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Free-induction decay (FID) signal [START_REF] Chupin | Segmentation automatique du complexe hippocampe-amygdale e partir de donnees d'imagerie par resonance magnetique : application e des cas cliniques et e la modelisation de sources en magneto/electro-encephalographie[END_REF] the T2 contrast that depends on TE. Bottom image illustrates the T1 contrast that depends on the repetition time TR [START_REF] Chupin | Segmentation automatique du complexe hippocampe-amygdale e partir de donnees d'imagerie par resonance magnetique : application e des cas cliniques et e la modelisation de sources en magneto/electro-encephalographie[END_REF] [START_REF] Kaaouana | 2d harmonic ltering of MR phase images in multicenter clinical setting: Toward a magnetic signature of cerebral microbleeds[END_REF]. The signal amplitude (left) provides a T2* contrast with hyper-signals for CSF, isosignal for WM and GM and hyposignals for susceptibility inclusions. The phase image relates to magnetic eld inhomogeneity that is especially inhomogeneous around susceptibility inclusions. . . . . . . . . . . 1.2.12 Demonstration of the eect of magnetic susceptibility of a cylindrical water/air interface; distortions and intensity loss in the GRE acquired image: B 0 = 7T, TR / TE = 500/15 ms, matrix = 256 x 256 [START_REF] Belaroussi | Correction par traitement d images de l'artefact de susceptibilité magnetique dans les images IRM[END_REF] 

A)

A owchart of the processing steps, the two pre-processing steps in italics were not used in these datasets but might be useful for other types of data, and B) a detailed schematic of the thresholding step is provided, from [Barnes et al., 2011]. . 

Schematic illustration of the 2D harmonic ltering framework working both in image

and Fourier domains. As can be seen, to estimate the Laplacian, spatial derivative are calculated in two steps allowing the inclusion of unwrapping using modulo operations.

A mask, generated with SPM is then used to set to 0 the Laplacian outside the brain.

Integration is nally performed in Fourier domain with the adequately regularized inverse lter leading to an internal eld map estimate. . . . . . . . . . . . . . . . . .

2DHF (in blue

) and HPF (in green) lters in Fourier domain. A 1D prole through Fourier domain center is plotted, with the same cut-o frequency for the two lters (a = 0.2 for illustration, equivalent to 20% of the central frequencies attenuated). . . (e,f ) simulated internal eld map only, and (g,h) simulated background eld map only. (i,j) internal eld map calculated with HPF, and (k,l) its residual. (m,n)

internal eld map calculated with PDF, and (o,p) its residual. (q,r) internal eld map calculated with 2DHF, and (k,l) its residual. Sagittal slices are shown with a voxel ratio of 2. Internal eld maps computed with HPF (e-h), PDF (i-l) and 2DHF (m-p), image dierence (HPF-2DHF(q-t)) and (PDF-2DHF(u-x)) displayed on axial and sagittal List of Tables 1.2.1 Magnetic Susceptibilities of a few biological Tissue [START_REF] Haacke | Susceptibility Weighted Imaging in MRI: Basic Concepts and Clinical Applications[END_REF] in SI. This value is devided by 4π to obtain the dimensionless CGS value of volume 
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Rating results for all detected CMBs for each subject group (see 

INTRODUCTION

With the overall ageing of the population, dementia has become a major challenge for public health systems. Alzheimer's disease (AD) is considered the most common form of dementia aecting this population, followed by vascular dementia. It would aect 860000 people in France, with 250000 new cases reported each year. AD is a neuro-degenerative disease that aects brain tissues and its main clinical pattern is a gradual and irreversible loss of cognitive functions such as memory. On MRI or histology, it is associated with a systematic pattern of progressive damage of brain structures, from the temporal cortex to more widespread regions. AD's pathophysiology

is not yet completely understood, but two types of lesions are considered as related with AD processes: amyloid plaques, that are an accumulation of amyloid peptide located in both neocortex and hippocampus, and neurobrillary tangles. However, there may not be such a clearcut partition between AD and vascular dementia. In fact, a high prevalence (20-30 %) has been observed for cerebro-vascular lesions in patients with AD while 30 to 50% of patients with vascular dementia show AD-related histological lesions. This overlap between vascular and degenerative lesions may suggest the involvement of common vascular factors in vascular dementia and AD.

Alzheimer's disease was declared a major national cause in France in 2007. Among ADrelated issues, early diagnosis required particular attention and has been focused on by the neuroimaging community through the search for ecient imaging biomarkers.

In particular, recent advances of Magnetic Resonance Imaging make it possible to detect dierent types of structural and functional abnormalities at an early stage of the disease. The most commonly used MRI anatomical biomarkers for AD are brain and hippocampal volume loss. Chapter 1

CONTEXT

The aims of this chapter are to introduce cerebral microbleeds (CMBs), their clinical context and to describe their neuroimaging features and the challenges raised by their identication on magnetic resonance imaging (MRI). State-of-the-art methods that dealt with both visual and semi-automatic CMBs identication and that aimed to standardize their detection will be discussed. At the end of this chapter, the overall objectives of this PhD will be developed.

Clinical context

The goal of this section is to provide an overview on CMBs, their denition, clinical meaning and challenges related to making their identication ecient.

History of cerebral microbleeds

Very small vascular lesions such as cerebral microbleeds have long been impossible to see in-vivo, even standards such as catheter angiography was not sensitive enough [START_REF] Gregoire | Cerebral microbleeds as a marker of small vessel disease: new insights from neuro-imaging and clinical studies in stroke patients[END_REF]. In-vivo investigation of such lesion only was made possible with recent MRI technical progress. Sharf et al [START_REF] Scharf | Signicance of haemorrhagic lacunes on MRI in patients with hypertensive cerebrovascular disease and intracerebral haemorrhage[END_REF] were the rst to report the presence of small, intra-cerebral hyposignal on T2-weighted Fast Spin Echo (FSE) MRI sequence in patients with hypertensive cerebrovascular disease and intra-cerebral hemorrhage (ICH) at low magnetic eld strength (1 Tesla), they called them hemorrhagic lacunae. Since then, the frequent use of MRI sequences that are sensitive to magnetic susceptibility during research and clinical investigation of neurological disorders has led to the frequent detection of small, homogeneous, round foci of low signal intensity in dierent populations: patients with ischemia or hemorrhagic stroke, hypertensive and healthy elderly subjects [START_REF] Fazekas | Histopathologic analysis of foci of signal loss on gradient-echo T2*-weighted MR images in patients with spontaneous intracerebral hemorrhage: evidence of microangiopathy-related microbleeds[END_REF].

In 1996, at least three studies revealed strong association between ICH and CMBs on gradient-recalled-echo (GRE) T2*-weighted MRI, suggesting that CMBs may provide key information regarding the pathogenesis of ICH. Greenberg et al [START_REF] Greenberg | Petechial hemorrhages accompanying lobar hemorrhage: detection by gradient-echo MRI[END_REF] reported lobar focal hypointensities in nine out of fteen cerebral amyloid angiopathy (CAA) patients;

Oenbacher et al [START_REF] Oenbacher | MR of cerebral abnormalities concomitant with primary intracerebral hematomas[END_REF] described similar intra-cerebral focal hypointensities in 39 of 120 patients with spontaneous ICH; Chan et al [START_REF] Chan | Multifocal hypointense cerebral lesions on gradient-echo MR are associated with chronic hypertension[END_REF] reported multifocal hypointense cerebral lesions on patients with chronic hypertension. The majority were described as homogeneous, rounded lesions with diameters varying between 2 and 5 mm, and they were named `microbleeds'.

Later in 1999, the histopathological correlates of CMBs began to be reported. Histology-MRI correlations were studied in eleven brains of people who died after non-traumatic ICH [START_REF] Fazekas | Histopathologic analysis of foci of signal loss on gradient-echo T2*-weighted MR images in patients with spontaneous intracerebral hemorrhage: evidence of microangiopathy-related microbleeds[END_REF], and in three brains of people who died from a variety of other diseases [START_REF] Tanaka | Small chronic hemorrhages and ischemic lesions in association with spontaneous intracerebral hematomas[END_REF]. Sections with small hyposignals on a T2*-weighted echo plannar imaging 

CMBs denition on MRI

As seen above CMBs are paramagnetic and are, thus, visible on MRI sequences that are sensitive to magnetic susceptibility dierences (such as GRE T2*-weighted sequence). According to Greenberg et al. [Greenberg et al., 2009] CMBs should be black or very hypointense on T2*weighted MRI, round or ovoid (excluding tubular or linear structures such as those representing vessels or a resorbed macrobleed), blooming (larger or more conspicuous on GRE than Spin-Echo 

Clinical relevance

CMBs has long been considered as low abundance bleeding sequelae and, thus, as asymptomatic markers of small vessel diseases. Recent interest in these lesions has increased and several MRIpathology correlations showed that they are associated with other manifestations of small vessel disease and AD [START_REF] Vernooij | Cerebral Microbleeds: Accelerated 3d T2*-weighted GRE MR Imaging versus Conventional 2d T2*-weighted GRE MR Imaging for Detection[END_REF], Cordonnier et al., 2009]. The alteration of the walls of small vessels may theoretically produce steady extravasations of erythrocytes through the fragile vascular walls [START_REF] Roob | Magnetic resonance imaging of cerebral microbleeds[END_REF] or tiny areas of haemorrhage.

Recent research studies suggest that their origin and clinical interpretation may depends on their location [START_REF] Cordonnier | Brain microbleeds: more evidence, but still a clinical dilemma[END_REF][START_REF] Cordonnier | Prevalence and severity of microbleeds in a memory clinic setting[END_REF]; deep CMBs are markers of hyper-tensive arteriopathy (HTA) while those conned in the cortical-sub-cortical region are linked to cerebral amyloid angiopathy (CAA), as illustrated in Figure 1.1.3. et al., 2012].

The presence of strictly lobar CMBs has been included in the diagnostic criteria of CAA.

Their association to small vessel arteriopathies (HTA and CAA) makes CMBs a valuable indicator of cerebral small vessel disease [START_REF] Gregoire | Cerebral microbleeds as a marker of small vessel disease: new insights from neuro-imaging and clinical studies in stroke patients[END_REF]. Moreover, this association suggests their implication in both hypotheses regarding the pathological process of Alzheimer's disease: those associated with HTA (deep CMBs) result of ischemia or arteriosclerosis, on the benet of the vascular hypothesis: those associated with CAA could result from the amyloid protein deposition on the walls of blood vessels. CMBs understanding may contribute to the understanding of AD; Figure 1.1.4 illustrates how CMBs may play a prominent role in this neurodegenerative disease.

Figure 1.1.4: Proposed representation of the pathophysiological pathway of AD with a prominent role for CMBs, suggesting that they might act as a link between the two pathways. APP = amyloid precursor protein [START_REF] Cordonnier | Brain microbleeds: more evidence, but still a clinical dilemma[END_REF].

To conclude, several studies were undertaken to determine the meaning of these hypointensities observed on MRI. CMBs are no longer considered as asymptomatic deposits in the perivascular regions. Their prevalence on MRI in the general population varies from 5% to 35% [START_REF] Murao | Intracerebral haemorrhage and cognitive decline[END_REF]. In fact, they are of special interest in the aging population and are relatively common in vascular dementia, with reported prevalence ranging between 35% and 85% [START_REF] Cordonnier | Brain microbleeds: more evidence, but still a clinical dilemma[END_REF].

However, the understanding of CMBs etiology is rendered more dicult due to several issues.

Their size is very small and only those of sucient size can be seen on MRI. Their size is also variable and their appearance is disturbed by the blooming eect, thus leading to a larger apparent radiological size than their real size. CMBs are widespread in the brain, and can easily be missed by visual inspection. Visual CMB's rating is a time consuming procedure, limiting the number of brains with CMBs that have been analyzed in MRI-pathology correlation studies [START_REF] Gregoire | Cerebral microbleeds as a marker of small vessel disease: new insights from neuro-imaging and clinical studies in stroke patients[END_REF]. Further large, well-designed histopathological studies combined with MRI correlation are needed to characterize the range and threshold of haemosiderin pathology required to create a CMB visible on MRI and conrm the bleeding or ischemic origin of CMBs according to the underlying arteriopathy [START_REF] Gregoire | Cerebral microbleeds as a marker of small vessel disease: new insights from neuro-imaging and clinical studies in stroke patients[END_REF].

MR magnetic susceptibility and Phase MR image

In order to better understand how CMBs can be detected on MRI, this chapter briey reviews the physical basis of magnetic susceptibility and how it aects the signal of MRI sequences that are sensitive to magnetic susceptibility 1 .

Whereas an electric charge is the basis for an electric eld, an electric charge in motion produces a magnetic eld. For example, a loop carrying current produces a magnetic eld equivalent to the one produced by a magnetic dipole (see Figure (1.2.1)).

Figure 1.2.1: The magnetic eld, B, and magnetic moment m, due to an electric current, I.

A magnetic dipole is a basic physical entity that acts as a source of the magnetic eld [START_REF] Haacke | Susceptibility Weighted Imaging in MRI: Basic Concepts and Clinical Applications[END_REF]. It is dened by two poles that attract or repel one another. A magnetic dipole is characterized by a vector quantity called the magnetic moment, m. When a material is placed into a magnetic eld, electrons and nucleons acquire dierent energy states.

A physical quantity, the spin, is used to describe these energy states; the spin is proportional to the magnetic moment of either an electron or a nucleon. The total magnetic moment of an atom can be calculated by vector summation of the individual spins from nucleons and electrons. Since the gyromagnetic ratio 2 of an electron is several hundreds of times larger than the gyromagnetic ratio of a nucleon, the magnetic moment of an atom is usually dominated by 1 The italic notation in this chapter stands for vectors.

2 The ratio of its magnetic dipole moment to its angular momentum.

the overall electronic spin. Due to thermal energy at ambient temperature, the individual atom magnetic dipole moments point randomly in dierent directions and the resulting vector is in fact negligible in the absence of external magnetic eld. However, when placed in an external magnetic eld, the individual magnetic moments tend to counteract thermal eects and align with the external eld, thus resulting in a macroscopic magnetic moment. If a large number of atoms contained in a given volume are considered, the magnetization can be dened as the average magnetic moments over the volume, enabling to dene a property called the magnetic susceptibility as dened below. It can be noted that these macroscopic magnetic properties are dominated by electronic eects, and that it will produce deformation of the external magnetic eld in MRI. However, most biological tissues contain predominantly water molecules, and 63%

of the human body is consequently hydrogen atoms. The nuclear magnetic moments are the basis for the nuclear magnetic resonance (NMR) phenomenon: a nuclear magnetization can be produced for protons of hydrogen atoms, thus making MRI possible [START_REF] Haacke | Susceptibility Weighted Imaging in MRI: Basic Concepts and Clinical Applications[END_REF].

Magnetic susceptibility

Let us consider an uniform external magnetic eld B 0 = µ 0 • H, with µ 0 the absolute vacuum permeability and H the measured eld [START_REF] Haacke | Susceptibility Weighted Imaging in MRI: Basic Concepts and Clinical Applications[END_REF].

When a material is placed into the eld B 0 , the actual eld B given in Tesla (T) inside the material is

B = µ 0 (H + M ) (1.2.1)
where M is the induced magnetization, or the volume average of magnetic moments.

The induced magnetization M inside the material may be related to the H eld by a constant

χ through M = χH (1.2.2)
χ is called magnetic susceptibility. It implies linearity between the external eld and the induced magnetization and depends on the average microscopic content. In the International System of Units (SI), M and H are measured in amperes per meter. χ is therefore a dimensionless quantity.

DIAMAGNETISM, PARAMAGNETISM, AND FERROMAGNETISM

χ is an intrinsic property of the material, reecting the perturbations of the applied magnetic eld. Most materials are classied either as diamagnetic, paramagnetic, or ferromagnetic.

At the atomic level, any two paired-electrons together in an orbital are diamagnetic electrons.

Atoms with all diamagnetic electrons (paired) are called diamagnetic atoms. A paramagnetic electron is an unpaired electron. An atom is considered paramagnetic as soon as it has one paramagnetic electron. Therefore, paramagnetic materials are attracted by an applied magnetic eld and yield internal, induced magnetic elds in the direction of the applied magnetic eld.

Diamagnetic materials create an induced magnetic eld in a direction opposite to an applied magnetic eld and are therefore repelled by the applied magnetic eld.

If the susceptibility χ is positive, the material or the object is paramagnetic. If χ is negative, the material is diamagnetic. For vacuum, χ is zero.

Human tissues contain mostly water, thus, almost all soft tissues in the body are diamagnetic. Bone is slightly more diamagnetic than soft tissues due to its calcium content [START_REF] Hopkins | Magnetic susceptibility measurement of insoluble solids by NMR: magnetic susceptibility of bone[END_REF]. In MRI, it is practical to express susceptibility as paramagnetic or diamagnetic relative to the susceptibility of water or a reference tissue, rather than that of vacuum.

Indeed, dierences with tissues appear more clearly, and, as a volume property, it then relates to dierences in content as compared to water or a reference tissue. Some examples of magnetic susceptibilities of a few biological tissue are given in Table 1.2.1. Manganese, iron

(F e 2+ and F e 3+ ) and gadolinium (Gd 3+ ) are some examples of paramagnetic ions [START_REF] Haacke | Susceptibility Weighted Imaging in MRI: Basic Concepts and Clinical Applications[END_REF]. Molecular oxygen is also slightly paramagnetic. The addition of a given paramagnetic substance to a tissue will result in a small change in the volume susceptibility. To account for the change of susceptibility for a given amount of paramagnetic subtance,[S], added to water or tissue, the molar susceptibility, χ m , can be dened, and the resulting suceptibility is then:

χ [S] = χ [S]=0 + χ m × [S] (1.2.3) χ m is measured in m 3 • mol -1 (SI) or cm 3 • mol -1 (CGS (Centimetregramsecond system of units)).

Tissue Magnetic susceptibility

Cortical bone -12.82 × 10 -6

Lipids

-10 × 10 -6

Hemoglobin protein (without Fe ions)

-9.91 × 10 -6

Pure water -9.05 × 10 -6

Fully deoxygenated whole blood -7.9 × 10 -6

Fully deoxygenated red blood cell -6.56 × 10 -6

Ferritin +520 × 10 -6

Table 1.2.1: Magnetic Susceptibilities of a few biological Tissue [START_REF] Haacke | Susceptibility Weighted Imaging in MRI: Basic Concepts and Clinical Applications[END_REF] in SI. This value is devided by 4π to obtain the dimensionless CGS value of volume susceptibility.

As can be seen, iron, that can be found in various forms in the body such a ferritin or paramagnetic ions in blood products, will induce important susceptibility variations in tissues.

MRI basics

Though it is a recent technology (introduced by Lauterbur in 1973 [START_REF] Lauterbur | Image Formation by Induced Local Interactions: Examples Employing Nuclear Magnetic Resonance[END_REF]) as compared to other medical imaging techniques, MRI has a wide range of applications in medical diagnosis and over 25,000 scanners are estimated to be in use worldwide. It is considered as non-invasive without known side eects by itself.

MRI relies on the nuclear magnetic resonance principle, that relates to the ability that have some nuclei to absorb energy of an electromagnetic eld on resonance (or photons with a given specic energy). The resonance condition relates to the energy level dierence between the microscopic nuclear spin states. When a sample is placed in a static magnetic eld B 0 , its magnetic moments align themselves with the direction of B 0 resulting in an average nuclear magnetization. This magnetization M is thus oriented in the longitudinal direction (z) as schematically illustrated in Figure 1.2.2 (b) for a spin 1/2 nucleus such as the one of hydrogen.

The nuclear magnetization can thus absorb energy from an electromagnetic eld at specic frequencies: for a spin 1/2, the angular velocity of M around B 0 , which is called the Larmor angular frequency, ω and given by

ω = -γ • B (1.2.4)
where γ is the gyromagnetic ratio of the nucleus. The gyromagnetic ratio of hydrogen nucleus is γ = 2.675.10 8 rd/T , and in practice clinical magnetic elds are between 1.5T and 7T leading to the Larmor frequencies in the radiofrequency (RF) range. During realignment, the nuclei lose energy that can be measured, from http://www.mr-tip.com.

When switching o B rf after the excitation, a relaxation phenomenon occurs. This reects the return to equilibrium of tissue magnetization during which the nuclei lose energy as a measurable signal; In response to the force bringing them back to their equilibrium orientation, the protons undergo a rotating motion precession, much like a spin wheel under the eect of gravity. These eects are formally described by the Bloch equations with relaxation:

dM dt = γM × B - M xy T 2 + (M 0 -M z ) T 1 (1.2.6)
where T1 is the longitudinal relaxation time and T2 the tranverse relaxation time, M z the longitudinal component (along B 0 ) and M xy the tranverse component.

These temporal changes in magnetization M xy induce a time-varying magnetic ux, and an induced current at the Larmor frequency in a receiver coils at the origin of the MR signal. The frequency at which protons resonate depends on the strength of the local magnetic eld in the imaged volume. This signal is referred to as the free-induction decay (FID), see Figure 1.2.4.

Figure 1.2.4: Free-induction decay (FID) signal [START_REF] Chupin | Segmentation automatique du complexe hippocampe-amygdale e partir de donnees d'imagerie par resonance magnetique : application e des cas cliniques et e la modelisation de sources en magneto/electro-encephalographie[END_REF].

The FID response signal is measured by induction using a conductive coil placed around transverse M xy and longitudinal M z [START_REF] Chupin | Segmentation automatique du complexe hippocampe-amygdale e partir de donnees d'imagerie par resonance magnetique : application e des cas cliniques et e la modelisation de sources en magneto/electro-encephalographie[END_REF].

The process associated with the time parameter T1, is responsible for the recovery of the longitudinal magnetization, M Z . T1 is the characteristic time required for nuclei in the sample to realign to initial magnetization with an exponential decay. It is also called the spin-lattice relaxation time, as it relates to local energy exchange with all the surrounding tissue. After a time of T1, M Z will recover 63% of its steady state value. The other relaxation process, associated with the characteristic time T2, is accounting for the exponential decay of the transverse magnetization, M xy . It is also called the spin-spin relaxation time to account for interactions between dipoles: the nuclei lose their phase coherence because of their proximity which results in a loss of M xy faster than T1. In the relaxation period, after a time T2 transverse magnetization has lost 63% of its amplitude.

It is to be noted that the main magnetic eld is never perfectly homogeneous and inhomogeneities may result either from intrinsic defects in the magnet itself or from susceptibilityinduced eld distortions produced by the tissue or other materials placed within the eld. Correcting these inhomogeneities cannot be done perfectly. This inhomogeneous eld results in inhomogeneous frequencies at the scale of the imaged volume and the transverse magnetization apparently decays faster than would be predicted by T2; to account for this faster apparent relaxation, an apparent relaxation time T2* 3 is introduced. T2* is thus always smaller than or equal to T2 as illustrated in Figure 1.2.6.

3 T2* ="T2-star". Table 1.2.2: T1 and T2 relaxations times for brain tissues at 1.5T.

Additionally the water distribution in soft tissues gives the possibility to distinguish between them through these relaxation constant. The subtle diering characteristic of dierent tissues (T1, T2 and proton density (PD)) are the origin of contrast in MRI images. T1 and T2 contrast mechanisms are illustrated in Figure 1.2.7. 

Localization principles

The relaxation principles have been presented regardless of localization. To generate an image, localization principles are needed. MRI consequently uses spatial encoding methods to divide the sample into voxels 4 . Three major principles are the slice selection, the readout encoding, and the phase encoding that are combined in imaging sequences. Generally speaking, to localize signals the magnetic eld is changed spatially. This is performed using the so called 'gradients', or the spatial derivative of the magnetic eld along B0. The gradients can be represented as a vector to account for the 3 components of the spatial derivation along x, y, and z of the magnetic eld. The gradients can then be applied in any direction and changed rapidly during an imaging sequence. Changing spatially the magnetic eld has the eect of changing the resonance frequency in proportion, which is the basis of localization principles in MRI.

For the slice selection, a slice selection gradient G s is used to select the anatomical volume of interest. By applying G s , nuclei experience a dierent magnetic eld strength dependent on their position along that gradient. A frequency selective RF pulse is applied at the same time, thus only ipping the magnetization within this slice. When this B rf pulse is applied with a frequency [ω ± δω], only the nuclei experiencing the corresponding magnetic eld will be excited, resulting in the rst partition of voxels. Within this slice, the position of each point will then be encoded in the two remaining dimension.

The second localization principle is the readout gradient, or frequency encoding gradient G f .

When applied perpendicularly to the slice encoding gradient and after the excitation, it results in a change of Larmor frequencies in this direction. The acquired signal thus contains dierent frequencies: an analysis of the frequency content using a Fourier transform thus provides an amount of signal as a function of position along the readout gradient.

The third localization principle is to apply a phase encoding gradient,G p in the third di- rection. It modies the spin resonance frequencies, inducing dephasizing, which persists after the gradient is interrupted. This results in all the protons precessing at the same frequency but with dierent phases. This sequence is then repeated with dierent gradient G p , resulting in dierent accumulated phases and leading to a discrete Fourier encoding. After a Fourier transform among this phase encoding dimension, localization is then obtained.

These principles are illustrated in the following section detailing the gradient-echo imaging sequence.

Gradient Echo Imaging and k-space The gradient recalled echo (GRE) MRI sequence is considered the simplest sequence in MRI.

Figure 1.2.9 illustrates a generic spoiled 2D single-echo gradient echo sequence. An asymmetric bipolar readout gradient (which is the same as the frequency-encoding gradient) is required to create an echo (a gradient-echo in this case). Each cycle (TR) record one line of data in k-space with dierent steps 5 as follows:

1. GRE sequence starts with the B RF producing a ip angle of between 0 and 90 degree: a ip angle lower than 90°, results in a faster recovery of longitudinal magnetization that allows shorter TR/TE and acquisition time.

2. A slice selection gradient G s is applied together with the RF pulse.

3. A phase encoding gradient G p is applied simultaneously to a dephasing G f to phase spins at the center of the acquisition period; this ensure translation from the center of k-space from A to B in Figure 1.2.9.

4. When switching the polarity of G f , spins are rephased ; Nx data points are equidistantly sampled from B to C via the center of k-space during the readout step.

5. Note that an extra slice gradient is applied before the next RF pulse. It is called the spoiler and aims to destroy residual transverse magnetization to prepare the next cycle.

6. The excitation is then repeated as many times as necessary (Ny) to ll the raw data matrix along the direction G p .

The k-space concept is essential in MRI. It relates to the amount of dephasing that the magnetization acquires subject to the gradients. Considering the case of 2D encoding, we have:

k x = γ 2Π ˆt 0 G f • dτ (1.2.7)
and

k y = γ 2Π ˆt 0 G p • dτ (1.2.8)
The measured signal can be expressed as:

s(k x , k y ) = Constant × ¨(ρ(x, y) × exp (2Πi(k x x + k y y))) dxdy (1.2.9)
Fourier transform is then used to transform the measured k-space complex data s(kx, ky)

into image space ρ(x, y). This image data is then manipulated for dierent clinical utility, and with TR and TE to provide the desired contrast. For example, a magnitude image is used to provide the desired contrast, while phase images can be used to measure ow or magnetic eld.

The resulting complex signal can be written as

ρ (θ) = ρ m (θ) exp (-i ϕ) (1.2.10)
where ρ m (θ) is the magnitude given by

ρ m (θ) = ρ 0 sin θ exp -T E T 2 * × [1-exp( -T R T 1 )] /[1-cos θ exp( -T R T 1 )]
(1.2.11)

If the local magnetic eld is not homogeneous, the local frequency varies by ω, and ϕ represents the accumulated dephasing after a time TE:

ϕ = ω T E (1.2.12)
GRE Phase MR image and its relationship to susceptibility MRI provides a complex image, with an amplitude and a phase. Amplitude image can be modulated to generate contrast. The phase image is more complex to analyze and has thus been discarded from MR-based analysis till recently. Generally speaking, the phase describes the orientation across time of the magnetization vector in the transverse plane, see Figure 1.2.10.

MR signal is received using a quadrature detection, which results in two data streams with a 90°phase dierence. The digitized values from these signals are the real part and the imaginary part of each complex data point in k-space. Magnitude and phase images result from the Fourier transform of data and are dened as

x 2 + y 2 for the magnitude and as tan -1 y

x for phase image. As presented in the previous section, the phase can provide information on the local magnetic eld. From the Larmor equation, the relationship between the magnetic eld B and the dephasing ϕ is given by

ϕ = -γ B T E (1.2.13) since B = g χB 0 (1.2.14)
where g is a geometric factor depending on the susceptibility distribution [START_REF] Homan | Measurement of magnetic susceptibility and calculation of shape factor of NMR samples[END_REF].

Consequently, the relationship between dephasing, local susceptibility variation and magnetic eld B 0 can be written as

ϕ = -γg χ B 0 T E (1.2.15)
ϕ is dependent on the local tissue susceptibility.

Susceptibility artifact in MRI

If we consider an applied magnetic gradient G x , the eld at a position x is given by:

B (x) = B 0 + G x • x (1.2.16)
the corresponding Larmor frequency using previous equation is given by:

ω (x) = -γ (B 0 + G x • x) (1.2.17)
When the magnetic eld is disturbed by the presence of a magnetic material, the net precession frequency of the spins in or around the material is inuenced not only by the applied gradient eld, but also by the eld B, induced by the material and ω becomes:

ω (x) = -γ (B 0 + B (x) + G x • x) (1.2.18) ω (x) = -γ B 0 + G x • x + B G x (1.2.19) or ω (x , ) = -γ (B 0 + G x • x , ) (1.2.20)
where

x , = x + B G x (1.2.21)
Consequently, as the spins now precess with an angular frequency ω(x , ) (rather than ω(x)),

the spins inuenced by B(x) are mapped to an incorrect location x , (instead of x) during image reconstruction thus causing distortion. More specically, this issue can be detected in areas with strong magnetic susceptibility dierence [START_REF] Haacke | Susceptibility Weighted Imaging in MRI: Basic Concepts and Clinical Applications[END_REF]]. An example is illustrated in Figure 1.2.12.

Figure 1.2.12: Demonstration of the eect of magnetic susceptibility of a cylindrical water/air interface; distortions and intensity loss in the GRE acquired image: B 0 = 7T, TR / TE = 500/15 ms, matrix = 256 x 256 [START_REF] Belaroussi | Correction par traitement d images de l'artefact de susceptibilité magnetique dans les images IRM[END_REF].

Along time, these spins get out of phase with each other. At the voxel level, phase dispersion within a voxel results in a decrease of the net signal of that voxel because of T2* dephasing.

Therefore, geometric measurement in gradient echo MRI and its derivatives (including T2*W, SWI) fundamentally suer from inherent blooming artifacts: haemosiderin deposits exert a high susceptibility eect on the local magnetic eld, which results in a larger area of signal loss.

State-of-the-art: identication and detection of CMBs

In this section, we will rst introduce dierent imaging techniques used for CMBs identication and then, describe the two proposed visual rating scales and state-of-the-art automatic methods used for CMBs identication.

CMBs imaging techniques

In order to better identify CMBs, new MRI sequences and reconstruction techniques were proposed, as described below.

T2*-weighted GRE T2*-weighted gradient recalled-echo (GRE) sequence has a high sensitivity for dierences in magnetic susceptibility and is the most commonly used for CMBs detection as illustrated in (a) on Figure 1.3.1 (a). However, CMB identication is very sensitive to MRI sequence parameters such as eld strength, slices thickness, TE, interslice gap, TR, ip angle or matrix size. A higher eld strength allows higher resolution and more susceptibility eect, but rating may become barely feasible. Longer TEs enhance susceptibility eects but also other susceptibility artifacts and may thus hamper identication of CMBs near air-tissue interfaces. Interslice gap needs to be chosen carefully with respect to CMBs size, as some can be missed if the interslice gap is too large. Susceptibility weighted imaging (SWI) The sequence used for susceptibility weighted imaging (SWI) is based on a high resolution 3D gradient-recalled echo T2*-weighted sequence with a long echo time. In SWI, both magnitude and phase maps are combined in post-processing to create the susceptibility-weighted image. In this processing, thin section magnitude images are multiplied several times by a high-pass ltered phase images. This process increases the contrast between paramagnetic substances (such as CMBs) and surrounding tissue, as can be seen on Figure 1.3.1 (b). The visibility of CMBs and cerebral blood vessels (which contain paramagnetic deoxyhaemoglobin) is further enhanced by the generation of minimal intensity projection (mIP) over a number of slices [START_REF] Haacke | Susceptibility Weighted Imaging in MRI: Basic Concepts and Clinical Applications[END_REF]. SWI is very sensitive to susceptibility eects because of the combined T2* and phase inhomogeneity contrast. It is thus very sensitive to sequence parameters such as echo time TE and voxel size, and it increases with the magnetic eld strength B0 leading to an enhanced sensitivity at higher eld. The main advantageous result of SWI is an enhanced contrast as compared to T2* leading to a facilitated visual detection of magnetic susceptibility inclusions.

Quantitative susceptibility mapping (QSM) Quantitative susceptibility mapping (QSM) [START_REF] Ludovic De Rochefort | Quantitative susceptibility map reconstruction from MR phase data using bayesian regularization: validation and application to brain imaging[END_REF]] is an advanced post-processing technique based on the analysis of the phase images that aims at quantifying susceptibility by solving an inverse problem. The inverse problem of QSM is to recover the susceptibility distribution of the human body from the measured local magnetic eld inhomogeneity that is expressed by the convolution of the susceptibility distribution with the magnetic eld generated by a unit dipole. The inverse problem is ill-posed due to the presence of zeros on a cone in the Fourier representation of the unit dipole kernel. Liu et al [START_REF] Liu | Cerebral microbleeds: burden assessment by using quantitative susceptibility mapping[END_REF] were the rst to investigate the feasibility of characterizing CMBs using QSM and suggested to use total (TS) instead of CMBs size since TS is not sensitive to echo time and eld strength, while apparent size is. The main advantages of QSM in the context of CMB quantication compared to T2*-weighted or SWI approaches are that noise decreases as TE increases (up to the limit of T2*) and that it provides a quantitative index directly linked to the total amount of paramagnetic substance. However, this technique Comparison between imaging techniques Several studies demonstrated that SWI is more sensitive to detect CMBs than conventional gradient-echo T2* sequences [START_REF] Nandigam | MR imaging detection of cerebral microbleeds: eect of susceptibility-weighted imaging, section thickness, and eld strength[END_REF],

and that currently SWI is the most sensitive technique to visualize CMBs in-vivo [START_REF] Ayaz | Imaging cerebral microbleeds using susceptibility weighted imaging: one step toward detecting vascular dementia[END_REF]. Contrast enhancement provided by SWI can make the very small CMBs visible [START_REF] Schrag | Correlation of hypointensities in susceptibility-weighted images to tissue histology in dementia patients with cerebral amyloid angiopathy: a postmortem MRI study[END_REF] compared to conventional GRE T2* MRI [START_REF] Nandigam | MR imaging detection of cerebral microbleeds: eect of susceptibility-weighted imaging, section thickness, and eld strength[END_REF]. In fact, phase is very sensitive to susceptibility dierences and oers the ability to dierentiate between blood products, which are paramagnetic, and calcication or mineralization, which are diamagnetic [START_REF] Ludovic De Rochefort | Quantitative MR susceptibility mapping using piece-wise constant regularized inversion of the magnetic eld[END_REF].

Although there has been general agreement on the radiological properties of CMBs on T2* GRE images, the emergence of new MRI techniques made it possible to improve CMBs detection but also led to extend MRI criteria for identifying CMBs. As a result, there is a lack of standardized specic criteria for various MRI techniques. Many research units have used inhouse CMB rating methods, and although reliability has been reported, the exact methods used (detailed CMB denition criteria, anatomical boundaries, etc.) have usually not been fully described. A standardized approach with clearly described criteria for CMBs and their anatomical location would make it feasible to improve reliability and compare results from dierent centers.

Visual identication

As CMBs are made of paramagnetic substance, sequences sensitive to susceptibility eects provide a unique tool for their in-vivo detection. However, there is yet no consensus regarding the methods used for their detection. To address that issue, investigators have compared a wide variety of MRI sequences and designed visual scales rating for CMBs to better standardize their identication.

Rating scales

A CMB rating scale should provide a uniform rating methodology (including clear denition of CMB detection criteria and anatomical regions) and enable reliable and reproducible data collection to allow more informative cross-study comparisons. Two visual scales have been proposed: MARS (The Microbleed Anatomical Rating Scale) see Figure 1.3.2 [START_REF] S M Gregoire | The Microbleed Anatomical Rating Scale (MARS): reliability of a tool to map brain microbleeds[END_REF] and BOMBS (Brain Observer Microbleed Scale) see Figure 1.3.3 [START_REF] Cordonnier | improving interrater agreement about brain microbleeds: development of the Brain Observer MicroBleed Scale (BOMBS)[END_REF].

The main dierence between both is that MARS classify CMBs into individual lobar region as well as deep structures. Both were designed for clinical practice on T2* GRE weighted images and aimed at characterizing the number of CMBs and their distribution in the brain. The rst part is a guidance for use, a reminder of the denition criteria for CMBs and CMBs mimics. The second part is a table for anatomical categorization (cerebellum, thalamus...) indicating in each case if there is a denite or possible CMB. MARS had higher reliability for deep CMBs (κ = 0.71

Vs κ = 0.54). In general, MARS has better inter rater-reliability (κ = 0.68 [95% CI 0.58 -0.78])

and intra rater reliability (κ = 0.85 [95% CI 0.77 -0.93]) compared to BOMBS. Atlas based method [START_REF] Seghier | Microbleed Detection Using Automated Segmentation (MIDAS): A New Method Applicable to Standard Clinical MR Images[END_REF] Method The rst method dealing with CMBs automatic detection, called MIDAS for Microbleed Detection Using Automated Segmentation, was proposed by Seghier et al [START_REF] Seghier | Microbleed Detection Using Automated Segmentation (MIDAS): A New Method Applicable to Standard Clinical MR Images[END_REF]. It consists of an atlas based segmentation step followed by manual removal of resulting false positives. The segmentation step is an intensity-based statistical classication algorithm included in the framework of the unied segmentation [START_REF] Ashburner | [END_REF] available in the SPM software (Statistical Parametric Mapping), available on the website http://www.l.ion.ucl.ac.uk/spm/.

The unied segmentation combines registration to a standard template, tissue classication and intensity bias correction in an iterative process that maps voxelwise probabilities of brain tissues/structures such as gray matter (GM), white matter (WM) and cerebral spinal uid (CSF). It is based on the prior information of an atlas built into a standard space and provided by the MNI (Montreal Neurological Institute) introduced in a Bayesian model allowing the evolution of these maps. It was proposed for 3D T1 weighted datasets with nearly isotropic spatial resolution. In MIDAS, the challenge was to adapt this prior to T2* acquisitions with anisotropic resolution (0.9x0.9x5mm 3 ). The intensity of each brain tissue was modeled by one or more Gaussian(s) (Gaussian Mixture Model). SPM8 software oers the possibility to segment six classes of "tissue": WM, GM, CSF, skull, skin and other (image background).

MIDAS introduced; a new class dened for CMBs (see Figure 1 .3.4). For the extra CMBs class, prior information was rst only based on location, and probability was initialized to 0.1 in the brain parenchyma and zero elsewhere. During the rst iteration, constrains on the mixture of Gaussians was optimized using the "expectation-maximization" algorithm; this was achieved by forcing the mean of the Gaussians modeling the 6 tissue classes to be maintained at a specic range. The limiting values of these ranges are empirically chosen to discriminate each class. 2. Granulometry: size distribution to select round structures with a diameter between 4 and 10 mm;

3. Applying a mask calculated using dierent resulting maps to exclude the skull, the skin, the image's background and CSF;

4. Applying a revised mask to remove false positives: this mask is created from 44 control datasets that underwent the iterative process and identied points as CMBs has been labeled as false positives. This step eliminates specially susceptibility artifact at the air-bone interfaces (sinuses) or some calcication of the basal ganglia. Results For agreement between MIDAS and the reference standard manual identication (MARS) in patients who had one or more CMBs in lobar regions was 0.43, increasing to 0.65 after manual correction of false positives. Agreement between segmented lesions and reference is not communicated for this paper. The intraclass correlation coecient 6 for agreement about CMBs count in lobar regions using MIDAS in comparison to MARS was 0.71, increasing to 0.87 when using the semi-automated method. The Kappa coecient of identifying patients with two or more lobar CMBs increased to 0.74 using the semi-automated approach.

Among the 22 patients with lobar CMBs in the reference, 17 were classied as having CMBs.

The ve patients unidentied by MIDAS each had a unique CMB. MIDAS was more ecient for cortical and sub-cortical CMBs and exhibits signicantly better performance for patients with more than one CMB. Missed CMBs were either eliminated by the revised mask (generated by control subjects), either very small and / or with too low contrast. MIDAS identied patients with CMBs at a sensitivity of 77% and a detection rate of 50% for total true CMBs. The number of false positives was not indicated [START_REF] Seghier | Microbleed Detection Using Automated Segmentation (MIDAS): A New Method Applicable to Standard Clinical MR Images[END_REF].

Supervised learning approach

Support vector machines (SVM) based method The work described in [Barnes et al., 2011] relies on a semi-automatic approach for the identication and the quantication of CMBs.

The method consists of four steps described in Figure 1.3.6.

6 The Intraclass Correlation Coecient (ICC) is a measure of the reliability of measurements or ratings. Step 1. Pre-processing: Extraction of the brain was accomplished using information of both magnitude and phase: hypointense areas in the magnitude image where noise was uniformly distributed in the phase image were considered as "empty signal". The images were then interpolated in the x and y directions (acquisition plane) using a zero lling in the k-space;

apodization with the Hanning lter reduced distortions due to Gibbs eect.

Step 2. Thresholding: This step consists of two sub-steps. A global threshold was rst applied to eliminate large dark areas that may distort the calculation of the local threshold.

It was calculated as 2.5 times the standard deviation below the mean of the Gaussian intensity distribution modeling the entire magnitude image. Pixels with intensity below the overall threshold are labeled as CMBs and are not taken into account when calculating the local threshold in the next step. A white noise distribution was assumed in the parenchyma for a roughly Gaussian distribution with a small number of low-intensity outliers (such as CMBs) that do not signicantly alter the mean or standard deviation of the region; to nd small hypointensities, a local threshold was applied window by window (window size of 21x21x3 voxels (see Figure 1.3.7)). Its value was calculated from the average x and the standard deviation σ of voxel intensities of that window. Local threshold was equal to x -2.5σ and its calculation was iterated several times, by removing the voxels with intensities lower than the threshold from the next calculation, then that voxels are labeled as CMBs. The choice of 2.5 when calculating threshold was to ensure to remove parenchyma. The choice of the window size was also important; CMB needs to be small with respect to the window size in order not to bias the mean and the standard deviation values of cerebral tissue calculation.

Step SVM requires to dene attributes or features that are specic for CMBs. A learning step was used to select the most discriminating features. A vector of fourteen features was thus used in the method, built from each ROI:

5 shape descriptors, to distinguish rounded structures such as CMBs with respect to tubular structures like blood vessels, were dened: compactness: the ratio of surface area to the volume. Spherical shapes have higher compactness compared to elongated structures.

3 eigenvalues of the co-variance matrix on the 3x3 matrix ROI: This matrix describes the mass distribution. A spherical shape would have three equal eigenvalues while a cylindrical shape would have one large eigenvalue and two smaller ones.

Relative anisotropy: this attribute combines the three eigenvalues of the co-variance matrix to characterize the anisotropy of the structure. A spherical shape will have a low anisotropy.

8 intensity descriptors were used: minimum, maximum, average and standard deviation on the image intensity (magnitude and phase).

The kernel used was a radial basis function which showed good performance on similar data and has less numerical diculties than polynomial kernels [Barnes et al., 2011]. The training set consists of 15000 false positives and 120 true positives obtained following the thresholding step. The CMBs class was weighted by 100 to decrease the large gap between the number of two classes so it does not distort classication result.

The method was based on high resolution SWI acquisitions (0.5x1x2 mm 3 ) with an echo time of 40 ms which is the recommended TE at 1.5T for SWI [Barnes et al., 2011]. The study was conducted on six subjects having in total 126 CMBs. The reference segmentation was performed independently by three experts; dierent results were then evaluated by a fourth more experienced neuro-radiologist.

Results This method allowed a high sensitivity (95%) but an increased number of false positives; Among the 126 true CMBs, 120 have been successfully identied but 15807 false positives have been also detected before the SVM step. SVM step was relevant to reduce the large number of false positives but a large number of FPs still remain (645). The supervised learning step also resulted in a higher number of false negatives (23). False positives thus requires a manual review to be eliminated while false negatives were not recovered because recovery would require to repeat the full evaluation.

Random Forest The most recent method was introduced by Fazlollahi et al [START_REF] Fazlollahi | Automatic Detection of Small Spherical Lesions Using Multiscale Approach in 3d Medical Images[END_REF] and it consisted of a machine learning approach for computer-aided detection of CMBs on SWI acquisitions. After contrast enhancement and biais eld correction 7 . Its major steps were:

1. CMBs extent are identied in order to extract proper cubic regions-of-interest (ROI)

containing the structure: The method has 2 steps: a) 3D sphere detection problem is divided into multi-scale 1D line detection along the three dimensions x, y and z;

b) The center of shapes are identied by combining the normalized line responses obtained in the previous step.

2. 3D Radon [START_REF] Fazlollahi | Automatic Detection of Small Spherical Lesions Using Multiscale Approach in 3d Medical Images[END_REF] Figure 1.3.9: Outline for a 2-layer classication cascade with leave-one-out scheme in subject level used in [START_REF] Fazlollahi | Automatic Detection of Small Spherical Lesions Using Multiscale Approach in 3d Medical Images[END_REF].

For this study, a subset of 30 subjects with CMBs were included. For each subject, SWI images were acquired on a 3 T Siemens TRIO scanner with 0.9Ö0.9 mm in-plane resolution and 1.75 mm slice thickness, with TR = 27 ms and TE = 20ms. One expert had reviewed SWI images and in total 64 CMBs with prevalence of 2.1±2.2 per subject were found.

Result For denite lesions, an overall sensitivity of 94% and an average 7.6 false positives per subject were produced. When considering all lesions (denite and possible), the method had a sensitivity of 87% with an average false-positive rate of 20.2 per subject.

Shape based approach

Radial Symmetry Transform (RST) based method Kuifj et al [Kuijf et al., 2012] presented a method for CMBs detection based on shape and size analysis. It relies on the detection of spherical shapes with radius between 0.3 and 2.mm using a function of radial symmetry. This function has been proposed in [START_REF] Loy | Fast radial symmetry for detecting points of interest[END_REF] and was initially used to detect points of interest on head landmarks (eyes, nose...). It uses image intensity gradient information to highlight spherical structures. In this study, it was computed on both echoes of a dual-echo T2*-weighted GRE 7.0 T MR sequence in 18 participants. 3D T1 acquisitions were also used in pre-processing with TR = 7 ms and TE = 3ms.

Method A symmetry score map was calculated on both echo images. This process will be further detailed in the segmentation chapter Resulting maps were then thresholded and only voxels with a score above -20 for TE1 and -100 for TE2 were considered as CMBs candidates.

T2*-weighted images were normalized to [0, 255], using values corresponding to the 5% and 95%

of the histogram respectively as minimum and maximum. A parenchyma mask was applied to the score map. The mask was calculated using the Unied segmentation of SPM applied on the 3D T1 weighted image. The T1 probability map was registered to the T2* space of the rst echo. These maps were then thresholded to 90%.

If within a 26-voxel neighborhood around a minimum in both sphericity maps exists, this location was considered a potential microbleed. Finally, if the normalized gray value on the second echo of a potential microbleed was not equal to zero, it was removed from the list, since a microbleed should cause a signal void on the T2*-weighted images. Manual review wad required to remove false positives.

The 18 participants had a total of 54 CMBs. The dual-echo T2* sequence allows two TEs to be acquired in a single sequence; TE1 = 2.5ms and TE2 = 15ms (see Figure 1.3.10). The images were reconstructed to 0.35 × 0.35 × 0.3mm 3 voxels. All scans were independently and visually scored by two neuro-radiologists with more than 20 years of experience. Minimal in-tensity projection post-processing of both echos were presented simultaneously. Rating of the microbleeds was performed according to MARS.

Both echos were considered during visual rating; without blooming eect, hypointensities were discarded and not considered as CMB. Results Visual identication of CMBs from the high resolution 7T images is a tedious process. According to [START_REF] Gregoire | Cerebral microbleeds as a marker of small vessel disease: new insights from neuro-imaging and clinical studies in stroke patients[END_REF], the evaluation of CMBs on a single patient takes up to 30 minutes. 353 lesions were identied with the radial symmetry function including 35 true positives, 309 false positives and 12 additional true positives (non identied by neuroradiologists and detected by the automatic method and subsequently recognized by neuroradiologists as true CMBs).

Region growing based method Also based on Radial symmetry transform, Bian et al [START_REF] Bian | Computer-aided detection of radiation-induced cerebral microbleeds on susceptibilityweighted MR images[END_REF] proposed a modied approach for CMBs detection on mIP SWI images within two main steps:

1) initial putative CMB detection using the 2D radial symmetry transform.

2) subsequent false positive reduction by characterizing geometric features of putative CMBs (size, localization, extent in z direction..) through region growing as illustrated in Figure 1.3.11. High resolution T2*-weighted imaging using a 3D ow-compensated spoiled GRE sequence was performed using TE/TR = 28/56 ms, ip angle 20°, 24 cm FOV, in-plane resolution of 0.5 Ö 0.5 mm, 2 mm slice thickness and a total slice number of 40. Standard SWI post-processing techniques were applied to the reconstructed k-space and then a minimum intensity projection images through 8 mm-thick slabs (4 slices), with a 6 mm-thick (3 slices) overlap between each consecutive projection, were generated. CMBs identication used as a reference is the consensus of three independent ratings and were further divided into two groups: denite and possible CMBs.

The method was able to correctly identify 263 of the 304 total true CMBs, resulting in a sensitivity of 86.5%. CMBs of the reference were classied to denite and possible CMBs. Of these correctly identied CMBs, 16.7% (all denite) were directly identied after the radial symmetry transform function and did not undergo region growing and geometric features examination.

Separating CMBs into denite and possible CMBs improved the sensitivity of denite CMBs to 95.4%, while the algorithm was less sensitive (77.5%) to possible CMBs [START_REF] Bian | Computer-aided detection of radiation-induced cerebral microbleeds on susceptibilityweighted MR images[END_REF].

Discussion/Comparison of state of the art methods for CMBs detection

Five methods were described in this section that require experts intervention to reach nal results. Table 1.3.1 summarizes their results as published. Over all the ve methods display a large number of false positives, with varying degrees of sensitivity as shown in Table 1.3.1.

Remaining false positives yielded additional time for manual reviewing which usually required three to ten minutes per patient.

Methods were based on shape, intensity and location criteria. They all appear were very ecient to detect large CMBs, perfectly round and completely surrounded by the parenchyma.

However very small CMBs were often missed. When considering each method, some drawbacks may be pointed out. The mask used in MIDAS seems sub-optimal; in fact, the mask to remove artifacts built from control subjects seems unsuited as artifacts localization is more likely to be subject dependent. Furthermore, the result from the SVM method can be biased, since learning datasets are the same as test datasets and generalizability of the SVM approach for new datasets is not proven. Radial symmetry transform gave the lowest number of false positives and it seems more robust and more adapted to the denition of CMBs. However, when binarizing the resulting maps, the applied threshold was not successfully explained and justied, thus, issues regarding its generalization for other data may arise. Moreover, CMBs criteria dealing with multi-contrast (using combined information derived from T1, T2, T2* weighted images), as described in [Greenberg et al., 2009], were not investigated and no method has been validated on a large population with a large number of CMBs.

A fully automatic methods potentially present many advantages: it would automatically ana- lyze large cohort facilitating pathology-MRI correlation studies. When it is robust and ecient, it may even decrease the risk of human rater error. An ecient fully automatic segmentation is more reproducible than manual segmentation which is variable and depends on rater's subjectivity.

Objectives

As seen above, CMB's identication on MRI only still raises issues regarding the exact denition of CMBs and how to discriminate them with high certainty from mimicking objects in the brain.

To address the challenge of increasing its specicity, several characteristics of lesions and MR principles can be taken into account.

MR related characteristics: In-vivo CMBs identication can only be performed reliably on T2* GRE acquisitions. Resulting magnitude images are noisy and suer from spread-wide susceptibility artifact. Susceptibility eect could be enhanced by increasing TE for example, thus potentially allowing to detect more CMBs. However, this would also increase susceptibility related artifacts more remarkably near bone / air interfaces. Phase images may allow decreasing TE-related variations. Furthermore, partial volume eect could signicantly alter the signal distribution on T2* acquisitions and this eect increases with slice thickness. Acquisition of smaller slices should thus lead to better CMB identication.

Lesions characteristics: CMBs identication is made challenging by their denition in itself.

In fact, CMBs are very small, which makes identication risky on 5mm thick 2D acquisitions.

Furthermore, their size vary on a wide range with ill-dened limits, and they can also be multiple and thus overlap on magnitude images. They can easily be confused with blood vessels and other brain lesions such as cavernous malformation. 3D isotropic millimetric resolution would thus be far more suitable for CMBs identication and discrimination from 3D tubular shapes at blood vessels.

Overall, visual identication of CMBs remains problematic even for experienced neuroradiologists; even using validated visual scales proposed in the literature, the identication process is tedious, poorly reproducible and requires three to ten minutes per patient.

However, up to now automated methods for identifying CMBs suer from very poor specicity and require large manual input. It thus appears crucial to design an automatic method for identifying CMBs with high specicity in order to enable its study in larger groups of subjects and thus better understand their clinical meaning.

The ideal segmentation method would be robust (reproducible), specic, reliable and fast.

In fact, this method would perform eciently on multi-center datasets, in research or clinical environment and allow discriminating even small CMBs from mimics.

In order both to increase specicity and parameter robustness, phase contrast appears as a good candidate to be embedded in a multi-contrast segmentation framework. Well-adapted shape and intensity characteristics are also crucial characteristics for discriminating CMBs.

In this PhD, I thus aimed at proposing and implementing a new tool to increase specicity of CMB identication while ensuring eciency; First, ways of improving microbleed identication were explored through the use of MR phase images aimed at reliably rating CMBs. Second, the relevance of the developed new characterization method was investigated through a comparison study in a clinical setting. Third, the proof-of-concept of an automatic detection method of CMBs was designed.

* * *

Chapter 2

CMBs CHARACTERIZATION USING PHASE-CONTRAST

As shown in the previous chapter, designing a fully automatic method for CMB detection would be of great interest specially within the context of large imaging studies. Most of the proposed semi-automatic method were highly sensitive but the number of false positives remained too high to make it possible to proceed without observer intervention. Therefore, improving CMBs characterization may be the key to improve both visual and automatic detection. The aim of this chapter is to investigate how GRE Phase may help improving CMBs identication in a multi-center clinical dataset.

Requirements to process GRE phase images Phase wraps

As seen above, phase signal can be written as:

ϕ (t) = ω • t + ϕ 0 (2.1.1)
with ϕ 0 a phase constant. As shown in the equation above, phase should increase with time.

However, the tan -1 function used to retrieve phase signal yields values within the ]-π, π] interval and phase overall variations are thus hidden. This denition of phase into the interval ]-π, π] results in phase wraps. As shown in Figure 1.2.11, wraps appear as sharp intensity transitions in the phase image. When realistic phase value reaches π + , the encoded value will be -π + . This is illustrated in Figure 2.1.1. Borderlines, corresponding to closed phase wraps, are called fringe-lines. In MR phase images, unclosed fringe-lines may occur and are called open-ended fringe-lines and they correspond to phase singularities. Singularities often occur in areas with low signal, and are then considered as noise. They can also occur in areas with high SNR; this may result from error during signal combination of dierent coils to reconstruct the image.

Phase unwrapping consists of nding the transition areas and adding 2kπ (where k is an integer) from the measured phase when necessary to obtain a continuous signal: An ecient phase unwrapping ensures that all appropriate multiples of 2π have been extracted. Several methods have been proposed to solve this problem: based on Fourier transform [START_REF] Schoeld | Fast phase unwrapping algorithm for interferometric applications[END_REF] or region growing approach [START_REF] Witoszynskyj | Phase unwrapping of MR images using Phi UNa fast and robust region growing algorithm[END_REF] such as the PRELUDE command available in the FSL tool www.fmrib.ox.ac.uk/fsl.

ϕ unwrapped = ϕ measured + 2kπ (2.1.2)

Background eld removal

After solving the phase unwrapping issue, phase still do not reect directly the magnetic eld variations due to local process. in fact, the measured magnetic eld also embeds contribution from the background eld that is orders of magnitude stronger than that from intrinsic tissue susceptibility see Figure 2.1.2. Indeed, the background eld is induced by sources such as the main eld inhomogeneity that can result from imperfect shimming and the air-tissue interfaces.

This background eld, thus, needs to be removed to retrieve relevant information induced by local sources. Traditional heuristic methods, including high-pass ltering, were used for the background eld removal, although they also tamper with the local eld and decrease quantitative accuracy [START_REF] Schweser | Impact of tissue atrophy on high-pass ltered MRI signal phase-based assessment in large-scale group-comparison studies: a simulation study[END_REF]. More recent background eld removal methods based on physical principles, Projection onto Dipole Fields (PDF) [Tian Liu et al., 2011] and Sophisticated

Harmonic Artifact Reduction on Phase data (SHARP) [Schweser et al., 2010b], demonstrated improved contrast and higher precision on the estimated local eld. Both methods model the background eld as a magnetic eld generated by an unknown background susceptibility distribution, and dierentiate it from the local eld using either approximate orthogonality or harmonic property. better on these clinical datasets. In order to provide a proof of concept of its usefulness in clinical setting, the method was satisfactorily evaluated for its ability to discriminate cerebral microbleeds from brain calcications using MRI only.

This method and its evaluation was published as 2D harmonic ltering of MR phase images in multi-center clinical setting: toward a magnetic signature of cerebral microbleeds in Neuroimage 1 . * * *

INTRODUCTION

Cerebral microbleeds (CMBs) were initially detected in histopathological studies of patients with small vessel disease [START_REF] Cordonnier | Brain microbleeds: more evidence, but still a clinical dilemma[END_REF], Greenberg et al., 2009[START_REF] Cordonnier | Prevalence and severity of microbleeds in a memory clinic setting[END_REF]. They were described as small foci of chronic blood products in normal brain tissue [Greenberg et al., 2009[START_REF] Marielle | Prevalence and Risk Factors of Cerebral Microbleeds An Update of the Rotterdam Scan Study[END_REF][START_REF] Wiesje | Microbleeds in vascular dementia: clinical aspects[END_REF]. Their size may vary from very small (~2 mm) to large lesions (~10 mm), while larger lesions are assumed to be more spread hemorrhages. CMBs characterization is of interest within the study of vascular dementia and Alzheimer's disease (AD) [START_REF] Cordonnier | Prevalence and severity of microbleeds in a memory clinic setting[END_REF]. However, CMBs identication using MRI remains challenging [Greenberg et al., 2009[START_REF] Cordonnier | Brain microbleeds: more evidence, but still a clinical dilemma[END_REF].

CMBs are made of hemosiderin which is a strongly super-paramagnetic ironstorage complex [START_REF] Cordonnier | Brain microbleeds: more evidence, but still a clinical dilemma[END_REF], whereas brain parenchyma is diamagnetic. Thus, their strong susceptibility dierence with brain parenchyma makes CMBs foci appear as magnetic inclusions, causing local magnetic eld inhomogeneity such as would be created by a unit dipole. At the voxel level, this eld inhomogeneity leads to intra-voxel phase dispersion and strong T2*-contrast. Its detection is thus commonly based on Gradient Recalled Echo (GRE) T2*-weighted magnitude images, in which CMBs are visible as a loss of signal (hypo-intensity). However, their appearance on these sequences is sensitive to imaging parameters such as echo time (TE) and B 0 eld strength;

1 clinical interpretation is thus made dicult by the resulting blooming artifacts. Furthermore, blood vessels and cerebral micro-calcications (CMCs) also have strong T2* eects and can be misidentied as CMBs. While localization may help identication, discrimination commonly requires additional T1-weighted or T2-weighted images, or even a CT scan for CMCs [START_REF] Yamada | Intracranial calcication on gradient-echo phase image: depiction of diamagnetic susceptibility[END_REF].

In order to overcome some limitations in CMBs identication, the phase image could also be considered. Usually discarded, the phase is available at no extra acquisition time. Being proportional to the local resonance frequency, phase directly reects magnetic eld inhomogeneity.

Using phase information could allow increasing both specicity and sensitivity in CMBs detection. For example, calcications are more diamagnetic than brain parenchyma and the induced magnetic eld perturbation is opposed to that of paramagnetic CMBs; this dierence should be accessible through phase information [START_REF] Gronemeyer | MR imaging detection of calcied intracranial lesions and dierentiation from iron-laden lesions[END_REF][START_REF] Gupta | Dierentiation of calcication from chronic hemorrhage with corrected gradient echo phase imaging[END_REF], Schweser et al., 2010a[START_REF] Yamada | Intracranial calcication on gradient-echo phase image: depiction of diamagnetic susceptibility[END_REF]. As for sensitivity, phase contrast strongly derives from susceptibility distribution and enhanced contrast could be expected on phase images between paramagnetic CMBs and parenchyma.

While phase is sensitive to local susceptibility variations, its analysis is not straightforward because of phase wrapping and strong background eects, as well as the complex magnetic eld-to-source relationship. Indeed, reconstructed phase appears wrapped, as it is only dened within [-π, π]; it thus requires the use of unwrapping techniques to recover a continuous phase information [START_REF] Feng | Catalytic multiecho phase unwrapping scheme (CAMPUS) in multiecho gradient echo imaging: removing phase wraps on a voxelby-voxel basis[END_REF]. Additionally, local variations of interest may be orders of magnitude lower than those related to the background eld inhomogeneity, which is dominated by the air-tissue interface, thus requiring ecient ltering algorithms to extract the contribution of the internal local eld inhomogeneity pattern [de Rochefort et al., 2010a].

The rst studies exploring the use of GRE phase images to discriminate between calcied and iron-laden tissues relied only on raw phase images [START_REF] Yamada | Intracranial calcication on gradient-echo phase image: depiction of diamagnetic susceptibility[END_REF]. To further enhance detection sensitivity for small inclusions, background contributions have been suppressed using dierent high pass lters [START_REF] Gronemeyer | MR imaging detection of calcied intracranial lesions and dierentiation from iron-laden lesions[END_REF][START_REF] Gupta | Dierentiation of calcication from chronic hemorrhage with corrected gradient echo phase imaging[END_REF], Wu et al., 2009[START_REF] Yamada | Intracranial calcication on gradient-echo phase image: depiction of diamagnetic susceptibility[END_REF]. Combining phase and magnitude images, such as in susceptibility-weighted imaging (SWI), has already allowed enhancing detection sensitivity for paramagnetic structures such as veins or hemorrhages [START_REF] Jeroen | Clinical relevance of improved microbleed detection by susceptibility-weighted magnetic resonance imaging[END_REF][START_REF] Haacke | Susceptibility Weighted Imaging in MRI: Basic Concepts and Clinical Applications[END_REF], Haacke et al., 2009[START_REF] Nandigam | MR imaging detection of cerebral microbleeds: eect of susceptibility-weighted imaging, section thickness, and eld strength[END_REF][START_REF] Reichenbach | Small vessels in the human brain: MR venography with deoxyhemoglobin as an intrinsic contrast agent[END_REF]. Recent advances in the understanding of magnetic eld distortions yielded more adapted phase processing techniques. Indeed, quantitative susceptibility mapping (QSM) is based on the reconstruction of magnetic susceptibility maps from an observed magnetic eld perturbation [de Rochefort et al., 2010a, Liu et al., 2012, Schweser et al., 2011[START_REF] Schweser | Quantitative susceptibility mapping for investigating subtle susceptibility variations in the human brain[END_REF]. These approaches have allowed to push further the limits of background eld removal and solve the eld-to-source inverse problem [START_REF] Langkammer | Quantitative susceptibility mapping (QSM) as a means to measure brain iron? A post mortem validation study[END_REF][START_REF] Li | Quantitative susceptibility mapping of human brain reects spatial variation in tissue composition[END_REF][START_REF] Schweser | Quantitative susceptibility mapping for investigating subtle susceptibility variations in the human brain[END_REF], 2011], enabling to dierentiate calcications from hemorrhages [de Rochefort et al., 2010a[START_REF] Deistung | Demonstration of paramagnetic and diamagnetic cerebral lesions by using susceptibility weighted phase imaging (SWI)[END_REF][START_REF] Jurgen | High-resolution BOLD venographic imaging: a window into brain function[END_REF], Schweser et al., 2010a] and to provide improved CMBs detection sensitivity and contrast as compared to GRE magnitude images [START_REF] Klohs | Detection of cerebral microbleeds with quantitative susceptibility mapping in the ArcAbeta mouse model of cerebral amyloidosis[END_REF], Liu et al., 2012]. These latter approaches generally rely on an inverse lter design based on complex post-processing methods;

computing strategies currently remain under investigation. Furthermore, both SWI and QSM were designed for being applied to full 3D dataset and phase unwrapping and background eld removal are necessary pre-processing steps for both methods.

To recover the internal eld, several background eld ltering techniques have been proposed.

Assuming that background eld variation mostly contains low frequency components within the region of interest while that of internal eld contains high frequency components, low pass ltering using Gaussian [START_REF] Hammond | Development of a robust method for generating 7t multichannel phase images of the brain with application to normal volunteers and patients with neurological diseases[END_REF] or box kernel [START_REF] Rauscher | Automated unwrapping of MR phase images applied to BOLD MR-venography at 3 Tesla[END_REF] or low order polynomial tting [START_REF] Deistung | Susceptibility weighted imaging at ultra high magnetic eld strengths: Theoretical considerations and experimental results[END_REF][START_REF] Je | High-eld MRI of brain cortical substructure based on signal phase[END_REF] were rst proposed. More recently, approaches relying on tting external sources to internal eld were proposed, using either highlyconstrained model-based distributions [de Rochefort et al., 2010a, 2008, Neelavalli et al., 2009[START_REF] Wharton | Susceptibility mapping in the human brain using threshold-based k-space division[END_REF], or tting with more degrees of freedom such as in Projection onto Dipole Field (PDF) [Tian Liu et al., 2011]. The PDF approach has demonstrated ecient estimation of background eld in an internal region of interest (ROI), but displayed remaining border artifacts [Tian Liu et al., 2011]. Finally, harmonic ltering techniques, such as Sophisticated Harmonic Artifact Reduction for Phase (SHARP) [START_REF] Schweser | Quantitative imaging of intrinsic magnetic tissue properties using MRI signal phase: An approach to in vivo brain iron metabolism?[END_REF], rely on the harmonic property of the background eld inside a ROI, leading to a new class of Laplace based lters [Schweser et al., 2012a[START_REF] Schweser | Quantitative imaging of intrinsic magnetic tissue properties using MRI signal phase: An approach to in vivo brain iron metabolism?[END_REF].

In the context of multi-center clinical studies, data from various manufacturers and models have to be analyzed jointly, even though phase image properties may dier between acquisition sites. Subtle dierences in pulse sequence characteristics, coil sensitivity proles, localization methods, phase reconstruction algorithms and other site/manufacturer specic characteristics may combine to produce signicant variation in nal measurements. These dierences must be taken into account to improve nal pooled analyses. Furthermore, standard multi-slice 2D scan may result in inconsistent slice-to-slice eld maps. These linear terms were observed experimentally on clinical datasets [START_REF] Lee | SEMI-AUTOMATIC SEGMENTATION OF THE TONGUE FOR 3d MOTION ANALY-SIS WITH DYNAMIC MRI[END_REF][START_REF] Tam | Detection and measurement of coverage loss in interleaved multi-acquisition brain MRIs due to motion-induced inter-slice misalignment[END_REF]. They may result from dierent 2D-based processes (shimming, motion, breathing-related artifact, normalization. . . ), either at the acquisition or reconstruction levels, and lead to inconsistent phase maps between slices.

Here, we propose a lter design acting directly on the default reconstructed phase images to estimate internal eld maps. This lter relies on a fast and robust 2D harmonic ltering (2DHF) approach that includes unwrapping, background eld removal and additional linear artifact (due to slice-to-slice inconsistencies) correction at the same time. The method aims at being applicable on 2D datasets acquired in clinical settings in multi-center framework. Phase was long considered as unreliable information due to, rst, its non-local nature and, second, its dependency to the two pre-processing steps described above [Schweser et al., 2010a]. The rst issue is related to the non-local relationship between magnetic susceptibility distribution and phase.

QSM may overcome this issue through the source reconstruction step but some approaches are computationally expensive and not straightforward to apply in multi-center settings. However, for clinical purpose, the main focus is on the type of lesion, namely diamagnetic or paramagnetic; non-local eld perturbation may thus not be a limitation for clinical application based on internal eld maps only. For the second issue, recent techniques such as SHARP were shown to allow robust pre-processing of phase images. 2DHF can be considered as a 2D version of SHARP, introduced as a 3D ltering technique in [START_REF] Schweser | Quantitative imaging of intrinsic magnetic tissue properties using MRI signal phase: An approach to in vivo brain iron metabolism?[END_REF].

The remainder of this article is organized as follows. The multi-center dataset used for validation is rst presented, followed by a detailed description of the ltering method. Numerical simulation used for synthetic evaluation and two state-of-the-art ltering approaches used in a comparison study are then presented, as well as implementation issues. Evaluation and comparison results on numerical simulation and patient data are then shown, followed by a proof of concept illustration for the ability of 2DHF to dene a magnetic signature for CMBs and CMCs on multi-center 2D datasets acquired in patients with memory impairment.

MATERIALS AND METHODS

Data on which the method was evaluated will be presented rst together with acquisition details.

The ltering method will then be described as well as the state-of-the-art ltering approaches and simulation used for validation. and accordingly calculated internal eld maps (3rd raw).

Internal eld computation with 2D harmonic ltering (2DHF)

Extraction of relevant internal eld information from phase images requires two preliminary steps: phase unwrapping and background eld removal. In most proposed methods, this problem is solved in two separated steps; which may be iterative [START_REF] Bilgic | MRI estimates of brain iron concentration in normal aging using quantitative susceptibility mapping[END_REF], de Rochefort et al., 2010a, 2008, Liu et al., 2012[START_REF] Ludovic De Rochefort | Quantitative susceptibility map reconstruction from MR phase data using bayesian regularization: validation and application to brain imaging[END_REF]. A particularly relevant phase unwrapping technique based on solving Poisson equation was proposed by Song et al. [START_REF] Song | Phase unwrapping of MR phase images using Poisson equation[END_REF] and extended in 3D to the QSM context [START_REF] Ludovic De Rochefort | Quantitative susceptibility map reconstruction from MR phase data using bayesian regularization: validation and application to brain imaging[END_REF]. Harmonic ltering, such as SHARP [START_REF] Schweser | Quantitative imaging of intrinsic magnetic tissue properties using MRI signal phase: An approach to in vivo brain iron metabolism?[END_REF], have shown to be extremely ecient in removing the harmonic component due to background sources. However, these methods were validated on 3D phase maps, and may not deal with potential slice-to-slice phase inconsistency that may occur in 2D datasets.

The linear approximation of Maxwell equations is considered relevant in the MRI framework [START_REF] Ludovic De Rochefort | Quantitative MR susceptibility mapping using piece-wise constant regularized inversion of the magnetic eld[END_REF]; the eld inside the brain, B, can thus be decomposed as the sum of variations due to internal sources, B in , and variations induced by external sources, B out . From

Maxwell equations, the external eld is harmonic inside the brain [Li andLeigh, 2001, Schweser et al., 2011], resulting in B out = 0, thus leading to B = B in ( denotes the Laplacian).

Consequently, external eects can be ltered out through a second order derivative, followed by a second order integration using adequate boundary conditions. Note that any additional linear term is ltered out by the 2 nd order derivative.

Unwrapping using Poisson equation and background eld removal using harmonic ltering are the basis of the 2D harmonic lter (2DHF) that will be described below and that were applied on the phase image of the 2D multi-slice T2* GRE sequence. Its principle is also given in Figure 2.3.2.

1. Slice-by-slice phase unwrapping was performed by calculating the 2D phase gradient image as the point-by-point dierence between neighbors. This `unwrapping' method does not actually compute the unwrapped phase (ϕ) but rather yields an unwrapped phase gradient maps (∇ϕ) prior to the second order derivation.Wraps were then detected using the modulo function which shifts phase values within the range[-π, π[ [START_REF] Song | Phase unwrapping of MR phase images using Poisson equation[END_REF]. This method assumes that phase gradients are smaller than π and was proven to be ecient for large SNR [START_REF] Conturo | Signal-to-noise in phase angle reconstruction: Dynamic range extension using phase reference osets[END_REF]].

2. The divergence of the estimated unwrapped phase gradient map was then calculated to get B: using the point-by-point dierence between neighbors similarly as for the gradient.

In this second step, the Laplacian was then nulled-out outside a brain mask, dening at the same time the `internal' region-of-interest (ROI).

The ROI mask was automatically generated with SPM8 software package (http://www. fil.ion.ucl.ac.uk/spm). The New Segment module was applied on 3D T1 images.

Resulting probabilistic maps of gray matter, white matter and cerebro-spinal uid were registered to the 2D T2* GRE image space [START_REF] Ashburner | [END_REF]; rigid body transformation was computed using the Coreg module. These maps were then thresholded above 0.5 to obtain a cerebral mask [START_REF] Samaille | Contrast-Based Fully Automatic Segmentation of White Matter Hyperintensities: Method and Validation[END_REF]. This mask was eroded (3-voxels radius 2D element) to ensure that no interface with large susceptibility eect was left in the mask and thus impose proper boundary conditions. This allows limiting potential artifacts near interfaces, where second order derivative may also suer from noise propagation [Schweser et al., 2012a].

3. The internal eld map in itself relies on an integration of B to recover B in . For more eciency, this step was done in Fourier domain by multiplying the 2D-Fourier-transform of the calculated B with the Fourier transform of a regularized (Tikhonov regularization)

inverse of the 2D Laplacian lter. Let k 2

x,y denote the discrete Laplacian lter in the Fourier domain. In order to ensure numerical stability for spatial frequencies close to 0, a regularization parameter α can be introduced within the inverse of the Laplacian, which leads to the following Tikhonov regularized least-squares lter:

-

1 reg = k 2 x,y / k 2 x,y 2 + α 4 (2.3.1)
Apart from the denition of the internal ROI and the inclusion of phase unwrapping, the procedure is equivalent to the following high-pass lter in which α denes a cuto frequency, as it is the spatial frequency corresponding to the half-width at half maximum:

-1 reg = k 2 x,y 2 / k 2 x,y 2 + α 4 (2.3.2)
Note that the 2D harmonic lter can be considered as a 2D version of a small SHARP kernel [START_REF] Schweser | Quantitative imaging of intrinsic magnetic tissue properties using MRI signal phase: An approach to in vivo brain iron metabolism?[END_REF] and should thus guarantee the removal of in plane harmonic components generated by background dipoles within the ROI.

Comparison with other ltering methods

Background eld removal techniques may be split into two classes as a function of their underlying assumptions. One method from each class was implemented here for comparison with the 2DHF ltering approach. The rst class is based on the assumption that variations of the background eld are spatially slower than those of the internal eld [START_REF] Deistung | Susceptibility weighted imaging at ultra high magnetic eld strengths: Theoretical considerations and experimental results[END_REF][START_REF] Haacke | Susceptibility Weighted Imaging in MRI: Basic Concepts and Clinical Applications[END_REF][START_REF] Hammond | Development of a robust method for generating 7t multichannel phase images of the brain with application to normal volunteers and patients with neurological diseases[END_REF][START_REF] Rauscher | Automated unwrapping of MR phase images applied to BOLD MR-venography at 3 Tesla[END_REF]. The high pass ltering (HPF) method is commonly used [START_REF] Mcauley | Iron quantication of microbleeds in postmortem brain[END_REF], 2010[START_REF] Schweser | Impact of tissue atrophy on high-pass ltered MRI signal phase-based assessment in large-scale group-comparison studies: a simulation study[END_REF] and was implemented here for comparison. To obtain high-pass-ltered phase images, complex-valued images were rst generated from the magnitude and phase images. They were then low pass ltered slice-by-slice by multiplying with a two dimensional Gaussian lter in Fourier domain. The standard deviation σ of the Gaussian lter was chosen so that the half-width-at-half-maximum of the HPF was the same as the one of the 2DHF lter, namely σ = α/ 2 ln (2) (see Figure 2.3.3). High-pass ltered phase images were then computed as the phase of the ratio between complex-valued and low-pass-ltered images.

The second class of ltering approaches assume that the eld created by the background sources and the eld created by the internal sources are orthogonal within the ROI in a suitable base. Among these methods, PDF was used here [de Rochefort et al., 2010a, Tian Liu et al., 2011]. It is based on the observation that the inner product between the eld of a dipole located outside the ROI and the eld of a dipole located inside that ROI is almost zero [Tian [START_REF] Liu | A novel background eld removal method for MRI using projection onto dipole elds (PDF)[END_REF]. Therefore, projecting the measured eld within the ROI onto the subspace which is orthogonal to the eld of either internal or background sources allows eliminating the contribution of internal sources, resulting in a background eld map estimate. A subtraction of this background eld map to the total eld yields the internal eld map. Technically, a susceptibility distribution outside a ROI that optimally matches the eld inside the ROI is sought by minimizing an energy function. Prior to applying PDF, phase maps were unwrapped using the unwrapping method described in [de Rochefort et al., 2010a]. The SHARP method [START_REF] Schweser | Quantitative imaging of intrinsic magnetic tissue properties using MRI signal phase: An approach to in vivo brain iron metabolism?[END_REF]] also belongs to this class. It is based on harmonic property of the background eld inside the predened ROI which can be eliminated from phase data by the V alue(ppm) 1 0.5 0.5 0.5 0.25 0.125 0.0625 0.03125 CMCs had then same absolute values, but with opposite sign (diamagnetic).

Size(V oxels) 1 4 2 1 1 1 1 1
spherical mean value operation.

Numerical simulation

A numerical model was designed to evaluate the dierent ltering approaches. To model a background eld created by the head, an ellipsoid with a susceptibility of -9 ppm (part per million) was considered (main axis dimensions were 75 (in head-foot direction), 100 (in rightleft direction) and 125 mm (in antero-posterior direction). Two smaller ellipsoids were removed to simulate the strong eects that can be observed close to ear canals (dimension 5x10x16mm).

Multiple dipole inclusions were embedded in the central slice: paramagnetic dots were placed in the left hemisphere while diamagnetic dots were placed in the right hemisphere. Inclusions were as indicated in Table 2.3.1 to mimic various susceptibility values and spatial extensions in a range consistent with previously reported susceptibility values for hemorrhage (~1 ppm) [de Rochefort et al., 2010a]. In fact, susceptibility values lower than 1ppm are supposed to mimic partial volume eects with inclusion smaller than the voxel size. Similarly, a 2-voxel inclusion with 0.5 ppm models some partial voluming for the same magnetic moment as a 1voxel inclusion with 1ppm; a 4-voxel inclusion with 0.5 ppm models some partial voluming with a magnetic moment twice as large as that of a 1-voxel inclusion with 1 ppm, simulating a dierent intra-voxel conguration. Susceptibility variation was added to tissue eects. In order to mimic realistic experimental parameters, spatial resolution was chosen as 1mmx1mmx2.4mm.

To cover the whole brain, a reconstruction matrix of 210x210x256 was used. The eld (in ppm) created by this susceptibility distribution was computed using the forward approach [START_REF] Marques | Application of a Fourier-based method for rapid calculation of eld inhomogeneity due to spatial variation of magnetic susceptibility[END_REF]Bowtell, 2005, Salomir et al., 2003] and will be noted F . Simulated MR signals were then generated by forming the complex value maps by converting magnetic eld to phase (ϕ = γ×B 0 ×T E×F ) with γ the gyromagnetic ratio of hydrogen nucleus, B 0 = 3T and T E = 20ms. In order to mimic the 2D GRE T2*-weighted scans, random noise was generated from a normal distribution and added on both real and imaginary components, assuming SNR=30 which corresponds to experimental values. A random constant within slice gradient was added to each slice to mimic the observed slice-to-slice inconsistency (more details are given in Appendix 1).

Regularization parameter

The 2DHF regularization parameter α was empirically set as follows. Four datasets were randomly chosen for tuning, two from Siemens and two from Philips systems. The inuence of α on the generated internal eld maps was systematically visually evaluated over a large range of values with a xed step (from 0.01 to 0.30, with 0.05 steps). It was nally set to α = 0, 15, according to the criteria described below. The setting was then visually conrmed in all 28 subjects. Visual inspection of internal eld maps in parameter tuning and comparison analyses was based on the criteria given for brain phase contrast in [Duyn et al., 2007, Haacke andReichenbach, 2011]:

Internal eld map should provide anatomic information of local details, enabling delineation of many dierent brain structures and sub-structures;

Global phase variations should be removed in order to reveal the local phase dierences generated by the tissue micro-structure;

Grey/white matter interface should be clearly visible;

Numerous anatomical details should be visible in specic regions, such as central brain region, columna fornix, cross-section of the mamillo-thalamic tract, globus pallidus, putamen, and head of caudate nucleus.

As mentioned above, parameter setting for 2DHF can be compared with the equivalent setting for the standard deviation dened for HPF. For high pass ltering, width usually used is (32x32)

which is equivalent to a ltering of ~13% of central frequencies. 

RESULTS

Simulation results for the 2DHF method will rst be shown, together with a comparison with the two state-of-the-art methods HPF and PDF. Results and comparison between methods on clinical data will then be detailed, followed by a proof-of-concept for the discrimination between CMBs and CMCs based on internal eld maps obtained with 2DHF.

Numerical Eciency

All the processes, including brain mask generation, were programmed with MATLAB (version 2011b) and run on a Quad-Core (Intel® Xeon(R) CPU W3520 @ 2.67GHz Ö 4) with 16 GB RAM. As 2DHF processing method is not iterative, computation time depends only on matrix size. The total computation time of the background eld removal process was measured using the MATLAB built-in timer for 28 patients and mean computation time to process a full dataset was 2.2 s. HPF, which is a direct ltering method, had a similar computation time. On the contrary, PDF was approximately 100 times slower (for 512 iterations) than 2DHF in our implementation, because of its intrinsic 3D iterative process.

Simulation results

Results of the simulation are presented in While preserving signal from the simulated lesions at the chosen cuto frequency (here, 0.15), HPF introduced substantial artifacts in the vicinity of boundaries and did not fully suppress phase wraps. Note that more restrictive lter width was evaluated for HPF and appeared to remove large scale inhomogeneities and phase wraps more eciently but also yielded a reduced phase contrast for the simulated lesions. PDF removed phase wraps and background eect while preserving contrast around simulated lesions. Nevertheless, large in-plane signal non-uniformity appeared in the antero-posterior direction. These large artifacts derive from not taking into account inter-slice inconsistency. 2DHF was much more ecient to remove both wraps and background eect while preserving both contrast and uniformity, but a limited border artifact was created.

Regarding the slice-to-slice inconsistent linear artifact, HPF eciently ltered it out within the center region of the simulation. On the contrary, PDF did not remove these linear eects.

Finally, 2DHF intrinsically ltered it away because the core of the method is based on second order derivatives.

To evaluate the eciency of the three methods around the simulated lesions, a zoom is Small calcications may remain invisible on the CT scan [START_REF] Kristanto | Small calcied coronary atherosclerotic plaque simulation model: minimal size and attenuation detectable by 64-MDCT and MicroCT[END_REF]. Figure 2.4.2

shows that even a single-voxel-lesion with a susceptibility variation of + /-0.125ppm appears more paramagnetic than its surroundings in the internal eld map with realistic simulated acquisition parameters and SNR; this would correspond to a hemorrhage / calcication almost ten times smaller than the simulated voxel size. Consequently, detection sensitivity of 2DHF can be considered as being of the same order of magnitude as the one reported for CT [START_REF] Kristanto | Small calcied coronary atherosclerotic plaque simulation model: minimal size and attenuation detectable by 64-MDCT and MicroCT[END_REF]. 1). Axial and sagittal view of the simulated internal eld map (a,e), and internal eld map calculated with: HPF (b,f ), PDF (c,g) and 2DHF (d,h).

Results and comparison on clinical data

eciently eliminated wraps and large-scale background eects and enhanced the anatomical structures of interest within the brain where paramagnetic substances such as those in CMBs appeared with a positive phase. The masking step proved ecient to remove most of the 2DHF-induced artifacts at the border, and cortical gray / white matter contrast was visible.

Nevertheless, some artifacts remained.

A qualitative comparison of 2DHF, PDF and HPF for clinical datasets is presented in Figure 2.4.4. HPF results were shown here for a cuto parameter of 32 which is usually chosen in literature [START_REF] Schweser | Impact of tissue atrophy on high-pass ltered MRI signal phase-based assessment in large-scale group-comparison studies: a simulation study[END_REF], in order to allow ecient removal of wraps and background eects [START_REF] Schweser | Impact of tissue atrophy on high-pass ltered MRI signal phase-based assessment in large-scale group-comparison studies: a simulation study[END_REF], resulting in a bandwidth more than twice larger than 2DHF width.

As could be expected, the resulting internal phase contrast was much lower for HPF, while 2DHF and PDF displayed similar local content on axial slices with a good contrast for deep gray matter nuclei, blood vessels and CMBs. As in the simulation results, slice-to-slice inconsistency was eciently corrected by HPF and 2DHF, but an eect remained for PDF which makes sagittal characterization dicult. The dierence between 2DHF and PDF was dominated by inter slice inconsistency remaining with PDF, whereas the dierence between 2DHF and HPF shows that 2DHF gives a better contrast between lesions and the neighboring tissue.

Application: Magnetic signature of CMBs and CMCs with 2DHF

CMCs can easily be mistaken for CMBs in the magnitude image when they are small, round.

In fact, they appear as focal hypointensities on magnitude images. Both CMBs and these mimicking CMCs are dot-like susceptibility inclusions. Internal eld maps computed with HPF (e-h), PDF (i-l) and 2DHF (m-p), image dierence (HPF-2DHF(q-t)) and (PDF-2DHF(u-x)) displayed on axial and sagittal views.

other two columns illustrate another case with a dubious CMB on the T2* magnitude, that appears as a calcication on the CT-scan and also on the 2DHF internal eld map; note that the 2DHF internal eld map was computed here without eroding the brain mask, as the lesion was very close to the border.

DISCUSSION

This work presents a new ecient tool for background eld removal in clinical multi-center setting. Unwrapping and local eld estimation were simultaneously performed using a 2D version of a harmonic lter (2DHF), applied in Fourier domain. The 2D harmonic lter removes background eects while preserving local phase variations. This method showed good performance in retrieving ne 3D coherent details on 2D datasets on simulated and clinical images and allowed to identify a magnetic signature for CMBs and CMCs. When compared to state-of-the-art methods (HPF, PDF), 2DHF proved to provide more consistent detailed internal eld maps for 2D datasets. Although dierences between manufacturers are noticeable on raw data, 2DHF method allowed a good estimation of internal eld map with preserved details for all 28 datasets.

Creating artifacts at the ROI borders is a common problem in ltering approaches used to remove background eects. In fact, the orthogonality assumption is no longer valid at the borders and these ltering approaches thus often fail to estimate the internal eld map close to the ROI borders, in our case the brain boundary. In 2DHF, SPM masking prior to integration allowed limiting artifacts at the brain boundary. Furthermore, hypointensities close to large susceptibility artifacts (e.g. air-tissue interfaces close to the brain boundary) are rarely considered in the identication of CMBs due to the inherent uncertainty induced by the susceptibility artifacts. The remaining border eect at the brain boundary is thus unlikely to cause problems in CMBs identication.

The more common phase ltering approaches, such as HPF, rely on the assumption that the background eld contributions only embed low spatial frequency components [START_REF] Li | High-precision mapping of the magnetic eld utilizing the harmonic function mean value property[END_REF][START_REF] Li | Quantitative susceptibility mapping of human brain reects spatial variation in tissue composition[END_REF][START_REF] Schweser | Impact of tissue atrophy on high-pass ltered MRI signal phase-based assessment in large-scale group-comparison studies: a simulation study[END_REF], 2012a, 2011]. Nevertheless, the background eld may indeed contain high spatial frequency components and the local eld may contain low spatial frequency components, and the resulting internal eld map may thus be awed. Furthermore, internal eld maps obtained with HPF highly depend on lter size [START_REF] Schweser | Impact of tissue atrophy on high-pass ltered MRI signal phase-based assessment in large-scale group-comparison studies: a simulation study[END_REF]; for large lter sizes, small structures remain visible but the main part of phase information from larger structures is removed. HPF is a heuristic method compared to 2DHF or PDF, which are both based on the assumption that background eld is harmonic inside of the brain. This last assumption is derived from Maxwell's equations [Li andLeigh, 2001, Schweser et al., 2011] and is likely to yield less awed internal eld maps than HPF, which was conrmed by the results obtained here.

More sophisticated approaches proposed in the literature, such as PDF [Tian Liu et al., 2011],

are computationally expensive. Most of these approaches were validated and recommended for data acquired with fully ow compensated 3D GRE sequences that are not always available in clinical routine. Furthermore, MRI data often suers from various artifacts, such as motion, breathing or shimming artifacts, yielding slice-to-slice inconsistency in the phase map. Whereas the results obtained here showed that internal eld maps generated with PDF showed sliceto-slice inconsistencies, 2DHF could remove this artifact while preserving details in local eld maps.

Even though some multi-center studies have been undertaken with 3D acquisitions [START_REF] Evans | The NIH MRI study of normal brain development[END_REF][START_REF] Shive | Quantitative 3d MRI as a Valid Endpoint for Randomized Clinical Trials in Cartilage Repair and its Correlation with Repair Tissue Collagen Architecture[END_REF], large scale multi-center clinical studies are likely to be restricted by various constraints, such as the involvement of both research and clinical centers or an extensive acquisition protocol aiming at studying various aspects of a given pathology in a limited acquisition time. 2D acquisitions may thus be preferred, being faster, more robust to movement, and easier to standardize in multi-center setting. Nevertheless, some intrinsic dierences remain between manufacturers, such as the dierences between Philips and Siemens regarding the denition of multi-slice interleaved acquisitions or specic reconstruction issues.

Although it may be possible to visually identify lesions with PDF in the acquisition plane, the remaining dierences between Siemens and Philips derived internal eld maps due to dierent inter-slice artifacts may bias the analysis undertaken with PDF. On the contrary, 2DHF yields 3D-consistent internal eld maps in both cases and should thus allow more robust multi-center analyses.

However, background eld correction is a three-dimensional problem and reducing it to two dimensions may result in some limitations. Omitting the z-term of the 3D Laplacian corresponds to assuming that all background sources that have an eect on a given xy-slice are located in the same xy-slice. This assumption is not always met, since the eect within the ROI may come from background sources located above or below the given xy-slice. However, when dealing with 2D acquisitions in clinical setting, anisotropy along z is large, slice thickness being most of the time above 2mm, with ~1x1mm² in plane resolution. In our case, voxel size is 1x1x2.5mm3, with a slice thickness of 2.5mm. In 2DHF method, derivations are computed as point-by-point dierences divided by the voxel size. It implies that the second order derivative along z would be 2.5² times smaller than along x or y, thus reducing the error due to the 2D approximation in this context. Moreover, the internal eld map is computed with 2DHF for each slice independently from all other slices; this should enable the use of 2DHF for data acquired in 2D with an inter-slice gap.

Visual identication of CMBs on MR images is a major issue in clinical practice and is made less reliable by the large inuence of MR imaging parameters/sequences on CMBs appearance.

MR-based imaging techniques have been investigated to better detect them. Susceptibility weighted imaging has been considered as a good candidate to address this issue [START_REF] Ayaz | Imaging cerebral microbleeds using susceptibility weighted imaging: one step toward detecting vascular dementia[END_REF][START_REF] Nandigam | MR imaging detection of cerebral microbleeds: eect of susceptibility-weighted imaging, section thickness, and eld strength[END_REF], SWI retrieving 67% of CMBs missed on conventional T2* GRE.

However, vascular structures along z may be highly ambiguous on SWI and are thus considered as a confusing factor for CMBs detection [START_REF] Hammond | Microbleed Detection in Traumatic Brain Injury at 3t and 7t: Comparing 2d and 3d Gradient-Recalled Echo (GRE) Imaging with Susceptibility-Weighted Imaging (SWI)[END_REF]. Moreover, a post-mortem study suggests that iron content in CMBs can be accurately related to prominent phase image features or diamagnetic (-0,125 ppm for simulated CMCs).

Small CMBs may be considered as point dipoles, when observed through internal eld maps.

In fact, theoretically, when observed far from the magnetic source, the eld generated by this source tends to the one of a point dipole with strength proportional to total magnetic moment [START_REF] David | Classical electrodynamics[END_REF] p168, regardless of the source's shape. Even if CMBs are not all perfectly focal, `small' inclusions will always behave like magnetic point dipoles. Since CMBs are paramagnetic, their resulting magnetization is in the same direction as → B 0 . Therefore they correspond to positive values in the internal eld map, and should appear with a sign inversion around the peak, typical of a point dipole eld. This property was correctly retrieved with 2DHF and could be used as an attribute to better discriminate CMBs from confounding lesions and structures.

In the data evaluated in this study, resulting eld maps clearly reveal the dierent orientation between the dipole eld generated by intra-parenchymal hemorrhages/CMBs and the one gen- Some issues remain for phase-based lesion characterization. Some recent experimental ndings have shown that phase contrast does not only depend on magnetic susceptibility and chemical shifts, but also on tissue anisotropy and its orientation with respect to the main magnetic eld [START_REF] Li | Magnetic Susceptibility Anisotropy of Human Brain in vivo and its Molecular Underpinnings[END_REF], Schweser et al., 2010a]. These intricate dependencies make the understanding of magnetic susceptibility variations from phase images even more challenging. Recently, QSM has been assessed as an alternative tool for CMBs measurements. Its major claim here was to overcome the blooming eect and thus give a precise estimate of CMB's extent. Indeed, total susceptibility of CMBs measured with QSM has been shown to be consistently related with size measurements [START_REF] Liu | Cerebral microbleeds: burden assessment by using quantitative susceptibility mapping[END_REF]]. An increased detection sensitivity of CMBs when compared with GRE magnitude imaging was demonstrated. However QSM techniques are still under investigation, have mainly been focused on 3D acquisitions and need further validation to be applied in clinical setting. Furthermore, micro-structure-related osets also yield artifacts in the reconstructed susceptibility maps [START_REF] Wharton | Eects of white matter microstructure on phase and susceptibility maps[END_REF]. An extended study will be necessary to evaluate the robustness of parameter setting in our complete dataset. Further details on QSM reconstruction using IFM are given in Appendix 2.
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Conclusion

We have thus shown here that this new method could yield complementary information to better characterizing CMBs from MRI only. However, clinical usefulness still remains to be evaluated, either by a direct use in clinical rating or by an introduction as additional information in a multi-contrast segmentation framework.

To do so, we investigated clinical usefulness through a comparison study based on clinical ratings of randomly displayed images (either conventional T2* GRE magnitude, SWI or IFM) obtained from the same acquisitions. This will be presented in details in the following chapter.

Chapter 3

CLINICAL VALIDATION: A COMPARISON STUDY Overview

The 2DHF method we propose thus makes it possible to process 2D phase images from multicenter clinical studies. Resulting internal eld maps (IFM) appear a good tool to discriminate CMBs from cerebral calcications. However, cerebral calcications are not the only structures/lesions that mimic CMBs. To be of interest for clinical routine, the advantages of IFM for CMBs identication still remain to be assessed. We thus undertook a comparison study in order to evaluate if IFM yields similar or better performance for CMBs identication by experienced raters compared to more standard images. A pilot study was rst undertaken with Anne Bertrand, neuro-radiologist, in order to select the most ecient images for clinical routine from a set of candidate images. A set of subjects with varying numbers of CMBs was then assessed by a team of raters with a wide range of background and expertise. The comparison study resulting for these experiments was submitted to Neuroimage Clinical 1 . * * *

INTRODUCTION

Cerebral microbleeds (CMBs), described as small foci of chronic blood products within brain parenchyma [Greenberg et al., 2009], were rst seen on MRI sequences that are sensitive to magnetic susceptibility of patients with small vessel diseases. Correlation of these radiological ndings with histopathological studies has generated considerable interest [START_REF] Cordonnier | Brain microbleeds: more evidence, but still a clinical dilemma[END_REF].

CMBs are now commonly reported with MR imaging in the general population as well as in patients with specic disorders [START_REF] Conijn | Cerebral microbleeds on MR imaging: comparison between 1.5 and 7t[END_REF]. CMBs' prevalence is highly variable among reports: from 47% to 80% in patients with intra-cerebral hemorrhage [START_REF] Lee | Cerebral microbleeds are regionally associated with intracerebral hemorrhage[END_REF][START_REF] Naka | Frequency of asymptomatic microbleeds on T2*-weighted MR images of patients with recurrent stroke: association with combination of stroke subtypes and leukoaraiosis[END_REF], from 8% to 71% in patients with ischemic stroke [START_REF] Naka | Frequency of asymptomatic microbleeds on T2*-weighted MR images of patients with recurrent stroke: association with combination of stroke subtypes and leukoaraiosis[END_REF][START_REF] Tsushima | Brain microhemorrhages detected on T2*weighted gradient-echo MR images[END_REF], from 17% to 46% in patients with cognitive decline and dementia [START_REF] Cordonnier | Prevalence and severity of microbleeds in a memory clinic setting[END_REF][START_REF] Hilal | Cerebral microbleeds and cognition: the epidemiology of dementia in Singapore study[END_REF] and 20% in healthy elderly population [START_REF] Cordonnier | Brain microbleeds: more evidence, but still a clinical dilemma[END_REF]. Deep brain CMBs are associated with hypertensive arteriopathy (HTA), while supercial CMBs are associated with cerebral amyloid angiopathy (CAA), although they may also be present in patients with isolated cerebral small vessel disease [START_REF] Park | Pathogenesis of cerebral microbleeds: In vivo imaging of amyloid and subcortical ischemic small vessel disease in 226 individuals with cognitive impairment[END_REF].

CMBs identication using MRI remains complicated [START_REF] Cordonnier | Brain microbleeds: more evidence, but still a clinical dilemma[END_REF], Greenberg et al., 2009]. As made of hemosiderin, they can be described as strongly super paramagnetic ironstorage complexes [START_REF] Cordonnier | Brain microbleeds: more evidence, but still a clinical dilemma[END_REF], whereas brain parenchyma is diamagnetic. Thus, this magnetic susceptibility dierence with surrounding brain parenchyma makes CMBs appear as magnetic inclusions, causing local magnetic eld inhomogeneity such as would be created by a unit dipole.

At the voxel level, this eld inhomogeneity leads to intra-voxel phase dispersion and strong T2*-contrast. CMBs' detection is thus commonly based on Gradient Recalled Echo (GRE) T2*-weighted magnitude images, in which they appear as areas of signal loss. However, their appearance on these sequences is sensitive to imaging parameters such as echo time (TE) and B 0 eld strength. Furthermore, blood vessels and cerebral micro-calcications (CMCs) also have strong T2* eects and can be misidentied as CMBs. While localization may help identication, such as for some physiologic calcications commonly found in specic areas (e.g. pineal gland, choroid plexus, basal ganglia), discrimination between small blood products and calcication sometimes require a CT scan [START_REF] Yamada | Intracranial calcication on gradient-echo phase image: depiction of diamagnetic susceptibility[END_REF].

Specic GRE-based solutions have been proposed to address these issues or related ones, including dierent scan protocols and/or dierent signal processing methods such as Susceptibility weighted imaging (SWI) [START_REF] Cheng | Susceptibility-weighted imaging is more reliable than T2*-weighted gradient-recalled echo MRI for detecting microbleeds[END_REF][START_REF] Jeroen | Clinical relevance of improved microbleed detection by susceptibility-weighted magnetic resonance imaging[END_REF][START_REF] Nandigam | MR imaging detection of cerebral microbleeds: eect of susceptibility-weighted imaging, section thickness, and eld strength[END_REF][START_REF] Vernooij | Cerebral Microbleeds: Accelerated 3d T2*-weighted GRE MR Imaging versus Conventional 2d T2*-weighted GRE MR Imaging for Detection[END_REF], Enhanced Susceptibility weighted angiography (ESWAN) [START_REF] Guo | Quantication of Phase Values of Cerebral Microbleeds in Hypertensive Patients Using ESWAN MRI[END_REF], Quantitative susceptibility mapping (QSM) [START_REF] Klohs | Detection of cerebral microbleeds with quantitative susceptibility mapping in the ArcAbeta mouse model of cerebral amyloidosis[END_REF], Liu et al., 2012, McAuley et al., 2010], internal eld maps (IFM) [START_REF] Guo | Quantication of Phase Values of Cerebral Microbleeds in Hypertensive Patients Using ESWAN MRI[END_REF][START_REF] Kaaouana | 2d harmonic ltering of MR phase images in multicenter clinical setting: Toward a magnetic signature of cerebral microbleeds[END_REF]. SWI has already been considered for the diagnosis of CMBs. It is based on combining phase and magnitude images from 3D high resolution GRE images to allow enhancing detection sensitivity for paramagnetic structures such as veins or hemorrhages [START_REF] Jeroen | Clinical relevance of improved microbleed detection by susceptibility-weighted magnetic resonance imaging[END_REF], Haacke et al., 2009[START_REF] Haacke | Susceptibility Weighted Imaging in MRI: Basic Concepts and Clinical Applications[END_REF][START_REF] Nandigam | MR imaging detection of cerebral microbleeds: eect of susceptibility-weighted imaging, section thickness, and eld strength[END_REF][START_REF] Reichenbach | Small vessels in the human brain: MR venography with deoxyhemoglobin as an intrinsic contrast agent[END_REF]. A comparison between SWI and GRE T2* reported that conventional GRE T2* magnitude missed 67% of CMBs compared to SWI [START_REF] Nandigam | MR imaging detection of cerebral microbleeds: eect of susceptibility-weighted imaging, section thickness, and eld strength[END_REF]. In patients with CAA, [START_REF] Cheng | Susceptibility-weighted imaging is more reliable than T2*-weighted gradient-recalled echo MRI for detecting microbleeds[END_REF] and [START_REF] Vernooij | Cerebral Microbleeds: Accelerated 3d T2*-weighted GRE MR Imaging versus Conventional 2d T2*-weighted GRE MR Imaging for Detection[END_REF] reported that SWI was more reliable and sensitive for CMBs detection than conventional GRE T2* magnitude. Ayaz et al [START_REF] Ayaz | Imaging cerebral microbleeds using susceptibility weighted imaging: one step toward detecting vascular dementia[END_REF] reported that SWI is more patients suspected of having experienced a stroke reported that the total susceptibility (TS) of CMBs was more consistent than CMBs size measurement [START_REF] Liu | Cerebral microbleeds: burden assessment by using quantitative susceptibility mapping[END_REF]. Nevertheless, SWI, ESWAN and QSM techniques require a 3D multi-echo GRE T2* acquisition which may not be available in large cohorts. Internal eld maps (IFM) can be computed with standard parameters from phase images of routine T2* GRE 2D single echo acquisitions. A method based on 2D harmonic ltering [START_REF] Kaaouana | 2d harmonic ltering of MR phase images in multicenter clinical setting: Toward a magnetic signature of cerebral microbleeds[END_REF] has been shown to allow for generating appropriate internal eld maps for discriminating CMBs and visualizing the dipole eld patterns created by CMBs; this magnetic signature could be used in CMBs' characterization.

Overall, CMBs' detection still suers from high inter and intra-observer variability as well as large variation of reported prevalence between studies. This can be explained by confounding structures and artifacts as well dierences in acquisition technique used in each study. Most of the new techniques that were proposed to address these issues were designed and applied to high resolution 3D acquisitions. As a result, previous studies comparing rating performance for advanced images vs standard magnitude images did in fact combine the advantages of 3D vs 2D acquisition with those of the new pre-processing techniques. Here, we aimed at evaluating the specic advantages of advanced image reprocessing technique for CMB's identication by trained raters. In fact, 3D GRE T2*-weighted acquisitions may not always be possible in clinical setting and 2D acquisitions are still the safer mean to ensure uniformity in multi-center clinical studies and to guarantee reasonable acquisition time. Thus, routine 2D multi-slice GRE acquisitions were used as inputs in this study, resulting in several types of images that can be used for CMB rating: magnitude images, SWI-like images, and preprocessed phase images (IFM and QSM).

The paper is organized as follows. In the rst part, the dataset used for this comparison study is presented, followed by a description of the advanced pre-processing techniques and comparison experiments. Results are then detailed in the second part, regarding the reliability of the reference built specically for this study and the performance of the method both on a single lesion and subject point of view.

Material and Methods

Evaluation dataset

The evaluation dataset was extracted from data acquired for the ongoing French national cohort named MEMENTO [START_REF] Chene | MEMENTO: A NATIONAL COHORT ON DETERMINANTS AND BIOMARKERS OF ALZHEIMER'S DISEASE AND ASSOCI-ATED DISORDERS[END_REF]. MRI and PET acquisitions, provided by a network of 24 centers with MRI systems from dierent manufacturers, models and eld strengths, are monitored by the CATI, the French National Platform for Multi-center Neuroimaging Studies (http://www.cati-neuroimaging.com/). A sub-sample of the rst 382 MEMENTO participants were evaluated for CMBs [START_REF] Kaaouana | 2d harmonic ltering of MR phase images in multicenter clinical setting: Toward a magnetic signature of cerebral microbleeds[END_REF], and 77 subjects with CMBs were identied. This prevalence of 20% for this population (mean age was 55) was consistent with the prevalence reported for elderly subjects [START_REF] Cordonnier | Brain microbleeds and Alzheimer's disease: innocent observation or key player?[END_REF]. For the current evaluation study, 15 subjects were selected to keep six subjects with numerous CMBs [13-30 CMB], ve subjects with few CMBs [1-4 CMB] and four subjects without CMB. MRI data for these 15 subjects was acquired on either Siemens (four centers, Verio systems, seven subjects)

or Philips (three centers, Achieva systems, eight subjects) 3T systems. The acquisition protocol was described in [START_REF] Kaaouana | 2d harmonic ltering of MR phase images in multicenter clinical setting: Toward a magnetic signature of cerebral microbleeds[END_REF].

Methods

CMBs are made of hemosiderin and are detected on GRE images because of the local magnetic susceptibility variation they yield. Besides, GRE phase images are proportional to magnetic eld variations and thus sensitive to local susceptibility variations. Both magnitude and phase images will thus be considered in this study.

However, phase image analysis for local eld variations is not straightforward. In fact, phase wraps appear on the images because phase is dened in the [-π, π] interval and local variations are hidden in large scale eld variations resulting from background eects, dominated by the magnetic susceptibility sharp edge of the air-tissue interface. Extraction of relevant internal eld information requires two preliminary steps: phase unwrapping and background eld removal [START_REF] Haacke | Susceptibility Weighted Imaging in MRI: Basic Concepts and Clinical Applications[END_REF]. These two pre-processing steps are embedded in the two methods chosen for this study, SWI and IFM, as described below.

Susceptibility Weighted Imaging (SWI)

SWI relies on combining phase and magnitude images [START_REF] Haacke | Susceptibility-Weighted Imaging: Technical Aspects and Clinical Applications[END_REF], phase information being used to enhance blood-related contrast on magnitude image (e.g. veins). Phase images are rst high pass ltered (HPF) to extract local information and then transformed in a phase mask with values in the[0; 1] interval. In this study, the HPF phase image was obtained through the following steps. Complex-valued image was rst generated from magnitude and phase images. It was then low-pass ltered slice by slice with a two dimensional Gaussian lter in Fourier domain.

The HPF phase image was then estimated as the phase component of the ratio between complexvalued and low-pass-ltered images. The HPF phase image was then transformed in a consistent phase mask which was then applied N times on the original magnitude image to highlight voxels with high phase value. The standard-deviation of the Gaussian lter, σ, and N were empirically chosen on the evaluation dataset in order to optimize the setting for CMB detection on 2D data.

The σ parameter was set to 36 pixels [START_REF] Haacke | Susceptibility Weighted Imaging in MRI: Basic Concepts and Clinical Applications[END_REF] and N to 8.

Advanced phase image (IFM and QSM)

A 2D-based method for phase unwrapping and harmonic ltering, based on solving Poisson equation [START_REF] Song | Phase unwrapping of MR phase images using Poisson equation[END_REF], has been proposed as an ecient mean for obtaining the IFM [START_REF] Kaaouana | 2d harmonic ltering of MR phase images in multicenter clinical setting: Toward a magnetic signature of cerebral microbleeds[END_REF]. This method was shown to solve the potential slice-to-slice phase inconsistency that may occur in 2D multi-slice T2*GRE datasets. The magnetic eld observed inside the brain, B, can be decomposed as the sum of the magnetic eld due to internal sources, B in , and the one induced by external sources, B out . From Maxwell's equations, Bout is harmonic inside the brain (∆B out = 0), resulting in ∆B = ∆B in (∆ denotes the Laplacian). Consequently, eld variations due to external sources can be ltered out through a second order derivative, followed by a second order integration using adequate boundary conditions. In the process, the Laplacian of the eld B in , which locally depends on susceptibility distribution, is set to 0 outside the brain to remove external susceptibility eects. Paramagnetic dot-like inclusions appear as a dipolar eld on the resulting IFM (see Figure 3.2.1 and [START_REF] Kaaouana | 2d harmonic ltering of MR phase images in multicenter clinical setting: Toward a magnetic signature of cerebral microbleeds[END_REF]). CMBs can be better discriminated by this magnetic signature.

IFM is not sucient to fully evaluate the extent of each CMB, or even to isolate very close CMBs. QSM may be a good tool to assess CMBs with a more quantitative measure. From the above 2D IFM, QSM maps were derived using the method described in [de Rochefort et al., 2010a]. In-house optimization of hyper-parameters was used to better adapt the method to our 2D datasets.

Evaluation experiments

In order to determine the CMBs' inuence of the type of image identication, rating was performed by several raters in dierent conditions. A pilot experiment was rst carried-out in order to evaluate the experiment settings (see Figure 5.0.6 in appendix 3 for more details). Three types of images were nally considered as good candidates for CMB rating in clinical setting: T2* magnitude image, SWI-mIP image (mIP being done on 3 slices) and IFM image.

Rating comparison

Rating was performed independently by six raters with various levels of expertise: a trained clinical research assistant, a trained engineer, two junior neuroradiologists and two senior neuroradiologists. All observers were blinded to the image type and to clinical information. In order to facilitate detection, interactive setting was possible for visualization contrast though a specic Graphical User Interface (GUI) built with GUIDE in MATLAB (see Figure 3.2.2 and Figure 3.2.3). Because of the known variability of CMBs' detection, a certainty score was introduced, to allow categorizing CMBs as denite or possible. The aim of this categorization was both to facilitate the rating in case of uncertainty and to dierentiate the amount of variability that came from well-dened and badly dened CMBs. CMBs was dened as small round dots of signal loss that could not be followed on consecutive slices like vessels, on sequences that are sensitive to magnetic susceptibility. Their size may vary from 2 to 10mm.

Building-up of the reference

After the series of ratings was completed, a reference was built by two trained neuroradiologists, one of whom did not participate to the comparison experiments. All the CMBs that were detected by any rater from any image during the comparison experiments were reassessed independently by each trained neuro-radiologists, taking into consideration the three image types simultaneously though a specic GUI (reference GUI). These two sets of 15 reference images were then combined to create a set of 15 consensus images by a given explicit scoring rules (Table 3.2.1). Briey, if a lesion is identied by both observers and at least one observer considers it as denite, then it is rated as denite CMB in the consensus. If it is identied by a single observer as possible then it is discarded from the reference; if it is identied by a single observer as denite, then it will be considered as a possible CMB. Exp
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Table 3.2.1: Reference consensus building up, scoring rules: 0 for discarded lesion, 1 for possible CMB and 2 for denite CMB.

Results

Due to the well-known inter-rater variability when rating CMBs, the reliability of the consensus reference was rst evaluated, in order to assess each following rating with respect to a meaningful reference. The evaluation experiments were analyzed on a lesion-based point of view through the rating results of the six raters with respect to the reference. Two types of identication were analyzed: 1. all CMBs detected (either denite or possible); 2. CMBs detected as denite only.

Finally, in order to assess clinical usefulness, clinical practice was taken into account. In fact, the inuence of few CMBs on clinical assessment is uncertain, whereas clinical practice focuses on subjects with numerous CMBs. Consequently, ratings and reproducibility analyses were carried out on a subject-type point of view, by classifying patients in three groups: no CMB (G1), few CMBs (G2, less than 10 CMBs) and numerous CMBs (G3, more than 10 CMBs). Furthermore, rating times were also analyzed, in order to evaluate clinical feasibility of IFM with respect to more standard T2* magnitude and SWI-mIP.

Reference

In order to evaluate the reliability of the consensus reference, CMBs detected by both expert raters were compared. Results are given in Table 3.3.1, through the number of detected CMBs (all or denite CMBs) for the two expert raters, the number of overlapping or discrepant CMBs detected by both raters and the consensus computed by the scoring rules described in Table 3.2.1.

Cohen's kappa coecient was computed to compare the number of CMBs detected by each rater for each subject. When considering all lesions, the kappa value was 0.5 (p-value=0.01) and for denite lesions only, the kappa value was 0.54 (p-value=0.02). Overall, the agreement on CMBs detection was satisfactory. Apart from one subject (subject 3 with 13 discrepant CMBs), the discrepancy between both raters was negligible (median for no CMB: 0, few CMBs: 0 and numerous CMBs: 2.5. Examples of between-raters discrepancies are illustrated in Table 3.3.1.
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Rating results: lesion-based point of view

Blind ratings were analyzed with respect to the consensus reference, in order to evaluate the performance of each image type independently for lesion detection. Because of the large variability in lesion number between subjects, (TP), false positives (FP) and false negatives (FN)

were computed for each rater over all the CMBs detected on all subjects. Note that all refers to denite and possible merged together. Overall count of CMBs detected for each raters are given in Table 3.3.2 for the three image types (T2* magnitude, SWI mIP and IFM). Total number of CMBs, TP, FN and FP are detailed for each rater.

Overall, IFM yields small improvements with respect to T2* whereas SWI-mIP yields systematic higher numbers of false positives. TP were lower for SWI than for T2* and IFM (78 vs 88-89). Both FN and FP were higher for SWI (FN: 57 vs 48-46, FP: 34 vs 16-9). Furthermore, ranges for TP, FN and FP were smaller for IFM than T2*(TP: 32 vs 54, FN: 32 vs 54, FP: 73 When comparing performances between raters, we note that two raters tend to underestimate the number of CMBs (CRA and Exp.Junior1) and one tends to largely overestimate it (Exp.junior2). Interestingly, this dierence is lessened by the use of IFM with respect to the two other image types (total count range: 99 for IFM vs 150 for T2* and 198 for SWI-mIP).

In order to better understand the detection pattern between raters, ratings for denite CMBs were also analyzed. Detailed results are given in Table 3 

Rating results: subject-type point of view

In order to evaluate the three image types with respect to clinical usefulness, rating results were evaluated for each subgroup (no CMB, few CMBs, numerous CMBs) (Table3.3.4).

The overall trend is conrmed for the subgroups, IFM yielding more specic results ((0 vs 2 and 2 for T2* and SWI-mIP, respectively for G1) and (1 vs 4 and 5 for T2* and SWI-mIP, respectively for G2) and (7 vs 13 and 27 for T2* and SWI-mIP, respectively for G3)), even if the performance is more balanced between methods for no CMB and few CMBs groups.

In order to better assess clinical usefulness, image types were compared regarding to their ability to correctly classify the subjects in the three groups of interest. The number of correctly classied subjects for each rater and each image type is given in Table 3.3.5.

Overall T2* magnitude and IFM classify better than SWI-mIP (median value: G1: 3/4 and 4/4 vs 2.5/4, G2: 2/5 and 2/5 vs 2/5, G3: 5.5/6 and 5/6 vs 4.5/6). IFM yields more similar results between raters than T2* magnitude and SWI-mIP (ranges: G1: 2 vs 3 and 3, G2: 2 vs 2 and 1, G3: 1 vs 4 and 4). CMBs. In the worst case, it took only 1.2 times longer. Interestingly, for all image types, it took less time to do the rating for participants with few CMBs than those with no CMB.

Discussion

We presented here a comparison of CMB detection performance when using three dierent kinds of images built from the same 2D GRE dataset: T2* magnitude image, SWI-mIP image, and IFM image. Ratings were performed in random order by six raters with varying background and level of expertise. Blind rating results were evaluated with respect to a reference built from a consensus between two raters, with good, agreement between both. Overall, 2D-dedicated phase processing used for IFM computation proved a very promising tool to improve CMBs detections in clinical setting; on lesion-based point of view, it yielded increased sensitivity and specicity compared to T2* magnitude and SWI-mIP images. On a subject-type point of view, even though performances were closer between the three image types, IFM yielded less interrater variability when identifying patients with numerous lesions than both other methods, with only a small increase in rating time, pointing toward clinical usefulness.

Here, our goal was to compare between CMBs detection on dierent techniques computed from the same 2D acquisition. Previous studies [START_REF] Vernooij | Cerebral Microbleeds: Accelerated 3d T2*-weighted GRE MR Imaging versus Conventional 2d T2*-weighted GRE MR Imaging for Detection[END_REF] compared 2D T2* magnitude images and 3D SWI, even though dierences may be mainly due to the dierences between 2D and 3D acquisitions. The aim of studying post-processing while keeping a single acquisition was motivated by the fact that 2D GRE T2* multi-slice sequences are more common in large multi-center cohorts than 3D multi-echo GRE T2*. For this kind of cohorts, IFM may thus be an ecient mean to improve CMBs detection. The method we used here, 2DHF, removes 2D acquisition and / or reconstruction artifacts while keeping ne details with limited border eect.

False positives in CMB detection can be explained by CMBs mimics, which have similar morphology and signal properties. Partial Volume Eect (PVE) is one of the main sources of mimics, but PVE-related mimics are more likely to occur adjacent to the petrous temporal bones, para-nasal sinuses, frontal bones, orbit and occipital bone [START_REF] Werring | Cerebral Microbleeds: Pathophysiology to Clinical Practice[END_REF][START_REF] Gregoire | Cerebral microbleeds as a marker of small vessel disease: new insights from neuro-imaging and clinical studies in stroke patients[END_REF], Greenberg et al., 2009]. An example of a partial volume artifact that mimic a CMB is illustrated in Figure 3.4.1. We notices that experienced raters better distinguish between PVE-related mimics and CMBs according to anatomical criteria.

Another frequent source of false positives is the appearance of venous structures non-parallel to the acquisition plane which are thus seen in cross-section as round objects. SWI-mIP may help to dierentiate these vascular-related mimics, the projection allowing to highlight the 3D tubular shape, as illustrated in Figure 3.4.2.

Although the use of SWI with 3D-acquisitions is known to increase the contrast of CMBs, allowing to detect smaller CMBs, here SWI proved to increase FPs on 2D datasets. In fact, it may reveal ow voids from small blood vessels and enhance some hyposignal artifact, thus creating new mimics. Thus, the increased sensitivity brought by SWI is balanced by a decreased specicity. Moreover, the blooming eect is enhanced by SWI compared with magnitude images;

this could lead to an underestimation of the CMB number when multiple close CMBs, biasing clinical decisions. Finally, high pass ltering technique has been shown to be sub-optimal for background eld removal, crucial for SWI [START_REF] Kaaouana | 2d harmonic ltering of MR phase images in multicenter clinical setting: Toward a magnetic signature of cerebral microbleeds[END_REF]. This could yield an enhancement of some artefactual voxels resulting in an increased number of FPs. The ecient calculation of IFM with the 2DHF method requires to express boundary conditions dening the internal region. These boundary conditions are thus derived from a mask of the region of interest, namely the brain. However, the border of the brain co-localizes with an area of strong susceptibility interfaces, thus leading to potentially strong border eects. To reduce the likelihood of these border eects in 2DHF, the brain mask was eroded. Theoretically, this may lead to miss the outer cortical part in some places, and thus cortical CMBs, as shown in the example in Figure 3.4.3. The use of both IFM and T2* magnitude images may help reduce the number of missed cortical CMBs.

QSM was not kept in the pilot experiment by the neuro-radiologist. In fact, applying QSM incorporates solving the dipole inversion which is intrinsically three dimensional and thus a strong anisotropic resolution may lead to large error propagation into the resulted QSM maps.

Moreover, available techniques imply the setting of regularization/threshold which is a challenging issue for multi-center data. Here, the regularization parameter was empirically chosen.

QSM needs more investigation and validation and clinicians may need more training to interpret resulted maps. results in a increased number of TPs with respect to magnitude image. However, compared to SWI, IFM further yields a magnetic signature of CMBs. In fact, these inclusions behave like small magnetic dipoles and thus create magnetic eld patterns similar to that of dipoles;

this dipolar magnetic eld appears as a ring-like eect in the axial plane in IFM. The sign of the ring like pattern varies if the lesion is either paramagnetic or diamagnetic and allows to discriminate between CMBs and cerebral micro calcications related mimics [START_REF] Kaaouana | 2d harmonic ltering of MR phase images in multicenter clinical setting: Toward a magnetic signature of cerebral microbleeds[END_REF]. Overall, IFM thus improve sensitivity (with respect to magnitude image) and specicity (with respect to SWI-mIP).This results in a better characterization of subjects between few CMBs and numerous CMBs, the last group being the more important for clinical practice.

Sensitivity and specicity of CMB detection appeared to be highly rater related among raters. Three types of rater behavior were noted: two raters identify less CMBs on all image types and thus tend to under-rate (CRA and Exp.Junior1); one rater largely over-rates (Exp.Junior2); the last three raters had a similar tendency for medium rating (Trained.Ing and the two Exp.Seniors). For the two under-raters, IFM is more sensitive and more specic than T2* magnitude and SWI-mIP. By contrast, for the over-rater, sensitivity is very high for all image types, but most extra CMBs were identied on SWI-mIP and specicity is twice better for IFM than T2* magnitude and SWI-mIP. For raters the most experienced raters, all image types have a comparable sensitivity but IFM shows better specicity.

Regarding rating times, IFM proved ecient, even though it was a new image type for all raters. This time may be reduced with a better visualization of the magnetic signature and more practice. Important dierence in rating time was noticed between the three groups; volumes with higher CMB number needs more assessment time. Raters may tend to double check volume without CMBs which can explain the longer time to do the rating for participants with no CMB than those with few CMBs.

For reference building-up, consensus was obtained with a specic scoring rule, in order to take into account the intrinsic variability of CMB detection (denite and possible CMBs). In fact, although the two observers reassessed the CMBs by considering all image types simultaneously, agreement was not perfect and a few cases of non-negligible disagreement were noticed. Even though relying a third observer or consensus meetings may have been more standard approaches, both may suer from subjective bias, whereas our approach considered both observer equally.

Although studies on CMBs are increasing at an exponential rate, there is still a lack of precise standardized criteria for rating them, leading in a low inter-rater reproducibility within a project and an even lower inter-subject consistency. In fact, the main reasons of between-raters discrepancy are low contrast, distance with respect to sulci and lesion size. Better integrating new neuroimaging tools is likely to lead to considerable improvements with respect to these issues.

In this study, we have shown that IFM appears as an interesting add-on to magnitude image for the detection of CMBs. As expected, it allows discriminating mimics from real CMCs, visible ring like eects making it more specic in deep white/grey matter. On the contrary, magnitude only and SWI-mIP seemed to increase false positives detection. IFM oers a simple and practical solution to assess the presence, number and distribution of CMBs on standard clinical multicenter dataset. Further clinical studies on more subjects would help better assess the advantages of each type of images with respect to clinical usefulness, together with histological studies in order to infer the physical meaning of the magnetic signature. Finally, a comparison on 3D isotropic datasets would allow a better assessment of advantages of IFM with respect to SWI when these datasets are available.
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Chapter 4

AUTOMATIC SEGMENTATION: Proof-of-concept

Introduction

The main objective of this thesis is the development of an automatic tool for CMBs detection on multi-center datasets in a clinical setting. State-of-the-art approach, as were shown, yield high false positives rate and need manual review to be reliable for clinical measures. This low specicity reveals the necessity to improve CMB characterization.

The use of complementary phase information, very sensitive to hemosiderin, could thus reveal relevant additional features for CMB detection. In fact, existing methods were validated either on T2* magnitude or SWI images, the last one embedding phase image only to enhance susceptibility-related contrast. It has been shown in the previous chapter that IFM computed with 2DHF yield more specic information and improves CMB detection. The objective of our work is now to include IFM in a segmentation framework in order to improve specicity while keeping high sensitivity.

Challenges for designing an automatic identication method are related to CMB's nature: being a susceptibility artifact, other susceptibility artifacts may be mistaken to CMBs although their apparent shape may not be strictly round. Their size is variable ranging from very small to an unclear limit with macro hemorrhages. Furthermore, size is a tricky criterion due to the Blooming eect that makes CMBs appear larger on T2* magnitude than on T2-weighted images. Adjacent CMBs may also overlap and either be mistaken for macrobleeds or badly separated. CMBs have a lot of mimics such as blood vessels, calcications, cavernous malformations. Their appearance is sensitive to many imaging parameters such as echo time, eld strength.

To solve all these issues while ensuring robustness and high specicity, the developed method has to rely on the dierential diagnosis criteria of CMBs as giving in chapter 1.

Moreover, the comparison study presented in chapter 3 should help to better understand how each image type should be included in the segmentation method. In fact, IFM appears more specic than conventional T2* W and mIP-SWI, but T2*is useful for cortical CMBs that may be missed by applying brain mask. SWI helps to enhance small CMBs of low contrast and mIP-SWI better discriminate CMBs from veins if not parallel to projection direction. The development of a framework that embeds such features is a work in progress. The goal of this chapter is, thus, to present a proof-of-concept of the automatic identication tool for CMBs on a multi-center dataset. This tool should facilitate their study in large cohort context and, thus, improve the general understanding of their role in AD. The main novelty in this work is to include the multi-contrast aspect more specically, the magnetic signature of CMBs on IFM as shown in [START_REF] Kaaouana | 2d harmonic ltering of MR phase images in multicenter clinical setting: Toward a magnetic signature of cerebral microbleeds[END_REF].

Proof-of-concept design

Considering shape, intensity and localization priors for CMBs, The rst step aimed at looking for candidates CMBs. For this, we apply an empirical large threshold on T2* magnitude image, internal eld map, SWI and mIP-SWI. This step allows to decrease the computational cost of processing the whole image and to prepare features extraction. A statistical threshold was used, keeping only outliers of a Gaussian distribution modeling Prior localization information was derived from a brain mask generated during a preprocessing step described in the rst section. The second section presents the proof of concept of the method including feature extraction and classication step. Preliminary results are presented in the third section while the fourth section will discuss these results and describes how this preliminary work could be extended to obtain the nal framework to be used in clinical practice.

Pre-processing

MRI raw datasets often suer from acquisition defects that need to be corrected before any further processing. The most common issue stems from B 1 eld inhomogeneity that results intensity inhomogeneity over the magnitude image. Although manufacturers propose built-in solutions intensity inhomogeneities remains an issue. Image processing algorithms such as segmentation or texture analysis may not produce satisfactory results if this issue is not dealt with. On our multi-center Memento datasets, bias correction were performed using SPM tool.

Neuroimaging has greatly benetted from the development of sophisticated and ecient algorithms for cerebral tissue segmentation which is now often done as a preliminary step. To do so, we used the Unied Segmentation method described in [START_REF] Ashburner | [END_REF]. It uses a voxel-based approach with a statistical inference on the Gaussian Mixture Model. It is available in SPM which is a toolbox for Matlab developed by the FIL institute of Neurology, UCL (University College London) and is freely distributed on http://www.fil.Ion.ucl.ac.uk/spm/.

Most of the pre-processing steps we will describe below rely on Matlab batches using the SPM8 software.

3D T1 segmentation

The purpose of the unied segmentation is to extract probability maps of dierent As mentioned before, non uniform intensity. It appears as a local variation of intensity in the same tissue without any pathological cause. Indeed, dealing with this issue is crucial for the intensity-based segmentation methods as these variations may modify signal distribution and therefore alter outliers interpretation. This is why this was included in the unied segmentation scheme. The module used here is New Segment and it is available from the batch editor in the menu SPM > Tools > New Segment;

the input image to be segmented is the T1 image. The outputs are the T1 image with corrected bias, as well as the probability maps of GM, WM, CSF, skull and other class.

Ane registration

Image registration is the operation of aligning images in order to relate corresponding features. For most kind of image processing on two or more images, it is required that the images are aligned, so that one voxel position represents the same anatomical position in all images. It allows the use of images of dierent modalities; to compare or combine their respective information. Registration aims at nding the transformation that matches exactly two images.

This can be achieved by maximizing the similarity between source and target image

arg max t T f (I 1 , t(I 2 )) (4.3.1)
with f the similarity criterion, t the transformation to be applied to the source image (I 2 ), T the set of possible transformations and I 1 the target image.

The registration step is crucial for matching dierent contrasts (T1,T2*..) that are not acquired in the same space and with the same geometric parameters (FOV, slice selection...). Here, the registration is applied on images from the same subject which makes it reasonable to assume that the head will not be deformed. Hence, the rigid transformation model (3D rotation (x;y;z) and 3D translation (tx; ty; tz)) is therefore sucient for our purpose. The Normalized Mutual Information (NMI) is the used similarity measure, as NMI was designed to compare data from dierent modalities/contrast. This measure is based on a multi-dimensional joint histogram which represents the co-occurrences of all possible voxels intensity combinations in the source and target.

We Second row; nal calculated intra-cranial mask when considering GM, WM and CSF.

Intra cranial and cerebral mask calculation

CMBs are only localized into parenchyma we thus dene a region of interest to reduce the search area, corresponding to cerebral region. This made it possible to decrease the computational cost of the automatic detection.

For our method, tissue maps WM, GM and CSF registered in the T2* space, were binarized by keeping voxels with probabilities over 0.5 in the T2* space as shown in Here we will address the issue by rst selecting candidate voxels for CMBs and second classifying them according to a set of features. Thresholding was used to obtain initial CMBs candidates. Thresholding was used as the main characteristic of CMBs is their hypointense aspect. In thresholding, pixels are allocated to categories according to a selected range of dened by thresholds. The threshold value,th, is often chosen manually, by trying a range of values of th and directly assessing which value is more adequate to segment the object of interest. The threshold can also be chosen automatically based on data statistics. In our approach, we used statistically derived thresholds dened from means and standard deviations on a population. To decrease the number of detected objects and their size, we used the four images in this thresholding step: T2*, IFM, SWI and mIP-SWI images; the intersection between the four thresholded images was kept.

Statistical thresholding is of particular interest in the CMBs context. It can be used to separate the Gaussian distribution of the intensity of brain tissue from the low intensity outliers, CMBs, on T2*magnitude, SWI and mIP-SWI. The small size of CMBs preserves the Gaussian distribution without altering its mean and/or its standard deviation. However, these images also suer from large susceptibility artifact that may alter their distribution. The statistical thresholding is performed in two steps:

Step1: The rst threshold, th I SA , aims at identifying the 'large dark susceptibility artifact (SA)' that may alter the real threshold, th CM Bs calculation on the image type (I ). This threshold is empirically chosen as

Ω IC = {x ∈ Ω I | M IC (x) = 0} (4.4.1) th I SA = xΩ IC -α th × σ Ω IC (4.4.2)
where xΩ IC is the mean intensity within the intra-cranial mask, M IC and σ is its corresponding standard deviation. Voxels with intensity values below this threshold, Ω IC-SA , are excluded when calculating the second threshold 1 .

step2:

The second threshold, th CM Bs , is calculated using the same formula and it aims at keeping only CMBs: Both steps were performed for the three images,T2* magnitude, SWI and mIP-SWI.

Ω IC-SA = x ∈ Ω IC | I IC (x) < th I SA (4.4.3) th I CM Bs = xΩ IC-SA -α th × σ Ω IC-SA
Illustration of these steps for each image is given, with their corresponding histograms, respectively in Figure 4.4.1,Figure4.4.2 and Figure 4.4.3. Internal eld map CMBs appear as hyper-intensities on IFM. The goal of the thresholding here is, thus, to separate the Gaussian distribution of background tissue from the high intensity outliers. A single threshold was sucient. Threshold was, thus, written

as

Ω Cm = {x ∈ Ω I | M Cm (x) = 0} (4.4.6)
1 Here, Ω refers to the specied domain xΩ Cm here, is the mean intensity calculated on cerebral mask (M Cm ), that includes Grey White matter without CSF and σ Ω Cm is the corresponding standard deviation.

Results are shown in Figure 4.4.4. CMBs candidates,Ω CM Bs , were thus found as A classier-based segmentation requires the specication of two main items: the the data, that is then used to predict new dataset. The well-known supervised learning techniques are generative methods such as articial neural networks or discriminative methods such as Support Vector Machines (SVM). However, when there are no labeled data for training the classier, unsupervised learning may be used. In this case the classier has to nd patterns in the data which is otherwise observed as unstructured noise. The most commonly used unsupervised learning techniques is K-means. However, real world problems are often subjective and resulting clusters might not adhere with it, semi-supervised learning may be used by incorporating user suggestions and feedback.

We will detail below the features that will be embedded within the feature vector and Feature vector:

13 features were considered here for each candidate object:

Three intensity features: mean intensity on T2*, SWI and IFM.

Ten geometric features: mean value of FRST function applied on T2*, IFM, SWI and mIP-SWI; circularity; relative anisotropy; elongation; Eective circular diameter and the three eigenvalues of the covariance matrix.

The geometric features will be described below. The radial symmetry contribution for radius n can be dened by this convolution

S n = F n * A n (4.4.16) with F n (p) = M n (p) max M n (p)   Õn (p) max Õn (p)   α (4.4.17)
where A n is a 2D Gaussian and α is the degree of sphericity. FRST parameters will be more detailed below.

All these parameters need to be adapted to CMBs detection. The CMBs are in hyposignal on T2* magnitude, SWI and mIP-SWI; we thus want to detect using FRST only points from which the vector gradient points out. However, CMBs are hyperintense on IFM and thus, only points from which the vector gradient points away are needed to be hilight. We modied the available Matlab script so that it detects either only negatively aected pixels or only positively aected pixels. The algorithm of the FRST to highlight dark circular shapes is described in the algorithm 4.1.

The Radial symmetry function have a number of parameters that needs to be set:

1. The set of evaluated radii N = {n 1 ; n 2 ; ..} 2. The Gaussian kernel, A n ; 3. The degree of sphericity α ; in the previous part. FRST results on the synthetic image show that for R = [1], the FRST detects the linear structures and the edges of the circular structures with strong gradient. For R = [3], the FRST detects the spherical disk with small size as well as some points inside inhomogeneous structure.

For a range of radii [1, 2, 3], the FRST highlights the linear structures, the spherical structures of strong gradient which size is within this range but also the edges of the spherical which size is larger than the target range. For a range R = [1 : 17], the FRST detects only the spherical structures in the target range of radii (even those with low contrast). By comparing, the result of R = [3] and R = [3,17], we notice that the disk of radius 3 was not detected. In fact, when looking for a wide range of radii, small radii are going to have scores signicantly small with respect to larger radii.

The convolution by the Gaussian kernel, A n is performed at the sixth step of the algorithm 4.1. The use of this kernel aims at spreading the inuence of the positively-and negatively-aected pixels as a function of the range n. The chosen 2D kernel is invariant by rotation to have the same sphericity score for gradients with dierent orientations. standard deviation linearly with the range n, we dene an arc of inuence that applies to all aected pixels. The width of the arc is dened by scaling the standard deviation of A n with respect to n.

Here, A n is chosen to be a 2D Gaussian of size n × n and standard deviation σ = 0.25 × n as was recommanded by [START_REF] Loy | Fast radial symmetry for detecting points of interest[END_REF]. Applying the Gaussian spreads out the score of sphericity σ pixels nearby.

Theα parameter denes how strictly radial the radial symmetry must be for the transform to return a high interest value. This parameter is used in the step 5 of the algorithm 4.1. A high α allows to detect very spherical points and eliminates nonradially symmetric features such as linear structures (vessels). Whereas, a small α allows to detect relatively spherical structures. In order to understand the impact of this parameter, we applied FRST with dierent α values on the same image generated with GIMP. It is important to note that, in the original work presenting the FRST [START_REF] Loy | Fast radial symmetry for detecting points of interest[END_REF], the author considers that 2 is a suitable value for the most part of the applications.

As shown in the results in Figure 4.4.9, structures that are relatively spherical were detected for α = 1 while they relatively disappeared for superior values. For α = 2, the FRST starts to discriminate spherical points. We also notice that for α = 5 and α = 7, small disks are no longer detected although the radii vector was the same. A choice of α = 3 is a compromise allowing relatively spherical points to be detected without missing small disks.

FRST feature A summary of FRST parameter setting used for memento dataset to hihlight CMBs are given in Table 4.4.1. In order to dene the sphericity feature, the mean sphericity values on T2*, IFM, SWI and mIP-SWI were calculated. For IFM, positively aected pixels were considered since CMBs appear as hyperintensity on IFM.

In addition to FRST, CMBs have a very specic shape that discriminates them from blood vessels. To emphasize these characteristics ve dierent 2D shape features were calculated and used as described below

Structure elongation

For 3D structures Compactness is approximately a ratio of surface area to volume, spheres having the highest theoretical compactness. For 2D images, we dened the Elongation as the D min/D max, CMBs have a very high compactness and veins have a 

Experiment and preliminary results

Here, preliminary results of thresholding and classication steps are presented.

Thresholding results

For this proof of concept, threshold values for dierent image types were chosen empirically allowing at maximum 10% FN. Results of this step are illustrated in Table 4. The thresholding step had a high sensitivity of 90%, only missing 13 CMBs out of 136. Using the four images for thresholding results in very small objects better suited for morphological analysis. However, as expected, a very large number of false positives was found.

Classication results

Features were extracted from seven datasets to be used for the training step. The rst and second classes were weighted by 500 to decrease the bias due to the large number of have been trained on these features. The basic idea of the tree classication methods is to partition the space and identify some representative centroids using hyperplanes as classication boundaries. Classication trees are a hierarchical way of partitioning the space. We start with the entire space and recursively divide it into smaller regions. At the end, every region is assigned with a class label 2 .

The advantages of this type of algorithm are its fast prediction speed, fast training time, and the simplicity of its interpretation.

Giving three new unknown datasets, classication results are given in Table 4.5.1.

The classication step is able to remove most of the false positives for the three unknown datasets at the loss of sensitivity (almost 50% FN). The predictive model failed to predict true CMBs.

Discussion & Perspectives

The presented method is a proof-of-concept of the segmentation method to be further completed and then validated on larger data. The general segmentation scheme consist of a rst step of selecting initial potential CMBs using a multi-contrast thresholding step and a classication step of these points using a machine learning classier. T2* 2 Matlab description. False positives rate resulting from segmentation scheme, indicate that the second step is the step needing to be improved for higher specicity and sensitivity; this could be accomplished by including new features more specic for each class;

CMBs signature on IFM may be used: Correlation with a dipolar pattern can be added in the feature vector.

Other geometric features may be added: Radon transform and or Hessian matrix.

Creating a vein mask using mIP-SWI that can be applied after thresholding as a pre-processing step to remove elongated structure and thus reduce computational cost of false positive elimination using machine learning. However, the projection yields localization uncertainty and may be challenging to embed.

No feature selection step was performed or investigated here and further improvements could be achieved by keeping only the most adequate features during the training and testing steps.

Features normalization is an important step and needs more investigation.

Anatomical location prior may also be improved using sulci. Even though it would probably not result in a dramatic improvement in sensitivity, it could be an important step in removing veins.

Interpolation may also should be investigated as small CMB may become easier to detect unless if their shape is altered.

Here, we present a proof of concept of a segmentation approach to deal with CMBs;

for this we used 10 datasets with CMBs that were labeled during comparison study. 8 datasets were using for the training step; enlarging the training dataset assuredly would help to create a more accurate predictive model.

In conclusion we have shown a proof of concept of a segmentation method for CMB detection. Although we presented some results, the whole training process need to be further explored in more depth. The main contribution of this technique is a higher specicity due to the use of internal eld map. Further evaluation on a larger group of patients with more diverse types of CMBs needs to be done to prove the applicability of this method as a general CMB detection algorithm.

Chapter 5

CONCLUSION & PERSPECTIVES Summary and conclusion

CMBs, small hypo-intense foci with a maximum diameter of 10 millimeters, were rst thought clinically silent. They are now considered as an imaging marker of cerebral small vessel diseases and their clinical involvement is increasingly recognized; they may be associated with an increased risk of hemorrhagic stroke, ischemia and dementia such as Alzheimer's disease. However, their relation with pathology and its causality remains largely to be understood, partly because of their tricky characterization in-vivo; developing new techniques for characterizing CMBs in vivo thus appear of primary import. The routine use of the magnitude image of GRE T2*-weighted sequences for vascular exploration has been shown to be far from optimal for detecting CMBs. On this image, in-vivo detection suers from low specicity, poor inter-rater reproducibility and is biased by acquisition parameters. However, these focal hypo-intensities result from local magnetic eld inhomogeneities caused by their hemosiderin content and the use of the phase image of the same sequence appears as interesting additional input, being directly linked with eld variations. This phase information has been introduced in the SWI technique that has allowed better CMBs detection. This technique allows to enhance blood (as in blood vessels) and its degradation products (as in CMBs) and has been shown to allow a better appreciation of CMBs prevalence than T2* magnitude image. However, SWI is not always available on MR scanners and thus not necessarily feasible in large multi-center clinical studies, whereas routine GRE T2*-weighted sequences can be acquired on all systems, and phase images can be saved along with magnitude images on nearly all systems. In the Memento cohort, image acquisition has been standardized as much as possible to minimize inter-site variability. However, dierence between Philips and Siemens sequences parameters still remain because specic characteristics of each manufacturer. The aim of this PhD was to develop a robust tool for the automatic segmentation of cerebral microbleeds in a multi-center dataset in a clinical setting.

To do so, it was necessary both to better characterize CMBs, as a large number of false positives has been reported in the literature for segmentation methods, and to take into account the multi-center aspect of the available dataset.

After introducing the historical context of CMBs and their underlying pathology the technical aspect of their detection was developed. State-of-the art methods for their visual and automatic detection were described and compared, and they revealed the need to improve the specicity of automatic techniques. This was the scope of the new robust and ecient method developed in the second chapter to extract usable information from phase images, as phase was expected to allow rening the denition of CMBs on clinical images. This new technique for processing the phase image from 2D GRE T2*-weighted sequence includes unwrapping and background eld correction by carrying out the key numerical operation (Laplace) in 2D on a slice-by-slice basis.

This tool was called 2DHF for 2D harmonic ltering. This method results in internal eld maps (IFM) which reveal local eld details linked with magnetic inhomogeneity within the region of interest. The new technique was shown to better preserve the phase contrast than high pass ltering and better eliminate inter-slice eects compared to a method widely used for the same purpose (PDF). The method was evaluated on both a synthetic phantom and multi-center 2D datasets and compared with two state-of-the-art methods. It proved to yield consistent results on synthetic images and to be applicable and robust on patient data. As a proof-of-concept, we demonstrated that it is possible to nd a magnetic signature of CMBs and CMCs on internal eld maps generated with 2DHF on 2D clinical datasets that gives consistent results with CTscans in a subsample of 10 subjects acquired with both modalities. This work focusses on 2D GRE acquisition, which is widely used in clinics but all recent developments in the eld of phase imaging focus on 3D acquisition; this new implementation could thus allow a more systematic use of phase images in clinical routine. The usefulness of this new information was evaluated for clinical routine in the third chapter through systematic experiments to compare the ratings obtained by trained observers with several image types, from T2* magnitude to IFM. 15 participants from the MEMENTO multi-center cohort were selected, with a wide range of CMB number. After pilot experiments, T2* magnitude, Susceptibility Weighted Imaging (SWI) minimum intensity projection (mIP) on three slices and IFM were kept for the rating experiments.

Six raters of various background and expertise independently selected denite or possible CMBs from a specic user interface that displayed subjects and images in random order. Rating results

were compared with respect to a specic consensus reference, on both a single lesion point of view and a subject-type point of view. IFM yielded increased sensitivity and specicity for CMB identication compared to T2* magnitude and SWI-mIP images. SWI increases the contrast of CMBs, both revealing small CMBs and increasing the number of mistaken CMBs. In fact, it reveals many ow voids from small blood vessels and enhanced some hypo-signal artifact that can be mistaken for CMBs. Thus, the sensitivity increase with SWI comes at the expense of a decrease in specicity. Moreover, SWI enhances the blooming eect compared with magnitude images, which can lead to an over-estimation of the CMB extent. Finally, Inter-rater variability was decreased with IFM when identifying subjects with numerous lesions, with only a limited increase in rating time. IFM thus appears as an interesting candidate to improve CMB identication in clinical setting. A proof-of-concept was nally presented for designing a segmentation method that would make use of robust features on several complementary aspects (intensity, shape and susceptibility). The conclusion of the comparison experiments was used to dene the features, to take advantage of each image type. Candidate points for CMBs are rst selected and then classied using multi-contrast features to discriminate CMBs from non-CMBs points. The method was implemented and validated on the fteen participants from the comparison study.

First experiments showed very promising results regarding the decrease of false positives while keeping a low false negative rate. Further validation is needed on a larger dataset to validate this nding.

Perspectives

This PhD addressed three main topics for which further developments could be considered. The rst topic is related to the characterization of CMBs using MR phase images on a multicenter dataset and was addressed by designing, implementing and evaluating the 2DHF method. This method proved ecient for CMB characterization or further application in vascular imaging.

However, this characterization remains sensitive to the choice of echo time, as it aects the size of the signal void area around each CMB and size measurement may still not be relevant on IFM to fully characterize CMB burden. More advanced tools, such as Quantitative susceptibility Mapping (QSM) (more detailed in Appendix 2), aim at quantifying susceptibility variations and may present a good tool for CMBs characterization. In parallel with the work described here, we investigated the feasibility of solving the eld to source inverse problem from IFM generated by 2DHF method on our multicenter dataset, as working on susceptibility sources may overcome the blooming eect issue and make it possible to access to the real size of CMBs, both for crossstudy comparisons and robust longitudinal data analysis. In fact, the dipole deconvolution in QSM can theoretically eliminate the blooming artifact when proper prior information is used, such as morphology derived from images with no or little blooming artifact. Quantitative aspects of CMBs characterization are shortly described in Appendix 2; preliminary results were obtained during the internship of Kanza Dekkiche where we evaluated and compared the state-of-the-art QSM methods on multi-center datasets. In fact, the main issue for QSM maps reconstruction is to solve an ill-posed inverse problem; to do so, priors are introduced, such as regularization. The issue of regularization parameter setting for multicenter dataset was investigated to overcome center/machine variabilities, but this evaluation needs to be further developed. Moreover, QSM is inherently a 3D problem and further analyses are needed to validate it in the 2D context.

Liu et al in [START_REF] Liu | Cerebral microbleeds: burden assessment by using quantitative susceptibility mapping[END_REF] retrospectively analyzed 40 CMBs detected in 10 patients; they compared the eciency of QSM, R2* map, T2*weighted magnitude and SWI for CMB detection on an advanced 3D multi-echo spoiled gradient echo sequence in order to investigate whether QSM can overcome the variability due to TE modications for measuring CMB burden. This study showed that the total susceptibility of a CMB is an intrinsic physical property and is not related with echo time; this conclusion is in accordance with previous phantom and ex vivo validations in which QSM had proven to be ecient to accurately quantify the amount of iron.

QSM may thus be the most relevant direction for future work for better characterizing CMBs.

However, 3D multi-echo imaging may be crucial to obtain an even better sensitivity and specicity for CMBs identication, but remain challenging in multicenter context. Therefore, as a second topic, I was part to the CATI quantitative imaging working group aiming at optimizing a new 3D multi-echo T2*-weighted GRE sequence on 3T systems from the three main manufacturers. This sequence was designed to obtain both reliable R2* maps and better characterization for CMBs. Its principle consists of acquiring a series of T2*-weighted images (magnitude and phase) using the same TR but a series of TE. Previous studies showed that, by using more adapted methods for GRE phase with multiple TE, eld inhomogeneity artifact could be reduced further while preserving contrast elsewhere in the image. This kind of sequence makes it possible to accommodate or correct air/tissue interfaces. High bandwidth imaging avoids geometric distortion, and multi-echo data oer a means to ideally unwrap phase data on a voxel by voxel basis. Consequently, QSM on this type of data would yield more accurate results than 2D single echo acquisition. Datasets are being acquired with this sequence for three studies managed by the CATI, and a specic one focuses on vascular abnormalities in ageing. Furthermore, multi-echo 3D GRE imaging may oer a means to image the entire vascular system, including arteries and veins alike. The eld is still developing, and there are hints that technical advances in magnet homogeneity, gradient strengths, and faster imaging methods such as parallel imaging techniques may make it possible in the future. The third topic raised by this PhD is to further develop the automatic segmentation tool for CMBs and to validate it on a large multicenter dataset. The method presented above is a proof-of-concept applied on fteen participants; a larger validation with more participants is thus needed. Even though the proof-of-concept described using two steps seems adapted for CMB identication, both steps could be further improved by increasing the sensitivity of the rst step and the specicity of the second step. Thresholds may not be statistical but inspired from the magnetic signature of CMBs, for example. An a contrario approach may also be used for initial candidate selection.

In fact, this probabilistic approach aims at identifying signal outliers in a given background.

For the classication step, the method needs to be extended to include more local and global multi-contrast features.

mIP-SWI yields interesting information to dierentiate CMBs from elongated veins, and a mIP-feature should be dened.

CMBs magnetic signature on IFM was not yet used. It is a dened as a sign inversion in sagittal view. Intensity proles measured along several directions in the sagittal plane around candidate voxels could be used to dene specic features. The dipolar pattern with ring-like eect would characterize a CMB. A multi-scale correlation with the response of a unit dipole may also be a good discriminant.

Feature derived from T2-weighted image intensity may make it possible to exclude hyperintensities and discriminate cavernous malformations.

QSM features may straighten the segmentation tool with a direct insight to the real extent of CMBs.

QSM features may also help dierentiating CMBs from other rare mimicking lesions such as brain capillary telangiectasia (small, asymptomatic low ow vascular lesions of the brain)

Regarding the classication method, features were not selected to keep only the most discriminant features; a features selection step could be undertaken to use only most discriminant features and thus strengthen the generalization of the method. Other classiers need to be investigated when features normalization and selection will be embedded. The automatic identication method will also have to be evaluated and adapted for 3D multi-echo GRE T2*-weighted images.

Finally, the aim of the PhD was to add a new service to the CATI portfolio, by reliably assessing the number of CMBs. However, an automatic identication method could allow further developments and analysis. The rst one could be related with the rating scales, MARS and BOMBS, that were proposed in the literature, as described in chapter 1. These scales both embed localization characteristics, as the clinical relevance of CMBs has been shown to be related with their localization. The automatic identication method would yield an image with voxels labelled as denite CMBs and possible CMBs, and a straightforward extension would be to combine it either with a registered atlas or with a segmentation method to create an automatic report corresponding to the rating scales. The second issue is related with WHASA, another software that has been developed in the Aramis team by Thomas Samaille and that aims at segmenting White Matter Hyper intensities in ageing subjects. In fact, some questions were raised about the combination of the presence or absence of cerebral microbleeds and white matter hyper intensities and it was shown that these combinations are a risk factors for subsequent recurrent stroke types [START_REF] Naka | Combinations of the Presence or Absence of Cerebral Microbleeds and Advanced White Matter Hyperintensity as Predictors of Subsequent Stroke Types[END_REF]. Therefore, an automatic identication and evaluation of both 4. Spatial resolution was chosen as 1x1x2.4mm.

5. The reconstruction matrix was chosen to be 210x210x256 6. The total eld is created by the susceptibility distribution and computed using the forward approach [START_REF] Marques | Application of a Fourier-based method for rapid calculation of eld inhomogeneity due to spatial variation of magnetic susceptibility[END_REF]Bowtell, 2005, Salomir et al., 2003] Susceptibility distribution is, thus, under-determined at the spatial frequencies on the cone surface, which often leads to severe streaking artifacts in the reconstructed susceptibility distribution.

The truncated K-space division

The eld-to-source inverse problem can be solved by several methods; the truncated K-space division (TKD) [START_REF] Shmueli | Magnetic susceptibility mapping of brain tissue in vivo using MRI phase data[END_REF] and the Morphology Enabled Dipole Inversion (MEDI) [START_REF] Ludovic De Rochefort | Quantitative susceptibility map reconstruction from MR phase data using bayesian regularization: validation and application to brain imaging[END_REF].

The under-determined data in Fourier domain is only at the location of the cone and its immediate vicinity. For this region in k-space, TKD suggests to set spatial-frequencies of the dipole kernel to a pre-determined non-zero value for the division. The choice of due to the fact that TKD method only requires a single echo acquisition, and benets from the ease of implementation as well as the fast calculation speed. However, streaking artifacts are frequently present in the QSM and the susceptibility value is underestimated. The used regularized lter is dened by

D -1 =        1 T h |D| < T h 1 D
|D| > T h

(5.0.8)

where T h is the small truncation value.

The Morphology Enabled Dipole Inversion (5.0.9)

The rst term of the equation is the data delity where the residual is weighted by the matrix W that contains the inverse of the standard deviation of the noise measurement in the magnitude image. In the second term, W 0 is a mask used to impose proper boundary condition. α is the regularization parameter of the second term. The third term corresponds to Tikhonov regularization; the gradient operator applied to the susceptibility map is used to impose susceptibility distribution to have the same edges as magnitude image. W 1 is a weighting matrix to smooth the solution with respect to gradient image. This minimization is performed using the conjugate gradient algorithm. More details of the method are available in [START_REF] Li | Quantitative susceptibility mapping of human brain reects spatial variation in tissue composition[END_REF][START_REF] Ludovic De Rochefort | Quantitative susceptibility map reconstruction from MR phase data using bayesian regularization: validation and application to brain imaging[END_REF].

Evaluation procedures

Both methods were validated on 3D data and both includes regularization parameter that needs to be set. To do so, an investigation was underwent on numerical simulation and on real data to determine the optimal values of regularization parameter for both method.

To evaluate the quantitative error estimation of TKD method, the mean of reconstructed susceptibility of each simulated structure was compared to its reference value in the initial simulated susceptibility map, and the root mean square error to quantify the degree of alteration due to the truncation of the dipole kernel. For MEDI method, besides the visual inspection, the optimal regularization parameter was investigated using the Lcurve which plot the norm of the Tikhonov solution with respect to its residual; the corner of the obtained Lcurve correspond to the optimal regularization parameter for data.

Results

TKD was applied for dierent truncation values Th=0.1, Th=0.2, Th=0. 

Conclusion

This study demonstrated that MEDI is more accurate than TKD method on multi-center dataset. These results are preliminary and need further investigation on a large dataset to be conrmed. A more thorough quantitative analysis of brain deep structures, with known iron distribution, is also recommended for more accurate evaluation. 
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 41 Background removal eciency using numerical simulations. (a, b) axial and sagittal wrapped phase map from a central slice of the numerical model showing strong background eects from the ellipsoid shape and large `air' inclusions. (c, d) axial and sagittal slices of the simulated eld including background and internal eects.
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Furthermore,

  MRI allows assessing three types of vascular abnormalities: white matter hyper intensities (leucoariosis), lacuna (silent infarct) and cerebral microbleeds (CMBs). While white matter hyper intensities have a prevalence ranging from 28.9% to 100%, CMBs have a prevalence INTRODUCTION 22 of 23 % in patients with AD. Several studies have been undertaken to understand the clinical and pathophysiological signicance of CMBs. However, large scale studies or meta-analyses are made dicult because their identication varies with MRI sequence parameters, suers from reproducibility issues and is time-consuming. Automatic identication methods have been proposed to address these issues but they all require manual post processing selection steps, because of a very high number of false positives. This suggests that a better characterization of CMBs may be the key to improve their detection, as it would allow better identifying them from misleading structures and lesions. This PhD focused on achieving a better characterization of CMBs to better detect them with an automatic method. It covers multiple aspects to improve CMBs identication. First, MR phase image was taken into account in addition to the standard MR magnitude image, because of its sensitivity to CMBs. A new MR phase image processing technique was developed to obtain the magnetic eld of interest free of contamination from background sources in datasets equivalent to clinical routine. A comparison study was carried-out to evaluate the outcome of this tool for CMBs detection in a standardized dataset in a clinical environment. A proofof-concept is given to illustrate the advantages of new features for automatically identifying CMBs. This PhD thesis will be organized as follows. The rst chapter presents the general context including an overview on clinical aspects of CMBs, a description of MR basis for their detection and the state of the art of CMBs identication methods. The objectives of this PhD are presented at the end of this chapter. The second chapter describes the main contribution of this thesis, a new MR phase processing technique for CMBs characterization from clinical routine datasets. The third chapter includes a detailed clinical routine validation of the new developed tool. The last chapter is a proof-of-concept of a new CMBs identication method.This PhD was undertaken by the (http://cati-neuroimaging.com/) to address the requirement of the MEMENTO methodological group to embed the number of CMBs in the description of the participants of the MEMENTO cohort.

(

  EPI) MRI were examined. Histological-MRI correlations demonstrated that the hypointensities detected on GRE T2* images reported as CMBs corresponded to focal deposits of paramagnetic blood break-down products [Chavhan et al., 2009], especially haemosiderin, within macrophages in perivascular tissue consistent with vascular leakage of blood cells. Figure 1.1.1 shows a typical histopathological illustration of a CMB in a rat brain.

Figure 1

 1 Figure 1.1.1: A typical CMB in a rat brain (arrow), magnication = Ö100. Blood clots and red-cells appeared inside the CMBs [Jiang et al., 2015].

(

  SE) MRI, see Figure 1.1.2), devoid of T1-or T2-weighted hyperintensity (such as cavernous malformation), and at least half surrounded by brain parenchyma (permitting supercial CMB as seen in CAA). Other mimics such as mineralization of the basal ganglia or diuse axonal injury are excluded based on appearance or clinical history. The size may be relatively unimportant for correctly categorizing lesions that otherwise meet these criteria and should be applied conservatively if at all.

Figure 1

 1 Figure 1.1.2: CMB illustration: The blooming eect is demonstrated by the larger area of signal void on the T2*-weighted MRI in (b) compared to the fast SE image in (a) [Greenberg et al., 2009].

Figure 1

 1 Figure 1.1.3: (A) CAA preferentially aects the small arteries and arterioles of the cerebral cortex and graywhite matter junction; (B) HTA typically aects small deep arterial [Charidimou

Figure 1

 1 Figure1.2.2: In the absence of B 0 , hydrogen nuclei are randomly oriented as in (a). With B 0 applied, the hydrogen nuclei precess about the direction of the eld as in (b), from http: //www.mr-tip.com.

Figure 1

 1 Figure1.2.3: The RF pulse, B rf , causes the net magnetic moment of the nuclei, M , to tilt away from B 0 as in (a). When the RF pulse stops, the nuclei return to its equilibrium parallel to B 0 . During realignment, the nuclei lose energy that can be measured, from http://www.mr-tip.com.

  the object and describes how the transverse magnetization M xy changes with time. The evolution during the relaxation period for both transverse M xy and longitudinal M Z components is illustrated in Figure 1.2.5.

Figure 1

 1 Figure 1.2.5: Representation of M when B rf is switched of. Visualization of M 's component : transverse M xy and longitudinal M z [Chupin, 2004].

Figure 1

 1 Figure 1.2.6: Illustration of the dierence between T2 and T2* decay with T2* <T2 [Chavhanet al., 2009] 

Figure 1

 1 Figure 1.2.7: T1 and T2 contrast illustration in a typical spin-echo sequence. Top graph il-lustrates the T2 contrast that depends on TE. Bottom image illustrates the T1 contrast that depends on the repetition time TR[START_REF] Chupin | Segmentation automatique du complexe hippocampe-amygdale e partir de donnees d'imagerie par resonance magnetique : application e des cas cliniques et e la modelisation de sources en magneto/electro-encephalographie[END_REF].

Figure 1

 1 Figure 1.2.8: Operator-selected pulse sequences parameters: time echo (TE) and time repetition (TR).

Figure 1

 1 Figure 1.2.9: 2D pulse sequence diagram of a generic spoiled gradient echo sequence. RF radio frequency selective pulse tilting the magnetization with a given ip angle within a slice, G s the slice selection gradient, G p the phase encoding gradient, G f the frequency encoding gradient. Corresponding k-space is illustrated in the right, from http://www.mr-tip.com.

Figure 1

 1 Figure 1.2.10: Magnitude and phase illustration in complex representation

Figure 1

 1 Figure 1.2.11: Example of magnitude T2* image and corresponding phase image, from ME-MENTO dataset used in this work [Kaaouana et al., 2015]. The signal amplitude (left) provides a T2* contrast with hyper-signals for CSF, isosignal for WM and GM and hyposignals for susceptibility inclusions. The phase image relates to magnetic eld inhomogeneity that is especially inhomogeneous around susceptibility inclusions.

Figure 1

 1 Figure 1.3.1: The same CMBs are shown at TE=38.7ms on T2*W (a), SWI (b) and QSM (c) [Liu, 2011].

  is still under investigation and not yet suitable for clinical routine. For illustration, a QSM map showing CMBs is given in (c) Figure 1.3.1.

Figure 1

 1 Figure 1.3.2: Microbleed Anatomical Rating Scale[START_REF] S M Gregoire | The Microbleed Anatomical Rating Scale (MARS): reliability of a tool to map brain microbleeds[END_REF] 

Figure 1 . 3 . 4 :

 134 Figure 1.3.4: Illustration of the six tissue priors used in MIDAS during the rst iteration of unied normalization-segmentation. GWM = gray and white matter, CSF = cerebro-spinal uid, CMB = cerebral microbleeds [Seghier et al., 2011].

Figure 1 . 3 . 5 :

 135 Figure 1.3.5: Illustration of the morphological operators used in MIDAS during false positives elimination step [Seghier et al., 2011].

Figure 1

 1 Figure 1.3.6: A) A owchart of the processing steps, the two pre-processing steps in italics were not used in these datasets but might be useful for other types of data, and B) a detailed schematic of the thresholding step is provided, from [Barnes et al., 2011].

Figure 1

 1 Figure 1.3.7: A histogram of a 21 × 21 × 3 ROI that was used to calculate local thresholds is shown containing a typical CMB. The cutout shows the ROI and CMB and the thresholding results.

  3. False positives removal: To eliminate false positives resulting from the thresholding step, authors used a supervised learning tool, the support vector machines (SVM). SVM solves non-linear discrimination problems. It constructs a hyper plane or set of hyper planes in a highor innite-dimensional space, which can be used for classication. Intuitively, a good separation is achieved by the hyper plane that has the largest distance to the nearest training-data point of any class. The problem can therefore be formulated as a quadratic optimization problem to nd the hyper plane that maximizes the margin, see Figure 1.3.8.

Figure 1

 1 Figure 1.3.8: Maximum-margin hyper plane (in red) and margins for an SVM trained with samples from two classes(+/-). Samples on the margin are called the support vectors (in blue circles). W is the normal vector to the hyper plane.

  and Hessian-based shape descriptors are then extracted within the ROIs: the eigenvalues of the Hessian matrix of the extracted center points are employed to discriminate spherical object: (1) the mean and (2) the standard deviation proles computed across the Radon angle-dimension, (3) the standard deviation along the Radon angle-dimension and (4) the global Radon mean. Using the eigenvalue decomposition of the Hessian matrix, other descriptors are dened; (5) the sphericity, (6) largest cross-section, (7) fractional anisotropy and (8) orientation. 3. 2D Radon features are extracted from the corresponding ROIs on mIP images. Same features as in step 2 that aims to address cross-sectional discontinuities due to anisotropic SWI acquisition. 4. Classication: Incorporating a cascade of random forests (RF) classiers to iteratively reduce false positives: Increasing the RF probability threshold by adding FPs to the negative training examples of the following layer, the method can progressively build a balanced dataset without non informative candidates. A leave-one-out validation scheme was used to train the cascade which has a relatively balanced and informative training set in the nal layer.

Figure 1

 1 Figure 1.3.10: A typical slice of a 7T T2*-weighted MR scan, showing the rst (left) and second echo (right). The white arrows annotate a CMB (enlarged in the upper-left corner) [Kuijf et al., 2012].

Figure 1

 1 Figure 1.3.11: Schematic diagram for the proposed CMB detection algorithm and selected optimized parameters. (S refers to the intensity of RST map; the processing above the dashed line belongs to the step of initial putative CMB detection, while the below belongs to the step of false positive reduction.)[START_REF] Bian | Computer-aided detection of radiation-induced cerebral microbleeds on susceptibilityweighted MR images[END_REF] 

Figure 2

 2 Figure 2.1.1: Illustration of 1D phase discontinuities.

Figure 2

 2 Figure 2.1.2: Relationship between susceptibility source and MR signal phase

  in the context of an ongoing national cohort in France named MEMENTO that aims at including, from research centers on memory, 2300 persons having cognitive symptoms ranging from isolated cognitive complaints to mild cognitive impairment. The protocol included MRI and PET acquisitions, supervised by the CATI, the French National Platform for Multi-center Neuroimaging Studies (Paris-Saclay, France). Data are provided through a national network composed of 24 centers with MRI systems from dierent manufacturers, models and eld strengths. A sub-sample of the rst 382 initial participants included in the cohort have been evaluated for CMBs. 77 subjects with CMBs were found, corresponding to 20% of this population, consistent with the prevalence previously reported in elderly subjects[START_REF] Cordonnier | Brain microbleeds and Alzheimer's disease: innocent observation or key player?[END_REF]. CMBs identication was performed by a trained rater. The rater was trained to identify CMBs by an experienced neuro-radiologist on another dataset embedding 33 elderly subjects according to the following procedure. The rater identied CMBs according to the guidelines detailed in[Greenberg et al., 2009] and using the MARS scale[START_REF] S M Gregoire | The Microbleed Anatomical Rating Scale (MARS): reliability of a tool to map brain microbleeds[END_REF]. Results were then checked for consistency by the experienced neuroradiologist. For the dataset used in this study, uncertain lesions were double-checked by a trained neuro-radiologist; 23 patients were assessed as having possible CMBs (6%) while 54 were considered as having certain CMBs (14%). For the study presented here, only data of participants with certain CMBs were used. Data acquired on General Electric systems were excluded due to preprocessed phase images. Two participants were also excluded (from the Siemens 1.5T and 3T system datasets) due to open-ended fringe-lines as described in[START_REF] Haacke | Susceptibility Weighted Imaging in MRI: Basic Concepts and Clinical Applications[END_REF]. Retrospective analyses were performed on 28 subjects with CMBs from Siemens (four centers, one Trio and three Verio systems, 14 datasets) and Philips (four centers, all Achieva systems, 14 datasets) 3T systems. The protocol included a 3D T1-weighted sequence and a 2D T2*-weighted GRE sequence. Parameters for the 1 mm isotropic 3D T1-weighted scans were: TR/TE/TI/FA/BW=2300ms/2.98ms/900ms/9°/238Hz/voxel for Siemens systems and TFE shot interval/TE/TI/FA/BW=2500ms/3.3ms/904ms/9°/241Hz/voxel for Philips systems, with 176 sagittal slices. Whole brain 2D T2*-weighted multi-slice GRE sequences were acquired with 2.5mm thick axial brain slices and 1 mm isotropic in-plane resolution with TR/TE/FA/BW=650ms/20ms/20°/199Hz/voxel. Reconstruction matrix was 240Ö240Ö65 for Philips systems and 256Ö256Ö70 for Siemens systems, with no zero padding. Standard 8 (Philips) or 12 (Siemens)-channel head coils were used. Acquisition time for 3D T1 and 2D T2* were respectively 9:14 min and 4:06 min for Siemens and 9:24 and 4:05 min for Philips. In the Memento cohort, image acquisition has been standardized as much as possible to minimize inter site variability. However, dierences between Philips and Siemens sequence parameters still remain, originating either from hardware or software issues, as a compromise was sought between standardization of parameters and acquisition times. First, parallel imaging approaches (GRAPPA vs SENSE) and dierent coil number, sensitivity proles and associated correction algorithm (CLEAR for Philips and Prescan Normalize for Siemens) resulted in both dierences in contrast and additional constraints for setting the sequence parameters. The eld of view was slightly smaller on Philips acquisitions (240x240x162.5 vs 256x256x175mm) with reduced number of slices (65 vs 70) due to longer acquisition time that had to be reduced. The eective TR per slice was also shorter (650ms vs 872ms), which may modify T1 contrast and slice saturation cross-talk. The slice scan order and the number of packages was dierent: interleaved with 2 packages for Siemens, and set to default with 3 packages for Philips; the Philips default setting maximizes the time between the measurement of each pair of adjacent slices. Additionally, within phase reconstruction, a standard 1D linear phase correction was applied in the readout direction for Philips datasets, which is based on phase correction factors obtained in a preparation phase and that may cause the Zebra-like stripes observed on raw phase images.Other parameters and scaling factors may remain hidden for both Siemens and Philips systems, being integrated within manufacturers' software. Finally, when visualizing images from the two manufacturers, some dierences between Siemens and Philips datasets appear obvious, as shown in Figure2.3.1: background in both raw magnitude and phase and wraps show dierent aspects together with typical slice-to-slice inconsistency.

Figure 2

 2 Figure 2.3.1: Illustration of Siemens (left) and Philips (right) raw data (magnitude and phase)

Figure 2

 2 Figure 2.3.2: Schematic illustration of the 2D harmonic ltering framework working both in image and Fourier domains. As can be seen, to estimate the Laplacian, spatial derivative are calculated in two steps allowing the inclusion of unwrapping using modulo operations. A mask, generated with SPM is then used to set to 0 the Laplacian outside the brain. Integration is nally performed in Fourier domain with the adequately regularized inverse lter leading to an internal eld map estimate.

Figure 2

 2 Figure 2.3.3: 2DHF (in blue) and HPF (in green) lters in Fourier domain. A 1D prole through Fourier domain center is plotted, with the same cut-o frequency for the two lters (a = 0.2 for illustration, equivalent to 20% of the central frequencies attenuated).

  Figure 2.3.3 illustrates the corresponding lters with the same width at half maximum for comparison: 2DHF appears to have a sharper transition region than HPF.

  Figure 2.4.1, e, f ) displays small-scale dipolar patterns around the small simulated lesions. Note that the small lesions can be distinguished in the simulated wrapped phase map, whereas they do not clearly appear on the total eld, because of scale dierences between their susceptibility eect and that of the object/background interface. To evaluate the ability to remove large background eects, an overall view of the internal eld map as well as the eld originating from the simulated background is presented for simulation (Figure 2.4.1, e-h), HPF (Figure 2.4.1, i-l), PDF (Figure 2.4.1, m-p) and 2DHF (2.4.1, q-t).

Figure 2 . 4 . 1 :

 241 Figure 2.4.1: Background removal eciency using numerical simulations. (a, b) axial and sagittal wrapped phase map from a central slice of the numerical model showing strong background eects from the ellipsoid shape and large `air' inclusions. (c, d) axial and sagittal slices of the simulated eld including background and internal eects. (e,f ) simulated internal eld map only, and (g,h) simulated background eld map only. (i,j) internal eld map calculated with HPF, and (k,l) its residual. (m,n) internal eld map calculated with PDF, and (o,p) its residual. (q,r) internal eld map calculated with 2DHF, and (k,l) its residual. Sagittal slices are shown with a voxel ratio of 2.5 (see text).

  presented in Figure 2.4.2. While PDF results displayed remaining eects from slice-to-slice inconsistency (Figure2.4.2, c, g), all 3 methods eciently extracted similar internal eects around simulated lesions (Figure 2.4.2, a, b, c, d). The similarity of the small scale results for 2DHF and HPF behavior directly stems from the fact that results for both methods are shown here for a similar bandwidth Figure 2.3.3.

Figure 2 . 4 .

 24 Figure 2.4.3 illustrates the resulting internal eld maps obtained from ltered 2DHF phase images for two Siemens and two Philips datasets. Four illustrative examples of phase contrast observed in human brain with CMBs are presented. Compared to raw phase data, 2DHF

Figure 2 . 4 . 3 :

 243 Figure 2.4.3: Application of 2DHF to 2D T2* GRE phase data with CMBs in dierent locations. For each column: (a,e,i,m) standard T2*W magnitude image, (b,f,j,n) raw phase map displaying strong background eects, (c,j,k,o) brain mask and (d,h,l,p) internal eld map. Rows 1 and 2 (respectively 3 and 4): data acquired on Siemens systems (respectively Philips).

  Figure 2.4.4: Siemens (left) and Philips (right) axial and sagittal views of raw phase data (a-d).

Figure 2 . 4 . 5 :

 245 Figure 2.4.5: Siemens (left) and Philips (right) axial and sagittal views. Magnitude image (rst row), native phase image (second row) and internal eld map (third row). Fourth row shows a zoomed out region corresponding to the white rectangle showing CMB with a dipolar pattern (white arrow) and a physiologic calcication of the choroid plexus (black arrow). Note that panel l was rotated. A 1D intensity prole calculated through CMBs and calcication in the zoomed region is displayed in the last row. Note the intensity sign inversion for both side of CMBs (red arrow head), and the calcication (green arrow head). Double heads arrows on panels (l-o) indicate the location of the lines used to generate the intensity proles.

Figure 2

 2 Figure 2.4.6: First example (2 rst columns) is an illustration of a brain microbleed (blue arrow) and a physiologic calcication (in the choroid plexus) (red arrow head) on GRE magnitude image where both lesions appear with hypo-intensity (rst raw); only the calcication appears as a hyper-dense area on the CT scan (middle raw); it corresponds to the hypo-intensity in the internal eld map while the cerebral microbleed appears as hyper-intense. The second example (2 last columns) shows a hypo-intensity considered so far as doubtful microbleed, CT scan shows this lesion as a calcication; it corresponds to the hypointensity in the internal eld map (red arrow head).

[

  [START_REF] Mcauley | Iron quantication of microbleeds in postmortem brain[END_REF]. Preprocessed phase images thus appear relevant in CMBs detection and internal eld maps provided by 2DHF are good candidates for improving CMBs detection in clinical settings. Simulated results have demonstrated a very high sensitivity of phase contrast to very small susceptibility variations, either paramagnetic (+0.125 ppm for simulated CMBs)

Figure 2

 2 Figure 2.5.1: 10 Proof-of-concept: Susceptibility maps for Siemens (left) and Philips (right) datasets: QSM ((i-l) were reconstructed from internal eld maps (e-h) generated by 2DHF.

  suitable for longitudinal studies of CMB when studying 75 MCI over 4 years. The new ESWAN sequence (enhanced T2*-weighted angiography, combining a 3D GRE T2* multi-echo acquisition with a specic reconstruction algorithm) has been investigated for CMBs detection by quantifying phase values of CMBs in 75 MCI patients. The QSM reconstruction technique, aiming at quantifying susceptibility should allow for an estimation of the spatial extent of lesions, by removing the blooming eect; a validation study on 3D multi-echo GRE T2* acquisitions on 10

Figure 3

 3 Figure 3.2.1: Magnitude image (a) raw phase image (b), IFM resulting from 2DHF (c), SWI (d), miP-SWI on 3 consecutive slices (e) and QSM map are displayed.

Figure 3

 3 Figure 3.2.2: Evaluation GUI when IFM (on the left) is displayed (Magnitude image is on the right).

Figure 3

 3 Figure 3.2.3: Evaluation GUI when SWI-mIP is displayed.

Figure 3

 3 Figure 3.3.1: between-raters discrepancies during reference building-up; First column: magnitude images, second column: SWI-mIP images, third column: internal eld map. First two rows: discrepancy cases from subject 3. Lesions shown here by red and green arrows are doubtful due to their shape that can be seen either as two adjacent round CMBs or as a relatively linear structure like a blood vessel. The CMB showed by the yellow arrow is very close to susceptibility artifact. Last two rows: discrepancy cases from subject 14. CMBs pointed by orange and blue arrows may have been ambiguous because of low contrast.

4 :

 4 number of CMBs identied as denite and comparison with the reference: True Positive (TP), False Negative (FN) and False Positive Rating results for all detected CMBs for each subject group (see Table5.0.1 in appendix 5 for more details).

Figure 3

 3 Figure 3.4.1: An axial T2*-weighted MRI image demonstrating partial volume artifact as a potential CMB mimic. The axial T2*-weighted MRI image on the left shows a round focus of signal loss (arrow) that could be interpreted as a left temporal CMB. The image just caudal to this (right) indicates that this hypo-intensity is due to partial volume artifact from the adjacent left sphenoid bone (arrowhead)[Greenberg et al., 2009].

Figure 3 . 4 . 2 :

 342 Figure 3.4.2: Example of FPs detected on magnitude image; these two hypointensities, pointed by blue arrows, were recognized as vascular-related mimics on SWI-mIP image because of their tubular shape.

Figure 3

 3 Figure 3.4.3: CMB on the outer cortical part not visible on IFM; Magnitude image shows 2 lesions (a spread lesion in the occipital lobe and a CMB (red arrow)). The hemorrhage was still seen in the IFM while the CMB disappeared due to masking operation.

  d'avenir ANR-10-IAIHU-06 The Memento study is undertaken through the sponsorship of Bordeaux CHU and the nancial support of Fondation Plan Alzheimer. The funding sources had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication. the usefulness of IFM in CMBs identication, this study allowed us to better understand the advantages and drawbacks of each of the candidate images. This will be of great interest when designing the segmentation tool, as it will give extra clues regarding the features of interest for the segmentation of CMBs. More precisely, SWI-mIP proved a good tool to distinguish elongated from punctual structure, by taking advantage of the projection process;

Figure 4 .

 4 1.1 illustrates solutions that could translate each dierential diagnosis criterion for an automatic identication scheme.

Figure 4 .

 4 Figure 4.1.1: Image processing techniques that could translate the dierential diagnosis criteria described in[Greenberg et al., 2009].

Figure 4 .

 4 Figure 4.2.1: Illustration of segmentation scheme

  cerebral tissues: white matter (WM), Grey matter (GM), cerebro-spinal uid (CSF), skull, skin and the background. It is based on an atlas prior of each tissue in a standard space (MNI). It is usually performed on T1 weighted datasets because of the high isotropic resolution and good WM/GM contrast they embed. This method combines image registration (warping in Figure 4.3.1), tissue classication (segmentation in Figure 4.3.1), and bias correction as shown in Figure 4.3.1.

Figure 4 .

 4 Figure 4.3.1: Unied segmentation illustration.

Figure 4 .

 4 Figure 4.3.2: The tissular probability maps obtained by the Unied Segmentation and registered in the T2* space: from left to right respectively GM, WM, CSF, scalp and skin.

  used the SPM module Coreg > Coreg: Estimate and Reslice. Input were the target image (T2 *image) and source image (the bias corrected T1 image). It is possible to add other images to be registered with the same transformation. Tissue probability maps generated by the unied segmentation were thus added. The output of this step thus were separate images, the 3DT1 and the ve probability maps, one for each tissue class ; GM, WM, CSF, scalp and background (others), (see Figure 4.3.2).

Figure 4 .

 4 Figure 4.3.3: Intra-cranial mask calculation; First row probability maps obtained by SPM.

Figure 4 .

 4 Figure 4.3.3. Two masks are thus dened: the union of WM and GM and CSF result in

4. 4 . 1

 41 Candidates selection: multi-contrast statistical thresholding the aim of this rst step is to analyze the images to nd all the candidate CMBs.

Figure 4 .

 4 Figure 4.4.1: An example of T2* magnitude thresholding results and the corresponding histograms; in the rst row, the T2* raw data and its histogram; in the second row white are the 'large dark susceptibility artifacts' excluded by the rst threshold, green in the histogram; Third row are the resulting potential CMBs, Ω T 2 * CM Bs , after applying the second threshold, th T 2 * CM Bs .

Figure 4 .

 4 Figure 4.4.2: An example of SWI thresholding results and the corresponding histograms; in the rst row, SWI image and its histogram; in the second row white are the 'large dark susceptibility artifacts' excluded by the rst threshold, green in the histogram; Third row are the resulting potential CMBs, Ω SW I CM Bs , after applying the second threshold, th SW I CM Bs .

Figure 4 .

 4 Figure 4.4.3: An example of mIP-SWI image thresholding results and the corresponding histograms; in the rst row, the mIP-SWI image and its histogram; in the second row white are the 'large dark susceptibility artifacts' excluded by the rst threshold, green in the histogram; Third row are the resulting potential CMBs, Ω mIP -SW I CM Bs

Figure 4 . 4 . 4 :

 444 Figure 4.4.4: IFM distribution before and after thresholding.

  the building-up of the classier based method. The general model of the classication step is shown inFigure 4.4.5. 

Figure 4 . 4 . 5 :

 445 Figure 4.4.5: General model of a classication step.

Figure 4 .

 4 Figure 4.4.6: Illustration of negatively and positively aected pixels [Loy and Zelinsky, 2003].

Figure 4 .

 4 Figure 4.4.7: Illustration of the synthetic image generated by GIMP and the FRST results for dierent set of radii R.

Figure 4 .

 4 Figure 4.4.8 shows the contribution for a single gradient element g(p). By scaling the

Figure 4 .

 4 Figure 4.4.8: Illustration of the contribution of one gradient element with σ = 0.25 × n [Loy and Zelinsky, 2003].

Figure 4 .

 4 Figure 4.4.9: Illustration of the synthetic image generated by GIMP and the FRST results for dierent α values.

  a range of classication models, including support vector machines (SVM), boosted and bagged decision trees, k-nearest neighbor, and discriminant analysis 4. Performing model assessment and model comparisons using confusion matrices and ROC curves to help choose the best model for the data 5. Integrating trained models into applications by testing its usefulness on new data. Several classiers have been trained on these features to test accuracy. Considering the consensus identication realized in the comparison study (chapter 3), initial candidates were labeled as denite, possible or false positive. Features for these objects were extracted and used to train several classiers; the accuracy of each classier was then assessed. All classiers were trained to see which settings produce the best model with our data, giving the better accuracy for all classes. Selected model can be improved by feature selection, and by changing some advanced options. subjects without CMBs were excluded from this proof-of-concept to reduce the gap between FP and CMBs classes in the classication step.

  Figure 4.5.1: Thresholding results.

Figure 4 .

 4 Figure 4.5.2 illustrates an example of resulting objects after the thresholding process.

  false positives with respect to true denite CMBs and possible CMBs. Several classiers The number of true CMBs and CMBs found with the automatic identication method along with false positives are listed for each of the test subjects.

Figure 4 . 5 .

 45 3 summarizes training models results; results of dierent trained classiers and their performance accuracy are given in the left panel. The most accurate model is the one generated by complex tree classier; its confusion matrix and ROC curve are given respectively in the middle and right panels.

Figure 4 . 5 . 3 :

 453 Figure 4.5.3: Assessment of trained model's accuracy using the Matlab learning classier apps.

  lesions will help further analysis and understanding of their underlying association. * * * 3. Small structures simulations : Multiple dipole inclusions were embedded in the central slice as described : a) Paramagnetic dots in the left hemisphere b) Diamagnetic dots in the right hemisphere.

  : In Fourier domain, Field variation is related to susceptibility byB(k) = χ(k) • D(k) (5.0.1)k denotes the spatial frequency coordinates, and D is the expression of a unit dipole kernel in Fourier domain, given by k 2x + k 2 y + k 2 z , knowing χ and D, the eld can be calculated asB(r) = IF F T (χ(k) • D(k))eld of reference was obtained by repeating the total eld calculation in the same numerical phantom but without simulating the air cavities (without step 2). 8. Complex MRI data simulation: a) Converting magnetic eld to phase (ϕ = γ × B 0 × T E × B(r)) with γ the gyromagnetic ratio of hydrogen nucleus, B 0 = 3T and T E = 20ms. b) 2kπ was added to generate phase wraps. c) In order to mimic the 2D GRE T2*-weighted scans : i. Random noise was generated from a normal distribution and added on both real and imaginary components, assuming SNR=30 (for magnitude)which corresponds to experimental values.

D

  equals zero at a pair of cone surfaces at the magic angle (θ = 54°) with respect to B 0 . This cone is illustrated in Figure5.0.3.

Figure 5 .

 5 Figure 5.0.3: A visualization of the cone in Fourier domain.

  MEDI aims to solve the ill conditioned problem taking into account a prior information extracted from the magnitude image; edges that arises from the underlying change of tissue type, are the same cause for the change of susceptibility. A regularization is needed to enforce the smooth susceptibility distribution between edges. This observation is translated into mathematics in MEDI by min W (Dχ -δB)

  5 see Figure 5.0.4. For small Th values, obtained susceptibility maps are blurred with streaking artifacts detectable in the coronal and sagittal view, it alter the true susceptibility value. When increasing Th value, the streaking artifact is attenuated as shown in Figure for Th=0.2 and Th=0.5. For very large values of Th the susceptibility map is very smooth due to information loss induced by truncation. Consequently, Th=0.2 was selected as it presents the compromise between the under-estimation of the quantitative values and the streaking artifacts blurring the images. TKD allows to reconstruct QSM in 2.97 s.

Figure 5 .

 5 Figure 5.0.4: TKD on real data acquired from Siemens MR Scanner for truncation values Th a)Th=0.1, b) Th=0.2, c) Th=0.5.

Figure 5 .

 5 Figure 5.0.5 illustrates QSM obtained with dierent β value for MEDI method. For better analysis, the α parameter associated to the second term that imposes proper boundaries, was removed. Lcurve analysis allowed to select the regularization parameter of MEDI to be β = 10; corresponding to the corner of the Lcurve.

Figure 5 . 0 . 5 :

 505 Figure 5.0.5: Susceptibility map obtained using MEDI on Siemens data a) for regularization Parameterβ = 1, b)β = 10, c) β = 100.

Appendix 3 :

 3 Pilot experimentA pilot experiment was rst carried-out in order to evaluate the experiment settings: number of subjects, image types and the specically designed Graphical User Interface (GUI) built with GUIDE in MATLAB. This was conducted by an experienced neuro-radiologist who selected the image types to be considered. Possible image types included: T2* magnitude, IFM and G1

  

  

  

  

  

  . . . . . . . . . . . . . . . . . . . . . 1.2.5 Representation of M when B rf is switched of. Visualization of M 's component : Illustration of the dierence between T2 and T2* decay with T2* <T2 [Chavhan et al., 2009] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2.7 T1 and T2 contrast illustration in a typical spin-echo sequence. Top graph illustrates

transverse M xy and longitudinal M z

[START_REF] Chupin | Segmentation automatique du complexe hippocampe-amygdale e partir de donnees d'imagerie par resonance magnetique : application e des cas cliniques et e la modelisation de sources en magneto/electro-encephalographie[END_REF]
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  . . . . . . . . . . . . . . . . . . . 1.2.8 Operator-selected pulse sequences parameters: time echo (TE) and time repetition (TR). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2.9 2D pulse sequence diagram of a generic spoiled gradient echo sequence. RF radio frequency selective pulse tilting the magnetization with a given ip angle within a slice, G s the slice selection gradient, G p the phase encoding gradient, G f the frequency encoding gradient. Corresponding k-space is illustrated in the right, from

http://www.mr-tip.com. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2.10 Magnitude and phase illustration in complex representation . . . . . . . . . . . . . 1.2.11 Example of magnitude T2* image and corresponding phase image, from MEMENTO dataset used in this work
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2.4.2 Internal eld extraction eciency using numerical simulations. Zoom on central slice of the ellipsoid showing the dierent dipole-like inclusions (see Table

1

). Axial and sagittal view of the simulated internal eld map (a,e), and internal eld map calculated with: HPF (b,f ), PDF (c,g) and

2DHF (d,h)

. . . . . . . . . . . . . . . . 2.4.3 Application of 2DHF to 2D T2* GRE phase data with CMBs in dierent locations.
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	Glossary
	2DHF 2D harmonic ltering
	AD	Alzheimer's Disease
	APP	Amyloid Precursor Protein
	APP	Amyloid Precursor Protein
	BOMBS Brain Observer Microbleed Scale
	CAA	Cerebral Amyloid Angiopathy
	CAA	Cerebral amyloid angiopathy
	CATI Centre pour acquisition et traitement d'image
	CGS	CentimetreGramSecond system of units
	CMBs Cerebral Microbleeds
	CMCs Cerebral Micro-Calcications
	CSF	Cerebral Spinal Fluid
	ECD	Equivalent Circular Diameter
	ESWAN Enhanced Susceptibility weighted angiography
	FID	Free-Induction Decay
	FN	False negatives
	FP	False positives

.0.1 in appendix 5 for more details). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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.3.1: Comparison of results among CMBs detection algorithms.

Table 2 .

 2 3.1: Susceptibility inclusions (from bottom to top), added to the background model to simulate the paramagnetic CMBs. Susceptibility (value) and spatial extension (size) are given.

  erated by calcications. Although CT-scans dedicated to the diagnosis of calcications were not available in this study, CT-scans for attenuation correction of PET emission data were available in a sub-sample of subjects, with sucient resolution to allow conrming the results displayed by the 2DHF internal eld maps in all 10 subjects visualized with both modalities. Other confounding signal voids can be confused with CMBs, such as vascular related signal (veins), rare angiomatous malformations or symmetrical focal basal ganglia iron deposits. The internal eld map may play a role together with other sequences and priors in order to dierentiate them from CMBs.We have presented here a new time-ecient and robust ltering method for computing internal eld maps from phase images of T2* GRE 2D acquisitions, based on 2D harmonic ltering.

Simulation and in vivo results have shown that 2DHF allows generating more appropriate internal eld maps than PDF and HPF for discriminating CMBs in our multi-center dataset acquired in clinical setting. It removes 2D acquisition and / or reconstruction artifacts while keeping ne details with limited border eect. Furthermore, 2DHF allows visualizing the dipole eld patterns created by CMBs and CMCs. Thus, being fast and applicable to standard clinical 2D acquisitions, 2DHF could provide an ecient tool for making CMBs detection and discrimination more ecient from MRI acquisitions in clinical setting.
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					2	1	1	2	2	4
	8	3	6	4	4	3	1	0	4	4
	9	12	12	12	16	11	0	2	11	13
	11	15	15	15	15	14	0	2	14	16
	7	16	17	12	16	11	3	3	14	17
	3	17	18	15	17	9	1	13	10	23
	4	19	24	16	24	12	6	5	18	24
	14	30	30	12	36	12	18	0	30	30
	Total	118	144	91	134	75	31	28	106	135

.3.1: Reference building-up: CMBs detected by expert raters and consensus result. d refers to denite CMBs and all to the sum of denite and possible CMBs. d/d is the number of CMBs only detected as denite by both raters. d/p is the number of CMBs detected as denite by one rater and possible by the other, d/no is the number of CMBs detected as denite by one observer while not detected by the other, see Figure 5.0.6 appendix 4 for more details.

  .3.3.Overall, the results are in accordance with 3.3.2. Total number of detected CMBs and comparison with the reference: True Positive (TP), False Negative (FN) and Positives ratio (FP). More specically, IFM yields a higher number of denite CMBs than the other two image types (81 vs 72 and 66 for T2* and SWI-mIP, respectively) and smaller number of FN (25 vs 34 and 41) and FP(4 vs 9 and 19). Value ranges follow the same trend (TP: 23 vs 39 and 16, FN: 23 vs 39 and 46, FP: 14 vs 20 and 70). IFM thus seems to mitigate inter-rater variability for denite lesions (range for total number: 36 vs 55 and 108).
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.3.6 indicates recorded rating time. Ratings from IFM took longer in most cases, but the relative dierence decreased from participants with no CMBs to participants with numerous

Table 3 .

 3 3.5: Number of correctly classied patients using the three types of images.

		T2*	SWI-mIP	IFM	mean
	G1 (N=4)	70	68	84	74
	G2 (N=5)	58	47	54	53
	G3 (N=6)	172	173	193	179
	mean	100	96	110	

Table 3 .

 3 3.6: Mean rating recorded time results by image type and subject-type in seconds.

  The circular shape of CMBs makes geometry a strong identifying aspect for CMBs detection. The rst idea was to use the Function of Radial Symmetry Transform (RST) that was developed by Loy and Zelinsky[START_REF] Loy | Fast radial symmetry for detecting points of interest[END_REF]. FRST is an image processing technique that can be used to highlight spherical-shaped objects in an image. A Matlab function is available on the website: http://www.nada.kth./~gareth/ homepage/gareth_home.html. For each voxel in the image, the 2D FRST results in a so-called sphericity score. This score corresponds to the sphericity of a local neighborhood around the voxel. The neighborhood is evaluated at a distance n of every point;

one or N radii can be evaluated, with N the radii vector. It further allows to highlight both hypo and hyper-intensities.
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4.1: FRST parameter setting for Memento datasets.

Table 5 .

 5 0.1: Rating results for all detected CMBs for each subject group (details of Table3.3.4).

The term k-space refers to a temporary memory of the space covered by the phase and frequency encoding data.

The bias eld correction refers to the correction of the inhomogeneity caused by the spatially-dependent response of the receiving coil.

Improved cerebral microbleeds detection using their magnetic signature on T2*-phase-contrast: a compari- son study in a clinical setting, Neuroimage Clinical (submitted)

The FRST is a local approach based on the description of the neighborhood of a point. For every pixel, the neighborhood to be evaluated is determined by the radii vector N . According to [Greenberg et al., 2009], the size of CMBs varies between 2 and 10 mm; the aim here is, thus, to nd the optimal set of radii that allows to detect CMBs.

When considering a set of radii, the nal sphericity score obtained is an average score for these radii. In order to better estimate this parameter, a synthetic image was generated with the graphical tool GIMP. Relative anisotropy (RA)

RA is calculated using the three eigenvalues of the previously calculated covariance matrix Our experiment details were as follow:

1. Head simulation: An ellipsoid within a susceptibility of -9 ppm (part per million) is rst created (main axis dimensions were 75 mm (in head-foot direction), 100 mm (in right-left direction) and 125 mm (in anteroom-posterior direction).

2. Air/tissue interfaces: Two small ellipsoids were removed, from the initial ellipsoid simulating the head, to simulate the strong eects that can be observed close to ear canals (dimension 5x10x16mm).

ii. A random constant within slice gradient was added to each slice to mimic the observed slice-to-slice inconsistency. This spatial convolution can be expressed as a point-wise multiplication in Fourier domain:

where k denotes the spatial frequency coordinates and D is the response of a unit dipole called the green function. This Fourier expression provides an ecient way to predict the susceptibility distribution for a known local eld variations: