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INTRODUCTION

With the overall ageing of the population, dementia has become a major challenge for public

health systems. Alzheimer's disease (AD) is considered the most common form of dementia

a�ecting this population, followed by vascular dementia. It would a�ect 860000 people in France,

with 250000 new cases reported each year. AD is a neuro-degenerative disease that a�ects brain

tissues and its main clinical pattern is a gradual and irreversible loss of cognitive functions such as

memory. On MRI or histology, it is associated with a systematic pattern of progressive damage

of brain structures, from the temporal cortex to more widespread regions. AD's pathophysiology

is not yet completely understood, but two types of lesions are considered as related with AD

processes: amyloid plaques, that are an accumulation of amyloid peptide located in both neo-

cortex and hippocampus, and neuro�brillary tangles. However, there may not be such a clear-

cut partition between AD and vascular dementia. In fact, a high prevalence (20-30 %) has

been observed for cerebro-vascular lesions in patients with AD while 30 to 50% of patients

with vascular dementia show AD-related histological lesions. This overlap between vascular

and degenerative lesions may suggest the involvement of common vascular factors in vascular

dementia and AD.

Alzheimer's disease was declared a major national cause in France in 2007. Among AD-

related issues, early diagnosis required particular attention and has been focused on by the

neuroimaging community through the search for e�cient imaging biomarkers.

In particular, recent advances of Magnetic Resonance Imaging make it possible to detect

di�erent types of structural and functional abnormalities at an early stage of the disease. The

most commonly used MRI anatomical biomarkers for AD are brain and hippocampal volume loss.

Furthermore, MRI allows assessing three types of vascular abnormalities: white matter hyper

intensities (leucoariosis), lacuna (silent infarct) and cerebral microbleeds (CMBs). While white

matter hyper intensities have a prevalence ranging from 28.9% to 100%, CMBs have a prevalence
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of 23 % in patients with AD. Several studies have been undertaken to understand the clinical

and pathophysiological signi�cance of CMBs. However, large scale studies or meta-analyses

are made di�cult because their identi�cation varies with MRI sequence parameters, su�ers

from reproducibility issues and is time-consuming. Automatic identi�cation methods have been

proposed to address these issues but they all require manual post processing selection steps,

because of a very high number of false positives. This suggests that a better characterization

of CMBs may be the key to improve their detection, as it would allow better identifying them

from misleading structures and lesions.

This PhD focused on achieving a better characterization of CMBs to better detect them with

an automatic method. It covers multiple aspects to improve CMBs identi�cation. First, MR

phase image was taken into account in addition to the standard MR magnitude image, because

of its sensitivity to CMBs. A new MR phase image processing technique was developed to

obtain the magnetic �eld of interest free of contamination from background sources in datasets

equivalent to clinical routine. A comparison study was carried-out to evaluate the outcome

of this tool for CMBs detection in a standardized dataset in a clinical environment. A proof-

of-concept is given to illustrate the advantages of new features for automatically identifying

CMBs.

This PhD thesis will be organized as follows. The �rst chapter presents the general context

including an overview on clinical aspects of CMBs, a description of MR basis for their detection

and the state of the art of CMBs identi�cation methods. The objectives of this PhD are presented

at the end of this chapter. The second chapter describes the main contribution of this thesis, a

new MR phase processing technique for CMBs characterization from clinical routine datasets.

The third chapter includes a detailed clinical routine validation of the new developed tool. The

last chapter is a proof-of-concept of a new CMBs identi�cation method.

This PhD was undertaken by the (http://cati-neuroimaging.com/) to address the re-

quirement of the MEMENTO methodological group to embed the number of CMBs in the

description of the participants of the MEMENTO cohort.

* * *

http://cati-neuroimaging.com/


Chapter 1

CONTEXT

The aims of this chapter are to introduce cerebral microbleeds (CMBs), their clinical context

and to describe their neuroimaging features and the challenges raised by their identi�cation

on magnetic resonance imaging (MRI). State-of-the-art methods that dealt with both visual

and semi-automatic CMBs identi�cation and that aimed to standardize their detection will be

discussed. At the end of this chapter, the overall objectives of this PhD will be developed.

1.1 Clinical context

The goal of this section is to provide an overview on CMBs, their de�nition, clinical meaning

and challenges related to making their identi�cation e�cient.

1.1.1 History of cerebral microbleeds

Very small vascular lesions such as cerebral microbleeds have long been impossible to see in-vivo,

even standards such as catheter angiography was not sensitive enough [Gregoire, 2014]. In-vivo

investigation of such lesion only was made possible with recent MRI technical progress. Sharf et

al [Scharf et al., 1994] were the �rst to report the presence of small, intra-cerebral hyposignal on

T2-weighted Fast Spin Echo (FSE) MRI sequence in patients with hypertensive cerebrovascular

disease and intra-cerebral hemorrhage (ICH) at low magnetic �eld strength (1 Tesla), they called

them �hemorrhagic lacunae�. Since then, the frequent use of MRI sequences that are sensitive

to magnetic susceptibility during research and clinical investigation of neurological disorders

has led to the frequent detection of small, homogeneous, round foci of low signal intensity in
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di�erent populations: patients with ischemia or hemorrhagic stroke, hypertensive and healthy

elderly subjects [Fazekas et al., 1999].

In 1996, at least three studies revealed strong association between ICH and CMBs on

gradient-recalled-echo (GRE) T2*-weighted MRI, suggesting that CMBs may provide key in-

formation regarding the pathogenesis of ICH. Greenberg et al [Greenberg et al., 1996] reported

lobar focal hypointensities in nine out of �fteen cerebral amyloid angiopathy (CAA) patients;

O�enbacher et al [O�enbacher et al., 1996] described similar intra-cerebral focal hypointensities

in 39 of 120 patients with spontaneous ICH; Chan et al [Chan et al., 1996] reported multifocal

hypointense cerebral lesions on patients with chronic hypertension. The majority were described

as homogeneous, rounded lesions with diameters varying between 2 and 5 mm, and they were

named `microbleeds'.

Later in 1999, the histopathological correlates of CMBs began to be reported. Histology-

MRI correlations were studied in eleven brains of people who died after non-traumatic ICH

[Fazekas et al., 1999], and in three brains of people who died from a variety of other diseases

[Tanaka et al., 1999]. Sections with small hyposignals on a T2*-weighted echo plannar imaging

(EPI) MRI were examined. Histological-MRI correlations demonstrated that the hypointensities

detected on GRE T2* images reported as CMBs corresponded to focal deposits of paramagnetic

blood break-down products [Chavhan et al., 2009], especially haemosiderin, within macrophages

in perivascular tissue consistent with vascular leakage of blood cells. Figure 1.1.1 shows a typical

histopathological illustration of a CMB in a rat brain.

Figure 1.1.1: A typical CMB in a rat brain (arrow), magni�cation = Ö100. Blood clots and
red-cells appeared inside the CMBs [Jiang et al., 2015].
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1.1.2 CMBs de�nition on MRI

As seen above CMBs are paramagnetic and are, thus, visible on MRI sequences that are sen-

sitive to magnetic susceptibility di�erences (such as GRE T2*-weighted sequence). According

to Greenberg et al. [Greenberg et al., 2009] CMBs should be black or very hypointense on T2*-

weighted MRI, round or ovoid (excluding tubular or linear structures such as those representing

vessels or a resorbed macrobleed), blooming (larger or more conspicuous on GRE than Spin-Echo

(SE) MRI, see Figure 1.1.2), devoid of T1- or T2-weighted hyperintensity (such as cavernous

malformation), and at least half surrounded by brain parenchyma (permitting super�cial CMB

as seen in CAA). Other mimics such as mineralization of the basal ganglia or di�use axonal

injury are excluded based on appearance or clinical history. The size may be relatively unimpor-

tant for correctly categorizing lesions that otherwise meet these criteria and should be applied

conservatively if at all.

Figure 1.1.2: CMB illustration: The blooming e�ect is demonstrated by the larger area of signal
void on the T2*-weighted MRI in (b) compared to the fast SE image in (a) [Greenberg et al.,
2009].

1.1.3 Clinical relevance

CMBs has long been considered as low abundance bleeding sequelae and, thus, as asymptomatic

markers of small vessel diseases. Recent interest in these lesions has increased and several MRI-

pathology correlations showed that they are associated with other manifestations of small vessel

disease and AD [Vernooij et al., 2008, Cordonnier et al., 2009]. The alteration of the walls of

small vessels may theoretically produce steady extravasations of erythrocytes through the fragile

vascular walls [Roob and Fazekas, 2000] or tiny areas of haemorrhage.

Recent research studies suggest that their origin and clinical interpretation may depends on

their location [Cordonnier, 2011, Cordonnier et al., 2006]; deep CMBs are markers of hyper-
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tensive arteriopathy (HTA) while those con�ned in the cortical-sub-cortical region are linked to

cerebral amyloid angiopathy (CAA), as illustrated in Figure 1.1.3.

Figure 1.1.3: (A) CAA preferentially a�ects the small arteries and arterioles of the cerebral cor-
tex and gray�white matter junction; (B) HTA typically a�ects small deep arterial [Charidimou
et al., 2012].

The presence of strictly lobar CMBs has been included in the diagnostic criteria of CAA.

Their association to small vessel arteriopathies (HTA and CAA) makes CMBs a valuable indi-

cator of cerebral small vessel disease [Gregoire, 2014]. Moreover, this association suggests their

implication in both hypotheses regarding the pathological process of Alzheimer's disease: those

associated with HTA (deep CMBs) result of ischemia or arteriosclerosis, on the bene�t of the

vascular hypothesis: those associated with CAA could result from the amyloid protein deposi-

tion on the walls of blood vessels. CMBs understanding may contribute to the understanding

of AD; Figure 1.1.4 illustrates how CMBs may play a prominent role in this neurodegenerative

disease.
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Figure 1.1.4: Proposed representation of the pathophysiological pathway of AD with a prominent
role for CMBs, suggesting that they might act as a link between the two pathways. APP=
amyloid precursor protein [Cordonnier, 2011].

To conclude, several studies were undertaken to determine the meaning of these hypointensi-

ties observed on MRI. CMBs are no longer considered as asymptomatic deposits in the perivas-

cular regions. Their prevalence on MRI in the general population varies from 5% to 35% [Murao

et al., 2013]. In fact, they are of special interest in the aging population and are relatively com-

mon in vascular dementia, with reported prevalence ranging between 35% and 85% [Cordonnier,

2011].

However, the understanding of CMBs etiology is rendered more di�cult due to several issues.

Their size is very small and only those of su�cient size can be seen on MRI. Their size is also

variable and their appearance is disturbed by the blooming e�ect, thus leading to a larger

apparent radiological size than their real size. CMBs are widespread in the brain, and can

easily be missed by visual inspection. Visual CMB's rating is a time consuming procedure,

limiting the number of brains with CMBs that have been analyzed in MRI-pathology correlation

studies [Gregoire, 2014]. Further large, well-designed histopathological studies combined with

MRI correlation are needed to characterize the range and threshold of haemosiderin pathology
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required to create a CMB visible on MRI and con�rm the bleeding or ischemic origin of CMBs

according to the underlying arteriopathy [Gregoire, 2014].

1.2 MR magnetic susceptibility and Phase MR image

In order to better understand how CMBs can be detected on MRI, this chapter brie�y reviews

the physical basis of magnetic susceptibility and how it a�ects the signal of MRI sequences that

are sensitive to magnetic susceptibility1.

Whereas an electric charge is the basis for an electric �eld, an electric charge in motion

produces a magnetic �eld. For example, a loop carrying current produces a magnetic �eld

equivalent to the one produced by a magnetic dipole (see Figure (1.2.1)).

Figure 1.2.1: The magnetic �eld, B, and magnetic moment m, due to an electric current, I.

A magnetic dipole is a basic physical entity that acts as a source of the magnetic �eld

[Haacke and Reichenbach, 2011]. It is de�ned by two poles that attract or repel one another. A

magnetic dipole is characterized by a vector quantity called the magneticmoment, m. When a

material is placed into a magnetic �eld, electrons and nucleons acquire di�erent energy states.

A physical quantity, the spin, is used to describe these energy states; the spin is proportional

to the magneticmoment of either an electron or a nucleon. The total magnetic moment of

an atom can be calculated by vector summation of the individual spins from nucleons and

electrons. Since the gyromagnetic ratio2 of an electron is several hundreds of times larger than

the gyromagnetic ratio of a nucleon, the magnetic moment of an atom is usually dominated by

1The italic notation in this chapter stands for vectors.
2The ratio of its magnetic dipole moment to its angular momentum.
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the overall electronic spin. Due to thermal energy at ambient temperature, the individual atom

magnetic dipole moments point randomly in di�erent directions and the resulting vector is in

fact negligible in the absence of external magnetic �eld. However, when placed in an external

magnetic �eld, the individual magnetic moments tend to counteract thermal e�ects and align

with the external �eld, thus resulting in a macroscopic magnetic moment. If a large number

of atoms contained in a given volume are considered, the magnetization can be de�ned as the

average magnetic moments over the volume, enabling to de�ne a property called the �magnetic

susceptibility� as de�ned below. It can be noted that these macroscopic magnetic properties are

dominated by electronic e�ects, and that it will produce deformation of the external magnetic

�eld in MRI. However, most biological tissues contain predominantly water molecules, and 63%

of the human body is consequently hydrogen atoms. The nuclear magnetic moments are the

basis for the nuclear magnetic resonance (NMR) phenomenon: a nuclear magnetization can be

produced for protons of hydrogen atoms, thus making MRI possible [Haacke and Reichenbach,

2011].

Magnetic susceptibility

Let us consider an uniform external magnetic �eld B0 = µ0 ·H, with µ0 the absolute vacuum

permeability and H the measured �eld [Haacke and Reichenbach, 2011].

When a material is placed into the �eld B0, the actual �eld B given in Tesla (T) inside the

material is

B = µ0 (H +M) (1.2.1)

where M is the induced magnetization, or the volume average of magnetic moments.

The induced magnetizationM inside the material may be related to the H �eld by a constant

χ through

M = χH (1.2.2)

χ is called magnetic susceptibility. It implies linearity between the external �eld and the

induced magnetization and depends on the average microscopic content. In the International

System of Units (SI),M andH are measured in amperes per meter. χ is therefore a dimensionless

quantity.
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DIAMAGNETISM, PARAMAGNETISM, AND FERROMAGNETISM

χ is an intrinsic property of the material, re�ecting the perturbations of the applied magnetic

�eld. Most materials are classi�ed either as diamagnetic, paramagnetic, or ferromagnetic.

At the atomic level, any two paired-electrons together in an orbital are diamagnetic electrons.

Atoms with all diamagnetic electrons (paired) are called diamagnetic atoms. A paramagnetic

electron is an unpaired electron. An atom is considered paramagnetic as soon as it has one

paramagnetic electron. Therefore, paramagnetic materials are attracted by an applied magnetic

�eld and yield internal, induced magnetic �elds in the direction of the applied magnetic �eld.

Diamagnetic materials create an induced magnetic �eld in a direction opposite to an applied

magnetic �eld and are therefore repelled by the applied magnetic �eld.

If the susceptibility χ is positive, the material or the object is paramagnetic. If χ is negative,

the material is diamagnetic. For vacuum, χ is zero.

Human tissues contain mostly water, thus, almost all soft tissues in the body are diamag-

netic. Bone is slightly more diamagnetic than soft tissues due to its calcium content [Hopkins

and Wehrli, 1997]. In MRI, it is practical to express susceptibility as �paramagnetic� or �diamag-

netic� relative to the susceptibility of water or a reference tissue, rather than that of vacuum.

Indeed, di�erences with tissues appear more clearly, and, as a volume property, it then re-

lates to di�erences in content as compared to water or a reference tissue. Some examples of

magnetic susceptibilities of a few biological tissue are given in Table 1.2.1. Manganese, iron

(Fe2+ and Fe3+) and gadolinium (Gd3+) are some examples of paramagnetic ions [Haacke and

Reichenbach, 2011]. Molecular oxygen is also slightly paramagnetic. The addition of a given

paramagnetic substance to a tissue will result in a small change in the volume susceptibility. To

account for the change of susceptibility for a given amount of paramagnetic subtance,[S], added

to water or tissue, the molar susceptibility, χm, can be de�ned, and the resulting suceptibility

is then:

χ[S] = χ[S]=0 + χm × [S] (1.2.3)

χm is measured in m3 ·mol−1 (SI) or cm3 ·mol−1 (CGS (Centimetre�gram�second system

of units)).
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Tissue Magnetic susceptibility
Cortical bone −12.82× 10−6

Lipids −10× 10−6

Hemoglobin protein (without Fe ions) −9.91× 10−6

Pure water −9.05× 10−6

Fully deoxygenated whole blood −7.9× 10−6

Fully deoxygenated red blood cell −6.56× 10−6

Ferritin +520× 10−6

Table 1.2.1: Magnetic Susceptibilities of a few biological Tissue [Haacke and Reichenbach, 2011]
in SI. This value is devided by 4π to obtain the dimensionless CGS value of volume susceptibility.

As can be seen, iron, that can be found in various forms in the body such a ferritin or

paramagnetic ions in blood products, will induce important susceptibility variations in tissues.

MRI basics

Though it is a recent technology (introduced by Lauterbur in 1973 [Lauterbur, 1973]) as com-

pared to other medical imaging techniques, MRI has a wide range of applications in medical

diagnosis and over 25,000 scanners are estimated to be in use worldwide. It is considered as

non-invasive without known side e�ects by itself.

MRI relies on the nuclear magnetic resonance principle, that relates to the ability that have

some nuclei to absorb energy of an electromagnetic �eld on resonance (or photons with a given

speci�c energy). The resonance condition relates to the energy level di�erence between the

microscopic nuclear spin states. When a sample is placed in a static magnetic �eld B0, its

magnetic moments align themselves with the direction of B0 resulting in an average nuclear

magnetization. This magnetization M is thus oriented in the longitudinal direction (z) as

schematically illustrated in Figure 1.2.2 (b) for a spin 1/2 nucleus such as the one of hydrogen.

The nuclear magnetization can thus absorb energy from an electromagnetic �eld at speci�c

frequencies: for a spin 1/2, the angular velocity of M around B0, which is called the Larmor

angular frequency, ω and given by

ω = −γ ·B (1.2.4)

where γ is the gyromagnetic ratio of the nucleus. The gyromagnetic ratio of hydrogen nucleus

is γ = 2.675.108 rd/T , and in practice clinical magnetic �elds are between 1.5T and 7T leading

to the Larmor frequencies in the radiofrequency (RF) range.
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Figure 1.2.2: In the absence of B0, hydrogen nuclei are randomly oriented as in (a). With
B0 applied, the hydrogen nuclei precess about the direction of the �eld as in (b), from http:

//www.mr-tip.com.

A semi-classic vector representation for spin 1/2 can be used, leading to the Bloch equation

describing how the nuclear magnetization react to a magnetic �eld:

dM

dt
= γM ×B (1.2.5)

During the excitation period, a radiofrequency �eld, Brf , is applied perpendicular to B0

at the Larmor frequency ω (see Figure 1.2.3 (a)), the magnetization deviates away from B0 as

illustrated in Figure 1.2.3 (b). The resulting excitation angle between the main �eld B0 and the

magnetization is called the �ip angle.

Figure 1.2.3: The RF pulse, Brf , causes the net magnetic moment of the nuclei, M , to tilt away
from B0as in (a). When the RF pulse stops, the nuclei return to its equilibrium parallel to B0.
During realignment, the nuclei lose energy that can be measured, from http://www.mr-tip.com.

When switching o� Brf after the excitation, a relaxation phenomenon occurs. This re�ects

http://www.mr-tip.com
http://www.mr-tip.com
http://www.mr-tip.com
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the return to equilibrium of tissue magnetization during which the nuclei lose energy as a

measurable signal; In response to the force bringing them back to their equilibrium orientation,

the protons undergo a rotating motion �precession�, much like a spin wheel under the e�ect of

gravity. These e�ects are formally described by the Bloch equations with relaxation:

dM

dt
= γM ×B − Mxy

T2
+

(M0 −Mz)

T1
(1.2.6)

where T1 is the longitudinal relaxation time and T2 the tranverse relaxation time, Mz the

longitudinal component (along B0) and Mxy the tranverse component.

These temporal changes in magnetization Mxy induce a time-varying magnetic �ux, and an

induced current at the Larmor frequency in a receiver coils at the origin of the MR signal. The

frequency at which protons resonate depends on the strength of the local magnetic �eld in the

imaged volume. This signal is referred to as the free-induction decay (FID), see Figure 1.2.4.

Figure 1.2.4: Free-induction decay (FID) signal [Chupin, 2004].

The FID response signal is measured by induction using a conductive coil placed around

the object and describes how the transverse magnetization Mxy changes with time. The evolu-

tion during the relaxation period for both transverse Mxy and longitudinal MZ components is

illustrated in Figure 1.2.5.
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Figure 1.2.5: Representation of M when Brf is switched of. Visualization of M 's component :
transverse �Mxy� and longitudinal �Mz� [Chupin, 2004].

The process associated with the time parameter T1, is responsible for the recovery of the

longitudinal magnetization, MZ . T1 is the characteristic time required for nuclei in the sample

to realign to initial magnetization with an exponential decay. It is also called the �spin-lattice

relaxation time�, as it relates to local energy exchange with all the surrounding tissue. After a

time of T1, MZ will recover 63% of its steady state value. The other relaxation process, associ-

ated with the characteristic time T2, is accounting for the exponential decay of the transverse

magnetization, Mxy. It is also called the spin-spin relaxation time to account for interactions

between dipoles: the nuclei lose their phase coherence because of their proximity which results in

a loss of Mxy faster than T1. In the relaxation period, after a time T2 transverse magnetization

has lost 63% of its amplitude.

It is to be noted that the main magnetic �eld is never perfectly homogeneous and inho-

mogeneities may result either from intrinsic defects in the magnet itself or from susceptibility-

induced �eld distortions produced by the tissue or other materials placed within the �eld. Cor-

recting these inhomogeneities cannot be done perfectly. This inhomogeneous �eld results in

inhomogeneous frequencies at the scale of the imaged volume and the transverse magnetization

apparently decays faster than would be predicted by T2; to account for this faster apparent

relaxation, an apparent relaxation time T2*3 is introduced. T2* is thus always smaller than or

equal to T2 as illustrated in Figure 1.2.6.

3 T2* ="T2-star".
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Figure 1.2.6: Illustration of the di�erence between T2 and T2* decay with T2* <T2 [Chavhan
et al., 2009]

relaxation times T1 and T2 mainly depend on molecular mobility. Structured materials, such

as bone and other hard tissues, have very fast relaxation times while in contrast soft tissues have

higher water mobility and longer relaxation times. The following table shows typical T1 and T2

relaxation times for some brain tissues at 1.5 T.

T1 (ms) T2 (ms)

Water 3000 3000
Gray matter 810 100
White matter 680 90

Liver 420 45
Fat 240 85

Table 1.2.2: T1 and T2 relaxations times for brain tissues at 1.5T.

Additionally the water distribution in soft tissues gives the possibility to distinguish between

them through these relaxation constant. The subtle di�ering characteristic of di�erent tissues

(T1, T2 and proton density (PD)) are the origin of contrast in MRI images. T1 and T2 contrast

mechanisms are illustrated in Figure 1.2.7.
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Figure 1.2.7: T1 and T2 contrast illustration in a typical spin-echo sequence. Top graph il-
lustrates the T2 contrast that depends on TE. Bottom image illustrates the T1 contrast that
depends on the repetition time TR [Chupin, 2004].

To generate contrasted images, RF pulses are applied and the signal measured according

to a prede�ned sequence with experimentally de�ned times, the repetition time (TR) and the

echo time (TE). TR is the time between two repeated excitations. It enables to measure how

much longitudinal magnetization recovers between each pulse (see Figure 1.2.7). TE is the time

between the RF pulse and the signal recording time, it enables to measure signals with selected

T2 relaxation (see Figure 1.2.8).

Figure 1.2.8: Operator-selected pulse sequences parameters: time echo (TE) and time repetition
(TR).

To obtain a T1-weighted images mainly characterized by di�erences in T1 properties, a short

TR and a short TE (TR < 1000msec, TE < 30msec) is needed, see Figure 1.2.7 (b). To obtain

a contrast dominated by T2, or a T2-weighted image mainly characterized by di�erences in T2

relaxation, a long TR and a long TE (TR > 2000msec, TE > 80msec) are used, see Figure 1.2.7

(a). A proton density PD sequence is based on a long TR and a short TE to render the in�uence
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of relaxation times negligible with regard to PD.

Localization principles

The relaxation principles have been presented regardless of localization. To generate an image,

localization principles are needed. MRI consequently uses spatial encoding methods to divide

the sample into voxels4. Three major principles are the slice selection, the readout encoding,

and the phase encoding that are combined in imaging sequences. Generally speaking, to localize

signals the magnetic �eld is changed spatially. This is performed using the so called 'gradients',

or the spatial derivative of the magnetic �eld along B0. The gradients can be represented as

a vector to account for the 3 components of the spatial derivation along x, y, and z of the

magnetic �eld. The gradients can then be applied in any direction and changed rapidly during

an imaging sequence. Changing spatially the magnetic �eld has the e�ect of changing the

resonance frequency in proportion, which is the basis of localization principles in MRI.

For the slice selection, a slice selection gradient Gs is used to select the anatomical volume

of interest. By applying Gs, nuclei experience a di�erent magnetic �eld strength dependent

on their position along that gradient. A frequency selective RF pulse is applied at the same

time, thus only �ipping the magnetization within this slice. When this Brf pulse is applied

with a frequency [ω ± δω], only the nuclei experiencing the corresponding magnetic �eld will be

excited, resulting in the �rst partition of voxels. Within this slice, the position of each point

will then be encoded in the two remaining dimension.

The second localization principle is the readout gradient, or frequency encoding gradient Gf .

When applied perpendicularly to the slice encoding gradient and after the excitation, it results

in a change of Larmor frequencies in this direction. The acquired signal thus contains di�erent

frequencies: an analysis of the frequency content using a Fourier transform thus provides an

amount of signal as a function of position along the readout gradient.

The third localization principle is to apply a phase encoding gradient,Gp in the third di-

rection. It modi�es the spin resonance frequencies, inducing dephasizing, which persists after

the gradient is interrupted. This results in all the protons precessing at the same frequency

but with di�erent phases. This sequence is then repeated with di�erent gradient Gp, resulting

in di�erent accumulated phases and leading to a discrete Fourier encoding. After a Fourier

4volume elements
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transform among this phase encoding dimension, localization is then obtained.

These principles are illustrated in the following section detailing the gradient-echo imaging

sequence.

Gradient Echo Imaging and k-space

Figure 1.2.9: 2D pulse sequence diagram of a generic spoiled gradient echo sequence. RF radio
frequency selective pulse tilting the magnetization with a given �ip angle within a slice, Gs the
slice selection gradient, Gp the phase encoding gradient, Gf the frequency encoding gradient.
Corresponding k-space is illustrated in the right, from http://www.mr-tip.com.

The gradient recalled echo (GRE) MRI sequence is considered the simplest sequence in MRI.

Figure 1.2.9 illustrates a generic spoiled 2D single-echo gradient echo sequence. An asymmetric

bipolar readout gradient (which is the same as the frequency-encoding gradient) is required to

create an echo (a gradient-echo in this case). Each cycle (TR) record one line of data in k-space

with di�erent steps5 as follows:

1. GRE sequence starts with the BRF producing a �ip angle of between 0 and 90 degree: a

�ip angle lower than 90°, results in a faster recovery of longitudinal magnetization that

allows shorter TR/TE and acquisition time.

2. A slice selection gradient Gs is applied together with the RF pulse.

3. A phase encoding gradient Gp is applied simultaneously to a dephasing Gf to phase spins

at the center of the acquisition period; this ensure translation from the center of k-space

from A to B in Figure 1.2.9.
5 The term �k-space� refers to a temporary memory of the space covered by the phase and frequency encoding

data.

http://www.mr-tip.com
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4. When switching the polarity of Gf , spins are rephased ; Nx data points are equidistantly

sampled from B to C via the center of k-space during the readout step.

5. Note that an extra slice gradient is applied before the next RF pulse. It is called the

�spoiler� and aims to destroy residual transverse magnetization to prepare the next cycle.

6. The excitation is then repeated as many times as necessary (Ny) to �ll the raw data matrix

along the direction Gp.

The k-space concept is essential in MRI. It relates to the amount of dephasing that the magne-

tization acquires subject to the gradients. Considering the case of 2D encoding, we have:

kx =
γ

2Π

ˆ t

0

Gf · dτ (1.2.7)

and

ky =
γ

2Π

ˆ t

0

Gp · dτ (1.2.8)

The measured signal can be expressed as:

s(kx, ky) = Constant×
¨

(ρ(x, y)× exp (2Πi(kxx+ kyy))) dxdy (1.2.9)

Fourier transform is then used to transform the measured k-space complex data s(kx, ky)

into image space ρ(x, y). This image data is then manipulated for di�erent clinical utility, and

with TR and TE to provide the desired contrast. For example, a magnitude image is used to

provide the desired contrast, while phase images can be used to measure �ow or magnetic �eld.

The resulting complex signal can be written as

ρ (θ) = ρm (θ) exp (−i4ϕ) (1.2.10)

where ρm (θ) is the magnitude given by

ρm (θ) = ρ0 sin θ exp

(
−TE
T2∗

)
× [1−exp(−TR

T1 )]/[1−cos θ exp(−TR
T1 )] (1.2.11)

If the local magnetic �eld is not homogeneous, the local frequency varies by 4ω, and 4ϕ

represents the accumulated dephasing after a time TE:

4ϕ = 4ω TE (1.2.12)
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GRE Phase MR image and its relationship to susceptibility

MRI provides a complex image, with an amplitude and a phase. Amplitude image can be

modulated to generate contrast. The phase image is more complex to analyze and has thus

been discarded from MR-based analysis till recently. Generally speaking, the phase describes

the orientation across time of the magnetization vector in the transverse plane, see Figure 1.2.10.

MR signal is received using a quadrature detection, which results in two data streams with a

90° phase di�erence. The digitized values from these signals are the real part and the imaginary

part of each complex data point in k-space. Magnitude and phase images result from the Fourier

transform of data and are de�ned as
√
x2 + y2 for the magnitude and as tan−1

(
y
x

)
for phase

image. As presented in the previous section, the phase can provide information on the local

magnetic �eld.

Figure 1.2.10: Magnitude and phase illustration in complex representation

An example of a T2* magnitude image and corresponding phase image as given by MRI

reconstruction for a gradient echo sequence is provided in Figure 1.2.11.
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Figure 1.2.11: Example of magnitude T2* image and corresponding phase image, from ME-
MENTO dataset used in this work [Kaaouana et al., 2015]. The signal amplitude (left) provides
a T2* contrast with hyper-signals for CSF, isosignal for WM and GM and hyposignals for sus-
ceptibility inclusions. The phase image relates to magnetic �eld inhomogeneity that is especially
inhomogeneous around susceptibility inclusions.

From the Larmor equation, the relationship between the magnetic �eld B and the dephasing

4ϕ is given by

4ϕ = −γ4B TE (1.2.13)

since

4B = g4χB0 (1.2.14)

where g is a geometric factor depending on the susceptibility distribution [Ho�man, 2006].

Consequently, the relationship between dephasing, local susceptibility variation and magnetic

�eldB0 can be written as

4ϕ = −γg4χB0 TE (1.2.15)

4ϕ is dependent on the local tissue susceptibility.

Susceptibility artifact in MRI

If we consider an applied magnetic gradient Gx, the �eld at a position x is given by:

B (x) = B0 +Gx · x (1.2.16)

the corresponding Larmor frequency using previous equation is given by:
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ω (x) = −γ (B0 +Gx · x) (1.2.17)

When the magnetic �eld is disturbed by the presence of a magnetic material, the net pre-

cession frequency of the spins in or around the material is in�uenced not only by the applied

gradient �eld, but also by the �eld 4B, induced by the material and ω becomes:

ω (x) = −γ (B0 +4B (x) +Gx · x) (1.2.18)

ω (x) = −γ
(
B0 +Gx ·

(
x+
4B
Gx

))
(1.2.19)

or

ω (x,) = −γ (B0 +Gx · x,) (1.2.20)

where

x, = x+
4B
Gx

(1.2.21)

Consequently, as the spins now precess with an angular frequency ω(x,) (rather than ω(x)),

the spins in�uenced by 4B(x) are mapped to an incorrect location x, (instead of x) during

image reconstruction thus causing distortion. More speci�cally, this issue can be detected in

areas with strong magnetic susceptibility di�erence [Haacke and Reichenbach, 2011]. An example

is illustrated in Figure 1.2.12.

Figure 1.2.12: Demonstration of the e�ect of magnetic susceptibility of a cylindrical water/air
interface; distortions and intensity loss in the GRE acquired image: B0 = 7T, TR / TE =
500/15 ms, matrix = 256 x 256 [Belaroussi, 2005].



CHAPTER 1. CONTEXT 43

Along time, these spins get out of phase with each other. At the voxel level, phase dispersion

within a voxel results in a decrease of the net signal of that voxel because of T2* dephasing.

Therefore, geometric measurement in gradient echo MRI and its derivatives (including T2*W,

SWI) fundamentally su�er from inherent blooming artifacts: haemosiderin deposits exert a high

susceptibility e�ect on the local magnetic �eld, which results in a larger area of signal loss.

1.3 State-of-the-art: identi�cation and detection of CMBs

In this section, we will �rst introduce di�erent imaging techniques used for CMBs identi�cation

and then, describe the two proposed visual rating scales and state-of-the-art automatic methods

used for CMBs identi�cation.

1.3.1 CMBs imaging techniques

In order to better identify CMBs, new MRI sequences and reconstruction techniques were pro-

posed, as described below.

T2*-weighted GRE T2*-weighted gradient recalled-echo (GRE) sequence has a high sen-

sitivity for di�erences in magnetic susceptibility and is the most commonly used for CMBs

detection as illustrated in (a) on Figure 1.3.1 (a). However, CMB identi�cation is very sensitive

to MRI sequence parameters such as �eld strength, slices thickness, TE, interslice gap, TR, �ip

angle or matrix size. A higher �eld strength allows higher resolution and more susceptibility

e�ect, but rating may become barely feasible. Longer TEs enhance susceptibility e�ects but

also other susceptibility artifacts and may thus hamper identi�cation of CMBs near air-tissue

interfaces. Interslice gap needs to be chosen carefully with respect to CMBs size, as some can

be missed if the interslice gap is too large.
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Figure 1.3.1: The same CMBs are shown at TE=38.7ms on T2*W (a), SWI (b) and QSM (c)
[Liu, 2011].

Susceptibility weighted imaging (SWI) The sequence used for susceptibility weighted

imaging (SWI) is based on a high resolution 3D gradient-recalled echo T2*-weighted sequence

with a long echo time. In SWI, both magnitude and phase maps are combined in post-processing

to create the �susceptibility-weighted� image. In this processing, thin section magnitude images

are multiplied several times by a high-pass �ltered phase images. This process increases the

contrast between paramagnetic substances (such as CMBs) and surrounding tissue, as can be

seen on Figure 1.3.1 (b). The visibility of CMBs and cerebral blood vessels (which contain

paramagnetic deoxyhaemoglobin) is further enhanced by the generation of minimal intensity

projection (mIP) over a number of slices [Haacke and Reichenbach, 2011]. SWI is very sensitive

to susceptibility e�ects because of the combined T2* and phase inhomogeneity contrast. It is

thus very sensitive to sequence parameters such as echo time TE and voxel size, and it increases

with the magnetic �eld strength B0 leading to an enhanced sensitivity at higher �eld. The main

advantageous result of SWI is an enhanced contrast as compared to T2* leading to a facilitated

visual detection of magnetic susceptibility inclusions.

Quantitative susceptibility mapping (QSM) Quantitative susceptibility mapping (QSM)

[de Rochefort et al., 2010b] is an advanced post-processing technique based on the analysis of

the phase images that aims at quantifying susceptibility by solving an inverse problem. The

inverse problem of QSM is to recover the susceptibility distribution of the human body from

the measured local magnetic �eld inhomogeneity that is expressed by the convolution of the

susceptibility distribution with the magnetic �eld generated by a unit dipole. The inverse

problem is ill-posed due to the presence of zeros on a cone in the Fourier representation of the
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unit dipole kernel. Liu et al [Liu et al., 2012] were the �rst to investigate the feasibility of

characterizing CMBs using QSM and suggested to use total (TS) instead of CMBs size since TS

is not sensitive to echo time and �eld strength, while apparent size is. The main advantages of

QSM in the context of CMB quanti�cation compared to T2*-weighted or SWI approaches are

that noise decreases as TE increases (up to the limit of T2*) and that it provides a quantitative

index directly linked to the total amount of paramagnetic substance. However, this technique

is still under investigation and not yet suitable for clinical routine. For illustration, a QSM map

showing CMBs is given in (c) Figure 1.3.1.

Comparison between imaging techniques Several studies demonstrated that SWI is more

sensitive to detect CMBs than conventional gradient-echo T2* sequences [Nandigam et al., 2009],

and that currently SWI is the most sensitive technique to visualize CMBs in-vivo [Ayaz et al.,

2010]. Contrast enhancement provided by SWI can make the very small CMBs visible [Schrag

et al., 2010] compared to conventional GRE T2* MRI [Nandigam et al., 2009]. In fact, phase

is very sensitive to susceptibility di�erences and o�ers the ability to di�erentiate between blood

products, which are paramagnetic, and calci�cation or mineralization, which are diamagnetic

[de Rochefort et al., 2008].

Although there has been general agreement on the radiological properties of CMBs on T2*

GRE images, the emergence of new MRI techniques made it possible to improve CMBs detection

but also led to extend MRI criteria for identifying CMBs. As a result, there is a lack of

standardized speci�c criteria for various MRI techniques. Many research units have used in-

house CMB rating methods, and although reliability has been reported, the exact methods

used (detailed CMB de�nition criteria, anatomical boundaries, etc.) have usually not been

fully described. A standardized approach with clearly described criteria for CMBs and their

anatomical location would make it feasible to improve reliability and compare results from

di�erent centers.

1.3.2 Visual identi�cation

As CMBs are made of paramagnetic substance, sequences sensitive to susceptibility e�ects pro-

vide a unique tool for their in-vivo detection. However, there is yet no consensus regarding the

methods used for their detection. To address that issue, investigators have compared a wide
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variety of MRI sequences and designed visual scales rating for CMBs to better standardize their

identi�cation.

Rating scales

A CMB rating scale should provide a uniform rating methodology (including clear de�nition

of CMB detection criteria and anatomical regions) and enable reliable and reproducible data

collection to allow more informative cross-study comparisons. Two visual scales have been

proposed: MARS (The Microbleed Anatomical Rating Scale) see Figure 1.3.2 [Gregoire et al.,

2009] and BOMBS (Brain Observer Microbleed Scale) see Figure 1.3.3 [Cordonnier et al., 2009].

The main di�erence between both is that MARS classify CMBs into individual lobar region as

well as deep structures. Both were designed for clinical practice on T2* GRE weighted images

and aimed at characterizing the number of CMBs and their distribution in the brain. The �rst

part is a guidance for use, a reminder of the de�nition criteria for CMBs and CMBs mimics. The

second part is a table for anatomical categorization (cerebellum, thalamus...) indicating in each

case if there is a de�nite or possible CMB. MARS had higher reliability for deep CMBs (κ = 0.71

Vs κ = 0.54). In general, MARS has better inter rater-reliability (κ = 0.68 [95%CI 0.58−0.78])

and intra rater reliability (κ = 0.85 [95%CI 0.77− 0.93]) compared to BOMBS.
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Figure 1.3.2: Microbleed Anatomical Rating Scale [Gregoire et al., 2009]
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Figure 1.3.3: Brain Observer Micro Bleed scale (BOMBS) [Cordonnier et al., 2009]
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1.3.3 Fully/semi automatic identi�cation

Despite of the numerous e�orts dealing with brain lesions segmentation and promising results

in neuroimaging community, only few segmentation methods dedicated to CMBs have been

proposed in the literature. In this section, we will brie�y review existing methods for the

automatic/semi automatic detection of CMBs.

Atlas based method [Seghier et al., 2011]

Method The �rst method dealing with CMBs automatic detection, called MIDAS for Mi-

crobleed Detection Using Automated Segmentation, was proposed by Seghier et al [Seghier

et al., 2011]. It consists of an atlas based segmentation step followed by manual removal of

resulting false positives. The segmentation step is an intensity-based statistical classi�cation

algorithm included in the framework of the �uni�ed segmentation� [Ashburner and Friston,

2005] available in the SPM software (Statistical Parametric Mapping), available on the website

�http://www.�l.ion.ucl.ac.uk/spm/�.

The uni�ed segmentation combines registration to a standard template, tissue classi�cation

and intensity bias correction in an iterative process that maps voxelwise probabilities of brain

tissues/structures such as gray matter (GM), white matter (WM) and cerebral spinal �uid

(CSF). It is based on the prior information of an atlas built into a standard space and provided

by the MNI (Montreal Neurological Institute) introduced in a Bayesian model allowing the

evolution of these maps. It was proposed for 3D T1 weighted datasets with nearly isotropic

spatial resolution. In MIDAS, the challenge was to adapt this prior to T2* acquisitions with

anisotropic resolution (0.9x0.9x5mm3). The intensity of each brain tissue was modeled by

one or more Gaussian(s) (Gaussian Mixture Model). SPM8 software o�ers the possibility to

segment six classes of "tissue": WM, GM, CSF, skull, skin and other (image background).

MIDAS introduced; a new class de�ned for CMBs (see Figure 1.3.4). For the extra CMBs class,

prior information was �rst only based on location, and probability was initialized to 0.1 in the

brain parenchyma and zero elsewhere. During the �rst iteration, constrains on the mixture of

Gaussians was optimized using the "expectation-maximization" algorithm; this was achieved by

forcing the mean of the Gaussians modeling the 6 tissue classes to be maintained at a speci�c

range. The limiting values of these ranges are empirically chosen to discriminate each class.



CHAPTER 1. CONTEXT 50

Figure 1.3.4: Illustration of the six tissue priors used in MIDAS during the �rst iteration of
uni�ed normalization-segmentation. GWM = gray and white matter, CSF = cerebro-spinal
�uid, CMB = cerebral microbleeds [Seghier et al., 2011].

Before the second iteration of the �uni�ed segmentation�, several morphological operations

were applied to distinguish CMBs from their mimics (see Figure 1.3.5)

1. Binarization of CMBs class by applying an empirical threshold;

2. Granulometry: size distribution to select round structures with a diameter between 4 and

10 mm;

3. Applying a mask calculated using di�erent resulting maps to exclude the skull, the skin,

the image's background and CSF;

4. Applying a �revised� mask to remove false positives: this mask is created from 44 control

datasets that underwent the iterative process and identi�ed points as CMBs has been

labeled as �false positives�. This step eliminates specially susceptibility artifact at the

air-bone interfaces (sinuses) or some calci�cation of the basal ganglia.
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Figure 1.3.5: Illustration of the morphological operators used in MIDAS during false positives
elimination step [Seghier et al., 2011].

The second iteration is more speci�c; as the priors have been re�ned by applying di�erent

masks. The results of MIDAS are then evaluated manually by a neuro-radiologist to remove

false positives.

Monocentric data of 30 stroke patients presenting CMBs were used. The segmentation

reference was obtained by a consensus between the manual segmentation of two experienced

neuro-radiologists.

Results For agreement between MIDAS and the reference standard manual identi�cation

(MARS) in patients who had one or more CMBs in lobar regions was 0.43, increasing to 0.65

after manual correction of false positives. Agreement between segmented lesions and reference
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is not communicated for this paper. The intraclass correlation coe�cient6 for agreement about

CMBs count in lobar regions using MIDAS in comparison to MARS was 0.71, increasing to 0.87

when using the semi-automated method. The Kappa coe�cient of identifying patients with two

or more lobar CMBs increased to 0.74 using the semi-automated approach.

Among the 22 patients with lobar CMBs in the reference, 17 were classi�ed as having CMBs.

The �ve patients unidenti�ed by MIDAS each had a unique CMB. MIDAS was more e�cient for

cortical and sub-cortical CMBs and exhibits signi�cantly better performance for patients with

more than one CMB. Missed CMBs were either eliminated by the �revised mask� (generated by

control subjects), either very small and / or with too low contrast. MIDAS identi�ed patients

with CMBs at a sensitivity of 77% and a detection rate of 50% for total true CMBs. The number

of false positives was not indicated [Seghier et al., 2011].

Supervised learning approach

Support vector machines (SVM) based method The work described in [Barnes et al.,

2011] relies on a semi-automatic approach for the identi�cation and the quanti�cation of CMBs.

The method consists of four steps described in Figure 1.3.6.

6The Intraclass Correlation Coe�cient (ICC) is a measure of the reliability of measurements or ratings.
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Figure 1.3.6: A) A �owchart of the processing steps, the two pre-processing steps in italics
were not used in these datasets but might be useful for other types of data, and B) a detailed
schematic of the thresholding step is provided, from [Barnes et al., 2011].

Step 1. Pre-processing: Extraction of the brain was accomplished using information of

both magnitude and phase: hypointense areas in the magnitude image where noise was uni-

formly distributed in the phase image were considered as "empty signal". The images were then

interpolated in the x and y directions (acquisition plane) using a zero �lling in the k-space;

apodization with the Hanning �lter reduced distortions due to Gibbs e�ect.

Step 2. Thresholding: This step consists of two sub-steps. A global threshold was �rst

applied to eliminate large dark areas that may distort the calculation of the local threshold.

It was calculated as 2.5 times the standard deviation below the mean of the Gaussian inten-

sity distribution modeling the entire magnitude image. Pixels with intensity below the overall

threshold are labeled as �CMBs� and are not taken into account when calculating the local

threshold in the next step. A white noise distribution was assumed in the parenchyma for a

roughly Gaussian distribution with a small number of low-intensity outliers (such as CMBs)
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that do not signi�cantly alter the mean or standard deviation of the region; to �nd small hy-

pointensities, a local threshold was applied window by window (window size of 21x21x3 voxels

(see Figure 1.3.7)). Its value was calculated from the average x̄ and the standard deviation σ of

voxel intensities of that window. Local threshold was equal to x̄− 2.5σ and its calculation was

iterated several times, by removing the voxels with intensities lower than the threshold from the

next calculation, then that voxels are labeled as CMBs.

Figure 1.3.7: A histogram of a 21 × 21 × 3 ROI that was used to calculate local thresholds is
shown containing a typical CMB. The cutout shows the ROI and CMB and the thresholding
results.

The choice of 2.5 when calculating threshold was to ensure to remove parenchyma. The

choice of the window size was also important; CMB needs to be small with respect to the

window size in order not to bias the mean and the standard deviation values of cerebral tissue

calculation.

Step 3. False positives removal: To eliminate false positives resulting from the thresholding

step, authors used a supervised learning tool, the support vector machines (SVM). SVM solves

non-linear discrimination problems. It constructs a hyper plane or set of hyper planes in a high-

or in�nite-dimensional space, which can be used for classi�cation. Intuitively, a good separation

is achieved by the hyper plane that has the largest distance to the nearest training-data point

of any class. The problem can therefore be formulated as a quadratic optimization problem to

�nd the hyper plane that maximizes the margin, see Figure 1.3.8.
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Figure 1.3.8: Maximum-margin hyper plane (in red) and margins for an SVM trained with
samples from two classes(+/-). Samples on the margin are called the support vectors (in blue
circles). W is the normal vector to the hyper plane.

SVM requires to de�ne attributes or features that are speci�c for CMBs. A learning step

was used to select the most discriminating features. A vector of fourteen features was thus used

in the method, built from each ROI:

� 5 shape descriptors, to distinguish rounded structures such as CMBs with respect to

tubular structures like blood vessels, were de�ned:

� compactness: the ratio of surface area to the volume. Spherical shapes have higher

compactness compared to elongated structures.

� 3 eigenvalues of the co-variance matrix on the 3x3 matrix ROI: This matrix describes

the mass distribution. A spherical shape would have three equal eigenvalues while a

cylindrical shape would have one large eigenvalue and two smaller ones.

� Relative anisotropy: this attribute combines the three eigenvalues of the co-variance

matrix to characterize the anisotropy of the structure. A spherical shape will have a

low anisotropy.

� 8 intensity descriptors were used: minimum, maximum, average and standard deviation

on the image intensity (magnitude and phase).

� The kernel used was a radial basis function which showed good performance on similar

data and has less numerical di�culties than polynomial kernels [Barnes et al., 2011]. The

training set consists of 15000 false positives and 120 true positives obtained following the
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thresholding step. The CMBs class was weighted by 100 to decrease the large gap between

the number of two classes so it does not distort classi�cation result.

The method was based on high resolution SWI acquisitions (0.5x1x2mm3) with an echo time

of 40 ms which is the recommended TE at 1.5T for SWI [Barnes et al., 2011]. The study

was conducted on six subjects having in total 126 CMBs. The reference segmentation was

performed independently by three experts; di�erent results were then evaluated by a fourth

more experienced neuro-radiologist.

Results This method allowed a high sensitivity (95%) but an increased number of false

positives; Among the 126 true CMBs, 120 have been successfully identi�ed but 15807 false

positives have been also detected before the SVM step. SVM step was relevant to reduce the

large number of false positives but a large number of FPs still remain (645). The supervised

learning step also resulted in a higher number of false negatives (23). False positives thus

requires a manual review to be eliminated while false negatives were not recovered because

recovery would require to repeat the full evaluation.

Random Forest The most recent method was introduced by Fazlollahi et al [Fazlollahi et al.,

2013] and it consisted of a machine learning approach for computer-aided detection of CMBs on

SWI acquisitions. After contrast enhancement and biais �eld correction7. Its major steps were:

1. CMBs extent are identi�ed in order to extract proper cubic regions-of- interest (ROI)

containing the structure: The method has 2 steps:

a) 3D sphere detection problem is divided into multi-scale 1D line detection along the

three dimensions x, y and z;

b) The center of shapes are identi�ed by combining the normalized line responses ob-

tained in the previous step.

2. 3D Radon [Fazlollahi et al., 2013] and Hessian-based shape descriptors are then extracted

within the ROIs: the eigenvalues of the Hessian matrix of the extracted center points are

employed to discriminate spherical object: (1) the mean and (2) the standard deviation

pro�les computed across the Radon angle-dimension, (3) the standard deviation along the

7The bias �eld correction refers to the correction of the inhomogeneity caused by the spatially-dependent
response of the receiving coil.
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Radon angle-dimension and (4) the global Radon mean. Using the eigenvalue decompo-

sition of the Hessian matrix, other descriptors are de�ned; (5) the sphericity, (6) largest

cross-section, (7) fractional anisotropy and (8) orientation.

3. 2D Radon features are extracted from the corresponding ROIs on mIP images. Same

features as in step 2 that aims to address cross-sectional discontinuities due to anisotropic

SWI acquisition.

4. Classi�cation: Incorporating a cascade of random forests (RF) classi�ers to iteratively

reduce false positives: Increasing the RF probability threshold by adding FPs to the

negative training examples of the following layer, the method can progressively build a

balanced dataset without non informative candidates. A leave-one-out validation scheme

was used to train the cascade which has a relatively balanced and informative training set

in the �nal layer.

Figure 1.3.9: Outline for a 2-layer classi�cation cascade with leave-one-out scheme in subject
level used in [Fazlollahi et al., 2013].

For this study, a subset of 30 subjects with CMBs were included. For each subject, SWI images

were acquired on a 3 T Siemens TRIO scanner with 0.9Ö0.9 mm in-plane resolution and 1.75

mm slice thickness, with TR = 27 ms and TE = 20ms. One expert had reviewed SWI images

and in total 64 CMBs with prevalence of 2.1±2.2 per subject were found.
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Result For de�nite lesions, an overall sensitivity of 94% and an average 7.6 false positives

per subject were produced. When considering all lesions (de�nite and possible), the method

had a sensitivity of 87% with an average false-positive rate of 20.2 per subject.

Shape based approach

Radial Symmetry Transform (RST) based method Kuifj et al [Kuijf et al., 2012] pre-

sented a method for CMBs detection based on shape and size analysis. It relies on the detection

of spherical shapes with radius between 0.3 and 2.mm using a function of radial symmetry. This

function has been proposed in [Loy and Zelinsky, 2003] and was initially used to detect points

of interest on head landmarks (eyes, nose...). It uses image intensity gradient information to

highlight spherical structures. In this study, it was computed on both echoes of a dual-echo

T2*-weighted GRE 7.0 T MR sequence in 18 participants. 3D T1 acquisitions were also used

in pre-processing with TR = 7 ms and TE = 3ms.

Method A symmetry score map was calculated on both echo images. This process will be

further detailed in �the segmentation chapter� Resulting maps were then thresholded and only

voxels with a score above -20 for TE1 and -100 for TE2 were considered as CMBs candidates.

T2*-weighted images were normalized to [0, 255], using values corresponding to the 5% and 95%

of the histogram respectively as minimum and maximum. A parenchyma mask was applied to

the score map. The mask was calculated using the �Uni�ed segmentation� of SPM applied on

the 3D T1 weighted image. The T1 probability map was registered to the T2* space of the �rst

echo. These maps were then thresholded to 90%.

If within a 26-voxel neighborhood around a minimum in both sphericity maps exists, this

location was considered a potential microbleed. Finally, if the normalized gray value on the

second echo of a potential microbleed was not equal to zero, it was removed from the list,

since a microbleed should cause a signal void on the T2*-weighted images. Manual review wad

required to remove false positives.

The 18 participants had a total of 54 CMBs. The dual-echo T2* sequence allows two TEs

to be acquired in a single sequence; TE1 = 2.5ms and TE2 = 15ms (see Figure 1.3.10). The

images were reconstructed to 0.35 × 0.35 × 0.3mm3 voxels. All scans were independently and

visually scored by two neuro-radiologists with more than 20 years of experience. Minimal in-
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tensity projection post-processing of both echos were presented simultaneously. Rating of the

microbleeds was performed according to MARS.

Both echos were considered during visual rating; without blooming e�ect, hypointensities

were discarded and not considered as CMB.

Figure 1.3.10: A typical slice of a 7T T2*-weighted MR scan, showing the �rst (left) and second
echo (right). The white arrows annotate a CMB (enlarged in the upper-left corner) [Kuijf et al.,
2012].

Results Visual identi�cation of CMBs from the high resolution 7T images is a tedious

process. According to [Gregoire, 2014], the evaluation of CMBs on a single patient takes up

to 30 minutes. 353 lesions were identi�ed with the radial symmetry function including 35 true

positives, 309 false positives and 12 additional true positives (non identi�ed by neuroradiologists

and detected by the automatic method and subsequently recognized by neuroradiologists as true

CMBs).

Region growing based method Also based on Radial symmetry transform, Bian et al [Bian

et al., 2013] proposed a modi�ed approach for CMBs detection on mIP SWI images within two

main steps:

1) initial putative CMB detection using the 2D radial symmetry transform.

2) subsequent false positive reduction by characterizing geometric features of putative CMBs

(size, localization, extent in z direction..) through region growing as illustrated in Figure 1.3.11.
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Figure 1.3.11: Schematic diagram for the proposed CMB detection algorithm and selected opti-
mized parameters. (S refers to the intensity of RST map; the processing above the dashed line
belongs to the step of initial putative CMB detection, while the below belongs to the step of
false positive reduction.) [Bian et al., 2013]

Fifteen patients who had at least 10 potential CMBs on initial screening were included in

this study. The patients were randomly divided into two sets: a training set that included 5

patients and a test set that included 10 patients. MR images were acquired on a 3T MR system;

High resolution T2*-weighted imaging using a 3D �ow-compensated spoiled GRE sequence was

performed using TE/TR = 28/56 ms, �ip angle 20°, 24 cm FOV, in-plane resolution of 0.5 Ö

0.5 mm, 2 mm slice thickness and a total slice number of 40. Standard SWI post-processing

techniques were applied to the reconstructed k-space and then a minimum intensity projection

images through 8 mm-thick slabs (4 slices), with a 6 mm-thick (3 slices) overlap between each
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consecutive projection, were generated. CMBs identi�cation used as a reference is the consensus

of three independent ratings and were further divided into two groups: de�nite and possible

CMBs.

The method was able to correctly identify 263 of the 304 total true CMBs, resulting in a sen-

sitivity of 86.5%. CMBs of the reference were classi�ed to de�nite and possible CMBs. Of these

correctly identi�ed CMBs, 16.7% (all de�nite) were directly identi�ed after the radial symmetry

transform function and did not undergo region growing and geometric features examination.

Separating CMBs into de�nite and possible CMBs improved the sensitivity of de�nite CMBs to

95.4%, while the algorithm was less sensitive (77.5%) to possible CMBs [Bian et al., 2013].

Discussion/Comparison of state of the art methods for CMBs detection

Five methods were described in this section that require experts intervention to reach �nal

results. Table 1.3.1 summarizes their results as published. Over all the �ve methods display a

large number of false positives, with varying degrees of sensitivity as shown in Table 1.3.1.

Remaining false positives yielded additional time for manual reviewing which usually required

three to ten minutes per patient.

Methods were based on shape, intensity and location criteria. They all appear were very

e�cient to detect large CMBs, perfectly round and completely surrounded by the parenchyma.

However very small CMBs were often missed. When considering each method, some drawbacks

may be pointed out. The mask used in MIDAS seems sub-optimal; in fact, the mask to remove

artifacts built from control subjects seems unsuited as artifacts localization is more likely to be

subject dependent. Furthermore, the result from the SVM method can be biased, since learning

datasets are the same as test datasets and generalizability of the SVM approach for new datasets

is not proven. Radial symmetry transform gave the lowest number of false positives and it

seems more robust and more adapted to the de�nition of CMBs. However, when binarizing

the resulting maps, the applied threshold was not successfully explained and justi�ed, thus,

issues regarding its generalization for other data may arise. Moreover, CMBs criteria dealing

with multi-contrast (using combined information derived from T1, T2, T2* weighted images),

as described in [Greenberg et al., 2009], were not investigated and no method has been validated

on a large population with a large number of CMBs.

A fully automatic methods potentially present many advantages: it would automatically ana-
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lyze large cohort facilitating pathology-MRI correlation studies. When it is robust and e�cient,

it may even decrease the risk of human rater error. An e�cient fully automatic segmenta-

tion is more reproducible than manual segmentation which is variable and depends on rater's

subjectivity.

1.4 Objectives

As seen above, CMB's identi�cation on MRI only still raises issues regarding the exact de�nition

of CMBs and how to discriminate them with high certainty from mimicking objects in the brain.

To address the challenge of increasing its speci�city, several characteristics of lesions and MR

principles can be taken into account.

MR related characteristics: In-vivo CMBs identi�cation can only be performed reliably

on T2* GRE acquisitions. Resulting magnitude images are noisy and su�er from spread-wide

susceptibility artifact. Susceptibility e�ect could be enhanced by increasing TE for example,

thus potentially allowing to detect more CMBs. However, this would also increase susceptibility

related artifacts more remarkably near bone / air interfaces. Phase images may allow decreasing

TE-related variations. Furthermore, partial volume e�ect could signi�cantly alter the signal

distribution on T2* acquisitions and this e�ect increases with slice thickness. Acquisition of

smaller slices should thus lead to better CMB identi�cation.

Lesions characteristics: CMBs identi�cation is made challenging by their de�nition in itself.

In fact, CMBs are very small, which makes identi�cation risky on 5mm thick 2D acquisitions.

Furthermore, their size vary on a wide range with ill-de�ned limits, and they can also be multiple

and thus overlap on magnitude images. They can easily be confused with blood vessels and other

brain lesions such as cavernous malformation. 3D isotropic millimetric resolution would thus be

far more suitable for CMBs identi�cation and discrimination from 3D tubular shapes at blood

vessels.

Overall, visual identi�cation of CMBs remains problematic even for experienced neuroradi-

ologists; even using validated visual scales proposed in the literature, the identi�cation process

is tedious, poorly reproducible and requires three to ten minutes per patient.
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However, up to now automated methods for identifying CMBs su�er from very poor speci-

�city and require large manual input. It thus appears crucial to design an automatic method for

identifying CMBs with high speci�city in order to enable its study in larger groups of subjects

and thus better understand their clinical meaning.

The ideal segmentation method would be robust (reproducible), speci�c, reliable and fast.

In fact, this method would perform e�ciently on multi-center datasets, in research or clinical

environment and allow discriminating even small CMBs from mimics.

In order both to increase speci�city and parameter robustness, phase contrast appears as

a good candidate to be embedded in a multi-contrast segmentation framework. Well-adapted

shape and intensity characteristics are also crucial characteristics for discriminating CMBs.

In this PhD, I thus aimed at proposing and implementing a new tool to increase speci�city of

CMB identi�cation while ensuring e�ciency; First, ways of improving microbleed identi�cation

were explored through the use of MR phase images aimed at reliably rating CMBs. Second, the

relevance of the developed new characterization method was investigated through a comparison

study in a clinical setting. Third, the proof-of-concept of an automatic detection method of

CMBs was designed.

* * *



Chapter 2

CMBs CHARACTERIZATION USING

PHASE-CONTRAST

As shown in the previous chapter, designing a fully automatic method for CMB detection would

be of great interest specially within the context of large imaging studies. Most of the proposed

semi-automatic method were highly sensitive but the number of false positives remained too

high to make it possible to proceed without observer intervention. Therefore, improving CMBs

characterization may be the key to improve both visual and automatic detection. The aim of

this chapter is to investigate how GRE Phase may help improving CMBs identi�cation in a

multi-center clinical dataset.

2.1 Requirements to process GRE phase images

Phase wraps

As seen above, phase signal can be written as:

ϕ (t) = ω · t+ ϕ0 (2.1.1)

with ϕ0 a phase constant. As shown in the equation above, phase should increase with time.

However, the tan−1 function used to retrieve phase signal yields values within the ]−π, π] interval

and phase overall variations are thus hidden. This de�nition of phase into the interval ]−π, π]

results in phase wraps. As shown in Figure 1.2.11, wraps appear as sharp intensity transitions

in the phase image. When realistic phase value reaches π+ ε, the encoded value will be −π+ ε.

65
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This is illustrated in Figure 2.1.1. Borderlines, corresponding to closed phase wraps, are called

�fringe-lines�. In MR phase images, unclosed fringe-lines may occur and are called open-ended

fringe-lines and they correspond to phase singularities. Singularities often occur in areas with

low signal, and are then considered as noise. They can also occur in areas with high SNR; this

may result from error during signal combination of di�erent coils to reconstruct the image.

Phase unwrapping consists of �nding the transition areas and adding 2kπ (where k is an

integer) from the measured phase when necessary to obtain a continuous signal:

ϕunwrapped = ϕmeasured + 2kπ (2.1.2)

Figure 2.1.1: Illustration of 1D phase discontinuities.

An e�cient phase unwrapping ensures that all appropriate multiples of 2π have been ex-

tracted. Several methods have been proposed to solve this problem: based on Fourier transform

[Scho�eld and Zhu, 2003] or region growing approach [Witoszynskyj et al., 2009] such as the

PRELUDE command available in the FSL tool www.fmrib.ox.ac.uk/fsl.

Background �eld removal

After solving the phase unwrapping issue, phase still do not re�ect directly the magnetic �eld

variations due to local process. in fact, the measured magnetic �eld also embeds contribution

from the background �eld that is orders of magnitude stronger than that from intrinsic tissue

susceptibility see Figure 2.1.2. Indeed, the background �eld is induced by sources such as the

main �eld inhomogeneity that can result from imperfect shimming and the air-tissue interfaces.

This background �eld, thus, needs to be removed to retrieve relevant information induced by

www.fmrib.ox.ac.uk/fsl
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local sources. Traditional heuristic methods, including high-pass �ltering, were used for the

background �eld removal, although they also tamper with the local �eld and decrease quantita-

tive accuracy [Schweser et al., 2013]. More recent background �eld removal methods based on

physical principles, Projection onto Dipole Fields (PDF) [Tian Liu et al., 2011] and Sophisticated

Harmonic Artifact Reduction on Phase data (SHARP) [Schweser et al., 2010b], demonstrated

improved contrast and higher precision on the estimated local �eld. Both methods model the

background �eld as a magnetic �eld generated by an unknown background susceptibility dis-

tribution, and di�erentiate it from the local �eld using either approximate orthogonality or

harmonic property.

Figure 2.1.2: Relationship between susceptibility source and MR signal phase

However, state-of-the-art methods were not demonstrated to deal with background �eld re-

moval on multi-center 2D multi-slice data.Due to the relationship between CMBs and internal

�eld (yielded by local sources), we designed a novel method to extract internal �eld maps from

datasets corresponding to routine clinical acquisitions that could be obtained in all centers and

thus compatible with harmonized multi-center studies namely 2D simple echo GRE acquisi-

tion. This new fast processing technique includes unwrapping and harmonic �ltering of phase

images. It yields the internal �eld map, embedding the �eld generated by inner sources only

(such as paramagnetic and diamagnetic structures within the brain). It was �rst validated on a

numerical simulation, modeling paramagnetic inclusions (simulating cerebral microbleeds) and

diamagnetic inclusions (simulating cerebral-micro-calci�cations). Then, its applicability and ro-

bustness was demonstrated on real multi-center 2D datasets acquired in standardized clinical

settings to discriminate between paramagnetic microbleeds and physiologic cerebral calci�ca-

tions. A comparison with state-of-the-art methods showed that the new method performed

better on these clinical datasets. In order to provide a proof of concept of its usefulness in
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clinical setting, the method was satisfactorily evaluated for its ability to discriminate cerebral

microbleeds from brain calci�cations using MRI only.

This method and its evaluation was published as �2D harmonic �ltering of MR phase im-

ages in multi-center clinical setting: toward a magnetic signature of cerebral microbleeds� in

Neuroimage1.

* * *

2.2 INTRODUCTION

Cerebral microbleeds (CMBs) were initially detected in histopathological studies of patients with

small vessel disease [Cordonnier, 2011, Greenberg et al., 2009, Cordonnier et al., 2006]. They

were described as small foci of chronic blood products in normal brain tissue [Greenberg et al.,

2009, Poels et al., 2010, Van der Flier and Cordonnier, 2012]. Their size may vary from very

small (~2 mm) to large lesions (~10 mm), while larger lesions are assumed to be more spread

hemorrhages. CMBs characterization is of interest within the study of vascular dementia and

Alzheimer's disease (AD) [Cordonnier et al., 2006]. However, CMBs identi�cation using MRI

remains challenging [Greenberg et al., 2009, Cordonnier, 2011].

CMBs are made of hemosiderin which is a strongly super-paramagnetic iron�storage complex

[Cordonnier, 2011], whereas brain parenchyma is diamagnetic. Thus, their strong susceptibility

di�erence with brain parenchyma makes CMBs foci appear as magnetic inclusions, causing local

magnetic �eld inhomogeneity such as would be created by a unit dipole. At the voxel level, this

�eld inhomogeneity leads to intra-voxel phase dispersion and strong T2*-contrast. Its detection

is thus commonly based on Gradient Recalled Echo (GRE) T2*-weighted magnitude images,

in which CMBs are visible as a loss of signal (hypo-intensity). However, their appearance on

these sequences is sensitive to imaging parameters such as echo time (TE) and B0 �eld strength;

1Kaaouana et al., 2015 : Kaaouana, Takoua, de Rochefort, Ludovic, Samaille, Thomas, Thiery, Nathalie,
Dufouil, Carole, Delmaire, Christine, Dormont, Didier, & Chupin, Marie. 2015. 2D harmonic ltering of MR
phase images in multicenter clinical setting: Toward a magnetic signature of cerebral microbleeds. NeuroImage,
104(Jan.), 287300.
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clinical interpretation is thus made di�cult by the resulting blooming artifacts. Furthermore,

blood vessels and cerebral micro-calci�cations (CMCs) also have strong T2* e�ects and can be

misidenti�ed as CMBs. While localization may help identi�cation, discrimination commonly

requires additional T1-weighted or T2-weighted images, or even a CT scan for CMCs [Yamada

et al., 1996].

In order to overcome some limitations in CMBs identi�cation, the phase image could also be

considered. Usually discarded, the phase is available at no extra acquisition time. Being pro-

portional to the local resonance frequency, phase directly re�ects magnetic �eld inhomogeneity.

Using phase information could allow increasing both speci�city and sensitivity in CMBs detec-

tion. For example, calci�cations are more diamagnetic than brain parenchyma and the induced

magnetic �eld perturbation is opposed to that of paramagnetic CMBs; this di�erence should

be accessible through phase information [Gronemeyer et al., 1992, Gupta et al., 2001, Schweser

et al., 2010a, Yamada et al., 1996]. As for sensitivity, phase contrast strongly derives from

susceptibility distribution and enhanced contrast could be expected on phase images between

paramagnetic CMBs and parenchyma.

While phase is sensitive to local susceptibility variations, its analysis is not straightforward

because of phase wrapping and strong background e�ects, as well as the complex magnetic

�eld-to-source relationship. Indeed, reconstructed phase appears �wrapped�, as it is only de-

�ned within [−π, π]; it thus requires the use of unwrapping techniques to recover a continuous

phase information [Feng et al., 2013]. Additionally, local variations of interest may be orders of

magnitude lower than those related to the background �eld inhomogeneity, which is dominated

by the air-tissue interface, thus requiring e�cient �ltering algorithms to extract the contribution

of the internal local �eld inhomogeneity pattern [de Rochefort et al., 2010a].

The �rst studies exploring the use of GRE phase images to discriminate between calci�ed

and iron-laden tissues relied only on raw phase images [Yamada et al., 1996]. To further enhance

detection sensitivity for small inclusions, background contributions have been suppressed using

di�erent high pass �lters [Gronemeyer et al., 1992, Gupta et al., 2001, Wu et al., 2009, Ya-

mada et al., 1996]. Combining phase and magnitude images, such as in susceptibility-weighted

imaging (SWI), has already allowed enhancing detection sensitivity for paramagnetic structures

such as veins or hemorrhages [Goos et al., 2011, Haacke and Reichenbach, 2011, Haacke et al.,

2009, Nandigam et al., 2009, Reichenbach et al., 1997]. Recent advances in the understanding
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of magnetic �eld distortions yielded more adapted phase processing techniques. Indeed, quan-

titative susceptibility mapping (QSM) is based on the reconstruction of magnetic susceptibility

maps from an observed magnetic �eld perturbation [de Rochefort et al., 2010a, Liu et al., 2012,

Schweser et al., 2011, 2012b]. These approaches have allowed to push further the limits of

background �eld removal and solve the ��eld-to-source� inverse problem [Langkammer et al.,

2012, Li et al., 2011, Schweser et al., 2012b, 2011], enabling to di�erentiate calci�cations from

hemorrhages [de Rochefort et al., 2010a, Deistung et al., 2006, Reichenbach and Haacke, 2001,

Schweser et al., 2010a] and to provide improved CMBs detection sensitivity and contrast as

compared to GRE magnitude images [Klohs et al., 2011, Liu et al., 2012]. These latter ap-

proaches generally rely on an inverse �lter design based on complex post-processing methods;

computing strategies currently remain under investigation. Furthermore, both SWI and QSM

were designed for being applied to full 3D dataset and phase unwrapping and background �eld

removal are necessary pre-processing steps for both methods.

To recover the internal �eld, several background �eld �ltering techniques have been proposed.

Assuming that background �eld variation mostly contains low frequency components within

the region of interest while that of internal �eld contains high frequency components, low pass

�ltering using Gaussian [Hammond et al., 2008] or box kernel [Rauscher et al., 2003] or low order

polynomial �tting [Deistung et al., 2008, Duyn et al., 2007] were �rst proposed. More recently,

approaches relying on �tting external sources to internal �eld were proposed, using either highly-

constrained model-based distributions [de Rochefort et al., 2010a, 2008, Neelavalli et al., 2009,

Wharton et al., 2010], or �tting with more degrees of freedom such as in Projection onto Dipole

Field (PDF) [Tian Liu et al., 2011]. The PDF approach has demonstrated e�cient estimation of

background �eld in an internal region of interest (ROI), but displayed remaining border artifacts

[Tian Liu et al., 2011]. Finally, harmonic �ltering techniques, such as Sophisticated Harmonic

Artifact Reduction for Phase (SHARP) [Schweser et al., 2011], rely on the harmonic property

of the background �eld inside a ROI, leading to a new class of Laplace based �lters [Schweser

et al., 2012a, 2011].

In the context of multi-center clinical studies, data from various manufacturers and models

have to be analyzed jointly, even though phase image properties may di�er between acquisition

sites. Subtle di�erences in pulse sequence characteristics, coil sensitivity pro�les, localization

methods, phase reconstruction algorithms and other site/manufacturer speci�c characteristics
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may combine to produce signi�cant variation in �nal measurements. These di�erences must

be taken into account to improve �nal pooled analyses. Furthermore, standard multi-slice

2D scan may result in inconsistent slice-to-slice �eld maps. These linear terms were observed

experimentally on clinical datasets [Lee et al., 2013, Tam et al., 2009]. They may result from

di�erent 2D-based processes (shimming, motion, breathing-related artifact, normalization. . . ),

either at the acquisition or reconstruction levels, and lead to inconsistent phase maps between

slices.

Here, we propose a �lter design acting directly on the default reconstructed phase images to

estimate internal �eld maps. This �lter relies on a fast and robust 2D harmonic �ltering (2DHF)

approach that includes unwrapping, background �eld removal and additional linear artifact (due

to slice-to-slice inconsistencies) correction at the same time. The method aims at being appli-

cable on 2D datasets acquired in clinical settings in multi-center framework. Phase was long

considered as unreliable information due to, �rst, its �non-local� nature and, second, its depen-

dency to the two pre-processing steps described above [Schweser et al., 2010a]. The �rst issue

is related to the non-local relationship between magnetic susceptibility distribution and phase.

QSM may overcome this issue through the source reconstruction step but some approaches are

computationally expensive and not straightforward to apply in multi-center settings. However,

for clinical purpose, the main focus is on the type of lesion, namely diamagnetic or paramag-

netic; �non-local �eld perturbation� may thus not be a limitation for clinical application based

on internal �eld maps only. For the second issue, recent techniques such as SHARP were shown

to allow robust pre-processing of phase images. 2DHF can be considered as a 2D version of

SHARP, introduced as a 3D �ltering technique in [Schweser et al., 2011].

The remainder of this article is organized as follows. The multi-center dataset used for val-

idation is �rst presented, followed by a detailed description of the �ltering method. Numerical

simulation used for synthetic evaluation and two state-of-the-art �ltering approaches used in a

comparison study are then presented, as well as implementation issues. Evaluation and com-

parison results on numerical simulation and patient data are then shown, followed by a proof of

concept illustration for the ability of 2DHF to de�ne a magnetic signature for CMBs and CMCs

on multi-center 2D datasets acquired in patients with memory impairment.
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2.3 MATERIALS AND METHODS

Data on which the method was evaluated will be presented �rst together with acquisition details.

The �ltering method will then be described as well as the state-of-the-art �ltering approaches

and simulation used for validation.

2.3.1 Data acquisition

Data were acquired in the context of an ongoing national cohort in France named MEMENTO

that aims at including, from research centers on memory, 2300 persons having cognitive symp-

toms ranging from isolated cognitive complaints to mild cognitive impairment. The protocol

included MRI and PET acquisitions, supervised by the CATI, the French National Platform

for Multi-center Neuroimaging Studies (Paris-Saclay, France). Data are provided through a na-

tional network composed of 24 centers with MRI systems from di�erent manufacturers, models

and �eld strengths. A sub-sample of the �rst 382 initial participants included in the cohort

have been evaluated for CMBs. 77 subjects with CMBs were found, corresponding to 20% of

this population, consistent with the prevalence previously reported in elderly subjects [Cor-

donnier and van der Flier, 2011]. CMBs identi�cation was performed by a trained rater. The

rater was trained to identify CMBs by an experienced neuro-radiologist on another dataset em-

bedding 33 elderly subjects according to the following procedure. The rater identi�ed CMBs

according to the guidelines detailed in [Greenberg et al., 2009] and using the �MARS� scale

[Gregoire et al., 2009]. Results were then checked for consistency by the experienced neuro-

radiologist. For the dataset used in this study, uncertain lesions were double-checked by a

trained neuro-radiologist; 23 patients were assessed as having possible CMBs (6%) while 54

were considered as having certain CMBs (14%). For the study presented here, only data of

participants with certain CMBs were used. Data acquired on General Electric systems were

excluded due to preprocessed phase images. Two participants were also excluded (from the

Siemens 1.5T and 3T system datasets) due to open-ended fringe-lines as described in [Haacke

and Reichenbach, 2011]. Retrospective analyses were performed on 28 subjects with CMBs from

Siemens (four centers, one Trio and three Verio systems, 14 datasets) and Philips (four centers,

all Achieva systems, 14 datasets) 3T systems. The protocol included a 3D T1-weighted sequence

and a 2D T2*-weighted GRE sequence. Parameters for the 1 mm isotropic 3D T1-weighted

scans were: TR/TE/TI/FA/BW=2300ms/2.98ms/900ms/9°/238Hz/voxel for Siemens systems
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and TFE shot interval/TE/TI/FA/BW=2500ms/3.3ms/904ms/9°/241Hz/voxel for Philips sys-

tems, with 176 sagittal slices. Whole brain 2D T2*-weighted multi-slice GRE sequences were

acquired with 2.5mm thick axial brain slices and 1 mm isotropic in-plane resolution with

TR/TE/FA/BW=650ms/20ms/20°/199Hz/voxel. Reconstruction matrix was 240Ö240Ö65 for

Philips systems and 256Ö256Ö70 for Siemens systems, with no zero padding. Standard 8

(Philips) or 12 (Siemens)-channel head coils were used. Acquisition time for 3D T1 and 2D

T2* were respectively 9:14 min and 4:06 min for Siemens and 9:24 and 4:05 min for Philips. In

the Memento cohort, image acquisition has been standardized as much as possible to minimize

inter site variability. However, di�erences between Philips and Siemens sequence parameters

still remain, originating either from hardware or software issues, as a compromise was sought

between standardization of parameters and acquisition times. First, parallel imaging approaches

(GRAPPA vs SENSE) and di�erent coil number, sensitivity pro�les and associated correction

algorithm (CLEAR for Philips and Prescan Normalize for Siemens) resulted in both di�erences

in contrast and additional constraints for setting the sequence parameters. The �eld of view

was slightly smaller on Philips acquisitions (240x240x162.5 vs 256x256x175mm) with reduced

number of slices (65 vs 70) due to longer acquisition time that had to be reduced. The e�ective

TR per slice was also shorter (650ms vs 872ms), which may modify T1 contrast and slice sat-

uration cross-talk. The slice scan order and the number of packages was di�erent: interleaved

with 2 packages for Siemens, and set to default with 3 packages for Philips; the Philips default

setting maximizes the time between the measurement of each pair of adjacent slices. Addition-

ally, within phase reconstruction, a standard �1D linear phase correction� was applied in the

readout direction for Philips datasets, which is based on phase correction factors obtained in a

preparation phase and that may cause the �Zebra�-like stripes observed on raw phase images.

Other parameters and scaling factors may remain hidden for both Siemens and Philips systems,

being integrated within manufacturers' software. Finally, when visualizing images from the two

manufacturers, some di�erences between Siemens and Philips datasets appear obvious, as shown

in Figure 2.3.1: background in both raw magnitude and phase and wraps show di�erent aspects

together with typical slice-to-slice inconsistency.
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Figure 2.3.1: Illustration of Siemens (left) and Philips (right) raw data (magnitude and phase)
and accordingly calculated internal �eld maps (3rd raw).

2.3.2 Internal �eld computation with 2D harmonic �ltering (2DHF)

Extraction of relevant internal �eld information from phase images requires two preliminary

steps: phase unwrapping and background �eld removal. In most proposed methods, this prob-

lem is solved in two separated steps; which may be iterative [Bilgic et al., 2012, de Rochefort

et al., 2010a, 2008, Liu et al., 2012, de Rochefort et al., 2010b]. A particularly relevant phase

unwrapping technique based on solving Poisson equation was proposed by Song et al. [Song

et al., 1995] and extended in 3D to the QSM context [de Rochefort et al., 2010b]. Harmonic �l-

tering, such as SHARP [Schweser et al., 2011], have shown to be extremely e�cient in removing

the harmonic component due to background sources. However, these methods were validated

on 3D phase maps, and may not deal with potential slice-to-slice phase inconsistency that may
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occur in 2D datasets.

The linear approximation of Maxwell equations is considered relevant in the MRI framework

[de Rochefort et al., 2008]; the �eld inside the brain, B, can thus be decomposed as the sum of

variations due to internal sources, Bin, and variations induced by external sources, Bout. From

Maxwell equations, the external �eld is harmonic inside the brain [Li and Leigh, 2001, Schweser

et al., 2011], resulting in 4Bout = 0, thus leading to 4B = 4Bin (4 denotes the Laplacian).

Consequently, external e�ects can be �ltered out through a second order derivative, followed by

a second order integration using adequate boundary conditions. Note that any additional linear

term is �ltered out by the 2nd order derivative.

Unwrapping using Poisson equation and background �eld removal using harmonic �ltering

are the basis of the 2D harmonic �lter (2DHF) that will be described below and that were

applied on the phase image of the 2D multi-slice T2* GRE sequence. Its principle is also given

in Figure 2.3.2.

1. Slice-by-slice phase unwrapping was performed by calculating the 2D phase gradient image

as the point-by-point di�erence between neighbors. This `unwrapping' method does not

actually compute the unwrapped phase (ϕ) but rather yields an unwrapped phase gradient

maps (∇ϕ) prior to the second order derivation.Wraps were then detected using the modulo

function which shifts phase values within the range[−π, π[ [Song et al., 1995]. This method

assumes that phase gradients are smaller than π and was proven to be e�cient for large

SNR [Conturo and Smith, 1990].

2. The divergence of the estimated unwrapped phase gradient map was then calculated to get

4B: using the point-by-point di�erence between neighbors similarly as for the gradient.

In this second step, the Laplacian was then nulled-out outside a brain mask, de�ning at

the same time the `internal' region-of-interest (ROI).

The ROI mask was automatically generated with SPM8 software package (http://www.

fil.ion.ucl.ac.uk/spm). The �New Segment� module was applied on 3D T1 images.

Resulting probabilistic maps of gray matter, white matter and cerebro-spinal �uid were

registered to the 2D T2* GRE image space [Ashburner and Friston, 2005]; rigid body

transformation was computed using the �Coreg� module. These maps were then thresh-

olded above 0.5 to obtain a cerebral mask [Samaille et al., 2012]. This mask was eroded

(3-voxels radius 2D element) to ensure that no interface with large susceptibility e�ect

http://www.fil.ion.ucl.ac.uk/spm
http://www.fil.ion.ucl.ac.uk/spm
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Figure 2.3.2: Schematic illustration of the 2D harmonic �ltering framework working both in
image and Fourier domains. As can be seen, to estimate the Laplacian, spatial derivative are
calculated in two steps allowing the inclusion of unwrapping using modulo operations. A mask,
generated with SPM is then used to set to 0 the Laplacian outside the brain. Integration is
�nally performed in Fourier domain with the adequately regularized inverse �lter leading to an
internal �eld map estimate.
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was left in the mask and thus impose proper boundary conditions. This allows limiting

potential artifacts near interfaces, where second order derivative may also su�er from noise

propagation [Schweser et al., 2012a].

3. The internal �eld map in itself relies on an integration of 4B to recover Bin. For more

e�ciency, this step was done in Fourier domain by multiplying the 2D-Fourier-transform of

the calculated 4B with the Fourier transform of a regularized (Tikhonov regularization)

inverse of the 2D Laplacian �lter. Let k2
x,y denote the discrete Laplacian �lter in the

Fourier domain. In order to ensure numerical stability for spatial frequencies close to 0, a

regularization parameter α can be introduced within the inverse of the Laplacian, which

leads to the following Tikhonov regularized least-squares �lter:

4−1
reg =

(
k2
x,y

)
/
[(
k2
x,y

)2
+ α4

]
(2.3.1)

Apart from the de�nition of the internal ROI and the inclusion of phase unwrapping, the pro-

cedure is equivalent to the following high-pass �lter in which α de�nes a cuto� frequency, as it

is the spatial frequency corresponding to the half-width at half maximum:

4−1
reg4 =

(
k2
x,y

)2
/
[(
k2
x,y

)2
+ α4

]
(2.3.2)

Note that the 2D harmonic �lter can be considered as a 2D version of a small SHARP kernel

[Schweser et al., 2011] and should thus guarantee the removal of in plane harmonic components

generated by background dipoles within the ROI.

2.3.3 Comparison with other �ltering methods

Background �eld removal techniques may be split into two classes as a function of their under-

lying assumptions. One method from each class was implemented here for comparison with the

2DHF �ltering approach. The �rst class is based on the assumption that variations of the back-

ground �eld are spatially slower than those of the internal �eld[Deistung et al., 2008, Haacke

and Reichenbach, 2011, Hammond et al., 2008, Rauscher et al., 2003]. The high pass �ltering

(HPF) method is commonly used [McAuley et al., 2011, 2010, Schweser et al., 2013] and was

implemented here for comparison. To obtain high-pass-�ltered phase images, complex-valued

images were �rst generated from the magnitude and phase images. They were then low pass �l-

tered slice-by-slice by multiplying with a two dimensional Gaussian �lter in Fourier domain. The
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Figure 2.3.3: 2DHF (in blue) and HPF (in green) �lters in Fourier domain. A 1D pro�le through
Fourier domain center is plotted, with the same cut-o� frequency for the two �lters (a = 0.2 for
illustration, equivalent to 20% of the central frequencies attenuated).

standard deviation σ of the Gaussian �lter was chosen so that the half-width-at-half-maximum

of the HPF was the same as the one of the 2DHF �lter, namely σ = α/
√

2 ln (2) (see Figure

2.3.3). High-pass �ltered phase images were then computed as the phase of the ratio between

complex-valued and low-pass-�ltered images.

The second class of �ltering approaches assume that the �eld created by the background

sources and the �eld created by the internal sources are orthogonal within the ROI in a suitable

base. Among these methods, PDF was used here [de Rochefort et al., 2010a, Tian Liu et al.,

2011]. It is based on the observation that the inner product between the �eld of a dipole

located outside the ROI and the �eld of a dipole located inside that ROI is almost zero [Tian

Liu et al., 2011]. Therefore, projecting the measured �eld within the ROI onto the subspace

which is orthogonal to the �eld of either internal or background sources allows eliminating the

contribution of internal sources, resulting in a background �eld map estimate. A subtraction

of this background �eld map to the total �eld yields the internal �eld map. Technically, a

susceptibility distribution outside a ROI that optimally matches the �eld inside the ROI is

sought by minimizing an energy function. Prior to applying PDF, phase maps were unwrapped

using the unwrapping method described in [de Rochefort et al., 2010a]. The SHARP method

[Schweser et al., 2011] also belongs to this class. It is based on harmonic property of the

background �eld inside the prede�ned ROI which can be eliminated from phase data by the
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V alue(ppm) 1 0.5 0.5 0.5 0.25 0.125 0.0625 0.03125

Size(V oxels) 1 4 2 1 1 1 1 1

Table 2.3.1: Susceptibility inclusions (from bottom to top), added to the background model to
simulate the paramagnetic CMBs. Susceptibility (value) and spatial extension (size) are given.
CMCs had then same absolute values, but with opposite sign (diamagnetic).

spherical mean value operation.

2.3.4 Numerical simulation

A numerical model was designed to evaluate the di�erent �ltering approaches. To model a

background �eld created by the head, an ellipsoid with a susceptibility of -9 ppm (part per

million) was considered (main axis dimensions were 75 (in head-foot direction), 100 (in right-

left direction) and 125 mm (in antero-posterior direction). Two smaller ellipsoids were removed

to simulate the strong e�ects that can be observed close to ear canals (dimension 5x10x16mm).

Multiple dipole inclusions were embedded in the central slice: paramagnetic dots were placed

in the left hemisphere while diamagnetic dots were placed in the right hemisphere. Inclusions

were as indicated in Table 2.3.1 to mimic various susceptibility values and spatial extensions

in a range consistent with previously reported susceptibility values for hemorrhage (~1 ppm)

[de Rochefort et al., 2010a]. In fact, susceptibility values lower than 1ppm are supposed to

mimic partial volume e�ects with inclusion smaller than the voxel size. Similarly, a 2-voxel

inclusion with 0.5 ppm models some partial voluming for the same magnetic moment as a 1-

voxel inclusion with 1ppm; a 4-voxel inclusion with 0.5 ppm models some partial voluming

with a magnetic moment twice as large as that of a 1-voxel inclusion with 1 ppm, simulating a

di�erent intra-voxel con�guration. Susceptibility variation was added to tissue e�ects. In order

to mimic realistic experimental parameters, spatial resolution was chosen as 1mmx1mmx2.4mm.

To cover the whole brain, a reconstruction matrix of 210x210x256 was used. The �eld (in ppm)

created by this susceptibility distribution was computed using the forward approach [Marques

and Bowtell, 2005, Salomir et al., 2003] and will be noted F .

Simulated MR signals were then generated by forming the complex value maps by converting

magnetic �eld to phase (ϕ = γ×B0×TE×F ) with γ the gyromagnetic ratio of hydrogen nucleus,

B0 = 3T and TE = 20ms. In order to mimic the 2D GRE T2*-weighted scans, random noise

was generated from a normal distribution and added on both real and imaginary components,
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assuming SNR=30 which corresponds to experimental values. A random constant within slice

gradient was added to each slice to mimic the observed slice-to-slice inconsistency (more details

are given in Appendix 1).

2.3.5 Regularization parameter

The 2DHF regularization parameter α was empirically set as follows. Four datasets were ran-

domly chosen for tuning, two from Siemens and two from Philips systems. The in�uence of α

on the generated internal �eld maps was systematically visually evaluated over a large range

of values with a �xed step (from 0.01 to 0.30, with 0.05 steps). It was �nally set to α = 0, 15,

according to the criteria described below. The setting was then visually con�rmed in all 28

subjects. Visual inspection of internal �eld maps in parameter tuning and comparison analy-

ses was based on the criteria given for brain phase contrast in [Duyn et al., 2007, Haacke and

Reichenbach, 2011]:

� Internal �eld map should provide anatomic information of local details, enabling delin-

eation of many di�erent brain structures and sub-structures;

� Global phase variations should be removed in order to reveal the local phase di�erences

generated by the tissue micro-structure;

� Grey/white matter interface should be clearly visible;

� Numerous anatomical details should be visible in speci�c regions, such as central brain

region, columna fornix, cross-section of the mamillo-thalamic tract, globus pallidus, puta-

men, and head of caudate nucleus.

As mentioned above, parameter setting for 2DHF can be compared with the equivalent setting

for the standard deviation de�ned for HPF. For high pass �ltering, width usually used is (32x32)

which is equivalent to a �ltering of ~13% of central frequencies. Figure 2.3.3 illustrates the

corresponding �lters with the same width at half maximum for comparison: 2DHF appears to

have a sharper transition region than HPF.
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2.4 RESULTS

Simulation results for the 2DHF method will �rst be shown, together with a comparison with

the two state-of-the-art methods HPF and PDF. Results and comparison between methods on

clinical data will then be detailed, followed by a proof-of-concept for the discrimination between

CMBs and CMCs based on internal �eld maps obtained with 2DHF.

2.4.1 Numerical E�ciency

All the processes, including brain mask generation, were programmed with MATLAB (version

2011b) and run on a Quad-Core (Intel® Xeon(R) CPU W3520 @ 2.67GHz Ö 4) with 16 GB

RAM. As 2DHF processing method is not iterative, computation time depends only on matrix

size. The total computation time of the background �eld removal process was measured using the

MATLAB built-in timer for 28 patients and mean computation time to process a full dataset was

2.2 s. HPF, which is a direct �ltering method, had a similar computation time. On the contrary,

PDF was approximately 100 times slower (for 512 iterations) than 2DHF in our implementation,

because of its intrinsic 3D iterative process.

2.4.2 Simulation results

Results of the simulation are presented in Figure 2.4.1 for the full dataset. As shown in Figure

2.4.1 (a, b, c, d), the simulation correctly reproduces the order of magnitude of the phase shift

observed within the brain. Strong background e�ects resulting from the interface of the large

ellipsoid with the background and the air within the smaller ellipsoids were retrieved, leading to

denser wraps in region closer to boundaries simulating air-tissue interfaces. The internal �eld (in

Figure 2.4.1, e, f) displays small-scale dipolar patterns around the small simulated lesions. Note

that the small lesions can be distinguished in the simulated wrapped phase map, whereas they

do not clearly appear on the total �eld, because of scale di�erences between their susceptibility

e�ect and that of the object/background interface.

To evaluate the ability to remove large background e�ects, an overall view of the internal �eld

map as well as the �eld originating from the simulated background is presented for simulation

(Figure 2.4.1, e-h), HPF (Figure 2.4.1, i-l), PDF (Figure 2.4.1, m-p) and 2DHF (2.4.1, q-t).

While preserving signal from the simulated lesions at the chosen cuto� frequency (here, 0.15),
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Figure 2.4.1: Background removal e�ciency using numerical simulations. (a, b) axial and sagit-
tal wrapped phase map from a central slice of the numerical model showing strong background
e�ects from the ellipsoid shape and large `air' inclusions. (c, d) axial and sagittal slices of the
simulated �eld including background and internal e�ects. (e,f) simulated internal �eld map only,
and (g,h) simulated background �eld map only. (i,j) internal �eld map calculated with HPF,
and (k,l) its residual. (m,n) internal �eld map calculated with PDF, and (o,p) its residual. (q,r)
internal �eld map calculated with 2DHF, and (k,l) its residual. Sagittal slices are shown with a
voxel ratio of 2.5 (see text).
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HPF introduced substantial artifacts in the vicinity of boundaries and did not fully suppress

phase wraps. Note that more restrictive �lter width was evaluated for HPF and appeared to

remove large scale inhomogeneities and phase wraps more e�ciently but also yielded a reduced

phase contrast for the simulated lesions. PDF removed phase wraps and background e�ect while

preserving contrast around simulated lesions. Nevertheless, large in-plane signal non-uniformity

appeared in the antero-posterior direction. These large artifacts derive from not taking into

account inter-slice inconsistency. 2DHF was much more e�cient to remove both wraps and

background e�ect while preserving both contrast and uniformity, but a limited border artifact

was created.

Regarding the slice-to-slice inconsistent linear artifact, HPF e�ciently �ltered it out within

the center region of the simulation. On the contrary, PDF did not remove these linear e�ects.

Finally, 2DHF intrinsically �ltered it away because the core of the method is based on second

order derivatives.

To evaluate the e�ciency of the three methods around the simulated lesions, a zoom is

presented in Figure 2.4.2. While PDF results displayed remaining e�ects from slice-to-slice

inconsistency (Figure2.4.2, c, g), all 3 methods e�ciently extracted similar internal e�ects around

simulated lesions (Figure 2.4.2, a, b, c, d). The similarity of the small scale results for 2DHF

and HPF behavior directly stems from the fact that results for both methods are shown here

for a similar bandwidth Figure 2.3.3.

Small calci�cations may remain invisible on the CT scan [Kristanto et al., 2012]. Figure 2.4.2

shows that even a single-voxel-lesion with a susceptibility variation of +/−0.125ppm appears more

paramagnetic than its surroundings in the internal �eld map with realistic simulated acquisition

parameters and SNR; this would correspond to a hemorrhage / calci�cation almost ten times

smaller than the simulated voxel size. Consequently, detection sensitivity of 2DHF can be

considered as being of the same order of magnitude as the one reported for CT [Kristanto et al.,

2012].

2.4.3 Results and comparison on clinical data

Figure 2.4.3 illustrates the resulting internal �eld maps obtained from �ltered 2DHF phase

images for two Siemens and two Philips datasets. Four illustrative examples of phase contrast

observed in human brain with CMBs are presented. Compared to raw phase data, 2DHF
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Figure 2.4.2: Internal �eld extraction e�ciency using numerical simulations. Zoom on central
slice of the ellipsoid showing the di�erent dipole-like inclusions (see Table 1). Axial and sagittal
view of the simulated internal �eld map (a,e), and internal �eld map calculated with: HPF (b,f),
PDF (c,g) and 2DHF (d,h).

e�ciently eliminated wraps and large-scale background e�ects and enhanced the anatomical

structures of interest within the brain where paramagnetic substances such as those in CMBs

appeared with a positive phase. The masking step proved e�cient to remove most of the

2DHF-induced artifacts at the border, and cortical gray / white matter contrast was visible.

Nevertheless, some artifacts remained.

A qualitative comparison of 2DHF, PDF and HPF for clinical datasets is presented in Figure

2.4.4. HPF results were shown here for a cuto� parameter of 32 which is usually chosen in

literature [Schweser et al., 2013], in order to allow e�cient removal of wraps and background

e�ects [Schweser et al., 2013], resulting in a bandwidth more than twice larger than 2DHF width.

As could be expected, the resulting internal phase contrast was much lower for HPF, while 2DHF

and PDF displayed similar local content on axial slices with a good contrast for deep gray matter

nuclei, blood vessels and CMBs. As in the simulation results, slice-to-slice inconsistency was

e�ciently corrected by HPF and 2DHF, but an e�ect remained for PDF which makes sagittal

characterization di�cult. The di�erence between 2DHF and PDF was dominated by inter slice

inconsistency remaining with PDF, whereas the di�erence between 2DHF and HPF shows that
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Figure 2.4.3: Application of 2DHF to 2D T2* GRE phase data with CMBs in di�erent locations.
For each column: (a,e,i,m) standard T2*W magnitude image, (b,f,j,n) raw phase map displaying
strong background e�ects, (c,j,k,o) brain mask and (d,h,l,p) internal �eld map. Rows 1 and 2
(respectively 3 and 4): data acquired on Siemens systems (respectively Philips).
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2DHF gives a better contrast between lesions and the neighboring tissue.

2.4.4 Application: Magnetic signature of CMBs and CMCs with 2DHF

CMCs can easily be mistaken for CMBs in the magnitude image when they are small, round.

In fact, they appear as focal hypointensities on magnitude images. Both CMBs and these

mimicking CMCs are dot-like susceptibility inclusions. Figure 2.4.5 illustrates these two types

of lesions for Siemens and Philips datasets. For these two patients, a physiologic calci�cation

could be observed inside the ventricles (e.g. in the choroid plexus), visualized as localized

round hypo-intensity areas on the magnitude image (Figure 2.4.5, a-d) (lesions indicated on the

internal �eld map with black arrowheads in Figure 2.4.5, h-k). Other hypo-intensity areas, very

similar in shape and size, were observed in the brain parenchyma, and assumed to be CMBs

(white arrowheads in Figure 2.4.5, h-k). These dot-like inclusions behave like small magnetic

dipoles and thus created magnetic �eld patterns similar to that of a dipole in the internal �eld

map (Figure 2.4.5, h-k). Even if these local �eld patterns partly appeared in the raw phase map

(Figure2.4.5, d-g), phase contrast was mostly dominated by background e�ects and phase wraps.

The 2DHF derived internal �eld map enabled an e�cient extraction of local e�ects around the

signal voids, as shown in the zoomed-regions Figure 2.4.5, l-o), and calci�cations appeared to

have a negative phase shift while the inclusions considered as CMBs inside the parenchyma had

the opposite phase shift. Sign inversion thus shown in the zoomed region by a ring-like e�ect in

the axial view (Figure 2.4.5, l, n) and a dipolar pattern in the sagittal view (Figure 2.4.5, m, o),

are emphasized by 1D intensity pro�les through this region (Figure 2.4.5, p-s). CT-scans were

acquired in a sub-sample of subjects in the MEMENTO cohort for attenuation correction of

PET emission data. Despite the fact that these CT-scans were not designed for the diagnosis of

calci�cations, resolution and contrast remained su�cient to reveal calci�cations of about 5mm.

Ten subjects were thus visualized with the two modalities and the CT-scan con�rmed what

was observed on the 2DHF internal �eld maps in all cases. Two examples with brain CT-scans

registered with SPM on the T2* magnitude image are shown in Figure 2.4.6. The �rst two

columns display the subject shown in Figure 2.4.5 (a, b) and the CT-scan con�rms the presence

of the choroid plexus calci�cation; the T2*-hyposignal within the parenchyma that was seen as

a CMB on the 2DHF internal �eld map remains invisible on the CT-scan, and the value on this

region was below 100UH, thus increasing the probability that this lesion is indeed a CMB. The
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Figure 2.4.4: Siemens (left) and Philips (right) axial and sagittal views of raw phase data (a-d).
Internal �eld maps computed with HPF (e-h), PDF (i-l) and 2DHF (m-p), image di�erence
(HPF-2DHF(q-t)) and (PDF-2DHF(u-x)) displayed on axial and sagittal views.
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other two columns illustrate another case with a dubious CMB on the T2* magnitude, that

appears as a calci�cation on the CT-scan and also on the 2DHF internal �eld map; note that

the 2DHF internal �eld map was computed here without eroding the brain mask, as the lesion

was very close to the border.

2.5 DISCUSSION

This work presents a new e�cient tool for background �eld removal in clinical multi-center set-

ting. Unwrapping and local �eld estimation were simultaneously performed using a 2D version

of a harmonic �lter (2DHF), applied in Fourier domain. The 2D harmonic �lter removes back-

ground e�ects while preserving local phase variations. This method showed good performance

in retrieving �ne 3D coherent details on 2D datasets on simulated and clinical images and al-

lowed to identify a magnetic signature for CMBs and CMCs. When compared to state-of-the-art

methods (HPF, PDF), 2DHF proved to provide more consistent detailed internal �eld maps for

2D datasets. Although di�erences between manufacturers are noticeable on raw data, 2DHF

method allowed a good estimation of internal �eld map with preserved details for all 28 datasets.

Creating artifacts at the ROI borders is a common problem in �ltering approaches used

to remove background e�ects. In fact, the orthogonality assumption is no longer valid at the

borders and these �ltering approaches thus often fail to estimate the internal �eld map close to

the ROI borders, in our case the brain boundary. In 2DHF, SPM masking prior to integration

allowed limiting artifacts at the brain boundary. Furthermore, hypointensities close to large

susceptibility artifacts (e.g. air-tissue interfaces close to the brain boundary) are rarely consid-

ered in the identi�cation of CMBs due to the inherent uncertainty induced by the susceptibility

artifacts. The remaining border e�ect at the brain boundary is thus unlikely to cause problems

in CMBs identi�cation.

The more common phase �ltering approaches, such as HPF, rely on the assumption that

the background �eld contributions only embed low spatial frequency components [Li and Leigh,

2001, Li et al., 2011, Schweser et al., 2013, 2012a, 2011]. Nevertheless, the background �eld may

indeed contain high spatial frequency components and the local �eld may contain low spatial

frequency components, and the resulting internal �eld map may thus be �awed. Furthermore,

internal �eld maps obtained with HPF highly depend on �lter size [Schweser et al., 2013]; for

large �lter sizes, small structures remain visible but the main part of phase information from
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Figure 2.4.5: Siemens (left) and Philips (right) axial and sagittal views. Magnitude image (�rst
row), native phase image (second row) and internal �eld map (third row). Fourth row shows a
zoomed out region corresponding to the white rectangle showing CMB with a dipolar pattern
(white arrow) and a physiologic calci�cation of the choroid plexus (black arrow). Note that
panel l was rotated. A 1D intensity pro�le calculated through CMBs and calci�cation in the
zoomed region is displayed in the last row. Note the intensity sign inversion for both side of
CMBs (red arrow head), and the calci�cation (green arrow head). Double heads arrows on
panels (l-o) indicate the location of the lines used to generate the intensity pro�les.



CHAPTER 2. CMBS CHARACTERIZATION USING PHASE-CONTRAST 90

Figure 2.4.6: First example (2 �rst columns) is an illustration of a brain microbleed (blue arrow)
and a physiologic calci�cation (in the choroid plexus) (red arrow head) on GRE magnitude image
where both lesions appear with hypo-intensity (�rst raw); only the calci�cation appears as a
hyper-dense area on the CT scan (middle raw); it corresponds to the hypo-intensity in the
internal �eld map while the cerebral microbleed appears as hyper-intense. The second example
(2 last columns) shows a hypo-intensity considered so far as doubtful microbleed, CT scan shows
this lesion as a calci�cation; it corresponds to the hypointensity in the internal �eld map (red
arrow head).
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larger structures is removed. HPF is a heuristic method compared to 2DHF or PDF, which are

both based on the assumption that background �eld is harmonic inside of the brain. This last

assumption is derived from Maxwell's equations [Li and Leigh, 2001, Schweser et al., 2011] and

is likely to yield less �awed internal �eld maps than HPF, which was con�rmed by the results

obtained here.

More sophisticated approaches proposed in the literature, such as PDF [Tian Liu et al., 2011],

are computationally expensive. Most of these approaches were validated and recommended for

data acquired with fully �ow compensated 3D GRE sequences that are not always available in

clinical routine. Furthermore, MRI data often su�ers from various artifacts, such as motion,

breathing or shimming artifacts, yielding slice-to-slice inconsistency in the phase map. Whereas

the results obtained here showed that internal �eld maps generated with PDF showed slice-

to-slice inconsistencies, 2DHF could remove this artifact while preserving details in local �eld

maps.

Even though some multi-center studies have been undertaken with 3D acquisitions [Evans,

2006, Shive et al., 2013], large scale multi-center clinical studies are likely to be restricted

by various constraints, such as the involvement of both research and clinical centers or an

extensive acquisition protocol aiming at studying various aspects of a given pathology in a

limited acquisition time. 2D acquisitions may thus be preferred, being faster, more robust

to movement, and easier to standardize in multi-center setting. Nevertheless, some intrinsic

di�erences remain between manufacturers, such as the di�erences between Philips and Siemens

regarding the de�nition of multi-slice interleaved acquisitions or speci�c reconstruction issues.

Although it may be possible to visually identify lesions with PDF in the acquisition plane, the

remaining di�erences between Siemens and Philips derived internal �eld maps due to di�erent

inter-slice artifacts may bias the analysis undertaken with PDF. On the contrary, 2DHF yields

3D-consistent internal �eld maps in both cases and should thus allow more robust multi-center

analyses.

However, background �eld correction is a three-dimensional problem and reducing it to two

dimensions may result in some limitations. Omitting the z-term of the 3D Laplacian corresponds

to assuming that all background sources that have an e�ect on a given xy-slice are located in

the same xy-slice. This assumption is not always met, since the e�ect within the ROI may come

from background sources located above or below the given xy-slice. However, when dealing with



CHAPTER 2. CMBS CHARACTERIZATION USING PHASE-CONTRAST 92

2D acquisitions in clinical setting, anisotropy along z is large, slice thickness being most of the

time above 2mm, with ~1x1mm² in plane resolution. In our case, voxel size is 1x1x2.5mm3,

with a slice thickness of 2.5mm. In 2DHF method, derivations are computed as point-by-point

di�erences divided by the voxel size. It implies that the second order derivative along z would be

2.5² times smaller than along x or y, thus reducing the error due to the 2D approximation in this

context. Moreover, the internal �eld map is computed with 2DHF for each slice independently

from all other slices; this should enable the use of 2DHF for data acquired in 2D with an

inter-slice gap.

Visual identi�cation of CMBs on MR images is a major issue in clinical practice and is made

less reliable by the large in�uence of MR imaging parameters/sequences on CMBs appearance.

MR-based imaging techniques have been investigated to better detect them. Susceptibility

weighted imaging has been considered as a good candidate to address this issue [Ayaz et al.,

2010, Nandigam et al., 2009], SWI retrieving 67% of CMBs missed on conventional T2* GRE.

However, vascular structures along z may be highly ambiguous on SWI and are thus considered as

a confusing factor for CMBs detection [Hammond et al., 2009]. Moreover, a post-mortem study

suggests that iron content in CMBs can be accurately related to prominent phase image features

[McAuley et al., 2011]. Preprocessed phase images thus appear relevant in CMBs detection and

internal �eld maps provided by 2DHF are good candidates for improving CMBs detection in

clinical settings. Simulated results have demonstrated a very high sensitivity of phase contrast

to very small susceptibility variations, either paramagnetic (+0.125 ppm for simulated CMBs)

or diamagnetic (-0,125 ppm for simulated CMCs).

Small CMBs may be considered as point dipoles, when observed through internal �eld maps.

In fact, theoretically, when observed far from the magnetic source, the �eld generated by this

source tends to the one of a point dipole with strength proportional to total magnetic moment

[Jackson, 1999] p168, regardless of the source's shape. Even if CMBs are not all perfectly focal,

`small' inclusions will always behave like magnetic point dipoles. Since CMBs are paramagnetic,

their resulting magnetization is in the same direction as
→
B0. Therefore they correspond to

positive values in the internal �eld map, and should appear with a sign inversion around the

peak, typical of a point dipole �eld. This property was correctly retrieved with 2DHF and could

be used as an attribute to better discriminate CMBs from confounding lesions and structures.

In the data evaluated in this study, resulting �eld maps clearly reveal the di�erent orientation



CHAPTER 2. CMBS CHARACTERIZATION USING PHASE-CONTRAST 93

between the �dipole �eld� generated by intra-parenchymal hemorrhages/CMBs and the one gen-

erated by calci�cations. Although CT-scans dedicated to the diagnosis of calci�cations were not

available in this study, CT-scans for attenuation correction of PET emission data were available

in a sub-sample of subjects, with su�cient resolution to allow con�rming the results displayed

by the 2DHF internal �eld maps in all 10 subjects visualized with both modalities. Other con-

founding signal voids can be confused with CMBs, such as vascular related signal (veins), rare

angiomatous malformations or symmetrical focal basal ganglia iron deposits. The internal �eld

map may play a role together with other sequences and priors in order to di�erentiate them

from CMBs.

We have presented here a new time-e�cient and robust �ltering method for computing inter-

nal �eld maps from phase images of T2* GRE 2D acquisitions, based on 2D harmonic �ltering.

Simulation and in vivo results have shown that 2DHF allows generating more appropriate inter-

nal �eld maps than PDF and HPF for discriminating CMBs in our multi-center dataset acquired

in clinical setting. It removes 2D acquisition and / or reconstruction artifacts while keeping �ne

details with limited border e�ect. Furthermore, 2DHF allows visualizing the dipole �eld patterns

created by CMBs and CMCs. Thus, being fast and applicable to standard clinical 2D acquisi-

tions, 2DHF could provide an e�cient tool for making CMBs detection and discrimination more

e�cient from MRI acquisitions in clinical setting.

Some issues remain for phase-based lesion characterization. Some recent experimental �nd-

ings have shown that phase contrast does not only depend on magnetic susceptibility and chem-

ical shifts, but also on tissue anisotropy and its orientation with respect to the main magnetic

�eld [Li et al., 2012, Schweser et al., 2010a]. These intricate dependencies make the understand-

ing of magnetic susceptibility variations from phase images even more challenging. Recently,

QSM has been assessed as an alternative tool for CMBs measurements. Its major claim here

was to overcome the blooming e�ect and thus give a precise estimate of CMB's extent. Indeed,

total susceptibility of CMBs measured with QSM has been shown to be consistently related

with size measurements [Liu et al., 2012]. An increased detection sensitivity of CMBs when

compared with GRE magnitude imaging was demonstrated. However QSM techniques are still

under investigation, have mainly been focused on 3D acquisitions and need further validation

to be applied in clinical setting. Furthermore, micro-structure-related o�sets also yield artifacts

in the reconstructed susceptibility maps [Wharton and Bowtell, 2013].
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Figure 2.5.1: 10 Proof-of-concept: Susceptibility maps for Siemens (left) and Philips (right)
datasets: QSM ((i-l) were reconstructed from internal �eld maps (e-h) generated by 2DHF.

In this study, the �ltered phase was not yet used for QSM reconstruction. Further study will

be necessary to investigate the in�uence of 2DHF on subsequent QSM analysis and the feasibility

of reconstructing QSMmaps from 2D datasets. Figure 2.5.1 illustrates a reconstructed QSMmap

with the method described in [de Rochefort et al., 2010b] for Siemens and Philips datasets, as a

proof of concept of the feasibility of computing QSM maps from 2DHF-generated internal �eld

maps. Magnitude image, internal �eld map generated by 2DHF and QSM map are displayed.

An extended study will be necessary to evaluate the robustness of parameter setting in our

complete dataset. Further details on QSM reconstruction using IFM are given in Appendix 2.
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2.7 Conclusion

We have thus shown here that this new method could yield complementary information to better

characterizing CMBs from MRI only. However, clinical usefulness still remains to be evaluated,

either by a direct use in clinical rating or by an introduction as additional information in a

multi-contrast segmentation framework.

To do so, we investigated clinical usefulness through a comparison study based on clinical

ratings of randomly displayed images (either conventional T2* GRE magnitude, SWI or IFM)

obtained from the same acquisitions. This will be presented in details in the following chapter.



Chapter 3

CLINICAL VALIDATION: A

COMPARISON STUDY

Overview

The 2DHF method we propose thus makes it possible to process 2D phase images from multi-

center clinical studies. Resulting internal �eld maps (IFM) appear a good tool to discriminate

CMBs from cerebral calci�cations. However, cerebral calci�cations are not the only struc-

tures/lesions that mimic CMBs. To be of interest for clinical routine, the advantages of IFM

for CMBs identi�cation still remain to be assessed. We thus undertook a comparison study in

order to evaluate if IFM yields similar or better performance for CMBs identi�cation by experi-

enced raters compared to more standard images. A pilot study was �rst undertaken with Anne

Bertrand, neuro-radiologist, in order to select the most e�cient images for clinical routine from

a set of candidate images. A set of subjects with varying numbers of CMBs was then assessed

by a team of raters with a wide range of background and expertise. The comparison study

resulting for these experiments was submitted to Neuroimage Clinical1.

* * *

1Improved cerebral microbleeds detection using their magnetic signature on T2*-phase-contrast: a compari-
son study in a clinical setting, Neuroimage Clinical (submitted)
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3.1 INTRODUCTION

Cerebral microbleeds (CMBs), described as small foci of chronic blood products within brain

parenchyma [Greenberg et al., 2009], were �rst seen on MRI sequences that are sensitive to

magnetic susceptibility of patients with small vessel diseases. Correlation of these radiological

�ndings with histopathological studies has generated considerable interest [Cordonnier, 2011].

CMBs are now commonly reported with MR imaging in the general population as well as in

patients with speci�c disorders [Conijn et al., 2011]. CMBs' prevalence is highly variable among

reports: from 47% to 80% in patients with intra-cerebral hemorrhage [Lee et al., 2004, Naka

et al., 2004], from 8% to 71% in patients with ischemic stroke [Naka et al., 2004, Tsushima et al.,

2003], from 17% to 46% in patients with cognitive decline and dementia [Cordonnier et al., 2006,

Hilal et al., 2014] and 20% in healthy elderly population [Cordonnier, 2011]. Deep brain CMBs

are associated with hypertensive arteriopathy (HTA), while super�cial CMBs are associated

with cerebral amyloid angiopathy (CAA), although they may also be present in patients with

isolated cerebral small vessel disease [Park et al., 2013].

CMBs identi�cation using MRI remains complicated [Cordonnier, 2011, Greenberg et al.,

2009]. As made of hemosiderin, they can be described as strongly super paramagnetic iron�storage

complexes [Cordonnier, 2011], whereas brain parenchyma is diamagnetic. Thus, this magnetic

susceptibility di�erence with surrounding brain parenchyma makes CMBs appear as magnetic in-

clusions, causing local magnetic �eld inhomogeneity such as would be created by a unit dipole.

At the voxel level, this �eld inhomogeneity leads to intra-voxel phase dispersion and strong

T2*-contrast. CMBs' detection is thus commonly based on Gradient Recalled Echo (GRE)

T2*-weighted magnitude images, in which they appear as areas of signal loss. However, their

appearance on these sequences is sensitive to imaging parameters such as echo time (TE) and B0

�eld strength. Furthermore, blood vessels and cerebral micro-calci�cations (CMCs) also have

strong T2* e�ects and can be misidenti�ed as CMBs. While localization may help identi�cation,

such as for some physiologic calci�cations commonly found in speci�c areas (e.g. pineal gland,

choroid plexus, basal ganglia), discrimination between small blood products and calci�cation

sometimes require a CT scan [Yamada et al., 1996].

Speci�c GRE-based solutions have been proposed to address these issues or related ones,

including di�erent scan protocols and/or di�erent signal processing methods such as Suscepti-

bility weighted imaging (SWI) [Cheng et al., 2013, Goos et al., 2011, Nandigam et al., 2009,
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Vernooij et al., 2008], Enhanced Susceptibility weighted angiography (ESWAN) [Guo et al.,

2013], Quantitative susceptibility mapping (QSM) [Klohs et al., 2011, Liu et al., 2012, McAuley

et al., 2010], internal �eld maps (IFM) [Guo et al., 2013, Kaaouana et al., 2015]. SWI has

already been considered for the diagnosis of CMBs. It is based on combining phase and magni-

tude images from 3D high resolution GRE images to allow enhancing detection sensitivity for

paramagnetic structures such as veins or hemorrhages [Goos et al., 2011, Haacke et al., 2009,

Haacke and Reichenbach, 2011, Nandigam et al., 2009, Reichenbach et al., 1997]. A comparison

between SWI and GRE T2* reported that conventional GRE T2* magnitude missed 67% of

CMBs compared to SWI [Nandigam et al., 2009]. In patients with CAA, [Cheng et al., 2013]

and [Vernooij et al., 2008] reported that SWI was more reliable and sensitive for CMBs detection

than conventional GRE T2* magnitude. Ayaz et al [Ayaz et al., 2010] reported that SWI is more

suitable for longitudinal studies of CMB when studying 75 MCI over 4 years. The new ESWAN

sequence (enhanced T2*-weighted angiography, combining a 3D GRE T2* multi-echo acquisition

with a speci�c reconstruction algorithm) has been investigated for CMBs detection by quanti-

fying phase values of CMBs in 75 MCI patients. The QSM reconstruction technique, aiming

at quantifying susceptibility should allow for an estimation of the spatial extent of lesions, by

removing the blooming e�ect; a validation study on 3D multi-echo GRE T2* acquisitions on 10

patients suspected of having experienced a stroke reported that the total susceptibility (TS) of

CMBs was more consistent than CMBs size measurement [Liu et al., 2012]. Nevertheless, SWI,

ESWAN and QSM techniques require a 3D multi-echo GRE T2* acquisition which may not be

available in large cohorts. Internal �eld maps (IFM) can be computed with standard parameters

from phase images of routine T2* GRE 2D single echo acquisitions. A method based on 2D

harmonic �ltering [Kaaouana et al., 2015] has been shown to allow for generating appropriate

internal �eld maps for discriminating CMBs and visualizing the dipole �eld patterns created by

CMBs; this magnetic signature could be used in CMBs' characterization.

Overall, CMBs' detection still su�ers from high inter and intra-observer variability as well

as large variation of reported prevalence between studies. This can be explained by confounding

structures and artifacts as well di�erences in acquisition technique used in each study. Most

of the new techniques that were proposed to address these issues were designed and applied to

high resolution 3D acquisitions. As a result, previous studies comparing rating performance for

advanced images vs standard magnitude images did in fact combine the advantages of 3D vs 2D
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acquisition with those of the new pre-processing techniques. Here, we aimed at evaluating the

speci�c advantages of advanced image reprocessing technique for CMB's identi�cation by trained

raters. In fact, 3D GRE T2*-weighted acquisitions may not always be possible in clinical setting

and 2D acquisitions are still the safer mean to ensure uniformity in multi-center clinical studies

and to guarantee reasonable acquisition time. Thus, routine 2D multi-slice GRE acquisitions

were used as inputs in this study, resulting in several types of images that can be used for CMB

rating: magnitude images, SWI-like images, and preprocessed phase images (IFM and QSM).

The paper is organized as follows. In the �rst part, the dataset used for this comparison

study is presented, followed by a description of the advanced pre-processing techniques and

comparison experiments. Results are then detailed in the second part, regarding the reliability

of the reference built speci�cally for this study and the performance of the method both on a

�single lesion� and �subject� point of view.

3.2 Material and Methods

3.2.1 Evaluation dataset

The evaluation dataset was extracted from data acquired for the ongoing French national cohort

named MEMENTO [Chene et al., 2014]. MRI and PET acquisitions, provided by a network

of 24 centers with MRI systems from di�erent manufacturers, models and �eld strengths, are

monitored by the CATI, the French National Platform for Multi-center Neuroimaging Studies

(http://www.cati-neuroimaging.com/). A sub-sample of the �rst 382 MEMENTO partic-

ipants were evaluated for CMBs [Kaaouana et al., 2015], and 77 subjects with CMBs were

identi�ed. This prevalence of 20% for this population (mean age was 55) was consistent with

the prevalence reported for elderly subjects [Cordonnier and van der Flier, 2011]. For the cur-

rent evaluation study, 15 subjects were selected to keep six subjects with numerous CMBs [13-30

CMB], �ve subjects with few CMBs [1-4 CMB] and four subjects without CMB. MRI data for

these 15 subjects was acquired on either Siemens (four centers, Verio systems, seven subjects)

or Philips (three centers, Achieva systems, eight subjects) 3T systems. The acquisition protocol

was described in [Kaaouana et al., 2015].

http://www.cati-neuroimaging.com/
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3.2.2 Methods

CMBs are made of hemosiderin and are detected on GRE images because of the local magnetic

susceptibility variation they yield. Besides, GRE phase images are proportional to magnetic

�eld variations and thus sensitive to local susceptibility variations. Both magnitude and phase

images will thus be considered in this study.

However, phase image analysis for local �eld variations is not straightforward. In fact,

phase wraps appear on the images because phase is de�ned in the [−π, π] interval and local

variations are hidden in large scale �eld variations resulting from background e�ects, dominated

by the magnetic susceptibility sharp edge of the air-tissue interface. Extraction of relevant

internal �eld information requires two preliminary steps: phase unwrapping and background

�eld removal [Haacke and Reichenbach, 2011]. These two pre-processing steps are embedded in

the two methods chosen for this study, SWI and IFM, as described below.

3.2.2.1 Susceptibility Weighted Imaging (SWI)

SWI relies on combining phase and magnitude images [Haacke et al., 2009], phase information

being used to enhance blood-related contrast on magnitude image (e.g. veins). Phase images are

�rst high pass �ltered (HPF) to extract local information and then transformed in a phase mask

with values in the[0; 1] interval. In this study, the HPF phase image was obtained through the

following steps. Complex-valued image was �rst generated from magnitude and phase images. It

was then low-pass �ltered slice by slice with a two dimensional Gaussian �lter in Fourier domain.

The HPF phase image was then estimated as the phase component of the ratio between complex-

valued and low-pass-�ltered images. The HPF phase image was then transformed in a consistent

phase mask which was then applied N times on the original magnitude image to highlight voxels

with high phase value. The standard-deviation of the Gaussian �lter, σ, and N were empirically

chosen on the evaluation dataset in order to optimize the setting for CMB detection on 2D data.

The σ parameter was set to 36 pixels [Haacke and Reichenbach, 2011] and N to 8.

3.2.2.2 Advanced phase image (IFM and QSM)

A 2D-based method for phase unwrapping and harmonic �ltering, based on solving Poisson

equation [Song et al., 1995], has been proposed as an e�cient mean for obtaining the IFM

[Kaaouana et al., 2015]. This method was shown to solve the potential slice-to-slice phase
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Figure 3.2.1: Magnitude image (a) raw phase image (b), IFM resulting from 2DHF (c), SWI
(d), miP-SWI on 3 consecutive slices (e) and QSM map are displayed.

inconsistency that may occur in 2D multi-slice T2*GRE datasets. The magnetic �eld observed

inside the brain, B, can be decomposed as the sum of the magnetic �eld due to internal sources,

Bin, and the one induced by external sources, Bout. From Maxwell's equations, Bout is harmonic

inside the brain (∆Bout = 0), resulting in ∆B = ∆Bin (∆ denotes the Laplacian). Consequently,

�eld variations due to external sources can be �ltered out through a second order derivative,

followed by a second order integration using adequate boundary conditions. In the process, the

Laplacian of the �eld Bin, which locally depends on susceptibility distribution, is set to 0 outside

the brain to remove external susceptibility e�ects. Paramagnetic dot-like inclusions appear as

a dipolar �eld on the resulting IFM (see Figure 3.2.1 and [Kaaouana et al., 2015]). CMBs can

be better discriminated by this magnetic signature.

IFM is not su�cient to fully evaluate the extent of each CMB, or even to isolate very close

CMBs. QSM may be a good tool to assess CMBs with a more quantitative measure. From the

above 2D IFM, QSM maps were derived using the method described in [de Rochefort et al.,

2010a]. In-house optimization of hyper-parameters was used to better adapt the method to our

2D datasets.
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3.2.3 Evaluation experiments

In order to determine the CMBs' in�uence of the type of image identi�cation, rating was per-

formed by several raters in di�erent conditions. A pilot experiment was �rst carried-out in order

to evaluate the experiment settings (see Figure 5.0.6 in appendix 3 for more details). Three types

of images were �nally considered as good candidates for CMB rating in clinical setting: T2*

magnitude image, SWI-mIP image (mIP being done on 3 slices) and IFM image.

3.2.3.1 Rating comparison

Rating was performed independently by six raters with various levels of expertise: a trained

clinical research assistant, a trained engineer, two junior neuroradiologists and two senior neu-

roradiologists. All observers were blinded to the image type and to clinical information. In order

to facilitate detection, interactive setting was possible for visualization contrast though a speci�c

Graphical User Interface (GUI) built with GUIDE in MATLAB (see Figure 3.2.2 and Figure

3.2.3). Because of the known variability of CMBs' detection, a certainty score was introduced,

to allow categorizing CMBs as �de�nite� or �possible�. The aim of this categorization was both

to facilitate the rating in case of uncertainty and to di�erentiate the amount of variability that

came from well-de�ned and badly de�ned CMBs. CMBs was de�ned as small round dots of

signal loss that could not be followed on consecutive slices like vessels, on sequences that are

sensitive to magnetic susceptibility. Their size may vary from 2 to 10mm.

3.2.3.2 Building-up of the reference

After the series of ratings was completed, a reference was built by two trained neuroradiolo-

gists, one of whom did not participate to the comparison experiments. All the CMBs that were

detected by any rater from any image during the comparison experiments were reassessed in-

dependently by each trained neuro-radiologists, taking into consideration the three image types

simultaneously though a speci�c GUI (reference GUI). These two sets of 15 reference images

were then combined to create a set of 15 consensus images by a given explicit scoring rules

(Table 3.2.1). Brie�y, if a lesion is identi�ed by both observers and at least one observer con-

siders it as de�nite, then it is rated as �de�nite CMB� in the consensus. If it is identi�ed by a

single observer as �possible� then it is discarded from the reference; if it is identi�ed by a single

observer as �de�nite�, then it will be considered as a �possible CMB�.
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Figure 3.2.2: Evaluation GUI when IFM (on the left) is displayed (Magnitude image is on the
right).

Figure 3.2.3: Evaluation GUI when SWI-mIP is displayed.
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Exp.1
0 1 2

E
xp
.2 0 0 0 1

1 0 1 2
2 1 2 2

Table 3.2.1: Reference consensus building up, scoring rules: 0 for discarded lesion, 1 for �possible
CMB� and 2 for �de�nite CMB�.

3.3 Results

Due to the well-known inter-rater variability when rating CMBs, the reliability of the consensus

reference was �rst evaluated, in order to assess each following rating with respect to a meaningful

reference. The evaluation experiments were analyzed on a lesion-based point of view through

the rating results of the six raters with respect to the reference. Two types of identi�cation were

analyzed: 1. all CMBs detected (either de�nite or possible); 2. CMBs detected as de�nite only.

Finally, in order to assess clinical usefulness, clinical practice was taken into account. In fact, the

in�uence of few CMBs on clinical assessment is uncertain, whereas clinical practice focuses on

subjects with numerous CMBs. Consequently, ratings and reproducibility analyses were carried

out on a subject-type point of view, by classifying patients in three groups: no CMB (G1), few

CMBs (G2, less than 10 CMBs) and numerous CMBs (G3, more than 10 CMBs). Furthermore,

rating times were also analyzed, in order to evaluate clinical feasibility of IFM with respect to

more standard T2* magnitude and SWI-mIP.

3.3.1 Reference

In order to evaluate the reliability of the consensus reference, CMBs detected by both expert

raters were compared. Results are given in Table 3.3.1, through the number of detected CMBs

(all or de�nite CMBs) for the two expert raters, the number of overlapping or discrepant CMBs

detected by both raters and the consensus computed by the scoring rules described in Table

3.2.1.

Cohen's kappa coe�cient was computed to compare the number of CMBs detected by each

rater for each subject. When considering all lesions, the kappa value was 0.5 (p-value=0.01) and

for de�nite lesions only, the kappa value was 0.54 (p-value=0.02). Overall, the agreement on

CMBs detection was satisfactory. Apart from one subject (subject 3 with 13 discrepant CMBs),

the discrepancy between both raters was negligible (median for �no CMB�: 0, �few CMBs�: 0
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expert.1 expert.2 Overlap / discrepancy consensus

subject d all d all d/d d/p d/no d all
2 0 2 0 0 0 0 0 0 0
12 0 1 0 0 0 0 0 0 0
13 0 1 0 0 0 0 0 0 0
15 0 4 0 0 0 0 0 0 0
6 0 0 1 1 0 0 1 0 1
5 0 2 1 1 0 1 0 1 1
10 2 5 2 2 2 0 0 2 2
1 4 7 1 2 1 1 2 2 4
8 3 6 4 4 3 1 0 4 4
9 12 12 12 16 11 0 2 11 13
11 15 15 15 15 14 0 2 14 16
7 16 17 12 16 11 3 3 14 17
3 17 18 15 17 9 1 13 10 23
4 19 24 16 24 12 6 5 18 24
14 30 30 12 36 12 18 0 30 30

Total 118 144 91 134 75 31 28 106 135

Table 3.3.1: Reference building-up: CMBs detected by expert raters and consensus result. �d�
refers to �de�nite� CMBs and �all� to the sum of de�nite and possible CMBs. �d/d� is the number
of CMBs only detected as de�nite by both raters. �d/p� is the number of CMBs detected as
de�nite by one rater and possible by the other, �d/no� is the number of CMBs detected as
�de�nite� by one observer while not detected by the other, see Figure 5.0.6 appendix 4 for more
details.

and �numerous CMBs�: 2.5. Examples of between-raters discrepancies are illustrated in Table

3.3.1.

3.3.2 Rating results: lesion-based point of view

Blind ratings were analyzed with respect to the consensus reference, in order to evaluate the

performance of each image type independently for lesion detection. Because of the large vari-

ability in lesion number between subjects, (TP), false positives (FP) and false negatives (FN)

were computed for each rater over all the CMBs detected on all subjects. Note that �all� refers

to �de�nite� and �possible� merged together. Overall count of CMBs detected for each raters

are given in Table 3.3.2 for the three image types (T2* magnitude, SWI mIP and IFM). Total

number of CMBs, TP, FN and FP are detailed for each rater.

Overall, IFM yields small improvements with respect to T2* whereas SWI-mIP yields sys-

tematic higher numbers of false positives. TP were lower for SWI than for T2* and IFM (78 vs

88-89). Both FN and FP were higher for SWI (FN: 57 vs 48-46, FP: 34 vs 16-9). Furthermore,

ranges for TP, FN and FP were smaller for IFM than T2*(TP: 32 vs 54, FN: 32 vs 54, FP: 73
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Figure 3.3.1: between-raters discrepancies during reference building-up; First column: magni-
tude images, second column: SWI-mIP images, third column: internal �eld map. First two rows:
discrepancy cases from subject 3. Lesions shown here by red and green arrows are doubtful due
to their shape that can be seen either as two adjacent round CMBs or as a relatively linear
structure like a blood vessel. The CMB showed by the yellow arrow is very close to susceptibil-
ity artifact. Last two rows: discrepancy cases from subject 14. CMBs pointed by orange and
blue arrows may have been ambiguous because of low contrast.
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vs 100).

When comparing performances between raters, we note that two raters tend to underesti-

mate the number of CMBs (CRA and Exp.Junior1) and one tends to largely overestimate it

(Exp.junior2). Interestingly, this di�erence is lessened by the use of IFM with respect to the

two other image types (total count range: 99 for IFM vs 150 for T2* and 198 for SWI-mIP).

In order to better understand the detection pattern between raters, ratings for de�nite CMBs

were also analyzed. Detailed results are given in Table 3.3.3.

Overall, the results are in accordance with 3.3.2. Total number of detected CMBs and

comparison with the reference: True Positive (TP), False Negative (FN) and Positives ratio

(FP). More speci�cally, IFM yields a higher number of de�nite CMBs than the other two image

types (81 vs 72 and 66 for T2* and SWI-mIP, respectively) and smaller number of FN (25 vs

34 and 41) and FP (4 vs 9 and 19). Value ranges follow the same trend (TP: 23 vs 39 and 16,

FN: 23 vs 39 and 46, FP: 14 vs 20 and 70). IFM thus seems to mitigate inter-rater variability

for de�nite lesions (range for total number: 36 vs 55 and 108).

3.3.3 Rating results: subject-type point of view

In order to evaluate the three image types with respect to clinical usefulness, rating results were

evaluated for each subgroup (�no CMB�, �few CMBs�, �numerous CMBs�) (Table3.3.4).

The overall trend is con�rmed for the subgroups, IFM yielding more speci�c results ((0 vs

2 and 2 for T2* and SWI-mIP, respectively for G1) and (1 vs 4 and 5 for T2* and SWI-mIP,

respectively for G2) and (7 vs 13 and 27 for T2* and SWI-mIP, respectively for G3)), even if

the performance is more balanced between methods for �no CMB� and �few CMBs� groups.

In order to better assess clinical usefulness, image types were compared regarding to their

ability to correctly classify the subjects in the three groups of interest. The number of correctly

classi�ed subjects for each rater and each image type is given in Table 3.3.5.

Overall T2* magnitude and IFM classify better than SWI-mIP (median value: G1: 3/4 and

4/4 vs 2.5/4, G2: 2/5 and 2/5 vs 2/5, G3: 5.5/6 and 5/6 vs 4.5/6). IFM yields more similar

results between raters than T2* magnitude and SWI-mIP (ranges: G1: 2 vs 3 and 3, G2: 2 vs

2 and 1, G3: 1 vs 4 and 4).

Table 3.3.6 indicates recorded rating time. Ratings from IFM took longer in most cases, but

the relative di�erence decreased from participants with no CMBs to participants with numerous
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T2* SWI-mIP IFM mean
G1 (N=4) 70 68 84 74
G2 (N=5) 58 47 54 53
G3 (N=6) 172 173 193 179
mean 100 96 110

Table 3.3.6: Mean rating recorded time results by image type and subject-type in seconds.

CMBs. In the worst case, it took only 1.2 times longer. Interestingly, for all image types, it

took less time to do the rating for participants with few CMBs than those with no CMB.

3.4 Discussion

We presented here a comparison of CMB detection performance when using three di�erent kinds

of images built from the same 2D GRE dataset: T2* magnitude image, SWI-mIP image, and

IFM image. Ratings were performed in random order by six raters with varying background

and level of expertise. Blind rating results were evaluated with respect to a reference built from

a consensus between two raters, with good, agreement between both. Overall, 2D-dedicated

phase processing used for IFM computation proved a very promising tool to improve CMBs

detections in clinical setting; on lesion-based point of view, it yielded increased sensitivity and

speci�city compared to T2* magnitude and SWI-mIP images. On a subject-type point of view,

even though performances were closer between the three image types, IFM yielded less inter-

rater variability when identifying patients with numerous lesions than both other methods, with

only a small increase in rating time, pointing toward clinical usefulness.

Here, our goal was to compare between CMBs detection on di�erent techniques computed

from the same 2D acquisition. Previous studies [Vernooij et al., 2008] compared 2D T2* magni-

tude images and 3D SWI, even though di�erences may be mainly due to the di�erences between

2D and 3D acquisitions. The aim of studying post-processing while keeping a single acquisition

was motivated by the fact that 2D GRE T2* multi-slice sequences are more common in large

multi-center cohorts than 3D multi-echo GRE T2*. For this kind of cohorts, IFM may thus be

an e�cient mean to improve CMBs detection. The method we used here, 2DHF, removes 2D

acquisition and / or reconstruction artifacts while keeping �ne details with limited border e�ect.

False positives in CMB detection can be explained by CMBs mimics, which have similar

morphology and signal properties. Partial Volume E�ect (PVE) is one of the main sources

of mimics, but PVE-related mimics are more likely to occur adjacent to the petrous temporal
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Figure 3.4.1: An axial T2*-weighted MRI image demonstrating partial volume artifact as a
potential CMB mimic. The axial T2*-weighted MRI image on the left shows a round focus of
signal loss (arrow) that could be interpreted as a left temporal CMB. The image just caudal to
this (right) indicates that this hypo-intensity is due to partial volume artifact from the adjacent
left sphenoid bone (arrowhead) [Greenberg et al., 2009].

bones, para-nasal sinuses, frontal bones, orbit and occipital bone [Werring, 2011, Gregoire,

2014, Greenberg et al., 2009]. An example of a partial volume artifact that mimic a CMB

is illustrated in Figure 3.4.1. We notices that experienced raters better distinguish between

PVE-related mimics and CMBs according to anatomical criteria.

Another frequent source of false positives is the appearance of venous structures non-parallel

to the acquisition plane which are thus seen in cross-section as round objects. SWI-mIP may

help to di�erentiate these vascular-related mimics, the projection allowing to highlight the 3D

tubular shape, as illustrated in Figure 3.4.2.

Although the use of SWI with 3D-acquisitions is known to increase the contrast of CMBs,

allowing to detect smaller CMBs, here SWI proved to increase FPs on 2D datasets. In fact,

it may reveal �ow voids from small blood vessels and enhance some hyposignal artifact, thus

creating new mimics. Thus, the increased sensitivity brought by SWI is balanced by a decreased

speci�city. Moreover, the blooming e�ect is enhanced by SWI compared with magnitude images;

this could lead to an underestimation of the CMB number when multiple close CMBs, biasing

clinical decisions. Finally, high pass �ltering technique has been shown to be sub-optimal for

background �eld removal, crucial for SWI [Kaaouana et al., 2015]. This could yield an enhance-

ment of some artefactual voxels resulting in an increased number of FPs.
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Figure 3.4.2: Example of FPs detected on magnitude image; these two hypointensities, pointed
by blue arrows, were recognized as vascular-related mimics on SWI-mIP image because of their
tubular shape.

The e�cient calculation of IFM with the 2DHF method requires to express boundary con-

ditions de�ning the �internal� region. These boundary conditions are thus derived from a mask

of the region of interest, namely the brain. However, the border of the brain co-localizes with

an area of strong susceptibility interfaces, thus leading to potentially strong border e�ects. To

reduce the likelihood of these border e�ects in 2DHF, the brain mask was eroded. Theoretically,

this may lead to miss the outer cortical part in some places, and thus cortical CMBs, as shown

in the example in Figure 3.4.3. The use of both IFM and T2* magnitude images may help

reduce the number of missed cortical CMBs.

QSM was not kept in the pilot experiment by the neuro-radiologist. In fact, applying QSM

incorporates solving the dipole inversion which is intrinsically three dimensional and thus a

strong anisotropic resolution may lead to large error propagation into the resulted QSM maps.

Moreover, available techniques imply the setting of regularization/threshold which is a chal-

lenging issue for multi-center data. Here, the regularization parameter was empirically chosen.

QSM needs more investigation and validation and clinicians may need more training to interpret

resulted maps.
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Figure 3.4.3: CMB on the outer cortical part not visible on IFM; Magnitude image shows 2
lesions (a spread lesion in the occipital lobe and a CMB (red arrow)). The hemorrhage was still
seen in the IFM while the CMB disappeared due to masking operation.

Similar to SWI, IFM enhances the contrast of paramagnetic structures (Figure 3.4.2), which

results in a increased number of TPs with respect to magnitude image. However, compared

to SWI, IFM further yields a magnetic signature of CMBs. In fact, these inclusions behave

like small magnetic dipoles and thus create magnetic �eld patterns similar to that of dipoles;

this dipolar magnetic �eld appears as a ring-like e�ect in the axial plane in IFM. The sign of

the ring like pattern varies if the lesion is either paramagnetic or diamagnetic and allows to

discriminate between CMBs and cerebral micro calci�cations related mimics [Kaaouana et al.,

2015]. Overall, IFM thus improve sensitivity (with respect to magnitude image) and speci�city

(with respect to SWI-mIP).This results in a better characterization of subjects between �few

CMBs� and �numerous CMBs�, the last group being the more important for clinical practice.

Sensitivity and speci�city of CMB detection appeared to be highly rater related among

raters. Three types of rater behavior were noted: two raters identify less CMBs on all im-

age types and thus tend to under-rate (CRA and Exp.Junior1); one rater largely over-rates

(Exp.Junior2); the last three raters had a similar tendency for medium rating (Trained.Ing and

the two Exp.Seniors). For the two �under-raters�, IFM is more sensitive and more speci�c than
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T2* magnitude and SWI-mIP. By contrast, for the �over-rater�, sensitivity is very high for all

image types, but most extra CMBs were identi�ed on SWI-mIP and speci�city is twice better

for IFM than T2* magnitude and SWI-mIP. For raters the most experienced raters, all image

types have a comparable sensitivity but IFM shows better speci�city.

Regarding rating times, IFM proved e�cient, even though it was a new image type for all

raters. This time may be reduced with a better visualization of the magnetic signature and more

practice. Important di�erence in rating time was noticed between the three groups; volumes

with higher CMB number needs more assessment time. Raters may tend to double check volume

without CMBs which can explain the longer time to do the rating for participants with no CMB

than those with few CMBs.

For reference building-up, consensus was obtained with a speci�c scoring rule, in order to take

into account the intrinsic variability of CMB detection (de�nite and possible CMBs). In fact,

although the two observers reassessed the CMBs by considering all image types simultaneously,

agreement was not perfect and a few cases of non-negligible disagreement were noticed. Even

though relying a third observer or consensus meetings may have been more standard approaches,

both may su�er from subjective bias, whereas our approach considered both observer equally.

Although studies on CMBs are increasing at an exponential rate, there is still a lack of

precise standardized criteria for rating them, leading in a low inter-rater reproducibility within

a project and an even lower inter-subject consistency. In fact, the main reasons of between-raters

discrepancy are low contrast, distance with respect to sulci and lesion size. Better integrating

new neuroimaging tools is likely to lead to considerable improvements with respect to these

issues.

In this study, we have shown that IFM appears as an interesting add-on to magnitude image

for the detection of CMBs. As expected, it allows discriminating mimics from real CMCs, visible

�ring like� e�ects making it more speci�c in deep white/grey matter. On the contrary, magnitude

only and SWI-mIP seemed to increase false positives detection. IFM o�ers a simple and practical

solution to assess the presence, number and distribution of CMBs on standard clinical multi-

center dataset. Further clinical studies on more subjects would help better assess the advantages

of each type of images with respect to clinical usefulness, together with histological studies in

order to infer the physical meaning of the magnetic signature. Finally, a comparison on 3D

isotropic datasets would allow a better assessment of advantages of IFM with respect to SWI
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when these datasets are available.

3.5 ACKNOWLEDGMENTS

The research leading to these results has received funding from the program �Investissements

d'avenir� ANR-10-IAIHU-06 The Memento study is undertaken through the sponsorship of

�Bordeaux CHU� and the �nancial support of �Fondation Plan Alzheimer�. The funding sources

had no role in the design and conduct of the study; collection, management, analysis, and

interpretation of the data; preparation, review, or approval of the manuscript; and decision to

submit the manuscript for publication.

* * *

Conclusion

Apart from indicating the usefulness of IFM in CMBs identi�cation, this study allowed us to

better understand the advantages and drawbacks of each of the candidate images. This will be

of great interest when designing the segmentation tool, as it will give extra clues regarding the

features of interest for the segmentation of CMBs. More precisely, SWI-mIP proved a good tool

to distinguish elongated from punctual structure, by taking advantage of the projection process;

however, elongated structures perpendicular to the projection direction could be mistaken for

punctual ones if only one projection is kept. T2* magnitude image o�ers a better assessment of

the distance between low signal lesions and sulci, and, overall, a better localization with respect

to the parenchyma. IFM allowed disentangling more complex mimics thanks to the dipolar

e�ect. The segmentation method would thus bene�t of a design that would enable extracting

features from multi modal input, either through a heuristic approach or within an optimization
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framework.



Chapter 4

AUTOMATIC SEGMENTATION:

Proof-of-concept

4.1 Introduction

The main objective of this thesis is the development of an automatic tool for CMBs

detection on multi-center datasets in a clinical setting. State-of-the-art approach, as were

shown, yield high false positives rate and need manual review to be reliable for clinical

measures. This low speci�city reveals the necessity to improve CMB characterization.

The use of complementary phase information, very sensitive to hemosiderin, could thus

reveal relevant additional features for CMB detection. In fact, existing methods were

validated either on T2* magnitude or SWI images, the last one embedding phase image

only to enhance susceptibility-related contrast. It has been shown in the previous chapter

that IFM computed with 2DHF yield more speci�c information and improves CMB

detection. The objective of our work is now to include IFM in a segmentation framework

in order to improve speci�city while keeping high sensitivity.

Challenges for designing an automatic identi�cation method are related to CMB's

nature: being a susceptibility artifact, other susceptibility artifacts may be mistaken to

CMBs although their apparent shape may not be strictly round. Their size is variable

ranging from very small to an unclear limit with macro hemorrhages. Furthermore, size

119
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is a tricky criterion due to the Blooming e�ect that makes CMBs appear larger on T2*

magnitude than on T2-weighted images. Adjacent CMBs may also overlap and either

be mistaken for macrobleeds or badly separated. CMBs have a lot of mimics such as

blood vessels, calci�cations, cavernous malformations. Their appearance is sensitive to

many imaging parameters such as echo time, �eld strength.

To solve all these issues while ensuring robustness and high speci�city, the developed

method has to rely on the di�erential diagnosis criteria of CMBs as giving in chapter 1.

Moreover, the comparison study presented in chapter 3 should help to better under-

stand how each image type should be included in the segmentation method. In fact,

IFM appears more speci�c than conventional T2* W and mIP-SWI, but T2*is useful

for cortical CMBs that may be missed by applying brain mask. SWI helps to enhance

small CMBs of low contrast and mIP-SWI better discriminate CMBs from veins if not

parallel to projection direction. Figure 4.1.1 illustrates solutions that could translate

each di�erential diagnosis criterion for an automatic identi�cation scheme.

The development of a framework that embeds such features is a work in progress. The

goal of this chapter is, thus, to present a proof-of-concept of the automatic identi�cation

tool for CMBs on a multi-center dataset. This tool should facilitate their study in large

cohort context and, thus, improve the general understanding of their role in AD. The

main novelty in this work is to include the multi-contrast aspect more speci�cally, the

magnetic signature of CMBs on IFM as shown in [Kaaouana et al., 2015].

4.2 Proof-of-concept design

Considering shape, intensity and localization priors for CMBs, The �rst step aimed at

looking for candidates CMBs. For this, we apply an empirical large threshold on T2*

magnitude image, internal �eld map, SWI and mIP-SWI. This step allows to decrease the

computational cost of processing the whole image and to prepare features extraction. A

statistical threshold was used, keeping only outliers of a Gaussian distribution modeling
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Figure 4.1.1: Image processing techniques that could translate the di�erential diagnosis criteria
described in [Greenberg et al., 2009].
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Figure 4.2.1: Illustration of segmentation scheme

intensity for the four types of images.

The second step consists of classifying these hypo-intense objects into three classes:

de�nite CMBs, possible CMBs and other structures or artifacts resembling CMBs. To do

this, a multi-contrast strategy was developed, based on a machine learning classi�cation

method with geometry, intensity related features. In Figure 4.2.1 the general model of

our system is shown.

Prior localization information was derived from a brain mask generated during a pre-

processing step described in the �rst section. The second section presents the proof of

concept of the method including feature extraction and classi�cation step. Preliminary

results are presented in the third section while the fourth section will discuss these

results and describes how this preliminary work could be extended to obtain the �nal

framework to be used in clinical practice.
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4.3 Pre-processing

MRI raw datasets often su�er from acquisition defects that need to be corrected before

any further processing. The most common issue stems from B1 �eld inhomogeneity that

results intensity inhomogeneity over the magnitude image. Although manufacturers

propose built-in solutions intensity inhomogeneities remains an issue. Image processing

algorithms such as segmentation or texture analysis may not produce satisfactory results

if this issue is not dealt with. On our multi-center Memento datasets, bias correction

were performed using SPM tool.

Neuroimaging has greatly bene�tted from the development of sophisticated and e�-

cient algorithms for cerebral tissue segmentation which is now often done as a preliminary

step. To do so, we used the �Uni�ed Segmentation� method described in [Ashburner and

Friston, 2005]. It uses a voxel-based approach with a statistical inference on the Gaussian

Mixture Model. It is available in SPM which is a toolbox for Matlab developed by the

FIL institute of Neurology, UCL (University College London) and is freely distributed

on http://www.fil.Ion.ucl.ac.uk/spm/.

Most of the pre-processing steps we will describe below rely on Matlab batches using

the SPM8 software.

4.3.1 3D T1 segmentation

The purpose of the �uni�ed segmentation� is to extract probability maps of di�erent

cerebral tissues: white matter (WM), Grey matter (GM), cerebro-spinal �uid (CSF),

skull, skin and the background. It is based on an atlas prior of each tissue in a stan-

dard space (MNI). It is usually performed on T1 weighted datasets because of the high

isotropic resolution and good WM/GM contrast they embed. This method combines im-

age registration (warping in Figure 4.3.1), tissue classi�cation (segmentation in Figure

4.3.1), and bias correction as shown in Figure 4.3.1.

http:// www.fil. Ion.ucl.ac.uk / spm/
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Figure 4.3.1: Uni�ed segmentation illustration.

As mentioned before, non uniform intensity. It appears as a local variation of intensity

in the same tissue without any pathological cause. Indeed, dealing with this issue is

crucial for the intensity-based segmentation methods as these variations may modify

signal distribution and therefore alter outliers interpretation. This is why this was

included in the uni�ed segmentation scheme. The module used here is New Segment

and it is available from the batch editor in the menu SPM > Tools > New Segment;

the input image to be segmented is the T1 image. The outputs are the T1 image with

corrected bias, as well as the probability maps of GM, WM, CSF, skull and �other� class.

4.3.2 A�ne registration

Image registration is the operation of aligning images in order to relate corresponding

features. For most kind of image processing on two or more images, it is required that the

images are aligned, so that one voxel position represents the same anatomical position

in all images. It allows the use of images of di�erent modalities; to compare or combine

their respective information.
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Figure 4.3.2: The tissular probability maps obtained by the �Uni�ed Segmentation� and regis-
tered in the T2* space: from left to right respectively GM, WM, CSF, scalp and skin.

Registration aims at �nding the transformation that matches exactly two images.

This can be achieved by maximizing the similarity between source and target image

arg max
tεT

f (I1, t(I2)) (4.3.1)

with f the similarity criterion, t the transformation to be applied to the source image

(I2), T the set of possible transformations and I1 the target image.

The registration step is crucial for matching di�erent contrasts (T1,T2*..) that are

not acquired in the same space and with the same geometric parameters (FOV, slice se-

lection...). Here, the registration is applied on images from the same subject which makes

it reasonable to assume that the head will not be deformed. Hence, the rigid transforma-

tion model (3D rotation (x;y;z) and 3D translation (tx; ty; tz)) is therefore su�cient for

our purpose. The Normalized Mutual Information (NMI) is the used similarity measure,

as NMI was designed to compare data from di�erent modalities/contrast. This measure

is based on a multi-dimensional joint histogram which represents the co-occurrences of

all possible voxels intensity combinations in the source and target.

We used the SPM module Coreg > Coreg: Estimate and Reslice. Input were the

target image (T2 *image) and source image (the bias corrected T1 image). It is possible

to add other images to be registered with the same transformation. Tissue probability

maps generated by the uni�ed segmentation were thus added. The output of this step

thus were separate images, the 3DT1 and the �ve probability maps, one for each tissue

class ; GM, WM, CSF, scalp and background (others), (see Figure 4.3.2).
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Figure 4.3.3: Intra-cranial mask calculation; First row probability maps obtained by SPM.
Second row; �nal calculated intra-cranial mask when considering GM, WM and CSF.

4.3.3 Intra cranial and cerebral mask calculation

CMBs are only localized into parenchyma we thus de�ne a region of interest to reduce

the search area, corresponding to cerebral region. This made it possible to decrease the

computational cost of the automatic detection.

For our method, tissue maps WM, GM and CSF registered in the T2* space, were

binarized by keeping voxels with probabilities over 0.5 in the T2* space as shown in

Figure 4.3.3. Two masks are thus de�ned: the union of WM and GM and CSF result in

the intra-cranial mask while the union of WM and GM results in the cerebral mask. A

hole �lling is applied to the intra cranial mask to reconstruct a homogeneous region.

4.4 PROOF-OF-CONCEPT: Automatic CMBs identi�cation

Identifying CMBs in an image can be addressed as a segmentation issue. Several ap-

proaches have been developed for image segmentation; thresholding, edge-based methods

region-based methods. In medical imaging anatomical information can be introduced as
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prior information in the segmentation.

Here we will address the issue by �rst selecting candidate voxels for CMBs and second

classifying them according to a set of features.

4.4.1 Candidates selection: multi-contrast statistical thresholding

the aim of this �rst step is to analyze the images to �nd all the candidate CMBs.

Thresholding was used to obtain initial CMBs candidates. Thresholding was used as

the main characteristic of CMBs is their hypointense aspect. In thresholding, pixels

are allocated to categories according to a selected range of de�ned by thresholds. The

threshold value,th, is often chosen manually, by trying a range of values of th and

directly assessing which value is more adequate to segment the object of interest. The

threshold can also be chosen automatically based on data statistics. In our approach, we

used statistically derived thresholds de�ned from means and standard deviations on a

population. To decrease the number of detected objects and their size, we used the four

images in this thresholding step: T2*, IFM, SWI and mIP-SWI images; the intersection

between the four thresholded images was kept.

Statistical thresholding is of particular interest in the CMBs context. It can be

used to separate the Gaussian distribution of the intensity of brain tissue from the

low intensity outliers, CMBs, on T2*magnitude, SWI and mIP-SWI. The small size of

CMBs preserves the Gaussian distribution without altering its mean and/or its standard

deviation. However, these images also su�er from large susceptibility artifact that may

alter their distribution. The statistical thresholding is performed in two steps:

Step1: The �rst threshold, thISA, aims at identifying the 'large dark susceptibility

artifact (SA)' that may alter the real threshold, thCMBs calculation on the image type

(I). This threshold is empirically chosen as
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ΩIC = {x ∈ ΩI |MIC(x) 6= 0} (4.4.1)

thISA = x̄ΩIC
− αth × σΩIC

(4.4.2)

where x̄ΩIC
is the mean intensity within the intra-cranial mask, MIC and σ is its

corresponding standard deviation. Voxels with intensity values below this threshold,

ΩIC−SA, are excluded when calculating the second threshold1.

step2:

The second threshold, thCMBs, is calculated using the same formula and it aims at

keeping only CMBs:

ΩIC−SA =
{
x ∈ ΩIC | IIC(x) < thISA

}
(4.4.3)

thICMBs = x̄ΩIC−SA
− αth × σΩIC−SA

(4.4.4)

ΩI
CMBs =

{
x ∈ ΩIC | I(x) ≤ thICMBs

}
(4.4.5)

Both steps were performed for the three images,T2* magnitude, SWI and mIP-SWI.

Illustration of these steps for each image is given, with their corresponding histograms,

respectively in Figure 4.4.1, Figure4.4.2 and Figure 4.4.3.

Internal �eld map CMBs appear as hyper-intensities on IFM. The goal of the thresh-

olding here is, thus, to separate the Gaussian distribution of background tissue from the

high intensity outliers. A single threshold was su�cient. Threshold was, thus, written

as

ΩCm = {x ∈ ΩI |MCm(x) 6= 0} (4.4.6)

1Here, Ω refers to the speci�ed domain
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Figure 4.4.1: An example of T2* magnitude thresholding results and the corresponding his-
tograms; in the �rst row, the T2* raw data and its histogram; in the second row white are the
'large dark susceptibility artifacts' excluded by the �rst threshold, green in the histogram; Third
row are the resulting potential CMBs, ΩT2∗

CMBs, after applying the second threshold, thT2∗
CMBs.

thIFMCMBs = x̄ΩCm
+ αth × σΩCm

(4.4.7)

ΩIFM
CMBs =

{
x ∈ ΩIC | I(x) > thICMBs

}
(4.4.8)

x̄ΩCm
here, is the mean intensity calculated on cerebral mask (MCm), that includes

Grey White matter without CSF and σΩCm
is the corresponding standard deviation.

Results are shown in Figure 4.4.4.

CMBs candidates,ΩCMBs, were thus found as
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Figure 4.4.2: An example of SWI thresholding results and the corresponding histograms; in the
�rst row, SWI image and its histogram; in the second row white are the 'large dark susceptibility
artifacts' excluded by the �rst threshold, green in the histogram; Third row are the resulting
potential CMBs, ΩSWI

CMBs, after applying the second threshold, thSWI
CMBs.

ΩCMBs = ΩT2∗
CMBs ∩ ΩSWI

CMBs ∩ ΩmIP−SWI
CMBs ∩ ΩIFMCMBs (4.4.9)

4.4.2 Classi�cation

Segmentation can be formulated as a classi�cation problem, in our case between �CMBs�

and �non CMBs�; Given a dataset of images with known classi�cation the system can

predict the classi�cation of new images.

A classi�er-based segmentation requires the speci�cation of two main items: the



CHAPTER 4. AUTOMATIC SEGMENTATION: PROOF-OF-CONCEPT 131

Figure 4.4.3: An example of mIP-SWI image thresholding results and the corresponding his-
tograms; in the �rst row, the mIP-SWI image and its histogram; in the second row white are
the 'large dark susceptibility artifacts' excluded by the �rst threshold, green in the histogram;
Third row are the resulting potential CMBs, ΩmIP−SWI

CMBs , after applying the second threshold,
thmIP−SWI
CMBs .

feature vector and the classi�ers itself. The feature vector consists of measurements

derived from the image.

These features are then used by the classi�er, a machine learning algorithm, to classify

an unknown subject and its feature vectors given a learning set of feature vectors with

or without known classi�cations. One of the main issues regarding classi�cation is

the key feature that allow better discrimination and the classi�er model that allows

better classi�cation from the de�ned feature vector. Many classi�er methods have been

proposed; Supervised Learning uses training data with known labels to learn a model of
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Figure 4.4.4: IFM distribution before and after thresholding.

the data, that is then used to predict new dataset. The well-known supervised learning

techniques are generative methods such as arti�cial neural networks or discriminative

methods such as Support Vector Machines (SVM). However, when there are no labeled

data for training the classi�er, unsupervised learning may be used. In this case the

classi�er has to �nd patterns in the data which is otherwise observed as unstructured

noise. The most commonly used unsupervised learning techniques is K-means. However,

real world problems are often subjective and resulting clusters might not adhere with it,

semi-supervised learning may be used by incorporating user suggestions and feedback.

We will detail below the features that will be embedded within the feature vector and

the building-up of the classi�er based method. The general model of the classi�cation

step is shown in Figure 4.4.5.
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Figure 4.4.5: General model of a classi�cation step.

Feature vector:

13 features were considered here for each candidate object:

� Three intensity features: mean intensity on T2*, SWI and IFM.

� Ten geometric features: mean value of FRST function applied on T2*, IFM, SWI

and mIP-SWI; circularity; relative anisotropy; elongation; E�ective circular diam-

eter and the three eigenvalues of the covariance matrix.

The geometric features will be described below.

The circular shape of CMBs makes geometry a strong identifying aspect for CMBs

detection. The �rst idea was to use the Function of Radial Symmetry Transform (RST)

that was developed by Loy and Zelinsky [Loy and Zelinsky, 2003]. FRST is an image

processing technique that can be used to highlight spherical-shaped objects in an im-

age. A Matlab function is available on the website: http://www.nada.kth./~gareth/

homepage/gareth_home.html. For each voxel in the image, the 2D FRST results in a

so-called sphericity score. This score corresponds to the sphericity of a local neighbor-

hood around the voxel. The neighborhood is evaluated at a distance n of every point;

one or N radii can be evaluated, with N the radii vector. It further allows to highlight

both hypo and hyper-intensities.

http: // www.nada.kth. / ~ gareth / homepage / gareth_home.html
http: // www.nada.kth. / ~ gareth / homepage / gareth_home.html
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Figure 4.4.6: Illustration of negatively and positively a�ected pixels [Loy and Zelinsky, 2003].

Using a 3× 3 Sobel gradient, the gradient of each pixel is computed. If a pixel p lies

on the edge of a circular disk, then the direction of its gradient g(p) is orthogonal to

the edge, pointing to (if the circular disk is hyper-intense) or away from (if the disk is

hypointense) the center of the circle. The pixel that is at a distance n pixels away from

p along the direction of g(p) is de�ned as a positively-a�ected pixel, given by

P+ve(p) = p+ round

(
g(p)

‖g(p)‖
n

)
(4.4.10)

Whereas the pixel that is at a distance n pixels away from p along the direction

opposite to that of g(p) is de�ned as a negatively-a�ected pixel, whose coordinates are

given by

P−ve(p) = p− round
(

g(p)

‖g(p)‖
n

)
(4.4.11)

where �round� rounds each vector element to the nearest integer and n is the radius

of the circular features to be detected. These two points are illustrated in Figure 4.4.6.

For each radius n, an orientation projection image On and a magnitude projection

image Mn are created, by going through all the voxels of the image, �rst initialized to

zero and then incremented or decremented each time p is found as a positively a�ected

or negatively a�ected as as follows

On(P+ve(p)) = On(P+ve(p)) + 1 (4.4.12)
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On(P−ve(p)) = On(P−ve(p))− 1 (4.4.13)

Mn(P+ve(p)) = Mn(P+ve(p)) + ‖g(p)‖ (4.4.14)

Mn(P−ve(p)) = Mn(P−ve(p))− ‖g(p)‖ (4.4.15)

The radial symmetry contribution for radius n can be de�ned by this convolution

Sn = Fn ∗An (4.4.16)

with

Fn(p) =
Mn(p)

max ‖Mn(p)‖


∣∣∣Õn(p)

∣∣∣
max

∥∥∥Õn(p)
∥∥∥
α

(4.4.17)

where An is a 2D Gaussian and α is the degree of sphericity. FRST parameters will

be more detailed below.

All these parameters need to be adapted to CMBs detection. The CMBs are in

hyposignal on T2* magnitude, SWI and mIP-SWI; we thus want to detect using FRST

only points from which the vector gradient points out. However, CMBs are hyperintense

on IFM and thus, only points from which the vector gradient points away are needed

to be hilight. We modi�ed the available Matlab script so that it detects either only

negatively a�ected pixels or only positively a�ected pixels. The algorithm of the FRST

to highlight dark circular shapes is described in the algorithm 4.1.

The Radial symmetry function have a number of parameters that needs to be set:

1. The set of evaluated radii N = {n1;n2; ..}

2. The Gaussian kernel, An;

3. The degree of sphericity α ;
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Algorithm 4.1 FRST algorithm when considering only dark circular shapes

1. Gradient image calculation using 3× 3 Sobel operator

2. �Negatively a�ected pixels� calculation

P−ve(p) = p− round
(

g(p)

‖g(p)‖
n

)
(4.4.18)

3. Orientation matrix calculation

On(P−ve(p)) = On(P−ve(p))− 1 (4.4.19)

4. Projection matrix calculation

Mn(P−ve(p)) = Mn(P−ve(p))− ‖g(p)‖ (4.4.20)

5. On et Mn scaling

Fn(p) =
Mn(p)

max ‖Mn(p)‖


∣∣∣Õn(p)

∣∣∣
max

∥∥∥Õn(p)
∥∥∥
α

(4.4.21)

6. Convolution by a Gaussian

S′n = An ∗
∑
n

Fn (4.4.22)

7. Sphericity score calculation for all radii nεN

S =
1

|N |
∑
nεN

S′n (4.4.23)

The FRST is a local approach based on the description of the neighborhood of a

point. For every pixel, the neighborhood to be evaluated is determined by the radii

vector N . According to [Greenberg et al., 2009], the size of CMBs varies between 2 and

10 mm; the aim here is, thus, to �nd the optimal set of radii that allows to detect CMBs.

When considering a set of radii, the �nal sphericity score obtained is an average score for

these radii. In order to better estimate this parameter, a synthetic image was generated

with the graphical tool GIMP. Figure 4.4.7 present this synthetic image, which contains

di�erent shapes including disks of di�erent radii and di�erent linearity and sphericity.

These structures may overlap to mimic overlapping CMBs. R corresponds here to N
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Figure 4.4.7: Illustration of the synthetic image generated by GIMP and the FRST results for
di�erent set of radii R.

in the previous part. FRST results on the synthetic image show that for R = [1], the

FRST detects the linear structures and the edges of the circular structures with strong

gradient. For R = [3], the FRST detects the spherical disk with small size as well as

some points inside inhomogeneous structure.

For a range of radii [1, 2, 3], the FRST highlights the linear structures, the spherical

structures of strong gradient which size is within this range but also the edges of the

spherical which size is larger than the target range. For a range R = [1 : 17], the FRST

detects only the spherical structures in the target range of radii (even those with low

contrast). By comparing, the result of R = [3] and R = [3,17], we notice that the disk

of radius 3 was not detected. In fact, when looking for a wide range of radii, small radii

are going to have scores signi�cantly small with respect to larger radii.

The convolution by the Gaussian kernel, An is performed at the sixth step of the

algorithm 4.1. The use of this kernel aims at spreading the in�uence of the positively- and

negatively-a�ected pixels as a function of the range n. The chosen 2D kernel is invariant

by rotation to have the same sphericity score for gradients with di�erent orientations.

Figure 4.4.8 shows the contribution for a single gradient element g(p). By scaling the
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Figure 4.4.8: Illustration of the contribution of one gradient element with σ = 0.25 × n [Loy
and Zelinsky, 2003].

standard deviation linearly with the range n, we de�ne an arc of in�uence that applies

to all a�ected pixels. The width of the arc is de�ned by scaling the standard deviation

of An with respect to n.

Here, An is chosen to be a 2D Gaussian of size n × n and standard deviation σ =

0.25 × n as was recommanded by [Loy and Zelinsky, 2003]. Applying the Gaussian

spreads out the score of sphericity σ pixels nearby.

Theα parameter de�nes how strictly radial the radial symmetry must be for the

transform to return a high interest value. This parameter is used in the step 5 of the

algorithm 4.1. A high α allows to detect very spherical points and eliminates non-

radially symmetric features such as linear structures (vessels). Whereas, a small α

allows to detect relatively spherical structures. In order to understand the impact of

this parameter, we applied FRST with di�erent α values on the same image generated

with GIMP. It is important to note that, in the original work presenting the FRST [Loy

and Zelinsky, 2003], the author considers that 2 is a suitable value for the most part of

the applications.

As shown in the results in Figure 4.4.9, structures that are relatively spherical were

detected for α = 1 while they relatively disappeared for superior values. For α = 2, the

FRST starts to discriminate spherical points. We also notice that for α = 5 and α = 7,

small disks are no longer detected although the radii vector was the same.
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Figure 4.4.9: Illustration of the synthetic image generated by GIMP and the FRST results for
di�erent α values.

Parameter Chosen value

radii [1, 2, 3]
α 3
An σ = 0.25× n

Table 4.4.1: FRST parameter setting for Memento datasets.

A choice of α = 3 is a compromise allowing relatively spherical points to be detected

without missing small disks.

FRST feature

A summary of FRST parameter setting used for memento dataset to hihlight CMBs

are given in Table 4.4.1. In order to de�ne the sphericity feature, the mean sphericity

values on T2*, IFM, SWI and mIP-SWI were calculated. For IFM, positively a�ected

pixels were considered since CMBs appear as hyperintensity on IFM.

In addition to FRST, CMBs have a very speci�c shape that discriminates them from

blood vessels. To emphasize these characteristics �ve di�erent 2D shape features were

calculated and used as described below

Structure elongation

For 3D structures �Compactness� is approximately a ratio of surface area to volume,

spheres having the highest theoretical compactness. For 2D images, we de�ned the

�Elongation� as the Dmin/Dmax, CMBs have a very high compactness and veins have a
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very low compactness. D is the diameter.

Equivalent Circular Diameter (ECD)

ECD is de�ned as

ECD =
√

4×Area/Π (4.4.24)

Covariance matrix's three eigenvalues

The covariance matrix was calculated in the connected component bounding box

(5x5).

Relative anisotropy (RA)

RA is calculated using the three eigenvalues of the previously calculated covariance

matrix

RA =

√
1

2
×
√

(a− b)2 + (b− c)2 + (c− a)2

a+ b+ c
(4.4.25)

where a, b and c are the eigenvalues of the covariance matrix; a is the largest value,

b is the median and c is the smallest values.

Circularity C

C is de�ned as the ratio of the area of the CMB shape to the area of a circle having

the same perimeter

C =
4Π× area
Perimeter

(4.4.26)

Intensity-based features:

mean intensity on T2* Magnitude image, IFM and SWI images were extracted after

normalization.

Classi�cation

Common machine learning tasks were performed in MATLAB using the Classi�cation

Learner and functions in the Statistics and Machine Learning Toolbox. It o�ers the

possibility to choose between classi�cation algorithms, to train a classi�er and evaluate

the accuracy of a classi�er (confusion matrices, ROC curves, classi�cation error). It

follows the following procedure
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1. Feature selection

2. Specifying cross-validation schemes

3. Training a range of classi�cation models, including support vector machines (SVM),

boosted and bagged decision trees, k-nearest neighbor, and discriminant analysis

4. Performing model assessment and model comparisons using confusion matrices and

ROC curves to help choose the best model for the data

5. Integrating trained models into applications by testing its usefulness on new data.

Several classi�ers have been trained on these features to test accuracy. Considering the

consensus identi�cation realized in the comparison study (chapter 3), initial candidates

were labeled as �de�nite�, �possible� or �false positive�. Features for these objects were

extracted and used to train several classi�ers; the accuracy of each classi�er was then

assessed. All classi�ers were trained to see which settings produce the best model with

our data, giving the better accuracy for all classes. Selected model can be improved by

feature selection, and by changing some advanced options. subjects without CMBs were

excluded from this proof-of-concept to reduce the gap between FP and CMBs classes in

the classi�cation step.

4.5 Experiment and preliminary results

Here, preliminary results of thresholding and classi�cation steps are presented.

4.5.1 Thresholding results

For this proof of concept, threshold values for di�erent image types were chosen empirically

allowing at maximum 10% FN. Results of this step are illustrated in Table 4.5.1.
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images α1 α2 number of FN number of FP

T2* 2 1 8 129161
IFM 0.5 - 3 56632
SWI 1.5 2 5 42625

mIP-SWI 1.5 2 4 40989
Final image - - 13 9195

Figure 4.5.1: Thresholding results.

T2* IFM SWI mIP-SWI

CMBs candidate

Figure 4.5.2: Illustration of an example of thresholding �nal result.

Figure 4.5.2 illustrates an example of resulting objects after the thresholding process.

The thresholding step had a high sensitivity of 90%, only missing 13 CMBs out of

136. Using the four images for thresholding results in very small objects better suited

for morphological analysis. However, as expected, a very large number of false positives

was found.

4.5.2 Classi�cation results

Features were extracted from seven datasets to be used for the training step. The �rst

and second classes were weighted by 500 to decrease the bias due to the large number of

false positives with respect to true de�nite CMBs and possible CMBs. Several classi�ers
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subject True CMBs FN False Positives

subject 1 17 5 10
subject 2 4 2 5
subject 3 30 12 3

Table 4.5.1: The number of true CMBs and CMBs found with the automatic identi�cation
method along with false positives are listed for each of the test subjects.

have been trained on these features. Figure 4.5.3 summarizes training models results

; results of di�erent trained classi�ers and their performance accuracy are given in the

left panel. The most accurate model is the one generated by �complex tree classi�er�; its

confusion matrix and ROC curve are given respectively in the middle and right panels.

The basic idea of the tree classi�cation methods is to partition the space and identify some

representative centroids using hyperplanes as classi�cation boundaries. Classi�cation

trees are a hierarchical way of partitioning the space. We start with the entire space and

recursively divide it into smaller regions. At the end, every region is assigned with a

class label2.

The advantages of this type of algorithm are its fast prediction speed, fast training

time, and the simplicity of its interpretation.

Giving three new unknown datasets, classi�cation results are given in Table 4.5.1.

The classi�cation step is able to remove most of the false positives for the three

unknown datasets at the loss of sensitivity (almost 50% FN). The predictive model

failed to predict true CMBs.

4.6 Discussion & Perspectives

The presented method is a proof-of-concept of the segmentation method to be further

completed and then validated on larger data. The general segmentation scheme consist

of a �rst step of selecting initial potential CMBs using a multi-contrast thresholding

step and a classi�cation step of these points using a machine learning classi�er. T2*

2Matlab description.
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magnitude, internal �eld map, SWI and mIP-SWI were used to extract intensity and

geometric features. A feature vector of 13 dimensions was used: mean intensity on

T2*, SWI and IFM; mean intensity of FRST function applied on T2*, IFM, SWI and

mIP-SWI; circularity; relative anisotropy, elongation, e�ective circular diameter and the

three eigenvalues of the covariance matrix.

False positives rate resulting from segmentation scheme, indicate that the second step

is the step needing to be improved for higher speci�city and sensitivity; this could be

accomplished by including new features more speci�c for each class;

� CMBs signature on IFM may be used: Correlation with a dipolar pattern can be

added in the feature vector.

� Other geometric features may be added: Radon transform and or Hessian matrix.

� Creating a vein mask using mIP-SWI that can be applied after thresholding as a

pre-processing step to remove elongated structure and thus reduce computational

cost of false positive elimination using machine learning. However, the projection

yields localization uncertainty and may be challenging to embed.

No feature selection step was performed or investigated here and further improvements

could be achieved by keeping only the most adequate features during the training and

testing steps.

Features normalization is an important step and needs more investigation.

Anatomical location prior may also be improved using sulci. Even though it would

probably not result in a dramatic improvement in sensitivity, it could be an important

step in removing veins.

Interpolation may also should be investigated as small CMB may become easier to

detect unless if their shape is altered.
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Here, we present a proof of concept of a segmentation approach to deal with CMBs;

for this we used 10 datasets with CMBs that were labeled during comparison study. 8

datasets were using for the training step; enlarging the training dataset assuredly would

help to create a more accurate predictive model.

In conclusion we have shown a proof of concept of a segmentation method for CMB

detection. Although we presented some results, the whole training process need to be

further explored in more depth. The main contribution of this technique is a higher

speci�city due to the use of internal �eld map. Further evaluation � on a larger group

of patients with more diverse types of CMBs needs to be done to prove the applicability

of this method as a general CMB detection algorithm.



Chapter 5

CONCLUSION & PERSPECTIVES

Summary and conclusion

CMBs, small hypo-intense foci with a maximum diameter of 10 millimeters, were �rst thought

clinically silent. They are now considered as an imaging marker of cerebral small vessel dis-

eases and their clinical involvement is increasingly recognized; they may be associated with an

increased risk of hemorrhagic stroke, ischemia and dementia such as Alzheimer's disease. How-

ever, their relation with pathology and its causality remains largely to be understood, partly

because of their tricky characterization in-vivo; developing new techniques for characterizing

CMBs in vivo thus appear of primary import. The routine use of the magnitude image of GRE

T2*-weighted sequences for vascular exploration has been shown to be far from optimal for

detecting CMBs. On this image, in-vivo detection su�ers from low speci�city, poor inter-rater

reproducibility and is biased by acquisition parameters. However, these focal hypo-intensities

result from local magnetic �eld inhomogeneities caused by their hemosiderin content and the use

of the phase image of the same sequence appears as interesting additional input, being directly

linked with �eld variations. This phase information has been introduced in the SWI technique

that has allowed better CMBs detection. This technique allows to enhance blood (as in blood

vessels) and its degradation products (as in CMBs) and has been shown to allow a better appre-

ciation of CMBs prevalence than T2* magnitude image. However, SWI is not always available

on MR scanners and thus not necessarily feasible in large multi-center clinical studies, whereas

routine GRE T2*-weighted sequences can be acquired on all systems, and phase images can

be saved along with magnitude images on nearly all systems. In the Memento cohort, image

147
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acquisition has been standardized as much as possible to minimize inter-site variability. How-

ever, di�erence between Philips and Siemens sequences parameters still remain because speci�c

characteristics of each manufacturer. The aim of this PhD was to develop a robust tool for the

automatic segmentation of cerebral microbleeds in a multi-center dataset in a clinical setting.

To do so, it was necessary both to better characterize CMBs, as a large number of false posi-

tives has been reported in the literature for segmentation methods, and to take into account the

multi-center aspect of the available dataset.

After introducing the historical context of CMBs and their underlying pathology the technical

aspect of their detection was developed. State-of-the art methods for their visual and automatic

detection were described and compared, and they revealed the need to improve the speci�city of

automatic techniques. This was the scope of the new robust and e�cient method developed in

the second chapter to extract usable information from phase images, as phase was expected to

allow re�ning the de�nition of CMBs on clinical images. This new technique for processing the

phase image from 2D GRE T2*-weighted sequence includes unwrapping and background �eld

correction by carrying out the key numerical operation (Laplace) in 2D on a slice-by-slice basis.

This tool was called 2DHF for 2D harmonic �ltering. This method results in internal �eld maps

(IFM) which reveal local �eld details linked with magnetic inhomogeneity within the region of

interest. The new technique was shown to better preserve the phase contrast than high pass

�ltering and better eliminate inter-slice e�ects compared to a method widely used for the same

purpose (PDF). The method was evaluated on both a synthetic phantom and multi-center 2D

datasets and compared with two state-of-the-art methods. It proved to yield consistent results

on synthetic images and to be applicable and robust on patient data. As a proof-of-concept, we

demonstrated that it is possible to �nd a magnetic signature of CMBs and CMCs on internal

�eld maps generated with 2DHF on 2D clinical datasets that gives consistent results with CT-

scans in a subsample of 10 subjects acquired with both modalities. This work focusses on 2D

GRE acquisition, which is widely used in clinics but all recent developments in the �eld of phase

imaging focus on 3D acquisition; this new implementation could thus allow a more systematic

use of phase images in clinical routine. The usefulness of this new information was evaluated

for clinical routine in the third chapter through systematic experiments to compare the ratings

obtained by trained observers with several image types, from T2* magnitude to IFM. 15 par-

ticipants from the MEMENTO multi-center cohort were selected, with a wide range of CMB
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number. After pilot experiments, T2* magnitude, Susceptibility Weighted Imaging (SWI) min-

imum intensity projection (mIP) on three slices and IFM were kept for the rating experiments.

Six raters of various background and expertise independently selected de�nite or possible CMBs

from a speci�c user interface that displayed subjects and images in random order. Rating results

were compared with respect to a speci�c consensus reference, on both a single lesion point of

view and a subject-type point of view. IFM yielded increased sensitivity and speci�city for CMB

identi�cation compared to T2* magnitude and SWI-mIP images. SWI increases the contrast of

CMBs, both revealing small CMBs and increasing the number of mistaken CMBs. In fact, it

reveals many �ow voids from small blood vessels and enhanced some hypo-signal artifact that

can be mistaken for CMBs. Thus, the sensitivity increase with SWI comes at the expense of a

decrease in speci�city. Moreover, SWI enhances the blooming e�ect compared with magnitude

images, which can lead to an over-estimation of the CMB extent. Finally, Inter-rater variability

was decreased with IFM when identifying subjects with numerous lesions, with only a limited

increase in rating time. IFM thus appears as an interesting candidate to improve CMB identi�-

cation in clinical setting. A proof-of-concept was �nally presented for designing a segmentation

method that would make use of robust features on several complementary aspects (intensity,

shape and susceptibility). The conclusion of the comparison experiments was used to de�ne the

features, to take advantage of each image type. Candidate points for CMBs are �rst selected and

then classi�ed using multi-contrast features to discriminate CMBs from non-CMBs points. The

method was implemented and validated on the �fteen participants from the comparison study.

First experiments showed very promising results regarding the decrease of false positives while

keeping a low false negative rate. Further validation is needed on a larger dataset to validate

this �nding.

Perspectives

This PhD addressed three main topics for which further developments could be considered. The

�rst topic is related to the characterization of CMBs using MR phase images on a multicenter

dataset and was addressed by designing, implementing and evaluating the 2DHF method. This

method proved e�cient for CMB characterization or further application in vascular imaging.

However, this characterization remains sensitive to the choice of echo time, as it a�ects the size

of the signal void area around each CMB and size measurement may still not be relevant on
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IFM to fully characterize CMB burden. More advanced tools, such as Quantitative susceptibility

Mapping (QSM) (more detailed in Appendix 2), aim at quantifying susceptibility variations and

may present a good tool for CMBs characterization. In parallel with the work described here, we

investigated the feasibility of solving the ��eld to source� inverse problem from IFM generated by

2DHF method on our multicenter dataset, as working on susceptibility �sources� may overcome

the blooming e�ect issue and make it possible to access to the real size of CMBs, both for cross-

study comparisons and robust longitudinal data analysis. In fact, the dipole deconvolution in

QSM can theoretically eliminate the blooming artifact when proper prior information is used,

such as morphology derived from images with no or little blooming artifact. Quantitative aspects

of CMBs characterization are shortly described in Appendix 2; preliminary results were obtained

during the internship of Kanza Dekkiche where we evaluated and compared the state-of-the-art

QSM methods on multi-center datasets. In fact, the main issue for QSM maps reconstruction is

to solve an ill-posed inverse problem; to do so, priors are introduced, such as regularization. The

issue of regularization parameter setting for multicenter dataset was investigated to overcome

center/machine variabilities, but this evaluation needs to be further developed. Moreover, QSM

is inherently a 3D problem and further analyses are needed to validate it in the 2D context.

Liu et al in [Liu et al., 2012] retrospectively analyzed 40 CMBs detected in 10 patients; they

compared the e�ciency of QSM, R2* map, T2*weighted magnitude and SWI for CMB detection

on an advanced 3D multi-echo spoiled gradient echo sequence in order to investigate whether

QSM can overcome the variability due to TE modi�cations for measuring CMB burden. This

study showed that the total susceptibility of a CMB is an intrinsic physical property and is

not related with echo time; this conclusion is in accordance with previous phantom and ex vivo

validations in which QSM had proven to be e�cient to accurately quantify the amount of iron.

QSM may thus be the most relevant direction for future work for better characterizing CMBs.

However, 3D multi-echo imaging may be crucial to obtain an even better sensitivity and

speci�city for CMBs identi�cation, but remain challenging in multicenter context. Therefore, as

a second topic, I was part to the CATI quantitative imaging working group aiming at optimizing

a new 3D multi-echo T2*-weighted GRE sequence on 3T systems from the three main manufac-

turers. This sequence was designed to obtain both reliable R2* maps and better characterization

for CMBs. Its principle consists of acquiring a series of T2*-weighted images (magnitude and

phase) using the same TR but a series of TE. Previous studies showed that, by using more
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adapted methods for GRE phase with multiple TE, �eld inhomogeneity artifact could be re-

duced further while preserving contrast elsewhere in the image. This kind of sequence makes

it possible to accommodate or correct air/tissue interfaces. High bandwidth imaging avoids

geometric distortion, and multi-echo data o�er a means to ideally unwrap phase data on a voxel

by voxel basis. Consequently, QSM on this type of data would yield more accurate results than

2D single echo acquisition. Datasets are being acquired with this sequence for three studies

managed by the CATI, and a speci�c one focuses on vascular abnormalities in ageing. Fur-

thermore, multi-echo 3D GRE imaging may o�er a means to image the entire vascular system,

including arteries and veins alike. The �eld is still developing, and there are hints that tech-

nical advances in magnet homogeneity, gradient strengths, and faster imaging methods such

as parallel imaging techniques may make it possible in the future. The third topic raised by

this PhD is to further develop the automatic segmentation tool for CMBs and to validate it

on a large multicenter dataset. The method presented above is a proof-of-concept applied on

�fteen participants; a larger validation with more participants is thus needed. Even though the

proof-of-concept described using two steps seems adapted for CMB identi�cation, both steps

could be further improved by increasing the sensitivity of the �rst step and the speci�city of

the second step. Thresholds may not be statistical but inspired from the magnetic signature of

CMBs, for example. An �a contrario� approach may also be used for initial candidate selection.

In fact, this probabilistic approach aims at identifying signal outliers in a given background.

For the classi�cation step, the method needs to be extended to include more local and global

multi-contrast features.

� mIP-SWI yields interesting information to di�erentiate CMBs from elongated veins, and

a �mIP-feature� should be de�ned.

� CMBs magnetic signature on IFM was not yet used. It is a de�ned as a sign inversion

in sagittal view. Intensity pro�les measured along several directions in the sagittal plane

around candidate voxels could be used to de�ne speci�c features. The dipolar pattern with

ring-like e�ect would characterize a CMB. A multi-scale correlation with the response of

a unit dipole may also be a good discriminant.

� Feature derived from T2-weighted image intensity may make it possible to exclude hyper-

intensities and discriminate cavernous malformations.
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� QSM features may straighten the segmentation tool with a direct insight to the real extent

of CMBs.

� QSM features may also help di�erentiating CMBs from other rare mimicking lesions such

as brain capillary telangiectasia (small, asymptomatic low �ow vascular lesions of the

brain)

Regarding the classi�cation method, features were not selected to keep only the most discrim-

inant features; a features selection step could be undertaken to use only most discriminant

features and thus strengthen the generalization of the method. Other classi�ers need to be in-

vestigated when features normalization and selection will be embedded. The automatic identi�-

cation method will also have to be evaluated and adapted for 3D multi-echo GRE T2*-weighted

images.

Finally, the aim of the PhD was to add a new service to the CATI portfolio, by reliably

assessing the number of CMBs. However, an automatic identi�cation method could allow further

developments and analysis. The �rst one could be related with the rating scales, MARS and

BOMBS, that were proposed in the literature, as described in chapter 1. These scales both embed

localization characteristics, as the clinical relevance of CMBs has been shown to be related with

their localization. The automatic identi�cation method would yield an image with voxels labelled

as �de�nite CMBs� and �possible CMBs�, and a straightforward extension would be to combine

it either with a registered atlas or with a segmentation method to create an automatic report

corresponding to the rating scales. The second issue is related with WHASA, another software

that has been developed in the Aramis team by Thomas Samaille and that aims at segmenting

White Matter Hyper intensities in ageing subjects. In fact, some questions were raised about

the combination of the presence or absence of cerebral microbleeds and white matter hyper

intensities and it was shown that these combinations are a risk factors for subsequent recurrent

stroke types [Naka et al., 2006]. Therefore, an automatic identi�cation and evaluation of both

lesions will help further analysis and understanding of their underlying association.

* * *
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APPENDIX

Appendix 1: How to simulate internal �eld map giving a susceptibility

distribution

The forward approach mentioned in the numerical simulation section chapter 2 consists of the

calculation of the internal �eld map and complex signal from a created susceptibility distribution

as illustrated in the �gure below:

Figure 5.0.1: Forward approach to simulate internal �eld map, background �eld map, complex
signal from a known susceptibility distribution as described in Salomir et al. [2003], Marques
and Bowtell [2005].

Our experiment details were as follow:

1. Head simulation: An ellipsoid within a susceptibility of -9 ppm (part per million) is �rst

created (main axis dimensions were 75 mm (in head-foot direction), 100 mm (in right-left

direction) and 125 mm (in anteroom-posterior direction).

2. Air/tissue interfaces: Two small ellipsoids were removed, from the initial ellipsoid simu-

lating the head, to simulate the strong e�ects that can be observed close to ear canals

(dimension 5x10x16mm).
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3. Small structures simulations : Multiple dipole inclusions were embedded in the central

slice as described :

a) Paramagnetic dots in the left hemisphere

b) Diamagnetic dots in the right hemisphere.

4. Spatial resolution was chosen as 1x1x2.4mm.

5. The reconstruction matrix was chosen to be 210x210x256

6. The total �eld is created by the susceptibility distribution and computed using the forward

approach [Marques and Bowtell, 2005, Salomir et al., 2003] : In Fourier domain, Field

variation is related to susceptibility by

4B(k) = χ(k) ·D(k) (5.0.1)

k denotes the spatial frequency coordinates, and D is the expression of a unit dipole kernel

in Fourier domain, given by

D(k) =
1

3
− k2

z

k2
(5.0.2)

k2 = k2
x + k2

y + k2
z , knowing χ and D, the �eld can be calculated as

4B(r) = IFFT (χ(k) ·D(k)) (5.0.3)

.

7. Internal �eld of reference was obtained by repeating the total �eld calculation in the same

numerical phantom but without simulating the �air cavities� (without step 2).

8. Complex MRI data simulation:

a) Converting magnetic �eld to phase (ϕ = γ×B0×TE×4B(r)) with γ the gyromag-

netic ratio of hydrogen nucleus, B0 = 3T and TE = 20ms.

b) 2kπ was added to generate phase wraps.

c) In order to mimic the 2D GRE T2*-weighted scans :

i. Random noise was generated from a normal distribution and added on both

real and imaginary components, assuming SNR=30 (for magnitude)which corre-

sponds to experimental values.
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ii. A random constant within slice gradient was added to each slice to mimic the

observed slice-to-slice inconsistency.

Figure 5.0.2: simulation illustration

Appendix 2: Quantitative susceptibility mapping: investigation in a

multi-center context

Context

The aim of this work is to investigate the feasibility of the use of IFM obtained by 2DHF to map

the magnetic susceptibility within the human brain. QSM provides a novel contrast mechanism

in which the voxel intensity is linearly proportional to the underlying tissue apparent magnetic

susceptibility. Several methods have been proposed in the literature to quantify susceptibility

using T2* weighted GRE sequence and the main technical challenge is to choose the suitable

method to solve the ill-posed problem of inverting the �eld maps to reconstruct the susceptibility

maps.

The local �eld δB induced by local sources is given by the convolution of the volume sus-

ceptibility distribution χ with the dipole kernel d:

δB = d⊗ χ (5.0.4)

This spatial convolution can be expressed as a point-wise multiplication in Fourier domain:

∆B(k) = D(k) · χ(k) (5.0.5)

where k denotes the spatial frequency coordinates andD is the response of a unit dipole called

the green function. This Fourier expression provides an e�cient way to predict the susceptibility

distribution for a known local �eld variations:
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χ(k) =
∆B(k)

D(k)
(5.0.6)

where D is given by

D(k) =
1

3
− k2

z

k2
(5.0.7)

D equals zero at a pair of cone surfaces at the magic angle (θ = 54°) with respect to B0.

This cone is illustrated in Figure 5.0.3.

Figure 5.0.3: A visualization of the cone in Fourier domain.

Susceptibility distribution is, thus, under-determined at the spatial frequencies on the cone

surface, which often leads to severe streaking artifacts in the reconstructed susceptibility distri-

bution.

The truncated K-space division

The �eld-to-source inverse problem can be solved by several methods; the truncated K-space

division (TKD) [Shmueli et al., 2009] and the Morphology Enabled Dipole Inversion (MEDI)

[de Rochefort et al., 2010b].

The under-determined data in Fourier domain is only at the location of the cone and its

immediate vicinity. For this region in k-space, TKD suggests to set spatial-frequencies of the

dipole kernel to a pre-determined non-zero value for the division. The choice of due to the

fact that TKD method only requires a single echo acquisition, and bene�ts from the ease of
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implementation as well as the fast calculation speed. However, streaking artifacts are frequently

present in the QSM and the susceptibility value is underestimated. The used regularized �lter

is de�ned by

D−1 =


1
Th |D| < Th

1
D |D| > Th

(5.0.8)

where Th is the small truncation value.

The Morphology Enabled Dipole Inversion

MEDI aims to solve the ill conditioned problem taking into account a prior information extracted

from the magnitude image; edges that arises from the underlying change of tissue type, are the

same cause for the change of susceptibility. A regularization is needed to enforce the smooth

susceptibility distribution between edges. This observation is translated into mathematics in

MEDI by

min ‖W (Dχ− δB)‖22 + α2 ‖W0χ‖22 + β ‖W1Gχ‖22 (5.0.9)

The �rst term of the equation is the data �delity where the residual is weighted by the

matrix W that contains the inverse of the standard deviation of the noise measurement in

the magnitude image. In the second term, W0 is a mask used to impose proper boundary

condition. α is the regularization parameter of the second term. The third term corresponds

to Tikhonov regularization; the gradient operator applied to the susceptibility map is used to

impose susceptibility distribution to have the same edges as magnitude image. W1is a weighting

matrix to smooth the solution with respect to gradient image. This minimization is performed

using the conjugate gradient algorithm. More details of the method are available in [Li et al.,

2011, de Rochefort et al., 2010b].

Evaluation procedures

Both methods were validated on 3D data and both includes regularization parameter that needs

to be set. To do so, an investigation was underwent on numerical simulation and on real data

to determine the optimal values of regularization parameter for both method.
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To evaluate the quantitative error estimation of TKD method, the mean of reconstructed

susceptibility of each simulated structure was compared to its reference value in the initial

simulated susceptibility map, and the root mean square error to quantify the degree of alteration

due to the truncation of the dipole kernel. For MEDI method, besides the visual inspection, the

optimal regularization parameter was investigated using the Lcurve which plot the norm of the

Tikhonov solution with respect to its residual; the corner of the obtained Lcurve correspond to

the optimal regularization parameter for data.

Results

TKD was applied for di�erent truncation values Th=0.1, Th=0.2, Th=0.5 see Figure 5.0.4. For

small Th values, obtained susceptibility maps are blurred with streaking artifacts detectable

in the coronal and sagittal view, it alter the true susceptibility value. When increasing Th

value, the streaking artifact is attenuated as shown in Figure for Th=0.2 and Th=0.5. For

very large values of Th the susceptibility map is very smooth due to information loss induced

by truncation. Consequently, Th=0.2 was selected as it presents the compromise between the

under-estimation of the quantitative values and the streaking artifacts blurring the images. TKD

allows to reconstruct QSM in 2.97 s.

Figure 5.0.4: TKD on real data acquired from Siemens MR Scanner for truncation values Th
a)Th=0.1, b) Th=0.2, c) Th=0.5.
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Figure 5.0.5 illustrates QSM obtained with di�erent β value for MEDI method. For better

analysis, the α parameter associated to the second term that imposes proper boundaries, was

removed. Lcurve analysis allowed to select the regularization parameter of MEDI to be β = 10;

corresponding to the corner of the Lcurve.

Figure 5.0.5: Susceptibility map obtained using MEDI on Siemens data a) for regularization
Parameterβ = 1, b)β = 10, c) β = 100.

Conclusion

This study demonstrated that MEDI is more accurate than TKD method on multi-center

dataset. These results are preliminary and need further investigation on a large dataset to

be con�rmed. A more thorough quantitative analysis of brain deep structures, with known iron

distribution, is also recommended for more accurate evaluation.

Appendix 3: Pilot experiment

A pilot experiment was �rst carried-out in order to evaluate the experiment settings: number

of subjects, image types and the speci�cally designed Graphical User Interface (GUI) built with

GUIDE in MATLAB. This was conducted by an experienced neuro-radiologist who selected

the image types to be considered. Possible image types included: T2* magnitude, IFM and
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Figure 5.0.6: Number of detected CMBs for the 15 subjects for each rater and �nal consensus
during the consensus reference building-up.

SWI minimum intensity projection (mIP) on n slices (n = [2, 3, 4]) and QSM calculated as

in [de Rochefort et al., 2010a]. 15 subjects proved feasible and T2* magnitude, SWI-mIP on

three slices and IFM were kept for the comparison experiments and the GUI was �nalized as in

Figure 3.2.1 and Figure 3.2.2. This evaluation GUI allows for displaying the overall 45 images,

randomized on subjects and image types in order not to bias the comparison.

Appendix 4

On subject-type point of view, Figure 5.0.6 illustrates the consistency of the three groups as

determined by the two raters and the consensus reference.

Appendix 5

Table 5.0.1 presents the rating results for all detected CMBs for each subject group (details of

Table 3.3.4).
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