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Introduction

Background Since the introduction of the notion of Privacy Homomorphism
by Rivest et al. [RSA78] in the late seventies, the design of efficient and secure
encryption schemes allowing to perform general computations in the encrypted
domain has been one of the holy grails of the cryptographic community, with ap-
plications in many domains. Despite numerous partial answers and unsuccessful
attempts, the problem of designing such an obviously useful primitive has re-
mained open until the theoretical breakthrough of C. Gentry [Gen09b, Gen09a]
in the late 2000s, with the construction of the first Fully Homomorphic Encryp-
tion (FHE) scheme.

Interest in FHE schemes has grown in the past few years along with the
widespread adoption of the cloud computing model for more and more critical
applications. Indeed, when end users want to preserve the privacy of the data they
outsource, they need to encrypt it using a cryptographic scheme, losing in the
process the ability to do any other thing with the said data than simply retrieving
the whole. In such cases, the possibility to perform computation directly on
encrypted data seems like a great solution. As a straightforward example, an
end user might want to preserve the confidentiality of his e-mails while still being
able to set up filters or to perform searches. This leads to a need for encryption
techniques that must be compliant with the storage and processing of outsourced
encrypted data in the cloud, private information retrieval, (private) search on or
analysis of encrypted data, etc.

Before going deeper in the subject, it is important to notice that for security
reasons such encryption schemes are necessarily probabilistic. This means that
for a given encryption key each plaintext can be encrypted in several different ci-
phertexts. This implies that the set of possible ciphertexts is significantly larger
than the set of possible plaintexts. In other words, this implies that the cipher-
texts are longer than the plaintexts. For a given probabilistic encryption scheme,
the ratio between these two lengths is called the expansion of the scheme. Of
course, designers try to propose schemes with the smallest possible expansion, for
a given security level. We will see that expansion is huge for FHE schemes and
this leads to a high overhead when computing in the encrypted domain using
FHE. However, we will also see that various strategies can be set up to miti-
gate these disadvantages. In particular, instead of performing in the encrypted
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domain exactly the same operations we would have performed in the clear, we
have to consider the encrypted domain with its specitificity, like the fact that a
multiplication is greatly more costly than an addition.

Besides, since 2009, a lot of publications provided variants and improvements.
In particular, several so-called somewhat FHE cryptosystems have been pro-
posed, which allow any number of additions but a bounded number of multipli-
cations [AMGH10, GHV10a]. These schemes are really interesting as they are
less complex than the fully homomorphic ones and are able to process a number
of multiplications that is sufficient for most applications. Hence, we consider
them today as the most promising schemes for practical applications.

Contributions When this thesis started in October 2011, while several theo-
retical papers dealt with Fully Homomorphic Encryption, only two articles pre-
senting an attempt at implementing FHE had been published: [SV10], [GH11].
In the first one, FHE was not achieved since the paramaters necessary to make
the somewhat homomorphic encryption scheme fully homomorphic were compu-
tationally out of reach. The second one achieved FHE but with much difficulty.
At the same time, new encryption schemes had appeared since 2008 and they
seemed far more efficient although no implementation had been published.

Our approach was not to focus on the design on new FHE primitives, as many
other cryptography researchers already did, but rather to identify where FHE
could be used in computer science and to build an experimental platform that
would allow us to test real-life algorithm running on homomorphically-encrypted
data. Since there was no opensource implementation at the time, we began by
make our own implementation of a FHE scheme and chose what seemed to be
to most efficient: BGV [BGV12]. However, we were aware that other imple-
mentations of FHE would come and probably be more efficient, so we build our
platform in such a manner that the computations specific to the FHE scheme
are independant from other computations. That way, when a new (opensource
or internal) was available, we were able, with minimum work, to "plug it in" our
existing platform and begin cryptocomputing with it.

Another important aspect of our approach was to rewrite the algorithms
meant to be executed in the encrypted domain in order to dimension the ho-
momorphic operations necessary. This choice had two main goals. The first one
was to be able to parametrize the FHE scheme accordingly to the number of
homomorphic additions and multiplications in the algorithm. The second one
was to start bringing out some clues about what algorithms were "homomorphic-
friendly", i.e. whose computational structure was propitious for homomorphic
evaluation. It would also reveal to be a very useful tool to identify the computa-
tional hot spots of the homomorphic evaluation of algorithms. We will show in
this thesis how to express algorithms seamlessly, regardless on whether they are
executed in the plain (during testing) or in the encrypted domain (during opera-
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tion). We also show how all classical integer manipulation operators (arithmetic,
logical, bitshift, comparison, etc.) can be realized hermetically in the encrypted
domain. More importantly, we also demonstrate how data dependent control-
flow can be performed (at least to a non trivial extent) over such a system, in
particular with respect to the conditional assignment operator as well as array
assignment and dereferencing using encrypted indices, thus paving the way for a
level of expressiveness that suits a wide spectrum of algorithms.

Once the platform was achieved, we first made experimental tests with the
vectorial variant of BGV as well as the opensource implementation HCRYPT
[PBS11]. We provided experimental results for a number of elementary but real
algorithms (discriminant calculation, array summation, bubble sort, etc.). This
work lead to an article in Signal Processing Magazine [AMFF+13]. Then, we
made another round of tests with our implementation of the more efficient poly-
nomial variant of BGV and more realistic security paramaters. This work lead
to an article published in the proceedings of 3PGCIC [FSF+13]. Finally, we de-
signed a method for performing private queries on an encrypted database using
FHE. This work was continued by a fellow researcher in the laboratoire LaSTRE
and a pattern has been filed for this concept. An article presenting these last
results is also in process.

Overview The first part of this thesis is dedicated to the state of the art.
We will first present homomorphic encryption schemes designed before 2008 and
then move to the Fully Homomorphic encryption period. We will describe several
schemes of interest for this thesis and discuss FHE implementations. Finally, we
will present Yao’s garbled circuits as they can solve similar problems as FHE and
briefly talk about Functional Encryption (FE).

The second part of this thesis is for our contributions to the subject. We
will begin by explaining how FHE can be useful in various scenarios and try
to provide practical use cases that we identified during the thesis. In the next
chapter, we will describe our approach to perform computations on encrypted
data using FHE and explain how we were able to build on just the homomorphic
addition and multiplication a platform for the execution in the encrypted domain
of a wide range of algorithms. We will then detail our solution for performing
private queries on an encrypted database using homomorphic encryption. In a
final chapter, we will present our experimental results from the beginning to the
end of the thesis.
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State of the art and background
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Overview
In the first chapter, we will review some of the main encryption schemes providing
homomorphic properties from before 2008. Indeed, from 1978 to 2008, several
homomorphic encryption schemes have been published, e.g. the famous Paillier’s
scheme and its derivatives, which are able to process encrypted data but with
only one kind of operator (additions or multiplications) at a time [FG07].

In the second chapter, we will remind the reader of the main definitions useful
to classify the homomorphic encryption schemes designed after 2008, give details
about the cryptographic operations of these schemes and introduce briefly the
mathematical problems that ensure their security. We will also describe briefly
some FHE schemes that we find most interesting and finally discuss the main
implementations of FHE that have been done since 2008.

The final chapted is dedicated to other tools that allow to compute over en-
crypted data or simply performing computations while keeping some information
from the computer. After presenting the concept of multi-party computing, of
which cryptocomputing is close, we will in particular describe Yao’s garbled cir-
cuits. We will finally mention Functional Encryption since this subject is related
to FHE and might bring additional features.

Systèmes de cryptocalculs, compilation et support d’exécution Simon Fau 2016
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Chapter 1

Homomorphic encryption before
FHE

1.1 Definitions

Let E be an asymetric encryption scheme equipped with a public key pubk and
a private key privk.

E is said homomorphic (or sometimes partially homomorphic ) if some al-
gebraic operation performed on ciphertexts translates in a (possibly different)
algebraic operation performed on plaintexts.

Example: E = RSA (without padding). For m1,m2 ∈ (0, n),

E(m1.m2) = me
1.m

e
2 mod n = (m1m2)

e mod n = E(m1).E(m2)

E is said fully homomorphic if it is homomorphic for any number of additions
and multiplications, without requiring the use of the private key (no decryption
needed).

Equivalently, saying E is fully homomorphic means that for any polynomial
P , any k ∈ N and any plaintexts m1, . . . ,mk in a ring R:

P(m1, . . . ,mk) = decprivk(P(Epubk(m1), . . . ,Epubk(mk))).

Note: in this equality, P denotes both the polynomial over the plaintext space R
and the corresponding polynomial over the ciphertext space equipped with the
homomorphic operations of E.

Semantic security As we said earlier, all (good) homomorphic encryption
schemes have to be probabilistic. Indeed, the plaintext space is usually very small
(it is often {0, 1}) and it will produce a lot of ciphertexts. Therefore, if we do not

15
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16 CHAPTER 1. HOMOMORPHIC ENCRYPTION BEFORE FHE

want an adversary to distinguish a ciphertext of 0 from a ciphertext of 1, it cannot
be deterministic. Semantic security was introduced in [GM82], at the same time
as probabilistic encryption, in order to define what could be a strong security level,
unavailable without probabilistic encryption. Roughly, a probabilistic encryption
is semantically secure if the knowledge of a ciphertext does not provide any
useful information on the plaintext to some hypothetical adversary having only
a reasonably restricted computational power. More formally, for any function f
and any plaintext m, and with only polynomial resources (i.e. with algorithms
which time/space complexities vary as a polynomial function of the size of the
inputs), the probability to guess f(m) (knowing f but not m) does not increase if
the adversary knows a ciphertext corresponding to m. This might be thought of
as a kind of perfect secrecy in the case when we only have polynomial resources.

Together with this strong requirement, the notion of polynomial security has
been defined: the adversary chooses two plaintexts, and we choose secretly at
random one plaintext and provide to the adversary a corresponding ciphertext.
The adversary, still with polynomial resources, must guess which plaintext we
chose. If the best he can do is to achieve a probability 1/2 + ε of success, the
encryption is said to be polynomially secure. Polynomial security is now known as
the indistinguishability of encryptions following the terminology and definitions
of Goldreich [Gol93].

Quite amazingly, Goldwasser and Micali proved the equivalence between poly-
nomial security and semantic security [GM82]; Goldreich extended these no-
tions [Gol93] preserving the equivalence. With this equivalence, it is easy to
state that a deterministic asymmetric encryption scheme cannot be semantically
secure since it cannot be indistinguishable: the adversary knows the encryp-
tion function and, thus, can compute the single ciphertext corresponding to each
plaintext.

We will now briefly describe some well known homomorphic encryption schemes
anterior to 2008. Although not being fully homomorphic, they are interesting for
applications that use linear operators.

1.2 Goldwasser-Micali

Alice computes a (public,private) key: she first chooses n = pq, p and q being
large prime numbers, and g a quadratic non-residue modulo n whose Jacobi
symbol is 1; her public key is composed of n and g, and her private key is the
factorization of n.

The goal achieved by this scheme is that anyone can send a message to Alice.

Systèmes de cryptocalculs, compilation et support d’exécution Simon Fau 2016
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Encryption To encrypt a bit b, Bob picks at random an integer r ∈ Z∗n, and
computes c = gbr2 mod n (remark that c is a quadratic residue if and only if
b = 0).

Decryption To get back to the plaintext, Alice has to determine if c is a
quadratic residue or not. To do so, she uses the property that the Jacobi symbol(
c
p

)
is equal to (−1)b. Note: the scheme encrypts 1 bit of information, while its

output is usually 1024 bits long!

Homomorphic operations For m1,m2 ∈ {0, 1}, c1 = gm1r1
2 mod n and c2 =

gm2r2
2 mod n, so c1.c2 = gm1+m2r1.r2

2 mod n.
The sum m1 +m2 can therefore be retrieved by decrypting c1.c2.

Security and efficiency This scheme is the first one that was proved seman-
tically secure against a passive adversary (under a computational assumption)1.

The encryption is simple but the decryption step is done in O(`(p)2). Unfortu-
nately, this scheme presents a strong drawback since its input consists of a single
bit. First, this implies that encrypting k bits leads to a cost of O(k ·`(p)2). This is
not very efficient even if it is considered practical. The second consequence con-
cerns the expansion: a single bit of plaintext is encrypted by an integer modulo
n, that is, `(n) bits. Thus, the expansion is really huge.

1.3 Paillier

Alice computes a (public,private) key: she first chooses an integer n = pq,
p and q being two large prime numbers and n satisfying gcd(n, φ(n)) = 1, and
considers the group G = Z∗n2 of order k. She also considers g ∈ G of order n. Her
public key is composed of n and g, and here private key consists in the factors of
n.

As before, the goal is that anyone can send a message to Alice.

Encryption To encrypt a message m ∈ Zn, Bob picks at random an integer
r ∈ Z∗n, and computes c = gmrn mod n2.

1An adversary is said passive if he can only eavesdrop the communications and cannot
interact with the parties engaged in the protocol.
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18 CHAPTER 1. HOMOMORPHIC ENCRYPTION BEFORE FHE

Decryption To get back to the plaintext, Alice computes the discrete logarithm
of cλ(n) mod n2, obtaining mλ(n) ∈ Zn, where λ(n) denotes the Carmichael
function. Now, since gcd(λ(n), n) = 1, Alice easily computes λ(n)−1 mod n and
gets m.

Homomorphic operations For m1,m2 ∈ {0, 1}, the ciphertext c1.c2 decrypts
as m1 +m2.

Security and efficiency This scheme is semantically secure and also resistant
to chosen plaintext attack (IND-CPA).

In Paillier’s scheme, the ciphertext expansion is decreased to only 2, which
means that a ciphertext’s size is twice the plaintext’s size. The encryption cost
is not too high and the decryption needs one exponentiation modulo n2 to the
power λ(n), and a multiplication modulo n. Paillier showed in his paper how to
manage decryption efficiently through the Chinese Remainder Theorem. With
smaller expansion and lower cost compared with previous schemes, Pailler’s is
really attractive.

1.4 El Gamal

Alice generates a (public, private) key: she first chooses a large prime integer
p, a generating element g of the cyclic group Z∗p, and considers q = p − 1, the
order of the group; building her public key, she picks at random a ∈ Zq and
computes yA = ga in Z∗p, her public key being then (g, q, yA); her private key is a.

Encryption Anyone can send an encrypted message to Alice. To send an
encrypted version of the message m to Alice, Bob picks at random k ∈ Zq,
computes (c1, c2) = (gk,mykA) in Z∗p.

Decryption To get back to the plaintext, Alice computes c2(ca1)−1 in Z∗p, which
is precisely equal to m.

Homomorphic Operations For two ciphertexts c1, c2 encrypting two mes-
sages m1,m2 and g1, g2 two generating elements, yA = ga where a is the secret
key and r1, r2 two random exponents,
c1 ·c2 = E(m1) ·E(m2) = (gr1 ,m1 ·hr1)(gr2 ,m2 ·hr2) = (gr1+r2 , (m1 ·m2)hr1+r2) =
E(m1 ·m2)
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1.5. ADDITIONAL MULTIPLICATION 19

Security The security of this scheme is related to the Diffie-Hellman problem:
if we can solve it, then we can break ElGamal encryption. It is not known whether
the two problems are equivalent or not. This scheme is IND-CPA.

1.5 Additional multiplication
In 2014, Catalano and Fiore found [CF14] a way to transform linearly homomor-
phic encryption schemes like the ones discussed in this chapter to make them able
to evaluate degree-2 polynomials. This means that they can do a homomorphic
multiplication with their modified encryption schemes as opposed to only homo-
morphic additions in the original schemes. However, this transformation leads to
some drawbacks. In particular, there is a significant ciphertext expansion after
the multiplication and unfortunately the following additions have the same cost
than the multiplication.
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Chapter 2

Fully Homomorphic Encryption

The development of fully homomorphic encryption (FHE) led to new notions we
did not introduce yet. Homomorphic is very general while fully homomorphic
is very difficult to achieve. In between, a lot of encryption schemes introduced
starting from 2008 were not fully homomorphic but had strong properties that
could be enough for some applications and therefore it did not seem appropriate
to just call them homomorphic. Along the articles on homomorphic encryption,
two main notions appeared:

2.1 Definitions

E is said leveled fully homomorphic if it is fully homomorphic only for a bounded
number of additions and/or multiplications.

More formally, for fixed values n, k ∈ N and any k-variable polynomial P of
degree n, if we can define private and public keys for E so that:

P(m1, . . . ,mk) = decprivk(P(Epubk(m1), . . . ,Epubk(mk))).

Note 1: As previously, P denotes both the polynomial over the plaintext space
with natural additions and multiplications and the polynomial over the cipher-
text space equipped with the homomorphic operations of E.
Note 2: We want to stress that leveled fully homomorphic and fully homomor-
phic are not equivalent. Indeed, the first implies that you fix a degree for the
polynomial and generate adequate keys in order to handle a bounded number of
homomorphic operations. On the contrary, the latter allows to generate keys for
E and to perform any number of homomorphic operations.

An encryption scheme E is said somewhat homomorphic if it is fully homo-
morphic only for low degree polynomials.

This notion is close to leveled fully homomorphic, but it has not the same
goals. A somewhat homomorphic scheme is viewed as a step in the design of a

21
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22 CHAPTER 2. FULLY HOMOMORPHIC ENCRYPTION

fully homomorphic encryption (FHE) scheme. Indeed, once the somewhat homo-
morphic encryption (SHE) scheme E can handle its own decryption function, i.e.
the decryption function (seen as a polynomial) has a degree low enough for E,
it can be transformed into a FHE scheme through the bootstrapping step. This
step will be explained further with the design of Gentry’s first scheme [Gen09b].

2.2 The first fully homomorphic encryption (FHE)
scheme

This encryption scheme has been introduced in 2009 by Gentry in his PhD thesis
[Gen09a], with partial results being published previously in [Gen09b]. It is the
first to be fully homomorphic and still proven secure. Indeed, other schemes with
both homomorphic addition and multiplication were proposed before, but they
all have been broken since.

This scheme was the object in 2010 of an implementation [GH11] that will be
discussed in Section 2.6.

Overview

Let R be a ring fixed with respect to a security parameter λ. Let I ⊂ R
be an ideal and BI a base for I (seen as a vectorial space). Let us first assume
that for t ∈ R and BK a base for an ideal K ⊂ R, the set t + K has a "unique
representative" with respect to the base BK and that it is easily "distinguishible".
We note that unique t mod BK . In the same spirit, we note R mod BK the set
of all representatives of r +K with respect for BK .

Key generation: We pick J an ideal so that I and J are relatively prime (i.e.
I +J = R). Then we generate two bases for J : Bpk

J , which will be the public key
and Bsk

J , which will be the private key.

Encryption: For a plaintext m ∈ P ⊂ R mod BI , we randomly pick c′ in the
ideal m+ I. The ciphertext encrypting m is then c← c′ mod Bpk

J .

Decryption: For a ciphertext c and the associated private key sk, we have
m← (c mod Bsk

J ) mod BI
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Homomorphic operations: Remember that we assumed that for any ideal K
and t ∈ R, t+K has a unique representative in BK which is easily distinguishi-
ble. The ideals have the property to be stable for addition and multiplication,
which are the homomorphic properties wanted. However, when adding and mul-
tiplying ciphertexts, these unique representatives become harder and harder to
distinguish. This phenomenon is called noise growth.

- addition of ci and cj: ci + cj mod Bpk
J

- multiplication of ci and cj: ci × cj mod Bpk
J

In practice, the ring is R = Z/f(x), where f ∈ Z[X] a polynomial of degree
n of the form Xn + 1.

Bootstrapping As described, the scheme is not yet fully homomorphic, but
only somewhat homomorphic. Indeed, as additions and multiplications are per-
formed on the ciphertexts, their "noise" grows, which makes them ultimately
undecryptable.

The idea behind bootstrapping is to "refresh" ciphertexts, i.e. to get rid of
their noise (at least as much as possible), without decrypting them (otherwise it
would require the use of the private key). This process is achieved by building,
from a "noisy" ciphertext, another ciphertext encrypting the same plaintext but
which noise is much smaller.

Let (sk1, pk1) and (sk2, pk2) be two pairs of private and public keys. Let c be
a ciphertext encrypting a plaintext m under the first private key: c = E(m, pk1).
The bootstrapping process is as follows:

c = E(m, pk1)→ cc = E(c, pk2)→ Dec(cc, ¯sk1)→ c′ = E(m, pk2)

where ¯sk1 = E(sk1, pk2). c, which is an encryption under sk1 is then encrypted
with pk2 into a double-encrypted ciphertext cc. Then, the decryption function of
the scheme is applied to cc using ¯sk1, which is sk1 encrypted with pk2. Thanks
to the homomorphic properties of the scheme, the result is c′, which is now only
encrypted with pk2. The ciphertext went to a couple of keys to another without
being in the clear in the process. This operation can therefore be performed by
a non-trusted party, and does not require the use of sk1 but rather the use of an
encryption of sk1 under sk − 2.

The trick of bootstrapping is to consider the decryption function just as any
function we would like to perform in the encrypted domain. That way, we can
decrypt (some part of the encryption) while remaining in the encrypted domain
(for the other part of the encryption). However, to be able to decrypt homomor-
phically, we have to make sure that the original encryption scheme can handle
enough homomorphic operations to do the decryption function. When this prop-
erty is verified, the encryption scheme is said to be bootstrappable.
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An additional security property is key-dependant messages security. If the
ciphertext Epk(sk) does not allow to retrieve sk, for any pair of keys (pk, sk),
the encryption scheme E is then said key-dependant messages secure. With that
property, we can use bootstrapping without changing keys and the scheme can
be made fully homomorphic.

Security The semantic security of this encryption scheme relies on the Ideal
Coset Problem, which is defined as follows:

Ideal Coset Problem Let R be a ring and BI a base for an ideal I ⊂ R of
R. Let IdealGen be an algorithm that generates the bases Bpk

J and Bsk
J and

Sample an algorithm that outputs random elements of R. Let b ∈ {0, 1} and
(Bsk

J , B
pk
J ) bases generated with IdealGen. If b = 0, we pick r ← Sample(R) and

t← r mod Bpk
J . If b = 1, we pick t uniformly in R mod Bpk

J .
The problem is to find b knowing (t, Bpk

J ).
The hardness of the Ideal Coset Problem depends on the algorithm Sample

and on the distribution over R it provides (the more random is Sample the better).
The bootstrapping technique relies on the Sparse Subset-Sum Problem (SSSP),

which is defined as follows:

Sparse Subset-Sum Problem Let γset and γsub be parameters dependant of
λ. Let q be a positive integer and b ∈ {0, 1}. If b = 0, we generate a set τ of
γset(n) integers a1, ..., aγset(n) in [−q/2, q/2], picked randomly and uniformly in
the interval, unless there is a subset S ⊆ {1, ..., γset(n)} of cardinal γsub(n) so
that Σi∈Sai = 0 mod q. If b = 1, we generate τ without the latter condition.

The problem is to find b knowing τ .

Parameters In [SS10], Stelhé et al. analysed more precisely the requirements
for the SSSP and concluded to the following (reduced) parameters sizes:

- size of the private key: θ(λ1,5)
- size of the public key: Õ(λ3,5)

- runtime for a Recrypt operation: Õ(λ3,5)

2.3 vDGHV: FHE over the integers

This encryption scheme has been presented in June 2010 by van Dijk et al. in
[vDGHV10]. This scheme works on integers and is therefore much easier to
understand than the previous FHE scheme of Gentry.
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Overview We describe here the encryption scheme in its simplest version,
which does not include bootstrapping. Indeed, as seen previously in Gentry’s
FHE scheme, before using bootstrapping, the first scheme built is only somewhat
homomorphic. To become fully homomorphic, we have to be able to perform
the decryption function with as little homomorphic operations as needed for the
somewhat homomorphic scheme to handle it. To do that, the decryption function
of the somewhat homomorphic scheme needs to be squashed so that its multi-
plicative depth is low enough to be homomorphically computed on data encrypted
with that same somewhat homomorphic scheme. When the cost of decryption
is reduced enough so that the somewhat homomorphic encryption can compute
the decryption function homomorphically, bootstrapping can be achieved. The
following description concerns the somewhat homomorphic encryption scheme,
noted E:

• γ: size of the integers in the public key

• η: size of the private key

• ρ: gap between the integers’ size and the closest multiples of the private key

• τ : number of integers in the public key

Here is the distribution that provides the integers for the public key:
Dγ,ρ(p) = {x = pq + r , ou q ∈ Z ∩ [0, 2γ/p) et r ∈ Z ∩ (−2ρ, 2ρ)}

Key generation: The private key is an odd integer p of size η picked in (2Z+
1) ∩ [2η−1, 2η).

For the public key, we first compute τ integers such that xi = pqi + ri, where
qi ∈ Z ∩ [0, 2γ/p) and ri ∈ Z ∩ (−2ρ, 2ρ) are randomly picked.

Consequently, the private key p is the approximate gcd of the public key
integers xi.

Let us rename the integers xi so that x0 is the greater. The generation is
rebooted as long as we do not have these two conditions:

- x0 is odd
- x0 mod p is even,

The public key is the set {xi, 0 ≤ i ≤ τ}.
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Encryption: Let S be a randomly chosen subset of {1, 2, ..., τ} and r be ran-
domly picked in (−22ρ, 22ρ). For a plaintext m ∈ {0, 1}, an encryption of mÂ is:

c = m+ 2r + 2
∑

i∈S xi mod xo.

Decryption: The plaintext bit can be retrieved by computing (c mod p) mod 2.
Indeed:

c = (m+ 2r + 2
∑
i∈S

pqi + ri) mod xo = m+ 2r + 2
∑
i∈S

pqi + ri − (pq0 + r0).k ,

where k ∈ Z. In addition, x0 = pq0 + r0, with r0 being even and x0 odd.
Therefore c mod p = m + 2r + 2

∑
i∈S ri − r0.k. As r0 is even, the modulo 2

reduction gives m.

Homomorphic operations: Let CE be a Boolean circuit with t inputs. The
ciphertexts c1, ..., ct are respectively encryptions of m1, ...,mt. We want to apply
the (integer) additions and multiplications on c1, ..., ct in the manner of the gates
of CE (integers addition for a XOR gate and multiplication for an AND gate).
The result should be a ciphertext encrypting CE(m1, ...,mt).

However, the scheme described here is only somewhat homomorphic, so this
homomorphic property will only be true if CE’s multiplicative depth is low
enough. The scheme needs to be tweaked to be bootstrappable and thus fully
homomorphic.

Security Its security is based on the "approximate-GCD Problem". The idea
is to define the secret key as the appromixate gcd of all the public keys.

The proof of security of the DGHV scheme consists in a reduction to the
approximate-GCD problem, which states that given the integers x0, x1, ..., xτ , all
being multiples of p (a very big integer) and picked randomly, retrieving p is hard.
More formally, the challenge is defined as follows:

(ρ, η, γ)-approximate GCD problem: Given a polynomial number of sam-
ples in Dγ,ρ(p), p being an odd integer of size η, retrieve p.

For the fully homomorphic version of DGHV, which includes bootstrapping,
the security also depends on the SSSP-problem defined previously.

Parameters size Let λ be the security parameter (a security of λ means that
the best attack would take 2λ elementary operations to break the encryption).
The parameters size for vDGHV as they are fixed in [vDGHV10] are:

- private key size: η = Õ(λ2).
- size of the integers in the public key: γ = Õ(λ5).
- number of integers in the public key: τ = Õ(λ5).

The overall size of the public key is Õ(λ10).
The global overhead of the vDGHV scheme is Õ(λ7,5) per bit, which is far

from being practical.
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2.4 BGV: Leveled-FHE without bootstrapping
BGV is an asymmetric encryption scheme that encrypts bits. Like most (some-
what) FHE schemes, it is based on lattices. There are two versions of the cryp-
tosystem: one dealing with integer vectors (the security of which is linked with
the hardness of the Learning With Errors problem) and the other one with inte-
ger polynomials (the security of which is linked with the hardness of the Ring-
Learning With Errors problem). In a few words, the Learning With Errors (resp.
Ring-Learning With Errors) problem consists of distinguishing between a distri-
bution of (ai, bi) sampled uniformly in Znq ×Zq (resp. in the ring R = Znq /F (X))
and a distribution of (ai, < ai, s > +ei), where ai and s are sampled uniformly
from Znq (resp. Rn

q ) and ei is sampled according to a Gaussian distribution. For
more precisions on the (R)-LWE problem, we refer the reader to [Reg10]. In the
sequel, we will focus on the polynomial version of the BGV encryption scheme,
which seems more promising in terms of performances.

We consider the polynomial ring R = Z[X]/F (X) where F (X) is a cyclotomic
polynomial of degree d = 2k and a chain of odd moduli q1 < ... < qL and their
corresponding subrings Rqi = R/qiR of polynomials of R with integers coefficients
into the range ] − qi/2, qi/2]. In practice, elements in Rqi will be polynomials
represented by the d-vector of their coefficients.

Basic encryption functions The private key sk is sampled in R. A public key
pk consists in the private key masked by a noise component: pk = ask+2e ∈ RN

qL
,

where N = O(log qL), a ∈ RN
qL

and the noise e is sampled from a “discrete”
Gaussian distribution over RN (“discrete” meaning here that we sample from
a Gaussian distribution and round to the nearest integer). Here follows a set
of black box descriptions of the main functions associated with the encryption
scheme. We have decided not to include the exact algorithms to avoid drowning
the important issues in technical descriptions. If interested, the reader can refer
to [BGV12],[GHPS12] for a precise algorithmic description.

Encrypt(Plaintext m, PublicKey pk): Ciphertext c
The integers we manipulate need to be encrypted one bit at a time. For

m ∈ {0, 1}, the resulting ciphertext c is a pair of two elements in RqL derived from
the plaintext m, the public key pk and a random seed (since it is a probabilistic
scheme). In the following, a ciphertext can be transformed into a pair of two
elements in any subring Rqi . In our implementation, each ciphertext carries its
level, i.e. the information that indicates in which subring it lies.
Decrypt(Ciphertext c, PrivateKey sk): Plaintext m

The decryption function is a simple dot product between the ciphertext c ∈
Rqi and the private key followed by a modular reduction into the range ] −
qi/2, qi/2] and finally a parity test to retrieve the plaintext m. As we mentioned
in previous examples, the noise must be under a certain level for the decryption
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to be correct.

Level shifting operations Rescale(Cipertext c): Ciphertext c′

The function transforms the ciphertext c ∈ R2
qi

into a ciphertext c′ ∈ R2
qi−1

.
The resulting ciphertext has a reduced noise.
SwitchKey(Augmented Cipertext c): Ciphertext c′

The tensored product of two ciphertexts c1 ⊗ c2 results in an “augmented
ciphertext" c ∈ R3

qi
. To retrieve a regular ciphertext in R2

qi
, we essentially multiply

c by a public matrix (a different one for each level 1 < i < L). Then we call the
Rescale function to get c′ ∈ R2

qi−1
(with low noise).

Homomorphic operations Add(Ciphertext c1, Ciphertext c2): Cipher-
text csum

For two ciphertexts c1, c2 where c1 ∈ R2
qi1

and c2 ∈ R2
qi2
, we follow these steps:

if i1 6= i2 (for example i1 < i2) then
do c′2 ← Rescale(c2) i2 − i1 times; (at this point we have c1, c2 at the
same level i1)

end
do csum ← c1 + c′2; (simply by adding the coefficients of the polynomials
modulo qi1)

Mul(Ciphertext c1, Ciphertext c2): Ciphertext cmul
For two ciphertexts c1 ∈ R2

qi1
and c2 ∈ R2

qi2
, we follow the steps:

if i1 6= i2 (for example i1 < i2) then
call c′2 ← Rescale(c2) i2 − i1 times; (at this point we have c1, c2 at
the same level i1)

end
do c3 ← c1 ⊗ c′2; (c3 ∈ R3

qi1
)

do cmul ← SwitchKey(c3); (cmul ∈ R2
qi1−1

)

The tensored product applied on c1 and c2 consists in adding and multiplying
polynomials of Rqi1

, which can be very expensive as we will see.

Parameters The size of the ciphertexts and therefore the cost of additions and
multiplications on those ciphertexts, depends on the size of the {qi}i and on the
size of the ring R (i.e. the size of d or n). To give an idea of the cost of these
operations, we want to stress that each bit is encrypted by a pair of polynomials
that can be of degree d > 10000 and have coefficients of size > 200 bits. For
security and noise management reasons, these parameters grow as the number of
Mul increases (as shown in [BGV12]). More precisely, the key value to dimension
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the cryptosystem is the multiplicative depth.1

We can also already point out that the order in which we perform the ho-
momorphic operations may have an impact on the number of times we have to
call the Rescale and SwitchKey functions, therefore on the number of levels
(multiplicative depth) we need.

2.5 Scale-invariant FHE schemes
Scale-invariance As seen before in the leveled-FHE schemes, the ciphertexts
are polynomials with coefficients modulo some q. q is a large integer that changes
anytime a "modulus-switching" operation is performed (in order to decrease the
level of noise of a ciphertext).

This technique works well for reducing noise but in practice, the process is
costly since we need a switching key for each level of the scheme. Since the
public keys are quite large, the need to store and then to compute with L large
public keys (to achieve a multiplicative depth of L−1) was very detrimental when
implementing the scheme. To resolve this issue, Brakerski introduced at Crypto
2012 a new tensor product technique that didn’t need to use different moduli and
therefore different switching-keys.

These scale-invariant FHE schemes are the latest to be introduced and they
offer the best performances so far. Their computational overhead and practical
parameters will be discussed in Section 2.6, specifically dedicated to implemen-
tations.

2.5.1 Brakerski’s scale-invariant FHE scheme

This encryption scheme is very close to BGV and the (original) variant based
on the LWE problem has been introduced at CRYPTO 2012 [Bra12]. The main
difference lies in the structure of the dot product of a ciphertext and its corre-
sponding private key. In BGV, for a message m, a private key s, a modulus q
and a ciphertext c, the decryption works as follows:

< c, s >= m+ 2e mod q,

which gives m by reducing modulo 2.
In Brakerski’s scale-invariant scheme, the same dot product gives:

< c, s >= bq/2c ·m+ e mod q,

which provides the same result when applying the reduction modulo 2.
1In a Boolean circuit, the multiplicative depth is defined as the maximal number of multi-

plication gates on any path.
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The result of this tweak is that the noise growth is much smaller when multi-
plying two ciphertexts. Consequently, the same modulus can be used throughout
the homomorphic operations and the noise does not grow more than in BGV.
This also means that the modulus switching operation needed in BGV is now
skipped, making the homomorphic computations much faster.

2.5.2 FV

In [FV12], Fan and Vercauteren ported to the R-LWE problem the Brakerski’s
scale-invariant scheme mentioned previously. This means that the ciphertexts are
elements of R = Znq /F (X) for some polynomial F (x) (rather than elements of
Znq × Zq in the previous scheme). The encryption, decryption and homomorphic
operations are very similar to Brakerski’s scale-invariant scheme so we will not
detail them here.

In their paper, Fan and Vercauteren also gave concrete parameters for the
somewhat homomorphic scheme and for the FHE scheme. In addition to its
speed, that is why this scheme was chosen as the underlying homomorphic scheme
for the most recent experimentations in the laboratoire LaSTRE. We will talk
about the implementation and the performances of this scheme further in this
thesis.

2.5.3 YASHE

This encryption scheme has been introduced in 2013 by Bos et al. in [BLLN13b]
and is also scale-invariant. Like BGV polynomial variant, its security is based on
the R-LWE problem.

Encryption For a modulus q, a plaintext modulus 1 < t < q and a public key
pk in a polynomial ring R, the ciphertext c is:

c = bq/tc · [m]t + e+ pk · s,

where s and e are error components.

Decryption The decryption works as in BGV: the dot product of a ciphertext
c and the private key is reduced modulo q and then modulo t, to retrieve the
message m.

FV and YASHE seem to be the most promising FHE schemes at the time of
writing and they are compared by Lepoint and Naehrig in [LN14].
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2.5.4 Scale-invariant FHE scheme over the integers

This scheme is an adaption of the vDGHV FHE scheme over the integers, in a
way that makes it be scale-invariant. It was introduced by Coron et al in [CLT14]
in 2014. We remind that in vDGHV a ciphertext c is built as follows:

c = m+ 2r + q · p,

where q works as the public key and p as the private key and r is a noise compo-
nent.

In the adapted scheme, the same ciphertext c is now:

c = r + (m1 + 2r′) · (p− 1)/2 + q · p2,

where r and r′ are noise components.

2.6 Implementations of Homomorphic Encryption
The implementation of the first FHE scheme has been done by Gentry and Halevi
in [GH11]. Prior to that, an implementation had been done by Smart and Ver-
cauteren and detailed in [SV10]. Their FHE scheme is very similar to Gentry’s
first FHE scheme, with reduced key size and ciphertext expansion. However,
their implementation did not achieve fully homomorphic encryption. In 2011, a
little after Gentry and Halevi’s implementation, Perl et al. [PBS11] presented
another implementation of the Smart and Vercauteren’s scheme of [SV10] that
achieved fully homomorphic encryption.

2.6.1 Implementation by Gentry and Halevi

This implementation is the first to achieve fully homomorphic encryption in prac-
tice.

In the large setting, the public key size was 2.3 GB (2.2 hours to generate
the keys) and the bootstrapping operation took around 30 minutes on a large
memory machine. The security parameter was fixed at λ = 72.

Although the overhead of this implementation makes it highly prohibitive in
the real world, it was the first time fully homomorphic encryption was achieved
for real.

2.6.2 Implementation by Smart and Vercauteren

Although the encryption scheme described is asymptotically fully homomorphic,
the implementation made by Smart and Vercauteren could not achieve fully ho-
momorphic encryption.
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Indeed, as previously seen, the construction of a FHE scheme requires to
use a somewhat FHE scheme first, and use bootstrapping to make it fully ho-
momorphic. The somewhat FHE scheme has to be "homomorphic enough" to
handle its own decryption function in the encrypted domain in order to achieve
bootstrapping.

In the case of Smart and Vercauteren’s scheme, the parameters of the some-
what FHE scheme have to be too big to make it fully homomorphic in practice.
They showed that the parameter N , which is basically the degree of their poly-
nomial ciphertexts, has to be greater than 227 to achieve bootstrapping, and they
were only able to generate keys up to N = 211.

2.6.3 Implementation by Perl et al. of Smart and Ver-
cauteren’s scheme

This implementation is called HCRYPT and is particularly interesting since it
can be downloaded and used freely at http://hcrypt.com. As a matter of fact,
we were able to use HCRYPT as the underlying encryption scheme in our ex-
perimental platform. The results obtained with HCRYPT will be discussed in
Chapter 7.

Perl et al. implemented the FHE scheme of Smart and Vercauteren but they
managed to perform bootstrapping. Indeed, they decreased the multiplicative
depth of the decryption circuit so that the somewhat homomorphic scheme could
apply the decryption in the ciphertext space. However, the recrypt operation
took several seconds to complete for decent security parameters.

2.6.4 Implementations of vDGHV

Two implementations of this FHE scheme have been published: [CNT12], [CLT13],
with the latter focusing on evaluating AES homomorphically.

An implementation of the symmetric somewhat homomorphic version of vDGHV
was also produced by the author. It will be briefly discussed in Chapter 7.

2.6.5 Implementations of BGV

An implementation of the vectorial variant and an implementation of the poly-
nomial variant of BGV have been realized during this thesis and are used in our
experimental platform. These will be thoroughly discussed in Chapter 7.

2.6.6 AES-oriented implementations

Several implementations were specifically aimed at running the AES algorithm
on already (homomorphically) encrypted data. The interest of this approach is to
use AES-encrypted data for the communications, while still being able to perform
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homomorphic operations (modulo a partial decryption). Given a FHE scheme
noted E and an AES secret key sk, the process works as follow:

• Alice sends to Bob a homomorphic encryption of her AES secret key:

E(sk)

• Alice sends to Bob the AES-encrypted ciphertexts of her confidential data
m1, ...,mn:

AESsk(mi)

• Bob computes the homomorphic encryptions of the AES-encrypted ciph-
tertexts sent by Alice:

E(AESsk(mi))

Since E is an asymmetric encryption scheme, Bob knows its public key and
can therefore produce ciphertexts

• Thanks to the homomorphic properties of E, Bob can decrypt the AES part
of the ciphertexts using E(sk):

DecE(sk)(E(AESsk(mi))) = E(mi)

Note that the last equality is only true if E is "homomorphic enough" to
handle the AES algorithm.

• Bob has now homomorphic encryptions of Alice’s data, so he can perform
the homomorphic operations required by Alice.

In this approach, all the encrypted communications are AES ciphertexts, ex-
cept for the homomorphically encrypted AES key. This is the main advantage
of the process, since the AES has a much smaller ciphertext expansion than any
FHE scheme (by construction).

In [GHPS12], Gentry et al. implemented the polynomial variant of BGV with
single key and made several optimisations aimed at evaluating the AES function
in the encrypted domain. The AES-128 algorithm, viewed as a Boolean circuit,
has a multiplicative depth of 40. Thus, they needed to take parameters that
would guarantee that 40 homomorphic multiplications (and some additions as
well) could be performed successively and that the result was still decryptable.

They ran their evaluation of the AES function on a machine with 256 GB
of RAM and the ten rounds of AES took over 36 hours. However, in their
configuration, a ciphertext could carry many plaintexts at once, so they could
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process 54 AES blocks at the same time, which makes the amortized rate 40
minutes per AES block. This performance has to be taken cautiously since they
used a machine with such a large memory. We have seen that public keys, switch
keys and ciphertexts are very large, so the 256 GB of RAM really makes a big
difference in the computations.

An implementation of AES-128 was made in the laboratoire LaSTRE and
executed in the encrypted domain using a platform improved from the one built
during this thesis. The underlying FHE scheme used is FV and the running
time is consequently smaller: 18 minutes for the AES-128 evaluation, with RAM
memory usage under 40 GB. More details about this implementation are provided
in [CDS15].

2.6.7 Other main implementations

An implementation of [Bra12] in its polynomial variant (based on the R-LWE
problem), similarly to [FV12], was created by a fellow researcher in the lab during
this thesis.

In [BLLN13a] Bos et al. propose a new FHE scheme based on [SS11] with im-
proved security and give some implementation results with practical parameters.

Finally, in [LN14], Lepoint and Naehrig implement both the aforementioned
schemes using the arithmetic library FLINT and were able to compare to two
FHE schemes in the same conditions.

2.6.8 Discussing FHE overhead

First part, theoretical point of view => per-bit overhead in terms of the security
parameyter λ, decrease of that overhead not only by the design of new schemes
based on different mathematical problems but also by more thorough security
analysis that leads to lower parameters.

Figure 2.1: The fast paced decrease of FHE schemes’ computational overheads
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Second part, practical results => per-bit overhead calculated for each op-
eration (key generation, encryption, homomorphic addition and multiplication,
decryption), overhead varies according to each FHE scheme, tricks when imple-
menting, starting to identify what scheme might be better with some use case
but not with another.
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Chapter 3

Other tools of cryptocomputing

Although homomorphic encryption is now a field of research on its own, it can
also be seen as a special case of multi-party computation. This latter field has
for goal to create protocols that enable two or more parties to jointly compute a
function of their inputs, while ensuring that each party’s inputs remain private.

A good and simple example of multi-party computation is the "millionaire
problem":

Alice and Bob want to know who is the richer, but none of them wants the
other to know exactly how rich the other is.

A generalisation of this problem is that Alice knows x and Bob knows y, and
they want to compute f(x, y) without Bob knowing x and Alice knowing y.

Homomorphic encryption is a powerful solution for multi-party computation
since Alice and Bob would simply have to encrypt their inputs. Then, one of
them would perform the computations over encrypted ciphertexts and finally
both would engage in a distributed decryption as described in [MSS11]. However,
this might not be the fastest and simplest solution since homomorphic encryption
is a more powerful primitive than needed for multi-party computation. Indeed,
homomorphic encryption does not require any communications between the par-
ties to enable computations in the encrypted domain, while most applications
of multi-party computation allow several rounds of communications between the
parties.

We will describe here a few tools enabling multi-party computation in use
cases where homomorphic encryption is probably not the most efficient solution.

3.1 Yao’s garbled circuits

Garbled circuits were introduced by Yao in 1989 and have been the subject of
many articles since then. The general issue addressed is these papers is multi-
party computation. Typically, they can resolve the "millionaire problem" or
enable

37
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Yao’s garbled circuits can achieve this confidentiality and give a correct result
for this problem in the semi-honest model1 .

3.1.1 Protocol overview

Let x1, ..., xn ∈ {0, 1} denote Alice’s data and y1, ..., y2 ∈ {0, 1} denote the ones
of Bob. Given f : {0, 1}2n → {0, 1}∗, the goal of this protocol is to compute
f(x, y) while preserving the confidentiality of x and y. One of the two parties,
for example Alice, will do the computations and perform the operations of the
garbled circuit, which will be built by the other party, here Bob.

Here are the steps defined in the protocol:
1. Bob builds a "garbled circuit", which is a "garbled" version of the

Boolean circuit that computes the function f . It is composed of tables and keys,
which are necessary to the computation of the garbled circuit.

2. Alice and Bob first engage in an oblivious transfer. In this step, Bob sends
to Alice the keys associated with x = (x1, ..., xn) and y = (y1, ..., yn). During the
transfer, neither Alice nor Bob learn anything about the other one’s data. At
the end of the oblivious transfer, Alice has the entry keys k1, ..., kn, kn+1, ..., k2n
associated with x and y. These keys allow Alice to decrypt the tables of the first
gates of the garbled circuit.

3. Alice executes the garbled circuit and computes f(x, y).
4. Alice sends (optionally) f(x, y) to Bob.

Step 1: building the circuit

Building a garbled circuit consists in creating for each wire w in the circuit,
a set of two keys k0w and k1w representing respectively the binary values 0 and 1.
For each two-fan gate, a table of 4 inputs is created, one for each possible input of
the gate: T(0,0), T(0,1), T(1,0), T(1,1). To compute these tables, we perform a double
encryption using the two keys associated to the two inputs of the gate and we
encrypt the key associated to the gate’s output.

Let E be the encryption scheme used. For w1 and w2 two input wires and w3

the output wire, we have:
T(i,j) = E(kiw1

, E(kjw2
, k

g(i,j)
w3 ),

where g(i, j) is the output bit of the gate when the input bits are i and j.
For example, the garbled circuit for an AND-gate will be:

1In the semi-honest model, we assume that both parties respect the protocol, but they try
to find confidential information by keeping all the computations performed during the protocol
and exploiting these data.
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T(0,1) = E(k0w1
, E(k1w2

, k0∧1w3
)

Using the two keys obtained previously, one can decrypt the table of the
current gate: in the example, the input bits are 0 and 1, represented by the keys
k0w1

et k1w2
. Using these keys, one can decrypt k0∧1w3

= k0w3
. As soon as the inputs

T(0,0), T(0,1), T(1,0) and T(1,1) are computed, they are randomly permuted so that
Alice cannot know which couple (i, j) is associated to the input she can decrypt.

Step 2: Oblivisous Transfer

For each wire w, Bob creates the keys k0w and k1w, which represent the input
bits 0 and 1 for this wire. He wants to send to Alice the key associated with
Alice’s datum σ ∈ {0, 1} without revealing to Alice the other key and without
Bob learning the value of σ.

1. Bob picks randomly a one-way permutation f with a trapdoor t and sends
f to Alice.

2. Alice picks a random aσ and computes bσ = f(aσ) as well as another
random b1−σ in the domain of f . She then sends (b0, b1) to Bob.

3. Bob uses t to compute ai = f−1(bi), then ci = P (ai) + kib, where P is a
"hard predicate"1 for f . Bob sends (c1, c2) to Alice.

4. Alice computes kσw = cσ +B(aσ).

1A hard predicate P (x) is easily computable using x but hardly computable using only f(x).
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At the end of these steps, Alice owns the key associated with her input bit
σ. These steps are repeated for all of Alice’s input bits. Bob then completes by
sending all the keys associated with his input bits.

Finally, Alice has the keys k1, ..., kn, kn+1, ..., k2n and will be able to start the
computation of the garbled circuit.

Step 3: Circuit computation

Let us consider a fan-in-2 gate G at the top of the circuit. Since Alice owns
a key for each input wire of the circuit, so she has two keys for the two inputs of
G and can decrypt one of the four table entries for the gate G. With this double
decryption, Alice gets the output key corresponding to the gate computation.

To ensure that Alice can decrypt correctly one (and only one) of the table
entries for each gate, the encryption scheme used must have the following prop-
erties:

- For two plaintexts x and y, a ciphertext encrypting x and a ciphertext
encrypting y are indistinguishible in a polynomial time.

- elusive range: the probability that a ciphertext under the key k1 is in the
domain (i.e. ciphertext space) of a different key k2 is negligible.

- efficiently verifiable range: given a ciphertext c, we can easily verify whether
c is in the domain of a key k or not.

These properties allow Alice to make sure that she gets an output key correctly
and efficiently.

3.1.2 Security

The garbled circuits are proven to be secure in the semi-honest model. However,
they can only be used once. Indeed, if a garbled circuit was used a second time
with different data, Alice (the one who did not build the garbled circuit) would
not have only one key per wire, and could possibly decrypt several entries in the
same table. This would give her information about the type of gate it is, and
thus on the function that the garbled circuit computes.

For example, let us consider a gate G with two input wires w1 and w2 and
an output wire w3. During the first execution of the garbled circuit, Alice learns
that the two bits s1 and s2 give in output a bit s3 (although Alice does not know
the values of the bits). During a second execution, she could learn that the bits
s̃1 and s2 give the same output bit s3. As the executions go by, Alice could find
out the tables of the gates in the garbled circuit.
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Alice could also learn information about the input data of Bob.
In order to resolve this issue, Gentry et al. proposed a rerandomization of

the garbled circuits in [GHV10b], which would make further executions of the
garbled circuits possible, while being significantly faster than building another
garbled circuit.

3.1.3 Performances

In [MNPS04], Malkhi et al. implemented Yao’s garbled circuits in their system
called Fairplay, which has its own procedural programmation language and its
own compiler.

One of the functions tested using garbled circuits was about searching in a
database:

Bob owns a database of 16 entries, each one being composed of 24 bits of data
and represented by a 6-bit key. Alice wants to retrieve confidentially one of the
entries by giving its specific key.

The tests were run using both local and extend networks (LAN and WAN).
The overall process of retrieving an entry took 0,49s with LAN and 3,38s with
WAN. Here is the detail of how much time took each step of the protocol:

Network Building the Communication Oblivious Evaluation Total
garbled circuit Transfer

LAN 40, 4% 2, 8% 54, 1% 2, 7% 0, 49s
WAN 5, 9% 64, 3% 29, 4% 0, 4% 3, 38s

An implementation using garbled circuits has also been made (in Java) in
our laboratory, with AES as the underlying encryption scheme. The goal is to
enable keywords search in the chapter summaries of the children’s book Alice in
Wonderland.

Building the garbled circuits took about 7 seconds per chapter (an average
chapter summary was about 120 words) and the computations of the garbled
circuits about 5 seconds per chapter.

3.1.4 Rerandomization

The idea of rerandomization is to create a new garbled circuit from an old one,
at a lesser cost. The new garbled circuit has to be unrecognizable for the party
who executed the old one, and even for the party who created it (in the case of
a rerandomization by a third party).

One solution for rerandomization is to perform permutations on the table
entries and the garbled circuit’s keys. A permutation has to be chosen for each
wire and the same permutation applied to the keys associated with each wire. In
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addition, the tables have to be modified so that the new keys allow to execute the
new tables. For each gate g, the table entries would then become the following
couples: (

Eπw1 (k
i
w1

)(δi,j), Eπw2 (k
j
w2

)(πw3(k
g(i,j)
w3 ⊕ δi,j))

)
For the table entries, which are encrypted, to pass on the permutations per-

formed on the keys, the encryption method used must have the adequate homo-
morphic properties.

This is what a gate of the new garbled circuit would look like:

  

1k w1

1


w1 w2

w3

gi , j 

2k w2

1
1k w1

0
 2k w2

0


3k w2

0 

In [BHHO08], one of the encryption method used has the following property:
one can, without decrypting nor knowing the secret key, transform Ek(x)

in a new ciphertext Eπ1(k)(π2(x)), where π1 and π2 are permutations of {0, 1}∗.
This encryption thus allows to transform the tables of the garbled circuit so

that the keys ki needed to compute it become π1(ki). Therefore they can get a
new garbled circuit without having to perform additional computations on the
tables, which is even better.

3.2 Functional Encryption
One of the main disadvantages of homomorphic encryption is that the crypto-
computer, i.e. the party doing the homomorphic computations, is completely
blind with respect to the encrypted data it processes. In the first place, this
unawareness is a security requirement, but it would be very useful for some ap-
plications to be able to reveal to the cryptocomputer some information or even
allow him to decrypt some ciphertexts.
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Imagine for example the case of videosurveillance, where we would like to
allow the detection of prohibited behavior or dangerous individuals, without al-
lowing to observe everything that is filmed by the videosurveillance camera. The
idea would be to encrypt the videos and design a private key that would only
decrypt data of the type "dangerous individual detected" or "everything is ok".
This is not possible with homomorphic encryption and even less with traditional
cryptography.

The concept of functional encryption was introduced to try to resolve this
issue. Basically, using a functional encryption scheme for some function f , an
authority owns a master secret key and can generate a private key skf which
allows its owner to compute f(x) from an encryption of x and nothing else.

For the last 10 years or so, various encryption schemes have been proposed,
among others are: identity-based encryption (IBE), attribute-based encryption
(ABE) or searchable encryption. These schemes have different properties like
allowing only to decrypting the messages intended to you, only decrypting if you
meet some criteria or searching through encrypted data.

However, functional encryption remains theoretical at the time of writing,
since all the existing functional encryption schemes carry prohibitevely large over-
heads.

Systèmes de cryptocalculs, compilation et support d’exécution Simon Fau 2016



44 CHAPTER 3. OTHER TOOLS OF CRYPTOCOMPUTING

Systèmes de cryptocalculs, compilation et support d’exécution Simon Fau 2016



Part II

Contributions: homomorphic
encryption, from theory to practice
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Overview
In Chapter 4, we list some of the possible applications of FHE and explain briefly
how it could be done. We will see that this work is not trivial since it requires to
dimension the computations to find where a homomorphic evaluation is realistic.

In Chapter 5, we present our experimental platform. From the implementation
of bitwise logical operators in the encrypted domain to data-dependant control
(to some extent), we explain in detail how we manage to perform computations
on encrypted data in the most efficient way.

Finally, we present in Chapter 6 our solution for performing private queries
on an encrypted database.
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Chapter 4

Possible applications of FHE

In this chapter, we try to identify realistic scenarios where homomorphic can
provide security and/or confidentiality. In some cases, it is about bringing addi-
tional confidentiality to new applications where confidentiality is not possible as
of today. In other cases, it is about offering to outsource computations or data
storage while guaranteeing the same security needs.

49
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4.1 Computing on outsourced confidential data

database

result

encrypted data

request

Figure 4.1: A need for preserving the privacy of outsourced data, while being able
to proceed to some requests on them. A typical example is keyword searching or
filtering on an outsourced encrypted email box.

4.1.1 Keyword searching

It is the simplest example we can think of. A text is encrypted and the result is
uploaded to an untrusted server. We want to be able to test the presence of a
word in that text, while keeping the text as well as the searched word secret. On
the other hand, we are willing to reveal the number of matches in the text.

Several solutions exist to address this issue, like encrypted keywords or gar-
bled circuits, but if we want to extend our use to the search of strings or even
regular expression, most of the solutions will not work anymore. FHE can pro-
vide a generic solution for searching on encrypted data. However, FHE usually
remains too heavy and faster answers have been proposed for many use cases such
as conjunctive search and Boolean queries on symmetrically-encrypted data, as
shown in [CJJ+13].
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4.1.2 E-mail filters

Another simple application is the filtering of an outsourced encrypted email box.
Being able to apply the spam filters or category labels depending on the sender
while keeping the confidentiality of your emails is very interesting. Computation-
naly, it is basically equivalent to a key-word search on encrypted data.

However, using only FHE, the client must decrypt all the results of the filtering
on his side, and therefore the e-mail sorting remains on the client side. Indeed,
when the server computes the filtering operations on encrypted e-mails, the results
are encrypted as well. The only way to make that the server could sort the e-
mails itself is by using Functional Encryption. As we mentioned in Section 3.2,
FE allows the client to reveal, for some function f and encrypted data x, the
(clear) result of f(x). In that case, the server could compute the spam function
and know the resulting Boolean. That way, the server could sort the e-mails as
spam or non-spam for example and there would be no additional computation on
the client side. We mention this as a possible application for FHE because, as
shown in [GKP+13], a Functional Encryption scheme can be built on an existing
FHE scheme.

4.1.3 Private queries on an encrypted database

An increasing number of services provided to Internet users involve cloud com-
puting. In this model, the personal data of a client is often outsource in distant
servers, which raises the issue of privacy. Still, using the cloud remains prefer-
able when the device has limited computing capacities or when the service is
only available by the cloud and cannot be offered inside the device for commer-
cial reasons (such as industrial confidentiality) or security reasons. Considering
the success of all sorts of connected devices with various computing capacities,
securing the cloud becomes a more and more significant issue everyday.

Fortunately, a lot of tools are available in cryptography to achieve this goal.
Lightweight cryptography, garbled circuits and homomorphic encryption are good
candidates for various scenarios involving cloud computing. In Chapter 6, we
propose our own solution for performing private queries on an encrypted database,
based on FHE.

Systèmes de cryptocalculs, compilation et support d’exécution Simon Fau 2016



52 CHAPTER 4. POSSIBLE APPLICATIONS OF FHE

4.2 Performing outsourced computation on confi-
dential data

data

encrypt decrypt

result

compute

encrypted data

Figure 4.2: A need for processing encrypted data in a scenario of outsourced
computation. For example, applying a one-shot enhancement algorithm on a
private image or, more futuristically, performing automatic on-the-fly translation
of private voice calls.

4.2.1 Medical data processing

The medical data of a patient are confidential. If the patient, the doctors lab-
oratory analysts are all in the same place, there is no problem to ensure this
confidentiality when performing diagnostic tests on the patient or monitoring his
vitals.

However, there are more and more cases when these conditions are not ver-
ified: for example for an outpatient, or when a patient’s samples have to be
sent to a more technologically advanced facility to be analyzed. In these cases,
homomorphic encryption can be a solution.
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Figure 4.3 shows various diagnostic tests used to detect cardiac issues. A
fictional yet realistic algorithm would be to compare the patient’s blood results
to the "high risk" values and determine if the patient is at risk.

Figure 4.3: Simple threshold tests in cardiology diagnostic from Wikipedia.

A patient could sample his blood at home using a connected sensor and send
his results to the hospital through a device capable of encrypting data. This
device would have to possess a pre-established private key and the corresponding
public key to encrypt and decrypt data using a homomorphic encryption scheme.
The patient’s blood results are thus homomorphically encrypted at home and
sent to the hospital that computes a medical algorithm in the encrypted domain.
It then sends the encrypted results for the patient to decrypt.

Of course, we are in that case talking about a more sophisticated algorithm
than simple thresholds tests. It would be particularly interesting if the medical
algorithm is private and thus the processing of the medical data cannot be done
directly by the patient.

This example and its practical realization will be discussed further in Section
7.1.4.
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4.3 Computing simultaneously on confidential lo-
cal data and outsourced confidential data

database

resultrequest

encrypt decrypt

encrypted request/result

Figure 4.4: A need for performing private requests on public data. A typical
example would be deep packet inspection without revealing e.g. the traced IP
address.

4.3.1 Targeted advertising

Various services such as Gmail or Facebook are using the personal information of
their users in order to target their advertising more accurately. This is the main
(or only) way of earning money, so anyone who would like to use such tools has
to be willing to give up completely on the confidentiality of everything he puts
on the service.

However, thanks to homomorphic encryption, their personal data could still
be used to profile the advertising accurately, thus ensuring the viability of the
commercial service, while still guaranteeing data confidentiality. The overhead
resulted from the homomorphic encryption has two main inconvenients: it will
decrease the speed of the service and increase the amount of computations on
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the server end. The first inconvenient is a price to pay for a user if he wants
to protect the confidentiality of his data. The second inconvenient, on the other
end, is the service provider’s burden, and we cannot really imagine that Google
or Facebook would be willing to waste a lot of computational power just for the
sake of the user’s privacy.

Anyway, the arrival of a competing tool offering basically the same services but
adding the user’s privacy may change this current state and force the providers
to include data confidentiality. We can also imagine two options for the same
service: a premium one, where the client pays for its privacy while enjoying the
exact same features, and a regular one where all the client’s data are transparent.

This solution could also allow said providers to go further in the ways of
targeting advertising. If installed on a smartphone, the service could use infor-
mation like the user’s geographic position to target advertising, like indicating
nearby restaurants. A lot of users are understandably reluctant to that kind of
use of their geolocalisation information today, but a guarantee on the protection
of their privacy might help them to accept these features.

4.3.2 Biometric authentication

The typical setting of this application is when a client owning a biometric passport
wishes to authentify without revealing his biometric data. The devices performing
the verification may be numerous (everywhere an authentication is needed) so if
it just reads transparently the biometric data of any passport owner, it is a major
confidentiality issue. A malicious user of a device could indeed gather a lot of
valid and useful biometric data.

Here again, homomorphic encryption provides a solution, at least theoreti-
cally. The biometric data in the client passport can be encrypted using a FHE
scheme as well as the data needed for authentication. Therefore, even if the device
is attacked or use maliciously, all useful data is protected by the homomorphic
encryption.

It is a realistic solution since the biometric data is usually lightweight and
the authentication computations are not very costly. In [BCP13], Bringer et al.
used homomorphic encryption (and garbled circuits as well in some settings) to
perform face recognition or fingerprint authentication in a matter of seconds.

4.3.3 Cloud-based biochemical reactor control

Homomorphic encryption’s security is mathematically proved so it can be used
in applications where security is critical (assuming the parameters are correctly
set).

In this scenario, a manufacturer is selling biochemical reactors to an operator
who would like to use it. The reactor has various functioning modes and the
operator may want to switch from one to another according to external factors
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such as weather, as well as measurements collected in the reactor. The functioning
mode of the reactor is to be updated every hour. Unfortunately, the algorithm
computing what the next mode should be is the property of the manufacturer,
who doesn’t want to reveal it to its client because of its commercial value. On the
other side, the operator wants to keep the data relative to its reactor confidential,
as some of it might be sensitive: production capacity, efficiency, etc.

If neither the manufacturer nor the operator accept to reveal some of their
secrets, there is apparently no way of making it work. This is where homomorphic
encryption can solve the problem.

Figure 4.5: An outsourced control of a biochemical reactor.

Indeed, the operator can encrypt the reactor’s sensitive data through homo-
morphic encryption and send it to the manufacturer who has the algorithm on
its private servers. This way, the manufacturer can compute the next functioning
mode without ever knowing the reactor’s data.

The functioning mode consists in 8 bits (which represents a couple of MB
when homomorphically encrypted) so it is not problematic to send such data
every hour to the reactor. The data needed as input for the algorithm computing
the next mode is about 10 Bytes and the time constraint is about 10 minutes.
Since the manufacturer’s algorithm is not heavy in terms of computation (quite
similar to the medical algorithm aforementioned), homomorphic encryption can
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provide a viable and secure solution in this scenario.

4.4 Signal processing
Processing signals in the encrypted domain is an important challenge. These
last years, more and more researchers designed specially tailored solutions dedi-
cated to many applications. Without being exhaustive, we can mention: privacy-
enhanced face recognition [EFG+09], privacy-preserving electrocardiogram signal
classification [BFL+11], privacy protection of biometric data [BBC+10, FSB10],
buyer-seller protocols [KT05, PEL07, KLC+08], and zero-knowledge watermark
detection [ARS05, PCC+06, TPPG06]. In parallel, other works developed some
general tools for processing some particular operations on encrypted signals,
that can be useful in many applications: e.g. Gram-Schmidt Orthogonaliza-
tion [FB10], DCT computation [BPB09a], DFT computation [BPB09b]. Fi-
nally, we can mention general discussions on the processing of encrypted sig-
nals [EPK+07] and attempts to find adequate representations for such processing,
as in [BPB10].

These publications rely on regular homomorphic encryption. Hence, when
needed, computing over encrypted data functions involving both additions and
multiplications is really tricky. It requires linearizing the computation in an ad
hoc manner and using multi-party computation techniques. This demands the
use of heavy protocols, designed precisely for each application. Moreover, these
protocols need many interactions between the parties to do the job correctly. For
more details on the issues of privacy in Signal Processing applications and on how
homomorphic encryption can help to solve them, we refer the reader to [LEB].

With an accessible (somewhat) FHE scheme, it would be possible to compute
polynomial functions directly, without linearization or multi-party computation
techniques. Of course, the cost to pay would be directly related to the complexity
of the (somewhat) FHE scheme used. But according to recent works, the com-
plexity of such schemes is currently dropping down faster than expected, even
one year ago. There is still lots of work to do to get a very efficient scheme, but
each step forward makes real applications closer than before.
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Chapter 5

Computing in the encrypted
domain

(Somewhat) FHE schemes allow to evaluate any (bounded degree) polynomial
from Zn2 to Z2 or, equivalently, any Boolean circuit. Recall that a Boolean circuit
consists in a directed acyclic graph where vertices are either inputs, outputs
or operators (and or xor) and where edges represent data dependencies. In
higher-level programming terms, working with (somewhat) FHE schemes restricts
us to programs or algorithms having bounded input and a control flow that is
independent of encrypted data. In particular, this a priori excludes (encrypted)
data-dependent if-then-else statements as well as loop termination criteria. At
first, this may seem highly restrictive. However, control depending on encrypted
data can still be performed to some extent, as we shall see in this section.

5.1 Basic bitwise logical operators

Let us first see how a FHE scheme permits the implementation of pretty much
any of the classical integer manipulation operators. Additions and multiplications
can be implemented following textbook recipes for n-bit adders and multipliers
(although choosing the most appropriate design for execution over a FHE scheme
is not so straightforward). Because multiplications (ands) are particularly costly,
the multiplier itself should be optimized when either both or one of the (en-
crypted) operands are Boolean, in which case there is only one layer of bit-level
multiplication (ands), or when one of the operand is available in the clear, in
which case the multiplication becomes a sequence of additions of shifted versions
of the encrypted domain input.

Bitwise logical operators (and, xor, or, etc.) turn out to be easy to implement
using the two basic cryptosystem operations.

Negation (minus) can be implemented using the textbook trick of 2-complementing:
xoring all “crypto-bits”|cbits in the sequel|with an encryption of 1, in order to
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complement them, and adding an encryption of 1 (with carry propagation) to
the result. This allows to implement a n-bit subtraction operator using an n-bit
adder. Also, when subtraction is implemented that way, the most significant cbit
provides the sign of the integer, a fact that can be known and used by the “cryp-
tocomputer” despite the fact that it has no access to the effective value of that
bit as it is itself locked in the encrypted domain.

5.1.1 Comparing encrypted integers

It is then also possible to perform comparisons hermetically in the encrypted do-
main. Although there are a number of ways to implement comparison operators
we have designed our operators so as to avoid multiplications (ands) as much
as possible. Our solution thus consists in starting from the less than operator
which can be implemented by subtracting the two operands and then by produc-
ing a result which consists of n− 1 leading encryptions of 0 followed by the most
significant bit of the subtraction result i.e., the aforementioned sign cbit (which
is in this case stored in the least significant bit). The greater than operator
is performed similarly. Note that following the execution of such an operator,
the “cryptocomputer” knows (legally) that there is only one bit of payload in
the result and can exploit that fact in further calculations (most importantly in
multiplier optimizations as already stated). The (Boolean) not operator can be
obtained by xoring the least significant bit with an encryption of 1. Having both
the less than, greater than and not operator, the equal to operator can be
performed as well (which allows to implement the δ function used in Equations
(5.2) and (5.3) below) in a fashion which is suboptimal with respect to the num-
ber of gates but much less involved in terms of multiplications than more classical
designs.

5.1.2 Bitshift operators

Lastly, left and right bitshift operators can also be obtained hermetically in the
encrypted domain. The left bitshift operator requires copying the relevant right-
most cbits of its operand and then (right) padding with as many encryptions of
0 as required. The right bitshift operator, on the other hand, requires copying
the relevant leftmost cbits of its operand and then (left) padding with as many
copies of the most significant cbit (i.e., the sign cbit) of that operand which lives
in the encrypted domain. Left and right rotations can also be implemented by
moving cbit around.
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5.2 Data-dependant control
Now that these classical operators are available, we can go back to the data-
dependant control issue. Let us consider a selection operator select : Z2 × Z×
Z −→ Z such that

select(c, a, b) =

{
a if c = 1
b otherwise.

Such an operator can then straightforwardly be rewritten as follows

select(c, a, b) = ca+ (1− c)b, (5.1)

Provided the implementations of addition, multiplication and negation men-
tioned earlier in this section, Eq. (5.1) translates as

select(c, a, b) = ca xor (not c)b.

5.2.1 A meaningful example: the bubble sort

As this construction allows to perform a conditional assignment operator, it en-
ables the implementation of a wide range of algorithms. As an example, consider
the following simple (although quite demonstrative) example of a bubble sort
algorithm which may be expressed as follows in C-style programming languages:

void bsort(int *arr,int n)
{
for(int i=0;i<n-1;i++)
{
for(int j=1;j<n-i;j++)
if(arr[j-1]>arr[j])
{
int t=arr[j-1];
arr[j-1]=arr[j];
arr[j]=t;

}
}

}

Using the selection operator of Eq. (5.1), this algorithm can be rewritten in a
suitable fashion for execution over a FHE scheme, that is, without requiring any
access to the value of the test arr[j-1]>arr[j]:

void bsort(int *arr,int n)
{
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for(int i=0;i<n-1;i++)
{
for(int j=1;j<n-i;j++)
{
int gt=arr[j-1]>arr[j];
int t=select(gt,arr[j-1],arr[j]);
arr[j-1]=select(gt,arr[j],arr[j-1]);
arr[j]=t;

}
}

}

Still, it should be emphasized that, expressed as above, the bubble sort algorithm
always achieves its worst-case O(n2) complexity: this is a price to be paid unless
one accepts leaking information about the sorted data.

5.2.2 Non linear operators

This bubble sort example is demonstrative and reveals that pretty complex al-
gorithms can be realized over a FHE scheme. Recall furthermore that sorting is
a naive algorithm for computing the median of a sample [Knu73], thus allowing
to construct non linear DSP primitives such as a median filter. At that point, it
should be clear that almost any non linear signal or image processing primitive
(thresholding, mathematical morphology operator, etc.) can be performed. As
a more advanced example, as long as one is able to homomorphically evaluate
the objective function of an optimization problem, at least in theory, then a full
blown simulated annealing algorithm, which is often used to solve inverse prob-
lems in both signal and image processing, can be performed homomorphically.
The selection operator allows to keep track of the best solution encountered while
executing the algorithm and also allows to perform the randomized temperature-
driven acceptance rule for a new solution

if u ≤ e−
c(ω′)−c(ω)

T then ω = ω′.

where u is chosen uniformly in [0, 1], ω and ω′ respectively denote the current
and the candidate solution, c(ω) denotes the cost of solution ω and T denotes
the temperature.

Now, if ω, ω′, c(ω) and c(ω′) need to remain private, we use encryptions of
these values, noted ω, ω′, c(ω) and c(ω′). In the encrypted domain, the condition
above then translates to:

enc(u) ≤ e−
c(ω′)−c(ω)

enc(T ) ,
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where ≤ is performed homomorphically as described earlier. Let us call α an
encryption of the Boolean associated to this condition. Thanks to the selection
operator, we can then perform (homomorphically):

ω = select(α, ω′, ω).

5.2.3 Array with encrypted indices

It turns out that array dereferencing and assignment with encrypted indices is
also possible. Indeed,

t[i] =
n∑
j=1

δ(i, j)t[j], (5.2)

with δ(i, j) = 1 if i = j and 0 otherwise. Similarly, array assignment (t[i] = v)
can be done by performing

t[j] = δ(i, j)v ⊕ (1− δ(i, j))t[j],∀j. (5.3)

Of course, both operations are done in O(n) rather than O(1) in the clear index
case. It should also be emphasized that, as a result of an assigment, all the array
entries change although all but one of them decrypts to the same value as before
the assigment. Again, this is a price to pay for index privacy.

Some of the above operators involve inserting encryptions of 0 or creating
multiple copies of certain cbit such as the sign cbit of a difference. Note that,
due to the probabilistic nature of the FHE scheme underlying the calculation, the
cryptocomputer loses track of these values as soon as they are involved in a further
operation. For example, adding (xoring) a cbit, say c0, known to be an encryption
of 1 (because the encryption has been performed by the cryptocomputer as part of
the data it injects in the calculation) to another cbit of unknown value necessarily
leads, by construction of the cryptosystem, to a result which has nothing to do
with c0 and, thus, which does not allow to (practically) infer any information
about the value of the cbit of unknown value.

5.3 Expressing high level algorithms
Having defined integer manipulation operators, we are now in theory ready to
express many high level algorithms in a natural fashion. This can easily be done
using the operator overloading features of object-oriented programming languages
such as C++, for example via a CryptoBit class provided with + and * operators
and by using it to build a CryptoInt class provided with the operators specified
in the previous section.

However, from a software engineering point of view, it is desirable to be able
to do more and in particular to be able from a single code to perform the following
tasks:
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1. Test and debug of an algorithm in the clear domain (either at the integer
level or at the bit level).

2. Characterize an algorithm to obtain dimensioning parameters for the un-
derlying FHE scheme (e.g., the multiplicative depth of the algorithm) and
predict performances.

3. Execute literally an algorithm in the encrypted domain.

4. Generate compilation data (e.g., the Boolean circuit topology) for further
optimizations of the calculation and later executions on an ad hoc, non
literal, execution support.

5.3.1 From the clear domain to the encrypted domain

Again, this can be achieved by using the type parameterization feature of object-
programming languages (such as the so-called templates provided in the C++
language) by creating an integer class parameterized by both a bit type and a
size. The bit type representing either clear bits (in which case the operators +
and * are trivial), instrumented clear bits (see ClearBit below) or crypto bits (in
which case the + and * operators are implemented with respect to the underlying
FHE scheme). As an example, in this framework, the bubble sort code sample of
the previous section simply becomes

template<typename integer>
void bsort(integer *arr,int n)
{
for(int i=0;i<n-1;i++)
{
for(int j=1;j<n-i;j++)
{
integer gt=arr[j-1]>arr[j];
integer t=select(gt,arr[j-1],arr[j]);
arr[j-1]=select(gt,arr[j],arr[j-1]);
arr[j]=t;

}
}

}

and this unique code is either invoked as

bsort<Integer<ClearBit,8> >(arr,n);

for execution in the clear in order to (e.g.) sort an array (of public size) of 8-bits
integers or as
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bsort<Integer<CryptoBit,8> >(arr,n);

in order to do the same thing in the encrypted domain (of course in that case
arr contains 8-bits integers encrypted at the bit level with the underlying FHE
scheme).

5.3.2 Revealing useful characteristics of an algorithm

Since, as already emphasized, we are dealing only with programs with a static
control structure, any execution in the clear domain allows to infer the relevant
characteristics of an algorithm. For example, ClearBit objects can be instru-
mented to track the depth1 and multiplicative depth of each bit involved in the
calculation. Straightforwardly, the depth of the result of either the xoring or
the anding of two bits of depth d1 and d2 is 1 + max(d1, d2) and the multiplica-
tive depth of the result of the xoring (respectively the anding) of two bits of
multiplicative depth d′1 and d′2 is max(d′1, d

′
2) (respectively 1 + max(d′1, d

′
2)). The

maximum depth and multiplicative depth can be tracked along an initial clear
domain execution so as to dimension the number of levels of a BGV-style cryp-
tosystem for later executions in the encrypted domain.

5.3.3 Generating compilation data

In addition, the ClearBit objects can be instrumented in order to explicitly build
the acyclic directed graph representing the Boolean circuit underlying the algo-
rithm. This is a very convenient representation at least for two reasons. First
it reveals a high degree of parallelism, as the so-called equivalence classes with
respect to a topological ordering of the graph vertices reveal (potentially) large
sets of operators which can be performed in parallel. This is crucial in order to
mitigate the performance hit of using homomorphic encryption. Second, this rep-
resentation allows to perform fine grain optimized scheduling of the calculations.

1By depth of a bit, we mean, similarly to the circuit depth, the length of the longest path
from the circuit inputs to the operator that computes the said bit.
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5.3.4 Overview of the compilation process

Figure 5.1: Compilation process.

Once we have all the tools described above, we can consider any program with a
static control structure. In order to run such a program in the encrypted domain,
we follow the process schematized in Figure 5.1:

• The first step is for the programmer to translate the initial code into an
equivalent C++ code using templates that can be instantiated with ei-
ther the ClearBit or the CryptoBit object. This rewriting of the initial
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code does not require a full understanding of the underlying structure and
therefore should be quite easily manageable by a programmer without any
cryptographic knowledge.

• The second step is the construction of the Boolean circuits. We use the
C++ template classes to slice integers into bits and then define all the
arithmetic operations supported by the encryption scheme bitwise. We al-
ready saw that from XOR and AND we are able to provide a lot of other
operations, so that is exactly what we put in our integer template. When an
operation is performed on a sliced integer, it creates a gate in the Boolean
circuit. This way, the execution of the program with our C++ templates
tracks all the bitwise operations and it builds our Boolean circuit, which is
equivalent to the initial program.

• The third step is to optimise our Boolean circuit. Indeed, we already men-
tioned that the execution in the encrypted domain when using FHE makes
the multiplication much more costly than the addition. The multiplicative
depth of the Boolean circuit is also a variable we want to minimize as much
as possible. It means that from our Boolean circuit, we seek to build an-
other (equivalent) Boolean circuit with decreased multiplicative depth and
fewer AND gates (we can consider XOR gates to be practically free com-
pared to AND gates). Minimizing the multiplicative depth of a Boolean
circuit is not a classic issue and there is no proven method to do so as far
as we know. In this thesis, we just began to look at this issue and tried to
identify what directions to take. However, fellow researchers of the labora-
toire LaSTRE used the ABC system for synthesis and verification of binary
sequential logic circuits to modify the Boolean circuits our way. As it is not
part of this thesis, we won’t elaborate on this work, but more details can
be found in [CDS15].

• The final step is the execution of the Boolean circuit either in the clear
or the encrypted domain. Every XOR or AND gate calls respectively the
addition or the multiplication available. In the clear it is simply the usual
binary addition and multiplication but in the encrypted domain it calls the
homomorphic addition and multiplication relative to the encryption scheme
chosen. These homomorphic operations that we described in the first part
are coded in C++ in the CryptoBit class. More than the addition and
multiplication of ciphertexts, all the operations needed to manage the noise
created when performing homomorphic operations have to be defined. This
part needs, especially the parameters setting (ciphertext space, modulus
size, etc.), requires a full understanding of the encryption scheme. When
the ciphertext space is a polynomial ring, such as it is for the schemes
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based on the R-LWE problem, a library like flint can be used efficiently to
implement the homomorphic operations.

The C++ code generated from the Boolean circuit can be set for a sequen-
tial or a parallel execution.

5.3.5 Static control structure

As we mentioned earlier, the use of FHE sets a limit for the possible algorithm
to run in the encrypted domain: these algorithms need to have a static control
structure.

However, a program with a static control structure can be seen as an obliv-
ious Turing machine. Indeed, an oblivious Turing machine is a Turing machine
where the movements of the heads are independant of the input and the tapes
are scanned, advanced and written to follow a predetermined sequence. In 1979,
Pippenger and Fischer [PF79] demonstrated that any computation that can be
performed by Turing machine with one-dimensional tapes in n can also be per-
formed by an oblivious Turing machine with two-dimensional tapes in O(n log n).

This means that any dynamic control program can be regularized as a static
control program. Although the overhead might be significant, we are theoretically
no longer limited in terms of programs that can be run in the encrypted domain
using FHE.

Systèmes de cryptocalculs, compilation et support d’exécution Simon Fau 2016



Chapter 6

Private queries on encrypted
database

In the cloud computing world, data confidentiality is an essential issue, yet very
complicated to address. Once a client’s data is outsourced, he usually has to
choose between accessing and managing its data easily and garantee the confi-
dentiality of the data. These criteria are most of the time mutually exclusive.

However, in the past few years, some solutions have been discussed and a few
even designed, to offer confidentiality to the client, yet letting him have some wig-
gle room to access and manage its data. Various cryptography tools have been
used in these solutions, and among them is additively homomorphic encryption.
We can cite for example the tool offered by Google (in beta version) called "en-
crypted bigquery client". This solution uses Paillier’s additively homomorphic
encryption scheme combined with encrypted keywords searching. Thanks to ho-
momorphic addition, the client is able to sum encrypted numbers (like prices) or
multiply an encrypted number by a clear constant (which is ultimately just an
addition and/or substraction of encrypted numbers).

On the other hand, fully homomorphic encryption has not been used that way
in the real world yet (to our knowledge).

6.1 Defining the use case: client/server model

A client owns a database that he would like to outsource to a distant server. In
our model, the server is not trusted in terms of confidentiality, but it will perform
the operations that it is asked to (honest but curious).

We suppose that client and server are communicating through the internet (or
a comparable channel speed-wise). The client does not need much computational
power, like a standard personal computer. We can also imagine the client using
a small device with little computational power but enhanced for some crypto-
graphic primitives. For example, a device that could perform accelerated modal
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multiplications would be enough on the client side even if its general computa-
tional power was lower than that of a personal computer.

6.2 Encryption of the database
In our solution, we only use bit per bit encryption, mainly for simplicity and
manageability purposes. Hence, before any encryption, each entry of the database
has to be decomposed into bits like we described in Chapter 5.

On the client, key generation operations are performed (once for all), which
gives a private key and a public key. Typically, a private key is a short vector
of integers, that the client will not reveal to anyone. The public key includes
an encryption key and a computation key. The encryption key is used to create
ciphertexts when given a plaintext (i.e. a bit here) and will be revealed to the
server in the first steps. Indeed, the server will need to create ciphertexts to
include its private data into the computation. For example, this is necessary if
the server offers to perform in the encrypted domain a private algorithm. The
computation key is used by the server to perform operations on ciphertexts. It
is intrinsic to the use of (leveled)-fully homomorphic encryption.

The client will then proceed the encryption of his database and upload it to
the server, as well as the public key.

6.3 Example of a private query
In order to describe a private query, we choose to take the example of a database
of IP addresses (32 bits of data).

A possible query of the client would be the following: the client wants to know
what are the IP addresses in his database which last 8-bit number is "255". We
detail now the steps corresponding to an private query in Figure 6.1 (inside the
dashed lines).
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Client Server

Key generation:
PrivKey, PubKey

Client

 PubKey

Database Encryption:
EncryptedDB

EncryptedDB

Query:
EncryptedQuery EncryptedQuery

Query Evaluation:
EncryptedBool,

EncryptedNbOfMatches

Encrypted Results 
Sorting:

SortedEncryptedBool

EncryptedNbOfMatches

SortedEncryptedBool

Decrypting Results:
SortedBool

Decrypting Results:
NbOfMatches

Figure 6.1: Flowchart of private querying on an encrypted database.

Query construction The query we take in this example is: "what are the IP
addresses in my database which last byte is 255?"

The integer "255" or in binary "11111111" is encrypted bit per bit using the
encryption key. The resulting ciphertexts are carried in a EncryptedQuery type
variable that is sent to the server. The client also sends (explicitly) a request for
comparing the last byte in each entry of his database with his encrypted query
variable.

Query evaluation The server navigates through the encrypted database and
performs the following operations:
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for int j = 0; j < N ; j + + do
CryptoBool is_a_match[j] = (!(req < data[j])) ∗ (!(req > data[j]));

end

where data[j] is an encrypted entry of the database, req is the previoulsy en-
crypted number "255" andCryptoBool is the type defined for encrypted booleans
(according to the encryption scheme).

The result is_a_match[j] is the encryption of either 0 (if data[j] is not a
match) or 1 (if data[j] is a match).

Optionnaly, the server can compute the (encrypted) number of matches for
all or part of the database and return it to the client. In that case, the server
simply performs:

Σj=n
j=0 is_a_match[j]

The result is an encrypted integer that the client can decrypt. The client can
then decide whether he wants to know all the entries that matched his request,
or just some part of it, or none. We assume for this example that the client asks
to the server for all the matches.

At that point, the client can ask the server for a number of results to get the
matches of his query, depending on how much information he is willing to reveal
to the server.

Encrypted Results Sorting On the client’s demand or automatically, the
server will now sort the results so that the entries that matched get on the top of
the list. In order to do that, it works on the encrypted indexes of the database
entries. It performs a bubble sort like algorithm where the condition for two
encrypted indexes Encryption(j1) and Encryption(j2) to be swapped are the
encrypted booleans is_a_match[j1] and is_a_match[j2].

Since this sorting has to be performed in the encrypted domain, it is done
according to process described in Chapter 5, using the select operator:

for int j = 0; j < N ; j + + do
for int k = 0; k < N ; k + + do

CryptoBool swap =
is_a_match[j] + is_a_match[j − 1] ∗ is_a_match[j];
CryptoInt buf = select(swap,Encryption(j − 1), Encryption(j));
Encryption(j − 1) =
select(swap,Encryption(j), Encryption(j − 1));
Encryption(j) = buf ;

end
end

Systèmes de cryptocalculs, compilation et support d’exécution Simon Fau 2016



6.3. EXAMPLE OF A PRIVATE QUERY 73

where swap is the encrypted boolean which value decides whether the two en-
crypted indexes will be swapped or not, CryptoInt is the type for encrypted
integers and select the operator discussed in Chapter 5.

We want to stress that the encrypted data in this step are all very small: they
are either Boolean or integers of size log2(N), where N is the total number of
entries in the database.

When these computations are done, the server will return the first n encrypted
indexes on the sorted list, where n is the number set by the client. For example,
if the client wants all the indexes that matched, he can set n to be the number
of matches he was able to decrypt earlier. However, he can also set n to a bigger
number, in order to hide from the server what was the number of matches for his
query. This strategy has to be established considering what degree of confiden-
tiality the client requires in a tradeoff with the speed at which he wishes to get
his results.

Note: By a previous agreement between the client and the server, the last one can
work directly with the encrypted entries of the database instead of the encrypted
indexes, thus returning to the client directly the encrypted entries that matched
the client’s query.

Decrypting Results The client decrypts the encrypted results (indexes or
entries) using the private key. In the homomorphic encryption scheme we use,
the decryption algorithm is very simple and can be significantly optimised since
the operations of decryption are very structurally predictible.

For example, using the homomorphic encryption scheme of [BLLN13a], the
decryption of a ciphertext takes under 5 ms on an 2.9 GHz Intel Core i7.

We want to stress that, in the query routine, all the operations performed
on the client side are quite simple, allowing the client to use a device with small
computational power. This issue will be discussed more extensively in the next
section.

Field of possible queries The field of possible queries is limited by the ho-
momorphic operations available: addition and multiplication of bits. Still, we are
able to perform:

• selecting encrypted entries using their encrypted indexes

• selecting encrypted entries with conditions defined using comparators such
as: equality, greater than, less than, bounded between two values.

• counting the number of entries that satisfy such conditions

• modifying entries that satisfy such conditions
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6.4 Dimensioning the computations and optimi-
sations

For our solution to work, we need to use a fully homomorphic encryption
scheme, or at least a leveled fully homomorphic encryption scheme. We chose to
focus on the leveled ones because they seem more promising, as bootstrapping
is complex and costly and the computations we need can be multiplicatively
bounded.

In a leveled FHE scheme, the sizes of the public and private keys depend on the
multiplicative depth of the computations, as discussed in chapter 1. Therefore,
we have to dimension precisely the computations that will be performed by the
server in order to generate adequate keys.

Since the multiplicative depth depends on values such as the size of the
database entries, the number of entries in the database and the type of query
we want to perform, the keys generated by the client will only be adequate for a
certain database and certain types of query.

However, in order to avoid having to generate another set of key each time
an entry is added to the database, we suggest to split the client’s database into
equal parts of N entries. Our goal is to find the most efficient N , split the
database into several N -entry databases and let the server work on each database
independantly.

The integer N is set so that it allows the server to perform the queries required
by the client, i.e. the resulting multiplicative depth of the whole process is low
enough for the encryption scheme to be able to handle such queries. Therefore the
choices for N are from 1 to the maximum number that keeps the multiplicative
depth low enough.

Using our platform and the ClearBit C++ class, we can find out what the
overall multiplicative depth is for different values of N and different queries.
Below is a table of the multiplicative depths of sorting the results of various
queries, with respect to the size of the integers in the database n and the number
of entries in the database N .

N Query depth size of an (integer) entry (bits) Sorting depth
5 4 4 18
5 8 8 26
10 4 4 28
10 8 8 36

Table 6.1: Multiplicative depth with respect to the query type, the size of the
DB and the size of an entry.
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Once we are settled with a leveled-FHE scheme and given the size of the
entries of the database, we can use this table to chose the best N , i.e., the N
for which the overhead computation due to the encryption will be the smallest.
Then, we have to split the database in parts of N entries and process these parts
independantly.

However, before we do this, we should optimise the computations performed
in the encrypted domain in a specific way.

Boolean optimisations Having in mind that the multiplicative depth is the
key value to dimension our computations, we want to decrease this value as
much as we can. Therefore, the optimisations that we seek are to eliminate the
homomorphic multiplications, i.e. the AND gates in the boolean version of the
algorithms.

This issue will be discussed more thoroughly in the next chapter but we can
already state that these optimisations will be crucial for this application. Indeed,
the multiplicative depth determines the most efficient number of entries N in each
subset of the database, so the smallest the multiplicative depth is, the smallest
number of subsets is needed. In addition, the Boolean optimisations will be all
the more effective that they apply to each subset.
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Chapter 7

Experimental platform and results

7.1 Evolution of the implementations and results

7.1.1 Implementation of vDGHV

This implementation was achieved during an internship previously to the thesis
and the point was to demonstrate experimentally that we were able to perform
(small) computations on encrypted numbers. The vDGHV scheme was chosen for
its simplicity even though it was not at the time the most promising encryption
scheme performance wise.

The goal was to achieve a 16-bit computer (i.e. that can add and multiply
integers as long as the result is smaller than 216− 1) that works in the encrypted
domain. The integers are encrypted using the homomorphic vDGHV scheme and
all the additions and multiplications are done on encrypted data.

For this implementation, the security parameter λ was set to 8 (when λ ≥ 10,
the key generation failed to complete). The size of the secret key p is η = λ2 and
of the public key γ = λ5.

This was a first implementation and we managed to multiply very small in-
tegers in the encrypted domain (smaller than 10). Although it had no practical
use, it was a good initiation to the implementation of a homomorphic encryption
scheme.

7.1.2 Experimental results with vectorial BGV (LWE)

We have developed a prototype of the compilation and execution infrastructure
sketched in the previous chapter and (seamlessly) interfaced it with two somewhat
fully homomorphic cryptosystem implementations: our own implementation of
the vectorial flavor of the BGV cryptosystem and a public domain implementation
of the Smart-Vercauteren one [PBS11] available on http://www.hcrypt.com.

Our prototype supports all the functions that have been presented in Chapter
5, including Boolean circuit generation and parallel execution.
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As far as the implementation of the BGV cryptosystem is concerned, in order
to avoid redundant level shifts (i.e., calls to Rescale on an i-th level ciphertext
when there already is a i− 1-th version of said ciphertext), we have implemented
a depth caching technique whereby each CryptoBit object remembers all its
different-level copies in a small associative data structure keyed by level. This
technique results approximately in speedups of around 45%.

Table 7.1 provides characterization data for a number of elementary algo-
rithms obtained using instrumented clear domain bit-level executions. For each
algorithm, the number of bit-level additions (# add), the number of bit-level mul-
tiplications (# mul), the depth, the multiplicative depth (× depth) as well as the
average number of operations per topological equivalence classes of the underly-
ing Boolean circuit (a number which gives an idea of the amount of circuit-level
parallelism and is labeled “av. //") are given. The multiplicative depth is neces-
sary to parametrize the BGV scheme (it tells how many levels we need to be able
to handle). The other figures can be used to try to predict the performances of a
homomorphic evaluation of these algorithms (or at least what we should expect
about the level of performances).

Parallelism is handled in two (so far exclusive) different ways, either internally
to the cryptosystem or externally at the Boolean circuit level.

Internal parallelism is handled via an OpenMP parallel for pragma in the
outer loop of the matrix product in SwitchKey (which as already emphasized is
the main hot point, performance-wise). This parallelization strategy results in
further speedups of around 41% on an average dual core laptop and seems to be
the optimal strategy for this kind of machines.

Table 7.2 provides experimental results obtained on a laptop with a 2 GHz In-
tel dual core processor, using both the aforementioned depth cache and SwitchKey
parallel for. The metrics given are the execution time (“CPU”), the percentage of
depth cache hits (“cache eff.”) as well as the size of the overall public key (“pubk
size”) which accounts for the size of the public keys of the cryptosystem at each
level and the key switching matrices. Lastly, for completeness sake, Table 7.2
also presents the execution times we have obtained on the same set of elementary
algorithms using the HCRYPT library of Brenner et al. (www.hcrypt.com).

External parallelism, i.e. parallelism at the Boolean circuit topological equiv-
alence classes level, is intended to target the execution of heavier algorithms on
higher-end multicore machines. Although we cannot report on a speedup mea-
surement, this external parallelism strategy has allowed us to perform a full 32-bit
256-point FFT in less than four hours on a 48 cores AMD-based NUMA machine,
a calculation which otherwise appeared to be undoable in “non prohibitive” time.

However, the reader should be warned that these results have been obtained
using cryptosystem parameter values which are presumably too small to provide
a non trivial level of security. They should thus be considered giving more of an
optimistic lower bound on the level of performance which can be achieved using
the BGV system rather than a conservative upper bound. In our opinion, despite
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b2 − 4ac (8 bits) b2 − 4ac (16 bits)
# add 332 1188
# mul 302 1126
depth 43 83
× depth 16 32
av. // 14.74 27.88∑10

i=1 t[i] (8 bits)
∑10

i=1 t[i] (16 bits)
# add 207 423
# mul 135 279
depth 24 48
× depth 8 16
av. // 6.75 14.62

b. sort (10× 4 bits) b. sort (10× 8 bits)
# add 1620 3240
# mul 1350 2790
depth 214 350
× depth 68 136
av. // 13.88 17.23

FFT (256× 32 bits)
# add 7291592
# mul 5296128
depth 674
× depth 166
av. // 18676.10

Table 7.1: Characterization of a few elementary algorithms.
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b2 − 4ac (8 bits) b2 − 4ac (16 bits)
CPU 0.406 s 4.124 s

cache eff. 46% 40%
pubk size 1.1 MB 7.8 MB
HCRYPT 58.9 s 3 m 39 s∑10

i=1 t[i] (8 bits)
∑10

i=1 t[i] (16 bits)
CPU 0.125 s 0.562 s

cache eff. 47% 47%
pubk size 196 kB 1.1 MB
HCRYPT 27.2 s 55.4 s

b. sort (10× 4 bits) b. sort (10× 8 bits)
CPU 5.219 s 18.110 s

cache eff. 64% 64%
pubk size 68.5 MB 525 MB
HCRYPT 5 m 5 s 9 m 41 s

Table 7.2: Execution times for a number of elementary algorithms on an average
dual core laptop.

the fact that BGV-style cryposystems enjoy very strong theoretical security prop-
erties, practical parameter setting for the BGV system as well as for its siblings is
a question that still needs additional theoretical investigations. These figures are
representative as they have been obtained with one of the first implementations
of a full blown fully homomorphic cryptosystem.

In addition to these results, we managed to execute the sum of 10 4-bit ele-
ments over the variant of the BGV scheme of [GHPS12] with larger parameters.
With an approximative 40-bit security level, the sum of encrypted elements took
about 1 minute (without parallelization). For information, a 64-bit security level
is considered suitable for small attackers, 80-bit is the smallest general-purpose
protection and 128-bit is considered a long-term protection. Testing our imple-
mentation with a higher security level on various algorithms and developping
compilation tools will be the subject of future work.

Finally, the execution times of HCRYPT have been obtained with default
parameters (which are also too small to provide a non trivial level of security),
as the underlying FHE scheme in our system. Something we were able to do
seamlessly (as soon as an HCRYPT-based CryptoBit class was implemented).
Although the performances obtained with our implementation of BGV appear to
be much better, we should still emphasize that these results are hard to compare
to those of Table 7.2 for two reasons. First, the HCRYPT library implements
the bootstrapping-based Smart-Vercauteren FHE scheme which is by no means a
potentially non prohibitive scheme. Second, we only have a limited understanding
of the extent to which parallelism is used in that library (as well as its numerous
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dependencies).

7.1.3 Experimental results with single-key polynomial BGV
(RLWE)

Table 7.3 provides experimental results obtained on a laptop with a 2 GHz In-
tel dual core processor, with or without the aforementioned parallel for. The
execution time (“CPU”), the parallel for speedup and the security level (λ) are
given. ∑10

i=1 t[i] (4 bits) threshold (4 bits)
CPU seq. 54.9 s 193.4 s
CPU // 36.3 s 140.2 s
speedup 33.9% 27.5%

λ 40 40∑10
i=1 t[i] (4 bits) b2 − 4ac (4 bits)

CPU seq. 77.6 s 158.9 s
CPU // 51.2 s 107.5 s
speedup 34% 32.3%

λ 80 40

Table 7.3: Execution times for a number of elementary algorithms with the poly-
nomial BGV.

These results show that we can achieve homomorphic computation with a
non-trivial level of security for circuits of small multiplicative depth, although
the overhead makes it still impractical. As we have said earlier, the ciphertexts
are vectors of thousands of integers and the experimentation revealed that the
memory issue is in fact more limitating than the cost of homomorphic operations
themselves, at least when working on an ordinary computer. While the (per
bit) computational overhead has decreased fastly over the past few years and is
getting closer or even better than other existing solutions, the ciphertext growth
still requires (too) much RAM memory. Indeed, we implemented a "depth cache"
process to avoid redundant Rescales, but it turns out the memory used by the
cache is slowing the computation more than the additional Rescales (at least
for the polynomial flavor of BGV and running on a basic computer).

In addition to these results, we were able to execute the same algorithms us-
ing the other two cryptosystems: the vectorial BGV and the Smart-Vercauteren
cryptosystem. For the latter, the authors used the public implementation of
the Smart-Vercauteren cryptosystem HCRYPT (www.hcrypt.com) to build a
CryptoBit class. This way, the high-level algorithms can be executed using any
cryptosystem, providing the writing of its own CryptoBit class. However, the
only results we were able to get with the vectorial BGV are for toy parameters
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(with respect to security). Similarly, the set parameters for HCRYPT are of triv-
ial security. For these reasons, the previous results cannot be compared with the
ones we give in this chapter, since we achieve here a level of security of 40 and
80 (against 10 or 15 at most for the previous results). That is why we decided
not to include them along with the results of the polynomial flavor of BGV, but
they can be found in [AMFF+13].

7.1.4 Experimental results with FV aka Brakerski12

In the context of this thesis, an implementation of the R-LWE setting of Braker-
ski’s scale-invariant scheme has been done. It is used as the underlying scheme
in our platform and thanks to the good performances of the scheme, it is possible
to run the medical algorithm discussed in Section 4.2 in the encrypted domain.

The security parameter is set at 128 according to the security analysis of
[FV12]. To make the example more realistic, the client side has been set up on
a tablet where you simply put the results of various tests. The tablet encrypts
homomorphically the medical data and sends them to the server that computes
the algorithm in less than 1 second.

Figure 7.1: A photo of the client application for the input and encryption of the
tests results
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Conclusion

During this thesis, we developped a platform for the execution of algorithms in the
encrypted domain using Fully Homomorphic Encryption. We showed that FHE
was already efficient for a range of algorithms with small multiplicative depth.
More recent experimentations on the same platform were done in the laboratoire
LaSTRE, including the execution of a medical algorithm on encrypted data in a
realistic runtime for practical use.

For the future of FHE, there is room for more efficiency but also some con-
cerns. First, the security, while based on strong mathematical problems, is not
exaclty stable in reality. Attacks on lattice-based cryptography are still evolving,
all the more since the interest for FHE has grown. Most of the practical parame-
ters found in the articles are calculated according to the then best known attacks
and need to be updated. The computational overhead caused by the use of FHE
has decreased a lot for the past few years, but the state of the art has yet to
stabilize for FHE to be a widespread real-life solution.

Secondly, while the cryptographic primitives have improved, there is very little
work about how reworking the algorithm (or the corresponding Boolean circuits)
can dramatically change the computation on homomorphically encrypted data.
In our platform, fellow researchers added the possibility to use the ABC tool to
modify the Boolean circuits so that the multiplicative depth would be decreased.
However, this work is just beginning and the automatic transformation of Boolean
circuits according to the specificities of FHE would bring a lot to the subject.

Finally, the possibility to use FHE conjointly with a lighter symmetrical en-
cryption scheme has not been very much explored outside the use with AES.
Since AES has a high multiplicative depth, it would be interesting to find an-
other encryption scheme with strong security but more "homomorphic-friendly",
or even design a new one. An article to appear is dedicated to the implementation
of FHE with a streamcipher and was done with the collaboration of Dr Carpov,
Fontaine and Sirdey [CCF+15].
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