
HAL Id: tel-01338604
https://theses.hal.science/tel-01338604

Submitted on 28 Jun 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A contribution to the theory of (signed) graph
homomorphism bound and Hamiltonicity

Qiang Sun

To cite this version:
Qiang Sun. A contribution to the theory of (signed) graph homomorphism bound and Hamiltonicity.
Information Theory [cs.IT]. Université Paris Saclay (COmUE), 2016. English. �NNT : 2016SACLS109�.
�tel-01338604�

https://theses.hal.science/tel-01338604
https://hal.archives-ouvertes.fr


NNT : 2016SACLS109

THÈSE DE DOCTORAT
DE

L’UNIVERSITÉ PARIS-SACLAY
PRÉPARÉE  À

L’UNIVERSITÉ PARIS-SUD

LABORATOIRE DE RECHERCHE EN INFORMATIQUE

ECOLE DOCTORALE N° 580
Sciences et technologies de l’information et de la communication

Spécialité Informatique

Par

M. Qiang Sun

A contribution to the theory of (signed) graph
homomorphism bound and Hamiltonicity

Thèse présentée et soutenue à Orsay, le 4 mai 2016 :

Composition du Jury :

Mme Kang, Liying Professeur, Shanghai University Président
M. Sopena, Éric Professeur, Université de Bordeaux Rapporteur
M. Woźniak, Mariusz Professeur, AGH University of Science and Technology Rapporteur
M. Manoussakis, Yannis Professeur, Université Paris-Sud Examinateur
M. Li, Hao Directeur de Recherche, CNRS Directeur de thèse
M. Naserasr, Reza Chargé de Recherche, CNRS Co-directeur de thèse



“When things had been classified in organic categories,

knowledge moved toward fulfillness.”

Confucius (551-479 B.C.), The Great Learning

i



Acknowledgements

First of all, I would like to thank my supervisors Hao Li and Reza Naserasr for

giving me the opportunity to work with them.

I am grateful that Hao helped me a lot for administrative stuff when I applied my

PhD position here. I appreciate that he taught me how to find a research problem and

how to solve the problem when you find it. He is very nice to help me not only on works

but also on the things of life. I really appreciate his help.

I also would like to thank Reza. He taught me how to do research, how to write

papers, and how to give a presentation. I am grateful that he patiently explained things

that hard to understand in very detail.
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Abstract

In this thesis, we study two main problems in graph theory: homomorphism problem of

planar (signed) graphs and Hamiltonian cycle problems.

As an extension of the Four-Color Theorem, it is conjectured ([80], [41]) that every

planar consistent signed graph of unbalanced-girth d+1(d ≥ 2) admits a homomorphism

to signed projective cube SPC(d) of dimension d. It is naturally asked that:

Is SPC(d) an optimal bound of unbalanced-girth d + 1 for all planar consistent

signed graphs of unbalanced-girth d+ 1? (∗)

In Chapter 2, we prove that: if (B,Ω) is a consistent signed graph of unbalanced-

girth d which bounds the class of planar consistent signed graphs of unbalanced-girth

d, then |B| ≥ 2d−1. Furthermore, if no subgraph of (B,Ω) bounds the same class,

δ(B) ≥ d, and therefore, |E(B)| ≥ d · 2d−2. Our results showed that if the conjecture

([80], [41]) holds, then SPC(d) is an optimal bound both in terms of number of vertices

and number of edges.

When d = 2k, the problem (∗) is equivalent to the homomorphisms of graphs: is

PC(2k) an optimal bound of odd-girth 2k + 1 for P2k+1 (the class of all planar graphs

of odd-girth at least 2k + 1) ? Note that K4-minor free graphs are planar graphs, is

PC(2k) also an optimal bound of odd-girth 2k + 1 for all K4-minor free graphs of odd-

girth 2k+1 ? The answer is negative. In [6], a family of graphs of order O(k2) bounding

the K4-minor free graphs of odd-girth 2k + 1 were given. Is this an optimal bound? In

Chapter 3, we proved that: if B is a graph of odd-girth 2k + 1 which bounds all the

K4-minor free graphs of odd-girth 2k + 1, then |B| ≥ (k+1)(k+2)
2 . Our result together

with the result in [6] shows that order O(k2) is optimal.

Furthermore, if PC(2k) bounds P2k+1, then PC(2k) also bounds P2r+1 (r > k).

However, in this case we believe that a proper subgraph of PC(2k) would suffice to

boundP2r+1, then what’s the optimal subgraph of PC(2k) that bounds P2r+1 ? The

first case of this problem which is not studied is k = 3 and r = 5. For this case, Naserasr

[81] conjectured that the Coxeter graph bounds P11. Supporting this conjecture, in

Chapter 4, we prove that the Coxeter graph bounds P17.

In Chapters 5, 6, we study the Hamiltonian cycle problems. Dirac showed in 1952

that every graph of order n is Hamiltonian if any vertex is of degree at least n
2 . This

result started a new approach to develop sufficient conditions on degrees for a graph to

be Hamiltonian. Many results have been obtained in generalization of Dirac’s theorem.

In the results which strengthen Dirac’s theorem, there is an interesting research area: to
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control the placement of a set of vertices on a Hamiltonian cycle such that these vertices

have some certain distances among them on the Hamiltonian cycle.

In this thesis, we consider two related conjectures. One conjecture is given by

Enomoto: if G is a graph of order n ≥ 3 and δ(G) ≥ n
2 + 1, then for any pair of vertices

x, y in G, there is a Hamiltonian cycle C of G such that distC(x, y) = bn2 c. Under the

same condition of this conjecture, it was proved in [32] that a pair of vertices are located

at distances no more than n
6 on a Hamiltonian cycle. In [33], Faudree and Li studied

the case δ(G) ≥ n+k
2 , 2 ≤ k ≤ n

2 . They proved that any pair of vertices can be located

at any given distance from 2 to k on a Hamiltonian cycle. Moreover, Faudree and Li

proposed a more general conjecture: if G is a graph of order n ≥ 3 and δ(G) ≥ n
2 + 1,

then for any pair of vertices x, y in G and any integer 2 ≤ k ≤ n
2 , there is a Hamiltonian

cycle C of G such that distC(x, y) = k.

Using Regularity Lemma and Blow-up Lemma, we gave a proof of Enomoto’s con-

jecture for graphs of sufficiently large order in Chapter 5, and gave a proof of Faudree-Li

conjecture for graphs of sufficiently large order in Chapter 6.

Keywords: signed graphs, projective cubes, homomorphism, walk-power, Hamil-

tonian cycle, Regularity Lemma.
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Résumé

Dans cette thèse, nous étudions deux principaux problèmes de la théorie des graphes: le

problème d’homomorphisme des graphes planaires (signé) et celui du cycle Hamiltonien.

Généralisant le théorème des quatre couleurs, il est conjecturé ([80], [41]) que tout

graphe signé cohérent planaire de maille-déséquilibré d + 1(d ≥ 2) est homomorphe au

cube projectif signé SPC(d) de dimension d. On se demande naturallement:

SPC(d) est-elle une borne optimale de maille-déséquilibré d+1 pour tous les graphes

signé cohérent planaires de maille-déséquilibré d+ 1?

Au Chapitre 2, nous prouvons que si (B,Ω) est un graphe signé cohérent de maille-

déséquilibré d qui borne la classe des graphes signés cohérents planaires de maille-

déséquilibré d + 1, alors |B| ≥ 2d−1. Par ailleurs, si aucun sous-graphe de (B,Ω) ne

borne la même classe, alors le degré minimum de B est au moins d, et par conséquent,

|E(B)| ≥ d · 2d−2. Notre résultat montre que si la conjecture ci-dessus est vérifiée, alors

le cube SPC(d) est une borne optimale à la fois en termes des nombre de sommets et

de nombre des arêtes.

Lorsque le d = 2k, le problème est équivalent aux homomorphismes de graphe:

PC(2k) est-elle une borne optimale de maille-impair 2k + 1 pour P2k+2 (la classe de

tous graphes planaires de maille-impair au moins 2k + 1)? Observant que les graphes

K4-mineur libres sont les graphes planaires, PC(2k) est-elle aussi une borne optimale

de maille-impair 2k+ 1 pour tous les graphes K4-mineur libres de maille-impair 2k+ 1?

La réponse est négative, dans [6], une famille de graphes d’ordre O(k2) qui borne les

graphes K4-mineur libres de maille-impair 2k+1 est donnée. La borne est-elle optimale?

Au Chapitre 3, nous prouvons que si B est un graphe de maille-impair 2k+ 1 qui borne

tous les graphes K4-mineur libres de maille-impair 2k+ 1, alors |B| ≥ (k+1)(k+2)
2 . Notre

résultat, avec que le résultat de [6] montre que l’ordre O(k2) est optimal.

En outre, si PC(2k) borne P2k+1, alors PC(2k) borne également P2r+1 (r > k).

Cependant, dans ce cas, nous croyons qu’un sous-graphe propre de PC(2k) suffirent à

borne P2r+1. Alors quel est le sous-graphe optimal de PC2k) qui borne P2r+1? Le

premier cas de ce problème qui n’est pas étudiée est k = 3 et r = 5. Dans ce cas,

Naserasr [81] conjecturé que le graphe Coxeter borne P11. Soutenir cette conjecture, au

Chapitre 4, nous prouvons que le graphe Coxeter borne P17.

Au Chapitres 5, 6, nous étudions les problèmes du cycle hamiltonien. Dirac a

montré en 1952 que chaque graphe d’ordre n est Hamiltonien si tout sommet est de

degré au moins n
2 . Ce résultat a commencé une nouvelle approche pour développer
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des conditions suffisantes sur degrés pour caractériser les graphes hamiltoniens. De

nombreux résultats ont été obtenus généralisant le théorème de Dirac. Parmi eux, il y a

une zone de recherche intéressant: autour de la mise en place d’un ensemble de sommets

sur un cycle hamiltonien tel que ces sommets aient une certaine distance entre eux sur

ce cycle.

Dans cette thése, nous considérons deux conjectures connexes, une proposir par

Enomoto: si G est un graphe d’ordre n ≥ 3 et δ(G) ≥ n
2 + 1. Alors pour toute paire

de sommets x, y dans G, il y a un cycle hamiltonien C de G tel que distC(x, y) = bn2 c.
Motivé par cette conjecture, il a été prouvé, dans [32], qu’une paire de sommet ne peut

être séparée par une distance supérievre à n
6 sur un cycle hamiltonien. Dans [33], les

cas δ(G) ≥ n+k
2 , 2 ≤ k ≤ n

2 , sont considérés, et il est prouvé qu’une paire de sommets

à distance 2 à k peut être posé sur un cycle hamiltonien. En outre, Faudree et Li ont

proposé une conjecture plus générale: si G est un graphe d’ordre n ≥ 3 et δ(G) ≥ n
2 + 1,

alors pour toute paire de sommets x, y dans G et tout entier 2 ≤ k ≤ n
2 , il y a un

hamiltonien cycle C de G tel que distC(x, y) = k.

Utilisant le Lemme de Régularité et le Blow-up Lemma, dans le chapitre 5, nous

donnons une preuve de Enomoto conjecture pour les graphes d’ordre suffisant, et dans le

chapitre 6, nous donnons une preuve de la conjecture de Faudree et Li pour les graphes

d’order suffisant.

Mots-clés : graphes signé, cubes projectifs, homomorphisme, walk-power, cycle

hamiltonien, Regularity Lemma.
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Chapter 1

Introduction

In 1736, Leonhard Euler gave a nice proof of a negative solution of well-known Seven

Bridges of Königsberg problem. In his solution, he replaced each mass land with, in

modern term, an abstract vertex, and each bridge with an abstract connection, in modern

term, an edge. The resulting mathematical structure is called a graph now. Thus

Leonhard Euler laid the foundation of graph theory and his solution of Seven Bridges of

Königsberg problem is considered as the first theorem of graph theory.

In this thesis, we will work on two topics in the graph theory: “Homomorphisms

of planar (signed) graphs to (signed) projective cubes”, which will be shown in Part I

(Chapter 2, 3, 4), and “Locating any two vertices on Hamiltonian cycles”, which will be

shown in Part II (Chapters 5, 6).

1.1 Some background

Around 1890, P. G. Tait concerned about the relationship between the existence of

Hamiltonian cycles and the Four-Colour Problem. The relationship is simply that if

a planar graph has a Hamiltonian cycle, then its faces can be 4-colored. Tait proved

that the Four-Colour Problem is equivalent to the problem of finding 3-edge-coloring of

bridgeless cubic planar graphs. Then Tait confined the attention on the cubic planar

graphs and conjectured that: Every bridgeless cubic planar graph has a Hamilton cycle.

Though this conjecture was disproved by W. T. Tutte in 1946, finding the extensions

of Four-Colour Problem and finding the Hamiltonian cycles in a given graph motivate

researchers a lot, these are the two main parts of this thesis.
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Introduction 2

1.1.1 Background of Part I

The Four-Colour Theorem is one of the most notable theorem in graph theory, searching

a proof of it has motivated the development of graph theory a lot. The problem was

first proposed in 1852 by Francis Guthrie. The intuitive statement of the Four-Colour

Theorem was not in exact mathematical form, which is “ that given any separation of

a plane into contiguous regions, called a map, the regions can be colored using at most

four colors so that no two adjacent regions have the same color”. To put everything

in exact mathematical form, the set of regions can be represented abstractly as a set

of vertices, two vertices are connected by an edge if the two regions be represented are

adjacent. Thus the Four-Colour Theorem states, in graph-theoretic term, that “every

planar graph is 4-colorable”. In 1890, using Kempe chain method, Percy Heawood[50]

proved that “every planar graph is 5-colorable”. In 1976, Kenneth Appel and Wolfgang

Haken [3] proved the Four-Colour Theorem. In their proof, computer and program are

used.

The study of the Four-Colour Theorem led to the theory of vertex-coloring. Nat-

urally, many other kinds of graph colorings have been defined and studied, such as

edge-coloring, fractional coloring, acyclic coloring, etc.. Graph coloring came out to be

a fruitful branch of graph theory, even a notable branch of mathematics. During the

approach to The Four-Colour Theorem, it is generalized in many different ways: frac-

tional coloring, circular coloring, graph minors and, in particular, the theory of graph

homomorphisms, which is one of the main topics of this thesis.

In the language of graph minors, the Four-Colour Theorem states that: “Any graph

G which does not contain complete graph K5 or complete bipartite graph K3,3 as a minor

is 4-colorable”. As one of the most well-known conjectures that extend the Four-Colour

Theorem, Hadwiger’s conjecture was proposed by H. Hadwiger in 1943.

Conjecture 1.1 (Hadwiger). Any graph G which does not contain Kn as a minor is

(n− 1)-colorable.

In the language of graph homomorphisms, the Four-Colour Theorem states that:

“Every planar graph admits a homomorphism to the complete graph K4”. If the planar

graph is bipartite, it admits a homomorphism to complete graph K2. Thus we only

need to consider the non-bipartite planar graphs, i.e., planar graphs of odd-girth at

least 3. Note that K4 is isomorphic to PC(2) (projective cube of dimension 2, defined in

Section 1.2), in 2007, R. Naserasr proposed a conjecture which extends the Four-Colour

Theorem:

Conjecture 1.2 ([80]). Given an integer k ≥ 1, every planar graph of odd-girth at least

2k + 1 admits a homomorphism to PC(2k).
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Using the notation of signed graphs and SPC(k) (signed projective cubes of dimen-

sion k, defined in Section 1.2), the above conjecture was extended to include the planar

bipartite graphs, as introduced in [80] and [41]:

Conjecture 1.3. Given an integer k ≥ 2, every planar consistent signed graph of

unbalanced-girth k + 1 admits a homomorphism to SPC(k).

A lot of work has been done with respect to these two conjectures while a lot of

problems are left to be solved. The Part I of this thesis will focus on some related

problems.

1.1.2 Background of Part II

The Hamiltonian paths and Hamiltonian cycles are named after Sir William Rowan

Hamilton who invented the Icosian Game. In 1856, Hamilton invented a mathematical

game, the Icosian Game, which consists of a dodecahedron. Each vertex of the dodeca-

hedron is labled with the name of a city and the game’s object is finding a (Hamiltonian)

cycle along the edges of the dodecahedron such that every vertex is visited a single time,

and the ending point is the same as the starting point. Since then, the Hamiltonian

problem, determining when a graph contains a Hamiltonian cycle, has been fundamen-

tal in graph theory. In fact, as a generalization of Hamiltonian cycles, circumferences,

dominating cycles, pancyclic, cyclability etc. are well studied, and a huge number of

results have been produced by researchers.

Note that it is NP-complete to determine whether there exists a Hamiltonian cycle in

a graph, finding necessary or sufficient conditions for hamiltonicity become an interesting

topic in graph theory. Every complete graph on at least three vertices is evidently

Hamiltonian, indeed, to get a Hamiltonian cycle in a complete graph, we can start from

any vertex, and choose the vertices one by one in an arbitrary order. If a graph does

not have so many edges, how large of a minimum degree can guarantee the existence of

a Hamiltonian cycle? In 1952, G. A. Dirac[23] answered this question by showing that

if a simple graph has order at least 3 and each vertex has the degree at least half of the

order, then the graph is Hamiltonian. This original result started a new approach to

develop sufficient conditions on degrees for a graph to contain a Hamiltonian cycle.

There are plenty of results to strengthen Dirac’s theorem. One of the interesting

research areas is to control the placement of a set of vertices on the Hamiltonian cycle

such that these vertices have some certain distances among them on the Hamiltonian

cycle. Enomoto proposed the following conjecture of exact placement for a pair of

vertices at a precise distance (half of the graph order) on a Hamiltonian cycle.
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Conjecture 1.4 ([39]). If G is a graph of order n ≥ 3 and δ(G) ≥ n
2 +1, then for any pair

of vertices x, y in G, there is a Hamiltonian cycle C of G such that distC(x, y) = bn2 c.

In 2012, Faudree and Li proposed a more general conjecture.

Conjecture 1.5 ([33]). If G is a graph of order n ≥ 3 and δ(G) ≥ n
2 + 1, then for any

pair of vertices x, y in G and any integer 2 ≤ k ≤ n
2 , there is a Hamiltonian cycle C of

G such that distC(x, y) = k.

The Part II of this thesis will focus on these two conjectures.

1.2 Basic terminology and notation

In this section we provide some basic terminology and notations for the rest of the thesis.

The definitions not given here will be mentioned in the beginning of the respective

chapters.

First, we give some basic terminology and notations of graph.

1.2.1 Terminology and notations of graphs

A graph G is an ordered pair (V (G), E(G)) with a set V (G) of vertices and a set E(G),

disjoint from V (G), of edges, together with an incidence function ψG that associates

with each edge of G an unordered pair of (not necessarily distinct) vertices of G. Given

an edge e, if ψG(e) = {u, v}, then e is said to join u and v; u and v are called the ends

of e; moreover, u and v are said to be adjacent. In this thesis, we write e = uv instead of

ψG(e) = {u, v}. A loop is an edge with identical ends. Two edges e1 and e2 (which are

not loops) are said to be parallel if they have the same pair of ends. A graph is simple

if it has neither loops nor parallel edges. A graph with parallel edges and without loops

is called a multigraph.

The order of a graph is the cardinality of its set of vertices and the size of a graph

is the cardinality of its set of edges. The order of a graph G is denoted by |V (G)| or |G|.

Subgraphs

A subgraph H = (V (H), E(H)) of a graph G is a graph with V (H) ⊆ V (G) and

E(H) ⊆ E(G). We write H ⊆ G if H is a subgraph of G.
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Given a nonempty subset V ′ of V (G), the subgraph with vertex set V ′ and edge set

{uv ∈ E(G)|u, v ∈ V ′} is called the subgraph of G induced by V ′, denoted G[V ′]. We

say that G[V ′] is an induced subgraph of G.

Let F be a set of graphs. A graph is said to be F -free if it does not contain any

graph from the set F as a subgraph.

Disjoint union of graphs

Given two graphs G1 = (V1, E1) and G2 = (V2, E2) with V1∩V2 = ∅ and E1∩E2 = ∅,
the disjoint union of G1 and G2, denoted G1 ∪G2, is the graph with vertex set V1 ∪ V2

and edge set E1 ∪ E2.

Complete join of graphs

Given two graphs G1 = (V1, E1) and G2 = (V2, E2) with V1∩V2 = ∅ and E1∩E2 = ∅,
the complete join of G1 and G2, denoted G1 + G2, is the graph obtained by starting

with G1 ∪G2 and adding edges joining every vertex of G1 to every vertex of G2.

Walk, path and cycle

A walk in a graph G is a finite non-null sequence W := v0e1v1e2v2 . . . ekvk, whose

terms are alternately vertices and edges of G (not necessarily distinct), such that the

ends of ei(1 ≤ i ≤ k) are vi−1 and vi. We say that v0 and vk are connected by W . The

vertices v0 and vk are called the ends of W , v0 being its initial vertex and vk being its

terminal vertex ; the vertices v1, . . . , vk−1 are its internal vertices. A v0-walk is a walk

with initial vertex v0. The length of a walk is the number of its edge. A walk of length

k is also called a k-walk. If v0 = vk, we call W a closed walk.

If the vertices v0, v1, . . . , vk of W are distinct, W is called a path or v0-vk path.

If the vertices v0, v1, . . . , vk−1 of W are distinct and v0 = vk, W is called a cycle.

The length of a path or a cycle is the number of its edges. A path or a cycle of length

k is called a k-path or k-cycle, respectively; the path or cycle is odd or even according

to the parity of its length.

Hamiltonian cycle

In a graph G, a Hamiltonian cycle is a cycle that visits each vertex of G exactly

once. A graph that contains a Hamiltonian cycle is called a Hamiltonian graph.

Distance, diameter and neighbors
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The distance dG(x, y) of two vertices x, y in G is the length of a shortest x-y path

in G. Whenever the underlying graph is clear from the context, we will write d(x, y)

instead of dG(x, y).

The diameter of a connected graph G is the greatest distance between any two

vertices in G.

Given a positive integer i and a vertex x of G, Ni(x) denotes the set of i-th neighbors

of x, i.e., the set of vertices at distance exactly i from x. When i = 1, we simply write

N(x). For U ⊆ V (G) we write Ni(U) =
⋃
x∈U Ni(x).

Girth and circumference

The girth of a graph is the length of a shortest cycle contained in the graph. The

odd-girth of a graph is the length of a shortest odd-cycle contained in the graph. The

circumference of a graph G is the length of a longest cycle contained in G, denoted

c(G). If a graph does not contain any cycle, its girth and circumference are defined to

be infinity.

Complete graphs and cliques

A complete graph is a simple graph such that any two vertices are connected by an

edge. If a complete graph is of order n, we denote it by Kn.

A clique of a graph G is a complete graph contained in G as a subgraph. The clique

number ω(G) of a graph G is the order of a maximum clique in G.

Bipartite graphs

A graph is bipartite if its vertex set can be partitioned into two subsets V1 and V2

such that every edge has one end in V1 and the other end in V2. Equivalently, a graph

is bipartite if it does not contain any odd-cycle.

Planar graphs

A graph is planar if it can be drawn on the plan such that its edges intersect only

at their ends. Such a drawing is called a planar embedding of the graph. Given a

planar embedding of a planar graph, it divides the plan into a set of connected regions,

including an outer unbounded connected region. Each of these regions is called a face

of the planar graph. The boundary of a face is the cycle of the graph containing it. A

planar graph with a given planar embedding is called a plane graph. We denote the

class of planar graph of odd-girth at least 2k + 1 by P2k+1.

Degree and regularity
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In a simple graph G, for any vertex v of G, the degree of v is the number of vertices

adjacent to v in G. We will use dG(v) (or d(v) when there is no chance of confusion) to

denote the degree of v in Chapter 2,3,4, while in Chapter 5, 6 we use degG(v) or deg(v).

A d-regular graph is a graph in which every vertex has degree d. A 3-regular graph is

also known as a cubic graph.

Cayley graphs

Let Γ be a group, S be a set of elements of Γ not including the identity element.

Suppose, furthermore, that the inverse of every element of S also belongs to S. The

Cayley graph C(Γ, S) is the graph with vertex set Γ in which two vertices x and y are

adjacent if and only if xy−1 ∈ S.

Hypercubes

The hypercube of dimension n, denoted H(n), is the graph whose vertex set is

the set all n-tuples of 0’s and 1’s, where two n-tuples are adjacent if and only if they

differ in precisely one coordinate. It can be checked that, H(n) is a Cayley graph

(Zn2 , {e1, e2, . . . , en}) where ei’s are the standard basis of Zn2 . H(n) is also called n-cube.

Projective cubes

The Projective cube of dimension n, denoted PC(n), is the graph obtained by iden-

tifying the antipodal vertices of the hypercube H(n+1), or equivalently, by adding edges

between pairs of antipodal vertices of the hypercube H(n). PC(n) can be represented

as a Cayley graph, that is, PC(n) = (Zn2 , {e1, e2, . . . , en, J}) where ei’s are the standard

basis of Zn2 and J is the all 1 vector of relevant length (n here). Projective cubes are

also known as folded cubes.

Kneser graph K(n, k)

Given positive integers n and k such that n ≥ 2k, the Kneser graph K(n, k) is

defined to be the graph whose vertices correspond to the k-element subsets of a set of n

elements, where two vertices are adjacent if the two corresponding sets are disjoint.

Minors

In a graph G, an edge contraction is an operation which removes an edge and

identify the vertices of the edge. A graph H is called a minor of the graph G if H can

be obtained from G by a series of deleting edges, vertices and contracting edges. Given

a graph H, a graph is said to be H-minor free if it does not contain H as a minor. Let

H be a set of graphs. A graph is said to be H-minor free if it does not contain any

graph from H as a minor. Moreover, we use Forbm(H) to denote the class of all graphs

that have no member of H as a minor, that means the set of H-minor free graphs.
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Connectivity

A graph is connected if any pair of vertices is connected by a path. A connected

graph G is said to be k-vertex-connected (or k-connected) if it has more than k ver-

tices and remains connected whenever fewer than k vertices are removed. Similarly,

a connected graph G is said to be k-edge-connected if it remains connected whenever

fewer than k edges are removed. The vertex-connectivity (or just connectivity) (or edge-

connectivity, respectively), of a graph is the largest k for which the graph is k-vertex-

connected (or k-edge-connected, respectively). A bridge, or cut-edge, is an edge of a

graph whose deletion increases its number of components. A graph is bridgeless if it

contains no bridges, that means each component of it is 2-edge-connected.

k-tough graph

Let t(G) denote the number of components of a graph G. A graph G is k-tough

if kt(G − S) ≤ |S| for every subset S of the vertex set V (G) with t(G − S) > 1. The

toughness of G, denoted τ(G), is the maximum value of k for which G is k-tough (taking

τ(Kn) =∞ for all n ≥ 1).

Pancyclic and bipancyclic graphs

A graph G is called pancyclic if it contains cycles of all length k for 3 ≤ k ≤ |V (G)|.
Analogously, a bipartite graph G is called bipancyclic if it contains cycles of all even

lengths from 4 to |V (G)|.

Independent set

An independent set of a graph G is a subset of the vertices such that no two vertices

in the subset induce an edge of G. The cardinality of a maximum independent set in a

graph G is called the independence number of G, denoted α(G).

Homomorphisms

Let G and H be two graphs. A homomorphism of G to H is a mapping ϕ : V (G)→
V (H) such that ϕ(u)ϕ(v) ∈ E(H) whenever uv ∈ E(G). If G admits a homomorphism

to H, we write G→ H. We say that two graphs G and H are hom-equivalent if G→ H

and H → G.

The image of G under ϕ is called a homomorphic image of G. Given a class C of

graphs and a graph H, if every graph in C admits a homomorphism to H we write C � H
and we say H bounds C. Given a finite set H of connected graphs, we use Forbh(H) to

denote the class of all graphs which do not admit a homomorphism from any member

of H.
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Isomorphisms

Let G and H be two graphs. An isomorphism between G and H is a bijection

ϕ : V (G) → V (H) such that ϕ(u)ϕ(v) ∈ E(H) if and only if uv ∈ E(G). Two graphs

are isomorphic if there exists an isomorphism between them.

Embedding

An embedding of a graph H into a graph G is an isomorphism between H and a

subgraph of G. We say H is embeddable into G if there exists an embedding of H into

G.

Vertex-coloring and edge-coloring

A k-vertex-coloring (or k-edge-coloring, respectively) of a graph G is a mapping:

c : V (G) → S (or c : E(G) → S, respectively), where S is a set of k colors, usually the

set S of colors is taken to be {1, 2, . . . , k}. Thus a k-vertex-coloring (or k-edge-coloring,

respectively) is an assignment of k colors to the vertices (or edges, respectively) of G. A

vertex-coloring (or edge-coloring, respectively) c is proper if no two adjacent vertices (or

incident edges, respectively) are assigned a same color. A graph is k-vertex-colorable (or

k-edge-colorable, respectively) if it has a k-vertex-coloring (or k-edge-coloring, respec-

tively). The minimum k for which a graph G is k-vertex-colorable (or k-edge-colorable,

respectively) is called its chromatic number (or chromatic index, respectively).

Fractional coloring

Let I(G) denote the set of all independent vertex sets of a graph G, and let I(G, u)

denote the independent vertex sets of G that contain the vertex u. A fractional coloring

of G is a defined as a nonnegative real function f on I(G) such that for any vertex u of

G,
∑

S∈I(G,u) f(S) ≥ 1. The sum of values of f is called its weight, and the minimum

possible weight of a fractional coloring is call the fractional chromatic number of G.

Circular coloring

Given a graph G and positive integers p and q and a color set C = {0, 1, . . . , p−1}, if

there is a mapping c : V (G)→ C such that: for each edge uv ∈ E(G), q ≤ |c(u)−c(v)| ≤
p− q, then we say G has a circular-pq -coloring, or G is circular-pq -colorable.

Walk-powers of graphs

Given a graph G and a positive integer k, we define the k-th walk-power of G,

denoted G(k), to be the graph whose vertex set is also V (G) with two vertices x and y

being adjacent if there is a walk of length k connecting x and y in G.

In the following, we give some basic terminology and notations of signed graphs.



Introduction 10

1.2.2 Terminology and notations of signed graphs

Signed graphs

Given a graph G, we assign a sign “+” or “−” to each edge of G. The edges labeled

“+” are called positive edges while the ones labeled “−” are called negative edges. We

can see this assignment as a mapping of the edges of G to the set {+,−}. Such a

mapping is called a signature of G. We normally denote the set of negative edges by Σ.

Note that, a signature of G is given if and only if the set of negative edges is given, thus

the set of edges Σ will be referred to as the signature of G, and (G,Σ) is called a signed

graph.

Resigning

Given a signed graph (G,Σ) and a vertex v ∈ V (G), a resigning at v is to change

the sign of each edge incident to v. Two signatures Σ1, Σ2 on a graph G are said to be

equivalent if one can be obtained from the other by a sequence of resignings, moreover,

(G,Σ1) and (G,Σ2) are also said to be equivalent. Thus resigning defines an equivalence

relations on the set of all signed graphs over a graph. Given a signed graph (G,Σ),

denote [G,Σ] the set of all signed graphs equivalent to (G,Σ).

Unbalanced-girth

In a signed graph (G,Σ), a cycle with an odd (or even, respectively) number of

negative edges is called unbalanced (or balanced, respectively). Note that resignings do

not change the balance of a cycle. Recall that an odd-cycle is a cycle of odd length while

a cycle of (G,E(G)) is unbalanced if and only if it is an odd-cycle of G, the notation

of unbalanced cycle is, in some sense, an extension of the notation of an odd-cycle.

Similar to the definition of odd-girth of G, we define the unbalanced-girth of (G,Σ) as

the shortest length of an unbalanced cycle of (G,Σ). A signed graph is balanced if all

its cycles are balanced.

Consistent signed graphs

A consistent signed graph is a signed graph in which every balanced cycle is of even

length and all unbalanced cycles are of the same parity. Thus there are two types of

consistent signed graphs:

i. when all unbalanced cycles are of odd length (it can be shown that this is the case

if and only if Σ ≡ E(G)), such a signed graph will be called an odd signed graph;
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ii. when all unbalanced cycles are of even length (which will be the case if and only

if G is bipartite), such a signed graph thus will be referred to as a signed bipartite

graph.

Signed projective cubes

The signed projective cube of dimension n, denoted SPC(n), is the signed graph

(PC(n),Σ), where Σ is the set of edges corresponding to J according to the definition

of PC(n). On the other hand, Σ can be viewed as the set of edges added between pairs

of antipodal vertices of hypercube Hn to get PC(n).

Homomorphisms of signed graphs

Given two signed graphs (G1,Σ1) and (G2,Σ2), we say that there is a homomor-

phism of (G1,Σ1) to (G2,Σ2) if there exist a signed graph (G,Σ′1) equivalent to (G1,Σ1),

a signed graph (G2,Σ
′
2) equivalent to (G2,Σ2) and a mapping ϕ : V (G1) → V (G2)

such that: ϕ(x)ϕ(y) ∈ E(G2) whenever xy ∈ E(G1) and xy ∈ Σ′1 if and only if

ϕ(x)ϕ(y) ∈ Σ′2. When there exists a homomorphism of (G1,Σ1) to (G2,Σ2), we write

(G1,Σ1) → (G2,Σ2). Given a class C of signed graphs, we say a signed graph (H,Σ)

bounds C if every member of C admits a homomorphism to (H,Σ).

Minors of signed graphs

A (signed) minor of a signed graph (G1,Σ1) is a signed graph (G2,Σ2) obtained

from (G1,Σ1) by a sequence of the following operations: (i) delete an edge (and remove

it from the signature if it is present), (ii) contract a positive edge (that means it is not

in the signature), (iii) resign at any vertex. These operations can be taken in any order.

We say that (G1,Σ1) is (G2,Σ2)-minor free if it does not contain (G2,Σ2) as a minor.

Cover and pack

Given a signed graph (G,Σ) and a set B of edges of (G,Σ), we call B an (unbalanced

cycle) cover if every unbalanced cycle of (G,Σ) contains at least one edge ofB. Moreover,

denote by τ(G,Σ) the unbalanced-girth of (G,Σ) and denote by ν(G,Σ) the maximum

number of pairwise disjoint covers of (G,Σ). Since every unbalanced cycle intersect

every cover, τ(G,Σ) ≥ ν(G,Σ). If τ(G,Σ) = ν(G,Σ), we say that (G,Σ) packs.
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1.3 Motivations and overview

1.3.1 Motivations and overview of Part I

The existence of a homomorphism from a class of graphs to a projective cube is of

special importance. Generally, Conjecture 1.2 and Conjecture 1.3 capture a certain

packing problem and edge-coloring problem.

A packing problem of signed graphs was introduced by Guenin [41]. In this paper,

Guenin proposed a conjecture which he called main conjecture:

Conjecture 1.6. [41] Consistent signed graphs which are (K5, E(K5))-minor free, pack.

Guenin pointed out that Conjecture 1.6 is a special case of a conjecture on binary

clutters in [93]. Using the Proposition 1.7 below, Guenin showed that the Four-Colour

Theorem is a special case of the Conjecture 1.6. Also it is proved that Conjecture 1.6

implies other conjectures, we will introduce this later.

Proposition 1.7. [41] Let (G,Σ) be a signed graph and let k be a positive integer.

Suppose k is even and G is bipartite or k is odd and Σ = E(G). Then the following

statements are equivalent,

(1) there exist k disjoint covers of (G,Σ),

(2) (G,Σ) is homomorphic to SPC(k − 1).

In [82], Naserasr, Rollová and Sopena independently Proposition 1.7. This propo-

sition shows that the problem of finding a mapping of a consistent signed graph to a

signed projective cube is equivalent to a packing problem.

The study of edge-coloring has a long history in graph theory, it has a close link

to the Four-Colour Theorem. Edge-coloring of graphs were first considered in two short

papers by Tait [97] published in the same proceeding between 1878 and 1880. Tait proved

a theorem relating face-coloring and edge-coloring of planar graphs. Tait’s theorem says

that if G is a bridgeless cubic planar (simple) graph, then G admits a 3-edge-coloring if

and only if the faces of G can be colored with four colors such that the adjacent faces

receive different colors. Thus Tait conjectured that every bridgeless 3-regular planar

graph admits a 3-edge-coloring. Since the conjecture is equivalent to the Four-Color

Theorem, we state Tait’s conjecture as a theorem.

Theorem 1.8. (Tait’s Conjecture [100]) Every bridgeless 3-regular planar graph is 3-

edge-colorable.
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In 1981, P.D. Seymour proposed a generalization to Tait’s conjecture, which use

the following notations.

Given a graph G, let X,Y be a partition of V (G) and let [X,Y ] denote the set of all

edges with one end in X and the other end in Y . Then [X,Y ] is said to be a cut of G.

Moreover, if |X| or |Y | is odd, we call [X,Y ] an odd cut of G. The size of a cut [X,Y ]

is |[X,Y ]|. An r-graph is an r-regular graph with no odd cut of size less than r.

Conjecture 1.9. ([95]) Every planar r-graph is r-edge-colorable.

It is proved that Conjecture 1.9 can be implied by Conjecture 1.6. The cases

3 ≤ r ≤ 8 of this conjecture are proved, as shown in the following table. In [80] Naserasr

Cases Proved by

r = 3 Tait [100]

r = 4, 5 Guenin [42]

r = 6 Dvořák, Kawarabayashi, Král [24]

r = 7 Chudnovsky, Edwards, Kawarabayashi, Seymour [19]

r = 8 Chudnovsky, Edwards and Seymour [20]

r ≥ 9 open

Table 1.1: Cases of Conjecture 1.9

proved that for r = 2k + 1, Conjecture 1.9 is equivalent to Conjecture 1.2; in [82]

Naserasr, Rollová and Sopena proved that for r = 2k, Conjecture 1.9 is equivalent to

Conjecture 1.3. Thus Conjecture 1.3 is verified up to k ≤ 8.

Besides capturing a certain packing problem and edge-coloring problem, Conjecture

1.2 and Conjecture 1.3 are in a relation to a famous work of P. Ossona de Mendez and

J. Nešetřil. Indeed, Conjecture 1.2 was introduced in [80] in relation to a question of J.

Nešetřil who asked if there is a triangle-free graph to which every triangle-free planar

graph admits a homomorphism. This question was answered in a larger frame work by

P. Ossona de Mendez and J. Nešetřil.

Theorem 1.10. [88] Given a finite set M of graphs and a finite set H of connected

graphs, there is a graph in Forbh(H) to which every graph in Forbh(H) ∩ Forbm(M)

admits a homomorphism.

The bound (graphs) that are build using known proofs of the Theorem 1.10 are of

super exponential orders. To find an optimal bound in this theorem, in general, is a

very difficult question.

Indeed, if we takeM = H = {Kn}, then Forbm({Kn}) is the class of all Kn-minor

free graphs and Forbh({Kn}) is the class of all graphs do not admit a homomorphism

from Kn. Note that if Kn admits a homomorphism to a graph G, then G must have a
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subgraph isomorphic to Kn. Therefore, Forbh({Kn}) is the class of all graphs without

a subgraph isomorphic to Kn. The graph in Forbh({Kn}) may have Kn as a minor,

thus Forbh({Kn}) ⊇ Forbm({Kn}) and Forbh({Kn}) ∩ Forbm({Kn}) is the class of

all Kn-minor free graphs. Using Theorem 1.10, we can see that there is a graph G

without a subgraph isomorphic to Kn such that every Kn-minor free graph admits a

homomorphism to G. Note that Kn−1 is a Kn-minor free graph, thus G contains a

subgraph isomorphic to Kn−1. If Kn−1 is the optimal bound in this case, then every

Kn-minor free graph is (n− 1)-colorable, which implies Hadwiger’s conjecture.

Furthermore, if we takeM = {K5,K3,3} and H = {C2k−1}, then Forbh({C2k−1}) is

a class of all graphs of odd-girth at least 2k+1, and Forbh({K5,K3,3})∩Forbm({C2k+1})
is the class of all planar graphs of odd-girth 2k + 1. In this case, for k = 1, (C1 being a

loop), since PC(2) = K4 is a planar graph, it is the optimal answer by the Four-Color

Theorem. For k = 2, it is proved in [81] that PC(4), known as the Clebsch graph, is the

optimal bound. For other cases, we have the natural question:

Problem 1.11. For k ≥ 3, is PC(2k) an optimal bound of of odd-girth 2k+1 for planar

graphs of odd-girth 2k + 1?

To answer this question, in the remarks and open problems section of [80], Naserasr

gave us a direction of proving the chromatic number of the walk-power of planar graphs.

Given a graph G with at least one edge and an integer k, according to the definition

of G(2k−1), G(2k−1) is loopless if and only if G is of odd-girth at least 2k + 1. If ϕ is a

homomorphism of G to H, then ϕ is also a homomorphism of G(k) to H(k). To see this,

let u, v be any two vertices in G(k), if uv ∈ E(G(k)), then there is a walk of length k which

connects u and v in G, denote this walk by uu1 . . . uk−1v. Since ϕ is a homomorphism of

G to H, ϕ(u)ϕ(u1) . . . ϕ(uk−1)ϕ(v) is a walk of length k which connects ϕ(u) and ϕ(v)

in H, and thus ϕ(u)ϕ(v) ∈ E(H(k)). Naserasr proposed a relaxation of Conjecture 1.2

in following:

Conjecture 1.12. [80] For every planar graph G of odd-girth 2k+1, we have χ(G(2k−1)) ≤
22k.

Note that |PC(2k)| = 22k. Is the bound of Conjecture 1.12 tight? If so, then there

is a big chance that PC(2k) is the optimal bound of planar graph G of odd-girth 2k+ 1.

Thus a problem was asked by Naserasr:

Problem 1.13. [80] Is there a planar graph G of odd-girth 2k+1 with χ(G(2k−1)) ≥ 22k?

Actually, our first work answers this question. We construct a planar graph G of

odd-girth 2k+ 1 with ω(G(2k−1)) ≥ 22k. This result shows that, if Conjecture 1.2 holds,
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PC(2k) is an optimal bound. The development of the notion of homomorphisms for

signed graphs has began very recently and, therefore, it is not yet known if an analogue

of Theorem 1.10 would hold for the class of signed bipartite graphs. We believe that

it would be the case. By similar methods, we prove that if the signed bipartite case of

Conjecture 1.3 holds, SPC(2k + 1) is an optimal bound for the signed bipartite planar

graphs of unbalanced-girth 2k+1. In a uniform language, we prove that if Conjecture 1.3

holds, SPC(k) is an optimal bound for the planar consistent signed graph of unbalanced-

girth k + 1.

As a continue of our first work, if we replace M = {K5,K3,3} by M = {K4} and

keep H = {C2k−1}, that means we replace the condition of “planar” by “K4-minor

free”, what will be the optimal bound of Theorem 1.10? Our second work gives some

partial result of this. We construct a K4-minor free graph G of odd-girth 2k + 1 with

ω(G(2k−1)) ≥ (k+1)(k+2)
2 . And we prove the tightness of the bound for k = 2.

If Conjecture 1.2 holds, then PC(2k) bounds P2k+1. For r > k, since P2r+1 is

included in P2k+1 , PC(2k) also bounds P2r+1 . However, in this case we believe that a

proper subgraph of PC(2k) would suffice to bound P2r+1. Then, what are the minimal

subgraphs of PC(2k) that suffice to bound P2r+1? This question was first asked by

Naserasr:

Problem 1.14. [81] Given integers l ≥ k ≥ 1, what are the minimal subgraphs of

PC(2k) to which every planar graph of odd-girth 2l + 1 admits a homomorphism?

In [81], Naserasr conjectured that K(2k + 1, k), as a subgraph of PC(2k), is an

answer for the case l = k + 1:

Conjecture 1.15. For l = k+1, the smallest subgraph of PC(2k) to which every planar

graph of odd-girth 2l + 1 admits a homomorphism is the Kneser graph K(2k + 1, k).

The Conjecture 1.15 is related to the study of the fractional chromatic number of

planar graphs of a given odd-girth. Since in a manuscript [79], Naserasr conjectured

that the fractional chromatic number of planar graphs of odd-girth 2l+ 1 is bounded by

2 + 1
l−1 and he showed that if the conjecture holds, the bound is the best possible. Note

that the fractional chromatic number of K(2k + 1, k) is 2k+1
k = 2 + 1

k , if the Conjecture

1.15 holds, then it would determine the fractional chromatic number of the planar graph

of odd-girth 2l + 1. In this regards, when l = 2 and k = 1, the conjecture is implied by

Grötzsch’s theorem which states that:

Theorem 1.16. (Grötzsch’s theorem[40]) Every loop-free and triangle-free planar graph

is 3-colorable.
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For the case l = 3 and k = 2, the conjecture states that every planar graph of

odd-girth 7 is bounded by K(5, 2). Note that K(5, 2) is the well-known Petersen graph.

The best result for this case is given by Dvořák, Škrekovski and Valla in [25]: every

planar graph of odd-girth 9 is bounded by K(5, 2).

For the cases l ≥ 2k, the smallest subgraph of the projective cube PC(2k), which

is not bipartite, is C2k+1. It is a classic result that when l is much larger that k, then

C2k+1 is the answer to Problem 1.14. This can be implied by the following theorems

proved by Zhang.

Theorem 1.17. [58] There is a function f(ε) for each ε > 0 such that, if the odd-girth

of a planar graph G is at least f(ε), then G is circular-(2+ε)-colorable.

The function f(ε) in Theorem 1.17 was presented as graph homomorphism result

as follows.

Theorem 1.18. [58] Every planar graph with odd-girth at least 10k − 3 has a homo-

morphism to the cycle of length 2k + 1.

Actually, Zhang conjectured that C2k+1 is the answer to the Problem 1.14 as soon

as l ≥ 2k. This is related to the theory of flows.

Conjecture 1.19. (Zhang [107], Jaeger [54], also see [55], or Conjecture 9.1.5 in [106])

Let k be a positive integer. Every graph with edge connectivity at least 4k + 1 admits a

nowhere-zero circular-(2 + 1
k )-flow.

This case would determine the circular chromatic number of planar graph of odd-

girth 4k+1. For general k, Zhu [108] proved that every planar graph of odd-girth 8k−3

is bounded by C2k+1. And the best result in this case is that: every planar graph of

odd-girth 6k + 1 is bounded by C2k+1. which is implied by Corollary 4.14 of [76].

The first case of Problem 1.14 which is not covered by any of these theorems and

conjectures is k = 3 and r = 5. For this case, we conjecture that the Coxeter graph,

which is a subgraph of K(7, 3), bounds the planar graph of odd-girth at least 11.

Conjecture 1.20. [46] Every planar graph of odd-girth at least 11 admits a homomor-

phism to the Coxeter graph.

Supporting this conjecture, we prove in Chapter 4 that:

Theorem 1.21. Every planar graph of odd-girth at least 17 admits a homomorphism to

the Coxeter graph.
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The organization of Part I is as follows. In Chapter 2, we discuss some results

related to Problem 1.11 and Problem 1.13. In Chapter 3, we continue the work in

Chapter 3 by replacing the condition of “planar graph” to “K4-minor free graph”. In

Chapter 4, we discuss some results related to Problem 1.14 and Conjecture 1.20.

1.3.2 Motivations and overview of Part II

On the Hamiltonian problems, one may find many well-known theorems in any textbook

of graph theory, thus it is not necessary and also impossible to give a detailed survey

in this thesis. For an excellent general introduction to the Hamiltonian problem, the

reader can see the article by J. C. Bermond [8]. For the Hamiltonian problem on Cayley

graphs, we refer to the survey paper by Witte and Gallian [102]. For the toughness of

graphs and the Hamiltonian problem, we refer to the survey paper by D. Beauer et al.

[5]. For the Hamiltonian problem on digraphs, we refer to the survey papers by J. C.

Bermond and C. Thomassen [9] and by J. A. Bondy [11]. For pancyclic and bypancyclic

graphs, we refer to the survey paper by J. Mitchem and E. Schmeichel [77]. For claw-free

graphs, we refer to the survey paper by R. Faudree et al. [30]. Moreover, R. J. Could

gave three nice surveys in [37–39] which contain many problems on generalizations of

Hamiltonian problem.

In this thesis, we will work on the generalizations of Dirac’s theorem in Hamiltonian

graph theory. Dirac’s theorem states that:

Theorem 1.22 (Dirac’s theorem [23]). If G is a 2-connected graph with n ≥ 3 vertices

and minimum degree δ(G), then the circumference c(G) ≥ min{n, 2δ(G)}. Thus, if

δ(G) ≥ n
2 , G is Hamiltonian.

There are a lot of results that generalize or strengthen Dirac’s theorems, some of

them are based on degrees and neighborhood, some results generalize the hamiltonicity to

the circumferences of graphs, and some results hunt for more edge-disjoint Hamiltonian

cycles in the graphs satisfying the Dirac’s degree conditions or Ore’s degree conditions.

Moreover, some results try to control the placement of a set of vertices on a Hamiltonian

cycle so that certain distances are maintained between these vertices, which is one of

the main topics of this thesis. We will introduce some results related to the aspects

mentioned above. Obviously, there are some other results. For some results based on

the conditions involving independence number and connectivity, see [14, 21, 45]; for some

results on pancyclic, see [29, 34, 51]; for some results on regular graphs, see [53, 68, 75].

For more details, we refer to the survey paper by Li [72].

Degrees and neighborhood
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Now, we introduce the generalizations of Dirac’s theorem based on the degree and

neighborhood. First, we introduce some notations that will be used.

For a subset (or a subgraph) S of V (G) (or G), denote by α(S) = α(G[s]) the

maximum number of vertices in S which are independent in the graph G. For any

integer k ≥ 1, when α(S) ≥ k, define σk(S) = min{
∑k

i=1 d(xi) : x1, x2, . . . , xk}, where

x1, x2, . . . , xk are vertices in S and are pair-wisely nonadjacent (i.e. independent) in

G; σk(S) = min{
∑k

i=1 d(xi) − | ∩ki=1 N(xi)| : x1, x2, . . . , xk}, where x1, x2, . . . , xk are

vertices in S and are pair-wisely nonadjacent (i.e. independent) in G. When S dose not

have k vertices that are independent in G, we define σk(S) = σk(S) =∞.

Note that, using the notation of σk(S), Dirac’s theorem says that if σ1(G) ≥ n
2 ,

then G is Hamiltonian.

The first important generalization of Dirac’s theorem was given by Ore in 1960.

Theorem 1.23 (Ore’s theorem [90]). Let G be a graph of order n. If σ2(G) ≥ n (

i.e. d(x) + d(y) ≥ n for any pair of nonadjacent vertices x and y in G ), then G is

Hamiltonian.

Let G be a graph of order n, if σ1(G) ≥ n
2 , we say that G satisfies Dirac’s degree

condition; if σ2(G) ≥ n, we say that G satisfies Ore’s degree condition

To search weaker conditions than Ore’s theorem, one way is to relax Ore’s degree

condition, some results were given in [1, 56, 78, 92]; another way is that when a graph G

satisfies Ore’s degree condition, delete a given set of edges of G such that the remaining

graph is still Hamiltonian, some results were given by Hu and Li [51], Li et al. [73].

If we consider k-connected graphs, Bondy gave a sufficient condition of hamiltonicity

which relates to σk.

Theorem 1.24. [12] Let G be a k-connected graph of order n ≥ 3. If σk+1(G) ≥
(k+1)(n−1)

2 , then G is Hamiltonian.

Now we introduce some results based on the neighborhoods, which was given by

Flandrin et al [35].

Theorem 1.25. [35] If G is a 2-concerned graph of order n such that σ3(G) ≥ n, then

G is Hamiltonian.

The following corollaries are also given in [35].

Corollary 1.26. [35] If G is a 2-concerned graph of order n such that |N(u)∪N(v)| ≥
n−max{d(u), d(v)} for any pair of nonadjacent vertices u and v, then G is Hamiltonian.
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Corollary 1.27. [35] If G is a 2-concerned graph of order n such that 3|N(u)∪N(v)|+
max{2, |N(u)∩N(v)|} ≥ 2n− 1 for any pair of nonadjacent vertices u and v, then G is

Hamiltonian.

Corollary 1.26 was improved in [17], but the bound in Corollary 1.27 is sharp in the

sense that max{2, |N(u)∩N(v)|} cannot be replaced by max{3, |N(u)∩N(v)|}. We can

see this from the example K2 + 3Km,m ≥ 1.

On circumferences of graphs

Another generalization of Dirac’s theorem is from the parameter of circumferences

of graphs. If a graph satisfies Dirac’s degree condition or Ore’s degree condition, it is

Hamiltonian, thus the circumference of the graph is its order. But if a graph satisfies a

weaker Dirac type condition or Ore condition, what the lower bound can be given for

the circumference?

In 1979, Bigalke and Jung [10] proved that:

Theorem 1.28. [10] If G is a 1-tough graph on n ≥ 3 vertices with δ(G) ≥ n
3 , then

every longest cycle C is a dominating cycle, i.e., the vertices of V (G)− V (C) form an

independent set.

Based on the result of Theorem 1.28, Bauer et al. [4], in 1989, proposed the following

conjecture:

Conjecture 1.29. [4] If G is a 1-tough graph on n ≥ 3 vertices with δ(G) ≥ n
3 , then

c(G) ≥ min{n, 3n+1
4 }+ δ(G)

2 ≥ 11n+3
12 .

The best result so far is a result of Li [70] from 1995, which uses a variation of

Woodall’s Hopping Lemma (see [103]).

Theorem 1.30. [70] Let G be a 1-tough graph of order n ≥ 3. Then the circumference

c(G) ≥ min{n, 2n+1+2δ(G)
3 , 3n+2δ(G)−2

4 } ≥ min{8n+3
9 , 11n−6

12 }.

The above results are based on the minimum degree of the graphs, if we don’t use the

minimum degree condition and consider the graphs with enough vertices of large degree,

what the lower bound can be given for the circumference? As a possible improvement

of Dirac’s theorem, Woodall proposed the following conjecture in 1975, which was one

of the 50 unsolved problems in graph theory in Bondy and Murty’s book [13].

Conjecture 1.31. [104] If G is a 2-connected graph of order n with at least n
2 + k

vertices of degree at least k, then c(G) ≥ min{n, 2k}.
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Note that when k = n
2 , Conjecture 1.31 implies Dirac’s theorem.

Supporting to Conjecture 1.31, Häggkvist and Jackson obtained some partial results

in 1985.

Theorem 1.32. [43] (1) Let G be a 2-connected graph of order n ≤ 3k− 2. If G has at

least 2k vertices of degree at least k, then c(G) ≥ 2k.

(2) Let G be a 2-connected graph of order n ≥ 3k− 2. If G has at least n− k−1
2 vertices

of degree at least k, then c(G) ≥ 2k.

Li essentially verified Woodall’s conjecture in 2002 by showing the followings:

Theorem 1.33. [71] If G is a 2-connected graph of order n with at least n
2 + k vertices

of degree at least k, then c(G) ≥ min{n, 2k − 13}.

Theorem 1.34. [66] Let k ≥ 683. If G is a 2-connected graph of order n with at least
n
2 + k vertices of degree at least k, then c(G) ≥ min{n, 2k}.

Edge-disjoint Hamiltonian cycles

There are plenty of results which strengthen Dirac’s theorem. One of the most inter-

esting research area is to find more than one Hamiltonian cycle in the graphs satisfying

the Dirac’s degree condition or Ore’s degree condition. One of the fundamental results

is given by Nash-Williams [85], which shows that Dirac’s degree condition, despite being

best possible, even guarantee the existence of many edge-disjoint Hamilton cycles.

Theorem 1.35. [85] Every graph on n vertices of minimum degree at least n
2 contains

at least b 5n
224c edge-disjoint Hamiltonian cycles.

Nash-Williams asked whether the number of edge-disjoint Hamiltonian cycles can

be improved. It is natural to see that, we could not to expect this number to be larger

than bn+1
4 c. In [86], Nash-Williams conjectured that bn+1

4 c is achieved, unfortunately,

Babai (see [86]) pointed out that this conjecture is false, according to his idea, Nash-

Williams [86] gave an example of a graph on n = 4m vertices with minimum degree 2m

having at most bn+4
8 c edge-disjoint Hamilton cycles.

Christofides et al. gave a similar example in [18]: Let A be an empty graph on 2m

vertices, B a graph consisting of m + 1 disjoint edges and let G be the graph obtained

from the disjoint union of A and B by adding all possible edges between A and B.

So G is a graph on 4m + 2 vertices with minimum degree 2m + 1. Observe that any

Hamilton cycle of G must use at least 2 edges from B and thus G has at most bm+1
2 c

edge-disjoint Hamilton cycles. It is shown by Christofides et al. [18] that this example

is asymptotically best possible.
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Theorem 1.36. [18] For every α > 0, there is an integer n0 so that every graph on

n ≥ n0 vertices of minimum degree at least (1
2 + α)n contains at least n

8 edge-disjoint

Hamiltonian cycles.

Noting that the construction given above depends on the graph being non-regular,

Nash-Williams [87] conjectured that:

Conjecture 1.37. [87] Let G be a d-regular graph on at most 2d vertices. Then G

contains bd2c edge-disjoint Hamiltonian cycles.

The conjecture was also raised independently by Jackson [52], where he proved the

following theorem.

Theorem 1.38. [52] Let G be a d-regular graph on 14 ≤ n ≤ 2d + 1 vertices. Then G

contains b3d−n+1
6 c edge-disjoint Hamiltonian cycles.

In [18], the following approximate version of the Conjecture 1.37 was shown.

Theorem 1.39. [18] For every α > 0, there is an integer n0 so that every d-graph on

n ≥ n0 vertices with d ≥ (1
2 + α)n contains at least d−αn

2 edge-disjoint Hamiltonian

cycles.

The proofs use the Regularity Lemma, so the order of the graph is accordingly large.

It is also interesting to see if Ore’s degree condition may ensure multiple edge-

disjoint Hamiltonian cycles. The first results about this were obtained by Faudree,

Rousseau and Schelp [28] in 1985, but they required n + 2k − 2 instead of n in Ore’s

degree condition.

Theorem 1.40. [28] Let G be a graph of order n and k a positive integer. If σ2(G) ≥
n + 2k − 2, then for n sufficiently large (n ≥ 60k2 will suffice), G has k edge-disjoint

Hamiltonian cycles.

In [74], Li and Zhu proved that Ore’s degree condition can ensure two edge-disjoint

Hamiltonian cycles for most graphs.

Theorem 1.41. [74] Let G be a graph of order n ≥ 20. If δ(G) ≥ 5 and σ2(G) ≥ n,

then G has at least two edge-disjoint Hamiltonian cycles.

Furthermore, Li [67] proved the following theorem:

Theorem 1.42. [67] If G is a graph of order n such that σ2(G) ≥ n and either δ(G) <
n
2 − 2 or ∆(G) ≥ n

2 − 6, then for any 3 ≤ l1 ≤ l2 ≤ n, G has two edge-disjoint cycles

with lengths l1 and l2, respectively.
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In 1986, Faudree and Schelp conjectured that if n is sufficiently larger that δ(G)

and σ2(G) ≥ n, then the graph of order n has b δ(G)−1
2 c edge-disjoint Hamiltonian cycles.

Their conjecture was confirmed in 1989 by Li [69].

Theorem 1.43. [69] Let G be a graph on n vertices and k a positive integer. If 2k+1 ≤
δ(G) ≤ 2k + 2, n ≤ 8k2 − 5 and σ2(G) ≥ n, for any 3 ≤ l1 ≤ l2 ≤ . . . ≤ lk ≤ n with

k = b δ(G)−1
2 c, G contains k edge-disjoint cycles with lengths l1, l2, . . . , lk, respectively.

Corollary 1.44. [69] Let G be a graph on n vertices. If n ≥ 2(δ(G))2 and σ2(G) ≥ n,

then G has at leastb δ(G)−1
2 c edge-disjoint Hamiltonian cycles.

Distributing vertices on the Hamiltonian cycle

Another research area that strengthens Dirac’s theorem is to control the placement

of a set of vertices on a Hamiltonian cycle such that these vertices have some certain

distances among them on the Hamiltonian cycle. In 2001, Kaneko and Yoshimoto [57]

showed that in a graph satisfies Dirac’s degree condition, given any sufficiently small

subset S of vertices, there exists a Hamiltonian cycle C such that the distances on C

between successive pairs of vertices of S have a uniform lower bound.

Theorem 1.45. [57] Let G be a graph of order n with δ(G) ≥ n
2 , and let d be a positive

integer such that d ≤ n
4 . Then, for any vertex subset S with |S| ≤ n

2d , there is a

Hamiltonian cycle C such that distC(u, v) ≥ d for any u, v ∈ S.

The result in this theorem is sharp, we can see this from the graph 2Kn
2
−1 +K2, if

we place the vertices of A in one of the Kn
2
−1, then the bound is clear.

In 2008, Sárközy and Selkow [91] showed that almost all of the distances between

successive pairs of vertices of S can be specified almost exactly.

Theorem 1.46. [91] There are ω, n0 > 0 such that if G is a graph with δ(G) ≥ n
2 on

n ≥ n0 vertices, d is an arbitrary integer with 3 ≤ d ≤ ωn
2 and S is an arbitrary subset

of V (G) with 2 ≤ |S| = k ≤ ωn
2 , then for every sequence of integers with 3 ≤ di ≤ d,

and 1 ≤ i ≤ k − 1, there is a Hamiltonian cycle C of G and an ordering of the vertices

of S, a1, a2, ..., ak, such that the vertices of S are encountered in this order on C and we

have |distC(ai, ai+1)− di| ≤ 1, for all but one 1 ≤ i ≤ k − 1.

In [91], the authors believe that Theorem 1.46 remains true for greater values of

d as well. In a personal communication, Enomoto proposed the following conjecture of

exact placement for a pair of vertices at a precise distance (half of the graph order) on

a Hamiltonian cycle.
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Conjecture 1.47. [39] If G is a graph of order n ≥ 3 and δ(G) ≥ n
2 +1, then for any pair

of vertices x, y in G, there is a Hamiltonian cycle C of G such that distC(x, y) = bn2 c.

The degree condition of Enomoto’s conjecture is sharp. First, we consider the

complete bipartite graph Kn
2
,n
2
. For any Hamiltonian cycle of Kn

2
,n
2
, any pair of vertices

in the same part will be at an even distance on this cycle and any pair of vertices in

different parts will be at an odd distance on this cycle. Since δ(Kn
2
,n
2
) = n

2 , the minimum

degree δ(G) ≥ n
2 is not sufficient to imply the existence of a Hamiltonian cycle with a

fixed pair of vertices at distance bn2 c. Second, we consider the graph (Kn−3
2
∪Kn−3

2
)+K3.

If x, y are both in one of the copies of Kn−3
2

, then we cannot find a Hamiltonian cycle C

of (Kn−3
2
∪Kn−3

2
)+K3 such that distC(x, y) = bn2 c. Since δ((Kn−3

2
∪Kn−3

2
)+K3) = n+1

2 ,

the minimum degree δ(G) ≥ n+1
2 is not sufficient to imply the existence of the desired

Hamiltonian cycle.

Motivated by Enomoto’s conjecture, Faudree et al. [32] deal with locating a pair of

vertices at precise distances on a Hamiltonian cycle.

Theorem 1.48. [32] Let k ≥ 2 be a fixed positive integer. If G is a graph of order

n ≥ 6k and δ(G) ≥ n
2 +1, then for any pair of vertices x, y in G, there is a Hamiltonian

cycle C of G such that distC(x, y) = k.

This theorem was generalized in [31].

Theorem 1.49. [31] Given a set of k−1 integers {p1, p2, . . . , pk−1} and a fixed set of k

vertices {x1, x2, . . . , xk} in a graph G of sufficiently large order n with δ(G) ≥ n+2k−2
2 ,

then there is a Hamiltonian cycle C such that distC(xi, xi+1) = pi for 1 ≤ i ≤ k − 1.

Furthermore, Faudree and Li [33] obtained the following theorem.

Theorem 1.50. [33] If k is a positive integer with 2 ≤ k ≤ n
2 and G is a graph of order

n with δ(G) ≥ n+k
2 , then for any pair of vertices x and y in G and for any 2 ≤ p ≤ k,

there is a Hamiltonian cycle C of G such that distC(x, y) = p.

Moreover, Faudree and Li [33] proposed a more general conjecture.

Conjecture 1.51. [33] If G is a graph of order n ≥ 3 and δ(G) ≥ n
2 + 1, then for any

pair of vertices x, y in G and any integer 2 ≤ k ≤ n
2 , there is a Hamiltonian cycle C of

G such that distC(x, y) = k.

In Chapter 5, we prove Conjecture 1.47 for graphs of sufficiently large order. Our

main result is the following:
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Theorem 1.52. [48] There exists a positive integer n0 such that for all n ≥ n0, if G

is a graph of order n with δ(G) ≥ n
2 + 1, then for any pair x, y of vertices, there is a

Hamiltonian cycle C of G such that distC(x, y) = bn2 c.

To prove Theorem 1.52, we define two extremal cases of G as follows.

Extremal Case 1: If there exists a balanced partition of V (G) into V1 and V2

such that the density d(V1, V2) ≥ 1− α.

Extremal Case 2: If there exists a balanced partition of V (G) into V1 and V2

such that the density d(V1, V2) ≤ α.

Here, a balanced partition of V (G) into V1 and V2 is a partition of V (G) = V1 ∪ V2

such that |V1| = |V2|, and α is a parameter we fix before the proof.

The proof of Theorem 1.52 will be divided into three parts: the non-extremal case,

the Extremal case 1 and Extremal case 2. Obviously, the non-extremal cases part is

the main part of the proof, we use Regularity Lemma and Blow-up Lemma to prove

it. For the Extremal case 1, apart from a small number of vertices, the rest forms a

super-regular pair, we will use Blow-up Lemma to construct the Hamiltonian cycles

desired.

In Chapter 6, as an extension of Theorem 1.52, we prove Conjecture 1.51 for graphs

of sufficiently large order. Our main result is the following:

Theorem 1.53. [47] There exists a positive integer n0 such that for all n ≥ n0, if G is

a graph of order n with δ(G) ≥ n
2 + 1, then for any pair x, y of vertices and any integer

k, 2 ≤ k ≤ n
2 , there is a Hamiltonian cycle C of G such that distC(x, y) = k.

The main idea to prove this theorem is same to the proof the Theorem 1.52, we

use some tricks to change the length of the path connecting x and y on the Hamiltonian

cycle.

The tools we use

Note that, to prove Theorem 1.52 and Theorem 1.53, we use Regularity Lemma

and Blow-up Lemma, which are very powerful tools of graph theory. To introduce these

two lemmas, we need some more notations.

We denote the degree of a vertex v in G by degG(v). Given a graph G, let X and

Y be two disjoint sets of vertices of G. We define the density, d(X,Y ), of pair (X,Y )

as the ratio

d(X,Y ) :=
eG(X,Y )

|X||Y |
,
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here eG(X,Y ) is defined to be the number of edges in G with one end vertex in X and

the other in Y , if no ambiguity arises, we write e(X,Y ) instead of eG(X,Y ).

Let ε > 0. Given two disjoint vertex sets X ⊆ V (G), Y ⊆ V (G) we say the pair

(X,Y ) is ε-regular if for every A ⊆ X and B ⊆ Y such that |A| > ε|X| and |B| > ε|Y |
we have

|d(A,B)− d(X,Y )| < ε.

Given a graph G and disjoint vertex sets X,Y ⊆ V (G) let ε, δ > 0, the pair

(X,Y ) is (ε, δ)-super-regular if it is ε-regular, and degY (x) > δ|Y | for all x ∈ X and

degX(y) > δ|X| for all y ∈ Y .

Now we introduce the degree form of Regularity Lemma and Bipartite Version of

Blow-up Lemma.

Lemma 1.54 (Regularity Lemma-Degree Form). For every ε > 0 and every integer m0

there is an M0 = M0(ε,m0) such that if G = (V,E) is any graph on at least M0 vertices

and d ∈ [0, 1] is any real number, then there is a partition of the vertex set V into l + 1

clusters V0, V1, ..., Vl, and there is a subgraph G
′

= (V,E
′
) with the following properties:

(1) m0 ≤ l ≤M0;

(2) |V0| ≤ ε|V | for 0 ≤ i ≤ l, and |V1| = |V2| = · · · = |Vl| = L;

(3) degG′ (v) > degG(v)− (d+ ε)|V | for all v ∈ V ;

(4) G
′
[Vi] = ∅ (i.e. Vi is an independent set in G

′
) for all i;

(5) each pair (Vi, Vj), 1 ≤ i < j ≤ l, is ε-regular, each with a density either 0 or at least

d.

Lemma 1.55 (Blow-up Lemma-Bipartite Version [59]). For every δ,∆, c > 0, there

exists an ε = ε(δ,∆, c) > 0 and α = α(δ,∆, c) > 0 such that the following holds. Let

(X,Y ) be an (ε, δ)-super-regular pair with |X| = |Y | = N . If a bipartite graph H with

∆(H) ≤ ∆ can be embedded in KN,N by a function φ, then H can be embedded in (X,Y ).

Moreover, in each φ−1(X) and φ−1(Y ), fix at most αN special vertices z, each of which

is equipped with a subset Sz of X or Y of size at least cN . The embedding of H into

(X,Y ) exists even if we restrict the image of z to be Sz for all special vertices z.

More details about Regularity Lemma will be presented in Section 5.1. Recently,

there are many beautiful results about Hamiltonian problems obtained by using Reg-

ularity Lemma, e. g. Theorem 1.36 and Theorem 1.39. Besides these, Chen et al.[16]

prove that:

Theorem 1.56. [16] There exists N > 0 such that for all even integers n ≥ N , if G is

a graph of order n with δ(G) ≥ n
2 + 92, then G contains an ESHC.
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Here ESHC is short for Even Squared Hamiltonian Cycle, that is a Hamiltonian

cycle C = v1v2 . . . vnv1 of a graph with chords vivi+3 for all 1 ≤ i ≤ n.

For more progress on F -packing, Hamiltonian problems and tree embedding, see

[62]. For the progress on Hamiltonian cycles in directed graphs, oriented graphs and

tournaments, see [63]

The organization of Part II is as follows. In Chapter 5, we prove Conjecture 1.47

for graphs of sufficiently large order. In Chapter 6, we prove Conjecture 1.51 for graphs

of sufficiently large order.



Chapter 2

Cliques in walk-powers of planar

graphs

In this chapter, we will discuss some results related to Conjecture 1.3. We show that

if Conjecture 1.3 holds, then the proposed projective cube is an optimal bound of the

given unbalanced-girth both in terms of number of vertices and number of edges. More

precisely we prove the following.

Theorem 2.1. [84] If (B,Ω) is a consistent signed graph of unbalanced-girth d which

bounds the class of consistent signed planar graphs of unbalanced-girth d, then B has at

least 2d−1 vertices. Furthermore, if no subgraph of (B,Ω) bounds the same class, then

minimum degree of B is at least d, and therefore, B has at least d · 2d−2 edges.

The first part of this theorem will follow from the following theorems (to be proved

in the Section 2.2 and Section 2.3 respectively ) and Lemmas 2.18, 2.19, 2.20 and 2.21.

Theorem 2.2. [84] There exists a planar graph G of odd-girth 2k+1 with ω(G(2k−1)) ≥
22k.

Theorem 2.3. [84] There exists a planar signed bipartite graph (G,Σ) of unbalanced-

girth 2k for which there are two cliques of order 22k−2 in (G,Σ)(2k−2) (defined later),

one for each part (induced by the bipartition) of G.

Our proof of both theorems are constructive and we provide a concrete construction.

We start with some preliminaries on planar graphs, signed graphs and (signed)

projective cubes.

27
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2.1 Preliminaries

First, we recall two characterizations of planar graphs in terms of forbidden subgraphs

with subdivision and minors.

2.1.1 Planar graphs

We introduce the characterization of planar graphs from Kuratowski, which uses the

following definitions. In a graph G, a subdivision of an edge e = uv, is to delete e, add a

new vertex w and join w to u and v. Any graph derived from a graph G by a sequence

of edge subdivision is called a subdivision of G. Two examples of subdivisions of K5 and

K3,3 are presented in Figure 2.1.

(a) (b)

Figure 2.1: (a) A subdivision of K5, (b) a subdivision of K3,3

Theorem 2.4. (Kuratowski’s theorem)[64] A finite graph is planar if and only if it does

not contain a subdivision of K5 or K3,3 as a subgraph.

A closely related characterization is given by Wagner, using the concept of forbidden

minors, which is proved to be equivalent to Theorem 2.4 in [13]

Theorem 2.5. (Wagner’s theorem)[99] A finite graph is planar if and only if it does

not contain K5 or K3,3 as a minor.

2.1.2 Signed graphs

The term of signed graphs was first introduced by F. Harary [44] in 1955 to handle

a problem in social psychology. In 1982, T. Zaslavsky [105] introduced the matroids

of signed graph, there some notations were given and be used until now. Due to the

notation of homomorphisms of signed graphs, the term signed graph was used for the

equivalence class by Naserasr, Rollová and Sopena in [82] and [83].

One of the first theorems about signed graph was given by Harary [44], which

develops a characterization of balance for a signed graph.
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Theorem 2.6. [44] A signed graph (G,Σ) is balanced if and only if its vertex set V (G)

can be partitioned into two subsets V1 and V2 (either of which may be empty), such that

each positive edge of (G,Σ) joins two vertices of the same subset and each negative edge

joins two vertices of different subsets.

Harary developed the characterization of balanced signed graph. Zaslavsky [105]

extended his work to develope the characterization of equivalence of two signed graphs,

which says that the set of equivalent signed graphs is determined uniquely by the set of

unbalanced cycles.

Theorem 2.7. [105] Two signed graphs (G,Σ1) and (G,Σ2) are equivalent if and only

if they have the same set of unbalanced cycles.

From Theorem 2.6 and Theorem 2.7 we can see that: if (G,Σ1) and (G,Σ2) are

equivalent, they have the same set of unbalanced cycles and the symmetric difference

of Σ1 and Σ2 is an edge-cut. We give an example in Figure 2.2. The signed K5 in (a)

is equivalent to the signed K5 in (b), where the negative edges are colored red. The

symmetric difference of the two signatures is an edge-cut, as shown in (b) by a dashed

line.

(a) (b)

Figure 2.2: An example of two equivalent signed graphs

The consistent signed graphs are the main concern of our work. Recall that a

consistent signed graph is a signed graph in which every balanced cycle is of even length

and all unbalanced cycles are of the same parity. Respect to the parity of the unbalanced

cycles, there are two types of consistent signed graphs: odd signed graphs and signed

bipartite graphs.

If a signed graph (G,Σ) is an odd signed graphs, then all unbalanced cycles of

(G,Σ) are of odd length and all balanced cycles of (G,Σ) are of even length. Since all

unbalanced cycles of (G,E(G)) are of odd length and all balanced cycles of (G,E(G))

are of even length, by Theorem 2.7, (G,Σ) and (G,E(G)) are equivalent.
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If in a signed graph (G,Σ) the lengths of all balanced cycles and unbalanced cycles

are even, then all cycles of G are even, thus G must be a bipartite graph.

2.1.3 (Signed) projective cubes

In Conjecture 1.3, singed projective cube, SPC(k), is proposed as a bound of planar

consistent signed graphs of unbalanced-girth k + 1. We give some properties of signed

projective cubes in this section.

In [82], Naserasr, Rollová and Sopena proved that SPC(n) is a consistent signed

graph and determined its unbalanced-girth.

Theorem 2.8. [82] All balanced cycles of SPC(n) are of even length, all unbalanced

cycles of SPC(n) are of the same parity, and the unbalanced-girth of SPC(n) is n+ 1.

Furthermore, for each unbalanced cycle UC of SPC(n) and for each x ∈ {e1, e2, . . . , en}∪
{J}, there is an odd number of edges of UC labeled by x.

As a corollary to Theorem 2.8, one can easily check that the signed projective cube

SPC(2k) is equivalent to (PC(2k), E(PC(2k))) and SPC(2k + 1) is a signed bipartite

graph.

On the one hand, if a singed graph (G,Σ) admits a homomorphism to SPC(2k+1),

then G admits a homomorphism to the underlying graph of SPC(2k + 1), note that

SPC(2k + 1) is bipartite, G must be bipartite, which implies that (G,Σ) is a signed

bipartite graph.

On the other hand, if a signed graph (G,Σ) admits a homomorphism to SPC(2k),

which is equivalent to (PC(2k), E(PC(2k))), then (G,Σ) must be equivalent to (G,E(G)),

which implies that (G,Σ) is an odd signed graph.

Thus if a signed graph (G,Σ) admits a homomorphism to a signed projective cube,

then it must be a consistent signed graph. Moreover, if (G,Σ) is an odd signed graph and

(G,Σ)→ SPC(2k), then equivalently (G,E(G))→ (PC(2k), E(PC(2k))), furthermore,

this homomorphism can be seen as a homomorphism of G to PC(2k). Thus part (i)

of Conjecture 1.3 claims that every planar graph of odd-girth at least 2k + 1 admits a

homomorphism to PC(2k).

The projective cubes, known by other names such as folded cube, are well studied.

By definitions, the graphs PC(1), PC(2), PC(3) are isomorphic to K2,K4,K4,4 respec-

tively. It is easy to check that PC(n) is (n + 1)-regular for n ≥ 2. In general, every

projective cube of odd order, PC(2n + 1), is a bipartite graph. Every projective cube

of even odd, PC(2n), is of odd-girth 2n+ 1.
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Lemma 2.9. [80] The graph PC(2n) has following properties:

(a) It is (2n+ 1)-regular.

(b) It has edge-chromatic number equal to 2n+ 1.

(c) It is of odd-girth 2n+ 1.

The following lemma is a folklore fact about projective cubes also known as folded

cubes (e.g. see A. E. Brouwer, A. M. Cohen and A. Neumaier [15], page 231).

Lemma 2.10. The graph PC(n) is vertex transitive. It is, furthermore, distance tran-

sitive, i.e., for any two pairs {x, y} and {u, v} of vertices, if d(x, y) = d(u, v), then there

is an automorphism σ of PC(n) such that σ(u) = σ(v).

Since part (i) of Conjecture 1.3 focuses on mapping planar graphs into the pro-

jective cubes of even dimensions, it is necessary to understand the basic properties on

homomorphisms of the projective cubes of even dimensions.

First, Naserasr [81] showed that all the shortest odd-cycles in PC(2k) are isomor-

phic.

Lemma 2.11. [81] For every pair C and C ′ of (2l + 1)-cycles in PC(2k), there is an

automorphism that takes vertices of C into vertices of C ′.

Then, Naserasr [81] showed that every the projective cube of even order admits a

homomorphism to a projective cube of smaller even order. Precisely,

Lemma 2.12. [81] We have PC(2k + 2) → PC(2k). Furthermore, PC(2k) is 4-

chromatic.

Furthermore, in [7] Beaudou, Naserasr and Tardif conjectured that all these kinds

of homomorphisms are onto.

Conjecture 2.13. [7] Given r ≥ k, any mapping of PC(2r) to PC(2k) must be onto.

Supporting Conjecture 2.13, Beaudou et al. proved that the case r = 3, k = 2 of

the conjecture holds.

Theorem 2.14. [7] Any homomorphism of PC(6) into PC(4) must be onto.

Note that every projective cube of odd order, PC(2k+ 1), is a bipartite graph, the

ordinary homomorphism problem on PC(2k + 1) can be easily solved.

For the homomorphism relation between signed projective cubes, we should mention

this result, which is an extension of Lemma 2.12.
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Theorem 2.15. [82] There is a homomorphism of SPC(k) to SPC(l) if and only if

k ≥ l and k ≡ l ( mod 2).

As an analogue of Conjecture 2.13, together with M. Chen and R. Naserasr we

conjectured that:

Conjecture 2.16. Given r ≥ k, any mapping of SPC(2r+ 1) to SPC(2k+ 1) must be

onto.

Supporting this conjecture, we proved that the case r = 2, k = 1 of the conjecture

holds.

Theorem 2.17. Any homomorphism of SPC(5) into SPC(3) must be onto.

2.1.4 Walk-powers

We will use two notions of graph powers, one for each type of consistent signed graphs.

Since the homomorphism of odd signed graphs are reduced to graph homomorphism

problems, we use the terminology of graphs for this case.

Recall that given a graph G and a positive integer k, the k-th walk-power of G,

denoted G(k), is the graph whose vertex set is also V (G) with two vertices x and y being

adjacent if there is a walk of length k connecting x and y in G. Assuming G has at least

one edge, G(k) is loopless if and only if k is odd and G has odd-girth at least k + 2. As

an example we have:

Lemma 2.18. We have (PC(2d))(2d−1) ∼= K22d.

Proof. We will prove this by showing the that each pair of vertices of PC(2d) belong

to a cycle of length 2d+ 1. Recall that PC(2d) = (Z2d
2 , {e1, e2, . . . , e2d, J}), |PC(2d)| =

22d. For a given pair x, y of vertices of PC(2d), denote x − y = ei1 + ei2 + . . . + eij ,

where 1 ≤ j ≤ 2d. Denote {e1, e2, . . . , e2d, J}\{ei1 , ei2 . . . . , eij} = {eij+1 , . . . ei2d , J}. Let

x1 = x+ ei1 and xt = xt−1 + eit , 2 ≤ t ≤ 2d. Note that y = xj and x− x2d = J . Then

x, x1, . . . , y = xj , . . . , x2d form a cycle of length 2d+ 1.

A property of walk-power, which is important for our work, is that:

Lemma 2.19. If φ is a homomorphism of a graph G to a graph H, then φ is also a

homomorphism of G(r) to H(r) for any positive integer r.
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Proof. We only need to show that for any two vertices u and v, if uv ∈ E(G(r)), then

φ(u)φ(v) ∈ E(H(r)). Note that if uv ∈ E(G(r)), by definition of walk-power, there is a

walk of length r connecting u and v in G, denote this walk by uu1u2 . . . ur−1v. Since

φ is homomorphism of G to H, φ(u)φ(u1) . . . φ(v) is a walk of length r in H. Thus

φ(u)φ(v) ∈ E(H(r)).

Note that for odd values of r if we consider a pair x, y of adjacent vertices in G(r)

and identify them in G, then there will be a cycle of odd-length at most r in the resulting

graph. This is a key tool for us and we define power of signed bipartite graph to have an

analogous property. For this case we shall use the notion of unbalanced cycles instead

of odd-cycles.

Given a signed bipartite graph (G,Σ) and an even integer r ≥ 2 we define (G,Σ)(r)

to be a graph (not signed) on vertex set V (G) where vertices x and y are adjacent if the

following two conditions satisfy:

• x and y are in a same part of bipartite graph G,

• if x and y are identified in (G,Σ), then there will be a (new) unbalanced cycle of

(even) length at most r.

Note that second condition is equivalent to saying that there are x, y-paths P1 and

P2 (connecting x and y), each of length at most r, such that one has an odd number of

negative edges and the other has an even number of negative edges.

By showing that each pair of vertices from the same part in SPC(2d + 1) belong

to an unbalanced cycle of length 2d + 2 we have the following bipartite analogue of

Lemma 2.18.

Lemma 2.20. We have (SPC(2d + 1))(2d) ∼= 2K
22d

, here 2K22d means two disjoint

copies of K22d.

Proof. We will prove this by showing the that each pair of vertices of SPC(2d+1) belong

to an unbalanced cycle of length 2d+2. Recall that SPC(2d+1) = (Z2d+1
2 , {e1, e2, . . . , e2d+1, J}),

with the set of edges corresponding to the J vector assigned by −. For any two ver-

tices x, y of SPC(2d + 1), denote x − y = ei1 + ei2 + . . . + eij , where 1 ≤ j ≤ 2d + 1.

Denote {e1, e2, . . . , e2d+1, J}\{ei1 , ei2 . . . . , eij} = {eij+1 , . . . ei2d+1
, J}. Let x1 = x + ei1

and xt = xt−1 + eit , 2 ≤ t ≤ 2d + 1. Note that y = xj and x − x2d+1 = J . Then

x, x1, . . . , y = xj , . . . , x2d+1 form an unbalanced cycle of length 2d+2, since there is only

one edge xx2d+1 assigned −. Note that each part of SPC(2d+ 1) has 22d vertices, thus

(SPC(2d+ 1))(2d) ∼= 2K
22d

.
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The homomorphism property also holds the same:

Lemma 2.21. Given a positive integer r, if φ is a homomorphism of a signed bipartite

graph (G,Σ) to a singed bipartite graph (H,Π), then φ is also a homomorphism of the

graph (G,Σ)(2r) to the graph (H,Π)(2r).

Proof. We only need to show that for any two vertices u and v, if uv ∈ E((G,Σ)(2r)),

then φ(u)φ(v) ∈ E((H,Π)(2r)). Note that if uv ∈ E((G,Σ)(2r)), by definition of walk-

power of signed bipartite graph, u and v are in the same part and there are two u, v-paths

P1 and P2 (connecting u and v in (G,Σ)), each of length at most 2r, with one, say P1,

has an odd number of negative edges and the other, say P2, has an even number of

negative edges.

Since φ is homomorphism of (G,Σ) to (H,Π), there is signature Σ′ equivalent to

Σ such that φ preserves both adjacency and signs of edges (with respect to Σ′ and Π).

Note that the parity of the number of negative edges is changed if and only if there is a

resigning at one of its end vertices. Since P1 and P2 have the same end vertices u and v,

the parities of the numbers of negative edges of them are switched if there is a resigning

at u or v. Thus P1 and P2 also have different parities of the numbers of negative edges

with respect to Σ′. Since φ preserves both adjacency and signs of edges (with respect to

Σ′ and Π), the images of P1 and P2 in (H,Π) also have different parities of the numbers

of negative edges in (H,Π), if we identify φ(u) and φ(v) in (H,Π), there must be a (new)

unbalanced cycle of length at most 2r. Thus φ(u)φ(v) ∈ E((H,Π)(2r)).

2.2 Optimal bound for planar odd signed graphs

In this section we prove Theorem 2.2. Since this is for odd signed graphs, the homomor-

phism problem is equivalent to the homomorphisms of graphs. Thus, we will use the

terminology of graphs rather than signed graph in this section.

As mentioned, our proof is constructive and we will build an example of a planar

graph G of odd-girth 2k+1 for which we have ω(G(2k)) ≥ 22k. The construction is based

on the following local construction.

Lemma 2.22. Let G be the graph obtained by subdividing edges of K4 such that in a

planar embedding of G each of the four faces is a cycle of length 2k + 1. Then G(2k−1)

is isomorphic to K4k.

Proof. Let a, b, c and d be the original vertices of the K4 from which G is constructed.

For x, y ∈ {a, b, c, d} let Pxy be the subdivision of xy, and let txy be the length of this
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path. For an internal vertex w of Pxy, let Pxw (or Pwx) be the part of Pxy connecting w

to x. Let txw be the length of Pxw.

We have

tab + tbc + tca = tab + tbd + tda

= tac + tcd + tda

= tbc + tcd + tdb

= 2k + 1. (2.1)

From Equation (2.1) we have

txy = twz for {x, y, w, z} = {a, b, c, d}, (2.2)

that is to say that if all four faces have the same length, then any pair of disjoint

edges of K4 are subdivided the same number of times (the parity of the length of the

faces is not important here and we will use this fact to prove Lemma 2.25 in Section 2.3.

First, we show that |V (G)| = 4k. Note that G has four faces, each of length 2k+ 1.

In each face of G, there are 2k − 2 added vertices which are not the original vertices of

the K4 from which G is constructed. Since each added vertex is in two faces, we have

|V (G)| = 4 + 4(2k−2)
2 = 4k.

Now we show that for every pair of vertices u, v of G there is a walk of length 2k−1

between them. If u and v are both vertices of a facial cycle of G, then there is a walk

of length 2k − 1 connecting them since each facial cycle is of length 2k + 1. If there

is no facial cycle of G containing both u and v, then they are internal vertices (after

subdivision) of two distinct parallel edges of K4, thus we may assume, without loss of

generality, that u is a vertex of the path Pab and v is a vertex of the path Pcd.

Note that by Equation (2.2) we have

tau + tbu = tcv + tdv

= tab = tcd. (2.3)
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If tab = tcd is even (odd respectively), then tau and tbu have the same parity (dif-

ferent parities respectively) and tcv and tdv have the same parity (different parities

respectively). Moreover, since tcd is even (odd respectively) and tac + tcd + tda = 2k+ 1,

tac and tad have different parities (same parity respectively).

Now one of the paths connecting u, v, say Pua∪Pac∪Pcv, is of length tau+ tac+ tcv,

and another path, say Pub ∪ Pbd ∪ Pdv, is of length tbu + tbd + tdv. By (2.3) we have

(tbu + tbd + tdv) + (tau + tac + tcv) = 2(tab + tbd), hence tbu + tbd + tdv and tau + tac + tcv

have the same parity. Furthermore, since Pab ∪ Pad ∪ Pbd forms a facial cycle we have

tab + tad + tbd = 2k + 1, thus 2(tab + tbd) = 4k + 2− 2tad ≤ 4k.

Hence we have min{(tau + tac + tcv), (tbu + tbd + tdv)} ≤ 2k. Similarly, we can show

that min{(tau + tad + tdv), (tbu + tbc + tcv)} ≤ 2k.

But note that min{(tau+ tac+ tcv), (tbu+ tbd+ tdv)} and min{(tau+ tad+ tdv), (tbu+

tbc + tcv)} have different parities irrespective of the parity of tab = tcd. Therefore, there

is a walk of length 2k − 1 from u to v.

The subdivided K4 where two parallel edges are subdivided 2k−1 times will be the

base of our construction. Next we will use two operations to enlarge this construction.

Operation copy threads: Let G be a graph and P = {P1, P2, · · · , Pk} be a set

of threads of G. For each thread Pi = xv1v2 · · · vry in P, add a new thread P ′i =

xv′1v
′
2 · · · v′ry where all the internal vertices are new and distinct. Denote the new graph

by CT (G). Let W be a clique in G(l) on vertex set V (W ). Consider a set U of vertices

of CT (G) which consists of V (W ) and copy vertices v′ for each vertex v of V (W ) that

has degree 2 in G. It is now easy to check that the subgraph W ′ of CT (G)(l) induced by

U is a complete graph minus a matching. To be precise, the missing matching matches

pairs v, v′ where v is a degree 2 vertex of G and v′ is its copy.

Next we want to introduce an operation which will complete W ′ into a complete

graph.

Operation shorten threads: Let G be a graph. Consider a collection P of

threads of G, in which every thread is of length at most 2k−1. Let CT (G) be the graph

obtained after applying the operation copy thread with respect to P. For P ∈ P, let

P ′ be its copy in CT (G). Suppose P is of length r + 1 with x and y its end vertices

and with v1, v2, · · · , vr its internal vertices. Let v′1, v
′
2, · · · , v′r be the internal vertices of

P ′. Add a new path to CT (G) of length 2k − r which connects v1 and v′r (all internal

vertices are new and distinct). The new graph obtained after repeating the process for

all paths in P will be denoted by ST (G). Note that the operation ST (G) creates two
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shortened threads; v1v2 · · · vry, a shortening of P and xv′1v
′
2 · · · v′r, a shortening of P ′.

The length of each of the shortened threads is one less than the length of P .

y

vr

vr−1

v2

v1

x

v′1

v′2

v′r−1

v′r

s1

s2k−r−1

Figure 2.3: Copy and shortening of a thread.

See Figure 2.3 for presentation of the two operations.

Observation 2.23. If G is a planar graph, then ST (G) is also planar with repect to

any choice of P. Furthermore, if a thread P is in a cycle of length 2k + 1 in G, then

both of its corresponding shorten threads are each in a cycle of length 2k + 1 in ST (G).

The next lemma is the key property of this operation.

Lemma 2.24. Let G be of odd-girth 2k + 1 and let P be a collection of threads of G,

each of them contained in a cycle of length 2k+1. Let ST (G) be the graph obtained after

applying operations copy threads and shorten threads with respect to P. Then ST (G) is

also of odd-girth 2k + 1.

Proof. We may assume P consists of one thread only (say P ). We may apply the proof

repeatedly if P has more threads. Note that a new cycle C ′ in CT (G) must contain P ′,

the copy of P . If C ′ contains both P and P ′, then C ′ is formed of the union of the two

and is of even length. Otherwise, by replacing P ′ with P we obtain a cycle C of G which

has the same length as C ′. As G has odd-girth at least 2k+ 1, the cycle C ′ must either

be of even length or have odd length at least 2k + 1. Thus, CT (G) is also of odd-girth

2k + 1.

Suppose that C is an odd-cycle of length 2l+ 1 (l ≤ k− 1) in ST (G) that contains

the path v1s1 · · · s2k−r−1v
′
r which connects P = xv1 · · · vry and P ′ = xv′1 · · · v′ry. The

cycle C must contain at least one of x or y. If it contains only one, say x, then it is

xv′1 · · · v′rs2k−r−1v1 but this is of length 2k + 1 which is a contradiction.
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If C contains both x and y, then either it contains the path xv′1 · · · v′rs2k−r−1 · · · s1v1v2 · · · vry
or the path Q = xv1s1 · · · s2k−r−1v

′
ry. The former path is already of length 2k + r, con-

tradicting with length of C. Thus the latter must be the case. In such a case, the path

obtained by deleting the edges of Q from the cycle C is a path of length 2l+1−(2k−r+2)

in G that connects x and y, call it Q′′. On the other hand, since, by our assumption,

P is part of a (2k + 1)-cycle, there exists a path Q′ of length 2k − r connecting x and

y. These two paths, Q′ and Q′′, together induce a closed walk of length 2l − 1 in G,

contradicting the fact that G has odd-girth 2k + 1.

Now we are ready to prove Theorem 2.2.

Proof of Theorem 2.2. Let G0 be the graph obtained from K4 by subdividing two par-

allel edges 2k−2 times each. Note that the result is a graph of odd-girth 2k+1 in which

each face is of length 2k + 1. Thus, by Lemma 2.22, the (2k − 1)-th walk power of G0

is a clique of order 4k. Let P0 be set of the two threads of G0 (each of length 2k − 1),

note that each of the threads belongs to a facial cycle of length 2k + 1. Thus when we

apply operation shorten thread on G0 with respect to P0, both Observation 2.23 and

Lemma 2.24 applies.

Starting form G0 and P0, we will build a graph inductively in 2k − 2 steps as

follows: given Gi and Pi, we define Gi+1 to be ST (Gi) with respect to Pi. We then

define Pi+1 to be the collection of shortened threads and their copies. Thus Pi+1 has

twice as many elements as Pi. Each thread in Pi+1 has 2k− i vertices. And furthermore

Observation 2.23 and Lemma 2.24 applies at each step. Therefore at each step we have

a graph Gi of odd-girth 2k + 1.

At final step, i.e. G2k−2, we have;

ω(G
(2k−1)
2k−2 ) ≥ 4k +

2k−2∑
j=1

2j(2k − j − 1)

= 4k + (2k − 1)

2k−2∑
j=1

2j − 2

2k−2∑
j=1

j2j−1

= 4k + [(2k − 1)(22k−1 − 2)]−

2[(1− 22k−1)− (−1)(2k − 1)22k−2]

= 4k + (k22k − 4k − 22k−1 + 2)−

(2− 22k + k22k − 22k−1)

= 22k.
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G1 G2 G3

Figure 2.4: Example of building a planar graph G3 of odd-girth 5 with ω(G
(3)
3 ) ≥ 24.

In Figure 2.4 we present our construction for the case k = 2. The result is a graph

on 26 vertices. The black vertices correspond to the clique of order 24 in G
(3)
3 . Note

that the construction of [81] has more than 600 vertices.

Proof of Theorem 2.1 (for even values of d). Let G = G2k−2 be the graph built in the

previous proof. Since G is of odd-girth 2k + 1, by the assumption, it maps to B. Since

B is also of odd-girth 2k + 1, both B(2k−1) and G(2k−1) are simple graphs and G(2k−1)

admits a homomorphism to B(2k−1). Hence K22k ⊂ B(2k−1) which, in particular, implies

|V (B)| ≥ 22k.

To prove the lower bound on the minimum degree, we first introduce the following

graph: let P = x1, x2, · · · , x2k+1 be a path of length 2k. Now subdivide each edge xixi+1

of P by replacing it with the path xiy
i
1y
i
2 · · · yi2k−2xi+1. Note that now xi is at distance

2k − 1 from xi+1. Then, we obtain a new graph P ′ by adding some shortcut edges

x1y
2
1, y2

1y
3
2, y3

2y
4
3, · · · , y2k

2k−2x2k+1 so that the shortest odd walk between each xi and xj

becomes of length 2k − 1. Now, given a vertex u, the graph Pu is the graph obtained

from a disjoint copy of P ′ by adding the edges uxi for all i ∈ {1, 2, · · · , 2k + 1}. Note

that the graph Pu is of odd-girth 2k + 1 and that in P
(2k−1)
u the vertices of P (i.e., the

xi’s) induce a (2k + 1)-clique.

Now, since B is minimal, there exists a planar graph GB of odd-girth 2k+ 1 whose

mappings to B are always onto. Let G∗B be a new graph obtained from GB by adding

a copy of Pu for each vertex u of GB. This new graph is also of odd-girth 2k + 1, thus,

by the choice of B, it maps to B. Let φ be such a mapping of G∗B to B. This mapping

induces a mapping of GB to B. Thus, by the choice of GB, each vertex v of B is the

image of a vertex u of GB. But in the mapping G∗B to B, all xi’s of Pu must map to

distinct vertices all of which are neighbors of φ(u) = v.



Cliques in walk-powers of planar graphs 40

Note that since PC(2k) is a (2k+ 1)-regular graph on 22k vertices, if Conjecture 1.3

holds, then PC(2k) is an optimal homomorphism bound

2.3 Optimal bound for planar signed bipartite graphs

The development of the notion of homomorphisms for signed graphs has began very

recently and, therefore, it is not yet known if an analogue of Theorem 1.10 would hold

for the class of signed bipartite graphs. While we believe that it would be the case, here

we prove that SPC(d) is the optimal homomorphism bound for the signed bipartite case

of Conjecture 1.3 if the conjecture holds.

Note that if both graphs are of unbalanced-girth at least r + 2, then (G,Σ)r and

(H,Π)r are both loopless, and, therefore, the existence of a homomorphism φ : (G,Σ)→
(H,Π) would imply ω((G,Σ)r) ≤ ω((H,Π)r). Furthermore, assuming that G and H are

both connected, since φ is also a homomorphism of G to H, it would preserve bipartition.

Thus in what follows we will built a signed bipartite planar graph (G,Σ) of unbalanced-

girth 2k such that each part of G contains a clique of size 2k−2 in (G,Σ)2k−2.

To this end we start with the following lemma which is the signed bipartite analogue

of Lemma 2.22.

Lemma 2.25. Let (G,Σ) be a planar signed graph which is obtained by assigning a

signature to a subdivision of K4 in such a way that each of the four facial cycles is an

unbalanced cycle of length 2k. Then (G,Σ)(2k−2) is isomorphic to two disjoint copies of

K2k−1 induced by the two parts of G.

Proof. We consider a fixed signature Σ of (G,Σ). We will use the same notations (Pxy,

txy, etc.) as in Lemma 2.22. Thus as proved in that lemma, parallel edges of K4

are subdivided the same number of times. Furthermore, repeating the same argument

modulo 2, we can conclude that the number of negative edges in Pxy and the number of

negative edges in Pwz have the same parity for all {x, y, w, z} = {a, b, c, d}.

Let u and v be two vertices from the same part of G (thus any path connecting u

and v has even length). We would like to prove that they are adjacent in (G,Σ)(2k−2).

If they both belong to a facial cycle, then the two paths connecting these two vertices in

that (unbalanced) cycle satisfy the conditions and we are done. Hence, assume without

loss of generality that u ∈ Pab and v ∈ Pcd.
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Removing the edges of the parallel paths Pad and Pbc will result in a cycle of length

4k − 2tad containing u, v. This implies:

(tua + tac + tcv) + (tub + tbd + tdv) ≤ 4k − 2,

and thus

min{(tua + tac + tcv), (tub + tbd + tdv)} ≤ 2k − 2. (2.4)

Similarly by removing Pac and Pbd we get

min{(tua + tad + tdv), (tub + tbc + tcv)} ≤ 2k − 2. (2.5)

It remains to show that the two paths of Equations (2.4) and (2.5) have different

numbers of negative edges modulo 2. To see this note that the union of any of the two

paths from (2.4) with a path from (2.5) covers a facial cycle exactly once and one of Pab

or Pcd twice. Since each facial cycle is unbalanced, our claim is proved.

Next we will use two operations, similar to the ones done the previous section, to

enlarge this construction.

Operation copy threads: Let (G,Σ) be a signed bipartite graph and P =

{P1, P2, · · · , Pk} be a set of threads of (G,Σ). For each thread Pi = xv1v2 · · · vry in

P, add a new thread P ′i = xv′1v
′
2 · · · v′ry where all the internal vertices are new and dis-

tinct. Assign signs to the new edges in such a way that the edges xv′1 and vry have the

same sign, the edges v′ry and xv1 have the same sign and the edges v′iv
′
i+1 and vr−i+1vr−i

have the same sign. Denote the new signed graph by (CT (G), CT (Σ)).

Let W be a clique in (G,Σ)(l) on vertex set V (W ). Consider a set U of ver-

tices of (CT (G), CT (Σ)) which consists of V (W ) and copy vertices v′ for each vertex

v of V (W ) that has degree 2 in G. It is now easy to check that the subgraph W ′ of

(CT (G), CT (Σ))(l) induced by U is a complete graph minus a matching. To be precise,

the missing matching is between pairs v, v′ where v is a degree 2 vertex of (G,Σ) and v′

is its copy.

Next we want to introduce an operation which will complete W ′ into a complete

graph.

Operation shorten threads: Let (G,Σ) be a signed bipartite graph. Consider

a collection P of threads of length at most 2k − 2 of (G,Σ) and let (CT (G), CT (Σ))
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be the graph obtained after applying the operation copy thread with respect to P. For

P ∈ P let P ′ be its copy in (CT (G), CT (Σ)). Suppose P is of length r + 1 with x and

y its end vertices and with v1, v2 · · · , vr as its internal vertices. Let v′1, v
′
2 · · · v′r be the

internal vertices of P ′. Add a new path N of length 2k − r to (CT (G), CT (Σ)) which

connects v1 and v′r (all internal vertices are new and distinct). Moreover, we assign signs

to the edges of the new path N in such a way that the cycles induced by V (N)∪(V (P )\
{x}) and V (N) ∪ (V (P ′) \ {y}) are both unbalanced. The new graph obtained after

repeating the process for all paths in P will be denoted by (ST (G), ST (Σ)). Note that

the operation (ST (G), ST (Σ)) creates two shortened threads; v1v2 · · · vry a shortening

of P and xv′1v
′
2 · · · v′r a shortening of P ′. The length of each of the shortened threads is

one less that the length of P .

Observation 2.26. If (G,Σ) is a planar signed bipartite graph, then (ST (G), ST (Σ))

is also a planar signed bipartite graph with repect to any choice of P. Furthermore, if a

thread P is in an unbalanced cycle of length 2k in (G,Σ), then both of its corresponding

shorten threads are each in an unbalanced cycle of length 2k in (ST (G), ST (Σ)).

The next lemma is the key property of this operation.

Lemma 2.27. Let (G,Σ) be a signed bipartite graph of unbalanced-girth 2k and let P
be a collection of threads of (G,Σ), each of which is contained in an unbalanced cycle

of length 2k. Let (ST (G), ST (Σ)) be the signed graph obtained after applying operations

copy threads and shorten threads with respect to P. Then (ST (G), ST (Σ)) is also a

signed bipartite graph of unbalanced-girth 2k.

The proof of this lemma is analogous to the proof of Lemma 2.24 and is omitted

here. We are now ready to prove Theorem 2.3.

Proof of Theorem 2.3. Let (G0,Σ0) be the signed graph obtained from K4 by subdi-

viding two parallel edges and by assigning a signature in such a way that each of the

four facial cycles is an unbalanced cycle of length 2k. Note that the result is a planar

bipartite signed graph of unbalanced-girth 2k in which each face is of length 2k. Thus,

by Lemma 2.25, the (2k−2)-th walk power of (G0,Σ0) is a disjoint union of two cliques,

each of order 2k−1. Let P0 be the set of two threads of (G0,Σ0) (each of length 2k−2),

note that each thread in P0 is contained in an unbalanced facial cycle of length 2k.

Thus when we apply operation shorten threads on (G0,Σ0) with respect to P0, both

Observation 2.26 and Lemma 2.27 applies.

Starting from (G0,Σ0) and P0, we will build a signed graph inductively in 2k − 2

steps as follows: given (Gi,Σi) and Pi we define (Gi+1,Σi+1) to be (ST (Gi), ST (Σi))
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with respect to Pi. We then define Pi+1 to be the collection of shortened threads and

their copies. Thus, Pi+1 has twice as many elements as Pi. Also, note that each thread

in Pi+1 has 2k − 2− i vertices. Furthermore Observation 2.26 and Lemma 2.27 applies

at each step. Therefore at each step we have a signed graph (Gi,Σi) of unbalanced-girth

2k.

At final step we have a planar bipartite signed graph (G2k−2,Σ2k−2) of unbalanced-

girth 2k. The size of each of the two cliques induced on two parts of (G2k−2,Σ2k−2)(2k−2)

is calculated as follows:

ω((G2k−2,Σ2k−2)(2k−2)) =

= 2k − 1 +
2k−2∑
j=1

2j−1(2k − j − 2) = 2k − 1 + (k − 1)
2k−2∑
j=1

2j −
2k−2∑
j=1

j2j−1

= 2k − 1 + [(k − 1)(22k−1 − 2)]− [(1− 22k−1)− (−1)(2k − 1)22k−2]

= 2k − 1 + [k22k−1 − 2k − 22k−1 + 2]− [1− 22k−1 + k22k−1 − 22k−2]

= 22k−2.

Now we are ready to conclude the proof of Theorem 2.1.

Proof of Theorem 2.1 (for odd values of d). The proof is similar to the proof for even

values of d. The only thing we need to do is to provide a gadget graph similar to Pu. We

will use the graph (G2k−2,Σ2k−2) as the gadget graph Pu where the role of u is played

by one of the original vertices of the K4 from which the graph was built.

More formally, let x be one of the original vertices of the K4 from which the signed

graph (G2k−2,Σ2k−2) was built in the proof of Theorem 2.3. Note that x has exactly 2k

neighbors in (G2k−2,Σ2k−2), each of which is part of a clique in (G2k−2,Σ2k−2)(2k−2).

Now, since B is minimal, there exists a planar bipartite signed graph (GB,ΣB) of

unbalanced-girth 2k whose mappings to B are always onto. Let (G∗B,Σ
∗
B) be a new

graph obtained from (GB,ΣB) by gluing a copy of (G2k−2,Σ2k−2) to each vertex u of

(GB,ΣB) by identifying the vertex x of (G2k−2,Σ2k−2) with the vertex u of (GB,ΣB).

This new graph (G∗B,Σ
∗
B), clearly, is a planar bipartite signed graph of unbalanced-girth

2k. The rest of the proof is similar to the proof for even values of d.
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2.4 Concluding remarks and further work

P. Seymour has conjectured in [94] that the edge-chromatic number of a planar

multi-graph is equal to its fractional edge-chromatic number. It turns out that the

restriction of this conjecture for k-regular multigraphs can be proved if and only if

Conjecture 1.3 is proved for d = k+1 [81, 82]. This special case of Seymour’s conjecture

is proved for k ≤ 8 in a series of works using induction and the Four-Color Theorem

in [42] (k = 4, 5), [24] (k = 6), [26] (k = 7) and [20] (k = 8). Thus Conjecture 1.3 is

verified for d ≤ 7. Hence we have the following corollary.

Corollary 2.28. For d ≤ 7 the signed graph SPC(d) is the smallest consistent graph

(both in terms of number of vertices and edges) of unbalanced-girth d + 1 which is a

homomorphism bound for all consistent planar signed graphs of unbalanced-girth exactly

d+ 1.

B. Guenin has proposed a strengthening of Conjecture 1.3 by replacing the condition

of planarity by the condition of having no (K5, E(K5))-minor [41].

For further generalization one can consider the following general question:

Problem 2.29. Given d and r, d ≥ r and d ≡ r (mod 2), what is the optimal homomor-

phism bound having unbalanced girth r for all consistent signed graphs of unbalanced-girth

d with no (Kn, E(Kn))-minor?

We do not know yet whether such a homomorphism bound exists in general. For

n = 3, consistent signed graphs with no (Kn, E(Kn))-minor are bipartite graphs with

all edges positive, and, therefore, have K2 as their homomorphism bound. For n = 5

if the input and target graphs are both of unbalanced-girth d + 1, then our work and

Geunin’s extension of Conjecture 1.3 propose projective cubes as the optimal solutions.

For d = r = 3, the answer would be Kn−1 if the Odd Hadwiger Conjecture is true. For

the case n = 4 some partial answers are given by Beadou, Foucaud and Naserasr [6].

For all other cases there is not even a conjecture yet.



Chapter 3

Cliques in walk-powers of

K4-minor free graphs

In Chapter 2, to show that the proposed projective cube is an optimal bound if Con-

jecture 1.3 holds, we introduce the notation of the walk-power, what we considered are

planar graphs of given odd-girth. If we restrict the planar graphs to K4-minor free

graphs, is PC(2k) also an optimal bound ? In a manuscript [6], Naserasr et al. show

that PC(2k) is far from being optimal (with respect to the order), they give a family of

graphs of order O(k2) bounding the K4-minor free graphs of odd-girth 2k + 1. Is this

an optimal bound?

In this chapter, we consider the clique number in the walk-powers of K4-minor free

graphs. More precisely, we conjecture that:

Conjecture 3.1. [49] Let G be a K4-minor free graph of odd-girth 2k + 1 (k ∈ Z+),

then ω(G(2k−1)) ≤ (k+1)(k+2)
2 .

Respecting to this conjecture, first we show that, if this conjecture holds, then the

bound (k+1)(k+2)
2 is optimal, we can see this from the following theorem.

Theorem 3.2. [49] Given integer k ≥ 1, there exists a K4-minor free graph G of odd-

girth 2k + 1 such that ω(G(2k−1)) ≥ (k+1)(k+2)
2 .

Our result shows that order O(k2) is optimal for the graphs bounding all K4-minor

free graphs of odd-girth 2k + 1.

Claim of Conjecture 3.1 for k = 1 is immediate. To support our conjecture we

provide a proof for k = 2.

45
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Theorem 3.3. [49] For any K4-minor free graph G with no triangle, we have ω(G(3)) ≤
6.

We start with some preliminaries on K4-minor free graphs.

3.1 K4-minor free graphs of odd-girth 2k + 1

The class of K4-minor free graphs are graphs without a K4 as a minor, they are also

known as the series-parallel graphs. The series-parallel graph can be defined in the

following way. Given a graph G with two distinguished vertices, say s and t, we call G a

2-terminal graph with terminal pair (s, t). Let G1 and G2 be (vertex disjoint) 2-terminal

graphs with terminal pairs (s1, t1) and (s2, t2), respectively. A series combination of G1

and G2 is a 2-terminal graph obtained from G1 ∪ G2 by identifying t1 with s2, and

choosing (s1, t2) as the new terminal pair. A parallel combination of G1 and G2 is a

2-terminal graph obtained from G1 ∪G2 by identifying s1 with s2 into a new vertex s,

identifying t1 with t2 into a new vertex t, and choosing (s, t) as the new terminal pair.

A series-parallel graph is a graph that can be obtained from copies of K2 by iterated

series and parallel combinations.

In [89], Nešetřil and Nigussie give a lemma showing the configuration of a K4-minor

free graph which is not homomorphic to a strictly smaller K4-minor free graph of the

same odd-girth. To recall the lemma, we need the following definitions.

Let G be a graph and let Gs denote the multigraph obtained by two following

operations.

• Contract each thread of G to an edge;

• If cycle C is a component of G or a block connected to the rest at u, then contract

C to parallel edges e and e′, where in the latter case u is a vertex of e and e′.

For each edge e of Gs, if e is obtained as in first item, we say that the thread is

represented by e in Gs, and denote it by Pe; if e is an original edge of G, we also denote

it by Pe. Moreover, the end vertices of e are of degree at least three both in G and Gs;

if e, together with e′, is obtained as in second item, the end vertices of e divide C into

two edge-disjoint paths, denoted Pe and Pe′ , which are represented by e and e′ in Gs,

respectively. In all cases, let le denote the length of Pe. Note that if dG(v) > 2, then

dG(v) = dGs(v).

It was proved by Nešetřil and Nigussie that,
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Lemma 3.4. [89] Let G be a K4-minor free graph of odd-girth 2k + 1 and let e, e′ be

parallel edges in Gs with common end vertices x and y. If G is not homomorphic to a

strictly smaller graph of the same odd-girth, then le + le, = 2k + 1. Moreover, Pe ∪ Pe′
is the unique cycle of length 2k + 1 containing both x and y.

Denote by G∗ the graph obtained from Gs by identifying its parallel edges. Lemma

3.4 is strengthened by the following:

Lemma 3.5. [89] Let G be a K4-minor free graph of odd-girth 2k + 1 such that G

is not hom-equivalent with C2k+1 and G is not homomorphic to a strictly smaller K4-

minor free graph of the same odd-girth. Then for any y ∈ V (G∗), if dG∗(y) = 2, then

dGs(y) = dG(y) = 4. Moreover, if such y exists then G has a configuration of Figure

3.1, where Pe1 ∪ Pe2, Pe3 ∪ Pe4 and Pe5 ∪ P are pairwise edge-disjoint cycles of length

2k + 1, such that lei ≥ 2, for each i, 1 ≤ i ≤ 5.

Pe5

P

y

x z

G′

Pe1

Pe3
Pe2

Pe4

Figure 3.1: Con-
figuration 1

uC2k+1

Figure 3.2: Con-
figuration 2

From Lemma 3.4 and Lemma 3.5 we get following corollary.

Corollary 3.6. Let G be a K4-minor free graph of odd-girth 2k + 1 such that G is not

hom-equivalent with C2k+1 and G is not homomorphic to a strictly smaller K4-minor

free graph of the same odd-girth. Then G has a configuration of either Figure 3.1 or

Figure 3.2.

Proof. By the definition, Gs and G∗ are both K4-minor free graphs. Thus there exists

a vertex v such that dG∗(v) ≤ 2.

If dG∗(v) = 2, by Lemma 3.5, G has a configuration of Figure 3.1.

If dG∗(v) = 1, denote by e the only edge incident to v in G∗. Denote by u the other

end vertex of e. If u and v are joined only by e in Gs, that means dGs(v) = 1 and e is

an original edge in G, then dG(v) = 1. Thus v can be mapped to any other neighbor

of u, this is contrary to that G is not homomorphic to a strictly smaller K4-minor free

graph of the same odd-girth.
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If u and v are joined by another edge e′ parallel to e, by Lemma 3.4, Pe∪Pe′ is the unique

cycle of length 2k + 1 containing both u and v in G. Moreover, u is the only vertex on

this cycle of degree at least three in G. We claim that Pe ∪ Pe′ is the unique cycle of

length 2k+1 containing u in G. Suppose to the contrary that C is another cycle of length

2k + 1 containing u. Note that no vertex of (Pe ∪ Pe′)\u is on C, otherwise all vertices

of Pe ∪ Pe′ are on C, which implies that (Pe ∪ Pe′) = C. Thus V (C) ∩ V (Pe ∪ Pe′) = u.

Since all vertices of (Pe ∪ Pe′)\u are of degree two in G, Pe ∪ Pe′ can be mapped to C,

this is contrary to that G is not homomorphic to a strictly smaller K4-minor free graph

of the same odd-girth. Thus G has a configuration of Figure 3.2.

3.2 Proof of Theorem 3.2

In this section, we will prove Theorem 3.2.

First, we construct a graph, then show that it satisfies the theorem.

w

u v

k − i1

k + i1 + 1

k + i2 + 1

j1 + 2

2k − j2 − 1
k − i2 j2 + 2

2k − j1 − 1

C2k+1

xi1j1

xi2j2

Figure 3.3: Constructing a K4-minor free graph G of odd-girth 2k + 1 with

ω(G(2k−1)) ≥ (k+1)(k+2)
2 .

As shown in the Figure 3.3, we construct the graph G from a cycle C of length

2k+ 1. It is easy to check that these 2k+ 1 vertices on C will be in a clique of G(2k−1).

Denote these vertices by a set X. Take two vertices of distance k on the cycle C, denote

them by u and v. Then we add new vertices step by step to G and X, for convenience,

we always call the new graph G and the new set X. For 0 ≤ i ≤ k − 2, i ≤ j ≤ k − 2,

we add a new vertex x together with two parallel paths connecting u and x, of length

k − i and k + i+ 1 respectively; also together with two parallel paths connecting v and

x, of length j + 2 and 2k − j − 1 respectively. All vertices on these four new paths are

unused except u and v. Also we add x to X.
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First, we show that at each step the graph G is K4-minor free and of odd-girth

2k + 1. Note that at each step, we only use series and parallel connections of copies of

K2, it is easy to check that G is also K4-minor free. Now we show that G is of odd-girth

2k + 1. Note that, each time we add a vertex, say xi1j1 , together with four paths, say

P1, P2, P3, P4, of lengths k−i1, k+i1+1, j1+2, 2k−j1−1 (i1 ≤ j1 ≤ k−2 by assumption),

respectively, toG. Then in the subgraph formed by P1, P2, P3, P4 together with C, except

three cycles of length 2k+ 1, all the other cycles each must contain u, v, xi1j1 , thus each

of them is of length at least k+k−i1 +j1 +2 ≥ 2k+2. We are done for this case. If there

exists a vertex, say xi2j2 , added before xi1j1 , together with four paths, say P ′1, P
′
2, P

′
3, P

′
4,

of lengths k−i2, k+i2 +1, j2 +2, 2k−j2−1 (i2 ≤ j2 ≤ k−2 by assumption), respectively,

then in the subgraph formed by P ′1, P
′
2, P

′
3, P

′
4 together with P1, P2, P3, P4, except four

cycles of lengths 2k+ 1, all the other cycles each must contain u, v, xi1j1 , xi2j2 , thus each

of them is of length at least k−i2+j2+2+k−i1+j1+2 = 2k+4+(j2−i2)+(j1−i1) ≥ 2k+4.

We are done.

Second, we show that at each step, the new vertex added to X is connected by an

odd path of length at most 2k − 1 to each vertex on C. To see this, we take a vertex,

say w, of C. Since u and x are on a cycle of length 2k+ 1, u and x are surely connected

by an odd path of length at most 2k − 1, it is the same for v and x. Thus we may

assume that w is different from u and v. Denote the distance of u and w by l1 and the

distance of v and w by l2. Then l1 + l2 = k or k + 1 and l1 ≥ 1, l2 ≥ 1. There are two

paths connecting w and x which contain u, of distances k + l1 − i and k + l1 + i + 1

respectively. Also there are two paths connecting w and x which contain v, of distances

j + l2 + 2 and 2k + l2 − j − 1 respectively. We need to show that one of k + l1 − i,
k + l1 + i + 1, j + l2 + 2 and 2k + l2 − j − 1 is odd and no more than 2k − 1. Note

that k + l1 − i and k + l1 + i+ 1 are of different parities, j + l2 + 2 and 2k + l2 − j − 1

are of different parities, also both k + l1 − i and j + l2 + 2 are no more than 2k. If

one of k + l1 − i and j + l2 + 2 is odd, we are done. Now assume that both k + l1 − i
and j + l2 + 2 are even, then both k + l1 + i + 1 and 2k + l2 − j − 1 are odd. Since

k + l1 + i+ 1 + 2k + l2 − j − 1 = 3k + (l1 + l2)− (j − i)− 2 ≤ 4k, one of k + l1 + i− 1

and 2k + l2 − j − 1 is no more that 2k − 1, we are done.

Finally we show that each pair of vertices added to X is connected by an odd path

of length no more that 2k − 1. Take two vertices xitjt ’s (t = 1, 2) such that xitjt is

connected by two paths to u of lengths k − it and k + it + 1 respectively, and xitjt is

connected by two paths to v of lengths jt+2 and 2k− jt−1 respectively. There are four

paths connecting xi1j1 and xi2j2 which contain u of lengths 2k− i1− i2, 2k+ i1 + i2 + 2,

2k + i1 − i2 + 1 and 2k + i2 − i1 + 1 respectively. If i1 and i2 are of different parities,

then 2k− i1− i2 is odd and no more than 2k−1, we are done. We assume that i1 and i2

are of the same parity. If i1 6= i2, then one of 2k+ i1− i2 + 1 and 2k+ i2− i1 + 1 is odd
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and no more than 2k − 1, we are done. Thus we assume that i1 = i2. Since xi1j1 and

xi2j2 are distinct, j1 6= j2. Then there are four paths connecting xi1j1 and xi2j2 which

contain v of lengths j1 + j2 + 4, 4k − j1 − j2 − 2, 2k + j1 − j2 + 1 and 2k + j2 − j1 + 1

respectively. If j1 and j2 are of different parities, then j1 + j2 + 4 is odd and no more

that 2k− 1, we are done. If j1 and j2 are of the same parity, then one of 2k+ j1− j2 + 1

and 2k + j2 − j1 + 1 is odd and no more than 2k − 1, we are done.

Now we calculate the size of X. At beginning, there are 2k+ 1 vertices in X. Each

pair (i, j) gives a new vertex, where 0 ≤ i ≤ k − 2 and i ≤ j ≤ k − 2. Thus there are

(k−2+1)+(k−2)+. . .+1 new vertices. Totally, we get |X| = 1+2+. . .+k−1+2k+1 =
(k+1)(k+2)

2 .

The proof of Theorem 3.2 is completed.

3.3 Preliminaries for the proof of Theorem 3.3

In this section, we give some Lemmas for the proof of Theorem 3.3.

Lemma 3.7. Let G be a graph and C be a cycle of length at least 3 in G. If there exist

3 walks, say W1,W2,W3, starting from x in G\C such that the first vertex where Wi

meets C is xi (i = 1, 2, 3), where x1, x2 and x3 are mutually distinct, then G has K4 as

a minor.

Proof. Denote by T the component containing x in G\C. It is easy to check that xi

(i = 1, 2, 3) is adjacent to a vertex in H. Contract T to be a new vertex x′, then x′ is

adjacent to all of {x1, x2, x3}. Contract some edges of C such that x1, x2 and x3 are

mutually adjacent, then we get a K4 as a minor.

Lemma 3.8. Let G be a K4-minor free graph of odd-girth 5. Let X be a set of vertices

of a clique in G(3). Then for any vertex w, |N1(w) ∩X| ≤ 2.

Proof. Suppose to the contrary that there exists a vertex w adjacent to 3 vertices

x1, x2, x3 in X. Since x1 and x2 are in X, there exists a 3-walk W connecting them

in G. Then W together with x2wx1 walk forms a closed walk of length 5. Thus it

should contain an odd-cycle of length at most 5. Since G is triangle free, this closed

walk should be a 5-cycle, denote it by Cx1x2 . We claim that x3 is not on Cx1x2 . To see

this, note that two neighbors of w in Cx1x2 are x1 and x2. If x3 is also one of vertices of

Cx1x2 , then since x3 is adjacent to w, we will have a smaller odd-cycle.

Similarly, since x3 and x1 are in X, there exists a 3-walk W1 connecting them in

G. Then W1 together with x1wx3 walk forms a 5-cycle, and x2 is not on it. Denote
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by w1 the vertex where W1 meets W . Note that w1 6= x2. Since W is of length 3, the

lengths of w1x1 walk and w1x2 walk in W have different parities. Thus x3w1 walk in

W1 together with w1x2 walk in W is of even length, and W1 together with x1wx2 walk

is of length 5. We need another 3-walk W2 connecting x3 and x2 in G. Similarly, W2

together with x2wx3 walk forms a 5-cycle, and x1 is not on it. Denote by w2 the vertex

where W2 meets W . Note that w2 6= x1.

We claim that w1 6= w2. To the contrary, let w1 = w2. Note that x2 6= w1, x1 6= w2.

Then W1 together with x1wx2 walk and W2 is a closed walk of length 8, which contains

Cx1x2 of length 5. Thus x3w1 walk in W1 together with x3w2 walk in W2 is a closed

walk of length 3, a contradiction.

Since x3 is adjacent to w, W1 and W2 meet Cx1x2 at another two different vertices

w1 and w2, by Lemma 3.7, we can get a K4 as a minor. A contradiction.

In this Lemma we show that, at most 2 vertices in N(w) of any w can form a clique

in G(3), in the following, we show that at most 3 vertices in N2(w) of any w can form a

clique in G(3).

Lemma 3.9. Let G be a K4-minor free graph of odd-girth 5. Let X be a set of vertices

of a clique in G(3). Then for any vertex w, |N2(w) ∩X| ≤ 3.

Proof. Suppose to the contrary that there exist a vertex w and four vertices x1, x2, x3, x4

such that {x1, x2, x3, x4} ⊆ N2(w) ∩X. Since x1 and x2 are in X, there exists a 3-walk

W connecting them in G. Respect to the existence of common neighbors of x1 and x2

in N1(w), we continue our proof in two cases.

Case 1. N1(x1) ∩ N1(x2) ∩ N1(w) 6= ∅. Denote one of the common neighbors of

w and xi’s (i = 1, 2) by w1. Since {x1, x2} ⊆ X, there exists a 3-walk connecting

x1 and x2, denote it by x1y1y2x2. Note that G is triangle free, it is to check that

{y1, y2} ∩ {x1, x2, w1, w} = ∅.

Subcase 1. |{x3, x4}∩{y1, y2}| = 2. Note that G is triangle free, w1 is not adjacent

to y1 or y2, moreover, y1 and y2 has no common neighbors. Since w1x1y1y2x2w1 forms a

cycle of length 5, denoted C, and there exist 3 walks starting from w in G\C such that

the first vertices they meet C are w1, y1 and y2 respectively. By Lemma 3.7, G has a

K4 as a minor, a contradiction.

Subcase 2. |{x3, x4} ∩ {y1, y2}| = 1. Assume w.l.o.g. that x3 = y1. Since G is

triangle free, y1 is not adjacent to w1. Note that y1 = x3 ∈ N2(w), y1 and w must

have a common neighbor. We claim that this common neighbor could be not one of

{w1, x1, x2}, otherwise there will be a triangle, a contradiction.
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First, we assume that y2 is one of the common neighbors of w and y1. By Lemma

3.8, x4 is not adjacent to w1. Note that x4 ∈ N2(w).

If x4 is adjacent to y2, the {x2, x3, x4} ⊆ X ∩N(y2), a contradiction by Lemma 3.8.

If x4 is not adjacent to y2, denote by y3 the common neighbor of w and x4, then

y3 /∈ {w1, x1, x2, y1, y2}. There are 3-walks connecting x4 and x1, x2, y1 respectively.

Considering the distances between w and xi’s, none of these 3-walks contains w. Simi-

larly to the proof in Lemma 3.8, the number of the first vertices where these 3-walks meet

the cycle w1x1y1y2x2w1 must be at least 2. In this case, there are walks starting from

x4 which meet one of the cycles ww1x2y2 and ww1x1y1y2 at three distinct vertices(first

meet vertices). Then by Lemma 3.7 we get a contradiction.

Second, we assume that y2 is not the common neighbor of w and y1. This case is

very similar to case that the common neighbor of y1 and w is y2, we can use Lemma 3.7

to get a contradiction.

Subcase 3. |{x3, x4} ∩ {y1, y2}| = 0. By Lemma 3.8, both x3 and x4 are not

adjacent to w1. Note that w1x1y1y2x2w1 is a cycle of length 5, denote it by C, to get

two 3-walks connecting xi (i = 3, 4) and x1 or x2, there are two ways: one is connecting

x3 to w1 by a 2-walk, the other one is connecting x3 by two walks which meet C at two

different vertices. It is the same for x4. We only give one case here: x3 is connected to

w1 by a 2-walk, and x4 is connected by two walks to C which meet C at two different

vertices except w1. In this case, since x3 and x4 is connected by 3-walk and x3 is

connected to w1 by a 2-walk, it is easy to check that there is a walk connecting x4 and

w1 such that w1 is the first vertex where the walk meets C. Thus, by Lemma 3.7 we get

a contradiction. The other cases are similar.

Case 2. N1(x1)∩N1(x2)∩N1(w) = ∅. Moreover, we can assume N1(xi)∩N1(xj)∩
N1(w) = ∅ (i 6= j, {i, j} ⊆ {1, 2, 3, 4}), otherwise it is the same as Case 1. Denote one

of the common neighbors of w and xi by yi (i = 1, 2, 3, 4). Note that yi’s are distinct.

First, we claim that no pair of xi and xj are adjacent. To see this, suppose to the

contrary we assume that x1 and x2 are adjacent. Then wy1x1x2y2w is a cycle of length

5, denoted it C. Assume that W1 and W2 are two 3-walks connecting x3 to x1 and

x2, then W1 and W2 do not contain w. Moreover, the first vertices W1 and W2 meet

C must be the same, otherwise by Lemma 3.7 we get a contradiction. Thus the only

way is that one of {W1,W2} is of length 2, the other is of length 3, W1 and W2 meet

at x1 or x2, say x2. Note that x3 could not be adjacent to x1 or x2. In this case there

must exist a cycle containing w, x1, x2, x3, denote it by C ′. Now consider the 3-walks,

say W3,W4,W5, connecting x4 to xi’s (i = 1, 2, 3). Since w and xi (i = 1, 2, 3, 4) are of

distance 2, W3,W4,W5 do not contain w. Furthermore, since x2 is of different distance
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to x1 and x3 on C ′, W3,W4,W5 must meet C ′ at at least 2 vertices, then together with

x4y4w, there are 3 walks starting from x4 which meet C ′ at three distinct vertices, we

get a contradiction by Lemma 3.7.

Second, we claim that no pair of xi and xj are connected by a 3-walk without using

vertices in {y1, y2, y3, y4}. To see this, suppose to the contrary we assume that x1 and

x2 are connected by a 3-walk x1y5y6x2. Thus wy1x1y5y6x2y2w form a cycle of length 7,

denoted by C. Once again, let W1 and W2 be two 3-walks connecting x3 to x1 and x2,

respectively. Considering the distance between x1 and x2, W1 and W2 must meet C at

two distinct vertices. Including the walk x3y3w, there are three walks starting from x4

which meet C at three distinct vertices, by Lemma 3.7 a contradiction.

Furthermore, we claim that no pair of xi and xj are connected by a 3-walk using

two vertices in {y1, y2, y3, y4}, otherwise a triangle arises.

Thus each pair of xi and xj are connected by a 3-walk using exactly one vertex in

{y1, y2, y3, y4} and one vertex not in {w, xi, yi} (i = 1, 2, 3, 4). Since there are C2
4 = 6

pairs of xi and xj , and there are only 4 yi’s, on these six 3-walks, there are two cases:

one of yi’s is used 3 times and the others each is used once; two of yi’s are used twice

and the others each is used once. We give the proof of the first case here, the second

case is similar. Assume w.l.o.g that y1 is used 3 times in the 3-walks connecting x1 to

x2, x3 or x4. On these three 3-walks, y1 can be adjacent to 1, 2 or 3 new vertices. We

give the proof for the case y1 adjacent to one new vertex, say y∗1, the other cases are

similar. These three 3-walks are x1y1y
∗
1xi (i = 2, 3, 4). Moreover, assume x2 and x3

are connected by a 3-walk x2y2y
∗
2x3. Note that y∗2 6= y∗1, otherwise a triangle arises.

Now wy2y
∗
2x3y3w form a cycle of length 5, denote it by C. Then there are three walks

starting from x3 which meet C at three distinct vertices y2, x3 and w, by Lemma 3.7 we

get a contradiction.

This completes the proof.

Lemma 3.10. Let G be a K4-minor free graph of odd-girth 5. Let u and v be two

vertices of G connected by a thread of length at least 2. For any two vertices x, y in

V (G)\{u, v}, if d(x, u) = d(y, u) = 2 and d(x, v) = d(y, v) = 1, then x and y are not

adjacent in G(3).

Proof. Suppose to the contrary that x and y are adjacent in G(3), that means there

exists a 3-walk W connecting them in G, considering the distances between x, y and

u, v, x, y are not on this thread. Since d(x, u) = d(y, u) = 2, u and x have a common

neighbor, denote it by w1. And u and y also have a common neighbor, denote it by w2.



Cliques in walk-powers of planar graphs 54

Note that the vxw1u walk together with uv-thread forms a cycle, denoted C, of length

at least 5.

We claim that u is not on W , otherwise, since W is of length 3, u is adjacent to

either x or y, which is contrary to d(x, u) = d(y, u) = 2. Note that W together with

xvy walk forms a closed walk of length 5, thus it should contain an odd-cycle of length

at most 5. Since G is triangle free, this closed walk should be a 5-cycle, that means v is

not on W .

If w1 = w2, similarly to v, we can prove that w1 is not on W . Now there exist 3

walks starting from y which meet C at 3 different vertices w1, v and x. By Lemma 3.7,

G has a K4 as a minor, a contradiction.

If w1 6= w2, then one of {w1,w2} is not on W , otherwise w1 and w2 are adjacent

and a triangle uw1w2 arises, a contradiction. If one of {w1, w2}, assume w.l.o.g. w1, is

on W , then there exist 3 walks starting from y which meet C at 3 different vertices u, v

and x. By Lemma 3.7, G has a K4 as a minor, a contradiction. If neither w1 nor w2 is

on W , then there exist 3 walks starting from y which meet C at 3 different vertices u, v

and x. By Lemma 3.7, G has a K4 as a minor, a contradiction.

This completes the proof.

3.4 Proof of Theorem 3.3

Now we prove the Theorem 3.3.

Given two graphs G and H, if G → H, then any clique in G will be mapped to

a clique of same size in H. Thus ω(G) ≤ ω(H). If ϕ is a homomorphism of G to H,

then by Lemma 2.19 ϕ is also a homomorphism of G(k) to H(k). Define a class G of

graphs such that every member of G is K4-minor free graph of odd-girth 5 and is not

homomorphic to a strictly smaller K4-minor free graph of the same odd-girth. Note

that every K4-minor free graph of odd-girth 5 is homomorphic to a member of G. To

prove the Theorem 3.3, we only need to prove that every graph G ∈ G, ω(G(3)) ≤ 6.

Suppose to the contrary that there exists counterexamples in G, take one of minimum

order, denote it by G. Note that ω(G(3)) ≥ 7, since ω(C
(3)
5 ) = 5, G 9 C5. Thus by

Corollary 3.6 G has a configuration either in Figure 3.4 or in Figure 3.5. Let X be a

set of vertices of a maximum clique in G(3), then |X| ≥ 7. We will get contradictions

according to the two configurations of G.
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figuration 4

3.4.1 G has a configuration in Figure 3.5

Firstly, we claim that {v1, v2, v3, v4} ∩X 6= ∅. To see this, assume that {v1, v2, v3, v4} ∩
X = ∅, then X ⊆ V (G)\{v1, v2, v3, v4}. For any two vertices in X connected by a 3-walk

W , if one of {v1, v2, v3, v4} is on W , then all of them are on W , contrary to that W is

a 3-walk. Thus none of {v1, v2, v3, v4} is on a 3-walk connecting a pair of vertices in X.

Deleting the vertices in {v1, v2, v3, v4}, we get a smaller counterexample, a contradiction.

Secondly, we claim that {v1, v4}∩X 6= ∅ and {v2, v3}∩X = ∅. To see this, suppose

that {v2, v3} ∩X 6= ∅. Assume w.l.o.g. that v2 ∈ X. If v1 ∈ X, since |X| ≥ 7, there are

at least two vertices w1, w2 in X ∩ V (G\C5), Note that d(v2, u) = 2 and there exists a

3-walk connecting v2 and each of w1, w2, we get that w1 and w2 must be adjacent to u.

Now three neighbors of u are in X, by Lemma 3.8, we get a contradiction. If v1 /∈ X,

since |X| ≥ 7, there are at least 3 vertices in X ∩ V (G\C5) which must be adjacent to

u, a contradiction by Lemma 3.8. Therefor, {v2, v3} ∩X = ∅ and {v1, v4} ∩X 6= ∅.

Since {v1, v4} ∩X 6= ∅, assume w.l.o.g that v1 ∈ X. Note that |X| ≥ 7, there are

at least 4 vertices of X in X ∩ V (G\C5), which are in N2(u). By Lemma 3.9, we get a

contradiction.

3.4.2 G has a configuration in Figure 3.4

We first claim that at most one of {y1, y5} is in X. To see this, note that any walk W

connecting y1 and y5, W contains either y or both z and x. If W contains y, then it is

of even length or of length at least 5. If W contains both z and x, then it is of length at

least 6. Thus there is no walk of length 3 connecting y1 and y5, at most one of {y1, y5}
could be in X. Similarly we can prove that at most one of {y2, y6}, one of {y1, y4}, one

of {y6, y7}, one of {y3, y4, y7} could be in X. Note that at most 3 of {y1, y2, . . . , y7}
could be in X. Considering y is in X or not, there are two cases.
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Case 1. Vertex y ∈ X. Note that 3 of {y1, y2, . . . , y7} together with x, y, z, we now

have at most 6 vertices in X. Since |X| ≥ 7, there exists at least one vertex w1 in G′

such that w1 ∈ X, w1 /∈ {z, x}. Thus there exists a 3-walk connecting w1 to y. Since

d(y, x) = d(y, z) = 2, w1 must be adjacent to x or z. Assume w.l.o.g. that w1 is adjacent

to x. We show that y2 /∈ X. To see this, if there exists a 3-walk W connecting y2 to w1,

the y2xw1 walk together W forms a 5-walk. Note that y2 is on the unique 5-cycle, this

5-walk must contain a cycle of length 3, a contradiction. Similarly, we can show that

y3 /∈ X.

If y1 ∈ X, then y4 /∈ X, y5 /∈ X. Since at most one of {y6, y7} could be in X,

together with x, y, z, w1, y1, now we have at most 6 vertices in X. Since |X| ≥ 7, there

exists another vertex w2 in G′ such that w2 ∈ X, w2 /∈ {z, x}. Since d(y1, x) = 2 and

d(y1, z) = 3, to connect y1 with w2 by a 3-walk, w2 must be adjacent to x. Moreover,

for any vertex w in G′ such that w ∈ X, w /∈ {z, x}, w must be adjacent to x. By

Lemma 3.8, at most two neighbors of x could be in X. Thus one of {y6, y7} must be in

X. Since y7 is adjacent to x, y7 /∈ X. Therefor, y6 ∈ X. Since d(y6, x) = 3, d(y6, z) = 1,

y6 and wi(i = 1, 2) are connected by a 3-walk, we can get that d(w1, z) = d(w2, z) = 2.

Together with d(w1, x) = d(w2, x) = 1 and by Lemma 3.10, w1 and w2 could not be

adjacent in G(3), a contradiction.

If y1 /∈ X. Now y5 could be in X. If y5 ∈ X, since d(y5, z) = 2 and (y5, x) = 3, for

any vertex w in G′ such that w ∈ X, w /∈ {z, x}, w must be adjacent to z. By Lemma

3.8, at most two neighbors of z could be in X, together with z, x, y, y5, we have at most

6 vertices in X, a contradiction. If y5 /∈ X. By Lemma 3.8, at most 3 of {z} ∪N(z) can

be in X, together with y, z, w1, we now have at most 6 vertices in X. Since |X| ≥ 7,

there exists another vertex w2 in G′ such that w2 ∈ X, w2 /∈ {z, x}, moreover w2 /∈ N(z)

and w2 is connected to y by a 3-walk, thus w2 is adjacent to x. In this case, if one of

{y4, y6, y7} is in X, then d(w1, z) = d(w2, z) = 2. together with d(w1, x) = d(w2, x) = 1,

and by Lemma 3.10, w1 and w2 could not be adjacent in G(3), a contradiction. If none of

{y4, y6, y7} is in X, now we have 5 vertices y, z, x, w1, w2 in X, Since |X| ≥ 7, there exists

another two vertex w3, w4 in G′ such that w3 ∈ X, w4 ∈ X, w3 /∈ {z, x}, w4 /∈ {z, x}.
Note that w3 and w4 are adjacent to z or x, by Lemma 3.8, both of them are adjacent

to z. In this case, {w1, w2, w3, w4} ⊆ N2(y7), by Lemma 3.9 we get a contradiction.

Case2. Vertex y /∈ X. It is easy to check that y can be connected by a 3-walk

to each of {x, z, y1, y2, . . . , y7}. If none of {y1, y2, . . . , y6} is in X, note that no pair of

vertices in X are connected by a 3-walk containing a vertex in {y, y1, y2, . . . , y6}, then

deleting vertices in {y, y1, y2, . . . , y6}, we get a smaller counterexample, a contradiction.

Thus at least one of {y1, y2, . . . , y6} is in X. Note that at most 3 of {y1, y2, . . . , y7} could
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be in X. Together with x, z, we now have at most 5 vertices in X, thus at least two

vertices in X which are in G′\{z, x}.

If one of {y1, y5} is in X, then all vertices in X which are in G′\{z, x} are adjacent

to x or z, thus y is connected to each of them by a 3-walk, we get a bigger clique with

vertex set X ∪ {y}, a contradiction.

If y1 /∈ X, y5 /∈ X. We claim that at least one of {y4, y6} is in X, otherwise, note

that now X ⊆ V (G′)∪{y2, y3}, none of {y4, y5, y6} is necessarily on a 3-walk connecting

a pair of vertices in X, deleting them we get a smaller counterexample, a contradiction.

It is same for {y2, y3}. Since at most one of {y2, y6} could be in X, at most one of {y3, y4}
could be in X, assume w.l.o.g. that y3 and y6 are in X. Now none of {y1, y2} is on a 3-

walk connecting a pair of vertices in X, deleting them we get a smaller counterexample,

a contradiction.

The proof of Theorem 3.3 is completed.

3.5 Other cases of Conjecture 3.1

Even though we have not proved the other cases of Conjecture 3.1, we get some partial

results.

Claim 3.11. Given a graph G of odd-girth at least 2k+1 and a u, v-thread P of length lp

in G, denote the set of internal vertices of P by S. For any two vertices x, y in V (G\P ),

assume that in the graph induced by V (G) \ S, W is a walk connecting x and y of odd

length l, P1, P2, P3, P4, are shortest paths connecting x and v, y and v, x and u, y and

u respectively, with Pi being of length of li, 1 ≤ i ≤ 4, satisfying: V (P1) ∩ V (P2) = v,

V (P3) ∩ V (P4) = u, l1 ≡ l2 (mod 2), l3 ≡ l4 (mod 2), and l + li � 2k + 1 for 1 ≤ i ≤ 4.

Then G has K4 as a minor.

Proof. First, we claim that none of the vertices of P is on W . Too see this, suppose that

V (P ) ∩ V (W ) 6= ∅, thus there are two cases.

Case 1. |V (W ) ∩ V (P )| = 1. Assume w.l.o.g. that V (W ) ∩ V (P ) = {v}. Then W

together with P1 and P2 forms a closed walk W ′. Since l1 ≡ l2 (mod 2), l is odd, W ′ is of

odd length. Thus W ′ contains an odd-cycle C which is formed by part of P1, or part of

P2, together with W . Since l+ li � 2k + 1 for 1 ≤ i ≤ 4, |C| ≤ l+ max{l1, l2} ≤ 2k− 1,

which is contrary to that the odd-girth of G is at least 2k + 1.

Case 2. V (W ) ∩ V (P ) = V (P ). Then W must be formed by a x, v-walk, say W1,

together with v, u-thread and a u, y-walk, say W2. Then W together with P4 and P3
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forms a closed walk W ′ with length l + l3 + l4. If W1 together with v, u-thread and P3

forms a closed walk of odd length, then it contains an odd-cycle of length smaller than

l + l3 � 2k + 1, a contradiction. Thus W ′ contains an odd-cycle formed by W and part

of P4, which is of length smaller that l + l4 � 2k + 1, a contradiction.

Now, we prove that G contains a K4 as a minor. Note that P1 together with P and

P3 forms a cycle of length at least 3, denote it by C ′. Let W start from y, denote the

first vertex where W meets C ′ by w. Since V (P ) ∩ V (W ) = ∅, w, u, v are distinct. By

Lemma 3.7, G has a K4 as a minor.

Next we generalize the Lemma 3.8 to general odd-girth.

Claim 3.12. Let G be a K4-minor free graph of odd-girth 2k+ 1, k ≥ 1. Let X be a set

of vertices of a clique in G(2k−1). Then for any vertex w, |N(w) ∩X| ≤ 2.

Proof. The proof of this Lemma is very similar to Lemma 3.8. Suppose to the contrary

that there exists a vertex w adjacent to 3 vertices x1, x2, x3 in X. Since x1 and x2 are

in X, there exists a (2k − 1)-walk W connecting them in G. Then W together with

x2wx1 walk forms a closed walk of length 2k + 1. Thus it should contain an odd-cycle

of length at most 2k + 1. Since G is of odd-girth 2k + 1, this closed walk should be a

(2k + 1)-cycle, denote it by Cx1x2 . We claim that x3 is not on Cx1x2 . To see this, note

that two neighbors of w in Cx1x2 are x1 and x2. If x3 is also one of vertices of Cx1x2 ,

since x3 is adjacent to w, we will have a smaller odd-cycle, a contradiction.

Similarly, since x3 and x1 are in X, there exists a (2k − 1)-walk W1 connecting

them in G. Then W1 together with x1wx3 walk forms a (2k + 1)-cycle, denoted Cx1x3 ,

and x2 is not on Cx1x3 . Denote by w1 the first vertex where W1 meets Cx1x2 . Note

that w1 6= x2, w. Since W is of length 2k − 1, the w1x1-walk and w1x2-walk in W have

different parities. Without of losing generality, we assume that w1x1-walk in W is of

even length l1 and w1x2-walk in W is of odd length l2 such that l1 + l2 = 2k − 1. In

the one hand, since x3w1-walk in W ′ together with w1x1 walk in W , which actually

forms W1, is of an odd length 2k − 1, x3w1-walk in W1 together with w1x2 walk in W

forms a even walk. On the other hand, W1 together with x1wx2-walk forms a walk of

length 2k + 1 which is greater than 2k − 1. We need another walk, say W2, of length

(2k − 1), connecting x3 and x2 in G. Similarly, W2 together with x2wx3-walk forms a

(2k + 1)-cycle, denoted Cx2x3 , and x1 is not on Cx2x3 . Denote by w2 the vertex where

W2 meets Cx2,x3 . Note that w2 6= x1, w.

We claim that w1 6= w2. To the contrary, let w1 = w2. Note that x2 6= w1 = w2 6=
x1. Then W1 together with x1wx2 walk and W2 forms a closed walk of length 2k, which
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contains Cx1x2 of length 2k + 1, thus there must exist an odd-cycle of at most 2k− 1, a

contradiction.

This completes the proof.

3.6 Concluding remarks and further work

In this chapter, we consider the clique number of the (2k− 1)-walk-powers of K4-minor

free graphs of odd girth 2k + 1. We conjectured that the upper bound is (k+1)(k+2)
2 .

First, we constructed a graph such that this upper bound is achieved. Our result

together with the result from [6] implies that order O(k2) is optimal for the graphs of

odd-girth that bounding all K4-minor free graphs of odd-girth 2k + 1.

Then, we show that for k = 2, our conjecture holds. We hope to prove the general

cases of the conjecture.



Chapter 4

Homomorphism and planar

graphs

In this chapter, we will discuss some results related to Problem 1.14 and Conjecture

1.20. To make it easier to read, we state again the problems here.

Problem 4.1. [81] Given integers l ≥ k ≥ 1, what are the minimal subgraphs of PC(2k)

to which every planar graph of odd-girth 2l + 1 admits a homomorphism?

In [81], Naserasr conjectured that K(2k + 1, k), as a subgraph of PC(2k), is an

answer for the case r = k + 1. The first case of Problem 4.1 which is not being studied

is k = 3 and r = 5. For this case, we conjecture that the Coxeter graph, which is a

subgraph of K(7, 3), bounds the planar graph of odd-girth at least 11. We state again

the Conjecture 1.20 here.

Conjecture 4.2. [46] Every planar graph of odd-girth at least 11 admits a homomor-

phism to the Coxeter graph.

Supporting this conjecture, we prove Theorem 1.21. We state again this theorem

here.

Theorem 4.3. [46] Every planar graph of odd-girth at least 17 admits a homomorphism

to the Coxeter graph.

We will prove this theorem by contradiction and discharging technique. In section

4.1 we will present a list properties of Kneser graphs and Coxeter graph. In section 4.2,

we present the folding lemma which is used to characterize the faces a plane graph and

Euler formula which is used to give an initial charge. In section 4.3, we assume there

exists a counterexample and give a list of ten reducible configurations. In section 4.4,

we will use discharging technique to obtain a contradiction.

60
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4.1 Kneser graphs and Coxeter graph

Recall that the Kneser graph K(n, k), n ≥ 2k, is defined to be the graph whose vertices

corresponding to the k-element subsets of a set of n elements, and where two vertices are

adjacent if and only if the two corresponding sets are disjoint. Kneser graphs are named

after Martin Kneser, who first investigated them in 1955. Kneser graph K(2k−1, k−1)

is the well-known odd graph, usually denoted O(k).

It is well-known that Kneser Graph K(n, k) is both vertex-transitive and edge-

transitive. For the Kneser graph K(n, k), if n = 2k, then K(n, k) is a matching; if

k = 1, then K(n, k) is isomorphic to Kn. K(5, 2) is isomorphic to the well-known

Petersen graph and O(3). K(7, 3) is isomorphic to O(4).

It is shown that K(2k+ 1, k) is isomorphic to an induced subgraph of PC(2k) (see

[81]). Here we show this fact by giving an isomorphic mapping from K(2k + 1, k) to an

induced subgraph of PC(2k).

Proposition 4.4. K(2k + 1, k) is isomorphic to an induced subgraph of PC(2k).

Proof. In the binary representation of PC(2k), vertices are the elements of Z2k
2 , PC(2k) =

(Z2k
2 , {e1, e2, . . . , e2k, J}) where ei’s are the standard basis of Z2k

2 and J is the all 1 vector

of length 2k. Denote the set of all vertices with k 1’s by U and the set of all vertices

with k − 1 1’s by V . Note that the subgraph induced by U ∪ V in PC(2k) is of order(
2k
k

)
+
(

2k
k−1

)
=
(

2k+1
k

)
. Moreover, in this induced subgraph, x− y = J only if x, y ∈ U ,

x− y = ei only if one of {x, y} is in U and the other is in V .

For any vertex u in U , we extend u to an element, denoted u′, of Z2k+1
2 by the

following operations: first, take a complement of u, which is u + J ; second, add a

(2k + 1)-th coordination with 0 to u + J . For any vertex v in V , we extend v to an

element, denoted v′, of Z2k+1
2 by adding a (2k+ 1)-th coordination with 1 to v, denoted

u+ e2k+1. Note that this is an one-to-one extension. Denote the set of u′ by U ′, the set

of v′ by V ′.

Now we present the vertices of K(2k+1, k) as the elements of Z2k+1
2 . Denote the set

of 2k + 1 elements by {1, 2, . . . , 2k + 1}. Given a k-set, {i1, i2, . . . , ik}, take the element

of Z2k+1
2 with ij ’th coordination 1, 1 ≤ j ≤ i, to correspond to it. It is easy to check

that, the vertices of K(2k+ 1, k) can be presented as vertices in U ′ ∪ V ′. Note that two

vertices, say x and y, of K(2k + 1, k) are adjacent if and only if two corresponding sets

are disjoint, if we see x, y as vertices in U ′ ∪ V ′, then x and y are adjacent if and only if

x − y = J ′ − e′i, here e′i is one of the standard basis of Z2k+1
2 and J ′ is the all 1 vector

of length 2k + 1.
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Now we give an isomorphic mapping, ϕ, from U ∪ V to U ′ ∪ V ′ = V (K(2k + 1, k))

as following:

ϕ(x) = x′, ∀x ∈ U ∪ V.

We need to show that for any two vertices x, y of U ∪ V , xy ∈ E(PC(2k)) if and only if

x′y′ ∈ U ′ ∪ V ′. To see this, x′y′ ∈ U ′ ∪ V ′ if and only if x′ − y′ = J ′ − e′i.
e′i = e2k+1 if and only if x and y are in U and x− y = J . Thus x′ − y′ = J ′ − e2k+1 ⇔
x− y = J .

ei 6= e2k+1 if and only if one of x, y, say x, is in U and the other, y, is in V . Thus

x′ − y′ = J ′ − e′i ⇔ (x+ J − y) + e2k+1 = J ′ − e′i ⇔ x+ J − y = J − ei ⇔ x− y = ei.

In total, we get that xy ∈ E(PC(2k)) if and only if x′y′ ∈ U ′ ∪ V ′.
This completes the proof.

Next, following [36], we will give a definition of the Coxeter graph based on the

Fano plane.

Given a set U of size 7, a Fano plane is a set of seven 3-subsets of U such that each pair

of elements from U appears exactly in one 3-subset. It can be checked that there is a

unique such collection up to isomorphism. This collection then satisfies the axioms of

finite geometry and triples would be called lines. Throughout this chapter we will use

the labeling of Figure 4.1 to denote the Fano plane.

1 6 5

7

2 4

3

Figure 4.1: Fano plane

The Coxeter graph, denoted Cox, is a subgraph of K(7, 3) obtained by deleting the

vertices corresponding to the lines of the Fano plane. By Proposition 4.4, K(7, 3) is an

induced subgraph of PC(6), therefore, Cox is an induced subgraph of PC(6). Hence,

we propose that Cox is an answer for the case k = 3 and r = 5 of Problem 4.1.

The Coxeter graph is well-known for its highly symmetric structure. There are

many symmetric representations of it, but we will use the representation of Figure 4.2.

Note that the labeling in Figure 4.2 is based on the labeling of the Fano plane given in
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Figure 4.1. The main properties of this graph we will need are collected in the following

lemma.

127

346 356 456

125 157 124 247 137 237

347

467

234

236

357

567

136

135

256

245

146

145

267134235167457126

Figure 4.2: A representation of the Coxeter graph

Lemma 4.5. The Coxeter graph satisfies the following:

(i) It is distance-transitive.

(ii) It is of diameter four.

(iii) Its girth is seven.

(iv) Given a vertex A, we have |N(A)| = 3, |N2(A)| = 6, |N3(A)| = 12 and |N4(A)| =
6.

(v) The independence number of Cox is 12.

(vi) Let A and B be a pair of vertices in Cox. If d(A,B) ≤ 3, then there exists a 7-

cycle passing through A and B. If d(A,B) = 4, then there exists a 9-cycle passing

through A and B.

(vii) No homomorphic image of Cox is a proper subgraph of Cox.

(viii) Given an edge A1A2, there exist exactly two vertices B1 and B2 such that d(Ai, Bj) =

4 for i, j ∈ {1, 2}. Furthermore, B1 and B2 are adjacent vertices of Cox.

(ix) Let A and B be two (not necessarily distinct) subsets of V (Cox) each of size at

least 14. Then there are A ∈ A and B ∈ B such that AB ∈ E(Cox).

(x) For any two distinct vertices A and B of Cox we have |N(A) ∩N(B)| ≤ 1.
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(xi) For any pair A and C of vertices of Cox we have |N2(A)∩N(C)| ≤ 2 with equality

only when A ∼ C.

(xii) For any pair A and C of vertices of Cox we have |N3(A) ∩N3(C)| ≥ 4. Further-

more, when equality holds, there does not exist a vertex B in N2(A) and a vertex

D in N2(C) such that N3(A) ∩N3(C) ⊆ N(B) ∪N(D).

Proof. The properties (i) through (v) are well known. We comment on the remaining

seven.

(vi) Since Cox is distance-transitive, assume w.o.l.g. that A is the vertex 127, B is

one of 346, 125, 347, 126 of distance 1, 2, 3, 4 to A, respectively. Our claim holds

following the 7-cycle 127− 346− 125− 347− 256− 137− 456− 127 and the 9-cycle

127− 346− 125− 347− 126− 457− 136− 247− 356− 127.

(vii) For contradiction, let φ be a homomorphism of Cox to a proper subgraph of itself.

Then φ must identify at least two vertices, say A1 and A2. From (vi) we can see

that, if d(A1, A2) ≤ 3, then there exists a 7-cycle passing through A1 and A2. Thus

there exists an A1-A2 path P of odd length at most 5. If d(A1, A2) = 4, then there

exists a 9-cycle passing through A1 and A2. Thus there exists an A1-A2 path P of

odd length 5. Hence, the image of P under φ contains a closed odd walk of length

at most 7, contradicting (iii).

(viii) Since Cox is edge-transitive, without loss of generality, we may assume that A1 =

127 and A2 = 346. It is then implied that {B1, B2} = {134, 267}.

(ix) Suppose some subsets A and B provide a counter-example, and let C = A∩B. We

may assume each of A and B is of size 14. Note that by connectivity of Cox, C is

not empty. Let C′ = (A∪B)c. By our assumption, C is an independent set of Cox,

thus |C| ≤ 12. Furthermore, for each vertex C in C all three neighbors of C are in

C′. Since Cox is 3-regular and |C′| = 28 − |A| − |B| + |C| = |C|, for each C ′ of C′,
all three neighbors of C ′ are in C, thus C ∪ C′ induces a proper 3-regular subgraph

of Cox, contradicting the connectivity of Cox.

(x) For otherwise, a 4-cycle would appear in Cox.

(xi) If A is not adjacent to C, then existence of two elements in N2(A) ∩N(C) would

result in a cycle of length at most 6 which is a contradiction. If A is adjacent to

C, then N2(A) ∩N(C) = N(C) \ {A}.

(xii) Using the distance-transitivity of Cox, this is proved by considering the five pos-

sibilities for d(A,C). If d(A,C) = 0 then |N3(A) ∩N3(C)| = |N3(A)| = 12. Since
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for any B and D, |N(B) ∪ N(D)| ≤ 6, the last part of the statement holds. If

d(A,C) = 1, we may assume A = 127 and C = 346. Then N3(A) ∩ N3(C) =

{567, 135, 256, 145} and it is readily checked that each of the second-neighbors of

A has at most one neighbor among these four vertices, implying the last part

of the statement. If d(A,C) = 2, we may assume A = 127 and C = 125. Then

N3(A)∩N3(C) = {234, 236, 357, 146} and it is readily checked that the vertex 146 is

respectively at distances 1, 3, 3 from the vertices 357, 236, 234. This clearly implies

the last part of the statement. If d(A,C) = 3, we may assume A = 127 and C =

347. Then N3(A) ∩N3(C) = {236, 567, 136, 135, 245, 146}. Finally, if d(A,C) = 4,

we may assume A = 127 and C = 126. Then N3(A)∩N3(C) = {467, 567, 245, 145}
and each of the second-neighbors of A has at most one neighbor among these four

vertices, implying the last part of the statement.

4.2 Folding lemma and Euler formula

In this section, we present Folding lemma and Euler formula which will be used in the

proof of Theorem 4.3.

In [58], Klostermeyer and Zhang proved a very useful lemma, namely Folding lemma.

Lemma 4.6 (Folding lemma). [58] Let G be a plane graph of odd-girth 2k + 1. If

C = v0v1 . . . vr−1v0 is a facial cycle of G with r 6= 2k + 1, then there exists an i ∈
{0, 1, . . . , r − 1} such that the planar graph G′ obtained from G by identifying vi−1 and

vi+1 (mod r) is of odd-girth 2k + 1.

Here is a direct corollary of Lemma 4.6.

Corollary 4.7. Given a 2-connected planar graph G of odd-girth at least 2k + 1, there

is a homomorphic image G′ of G such that G′ is a plane graph of odd-girth 2k + 1, and

moreover every face of G′ is a (2k + 1)-cycle.

The well-known Euler formula is one of the oldest mathematic formulas related to

plane graphs, it was first established for polyhedral graphs by Euler in 1752.

Theorem 4.8 (Euler formula). [13] If a finite, connected plane graph has V vertices,

E edges and F faces, then

V − E + F = 2.
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4.3 Reducible configurations

We may refer to a mapping of a graph H to the Coxeter graph as a Cox-coloring of H.

A partial Cox-coloring of H is a mapping from a subset of vertices of H to vertices of

the Coxeter graph which preserves adjacency among the mapped vertices. Let H be a

graph, φ be a partial Cox-coloring of H and u be a vertex of H not colored yet. We

define adH,φ(u) to be the set of admissible colors for u, i.e., the set of distinct choices

A ∈ V (Cox) such that the assignment φ(u) = A is extendable to a Cox-coloring of H.

When H and φ are clear from the context, we will simply write ad(u).

Our proof of Theorem 4.3 is based on the contradiction and the discharging tech-

nique. Suppose to the contrary that Theorem 4.3 is false and there is a planar graph

of odd-girth 17 not mapping to Cox, we choose X to be such a graph with the smallest

value of |V (X)|+ |E(X)|. Hence, X is simple and no proper homomorphic image of X

is in P17. Since Cox is a vertex-transitive graph, X is 2-connected. Hence, Corollary 4.7

implies that X has a plane embedding whose faces are all 17-cycles. We fix such an

embedding and denote it also by X.

Given a subgraph T of X, let boundary of T , denoted Bdr(T ), be the set of vertices

of T which have at least one neighbor in X − T . Let the interior of T be Int(T ) =

T − Bdr(T ).

Let XT = X − Int(T ) be a subgraph of X induced by vertices not in Int(T ). If at

least one Cox-coloring of XT can be extended to a Cox-coloring of X, then (T,Bdr(T ))

is called a reducible configuration. Each reducible configuration we will consider in this

paper is a tree having all its leaf vertices as its boundary. Thus, we will simply use T

to denote (T,Bdr(T )).

Note that by the minimality, X cannot contain any reducible configuration.

In this section, we provide a list of ten reducible configurations, all of which are trees

of small order. Sometimes to prove that a configuration is reducible, we will consider

smaller configurations and prove that most of the local Cox-colorings on the boundary

are extendable.

Our first lemma is about paths. Given a u-v path P of length at most five we

characterize all possible Cox-colorings of {u, v} which are extendable to P .

Lemma 4.9. Let P be a u-v path of length l, 2 ≤ l ≤ 5. Consider a partial Cox-coloring

φ given by φ(u) = A and φ(v) = B. Then, φ is extendable to P if and only if:

(i) l = 2 and d(A,B) ∈ {0, 2}, or
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(ii) l = 3 and d(A,B) ∈ {1, 3}, or

(iii) l = 4 and d(A,B) 6= 1, or

(iv) l = 5 and A 6= B.

Proof. Note that extending φ to P is actually finding a l-walk with two ends A and B

in Cox. By Lemma 4.5, Cox is of girth seven, thus:

When l = 2, there is a 2-walk connecting A and B if and only if d(A,B) ∈ {0, 2}.
When l = 3, there is a 3-walk connecting A and B if and only if d(A,B) ∈ {1, 3}.
When l = 4, if d(A,B) ∈ {0, 2, 4}, it is easy to find a 4-walk connecting A and B; if

d(A,B) = 3, by (vi) of Lemma 4.5, there is a 7-cycle passing through A and B, thus

there is a 4-walk connecting A and B; if d(A,B) = 1, there is no 4-walk connecting A

and B, otherwise there will be a closed walk of length 5 in Cox, a contradiction by (iii)

of Lemma 4.5.

When l = 5, if d(A,B) ∈ {1, 2, 3}, by (vi) of Lemma 4.5, there is a 7-cycle passing

through A and B, thus there is a 5-walk connecting A and B; if d(A,B) = 4, then by

(vi) of Lemma 4.5, there is a 9-cycle passing through A and B, thus there is a 5-walk

connecting A and B; if d(A,B) = 0, there is no 5-walk connecting A and B, otherwise

there will be a closed walk of length 5 in Cox, a contradiction by (iii) of Lemma 4.5.

Before proceeding further, we give more notations. Given a graph G, a vertex of

degree d is called a d-vertex. Analogously, a d+-vertex is a vertex whose degree is d

or more. A thread in X is a path P = ux1x2 . . . xnv where all the internal vertices

x1, x2, . . . xn are 2-vertices of X. We will also say that P is a u-v thread. The length

of a thread is the number of its edges. Distinct vertices x and y are said to be weakly

adjacent if there exists a thread in X containing both of them. Given a 3+-vertex x,

the number of 2-vertices weakly adjacent to x is denoted by dweak(x).

Our first reducible configuration is the thread of length 6.

Proposition 4.10. Any thread of length 6 is a reducible configuration.

Proof. Let P be a thread of length 6 with the two end vertices u and v. We need to

show that any Cox-coloring of X − Int(P ) can be extended. Let φ be a Cox-coloring of

X − Int(P ), with φ(u) = A and φ(v) = B. Choose a neighbor C of B distinct from A,

this is possible because Cox is 3-regular. Let v′ be the neighbor of v in P . Extend φ to

v′ by setting φ(v′) = C. Then by Lemma 4.9 (iv), φ is extendable to a Cox-coloring of

P .
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By Proposition 4.10, we can see that the maximum length of a thread in X is at

most 5. It follows immediately that:

Corollary 4.11. Given a vertex v of X we have dweak(v) ≤ 4d(v).

Observe that, as a consequence of the fact that X is 2-connected, any 2-vertex x

in X has exactly two weakly adjacent 3+-vertices. Thus, there exists a unique maximal

thread having x as an internal vertex.

Proposition 4.12. Given distinct 3+-vertices u and v of X, there exists at most one

u-v thread.

Proof. Suppose to the contrary that there are two such threads, say P and P ′, of lengths

l and l′, respectively. Since the length of each thread is at most 5, l and l′ must

have the same parity, otherwise there would be an odd-cycle of length less than 17

in P ∪ P ′. Without loss of generality, we may assume that l ≥ l′. But then there

exists a homomorphism P → P ′ that leaves u and v fixed, and hence there exists a

homomorphism X → X − E(P ), contradicting the fact that no proper homomorphic

image of X is in P17.

For a path which is not a thread in X, it is not easy for us prove that whether it

is a reducible configuration. Actually, what we need to know is that when we give a

Cox-coloring of its two end vertices, how many ways can we extend this coloring to the

interior vertices. Precisely, let φ be a partial Cox-coloring of a path P , with the two end

vertices colored, for a interior vertex, say u, which is not colored, what is the number of

adP,φ(u) ? This is given in the next two lemmas. We only consider the paths of length

5 or 6.

Lemma 4.13. Let P = xv1v2v3v4y be a 5-path. Let φ(x) = A and φ(y) = B, with

B 6= A, be a partial Cox-coloring. If d(A,B) = 2, then |ad(v1)| = |ad(v2)| = 2 with the

two possible choices for v2 being at distance three in Cox. Otherwise, |ad(v1)| = 3 and

|ad(v2)| ≥ 4.

Proof. Since Cox is distance-transitive, the statement can be proven by considering the

four possibilities for d(A,B) and applying Lemma 4.9. If d(A,B) = 1, we may assume

B = 127 andA = 346. Then ad(v1) = N(A) and ad(v2) = {346, 356, 456, 347, 467, 234, 236},
hence |ad(v1)| = 3 and |ad(v2)| = 7. In case d(A,B) = 2, we may assume B = 127 and

A = 125. Then ad(v1) = {347, 467} and ad(v2) = {135, 256}, hence |ad(v1)| = 2

and |ad(v2)| = 2, with the two admissible colors for v2 being at distance three in

Cox. If d(A,B) = 3, we may assume B = 127 and A = 347. Then ad(v1) = N(A)
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and ad(v2) = {346, 347, 467, 357}, hence |ad(v1)| = 3 and |ad(v2)| = 4. Finally, if

d(A,B) = 4, we may assume B = 127 and A = 126. Then ad(v1) = N(A) and

ad(v2) = {236, 136, 256, 146}, hence |ad(v1)| = 3 and |ad(v2)| = 4.

Lemma 4.14. Let P = xv1v2v3v4v5y be a 6-path. Let φ(x) = A and φ(y) = B be a

partial Cox-coloring. If d(A,B) = 1, then |ad(v3)| = 4, furthermore these four colors

constitute the neighbors of an edge of Cox. If d(A,B) 6= 1, then |ad(v3)| ≥ 8.

Proof. We again apply Lemma 4.9. First we consider the case of d(A,B) = 1. Since

Cox is distance-transitive, we may assume without loss of generality that A = 127 and

B = 346. In this case ad(v3) = {567, 135, 256, 145}. Note that these are the neighbors

of the edge A′B′, where A′ = 134 and B′ = 267. We note that each of A′ and B′ is at

distance 4 from both A and B. This property uniquely determines the edge A′B′.

If A = B, then each vertex in N(A) ∪N3(A) is an admissible color for v3, and we

have |ad(v3)| = 15. If d(A,B) = 2, since Cox is distance-transitive, we may assume

A = 127 and B = 125. In this case ad(v3) = {346, 356, 456, 347, 467, 234, 236, 357, 146}.
For the case of d(A,B) = 3 we may assume A = 127 and B = 347, thus ad(v3) =

{456, 256, 135, 245, 567, 146, 236, 136}. Finally, if d(A,B) = 4 we may assume A = 127

and B = 126. In this case we have ad(v3) = {346, 356, 347, 357, 467, 567, 145, 245}.

To give some other reducible configurations, we need the following notations. We

define T
k1k2 ...kr

with 0 ≤ k1 ≤ k2 ≤ · · · ≤ kr to be a graph obtained from K1,r by

subdividing the uti-edge ki times, where ti’s are the leaf vertices and u is the central

vertex of K1,r. Given an r-vertex u, with r ≥ 3, we will denote by T (u) the union of all

the threads in X which have u as an end-vertex. A direct consequence of Proposition 4.12

is that T (u) is a T
k1k2 ...kr

with kr ≤ 4. The next few lemmas are about the possibilities

for T (u) when u is of degree 3 or 4.

Lemma 4.15. Let T = T222. Then the partial Cox-coloring φ(ti) = Ai, i = 1, 2, 3 is

extendable to T unless {A1, A2, A3} induces a 2-path in Cox.

Proof. Consider the t1-t2 path P in T . Let v be the middle vertex of this path and let

A be the set of colors whose assignment to v is extendable to P . We use the proof of

Lemma 4.14 for the different values of d(A1, A2). In three of these possibilities, to be

precise, when d(A1, A2) 6= 1, 2, we have

N(A) ∪N3(A) = V (Cox).

Thus, in these cases any choice of A3 is extendable.
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If d(A1, A2) = 1, then

N(A) ∪N3(A) = V (Cox) \N({A1, A2}) ∪ {A1, A2}.

Thus, in this case a choice of A3 is extendable unless either A3 ∼ A1 and A3 6= A2 or

A3 ∼ A2 and A3 6= A1.

Finally if d(A1, A2) = 2, then

N(A) ∪N3(A) = V (Cox) \ {B},

where B is the common neighbor of A1 and A2. Thus, in this case a choice of A3 is

extendable unless either A3 = B.

Proposition 4.16. The configurations T123 and T034 are reducible.

Proof. We give a proof for T123 , the proof for T034 is similar. Denote the unique 3-vertex

of T123 by u. Let X ′ be the subgraph of X obtained by deleting the interior of the

u-t3 thread. By the minimality of X, there is a Cox-coloring φ of X ′. By Lemma 4.9,

φ(t1) 6= φ(t2). Now consider the Cox-coloring φ′ = φ|X−Int(T123 ) of X − Int(T123). By

Lemma 4.13, there is an extension of φ′ to the t1-t2 path of T123 such that

(i) there are two choices for φ′(u), say A1, A2, with d(A1, A2) = 3 or

(ii) there are at least four choices for φ′(u).

In case (i), we have A1 � φ′(t3) or A2 � φ′(t3), otherwise the A1A2-path of length 3

together with the path A1φ
′(t3)A2 forms a closed walk of length 5 in Cox, a contradiction.

In case (ii), since Cox is 3-regular, there is a choice for φ′(u) such that φ′(u) � φ′(t3).

Anyway, we can find a φ′(u) � φ′(t3). By Lemma 4.9, this φ′ can be extended to the

rest of T123 , which implies that T123 is reducible.

Proposition 4.16 yields the following corollary.

Corollary 4.17. If v is a 3-vertex in X, then dweak(v) ≤ 6. Furthermore, if dweak(v) =

6, then T (v) is one of the following trees: T024, T033, T114, T222.

Proof. Denote the central vertex of T
k1k2k3

by v.

If dweak(v) ≥ 7, then k3 ≥ 3. By Proposition 4.10, k3 ≤ 4. Thus T
k1k2k3

must

contain the reducible configurations T034 or T123 , a contradiction.
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If dweak(v) = 6, note that k3 ≤ 4, there are 5 possible configurations: T024 , T033 ,

T123 , T114 , T222 . Note that T123 is reducible, T
k1k2k3

6= T123 .

Proposition 4.18. The configurations T1334, T2234, T2333 are reducible.

Proof. Let T be one of the three configurations, and denote its central vertex by v. Let

φ be a Cox-coloring of X − Int(T ) with φ(t1) = A1, φ(t2) = A2, φ(t3) = A3, φ(t4) = A4.

First we assume T = T1334 . Using Lemma 4.9, we have

ad(v) = ({A1} ∪N2(A1))\(N(A2) ∪N(A3) ∪ {A4}).

By Lemma 4.5 (xi), we have

|N2(A1) ∩N(A2)| ≤ 2, |N2(A1) ∩N(A3)| ≤ 2.

Thus |ad(v)| ≥ 2, and T = T1334 is reducible.

For the case of T = T2234 , using Lemma 4.9, we have

ad(v) = ((N(A1) ∪N3(A1)) ∩ (N(A2) ∪N3(A2)))\(N(A3) ∪ {A4}).

By Lemma 4.14, if d(A1, A2) 6= 1, then we have

|(N(A1) ∪N3(A1)) ∩ (N(A2) ∪N3(A2))| ≥ 8,

thus |ad(v)| ≥ 8− 4 = 4. If d(A1, A2) = 1, then

|(N(A1) ∪N3(A1)) ∩ (N(A2) ∪N3(A2))| = 4,

moreover, these four vertices constitute the neighbors of an edge of Cox. By Lemma 4.5

(xi), we have

|(N(A1) ∪N3(A1)) ∩ (N(A2) ∪N3(A2)) ∩N(A3)| ≤ 2,

then |ad(v)| ≥ 2− 1 = 1. Thus T = T2234 is reducible.

For the last case, i.e., T = T2333 , using Lemma 4.9, we have

ad(v) = (N(A1) ∪N3(A1))\(N(A2) ∪N(A3) ∪N(A4)).
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Note that

|N(A1) ∪N3(A1)| = 15, |N(A2) ∪N(A3) ∪N(A4)| ≤ 9,

we have |ad(v)| ≥ 6. Thus T = T2333 is reducible.

Corollary 4.19. If v is a 4-vertex in X, then dweak(v) ≤ 12. Furthermore, if dweak(v) =

12, then T (v) is T0444. Otherwise, dweak(v) ≤ 11.

Proof. Denote T (v) = T
k1k2k3k4

.

If dweak(v) ≥ 13, then k4 ≥ 4. By Proposition 4.10, k4 ≤ 4, thus k4 = 4. Then

T
k1k2k3k4

have 7 possible configurations: T1444 , T2344 , T2444 , T3334 , T3344 , T3444 , T4444 . By

Proposition 4.18, T1334 , T2234 , T2333 are reducible. Note that T1444 contains T1334 , we get

that T1444 is reducible. Moreover, the other 6 configurations contains T2234 , thus they

are all reducible. In total, we have dweak(v) ≤ 12.

If dweak(v) = 12, Then T
k1k2k3k4

have 5 possible configurations: T0444 , T1344 , T2244 ,

T2334 , T3333 . Note that T1344 contains T1334 and each of T2244 , T2334 , T3333 contains T2234 ,

then T0444 is the only configuration in this case.

Let u and v be weakly adjacent 3-vertices. We now would like to investigate T (u)∪
T (v) (see Figures 4.3 and 4.4 where the black vertices have degrees as depicted in the

figures, whereas the white vertices have arbitrary degrees greater that 2).

C

B D

A

BB D

C A
A C

D

u v u v
u v

Figure 4.3: Reducible configurations of adjacent 3-vertices with a Cox-coloring of the
boundary.

Proposition 4.20. The three trees in Figure 4.3 are reducible.

Proof. Denote byX ′ the graph obtained by deleting the edge uv inX. By the minimality,

there is a Cox-coloring φ′ of X ′−Int(T (u)∪T (v)), with the four vertices on the boundary,

say x1, x2, x3, x4, being colored A, B, C and D, respectively. We will extend this partial

coloring to u and v, then to X.

For the first configuration, by Lemma 4.9,

ad(u) = (N(A) ∪N3(A))\{B}, ad(v) = (N(C) ∪N3(C))\{D}.
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Thus

|ad(u)| ≥ 14, ad(v) ≥ 14.

By (ix) of Lemma 4.5, we can find a color in ad(u) and a color in ad(v) such that they

are adjacent in Cox, thus φ′ can be extended to X and T (u) ∪ T (v) is reducible.

For the sencond configuration, by Lemma 4.9,

ad(u) = (N(A) ∪N3(A))\{B}, ad(v) = V (Cox)\(N(C) ∪N(D)).

Thus

|ad(u)| ≥ 14, ad(v) ≥ 22.

For the third configuration, by Lemma 4.9,

ad(u) = V (Cox)\(N(A) ∪N(B)), ad(v) = V (Cox)\(N(C) ∪N(D)).

Thus

|ad(u)| ≥ 22, ad(v) ≥ 22.

Using the same argument, we can show that these two configurations are reducible.

C

B D

A

u v

t

Figure 4.4: Reducible configuration with a Cox-coloring of the boundary.

Proposition 4.21. The tree in Figure 4.4 is reducible.

Proof. We can see this configuration as T (u) ∪ (T (v)\{u, v}). Consider a partial Cox-

coloring, φ, of its leaf vertices with A,B,C,D, respectively. Now we calculate minimum

number of |adφ,T (u)(v)|, and |adφ,(T (v)\{u,v})(v)|.
First we calculate |adφ,T (u)(v)|.
By Lemma 4.9, we have

adφ,T (u)(u) = ({A} ∪N2(A))\{B}.

If B /∈ ({A} ∪N2(A)), then

adφ,T (u)(v) = ({A} ∪N2(A)) ∪N2(({A} ∪N2(A))) = V (Cox)\N(A), |adφ,T (x1)(v)| = 25.
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If B ∈ {A}, then

adφ,T (u)(v) = N2(A) ∪N2(N2(A))) = V (Cox)\N(A), |adφ,T (u)(v)| = 25.

If B ∈ N2(A), by the vertex-transitivity of Cox, it is readily checked that

adφ,T (u)(v) = V (Cox)\(N(A) ∪ (N2(B) ∩N3(A))), |N2(B) ∩N3(A))| = 2.

Thus we have |adφ,T (u)(v)| = 23.

In sum, we have |adφ,T (u)(v)| ≥ 23.

Now, we calculate |adφ,(T (v)\{u,v})(v)|.
By Lemma 4.9, we have that

adφ,(T (v)\{u,v})(v) = ({C} ∪N2(C))\{D},

thus

|adφ,(T (v)\{u,v})(v)| ≥ 6.

Note that

|adφ,T (u)(v)|+ |adφ,(T (v)\{u,v})(v)| ≥ 23 + 6 = 29 > |V (Cox)|,

the partial coloring can be extended to v, and the configuration in Figure 4.4 is reducible.

The next two configurations we consider are not reducible. But we show that, up

to isomorphism, there is a unique Cox-coloring of the boundary which is not extendable

to the interior. This implies, in particular, that if there exists a second choice for a color

of one of the vertices on the boundary, then the coloring is extendable.

A1 B1

A2 B2

u

Figure 4.5: Configuration F1 with a Cox-coloring of the boundary.

Proposition 4.22. The partial Cox-coloring of the configuration F1 given in Figure 4.5

is extendable to the whole configuration unless d(A1, A2) = d(B1, B2) = 1 and d(Ai, Bj) =

4 for i, j ∈ {1, 2}.
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Proof. Consider the T222 configuration whose boundary consists of the vertex u and the

two vertices colored with A1 and A2, respectively. If d(A1, A2) 6= 1, then by Lemma 4.15,

there are at least 27 choices of color for u which is extendable to the interior of this T222 .

On the other hand, by Lemma 4.14, there are at least 4 choices of color for u that

is extendable to a Cox-coloring of the partially colored 6-path connecting B1 and B2.

Thus, there are at least three common choices of color for u which is extendable on the

whole configuration.

If d(A1, A2) = 1, then, again by Lemma 4.15, there are exactly four non-extendable

choices of color for u for the considered T222 configuration. These particular four choices

are the neighbors of A1 and A2 distinct from A1 and A2. If any of the other 24 choices is

extendable on the B1-B2 path, then the coloring is extendable to the whole configuration.

Otherwise, by the proof of Lemma 4.14, we have d(B1, B2) = 1 and, furthermore,

d(Ai, Bj) = 4 for i, j ∈ {1, 2}.

Corollary 4.23. For the configuration F1 of Figure 4.5, if the given partial Cox-coloring

is not extendable to the whole configuration, then A1 is uniquely determined by A2, B1

and B2.

Proof. Note that given an edge A1A2, the property d(Ai, Bj) = 4 for i, j ∈ {1, 2}
determines a unique edge in Cox, as shown in Lemma 4.5 (viii).

A1

B2

B1

A2

u

Figure 4.6: Configuration F2 with a Cox-coloring of the boundary.

Proposition 4.24. The partial Cox-coloring of the configuration F2 given in Figure 4.6

is extendable to the whole configuration unless d(A1, A2) = 1 and {B1, B2} = {A1, A2}.

Proof. The proof is similar to that of the previous proposition. Again we consider the

possibilities on u. If d(A1, A2) 6= 1, then, by Lemma 4.15, there are at least 27 choices of

color for u that would be extendable on the part connecting to A1 and A2. Of these 27

vertices in Cox, at least two are neighbors of B1 and of these two, one is distinct from

B2. This color is an extendable choice.
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If d(A1, A2) = 1, then the four neighbors of A1 and A2, distinct from A1 and A2,

are the only choices for u that would make the coloring non-extendable on the left side.

If B1 /∈ {A1, A2}, then there are at least two neighbors of B1 whose assignments to u are

extendable on the left side of u, and at least one of these two is different from B2. Thus,

we may assume without loss of generality that B1 = A1. Then A2 is an extendable

choice for u unless B2 = A2.

Corollary 4.25. If the partial Cox-coloring of the configuration F2 given in Figure 4.6

is not extendable to the whole configuration, then A1 is uniquely determined by A2, B1

and B2.

4.4 Discharging and further reducible configurations

In this section, we will discharging technique to get a contradiction. Recall that X, our

minimal counterexample, is a 2-connected plane graph whose faces are all 17-cycles.

Since X is a plane graph, by Euler formula we have:

V − E + F = 2.

Here V,E, F are the number of vertices, edges and faces of X, respectively. Denote by

l(f) the length of face f . Then we have
∑
f

l(f) = 2E =
∑
v

d(v).

Thus

E − (V + F ) = −2⇒ 6E − 6(V + F ) = −12⇒ 3 · 2E − (
∑
v

6 +
∑
f

6) = −12.

If we choose two real numbers α and β satisfying α+ β = 3, then

(α+ β) · 2E − (
∑
v

6 +
∑
f

6) = −12.

Furthermore, we have

∑
v

(α · d(v)− 6) +
∑
f

(β · l(f)− 6) = −12, (4.1)

Note that all the faces of X are 17-cycles, thus l(f) = 17 for all f ’s. If we set β = 6
17 ,

then β · l(f)− 6 = 0, and identity 4.1 reduces to

∑
v

(45 · d(v)− 102) +
∑
f

0 = −204. (4.2)
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We give each vertex v of X the following initial charge:

w0(v) = 45 · d(v)− 102.

Note that the total sum of the initial charge
∑

v∈V (X)w0(v) = −204 < 0. Since X is

2-connected, there is no 1-vertex, and it is easy to check that each 2-vertex has initial

charge −12, each 3-vertex has initial charge 33, each 4-vertex has initial charge 78. To

prove Theorem 4.3, we will redistribute the charges on the vertices so that at the final

step, the charge on each vertex is non-negative. This contradicts that the total charge

is negative and would disprove the existence of X. We will accomplish this through two

phases of discharging.

In the first phase, we will take care of vertices of degree 2.

Then, in the second phase, we design a discharging rule that would take care of all

negatively charged vertices after the first phase. We will then show that each configu-

ration which may lead to a vertex of negative charge is reducible. This would complete

our proof.

4.4.1 First phase of discharging

Here we use the following discharging rule:

(R1) For each pair x, y of weakly adjacent vertices in X with d(x) = 2 and d(y) ≥ 3, y

sends charge of 6 to x.

Let w1(v) denote the new charge at each vertex v.

If d(v) = 2 then v receives a total charge of 12 (6 from each of its weakly adjacent

3+-vertices), hence w1(v) = 0.

If d(v) = 3, then by Corollary 4.17, we have w1(v) ≥ 33− 6 · 6 = −3. Furthermore,

if dweak(v) 6= 6, then w1(v) ≥ 33− 5 · 6 = 3.

If d(v) = 4, we have w1(v) ≥ 78− 6 · 12 = 6 by Corollary 4.19.

If d(v) ≥ 5, we have w1(v) ≥ 45d(v) − 102 − 6 · 4d(v) = 21d(v) − 102 ≥ 3 by

Corollaries 4.11.

A vertex v of X is called poor if w1(v) < 0. As a consequence of Corollary 4.17, we

have the following characterization of poor vertices.

Proposition 4.26. A vertex v of X is poor if and only if d(v) = 3 and dweak(v) = 6.
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Corollary 4.17 also implies that for each poor vertex v, T (v) is one of the following

trees: T024 , T033 , T114 , T222 . Our aim is to seek charge for v from its closest leaf vertices

of T (v). Given a 3+-vertex x ∈ V (X), we say x supports v if:

(i) w1(x) > 0, and

(ii) x is a leaf vertex of T (v) on a shortest thread of T (v).

Note that each such thread has length at most 3. Furthermore, observe that v may

have more than one supporting vertex x.

4.4.2 Second phase of discharging

In this phase we try to increase the charge of all poor vertices. The discharging rule is

as follows:

(R2) Whenever y supports a poor vertex x, then y gives charge of 3 to x if d(x, y) = 1,

and charge of 1.5 to x if d(x, y) 6= 1.

Let w2(v) be the charge of an arbitrary vertex v after this phase. We will show that

w2(v) ≥ 0, for every vertex v of X.

Observe that the charge of each 2-vertex v remains the same, i.e. w2(v) = 0.

If v is a 5+-vertex, then by Corollary 4.11 we have

w1(v) ≥ w0(v)− 24d(v) = 21d(v)− 102 ≥ 3.

Furthermore, if v is a support for a vertex u, then the number of 2-vertices on the v-u

thread is at most two. Thus, if v supports r vertices then

w1(v) ≥ w0(v)− 6 · 4 · (d(v)− r)− 6 · 2r ≥ 21d(v)− 102 + 12r ≥ 3 + 12r.

This implies that

w2(v) ≥ 3 + 12r − 3r ≥ 3.

Now, assume v is a 4-vertex. By Corollary 4.19, unless T (v) = T0444 , we have

w1(v) ≥ 78− 6 · 11 = 12 and this clearly gives

w2(v) ≥ w1(v)− 4 · 3 ≥ 0.
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If T (v) = T0444 , then v supports at most one vertex, and therefore

w2(v) ≥ 78− 6 · 12− 3 = 3.

We are left to consider the case of a 3-vertex v, which supports at most 3 vertices.

If dweak(v) ≤ 4, then w2(v) ≥ w1(v)− 3 · 3 ≥ 33− 6 · 4− 9 = 0.

If dweak(v) = 5 and v support only one poor vertex, then w2(v) ≥ w1(v) − 3 ≥
33− 6 · 5− 3 = 0.

The remaining two possibilities for v are as follows: either

(1) dweak(v) = 6, that means v is a poor vertex, or

(2) dweak(v) = 5 and v supports at least two poor vertices.

We will complete our proof by showing that:

(i) If v is a poor vertex, then either v has an adjacent supporting vertex or it has at

least two supporting vertices.

(ii) If d(v) = 3 and dweak(v) = 5, then when applying (R2) v sends total charge of at

most 3.

To prove (i), note that by Corollary 4.17 and Proposition 4.26, T (v) is one of the

following trees: T024 , T033 , T114 , T222 .

If T (v) is T024 or T033 , then v is adjacent to a 3+-vertex, say x. We claim that x

is the adjacent supporting vertex of v. To see this, suppose by contradiction x is poor.

Then, the union T (x)∪ T (v) must be one of the configurations of Figure 4.3. But these

are reducible configurations as shown in Proposition 4.20.

If T (v) is T114 , there are two 3+-vertices at distance 2 from v. It remains to prove

that neither of these two vertices is poor. By contradiction, suppose one of these two

3+-vertices, say x, is a poor vertex. Then T (x) must be one of T024 , T033 , T114 , T222 .

Since x and v are of distance 2, T (x) must be T114 . Since each face of X is a 17-cycle,

the union T (x) ∪ T (v) must be the configuration of Figure 4.4, which is shown to be

reducible in Proposition 4.21.

If T (v) is T222 , we prove that at most one vertex in N3(v) is poor. If x ∈ N3(v) is

a poor vertex, then T (x) must be either T222 or T024 . Then, the union F = T (v) ∪ T (x)

is, respectively, the configuration of Figure 4.5 or the configuration of Figure 4.6. Let y

be another vertex in N3(v). If y is also a poor vertex, then in X − Int(F ) the vertex y
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is an internal vertex of an induced 5-path P . Thus, by Lemma 4.13, there are at least

two choices for extending a Cox-coloring of (X − Int(F ))− Int(P ) to y, one of which is

extendable to a Cox-coloring of X by Corollary 4.23 or Corollary 4.25.

To prove (ii), we begin by observing that T (v) must be one of the configurations:

T014 , T023 , T113 , T122 .

If T (v) is T014 , we need to prove that v supports at most 1 poor vertex. Suppose to

the contrary that v supports 2 poor vertices, say x1 and x2, then x1 and x2 must be at

distance 1 and 2 to v, respectively. Assume without loss of generality that d(v, x1) = 1.

Since x1 is a poor vertex, T (x1) must be in {T024 , T033}. Then T (v)∪T (x1) has only two

such possible configurations, shown in Figure 4.7. In this figure, the vertex in square is

the poor vertex x1. We claim that each configuration of Figure 4.7 is reducible. To prove

this, we need to show that any partial Cox-coloring, φ, of the leaf vertices A,B,C,D

can be extended to the interior of T (v) ∪ T (x1).

For the first configuration, note that it can be seen as T (x1)∪(T (v)\x1), v is a leaf vertex

of T (x1) and a internal vertex of T (v)\x1. Now we calculate the minimum number of

|adφ,T (x1)(v)| and |adφ,T (v)\x1
(v)|. By Lemma 4.9 we have that

adφ,T (x1)(x1) = (N(A) ∪N3(A))\{B}, adφ,T (x1)(v) = N((N(A) ∪N3(A))\{B}).

Using the vertex-transitivity of Cox, it is readily observed that

N((N(A) ∪N3(A))) = {A} ∪N2(A) ∪N3(A) ∪N4(A).

Note that if B /∈ (N(A) ∪N3(A)), then

adφ,T (x1)(v) = {A} ∪N2(A) ∪N3(A) ∪N4(A), |adφ,T (x1)(v)| = 25.

If B ∈ N(A), then

adφ,T (x1)(v) = N((N(A) ∪N3(A))\{B}) = N((N(A) ∪N3(A))), |adφ,T (x1)(v)| = 25.

If B ∈ N3(A), then

adφ,T (x1)(v) = N((N(A)∪N3(A))\{B}) = N((N(A)∪N3(A)))\{C : C ∈ N3(A)∩N(B)}.

Note that |N3(A) ∩N(B)| = 1, then |adφ,T (x1)(v)| = 24.

In sum, |adφ,T (x1)(v)| ≥ 24.

By Lemma 4.9, we have

adφ,T (v)\x1
(v) = ({C} ∪N2(C))\{D},
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thus |adφ,T (v)\x1
(v) ≥ 6|.

Note that

|adφ,T (x1)(v)|+ |adφ,T (v)\x1
(v)| ≥ 30 > |V (Cox)|,

there is a good common choice for coloring v, which implies that φ can be extended to

the interior of T (v) ∪ T (x1) and the first configuration is reducible.

For the second configuration, by the same method and notations and by Lemma 4.9,

we have that

adφ,T (x1)(x1) = V (Cox)\{N(A) ∪N(B)}.

Note that,

adφ,T (x1)(v) = N(adφ,T (x1)(x1)),

a vertex C is in adφ,T (x1)(v) if and only if N(C) * {N(A) ∪N(B)}. By (x) of Lemma

4.5, if C /∈ {A,B}, then |N(C) ∩N(A)| ≤ 1 and |N(C) ∩N(B)| ≤ 1, thus

|N(C) ∩ (N(A) ∪N(B))| ≤ 2,

which implies that C ∈ adφ,T (x1)(v). We have adφ,T (x1)(v) = V (Cox)\{A,B} and

|adφ,T (x1)(v)| ≥ 26. Note that |adφ,T (v)\x1
(v) ≥ 6|, we have

|adφ,T (x1)(v)|+ |adφ,T (v)\x1
(v)| ≥ 32 > |V (Cox)|.

This implies that the second configuration is reducible.

CC

B

A

B D

A

D

v v|ad(v)| > 24 |ad(v)| > 6 |ad(v)| > 26 |ad(v)| > 6

Figure 4.7: Local configurations of a center of T
014

supporting two poor vertices.

If T (v) is T023 , using the Figure 4.8, a similar argument is applied.

If T (v) is T113 , then v is a support of at most two poor vertices (leave vertices at

distance 2 to v) to each of which it may send charge of 1.5. Hence, in the second phase

v gives as support at most charge of +3.
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C CA

B
D D

A

vv|ad(v)| > 24 |ad(v)| > 26 |ad(v)| > 12|ad(v)| > 12

B

Figure 4.8: Local configurations of a center of T
023

supporting two poor vertices.

Finally, assume that T (v) is T122 . By (R2), v gives each of its supported vertex

of charge 1.5. Note that w1(v) = 3, if w2(v) < 0, v supports 3 poor vertices, namely

three leave vertices of T (v), denoted x1, x2, x3. Assume without loss of generality that

d(v, x1) = 2, d(v, x2) = d(v, x3) = 3. Note that T (xi) ∈ {T024 , T033 , T114 , T222}, T (x1)

must be T114 , T (x2) and T (x3) must be T222 . In this case, we have a unique local

configuration, given in Figure 4.9, we can see it by T (x1)∪T (x2)∪Pvx3 , here Pvx3 is the

thread connecting v and x3. We claim that T (x1)∪T (x2)∪Pvx3 is reducible. To see this,

consider a partial Cox-coloring, φ, of its leaf vertices with A,B,C,D, F , respectively.

Now we calculate minimum number of |adφ,T (x1)(v)|, |adφ,T (x2)(v)| and |adφ,Pvx3
(v)|.

First we calculate |adφ,T (x1)(v)|.
By Lemma 4.9, we have

adφ,T (x1)(x1) = ({A} ∪N2(A))\{B}.

If B /∈ ({A} ∪N2(A)), then

adφ,T (x1)(v) = ({A}∪N2(A))∪N2(({A}∪N2(A))) = V (Cox)\N(A), |adφ,T (x1)(v)| = 25.

If B ∈ {A}, then

adφ,T (x1)(v) = N2(A) ∪N2(N2(A))) = V (Cox)\N(A), |adφ,T (x1)(v)| = 25.

If B ∈ N2(A), by the vertex-transitivity of Cox, it is readily checked that

adφ,T (x1)(v) = V (Cox)\(N(A) ∪ (N2(B) ∩N3(A))),

and |N(B) ∩N3(A))| = 2. We have |adφ,T (x1)(v)| = 23.

In sum, we have |adφ,T (x1)(v)| ≥ 23.

By Lemma 4.15, |adφ,T (x2)(v)| ≥ 28− 4 = 24.
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By Lemma 4.9, |adφ,Pvx3
(v)| ≥ 15. It is easy to check that

|adφ,T (x1)(v) ∩ adφ,T (x2)(v) ∩ adφ,Pvx3
(v)| ≥ 6.

Thus there is a common choice for v.

C

D

A

B

F

v|ad(v)| > 23

|ad
(v
)| >

24

|ad
(v
)| >

15

Figure 4.9: Local configuration of a center of T
122

supporting three poor vertices.

4.5 Concluding remarks and further work

We have shown in this paper that one may use the existence of a combinatorial design

to propose answer for special cases of the Problem 4.1. Our primary concern in this

paper was the case r = 5 and k = 3 of this question and we proposed an answer using

the Fano plane. At a 2011 summer workshop in Prague, Peter Cameron has proposed

a similar conjecture for the case of r = 7 and k = 5 based on the existence of a unique

Steiner quintuple system of order 11.

The condition of odd-girth 17 was used only when applying Euler formula, indeed

each of the 15 reducible configurations we used in our proof is a tree. Thus if X is a min-

imal graph which admits no homomorphism to Cox (i.e., every proper subgraph admits

a homomorphism to Cox), then X does not contain any of these reducible configura-

tions. We believe that with a larger set of reducible trees and together with cumbersome

discharging steps we can improve the result for odd-girth 15. However, it seems that

to prove the conjecture using the discharging technique, if possible at all, one has to

consider reducible configurations that involve cycles.



Chapter 5

Locating any two vertices on

Hamiltonian cycles

In this chapter we give a proof of Conjecture 1.47 ( Enomoto’s conjecture ) for graphs

of sufficiently large order. We recall Enomoto’s conjecture here.

Conjecture 5.1. [39] If G is a graph of order n ≥ 3 and δ(G) ≥ n
2 +1, then for any pair

of vertices x, y in G, there is a Hamiltonian cycle C of G such that distC(x, y) = bn2 c.

Our main result is the Theorem 1.52. We state again this theorem here.

Theorem 5.2. [48] There exists a positive integer n0 such that for all n ≥ n0, if G is

a graph of order n with δ(G) ≥ n
2 + 1, then for any pair of vertices x, y in G, there is a

Hamiltonian cycle C of G such that distC(x, y) = bn2 c.

The main tools of our proof are Regularity Lemma of Szemerédi and Blow-up

Lemma of Komlós et al. In section 5.1, we will introduce these lemmas and some

applications of them.

In this chapter, we use a new notation of degree of a vertex. For any vertex v of G

and a subset X of V (G), we denote the degree of v in G by degG(v) and the degree of

v in X by degG(v,X) (if no ambiguity arises, we denote them by deg(v) and deg(v,X)

respectively).

5.1 Regularity Lemma and Blow-up Lemma

In this section we introduce Regularity Lemma and Blow-up Lemma.

84
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The Regularity Lemma, Szemerédi’s Regularity Lemma [96], is a powerful tool of

graph theory. It was invented as an auxiliary lemma in the proof of the famous conjecture

of Erdős and Turán [27] which states that sequences of integers of positive upper density

must always contain long arithmetic progressions.

To introduce Regularity Lemma and Blow-up Lemma, we first give some definitions

about the regular pairs and some related results.

5.1.1 Regular pairs and related properties

Given a graph G, let X and Y be two disjoint sets of vertices of G. In particular, G

could be a bipartite graph with vertex classes X and Y . We define the density, d(X,Y ),

of the pair (X,Y ) as the ratio

d(X,Y ) :=
eG(X,Y )

|X||Y |
,

here eG(X,Y ) is defined to be the number of edges in G with one end vertex in X and

the other in Y , if no ambiguity arises, we write e(X,Y ) instead of eG(X,Y ).

Let ε > 0. Given two disjoint vertex sets X ⊆ V (G), Y ⊆ V (G) we say the pair

(X,Y ) is ε-regular if for every A ⊆ X and B ⊆ Y such that |A| > ε|X| and |B| > ε|Y |
we have

|d(A,B)− d(X,Y )| < ε.

From the definition we can see that the edges between an ε-regular pair are dis-

tributed fairly uniformly. Moreover, most of vertices of one part have a fairly large

number of neighbors in the other part, we can see this from the following lemma.

Lemma 5.3. [61] Let (A,B) be an ε-regular pair of density d and Y ⊆ B such that

|Y | > ε|B|. Then all but at most ε|A| vertices in A have more than (d− ε)|Y | neighbors

in Y .

The following lemma says that subgraphs of regular pairs with reasonable size are

also regular.

Lemma 5.4 (Slicing Lemma). [61] Let α > ε > 0 and ε′ := max{ εα , 2ε}. Let (A,B) be

an ε-regular pair with density d. Suppose A
′ ⊆ A such that |A′| ≥ α|A|, and B′ ⊆ B such

that |B′| ≥ α|B|. Then (A′, B′) is an ε′-regular pair with density d′ such that |d′−d| < ε.

The Slicing Lemma tells us that not too small subgraphs of an ε-regular pair are also

regular with density close to that of the original pair. Sometimes, in some situations,
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we only consider some of the vertices in an ε-regular pair, we hope that as many as

possible the properties of the original pair do not just disappear. For this, we consider

an application of the Slicing Lemma which links the notation of regularity to that of

super-regularity.

Given a graph G and disjoint vertex sets X,Y ⊆ V (G) let ε, δ > 0, the pair

(X,Y ) is (ε, δ)-super-regular if it is ε-regular, and degY (x) > δ|Y | for all x ∈ X and

degX(y) > δ|X| for all y ∈ Y .

From next lemma we can see that: given a regular pair we can approximate it by a

super-regular pair.

Lemma 5.5. [98] If (X,Y ) is an ε-regular pair with density d in a graph G (where

0 < ε < 1
3 ), then there exists A′ ⊆ A,B′ ⊆ B with |A′| ≥ (1−ε)|A| and |B′| ≥ (1−ε)|B|,

such that (A′, B′) is a (2ε, d− 3ε)-super-regular pair.

For a bipartite graph G = X ∪Y , let δ(X,Y ) := min
x∈X
{degG(x, Y )}. We can say that

a bipartite graph with very large minimum degree has a super-regular pair.

Lemma 5.6. [16] Given 0 < ρ < 1, let G = X ∪ Y be a bipartite graph such that

δ(X,Y ) ≥ (1 − ρ)|Y | and δ(Y,X) ≥ (1 − ρ)|X|. Then (X,Y ) is (
√
ρ, 1 − ρ)-super-

regular.

5.1.2 Regularity Lemma and Blow-up Lemma

Now we introduce Szemerédi’s Regularity Lemma.

First we state the original version of the Regularity Lemma.

Theorem 5.7. [96] For every ε > 0 and every m ∈ N, there exist two integers

M(ε,m) and N(ε,m) such that every graph G of order n ≥ N(ε,m) admits a parti-

tion {V0, V1, . . . , Vk} of V (G) such that:

(i) m ≤ k ≤M ,

(ii) 0 ≤ |V0| ≤ ε|G|,
(iii) |V1| = |V2| = . . . = |Vk|,
(iv) all but at most εk2 of the pairs (Vi, Vj) with 1 ≤ i < j ≤ k are ε-regular.

The classes Vi’s are usually called clusters and the partition described is called an

ε-regular partition. Note that V0 may be empty, we call it an exceptional set because its

role is purely technical: to make possible that all other clusters have exactly the same

cardinality. The role of m is to make the clusters Vi’s sufficiently small, so that the

number of edges inside those clusters are negligible.
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In the applications of the original Regularity Lemma, one usually, in the first step,

apply the lemma to create a regular partition, then in the second step, get rid of all edges

except the edges between regular pairs of high enough densities, the leftover graphs still

contain most of the original edges, and much easier to handle. This process leads the

degree form of the Regularity Lemma, which is more applicable.

Lemma 5.8 (Regularity Lemma-Degree Form). For every ε > 0 and every integer m0

there is an M0 = M0(ε,m0) such that if G = (V,E) is any graph on at least M0 vertices

and d ∈ [0, 1] is any real number, then there is a partition of the vertex set V into l + 1

clusters V0, V1, ..., Vl, and there is a subgraph G
′

= (V,E
′
) with the following properties:

(1) m0 ≤ l ≤M0;

(2) |V0| ≤ ε|V | for 0 ≤ i ≤ l, and |V1| = |V2| = · · · = |Vl| = L;

(3) degG′ (v) > degG(v)− (d+ ε)|V | for all v ∈ V ;

(4) G
′
[Vi] = ∅ (i.e. Vi is an independent set in G

′
) for all i;

(5) each pair (Vi, Vj), 1 ≤ i < j ≤ l, is ε-regular, each with a density either 0 or at least

d.

We refer to [61] for more versions of the Regularity Lemma.

How to apply the Regularity Lemma? In the earlier time, many applications of

the Regularity Lemma are concerned with embedding and packing problem, there are

basically three steps to apply the lemma (suppose we try to embed a graph H into G).

Step 1. Apply Theorem 5.8 to G with suitable parameters ε and d, and construct a

reduced graph which is defined as following:

Let G be a graph and V1, V2, . . . , Vr a partition of V (G). Given two parameters ε > 0

and d ∈ [0, 1), we define the reduced graph R of G as follows: its vertices are the clusters

V1, V2, . . . , Vr and there exists an edge between Vi and Vj precisely when (Vi, Vj) is ε-

regular with density more than d. Let R(t) be a graph obtained from R by replacing

the edges of R by copies of Kt,t.

Step 2. Find a graph containing H in R(t).

Step 3. Apply the Key Lemma to imply that H ⊆ G as required. Key Lemma is given

in [61].

Theorem 5.9 (Key Lemma). [61] Given d > ε > 0, a graph R , and a positive integer

m, let us construct a graph G by replacing every vertex of R by m vertices, and replacing

the edges of R with ε-regular pairs of density at least d. Let R(t) be a graph obtained

from R by replacing the edges of R by copies of Kt,t. Let H be a subgraph of R(t) with

h vertices and maximum degree ∆ > 0, and let δ := d− ε and ε0 := δ∆

2+∆ . If ε ≤ ε0 and

t− 1 ≤ ε0m, then H ⊆ G.
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Remark: The order of R plays no role here. The order of H is smaller than the

order of G.

An application of the Regularity Lemma is about embedding spanning graphs into

dense graphs. Some of the proofs use a powerful tool — Blow-up Lemma. Basically, it

sees the super-regular pairs as complete bipartite graphs.

Theorem 5.10 (Blow-up Lemma [59]). Given a graph R of order r and positive param-

eters δ,∆, there exists an ε > 0 such that the following holds.

Let n1, n2, . . . , nr be arbitrarily positive integers and let us replace the vertices of R with

pairwise disjoint sets V1, V2, . . . , Vr of sizes n1, n2, . . . , nr (respectively, blowing up). We

construct two graphs on the same vertex set V = ∪ri=1Vi. The first graph R is obtained

by replacing each edge vivj of R with the complete bipartite graphs between the corre-

sponding vertex sets Vi and Vj. A sparser graph G is constructed by replacing each edge

vivj of R with an (ε, δ)-super-regular pair between the corresponding vertex sets Vi and

Vj. If a graph H with ∆(H) ≤ ∆ is embeddable into R, then it is already embedded into

G.

Note that for embedding spanning subgraphs, one needs all degrees of the host

graphs are large enough, that’s why we use super-regular pairs while not the regular

pairs when we construct the second graph G in the above theorem. In total, while Key

Lemma plays a role in embedding smaller graphs H into G, Blow-up Lemma plays the

role in embedding spanning graphs H into G.

The following special case of the Blow-up Lemma, Bipartite Version of Blow-up

Lemma, which also restricts the mappings of a smaller number of vertices.

Lemma 5.11 (Blow-up Lemma-Bipartite Version [59]). For every δ,∆, c > 0, there

exists an ε = ε(δ,∆, c) > 0 and α = α(δ,∆, c) > 0 such that the following holds. Let

(X,Y ) be an (ε, δ)-super-regular pair with |X| = |Y | = N . If a bipartite graph H with

∆(H) ≤ ∆ can be embedded in KN,N by a function φ, then H can be embedded in (X,Y ).

Moreover, in each φ−1(X) and φ−1(Y ), fix at most αN special vertices z, each of which

is equipped with a subset Sz of X or Y of size at least cN . The embedding of H into

(X,Y ) exists even if we restrict the image of z to be Sz for all special vertices z.

Actually, the following special case of the Blow-up Lemma is frequently used in this

thesis.

Lemma 5.12. For every δ > 0 there are εBL = εBL(δ), nBL = nBL(δ) > 0 such that if

ε ≤ εBL and N ≥ nBL, G = (X,Y ) is an (ε, δ)-super-regular pair with |X| = |Y | = N ,

x1, x2 ∈ X (x1 6= x2), y1, y2 ∈ Y (y1 6= y2) and li is an even integer with 4 ≤ li ≤ 2N−4
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(i = 1, 2), l1 + l2 = 2N , then there are two vertex-disjoint paths P1 and P2 in G such

that the end vertices of Pi are xi, yi and |V (Pi)| = li (i = 1, 2).

Proof. Let X∗ = X −{x1, x2}, Y ∗ = Y −{y1, y2} and H = H1 ∪H2 be the union of two

vertex-disjoint paths H1, H2 satisfied |V (Hi)| = li − 2 (i = 1, 2). It is not hard to see

that H can be embedded in KN−2,N−2. By Slicing Lemma, we know that (X∗, Y ∗) is

also a super-regular pair. Fix the end vertices of H1 and H2 to be the special vertices.

For Hi, one of its end vertices is equipped with the neighbor set of xi and the other end

vertex is equipped with the neighbor set of yi (i = 1, 2). By Lemma 5.11, H can be

embedded in (X∗, Y ∗) satisfying the restrictions of the special vertices. Since one of the

end vertices of Hi is a neighbor of xi and the other end vertex of Hi is a neighbor of yi,

we can extend Hi to a path Pi with end vertices xi and yi (i = 1, 2). Then P1 ∪ P2 is a

spanning subgraph of G and |V (Pi)| = li (i = 1, 2).

5.1.3 Some applications of Regularity Lemma

Early applications of Regularity Lemma include Ramsey-Turán theory, generalized ran-

dom graphs, building packing with small graphs, et. al.

In 1992, Alon and Yuster [2] proved the following theorem:

Theorem 5.13. [2] For any α > 0 and graph H, there is an n0 such that

n ≥ n0, δ(Gn) >

(
1− 1

χ(H)
+ α

)
n

imply that there are (1−α)n
|V (H)| vertex-disjoint subgraphs, each being isomorphic to H, in

Gn.

In 1998, Komlós, Sárközy and Szemerédi [60] proved Pósa-Seymour conjecture for

graphs of large enough orders.

Theorem 5.14. [60] For any ε > 0 and any positive integer k, there is an n0 such that

if G has order n ≥ n0 and minimum degree at least
(

1− 1
k+1 + ε

)
n, then G contains

the k-th power of a Hamiltonian cycle.

Note that in Theorem 5.14, the k-th power of a Hamiltonian graph H is the graph

obtained from H by joining every pair of vertices with distance at most k in H.

For some other early applications of Regularity Lemma we refer to [61].

Recently many long-standing conjectures about Hamiltonian problems are proved

or partially proved by using the Regularity Lemma.
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In 1971, Nash-Williams [87] conjectured that:

Conjecture 5.15. [87] Let G be a d-regular graph on at most 2d vertices. Then G

contains bd2c edge-disjoint Hamiltonian cycles.

In 2012, Christofides, Kühn and Osthus [18] proved an approximate version of

Conjecture 5.15.

Theorem 5.16. [18] For every α > 0 there is an integer n0 so that every d-regular graph

on n ≥ n0 vertices with d ≥
(

1
2 + α

)
n contains at least d−αn

2 edge-disjoint Hamiltonian

cycles.

In [22], Csaba et al. proved the following theorems.

Theorem 5.17 (1-factorization conjecture). [22] There exists an n0 ∈ N such that the

following holds. Let n,D ∈ N be such that n ≥ n0 is even and D ≥ 2dn4 e − 1. Then

every D-regular graph G on n vertices has a 1-factorization. Equivalently, χ′(G) = D.

Here a 1-factorization of a graph G consists of a set of edge-disjoint perfect match-

ings covering all edges of G.

Theorem 5.18 (Hamilton decomposition conjecture). [22] There exists an n0 ∈ N such

that the following holds. Let n,D ∈ N be such that n ≥ n0 and D ≥ bn2 c. Then every

D-regular graph G on n vertices has a decomposition into Hamilton cycles and at most

one perfect matching.

For more progress on F -packing, Hamiltonian problems and tree embedding, we

refer to [62]. For the progress on Hamiltonian cycles in directed graphs, oriented graphs

and tournaments, we refer to [63]

5.2 Overview of the proof of Theorem 5.2

In our proof for Theorem 5.2 we will use the Regularity Lemma and Blow-up Lemma as

many other studies (see [16], [91] for some similar ideas).

For proving Theorem 5.2, we only need to consider the graphs of even order. For

a graph G of odd order n, we choose one vertex v in G which is not either of the two

vertices x, y, then the minimum degree of graph G∗ = G−{v} is at least dn2 e = n−1
2 + 1.

Since G∗ is a graph of even order, by assumption we can locate x, y with distance n−1
2

on a Hamiltonian cycle C∗ of G∗. By the degree condition of v in G, there exsit two
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consecutive vertices u1, u2 on C∗ which are adjacent to v. Replacing the edge u1u2 on

C∗ by the 2-path u1vu2, we obtain a Hamiltonian cycle of G in which x, y have distance
n−1

2 = bn2 c.

Now let us consider a graph G of even order n with

δ(G) ≥ n

2
+ 1. (5.1)

We assume that n is sufficiently large and we fix the following sequence of parame-

ters,

0 < ε� d� α� 1. (5.2)

Here a� b means a is sufficiently small compared to b. For simplicity, we don’t specify

their dependencies in the proof, although we could.

A balanced partition of V (G) into V1 and V2 is a partition of V (G) = V1 ∪ V2 such

that |V1| = |V2| = n
2 . We define two extremal cases as follows.

Extremal Case 1: There exists a balanced partition of V (G) into V1 and V2 such

that the density d(V1, V2) ≥ 1− α.

Extremal Case 2: There exists a balanced partition of V (G) into V1 and V2 such

that the density d(V1, V2) ≤ α.

The proof of Theorem 5.2 will be divided into two parts: the non-extremal case

part in Section 5.3 and the extremal cases part in Section 5.4.

For the non-extremal case, the proof consists of the following four steps.

Step 1: We apply the Regularity Lemma to the graph G and find a Hamiltonian

cycle in the reduced graph.

Step 2: By the Hamiltonian cycle in the reduced graph, we obtain a perfect matching

of the reduced graph and we define the pairs of clusters according to the matching. We

construct some paths to connect the clusters in different pairs.

Step 3: We use all the vertices in V0 to extend those paths constructed in step 2.

Step 4: We apply Lemma 5.12 in each pair of clusters to finally construct a Hamil-

tonian cycle in G. And we make sure that x, y have distance bn2 c on this cycle.

Indeed, due to the parity of n
2 , our proof will have some cases discussions.

For two extremal cases, we will prove a structure lemma for each case to make the

partition of V (G) more helpful for the proof (Lemma 5.27 and Lemma 5.29). By Lemma
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5.27, a graph in extremal case 1 is like a balanced bipartite graph except some special

vertices, then we will use Lemma 5.12 to construct our desired Hamiltonian cycle. And

by Lemma 5.29, a graph in extremal case 2 is like a union of two high minimum degree

subgraphs except some special vertices. All these two extremal cases will have some

sub-case discussions based on the parity of n
2 .

5.3 Non-extremal case

5.3.1 Applying the Regularity Lemma

Let G be a graph which is not either of the extremal cases and the vertices x, y have

been chosen. We apply the Regularity Lemma (in this thesis we always refer to Theorem

5.8) to G with parameter ε and d as in equation 5.2. We get a partition of V (G) into

l+ 1 clusters V0, V1, V2, ..., Vl. Assume that l is even, if not, we move the vertices of one

of the clusters into V0 (also denote it by V0) to make l be an even number. Now, by (2)

of Theorem 5.8, we have |V0| ≤ 2εn and

(1− 2ε)n ≤ lN ≤ n. (5.3)

Let k := l
2 .

We define the reduced graph R based on the clusters V1, . . . , Vl (a partition of

V (G) \ V0): the vertices of R are r1, r2, ..., rl, and there is an edge between ri and rj

if the pair (Vi, Vj) is ε-regular in G
′

with density at least d. If no ambiguity arises, we

won’t distinguish the cluster and its corresponding vertex in R.

The following claim shows that R inherits the minimum degree condition.

Claim 5.19. δ(R) ≥ (1
2 − 2d)l.

Proof. For any cluster Vi (1 ≤ i ≤ l), the neighbors of v ∈ Vi in G
′

can only be in V0 and

in the clusters which are neighbors of Vi in R. Consider the sum of degrees of vertices

in Vi, in one hand,

(
n

2
+ 1− (d+ ε)n)L ≤

∑
v∈Vi

degG′ (v);

in the other hand, ∑
v∈Vi

degG′ (v) ≤ 2εnL+ degR(ri)L
2.

Thus degR(ri) ≥ (1
2 − d− 3ε)nL > (1

2 − 2d)l provided 3ε < d.
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The assumption that G is not either of the extremal cases leads the following claim.

Claim 5.20. G is a graph which is not either of the extremal cases, then

(1) the independence number of R is less than (1
2 − 8d)l,

(2) R contains no two disjoint subsets R1, R2 of size at least (1
2 − 6d)l such that

eR(R1, R2) = 0.

Proof. (1) Suppose to the contrary that R contains an independent set R1 of size (1
2 −

8d)l. We will show that G is in the Extremal Case 1 with parameter α. Let A = ∪ri∈R1Vi

and B = V (G)−A. By equation 5.3,(
1

2
− 9d

)
n ≤

(
1

2
− 8d

)
lL = |R1|L = |A| <

(
1

2
− 2d

)
n.

For each x ∈ A, by (3) of Theorem 5.8,

degG(x,A) ≤ degG′(x,A) + (d+ ε)n < 2dn,

then we have

degG(x,B) >
n

2
− 2dn =

(
1

2
− 2d

)
n.

Hence,

eG(A,B) >

(
1

2
− 9d

)
n ·
(

1

2
− 2d

)
n >

(
1

4
− 11

2
d

)
n2.

Now move at most 9dn vertices from B to A such that A and B are of size n
2 . We still

have

eG(A,B) >

(
1

4
− 11

2
d

)
n2 − 9dn · n

2
=

(
1

4
− 10d

)
n2 = (1− 40d)

(n
2

)2
.

By specializing 40d ≤ α, we get that G is in the Extremal Case with parameter α.

(2) Suppose to the contrary that R contains two disjoint subsets R1, R2 of size(
1
2 − 6d

)
l such that eR(R1, R2) = 0. We will show that G is in the Extremal Case 2

with parameter α. Let A = ∪ri∈R1Vi and B = ∪ri∈R2Vi. Since eR(R1, R2) = 0, we have

eG′(A,B) = 0. By (3) of Theorem 5.8, we have |E(G)| ≤ |E(G′)|+ dn2, we have

eG(A,B) ≤ eG′(A,B) + dn2 = dn2.

Note that

|A| = |R1|L =

(
1

2
− 6d

)
lL >

(
1

2
− 7d

)
n,

and

|B| = |R2|L =

(
1

2
− 6d

)
lL >

(
1

2
− 7d

)
n.
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By adding at most 7dn vertices to each of A and B, we obtain two subsets of size n
2 and

still name them as A and B, respectively. Then,

eG(A,B) ≤ dn2 + 2 · (7dn)
(n

2

)
= 8dn2,

which in turn shows that the density

dG(A,B) =
eG(A,B)(

n
2

)2 ≤ 32d.

Since α > 32d, we obtain that G is in the Extremal Case 2 with parameter α.

Note that Claim 5.20 shows that there exists an upper bound of the independence

number of R. The proof of this lemma is similar to the proof of Claim 4.5 in [16],

By Claim 5.20, we can say that R is Hamiltonian. To prove this, we need a theorem

of Nash-Williams.

Theorem 5.21. [85] Let G be a 2-connected graph of order n. If minimum degree

δ(G) ≥ max{n+2
3 , α(G)}, here α(G) is the independence number of G, then G contains

a Hamiltonian cycle.

Claim 5.22. R is a Hamiltonian graph.

Proof. By δ(R) ≥ (1
2 − 2d)l and Lemma 5.20, we can say that δ(R) ≥ max{ l+2

3 , α(R)}.
Now we only need to prove that R is a 2-connected graph.

Actually, we can show that R is dl-connected. To the contrary suppose that there

exists a vertex cut S in R with |S| < dl. Let X and Y be two components in R−S. Since

δ(R) ≥ (1
2−2d)l, the size of X and Y should be more than (1

2−3d)l. And eG(X,Y ) = ∅,
which is impossible by Lemma 5.20. So R is dl-connected.

Since n ≤ Ll + 2εn ≤ (l + 2)εn, l ≥ 1
ε − 2. Suppose 5ε ≤ d, we can get l ≥ 3

d . So

dl ≥ 3 which leads to the end of the proof.

There are also some similar arguments in [16].

5.3.2 Constructing paths to connect clusters

We say that a vertex v is friendly to a cluster X, denoted v ∼ X, if degG(v,X) ≥
(d − ε)|X|. Moreover, given an ε-regular pair (X,Y ) of clusters and a subset Y

′ ⊆ Y ,

we say that a vertex v ∈ X is friendly to Y
′
, if deg(x, Y

′
) ≥ (d − ε)|Y ′ |. Actually by

Lemma 5.3, at most ε|X| vertices of X are not friendly to Y
′

whenever |Y ′ | > ε|Y |.
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Claim 5.23. Every vertex v ∈ V (G) is friendly to at least (1
2 − 2d)l clusters.

Proof. Assume for a contradiction that there are less than (1
2 − 2d)l friendly clusters for

v. Then

degG(v) ≤ (
1

2
− 2d)lL+ (d− ε)Ll + 2εn ≤ (

1

2
− d+ 2ε)n <

n

2
,

provided that 2ε < d, which is a contradiction to equation 5.1.

If two clusters X and Y are a regular pair, we denote this relation by X ∼ Y . Given

two vertices u, v ∈ V (G), a u, v-chain of length 2s with distinct clusters A1, B1, ..., As, Bs

is u ∼ A1 ∼ B1 ∼ · · · ∼ As ∼ Bs ∼ v and {Aj , Bj} = {Xi, Yi} for some 1 ≤ i ≤ k. We

have the following claim. There are also some similar discussions in [16], but we give

the claim with a different bound on the number of the chains.

Claim 5.24. Let L be a list of at most 2εn pairs of vertices of G. For each pair

{u, v} ∈ L, we can find u, v-chains of length two or four such that every cluster is used

in at most d
10L chains.

Proof. We deal with one pair in L at each step. Suppose we have found the desired

chains for s < 2εn pairs such that no cluster is used in more than d
10L chains. Let O be

the set of clusters which are used d
10L times.

We have a bound on the cardinality of O,

d

10
L|O| ≤ 4s ≤ 8εn ≤ 8ε

2kL

1− 2ε
.

So |O| ≤ 160εk
(1−2ε)d ≤

160εl
d ≤ dl, provided d2 ≥ 160ε.

Now consider a new pair {u, v} in L, we try to find a u, v-chain of length at most

four such that every cluster is used in at most d
10L chains. Let U be the set of clusters

which are friendly to u and not in O. Similarly, let V be the set of clusters which are

friendly to v and not in O. Let P (U) and P (V) be the set of partners of clusters in U
and V, respectively. It is easy to see that |U| = |P (U)| and |V| = |P (V)|. Moreover,

since |O| ≤ dl, by Claim 5.23, we know that |U| = |P (U)| ≥ (1
2−3d)l and |V| = |P (V)| ≥

(1
2 − 3d)l. Denote by R1 the set of vertices in R which are corresponding to the clusters

in P (U), and by R2 the set of vertices in R which are corresponding to the clusters in

P (V).
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First, we claim that eR(R1, R2) 6= 0. Suppose to the contrary that eR(R1, R2) = 0.

If R1 ∩R2 = ∅, Then R1 and R2 are disjoint and eR(R1, R2) = 0. Since |R1| = |P (U)| ≥
(1

2 − 3d)l and |R2| = |P (V)| ≥ (1
2 − 3d)l, we get a contradiction to Claim 5.20.

If there exists a vertex x ∈ R1∩R2, then degR(x) ≥ (1
2−2d)l. Since eR(R1, R2) = 0,

x is not adjacent to any vertex in R1 ∪ R2. Thus |R1 ∪ R2| ≤ (1
2 + 2d)l. Since |R1| ≥

(1
2 − 3d)l and |R2| ≥ (1

2 − 3d)l, |R1 ∩R2| ≥ (1
2 − 8d)l. R1 ∩R2 is an independent set in

R, which is a contradiction to Claim 5.20.

Now eR(R1, R2) 6= 0, that means there exist a cluster in P (U), say A, and a cluster

in P (V), say B, such that A ∼ B. Denote the partner of A in U by A′ and the

partner of B in V by B′. If A,A′, B,B′ are mutually distinct, then we get a u, v-chain

u ∼ A′ ∼ A ∼ B ∼ B′ ∼ v of length four. If A′ = B or A = B′, we get a u, v-chain

u ∼ B ∼ B′ ∼ v or u ∼ A′ ∼ A ∼ v of length two, respectively.

Continue this process until there is no pair in L is left.

Let CR be a Hamiltonian cycle in R. We choose two distinct clusters X, Y which

are as close as possible on CR such that x is friendly to Y and y is friendly to X.

Claim 5.25. We can choose distinct clusters X and Y such that x is friendly to Y , y

is friendly to X and distCR
(X,Y ) ≤ 3dl.

Proof. Let X be the the family of friendly clusters for x and Y be the the family of

friendly clusters for y. By Claim 5.23, |X |, |Y| ≥ (1
2 − 2d)l. We won’t distinguish a

cluster and its corresponding vertex on CR.

We call a segment on CR an X -segment if it is a maximal segment(or we can say

a maximal path) on CR with both end vertices in X such that it contains no clusters

in Y. Similarly, a Y-segment is a maximal segment on CR with both end vertices in Y
such that it contains no clusters in X . Each cluster in X ∩ Y forms an X -segment(a

Y-segment) with one vertex on CR. Now CR is divided by all these segments. We choose

X ∈ X and Y ∈ Y such that X and Y are two closest end vertices in two continuous

segments on CR.

If X ∩Y is equal to X or Y, then |X ∩Y| ≥ (1
2 − 2d)l. The distance between X and

Y should have

distCR
(X,Y ) ≤ l − |X ∩ Y|

|X ∩ Y|
+ 1 ≤

l − (1
2 − 2d)l

(1
2 − 2d)l

+ 1 ≤ 8d

1− 4d
+ 2 ≤ 4

provided d ≤ 1
8 . Since the distance between two vertices in a path is the number of

internal vertices plus one, we have a “+1” in the above calculation.
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If X ∩ Y is not equal to either of X or Y, then the number of segments should be

no less than |X ∩ Y|+ 2.

distCR
(X,Y ) ≤ l − (|X |+ |Y| − |X ∩ Y|)

|X ∩ Y|+ 2
+ 1 ≤ 4dl + |X ∩ Y|

|X ∩ Y|+ 2
+ 1 ≤ 2dl + 2.

Since n = Ll + |V0| ≤ (l + 2)εn, we have l ≥ 1
ε − 2 ≥ 2

d , provided ε ≤ d
4 . Then

dl ≥ 2, distCR
(X,Y ) ≤ 3dl.

By Claim 5.25 we choose such two clusters X and Y . We give a new notation for

all clusters except V0. We choose a direction of CR, which is along the longer path from

Y to X on CR (there are two paths from Y to X on CR, and we choose the longer one),

then starting from Y , we denote the clusters by Y1, X2, Y2, X3, Y3,..., Xk, Yk, X1 along

this direction (recall that k = l
2). Y is denoted by Y1 and X is denoted by a Xi or a Yi.

We call Xi, Yi partners of each other (1 ≤ i ≤ k) and write P (Xi) = Yi and P (Yi) = Xi.

We need to mention that the parity of n
2 and the new notation of X would affect

our following discussions. In the following arguments, we assume that n
2 is even and X

is denoted by Yt. We call this the non-extremal case 1. For the other cases (n2 is odd or

X is denoted by some Xi), we will discuss them in Subsection 5.3.5.

We know that t 6= 1. By Claim 5.25, distCR
(Y1, Yt) = l − 2t+ 2 ≤ 3dl. So

t− 1 ≥ 1− 3d

2
l. (5.4)

This will be used in Subsection 5.3.4.

Now we construct some paths to connect Yi and Xi+1 (1 ≤ i ≤ k). We always say

Xk+1 = X1.

Since x is friendly to Y1, we can choose two neighbors of x in Y1, denoted wx and

y1
1, such that wx is friendly to X2 and y1

1 is friendly to X1. This is possible because x

has at least (d − ε)L neighbors in Y1 and (X1, Y1), (Y1, X2) are both regular pairs, by

Lemma 5.3 at least (d − ε)L − εL vertices of Y1 can be chosen as wx and y1
1. Choose

a neighbor of wx in X2, denoted x1
2, such that x1

2 is friendly to Y2. We know that at

least (d − ε)L − εL vertices of X2 can be chosen as x1
2. And we have a path from y1

1

to x1
2, precisely P1 := y1

1xwxx
1
2. We call this procedure joining x to Y1. Similarly we

can construct a path Pt = y1
t ywyx

1
t+1, where y1

t ∈ Yt is friendly to Xt, x
1
t+1 ∈ Xt+1 is

friendly to Yt+1 and wy ∈ Yt. We call this procedure joining y to Yt. For 1 ≤ i ≤ k and

i 6= 1, t, we choose two adjacent vertices y1
i and x1

i+1 such that y1
i ∈ Yi is friendly to Xi
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and x1
i+1 ∈ Xi+1 is friendly to Yi+1 (we always use x1

1 to denote x1
k+1). It is possible

because by Lemma 5.3 at least (d− ε)L vertices of Yi can be chosen as y1
i and at least

(d− ε)L− εL vertices can be chosen as x1
i+1. Let Pi (1 ≤ i ≤ k and i 6= 1, t) be the path

y1
i x

1
i+1, which connects Yi and Xi+1. We always call the vertices in Pi (1 ≤ i ≤ k) used

vertices.

We need some other vertex-disjoint paths to connect Yi and Xi+1 (1 ≤ i ≤ k). By

the same method, we choose two adjacent unused vertices y2
i and x2

i+1 such that y2
i ∈ Yi

is friendly to Xi and x2
i+1 ∈ Xi+1 is friendly to Yi+1 (we always use x2

1 to denote x2
k+1).

Let Qi (1 ≤ i ≤ k) be the path y2
i x

2
i+1, which connects Yi and Xi+1. By Lemma 5.3, it

is possible to find these unused vertices.

In summary, we have constructed paths Pi and Qi (1 ≤ i ≤ k), which are vertex-

disjoint and connect Yi and Xi+1 (see Figure 5.1). x is on P1 and y is on Pt. Every

end vertex of these paths is friendly to its cluster’s partner. We use INT to denote the

vertex set of all internal vertices on all Pi’s and Qi’s. Since, except for P1 and Pt, all

Pi’s and Qi’s are edges, now we have INT = {x, y, wx, wy}.

P1 P2

Q1 Q2

Pk

Qk

X1 Y1

x

YtY2X2 X3 Xt+1

Pt

Qt

y

y1
1

wx x1
2 wy

y1
t

x1
t+1

Figure 5.1: Construction of Pi’s and Qi’s.

For every 1 ≤ i ≤ k, let

X
′
i := {u ∈ Xi : deg(u, Yi) ≥ (d− ε)L}, Y ′i := {v ∈ Yi : deg(v,Xi) ≥ (d− ε)L}.

Since (Xi, Yi) is ε-regular, by Lemma 5.3 have |X ′i |, |Y
′
i | ≥ (1 − ε)L. We move all

the vertices in Xi −X
′
i and Yi − Y

′
i to V0. Meanwhile, we need to make sure (X

′
i , Y

′
i ) is

balanced, so by Lemma 5.3 we may move at most εLl vertices in (X
′
i , Y

′
i ) to guarantee

that. We also remove all the vertices in INT out of V0, X
′
i and Y

′
i . This may cause that

some (X
′
i , Y

′
i ) is not balanced. For example, if wx ∈ Y

′
1 , and we remove it from Y

′
1 , then

it causes (X
′
1, Y

′
1 ) be not balanced. In this example, to make sure (X

′
1, Y

′
1 ) is balanced,

we move a vertex in X
′
i to V0. We do the same operations for all the vertices in INT .

Since |INT | = 4 and n is sufficiently large, at most εLl+ 4 ≤ 2εn vertices are moved to

V0. We derive that |V0| ≤ 4εn and |X ′i | = |Y ′i | ≥ (1 − ε)L − 1 (1 ≤ i ≤ k) in this step.
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Since

εL ≥ ε(1− 2ε)n

l
≥ ε(1− 2ε)

M0
n

and n is sufficiently large, we say εL ≥ 1. Thus |X ′i | = |Y ′i | ≥ (1 − 2ε)L (1 ≤ i ≤ k).

The minimum degree in each pair is at least (d− ε)L− εL− 1 ≥ (d− 3ε)L.

5.3.3 Handling of all the vertices of V0

In this step, we extend those paths Qi’s (1 ≤ i ≤ k) by adding all the vertices of V0 to

them. Note that, |V0| is even because |X ′i| = |Y ′i | for all i and |V0| ≤ 4εn. We arbitrarily

partition V0 into at most 2εn pairs. Applying Claim 5.24, we have chains of length at

most four for each pair such that every cluster is used in at most d
10L chains.

Now we extend those paths Qi’s by using vertices of V0. Recall that the end vertices

of Qi are y2
i ∈ Yi and x2

i+1 ∈ Xi+1. We deal with the vertices of V0 pair by pair. Assume

that we deal with the pair (u, v) now.

If there is a chain of length two between u and v, assume that this chain is u ∼
Xi ∼ Yi ∼ v, for some 1 ≤ i ≤ k. We choose two adjacent vertices w1 ∈ X

′
i and w2 ∈ Y

′
i

such that w1 is a neighbor of y2
i and w2 is a neighbor of v. Since y2

i is friendly to Xi and

v is friendly to Yi, the size of the neighbor sets of w1 and w2 are at least (d− 3ε)L. By

Lemma 5.3, it is possible to choose w1 and w2. We choose another neighbor of v in Y
′
i ,

denoted w3. Then we extend Qi to Qi ∪ {w3v, vw2, w2w1, w1y
2
i }. We still denote this

new path by Qi and call w3 the new y2
i to make sure that the end vertices of the new

Qi are denoted by y2
i ∈ Yi and x2

i+1 ∈ Xi+1. Similarly, for u, we can choose w5, w6 ∈ X
′
i

and w4 ∈ Y
′
i to extend Qi−1 to Qi−1 ∪{x2

iw4, w4w5, w5u, uw6}. We still denote this new

path by Qi−1 and call w6 the new x2
i to make sure that the end vertices of Pi−1 are

y2
i−1 ∈ Yi−1 and x2

i ∈ Xi. And we update the set INT . Indeed, three vertices of X
′
i

are added to INT (also for Y
′
i ) and totally eight vertices are added to INT including

u, v. Since v behaves like a vertex in X
′
i and u behaves like a vertex in Y

′
i , we call this

procedure inserting v into X
′
i to extend Qi and inserting u into Y

′
i to extend Qi−1 (see

Figure 5.2).

Now we consider that the u, v-chain has length four. Without loss of generality,

we assume that the chain is u ∼ Xi ∼ Yi ∼ Xj ∼ Yj ∼ v, for some i, j. We extend

the path Qi−1 by inserting u into Y
′
i . We choose a vertex of Y

′
i which is friendly to Xj

and insert it into Y
′
j to extend Qj−1. At last we extend the path Qj by inserting v into

X
′
j . Meanwhile, we update the set INT . Indeed, two vertices of X

′
i are added to INT

(also for Y
′
i ) and three vertices of X

′
j are added to INT (also for Y

′
j ). So totally twelve

vertices are added into INT including u, v.
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Pi−1

Qi−1

Pi

Qi

Pi−1 Pi

QiQi−1

X ′i Y ′i X ′i Y ′i

uv

Figure 5.2: Extending Qi−1 and Qi when u, v have a chain of length two.

We continue this process till there is no vertex left in V0. Denote X∗i = X
′
i − INT

and Y ∗i = Y
′
i − INT . It is not hard to see that the pair (X∗i , Y

∗
i ) is still balanced. For

inserting each pair of vertices, at most three vertices of a cluster in the chain are used.

So

|X∗i | = |Y ∗i | ≥ (1− 2ε)L− 3
d

10
L ≥ (1− d

2
)L

provided ε < d
10 .

For each vertex u ∈ X∗i , we have

deg(u, Y ∗i ) ≥ (d− 3ε)L− 3
d

10
L ≥ d

2
L

provided ε < d
15 . And it is the same for the degree of any vertex in Y ∗i .

Thus by Slicing Lemma, we can say the pair (X∗i , Y
∗
i ) is (2ε, d2)-super-regular (1 ≤

i ≤ k).

5.3.4 Constructing the desired Hamiltonian cycle

In this step, first we use Lemma 5.12 to construct two paths W 1
i and W 2

i in each pair

(X∗i , Y
∗
i ). Then we combine all these paths with Pi’s and Qi’s to obtain a Hamiltonian

cycle in G. At last we fix the length of W 1
i and W 2

i in each pair to make sure that x

and y have distance n
2 on this Hamiltonian cycle.

For each 1 ≤ i ≤ k, we choose any even integers l1i , l
2
i such that 4 ≤ l1i , l2i ≤ 2|X∗i |−4

and l1i + l2i = 2|X∗i |. We will fix these integers later.

For 2 ≤ i ≤ k, using Lemma 5.12, we construct two paths W 1
i and W 2

i in the pair

(X∗i , Y
∗
i ) such that

(a) W 1
i has end vertices x1

i and y1
i with |V (W 1

i )| = l1i ;
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(b) W 2
i has end vertices x2

i and y2
i with |V (W 2

i )| = l2i .

For i = 1, we construct two paths W 1
1 and W 2

1 in the pair (X∗1 , Y
∗

1 ) such that

(c) W 1
1 has end vertices x1

1 and y1
2 with |V (W 1

1 )| = l11;

(d) W 2
1 has end vertices x2

1 and y2
1 with |V (W 1

2 )| = l12.

Then

C = P1 ∪ (
k⋃
i=2

(W 1
i ∪ Pi)) ∪W 1

1 ∪Q1 ∪ (
k⋃
i=2

(W 2
i ∪Qi)) ∪W 2

1

is a Hamiltonian cycle in G.

Y ∗1X∗1 X∗2 Y ∗2 X∗3 Y ∗3

Pk P1 P2 P3

Qk Q1 Q2 Q3

Figure 5.3: Construction of the Hamiltonian cycle C

To finish our proof, we need to make sure that x and y have distance n
2 on C. Our

Hamiltonian cycle is constructed in a bipartite graph (
⋃
Xi) ∪ (

⋃
Yi) (take

⋃
Xi as a

part and
⋃
Yi the other one). Since x behaves like a vertex in X1 and y behaves like a

vertex in Xt, the distance of x and y on C should be an even number. Recall that we

assume that n
2 is even. So there is no parity problem in this non-extremal case.

Claim 5.26. We can properly choose the value of l1i (2 ≤ i ≤ t) such that distC(x, y) =
n
2 .

Proof. We consider this path P := P1 ∪ (
⋃t
i=2(W 1

i ∪ Pi)) of the Hamiltonian cycle. We

need the distance of x and y on C to be n
2 , so the vertex number between x and y on P

should be n
2 − 1. For the vertices between x and y on P , the only vertex not belong to

W 1
i (2 ≤ i ≤ t) is wx. Thus we need to make sure

n

2
− 1 =

t∑
i=2

l1i + 1. (5.5)

Since by Lemma 5.12, l1i can be any even integer such that 4 ≤ l1i ≤ 2|X∗i | − 4.

By |X∗i | ≥ (1− d
2)L, we can choose l1i such that

t∑
i=2

l1i can be any even integer with the
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following bound,

4(t− 1) ≤
t∑
i=2

l1i ≤ 2(t− 1)(1− d

2
)L− 4(t− 1) = 2(t− 1)((1− d

2
)L− 2).

We know that t ≤ k = l
2 , then 4(t−1) < 2l. Since l ≤M0 in the Regularity Lemma

and n is sufficiently large (let n ≥ 4M0 +4), we can say that 4(t−1) < 2l ≤ 2M0 ≤ n
2 −2.

By equation 5.4, we also know t− 1 ≥ 1−3d
2 l, so

2(t− 1)((1− d

2
)L− 2) ≥ (1− 3d)(1− d

2
)lL− 2(1− 3d)l

≥ (1− 7

2
d)(1− 2ε)n− 2l

≥ (1− 4d)n− 2M0 ≥
3

4
n− 2M0,

provided 4ε ≤ d ≤ 1
16 and l ≤ M0. Since n is sufficiently large (let n ≥ 8M0), we can

say that 2(t− 1)((1− d
2)L− 2) ≥ 3

4n− 2M0 ≥ n
2 .

So we can choose the values of l1i (2 ≤ i ≤ t) such that
t∑
i=2

l1i = n
2 − 2 satisfying

equation 5.5.

We choose l1i (2 ≤ i ≤ t) such that equation 5.5 holds and arbitrarily choose the even

integers l11, l1i (t < i ≤ k) with the conditions in Lemma 5.12. Thus distC(x, y) = n
2 .

We now complete the proof of the non-extremal case 1: n
2 is even and X (the

cluster friendly to y) is denoted by Yt. We prove other non-extremal cases in the next

subsection.

5.3.5 Other non-extremal cases

We discuss the other non-extremal cases. Suppose n
2 is even and X (the cluster friendly

to y) is denoted by Xt (1 ≤ t ≤ k) in the second step of the proof above. We call

this the non-extremal case 2. It seems that the method above doesn’t work. Since our

Hamiltonian cycle is constructed in a bipartite graph (
⋃
Xi)∪(

⋃
Yi) and x (respectively

y) behaves like a vertex in X1 (respectively Yt), we cannot locate x and y with the even

distance n
2 on the Hamiltonian cycle.

We need some tricks to change the parity. Recall that, in the second step of the proof

above, subsection 5.3.2, we construct P2 = y1
2x

1
3 and Q2 = y2

2x
2
3. Since δ(G) ≥ n

2 + 1,

any two vertices have at least two common neighbors in G. Suppose that y1
2, x

1
3 have
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a common neighbor u1 and y2
2, x

2
3 have a common neighbor u2 6= u1, we claim that we

can choose these vertices such that u1 /∈ {y2
2, x

2
3}, u2 /∈ {y1

2, x
1
3}. To see this, by Lemma

5.3, there are at least (d − ε)L vertices of Y2 can be chosen as y1
2 and y2

2, and at least

(d − ε)L − εL vertices of X3 can be chosen as x1
3 and x2

3. Assume that we have chosen

y1
2, x1

3 and one of its common neighbors u1. There are at least (d − ε)L − 2 vertices

can be chosen as y2
2, chose two of them, say y1 and y2. For each yi, there are at least

(d− ε)L− εL− 2 vertices can be chosen as x2
3, chose two of them, say x1 and x2, such

that yixi is an edge, for i = 1, 2. If yi and xi have a common neighbor not in {u1, y
1
2, x

1
3},

then chose this common neighbor as u2 and yi as y2
2, xi as x2

3. Now assume that all the

common neighbors of yi and xi are in {u1, y
1
2, x

1
3}. Since yi and xi have at least two

common neighbors, there is a vertex in {u1, y
1
2, x

1
3}, say u1, is a common neighbor both

of y1, x1 and y2, x2. Without loss of generality, assume that x1
3 is an another common

neighbor of y1 and x1. Now we chose y2 as new y1
2, x2 as new x1

3, u1 also be u1, and

chose y1 as y2
2, x1 as y1

2, and the vertex chosen as x1
3 at first now is chosen as u2.

Now we chose new paths of P2 and Q2 in step 2 of the proof, which will change the

parity as we need.

First, assume that u1 and u2 are both different with x and y. Note that x is

friendly to Y1 and y is friendly to Xt, if we use the same method to construct the

Hamiltonian cycle, then x and y is connected, as shown in Claim 5.26, by a path P :=

P1∪(
⋃t
i=2(W 1

i ∪Pi)) of the Hamiltonian cycle, which is of odd length now. If we replace

P2 = y1
2x

1
3 and Q2 = y2

2x
2
3 by P2 = y1

2u1x
1
3 and Q2 = y2

2u2x
2
3, respectively, then by the

same method to construct the Hamiltonian cycle, x and y will be connected by a path of

even length on the Hamiltonian cycle. By a similar calculation as in proof of Claim 5.26,

we can make sure that the distance between x and y on this cycle is the even number n
2 .

Second, assume that we cannot find these required y1
2, x

1
3, y

2
2, x

2
3 such that u1 and

u2 are both different with x and y. We choose y1
2 to be friendly to X2 and X3. There

are at least (1− 2ε)L possible choices for y1
2 and it is similar for y2

2. We choose x1
3 to be

a neighbor of y1
2 and friendly to Y2 and Y3. There are at least (d− ε)L−2εL = (d−3ε)L

possible choices for x1
3 and it is similar for x2

3. By the assumption, y1
2 and x1

3 have one of

x and y as a common neighbor, and it is same for y2
2 and x2

3. That means all the vertices

that can be chosen as y1
2 and x1

3 or can be chosen as y2
2 and x2

3 must be the neighbors of

x or y. So x or y should have at least 1
2(d − 3ε)L neighbors in Y2 and also in X3. If y

has at least 1
2(d−3ε)L neighbors in Y2 and in X3, we change the choice of X and choose

Y2 to be the X. By the degree of y in Y2 we can join y to X = Y2 and we also join x in

Y = Y1 as before. Now x and y both behave like vertices in (
⋃
Xi). Otherwise, x has

at least 1
2(d − 3ε)L neighbors in Y2 and in X3. We change the choice of Y and choose

X3 to be the Y . Since we can join x to Y = X3 and join y to X = Xt, x and y both
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behave like vertices in (
⋃
Yi). By the choice of X and Y , we give a new notation for all

clusters and continue the proof as before. Although the calculation in Claim 5.25 and

Claim 5.26 will have some minor differences, it won’t affect the conclusion.

We consider the cases when n
2 is odd. Actually in the second step of the proof,

if the selected clusters X and Y belong to the different parts of the bipartite graph

(
⋃
Xi) ∪ (

⋃
Yi), there is no parity problem, the proof is same to non-extremal case 1,

except the differences of the notations. If the selected clusters X and Y belong to the

same part of the bipartite graph (
⋃
Xi) ∪ (

⋃
Yi), there is a parity problem, the proof is

same to non-extremal case 2, except the differences of the notations.

5.4 Extremal cases

5.4.1 Extremal case 1

Suppose G is a graph on n vertices with δ(G) ≥ n
2 + 1 and there exists a balanced

partition of V (G) into V1 and V2 such that the density d(V1, V2) ≥ 1 − α. We suppose

α ≤ (1
9)3. Let α1 = α

1
3 and α2 = α

2
3 . So α1 ≥ 9α2.

We need the following lemma to continue our proof.

Lemma 5.27. If G is in extremal case 1, then G contains a balanced spanning bipartite

subgraph G∗ with parts U1, U2 and G∗ has the following properties:

(a) there is a vertex set W such that there exist vertex-disjoint 2-paths (paths of

length two ) in G∗ with the vertices of W as the internal vertices (not the end vertices)

in each 2-path and |W | ≤ α2n;

(b) degG∗(v) ≥ (1− α1 − 2α2)n2 for all v 6∈W .

Proof. For i = 1, 2, let V ∗i = {v ∈ Vi : deg(v, V3−i) ≥ (1− α1)n2 }.

We claim that |Vi − V ∗i | ≤ α2
n
2 . Otherwise

d(V1, V2) <
α2n

2 (1− α1)n2 + n
2 (1

2 −
α2
2 )n

(n2 )2
= α2(1− α1) + (1− α2) = 1− α,

which is a contradiction. So |V ∗i | ≥ (1− α2)n2 .

For any vertex v ∈ Vi − V ∗i , if deg(v, Vi) ≥ (1 − α1)n2 , we also add v to V ∗3−i. We

denote the two resulting sets by V
′
i (i = 1, 2) and let V0 = V − V

′
1 − V

′
2 . We have
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|V0| ≤ α2n. For every vertex v in V
′
i ,

deg(v, V
′

3−i) ≥ (1− α1)
n

2
− α2

n

2
. (5.6)

For every vertex u in V0,

deg(u, V
′
i ) > (

n

2
− (1− α1)

n

2
)− α2

n

2
≥ (α1 − α2)

n

2
.

First, we assume |V ′1 |, |V
′

2 | ≤ n
2 . Let W = V0 and we add all the vertices in V0 to

V
′

1 and V
′

2 such that the final two sets are of the same size. We denote the final two

sets by U1 and U2 corresponding to V
′

1 and V
′

2 respectively. Let W1 = U1 − V
′

1 and

W2 = U2 − V
′

2 . Thus W = W1 ∪W2. Since for each vertex u ∈ Wi, deg(u, V
′

3−i) >

(α1−α2)n2 ≥ 2α2n ≥ 2|Wi|, we can greedily choose two neighbors of u in V
′

3−i such that

the neighbors of all the vertices of Wi are distinct (i = 1, 2). So W,U1, U2 are what we

need. The degree condition is degG∗(v) ≥ (1−α1 −α2)n2 by equation 5.6 for all v 6∈W .

Second, without loss of generality we assume |V ′1 | > n
2 . Let W1 be the set of vertices

v ∈ V ′1 such that deg(v, V
′

1 ) ≥ α1
n
2 .

If |W1| ≥ |V
′

1 |− n
2 , we take W to be the set of all vertices of V0 and arbitrary |V ′1 |− n

2

vertices of W1. Note that

|W | = |V0|+ |V ′1 | −
n

2
≤ n

2
− |V ∗2 | ≤ α2

n

2
.

Let U1 = V
′

1 −W and U2 = V
′

2 ∪W . Then for every vertex u ∈W , we have

deg(u, U1) > (α1 − α2)
n

2
− α2

n

2
≥ α2n ≥ 2|W |.

Similarly, we can greedily choose two neighbors of u in U1 such that the neighbors of all

the vertices of W are distinct. The degree condition is degG∗(v) ≥ (1−α1−α2)n2−α2
n
2 =

(1− α1 − 2α2)n2 by equation 5.6 for all v 6∈W .

Now we assume |W1| < |V
′

1 | − n
2 . Let U1 = V

′
1 −W1 and U2 = V

′
2 ∪ V0 ∪W1. Let

t = |U1| − n
2 , so t ≤ α2

n
2 . Considering the induced graph G[U1], we know that

δ(G[U1]) ≥ δ(G)− |U2| ≥
n

2
+ 1− (

n

2
− t) ≥ t+ 1;

∆(G[U1]) ≤ α1
n

2
.

Suppose G[U1] has a biggest family of vertex-disjoint 2-paths on a vertex set S

and the number of those vertex-disjoint 2-paths is s. We consider the number of edges
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between S and G[U1]− S. So

t(
n

2
− 3s) ≤ δ(G[U1])(|U1| − 3s) ≤ 3s∆(G[U1]) ≤ 3sα1

n

2
.

We can get

s ≥
n
2 t

3(t+ α1
n
2 )
≥

n
2 t

3(α2
n
2 + α1

n
2 )
≥ t

3(α2 + α1)
> t. (5.7)

So G[U1] has at least t vertex-disjoint 2-paths. We choose t vertex-disjoint 2-paths

in G[U1] and move the internal vertices of all these vertex-disjoint 2-paths to U2. Now

|U1| = |U2| = n
2 . Let W be the union of V0 ∪W1 and all these internal vertices. For any

vertex u ∈ V0 ∪W1,

deg(u, U1)− 3α2
n

2
> (α1 − α2)

n

2
− α2

n

2
− 3α2

n

2
≥ 2|V0 ∪W1|.

We can find vertex-disjoint 2-paths in G[U1, V0 ∪W1] with all the vertices of u ∈
V0 ∪W1 as internal vertices such that these 2-paths are all vertex-disjoint with those

existing 2-paths. And degG∗(v) ≥ (1− α1 − 2α2)n2 for all v 6∈W as before.

Now we construct the desired Hamiltonian cycle in G. In the proof of Lemma 5.27,

we know that the 2-paths are greedily chosen, so we assume that x, y won’t be any end

vertices of those 2-paths (actually in the last part of the proof of Lemma 5.27, we can

also assume those moved 2-paths won’t have x, y as the end vertices by equation 5.7.

But x, y can be the internal vertex of a 2-path.

First, assume n
2 is odd. By Lemma 5.27, we obtain a spanning bipartite graph G∗.

Sub-case 1: suppose x, y are in different parts of G∗, say x ∈ U1, y ∈ U2.

Assume W 6= ∅ and x, y 6∈W . We need the following claim to string all the vertices

of W in a path.

Claim 5.28. We can construct a path P with end vertices x1 ∈ U1 and y1 ∈ U2 such

that P contains all the vertices of W and |V (P )| = 4|W |.

Proof. Partition W = W1 ∪W2 with W1 = W ∩ U1 and W2 = W ∩ U2. Suppose that

W1 = {w1, w2, ..., wt} and the two end vertices of the 2-path containing wi are ai, bi

(1 ≤ i ≤ t). Since

degG∗(ai+1) ≥ (1− α1 − 2α2)
n

2
, degG∗(bi) ≥ (1− α1 − 2α2)

n

2

by Lemma 5.27, ai+1 and bi have at least (1 − 2α1 − 4α2)n2 common neighbors in G∗

(1 ≤ i ≤ t − 1). We greedily choose ci ∈ U1 which is a common neighbor of ai+1, bi
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(1 ≤ i ≤ t − 1). Since |W | ≤ α2n, we can choose all these ci’s such that they are

distinct. Let P1 = a1w1b1c1a2w2b2...ct−1atwtbt. P1 contains all the vertices of W1

and |V (P1)| = 4|W1| − 1. Similarly, we can construct another path P2 which contains

all the vertices of W2 and |V (P2)| = 4|W2| − 1. Suppose the end vertices of P2 are

u, v ∈ U1. We choose an unused neighbor of v in U2, denoted v′, and choose a common

unused neighbor of v′, bt in U1, denoted u′. This is possible because all the vertices of

V (G∗)−V (P1)−V (P2) have degree at least (1−α1−2α2)n2 −4α2n ≥ (1−α1−10α2)n2 .

Let P = P1∪P2∪{btu′, u′v′, v′v}, which is the path we need. |V (P )| = 4|W | ≤ 4α2n.

We denote the end vertices of P by x1 ∈ U1 and y1 ∈ U2.

Let U∗1 = U1 − V (P ) and U∗2 = U2 − V (P ). By the proof of Claim 5.28, we know

that |U∗1 | = |U∗2 |. For any vertex u ∈ U∗1 ,

degU∗2 (u) ≥ (1− α1 − 2α2)
n

2
− 4α2n = (1− α1 − 10α2)

n

2
,

and for any vertex v ∈ U∗2 , similarly we have

degU∗1 (v) ≥ (1− α1 − 10α2)
n

2
.

We choose two unused neighbors of x (respectively y), denoted y2, y3 (respectively

x2, x3), choose an unused common neighbor of y1, y2 in U∗1 , denoted x4, and choose

an unused neighbor of x2 in U∗2 , denoted y4. Let

U
′
1 = (U∗1 − {x, x2, x4}) ∪ {x1}, U

′
2 = (U∗2 − {y, y1, y2}) ∪ {y1}.

We have n′ = |U ′1| = |U
′
2| < n

2 . For any vertex u in U
′
1 and any vertex v in U

′
2, we have

deg
U
′
2
(u) ≥ (1− α1 − 10α2)

n

2
− 3, deg

U
′
1
(v) ≥ (1− α1 − 10α2)

n

2
− 3.

Since n can be sufficiently large, we can say (1− α1 − 10α2)n2 − 3 ≥ (1− α1 − 11α2)n2 .

For any vertex u in U
′
1, we have

deg
U
′
2
(u) ≥ (1− α1 − 11α2)

n

2
≥ (1− α1 − 11α2)n′,

and for any vertex v in U
′
2, similarly we have

deg
U
′
1
(v) ≥ (1− α1 − 11α2)n′.

By Lemma 5.6, we can get that (U
′
1, U

′
2) is (

√
α1 + 11α2, 1 − α1 − 11α2)-super-regular.

Since α ≤ (1
9)3, 1−α1−11α2 ≥ 2

3 , we can say (U
′
1, U

′
2) is (

√
α1 + 11α2,

2
3)-super-regular.



Locating vertices on Hamiltonian cycles 108

Applying Lemma 5.12 to the pair (U
′
1, U

′
2), we construct two vertex-disjoint paths P1

and P2 such that the end vertices of P1 are x1, y4, the end vertices of P2 are x3, y3 and

|V (Pi)| is li (i = 1, 2). We denote P3 to be the path P3 := y1x4y2xy3 and P4 to be the

path P4 := x3yx2y4. Then

C = P1 ∪ P2 ∪ P3 ∪ P4 ∪ P

is a Hamiltonian cycle in G (see Figure 5.4, Sub-case 1). We fix l1 = n
2 − 1− (|V (P )| −

2 + 4) = n
2 − |V (P )| − 3 and l2 = 2n′ − l1. Thus it is not hard to see that x and y have

distance n
2 on C.

Now assume that at least one of x, y is in W , without loss of generality, we say

x ∈W . We can similarly construct a path P with end vertices x1 ∈ U1 and y1 ∈ U2 such

that P contains all the vertices of W −{x, y} as in Claim 5.28. We need to make sure P

won’t use the vertices of the 2-path which contains x. It is possible because we always

greedily choose the vertices to construct P . So we can still find the unused neighbors of

x and finish the proof as before.

We also need to consider W = ∅. In G∗ we choose two neighbors of x, denoted

y1, y2, and two neighbors of y, denoted x1, x2. Let U
′
1 = U1 − {x} and U

′
2 = U2 − {y}.

By Lemma 5.6 and Lemma 5.27, we can say (U
′
1, U

′
2) is (

√
α1 + 3α2,

2
3)-super-regular.

Let l1 = l2 = n
2 − 1. By Lemma 5.12, we construct two vertex-disjoint paths such that

the end vertices of P1 are x1, y1, the end vertices of P2 are x2, y2 and |V (Pi)| is equal to

li (i = 1, 2). Let P3 := y1xy2 and P4 := x1yx2. So C = P1 ∪ P2 ∪ P3 ∪ P4 is our desired

Hamiltonian cycle.

U1 U2

x1

x3

x2

x4

x

y2

y

y1

y3

y4

y7

y1

x5 y6

x2

x

x1

y2

x3 y3

y y5

x4 y4

U1 U2

Sub-case 1 Sub-case 2(a)

x1

y7

x5

x3

x

x2

x4

y

x6

y5

y8

y2

y1

y3

y4

y6

U1 U2

Sub-case 2(b)

Figure 5.4: Extremal case 1.



Locating vertices on Hamiltonian cycles 109

Sub-case 2: suppose x, y are in the same part of G∗, without loss of generality, say

x, y ∈ U1.

Since the construction in Sub-case 1 is always in the bipartite graph (U1, U2) and
n
2 is odd, it seems that the same method doesn’t work in this case. Actually we need

some edges in G[U1] and G[U2] to change the parity.

Assume W 6= ∅ and x, y 6∈ W (if one of x, y is in W , the discussion is almost the

same as discussed before). Since δ(G) ≥ n
2 + 1, x should have a neighbor in U1.

Assume this neighbor, denoted x1, is not y. We choose a neighbor of x in U2 −W ,

denoted y1, and choose a neighbor of y1 in U2, denoted y2. Whether x1 is in W or not,

we can find an unused neighbor of x1 in U2 −W , denoted y3, and choose an unused

neighbor of y3 in U1 − W , denoted x3. Whether y2 is in W or not, we can find an

unused neighbor of y2 in U1 −W , denoted x2. We choose two unused neighbors of y in

U2 −W , denoted y4, y5, and an unused neighbor of y4 in U1 −W , denoted x4. Since

degG∗(v) ≥ (1 − α1 − 2α2)n2 for all v 6∈ W , it is possible to choose all these vertices as

discussed in Sub-case 1. By the same method of Claim 5.28, we can construct a path P

with end vertices x5 ∈ U1 and y6 ∈ U2 such that P contains all the unused vertices of

W and |V (P )| ≤ 4|W |. Since the vertices used in P are greedily chosen, we can assume

that P won’t use any existing chosen vertices. We choose a common unused neighbor

of x2, x5 in U2 −W , denoted y7. Let

U
′
1 = U1 − V (P )− {x, y, x1, x2}, U

′
2 = (U2 − V (P )− {y1, y2, y3, y4, y7}) ∪ {y6}.

Note that |U ′1| = |U ′2|, let |U ′1| = |U ′2| = n′. By Lemma 5.6 and n is sufficiently large,

(U
′
1, U

′
2) is a (

√
α1 + 11α2,

2
3)-super-regular pair. Applying Lemma 5.12 to the pair

(U
′
1, U

′
2), we can construct two paths P1 and P2 such that the end vertices of P1 are x4, y6,

the end vertices of P2 are x3, y5 and |V (Pi)| = li (i = 1, 2). Let P3 := x5y7x2y2y1xx1y3x3

and P4 := x4y4yy5. Then

C = P1 ∪ P2 ∪ P3 ∪ P4 ∪ P

is a Hamiltonian cycle in G (see Figure 5.4, Sub-case 2(a)). We fix l1 = n
2 −1−(|V (P )|+

5−1) = n
2 −|V (P )|−5 and l2 = 2n′− l1. It is not hard to see that x and y have distance

n
2 on C. Here we omit all the calculations about α, because it is almost same as Sub-case

1.

Now assume that y is the only neighbor of x in U1 but y has a neighbor which is

not x in U1, then the proof is similar to the proof in the last paragraph if we deal with

y first. We assume that y is the only neighbor of x in U1 and x is the only neighbor of

y in U1. We choose a neighbor of x in U2 −W , denoted y1. Since degG(y1) ≥ n
2 + 1, y1

has a neighbor in U2, denoted y2. We choose another unused neighbor of x in U2 −W ,
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denoted y3, and a neighbor of y3 in U1−W , denoted x1. Since degG(x1) ≥ n
2 + 1, x1 has

a neighbor in U1, denoted x2. By our assumption, x2 should not be either of x and y.

We choose an unused neighbor of y2 in U1−W , denoted x3, an unused neighbor of x2 in

U2−W , denoted y4, and an unused neighbor of y4 in U1−W , denoted x4. By the same

method of Claim 5.28, we construct a path P with end vertices x5 ∈ U1 and y5 ∈ U2 such

that P contains all the unused vertices of W and |V (P )| ≤ 4|W |. We choose two unused

neighbors of y in U2 − V (P ), denoted y6, y7, and choose a neighbor of y6 in U1 − V (P ),

denoted x6, and choose a common unused neighbor of x3, x5 in U2 − V (P ), denoted y8.

Let

U
′
1 = U1 − V (P )− {x, y, x1, x2, x3}, U

′
2 = (U2 − V (P )− {y1, y2, y3, y4, y6, y8}) ∪ {y5}.

Note that |U ′1| = |U ′2|, let |U ′1| = |U ′2| = n′. By Lemma 5.6 and n is sufficiently

large, (U
′
1, U

′
2) is a (

√
α1 + 11α2,

2
3)-super-regular pair. Applying Lemma 5.12 to the

pair (U
′
1, U

′
2), we can construct two paths P1 and P2 such that the end vertices of

P1 are x6, y5, the end vertices of P2 are x4, y7 and |V (Pi)| = li (i = 1, 2). Let

P3 := x5y8x3y2y1xy3x1x2y4x4 and P4 := x6y6yy7. Then

C = P1 ∪ P2 ∪ P3 ∪ P4 ∪ P

is a Hamiltonian cycle in G (see Figure 5.4, Sub-case 2(b)). Let l1 = n
2 −|V (P )|− 5 and

l2 = 2n′ − l1. Thus x and y have distance n
2 on C. We can say all the choices of the

vertices are possible because of the minimum degree of G∗. We omit all these similar

calculations here.

If W is empty, we take the path P be an edge. The rest of the proof is the same as

above.

At the end we need to consider the case when n
2 is even. Actually if x, y are in the

same part of G∗, the proof is similar to Sub-case 1, and if x, y are in different parts of

G∗, the proof is similar to Sub-case 2.

5.4.2 Extremal case 2

Suppose G is a graph on n vertices with δ(G) ≥ n
2 + 1 and there exists a balanced

partition of V (G) into V1 and V2 such that the density d(V1, V2) ≤ α. We suppose

α ≤ (1
9)3. Let α1 = α

1
3 and α2 = α

2
3 .

We also need a similar lemma as Lemma 5.27.

Lemma 5.29. If G is in extremal case 2, then V (G) can be partitioned into two balanced

parts U1 and U2 such that
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(a) there is a set W1 ⊆ U1 (respectively W2 ⊆ U2 ) such that there exist vertex-

disjoint 2-paths in G[U1] (respectively G[U2] ) with the vertices of W1 (respectively W2 )

as the internal vertices in each 2-path and |W1| ≤ α2
n
2 (respectively |W2| ≤ α2

n
2 ) ;

(b) degG[U1](u) ≥ (1− α1 − 2α2)n2 for all u ∈ U1 −W1 and degG[U2](v) ≥ (1− α1 −
2α2)n2 for all v ∈ U2 −W2.

Proof. The argument is similar to the proof of Lemma 5.27. For some similar claims,

we just give them without proofs.

For i = 1, 2, let V ∗i = {v ∈ Vi : deg(v, Vi) ≥ (1 − α1)n2 }. We can claim that

|Vi − V ∗i | ≤ α2
n
2 since otherwise d(V1, V2) >

α1
n
2
·α2

n
2

n
2
·n
2

= α, a contradiction.

For any vertex v ∈ Vi − V ∗i , if deg(v, V3−i) ≥ (1− α1)n2 , we also add it to V ∗3−i. We

denote the final two sets by V
′
i (i = 1, 2) and let V0 = V − V ′1 − V

′
2 . Thus |V0| ≤ α2n.

For every vertex v in V
′
i , deg(v, V

′
i ) ≥ (1− α1)n2 − α2

n
2 (i = 1, 2). For every vertex u in

V0, deg(u, V
′
i ) ≥ (n2 − (1− α1)n2 )− α2

n
2 ≥ (α1 − α2)n2 (i = 1, 2).

First, we assume |V ′1 |, |V
′

2 | ≤ n
2 . Then we add all the vertices in V0 to V

′
1 and V

′
2

such that the final two sets are of the same size. Denote the final two sets by U1 and

U2. Let W1 = U1 − V
′

1 and W2 = U2 − V
′

2 , then V0 = W1 ∪W2. Since for each vertex

u ∈W1, deg(u, V
′

1 ) ≥ (α1 − α2)n2 ≥ 2α2n ≥ 2|V0|, we can greedily choose two neighbors

of u in V
′

1 such that the neighbors of all the vertices in W1 are distinct. So W1 and U1

are what we need. It is same to find 2-paths in G[U2]. The degree conclusion also holds.

Second, without loss of generality we assume |V ′1 | > n
2 . Let V 0

1 be the set of vertices

v ∈ V ′1 such that deg(v, V
′

2 ) ≥ α1
n
2 .

If |V 0
1 | ≥ |V

′
1 |− n

2 , we take W2 to be the set of all vertices of V0 and |V ′1 |− n
2 vertices

of V 0
1 and W1 to be an empty set. Let U1 = V

′
1 −W2 and U2 = V

′
2 ∪W2. So |W2| ≤ α2

n
2 .

For every vertex u ∈ W2, we have deg(u, V
′

2 ) ≥ (α1 − α2)n2 − α2
n
2 ≥ α2n ≥ 2|W2|.

Thus we can greedily choose two neighbors of u in V
′

2 such that the neighbors of all the

vertices in W2 are distinct. U1, U2, W1, W2 are what we need.

Now we assume |V 0
1 | < |V

′
1 | − n

2 . Let U1 = V
′

1 − V 0
1 and U2 = V

′
2 ∪ V0 ∪ V 0

1 . Let

t = |U1| − n
2 , so t ≤ α2

n
2 . We consider the bipartite graph (U1, V

′
2 ). Suppose that

(U1, V
′

2 ) has a biggest family of vertex-disjoint 2-paths on a vertex set S, such that the

internal vertices of these 2-paths are in U1 and the end vertices of these 2-paths are in

V
′

2 . Let S = S1∪S2 with the internal vertex set S1 ⊆ U1 and the end vertex set S2 ⊆ V
′

2 .

Suppose |S1| = s, |S2| = 2s. We use δ∗ to denote the minimum degree of vertices of V
′

2

in (U1, V
′

2 ). So δ∗ ≥ n
2 + 1 − (n2 − t − 1) = t + 2. We use ∆∗ to denote the maximum
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degree of vertices of U1 in (U1, V
′

2 ). So ∆∗ < α1
n
2 . Then

δ∗(|V ′2 | − 2s) ≤ e(V ′2 − S2, U1) ≤ s(∆∗ − 2) + (
n

2
+ t− s).

By some calculations, we can get

s ≥
(t+ 2)|V ′2 | − (n2 + t)

∆∗ + 2t+ 1

≥
(t+ 2)(1− α2)n2 −

n
2 − α2

n
2

α1
n
2 + 1 + 2α2

n
2

=
(t+ 1)(1− α2)n2 − 2α2

n
2

(α1 + 2α2)n2 + 1

Since n can be sufficiently large, we can conclude s > t.

We pick t vertex-disjoint 2-paths with the internal vertex set S1 ⊆ U1 and move the

vertices of S1 into U2. Now we get |U1| = |U2| = n
2 . Let W2 = V0 ∪ V 0

1 ∪ S1 and W1 be

an empty set. For every vertex u ∈ V0 ∪ V 0
1 , degG[U2](u) ≥ (α1 − α2)n2 − α2

n
2 ≥ 2|W2|.

We can greedily find disjoint 2-paths in G[V0∪V 0
1 , V

′
2 ] with all the vertices of V0∪V 0

1 as

internal vertices such that these 2-paths are all disjoint with the existing 2-paths. U1,

U2, W1, W2 are what we need.

For a graph G in extremal case 2, we apply Lemma 5.29 to G and get a partition

of V (G) = U1 ∪ U2 with the properties in Lemma 5.29.

First, assume x and y are in different parts in the partition of V (G), without loss

of generality, we say that x ∈ U1 and y ∈ U2. Since δ(G) ≥ n
2 + 1, x (respectively y)

should have at least two neighbors in U2 (respectively U1). Denote a neighbor of x in U2

by x1 and a neighbor of y in U1 by y1 such that x1 6= y and y1 6= x. Since the 2-paths

are all greedily chosen in Lemma 5.29, we can assume that x, y, x1, y1 are not the end

vertices of those 2-paths.

Claim 5.30. There is a Hamiltonian path in G[U1] with end vertices x and y1.

Proof. Whether x and y1 are inW1 or not, we can find a neighbor of x in U1−W1, denoted

u, and a neighbor of y1 in U1 −W1, denoted v. Suppose W1 − {x, y1} = {w1, w2, ..., wt}
and the two end vertices of the 2-path containing wi are ai, bi. Since degG[U1](ai) ≥
(1 − α1 − 2α2)n2 and degG[U1](bi) ≥ (1 − α1 − 2α2)n2 , we can greedily choose ci ∈ U1

which is a common neighbor of ai+1 and bi (1 ≤ i ≤ t − 1). Moreover we can choose

all these ci to be distinct. We also greedily choose ct which is a common neighbor

of bt and v. Then P1 = a1w1b1c1a2w2b2c2...bt−1ct−1atwtbtctv is a path containing all
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the vertices of those 2-paths (except the 2-paths containing x, y1, if x, y1 are in W1).

|V (P1)| = 4t+ 1 ≤ 4α2
n
2 + 1.

Let U∗ = (U1 − V (P )− {x, y1}) ∪ {a1}. We consider the induced subgraph G[U∗].

For any vertex w ∈ U∗, degG[U∗](w) ≥ (1−α1−2α2)n2 −4α2
n
2 −2. Since n is sufficiently

large and α ≤ (1
9)3, degG[U∗](w) ≥ (1 − α1 − 7α2)n2 > n

4 + 1 ≥ |U∗|
2 + 1 for any vertex

w ∈ U∗. So G[U∗] is Hamiltonian-connected. We can find a path P2 in G[U∗] with end

vertices u, a1 containing all the vertices of U∗. Then H1 = {xu} ∪ P1 ∪ P2 ∪ {vy1} is a

Hamiltonian path in G[U1] with end vertices x and y1.

By the same method, we can construct a Hamiltonian path H2 in G[U2] with end

vertices y and x1. So

C = {xx1, yy1} ∪H1 ∪H2

is a Hamiltonian cycle in G such that distC(x, y) = n
2 (see Figure 5.5 (a)).

U1 U2

x y2

y3

y y5

U1 U2

x

y

U1 U2

(c)(a) (b)

x x1

yy1

x1

v u

y1

y
v1

v3

v2

u1

Figure 5.5: Extremal case 2.

Now assume x and y are in the same part in the partition of V (G), without loss of

generality, say x, y ∈ U1. Since δ(G) ≥ n
2 +1, x and y should have at least two neighbors

in U2. We choose a neighbor of x in U2, denoted x1, and a neighbor of y in U2, denoted

y1, such that x1 6= y1. Since the 2-paths are all greedily chosen in Lemma 5.29, we can

assume that x, y, x1, y1 are not the end vertices of those 2-paths.

Assume there is a vertex u ∈ U2 − {x1, y1} such that it has two neighbors u1, u2 ∈
U1−{x, y}. We also assume that u1, u2 are not the end vertices of the 2-paths. Whether

x, u2 are in W1 or not, we claim that we can find a path of length at most four with

end vertices x and u2 in G[U1]. Indeed, the worst case is when x, u2 are both in W1.

We can find a neighbor of x in U1 −W1, denoted v1, and a neighbor of u2 in U1 −W1,

denoted v2. We choose a common neighbor of v1, v2 in G[U1], denoted v3. xv1v3v2u2 is

a path of length four with end vertices x and u2 in G[U1]. Then we can construct a path

with end vertices x1 and u1, denote it by P1 = x1xv1v3v2u2uu1. By the same method
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in the proof of Claim 5.30, we construct a path P2 in G[U1] with end vertices u1 and y,

containing all the vertices of U1 − V (P1). In G[U2], by the same method in the proof of

Claim 5.30, we can construct a path P3 with end vertices x1 and y1, containing all the

vertices of U2 − {u}. So

C = P1 ∪ P2 ∪ P3 ∪ {yy1}

is a Hamiltonian cycle in G such that distC(x, y) = n
2 (see Figure 5.5 (b)).

Assume there is a vertex u ∈ U2 − {x1, y1} such that only one of the neighbors of

u in U1 is equal to x or y, without loss of generality, we assume that u1, u2, the two

neighbors of u, satisfy that u2 = x but u1 6= y. Let P1 = x1xuu1. The rest construction

is the same as in the last paragraph.

At last we assume that in U1, the neighbors of all the vertices of U2 − {x1, y1} are

x and y. That means any vertex in U1 − {x, y} is adjacent to x1 and y1. We choose a

neighbor of x in U2, denoted u, and a neighbor of x1 in U1, denoted v. We construct a

path P1 = vx1xu. By the same method in the proof of Claim 5.30, we can construct a

path P2 in G[U1] with end vertices v and y, containing all the vertices of U1 − {x}, and

a path P3 in G[U2] with end vertices u and y1, containing all the vertices of U2 − {x1}.
So

C = P1 ∪ P2 ∪ P3 ∪ {yy1}

is a Hamiltonian cycle in G such that distC(x, y) = n
2 (see Figure 5.5 (c)).

5.5 Concluding remarks and further work

In this chapter, we gave a proof of Enomoto’s conjecture for graphs of sufficiently large

order. Actually, our approach also works for proving Conjecture 1.51, we will show this

in the next chapter.

Note that, our proof is for graphs of sufficiently large order, but how large is it?

That is the common question when we use Regularity Lemma. We try to prove the

Theorem 5.2 without using Regularity Lemma, but unfortunately, we did not succeed

yet. Recently, there are some works on how the use of the Regularity Lemma and

the Blow-up Lemma can be avoided in certain extremal problems of dense graphs (see

[65]). This gives us positive sign to find a way to prove Theorem 5.2 avoiding using the

Regularity Lemma in future.



Chapter 6

Distributing pairs of vertices on

Hamiltonian cycles

In this chapter we give a proof of Conjecture 1.51 for graphs of sufficiently large order.

It is kind of continue work of Chapter 5. To make it easier to read, we state again

Conjecture 1.51 here.

Conjecture 6.1. [33] If G is a graph of order n ≥ 3 and δ(G) ≥ n
2 + 1, then for any

pair of vertices x, y in G and any integer 2 ≤ k ≤ n
2 , there is a Hamiltonian cycle C of

G such that distC(x, y) = k.

Our main result is the Theorem 1.53. We state again this theorem here.

Theorem 6.2. [47] There exists a positive integer n0 such that for all n ≥ n0, if G is

a graph of order n with δ(G) ≥ n
2 + 1, then for any pair of vertices x, y in G and any

integer 2 ≤ k ≤ n
2 , there is a Hamiltonian cycle C of G such that distC(x, y) = k.

6.1 Introduction

In Chapter 5, we gave a proof of Enomoto’s conjecture for graphs of sufficiently large

order.

Theorem 6.3 (Theorem 5.2). There exists a positive integer n0 such that for all n ≥ n0,

if G is a graph of order n with δ(G) ≥ n
2 + 1, then for any pair of vertices x, y in G,

there is a Hamiltonian cycle C of G such that distC(x, y) = bn2 c.

Here we will prove that Faudree-Li conjecture is true for graphs of sufficiently large

order by showing Theorem 6.2.

115
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The main idea and the main tools of the proof of Theorem 6.2 and Theorem 5.2 are

similar, but there are also some differences since in Theorem 5.2, any two given vertices

are required to be located on a Hamiltonian cycle of distance half of the order of the

graph, while in Theorem 6.2 the distance is extended from half of the order of the graph

to two. We don’t want to just point out the differences between the proofs of Theorem

6.2 and Theorem 5.2, to make this chapter complete, we will give the whole proof of

Theorem 6.2. We will follow all the notations, such as balanced partition, reduced graph

et al. as in Chapter 5.

6.2 Outline of the proof

In our proof for Theorem 6.2 we will use the Regularity Lemma-Blow-up Lemma method

as many other studies. Some claims and lemmas in our proof are similar as in Chapter

5. We will give these claims and lemmas without proofs here.

We first consider the graphs of even order n. We assume that n is sufficiently large

and fix the following sequence of parameters,

0 < ε� d� α� 1. (6.1)

By Theorem 1.48 and Theorem 6.3, we assume that the required distance k satis-

fying

n

6
< k <

n

2
. (6.2)

We define two extremal cases as follows.

Extremal Case 1: There exists a balanced partition of V (G) into V1 and V2 such

that the density d(V1, V2) ≥ 1− α.

Extremal Case 2: There exists a balanced partition of V (G) into V1 and V2 such

that the density d(V1, V2) ≤ α.

We will prove Theorem 6.2 for the non-extremal case in Section 6.3 and for the

extremal cases in Section 6.4. The proof will include some sub-cases discussions because

of the parity of k.

When n is odd, we pick a vertex z 6= x or y of the graph G and consider the

induced graph G[V (G)−z]. Since the order of the graph G[V (G)−z] is even, we use the

similar proof as above in G[V (G)− z] and obtain a Hamiltonian cycle in G[V (G)− z].
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Then we “insert” z into this cycle and make sure x, y have distance k on the resulting

Hamiltonian cycle of G. In Section 6.3 and 6.4, the proof will include all the discussions

when n is odd.

6.3 Non-extremal case

6.3.1 The graph order n is even

Step 1. Applying the Regularity Lemma.

Let G be a graph of even order which is not either of the extremal cases. We apply

the Regularity Lemma to G with parameters ε, d,m0 to obtain a partition of G into

clusters V1,...,Vl and an exception set V0, and a spanning subgraph G
′
. Assume that l

is even, if not, we move the vertices of one of the clusters into V0 to make l be an even

number. Now |V0| ≤ 2εn and lL ≥ (1− 2ε)n. Let s := l
2 .

Let R be the reduced graph of G.

The following claim, which is proved in Chapter 5, shows that R inherits the mini-

mum degree condition.

Claim 6.4. δ(R) ≥ (1
2 − 2d)l.

As shown in Chapter 5, R is Hamiltonian.

Let CR be a Hamiltonian cycle in R. We choose two distinct clusters X, Y which

are as close as possible on CR such that x is friendly to Y and y is friendly to X. The

following claim is proved in Chapter 5.

Claim 6.5. We can choose distinct clusters X and Y such that x is friendly to Y , y is

friendly to X and distCR
(X,Y ) ≤ 3dl.

By Claim 6.5 we choose these two clusters X and Y and give a new notation for

all clusters except V0 as follows. We choose a direction of CR, which is along the longer

path from Y to X on CR (there are two paths from Y to X on CR, and we choose the

longer one). Starting from Y , we denote the clusters by Y1, X2, Y2, X3, Y3,..., Xs, Ys,

X1 along this direction. Y is denoted by Y1 and X is denoted by a Xi or a Yi.

Step 2. Constructing paths to connect Yi and Xi+1 (with Xs+1 = X1) for 1 ≤ i ≤ s.
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In this step, the parity of k and the new notation of X will affect our constructions.

We first assume that k is even and X is denoted by Yt for some 1 < t ≤ s. We call Xi,

Yi partners of each other (1 ≤ i ≤ s).

By Claim 6.5, distCR
(Y1, Yt) = l − 2t+ 2 ≤ 3dl. So

t− 1 ≥ 1− 3d

2
l. (6.3)

Let wx, y
1
1 ∈ Y1 be two neighbors of x such that wx is friendly to X2 and y1

1 is

friendly to X1. Since x is friendly to Y1, x has at least (d − ε)L neighbors in Y1. By

Lemma 5.3, at least (d − ε)L − εL vertices can be chosen as wx (also true for y1
1). Let

x1
2 ∈ X2 be a neighbor of wx such that x1

2 is friendly to Y2. By Lemma 5.3, at least

(d− ε)L− εL vertices can be chosen as x1
2. We obtain a path P1 = y1

1xwxx
1
2 connecting

Y1 and X2. We call this procedure joining x to Y1 and x behaves like a vertex in X1.

Let y2
1 ∈ Y1 be a vertex friendly to X1 and let x2

2 ∈ X2 be a neighbor of y2
1 such that

x2
2 is friendly to Y2. By Lemma 5.3, this choice of y2

1 and x2
2 is possible and make them

be distinct with the vertices in P1. We obtain another path Q1 = y2
1x

2
2. Similarly we

can construct paths Pt = y1
t ywyx

1
t+1 and Qt = y2

t x
2
t+1, where y1

t , y
2
t ∈ Yt is friendly to

Xt, x
1
t+1, x

2
t+1 ∈ Xt+1 is friendly to Yt+1 and wy ∈ Yt. We call this procedure joining y

to Yt and x behaves like a vertex in Xt. For 1 ≤ i ≤ s and i 6= 1, t, let y1
i ∈ Yi (resp.

y2
i ∈ Yi) be a vertex friendly to Xi and x1

i+1 ∈ Xi+1 (resp. x2
i+1 ∈ Xi+1) be a neighbor

of y1
i (resp. y2

i ) such that x1
i+1 (resp. x2

i+1) is friendly to Yi+1. Here x1
1 = x1

s+1 and

x2
1 = x2

s+1. Let Pi = y1
i x

1
i+1 and Qi = y2

i x
2
i+1 (1 ≤ i ≤ s and i 6= 1, t). By Lemma 5.3,

we can make sure all these paths are vertex-disjoint.

In summary, we have constructed paths Pi and Qi, which are vertex-disjoint and

connect Yi and Xi+1 (1 ≤ i ≤ s), x is on P1 and y is on Pt. Each end vertex of these

paths is friendly to its cluster’s partner. We use INT to denote the vertex set of all

internal vertices on all Pi’s and Qi’s. Now INT = {x, y, wx, wy}.

For every 1 ≤ i ≤ s, let

X
′
i := {u ∈ Xi : deg(u, Yi) ≥ (d− ε)L}, Y ′i := {v ∈ Yi : deg(v,Xi) ≥ (d− ε)L}.

Since (Xi, Yi) is ε-regular, we have |X ′i |, |Y
′
i | ≥ (1 − ε)L. We move all the vertices

in Xi − X
′
i and Yi − Y

′
i to V0. If |X ′i | 6= |Y

′
i |, say |X ′i | > |Y

′
i |, we choose an arbitrary

subset of X
′
i of size |Y ′i | and still name it X

′
i . We still denote the set V0 ∪

⋃k
i=1(Xi −

X
′
i) ∪

⋃k
i=1(Yi − Y

′
i ) by V0. We also remove all the vertices in INT out of V0, X

′
i and

Y
′
i . This may cause that some (X

′
i , Y

′
i ) is not balanced. For example, if wx ∈ Y

′
1 and

we remove it from Y
′

1 , then (X
′
1, Y

′
1 ) be not balanced. In this example, to make sure

(X
′
1, Y

′
1 ) is balanced, we move one vertex in X

′
i to V0. We do the same operations for all
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the vertices in INT . Since |INT | = 4 and n is sufficiently large, at most εLl + 4 ≤ 2εn

vertices are moved to V0. We derive that |V0| ≤ 4εn and |X ′i | = |Y ′i | ≥ (1 − ε)L − 1

(1 ≤ i ≤ s) in this step. Since εL ≥ ε (1−2ε)n
l ≥ ε(1−2ε)

M0
n and n is sufficiently large, we

say εL ≥ 1. Thus |X ′i | = |Y ′i | ≥ (1 − 2ε)L (1 ≤ i ≤ s). The minimum degree in each

pair is at least (d− ε)L− εL− 1 ≥ (d− 3ε)L. We also can say (X
′
i , Y

′
i ) is 2ε-regular by

Slicing Lemma.

Now assume that k is even and X is denoted by Xt for some 1 ≤ t ≤ s. We

construct P2 = y1
2x

1
3 and Q2 = y2

2x
2
3 as before. Since δ(G) ≥ n

2 + 1, any two vertices

have at least two common neighbors. Suppose that y1
2, x

1
3 have a common neighbor u1

and y2
2, x

2
3 have a common neighbor u2 6= u1. First, if u1 and u2 are both different with

x and y, then we choose P2 = y1
2u1x

1
3 and Q2 = y2

2u2x
2
3. We join x to Y1, join y to

Xt and continue all the other constructions of Pi’s and Qi’s as before. In this case x

is on P1 and y is on Pt−1. Second, assume that we cannot find these required vertices

y1
2, x

1
3, y

2
2, x

2
3 such that u1 and u2 are both different with x and y. We choose y1

2, y
2
2 to

be friendly to X2 and X3. There are at least (1− 2ε)L possible choices for y1
2 and it is

similar for y2
2. We choose x1

3 to be a neighbor of y1
2 and friendly to Y2 and Y3. There

are at least (d − ε)L − 2εL = (d − 3ε)L possible choices for x1
3 and it is similar for x2

3.

By the assumption every these possible y1
2, x

1
3, y

2
2, x

2
3 should be neighbors of x or y. So

x or y should have at least 1
2(d− 3ε)L neighbors in Y2 and also in X3. If y has at least

1
2(d − 3ε)L neighbors in in Y2 and in X3, we change the choice of X and choose Y2 to

be the X. Here X = Y2 and Y = Y1, so distCR
(X,Y ) = 2. Otherwise, x has at least

1
2(d− 3ε)L neighbors in Y2 and in X3. We change the choice of Y and choose X3 to be

the Y . In this case X = Xt and Y = X3, so distCR
(X,Y ) ≤ 3dl + 3 by Claim 6.5. We

give a new notation for all clusters except V0 according to the new choice of X,Y and

construct Pi’s, Qi’s as before. In this new notation, we still say we join x to Y1 and join

y to Yt for a new t. We need to mention that (6.3) may have slight difference as follows,

but it won’t affect the calculation in the following Claim 6.7.

We also need to consider the case when k is odd. Actually if k is odd and X is

denoted by Xt′ for some 1 ≤ t′ ≤ s, the discussions in this case is similar as in the case

when k is even and X is denoted by Yt for some 1 ≤ t ≤ s. And if k is odd and X is

denoted by Yt′ for some 1 ≤ t
′ ≤ s, the discussions in this case is similar as in the case

when k is even and X is denoted by Xt for some 1 ≤ t ≤ s. We omit all these similar

arguments here.

Step 3. Extending Qi’s (1 ≤ i ≤ s) by using all the vertices of V0.

If a vertex v is friendly to a cluster X, we denote this relation by v ∼ X. If two

clusters X and Y are a regular pair, we denote this relation by X ∼ Y . Given two
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vertices u, v ∈ V (G), a u, v-chain of length 2s with distinct clusters A1, B1, ..., As, Bs is

u ∼ A1 ∼ B1 ∼ · · · ∼ As ∼ Bs ∼ v and {Aj , Bj} = {Xi, Yi} for some 1 ≤ i ≤ k. We can

say that for each pair of vertices in V0 we have the following claim, which is proved in

Chapter 5.

Claim 6.6. For each pair of vertices {u, v} in V0, we can find u, v-chains of length at

most four such that every cluster is used in at most d
10L chains.

Now we extend Qi’s (1 ≤ i ≤ s). By Claim 6.6, we construct chains of length at

most four for each pair such that every cluster is used in at most d
10L chains. We deal

with the vertices of V0 pair by pair. Assume that we deal with the pair (u, v) now.

Denote X∗i = X
′
i − INT and Y ∗i = Y

′
i − INT .

We first consider the case when the u, v-chain has length two. Without loss of

generality, assume that this chain is u ∼ Xi ∼ Yi ∼ v, for some 1 ≤ i ≤ s. Let w1 ∈ Y ∗i
be a neighbor of x2

i and let w2 ∈ X∗i be a neighbor of u such that w1 and w2 are

adjacent. By Slicing Lemma, we can say this choice is possible. Let w3 ∈ X∗i be another

neighbor of u. To include u, we extend Qi−1 to Qi−1 ∪{x2
iw1, w1w2, w2u, uw3}. We still

denote this new path by Qi−1 and denote the end vertex w3 of this path by the new x2
i .

Since u behaves like a vertex in Yi on Qi−1, we call this procedure inserting u into Yi

by extending Qi−1. Similarly, let w4 ∈ X∗i be a neighbor of y2
i and let w5, w6 ∈ Y ∗i be

two neighbors of v such that w4 and w5 are adjacent. To include v, we extend Qi to

Qi ∪ {y2
iw4, w4w5, w5v, vw6}. We still denote this new path by Qi and denote the end

vertex w6 of this path by the new y2
i . Since v behaves like a vertex in Xi on Qi, we

call this procedure inserting v into Xi by extending Qi. And we update the set INT .

Indeed, three vertices of X∗i are added to INT (also for Y ∗i ) and totally eight vertices

are added to INT including u, v.

Now we consider that the u, v-chain has length four. Without loss of generality,

we assume that the chain is u ∼ Xi ∼ Yi ∼ Xj ∼ Yj ∼ v, for some i, j. We extend

the path Qi−1 by inserting u into Yi. We choose a vertex of Y ∗i which is friendly to Xj

and insert it into Yj to extend Qj−1. At last we extend the path Qj by inserting v into

Xj . Meanwhile, we update the set INT . Indeed, two vertices of X∗i are added to INT

(also for Y ∗i ) and three vertices of X∗j are added to INT (also for Y ∗j ). So totally twelve

vertices are added into INT including u, v.

In each time inserting the vertex pair (u, v), the cluster pair (X∗i , Y
∗
i ) is still balanced

and at most three vertices of a cluster in the chain are used. So

|X∗i | = |Y ∗i | ≥ (1− 2ε)L− 3
d

10
L ≥ (1− d

2
)L

provided ε < d
10 .
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For each vertex u ∈ X∗i , we have

deg(u, Y ∗i ) ≥ (d− 3ε)L− 3
d

10
L ≥ d

2
L

provided ε < d
15 . And it is the same for the degree of any vertex in Y ∗i .

By Slicing Lemma, we can say the pair (X∗i , Y
∗
i ) is (2ε, d2)-super-regular (1 ≤ i ≤ s).

We continue this process till there is no vertices left in V0.

Step 4. Constructing the desired Hamiltonian cycle.

In this step, we use Lemma 5.12 to construct two paths W 1
i and W 2

i in each pair

(X∗i , Y
∗
i ) (1 ≤ i ≤ s). Then we combine all these paths with Pi’s and Qi’s to obtain

a Hamiltonian cycle in G. At last we adjust the length of W 1
i and W 2

i in each pair to

make sure that x and y have distance k on this Hamiltonian cycle.

For each 1 ≤ i ≤ s, we choose any even integers l1i , l
2
i such that 4 ≤ l1i , l2i ≤ 2|X∗i |−4

and l1i + l2i = 2|X∗i |. We will adjust these integers later.

For 2 ≤ i ≤ s, by Lemma 5.12, we construct two paths W 1
i and W 2

i in the pair

(X∗i , Y
∗
i ) such that

(a) W 1
i has end vertices x1

i and y1
i with |V (W 1

i )| = l1i ;

(b) W 2
i has end vertices x2

i and y2
i with |V (W 2

i )| = l2i .

And for i = 1, we construct two paths W 1
1 and W 2

1 in the pair (X∗1 , Y
∗

1 ) such that

(c) W 1
1 has end vertices x1

1 and y1
2 with |V (W 1

1 )| = l11;

(d) W 2
1 has end vertices x2

1 and y2
1 with |V (W 1

2 )| = l12.

It is not hard to see

C = P1 ∪ (
k⋃
i=2

(W 1
i ∪ Pi)) ∪W 1

1 ∪Q1 ∪ (
k⋃
i=2

(W 2
i ∪Qi)) ∪W 2

1

is a Hamiltonian cycle in G (See Figure 6.1).

Now we adjust the values of l1i and l2i (1 ≤ i ≤ s) to make sure that x and y have

distance k on the Hamiltonian cycle.

Claim 6.7. We can properly choose the value of l1i (2 ≤ i ≤ s) such that distC(x, y) = k.

Proof. Without loss of generality, we consider the case when k is even and X is denoted

by Yt in the beginning of the second step. Since x is on P1 and y is on Pt, we consider
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Y ∗1X∗1 X∗2 Y ∗2 X∗3 Y ∗3

Pk P1 P2 P3

Qk Q1 Q2 Q3

Figure 6.1: Construction of the Hamiltonian cycle

the path P := P1 ∪ (
⋃t
i=2(W 1

i ∪Pi)) to make sure x and y have distance k on this path.

That means the number of vertices between x and y on P should be k − 1. Among the

vertices between x and y on P , the only vertex not belong to W 1
i (2 ≤ i ≤ t) is wx.

Thus we need to make sure

k − 1 =

t∑
i=2

l1i + 1. (6.4)

Since k is even and all these l1i ’s are also even, there is no parity problem. We say

that
t∑
i=2

l1i can be any even value satisfying

n

6
− 2 <

t∑
i=2

l1i <
n

2
− 2. (6.5)

Since by Lemma 5.12, l1i can be any even integer such that 4 ≤ l1i ≤ 2|X∗i | − 4.

By |X∗i | ≥ (1− d
2)L, we can choose l1i such that

t∑
i=2

l1i can be any even integer with the

following bound,

4(t− 1) ≤
t∑
i=2

l1i ≤ 2(t− 1)(1− d

2
)L− 4(t− 1) = 2(t− 1)((1− d

2
)L− 2).

We know that t ≤ s = l
2 , then 4(t−1) < 2l. Since l ≤M0 in the Regularity Lemma

and n is sufficiently large (let n ≥ 12(M0 + 1)), we can say that 4(t− 1) < 2l ≤ 2M0 ≤
n
6 − 2.

By (6.3), we also know t− 1 ≥ 1−3d
2 l, so

2(t− 1)((1− d

2
)L− 2) ≥ (1− 3d)(1− d

2
)lL− 2(1− 3d)l

≥ (1− 7

2
d)(1− 2ε)n− 2l

≥ (1− 4d)n− 2M0 ≥
3

4
n− 2M0,
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provided 4ε ≤ d ≤ 1
16 and l ≤ M0. Since n is sufficiently large (let n ≥ 8M0), we can

say that 2(t− 1)((1− d
2)L− 2) ≥ 3

4n− 2M0 ≥ n
2 .

Thus we have proved that
t∑
i=2

l1i can be any even value satisfying (6.5). By our

assumption (6.2), n
6 < k < n

2 . So it is possible to choose l1i (2 ≤ i ≤ t) such that
t∑
i=2

l1i

satisfying (6.4).

We choose l1i (2 ≤ i ≤ t) such that (6.4) holds and arbitrarily choose the even

integers l11, l1i (t < i ≤ k) with the conditions in Lemma 5.12. Thus distC(x, y) = k.

6.3.2 The graph order n is odd

We pick a vertex z 6= x or y and assume that G[V −z] is a graph which is not either of the

extremal cases. The order of the induced graphG[V−z] is n−1 and δ(G[V−z]) ≥ n−1
2 +1.

We apply the proof above to G[V − z] and obtain a Hamiltonian cycle C in G[V − z]
such that distC(x, y) = k. We denote the longer path between x and y on C by P (x, y),

i.e. the distance of x and y on P (x, y) is n− 1− k. Since δ(G) ≥ n
2 + 1, z has at least

two neighbors such that they are adjacent on C.

If there exist two vertices u, v ∈ P (x, y) such that they are neighbors of z and

adjacent in P (x, y), then replacing the edge uv in C by the path uzv we can obtain a

Hamiltonian cycle C∗ in G such that distC∗(x, y) = k.

Otherwise, this kind of two vertices u, v are on the shorter path between x and y

on C. We make the shorter path between x, y on C be the longer one by adjusting the

values of l1i ’s. Precisely, we consider the path P = P1 ∪ (
⋃t
i=2(W 1

i ∪Pi)) as in Claim 6.7

and make sure distP (x, y) = n− 1− k.

If uv ∈ E(Pi) for some 1 ≤ i ≤ t, we need to make sure that

n− k − 2 =

t∑
i=2

l1i + 1. (6.6)

Since n is sufficiently large, we can say 4(t−1) ≤ n
2−2 and 2(t−1)((1− d

2)L−2) ≥ 5
6n−2

similarly as in Claim 6.7. So
t∑
i=2

l1i can be any even value satisfying n
2−2 <

t∑
i=2

l1i <
5
6n−2.

Since n
6 < k < n

2 , we can choose the value of l1i (2 ≤ i ≤ t) satisfying (6.6). By Lemma

5.12, we construct new paths in the pairs of clusters according to the new choice of l1i ’s

and obtain a new Hamiltonian cycle C
′

in G[V − z]. Now the edge uv is in the longer

path between x and y on C
′
. Replacing uv by uzv in C

′
, we get our desired Hamiltonian

cycle in G.
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Now assume that uv ∈ E(W 1
i ) for some 2 ≤ i ≤ t, without loss of generality, we say

uv ∈ E(W 1
2 ). We fix the values of l12, l22 and the paths W 1

2 , W 2
2 , and adjust the values

of l1i ’s (3 ≤ i ≤ t) to make sure distP (x, y) = n − 1 − k. By some similar calculations

as above, we can choose the values of l1i ’s (3 ≤ i ≤ t) satisfying (6.6). Then by the new

constructions of paths in the pairs (X∗i , Y
∗
i ) according to the new choice of l1i (3 ≤ i ≤ t),

we can get a new Hamiltonian cycle C
′′

in G[V −z] such that the edge uv is in the longer

path between x and y on C
′′
. Replacing uv by uzv in C

′′
, we get a new Hamiltonian

cycle of G such that the distance between x and y on this cycle is k.

6.4 Extremal cases

6.4.1 Extremal case 1

6.4.1.1 The graph order n is even

Suppose G is a graph on even n vertices with δ(G) ≥ n
2 + 1 and there exists a balanced

partition of V (G) into V1 and V2 such that the density d(V1, V2) ≥ 1− α. Assume that

α ≤ (1
9)3. Let α1 = α

1
3 and α2 = α

2
3 . So α1 ≥ 9α2. We need some preparations in

Chapter 5 to continue our proof.

We have the following lemma and claim in Chapter 5.

Lemma 6.8. If G is in extremal case 1, then G contains a balanced spanning bipartite

subgraph G∗ with parts U1, U2 and G∗ has the following properties:

(a) there is a vertex set W such that there exist vertex-disjoint 2-paths (paths of

length two) in G∗ with the vertices of W as the internal vertices (not the end vertices)

in each 2-path and |W | ≤ α2n;

(b) degG∗(v) ≥ (1− α1 − 2α2)n2 for all v 6∈W .

Claim 6.9. We can construct a path P with end vertices u ∈ U1 and v ∈ U2 such that

P contains all the vertices of W and |V (P )| ≤ 4|W | ≤ 4α2n.

Applying Lemma 6.8 to G, we obtain the graph G∗ and all those properties in

Lemma 6.8. In the proof of Lemma 6.8, we know that the 2-paths are greedily chosen,

so we assume that x, y won’t be any end vertices of those 2-paths. But x, y can be the

internal vertex of a 2-path.

First we assume that k is odd and x, y are in different parts of G∗, say x ∈ U1 and

y ∈ U2.
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If W = ∅, let y1, y2 ∈ U2 be two neighbors of x and let x1, x2 ∈ U1 be two neighbors

of y. By (b) in Lemma 6.8, it is possible to choose those vertices. Let U
′
1 = U1 − {x},

U
′
2 = U2−{y} and n

′
= |U ′1| = |U

′
2|. By Lemma 6.8, deg

U
′
2
(v) ≥ (1−α1− 2α2)n2 − 1 for

any vertex v ∈ U ′1. Since n is sufficiently large, we have deg
U
′
2
(v) ≥ (1−α1−2α2)n2 −1 ≥

(1 − α1 − 3α2)n2 ≥ (1 − α1 − 3α2)n
′

for any vertex v ∈ U ′1. Since α ≤ (1
9)3, we have

1−α1− 3α2 ≥ 2
3 . Similarly, we have deg

U
′
1
(u) ≥ (1−α1− 3α2)n

′
for any vertex u ∈ U ′2.

By Lemma 5.6, we can say (U
′
1, U

′
2) is (

√
α1 + 3α2,

2
3)-super-regular. Let l1 = k− 1 and

l2 = 2n
′ − k + 1. By Lemma 5.12, we construct two vertex-disjoint paths P1 and P2

such that the end vertices of P1 are x1, y1, the end vertices of P2 are x2, y2 and |V (Pi)|
is equal to li (i = 1, 2). Let P3 := y1xy2 and P4 := x1yx2. So C = P1 ∪P2 ∪P3 ∪P4 is a

Hamiltonian cycle of G. Moreover the distance of x and y on C is k.

If W 6= ∅, by Claim 6.9 we construct a path P with end vertices x1 ∈ U1 and y1 ∈ U2

such that P contains all the vertices of W and |V (P )| ≤ 4|W |. Since P is greedily

constructed, we make sure that x and y are not included in P whether x and y are in W

or not. If x or y is in W , we also make sure the vertices on the 2-paths containing x or y

are not included in P . Let U∗1 = U1−V (P ) and U∗2 = U2−V (P ). By the proof of Claim

6.9, we can say |U∗1 | = |U∗2 |. For any vertex u ∈ U∗1 , degU∗2 (u) ≥ (1−α1−2α2)n2−4α2n =

(1−α1−10α2)n2 and for any vertex v ∈ U∗2 , degU∗1 (v) ≥ (1−α1−10α2)n2 . Let y2, y3 ∈ U∗2
be two neighbors of x and let x2, x3 ∈ U∗1 be two neighbors of y. We choose a common

unused neighbor of y1, y2 in U∗1 , denoted x4, and choose an unused neighbor of x2

in U∗2 , denoted y4. Let U
′
1 = (U∗1 − {x, x2, x4}) ∪ {x1}, U

′
2 = U∗2 − {y, y1, y2} and

n
′

= |U ′1| = |U ′2| ≤ n
2 . For any vertex u in U

′
1, deg

U
′
2
(u) ≥ (1 − α1 − 10α2)n2 − 3 and

for any vertex v in U
′
2, deg

U
′
1
(v) ≥ (1 − α1 − 10α2)n2 − 3. Since n can be sufficiently

large, we can say (1 − α1 − 10α2)n2 − 3 ≥ (1 − α1 − 11α2)n2 . For any vertex u in

U
′
1, deg

U
′
2
(u) ≥ (1 − α1 − 11α2)n2 ≥ (1 − α1 − 11α2)n

′
and for any vertex v in U

′
2,

deg
U
′
1
(v) ≥ (1 − α1 − 11α2)n

′
. Since α ≤ (1

9)3, 1 − α1 − 11α2 ≥ 2
3 . By Lemma 5.6, we

can say (U
′
1, U

′
2) is (

√
α1 + 11α2,

2
3)-super-regular. Let l1 = k − 1 and l2 = 2n

′ − k + 1.

Applying Lemma 5.12 to the pair (U
′
1, U

′
2), we construct two vertex-disjoint paths P1

and P2 such that the end vertices of P1 are x3, y3, the end vertices of P2 are x1, y4 and

|V (Pi)| is li (i = 1, 2). We denote P3 to be the path P3 := y1x4y2xy3 and P4 to be the

path P4 := x3yx2y4. Then C = P1 ∪ P2 ∪ P3 ∪ P4 ∪ P is a Hamiltonian cycle in G (See

Figure 6.2. (1)). And distC(x, y) = k.

Now we assume that k is odd and x, y are in the same part of G∗, say x, y ∈ U1.

We also assume that W 6= ∅. Since δ(G) ≥ n
2 + 1, x should have a neighbor in

U1. Assume this neighbor, denoted x1, is not y. Let y1 ∈ U2 −W be a neighbor of x

and y2 ∈ U2 be a neighbor of y1. Whether x1 is in W or not, we can find an unused

neighbor of x1 in U2 −W , denoted y3, and choose an unused neighbor of y3 in U1 −W ,
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denoted x3. Whether y2 is in W or not, we can find an unused neighbor of y2 in U1−W ,

denoted x2. Let y4, y5 ∈ U2 −W be two neighbors of y and x4 ∈ U1 −W be a neighbor

of y4. It is possible to choose all those vertices by Lemma 6.8. By the same method of

Claim 6.9, we construct a path P with end vertices x5 ∈ U1 and y6 ∈ U2 such that P

contains all the unused vertices of W and |V (P )| ≤ 4|W |. We make sure that x and y

are not included in P whether x and y are in W or not and P won’t use any existing

chosen vertices. We choose a common unused neighbor of x2, x5 in U2 −W , denoted

y7. Let U
′
1 = U1 − V (P ) − {x, y, x1, x2}, U

′
2 = (U2 − V (P ) − {y1, y2, y3, y4, y7}) ∪ {y6}

and n
′

= |U ′1| = |U ′2|. By Lemma 5.6 and n is sufficiently large, we can say (U
′
1, U

′
2) is

a (
√
α1 + 11α2,

2
3)-super-regular pair. Let l1 = k − 3 and l2 = 2n

′ − k + 3. Applying

Lemma 5.12 to the pair (U
′
1, U

′
2), we construct two paths P1 and P2 such that the end

vertices of P1 are x3, y5, the end vertices of P2 are x4, y6 and |V (Pi)| = li (i = 1, 2).

Let P3 := x5y7x2y2y1xx1y3x3 and P4 := x4y4yy5. Then C = P1 ∪ P2 ∪ P3 ∪ P4 ∪ P is a

Hamiltonian cycle in G (See Figure 6.2. (2)). And distC(x, y) = k.

If y is the only neighbor of x in U1 but y has a neighbor which is not x in U1,

then we deal with y first as above. We assume that y is the only neighbor of x in

U1 and x is the only neighbor of y in U1. Let y1, y3 ∈ U2 − W be a neighbor of x,

let y2 ∈ U2 be a neighbor of y1 and let x1 ∈ U1 − W be a neighbor of y3. Since

degG(x1) ≥ n
2 + 1, x1 has a neighbor in U1, denoted x2. By our assumption, x2 should

not be either of x and y. Let x3 ∈ U1 −W be a neighbor of y2, y4 ∈ U2 −W be a

neighbor of x2 and x4 ∈ U1 −W be a neighbor of y4. By the same method of Claim

6.9, we construct a path P with end vertices x5 ∈ U1 −W and y5 ∈ U2 −W such that

P contains all the unused vertices of W and |V (P )| ≤ 4|W |. We make sure that x and

y are not included in P whether x and y are in W or not and P won’t use any existing

chosen vertices. We choose two unused neighbors of y in U2 − V (P ), denoted y6, y7,

and choose a neighbor of y6 in U1 − V (P ), denoted x6, and choose a common unused

neighbor of x3, x5 in U2−V (P ), denoted y8. Let U
′
1 = U1−V (P )−{x, y, x1, x2, x3} and

U
′
2 = (U2 − V (P ) − {y1, y2, y3, y4, y6, y8}) ∪ {y5} and n

′
= |U ′1| = |U ′2|. By Lemma 5.6

and n is sufficiently large, (U
′
1, U

′
2) is a (

√
α1 + 11α2,

2
3)-super-regular pair as before. Let

l1 = k−5 and l2 = 2n
′ −k+ 5. Applying Lemma 5.12 to the pair (U

′
1, U

′
2), we construct

two paths P1 and P2 such that the end vertices of P1 are x4, y7, the end vertices of P2 are

x6, y5 and |V (Pi)| = li (i = 1, 2). Let P3 := x5y8x3y2y1xy3x1x2y4x4 and P4 := x6y6yy7.

Then C = P1 ∪ P2 ∪ P3 ∪ P4 ∪ P is a Hamiltonian cycle in G (See Figure 6.2. (3)). And

distC(x, y) = k.

If W = ∅, the proof is similar as above. The only difference is to take the path P

be an edge with one end vertex in U1 −W and the other one in U2 −W .
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Figure 6.2: Extremal case 1

We also need to consider the case when k is even. The arguments are similar to the

case when k is odd. There are also some cases discussions according to the position of

x, y in G∗. We omit these similar proofs here.

6.4.1.2 The graph order n is odd

As in non-extremal case, we pick a vertex z. If G[V − z] is in the extremal case 1, we

apply the proof of the extremal case 1 when n is even to the induced graph G[V − z].
Then we obtain a Hamiltonian cycle C in G[V − z].

If there exist two vertices u, v on the longer path joining x and y in C such that

they are neighbors of z and adjacent in C, then replacing the edge uv in C by the path

uzv we obtain a Hamiltonian cycle C∗ in G such that distC∗(x, y) = k.

Otherwise, all such pairs u, v of vertices are on the shorter path joining x and y in

C. After applying Lemma 6.8 to G[V − z], we assume that k is odd, x, y are in different

parts of G∗, say x ∈ U1 and y ∈ U2, and W = ∅ (the first case discussed in 5.1.1). We

will show our proof in this case and the other cases are similar. Recall that we have

constructed a Hamiltonian cycle C = P1 ∪P2 ∪P3 ∪P4 in G[V − z], where Pi has length

li (i = 1, 2), P3 = y1xy2 and P4 = x1yx2.

If uv ∈ P3 or P4, we exchange the value of l1 and l2, precisely, let l1 = 2n
′ − k + 1

and l2 = k − 1. Then by Lemma 5.12 we construct two vertex-disjoint paths P
′
1 and P

′
2

such that the end vertices of P
′
1 are x1, y1, the end vertices of P

′
2 are x2, y2 and |V (P

′
i )|

is equal to li (i = 1, 2). We construct a new Hamiltonian cycle C∗ = P
′
1 ∪ P

′
2 ∪ P3 ∪ P4

in G[V − z]. And it is not hard to see that u, v are on the longer path joining x and y

in C∗. Replacing uv by uzv in C∗, we get our desired Hamiltonian cycle in G.
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If uv ∈ P1 or P2, u and v should be in different parts of G∗, say u ∈ U1 and

v ∈ U2. By the minimum degree condition of G∗ in Lemma 6.8, we choose a common

neighbor of y2 and v in U1, denoted x3, and a neighbor of u in U2, denoted y3. Let

U
′
1 = U1 − {x, x3, u}, U

′
2 = U2 − {y, y2, v} and n

′
= |U ′1| = |U

′
2|. By Lemma 5.6, we can

say (U
′
1, U

′
2) is (

√
α1 + 3α2,

2
3)-super-regular. Let l1 = k − 1 and l2 = 2n

′ − k + 1. By

Lemma 5.12, we construct two vertex-disjoint paths P
′
1 and P

′
2 such that the end vertices

of P
′
1 are x1, y1, the end vertices of P

′
2 are x2, y3 and |V (P

′
i )| is equal to li (i = 1, 2). Let

P
′
3 = y1xy2x3vuy3. Then C∗ = P

′
1 ∪P

′
2 ∪P

′
3 ∪P4 is a new Hamiltonian cycle in G[V − z]

and u, v are on the longer path joining x and y in C∗. Replacing uv by uzv in C∗, we

get our desired Hamiltonian cycle in G.

6.4.2 Extremal case 2

6.4.2.1 The graph order n is even

Suppose G is a graph of even n vertices with δ(G) ≥ n
2 + 1 and there exists a balanced

partition of V (G) into V1 and V2 such that the density d(V1, V2) ≤ α. We suppose

α ≤ ( 1
12)3. Let α1 = α

1
3 and α2 = α

2
3 . We have a similar lemma, which is proved in

Chapter 5, as Lemma 6.8 and a similar claim as Claim 6.9.

Lemma 6.10. If G is in extremal case 2, then V (G) can be partitioned into two balanced

parts U1 and U2 such that

(a) there is a set W1 ⊆ U1 (resp. W2 ⊆ U2) such that there exist vertex-disjoint

2-paths in G[U1] (resp. G[U2]) with the vertices of W1 (resp. W2) as the internal vertices

in each 2-path and |W1| ≤ α2
n
2 (resp. |W2| ≤ α2

n
2 );

(b) degG[U1](u) ≥ (1− α1 − 2α2)n2 for all u ∈ U1 −W1 and degG[U2](v) ≥ (1− α1 −
2α2)n2 for all v ∈ U2 −W2.

Claim 6.11. There exists a path in G[U1] including all the vertices of W1 such that the

end vertices of it are in U1−W1 and the number of vertices on this path is no more than

4α2
n
2 .

Proof. Suppose W1 = {w1, w2, ..., wt} and the end vertices of the 2-path containing

wi are ai, bi (1 ≤ i ≤ t). Since degG[U1](ai) ≥ (1 − α1 − 2α2)n2 and degG[U1](bi) ≥
(1 − α1 − 2α2)n2 , we greedily choose ci ∈ U1 which is a common neighbor of ai+1

and bi (1 ≤ i ≤ t − 1). Moreover we can choose all these ci to be distinct. Then

P = a1w1b1c1a2w2b2c2...bt−1ct−1atwtbt is a path containing all the vertices of W1. And

|V (P )| ≤ 4α2
n
2 − 1.
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And we need the following theorem of Williamson [101].

Theorem 6.12. [101] If G is a graph of order n with δ(G) ≥ n
2 + 1, then for any

2 ≤ k ≤ n− 1 and for any vertices x and y, G has a path from x to y of length k.

We apply Lemma 6.10 to G and get a partition of V (G) = U1 ∪ U2 with the

properties in Lemma 6.10. In the proof of Lemma 6.10, we know that the 2-paths are

greedily chosen, so we assume that x, y won’t be any end vertices of those 2-paths.

Sub-case 1. x, y are in different parts, say x ∈ U1 and y ∈ U2.

Since δ(G) ≥ n
2 + 1, we choose u1 ∈ U1 such that u1 is a neighbor of y and u1 6= x.

Whether u1 is in W1 or not, let u2 ∈ U1 −W1 be a neighbor of u1. Whether x is in

W1 or not, let u3, u4 ∈ U1 −W1 be two neighbors of x. Since the 2-paths are greedily

chosen, we can assume that u1 6= u3, u4 and u2 6= u3, u4. By Claim 6.11, we construct a

path P1 containing all the vertices of W1 (except x,u1, if they are in W1) and we have

|V (P1)| ≤ 4α2
n
2 . Let u5, u6 ∈ U1 −W1 be the end vertices of P1 and let u7 ∈ U1 −W1

be a common neighbor of u3, u5. Let U∗1 = U1 − V (P1) − {x, u1, u2, u3, u7}. Since n is

sufficiently large, we have δ(G[U∗1 ]) ≥ (1− α1 − 2α2)n2 − 4α2
n
2 − 5 ≥ (1− α1 − 7α2)n2 ≥

n
4 +1 ≥ |U

∗
1 |

2 +1 provided α ≤ ( 1
12)3. By Theorem 6.12, we construct a path P2 with end

vertices u4 and u8 ∈ U∗1 such that |V (P2)| = n
2 − k. Let U

′
1 = (U∗1 − V (P2)) ∪ {u2, u6}.

Then

δ(G[U
′
1]) ≥ (1− α1 − 7α2)

n

2
− (

n

2
− k)

= k − (α1 + 7α2)
n

2

≥ k

2
+ 1 ≥ |U

′
1|

2
+ 1

provided α ≤ ( 1
12)3 and k > n

6 . So we construct a Hamiltonian path P3 in G[U
′
1] with

end vertices u2 and u6. Let u9 ∈ U2 be a neighbor of u7. We claim that there exists a

Hamiltonian path of G[U2] with end vertices u9 and y.

Claim 6.13. We can construct a Hamiltonian path of G[U2] with end vertices u9 and

y.

Proof. By Claim 6.11, we also can construct a path Q1 containing all the vertices of W2

in G[U2] (except u9 and y, if they are in W2). Let v1, v2 ∈ U2−W2 be the end vertices of

Q1. Let v3 ∈ U2−W2 be a neighbor of u9, v4 ∈ U2−W2 be a common neighbor of v3, v1

and v5 ∈ U2−W2 be a neighbor of y. Let U∗2 = (U2−V (Q1)−{u9, v3, v4, y})∪{v2}. Since

n is sufficiently large, we have δ(G[U∗2 ]) ≥ (1−α1−2α2)n2−4α2
n
2−3 ≥ (1−α1−7α2)n2 ≥

n
4 + 1 ≥ |U∗2 |

2 + 1 provided α ≤ ( 1
12)3. So we can construct a Hamiltonian path Q2 of
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G[U∗2 ] with end vertices v2 and v5. Thus Q3 = Q1∪Q2∪{u9v3v4v1, yv5} is a Hamiltonian

path of G[U2] with end vertices u9 and y.

By Claim 6.13, we construct a Hamiltonian path P4 of G[U2] with end vertices u9

and y. Thus

C = P1 ∪ P2 ∪ P3 ∪ P4 ∪ {yu1u2, u8u9, u4xu3u7u5}

is a Hamiltonian cycle in G and distC(x, y) = k (see Figure 3. (1)).

U2

x

u3

u2

u8

u4

u7

u5

u6

u1 y

u9

(1)

U2

x

v3

v2

v8

v7

v5

v6

y

v9

v4

v1

(2)

U1 U1

Figure 6.3: Extremal case 2

Sub-case 2. x and y are in the same part, say x, y ∈ U1.

The proof is similar as above. Since δ(G) ≥ n
2 + 1, we choose v1 ∈ U2 such that v1

is a neighbor of y. Whether y is in W1 or not, let v2 ∈ U1 −W1 be a neighbor of y.

If n
2 − k− 1 ≥ 1, let v3, v4 ∈ U1−W1 be two neighbors of x and let v7 ∈ U1−W1 be

a common neighbor of v3, v5. By Claim 6.11, we construct a path P
′
1 with end vertices

v5, v6 ∈ U1−W1 containing all the vertices of W1. Let U∗1 = U1−V (P
′
1)−{x, y, v2, v3, v7}.

By Theorem 6.12, we construct a path P
′
2 with end vertices v4 and v8 ∈ U∗1 such that

|V (P
′
2)| = n

2 −k−1. Let U
′
1 = (U∗1 −V (P

′
2))∪{v2, v6}. We construct a Hamiltonian path

P
′
3 in G[U

′
1] with end vertices v2 and v6. Let v9 ∈ U2 be a neighbor of v7. We construct

a Hamiltonian path P
′
4 of G[U2] with end vertices v9 and v1 by Claim 6.13. So

C
′

= P
′
1 ∪ P

′
2 ∪ P

′
3 ∪ P

′
4 ∪ {v1yv2, v8v9, v4xv3v7v5}

is our desired Hamiltonian cycle in G (see Figure 3. (2)).

If n
2 − k − 1 = 0, let v10 ∈ U2 be a neighbor of x. By Claim 6.13, we construct a

Hamiltonian path P
′
5 of G[U2] with end vertices v10 and v1. Let U∗∗1 = (U1 − V (P

′
1) −
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{x, y, v3, v7}) ∪ {v6}. We construct a Hamiltonian path P
′
6 of G[U∗∗1 ] with end vertices

v2, v6. So

C∗ = P
′
1 ∪ P

′
5 ∪ P

′
6 ∪ {v1yv2, v10xv3v7v5}

is our desired Hamiltonian cycle in G.

6.4.2.2 The graph order n is odd

Now we assume the induced graph G[V −z] is in the extremal case 2. Since G[V −z] is a

graph of even order, we apply Lemma 6.10 to G[V −z]. We obtain a partition of G[V −z]
into two parts U1 and U2 with |U1| = |U2| = n−1

2 . We can construct a Hamiltonian cycle

C of G[V − z] as section 5.2.1.

If there exist two vertices u, v on the longer path joining x and y in C such that

they are neighbors of z and adjacent in C, then replacing the edge uv in C by the path

uzv we obtain a Hamiltonian cycle C∗ in G such that distC∗(x, y) = k.

Otherwise, this kind of two vertices u, v are on the shorter path joining x and y in C.

Assume that x, y are in different parts, say x ∈ U1 and y ∈ U2. The proof for the other

cases is similar. We will construct a new Hamiltonian cycle in G[V −z]. By the discussion

in Sub-case 1 of section 5.2.1, we have uv ∈ P1 or P3 or P5 := xu3u7u5 or P6 := yu1u2.

If uv ∈ P1 or P5 or P6, we fix the construction of P1, P4, and construct a new path

P
′
2 in G[U1] with end vertices u4 and u8 ∈ U1 such that |V (P

′
2)| = n−1

2 − k + 1. Then

we also construct a new Hamiltonian path P
′
3 in G[U

′
1] with end vertices u2 and u6. So

C
′

= P1 ∪ P
′
2 ∪ P

′
3 ∪ P4 ∪ P6 ∪ {u8u9, u4xu3u7u5}

is a new Hamiltonian cycle in G[V − z]. And distC′ (x, y) = k − 1. By replacing the

edge uv in C
′

by the path uzv we obtain a Hamiltonian cycle in G such that x, y have

distance k on this cycle.

If uv ∈ P3, let v1 ∈ U1 be a common neighbor of u6, v. After constructing P1,

we extend P1 to P
′
1 = P1 ∪ {u6v1vu}. We can continue to construct the path P

′
2 in

G[U1] with end vertices u4 and u8 ∈ U1 such that |V (P
′
2)| = n−1

2 − k + 1. Let U
′′
1 =

(U1 − V (P
′
1) − V (P

′
2) − V (P5) − {u1}) ∪ {u}. We construct a Hamiltonian path P

′′
3 in

G[U
′′
1 ] with end vertices u2 and u. So

C
′′

= P
′
1 ∪ P

′
2 ∪ P

′′
3 ∪ P4 ∪ P6 ∪ {u8u9, u4xu3u7u5}
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is a new Hamiltonian cycle in G[V − z]. And distC′′ (x, y) = k − 1. By replacing the

edge uv in C
′′

by the path uzv we obtain a Hamiltonian cycle in G such that x, y have

distance k on this cycle.

6.5 Concluding remarks and further work

In this chapter, we gave a proof of Faudree and Li’s conjecture for graphs of sufficiently

large order.

Note that our result show that for any pair of vertices, we can find a Hamiltonian

cycle such that the distance between these two vertices on it is a given number (between

2 and half of the order of the graph). Can we generalize our result to 3 or more vertices

with some faire distance conditions are given? This will be one of our futhuer works.

The other further work is to find a proof of Theorem 6.2 without using Regularity

Lemma.
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[43] R. Häggkvist and B. Jackson. An note on maximal cycles in 2-connected graphs.

Ann. Discrete Math., 27:205–208, 1985.

[44] F. Harary. On the notion of balance of a signed graph. The Michigan Mathematical

Journal, 2:143–146, 1955.

[45] A. Harkat-Benhamdine, H. Li, and F. Tian. Cyclability of 3-connected graphs. J.

Graph Theory, 34(3):191–203, 2000.

[46] A. Harutyunyan, R. Naserasr, M. Petruševski, R. Škrekovski, and Q. Sun. Mapping
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Titre : Une contribution à la théorie des graphes (signés) borne d’homomorphisme et hamiltonicité

Mots clés : graphe signé, cubes projectifs, homomorphisme, cycle hamiltonien

Résumé : Le problème d’homomorphisme des
graphes planaires (signés) et le problème du
cycle hamiltonien sont deux principaux
problèmes de la théorie des graphes. Dans cette
thèse, nous étudons plusieurs problèmes au
sujet de ces.

En problème d’homomorphisme des graphes
planaires (signés) , nous prouvons que si un
graphe signé cohérent de maille-déséquilibré d
qui borne la classe des graphes signés cohérent
de maille-déséquilibré d+1, il a un order au
moins comme le cube SPC(d). Et nous
obtenons que la order du graphe optimal de
maille-impaire 2k+1 qui borne tous les graphes
de maille-impaire 2k+1 et ont pas graphe
complet de l'ordre 4 en tant que mineur. Plus,
we prouvons que le graphe Coxeter borne la

classe de tous graphes planaires de maille-
impair au moins 17.

En problème du cycle hamiltonien, utilisant le
Lemma de Régularité et le Blow-up Lemma,
nous donnons une preuve de Enomoto
conjecture pour les graphes d’ordre suffisant et
nous donnons une preuve de la Faudree-Li
conjeture pour les graphes d’ordre suffisant.

Title : A contribution to the theory of (signed) graph homomorphism bound and Hamiltonicity

Keywords : signed graph, projective cubes, homomorphism, Hamiltonian cycle

Abstract : The homomorphism problem of
planar (signed) graphs and Hamiltonian cycle
problem are two main problems in graph
theory. In this thesis, we study some related
topics.

For the homomorphism problem of planar
(signed) graphs, we prove that if a consistent
signed graph of unbalanced-girth d which
bounds the class of planar consistent graphs of
unbalanced-girth d, then it has the order at least
as that of SPC(d). And we prove give an
optimal bound for the order of graph of odd-
girth 2k+1 which bounds all the graphs of odd-
girth 2k+1 and has no complete graph of order
4 as a minor. Also, we prove that the Coxeter
graph bounds the class of planar graphs of

odd-girth at least 17.

For the Hamiltonian cycle problem, using
Regularity Lemma and Blow-up Lemma, we
give a proof of Enomoto’s conjecture for
graphs of sufficiently large order. We also give
a proof of Faudree-Li conjecture for graphs of
sufficiently large order.
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