial, and the quantity of the subdomains is minimal, therefore

there are memory savings. The main idea of hierarchical splitting is to compute

polynomial approximation of dmax on some domain until the approximation error

gets less than the required error ε̄. If the current error is larger than the required

one, domain is split into two equal subdomains. In this way we get easy computable

subdomains representable by the powers of two.

We propose a new algorithm to compute a non-uniform splitting: we split the

domain only if it is impossible to approximate the function with a polynomial of

maximum degree dmax. We exploit approximation theory results for this: we may

check whether some degree d is enough to approximate function f on some domain

with an error not larger then ε̄. This is slightly different of the classical approximation

problem that may be formulated as following: having function f on domain [a, b]

and degree d compute the approximation polynomial and its accuracy ε.
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Figure 2.4: Illustration of de La Vallée-Poussin theorem. Domain has to be split
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Figure 2.5: Illustration of de La Vallée-Poussin theorem. No splitting needed

The Base for a New Splitting Algorithm

The theorem of de la Vallée-Poussin mentioned in Section 2.1.2 is a base for our

algorithm that decides if domain splitting is needed. We start with a polynomial p

computed on Chebyshev nodes. Then we find minimal and maximal values for the

expression |f(xi) − p(xi)|, where the points xi are Chebyshev nodes. These values

are the bounds from Theorem 2.3. When the desired accuracy ε̄ is less than the

found minimum, the degree d of this polynomial p is not sufficient, therefore domain

has to be split. This is illustrated on Figure 2.4. Figure 2.5 shows an example when

no splitting is needed: the bounds for error of polynomial approximation are smaller

than the target error. When the specified accuracy is inside the bounds for polyno-

mial approximation obtained from de la Vallée-Poussin theorem like in Figure 2.6,

it is not clear whether the split is needed. The theorem does not give a value for

the optimal error, but only its bounds. Therefore, we do not have a precise value

for the optimal error to compare it with the target error. In this case a few Remez

iterations are needed. The pseudocode for the described technique may be found

on Algorithm 1.
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Figure 2.6: Illustration of de La Vallée-Poussin theorem. Remez iterations needed

1 Procedure checkIfSufficientDegree(f , I, dmax, ε):

Input : function f , domain I = [a; b], bounds for degree dmax, and accuracy ε

Output: true in the case of success, false in the case of fail

2 X ← computeChebyshevNodes(I, dmax);

3 p← computeApproximationOnChebyshevNodes(f , X, dmax);

4 m← minxi∈X |f(xi)− p(xi)| ;
5 M ← maxxi∈X |f(xi)− p(xi)| ;
6 if ε ≥M then result = true;

7 if ε ≤ m then result = false;

8 if ε > m and ε < M then

9 p←Remez(f, I, dmax, ε);

10 δ ← supnorm(f − p, I);

11 result← δ ≤ ε ;

12 end

13 return result ;

Algorithm 1: Procedure to check approximation polynomial degree

Bisection Splitting

We take the problem statement for domain splitting procedure (see beginning of Sec-

tion 2.2.4) and add one more condition. We want to split in such a way that cor-

responding polynomial degrees on each subdomain are as close to dmax as possible,

and the difference between polynomial degrees on adjacent intervals is as small as

possible.

As we have a limit on polynomial degree, it is a waste to use polynomials of

degrees much lower than the given limit dmax: we get too many subdomains and use

memory to save too many of polynomial coefficients, while several subdomains could

be merged.

For instance, on Figure 2.7 there are corresponding polynomial degrees for naive
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Figure 2.7: Polynomial degrees for uniform split for asin function on domain [0; 0.85]

1 Procedure computeBisectionSplitting(f , I, d, ε):

Input : function f , domain I = [a; b], max. degree d, target accuracy ε

Output: list � of points in I where domain needs to be split

2 if checkIfSufficientDegree(f , I, d, ε) then return � = [ ];

3 m ← b;

4 while not checkIfSufficientDegree(f , [a;m], d, ε) do m ← (a+m)/2 ;

5 J ← [m; b];

6 � ←prepend(m, computeOptimizedSplitting(f , J , d, ε));

7 return �;

Algorithm 2: Pseudocode for bisection splitting

uniform splitting: for asin function with dmax = 8 we split the domain [0; 0.85] into 50

equal subdomains. Requiring small differences between polynomial degrees on adja-

cent intervals implies the use of the same evaluation scheme for all the subdomains:

we are going to use polynomials of the same (almost) degree.

So, we start checking whether the degree dmax is sufficient to approximate our

function f on [a, b] with error bounded by ε̄. If yes, no split is needed, otherwise, we

divide the whole domain into two equal subdomains and continue recursive calls of

checkIfSufficientDegree to the left subdomain. This is a classical application of

bisection, and the procedure returns a list of splitpoints. Pseudocode for bisection

splitting is in Algorithm 2.

For the same asin example bisection splits the domain into 23 subdomains and

the degrees diagram is on Figure 2.8. The quantity of subdomains is reduced in

comparison with uniform splitting and the diagram of the corresponding degrees

gets more uniform. For this example degrees on the adjacent subdomains differ

maximum by one. However, adjacent degrees are not too unified: there are many of

them less than the bound dmax. Therefore, if we slightly change the borders of our

subdomains, degrees attain their bound dmax and we might get even less subdomains.



2.2. Code Generation for Mathematical Functions 45

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9
degrees

Figure 2.8: Polynomial degrees for bisection split for asin function on [0; 0.85]
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Figure 2.9: Polynomial degrees for improved bisection splitting for asin on [0; 0.85]

Improvement of Bisection Splitting

Bisection produces less intervals than the uniform linear approach, but it is still not

optimal: some intervals may be merged together to reduce the headroom between

dmax and actual polynomial degree. The improved version of splitting is based on the

bisection, but then, as soon as we find a suitable interval on the left, we try to move

its right border by some value δ as it is shown on Algorithm 3. Thus, the diagram of

degrees gets more uniformed, we get less subdomains. However, correlation between

the splitpoints vanishes: this splitting may be called “arbitrary”. This means that

the only way to implement the reconstruction is the execution of if-else statements.

As it is an improvement of bisection, the algorithm contains two procedures:

bisection and enlarging. As soon as we find a leftmost suitable interval, we try to

move its right border. Then this moved right border is added to a list of splitpoints.

The value δ determines how far we try to move the right border. In the while loop

(line 3 of Algorithm 4), we have a constraint that this value δ has to stay larger

than some constant δ̄. This is a heuristic constant and its currently used value is
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δ̄ = wmin/2. We leave for the future work the search for the best constant δ̄ as well

as the initial value of δ (in line 2 of Algorithm 4).

We admitted intervals from left to right, so we may call the described scheme

left-to-right approach. The same idea holds for splitting from right to the left: with

bisection we find the rightmost suitable interval and then we move down its lower

border. The weak point of our algorithm is that there is no control of the polynomial

degree for the last subdomain (the rightmost for left-to-right splitting or the leftmost

for right-to-left splitting). Theoretically there is nothing to prevent obtaining very

small last subdomain with a polynomial of low degree (one or two). During tests

this situation was not observed. However, it should be taken into account. The

two approaches may be combined to get a set of tolerable intervals containing the

splitpoints. This is left for future work.

1 Procedure computeOptimizedSplitting(f , I, d, ε):

Input : function f , domain I = [a; b], max. degree d, target accuracy ε

Output: list ℓ of points in I where domain needs to be split

2 if checkIfSufficientDegree(f , I, d, ε) then return ℓ = [ ];

3 m← b;

4 while not checkIfSufficientDegree(f , [a;m], d, ε) do m← (a+m)/2 ;

5 s←enlargeDomain(f , [a;m], [m; b], ε, d) ;

6 ℓ←prepend(s, computeOptimizedSplitting(f , [s; b], d, ε));

7 return ℓ;

Algorithm 3: Pseudocode for our improved bisection splitting

1 Procedure enlargeDomain(f , I, J , ε, d):

Input : function f , domain I = [a; b], remaining domain J = [b; c], ε, d

Output: optimal splitpoint location s ∈ J

2 δ ← (b− a)/3;

3 while δ > δ, δ a constant, and b < c do

4 s← b+ δ;

5 while checkIfSufficientDegree(f , [a; s], d, ε) do s← s+ δ ;

6 s← b− δ;

7 δ ← δ/2;

8 end

9 return s;

Algorithm 4: Procedure of enlarging of the suitable subdomain

For the asin example improved bisection method produces 21 subdomains, Fig-

ure 2.9 shows the corresponding polynomial degrees diagram. The degrees on 20 of

the intervals are equal to 8, and only on the last small interval the obtained degree

is 6. Some other examples that compare bisection with our improved bisection can

be found in Table 2.2.
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name function f target accuracy domain I degree bound

f1 asin ε̄ = 2−52 I = [0, 0.75] dmax = 8

f2 asin ε̄ = 2−45 I = [−0.75, 0.75] dmax = 8

f3 erf ε̄ = 2−51 I = [−0.75, 0.75] dmax = 9

f4 erf ε̄ = 2−45 I = [−0.75, 0.75] dmax = 7

f5 erf ε̄ = 2−43 I = [−0.75, 0.75] dmax = 6

Table 2.1: Flavor specifications

measure f1 f2 f3 f4 f5
subdomains in bisection 24 15 9 12 39

subdomains in improved bisection 18 10 5 8 25

subdomains saved 25% 30% 44% 30% 36%

coefficients saved 42 31 27 24 79

memory saved (bytes) 336 248 216 192 632

Table 2.2: Table of measurements for several function flavors

When the domains are reduced, Metalibm generates code to evaluate Remez-

like approximation polynomial for a small domain and launches Gappa proof for

approximation error.

2.2.5 Reconstruction

The goal for splitting and argument reduction is to reduce the degree of polynomial

approximation. Polynomial coefficients are computed on a small domain. Recon-

struction procedure aims to give the values of the function f on a large initial domain

through the evaluation of polynomial(s) on a small domain. When the argument re-

duction was done only with property-based algorithms (for instance for exponential)

reconstruction is the process of applying the backward transition from p to f . After

splitting we get the list of splitpoints and the subdomains I0, . . . , IN . Thus, the

transition from the evaluation of polynomial to function values lies in determination

of the subdomain index k that contains the current input x ∈ Ik. This is sometimes

called domain decomposition.

While for property-based reduction reconstruction is simple, this section covers

reconstruction for implementations with piecewise approximations. Decomposition

process depends on the way of domain splitting. For uniform splitting it is straight-

forward. We split the domain [a, b] into N parts, so the splitpoints may be rep-

resented as {a + ih}Ni=0, where h = (b − a)/N . For a given input x ∈ [a, b], the

corresponding subdomain and therefore the index of approximation polynomial may

be determined as ⌊x−a
h
⌋. For arbitrary splittings, however, this is commonly done

with the execution of if-else statements (see Listing 2.1).
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Since the prevalence of SIMD instructions on modern processors, the code gen-

eration of vectorizable implementations is of big interest. A usual way to vectorize

an algorithm is to get rid of branching. For exponential and logarithmic functions

vectorized loop calls reduce the computation time by 1.5-2 times. With our arbi-

trary splitting we use if-else statements to determine the corresponding subdomain

In that contains the input value x and then with this index n we get the right

polynomial coefficients. We started research in generating vectorizable implementa-

tions with construction of a mapping function M(x) that allows to perform domain

decomposition without branching.

/∗ compute i so that a[i] < x < a[i+1] ∗/
i=31;

if (x < arctan_table[i][A].d) i−= 16;

else i+=16;

if (x < arctan_table[i][A].d) i−= 8;

else i+= 8;

if (x < arctan_table[i][A].d) i−= 4;

else i+= 4;

if (x < arctan_table[i][A].d) i−= 2;

else i+= 2;

if (x < arctan_table[i][A].d) i−= 1;

else i+= 1;

if (x < arctan_table[i][A].d) i−= 1;

xmBihi = x−arctan_table[i][B].d;

xmBilo = 0.0;

Listing 2.1: Code sample for arctan function from crlibm library

Polynomial-based Reconstruction Technique

We propose to use a polynomial to find a mapping function M(x). Having a set of

subdomains {Ik}N−1
k=0 or of splitpoints {ak}Nk=0 and argument x ∈ [a, b] the problem

consists in obtaining the index k of a corresponding subdomain x ∈ [ak, ak+1]. Thus,

our mapping function M(x) should return the index of the corresponding subdomain

for each input value from [a, b]:

M(x) = k, x ∈ Ik, k = 0, 1, . . . , N.

The function M(x) is a piecewise-constant function as it is shown on Figure 2.10.

We propose to find a polynomial p(x) on [a, b] such that

M(x) = ⌊p(x)⌋, x ∈ [a, b].

An example of such polynomial is shown on Figure 2.11. It may not be a strictly

monotonic function, it might have zeros in its derivative. The main point is that
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Figure 2.10: Piecewise-constant mapping function M(x)
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Figure 2.11: Mapping function and a corresponding polynomial p(x)

⌊p(x)⌋ returns the step function M . Thus, the suitable polynomial p have to verify

the following conditions:

p(x) ∈ [k, k + 1), x ∈ [ak, ak+1]. (2.7)

We may compute p as an interpolation polynomial that passes through the ab-

scissas {ak} and ordinates {k}. However, interpolation techniques guarantee only

that p(ak) = k by construction of the polynomial, thus the condition (2.7) has to be

checked a posteriori. This can be done with the evaluation of this polynomial p(x)

over the interval [ak, ak+1]. There is a certain ambiguity for the values of mapping

function in the splitpoints {ak}. In splitpoints the two polynomials corresponding

to the adjacent subdomains give the same value p(ak) = k, and we may admit

M(ak) = k− 1 or M(ak) = k. Only in the “corner” splitpoints a0 and aN there is no

ambiguity for the values of mapping function.

Interpolation Polynomial Let us remember the classical interpolation prob-

lem [5]. Having a set of points {xi, yi}Ni=0 we are looking for a degree-N polynomial
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p = c0 + c1x+ . . .+ cNx
N such that p(xi) = yi for all integer i ∈ [0, N ]. Mathemati-

cally, this problem is equivalent to the solution of a system of linear equations with

Vandermonde’s matrix:



1 x0 · · · xN
1

1 x1 · · · xN
1

...
...

. . .
...

1 xN · · · xN
N







c0
c1
...

cN


 =




y0
y1
...

yN


 (2.8)

Solving this system of linear algebraic equations explicitly is one of the ways to

find interpolation polynomial. As it may have huge conditional number, we use

interpolation through divided differences in Metalibm.

Taking into Account FP Roundings We take the couples {ak, k}Nk=0 as interpo-

lation points. The polynomial p has FP coefficients, therefore conditions p(ak) = k

are no longer satisfied because of roundings. Taking into account the ambiguity of

the mapping function in the splitpoints, conditions (2.7) have to be modified a little.

As the set of FP numbers is discrete, for a given FP number a it is possible to find its

predecessor pred(a) and successor succ(a). This means that the admissible ranges

for polynomial values from (2.7) should be narrowed to the following:

p(x) ∈ [k, k + 1), where x ∈ [succ(ak), pred(ak+1)] ⊂ Ik, 0 ≤ k ≤ N − 1. (2.9)

The conditions for the splitpoints should be added then.

p(x) ∈ [k − 1, k + 1), where x = ak, k = 1, . . . , N − 1 (2.10)

For k = 0 or k = N , conditions for p(ak) do not change: it should stay in p(ak) ∈
[k − 1, k). The modified conditions for the polynomial ranges are shown on Figure

2.12 with filled rectangles.

Choice of Interpolation Points Interpolation points may be chosen in several

different ways out of the set of splitpoints {ak}Nk=0. We compute four different polyno-

mials. First, we may use “inner” polynomial with N − 1 points {ak}N−1
k=1 , so without

taking into account the first and the last splitpoints that are the bounds of the

implementation domain a0 = a, aN = b. Then we can compute “left” and “right”

polynomial with N points {ak}N−1
k=0 or {ak}Nk=1. And the last variant here is to com-

pute a polynomial of degree N using all the N + 1 splitpoints. When a posteriori

conditions are not verified for all the four polynomials (2.9)-(2.10), it is a symptom

of failure. We may add some interpolation points and check polynomials computed

for the enlarged set of points. However, as the addition of new interpolation points

raises the degree of the polynomial, according to Runge’s phenomenon it will oscillate

in the ends [5], which means that the conditions (2.9)-(2.10) are rarely verified. We
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Figure 2.12: Modified floating-point conditions for polynomial.
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Figure 2.13: Example for asin(x) flavor and its polynomial for mapping function

(left)

also add a parameter to limit polynomial degree for this mapping function. When

this mapping function is not needed we may initialize it with a small value (one for

example) to prevent Metalibm of unnecessary computations.

Examples Here we show several examples of successful computation of polynomial

for mapping function M . The function to be generated is asin(x) on [−0.75, 0] with

required accuracy ε̄ ≤ 2−48, limit for approximation polynomial degree is dmax = 10.

The conditions (2.9)-(2.10) are verified for the “left polynomial” of degree six. Plots

of generated function and of the polynomial for mapping are on Figure 2.13.

Another successful example may be computed for generation of asin(x) on [−0.8, 0]

with required accuracy ε̄ ≤ 2−45 and for approximation polynomial degree not larger

than dmax = 10. For this example the “inner” interpolation is used, so degree of

polynomial for mapping function is four (see Figure 2.14).

For error function erf(x) on the domain [−0.9, 0] with target accuracy 2−45 and
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Figure 2.14: Example for asin(x) flavor and its polynomial for mapping function

(inner)
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Figure 2.15: Example for erf(x) flavor and its polynomial for mapping function

(inner)

approximating polynomial of degree not larger then 10, “inner” interpolation is used.

After symmetry detection, the domain was reduced to [−0.9, 0] and then it was split

into three subdomains. The polynomial for mapping function p is a linear function

shown on Figure 2.15.

Conditions (2.9)-(2.10) are essential for our polynomial and as we are checking

them only a posteriori, there is no guarantee that the polynomial for mapping func-

tion exists for arbitrary splitting. Contrariwise, our method finds it only for few

splittings.

For example, for atan flavor on [0, π/2] with accuracy bounded by ε̄ ≤ 2−40 with

maximum degree of the approximation polynomial dmax = 8 it is not possible to

find a polynomial mapping function for reconstruction. The domain is split into

seven subdomains; even the polynomial passing through all these splitpoints does

not verify the conditions (2.9)-(2.10). It is illustrated on Figure 2.16, we see that

it crosses two lines in the first subdomain, in the second subdomain it crosses the

lower border and then decreases. Metalibm tried to add an interpolation point and

to recompute the polynomial. It added the point from the first subdomain with the
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Figure 2.16: Example for atan(x) flavor. Our method fails to find a mapping func-

tion.

largest derivative. However, it did not help: polynomial p slightly exceeds the line

y = 1 in the first subdomain. It cannot be seen on a plot as this extension is too

small.

Towards a priori Conditions The interpolation problem is formulated with the

system of linear algebraic equations (2.8). We solved it for splitpoints and integer

numbers that are indexes of the subdomains. The a posteriori conditions (2.9)-(2.10)

are about the admissible intervals for polynomial values. Thus, we can pass from a

posteriori check to a priori considering intervals instead of points: on abscissas we

take subdomains and intervals [k, pred(k+1)] on ordinates. Then, the task is almost

the same: system of linear equations with unknown coefficients c0, . . . , cN . Instead

of the numbers xi, yi we operate intervals in system (2.11).




1 x0 · · · xN
0

1 x1 · · · xN
1

...
...

. . .
...

1 xN · · · xN
N







c0
c1
...

cN


 =




y0

y1

...

yN


 (2.11)

Depending on predicates ∀ and ∃ there are different tasks to solve with one system

of linear interval equations [76]. The two problems should be considered in our case:

search for tolerance or united solution set.

Definition 2.1 (Tolerance solution set). Let be Xc = y an interval linear system,

then the following set is called its tolerance solution.

Ξtol =
{
c ∈ R

N+1 | ∀X ∈ X, ∀y ∈ y, Xc = y
}
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Definition 2.2 (United solution set). Let be Xc = y an interval linear system, then

the following set is called its united solution.

Ξuni =
{
c ∈ R

N+1 | ∃X ∈ X, ∃y ∈ y, Xc = y
}

In classical approach of interval analysis solution vector has interval elements.

By the sense of problem statement, solution vector contains the coefficients of the

polynomial for our mapping function M . Therefore, we are not interested in search of

all possible values for its coefficients, we need only one vector for its values c0, . . . cN .

The tolerance solution set of the system (2.11) may be found in polynomial time,

but it can be empty. In this case the united solution set may be found, but this

problem is NP-hard [75]. Anyway, we have connected coefficients in the system

matrix, and the existing methods do not take into account this type of connection.

We leave this transition to a priori conditions for the future work.

Connection between Domain Splitting and Reconstruction One can notice

that the problems of computing polynomial for this mapping function M come from

the fact of arbitrary splitting. We tried to split domain optimally: to maximize

the polynomial degree on each of the subdomains and to minimize the quantity of

these subdomains. This creates arbitrary splitting and makes polynomial-based re-

construction difficult. This type of reconstruction can be easily made for uniform

splitting (a linear function) that creates too many subdomains. Thus, there is a

certain connection between splitting and reconstruction. When we cannot find a

suitable polynomial for vectorizable reconstruction, we have to return to splitting

and recompute it in other way. There is no information on how many of these

returns are needed to compute at the same time a quasi-optimal splitting and a

polynomial for reconstruction. Interval arithmetic approach could be used here too:

instead of the fixed splitpoints we may compute some intervals that contain these

splitpoint. Then, moving the splitpoints over such intervals may give us a suitable

combination of splitting and reconstruction. However, this does not give strong guar-

antees of existence of polynomial for reconstruction. Establishing of this connection

between splitting and polynomial reconstruction is left for future work on Metal-

ibm. A new parameter might be added too: if users are interested in vectorizable

implementations, there is probably no need to find an optimal split. And if there is

no need in vectorization, the split should be computed optimally and this complex

reconstruction step should be avoided.

Conclusion

The work on generation of vectorizable implementations has started. Our approach

of replacing branches by polynomials was already published in [52]. As it does

not give any guarantee of successful computation of mapping function, it has to be
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improved. There are two main strategies for that. The first one is establishing of the

connection between domain splitting and reconstruction procedures. And the second

one is to use interval arithmetic in reconstruction and even in splitting. Generation

of vectorizable implementations is in priority for Metalibm, so work on improvement

of described method will be started in the nearest future.

2.2.6 Several examples of code generation with Metalibm

In this section we illustrate generation process on several examples. These examples

illustrate how to fill the rectangle “implementation” on Figure 2.3. Besides producing

the implementations Metalibm also runs the generated code and plots the current

function flavor as well as the relative error of the implementation.

1. Approximation by one polynomial.

We try to generate exp(x) on a small domain [0, 0.3] with accuracy bounded

by ε̄ = 2−53 and polynomial degree not larger than 9. Metalibm detects that

one polynomial will be enough to approximate this function with the specified

accuracy on the specified domain. Thus, generated code only consists of poly-

nomial coefficients and polynomial evaluation function. This function flavor is

about 1.5 times faster than the standard exp function from the glibc libm.

2. Properties-based reduction and approximation.

We enlarge domain from the previous example to [0, 5] and set t = 4 for ta-

ble (the table size is 2t). The family of exponential functions is detected and

domain is reduced to [− log(2)/32, log(2)/32]. Then Metalibm passes to ap-

proximation level. We find in the produced code constants, table, polynomial

coefficients, routine to reduce domain, to evaluate the polynomial and to re-

construct the function. The obtained code for this function flavor executes in

10 to 60 machine cycles, with most inputs requiring less than 25 cycles. For

comparison, libm code requires 15 to 35 cycles.

3. Properties-based reduction, domain splitting and approximation.

For some function flavors all the three levels of code generation are used. One

of the examples is sin(x) on [−10, 10] with accuracy 2−40 approximated by

polynomials of degree not larger than 8. Metalibm detects first periodicity

and reduces domain to [−π, π]. It detects also the need of triple-double arith-

metic [56]. Then it detects odd symmetry and reduces domain even twice more:

[−π, 0]. Afterwards domain splitting procedure starts. This twice reduced do-

main is split then into 9 smaller subdomains. Our reduced domain is too big

for the sin implementation. There are specific property-based argument reduc-

tion schemes for sin that allow to reduce the range even more [36, 69]. Thus,

while the libm sin is executed within 15 - 40 cycles, our implementation needs

more that 1000 cycles.
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4. Composite function example.

We generate code for tan(erf(x)) on [−2, 2] with polynomial maximum degree

8 and accuracy ε̄ = 2−45. We ask Metalibm not to perform function decom-

position, therefore the approximation will be computed for the whole function

tan(erf). Metalibm detects symmetry and reduces domain to [−2, 0]. Then it

splits the domain into 16 small subdomains. The corresponding polynomial

degrees are almost all equal to eight, except the last one which is five. The

libm code is executed within 400-500 cycles for the most cases. Running our

code takes between 600 and 700 cycles. In terms of accuracy codes give almost

the same result.

5. Sigmoid function. We try to generate code for sigmoid function f(x) = 1
1+e−x

on the domain I = [−2, 2] with 52 correct bits. No algebraic property is

detected, so the generation is done on the second level. The generated code and

the libm’s code are both of comparable accuracy and performance: execution

takes between 25 and 250 cycles with most cases done within 50 cycles. The

polynomial degree for the generation is bounded by dmax = 9, the domain was

split into 22 subintervals.

Metalibm performs three main steps of function implementation automatically.

However, there is the very first step that is not treated by Metalibm for the moment:

filtering of special cases. For some function flavors (functions on small domain for

instance) it is not needed, therefore the generated code may be used directly. For

a complete replacement of implementations from standard libms manual filtering of

special cases needs to be added. Automatizing this step is left for future work.

2.2.7 Conclusion and Future Work

In previous sections we discussed the problem of code generation for mathematical

function implementations. It was shown that currently available libms should pro-

vide users with more choices. As the quantity of all these choices is tremendous the

code generator of parametrized function implementations is of big interest. Metal-

ibm generates implementation for mathematical functions automatically. Moreover,

functions to be generated are parametrized (specific domain, accuracy, etc). Metal-

ibm is a black-box generator: we can pass an arbitrary function as a parameter, there

is no fixed dictionary of available functions to generate. The only requirement for

the function to be generated is that it should be continuous with its few derivatives.

Accuracy of the produced code is guaranteed by construction.

Metalibm has evolved a lot since the first studies on automatization of func-

tion implementations. It detects automatically the needed precision for all inner

computations to achieve the specified accuracy. It detects algebraic properties to

use specific range reduction procedure, it decides if the further domain splitting is



2.2. Code Generation for Mathematical Functions 57

needed. Domain splitting was improved: the generator tries to split domain opti-

mally reducing the headroom between the given limit on the degree of approximation

polynomial dmax and actual degree on the subdomain. This causes memory saves

on storing the splitpoints and polynomial coefficients. The work on producing vec-

torizable implementations has started. It is based on replacement of branching by

polynomials. Our method does not guarantee the possibility of vectorizable code

generation but there are several ways to change it and improve the method. The

two possible ways to improve our vectorization procedure are

1. transition from a posteriori condition check to a priori conditions with the use

of interval arithmetic

2. establishing connection between splitting procedure and reconstruction.

Both of them are left for future work. Besides that, there is still no automatic

filtering of special cases (infinities, large inputs producing overflows, etc.) that should

be added soon. There may be more specific argument reduction procedures. The

link between splitting and reconstruction has to be found in the nearest future. The

supported parameter list can be enlarged too.

We mentioned that there were two use-cases for Metalibm. Our product is a fully

automated generator. However, there exists analogue of Metalibm by N. Brunie and

F. de Dinechin. It was developed as an assistant tool for libm programmers. However,

it is hard to separate the two approaches distinctly. Based on the same software,

 3  4  5  6  7  8  9  10  11  12  2  4
 6  8  10 12

 14 16
 0

 0.2
 0.4
 0.6
 0.8

 1

time

precision=30

table
degree

time

 0
 0.2
 0.4
 0.6
 0.8
 1

 3  4  5  6  7  8  9  10  11  12  2  4
 6  8  10 12

 14 16
 0

 0.2
 0.4
 0.6
 0.8

 1

time

precision=49

table
degree

time

 0
 0.2
 0.4
 0.6
 0.8
 1

 3  4  5  6  7  8  9  10  11  12  2  4
 6  8  10 12

 14 16
 0

 0.2
 0.4
 0.6
 0.8

 1

time

precision=55

table
degree

time

 0
 0.2
 0.4
 0.6
 0.8
 1

 3  4  5  6  7  8  9  10  11  12  2  4
 6  8  10 12

 14 16
 0

 0.2
 0.4
 0.6
 0.8

 1

time

precision=63

table
degree

time

 0
 0.2
 0.4
 0.6
 0.8
 1

Figure 2.17: Performance measures for exp flavors
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Figure 2.18: Performance measures for log flavors

they contain the same basic bricks, for instance, generator of approximation schemes

or of C11 functions. The ambitious goal of the whole ANR project is to integrate

the two approaches. Some algorithms from Metalibm can be reused by other code

generators. For example, semi-automatic generator of special functions needs to split

implementation domains in the same manner as Metalibm [57].

The possibility of automatic generation of different flavors gives an additional

bonus. Various flavors of one functions may be generated and measured in perfor-

mance. Then the generated implementation with the best combination of parameters

and performance should be used. For example, on Figure 2.17 there are four plots of

performance relatively to the demanded accuracy, maximum degree and table size.

Time here is a relative value, it was scaled to fit into (0, 1]. On Figure 2.18 there is

the same example for logarighm function. Another bonus of Metalibm is generation

of composite functions. We may use the only one approximation for a composite

function. In standard libms there are several function calls performed in this case.



CHAPTER 3

Mixed-Radix Arithmetic and

Arbitrary Precision Base Conversions

A mathematician is a machine for turning

coffee into theorems.

Alfréd Rényi1

This section is devoted to mixed-radix arithmetic, so to the research on operations

that mix the inputs and the output of different radices. For instance, addition of

binary and decimal FP number with the result in binary. We present in Section 3.2

an atomic operation for radix conversion [55] with integer computations. Then we

provide the novel algorithm to convert a character sequence representing decimal FP

number to its binary IEEE754 representation in Section 3.3. Conversion operation

will be reused in this algorithm. This is a re-entrant algorithm with precomputed

memory consumption. We finish the chapter with the worst cases search for mixed-

radix fused multiply-add or FMA(Section 3.4).

3.1 Preface to Mixed-Radix Arithmetic

IEEE754-1985 Standard defined and required only binary arithmetic. The first at-

tempt to standardize decimal arithmetic was done in 1987 with IEEE854 standard.

However, it was never implemented and it did not allow to mix radices within one

FP operation. The revision of the IEEE754 Standard added decimal FP formats and

operations in 2008. However, the worlds of decimal and binary arithmetic are not

supposed to be mixed by the Standard. On the junction of human and machine arith-

metic there are always decimal-binary and binary-decimal conversions [13, 37, 78].

1Alfréd Rényi (1921 - 1970) was a Hungarian mathematician who made contributions in com-

binatorics, graph theory, number theory but mostly in probability theory. This quotation is often

attributed incorrectly to Paul Erdős, but Erdős himself ascribed it to Rényi.

59
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Conversions are inevitable for financial applications too: the inputs are in decimal

and the computations may use some often-used constants stored in binary.

FP radix conversion (from binary to decimal and vice versa) is a widespread

operation, the simplest examples are the scanf and printf-like functions. It could

also exist as an operation for financial applications or as a precomputing step for

mixed-radix operations. The radix conversion is used in FP number conversion

operations, and also in scanf and printf operations. The current implementations of

scanf and printf are correct only for one rounding mode and allocate a lot of memory.

In this chapter we develop a unified atomic operation for the conversion, so all the

computations can be done in integer with the precomputed memory consumption.

As mixed-radix arithmetic almost does not exist for the moment and as we are

going to prove some theorems, we introduce the corresponding notations first. Ac-

cording to Def. 1.2, FP number may be represented as βEm where β is radix and

mantissa m is bounded by βp−1 ≤ m ≤ βp − 1. So, we denote binary FP numbers

of precision p2 as 2Em and decimals with decimal precision p10 as 10Fn. We call

binary arithmetic operation ⋄ a mixed-radix operation, when the operands x, y and

the result z are not all in the same radix:

z = x ⋄ y.

As ⋄ is a binary operation, it has eight variants depending on the radix. A ternary

operation such as FMA has three inputs, therefore sixteen different variants to im-

plement. As we cannot study such a great number of different cases one by one, we

have to find a unified way of handling them.

Mixed-radix operations may be considered as a generalization of the operations

defined in IEEE754-2008 Standard. Two variants for each mixed-radix operations

are already implemented. These are pure binary or pure decimal versions that do

not actually mix the radices. Both binary and decimal FP representations may be

unified to a mixed-radix one. Decimal mantissa n can be transformed into a binary

FP number 2Em of the form Def. 1.2. And the exponent part 10F can be factorized

as 5F · 2F . Thus, decimal FP number is representable in a form of

10Fn = 5F2F+Em.

Taking F = 0 we get a binary FP number. As we are going to deal with bulky

formulas, we take 2E5Fm as a mixed-radix notation with binary mantissa m bounded

by one binade 2p−1 ≤ m ≤ 2p − 1, E ∈ E, F ∈ F. The numerical values of p and

intervals E,F depend on the formats used and will be given later in this section.
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3.2 Radix Conversion

While radix conversion is a very common operation, it comes in different variants

that are mostly coded in ad-hoc way in existing code. However, radix conversion

always breaks down into two elementary steps: determining an exponent of the

output radix and computing a mantissa in the output radix. Section 3.2.1 gives an

overview of the 2-steps approach of the radix conversion, Section 3.2.2 contains the

algorithm for the exponent computation, Section 3.2.3 presents a novel approach of

raising 5 to an integer power used in the second step of the radix-conversion that

computes the mantissa. Section 3.2.4 contains accuracy bounds for the algorithm of

raising five to a large integer power, Section 3.2.5 describes some implementation

tricks and presents experimental results.

3.2.1 Overview of the Two-steps Algorithm

Conversion from a binary FP representation 2E ·m, where E is the binary exponent

and m is the mantissa, to a decimal representation 10F · n, requires two steps:

determination of the decimal exponent F and computation of the mantissa n. The

conversion back to binary is pretty similar except of an extra step that will be

explained later. Here and after consider normalized mantissas n and m: 10p10−1 ≤
n ≤ 10p10 − 1 and 2p2−1 ≤ m ≤ 2p2 − 1, where p10 and p2 are the decimal and binary

precisions respectively. We call the intervals [2p2−1; 2p2 − 1] and [10p10−1; 10p10 − 1] a

binade and a decade. The exponents F and E are bounded by some values depending

on the IEEE754-2008 format (see Table 3.1 for more details).

In order to enclose the converted decimal mantissa n into one decade, for a

certain output precision p10, according to Def. 1.6 the decimal exponent F has to be

computed as follows:

F =
⌊
log10(2

E ·m)
⌋
− p10 + 1. (3.1)

The most difficult thing here is the evaluation of the logarithm: as the function is

transcendental, the result is always an approximation and a function call to logarithm

evaluation may be expensive. We are going to present an algorithm that computes

format exponent range mantissa range

binary 32 [−172, 104] [223, 224 − 1]

binary 64 [−1126, 971] [252, 253 − 1]

binary 128 [−16606, 16270] [2112, 2113 − 1]

decimal 32 [−107, 90] [106, 107 − 1]

decimal 64 [−413, 369] [1015, 1016 − 1]

decimal 128 [−6209, 6111] [1033, 1034 − 1]

Table 3.1: Constraints on variables for radix conversion
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this exponent F (3.1) for a new-radix floating-point number only with a multiplica-

tion, binary shift, a precomputed constant and a look-up table (see Section 3.2.2).

According to Def. 1.2 and Def. 1.6 mantissa computation contains rounding, so the

following relation is fulfilled: 10F · n = 2E ·m · (1 + ε). We are going to consider a

value n∗ instead, such that 10F · n∗ = 2E ·m. Thus, we get the following expression

for the decimal mantissa:

n∗ = 2E−F5−Fm (3.2)

Multiplication by a power of two 2E−F may be performed with a simple binary shift.

Then, as m is small, multiplication by m is easy; therefore the binary-to-decimal

mantissa conversion reduces to compute the leading bits of 5−F which is explained

in Section 3.2.3.

We explain the algorithm on binary-to-decimal conversion. The same idea applies

to decimal-to-binary conversion, however it requires one more normalization step that

is explained later. For binary mantissa we get similarly to (3.2):

m∗ =
10F · n
2E

,

Thus, for decimal-to-binary conversion computation of the power 5F is required

instead of 5−F . The second step is about computing a power of five 5B. We are

going to consider natural exponents B even while the initial range for exponent

might contain negative values. If it is the case, 5B+B̄ should be computed within

our algorithm, where B̄ is chosen so that the range for the exponents B + B̄ gets

nonnegative. We store the leading bits of 5−B̄ as a constant and after computing

5B+B̄ with the proposed algorithm, we multiply the result by the constant.

3.2.2 Loop-Less Exponent Determination

The current implementations of the logarithm function are expensive and usually pro-

duce approximated values. However, some earlier conversion approaches computed

this approximation [37] by Taylor series or using iterations [14,78]. We explain how

to compute the exponent for the both conversion directions exactly neither with libm

function call nor any polynomial approximation.

After performing a transformation step based on properties of the logarithm, (3.1)

can be rewritten as following:

F = ⌊E log10(2) + ⌊log10(m)⌋+ {log10(m)}⌋ − p10 + 1, (3.3)

where with {x} = x − ⌊x⌋ we denote the fractional part of the number x. For

example, for x = 3.123, ⌊x⌋ = 3, {x} = 0.123.

As we assumed that the binary mantissa m is normalized in one binade 2p2−1 ≤
m < 2p2 , we can bound it by one decade too.
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For example, for binary32 format mantissa m takes values from [223, 224 − 1].

This binade contains 107. The “neighbor” powers of ten and our binade are ordered

as follows: 223 < 107 < 224 < 225 < 108. As we have a power of ten inside the

binade, additional scaling is needed: the considered FP number should be 2E−1 · 2m
instead of 2E ·m. Thus the new mantissa is 2m and takes values from the binade

[224, 225− 1] and therefore is bounded by a decade [107, 108− 1]. This is an example

with “additional scaling” which may be not needed for some other formats. Without

loss of generality we stay with the same notations 2E · m knowing that for some

formats variables E and m have to be re-assigned.

The inclusion of the mantissa in one decade means that ⌊log10(m)⌋ stays the same

for all values of m, we denote it with ⌊log10(m)⌋ = L. So, for the given format one

can precompute and store this value as a constant. Thus, it is possible to take the

integer number ⌊log10(m)⌋ out of the floor operation in the previous equation (3.3).

After representing the first summand E log10(2) as a sum of its integer and fractional

parts, we get the following expression for F:

F = ⌊⌊E log10(2)⌋+ {E log10(2)}+ {log10(m)}⌋+ L− p10 + 1.

We may take out of the floor another integer number ⌊E log 10(2)⌋, we discuss later

how to compute it. Thus, the final formula for the decimal exponent is

F = ⌊{E log10(2)}+ {log10(m)}⌋+ ⌊E log10(2)⌋+ L− p10 + 1. (3.4)

How to Compute F with Several Additions and a Table

In (3.4) inside the floor operation we have addition of the two fractional parts.

Each fractional part {·} is in [0, 1) by definition, therefore their sum is inside [0, 2).

Roughly speaking, in the expression for F we have F = ⌊r⌋+⌊E log10(2)⌋+L−p10+1

where r ∈ [0, 2). Therefore the result of the floor operation ⌊r⌋ may be denoted with

γ, where γ ∈ {0, 1}. So, finally we get the expression for F :

F = γ + ⌊E log10(2)⌋+ L− p10 + 1, γ ∈ {0, 1}.
This correction γ equals to 1 when the sum of two fractional parts from the previous

expression exceeds 1 or is equal to 1, or mathematically:

r = {E log10(2)}+ {log10(m)} ≥ 1.

This is the same as

E log10(2)− ⌊E log10(2)⌋+ log10(m)− ⌊log10(m)⌋ ≥ 1.

As logarithm is an increasing function the left part of this inequality is increasing too.

This means that we need only one threshold value m∗(E), such that ∀m ≥ m∗(E)

the correction γ = 1. As we know the range for the exponents E beforehand, we can

store these critical values in a table:

m∗(E) = 101−(E log10 2−⌊E log10 2⌋)+⌊log10(m)⌋. (3.5)
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input : E, m

1 F ← E · ⌊log10(2) · 2ω⌋; // multiplication by a constant

2 F ← ⌊F · 2−ω⌋; // binary right shift

3 F ← F + ⌊log10(m)⌋+ 1− p10; // addition of a constant

4 if m ≥ m∗(E) then

5 F ← F + 1;

6 end

Algorithm 5: The exponent computation in the conversion from binary to decimal

How to Compute ⌊E log10(2)⌋

There is a technique that allows to compute ⌊E log10(2)⌋ for E that takes values from

a bounded interval with a multiplication, binary shift and the use of a precomputed

constant [10]:

⌊E log10(2)⌋ =
⌊
E ⌊log10(2) · 2ω⌋ · 2−ω

⌋

for some ω ≥ ω∗

This is not trivial to prove mathematically, but as the range for E is bounded

the exhaustive search may be used to check it as well as to find this constant ω∗.

For FP formats ranges for E are always limited. Thus, we may find such suitable

ω with brute force. With this transformation we multiply a precomputed constant

⌊log10(2) · 2ω⌋ by E, and perform binary shift on ω bits.

Finally, putting everything together, the value of the decimal exponent can be

obtained as

F =
⌊
E ⌊log10(2) · 2ω⌋ · 2−ω

⌋
+ ⌊log10(m)⌋ − p10 + 1 + γ (3.6)

The pseudocode is provided on Algorithm 5.

Adaptation of the Algorithm for Reverse Conversion

Computation of the binary exponent in decimal-to-binary conversion is performed

in the same way with the similar reasoning. However,one additional remark has to

be clarified. We start with the similar formula

E = ⌊F log2(10) + ⌊log2(n)⌋+ {log2(n)}⌋ − p2 + 1

Here we have decimal mantissas n and we consider them bounded by one decade

10p10−1 ≤ n ≤ 10p10 − 1. Even the smallest decade [1, 10) contains three powers of

two: 2, 4, 8. As ⌊log2(10)⌋ = 3 it seems that we need three tables, but we may

always represent the decimal mantissa n as a binary FP number n = 2Êm̂ in some

precision κ ≥ ⌈log2(10p10 − 1)⌉. Then, for all the possible values m̂ the following

holds ⌊log2(m̂)⌋ = κ − 1. This representation can be made exact: we have to shift
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1 m̂← n ;

2 Ê ← 0;

3 while m̂ < 263 do

4 m̂← 2m̂ ;

5 Ê ← Ê − 1;

6 end

7 return m̂, Ê;

Algorithm 6: Representation of decimal mantissa as a binary FP number

Initial Format Table size, bytes

binary32 554

binary64 8392

binary128 263024

decimal32 792

decimal64 6294

decimal128 19713

Table 3.2: Table size for exponent computation step

the decimal mantissa n to the left, according to Ê. The further reasoning stays the

same. For example, decimal64 numbers can be represented as binary FP numbers

F64 from Def. 1.2 with Algorithm 6. So, the unsigned int64 format might be used to

store this new mantissa m̂.

A Small Note for Binary-to-Decimal Conversion

The proposed algorithm works for both conversion directions. However, one can

notice that for binary-to-decimal conversion the table size can be even reduced by

the factor of two. We have used the mantissas from one binade: 2p2−1 ≤ m < 2p2 .

However, these mantissas may be scaled to another binade 1 ≤ m < 2. This scaling

changes the value of ⌊log10 m⌋ in (3.6). Taking mantissas from [1, 2) means that

⌊log10 m⌋ = 0. This scaling also affects the range for exponents E, but their quantity

does not change.

The values for ⌊log10 m⌋ stays the same for all m from one decade. Let us

see, what happens if we slightly modify the mantissa bounds: ∀m′ : 1 ≤ m′ <

4, log10(m
′) = 0. The new representation of the input is computed out of 2E

′
m′ =

2Em. Therefore, we take E ′ = E − (E mod 2) and m′ = m · 2E mod 2. The value E

mod 2 is the last bit in the number E, thus E ′ is a “shifted version” of E by 1 bit.

This means that the range for E ′ is twice smaller than the range for E. Thus, the

table for m∗(E) (3.5) gets twice smaller too.
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3.2.3 Computing the Mantissa with the Right Accuracy

Having the exponent computed, the corresponding mantissa must be determined too.

We are going to compute it as in (3.2). As we have shown before this task is reduced

to the computation of 5B, B ∈ N. In this Section we propose an algorithm for raising

five to a natural power without rational arithmetic or divisions. However, on each

computational step we are going to shift to the right λ last bits. The range for these

natural exponents B is determined by the input format, e.g. for the conversion from

binary64 the range is about 600.

We propose to perform several Euclidean divisions2 in order to represent the

number B in the following way:

B = 2nk · qk + 2nk−1qk−1 + . . .+ 2n1q1 + q0, (3.7)

where 0 ≤ q0 ≤ 2n1 − 1, nk ≥ nk−1, k ≥ 1. For example, to convert from binary64

format we used this representation:

B = 28q2 + 24q1 + q0.

All the quotients qi are in the same range and we assume that the range for q0 is the

largest one, so we have qi ∈ [0; 2n1 − 1], 0 ≤ i ≤ k. Once the exponent is represented

as in (3.7), computation 5B is done with the respect to the following expression:

5B = (5qk)2
nk · (5qk−1)2

nk−1 · . . . · (5q1)2n1 · 5q0 . (3.8)

Varying parameters k and ni the quotients qi may be made small and the values 5qi

can be stored in a table. These values are normalized so, that they get bounded by

one binade: 2p−1 ≤ 5qi ≤ 2p − 1 for some p, for example p = 64 for unsigned int64

format used to store these table values. Then, each factor in (3.8) is a table value

raised to the power 2ni which is the same as a table value squared ni times. So, for

our example with binary64 numbers we get

5B = (5q2)2
8 · (5q1)24 · 5q0 .

Therefore we get an extended square-and-multiply operation on integers. The

value 5B is huge and we can store only its leading bits. On each multiplication or

squaring step, we truncate the last λ bits of the result. So, multiplication of some

numbers a, b is executed as ⌊a · b · 2−λ⌋. There is one more detail to be clarified

here. We are going to square values 5qi that were normalized to fit into [2p−1, 2p−1].

Therefore after first (pure) multiplication we get

22p−2 ≤ 5qi · 5qi < 22p.

2We claimed that the algorithm does not contain divisions. These are done with binary shifts

and masks.
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input: nj a power of 2, a value to square vj = 5qj

1 σj ← 0;

2 for i← 1 to nj do

3 vj ← ⌊v2j · 2−λ⌋;
4 s ← 1− ⌊vj · 21−p⌋ // get the first bit

5 vj ← vj ≪ s;

6 σj ← 2 · σj+s;

7 end

8 result ← vj · 2−σj · 2(2nj−1)λ;

Algorithm 7: Squaring with shifting λ last bits

1 m← 1;

2 for i← k to 1 do

3 m←
⌊
(m · vi) · 2−λ

⌋
;

4 end

5 m←
⌊
(m · 5q0) · 2−λ

⌋
;

6 m← m · 2((2nk−1)+(2nk−1−1)+···+(2n1−1)+k)λ−
∑1

i=k σi ;

7 s←∑1
i=k (ni(⌊log2(5qi)⌋ − p+ 1)) + ⌊log2(5q0)⌋ − p+ 1;

8 result ← m · 2s;
Algorithm 8: Final multiplication step

This interval is slightly larger than a binade [22p−1, 22p). When we take λ = p it

happens that on some squaring steps we may get the loss of precision. Therefore,

after truncation of λ last bits on each multiplication step we check the first bit of

the obtained number. If it is one, we need to shift the result. This normalization

is done with the correction σj in Algorithm 7. This algorithm is applied k times

to each factor in (3.8). Then the last step is to multiply all the factors starting

from the largest power as it is done in Algorithm 8. The line 6 of Algorithm 8 is

the compensation of the obtained result. On each step we truncated by λ bits, so

we multiply the result by some power of 2λ. As we normalized the result of each

squaring by 2σj we multiply the whole result m by 2−σj .

The whole algorithm schema is presented on Figure 3.1. Depending on the range

of B one can represent it in different manner but for our conversion tasks the ranges

for B were not that large, so the numbers nj were not more than 10 and the loops

for squarings can be easily unrolled. For instance, for the conversions from binary32,

binary64, decimal32 and decimal64 one can use the expansion of B of the following

form:

B = 28 · q2 + 24 · q1 + q0
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Decompose to

2nkqk + 2nk−1qk−1 + · · ·+ 2n1q1 + q0

get 5qk get 5qk−1 get 5q1 get 5q0· · ·

square
nk times

square
nk−1 times

square
n1 times· · ·

multiply

multiply

multiply

· · ·

result

B

Figure 3.1: Raising 5 to an integer power

3.2.4 Error Analysis for the Powering Step

On the computation of powers of five we store only leading bits. After each multi-

plication we truncate the result on λ bits. This shifting leading to the truncation is

the source of error.

We decomposed the power B into k + 1 summands and for k of them we exe-

cute Algorithm 7 for squaring. With N we denote the total quality of multiplications

on the mantissa computation step. For multipliers 5qj with 1 ≤ j ≤ k we perform nj

squarings. Then, in the end we get k + 1 multipliers in (3.8), therefore there are k

more multiplications. Thus, the total number of multiplications in this algorithm is

N =
k∑

j=1

nj + k.

So, the result is a product of N factors and on each step we have some relative

error εi. This means that if we define y as the exact product without errors, then

what we really compute in our algorithm can be represented as following:

ŷ = y

N∏

i=1

(1 + εi),

where all the εi are bounded by some ε̄. Thus, the relative error of the computations

is

ε =
ŷ

y
− 1 =

N∏

i=1

(1 + εi)− 1
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Let us prove a lemma that will help us to find the bounds for the relative error

of the result.

Lemma 3.1. Let N ≥ 3, 0 ≤ ε̄ < 1 and |εi| ≤ ε̄ for all i ∈ [1, N ]. Then the

following holds: ∣∣∣∣∣
N∏

i=1

(1 + εi)− 1

∣∣∣∣∣ ≤ (1 + ε̄)N − 1.

Proof. This inequality is equivalent to the following:

−(1 + ε̄)N + 1 ≤
N∏

i=1

(1 + εi)− 1 ≤ (1 + ε̄)N − 1

The proof of the right side is trivial. From the lemma condition we have −ε̄ ≤ εi ≤ ε̄,

which is the same as 1 − ε̄ ≤ εi + 1 ≤ ε̄ + 1 for arbitrary i from the interval [1, N ].

Taking into account the borders for ε̄, we get that 0 < (1 + εi) < 2 for all i ∈ [1, N ].

This means that we can multiply the inequalities 1 + εi ≤ ε̄ + 1 by 1 + εj with

j 6= i. After performing N − 1 such multiplications and taking into account that

1 + εi ≤ ε̄+ 1, we get the following:

N∏

i=1

(εi + 1) ≤ (ε̄+ 1)N .

So, the right side is proven.

The same reasoning applies for the left bounds from the lemma condition, and

the family of inequalities 1− ε̄ ≤ εi + 1 leads to the condition:

(1− ε̄)N − 1 ≤
N∏

i=1

(1 + εi)− 1.

So, in order to prove the lemma we have to prove now that

−(1 + ε̄)N + 1 ≤ (1− ε̄)N − 1.

After regrouping the summands we get the following expression to prove:

2 ≤ (1 + ε̄)N + (1− ε̄)N .

Using the binomial coefficients this trasforms to

2 ≤ 1 +
N∑

i=1

(
N

i

)
ε̄i + 1 +

N∑

i=1

(
N

i

)
(−ε̄)i

On the right side of this inequality we always have the sum of 2 and some nonnegative

terms. So, the lemma is proven.

The error ε̄ is determined by the basic multiplication algorithm. It takes two

input numbers (each of them is bounded between 2p−1 and 2p), multiplies them and

cuts off λ last bits, see line 3 of Algorithm 7 and Algorithm 8. Thus, instead of

v2j on each step we get v2j2
−λ + δ, where −1 < δ ≤ 0. So, the relative error of the

multiplication is bounded by |ε̄| ≤ 2−2p+2+λ.
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Figure 3.2: Accuracy as a function of precision and table index size

3.2.5 Implementation Details

While the implementation of the first step is relatively simple, we need to specify

some parameters and techniques that we used to implement raising 5 to an integer

power.

The used computational precision p was equal to 128 bits. The standard C integer

types give us either 32 or 64 bits, so for the implementation we used the uint128_t

type from GCC that is realised with two 64-bit numbers. As a shifting parameter λ

we took 64, so getting most or least 64 bits out of uint128_t number is easy and

fast. Squarings and multiplications can be easily implemented using typecastings

and appropriate shifts.

The described conversion approach was used in the implementation of the scanf

analogue (see Section 3.3) in libieee754 library [51].

We have implemented an run parametrized algorithm for computation of 5B,

as the parameter we took the table index size (for entries 5qi) and the working

precision p. We see (Fig. Figure 3.2) that the accuracy depends almost linearly on

the precision.
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3.2.6 Conclusion

A novel algorithm for conversion between binary and decimal floating-point repre-

sentations has been presented. All the computations are done in integer arithmetic,

so no FP flags or modes can be influenced. This means that the corresponding

code can be made reentrant. The exponent determination is exact and can be done

with several basic arithmetic operations, stored constants and a table. The mantissa

computation algorithm uses a small exact table. The error analysis is given and it

corresponds to the experimental results. The accuracy of the result depends on the

computing precision and the table size. The conversions are often used and the tables

are multipurpose, so they can be reused by dozens of algorithms. As this conversion

scheme is used everywhere and the tables are not large, they might be integrated

in hardware. The implementation of the proposed algorithm can be done without

loops, so it reduces the instructions that control the loop, optimizes and therefore

accelerates the code.
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3.3 Conversion from Decimal Character Sequence

The elegance of a mathematical theorem is

directly proportional to the number of

independent ideas one can see in the theorem

and inversely proportional to the effort it takes

to see them

George Pólya3

This section is devoted to the conversion from a sequence of decimal characters

to a binary FP number. This is an operation similar to a scanf version in C and to its

analogues in other languages that read a floating-point number. As we mentioned,

the discrete grids of decimal FP numbers and binary ones do not match, that is

why this operation generally returns a rounded result. When we are interested in

correctly-rounded results, the TMD occurs. The key point here is that the length of

the users input may be arbitrarily long, therefore worst cases cannot be precomputed.

Thus, our goal was to develop an algorithm that returns correctly-rounded results

without divisions or memory allocation; all the rounding modes and floating-point

flags have to be maintained correctly. Division is one of the most expensive arithmetic

operations, so should be avoided. Memory allocation is also an expensive operation

and furthermore may not be available on some architectures (embedded systems).

The proposed algorithm is a part of libieee754-2008 compliance library [51].

3.3.1 Notations and General Idea

We are going to read the decimal string input up to some digit with a finite-state

machine. Infinities and NaNs can be also passed as input to our algorithm. So,

these textual values have to be filtered out first. After this filtering we assume that

the input is some number x. The goal is to get the binary FP number 2F1n1 in

precision κ, therefore according to Def. 1.2 we consider its mantissa n1 bounded as

2κ−1 ≤ n1 ≤ 2κ − 1. We focus on conversion to binary64, so κ = 53 here. The

decimal input is read up to some decimal digit, therefore decimal representation

of x is its rounded toward zero version. The scheme of the algorithm is presented

on Figure 3.3.

We are going to read two decimal representations of the input x: the first one is

“short” and is denoted with 10Em, having mantissa in decimal precision r and the

second one is a “long” representation 10Ēm̄ with decimal precision r̄. Their mantissas

are bounded in these decades 10r−1 ≤ m ≤ 10r − 1 and 10r̄−1 ≤ m̄ ≤ 10r̄ − 1. The

names come from the formats used to store their values: for “short” mantissa one

3George Pólya (1887-1985) was a Hungarian mathematician, a professor of mathematics at ETH

Zürich and then at Stanford University; also known for science popularization.



74 Chapter 3. Mixed-radix Arithmetic and Base Conversions

m̄ = 123456789123456789121

User input x

Perform easy rounding of 2Fn

Perform hard rounding of 2F̃ (ñ+ δ)

Rounding is hard?

Read r̄ decimal digits to 10Ēm̄,

Set a flag if 10Ēm̄ is inexact

Read r decimal digits to 10Em

r is small

Convert to 2Fn

Compute the breakpoint 2F̃ ñ

yes
no

Convert the breakpoint to 10E1m1 exactly

Compare 10E1m1 with 10Ēm̄

x = 0.12345678912345678912

m = 12345678912345678912

n = 4554751586244672704

ñ = 17791998383768253

m1 = 1234567891234567907354779947581846499815583229064941406250 . . . 0

|n− 27ñ| ≤ 57

Figure 3.3: Scheme for conversion of decimal input of arbitrary length to binary FP
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variable of 64-bit unsigned integer will be enough, for “long” mantissas we will use an

array of such variables. Correctly-rounded result is obtained in two ways: the short

path for easy rounding and the long path for hard rounding. On the short path only

the short decimal representation is used: we convert it to a binary FP number 2Fn of

higher precision k and compute the binary midpoint 2F̃ ñ ∈ F54. If rounding is hard

we use the long path which requires conversion of binary midpoint to a long decimal

FP number. This conversion is exact due to the choice of long decimal precision r̄

of the new number. Thus, for hard rounding we can compare the binary midpoint

correctly represented in decimal with the long version of the input 10Ēm̄. The result

of this comparison gives us the needed rounding direction.

3.3.2 Determine Needed Decimal Precisions

Here we show how to determine the precisions r and r̄ for decimal representations of

the input. The precision r̄ for the large accumulator is determined by the exactness

of conversion the binary midpoint to the decimal FP number on long accumulator.

The idea of determination of the small decimal precision r is the following. We read

the input x into a decimal FP number with r digits, then we transform this decimal

number to a binary one in higher-than-double precision k. Therefore, the input x

is somehow transformed to binary. We evaluate the relative error of this double

transformation knowing the binary precision k.

Determine the Large Decimal Precision r̄

We aim to convert midpoints for binary64 numbers to decimal without error, thus we

need to determine the corresponding decimal precision. We start from the bounds for

the exponent of the midpoint 2F̃ ñ. We may write the largest and the least FP number

in binary64 format according to format specifications given in Table 1.1 and Def. 1.2

of Chapter 1. We suppose that mantissas of the result 2F
′
n′ are normalized in one

binade 2κ−1 ≤ n′ ≤ 2κ−1. Therefore, mantissas for midpoints are in the next binade:

2κ ≤ ñ ≤ 2κ+1− 1. The largest number in binary64 format may be computed as [43]

S = 22
w−1−κ−1 · (2κ+1 − 2),

where w is the length of the exponent field. Therefore, we get the upper bound for

F̃ as follows

F̃ ≤ 2w−1 − κ− 1.

The smallest FP number is a subnormal one with the minimal exponent −2w−1 + 2

and mantissa 0. 0 . . . 01︸ ︷︷ ︸
κ−1

. Thus, its value may be written as

s = 2−2w−1−2κ+3 · 2κ.
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Then, the midpoint for s is 1
2
s and therefore, the lower bound for F̃ may be found

as F̃ ≥ −2w−1 − 2κ+ 2.

We remind that we use Def. 1.2 to get the FP representation from an arbitrary

real number. Thus, transformation of 2F̃ ñ to some number 10E1m1 with decimal

precision r̄ may be formalized as

E1 =
⌊
log10(2

F̃ ñ)
⌋
− r̄ + 1

m1 =

⌊
10

−
⌊
log10(2

F̃ ñ)
⌋
+r̄−1

2F̃ ñ

⌋

In order to make this conversion exact we should guarantee that the following value

is integer:

10
−
⌊
log10(2

F̃ ñ)
⌋
+r̄−1

2F̃ ñ ∈ N.

For the previously obtained lower and upper bounds for F̃ and ñ we may find some

values of r̄, where the previous expression gets only natural values. This means that

the decimal precision r̄ should be r̄ ≥ r̄∗, where

r̄∗ = min
{
r̄ | 10−

⌊
log10(2

F̃ ñ)
⌋
+r̄−1

2F̃ ñ ∈ N, ñ ∈ [2κ, 2κ+1 − 1],

F̃ ∈ [−2w−1 − 2κ+ 2, 2w−1 − κ− 1]
}
.

By the definition of a FP number (Def. 1.2) ñ, F̃ ∈ Z. With the range for F̃ there

are two possible situations to be considered: F̃ ≥ 0, and F̃ < 0.

1. F̃ ≥ 0. Trivially, the number 2F̃ ñ ∈ N. There is a need to guarantee only that

10
−
⌊
log10(2

F̃ ñ)
⌋
+r̄−1 ∈ N.

This is possible, when the power of 10 is positive, therefore when

−
⌊
log10(2

F̃ ñ)
⌋
+ r̄ − 1 ≥ 0.

Thus, we get the constraint for r̄:

r̄ ≥ ⌊log10 2F̃ ñ⌋+ 1.

2. F̃ < 0. The number 2F̃ ñ is not integer. As the mantissa ñ ∈ N then we require

10
−
⌊
log10(2

F̃ ñ)
⌋
+r̄−1

2F̃ ∈ N.

This is equivalent to the requirement for these two numbers 5
−
⌊
log10(2

F̃ ñ)
⌋
+r̄−1

and 2
−
⌊
log10(2

F̃ ñ)
⌋
+r̄−1

2F̃ to be integer. Thus, we get two conditions

(a) ⌊log10(2F̃ ñ)⌋−r̄+1 ≤ 0. This case gives the same bound for r̄ as previously

obtained.
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(b) F̃ − ⌊log10(2F̃ ñ)⌋ − r̄ + 1 ≥ 0. Here, for negative exponents F̃ we get the

following:

r̄ ≥ ⌊log10(2F̃ ñ)⌋+ 1− F, (F̃ < 0). (3.9)

Thus, requiring (3.9) we get the two cases verified.

To find the numerical value of r̄, we will require stronger inequalities to be satisfied.

For example, in order to guarantee that y ≥ ⌊x⌋ we can require that y ≥ x as for all

x ≥ 0, x ≥ ⌊x⌋. The implication chain on profs is usually built from left to right,

but here we try to do in reverse direction.

The value of r̄ is non-negative as it is the precision, thus we get

r̄ ≥ log10(2
F̃ ñ) + 1− F, (F̃ < 0)

and it transforms with the use of logarithm properties to

r̄ ≥ F̃ (log10(2)− 1) + log10(ñ) + 1, (F̃ < 0).

We insert the lower bound for F̃ and the upper bound for ñ in the previous

expression to compute the numerical value of r̄:

r̄ ≥ (−2w−1 − 2κ+ 2) · (log10(2)− 1) + log10(2
κ+1 − 1) + 1.

As the expression for the bound of r̄ is positive, we use one more transformation

with the property x ≤ ⌈x⌉. Requirement that r̄ ≥ ⌈x⌉ guarantees that r̄ ≥ x. Thus,

requiring

r̄ ≥
⌈
(−2w−1 − 2κ+ 2) · (log10(2)− 1) + log10(2

κ+1 − 1) + 1
⌉
, (3.10)

makes the previous two inequalities satisfied. We get the final expression to compute

r̄ in (3.10). For binary64 format the corresponding variables are w = 11 and κ = 53

(see Table 1.1), therefore r̄ ≥ 806. So, the long decimal mantissa will have r̄ = 806

decimal digits, therefore we need 2678 bits to store their values, which is feasible

with an array of 42 64-bit integers or array of 84 elements of 32-bit integers.

Determine the small decimal precision r

As mentioned, this precision is determined with evaluation of relative error for binary

FP representation of the input number x. So, we arranged to read r decimal digits

from x to get its decimal representation 10Em. Thus, according to Def. 1.2 we have

the following expressions for E and m:

E = ⌊log10(x)⌋ − r + 1

m =
⌊ x

10E

⌋



78 Chapter 3. Mixed-radix Arithmetic and Base Conversions

Thus, we may write the following:

10Em = x(1 + ε1),

and the next lemma finds the bound for this relative error.

Lemma 3.2 (About ε1). Let be x ∈ R, E ∈ Z, m ∈ N, r ∈ N such that E =

⌊log10(x)⌋ − r + 1, m =
⌊

x
10E

⌋
, then m is bounded by one decade

10r−1 ≤ m ≤ 10r − 1

and the following holds

10E ·m = x(1 + ε1), where − 10−r+1 < ε1 ≤ 0

Proof. By the definition m =
⌊

x
10E

⌋
=
⌊
x · 10−⌊log10 x⌋+r−1

⌋
=
⌊
10r−1+δ⌊·⌋

⌋
, where

0 ≤ δ⌊·⌋ < 0. Hence, the bounds for m are 10r−1 ≤ m < 10r. Thus, the first part of

the lemma is proven and we have to find the bounds for ε1 now. From the definition

of m and the ⌊·⌋ operation we have

m =
x

10E
− δ⌊·⌋, where 0 ≤ δ⌊·⌋ < 1.

So, we take ε′ =
δ⌊·⌋
m

satisfying 0 ≤ ε′ < 101−r, then the previous statement gives an

expression for x:

x = 10E ·m(1 + ε′).

Which is the same as 10E ·m = x(1 + ε1), where ε1 =
1

1+ε′
− 1. Now we need to find

the bounds for ε1. We use Taylor’s development 1
1+ε′

.

ε1 = −ε′ + (ε′)2 − (ε′)3 + ...

Then, we get the converging alternating series and its sum is negative and may be

bounded by its first summand, so by −101−r.

After reading the input, the obtained decimal number 10Em is converted to a

binary one 2F
′
n′ with mantissa n′ on k bits. This conversion from decimal to binary

is done with some error ε2. We may write

2F
′

n′ = x(1 + ε1)(1 + ε2) = x(1 + ε1 + ε2 + ε1ε2). (3.11)

For binary FP number a = 2F
′
n representing the input x we can find the next one

binary FP number as = 2F
′
(n′ + 1). Then, the relative error is computed as

as − a

a
=

1

n′ ≤ 2−k+1.

Thus, we can use this bound for relative error ε1 + ε2 + ε1ε2 in (3.11). We require

that

|ε1 + ε2 + ε1ε2| ≤ 2−k+1 (3.12)



3.3. Conversion from Decimal Character Sequence 79

We want the errors ε1 and ε2 be of the same order. We may use the property of

absolute value |a+ b| ≤ |a|+ |b|. Thus, the following requirement will satisfy (3.12):

|ε1|+ |ε2|+ |ε1ε2| ≤ 2−k+1.

Trivially, |ε1| + |ε2| + |ε1ε2| ≥ |ε1| + |ε2|. Thus, if we require that 2|ε1| ≤ 2−k+1

then (3.12) is satisfied. We may even ask for |ε1| ≤ 2−k′−g, where g ≥ 1 is some

quantity of guard bits. Then,

10−r+1 ≤ 2−k−g

− r + 1 ≤ log10(2
−k−g)

r ≥ 1 + (k′ + g) log10(2)

If we take k = 54 and g = 5, then we get r = 19 which means that decimal mantissa

m may be stored in 64 bits as ⌈19 log2 10⌉ = 64. In this case we get |ε2| ≤ 10−r+1.

3.3.3 Notes on Conversion from Decimal FP Number 10Em

to a Binary One 2Fn

First we convert 10Em to a number 2F
′
n′ with mantissa n′ and we show further that

it is bounded by 260 − 1 ≤ n′ ≤ 261. As these bounds do not correspond to one

binade as in Def. 1.2 we pass then to a number 2Fn with mantissa n on k = 61 bits

and therefore 260 ≤ n ≤ 261 − 1.

The conversion operation was detailed in Section 3.2, we compute the exponent

F ′ as it is explained there, however for the mantissa n′ we use a bit different represen-

tation that is reused in the further theorems. Thus, the expression for the exponent

F ′ is the following:

F ′ =
⌊
log2(10

Em)
⌋
− k + 1,

We consider a mantissa n∗ such that

2F
′

n∗ = 10Em.

We are going to use several new variables that are defined as follows.

∆ = 4 + ⌊E log2 10⌋ − F ′,∆ ∈ Z

ϕ(E) = 10E · 2−⌊E log2 10⌋−4

With these expressions n∗ may be written as

n∗ = ϕ(E)2∆m.

As the mantissa n∗ is not computable with pure FP arithmetic we consider other

numbers n̄ and n′ that are defined as follows:

n̄ = ⌊ϕ(E) · 2α⌉ 2∆2−αm,

n′ = ⌊n̄⌋.
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These new variables are both some approximations of the input x. Their bounds

and relative errors of approximation may be found from the following lemma.

Lemma 3.3 (About the range and error for n̄, n′). Let be x ∈ R, E ∈ Z, m ∈ N, r =

19 such that

E = ⌊log10(x)⌋ − r + 1, m =
⌊

x
10E

⌋
,

n′ ∈ N, F ′,∆ ∈ Z, k = 61, α = 64

F ′ =
⌊
log2(10

E ·m)
⌋
− k + 1, ∆ = 4 + ⌊E log2 10⌋ − F ′

ϕ(E) = 10E · 2−⌊E log2 10⌋−4, n∗ = 2−F ′
10Em

n̄ = ⌊ϕ(E) · 2α⌉ 2∆2−αm, n′ = ⌊n̄⌋
Then, the following holds:

n̄ = n∗(1 + ε̄), 260 − 1/4 < n̄ < 261 + 1, |ε̄| < 2−61 (3.13)

n′ = n̄(1 + εn), 2
60 − 1 ≤ n′ ≤ 261, |εn| ≤

1

260 − 1/4
(3.14)

n′ = 2−F ′

x(1 + ε2), |ε2| ≤ 2−58.59 (3.15)

Proof. From the definition of n∗ we may easily find its bounds.

n∗ = 10E2−F ′

m = 10E2−⌊log2(10E ·m)⌋+k−1m = 2k−1+δ⌊·⌋ , where 0 ≤ δ⌊·⌋ < 1,

so 2k−1 ≤ n∗ < 2k. To find the bounds for n̄ we have to develop its expression.

n̄ = ⌊ϕ(E) · 2α⌉ 2∆2−αm = ϕ(E)2∆m+ δ⌊·⌉ · 2∆−α ·m
= 10E2−⌊E log2 10⌋−4 · 24+⌊E log2 10⌋−F ′ ·m+ δ⌊·⌉ · 2∆−α ·m
= 10E2−F ′

m+ δ⌊·⌉ · 2∆−α ·m = n∗ + δ⌊·⌉ · 2∆−α ·m =

= n∗ + δ⌊·⌉ · 24+⌊E log2 10⌋−F ′−αm = n∗ + δ⌊·⌉ · 24+E log2 10+δI
⌊·⌋

−⌊log2(10E ·m)⌋+k−1−αm

= n∗ + δ⌊·⌉ · 24+E log2 10+δI
⌊·⌋

−E log2 10−log2 m−δII
⌊·⌋

+k−1−αm

= n∗ + δ⌊·⌉ · 23−α+k+δI
⌊·⌋

−δII
⌊·⌋ , with − 1 < −δI⌊·⌋ ≤ 0, −1 < −δII⌊·⌋ ≤ 0, |δ⌊·⌉| ≤ 1/2.

Thus, after the substitution of all the bounds in the expression for n̄ we get

260 − 1/4 < n̄ < 261 + 1.

Assuming ε̄ =
δ⌊·⌉
n∗ · 23−α+k+δI

⌊·⌋
−δII

⌊·⌋ with −1 < −δI⌊·⌋ ≤ 0, −1 < −δII⌊·⌋ ≤ 0, |δ⌊·⌉| ≤ 1/2

we get |ε̄| < 2−61 and

n̄ = n∗(1 + ε̄).

The number n′ is defined as n′ = ⌊n̄⌋, which means that n′ is an integer and as the

function ⌊·⌋ is an increasing function the bounds for n′ are easily determined from

these for n̄:

260 − 1 ≤ n′ ≤ 261.
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By its definition, n′ = ⌊n̄⌋ = n̄ + δ⌊·⌋ with −1 < δ⌊·⌋ ≤ 0, so εn =
δ⌊·⌋
n̄

. Thus,

|εn| ≤ 1
260−1/4

. The last thing to prove in this lemma is the bound for ε2. We develop

the expression for n′ to get the relation between n′ and x in one equation.

n′ = n̄(1 + εn) = n∗(1 + εn)(1 + ε̄) = 2−F ′

x(1 + ε1)(1 + εn)(1 + ε̄)

Thus, we may write n′ = 2−F ′
x(1+ε2) with ε2 = (1+ε1)(1+εn)(1+ ε̄)−1. So, after

substitution of all needed bounds for errors in the last formula, we get the bound for

ε2.

|ε2| ≤ 2−58.59

The number 2Fn with mantissa n on 61 bits is deduced from 2F
′
n′ exactly, so

2Fn = 2F
′
n′. Thus, there are three conditions:

1. n′ = 261. In this case we take n = n′/2 and F = F ′ + 1. Division by two is

exact as n′ is a power of two.

2. n′ = 260 − 1. We take n = 2n′ and F = F ′ − 1.

3. In all other cases we take n = n′ and F = F ′.

Thus, the binary FP number 2Fn with mantissa on 61 bits approximates x with the

following: n = 2−Fx(1 + ε2) with |ε2| ≤ 2−58.59. This means that the number n has

58 correct bits out of its 61.

The breakpoint mantissa can be computed as

ñ =
⌊
(n+ 26)2−7

⌋
.

We compute not only the midpoints for F53 which are rounding bounds for RN, but

also the numbers from F53 themselves, which are rounding bounds for the directed

rounding modes.

3.3.4 Easy Rounding

The rounding is easy if 2Fn, the converted version of the input x is far from the

midpoint 2F̃ ñ (see Chapter 1). Thus, we try to estimate the distance between 2Fn

the high-precision representation of x and the midpoint 2F̃ ñ. The most important

is to compare the mantissas. For the case of easy rounding, the number 2Fn rounds

the same as x.

From the results of Lemma 3.3 we can find the absolute error of n approximating

2−Fx. As n = 2−Fx(1 + ε2), then

260

1 + |ε2|
≤ 2−Fx ≤ 261 − 1

1− |ε2|
.
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Thus, if we take δn = 2−F · ε2, then n = 2−Fx+ δn with

|δn| ≤
261 − 1

1− |ε2|
|ε2| =

261 − 1

1− 2−58.59
2−58.59 ≈ 5.31.

The case of the easy rounding occurs when |n− 27ñ| ≥ 58, and the following

lemma proves it.

Lemma 3.4 (Easy rounding). Let n, ñ ∈ Z, ñ = ⌊(26 + n) · 2−7⌋ , |n− 27ñ| ≥ 58,

n ∈ Z, 260 ≤ n ≤ 261 − 1, n = 2−Fx+ δ, |δ| < 6 then the following holds:

⌊
2−F−8x

⌉
=
⌊
2−8n

⌉
,

⌈
2−F−8x

⌉
=
⌈
2−8n

⌉
,

⌊
2−F−8x

⌋
=
⌊
2−8n

⌋

Proof. We are going to make general judgments from the hypothesis first.

By the definition ñ = ⌊(26 + n) · 2−7⌋, which means that ñ = (26 +n) · 2−7 + δ⌊·⌋,

with −1 < δ⌊·⌋ ≤ 0 or 27ñ = (26 + n) + 27δ⌊·⌋. From this we get |27ñ− n| ≤ 26 = 64.

From the hypothesis we know that |n− 27ñ| ≥ 58, which means that

27ñ− n ∈ [−64,−58] ∪ [58, 64]

or after factoring by 28,

1

2
ñ− 2−8n ∈

[
−64

28
,−58

28

]
∪
[
58

28
,
64

28

]
.

As the intervals are symmetric, after rephrasing the previous statement we get the

expressions for 2−8n and 1
2
ñ:

1

2
ñ ∈ 2−8n+

[
−64

28
,−58

28

]
∪
[
58

28
,
64

28

]
; (3.16)

2−8n ∈ 1

2
ñ+

[
−64

28
,−58

28

]
∪
[
58

28
,
64

28

]
. (3.17)

From the hypothesis we get the following expression for 2−8n:

2−8n = 2−F−8x+ 2−8δ, |δ| < 6.

We represent δ values as interval in order to get the interval expression for 2−8n:

2−8n ∈ 2−8−Fx+

[
− 6

28
,
6

28

]
, (3.18)

or due to the symmetry of the interval

2−8−Fx ∈ 2−8n+

[
− 6

28
,
6

28

]
. (3.19)
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Thus, from (3.19) and (3.17) we get

2−8−Fx ∈ 1

2
ñ+

[
−70

28
,−52

28

]
∪
[
52

28
,
70

28

]
. (3.20)

From the statements (3.20) and (3.17) the theorem may be proven by applying

the corresponding rounding operations to the left-hand sides. However, as the both

terms contain 1
2
ñ , we should consider two cases: when ñ is even and when it is odd.

1. Suppose that ñ is even. In this case 1
2
ñ ∈ Z. We start from rounding to the

nearest (⌊·⌉). The rounding bound for this mode is 1/2, so all the numbers

from the interval 1
2
ñ +

[
−1

2
, 1
2

)
round the same. As 1

2
= 128

256
> 70

256
> 64

256
the

left parts of (3.20) and (3.17) round to the number 1
2
ñ ∈ Z. Thus, ⌊2−8n⌉ =⌊

1
2
ñ
⌉
=
⌊
2−8−Fx

⌉
, and in this case the theorem is proven for rounding to the

nearest mode.

Consider now rounding to zero (⌊·⌋), which has integer numbers as rounding

bounds. We use the proof by contradiction here. So, we suppose that ⌊2−8n⌋ 6=
⌊2−8−Fx⌋, which is possible in one of the next two cases:

(a) 2−8−Fx ∈ 1
2
ñ+

[
−70

28
,−52

28

]
and 2−8n ∈ 1

2
ñ+

[
58
28
, 64
28

]
,

(b) 2−8−Fx ∈ 1
2
ñ+

[
52
28
, 70
28

]
and 2−8n ∈ 1

2
ñ+

[
−64

28
,−58

28

]
.

However, from the both cases we get
∣∣2−8n− 2−8−Fx

∣∣ ≤ 110
28

which is a contra-

diction with (3.18). Hence, the assumption was false and ⌊2−8n⌋ = ⌊2−8−Fx⌋.
The proof for rounding to infinity (⌈·⌉) is similar as it also has integer numbers

as rounding bounds.

2. Suppose that ñ is odd, which means that it can be represented as ñ = 2K +1,

with some integer K. Thus, we may rewrite the statements (3.20) and (3.17)

with 1
2
ñ = K + 1

2
:

2−8n ∈ K +

[
64

28
,
70

28

]
∪
[
186

28
,
192

28

]
, (3.21)

2−8−Fx ∈ K +

[
58

28
,
76

28

]
∪
[
180

28
,
198

28

]
. (3.22)

For round to the nearest mode we are going to use proof by contradiction.

Thus, we suppose that ⌊2−8n⌉ 6= ⌊2−8−Fx⌉ which is possible in one of two

cases:

(a) 2−8−Fx ∈ K +
[
180
28
, 198

28

]
and 2−8n ∈ K +

[
64
28
, 70
28

]

(b) 2−8−Fx ∈ 1
2
ñ+

[
52
28
, 70
28

]
and 2−8n ∈ 1

2
ñ+

[
−64

28
,−58

28

]
.
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Once again, from both cases we get
∣∣2−8n− 2−8−Fx

∣∣ ≤ 110
28

which is a contra-

diction with (3.18). Thus, the theorem is proven for rounding to the nearest.

As the rounding bounds for both ⌊·⌋ and ⌈·⌉ are the integer numbers and the

values from (3.21) and (3.22) are strictly between two integer numbers, the left

parts of the mentioned expressions round the same.

Thus, we have proven the theorem for the three rounding modes and for all the

subcases.

Therefore, for easy rounding we get the result, rounding 2Fn which is a binary

representation of x and this method works for all rounding modes.

3.3.5 How to Implement Easy Rounding

The Lemma 3.4 gives us the result that rounding of the input x is the same as

rounding the number 2Fn. We round the number 2Fn with mantissa n on 61 bits to

double format, so to 53-bit mantissas. There are several cases to consider: overflow,

underflow, normal rounding and subnormal rounding.

How to Produce Over/Underflow

By its definition n ∈ [260, 261−1], therefore the condition for overflow is F > 1023−61
and for underflow it is F < −1074− 61. They are found from the expression of the

largest and smallest FP number provided in the beginning of this section. Our

algorithm used integer computations in order to not affect the rounding modes and

FP flags. So, we store a huge and a small exact FP number, e.g. 2600 and 2−600

and its squaring will set all the needed flags and produce the needed result (NaN or

infinity). After this filtering if F ≥ −1022− 61 it is a normal rounding.

How to Perform Normal Rounding

The task is to produce a binary64 FP number, so a binary number in F53 from

2Fn where n is an integer on 61 bits. We will use memory representation of FP

numbers [27], thus we define the following type:

typedef union {

uint64_t i;

double f;

} bin64wrapper;

Listing 3.1: Wrapper for FP memory representation

Thus, to get bits representation of the FP number x we write it in bin64wrapper.f

field and read the bin64wrapper.i field. To get the FP representation of the number

2Fn we start with representing an integer mantissa n in FP and then we will multiply
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it by 2F which is itself a FP number. The way of representing n in FP format is

based on Lemma 3.5 and Lemma 3.6 [27].

Lemma 3.5 (Representable integers). Let z ∈ Z be an integer such that |z| ≤ 2k.

For precision k, k ≥ 2

z ∈ Fk

Proof. Consider such cases:

a) |z| = 0. Trivial case.

b) |z| = 2k. Trivial case, we have z = 21 · 2k−1, so according to Def. 1.2 of the

floating-point numbers z ∈ Fk.

c) 1 ≤ |z| ≤ 2k−1 − 1. We have z = 2−k+1 · (2k−1z). If we take E = −k + 1 and

m = 2k−1 ·z, we get an FP number with mantissa in range 2k−1 ≤ m ≤ 2k−1−1.

d) 2k−1 ≤ |z| ≤ 2k − 1. The FP number is z = 20z, that is E = 0, m = z ∈ Z,

2k−1 ≤ m ≤ 2k − 1.

Lemma 3.6 (The shift trick). If y is an integer value in floating-point format Fk

such that y ≤ 2p − 1 < 2k−1, the last p significand bits of the floating-point number

z = 2k−1 + y give us a signed integer number, representing y.

Proof. The integer number z = 2k−1 + y ∈ Fk according to Lemma 3.5. Consider

first the case when y ≥ 0. Let us remember how the floating-point numbers in Fk

are stored [42], Figure 1.1. We have 1 bit for the sign; w bits for the exponent with

a hidden mantissa first bit and k − 1 bits for the mantissa trailing part. We know

that y ≤ 2p−1 and y ∈ Z, so we want to “shift” it in such a way, that it occupies the

last p mantissa bits. According to Lemma 3.5, 2k−1 is a number in Fk. The mantissa

of the value 2k−1 in floating-point format is 1.0 . . . 0. So, the first ’one’ will be the

hidden bit stored in exponent field and the mantissa field will be filled with zeros.

Thus, if we add to such number an integer value y that is strictly less than 2k−1, y

will occupy the least significant bits of mantissa. Thus, the value of z must be more

than 2k−1.

To represent 61-bit integer n in binary64 FP we cut the number n into two parts

nh and nl so that n = 232nh + nl and then apply the shifting trick adding 252 to nh

and nl. Listing 3.2 shows in the details how to do this: we use previously described

wrapper and memory representation instead of FP numbers to avoid FP operations

that may bring the errors and therefore signal the inexact exception and raise the

corresponding flag. We use this path in subnormal rounding for the sake of easiness.
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uint64_t nh, nl;

bin64wrapper nhw, nlw, mantw;

...

nh = n >> 32;

nl = n & 0x00000000ffffffffull;

/∗ Produce 2^32 ∗ nh and nl as binary64 numbers ∗/
/∗ 0x4330000000000000ull is a bit representation of FP number 2^52 ∗/
nhw.i = 0x4330000000000000ull | nh;

nhw.f −= 4503599627370496.0; /∗2^52∗/
nhw.f ∗= 4294967296.0; /∗ 2^32 ∗/
nlw.i = 0x4330000000000000ull | nl;

nlw.f −= 4503599627370496.0;

/∗ Round 2^32 ∗ nh + nl to a binary64 number ∗/
mantw.f = nhw.f + nlw.f;

Listing 3.2: Represent 61-bit integer n as a FP number

3.3.6 When Rounding is Hard

When 2Fn, the binary representation of the input, is close to breakpoint we have the

case of hard rounding. We already mentioned, that the binary breakpoint 2F̃ ñ will

be converted to a decimal FP number 10E1m1 with a long mantissa (see Figure 3.3).

This mantissa has r̄ decimal digits. The conversion is exact due to the choice of r̄.

For the hard rounding we may also establish relation between the input x and the

midpoint mantissa ñ with the following lemma.

Lemma 3.7. Let be n, ñ ∈ Z, ñ = ⌊(n+ 26)2−7⌋ and for µ = 57 we have |n− 27ñ| ≤
µ. Besides that, we use the result from Lemma 3.3:

260 ≤ n ≤ 261 − 1, n = 2−Fx(1 + ε2), |ε2| ≤ 2−58.59,

Then, it may be shown that ñ =
⌊
2−7−Fx

⌉
.

Proof. We use the absolute error of n representing 2−Fx:

n = 2−Fx+ δn, |δn| ≤ 5.31

From the condition |n− 27ñ| ≤ µ we get |2−7n− ñ| ≤ 2−7µ. It means that there

is some δ̃ such that |δ̃| ≤ 2−7µ, that holds ñ = 2−7n+ δ̃. Then,

ñ = 2−7n+ δ̃ = 2−7(2−Fx+ δn) + δ̃ = 2−F−7x+ 2−7δn + δ̃.
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Denoting δ̂ = 2−7δn + δ̃ we may show that ñ = 2−F−7x + δ̂ and |δ̂| < 1/2. Indeed,

using the values of δn and δ̂,

|δ̂| ≤ 2−7|δn|+ |δ̃| < 2−7 · 5.31 + 2−7 · 57 < 1/2

We get that the difference between ñ and 2−F−7x is less than one half. By the

definition ñ ∈ Z, which means that ñ = 2−F−7x+ δ̂ = ⌊2−F−7x+ δ̂⌉ = ⌊2−F−7x⌉ by

the definition of rounding to the nearest.

In hard rounding there are also subcases for over/underflow result, normal round-

ing and subnormal rounding. The first two of them can be filtered out by the value

of the exponent F̃ . For normal and especially subnormal rounding some extra ac-

tions are needed. The common thing for these both subcases is the exact conversion

of binary midpoint to a decimal number. The number 2F̃ ñ is converted to 10E1m1

with mantissa m1 containing r = 806 decimal digits. This conversion is performed

according to the algorithm explained in Section 3.2, so we do not focus on the details.

Once the new decimal number 10E1m1 with long decimal mantissa m1 is computed it

may be compared with 10Ēm̄, the long decimal representation of the input x. After

scaling the number with the least exponent to make E1 = Ē this comparison may

be done lexicographically. Therefore, we have three possibilities:

1. 10E1m1 > 10Ēm̄

2. 10E1m1 = 10Ēm̄

3. 10E1m1 < 10Ēm̄

We take an indicator δ from the result of comparison that will be reused in subcases

of normal and subnormal rounding δ ∈
{
−1

4
, 0, 1

4

}
. We substitute rounding ⋆κ(2

F̃ ñ)

by ⋆κ(2
F̃ (ñ+ δ)).

Producing Over/Underflow

When |2F̃ ñ| is larger than the largest binary64 floating-point number we get an

overflow. Thus, overflow exception must be signaled and we need to produce Infinity

or the largest binary64 number according to the input sign [43]. In order to do this we

execute multiplication of two floating-point numbers for positive input 21000×(253−1)
and (−1)s × 21000 × (253 − 1). This case is possible when F̃ > 2w−1 − κ, or in our

binary64 case F̃ > 210 − 53 = 971.

When |2F̃ ñ| is less than the smallest binary64 floating-point number, it is an

underflow. As in the previous case we execute multiplication of 2 floating-point

numbers, that will certainly give us underflow exception with zero value. We use

the multiplication of 2−1000 and (−1)s × 2−1000. The conditions on F̃ to get to this

case are F̃ < −2w−1−κ+3−κ, or for our format F̃ < −210 − 106 + 3 = −1127.



88 Chapter 3. Mixed-radix Arithmetic and Base Conversions

Normal Rounding in the Hard Case

The normal rounding has to be performed when 2−2w−1+2 ≤ |2F̃ ñ| ≤ 22
w−1

, so the

midpoint is between the smallest and the largest normal numbers.

We need to perform the rounding ⋆53(2
F̃ ñ) for an unknown rounding mode ⋆ ∈

{◦,∆,∇,✄✁}. Due to the properties of all the rounding operations we can perform

⋆53 (2
F̃ ñ) = 2F̃+1 ⋆53

(
ñ

2

)
(3.23)

In the interior of the intervals between F54 numbers all user inputs x round the same.

So, we can substitute the rounding ⋆53(x) by 2F̃+1⋆53 (
1
2
(ñ+δ)), where δ ∈ {−1

4
, 0, 1

4
}

is an indicator which shows the comparison result from the previous step.

We concentrate now on ⋆53(
1
2
(ñ + δ)) and introduce a new variable ν =

⌊
1
2
ñ
⌋
.

Then,

⋆53

(
1

2
(ñ+ δ)

)
= ⋆53

(
ν +

1

2
(ñ+ δ)− ν

)
= ⋆53(ν + µ),

where µ = 1
2
(ñ + δ) − ν. We can deduce all the possible values for µ and it can be

computed at the beginning of this step, using the parity of ñ and the value of δ.

µ ∈
{
−1

8
, 0,

1

8
,
3

8
,
1

2
,
5

8

}
⊂ F53

By the definition, ν ∈ N, and as 253 ≤ ñ ≤ 254−1, we get that 252 ≤ ν ≤ 253−1,

hence ν = 20ν ∈ F53. Thus, as ν ∈ F53 and µ ∈ F53 the rounding ⋆53(ν + µ) can be

obtained by executing an addition on the machine. Due to (3.23) we need to multiply

this by 2F̃+1. In general, the value 2F̃+1 /∈ F53, thus we perform this multiplication

in two steps: we take F1 =
⌊
F̃+1
2

⌋
and F2 = F̃ + 1 − F1. Thus, 2F̃+1 = 2F12F2 . As

in the case with ν and µ, F1, F2 ∈ F53 trivially. Perform the final multiplication and

rounding as

⋆53 (2
F1 · ⋆53(2F2 · ⋆53(ν + µ))) (3.24)

Subnormal Rounding in the Hard Case

This case occurs when |2F̃ ñ| < 2−2w−1+2, i.e. the rounding boundary is less than the

smallest normal binary64 number. The subnormal rounding can be divided into 2

cases

1. 2F̃ ñ ≤ 1
4
2−2w−1+3−κ, so the number to be rounded is less than 1

4
of the smallest

subnormal. It is clear that we should set underflow flag here and return 0. It

can be done by executing

⋆53(2
−1000 · 2−1000)
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Let us deduce the bounds for 2F̃ (ñ+ δ) for this case. If

2F̃ ñ ≤ 1

4
· 2−2w−1−κ+3

then according to the bounds for ñ

2F̃ ≤ 1

4
· 2

−2w−1−κ+3

254 − 1

This leads to

2F̃ (ñ+ δ) ≤ 1

4
· 2−2w−1−κ+3

(
1 +

1

4

1

254 − 1

)

If we demand that 2F̃ (ñ + δ) ≤ 1
2
η, where η = 2−2w−1−κ+2, then the previous

inequation would be also satisfied.

2. 1
4
2−2w−1+3−κ < 2F̃ ñ < 2−2w−1+2.

We need to perform subnormal rounding and produce a subnormal result in

this case. First, we need to make a new definition and prove a theorem.

Definition 3.1. Let a new operation be 〈·〉 : R→ Z as

〈x〉 =





x, if x ∈ Z

⌊x⌋, if x /∈ Z and ⌊x⌋ is odd

⌈x⌉, otherwise

(3.25)

Theorem 3.1 (About the operation 〈·〉). Let be θ ∈ Z : 2κ−1 ≤ θ ≤ 2κ − 1

and 0 ≤ ρ < 1, t ∈ N, t ≥ 2. Then it can be shown, that

⋆κ (θ + ρ) = ⋆κ(θ + 2−t
〈
2tρ
〉
) (3.26)

Proof. If 2tρ ∈ Z, formulation (3.26) is trivial. ⋆κ(θ + ρ) = ⋆κ(θ + 2−t 〈2tρ〉)
So, consider the case when 2tρ /∈ Z. For such numbers 〈2tρ〉 is always odd.

The operation 〈·〉 is always odd. By definition (3.25), if ⌊2tρ⌋ is odd, then

〈2tρ〉 = ⌊2tρ⌋, so 〈2tρ〉 is odd. Otherwise, if ⌊2tρ⌋ is even, then 〈2tρ〉 = ⌈2tρ⌉ =
⌊2tρ⌋+ 1, which means that the function value 〈2tρ〉 is odd. Therefore,

∃m ∈ Z :
〈
2tρ
〉
= 2m+ 1

Let us compute the bounds for 〈2tρ〉. From the theorem clause we have the

bounds for θ and ρ: 2k−1 ≤ θ ≤ 2κ − 1 and 0 ≤ ρ < 1. Thus, we may get

bounds for ⌊2tρ⌋ and ⌈2tρ⌉.
0 ≤ 2tρ < 2t,
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Thus,

0 ≤
⌊
2tρ
⌋
≤ 2t − 1

1 ≤
⌈
2tρ
⌉
≤ 2t

Therefore we get 0 ≤ 〈2tρ〉 ≤ 2t. The trivial case when 2tρ ∈ Z was already

considered and now we focus only on 2tρ /∈ Z. Thus, 2tρ 6= 0, which means

that the lower bound 0 cannot be attained. As we proved, 〈2tρ〉 is always odd,

so the upper bound 2t also cannot be attained. Finally

1 ≤
〈
2tρ
〉
≤ 2t − 1

This result leads to:

2−t ≤2−t
〈
2tρ
〉
≤ 1− 2−t

⇒ 2κ−1 + 2−t ≤θ + 2−t
〈
2tρ
〉
≤ 2κ − 2−t < 2κ

⇒
⌊
log2

(
θ + 2−t

〈
2tρ
〉)⌋

= κ− 1 (3.27)

Let [[·]] ∈ {⌊·⌋, ⌈·⌉, ⌊·⌉}. We will use it just to generalize the rounding expres-

sions. Thus, according to definition of the roundings Def. 1.2 and (3.27)

⋆κ (θ + 2−t
〈
2tρ
〉
) =

2⌊log2(θ+2−t〈2tρ〉)⌋−κ+1 ·
[[
2−⌊log2(θ+2−t〈2tρ〉)⌋+κ−1 ·

(
θ + 2−t

〈
2tρ
〉)]]

=

[[θ + ρ′]] , where ρ′ = 2−t
〈
2tρ
〉

and 0 < ρ′ < 1 (3.28)

Thus, we proved that ⋆κ(θ+ρ′) = [[θ + ρ′]] for ρ′ = 2−t 〈2tρ〉 for the generalized

notation of rounding. We are going to show now that ⋆κ(θ + ρ) = [[θ + ρ]] for

0 ≤ ρ < 1, then considering each rounding from {⌊·⌋, ⌈·⌉, ⌊·⌉} we prove that

⋆κ(θ + ρ′) = ⋆κ(θ + ρ) which is the relation we need to prove the theorem.

From the theorem hypothesis θ ∈ Z, 2κ−1 ≤ θ ≤ 2κ−1 and 0 ≤ ρ < 1, therefore

⌊log2 (θ + ρ)⌋ = κ− 1. Thus,

⋆κ (θ + ρ) = [[θ + ρ]] (3.29)

Now with the use of (3.28) and (3.29) we will prove that ⋆κ(θ+ ρ) = ⋆κ(θ+ ρ′)

for ρ ∈ [0, 1) and ρ′ ∈ (0, 1) and for the three basic roundings from Def. 1.2

RN or ⋆ = ◦, RD or ⋆ = ∇, RU or ⋆ = ∆.

1) ⋆ = ∇. According to Def. 1.2 we use here ⌊·⌋ instead of [[·]].

⋆κ(θ + ρ′) = ⌊θ + ρ′⌋ = θ

⋆κ(θ + ρ) = ⌊θ + ρ⌋ = θ

⇒ ⋆κ(θ + ρ′) = ⋆κ(θ + ρ)
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2) ⋆ = ∆. Analogically with the use of ⌈·⌉,

⋆κ(θ + ρ′) = ⌈θ + ρ′⌉ = θ + 1

⋆κ(θ + ρ) = ⌈θ + ρ⌉ = θ + 1

⇒ ⋆κ(θ + ρ′) = ⋆κ(θ + ρ)

3) ⋆ = ◦. This case must be divided into 2 subcases: with ρ < 1/2 and

with ρ > 1/2. If ρ = 1/2, then 2tρ = 2t−1 ∈ Z, but we excluded integer

numbers in the beginning of the proof.

a) 0 ≤ ρ < 1/2. In this case we have 0 < ρ′ < 1/2. Thus, we can do as

earlier,

⋆κ(θ + ρ′) = ⌊θ + ρ′⌉ = θ

⋆κ(θ + ρ) = ⌊θ + ρ⌉ = θ

⇒ ⋆κ(θ + ρ′) = ⋆κ(θ + ρ)

b) 1/2 < ρ < 1. In this case we have 1/2 < ρ′ < 1. Thus, similarly to

the previous cases,

⋆κ(θ + ρ′) = ⌊θ + ρ′⌉ = θ + 1

⋆κ(θ + ρ) = ⌊θ + ρ⌉ = θ + 1

⇒ ⋆κ(θ + ρ′) = ⋆κ(θ + ρ)

Thus, as we proved for each of the 3 possible roundings, the theorem is proven

for ⋆κ(θ + ρ′) = ⋆κ(θ + ρ).

The result of this theorem will be used later in our reasoning.

In order to get the final result we perform rounding ⋆κ(2
F̃ (ñ + δ)). However,

we will substitute it by rounding the sum of FP numbers ξ + ζ such that

252 ≤ ξ ≤ 253−1, 0 ≤ ζ < 1. We need to get the bounds for 2F̃ (ñ+ δ). We are

in the subcase where 1
4
2−2w−1+3−κ < 2F̃ ñ < 2−2w−1+2. Consider the left part of

the inequality in this case condition:

1

4
2−2w−1+3−κ < 2F̃ ñ

This leads to
1

4
2−2w−1+3−κ 2−F̃ < ñ.

After the substitution ñ by its upper bound we get

1

4
2−2w−1+3−κ 2−F̃ < 254 − 1.
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From the last expression we can define bounds for F̃ in the current case

F̃ ≥
⌈
−
(
2w−1 + κ− 1 + log2

(
254 − 1

))⌉

= −
(
2w−1 + κ− 1

)
+
⌈
− log2

(
254 − 1

)⌉

= −2w−1 − κ+ 1− 53, as
⌈
− log2

(
254 − 1

)⌉
= −53.

Thus, we can obtain the lower bound for 2F̃ ñ:

2F̃ ñ > 2−2w−1+1−κ−53 · 253

2F̃ ñ >
1

4
· 2−2w−1+3−κ · 253

As we operate the integer values of ñ, we can easily get the inequality like ’≥’

by increasing ñ by 1. Thus,

2F ñ ≥ 1

4
· 2−2w−1+3−κ · (1 + 253). (3.30)

The same way, to get the upper bound consider the right part of the inequality

from the case condition:

2F̃ ñ < 2−2w−1+2

After dividing the both parts by 2F̃ , we get the following:

ñ < 2−F̃ · 2−2w−1+2

And after substitution the lower boundary for ñ:

2−F̃ > 253−2w−1+2

Now we can define the upper bound for F̃ and as earlier we added 1 to lower

bound, now we will subtract 1 from the strict upper bound in order to get the

inequality like ’≤’.

F̃ < −(53 + 2w−1 − 2)

F̃ < −53− 2w−1 + 2

F̃ ≤ −53− 2w−1 + 1

So, the upper bound for the midpoint 2F̃ ñ is

2F̃ ñ ≤ 2−2w−1+2
(
1− 2−54

)
(3.31)

As in the case with normal rounding we will compute ⋆κ(2
F̃ (ñ+ δ)) .

The bounds for 2F̃ (ñ+ δ) are now easy to compute:

1

4
· 2−2w−1−κ+3 ·

(
1 +

3

4
· 2−53

)
≤ 2F̃ (ñ+ δ) ≤ 2−2w−1+2

(
1− 3

4
· 2−54

)
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In order to perform the rounding ⋆κ(2
F̃ (ñ+ δ)) as summation of FP numbers,

we introduce another variable. Let be q ∈ Z, q = 4ñ+ 4δ. Then,

⋆κ(2
F̃ (ñ+ δ)) = 2−2w−1−κ+3 · ⋆κ

(
22

w−1+κ−3 · 2F̃ (ñ+ δ)
)

= 2−2w−1−κ+3 · ⋆κ
(
22

w−1+κ−32F̃−2q
) (3.32)

Now, let us focus on what the machine does with rounding ξ + ζ such that:

252 ≤ ξ ≤ 253 − 1, 0 ≤ ζ < 1. As we want to consider all the possible

roundings we use again the notation [[·]], where [[·]] ∈ {⌊·⌋, ⌈·⌉, ⌊·⌉}. So, after all

the declarations we have:

⋆κ (ξ + ζ) = 2⌊log2 |ξ+ζ|−κ+1⌋ ·
[[
2−⌊log2 |ξ+ζ|−κ+1⌋ · (ξ + ζ)

]]
,

⋆κ (ξ + ζ) = 252−κ+1
[[
2−52+κ−1(ξ + ζ)

]]
,

as ⌊log2 |ξ + ζ| − κ+ 1⌋ = ⌊log2 |ξ + ζ|⌋ − κ+ 1 = 52− κ+ 1

Let ξ and ζ be so, that performs the following:

2−52+κ−1(ξ + ζ) = 22
w−1+κ−3 · 2F̃−2 · q.

Now, after substitution it to (3.32) and taking 2−52+κ−1 out of the rounding

operation, we get

⋆κ(2
F̃ (ñ+ δ)) = 2−2w−1−κ+3 ⋆κ

(
22

w−1+κ−3 · 2F̃ (ñ+ δ)
)

= 2−2w−1−κ+3 ⋆κ
(
2−52+κ−1(ξ + ζ)

)

= 2−2w−1−κ+3 2−52+κ−1 ⋆κ (ξ + ζ)

= 2−2w−1−50 ⋆κ (ξ + ζ)

Now, we can finally determine the values of ξ and ζ:

ξ = 252
⌊
2−52 · 252−κ+1 · 22w−1+κ−3 · 2F̃−2 · q

⌋

ζ = 252−κ+1 · 22w−1+κ−3 · 2F̃−2 · q − ξ

After the simplifications we get

ξ = 252
⌊
2−4+F̃+2w−1 · q

⌋

ζ = 248+F̃+2w−1 · q − ξ

ξ + ζ = 248+F̃+2w−1 · q.
Let us remember the technique from Lemma 3.6. Let be 0 ≤ τ < 2κ−1, then

we have 2κ−1 ≤ 2κ−1 + τ < 2κ ⇒ ⌊log2(2κ−1 + τ)⌋ = κ − 1. According to

definition of the FP rounding Def. 1.2:

⋆53(2
κ−1 + τ) = 2⌊log2(2

κ−1+τ)⌋ ·
[[
2−⌊log2(2κ−1+τ)⌋(2κ−1 + τ)

]]

=
[[
(2κ−1 + τ)

]]

= 2κ−1 + [[τ ]]
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So, as in Lemma 3.6, we got the following result

⋆53(τ) = ⋆53(2
κ−1 + τ)− 2κ−1.

If we can prove that

0 ≤ 22
w−1+κ−3 · 2F̃−2 · q < 2κ−1 (3.33)

we may compute our rounding as follows:

⋆κ(2
F̃ (ñ+δ)) = ⋆κ(2

F̃−2 ·q) = 2−2w−1−κ+3 ·(⋆κ(2κ−1+22
w−1+κ−3 ·2F̃−2 ·q)−2κ−1))

(3.34)

Let us prove (3.33). First of all we need to normalize q. So, 2F
′
q′ = 2F̃−2q.

Then, q′ is normalized and 255 ≤ q′ ≤ 256−1. Thus, proving (3.33) is the same

as proving

0 ≤ 22
w−1+κ−3 · 2F ′ · q′ < 2κ−1.

From (3.30) and (3.31) we had the bounds for F̃ :

−2w−1 − κ− 53 + 1 ≤ F̃ ≤ −53− 2w−1 + 1

As F ′ = F̃ − 2 we get the following bounds for F ′:

− 2w−1 − κ− 53− 1 ≤ F ′ ≤ −53− 2w−1 − 1 (3.35)

Thus, (3.33) is proven with the following reasoning:

2−2w−1−κ−54 ≤ 2F
′ ≤ 2−52−2w−1−2

2−2w−1−κ−54 · 255 ≤ 2F
′ · q ≤ 2−52−2w−1−2 · (256 − 1) < 2−52−2w−1−2 · 256

2−2w−1−κ+1 ≤ 2F
′ · q < 22−2w−1

22
w−1+κ−3 · 2−2w−1−κ+1 ≤ 22

w−1+κ−3 · 2F ′ · q < 22
w−1+κ−3 · 22−2w−1

1

4
≤ 22

w−1+κ−3 · 2F ′ · q < 2κ−1

We proved even the more strict condition than in (3.33), so (3.33) is also

satisfied and we can use now (3.34) with one detail: we change 22
w−1+κ−3 ·2F ′ ·

q′ = σ + ρ, where

σ = ⌊22w−1+κ−3 · 2F ′ · q′⌋
ρ = 22

w−1+κ−3 · 2F ′ · q′ − σ

and let be θ = 2κ−1 + σ. Now, (3.34) takes the following form:

⋆κ(2
F̃ (ñ+δ)) = 2−2w−1−κ+3·(⋆κ(2κ−1+σ+ρ)−2κ−1) = 2−2w−1−κ+3·(⋆κ(θ+ρ)−2κ−1)
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Defined earlier θ ∈ Fκ, it is easy to prove. It is trivial that θ ∈ Z. We need to

check if 2κ−1 ≤ θ ≤ 2κ − 1. It is possible to do with (3.35) and bounds for q′.

So,

θ = 2κ−1 + ⌊22w−1+κ−3 · 2F ′ · q′⌋ ≥ 2κ−1.

Additionally:

22
w−1+κ−3 · 2F ′ · q ≤ 22

w−1+κ−3 · 2−2w−1−53+1−2 · (256 − 1) ≤ 2κ−57 · (256 + 1) < 2κ−1,

⌊22w−1+κ−3 · 2F ′ · q⌋ ≤ 2κ−1 − 1

The previous inequations give us the upper bound for θ: θ ≤ 2κ − 1. Hence

we get that θ ∈ Fκ. Now, finally we can use the theorem 3.1 to compute

⋆κ(2
F̃ (ñ+ δ)), substituted ρ by ρ′ = 2−κ < 2κρ >.

⋆κ(2
F̃ (ñ+ δ)) = 2−2w−1−κ+3 · (⋆κ(θ + ρ)− 2κ−1)

= 2−2w−1−κ+3 · (⋆κ(θ + ρ′)− 2κ−1)

Therefore, now all the steps of the algorithm shown on Figure 3.3 are detailed, proven

and implemented. This long theory gives the way of getting the final result which is

then easy to implement.

3.3.7 Conclusion and Discussion

In this section an algorithm for conversion of decimal string representing a FP num-

ber to a binary number was developed. The algorithm performs integer inner com-

putations and is therefore independent of currently set rounding mode. The memory

consumption of the algorithm is known beforehand, so there is no memory allocations

and it could be used in embedded systems. The result may be produced via short or

long path in terms of easy or hard rounding. However, there is a pitfall in choosing

the short or long path. When the input number x is a binary FP number itself,

the binary version and the breakpoint are the representations of the result. For the

moment, our algorithm detects that such an input is too close to the midpoint and

performs hard rounding with unnecessary computations. The FP numbers F53 are

the subset of midpoints, or numbers from F54. For directed roundings (RU, RD, RZ)

the rounding bounds are the FP numbers, for RN rounding mode rounding bounds

are the numbers from F54 \F53. Thus, for efficient conversion of string representation

of FP numbers the new direct path should be added: after the test whether x was a

FP number it is returned as the result. This is left for the future work. Implemen-

tation of this direct path would increase the performance of our code and make it

comparable with the current version of the scanf operations for FP numbers. This

comparison as well as possible optimizations of the algorithm is of great interest for

future.
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double res, theta;

uint64_t q, qprime, sigma, rhoTimes2ToTheG, rhoPrimeTimes2ToK, rest, rhoPrime, temp;

int64_t Fprime, G, Erho;

binary64wrapper wrapper;

...

qprime = 4 ∗ n_tild + 4 ∗ delta;

Fprime = F − 2;

qprime = q;

if (qprime < TWO_TO_55) {

qprime = qprime << 1;

Fprime−−;

}

G = Fprime + 1024 + 50;

sigma = qprime >> G;

rhoTimes2ToTheG = qprime & ((1ull << G) − 1);

rhoPrimeTimes2ToK = rhoTimes2ToTheG >> (G − 53);

rest = rhoTimes2ToTheG & (1ull << (G − 53) − 1);

if (rest !=0) {

rhoPrimeTimes2ToK |= 1;

}

wrapper.i = ((1023+52) << 52) | sigma;

theta = wrapper.f;

rhoPrime = rhoPrimeTimes2ToK >> 53;

Erho = −53;

temp = rhoPrimeTimes2ToK;

while (temp < (1ull << 52)) {

temp = temp << 1;

Erho−−;

}

wrapper.i = ((Erho + 1024) << 52) | (temp & ((1ull << 52) − 1));

rhoPrime = wrapper.f;

if (rhoPrime != 0.0) {

res = underflowinexact();

}

wrapper.f = theta + rhoPrime;

wrapper.f = wrapper.f − 4503599627370496.0;

wrapper.i |= (1023 − 1024 − 50) << 52;

res = wrapper.f;

return res;

Listing 3.3: Subnormal rounding for hard case
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3.4 Mixed-radix FMA

An FMA operation means execution of multiplication and addition (or subtraction)

within only one rounding:

fma(x, y, z) = ⋆k(xy ± z),

x, y, z ∈ Fk, ⋆k ∈ {◦k,∇k,∆k ✄✁k}. Thus, the operation gives a “better” result, than

usual multiplication and addition operations, which will produce a double rounding.

Several issues with double rounding were discussed in [7,68]. For mixed-radix version

of FMA we accept any possible combination of inputs and output radix. As there

are two operations within one rounding, implementation of mixed-radix FMA gives

already addition (subtraction) and multiplication. It is also a base for division and

square root [46, 61, 84]. Thus, implementation of mixed-radix FMA is the base in

the research on mixed-radix arithmetic operations.

The IEEE754 Standard requires correctly-rounded implementation of the basic

arithmetic operations (+,−,×, /,√ , FMA). Getting the correctly-rounded result for

a mixed-radix FMA is not easy due to the TMD (reviewed in Chapter 1). Conversion

between binary and decimal is rarely errorless: FP numbers of one radix rarely match

the values from the discrete set of FP numbers of other radix [62]. The TMD may

be solved with precomputing the worst cases, or the cases when the exact results of

the operation are so close to the rounding bound that it is not possible to choose the

rounded result. The following theory is applied to binary64 and decimal64 formats.

We estimate the size of the problem later in this section and as it is tremendous our

theory is unfortunately not scalable to 128-bit formats.

This section is not about the implementation of mixed-radix FMA operation, it

is a beginning of the research on this topic that contains only worst cases search.

We start with a brief overview of the problem in Section 3.4.1 and a short survey on

the used technique with continued fractions in Section 3.4.2, then we continue with

detailed algorithm and proofs. We finish this section with our algorithm, results

and short conclusion on mixed-radix FMA (Section 3.4.9). Actually implementing a

mixed-radix FMA is left to the future work.

3.4.1 Brief Overview of the Problem

We start with a mathematical formalization of the mixed-radix FMA operation and

the worst cases search. There are three inputs and an output in FMA operation

and we consider here any possible combination of input and output radices. Thus,

we investigate an expression d = ⋆k(a · b ± c), where a, b, c, d are some binary or

decimal FP numbers and ⋆k ∈ {◦k,∇k,∆k ✄✁k} is a rounding mode. As we know,

floating-point numbers may have different signs, so when performing the worst cases

search, we have to pay attention on the signs of inputs, too (the sign of the output
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is determined by the signs and absolute values of inputs). FMA operation has

16 variants depending on the sign of operation and on the signs of inputs but we

consider first only positive inputs. The impact of all these signs is investigated later

in Section 3.4.7.

We are going to use mixed-radix notation, shown in preface to the current Chap-

ter: we represent each number as 2E5Fm with the mantissa m scaled in one binade.

Thus our mixed-radix FMA may be written as

2E05F0m0 = ⋆k(2
Ea5Fama · 2Eb5Fbmb ± 2E25F2m2), (3.36)

where k is the precision of the result. We discuss the bounds for all the used pa-

rameters later, for the moment we can note them as m0,ma,mb,m2 ∈ [2k−1, 2k − 1],

E0, Ea, Eb, E2 ∈ E, and F0, Fa, Fb, F2 ∈ F, where E,F are intervals of integers.

The key point of the FMA operation is to perform multiplication and addition in

one rounding. The first operation (multiplication) may be performed exactly with

the use of a higher-precision mixed-radix number: 2E15F1m1 = 2Ea5Fama · 2Eb5Fbmb,

for example 22k−1 ≤ m1 ≤ 22k. And then, after replacement of the multiplication

our FMA operation is reduced to

2E05F0m0 = ⋆k(2
E15F1m1 ± 2E25F2m2). (3.37)

with the constraint 2E15F1m1 ≥ 2E25F2m2, which might require summands swap.

As the result of addition or subtraction may be not representable in the results

format due to the hidden radix conversion, we write the following, which is the

essential question of TMD:

2E15F1m1 ± 2E25F2m2 ≈ 2E05F0m0.

This transforms into the following fraction after division by m0, 2
E1 and 5F1 :

m1 ± 2E2−E15F2−F1m2

m0

≈ 2E0−E1

5F1−F0
.

To make this formula look more compact, we introduce new variables: T = E2−E1,

S = F2 − F1, B = E0 − E1, A = F1 − F0. Then our FMA is transformed to

m1 ± 2T5Sm2

m0

≈ 2B

5A
. (3.38)

To find the worst cases of an operation or a function we have to find the smallest

nonzero distance between the function value and the FP midpoint [9]:

min
m0,m1,m2,A,B,S,T

∣∣∣∣
m1 ± 2T5Sm2

m0

− 2B

5A

∣∣∣∣ . (3.39)

All the parameters for minimum search are discrete and this minimum may be found

brute-force. However, the ranges are large (see Section 3.4.4 for numerical values)
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which means that this search is hard in combinatoric sense: there are too many

variants to be considered. Considering the expression inside minimum in details, we

may notice that it is a rational approximation of a rational number. Moreover, as

we are interested in minimum, this is the so-called best rational approximation: it

is closer to the considered number than other approximations. Continued fractions

are used to find the best rational approximation for the given number. We will

consider the fraction 2B/5A as a given rational number and with continued fractions

we are going to find its best approximation. The advantage here, is that we get rid

of brute-force iteration over the ranges for m0,m1,m2. However, the application of

continued fractions does not take into account this specific form of the numerator,

so there is an extra step needed. All this is discussed later.

So, for the moment for all positive inputs and output there are two subtasks

for this minimum search: the case with “+” sign and with “−” sign in numerator

m1±2T5Sm2 that we call later addition case and subtraction case. The algorithm of

the best rational approximation looks for fractions with positive bounded numerator

and denominator, therefore it might be applied to the addition case straightforward.

For the addition case we aim to find

min
m0,m1,m2,A,B,S,T

∣∣∣∣
m1 + 2T5Sm2

m0

− 2B

5A

∣∣∣∣ . (3.40)

Then, trivially for the subtraction case it is

min
m0,m1,m2,A,B,S,T

∣∣∣∣
m1 − 2T5Sm2

m0

− 2B

5A

∣∣∣∣ . (3.41)

The next subsection contains a short survey on the application of continued frac-

tions for such rational approximations. Then in Section 3.4.7 we provide discussion

on considering the signs of the inputs and the subtraction case. Without loss of

generality we add a condition

m1 ≥
1

2
2T5Sm2. (3.42)

This avoids cancellations in numerator for subtraction case.

3.4.2 Short Survey on Continued Fractions

This section contains several definitions on continued fractions and an overview of

the algorithm used further for best rational approximation. More details on this

topic may be found in Khinchin’s book [50] and in paper of Cornea et al. [22].

Definition 3.2 (Continued fraction). An expression of the form

a0 +
1

a1 +
1

a2+...

is called a continued fraction.
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Definition 3.3 (Convergent). Every finite continued fraction with numerical ele-

ments a1, a2, . . . , an is represented as an ordinary fraction p/q, which is called a

convergent.

Definition 3.4 (Mediant). A mediant of two fractions a/b and c/d is called a frac-

tion
a+ c

b+ d
.

Mediants of convergents are convergents too.

One of the important properties of the continued fractions is that they may repre-

sent each real number. For rational numbers these fractions are finite, for irrational

infinite. The most important application of continued fractions is representation of

numbers with some predefined accuracy (see theorems 9 and 13 in [50]). Continued

fractions are used to compute the best approximation of some number x and it is

proven in [50] that each best approximation of x is its convergent.

Definition 3.5 (Best approximation). A rational fraction a/b is called a best approx-

imation of a real number x if every other rational fraction c/d with a denominator

not larger than b differs from x by larger amount. In other words, 0 < d ≤ b, a
b
6= c

d

implies ∣∣∣x− c

d

∣∣∣ >
∣∣∣x− a

b

∣∣∣ .

So, we try to find a fraction a/b that minimizes the value
∣∣x− a

b

∣∣. The standard

approach from [50] assumes x to be real, the algorithm from [22] is applied only to

rational numbers x. It considers positive numerators a and denominators b upper-

bounded by some values. Besides that, the modified version looks for the fractions

different from x. We try to find an approximation for x on the left and on the

right. For each of them the two convergents are found on each step a1/b1 and a2/b2.

Then, the closest one is chosen from the best left and the best right approximation.

Classical algorithm makes one step at a time, while modification form the paper of

Cornea et al. skips several steps. Let us detail the classical algorithm first. The

convergents are initialized as follows:

1. for left approximation: a1/b1 = ⌈x⌉ − 1, a2/b2 = ⌈x⌉. So, left approximations

are always smaller than x.

2. for right approximation: a1/b1 = ⌊x⌋, a2/b2 = ⌊x⌋ + 1. Right approximations

are always larger than x.

On the initialization step it is clear that the best left approximation is a2/b2 and the

best right is a1/b1. Then the mediants are computed iteratively until b1 + b2 < N .

As soon as b1+ b2 > N is reached, a1/b1 is taken as the best left approximation, and

a2/b2 as the best right approximation of x. So, when b1 + b2 < N on each step we

compute mediants a/b = a1+a2
b1+b2

and the new pairs of convergents are chosen then.
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For left approximation: if mediant a/b < x the next pair of convergents is

a/b, a2/b2. If x ≤ a/b then the next pair of convergents is a1/b1, a/b.

For right approximation: if mediant a/b ≤ x, we consider a/b and a2/b2. If

x < a/b we choose a1/b1, a/b.

Cornea et al. noticed [22] that this classical approach means computing a tremen-

dous number of mediants, therefore they proposed to skip several steps computing

other convergents instead of mediants. They compute some integer numbers kleft
and kright and depending on their values the following convergents are computed

instead of mediants: a = a1kleft + a2 and b = b1kleft + b2 or a = a1 + a2kright and

b = b1 + b2kright.

This means that the best rational approximation may be useful to estimate or

bound the minimum from (3.40): for each combination of parameters A and B

we find a fraction n/m that approximates the number 2B/5A. Best approximation

search does not take into account the specific form of numerator in (3.40), thus some

additional transformations are required.

3.4.3 General Idea for the Algorithm

We start the essential part with general explanation of the algorithm. For the mo-

ment we consider only the addition case from (3.40), supposing that the inputs were

all positive. We give all the details for this case. The support of negative inputs or

any other combination of signs will be discussed later.

We remind the problem statement once again, putting all the conditions together.

Let be A,B, S, T ∈ Z; m0,m1,m2 ∈ Z,

A ∈ A, B ∈ B, S ∈ S, T ∈ T (3.43)

Numerical ranges for all these and other values are discussed in Section 3.4.4.

2k−1 ≤ m1 ≤ 2k − 1

2k
′−1 ≤ m2 ≤ 2k

′ − 1

2k
′′−1 ≤ m0 ≤ 2k

′′ − 1

(3.44)

with the assumption that m1 ≥ 1
2
2T5Sm2 and that m1+2T 5Sm2

m0
6= 2B

5A
we are looking

for

min
m0,m1,m2,A,B,S,T

∣∣∣∣
m1 + 2T5Sm2

m0

− 2B

5A

∣∣∣∣ . (3.45)

The previous section explained how to find the best rational approximation for

number x ∈ R, which means to find a fraction a/b such that the value
∣∣a
b
− x
∣∣ is

minimal. For the moment we assume that for each combination of parameters A and

B we find the best fraction a/b that approximates the number 2B/5A.

Algorithm to find this best rational approximation takes upper bounds for posi-

tive integer numerator a and denominator b, thus we have to find these bounds first.
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The numerator a in our case is represented as m1+2T5Sm2. As it has to stay integer,

depending on the signs of S and T there are four ways to represent it and therefore

to transform the task.

We are going to iterate the ranges for A,B, S, T and to search for the best rational

approximation on each iteration. Then we find the global minimum after all the

loops. Thus, the scheme of the algorithm is simple: four nested loops for A,B, S, T

and the best rational approximation algorithm in the innermost one. The order of

the loops does not matter for the moment but will be fixed later. Let us consider in

detail the ways to represent numerator a.

1. T ≥ 0, S ≥ 0. The powers are non-negative, therefore no divisions are needed

and the numerator a = m1 + 2T5Sm2 is integer. Its bounds are determined

from (3.44), therefore

2k−1 + 2T5S2k
′−1 ≤ a ≤ 2k − 1 + 2T5S(2k

′ − 1).

Denominator b is the same as in the task (3.40) b = m0 in this and all other

cases. Thus, we are going to search for a fraction a/m0 that minimizes the

following expression:

min

∣∣∣∣
a

m0

− 2B

5A

∣∣∣∣ .

2. T ≥ 0, S < 0. The number 5S is not integer, therefore we cannot take numer-

ator a as in previous case. Therefore, we represent it as a = 5−Sm1 + 2Tm2.

Then, according to (3.44), it is bounded with

5−S2k−1 + 2T2k
′−1 ≤ a ≤ 5−S(2k − 1) + 2T (2k

′ − 1).

As we factorized fraction by 5S, we should do the same for the known number

2B/5A. Therefore, the sought-for minimum transforms into

5S min

∣∣∣∣
a

m0

− 2B

5A+S

∣∣∣∣ .

3. T < 0, S ≥ 0. We avoid division by 2T in order to get an integer number a,

therefore we factorize by 2T and the considered numerator is a = 2−Tm1+5Sm2.

It is bounded by

2−T2k−1 + 5S2k
′−1 ≤ a ≤ 2−T (2k − 1) + 5S(2k

′ − 1).

Similarly to the previous case, factorization of the fraction leads to

2T min

∣∣∣∣
a

m0

− 2B−T

5A

∣∣∣∣ .
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4. T < 0, S < 0. As both parameters are negative we factorize the fraction as

well as the whole expression by 2T5S. Numerators a to be considered for the

best rational approximation take the form of a = 2−T5−Sm1 + m2 and take

values from

2−T5−S2k−1 + 2k
′−1 ≤ a ≤ 2−T5−S(2k − 1) + 2k

′ − 1.

Our task is therefore in searching for

2T5S min

∣∣∣∣
a

m0

− 2B−T

5A+S

∣∣∣∣ .

In the continued fraction theory there is no constraint on special form of numera-

tor or denominator. Thus, we do not take into account the special form of a. So, we

can denote with a∗ the value that the algorithm gives us as the best approximation.

Then we may use a representation a∗ = 2T15S1m1 + 2T25S2m2 ± r, where T1 and T2

1 Procedure leftExpansion(a, S, T):

2 if T ≥ 0 then

3 if S ≥ 0 then

4 α← 2T5S ;

5 β ← 1;

6 else

7 α← max{5−S, 2T} ;

8 β ← min{5−S, 2T} ;

9 end

10 else

11 if S ≥ 0 then

12 α← max{2−T , 5S} ;

13 β ← min{2−T , 5S} ;

14 else

15 α← 2−T5−S ;

16 β ← 1 ;

17 end

18 end

19 a1 ← ⌊ aα⌋ ;

20 r1 ← a− a1α ;

21 a2 ← ⌊ r1β ⌋; // a2 ← ⌈ r1β ⌉ in expansion to the right

22 r ← r1 − a2β ;

23 return a1α + a2β;

Algorithm 9: Expansion of a to the left
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cannot be both zeros (the same applies for S1 and S2) and r > 0. Then, assuming

that a∗ = a± r, we may compute the needed minima. This transformation may be

done within Algorithm 9. We get then the two new approximations of a∗. Similarly

to the continued fraction theory, we call the one that is less then a∗ its left expansion

and the other right. The difference in sign for a∗ = a±r influences only one line (line

20) in the algorithm. Therefore, after the best rational approximation, we perform

the expansion of the numerator to the left and to the right. Thereby, we take into

account the specific form of the numerator. Having two new fractions, we can easily

compute the minima and choose the best one.

On Algorithm 10 we illustrate the described four cases for rational approximation.

Depending on the signs of the exponents T, S, we approximate different values. This

algorithm will be used later in the innermost loop.

3.4.4 Estimation of the Parameter Ranges

To estimate the quantity of iterations in our minimum search the bounds for all the

parameters (3.43)-(3.44) have to be determined. Mantissa m1 was the exact of a

multiplication of two FMA parameters. According to [43] binary64 mantissas may

be normalized so that they fit into [252, 253 − 1], decimal64 mantissas may be scaled

to 54-bit integers. Thus, we may scale a bit the range for mantissas of the two

formats, so that mantissas of both formats are representable. Thus, we represent the

mantissas of the inputs ma and mb as 55-bit integers (3.36). Therefore, the result of

their multiplication, m1 is on 110 bits. To include the guard bits [38], we suppose

that the mantissas of the result and another input are 60-bit integers. Therefore, all

the unknowns in (3.44) are now determined:

k = 110, k′ = 60, k′′ = 60 (3.46)

The choice of 60-bit integers may be criticized here as a waste; however as we use the

algorithm of best rational approximation that skips several convergents at a time,

we assume that this is not a remarkable overhead.

The bounds for A,B, S, T are determined according to [43] and scaling of the

mantissas done previously. We consider slightly enlarged intervals so that the corre-

sponding numbers occupy a certain quantity of bits. Thus,

A = [−211 + 1; 211 − 1]

B = [−212 + 1; 212 − 1]

S = [−211 + 1; 211 − 1]

T = [−212 + 1; 212 − 1]

(3.47)

As mentioned, we are searching for best rational approximation of 2B/5A in four

nested loops, so for all the combinations of the parameters A,B, S, T . This means



3.4. Mixed-radix FMA 105

1 Procedure bestRationalApproximation(amin, amax, S, T, A,B, k, k′, k′′):

Input : amin, amax, S, T, A,B, precisions: k for m1, k
′ for m2, k

′′ for m0

Output: current minimum mc

2 if T ≥ 0 then

3 if S ≥ 0 then

4 amin ← 2k−1 + 2T5S2k
′−1;

5 amax ← 2k − 1 + 2T5S(2k
′ − 1) ;

6 κ← 1 ;

7 α← 2B

5A
;

8 else

9 amin ← 5−S2k−1 + 2T2k
′−1;

10 amax ← 5−S(2k − 1) + 2T (2k
′ − 1) ;

11 κ← 5S ;

12 α← 2B

5A+S ;

13 end

14 else

15 if S ≥ 0 then

16 amin ← 2−T2k−1 + 5S2k
′−1;

17 amax ←≤ 2−T (2k − 1) + 5S(2k
′ − 1) ;

18 κ← 2T ;

19 α← 2B−T

5A
;

20 else

21 amin ← 2−T5−S2k−1 + 2k
′−1;

22 amax ← 2−T5−S(2k − 1) + 2k
′ − 1 ;

23 κ← 2T5S ;

24 α← 2B−T

5A+S ;

25 end

26 end

27
aleft
bleft
←bestLeftApprox(expr, amin, amax, 2

k′′−1, 2k
′′ − 1);

28
aright
bright

←bestRightApprox(expr, amin, amax, 2
k′′−1, 2k

′′ − 1);

29 aleft ← leftExpansion(aleft, S, T);

30 aright ← rightExpansion(aright, S, T);

31 mc ← κ ·min
{∣∣∣aleftbleft

− α
∣∣∣ ,
∣∣∣arightbright

− α
∣∣∣
}

;

32 return mc;

Algorithm 10: The algorithm to compute the appropriate rational approximation

that the total number of iterations is about 212+12+13+13 > 1015 which is extremely

large. In Section 3.4.1 it was shown how to get each of these parameters. Having some

more constraints on the task we can establish certain connection between A,B, S, T
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that allow to reduce their ranges.

3.4.5 How to Reduce the Ranges for the Exponents A,B, S, T

The task is to find the minimum of the following expression:
∣∣∣∣
m1 + 2T5Sm2

m0

− 2B

5A

∣∣∣∣ .

We may formally divide the range of its values with 1/2: the task will be to find the

two minima of the same expression. In the first case this expression takes values less

than 1/2 and in the second one it takes values larger than 1/2. Thus, the first one is

min

∣∣∣∣
m1 + 2T5Sm2

m0

− 2B

5A

∣∣∣∣ , when

∣∣∣∣
m1 + 2T5Sm2

m0

− 2B

5A

∣∣∣∣ ≤
1

2
.

And the second one is

min

∣∣∣∣
m1 + 2T5Sm2

m0

− 2B

5A

∣∣∣∣ , when

∣∣∣∣
m1 + 2T5Sm2

m0

− 2B

5A

∣∣∣∣ >
1

2
.

It is clear that the global result will be among the results of the first task. Therefore,

we add a following constraint to our task of FMA
∣∣∣∣
m1 + 2T5Sm2

m0

− 2B

5A

∣∣∣∣ ≤
1

2
(3.48)

From (3.48) we may find new bounds for the parameter B which do not have

to exceed the initial bounds of B from (3.47). We remind another useful constraint

here:

m1 ≥
1

2
2T5Sm2. (3.49)

From the condition (3.49) we get

m1 + 2T5Sm2 ≤ 3m1.

And trivially m1+2T5Sm2 ≥ m1 as we add a positive value to m1. Thus, the fraction
m1

m0
is bounded by [

2k−1

2k′′ − 1
; 3

2k − 1

2k′′−1

]
.

Therefore from (3.48) we get

m1

m0

− 1

2
≤ 2B

5A
≤ 1

2
+ 3

m1

m0

Which transforms to the following after a multiplication by 5A:

5A
(
−1

2
+

m1

m0

)
≤ 2B ≤ 5A

(
1

2
+ 3

m1

m0

)
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And finally,

5A
(
−1

2
+

2k−1

2k′′ − 1

)
≤ 2B ≤ 5A

(
1

2
+ 3

2k − 1

2k′′−1

)

Thus, we get the new bounds for B after taking a logarithm of the last bounds

and taking into account that B is an integer. As the goal of all these computations

was to reduce the range for B, we take the smallest values from the new bound and

the initial one in B.

Bmin = max

{
inf(B),

⌈
A log2 5 + log2

(
2k−1

2k′′ − 1
− 1

2

)⌉}

Bmax = min

{
sup(B),

⌊
A log2 5 + log2

(
3
2k − 1

2k′′−1
+

1

2

)⌋} (3.50)

We get the new bounds for B that depend on A. Thus, we determine the loop

order too: the outer loop is the iteration on the full range A, the next one is for B.

Numerical experiments have shown that the new range for B contains up to three

values for each A ∈ A. We have two more loops: on S and on T and the range for

T can be reduced too. The new upper bound for T may be found from (3.49):

2T ≤ 2 · 5−Sm1

m2

Therefore, taking into account the bounds for m1 and m2 (3.44) and that T ∈ Z we

get the new upper bound

Tmax = min
{
sup(T),

⌊
−S log2 5 + 2− k′ + log2(2

k − 1)
⌋}

(3.51)

To find the new lower bound for T we need to prove a lemma.

Lemma 3.8. Let m1,m2,m0, A,B, T, S ∈ Z. All the variables are bounded by some

integer numbers, numerical values for these bounds are not important for this lemma.

When maxS,T

∣∣∣2T5S m2

m0

∣∣∣ ≤ 1
4
minA,B

∣∣∣m1

m0
− 2B

5A

∣∣∣, the following holds:

min
A,B,S,T

∣∣∣∣
m1 + 2T5Sm2

m0

− 2B

5A

∣∣∣∣ ≥
3

4
min
A,B

∣∣∣∣
m1

m0

− 2B

5A

∣∣∣∣

Proof. Let us rearrange the fractions in the expression we are interested in:

∣∣∣∣
m1 + 2T5Sm2

m0

− 2B

5A

∣∣∣∣ =
∣∣∣∣
m1

m0

− 2B

5A
+

2T5Sm2

m0

∣∣∣∣

≥
∣∣∣∣
m1

m0

− 2B

5A

∣∣∣∣−
∣∣∣∣2T5S

m2

m0

∣∣∣∣ ≥
∣∣∣∣
m1

m0

− 2B

5A

∣∣∣∣−max
S,T

∣∣∣∣2T5S
m2

m0

∣∣∣∣

≥ 3

4
min
A,B

∣∣∣∣
m1

m0

− 2B

5A

∣∣∣∣

We used the property of absolute value |a| − |b| ≤ |a+ b| to prove the lemma.



108 Chapter 3. Mixed-radix Arithmetic and Base Conversions

The new lower bound for T may be found from not fulfilling conditions of the

lemma. We denote the minimum from the lemma as

M = min
A,B

∣∣∣∣
m1

m0

− 2B

5A

∣∣∣∣

This minimum may be found with best rational approximations for the fraction 2B

5A
.

When the lemma conditions are not fulfilled, we get
∣∣∣∣2T5S

m2

m0

∣∣∣∣ >
1

4
M.

So, after rearranging the products we get

2T >
1

4
5−SM · m0

m2

.

An finally, after using the bounds for m0 and m2:

2T >
1

4
5−SM · 2k

′′−1

2k′ − 1

So, as soon as we get the value of M with best rational approximations, we can

compute the new lower bound for T within the following formula. We take into

account that T has to be integer and the new lower bound should be not less than

the previous one.

Tmin = max

{
inf(T),

⌈
−S log2 5 + log2

(
M

4

2k
′′−1

2k′ − 1

)⌉}
(3.52)

Therefore, with the new ranges for the exponent, we established also the loop

order: we start with A iterating the whole range A, then goes a small loop on B,

then the full range for S and iteration over the reduced range for T .

After the described reduction, the following holds:

max(Emax − Emin) = 3

max(Tmax − Tmin) = 185

The total number of iterations is reduced from about 250 to 4406504932 ≈ 232 or by

99.9996%. However, this number is still quite huge and as on each iteration some

computations are performed it is not feasible to find this minimum on one machine

in less than two months. As we remember, this is the theory only the addition case,

therefore there are even more computations needed to solve the whole problem.

3.4.6 The Full Algorithm

For the addition case with positive inputs all the needed theory is provided. Thus,

we may put the final algorithm for this case. The other cases are quite similar with
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Input : ranges A,B,S,T, precisions k, k′, k′′

Output: minimum m, set of the parameters A∗, B∗, S∗, T ∗ where m is reached

1 for A ∈ A // 1st loop is long

2 do

3 Bmin ← max
{
inf(B),

⌈
A log2 5 + log2

(
2k−1

2k
′′−1
− 1

2

)⌉}
;

4 Bmax ← min
{
sup(B),

⌊
A log2 5 + log2

(
3 2k−1
2k′′−1 +

1
2

)⌋}
;

5 for B ∈ [Bmin, Bmax] // 2nd loop is short

6 do

7 Mleft ← bestLeftApproximation(2B/5A, 2k−1, 2k − 1, 2k
′′−1, 2k

′′ − 1);

8 Mright ← bestRightApproximation(2B/5A, 2k−1, 2k − 1, 2k
′′−1, 2k

′′ − 1);

9 if |Mleft − 2B

5A
| < |Mright − 2B

5A
| then

10 M ←Mleft ;

11 else

12 M ←Mright ;

13 end

14 for S ∈ S // 3rd loop is long

15 do

16 Tmin = max
{
inf(T),

⌈
−S log2 5 + log2

(
M
4

2k
′′−1

2k
′−1

)⌉}
;

17 Tmax ← min
{
sup(T),

⌊
−S log2 5 + 2− k′ + log2(2

k − 1)
⌋}

;

18 for T ∈ [Tmin, Tmax] // 4th loop is short

19 do

20 mc ← bestRationalApproximation(amin, amax, S, T, A,B, k, k′, k′′);

21 if mc < m then

22 m← mc ;

23 A∗ ← A; B∗ ← B ;

24 S∗ ← S; T ∗ ← T ;

25 end

26 end

27 end

28 end

29 end

30 return m,set;

Algorithm 11: Full algorithm for worst cases search in mixed-radix FMA.

some differences that will be discussed in the following sections. The essential part of

the algorithm is presented on Algorithm 11. There is a function call to Algorithm 10,

that handles the four cases described in Section 3.4.3. We remind, that depending

on the signs of T and S numerators for best rational approximation are computed

differently as well as the expression to be approximated.



110 Chapter 3. Mixed-radix Arithmetic and Base Conversions

3.4.7 How to Take into Account the Signs of the Inputs

The FMA operation may contain addition fma(x, y, z) = ⋆k(xy + z) or subtraction

fma(x, y, z) = ⋆k(xy − z). We considered the case with addition assuming that all

the inputs were positive. However, to finish the worst-cases search, the case with

subtraction has to be considered too as well as the impact of all the signs. We

mentioned earlier that taking into account all the signs there are 16 variants of FMA

to be considered: the three inputs and the operation signs may be different. We

have reduced the ternary FMA operation to a binary one in (3.37). To remind, this

may be written as

2E05F0m0 = ⋆k(2
E15F1m1 ± 2E25F2m2)

Mantissas mi are positive, thus the sign of the input (if it was negative) has to

be written implicitly. Therefore, the complete research of the worst cases should

consider the following operation

±2E05F0m0 = ⋆k(±2E15F1m1 ±±2E25F2m2)

with the constraint 2E15F1m1 ≥ 2E25F2m2. The sign of the output 2E05F0m0 is de-

termined with the signs of inputs, constraint on their magnitudes, and the operation

sign. Therefore, we have to consider now 8 variants of mixed-radix FMA. For the

variants with all positive inputs for both addition and subtraction we reduced the

problem to minimum search (3.40) and (3.41). For each combination of inputs and

operation signs there is one of these two minima to find.

Let us consider an example of FMA when the operation sign is “+”, and the

inputs are negative, therefore the output’s sign is thus negative too:

−2E05F0m0 = ⋆k(−2E15F1m1 + (−2E25F2m2))

Therefore, with the similar reasoning we get

−2E05F0m0 ≈ −2E15F1m1 − 2E25F2m2

which is the same as

2E05F0m0 ≈ 2E15F1m1 + 2E25F2m2.

Thus, this case is similar to the detailed one, with positive inputs and addition. We

search for minimum (3.40) here.

Consider an example with “−” sign in FMA and negative inputs:

−2E05F0m0 = ⋆k(−2E15F1m1 − (−2E25F2m2)).

This expression may be rewritten as

−2E05F0m0 ≈ −2E15F1m1 + 2E25F2m2
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Thus, the reasoning from Section 3.4.1 brings us to

−m1 + 2T5Sm2

m0

≈ −2B

5A
,

which leads to minimum search for subtraction from (3.41).

Similarly, all other variations of signs lead to the two problems of minimum

search: the one for additional case and the one for subtraction (3.40)-(3.41). To

summarize, we include all the cases in Table 3.3.

m1 Sign m2 Sign Operation Sign Result Sign Expression for min Search

1 + + + +
∣∣∣m1+2T 5Sm2

m0
− 2B

5A

∣∣∣

2 + + − +
∣∣∣m1−2T 5Sm2

m0
− 2B

5A

∣∣∣

3 + − + +
∣∣∣m1−2T 5Sm2

m0
− 2B

5A

∣∣∣

4 + − − +
∣∣∣m1+2T 5Sm2

m0
− 2B

5A

∣∣∣

5 − − + −
∣∣∣m1+2T 5Sm2

m0
− 2B

5A

∣∣∣

6 − − − −
∣∣∣m1−2T 5Sm2

m0
− 2B

5A

∣∣∣

7 − + + −
∣∣∣m1−2T 5Sm2

m0
− 2B

5A

∣∣∣

8 − + − −
∣∣∣m1+2T 5Sm2

m0
− 2B

5A

∣∣∣

Table 3.3: FMA variants with taking into account inputs and output signs
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3.4.8 What Is Different for the Subtraction Case

The algorithm for best approximations takes positive bounds for numerator and de-

nominator. In subtraction case there is a “−” in the numerator, which may make it

negative. Thus, the same reasoning as for addition case cannot be applied straightfor-

ward. However, splitting the subtraction case into three subcases allows to establish

new bounds for all the variables and thus to solve the problem.

1. m1 − 2T5Sm2 ≥ αm1

2. 0 < m1 − 2T5Sm2 < αm1,

3. m1 − 2T5Sm2 < 0

where |α| < 1, e.g. α = 1/4.

As well as for the addition case there will be four nested loops. Not only the new

bounds for variables change, for some cases the order of loop nesting will be different

too. There will be also four ways to compute the numerator for best approximation

search, like it was described in Section 3.4.3 and in Algorithm 10. The difference is

for the bounds on numerator a.

For the first subcase the loop order stays the same as for addition case: long loop

on A, then short one on B, long loop on S and the innermost short on T ; the new

bounds for B and T are found in the same manner as for the addition case. For two

other cases the loop order should be changed but the idea is the same: the first loop

iterates over the whole interval for S, the second one is for small range T , then the

third loop for A is long again and the fourth for B is short.

3.4.9 Results, Conclusion and Future Work

In this section we have shown how to compute the worst cases for mixed-radix FMA

operation. As the operation takes three inputs, the quantity of computations is enor-

mous. Even though the number of iterations is reduced on about 99%, it stays huge.

As we need reliable and correct results, all the scripts were written in Sollya [18].

To speed up the whole algorithm, the part with best rational approximations was

written directly in C with the use of mpfr [33] and mpz libraries. However, exe-

cution of the easiest addition case required more than three months on a standard

PC. We used a naive approach to parallel the computations: iterations of the nested

loops are independent one from another. Thus, we can split the minimum search

into several subtasks: we split the range for the outermost loop (which is A for the

addition case) into several non-overlapping subdomains and perform the minimum

search on each on these subdomains. The advantage here is that the search of these

minima on smaller ranges may be done in parallel. We split the interval for A into

100 equal subintervals and solved a hundred smaller problems. This number was
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chosen randomly, such splitting means creation of 100 subtasks of smaller dimen-

sion. For the outermost loop we got about 45 iterations. To get the final minimum

the minimal answer of these hundred was chosen. This is not an optimal split in

terms of iterations: the number of iterations is not the same for each subdomain of

A and for some values of A the range for B is empty. As the worst cases search is

done only once, this non-optimality is admissible.

After splitting the whole task into 100 smaller tasks, we ran each on the node of

cluster BIG in LIP6. The results were already obtained for the addition case and

for the first subcase of subtraction. Other scripts are still running. The number

of iterations executed for the addition case is 4406504932, for the subtraction case

is 4495112310. The result for addition case is about 2.84 · 10−80 and is reached on

the set of parameters A∗ = 96, B∗ = 273, S∗ = 2, T ∗ = −132. The result for the

first subcase of subtraction minimum search is about 2.15 · 10−80 and is reached

on the following set of the exponents A∗ = 119, B∗ = 326, S∗ = −24, T ∗ = −80.
Performing backward transformations, we may get the binary and decimal FP values

for hard roundings, that have to be taken into account during the implementation

of mixed-radix FMA. Therefore, we should obtain conditions on parameter ranges

when roundings are easy and when they are hard. We may start its implementation

when all the results are obtained.





Conclusion and Perspectives

Every human activity, good or bad, except

mathematics, must come to an end.

Paul Erdős4

In this thesis, we investigated two ways to improve and enlarge the floating-point

(FP) environment. One considered the implementation of several different varia-

tions for mathematical functions. Another way to enlarge the FP environment is

to develop mixed-radix operations. Today it becomes possible to generate imple-

mentations for black-box specifications of mathematical function in several minutes.

The accuracy of the obtained code is guaranteed by construction, performance is

comparable to glibc libm or even better. Till today it is impossible to mix FP num-

bers of different radices within one operation, except a recent work on comparison.

However, this is the natural direction for evolution of the IEEE754 Standard and

FP environment. We started research on mixed-radix arithmetic operations from

the FMA as its implementation would give addition, subtraction, multiplication and

may be reused in certain algorithms for division or square root. Thus, the research

on mixed-radix FMA paves the way to mixed-radix arithmetic operations.

Do not Write the Code, Generate It!

Mathematical functions are commonly used but are not required by the IEEE754

Standard as their correctly-rounded results are hard to obtain because of the Table

Maker’s Dilemma. Recently there is a growing interest in non-standard implemen-

tations of mathematical functions: less accurate implementations are usually better

in performance. There are some other parameters that may influence performance

of the mathematical functions, e.g. final accuracy, implementation domain, degree

of polynomial approximation. The state of the art shows that modern mathematical

libraries (libms) cannot stay static. They should contain several implementations for

each function to provide users with more choices. Implementation of a large quantity

4Paul Erdős(1913-1996) was a Hungarian mathematician, known not only for his outstanding

scientific results but also for inventing so-called “Erdős number” measure.
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of such choices or function flavors as we called them is tedious as well as a choice

of flavors to maintain. Metalibm addresses this problem: it gives a possibility to

specify the function to be implemented to the user and then generates code for the

needed function flavor.

Today there is no more need to write mathematical functions implementations

manually. Moreover, there is a possibility to get the code for some specific set of

parameters: e.g. non-standard accuracy, or domain smaller than the one defined

by the format. This generated code is correct by construction, not in the sense of

correctly-rounded result, but in the sense of guarantee for the final accuracy. Metal-

ibm produces generic code, there is no special optimization for some particular hard-

ware, and no parameters for hardware specifications. Therefore, for plain function

flavors found in every libm on particular architectures Metalibm cannot outperform

the libraries written by the corresponding processor manufacturer teams. However,

for “exotic” flavors Metalibm is at least of comparable performance as the standard

libms.

The working precision is chosen in order to guarantee the demanded final ac-

curacy of the result. Besides that, Gappa proofs are provided for each generated

implementation. Metalibm decides automatically which steps it needs to execute

for function implementation: argument reduction and domain splitting, polynomial

approximation and reconstruction. Our code generator detects essential algebraic

properties that allow it to reduce the domain with some well-known techniques.

The list of such properties is not fixed, it may be easily enlarged to support more

functions.

We optimized the domain splitting algorithm [53] in order to save memory to

store the polynomial coefficients and get the polynomials of maximum possible de-

gree. The new splitting algorithm produces less subdomains and the degrees of the

corresponding polynomials are more uniformed. Research on generation of vector-

izable implementations has started [52]. Difficulties occur for those function flavors

that require domain splitting. The key point of vectorizable code generation is to

avoid branching, therefore to avoid if-else statements used to determine the right

polynomial coefficients for the input values. The proposed technique replaces this

branching by a polynomial function. However, it uses a posteriori condition checks

and we cannot know beforehand if this procedure finishes with success.

Mix the Floating-Point Numbers of Different Radices

The second direction in enlarging the FP environment is research on mixed-radix

operations. The 2008 version of the IEEE754 Standard required operations that mix

different formats of the same radix, so it is quiet natural to evolve to the idea of mix-

ing radices. A novel algorithm of radix conversion was developed: the computations

are done in integer arithmetic, so no FP flags are affected. To determine the FP



Conclusion 117

number that is the result of this radix conversion we need to determine its two fields:

exponent and mantissa. Exponent determination is straightforward and performed

with several basic arithmetic operations and a look-up table. Computation of the

mantissa uses a small exact table.

These tables are then reused in the proposed algorithm of scanf analogue on

FP numbers. This is a conversion operation from decimal character sequence of

arbitrary length to a binary FP number. We proposed a novel algorithm that is

independent from the current rounding mode. Its memory consumption is known

beforehand. Thus, this code is re-entrant and may be used in embedded systems.

The research on a mixed-radix version of FMA operation has started with the worst

cases search. We have shown how to avoid brute-force searching with the use of

continued fractions and establishing relations between some parameters. However,

the complete search requires too many computations and cannot be finished on one

machine in reasonable time. We obtained the first results of this search recently.

I hope that mixed-radix operations will be present in one of the next revisions of

IEEE754 Standard.

Perspectives

Metalibm produces flexible implementations for parametrized mathematical func-

tions. However, for the moment it does not generate code to filter out the special

cases, e.g. NaNs, infinities or too large inputs that cause overflow. As the complete

implementation of a mathematical function always contains this filtering step, this is

a short-run goal for future work in code generation direction. Polynomial approach

for the vectorization does not work for all the flavors and we discussed the two ap-

proaches to improve it in Section 2.2.5. A mid-term goal for the Metalibm project

is implementation of these new reconstruction procedures for vectorizable code.

Metalibm generates too generic code that cannot outperform implementations

with specific instructions selection. Therefore, an interesting direction is to add

hardware specification as a parameter for generation. However, that will make our

Metalibm similar with its analogue that we mentioned earlier [11, 12]. This is also

a code generator for mathematical functions, the difference is that it does not take

black-box functions and as it takes hardware specification as a parameter it opti-

mizes the instruction set for the produced code. Our generator is a “push-button”

approach while another one is mostly an assistant tool for function developers. The

two projects have a lot of common points, so the strong distinction is hard to be

established and is a topic for long discussions. Thus, an interesting and ambitions

perspective would be to merge the two approaches for fully-parametrized libm gen-

eration.

Metalibm could be used to generate the functions for currently-existing libms and

probably to replace the existing implementations. As it does not use any specific
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instruction selection for the moment, the generated versions may be too slow in

comparison with some particular libms. Metalibm generates code on demand and

guarantees accuracy by construction, while the existing mathematical libraries are

completely static. However, some integrated version of existing libms and Metalibm

can be useful: for slow but accurate implementations Metalibm generated code could

be used, and for fast or default versions the current code from libms. It would be

difficult to integrate Metalibm to any of the existing libraries: for the moment there

is no mechanism to support and to choose among several function implementations.

However, inclusion of generated implementations or even the generator to the existing

libraries is an interesting future direction. The expertise on this is mostly on libm

or compiler developers now.

We did not provide any guidelines on the choice of parameters. For example, the

table size for table-driven implementations may depend on some particular architec-

ture. If we are generating a generic flavor that will be run on various machines, how

can this value be chosen? The same questions arise for other parameters: degree

bound for polynomial approximation or even the final accuracy. The main bonus

of the code generator is that we can produce various implementations, measure and

compare them in some sense (performance for example). Then the best implementa-

tion may be easily chosen. Thus, a tool for Metalibm that helps the users to choose

the best parameter set could be useful. Therefore, the users may specify admissible

intervals for all the parameters, generate several implementations for all the possible

combinations and then pick the best one.

Metalibm generates proof for the polynomial approximations. Specific argument

reduction procedures bring their errors too. However, we cannot completely prove

the final accuracy for such function implementations. This is another direction in

Metalibm development.

The first results for FMA worst cases search were obtained recently, therefore this

search has to be finished in the shortest terms. Once we get all the worst cases, the

implementation of mixed-radix FMA can be started. We reduced the problem to the

minimum search of the expression with several parameters (seven, to be precise). The

four of them were the exponents of 2 and 5, that were obtained from the exponents

of the input numbers. Therefore, backward transition is also possible and having the

set of the exponents for the worst cases, in the implementation of the mixed-radix

FMA we can divide the inputs into simple and hard rounding subroutines. The

algorithm for the mixed-radix FMA needs to be developed, proven, implemented

and thoroughly tested.

As mentioned, FMA is a base in mixed-radix arithmetic research: once imple-

mented, we get immediately multiplication, addition and subtraction. The future

goal is to develop algorithms for all the other mixed-radix arithmetic operations.

This requires worsts cases search for each operation. In this worst cases search for

FMA we used several techniques to reduce the quantity of iterations. However, it
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still stays large and the proposed method is not appliable to 128-bit formats. A

novel technique should be found for this.

The algorithm for arbitrary precision base conversion is complicated and contains

a lot of mathematical deductions, therefore is of great interest to publish too. This is

an analogue of scanf function, so its implementation could interest some colleagues

from industry. The similar algorithm should be developed for prinf analogue: con-

version from binary FP number to decimal character sequence. We assume that

this one should be easier to develop that the scanf: binary FP numbers have finite

precision. The trick will be to get the identity operation as a superposition of these

two conversions.

Developed algorithm for conversion from decimal string representation to a binary

FP number is based on lots of theorems proven in this thesis. However, serious

testing and comparison with the existing methods is needed. As the length of the

user input is arbitrary, the number of inputs tends to infinite, therefore testing all the

amount of possible inputs is not feasible. Future work here may consider bringing

the formal proofs such as in Coq. There might be added another path for producing

the result: when there is no rounding needed, the result should be obtained without

extra computations.
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[33] L. Fousse, G. Hanrot, V. Lefèvre, P. Pélissier, and P. Zimmermann. MPFR:

A multiple-precision binary floating-point library with correct rounding. ACM

Transactions on Mathematical Software, 33(2):13:1–13:15, June 2007.

[34] M. Frigo and S. G. Johnson. The design and implementation of FFTW3. Pro-

ceedings of the IEEE, 93(2):216–231, 2005. Special issue on “Program Genera-

tion, Optimization, and Platform Adaptation”.

[35] S. Gal. Computing elementary functions: A new approach for achieving high

accuracy and good performance. In Accurate scientific computations. Springer,

1986.

http://www.agence-nationale-recherche.fr/?Projet=ANR-13-INSE-0007
http://www.agence-nationale-recherche.fr/?Projet=ANR-13-INSE-0007


124 Bibliography

[36] S. Gal. An accurate elementary mathematical library for the IEEE floating

point standard. ACM Trans. Math. Softw., 17(1):26–45, 1991.

[37] D. M. Gay. Correctly rounded binary-decimal and decimal-binary conversions.

Numerical Analysis Manuscript 90-10, nov 1990.

[38] D. Goldberg. What every computer scientist should know about floating point

arithmetic. ACM Computing Surveys, 23(1):5–48, 1991.

[39] M. Gouicem. Conception et implantation d’algorithmes efficaces pour la

résolution du dilemme du fabricant de tables sur architectures parallèles. PhD
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déterminer les polynômes d’approximation. Académie des Sciences, Paris, 1934.



Bibliography 127

[74] S. Shane. Mechanism to detect IEEE under-

flow exceptions on speculative floating-point operations.

http://www.google.com/patents/WO2001033341A1?cl=en, May 10 2001.

WO Patent App. PCT/US2000/025,490.

[75] S. P. Shary. Solving the linear interval tolerance problem. Mathematics and

Computers in Simulation, 39(1–2):53 – 85, 1995.

[76] S. P. Shary. Interval algebraic problems and their numerical solution. PhD

thesis, Novosibirsk Institute of Computational Mathematics and Mathematical

Geophysics, 2000.

[77] J. R. Shewchuk. Adaptive precision floating-point arithmetic and fast robust

geometric predicates. Discrete & Computational Geometry, 18(3):305–368, 1997.

[78] G. L. Steele Jr. and J. L. White. How to print floating-point numbers accurately.

In Proceedings of the ACM SIGPLAN’90 Conference on Programming Language

Design and Implementation (PLDI), White Plains, New York, USA, June 20-

22, 1990, pages 112–126, 1990.

[79] P. Tang. Binary-integer decimal encoding for decimal floating point. Technical

report, Software and Solutions Group, Intel Corporation, 2005.

[80] P.-T. P. Tang. Table-driven implementation of the exponential function in IEEE

floating-point arithmetic. ACM Trans. Math. Softw., 15(2):144–157, June 1989.

[81] P. T. P. Tang. Table-driven implementation of the logarithm function in IEEE

floating-point arithmetic. ACM Trans. Math. Softw., 16(4):378–400, 1990.

[82] P. T. P. Tang. Table-driven implementation of the expm1 function in IEEE

floating-point arithmetic. ACM Trans. Math. Softw., 18(2):211–222, 1992.

[83] T. Viitanen, P. Jaaskelainen, O. Esko, and J. Takala. Simplified floating-point

division and square root. In Acoustics, Speech and Signal Processing (ICASSP),

2013 IEEE International Conference on, pages 2707–2711, May 2013.

[84] T. Viitanen, P. Jaaskelainen, and J. Takala. Inexpensive correctly rounded

floating-point division and square root with input scaling. In Signal Processing

Systems (SiPS), 2013 IEEE Workshop on, pages 159–164, Oct 2013.

[85] C. Vinschen and J. Johnston. Newlib. https://sourceware.org/newlib/.

[86] R. C. Whaley and A. Petitet. Minimizing development and main-

tenance costs in supporting persistently optimized BLAS. Soft-

ware: Practice and Experience, 35(2):101–121, February 2005.

http://www.cs.utsa.edu/~whaley/papers/spercw04.ps.

https://sourceware.org/newlib/


128 Bibliography

[87] A. Ziv. Fast evaluation of elementary mathematical functions with correctly

rounded last bit. ACM Trans. Math. Softw., 17(3):410–423, Sept. 1991.





Abstract

This work investigates two ways of enlarging the current floating-point environment. The first is to

support several implementation versions of each mathematical function (elementary such as exp or log

and special such as erf or Γ), the second one is to provide IEEE754 operations that mix the inputs and the

output of different radices. As the number of various implementations for each mathematical function is

large, this work is focused on code generation. Our code generator supports the huge variety of functions:

it generates parametrized implementations for the user-specified functions. So it may be considered as a

black-box function generator. This work contains a novel algorithm for domain splitting and an approach

to replace branching on reconstruction by a polynomial. This new domain splitting algorithm produces

less subdomains and the polynomial degrees on adjacent subdomains do not change much. To produce

vectorizable implementations, if-else statements on the reconstruction step have to be avoided.

Since the revision of the IEEE754 Standard in 2008 it is possible to mix numbers of different precisions

in one operation. However, there is no mechanism that allows users to mix numbers of different radices

in one operation. This research starts an examination of mixed-radix arithmetic with the worst cases

search for FMA.

A novel algorithm to convert a decimal character sequence of arbitrary length to a binary floating-

point number is presented. It is independent of currently-set rounding mode and produces correctly-

rounded results.

Keywords: Computer arithmetic, floating-point numbers, IEEE754 Standard, elementary func-

tions, code generator, Metalibm, argument reduction, domain splitting, mixed-radix arithmetic, FMA,

radix conversion

Résumé

Cette thèse fait une étude sur deux moyens d’enrichir l’environnement flottant courant : le premier est

d’obtenir plusieurs versions d’implantation pour chaque fonction mathématique (élémentaires comme

exp, log et spéciales comme erf,Γ), le deuxième est de fournir des opérations de la norme IEEE754, qui

permettent de mélanger les entrées et la sortie dans les bases différentes. Comme la quantité de versions

différentes pour chaque fonction mathématique est énorme, ce travail se concentre sur la génération

du code. Notre générateur de code adresse une large variété de fonctions: il produit les implantations

paramétrées pour les fonctions définies par l’utilisateur. Il peut être vu comme un générateur de fonctions

bôıtes-noires. Ce travail inclut un nouvel algorithme pour le découpage de domaine et une tentative de

remplacer les branchements pendant la reconstruction par un polynôme. Le nouveau découpage de

domaines produit moins de sous-domaines et les degrés polynomiaux sur les sous-domaines adjacents ne

varient pas beaucoup. Pour fournir les implantations vectorisables il faut éviter les branchements if-else

pendant la reconstruction.

Depuis la révision de la norme IEEE754 en 2008, il est devenu possible de mélanger des nombres

de différentes précisions dans une opération. Par contre, il n’y a aucun mécanisme qui permettrait de

mélanger les nombres dans des bases différentes dans une opération. La recherche dans l’arithmétique en

base mixte a commencé par les pires cas pour le FMA.

Un nouvel algorithme pour convertir une suite de caractères décimaux du longueur arbitraire en

nombre flottant binaire est présenté. Il est indépendant du mode d’arrondi actuel et produit un résultat

correctement arrondi.

Mots-Clés: Arithmétique des ordinateurs, virgule flottante, norme IEEE754, fonctions élémentaires,

variantes de fonctions, générateur de code, Metalibm, réduction d’argument, découpage de domaine,

arithmétique en base mixte, FMA, conversion de base
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