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members of the dissertation committee, Kevin Ruddick, François Schmitt and Juliette Lambin
for evaluating this work.

The colleagues of the LOG have also greatly contributed to this work thanks to their
good advices, collaboration and friendship. My special thanks go to Xavier, David, Séverine
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Abstract

To acquire marine parameters from remote sensing ocean colour data, the sensor-measured sig-
nal needs to be corrected for the atmospheric contribution. Indeed, the solar radiation reflected
by air molecules and atmospheric aerosols is significant in the sensor bands of interest for ocean
colour applications. The removal of the atmospheric contribution is called the atmospheric cor-
rection (AC). In open ocean waters, the AC relies on the assumption that the water is totally
absorbent in the near infrared (NIR) part of the spectral region, allowing to retrieve the atmo-
spheric contribution and to extrapolate it to the visible spectral range, and thus to determine
the marine signal that contains the information on the optical properties of seawaters. How-
ever, this assumption is not valid in highly productive and turbid coastal waters. Hence, AC
approaches for coastal waters need to rely on alternative assumptions. This Ph.D. thesis has
as main objective to validate and improve these AC methods developed for contrasted coastal
waters, with a focus on MODIS Aqua images. First, a validation and comparison of existing AC
methods, relying on diverse assumptions and methods, is performed. Therefore, four commonly
used AC methods are selected, (1) the standard NIR AC approach of NASA, (2) the NIR sim-
ilarity spectrum AC approach including assumptions of spatial homogeneity in the water and
aerosol reflectance, (3) the switching algorithm using the short wave infrared bands for AC in
highly turbid waters, (4) an Artificial Neural Network algorithm. With the help of a validation
exercise based on in situ data and as a function of the water type, several areas of improvement
are delineated, including the use of spectral relationships to constrain NIR-modelling schemes.
Modified NIR-modelling schemes are suggested for the standard NASA and NIR similarity spec-
trum AC methods. Both are forced with globally valid spectral relationships. Sensitivity studies
and validation exercises, using MODIS-Aqua images in the Eastern English Channel/North Sea
and French Guiana waters, are conducted showing that the suggested modified NIR-modelling
schemes improve the estimations of the marine signal in contrasted coastal waters.
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Résumé

L’acquisition de paramètres marins à partir des données spatiales de la couleur de l’eau nécessite
l’élimination de la contribution de l’atmosphère au signal mesuré par le capteur. En effet,
la majorité du rayonnement solaire mesuré par les instruments optiques dans les longueurs
d’ondes qui intéressent la couleur de l’eau provient de la diffusion par les molécules de l’air et les
aérosols atmosphériques. L’élimination de la contribution de l’atmosphère est appelée correction
atmosphérique (CA). Pour les eaux claires, les méthodes de CA supposent une réflectance marine
nulle dans le proche infra-rouge (PIR). Ceci permet d’estimer la réflectance de l’atmosphère et
de l’extrapoler vers les bandes du visible, et donc de déterminer le signal marin qui contient
les informations sur les propriétés optiques des eaux marines. Cette hypothèse n’est cependant
pas vérifiée pour les eaux turbides, qui représentent la quasi totalité des eaux côtières. Par
conséquent, de nombreux algorithmes de CA ont été développés pour les eaux côtières incluant
des hypothèses alternatives. L’objectif de ce travail de thèse est de valider et d’améliorer ces
méthodes de CA pour les images MODIS Aqua. Pour cela, diverses approches de CA développées
pour les eaux côtières ont été comparées et validées: (1) l’algorithme standard de la NASA, (2)
le ‘NIR similarity spectrum algorithm’ qui inclut des hypothèses d’homogénéité spatiale des
réflectances marines et atmosphériques, (3) l’algorithme qui utilise les bandes dans l’infrarouge
moyen pour la CA dans les eaux très turbides, et (4) un algorithme utilisant un réseau de
neurones artificiels. L’exercice de validation à partir de données in situ, et en fonction des types
d’eaux, a permis d’identifier différentes pistes d’amélioration pour l’estimation du signal marin.
L’une d’entre elles comprend l’utilisation de relations spectrales pour forcer les modèles de
réflectances marines utilisés par les algorithmes de CA pour estimer le signal marin dans le PIR.
Des modifications ont été apportées aux modèles de réflectances marines de l’algorithme standard
de la NASA et du ‘NIR similarity spectrum algorithm’. Chacun des modèles a été forcé avec des
relations spectrales préalablement validées grâce à des données globales. Une étude de sensibilité
et une validation de ces algorithmes modifiés à partir de données MODIS-Aqua dans la Manche
Orientale/Mer du Nord et la Guyane Française ont démontré que les modifications suggérées
amélioraient les estimations du signal marin dans les eaux côtières optiquement complexes.
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x Résumé



Introduction

Oceans constitute nearly 70% of Earth’s surface and hold an important population of aquatic
microscopic plant-like organisms, the so-called phytoplankton. These marine organisms, which
represent the first step in the marine food web, act as a biological pump of the atmospheric
carbon by taking up carbon dioxide in the surface ocean and producing organic carbon through
the process of photosynthesis. Phytoplankton is considered to be responsible of approximately
half of the planetary primary production (Field et al., 1998; Behrenfeld et al., 2006) and plays
thus a major role in the ecosystem health and global climate processes as it partially regulates
the ocean processes acting as a sink and source of carbon and heat. Large scale factors, such as
climate, ocean circulation and water temperature variations, as well as changes in the vertical
stratification of the water column, affect availability in light and in-water constituents and
subsequently phytoplankton growth and distribution (Behrenfeld et al., 2006). Hence, an in-
depth understanding of the oceans and these marine populations is essential to explain the
global climate and its main changes due to anthropogenic factors. Long-term and global views
of phytoplankton abundance are thus crucial and may only be provided by satellite ocean colour
data.

Space-borne ocean colour images allow to monitor the oceans with high spatial (between
300 m and 1 km) and temporal (every 2-3 days) resolutions. Through these data, open oceans
have been extensively observed and are today relatively well understood. However, this is (still)
not the case for coastal waters presenting complex optical properties and high spatio-temporal
variability in physical, biological and geological processes. Though, these highly dynamic envi-
ronments, representing only about 7% of the total ocean surface, are among the most productive
natural systems on Earth and encompass important economical and environmental concerns
(Nellemann et al., 2009). They produce up to 40% of the marine biomass inventoried today and
50% of the worlds fisheries (Nellemann et al., 2009). Coastal land also accommodates more than
half of the worlds human population and is expected to be even more densely populated in the
future. This explains the need for frequent accurate high spatial and temporal resolution ocean
colour data in coastal waters. This need is even greater since, based upon current scientific
evidence, the Intergovernmental Panel on Climate Change predicted a significant increase in the
global temperature during the 21st century. Indeed, global warming will create novel challenges
for coastal and marine ecosystems that are already stressed by many threats. In Europe, the
Marine Strategy Framework Directive, adopted in 2008 as a complement of the European Wa-
ter Framework Directive, came into force to protect more effectively the marine environment
from, among others, the impoverishment and degradation of the biological diversity and the
modification of its structure, the disappearance of habitats, the contamination by dangerous
and nutritive substances and the repercussions of climate change. To follow these threats and
changes and to understand their evolution, substantial effort is required in observations and
surveys of the marine waters. This can be achieved using satellite ocean colour images, as water
constituents concentration maps, water quality surveys, environmental impact assessments, or
potential fishing maps, are all examples of outputs fully or partially derived from these data.
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2 Introduction

The first satellite dedicated for ocean colour missions was the NASA’s Coastal Zone Color
Scanner (CZCS), launched in 1978. This satellite, considered as a one-year proof-of-concept,
was a lot more profitable than expected and lasted for about 6 years (1986). The success of
the CZCS mission was the beginning of a long series of ocean colour satellite missions which
revolutionised the view of the marine biomass. Well-known ocean colour sensors are, among oth-
ers, the Sea-viewing Wide Field-of-view Sensor (SeaWiFS, launched in 1997 and operated till
2010), the POLarization and Directionality of the Earth’s Reflectances instruments (POLDER-
1 and 2 operating from 1996 to 1997 and from 2002 to 2003, respectively), the still operat-
ing Moderate Resolution Imaging Spectroradiometers Terra (MODIS-Terra, launched in 1999)
and Aqua (MODIS-Aqua, launched in 2002), the Medium Resolution Imaging Spectrometer
(MERIS, launched in 2002 and operated till 2012), the Geostationary Ocean Color Imager
(GOCI, launched in 2010 and being the first ocean colour sensor on a geostationary orbit), the
Hyperspectral Imager for Coastal Oceans (HICO, launched in 2009), and the recently launched
Visible Infrared Imager Radiometer Suite (VIIRS, launched in 2011).

The principal concept of ocean colour relies on the fact that the nature and concentration
of the water constituents affect the absorption and scattering of the incoming light and, subse-
quently, the colour of the ocean. Variations in the colour of the water thus reflects variations
in inorganic, organic, particulate and dissolved materials present in the water. For instance,
remote sensing ocean colour images can depict variations in total chlorophyll pigment concen-
tration (Chl), which preferentially absorbs red and blue light and scatters in the green spectral
region. Since Chl is used by phytoplankton to produce carbon photosynthesis, remote sensing
estimations of Chl concentrations are used as a proxy to evaluate the global phytoplankton
biomass and as input for models predicting primary productivity.

The processing of space-borne measurements to obtain information on the water column is
however not a trivial task. Indeed, a significant fraction of the sensor measured signal does not
carry any information about the water column and its constituents. About 90% of the sensor
measured visible reflectance originates from sunlight reflected by air molecules and atmospheric
aerosols. This percentage further increases in the near infra-red spectral bands. Accordingly,
to obtain accurate water signal measurements, and consequently accurate ocean colour derived
products, the contribution of the atmosphere needs to be removed. This process is called atmo-
spheric correction (AC). Unfortunately, despite the significant progress in ocean colour products
since the launch of the CZCS satellite, AC remains a difficult task. The acquisition of accurate
ocean colour data is even more challenging in coastal waters where the sensor measured signal
is affected by additional and diverse artefacts such as adjacency effects from nearby land, white-
caps from breaking waves, bottom reflectance over shallow waters, absorbing and non-absorbing
aerosols from anthropogenic origin.

Initially for the CZCS AC method, it was assumed that sea-water was totally absorbent
in the red spectral region allowing to derive the aerosol contribution in this spectral domain
(referred to as the black pixel assumption). With the launch of the second generation satellite
sensors (e.g., SeaWiFS, MERIS, MODIS), supplied by additional near infra-red (NIR) spectral
bands, the black pixel assumption was applied to the NIR spectral domain. However, in the red
and NIR spectral domain, the black pixel assumption breaks down in highly productive or turbid
coastal waters (Siegel et al., 2000). The application of the black pixel assumption in such waters
results in an overestimation of the aerosol contribution and, subsequently, in an underestimation
of the water reflectance. Hence, the black pixel assumption performs well in open ocean waters
(optically dominated by limited concentrations of algal particles), but generally fails in turbid
or highly productive waters.

This Ph.D. study focusses on the removal of the atmospheric contribution in optically
complex coastal waters requiring alternative assumptions to account for non-zero water leaving
reflectance in the NIR spectral region.

For the past ten years, numerous AC methods have been suggested for turbid and highly
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productive coastal waters. Some approaches attempt to model the water signal in the NIR
spectral region (e.g., Arnone et al., 1998; Moore et al., 1999; Siegel et al., 2000; Ruddick et al.,
2000; Stumpf et al., 2003; Ruddick et al., 2006; Bailey et al., 2010) or applied the black pixel
assumption to short-wave infra-red (SWIR) bands (e.g., Wang and Shi, 2005, 2007; Wang
et al., 2009). Others are based on different approaches including coupled ocean-atmosphere
optimization or inversion methods allowing to consider the aerosol and the water contribution
simultaneously and/or the signal over the entire spectral range (e.g., Gordon et al., 1997;
Chomko and Gordon, 1998; Chomko et al., 2003; Kuchinke et al., 2009a,b; Jamet et al., 2005;
Brajard et al., 2006a; Doerffer and Schiller, 2007; Schroeder et al., 2007; Doeffer and Schiller,
2008; Brajard et al., 2012). However, as suggested by numerous studies (e.g., Zibordi et al.,
2004b, 2006b; Mélin et al., 2005, 2007; Feng et al., 2008; Zibordi et al., 2009b; Mélin et al., 2011,
2013; Banzon et al., 2009; Jamet et al., 2011; Dogliotti et al., 2011), AC remains a critical step
in the processing chain of the satellite ocean colour images and improvement is still required.
This brings us to the motivations of the present Ph.D. study, that is to validate and improve
AC methods for satellite ocean colour images in optically complex coastal waters. The first
objective of this thesis is to conduct a comprehensive validation of commonly used AC algorithms
developed for turbid coastal waters and with a focus on MODIS Aqua images. Therefore, four
AC methods, presenting very different assumptions and/or approaches to compensate for water
signal in the NIR spectral domain, have been selected. Results and conclusions of this validation
are expected to highlight the impact of the different assumptions on the performance of the AC
and to aid movement towards possible approaches to further improve AC, which is the second
objective of this work.

The present manuscript is organized as follows:

The first chapter introduces the ocean colour concept and describes how incoming light is
attenuated as it travels down and upward in the water column. Chapter 1 also includes a short
description of the optical water type classification methods and, among others, the classification
scheme of Vantrepotte et al. (2012) which is used in this work to evaluate the limitations of the
AC methods as a function of the water type.

Chapter 2 focusses on the AC processes and briefly describes the radiative transfer equation
and aerosol models and products used for the AC of ocean colour images. A short overview of
the turbid water AC methods developed and published in the literature is also given followed
by a comprehensive description of the classic black pixel assumption AC algorithm and the four
turbid water MODIS Aqua AC methods validated in Chapter 4 (Ruddick et al., 2000, 2006;
Bailey et al., 2010; Schroeder et al., 2007; Wang et al., 2009).

Chapter 3 details the MODIS Aqua and in situ data used for the validation and improve-
ment of the AC methods. This chapter also illustrates the difficulty to acquire valid and accurate
in situ data by means of two closure exercises. The first closure exercise is part of a work re-
sulting from a cruise campaign (to which I had the chance to participate) across the southern
Atlantic and Pacific ocean. This work has been submitted recently to a peer-reviewed journal
(Rudorff et al., 2013). The second closure exercise is part of an on-line available report (Arel-
lano et al., 2011) conducted together with other Ph.D. students during the International Ocean
Optics Summer School in July 2011 at the Darling Marine Centre (Maine, USA).

Next, in Chapter 4, a global validation and inter-comparison exercise of the four turbid wa-
ter MODIS Aqua AC methods is conducted. This work resulted in a published paper (Goyens
et al., 2013c) included in Chapter 4 together with some complementary results. This global val-
idation gives rise to several ideas of possible improvements for AC which brings us to Chapter
5. Indeed, in Chapter 5, the potential of spectral relationships to improve the STD and MUMM
NIR-modelling schemes is investigated. Spectral relationships are defined in this work as rela-
tions between the water signal at two or more wavelengths, reflecting the spectral dependence
of the marine signal itself.



4 Introduction

Chapter 5 includes two published papers. The first one reviews and validates red and NIR
spectral relationships encountered in the literature (Goyens et al., 2013a), and the second one
investigates the performances of the spectral relationship-forced NIR-modelling schemes based on
sensitivity studies (Goyens et al., 2013b). In addition to the papers, three complementary studies
are conducted. First, additional red-NIR and blue-green spectral relationships are suggested.
Second, I attempt to confirm the empirically retrieved spectral relationships with a theoretical
basis in order to investigate if the relationships satisfy all water types. Third, two additional
modified NIR-modelling schemes are suggested and validated.

In the last chapter, the newly suggested STD and MUMM-based NIR-modelling schemes
are evaluated with in situ-satellite match-up pairs. Several case studies are discussed including
a visual analysis of the resulting ocean colour images.

Finally, general conclusion and perspectives are outlined.



- Chapter 1 -

Ocean colour

1.1 Seawater constituents and ocean colour

The principal concept of ocean colour relies on the fact that the nature and concentration of the
water constituents affect the absorption and scattering of the incoming light and, subsequently,
the colour of the ocean. Variations in the water optical properties thus reflect variations in in-
water constituents. In seawater the most important coloured water constituents are phytoplank-
ton, suspended particulate matter (SPM), including inorganic and organic particles, coloured
dissolved organic matter (CDOM) and the water itself, including dissolved salt particles and
air bubbles. Phytoplankton concentrations are usually derived from the main optically active
phytoplankton pigment, chlorophyll a (Chla).

Figure 1.1 illustrates the variations in ocean colour according to the in-water constituents.
For instance, Chla pigments significantly increase blue and red light absorption and backscatter
only a very small amount of visible light resulting in greenish water colours (Fig. 1.1). In turbid
waters, backscattering appears to be more important and increases with an increase in SPM
concentrations, especially in the red and near infra-red (NIR) spectral domain. Accordingly,
water masses dominated by SPM appear more brownish (Fig. 1.1). In CDOM dominated waters,
significant absorption in the visible spectral domain results in very dark water colours.

Figure 1.1: Different water colours reflect variations in in-water constituents and concen-
trations. Turbid plume penetrating ocean waters dominated by phytoplankton along the coastal
region of French Guiana (left). In situ water sensors over brownish water masses dominated by
high SPM concentrations in French Guiana (centre) and over phytoplankton dominated greenish
water masses in the Southern Atlantic Ocean (right).

In marine optics, water masses are described by two categories of water optical properties,
the Inherent and Apparent Optical Properties (IOPs and AOPs, respectively). Light absorption
and scattering by the water column, independent of variations in the ambient light field, are

5
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described by the IOPs. These are thus exclusively determined by the nature and the concentra-
tions of the constituents present in the water column and the water itself (Preisendorfer, 1961).
Beside absorption and scattering, IOPs also include the volume scattering phase function, the
refraction index, the beam attenuation coefficient and the single-scattering albedo. IOPs are
briefly described in the next section (Section 1.2).

The AOPs are the properties determined by the angular distribution of the incoming light
field as well as by the concentration and nature of the in-water constituents. AOPs depend
thus both on the medium (described by the IOPs) and on the ambient light field. Common
AOPs are, among others, the diffuse attenuation coefficient, the remote sensing reflectance
and the water-leaving reflectance or radiance. Ideally, AOPs should vary only slightly with
external environmental changes, but enough from one water body to the next to be useful in
characterizing the different optical properties of the two water bodies (Mobley, 1994). AOPs
are further described in Section 1.3.

IOPs and AOPs are closely related and need to be both investigated to understand the
optical processes determining the ocean colour. Linking AOPs and IOPs is possible with the use
of radiative transfer theory inversion algorithms, allowing to derive bio-geochemical parameters
from remotely sensed marine reflectances. Section 1.4 shortly describes the link between IOPs
and AOPs.

Finally, in the last section of this chapter the concept of optical water type classification
is discussed. Optical water type classification schemes separate water masses according to their
optical properties, for instance, based on the information provided by their remote sensing
reflectance spectra (Moore et al., 2001; Lubac and Loisel, 2007; Moore et al., 2009; Vantrepotte
et al., 2012). This is particularly relevant to interpret ocean colour remote sensing signals,
especially in optically complex waters where biological processes significantly vary in space
and over time and where both IOPs and AOPs are influenced by multiple and non-exclusive
biological, chemical and physical processes. In the present PhD project, such a classification
scheme is used to evaluate the performance of the atmospheric correction methods as a function
of the optical water type, explaining the need to introduce the concept of optical water type
classification in this introductory chapter.

1.2 Inherent optical properties

When light penetrates a volume of seawater, photons can either be absorbed and/or scattered
by the water particles and molecules. Considering a small volume of water of thickness ∆r, illu-
minated by a collimated beam of monochromatic light of spectral radiant power at a wavelength
λ, Φi(λ) (W nm−1) (Fig. 1.2), some part the incident power Φi(λ) will be absorbed within the
volume of water, Φa(λ), while another part, Φs(λ, ψ), will be scattered out of the beam at an
angle ψ.

The remaining power Φt(λ) is transmitted through the volume with no change in direction.
When no photons undergo a change in wavelength during the scattering process (i.e., in absence
of inelastic scattering, see later for more details), energy is conserved so that:

Φi(λ) = Φa(λ) + Φs(λ) + Φt(λ) (1.1)

We can thus define the absorptance, A(λ), and scatterance, B(λ), as the fraction of incident
power that is absorbed within the volume, and, as the fractional part of the incident power that
is scattered out of the beam into all directions, respectively (Mobley et al., 2011):

A(λ) =
Φa(λ)

Φi(λ)
(1.2)
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Figure 1.2: Schematic representation of the process of absorption, scattering and transmission
(after Mobley et al. (2011))

B(λ) =
Φs(λ)

Φi(λ)
(1.3)

The absorption coefficient, a(λ), and the total scattering coefficient, b(λ), are then defined
as the spectral absorptance and scatterance per unit path-length in the medium, respectively:

a(λ) = lim
∆r→0

∆A(λ)

∆r
=
dA(λ)

dr
(1.4)

b(λ) = lim
∆r→0

∆B(λ)

∆r
=
dB(λ)

dr
(1.5)

The sum of a(λ) and b(λ) is the total volume attenuation coefficient c(λ), defining the rate
of incoming light, at a given wavelength λ, attenuated by the water mass per unit of path-
length (here in m−1). Hence a(λ) describes the amount of photons converted into other forms of
energy (e.g., heat, chemical energy) while b(λ) describes the amount of photons redirected into a
range of directions at the same wavelength as the incident photons (elastic scattering). Another
secondary scattering process is the inelastic scattering which redirect photons with a different
wavelength (i.e., different frequency and energy). Most common inelastic scattering processes
in ocean optics are the fluorescence emissions from CDOM and phytoplankton pigments and
the Raman scattering process by the water molecules. The former is more significant in coastal
waters while the latter gets more important in oligotrophic waters. For simplicity most ocean
colour models define reflected radiation in absence of inelastic scattering. Note however that such
processes may be significant in certain cases (see for instance the impact of Raman Scattering
on in-water in situ measurements in Section 3.3.3.1 and in Loisel and Stramski (2000)).

Because b(λ) results from a change in the propagation of the photons, it is thus the in-
tegration of the volume scattering function, β(ψ) (in m−1 sr−1), over all solid angles, with ψ
being the scattering angle. However, satellite remote sensing only records the reflected light
field. Therefore, in ocean colour models, the backscattering coefficient, bb(λ) (in m−1), is often
used. bb(λ) is defined as the integration of β(ψ) over all backward directions.

For seawater, a(λ) and bb(λ) (or b(λ)) can be written as an addition of the contribution
of the different optically significant in-water constituents, namely, phytoplankton, non-algal-
particles, CDOM and the water itself (denoted with the subscripts Φ, NAP, CDOM and w,
respectively) (Eqs.(1.6) and (1.7)). According to the particular wavelength dependencies of the
constituents and their concentrations, the different components will contribute more or less to
a(λ) and bb(λ). Because the scattering by algal and non-algal particles are spectrally similar,
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these are often combined as the scattering of particulate material (denoted with the subscripts
p).

a(λ) = aw(λ) + aΦ(λ) + aNAP (λ) + aCDOM (λ) (1.6)

bb(λ) = bbw(λ) + bbp(λ) (1.7)

1.3 Apparent optical properties

Remote sensing reflectance, Rrs(λ), and water-leaving radiance, Lw(λ, ψ, θ, θ0), or reflectance,
ρw(λ), are common AOPs derived from satellite and in situ measurements and are used to
estimate the optical properties of the seawater. To understand the definition of these AOPs it
is necessary to first define the sea-surface irradiance reflectance, R(λ). R(λ) is the ratio of the
down-welling irradiance, Ed(z, λ), and the up-welling irradiance, Eu(z, λ) (expressed in W m−2)
(Fig. 1.3). The former is the amount of incoming light incident on the upper face of a unit of
sea-surface at depth z and wavelength λ. The latter is the amount of light at wavelength λ on
the lower face of the unit area at depth z. The rate of decrease in Ed(z, λ) and Eu(z, λ) with
depth are defined as the diffuse attenuation coefficient for downwelling irradiance, Kd(z, λ), and
for upwelling irradiance, Ku(z, λ), respectively (expressed in m−1).

Both Eu(z, λ) and Ed(z, λ) significantly vary according to factors external to the water
body which are not directly related to the incident light field (e.g., cloud cover, wind speed and
sea surface roughness). However, per definition, R(λ) is a ratio of irradiance quantities partly
cancelling the impact of these external factors.

Figure 1.3: Illustration of light rays contributing to the irradiance reflectance R(λ) (left) and
to the remote sensing reflectance, Rrs(λ) (right) (picture adapted from Mobley et al. (2011)).

In satellite remote sensing, the sensor detects only the fraction of Eu(z, λ) in the viewing
direction θ and ψ (Fig. 1.3), namely, the radiance L(z, λ, ψ, θ, θ0) (expressed in W m−2 sr−1 and
with θ0 being the sun angle and ψ the azimuthal angular distance from the sun’s direction).
L(z, λ, ψ, θ) is thus the scattered light flux leaving a surface at depth z in the direction ψ and
θ per unit solid angle, dω, and per unit area. When evaluated just above the sea-surface,
L(z, λ, ψ, θ, θ0) becomes the water-leaving reflectance Lw(λ, ψ, θ, θ0). With the sun at zenith
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and a nadir viewing instrument, in absence of atmospheric loss and considering the earth at a
mean distance from the sun, the water-leaving radiance Lw(λ, ψ, θ, θ0) is called the normalized
water leaving radiance Lwn(λ) (Gordon and Clark, 1981; Morel and Gentili, 1996; Morel et al.,
2002) (sometimes referred to as the exact normalized water-leaving reflectance). An operational
definition of the normalized water leaving radiance is also used in ocean colour remote sensing.
This latter definition consists to divide the measured radiance by the actual irradiance at sea
level, E+

d (λ) and to multiply it by the solar irradiance at the top op the atmosphere for a mean
sun-earth distance, F0(λ). With this operational definition, the water-leaving radiance is thus
normalized for the illumination conditions, however, only partly since the measured radiance
Lw(λ, ψ, θ, θ0) is not isotropic and will change in response to variations in illumination conditions
(including solar and viewing angles) in combination with the inherent optical properties of
the water. To remove this bi-directional effect, and thus produce the exact normalized water-
leaving reflectance, a correction factor need to be applied according to the illumination and
environmental conditions (including the sun and viewing angles, sea state and IOPs).

The water-leaving reflectance quantities are also often converted into remote sensing re-
flectance, Rrs(λ) (expressed in sr−1), or normalized water-leaving reflectance, ρwn(λ) (dimen-
sionless). These are the standard input to most models deriving bio-geochemical products.

For most ocean colour AOPs the depth z is defined just above or below the sea-surface. For
brevity, except when necessary for clarity, the z argument is therefore omitted or replaced by
a plus or minus symbol, for quantities measured just above or below sea-surface, respectively.
The notation n for ρwn(λ) is also dropped in this manuscript such that ρw(λ) indicates the
normalized water-leaving reflectance.

ρw(λ), Rrs(λ), Lw(λ, θ, φ, θ0) and Lwn(λ) are related to each other as follows:

ρw(λ) = π
Lw(λ, ψ, θ, θ0)

E+
d (λ)brdf(θ, θ0, ψ, τa,W, IOP )

(1.8)

= π
Lw(λ, ψ, θ, θ0)

F0(λ)t0(λ)cosθ0brdf(θ, θ0, ψ, τa,W, IOP )
(1.9)

= π
Lwn(λ)

F0(λ)
= πRrs(λ) (1.10)

with t0(λ) being the atmospheric diffuse transmittance in the incident direction θ0 (θ0 is
the solar zenith angle), and brdf(θ, θ0, ψ, τa,W, IOP ) is the bi-directional effect correction which
depends on the viewing angles θ and φ, the illumination conditions (with θ0 and the aerosol
optical thickness τa) and environmental conditions (including the sea state W and IOPs).

To link AOPs and IOPs it is necessary to convert reflectance, radiance and irradiance
quantities from just below to just above the sea surface, and inversely. These quantities differ
from each other because above-water measurements includes corrections for air-water interface
effects while these corrections are not applied to in-water measurements. When both above-
and in-water measurements are made with the same azimuth angle, subsurface up-welling water
radiance in the direction θ′ just beneath the sea-surface, L−u (λ, ψ, θ′, θ0), can be interpolated to
above-water radiance in the direction θ as follows (Gordon and Morel, 1983; Morel and Gentili,
1996; Mobley, 1999):

Lw(λ, ψ, θ, θ0) = L−u (λ, ψ, θ′, θ0)
1− ρf (θ′, θ)

n(λ)2
(1.11)

with n(λ) being the refraction index of the water and ρf (λ, θ, θ′), the Fresnel reflectance of
the surface as seen from the water side. For n(λ) equal to 1.34 and ρf (λ, θ′, θ) equal to 0.021,
and assuming a low spectral variation for both n(λ) and ρf (λ, θ′, θ) (hereafter referred to as
n and ρf (θ′, θ)), the ratio (1 − ρf (θ′, θ))/(n2) is often approximated by 0.544 (Austin, 1980;
Mobley, 1999).
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Similarly, above and below down-welling irradiance, Ed(λ) and E−d (λ), respectively, are
related to each other as follows (Morel and Gentili, 1996):

Ed(λ) = E−d (λ)
1− r̄R−(λ)

1− ρ̄(θ, θ′)
(1.12)

with r̄ being the coefficient of reflection of the up-welling irradiance from water to air,
and ρ̄(θ, θ′), the reflection coefficient for down-welling irradiance from air to water. R−(λ)
denotes the subsurface irradiance. It is a similar quantity as the above mentioned R(λ) but it
is measured just below the sea-surface and is defined as the ratio E−u (λ)/E−d (λ), with E−u (λ)
being the up-welling irradiance just below the surface.

Given Eq.(1.11) and Eq.(1.12), Rrs(λ) can be written in terms of below water remote
sensing reflectance, rrs(λ), as follows:

Rrs(λ) = <L
−
u (λ, ψ, θ′, θ0)

E−d (λ)
= <rrs(λ) (1.13)

with < being

< =
1− ρf (θ′, θ)

n2

1− ρ̄(θ, θ′)

1− r̄R−(λ)
(1.14)

< takes into account the reflection and refraction effects at the air-sea interface. If the
incident light is nearly normal to the mean sea surface, 1 − ρf (θ′, θ) and 1 − ρ̄(θ′, θ) are the
transmittance from sea to air and from air to sea, t(s, a) and t(a, s), respectively. Morel and
Gentili (1996) summarized the different possible ranges for the above quantities as follows: (1)
t(a, s) is 0.957 and varies slightly (≈ 3%) with sun elevation and atmospheric turbidity, (2) r̄,
the coefficient of reflection of the up-welling irradiance from water to air, is 0.489 and varies only
slightly with R−(λ), and, (3) R−(λ) is considered to vary between 0 and 6%. Hence, assuming
a mean R−(λ) of 3%, the term 1− r̄R−(λ) equals 0.985. The largest uncertainty relies on t(s, a)
which is highly dependent on the sea state and consequently on the wind speed. Considering
a perfectly flat sea, and thus very low wind speed, and an incident angle nearly normal to the
mean sea-surface, t(a, s) can be set equal to 0.979. Accordingly, < can be estimated as ≈ 0.529.
This approximation was also found to be valid for highly turbid waters dominated by suspended
sediments (Doxaran et al., 2002).

Lee et al. (1998a) suggested to rewrite Eq.(1.13) as follows:

Rrs(λ) =
t(a, s)t(s, a)

n2

R−(λ)

(1− r̄R−(λ))Q−(λ, θ′, ψ)
(1.15)

withQ−(λ, θ′, ψ) being the bidirectional function, defined as the ratio E−u (λ)/L−u (λ, ψ, θ, θ0).
Accordingly, the ratio R−(λ)/Q−(λ, θ′, ψ) equals rrs(λ). Rrs(λ) can thus be related to rrs(λ) as
follows:

Rrs(λ) =
t(s, a)t(a, s)

n2

rrs(λ)

(1− r̄Q−(λ, θ′, ψ)rrs(λ))
(1.16)

If the term r̄Q−(λ, θ′, ψ)rrs(λ) is ignored, the relation between Rrs(λ) and rrs(λ) becomes
a constant ratio (as approximated by Morel and Gentili (1996) and Doxaran et al. (2002) when
considering a perfectly flat sea and nearly normal incident angle). However, according to Lee
et al. (1998a) the term r̄Q−(λ, θ′, ψ)rrs(λ) might be important, especially in turbid and shallow
waters.

Based on radiative transfer simulations (RTE, see Section 2.2) performed with the Hy-
droLight model (Mobley, 1989; Mobley and Sundman, 2008), it was found that the factor
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t(s, a)t(a, s)/n2 equals 0.52 and r̄Q−(λ, θ′, ψ) equals 1.7 for a nadir viewing sensor and opti-
cally deep waters (Lee et al., 1998a,b, 2002). Accordingly, the conversion between above and
below remote sensing water leaving reflectance can be approximated by:

Rrs(λ) =
0.52rrs(λ)

(1− 1.7rrs(λ))
(1.17)

and inversely

rrs(λ) =
Rrs(λ)

(0.52 + 1.7Rrs(λ))
. (1.18)

1.4 Link between IOPs and AOPs

As mentioned earlier, AOPs depend on the distribution of the light field as well as on the
medium. IOPs and AOPs are thus closely related and the reflectance at the sea-surface can be
written as a function of a(λ) and b(λ) (Gordon et al., 1975; Morel and Prieur, 1977; Gordon and
Morel, 1983; Gordon et al., 1988). Based on a Monte Carlo study, Gordon et al. (1975) modelled
rrs(λ) with a polynomial function of a(λ) and b(λ). Because the first term of the polynomial
largely dominates, the polynomial function is simplified as follows:

rrs(λ) = C
bb(λ)

a(λ) + bb(λ)
(1.19)

where C depends on, among other things, the solar zenith angle. This relation was further
investigated (Morel and Prieur, 1977; Gordon and Morel, 1983; Gordon et al., 1988) leading to
the conclusion that the remote sensing reflectance, Rrs(λ), at the sea surface, can be expressed
as a function of the IOPs a(λ) and bb(λ), as follows:

Rrs(λ) = < f0(λ)

Q0(λ)

bb(λ)

a(λ) + bb(λ)
(1.20)

where f(λ, θ0, φ, IOP ) is a dimensionless coefficient reflecting the magnitude of the upward
flux depending on the solar zenith angle, the optical properties of the sea-water and the wave-
length λ. It relates the irradiance reflectance to the inherent optical properties. f0(λ) denotes
the particular case when the sun is at zenith (θ0 = 0). Q(λ, θ, θ0, φ, IOP ) is, as defined above,
the bidirectional function expressing the non-isotropic character of the light field. It defines
the direction of the upward flux. Q0(λ) denotes the particular case when the sun is at zenith
and with a nadir viewing instrument. The ratio f(λ, θ0, φ, IOP )/Q(λ, θ, θ0, φ, IOP ) accounts
thus for the spectrally-dependent, non-isotropic structure of the subsurface light field, which
is not addressed in other bidirectional reflectance corrections, and depends on sensor and so-
lar zenith angles, their relative azimuth angle, and in-water constituents. Q(λ, θ, θ0, φ, IOP ) is
minimal for nadir radiances (ranging from 3.2 to 3.9, Morel and Gentili (1996)) and increases
with an increase in Chla concentrations. The strongest variations in Q(λ, θ, θ0, φ, IOP ) accord-
ing to the sun angle, are observed in the red spectral region (≈ 670 nm) (Morel and Gentili,
1996). However, since f(λ, θ, IOP ) and Q(λ, θ, θ0, φ, IOP ) follow similar trends with changing
sun angles, the sensitivity of the ratio to sun zenith angles is significantly reduced. Typical
values for the ratio f(λ, θ0, φ, IOP )/Q(λ, θ, θ0, φ, IOP ) ranges from 0.08 to 0.12 sr−1 with mean
values of approximately 0.11 sr−1 (Gordon et al., 1988) and 0.13 sr−1 in sediment dominated
waters (Loisel and Morel, 2001). Except for very low Chla concentrations, where the wavelength
dependence of f(λ, θ0, φ, IOP )/Q(λ, θ, θ0, φ, IOP ) is more pronounced in the green and red re-
gion of the spectrum due to the contribution of Raman scattering, the spectral dependence of
the f(λ, θ0, φ, IOP )/Q(λ, θ, θ0, φ, IOP ) ratio is considered as relatively small (Loisel and Morel,
2001; Morel et al., 2002; Doxaran et al., 2003; Ruddick et al., 2006).
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Note that, unlike IOPs, AOPs can only be measured in the field, because they depend
on the ambient radiance distribution found in the water body itself. This explains the need
of radiative transfer models such as HydroLight (Mobley, 1989; Mobley and Sundman, 2008)
to relate in situ IOPs measurements with modelled AOPs which in turn allows to invert the
satellite measured AOPs to determine the IOPs and subsequently the nature and concentration
of the in-water constituents.

1.5 Optical water type classification schemes

Ocean colour may be influenced by multiple and non-exclusive biological, chemical and physical
processes. Hence, distinctive water masses may present nearly similar reflectance spectra, which
significantly increases the difficulty to interpret the water signal. Therefore, optical water type
classification schemes have been developed to differentiate water masses based on a well defined
optical property or a combination of different optical properties (e.g., Jerlov, 1951; Morel and
Prieur, 1977; Moore et al., 2001; Lubac and Loisel, 2007; Moore et al., 2009; Vantrepotte et al.,
2012). Optical water type classification also represent a valuable way to improve the retrieval of
marine parameters by applying class-specific bio-optical algorithms (Loisel et al., 2010; Wozniak
et al., 2010; Vantrepotte et al., 2012). In this thesis, a classification of the water masses was also
performed to compare the performance of the atmospheric correction methods as a function of
the optical water type.

A quantitative classification method was already suggested in the 1950s by Jerlov (1951)
who classified oceanic water types according to their optical attenuation properties. Later,
Morel and Prieur (1977) used the ratio of Chla concentration to scattering coefficient as basis to
discriminate water masses dominated by phytoplankton and their associated materials (living
or inanimate, particulate or dissolved) (the so-called Case 1 waters) from all other water types
(the so-called Case 2 waters). Hence, the latter represents optically complex waters dominated
by diverse and multiple in-water constituents with distinctive refractive indices, shapes and
sizes resulting in large optical variability. Such varying conditions make it impossible to derive
general rules for Case 2 waters. Some authors suggested therefore to make a difference between
two extreme situations, namely yellow-substance-dominated and sediment-dominated Case 2
waters (e.g., Bricaud and Morel, 1987; Loisel and Morel, 2001; Morel and Belanger, 2006). The
classification method of Morel and Prieur (1977) was useful in the past to aid movement towards
the first generation of inversion models. However, nowadays it is considered as an oversimplified
and artificial classification scheme (Mobley et al., 2004; Siegel et al., 2005a,b).

An alternative way to separate different optical water types was adopted by Moore et al.
(2001, 2009) who identified the degree of membership of each satellite pixel to a given optical
water type based on the information provided by their remote sensing reflectance spectra. The
authors used therefore a fuzzy logic approach (D’Alimonte et al., 2003). This fuzzy allocation
allows to avoid an artificial distinction between Case 1 and Case 2 waters (Morel and Prieur,
1977) and to depict the optical variability encountered in coastal environments.

Lately, Vantrepotte et al. (2012) suggested a similar classification scheme as Moore et al.
(2001, 2009) but classified the water masses according to their marine reflectance shape rather
than according to their absolute remote sensing reflectance spectra. Therefore, the authors nor-
malized the reflectance spectra by their integrated value prior to data classification. As observed
earlier by Lubac and Loisel (2007), the shape of the water reflectance allows to emphasise the
nature of the dominant optically significant constituents rather than the clarity of the water
column. Hence, a classification scheme based on the spectral reflectance shape is particularly
relevant for coastal waters where the magnitude of the reflectance spectra is usually correlated
with the relative amount of SPM and not with the type of water optically significant constituents.
This is also the reason why the classification scheme of Vantrepotte et al. (2012) is used in the
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present PhD project to evaluate the performance of the optically complex water atmospheric
correction methods as a function of the water type (see later in Chapters 2, 4 and 6).

Vantrepotte et al. (2012) identified four optical coastal water classes and associated them
with bio-optical environments: (1) a class dominated by small particles and a high proportion
of detrital matter (referred to as Class 1), (2) a class mainly influenced by particulate matter of
biological origin with only a low fraction of mineral particles (referred to as Class 2), (3) a class
with high loads of particulate matter mainly of mineral origin (referred to as Class 3), and (4) a
mixed class presenting high loads of CDOM concentrations and phytoplankton blooms (referred
to as Class 4). Next, the authors used a novelty detection technique (D’Alimonte et al., 2003;
Mélin et al., 2011) to investigate the belonging of the satellite remote sensing reflectance spectra
to the different in situ derived optical classes. To illustrate this classification method, Fig. 1.4
shows the normalized reflectance spectra of the in situ LOG dataset (detailed in Section 3.3.2.1)
classified according to the classification scheme of Vantrepotte et al. (2012). The class-specific
spectral shapes are clearly observable. Figure 1.4 also shows the average spectra per class (note
that the number of spectra differs for each class). These results are comparable with the results
presented by Vantrepotte et al. (2012).
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Figure 1.4: Normalized and averaged reflectance spectra according to the classification scheme
of Vantrepotte et al. (2012) applied to the LOG database (Section 3.3.2.1).
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Atmospheric correction

This chapter describes the concept of atmospheric correction (AC) for ocean colour satellite
images. First, the sensor measured signal is defined and analysed. To understand how the
contribution of the atmosphere to the sensor measured signal is estimated, it is also essential
to briefly discuss the aerosol models and products, used in ocean colour remote sensing, and
the radiative transfer equation. Next, a review of the existing AC methods is given followed by
a detailed description of the turbid water AC methods evaluated, and eventually improved, in
this PhD research.

2.1 Top of atmosphere measured reflectance

Satellite remote sensors measure the top of the atmosphere (TOA) radiance, LTOAt (λ). As
represented in Fig. 2.1, LTOAt (λ) can be partitioned in several components and when normalized
by the downwelling irradiance at the TOA (ETOAd (λ)) and multiplied by π (Eq.(1.10)), the
decomposition of the sensor-measured signal can be written in terms of reflectance (Gordon and
Wang, 1994; Gordon, 1997):

ρTOAt (λ) = ρTOAr (λ) + ρTOAa (λ) + ρTOAra (λ) + ρTOAwc (λ) + ρTOAg (λ) + ρTOAw (λ) (2.1)

ρTOAt (λ) represents the reflectance derived from the sensor measured signal and ρTOAr (λ),
ρTOAa (λ) and ρTOAra (λ), the contribution of the atmosphere, i.e., the sunlight scattered by the air
molecules in absence of aerosols (Rayleigh scattering), by the aerosols in absence of air (aerosol
or Mie scattering) and by the coupling between both air and aerosol molecules, respectively.
ρTOAwc (λ) is the reflectance related to the white-caps, ρTOAg (λ) to the glitter, and ρTOAw (λ) to
the ocean, when transmitted to the top of the atmosphere. To retrieve the normalized water-
leaving reflectance at the water surface (ρw(λ)), ρTOAw (λ) needs to be corrected for the diffuse
atmospheric transmittance along the sun-to-sea (tv(λ)) and sea-to-sensor (t0(λ)) optical path.
The analytical definition of the diffuse atmospheric transmittance is the following (Wang, 1999):

tv,0(λ) = exp

[
−
τr(λ)

2 + τoz(λ)

µv,0

]
∗ exp

[
(1− ωa(λ)Fa(λ))τa(λ)

µv,0

]
(2.2)

where ωa(λ) is the aerosol single-scattering albedo, µv,0 is the cosine of the angle in the
sun or sea direction, and τr(λ), τoz(λ) and τa(λ) are the Rayleigh, ozone and aerosol optical
thickness, respectively. Fa(λ) is related to the aerosol scattering phase function Pa(Θ, λ) as
follows Wang (1999):

15
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Figure 2.1: Schematic representation of the light path through water and atmosphere.

Fa(λ) =
1

4π

∫ 1

0

∫ 2π

0
Pa(Θ, λ)dµv,0dφ (2.3)

In the context of the AC, it may also be useful to mention the formal definitions of tv(λ)
and t0(λ). These are (Yang and Gordon, 1997; IOCCG, 2010):

tv(λ) =
LTOAw (λ)

Lw(λ)
(2.4)

t0(λ) =
Ed(λ)

ETOAd (λ)
(2.5)

Hence, according to Eq.(1.10), (2.4) and (2.5), ρTOAw (λ) is related to ρw(λ) as follows:

ρTOAw (λ) = π
LTOAw (λ)

ETOAd (λ)
= π

t0(λ)tv(λ)Lw(λ)

Ed(λ)
= tv(λ)t0(λ)ρw(λ) (2.6)

and Eq.(2.1) can be rewritten as:

ρTOAt (λ) = ρTOAr (λ) + ρTOAa (λ) + ρTOAra (λ) + ρTOAwc (λ) + ρTOAg (λ) + tv(λ)t0(λ)ρw(λ) (2.7)

.

Both ρTOAg (λ) and ρTOAwc (λ) can be modelled for a given sun and sensor zenith angle (Cox
and Munk, 1954) and a given wind speed (Frouin et al., 1996), respectively. During pre-
processing, ρTOAt (λ) is corrected for gas absorption, Rayleigh scattering, white-caps and glitter
(Gordon, 1997). This term is referred to as the Rayleigh corrected reflectance, ρTOArc (λ):
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ρTOArc (λ) = ρTOAt (λ)− ρTOAr (λ)− ρTOAwc (λ)− ρTOAg (λ) (2.8)

= ρTOAa (λ) + ρTOAra (λ) + tv(λ)t0(λ)ρw(λ) (2.9)

Accordingly, if the optical properties and concentration of the aerosols are known along
their vertical distribution, the quantities ρTOAa (λ), ρTOAra (λ), t0(λ) and tv(λ) can be estimated
and the parameter of interest ρw(λ) can be retrieved from the TOA sensor measured signal.
However, aerosol concentrations and their optical properties may be highly variable and the
aerosol radiance varies over similar magnitude ranges as ρw(λ). Hence, it is not possible to
determine the terms ρTOAa (λ) and ρTOAra (λ) a priori without appropriate models for aerosol
optical properties and some additional assumptions. AC methods (as defined in this manuscript)
have thus as main goal to correctly select the aerosol model and, subsequently, ρTOAa (λ) and
ρTOAra (λ), in the aim to retrieve ρw(λ).

2.2 Aerosol models and products used in ocean colour re-
mote sensing

To ease the retrieval of the aerosol reflectance and optical properties, aerosols are often classified
into groups based on their origin and size properties. Shettle and Fenn (1979), for instance,
suggested tropospheric models with aerosols from rural and urban origin, and maritime models
with aerosols from oceanic and continental origin. Each model is characterized by their volume
size distribution, which is based on a combination of two log-normal distributions for fine and
coarse particles, respectively (Fig. 2.2):

dV (r)

dln r
=

2∑

i=1

[
Vi√
2πσi

]
exp

(
−(ln r − ln ri)2

2σ2
i

)
(2.10)

where Vi is the volume of the particles and r is the geometric radius of the unit of volume. ri
and σi stand for the geometric mean and standard deviation of the radius of the i-th distribution,
respectively. The approximation by a combination of two log-normal distributions is illustrated
in Fig. 2.2 which shows an example of aerosol volume size distributions developed based on Sun-
photometer data from different maritime Aerosol Robotic Network sites (Sayer et al., 2012).

Figure 2.2: Aerosol volume size distribution based on Sun-photometer data from maritime
Aerosol Robotic Network stations (Sayer et al., 2012).

Shettle and Fenn (1979) observed a dependence of the mean radius and standard deviation
to the relative humidity (RH). The authors suggested therefore distinctive aerosol parameters
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and associated refractive indices, m(λ), for the different aerosol models and at different levels
of relative humidity. For the processing of SeaWiFS and MODIS Aqua ocean colour images,
the aerosol models suggested by Shettle and Fenn (1979) were further extended by Gordon
and Wang (1994) to include beside tropospheric and maritime aerosols, also coastal aerosols.
The latter are expected to occur near the coast and include half of the fraction of sea salt
compared to the maritime models. With the reprocessing of SeaWiFS in 2000, the oceanic aerosol
model with 99% RH from Shettle and Fenn (1979) was also added as a candidate model while
the tropospheric aerosol model with 70% RH was excluded (McClain et al., 2000). Although
these models have been used until the reprocessing of 2009 for SeaWiFS and MODIS Aqua,
they are considered as a simplification and generalized version of typical conditions (Shettle
and Fenn, 1979; Gordon and Wang, 1994). Moreover, these aerosol particles are considered
homogeneous and spherical, for simplification to resolve the radiative transfer equation (Section
2.3), as suggested in the Mie theory (Mie, 1908). Therefore, since 2009, the standard processing
of SeaWiFS and MODIS images includes a more realistic suite of aerosol models (Ahmad et al.,
2010), derived from ground-based measurements provided by eleven open ocean and coastal
sites from the AERONET network (Holben et al., 1998). Ahmad et al. (2010) defined 80 aerosol
models characterized by 8 levels of atmospheric RH and each level of RH includes 10 levels of
relative concentration of fine- and coarse-mode particles (from 0.0 to 0.95). Fine-mode aerosols
are assumed to be from continental origin and all absorbing, while coarse-mode aerosols are
oceanic in nature (sea-salt particles) and non-absorbing (Ahmad et al., 2010). Hence, over open
ocean, the scattering process is dominated by a high fraction of coarse-mode aerosols (about
80%) and only a small fraction of fine-mode aerosols (about 20%). With these new 80 aerosol
models, Ahmad et al. (2010) showed a better agreement between the satellite retrieved aerosol
properties (i.e., τ(λ)) and the in situ AERONET aerosol data.

2.3 Radiative transfer equation

The radiative transfer equation (RTE) describes the propagation of light through a medium
taking into account how it is attenuated while passing through the medium (including absorp-
tion, elastic and inelastic scattering and emission). In the context of AC the medium is the
atmospheric layer between ocean surface and satellite sensor and the RTE is used to construct,
for each aerosol model and for a range of sensor wavelengths and sun and viewing geometries,
lookup tables for computing the aerosol reflectances (i.e. ρa(λ) and ρra(λ)).

Therefore, the atmospheric layer between ocean surface and satellite is assumed to be
vertically stratified and made up of two plane parallel and described by (Mobley, 1994; Mobley
et al., 2011):

1. Its extinction coefficient at a given wavelength and as a function of the altitude, c(dr, λ)

2. The associated scattering phase function P (θ, φ → θv, φv, λ), describing the probability
that the incoming radiation reaching the medium, with a direction described by the angles
θ and φ, is scattered in the direction θv and φv.

3. The single-scattering albedo ω0(dr, λ), equal to the ratio b(dr, λ)/c(dr, λ).

The loss of photons, when the light propagates through a distance dr due to absorption
and elastic scattering to other directions, is proportional to the incoming radiance and can be
written as:

− c(dr, λ)L(dr, θ, φ, λ) (2.11)

The process accounting for elastic scattering from all other directions into the viewing
direction is function of the incident radiance, the solid angle of the incident radiance and the
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volume scattering phase function for all scattering angles, p(θ, φ→ θv, φv, λ). p(θ, φ→ θv, φv, λ)
describes the angular distribution of the scattered photons within the medium and is related to
the scattering phase function P (θ, φ→ θv, φv, λ) as follows:

p(θ, φ→ θv, φv, λ) = b(dr, λ)
P (θ, φ→ θv, φv, λ)

4π
(2.12)

When considering the scattering coming from all directions, the scattered radiance is inte-
grated over all scattering angles. This is:

dL(r + dr, θ, φ, λ) =

∫ 2π

0

∫ π

0
L(dr, θ, φ, λ)p(θ, φ→ θv, φv, λ)sinθdθdφ (2.13)

When ignoring inelastic scattering and polarization, the RTE describing the variation of
the incoming radiance becomes:

dL(dr, θv, φv, λ)

dr
= −c(dr, λ)L(dr, θv, φv, λ)

+

∫ 2π

0

∫ π

0
L(dr, θ, φ, λ)p(θ, φ→ θv, φv, λ)sinθdθdφ (2.14)

It is often more convenient to use a coordinate system with the depth z being normal to
the sea surface (Mobley et al., 2011). Assuming a horizontally homogeneous atmosphere, dr
becomes dz/cosθ. For AC, the nondimensional optical depth, τ(λ), is often used as the space
variable, with cosθ as the direction variable. τ(λ) is defined as the attenuation coefficient c(dz, λ)
integrated over the atmospheric depth z.

τ(λ) =

∫ ∞

h
c(z, λ)dz (2.15)

Recalling the definition of ω0(λ) and Eq.(2.12) and (2.15), Eq.(2.14) becomes:

cosθ
dL(θv, φv, λ)

dτ(λ)
= −L(θv, φv, λ) +

ω0(λ)

4π

∫ 2π

0

∫ 1

−1
L(θ, φ, λ)P (θ, φ→ θv, φv, λ)dcosθdφ (2.16)

According to Eq.(2.16), any two atmospheres radiated with the same incident light flux and
with similar ω0(λ) and P (θ, φ→ θs, φs, λ), will have the same radiance distribution L(θs, φs, λ)
at a given optical depth τ(λ).

The RTE can be easily derived but no analytical solution exists since it involves both
an integral and derivative of the radiance. However, when single scattering only is assumed
(provided that the optical thickness of the atmosphere is << 1 (Gordon and Wang, 1994) and
denoted by ρas(λ)), a numerical approximation of the RTE is found and atmospheric radiance
can be estimated as follows:

ρas(λ) =
ωa(λ)τa(λ)pa(θ, φ→ θv, φv, λ)

4cosθ0cosθv
(2.17)

with pa(θ, φ → θv, φv, λ) being function of the scattering phase function and the Fresnel
reflectance of the interface for a given angle θ, r(θ) (Gordon and Wang, 1994).

pa(θ, φ→ θv, φv, λ) = P (θ−, λ) + [r(θv) + r(θ)]P (θ−, λ) (2.18)

cos(θ±) = ±cos(θ)cos(θv)− sin(θ)sin(θv)cos(φv − φ) (2.19)

Expression (2.17) is used to estimate at each wavelength and for a given scan geometry,
both ρa(λ) and ρr(λ) according to the three variables ωx(λ), px(θ, φ→ θs, φs, λ) and τx(λ) (with
x being a or r).
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2.4 AC methods for second generation ocean colour satel-
lite images

In the past, since most studies focussed on open ocean waters, classic AC approaches were based
on the so-called black pixel assumption. This assumption supposes that the seawater absorbs
all incoming light in a given spectral range allowing to determine the aerosol properties in this
part of the spectral region. Knowing the aerosol properties, the atmospheric contribution can
be extrapolated to other wavelengths. With the first generation of ocean colour sensors (e.g.,
CZCS), it was assumed that seawater becomes totally absorbent in the red region of the spectrum
(Gordon, 1978). Later, with the NIR sensors aboard the second generation ocean colour satellites
(e.g., SeaWiFS, MERIS and MODIS), the NIR bands were used for the AC. The black pixel
assumption AC algorithm, initially developed for the AC method of SeaWiFS, has extensively
been described by Gordon and Wang (1994) and therefore, often referred as the GW94 AC
algorithm. However, the black pixel assumption is verified in open ocean waters (Chla < 2
mg m2, according to Siegel et al. (2000)), for which the optical properties are mainly driven by
phytoplankton and co-varying biological constituents, but not in highly productive or optically
complex waters where significant concentrations of algal and non-algal particles scatter and
absorb light in the NIR spectral region (Siegel et al., 2000; IOCCG, 2000). Applying the black
pixel assumption for the AC in such water masses may result in significant errors on the retrieved
ρw(λ). Considering zero ρw(λ) in the NIR will tend to overestimate the aerosol contribution
and subsequently induce negative ρw(λ) estimations. Numerous studies already recognised that
the AC algorithm relying on the black pixel assumption was not applicable in optically more
complex and highly productive waters and suggested AC methods with alternative assumptions
(e.g, Moore et al., 1999; Siegel et al., 2000; Ruddick et al., 2000; Stumpf et al., 2003; Ruddick
et al., 2006; Doerffer and Schiller, 2007; Schroeder et al., 2007; Kuchinke et al., 2009a; Wang
et al., 2009; Bailey et al., 2010; Brajard et al., 2012; Shanmugam, 2012; Wang et al., 2012).
Several approaches are GW94-based AC methods. Accordingly, it is essential to first describe
the initial GW94 AC algorithm.

2.4.1 The black pixel assumption GW94 AC algorithm

The GW94 AC algorithm relying on the black pixel assumption uses the spectral information
at two wavelengths in the NIR spectral domain (e.g., at 748 and 869 nm for MODIS Aqua)
and defines a parameter, ε(λ, λ0), the aerosol reflectance ratio. Per definition and according to
Eq.(2.17), ε(λ, λ0), with λ0 being a reference wavelength in the NIR spectral domain, can be
written as follows:

ε(λ, λ0) =
ρas(λ)

ρas(λ0)
=

ωa(λ)τa(λ)pa(θ, φ→ θv, φv, λ)

ωa(λ0)τa(λ0)pa(θ, φ→ θv, φv, λ0)
(2.20)

If pa(θ0, φ0 → θv, φv, λ) and ωa(λ) are considered as spectrally independent, ε(λ, λ0) is
independent of the scattering angle and can be approximated by the optical thickness ratio as
follows (Gordon et al., 1983):

ε(λ, λ0) =

(
λ

λ0

)−α(λ,λ0)

≈ τa(λ)

τa(λ0)
(2.21)

Latter, to better approximate ε(λ, λ0) and to increase the separability between the aerosol
models, Gordon and Wang (1994) and Gordon (1997) suggested to replace Eq.(2.21) by an
exponential function of the form ec(λ0−λ), with c being a constant depending on the aerosol
model, the viewing geometry and the relative humidity.
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The approximation for ε(λ, λ0) includes thus the following assumptions on the aerosol prop-
erties: (1) assuming single scattering, the spectral aerosol reflectance ρa(λ) is proportional to
the aerosol optical thickness, (2) the spectral ratio of the optical thickness follows an Ångström’s
law, and (3) the aerosol reflectance ratio, ε(λ, λ0), is related to the Ångström exponent, α(λ, λ0)
(also often denoted by η(λ, λ0), Chapter 4 and 6), a parameter relating the aerosol particle size
to the aerosol optical model spectral dependence. α(λ, λ0) is independent of the viewing and
solar geometry and is computed from the spectral variation of τa(λ) between two wavelengths
(Eq.(2.21)). The Ångström exponent is usually large for very small aerosols (e.g., sulphates from
polluted areas) and low for aerosols containing large particles (e.g., sea-salt, oceanic aerosols or
desert dust) (Shettle and Fenn, 1979; Gordon and Wang, 1994; Thieuleux et al., 2005). Towards
open ocean waters where oceanic aerosol models are encountered, α(λ, λ0) tends to decrease,
while over coastal regions, where a larger proportion of continental or tropospheric aerosols are
located, α(λ, λ0) increases. α(λ, λ0) also decreases with an increase in RH. Table 2.1 gives the
Ångström exponents, retrieved from the ratio of τa(λ) at 510 and 865 nm, corresponding to the
12 aerosol models derived from the oceanic and tropospheric lognormal modes of Shettle and
Fenn (1979) and the added coastal aerosol models suggested by Gordon and Wang (1994).

Table 2.1: Characteristics of the 12 aerosol models derived from the oceanic and tropospheric
lognormal modes of Shettle and Fenn (1979) and the coastal aerosol models suggested by Gordon
and Wang (1994).

Model Type Relative % oceanic % tropospheric α(443, 865)
humidity (%) mode mode

O99 Oceanic 99 100 0 -0.08
M99 Maritime 99 1 99 0.10
C99 Coastal 99 0.5 99.5 0.41
M90 Maritime 90 1 99 0.22
C90 Coastal 90 0.5 99.5 0.50
M70 Maritime 70 1 99 0.23
M50 Maritime 50 1 99 0.40
C70 Coastal 70 0.5 99.5 0.64
C50 Coastal 50 0.5 99.5 0.74
T99 Tropospheric 99 0 100 1.08
T90 Tropospheric 90 0 100 1.28
T50 Tropospheric 50 0 100 1.41

Fig. 2.3 illustrates the spectral variations in ε(λ, λ0) developed for the AC of SeaWiFS with
λ0 at 865 nm and for the 12 aerosol models, with a viewing angle θ of 45◦ and with the sun at
zenith. As seen in this figure, ε(λ, λ0) varies as a function of the aerosol models and RH. Its
spectral dependency decreases with an increase in RH (i.e., an increase in particle size due to
swelling).

When the estimated ε(λ, λ0) falls in between two models, a weighting function is used to
account for both models. This allows to include a wider range of atmospheric compositions and
to avoid discontinuity between neighbouring pixels in the retrieved parameters due to abrupt
changes in the selected aerosol model.

When the optical thickness of the atmosphere is relatively low (τ(λNIR) < 0.05, Gor-
don (1997)), the atmospheric reflectance is well approximated by single scattering aerosol and
Rayleigh reflectance (i.e., ρra(λ) is ignored in Eq.( 2.9), single scattering approximation). In
contrast when τ(λ) increases, the single scattering approximation is no longer valid (Gordon
and Wang, 1994). To account for multiple scattering, Gordon and Wang (1994) estimated with
RTE simulations, for each aerosol model and each scan geometry, the relationship between
ρa(λ) + ρra(λ) and ρas(λ).

As outlined in Fig. 2.4, the GW94 AC algorithm can be summarized as follows: For two
bands in the NIR spectral region, λi and λj , ρrc(λ) is estimated assuming ρw(λNIR) being
negligible. Next, ρas(λi) and ρas(λj) are retrieved from ρrc(λi) and ρrc(λj), respectively, using
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Figure 2.3: ε(λ, 865) as a function of λ with θv = 45◦ and the sun at zenith (θ0 = 0◦) for the
12 candidate aerosol models. Figure taken from McClain et al. (2000).

computed look-up tables including the relations between ρa(λ) + ρra(λ) and ρas(λ). For each
pixel, the ratio ε(λi, λj) is thus estimated and two candidate aerosol models are selected. ε(λ, λj)
can then be extrapolated from the NIR to any wavelength in the visible, between the pair of
candidate aerosol models and the associated ρas(λ) is determined. ρa(λ) + ρra(λ) can then be
retrieved with the look-up tables as suggested by Gordon and Wang (1994) and Eq.(2.9) can be
solved to obtain ρw(λ).

2.4.2 Atmospheric correction for optically complex waters

To bypass the erroneous application of the black pixel assumption in highly productive or op-
tically complex waters, numerous alternative AC methods have been developed. Some of these
attempt to extent the GW94 AC algorithm by modelling the non-zero NIR ρw(λ) based on
estimated geophysical parameters, such as SPM (Moore et al., 1999; Aiken and Moore, 2000;
Lavender et al., 2005) or Chla (Siegel et al., 2000) or based on spectral relationships and as-
sumptions on the diffuse attenuation coefficient (Wang et al., 2012). A NIR-modelling scheme
is also used in the NASA standard AC algorithm (hereafter referred to as STD) including a bio-
optical model to retrieve the IOPs in the red bands and extrapolate these to the NIR spectral
domain to obtain ρw(NIR) (Arnone et al., 1998; Stumpf et al., 2003; Bailey et al., 2010). This
AC method is detailed in the next section.

Other AC approaches, such as the AC methods suggested by Hu et al. (2000) and Ruddick
et al. (2000, 2006), assume spatial homogeneity in aerosol reflectance allowing to extrapolate
over the area of interest the aerosol model selected from nearby pixels where the black pixel
assumption is verified. Ruddick et al. (2000, 2006) also suggested to force the AC method with
a constant NIR water reflectance ratio to account for the water contribution in the NIR spectral
region. This approach, hereafter referred to as the NIR Similarity Spectrum algorithm (’SIMIL’
by Goyens et al. (2013c)) or MUMM AC method, is detailed in Section 2.4.2.2.

With the addition of Short-Wave Infra-red (SWIR) bands on the MODIS Aqua sensor,
Wang and Shi (2005) also suggested to extent the GW94 AC algorithm using the SWIR spectral
domain to retrieve the aerosol properties. Indeed, in the SWIR spectral region, even very turbid
waters are strongly absorbent. However, since such bands are often developed for atmospheric
and land applications, the signal-to-noise-ratio is often to low to ensure accurate remote sensing
derived products for ocean colour applications (Wang, 2007). Wang and Shi (2007) suggested
therefore a switching NIR-SWIR AC method combining the STD and SWIR AC approaches.
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Figure 2.4: Schematic sketch of the GW94 AC algorithm suggested by Gordon and Wang
(1994). ‘LUT’ stands for look-up tables and λi and λj indicate the two NIR reference bands.
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This switching method was later revised by Wang et al. (2009) to further improve ρw(λ) re-
trievals. The updated NIR-SWIR AC method is described in Section 2.4.2.3.

These GW94-based AC algorithms solve the ocean and atmosphere components separately
and only consider the NIR region of the spectrum to retrieve the aerosol properties. However,
as shown in Fig. 2.3, a small uncertainty in the retrieved aerosol properties in the NIR spec-
tral region (e.g., ε(λ, λ0)) may lead to the selection of an inappropriate aerosol model and thus
result in a large uncertainty in the estimated aerosol contribution in the visible region. More-
over, the presence of absorbing aerosols can not be detected when considering solely the NIR
spectral region where absorbing and non-absorbing aerosols show similar behaviours (Nobileau
and Antoine, 2005). Therefore, several AC approaches were suggested including coupled ocean-
atmosphere optimization or inversion methods allowing to consider the aerosol and the water
contribution simultaneously and, eventually, the signal over the entire spectral range (including
the visible range where absorbing aerosols are possibly identified (Moulin et al., 2001a; Chomko
et al., 2003; Nobileau and Antoine, 2005)). Commonly used coupled ocean-atmosphere opti-
mization or inversion methods are the spectral matching and optimization AC approaches as
well as the neural network-based AC algorithms.

The spectral matching method (Gordon et al., 1997) requires a large set of simulated
ρTOAt (λ) resulting from a combination of NIR aerosol optical thickness values, τa(λ), and Chla
concentrations and a scattering related parameter, b0. Each τa(λ) value is associated with a
given aerosol model allowing the estimations of ρa(λ) and ρra(λ), while the Chla and b0 val-
ues are used as input to the semi-empirical bio-optical model (Gordon et al., 1988) to provide
estimations of ρw(λ). The percent deviation of the simulated and measured ρTOAt (λ) is then
calculated over the entire spectrum and the lowest percent deviation is used to select the model
parameters τa(λ), Chla and b0. ρw(λ) is then retrieved at each wavelength. Such AC meth-
ods have been successfully applied over absorbing aerosol atmospheres (Moulin et al., 2001c,b;
Banzon et al., 2004).

The spectral optimization AC algorithm was first suggested by Chomko and Gordon (1998).
This algorithm is similar to the spectral matching algorithm but replaces the set of realistic
aerosol models by a simple one-parameter Junge distributed collection of spherical particles and
varying wavelength-independent complex refractive index. This implies that such AC methods
are only valid for non-absorbing aerosols or when the aerosol absorption index is independent of
wavelength (e.g., black carbon) (Chomko et al., 2003). The algorithm of Chomko and Gordon
(1998) was later improved by Chomko et al. (2003) by including the Garver-Siegel-Maritorena
ocean bio-optical model to simulate ρw(λ). More recently, Kuchinke et al. (2009a) extended the
method to turbid waters by replacing the bio-optical model used to estimate ρw(λ). Another
variation of the spectral optimization AC algorithm was also suggested by Jamet et al. (2005)
and later updated by Brajard et al. (2006a,b, 2012). The authors replace the discrete look-
up tables from the procedure of Chomko and Gordon (1998) by a neural network regression
(Multi-Layer Perceptrons).

The use of neural-networks also appeared to be useful to invert the ρTOA(λ) signal into
ρw(λ) including complex relationships between these two variables (Doerffer and Schiller, 2007;
Schroeder et al., 2007; Doeffer and Schiller, 2008). In this study, the neural-network based AC
algorithm of Schroeder et al. (2007) adapted for MODIS Aqua bands, is described in Section
2.4.2.4.

2.4.2.1 The standard NASA AC method: a GW94-based algorithm iterating over
a NIR-modeling scheme using a bio-optical model (‘STD’)

The NIR-modeling scheme of the NASA standard AC method (STD) was initially developed for
the AC of SeaWiFS by Stumpf et al. (2003), and later revised by Bailey et al. (2010), to extent
the GW94 AC algorithm to turbid waters. This NIR-modeling scheme includes an iterative bio-
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optical model to retrieve ρw(λNIR). Here, the latest revision of the STD algorithm (as included
in the SeaWiFS Data Analysis System (SeaDAS) version 6.4), including the aerosol models
suggested by Ahmad et al. (2010), is briefly reviewed. This AC approach relies on the fact that
non-zero ρw(NIR) can be reconstructed from ρw(λ) in the red bands assuming a power-law
function to express the spectral dependence of the particulate backscattering bbp(λ).

A schematic overview of the algorithm is given in Fig. 2.5. First, the STD AC method
assumes zero ρw(λ) in the NIR (i.e., black pixel assumption) resulting in a first guess in ρw(λ)
for the entire spectral range. Estimations of ρw(λ) at 443, 488 and 547 nm are then used as inputs
for the bio-optical model ‘MODIS Chla OC3 algorithm’ (O’Reilly et al., 2000) to estimate the
concentration of Chla. If the estimated Chla concentration is greater than 0.7 mg m−3, a linear
regression is used to retrieve, from the estimated Chla, the absorption coefficient for particles
and dissolved material in the red (Werdell and Bailey, 2005; Bailey et al., 2010), apg(λred) (with
minimum and maximum values of 0 and 0.5 m−1, respectively).

apg(λred) = e0.9389∗log(Chla)−3.7589 (2.22)

Knowing the pure water absorption aw(λred) (Pope and Fry, 1997; Kou et al., 1993), the
total absorption coefficient a(λred) is estimated as the sum of aw(λ) and apg(λ). According to
Eq.(1.20), if both Rrs(λ) and a(λ) are known, bbp(λ) can be obtained as follows:

bbp(λ) =

[
rrs(λ)

f
Q

∗ a(λ)/(1− rrs(λ)
f
Q

)

]
− bbw(λ) (2.23)

with rrs(λ) being the water reflectance measured just below the surface and bbw(λ), the
pure water back-scattering coefficient (Smith and Baker, 1981). The ratio f/Q is derived from
the work of Morel and Gentili (1996) and is function of wavelength, illumination and viewing
geometry, and Chla concentration.

Next, assuming a power-law spectral dependency of bbp(λ), bbp(λNIR) can be estimated
from bbp(λred):

bbp(λ) = bbp(λ0)

[
λ0

λ

]ηbb
(2.24)

with ηbb being the spectral slope. In very clear waters, ηbb approaches 4 and decreases
down to 0 with an increase in turbidity (Loisel et al., 2006). To retrieve ηbb , Lee et al. (2010b)
suggested an empirical relation between ηbb and the reflectance ratio rrs(443)/rrs(555):

ηbb = 2− 2.4e
−0.9

rrs(443)
rrs(555) (2.25)

Given Eq.(2.24) and (2.25), and assuming that apg(λ) is negligible in the NIR spectral
domain compared to the pure water absorption aw(λ), we can retrieve the water contribution in
the NIR based on Eq.(1.20). The above calculations are performed for two NIR bands (i.e., for
MODIS Aqua at 748 and 869 nm) to obtain ρw(λNIRi) and ρw(λNIRj). These values are then
removed from ρrc(λ) and the black pixel assumption is applied on the updated ρrc(λ) so that
a second guess in ρw(λ) can be achieved for the entire spectral range. The above calculations
are repeated until ρw(λred) changes with less than 2% or if the maximum number of iterations
is reached (the default maximum number of iterations is 10). If during the iteration process
the retrieved ρw(λ) reveals to be non-physical (for MODIS Aqua, ρw(λ) at 443 or 488 nm are
negatives or the ratio ρw(443, 488)/ρw(547) falls outside the range 0.21-30), the iteration is re-
initialized assuming that all the reflectances in the red spectral region results only from water
(i.e., ρw(λred) = ρrc(λred)) and the initial Chla concentration is set to 10 mg.l−1.

The STD NIR-modelling scheme presents the advantage to be suitable for all ocean colour
images presenting at least two NIR bands (e.g., SeaWiFS, MERIS, MODIS). It has a straightfor-
ward implementation and does not require a priori constructed look-up tables or neural-network
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Figure 2.5: Schematic sketch of the STD AC method as outlined by Bailey et al. (2010) and
programmed in SeaDAS version 6.4.
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training. This AC method also accounts for a pixel by pixel aerosol type variability, in contrast,
for instance, to the MUMM AC method (Section 2.4.2.2). However, it relies on a bio-optical
model which may not be valid for all water types. Indeed, the bio-optical model includes empiri-
cally derived relationships (e.g., Eq.(2.22)) based on the global in-situ NASA bio-Optical Marine
Algorithm Data set, NOMAD (Werdell and Bailey, 2005). The latter covers mainly oligotrophic
to mesotrophic waters. The empirically retrieved relationships may thus no be appropriate for
more turbid coastal waters. The large dependence of empirical relationships to the in situ data,
is also true for the relationship suggested by Lee et al. (2010b) to retrieve the coefficient ηbb
(Eq.(2.25)). Moreover, relying solely on Chla estimations to retrieve IOPs in the red spectral re-
gion and, subsequently, ρw(λNIR), may be dubious, especially in non-algal particles rich waters.
The iterative approach may correct for such imperfections, but only partially.

2.4.2.2 The NIR Similarity spectrum AC method (‘MUMM’)

The NIR Similarity spectrum AC method (referred to hereafter as the MUMM algorithm) is
a GW94-based algorithm including assumptions of spatial homogeneity in NIR ratios of ρw(λ)
and ρa(λ) (Ruddick et al., 2000, 2006). The first assumption, so-called NIR similarity spectrum,
arises from the fact that (1) the sea-water NIR spectrum shape is largely determined by pure
water absorption, (2) bb(λNIR) can be ignored compared to aw(λNIR), and (3) bb(λNIR) is
spectrally independent for a limited spectral range. If these facts are verified, the ratio of any
two NIR ρw(λ) can be considered as constant and equal to:

α(λNIR1, λNIR2) =
ρw(λNIR1)

ρw(λNIR2)
=
aw(λNIR2)

aw(λNIR1)
(2.26)

Assuming that the variation of the pure water NIR absorption ratio with salinity is negli-
gible (Pegau et al., 1997) and the impact of temperature relatively small (Ruddick et al., 2006),
the constant α(λNIR1, λNIR2) can be considered to be independent of region and season. Ac-
cordingly, normalizing the reflectance spectra to the reflectance at a single wavelength in the
NIR (referred by Ruddick et al. (2000, 2006) as the similarity NIR reflectance spectrum) allows
to determine, at any wavelength, the water leaving reflectance shape in the NIR spectral domain.

The second assumption is based on the fact that the atmospheric composition does not
vary significantly in space and therefore the ratio of the aerosol reflectance ρa(λ)+ρra(λ) can be
computed wherever the water signal is negligible and extrapolated to the nearby pixels where
non-zero ρw(λNIR) is observed. In the present research, a clear water sub-scene is defined as
any pixel within the image for which ρrc(λNIR) is non-negative and below 0.015.

The MUMM algorithm is thus a three-step process as shown by the schematic flowchart in
Fig. 2.5. First the image is processed with the black pixel assumption (i.e. GW94). This allows
to estimate ρrc(λNIR) over the area of interest, to select the clear water pixels and to retrieve
εm(λNIR1, λNIR2) = ρam(λNIR1)/ρam(λNIR2) (with ρam(λNIR2) being the multiple scattering
aerosol reflectance, ρa(λNIR2) + ρra(λNIR2), and considered as equal to ρrc(λNIR2) over clear
water pixels). Next, fixing εm(λNIR1, λNIR2) for the entire image and knowing α(λNIR1, λNIR2),
ρam(λ) can be estimated for the wavelengths λNIR1 and λNIR2 according to the following equa-
tions:

ρam(λNIR1) = εm(λNIR1, λNIR2)
α(λNIR1, λNIR2)ρrc(λNIR2)− ρrc(λNIR1)

α(λNIR1, λNIR2)− εm(λNIR1, λNIR2)
(2.27)

ρam(λNIR2) =
α(λNIR1, λNIR2)ρrc(λNIR2)− ρrc(λNIR1)

α(λNIR1, λNIR2)− εm(λNIR1, λNIR2)
(2.28)

ρam(λNIR) is then removed from ρrc(λNIR) to obtain ρw(λNIR). The last step consists
in estimating ρas(λNIR), and subsequently the aerosol model, given ρam(λNIR) (Gordon and
Wang, 1994).
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Figure 2.6: Schematic sketch of the MUMM AC algorithm with i and j being two bands in the
NIR spectral domain (Ruddick et al., 2000, 2006).
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Similarly to the STD algorithm, the MUMM AC approach presents the advantage of re-
trieving ρw(λ) for any sensor presenting at least two NIR bands. In contrast, instead of relying
on an iterative bio-optical model to account for non-zero ρw(λNIR), it includes a spectral re-
lationship (Eq.(2.26)) with assumptions on the IOPs in the NIR (i.e., a(λNIR) ≈ aw(λNIR),
bb(λNIR) << aw(λNIR) and δbb(λNIR)/δλ = 0). As shown by Ruddick et al. (2006), these
assumptions are valid for water masses presenting ρw(λNIR) values between 10−4 and 10−1

(corresponding to SPM concentrations between ∼ 0.3 g m−3 and 200 g m−3 according to the
authors). However, outside this range, the constant water reflectance ratio assumption is not
verified. Indeed, for very clear waters, bb(λ) is mainly determined by the pure water scattering,
which presents more significant spectral dependence compared to bbp(λ) (Ruddick et al., 2006).
Hence, the assumption δbb(λNIR)/δλ = 0 is not valid. However, for such clear waters, ρw(NIR)
can be assumed as negligible. At the opposite, for extremely turbid waters bbp(λNIR) increases
significantly such that the assumption bb(λNIR) << aw(λNIR) is no longer valid (Ruddick et al.,
2006) and Rrs(λ) is not well approximated as proportional to bb(λNIR)/a(λNIR) (Sydor et al.,
2004). The appropriateness of the MUMM AC method is thus limited by the validity of the
constant reflectance ratio assumption.

The MUMM AC approach also presents the advantage of allowing several configurations for
the aerosol model. Beside the selection of the candidate models based on the clear water pixels,
fixed values, climatologies or local aerosol in situ measurements, may also be used and sensitivity
tests can be easily performed to evaluate the best configuration. However, when assuming spatial
homogeneity in the aerosol contribution, possible spatial variations in atmospheric aerosols may
be lost (in particular in coastal areas), leading to inaccuracies in εm(λNIR1, λNIR2) retrievals
and, subsequently, in ρw(λ) estimations. Moreover, the selection of the candidate models largely
depends on how εm(λNIR1, λNIR2) is retrieved. Indeed, the definition of clear water pixels and
their distance to the atmospheric corrected pixel may affect the resulting εm(λNIR1, λNIR2).
Using the approach suggested by Hu et al. (2000), that is, retrieving εm(λNIR1, λNIR2) using
weights defined according to the distance to the atmospheric corrected pixel, may therefore
be more accurate. However, such approaches significantly complicate the implementation for
operational processing.

2.4.2.3 The GW94-based algorithm using the SWIR bands in very turbid waters
(‘NIR-SWIR’)

In the SWIR spectral domain, pure water absorption is relatively large while the contribution
of the in-water constituents to scattering is relatively low, such that ρw(λSWIR) can be safely
considered as null even in turbid waters. Accordingly, the SWIR bands can be used for aerosol
model selection the same way as in the GW94 AC algorithm. However, actual SWIR bands
(e.g., MODIS Aqua and Visible Infrared Imaging Radiometer Suite (VIIRS) bands at 1240,
1640 and 2130 nm) are not meant to be used for ocean colour applications and present a lower
signal-to-noise-ratio compared to the NIR bands limiting the advantage gained by using the
SWIR bands (Wang, 2007). Therefore, a combined NIR-SWIR approach was suggested (Wang
and Shi, 2007; Wang et al., 2009), including a switch between the STD and SWIR-based GW94
AC method such that the SWIR bands are only used in very turbid waters where the STD AC
method is expected to fail. Very turbid waters are defined based on a turbidity index computed
from ρrc(λ) at 748 and 1240 nm (Shi and Wang, 2007). For any pixel presenting a turbidity
index above 1.05, the SWIR AC approach is applied. The refinement of Wang et al. (2009)
includes a second turbidity criterion. If, after a first processing with the SWIR aerosol model
selection, the estimated Lwn(869) is below 0.08 mW cm−2 µm−1 sr−1 and the estimated Chla
value lower or equal to 1 mg m−3, the AC is reset to the STD AC method. Improvements in the
retrievals of ρw(λ) have been demonstrated in very turbid waters (Wang and Shi, 2007; Dogliotti
et al., 2011; Wang et al., 2009). However, the assumption of zero ρw(λ) in the SWIR may not be



30 Chapter 2. Atmospheric correction

universally correct, especially in extremely turbid waters (Shi and Wang, 2009; Werdell et al.,
2010; Knaeps et al., 2012). Moreover, in contrast to the STD and MUMM AC methods, the
SWIR AC approach can only be applied on a restrictive number of satellites since it requires at
least two SWIR spectral bands.

2.4.2.4 Direct inversion approach by neural network (‘NN’)

The NN algorithm used in this study is based on an inverse modelling of extensive radiative
transfer (RT) simulations within a coupled ocean-atmosphere system, similar to an approach
previously implemented for MERIS (Schroeder et al., 2007). The direct inversion takes into
account the spectral information of both aerosol and water constituents at each wavelength
simultaneously. Consequently, the NN method does not attempt to decouple oceanic and atmo-
spheric signals to perform the AC and does not rely solely on the NIR spectral domain to retrieve
the aerosol properties such as suggested by the GW94-based AC algorithm. The RT simulations
generate a large set of TOA and mean sea-level reflectance data for a variety of oceanic and
atmospheric conditions and different sun and observing geometries. The ocean model is char-
acterized by varying concentrations of water constituents typically found in European coastal
waters and covering the following concentration ranges: 0.05-50 mg.l−1 for Chla, 0.05-50 g.l−1

for SPM and 0.001-1 m−1 for the absorption of CDOM at 443 nm. The total absorption of the
sea water is modelled as the sum of the absorption coefficients of pure sea water (taken from
Pope and Fry (1997) and Hale and Querry (1973)), of organic particulate matter (estimated as a
function of Chla according to Bricaud et al. (1998)), of inorganic matter (estimated as a function
of SPM according to the parametrization of Babin (2000)), and yellow substance (assumed to
be totally absorbing and taken from Babin (2000)). The total scattering coefficient is modelled
as the sum of the scattering coefficient from pure sea water (taken from Morel (1974)) and SPM
(taken from Babin (2000)). The scattering phase function of pure water is defined according to
Morel (1974) while the backscattering probability in Case 2 waters is applied according to the
model of Zhang et al. (2002). The maritime and continental aerosol models suggested by Shettle
and Fenn (1979) are considered for the simulations. Next, the simulated data are used to adapt
the inverse model during a supervised learning procedure. The NN inverse model consists of a
multilayer perceptron that approximate through a learning step the relationship between TOA
and mean sea-level reflectance. When applied to MODIS data, the algorithm requires as inputs
the TOA reflectance at all ocean colour bands as well as information about the sun and observ-
ing geometry and surface pressure. In addition, MODIS Level-2 flags are used to mask pixels
affected by land, high glint and clouds. The associated NN outputs consist of mean sea-level
Rrs(λ) at eight MODIS bands up to 748 nm as well as the spectral aerosol optical thickness at
four AERONET bands (440, 550, 670 and 870 nm). Additional NN flags are used for further
quality control of the outputs that check for out-of-scope conditions compared to the simulated
data ranges.

While NN-based AC algorithms present the advantage of accounting for ocean and at-
mosphere simultaneously, it presents the large disadvantage of being highly dependent on the
dataset used for the training of the artificial neural network.
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In situ and satellite ocean colour products

This Ph.D. study focus on NASA MODIS Aqua images for ρw(λ). Sensor specifications, im-
age processing, validation and calibration for this sensor are succinctly described in the present
chapter (Sections 3.2.1. and 3.2.2.). A large section of this chapter is also dedicated to the
in situ data, used as reference for the validation and improvement of the satellite atmospheric
correction algorithms. Both in- and above-water in situ measurement systems are briefly de-
scribed together with the in situ ρw(λ) datasets used in the present research. These are the
data provided by the Aerosol Robotic Network-Ocean Colour (AERONET-OC) and collected
by the Management Unit of the North Sea Mathematical Model (referred to as the MUMM
dataset) and the Laboratoire d’Oceanologie et de Geosciences (referred to as the LOG dataset)
for ρw(λ). Some of these in situ data were taken during research campaigns I participated in,
namely, one in French Guiana during May and June 2012 (hereafter referred to as FG12), and,
another, in the southern Atlantic and south-eastern Pacific from mid-February to March 2011
on-board the R/V Melville (hereafter referred to as MV1102).

A one-month stay early 2012 at the MUMM institute in Brussels also allowed me to fur-
ther develop important skills in the processing of in situ measurements. This resulted in the
development of a semi-automatic program for the processing of raw in situ measurements, from
above-water sensor devices, to obtain average ρw(λ) spectra and associated standard deviations
(described in Section 3.2.1.2 together with the MUMM dataset).

Acquiring accurate in situ data remains however a difficult task (Rudorff et al., 2013). To
illustrate this, two closure exercises showing the agreement and disagreement between ρw(λ),
when collected using different instruments and when modelled based on radiative transfer sim-
ulations, are presented (Section 3.2.3). The first closure exercise includes the data taken during
the MV1102 sea campaign and is part of a paper I contributed to about the assessment of ac-
curate ocean colour in situ radiometry (Rudorff et al., 2013). The second case study includes
a closure exercise conducted during the International Ocean Optics Summer School about cali-
bration and validation of ocean colour remote sensing (Darling Marine Centre, Walpole, Maine,
10-31 July 2011). I had the chance to be selected to participate to this summer school and con-
tributed to the resulting on-line available report entitled “Portfolio of Measurement, Processing,
and Analysis Techniques for Optical Oceanography Data” (Arellano et al., 2011).

Finally, the last section of this chapter describes the match-up protocols used in the present
study to select coincident satellite-in situ data pairs.

31
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3.1 MODIS Aqua ocean colour products

3.1.1 Satellite characteristics

The MODIS Aqua sensor was designed with 36 spectral bands to support atmospheric, land and
ocean observations with a swath of 1500 km. The 9 standard ocean colour bands cover the visible
and NIR spectral range with centre wavelengths from 412 to 869 nm and a spatial resolution of
approximately 1 km at nadir. Land and atmospheric bands have a higher spatial resolution of
250 and 500 m and present sensor bands ranging from 469 to 2130 nm. Sensor characteristics
including wavelength, band width and spatial resolution are given in Table 3.1 for the visible,
NIR and SWIR bands. The signal-to-noise ratio (SNR) for a typical top of atmosphere radiance,
Ltyp(λ), is also given together with the maximum observable radiance, Lmax(λ) (Franz et al.,
2006). The Ltyp(λ) is derived by averaging cloud-free pixels over mesotrophic waters for a
range of viewing and solar geometries, while Lmax(λ) is actually the peak radiance preceding
saturation. Note that the higher spatial resolution of the atmospheric and land bands includes
a shorter integration time and consequently a reduced SNR, which is particularly low for the
SWIR MODIS Aqua bands compared to the visible and NIR bands (Table 3.1)). However, these
bands saturate at higher signals relative to the ocean colour bands (see Lmax(λ) in Table 3.1).
Indeed, the latter have been designed with high sensitivity to cover the range of reflectance
typical of open ocean observations with maritime atmospheric conditions (Franz et al., 2006).
However, such sensitivity may also be critical, especially in very turbid waters where sensor
bands may saturate resulting in inaccurate satellite water signal estimations.

Table 3.1: MODIS band characteristics adapted from Franz et al. (2006). Wavelengths (nm)
in bold indicate the standard ocean colour bands. Ltyp(λ) and Lmax(λ) (mWcm−2µm−1sr−1)
stand for typical and maximum normalized water-leaving radiance value, respectively, and SNR
is the Signal-to-Noise ratio.

λ Band Spatial SNR at Ltyp(λ) Lmax(λ) Gains
width (nm) resolution (m) Ltyp(λ) R2010 R2012

412 15 1000 1773 7.84 26.9 0.9768 0.9731
443 10 1000 2253 6.99 19.0 0.9936 0.9910
469 20 500 556 6.52 59.1 1.0113 1.0132
488 10 1000 2270 5.38 14.0 0.9972 0.9935
531 10 1000 2183 3.87 11.1 0.9946 1.0002
547 10 1000 2200 3.50 8.8 0.9950 0.9994
555 20 500 349 3.28 53.2 0.9999 1.0012
645 50 250 140 1.65 51.2 1.0252 1.0280
667 10 1000 1962 1.47 4.2 0.9961 0.9996
678 10 1000 2175 1.38 4.2 0.9974 0.9998
748 10 1000 1371 0.889 3.5 0.9977 0.9989
859 35 250 103 0.481 24.0 1.0244 1.0254
869 15 1000 1112 0.460 2.5 1.0 1.0
1240 20 500 25 0.089 12.3 1.0 1.0
1640 35 500 19 0.028 4.9 1.0 1.0
2130 20 500 12 0.008 1.7 1.0 1.0

During operational data processing, instrument calibration as well as vicarious calibration
are performed. The former includes pre-launch and direct calibration from MODIS solar and
lunar diffuser measurements and, when the SeaWiFS instrument was still operational, cross-
calibration adjustments based on SeaWiFS measurements (Sun et al., 2007; Xiong et al., 2010;
Meister et al., 2012). Vicarious calibration adjusts the top of atmosphere signal for any residual
error after instrument calibration and for any systematic bias due to the processing of the images
(including atmospheric correction) such that the retrieved remote sensing data fits the in situ
data (Franz et al., 2006). During operational data processing (see Section 3.1.2), the top of
atmosphere radiance is multiplied by the vicarious calibration gain factors at each spectral band.
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Since an error of 1% in atmospheric correction or sensor calibration results in approximately
10% difference in Lw(λ) and even more in the derived geophysical parameters (Franz et al.,
2012), this adjustment is essential to further reduce absolute uncertainty to meet the ocean
colour accuracy goals.

For MODIS Aqua, in the visible spectral range, the vicarious calibration gain factors at each
wavelength are determined to maximize the agreement between remotely sensed water-leaving
reflectance (in combination with the atmospheric correction algorithms) and the hyperspectral
Marine Optical Buoy (MOBY) in situ data for ρw(λ). In the NIR spectral range, reliable, simul-
taneous and co-located measurements of aerosol properties and ρw(λ) are not widely available
(Franz et al., 2007). Therefore, the NASA Ocean colour Biology Processing Group (OBPG)
computes NIR vicarious calibration gains by using an assumed aerosol type (Franz et al., 2007).
The gain factor at 869 nm is set to unity and the calibration sites are chosen such that the
zero NIR ρw(λ) assumption is verified and the aerosol model corresponds to the most probable
maritime aerosol model (maritime aerosol model with 90% humidity). The remaining unknown
is thus La(λ) in the NIR and gain factors can be estimated by comparing observed and modelled
La(λNIR). Gains are averaged over all the clear-water calibration targets to obtain a globally
valid correction gain factor for the spectral bands at 748 and 859 nm. The SWIR bands are not
vicarious calibrated.

Hence, the gains are not only sensor specific, they also depend on the used AC method.
The vicarious calibration gains suggested by NASA OBPG are computed with the STD AC
method. However, these can be considered as applicable for the other AC approaches provided
that similar aerosol models are used within the other AC methods.

Gains used in the present study are shown in Table 3.1. Since residual instrument calibra-
tion errors may vary over time, an update of the vicarious calibration gains may be required
to improve the archived products. Therefore, the gains used in Chapters 4 and 6 differ accord-
ing to the version of the SeaWiFS Data Analysis System (SeaDAS) software (Fu et al., 1998)
used for the image processing and the associated OBPG Ocean colour Reprocessing version
(http://oceancolor.gsfc.nasa.gov/WIKI/OCReproc.html). Gain factors shown in Table 3.1
correspond to the default gains suggested by OBPG for SeaDAS version 6.2 (including the Re-
processing 2010, R2010) and 6.4 (including the Reprocessing 2012, R2012), respectively. Note,
however, that the percentage difference does not exceed 0.6% (with a maximum difference at 531
nm). Though, this illustrates one of the difficulties when processing long-term satellite images.
Indeed, the MODIS Aqua data archive encountered 5 reprocessing versions since its initial repro-
cessing in 2004 (i.e., in 2005, 2009, 2010, 2012 and 2013). Although these reprocessing versions
often include minor changes, updates may sometimes be important. Accordingly, to ensure con-
sistent AC methods validation and inter-comparison, the entire archive of the satellite images
should be reprocessed when a new reprocessing version is released. For comparison and data
consistency, images processed with previous vicarious gain factors should thus be reprocessed
with new gains. When dealing with large satellite databases, this represents time-consuming
efforts.

3.1.2 L1A to L2 MODIS Aqua processing

The entire mission archive of MODIS Aqua images is available on the NASA ocean colour web-
site (http://oceancolor.gsfc.nasa.gov) through the on-line OBPG Data Processing System
(http://oceancolor.gsfc.nasa.gov/cgi/browse.pl). MODIS extracted L1A files, obtained
from this archive, are processed from L1A to L1B and subsequently from L1B to L2 using
SeaDAS version 6.2 or 6.4 (for the validation exercises outlined in Chapters 4 and 6, respec-
tively). The processing from L1A to L1B requires the generation of the geolocation files. These
are created based on the corresponding attitude and ephemeris files which include, among oth-
ers, coordinate system and spacecraft location information. Next, the 5-minute granule levels

http://oceancolor.gsfc.nasa.gov/WIKI/OCReproc.html
http://oceancolor.gsfc.nasa.gov
http://oceancolor.gsfc.nasa.gov/cgi/browse.pl
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contained in the L1A and geolocation file serve as input to produce 1 km, 250 m and 500 m top
of atmosphere radiance images in sensor geometry, and instrument calibration is performed to
generate the L1B file.

The oceanic optical properties and various derived products (e.g., atmospheric optical thick-
ness, aerosol reflectance, Ångström coefficient) are finally obtained and stored in the L2 file which
is generated by applying the atmospheric correction algorithm on the top of atmosphere radi-
ance contained in the L1B file. The Level-2 processing makes use of meteorological and ozone
information from ancillary sources.

During the processing of the L2 files, pixel-wise quality tests are also applied to each pixel
according to some conditions and retrieved processing parameters with the aim of reducing
inaccuracies (at the expense, however, of spatial coverage). This allows to exclude (mask) or
notice (flag) some pixel values that may be inaccurate for further data analysis. Pixels are usually
masked over land and when cloud/ice conditions are detected. Pixels presenting sun glint and
stray light contamination, high satellite and sun zenith angles can also be flagged. AC failure
is also noticed (e.g., when the number of iterations before convergence exceeds the maximum
allowed iteration number within the iterative process or when non-physical Chla concentrations
are retrieved in the STD AC method). As noticed previously, a commonly encountered flag
in very turbid waters is the high total radiance (HILT) flag resulting from sensor saturation
(in terms of digital counts) in the red and NIR bands. When the sensor saturates, sufficient
precision is not ensured to correctly characterize aerosols. However, high NIR radiance values
may be encountered in coastal areas and may therefore be erroneously masked. Similarly, the
standard cloud cover mask is applied on the NIR spectral band around 865 nm (ρrc(865) >
0.027) and may thus be too restrictive in turbid waters. Therefore, several studies suggested
to use the MODIS Aqua SWIR bands for cloud flagging (Wang and Shi, 2006; Franz et al.,
2006; Dogliotti et al., 2011). Another approach to improve cloud flagging was also suggested by
Nordkvist et al. (2009) which is based on the lower spectral variability of clouds compared to
sea-water.

3.2 In situ water-leaving reflectance measurements

3.2.1 Above-water systems

The above-water approach includes measurements obtained by on-board radiometers, used to
derive Lw(λ) and Ed(λ) which, according to Eq.(1.10), allows to derive ρw(λ). Above-water sys-
tems are considered better approaches for turbid coastal waters where the in-water methods are
usually more biased due to the high attenuation and stratification of the water column (Mueller
et al., 2003). It also retrieves the radiometric quantities in a more similar way as the satel-
lite measurements (Hooker et al., 2007). However, above-water ρw(λ) are often challenged by
rapidly changing sky and intermittent sun shining and shading conditions during measurements
explaining the need for clear skies or alternatively homogeneous cloud cover during measure-
ments (Toole et al., 2000; Hooker et al., 2002; Rudorff et al., 2013). Similarly, wind generated
wavy facets change the sea surface geometry which may significantly affect the up-welling rays
and sky glint contribution. Well defined correction schemes to remove the skylight reflection
effects at the ocean surface exist (e.g., Mobley, 1999; Gould et al., 2001; Ruddick et al., 2006;
Lee et al., 2010a; Cui et al., 2013). However other sources may have simultaneous effects (e.g.,
sun and cloud glint and the platform reflection or shadow) making the correction much more
difficult (Mobley, 1999; Doyle and Zibordi, 2002; Hooker and Morel, 2003). Hence, an accurate
acquisition geometry is essential to avoid self-shading and platform interference and minimize
sky and sun glint, platform reflection contamination and bidirectional effects (Mobley, 1999).
Nevertheless, under conditions of higher particle concentrations and high solar zenith angles,
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these effects may not be completely avoided (Morel and Gentili, 1996; Hooker et al., 2002; Morel
et al., 2002; Rudorff et al., 2013).

Examples of commonly used above-water instruments for ocean colour are the Analytical
Spectral Devices Fieldspec Hand Held (ASD), the Hyperspectral Surface Acquisition Remote
Sensing System (HyperSAS), the above-water TriOS RAMSES radiometers or the SeaWiFS
Photometer Revision for Incident Surface Measurements (SeaPRISM) (Fig. 3.1). All these
radiometers retrieve the sea surface reflection by subtracting the sky radiance measured with
a sensor pointing towards the sky from the measured total radiance emerging from the ocean.
In the present study, the above-water in situ data used for the validation and improvement of
the atmospheric correction methods, are mainly provided by the multispectral SeaPRISM and
hyperspectral above-water TriOS RAMSES instruments from the AERONET-OC and MUMM
datasets, respectively. Both instruments are further described in the next sections together with
the specifications of the associated in situ measurements. The HyperSAS and ASD instruments
were used to measure in situ ρw(λ) data during the Ocean Optics Summer School and the
MV1102 campaign, respectively. The closure exercises described in Section 3.2.3, present ρw(λ)
measurements from both instruments.

Figure 3.1: Pictures from the HyperSAS instrument used at the Ocean Optics Summer School
2011 (top left), the above-water TriOS RAMSES used during the FG12 campaign (top right), the
ASD instrument used during the MV1102 campaign (bottom left), and the SeaPRISM system
placed at the AERONET-OC station MVCO (bottom right)

3.2.1.1 Aerosol Robotic Network-Ocean Colour (AERONET-OC) data

The AERONET-OC is a network of globally distributed above-water autonomous multispectral
radiometers located in coastal regions (less then 25 km from the nearest coast) providing atmo-
spheric observations and Lwn(λ) data in the 412-1020 nm spectral range (Holben et al., 1998;
Zibordi et al., 2009a,b). This network is particularly useful for satellite instrument calibration
and product validation with its autonomous Lwn(λ) measurements at central wavelengths simi-
lar to the visible SeaWiFS or MODIS spectral bands (i.e., 412, 443, 488, 531, 547 and 667 nm).
Additional measurements are performed at 870, 940 and 1020 nm centre wavelengths to support
aerosol and water vapour monitoring and to improve water signal retrievals in turbid waters
(Zibordi et al., 2009b). For atmospheric applications, the aerosol optical thickness, τ(λ), is also
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retrieved and may be used to derive the Ångström exponent. An estimate of overall uncer-
tainty budget in AERONET-OC Lwn(λ) has shown some typical absolute uncertainties (due to
absolute calibrations, environmental variability and uncertainties in the self-shading and tower-
shading corrections) ranging from 5% to 10%, with the lowest uncertainties encountered for the
blue and green spectral bands and the highest for the red spectral band (Zibordi et al., 2009c,
2012).

The SeaPRISM systems (Fig. 3.1, bottom right picture) are located on fixed platforms
such as lighthouses, oil platforms or oceanographic towers. These fixed-platforms ocean colour
products are complementary to buoy or shipboard measurements. Indeed, in contrast to the
above-water field measurements taken with research vessels, the SeaPRISM systems are de-
ployed with no tilt and their solar illumination can be precisely determined. This stability,
the autonomous measurement configuration and the absence of in-water degradation (e.g., bio-
fouling on buoy systems), present large advantages allowing to build long-term periodic high
quality in situ ocean colour measurements and to increase the number of match-up pairs for the
validation of ocean colour remote sensing products. The protocol for the deployment structure
of the SeaPRISM instruments should also ensure the most favourable measurement conditions
avoiding adjacency effects from nearby coastal land, bottom reflectance, structure perturbations,
and sea spray. These deployment guidelines and the AERONET-OC data acquisition, calibra-
tion, processing, archiving and distribution infrastructures present the benefit to provide open
access near-real time and standardized data.

Today the AERONET-OC network is composed of 15 fixed platforms of which 12 present
cloud-screened and quality-assured data (Level 2) (Fig. 3.2). More details about instruments,
station properties and particularities, and water properties at each station, can be found in,
among others, Berthon and Zibordi (2004); Zibordi et al. (2006b); Mélin et al. (2007); Feng
et al. (2008); Zibordi et al. (2009b,c).

Figure 3.2: AERONET-OC level-2 stations (red dot). The AAOT, MVCO, COVE, DALEN,
and HELSINKI stations are indicated by a green square.

The AERONET-OC data used in the present research were provided by SeaPRISM systems
placed in the Adriatic sea on the Acqua Alta Oceanographic Tower nearby Venice (AAOT), in the
Baltic Sea on the Helsinki Lighthouse and Gustav Dalen Tower (HLT and GDLT, respectively)
and along the East Coast of the US on the Air-Sea Interaction Tower nearby the Martha’s
Vineyard Coastal Observatory and on the Chesapeake Lighthouse ocean platform (MVCO and
COVE, respectively) (Fig. 3.2). The deployment sites and the number of observations for each
site are given in Table 3.2. Table 3.3 shows the minimum, maximum and median values per
station and for the entire period of observations. According to this table, each station shows
some clear water spectra with relatively large ρw(λ) values in the blue and near zero values in
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the NIR spectral domain, as well as some turbid cases with larger ρw(λNIR) signals (ρw(869)
> 10−4, turbid threshold according to Siegel et al. (2000)).

Table 3.2: In-situ data location, description and distance from land

Lat Lon Distance from Number Period
land (km) of obs. of obs.

AAOT
(Adriatic Sea) 45.31◦ N 12.51◦ E 15 4348 2002-2007
GDLT
(Baltic Proper) 58.59◦ N 17.467◦ E 16.5 924 2005-2009
HLT
(Gulf of Finland) 59.95◦ N 24.92◦ E 22.22 665 2006-2009
MVCO
(U.S. Atlantic Coast) 41.32◦ N 70.57◦ W 3.7 973 2004-2005
COVE
(U.S. Atlantic Coast) 36.90◦ N 75.71◦ W 24 450 2006-2009

Table 3.3: Minimum, maximum and median ρw(λ) values for the MODIS Aqua bands (centre
wavelength in nm) per station and estimated over the period of observations.

ρw(λ) 412 443 488 531 547 667 748 869
AAOT min 0.0046 0.0054 0.0084 0.0138 0.0160 0.0038 0.0000 0.0000

max 0.0505 0.0557 0.0713 0.0784 0.0773 0.0188 0.0112 0.0017
median 0.0185 0.0217 0.0292 0.0308 0.0297 0.0063 0.0035 0.0003

GDLT min 0.0017 0.0033 0.0051 0.0082 0.0094 0.0038 0.0022 0.0001
max 0.0146 0.0150 0.0239 0.0409 0.0475 0.0143 0.0090 0.0028

median 0.0049 0.0063 0.0092 0.0139 0.0155 0.0052 0.0031 0.0004
HLT min 0.0012 0.0025 0.0043 0.0074 0.0084 0.0039 0.0028 0.0000

max 0.0049 0.0053 0.0084 0.0151 0.0176 0.0060 0.0043 0.0013
median 0.0033 0.0040 0.0070 0.0116 0.0134 0.0045 0.0032 0.0004

MVCO min 0.0044 0.0057 0.0096 0.0125 0.0129 0.0038 0.0023 0.0002
max 0.0155 0.0208 0.0364 0.0432 0.0458 0.0168 0.0108 0.0013

median 0.0091 0.0113 0.0168 0.0201 0.0200 0.0050 0.0030 0.0005
COVE min 0.0085 0.0113 0.0172 0.0210 0.0205 0.0041 0.0028 0.0000

max 0.0258 0.0311 0.0436 0.0509 0.0495 0.0142 0.0104 0.0018
median 0.0125 0.0157 0.0244 0.0304 0.0307 0.0066 0.0048 0.0006

3.2.1.2 MUMM database: Above-water TriOS RAMSES in situ ρw(λ) data

The MUMM database includes data from TriOS-RAMSES hyperspectral spectro-radiometers
(two measuring radiance and one measuring downwelling irradiance) from 63 sea campaigns
between 2001 and 2012. Data were collected in coastal waters located in the southern North Sea
and English Channel (Ruddick et al., 2006; Nechad et al., 2010), the Celtic Sea, the Ligurian Sea,
the Adriatic Sea and in the Atlantic Ocean along the coasts of Portugal and French Guyana
(Loisel et al., 2009; Vantrepotte et al., 2011). This dataset is particularly suitable for the
validation of remote sensing retrieved ρw(λ) as it includes measurements over contrasted water
types including highly turbid coastal waters. For the present study, in situ data processing,
averaging and selection were largely based on the processing described in Ruddick et al. (2006).
Based on a subset of the MUMM dataset, Ruddick et al. (2006) estimated the relative reflectance
uncertainty in the 650-900 nm spectral range between 3% and 5% and between 10% and 20% for
turbid and clear water cases, respectively. As mentioned previously, during a one-month stay at
the MUMM in Brussels, a set of R programs (http://www.R-project.org.) were developed,
such that the raw in situ measurements are processed semi-automatically for each station to
obtain average ρw(λ) spectra, associated standard deviations and meta-data.

The three TriOS-RAMSES sensors measure simultaneously the downwelling irradiance at
the sea surface, Ed(λ), the total upwelling radiance from the water and air-sea interface that
reaches the water viewing sensor, Lt(λ), and the sky radiance that reflects into the direction

http://www.R-project.org.
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of the water viewing sensor Lsky(λ), in the 350-950 nm spectral range with 2.5 nm spectral
resolution. The irradiance sensor is equipped with an optical fiber and a cosine collector while
radiance sensors present a limited field of view of 7◦. The instruments are usually mounted on a
steel frame fixed to the bow of the ship, facing forward to minimize ship shadow and reflection
(Fig. 3.3).

Figure 3.3: Picture taken during the FG12 sea campaign from the TriOS RAMSES system
oriented to minimize sun- and cloud glint and bidirectional effects (θ ∼ 40◦and ψ ∼ 135◦(left)
and schematic configuration of TriOS RAMSES instruments for above water ρw(λ) retrievals
(right).

From Ed(λ), Lt(λ) and Lsky(λ), ρw(λ) can be derived as follows (Mobley, 1999):

ρw(λ) = π
Lt(λ)− ρsky × Lsky(λ)

Ed(λ)
(3.1)

where ρsky defines the proportion of the total upwelling radiance that is related to the air-water
interface reflectance (also called sea surface reflectance factor). The term ρsky ×Lsky(λ) can be
described as the fraction of Lt(λ) that is due to the skylight reflection effects at the sea surface.
Subsequently, the difference Lt(λ) − ρsky × Lsky(λ) is the water-leaving reflectance just above
the sea-surface, Lw(λ).

For clear sky conditions ρsky is approximated as a function of the wind speed, W, while for
cloudy conditions the coefficient is considered constant (Mobley, 1999; Ruddick et al., 2006). In
the present processing when the wind speed is missing, a default value of 5 m s−1 is used. ρsky
is calculated as follows:

ρsky =

{
0.0256 + 0.00039W + 0.000034W 2 when

Lsky(750)
Ed(750) < 0.05

0.0256 when
Lsky(750)
Ed(750) >= 0.05

(3.2)

Estimating the appropriate ρsky value is the most critical part of the above water approach
and in particular when the wave facets cause a complex geometrical design between sea-surface
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and sensor. Equation (3.2) represents in this case an inaccurate simplification (Mobley, 1999;
Toole et al., 2000).

To minimize sun glint, bidirectional effect and noise on ρw(λ) retrievals, the ship is ma-
noeuvred on station such that Lsky(λ) and Lt(λ) are measured at a zenith and relative azimuth
angle of 40◦and 135◦, respectively (Fig. 3.3). Although sun and cloud glint and additional per-
turbations from platform reflection are minimized with this acquisition geometry, measurements
may not be totally corrected for all contaminants. In clear waters, a “white correction” is often
applied. This correction assumes a zero baseline in the NIR spectral region. The offset is then
simply subtracted from the measured reflectance at each wavelength (Mueller and Austin, 1995;
Toole et al., 2000). However, this includes the assumptions of spectrally white contamination
and zero ρw(λ) in the NIR spectral range which are not always valid. Another approach to
eliminate residual contamination was suggested by Ruddick et al. (2005, 2006) which is based
on the NIR similarity spectrum assumption (i.e., the shape of the NIR ρw(λ) spectra is almost
invariant for moderately to very turbid waters). The offset in the “white correction” is then
replaced by a multiplicative correction factor ε with α(λ1, λ2) being the constant NIR reflectance
ratio (Ruddick et al., 2000, 2005, 2006):

ε =
α(λ1, λ2) ∗ ρw(λ2)− ρw(λ1)

α(λ1, λ2)− 1
(3.3)

This approach allows to account for spectrally dependent residual contamination. However,
as demonstrated by Doron et al. (2011) and later in Chapter 4, the assumption of a constant
NIR reflectance shape is not always valid. Moreover, the spectral dependency of cloud glint
contamination may vary with the cloud properties (thickness, coverage, distribution) (Rudorff
et al., 2013). Accordingly, for the present study, residual correction factors are not applied.

At each station, about 60 scans were recorded during 4 to 10 minutes (see, for instance,
Fig. 3.4). Shorter recording times were preferred when the tidal stream was significant in order
to avoid large deviations of the ship.
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Figure 3.4: Ed(λ) (mW m−2 nm−1) (top left), Lt(λ) (mW m−2 nm−1 sr−1) (top right),
Lsky(λ) (mW m−2 nm−1 sr−1) (bottom left) and ρw(λ) (dimensionless) (bottom right) for the
60 scans measured at station S17 during the FG12 field campaign.
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Within each set of 60 scans, scans were rejected when their vertical inclination exceeded
5% and/or when the measured Ed(550), Lt(550) or Lsky(550) differed by more than 25% from
either neighbouring scans (Fig. 3.5). Scans with sharp intensity changes over the spectral range
(i.e. scans showing spectral jumps in Ed(λ), Lt(λ) or Lsky(λ) of more than 0.4%, 2% and 0.4%,
respectively) were also considered as erroneous and excluded for further data analysis (Fig. 3.5).
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Figure 3.5: Ed(λ) (mW m−2 nm−1) (top left), Lt(λ) (mW m−2 nm−1 sr−1) (top right),
Lsky(λ) (mW m−2 nm−1 sr−1) (bottom left) and ρw(λ) (dimensionless) (bottom right) at 400,
550 and 700 and 850 nm measured at 60 time-steps at station S17 during the FG12 field cam-
paign. Scans showing spectral jumps relative to the neighbouring scans are eliminated and indi-
cated on the plots by a vertical grey bar.

Ultimately, as done by Ruddick et al. (2006), the first five scans out of the remaining scans
were used to calculate the average and standard deviation of ρw(λ) at each station (Fig. 3.6).

In order to ensure highly accurate ρw(λ) retrievals, Ruddick et al. (2006) imposed three
additional quality requirements:

1. Measurements taken under clear sky conditions (Lsky(750)/Ed(750) < 0.05) should only
be retained.

2. To ensure low temporal variability, the standard deviation of the five selected ρw(780)
scans should not overpass 10% of the averaged ρw(780).

3. The wind speed should not exceed 10 m s−1 during measurement.

With the aim to increase our validation dataset, the appropriateness of retaining only
data taken under clear sunny skies was first investigated before it was applied. Indeed, under
fully overcast conditions (Lsky(750)/Ed(750) > 0.3 sr−1), ρsky remains independent of cloud
cover and wavelength and the reflected sky radiance estimations (ρsky × Lsky(λ)) are not or
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Figure 3.6: Ed(λ) (mW m−2 nm−1) (top left), Lt(λ) (mW m−2 nm−1 sr−1) (top right),
Lsky(λ) (mW m−2 nm−1 sr−1) (bottom left) and ρw(λ) (dimensionless) (bottom right) of the 5
selected scans used to obtain the final averaged spectra (thick green lines) and associated standard
deviations for the station S17 of the FG12 field campaign.

less affected by sun glint (Mobley, 1999) and sea-state conditions (Toole et al., 2000). This
results in significantly lower uncertainty compared to clear sky conditions (Toole et al., 2000).
Nonetheless, with fully overcast conditions, even small errors in ρsky may result in significant
ρw(λ) inaccuracies because of the large contribution of Lsky(λ) to Lt(λ) (Mobley, 1999). Doxaran
et al. (2003) also claimed that an accurate correction of the reflection effects under diffuse
illumination remains challenging. To investigate if whether or not measurements taken under
overcast cloud conditions should be retained, the contribution of Lsky(λ) to Lt(λ) is compared
when measured under clear skies (Lsky(750)/Ed(750) < 0.05 sr−1) and under uniform overcast
conditions (Lsky(750)/Ed(750) > 0.3 sr−1). The relative difference in ρw(λ) is also investigated
after increasing and decreasing the initial ρsky values by 10%, respectively.

The 63 sea campaigns presented in the MUMM dataset included 860 stations, and conse-
quently, 860 averaged ρw(λ) spectra. Out of these 860 spectra, 184 spectra passed the selection
criteria showing small temporal variability and low wind speeds (below 10 m s−1) during ac-
quisition. Among these 184 remaining spectra, 131 spectra showed clear sky conditions, with
Lsky(750)/Ed(750) ranging from 0.006 to 0.05 sr−1, 10 spectra showed uniform overcast con-
ditions with Lsky(750)/Ed(750) ranging from 0.30 to 0.38 sr−1. The 33 spectra showing non-
uniform cloudy conditions (Lsky(750)/Ed(750) between 0.05 and 0.3 sr−1) are excluded from
data analysis.

As noticed by Mobley (1999), under overcast and thick overcast conditions, a larger con-
tribution of Lsky(λ) to Lt(λ) is observed compared with clear skies (Fig. 3.7(a)). Hence, for
such conditions even small errors in ρsky may induce large errors in ρw(λ) estimations (Mobley,
1999). Fig. 3.7(b) shows the percent difference on ρw(λ) after including ± 10% error in the
initial ρsky values. With uniform overcast conditions, 10% error in ρsky induces less than 10%
difference in ρw(λ) between 400 and 725 nm. However, differences increase in the 740-900 nm
range (> 10%). In contrast, for clear sky conditions, 10% error in ρsky results in less than 10%
difference over the entire spectrum.
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Figure 3.8: 131 selected above-water TriOS RAMSES reflectance spectra from the MUMM
database used in the present study for the validation and improvement of AC methods.
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Figure 3.9: Location of the 131 selected above water TriOS RAMSES spectra from the MUMM
database (red dots on the map) along the coast of French Guiana (left) and in the European
waters (right) used in the present study for the evaluation and improvement of the AC methods.

Since the present study requires highly accurate data and to ensure less than 5% uncertainty
on ρw(λ) as recommended by the SeaWiFS protocol (Mueller et al., 1996), retaining only clear
sky conditions is justified reducing the number of selected spectra to 131. The 131 selected
spectra are shown in Fig. 3.8 and their location in Fig. 3.9. Finally, for comparison with MODIS
Aqua retrieved ρw(λ) data, a linear interpolation is performed in the 350-950 nm spectral range
to obtain in situ data at the MODIS Aqua central wavelengths.

3.2.2 In-water systems

In situ ρw(λ) data retrieved from in-water sensors are computed from simultaneous measure-
ments of submersed radiometers recording upwelling radiance, Lu(λ), and downwelling irra-
diance, Ed(λ), and possibly a deck sensor that measures above-water downwelling irradiance,
Es(λ). Different instrument designs exist, e.g., the sensors attached to moored buoys sampling
at stationary depths (e.g., the Hyperspectral Tethered Satlantic Remote Sensing Buoy HTSRB),
the profilers winched and attached to deploying cages (e.g., in-water TriOS RAMSES), or the
free-falling instruments drifting away from the platform attached solely to the telemetry cable
(e.g., the Hyperspectral Optical Profiler, HyperPRO, and High-Resolution Profiling Reflectance
Radiometer, PRR). Free falling profilers are usually deployed at the leeward side of the stern to
let them drift away from the ship or platform avoiding ship shadow and structure perturbations
(Rudorff et al., 2013). Winched profilers such as the in-water TriOS RAMSES system should
be deployed at the sun incidence side of the ship to avoid ship shadow.

According to Mueller et al. (2003) and Bailey and Werdell (2006), in-water methods are
more standard and extensively used in ocean colour remote sensing for satellite calibration and
validation. It is also considered to provide more accurate radiometric measurements compared
to the above water methods because contamination of the reflected skylight on the ocean surface
is avoided (Rudorff et al., 2013). However, imperfections in in-water ρw(λ) measurements are
also multiple. Measurements need to be corrected for sensor tilt and instrument self-shading
including complex extrapolation procedures, along the in-water profile and through the water
interface to obtain above-water radiometric measurements, and accounting for variations in the
submersed light field (Toole et al., 2000; Mueller et al., 2003; Zibordi and Voss, 2010). Larger
biases and uncertainties are encountered when wind speeds are important inducing significant
wavy facets and water bubbles resulting in significant illumination variations. To avoid the effect
of such perturbation factors, the extrapolation for the retrieval of ρw(λ) is often done using
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greater depths where the water column is less affected by the effect of the wind (Rudorff et al.,
2013). Nonetheless, this includes the assumption of vertical homogeneity in the water column
and thus a constant diffuse attenuation coefficient, Kd(λ) (Rudorff et al., 2013). Moreover,
in turbid waters, light penetration may be limited, reducing the possible extrapolation depth,
especially at larger wavelengths where the water signal is less important (Zibordi et al., 2004a).
Therefore, in-water instruments usually provide more accurate ρw(λ) measurements in clear or
moderately turbid waters and at shorter wavelengths, while above-water instruments tend to
exhibit better ρw(λ) estimations in the NIR spectral region and over very turbid waters.

3.2.2.1 LOG database: In-water TriOS-RAMSES in situ ρw(λ) data

The LOG database presents hyperspectral radiometric measurements performed in the visible
and NIR spectral range (∼ 350-950 nm) from two in-water radiometers and one deck sensor.
The deck sensor measures downward irradiance, Ed(0+, λ), and is placed pointing upward on a
mast such that any platform shading is avoided (Fig. 3.10). In the profiling cage, one in-water
radiometer is pointed upward measuring the in-water irradiance profile, Ed(z, λ), the other is
pointed downward to measure the nadir upward radiance profile, Lu(z, λ) (Fig. 3.10). Similarly
to the sensors used for the above water TriOS system, the irradiance sensor is equipped with an
optical fibre and a cosine collector while the radiance sensor presents a limited field of view of
7◦in the air.

Figure 3.10: Picture of the in-water TriOS RAMSES system deployed in a cage during the
MV1102 measurement campaign (left) and the deck sensor for the normalization of the in-water
radiometric measurements to variations in illumination (right).

First, wavelength dependent correction factors, also called immersion factors, are applied
to correct in-water measurements for the reduced solid angle and light transmission due to
the water immersion of the sensors (Mueller and Austin, 2003; Ohde and Siegel, 2003). Next,
Ed(z, λ) and Lu(z, λ) are normalised by Ed(0+, λ) (Edn(z, λ) and Lun(z, λ), respectively) to
minimize illumination variations during acquisition:

Edn(z, λ) =
Ed(z, λ)Et0−d (0+, λ)

Etzd (0+, λ)
(3.4)

Lun(z, λ) =
Lu(z, λ)Et0−d (0+, λ)

Etzd (0+, λ)
(3.5)
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where t0− and tz indicate that Ed(0+, λ) is taken at the time when the cage is just below
surface and when it is at depth z, respectively. Ed(z, λ) and Lu(z, λ) are also corrected for
self-shading effects as suggested by Gordon and Ding (1992) or Leathers and Downes (2004).

Next, Lu(z, λ) and Ed(z, λ) are extrapolated just below sea-surface to obtain Lu(0−, λ) and
Ed(0−, λ).

Ed(0−, λ) = Edn(z, λ)ez∗K
Ed
d (λ) (3.6)

Lu(0−, λ) = Lun(z, λ)ez∗K
Lu
d (λ) (3.7)

where KLu
d (λ) and KEd

d (λ) are the downwelling diffuse attenuation coefficients computed
as the slope of the self-shading corrected ln(Lun(z, λ)) and ln(Edn(z, λ)) profiles, respectively
(Smith and Baker, 1981; Mueller, 2003).

Knowing Lu(0−, λ) and Ed(0−, λ), Lw(0+, λ) and Ed(0+, λ) can be derived to obtain ρw(λ)
using Eq.(1.10), (1.11) and (1.12). The downwelling incident irradiance just above the sea
surface can also be obtained with the deck sensor Ed(0+, λ) measurements. This approach
is preferred and selected to avoid variations in focusing and defocusing sunlight by surface
waves and perturbations due to water bubbles. However, perturbations may affect Lu(z, λ) and
Ed(z, λ) in a similar way and are thus cancelled when the radiance-irradiance ratio is computed
to estimate ρw(λ). Moreover, deck sensor Ed(0+, λ) values are more affected by variations in
illuminations (especially when cloud cover is not homogeneous) and platform tilt (Rudorff et al.,
2013).

Figure 3.11: Location of the selected in-water TriOS RAMSES reflectance spectra from the
LOG database (red dots) used in the present study for the validation and improvement of AC
methods.

Sampling protocols and data characteristics for the LOG data are further described in,
among others, Lubac and Loisel (2007) for the North Sea-English Channel dataset and in Loisel
et al. (2009) and Vantrepotte et al. (2011) for French Guiana. The map in Fig. 3.11 shows
the location of the LOG data used in the present study for the validation of the AC methods.
Figure 3.12 shows the hyperspectral ρw(λ) spectra of these data per field campaign (i.e., Belgica
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2009-2010, Belcolor 2009-2010, French Guiana 2009, Belgica 2010, and Phabop 2004 with 20,
76, 21, and 93 spectra, respectively).
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Figure 3.12: Reflectance spectra from the LOG database used in the present study and per field
campaign.

3.2.3 Closure exercises

3.2.3.1 Inter-comparison of ρw(λ) data from above and in-water instruments in the
southern Atlantic and south-eastern Pacific

This section includes an inter-comparison of Rrs(λ) data collected during the MV1102 sea cam-
paign and is part of the following paper: N. D. M. Rudorff, R. Frouin, M. Kampel, C. Goyens,
X. Meriaux, and B. Schieber (2013). Assessing accurate ocean colour in situ radiometry across
the southern Atlantic and south-eastern Pacific. Submitted to Remote Sensing of Environment.

The MV1102 campaign on-board the R/V Melville (Scripps Institution of Oceanography, SIO)
departed from Cape Town (South Africa) on February 22nd 2011 and arrived at Valparaiso
(Chile) on March the 13th 2011, end of the austral summer. A total of 20 stations with radio-
metric and bio-optical measurements were undertaken across the Southern Atlantic (33◦-53◦S
and 15◦-70◦W) and southeastern Pacific (47-35◦S and 74-76◦W) (Fig. 3.13).

The sampled regions are characterized by a range of highly diverse and complex systems
with coastal regions presenting nutrient enriched waters (South African and South American
coastal regions) and highly productive waters (South Chilean coast), frontal zones marked by
strong temperature-salinity gradients (South Atlantic Subtropical Convergence Zone), colder
less saline and high nutrient low chlorophyll waters (Southern Ocean), and warmer, more saline
and oligotrophic waters.

The radiometric stations were undertaken as close as possible to the overpassing times of
the MERIS and MODIS satellites. Radiometric measurements were made with an above-water
- ASD and with in-water - HyperPRO, PRR and TriOS instruments. Sub-surface bio-optical
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Figure 3.13: MV1102 radiometric stations shown in a Chla map obtained from MODIS Aqua
(4 km spatial resolution) averaged in the sampling period (02/18-03/14/2011).

measurements were also performed for Chla and pigment concentrations, and CDOM absorption.
A HydroScat (Hobilabs Inc.), ECO-VSF green and red, C-star and BB9 (from Wetlabs) were
also deployed to retrieve the backscattering and attenuation coefficients at several wavelengths.
Measurements and data processing of the radiometric and bio-optical data are detailed in Rudorff
et al. (2013).

First, Rrs(λ) measurements are analysed and sources of uncertainties are outlined for each
instrument. Next, a measurement-measurement comparison exercise is conducted comparing
the retrieved Rrs(λ) values from the different radiometric instruments. Therefore, Rrs(λ) val-
ues from the HyperPRO are taken as a reference to compare the other Rrs(λ) quantities. The
unbiased percent difference (UPD), the modular relative percent difference for absolute differ-
ences (RPD*), and the determination coefficient (R2) of linear regression analysis are used as
statistical indices for instrument inter-comparison. The UPD considers that all measurements
are biased. The RPD* quantifies the total bias. The R2 measures the dispersion between the
quantities.

According to the resulting Rrs(λ) measurements, the main sources of uncertainty with
the above-water ASD system are associated with cloud glint contamination and illumination
variations due to broken clouds. Wind speed is also an important contaminator affecting the
sky glint contribution with clear and partially cloudy skies. In this paper we showed that residual
contamination from sun and cloud glint and artefacts caused by illumination variation could be
reduced but not totally corrected with the residual contamination correction (i.e., subtraction of
the 800 nm white offset) and quality control scheme (i.e., excluding scans for which the coefficient
of variation in the blue spectral band exceeds 10%).

For the in-water free-falling profilers, HyperPRO and PRR, a significant source of uncer-
tainty is related to the depths interval used for the extrapolation of the radiometric quantities.
Surface depths are more desirable but much more subjected to environmental noises with high
fluctuations in the light field distribution caused by surface wavy facets and intermittent pres-
ence of bubble clouds due to breaking waves. Higher depths, on the other hand, have lower
signals resulting in increasing uncertainties, higher Kd(λ) variations and Raman scattering ef-
fects (Gordon et al., 1993; Berwald et al., 1998; Morel and Gentili, 2004). For the estimation
of Rrs(λ) with the PRR and HyperPRO, no systematic difference is found in the retrieved
Rrs(λ) when the deck or in-water sensors are used to compute Ed(0+, λ). Therefore, for both
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the HyperPRO and PRR instruments, the optimized depth interval is defined based on a best
fit for the Kd(λ) estimation and the estimated Rrs(λ) is defined as the average between the
Rrs(λ) computed when the deck and in-water sensor are used for the Ed(0+, λ) estimations. In
contrast, for the in-water TriOS system, Rrs(λ) uncertainties are much larger when the deck
sensor is used. Indeed, biases in Lu(λ) are probably amplified when normalizing with the deck
sensor Ed(0+, λ). With the in-water sensor Ed(0+, λ), Rrs(λ) values much closer to the other
approaches are observed. Therefore, for the TriOS instrument, estimated Rrs(λ) values are
computed with the in-water sensor Ed(0+, λ) and the entire profile was used (5-40 m) for the
Kd(λ) estimation.

Table 3.4 shows the statistics resulting for the measurement-measurement closure exercise
between Rrs(λ) retrieved with the HyperPRO system and retrieved with the PRR, the in-situ
TriOS system and the above water ASD. The PRR exhibits a RPD* of approximately 12% with
a slight overestimation in Rrs(λ) compared to the HyperPRO data. Both PRR and HyperPRO
are free-falling profilers and have the advantage to drift away from the platform avoiding any
type of perturbations from the superstructure. Hence, it is expected that these two approaches
are affected by the same type of perturbations and, subsequently, show a close agreement.
Most of the uncertainty between these approaches may therefore be associated with intrinsic
environmental variability as well as the choice of the extrapolation depth resulting in variations
in the Rrs(λ) estimations.

Table 3.4: Unbiased percent difference (UPD, %), modular relative percent difference for ab-
solute relative differences (RPD*, %) and determination coefficient of linear regression (R2, %)
between ρw(λ) measured with HyperPRO and with the PRR, TriOS and ASD, respectively.

412 443 510 555 412/555 443/555 510/555
UPD (%) 0 2 9 6 -6 -4 3

PRR RPD* (%) 12 13 14 12 7 5 4
N=19 R2 (%) 91 90 72 72 99 99 99

UPD (%) -27 -29 -27 -19 -9 -10 -6
TriOS RDP* (%) 27 27 25 19 9 10 8
N=12 R2 (%) 77 80 65 53 96 96 95

UPD (%) 8 9 9 13 -4 -4 -4
ASD RDP* (%) 21 19 12 15 13 10 5
N=17 R2 (%) 86 87 80 94 97 97 97

The TriOS Rrs(λ) data present the highest differences, with 19-27% RPD* showing gener-
ally lower Rrs(λ) values. This underestimation is possibly due to instrument or platform shading
(when the ship is not perfectly oriented according to the sun direction to avoid these effects)
and/or greater depths selections for the extrapolation procedure. To verify the impact of greater
extrapolation depths, variations in Rrs(λ) values were investigated relative to the extrapolation
depth for both the TriOS and HyperPRO approaches and based on IOP and modeled Rrs(λ)
data (derived from insitu bio-optical measurements and based on the model of Morel and Mar-
itorena (2001), more details in Rudorff et al. (2013)). Rudorff et al. (2013) concluded that
the overall impact of the bio-optical variability remained small. Similarly, Kd(λ) estimations
with the HyperPRO appeared to be relatively constant whatever the used extrapolation depth.
Nonetheless, the measurements collected with the lower extrapolation depth used with the Hy-
perPRO instrument may be affected by bubble scattering which could possibly result in a slight
overestimation in Rrs(λ), especially for stations under high winds and waves and lower Chla
concentrations. This is also true for the PRR measurements. Using larger depths, the TriOS in-
strument may avoid more effectively the bubble effects. Hence, the effect of bubble clouds may
contribute to an overestimation in Rrs(λ) with the HyperPRO instrument while the shading
effects of the ship structure may result in lower Rrs(λ) retrievals with the TriOS instrument.

The ASD sensor shows RPD* values ranging from 15% to 21% and tends to overestimate
the water signal relative to the HyperPRO instrument. Overestimations with above-water ap-
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proaches may result from under-corrections of sky, cloud, and/or sun glint, platform reflection,
presence of whitecaps, and in-water bubble clouds. As noticed by Rudorff et al. (2013), these
effects are wavelength dependent (e.g., platform reflection may have an impact at specific wave-
lengths depending on the colour of the structure, bubble clouds causes a peak in Rrs(λ) in the
green bands) explaining the higher RPD* values for blue-green ratios compared to green-green
ratios (10% and 13% versus 4%, respectively).

Except for the TriOS system at 555 nm, all instruments also show high co-variations for
the spectral bands and band ratios indicating an overall reasonable performance of the different
methods. However, in most cases the UPD and RPD* values in Table 3.4 greatly exceed the 5%
uncertainty recommended as the maximum retrieval error by the SeaWiFS protocol for accurate
in situ Rrs(λ) (Mueller et al., 1996). In the literature, most inter-comparison studies focused
on case 1 waters and applied highly controlled schemes with instrument inter-calibration and
similar data processing codes for all instruments (Hooker and Maritorena, 2000; Zibordi et al.,
2009c, 2012). Under more diverse conditions and embracing also more eutrophic and turbid
coastal waters, Toole et al. (2000) and Garaba and Zielinski (2013) found similar and even
greater differences between above and in-water methods. Rudorff et al. (2013) concluded that
the uncertainties associated with environmental variabilities for a same system are almost as
high as the differences observed between the systems.

This exercise illustrates the need for careful acquisition and data processing schemes for
in situ radiometry for both above and in-water methods in order to ensure accurate validation
data.

3.2.3.2 Radiometric closure between ρw(λ) data from above and in-water hyper-
spectral radiometers measured in the Gulf of Maine

This section is largely based on the on-line available report from N. Briggs, H. Chen, A. Dave,
F. H. Freitas, C. Goyens, C. Kearney, L. Powers, S. Rivero, and R. Vandermeulen entitled
”Hyperspectral radiometers” in Arellano et al. (2011). The latter is an outcome of the three
weeks International Ocean Optics Summer School 2011 about calibration and validation of ocean
colour remote sensing at the Darling Marine Centre (Walpole, Maine, 10-31 july 2011).

The field data obtained from the simultaneous deployment of three separate instrument
systems, the Satlantic HyperPRO, HyperSAS and HTSRB, provided an excellent opportunity
to assess closure between disparate radiometric measurements. Data were collected in the Gulf
of Maine (at 43◦44.9 North and 69◦29.9 West) in the afternoon of July 20th, 2011 (∼ 15:00
local time). The sky conditions on this day were ideal with a bright sun and less than 5% cloud
cover. Sea state was very calm with wind speeds below 1 m s−1. For the HyperPRO instrument,
two configurations were compared, once when a flotation collar is attached to the instrument
such that near surface upwelling irradiance and radiance are measured (“buoy mode”), and
once when the instrument is in its initial configuration (i.e., free-falling profiler system). A
comprehensive overview of the instrument characteristics and data processing for the three
hyperspectral radiometers is given by Briggs et al. (2011).

Figure 3.14 shows that the estimated Rrs(λ), provided from the different instruments, are in
close agreement (< 10% difference) over blue and green wavelength bands. In the red wavelength
band, estimates of Rrs(λ) show significantly greater variations (up to 50%).

Similarly to the previous closure exercise (Section 3.2.3.1, Rudorff et al. (2013)), the differ-
ences in Rrs(λ) reflect the techniques used to transform subsurface and above-water measure-
ments into Lw(λ) and Ed(λ) values. In the case of subsurface measurements, this entails the
extrapolation of Ed(z, λ) and Lu(z, λ) up to just below the sea surface and the estimation of
their transmission through the surface. In the case of above-water measurements, it includes
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the deconvolution of Lt(λ) into Lw(λ). Thus, in all cases, Rrs(λ) estimates are impacted by the
state of the sea surface. Small temporal changes in the light field due to cloud effects may also
contribute to differences between Rrs(λ) estimates. Nonetheless, the comparison presented here
represents an optimal case, since data were collected within 2 hours near noon on a day with a
clear, blue sky and almost flat sea surface.

Figure 3.14: Comparison of Rrs(λ) estimations from 4 distinct configurations and radiometer
systems deployed in the Gulf of Maine in July 2011. Error bars indicate standard deviation for
each estimate.

Next, a measurement-model closure is achieved by investigating whether or not the Rrs(λ)
spectra generated by HydroLight (Mobley, 1989; Mobley and Sundman, 2008) with field-measured
IOPs (absorption, backscatter, attenuation and Chla concentration) agree with the Rrs(λ) spec-
tra generated from field data. Before inputing IOP data into HydroLight, extreme care was
taken to ensure proper data processing with all corrections for dark signals, blanks, and tem-
perature/salinity differences. The Chla concentration was calculated for several depths using
the in-situ fluorometer. In the present study, the Chla absorption specification model is se-
lected based on Case I water (Mobley and Sundman, 2008). Total absorption and attenuation
coefficients and backscattering coefficients are measured using an ac-s and BB9 instrument, re-
spectively. Additionally, the model utilizes a Pope and Fry pure water model (Pope and Fry,
1997). It considers inelastic scattering effects and an infinitely deep water column, and estimates
CDOM absorption with a filtered ac-s cast. The wind speed is below 1 m s−1 and the sky is
as 100% clear. In order to compute the sun position and intensity, measurement location, date
and time are supplied to the model. Finally, measured and modelled Rrs(λ) are compared.

Figure 3.15 shows the measurement-measurement and model-measurement closure for a
single cast and the associated uncertainties. The Rrs(λ) values measured with the three different
instruments (with the HyperPRO system in buoy mode) all agree within the uncertainties limits.
The modelled Rrs(λ) spectrum also shows a relatively good fit with field measurements. With
the HTSRB system and HydroLight, the characteristic Chla peak around 670 nm is clearly
observable. Note that for this specific cast, the Rrs(λ) spectrum for the HTSRB appears to
drop below zero at about 700 nm. Negative values for Rrs(λ) are non-physical. This negative
offset most likely results from an old calibration file when processing the data. This illustrates
the need to compare the offset of the different radiometers. A good way to do this is to point
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the radiance and irradiance sensors of each system at a same homogeneous surface and to look
at the measurement differences.

Figure 3.15: Measurement-model and measurement-measurement closure of Rrs(λ) spectra and
their associated uncertainties measured in the Gulf of Maine on July 20th 2011. Rrs(λ) from field
measurements using HyperSAS (purple line), HyperPRO (buoy mode) (blue line) and HTSRB
(green line) are compared with the modelled (HydroLight) Rrs(λ) (red line).

3.3 Coincident in situ and satellite ρw(λ) data: match-ups se-

lection

The datasets described in the previous sections were used to assess the quality of the satellite
retrieved Lwn(λ) values as a function of the four AC approaches (Chapter 2) through a match-up
exercise. Match-ups are defined as satellite and field data pairs quasi-coincident in space and
time. The selection criteria, used to evaluate the space and time coincidence, greatly influence
the number of retained match-ups and their quality. A good match-up configuration should be
dependent on the area of interest and the observed water type. Indeed, match-up protocols for
water masses highly variable in time and space (e.g., turbid coastal water masses) should be more
conservative to ensure contemporaneous satellite-in situ observations. In contrast, when the
target corresponds to spatially and temporally homogeneous water masses, the selection criteria
can be loosed and subsequently ensure a larger number of match-ups. Selection criteria should
also be satellite and measurement specific. For instance, the spatial and temporal resolutions
of the satellite sensor need to be considered when evaluating the pixel window to determine
satellite retrievals, which can range from a single pixel to a full scene.

In the present study, the match-up selection criteria and definition are similar to the ap-
proaches described in Bailey and Werdell (2006) and Jamet et al. (2011). For each match-up
pair, the median and standard deviation of the MODIS estimated radiometric quantity are cal-
culated over a 3 by 3 pixel window around the station. The median value is preferred to the
average value as the former is less sensitive to outliers (although some of these will be excluded
with the homogeneity criterion explained hereafter). A 3 by 3 pixels window is used since the
MODIS-Aqua images have geolocation accuracy of about 150 m at satellite nadir (Wolfe et al.,
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2002). A 5 by 5 pixels window, as suggested by the operational OBPG satellite data product val-
idation system (Bailey and Werdell, 2006), is considered here as inappropriately large. Indeed,
such a large window is justified for a global validation but over turbid coastal waters it may
include diverse water types, especially in regions where high temporal and spatial variability
in water masses are observed. Note also that for the MVCO station (see Section 3.2.1.1), the
window size was reduced to 2 by 3 pixels to avoid the adjacency effects from nearby land lying
only 3 km North of the station (Feng et al., 2008; Jamet et al., 2011).

Prior to data analysis, three exclusion criteria are applied ensuring that the MODIS-Aqua
data effectively represent the in situ measurements. These are the following:

1. When the time difference between the satellite overpass and the in situ measurements
exceeds 2 hours, the match-up pair is excluded. If redundant data remain, the match-up
with the smallest time difference is retained.

2. Match-up pairs are excluded when in a 3 by 3 pixels window (2 by 3 for the MVCO station)
more than 3 pixels are flagged (ensuring a minimum of 6 valid pixels).

3. Spatial homogeneity within the pixel windows is imposed. Match-up pairs presenting
MODIS estimated standard deviations in Lwn(547) above 20% of the mean value, are
excluded.

Additional selection criterion are applied according to the purpose of the study. For the val-
idation of the AC methods for turbid coastal waters (Chapter 4), an additional criterion is used,
namely, only the match-up pairs presenting in situ Lwn(667) above 0.183 mW cm−2 µ m−1 sr−1

are retained. This is done to ensure turbid waters only (Robinson et al., 2003).
Compared to the ± 3 hours temporal coincidence, as suggested by Bailey and Werdell

(2006), the time difference of 2 hours between the satellite overpass and in situ measurement
greatly reduces the number of match-up pairs. However, a small time difference is preferred to
ensure that the MODIS estimated Lwn(λ) actually corresponds to the in situ measurements.
This is particularly true in coastal regions where variability in water masses is important due to
the high tides and rapid currents (e.g., North Sea and English Channel). In the next chapter,
the impact of the time interval is briefly investigated by comparing the errors on the satellite
retrieved Lwn(λ) when considering an 1-hour and 3-hour temporal coincidence, respectively.

The homogeneity criterion is applied on Lwn(547) (as done by, e.g., Zibordi et al. (2009a);
Mélin et al. (2011)) rather than on τ(869) (as done by Bailey and Wang (2001); Feng et al.
(2008); Jamet et al. (2011)), because the former is more restrictive. The spatial variability in
Lwn(λ) is indeed much shorter compared to the spatial variability in atmospheric composition,
particularly in turbid waters (Schroeder et al., 2007; Feng et al., 2008). Moreover, Zibordi
et al. (2009a) positively tested the appropriateness of the 20% spatial homogeneity criterion at
Lwn(547). For the intercomparison study described in Chapter 4, the appropriateness of this
homogeneity criterion is tested by comparing the selected and excluded match-up pairs when
using the homogeneity criterion on Lwn(547) and τ(869).
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Validation and inter-comparison of four turbid water AC
methods

In this chapter, four commonly used MODIS Aqua AC methods, developed for turbid coastal
waters, are evaluated and compared: (1) the NASA official algorithm (Stumpf et al., 2003; Bailey
et al., 2010) (referred to as ‘STD’), (2) a GW94-based algorithm assuming spatial homogeneity
of the atmosphere in the NIR spectral region over the region of interest and a universal constant
NIR water-leaving reflectance ratio (i.e., the NIR similarity assumption) (Ruddick et al., 2000)
(referred to as ‘MUMM’ and as ’SIMIL’ by Goyens et al. (2013c)), (3) a NIR-based algorithm
using the Short-Wave-Infra-Red (SWIR) bands in very turbid waters (Wang et al., 2009) (re-
ferred to as ‘NIR-SWIR’) and (4) a direct inversion approach using a neural network to invert
the top of atmosphere signal in Lwn(λ) (Schroeder et al., 2007) (referred to as ‘NN’). These AC
methods have been detailed previously in the second chapter of this manuscript.

Several studies already investigated the performance of these AC approaches. The standard
MODIS Aqua products, for instance, have been validated by numerous authors with AERONET-
OC data (e.g., Zibordi et al., 2004b, 2006a; Mélin et al., 2007; Feng et al., 2008; Zibordi et al.,
2009b; Mélin et al., 2011, 2013). A systematic validation exercise is also performed by the NASA
OBPG to measure the quality of the STD AC approach (Franz et al., 2005, 2012). Overall,
MODIS Aqua satellite data, processed with the STD AC algorithm, are in good agreement with
the in situ data. However, large errors and uncertainties are still observed, in particular in the
blue and red bands and in complex coastal waters where algal and non-algal particles tend to
increase the backscattering in the NIR and the absorption in the blue. This latter results in a
reduced water signal in the blue and consequently increases the sensitivity of the retrieved signal
to instrumental noise, calibration errors and AC inaccuracies (Franz et al., 2012). Improvements
in the satellite retrieved aerosol products with the STD AC algorithms were however observed
since the bio-optical model has been revised (Bailey et al., 2010) and the aerosol models updated
(Ahmad et al., 2010) (Mélin et al., 2013).

Wang and Shi (2007) tested the performance of the NIR-SWIR AC algorithm for two case
studies along the U.S. and China east coast and concluded that this algorithm improved the
MODIS-derived ocean colour products in both offshore and near-shore turbid waters, compared
to the STD AC algorithm. Similar conclusions were made by Wang et al. (2009) who further
evaluated the NIR-SWIR AC algorithm based on a large set of in situ data provided by the
SeaWiFS Bio-optical Archive and Storage System (SeaBASS) (Werdell and Bailey, 2005). The
performance of the NIR-SWIR AC algorithm was also investigated by Werdell et al. (2010).
Based on a validation exercise in the turbid waters of the Chesapeake Bay, the authors observed
similar performances for the STD and NIR-SWIR AC algorithms. However, the authors found
a larger number of negative Lwn(λ) retrievals with the NIR-SWIR AC algorithm compared to
the STD AC algorithm. This suggests, as previously observed by Shi and Wang (2009), that the

53



54 Chapter 4. Validation and inter-comparison of four turbid water AC methods

black pixel assumption is not always valid in the SWIR spectral domain. Similarly, Dogliotti
et al. (2011) observed an overestimation of the aerosol reflectance in the most turbid waters of
La Plata River estuary when the MODIS Aqua SWIR bands were used for the AC, leading to an
underestimation of the water signal. Werdell et al. (2010) also observed that the distribution of
the differences between in situ and SWIR satellite retrieved Lwn(λ) was flatter compared to the
differences between in situ and STD retrieved Lwn(λ). The authors explained this by the lower
signal-to-noise ratio of the SWIR bands resulting in more uncertainty in Lwn(λ). Consequently,
and as suggested by Wang et al. (2009), for future ocean colour satellite sensors the sensor
signal-to-noise performance for the SWIR bands should be improved.

The MUMM algorithm was successfully applied to MERIS and MODIS images to retrieve,
among others, satellite retrieved Chla concentrations (Moses et al., 2009). This AC algorithm
was also adjusted to be used for the geostationary SEVIRI meteorological sensor to retrieve
SPM concentrations in the North Sea English Channel (Neukermans et al., 2009). However,
as demonstrated by Ruddick et al. (2006) and Doron et al. (2011), the assumption of the NIR
similarity spectrum is not universally valid.

The NN AC algorithm was initially developed for the AC of MERIS and validated by
Schroeder et al. (2007) with in situ ρw(λ) data taken in the North Sea and AERONET data for
τ(λ). A good agreement was observed between the in situ and satellite data and this approach
also resulted in significant improvement in the blue spectral region compared to the default AC
algorithm of MERIS (Aiken and Moore, 2000). However, the NN algorithm has never been
validated when applied to MODIS Aqua images. This is done in the present chapter.

Most studies regionally validated the turbid water AC algorithms with in situ data or
compared their performances against the standard AC algorithm. However, with the aim to
improve AC methods, it is essential to gain insight in their relative performances and limitations
and, subsequently, to conduct a global validation and inter-comparison exercise. Studies of
this kind were conducted by Banzon et al. (2009) and Jamet et al. (2011) for SeaWiFS AC
approaches. Banzon et al. (2009) compared the performance of the STD AC algorithm with the
performance of a multi-spectral matching (Gordon et al., 1997) and a optimization (Kuchinke
et al., 2009a) approach-based AC method (SMA and SOA, respectively), with the aim to develop
a dust-correction algorithm. The authors concluded that the SMA performed better then the
STD AC algorithm, only when absorbing dust was the dominant atmospheric aerosol. Jamet
et al. (2011) used AERONET-OC data to evaluate the STD, MUMM and SOA AC algorithm
(Kuchinke et al., 2009a). The authors concluded that the performance of the MUMM AC
algorithm was highly dependent on the aerosol reflectance ratio retrieved from the neighbouring
clear water pixels (i.e., ε(λ1, λ2)). According to their results, the STD AC algorithm provided
the best retrievals.

The study presented here and published by Goyens et al. (2013c), is a complementary work
to the study of Jamet et al. (2011) but focusses on the MODIS Aqua ocean colour products.
Based on a similar match-up exercise, the four MODIS Aqua AC algorithms (i.e., STD, MUMM,
NIR-SWIR and NN-based AC algorithms) are validated and compared with a global dataset
of in situ Lwn(λ) data (from the AERONET-OC network and collected during sea campaigns
conducted by the LOG, see Section 3.2.1.1 and 3.2.2.1, respectively). The performance of the
algorithms is also investigated as a function of the water type. Therefore, optical water types are
allocated to each in situ Lwn(λ) spectrum according to the classification method of Vantrepotte
et al. (2012) (Section 1.5).

The following section summarizes the paper of Goyens et al. (2013c) including the most
important results. Next, in Sections 4.2.1 and 4.2.2, complementary results are presented. In
the former section, the performance of the algorithms is evaluated when considering all the valid
match-up pairs. Indeed, the inter-comparison study presented in the paper of Goyens et al.
(2013c) only included match-up pairs for which valid ocean colour products were retrieved for
the four AC algorithms. In Section 4.2.1, the AC algorithms are compared including all valid
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match-ups.

As suggested by Vantrepotte et al. (2012), a potential application of class-based approaches
is the use of optical water type specific inversion algorithms for the retrieval of biogeochemical
parameters (e.g., SPM and Chla concentrations). It is thus essential that AC algorithms cor-
rectly retrieve the optical water type. Therefore a complementary study is conducted consisting
in comparing the derived water optical class, once when based on the MODIS Aqua Lwn(λ)
spectra and, when using the in situ Lwn(λ) values. These results are discussed in Section 4.2.2.

A general conclusion on the inter-comparison exercise is given in Section 4.3 and the paper
of Goyens et al. (2013c) is attached in Section 4.4.

4.1 Paper summary: “Evaluation of four atmospheric cor-
rection algorithms for MODIS Aqua images over con-
trasted coastal waters”

C. Goyens, C. Jamet and T. Schroeder, published in Remote Sensing of Environ-
ment, 131, 63-75 (2013)

The STD, MUMM, NIR-SWIR and NN AC methods are evaluated and compared based on
coastal AERONET-OC data (Section 3.2.1.1) and data collected during research campaigns
conducted by the LOG (Section 3.2.2.1). In situ and satellite visible and near infra-red spectral
bands Lwn(λ) are retrieved (i.e., Lwn(λ) at 412, 443, 488, 531, 547 and 667 nm) as well as the
aerosol optical thickness, τ(869). For the GW94-based AC algorithms (i.e., the STD, MUMM
and NIR-SWIR AC algorithms), the Ångström coefficient, α(531, 869), is also compared.

A total of 1973 satellite images coincident in time with the in situ data were processed, 838
of which were considered as turbid (Robinson et al., 2003). Next, the selection criteria described
in Section 3.3 were applied selecting temporally and spatially coincident in situ-satellite match-
up pairs. With the NN AC algorithm, match-ups may also be prone to an additional flag when
either the top of atmosphere, the geometry or the surface pressure are out of range according
to the simulated dataset, used for the neural-network inversion method (referred to as the NN-
flag). This latter has an important impact on the number of retrieved match-ups. Indeed, 133
match-up pairs were excluded for further processing because of this selection criterion. The
exclusion of these data may favour the NN AC algorithm compared to the other AC methods
(explaining the interest of the complementary results comparing the algorithms when including
all valid match-up pairs).

The NN AC algorithm showed the lowest coverage with only 14% of match-up pairs followed
by the SWIR AC algorithm with 16%. The STD and the MUMM AC algorithms retrieved 18%
and 20% match-ups, respectively. The STD AC algorithm was more subjected to atmospheric
correction failure (due, for instance, to erroneous Chla concentration retrievals within the bio-
optical model). The NN AC algorithm presented the disadvantage of being constructed by
training and, subsequently, to be limited by the range of the simulated dataset. The NIR-SWIR
AC algorithm was more affected by the spatial homogeneity criterion compared to the other
algorithms, due to abrupt switches between the STD and SWIR aerosol selection method. For
cross comparison, only the match-up pairs presenting valid ocean colour products for the four
algorithms were retained, reducing the number of total match-ups to 211.

According to the results, a relatively good agreement exists between estimated MODIS
Aqua and observed in situ Lwn(λ) retrievals, in particular in the green spectral domain at
488 and 547 nm with the GW94-based algorithms (RE < 20% and bias ranging from -4 to
1%). However, negative Lwn(λ) values were retrieved in the blue spectral domain (at 412 and
443 nm) where approximately 60% of the MODIS retrieved Lwn(λ) were underestimated with
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the MUMM and STD algorithms, 57% with the NIR-SWIR algorithm and 45% with the NN
algorithm.

Overall, the NN AC algorithm performed well when the GW94-based AC algorithms failed,
notably, in the blue and red spectral domain at 412 and 667 nm, while higher Lwn(λ) signals,
observed mainly in the green region of the spectrum, tended to be better predicted by the GW94-
based algorithms. This fact is explained by the logarithmic cost function used to minimize the
error when training the NN algorithm and which tends to lessen the error proportional to the
Lwn(λ) signal.

The performance of the AC algorithms to retrieve the aerosol products is not as good
compared to the statistics for Lwn(λ). For α(531, 869), RE varied between 44% and 52% and
biases between 6 and 9%. For τ(869), RE ranged between 72 and 154% and biases ranged from 47
to 109%. The aerosol product retrievals were the least accurate with the NN algorithm and the
most accurate with the NIR-SWIR algorithm. In contrast to the GW94-based AC algorithms,
the aerosol products are not used as input with the NN algorithm and the correction method is
only based on Lwn(λ). Accordingly, high aerosol loads did not have any impact on the retrieval
errors in Lwn(λ) with this AC algorithm, while with the GW94-based algorithms high aerosol
loads resulted in an underestimation of Lwn(λ) in the blue spectral domain.

Beside a global evaluation, the AC methods were also evaluated as a function of the water
type which is particularly relevant to gain insight in the applicability and limitations of the AC
approaches. Therefore, in situ data are assigned to different optical water types according to
the classification scheme of Vantrepotte et al. (2012). Out of the 211 in situ spectra, two spectra
remained unclassified, 9 spectra were assigned to the first class (water optical properties mainly
determined by detrital and mineral material), 135 to the second class (water masses optically
dominated by phytoplankton) and 65 to the fourth class (water masses optically dominated by
high concentrations of CDOM and phytoplankton). None of our match-up pairs were assigned
to Class 3 (water masses optically influenced by high loads of particulate matter mainly from
mineral origin). Indeed, such water masses are often flagged due to sensor saturation in the NIR
spectral region or because the high NIR scattering triggers the erroneous allocation of a cloud
flag.

The NN AC algorithm showed the best performance for Class 1 waters (RE and bias ranging
from 16% to 27%, and from -7% to 5%, respectively), followed by the MUMM AC algorithm (RE
and bias ranging from 20% to 43%, and from -42% to -19%, respectively). However, compared to
the other AC methods, the latter did not performed as well over the other water classes. Indeed,
based on the in situ data and the class-specific linear correlation coefficients between Lwn(λNIR)
in the NIR spectral domain, we found that the NIR similarity spectrum assumption, used by
the MUMM algorithm to model Lwn(λNIR), was valid for class 1 waters but less for the others.
For the Class 2 water masses, the STD AC algorithm showed the best Lwn(λ) retrievals (RE
and bias ranging from 9% to 24%, and from -8% to -3%, respectively). This may be explained
by the fact that the bio-optical model used in the STD AC algorithm was developed based on
data provided from oligothrophic to mesotrophic waters (i.e., NOMAD dataset). The STD AC
algorithm also showed the most satisfying results for Class 4 waters.

Overall, the study demonstrated that STD AC algorithm showed the best performance
except for the water masses optically determined by detrital and mineral material (Class 1).
The MUMM AC algorithm was affected by the non-validity of the constant NIR reflectance
ratio and/or the absence of clear water pixels in the sub-scene of the image to retrieve ε(λ1, λ2).
The NN AC algorithm presented significantly better results where the GW94-based algorithms
failed (i.e., in the blue and red part of the spectrum) but appeared to be highly dependent on
the training dataset. For this validation exercise the STD and NIR-SWIR AC algorithms did
not show significant differences in terms of Lwn(λ) retrieval performances, but the NIR-SWIR
AC algorithm was more affected by the homogeneity selection criterion reducing the number of
retrieved match-up pairs relative to the STD AC algorithm.
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4.2 Complementary Results

4.2.1 Inter-comparison of MODIS Aqua retrieved Lwn(λ) when including all
valid match-up pairs

As noticed previously, when the AC methods are evaluated based on the 211 common match-ups
only, the NN AC algorithm may be favoured because the restrictive NN-flag selection criteria
is also applied on the three other AC algorithms. Here, a complementary evaluation exercise is
conducted with all the valid match-up pairs for each AC algorithm.

When considering all valid match-ups, the MUMM AC algorithm still presented the largest
number of retrieved match-up pairs which is a significant advantage to ensure a broader spatial
coverage (Table 4.1). However, the MUMM algorithm also retrieved the largest number of
negative Lwn(λ) values, mainly in the blue spectral domain (8%, 2% and 1% at 412, 443 and
667 nm, respectively, while the other AC methods retrieved less than 4% negative Lwn(λ) values).
Most valid match-up pairs excluded by the NN-flagged selection criteria concern water masses
optically dominated by phytoplankton (Class 2) or dominated by CDOM and phytoplankton
blooms (Class 4) (Table 4.1).

In contrast to the observations of Werdell et al. (2010), the NIR-SWIR AC algorithm does
not show more negative Lwn(λ) retrievals compared to the STD AC algorithm (Table 4.1) and
performances of the two algorithms remain similar. The present in situ data may not be turbid
enough to significantly differentiate the two algorithms.

Table 4.1: Total number of retrieved valid match-ups, percentage of negative retrieved Lwn(λ)
at 412, 443 and 667 nm, number of match-up pairs retrieved for each class.

Total Lwn(412) Lwn(443) Lwn(667) Class 1 Class 2 Class 4
< 0(%) < 0(%) < 0(%)

MUMM 386 8 2 1 12 232 133
NN 282 - - - 10 177 90
STD 364 3 0 1 13 214 127
NIR-SWIR 324 2 0 1 13 205 99

Figure 4.1 shows the statistical performance of the algorithms as a function of wavelength
(percentage relative error, RE, root mean square error, RMSE, and percentage bias) when
considering only the 211 match-up pairs and when considering all valid match-up pairs. The
overall relative performance of the algorithms remains approximately the same. Larger errors
are encountered in the blue spectral region with the GW94-based algorithms (RE > 40% at 412
nm), while for the NN AC method larger errors are encountered in the green spectral region (RE
of 27% at 488 nm), and all AC approaches systematically underestimate red ρw(λ) (negative
bias ranging from -32% to -15%). Note however that the additional match-up pairs retrieved
with the MUMM and STD AC algorithms result in an increase in relative errors in the blue
spectral domain (Fig. 4.1). This is mainly due to the larger amount of Class 4 match-ups. These
CDOM dominated waters tend indeed to absorb more incoming light in the blue spectral domain
and thus often present lower Lwn(λ) values. These low Lwn(λ) values increase the sensitivity of
the different approaches to AC inaccuracies and, subsequently, result in higher relative errors.
When considering only the 211 common valid match-ups, relative errors for Class 4 waters in
the blue spectral region are estimated at 45% and 35%, for the MUMM and STD methods,
respectively. When considering all valid match-ups, relative errors at 412 nm for Class 4 waters
increase up to 60% and 44% for the MUMM and STD methods, respectively. In contrast, the
negative bias estimated for the MUMM AC method approaches 0% when considering all valid
match-ups (-11% and 2%). Indeed, with the larger number of match-ups, the AC method tend
to both over- and underestimate ρw(λ) such that the overall bias approximates 0%. In contrast,
RMSE estimations remain very similar (Fig. 4.1). Hence, apart from these small changes in
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RE and bias in the blue spectral region, observations and conclusions made in the paper when
considering only the 211 common match-ups, can be considered as exact when considering all
valid match-up pairs.
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Figure 4.1: RMSE (mW cm−2 µm−1 sr−1), biases (%) and RE (%) per algorithm as a function
of wavelength when considering the 211 common match-ups (first row) and when considering all
valid match-ups for each algorithm (second row).

4.2.2 Assessment of optical water class from MODIS Aqua retrieved Lwn(λ)
spectra

A priori knowledge of the optical water type may improve the retrieval of satellite bio-geochemical
parameters as it will ease the selection of the appropriate water type specific inversion model
(Vantrepotte et al., 2012). It is thus essential to correctly estimate the optical water class from
the satellite retrieved Lwn(λ) spectra which are function of the AC method. In this comple-
mentary study, the retrieved optical water classes are compared when estimated based on the
satellite and in situ Lwn(λ) spectra.

The MODIS Aqua retrieved Lwn(λ) spectra normalized by the area below the curve are
classified using the same approach as used in the paper of Goyens et al. (2013c) to classify the
in situ Lwn(λ) spectra (i.e., the novelty detection method as described in D’Alimonte et al.
(2003); Mélin et al. (2011); Vantrepotte et al. (2012)).

Table 4.2 shows the percentage of correctly and erroneously retrieved spectra per algorithm.
The percentage given between brackets indicates the percentage when considering only the 211
match-ups. The largest percentage of correctly classified Lwn(λ) spectra for Class 1 is observed
with the MUMM AC approach, with 17% and 22% well classified pixels when considering all
and only the 211 common match-up pairs, respectively. With the other AC methods, none of
the Class 1 spectra were correctly classified (note however that the number of in situ spectra
assigned to Class 1 is relatively small, i.e., 9). For Class 2 waters, the four AC methods showed
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similar percentages (∼ 70-80%), while for Class 4 waters, the NN AC approach retrieved the
highest percentage of well classified spectra followed by the NIR-SWIR AC approach.

Table 4.2: Percentage of spectra per class when classified based on MODIS Aqua Lwn(λ) spectra
and when classified based on in situ data. Numbers between brackets indicate the percentage when
considering only the 211 common match-up pairs. Numbers in bold indicate the percentage of
well classified spectra.

In situ
Class 1 Class 2 Class 4

Unclass. 0(0) 3(1) 3(3)
Class 1 0(0) 0(0) 0(0)

NN Class 2 40(44) 76(78) 15(12)
Class 3 0(0) 0(0) 0(0)
Class 4 60(56) 21(21) 82(85)
Unclass. 42(34) 27(18) 54(46)
Class 1 17(22) 0(0) 2(2)

MUMM Class 2 16(11) 71(80) 17(15)
Class 3 0(0) 0(0) 0(0)
Class 4 25(33) 2(2) 27(37)
Unclass. 39(33) 28(14) 44(28)
Class 1 0(0) 0(0) 2(1)

STD Class 2 15(11) 70(83) 8(14)
Class 3 0(0) 0(0) 0(0)
Class 4 46(56) 2(3) 46(37)
Unclass. 39(33) 25(14) 34(26)
Class 1 0(0) 0(0) 1(0)

NIR- Class 2 15(11) 73(83) 11(16)
SWIR Class 3 0(0) 0(0) 0(0)

Class 4 46(56) 2(3) 54(58)

According to Goyens et al. (2013c), the STD AC algorithm provided overall the best per-
formances. However, the results shown in Table 4.2, indicate that the STD algorithm resulted
in a lower percentage of correctly retrieved Class 4 water masses (46% and 37% when consid-
ering all and only the 211 common match-up pairs, respectively) compared to the NIR-SWIR
and NN AC methods (54-58% and 82-85%, respectively) and did not correctly classify Class
1 spectra. This suggests that the STD algorithm retrieves relatively accurate Lwn(λ) values
at certain wavelengths but does not correctly retrieve the shape of the spectra (reflecting the
optical water type (Lubac and Loisel, 2007; Vantrepotte et al., 2012)). Note however that these
results are dependent on the set of spectral bands used for the classification. In the present
work, the classification of the in situ and MODIS Aqua Lwn(λ) spectra is based the spectral
bands at 443, 488, 547 and 667 nm. As shown in Fig. 4.1 and outlined in the paper of Goyens
et al. (2013c), the STD AC algorithm greatly underestimates Lwn(λ) in the red spectral domain.
Hence, misclassification with this algorithm may be due to the erroneously retrieved Lwn(667)
while it could be more successful if the classification scheme used another set of spectral bands.
Hence, further research may be needed to evaluate if the classification scheme should be function
of the AC method in order to ensure the most appropriate optical water type classification.

4.3 Conclusion

Four AC algorithms, all based on distinctive assumptions, have been selected and compared;
the GW94-based STD, MUMM and NIR-SWIR AC methods, and the NN algorithm. Satellite
retrieved ocean colour products were compared with spatially and temporally coincident in situ
Lwn(λ) spectra from contrasted coastal waters from the global AERONET-OC network and
collected during sea campaigns conducted by the LOG (Sections 3.2.1.1 and 3.2.2.1, respectively).

The different AC methods were evaluated based on the number of retrieved match-up pairs,
on their overall performances to retrieve Lwn(λ) (when considering all valid match-up pairs and
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when retaining only the match-up pairs for which valid retrievals were encountered for the four
algorithms, reducing the number of 211 ‘algorithm-equivalent’ match-ups) and on their class-
specific performances. For the latter, in situ and MODIS Aqua retrieved Lwn(λ) spectra were
classified according to the classification scheme of Vantrepotte et al. (2012) (Section 1.5).

Overall, the AC algorithms performed relatively well with RE errors ranging from 11% to
45% and biases from -25% to 16%. The MUMM AC algorithm showed the largest percentage of
spatial coverage with approximately 10%, 20% and 30% more valid match-ups pairs compared to
the STD, NIR-SWIR and NN AC algorithms, respectively. For water masses optically dominated
by detrital and mineral material, this algorithm also provided relatively good Lwn(λ) retrievals
compared to the other GW94-based algorithms. However, in most cases it tended to greatly
underestimate Lwn(λ), in particular in water masses optically dominated by phytoplankton
and/or CDOM (bias of -18% and -24% at 412 and 667 nm, respectively), where the NIR similarity
spectrum assumption may not be verified. Therefore, the MUMM AC algorithm may be further
improved by extending the NIR reflectance function to all water types.

The NN AC approach presented good results compared to the GW94-based methods, and in
particular in the blue and red spectral domains (biases of 10%, 3% and -15%, and RE of 30%, 25%
and 21% at 412, 443 and 667 mm, respectively). Moreover, when compared to the Lwn(λ) spectra
retrieved with the GW94-based AC methods, more spectra processed with this AC method were
well classified (according to the classification scheme of Vantrepotte et al. (2012)). In contrast,
in the green spectral region, the NN algorithm tended to greatly overestimate Lwn(λ), especially
for Class 4 waters (biases up to 40% at 488 nm). These larger errors encountered in the green
bands were related to the logarithmic cost function, used for the minimization of the errors when
training the neural network and resulting in errors proportional to the Lwn(λ) signal. According
to the number of retrieved valid match-ups, the largest drawback of this algorithm appeared to
be its sensitivity to the training dataset used for the development of the neural-network inversion
method. Therefore, the NN AC algorithm may be further improved by expanding the training
dataset with more diverse water types.

For this evaluation study, the NIR-SWIR AC algorithm did not show significant improve-
ments compared to the STD AC algorithm. Indeed, the STD algorithm provided slightly better
Lwn(λ) retrievals. Moreover, with the NIR-SWIR AC algorithm, the number of valid match-ups
was slightly lower due to an increase in spatial heterogeneity in Lwn(λ), probably resulting from
the abrupt switch between the NIR and SWIR aerosol model selection approaches.

According to the class-specific evaluation, the NIR-modelling scheme within the STD AC
algorithm should be improved to account for more turbid water masses mainly dominated by
detrital and mineral material. Indeed, the bio-optical model relies on Chla concentration esti-
mations to retrieve red absorption and backscattering coefficients and, subsequently, Lwn(NIR).
However, relying solely on Chla estimations may be inappropriate, in particular in mineral and
detrital sediment rich waters. Hence, the NIR-modelling scheme may be revised or updated to
account for more diverse water types.

Results from the present study provided a comprehensive description of the limitations
and performances of the algorithms, useful to further improve satellite retrieved ocean colour
products.

4.4 Paper: “Evaluation of four atmospheric correction al-

gorithms for MODIS Aqua images over contrasted coastal
waters”

C. Goyens, C. Jamet and T. Schroeder, published in Remote Sensing of Environ-
ment (131), 63-75 (2013).
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The use of satellites to monitor the color of the ocean requires effective removal of the atmospheric signal. This
can be performed by extrapolating the aerosol optical properties to the visible from the near-infra-red (NIR)
spectral region assuming that seawater is totally absorbent in this latter part of the spectrum, the so-called
black pixel assumption.While this assumption is verified for most phytoplankton dominatedwaters, it is invalid
in turbid waters. Consequently, for the past ten years, several algorithms have been developed on alternative as-
sumptions. Studies comparing these algorithms are of great interest for further improvement in water leaving
radiance (Lw(λ)) retrievals from satellite images explaining the focus of the present research. Four published at-
mospheric correction algorithms forMODIS-Aqua are compared: (1) the standardNIR algorithmof NASA, (2) the
NIR similarity spectrum algorithm, (3) the NIR-SWIR algorithm and (4) an Artificial Neural Network algorithm.
The MODIS-Aqua estimated normalized Lw(λ) are validated with AERONET-Ocean Color data and cruise mea-
surements presenting moderately to highly turbid waters. Based on a match-up exercise, the former three algo-
rithms show the best results in the green region of the spectrum (relative error, RE, between 11 and 20%) and the
largest errors in the blue and red region of the spectrum (RE exceeding 30%). In contrast, the Artificial Neural Net-
work algorithm performs better in the red band (RE of 22%). The latter tends to overestimate the normalized
Lw(λ) at all wavelengths while the NIR similarity spectrum algorithm tends to underestimate it. Retrievals of
aerosol products, such as the Ångström coefficient, α(531,869), and the optical thickness, τ(869), present RE
above 44% and 72%, respectively.
The performance of the algorithms is also investigated as a function of water types. For water masses mainly
dominated by phytoplankton, the standard NIR algorithm performs better. In contrast, for water masses mainly
dominated by detrital and mineral material, the neural network-based algorithm shows the best results. The
largest errors are encountered above water masses dominated by high phytoplankton and CDOM concentra-
tions. This work conducted to a number of perspectives for improving the atmospheric correction algorithms.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

With their broad spatial coverage and fine temporal resolutions, sat-
ellite remote sensing data represent a crucial tool for monitoring large
areas of oceans. The remote sensing of ocean color radiometry, defined
as the spectrum of the up-welling light from the sea (Gordon, 1987), al-
lows to investigate the bio-optical properties of the seawater. These are
then used as proxies for various geophysical parameters (e.g., concen-
trations of chlorophyll-a, Chl-a, and suspended particulate matter,
SPM). The first satellite dedicated for ocean color research, the Coastal
Zone Color Scanner (CZCS), was launched in 1978 and operated till
1986. Eleven years later the Sea-Viewing Wide Field of View Sensor
(SeaWiFS) was launched followed by the Moderate Resolution Imaging
Spectroradiometer (MODIS-Aqua) and theMediumResolution Imaging
Spectroradiometer (MERIS), both launched in 2002. SeaWiFS and

MERIS have been operable until December 2010 and April 2012,
respectively.

Since the launch of the CZCS, improvements in radiometric and spec-
tral performances and in the reliability of ocean color products have been
impressive. Nevertheless, processing satellite ocean color data remains a
challenging task. This includes, among others, the effective removal of
the contribution of the atmosphere to the signal measured by the satel-
lite, the so-called atmospheric correction process. In clear open ocean
waters, for which the optical properties are mainly driven by phyto-
plankton and co-varying biological constituents, it is assumed that sea-
water absorbs all the light in the red and near-infrared (NIR) region of
the spectrum, referred as the black-pixel assumption (Gordon & Wang,
1994, thereafter named GW94). This allows to estimate the contribution
of the atmosphere and subsequently the light scattered by thewater col-
umn and measured by the satellite, known as the water-leaving reflec-
tance, ρw(λ). While the black-pixel assumption is verified in clear
oceanwaters, it induces significant errorswhen applied in turbidwaters.
The latter are indeed optically more complex due to the backscattering
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and absorption of Colored Dissolved Organic Matter (CDOM) and
non-algal particles (Siegel et al., 2000). Moreover these water masses
present high spatial and temporal variability. Consequently, global
parametrizations are less applicable (e.g., Loisel et al., 2010; Werdell
et al., 2007) and significant errors remain in retrieving geophysical
parameters and water properties from satellite remote sensing
(e.g., Zibordi et al., 2009a, 2009b). Numerous algorithms have been de-
veloped with alternative hypotheses taking into account non-negligible
NIR ocean contribution to the measured signal. A global validation of
these algorithms is required in order to gain insight in their performances
and limitations and to aid movement towards improvements. To our
knowledge, several studies already compared the performances of
new developed algorithms against the standard atmospheric correction
algorithms (e.g., Kuchinke et al., 2009; Ruddick et al., 2000; Schroeder
et al., 2007; Wang & Shi, 2007; Wang et al., 2009; Werdell et al.,
2010). However only few studies (Jamet et al., 2011) have tackled a
round-robin evaluation of all available atmospheric correction algo-
rithms. This is the focus of the present research. It is a complementary
work to the study of Jamet et al. (2011) who evaluated, based on
a similar match-up exercise, three SeaWiFS atmospheric correction
algorithms.

MODIS-Aqua images processedwith four commonly used atmospher-
ic correction algorithms are compared with coastal in-situ data. The four
algorithms are (1) the NASA official algorithm based on an iterative pro-
cedure and a bio-optical model (Bailey et al., 2010; Stumpf et al., 2003)
(referred later as ‘STD’), (2) a GW94-based algorithm assuming spatial
homogeneity of the atmosphere and ocean over the region of interest in
the NIR (Ruddick et al., 2000) (referred later as ‘SIMIL’), (3) a NIR-based
algorithm using the Short-Wave-Infra-Red (SWIR) bands in very turbid
waters (Wang et al., 2009) (referred later as ‘NIR-SWIR’) and (4) a direct
inversion approach using a neural network (Schroeder et al., 2007)
(referred later as ‘NN’). Besides a global evaluation of the algorithms,
the performances of the algorithms are also investigated as a function of
water type. This is particularly relevant to gain insight in their applicabil-
ity and limitations. Therefore, in-situ data are assigned to different classes
of water types (Vantrepotte et al., 2012) and an evaluation is made per
water type.

The next section describes the different algorithms used in the
present research. Data and methods are outlined in Section 3. This
section includes an overview of the in-situ and satellite data used
for the evaluation, an explanation of the match-up selection and algo-
rithm evaluation criteria, and a brief description of the classification
method of Vantrepotte et al. (2012). In Section 4 the evaluation of
the algorithms over the entire validation dataset as well as their sen-
sitivities to different water types are outlined and discussed. These re-
sults conducted to the definition of some challenges and perspectives
for further improvements.

2. Algorithms

The signal measured by the satellite sensor can be decomposed
into several terms (Gordon, 1997):

ρt λð Þ ¼ ρr λð Þ þ ρa λð Þ þ ρra λð Þ þ tv λð Þρwc λð Þ þ Tv λð Þρg λð Þ
þ tv λð Þρw λð Þ ð1Þ

where ρt(λ) represents the reflectance measured by the satellite and
ρr(λ), ρa(λ) and ρra(λ) the contribution of the atmosphere, notably,
the scattered sunlight by air molecules, aerosols and the coupling be-
tween both air and aerosol molecules, respectively. ρwc(λ) is the reflec-
tance related to the whitecaps and ρg(λ) to the glitter. tv and Tv are the
diffuse and direct atmospheric transmittance from sea to sensor, respec-
tively. Ultimately, ρw(λ) is the water leaving reflectance. Together,
ρr(λ), ρa(λ) and ρra(λ) represent about 90% of ρt(λ). ρg(λ) and ρwc(λ)
can be calculated for a given sun and sensor zenith angle (Cox &
Munk, 1954) and an empirical wind speed formulation (Frouin et al.,

1996), respectively. During pre-processing ρt(λ) is corrected for gas ab-
sorption, Rayleigh scattering, white-caps and glitter (Gordon, 1997).
This term is referred as the Rayleigh corrected reflectance, ρrc(λ):

ρrc ¼ ρt λð Þ−ρr λð Þ−tv λð Þρwc λð Þ−Tv λð Þρg λð Þ: ð2Þ

In order to ease the comparison of our results with other studies, we
focussed on the normalized water-leaving radiance, Lwn(λ) which is
related to ρw(λ) as follow:

Lwn λð Þ ¼ ρw λð ÞF0 λð Þcosθ0
π

ð3Þ

with F0 being the extra-terrestrial solar irradiance at a givenwavelength
λ and θ0 the sun zenith angle.

2.1. GW94-based algorithm with iterative procedure (‘STD’)

The STD algorithm, initially developed by Stumpf et al. (2003) and
revised by Bailey et al. (2010), uses an iterative method including a
bio-optical model allowing to account for the water contribution in
the NIR region of the spectrum. The algorithm uses 80 aerosol models
developed with observations from the global AERONET network and
the radiative transfer code described in Ahmad et al. (2010). First
the algorithm assumes Lwn(λ) being null in the NIR (i.e. black pixel as-
sumption, GW94) allowing to retrieve Lwn(λ) in the blue and green re-
gion of the spectrum. Estimations of Lwn at 443, 488 and 547 nm are
then used as inputs into the bio-optical model. The latter allows to
achieve a first guess in the concentration of Chl-a (MODIS Chl-a OC3
algorithm, O'Reilly et al. (2000)) which in turn allows to determine
the particulate backscattering in the NIR, bbp(NIR). Knowing bbp(NIR),
it is possible to determine the contribution of the particles to Lwn(NIR).
The process is then re-iterated with Lwn(NIR) equals zero after the
modeled reflectance has been removed from Lrc(NIR). The iteration
process continues until Lwn(NIR) converges. The bio-optical model of
the STD algorithm contains assumptions that have been derived em-
pirically from the global in-situ NASA bio-Optical Marine Algorithm
Data set, NOMAD (Werdell & Bailey, 2005).

2.2. GW94-based algorithm assuming spatial homogeneity of ρw(NIR)
and ρa(NIR) ratios (‘SIMIL’)

The SIMIL algorithm includes two alternative assumptions, one on
the water optical properties, the NIR similarity spectrum assumption,
and one on the atmosphere (Ruddick et al., 2000). The first assump-
tion arises from the fact that the sea-water NIR spectrum shape is
largely determined by pure water absorption, and hence invariant,
while the magnitude of the signal is approximately proportional to
the backscatter coefficient. Consequently, the ratio of any two NIR
water leaving reflectances, α, is constant. For MODIS-Aqua images α
is defined as:

α ¼ ρw 748ð Þ=tv 748ð Þ
ρw 869ð Þ=tv 869ð Þ ¼ 1:945: ð4Þ

The second assumption is based on the fact that the atmosphere
composition does not vary significantly in space and therefore the
ratio of the aerosol reflectance ρa(λ)+ρra(λ), referred as �(λ1,λ2),
can be considered as spatially homogeneous over the area of interest.
In clear waters, where ρw(λ) in the NIR region of the spectrum is close
to zero, ρa(λ)+ρra(λ) can be approximated by ρrc(λ). Accordingly,
over clear water pixels �(748,869) is calculated as follows:

� 748;869ð Þ ¼
ρrc 748ð Þ
ρrc 869ð Þ : ð5Þ
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Assuming spatial homogeneity of the atmosphere over the area of
interest allows to estimate �(748,869) over a clear water sub-scene
and to use it for the atmospheric correction of the entire image. A
clear water sub-scene is defined as any pixel within the image for
which Lrc(λ) is non-negative and below 0.015 mW cm−2μm−1sr−1

at 748 and 869 nm.
The SIMIL algorithm is a three-step process. First the atmospheric

correction is done with the initial black pixel assumption (i.e. GW94)
in order to retrieve the scatter-plot ρrc(748) versus ρrc(869) for the re-
gion of interest and subsequently to estimate �(748,869) over the clear
water sub-scene. Next, using Eqs. (4) and (5), ρa(λ) is estimated at each
wavelength taking into account the non-zero water leaving reflectance
and allowing to determine the appropriate aerosol model for the region
of interest. Ultimately, the initial atmospheric correction algorithm of
GW94 is run again but forced with the previously selected aerosol
model.

2.3. GW94-based algorithm using the SWIR bands in very turbid waters
(NIR-SWIR)

The NIR-SWIR approach combines the STD algorithm and the GW94
approach using the SWIR bands depending on the turbidity (Wang &
Shi, 2007; Wang et al., 2009). This approach assumes that ocean water
absorbs strongly in the SWIRpart of the spectrumand that the contribu-
tion of the in-water constituents remains null. Accordingly, in highly
turbid waters, ρw(SWIR) can be safely considered as null and the SWIR
bands at 1240 and 2130 nm are used instead of the NIR bands for aero-
sol model selection. Highly turbid waters are defined based on a turbid-
ity index computed from ρrc(λ) at 748 and 1240 nm (Shi & Wang,
2007). For any pixel presenting a turbidity index above 1.05, the SWIR
atmospheric correction approach is applied. The refinement of Wang
et al. (2009) includes a second turbidity criterion. If, after a first process-
ing with the SWIR aerosol model selection, the estimated Lwn(869) is
below 0.08 mW cm−2μm−1sr−1 and the estimated Chl-a value lower
or equal to 1 mg l−1, the atmospheric correction is reset to the STD at-
mospheric correction method. Improvements in the retrievals of ρw(λ)
have been demonstrated when using the SWIR algorithm in extremely
turbid waters (e.g., Dogliotti et al., 2011; Wang & Shi, 2007; Wang
et al., 2009).

2.4. Direct inversion approach by neural network (‘NN’)

The MODIS NN algorithm used in this study is based on an inverse
modeling of extensive radiative transfer (RT) simulations within a
coupled ocean-atmosphere system, similar to an approach previously
implemented for MERIS (Schroeder et al., 2007). This method directly
inverts ρt(λ) into remote sensing reflectance, Rrs(λ), defined as:

Rrs λð Þ ¼ ρw λð Þcosθ0
π

: ð6Þ

The direct inversion takes into account the spectral information at
each wavelength simultaneously and not only in the NIR region of the
spectrum like the previously described algorithms. Consequently, the
NNmethod does not attempt to decouple oceanic and atmospheric sig-
nals to perform the atmospheric correction (see Eq. (1)). Another dis-
tinct difference is that the forward model parameterization of the NN
includes only 8 aerosol models— compared to 80 for the three other al-
gorithms. The RT simulations consist of reflectance data at top of atmo-
sphere (TOA) and at mean sea level (MSL) and cover a large range of
oceanic and atmospheric conditions for a variety of different sun and
observing geometries. Specifically, the optically active water constitu-
ents cover the following concentration ranges: 0.05–50 mg l−1 for
Chl-a, 0.05–50 g l−1 for SPM and 0.001–1 m−1 absorption of CDOM
at 443 nm. The simulated data were used to adapt the inverse model
during a supervised learning procedure. The NN inverse model consists

of a multilayer perceptron that learned the functional relationship
between TOA and MSL reflectance. More details about the forward
model parameterization can be found in (Schroeder et al., 2007).
When applied to MODIS data the algorithm requires the TOA reflec-
tance at all ocean color bands as input with further information about
the sun and observing geometry aswell as the surface pressure. In addi-
tion, MODIS Level-2 flags are used to mask pixels affected by land, high
glint and clouds. The associated NN outputs consist of MSL Rrs at eight
MODIS bands up to 748 nm including spectral aerosol optical thickness
at four AERONET bands (440, 550, 670 and 870 nm). Additional NN
flags are used for further quality control of the outputs that check for
out-of-scope conditions compared to the simulated data ranges.

3. Data and methods

3.1. In-situ measurements

The validation is carried out with the AERONET-Ocean Color net-
work (AERONET-OC) data (Zibordi et al., 2006a, 2009b) and field
data from 4 cruises coordinated by the Laboratoire d'Océanographie
et Géosciences (LOG). The latter includes a large diversity of water
types from moderately turbid waters in the North East Atlantic to
very turbid waters in the coastal area of French Guiana and North
Sea-English Channel. A detailed description of the sampling protocols
and instruments are described in Lubac and Loisel (2007) and Nechad
et al. (2010) for the North Sea-English Channel dataset and in Loisel
et al. (2009) and Vantrepotte et al. (2011) for French Guiana.

AERONET-OC data provides Lwn(λ) data in the 412–1020 nm spec-
tral range (Zibordi et al., 2009a, 2009b) and the aerosol optical thick-
ness τ fromwhich we retrieved the Ångström coefficient, α(531,869).
The AERONET-OC data used in the present research were taken at one
site located in the Adriatic Sea (AAOT), two in the Baltic Sea (HLT and
GDLT) and two along the East Coast of the USA (MVCO and COVE).
The deployment sites and the number of observations for each site
are given in Table 1. More details about instruments, station proper-
ties and particularities can be found in, among others, Berthon and
Zibordi (2004), Zibordi et al. (2006b), Mélin et al. (2007), Feng et al.
(2008), Zibordi et al. (2009a, 2009b).

3.2. Satellite data

The MODIS-Aqua instrument has been designed with 9 bands in
the visible and NIR from 412 to 869 nm as well as with 3 bands in
the SWIR (1240, 1640 and 2130 nm). In the present paper, the data
analysis focuses on Lwn at 412, 443, 488, 531, 547 and 667 nm. The
SWIR bands at 1240 and 2130 nm are used for the SWIR aerosol
model selection approach in the NIR-SWIR algorithm.

MODIS-Aqua images were processed from L1A to L1B and subse-
quently from L1B to L2 for the three GW94-based atmospheric cor-
rection algorithms using the SeaWiFS Data Analysis System version
6.1 (SeaDAS 6.1, OBPG http://oceancolor.gsfc.nasa.gov/). In contrast
to the other algorithms, the NN algorithm does only provide the
Rrs(λ) as output product. Therefore Rrs(λ) were converted to Lwn(λ)
as described previously in Section 2.4, with F0 being the full band
pass extra-terrestrial solar irradiance. Since the Rrs(λ) outputs from
the NN algorithm are not corrected for bi-directional effects, the
AERONET-OC data and Lwn(λ) retrievals from the STD, SIMIL and
SWIR algorithms used in this study were not corrected neither. For
the GW94-based algorithms, pixels with excessive cloud cover, large
solar (>70°) and sensor (>60°) zenith angles, sun glint contamina-
tion or where sensors are saturating, were masked out. For the NN
algorithm, pixels flagged as cloud and high glint or contaminated by
solar and sensor zenith angles above 75.71° and 52.84°, respectively,
were not processed.
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Ultimately, as the spectral channels between theMODIS-Aqua images
and the in-situ data differ slightly, a linear interpolation is performed to
adjust the in-situ channels to the MODIS-Aqua channels.

3.3. Match-up exercise

The match-up exercise was a similar version of the approach
described in Bailey and Werdell (2006) and Jamet et al. (2011). For
each match-up pair, the median and standard deviation of the MODIS
estimated Lwn(λ), Rrs(λ), α(531,869) and τ(869) were calculated over
a 3 by 3 pixel window around the station. The median value was pre-
ferred to the average value as the former was less sensitive to large out-
liers and the 3 by 3 pixel window was used since the MODIS-Aqua
images have geolocation accuracy of about 150 m at satellite nadir
(Wolfe et al., 2002). For the MVCO station, the pixel window size was
reduced to 2 by 3 allowing to avoid the adjacency effects from nearby
land lying only 3 km North of the station (Feng et al., 2008; Jamet et
al., 2011). Prior to data analysis, five exclusion criteria were applied
ensuring that the MODIS-Aqua data did effectively represent the
in-situ measurements. These were the following:

1. When the time difference between the satellite overpass and the
in-situ measurement exceeded 2 hours the match-up pair was
excluded. If redundant data remained, the match-up with the
smallest time difference was retained.

2. Match-up pairs presenting in-situ Lwn(667) below 0.183
mW cm−2μm−1sr−1 were not retained. This threshold coincides
with the turbid flag within SeaDAS and thus ensures that turbid
waters only were retained (Robinson et al., 2003).

3. Match-uppairswere excludedwhen in a 3 by3 pixelwindow (2by 3
for the MVCO station) more than 3 pixels were flagged.

4. Spatial homogeneity within the pixel window was imposed.
Match-up pairs presenting a MODIS estimated standard deviation
for Lwn(547) above 20% of the mean value were excluded.

5. For the NN algorithm, match-up pairs were rejected for further pro-
cessingwhen flagged as out of scope compared to the simulated data
ranges. This flag is raised if either the TOA radiances, the geometry or
the surface pressure become out of range.

A time difference of two hours between the satellite overpass and
the in-situ measurement greatly reduced the number of match-up
pairs. However, a small time difference was preferred since larger
time differences do not ensure that the MODIS estimated Lwn(λ)
actually corresponds to the in-situ measurement. This is particularly
true in coastal regions where the spatial and temporal variability in
water masses is important due to the high tides and rapid currents

(e.g. North Sea and English Channel). Therefore, we also investigated
the errors on the retrieved Lwn(λ) when considering only match-ups
with less than 1 hour time difference between in-situ and satellite
estimated Lwn(λ).

The homogeneity criterion was applied on Lwn(547) (as done by
Zibordi et al. (2009a)) rather than on τ(869) as the former is more
restrictive. The spatial variability in Lwn(λ) is indeed much shorter com-
pared to the spatial variability in atmospheric composition, particularly
in turbid waters (Feng et al., 2008; Schroeder et al., 2007). Moreover,
Zibordi et al. (2009a) positively tested the appropriateness of the 20%
spatial homogeneity criterion at Lwn(547). Nevertheless, in order to ver-
ify if these observations were valid with our dataset we also calculated
the number of excluded match-up pairs when using the homogeneity
criterion on τ(869).

Besides a visual inspection on scatter-plots, the algorithm perfor-
mance was compared based on six statistical values: the percent bias,
the percent relative error (RE), the root mean square error (RMSE),
the spearman correlation (R) and the slope and intercept of the linear
regression between in-situ data and MODIS Lwn(λ) estimates. The
bias, RE and RMSE are calculated as follows:

BIAS ¼ 1
N
∑ 100

Lestwn λð Þ−Lobswn λð Þ
Lobswn λð Þ

 !
; ð7Þ

RE ¼ 1
N
∑ 100

Lestwn λð Þ−Lobswn λð Þ
��� ���
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0
@

1
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 !vuut ; ð9Þ

where Lwn
obs and Lwn

est are the in-situ and the MODIS estimated Lwn(λ),
respectively, and N is the number of observations.

Table 1
In-situ data location, description and distance from land.

Lat Lon Distance from land (km) Number of obs. Period of obs.

AAOT
(Adriatic Sea)

43.31° N 12.51° E 15 4348 2002–2007

GDLT
(Baltic Proper)

58.59° N 17.467° E 16.5 924 2005–2009

HLT
(Gulf of Finland)

59.95° N 24.92° E 22.22 665 2006–2009

MVCO
(U.S. Atlantic Coast)

41.32° N 70.57° W 3.7 973 2004–2005

COVE
(U.S. Atlantic Coast)

36.90° N 75.71° W 24 450 2006–2009

Belcolor
(2009)

51.17–51.92° N 1.36–3.73° W – 30 2009/06/18–2009/09/15

Belgica
(2009)

42.47–51.39° N 9.46° W–2.81° E – 14 2009/05/30–2009/06/07

French Guiana
(2009)

4.15–5.98° N 53.95–51.29° W – 30 2009/10/12–2009/10/17

Table 2
Excluded and total number of match-up pairs per algorithm. Values in parentheses in-
dicate percent values.

STD SIMIL NN SWIR

Non-turbid 1135 (58) 1135 (58) 1135 (58) 1135 (58)
b6 pixels 860 (44) 862 (44) 922 (47) 880 (45)
Non-uniform (nLw(547)) 155 (8) 121 (6) 100 (5) 337 (17)
Non-uniform (τ(869)) 111 (6) 107 (5) 149 (8) 111 (6)
Flagged NN – – 370 (19) –

Total 364 (18) 386 (20) 282 (14) 324 (16)
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3.4. Data classification

In order to understand the behavior of the algorithms as a function
of the water type, we used a classification scheme developed by
Vantrepotte et al. (2012) including four homogeneous optical classes
over contrasted coastal areas. Their classification approach is based on
a previous study of Lubac and Loisel (2007) and consists to cluster

in-situ Lwn(λ) spectra normalized by the area below the curve.
This normalization allows to classify the spectra based on their shape
rather than on their magnitude. The former is indeed related to the
nature of the optically significant water constituents rather than on
their relative concentrations (Lubac et al., 2008; Mélin et al., 2011;
Vantrepotte et al., 2012). In summary, Vantrepotte et al. (2012) defined
two optically mixed classes of water masses mainly determined by
detrital and mineral material (Class 1) or phytoplankton (Class 2), one
class presenting water masses optically influenced by high loads of
particulate matter mainly from mineral origin (Class 3), and a last
class optically impacted by high concentrations of CDOM and phyto-
plankton (Class 4). More details about the classification approach and
classes properties can be found in Vantrepotte et al. (2012).

The in-situ Lwn(λ) spectra were assigned to one of the four classes
based on the novelty detection method as described in D'Alimonte et
al. (2003); Mélin et al. (2011); Vantrepotte et al. (2012).
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Fig. 1. MODIS-Aqua estimated Lwn(λ) (mW cm−2μm−1sr−1) versus in-situ Lwn(λ) (mW cm−2μm−1sr−1) at six different wavelengths, 412, 433, 488, 531, 547 and 667 nm.
The black dot-dashed line represents the 1:1 line.

Table 3
Number of match-up pairs per algorithm after data filtration with the exclusion criteria.

Belcolor Belgica Cove GDLT French Guiana HLT MVCO AAOT

STD 2 1 23 54 2 25 54 203
NN 4 0 16 30 1 22 45 164
SIMIL 3 1 23 55 2 27 55 220
SWIR 2 1 21 38 2 21 45 194
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4. Results and discussion

4.1. Match-up selection

In total, 1973 match-up pairs, with +/−2 hour time difference
between in-situ and satellite Lwn(λ), have been retained. The
match-up dataset was further filtered with the exclusion criteria de-
scribed in Section 3.3. Table 2 shows the number of match-up pairs
per algorithm that did not pass the exclusion criteria out of the
1973 match-ups. Note that there is an overlap between the different
exclusion criteria. For instance, for the GW94-based and the NN
algorithms about 40 and 48% of the 1135 non-turbid match-ups,
respectively, were also excluded because their pixel window showed
less than six valid pixels. The bottom line in Table 2 indicates the
remaining number of match-up pairs per algorithm. Compared to
the other algorithms, the NN algorithm generated more match-ups
with less than 6 valid pixels while the NIR-SWIR algorithm was
more affected by the spatial homogeneity criterion on Lwn(547). A
possible explanation for the latter is, as observed by Werdell et al.
(2010), the increasing dynamic range in Lwn(λ) due to the switch
between the NIR and SWIR aerosol model selection approach within
a single window. For comparison we also checked the number of
match-up pairs that should be excluded if the homogeneity criterion
was applied on τ(869). As explained previously, except for the NN
algorithm, this homogeneity criterion was less severe (Table 2).

The turbidity criterion appeared to be themost restrictivewithmore
than 50% of the initial number of match-ups excluded from the data
analysis. Overall, the SIMIL algorithm showed the largest number of
match-up pairs followed by the STD algorithm while the NN algorithm
showed the lowest total number of match-ups. However, the latter is
filtered by an additional exclusion criteria (‘flagged NN’ in Table 2). In-
deed, out of the 370 flagged NN match-up pairs, 133 match-ups were
not excluded by any other exclusion criteria. While the NN algorithm
presents the advantage to retrieve Lwn(λ) at all wavelengths simulta-
neously and to couple atmospheric and bio-optic model, it presents
the disadvantage to be constructed by training and hence to be depen-
dent on the training dataset. If a given water mass is not represented in
the training dataset, the algorithm might fail. Moreover, it significantly
reduces the number of match-up pairs when Lt(λ) is out of the simulat-
ed range. Hence, the NN algorithm could be further improved by using a
training dataset includingmore diverse water types.Without excluding
thematch-upswith inputs out-of-range, the NN algorithm presents the
largest amount of match-up pairs (i.e. 415).

Table 3 shows the number of match-ups per station and per
algorithm. A significant number of match-up pairs from the North Sea,
English Channel and French Guiana were flagged as cloud or presented
pixels where the sensor saturated explaining the low number of
match-up pairs for these regions. For cross comparison, we imposed
that the number of values for each algorithm matched. This means
that the data presenting a valid match-up for the 4 algorithms only
were retained reducing the number of total match-ups to 211 (2, 1,
14, 21, 18, 32, and 123 match-up pairs for BelColor, French Guiana,
COVE, GDLT, HLT, MVCO and AAOT stations, respectively).

4.2. Global Lwn(λ) validation

Fig. 1 displays the scatter-plots of the MODIS-Aqua estimated
Lwn(λ) versus the measured in-situ Lwn(λ). Table 4 shows the corre-
sponding statistical performance of each algorithm and per wave-
length as well as the number of negative Lwn(λ) retrievals. When
compared to the 1:1 line, Fig. 1 shows good agreements between
the MODIS-Aqua estimated Lwn(λ) and the in-situ measured Lwn(λ).
This is particularly true for the GW94-based algorithms at 443, 488
and 547 nm. At 412 and 667 nm the band of data are more dispersed.

As indicated in Table 4, the SIMIL algorithm retrieved the largest
number of negative Lwn(λ) in the blue (15 and 4 at 412 and 443 nm,

respectively) followed by the STD algorithm and theNIR-SWIR algorithm
(2 and 1 at 412 nm, respectively). The NN algorithm did not show any
negative Lwn(λ) retrievals as it outputs the reflectance on a logarithmic
scale. The SIMIL algorithm tended to underestimate Lwn(λ) at all wave-
lengths (negative bias ranging between −3 and −26%). At 412 nm,
about 60% of the MODIS retrieved Lwn are underestimated with the
SIMIL and STD algorithms, 57% with the NIR-SWIR algorithm and 45%
with the NN algorithm.

For the STD and NIR-SWIR algorithms, the best results were
obtained at 488, 531 and 547 nm with R coefficients above 0.9, biases
below−3% and RE around 12%. The SIMIL algorithm showed RE rang-
ing between 14 and 45% (with maxima at 412 and 667 nm) and
biases between −26 and −4%. Such as observed by Jamet et al.
(2011), who compared three SeaWiFS algorithms and among others

Table 4
Statistical results for the retrieved values of Lwn(λ) obtainedwith the SIMIL, STD, NIR-SWIR
and NN algorithms and number of negative values for Lwn(λ): R (dimensionless), Intercept
(dimensionless), Slope (dimensionless), RE (%), RMSE (mW cm−2μm−1sr−1) andBias (%).
For each wavelength, the best statistical performance is rendered in bold.

R Intercept Slope RE RMSE Bias Lwnb0

nLw(412)
SIMIL 0.75 −0.015 0.93 45 0.381 −11 15
STD 0.86 0.021 0.90 35 0.262 −2 2
NIR-SWIR 0.84 0.036 0.90 36 0.271 1 1
NN 0.81 0.214 0.70 31 0.270 11 0

nLw(443)
SIMIL 0.86 −0.025 1.00 30 0.357 −4 4
STD 0.93 0.009 0.98 21 0.241 1 0
NIR-SWIR 0.92 0.023 0.99 21 0.254 3 0
NN 0.86 0.246 0.71 24 0.323 3 0

nLw(488)
SIMIL 0.92 −0.075 1.04 20 0.351 −3 0
STD 0.95 −0.052 1.04 13 0.263 −0.2 0
NIR-SWIR 0.95 −0.04 1.04 13 0.274 1 0
NN 0.91 0.357 0.88 27 0.385 20 0

nLw(531)
SIMIL 0.92 −0.022 0.98 14 0.32 −4 0
STD 0.95 −0.024 0.99 11 0.269 −3 0
NIR-SWIR 0.94 −0.015 0.99 11 0.273 −2 0
NN 0.94 0.273 0.954 19 0.338 16 0

nLw(547)
SIMIL 0.91 −0.003 0.96 14 0.329 −4 0
STD 0.93 −0.02 0.98 11 0.286 −3 0
NIR-SWIR 0.93 −0.011 0.98 11 0.288 −2 0
NN 0.92 0.232 0.93 15 0.315 10 0

nLw(667)
SIMIL 0.81 −0.046 0.90 33 0.136 −26 0
STD 0.87 −0.075 1.00 30 0.12 −25 0
NIR-SWIR 0.86 −0.07 1.00 30 0.121 −23 0
NN 0.85 −0.001 0.85 22 0.107 −15 0

Table 5
Statistical results for the retrieved aerosol products obtained with the SIMIL, STD,
NIR-SWIR and NN algorithms: RE (%), RMSE (dimensionless) and Bias (%).

R Intercept Slope RE RMSE Bias

α(531, 869)
SIMIL 0.319 0.939 0.289 52 0.586 6
STD 0.403 0.842 0.374 46 0.553 9
NIR-SWIR 0.434 0.764 0.421 44 0.550 7

τ(869)
SIMIL 0.607 0.036 0.680 75 0.042 51
STD 0.606 0.035 0.682 74 0.042 49
NIR-SWIR 0.613 0.035 0.674 72 0.040 47
NN 0.579 0.053 0.919 154 0.070 109
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the STD and SIMIL algorithm, our results indicated least accurate
Lwn(λ) retrievals with the SIMIL algorithm compared to the STD algo-
rithm. In contrast, Jamet et al. (2011) observed the largest errors at
670 nm (35 and 43% with the STD and SIMIL algorithms, respectively)
while we observed larger errors at 412 nm (35 and 30% at 412 and
667 nm, respectively, for the STD, and 45 and 33% for the SIMIL
algorithm).

The performances of the STD and NIR-SWIR algorithms remained
very close. For 27% of the match-up pairs the NIR-SWIR algorithm used

the NIR approach for the aerosol model selectionmethod and the differ-
ence between the STD and NIR-SWIR estimated Lwn(λ) was below 0.01
mW cm−2μm−1sr−1 for more than 82, 85 and 88% of the match-ups
at 412, 547 and 667 nm, respectively. Accordingly, with our in-situ
dataset, the NIR-SWIR algorithm did not show significant improvement
compared to the STD algorithm.Modifying the turbidity index threshold,
as defined by Wang et al. (2009) and/or the cloud albedo threshold or
cloud scheme (e.g. using the MODIS 1240 nm band such as Wang et al.
(2009)) may result in more pixels processed with the SWIR aerosol
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Fig. 2. MODIS-Aqua estimated α(531,869) (left) and τ(869) (right) versus in-situ aerosol products.
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model selection approach. However, further work should be done in
order to verify if a more frequent switch towards the SWIR aerosol
model selection will lead to improvement and not to additional noise
in the aerosol model selection. Moreover, to ensure high quality
match-ups for all algorithms the default cloud mask from MODIS-Aqua
was preferred.

The NN algorithm revealed a degradation in accuracy in the green
bands with an overestimation at 531 and 547 nm (+16 and +10%
bias, respectively), a high RMSE (above 0.3 mW cm−2μm−1sr−1) and
a large RE (19 and 15% at 531 and 547 nm, respectively). However, at
412 and 667 nm, the NN algorithm performed the best with RE of 31
and 22% and biases of 11 and −15%, respectively. Improvement in
Lwn(λ) retrievals in the red with the NN algorithm was also observed
by Schroeder et al. (2007) who validated MERIS Lwn(λ) estimations.
Similarly, Schroeder (2012, pers. comm., 28 Sep) reported a significant
improvement in the blue and NIR spectral regionwith theNN algorithm
from an unpublished match-up exercise with MODIS images similar to
the present research.

According to the results above, it seems that higher Lwn(λ) signals,
observed mainly in the green region of the spectrum, tend to be bet-
ter predicted by the GW94-based algorithms, while the lower Lwn(λ)
signals, observed in the blue and red region of the spectrum, are bet-
ter predicted by the NN algorithm. This can be explained by the error
function which minimizes the cost function on a logarithmic scale
when training the NN algorithm. Hence, the cost function constrained
the parameters of the neural network allowing larger errors for
higher Lwn(λ) signals and lower for lower Lwn(λ) signals.

With 1 hour time threshold, the number of match-ups decreased
from 211 to 179. The RE for all algorithms and at all wavelengths de-
creased on average by 3%. The largest decrease in RE was observed in
the blue region of the spectrum (−4, −6, −9 and −9% for the SIMIL,
STD, NIR-SWIR and NN algorithms, respectively). For the other wave-
lengths the differences in RE did not overpass 4%, except for the NN
algorithm at 488, 531 and 547 nm (−6, 6 and 5%). Although better
results were obtained with a shorter time interval between the satellite
overpass and the in-situ measurements, the relative performances of
the algorithms remained the same.

4.3. Global validation of aerosol products

The accuracy of the retrievals of α(531,869) and τ(869) are given in
Table 5 and illustrated in Fig. 2. For α(531,869), RE varied between 44
and 52% and biases between 6 and 9%. For τ(869), the statistics were
not as good with RE ranging between 72 and 154% and biases ranging
from 47 to 109%. The aerosol product retrievals were the least accurate
with the NN algorithm (RE and biases of 154 and 109% for τ(869) and
44 and 7% for α(531,869)) and the most accurate with the NIR-SWIR
algorithm (RE and biases of 72 and 47% for τ(869) and 52 and 6% for
α(531,869). In order to investigate how errors on α(531,869) and
τ(869) affected the Lwn(λ) retrievals, we calculated the correlations

between τ(869) and α(531,869) and the absolute errors in Lwn(412)
(i.e. difference between MODIS estimations and in-situ observations).
Such as Feng et al. (2008), we observed a systematic underestimation
of α(531,869) with an overestimation of τ(869) for the three GW94-
based algorithms (not shown here). However, the correlation coeffi-
cients between α(531,869) and τ(869) remained moderate (between
−0.39 and −0.51 for the three algorithms). τ(869) and the absolute
errors in Lwn(412) were also negatively correlated for the SIMIL, STD
and NIR-SWIR algorithms (−0.4, −0.35 and −0.27, respectively). Ac-
cordingly, with high aerosol loads, the GW94-based algorithms tended
to underestimate the Lwn signal in the blue. For the NN algorithm high
aerosol loads did not have any impact on the retrieval errors in Lwn(λ).
The aerosol products are indeed not used as input for the correction
procedure and the NN algorithm is optimized only based on Rrs(λ) data.

4.4. Lwn(λ) validation per water type

Four wavelengths (443, 488, 547, and 667 nm) were used to clas-
sify the in-situ Lwn(λ) spectra. The wavelengths at 412 and 531 nm
were discarded for the same reasons mentioned by Vantrepotte
et al. (2012), notably, because in coastal regions, disagreement is

Table 6
Mean values and standard deviation of in-situ Lwn(λ) per class (mWcm−2μm−1sr−1).

Lwn(412) Lwn(443) Lwn(488) Lwn(531) Lwn(547) Lwn(667) Lwn(748)

Class 1 0.59±0.22 0.80±0.28 1.22±0.43 1.45±0.49 1.51±0.53 0.35±0.12 0.16±0.05
Class 2 1.04±0.39 1.39±0.51 1.94±0.67 1.98±0.70 1.92±0.70 0.35±0.16 0.11±0.47
Class 4 0.39±0.25 0.53±0.25 0.83±0.50 1.13±0.60 1.25±0.65 0.32±0.19 0.17±0.08

Table 7
Mean values and standard deviation of τ(869) and α(531,869) per class (dimensionless).

τ(869) α(531, 869)

Class 1 0.054±0.050 1.39±0.35
Class 2 0.055±0.039 1.38±0.57
Class 4 0.049±0.037 1.41±0.44

Table 8
Statistical results of the retrieved Lwn(λ) for the SIMIL, STD, NIR-SWIR and NN algorithms:
RE (%), RMSE (mW cm−2μm−1sr−1) and Bias (%). For each wavelength, the best statisti-
cal performance is rendered in bold.

Class 1 Class 2 Class 4

RE RMSE Bias RE RMSE Bias RE RMSE Bias

nLw(412)
SIMIL 44 0.291 −43 31 0.381 −5 73 0.397 −18
STD 51 0.290 −45 24 0.287 −8 53 0.201 14
NIR-SWIR 51 0.292 −44 24 0.297 −6 56 0.207 18
NN 27 0.236 5 24 0.309 −2 46 0.174 35

nLw(443)
SIMIL 29 0.26 −26 21 0.367 1 50 0.355 −11
STD 34 0.286 −29 15 0.265 −1 31 0.177 9
NIR-SWIR 34 0.288 −28 15 0.279 1 32 0.191 11
NN 25 0.281 −3 20 0.374 −6 33 0.191 22

nLw(488)
SIMIL 23 0.303 −22 14 0.357 2 30 0.349 −8
STD 25 0.313 −23 10 0.279 0 18 0.224 3
NIR-SWIR 25 0.310 −24 10 0.29 1 18 0.237 4
NN 21 0.348 5 19 0.416 11 44 0.32 40

nLw(531)
SIMIL 20 0.352 −19 11 0.303 −2 20 0.352 −4
STD 22 0.361 −19 9 0.256 −3 14 0.283 1
NIR-SWIR 21 0.358 −19 9 0.262 −2 14 0.284 2
NN 18 0.291 −0.5 14 0.328 11 30 0.366 27

nLw(547)
SIMIL 20 0.377 −19 11 0.303 −2 18 0.374 −5
STD 22 0.383 −19 10 0.265 −3 14 0.316 −1
NIR-SWIR 21 0.379 −19 9 0.269 −2 14 0.316 0
NN 16 0.303 −7 12 0.287 6 23 0.372 19

nLw(667)
SIMIL 45 0.183 −45 32 0.132 −24 34 0.139 −26
STD 48 0.179 −44 32 0.12 −28 25 0.112 −16
NIR-SWIR 48 0.178 −43 31 0.121 −25 25 0.112 −15
NN 36 0.149 −36 22 0.108 −17 19 0.099 −7
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often observed between in-situ and remote sensing Lwn(412) and be-
cause the inclusion of Lwn(531) did not improve the classification due
to its low discrimination character. Out of the 211 spectra, two spec-
tra remained unclassified, 9 spectra were assigned to the first class,
135 to the second and 65 to the fourth. None of our match-up pairs
were assigned to Class 3.

The three first plots in Fig. 3 show the Rrs(λ) of the in-situ data nor-
malized by their area for each class. The class averaged normalized
Rrs(λ) calculated by Vantrepotte et al. (2012) are also indicated. The
bottom right plot in Fig. 3 shows the average Lwn(λ) spectra for the
three classes obtained with our in-situ data. Table 6 shows the mean
and standard deviation of the in-situ Lwn(λ) for each class.

Class 1 contained six match-ups from the MVCO station, two
match-ups from the AAOT station and one from the turbid waters of
French Guiana. Class 2 contained almost all in-situ data from the AAOT
station (112 out of 123) as well as some in-situ data from COVE and
MVCO stations. The AAOT station presents large variabilities in
bio-optical quantities as it is located between clear ocean waters and
turbid coastal waters with a larger occurrence of open ocean water
types (Berthon & Zibordi, 2004; Mélin et al., 2011; Zibordi et al.,
2009b). Consequently, it is not surprising that most in-situ data from
this station were allocated to Class 2 defined by Vantrepotte et al.
(2012) as amixed class encountered in transition zones between coastal
turbid waters and open oceans.

Class 4 corresponds to water masses largely influenced by CDOM
concentrations and phytoplankton blooms. All the classified in-situ
data from the HLT and GDLT stations were assigned to Class 4. Indeed,
as observed in previous studies (e.g., Darecki & Stramski, 2004;
Zibordi et al., 2009a, 2009b), these two stations exhibit water masses
fed by river discharges rich in humic substances. This results in high
CDOM concentrations, an increase in primary production and subse-
quently in high Chl-a concentrations corresponding to the definition
of Class 4. The domination of CDOM absorption can be noticed on
the bottom right plot of Fig. 3 and in Table 6 where Lwn(λ) in the
blue is relatively lower (0.39±0.25 mW.cm−2.μm−1. sr−1) com-
pared to the other two classes. The 3 classes presented rather conti-
nental aerosol types with average values of α(531,869) around 1.4
(standard deviations±0.5) (Table 7).

Table 8 gives the RMSE, biases and RE per class and per algorithm.
For a better comparison, the statistical parameters are also visually
represented in Figs. 4 and 5.

The algorithm with the best performance for Class 1 was the NN
algorithm with a RE ranging from 16 to 36% and biases from −36 to
5% (Table 8). As shown in Fig. 5, at all wavelengths, the NN algorithms
showed lower RE for Class 1 compared to the three other algorithms.
For this class, the NIR-SWIR algorithm only switched for one
match-up pair towards the SWIR aerosol model selection approach.
When comparing only the GW94-based algorithms, the SIMIL algorithm
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gave themost satisfying results for thiswater type. This can be explained
by the validity range of the NIR similarity spectrum assumption. Indeed,
as observedby several studies (e.g., Doron et al., 2011;Neukermans et al.,
2009; Ruddick et al., 2006; Shi & Wang, 2009), the NIR similarity spec-
trum assumption is only valid for a given range in Lwn(NIR). For very
clear and extremely turbid waters, Ruddick et al. (2006) mentioned
that this assumption should be adjusted. In the present research we
found that the linear correlation coefficient between the in-situ
Lwn(748) and Lwn(869) data was about 83% for Class 1, while it was
only about 68 and 63% for Class 2 and 4, respectively.

For Class 2, the agreementwith the in-situ datawas better compared
to the other two classes and in particular in the blue and green region of
the spectrum for which the biases of the GW94-based algorithms were
closer to 0%. The STD algorithmwas themost accurate algorithm for this
class (RE ranging between 9 and 32% with a maximum at 667 nm and
biases ranging between 0 and −28%). Except in the red region of the
spectrum, the STD algorithm gave the lowest RE at all wavelengths
(Fig. 5). A possible explanation for the good performance of the STD al-
gorithm for Class 2 is the training dataset used to develop the bio-optical
model included in the algorithm, notably, theNOMADdataset. The latter
covers indeed mainly mesotrophic to oligotrophic waters (Mélin et al.,
2011) which corresponds to the definition of Class 2. Nevertheless, in

the red region of the spectrum, both the STD and NIR-SWIR algorithms
highly underestimate Łwn(λ) with RE of 32 and 31% and biases of −25
and −28%, respectively. The statistics of Class 2 are in agreement with
the errors observed by Mélin et al. (2011) who validated theMODIS es-
timated Lwn(λ) processed with the STD algorithm at the AAOT station.
They observed RE varying from 11 to 40% with maxima at 412 and
667 nm. At the same AERONET-OC station, Zibordi et al. (2009b) also
observed an underestimation of the MODIS estimated Lwn(667) with
the STD algorithm. In this region of the spectrum and for the three clas-
ses, the NN algorithm performed better than the GW94-based algo-
rithms (Fig. 5).

While the NN algorithm showed a bias close to 0% in the blue region
of the spectrum for Classes 1 and 2, it largely overestimated Lwn(412) for
Class 4 (bias of 34%). The STD and NIR-SWIR algorithms showed a posi-
tive bias in the blue too. This is in agreementwith previous observations
from Zibordi et al. (2009a) who observed biases of 25 and 18% with the
STD algorithm at the HLT and GDLT stations, respectively. In contrast to
the other algorithms, the SIMIL algorithm underestimated Lwn(λ) at all
wavelengths for Class 4 (biases ranging from −5 to −26%). A possible
explanation is the lack of clear water pixels in the MODIS images. In-
deed, for more than 90% of the cases in Class 4, the SIMIL algorithm
used a climatological �(748,869) to solve the atmospheric correction.
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For Classes 1 and 2 a climatological �(748,869) was used for 77 and 35%
of the cases, respectively. The use of a climatological value for �(748,869)
might be less accurate and even inappropriate for some situations. As
noticed by Jamet et al. (2011), an error in �(748,869) has a significant
impact on the retrievals of oceanic products and mainly on Lwn estima-
tions at 412, 443 and 667 nm. These bands correspond to the one for
which the SIMIL algorithm induced the largest RE, RMSE and negative
biases (Table 8).

From Fig. 5 it seems that the errors in Lwn(λ) at 531 and 547 nm
are independent of the water type. Compared to the other wave-
lengths, at 531 and 547 nm the RE remained quite stable whatever
water type was considered (Fig. 5). Accordingly, instead of forcing
the algorithms with water type-function relationships to improve
atmospheric correction, the algorithms might be constrained by
spectral relationships valid for any water type. Therefore, spectral
relationships including wavelengths at which the errors in Lwn(λ)
retrievals are independent of the water type (e.g. 531 and 547 nm)
should be investigated.

4.5. Algorithm validation over time

Figs. 6 and 7 show the annual monthly averages of Lwn(λ) at four
different wavelengths and the two aerosol parameters for Classes 2
and 4. Time series for Class 1 are not discussed as the number of

observations per month is too low and three months only were avail-
able. For both classes, the Lwn(λ) signal is higher and lower in the boreal
winter and summer, respectively. This is the consequence of a larger
input of sediments in the winter from nearby rivers due to more
frequent rainfall events (Berthon & Zibordi, 2004; Mélin et al., 2011).
During this period of the year the GW94-based algorithms performed
better in the blue region of the spectrum, while in the summer, when
the signal is lower, the NN algorithm performed better.

As remarked previously (in Section 4.3.), τ(869) is also mostly
overestimated when α(531,869) is underestimated and an over-
estimation in τ(869) is often associated with an underestimation in
Lwn(λ) in the blue regionof the spectrum. For both classes, a disagreement
in τ(869) often led to erroneous Lwn(λ) retrievals (e.g. in June on Fig. 6
and May on Fig. 7). For Class 4, the disparity between the algorithms in
terms of Lwn(λ) retrievals was mostly apparent in the blue and mainly
in May and December when τ(869) was largely overestimated and
α(531,869) underestimated. During these two months, the STD and
NIR-SWIR algorithms performed better in the blue, while in the green
and the red the SIMIL algorithm performed better.

5. Conclusion

Several algorithms have been developed in order to bypass the
inappropriate application of the black pixel assumption in turbid
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coastal waters. This research reported the accuracy of four MODIS-
Aqua atmospheric correction algorithms in contrasted coastal waters
using global coastal AERONET-OC data and cruise campaign measure-
ments. The four algorithms were (1) the STD algorithm from NASA,
(2) the SIMIL algorithm assuming spatial homogeneity within the area
of interest of the reflectance of the atmosphere and the ocean in the
NIR region of the spectrum, (3) the NIR-SWIR algorithmwhich, in high-
ly turbid waters, switches towards the SWIR bands for the aerosol
model selection, and, (4) theNN algorithmwhich applies a direct inver-
sion of Lt(λ). The former three algorithms are based on the GW94 atmo-
spheric correction approach. Overall, the atmospheric correction
algorithms performed well with RE ranging from 11 to 45% and biases
from−25 to +16%. For the GW94-based algorithms, the largest errors
were encountered in the blue and red part of the spectrum (at 412 and
667 nm), confirming the challenge of using these bands for retrieving
bio-optical parameters. In contrast, the NN algorithm performed slight-
ly better in these bands. The SIMIL algorithm tended to underestimate
Lwn(λ), while the NN algorithm tended to overestimate it.

A closer look to the dataset conducted to an evaluation of the algo-
rithms as a function of the water type. In-situ Lwn(λ) spectra were clas-
sified according to a classification scheme developed by Vantrepotte
et al. (2012) which focussed on coastal waters and distinguished the

classes based on the water type rather than on the water clarity. For
water masses mainly influenced by detrital and mineral material
(Class 1), the NN algorithm performed the best at all wavelengths
followed by the SIMIL algorithm. For the two other classes, the STDalgo-
rithm seemed to perform better followed by the NIR-SWIR algorithm.
The NN algorithm could be improved in order to increase the number
of match-up pairs and to correct for the large overestimations of
Lwn(λ) in the green part of the spectrum. When considering only the
GW94-based algorithms, the SIMIL algorithm performed slightly better
for watermasses mainly influenced by detrital andmineral material in-
dicating that this algorithm is valuable for a specific range of turbidity
only. The largest errors were encountered for water masses dominated
by significant concentrations of phytoplankton and CDOM. Overall, the
NN algorithm performed better where the GW94-based algorithms
failed (mainly in the blue and red region of the spectrum and at all
wavelengths for Class 1) and when considering all wavelengths and
all water types the STD algorithm performed the best.

Atmospheric correction remains a challenging task and in particu-
lar in complex optical coastal waters. The present research provides
an overview and validation of the already existing algorithms which
is highly valuable for further improvement essential to meet the
requirements of the ocean color end-users.
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Fig. 7. Same as Fig. 6 for Class 4.
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- Chapter 5 -

Spectral relationships to improve NIR-modelling schemes for
atmospheric correction

As demonstrated by the validation and comparison exercises presented in the previous chap-
ter of this work, the turbid water AC methods, and subsequently associated assumptions and
correction approaches, present some limitations. Improvements in satellite ρw(λ) retrievals are
thus still needed.

The present chapter focuses on improving two AC methods, the GW94-based STD and
MUMM AC method. According to the results of the previous chapter, the former showed
overall the best performances for the retrieval of ρw(λ). However, the NIR-modelling scheme
of this algorithm relies on a Chla-based bio-optical model (Stumpf et al., 2003; Bailey et al.,
2010), which may be inappropriate, in particular in water types optically dominated by non-algal
particles. The latter AC method presented a wider spatial coverage in ρw(λ) estimations and,
compared to the other GW94-based algorithms, resulted in more satisfying ρw(λ) retrievals for
water masses optically dominated by detrital and mineral material. However, for other water
types, this algorithm greatly underestimated ρw(λ), which is possibly due to an inappropriate
application of the constant NIR reflectance ratio to retrieve ρw(λNIR).

A possible approach to improve these algorithms consists of forcing the algorithm with
universally valid spectral relationships of the form ρw(λj) = f(ρw(λi)). These relationships
reflect the spectral dependence of the marine signal itself, including the spectral dependence
of the total absorption and backscattering simultaneously. Hence, it does not require retrieval
of IOPs and can be easily implemented in existing NIR-modelling schemes to improve ρw(λ)
retrievals where current AC methods fail.

For the CZCS AC method, empirical spectral relationships have already been proposed
to model ρw(670) where the black pixel assumption is invalid (e.g., Smith and Wilson, 1980;
Austin and Petzold, 1980; Sturm, 1981, 1983; Viollier and Sturm, 1984; Bricaud and Morel,
1987). Later, a red spectral relationship was also suggested by Nicolas et al. (2005) for the
AC of the POLarization and Directionality of the Earth’s Reflectances-2 (POLDER-2) sensor.
Similarly, several studies investigated the marine reflectance in the NIR region of the spectrum
to correct the second generation ocean colour satellite images for atmospheric contribution (e.g.,
Ruddick et al., 2000, 2006; Doron et al., 2011; Wang et al., 2012; Ahn et al., 2012). A commonly
used NIR spectral relationship is the constant NIR reflectance ratio used in the MUMM NIR-
modelling scheme. More recently, a polynomial NIR spectral relationship was suggested by Wang
et al. (2012) for the AC method of the Korean Geostationary Ocean Colour Imager (GOCI).

The main objective of this chapter consists in evaluating the potential of spectral relation-
ships to improve actual NIR-modelling schemes for the AC. Therefore, a literature review of
the spectral relationships used in the context of ocean colour is conducted and the encountered
spectral relationships are validated. This work led to a first paper summarized in the next
section (Section 5.1) and attached in Section 5.5 (Goyens et al., 2013a).
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Next, the negative and/or positive impact of spectral relationships constraints within the
STD and MUMM NIR-modelling schemes, is investigated based on a sensitivity study. This
sensitivity study resulted in a second paper (Goyens et al., 2013b) summarized in Section 5.2
and attached in Section 5.6.

In addition to the papers, four complementary studies have been conducted (Section 5.3).
First, additional red-NIR and blue-green spectral relationships are developed with the MUMM
in situ dataset (Section 5.3.1). These relationships are used to further constrain, and eventually
improve, the STD NIR-modelling scheme.

Second, a complementary study is conducted attempting to confirm the empirically re-
trieved spectral relationships with a theoretical basis in order to gain insight in the spectral
dependence of the water signal itself and to investigate if the form of the relationship satisfies
all water types. This is outlined in Section 5.3.2.

Third, following the conclusions of the two papers linked to this chapter (Goyens et al.,
2013a,b) and the complementary results, two additional modified NIR-modelling schemes are
suggested to extent the GW94 AC algorithm to turbid and highly productive waters (Section
5.3.3) and validated.

A last section (Section 5.3.4) briefly discusses the solution for ρw(λ) at 748 nm for the
modified MUMM AC NIR-modelling scheme. Indeed, Goyens et al. (2013a) suggested to replace
the assumption of the constant NIR water reflectance ratio in the initial MUMM AC approach
by the polynomial function used by Wang et al. (2012) for the AC of GOCI. Replacing the
constant NIR reflectance ratio of ρw(λ) by a polynomial function, involves two solutions for
ρw(λ) (i.e., a positive and negative square root). Section 5.3.4 demonstrates why the positive
square root is clearly non-physical and, consequently, the negative square root is preferred for
ρw(748).

General conclusions are outlined in Section 5.4 together with perspectives to implement
improved AC approaches for the processing of MODIS Aqua satellite images.

5.1 Paper summary: “Spectral relationships for atmospheric
correction. I. Validation of red and near infra-red spec-

tral relationships”

C. Goyens, C. Jamet, and K. Ruddick, published in Optics Express, 21(18), 21162-
21175 (2013).

The paper presents an extensive overview of red and NIR spectral relationships found in
the literature. Sixteen published spectral relationships, estimating ρw(λ) in the red or NIR
spectral region, were retained. Since most of these spectral relationships have been developed
with restrictive datasets, a validation is required to select globally valid spectral relationships.
We selected therefore 105 in situ ρw(λ) spectra from the MUMM dataset (Section 3.2.1.2),
including contrasted coastal waters with ρw(λNIR) values ranging from near zero to 10−1. For
the validation, a distinction is also made between moderately, very and extremely turbid waters.
Moderately turbid waters include data presenting ρw(869) values between 10−4 and 3.10−3. Very
turbid waters include all data with ρw(869) values superior to 3.10−3 and, among the very turbid
waters, extremely turbid waters are defined as the spectra presenting ρw(869) values superior
to 10−2. The threshold of 10−4 is approximately the upper limit for which the black pixel
assumption can be successfully applied (Siegel et al., 2000) and the limit of 3.10−3 corresponds
to the threshold value used by Wang et al. (2009) to switch for the SWIR aerosol model selection
in the combined NIR-SWIR AC algorithm.

Most red spectral relationships have been proposed for the AC of CZCS images to estimate
ρw(670) from ρw(λ) in the blue and green region of the spectrum (Smith and Wilson, 1980;
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Austin and Petzold, 1980; Sturm, 1981, 1983; Viollier and Sturm, 1984; Bricaud and Morel, 1987;
Viollier and Sturm, 1984; Sturm et al., 1999). More recently, Lee et al. (2009) also suggested, to
correct ρw(667) values within the Quasi-Analytical Algorithm (QAA), bounding red equations
to evaluate the limits of ρw(667) according to ρw(555) and a red spectral relationship between
ρw(667) and the ratio ρw(490)/ρw(555).

Similarly to the red spectral relationships, several studies investigated the spectral depen-
dence of the marine reflectance in the NIR region of the spectrum to model ρw(λNIR) for the
AC of second generation ocean colour satellites (e.g., Ruddick et al., 2000, 2006; Wang et al.,
2012). Ruddick et al. (2000, 2006) suggested a universal constant NIR reflectance ratio for the
NIR-modelling scheme of the GW94-based MUMM AC algorithm. Similarly, Wang et al. (2012)
proposed for the NIR-modelling scheme of the AC algorithm of GOCI, a polynomial spectral
relationship allowing to retrieve ρw(869) from ρw(748).

Results from the validation exercise showed that overall the red spectral relationships are
not valid for all turbidity ranges encountered in the in situ dataset. This suggests that either
the red spectral functions need to be updated or that water type-specific spectral relationships
should be used. In contrast, bounding equations, as suggested by Lee et al. (2009), allow more
variability and are thus more appropriate to force red or NIR-modelling schemes for the AC when
a priori information on the water type or turbidity level is not available or when the AC method
is expected to perform globally. In contrast, the polynomial NIR spectral relationship, initially
developed with MODIS Aqua remote sensing reflectances over the Western Pacific (Wang et al.,
2012), presented satisfying results for moderately to extremely turbid waters. Goyens et al.
(2013a) concluded that both the red bounding equations and NIR polynomial spectral rela-
tionship may be used to constrain actual NIR-modelling schemes (e.g., the MUMM and STD
NIR-modelling schemes) to improve AC algorithms. This is investigated in the companion paper
by Goyens et al. (2013b).

5.2 Paper summary: “Spectral relationships for atmospheric

correction. II. Improving the NASA Standard and MUMM

near infra-red modeling schemes”

C. Goyens, C. Jamet, and K. Ruddick, published in Optics Express, 21(18), 21176-
21187 (2013).

The main objective of this paper was to investigate if spectral relationships may improve
ρw(λ) retrievals by forcing the NIR-modelling schemes in the AC algorithms. Therefore, the
previously validated bounding red equations (Lee et al., 2009) and the NIR polynomial spectral
relationship (Wang et al., 2012) were used to force the STD and MUMM NIR-modelling schemes,
and a sensitivity study was conducted.

For the sensitivity study, simulated ρrc(λ) data were computed by combining the 105 in situ
ρw(λ) spectra with a simplified power law model for the multiple-scattering aerosol reflectance,
ρam(λ0), and by including an Ångström coefficient as a function of the aerosol model. Therefore,
two coastal models were selected with 50% and 90% relative humidity (hereafter referred to as
C50 and C90) (Shettle and Fenn, 1979; Gordon and Wang, 1994).

Similarly to the first paper, a distinction is made between moderately (ρw(869) values
between 10−4 and 3.10−3), very (ρw(869) > 3.10−3) and extremely (ρw(869) > 10−2) turbid
waters.

For the STD NIR-modelling scheme, the bounding red equations of Lee et al. (2009) are used
to correct ρw(667) when these are out of limit according to ρw(555), and, instead of extrapolating
the backscattering coefficient from 667 nm to 869 nm to obtain ρw(869), ρw(869) is estimated
from ρw(748) with the NIR polynomial relationship of Wang et al. (2012) (referred to as the
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STDCon AC method). For the MUMM AC algorithm, the constant NIR ρw(λ) ratio is replaced
by the NIR polynomial relationship in order to extent the algorithm to extremely turbid waters
(referred to as the MUMMPoly AC method).

A comparison of the median bias between in situ and retrieved ρw(λ), obtained with the
initial and the constrained STD NIR-modelling scheme for AC, suggested that the STDCon

approach performed better for all turbidity ranges and, particularly, in the blue spectral domain
(percentage bias decreased by approximately 50% relative to the initial STD NIR-modelling
scheme). However, with this new constrained approach, more reflectance spectra were flagged
due to non-physical Chla concentration estimations.

Replacing the constant NIR reflectance ratio by the NIR polynomial spectral relationship
within the NIR-modelling scheme of the MUMM AC algorithm resulted in lower ρw(λ) retrieval
errors and in particular in extremely turbid waters (percentage bias decreased by approximately
50% to 75%). However, including the polynomial NIR relationship significantly increased the
sensitivity of the AC approach to errors on the retrieved aerosol model. Hence, the added value
of the polynomial NIR spectral relationship constraint will be significantly reduced when the
aerosol model is not correctly retrieved in the sub-scene of the image.

Hence, the STDCon NIR-modelling scheme should be further improved such that ρw(λ)
retrievals are less affected by erroneous estimations of Chla concentrations, and, the MUMMPoly

AC approach should be improved to reduce its sensitivity to erroneous selection of aerosol models.

5.3 Complementary results

5.3.1 Additional red-NIR and blue-green spectral relationships

Previous sections suggested to force the STD NIR-modelling schemes with bounding equations
relating ρw(667) to ρw(555) and a NIR spectral relationship retrieving ρw(869) from ρw(748)
(i.e., STDCon approach). However, to account for the spectral information at all wavelengths,
additional red-NIR and blue-green spectral relationships may also be used. Moreover, a red-
NIR spectral relationship may avoid the approximation of the total absorption by the pure water
absorption in the NIR spectral region, and, the extrapolation of the backscattering coefficient
from the red to the NIR spectral domain within the STD bio-optical model. Similarly, blue-green
spectral relationships may correct for negative blue ρw(λ) values before it is used to estimate
the Chla concentration in the STD bio-optical model. Therefore, additional red-NIR and blue-
green spectral relationships are developed here and validated with the in situ MUMM ρw(λ)
measurements.

By minimizing the lowest sum of squared absolute error with 80% of the 105 in situ MUMM
reflectance spectra, an hyperbolic relation is found between ρw(λ) at 667 nm and 748 nm
(Fig. 5.1(a)). The model parameters and statistical performances (i.e., percentage relative er-
ror, RE, percentage bias, R2 and percentage of data presenting less then 10% difference with
modelled data), estimated with the 20% remaining spectra, are reported in Table 5.1. As shown
by the negative bias (-10%), the model tends to slightly underestimate ρw(748). For only 33%
of the data, modelled and in situ ρw(748) differed by less than 10%. However, a R2 of 0.97
indicates a very good fit.

Similarly, a simple linear blue-green spectral relationship is found between ρw(443) and
ρw(547) (Fig. 5.2(b)). Percentage RE and bias are relatively low and the R2 of 0.95 indicates a
relatively good fit (Table 5.1). About 62% of the modelled data lies within ±10% of the in situ
data.

According to the statistics in Table 5.1, the red-NIR hyperbolic spectral relationship should
be further investigated to improve ρw(748) retrievals from ρw(667) (e.g., reduce the negative
bias). In contrast, the simple linear blue-green spectral relationship appeared to be globally
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Figure 5.1: Red-NIR hyperbolic (a) and blue-green simple linear spectral relationships (b) (thick
light-grey lines) together with the 105 MUMM in situ ρw(λ) data.

Table 5.1: Empirical spectral relationships and statistical performances (RE stands for the
percentage relative error) estimated with 20% of the in situ MUMM data.

Spectral Parameters RE (%) Bias (%) R2 % data with
Relationship < 10% difference

ρw(748) =
ρw(667)

a+bρw(667)
a= 6.32 17 -9 0.97 43

b = -39

ρw(443) = a+ bρw(547) a=0.0025 12 3 0.96 52
b = 0.47

valid. Hence, the latter could be applied to correct negative ρw(443) estimations in the STD
NIR-modelling scheme (Section 2.4.2.1).

5.3.2 Theoretical explanation of the red-NIR and NIR-NIR spectral rela-
tionships

Empirical spectral relationships largely depend on the used in situ data and are subsequently
often not universal (Goyens et al., 2013a). However, although the empirically retrieved function
parameters (such as suggested in Table 5.1 and by Wang et al. (2012)) may not be valid for diverse
water types, the type of relationships may be. Therefore, the present study attempts to confirm
the empirically retrieved spectral relationships with a theoretical basis and to understand the
meaning of the empirical parameters. Two empirical spectral relationships, potentially useful to
force the NIR-modelling schemes of the STD and MUMM AC approaches, are considered; (1)
the red-NIR hyperbolic spectral relationship described in the previous section (Eq.(5.1)), and
(2) the polynomial NIR spectral relationship suggested by Wang et al. (2012) (Eq.(5.2)).

ρw(748) =
ρw(667)

6.32− 39ρw(667)
(5.1)

ρw(869) = 0.495ρw(748) + 2.185ρw(748)2 (5.2)
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a. Short reminder of some IOPs, AOPs and other radiometric quantities

To theoretically approximate the red-NIR and NIR polynomial spectral relationships, we start
from Eq.(1.20) which relates ρw(λ) to the IOPs. As suggested in the first chapter of this
manuscript, for sub-satellite pixels, < can be estimated as ≈ 0.529 (Morel and Gentili, 1996;
Doxaran et al., 2002, 2003) and, except for very low Chla concentrations, the spectral dependence
of the f/Q ratio is considered as relatively small (Loisel and Morel, 2001; Morel et al., 2002;
Doxaran et al., 2003; Ruddick et al., 2006) (Section 1.3). Subsequently, in the red and NIR
spectral range, the term πf</Q (hereafter referred to as ψ) can be considered as wavelength
independent such that both ρw(748)/ρw(667) and ρw(748)/ρw(869) ratios can be written as a
function of the IOPs only:

ρw(748)

ρw(667)
=

bb(748)

a(748) + bb(748)

a(667) + bb(667)

bb(667)
=
bb(748)a(667) + bb(748)bb(667)

a(748)bb(667) + bb(748)bb(667)
(5.3)

ρw(748)

ρw(869)
=

bb(748)

a(748) + bb(748)

a(869) + bb(869)

bb(869)
=
bb(748)a(869) + bb(869)bb(748)

a(748)bb(869) + bb(869)bb(748)
(5.4)

Ruddick et al. (2000, 2006) suggested to approximate the NIR reflectance ratio by the pure
water absorption ratio. However, this approximation can not be claimed as universal (Ruddick
et al., 2006; Shi and Wang, 2009; Doron et al., 2011; Goyens et al., 2013a).

bb(λ) can be decomposed in particulate and pure water backscattering coefficients as follows:

bb(λ) = bbp(λ0)γ + bbw(λ) (5.5)

where bbp(λ0) is the particulate backscattering coefficient at the reference wavelength λ0

(which is 667 nm in the MODIS Aqua STD AC method) and γ is the backscattering spectral
dependency which can take several forms but is often approximated by a power function (e.g.,
Reynolds et al., 2001; Stramska et al., 2003; Loisel et al., 2006):

γ =

[
λ0

λ

]ηbb
(5.6)

ηbb depends on the nature of the in-water constituents with values ranging from 0 to 4 (e.g.,
Loisel et al., 2006). In pure sea water, ηbb reaches values up to 4 and, according to Eq.(5.6),
γ values of approximately 1.8 (with λ and λ0, equal to 490 and 555 nm, respectively). In very
turbid waters, ηbb decreases until 0 and γ reaches its minimum value, 1. Lee et al. (2010b)
suggested to approximate ηbb as a function of a blue-green remote sensing reflectance ratio:

ηbb = 2 ∗
(

1− 1.2 ∗ e−0.9∗(Rrs(λB)/Rrs(λG))
)

(5.7)

where Rrs(λB) and Rrs(λG) are the blue and green remote sensing reflectance, respectively
(for MODIS Aqua, λB = 443 nm and λG = 547 nm).

Since red and NIR pure water backscattering remain very small (4.10−4 m−1, 3.10−4 m−1

and 1.10−4 m−1 at 667, 748 and 869 nm, respectively), Eq.(5.5) is often approximated by:

bb(λ) = bb(λ0)γ. (5.8)

b. Theoretical approximation of red-NIR hyperbolic spectral relationship

According to the above mentioned Eqs.(5.5) and (5.8), Eq.(5.9) can be rewritten as follows:

ρw(748)

ρw(667)
=

bb(748)a(667)

a(748)bb(667) + bb(748)bb(667)
+

bb(748)bb(667)

a(748)bb(667) + bb(748)bb(667)
(5.9)
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and, according to Eq.(5.8), simplified as follows:

ρw(748)

ρw(667)
=

a(667)
a(748)
γ + bb(667)

+
bb(748)

a(748) + bb(748)
(5.10)

If the second term of the equation, bb(748)/(a(748) + bb(748)), is written as a function of
ρw(748) (Eq.(1.20)), Eq.(5.10) becomes:

ρw(748)

ρw(667)
=

a(667)
a(748)
γ + bb(667)

+
ρw(748)

ψ
(5.11)

Next, Eq.(5.11) is rewritten in the form ρw(748) = f(ρw(667)) according to the following
steps:

ρw(748) =


 a(667)
a(748)
γ + bb(667)


 ρw(667) +

ρw(667)ρw(748)

ψ
(5.12)

ρw(748)

[
1− ρw(667)

ψ

]
=


 a(667)
a(748)
γ + bb(667)


 ρw(667) (5.13)

ρw(748) =

[
a(667)

a(748)
γ

+bb(667)

]
ρw(667)ψ

ψ − ρw(667)
(5.14)

Defining A equal to a(667)/
[
a(748)
γ + bb(667)

]
allows to simplify Eq.(5.14) and to retrieve

an hyperbolic function with the same form as the empirical relation (Eq.(5.1)):

ρw(748) =
ρw(667)

1
A − 1

Aψρw(667)
(5.15)

According to Eq.(5.1), the parameter 1/A is ≈ 6.32 and the second parameter 1/(Aψ) ≈ 39.
A is thus ≈ 0.16 and subsequently also ψ. This involves (assuming < ≈ 0.529) that the ratio
f/Q equals 0.096 which is slightly below the average values suggested by Gordon et al. (1988)
and by Loisel and Morel (2001) for turbid waters (i.e., 0.11 and 0.13, respectively) but still in
the typical range of f/Q values (i.e., 0.08-0.12 according to Morel and Gentili (1996); Morel
et al. (2002)). So the empirically retrieved parameters in Eq.(5.1) appear to be meaningful.

For very clear waters, the total absorption a(667) and a(748) can be approximated by
aw(667) and aw(748), respectively, and bb(667) by bbw(667) in Eq.(5.14). The ratio f/Q can
be approximated by 0.09 for a nearly normal sun and viewing direction and for a Chla concen-
tration inferior to 0.03 mg m−3 (Morel et al., 2002). Based on our theoretical approximation
the hyperbolic curve relating ρw(667) to ρw(748) can thus be computed for very clear waters.
As shown in Fig. 5.2(a), this new clear water red-NIR spectral relationship does not fit well
the empirical curve retrieved with our in situ coastal waters data (Eq.(5.1)). The term A in
Eq.(5.15) is indeed highly sensitive to variations in total absorption and backscattering and thus
in variations in in-water constituents. The parameters of the hyperbolic curve are thus func-
tion of the water type and, consequently, a single red-NIR hyperbolic model can not be taken
as globally valid. Semi-empirical (e.g., Eq.(5.14)) or class-specific spectral relationships should
thus be preferred to force NIR-modelling schemes for AC.
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Figure 5.2: Empirical hyperbolic curve fitted through the in situ MUMMM ρw(667) and ρw(748)
data and theoretical hyperbolic curve according to Eq.(5.14) when considering very clear sea water
(a(667) ≈ aw(667), a(748) ≈ aw(748) and, bb(667) ≈ bbw(667)) (a), and percentage relative
difference between ρw(869)sim and ρw(869)approx (squares, calculated according to Eq.(5.23))
and between ρw(869)sim and ρw(869)emp (green circles, estimated with the polynomial function
suggested by Wang et al. (2012)) for different levels of Chla concentrations (b). The coloured
squares correspond to the median relative difference and above and below horizontal bars to the
standard deviations.

c. Theoretical approximation of the NIR polynomial spectral relationship

Similarly to the red-NIR reflectance ratio, ρw(869) can be written as a function of ρw(748):

ρw(869) = ρw(748)
a(748)bb(869) + bb(748)bb(869)

a(869)bb(748) + bb(869)bb(748)
(5.16)

As noticed previously, in the NIR spectral region, bb(λ) is dominated by bbp(λ) such that
Eq.(5.16) can be written as:

ρw(869) = ρw(748)
a(748) bb(748)

γ + bb(748) bb(748)
γ

a(869)bb(748) + bb(748) bb(748)
γ

(5.17)

If we multiply numerator and denominator by γ/bb(748), we obtain the following equation
(with γ = bb(869)/bb(748)):

ρw(869) = ρw(748)
a(748) + bb(748)

γa(869) + bb(748)
(5.18)

Expanding Eq.(5.18) as a sum of two ratios, results in:

ρw(869) = ρw(748)
a(748)

γa(869) + bb(748)
+ ρw(748)

bb(748)

γa(869) + bb(748)
(5.19)

In the NIR spectral range, water reflectance is nearly insensitive to phytoplankton as well
as to suspended particles and CDOM absorption such that the total absorption can be approx-
imated by aw(λ) (Babin and Stramski, 2002). The sensitivity of the water absorption ratio
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aw(869)/aw(748) (hereafter referred to as the constant α) to salinity and temperature can also
be assumed as negligible (Ruddick et al., 2006). Accordingly, a(λ) can be replaced by aw(λ) in
Eq.(5.19) and α = aw(869)/aw(748) can be considered as universal. Eq.(5.19) becomes then:

ρw(869) = ρw(748)
aw(748)

γaw(869) + bb(748)
+ ρw(748)

bb(748)

γαaw(748) + bb(748)
(5.20)

Ruddick et al. (2006) suggested empirical and theoretical α parameters derived from in situ
measurements and based on the pure water absorption spectrum of Kou et al. (1993) equal to
1.945 and 1.639, respectively. As noticed previously, γ varies between 1.8 and 1 for clear to
extremely turbid waters. Hence, if γαaw(748) greatly exceeds bb(748), the following assumptions
can be made:

ρw(748)aw(748)

γaw(869) + bb(748)
≈ aw(748)

γaw(869)
ρw(748) (5.21)

ρw(748)bb(748)

γαaw(748) + bb(748)
≈ 1

γαψ
ρw(748)2 (5.22)

If these two assumptions are verified, the polynomial function relating ρw(748) to ρw(869)
can be retrieved and Eq.(5.20) becomes:

ρw(869) =
1

γα
ρw(748) +

1

γαψ
ρw(748)2 (5.23)

However, the simplifying assumptions in Eqs.(5.21) and (5.22), may not be verified for
all water types and for all turbidity ranges. To investigate the impact of these assumptions
on the retrieved ρw(869), a sensitivity study is conducted using a synthesized dataset built
for the IOCCG Report 5 (IOCCG, 2006). This dataset contains 500 spectra in the 400-800
nm range for different illumination geometries constructed with HydroLight radiative transfer
simulations. It is particularly useful for the present study since it provides data for ρw(748),
bb(748), a(748) and Chla concentrations and covers a wide range of water types encountered in
the field including a variety of algal and non-algal particle concentrations and CDOM (http:
//www.ioccg.org/groups/OCAG_data.html). For this sensitivity study, a(869) is approximated
by the pure water coefficient, aw(869) (Pope and Fry, 1997).

The simulated ρw(869), hereafter referred to as ρw(869)sim, are computed with Eq.(5.20),
avoiding the simplifying assumptions in Eqs.(5.21) and (5.22). The approximated ρw(869),
hereafter referred to as ρw(869)approx, are computed with Eq.(5.23) and the empirically derived
ρw(869)emp are calculated with the empirical polynomial function suggested by Wang et al.
(2012) (Table 5.1). To calculate ρw(869)sim and ρw(869)approx, γ is estimated according to
Eqs.(5.6) and (5.7). To estimate ψ, < is considered as constant (≈ 0.529) and the ratio f/Q
is retrieved from the look-up tables suggested by Morel et al. (2002) (assuming a near-nadir
viewing angle, with satellite and sun in the same vertical plane) according to the solar zenith
angle and Chla concentration associated with the corresponding spectra. The percentage relative
difference (or percentage bias) between ρw(869)sim and ρw(869)approx, and between ρw(869)sim

and ρw(869)emp, respectively, are calculated for each spectra:

Relative difference = 100 ∗ |ρw(869)approx,emp − ρw(869)sim|
ρw(869)sim

(5.24)

Results are shown in Fig. 5.2(b) for a solar zenith angle of 30◦ for the different levels of
Chla concentrations encountered in the simulated dataset. Considering a solar zenith angle of
0◦ and 60◦ leads to very similar results (not shown here).

According to Fig. 5.2(b), the approximations in Eqs.(5.21) and (5.22) (i.e., ρw(869)approx)
leads to an average percentage difference of 16% (±0.5%) and the deviance from the average

http://www.ioccg.org/groups/OCAG_data.html
http://www.ioccg.org/groups/OCAG_data.html
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difference increases slightly with an increase in Chla concentrations. The empirical spectral re-
lationship as suggested by Wang et al. (2012) leads to significantly better results when the Chla
concentration exceeds 0.7 mg m−3, with an average percentage difference of 3% (±1.8%). How-
ever, for Chla concentrations lower or equal to 0.7 mg m−3, which corresponds to ρw(869)simil

values below 3.10−4, the empirical function results in percentage differences up to 27%. Hence,
assumptions made in Eqs.(5.21) and (5.22) to retrieve the polynomial model relating ρw(748) to
ρw(869) does not result in accurate ρw(869) retrievals, and in particular for large concentrations
of Chla. In contrast, the empirical NIR spectral relationship accurately retrieves ρw(869) from
ρw(748) for Chla concentrations above 0.7 mg m−3.

d. Conclusion

We can thus conclude that the empirically red-NIR marine spectral relationship relating ρw(667)
to ρw(748) (Eq.(5.1)) is not universally valid. However, the hyperbolic form of the relationship
seems to be appropriate for all water types when including function parameters variable accord-
ing to a(λ) at 667 nm and 748 nm and bb(667). The empirical polynomial function relating
ρw(748) and ρw(869) (Eq.(5.2)), suggested by Wang et al. (2012) and previously validated with
turbid coastal in situ ρw(λ) data (Goyens et al., 2013a), shows good agreement with the sim-
ulated dataset for Chla concentrations ranging from 0.7 mg m−3 to 30 mg m−3. For Chla
concentrations below 0.7 mg m−3, the application of the NIR spectral relationship results in
significant errors. Nonetheless, within the STD AC approach when the Chla concentration is
estimated below or equal to 0.7 mg m−3, ρw(λNIR) is automatically reset to 0.

Results of the present study suggest that the STD NIR-modelling scheme may be improved
by replacing, within the bio-optical model, the interpolation of bb(λ) from the red to the NIR
spectral domain (see Section 2.4.2.1) by the red-NIR theoretical spectral relationship and the
empirical NIR polynomial function.

5.3.3 Two additional adapted NIR-modelling schemes to improve MODIS
Aqua ρw(λ) retrievals

5.3.3.1 An STD NIR-modelling scheme forced with theoretical and empirical spec-
tral relationships

Goyens et al. (2013a) suggested to constrain the STD NIR-modelling scheme with bounding
red equations (Lee et al., 2009) and an empirical NIR polynomial relationship (Wang et al.,
2012), referred to as the STDCon NIR-modelling scheme. Here, with the aim to further improve
ρw(λ) retrievals, both the theoretical red-NIR and empirical blue-green spectral relationships,
discussed in previous sections, are used as additional constraints. This new modified STD AC
approach is referred to as the STDContheor AC method.

As shown in Fig. 5.2, the NIR empirical spectral relationship leads to large inaccuracies
in ρw(869) retrievals when Chla concentrations are below or equal to 0.7 mg m−3. However,
as mentioned in Section 5.3.2, this Chla concentration corresponds to the threshold for which
ρw(λNIR) is reset to 0 in the STD NIR-modelling scheme. Note that this readjustment is
maintained in the iterative method of the new STDContheor AC approach.

A schematic overview of the modified STD AC method is given in Fig. 5.3. The blue-green
constraint allows to correct for negative ρw(443) estimations, used to retrieve the backscattering
spectral slope within the bio-optical model (Section 2.4.2.1). This constraint is applied when the
estimated ρw(443) is negative and provided that ρw(547) is positive. The theoretical red-NIR
spectral relationship (Eq.(5.14)) replaces the direct interpolation of bb(667) to bb(748) to retrieve
ρw(748).

These new constraints present some significant advantages as illustrated by the following
sensitivity study, based on the previously mentioned synthesized dataset of the IOCCG Report
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Figure 5.3: Schematic flowchart of the constrained STDContheor AC method.
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5 (IOCCG, 2006). The sensitivity study set up is the following:

1. First, it is considered that both the STD and STDContheor AC approaches perfectly retrieve
ρw(λ). Therefore, for each algorithm, the IOCCG synthesized ρw(λ) at 443, 547 and 667
nm (IOCCG, 2006) are used as input in the AC algorithm to retrieve ρw(748) and ρw(869)
(hereafter referred to as ρw(λ)P , i.e., the perfectly retrieved ρw(λ)).

2. Next, the Rayleigh corrected reflectance, ρrc(λ), serving as input for the AC algorithms
are simulated for each spectra:

ρTOArc = ρTOAam (λ) + t(λ)ρPw(λ). (5.25)

with t(λ) being the atmospheric diffuse transmittance and ρam(λ), the multiple-scattering
aerosol reflectance. For the latter, a simplified power law model is used:

ρam(λ) = ρam(λ0)

(
λ

λ0

)−η
(5.26)

with η being the Ångström exponent. For the present study, a coastal model is considered
with 50% relative humidity (C50, η = 0.75). t(λ) and ρam(λ0) (λ0 is 869 nm) are set equal
to 1 and 0.015, respectively.

3. For each algorithm, the sensitivity study is conducted by adding errors within the bio-
optical model of ± 10%, ± 20% and ± 50% on Chla concentrations, γ and bbp(λred).

4. To investigate the sensitivity of the initial STD and modified STDContheor NIR-modelling
schemes, the relative difference between the retrieved ρw(λ) and ρw(λ)P at 748 and 869
nm are compared.

Results of the sensitivity study show thus the impact of imperfections on the retrieved
Chla concentrations, γ and bbp(λ), considering that all other parameters are perfectly retrieved.
These are shown in Figs. 5.4 and 5.5 for ρw(748) and ρw(869), respectively.

According to Figs. 5.4 and 5.5, an error on the estimated bbp(λred) induces a smaller
percentage difference when using the STDContheor NIR-modelling scheme (∼ 1%) compared to
the initial STD NIR-modelling scheme (ranging from 9% to 55%). Moreover, the percentage
relative difference resulting from errors on the estimated bbp(λred) remains almost constant
whatever the error when using the STDContheor approach. In contrast, a small error in the
spectral dependence of the backscattering coefficient, γ, induces a greater difference on the
STDContheor retrieved ρw(λ) compared to STD retrieved ρw(λ). For a same error on γ, the
STDContheor NIR-modelling scheme induces systematically a percentage relative difference 1%
to 2% superior to the percentage relative difference encountered with the initial NIR-modelling
scheme. Nevertheless, these percentage differences between the two NIR-modelling schemes are
significantly inferior compared to the differences induced with a similar error on bbp(λred).

Errors on the estimated Chla concentration result in similar percentage differences for ρw(λ)
with both NIR-modelling schemes. Note however that this statement is based on the median
relative difference and that some outliers are observed on both Figs. 5.4 and 5.5.

Overall, we can conclude that the STDContheor approach is less sensitive to errors on bbp(λred)
compared to the initial STD algorithm. Knowing that the bio-optical model, used in both the
STD and STDContheor NIR-modelling schemes, largely relies on bbp(λred) to estimate ρw(λ) at
748 and 869 nm, reducing the sensitivity to errors on bbp(λred) represents a large advantage.
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Figure 5.4: Percentage relative difference between ρPw(748) (estimated as if the STD and the
STDContheor NIR-modelling schemes perfectly retrieved ρw(λ)) and ρw(748) retrieved when errors
are added to bbp(λred), Chla and γ within both NIR-modelling schemes (a: +10%, b: -10%, c:
+20%, d: -20%, e: +50%, f: -50%). Box plots indicate median with first and third quartiles,
upper and lower whiskers and outliers (± 1.5IQR).
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Figure 5.5: Same as Fig. 5.4 but for ρw(λ) at 869 nm.
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5.3.3.2 A combined MUMMPoly and STDContheor NIR-modelling scheme for AC

The MUMMPoly and STDContheor NIR-modelling schemes have been evaluated and compared in
the previous sections and by Goyens et al. (2013b). Results indicated that when the STDCon

algorithm failed to retrieve ρw(λ) (e.g., non-physical negative values), the MUMMPoly approach
often succeeded. Similarly, it was also observed in Chapter 4 and by Goyens et al. (2013c), that,
overall, the initial STD AC algorithm tended to better retrieve ρw(λ) compared to the NN,
MUMM and NIR-SWIR AC algorithms, but that the MUMM approach ensured a larger spatial
coverage. Accordingly, in order to reduce the number of excluded match-up pairs due to AC
failure or erroneously retrieved Chla concentrations (i.e., an important limitation of the STD
AC approach), a second modified NIR-modelling scheme is suggested consisting in combining
the MUMMPoly and STDContheor approaches (referred hereafter to as the COMB AC approach).
A schematic overview of the combined MUMMPoly and STDContheor AC method is given in
Fig. 5.6.

In the COMB AC approach, the MUMMPoly NIR-modelling scheme (including the hypothe-
sis of spatial homogeneity in NIR aerosol reflectance ratio) is used when the estimated ρw(λNIR)
is superior to ρrc(NIR) (resulting in negative ρam(λ)) or when a Chla failure flag is assigned to
a spectra (resulting from negative ρw(λ) estimations in the blue and green spectral region and
subsequently in non-physical Chla concentrations and ρw(λ) estimations). In the initial STD
AC approach, when such conditions occur, the iteration is re-initialized assuming ρw(λ) equals
ρrc(λ) (ρam(λ) = 0) and the Chla concentration is set to 10 mg m−3 (Bailey et al., 2010). With
the COMB AC approach, if at a given iteration such conditions occur, the algorithm switches
towards the MUMMPoly NIR-modelling scheme. Next, the estimated ρw(λNIR) is removed from
ρrc(λNIR) and the GW94 AC algorithm is applied. If ρw(λred) does not converge after this switch
and the maximum number of iterations is not exceeded, the COMB NIR-modelling scheme iter-
ates again with the STDContheor approach. Accordingly, with the COMB NIR-modelling scheme,
a retrieved ρw(λ) spectra is considered as non-valid only when either the maximum number of
iterations is attained or when non-physical Chla concentrations are retrieved or atmospheric
correction failure flags are assigned more than twice to the same spectrum.

A sensitivity study comparable to the study conducted by Goyens et al. (2013b) has been
performed to evaluate and compare the performances of the MUMMPoly, STDContheor and the
COMB NIR-modelling schemes for AC. Results are shown in Fig. 5.7. For both the MUMMPoly

and COMB NIR-modelling schemes two cases are included, one considering that the aerosol
properties are well retrieved from nearby clear water pixels and one considering that the aerosol
model is not correctly estimated (i.e., the C90 aerosol model is selected in the sensitivity study
while the C50 aerosol model is used to construct the simulated ρrc(λ)). The performances of
the different approaches are evaluated in terms of percentage bias between retrieved and in situ
ρw(λ) at 412, 547, 667, 748 and 869 nm. The sensitivity study is conducted for the 105 in situ
data from the MUMM dataset and for moderately (Fig. 5.7(a-e), 49 spectra out of 105) and
very (Fig. 5.7(f-j), 56 spectra out of 105) turbid waters. Among the very turbid waters, we also
distinguish the extremely turbid waters (Fig. 5.7(k-o), 24 spectra out of 105).

For moderately turbid waters, all approaches retrieve the same number of valid ρw(λ)
(i.e., 49). For this turbidity level, the COMB algorithm does not turn to the MUMMPoly

NIR-modelling scheme (no flags are encountered for Chla concentration and/or atmospheric
correction failure). Hence, the STDContheor and the COMB AC show the same performance
with median bias between in situ and modelled ρw(λ) ranging from -54% to -2% (with the
smallest and largest percentages encountered at 547 and 869 nm, respectively, Fig. 5.7(a-e)).
The MUMMPoly NIR-modelling scheme also tends to underestimate the signal with median
biases ranging from -41% to -2%. In contrast, if the C90 aerosol model is selected, instead of the
correct C50 aerosol model, ρw(λ) is greatly overestimated with median biases ranging from 17%
to 139%. Hence, for this turbidity level, the STDContheor should be preferred when information
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Figure 5.6: Schematic flowchart of the combined MUMMPoly and STDContheor AC method.
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about atmospheric aerosols is missing.
For very turbid waters, the number of retrieved ρw(λ) differs. The COMB AC approach

shows performances similar to the STDContheor algorithm (percentage bias ranging from 2%
to 12%) but retrieved 7% more valid ρw(λ) spectra (49 versus 46 spectra). Compared to the
MUMMPoly AC approach, it retrieves about 12% less valid ρw(λ) spectra (56 versus 49 spectra).
Hence, the COMB AC approach still retrieves less spectra compared to the MUMMPoly approach.

Percentage median bias for very turbid waters are the smallest at all wavelengths when
using the MUMMPoly NIR-modelling scheme, provided that the aerosol model is correctly re-
trieved (median bias ranging from 0 to 5%, Fig. 5.7(f-j)). For this turbidity level, the MUMMPoly

NIR-modelling scheme is also less sensitive to erroneously retrieved aerosol models (the median
bias does not exceed 25% with the MUMMPoly NIR-modelling scheme). However, if spatial ho-
mogeneity in aerosol reflectance is not verified, the STDContheor AC method should be preferred
(percentage median biases vary between 2% and 12%, Fig. 5.7(f-j)).

For the extremely turbid waters the COMB AC approach retrieves about 20% more valid
ρw(λ) spectra relative to the STDContheor algorithm but 30% less than the MUMMPoly approach
(17, 14 and 24 spectra for the COMB, STDContheor and MUMMPoly approaches, respectively).
For this turbidity level, the MUMMPoly approach also provided significantly better results com-
pared to the STDContheor approach (median biases vary between 1% and 4%, and between -28%
and -4%, with the MUMMPoly and STDContheor AC method, respectively, Fig. 5.7(k-o)). How-
ever, when the C90 aerosol model is selected (instead of the correct C50 aerosol model), ρw(λ)
is overestimated (median bias ranging from 5% to 25%).

Hence, for moderately and very turbid waters the STDContheor AC method performs better,
while for extremely turbid waters the MUMMPoly AC approach should be preferred. The COMB
AC approach appears to be a good compromise since it results in a greater spatial coverage,
compared to the STDContheor AC approach, and its sensitivity to erroneously retrieved clear
water-aerosol properties is reduced compared to the MUMMPoly NIR-modelling scheme.
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Figure 5.7: Percentage bias between retrieved and in situ ρw(λ) spectra at 412, 547, 667, 748 and 869 nm. Mp stands for MUMMPoly when
assuming correct clear water pixel aerosol properties, Mp90 for MUMMPoly when considering the incorrect C90 aerosol model, Sc for the STDContheor,
and C and C90 for the COMB AC approach when considering the correct C50 and incorrect C90 aerosol model, respectively. Results are shown
for moderately (first row) and very (second row) turbid waters, and when considering only extremely turbid waters (third row). Box plots indicate
median with first and third quartiles, upper and lower whiskers and outliers (small circles, ± 1.5IQR).
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5.3.3.3 Evaluation of the different modified NIR-modelling schemes for AC and
comparison with the initial approaches.

In this section a sensitivity study is conducted similar to the sensitivity study conducted by
Goyens et al. (2013b)(based on the 105 MUMM in situ ρw(λ) spectra and including a simplified
power law model for the multiple scattering aerosol reflectance) to compare and evaluate the
performances of all the modified NIR-modeling schemes suggested in the previous sections. For
each modified NIR-modelling scheme (i.e., MUMMPoly, STDContheor, and COMB approach) and
the initial MUMM and STD AC approaches, the median bias between in situ and estimated
ρw(λ) are compared, for moderately (Fig. 5.8(a)) and very (Fig. 5.8(b)) turbid waters, and when
considering only the most extremely turbid waters (Fig. 5.8(c)). Table 5.2 shows the number
of retrieved ρw(λ) for each turbidity level. For the initial MUMM, MUMMPoly and COMB AC
approaches, the performance is also investigated when an erroneous aerosol model is selected
from the nearby clear water pixels (the C90 aerosol model is assumed while the C50 aerosol
model is used to simulate ρrc(λ), referred to as MUMMC90, MUMMPoly−C90 and COMBC90).

Table 5.2: Number of retrieved valid ρw(λ) spectra per AC approach and per turbidity level.

NIR-modelling scheme Moderately Very Extremely
(out of 49 spectra) (out of 56 spectra) (out of 24 spectra)

STD 49 46 14
MUMM 49 56 24
MUMMC90 49 56 24
MUMMPoly 49 56 24
MUMMPoly−C90 49 56 24
STDContheor 49 46 14
COMB 49 49 17
COMBC90 49 48 16

For the moderately turbid waters, the STD-based NIR-modelling schemes (i.e., the initial
STD, STDContheor and COMB approaches) result in similar median biases ranging from 0 to
-50%. The MUMM and MUMMPoly AC approaches seem to be highly sensitive to the aerosol
properties selected from the nearby clear water pixels resulting in large ρw(λ) errors when these
are erroneously retrieved (median bias exceeding 130%). In contrast, when the aerosol properties
are correctly retrieved, these NIR-modelling schemes perform slightly better than the STD-based
NIR-modelling schemes.

As mentioned previously, for very turbid waters, the MUMM and MUMMPoly algorithms
retrieve the largest number of valid ρw(λ) spectra followed by the COMB AC approach (Ta-
ble 5.2). When the aerosol properties are correctly retrieved from the nearby clear water pixels,
the MUMMPoly AC approach tends to slightly overestimate ρw(λ) with positive median biases
ranging from 0 to 5%, while the initial MUMM algorithm underestimates ρw(λ) with negative
biases up to -5%. The STD approach significantly underestimates ρw(λ) in the blue spectral
region and overestimate ρw(λ) in the NIR (median biases varying from -13% in the blue to 21%
in the NIR spectral domain). The COMB and constrained STDContheor algorithms result in very
similar ρw(λ) retrievals (median bias varying between 1% and 11% with both NIR-modelling
schemes) suggesting that the switch towards the MUMMPoly NIR-modelling scheme rarely oc-
curs or that even with this reset, the spectra are considered as non valid (i.e., flagged more than
twice or the maximum iteration number is exceeded).

For extremely turbid waters, the MUMMPoly NIR-modelling scheme returns the best results,
provided that the aerosol properties are correctly retrieved from the nearby clear water pixels
(median bias ranging from 1% to 4%), while the STD NIR-modelling scheme results in the
largest retrieval errors (median bias ranging from -60% to 16%). The COMB and STDContheor

approaches perform relatively well with a median bias varying between -30 and -3%.
Hence, according to Fig. 5.8 and Table 5.2, the MUMMPoly NIR-modelling scheme shows

significant improvements compared to the initial MUMM approach, particularly in very and
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Figure 5.8: Median relative difference as a function of wavelength between in situ and retrieved
ρw(λ) for (a) moderately and (b) very turbid waters and (c) when considering only extremely
turbid waters (ρw(869) > 10−2) with the initial MUMM and STD, the MUMMPoly (assum-
ing correct clear water pixel aerosol properties), the MUMMPoly−c90 (assuming the incorrect
C90 aerosol model), the STDContheor, the COMB (assuming the correct aerosol properties) and
COMBc90 (assuming the incorrect C90 aerosol model) NIR-modelling schemes for AC.

extremely turbid waters. However, it is still affected by its sensitivity to the retrieved aerosol
properties from nearby clear water pixels and in particular over moderately turbid waters. The
STDContheor NIR-modelling scheme returns better results relative to the initial STD algorithm.
However, it is affected by Chla concentration and AC failure flags reducing the number of
retrieved valid spectra. Consequently, the COMB AC approach presents a good alternative to
retrieve more valid ρw(λ) spectra by using the MUMMPoly NIR-modelling scheme when the Chla
concentration is not a valid proxy to estimate ρw(λNIR) or if the first guess in ρw(λ) exceeds
ρrc(λ). Note however, that the switch between the MUMMPoly and STDContheor schemes may
result in non-physical spatially heterogeneous ρw(λ) patterns.

5.3.4 The appropriate solution for ρw(748) within the MUMMPoly NIR-modelling
scheme

Goyens et al. (2013b) demonstrated how the MUMM algorithm could be extended to extremely
turbid waters by replacing the constant NIR reflectance ratio (Ruddick et al., 2000, 2006) by a
NIR polynomial function (Wang et al., 2012) (Eq.(5.2)). This included, however, some modifi-
cations in the initial MUMM NIR-modelling scheme.

Goyens et al. (2013b) found the following quadratic function:

bεt∗869ρw(748)2 + (aεt∗869 − t∗748)ρw(748) + [ρrc(748)− ερrc(869)] = 0 (5.27)

with a and b being the function parameters of the polynomial relationship (Eq.(5.2), Wang
et al. (2012)). Accordingly, if the Rayleigh corrected reflectance, ρrc(λ), the transmittance
coefficients, t∗λ, and the aerosol reflectance ratio ε are known, the water signal at 748 nm and,
subsequently, at 869 nm can be derived.

Similarly to the MUMM AC algorithm (detailed in Section 2.4.2.2), ε is retrieved from the
nearby clear water pixels, t∗λ is calculated given the viewing and incident geometry and selected
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aerosol model, and ρrc(λ) is estimated from the sensor measured signal after subtraction of sun
glint, Rayleigh and white caps reflectance (Gordon and Wang, 1994). Hence, as mentioned by
Goyens et al. (2013b), Eq.(5.27) is a quadratic polynomial function with an unknown quantity,
ρw(748), and for which two solutions exist:

ρw(748) =
[t∗748 − aεt∗869]±

√
[aεt∗869 − t∗748]2 − 4bεt∗869[ρrc(748)− ερrc(869)]

2bεt∗869

(5.28)

However, in reality, only one unique solution exists for ρw(748). Indeed, as mentioned by
Goyens et al. (2013b), the positive root in Eq.(5.28) is non-physical. This can be demonstrated
as follows. Taking the positive square root involves that the second term in the nominator is
positive. Accordingly, the following inequality can be stated:

ρw(748) >
[t∗748 − aεt∗869]

2bεt∗869

(5.29)

Since the two transmittance coefficients t∗748 and t∗869 are usually very close (t∗748 and t∗869

differ from each other by about 1% for the same geometry and aerosol model (Shettle and Fenn,
1979; Gordon and Wang, 1994)), we can approximate Eq.(5.29) by the following equation:

ρw(748) >
[1− aε]

2bε
(5.30)

with the function parameters a and b being equal to 0.495 and 2.185 as given in Eq.( 5.2)
and suggested by Wang et al. (2012). The minimum ρw(748) value in Eq.(5.30) can thus be
estimated as a function of ε, ranging approximately from 0.9 to 1.5 when considering oceanic,
maritime, coastal and tropospheric aerosol models with relative humidities varying between 50
and 99% (Fig. 2.3, Section 2.4.1). Fig. 5.9(a) shows the minimum value for ρw(748) according to
Eq.(5.30) and as a function of ε. According to this figure, with the positive square root, the mini-
mum ρw(748) estimations, and subsequent estimated ρw(869) (when solving the NIR polynomial
function), represent extremely turbid waters (> 10−2), and this whatever the selected aerosol
model. Hence, taking the positive square root may thus lead to erroneous ρw(λ) retrievals since
it will often result in ρw(λNIR) estimations greatly exceeding the ρw(λNIR) values encountered
in the oceans.

The non-valid positive solution for ρw(748) can also be demonstrated with the simulated
dataset computed for the sensitivity studies outlined in the previous sections (IOCCG, 2006). As
done for the sensitivity studies conducted by Goyens et al. (2013b) and outlined in Section 5.2.3,
ρrc(λ) is simulated assuming a fixed aerosol model, and associated Ångström coefficient, and
a simplified power law model for the multiple-scattering aerosol reflectance, ρam(λ). Next, the
transmittance coefficients t∗748 and t∗869 are set equal to 1 and ε is estimated from the simulated
NIR ρam(λ) ratio. ρw(748) can then be estimated according to Eq.(5.28) and ρw(869) with the
NIR polynomial relationship. Fig. 5.9(b) shows the resulting ρw(λNIR) with the positive and
negative square roots, and when considering a coastal aerosol model with 50% relative humid-
ity. This plot clearly indicates the systematic and significant overestimation of ρw(λNIR) when
considering the positive square root. In contrast, when taking the negative root, most spectra
fall on the 1:1 line (data points located away from the 1:1 line correspond to the in situ data
measured in the coastal regions of French Guiana and for which the NIR polynomial function
suggested by Wang et al. (2012) appeared to be invalid, see Goyens et al. (2013a)). Hence, the
unique solution for ρw(748) for the NIR-modelling scheme of the MUMM AC approach should
be:

ρw(748) =
[t∗748 − aεt∗869]−

√
[aεt∗869 − t∗748]2 − 4bεt∗869[ρrc(748)− ερrc(869)]

2bεt∗869

(5.31)
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Figure 5.9: Minimum estimated ρw(λ) at 748 nm (black line) and 869 nm (red line) as a
function of ε. Grey line corresponds to the extremely turbid water threshold (ρλ > 10−2) (a),
and simulated versus in situ ρw(λ) at 748 and 869 nm when considering the positive and negative
root for the solution of ρw(748) (referred to as ρw(λ)+ and ρw(λ)−, respectively) (b).

5.4 Conclusion

The present chapter focused on spectral relationships and their potential to improve NIR-
modelling schemes for satellite ρw(λ) retrievals. Numerous spectral relationships were found
in the literature and most have been developed with the aim to improve red and NIR-modelling
schemes to retrieve ρw(λ) in optically complex waters. A validation of these spectral relation-
ships resulted in a published paper entitled: “Spectral relationships for atmospheric correction.
I. Validation of red and near infra-red spectral relationships” (Goyens et al., 2013a).

From this validation study, we found that the bounding red equations suggested by Lee et al.
(2009), to correct satellite retrieved ρw(667) estimations for the Quasi-Analytical Algorithm
(QAA), and the NIR polynomial function used to estimate ρw(869) from ρw(748) (Wang et al.,
2012) were valid for moderately to extremely turbid waters. The potential of these red and NIR
spectral relationships to improve satellite retrieved ρw(λ), was investigated in a second paper
entitled “Spectral relationships for atmospheric correction algorithms. II. Improving the NASA
Standard and MUMM atmospheric correction algorithms” (Goyens et al., 2013b). Results from
the sensitivity studies conducted in this paper, showed that the STD NIR-modelling scheme
forced with the red and NIR spectral relationships performed better for all turbidity ranges and,
in particular in the blue spectral domain, compared to the initial STD scheme. Results also
demonstrated that replacing the constant NIR reflectance ratio by the NIR polynomial spectral
relationship within the MUMM NIR-modelling scheme, reduced the ρw(λ) retrieval errors and,
in particular, in extremely turbid waters. The constrained STD (STDContheor) and polynomial-
based MUMM (MUMMPoly) NIR-modelling schemes presented thus better results relative to
the initial approaches. However, for both schemes, the added value of the spectral relationships
was slightly reduced due to a decrease in valid retrieved ρw(λ) spectra with the STDContheor

NIR-modelling scheme and an increase in sensitivity to erroneously retrieved aerosol properties
with the MUMMPoly, compared to the initial approaches.

Next, to further investigate the potential of spectral relationships to improve NIR-modelling
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schemes for AC, additional spectral relationships were suggested, a red-NIR spectral relation-
ship, relating ρw(667) and ρw(748) with an hyperbolic function, and a blue-green linear spectral
relationship relating ρw(443) and ρw(547). In order to have a better insight in the validity of the
spectral relationships, I also attempted to find a theoretical basis for the empirically retrieved
spectral relationships. This was done based on radiative transfer simulated data (IOCCG, 2006)
and resulted in the following conclusions. The empirically red-NIR spectral relationship param-
eters appeared to be only valid for turbid waters, but the hyperbolic form of the relationship
appeared to be valid for all water types. In contrast, the empirical polynomial function relat-
ing ρw(748) and ρw(869) (Wang et al., 2012) fitted well with the simulated dataset while no
theoretical basis of this empirical function was found adequate for all water types. Hence, the
STD NIR-modelling scheme may be improved by replacing, within the bio-optical model, the
interpolation of bb(λ) from the red to the NIR spectral domain by the theoretical red-NIR hy-
perbolic and empirical NIR polynomial spectral relationships, and, by adding the red bounding
and blue-green spectral constraints. This new modified scheme was referred to as STDContheor

NIR-modelling scheme.
Following the conclusion made by Goyens et al. (2013b), a second modified NIR-modelling

scheme was also suggested combining the STDContheor and MUMMPoly schemes, referred to as
the COMB AC method. This combined algorithm presented a good alternative to retrieve more
valid ρw(λ) spectra by using the MUMMPoly NIR-modelling scheme when Chla concentrations
were erroneously retrieved with the STDContheor method or if the first guess in ρw(λ) exceeds
ρrc(λ).

Overall, sensitivity studies conducted in this chapter showed that the modified NIR-modelling
schemes (i.e., STDContheor, MUMMPoly and COMB NIR-modelling schemes) presented promising
results with improved ρw(λ) retrievals and/or broader spatial coverages compared to the initial
schemes (i.e., STD and MUM). Nonetheless, these improved NIR-modelling schemes should be
evaluated with actual satellite data. Indeed, compared to the sensitivity studies, a validation
based on satellite data includes, among others, a more complex set of aerosol models which may
reduce the added value of the modified NIR-modelling schemes. Moreover, aerosol reflectance
is computed according to the nearest two discrete aerosol models. Hence, improvement with
the modified NIR-modelling schemes may still not be accurate enough to retrieve the correct
ρam(λNIR) and, subsequently, the appropriate set of aerosol models. Hence, the modified NIR-
modelling scheme may return the same set of aerosol models as the initial approach. Using simu-
lated datasets also avoids cloud masks or other flags such as red and NIR sensor band saturation
and stray light contamination. Improvements resulting from the constrained AC algorithms may
be excluded by these flags since noticeable amelioration mainly concern extremely turbid waters.
Note also that satellite-in situ match-up exercises requires spatial homogeneity within the pixel
window. This is not taken into account with the sensitivity study. Though, it may significantly
reduce the number of valid match-up pairs especially with the COMB NIR-modelling scheme.
Therefore, a comprehensive evaluation of the modified NIR-modelling schemes based on MODIS
Aqua data, is outlined in the next chapter.

5.5 Paper: “Spectral relationships for atmospheric correc-
tion. I. Validation of red and near infra-red spectral
relationships”

C. Goyens, C. Jamet, and K. Ruddick, published in Optics Express, 21(18), 21162-
21175 (2013).
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Abstract: The present study provides an extensive overview of red and
near infra-red (NIR) spectral relationships found in the literature and used
to constrain red or NIR-modeling schemes in current atmospheric correc-
tion (AC) algorithms with the aim to improve water-leaving reflectance
retrievals, ρw(λ ), in turbid waters. However, most of these spectral relation-
ships have been developed with restricted datasets and, subsequently, may
not be globally valid, explaining the need of an accurate validation exercise.
Spectral relationships are validated here with turbid in situ data for ρw(λ ).
Functions estimating ρw(λ ) in the red were only valid for moderately turbid
waters (ρw(λNIR) < 3.10−3). In contrast, bounding equations used to limit
ρw(667) retrievals according to the water signal at 555 nm, appeared to be
valid for all turbidity ranges presented in the in situ dataset. In the NIR
region of the spectrum, the constant NIR reflectance ratio suggested by
Ruddick et al. (2006) (Limnol. Oceanogr. 51, 1167-1179), was valid for
moderately to very turbid waters (ρw(λNIR) < 10−2) while the polynomial
function, initially developed by Wang et al. (2012) (Opt. Express 20,
741-753) with remote sensing reflectances over the Western Pacific, was
also valid for extremely turbid waters (ρw(λNIR) > 10−2). The results of
this study suggest to use the red bounding equations and the polynomial
NIR function to constrain red or NIR-modeling schemes in AC processes
with the aim to improve ρw(λ ) retrievals where current AC algorithms fail.

© 2013 Optical Society of America

OCIS codes: (010.0010) Atmospheric and oceanic optics; (010.1285) Atmospheric correction;
(010.4450) Oceanic optics; (010.1690) Color.

References and links
1. H. R. Gordon and M. Wang, “Retrieval of water-leaving radiance and aerosol optical thickness over the oceans

with SeaWiFS: A preminilary algorithm,” Appl. Opt. 33, 443–452 (1994).
2. H. R. Gordon, “Removal of atmospheric effects from satellite imagery of the oceans,” Appl. Opt. 17, 1631–1636

(1978).
3. D. A. Siegel, M. Wang, S. Maritorena, and, W. Robinson, “Atmospheric correction of satellite ocean color im-

agery: The black pixel assumption,” Appl. Opt. 39(21), 3582–3591 (2000).

#193503 - $15.00 USD Received 8 Jul 2013; revised 12 Aug 2013; accepted 13 Aug 2013; published 3 Sep 2013
(C) 2013 OSA 9 September 2013 | Vol. 21,  No. 18 | DOI:10.1364/OE.21.021162 | OPTICS EXPRESS  21162

5.5. Paper: “Spectral relationships for atmospheric correction. I. Validation of red and near
infra-red spectral relationships” 97



4. R. P. Stumpf, R. A. Arnone, J. R. W. Gould, P. M. Martinolich, and, V. Ransibrahmanakul, “A partially coupled
ocean-atmosphere model for retrieval of water-leaving radiance from SeaWiFS in coastal waters,” in SeaW-
iFS Postlaunch Technical Report Series, Volume 22, NASA Tech. Memo. 2003-206892, S. B. Hooker and E. R.
Firestone, eds., (NASA Goddard Space Flight Center, Greenbelt, Maryland), pp. 51–59 (2003).

5. S. W. Bailey, B. A. Franz, and, P. J. Werdell, “ Estimations of near-infrared water-leaving reflectance for satellite
ocean color data processing,” Opt. Express 18(7), 7521–7527 (2010).

6. C. Jamet, S. Thiria, C. Moulin, and, M. Crepon “ Use of neuro-variational inversion for retrieving oceanic and
atmospheric constituents from ocean color imagery, ” J. Atmos. Ocean. Tech. 22(4), 460–464 (2005).

7. T. Schroeder, I. Behnert, M. Schaale, J. Fischer, and, R. Doerffer, “ Atmospheric correction algorithm for MERIS
above case-2 waters, ” Int. J. Remote Sens. 28(7), 1469–1486 (2007).

8. J. Brajard, R. Santer, M. Crepon, and, S. Thiria, “ Atmospheric correction of MERIS data for case 2 waters using
neuro-variational inversion, ” Remote Sens. Environ. 126, 51–61 (2012).

9. M. Wang, S. Son, and, W. Shi, “ Evaluation of MODIS SWIR and NIR-SWIR atmospheric correction algorithms
using SeaBASS data, ” Remote Sens. Environ. 113, 635–644 (2009).

10. R. C. Smith and W. H. Wilson, “Ship and satellite bio-optical research in the Calofornia Bight,” in Oceanography
from Space, J. F. R. Gower, eds., (Plenum Publishing Corporation, New York), pp. 281–294 (1980).

11. R. W. Austin and T. Petzold, “The determination of the diffuse attenuation coefficient of sea water using the
Coastal Zone Color Scanner,” in Oceanography from Space, J. F. R. Gower, eds., (Plenum Publishing Corpora-
tion, New York), pp. 239–256 (1980).

12. B. Sturm, “The atmospheric correction of remotely sensed data and the quantitative determination of suspended
matter in marine water surface layers,” in Remote Sensing in Meteorology, Oceanography and Hydrology, A. P.
Cracknel, eds., (Chister, UK: Ellis Horwood), pp. 163–197 (1981).

13. B. Sturm, “Selected topics of coastal zone color scanner (CZCS) data evaluation,” in Remote Sensing Applications
in Marine Science and Technology, A. P. Cracknel, eds., (Dordrecht, The Netherlands: D. Reidel), pp. 137–168
(1983).

14. M. Viollier and B. Sturm, “CZCS data analysis in turbid coastal water,” J. Geophys. Res. 89, 4977–4985 (1984).
15. A. Bricaud and A. Morel, “Atmospheric corrections and interpretation of marine radiances in CZCS imagery:

Use of a reflectance model,” Oceanol. Acta 33-50 N.SP, (1987).
16. B. Sturm, V. Barale, D. Larkin, J. H. Andersen, and, M. Turner, “OCEAN code: the complete set of algorithms

and models for the level 2 processing of European CZCS historical data, ” Int. J. Remote Sens. 20(7), 1219–1248
(1999).

17. J. M. Nicolas, P. Y. Deschamps, H. Loisel, and, C. Moulin, ”POLDER-2: Ocean Color Atmospheric correction
Algorithms, “Version 1.1. Algorithm Theoretical Basis Document, LOA, pp.17 (2005).

18. K. G. Ruddick, F. Ovidio, and, M. Rijkeboer, “Atmospheric correction of SeaWiFS imagery for turbid coastal
and inland waters,” Appl. Opt. 39, 897–912 (2000).

19. K. G. Ruddick, V. De Cauwer, Y. Park, and, G. Moore, “Seaborne measurements of near infrared water-leaving
reflectance: The similarity spectrum for turbid waters,” Limnol. Oceanogr. 51, 1167–1179 (2006).

20. M. Wang, W. Shi, and, L. Jiang, “Atmospheric correction using near-infrared bands for satellite ocean color data
processing in the turbid western pacific region,” Opt. Express 20, 741–753 (2012).

21. Z. Lee, B. Lubac, J. Werdell, and, R. Arnone, “An update of the Quasi-Analytical Algorithm (QAA v5), ”
available at: http://www.ioccg.org/groups/Software_OCA/QAA_v5.pdf (2009).

22. C. Goyens, C. Jamet, and, K. Ruddick, “Spectral relationships for atmospheric correction. II. Improving NASA’s
standard and MUMM near infra-red modeling schemes, ” accepted for publication in Opt. Express (2013).

23. M. Doron, S. Bélanger, D. Doxaran, and, M. Babin, “Spectral variations in the near-infrared ocean reflectance,”
Remote Sens. Environ. 115, 1617–1631 (2011).

24. A. Morel and L. Prieur, “Analysis of variations in ocean color, ” Limnol. Oceanogr. 22, 709–722 (1977).
25. B. Sturm, G. Maracci, P. Schlittenhardt, C. Ferrari, and, L. Alberotanza, “Chlorophyll-a and total suspended mat-

ter concentration in the North Adriatic Sea determined from Nimbus-7 CZCS,” paper presented at the Statutory
Meeting, Int. Counc. for Explor. of the Sea, Woods Hole, Mass:, Oct. 6-12, (1981).

26. A. Morel and B. Gentili, “Diffuse reflectance of oceanic waters. III. Implication of bidirectionality for the remote-
sensing problem, ” Appl. Opt. 35, 4850–4862 (1996).

27. C. D. Mobley, “Estimation of the remote-sensing reflectance from above-surface measurements,” Appl. Opt. 38,
7442–7455 (1999).

28. L. Kou, D. Labrie, and, P. Chylek, “Refractive indices of water and ice in the 0.65 mm to 2.5 mm spectral range,”
Appl. Opt. 32, 3531–3540 (1993).

29. W. Shi and M. Wang, “An assessment of the black ocean pixel assumption for MODIS SWIR bands,” Remote
Sens. Environ. 113, 1587–1597 (2009).

30. M. Wang, S. Son, and, L. W. Harding Jr., “Retrieval of diffuse attenuation coefficient in the Chesapeake Bay and
turbid ocean regions for satellite ocean color applications,” J. Geophys. Res. 114, c10011 (2009).

31. M. Wang, J. Ahn, L. Jiang, W. Shi, S. Son, Y. Park, and, J. Ruy, “Ocean color products from the Korean Geosta-
tionary Ocean Color Imager (GOCI),” Opt. Express 21(3), 3835–3849 (2013).

32. B. Nechad, K. Ruddick, and, Y. Park, “Calibration and validation of a generic multisensor algorithm for mapping

#193503 - $15.00 USD Received 8 Jul 2013; revised 12 Aug 2013; accepted 13 Aug 2013; published 3 Sep 2013
(C) 2013 OSA 9 September 2013 | Vol. 21,  No. 18 | DOI:10.1364/OE.21.021162 | OPTICS EXPRESS  21163

98
Chapter 5. Spectral relationships to improve NIR-modelling schemes for atmospheric

correction



of total suspended matter in turbid waters,” Remote Sens. Environ. 114, 854–866 (2010).
33. H. Loisel, X. Mériaux, A. Poteau, L. F. Artigas, B. Lubac, A. Gardel, J. Caillaud, and, S. Lesourd, “Analyze of

the inherent optical properties of French Guiana coastal waters for remote sensing applications,” J. Coastal Res.
56, 1532–1536 (2009).

34. V. Vantrepotte, H. Loisel, X. Mériaux, C. Jamet, D. Dessailly, G. Neukermans, D. Desailly, C. Jamet, E. Gensac,
and, A. Gardel, “Seasonal and inter-annual (1998-2010) variability of the suspended particulate matter as re-
trieved from satellite ocean color sensors over the French Guiana coastal waters,” J. Coastal Res. 64, 1750–1754
(2011).

35. D. Doxaran, J. M. Froidefond, and, P. Castaing, “Remote-Sensing reflectance of turbid sediment-dominated
waters,” Appl. Opt. 42(15), 2623–2634 (2003).

36. D. Doxaran, N. Cherukuru, and, S. J. Lavender, “Apparent and inherent optical properties of turbid estuarine
waters: measurements, empirical quantification relationships and modeling,” Appl. Opt. 45(10), 2310–2324
(2006).

37. H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and, D. K. Clark “A semianalytic
radiance model of ocean color,” J. Geophys. Res. 93, 10909–10924 (1988).

38. A. Bricaud, A. Morel, M. Babin, K. Allali, and, H. Claustre, “Variations of light absorption by suspended par-
ticles with the chlorophyll a concentration in oceanic (case 1) waters: Analysis and implications for bio-optical
models,” J. Geophys. Res. 103, 31033–31044 (1998).

39. K. L. Carder, F. R. Chen, Z. P. Lee, S. K. Hawes, and, D. Kamykowski, “Semianalytic Moderate-Resolution
Imaging Spectrometer algorithms for chlorophyll a and absorption with bio-optical domains based on nitrate-
depletion temperatures,” J. Geophys. Res. 104, 5403–5422 (1999).

40. Jr. R. W. Gould, R. A. Arone, and, P. M. Martinolich “Spectral dependence of the scattering coefficient in case 1
and case 2 waters,” Appl. Opt. 38(12), 2377–2383 (1999).

1. Introduction

The marine reflectance measured just above the water surface, ρw(λ ) (also referred to as
ρ0+

w (λ ) or normalized water-leaving reflectance [1]), retrieved from ocean color satellite im-
ages, allows to estimate biogeochemical parameters with a high revisit frequency and over large
areas of oceans. The accuracy of these parameters depends however on the processing of the
sensor-measured radiance, L(λ ), at the top of the atmosphere (TOA) used to obtain ρw(λ ). This
processing includes, among others, the removal of the atmospheric contribution, the so-called
atmospheric correction (AC) [1]. The top of atmosphere reflectance, ρTOA(λ ), is derived from
the sensor-measured radiance and corrected for gas absorption, Rayleigh scattering, white-caps
reflection and sun glint, to obtain the Rayleigh corrected reflectance, ρTOA

rc (λ ) [1]:

ρTOA
rc (λ ) = ρTOA

a (λ )+ρTOA
ra (λ )+ tθv(λ )tθ0(λ )ρw(λ ) (1)

where ρTOA
a (λ ) and ρTOA

ra (λ ) represent the scattered sunlight by the aerosols and the cou-
pling between both air and aerosol molecules, respectively. tθv(λ ) is the diffuse transmittance
of the atmosphere along the viewing direction and tθ0(λ ) is the diffuse transmittance of the
atmosphere along incident direction. According to Eq. (1), if the optical properties and the con-
centrations of the aerosols are known, the quantities ρTOA

a (λ ), ρTOA
ra (λ ), tθ0(λ ) and tθv(λ ) can

be estimated and hence ρw(λ ) can be calculated.
At the time of the Coastal Zone Color Scanner (CZCS) satellite, the initial AC procedure

assumed zero ρw(λ ) at 670 nm allowing to retrieve the atmospheric contributions from the total
signal [2] (hereafter referred to as the black pixel assumption). With the addition of near infra-
red (NIR) bands for the next generation of ocean color satellite sensors (e.g., SeaWiFS, MODIS
and MERIS), the 700-900 nm spectral range was used to estimate the aerosol contributions in
the AC processes. Gordon and Wang [1] suggested to apply the black pixel assumption to
the NIR spectral bands allowing to estimate ρTOA

a (λNIR) and ρTOA
ra (λNIR) and to select the

appropriate aerosol optical models (hereafter referred to as the GW94 AC procedure). However
in highly productive and turbid waters, due to absorption and backscattering of significant loads
of algal and non-algal water constituents, the assumption of zero ρw(λ ) is not valid neither in
the red nor in the NIR region of the spectrum [3, 4]. Assuming zero red or NIR ρw(λ ) in
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such water masses leads to an overcorrection of the atmospheric effects and subsequently to an
underestimation of ρw(λ ) [3].

To avoid the inappropriate application of the black pixel assumption, numerous red or NIR-
modeling schemes have been developed to account for non-zero red or NIR ρw(λ ) within the
AC processes. The standard NASA AC procedure for the processing of SeaWiFS and MODIS
Aqua images, for instance, is a GW94-based AC procedure which includes a NIR-modeling
iterative scheme with a bio-optical model to retrieve ρw(λNIR) where the black pixel assump-
tion is not valid [4, 5]. Other AC approaches have also been suggested, e.g., coupled ocean-
atmosphere optimization methods, such as the the direct inversion approaches using artificial
neural networks [6–8]. For MODIS Aqua, the black pixel assumption was successfully applied
in the Short-Wave-Infra-Red (SWIR) spectral domain where even turbid seawater appears to be
totally absorbent [9].

Another approach to extent the GW94 AC procedure to turbid waters, consists of forcing
the AC process with spectral relationships estimating red or NIR ρw(λ ) by means of ρw(λ )
at shorter wavelengths (i.e., ρw(λ j) = f (ρw(λi))). These relationships reflect thus the spectral
dependence of the marine signal itself, including the spectral dependence of the total absorp-
tion and backscattering simultaneously. Hence, it does not require retrieval of inherent optical
properties. Moreover, it can be easily implemented in current red or NIR-modeling schemes to
improve ρw(λ ) retrievals where current AC algorithms fail.

For the CZCS AC, empirical spectral relationships have been proposed to estimate ρw(670)
from ρw(λ ) in the blue and green region of the spectrum (hereafter referred to as red spectral
relationships) [10–16]. An empirical spectral relationship was also used by Nicolas et al. [17]
within the AC procedure of the POLarization and Directionality of the Earth’s Reflectances-
2 (POLDER-2) sensor. Similarly, several studies investigated the spectral dependence of the
marine reflectance in the NIR region of the spectrum to model ρw(λNIR) for the AC of sec-
ond generation ocean color satellite images (hereafter referred to as the NIR spectral relation-
ships) [18–20]. Lee et al. [21] also suggested to correct remote sensing ρw(667) estimations
(due, for instance, to imperfect AC) for the Quasi-Analytical Algorithm by means of spectral
relationships between ρw(667) and ρw(555).

Most of these spectral relationships have been developed with restricted datasets and have
not been confirmed theoretically nor validated with independent in situ datasets. An overview
and validation of these different red and NIR marine spectral relationships are thus essential to
verify if these relationships are globally valid and if they can be used to improve AC for past,
present and future ocean color sensors. In a companion paper, Goyens et al. [22] investigate how
these spectral relationships can be implemented in current NIR-modeling schemes [5,18,19] to
improve AC processes in turbid coastal waters.

In the present study, the AC literature is reviewed from the launch of the CZCS satellite till
today giving a non-exhaustive list of various red and NIR spectral relationships used to estimate
the water signal in the red (Section 2) and the NIR spectral region (Section 3) from ρw(λ ) at
shorter wavelengths. Most spectral relationships encountered in the literature were initially de-
veloped for the CZCS sensor to retrieve ρw(λred). However, since the CZCS spectral bands are
relatively close to the second generation satellite sensor spectral bands (e.g., SeaWiFS, MODIS
Aqua or MERIS), these CZCS-oriented spectral relationships may eventually lead to red spec-
tral relationships also valuable to constrain actual NIR-modeling schemes (e.g., the iterative
scheme suggested by Stumpf et al. [4] and Bailey et al. [5] modeling ρw(λNIR) according to
ρw(λred)).

With the arrival of SWIR ocean color bands, a similar exercise could be performed to eval-
uate spectral relationships allowing to estimate ρw(λ ) in the NIR from ρw(λ ) in the SWIR
spectral domain, and inversely. However, the present study is limited by the spectral range of
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the in situ reflectance measurements, notably, from 400 to 900 nm, and is thus valuable for
sensors with visible and NIR spectral bands (e.g., SeaWiFS, MODIS and MERIS sensors, the
SEVIRI instrument on MSG, the Geostationary Ocean Color Imager (GOCI) and possibly the
future GOCI-2 carried by COMS) as well as for studies covering decadal time scales including
data from past and current sensors.

After reviewing the red and NIR spectral relationships, in situ reflectance spectra are de-
scribed and their selection is outlined ensuring highly accurate reflectance spectra (Section 4).
Next, red and NIR spectral relationships are validated (Section 5). A similar exercise has been
done by Doron et al. [23] with in situ, remote sensing and simulated data. However the au-
thors only focussed on the constant NIR reflectance ratio suggested by Ruddick et al. [18, 19].
Here a comprehensive overview and validation of 16 spectral relationships encountered in the
literature are proposed.

2. Red spectral relationships

Initially the CZCS AC algorithm used the spectral band at 670 nm to estimate the aerosol
contribution [2]. However, at 670 nm, both atmospheric and marine turbidity affect the TOA
signal making it difficult to estimate either the aerosol content or the water reflectance with
this single band [15]. Therefore, red-modeling schemes have been developed based on, e.g.,
spectral relationships to estimate the water signal at 670 nm from ρw(λ ) at shorter wavelengths.
Smith and Wilson [10] and Austin and Petzold [11] related ρw(670) with the reflectance ratio
ρw(443)/ρw(550) and the amplitude of reflectance at either 443 or 520 nm (Table 1). According
to Austin and Petzold [11] using the reflectance at 520 nm was more appropriate to account for
variations in non-algal particles while the ratio ρw(443)/ρw(550) accounts for the pigment
concentrations.

In the open ocean, the optical properties are essentially dominated by phytoplankton (often
referred to as Case 1 waters) while in optically complex waters, the optical properties are dom-
inated by other constituents such as dissolved organic matter and suspended sediments (often
referred to as Case 2 waters) [24]. Hence, Sturm [13] proposed an iterative approach to solve
the AC suggesting three equations according to the water type. The three equations are of the
same type (Table 1). ρw(670) is estimated from the water reflectance at 550 nm and an average
blue-green ratio function β related to the total suspended matter (TSM) [14, 25]. The empir-
ically defined constant terms of the equations were based on previous works and differed for
clear waters [11], turbid near coastal waters [12] and in situ measurements taken in the northern
Adriatic Sea (AAOT data) [12].

Viollier and Sturm [14] observed simple linear relations between ρw(670) and ρw(550)
as a function of the water type. In the turbid coastal waters of the eastern English Channel,
ρw(670) represented 40% of ρw(550) while, over a coccolithophorid bloom, it represented
only 15%. In order to satisfy both water types, Viollier and Sturm [14] proposed a non-linear
relationship similar to Smith and Wilson [10] and Austin and Petzold [11], but including the
ρw(520)/ρw(550) ratio instead of the blue-green ratio ρw(443)/ρw(550) (Table 1).

Similarly to Sturm [13], Bricaud and Morel [15] demonstrated that AC could be improved
by discriminating between Case 1 and Case 2 waters in the red-modeling scheme. They sug-
gested several functions according to the water type, relating the Chlorophyll-a (Chla) absorp-
tion bands ratio ρw(443)/ρw(670) and the blue-green ratio ρw(443)/ρw(550) (Table 1). When
the water type could not be defined as turbid or clear, Bricaud and Morel [15] used an interme-
diate relationship similar to the model of Smith and Wilson [10] (Table 1).

The OCEAN code, developed to process the level-2 European CZCS historical data [16],
used both the relations of Viollier and Sturm [14] and Bricaud and Morel [15] within the
red-modeling scheme to correct CZCS images for atmospheric contribution in turbid waters.
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According to a first guess for ρw(443) (based on the Black Pixel Assumption), the algorithm
iterates with either the reflectance function of Viollier and Sturm [14] (ρw(443) < 3.10−5) or
the function of Bricaud and Morel [15] (ρw(443) > 3.10−5) to account for non-zero ρw(670).

Inspired by the CZCS red-modeling scheme proposed by Viollier and Sturm [14], Nicolas et
al. [17] proposed an operational AC algorithm for POLDER-2 including a linear relationship
between the marine signal at 565 and 670 nm (Table 1). The authors estimated ρa(670) as
the difference between the observed and modeled ρw(λ ). According to Nicolas et al. [17],
this approach was satisfactory for most cases except for waters with high yellow substance
absorption.

The Quasi Analytical Algorithm (QAA v.5) [21], used to derive the inherent optical proper-
ties from satellite ρw(λ ) estimations, includes three spectral relationships to correct erroneous
satellite retrieved ρw(667). ρw(667) values are constrained within an upper and lower range
defined by two spectral functions relating ρw(λ ) at 667 and 555 nm (Table 1). When the re-
trieved ρw(667) is missing or out of limit, ρw(667) is estimated from ρw(555) and the ratio
ρw(490)/ρw(555) (Table 1).

As observed in Table 1, some spectral relationships are written in terms of sub-surface radi-
ance, Lss(λ ) or remote sensing reflectance, Rrs(λ ). For data analysis all functions are expressed
here in terms of ρw(λ ). Lss(λ ) and Rrs(λ ) are converted into ρw(λ ) following Morel and Gen-
tili, [26] and considering the approximation for the ratio (1−rF)/nw (with rF being the Fresnel
reflectance and nw the water refractive index) suggested by, e.g., Bricaud and Morel [15], Morel
and Gentili [26], and Mobley [27].

3. NIR spectral relationships

Constant reflectance ratios in the NIR region of the spectrum were suggested by Ruddick et
al. [18]. With assumptions on the backscattering and absorption in the NIR, the authors approx-
imated ρw(λ1)/ρw(λ2) by the water absorption ratio aw(λ2)/aw(λ1) (with λ1 and λ2 being two
wavelengths in the NIR). Ruddick et al. [19] further investigated these assumptions with radia-
tive transfer simulations as well as above-water in situ measurements. The authors concluded
that the NIR reflectance spectral shape is almost invariant for moderate turbidity and observed,
as a function of λ1 and λ2, a constant reflectance ratio α(λ1,λ2) (Table 1). Accordingly, normal-
izing the reflectance spectra to the reflectance at a single wavelength in the NIR (referred by the
authors to as the similarity NIR reflectance spectrum) allows to determine, at any wavelength,
the water leaving reflectance shape in the NIR. This assumption is used to extent the GW94 AC
process to turbid waters (hereafter referred to as the MUMM NIR-modeling scheme) [18, 19].

Ruddick et al. [19] also suggested theoretical values for α(λ1,λ2) based on the pure water
absorption spectrum of Kou et al. [28] for the MUMM NIR-modeling scheme of MODIS,
MERIS and SeaWiFS. However, the similarity NIR reflectance spectrum assumption appeared
to be only valid for a certain range of turbidity. Indeed, variations in α(λ1,λ2) were observed
when the NIR reflectance values were outside the 10−4 - 10−1 range [19]. A similar conclusion
was made by Shi and Wang [29] who observed a quasi linear relationship between ρw(645) and
ρw(859) for ρw(859) values below 0.03. For waters with ρw(859) above this threshold, ρw(λ )
at 645 nm saturated and remained almost constant (∼ 0.012). Doron et al. [23] also observed
some deviations from the constant reflectance ratio with both in situ and satellite derived data.
According to that study, for ρw(865) between 10−4 and 10−2, α(765,865) varied little between
1.73 and 1.84 as suggested by Ruddick et al. [19], but decreased with an increase in turbidity.

Wang et al. [20] proposed an NIR-modeling scheme for the AC of the Korean Ocean Satellite
GOCI including a polynomial relationship between the water signal at 748 and 869 nm (Table
1, hereafter referred to as the GOCI NIR-modeling scheme). Initially, ρw(λ ) is retrieved with
the GW94 AC algorithm allowing to calculate the water diffuse attenuation coefficient at 490
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Table 1. Review of the spectral relationships and their applications
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nm, Kd(490) [30]. Next, polynomial relations are used to estimate ρw(748) from Kd(490) and
ρw(869) from ρw(748). These empirical relations were developed based on long term MODIS
Aqua images over the turbid western Pacific region and processed with the NIR-SWIR GW94-
based AC algorithm [9]. Although the GOCI NIR-modeling scheme provided satisfying re-
sults in the western Pacific region [20, 31], the polynomial relationship between ρw(748) and
ρw(869) has not yet been validated with in situ data and applied to other coastal regions.

4. In situ data

Above-water reflectance measurements were made using TriOS-RAMSES hyperspectral ra-
diometers during 63 sea campaigns undertaken between 2001 and 2012 (860 stations). Data
were collected in coastal waters located in the southern North Sea and English Channel [32],
the Celtic Sea, the Ligurian Sea, the Adriatic Sea and in the Atlantic Ocean along the coasts
of Portugal and French Guyana [33, 34]. This dataset is particularly suitable for the validation
of the spectral relationships as it includes measurements over contrasted and optically complex
coastal waters. In situ data processing, averaging and selection are described in Ruddick et
al. [19].

Out of the 860 stations, 105 in situ reflectance spectra satisfy the selection criteria and were
not used by Ruddick et al. [19] for the calibration of the NIR similarity spectrum. Table 2
provides an overview of the minimum, maximum, average and standard deviation for ρw(λ )
of the selected spectra for the ocean color MODIS Aqua visible and NIR bands. The largest
standard deviations in marine reflectance are encountered in the green and red region (Table 2).
Around 869 nm the marine signal ranges from near zero to approximately 0.1, confirming the
non-valid zero water-leaving reflectance assumption in the NIR. All spectra present ρw(λNIR)
values above 10−4, which is approximately the limit of validity for the black pixel assumption
[3]. Out of the 105 spectra, 53% presents moderate turbidity with ρw(869) ranging from 10−4

to 3.10−3 and 47% of the data presents very turbid waters with ρw(869) exceeding 3.10−3.
This latter value corresponds to the threshold used by Wang et al. [9] to switch for the SWIR
algorithm in the combined NIR-SWIR GW94-based AC algorithm.

Table 2. Statistics of the 105 ρw(λ ) (dimensionless) spectra for the ocean color bands of
MODIS Aqua in the 412-869 nm range.

λ (nm) min max mean median standard deviation
412 0.0069 0.0488 0.0230 0.0219 0.0114
443 0.0070 0.0642 0.0292 0.0301 0.0159
488 0.0080 0.0919 0.0414 0.0461 0.0234
531 0.0093 0.1144 0.0523 0.0594 0.0302
547 0.0084 0.1229 0.0568 0.0654 0.0334
667 0.0016 0.1309 0.0382 0.0316 0.0361
678 0.0018 0.1315 0.0376 0.0301 0.0359
748 0.0004 0.1134 0.0131 0.0061 0.0200
869 0.0002 0.0985 0.0079 0.0032 0.0148

Figure 1 shows the spectra in the 400-900 nm range and the red-NIR reflectance spectra
normalized at 780 nm (ρwn780(λ )) as suggested by Ruddick et al. [18,19]. Most spectra exhibit
an increasing signal from the blue to the green region of the spectrum followed by a large peak
between 550 and 600 nm [Fig. 1(a)]. A second peak is observed around 800 nm. Out of the
105 spectra, three spectra, taken in the Ligurian Sea, show a shape similar to clear ocean waters
(peak in the blue followed by a decreasing signal with an increase in wavelength). In contrast,
seven spectra present a lower peak around 550 and 600 nm and a higher peak around 690 nm
followed by a relatively large signal at 800 nm and beyond.

According to Doxaran et al. [35], water masses with a reflectance spectrum showing a larger
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Fig. 1. Selected ρw(λ ) spectra between 400 and 900 nm and reflectance spectra normalized
at 780 nm, ρwn780(λ ), in the 600-900 nm range.

peak at 550-600 nm are characterised by lower SPM values (< 100 mg l−1), while water masses
with a large reflectance peak around 700 and 800 nm present larger concentrations of SPM (>
100 mg l−1). Indeed, these seven spectra are from the coastal waters of French Guiana known
as being influenced by important river-discharge resulting in extremely turbid waters [33, 34].
These in situ measurements also exhibit distinctive ρwn780(λ ) spectra [Fig. 1(b)]. As observed
by Ruddick et al. [19], most spectra present similar spectral shapes between 710 and 900 nm
with a peak at 805-812 nm [Fig. 1 (b)]. The extremely turbid spectra from French Guiana
instead show relatively lower ρwn780(λ ) values around 710 nm and often higher values at 850
nm and beyond.

5. Validation experiment

Spectral relationships are validated by comparing modeled and measured ρw(λ ) values qualita-
tively and quantitatively. The average percent relative error (RE), percent bias, root mean square
error (RMSE), and R-squared coefficient (R2) are calculated for each spectral relationship.

The percentage of data for which the RE does not exceed 10% of the observed value is
also calculated as well as the validity ranges of each function in the visible. Validity ranges
are determined by fitting a non-linear regression line through the observed and modeled ρw(λ ).
The reflectance range for which the spectral relationship is satisfactory is defined by a difference
between the regression and 1:1 line less than 10%.

5.1. Validation of spectral relationships in the visible

The statistical parameters comparing modeled and observed ρw(670) are given in Table 3. Most
functions tend to underestimate ρw(670) (negative bias ranging from -3 to -63%). Two func-
tions indicate a positive bias, notably, the function of Sturm [12] developed with AAOT data
and the function of Viollier and Sturm developed with data from the English Channel (18 and
31%, respectively). However these spectral relationships overestimate ρw(670) values below
0.05 but largely underestimate ρw(670) values above this threshold. The relations from Smith
and Wilson [10], Austin and Petzold [11], Bricaud and Morel [15] for the Case 2 waters, Nico-
las et al. [17], and Viollier and Sturm [14] for the Coccolithophorid blooms show the lowest
statistical performances. Statistics in Table 2 indicate that linear functions including a larger
multiplication factor between the water signal in the red and the green spectral region result
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in better ρw(670) retrievals (Table 1). Indeed the relation of Viollier and Sturm [14] developed
with in situ data from the English Channel (multiplication factor of 0.4) provides more satisfy-
ing results (see Table 2; lower bias, larger percentage of data with less than 10% RE and larger
validity range) compared to the relations of Viollier and Sturm [14] over a coccolithophorid
bloom (multiplication factor of 0.15) and Nicolas et al. [17] (multiplication factor of 0.2) (Ta-
ble 1).

Table 3. Statistical performance of spectral relationships in the red (av. RE: average Relative
Error, av. Bias: average Bias and RMSE: Root Mean Square Error)

av. av. RMSE R2 (%) Percentage Validity
RE (%) Bias (%) within 10% range

Smith and Wilson (1980) 60 -60 0.04 77 1 0-0.012
Austin and Petzold (1980) 63 -63 0.04 74 1 0-0.011
Austin and Petzold (1980) in Sturm et al. (1983) 34 -29 0.03 79 27 0-0.024
Sturm (1981) in Sturm et al. (1983), CZCS AC 33 -26 0.03 78 22 0-0.027
Sturm (1981) in Sturm et al. (1983), AAOT data 42 18 0.02 78 19 0-0.043
Viollier and Sturm (1984), Coccolithophorid bloom 51 -51 0.04 77 6 0-0.013
Viollier and Sturm (1984), English Channel 65 31 0.03 77 13 0-0.036
Viollier and Sturm (1984), CZCS AC 44 -3 0.03 82 8 0-0.029
Bricaud and Morel (1987), Case 1 41 -26 0.04 77 4 0-0.022
Bricaud and Morel (1987), Case 2 44 -44 0.04 74 7 0-0.019
Bricaud and Morel (1987), Case 1 and 2 39 -32 0.04 77 22 0-0.020
Nicolas et al. (2005) 48 -47 0.04 79 3 0-0.016
Lee et al. (2009) in QAA v.5 43 -43 0.04 81 4 0-0.020

As mentioned in Section 2, the algorithm described in the OCEAN code for the CZCS AC
over turbid coastal waters [16] used the function of Viollier and Sturm [14] to model ρw(670)
when the retrieved ρw(443) was below 3.10−5 and the Case 1 and 2 spectral relationships of
Bricaud and Morel [15] otherwise. Although none of our in situ ρw(443) values are below
3.10−5, the reflectance function of Viollier and Sturm [14] yields better ρw(670) retrievals
(Table 3).

Similarly to the other spectral relationships, the relation suggested by Lee et al. [21] to esti-
mate ρw(667) when it is missing or erroneously retrieved (i.e, outside the bounding equations,
Table 1), tends to underestimate larger ρw(667) values. According to the R2 this spectral rela-
tionship shows a relatively good fit with our in situ data (Table 3). However, the average bias
and RE remain large (43% and -43%, respectively) and the percentage of values within 10%
of the 1:1 line remains small (4%). In contrast, the bounding equations used by the authors to
evaluate ρw(667) according to ρw(555) correspond to the limit of our in situ data [Fig. 2(a)].

Functions showing the best fit with the observed data are shown in Figs. 2(b)-2(d). These are
the relations proposed by Austin and Petzold [11] and the two spectral relationships of Sturm
[12] in [13]. The three relationships are of the same type (Table 1). They include the average
blue green ratio β and the magnitude reflectance at 550 nm which can be related to the total
absorption and the backscattering coefficient, respectively [14]. The maximum validity range
in Table 3 and the plots in Figs. 2(b)-2(d) indicate that these functions largely underestimate
ρw(670) when the marine signal is greater than 0.03, which corresponds to very turbid waters
(ρw(869) ≥ 3.10−3).

5.2. Validation of NIR spectral relationships

To evaluate the validity of the constant NIR reflectance ratios used in the MUMM NIR-
modeling scheme [19], ρw(λ1) versus ρw(λ2) for the NIR bands of the SeaWiFS, MERIS and
MODIS sensors are plotted in Figs. 3(a)-3(c). Ruddick et al. [19] suggested empirical and theo-
retical α(λ1,λ2) parameters derived from in situ measurements and from aw(λ ) [28] (consider-
ing wavelength independent backscattering), respectively. With λ1 taken in the red region of the
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Fig. 2. (a) In situ ρw(667) versus ρw(555) including the upper and lower bounds to
constrain ρw(667) as suggested by Lee et al. (2009), and observed versus modeled
ρw(670) according to the spectral relationships suggested by (b) Austin and Petzold (1980)
in Sturm (1983), (c) Sturm (1981, used for the CZCS AC over turbid waters) in Sturm
(1983) and (d) Sturm (1981, developed with AAOT data) in Sturm (1983).

spectrum (600-700 nm range), constant reflectance ratios are valid for moderately/very turbid
water with ρw(λNIR) below 10−2. With λ1 taken in the NIR region of the spectrum (700-800 nm
range) the constant ratios are also valid for extremely turbid waters (ρw(λNIR) > 10−2) [Figs.
3(a)-3(c)]. Accordingly, α(λ1,λ2) has a wider validity range when λ1 is taken at longer wave-
lengths (> 750 nm). However, the constant α(λ1,λ2) values are not valid for ρw(λNIR) above
3.10−2. ρw(λNIR) is systematically underestimated for these water masses [Figs. 3(a)-3(c)].
This suggests that one or more assumptions made by Ruddick et al. [18, 19] are not verified
with the present dataset and result in variations of the reflectance ratio α(λ1,λ2) with turbidity.
Indeed, Ruddick et al. [18, 19] assumed a negligible backscattering coefficient, bb(λ ), com-
pared to the absorption a(λ ) in the NIR region of the spectrum. However, in extremely turbid
waters, bb(λ ) may largely exceed a(λ ) resulting in an asymptote for bb(λ )/(bb(λ )+a(λ )) and
subsequently in ρw(λ ). Since pure water absorption decreases with wavelength, the asymptote
in bb(λ )/(bb(λ )+aw(λ )) is reached earlier at shorter wavelengths, explaining the flattening of
the ratios with turbidity as shown in Figs. 3(a)-3(c). This is in agreement with the observations
of Doxaran et al. [36], who showed a flattening of the reflectance ratios ρw(850)/ρw(550) and
ρw(850)/ρw(650) with increasing TSM concentrations, and with the conclusions of Shi and
Wang [29], who observed a maxima in ρw(675) for ρw(859) values greater than 0.03.

Our results also confirm the observations of Doron et al. [23] who observed deviations from
the constant ratios of ρw(λ ) in the NIR with variations in turbidity and mineral particle types.
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Fig. 3. Reflectance ratio in the red and the NIR for (a) SeaWiFS: ρw(865) versus ρw(670)
and ρw(765), (b) MODIS: ρw(869) versus ρw(678) and ρw(748), and (c) MERIS: ρw(865)
versus ρw(705) and ρw(775). The constant α(λ1,λ2) suggested by Ruddick et al. (2006)
based on in situ measurements and on aw(λ ) (Kou et al., 1993) are represented for each
reflectance ratio by a plain and dashed line, respectively. Horizontal grey lines indicate the
limit between moderately turbid and very turbid waters (3.0−3).

Figures 4(a-b) show the NIR reflectance ratio for the SeaWiFS bands for moderately turbid
and very turbid waters, respectively. Ruddick et al. [19] reported for this band ratio a constant
α(765,865) of 1.61 based on the pure water absorption model of Kou et al. [28]. Similarly
to Doron et al. [23], we observe a larger NIR reflectance ratio in moderately turbid waters
(α(765,865) ∼ 1.84) and a ratio closer to 1.61 for ρw(865) values up to 10−2 [Fig. 4(b)]. For
extremely turbid waters (ρw(865) > 10−2), α(765,865) is below 1.5 as noticed by Doron et
al. [23].

Since the parameter α(λ1,λ2) appeared to vary with turbidity, the polynomial relationship
suggested by Wang et al. [20], between ρw(λ ) at 748 and 869 nm (Table 1), may be more appro-
priate. Their function, developed with satellite data over the western Pacific region, is validated
with our in situ data for moderately turbid and very turbid waters [Figs. 4(c) and 4(d)]. A RE
of 10%, a small bias (-7%) and a R2 of 99% are calculated between estimated and modeled
ρw(869). About 65% of the estimated ρw(869) ranges within ± 10% of the corresponding
observations. For moderately turbid waters, the constant NIR reflectance ratio of Ruddick et
al. [19] and the polynomial function of Wang et al. [20] are close [Fig. 4(c)]. For very turbid
waters, the function performs better than the constant NIR reflectance ratio [Fig. 4(d)]. How-
ever, the polynomial function could be further refined in order to enclose the most turbid data
points where it underestimates ρw(λNIR) (see triangles in Fig. 4(d)).

6. Conclusion

The present study aimed to review spectral relationships in order to select appropriate func-
tions which could be used as constraints to improve red or NIR-modeling schemes in current
AC processes. Spectral relationships found in the literature were developed with restricted or
regional datasets explaining the need of an accurate validation.

Sixteen published spectral relationships, estimating ρw(λ ) in the visible or NIR spectral
region, were validated using 105 highly accurate in situ above-water reflectance measurements

#193503 - $15.00 USD Received 8 Jul 2013; revised 12 Aug 2013; accepted 13 Aug 2013; published 3 Sep 2013
(C) 2013 OSA 9 September 2013 | Vol. 21,  No. 18 | DOI:10.1364/OE.21.021162 | OPTICS EXPRESS  21173

108
Chapter 5. Spectral relationships to improve NIR-modelling schemes for atmospheric

correction



0.001 0.004

0.
00

00
0.

00
10

0.
00

20
0.

00
30

ρw(765) 

ρ w
(8

65
) 

(a)

D
R

0.02 0.08

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

ρw(765) 

(b)

0.001 0.004

0.
00

00
0.

00
10

0.
00

20
0.

00
30

ρw(748) 

ρ w
(8

69
) 

(c)

W
R

0.02 0.08

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

ρw(748) 

(d)

Fig. 4. ρw(765) versus ρw(865) according to Ruddick et al. (2006) (R, dashed line) and
Doron et al. (2011) (D, grey bands) for (a) moderately turbid and (b) very turbid waters
and ρw(748) versus ρw(869) for (c) moderately turbid and (d) very turbid waters with the
polynomial function proposed by Wang et al. (2012) (W, plain grey line) and the constant
ratio proposed by Ruddick et al. (2006) (R, dashed line). Spectra from extremely turbid
coastal waters of French Guiana described in Section 4 are indicated by a triangle.

taken in diverse coastal water types. Functions used to model ρw(λ ) at 670 nm for CZCS AC
processes [10–12, 15], systematically underestimated the water signal for very turbid waters.
Similarly, the function suggested by Lee et al. [21] to estimate ρw(667) from the water signal
in the green and the blue-green reflectance ratio, tends to underestimate higher ρw(667) values.
In contrast, the bounding equations used in the latest version of the QAA, to evaluate maximum
and minimum ρw(667) estimations according to the water signal in the green, appear to be valid
for the entire range of turbidity encountered in the in situ dataset.

In the NIR spectral region, the constant reflectance ratio α(λ1,λ2), suggested by Ruddick
et al. [18, 19] to extend the GW94 AC algorithm to turbid waters, was valid for moderately to
very turbid waters with ρw(865 − 869) values below 10−2, while the polynomial function of
Wang et al. [20] was also valid for extremely turbid water masses. However, the latter slightly
underestimated ρw(869) for water masses with ρw(λNIR) exceeding 0.05.

From this study we can conclude that the red spectral relationships are not appropriate for
the entire range of coastal turbidity encountered in our in situ dataset suggesting that either
the red spectral functions need to be updated or that the functions should differ according to
the optical water type and/or the turbidity range. In contrast, bounding equations, as suggested
by Lee et al. [21], allow some variability and may thus be more appropriate to force red or
NIR-modeling schemes within AC processes when a priori informations on the water type or
turbidity levels are not available or when the AC procedure is expected to perform globally.
The polynomial NIR function, initially developed with remote sensing reflectances over the
Western Pacific [20], presented a satisfying fit with our in situ data.

The actual standard NASA CZCS AC procedure assumes a fixed aerosol type and includes
an iteration scheme to estimate ρw(670) from inherent optical properties at 555 nm and Chla
concentration estimations [4, 37–40]. Hence, in turbid waters where ρw(670) is not solely de-
termined by algal particles, CZCS ρw(λ ) retrievals may be improved by forcing the iteration
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scheme with the red bounding equations suggested by Lee et al. [21]. However, to further
improve red-modeling schemes, more work into developing globally valid red spectral rela-
tionships is required.

For the second generation ocean color satellite images, bounding red and NIR polynomial
spectral relationships may be used to improve NIR-modeling schemes in current AC algorithms
(e.g., the iteration scheme in the standard NASA AC algorithm for MODIS Aqua [5] and the
MUMM NIR-modeling scheme [18, 19]). How these spectral relationships may lead to im-
proved ρw(λ ) retrievals, is investigated in the companion paper of this study by Goyens et
al. [22].
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Abstract: Spectral relationships, reflecting the spectral dependence of
water-leaving reflectance, ρw(λ ), can be easily implemented in current AC
algorithms with the aim to improve ρw(λ ) retrievals where the algorithms
fail. The present study evaluates the potential of spectral relationships to im-
prove the MUMM (Ruddick et al., 2006, Limnol. Oceanogr. 51, 1167-1179)
and standard NASA (Bailey et al., 2010, Opt. Express 18, 7521-7527) near
infra-red (NIR) modeling schemes included in the AC algorithm to account
for non-zero ρw(λNIR), based on in situ coastal ρw(λ ) and simulated
Rayleigh corrected reflectance data. Two modified NIR-modeling schemes
are investigated: (1) the standard NASA NIR-modeling scheme is forced
with bounding relationships in the red spectral domain and with a NIR
polynomial relationship and, (2) the constant NIR ρw(λ ) ratio used in the
MUMM NIR-modeling scheme is replaced by a NIR polynomial spectral
relationship. Results suggest that the standard NASA NIR-modeling scheme
performs better for all turbidity ranges and in particular in the blue spectral
domain (percentage bias decreased by approximately 50%) when it is
forced with the red and NIR spectral relationships. However, with these
new constrains, more reflectance spectra are flagged due to non-physical
Chlorophyll-a concentration estimations. The new polynomial-based
MUMM NIR-modeling scheme yielded lower ρw(λ ) retrieval errors and
particularly in extremely turbid waters. However, including the polynomial
NIR relationship significantly increased the sensitivity of the algorithm to
errors on the selected aerosol model from nearby clear water pixels.

© 2013 Optical Society of America

OCIS codes: (010.0010) Atmospheric and oceanic optics; (010.1285) Atmospheric correction;
(010.4450) Oceanic optics; (010.1690) Color.
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1. Introduction

The marine reflectance ρw(λ ) estimated from ocean color satellite images is directly related to
the inherent optical properties of the water (e.g., sea water absorption a(λ ) and backscattering
bb(λ )) allowing the derivation of biogeochemical parameters over the oceans. The accuracy of
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these satellite derived parameters depends however on the processing of the sensor-measured
radiance at the top of the atmosphere (TOA) used to obtain ρw(λ ). This processing includes,
among others, the removal of the atmospheric contribution, the so-called atmospheric correc-
tion (AC) [1].

Initially, it was assumed that sea water absorbs all the incident light in the NIR spectral region
(referred to as the black pixel assumption) allowing to estimate the atmospheric contributions
and to select the appropriate aerosol model from the total signal. Next, the aerosol properties are
extrapolated from the NIR to the visible spectral domain to obtain ρw(λ ) [1] (referred to as the
GW94 AC algorithm). However in highly productive or turbid waters the assumption of zero
NIR ρw(λ ) is not valid [2, 3]. Assuming zero ρw(λNIR) generally leads to an overestimation of
the aerosol contributions and subsequently to an underestimation of ρw(λ ) in highly productive
or turbid waters [2]. Numerous algorithms have been developed with alternative hypotheses or
including NIR-modeling schemes to account for the NIR ocean contribution to the measured
signal [2–6]. However, global evaluations of these algorithms concluded that improvement is
still required, especially in optically complex waters [7, 8].

In a previous study, Goyens et al. [8] concluded, based on a validation of MODIS-Aqua im-
ages processed with four commonly used AC algorithms [4, 5, 9, 10], that the standard NASA
GW94-based AC algorithm, which includes a NIR-modeling scheme to retrieve ρw(λNIR) [3,5]
(hereafter referred to as the STD algorithm), provided overall the best performances. However,
in water masses optically dominated by detrital and mineral material, the GW94-based AC al-
gorithm assuming a NIR similarity spectrum to account for non-zero ρw(λNIR), [4,6] (hereafter
referred to as the MUMM algorithm) performed slightly better. The NIR-modeling scheme
used in the STD algorithm is based on an iterative procedure including a bio-optical model
with a Chlorophyll-a (Chla) based relationship to estimate a(667) and assumptions on bb(λ )
to extrapolate ρw(λ ) from the red to the NIR spectral domain [5]. In the MUMM algorithm,
the GW94 AC algorithm is extended to turbid waters by considering spatial homogeneity in
the aerosol properties over the area of interest and approximating the NIR ρw(λ ) ratio by a
universal constant [4, 6]. However, these assumptions show some limitations leading to imper-
fections in the AC. For instance, in waters optically dominated by non-algal particles, the Chla
based relationship used in the bio-optical model of the STD algorithm may not be appropri-
ate resulting in imperfections in the retrieved backscattering coefficients and subsequently in
ρw(λNIR). Similarly, the constant NIR reflectance ratio used in the MUMM algorithm relies on
the assumption that the NIR reflectance spectral shape is merely determined by the pure water
absorption [4, 6]. However, this assumption is not verified for all turbidity ranges and is valid
for a limited spectral range [4, 11, 12].

An alternative to improve the STD algorithm is to constrain the iterative NIR-modeling
scheme with spectral relationships. Similarly, a NIR spectral relationship may be used to cor-
rect the MUMM algorithm when the constant NIR reflectance ratio is not valid. Similar ap-
proaches have already been applied in several studies [12–18]. However, as observed by Goyens
et al. [12], most spectral relationships appeared to be only valid for a certain range of turbidity.
Nonetheless, the authors concluded that the bounding red spectral relationships, suggested by
Lee et al. [19] to correct ρw(667) according to ρw(555) in the Quasi-Analytical Algorithm,
and that the NIR polynomial relationship, suggested by Wang et al. [18] to extent the GW94
AC algorithm to the turbid western Pacific region for the processing of the GOCI ocean color
images, were globally valid and potentially useful to improve satellite ρw(λ ) retrievals.

The objective of this study is to evaluate if the STD and MUMM algorithms can be improved
by forcing the NIR-modeling schemes in both algorithms with these spectral relationships. Two
modified NIR-modeling schemes are evaluated: (1) a modified MUMM NIR modeling scheme
where the NIR constant ρw(λ ) ratio is replaced by the polynomial NIR spectral relationship,
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and (2) a modified STD NIR-modeling scheme constrained with the bounding red spectral
relationships suggested by Lee et al. [19] and the NIR polynomial relationship [18] to evaluate
ρw(869) from ρw(748). Hence two original algorithms are taken into account (i.e., MUMM and
STD algorithms) and different modifications are applied to each algorithm.

The evaluation is based on a sensitivity test including in situ ρw(λ ) spectra from European
and Southern Atlantic coastal waters. Data and methods are outlined in section 2. To evaluate
the degree of improvement, initial algorithms are compared with modified algorithms, briefly
discussed in sections 2.2 and 2.3, respectively. The performances of the initial algorithms are
evaluated for moderately and very turbid waters (section 3.1) and compared to the modified
algorithms evaluated and discussed in section 3.2.

2. Data and methods

2.1. Sensitivity study set-up

The top of atmosphere (TOA) reflectance, ρTOA(λ ), is derived from the sensor-measured radi-
ance and corrected for gas absorption, Rayleigh scattering, white-caps reflection and sun glint,
to obtain the Rayleigh corrected reflectance, ρTOA

rc (λ ), written as [1]:

ρTOA
rc = ρTOA

a (λ )+ρTOA
ra (λ )+ tθv(λ )tθ0(λ )ρw(λ ). (1)

where ρTOA
a (λ ) and ρTOA

ra (λ ) represent the scattered sunlight by the aerosols and the cou-
pling between both air and aerosol molecules, respectively. tθv(λ ) is the diffuse transmittance
of the atmosphere along the viewing direction and tθ0(λ ) is the diffuse transmittance of the
atmosphere along the incident direction. According to Eq. (1), if the optical properties and the
concentrations of the aerosols are known, the quantities ρTOA

a (λ ), ρTOA
ra (λ ), tθ0(λ ) and tθv(λ )

can be estimated and subsequently the above water ρw(λ ). For notational simplicity, the TOA
notation is dropped hereafter.

For the present research a simulated dataset of ρrc(λ ) is build by combining the 105 in situ
ρw(λ ) spectra (from above water TRIOS Ramses hyper-spectral radiometers, further detailed
in the companion paper of this study [12]) with a simplified power law model for the multiple-
scattering aerosol reflectance, ρam(λ0) (the sum of ρa(λ0) and ρra(λ0) in Eq. (1)):

ρam(λ ) = ρam(λ0)

(
λ
λ0

)−η
(2)

with η being the Ångström coefficient for the aerosol reflectance. For these tests we set the
atmospheric diffuse transmittances, tθv(λ ) and tθ0(λ ), to 1 and simulate ρrc(λ ) simply as the
sum of ρam(λ ) and the in situ ρw(λ ). As shown by the flowchart in Fig. 1, ρrc(λ ) is then
inverted using either the STD or the MUMM algorithm to estimate ρw(λ ) which for a perfect
model would be equal to the in situ ρw(λ ).

For the sensitivity study two coastal models are selected, considered as the dominating
aerosol types in coastal regions and derived from the work of Shettle and Fenn [20] and in-
troduced by Gordon and Wang [1] with 50 and 90% relative humidity (hereafter referred to
as C50 and C90). The corresponding Ångström coefficients η are set equal to 0.75 and 0.43,
respectively, and ρam(λ0) at 869 nm to 0.015.

The initial and modified algorithms are evaluated and compared based on the median per-
centage bias between the estimated and in situ ρw(λ ) (ρest

w (λ ) and ρ in situ
w (λ ), respectively):

Bias = 100
ρest

w (λ )−ρ in situ
w (λ )

ρ in situ
w (λ )

(3)
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A distinction is also made between moderately and very turbid waters defined as the spec-
tra presenting ρw(869) values between 10−4 and 3.10−3 and superior to 3.10−3, respectively.
All spectra presented ρw(λNIR) values above 10−4, which is approximately the upper limit
for which the GW94 AC algorithm can be successfully applied [2]. Out of the 105 spectra,
53% present moderate turbidity with ρw(869) ranging from 10−4 to 3.10−3 and 47% of the
data present very turbid waters with ρw(869) exceeding 3.10−3. This latter value corresponds
to the threshold used by Wang et al. [10] to switch for the SWIR algorithm in the combined
NIR-SWIR GW94-based AC process. Among the very turbid waters, extremely turbid waters
are also investigated. These are water masses presenting ρw(869) values superior to 10−2 and
represent about 23% of the total in situ dataset.

2.2. Initial STD and MUMM algorithms

2.2.1. The STD algorithm

The NIR-modeling scheme within the STD algorithm, initially developed by Stumpf et al. [3]
and later revised by Bailey et al. [5], uses an iterative method including a bio-optical model to
account for the water contribution in the NIR region of the spectrum. The STD algorithm can
be resumed as follows: First the algorithm uses the GW94 AC algorithm, assuming the black
pixel assumption, to obtain a first guess in ρw(λ ). Blue and green ρw(λ ) estimations are then
used to estimate Chla concentrations (MODIS Chl-a OC3 algorithm [21], assumption 1 in Fig.
1), which in turn serves to retrieve particulate and CDOM absorption in the red [22] (assump-
tion 2 in Fig. 1), apg(667). Knowing apg(λred) and below water ρ−

w (λred) (by converting the
estimated above water ρw(667) to below water radiance reflectance [23]) it is possible to deter-
mine the red particulate backscattering coefficient, bbp(λred). Next, bbp(λNIR) is approximated
by a power-law function of wavelength [24] (assumption 3 in Fig. 1). As, in the NIR region
of the spectrum, absorption by CDOM, phytoplankton-related pigments, and other suspended
particulate matter is assumed to be negligible, a(λNIR) can be approximated by the pure water
absorption aw(λNIR). Accordingly, knowing a(λNIR) and bbp(λNIR), below water ρ−

w (λNIR) can
be estimated [25] and converted in above water ρw(λNIR). ρw(λNIR) is removed from ρrc(λNIR)
and the newly estimated ρrc(λ ) is then inverted again with the GW94 AC algorithm to obtain
ρw(λ ).

The process is re-iterated until ρw(λred) converges or if the maximum number of iterations
is exceeded. In this study, when the estimated Chla is non-physical (e.g., because the retrieved
ρw(λ ) are negative) or if the estimated ρam(λ0) is negative, an AC failure flag is assigned to the
spectrum and ρam(λ0) is set to 0 and Chla to 10 mg l−1 for the next iteration. If the AC failure
flag is assigned twice to a same spectrum, it is excluded for further data analysis.

2.2.2. The MUMM algorithm

The MUMM algorithm includes two alternative assumptions, one on the atmosphere (assump-
tion 1 in Fig. 1) and one on the water optical properties, the NIR similarity spectrum assumption
(assumption 2 in Fig. 1) [4,6]. The first assumption is based on the fact that the atmosphere com-
position does not vary significantly in space and time and therefore the Ångström coefficient for
the aerosol reflectance, η , can be considered as spatially homogeneous over the area of interest.
In clear waters, where ρw(λ ) in the NIR region of the spectrum is close to zero, ρa(λ )+ρra(λ )
can be approximated by ρrc(λ ) and, subsequently, η can be retrieved. The clear water retrieved
η is then used for the AC of the entire image.

The second assumption arises from the fact that the sea-water spectrum shape in the NIR
spectral domain is largely determined by pure water absorption, and hence invariant. The mag-
nitude of the signal is approximately proportional to the backscatter coefficient. Consequently,
the ratio of any two NIR water leaving reflectances, α(λi,λ j), is constant. For MODIS-Aqua
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Fig. 1. Schematic flowchart of the sensitivity study set-up for the STD and MUMM algo-
rithms. ρ in situ

w (λ ) and ρest
w (λ ) are the in situ and estimated ρw(λ ), respectively, and λ1

and λ2 designate the two wavelengths in the NIR spectral region. Dashed lines indicate the
iterative processes for the STD algorithm.
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images α(748,869) is defined as:

α =
ρw(748)

ρw(869)
= 1.945 (4)

Next, knowing η and α(λi,λ j), ρam(λ ) is estimated for two NIR bands allowing to retrieve
the appropriate aerosol model.

ρam(λi) = ε(λi,λ j)
α(λi,λ j)ρrc(λ j)−ρrc(λi)

α(λi,λ j)− ε(λi,λ j)
(5)

ρam(λ j) =
α(λi,λ j)ρrc(λ j)−ρrc(λi)

α(λi,λ j)− ε(λi,λ j)
(6)

The initial GW94 AC algorithm is then run again but forced with the previously selected
aerosol model.

As shown in Fig. 1, the MUMM algorithm requires thus an a priori defined η . For the sen-
sitivity study, a correct retrieved η is initially assumed. Next, to assess the sensitivity of the
algorithm to errors on the selected aerosol model, we consider an η value corresponding to the
C90 aerosol model while the C50 aerosol model was used to simulate ρrc(λ ) (error on η of
∼ −40%) and vice versa (error on η of ∼ 70%).

2.3. Modified STD and MUMM algorithms

2.3.1. Polynomial-based MUMM algorithm

The MUMM algorithm is modified here to take into account also extremely turbid waters.
Indeed, the validation exercise conducted by Goyens et al. [12] showed that the validity range
of the constant NIR reflectance ratio [4, 6] was limited to moderately and very turbid waters
with ρw(λNIR) < 10−2, while the polynomial function of Wang et al. [18] was also valid for
extremely turbid waters. Subsequently, in order to improve ρw(λ ) retrievals in extremely turbid
waters, the NIR constant reflectance ratio in the MUMM algorithm (assumption 2 in Fig. 1) is
replaced by the polynomial function of Wang et al. [18] (therefore referred to as the polynomial-
based MUMM algorithm). This includes some modifications in the initial algorithm. Using Eq.
(1) and the polynomial function from Wang et al. [18], the following relationships and unknown
quantities are obtained:

ρrc(748) = ρam(748)+ t∗748ρw(748) (7)

ρrc(869) = ρam(869)+ t∗869

[
aρw(748)+bρw(748)2] (8)

where a and b are the constant values of the polynomial function [18] and t∗λ the viewing and
incident atmospheric transmittance corrected for the two-way ozone and oxygen absorption
using the terminology of Ruddick et al. [4].

Provided that the aerosol model is correctly retrieved, the atmospheric correction parameter
ε(748,869) (written hereafter as ε for notational simplicity) is equal to the aerosol reflectance
ratio at 748 and 869 nm and thus, according to Eq. (2), related to η as follow:

ε =
ρam(748)

ρam(869)
=

(
λ
λ0

)−η
(9)

Eq. (8) can then be rewritten as:

ρrc(869) =
1
ε

ρam(748)+at∗869ρw(748)+bt∗869ρw(748)2. (10)
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Accordingly, the system Eq.(7)-ε Eq.(10) gives:

bεt∗869ρw(748)2 +[aεt∗869 − t∗748]ρw(748)+ [ρrc(748)− ερrc(869)] = 0. (11)

ρrc(λ ) at 748 and 869 nm are known for each spectra and t∗λ is derived from the viewing
and incident geometry and selected aerosol model. Hence, the remaining unknown quantity
is ρw(748). Eq. (11) is a quadratic function with two solutions, one of which is clearly non-
physical. Accordingly, the unique solution for ρw(748) is:

ρw(748) =

[
t∗748 −aεt∗869

]
−
√[

aεt∗869 − t∗748

]2 −4bεt∗869[ρrc(748)− ερrc(869)]

2bεt∗869
(12)

Next, knowing ρw(748), ρw(869) can be retrieved by evaluating the polynomial function
of Wang et al. [18] and, by means of Eqs. (1) and (2), ρw(λ ) can be retrieved for the entire
spectrum.

2.3.2. Constrained STD algorithm

To improve ρw(λ ) retrievals, red and NIR spectral relationships are used to constrain the NIR-
modeling scheme within the STD algorithm (therefore referred to as the constrained-STD al-
gorithm). The red spectral relationships are already used as bounding relationships in the last
updated version of the Quasi Analytical Algorithm (QAA v5) to correct imperfections in the
retrieved ρw(667) [19]. Similarly to the polynomial relationship suggested by Wang et al. [18],
these red spectral relationships have been validated previously by Goyens et al. [12] with the
in situ data mentioned in section 2.1. To force the STD algorithm, the spectral relationships
are implemented within the iterative process as follows: If within the iterative process, the pre-
viously retrieved ρw(555) is non-negative and ρw(667) is out of limit according the bounding
red spectral relationships, ρw(667) is corrected and set equal to the closest limit. Next, the NIR
spectral polynomial relationship [18] is used to retrieve ρw(869) from the estimated ρw(748),
avoiding imperfections due to the extrapolation of bbp(λ ) from 667 to 869 nm.

3. Results and discussion

3.1. Performances of initial STD and MUMM algorithms in turbid waters

To delineate the areas of improvements, the performances of the initial AC algorithms are first
evaluated. Statistics (median, first and third quartile) of the percentage bias between in situ and
estimated ρw(λ ) for the STD and MUMM algorithms are shown in Fig. 2, for moderately and
very turbid waters and when considering only extremely turbid waters. Relative performances
of the algorithms are similar when the C50 or C90 aerosol model is considered and the per-
centage bias calculated with the C50 aerosol model and the C90 aerosol model remain close.
Therefore, results are shown here with the C50 aerosol model only.

For moderately turbid waters, the two algorithms retrieves the same number of reflectance
spectra. In contrast, due to AC failure (observed for 9 spectra) and because ρw(667) did not
converged after 10 iterations (for 1 spectrum), for very turbid waters the STD algorithm re-
trieves 46 reflectance spectra out of the 56. The excluded spectra present all ρw(869) values
superior to 10−2 (defined previously as extremely turbid).

The STD algorithm tends to underestimate ρw(λ ) at all wavelengths for moderately turbid
waters (median bias ranging from -51% to -3%) [Figs. 2(a)-2(e)]. For the very turbid waters
the algorithm provides relatively good results in the green but underestimates ρw(λ ) in the blue
and largely overestimates ρw(λ ) at 869 nm (median bias of -13% and 22%, respectively) [Figs.
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2(a)-2(e)]. When considering only the most turbid waters (ρw(869) > 10−2, 14 extremely turbid
spectra), the underestimation of ρw(λ ) in the blue spectral domain is even more pronounced
with a median bias ranging from -60% at 412 nm to 18% at 869 nm. This suggests that the STD
NIR-modeling scheme is appropriate for very turbid waters, however negative ρw(λ ) values in
the blue are still retrieved and the performance of the algorithm decreases with an increase in
turbidity. For moderately turbid waters, the assumptions made in the STD algorithm results in
relatively low errors at 412 nm but in large retrieval errors in the red and NIR spectral domain.

For moderately turbid waters and over the 412-667 nm spectral range, the median percentage
bias varies from -2% to -8% for the MUMM algorithm. However, at 748 and 869 nm, the me-
dian percentage bias reaches values up to -30 and -41%, respectively [Figs. 2(f)-2(j)]. For very
turbid waters, the median bias ranges from -0.5% to -5% [Figs. 2(f)-2(j)]. When considering
only the most turbid waters (ρw(869) > 10−2, 24 extremely turbid spectra) the median bias
further decreases ranging from -18% to -4%. This may be explained by the underestimation of
the water signal in extremely turbid waters when a constant NIR reflectance ratio is considered.
Indeed, as observed with the validation exercise of Doron et al. [11] and Goyens et al. [12],
the constant NIR reflectance ratio used in the MUMM algorithm tends to underestimate ρw(λ )
in the NIR spectral domain when ρw(λNIR) increases. Note however that these results are ob-
tained when η is correctly estimated over the clear water pixels and thus considering that the
assumption of spatial homogeneity in aerosol properties is verified.
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Fig. 2. Box plots of percentage bias for the STD (a-e) and MUMM (f-j) algorithms for
moderately (m, ρw(869) > 10−4 and ρw(869) < 3.10−3) and very (v, ρw(869) > 3.10−3))
turbid waters and when considering only the extremely turbid waters (e, ρw(869) > 10−2).
Box plots indicate median with first and third quartiles, upper and lower whiskers and out-
liers (small circles, ±1.5IQR). The horizontal grey lines indicate a bias of 0% (occurring
when ρw(λ ) are perfectly retrieved).

3.2. Performances of the algorithms with the proposed modifications

In Figs. 3(a)-3(c) the performances of the initial and modified algorithms are compared. To
evaluate the impact of imperfections in the retrieved η , Figs. 3(a)-3(c) also show the perfor-
mances of the MUMM and polynomial-based MUMM algorithms when η is estimated for a
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C90 aerosol model while the C50 aerosol model was used to simulate ρrc(λ ) (error on η of
∼ −40%). Table 1 shows the number of retrieved data and the median, mean and standard de-
viation of the percentage bias per wavelength when considering all retrieved reflectance spectra.
Since the initial STD algorithm retrieves more spectra compared to the constrained algorithm,
statistics are also given for the initial STD algorithm when only the spectra retrieved with the
constrained STD algorithm are considered.

Table 1. Number of retrieved reflectance spectra and median (average, standard deviation)
percentage bias per wavelength (412, 488, 547, 667, 748, and 869 nm). For comparison,
statistics for the original STD algorithm are also given when considering only the spectra
retrieved with the constrained STD algorithm.

Numb. spectra 412 488 547 667 748 869
STD 95 -8 (-16, 40) -4 (-5, 12) -2 (-2, 6) -2 (-4, 8) -1 (-10, 28) 10 (-4, 40)

90 -8 (-11, 29) -4 (-4, 11) -2 (-2, 5) -2 (-5, 8) -4 (-11, 28) 9 (-6, 40)
STDCon 90 -4 (-2, 23) -2 (-2, 10) -1 (-1, 5) -2 (-4, 8) -6 (-13, 28) -6 (-17, 34)
MUMM 105 -2 (-14, 54) -1 (-7, 27) -1 (-5, 17) -2 (-5, 12) -8 (-13, 21) -13 (-17, 28)
MUMMPoly 105 -1 (-8, 49) 0 (-4, 25) 0 (-3, 16) -1 (-4, 12) -2 (-11, 23) -4 (-14, 30)

Overall the constrained STD algorithm shows improvements compared to the initial algo-
rithm (lower median, mean and standard deviation). For moderately turbid waters, initial and
constrained STD algorithms show similar results. Improvement with the constrained STD algo-
rithm are more pronounced for very turbid waters and in particular in the blue and NIR region
of the spectrum [Figs. 3(b) and 3(c)]. However, as shown in Table 1, the number of retrieved
spectra is lower when the algorithm is constrained. Indeed, 15 spectra (all presenting extremely
turbid water masses, ρw(869) > 10−2) are excluded because the estimated Chla concentration
was non-physical at least twice during the iterative process, while, with the initial STD algo-
rithm, 9 spectra are excluded because the algorithm failed to retrieve Chla concentrations more
than twice and 1 spectrum is excluded because the retrieved ρw(667) did not converge within
10 iterations. For 13 spectra, out of the 15 spectra, ρw(667) was corrected during the iterative
process because it exceeded the maximum limit according to the red bounding spectral rela-
tionships suggested by Lee et al. [19]. When excluding this constrain (i.e., only retaining the
NIR spectral relationship [18] in the NIR-modeling scheme), the number of excluded spectra
decreases from 15 to 8. However, the performance of the algorithm decreases too, and in par-
ticular in the blue region of the spectrum over very turbid waters (not shown here). When con-
sidering only equivalent spectra, the STD algorithm constrained with both red and NIR spectral
relationships slightly improves ρw(λ ) for all water types compared to the initial STD algorithm
(Table 1). Hence, overall both the red and NIR spectral constrains improved the retrieved ρw(λ )
for all turbidity ranges. However, more work should be done to increase the number of retrieved
spectra and thus reducing the sensitivity of the algorithm to non-physical Chla concentration
estimations.

As expected from the validation exercise conducted by Goyens et al. [12], replacing the con-
stant MUMM algorithm with the NIR polynomial relationship reduces the bias (Table 1) and
mainly when considering only extremely turbid waters [Fig. 3(c)]. However, when including
the NIR polynomial relationship, the algorithm seems to be more sensitive to errors on the
estimated η . Hence, the added value of the polynomial NIR spectral relationship will be sig-
nificantly reduced, when η is not correctly retrieved [Figs. 3(b)-3(c)]. Errors on the estimated
η may be due to missing clear water pixels within the area of interest or if the assumption of
spatial homogeneity in aerosol properties is not verified. This confirms the conclusion of Jamet
et al. [7], notably that the sensitivity of the algorithm to the selected aerosol model remains
an issue for the MUMM algorithm. Hence, compared to the MUMM algorithm, the STD al-
gorithm presents a large advantage as it does not require an initial guess for η and does not

#193504 - $15.00 USD Received 8 Jul 2013; revised 12 Aug 2013; accepted 13 Aug 2013; published 3 Sep 2013
(C) 2013 OSA 9 September 2013 | Vol. 21,  No. 18 | DOI:10.1364/OE.21.021176 | OPTICS EXPRESS  21185

5.6. Paper: “Spectral relationships for atmospheric correction. II. Improving the NASA
Standard and MUMM near infra-red modeling schemes” 121



imposes spatial homogeneity in aerosol properties since it retrieves the aerosol properties on a
pixel-by-pixel basis. However, as mentioned earlier, the STD algorithm is affected by erroneous
Chla estimations. Moreover, relying only on a Chla based relationship to estimate ρw(λNIR) in
optically complex waters may be dubious.
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Fig. 3. Median percentage bias as a function of wavelength for (a) moderately and (b)
very turbid waters and (c) when considering only the most turbid waters (ρw(869) > 10−2)
with STD: initial STD Algorithm, MUMM: initial MUMM algorithm assuming the cor-
rect aerosol model, MUMMc90: MUMM algorithm assuming the incorrect C90 aerosol
model, MUMMPoly: polynomial-based MUMM algorithm, MUMMPoly−c90: polynomial-
based MUMM algorithm assuming the incorrect C90 aerosol model, and STDCon: con-
strained STD algorithm.

4. Conclusion

More work needs to be done to further reduce inaccuracies in ρw(λ ) retrieved from ocean color
images and particularly in turbid and optically complex waters [8]. Therefore, the present study
aims to evaluate if ρw(λ ) retrievals can be improved by forcing the NIR-modeling scheme
within the standard NASA and MUMM GW94-based AC algorithms (referred to as the STD
and MUMM algorithms) with spectral relationships validated previously in a companion pa-
per from Goyens et al. [12]. According to the authors, the red bounding relationships used in
the QAA [19] as well as the NIR spectral relationship suggested to extent the GW94 AC al-
gorithm for the AC of GOCI images [18], were valid for moderately turbid and very turbid
waters. These relationships are used here to constrain the initial MUMM and STD algorithms.
Two modified algorithms are evaluated: (1) a modified MUMM algorithm where the NIR con-
stant ρw(λ ) ratio is replaced by the polynomial NIR spectral relationship, and (2) a modified
STD algorithm where the iterative NIR-modeling scheme is constrained with the bounding red
spectral relationships suggested by Lee et al. [19] and the NIR polynomial relationship [18] to
evaluate ρw(869) from ρw(748). The degree of improvement resulting from the spectral rela-
tionship constrains are investigated by comparing in situ ρw(λ ) with ρw(λ ) retrieved with the
initial and modified STD and MUMM algorithms.

When the STD algorithm is forced with the bounding red and the NIR polynomial spectral
relationships, the algorithm performs better for all turbidity ranges and over the entire spectrum.
However, the number of retrieved ρw(λ ) spectra is slightly reduced because more spectra are
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flagged due to non-physical Chla concentration estimations in the NIR-modeling scheme.
When the constant NIR reflectance ratio used in the initial MUMM algorithm to account for

non-zero ρw(λNIR), is replaced by the NIR polynomial relationship [18], errors in estimated
ρw(λ ) are reduced, particularly in extremely turbid waters. However, compared to the initial
algorithm, the polynomial-based MUMM algorithm is more sensitive to erroneously estimated
η from nearby clear water pixels.

Compared to the MUMM algorithm, the STD algorithm presents a large advantage as it does
not require an initial guess for η neither imposes spatial homogeneity in aerosol properties. Ac-
cordingly, the MUMM algorithm should be further improved to reduce the sensitivity of the al-
gorithm to the selected aerosol model. Meanwhile, the STD algorithm should be modified such
that ρw(λ ) retrievals are less affected by erroneous estimations of Chla concentrations. Accord-
ingly, further improvements in ρw(λ ) retrievals may be achieved by, for instance, combining
both polynomial-based MUMM and constrained STD algorithms. This may be investigated in
a future research.

The present study investigates the feasibility to constrain NIR-modeling schemes with spec-
tral relationships in the aim to improve AC processes and subsequently satellite estimated
ρw(λ ). This study should be confirmed by an in situ-satellite data match-up exercise to verify
and quantify the effective improvement in satellite ρw(λ ) retrievals resulting from the suggested
modifications.
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- Chapter 6 -

Spectral relationship-forced STD and MUMM NIR-modelling
schemes to improve AC in turbid waters

Chapter 5 suggested several modifications based on valid theoretical and empirically retrieved
spectral relationships to improve NIR-modelling schemes for the AC. In the present chapter,
these newly suggested NIR-modelling schemes are compared and validated with satellite and
in situ data. The modified NIR-modelling schemes are:

• the MUMMPoly scheme which replaces the constant NIR reflectance ratio of the initial
MUMM NIR modelling scheme by the NIR polynomial spectral relationship suggested by
Wang et al. (2012),

• the STDContheor scheme which is the STD NIR modelling scheme constrained by (1) an
empirical blue-green and bounding red spectral relationships to correct for erroneous ρw(λ)
retrievals in the visible spectral domain before it is used as input for the STD bio-optical
model, (2) a theoretical red-NIR hyperbolic spectral relationship to reduce the sensitivity
of the initial STD NIR-modelling scheme to errors on bbp(λred), and, (3) an empirical NIR
polynomial spectral relationship to avoid the simple extrapolation of bbp(λ) from the red
to the NIR spectral domain, and,

• the COMB NIR-modelling scheme which consists in using the MUMMPoly NIR-modelling
scheme when the STDContheor approach fails to retrieve valid Chla concentrations.

The performances of the modified NIR-modelling schemes are compared with the initial
MUMM and STD approach. The initial SeaDAS 6.4 Level-2 processing program was therefore
adapted to include the modified NIR-modelling schemes.

First a validation of the NIR-modelling schemes is conducted with the same in situAERONET-
OC and LOG ρw(λ) measurements used in the inter-comparison study discussed in Chapter 4
and published by Goyens et al. (2013c) (Section 6.1). This validation exercise includes an over-
all inter-comparison of the ocean colour products and an evaluation of the number of valid and
negative retrieved ρw(λ) values. Similarly to Goyens et al. (2013c), a class-specific validation
is also performed to investigate the behavior and limitations of the modified NIR-modelling
schemes as a function of the optical water type according to the classification scheme developed
by Vantrepotte et al. (2012) (Sections 1.5 and 4.2). For this global validation, and as done by
Goyens et al. (2013c), the default flags and parameters suggested by the NASA OBPG are used.
This allows to reproduce the processing conducted by common ocean colour users. Note however
that the processing is performed here with the updated SeaDAS version 6.4, while Goyens et al.
(2013c) processed the images with the version 6.2 of SeaDAS. Hence, small differences may be
observed, mainly due to slight changes in the gain factors (Chapter 3, Table 3.1). However,
these changes should only slightly affect the AC performances and differences should be small.
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AC in turbid waters

The AERONET-OC dataset present mainly ρw(λ) spectra over moderate turbidity ranges.
As observed in Chapter 5, the spectral relationship-forced NIR-modelling schemes, essentially
improved ρw(λ) retrievals in very or extremely turbid waters. Therefore, a second match-up
exercise is conducted with the turbid water in situ data collected by the LOG (Section 6.2).
Beside a comparison between in situ and MODIS retrieved ρw(λ) data, a visual inspection of
the MODIS Aqua images is also performed to evaluate the differences in spatial ρw(λ) patterns
resulting from the distinctive NIR-modelling schemes.

6.1 Global validation of three modified STD and MUMM
NIR-modelling schemes

6.1.1 Data and Methods

Validation is carried out with the AERONET-OC data and field data from four cruises coordi-
nated by the LOG. Both datasets are detailed in Chapter 3 and discussed in Chapter 4 and by
Goyens et al. (2013c).

A total of 1456 satellite images is processed with the five different NIR-modelling schemes for
the extension of the GW94 AC algorithm to turbid waters, namely, the initial STD and MUMM
approaches and the newly suggested MUMMPoly, STDContheor and COMB NIR-modelling schemes.

In the previous chapter, the water signal in the NIR spectral region was used to differen-
tiate moderately from very and extremely turbid waters. According to these turbidity classes
and based on the in situ ρw(869) data, among the 1456 match-up pairs, most spectra present
moderately turbid waters (1143) and only a few data present non-turbid (291, ρw(869) < 10−4),
very turbid (22, ρw(869) > 3.10−3) and extremely turbid waters (4, ρw(869) > 10−2).

Based on the classification scheme of Vantrepotte et al. (2012), out of the 1456 in situ
data, about 2% are allocated to optically mixed water masses dominated by detrital and mineral
material (referred to as Class 1), 54% to optically mixed waters dominated by phytoplankton
(referred to as Class 2), only one spectra to water masses strongly impacted by mineral material
(referred to as Class 3), and, 38% to CDOM and phytoplankton dominated waters (referred to
as Class 4). 6% of the in situ spectra remained unclassified.

Match-up selection and validation set-up are similar to those outlined in the paper of Goyens
et al. (2013c) and described in Section 3.4. Note, however, that in the validation exercise
of Goyens et al. (2013c), an additional selection criteria was used such that only the turbid
waters were considered. Indeed, any spectra showing ρw(667) values below 6.10−3 (∼ Lwn(λ) <
0.183 mW cm−2 µm−1 sr−1, according to the definition of Robinson et al. (2003)) were excluded
for further data analysis. For the present study, this exclusion criterion is not applied to ensure
a greater set of match-up pairs. Moreover, ocean colour end-users often expect globally valid AC
methods. Hence, the NIR-modelling scheme should provide satisfactory ρw(λNIR) estimations
for all optical water classes and turbidity ranges.

The study of Goyens et al. (2013c) also imposed that the match-up pairs for each algorithm
match. Here the performance of the algorithms is compared when including all the match-up
pairs for which each AC approach retrieved valid ρw(λ) spectra (including the non-turbid water
masses), and when including only the 211 common match-up pairs selected by Goyens et al.
(2013c) (thus excluding the non-turbid water masses).

The algorithm performances are compared qualitatively based on scatter-plots and quantita-
tively based on statistical parameters computed between satellite and in situ ρw(λ) estimations,
i.e., the percent bias, the percent relative error (RE), the root mean square error (RMSE), the
spearman correlation (R) and the slope and intercept of the linear regression. Bias, RE and
RMSE are calculated as follows:
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BIAS =
1

N
Σ

(
100

ρestw (λ)− ρobsw (λ)

ρobsw (λ)

)
, (6.1)

RE =
1

N
Σ

(
100
|ρestw (λ)− ρobsw (λ)|

ρobsw (λ)

)
, (6.2)

RMSE =

√(
Σ(ρestw (λ)− ρobsw (λ))2

N

)
, (6.3)

where ρobsw and ρestw are the in-situ and the MODIS estimated ρw(λ), respectively, and N
the number of observations.

6.1.2 Results and discussion

6.1.2.1 Match-up selection

Table 6.1 shows the number of excluded spectra because more than 3 pixels within the 3 by 3
pixels window are flagged, and/or, because the homogeneity criterion is not verified. Out of the
1456 processed images, for the 5 NIR-modelling schemes, 592 pixels windows present less then
6 valid pixels.

Table 6.1: Excluded and total number of match-up pairs per AC approach. Values in parenthe-
ses indicate the amount of excluded match-ups because of non-homogeneity only.

Selection Criteria STDContheor COMB MUMMPoly MUMM STD
< 6pixels 592 592 592 592 592
Non-uniform (ρw(547)) 101(93) 104 (92) 92(81) 92(81) 114(103)
Total valid match-ups 771 772 783 783 761

When the homogeneity criterion is applied, the largest number of excluded match-up pairs
is observed with the initial STD AC approach (114 excluded spectra) while the lowest number is
encountered with the MUMM and MUMMpoly approaches (92 excluded spectra). The COMB
approach was expected to be affected by a more important number of excluded spectra because
of non-homogeneous pixels windows. Indeed, as mentioned by Goyens et al. (2013c) for the
NIR-SWIR AC method, the switching between the STDContheor and MUMMpoly NIR-modelling
scheme may induce an abrupt change in ρw(λ) within the pixels window. However, this is not
noticeable here since the number of excluded non-homogeneous satellite-in situ data pairs is not
significantly higher with the COMB AC method compared to the other methods (Table 6.1).

When non-homogeneous and flagged pixels windows are excluded, 772 and 771 spectra
are retained with the COMB and STDContheor approaches, respectively. The MUMM and
MUMMpoly approaches retrieve the largest number of spectra (783) while the initial STD ap-
proach retrieves the lowest amount of spectra (761, Table 6.1).

Hence, as observed with the sensitivity study in the previous chapter, the largest spatial
coverage is ensured with the MUMM and MUMMpoly algorithms followed by the COMB and the
STDContheor approaches. Because the MUMM and MUMMpoly algorithms consider spatial ho-
mogeneity in aerosol properties, these algorithms may indeed be less affected by the homogeneity
criterion compared to the other algorithms retrieving aerosol properties on a pixel basis.

When the number of excluded ρw(λ) spectra are compared as a function of the turbidity
level and for the different algorithms, no specific trend is observed. Indeed, the newly suggested
AC methods do not seem to retrieve more valid ρw(λ) values at higher turbidity levels compared
to the initial AC methods. For all the AC methods, about 80% of the remaining in situ spectra
present moderate turbidity, less than 1% present very turbid waters and the remaining 20%
present low turbidity. Hence, the four extremely turbid water match-ups are excluded for further
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data analysis with all AC methods and this because less then 6 valid pixels are encountered within
the pixels windows. The sensitivity studies conducted in the previous chapter concluded that
improvements, with the modified NIR-modelling schemes, are more pronounced for very and
extremely turbid waters. Hence, with the present in situ dataset, improvements are expected
to be relatively small. However, a class-specific validation may be useful to delineate limitations
and added values of the modified NIR-modelling schemes.

Table 6.2 shows the number of valid retrieved ρw(λ) spectra per optical water class and per
NIR-modelling scheme. According to these results, the MUMM-based AC algorithms tend to
retrieve more valid spectra than the STD-based algorithm mainly over phytoplankton optically
dominated waters (Class 2). For Class 4 waters (optically dominated by phytoplankton and
CDOM), the COMB and STDContheor NIR-modelling schemes retrieve more valid ρw(λ) spectra
compared to the initial STD scheme and the same amount of spectra as the MUMM-based NIR-
modelling schemes. This is a valuable observation showing that these modified NIR-modelling
schemes retrieve the same number of Class 2 spectra as the initial STD scheme but are more
adequate to retrieve ρw(λ) spectra in water masses not optically dominated by algal-particles.
For Class 1 waters, all approaches retrieve the same number of valid spectra (Table 6.2).

Table 6.2: Number of valid match-up pairs per class and per NIR-modelling scheme for AC.

Unclassified Class 1 Class 2 Class 4
STDContheor 45 20 357 349
COMB 46 20 357 349
MUMMPoly 45 20 369 349
MUMM 45 20 369 349
STD 46 20 357 338

6.1.2.2 Global ρw(λ) validation

Table 6.3 gives the overall performance and the performance of the AC methods when including
only the 211 common match-up pairs validated by Goyens et al. (2013c).

No large differences are observed between the AC methods in terms of statistical perfor-
mances. When considering all match-up pairs, RE and bias range from 18 to 166% and from
-1.3 to -91.4%, respectively. When considering only the 211 similar match-ups pairs, RE and
bias range from 17 to 48% and from -8.8 to -25.9%, respectively. The largest bias and RE are
encountered at 412 nm where the signal is usually lower. The lowest bias are encountered at
547 nm where the signal is more significant (as observed by Goyens et al. (2013c)). Although
the results remain very similar, when considering all wavelengths, the STDContheor AC method
shows the best statistics followed by the STD approach (Table 6.3).

Figure 6.1 shows the MODIS-Aqua versus in-situ ρw(λ) data for the five AC methods. For
a better visibility, only the 211 common valid match-up pairs are considered in this figure.

According to Fig. 6.1, data points seem to be more dispersed around the 1:1 line when
using the MUMM-based NIR-modelling schemes and the COMB approach. Hence, though the
resulting statistics are relatively good with the MUMM-based approaches (especially the bias
in the green and red spectral region, Table 6.3), large over- and underestimations in ρw(λ) are
encountered with these NIR-modelling schemes. A possible explanation for this may be the
erroneously retrieved aerosol properties from climatological data or nearby clear water pixels.

As expected, no large differences are observed between the MUMM and MUMMPoly AC
methods. Indeed, according to the study of Goyens et al. (2013a), for moderately turbid waters,
the constant NIR reflectance ratio and polynomial function result in very similar ρw(λNIR)
retrievals.

Biases are negative at all wavelengths and with all algorithms. Hence, either the NIR-
modelling schemes still tend to underestimate ρw(λNIR), or the approach to estimate aerosol



6.1. Global validation of three modified STD and MUMM NIR-modelling schemes 129

Table 6.3: Statistical results for ρw(λ) retrieved with the STDContheor, COMB, MUMMpoly,
MUMM and STD AC approaches and percentage of negative retrieved values. Statistics be-
tween brackets correspond to the values obtained when only the 211 common match-up pairs are
retained. The best statistics per spectral band are indicated in bold.

R2 Intercept Slope RE RMSE Bias ρw(λ) < 0
(%) (%) (%)

ρw(412)
STDContheor 0.84 (0.85) -0.0004 (-0.0007) 0.83 (0.88) 126 (33) 0.0047 (0.0053) -51.1 (-16.3) 15 (2)
COMB 0.80 (0.76) -0.0011 (-0.0011) 0.86 (0.89) 166 (38) 0.0056 (0.0070) -91.4 (-19.9) 17 (4)
MUMMpoly 0.74 (0.75) -0.0002 (-0.0011) 0.86(0.87) 164 (48) 0.0063 (0.0073) -60.2 (-25.9) 19 (8)
MUMM 0.74 (0.75) -0.0003 (-0.0009) 0.86 (0.87) 164 (48) 0.0063 (0.0071) -60.3 (-24.1) 19 (7)
STD 0.83 (0.85) 0.0000 (-0.0010) 0.80 (0.88) 123 (34) 0.0048 (0.0056) -39.0 (-19.5) 13 (2)

ρw(443)
STDContheor 0.93 (0.92) -0.0001 (-0.0007) 0.92 (0.96) 37 (21) 0.0034 (0.0044) -6.4 ( -8.8) 3 (0)
COMB 0.91 (0.88) -0.0006 (-0.0011) 0.94 (0.97) 48 (24) 0.0041 (0.0055) -17.6 (-11.4) 9 (2)
MUMMpoly 0.86 (0.87) 0.0002 (-0.0010) 0.93 (0.95) 58 (32) 0.0050 (0.0059) -5.1 (-14.7) 9 (3)
MUMM 0.86 (0.87) 0.0002 (-0.0009) 0.93 (0.94) 58 (32) 0.0050 (0.0059) -5.1 (-14.0) 9 (3)
STD 0.93 (0.92) 0.0003 (-0.0010) 0.90 (0.96) 38 (22) 0.0035 (0.0046) -1.3 (-11.2) 2 (0)

ρw(488)
STDContheor 0.97 (0.95) -0.0006 (-0.0015) 0.92 (0.95) 21 (16) 0.0033 (0.0051) -13.7 (-12.4) 0 (0)
COMB 0.96 (0.94) -0.0010 (-0.0018) 0.93 (0.96) 25 (18) 0.0038 (0.0055) -17.9 (-13.6) 3 (1)
MUMMpoly 0.94 (0.93) -0.0002 (-0.0015) 0.92 (0.94) 31 (22) 0.0043 (0.0058) -11.9 (-14.9) 3 (0)
MUMM 0.94 (0.92) -0.0002 (-0.0016) 0.92 (0.94) 31 (22) 0.0043 (0.0060) -11.9 (-15.0) 3 (0)
STD 0.97 (0.94) -0.0003 (-0.0018) 0.91 (0.95) 22 (17) 0.0035 (0.0054) -11.2 (-13.9) 0 (0)

ρw(531)
STDContheor 0.96 (0.92) -0.0002 (-0.0014) 0.86 (0.91) 18 (17) 0.0042 (0.0065) -13.8 (-15.0) 0 (0)
COMB 0.96 (0.93) -0.0003 (-0.0015) 0.87 (0.91) 19 (18) 0.0043 (0.0064) -15.1 (-15.5) 0 (0)
MUMMpoly 0.94 (0.92) 0.0005 (-0.0010) 0.85 (0.89) 22 (19) 0.0046 (0.0067) -11.4 (-15.9) 0 (0)
MUMM 0.94 (0.91) 0.0005 (-0.0012) 0.85 (0.89) 22 (20) 0.0046 (0.0070) -11.3 (-16.4) 0 (0)
STD 0.96 (0.92) 0.0001 (-0.0017) 0.85 (0.91) 19 (18) 0.0043 (0.0068) -12.6 (-16.3) 0 (0)

ρw(547)
STDContheor 0.96 (0.91) -0.0002 (-0.0013) 0.85 (0.88) 19 (19) 0.0045 (0.0070) -16.1 (-16.8) 0 (0)
COMB 0.95 (0.92) -0.0003 (-0.0013) 0.85 (0.89) 20 (19) 0.0045 (0.0068) -16.9 (-17.1) 0 (0)
MUMMpoly 0.94 (0.91) 0.0005 (-0.0006) 0.82 (0.86) 21 (20) 0.0048 (0.0071) -13.4 (-17.4) 0 (0)
MUMM 0.94 (0.90) 0.0005 (-0.0008) 0.82 (0.86) 21 (20) 0.0048 (0.0074) -13.4 (-17.9) 0 (0)
STD 0.95 (0.90) 0.0001 (-0.0016) 0.84 (0.89) 20 (20) 0.0046 (0.0073) -15.1 (-18.0) 0 (0)

ρw(667)
STDContheor 0.90 (0.87) -0.0011 (-0.0018) 0.85 (0.96) 48 (36) 0.0023 (0.0028) -46.7 (-33.6) 5 (0)
COMB 0.89 (0.86) -0.0011 (-0.0014) 0.83 (0.89) 50 (37) 0.0024 (0.0029) -49.3 (-34.2) 6 (0)
MUMMpoly 0.81 (0.82) -0.0005 (-0.0012) 0.75 (0.83) 48 (39) 0.0024 (0.0031) -38.3 (-35.3) 4 (0)
MUMM 0.81 (0.82) -0.0005 (-0.0011) 0.75 (0.82) 48 (39) 0.0024 (0.0031) -38.0(-34.8) 4 (0)
STD 0.87 (0.87) -0.0010 (-0.0017) 0.83 (0.93) 49 (37) 0.0023 (0.0029) -44.6 (-34.6) 5 (0)
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Figure 6.1: MODIS-Aqua estimated versus in situ ρw(λ) at six different wavelengths (412, 433,
488, 531, 547 and 667 nm) for the 211 common valid match-up pairs. The black dot-dashed line
represents the 1:1 line.

reflectance is inappropriate (i.e., the aerosol model selection method based on modelled ρw(λNIR)
as suggested by Gordon and Wang (1994)).

The MUMM-based NIR-modelling schemes retrieve the largest number of negative ρw(λ)
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retrievals in the blue (i.e., at 412, 443 and 488 nm) but the lowest in the red. Hence, the
MUMM-based AC approaches tend to retrieve more valid (according to the selection criteria
in Section 6.2.1.2) match-up points but, present more negative ρw(λ) retrievals (Table 6.3).
This greater number of negative ρw(λ) values with the MUMM-based AC approaches may be
explained by the underestimation of ρw(λ) at 869 nm in moderately turbid waters with both
the NIR reflectance ratio and polynomial function, as shown previously by Doron et al. (2011)
and Goyens et al. (2013a) (see Section 5.2 and Fig. 4 in Goyens et al. (2013a)). At the opposite,
the STD AC method retrieves less valid match-up pairs but also less negative ρw(λ) retrievals.
When looking into the negative values, we observe that the expected improvement in terms
of spatial coverage provided with the modified STD NIR-modelling schemes is slightly reduced.
Indeed, both the COMB and STDContheor NIR-modelling schemes retrieved more valid match-up
pairs compared to the initial STD approach, but most of these added valid match-up pairs show
negative ρw(λ) values (9 out of 10, and 8 out of 11, at 412 and 443 nm, respectively). Hence, the
COMB and STDContheor NIR-modelling schemes ensure a greater spatial coverage but generate
more negative ρw(λ) retrievals and, subsequently, higher negative biases (Table 6.3). However,
the STDContheor NIR-modelling scheme still improves the AC compared to the initial STD NIR-
modelling scheme, as it retrieves overall better ρw(λ) values when comparing the AC approaches
based on the 211 common match-ups.

6.1.2.3 Global validation of aerosol products

The statistical performance of the algorithms to retrieve α(531, 869) and τ(869) is given in Ta-
ble 6.4 and illustrated in Fig. 6.2 (for a better visualisation only the 211 valid common match-up
pairs are shown). For both aerosol products, the RE remains high (> 60% and 40% when con-
sidering all match-ups and when considering only the common match-up pairs, respectively)
and R2 and slope remain small (<0.39 and 0.69 for α(531, 869) and τ(869), respectively). All
algorithms tend to overestimate τ(869) (Table 6.3) which is expected since they tend to underes-
timate ρw(λ) (e.g., negative bias in Table 6.3). According to the percentage bias for α(531, 869),
most algorithms retrieve lower α(531, 869) values and thus rather oceanic aerosol models or/and
higher relative humidities. Only the STD AC method tends to overestimate α(531, 869).

Table 6.4: Statistical results for α(531, 869) and τ(869) retrieved with the STDContheor, COMB,
MUMMPoly, MUMM and STD AC methods. Statistics between brackets correspond to the values
obtained when only the 211 common match-up pairs are retained. The best statistics per aerosol
product are indicated in bold.

R2 Intercept Slope RE RMSE Bias
(%) (%)

α(531)
STDContheor 0.39 (0.37) 0.972 (0.781) 0.37 (0.37) 85 (45) 0.554 (0.593) -7.5 ( 1.8)
COMB 0.38 (0.32) 1.010 (0.860) 0.35 (0.32) 90 (48) 0.566 (0.616) -7.7 ( 5.8)
MUMMpoly 0.33 (0.26) 1.026 (0.961) 0.30 (0.25) 79 (53) 0.562 (0.626) -5.1 ( 4.3)
MUMM 0.33 (0.27) 1.031 (0.935) 0.30 (0.27) 80 (51) 0.562 (0.633) -4.6 ( 1.8)
STD 0.39 (0.32) 0.997 (0.864) 0.36 (0.33) 65 (48) 0.562 (0.623) 16.2 ( 4.4)
τ(869)
STDContheor 0.55 (0.52) 0.042 (0.038) 0.58 (0.60) 64 (77) 0.046 (0.045) 56.7 (48.5)
COMB 0.55 (0.60) 0.042 (0.033) 0.57 (0.69) 65 (75) 0.046 (0.042) 57.3 (46.4)
MUMMpoly 0.55 (0.60) 0.042 (0.034) 0.57 (0.68) 65 (75) 0.046 (0.041) 57.5 (47.0)
MUMM 0.55 (0.53) 0.041 (0.037) 0.57 (0.60) 64 (75) 0.046 (0.044) 57.0 (45.0)
STD 0.56 (0.53) 0.041 (0.036) 0.57 (0.61) 63 (74) 0.045 (0.044) 55.5 (43.5)

In order to evaluate the impact of erroneously retrieved aerosol properties on the retrieved
ρw(λ), simple rank correlation coefficients are calculated for the estimated RE and bias between
ρw(λ) and α(531, 869), and ρw(λ) and τ(869), respectively. As shown in Figs. 6.3(a) and 6.3(b),
the calculated correlations between the bias observed for the aerosol properties and the water
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Figure 6.2: MODIS-Aqua estimated versus in situ α(531, 869) and τ(869). The black dot-
dashed line indicates the 1:1 line.

signal, are not significant with maximum coefficients around 0.2. Results are similar when
considering the observed RE. Hence, there is no significant trend between the errors in aerosol
properties and ρw(λ) retrievals. Similarly, to investigate if a good separation exists between the
aerosol properties and the water signal, correlation coefficients are calculated between ρam(λNIR)
and ρw(λ) at different wavelengths and for each NIR-modelling scheme. Resulting coefficients,
shown in Figs. 6.3(c) and 6.3(d), indicate a relatively good separation between aerosol and
water reflectances for all NIR-modelling schemes.

6.1.2.4 ρw(λ) validation per water type

Figures 6.4 and 6.5 show the class-specific average RE, RMSE and bias as a function of wave-
length for each NIR-modelling scheme when considering all valid match-ups and when consider-
ing the 211 common match-ups, respectively. For comparison, the statistics are also given when
including all data (Fig. 6.5(a)). Hence, these statistics also include the unclassified spectra.

As expected from Table 6.3, Fig. 6.4(a) indicates that while the RMSE is usually better with
the STDContheor algorithm, the bias is usually lower with the STD approach. This is also true
when looking at the class-specific statistics and is possibly due to the more important fraction of
negative ρw(λ) values retrieved with the STDContheor NIR-modelling scheme (Table 6.5), pulling
the bias down towards lower negative values. Note that according to Table 6.5, the STD AC
method also retrieves more negative values for the Class 1 waters compared to the other methods
(1 out of 9 ρw(λ) spectra showed negative values with the STD NIR modelling scheme while
the other methods did not retrieve any negative values for Class 1 waters). This confirms the
observations made by Goyens et al. (2013c), namely that the bio-optical model within the initial
STD NIR-modelling scheme is invalid for mineral and detrital sediment-rich waters. However,
this percentage remains very low.

For all classes, the RE in ρw(λ) for the STDContheor and STD approaches remain very
similar (Figs. 6.4(b-d), RE ranging from 13% to 130% and bias from -45% to 10%, for both
approaches). For the Class 1 spectra, statistics resulting from the COMB AC approach are
similar to the statistics of the other STD-AC approaches. For the Class 4 waters the COMB AC
approach results in higher errors (RE and bias attain values up to 181% and -87%, respectively).
For Class 2, the COMB AC approach switched more often to the MUMMPoly NIR-modelling
scheme explaining the closer match in statistical performances between the COMB and MUMM-
based AC approaches. However, the COMB AC approach still retrieves larger negative biases
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Figure 6.3: Correlation coefficients as a function of wavelength between (a) the estimated bias
for α(531, 869) and for ρw(λ), (b) the estimated bias for τ(869) and for ρw(λ), (c) ρw(λ) and
ρam(748) and (d) ρw(λ) and ρam(869).

Table 6.5: Overall and per class percentage of negative ρw(λ) values retrieved with the
STDContheor, COMB, MUMMpoly, MUMM and STD AC methods. Numbers between brackets
indicate the percentages obtained when considering only the 211 valid match-up pairs.

% of ρw(λ) < 0 All Class 1 Class 2 Class 4

STDContheor 15 (2) 0 (0) 2 (1) 27 (6)
COMB 16 (4) 0 (0) 2 (1) 30 (12)
MUMMpoly 19 (7) 0 (0) 3 (2) 34 (20)
MUMM 19 (8) 0 (0) 3 (2) 34 (19)
STD 13 (2) 5 (11) 2 (1) 22 (5)

varying between -55% and -8% while the MUMM-based approaches show biases ranging from
-38% to 0%.

When considering the 211 common match-up pairs retrieved with each AC method, the
STDContheor approach gives for all classes better statistics relative to the other methods (Fig. 6.5).
Indeed, this modified NIR-modelling scheme results systematically in 1 to 3% lower RE and
biases compared to the initial STD AC approach.

As noticed previously, the MUMM and MUMMPoly NIR-modelling schemes provide very
similar performances (RE and bias do not differ by more than 1%). However, for Class 4
waters, defined as optically dominated by algal particles and high concentrations of CDOM, the
MUMMPoly NIR-modelling scheme exhibits higher negative biases and higher RMSE, especially
in the blue spectral region (Fig. 6.5(c), bias varying between -40% and -19%, and -35% and
-19% for the MUMMPoly and MUMM NIR-modelling schemes, respectively). Hence, while
Goyens et al. (2013a) showed similar performances for the constant NIR reflectance ratio and
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Figure 6.4: RE, RMSE and bias for all data (772, 783, 771, 783 and 761 for the COMB,
MUMMPoly, STDContheor, MUMM and STD approaches, respectively) (a) and per class (b, c
and d) as a function of wavelength.

the polynomial NIR spectral relationship in moderately turbid waters, Fig. 6.5 indicates that
the constant NIR reflectance ratio may however be more appropriate for certain water types
(e.g., dark waters optically dominated by high concentrations of CDOM). Note however that
this is less evident in Fig. 6.4.

According to Goyens et al. (2013c), the MUMM NIR-modelling schemes provide lower RE
compared to the STD approach over Class 1 waters (waters dominated by detrital and mineral
material). Here, Fig. 6.5 shows that the STDContheor approach provides very similar or even
better results compared to the MUMM-based NIR modelling schemes, even for Class 1 waters.
Hence, these results suggest that the spectral relationship constraints, recommended to extent
the STD approach to optically more complex waters, are appropriate to improve ρw(λ) retrievals
over all optical water types. However, the large negative bias (up to ∼ 45%), the significant
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Figure 6.5: RE, RMSE and bias for the 211 match-up pairs for the COMB, MUMMPoly,
STDContheor, MUMM and STD approaches (a) and per class (b, c and d) as a function of
wavelength.

relative errors (up to ∼ 50%), and the percentage of negative ρw(λ) retrievals (15%), indicate
that further improvement is still required.

Results shown in Fig. 6.5 (when considering the 211 common match-ups) are similar to
the results obtained previously by Goyens et al. (2013c). However, for Class 4 water masses,
the STD AC method retrieved positive biases in the blue spectral region according to the study
of Goyens et al. (2013c), while in the present study this method results in negative biases. A
possible explanation for these differences may be due to the modified vicarious calibration gains
suggested with the reprocessing of 2012 (R2012) to correct for anomalies encountered with the
MODIS Aqua bands at 412 and 433 nm. As shown in Table 3.1 the gain factors slightly decreased
between the Reprocessing of 2010 and 2012. According to the OBPG, a difference of 1% in the
AC or sensor calibration, results in approximately 10% difference in the derived ρw(λ) (Franz
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et al., 2012). Hence, a small change in the gain factors may result in more differences in ρw(λ)
retrievals. This is noticeable in Fig. 6.6 showing the 211 common match-up pairs for different
visible MODIS bands processed with SeaDAS version 6.4 with the gain factors suggested by the
Reprocessing of 2010 and with the gain factors suggested by the Reprocessing of 2012 (all other
parameters being equal). Nevertheless, overall differences remain very small.
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Figure 6.6: STD MODIS Aqua estimated ρw(λ) values versus in situ ρw(λ) at six visible
wavelengths processed with SeaDAS 6.4 once with the default gain factors suggested by the Re-
processing of 2010 (STDR2010) and once by the Reprocessing of 2012 (STDR2012).
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6.2 Improving AC methods in extremely turbid waters: Case
studies over the North-Sea English Channel and the coast
of French Guiana

6.2.1 Data and Methods

For 52 data points, out of the 210 in situ above water ρw(λ) measurements from the LOG
dataset (Section 3.3.2.1, Chapter 3), coincident satellite images are obtained. Each satellite
image is processed with the modified STDContheor, COMB and MUMMPoly AC methods and
the initial STD and MUMM AC methods. Note that the low number of retrieved coincident
satellite images relative to the total number of in situ ρw(λ) LOG data, is partially due to the
measurements protocols which were not always meant for satellite validation exercises and hence
the time interval between measurements and satellite overpass often exceeded 2 hours.

To avoid the erroneous flagging of extremely turbid waters and to ensure a greater num-
ber of match-up pairs, the default L2-processing flags are slightly modified. The standard cloud
masking approach at 869 nm, which flags any pixel with a Rayleigh-corrected reflectance exceed-
ing 0.027, was shown to mask highly reflective water bodies even in clear atmospheric conditions
(Wang and Shi, 2006). For cloud detection over MODIS Aqua images, the use of the 2130 nm
SWIR band was therefore suggested with a threshold of 0.0018 (Franz et al., 2006; Dogliotti
et al., 2011). This SWIR-based cloud detection mask is applied here.

A second L2 default mask is also omitted for image processing, the high total radiance
flag (HILT) resulting from sensor saturation in the red and NIR bands. This flag is meant to
exclude pixels where the sensor saturates and, subsequently, does not ensure sufficient precision
to correctly characterize aerosols. However, high NIR radiance values may be encountered in
coastal areas and may therefore be erroneously masked. Note however, that the exclusion of this
flag needs to be taken with care since band saturation may lead to the failure of NIR-modelling
schemes for the AC.

To further characterize the in situ data, the classification scheme of Vantrepotte et al.
(2012) is used to allocate each spectrum to a water optical type. According to the ρw(λ) value
in the NIR spectral region, a turbidity level is also assigned to each spectrum.

6.2.2 Results and discussion

6.2.2.1 Match-up selection

Among the 52 coincident satellite-in situ data pairs, 42 pairs presented less than 6 valid pixels
within the 3 by 3 pixels windows and, except for the STD AC approach, for 1 pair the variation
coefficient exceeded 25% and was thus excluded for further data analysis. Hence, only 9 match-
up pairs were retained. The in situ ρw(λ) spectra for these 9 pairs are shown in Fig. 6.7.
The selected spectra show moderate to very turbid waters (according to the turbidity levels
previously described in Chapter 5). Unfortunately, none of the 9 spectra showed extremely
turbid waters. Indeed, the in situ-satellite pairs presenting extremely turbid water cases were
all excluded because the 3 by 3 pixel windows including the in situ data point showed less than
6 valid pixels (possibly due to glint contamination, cloud mask or proximity of the coast).

Among the 9 match-up pairs, different optical water types are encountered (according to
the classification scheme of Vantrepotte et al. (2012)). Water optical type and turbidity classes
assigned to each spectrum are given in Table 6.6. As shown in Fig. 6.7, the water mass optically
dominated by detrital and mineral material (Class 1 ‘Guyane-A20092881710’ spectra, Table 6.6)
shows a gradual slope, relative to the other spectra, from the blue to the green with a large peak
in the 550-600 nm spectral range followed by a lower peak around 700 nm. Mixed water masses
optically dominated by phytoplankton and significant CDOM concentrations (Class 4 ‘Belcolor’,
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Figure 6.7: Selected in situ ρw(λ) spectra from the LOG dataset used in the present study.

‘Guyane’ and ‘Phabop’ spectra, Table 6.6) also show these two peaks in the red-green and NIR
spectral regions but exhibit a much steeper slope from the blue to the green spectral domain.
The spectra classified as optically dominated by phytoplankton (Class 2 ‘Belcolor-A20101891300’
spectra) shows a gentle slope in the blue and peaks are less pronounced compared to the spectra
of Class 1 and 4.

Table 6.6: ρw(λ) in the NIR spectral domain for MODIS Aqua bands of the selected spectra
and assigned turbidity level and water optical type according to the classification scheme of
Vantrepotte et al. (2012).

Station Image ID ρw(748) ρw(869) Turbidity Water optical
level class

Belcolor A20101131235 0.0019 0.0009 moderate/very 4
A20101891300 0.0006 0.0005 moderate 2

Belgica A20091511410 0.0008 0.0007 moderate unclassified
A20091531400 0.0000 0.0000 non-turbid unclassified
A20101631400 0.0013 0.0012 moderate/very unclassified

Guyane A20092861720 0.0018 0.0010 moderate/very 4
A20092881710 0.0009 0.0018 moderate/very 1

Phabop A20041061225 0.0001 0.0001 moderate 4
A20041041240 0.0000 0.0000 non-turbid unclassified

Four spectra remained unclassified, the 3 spectra from the ‘Belgica’ field campaign and
1 spectra from the ‘Phabop’ campaign. These 4 spectra show a greater signal in the blue
spectral region which decreases with wavelength and exhibits very low or no signal in the red
and NIR spectral domain (> 600 nm). Such spectral shapes indicate rather clear water masses.
Subsequently, since the classification scheme of Vantrepotte et al. (2012) focuses on contrasted
coastal waters, it is not surprising that these spectra remain unclassified. Although our objective
is to improve ρw(λ) in turbid waters, these spectra are maintained for further data analysis to
evaluate the performance of the NIR-modelling schemes in less turbid waters too.

6.2.2.2 Qualitative and quantitative satellite ρw(λ) validation

The MODIS Aqua retrieved ρw(λ) from the selected spectra are plotted together with the in situ
data in Fig. 6.8. According to this figure, differences in NIR-modelling schemes mainly affect
ρw(λ) retrievals over Class 4 waters (Table 6.6). Indeed, in Figs. 6.8(a), (f) and (h), more
important discrepancies are observed between the satellite ρw(λ) values retrieved from the STD



6.2. Improving AC methods in extremely turbid waters: Case studies over the North-Sea
English Channel and the coast of French Guiana 139

and MUMM-based NIR modelling schemes. For the two first ‘Class 4’ cases (Figs. 6.8(a) and
(f)), the STDContheor NIR-modelling scheme gives the best results followed by the initial STD
approach. The MUMM-NIR modelling schemes, which gives the best results for the last Class
4 case (Fig. 6.8(h)), can not be differentiated from each other, indicating that both the MUMM
and MUMMPoly approaches retrieve the same ρw(λNIR) values. Results shown in Figs. 6.8(b)
and (g) show that satellite ρw(λ) values retrieved over Class 1 water masses were slightly closer
to ground truth when using the MUMM NIR-modelling scheme while in Class 2 water masses
the STD approach performed better. This is in agreement with the observations of Goyens et al.
(2013c).

For the unclassified spectra, both MUMM and STD-based NIR-modelling schemes lead
to similar results, except in Fig. 6.8(e), where the MUMM-based approaches perform slightly
better.

Hence, overall, these 9 case studies confirm the conclusion made in Section 6.1 and by
Goyens et al. (2013c), namely, that in Class 4 waters the STD-based NIR-modelling schemes
perform better while in Class 1 waters the MUMM-based NIR-modelling schemes tend to perform
slightly better. Moreover, as concluded from the global evaluation in Section 6.1, the STDContheor

NIR-modelling generally better estimates ρw(λ) compared to the initial scheme, in particular in
the blue spectral region (see Table 6.3).
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Figure 6.8: Selected in situ ρw(λ) spectra together with MODIS Aqua retrieved ρw(λ) spectra
using the COMB, STDContheor, MUMMPoly, MUMM and STD NIR-modelling schemes for
AC.
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To evaluate the NIR-modelling schemes according to the resulting spatial patterns in ρw(λ),
τ(869) and α(531, 869), MODIS Aqua images processed with the initial STD and MUMM NIR-
modelling schemes are compared with the images processed with the modified STDContheor and
MUMMPoly schemes. The COMB NIR-modelling scheme is not included for further evaluation
since, according to previous results, more work is needed such that a combined MUMM-STD
NIR-modelling scheme provides satisfactory results.

Here the generated MODIS Aqua images are shown for the Class 1 and Class 4 waters (see
Table 6.6) for the ‘Belcolor’, ‘Guyane’ and ‘Phabop’ field campaigns.

Images corresponding to the unclassified and Class 2 spectra (i.e., all spectra from the
‘Belgica’ field campaign and the ‘Belcolor-A20101891300’ and ‘Phabop-A20041041240’ spectra)
showed very similar ρw(λ) retrievals for all NIR-modelling schemes. These water masses also
exhibit lower ρw(λ) values and subsequently lower turbidity levels. Hence, the different NIR-
modelling schemes do not significantly impact the AC and consequently the satellite ρw(λ)
patterns over these images. It was therefore chosen to not include them in the present chapter.

The next paragraphs describe four MODIS Aqua images associated with the following
spectra, the ‘Belcolor-A20101131235’ (Fig. 6.8(a)), ‘Guyane-A20092861720’ (Fig. 6.8(f)) and
‘Phabop-A20041061225’ (Fig. 6.8(h)) optical water Class 4 spectra and the ‘Guyane-A20092881710’
(Fig. 6.8(g)) optical water Class 1 spectra. The true colour images distributed by the OBPG
are shown in Fig. 6.9 for these 4 cases.

Figure 6.9: True colour images associated with the in situ data ‘Belcolor-A20101131235’ (top
left), ‘Guyane-A20092861720’ (top right), ‘Phabop-A20041061225’ (bottom left) and ‘Guyane-
A20092881710’ (bottom right).

Figures 6.10, 6.11, 6.14, 6.15, 6.17 and 6.18 show the resulting MODIS Aqua images for
the Class 4 waters (see Table 6.6) for ρw(λ) when processed with the initial STD and MUMM
NIR-modelling schemes and when processed with the modified STDContheor and MUMMPoly NIR-
modelling schemes. Figures 6.12, 6.16 and 6.19 show the retrieved aerosol products, τ(869)
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and α(531, 869). When relevant, the estimated ρam(λ) is also shown (Fig. 6.13). Similarly,
Figs. 6.20 and 6.21 show the resulting MODIS Aqua images for the Class 1 waters and Fig. 6.22
the associated aerosol parameters, τ(869) and α(531, 869).

a. Belcolor - A20101131235

In Figs. 6.10 and 6.11, important differences are observed between the MUMM and STD-based
AC methods. The STD-based approaches retrieve higher ρw(λ) values relative to the MUMM-
based approaches especially along the British coasts. As observed in Fig. 6.8(a) for the match-
up pair ‘Belcolor-A2010113123500’, the STD-based AC methods tend to better approximate
the in situ marine signal, while the MUMM-based AC methods retrieve negative ρw(λ) values
in the blue spectral domain. The corresponding true-colour image in Fig. 6.9 also shows a
brownish ocean colour patch along the British coast nearby the Thames Estuary, indicating
more reflective waters as retrieved by the STD-based NIR-modelling schemes (black square in
Fig.6.10). Hence, the MUMM-based AC approaches seem to underestimate the water signal.
However, compared to initial MUMM NIR-modelling scheme, the MUMMPoly approach resulted
in some improvement. Indeed, as observed in Fig. 6.11, the modified scheme retrieved slightly
higher ρw(λ) values compared to the standard MUMM approach. This is easily noticeable in the
region of the Bristol Channel (black square in Fig. 6.11) for the blue and green bands. Differences
between the initial STD and STDContheor approaches are also noticeable (Fig. 6.10), in particular
nearby the Thames estuary where the STDContheor approaches results in more reflective water
(black square in Fig. 6.10).

According to Fig. 6.12, the MUMM-based and STD-based approaches show important dif-
ferences in terms of aerosol properties, especially in the Bristol Channel and nearby Cherbourg in
the English Channel. Higher values for α(531, 869) may be expected given the proximity of hu-
man activities at both locations. For this region, the STD-based approaches seem thus to provide
better aerosol parameters. Spatial heterogeneity in α(531, 869) is also more pronounced with
the STD-based AC approaches compared to the MUMM-AC approaches (Fig. 6.12), suggesting
the non-valid spatial homogeneity assumption for aerosol reflectance adopted by the MUMM-
based NIR-modelling schemes. In contrast, nearby the Thames Estuary, smaller α(531, 869)
values are encountered with the STD-based NIR-modelling schemes. The STDContheor approach
even retrieved negative α(531, 869) over this region, indicating rather maritime aerosols. Hence,
both STD-AC approaches seemed to erroneously retrieve the aerosol properties in this coastal
region. However, although the STD-based approaches may result in erroneous aerosol products,
both approaches provided realistic images for ρw(λ). Moreover, as observed when comparing
Figs. 6.10, 6.12 and 6.13, beside some patterns near Bristol and the Thames Estuary, oceanic
and aerosol parameters do not seem to be spatially correlated. This is coherent since the aerosol
parameters should not affect spatial patterns in ρw(λ) estimations.

b. Guyane - A20092861720

Similarly to the previous case, the MUMM-based AC methods retrieve lower ρw(λ) values in the
blue and green spectral region relative to the STD-based approaches, for the MODIS Aqua
images associated with the ‘Guyane - A20092861720’ spectra (Figs. 6.14 and 6.15). The
STDContheor NIR-modelling scheme exhibits the highest values, in particular along the coast
of Suriname (black box in Fig.6.14). In the red and NIR spectral region, differences resulting
from the distinctive NIR-modelling schemes are not as pronounced. Figures 6.14, 6.15 and
6.16 also confirm the added value of the MUMM-based approaches in terms of spatial coverage.
Indeed, nearby the coast, in Fig. 6.14, small patches of negative ρw(λ) values are observed with
both STD-AC methods. These approaches also failed to retrieve α(531, 869) values in this re-
gion (Fig. 6.16). Both approaches show indeed very small τ(869) and α(531, 869) estimations
along the coast. Hence, similarly to the previous case (see above for ‘Belcolor - A20101131235’),
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the STD-based AC approaches still retrieve valuable ρw(λ) values, although unlikely aerosol
parameters are retrieved.

c. Phabop - A20041061225

As observed on the true color image in Fig. 6.9, this case study shows sudden transitions in
water masses with darker waters in the English Channel along the French and Belgian coast,
rather blue-green water masses nearby the Thames Estuary and more turbid brownish waters
along the English coast.

According to the match-up exercise in Fig. 6.8(h), the STD NIR-modelling scheme appears
to significantly overestimate ρw(λ) at all wavelengths compared to the other NIR-modellings
schemes and relative to the in situ data. This is in agreement with Figs. 6.17 and 6.18.
Indeed, along the French coast, this AC approach retrieves a band of high reflective water (in
the visible and NIR spectral region, stretching from the Belgian coast to the French “Baie de
Somme”) which is not or less observable on the images processed with the other NIR-modelling
schemes. However on the true colour image this band exhibits rather darker blue colours relative
to the surrounding waters (Fig. 6.9). Hence, the initial STD NIR-modelling scheme probably
greatly overestimates ρw(λNIR) in this region, while the STDContheor NIR-modelling scheme
seems to retrieve more realistic results (lower ρw(λ) values) relative to the true colour image.
This observation is promising indicating that the STDContheor approach does not systematically
tend to retrieve higher ρw(λ) values compared to the initial STD approach (as observed for the
other cases).

In the Thames Estuary (black box in Fig. 6.17), the modified STD NIR-modelling scheme
results in some questionable speckle patterns for ρw(λ). This is also observable on the MODIS
Aqua images for τ(869) and α(531, 869) (Fig. 6.19). Indeed, in the north of the Thames Estuary,
discontinuous patterns of negative or near-zero τ(869) and α(531, 869) values are observed nearby
extremely high values for both aerosol parameters (τ(869) > 0.5 and α(531, 869) > 1.8). The
initial STD approach also seems to fail over this coastal region. Abrupt changes in both τ(869)
and α(531, 869) are observed for this NIR-modelling scheme. Moreover, Figs. 6.17 and 6.19
show similar spatial patterns for the images processed with the STD NIR-modelling scheme,
indicating a non-physical correlation between the aerosol and marine parameters. These ques-
tionable results obtained with the STD-based AC methods, may arise from two imperfections in
the image processing. First, the non-systematic application of the red-bounding or blue-green
spectral relationship constraints in the NIR-modelling scheme may lead to abrupt changes in
neighbouring ρw(λNIR) values explaining the speckle patterns observed in Fig. 6.17 (black box).
The NIR-modelling scheme could therefore be modified (e.g., including smoothing techniques
within or after the iteration model) to prevent sudden changes in the modelled ρw(λNIR). Sec-
ondly, the abrupt changes in both τ(869) and α(531, 869) coincide with an area where the red
band sensor saturates (ρw(λred) ∼ 0.03 in Fig. 6.17 and Fig. 6.18, Table 3.1 in Chapter 3). To
increase the spatial coverage in extremely turbid waters, this flag was omitted for image pro-
cessing. However, as mentioned previously, when the ocean bands reach their saturation limits,
sufficient precision to correctly characterize aerosols and estimate ρw(λ), is not guaranteed.

As observed previously, the MUMM-based approaches result in less spatial variations in
α(531, 869), compared to the STD-based approaches (Fig. 6.19). However, it provides a bet-
ter coverage for both marine and aerosol parameters. Important differences in ρw(λ) retrievals
are also observed between the STD and MUMM-based approaches, with lower ρw(λ) values
along the coasts of Belgium and the Netherlands when processed with the MUMM-based ap-
proaches (Figs. 6.17 and Fig. 6.18). The suspicious speckle patterns observed with the STD-
based approaches are not present when the MUMM-based NIR-modelling schemes are used for
the AC (black box Figs. 6.17 and 6.19), possibly due to the spatial homogeneity assumption in
aerosol reflectance and the application of the constant NIR water reflectance ratio. According
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to Fig. 6.8(h), the MUMM-based AC methods also resulted in ρw(λ) values closer to ground
truth, while the STDContheor NIR-modelling scheme led to negative ρw(λ) retrievals. According
to Fig. 6.18, the MUMMPoly NIR-modelling scheme also present more reflective waters com-
pared to the initial MUMM AC method, especially North of the Thames Estuary (black box in
Fig. 6.18). Hence, for this particular case, the MUMMPoly AC method seems to perform better
than the other AC approaches.

d. Guyane - A20092861710

Figure 6.20 shows the MODIS Aqua images associated with the Class 1 water spectra of French
Guiana. When comparing the two MUMM-based approaches with each other, only small differ-
ences are encountered. This is also true when comparing the STD and MUMM-based approaches
with each other. However, the STD-based approaches still result in overall more reflective wa-
ters and, as observed for previous cases (a, b and C), the marine signal with the STDContheor

NIR-modelling scheme is slightly higher relative to the initial STD approach. When looking at
the aerosol properties the algorithms retrieve relatively high τ(869) values for pixels along the
coast (> 0.5, Fig. 6.22). These pixels are also flagged in Figs. 6.20 and 6.21, due to negative
ρw(λ) retrievals. For the STD approach, we also observe a thin band of higher τ(869) values
in the South-Eastern corner of the image along the coasts of Brazil. This thin band is not as
pronounced on the images processed with the other NIR-modelling schemes. On the correspond-
ing true colour image (Fig. 6.9, bottom right picture), variations are observed from brown to
blue-green water colours in this area, probably concurring with sediment-rich waters. Hence, the
STD modelling scheme may have detected these variations. However, these seem to correspond
to variations in aerosol parameters. Additional research should be done to verify this fact.

Similarly to the previously discussed case over French Guiana (‘Guyane - A20092861720’,
Figs. 6.14, 6.15, and 6.16), α(531, 869) appeared to be better retrieved with the MUMM-based
AC methods (Fig. 6.22). Indeed, Fig. 6.22 shows a small increase in α(531, 869) values when
approaching the coast while with the STD based AC methods we observe a rather abrupt change
in α(531, 869) which could possibly result from glint contamination.

6.3 Conclusion

The present chapter evaluates, based on MODIS Aqua satellite-in situ match-ups for ρw(λ),
τ(869) and α(531, 869), three modified NIR-modelling schemes suggested to improve ρw(λ) re-
trievals, the MUMMPoly, STDContheor and COMB NIR-modelling schemes (all detailed in the
Chapter 5). Similarly to the MUMM and STD AC approach, these NIR-modelling schemes are
implemented in the GW94 AC algorithm to extent the algorithm to turbid waters where the
black pixel assumption is invalid. The STDContheor and COMB approaches are STD-based NIR-
modelling schemes, while the MUMMPoly approach is a MUMM-based NIR-modelling scheme.
The newly suggested NIR-modelling schemes are evaluated based on a match-up exercise per-
formed with AERONET-OC and LOG data and a visual inspection of processed MODIS Aqua
images over the turbid waters of French Guiana and the North Sea-English Channel.

According to the sensitivity studies outlined in Chapter 5, the suggested modified NIR-
modelling schemes should mainly improve ρw(λ) retrievals in very and extremely turbid waters.
However, improvements in ρw(λ) were also noticeable with the validation exercise performed
with the AERONET-OC and LOG data, containing mainly moderately turbid waters spectra
(Section 6.1), in particular for Class 1 and 4 spectra (defined as water masses optically dominated
by detrital and mineral material and by phytoplankton and high loads of CDOM, respectively).
Relative errors and biases slightly decreased with the STDContheor approach compared to the
initial STD AC method (by about 1%). Improvements with the MUMMPoly approach, relative
to the initial MUMM AC method, was not as pronounced (< 1% differences in RE and bias). For



the unclassified spectra (mostly showing open ocean water spectral shapes) and Class 2 waters
(defined as water masses mainly dominated by phytoplankton), the differences in NIR-modelling
schemes did not significantly affect the AC method.

A first advantage encountered with the STDContheor and COMB NIR-modelling schemes is
the number of retrieved match-up pairs. Indeed, for the global validation, both the STDContheor

and COMB AC methods retrieved more valid match-ups compared to the STD AC method (771,
772, and 762, respectively). However, both modified approaches also retrieved more negative
ρw(λ) values relative to the initial STD approach (12%, 15% and 16%, with the STD, STDContheor

and COMB NIR-modelling schemes, respectively).
Overall, the modified NIR-modelling schemes provided improved ρw(λ) estimations com-

pared to the initial schemes. Only, the COMB AC method, which was meant to combine the
MUMMPoly and STDContheor NIR-modelling schemes to increase the spatial coverage of the ini-
tial AC methods, resulted in greater overall errors compared to the initial schemes. Hence, more
work is needed such that a combined MUMM-STD NIR-modelling scheme provides satisfactory
results. The COMB AC approach was therefore not further investigated.

According to the visual inspection of MODIS Aqua images from the North Sea-English
Channel and the French Guiana waters, the MUMMPoly and STDContheor AC approaches showed
more reflective ρw(λ) values in turbid waters, relative to the initial MUMM and STD AC meth-
ods, respectively. Compared to the initial STD AC approach, the STDContheor also better
separated the marine and aerosol contributions. Indeed, the STD AC approach often showed
similar spatial patterns between aerosol and ocean colour products.

Although the constrained AC methods resulted in some improvements, limitations and
inaccuracies were still noticed. Indeed, non-physical speckle patterns were observed on the
MODIS Aqua ρw(λ) images processed with the STDContheor NIR-modelling scheme. This scheme
should also be further improved to ensure a better spatial coverage. Similarly, the MUMMPoly

NIR-modelling scheme still tended to underestimate ρw(λ) values. More work should also be
done such that this AC approach accounts for spatial heterogeneity in aerosol properties.

Improvements in satellite ρw(λ) retrievals have thus been achieved with these spectral
relationship-forced NIR-modelling schemes, but more work is still required to further improve
ρw(λ) values.
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General conclusion and perspectives

Atmospheric correction (AC) in ocean colour remote sensing is intended to remove the contri-
bution of the atmosphere from the sensor measured signal to estimate the ocean colour and,
subsequently, to retrieve marine parameters. However AC processes remain a challenge in op-
tically complex and highly productive waters. Indeed, in such waters, the classic black pixel
assumption, referred as the GW94 AC method (Gordon and Wang, 1994), is not valid (Siegel
et al., 2000), and the complexity of the water optical properties makes it difficult to accurately
quantify the atmospheric contribution. To solve these issues, multiple alternative AC methods
have been suggested for turbid waters (e.g., Arnone et al., 1998; Moore et al., 1999; Siegel et al.,
2000; Ruddick et al., 2000; Stumpf et al., 2003; Ruddick et al., 2006; Bailey et al., 2010; Wang
and Shi, 2005, 2007; Wang et al., 2009; Gordon et al., 1997; Chomko and Gordon, 1998; Chomko
et al., 2003; Kuchinke et al., 2009a,b; Jamet et al., 2005; Brajard et al., 2006a; Doerffer and
Schiller, 2007; Schroeder et al., 2007; Doeffer and Schiller, 2008; IOCCG, 2010; Brajard et al.,
2012). However, the significant contribution of the atmosphere and the radiometric accuracy
specifications determined by a large diversity of ocean colour applications (Hooker et al., 1992,
2002; Franz et al., 2007), requires further improvement in AC for ocean colour remote sensing
images. This brings us to the main objectives of my Ph.D. thesis consisted in (1) validating
existing AC methods developed for optically complex waters, with a focus on MODIS Aqua
ocean colour images, and (2) suggesting further improvements in the aim to provide accurate
remote sensing derived water properties.

First a global validation of four common AC methods developed for turbid waters was
carried out with in situ water-leaving reflectance (ρw(λ)) data from the AERONET-OC and
LOG databases. The four methods are (1) the NASA official GW-94 based algorithm including
an iterative NIR-modelling scheme with a bio-optical model (Stumpf et al., 2003; Bailey et al.,
2010) (referred to as ‘STD’), (2) the GW94-based algorithm assuming spatial homogeneity of the
atmosphere over the region of interest in the NIR and a constant NIR water-leaving reflectance
ratio (Ruddick et al., 2000, 2006) (referred to as ‘SIMIL’ or ‘MUMM’), (3) the GW94-based
algorithm using the Short-Wave-Infra-Red (SWIR) bands in very turbid waters (Wang et al.,
2009) (referred to as ‘NIR-SWIR’) and (4) the direct inversion approach based on an artificial
neural network suggested by Schroeder et al. (2007) (referred to as ‘NN’). This global validation
exercise also included an evaluation of the performances of the algorithms as a function of the
optical water type (Vantrepotte et al., 2012). Results from this validation exercise suggested
that, overall, the STD AC method performed the best. However, it failed to retrieve accurate
ρw(λ) estimations in water masses optically dominated by detrital and mineral material. For
these water masses, the MUMM AC method provided slightly better results. The latter also
ensured a greater spatial coverage. Results also showed that the performances of all AC methods
were significantly reduced in water masses optically dominated by high CDOM concentrations.
The NN AC method presented better performances compared to the GW94-based algorithms
in the blue and red spectral regions. However, the sensitivity of this AC approach to the
used training dataset, for the development of the neural-network inversion method, significantly

159
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affected the number of valid retrieved match-up pairs. The NIR-SWIR AC method provided
similar results to the STD AC approach, possibly because the AERONET-OC and LOG datasets
presented only low to moderate turbidity levels. Nonetheless, for some match-up pairs, where
switching between NIR and SWIR AC components occurred, abrupt changes in satellite ρw(λ)
retrievals were observed between neighbouring pixels. Hence, this switching AC approach should
be improved to avoid non-physical spatial heterogeneity in ρw(λ).

Following the global and class-specific evaluation of the turbid waters AC methods, several
areas of improvements were defined to enhance AC methods for optically complex waters. This
work focussed on improving the STD and MUMM AC methods and attempted to extent both
NIR-modelling schemes to a wider range of contrasted coastal waters. Indeed, it was found that
the bio-optical model within the STD NIR-modelling scheme, relying largely on Chla estimations
to model ρw(λNIR), was inappropriate for mineral and detrital sediment rich waters or waters
optically dominated by important loads of CDOM. Similarly, the class-specific validation exercise
demonstrated that the MUMM AC approach should be revised to avoid underestimations in
ρw(λ).

To extend these existing NIR-modelling schemes, validated spectral relationship constraints
were added in the NIR-modelling schemes. Spectral relationships allow to retrieve ρw(λ) values
at a given wavelength according to the water signal at one or more other bands. Hence, such
relationships encompass the spectral dependency of the absorption and backscattering coeffi-
cients simultaneously and, subsequently, do not require any information on these properties.
Such relationships have already been suggested by numerous authors to constrain AC methods
of past and present sensors. In this work an extensive overview and validation of these red
and NIR spectral relationships found in the literature was performed and led to the selection of
globally valid spectral relationships, the red bounding equations suggested by Lee et al. (2009)
to delineate red ρw(λ) values according to the water signal in the green, and a polynomial NIR
spectral relationship, suggested by Wang et al. (2012) for the NIR-modelling scheme of the AC
method of GOCI.

To improve the initial MUMM NIR-modelling scheme, the constant NIR reflectance ratio
(Ruddick et al., 2000, 2006), observed as non-valid for extremely turbid waters (Shi and Wang,
2009; Doron et al., 2011; Goyens et al., 2013a), was replaced by the polynomial NIR spectral
relationship (referred to as the MUMMPoly AC method), and, both red and NIR spectral rela-
tionships, were used to constrain the STD NIR-modelling scheme (referred to as the STDContheor

AC method).

The potential of these spectral relationships to improve satellite retrieved ρw(λ) was first
investigated based on a sensitivity study conducted with in situ ρw(λ) and simulated ρrc(λ)
data. Results of this study showed that the constrained STD and polynomial based MUMM NIR-
modelling schemes (referred to as STDCon and MUMMPoly, respectively), performed better than
the initial approaches, in particular in very turbid waters and in the blue spectral region. These
results were promising since the global validation exercise concluded that the greatest errors
in ρw(λ) were observed in this spectral range. However, for both algorithms, the added value
of the spectral relationships was slightly reduced. Indeed, the number of valid retrieved ρw(λ)
spectra with the STDCon NIR-modelling scheme slightly decreased compared to the initial STD
NIR-modelling scheme, and the sensitivity to erroneously retrieved aerosol properties with the
MUMMPoly NIR-modelling scheme slightly increased compared to the MUMM NIR-modelling
scheme.

To further improve ρw(λ) retrievals, two additional spectral relationships were also sug-
gested showing relatively good performances, a red-NIR hyperbolic function (relating ρw(667)
and ρw(748)) and a blue-green linear relationship (relating ρw(λ) at 443 and 547 nm). To
evaluate if the empirical spectral relationships were globally valid, I also attempted to confirm
the spectral relationships with a theoretical basis and concluded that the empirically retrieved
parameters of the red-NIR spectral relationship appeared to be appropriate only for a certain
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range of turbidity. However, it was found that the hyperbolic form of the relation was glob-
ally valid. These findings led to an additional modified STD NIR-modelling scheme, referred
to as the STDContheor NIR-modelling scheme. Modifications in the STDContheor NIR-modelling
scheme were the following;(1) the interpolation of bb(λ) from the red to the NIR spectral domain
was replaced by the theoretical red-NIR hyperbolic (with parameters varying according to the
estimated inherent optical properties) and the empirical NIR polynomial spectral relationship,
and, (2) erroneous estimations of blue and red ρw(λ) within the bio-optical model were corrected
with the blue-green and red bounding equations.

A combined MUMMPoly-STDContheor NIR-modelling scheme was also suggested to retrieve
more valid ρw(λ) spectra by using the MUMMPoly NIR-modelling scheme when STDContheor

method failed to retrieve physical ρw(λ) values. However, this combined NIR-modelling scheme
showed some large inconsistencies and was therefore not further investigated.

An evaluation exercise based on in situ-satellite match-up pairs for ρw(λ), τ(869) and
α(531, 869), confirmed the results of the sensitivity studies. Indeed, both STDContheor and
MUMMPoly NIR-modelling schemes resulted in improved satellite ρw(λ) retrievals compared
to the initial STD and MUMM AC approaches, respectively. In turbid coastal waters, the
MUMMPoly NIR-modelling scheme resulted in more reflective waters compared to the initial
scheme. This is also true for the STDContheor approach. Moreover, a better separation was found
between aerosol and marine parameters with the STDContheor approach. Some inconsistencies
encountered with the initial STD NIR-modelling scheme were also corrected with the STDContheor

NIR-modelling.

This study provided thus a comprehensive evaluation of the different turbid water AC
approaches and resulted in important findings and suggestions improving ρw(λ) retrievals in
optically complex waters. However, imperfections in the AC are still encountered. Indeed, non-
physical negative ρw(λ) retrievals are still retrieved. Questionable speckle patterns of ρw(λ)
were also observed on the MODIS Aqua images processed with the STDContheor NIR-modelling,
and, the MUMMPoly NIR-modelling scheme was still affected by non-homogeneity in aerosol
properties. Hence, perspectives to further improve ρw(λ) retrievals are multiple and this study
could be continued to further investigate and enhance the suggested NIR-modelling schemes.
Ideas of possible improvements may be:

• How to avoid non-physical negative ρw(λ) retrievals?

Negative ρw(λ) are non-physical and should be avoided. A possible way to reduce the
number of negative ρw(λ) retrievals, may consist to force the iteration in the STD-based
NIR-modelling schemes until ρw(λ) estimations are positive over the entire spectrum. The
use of an offset to correct for negative ρw(λ) retrievals may also be examined. Such an
offset could be implemented in both STD and MUMM-based AC methods. As observed
by Goyens et al. (2013a), the NIR polynomial spectral relationship also slightly under-
estimated low and extreme ρw(λNIR) values. Hence, a rectification of this spectral rela-
tionship may eventually reduce the number of negative ρw(λ) retrievals with the modified
NIR-modelling schemes. Future ocean colour sensors may also provide more spectral bands
and better spectral resolutions whereby spectral relationships may be further improved.

• Should the speckle patterns in ρw(λ) be smoothed?

Non-physical speckle patterns, observed with the STDContheor, were partially due to the
non-systematic application of the red and blue-green constraints. This may be rectified by
including a smoothing technique within the NIR-modelling scheme (e.g., using weighting
functions throughout the iteration process) or by including class-specific constraints and
thus including a classification scheme within the iterative process.

• Spectral relationship constraints to improve both marine and aerosol parameters?
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As demonstrated with the sensitivity studies in Chapter 5, although the NIR-modelling
scheme may perfectly retrieve ρw(λNIR), the AC method may still fail to match the in situ
data because of inaccuracies in the retrieved aerosol parameters. Hence, rather than forcing
the NIR-modelling scheme solely (as suggested in this work), constraints could be applied
to the entire AC method and, subsequently, also correct for imperfections in the aerosol
component of the AC approach. Spectral relationships should thus encompass correction
for errors on marine and aerosol reflectances. Accordingly, it may be worth evaluating if
spectral relationships could be developed based on Rayleigh corrected reflectances rather
than on ρw(λ) solely (e.g., using aerosol-model-specific spectral relationships). The use of
bounding equations to constrain either top of atmosphere or Rayleigh corrected reflectances
may also be investigated. In this case both the aerosol model selection component and
the NIR-modelling scheme will be constrained simultaneously. Note however that such
method may lead to unlikely spatially correlated marine and aerosol parameters.

• Could we use aerosol products from other sources?

The aerosol models used by the ocean colour community (e.g., Shettle and Fenn, 1979;
Ahmad et al., 2010) are an oversimplified representation of the atmospheric aerosols. More-
over, deriving aerosol properties from ocean colour bands may result in significant inaccura-
cies. Including data from external sources to determine the aerosol reflectance may reduce
such inaccuracies and, subsequently, improve ρw(λ) retrievals (Julie Letertre at LOA, per-
sonal communication). For the MODIS Aqua images, for instance, one should investigate
if MODIS Atmosphere products may be used (http://modis-atmos.gsfc.nasa.gov/)
for the AC.

• Should the level-2 flags and masks be modified?

In this work, the difficulty to ensure reliable Rayleigh-corrected ρ(λ) retrievals was briefly
illustrated in the last chapter. Indeed, to avoid pixel flagging over extremely turbid wa-
ters, the default cloud mask was modified (i.e., a SWIR-based cloud mask was used) and
the ‘sensor saturation’ flag was not considered. However, this also includes the possible
consideration of pixels where the precision of the sensor signal is not sufficient to ensure
accurate AC. Hence, to further improve satellite ρw(λ) retrievals over very and extremely
turbid waters, more work is required to investigate the L2-processing flags and masks and
to improve the accuracy of Rayleigh-corrected ρ(λ) spectra.

If this Ph.D. project could be drawn out, these perspectives will be further investigated.
To conclude, I hope that the results of the validation exercises, class-specific evaluations

and sensitivity studies conducted in this studies as well as the suggested improvements for the
STD and MUMM NIR-modelling schemes will be helpful for the ocean optics community to aid
movements towards better radiometric accuracy and to provide global marine parameters for
the scientific community.

http://modis-atmos.gsfc.nasa.gov/
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