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Directeur de thèse W. Ludwig Directeur de recherche (INSA de Lyon)

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2015ISAL0095/these.pdf 
© [N. R. Viganò], [2015], INSA Lyon, tous droits réservés



“Talk is cheap. Show me the code.”
Linus Torvalds

“Do or do not, there is no try.”
Yoda

“La sconfitta è un’eleganza per chi si arrende in partenza.”
(Losing is an elegant way out for those who surrender without even fighting)

Subsonica

Linus Torvalds is known to not be an easy person to deal with, and surely
he had arguments with many people over the last two decades. Nonetheless, he
is someone to be get inspiration from, and he surely has some wisdom to teach
with his famous sentences. Among the many he said, Linus’ sentence quoted on
this page is my all times favourite, because it embodies my spirit in life.
Only who gets his hands dirty and does the work that he envisions,
proves that he deserves to talk about it.
Moreover, in life there are only two results that matter: success and failure.
We would like to never fail, and it doesn’t matter how hard we tried, if that
happens, there is no excuse that can change or alleviate that. However, this
very fact is sometimes hiding also those cases where the will to succeed was
simply not strong enough.
Only who puts his maximum effort in what he does has a chance to
achieve something, and maybe one day to succeed.
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Abstract

This Ph.D. thesis is about the development and formalization of a six-dimensional
tomography method, for the reconstruction of local orientation in poly-crystalline
materials. This method is based on a technique known as diffraction contract
tomography (DCT), mainly used in synchrotrons, with a monochromatic and
parallel high energy X-ray beam. DCT exists since over a decade now, but it
was always employed to analyze undeformed or nearly undeformed materials,
described by “grains” with a certain average orientation.
Because an orientation can be parametrized by the used of only three num-
bers, the local orientation in the grains is modelled by a six-dimensional space
X6 = R3 ⊗ O3, that is the outer product between a three-dimensional real-
space and another three-dimensional orientation-space. This means that for
each point of the real-space, there could be a full three-dimensional orientation-
space, which however in practice is restricted to a smaller region of interest
called “local orientation-space”.
The reconstruction problem is then formulated as a global minimisation prob-
lem, where the reconstruction of a single grain is the solution that minimizes a
functional. There can be different choices for the functionals to use, and they
depend on the type of reconstructions one is looking for, and on the type of a
priori knowledge is available. All the functionals used include a data fidelity
term which ensures that the reconstruction is consistent with the measured
diffraction data, and then an additional regularization term is added, like the
l1-norm minimization of the solution vector, that tries to limit the number of
orientations per real-space voxel, or a Total Variation operator over the sum
of the orientation part of the six-dimensional voxels, in order to enforce the
homogeneity of the grain volume.
Chapter 1 is a detailed introduction to the most important concepts of this
thesis, needed to understand the proposed model and its results. It will also
explain and formalize some implementation details and mathematical choices
performed during the development of DCT and of its six-dimensional extension.
Chapters 2 and 3 include two published articles and provide an introduction
of a few pages, where the key concepts of these publications are introduced and
analyzed, and the theory of the six-dimensional model is developed on synthetic
diffraction data (phantoms).
Chapters 4 and 5 include publications which are still in the review process.
The main difference to chapters 2 and 3 however, is the fact that the articles
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included in chapters 4 and 5 are about the application of the model to experi-
mental data, with a validation against electron back-scatter diffraction (EBSD)
measurements. Moreover, the problems analyzed in chapters 4 and 5 represent
both milestones in the evolution of DCT towards the ability to analyze more
complicated and interesting scientific cases.
Chapter 4, more specifically, analyses the case of a NaCl sample, where the
grains have the tendency to form sub-grains, making the indexing and recon-
struction of its poly-crystalline structure more challenging than the samples
affected by smooth orientation gradients.
The results from this article show an excellent agreement of the local orienta-
tions with the EBSD map, and some of the reconstructions were even performed
from raw-data, without any type of segmentation of the diffraction spots.
While the single grain reconstructions using the six-dimensional framework (6D-
DCT) show its ability to improve the shape of the reconstructed grains, com-
pared to the previous 3D-DCT, it was also demonstrated in chapter 4 that the
algorithm can reconstruct clusters of grains, by defining a bounding box in the
six-dimensional space and using the raw-data associated to it. This fact suggests
that not only we can surpass the single grain reconstructions, by being able to
reconstruct entire regions inside a volume, with a clear benefit for highly tex-
tured samples, but more importantly that indexing is not a limiting factor any
more for the reconstruction of deformed samples. The indexing of all the grains
in a textured region or the indexing of all the sub-grains of a bigger grain is
not needed anymore, because it is possible to reconstruct and successively index
those regions by first running the reconstruction algorithm over their containing
bounding box in the six-dimensional space.
Chapter 5, instead, analyses the case of a 1% plastically deformed micro-
structure in Ti 4% Al alloy, giving rise to the formation of deformation twins.
As it will be mentioned in chapter 5, twins are crystallographic domains that
are very difficult to deal with, because they tend to be thin plate-like regions,
which usually don’t give rise to high signal intensities, and when they do, their
shape is blurred by other non idealities of the acquisition system, like the point
spread function (PSF) of the detector itself. The six-dimensional framework was
able to improve the reconstruction of twinned grains, compared to the previous
three-dimensional implementation, by introducing the possibility to reconstruct
the twins together with their parent grain, and other technical improvements,
like the possibility to estimate the structure factor of the analyzed materials,
and to introduce a model for the PSF of the detector in the reconstruction prob-
lem.
Chapter 6 provides an outlook on the possible future extensions and applica-
tions of the developed reconstruction framework and the remaining limitations
of the technique.
When first published, the results on synthetic data from the third chapter high-
lighted some key features of the proposed framework, and showed that it was
in principle possible to extend DCT to the reconstruction of moderately de-
formed materials, but it was unclear whether it could work in practice. The
following chapters instead confirm that the proposed framework is viable for
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reconstructing moderately deformed materials, and that in conjunction with
other techniques, it could also overcome the limitations imposed by the grain
indexing, and be applied to more challenging textured materials.
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Abstract (Français)

Contexte Cette thèse de doctorat introduit un modèle et un algorithme six-
dimensions pour la reconstruction des orientations cristallines locales dans les
matériaux polycristallins. Le modèle s’applique actuellement aux données obtenues
avec un rayonnement synchrotron (faisceau parallèle et monochromatique), mais
il est également possible d’envisager des extensions aux instruments et sources
de laboratoire (polychromatique et divergent).
Le travail présenté est principalement une extension de la technique connue sous
le nom de “Diffraction Contrast Tomography” (DCT) qui permet la reconstruc-
tion de la forme et de l’orientation cristalline des grains dans des matériaux
polycristallins (avec certaines restrictions concernant la taille et le nombre total
de grains ainsi que la mosäıcité intragranulaire).
La DCT utilise un rayonnement X dur (haute énergie) et monochromatique,
associé à un dispositif expérimental simple pour l’acquisition des données :
comme en tomographie X classique (par absorption), l’échantillon est placé
sur une platine tournante et un détecteur bidimensionnel est positionné juste
après l’échantillon dans l’axe du faisceau. Quand les grains entrent en con-
dition de diffraction, pour les différents angles de rotation ω, ils produisent
des tâches de diffraction sur le détecteur. La forme et l’orientation des grains
sont ensuite déduites par une châıne d’analyse qui passe par la segmentation
des tâches, suivie par l’identification des paires de Friedel. Chaque paire de
Friedel fournit un vecteur diffraction et une recherche systématique parmi cette
liste de vecteurs permet alors de déduire les positions et orientations des grains
présents dans l’échantillon (indexation). D’autre part, en DCT on suppose
toujours qu’il n’y a que peu ou pas de désorientation intragranulaire et qu’il
est donc possible de considérer les tâches de diffraction comme des projections
géométriques du volume des grains. La forme tridimensionnelle de chaque grain
peut donc être reconstruite par des méthodes algébriques. En effet, en l’absence
de désorientation intragranulaire, les tâches de diffraction ne s’étalent que peu
dans l’espace réciproque, et leur projection (2D) dans la direction ω est directe-
ment accessible.
Or cette approche simple, dans laquelle chaque grain est décrit par son orien-
tation moyenne, perd sa validité quand le matériau s’éloigne des caractéristiques
idéales, notamment si la désorientation intragranulaire dépasse quelques dixièmes
de degrés. À chaque différente (sous-)orientation correspond alors une géométrie
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de diffraction légèrement différente. Par conséquent, pour un grain déformé
avec des orientations locales très proches, on obtient des tâches déformées qui
s’étalent et se superposent sur plusieurs images consécutives de l’acquisition,
produisant ainsi des volumes tri-dimensionnels nommés diffraction blobs.
L’information de la désorientation locale à l’intérieur d’un grain est alors encodée
dans la distribution 3D d’intensité de l’ensemble des tâches associées à un grain.
Dans ce mémoire nous proposons un modèle et des algorithmes qui permettent
de remonter à cette information par la résolution du problème inverse associé.
La méthodologie développée permet de s’intéresser à des micro-structures con-
tenant des grains présentant une désorientation intragranulaire qui peut alors
atteindre plusieurs degrés.

Formulation six-dimensionnelle Pour décrire l’orientation locale des grains
nous avons choisi un modèle qui incorpore à la fois l’information spatiale et
l’information d’orientation. Comme suggéré dans [24], la description la plus
complète de ce type de problème nécessite une représentation dans un espace à
six-dimensions qui donne la possibilité d’associer une distribution d’orientation
(ODF) à chaque position dans l’échantillon. L’espace six-dimensionnel pro-
posé est simplement le produit dyadique d’un espace réel à trois dimensions (de
type euclidien), et d’un espace des orientations à trois dimensions représenté
par un sous-volume de l’espace de Rodrigues (et englobant l’ODF du grain en
question). Le paramétrage de Rodrigues a beaucoup d’avantages, et il permet
notamment une approximation euclidienne pour des petites régions de l’espace.
Pour travailler avec cet espace à six-dimensions nous avons choisi de faire un
échantillonnage régulier sous forme de voxels cubiques dans les deux sous-espaces
associés à la position et à l’orientation. Plus précisément : à chaque orientation
échantillonnée dans l’espace des orientations, nous associons un volume dans
l’espace réel ou, réciproquement : à chaque voxel dans l’espace réel, nous as-
socions un volume (ODF) dans l’espace des orientations. La quantité scalaire
associée à un voxel dans l’espace six-dimensionnelle correspond au “pouvoir
diffractant” de cet élément.
En utilisant cette représentation discrète de l’espace à six-dimensions, il est pos-
sible de représenter mathématiquement la reconstruction comme un problème
inverse : on résout un système linéaire. Par contre, pour atteindre une résolution
suffisamment fine, l’échantillonnage dans l’espace des orientations peut contenir
de 103 à 104 degrés de liberté. On se retrouve alors avec une énorme quantité
d’inconnues sans pour autant avoir augmenté le nombre de mesures.
Dans la pratique, il est plus convenable de transformer la résolution d’un tel
système linéaire fortement sous-déterminé par un problème de minimisation
d’une fonctionnelle incluant d’une part la norme l2 du résidu du système linéaire
(data fidelity term) et d’une autre part un nouveau terme qui permet de régulariser
le problème en sélectionnant parmi l’infinité des solutions celle qui minimise
la fonctionnelle combinée. Deux exemples pour ce deuxième terme, utilisés
dans ce travail, sont la norme l1 du vecteur des inconnues (le volume de re-
construction en six-dimensions), et la “variation totale” (TV) du volume tri-
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dimensionnelle obtenue par la somme de toutes les orientations pour chaque
voxel dans l’espace réel. L’ajout de ces contraintes permet de sélectionner des
solutions physiquement significatives. Notons toutefois que le choix de la fonc-
tionnelle peut dépendre de caractéristiques micro-structurales des échantillons.
Par exemple dans le cas de la norme l1 on va favoriser des reconstructions
avec un caractère plus parcimonial (peu d’orientations actives par position dans
l’espace réel), alors que dans le cas de la variation totale du volume réel on va
favoriser des reconstructions avec une distribution d’intensité homogène.
Pour la solution numérique de ce type de problèmes, il est important de choisir
un algorithme adapté à ce type de fonctionnelles. Pour la solution des problèmes
contenant la norme l1, on a plusieurs possibilités. Un des algorithmes le plus
connus est FISTA [2], dont une implémentation est présentée dans le deuxième
chapitre. Une autre possibilité est d’utiliser des algorithmes de type Chambolle-
Pock [7], qui offrent la flexibilité d’adapter, et donc d’optimiser, l’algorithme à
la fonctionnelle choisie.

Structure du manuscrit Le premier chapitre de ce mémoire sert comme in-
troduction et rappel d’un certain nombre de concepts nécessaires à la compréhension
des chapitres suivants, présentés sous forme de collection d’articles scientifiques.
On peut y retrouver une introduction à la description mathématique des rota-
tions et orientations cristallographiques dans les matériaux, les détails essen-
tiels de la DCT, le formalisme utilisé en optimisation mathématique et appliqué
aux problèmes de reconstruction tomographique, ainsi qu’une revue succincte
d’autres approches expérimentales et algorithmiques pour la caractérisation de
l’orientation cristalline dans les matériaux polycristallins.
Dans les chapitres suivants le modèle six-dimensionnel est introduit et d’abord
évalué sur des données synthétiques (chapitres 2 et 3) avant d’être appliqué
à des données réelles provenant de micro-structures de plus en plus exigeantes
(chapitres 4 et 5). Chacun de ces chapitres comprend une introduction succincte
qui décrit le contenu et les résultats principaux de l’article associé. Dans ces
parties on peut également trouver des résultats et des détails supplémentaires
qui n’ont pas pu être inclus dans les versions soumises aux journaux scientifiques
pour des raisons de restrictions de longueur et/ou nombre de figures.

Chapitre 2: Le modèle initial Le deuxième chapitre présente la première
formulation du modèle qui n’était pas encore complète, et qui essaie de résoudre
le problème de l’orientation locale à partir de projections bi-dimensionnelles
(résultant de la sommation des tâches de diffraction).
Comme l’étalement des tâches de diffraction en ω encode l’information de la
désorientation dans la direction de l’axe de rotation, il s’avère difficile de résoudre
par grains cette composante spécifique de la déformation.
Même si cette première tentative n’a donc pas pu aboutir aux résultats recherchés,
elle a démontré qu’il était possible d’améliorer les reconstructions obtenus avec
le modèle tri-dimensionnel, utilisé jusqu’à présent. Nous avons donc pu valider
l’idée de base que des algorithmes visant à résoudre (régulariser) des problèmes

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2015ISAL0095/these.pdf 
© [N. R. Viganò], [2015], INSA Lyon, tous droits réservés



12

fortement sous-déterminés en exploitant le fait que la solution recherchée doit
avoir un caractère parcimonial, étaient applicables au problème inverse de la
reconstruction d’orientations locales à partir des tâches de diffraction.

Chapitre 3: Le modèle complet Dans cet article, publié dans Journal
of Applied Crystallography, nous avons amélioré le modèle introduit dans le
chapitre précédent et nous démontrons sur des données synthétiques qu’il est ef-
fectivement possible de reconstruire l’orientation cristalline locale dans un grain.
Le modèle utilisé est similaire à celui introduit dans le chapitre précédent mais
en y ajoutant l’information de rotation ω de l’échantillon, dans la structure des
tâches de diffraction des grains.
En effet, utiliser l’information codée dans la rotation ω permet d’augmenter la
quantité d’information (le nombre de mesures) d’un ordre de grandeur. Grâce
à cette information supplémentaire, il devient possible de remonter à la com-
posante de désorientation dans la direction de l’axe de rotation.
Dans cet article nous avons légèrement changé le type de régularisation utilisé,
en passant d’une minimisation de la norme l1 de la transformé en ondelette de
Haar du volume six-dimensionnel du chapitre précédent, à la minimisation di-
recte de la norme l1 du volume six-dimensionnel. Nous avons choisi ce nouveau
type de fonctionnelle pour favoriser des reconstructions à caractère parcimonial,
en accord avec la nature de la déformation de l’échantillon modèle (phantom)
utilisé dans ce chapitre.
Nous avons testé l’algorithme et le modèle dans plusieurs conditions, en essayant
d’identifier et sonder ses limites en termes de ressources informatiques et de la
résistance au bruit. Les résultats ont été très convaincants et encourageants.

Chapitre 4: Une première application à des données expérimentales
et extension aux données brutes Le chapitre quatre propose une première
application du modèle six-dimensionnel à des données réelles : il peut être con-
sidéré comme le résultat le plus important de ce travail de thèse. L’article inclus
dans ce chapitre a été soumis à Physical Review Letters, et traite de la recon-
struction d’un échantillon de halite (NaCl).
La micro-structure de cet échantillon, caractérisé par la présence de sous-joints
de grains à faible désorientation (de 1 à 5 degrés) rend l’indexation (i.e. le
processus qui identifie le centre de masse et l’orientation des grains à partir de
tâches de diffraction) beaucoup plus difficile que dans d’autres types de micro-
structure. Les différents sous-domaines peuvent selon les cas, générer des clichés
de diffraction qui sont parfois séparés (plusieurs tâches segmentées), parfois su-
perposées (une seule tâche connectée) sur le détecteur.
De ce fait, certains sous-grains ne peuvent être trouvés par la procédure d’indexation
DCT classique, et la reconstruction (assemblage) de l’ensemble de l’échantillon
présente des régions vides. Comme nous le montrons dans ce chapitre, il est
possible d’identifier et reconstruire ces zones manquantes en sélectionnant une
région d’intérêt dans l’espace six-dimensionnel et en y associant la région cor-
respondant dans l’espace détecteur. Notons que l’identification de la région
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d’intérêt est facilitée par la sous-structure mentionnée de l’échantillon qui présente
des parties dans l’espace réel caractérisées par des orientations très proches
dans l’espace des orientations. En utilisant les positions et orientations des
sous-grains indexées il était possible de définir une région contenant toutes les
orientations concernées, incluant aussi les orientations des sous-grains non in-
dexées.
La comparaison avec une cartographie EBSD acquise sur une surface latérale
confirme bien que cette nouvelle approche permet de reconstruire et identifier
des sous-grains manquants. Soulignons que dans ce cas on utilise les images
brutes, sans segmentation ni indexation préalable pour procéder à la reconstruc-
tion de la région d’intérêt. Une autre différence par rapport à la formulation
du chapitre précédent est l’utilisation d’une fonctionnelle modifiée visant à fa-
voriser l’uniformité de l’intensité reconstruite.
L’amas de sous-grains le plus grand reconstruit dans l’article joint à ce chapitre,
si considéré comme un seul grain, avait des dimensions considérées prohibitives
lors de la rédaction de l’article du chapitre précédent, et grâce à l’avancement
des technologies des ordinateurs modernes, sa reconstruction est devenue pos-
sible un an après. En considérant que les technologies des ordinateurs sont
en constante évolution et que le modèle proposé ici est capable de reconstru-
ire la micro-structure dans des sous-régions confinées sans avoir recours à la
phase de segmentation et d’indexation utilisée en DCT conventionnelle, on peut
penser que dans un futur proche il sera possible de reconstruire des régions en-
core plus grandes et plus déformées, contournant ainsi certaines des limitations
intrinsèques à la DCT avant l’introduction du modèle six-dimensionnel.

Chapitre 5: Reconstruction en présence de macles de déformation
Le cinquième chapitre présente un article traitant de la reconstruction d’un
échantillon d’alliage de titane contenant 4% d’aluminium, de structure hexag-
onale, caractérisé par une micro-structure et un type de déformation assez
différent par rapport au cas traité dans le chapitre précédent. Les grains présentent
des gradients d’orientation et dans certains grains favorablement orientés par
rapport à l’axe de déformation macroscopique, on observe la formation de mâcles
(i.e. domaines avec une relation d’orientation avec le grain parent) sous forme
de fines plaques. En optimisant les paramètres d’acquisition, on montre qu’il
est possible d’identifier ces mâcles à partir d’épaisseurs de l’ordre du micron.
La reconstruction des mâcles pose des problèmes supplémentaires par rapport
au cas analysé dans le chapitre précédent. Bien que le grain parent et ses
mâcles soient caractérisés par des orientations moyennes qui sont liées par des
opérations de symétrie, ces orientations ne se rapprochent jamais dans l’espace
des orientations. La reconstruction simultanée nécessite alors la gestion de
régions d’intérêt séparées, ce qui ne pose effectivement pas de problème ma-
jeur dans le cadre du modèle six-dimensionnel. Néanmoins, la reconstruction
simultanée du parent et de la mâcle nous a obligé à baser la normalisation des
intensités des différentes réflexions sur des bases physiques (tels que le facteur
de structure et la géométrie de diffraction). De plus, les faibles épaisseurs et
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intensités des tâches liées aux mâcles nécessitent un traitement qui tient compte
de la réponse impulsionnelle du détecteur. Moyennant ces améliorations, nous
démontrons qu’il est possible d’aboutir à une reconstruction en bon accord avec
la cartographie EBSD, acquise sur le même échantillon déformé à un pour-cent,
présentant des désorientations intragranulaires de l’ordre du degré et des mâcles
de déformation d’une épaisseur (sub)-micrométrique.

Conclusions et perspectives Le modèle six-dimensionnel et les algorithmes
d’optimisation présentés dans ce mémoire transforment la technique de la tomo-
graphie par contraste de diffraction, auparavant limitée à des microstructures
caractérisées par une faible désorientation intra-granulaire, en la rendant ap-
plicable à des matériaux présentant des microstructures plus complexes et/ou
difficiles à reconstruire. La description de la microstructure par “grain” (décrit
par son orientation moyenne) est remplacée par une description six dimension-
nelle, i.e. une fonction de distribution d’orientation tri-dimensionnelle pour
chaque voxel réel du volume reconstruit.
Les résultats des chapitres 4 et 5 montrent qu’il est effectivement possible de
reconstruire la déformation locale dans des échantillons modérément déformés
dans le cadre de la tomographie par contraste de diffraction. Cette variante de
la méthodologie de diffraction X tri-dimensionnelle (3DXRD) est basée sur une
illumination en champ plein (2D), ce qui rend l’acquisition au moins un ordre
de grandeur plus rapide comparée à d’autres variantes de cette méthodologie.
Nous avons également démontré que le modèle six-dimensionnel peut reconstru-
ire et indexer des grains, en utilisant les images brutes associés à une région
d’intérêt dans l’espace à six-dimensions. Ce dernier résultat est intéressant
dans le sens où il offre une possibilité d’éviter les étapes de segmentation et
d’indexation, concepts connus pour être vulnérables en présence de désorientations
intragranulaires importantes. A titre d’exemple nous mentionnons le cas de
matériaux fortement texturés, où l’on peut trouver de nombreux grains avec
des orientations très proches, difficiles a traiter dans le cadre de la DCT clas-
sique.
Nous terminons par indiquer de possibles pistes de développement, qui consis-
tent pour la plupart à l’adaptation du modèle six-dimensionnel à d’autres types
et géométries d’acquisition :

Multirésolution Il semblerait intéressant d’associer des mesures “far-field” à
chaque acquisition “near-field”. Les mesures “far-field”, où le détecteur se
trouve à une distance plus grande mais possède des pixels plus larges, sont
caractérisées par une résolution angulaire supérieure et une résolution spa-
tial inférieure par rapport aux mesures de “near-field”. Cela permettrait
d’évaluer plus facilement l’ODF de chaque grain, et d’utiliser cette infor-
mation comme contrainte supplémentaire dans la fonctionnelle utilisée lors
de la reconstruction six-dimensionnelle. Vu le nombre de degrés de liberté
réduit dans l’espace réel, il serait également envisageable, de considérer
l’extension du modèle sur tout l’espace d’orientation, au moins pour le
cas d’une illumination réduite (tranche par tranche, donc un problème
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5D). Cette stratégie rendrait les étapes de segmentation et indexation
obsolètes et rejoint les idées et efforts actuellement poursuivit par nos
collègues Danois.

Sources de laboratoire Il a déjà été possible d’appliquer la DCT tradition-
nelle dans ce contexte, mais uniquement pour des matériaux modèles (ab-
sence de désorientation intragranulaire). Le récent développement d’un
projecteur polychromatique compatible avec les algorithmes ici présentés
[33], devrait rendre possible l’application de la DCT six-dimensions à des
échantillons modérément déformés.

Topo-tomographie Dans cette configuration un vecteur de diffraction est
aligné avec l’axe de rotation, qui lui-même est incliné en position de Bragg,
ce qui permet d’acquérir un grand nombre de projections pour le grain
sélectionné - mais avec une résolution spatiale bien supérieure à la DCT
[22, 30]. En utilisant le modèle proposé ici il sera désormais possible de
s’intéresser à des grains déformés.
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Abstract (Dutch)

Deze doctoraatsthesis gaat over de ontwikkeling en formalisering van een meth-
ode voor zes-dimensionale tomografie voor de reconstructie van de lokale oriëntaties
in poly-kristallijne materialen. Deze methode is gebaseerd op een techniek die
bekend staat als diffractie contrast tomografie (DCT), vooral gebruikt in syn-
chrotrons, met een monochromatische, parallele, hoog-energetische X-stralen
bundel. DCT is reeds in gebruik sinds meer dan 10 jaar, maar tot nu toe werd
de techniek altijd gebruikt om niet-gedeformeerde of nauwelijks-gedeformeerde
materialen te analyseren, die kunnen worden beschreven als “korrels” met een
zekere gemiddelde oriëntatie.
Omdat een oriëntatie geparametriseerd kan worden met slechts drie getallen kan
de lokale oriëntatie in deze korrels worden gemodelleerd als een zes-dimensionale
ruimte X6 = R3 ⊗ O3, die wordt gevormd door het uitwendig product tussen
de drie-dimensionale reële ruimte en de drie-dimensionale oriëntatie ruimte. Dit
betekent dat er voor elk punt in het reële ruimte sprake is van een volledige drie-
dimensionale oriëntatie-ruimte, hoewel deze in de praktijk vaak beperkt wordt
tot een deelgebied dat de lokale oriëntatie-ruimte wordt genoemd.
Het reconstructieprobleem kan worden geformuleerd als een globaal minimalisatie-
probleem, waar de reconstructie van een enkele korrel overeenkomt met de
oplossing die een bepaalde functie minimaliseert. Hiervoor kunnen verschillende
functies worden gebruikt, afhankelijk van het soort reconstructie waarnaar men
op zoek is en de beschikbaarheid van voorkennis over het object. Al deze func-
ties bevatten een data-consistentie-term, die ervoor zorgt dat de reconstructie
overeenkomt met de gemeten diffractie-data. Vervolgens wordt een tweede term
toegevoegd als regularisator, zoals de l1-norm van de oplossingsvector die er-
voor zorgt dat het aantal oriëntaties per voxel wordt geminimaliseerd, of een
totale-variatie operator over de som van de voxel-oriëntaties, die leidt tot een
zo homogeen mogelijk voxel-volume.
Hoofdstuk 1 bevat een gedetailleerde beschrijving van de belangrijkste con-
cepten van deze thesis, die benodigd is om het voorgestelde model en de resul-
taten te begrijpen. Tevens zullen enkele implementatie-details en wiskundige
concepten worden gëıntroduceerd en geformaliseerd, die bij de ontwikkeling van
DCT en de zes-dimensionale uitbreiding daarvan werden ontwikkeld.
Hoofdstuk 2 en 3 bevatten twee gepubliceerde artikelen en daarnaast een
introductie van enkele pagina’s. Hier wordt het zes-dimensionale model on-
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twikkeld en gevalideerd op synthetische diffractie-data van fantomen.
Hoofdstuk 4 en 5 bevatten twee artikelen die zich nog in het review-proces
bevinden. In deze hoofdstukken wordt het werk van hoofdstuk 2 en 3 uitge-
breid naar het werken met experimentele diffractie-data, waarbij de techniek
wordt gevalideerd met metingen verkregen uit electron back-scatter diffraction
(EBSD). De problemen die worden geanalyseerd in hoofdstuk 4 en 5 kunnen
worden gezien als mijlpalen bij het ontwikkelen van DCT naar een breder toepas-
bare techniek, die geschikt is voor het beantwoorden van nieuwe interessante en
gecompliceerde wetenschappelijke vragen.
Meer specifiek gaat het in hoofdstuk 4 om de analyse van een NaCl sample,
waarbij de korrels de neiging vertonen om deel-korrels te vormen, waardoor de
indexatie en reconstructie van de poly-kristallijne structuur uitdagender is dan
bij samples die slechts gladde oriëntatie-veranderingen bevatten. De resultaten
uit dit artikel laten een uitstekende overeenkomst zien met de resultaten verkre-
gen uit de EBSD-techniek. Bovendien werden enkele reconstructies uitgevoerd
op de ruwe meetdata, zonder eerst segmentatie van de diffractie-spots toe te
passen. De reconstructies van individuele korrels met de zes-dimensionale tech-
niek (6D-DCT) laten zien dat de techniek de vorm van de korrels beter recon-
strueert dan met de eerdere 3D-DCT techniek. Daarnaast wordt in hoofdstuk
4 aangetoond dat de 6D-DCT techniek kan worden toegepast op clusters van
korrels, waarbij een deelgebied in de zes-dimensionale ruimte wordt gedefinieerd
en de ruwe meetdata hiermee wordt geassocieerd. Deze resultaten suggereren
dat we niet alleen de techniek kunnen opschalen van individuele korrels naar
de reconstructie van een volledig gebied (met duidelijke voordelen voor samples
die veel textuur bevatten), maar, nog belangrijker, dat de indexatie-stap niet
langer een beperkende factor vormt voor de reconstructie van gedeformeerde
samples. De indexatie van alle korrels in een gebied dat textuur bevat, of de
indexatie van alle sub-korrels in een grotere korrel, is niet langer nodig omdat
het mogelijk wordt om eerst de reconstructie uit te voeren en pas daarna die
gebieden te indexeren, door de reconstructies uit te voeren in de betreffende
deelgebieden van de zes-dimensionale ruimte.
In hoofdstuk 5 wordt een casus uitgewerkt van een 1% plastisch gedeformeerde
microstructuur in een Ti 4% Al legering, waardoor gedeformeerde tweeling-
structuren ontstaan. Deze tweeling-structuren zijn kristallografische domeinen
die uitdagend zijn om mee te werken, omdat ze bestaan uit dunnen plaat-achtige
structuren die weinig signaal opleveren. Zelfs als er wel voldoende meetsignaal is,
worden de metingen vaak uitgesmeerd door andere verstorende factoren, zoals de
puntspreidingsfunctie (PSF) van de detector. Met de nieuwe zes-dimensionale
techniek is het mogelijk om de reconstructie van de tweeling-structuren te ver-
beteren ten opzichte van de eerdere 3D-DCT techniek, omdat het mogelijk wordt
om de twee deelkorrels samen met hun “ouder-korrel” te reconstrueren. Daar-
naast zijn er andere technische verbeteringen zoals de schatting van de structu-
urfactor van de geanalyseerde materialen, en de introductie van een model voor
de PSF in het reconstructieprobleem.
Hoofdstuk 6 blikt vooruit op de mogelijke toekomstige uitbreidingen en toepassin-
gen van het voorgestelde raamwerk voor zes-dimensionale reconstructie en be-
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handelt de beperkingen van de techniek. Toen de resultaten van hoofdstuk 3,
met synthetische data, voor het eerst werden gepubliceerd, werd aangetoond
dat het in principe mogelijk was om DCT uit te breiden naar een reconstructie-
techniek voor matig-gedeformeerde materialen. Het was toen echter onduidelijk
of deze techniek ook in de praktijk goed zou werken. In de daaropvolgende
hoofdstukken wordt bevestigd dat de techniek inderdaad bruikbaar is in de
praktijk voor het reconstrueren van matig-gedeformeerde materialen. Boven-
dien wordt aangetoond dat als de 6D-DCT techniek wordt gecombineerd met
andere technieken, de beperkingen van de indexatie-stap kunnen worden omzeild
en toepassing op uitdagende materialen, met textuur, mogelijk worden.
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Chapter 1

Introduction

1.1 Orientations

Orientations are a key concept in the modelling and description of physical
properties and quantities like distortion and deformation. The representation
of orientations and rotations is the same problem, because orientations are ro-
tations with respect to a reference initial state [12].
The first ever parametrization of orientations was presented by Euler in his paper
“Formulae Generales” [10] (1776), and it goes by the name of Eulerian angles.
This representation is still used nowadays, especially in crystallography, where
the three angles that define an orientation are also used as settings of a three-
circle goniometer, and the reference orientation is simply the one for which these
settings are (0, 0, 0). However, this first eulerian representation suffers from at
least two non negligible disadvantages: the asymmetry of the parameters, since
they are in no sense equivalent to each other, and the pathological behavior of
the parametrization close to the origin, where all the problems arising from the
non-commutativity of the rotations should disappear.
In the very next published paper, called “Nova Methodus”, Euler described the
first of these two disadvantages and presented a new parametrization based on
the couple axis of rotation and associated angle of rotation [11]. This new rep-
resentation is actually the base for a whole new class of parametrizations. If
we now call the unitary axis of rotation n̂ and the corresponding rotation angle
φ, we would then have four parameters to describe rotations, with an extra
equation that connects three of those parameters: the one enforcing the axis
modulus equal to one. It is then an obvious choice to combine them together
in one entity, by multiplying n̂ by some function of φ like:

1. n̂φ

2. n̂ tan 1
2φ = R

3. n̂ sin 1
2φ = Q
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Expression (1) is the simplest but also the least suitable for any kind of cal-
culation, while the (2) is the representation given by Rodrigues in 1840, and
R is nowadays called Rodrigues vector. Finally the (3) is the definition of the
Quaternion parameter vector, named Q, which represents the vector part of a
quaternion, while the scalar part would be Q0 = cos 1

2φ. One interesting dif-
ference between the mappings (2) and (3) is that the latter is finite, enclosed
within the sphere of radius one in a four-dimensional space, while the former
extends to infinity. However, for crystal lattices with more than triclinic sym-
metry, this is not a problem, because there is a certain degree of redundancy
in the representation, that makes every remote point equivalent to much closer
points to the origin.
Finally, one common disadvantage of all the representations (1), (2) and (3),
is that they are not homochoric, which means that for a completely random
distribution of orientations we don’t have equal probabilities in equal volume
elements in different points of the orientation space defined by these orienta-
tions. In the end, this is not a big problem because they are sufficiently nearly
homochoric close to the origin.
Having introduced a few of the possible orientation parametrizations, we will
now take a step back and focus a bit more in depth on another great tool know
as Orientation Matrices which are, as we said before, nothing else than rotation
matrices. While orientation matrices are not particularly useful for the pur-
pose of orientation mapping, they are instead very precious when it comes to
computations in the orientation space, and especially when dealing with high
symmetry crystal lattices.

1.1.1 Rotation matrices

We know from elementary physics that while rotations about the same axis do
commute, rotations about different axes don’t. For instance, given a coordi-
nates reference system XYZ, a rotation about the z -axis by 30◦, represented
by Rz(π/6), followed by a rotation along the same axis by 60◦ is equal to
Rz(π/3)Rz(π/6) = Rz(π/2) = Rz(π/6)Rz(π/3). But if instead we consider
two 90◦ rotations about the x -axis and the z -axis, Rx(π/2)Rz(π/2) will not be
equal to Rz(π/2)Rx(π/2).
To give a more quantitative demonstration of the previous statement, we will
now work out quantitatively the manner in which rotations fail to commute
when they are not about the same axis. Let’s first recall that in three-dimensions
we represent rotations using 3 × 3 real, orthogonal matrices. Taking a vector v,
when we rotate it, the new vector will be called v′, and the old and new com-
ponents will be related by the orthogonal matrix R, in the form of: v′ = Rv,
having RRT = RTR = 1, where the superscript T stands for a transpose of a
matrix. Being R an orthogonal matrix, the l2-norm of v′, defined as ||v′||2 will
be equal to ||v||2.
If we now take a rotation about the axis z by an angle φ, we will now assume
that the rotation applied to an object will affect only the object and leave the
reference system unchanged, while the angle φ is positive when the rotation is
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1.1. ORIENTATIONS 27

counterclockwise along the rotation axis direction. We then verify that:

Rz(φ) =




cosφ − sinφ 0
sinφ cosφ 0

0 0 1


 (1.1)

The rotations which follow the approach used to build equation 1.1 go sometimes
under the name of “active rotations”, while the ones where it is the reference
system that rotates, are called “passive rotations”. Let’s now consider an in-
finitesimal rotation around the z -axis:

Rz(ε) =




1− ε2

2 −ε 0

ε 1− ε2

2 0
0 0 1


 (1.2)

where the terms of order ε3 and higher are considered negligible. We will also
have:

Rx(ε) =




1 0 0

0 1− ε2

2 −ε
0 ε 1− ε2

2


 (1.3)

when rotating along the x -axis and:

Ry(ε) =




1− ε2

2 0 ε
0 1 0

−ε 0 1− ε2

2


 (1.4)

when rotating along the y-axis. If we now compute Rx(ε)Ry(ε) and Ry(ε)Rx(ε),
we will obtain:

Rx(ε)Ry(ε) =




1− ε2

2 0 ε

ε2 1− ε2

2 −ε
−ε ε 1− ε2

2


 (1.5a)

Ry(ε)Rx(ε) =




1− ε2

2 ε2 ε

0 1− ε2

2 −ε
−ε ε 1− ε2

2


 (1.5b)

From equations 1.5a and 1.5b, we obtain:

Rx(ε)Ry(ε)−Ry(ε)Rx(ε) =




0 −ε2 0
ε2 0 0
0 0 0


 = Rz(ε

2)− 1 (1.6)

from which we finally prove that rotation matrices about different axes do not
commute, unless the rotation is so small that terms of order ε2 are negligible.
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Let’s now consider the fact that while rotation matrices have 9 entries, the or-
thogonality constraint RTR = RRT = 1 corresponds to 6 linearly independent
equations, being the matrix RRT symmetric, and so we have that we only need
three independent parameters to define a rotation matrix. This means that for
each point in one of the previously introduced representations of orientations
we have one and only associated rotation matrix, and as a consequence one and
only orientation matrix.
If we now consider that the effect of successive rotations can be obtained by
the multiplication of the corresponding rotation matrices, we can observe that
the set of all multiplication operations with these orthogonal matrices forms a
group. This means that the following requirements for orthogonal matrices like
orientation matrices are satisfied:

1. The product of two orthogonal matrices is still an orthogonal matrix:

(R1R2) (R1R2)
T

= R1R2R
T
2 R

T
1 = 1 (1.7)

2. The associative law holds:

R1 (R2R3) = (R1R2)R3 (1.8)

3. The identity matrix 1 - physically corresponding to no rotation - is defined
by:

R1 = 1R = R (1.9)

and it is a member of the class of all orthogonal matrices.

4. The inverse matrix R−1 - physically corresponding to rotation in the op-
posite sense - is defined by:

RR−1 = R−1R = 1 (1.10)

and it is also a member.

This group goes under the name of O(3), where O stands for orthogonal and 3
for three-dimensions [14].
From these properties, we deduce that we can easily compute the result of
successive rotations by simple matrix multiplication of their rotation matrices.
So, if a rotation R2 is applied after an initial rotation R1, the result will be
R12 = R2R1.
On the other hand, if we now consider two rotation matrices R1 and R2 as the
orientation matrices that bring an object from the same initial orientation to
two different orientations, the misorientation between the two final orientations
is defined as M12 = RT

1 R2, and it is the rotation matrix that brings from the
orientation associated with R1 to the orientation associated with R2.
We conclude by introducing a parallelism with the euclidean spaces, to better
understand these key operations with the orientation matrices. We could indeed
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see a similarity between the successive multiplications of rotation matrices and
the sum of two elements in an euclidean space, with the important difference
that the operation among rotation matrices is not commutative, and so, given
R1,R2 ∈ O(3) and r1, r2 ∈ Rn we have that: r1 + r2 =⇒ R2R1 and r2 +
r1 =⇒ R1R2, but while r1 + r2 = r2 + r1, R2R1 6= R1R2. For what concerns
misorientations instead, the parallelism looks stronger, because the subtraction
operation is not commutative in the euclidean spaces, which brings us to: r1 −
r2 =⇒ RT

2 R1 and r2 − r1 =⇒ RT
1 R2.

1.1.2 Rodrigues space vs. Euler space

We will now first look at the type of orientation space generated by the parametriza-
tion using Euler angles, and expose its shortcomings. By then going in more
depth with the description of the Rodrigues type of parametrization, it will be
clear why we will use it throughout the rest of the book.
The Euler angles define three rotations, which perform the desired rotation when
applied in the correct order. The most common convention is the so called ZXZ,
which performs the three rotations, with associated angles φ1, ψ, and φ2, first
around the z -axis by the angle φ1, then around the rotated x -axis by the angle
ψ, and finally around the rotated z -axis by the angle φ2.
The first observation about the Euler-space is that it is periodic, with period
2π:

R (φ1 + 2π, ψ + 2π, φ2 + 2π) = R (φ1, ψ, φ2) (1.11)

but also:

R (φ1 + π, 2π − ψ, φ2 + π) = R (φ1, ψ, φ2) (1.12)

which defines a glide plane in ψ = π (a reflection plane, with a simultaneous
displacement of π in both φ1 and φ2). The immediate result from this is that
the determination of the Euler angles from the corresponding rotation matrix is
not straightforward, because it depends on the considered range of angles that
define. In fact, the asymmetric unit of the Euler space, which is the smallest vol-
ume of the space that contains all of the structural and symmetry information
of the space itself, and which is in bijective correspondence with the rotation
matrices, depends on the choice of the allowed ranges for the Euler angles.
Another disadvantage of the parametrization given by the Euler angles is that
different rotations about the same fixed axis lay on curved lines in the orien-
tation space. These disadvantages sum with the other problems identified in
section 1.1.
The orientation space generated by the Rodrigues parametrization, following its
definition, is not periodic and it has only one singularity for the rotation angle
close to ±π. Moreover, all the rotations with the same axis of rotation lay on
straight lines, which are called geodesics [12].
Now, the rotation matrix R associated with a given Rodrigues vector r =
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n̂ tan 1
2φ can be obtained by the formula:

R =
1

1 + r · r (I (1− r · r) + 2 (r⊗ r + I × r)) (1.13)

where r⊗ r is the outer product of the vector r with itself, and I × r is the so
called tensor product of a tensor with a vector, which means that (I × r)ij =∑
k

∑
l εkljIikrl, where εikj is the permutation symbol or Levi-Civita symbol

[19]. The Rodrigues vector associated to a rotation matrix can instead be com-
puted using the following formula per each component i:

ri = −
∑3
j=1

∑3
k=1 εijkRjk

1 +
∑3
j=1 Rjj

(1.14)

These two transformations between the orientation matrices and the Rodrigues
vectors will be denoted by the operators R = L (r) and r = L−1 (R).
As for the rotation matrices (section 1.1.1), successive rotations are also rep-
resented in Rodrigues space. Given the vectors r1, r2 ∈ R3, where R3 is the
Rodrigues space for rotations in three-dimensions, the result of successive rota-
tions rf = (r1; r2) is given by the following formula:

rf = (r1; r2) =
1

1− r1 · r2
(r1 + r2 + r1 × r2) (1.15)

which is the result of the application of a rotation represented by r2 after the
rotation represented by r1. An obvious observation is that rotations still cannot
be simply added in the Rodrigues space, but also that for small rotations, where
at least one of the two vectors r1 or r2 tends to zero, the dot product and the
vector product in equation 1.15 tend to zero as well, making the result of the
operation tend to the sum of the two vectors.
This last observation suggests that the operations observed for the rotation
matrices in section 1.1.1, find their equivalent in Rodrigues space, thanks to
equation 1.15, so that the misorientation between two orientations represented
again by the vectors r1 and r2 can be computed as m12 = (r2;−r1).
Another interesting observation is obtained if the vector r2 is decomposed in the
two parts r2 = tan

(
1
2φ2

)
n̂2 = λn̂2, which results in the possibility for equation

1.13 to be rewritten like the following:

rf = (r1; r2) = r1 +

(
λ

1− λr1 · n̂2

)
· (r1 · n̂2 · r1 + n̂2 − r1 · n̂2) (1.16)

which is obviously divided in two parts, one that is a scalar function of λ, and
the other one that is a vector completely independent of λ. Moreover, this
also confirms that the result of successive rotations about the same axis stay
on that very same axis, which in the Euler space was only true for orientation
trajectories passing through the origin.
If we now suppose to apply a translational coordinate change in the Rodrigues
space, which corresponds to a rotation of the reference system in real space,
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and let the Rodrigues vector rz be the one corresponding to the shift, we would
bring any vector r ∈ R3 to a new position r′ ∈ R3 with the simple formula
r′ = (−rz; r). This lets us conclude that straight lines transform into straight
lines and that planes transform into planes.
Finally, the angular distance of two points in Rodrigues space will be represented
by the following scalar function:

φ = 2 tan−1 | (r2;−r1) | (1.17)

1.1.3 Crystals and crystal symmetries

We now apply the concepts introduced above to the study of crystallographic ori-
entations. A crystal is mathematically defined as a Bravais lattice that has a cer-
tain basis associated to each point of the lattice, where the Bravais lattice is de-
fined as an infinite set of points that follow the same geometric pattern through
the whole space. By the definition of Bravais lattice, the points of a crystal
lattice can be described in three dimensions by the formula l = naa+nbb+ncc,
where l gives the position of each point of the Bravais lattice that supports the
crystal lattice, the numbers na, nb and nc are integer numbers and the vectors
a, b and c are the basis vectors of the lattice. Even if the Bravais lattices are
supposed to be infinite, if we compare the size of the atoms that build a crystal
lattice, which for our materials are the basis of the lattice, and the minimum
size of volume elements allowed by the resolution used in the experiments, the
approximation of infinite lattice can still be considered valid.
Then, the points of the basis, being located on a regular grid, for certain di-
rections will appear to be organized on two-dimensional planes, called lattice
planes. The vectors perpendicular to the lattice planes will then be called plane
normals. To define a lattice plane, it is enough to identify three lattice points
that belong to the plane, and a common way to represent a family of lattice
planes all parallel to each others, is to use the so called Miller indexes. These
indexes are simply the inverse of the three intercepts with the coordinates axes
of the closest plane to the origin of the coordinates for a given family of lattice
planes. Following the Miller indexes convention, sometimes lattice planes are
identified by the three indexes (h, k, l), and the negative version of the indexes
is usually represented with an “over-line”: (h̄, k̄, l̄). All the different permuta-
tions and negations of the three indexes will always generate lattice planes of
the same kind, that will go under the name of an hkl-family.
Broadly speaking, crystalline objects can be seen divided in different categories,
depending on the structure of the crystal: they are called mono-crystals when
the crystal is the same everywhere and with the same orientation through-out
the entire object, while if the crystal is divided in domains with different crystal
orientations, they would be called poly-crystals, and the domains would be then
called grains. At the same time, if the volume inside the grains has everywhere
the same crystal orientation, the grains will be defined as undeformed, while if
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they are affected by some sort of deformation, it is possible to quantify this de-
formation by the means of orientation spread. Moreover, if the samples present
multiple types of crystal structures, and so different types of lattices l, they will
be identified as multi-phase materials.
Given a reference coordinate system, and a crystal lattice that is described by
three basis vectors, the orientation of the lattice (read its basis vectors) with
respect to the reference coordinate system can be represented using the tools
introduced in section 1.1.2. However, crystal lattices can also be characterized
by the presence of specific properties called symmetries, which in turn will be
influencing the properties of the used orientation space. Since both the deter-
mination of the crystal structure and the crystal orientation can be determined
by means of diffraction measurements (i.e. X-rays, electrons, and neutrons), we
will now briefly introduce the basic properties and implications of the different
symmetry operations on the types of crystals and the diffraction patterns they
will generate.
Two objects are defined as congruent if there is a correspondence between each
point of one object and one point in the other object, and if the distances among
the points are the same for both objects. As a consequence, the corresponding
angles will have the same absolute values. Congruences are then divided in two
different categories: direct and opposite, where for the first, the corresponding
angles have same signs, while for the second they have opposite signs [13].
The operations that belong to the first category are the following:

1. translation: an equal displacement applied to all the points in the same
direction.

2. rotation: a rotation of the same angle applied to all the points about the
same axis.

3. rototranslation (or screw movement): the combination of the two pre-
vious movements.

The operations that belong to the second category are the following:

1. inversion: all points are reflected with respect to the same point.

2. reflections: all points are reflected with respect to the same plane.

3. rotoinversion: the combination of a rotation and an inversion with re-
spect to one point of the axis.

4. the combination of a reflection and a translation along the reflection plane;
the plane is known as glide plane.

5. rotoreflection: the combination of a rotation and a reflection with re-
spect to the plane perpendicular to the rotation axis.

If now we apply one of those operations to a crystal lattice, and the lattice
stays the same, that operation will be called a symmetry operation for the given
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lattice, while the points, axes and planes with respect to which the symmetry
operations are performed, will be called symmetry elements.
Not all these operations will be influencing our description of the crystallo-
graphic orientation, because the translation (1) in itself doesn’t influence the
crystallographic orientation. Moreover, rotoreflections (5) are always equiva-
lent to other rotoinversion (3) operations, and reflections (2) are equivalent to
rotoinversions of angle π. Even if rototranslations (3) or the presence of glide
planes (4) are not distinguishable in orientation space from rotations (2) or re-
flections respectively (2), they will however produce systematic absences in their
diffraction patterns.
This means that only rotation and inversion symmetries could affect the rep-
resentation of the orientation space. We will now define a point group as the
set of symmetry operations that keep at least one point fixed, and for three-
dimensional crystals we can observe up to 32 point groups.
However, diffraction is a phenomenon that is based on the distance among
atoms, which is an inversion invariant property, and so in general it will not be
possible to distinguish rotoinversions (3) from the corresponding simple rota-
tions (2). This might become false for specific crystals, that break the inversion
symmetry by having a chiral basis structure, but in this thesis we will assume
to always work with materials that don’t break it.
In the end, this means that out of the 32 point groups, many will appear to
have the same properties, and they could be grouped under new bigger groups.
These groups that can be observed by the means of diffraction experiments are
called Laue classes, and their number is greatly reduced from 32 to 11. More-
over, if the basis of the crystal is taken into account, those 11 Laue classes can
be further grouped into only 7 crystal systems which means that the orienta-
tion space will have 7 different structures, depending on the underlying crystal
system symmetry. The 7 crystal systems are called: triclinic, monoclinic, or-
thorombic, tetragonal, trigonal, hexagonal, and cubic.
All these different crystal systems, through their symmetry operations will make
certain regions of the orientation space redundant, just like the way it was hap-
pening for half of the Euler space. This in turn means that, apart from triclinic,
the asymmetric unit of the orientation space, will be smaller than the full space,
and that the singularity for rotation angles of π will disappear, while it will still
be an issue for some symmetry operations that involve rotations of π, which can-
not be represented in Rodrigues space. On the other hand this also complicates
the geometry of the orientation space, making the Rodrigues space not simply
connected any more. The chosen asymmetric unit of the orientation space will
be called fundamental zone.
By having lost the simple connectivity, computing distances and performing
other operations in the space becomes more difficult. To understand how to
perform those operations, we first have to understand how the mapping to the
fundamental zone works. Let’s call the set of symmetry operators S = {Si}
where each Si is a different symmetry operator. Then, given an orientation
R = L (r), we could get a symmetry equivalent orientation in the passive rota-
tion convention by post-multiplying it by one of the symmetry operators, thus
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getting R′i = SiR, while in the active rotation convention R′i = RSi. We will
now only use the passive rotation convention, because it simplifies the formulas
and for the comparison of orientation from the very same crystal system, they
are equivalent.
At this point, if we define the fundamental zone as the asymmetric unit which
is closer to the origin, the mapping of the given orientation R to the said fun-
damental zone, would simply be the R′i∗ = Si∗R for which:

i∗ = argmin
i

{
2 tan−1 |L−1 (SiR) |

}
(1.18)

We will then identify the mapping to the fundamental zone for both the orienta-
tion matrix and Rodrigues vector representation as R′ = F (R) and r′ = F (r)
If no symmetry operation is taken into account (i.e. for the triclinic crystal
system), the misorientation calculation on the orientation space would still be
the same and so also equation 1.17 for the distance computation would stay the
same, but for all the other crystal systems, the distance will instead have the
following look:

φ∗ = 2 tan−1 |L−1
(

(Si∗R1)
T

(Sj∗R2)
)
| (1.19a)

= 2 tan−1 |L−1
(
RT

1 S
T
i∗Sj∗R2

)
| (1.19b)

(i∗, j∗) = argmin
i,j

{
2 tan−1 |L−1

(
(SiR1)

T
(SjR2)

)
|
}

(1.19c)

= argmin
i,j

{
2 tan−1 |L−1

(
RT

1 S
T
i SjR2

)
|
}

(1.19d)

which can be simply rewritten as:

φ∗ = 2 tan−1 |L−1
(
RT

1 Si∗R2

)
| (1.20a)

i∗ = argmin
i

{
2 tan−1 |L−1

(
RT

1 SiR2

)
|
}

(1.20b)

The misorientation will now be one of the intermediate results of equations 1.20
and be:

M12 = RT
1 Si∗R2 (1.21a)

i∗ = argmin
i

{
2 tan−1 |L−1

(
RT

1 SiR2

)
|
}

(1.21b)

1.1.4 Coordinate systems

We already introduced the need for a reference coordinate system in section
1.1.3, for determining the orientation of a crystallographic domain. Normally
only two types of coordinate systems could be used for fully determining the
crystalline structure of a sample: a reference coordinate system attached to the
sample and aligned with the main directions of the sample, and as many co-
ordinate systems as the different crystallographic domains in the sample, each
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Figure 1.1: Coordinate systems

of them attached to one and only of the said grains, and aligned with its basis
vectors. The first type of coordinate system will from now and on called the
sample coordinate system, and the second will be called the crystal coordinate
system instead. As introduced before, the relationship that allows us to change
from the sample coordinate system to the crystal coordinate system and vice
versa, is the orientation of each crystal domain.
Even if these two reference systems, coupled with the type and orientation infor-
mation of each domain are enough for describing the crystallographic structure
and orientation inside a sample, during an experiment the sample is likely to be
rotating around one or more axes, thus a third reference system is need. This
third type of coordinate system has to have the property of being fixed and
so to be a perfect reference system for describing all the sample movements in
space during the measurement, and to describe the equipment (i.e. detector)
position. The axes of these coordinate systems will be called xl, yl and zl for
the laboratory coordinates, xs, ys and zs for the sample coordinates, and xc,
yc and zc for the crystal coordinates, while the lengths over these axes will be
measured in millimeters [26]. Finally there are two other coordinate systems
that are worth mentioning for the understanding of the topic of this thesis: the
detector coordinate system and the reconstruction coordinate system. The first
coordinate system, as shown in figure 1.1, is attached to the detector, while
the second coordinate system is attached and perfectly aligned to the sample
coordinate system. The axes will be called xr, yr and zr for the reconstruction
coordinates, and u and v for the detector coordinates. The length of these last
five axes will be decided by the resolution of the experiment.

1.1.5 Orientation Distribution Functions and Inverse Pole
Figures

We are now going to end this first section by briefly introducing some useful
tools that are used in this thesis to represent the results and more broadly by
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the material scientists for representing some of the properties describing the
crystalline nature of materials.
As mentioned in section 1.1.4, the orientation of a crystallographic domain is
the relationship between the sample reference system and the crystal coordinate
system of the given grain. If we now take all the grains in the volume, each of
them will have a different orientation. Knowing the orientation of the grains in
a sample, or even better, knowing the orientation of the crystal in every point
in a sample is a piece of information that the material scientists can use to
find the link between the microscopic properties and the observed macroscopic
behavior of the studied materials. However, even if we achieve to gather such
knowledge, we have to come up with a representation that is able to give some
type of quantitative information.
If we now take dV as the fraction of volume in the sample that has a given
orientation r within the volume element dr of the orientation space, and denote
V by the total sample volume, then f (r) will be the orientation distribution
function of the sample, and it will be defined as:

dV

V
= f (r) dr (1.22)

If we now imagine that all the grains inside of a sample would be perfect un-
deformed crystals, and so for each grain, all his volume elements, namely his
voxels, would have exactly the same crystal orientation, the function f (r) would
simply be a collection of Dirac deltas, centered on the specific orientation of the
grains and their height would be proportional to the volume of the said grains.
However, in the presence of sub-grain level misorientation, where the voxels
of each grain have slightly different crystal orientations, those deltas become
broader, while keeping the same total volume.
Sometimes, materials can also show the presence of sub-grains, which are smaller
portions of the grains that show small angle grain boundaries with the rest of
the grain volume, and present themselves in the ODF as separate smaller vol-
umes, which however are still close to the average orientation of the grain. For
analysing these finer structures inside of grains it is then interesting to build
the ODF of single grains instead of a more global sample ODF.
As the ODFs are an intrinsic three-dimensional object, it is not very suitable
for visualization in two-dimensional figures. Since the direction of any three-
dimensional vector can be represented as a point on a unit sphere, in general,
due to the symmetry of the crystals, if we take the points corresponding to the
directions of a given set of plane normals for a given grain, they will be defining
the orientation of the said grain on the unit sphere. A pole figure is the stereo-
graphic projection of these said points, by fixing the sphere coordinate system
as the sample coordinate system. An inverse pole figure is instead the stere-
ographic projection of the axes of the sample coordinate system, with respect
to a unit sphere whose coordinate system is aligned with the crystal coordinate
system.
Following these principles, the inverse pole figure coloring (IPF color-coding)
takes the stereographic projection of the orientation space fundamental zone,
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where a specific direction in the sample coordinates was chosen as the north
pole, and it assigns a specific coloring to this two-dimensional region. Assuming
then that all the voxels in a region of the sample can be approximately consid-
ered to have one and only orientation each, that region can be colored with the
colors associated to their specific orientation.

1.2 Diffraction Contrast Tomography

Since the beginning of the last decade, big efforts have been put into the devel-
opment of non-destructive three-dimensional imaging techniques for structural
characterization of polycrystalline materials. These grain mapping techniques,
which use X-ray diffraction as their mean for performing a description of a
materials three-dimensional micro-structure, aim at resolving the local phase
and crystal orientation, the so-called micro-texture. By being intrinsically non-
destructive, they can also be used for studying the effects of temporal evolution
of these micro-structures during processes like annealing and deformation.
Different combinations of beams and detectors can be used. Beam shapes can
be of three different types: zero-dimensional in the point beam configuration,
one-dimensional in the line beam configuration, and two-dimensional in the
configuration either known as full beam or extended beam. The beam can also
be either mono-chromatic or poly-chromatic, while the detector can have high
spatial resolution and be positioned a few millimeters away from the sample
in the so called near-field configuration, or have low spatial resolution and be
placed further away from the sample in the far-field configuration.
Diffraction contrast tomography is a near-field monochromatic beam technique,
usually using the extended beam approach [21], but interesting alternative con-
figurations using a line beam and a different position of the detector have also
been tested [26]. It is however known to work under the restriction of dealing
with undeformed or nearly undeformed materials, with intra-granular orienta-
tion spread of below one degree. Other techniques, discussed in section 1.4, have
proven to work with more deformed materials, but they depend on the use of
smaller beam profiles like the one-dimensional beam illumination, that requires
longer scans for three-dimensional analyses, while DCT can be estimated to be
at least an order of magnitude faster, because of its two-dimensional illumina-
tion.
This thesis is about improving the model behind DCT, to allow for the recon-
struction of more deformed and challenging samples. But before diving in the
technical aspects of the technique itself, we will first introduce the basics of the
diffraction geometry.

1.2.1 Diffraction geometry

Having introduced the coordinate systems needed for describing all the quan-
tities involved in the setup, we will now describe the diffraction geometry as a
function of the three angles ω, θ and η. Later we will see how these parameters
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Figure 1.2: Bragg’s law

Figure 1.3: Diffraction geometry of a DCT experiment, where, for simplicity,
the detector is supposed to be on the plane perpendicular to the incoming beam
direction

can contain important information about crystal orientations and orientation
spreads inside the grains. First of all, given the interaction of the atomic planes
in a crystal with an incoming beam, diffraction can be easily modelled as con-
structive interference, of the scattered beam from the atomic planes. For diffrac-
tion to occur at appreciable angles, the incoming beam (i.e. photons, electrons
or neutrons), should have a characteristic wavelength that is comparable with
the spacing among the points of the lattice. As it can be seen in figure 1.2, the
effect of diffraction is similar to a reflection by the atomic planes of the incoming
beam and the relationship that allows to predict when diffraction will happen
is Bragg’s law:

nλ = 2d sin θ (1.23)

where n is an integer number, λ is the incoming beam’s characteristic wave-
length, d is the distance between the atomic planes of the same type, and θ is
the incidence angle between the direction of the incoming beam and the atomic
plane. Taking now the experimental setup in figure 1.3, we suppose that the
sample is sitting on a rotation stage, whose axis of rotation is perpendicular to
the incoming beam direction, and the angle of rotation is called ω. We then usu-
ally align the laboratory coordinate systems to have the z -axis aligned with the
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rotation stage of the axis, the x -axis and y-axis of the laboratory system along
the beam direction and perpendicular to the other axes respectively. The sample
coordinate system will then be aligned to the laboratory coordinate system for
ω = 0, and we will call Ωω the rotation matrix that describes the orientation of
the sample coordinate system with respect to the laboratory coordinate system.
When meeting diffraction condition for one atomic plane, the angle between the
plane normal of such atomic plane and the plane perpendicular to the incom-
ing beam will be θ, and the angle between the incoming beam direction and
the diffracted beam will be 2θ. Thanks to the perpendicularity between the
incoming beam direction and the sample rotation axis, if a given atomic plane
reaches diffraction condition at a specific rotation angle ω, it will also reach
diffraction condition at ω + π, and the two reflections will form a Friedel pair.
Despite the fact of the lattice plane being exactly the same, the plane normal
associated to the reflections in a Friedel pair will be opposite to each other: h
and −h respectively, and the Miller indexes will also be (h, k, l) and (h̄, k̄, l̄)
respectively.
Supposing that the grains have very little or even no intra-granular orientation
spread, all the volume elements inside a grain will share the same orientation,
and so the (θ, η, ω) angles of the diffracted beams for a given reflection will be
the same for all of them. When such reflections hit the surface of the detector,
they give rise to single images that are the geometric parallel beam projec-
tion of the grain volume, that are called called diffraction spots. On the other
hand, in the presence of deformation inside the grains, each reflection hitting
the detector will give rise to a stack of images very close in ω to each others,
because the deformation will affect the (η, ω) angles, and the images of the
said stack will no longer be geometrical projections, but will be deformed in-
stead. These three-dimensional stacks of images generated by each reflection are
called diffraction blobs. Since the goal of this thesis is the enabling of the grain
structure reconstruction in presence of moderate levels of deformation, and the
same reconstruction framework can always be used to reconstruct underformed
grains, we will hereafter use the broader term “diffraction blob” also for the
cases where “diffraction spot” would seem more appropriate.
If now h is the normalized plane normal of an atomic plane in the crystal co-
ordinate system, and g is the orientation matrix that defines the orientation of
the crystal coordinate with respect to the sample coordinates, then we will call
y = g−1h = gTh the plane normal vector in the sample coordinate system. We
can then compute Ĝl, the normalized plane normal in the laboratory coordinate
system, using the following equation:

Ĝl = Ωωg
−1h = cos θ



− tan θ
− sin η
cos η


 (1.24)

where η is the angle between the rotation axis and the projection of the scat-
tering vector on the plane perpendicular to the incoming beam direction, where
the rotation axis resides.
If the orientation of the grain is known, it is possible to predict at which ωs
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it will get into Bragg condition for a given plane normal, using the following
equation:

b̂ · Ĝl = b̂TΩωg
−1h = ± sin θ (1.25)

where b̂ is the normalized incoming beam direction vector, and the ± sign is
due to the fact that each signed plane normal can give rise to two different
reflections, as long as its negated version. In appendix A we find the four-fold
solution to equation 1.25.

1.2.2 Orientations in DCT

In diffraction contrast tomography each grain represents a different entity with
associated a grain center in real space and an average grain orientation in Ro-
drigues space. Following the discussion in section 1.2.1, we are now going to
see how the coordinates (θ, η, ω) are connected to the grain orientation. Given
a plane normal vector h in the grain coordinate system, we will have that
y = g−1h is the plane normal in the sample coordinate system. However, if the
matrix g is not known, because the orientation of the said grain is not known,
a minimum set of two couples (y, h) is in principle needed for retrieving the
grain average R-vector, because, as mentioned in section 1.1.1, the matrix g is
an orientation matrix, which in turn means that it has only 6 free parameters.
Moreover, geometrically speaking, knowing the normal vector to an atomic
plane, only fixes two degrees of freedom in determining that grain’s orienta-
tion, because all the rotations around the said plane normal would be valid.
We can retrieve y from the geometrical parameters of the recorded spots on the
detector using the following equation:

y = ΩT
ω cos θ



− tan θ
− sin η
cos η


 (1.26)

and then each couple (y, h) will determine a line in Rodrigues space, that can
be computed by the formulas:

r0 =
h× y

1 + h · y (1.27a)

r = r0 + t
h + y

1 + h · y (1.27b)

where t is a free parameter. The crossing of two or more lines defined by
equations 1.27, will be the average orientation of the related grain [25].

1.2.3 From the images to the Friedel pairs

The source of information gathered and used by DCT in reconstructing the
grain structure of a sample, are the diffraction spots or blobs, that as we saw
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before in section 1.2.1, are the result of each diffraction event happening in the
grains. The goal of the initial steps of a DCT analysis is to isolate each diffrac-
tion blob from the background noise, and find the matching blobs that form
a Friedel pair. These two steps are called in the DCT processing chain: blob
segmentation and matching, respectively [26].
The segmentation is based on a double threshold system, where a first inten-
sity threshold finds the intensity peaks related to the spots, and then using a
second threshold that is linearly proportional to the intensity of the peaks, the
outline of the blob is determined. The segmentation process will then give rise
to three-dimensional volumes in the (u, v, ω) coordinates, and the actual shape
of the blob is identified by the use of morphological reconstruction, to avoid
the partial inclusion of unconnected blobs, falling in the bounding box region
of other blobs. What the segmentation cannot distinguish are the real blob
overlaps, where different grains for two reflections would project to the same (u,
v, ω) region. The size in ω of the diffraction blobs is called ω-spread.
The matching is based on the fact that blobs from a Friedel pair share many
common features, and if the sample rotation axis is perpendicular to the incom-
ing beam direction, the ωs at which they will be observed are connected by the
law: ωb = ωa + π, where the two spots from a Friedel pair will be identified by
a and b, being a the one with smaller ω. In particular, the blobs in a Friedel
pair will have similar aspect ratio, identical ω-spread, and if the material doesn’t
break Friedel’s law, also identical total intensity (except for small variations due
to absorption and extinction). Finally, by having matched the spots belonging
to Friedel pairs, it is possible to trace lines, in the sample coordinate system,
from the centers of mass of one spot to the other one, and this line will pass
through the center of mass of the grain that generated the spots. Using this
piece of information to extract both η and θ associated to each pair and plotting
a diagram of η vs. θ, allows us to optimize the geometry of the detector in a
reliable and quantitative manner, making it possible to fit even small deviations
from its ideal positioning and orientation for an actual dataset (i.e. no extra
calibration measurement is needed).

1.2.4 Indexing: from plane normals to grains

The next step in the DCT processing route is called indexing, and it is the pro-
cess that identifies grain orientations and positions, assigns labels (in our case
unique IDs) to them. In DCT, the indexing is based on the Freidel pairs.
The lines connecting the centers of mass of two spots from the same Friedel pair,
can be used for determining the center of mass of the grains. In fact, the lines
connecting the pairs belonging to one grain will all pass through the center of
mass of the said grain. Moreover, by having identified these lines in real space,
and being able to compute their (θ, η, ω) values, we can retrieve the associated
y vectors to the pair, but also, apart from the pathological case with dissimilar
h vector of the same norm (e.g. 333 and 511), the corresponding type of h
vector from the angle θ. This means that the Friedel pairs will define both a
line in real-space and a line in orientation space. More precisely, one has to take
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into account all possible (symmetrically equivalent) variants of a given h vector
(multiplicity) and draw the full set of lines for each pair. As a consequence, the
indexing procedure is based on identifying the points of both the orientation
and real spaces where these lines cross, and finding the ones that correspond
[21] [26].
Once the “indexing” has produced these basic pieces of information about the
grains, like grain center and grain average orientation, along statistical infor-
mation about the size of the associated spots, the following step called forward
simulation is responsible for searching through te list of all possible reflections
hitting the detector and find the segmented blobs that possibly belong to these
reflections, and in case also to reject the spots that have either too low intensi-
ties or that present overlaps with other grains. To determine whether to include
and also enable these blobs for reconstruction, the forward simulation recently
adopted a statistical analysis of the spots based on a two steps process, which
first defines a likelihood for a given spot to belong to the grain, and then a mea-
sure of its goodness. These concepts are however restricted to “well behaved”
micro-structures, and statistical measures are based on the validity of the initial
set of pairs assigned during the previous indexing step.
Finally the grains, in case of undeformed materials, can be reconstructed using
standard oblique-angles tomography algorithms (like SIRT), available from the
ASTRA library [23]. The reconstruction, normally, has to take into account
the fact that different hkl-families have different scattering intensities, due to
the so called structure factors that differ from family to family, and the each
spot’s intensity may be influenced by other factors like incoming beam profile,
absorption of the incoming beam and of the scattered beam, Lorentz factor and
extinction. In practice (e.g. for metallic alloys), the structure factors may not
be known a priori, and their exact determination is not easy for a near-field
technique as DCT, however the total intensity of the blobs belonging to the
same grain should never change because the projected volume is always the
same. This means that it is possible to renormalize all the spots to any given
number, and they would give rise to correct reconstructions. On the other side,
being the intrinsic volume of each grain different, the expected gray levels for
the regions belonging to the grains will not be related to each others.

1.2.5 From grains to grain-maps

While the raw detector images are usually corrected to account for possible
distortion effects in the optics, the images are also usually affected by the so
called detector point spread function, which is responsible for additional distor-
tion and blurring of the images, and so of the diffraction spots as well. This
means that the spots used in the reconstruction will be blurred to some degree,
and so will be the reconstructions. As a consequence, the following step to the
reconstruction will be the grain thresholding, and it is responsible for finding a
decent threshold for segmenting the grain volumes and determine the individual
grain shapes.
Once grains have been reconstructed and segmented individually, they have to
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be put together to form a grainmap. This process is called assembling, and it is
very simple because the information on the center of mass of the grain is already
known from the indexing step.
Another complication arises from the fact that by blurring the reconstruction,
the PSF also can affect the exact determination of the grain boundaries, and this
results in conflicts during the assembling, where different grains would claim the
same region at the boundaries. Up to recently the solution was to disable those
regions for both grains, and then dilate the grain volumes until they touched
each other, and letting them claim that region by assigning the contested voxels
to the closest grain. Even if this last step looks quite rough and unphysical, it
is actually following a simple principle: if some region of the grainmap is known
to not be empty and if it is very close to one grain, it will be very likely that
volume elements of the said region will belong to the closest grain, especially if
the uncertainty over the grain boundaries is of the order of magnitude of the
distance between the said voxels and the current boundary of the closest grain.
However, recently the possibility for a rough estimation of the structure factors
for the different families from the actual measured intensities was added (given
in chapter 5), and in conjunction with a renormalization based on the Lorentz
factor, that is responsible for broadening the blobs along ω by a factor close
to 1/| sin η|, it was possible to rely on a grey level scale for all the grain recon-
structions. This resulted in the possibility to resolve the boundary conflicts by
choosing to assign a voxel in the region claimed by two or more grains, based on
the gray level value that the voxel has in each of the reconstruction volumes.

1.2.6 Determining grain orientation spread from spots

It is possible to estimate a grain’s orientation spread by looking at the spreads
over the parameters η and ω of each detected diffraction blob. While the ω-
spread is obviously the size over ω of each blob, for what concerns the η-spread,
a rough estimation could be given by the angle between the vectors located in
the center of mass of the grain, and pointing to the extremes of the blob in the
η coordinate. In practice this can be easily done, by dividing the estimation in
two cases:

∆η =

{
∆v
| sin η0| , if | sin η0| ≥

√
2/2

∆u
| cos η0| , if | sin η0| <

√
2/2

(1.28)

where ∆u and ∆v are the sizes of the blobs in the u and v directions respectively,
η0 is the average η of the spot, and all the angles are supposed to be in radians.
Taking now equation 1.27, and computing the lines for the couplets: (−∆η/2,
−∆ω/2), (∆η/2, −∆ω/2), (−∆η/2, ∆ω/2), and (∆η/2, ∆ω/2), these four lines
in Rodrigues space, for small values of ∆η and ∆ω, will be almost parallel to
each others, and we can approximate them to be the edges of a three-dimensional
rod that defines a region of the orientation space where the ODF of the grain
is confined in.
By crossing all the rods from the available reflections would give an estimate of
the three-dimensional orientation spread of the grain.
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1.3 Mathematical optimization and tomography

In synchrotron imaging, computerized tomography is usually seen as a two-
dimensional technique, where filtered back projection is the most used tool for
performing the inversion of the Radon transform. Indeed FBP works correctly
for many projection geometries, but diffraction produces only a limited num-
ber of projections, that don’t uniformly span the 2π range of rotation and the
projections directions are usually inclined with the plane perpendicular to the
rotation axis. If we also take into account the possibility for a projection geom-
etry that depends on the orientation of the voxels, all these properties of the
diffraction problem render the FBP algorithm unsuitable for its solution. More-
over, the FBP doesn’t explicitly allow for introducing advanced priors in the
reconstruction, that would enforce specific features of the solution. This is the
reason why in this thesis we will cast tomography as an optimization problem,
where the final reconstruction is the solution that minimizes a functional. The
final goal will be to formulate more advanced models for the reconstruction of
grains or even clusters of grains that are affected by non negligible intra-granular
spread, and develop the algorithms able to solve the formulated minimization
problems on a time scale that is compatible with the rest of a DCT analysis.

1.3.1 Tomography as optimization

In its discrete representation, standard three-dimensional tomography can be
formulated as a linear algebra problem where the problem to be solved has the
form:

Ax = b (1.29)

where x is the volume to be reconstructed, b represents the images recorded
on the detector, and A is the so called projection matrix, which embodies the
projection geometry of the tomographic problem. The meaning of equation 1.29
can be seen in figure 1.4, where each ray j corresponds to the line j in equation
1.29, and the coefficients Aji can have different definitions, and the two most
popular are: the strip area overlap and the Joseph’s interpolation. The first one
assumes that the rays have a finite width, and the coefficients Aji are nothing
else than the overlapping area between the ray j and the voxel i divided by the
area of the voxels. Joseph’s method instead samples the ray lines at a regular
distance that is aligned with the voxel centers and the coefficients Aji are simply
the distances between the said interpolation points and the center of voxel i [15].
For super-sampled formulations of Joseph’s method, where intermediate points
over the rays are also taken into account, we suggest the reading of previous
work from the author of this thesis [34].
Even if the formulation in equation 1.29 is very elegant, it is not very helpful
when dealing with limited and noisy data. As the measurements are affected
by noise, the vector b would contain slightly inconsistent entries, so a better
solution to the problem would be to represent it in terms of a least square
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Figure 1.4: Two-dimensional tomographic geometry

minimization, like the following:

x∗ = argmin
x
||Ax− b||22 (1.30)

where from all the possible solutions we select the vector x∗ which minimizes
the l2 norm of the residual.

∇
(
||Ax∗ − b||22

)
= 0 (1.31)

Unfortunately the matrix A doesn’t usually have full rank, and so there is an
infinite number of solutions for equations 1.29 and 1.30.

∇
(
||Ax− b||22

)
= ∇

(
(Ax− b)T (Ax− b)

)
(1.32a)

= 2ATAx− 2ATb (1.32b)

= 2AT (Ax− b) (1.32c)

In fact (1.30) implies that x∗ makes the equality in (1.31) true, and we see from
(1.32) that (1.30) is equivalent to Ax = b. So every solution of Ax = b is also
solution to (1.30), but the minimization formulation better deals with noise.
Moreover, the functional in equation 1.30 is convex, and the space where it is
defined, by being simply connected, is convex as well. The great advantage of
convex problems defined over convex sets is that if they have a local solution,
that solution will also be the global one [4].
One of the simplest but also most powerful methods for solving the functional
in equation 1.30, is the SIRT algorithm (Simultaneous Iterative Reconstruc-
tive Technique) [16]. The SIRT algorithm is defined as an iterative first order
gradient descend algorithm. An iterative algorithm usually takes n steps or
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iterations for solving the given optimization problem, where for instance in the
case of the problem in equation 1.30, it computes at each iteration i an estimate
vector b̃ that is the result of the forward projection of the current intermediate
solution xi, so that b̃ = Axi, and computes the residual or distance from the
real measurements b:

r (xi) = b− b̃ = b−Axi (1.33)

Using the residual, the algorithm will compute an update for the solution xi,
generating the current solution xi+1 for the next iteration. If the update is a
simple back projection of the residual, with just an appropriate diagonal rescal-
ing, the algorithm will belong to the class of gradient descend algorithms:

xi+1 = xi + P 2A
TP 1 (b−Axi) (1.34)

where P 1 and P 2 are diagonal rescaling matrices in the measurement space and
the solution space respectively.
Finally, the order of convergence will be a measure of how quickly the algorithm
is able to approach the solution of a problem, and more precisely, an algorithm
of order k is able to reduce the error of the current solution i to a precision of
O
(
1/ik

)
. So, as SIRT is a first order algorithm, the error of its current solution

i will be of the order O (1/i).

1.3.2 Sparsity and suitable sparse representations

Having introduced in section 1.3.1 the formulation of tomographic reconstruc-
tions as minimization problems, we are now going to introduce the latest devel-
opments in signal processing theory, and give a brief introduction to methods
that were developed over the years for solving the new functionals.
As mentioned before, equation 1.30 still suffers from undeterminacy due to the
matrix A not being full rank. However, for quite some time Tikhonov regular-
izations have been used as the mathematical representation of a specific feature
that the real solution was known to have and that could be enforced in the
reconstruction. The introduction of this type of regularizations modifies the
minimization functional like the following:

x∗ = argmin
x
||Ax− b||22 + λ||Lx||22 (1.35)

where λ is a weight for the regularization term in the functional, and L is the
preferred operator for enforcing a specific feature. Different operators have been
used in the past, like I to help minimizing the energy of the reconstruction (read
the square l2-norm of x: ||x||22), or some derivatives like D and D2 to enforce
some sort of smoothness or continuity in the reconstructed object.
Another interesting property that could be enforced by different priors is spar-
sity. A sparse signal is mainly composed by zeros, and the preferred way to
maximise the sparsity of a signal would be to minimize its l0-norm. By defi-
nition, the l0-norm is a semi-norm that if applied to a vector, it returns the
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(a) l0-norm (b) l1-norm (c) l2-norm

Figure 1.5: Comparison of how different choices for the norms can affect the
final solution.

number of non-zero components. However, using the l0-norm leads to a com-
plex optimization problem which is not computationally tractable (in fact it
is NP-Complete in some cases). As it can be seen from figure 1.5, for convex
problems, an equivalent result can be obtained using the l1-norm, which is also
convex, and the same conditions discussed in section 1.3.1 hold.
It was demonstrated in [8] (1999-2001) that by choosing an overcomplete basis
that would contain the features of the expected signal, and then performing a
minimization over the l1-norm of the solution expressed in such representation,
would lead to a robust recovery of the signals in the presence of noise. The
key point of that publication was that the l1-norm would promote sparsity in
the representation of the reconstructed signal, and let the reconstruction choose
only the objects from the dictionary that would fit the signal better.
Later in [5] and [6] a whole new branch of the signal processing field, called
Compressed Sensing, was started. The theory claims to lower the limits im-
posed by Shannon’s theorem, for sparse signals, and for specific underdetermined
problems, to be able to achieve perfect recovery. In CS the equivalent of the
projection matrix A is called sensing matrix, and the most common are either
random sensing matrices or randomly incomplete Fourier matrices.
Nowadays, there is an ongoing work to incorporate the “tomographic sensing
matrices” into the CS theory, so that new uncertainty principles similar to
Shannon’s theorem could be developed for tomographic problems. However, as
discussed in [9], the properties of the tomographic projection matrix predict
quite poor worst-case recovery results, while for the average-case more encour-
aging results have been found.
Even if we cannot ensure any sort of perfect recovery at the level of underde-
terminacy of normally treated tomographic problems, and so, at least for the
moment, CS doesn’t directly apply to tomography, it is possible to incorpo-
rate some of its ideas, for solving common problems within the two fields. A
nice example is the possibility to improve the reconstruction quality of sparse
objects, or find a suitable representation of the said objects that is sparse in
the chosen domain, so that the l1-norm minimization techniques could still be
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used. In fact, it is becoming increasingly popular to incorporate priors into the
tomographic functional that would look like a Tikhonov regularization:

x∗ = argmin
x
||Ax− b||22 + λ||Lx||1 (1.36)

where this time the l1-norm is used in place of the square l2-norm, and the L
operator can be again the identity I for signals that are already sparse in their
base representation, or the Haar wavelet transform H, for signals that are suc-
cessfully sparsified by a wavelet representation, or finally by the generalization
of the gradient operator D in more than one dimension:

||D (·) ||1 = ||∇ (·) ||1 = TV (·) (1.37)

where the l1-norm of the gradient is also known as the total variation operator.
This operator is especially used for volumes that mostly exhibit flat regions with
steep changes at their boundaries, because it enforces the sparsification of the
derivative of the initial volume.
Another observation is that up to this point, we were only dealing with uncon-
strained optimizations, but intelligent constraints that preserve the convexity of
the solution space, could both help to get better final reconstructions and also
to speed up the process. For signals that only live in the non-negative orthant
(generalization of the quadrant in n-dimensions), the non negativity constraint
is a popular solution for constraining the solution. Indeed an example of recon-
struction of a signal that is non-negative and that can be efficiently compressed
(sparsified) in the wavelet domain, would look like the following Lasso (least
absolute shrinkage and selection operator) formulation:

x∗ = argmin
x
||Ax− b||22 + λ||Hx||1 (1.38a)

subject to: x � 0 (1.38b)

where the wavelet transform H is used in the regularization term, and � is the
element-wise “greater than” operator.

1.3.3 Tomography from diffraction of distorted volumes

Having introduced the standard three-dimensional tomography formalism and
geometry in section 1.3.1, we are now going to extend the traditional tomog-
raphy representation to the DCT geometry in presence of deformation in the
grain volumes. The undeformed projection geometry depends indeed on the
orientation of the grains, and it will be different for each grain because it will
depend on six components: the three real space components x that determine
the position of the grain, and the three orientation space components r that
determine which reflections will fall on the detector and at which angle they
will be coming out of the grain volume. For undeformed grains the position xi
of the voxel i will change for every voxel, the orientation r will stay the same,
and this translates in a rigid translation of the position on the detector from
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Figure 1.6: DCT projection geometry for an undeformed grain, from the sam-
ple coordinate perspective. The projection geometry is defined by the six-
coordinates (x, r), where x is the position of the center of mass of the grain,
and r is the orientation.

Figure 1.7: DCT projection geometry for a deformed grain, from the sample
coordinate perspective. The projection geometry is defined in each voxel by the
six components (xi, ri), where xi is the position of the voxel i, and ri is its
orientation.
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the projected position of the center of mass, that only depends on the offset
of the voxel i from the center of mass. For what concerns deformed grains
instead, the projection geometry will depend on each voxel’s orientation. The
easiest representation for this model, where we assume that each voxel has a
local orientation, is a three-dimensional vector field that in each voxel stores
the associated three-dimensional Rodrigues vector for the locally reconstructed
orientation, and a fourth gray level value that indicates the scattering intensity
coming from the said voxel. Each voxel i will then be a vector xi ∈ V4 = O3⊗R
This model requires equation 1.29 to be modified into:

A(x)x = b (1.39)

where now the projection matrix A depends on the solution vector x, making
equation 1.39 a non linear system of equations. As a consequence, formulations
like the ones in equations 1.30 and 1.38, would be modified like the following:

x∗ = argmin
x
||A(x)x− b||22 (1.40)

and:

x∗ = argmin
x
||A(x)x− b||22 + λ||Hx||1 (1.41a)

subject to: x � 0 (1.41b)

where, however, the non negativity and l1-minimization operations would only
take place on the scattering intensity component.
The three-dimensional vector field representation has one very big advantage
due to its compactness, which results in it being extremely memory efficient, es-
pecially for big and heavily deformed volumes. However, it also has remarkable
disadvantages that make it less than ideal for the mathematical properties, the
algorithms and computer implementations, in practice. As stated before, the
system of equations in 1.39 is not linear and so all the minimization formulations
that derive from it are not convex any more. This means that any algorithm
is not guaranteed to converge to the correct solution any more, and it might
just end up finding local solutions. The forward projection matrix can be easily
defined, but it will be much less computationally efficient than its simpler linear
three-dimensional version, because a new projection geometry has to be com-
puted at each projection for each voxel. For what concerns the back projection
matrix instead, it will not be defined in any straight forward manner any more,
because it should include some update mechanics for the solution vector x, that
are not explicitly defined by the representation.
In this thesis we chose to adopt a more powerful representation, first presented
in [24], that moves away from the single local average orientation representation
for each voxel, and it introduces a local three-dimensional Rodrigues sub-space
for the orientations of each voxel. We can then sample the orientation space
with a fixed grid spacing, just like if it was a three-dimensional real-space. This
translates in the description of the grain reconstruction solution space as a six-
dimensional scalar field, that is the outer product of the cartesian real-space
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(a) Orientation-space in real-space voxels (b) Real-space orientation-space in voxels

Figure 1.8: Comparison between the two different interpretations of a six-
dimensional space that combines orientation and position information.

and three-dimensional orientation space: X6 = R3 ⊗ O3, where the gray level
values associated to each six-dimensional voxel are the scattering intensities for
the given orientation r ∈ O3 at the real-space position x ∈ R3 of the sample.
The solution vector in the six-dimensional formulation has two different in-
terpretations that can make a significant difference when implemented. The
most straight forward (figure 1.8a), which was just mentioned, would allow a
three-dimensional orientation space for each real-space voxel, with the advan-
tage of immediately having an ODF of each real-space voxel as the result of
the reconstruction. However, computationally speaking, this implementation
requires to compute the projection geometry for each voxel just in time each
time that a voxel has to be forward projected or back projected. Even if the
geometry could be stored for each voxel, occupying a big amount of memory,
it wouldn’t still allow to do vectorized and cache efficient operations, because
the contiguity of the real-space part of the voxels would not be taken into ac-
count. The opposite implementation instead, which can be seen in figure 1.8b,
associates a different real-space volume per each orientation that in turn has a
fixed projection geometry. This results in the possibility to have fast projection
and back projection routines that reuse the forward projection and back pro-
jection codes for conventional three-dimensional oblique-angle tomography, be-
cause each orientation-space voxel would just be a three-dimensional real-space
volume, with a fixed geometry where only the offsets should be computed.
Finally, even if the general look of equation 1.29 would stay the same, meaning
that the minimization formulations would stay convex, the actual interpretation
is the following:




A11 · · · A1P

...
. . .

...
AM1 · · · AMP







x1

...
xP


 =




b1

...
bM


 (1.42)

where each volume xi, which has a fixed orientation, would contribute to each
diffraction blob bj on the detector, with i = 1, . . . , P , j = 1, . . . ,M , P the total
number of sampled orientations and M the total number of measured diffraction
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blobs.
More detailed discussions about the projection matrix and all its physical cor-
rections and components, will be given in the next section.

1.3.4 Advanced projection matrix modelling

We will now present three different extensions and aspects of the modeling of
the projection matrix that have to be taken into account when dealing with the
analysis of real world use cases:

Blob scattering intensities Due to differences in structure factors, Lorentz
factor, attenuation and incoming beam profile (as introduced in sections 1.2.4
and 1.2.5), each diffraction blob will have different scattering intensities. If
these differences are known, we can introduce them in our projection model
from equation 1.42 as the following:

Ax = CÃx = C
P∑

i

Ãixi = b (1.43)

where the matrix C is a diagonal matrix, which predicts the scattering intensi-
ties, with Lorentz factor included for each of the reflections, and the matrix Ã
assumes the same scattering intensity for all the blobs.
As mentioned in section 1.2.4, we then want to renormalize the spots, and only
keep the purely geometrical and non-invertible projection matrix Ã on the left
side of the equation. We then obtain:

Ãx =
N∑

i

Ãixi = C−1b = b̃ (1.44)

where now b̃ are the re-normalized diffraction blobs. Hereafter we will rename
Ã into A and b̃ into b, to simplify the notation.

Detector point spread function Another issue discussed in 1.2.5, was re-
lated to the detector PSF being responsible for some blurring of the reconstruc-
tion and loss in resolution. If the experimental PSF of the detector system used
in a given experiment were to be determined, they could be modelled by the
following equation:

P∑

i

F iAixi = b (1.45)

where each matrix F i models the PSF for each orientation, and so it will differ
for each incident beam direction over the detector. However it is a safe assump-
tion to think that within a given diffraction blob, the difference in PSF due
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to the slightly different incident beam direction of each orientation will not be
significant, and so we can rewrite equation 1.45, into the following:

FAx = F
P∑

i

Aixi = b (1.46)

where the matrix F is now the operator responsible for applying the PSF to
the forward-projected images. The matrix F is usually not directly invertible,
and the best approach is to simply treat it as an extension to the projection
matrix A. This means that in the usual algorithmic iterations, where the back-
projection matrix is usually modelled as the transpose of the forward projection
matrix, extra care has to be taken to handle F . Generally speaking F is not
symmetric, so the adjoint of F should be used, resulting in the algorithms trying
to minimize:

ATF †FAx = ATF †b (1.47)

where the superscript † stands for adjoint.

Orientation-space super-sampling Finally, as the projection matrix model
is based on a discrete sampling of the six-dimensional space formed by the outer
product of a three-dimensional real-space and a three-dimensional orientation
space, the resolution in the sampling grid will play an important role for de-
termining the accuracy of the tomographic model itself. While the real-space
sampling resolution is given by the detector pixel size, which translates into the
real-space voxel size, the orientation-space resolution is not fixed by the experi-
ment itself. This means that if computer memory is a problem, or the sampled
bounding box in orientation space is big, the orientation sampling could become
not accurate anymore.
In real-space, a strip model of the projection rays could help with moderate dis-
homogeneity of the voxel size compared to the detector pixel sizes, especially
when the pixels are larger than the voxels, because the strips would intercept
all the voxels having an overlap with the strip. In this case, instead, Joseph’s
method wouldn’t be able to associate some voxels to the related detector pixels,
but various oversampling techniques exist to solve this problem, like the super-
sampling method used in [32] for their super-resolution application.
In orientation-space each point determines a projection geometry in real-space,
so it is not very obvious how to model a a projection geometry that is made by
a solid three-dimensional interval of orientations.
It is in fact easier to start from the back-projection super-sampling technique
presented in [32], that is based on a sampling approach, and model a similar
type of orientation super-sampling. The orientation space voxels, as shown in
the inset of figure 1.9, instead of being represented by a single sampled point in
the center of the orientation space volume forming the said voxel, they could be
divided into S = s3 sub-voxels, that would forward and back project the same
associated real-space volume, but with slightly different orientations given by
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Figure 1.9: Orientation space super sampling, as shown by the top right front
voxel of the sampled grid. While the usual sampling would pick the center of the
voxels associated to the volumes like in figure 1.8b, in this case we instead pick
the centers of the sub-voxels and associate all of them with the same real-space
volume.

the centers of the new regions and projection coefficients of 1/S instead of 1.
The new projection matrix would then look like:

Ax =

P∑

i

S∑

j

1

S
Aijxi = b (1.48)

where for a given volume i, the sub-matrices Ai = {Ai1,Ai2, . . . ,AiS} are the
associated orientation-space sub-voxel sampled orientations.
For memory constrained configurations, the use of this type super-sampling can
allow to greatly reduce artifacts due to otherwise poor sampling, because it
virtually allows to increase by a factor s the resolution in orientation-space,
without having an increase of memory occupancy by a factor S = s3. On the
other hand, the increase in resolution is not as effective as if we were to use SP
volumes, and the actual profile of the super-sampled projection matrix will be
similar to a blurred non-super-sampled projection matrix.

1.3.5 Reconstruction algorithms instances

For solving the formulations in section 1.3.2, algorithms like SIRT are not enough
any more, because even if they can be extended to incorporate non-negativity
constraints or the six-dimensional geometry of section 1.3.3, they cannot natu-
rally deal with extra terms in the functional.
The easiest choice to develop algorithms from these advanced functionals when
they first appeared, was to use interior point algorithm instances that were
tailor made for a given functional, just like in [5]. The advantage of those
log-barrier Newton and primal-dual Newton methods is that a second order al-
gorithm derives in a straightforward manner from the functional and constraints
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formulations.
A log-barrier method can incorporate the non-negativity constraints into the
functional with a weight that increases through the different steps of the newton
method, and model them as logarithmic functions that tend to hard constraints
when using increasingly larger scale factors. In the primal-dual methods, two
problems are associated and solved together, where the functional of the primal
problem is the one that we want to solve, while its constrains become the func-
tional of the dual. Each iteration of the primal problem gives the update for
the dual problem and vice versa.
Even if Newton algorithms have the great advantage of being second order al-
gorithms, and to come straight from the functional formulation, constraints
like non-negativity and sparsity, introduce increasingly larger and increasingly
smaller eigenvalues respectively in the Hessian matrix used by the Newton al-
gorithm. This causes the said Newton formulation to suffer from the poor
conditioning of the problem during the later and fundamental stages of the it-
eration process.
For specific kinds of problems, another type of algorithm was later developed
in 2009, and called FISTA [2]. This second order, gradient descent algorithm,
has the advantage of having quadratic convergence, and the computational cost
of almost a SIRT algorithm, while avoiding to build an increasingly badly con-
ditioned Hessian matrix. However, it is only tailored to efficiently solve Lasso
formulations 1.38, while the TV variations can be more tricky to be implemented
[3].
In 2011, a new primal-dual second order framework for building algorithms di-
rectly from minimization functionals was developed by Chambolle and Pock in
[7], and later polished for tomography problems in [29], which uses proximal
mappings to solve the primal and dual problems, with a gradient descent based
technique. In this thesis, the most prominent results were obtained using algo-
rithm instances created from this powerful framework for solving each time the
six-dimensional problem at hand.

1.4 Other existing approaches to the grain re-
construction

Polycrystalline materials are of great interest for material science and industries,
so it comes to no surprise that various techniques exist already, and that various
algorithms have been developed for those techniques. Most of the work done so
far uses the three-dimensional vector field approach seen in section 1.3.3, while
some full six-dimensional methods (i.e. covering the whole orientation-space)
are under development.
In this section we are going to review the most prominent and inspiring methods
in the field, where the first two sections describe some established methods, while
the last section describes two similar methods for refining grain maps previously
obtained with simpler methods.
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1.4.1 Adaptive near-field HEDM forward modelling

The framework and algorithm developed in [31], and then improved in [20],
is another near-field technique that has a completely different approach from
DCT, and doesn’t look for grains into the grain maps. It performs a completely
independent voxel orientation optimization, of binarized detector images, and
then assembles the output of this highly parallel optimization technique into a
grain map. In [20], grain structures and some sort of multi-resolution technique
can also be used to improve quality and computational times, but the core idea
and final result are still based on the maximization of the following functional
or confidence function for each voxel i at position xi:

C (q,xi) =
1

Nqual (xi)

∑

h

klN (q ·Ghkl,xi) (1.49a)

N (q ·Ghkl,xi) =
∏

n

χ [Is (jg, kg, zn, ωg) , Ie (jg, kg, zn, ωg)] (1.49b)

χ (Is, Ie) =

{
1 if: Is ∧ Ie
0 otherwise

(1.49c)

where q ∈ SO(3) is a given test orientation, C (q,xi) is the actual confidence
function. But before explaining the other objects in the set of equations 1.49,
we make a step back and describe how an experiment of this kind is performed.
The setup is a regular near-field 3DXRD or near-field High Energy Diffraction
Microscopy experiment, where, similarly to DCT, the sample is on a rotating
stage, and a two-dimensional detector is positioned after the sample, with the
direct beam hitting the lower central part of the detector, in the form of a slice
(one-dimensional) beam. The laboratory reference system is identifying the
direct beam direction as the z-axis, the sample rotation axis as the y-axis and
the x-axis as the resulting one from a right-handed system. Given a rotation
step size of δω, each rotation step l will be at ωl, and typical values would be
δω = 1 and ω ∈ [0, π]. More than one scan are usually performed, with detector
at positions Ln, where n = 1, . . . , N , and N is the total number of scans. After
a first step of background subtraction, which discriminates the noise from the
diffraction spots, and it binarizes the images, the optimization is performed.
Getting back to equation 1.49, given an orientation q, for a voxel i, it is possible
to predict for every reflection of a plane hkl, its positions on the detector. The
position of the reflection g on the detector at position Ln will be identified
by the tuple (jg, kg, zn, ωg), where jg, kg are the column and the row on the
detector matrix, zn is the coordinate position corresponding to the position Ln
of the detector, and ωg is the rotation angle for the said reflection. The values
Is (jg, kg, zn, ωg) and Ie (jg, kg, zn, ωg) will then be the experimentally observed
signal and the predicted signal for a position predicted on the detector for the
given reflection g. It is enough to say that, being the images binarized, the
function χ only checks for the occurrence of intensity in the binarized images of
the predicted peak positions.
If then we take Nqual (xi) as the number of possible peaks on the detector for
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a given orientation, we see that the function N (q ·Ghkl,xi) checks for the
presence of all the reflections of a given hkl family and then computes the
confidence function C (q,xi) as a sort of completeness function for the given
orientation q at the voxel i.
While this framework first published in [31] has a theoretical very sound base
and has proven to reconstruct real data with deformations of up to 10◦ across a
single grain, it is still testing the complete fundamental zone of the orientation
space for each voxel, while most of it is empty, and it doesn’t take advantage of
the fact that the interior of a grain is likely to have a similar orientation. In [20],
it is indeed pointed out that the confidence function C (q,xi) is sharply peaked
in one small region of the orientation space, while it has just small fluctuations
in the rest of the space, due to the noise. Even in the presence of pseudo-
symmetries, where some regions in the fundamental zone share a significant
amount of reflections with the real orientation of the voxel, these regions show
a sharply peaked profile, and most of the space remains practically empty.
So the authors of [20] decided to act on three key points for reducing the impact
of this morphology: (a) they would perform a multi-resolution analysis, were
first the orientation space would be more coarsely tested, and then the resolution
would become finer and finer in the later steps, when only certain sub-regions
were identified as possible candidates, (b) in the earlier stages of the process
fewer reflections would be tested, since most of the regions would show already
lower confidence function values, and (c) they wouldn’t test higher harmonics
of a given family if the said family didn’t match experimental data. Once few
regions in orientation space are identified as final possible candidates, a local
optimization based on a Monte Carlo approach would be performed to finally
decide which region has the highest confidence function value.
Finally in [20], the possibility to seed the voxels with the orientation of their
neighbours, and then try a local optimization from that point is also discussed.
As said earlier, this framework has been used at the Advanced Photon Source of
the Argonne National Laboratory since its development, and has proven to work
both on synthetic data and real data with significant deformation states. On the
other hand, the great robustness of this method comes with the disadvantage
of much slower three-dimensional acquisition compared to DCT, and a non-
isotropic three-dimensional resolution.

1.4.2 GrainSweeper and GrainSpotter

Both GrainSweeper and GrainSpotter are algorithms developed by Søren Schmidt
from DTU Physics, Denmark, and they work on near-field and far-field X-ray
diffraction imaging data respectively [25], [28], [27]. GrainSweeper could also
be applied to far-field data, but it would then work as an indexing algorithm,
instead. On the other side, GrainSpotter is mainly thought as an indexing al-
gorithm that can also fit grain center positions.
GrainSweeper was first introduced in [25], and reportedly used in [28] on real
data. It is known to work on slice (one-dimensional) beam illumination. The
way it operates could look a bit simpler, if compared to the algorithm of the
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framework introduced in section 1.4.1, but the idea is somewhat similar.
Given an experimental setup, very similar to the DCT setup, where a sample
is placed on a rotating stage, and images on a inline two-dimensional detector
are acquired at fixed angular steps, as the sample stage rotates. The images are
then binarized, and the resulting spots are identified and their center-of-mass is
recorded along with its spread. For each voxel in the volume, two hkl families
are selected, one as primary, and one as secondary.
Since each of them will have spots appearing on circles (varying η, for a fixed
θ) over the detector at certain ωs, the algorithm will try to find the orientation
that satisfies the occurrence of spots on the primary and the secondary circles.
This can easily done by taking all the primary spots, the spots falling under the
primary circle at each ω, and for each of them searching at the ωs imposed by
the crystallographic constraints, if secondary spots appear. For a couple made
by a primary and a secondary spot, an orientation will be computed, and the
full pattern will be compared against all the recorded spots. The orientation will
then be considered a possible candidate only if a certain number of reflections
matches with the recorded spots.
The limits and advantages of this approach are similar to the one seen in sections
1.4.1, because they both perform a voxel-wise optimization that doesn’t take
into account the intensities on the detector and possibly the crosstalk among
different voxels.
GrainSpotter instead, as mentioned before, is an algorithm that operates on
far-field data, where the pixel size of the detector is bigger than in the near-field
case, but the detector is moved further away, so that the spatial information
about the positions in the sample are almost lost, but the sensitivity on η is
greatly increased, and the spots all lie on the rings at the specific θs of the
hkl-families. By first assuming that all the scattering vectors come from the
center of the sample, GrainSpotter performs an indexing step in the orienta-
tion space, by subdividing it in smaller volumes where the Rodrigues space is
close to euclidean, and then identifies the crossing points of the lines (geodesics)
generated by the (θ, η, ω) tuples of each identified spot. Each smaller volume
is called “local Rodrigues space”, and the identification of the vertexes where
the geodesics cross, is performed by subdividing the local Rodrigues space in
voxels, and counting how many geodesics pass by each voxel. Higher counts
will mean higher probabilities for a correctly identified vertex. Only potential
vertexes with a count of crossings higher than a given threshold will be kept.
Once this step is done, and the grains are identified, GrainSpotter proceeds to
fitting the grain orientation by minimizing the distance between the fitted av-
erage orientation and the geodesics. Optionally, it is also possible to carry out
the same procedure for optimizing the grain center.

1.4.3 Discrete tomography and homogeneity constraints

In [1] and [18] two different types of algorithms are proposed for improving two-
dimensional grain maps, by incorporating morphology terms in the functional
minimisation. Both methods use Gibbs priors, while in the case of [18] it also
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an homogeneity prior that enforces specific types of connectivity. While the
second approach is a greedy deterministic algorithm that takes advantage of
concepts like tabu search to perform a global optimization, the first approach
uses discrete tomography concepts to assign a grain label, and so an orientation
to each voxel in a grain map. However, the main difference between the two is
that the second approach makes explicit use in the homogeneity term of possible
small misorientations among the voxels inside one grain, making it viable for
deformed materials, while the first is only applicable to undeformed or nearly
undeformed grain maps.
The minimised functionals, look respectively like the following:

γ (f) = exp [−β (α||Pcomputed −Pinput||1 +H1 (f))] (1.50a)

γ (f ,o) = exp [−β (α||Pcomputed −Pinput||1 +H1 (f) +H2 (f ,o))] (1.50b)

where f is a given grain map, o are the local orientations of the voxels, the term
in the l1-norm is the data fidelity term on the detector, H1 (f) represents the
Gibbs priors, and H2 (f ,o) is the homogeneity term.
The Gibbs priors assume the existence of seven classes of 3× 3 voxels features
including the “grain interior” and the “grain boundaries”, called Gc, where c
is the running index for counting the seven types. Each class has a predefined
weight or preferences, called Uc, so if N (Gc, f) is the number of features Gc in
the grain map f , the Gibbs functional will be:

H1 (f) = −
6∑

c=0

N (Gc, f)Uc (1.51)

The term H2 (f ,o) is, as said before, the measure of homogeneity of the grain
map, and it explicitly considers the local voxel average orientations o. If we
define the following function:

ΦC (o)ij = exp

(
− (d (oi,oj))

2

2δ2

)
(1.52)

as the likelihood of the orientation distance between two voxels i and j from the
same grain, we can then define the homogeneity term as the following:

H2 (f ,o) = −
n∑

l=1


 ∑

C∈Cf,lNN

λ1ΦC(o) +
∑

C∈Cf,lNNN

λ2ΦC(o)


 (1.53)

where Cf ,lNN is the set of vertically and horizontally neighbouring voxel pairs

{i, j} in a grain l, and Cf ,lNNN is the set of diagonally neighbouring voxel pairs
{i, j} in a grain l.
So far, both approaches have only been tested against synthetic data, and no
real world study case is known.
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Chapter 2

Reconstruction discarding ω
information

In this chapter we are going to review the first publication in this thesis, that
was about the first formulation of the model, where the core idea of a joint
space between real-space and orientation-space was already in place, but some
of its implications were not completely clear yet. This publication [35] was a
conference proceeding presented in an international conference called “8th Inter-
national Symposium on Image and Signal Processing and Analysis” in Trieste
(2013).
This article is relatively short because it was subject to a hard constraint of
maximum six pages, but it is able to give a brief introduction to DCT, and then
it effectively exposes the main ideas behind the six-dimensional representation
and the advantages of using some additional constraints on top of the basic data
fidelity term. After the description of the model it describes the used algorithm
and its implementation, and it then introduces some interesting results obtained
at the time.
The algorithm used in this paper was still a modified FISTA instance that solved
a rather interesting functional. Even if FISTA was not designed to solve func-
tionals like the one in equation 1.38, it was very simple to adapt it.
However, even if the reasons explained in the paper behind the use of an Haar
transform into the l1-norm term were viable, the actual implementation was
counterproductive for the smooth misorientation gradient case treated in this
paper. The exact information on the distribution of a single orientation through
the whole volume is not known a priori. What is know instead, is that the sum
of all the orientations should be homogeneous across the real-space volume if
the material is homogeneous itself. This means that the Haar transform should
have been applied to the sum of all the orientations instead of the procedure
chosen in this paper, where it was applied to each separate volume associated to
all the sampled points in orientation-space. Nevertheless, this choice has little
influence on the actual result, because the data fidelity term plays the biggest
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(a) Global distance (b) Distance over the x -axis

(c) Distance over the y-axis (d) Distance over the z -axis

Figure 2.1: Distance map in degrees between the reconstruction and the original
solution.

role with the chosen value of λ = 10−3, and some sort of smoothing is the only
effect associated with the Haar transform on the reconstruction.
For the undeformed twin reconstruction instead, the choice of the functional
was completely legitimate, and the result is in line with the expectations.
We only realized recently that the result of figure 7 is wrong, due to a missing
square root in the calculation used to produce it. The correct result is shown in
figure 2.1, where the distance between the real solution and the reconstructed
solution is plotted as a whole in figure 2.1a, and then broken down into the
different axis components in the other sub-figures. In this synthetic data re-
construction, the average orientation of the grain was centered in (0, 0, 0) in
Rodriguez space, and in this particular case there is a correlation between the
deformation along the z -axis and the ω-spread, while the Lorentz factor only
acts as a multiplicative factor on top of that correlation. The biggest deviation
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(a) Sampling in the XY
plane

(b) Sampling in the XZ
plane

(c) Sampling in the YZ
plane

Figure 2.2: Orientation space sampling (red points) and phantom local orienta-
tions (blue points).

that drives the global error of the reconstruction is the one along the z com-
ponent of the Rodrigues space, and this means that having suppressed the ω
information by condensing the diffraction blobs into summed diffraction spots,
determines the impossibility to reconstruct the deformation along the rotation
axis of the sample.
Another interesting observation is that while the error along the x component
of the Rodrigues space is quite uniform, the reconstruction along the y compo-
nent presents one specific point where it becomes significantly bigger than the
rest of the volume. This can be understood by inspecting figure 2.2, where the
orientation space sampling of the reconstruction and the phantom orientation
space distribution are plotted. We can immediately see that both the z -axis
and the y-axis were not well covered. Even if especially from figures 2.2b and
2.2c, we see that the z -axis is getting the biggest angular deviations from the
sampled region, it is not so obvious from figures 2.2a and 2.2c, that the y-axis
is the one that suffers the most in terms of number of voxels that are not well
sampled The difference between the actual orientation of the voxels and the
coverage of the orientation space by the sampling grid is reflected in the form of
higher error in the plots of figure 2.1, and it explains why for the z component
we can see two high error regions, corresponding to two corners of the sample
volume, which also correspond to the regions that didn’t get correctly sampled.
However, that explanation only applies to the biggest deviations in figure 2.1d,
while the previous considerations represent the best explanation for the gener-
ally high reconstruction error throughout the whole volume.
To understand why the chosen sampling of the orientation-space was so bad,
compared to the orientation distribution of the phantom, it should be considered
that this was a preliminary study, where it was not clear if the correct determi-
nation of the bounding box in orientation space was possible, and the technique
explained in section 1.2.6 was not developed, yet. The authors decided then
to produce a sampling that had the size of the known orientation-spread, and
to center it around the average orientation of the synthetic grain, which is the
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only piece of information that was already available at the indexing stage, at
the time.
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Abstract

In this work we introduce a new model for dealing with the problem
of local orientation reconstruction in grains, when using data from X-ray
Diffraction Contrast Tomography experiments.
The model explores the use of well established minimization algorithms
from the field of mathematical optimization, like FISTA, and the possible
use of recent mathematical devices for the solution of highly undetermined
systems of equations, like the l1-minimization over the Haar transform of
the tomographic volumes.
Along with a detailed explanation of how such algorithms can be applied
to our six-dimensional problem, we report encouraging results obtained
on simulated data.

1 Introduction

Diffraction Contrast Tomography (DCT) is a non destructive technique used
to characterize 3D grain microstructures and access their inner structure in
a wide range of polycrystalline materials. Its standard approach is oriented
to undeformed materials with negligible intragranular orientation spread. The
technique is a truly three-dimensional tomographic imaging approach, sharing
a common experimental setup with conventional X-ray microtomography.
One of the most advanced and interesting ongoing developments of DCT is in
the reconstruction of the local orientation inside of grains, which provides a full
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characterization of the orientation microstructure of the sample. The aim of
this work is to give a framework for determining which orientation is present in
every single volume element of a grain.

1.1 DCT Experimental Setup

The sample is placed on a rotation stage and irradiated by a parallel monochro-
matic X-ray beam that is perpendicular to the rotation axis of the sample and
whose dimensions are determined by slits.
As the polycrystalline sample rotates, the Bragg condition is met by the differ-
ent grains at specific angular positions, giving rise to diffraction “spots”. The
spots correspond to two-dimensional projections of the three-dimensional grain
volumes on the detector.
The physics behind DCT is the same as for standard crystallography and diffrac-
tion measurements, so we will now briefly introduce the basic concepts, before
explaining the peculiar properties of DCT. For more information we refer to [9]
and [14].
We will now present the basics of the diffraction geometry, but for further details
we refer to [12].

Crystal Domains Let us assume first that we describe a three-dimensional
crystal lattice with the basis vectors a, b and c. The unit cell is the minimal
space spanned by this basis.
The discrete periodic lattice in real space corresponds to a discrete periodic
lattice in Fourier space, the so-called reciprocal space. The basis vectors in the
reciprocal space will be a∗, b∗ and c∗.
Given an incoming wave-vector kin and an outgoing wave-vector kout, X-ray
diffraction is observed when the vector G = kin−kout is close to a vector of the
reciprocal lattice. A convenient way of representing G in the reciprocal lattice
is by using the Miller indexes, so that Ghkl = (h, k, l)T .
The link between the direct space Cartesian system and the reciprocal space,
indexed by the Miller indexes (h, k, l), is given by the matrix B. The B matrix
is an upper triangular matrix that depends on both the direct and reciprocal
basis vectors, and the angles between them. The result is a vector Gc = BGhkl

Diffraction Geometry In this paragraph we will now establish the connec-
tion between the diffraction directions, for a specific crystal lattice in a generic
reference system, and the points Ghkl in reciprocal space.
Let us now restrict ourselves to an individual grain rotated by an arbitrary an-
gle along an arbitrary axis, and then fix one rotation as sample reference. For
this grain, there will be a 3 x 3 orthogonal rotation matrix g−1 which aligns
the crystal lattice to the sample reference. If we take a specific plane normal,
which will correspond to a vector Gc = BGhkl, the vector Gc will become in the
sample reference system: Gs = g−1Gc.
A given laboratory Cartesian reference system will be identified by the real space
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vectors xl, yl and zl. Assuming the sample reference system to have origin in
the origin of the laboratory coordinate system, and to have rotation axis along
the vector z, the two systems will be related by the unitary rotation matrix
Ωω which depends on the rotation angle ω. The sample reference system will
coincide with the laboratory reference system when ω is 0.
So we can finally express the relationship between a scattering vector in the lab-
oratory system h, which is the direction of the diffracted beam, and the Bragg
node of indexes (h, k, l) in the reciprocal space, at the given rotation angle ω:

hlab = Ωωg
−1B



h
k
l


 (1)

Projections of the Crystallographic Domains Assuming that each grain
is a perfect lattice, we will observe a projection of the grain volume on the
detector for those scattering vectors hlab, which give rise to a different beam
intersecting the detector (fig. 1). In the simplest case of orientation unifor-

Figure 1: Diffraction of one grain in a DCT experiment

mity inside the grain, DCT is able to retrieve the three-dimensional shape of
the grains in a polycrystal, by using oblique angle tomography reconstructions,
which rely on Algebraic Reconstruction Techniques like the SIRT algorithm [7].
If we allow for regions in the grain to have different orientations from the av-
erage, the problem complicates heavily, because the projection geometry is no
longer constant across the grain.
The two cases we will take as example in this article are: grains that exhibit a
smooth variation of orientation, contained in a small bounded region in orienta-
tion space, and grains where sub-domains with a neat change in the orientation
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are formed, but there exists a notable symmetry operation between the ori-
entation in the grains and the one in their sub-grains, called crystallographic
“twins”.

2 Model

The problem of determining the local orientation of a grain has already been
heavily studied and many approaches have been proposed, both in terms of
models and algorithms.
Prominent examples are the forward modelling idea from [15], and GrainSweeper
from S. Schmidt discussed in [13]. What they all have in common is that they
try to assign orientations to the voxels, but each voxel is treated independently.
Another very interesting approach is introduced in [1] and further discussed in
[2]. This other approach is somehow closer to our model, but tries to solve
the mathematical problems exposed in this section, using Discrete Tomography,
with Gibbs priors tailored for Grain Maps.
Here we try to perform a global optimization, where all the voxels are processed
simultaneously, using recent algorithms and techniques from signal theory. We
also add the constrain of allowing only a discrete and restricted number of
orientations. This results in a sampling of the 3D orientation space much similar
to the common sampling of the 3D real space implicitly employed by traditional
tomography, making this method a 6-dimensional method.

2.1 Basic Mathematics

The aim of this article is to show that within certain limits, for DCT mea-
surements, it is possible to identify a discrete set of allowed orientations in the
reconstruction.
The actual number of orientations to be taken into account is a compromise
between two conflicting requirements: fidelity to the actual orientation distri-
bution on one hand, and indeterminacy of the linear system to be solved in
the reconstruction process. The reason lies in the fact that the measurements
(diffraction spots) are usually highly convoluted, because in a three-dimensional
volume there will be a discrete number of voxels projecting to the same pixel on
the detector, and so, if we take too many orientations into account, the amount
of information from the spots is not enough for the number of unknowns we
allow for.
To explain better this statement we should think that from the reconstruction
point of view, the orientation space is a three-dimensional space and the real
space is another three-dimensional space. So the full characterization of a grain
should be carried out in 6D [11].
If we model the forward-projection operator in tomography as a matrix A, the
solution to a reconstruction problem can be seen as the solution to a linear sys-
tem Ax = b, where we call x∗ a vector that makes the equality true. We know
from linear algebra theory that for a guaranteed unique solution, the matrix
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A should be square and of full rank (otherwise uniqueness/existence depends
on the particular vector b). This means that if we intend to sample the grain
volume with a cubic grid of size n x n x n, and the orientation space with a
cubic grid of size p x p x p, the number of unknowns will be of order O(n3p3). If
we now consider that a typical diffraction spot has O(n2) pixels, we would then
need O(np3) diffraction spots to fulfill the requirements for a unique solution.
However the number of spots that we can actually successfully record on the
detector, and use in the analysis is usually between 10 ∼ 100.
As the measurements will always be perturbed by noise and other experimental
inconsistencies, the following formulation is preferred:

x∗ = min
x
||Ax− b||2 (2)

where from the feasible solution space we select the vector x∗ which minimizes
the l2 norm of the residual. Unfortunately the solution to (2) is not unique if A
does not have full rank. In fact every solution of Ax = b is also solution to (2).
Thanks to the advances in the signal theory, it is possible to regularize this
problem with the result of selecting solutions with specific properties. The
regularization used in these examples is the Lasso formulation over the Haar
transform [8] of the volumes:

x∗ = min
x
||Ax− b||2 + λ||Hx||1 (3)

where H is the Haar transform and λ a weight. This formulation tries to assign
a penalty to solutions that exhibit a large l1 norm in the Haar domain, while
the Haar transform is nothing else than a wavelet transform, on the Haar basis
set.
The penalty is then weighted by the parameter λ which balances the data fidelity
term ||Ax−b||2 and the regularization term ||Hx||1. The parameter λ can hardly
be related to some physical quantity, and remains for now a purely mathematical
term. On the other hand it is also true that each value λ in the problem (3)
corresponds to a specific value ε in the problem:

x∗ = min
x
||Hx||1 (4a)

subject to: ||Ax− b||2 ≤ ε (4b)

but there is no easy and reliable way of computing one, when the other is
known.
While (4) is more physical and more interesting to the scientific community,
algorithms to solve (3) are generally simpler, more efficient and more effective.
In this work we slightly modify (3) to introduce a non negativity constraint for
the reconstructed volumes:

x∗ = min
x
||Ax− b||2 + λ||Hx||1 (5a)

subject to: x ≥ 0 (5b)
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which has both a physical meaning and a practical outcome. On the physical
side, the voxels are supposed to indicate a scattering power for the given orien-
tation at the fixed position in the sample, and this scattering power can never
be negative. On the other side, imposing the non-negativity constraint, makes
the reconstruction algorithm converge quicker and give better results.
Finally we would like to briefly justify the choice of the l1-minimization over the
Haar domain. It was demonstrated in [5] and [6] that l1-minimization can result
in very accurate recovery of sparse signals, and it is known from the literature
that in general it promotes the choice of sparse solutions, for problems where
the solution is not unique [4].
So even if all the mathematical requirements for sparse recovery (see e.g. [5])
are difficult to be met for our physical case, where randomness of measurements
is not an option, the use of sparsity promotion techniques can still be very useful
if coupled with tools like the Haar transform. In fact, the choice of the Haar
transform was driven by its well known property of being able to provide with
a sparse or at least very compressible representation of transformed objects [8].
Moreover, white noise tends to never have a sparse representation in the Haar
domain, because it always overlaps with the regions probed by the wavelets
in frequency space. This means that the choice of (3) or (5) will also help in
reducing the noise.

2.2 Algorithm

An implementation of the FISTA algorithm was used to reconstruct the exam-
ples [3]. FISTA is a strongly convergent first order algorithm, oriented to the
solution of the Lasso problem. It is composed by three important pieces: a gra-
dient iteration, a soft-thresholding phase and finally a memory step that tries
to regularize the convergence of the algorithm.
To understand how these steps can be easily performed in our 6-dimensional
problem, it is first important to describe the data-structures used by the algo-
rithm.
We have two main data-structures that hold the information: the diffstack and
the solution vector. The diffstack contains all the information recorded by the
detector, while the solution vector contains the 6-dimensional volume in orien-
tation and real space. These two data structures are linked by a third object,
generically named geometry.

Solution vector The inner structure of the solution vector is rather simple:
it is a linear array of three-dimensional volumes, where each of these volumes
has the same size and represents a specific point in orientation space (fig. 2).
This means that for the same three-dimensional volume in real space, we allow
only specific orientations in orientation space and each of these orientations is
represented by a single volume in the solution vector.

Diffstack The diffstack needs to be covered with more care than the other
objects involved. Depending on the intrinsic nature of the grains we are trying
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Figure 2: A three-dimensional volume in real space, can be considered a single
point in a three-dimensional orientation space

to reconstruct, the diffraction data recorded by the detector can be essentially
of two types: two-dimensional or three-dimensional. The difference between the
two cases is respectively the absence or presence of smoothness in the variation
between one crystallographic sub-domain and the others. If the sub-domains
have piece-wise constant orientation with sharp boundaries, they will give rise to
different Diffraction spots (two-dimensional projections of the three-dimensional
volume of the grain) on the detector at different rotation angles ω of the sample.
If, instead, there is a smooth variation in orientation all along the grain, there
will be a three-dimensional volume for each different event, and this volume in
ω space is called Diffraction Blob.
While the case of two-dimensional parallel projections is rather simple to be
dealt with, because it only requires to be careful enough to relate the correct
spots to the correct orientations, the three-dimensional case can be handled in
different ways.
The so called “Omega spread” of the Diffraction Blob is surely a source of in-
formation, but if we don’t provide enough sampling points in orientation space
(different volumes in the solution vector), we might have the risk of not cover-
ing completely the ω space. This would result in inconsistencies in the linear
system. Moreover it is reasonable to think that for a given orientation, which
was not sampled in the solution vector, the closest sampled points in orientation
space will be approximating it, if the information about it (namely the intensity
projected on the detector), can be reached by these nearby points in orientation
space.
In case of limited orientation spread inside a grain, it can be beneficial to
“squash” the Diffraction Blob into a Diffraction Spot, by summing the blob
along the ω direction. The result is a regular diffraction spot, where the more
detailed angular information is lost. While this is a really crude procedure, in
some simple cases it was observed in simulations that it still provides diffraction
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Figure 3: On the left we can see a diffstack made of Diffraction Spots, while on
the right, a diffstack made of Diffraction Blobs, where around each average ω we
have multiple spots, with slightly different ω, that compose Diffraction Blobs

spots which can be used to reconstruct relatively good approximations of the
expected solution. In the simple case where only Diffraction Spots are used, the
diffstack is nothing else than a three-dimensional volume where each spot is one
slice of the volume. For more complicated cases, like the case where we want
to consider the angular information contained within the blobs, the diffstack
becomes a collection of Diffraction Blobs (fig. 3).

Geometry The geometry is a collection of tables that fully describe the three
dimensional scattering geometries for each of the sampling points in orientation
space. In practice each line of each table will describe how the related volume
will project on a specific spot into the diffstack.
The structure of the geometry table is fixed by the tomographic toolbox used to
perform the projection and the back-projection of the volumes on the detector.
The table presents 12 columns and as many rows as the number of slices in
the diffstack, in fact each row determines the projection geometry for a given
Diffraction Spot. The first three columns represent the scattering direction in
the laboratory coordinates, while the second triplet of columns represents the
position of the center of the detector, always in the laboratory reference system.
The other two triplets of columns represent each a unit vector on the pixel grid
that represents the detector.
Doing so, it is possible to fully determine an arbitrary projection geometry that
specifies how each of the volumes in the solution vector project on each of the
slices of the diffstack.

Having described the data-structures we will now understand how these
objects interact to perform the matrix operations described in the FISTA algo-
rithm. Given the projection matrix A in (3), it is equivalent to the tomographic
forward-projection of the volume on the detector in our model. On the other
side, the back-projection is equivalent to the transpose AT .
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Once we know this, in the gradient iteration of FISTA:

dk = y
k
− 1

L
AT
(
Ay

k
− b
)

(6)

computing Axk is nothing else than performing the forward-projection of each
volume on the detector space (in a data-structure like the diffstack), and sum-
ming all the contributions of each corresponding pixel, while computing AT of
the detector residual will simply mean back-projecting the detector residual in
each of the volumes that form the solution vector.
The soft-thresholding step happens in the wavelet domain, so performing the
operation:

xk = HTTλt (Hdk) (7)

is equivalent to computing the wavelet transform of each back-projected vol-
ume, performing the soft-thresholding (Tλt), and finally anti-transforming each
volume again.
Finally the memory step:

y
k+1

= xk +

(
tk − 1

tk+1

)(
xk − xk−1

)
(8)

is simply a sequential operation over all the volumes in the solution vector,
where tk is a purely mathematical parameter used to quench the memory step
in the first few iterations, and defined in [3].
In our implementation the Haar transform is a simple function in matlab lan-
guage, while the tomographic forward-projection and back-projection are per-
formed using the ASTRA toolbox, an Open Source library that is able to provide
high-performance tomographic primitives, thanks to the use of modern GPUs
[10].
Despite possible slowdowns due to the memory transfers between the GPU and
CPU memory domains, the generated overhead is almost negligible, compared
to the cost of forward-projection and back-projection. Nevertheless, we are
now considering to implement asynchronous transfers, in order to hide transfer
latencies behind the most time consuming operations.

3 Results

We will now consider two important physical cases and analyse the results on
synthetic data.

3.1 Twins

Twins are crystallographic sub-domains where the crystal undergoes a modifi-
cation that can be represented as a rotation along a well defined direction of
the crystal lattice. The result is that some of the scattering vectors will be the
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(a) Phantom (b) Reconstruction

Figure 4: Twinned Grain

same as the ones from the parent domain, and some others will be changed.
If we assume these sub-regions to not be further distorted, the number of sam-
pling points in orientation space to be able to reconstruct all these sub-domains
at the same time, becomes exactly the number of these smaller regions inside
of the grain.
We are going to assume the correct indexing of the spots was performed and
show synthetic data reconstructions. For the realistic case where just one twin
is formed, restricting the number of orientations to just two is perfectly physical
and vastly reduces the number of needed measurements.
Synthetic data was generated using a known grain shape, determined from phase
contrast data [9]. The grain volume was then divided in two regions with dif-
ferent size and a different, but symmetry related, orientation was assigned to
the regions. One of the two orientations, the one assigned to the smaller region,
was chosen to be one of the possible twin variants of the other. The initial
grain shape can be seen in figure (4a), where we can actually distinguish the
two crystallographic domains by their color: the blue part is the parent, while
the thin green region is the twinned part of the crystal. Since parent and twin
usually share at least four reflections, given by the plane normal to the axis of
rotation, in our example the diffstack generated was formed by 44 projections,
4 of the spots were in common between parent and twin, so that each of the
domains was projecting to 24 spots.
As can be seen in figure (4b), the reconstruction almost completely recovers
the shape of the two crystallographic domains. There are small conflicts at the
interface (pink pixels) but they only represent very small deviations from the
original solution.
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Figure 5: Geometry of two-dimensional illumination

3.2 Smooth gradient deformation

In some materials, grains don’t “twin” when subject to mechanical stress, but
give rise to smoothly varying misoriented regions of the crystal lattice. This
phenomenon affects the quality of the diffraction spots, giving rise to distorted
projections. The diffraction geometry is no longer constant through the grain
volume, and essentially every voxel will have one or more different orientations,
which might slightly differ from the orientations of the close neighbours.
This makes it not possible any more to restrict the number of orientations to
very few possibilities, but still makes it possible to sample the orientation space
around an average orientation, using a discrete number of variations.
For our case study we preferred to build a simplified model that allows us to use
diffraction spots, instead of diffraction blobs. The experimental case simulated
in our example corresponds to a two-dimensional slice illumination of the grain,
that produces deformed spots on the detector. The angular range of misorien-
tation in the example is confined between ±0.5 deg. Having a two-dimensional
volume reduces the complexity of the data to the point that the spots are not
too convoluted, and can be used by the algorithm without worrying about the
ω spread around the average diffraction vector.
As already mentioned, the algorithm remains untouched, with every orientation
projecting to every diffraction spot, and the spots built by a voxel-wise sum of
the diffraction blobs along the ω direction.
In figure (6) we can see a comparison between the theoretical orientation do-
mains in the sample (6a) and the reconstruction performed using a regular grid
in orientation space with 341 sampling points (6b). The sampling grid can be
seen as a body-centered lattice, or as two different cubic lattices, of sizes 6 x 6
x 6 and 5 x 5 x 5, where each occupies the centers of the cubes formed by the
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(a) Phantom (b) Reconstruction

Figure 6: Two-dimensional orientation spread

other, and the smaller has its central lattice point in the origin of the orientation
space. The edge of the cubes was chosen to be the standard deviation of the
orientation distribution function of the sample.
The image (6a) was produced assigning to each sampled orientation a color
from the jet colormap, and then coloring each pixel with the color of the closest
sampled orientation in orientation space. The image (6b) was instead gener-
ated assigning to each pixel the color corresponding to the orientation with
highest intensity in the corresponding voxels, using the same jet colormap as
in (6a). In figure (7) we can see the angular deviation in degrees between the
theoretical phantom and the reconstruction, which showed a maximum value of
∼ 1.5×10−3 deg on the top right corner. In this reconstructed volume, the aver-
age value between the sampled orientations was weighted over the reconstructed
intensities.

4 Discussion

Even though the results presented in the article seem convincing on theoretical
data, experimental data can be affected by deviations from the model that make
the reconstructions look noisy or even fail.
For twins, an important role is played by the alignment of the geometry, which
needs to be carefully fine tuned, and by the re-normalization of the spots’ in-
tensity, which is necessary because of the different scattering powers of different
(h, k, l) reflections, self-absorption and other effects which are hard to take into
account. As a matter of fact, different scattering conditions have different scat-
tered intensities, while tomography assumes that the total intensity of all the
spots should be the same.
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Figure 7: Reconstruction Error in degrees

The renormalization that takes place needs a reference which is arbitrary on a
single grain basis, but the ratio between the single references is important for the
twin case. Generally this reference depends on the total volume of the grains,
but this information is not known in advance. In experimental data, we expect
the preprocessing logic to be aware of this problem and find a renormalization
technique that is able to estimate a good reference ratio between the parent and
the twins.
For what concerns the two-dimensional orientation spread case, the approach
followed in the article looks already enough for an approximate solution of the
local orientation reconstruction problem. However, an approach that exploits
diffraction blobs is expected to give better results.

5 Conclusions

From the reconstructions in section 3 we can confirm that the intuition of sam-
pling the orientation space with a discrete number points can result in a good
approximation of the local orientation in grains.
In the twin case, the needed orientations are determined a priori, and their
identification is precise enough to make it possible to restrict them to the min-
imum. This results in a fast a quickly converging algorithm, which also seems
to be very reliable on theoretical data.
In the other case, where the orientation spread was taken into account, the
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reconstruction technique was very simple and not completely adapted to this
complex physical case. As already mentioned in 3.2, the results are showing
good signs of progress and convergence towards a stable solution of the prob-
lem.
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[14] Péter Reischig, Andrew King, Laura Nervo, Nicola Viganó, Yoann Guil-
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Chapter 3

Theoretical formulation of
the six-dimensional model

This chapter will include the publication made on Journal of applied Crys-
tallography (2014) [36], where the full six-dimensional model and algorithm
were developed and discussed in great detail. Compared to the work presented
in chapter 2, the work presented here underwent a considerable improvement,
both in terms of the six-dimensional model formulation and of algorithmic im-
plementation. Indeed, in this article it is possible to find a clear statement
about the difference between the three-dimensional vector field representation,
with its important non-linearity implications, and the six-dimensional scalar
field representation discussed in section 1.3.3. The diffraction spot approach
was completely abandoned, in favour of an approach that would use diffraction
blobs instead, because in the meanwhile, the DCT analysis toolchain was able
to produce the blob information, instead of just storing the spots into the grain
data-structures, making this approach viable. Moreover, the minimisation func-
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Figure 3.1: Comparison of the reconstruction of a five-dimensional phantom
(slice illumination) between the spot reconstruction and the blob reconstruction.
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Figure 3.2: Comparison of the reconstruction error in degrees between the spot
reconstruction and the blob reconstruction

tional was finally adjusted to not be enforcing any unwanted structure to the
reconstruction, based on the considerations of chapter 2, and the used algorithm
became a Chambolle-Pock instance. The functional used in this article is of the
type of equation 1.36, where the operator L is the identity matrix. This con-
straint doesn’t enforce any really physical constraint, but it takes care of coping
with the artificially increased number of unknowns by moving to a fully sam-
pled six-dimensional space. In chapter 4, we will see a new article that surpasses
this approach and introduces the Total Variation functional minimisation over
the sum of all the orientations, to enforce the homogeneity of each single grain
volume.

This article represents a significant milestone for the innovation of the DCT
technique, because it lays the ground for the work discussed in chapters 4 and
5. However, while the results in this publication were in line with the expecta-
tions, some other less important results had to be left out, in order to reduce
the size of the manuscript. Hereafter we are going to analyse some additional
results about the deformed two-dimensional slice with 1 degree smooth orienta-
tion spread case study from the previous chapter that was not included in [36],
because the three-dimensional volume 1 degree smooth orientation spread was
considered more relevant and even a bigger challenge to the algorithm. The only
difference here with the example in chapter 2 is that a different randomly gen-
erated phantom was chosen. This new phantom has a slightly higher inter-voxel
misorientation, and so it presents a more challenging distribution in orientation
space. Also the coloring of the orientation of each voxel has been changed, in
order to make the errors more obvious to spot to the human eye.
In fact, in figure 3.1 it is possible to see a comparison of the results from the
two reconstruction methods on a five-dimensional problem (slice illumination):
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Figure 3.3: Orientation-space visualization for one real-space voxel in the spot
reconstruction.

in figure 3.1b the diffraction blobs are squashed into diffraction spots, omitting
the ω information like for the case of chapter 2, while in figure 3.1c the result
using the full information from the blobs. In figure 3.2 instead, the error of
the reconstruction in figure 3.1 is presented. Indeed it can be seen from figure
3.3, in contrast to figure (5, d) in the attached paper, that for a given voxel
in the reconstruction with the diffraction spots, the algorithm is not able to
reconstruct the deformation along the z -axis, which is the axis of rotation of
the sample. This last observation is coherent with the conclusions reached in
the previous chapter.
In figure 3.4, similarly to figure 2.2 in the previous chapter, it is possible to see
the distribution in orientation space of the voxels in the phantom, but in this
case overlaid with the distribution of the voxels in the reconstruction. Some
deviations are indeed visible, but the general trend is in line with the expecta-
tions. Finally, in figure 3.5 it is possible to compare the forward projection to
the detector of the blob reconstruction, with the actual data that was used for
the reconstruction. The difference between figure 3.5a and figure 3.5b is that
in the first case only a slice of one blob is used for the comparison, while in the
second case one full blob has been squashed into a spot.
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(a) Orientation distribution
in the XY plane

(b) Orientation distribution
in the XZ plane

(c) Orientation distribution
in the YZ plane

Figure 3.4: Orientation space distribution of the voxels in the phantom (red
points) and voxels of the reconstruction (blue points).

(a) Comparison of one slice in a blob

(b) Comparison of the spot generated from a blob

Figure 3.5: Screenshots that show a comparison the synthetic data (left), and the
same data computed from the forward projection of the reconstruction (right).
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Abstract

In this work we present a mathematical framework for reconstruc-
tion of local orientations in grains based on near field diffraction data
acquired in X-ray Diffraction Contrast Tomography or other variants of
the monochromatic beam Three Dimensional X-ray Diffraction method-
ology.
We formulate the problem of orientation reconstruction in terms of an
optimization over a 6D space X6 = R3 ⊗ O3, constructed from the outer
product of real and orientation space, and we provide a strongly con-
vergent first order algorithm that makes use of modern l1-minimization
techniques, to cope with the increasing number of unknowns introduced
by the six-dimensional formulation of the reconstruction problem.
We then have a look at the performance of the new reconstruction al-
gorithm on synthetic data, for varying degrees of deformation, both in a
restricted line beam illumination, and in the more challenging full beam
illumination. Finally we show algorithm’s behavior when dealing with
different kinds of noise.
The proposed framework, along the reconstruction algorithm, looks promis-
ing for application to real experimental data from materials exhibiting
intra-granular orientation spread of up to a few degrees.
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1 Introduction

Over the past decade considerable efforts have been put into the development of
three-dimensional X-ray diffraction techniques for structural characterization of
polycrystalline materials. The ultimate goal of these grain mapping techniques is
the non-destructive description of a materials three-dimensional micro-structure
in terms of local phase and crystal orientation, the so-called micro-texture. For
a review of the state of the art in this field, the reader is referred to the spe-
cial issue on three-dimensional diffraction microscopy techniques of the current
journal [4] and the book by Barabash and Ice [3].
In the general case, the crystalline micro-structure of a volume element of a poly-
crystalline material may have to be described in terms of a three-dimensional
orientation distribution function, allowing for multiple orientations to be present
in each volume element. However, depending on the size of the volume element
and the deformation state of the material, simplified but still adequate represen-
tations of the micro-texture may be obtained by assigning an average orientation
to each volume element and, for undeformed materials, even a single (average)
orientation per grain may be sufficient. The general, six-dimensional framework
for micro-texture analysis has been discussed by [15], who suggested that the
use of algebraic reconstruction techniques may prove a viable route for micro-
texture analysis and related, lower dimensional sub-problems.
In this article we focus on near-field variants of the monochromatic beam rota-
tion method like three dimensional X-ray diffraction microscopy (3DXRD) [17]
and X-ray Diffraction Contrast Tomography (DCT) [19], well adapted for map-
ping 2D and 3D grain micro-structures in materials where the aforementioned
simplifying micro-structure descriptions are applicable. Over the past years, a
variety of solutions for sub-cases of the general problem of micro-texture analy-
sis have been presented and remarkable progress has been made using algebraic
reconstruction techniques as well as reconstruction strategies based on forward
modeling and/or combinatorial optimization. For an overview of this work the
reader is referred to [12], [17] and references therein. Restricting the illumination
of the sample to a single slice through the volume, these methods have proved
capable to produce orientation maps from metallic samples having undergone
ten percent and more plastic deformation.
From an experimental point of view, the restriction of the sample illumina-
tion to individual slices compromises the temporal resolution and may result
in anisotropic voxel size in three-dimensional reconstructions obtained from
stacking these layers. For this reason the development of algorithms allowing
micro-structure reconstruction from three-dimensional diffraction data is highly
relevant. DCT is an example of a truly three-dimensional tomographic imag-
ing approach, sharing a common experimental setup with conventional X-ray
micro-tomography. The algebraic reconstruction approach behind DCT may
be considered as one of the sub-cases of the general six-dimensional framework,
tailored to undeformed materials exhibiting limited (≤ 0.5◦) intra-granular ori-
entation spreads. In this case the orientation degrees of freedom inside each
volume element are neglected and three-dimensional grain shapes are recon-
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structed assuming a single, constant orientation throughout the grain volume.
In this work we introduce a six-dimensional extension of the three-dimensional
tomographic reconstruction approach behind DCT, extending the applicability
of this method to materials exhibiting intra-granular orientation spreads of up
to several degrees. While a previous preliminary work in this direction already
exists [24], this is a major extension, being the first extensive and complete
treatment of the model and the reconstruction algorithm.
In order to account for spatially varying orientations inside a grain and poten-
tially also the presence of multiple orientations inside each of the individual
volume elements, we describe a discrete, six-dimensional representation of the
reconstruction problem in the form of a direct product of real space and orien-
tation space [15].
The model is based on the assumption of kinematic diffraction, implying pro-
portionality between crystal volume and integrated, diffracted intensity. We
assume the grain average orientation has been determined by one of the exist-
ing polycrystal indexing approaches [11], [21], [19], [20], and that the experiment
has been performed in such way that diffraction signal of different grains can be
separated on the detector (negligible overlap with diffraction spots from other
grains).
In section 1.1 we summarize basics concepts of 3D diffraction imaging ap-
proaches like DCT and 3DXRD. We then describe in 1.2 how different properties
of the analysed materials give rise to different types of images on the detector.
In section 2 we introduce the proposed mathematical model for representing the
problem.
Section 3 is then dedicated to the application of the reconstruction algorithm
to synthetic data generated from a grain with one degree of intra-granular ori-
entation spread.
Finally in section 4, we test the strength of the model and the algorithm,
when applying them to more challenging cases, with higher degrees of orienta-
tion spread, and discontinuities (small angle boundaries) in orientation between
neighbouring blocks.
In the appendices we decided to add some extra considerations and details,
like the discussion of some implementation details of the algorithm (Appendix
A), and a robustness test of the algorithm when subject to extinction noise
(Appendix B).

1.1 Near-field diffraction imaging setups

The sample is placed on a rotation stage and irradiated by a parallel monochro-
matic X-ray beam that is perpendicular to the rotation axis of the sample and
whose dimensions are determined by slits. The data recorded during a near-
field diffraction imaging experiment will be over a range of 2π in the form of
s = 2π/δω images, where δω is the angular range over which the signal is inte-
grated on the detector, to form a single image. Typical values for δω are in the
range between 0.05 and 0.2 degree.
As the polycrystalline sample rotates, the Bragg condition is met by the differ-
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(a) (b)

Figure 1: Diffraction of one grain in a near-field diffraction imaging experiment:
(a) full beam illumination, (b) 1D line beam illumination.

ent grains at specific angular positions, giving rise to diffraction “spots”. For
undeformed grains these spots correspond to two-dimensional projections of the
three-dimensional grain volumes on the detector. As it can be seen in figure (1),
a diffraction imaging experiment can be both performed with a full 2D beam
or a restricted 1D line beam. The advantage of the second is that the beam
dimension is very small in the direction parallel to the rotation axis which in
turn reduces the complexity (convolution) of the reconstruction task (from 6D
to 5D problem).
The physics behind 3DXRD and DCT measurements has been outlined in pre-
vious work, for completeness we recall some basic equations for calculation of
the diffraction geometry following the presentation in [16] and [23]. For more
information on DCT we refer to [13] and [19].
We will consider the case of a face-centered cubic crystal and experimental
parameters typically used in a near-field diffraction imaging experiment. The
detector fully intercepts the first three diffraction cones, giving rise to about 60
diffraction spots per crystal.
We recall the relationship between a scattering vector in the laboratory system
Glab, which is the direction of the diffracting plane normal, and the Bragg node
of indexes (h, k, l) in the reciprocal space, at the given rotation angle ω:

Glab = Ωωg
−1B



h
k
l


 (1)

where Ωω is the rotation matrix associated with the angle ω, g is the orientation
matrix, and B is the metric matrix. Bragg diffraction is observed for rotation
angles ω fulfilling:

Glabx = −|Ghkl|2
2k

(2)
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(a) (b)

Figure 2: Projections of: (a) uniform grain, (b) a ’deformed’ grain that will give
rise to distorted diffraction blobs, spreading over a range of rotation angles.

where the incident wave vector is ki = kx̂ [23]. Equations (1) and (2) fully
determine the projection geometry for a volume element with a given orientation
g, and can be used to derive the positions (u, v) and rotation angle (ω) onto
which a given voxel will project on the detector.

1.2 Projection of the Crystallographic Domains

Having introduced the diffraction geometry, we now describe the appearance of
projection data for two different cases.

1. Undeformed grains. Assuming that each grain is a perfect lattice, we
will observe a projection of the grain volume on the detector for those
scattering vectors Glab, which give rise to a diffracted beam (in the direc-
tion kout = Glab + kin), intersecting the detector (fig. 1 and fig. 2, a).
In this case the shape of undeformed grains can be reconstructed by using
oblique angle tomography reconstructions, which rely on Algebraic Re-
construction Techniques like the SIRT algorithm [10], [19]. Having the
same orientation, all voxels will give rise to diffraction signal in the same
direction, for the same angles of rotation ωn. In this idealized situation
the diffracted beam will be parallel and each of the images on the detector
will be a geometrical projection of the grain volume These projections will
be called Diffraction Spots.

2. Deformed grains. A physically more relevant case corresponds to the
situation when the whole grain volume diverges from the average grain ori-
entation, but exhibits either smooth variations between nearby regions, or
a combination of smooth variations and discrete jumps. This case will be
investigated further in this article and we will provide various reconstruc-
tion examples with different values for the maximum degree of orientation
spread.
As mentioned earlier, we model our grain as if it were made of small
regions, each having a specific, average orientation, and so identifiable
as a point in a three-dimensional representation of the orientation-space
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(“vector field”). Integrated over the grain volume, these points will form
a dispersion in orientation-space and we define the maximum orienta-
tion spread of this distribution, as the diameter of the smallest ball in
orientation-space that contains all of its points.
We will restrict ourselves to the case of moderate orientation spread of up
to a few degrees. As discussed later, this limit arises not only from mem-
ory restrictions by currently available hardware, but also by the increasing
overlap of the diffraction blobs on the detector. Moreover, for higher levels
of deformation, the vector-field description (one average orientation per
voxel), may no longer be appropriate.
Let us now discuss more in detail how the data presents itself when dealing
with grains affected by smoothly varying orientation. As it can be seen in
figure (2, b), as opposed to figure (2, a), a grain doesn’t produce a single
detector image per reflection any more. Different regions of the grain will
project on a range of neighboring images, forming a three-dimensional ob-
ject per reflection in the uvω space, where u and v are the two-dimensional
Cartesian coordinates of a detector image and ω is the rotation angle.
Moreover, the directions of the diffracted beams will no longer be paral-
lel, giving rise to distorted projection images of the grain volume. These
distorted projection volumes are called Diffraction Blobs. Note that 3D
formulations of the reconstruction problem like in [9] and [13] neglect this
type of distortion, and use the spots resulting from the integration of the
blobs along the ω-direction, treating them as parallel-beam projections of
the grain volume, and applying a regular oblique-angles SIRT algorithm
on them.

2 Model

The problem of determining the local orientation of a grain has already been
heavily studied and many approaches have been proposed, both in terms of
models and algorithms.
Prominent examples are the forward modelling idea from [23], and GrainSweeper
from S. Schmidt discussed in [17]. What they all have in common is that they
try to assign orientations to the voxels, but each voxel is treated independently.
Typically operating on less convoluted 1D line beam data, these algorithms have
proven stable, even when neglecting local diffracted intensities for performance
reasons.
Another interesting approach is introduced in [1] and further discussed in [2].
This other approach is somehow closer to our model because it operates a grain
by grain optimization, but it tries to solve the mathematical problem in a 3D
“vector field” representation, using discrete tomography, with Gibbs priors tai-
lored for grain maps.
Here we try to perform a global optimization for the full 6D problem (2D full
beam illumination), where all the grain voxels are processed simultaneously
and matching of diffracted intensities is part of the optimization, using recent
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Figure 3: A three-dimensional volume in real-space, can be considered a single
point in a three-dimensional orientation-space. By taking the corresponding
real-space positions in each of these volumes, we would be able to construct a
single-voxel ODF for each of the real-space positions.

algorithms and techniques from signal theory. We also add the constraint of
allowing only a discrete and restricted number of orientations. This results in a
sampling of the 3D orientation space similar to the common sampling of the 3D
real space implicitly employed by traditional tomography, making this method
a 6-dimensional method.

2.1 Discrete representation of the 6D reconstruction space

In order to add orientation degrees of freedom to the real space voxels in our
grain volume, we introduce a discretized, six-dimensional reconstruction space
X6 = R3⊗O3 as the outer product of real space and orientation space. However,
only a discrete set of orientations, sampled around the grain average orientation
and confined to a small ball in orientation space are included in the analysis.
We decided to represent the O3 orientation-space as a Rodrigues space. Since
we consider only small deviations from the known grain average orientation
this orientation sub-space can be treated as Euclidean and both 3D spaces are
tessellated using cube shaped voxels. From a material science point of view, this
6D space could be viewed as a collection of 3D voxellated orientation spaces,
one for each of the volume elements, or in other words, with a discrete ODF
per real-space volume element. For performance reasons discussed in appendix
A, we organize the two subspaces in the inverse order, which means that we
represent the 6D space as a collection of real-space volumes, one for each of the
sampled orientations (fig. 3).
We will use the vector x ∈ X6 as a synthetic representation for any arbitrary
volume in our 6-dimensional reconstruction space. If we assume that the grain
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volume was divided in a grid of size n×n×n, and the orientation space in a grid
of size p × p × p, the length of the vector x is n3p3, and the scalar entries can
be interpreted as “scattering powers” of the corresponding element. For a grain
that can be described by a “3D vector field” (e.g. one 3D Rodrigues vector per
real-space voxel), the majority of elements of this vector in X6 will not contain
any intensity.
If we model the forward-projection operator in tomography as a matrix A, the
solution to a reconstruction problem can be seen as the solution to a linear
system Ax = b, where we call x∗ a vector that makes the equality true, and b
represents the images (pixel intensities) recorded by the detector.
Note that the choice of having a fixed set of allowed orientations, decided a
priori, makes the projection matrix a static object and the system of equations
is linear.
To summarize, in the model proposed by this paper, the x vector is constructed
as a collection of 3-dimensional real-space volumes, that correspond each to a
specific point in orientation-space. This means that the projection matrix A
will be a stack of projection matrices, one for each selected orientation, and that
the linear system can be rewritten as the sum of each sampled orientation:

Ax = A1x1 + A2x2 + . . .+ ANxN =
N∑

i

Aixi = b (3)

where N is the number of sampled orientations.

2.2 Mathematical model

We will now first show why the reconstruction problem, exposed in section 2.1,
is under-determined, and then introduce our model, that tries to cope with this
situation.
We know from linear algebra theory that for a guaranteed unique solution, the
matrix A should be square and of full rank (otherwise uniqueness/existence
depends on the particular vector b). This means that if we intend to sample
the grain volume with a cubic grid of size n x n x n, and the orientation space
with a cubic grid of size p x p x p, the number of unknowns will be of order
O(n3p3).
A typical diffraction blob has dimensions of order O(n2t) pixels, where t is the
so called ω-spread, corresponding to the number of images onto which the blob
extends. The requirement in terms of number of blobs, for a unique solution,
is of order O(n

t p
3). Note that grains with a smaller orientation spread will

have smaller values of t. This also implies that we will need fewer sampling
points in orientation space, and so a reduction of the number p. In fact we can
conjecture that there will be a linear relationship between t and p, thus reducing
the requirement of blobs to be of order O(np2).
Assuming 1deg maximum orientation spread, and 0.1deg angular integration
steps (δω), the blobs will be ∼ 10 slices thick, and so t = 10. If then we also
assume a 50 × 50 spot size and an orientation sampling that exhibit 0.1deg
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distance between the sampled points, we will have that n = 50 and p = 10.
Thus the required number of blobs will be of order 50× 10× 10 = 5000.
However the number of blobs that we can typically record on the detector in
a single scan, and use in the analysis is usually between 20 ∼ 100, making
the reconstruction problem heavily under-determined. As stated earlier, in our
simulations we chose a fixed number of 60 blobs for all the test cases.
As the measurements will always be perturbed by noise and other experimental
inconsistencies, the following formulation is preferred:

x∗ = argmin
x
||Ax− b||2 (4)

where from the feasible solution space we select the vector x∗ which minimizes
the l2 norm of the residual. Unfortunately the solution to (4) is not unique if
A does not have full rank. In fact (4) implies that x∗ makes the equality in (5)
true, and we see from (6) that (4) is equivalent to Ax = b.

∇ (||Ax∗ − b||2) = 0 (5)

So every solution of Ax = b is also solution to (4), but the minimization
formulation better deals with noise.

∇ (||Ax− b||2) = ∇
(
(Ax− b)T (Ax− b)

)
(6a)

= 2ATAx− 2ATb (6b)

= 2AT (Ax− b) (6c)

To regularize the problem (4), we can now impose some constrains that help in
selecting specific solutions which exhibit the physical properties of real world
samples. Under the assumption of a fine enough sampling in real-space we can
expect that only few orientations in the six-dimensional space will be active
for each real-space voxel, so that the tools for sparsity recovery will play an
important role in selecting solutions which reflect the properties of real world
samples.
Normally we would like to add a penalty term over the l0 semi-norm, because
this semi-norm would count the non-zero entries in the solution vector, and a
minimization over it, would then yield a sparse solution. On the other side, us-
ing the l0 semi-norm would require combinatorial search of the solution, through
all the solution space. We can instead think of introducing a penalty term that
uses the l1 norm and for which simpler and better performing algorithms exist
[7].
It was demonstrated in [6] and [8] that l1-minimization can result in very ac-
curate recovery of sparse signals, and it is known from the literature that in
general it promotes the choice of sparse solutions, for problems where the solu-
tion is not unique [5].
So even if all the mathematical requirements for sparse recovery (see e.g. [6])
are difficult to be met for our physical case, where randomness of measurements
is not an option, the use of sparsity promotion techniques is a key element of
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the microtexture reconstruction approach proposed in the current work.
We introduce this additional regularization term by exchanging the formulation
(4) with a more powerful Lasso formulation, where the minimized l1 norm would
be in the full six-dimensional space:

x∗ = argmin
x
||Ax− b||2 + λ||x||1 (7a)

subject to: x ≥ 0 (7b)

where λ is a weight that balances the data fidelity term ||Ax − b||2, from (4),
and the regularization term ||x||1. This formulation assigns a penalty to solu-
tions that exhibit a large l1 norm in the reconstruction domain.
The non-negativity constraint for the reconstructed volumes has both a physical
meaning and a practical outcome. On the physical side, the voxels are supposed
to indicate a scattering power for the given orientation at the fixed position in
the sample, and this scattering power can not be negative under the assump-
tion of kinematical scattering. On the other side, imposing the non-negativity
constraint, makes the reconstruction algorithm converge quicker and give better
results.

2.3 Algorithm and Data-structures

Having described the model that we wish to solve, we will now present an
algorithm instance that can solve the same Lasso formulation. Recently, a new
class of first-order primal-dual algorithms was proposed. This class of algorithms
is called Chambolle-Pock [7], [22].
The CP algorithms can solve different types of optimization problems, and it is
relatively easy to mathematically derive the algorithm tailored for the problem
given in (7).

Algorithm 2.1: Synthetic description of CP Algorithm

Input: x0, y, λ
Output: Reconstruction in xk

1 p0 ← 0
2 q0 ← 0
3 θ ← 1
4 for k ← 1 to n do

5 pk ← pk−1 + σ1
(Axk−1 − y)

1 + σ1

6 qk ← λ
qk−1 + σ2xk−1

max(λ1, |qk−1 + σ2xk−1|)
7 xk ← P0

(
xk−1 − τATpk − τqk

)

8 xk ← xk + θ (xk − xk−1)

9 end
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The algorithm (2.1) is made of few important pieces: a projection in both
the projection data space and the space associated to the regularization condi-
tion in the objective function, the back-projection, and a memory step.
To understand how all these steps in the algorithm can be performed in our
6-dimensional problem (eq. 7), we will now introduce the underlying data-
structures.
We have two main data-structures that hold the information: the diffstack
(vector b) and the solution vector (vector x). The diffstack contains all the
information recorded by the detector, while the solution vector contains the
6-dimensional volume in orientation and real space, introduced in section 2.1.
These two data structures are linked by a third object, generically named ge-
ometry (matrix A). Each line of the matrix A contains the contribution of
each element of x to one single pixel on the diffracted images, but using the
ASTRA toolbox [14] it is possible to use a simpler description, which consists of
a collection of tables that fully describe the projection of the 3D volumes onto
the 2D detector images.
In appendix A we will explain these concepts in more detail, and we will discuss
the implementation details concerning the algorithm.

3 Reconstruction of slightly deformed materials

We will now show the result of reconstructions using the multiple orientations
and diffraction blobs, demonstrating the improvement over the standard DCT
approach in reconstructing a 3D cubic grain that exhibits smoothly varying
deformation gradients in orientation-space, with 1deg of total orientation spread.
Synthetic diffraction data was generated from a cube shaped phantom grain
with 50 × 50 × 50 voxels using geometrical and experimental settings identical
to those employed in a previous measurement. The diffraction images were
simulated using a previously existing code [18], based on a (continuous) 3D
vector field description of the orientation inside the grain. Before going into a
full analysis of the orientation reconstruction, we can already show some results
that concern the grain shape reconstruction (i.e. the signal integrated over the
orientation space). As it can be seen in figure (4), the shape of the reconstructed
grain is greatly improved by the use of the 6D algorithm.
The gray-scale intensity in the said figure corresponds to reconstructed material
density (or scattering power) for each real-space voxel. The features seen in
the reconstruction of figure (4, c) are artifacts, probably caused by missing
orientations, which are not well represented by the orientation sampling, and
which result in a lower reconstructed intensity.
The orientation sampling is a body centered lattice of 341, constructed from a
6×6×6 cubic lattice, with another 5×5×5 cubic lattice occupying the centers
of the cells of the bigger lattice. The total volume covered by this BCC lattice
in orientation-space is big enough to envelop all the orientations in the sample,
but not too big, in order to not loose resolution (each edge is ∼ 1.1deg).
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Figure 4: Comparison of one slice in the 3D reconstruction of grain shapes,
where the red mark identifies the original grain shape (50× 50 voxels), and the
gray-scale intensities identify the (integrated) “scattering power” coming from
the voxels: (a) Phantom, (b) Single orientation SIRT, (c) Reconstruction with
341 orientations, integrated over all sampled orientations.

3.1 Visual Representation of Reconstructions

In order to ease analysis of the reconstruction results, we introduce three types of
visualization schemes. Two of these visualization methods produce a colouring
of all the voxels in a slice or set of slices, either based on orientation domains, or
on the voxel-wise distance from the correct orientation. The third is a detailed
visualization of the orientation-space distribution of intensities for a single voxel.

Domain Colouring This method uses a sampling of orientation space dif-
ferent from the reconstruction sampling, and it assigns a colour to each of the
points in the new sampled grid, called the colouring lattice. For the phantom,
each voxel is then being coloured using the colour corresponding to its clos-
est orientation in the colouring lattice. The same applies to the reconstructed
volume, but the intensity weighted average orientation of the voxels, above a cer-
tain threshold, is taken as the reference orientation for determining the distance
from the colouring lattice.

Distance Colouring This method takes the average reconstructed orienta-
tion of each single voxel, and computes the distance in degrees from this average
point and the true orientation of the voxel in orientation-space.

Voxel Orientation Distribution This visualization technique concentrates
on one single real-space voxel and it performs the three-dimensional plotting of
the intensities assigned to each sampled orientation.
In this representation, only the orientations that have intensity above a certain
background are plotted, along with some few other special points. The true
orientation of the voxel always takes the magenta color, the average orientation
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Figure 5: Comparison of phantom and reconstruction of a 1deg orientation-
spread sample, using 60 blobs: (a) Phantom, (b) Reconstruction, with 341
orientations, (c) Error plot (in deg) of the reconstruction, (d) orientation-space
visualization for one real-space voxel in the reconstruction

in the reconstruction, is always in black, and a light blue arrow connects them.
The extremes of the sampled box are always in yellow, and connected by black
lines, to delimit the sampled volume in orientation-space.
Finally the other points, colored using matlab’s jet colormap for encoding the
intensity, are the active orientations for the selected real-space voxel. The size
of the points representing the active orientations is always slightly smaller than
the size of the other special points.

3.2 Orientation reconstruction

For the reconstruction in figure (4), as it can be seen in the comparison between
fig. (5, a) and (5, b), the reconstruction algorithm is able to retrieve a good
approximation of the true solution in all the three dimensions of the real-space.
Another interesting analysis of this test case can be found in appendix B, where
we look at the reconstruction performance when the sample is affected by some
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Figure 6: Results for different reconstruction parameters, using 60 blobs: (a)
Phantom, (b) Orientations 341, (c) Orientations 559, (d) Orientations 1241

degree of extinction noise.
We conclude this section by looking at the error plot of this reconstruction
(figure 5, c), which shows a relatively low angular voxel-wise error for the recon-
struction. Moreover, the error is maximum on the borders of the grain. This
could be expected in a non-perfect recovery, because that is the region at the
border of the grain volume diffracted intensities transition to zero. As a conse-
quence, even small errors in this region can become comparable in modulus to
the total intensity of the voxel, and so resulting in higher errors in the recon-
struction.
On the other hand, looking at figure (5, d), which shows which orientations
are active in one real-space voxel, we see that the l1-minimization is effectively
working.

4 Higher deformations

In many practical cases, the intra-granular orientation spread in a real material
may be bigger than in the example of the previous section, and reach values of
several degrees. In this section we will analyse how the algorithm behaves at
higher levels of intra-granular orientation spread (5 degrees, including discon-
tinuous jumps), and which factors influence the result.
In cases where we encountered memory limitations, we resort to using a less
dense sampling of orientation space and the pseudo-slices approach, as described
in Appendix A.

4.1 Acting on the number of orientations

We consider the case of 1D slice illumination of a phantom grain with 5 degree
of orientation spread. An interesting result from the progression in figure (6), is
that increasing the number of orientations, and so the resolution of sampling in
orientation-space, does actually give a measurable improvement for the recon-
struction quality. So, the algorithm is actually able to cope with the increasing
number of unknowns, and the sparsifying techniques do seem to really help in
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Figure 7: Error plot (in deg) of reconstruction in figure (6, d)
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Figure 8: Comparison of phantom and reconstruction of a 5deg orientation-
spread full beam illumination case, using 60 blobs: (a) Phantom, (b) Recon-
struction, with 559 orientations

finding the correct solution. Let us now have a look at figure (7), which is the
error plot (distance in deg from true solution) of the reconstruction from fig-
ure (6, d). What is clear from this picture is that, apart from some hot spots,
the global error is normally around (if not lower) to the 10% of the maximum
orientation spread.

4.2 Full beam illumination

Unfortunately, moving to finer sampling in orientation space is problematic
when working with full-beam illumination and 3D real-space volumes. The size
of the volumes and the blobs can be quite big and the increase in orientation-
space resolution could result in the computer going out of memory. Nonetheless,
as it can be seen in figure (8), the 6D reconstruction using 559 orientations is
in-line with the equivalent reconstruction for the 2D real-space. While the
number of orientations was quite limited for the given problem, due to memory
constrains, the fact that the reconstructions presents the features of the phantom
is an interesting result.
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Figure 9: Reconstruction of a 5deg orientation-spread sample with sub-grain
boundaries, using 60 blobs: (a) Phantom, (b) Reconstruction, with 1241 ori-
entations, (c) Inter-voxel orientation distance in deg, (d) Error plot (in deg) of
reconstruction

4.3 Sub-grain Boundaries

Real materials may display discontinuous jumps in the orientation, so-called sub-
grain boundaries of only few degrees or even fractions of degrees. This kind
of grain sub-structure is usually observed along with the smooth orientation
gradients considered previously and we decided to analyse the performance of
the algorithm on a test case, having four sub-grains and smooth orientation in
each sub-domain. In fact, even if the sub-grain discontinuities could lead to
separable diffraction spots, we would observe overlap on the detector due to the
smooth deformation.
For solving this problem, a higher number of orientations is needed and so we
decided to only analyse the case of line beam illumination (5D reconstruction).
Figure (9, a) is a plot of the inter-voxel misorientation, where both the smooth
orientation changes and the sharp sub-grain boundaries can be seen. As it can
be seen in figure (9), the introduction of the jumps doesn’t completely break
the reconstructions. This is another very interesting result, because even if the
boundaries are regions of higher error especially when reaching the borders (fig.
9, d), the bulky part of the sub-domains seems to be reconstructed in a similar
way to the previous 5deg orientation spread test case.

5 Discussion

The model and algorithm proposed in this work perform a global optimization
over the six-dimensional inverse problem defined as the local orientation recon-
struction of the crystal lattice in grains, using data from Diffraction Contrast
Tomography or other variants of near-field diffraction imaging experiments us-
ing X-rays or neutrons. Having an algorithm that can perform such kind of
optimization for 2D (extended beam) illumination, by taking local diffracted
intensity explicitly into account, is quite critical for time-resolved experimental
studies and a prerequisite for studies carried out on low brilliance sources like
laboratory or neutron sources.
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The model is, however, still based on a number of strong assumptions. The
first is the assumption of kinematical diffraction, which in most practical cases
is not fulfilled. Primary and secondary extinction as well as absorption may
give rise to deviations from the idealised case of mathematical projections of
the diffracting grain volumes. The impact of these perturbations can to some
extend be reduced optimizing the experiment conditions, for instance via the
choice of the X-ray beam energy. Moreover, as shown in appendix B, the algo-
rithm can handle moderate levels of ”extinction” noise.
Next, the model explicitly ignores elastic distortion of the crystal unit cell. In-
troducing elastic strain, which can be modeled with a 2nd rank tensor, in the
problem, would add additional six dimensions. Unfolding and sampling all the
twelve dimensions would be not feasible in terms of computational power and
memory needs. Fortunately, many crystalline materials have elastic limits below
one percent and the errors introduced by elastic distortion of the crystal lattice
may be considered as small perturbations, compared to the misorientations of
up to several degrees discussed in this article.
Another assumption, tightly liked to the choice of an l1 minimization over the
six-dimensional space, is the postulate of a limited number of orientations per
voxel. Depending on the actual size of a voxel and the type and deformation
state of the material, voxel-wise sparsity in orientation space may or may not be
a good description of the materials’ micro-structure. In other words, the physi-
cal relevance of the selected solution having minimum l1 norm may depend on
the experiment conditions. It would be interesting to evaluate the performance
of the current framework in cases where each voxel actually contains an orien-
tation distribution instead of a single orientation.
Finally we mention that the current approach treats each grain separately, which
in turn translates in the need for limited diffraction blobs overlap with the blobs
coming from other grains. The number of grains which can be simultaneously
illuminated during data collection is inversely proportional to the intra-granular
orientation spread of the grains. During an experiment, this condition can be
adjusted to some extent by appropriate selection of the sample dimensions and
setting of the beam-defining slits.
We expect that the current approach will overcome some of the common prob-
lems encountered in tomographic grain reconstruction from near field diffraction
data. First of all, reconstructions based on this new approach are expected to
outperform tomographic reconstructions treating integrated diffraction spots as
parallel projections of grain volumes in terms of accuracy of reconstructed grain
shapes. As shown in the previous sections, operating in a six dimensional re-
construction space results in much improved accuracy of shape reconstructions
for grains containing some non-negligible orientation spread.
This article was focused on testing and validating the model and the algorithm
against a number of synthetic test cases. As a next step, the performance of
the algorithm will be evaluated on experimental data, using EBSD and other
3D orientation mapping techniques for cross-validation.
By adapting the projection and back-projection operators to the case of poly-
chromatic and/or cone beam geometry, the same algorithmic framework could
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potentially be used to solve the inverse problem of orientation reconstruction
from laboratory X-ray or neutron diffraction imaging experiments. For poly-
chromatic variants of diffraction imaging orientation gradients inside a grain
give rise to noticeable distortions of the diffraction spots both in azimuthal and
radial direction, thereby increasing the need to take these kind of distortions
into account.

6 Conclusions

We conclude this study of a 6D orientation imaging framework, stating that it
looks promising for future developments and applications to real experimental
data, where the intra-granular orientation spread is within a few degrees.
While the current implementation, when scaling to higher levels of orientation
spread, hits the computational and memory limits in the current desktop hard-
ware, we showed that for the study of limited inter-granular orientation spread
of up to a few degrees, the algorithm can be tuned to give encouraging results,
by acting on the orientation resolution parameters.
The reformulation of the non-linear inverse problem of six-dimensional micro-
texture analysis into a linearized version of the same, and the use of globally
convergent algorithms for the given model, give a solid theoretical ground for
the future developments in the same direction.
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A Implementation Details

Let us now have a look at the deta-structures first introduced in section 2.3.

Solution vector It is the data-structure that is responsible for representing
the 6-dimensional space in the computer memory. Its inner structure reflects
the schematic representation in figure 3: we decided indeed to use a linear array
of three-dimensional volumes, where each of these volumes has the same size
and represents a specific point in orientation space. The number of volumes is
equal to the number of sampled orientations.

102

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2015ISAL0095/these.pdf 
© [N. R. Viganò], [2015], INSA Lyon, tous droits réservés



Figure 10: On the left we can see a diffstack made of Diffraction Spots, while
on the right, a diffstack made of Diffraction Blobs, where around each average
ω we have multiple spots, with slightly different ω, that compose Diffraction
Blobs.

Diffstack It is represented in figure (10), and it is the data-structure that
holds the diffraction data recorded by the detector. As discussed in section 1.2,
data can be of different types: a collection of two-dimensional images or three-
dimensional volumes (fig. 10). Note that different orientations will typically
project to different slices in the blobs, as depicted in figure (11).

Geometry Mathematically speaking, the geometry describes how the matrix
A acts on the solution vector, to produce the diffstack.
As a physical consideration, the matrix A doesn’t include a full scattering model,
and so the Lorentz factors and atomic form factors of the blob will be ignored.
This makes it impossible to use the absolute intensities of the blobs, but an easy
way to avoid this problem is to re-normalise all the blobs to the same integrated
intensity, because we assume that the relative scattering power between the
voxels does not change as a function of the reflections.
The structure of the geometry table is fixed by the tomographic toolbox used to
perform the projection and the back-projection of the volumes on the detector.
The table presents 12 columns and as many rows as the number of slices in
the diffstack, in fact each row determines the projection geometry for a given
Diffraction Spot. The first three columns represent the scattering direction in
the laboratory coordinates, while the second triplet of columns represents the
position of the center of the detector, always in the laboratory reference system.
The other two triplets of columns represent each a unit vector on the pixel grid
that represents the detector.
Doing so, it is possible to fully determine an arbitrary projection geometry that
specifies how each of the volumes in the solution vector project on each of the
slices of the diffstack. The actual expansion of the geometry tables into the
projection matrix A used in the reconstruction process is handled internally in
the toolbox.
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Figure 11: On the left we can see a diffstack made of Diffraction Blobs, and
on the right the full volume associated to each sampled orientation. The lines
connect each full volume associated to a sampled orientation, and the slice in
the blobs that the orientation reaches.

Having described the data-structures we will now provide a description of
how these objects interact to perform the matrix operations described in the
CP algorithm. Given the projection matrix A in (7), it is equivalent to the
tomographic forward-projection of the volume on the detector in our model.
On the other side, the back-projection is equivalent to the transpose AT .
In a simple case like the algorithm that only deals with the integrated diffraction
spots, computing Axk is nothing else than performing the forward-projection of
each volume on the detector space (in a data-structure like the diffstack), and
summing all the contributions of each corresponding pixel, while computing AT

of the detector residual will simply mean back-projecting the detector residual
in each of the volumes that form the solution vector.
For more complex problems like the one dealing with the diffraction blobs, one
intermediate step needs to be added for practical reasons. It is indeed easier to
let each orientation project the associated volume to an intermediate projection
data-structure, containing N discrete ω slices with N the number of observed
reflections. The ω slices of the blob-diffstack receive the summed contribution
from each volume that projects to that slice (fig. 12). This approach, shown in
figure (12), has the advantage that since the projection and back-projection are
computed on GPU devices, it doesn’t require the full blob-diffstack to be loaded
on the GPU memory at the same time.
An important parameter in the model is the distance of sampling points in
orientation space which in turn governs the distance between real and recon-
structed orientations in the solution vector, as well as the distance between the
discrete ω slices, reached by these sampling points. Having only a fixed number
of orientations, for large deformations, they might not be enough to project to
all the ωs in each blob, giving rise to inconsistencies in the linear system.
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Figure 12: Volumes project first to an intermediate projection data-structure,
and then each blob slice becomes the pixel-wise sum of all the contributions
from the corresponding slices in the intermediate projection data.

(a) (b)

Figure 13: Grouping of slices: (a) most simple approach to let the orienta-
tions reach all the slices, (b) pseudo-slices approach, where we perform a linear
interpolation of the original slices in the blobs.

A simple way to avoid this problem is to subdivide the slices in a blob into
groups, from which pseudo-slices (or sub-spots) are produced. This technique
reduces the angular resolution of the scans, but helps in relieving the prob-
lems coming from undersampling. There can be different strategies on how the
pseudo-slices can be produced. The simplest strategy consists in summing all
the images in a group, to produce a diffraction blob with an reduced angular
resolution (fig. 13, a).
While this approach can be considered quite crude, it has indeed some sense,
and for groups made of a small number of slices, probably little difference can
be observed from other methods. On the other hand, this method doesn’t help
in letting close orientations talk to each others. What was in fact observed in
the previous article [24], is that if a voxel had an average orientation which
was not sampled but between other sampled orientations, the voxel would gain
signal from those close orientations, giving an average orientation, close to the
original orientation.
To try to better allow this behavior, we developed another approach, showed in
figure (13, b), which builds the pseudo-slices from the linear interpolation of the
original slices in the blobs. This is done by selecting a level of interpolation n,
picking the geometry of one blob slice every n, and building the corresponding
pseudo-slice from the 2(n − 1) blob slices around it. The assigned coefficients,
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Figure 14: (a) One slice of the original blobs, (b) Same slice with noise, (c)
Extinction noise

as can be seen from the figure (13, b), will have a sum of n, in order to satisfy
the definition of consistent interpolation, and to respect the total scattering in-
tensity observed per diffraction blob.
In terms of implementation, the memory step of the algorithm

xk = xk + θ (xk − xk−1) (8)

is simply a sequential operation over all the volumes in the solution vector,
where θ is a purely mathematical parameter, introduced in [7].
In our implementation the tomographic forward-projection and back-projection
are performed using the ASTRA toolbox, an Open-Source library that is able to
provide high-performance tomographic primitives, thanks to the use of modern
GPUs [14].
Despite possible slowdowns due to the memory transfers between the GPU and
CPU memory domains, the generated overhead is almost negligible, compared
to the cost of forward-projection and back-projection. Nevertheless, we are now
working on the implementation of asynchronous transfers and asynchronous
computations on both CPU and GPU, in order to hide transfer latencies and
blobs↔sinograms transformations behind the most time consuming operations.

B Stability to noise

In this section we will analyse the robustness of the algorithm to the presence
of a common type of noise in a diffraction experiment, when crystals show little
to none deformation. So we performed this test for the 1deg deformation case
only.
Other sources of inconsistencies in the projection data, like shot noise in the pixel
signals were not considered. Typically in DCT experiments, only the brightest
diffraction spots/blobs are segmented and then selected for the reconstruction
of the single grain volumes. Given that the shot noise for a pixel grows with
the square root of its intensity, and the fact that DCT uses only the brightest
spots, this type of noise can be considered negligible.
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Figure 15: Illustration of the origin and apprearence of noise related to sec-
ondary extinction in a polycrystalline sample.

B.1 Extinction and attenuation effects

The source of noise affecting the measurements of diffracted intensities on the
detector, that we are now going to consider, is related to extinction and attenua-
tion of the X-ray beam travelling through the polycrystalline material. Whereas
attenuation can in principle be predicted from the known distribution of the at-
tenuation coefficient (measured simultaneously with the diffraction signal in a
DCT experiment). In many cases the influence of attenuation can be reduced
by selecting a X-ray energy for which photoelectric absorption in the sample
becomes negligible.
On the other hand, the possibilities to predict or reduce the influence of extinc-
tion effects is more problematic. In general two sources of extinction have to be
considered: primary extinction (multiple diffraction) within the grain of interest
leads to deviation of diffracted intensity from our model assumption of a lin-
ear relationship between crystal thickness and diffracted intensity. Fortunately,
deformed materials are known to develop a mosaic structure which limits the
influence of this effect encountered in rather perfect crystals. In polycrystalline
samples another important source of noise is secondary extinction, referring to
local changes of the intensity of the diffracted beams, caused by attenuation
of the incoming and / or diffracted beams by other grains which happen to
fulfill the Bragg condition on the trajectory through the sample volume (figure
15). Knowing the 3D grain structure of the material, this phenomenon could in
principle be predicted, as well. However, the number of grains and diffraction
events to be taken into account has prevented so far any attempts to explicitly
take secondary extinction into account. Due to the randomized nature of this
phenomenon, the behaviour of the algorithm in respect to this kind of inconsis-
tencies can be analysed by adding synthetic extinction noise to the projection
data.
We decided to model extinction noise as a reduction of intensity in spherical
regions of the blobs. The position and the radius of these spheres has also been
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Figure 16: Comparison of phantom and reconstruction of a 1deg orientation-
spread sample with extinction noise, using 60 blobs: (a) Phantom, (b) Recon-
struction with 341 orientations, (c) error in deg for each voxel

randomized. The local attenuation is observed to usually be in the order of
∼ 10 − 15% of the original intensity. The resulting blobs can be observed in
figure (14, b).

B.2 Reconstructions of noisy blobs

We now show the results of reconstructions performed using blobs affected by
the extinction noise. In the reconstruction shown in figure (16, b), all the blobs
were affected by a random value of extinction noise, like in figure (14, c).
Looking to figure (16), compared to the same reconstruction without noise (fig.
5), we observe only a moderate increase of the reconstruction error, which seems
to indicate that the lower limits of the error in this test case are rather dominated
by the lack in resolution of the orientation sampling and other deficiencies of
the model.
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[4] András Borbély and Anke R. Kaysser-Pyzalla. X-ray diffraction mi-
croscopy: emerging imaging techniques for nondestructive analysis of crys-

108

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2015ISAL0095/these.pdf 
© [N. R. Viganò], [2015], INSA Lyon, tous droits réservés



talline materials from the millimetre down to the nanometre scale. Journal
of Applied Crystallography, 46(2):295–296, March 2013.

[5] S Boyd and L Vandenberghe. Convex optimization. Cambridge University
Press, 2004.

[6] E Candes and Justin Romberg. Sparsity and incoherence in compressive
sampling. Inverse problems, (m):1–20, 2007.

[7] Antonin Chambolle and Thomas Pock. A First-Order Primal-Dual Al-
gorithm for Convex Problems with Applications to Imaging. Journal of
Mathematical Imaging and Vision, 40(1):120–145, December 2010.

[8] Scott Shaobing Chen, David L. Donoho, and Michael a. Saunders. Atomic
Decomposition by Basis Pursuit. SIAM Review, 43(1):129–159, January
2001.

[9] X. Fu, H.F. Poulsen, S. Schmidt, S.F. Nielsen, E.M. Lauridsen, and D. Juul
Jensen. Non-destructive mapping of grains in three dimensions. Scripta
Materialia, 49(11):1093–1096, December 2003.

[10] A C Kak and M Slaney. Principles of Computerized Tomographic Imaging.
IEEE Press, 1988.

[11] E. M. Lauridsen, S Schmidt, R. M. Suter, and H. F. Poulsen. Tracking: a
method for structural characterization of grains in powders or polycrystals.
Journal of Applied Crystallography, 34(6):744–750, November 2001.

[12] S. F. Li and R. M. Suter. Adaptive reconstruction method for three-
dimensional orientation imaging. Journal of Applied Crystallography,
46(2):512–524, March 2013.

[13] W Ludwig, P Reischig, a King, M Herbig, E M Lauridsen, G Johnson,
T J Marrow, and J Y Buffière. Three-dimensional grain mapping by x-ray
diffraction contrast tomography and the use of Friedel pairs in diffraction
data analysis. The Review of scientific instruments, 80(3):033905, March
2009.

[14] W J Palenstijn, K J Batenburg, and J Sijbers. Performance improvements
for iterative electron tomography reconstruction using graphics processing
units (GPUs). Journal of Structural Biology, 176(2):250–3, 2011.

[15] Henning Friis Poulsen. A six-dimensional approach to microtexture analy-
sis. Philosophical magazine, 83(24):2761–2778, 2003.

[16] Henning Friis Poulsen. Three-Dimensional X-Ray Diffraction Microscopy,
volume 205 of Springer Tracts in Modern Physics. Springer Berlin Heidel-
berg, Berlin, Heidelberg, 2004.

109

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2015ISAL0095/these.pdf 
© [N. R. Viganò], [2015], INSA Lyon, tous droits réservés



[17] Henning Friis Poulsen. An introduction to three-dimensional X-ray diffrac-
tion microscopy. Journal of Applied Crystallography, 45(6):1084–1097, Oc-
tober 2012.
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Chapter 4

Reconstruction of grain
clusters

This chapter will be about a recently accepted article on Scientific reports, that
in our opinion is going to significantly change the future of DCT, and it is among
the most important result in this thesis. The concepts discussed in chapter 3
have been further refined and, most importantly, applied to experimental data,
and showing very convincing results, especially because they were compared to
measurements performed using EBSD.
The notable change is that the six-dimensional framework is not only applied
to the single grain reconstruction as in traditional DCT fashion, but it has also
been applied to a cluster of grains. We call a certain region of the sample a
“cluster of grains”, when within this region all the adjacent grains have orienta-
tions that are confined in a small region of orientation space, and they could be
viewed as sub-grains of a bigger crystallographic domain, resulting for instance
from the process recovery of a somewhat deformed grain.
Clustered regions represent one of the biggest challenges for DCT reconstruc-
tions because the diffraction spots from the grains in these regions are likely to
cluster on the detector as well, giving rise to overlaps for some of the reflections
and being detached for some other reflections. Overlaps are very detrimental
for the reconstruction of the single grains, because if it is not possible to decide
whether a spot is the result of an overlap or not, it is not even possible to cor-
rectly determine its center of mass, and all the subsequent steps in the DCT
analysis toolchain get broken.
The method used to reconstruct the clustered regions was conceptually simple,
yet very effective. Given the correct indexation of some sub-grains with similar
orientation, in a region that presents some holes, and so unindexed grains, it
is very likely that the missing regions will belong to other sub-grains that have
similar orientations to the surroundings. The simplest idea here is to take a
bounding box in real-space that accommodate for the whole region in sample,
a bounding box in orientation-space that accommodates all the indexed grains,
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112 CHAPTER 4. RECONSTRUCTION OF GRAIN CLUSTERS

oversize them slightly, and define the combined six-dimensional bounding box as
the region to reconstruct. At this point, a total of 64 vertexes in the combined
six-dimensional space can be calculated, given by the outer product between the
8 vertexes of the real-space bounding box and the 8 vertexes of the orientation-
space bounding box. It is possible to predict on the detector the (θ, η, ω)
bounding box for each reflection that hits the detector.
The reconstruction of the clustered regions in this article took place from the
raw images, without any kind of mask, to not remove unidentified spots, or to
not alter the projection data in any way. It is interesting to note in article’s
figure (2), that even if the raw images were used, where we can see overlaps from
reflections of grains from other regions of the sample, the algorithm was able
to discriminate between the signal coming from the to-be-reconstructed region
and the noise. However the most interesting figure is probably the render of
isosurfaces in the orientation-space from article’s figure (4, a) where some pre-
viously unindexed regions were definitely reconstructed by the six-dimensional
algorithm and the corresponding regions in real-space were now filled, as it can
be seen from the comparison of figure (1, d) with figure (1, a).
This result also inspired the six-dimensional bounding box extension approach

that was not discussed in the paper, to not deviate from the main message. In
fact, it can be seen from the comparison of article’s figures (1, a) and (1, d),
that the orange region in the very lower part of the sample surface, underwent
a noticeable improvement, but that region could hardly be called a cluster, or
work as a cluster like region.
Figure4.1 shows that the region now under consideration was indeed a grain,
exhibiting a sub-grain boundary that would trick first the segmentation phase
into thinking that some of spots of the grain were split into different spots,
and then the indexing and forward simulation would not be able to assign the
correct spots to the grain. As a consequence, especially from the comparison
of figures 4.1a and 4.1b, it becomes clear that applying an extension of the
predicted orientation-space bounding box, and using the raw images from the
detector, would allow to catch all the regions of the considered grain.
This “extended grain” approach is very similar to the “cluster of grains” ap-
proach and in fact there is no difference in the algorithm for the analysis of the
two types of data.
The consequences of these findings are outlined in the attached article, and
clearly change the possible future of DCT. By being able to circumvent index-
ing’s shortcomings when dealing with deformed materials, this would open the
possibility to attack new types of problems with this technique. Moreover, DCT
is based on a fast acquisition scheme, and using the six-dimensional model, we
could now think of applying the enhanced 6D-DCT to new scenarios where
progressive deformation of the sample is applied.
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(a) Regular 6D reconstruction (b) Extended 6D reconstruction

(c) Kernel Average Misorientation (d) Intra-granular Misorientation

Figure 4.1: Reconstruction of grain 63, which exhibits a sub-grain structure,
that could not be reconstructed properly, through the standard DCT reconstruc-
tion route, but that was completely reconstructed by performing an extension
of the six-dimensional reconstruction bounding box, and using raw images.
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Abstract

A previously introduced mathematical framework for full-field X-ray
orientation microscopy is for the first time applied to experimental near-
field diffraction data acquired from a polycrystalline sample. Grain by
grain tomographic reconstructions using convex optimization and prior
knowledge are carried out in a six-dimensional representation of position-
orientation space, used for modelling the inverse problem of X-ray orienta-
tion imaging. From the 6D reconstruction output we derive 3D orientation
maps, which are then assembled into a common sample volume.
The obtained 3D orientation map is compared to an EBSD surface map
and local misorientations, as well as remaining discrepancies in grain
boundary positions are quantified.
The new approach replaces the single orientation reconstruction scheme
behind X-ray diffraction contrast tomography and extends the applica-
bility of this diffraction imaging technique to material micro-structures
exhibiting sub-grains and/or intra-granular orientation spreads of up to
a few degrees. As demonstrated on textured sub-regions of the sample,
the new framework can be extended to operate on experimental raw data,
thereby bypassing the concept of orientation indexation based on diffrac-
tion spot peak positions.
This new method enables fast, three-dimensional characterization with
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isotropic spatial resolution, suitable for time-lapse observations of grain
microstructures evolving as a function of applied strain or temperature.

1 Introduction

Their ability to map crystallographic phase and orientation in three dimensions
make X-ray diffraction imaging techniques a highly complementary tool to es-
tablished 2D electron microscopy techniques like electron backscatter diffraction
(EBSD).
In this article we present first experimental results obtained with a new six-
dimensional data analysis framework [22], applicable to monochromatic beam,
near-field X-ray diffraction data, aiming at the reconstruction of spatially re-
solved, three-dimensional orientation maps. As opposed to 3D X-Ray Diffrac-
tion (3DXRD) variants based on pencil beam (1D) or line beam (2D) illumi-
nation which involve 3D or 2D scanning procedures limiting the ultimate ac-
quisition speed, the full-field variant described in this paper requires only one
rotational scan and can be executed on standard X-ray tomography instruments,
offering simultaneous X-ray absorption and phase contrast inspection of the il-
luminated sample volume.
Depending on the experiment settings and material characteristics, the recon-
struction task related to X-ray orientation microscopy [15] can be sub-divided
into one of the following three categories: (1) negligible intra-granular orienta-
tion spreads (2) presence of intra-granular orientation distributions which can
be described as a 3D vector field and (3) presence of intra-granular orientation
distributions which require a description as 3D orientation distributions per
sampled volume element.
In the first case the task of 3D grain shape reconstruction reduces to the classi-
cal problem of image reconstruction from parallel projections and can be solved
using algorithms developed in the field of medical imaging ([5], [6], [15], [13],
[12], [16]). Common to this class of micro-structure reconstruction techniques
is a two step process based on poly-crystal indexing followed by grain by grain
reconstruction. In the indexing step grain orientations and positions are identi-
fied based on a systematic search through the list of scattering vectors derived
from the measured diffraction spot peak positions. In the second step, a projec-
tion stack and the corresponding projection geometry are constructed for each of
the grains, which are reconstructed individually and assembled into the common
sample volume. However, it has to be noted that the concept of indexing grain
orientations from diffraction spot peak positions applies to materials and acqui-
sition conditions giving rise to limited diffraction spot overlap on the detector.
This concept is known to gradually fail with increasing complexity of the micro-
structure and macroscopic plastic deformation (giving rise to increasing values
of intragranular orientation spread and lattice strain) and eventually results in
non-spacefilling grain maps (see Supplemental Information for a more detailed
discussion of the interplay and the typical values of material and acquisition
parameters determining the applicability of polycrystal indexing approaches).
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Alternative strategies for X-ray orientation microscopy replace the above-mentioned
two step process with a forward modeling approach performing a voxel-wise op-
timization in order to maximize the overlap between experimental data and
the current description of micro-structure. These strategies are well suited for
the second class of reconstruction task (i.e. description of the material micro-
structure in terms of a 3D orientation field) and have proven to be applicable
to samples which have undergone significant plastic deformation [10]. Promi-
nent examples are the algorithms entitled ‘Grain Sweeper’ [17, 2] and IceNine
[20, 11], established in the frame of of the High Energy Diffraction Microscopy
(HEDM) project at the Advanced Photon Source. Both algorithms share the
concept of local (voxelwise) optimization and operate on a binarized version of
the diffraction data.
In this article we introduce a framework which deals with the third, and most
complicated case, accounting for a 3D orientation distribution for each sampled
volume element. The formulation of the reconstruction task in six-dimensional
position-orientation space was first proposed in earlier work by Poulsen [14],
but an actual implementation became only possible recently, thanks to progress
in computing hardware and emergence of new concepts and algorithms in the
field of mathematical optimization. Introducing a regular sampling over the
sub-volume of 3D orientation space occupied by a grain, we have shown that
the inverse and underdetermined problem of X-ray orientation microscopy can
be solved with the help of first-order, convex optimization algorithms, using
physical meaningful regularization terms [22].
Whereas this previous work was based on synthetic diffraction data we present
here a first application to experimental data acquired from a polycrystalline
halite (rock-salt) sample containing more than 300 indexed grain orientations
in the illuminated sample volume. We demonstrate that the quality and applica-
bility of fast, full-field acquisition techniques can be significantly enhanced when
switching to such a six-dimensional formulation of the reconstruction problem.
Three different types of grain maps, all reconstructed from the same set of ex-
perimental data are presented and compared to each other in this work. The
first two maps are based on the two step process of indexing grain orientations,
followed by algebraic reconstruction using the conventional 3D (single orienta-
tion) reconstruction algorithm [12, 16] and the new six-dimensional framework
[22], respectively. The material under study presents a pronounced grain sub-
structure and some of these sub-grains could not be identified using conventional
indexing schemes based on diffraction spot center of mass positions. We then
present an extension of the six-dimensional approach, operating on experimen-
tal raw data and circumventing the steps of diffraction spot segmentation and
orientation indexing. Seeded with approximate information concerning the real
space and orientation space sub-volumes of the region to be reconstructed, this
extended approach correctly identifies the missing sub-grain orientations and
results in a space-filling grain map.
For visualization and evaluation of the reconstruction results we used the re-
duced, 3D vector field representation of the orientation field, derived from the
6D reconstruction output. The orientation of a real space voxel in this repre-
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sentation is calculated as the center of mass of the local orientation distribution
associated to this voxel. The resulting 3D orientation maps have been compared
to EBSD measurements acquired on one of the lateral sample surfaces and lo-
cal disorientation and discrepancies in the grain boundary positions have been
analysed.

2 Method

In a monochromatic beam, near-field diffraction experiment the sample is posi-
tioned on a rotation stage, and as it rotates by angle ω, it gives rise to diffracted
beams each time the Bragg condition is met for one of the grains. A limited
number of the diffraction spots will intersect the high resolution imaging de-
tector positioned a few millimeters downstream of the sample. Each of the
sub-orientations present in a grain is associated to a slightly different projection
geometry and the diffraction signal associated to a given Bragg reflection is ob-
served as a three-dimensional diffraction “blob” volume, parametrized by two
spatial coordinates u and v (detector pixel coordinates) and a rotation angle ω
(image number).
Whereas in the previous implementations of DCT the reconstruction units were
grains, described by an average orientation and a corresponding projection ge-
ometry applied to the integrated diffraction spots (2D), we now introduce an
explicit, discrete sampling of the local orientation space centered around the
grain average orientation and exploit the additional information encoded in
the intensity variation of the 3D diffraction blob volumes as a function of the
rotation angle. We neglect the possible (in metals typically ≤ 1%) elastic dis-
tortion of the crystal unit cell and introduce a 6-dimensional reconstruction
space X6 = R3 ⊗O3 obtained by the outer product of cartesian real-space and
3-dimensional orientation space.
Assuming kinematic diffraction and neglecting photoelectric absorption and ex-
tinction effects, the process of diffraction image formation (forward projection)
can be formulated as a linear operator:

Ax = b (1)

where x is a vector containing NP elements, representing the scalar “scattering
power” for each of the sampled volume elements in the six-dimensional position
- orientation space (NP = n3× p3 for the case of a regular sampling over cube-
shaped sub-volumes with grid length n and p in position and orientation space,
respectively). Each line of the projection matrix AS×NP contains the contri-
bution of the 6D volume elements to a given detector pixel and the vector bS

holds a list of measured pixel intensities, specified by their (u, v, ω) coordinates
in the 3D diffraction image stack. S corresponds to the total number of detector
pixels in the 3D image stack reached by the M projections (hkl reflections) of
the grain volume(s).
If the elements of x are arranged as a succession of 3D real space volumes,
each representing one of the sampled orientations, and A as an array of M ×P
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projection matrices, each one describing the projection geometry for one of the
M hkl reflections intercepted by the detector, the vector b will be composed of
M blocks corresponding to contiguous 3D subvolumes (i.e. the aforementioned
diffraction blobs), spread throughout the entire stack of detector images:




A11 · · · A1P

...
. . .

...
AM1 · · · AMP






x1

...
xP


 =




b1

...
bM


 (2)

(Removing lines of bi with elements corresponding to ω positions not reached
by current orientation j, the resulting sub-matrices Ãijxj = b̃i correspond to
parallel beam projections of single orientation volumes onto 2D diffraction spot
images b̃i, as used in previous 3D implementations of DCT [12].)

2.1 Formulation as a 6D optimization problem and under-
lying assumptions

While equation (2) is a concise formulation of the diffraction image formation
(forward projection), it is not suited for the actual reconstruction. Whereas in
the case of 3D reconstructions based on single (grain average) orientation one
had to solve for one unknown (local scattering power) per real space volume
element, we now have to solve for a much larger number of unknowns (i.e the
scalar scattering power for each of the discretized orientations (∼ p3 - typically
several hundreds up to a few thousands of orientations per real space voxel). At
the same time the number of measurements typically only increases by a factor
of p [22]. Moreover measurements from a polycrystalline sample are affected by
diffraction spot overlaps from other grains and various sources of noise.
As a consequence, equation (2) is an ill-posed, heavily under-determined prob-
lem and has to be re-written as a minimisation problem, in which case additional
terms enforcing physical meaningful constraints and prior knowledge about the
solution can be incorporated in its optimization functional.
While in previous work on synthetic diffraction data [22] we chose to use an l1
minimization over the full six-dimensional space, because of the a priori knowl-
edge that the phantom was based on a (sparse) 3D vector field representation
of the grain volume, in the current work we used a slightly different formulation
(equations 3 and 4) which promotes positive solutions minimising spatial varia-
tions of the integrated scattering power assigned to the real space voxels, as to
be expected from a purely kinematic diffraction model.

x∗ = argmin
x
||Ax− b||22 + λ|| (|∇Sx|) ||1 (3)

subject to: x ≥ 0 (4)

where S is the operator that sums all the orientation components for each real-
space voxel, and the l1-norm over the absolute value of the gradient is the total
variation operator ([3], [18]).

118

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2015ISAL0095/these.pdf 
© [N. R. Viganò], [2015], INSA Lyon, tous droits réservés



This formulation is well adapted to the reconstruction of materials showing a
pronounced sub-grain structure, since cross-talk between the sampled orienta-
tions tends to assign intensity to the grain boundary regions and results in
sharper boundaries and better homogeneity of the reconstructions compared to
the previous l1-norm formulation.
Like in the previous work [22], a specific class of algorithms called Chambolle-
Pock [4] is used for the minimization of the functional in equation 3. As shown
in the supplementary material this functional can be rewritten in a different
form, leading to a very similar algorithm, but now with a fixed weight λ = 1,
more suitable for practical work on large dataset containing a large number of
individual reconstruction problems.
For more details on the calculation of the projection matrix, on the 6-dimensional
space and on the optimization algorithm, we refer to the supplementary material
and [22] [1] [15].

3 Results

A parallelepiped sample with 0.9× 0.9× 2.2 mm dimension was prepared from
a two-phase materials consisting of large (100-400 µm) NaCl grains and a fine
dispersion of micrometer sized Cu particles. (The fine dispersion of Cu serves
as a contrast agent for digital volume correlation and will be used for deter-
mination of the 3D displacement fields introduced by incremental compressive
loading of the specimen, foreseen in a follow-up experiment.) Halite is a visco-
plastic geomaterial deforming under the action of grain boundary sliding and
dislocation mediated plasticity [19, 24]. Here we report on the characterization
of the 3D orientation field prior to plastic deformation of the specimen. Closer
inspection of the EBSD surface mapping (figure 1a) reveals that part of the
bigger grains consist of smaller sub-grains with typical dimensions of order of
100 µm and which are delineated by small angle boundaries with a few degrees
of misorientation. A 560 µm high sub-volume of the specimen containing more
than 300 grains was scanned on a conventional X-ray imaging setup available
at the bending magnet beamline BM05 of the European Synchrotron. After the
synchrotron experiment one of the lateral sample surfaces was characterized by
electron backscatter diffraction for comparison and cross-validation of the X-ray
orientation maps calculated from the X-ray diffraction data.
More details on the sample preparation and experiment conditions used for the
DCT and EBSD characterization are given in the supplementary material.

3.1 DCT reconstructions

Three different types of grain reconstructions were performed in order to illus-
trate the improvements of the new reconstruction framework compared to the
previous (single orientation) approach: (1) a standard 3D DCT reconstruction
of the grains that have been identified in the polycrystal indexing step. In-
tegrated 2D diffraction spot images were used for the reconstruction and the
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resulting 3D grain map underwent a two voxels dilation step as described in [12]
(2) a 6D DCT reconstruction of the same set of grains, but now reconstructed
from the 3D diffraction blob volumes using a variant to of the recently intro-
duced 6-dimensional algorithm [22] and (3) an extension of the latter where
sub-regions of the 3D orientation map corresponding to some extended regions
in real space and orientation space have been reconstructed from unsegmented
experimental raw data.
As mentioned earlier, the 6D reconstruction output has been reduced to the con-
ventional 3D vector map representation, commonly used in orientation imaging
microscopy. In all three cases the final shape of the 3D grain volumes is deter-
mined by an automated thresholding operation at the time of assembling the
individual grain reconstructions into the common sample volume. Note that no
additional dilational postprocessing was applied to the grain orientation maps
obtained by the six-dimensional reconstruction approaches.

3.2 Grainmaps comparison

Figure 1 shows a comparison of the EBSD map acquired close to one of the
sample surfaces with the corresponding section through the reconstructed grain
volume obtained with the three approaches described in the previous section.
The grain maps are color coded according to the inverse pole figure mapping
along the surface normal and overlaid on the X-ray attenuation map (as ex-
plained in Supplementary Information the DCT volume and orientation matri-
ces have been rotated by about 2.4 degrees in order to coincide with the reference
frame of the backscatter electron image. The IPF colour key is provided in fig-
ure S1.) The absorption image has been reconstructed from the simultaneously
acquired X-ray projection images and it is intrincically aligned with the DCT
grain map. Due to their higher attenuation coefficent the Cu particles show up
as bright particles, decorating part of the high angle grain boundaries in the
NaCl matrix material.
The construction of the depicted X-ray orientation maps involves the steps of
segmentation and assembly of individually reconstructed grain volumes into the
common sample volume. This process may lead to non-space-filling orientation
maps in case of grain orientations not been identified in the previous indexing
step. Inspection of the EBSD map indicates that the “holes” in proximity of the
orange and rose grains at the bottom and right side of the depicted grain maps
figures (1b,1c) correspond to sub-grains separated by low-angle boundaries with
less than 3◦ misorientation. Since the connectivity of diffraction blobs originat-
ing from grains with a pronounced sub-structure changes as a function of the
(hkl) reflection, the center of mass and shape based indexing procedures outlined
in [12, 16] may fail to identify part of the existing sub-grains in this situation.
However, as long as one of the sub-grains has been identified a straightforward
extension of the six-dimensional reconstruction approach discussed in the next
section can be used to find the others and eventually results in a space-filling
grain map (figure 1d) with a much reduced number of ambiguously or unas-
signed voxels.
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As the attenuation map is simultaneously measured with the 3D orientation
map, with the same detector, in the same reference system, it is possible to
complement the grain map with the information about the position of the Cu
particles. This type of information is also interesting because the Cu particles
are only observed at the grain boundary positions, and their presence is both a
direct confirmation of a correct indexing and a measure of the spatial accuracy
of the reconstructed grain maps.

(a) EBSD (b) Dilated DCT-3D (c) DCT-6D (d) DCT-6D Cluster

Figure 1: Comparison of EBSD surface mapping with the different reconstruc-
tion approaches for full-field X-ray orientation microscopy discussed in this work.

3.3 Reconstruction of sub-grain clusters and intra-granular
orientation

Having identified one of the sub-grain orientations in a textured and/or badly
reconstructed region of the sample a straight forward extension of the current
framework allows to identify and reconstruct neighboring sub-grains without
the need to explicitly identify and isolate the corresponding diffraction blobs on
the detector. It is enough to extend the real-space bounding box to include the
missing region, and to (iteratively) extend the orientation-space bounding box
until the missing sub-grains are fully included. A new stack of diffraction blobs
(difstack as defined in [22]), that would include the region on the detector cov-
ered by the forward projection of the extended real-space and orientation-space
volumes is assembled and then reconstructed with the very same 6D algorithm
used for the indexed grains.

There is, however, one important difference: unlike the difstack of indexed
grains which is constructed from a subset of pre-selected and segmented diffrac-
tion blob volumes, the difstack corresponding to a clustered region is directly
assembled from the background corrected experimental raw images. This in
turn may lead to considerable degree of overlap between the reflections of the
grain under analysis and spurious reflections from other grains, as depicted in
figure (2a). In fact, these spurious overlaps are mathematically inconsistent to
each other, from one blob to another one, and the reconstruction algorithm is
able to greatly reduce their impact on the final reconstruction. Indeed, figure
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(a) Experimental spot image (b) Theoretically fwd-projected image

Figure 2: Comparison of the experimental images for an [2 2 2] reflection at
θ = 6.21 degrees, η = 112.112 degrees, with a ∆ω = 6.7 degrees (67 images),
with the same forward-projected spot from the result of the reconstruction.

(2b) shows what the forward projection of the segmented reconstruction volume
reproduces the diffraction blob corresponding to the grain under investigation
(the grain cluster depicted in figure 3c), and the overlaps, affecting about 50
% of the projections, are completely filtered out. It should be noted that even
with indexed spots overlaps may occur, so this tolerance is important.

Figure (3a) is a zoom on the clustered region in the right mid-bottom part
of figure(1d). It shows that the intra-granular misorientation is characterized
by a maximum value of 2.5 degrees misorientation from the chosen reference
orientation and illustrates the local orientation characterization capability of
the new six-dimensional reconstruction framework. Each of the real space voxels
carries a local orientation determined from the weighted average of the intensity
assigned to the 3D orientation space voxels related to this specific position.
The calculation of the kernel average misorientation in figure (3b) clearly reveals
the presence of small-angle grain boundaries in this region. Note that these
boundaries are not sharp, which can be partly attributed to the fact that the
orientation-space resolution for this calculation was limited to a grid of 11×11×
11 orientations over a bounding box of 3.1◦ × 2.5◦ × 3.9◦, because of memory
constrains.
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(a) Slice IGM (b) Slice KAM

(c) IPF
(d) ODF

Figure 3: Reconstruction of a grain cluster using the extended 6D approach.
(a, b, c) same slice through the 3D reconstruction showing: (a) Intra-granular
Misorientation, (b) Kernel Average Misorientation (c) inverse pole figure colour
coding scheme revealing the presence of sub-grains and small angle boundaries
from skeletonization of (a) (gray: ≥ 0.5◦, black: ≥ 2◦), (d) iso-surface of the
orientation sub-space reconstructed for the clustered region. Red points indicate
sub-grain orientations which had been successfully identified using conventional
indexing procedures, along with their corresponding grain ID.
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Interesting insight about the structure of the solution is also gained from
inspection of the local 3D orientation space associated to this sub-structured
region of the sample volume. Figure (3d) confirms that the algorithm was able
to identify a few new sub-grain orientations in addition to the five indexed
sub-grain orientations detected by the conventional indexing procedure. The
application of this extended reconstruction framework to other regions which
were incompletely reconstructed in figure (1c) results in a significant improve-
ment of the reconstruction which now is close to space-filling (figure 1d). Finally,
figure (4), shows a quantitative comparison between the EBSD map in figure
(1a) and the 6D-DCT map in figure (1d). More precisely, figure (4a) shows the
voxel-by-voxel misorientation between the two maps. Regions corresponding to
Cu particles and voxels close the grain boundaries, assigned to different grains
are shown in white and have been excluded from this analysis. The histogram
of the misorientation distribution (figure (4c) shows a pronounced peak at 0.2
degrees and some low intensity tails up about 1 degree misorientation.
In figure (4b) instead, an overlay of the grain boundaries computed with the
two techniques is presented. The local distance between the two maps has been
determined by intersecting the (binary) DCT boundary map with the distance
transform calculated from the EBSD boundary map. The corresponding his-
togram with an average distance of 1.06 voxels (corresponding to 3.7 µm) is
presented in figure (4d).

4 Discussion

With the transition from a 3D to a 6D reconstruction framework, the previous
restriction of diffraction contrast tomography to materials with negligible values
of intragranular orientation spread disappears. By assigning an average orien-
tation to each of the reconstructed voxels, the output becomes identical to well
established 2D and 3D grain mapping techniques based on scanning electron or
X-ray diffraction techniques. However, an important difference remains: unlike
scanning techniques or reconstruction schemes based on voxel by voxel optimiza-
tion, the global optimization approach as presented in this article was seeded
with some approximate information concerning grain position and orientation,
obtained from a previous polycrystal indexing step. This implies a remaining
restriction to moderately deformed microstructures (typically ≤ 5% plastic de-
formation), which can be still be described as a collection of grains, representing
3D crystal domains with limited orientation spread and well-defined boundaries
(see Supplemental Information for a discussion of the requirements for success-
ful orientation indexation from diffraction spot peak positions).
As expected from a previous feasibility study on synthetic diffraction data,
the transition from the previous single-orientation (3D) to a 6D reconstruc-
tion framework results in a visible improvement in the accuracy of the grain
shape reconstructions. The extended model can account for the non-parallel
projection geometry of deformed grains and the iterative reconstruction process
produces consistent grain shapes which can be assembled into the 3D sample
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(a) Voxel-wise misorientation (b) Grain-boundary differences

(c) Histogram of misorietations (d) Histogram of boundary distances

Figure 4: Quantitative comparison between EBSD map and the selected sur-
face slice in the 6D-DCT volume, where we can find: a) voxel-wise distance
in degrees between the orientations found by EBSD and 6D-DCT, b) Overlay
of grain-boundaries from EBSD (red) and 6D-DCT (yellow), c) Histogram of
misorientations in a), d) Histogram of pixel distances in b).
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volume with much reduced tendency for overlaps (i.e. voxels simulateneously
claimed by adjacent grains) and reduced gaps between grains, corresponding to
unassigned voxels. Indeed figures confirm that the grain boundaries obtained
with the 6D-DCT approach (using the “grain cluster” generalization for the clus-
tered regions and no dilational postprocessing of the grain map), are in good
agreement with the EBSD measurements. The accuracy of the grain boundary
positions determined with the 6D method appears to approch the voxel size of
the reconstruction (3.75µm in this study). It can be expected that values down
to 1 µm resolution can be reached when working with high resolution configura-
tions of the detector system, as typically employed in studies of materials with
grain sizes in the range of 10-50 µm.
For what concerns the reconstruction of local orientations, figures (4a) and (4c)
suggest that also in this case the algorithm is able to retrieve an average orien-
tation for each voxel that is close (i.e. within the accuracy of the EBSD mea-
surement) to the results obtained from EBSD. The full width at half maximum
of the misorientation distribution (0.25 degree) is comparable to the expected
accuracy of the EBSD measurement. As explained in the Supplementary Infor-
mation, the overall shift of about 0.2 degree in misorientation can be explained
by remaining uncertainties in the alignment of the real-space and orientation
space reference systems of both measurement modalities.
We furthermore recall that the results presented in figures (1c) and (1d) are a
projection of the full six-dimensional reconstruction output into the 3D vector
field representation that describes the local average orientations in each voxel.
This means that by using this representation we have lost the information con-
cerning the possible presence of sub-voxel orientation domains. Further tests are
required in order to evaluate the accuracy of the local (per voxel) 3D orientation
distribution output by our optimization routine. Note that the 2D EBSD mea-
surements presented in this study are not sufficient for giving a ground truth
for the six-dimensional reconstruction, since the interaction volume and infor-
mation depth (of order of 100 nm) of EBSD is much smaller than the voxel size
(3.75µm) used in this study. Three-dimensional, high angular resolution 3D
EBSD on dual-beam FIB-SEM instruments [23] or Differential Aperture X-ray
Microscopy (DAXM [9]) measurements shall be considered for this task.
The current model is based on an idealized (purely kinematic) description of
the diffraction process and calculations are performed on diffraction blob vol-
umes which have been renormalized to constant intensity, which is a pragmatic
but rather crude way to account for intensity variations due to differences in
structure and Lorenz factors, spatial and temporal inhomogeneity of the in-
coming beam profile and attenuation of the incoming and diffracted beam (the
latter also known as self-absorption) due to photoelectric absorption and ex-
tinction effects. The model could in principle be extended to account for these
effects: structure and Lorenz factors can be calculated and the incoming beam
profile is periodically updated by taking images without the object during the
tomographic acquisition procedure. Moreover, the 3D attenuation coefficient
distribution is reconstructed from the transmitted beam and after a first 3D
reconstruction one could in principle check if grains on the trajectory of the
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incoming and diffracted beam simultaneously fulfill the diffraction condition,
giving rise to local intensity variations.
An obvious extension of the approach applied to the sub-grain clusters would
consist in enlarging the sampling of the orientation space to the entire funda-
mental zone. Covering the fundamental zone for high symmetry space groups
like the cubic with an orientation resolution of 0.2 degrees would require of order
of 108 degrees of freedom. With currently available computing hardware featur-
ing up to 512 GB of memory, the model could possibly handle high-resolution
diffraction data acquired in slice beam illumination mode.
Another promising development route would consist in simultaneous acquisition
of full field (extended beam) diffraction data on 3D detector systems featuring
two or more screens with different pixel size and positioned at different dis-
tances. The reduced number of spatial degrees of freedom on the outermost low
spatial resolution (diffraction) detector would allow the identification of orien-
tations and approximate positions [17, 7] which in turn can be reconstructed at
higher spatial resolution from the near-field diffraction data, using the extended
approach presented in the current paper.
The design and implementation of the reconstruction algorithm presented here
is also independent from the type of tomographic projector used and could be
easily modularized to allow for polychromatic projectors [21] to be used in both
polychromatic X-ray or neutron imaging applications [8]. The advantage of us-
ing such framework over the previous approaches would be once again in the
possibility to explicitly take the distortion of diffraction images due to the local
variations of the diffraction angles into account. Due to additional variation of
the Bragg angle, these distortions are known to be more severe in polychromatic
imaging [8] and severely restrict the choice of materials which can be analysed
in the single orientation framework.
As a final remark, it should be stated that the current work is based on a 6-
dimensional kinematic diffraction model which does not take into account the
possible distortion of the unit cell as result of elastic strains, which would require
additional six degrees of freedom. Due to the exponential growth of memory
requirements with the number of sampled dimensions the discrete sampling ap-
proach used in this work will not be an appropriate framework for addressing
the full 12-dimensional problem.

Conclusions

We have demonstrated the feasibility of three-dimensional full-field X-ray ori-
entation microscopy from extended beam near-field X-ray diffraction data. A
new six-dimensional reconstruction framework yields spatially resolved 3D at-
tenuation and orientation maps, substituting and outperforming the previously
introduced three-dimensional (single orientation) reconstruction algorithm be-
hind X-ray diffraction contrast tomography.
The results obtained on a two phase material made from NaCl and contain-
ing a fine dispersion of Cu particles have been cross-validated against EBSD
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measurements on the sample surface and indicate that our approach yields an
orientation resolution comparable to EBSD and a 3D spatial resolution consis-
tent with the pixel size of high resolution X-ray imaging detectors.
As demonstrated on a material displaying a pronounced grain sub-structure, the
introduced six-dimensional frame can be extended to operate on non-segmented
raw data corresponding to sub-volumes of the six-dimensional position - orien-
tation space. This finding indicates possible future extensions of the framework,
such as replacing the two-step process of orientation indexing and reconstruction
by a global optimization procedure by including extended regions of orientation
space into the reconstruction process.
Finally, as a full-field approach, compatible with simultaneous absorption and
phase contrast imaging, the proposed methodology is currently about one order
of magnitude faster than competing techniques based on slice or pencil beam
illumination. This specific feature opens interesting new possibilities for time-
lapse observations of processes like plastic deformation, coarsening or phase
transformations in bulk polycrystalline structural materials.
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Supplementary Information

1 Experimental Details

1.1 X-ray diffraction contrast tomography data acquisi-
tion

X-ray diffraction contrast tomography measurements were performed at the
bending magnet beamline BM05 of the European Synchrotron Radiation Facil-
ity (ESRF). The central part of a parallelepiped sample was illuminated by a
monochromatic X-ray beam (35 keV; 1.5 (h) × 0.56 (v) mm cross-section), deliv-
ered by a Si 111 double crystal monochromator. The transmitted and diffracted
beams were captured on a detector system positioned 15 mm downstream of the
sample position. The detector system consisted of a back-illuminated Frelon
CCD camera, coupled via visible light optics to a 100µm thick transparent
luminiscent screen made of LuAG [5] and provided an effective pixel size of
3.75µm and a field of view of 7.7 × 7.7 mm. 3600 images with an exposure
time of 8 sec were recorded during a 360◦ continuous rotation movement of the
sample. With these settings the five inner-most Debey-Scherrer rings were in-
tercepted by the detector and on average 45 out of the 60 diffraction blobs could
be unambiguously assigned to one of the 345 indexed grains in the illuminated
sample volume.

1.2 EBSD acquisition

In order to compare the 6D-DCT reconstructions to a classical EBSD surface
measurement, the surface of the sample was further prepared by broad argon ion
beam sputtering, using the most recent ion-beam polishing system from Gatan
[PECS-II], which combines cross sectioning and planar polishing capabilities. In
order to prepare a large mm-sized area, we used the planar polishing technique,
applying an acceleration voltage of 2 kV and 5◦ beam incidence, for a duration
of about 1 hour.
The EBSD data were acquired on an environmental Quanta 600 FEG-SEM
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Figure 1: IPF Color key used for the orientation coloring in figure (1).

instrument, operated at 20 Hz acquisition rate, an acceleration voltage of 20 kV ,
a working distance of 17.6 mm and a residual air pressure of 100 Pa in order
to avoid surface charging. A grid of 5× 4 partially overlapping EBSD maps, of
300×270µm size each, allowed for covering an entire lateral sample surface with
a step size of 1.3 µm. The acquired diffraction patterns were analyzed using the
AZtec HKL system from Oxford Instruments. The standard procedure with a
minimum of 12 indexed Kikuchi lines allowed for 99.6% indexation success. A
surface layer of approximately 20µm in depth was removed in five successive
ion-sputtering steps before a full correspondence between the micro-structures
observed by EBSD and DCT was obtained.

1.3 IPF coloring

The coloring key used for figure (1) in the text of the article is reported in figure
(1).

1.4 Registration of datasets and remaining sources of er-
ror

The two-dimensional EBSD mapping and the three-dimensional tomographic
reconstruction have been carefully aligned with respect to each other, using
an optimization routine based on the position of a set of Cu particles identi-
fied in both imaging modalities. Cu particles are visible in the 3D absorption
image and in the backscatter electron image acquired in conjunction with the
EBSD characterization. The optimization provides a best fit between the X-ray
absorption map and the electron backsacttered electron image of the polished
sample surface.
Nevertheless, the histograms in figure 4 show some remaining discrepancies.
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Whereas part of these discrepancies may be attributed to actual errors intro-
duced by the reconstruction and segmentation procedure (due to uncertainties
in the experiment geometry, non-idealities of the detector system and various
other sources of noise), a series of other factors complicate a one to one com-
parison between both imaging modalities:

1. The voxel size of the DCT map (3.75 µm in our case) is significantly bigger
than the typical interaction volume of EBSD measurements (of order of
100 nm). Even though the EBSD maps have been sampled with a smaller
step size of 1.3µm, the volumes from which the average orientations in
both maps are derived from are not identical.

2. The comparison is carried out between a not ideally flat surface (there
is some remaining curvature and surface relief created by the ion beam
polishing procedure) and a geometric plane inside a 3D volume.

3. There may be some remaining spatial distortion of the (stitched) EBSD
map after the affine transformation (70 degree tilt) back into the coordi-
nate system aligned with the electron beam direction.

4. The alignment of the orientation-space reference system between the two
datasets does not perfectly coincide with alignment of the real-space ref-
erence systems: while the real-space alignment suggested a rotation of
2.6 degrees, the orientation-space alignment suggested a rotation of only
2.4 degrees. This is however is in-line with the observation of a shift in
the peak of misorientation histogram shown in figure 4d (main text). We
attribute this to a remaining curvature of the sample surface and small
errors in the calibration between the reference frames of the EBSD map
and the back-scattered electron image.

5. The distance transform calculated in 2D can only provide a conservative
estimate of the true distance in three-dimensions (boundaries cutting the
observation plane at a small angle, can give rise to large errors).

2 Sample preparation

This work is part of a research project aiming at the characterization of plastic
deformation mechanism in Halite (rock-salt, NaCl) by combined use of digital
volume correlation (DVC) [2, 4] and 3D grain mapping techniques. Abandoned
rock-salt mines are currently considered as natural reservoirs for compressed air
energy storage power plants, and there are questions concerning creep deforma-
tion and damage modes of salt as a geo-material [1].
In order to enable the characterization of 3D displacement fields in the bulk of
the polycrystalline microstructure as a function of applied plastic deformation
a two-phase material providing internal (absorption) contrast was prepared for
this study. Pure synthetic NaCl powder and a fine grained dispersion of Cu
particles (3 volume %, average size 3 µm) were mechanically mixed at room
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temperature. A nearly dense cylindrical block of 7 cm in diameter, with about
3 % of porosity and widely spread NaCl grain size distribution (20 - 300 µm)
was obtained after a first stage of hot isostatic pressing (HIP) at a temperature
of 150◦C and 100 MPa for 168 h.
In order i) to promote NaCl grain growth to a size compatible with DCT char-
acterization of a mm-sized specimen, and ii) to reduce the residual porosity for
the purpose of the mechanical testing, additional high temperature HIPing of
cm-sized cylinders was performed at 700◦C and 2.5 MPa over 24 hours. The
latter procedure resulted in a homogeneous two-phase micro-structure, consist-
ing of equiaxed NaCl grains with narrow size distribution (100 - 400 µm) and
an average size of about 250 µm (as determined by the linear intercept method,
considering grain boundaries with ≥ 10 degrees misorientation ) and a residual
porosity of less than 1 vol%. Interfacial dragging of the copper particles during
NaCl grain growth did result in a micro-structure presenting individual NaCl
grains and clusters of a few NaCl grains delineated by a more or less continuous
3D network of segregated Cu particles. A parallelepiped shaped sample was ex-
tracted from the center of the hot pressed material using a low speed diamond
saw, and was carefully polished down to grid 4000 SiC paper to final dimensions
of 0.9× 0.9× 2.2 mm.
Even if the material was tailored for this type of combined study, the micro-
structure of the material shows very similar characteristics to the microstruc-
tures encountered in stuctural materials like metals and their alloys. In both
cases the material can deform through dislocation mediated plasticity, and dis-
locations may organize in sub-structures leading to the formation of cells and
small-angle grain boundaries.

3 Sample requirements

Although the full-field diffraction approach presented in this work can deliver
comparable output to other well established orientation imaging techniques, the
higher convolution of the diffraction signal (illumination of the full 3D sample
volume) imposes more stringent conditions on the type of microstructures which
can be successfully analysed, as compared to 2D or 3D scanning techniques.

Diffraction spot overlap One of the principal limitations is related to the
concept of orientation indexing based on a systematic search through scat-
tering vectors, derived from diffraction spot peak positions. Acquisition
conditions resulting in diffraction spot overlap will bring this concept to
fail, because the erroneous determination of the centers of mass will re-
sult in erroneous determination of the associated scattering vectors and
poor indexation results. The probability of diffraction spot overlap in-
creases with the number of grains in the illuminated sample volume, the
intragranular orientation spread, and the strength of texture. While it
is difficult to provide absolute numbers for the individual conditions, due
to the interplay of these different factors, it is possible to alleviate the
probability of overlap by reducing the number of grains (by reducing the
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sample diameter and/or reducing the dimensions of the illuminated sam-
ple volume by closing the gap of the beam-defining slits), and optimizing
the distance between sample and detector.

Number of grains In the absence of deformation and texture, peak search
based indexing techniques can work with up to a few thousand grains,
while for a 5% deformed samples, a more realistic number is of order
hundred.

Sample size The sample dimensions in the direction perpendicular to the ro-
tation axis should in general not exceed 20 grain diameters. Deformed
and textures materials might require further reduction to values below 10
grain diameters.

Grain size The minimum grain size limit is closely linked to the pixel size of
the high resolution X-ray detector system employed. In order to spatially
resolve 3D grain shapes, one should aim at about 10 voxels across the
typical dimensions of the smallest grain size to be reconstructed. Given
the physical limitation of high resolution X-ray detector systems to about
0.5µm resolution in the best case, the minimum grain size which can be
handeled with type of approach is of order of 5-10 µm.

Scaling Provided the material has a mono-modal grain size distribution, the
pixel size can typically be adjusted over a wide range (0.5µm (in UO2)
up to 30µm (in ice) have been demonstrated).

4 Mathematical Details

4.1 Construction of the 6D reconstruction space

To work with high symmetry space-groups and limited values of intra-granular
orientation spread, a regular sampling of Rodriguez parametrization of orien-
tation space can be used (see [8] and suggestions therein for a computationally
efficient representation applicable to all space groups, based on a compound
description based on quaternions and “local” Rodriguez vectors). The voxel
size in the real-space volumes will be defined by the acquisition resolution and
the volume size can be estimated from the convex hull of the back-projected
diffraction spots.
A natural choice of the orientation space resolution would be the angular step
size used in the acquisition procedure. However, since an efficient implementa-
tion of the iterative reconstruction algorithm requires the full 6D volume to be
loaded in computer memory, the sampling interval may have to be decreased to
multiples of the acquisition step size in order to avoid saturation of the mem-
ory. Note that the orientation space resolution is linked to the total number of
orientations and hence memory requirements by the third power of the inverse
of the orientation step size. The use of adequate mathematical priors and in-
terpolation techniques discussed in [10] help to mitigate this problem and allow
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for the discretized orientations to represent the signal on the detector coming
from the missing orientations. A different approach could be the reduction of
the real-space resolution, to compensate for a finer orientation-space sampling
grid, which could be used for reconstruction of bigger portions of the sample.
A conservative estimate of the bounding-box of the orientation distribution func-
tion of each grain can be obtained from the extreme values of the diffraction blob
volumes in real space. The direction of the diffracted beam can be parametrized
by two angles: 2θ being the (Bragg) angle between the diffracted beam and the
incoming beam, and η being the angle between the projection of the rotation
axis and the line connecting the intercepts of the direct beam (u0, v0) and the
diffracted beam (u, v) on the detector (azimuth angle on the virtual Debye
Scherrer ring associated to the current grain position).
While 2θ is not supposed to change in this 6-dimensional framework, for a
given reflection, the deformation will be observed as a spread in both the ω
and η directions. As described in [7], a given set of (θ, η, ω) angles will define
a line in the Rodrigues representation of orientation-space. For a given reflec-
tion the lines produced by the extremal values of η and ω will not perfectly
lie in the same plane, but the deviation will be small enough to use them to
approximately define a limiting plane in orientation space for the Orientation
Distribution Function of the grain being analysed. By collecting each of the
four planes defined by the four extreme deviation values of η and ω for each
reflection, it is possible to build a circumscribing polyhedron to the grain ODF.

4.2 Convex optimization algorithm

The Chambolle-Pock algorithm (CP, [3]) is a first-order primal-dual algorithm
for convex optimization problems, which is among the most popular algorithms
for solving total variation minimization problems. The CP algorithms can solve
different types of optimization problems, and it is relatively easy to mathemat-
ically derive the algorithm 1, tailored for the formulation of the optimization
problem in (eq. 3 of the article) [9].
A practical solution to avoid tuning of the free parameter λ in equation (3) of
the article consists in rewriting the functional as

x∗ = argmin
x
|| (|∇Sx|) ||1 (1)

subject to: x ≥ 0 and ||Ax− b||2 ≤ ε (2)

where ε is now an estimation of the total noise of the projection data. The
formulation in equation 1 still contains a free parameter. However, performing
a pre-selection of diffraction blobs based on intensity criteria one can reduce the
noise level in the projection data. Considering the transition ε→ 0 leads to:

x∗ = argmin
x
|| (|∇Sx|) ||1 (3)

subject to: x ≥ 0 and Ax = b (4)
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The CP algorithm instance tailored for this new form of the functional is given
below in algorithm 2.
The parameter σ1 is typically chosen as an approximation to the inverse of the
l2-norm of the matrix A, while the parameter σ2 is typically chosen as 1/2 which
is the inverse of the l2-norm of the matrix representation of the gradient.

ALGORITHM 1: CP Instance for eq. 3 of the article

Require: x0, y, λ
Ensure: Reconstruction in xk

p0 ← 0
q0 ← 0
θ ← 1
for k ← 1, . . . , n do

pk ←
pk−1 + σ1(Axk−1 − y)

1 + σ1

qk ← λ
qk−1 + σ2∇Sxk−1

max(λ1, |qk−1 + σ2∇Sxk−1|)
xk ← P0

(
xk−1 − τATpk − τST div qk

)

xk ← xk + θ (xk − xk−1)
end for

ALGORITHM 2: CP Instance for eq. 3

Require: x0, y
Ensure: Reconstruction in xk

p0 ← 0
q0 ← 0
θ ← 1
for k ← 1, . . . , n do

pk ← pk−1 + σ1(Axk−1 − y)

qk ←
qk−1 + σ2∇Sxk−1

max(1, |qk−1 + σ2∇Sxk−1|)
xk ← P0

(
xk−1 − τATpk − τST div qk

)

xk ← xk + θ (xk − xk−1)
end for

If we consider that in our applications, the norm of the matrix A can be
large (and therefore the parameter σ1 is small), we see that 1 + σ1 ≈ 1, such
that Alg. 2 is almost identical to Alg. 1 with the choise λ = 1.
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The algorithms (1) and (2) are made of few important pieces: a projection in
both the projection data space and the space associated to the regularization
condition in the objective function, the back-projection, and a memory step.
To understand how all these steps in the algorithm can be performed in our
6-dimensional problem (eq. 3 of the article) and (eq. 3), we will now introduce
the underlying data-structures.
We have two main data-structures that hold the information: the collection
of all the used diffraction blobs, also known as diffstack (vector b) and the
collection of all the volumes related to the sampled orientations, also known
as solution vector (vector x). This means that the diffstack contains all the
information recorded by the detector, while the solution vector contains the 6-
dimensional volume in orientation and real space, introduced in the “Method”
section of the article. These two data structures are linked by a third object,
generically named geometry (matrix A). Each line of the matrix A contains the
contribution of each element of x to one single pixel on the diffracted images,
but using the ASTRA toolbox [6] it is possible to use a simpler description,
which consists of a collection of tables that fully describe the projection of the
3D volumes onto the 2D detector images.

5 Hardware, software implementation and com-
putational times

The reconstructions were performed on the ESRF computing cluster and dis-
tributed over 10 machines with double Tesla K20 GPUs and 128GB of RAM.
The software was implemented in Matlab1 and C++, using the ASTRA Tool-
box (https://github.com/astra-toolbox ) for the projection and back-projection
of the volumes. The computational times scale linearly with the number of
sampled orientations, size of the real-space volumes and projection data, which
means that for the smaller grains, reconstructions can take up to a few min-
utes, while for the biggest cluster reconstruction twelve hours are needed on
one of the above-mentioned machines. The computation times could still be
greatly reduced using the newer generations of graphics chipsets, because the
biggest cost center in the reconstruction resides in the forward-projection and
back-projection of the real-space volumes.
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Chapter 5

Twin reconstructions

This chapter concludes the series of chapters dedicated to the inclusion of pub-
lished articles or articles that are undergoing submission to scientific journals
as of the writing of this thesis. This final article is a further extension and
refinement of the framework introduced in chapter 3 and 4, again demonstrated
on experimental data related to one of the more challenging types of micro-
structures, encountered in practice: the presence of thin bands of deformation
twins.
In some materials, as a result of the applied strain or stress, the crystal struc-
ture can deform in sub-regions of some selected grains, to release such stress.
The new structures will typically be in the form of plate-like grains, called twins
inside bigger grains called parents.
Twins are intrinsically difficult to deal with, because they appear in deformed
materials and so the possible presence of elastic strain is not captured in the
six-dimensional model, but also because they tend to be very small and this is
the source of many effects that make them difficult to index and process. The
fact that twins are very thin, and so they only have a small volume compared to
the other grains, results in their reflections being usually much less intense and
so more sensitive to noise. In the case of the more intense “edge-on” reflections,
instead, the point spread function (PSF) of the detector blurs their shapes out.
It is however possible to predict the new orientation of the twins among few pos-
sibilities, once the orientation of the parent is known. Indeed the transformation
known as twinning acts as a rotation of the crystal along specific symmetry axes
of the crystal, by well defined associated angles.
The interesting fact about the six-dimensional reconstruction used in this ar-
ticle for the twins is that it has to deal with two or more disjoint bounding
boxes in orientation-space at the same time: the parent’s bounding box and
the twins’ bounding boxes. This makes the orientation-space description in the
six-dimensional framework non-contiguous any more. On top of that, other
complications arise: (a) to incorporate the reflections of the parent and the
twins in one single reconstruction, it is necessary to correctly estimate the hkl-
families’ structure factor, to be able to correctly renormalize those reflections to
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142 CHAPTER 5. TWIN RECONSTRUCTIONS

not create inconsistencies in the data given to the algorithm, (b) the PSF of the
detector has to be introduced to account for the smearing of the twin projection
shape, but also to prevent the complementary phenomenon, the smearing of the
dip caused by the twin in the reflections of the parent, from happening (c) in
the case of non-indexed twins, the prediction of the twin variants, to be able to
reconstruct them anyway.
Once these complications have been taken care of, the reconstruction problem,
turns out to be easy and straight forward in the six-dimensional framework
developed in this thesis, because it is just enough to sample both regions in
orientation-space, compute where they will project on the detector and use the
compute projection geometries on the associated reflections.
What is also very interesting is that for some reflections, since the twinning hap-
pens along specific symmetry elements of the crystal, both parent and any of the
twins will project to the detector at the same position. This can be viewed as
a sort of crosstalk between the two bounding boxes in orientation-space. More-
over, if in the reconstruction functional, some term like the TV (·) operator is
applied to the sum of the real-space parts of the two six-dimensional bounding
boxes of the parent and the twin, which happen to be coincident, there will be
another sort of crosstalk between the two grains.
This is actually a wanted effect because the twins, as said before, spawn from
the parent’s volume.
Another very interesting topic mentioned in this article, that we couldn’t cover
enough because it was not the main message we wanted to pass, is that it can be
possible to roughly estimate the scattering intensities of each hkl-family from
near-field data. One can think of different approaches to this estimation and
depending on the experimental conditions, one could work better than another
one. First of all we have to observe that each reflection from a given hkl-family
will have a fixed θ that is almost identical for each grain, if strain is negligible.
So, Friedel pairs define diffraction spots’ θ, and this means that we can identify
on the detector all the spots from all the grains that belong to a certain family.
If the spot segmentation is done correctly, and the Debye Scherrer rings associ-
ated to a given set of hkl families are complete, it would be enough to compute
a relative scattering intensity for each of the hkl-families by using the following
formula:

Ihkl =
1

Nhkl

∑

n∈hkl
In| sin (ηn) | (5.1)

where the sum goes over all the spots identified as belonging to the family hkl,
Nhkl is the degeneracy multiplicity of the given family, In is the total inten-
sity of each spot, and ηn is the associated η, to account for the Lorentz factor.
Polarization effects, incoming beam profile and beam attenuation could also be
taken into account, but they would just be small corrections and except for the
first of them, the others would cancel themselves out during the integration.
The obtained intensity Ihkl is the scattering intensity of the whole volume for
the given family hkl.
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An alternative way of computing an equivalent estimation of the scattering in-
tensities would be to have first reconstructed enough grains without any assump-
tion on the experiment scattering intensities, by just using 1 as renormalization
factor for the spots, and computing the average spot intensity for a given hkl
family, renormalized by the Lorentz factor and the total number of voxels in the
segmented volume of the grain they belong to. Repeated for all the grains, this
would result in the scattering intensity of a single voxel for the given hkl family.
In the attached article, the scattering intensities were computed using the first
method and they showed a much improved match with the experimental data,
compared to the theoretically computed ones from pure titanium, since the alloy
used in the study case was a mixture of titanium with a 4% of aluminium.
Moreover, as it was earlier said, the correct estimation of the scattering inten-
sities for the larger θ intercepted by the detector might be underestimated due
to the full ring not falling on the detector, but also to some sort of vignetting
on the detector, that is not corrected by the earlier stages of DCT.
Finally, to further discuss the distortions introduced by the detector and the
optics used, at section 2.6 in the attached article, it is possible to find a descrip-
tion of the point spread function phenomenon and its implications. Even if the
modelled PSF in the article was quite crude and definitely under-estimated in
terms of width and richness of the modelling function, it made however possi-
ble to reconstruct thin plate-like features like the twins inside larger structures
as the parent grains. The main conclusion from that result is that a better
measurement and modelling of the PSF of the used optics and detector will be
needed to reach higher resolutions in the DCT reconstructions and so to allow
even better accuracy in the determination of the grain boundaries and in the
reconstruction of smaller features like sub-micron twins.
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Abstract

3D X-ray orientation microscopy based on X-ray full field imaging
techniques such as diffraction contrast tomography is a challenging task
when it comes to materials displaying non-negligible intra-granular orien-
tation spread and/or intricate grain microstructures as a result of plastic
deformation and deformation twinning. As shown in this article, the op-
timization of the experiment conditions and a number of modifications
of the data analysis routines enable detection and 3D reconstruction twin
lamellae down to micrometer thickness as well as more accurate 3D recon-
struction of grains displaying intra-granular orientation spreads of up to a
few degrees. The reconstruction of spatially resolved orientation maps be-
comes possible through the use of a recently introduced six-dimensional
reconstruction framework which has been further extended in order to
enable simultaneous reconstruction of parent and twin orientations and
to account for the finite impulse response of the X-ray imaging detector.
The simultaneous reconstruction of disjoint orientations domains requires
appropriate scaling of the scattering intensities based on structure and
Lorentz factors and yields 3D reconstructions with comparable density
values for all the grains. This in turn enables the use of a global, intensity
guided assembling procedure and avoids problems related to the single
grain thresholding procedure used previously. Last but not least, carry-
ing out a systematic search over the list of known twin variants (forward
modeling) for each of the indexed parent grains, it is possible to identify
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additional twins which have been left undetected at the previous stage of
grain indexing based on diffraction spot peak positions. The enhanced
procedure has been tested on a 1% deformed specimen made from Ti
4% Al alloy and the result has been cross-validated against a 2D EBSD
orientation map acquired on one of the lateral sample surfaces.

1 Introduction

Four-dimensional (time-lapse) multi-modal observation of polycrystalline mate-
rials microstructures as they evolve as a function of strain and/or temperature
can provide valuable benchmark data for adjustment and validation of image
based, numerical simulations of polycrystalline aggregates. The process of de-
formation twinning encountered in structural materials with hexagonal crystal
structure like Mg, Ti and Zr is an example of industrial relevance (forming of
critical components in aerospace and nuclear applications) where the predictive
capabilities of theoretical models for microstructure evolution are not yet satis-
factory and where refinement and extension of existing models could potentially
be facilitated by direct comparison of model predictions with experimental ob-
servations.
However, time-lapse observations of deformed and/or twinned microstructures
by means of three-dimensional synchrotron X-ray diffraction techniques turn
out to be a challenging task. Established methods suitable for orientation map-
ping in deformed microstructures like Differential Aperture X-ray Microscopy
(DAXM) [7], X-ray diffraction tomography [1, 4] or 3DXRD and HEDM [14, 8]
use focused X-ray beams and are based on two or three dimensional acquisi-
tion procedures. Due to limitations in instrumentation and detector technology
these scanning procedures currently suffer from time overheads which limit the
ultimate acquisition rate and lead to compromises in terms of sample volume
and/or time steps which can be recorded in the course of a typical synchrotron
beamtime. Tomographic, full-field microstructure mapping techniques like X-
ray diffraction contrast tomography (DCT) [9, 15] require only a single rota-
tional scan. Given the longer exposure time for individual images (as compared
to 1D or 2D focused beams) they are less affected by above-mentioned technical
limitations. As a consequence, relatively large (106−107 voxel) sample volumes
can be characterized in a fraction of the time currently reported for 2D and 3D
scanning approaches 1

However, until recently the reconstruction approach behind DCT has been lack-
ing the ability to address materials with non-negligible intra-granular orientation
gradients. With the introduction of a six-dimensional reconstruction framework

1A typical value at ID11, ESRF would be 4003 voxels within 2 h, corresponding to a gain
of a factor 10 and 100 in acquisition time as compared to currently reported acquisition times
for slice beam and point beam scanning techniques, respectively. With progress in instrumen-
tation, the slicing and scanning approaches may become competitive in time resolution. Since
these scanning approaches offer less convoluted and hence easier to analyse diffraction data,
adaptations of the global (6D) optimization framework to these acquisition modes shall be
envisaged.
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[20, 21] this technique can now be extended to the case of moderately deformed
materials displaying intra-granular orientation spreads of up to a few degrees.
In this paper we present an extension of this full-field X-ray orientation imaging
approach tailored for the specific challenges related to reconstruction of mate-
rials having undergone moderate levels (up to a few %) of plastic deformation,
partly accommodated by the formation of deformation twins.

1.1 Challenges related to the reconstruction of deforma-
tion twins

Deformation twins are typically observed as disk-like crystal domains with thick-
ness and size distributions spanning from nanometer to micrometer length scales
[3]. Their crystallographic orientation is related to the parent orientation by a
well defined pair of rotation axis and rotation angles around one of the symme-
try axes of the crystal (see appendix A for a brief recall of the calculation of
twin variant orientations given the orientation of the parent grain and the twin
axis and angle pair of the twinning mode under consideration). This means
that all Bragg reflections associated to scattering vectors co-linear to the said
twin rotation axes will be shared between parent and twin and project to the
same position and diffraction spot on the detector. As a result, while most of
the reflections recorded on the detector will be independent projections of the
two domains, a subset of them will be shared. If these shared reflections shall
be included in a joint reconstruction procedure, where parent and twin domains
are reconstructed simultaneously (as envisaged in this work), the diffracted in-
tensities have to be scaled properly based on structure and Lorentz factors2.
The high aspect ratio and small scattering volume of deformation twins result in
diffraction signals which can be orders of magnitude weaker than the one of the
corresponding parent grain. Moreover, due to the high aspect ratio, the local
intensity received on the high resolution screen varies as a function of projection
direction and systematically drops to the noise level for projections close to the
direction of the twin plate normal. These systematic absences are in turn a great
challenge for the indexation and the tomographic reconstruction algorithm, suf-
fering from the poor angular coverage. In addition, particularly projections
in directions perpendicular to the plate normal (“edge-on” views, observed as
intense lines) suffer from blurring due to the limited impulse response of the
high resolution imaging detectors employed in this type of near-field diffrac-
tion imaging experiments. This together with the partial-volume effect (drop of
reconstructed intensity for objects with thickness below the pixel size of the re-
construction) results generally in substantially broadened twin reconstructions
and lower reconstructed intensities compared to the parent grains.
Last but not least, deformation twins are triggered by and accompanied with
other types of plastic deformation (dislocation glide), giving rise to increasing

2Since the relative volume fraction of parent and twin are not known beforehand, a joint
reconstruction of parent and twin can no longer rely on the re-normalization of the diffraction
blob intensities used in previous implementations of the reconstruction algorithm where all
the identified and segmented reflections would be renormalized to the same intensity.
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levels of disorder and intragranular orientation spread with increasing defor-
mation. Even moderate plastic deformations in the range of one percent can
already result in the formation of grain-substructures and orientation spreads
of order of one degree. The resulting three-dimensional diffraction blob volumes
are deformed grain projections which violate the parallel projection assumption
of conventional (single orientation) DCT, which can no longer produce accurate
grain shape reconstructions in this case.
The two obvious experimental solutions to alleviate some of the above-mentioned
problems are improving the signal over noise ratio by reducing the background
on the detector and increasing the illumination on the sample, as described in
section 3.1.
In terms of data analysis strategy the approach pursued in this work was to cre-
ate the infrastructure for simultaneous reconstruction of the parent and twin,
using an upgraded version of the recently introduced six-dimensional recon-
struction framework [20, 21], as described in the next section. Furthermore, we
show that a basic search over all possible twin variants (derived from the known
parent grain orientations in the sample volume) can help to reveal additional
twins, left undetected by the indexing procedure.

2 Method

The usual setup of a near-field diffraction experiment, when using a monochro-
matic beam, consists of a rotation stage where the sample is positioned, and as
the sample rotates by angle ω, it gives rise to diffracted beams each time the
Bragg condition is met for one of the grains. Some of those diffracted beams
will intersect the high resolution imaging detector positioned a few millime-
ters downstream of the sample, and give rise to diffraction spots, which, in
the absence of intragranular orientation spread, correspond to 2D projections
of the 3D grain volume. After diffraction spot segmentation and indexation
based on Friedel pairs (hkl and h̄k̄l̄ reflections of the same grain observed for
ω0 and ω0 + 180◦) the 3D grain structure can be reconstructed by means of it-
erative tomographic reconstruction techniques. The reader interested in details
concerning the setup, acquisition procedures and initial processing steps like
segmentation, Friedel pair matching and indexation of near-field X-ray diffrac-
tion data is referred to [9] and [15].
In the presence of non-negligible intra-granular orientation spread, the parallel
projection assumption used in conventional (three-dimensional) DCT gets vio-
lated. Each of the sub-orientations present in a grain is associated to a slightly
different projection geometry and the diffraction signal associated to a given
Bragg reflection is observed as a distorted, three-dimensional diffraction vol-
ume, which then takes the name of diffraction “blob”. It is parametrized by
two spatial coordinates u and v (detector pixel coordinates) and a rotation an-
gle ω (image number)3.

3(Another parametrization of the diffraction “blob” positions on the detector, instead of
(u, v), is given in chapter 3 of [13], where the aperture (Bragg) angle between the incoming
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It has been recently shown that this type of diffraction data can be inverted by
switching to a six-dimensional description, in which case maps of local (intra-
granular) orientation can be produced using suitable optimization and regular-
ization techniques [20, 21]. Unlike the case of 3D-DCT, where only one single
(grain average) orientation is considered per grain, the six dimensional formu-
lation assigns a discrete 3D orientation distribution to each of the real space
voxels inside a grain. In order to compare this 6D scalar field reconstruction
output to conventional 3D vector field representations of the orientation field,
we transform the 6D output into a 3D orientation map, by assigning the average
orientation (center of mass of the local orientation sub-space) to each real space
voxel. Since this six-dimensional framework intrinsically accounts for the distor-
tion of the diffraction blob volumes it results in improved shape reconstructions
compared to the single orientation (3D) reconstruction framework.
In order to adapt the 6D framework to the case of deformation twins we fur-
ther extend the previously introduced concept of “cluster” reconstructions [21]
to the case of disjoint orientation domains (applicable to other cases of grain
sub-structures with a priori known orientation relationships, or grain neigh-
borhoods), thereby enabling simultaneous reconstruction of parent and twin
domains from experimental raw data. As mentioned earlier, for this to become
possible the previous concept of diffraction spot intensity re-normalization has
been abandoned and replaced by an appropriate scaling of projection matrix,
taking intensity variations between different hkl reflections due to variations
in structure factor and Lorentz factors explicitly into account. Apart from al-
leviating problems with segmentation of parent and twin reconstructions, the
simultaneous reconstruction has the added benefit that additional (shared) re-
flections between parent and twin domain can be included in the reconstruction
process. Moreover our model of diffraction image formation has been enhanced
and now includes blurring effects caused by the finite impulse response of the
X-ray imaging detectors employed in this type of experiments.

2.1 Mathematical formulation

As in [20], the reconstruction space, if elastic strain is supposed to be negligible,
is a 6-dimensional space X6 = R3 ⊗O3 obtained by the outer product of carte-
sian real-space and 3-dimensional orientation space. The representation of this
6-dimensional space is discretized by choosing a sampling that can be viewed
in two equivalent ways. The first and most intuitive sampling would consist
of creating 3-dimensional orientation sampling for each of the real-space sam-
pled positions. This would give rise to a collection of Orientation Distributions
Functions for each of the real-space voxels. Although this representation may
be intuitive, it is not very computationally efficient, and we preferred to use a
collection of identical real-space volumes, each of which associated to a different
sampled point in the orientation-space.

beam and the diffracted beam is called 2θ, and the angle between the projection of the rotation
axis and the line connecting the intercepts of the direct beam (u0, v0) and the diffracted beam
(u, v) on the detector is called η.)
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We would also like to point out that while the parent grain and its twins are
reconstructed within the same bounding box in real-space, their bounding boxes
are instead separate in orientation-space, and that, within limits of memory oc-
cupation, it is possible to include several sub-volumes (e.g. the different twin
variants) in orientation-space.
If now we assume that the image formation can be described by kinematic
diffraction and that we can neglect photoelectric absorption and extinction ef-
fects, the forward-projection of the grain volumes can be represented as a linear
operator:

Ax = b (1)

where x is a vector containing NP elements, representing the scalar “scattering
power” for each of the sampled volume elements in the six-dimensional position
- orientation space (NP = n3 × kp3 for the case of a regular sampling over a
cube-shaped sub-volume with grid length n in real space and k disjoint sub-
volumes in orientation space, each sampled with grid length p). Each line of the
projection matrix AS×NP contains the contribution of the 6D volume elements
to a given detector pixel and the vector bS holds a list of measured pixel inten-
sities, specified by their (u, v, ω) coordinates in the 3D diffraction image stack.
S corresponds to the total number of detector pixels in the M = kMhkl − c
diffraction blob volumes corresponding to the joint set of parent and twin re-
flections recorded during the scan. Here Mhkl represents the total number of
reflections intercepting the detector, which is usually of order of a few tens up
to one hundred, and c represents the small number of reflections shared between
the parent and twin orientations.
If the elements of x are arranged as a succession of 3D real space volumes,
each representing one of the sampled orientations, and A as an array of M ×P
projection matrices, each one describing the projection geometry for one of the
M reflections intercepted by the detector, the vector b will be composed of
M blocks corresponding to contiguous 3D subvolumes (i.e. the aforementioned
diffraction blobs), spread throughout the entire stack of detector images:




A11 · · · A1P

...
. . .

...
AM1 · · · AMP






x1

...
xP


 =




b1

...
bM


 (2)

The beauty of equation (2) is however limited by the fact that it is not suited
for the actual reconstruction. The number of diffraction blobs that fall on the
detector (M ' 30 − 100) is limited and these spots are affected by noise and
overlaps, so equation (1) is a heavily underdetermined and perturbed equation
system which needs to be re-written as a minimization problem.
Some additional constraint and prior should be added to the minimization func-
tional in order to promote solutions which are compliant with the known physical
properties of the microstructure under investigation. In the case of a moder-
ately deformed metal sample, imaged at 1.5 µm resolution, as presented in this
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study, two physically justified prior assumptions are positiveness and sparsity
of the 6D solution vector. Indeed, we only expect a limited number of “active”
orientations inside a given real space volume element and this behaviour could
be enforced by adding a l1 penalty term to the optimization functional, as pro-
posed in [20]. Here we have used an alternative formulation, minimizing the
spatial variability of the reconstructed intensity4 as proposed recently in [21]:

x∗ = argmin
x
||Ax− b||2 + λ|| (|∇Sx|) ||1 (3a)

subject to: x ≥ 0 (3b)

where S is the operator that sums all the orientation components from both
the parent and the twins orientation-spaces for each real-space voxel, and the
l1-norm over the absolute value of the gradient is the total variation operator
[2, 16].
In this work however, while we formally keep the same functional because the
general idea is still completely valid, we had to adapt many details under the
cover of equation (3), to be able to successfully deal with the intrinsic nature of
the twin reconstructions.
From physics we know that the parent and its twins occupy exclusive but also
contiguous regions in the real-space reconstruction domain. This means that
they do not overlap but also that there is no empty spacing among the two
domains. To force an homogeneous real-space volume with sharp boundaries
at the grain edges and transitions at the parent-twin boundaries that are also
homogeneous, the most natural choice is a total variation (TV) minimization
over the sum of all the orientation components of the real-space voxels, which
means that this time, the sum is over two disjoint regions in orientation-space.
As in [20] and [21], the algorithm that solves this optimization problem was
derived from a specific class of algorithms called Chambolle-Pock, slightly mod-
ified to cope with the new type of functional, as described in [16].
In the next sections we will also analyse other peculiar details of equation (3),
that mark the progress achieved compared to the work in [21].

2.2 Scaling of the projection matrix

From the mathematical point of view, the renormalization comes from the de-
composition of equation (1), as the following:

Ax = CÃx = C
N∑

i

Ãix = b (4)

where the matrix C is a diagonal matrix, which predicts the scattering inten-
sities for each of the reflections, and the matrix Ã only contains the geometric

4the intensity value obtained from projecting the 6D space onto the 3D real space grid can
be interpreted as the local “scattering power” of the material
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projection coefficients to the detector. The re-normalization procedure simply
pre-multiplies both sides of the equation 4 like:

Ãx =
N∑

i

Ãix = C−1b = b̃ (5)

where now b̃ are the re-normalized diffraction blobs. The advantage of this new
formulation is a better conditioning of the problem, being the diagonal of the
matrix Ã more homogeneous.
Finally, while most of the reflections are not shared between a parent and its
twins, and so the projection to the diffraction blobs happens separately, for
what concerns the shared reflections, the forward-projection and back-projection
should simultaneously happen for both the parent and the twins to the same
diffraction blobs.

2.3 Point spread function and blurred reconstructions

Near-field diffraction imaging experiments are typically performed with detector
systems based on CCD cameras, coupled via visible light optics to a transparent
luminiscent screen that converts the incoming X-Rays into visible light. Due to
the large interaction volume of X-rays and the diffraction limit of the visible light
microscope optics common designs of these systems are known to be limited in
spatial resolution to values of typically a few times the effective detector pixel
size. The performance of such an optical system can be described by its impulse
response (point spread function, PSF) and/or the modulation transfer function.
For X-ray imaging systems, both depend on details of the experiment conditions
(i.e. energy of X-ray beam, type and thickness of scintillator crystal, visible light
optics, ...). In the present study the point spread function was approximated by
a symmetric, translational invariant Gaussian profile with a full width of half
maximum of about 2 pixels. (As further discussed in section 5 a more realistic
description of the PSF would depend on the detector region and on the incidence
direction of the photons on the scintillator screen.)
If we now take equation (5), where the scattering intensity has been translated
into a renormalization of the diffraction blobs, and so the forward model is
expressed in a pure geometrical form, it can be modified to include the PSF
blurring like the following:

FÃx = F
N∑

i

Ãix = b̃ (6)

where the matrix F is the operator responsible for applying the PSF to the
forward-projected images. Practically speaking this translates in a simple con-
volution between the forward projected diffraction blobs and the PSF specific
to each of them.
When trying to invert the forward operator FÃ, by first pre-multiplying it by
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its transpose, we have to take into account that the PSF is generally speaking
not symmetric, and so the adjoint of F should be taken, resulting in:

Ã
T
F †FÃx = Ã

T
F †b̃ (7)

where the superscript † stands for adjoint (complex conjugate transpose).
Finally, these considerations about the PSF were always to be considered neg-
ligible in the previous works using the 6-dimensional approach, being the lack
of orientations-space resolution the major limiting factor in the reconstruction
quality. However, in the case of twin reconstructions, where the twins can be
sometimes less than 1µm thick, and the detector pixel resolution is above 1 µm,
even moderate effects like the PSF blurring of very few pixels, could heavily
impact the quality of reconstruction of these thin regions of the grains.

2.4 Finding twins from the parent orientation

For the reasons explained in section 1.1, deformation twins are intrinsically
difficult to index from near-field diffraction data using conventional indexing
schemes based on diffraction spot peak positions. Nevertheless, the detection
ratio can be improved by a systematic search for intensity (forward modeling)
in the background corrected raw images, starting from the known orientation of
the successfully indexed parent grains. In the following we restrict our discus-
sion on one specific twinning mode, predominant for the material studied in this
work, but the suggested strategy can be applied to any other known twinning
modes.
The Ti-4 wt.%Al alloy studied in this work has a hexagonal crystal structure
with a c

a ratio smaller than the one for optimum close packing. When deformed
in compression in the direction parallel to the initial rolling direction, the most
frequently observed twinning mode for this type of material is one known as
tensile twin of type 1 (TT1) [3]). This twinning mode corresponds to a rotation
of about 85◦ around [101̄0] and the hexagonal crystal symmetry allows for six
different variants of the same type.
Given the parent orientation, the orientation matrix of the twin variants can be
precomputed (see appendix A) and from this the approximate twin diffraction
spot peak position ( (u, v, ω) coordinates in the detector-space) can be deter-
mined. Since twins are confined within the volume of the parent grain we can
restrict the search of the twin reflections to diffraction blobs that do not exceed
the size of the parent grain. At the same time we allow for blobs that have a
high variability in aspect ratios, as expected from the disk-like morphology of
deformation twins.
However, the actual twin orientation might be slightly different from the theoret-
ically predicted orientation (derived from the average orientation of the parent
grain), and the position of the twin inside the parent grain is not known a pri-
ori. So it is convenient to express the detector region for the search of the twin
reflections in terms of the (θ, η, ω) coordinates, allowing for small deviations
from the nominal values, in order to account for these uncertainties.

152

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2015ISAL0095/these.pdf 
© [N. R. Viganò], [2015], INSA Lyon, tous droits réservés



3 Experiment and material

A sample of 2.5 mm length and a diameter of 0.5 mm was extracted by electro-
discharge machining parallel to the cylinder axis and rolling direction of a larger
compression sample made from binary Ti-4 wt.% Al alloy. The larger specimen
had been deformed in compression to about 1 % plastic strain in the direction
parallel to the cylinder axis, i.e. parallel to the former rolling direction. The
preferential orientation of the < c > axis in the direction perpendicular to the
cylinder axis and loading direction promotes tensile twinning during compres-
sion loading as the < c > axis is strained in tension [5]. The grain size of the
material determined by the linear intercept method was 70 µm.
In a parallel study on the same specimen an analysis of twin nucleation criteria
based on a 3D reconstructed sample volume containing 400 grains and about 60
twins revealed a correlation of the propensity for twinning with grain size and
a clustering of twinned grains in neighborhoods with favourable prismatic slip
transmission conditions [12].

3.1 DCT data acquisition

The experiment was performed on the 3D XRD instrument of the materials
science beamline ID11 of the European Synchrotron Radiation Facility (ESRF).
The incident beam has been monochromatized to 60 keV and focused to dimen-
sions of approximately 0.2 mm times 0.5 mm by means of a set of compound
refractive lenses (CRL). Under experiment conditions described above, the fo-
cusing results in about a factor of 20 increase in flux density at the sample
position compared to the configuration without lenses. This increase turns out
to be a crucial requirement for successful detection of deformation twins which
are know to nucleate as disk-like tapered lamellae of (initially sub-) micrometer
thickness.
The cylindrical sample was mounted with its cylinder axis parallel to the rota-
tion axis of the diffractometer and the focused incident beam has been confined
by slits to a section of 0.15 mm in the vertical and 0.6 mm in the horizontal
direction. The sample to detector distance was set to 8 mm and the diffraction
images were recorded on a CCD based and light optic based high resolution
detector system featuring a 50 µm thick, transparent luminiscent screen pre-
pared from a Eu doped Gallium Gadolinium Garnet single crystal (GGG) [11]
and a long-working distance visible light microscope objective (10×, NA= 0.23).
The resulting effective pixel size was 1.4 µm. As mentioned earlier, increasing
the flux density by at least one order of magnitude compared to acquisitions
in materials with comparable grain size turns out to be a prerequisite for suc-
cessful indexation and reconstruction of deformation twins down to micrometer
thickness.

The introduction of the absorber significantly reduces the background signal
on the scintillation screen and allows to raise the exposure time and hence
diffraction spot intensities by the inverse of its X-ray transmission (≈ 20 times
in the case of 0.5 mm of Ta at 60 keV).
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For the DCT scan a total of 3600 images with 2.5 s exposure time were recorded
during a synchronized, continuous 360◦ motion of the air-bearing diffractometer
stage. A second scan with 0.2 s exposure time and 360 projections but without
the additional absorber was recorded right after the DCT scan, maintaining the
relative position of sample and detector. These data were used for tomographic
reconstruction of the X-ray attenuation coefficient, serving as a mask in the
process of assembling the individual grain volumes into the common sample
volume.

3.2 EBSD analysis

The EBSD characterization was performed on a cross-section parallel to the axis
and loading direction of the cylindrical sample. After embedding the sample into
epoxy resin a layer of approximately 200µm was removed using 4000 grit SiC
grinding paper. For best Kikuchi pattern acquisition, the sample was polished
with Oxide polishing suspension (80% colloidal silica + 20% H2O2 by volume)
for ≈ 2 h and etched repeatedly with Krolls reagent. The surface finish was
further improved by a final vibratory polishing with Oxide polishing suspension
in a Buehler VibroMet 2 machine. To overlap the 3D region scanned in DCT, a
600 x 90 µm2 area was selected and scanned using a step size of 0.4 µm in a field
emission gun scanning electron microscope (FEI Quanta 650) equipped with a
NordLYS EBSD detector. The EBSD mapping was performed at an operating
voltage of 20 kV with a working distance of 13 mm. The AZTEC software was
used for EBSD data acquisition. Post analysis of the EBSD data like inverse
pole figure map generation, axis angle misorientation pair for determination of
active twin mode was performed using HKL Channel 5 software.

4 Results

From inspection of the EBSD map figure (1) acquired with a step size of 0.4µm,
it appears that most of the twins intersecting the sample surface correspond
to tensile twins (85◦ rotation around [101̄0])). In the common surface area
shared between the EBSD and DCT acquisition two grains have developed (sub-
)micrometer thickness twins of this type. One of them (fig. 2, a) has been suc-
cessfully identified during the indexing step of the DCT data reduction process
[9, 15] whereas two other domains could only be detected during a systematic
search, using the prediction (forward simulation) of twin orientation variants
calculated from the orientation of the parent grain (fig. 2, b), as it can be seen
in appendix A. In figure (3) shows a slice though the reconstructed 3D intensity
volume (i.e. the sum of all orientation space components of the 6D reconstruc-
tion output) of the grain rendered in figure (2, a), illustrating the difficulty of
correctly reconstructing the precise shape and volume of these sub-micrometer
thickness twins domains. In fact, while the thickness of twin lamellas should be
smaller than a single voxel, in the reconstruction they extend over several vox-
els, and while they should present a reconstruction intensity that is comparable
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(a)

(b)

Figure 1: (a) Orientation map of a longitudinal sample cross section parallel to
the rolling direction, recorded by EBSD (IPF colour code). The dashed lines
indicate the sample sub-volume characterized in the DCT scan, (b) Quality
map (Band Contrast) of the map in (a) on the byte scale. Deformation twins
are clearly discernible on the EBSD map whereas slip traces are more easily
discerned on the quality map (e.g. inside the grain labeled with the letter C).
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(a) (b)

Figure 2: 3D rendering of two twinned grains, as reconstructed from 6D-DCT.
The grains correspond to grains labelled A and B respectively in figure 1 and
they have been rendered with transparency in order to reveal the 3D shape of
the embedded twins. Voxel size is 1.4µm, and the size of the bounding boxes is
103×145×83 voxels and 34×44×44 voxels, respectively. The slightly irregular
reconstructed shape of the twin lamellas is partly due to problems in segmenting
the 6D tomographic reconstructions obtained from the very low signal over noise
ratio projection data.
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Figure 3: Slice 134 in the ZY plane through the reconstruction volume of figure
(2, a), where: (a) is the parent reconstruction, (b) is the twin reconstruction,
(c) is the sum of the two. The presence of effects like PSF and local strain,
clearly affects the reconstruction of the twin, which, as a consequence, presents
a much lower intensity than the parent and a thickness of several voxels.

with the average intensity in the parent grain, it is possible to see from the scale
bars in figure (3) that the twins present much lower intensity values (see section
5 for a detailed discussion of the origins of these discrepancies). In this article
we focus on the 150 µm high sub-region of the full sample, highlighted in the
EBSD map in figure (4, a). As mentioned earlier, the six-dimensional output of
the algorithm is converted in a three-dimensional orientation field in order to
enable direct comparison with the EBSD orientation map. This transformation
is justified and the comparison meaningful if the size of the EBSD interaction
volume and the voxel size of the DCT reconstruction are comparable to each
other and if the size of the volume elements and the orientation gradients are
sufficiently small to contain only a limited range of active orientations.
Figure (4, b) shows the 6D-DCT reconstruction close to the surface region shown
in (4, a). The quantitative analysis of average orientations shows good agree-
ment between both modalities, whereas the shape reconstruction shows some
differences, most visible for the smaller grains. We attribute these differences
to the combination of the following factors: (i) the intensity and sensitivity
at the surface of DCT reconstructions is highly affected by the detector PSF,
which tends to blur and diminish the signal coming from these regions (ii) twin
domains of sub-voxel size thickness are subjected to the partial volume effect
and result in very weak signal, especially at the sample surface (iii) the actual
sample surface is slightly curved and figure (4, b) corresponds to the orienta-
tions observed on a shifted (2 pixels into the volume) copy of this surface (see
section 5, for further explanations concerning this relative shift). In figure (2)
both twinned grains from figure (4) were rendered and the previous statement
(ii) about the differences between figures (4, a) and (4, b) becomes more clear,
since it can be seen that the reconstructed twinned region doesn’t fully reach
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Figure 4: Comparison of orientation maps of the sample surface (IPF colour
coding) obtained by (a) EBSD and (b) 6D-DCT at 3.5 µm from the surface.
Sub-figures (c) and (d) show the sample grain structure at 13.3 µm and 27.3
µm respectively from the surface.

to the surface of the grain, but extends very close to it. Figures (4, c) and (4,
d), in fact, show how the grain structure and especially the shape of the twins
evolve while going deeper and deeper into the volume, confirming the previous
statement.
These findings are consistent with our previous observation [21], indicating that
even with the upgrade to a 6D reconstruction model it remains difficult to re-
liably segment grain reconstructions from the outermost, 1-2 voxel thickness
surface layer of a grain / sample reconstruction. If the X-ray characterization is
carried out after the EBSD characterization like in the present case, the required
relative shift into the DCT volume (for more consistent grain segmentation) and
the possible curvature of the EBSD surface give rise to discrepancies which ren-
der the direct comparison of the results (4, a) and (4, b) problematic.
In addition, an even thinner twinned region is visible in figure (5, a). Its thick-
ness appears to be smaller than the acquisition step size of the EBSD map
(0.4µm), and it was not possible to identify this second twin with the DCT
acquisition conditions described in this paper.
In figure (5) we take a closer look to the smooth deformation gradients in one
of the grains of the analysed surface region, and compare the results between
the EBSD map and the 6D-DCT reconstruction. The analysed grain was un-
fortunately damaged by few scratches during the polishing phase, but it is also
the one that shows the strongest and most easily recognizable orientation gra-
dient among the reconstructed surface grains. Indeed, if we exclude the obvious
deformation due to the scratches in figure (5, a), and remember that the same
limitations introduced before still apply, a similar deformation gradient can be
observed in both figures (5, a) and (5, b). What is not completely obvious from
figure (5), is the presence of slip bands inside the grain. This is instead notice-
able both from the band contrast map obtained for the EBSD measurements
(figures (1 b and 6 a), and from the diffraction spots recorded by DCT (fig. 6
b). However, in the 6D-DCT reconstruction, just like in the EBSD measure-

158

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2015ISAL0095/these.pdf 
© [N. R. Viganò], [2015], INSA Lyon, tous droits réservés



(a) (b)

Figure 5: Intragranular misorientation of the grain labelled as C on the surface
shown in figure (1). EBSD and DCT maps have voxel sizes of 0.4 µm and
1.4 µm, therefore the number of voxels shown on the figure axes are different,
while the scale bars are similar. The pictures refer to: (a) EBSD, (b) 6D-DCT.
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Figure 6: (a) EBSD band contrast map for grain depicted in figure 5, revealing
the presence of slip bands. The inclination of these bands corresponds to the
trace of the (prismatic) [011̄0] plane in the crystal, represented by the red line,
while the green arrow is the projection of its plane normal, (b) the integrated
< 011̄1 > X-ray projection topograph of the illuminated 3D grain volume,
showing topographic orientation contrast. The red line is the intersection of the
(prismatic) [011̄0] plane with the detector, whereas the green arrow is again the
projection of the corresponding plane normal.

ment, the local misorientation in vicinity of these slip bands were too small to
be clearly distinguished. Finally, in figure (7), we can see a comparison of the
assigned average orientation per each real-space voxel, and the total scattering
intensity assigned by the 6-dimensional reconstruction algorithm. The similar
average intensities among all the grains (the variations are around few percents)
are due to the renormalization of the diffraction blobs discussed in the previous
section 2.2, where instead of renormalizing all the spots belonging to the same
grain to a common, arbitrary value, we decided to re-normalize them based
on theoretically predicted scattering intensities per each crystallographic family
and different Lorentz factors. The main outcome of this procedure is that these
intensities are now more physically meaningful and can be compared among
different grains, in order to solve grain conflicts. This in turn results in better
accuracy of the grain boundary and triple junction positions, and yields grain
maps which show an higher coverage of the sample volume, even before any
type of dilation is applied. Some remaining deviations in the average intensity
can be observed for some of the grains in figure (7). The physical origin of these
variations remains to be clarified.
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Figure 7: Slice in the full reconstructed volume: (a) Inverse Pole Figure coloring
of the grain orientations, using the color coding from the legend in figure (1, a),
(b) intensity assigned by the 6D-DCT reconstruction in each real-space voxel.

5 Discussion

The high aspect ratio of deformation twins gives rise to large (up to two orders
of magnitude and higher) variations of the signal received on individual pixels
of the high resolution imaging detector as a function of rotation angle. In order
to raise the signal of unfavourable reflections (i.e. those with direction of the
diffracted beam close to the direction of the surface normal of a twin lamella)
above the background, and hence assure uniform angular coverage of the pro-
jections from a twin domain, it is mandatory to increase the photon flux density
at the sample position far beyond the level usually employed for an equiaxed
grain structure. With the flux provided by state of the art undulator insertion
devices and the use of tunable X-ray focusing optics [19] the total scanning
time for the 150 × 500µm sample sub-volume was 2.5 hours. In order to ex-
tend the detection limit towards even smaller (thinner) twins, further increase
of the photon flux density is required and will become available with the one to
two order of magnitude increase in brilliance predicted for the next generation
of low emittance storage rings. Alternatively, one may consider switching to
1D focused line beam illumination mode, compromising ultimate time resolu-
tion but enabling alternative reconstruction strategies (forward modeling [18, 8]
or global 5D optimization approaches for simultaneous reconstruction of entire
sample cross section) which may outperform the current 6D framework based
on grain by grain reconstruction at higher levels of deformation.
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In the present work we have incorporated a rather crude estimate of the point
spread function modeled as a rotational symmetric Gaussian profile. Further
improvement can be expected from a measurement of the actual profile for dif-
ferent angles of incidence on the detector and introduction of an orientation
dependent PSF, reproducing the directional asymmetry caused by the parallax
of the diffracted beam impinging with different angles (2θBragg, η) on the scin-
tillator screen with finite thickness.
The oversimplified model of the detector impulse response together with the
partial volume effect known from conventional absorption tomography are sup-
posed to be the principal reasons for the lower reconstructed densities of voxels
corresponding to twinned regions.
Figure 4 b shows some discrepancies in the grain shapes as determined by EBSD
and our full-field reconstruction approach. These discrepancies are partly re-
lated to the fact that the X-ray orientation map has been extracted from a
virtual surface situated approximately two pixels (3 µm) below the actual sam-
ple surface, as determined from the absorption volume.
As mentionned earlier, we notice some gradient in the reconstructed intensity
values over the first few pixels of a grain volume. The presence of this gradient
renders gray scale segmentation of these volumes problematic and the small off-
set of the surface from which the orientation values have been extracted from
helps to overcome this segmentation problem but starts to introduce some vis-
ible shifts, especially for boundaries intersecting the sample surface at a small
angle.
Moreover, the sample surface is slightly curved (artefact from mechanical pol-
ishing procedure). We have determined the actual shape of the surface from
the phase contrast reconstruction of the sample and we do have extracted the
orientations (figure 4, b) from the intersection of this curved surface with the
(2 pixel shifted) 3D orientation volume.
Within the limits of computer memory available, the formalism used in this
paper allows for simultaneous reconstruction of arbitrary sets of disjoint orien-
tations occupying a common volume in real-space. By extending the real-space
volume to a cluster of neighboring grains, it is therefore possible to use the same
framework for simultaneous reconstruction of 3D grain neighborhoods. This
procedure would circumvent the step of grain shape determination by means of
gray-level segmentation of the intensity volumes of the individual grains, and
it can be expected that such combined reconstructions will result in an overall
improvement of the 3D grain shape reconstruction accuracy, similar to the one
observed for deformation twins presented in this study.
The current reconstruction approach is still essentially a two-step process of
grain indexing based on scattering vectors determined from diffraction spot peak
positions. Due to increasing levels of spot overlap, the concepts behind grain
indexing are known to fail gradually for increasing levels of plastic deformation.
On the other hand, by repeated characterization of a sample volume at increas-
ing levels of plastic deformation it should be possible to seed the reconstruc-
tion of the next step with the information from orientation maps reconstructed
at previous step(s), thereby extending the range of plastic deformation which
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can be addressed with the current approach beyond the level of the feasibility
study presented in this work. It can be expected that additional diffraction
data acquired on a far-field detector with a pixel size comparable or larger than
the grain size and higher quantum efficiency would allow for for identification
of twins at early stages during deformation since the entire twin volume would
typically project on individual pixels, thereby removing the systematic intensity
variations as a function of the angle between the twin lamella and the diffracted
beam direction, observed on the near-field detectors. Using the center of mass
position and orientation determined from far-field data, it would be possible
to use these twin “seeds” in the joint 6D reconstruction of the corresponding
parent grains.
The example shown in figure 6 confirms the visibility of topographic orientation
contrast related to the presence of slip bands in grains which are favourably
oriented for prismatic slip. Unfortunately, the sensitivity of the 6D-DCT recon-
struction is not high enough to reveal the faint lattice rotations giving rise to
topographic orientation contrast observed in diffraction spots with favourably
oriented scattering vectors.
We anticipate that by using a combined characterization approach with DCT
as the initial characterization step and topotomography [10], or dark-field mi-
croscopy [17] as subsequent ”zoom” on individual grains and grain neighbor-
hoods, it will be become possible to resolve the 3D configuration of these struc-
tures. This in turn will allow for studying slip transfer and slip - twin inter-
actions as the one observed at the intersection at the grain boundary between
grains A and C (figure 1 a and b) in the bulk of the material.
Last but not least it should be mentioned that part of the remaining inaccura-
cies might be due to non-negligible elastic distortions of the crystal lattices in
the vicinity of twins. The six-dimensional framework used in this work does not
account for these additional degrees of freedom and additional work is required
in order to estimate in how far this and other previously mentioned simplifi-
cations of our model for diffraction image formation affect the accuracy of the
orientation maps.

6 Conclusions

The previously introduced six-dimensional framework for reconstruction of spa-
tially resolved grain orientation maps from extended beam, near-field diffraction
data has been extended and adapted to the characterization of structural ma-
terials with hexagonal crystal structure displaying intra-granular orientation
spreads of up to a few degrees and micrometer thickness twin lamellae as a
result of plastic deformation.
The optimization of acquisition conditions and an explicit search over possible
twin variants enables detection of deformation twins down to sub-micrometer
initial thickness. Introducing an appropriate scaling of the diffracted intensities
by structure and Lorentz factor, accounting for the finite impulse response of
the high resolution detector and a global optimization carried out over a 6D

163

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2015ISAL0095/these.pdf 
© [N. R. Viganò], [2015], INSA Lyon, tous droits réservés



volume covering the parent and twin orientation(s) result in a clear improve-
ment of the accuracy of the orientation maps when compared to previously used
single orientation (3D) reconstruction framework of X-ray diffraction contrast
tomography. Cross-validation with EBSD data acquired on the sample surface
show good overall agreement but also some remaining degree of blurring and
thickening of the twin domains in the X-ray orientation maps.
The non-destructive nature, straightforward combination with other tomographic
imaging modalities (phase contrast, topotomography, dark-field microscopy)
and improved time resolution compared to other 3D orientation mapping tech-
niques makes this approach a promising candidate for time-lapse observations
at initial stages of plastic deformation in structural materials.
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A Theoretical determination of twin variants

Twin orientations are related to the parent orientation by means specific pairs
of rotation axis and associated rotation angles.
Given the set of N symmetry operators S = {Si} with i = 1, . . . , N , in the form
of unitary rotation matrices, and the rotation axis a which defines the type of
axis for a given twinning mode, we obtain all the possible twinning rotation axes
for the said mode, by simply taking the unique results from the set A = {Sia},
that will be another set called A′.
If then we take the orientation matrix gp associated to the Rodrigues vector rp
which is the orientation of the parent grain, the orientation matrices of the twin
variants will then be found by the simple operation:

gi = R (a′i, α) gp (8)

for each element i in A′, where R (a′i, α) is nothing else than the rotation matrix
defined by the axis a′i and the angle α.
The same operation in equation (8) could be carried out in Rodrigues space, by
using the multiplication formula from [6] for successive rotations:

ri = rpr (a′i, α) =
1

1− rp · r (a′i, α)
(rp + r (a′i, α) + rp × r (a′i, α)) (9)
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where the vector r (a′i, α) = a′i tan 1
2α.

B Alignment of EBSD and DCT reference sys-
tems

The DCT reconstruction and the EBSD map, naturally come with different ref-
erence systems, and so, their orientations are not directly comparable. Indeed,
in the orientation-space, is the underlying crystal symmetry is not not con-
sidered, the relationship that connects the same orientation expressed in two
different reference systems (namely, the DCT and the EBSD reference systems)
can be represented like:

gDCT = gEBSDgDCT→EBSD (10)

where gDCT is the orientation matrix of the chosen orientation in the DCT ref-
erence system, while gEBSD is the orientation matrix of the chosen orientation
in the EBSD reference system, and gDCT→EBSD is the orientation matrix of
the EBSD reference system expressed in the DCT reference system.
However, if the underlying crystal symmetry is taken into account, the following
equation is then valid:

F (gDCT ) = F (gEBSDgDCT→EBSD) (11)

where F : O3 ⊆ R3 → O3 ⊆ R3 is the mapping of the orientations to the
fundamental zone of the crystal orientation space. Unfortunately, while equation
(10) is always invertible, equation (11) is not, unless the magnitude of the
orientation-space Rodrigues vector associated with gDCT→EBSD is small enough
to make equation (11) become equivalent with equation (10).
This means that for small calibrations of two reference systems, it is enough to
invert equation (10) like the following:

g−1EBSDgDCT = gDCT→EBSD (12)

But for bigger misorientations among the two coordinate systems, it is impor-
tant to know the sample geometry and how it is represented in those reference
systems, so that an approximate relationship among the two can be found.

References

[1] Anne Bonnin, Jonathan P. Wright, Rémi Tucoulou, and Hervé Palancher.
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Chapter 6

Conclusions and
perspectives

The structure of this thesis, except for the introduction, intentionally introduces
the work performed during the author’s Ph.D in temporal order, in the form
of articles. By following the evolution of the proposed method, from a simple
description of a discrete representation for the six-dimensional space, in chapter
2 [35], to the more mature framework used to model the deformation in poly-
crystals, in different scenarios like the ones of chapter 4 and 5, it is possible to
understand how some of the limitations imposed by traditional DCT have been
tackled and solved, to address more interesting scientific cases.
The algorithm and the associated six-dimensional representation were initially
designed for the case of smoothly deformed single grain reconstructions, while
it was not completely clear from tests performed in [36] (the article included in
chapter 3), whether this work could scale to bigger and more challenging cases
like the ones in the following chapters.
An interesting fact is that between the article included in chapter 3, and the
analyses in the following chapters, the available computation power to the end
users grew to the point that what was considered a limit in terms of memory in
[36], became quickly addressable soon after.
The further development of the combined model and algorithms will be funda-
mental for the success of the proposed framework, but the continuous and fast
paced improvement of the current computational technologies, and the use of
hybrid CPU-GPU computations, will contribute to make even more challenging
experimental conditions possible in the future.
It is indeed possible that once larger amounts of memory will be available on
common workstations (512GB or more), larger portions of the analysed sam-
ple volumes could be reconstructed in once instance, following the principles
introduced in this thesis. On the other hand, having a fine sampling of both
the real-space and the complete orientation-space, which would make it possible
to completely discard the indexing phase, is extremely demanding in terms of
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170 CHAPTER 6. CONCLUSIONS AND PERSPECTIVES

memory and computational power, so it will not be likely to happen anywhere
in the near future.
A more affordable intermediate solution could be to perform a reconstruction
restricted to the five-dimensional space, where the real-space is limited by a
one-dimensional beam illumination to only be two-dimensional. This would
slow down the acquisition to the same speed as other approaches like the one
discussed in section 1.4.1, but on the other hand it would have the advantage
to still perform a global optimization, as opposed to the local voxel optimiza-
tion of the model in equation 1.49, and possibly, thanks to the use of the just
mentioned hybrid CPU-GPU types of computations, it could avoid the use of
super-computers or large computational clusters.
Another possible solution to the same problem could be to not restrict the
space dimensionality, but to use a multi-resolution approach instead, where the
reconstruction is first performed on a very coarse real-space grid, that gets suc-
cessively refined, as the orientation-space gets instead restricted to the relevant
regions.
A third and probably easier route is based on the fact that some commonly
used materials exhibit a heavily textured structure, that tends to cluster the
local orientations of large portions of the samples in reduced regions of the
orientation-space, making it possible to scale the principles of chapter 4 to the
size of the said regions, without hitting the mentioned computational barrier.
Moreover, heavily textured samples are known to break the principles assumed
by traditional DCT, because the diffraction blobs tend to be extremely large,
due to bigger regions of the samples having similar orientations that heavily
overlap on the detector. The properties of the said blobs, become then ex-
tremely unreliable, and this is known to break the indexing algorithm used in
DCT. Skipping indexing entirely, and letting the six-dimensional reconstruction
algorithm reconstruct those regions could be a viable solution, but it might not
just work out of the box, because if no sort of indexing is possible, it is not pos-
sible to estimate any of the needed parameters to sample the orientation-space.
An interesting solution to this problem could come from the extension of DCT,
which traditionally relies on a single-scan near-field acquisition, to the use of
scanning procedures with simultaneous acquisition on both, a near-field and a
far-field detector (similarly to the concept of a three-dimensional detector pro-
posed by H.F. Poulsen and co-workers).
Not only, this would allow other poly-crystal indexing techniques, like “GrainSpot-
ter” [27] (discussed in section 1.4.2), to become compatible with the six-dimensional
framework here introduced, but also to enormously extend the capabilities of
DCT itself.
Far-field data indeed cannot report highly accurate spatial information about
the sample, but this means that having a bigger focus on just the orientation-
space morphology and distribution analysis, it can be of great help if incorpo-
rated in the DCT technique. In the simplest scenario, this would already allow
to gather information about the ODF of individual grains inside the sample,
and make better decisions when sampling the orientation-space for the single
grain reconstructions. But especially for highly textured samples, it is possible
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to determine, to a certain degree, the ODF of a certain spatially confined re-
gion, and then use the current framework exposed in chapter 4, together with
the six-dimensional space bounding box determination from the far-field data
and reconstruct the said region from the near-field raw images.
Another extremely valuable use of the far-field data would be to use it as an
additional constraint for the six-dimensional reconstructions. If we can model a
forward projection operator for the far-field problem, which is geometrically very
similar to the near-field operator, and call it W , we could think of modifying
any of the tomographic minimization problems to incorporate such constraint,
like:

x∗ = argmin
x
||Ax− b||22 (6.1a)

subject to: x � 0, Wx = y (6.1b)

and:

x∗ = argmin
x
||Ax− b||22 + λTV (x) (6.2a)

subject to: x � 0, Wx = y (6.2b)

where y are the far-field images.
As mentioned earlier, the far-field data provides more accurate information in
the orientation-space, while the near-field data provides more accurate spatial
information, so the two combined approaches could significantly improve the
six-dimensional reconstructions, especially with moderately to highly deformed
materials.
As important as adding far-field information to the DCT reconstructions, could
be to extend the acquisition geometry with other near-field measurements for
different distances of the detector or even positions that don’t intercept the di-
rect beam any more. In fact, the acquisition geometry has a rather limited field
of view in real-space. This can be easily understood by looking at the acquisi-
tion geometry represented in both figures 1.6 and 1.7, where the measurements
are, in the sample coordinate system, distributed on a ring around the sample,
defined by the rotation of the detector surface around the sample. From this
picture it is immediately obvious that directions more parallel to the rotation
axis are not sampled in this type of geometry. Unfortunately, even in the com-
parison carried out in [26] between the “inline” geometry, and the geometry
with the detector at π/2¸ the detector still lied in the said ring around the sam-
ple, and thus, even if it gave access to other hkl-families that are not usually
intercepted by the inline detector, it didn’t bringing more spatial information
to the reconstruction in extended-beam mode.
An example of alternative approach could be to position an extra detector out-
side of such ring, possibly at π/2 with the direct beam direction and at minimum
π/6 from the sample rotation axis direction, to reduce the ω-broadening given
by the Lorentz factor. Such geometry would not however be very easy to op-
timize, due to the horizontal beam polarization in synchrotrons, forcing some
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additional constraints in the choice of the detector position. Moreover, the ab-
sence of the direct beam in the extra detector, would make the calibration and
fine tuning of its tilts and position very difficult.
A similar kind of geometry is used in topotomography experiments [22] (recently
extended by the technique known as darkfield microscopy [30]), where for a
specific plain normal of a chosen grain, the diffractometer stages are tilted and
optimized to always have such plane normal in diffraction condition across the
whole 2π range of ωs. In topotomography, jointly with the rotation around the
sample rotation axis, acquisitions for different base tilts are performed for each
ω. This extra degree of freedom in the acquisition, takes into account the local
misorientations in the crystal that would reach diffraction condition for slightly
different base tilts. This technique is currently integrating these tilts into single
images, reconstructing the grain shapes by using regular tomography tools like
filtered backprojection algorithms.
It would then be extremely interesting to use the six-dimensional framework de-
veloped in this thesis, to be able to extract orientation information and possibly
obtain better reconstructions for deformed grain structures in this configura-
tion, because the appearance of slip bands and the increase of deformation in
the recorded images are indeed observed in increasingly deformed grains. The
reconstructed orientation information, however, will probably miss the compo-
nent along the plane normal of the atomic plane aligned for diffraction, in a
similar fashion to the DCT orientation reconstructions where the ω information
was discarded by converting diffraction blobs into diffraction spots.
This problem could be alleviated by acquiring additional projections of reflec-
tions perpendicular to the aligned hkl-vector (possibly at different energies to
increase number of projections), or, if possible, to mount the sample 90 degrees
rotated in order to acquire a second topotomo of an hkl-vector perpendicular to
the first one.
Another kind of experiments that would benefit from the use of the six-dimensional
framework developed in this thesis, is the type of DCT experiments performed
with laboratory or neutron sources [17]. These experiments are usually char-
acterized by a poly-chromatic beam, and especially in the first case, by non
negligible beam divergence. The development of forward and back projection
functions for laboratory experiments [33], is completely compatible with the al-
gorithms used in the synchrotron based DCT, making the port to the laboratory
DCT reconstruction code easy and straight forward, while another interesting
solution could be to use energy-resolving detectors.
Finally, it is worth mentioning some limitations remain for this six-dimensional
framework: (a) the assumption of kinematic diffraction, (b) no correction for
self-absorption or incoming beam absorption effects, (c) no correction for inho-
mogeneities in the beam profile. While for the cases (b) and (c), these corrections
could be introduced, at least in an approximate form, without much effort, the
case (a) results more problematic, because it is difficult to tackle the dynamic
diffraction effects and to model the extinction inside the proposed model. Also
the total variation functional used in chapters 4 and 5, might still not be the
optimum solution, that exploits all the a priori knowledge available about the
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grain reconstruction problem. On the other hand, it proved to be fairly good
choice so far, and it was able to produce encouraging results.
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Appendix A

Prediction of scattering ωs

We will now show the solution to equation 1.25. The first step is the decom-
position of the rotation matrix Ωω in its three components from the Rodrigues
formula, where these three matrices only depend on the rotation axis, while the
final rotation matrix is given by:

Ωω = Ωconst + Ωcos cosω + Ωsin sinω (A.1)

As a result, substituting the right side of equation A.1 into equation 1.25, leads
to:

b̂T (Ωconst + Ωcos cosω + Ωsin sinω) g−1h = (A.2)

b̂TΩconstg
−1h + b̂TΩcosg

−1h cosω + b̂TΩsing
−1h sinω =± sin θ (A.3)

If we then call A = b̂TΩcosg
−1h, B = b̂TΩsing

−1h, and C = b̂TΩconstg
−1h,

equation A.2 can then be rewritten as a set of two equations:

A cosω +B sinω + C = + sin θ (A.4a)

A cosω +B sinω + C =− sin θ (A.4b)

These two equations can be then recast as second order equations and they
would give rise to two solutions each, giving a total of four possible omegas.
There are many different ways to solve them, but here we will present the
tangent based solution. We first rewrite equations A.4 into one single equation
by creating C1,2 = C ∓ sin θ, and remembering the equivalence formulas:

cosω =
1− tan2 (ω/2)

1 + tan2 (ω/2)
(A.5a)

sinω =
2 tan (ω/2)

1 + tan2 (ω/2)
(A.5b)

so that equations A.4 turn into:

A
(

1− tan2 ω

2

)
+ 2B tan

ω

2
+ C1,2

(
1 + tan2 ω

2

)
= 0 (A.6)
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which becomes:

(C1,2 −A) tan2 ω

2
+ 2B tan

ω

2
+ C1,2 +A = 0 (A.7)

with determinant:

∆1,2

4
= A2 +B2 − C2

1,2 (A.8)

and solutions:

ω1,2,3,4 = 2 tan−1

(
−B ±

√
∆1,2/4

C1,2 −A

)
(A.9)
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