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1.1. Diatoms: life in glass houses 

 

“Another way to appreciate diatoms is to realize that they give us every fifth breath, by 

the oxygen they liberate during photosynthesis.”                                                  - David Mann 

 

General introduction. Diatoms (Class Bacillariophyceae) are unicellular, eukaryotic algae, best known 

for their characteristic silica-based cell wall called a frustule (Figure 1.1A). The etymology of the word 

Diatom comes from the Greek diatomos, meaning 'cut in half'. They appeared in the prehistoric era 

and colonized almost all aquatic environments, from marine to freshwater. They are one of the most 

important and abundant components of marine phototrophs, contributing roughly 25% of total global 

primary productivity. The majority is photoautotrophs, but a few have become obligate heterotrophs 

(Round et al., 1990). They might be solitary or colonial, with some diatoms remaining suspended within 

the aquatic habitat (i.e. planktonic) while other forms of diatoms are settled within the sediment (i.e. 

benthic) where they are a major food source for grazing protozoa and animals. Diatoms are abundant 

and diverse with no accurate count of the number of species, although the highest estimates are 

around 200,000 extant species spread across all aquatic habitats (Mann and Droop, 1996). They are 

often referred to as nature's nanofabrication factories because of their outstanding ability to produce 

complex, beautiful, protective silica frustules that are effectively intricate glass shells (Figure 1.1B).  

 

History of diatom research. The history of diatom research goes back more than three hundred years 

(Round et al. 1990; Flower 2005). The first observation of the diatom dates to 1703, by an unknown 

Englishman. The work was communicated to the Royal Society of London and published in its 

Philosophical Transaction (Anonymous, 1703). In the latter half of the 18th century, many diatoms were 

observed and given classifications. The advent of new technologies and the general availability of 

electron microscopes, during the late 1980s, further revolutionized the study of diatoms allowing the 

detailed examination of the ultrastructure of their siliceous frustules (Round et al., 1990). In 1844, 

Kutzing published the Monograph of 1844 in which he classified all diatoms as algae. Diatoms were 

also one of the first specimens in which the details of cell division (i.e. mitosis) were examined. The 

exquisite drawings of diatom mitosis by Lauterborn were published in 1896. During 20th century, many 

researchers examined diatom species occurrence with respect to environmental factors. From the late 

20th century to date, the availability of sophisticated computational tools has permitted the use of 

diatoms in applied studies. 

 

Applications in ecology. Diatoms are diverse, ubiquitous, and sensitive environmental indicators and, 

thus, have an enormous ecological importance. With a very large number of ecological-  
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Figure 1.1. (A) Eukaryotic tree of life. The diatoms belong to the stamenopiles supergroup. (Taken from Baldauf, 
Science, 2003). (B) Melosira sp. (left) and Lauderia annulata (right) diatoms collected during the Tara oceans 
expedition (2009-2013). (courtesy: Christian Sardet, Jennifer Gillette and Chris Bowler).  
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-ly sensitive species, it is interesting to understand the distributions and occurrences of diatoms for 

applied ecology. In the recent past, they have been employed in various environmental studies as 

environmental indicators to study freshwater, marine and brackish ecosystems. They have also been 

used as indicators in extreme environments, including Arctic and Antarctic waters (Stoermer and Smol, 

1999). Moreover, because of their siliceous composition, they are often well preserved in sediments 

and fossil deposits, making them useful as biogeochemical markers and for archaeological studies.  

 

1.1.1. Diatom ultrastructure 

Cytoplasmic features. The diatoms belong to the heterokont algae, i.e. algae with chlorophylls a and 

c and two flagella of differing sizes (only visible in some species and at specific times during their life 

histories). The actual protoplast of a diatom is quite similar to that of other algae containing organelles: 

a nucleus, mitochondria, chloroplasts, Golgi apparatus, endoplasmic reticulum and a large central 

vacuole. Their nucleus is usually centrally located, migrating to specific sites in the cell as the diatom 

prepares for cell division (Figure 1.2). DNA is often organized as a large number of very small 

chromosomes. Diatom chloroplasts are characterized by possession of chlorophyll a and c and the 

primary accessory pigments, β-carotene and fucoxanthin, that give them a characteristic golden color 

(van den Hoek et al., 1995). The number of chloroplasts and their intracellular arrangement differ 

among taxa (Cox, 1996), with a typical characteristic feature of heterokonts, having four membranes 

around them. Cells store energy obtained from photosynthesis in the form of chrysolaminarin and 

lipids. 

 

Frustule morphology. Diatoms are surrounded by an ornamented compound silica cell wall, called the 

“frustule”, a hallmark of the diatoms (Round et al., 1990). It consists of two overlapping halves known 

as epitheca (larger upper valve), and a hypotheca (smaller lower valve). The vertical lip or rim of the 

epitheca is called the epicingulum, and the epicingulum fits over (slightly overlaps) the hypocingulum 

of the hypotheca. The epicingulum and hypocingulum with one or several connective bands make up 

the girdle. Many diatoms are heterovalvate, i.e. the two valves of the frustule are dissimilar (Figure 

1.3A). The frustule elements of diatoms are formed in silica deposition vesicles (SDVs) within the cell 

under mildly acidic conditions (Vrieling et al., 1999). Calcium binding glycoproteins, called frustulin, 

coats the frustule and then, they are exocytosed from the protoplast. The form and shape of the 

frustule is very diverse and species- specific (Round et al., 1990). The evolution of a refined frustule 

has undoubtedly allowed diatoms to colonize the pelagic oceans and is considered less costly 

energetically than an organic cell wall (Raven, 1983).  
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Figure 1.2. Schematic overview of the general structural features of a pennate diatom (Taken from Falciatore 
and Bowler, 2002). 
 
 
 

 
Figure 1.3. Frustule morphology. (Taken from Benten and Harper,2013) 
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Morphology and classification. Based on the frustule morphology, two main divisions have been 

recognized, i.e. Centric with round valves and Pennates with more elliptical valves (Round et al., 1990) 

(Figure 1.8). Centric diatoms have valves that are typically circular to elliptical or polygonal in outline. 

They possess many discoid plastids. Centrics are either classified as radial centrics or polar centrics 

based on their morphology. Pennates are either araphid pennates or raphid pennates, depending on 

whether or not they possess a raphe, a longitudinal slit involved with gliding motility. These structural 

groups have been arranged differently through time. More detailed view on diatom classification is 

presented later in the section 1.1.6. 

 

1.1.2. Habitats and adaptations 

As prolific phototrophic organisms, diatoms can live in the open ocean, polar waters, tropical waters, 

all fresh water areas, soil, snow and even glacial ice. During the course of evolution they have 

developed different adaptations to survive within each environment. The two main adaptations are (i) 

storing energy as oils that allow them to be suspended in the water column, and (ii) strong silica 

frustules that protect them from predation. Additionally, planktonic species often have morphological 

adaptations that allow them to remain suspended in water. These adaptations to prevent sinking 

include forming long chains, linked by silica spines (Gersonade and Harwood, 1990). This type of 

linkage is the most common mode of chain formation and has been seen in radial centric diatoms such 

as Paralia, Stephanopyxix and Aulacosiera, in the multipolar centrics Detonula and Skeletonema, in 

araphid pennates Staurosira, Fragilarioforma and Fragilaria, and even in raphid pennates such as 

Diadesmis (Falkowski and Knoll, 2011). Other diatom species grow attached to surfaces like rocks or 

aquatic plants, e.g. Licmorphora and Tabularia. Their frustules are shaped in such a way to aid in 

attachment. Some species form short stalks, or mucilage pads, while others form long branching stalks, 

that hold the cells in place and are resistant to waves or high flow in rivers.  Apical pads often lead to 

characteristic zig-zag or stellate (star-shaped) colonies, that resist sinking, found in many araphid 

pennates and bipolar centrics (Falkowski and Knoll, 2011). Diatoms that have a raphe system (Figure 

1.2) are able to move over benthic surfaces, whether the surfaces are fine grains of sand, or within the 

mud of a tidal zone, or even on other diatoms. A few diatoms also form mucilage tubes and move up 

and down inside the tubes (Figure 1.4).  

 

1.1.3. Life history 

Diatoms are able to reproduce both sexually and asexually, but primarily by a unique “shrinking 

division” mode of asexual reproduction (Figure 1.5A). During cell division, the two valves get 

separated, each of them forming the epivalve of the daughter cells and new hypovalves are secreted  
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Figure 1.4. Morphological adaptations. (a) Cyclotella sp. Usually solitary, but sometimes united in short chains. 
(b) Melosira sp. Cells closely united to more straight, beadlike chains by the middle of the valve faces. (c) Surirella 
sp. Cells solitary. (d) Tabellaria sp. Cells quandrangular forming zig-zag or straight filaments. (e) Synedra sp. Cells 
free or united into ribbon-like or star-like colonies. (f) Chaetoceros sp.  Cells form chains that are coiled, curved 
or straight. (g) Detonula sp. Cells join together in mainly straight, stiff chains by short processes and mucilage 
threads. (h) Eucampia sp. Flattened elliptical cells form spiral, curved chains, joined by flattened apical horns. (i) 
Odontella sp.  Heavily silicified cells form curving or spiraling chains, joined by mucous pads on ends of elevations. 
(j) Thalassionema sp. Cells attached together by mucilage pads at their ends into stellate and/or zig-zag-like 
colonies. (k) Thalassiosira subtilis Discoid cells are in chains or are embedded in mucilage. (l) Asterionellopsis sp. 
Cells joined by valve faces into star-shaped or spiraling chains. 
[Available from: (a-f) http://msnucleus.org/watersheds/biological/diatomgen.html; 
                             (g-l) http://oceandatacenter.ucsc.edu/ ] 
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Figure 1.5. Reproduction in diatoms. A. "shrinking division" mode of asexual reproduction. Diatoms cell size 
progressively decreases with successive generations. B. Sexual reproduction.  When diatom cells shrink to a 
certain size, they reproduce sexually to form auxospores (credit: Weir et al. 1982). 
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Figure 1.6. (A) Schematic view of plastid evolution. Endosymbiosis events are boxed, and the lines are colored 
to distinguish lineages with plastids from the green algal lineage (green) or the red algal lineage (red) (adapted 
from Keeling, 2010). Detailed representation of the origin of diatom plastids through sequential (B) primary 
and (C) secondary endosymbiosis. During primary endosymbiosis, a large proportion of the engulfed 
cyanobacterial genome is transferred to the host nucleus (N1), with few of the original genes retained within the 
plastid genome. The progenitor plant cell subsequently diverged into red and green algae and land plants, readily 
distinguished by their plastid genomes. During secondary endosymbiosis, a different heterotroph engulfed a 
eukaryotic red alga. Potential engulfment of a green algal cell as well is indicated with a dashed arrow. The algal 
mitochondrion and nucleus are lost, and crucial algal nuclear and plastid genes (indicated in blue, purple and 
pink) are transferred to the heterotrophic host nucleus, N2. Additional bacterial genes are gained and lost 
throughout diatom evolution, but for simplicity this is not indicated here. Based on Armbrust, 2009 and Qui et 
al., 2013.  
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within the parent cell (Figure 1.3). As the rigid, siliceous cell walls of silica cannot expand, the daughter 

cells get gradually smaller and smaller. This decrease in cell size with each successive vegetative 

division continues until it is within a range where environmental parameters may induce sexual 

reproduction (Edlund and Stoemer, 1997). Gamete formation occurs and they fuse to form a zygote 

which then gives rise to an auxospore (Figure 1.5B). An auxospore possesses a lightly silicified cell wall 

(perizonia), which allows the cell to expand to its maximum size and then produces a frustule with the 

normal cell morphology (Kaczmarska et al., 2000, 2011; Wehr and Sheath, 2003). Hence, in diatoms, 

sexual reproduction is not only a means of inducing genetic variability but also facilitates the 

enlargement of cells back to their maximum size. In response to stress, i.e. in conditions of low nutrient 

supply or poor sunlight, diatom cells may form metabolically inactive spores called resting spores 

(Horner, 2002). Following the onset of favorable conditions, the cells may regain normal functioning. 

 

1.1.4. Secondary endosymbiosis 

Diatoms have a complex evolutionary origin and, hence, their genome is called a ‘mix-and-match 

genome’ (Armbrust, 2009). Their genomes are the product of a secondary endosymbiosis event in 

which a heterotrophic eukaryote engulfed a photoautotrophic one and, instead of digesting it, shared 

with it the ability of photosynthesize (Delwiche, 1999; Bhattacharya and Medlin, 1995). This event led 

to six different classes of organisms within the Chromalveolate grouping (which incorporates both the 

Straemnopiles and Alveolates (Fig. 1.1A); Cavalier-Smith, 1999), i.e. Haptophytes, Cryptomonads, 

Stramenopiles, Ciliates, Apicomplexa, Dinoflagellates (Figure 1.6A). This was a sequential event, 

initially a eukaryotic heterotroph engulfed a cyanobacterium to form the photosynthetic plastids of 

the Plantae (land plants and red and green algae) (Figure 1.6B; Yoon, 2004). This resulted in wholesale 

gene transfer from the symbiotic cyanobacterial genome to the host nucleus (Reyes-Prieto, 2006). 

 

This primary endosymbiosis was followed by a secondary endosymbiosis event where a different 

eukaryotic heterotroph captured a red alga (Figure 1.6C). Gene transfer continued from the red-algal 

nuclear and plastid genomes to the host nucleus (Armbrust, 2004). Nosenko and Bhattacharya (2007) 

identified genes of green algal origin in chromalveolates. This finding led to a hypothesis that they 

might have originated from an ancient green algal endosymbiont. Later, Moustafa et al. (2009) found 

the evidence of hundreds of genes of green algal origin in diatoms, supporting the hypothesis that a 

green alga was involved during the secondary endosymbiosis. Bowler et al. (2008) reported at least 

170 red algal genes in the nuclear genome of diatoms, most of which seem to encode plastid 

components. Owing to this evolutionary history, diatom plastids have been reported to carry out 

various processes that are characteristic of Plantae plastids, like, photosynthesis, biosynthesis of fatty  
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Figure 1.7. Fossil diatoms (a) A single valve from Actinoptychus heliopelta and (b) Sceptroneis caduceus from 
marine deposits of Miocene age, the Calvert Formation of Maryland. (c) a lake deposit showing many kinds of 
diatoms (courtesy: Dr. Karen Wetmore, UCMP Museum). 
 
 

Figure 1.8. Geometrical axis of diatoms. (a) Axes of a centric diatom. a-a radial, b-b valvar, (b) Axes of a pennate 
diatom. a-a apical, b-b valvar, c-c transapical. (c) A centric diatom showing radial symmetry. (d) A pennate diatom 
showing bilateral symmetry (courtesy: http://craticula.ncl.ac.uk/). 
  

 

(a)                               (b)

(c)                                (d)

 

(a)                               (b)
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acids, isoprenoids and amino acids (Armbrust, 2009, Qui et al., 2013). Apart from these, the 

aforementioned union has sanctified them with a distinctive range of attributes. The most significant 

is the presence of a urea cycle, which was thought to be restricted to animals (Armbrust, 2004).  

It can be speculated that diatoms have a potentially advantageous range of abilities that would not 

normally be found in a single organism. The silica frustule, thought to be inherited from the 

exosymbiont, aids in protection from predation, pathogens and desiccation, as well as focusing light 

into the cell (refs). The subsequent gains (and losses) of specific genes, largely from bacteria, 

presumably helped them adapt to new ecological niches (Armbrust, 2009). Overall, these processes 

and many others derived from this unique evolutionary background have ensured their success, 

making them a highly adaptable group of species with several advantages over other phytoplankton. 

 

1.1.5. Evolutionary and geological history 

Fossil records. According to (incomplete) fossil records, the emergence of diatoms took place in the 

Triassic period (250 Myr ago), although the earliest well-preserved diatom fossils come from the Early 

Jurassic era (190 Myr ago) (Sorhannus, 2007, Sims, 2006, Armbrust, 2009). The most definitive fossil 

records for centric diatoms came from the Cretaceous (~145 Myr ago) with the earliest fossil records 

of araphid (lacking a raphe) pennate diatoms dating from the Late Cretaceous (~145 Myr ago), and 

raphid pennates from the Middle Eocene (~56.5 Myr ago) (Figure 1.7). The earliest freshwater diatoms 

appeared in the Palaeocene (~65 Myr ago) in Russia and the Late Eocene (~56.5 Myr ago) in North 

America. However, there are reports of Precambrian (~570 Myr ago) and Triassic (~245 Myr ago) fossils 

that might be diatoms or diatom relatives (Sims et al., 2006). This belief on diatoms having earlier 

evolutionary history than expected comes from the property of the silica that it recrystallizes under 

pressure, which in turn, can destroy diatom fossils. Through the ages, diatom frustules settled down 

to the bottom of lakes or oceans forming thick deposits of diatomite, or diatomaceous earth. These 

appear as deposits of white chalky material and are the richest sources of diatom fossils (Benten and 

Harper, 2013). Diatomaceous earth has a range of commercial applications (see Section 1.1.7). 

 

The rise of diatoms. Following mass extinction in the Cretaceous (~ 65 Myr ago), almost 85% of life 

was lost, leading to extensive reductions in marine diversity. However, diatoms managed to survive 

and began to colonize offshore areas, including the open ocean (Armbrust, 2009). Rabosky and 

Sorhannus (2009) reported that diatom diversity was highest at the Eocene/Oligocene boundary (~30 

Myr ago).  This era also saw the emergence of raphid pennates, which brought the ability to glide along 

surfaces and hence expanded the ecological niches greatly (Armbrust, 2009).  
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Figure 1.9. Eukaryotic rDNA gene clusters and structure of the 18S rRNA (A) Typical organization of tandemly-
repeated rDNA clusters in eukaryotes. 18S, 5.8S, and 28S ribosomal RNA-encoding genes; ITS1 and ITS2 internal 
transcribed spacers; IGS intergenic spacer (B) Scheme of the secondary structure of 18S (SSU) rRNA. The core 
of the structure common to SSU rRNAs of Archaea, Bacteria and most Eucarya is drawn in black. Helices are 
numbered in the order of occurrence of their 5′-strand when following the chain from 5′- to 3′-terminus. They 
bear a different number when separated by a multibranched loop, a pseudoknot loop or a single-stranded area 
not forming a loop. Bulge loops and internal loops are not shown. Coloured helices are present in Archaea and 
Bacteria (green), in Bacteria only (blue) or in Eucarya only (red). Those drawn as solid red bars are present in all 
Eucarya with the exception of the protist taxa Microsporidia, Diplomonadida and Parabasalidea, where some of 
these helices and even some core helices can be absent. Those drawn as parallel red lines are present only in 
certain eukaryotic taxa (credit: Wuyts et al., 2002).  
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1.1.6. Diatom classification 

Morphotaxonomy. Diatoms have been classified in different ways by different authors. Round et al. 

(1990) classified diatoms as a division (Bacillariophyta), whereas Van den Hoek et al. (1995) considered 

diatoms as a class (Bacillariophyceae or Diatomophyceae) within the division Heterokontophyta. 

Historically, taxonomists have divided diatoms into two or three major groups, based primarily on 

the organization of the pattern of striae on the valve. Round et al. (1990) divided the diatoms into 

three classes: Coscinodiscophyceae, Fragilariophyceae and Bacillariophyceae, which corresponded to 

three of the main types of valve organization. Informally, these three structural variants can be 

referred to as 'centrics' (Coscinodiscophyceae), 'araphid pennates' (Fragilariophyceae) and 'raphid 

pennates' (Bacillariophyceae). Van den Hoek et al. (1995) proposed two major groups of diatoms, 

Centrales and Pennales. Coscinodiscophyceae and the Centrales are more or less synonymous and are 

more informally known as the “centric” diatoms. Fragilariophyceae and Bacillariophyceae together 

correspond to the Pennales and comprise the so-called “pennate” diatoms (Figure 1.8).  

 

Molecular phylogeny. In more recent years, molecular markers such as genomic DNA fragments, have 

been used for phylogenetic analyses to elucidate the evolutionary history of living organisms (Zagoskin 

et al., 2007). These conserved DNA or RNA nucleotide sequences have enabled researchers, on the 

one hand, to solve phylogenies at higher taxonomic levels and, on the other, to resolve highly variable 

sequences to dissect affinities at the species level. One such widely used example of DNA region for 

reconstructing phylogenies are the genes encoding the ribosomal RNA subunits (rDNAs). The rDNAs 

encode the RNA components of the ribosome (rRNAs) and form two subunits, the large subunit (LSU) 

and small subunit (SSU). In most eukaryotes, the 18S rRNA is the small ribosomal subunit, and the large 

subunit contains three rRNA species (the 5S, 5.8S and 28S rRNAs in mammals, and the 25S rRNA in 

plants). The rRNA-encoding genes are typically organized in clusters and are separated by internal 

transcribed spacers (ITS1 and ITS2) and an intergenic spacer (Figure 1.9A; Gerbi, 1985).  

 

Owing to the presence of rRNA-encoding rDNAs in all living organisms, rDNA sequences have become 

a popular choice for molecular taxonomy as it is possible to construct phylogenies for all taxa. The 

phylogenetic power of rDNA has been repeatedly demonstrated in a wide range of organisms from 

animals (Freeland and Boag, 1999), including humans (Gonzalez et al., 1990), to higher plants (Alvarez 

and Wendel, 2003), protists (Sim et al., 2006; Hoshina et al., 2006; Johnson et al., 2007), and fungi 

(Lutzoni ety al., 2001). Most of the 18S rDNA (region encoding the 18S rRNA) is highly conserved and 

is generally used for phylogenetic studies at higher taxonomic levels. The tertiary structure of the small 

subunit ribosomal RNA (SSU rRNA) has been resolved by X-ray crystallography (Yusupov, 2001). The   
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Figure 1.10. Diatom phylogeny inferred from 18S (SSU) rRNA-gene regions of diatoms (credit: Weibe Kooistra, 
SZN).  
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secondary structure of SSU rRNA contains 4 distinct domains — the 5', central, 3' major, and 3' minor 

domains (Figure 1.9B).  

 

Kooistra et al. (2003) used 38 diatom SSU sequences and showed “raphid pennates in a well-supported 

clade within a paraphyletic araphid group. The pennates as a whole were monophyletic within an 

apparently paraphyletic group of multipolar centric diatoms. The latter group was essentially 

composed of a series of clades that collapsed in a polytomy because their basal dichotomies remained 

unsupported. Pennates and multipolar centrics formed a weakly supported clade, which was sister to 

radial centrics”.  

 

Based on molecular and morphological data, Medlin & Kaczmarska (2004) proposed a replacement for 

the traditional view suggesting two new subdivisions (Coscinodiscophytina and Bacillariophytina) for 

diatoms and a new class, the Mediophyceae, for the bipolar centrics. Adl et al. (2005) adopted Medlin 

& Kaczmarska's names but treated both the Coscinodiscophyceae and Mediophyceae as paraphyletic 

taxa (groups that do not include all of the descendents of a single common ancestor).  

 

Theriot et al (2009) proposed a diatom phylogeny based on the nuclear-encoded small subunit of the 

18S rDNA gene (SSU) which weakly rejected the classification given by Medlin & Kaczmarska (2004) 

and others (Sims et al., 2006; Medlin et al. (2008) using parsimony analysis and morphological data. 

Their results showed that only the Bacillariophyceae (pennate diatoms) were monophyletic, in contrast 

to Medlin & Kaczmarska (2004) and Sims et al. (2006) who proposed monophyly for each of the 

Coscinodiscophyceae, Mediophyceae, and Bacillariophyceae.  

 

The diatom phylogeny inferred from 18S rDNA-gene regions of diatoms, shown in Figure 1.10, reveals 

a principal dichotomy leading to a clade of radial centrics (basal clade) and another with multipolar 

centrics and pennates. The latter exhibited polytomy (a node which has more than two immediate 

descending branches) containing several clades. The multipolar centrics clade, characterized by a bi-, 

tri- or multipolar symmetry, cluster in two main polytomic clades. They have been shown to share 

certain features with araphid pennates, for instance, the ability to produce mucilage from the valve 

apical pore. They can inhabit both benthic and planktonic environments. Diatoms belonging to the 

araphid pennate clade constitute a paraphyletic group (i.e. group that does not include all of the 

descendents of a single common ancestor) consisting of 5 main polytomic clades. Like multipolar 

centric diatoms, araphid diatoms display a wide range of shapes and life-styles. They are characterized 

by elongated valves and the ability to form colonies. They can also have both benthic and planktonic 
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lifestyles. Raphid pennates are the only monophyletic group (i.e. each member is a descendent of a 

single common ancestor) consisting of cells equipped with the raphe slit. This organelle allows raphid 

pennates to slide on a substrate and thus, this group abounds in benthic environments. However, 

many have been reported to have gone back to their planktonic life-styles. In conclusion, it seems that 

the raphids evolved from araphids and that araphids in their turn are derived from centrics. A similar 

scenario is supported by the sexual reproduction patterns in these groups, with the evolutionary trend 

moving from oogamy (ancestral state in centrics) to anisogamy (in pennates) passing through isogamy 

and imperfect isogamy. 

 

1.1.7. Global importance 

Owing to their physiology, diatoms exhibit a remarkable impact on various global phenomena. Their 

photosynthesis, biogenic silica formation, environmental diversity and a tendency to dominate 

phytoplankton communities, have led to the major involvement of diatoms in primary production, 

nutrient cycling, the biological carbon pump, and at the base of the food chain. It has been estimated 

that diatoms contribute 40–45% oceanic primary productivity, which amounts to 20% of global carbon 

fixation and oxygen production (Yool and Tyrrell, 2003). Due to the presence of the silica frustule, they 

play an important role in the biological carbon pump because they facilitate the sinking of organic 

matter below the photic zone to the ocean floor which provides both essential nutrients for organisms 

living in the ocean depths and export of carbon to the ocean interior. This makes them a key player in 

the biological pump as well as the silica cycle.  

 

Diatom growth is limited by factors such as nutrient availability; however, when there are large 

nutrient influxes or seasonal changes, diatoms can form large blooms up to several square kilometers 

in size. When the nutrients, principally nitrate and silicate, get depleted, the bloom dissipates, forming 

aggregates of silicified cells that sink to the ocean floor. This accumulation of diatom frustules in 

sediment forms diatomaceous earth, a material that is used in a number of industrial applications such 

as abrasive pastes, water filters, fillers, insulators, and (non-toxic) insecticides (Mann, 1917). 

Furthermore, most petroleum deposits are derived from diatoms that have sedimented to the seafloor 

over geochemical time scales (Denman, 2008). The structural and physical properties of the frustule 

are the focus of several research areas into nanotechnological applications. These include drug delivery 

solar technology, microfluidics, catalyst production and bio-sensing. Lipid production in diatoms is also 

drawing interest as a source of renewable oil. Although the global contributions made by diatoms are 

already significant, these technologies may be the key to drawing the public eye to the importance of 

these microscopic algae and the roles they play for the well-being of our planet. 
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In general, diatom species are very particular about the water chemistry in which they live. Some 

species have distinct ranges of pH and salinity where they will grow. Diatoms also have ranges and 

tolerances for other environmental variables and different types of human disturbance (Birks, 2010; 

Smol and Stoermer, 2010). As a result, diatoms are used extensively in environmental assessment and 

monitoring. Other applied uses of diatoms include oil and gas exploration, forensics, as indicators of 

atmospheric transport and more broadly, applied research concerning geological, biological, and 

climatic processes. 

 

Furthermore, because the silica cell walls do not decompose easily, diatoms in marine and lake 

sediments can be used to interpret conditions of the past. Paleoecology is a field that utilizes both 

living and sub-fossil diatom valves that are preserved in marine and freshwater sediments to 

understand the environmental factors influencing the modern presence and abundance of the species. 

Scientists thereby apply this knowledge of species preference in modern conditions to interpret the 

diatom species from the past, and the historical conditions that prevailed when they were alive. Thus, 

diatoms constitute successful single-celled organisms that diversified to fill multiple niches, 

outcompeting other phytoplankton to take a key position in driving global biological and 

biogeochemical processes.  
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1.2. Marine biodiversity and biogeography 

 

A general definition of biodiversity is "the collection of genomes, species, and ecosystems 

occurring in a geographically defined region" (NRC, 1995). 

 

1.2.1. General introduction 

Biodiversity is a contraction of ‘biological diversity’ and can be defined as the "full variety of life on 

Earth" (Takacs, 1996). It is the study of the processes that create and maintain variation and takes into 

account the variety of individuals within populations, the diversity of species within communities, and 

the range of ecological roles within ecosystems. It has three components: species diversity, ecosystem 

(or habitat) diversity, and genetic diversity. High diversity has often been perceived as a synonym to 

ecosystem health, as diverse communities are believed to have increased stability, increased 

productivity, and resistance to invasion and other disturbances.  

 

Biodiversity and ecosystem functioning. Processes central for the functioning of ecosystems might be 

maintained by several or very few organisms, which leads to the question whether there exists any 

relationship between biodiversity and ecosystem functioning. The answer to this becomes relevant 

when environmental conditions result in the loss of biodiversity, as is currently believed to be the case 

at a global level (Loreau et al., 2002). For the past two decades, ecologists have been arduously trying 

to describe and quantify the effects that biodiversity can exert on the various processes within 

ecosystems. Through these studies, it has been found that changing diversity has profound effects on 

primary production, nutrient retention, and ecosystem stability (Chapin et al., 2000). As our 

understanding of the relationship between biodiversity and ecosystem functioning develops, 

conservation and management efforts should benefit. 

 

The recent advances made in functional biodiversity research have led to a new synthetic ecological 

framework, which has even been denoted as a new paradigm of ecology. While biodiversity has 

historically been seen as a response variable that is affected by climate, nutrient availability and 

disturbance, this new emerging paradigm, called ‘Biodiversity-Ecosystem Function Paradigm’ (Naeem, 

2002), explains the environment primarily as a function of diversity, underlining the active role of the 

biota in governing environmental conditions. It does not deny, of course, the influence of the 

environment on organisms. More specifically, within this framework, a specific ecosystem function is 

thus seen as a combined influence of (i) biodiversity and the functional traits of the organisms involved, 

(ii) associated biogeochemical processes, and (iii) the abiotic environment. This ‘Biodiversity 

Ecosystem-Function Paradigm’ has shifted the scientific perception of diversity towards the 
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biodiversity being the driver of ecosystem functions. Based on a broad array of studies from marine, 

terrestrial and freshwater ecosystems, Hillebrand and Matthiessen (2009) summarized that “(1) losing 

diversity in an assemblage tends to reduce ecosystem process rates mediated by this assemblage, e.g. 

the production of organic biomass and the efficiency of resource use (Hooper et al. 2005; Balvanera et 

al. 2006; Cardinale et al. 2006), (2) both effects become stronger over time (Cardinale et al. 2007; 

Stachowicz et al. 2008), and (3) loosing diversity also affects certain (but not all) aspects of stability 

(Hooper et al. 2005; Balvanera et al. 2006)”. 

 

Marine biodiversity. Extending over three quarters of the surface of the Earth, oceans are a precious 

asset. Life likely originated there and they support a large share of global biological diversity. Marine 

ecosystems play a key role in global biogeochemical cycles and patterns of weather and climate. 

Economically, there is considerable reliance on the world’s oceans – from fisheries which support over 

15% of the global protein supply, to off-shore petroleum production, along with the millions of jobs 

supported by tourism and fishing. Indispensable to life itself, the marine environment is facing direct 

and indirect impacts from human activities. A wide range of threats such as increasing acidification, 

coral bleaching, toxins and chemical pollution, nutrient overloading, and fisheries depletion including 

many others, are undermining the ocean’s ability to sustain ecological functions. Marine debris, made 

up of persistent, manufactured solid materials such as plastics, is another major growing concern as 

they are discarded in the marine and coastal environment and persist almost indefinitely. All these 

factors together have resulted in the loss or degradation of marine biodiversity. 

 

1.2.2. Characterizing biodiversity 

Whittaker (1972) described three terms for measuring biodiversity over spatial scales (Figure 1.11), 

namely,  

(a) Alpha (α) Diversity. It refers to the diversity of the community within one site (or one sample), 

i.e., the number of species and their proportion within one sampling site (Whittaker 1960, 

1967). Some commonly used indices to describe alpha diversity include Richness, Shannon's 

index (H), Simpson's index (D) and Renyi entropy.  

(b) Beta (β) Diversity. It is defined as the difference in species composition between communities. 

Higher beta diversity implies low similarity between species composition of two communities 

and is usually expressed in terms of similarity index between communities in the same 

geographical area (Whittaker 1960, 1967). Some commonly used beta diversity indices include 

Bray-Curtis dissimilarity, percent similarity index (PSI), and Jaccard’s index (qualitative index). 

(c) Gamma (γ) Diversity. It is a measure of the overall diversity for the different ecosystems within 

a region (Whittaker 1960, 1967). Hunter (2002) defines gamma diversity as "geographic-scale 
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Figure 1.11. Diagram showing biodiversity expressed at several scales. Alpha diversity is measured locally, at a 
single site, as at sites 1 and 2. Site 1 has higher alpha-diversity than site2. Beta diversity measures the amount of 
change between two sites or along a gradient, as in regions X and Y. Region Y has higher beta-diversity than 
region X, as there is a higher turnover of species among sites in region Y. Gamma diversity is similar to alpha 
diversity, only measures over a large scale. Both alpha- and beta-diversity contribute to alpha diversity. Region X 
has high alpha-diversity at its sites, but they are all fairly similar; the region thus has low beta- diversity and only 
moderate gamma diversity. Region Y has low alpha-diversity at its sites, but the sites differ from each other; the 
region therefore has high beta-diversity, and higher gamma-diversity than region X. (Taken from Figure 5.6 in 
Perlman and Adelson, 1997).   
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species diversity". 

Several indexes and quantitative measures of biodiversity have been developed. The simplest 

approach is to express diversity as the number of species on a site or in a community (species richness). 

Shannon-Wiener’s Index (H’) and Simpson’s Index (λ) are the most commonly used indexes of diversity 

in ecological studies (detailed description in Appendix B). However, ecologists have suggested that 

biodiversity measures should be interpreted carefully. As indicated by various studies, some habitats 

are stressful and so few organisms are adapted for life there, but, those that do, may well be unique 

or, indeed, rare. Such habitats are important even if there is little biodiversity. 

 

1.2.3. Microbial biogeography: processes and patterns in microbial diversity 

 

“… there are things we know we know. We also know there are known unknowns; that is 

to say we know there are some things we do not know. But there are also unknown 

unknowns - the ones we don't know we don't know”                                             -D. Rumsfeld 

 

Biogeography is a science that attempts to describe and explain spatial patterns of biological diversity 

and how these patterns change over time (Ganderton and Coker, 2005; Lomolino et al., 2006). In other 

words, biogeographers seek to answer the seemingly simple question: Why do organisms live where 

they do? There has been a recent interest in microbial biogeography. However, the existence of 

microbial biogeography has been questioned [“There is no biogeography for anything smaller than 1 

millimeter”, Bland Finlay quoted in Whitfield (2005)”]. In contrast to this report, several studies have 

reported that many microbial taxa exhibit biogeographical patterns; microbial communities are not 

homogeneous across habitat-types, and within a given habitat, microbial diversity can vary between 

locations separated by millimeters to thousands of kilometers. However, ecologists agree that it is 

often complicated to understand and document microbial biogeography. Longhurst et al. (1995) 

partitioned the world ocean into provinces based on the prevailing role of physical oceanographic 

contextual data as a regulator of phytoplankton distributions. The four principal biomes defined were 

Westerlies, Trades, Polar and Coastal Biomes (Figure 1.12). These were further subdivided into 52 

provinces based on measured and satellite-derived data (Longhurst et al., 1995; 1998; 2006). This 

partition has been used to systematically classify discrete oceanographic provinces providing a 

mechanism for enhanced comparative analysis of ecosystem processes, community composition, 

organismal biogeography and trait attributes (Oliver and Irwin, 2008; Gomez-Pereira et al. 2010; Brown 

et al., 2014).  
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Figure 1.12. Longhurst Biogeographical Provinces. The figure shows the partition of the world oceans into 
provinces as defined by Longhurst (1995; 1998; 2006), based on the prevailing role of physical forcing as a 
regulator of phytoplankton distribution. Four principal biomes recognized were: the Polar Biome, the Westerlies 
Biome, the Trade-Winds Biome, and the Coastal Boundary Zone Biome. These four Biomes are recognizable in 
every major ocean basin. At the next level of reduction, the ocean basins are partitioned into provinces, roughly 
ten for each basin. (Available from: http://www.marineregions.org/).  
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1.2.3.1. Processes regulating microbial biogeography 

Historical processes. Species richness in a given location is the result of three factors, i.e. the rate of 

speciation, the rate of extinction, and the dispersal of species from other locations. Dispersal has been 

reported to be one of the key processes shaping microbial biogeography, however, its extent has been 

a topic of debate for long. Finlay (2002) has argued that any organism less than 1 mm in size is likely 

to be ubiquitous due to an essentially unlimited capacity for long distance dispersal simply by chance 

(Finlay, 2002; Fenchel, 2003; Martiny et al., 2006). But at larger spatial scales, the active dispersal of 

microbes can vary considerably between microbial taxa owing to mode of transport, habitat 

characteristics, population densities, and the ability of the microbe to survive the transport process 

itself (Jenkins et al., 2007; Martiny et al., 2006). Thus, a dispersal combined with the ability to survive 

long distance transport may result in few geographic constraints on microbial biogeography.  

 

Processes in variable environments. A comprehensive understanding of the factors that generate 

biogeographic patterns requires a complete understanding of how the current and past environment 

shapes dispersal, speciation and extinction. The idea that environmental heterogeneity drives 

biogeographic patterns is best summarized by the Baas Becking hypothesis “everything is everywhere, 

but, the environment selects” (Baas Becking, 1934; de Wit and Bouvier, 2006). In other words, this 

hypothesis proposed that there is effectively no limitation to dispersal, and that biogeographic 

patterns solely reflect contemporary environmental conditions. Thus, similar environments will harbor 

similar microbial taxa regardless of the geographic distance between the environments.  

 

From an oversimplified perspective, there are two general factors that may contribute to the formation 

of biogeographical patterns: dispersal limitation and environmental heterogeneity (Lin et al., 2013). In 

the past few years, there has been an inclination towards the consideration that dispersal alone is 

unable to alter biogeographical patterns unless it is accompanied by successful establishment (or 

colonization), which is under the influence of a wide variety of biotic and abiotic processes. Recent 

studies have indicated that both environmental heterogeneity and dispersal limitation (i.e. history) 

have relative roles in driving spatial variation in microbial communities.  

 

1.2.3.2. Characteristic patterns of biodiversity  

The patterns of diversity, in general, are governed by the combinations of three factors, i.e. random 

processes of birth, death and migration, history, and necessity. Recent methodological advances have 

made it possible to survey a large portion of the microbial diversity on Earth and to quantify the 

biogeographical patterns exhibited by microbes living in a wide range of environments. As these 

techniques and methodologies continue to improve at a nearly exponential rate, the field of microbial 
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biogeography is poised for significant advances. Considering the fact that “microbes” represent a 

broad array of taxa (i.e., bacteria, fungi, archaea, viruses, and protists), it is unlikely that all microbial 

taxa will follow a common set of concepts and patterns. Gaston (2000) reviewed a series of broad-

scale (geographical) spatial patterns well-documented in the literature, to describe the heterogeneous 

distribution of biodiversity. These included (i) latitudinal gradients in species richness (Clarke and 

Crame, 1997; Stevens, 1989; Gaston, 1996; Roy et al., 1998), (ii) species-energy relationships (Roy et 

al., 1998; Turner et al., 1987; Rutherford et al., 1999), and (iii) relationships between local and regional 

richness (Griffiths, 1997; Cornell, 1999; Ricklefs and Schluter, 1993). It has been reported that the 

patterns observed may vary with spatial scale, e.g. that processes operating at regional scales can 

influence patterns observed at local ones and, most importantly, that patterns in biodiversity are 

unlikely to have a single primary cause (Gaston, 2000). 

 

1.2.4. Future directions in the study of microbial biogeography 

The statement by E.O. Wilson that “microbial diversity is beyond practical calculation” (Wilson, 1999) 

is likely to be accurate in many environments and for a variety of microbial taxa. Nonetheless, the past 

decade has seen rapid advances in the field of microbial biogeography and biodiversity with the 

emergence of new tools and methods that have provided us with unprecedented abilities to study 

microbial communities. There is also a growing recognition that microbes do exhibit biogeographical 

patterns and that, by studying these patterns, we may be able to develop biogeographical theories and 

hypotheses that apply across the entire tree of life (Fenchel et al., 1997; Finlay 2002; Hedlund and 

Staley, 2003). However, it is important to recognize that the “unknown unknowns” and “known 

unknowns” in microbial biogeography currently outnumber the “known knowns”. The study of 

microbial biogeography will assist us in building a predictive understanding of microbial diversity and 

the factors influencing this diversity across space and time. Microbiologists may be able to use pre-

existing concepts in biogeography to understand microbial systems, or we may find that such concepts, 

which are largely derived from studies of plants and animals in terrestrial environments, are not 

directly applicable. Either way, the incorporation of microbiology into the field of biogeography 

promises to be a fruitful endeavor as many fundamental questions remain unanswered. By studying 

microbial biogeography, we will move closer to understanding the full breadth of biological diversity 

on Earth.  
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1.3. Metabarcoding: a new paradigm for biodiversity assessment 

Basic approach. Paul Hebert recognized that a small strand of DNA contains enough information to 

identify millions of species (Hebert et al., 2003). His technique for species identification proved to be 

successful and numerous studies have shown that DNA barcoding can be used effectively in several 

groups (Hajibabaei et al., 2008). The basic idea behind DNA barcoding is that new species can be 

identified by comparing (part of) their DNA to DNA from other species (Figure 1.13). This reference 

DNA could be collected in for instance a reference library. If the DNA (i.e. the barcode) of the target 

species differs enough from the reference DNA, the target species could be considered as a new or 

different species. When a target species is collected, its barcode region first needs to be amplified and 

sequenced. The barcode is then compared to the reference library to determine if the barcode belongs 

to a “new” species (which was not yet present in the reference library) or if the barcode belongs to a 

species already present in the library.  

 

DNA barcoding is an approach where a short fragment of a conserved DNA fragment (400 - 1000 bp) 

from a standardized region of genome is used for species identification and discovery, very similar to 

the barcodes used in supermarkets to equate products with prices. It has been used as a method for 

establishing a correlation between taxonomically undetermined individuals to a taxon with similar 

genetic sequence in a given reference database (Ratnasingham and Hebert, 2007). Initially, DNA 

barcoding was mainly focused on taxonomic research. However, recent advances in next generation 

sequencing (NGS) have advanced the dimensions of DNA barcoding, which has been pivotal for both 

basic and applied research (Nagy et al., 2013).  

 

Ideal barcode. Valentini et al. (2009) summarized five criteria for an ideal barcoding system, which are 

as follows:  

(a) The gene region sequenced should be nearly identical among individuals of the same species, 

but different between species, 

(b) It should be standardizable, with the same DNA region used for different taxonomic groups, 

(c) The target DNA region should contain enough phylogenetic information to easily assign, 

(d) Unknown or not yet ‘barcoded’ species to their taxonomic group (genus, family, etc), It should 

be extremely robust, with highly conserved priming sites and highly reliable DNA amplifications 

and sequencing, 

(e) The target DNA region should be able to allow amplification from environmental DNA. 

 

Potential strengths of DNA metabarcoding in ecological studies. Ecological studies often need syste- 
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Figure 1.13. Metabarcoding: basic approach 
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-matic determination of the species carrying out ecological processes. Obtaining such data using 

traditional methods requires a significant expertise and is often time consuming. The recent 

development of DNA-based barcoding for species identification has drastically simplified this 

identification step (Hebert et al. 2003a). DNA metabarcoding couples the principles of DNA barcoding 

with NGS technology. As much as Earth's unexplored wilderness shrinks every day, we are actually 

discovering more species than ever before. By doing more systematic and thorough surveys, by 

heading deeper into unknown territory, and by using advanced tools like DNA barcoding, we are 

uncovering new species at a record rate. 

 

Marine microbial eukaryotes are among the most diverse groups on the planet with estimates ranging 

from 500,000 to nearly 10 million species (Appeltans et al., 2012). But these are vastly under 

documented. The present rate of reliable identification and description is certainly inadequate for the 

task of describing all species, and new discoveries are often the result of unexpected encounters. 

Diatoms are present in all types of water bodies and their species diversity is influenced by 

environmental conditions. Morphological identification of diatoms beyond genus level is difficult and, 

therefore, DNA barcoding stands out to be one of the potential techniques which can help with 

accurate identification of species up to taxa level. However, species characterization needs sequences 

with high discriminatory power. Various gene regions proposed as barcode markers for diatoms 

include : (1) Mitochondrial cytochrome oxidase I gene (cox1) (Evans 2007, 2008; Saunders 2005; 

Blaxter 2004; Blaxter et al., 2004); (2) Chloroplast ribulose-1,5 bis-phosphate  carboxylase 

oxygenasegene (rbcL) (Saunders 2005, 2008); (3) Combination of nuclear 5.8S rRNA gene and ITS2 

(Moniz and Kaczmarska 2009, 2010); (4) Nuclear small ribsomal subunit (SSU-rRNA gene) (Behnke et 

al., 2004, Sorhannus 2007; Jahn et al., 2007); (5) V4 region 18S locus - this is 390 - 410 bp long fragment 

of 1800 bp long 18S rRNA gene locus which represents the highly variable and most complex region 

within 18S locus (Zimmerman et al., 2011).  

 

Other applications. The possibility of identifying all the species present in an environmental sample 

opens doors to new approaches in ecological research. It can be a good addition to the already used 

taxonomic methods instead of a replacement. Indeed, an integrative approach is being more and more 

widely adopted by many scientists in recent years (e.g., Hajibabaei et al. 2008). In the early days, DNA 

barcoding focused mainly on taxonomic research. Development of NGS technology has extended the 

application of metabarcoding in various ways, including: 

(a) Conservation biology for biodiversity surveys and to find out the traces of nearly extinct species 

(Stoeckle 2003; Taberlet 2012a; Callaway 2012; Valentini et al. 2009), 

(b)  Evaluation of interactions between species and diet analysis (Stoeckle 2003; Taberlet 2012a; 
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Valentini et al. 2009),  

(c) Investigation of changes in species distribution and niche stability (Taberlet et al. 2012a), 

(d) Applications in the area of ‘biosecurity’ due to the potential to accurately identify invasive 

species (Armstrong and Ball, 2005; Valentini et al. 2009),  

(e) Biomonitoring - to monitor illegal trade and by-products (Valentini et al. 2009), 

(f) Toxicology (harmful species) 

(g) Reconstruction of phylogenetic structure 

 

Limitations. Metabarcoding is a relatively new research field and a lot of research is being conducted 

to improve the methods. The metabarcoding approach seems very promising for the future, but in 

order to achieve those promises, some gaps need to be filled and limitations have to be overcome. 

Some of the limitations associated with metabarcoding include:  

(a) Sampling strategy 

(b) Universal barcodes 

(c) Reference libraries 

(d) Quantification of results 

(e) Other limitations related to PCR and DNA sequencing 

(f) Bioinformatics tools for analyzing data 

 

In spite of associated limitations, metabarcoding appears to be one of the most promising research 

areas, like biodiversity monitoring, animal diet assessment, reconstruction of paleo communities, and 

worthy of extensive exploitation to evaluate its full potential (Taberlet et al. 2012c). The advancement 

of NGS technology and its cost reduction has made metabarcoding even more practical.   

 

Estimates of total numbers of species of eukaryotes. A recent estimate of total number of eukaryotic 

species suggests that there are ~8.7 million species on our planet. With only 1.2 million species 

catalogued (Mora et al., 2011), more than 80% of species remain undiscovered. So far, only a small 

fraction of species on Earth (~14%) and in the ocean (~9%) have been indexed (Mora et al., 2011). With 

an increasing extinction rate and the current description rates of eukaryote species, it can be 

speculated that many of the species will become extinct before we know they even existed. Also, 

previous studies have reported that the species which have been catalogued are those with higher 

geographical range and abundances. This suggest that majority of undiscovered species are small 

ranged and concentrated in hotspots and less explored areas such as the deep sea and soil (Mora et 

al., 2011). In recent years, environmental metabarcoding has been proven to be able to fill this 

knowledge gap. This approach has enabled a direct access to microbial communities living in diverse 
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and unexplored habitats and thus, is being used to unveil the enormous diversity in eukaryotic tree of 

life. Needless to say that a unified approach based on traditional taxonomy, barcoding, and 

metabarcoding will expedite the identification of new species.  
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Figure 1.14. Sampling devices and working areas on-board SV Tara are shown from the vessel’s (a) side-view, (b) 
bird’s-eye-view of the deck, and (c) inside-view. They consist of the (1)  continuous surface sampling system; (2) 
CTD-rosette; (3) wet lab; (4) peristaltic pump for large-volume sampling; (5) dry lab; (6) oceanography engineers 
working areas; (7) winch; (8) video imaging area; (9) storage areas at room temperature; (10) storage areas at 
+4°C and -20°C; (11) MilliQ water system (12) diving equipment, and (13) storage boxes. Water flow from the 
continuous surface sampling system to the dry lab is shown in blue. (Taken from Pesant et al., 2015).  
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1.4. Tara Oceans: a comprehensive sampling of marine planktonic biota  

The name plankton, coined by German physiologist Viktor Hensen (1835-1924), is derived from the 

Greek word planktos, meaning “wanderer” or “drifter” (Thurman, 1997). Plankton are drifting 

organisms with limited powers of locomotion and are transported primarily by prevailing water 

movements. Plankton inhabit oceans, seas, lakes, and ponds, and their abundance and distribution 

strongly varies with light, nutrient availability, the physical state of the water column, and the 

abundance of other plankton. Plankton are primarily divided into three broad functional (or trophic 

level) groups, i.e. phytoplankton (autotrophic, prokaryotic or eukaryotic), zooplankton (small 

protozoans or metazoans that feed on other plankton), and bacterioplankton (bacteria and archaea). 

Plankton form the base of the marine food web and the variability in their population influences higher 

trophic levels. They encompass a wide diversity and help to regulate Earth’s climate. Plankton span 

several orders of magnitude in size and often exist in tight biotic interactions necessitating the 

development of an integrated, comprehensive, sampling strategy to best capture plankton community 

composition and ecology. The conventional, >150 year-old morphological view of marine eukaryotic 

plankton comprises ~11,400 catalogued species divided into three broad categories: ~5,700 species of 

metazooplankton (holoplanktonic animals), ~4,350 species of phytoplankton (microalgae), and ~1,320 

species of protozooplankton (relatively large, often biomineralized, heterotrophic protists) (Sournia et 

al., 1991; Wiebe et al., 2010; Boltovskoy et al., 2005). 

 

1.4.1. Background  

Over many centuries global expeditions have led to major scientific breakthroughs, the H.M.S. Beagle 

(1831-1836) and the H.M.S. Challenger (1872-1876) voyages being notable examples. Ocean 

exploration now provides promising first steps towards understanding the role of the ocean in global 

biogeochemical cycles and the impact of global climate change on ocean processes and marine 

biodiversity. Recently, the Sorcerer II expeditions (2003-2010) (Gross, 2007) and the Malaspina 

expedition (2010-2011) (Laursen, 2011) carried out global surveys of prokaryotic metagenomes from 

the ocean’s surface and bathypelagic layer (>1000 m), respectively. The Tara Oceans Expedition (2009-

2013) complemented these surveys by collecting a wide variety of planktonic organisms (viruses to fish 

larvae) along with extensive environmental data from the ocean’s surface (0-200 m) and mesopelagic 

(200-1000m) layers at a global scale. Moreover, Tara Oceans takes such surveys one step further by 

combining modern sequencing and state-of-the-art imaging technologies (Karsenti et al., 2011).  

 

As a research infrastructure, the Tara Oceans Expedition mobilized over 100 scientists to sample the 

world oceans on board of a 36 m long schooner (SV Tara) refitted to operate state-of-the-art oceanogr- 
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Figure 1.15. Sampling route of the Tara Oceans Expedition (green track), showing stations where plankton were 
sampled in their environmental context (full red dots) and where only environmental conditions were measured 
(open red dots). Sections of special scientific interest are identified along the sampling route (light blue). 
Longhurst's biogeographical provinces [Longhurst 2007] are shown in the background and those sampled during 
Tara Oceans Expedition are highlighted in blue. (Taken from Pesant et al., 2015). 
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-aphic equipment. On-board the schooner, the team was consistently composed of five sailorsand six 

scientists, including one chief scientist, two oceanography engineers in charge of deck operations, two 

biologists preparing and preserving samples for later morphological and genetic analyses, and one 

optics engineer in charge of imaging live samples on board. Working areas on-board (Figure 1.14) were 

setup to accommodate a smooth running of the operation. A winch was installed below the working 

deck, and sampling devices were deployed from the stern of the ship. A laboratory container (wet lab) 

equipped with water filtration systems was installed on the port side of the ship and an industrial 

peristaltic pump was installed on starboard to sample large volumes of water from various depths up 

to 60 m. A laboratory was set up inside the schooner (dry lab) at the center of the ship on port side, 

for imaging live organisms. The dry lab also contained flow through instruments connected to the 

underway continuous sampling system. The storage area was located in the forward hold.  

 

Samples were stored on-board either in liquid nitrogen (three 36-L Dewar tanks), in a 400 L freezer (-

20°C), in a 360 L fridge (+4°C), or at room temperature. Samples were packed and transported by World 

Courier (http://www.worldcourier.com/) in pre-conditioned temperature-controlled containers to 

ensure that the cold-chain was never interrupted. Frozen samples were kept in dry ice at all times.  

 

1.4.2. Sampling strategy and methodology 

The sampling strategy and methodology of the Tara Oceans Expedition (2009-2013) is presented as 

follows: 

(a) Atmospheric and oceanographic context at mesoscale. The regular sampling programme was 

designed to study a variety of marine ecosystems and to target well-defined mesoscale features such 

as gyres, eddies, currents, upwellings or hot spots of high CO2 (ocean acidification) or low oxygen 

(OMZ) concentrations (Figure 1.15). In order to identify these features before sampling, the 

atmospheric and oceanographic context were determined at the mesoscale using remote sensing 

products, arrays of Argo drifters and the meteorological station on-board Tara. Satellite observations 

(Chlorophyll a, sea surface temperature (SST), and altimetry) and real-time ocean model outputs 

(Mercator Ocean) were also used on a daily basis to revise sampling positions with respect to the 

selected oceanographic features. A total of 210 stations were characterized at the mesoscale to 

provide broader environmental context for the morphological and genomic study of plankton. 

 

(b) Properties of seawater and particulate matter from physical, optical and imaging sensors 

mounted on the continuous surface water sampling system. Continuous measurements of surface 

water physical, chemical and biological properties were often used to fine tune the location of  
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Figure 1.16. Geographical representation of the chronology (over 48 hours) and spatial distribution of sampling 
events during station TARA_152 in the North Atlantic Ocean (Start at -016.8454°E, 43.6850°N). At that station, 
an Argo drifter (10-m floating anchor and satellite positioning) was used to follow the water mass during sampling 
(black surface track). Along the route of SV Tara (yellow surface track), red, green, and blue markers correspond 
to sampling events targeting the “surface layer”, “deep chlorophyll maximum layer”, and “mesopelagic layer”, 
respectively. White and grey markers correspond to the deployment of nets over a fixed depth layer, typically 0-
100m or 0-500m during day and night time, respectively. (Taken from Pesant et al., 2015). 
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sampling stations that were initially selected based on satellite images. The in-line, continuous 

sampling system installed on SV Tara comprised a SeaBird TSG temperature and conductivity sensor, 

a WETLabs Ac-S spectrophotometer, a WETLabs chlorophyll fluorometer, and a Fast Repetition Rate 

Fluorometer (FRRF) to assess photosynthetic efficiency.  

 

(c) Environmental features and sampling stations. During the Tara Oceans Expedition (2009-2013), 

plankton were collected from any of the three distinct oceanic features, i.e., “surface water layer”, 

“deep chlorophyll maximum layer”, and “mesopelagic zone” (Figure 1.16). The “surface water layer” 

(SRF) was simply defined as a layer between 3 and 7 m below the sea surface. The “deep chlorophyll 

maximum layer” (DCM) was determined from the chlorophyll fluorometer (WETLabs optical sensors) 

mounted on the Rosette Vertical Sampling System [RVSS-SENSORS]. The “mesopelagic zone” (MESO) 

corresponds to the layer between 200 and 1000 m depths. The sampling layer within the mesopelagic 

zone was selected based on vertical profiles of temperature, salinity, fluorescence, nutrients, oxygen, 

and particulate matter. The selected environmental feature varied from station to station. Some of 

these mesopelagic zone features have special scientific interest, such as the “oxygen minimum zone” 

(OMZ) and the “epipelagic mixing layer” (MIX).  

 

All sampling devices used during the Tara Oceans Expedition (2009-2013), essentially were a High 

Volume Peristaltic pump [PUMP-SENSOR], a Rosette Vertical Sampling System [RVSS-SENSORS and 

NISKIN] and plankton nets [NET-TYPE-MESH]. Plankton were sampled in their environmental context 

at a total of 210 stations, of which 57 sampled only the surface layer, 62 sampled the surface layer and 

a second depth-specific feature, and 40 sampled the surface layer, the deep chlorophyll maximum 

layer and a third depth-specific feature. 

 

(d) Properties of seawater and particulate & dissolved matter from physical, optical and imaging 

sensors mounted on the vertical profile sampling system. Repeated deployments of a Rosette Vertical 

Sampling System [RVSS] were essential to locate features that have a vertical component and have a 

signature below the surface, such as eddies, upwellings, fronts, deep chlorophyll maxima, and oxygen 

minimum zones. The [RVSS] was specifically designed for the Tara Oceans Expedition (2009-2013), 

using various SEABIRD® components [RVSS-SENSORS].  

 

(e) Properties of seawater and particulate & dissolved matter from discrete water samples. In 

addition to sensors mounted on the Rosette Vertical Sampling System [RVSS], seawater was collected 

using Niskin bottles [RVSS-NISKIN] (6 x 8-L Niskins and 4 x 12-L Niskins) in order to further characterize 

a sampling station’s environmental conditions. Measurements include pigment concentrations from  
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Figure 1.17. Empirical background for the Tara Oceans sampling methodology and the choice of sampling 
devices. The horizontal plane shows the range of body/cell size and natural abundances reported in the literature 
for viruses (including giant viruses), prokaryotes, protists and metazoans (coloured boxes).  The sampling devices 
used to collect plankton <5 µm in size (i.e., high volume peristaltic pump and rosette with Niskin bottles) and 
>5 µm in size (i.e., plankton nets) are illustrated as well on the horizontal plane. The vertical plane shows the 
volume of seawater required to capture 100%, 75% and 50% of species richness reported in the literature for 
viruses (including giant viruses), prokaryotes, protists and metazoans (shaded boxes). The typical volume of 
seawater collected by sampling devices are shown in comparison (horizontal thick lines). Also illustrated on the 
vertical plane: sieves were used to remove large organisms in the case of plankton nets for protists (5, 20 and 
180 µm mesh). (Taken from Pesant et al., in prep).  



General Introduction 

 

S Malviya  Chapter 1 
 

43 

HPLC analysis (10 depths per vertical profile; 25 pigments per depth), the carbonate system (Surface 

and 400m; pHT, CO2, pCO2, fCO2, HCO3, CO3, Total alkalinity, Total carbon, OmegaAragonite, 

OmegaCalcite, and dosage Flags), nutrients (10 depths per vertical profile; NO2, PO4, NO2/NO3, Si, 

quality Flags). More than 250 vertical profiles of these properties were made across the world ocean.  

 

(f) Marine plankton. Plankton sampled during the Tara Oceans Expedition cover six orders of 

magnitude in size (10-2-105 µm) and correspond to viruses, giant viruses (giruses), prokaryotes (bacteria 

and archaea), protists (unicellular eukaryotes), and metazoans (multicellular eukaryotes). These five 

groups form the bulk of biomass throughout the oceans and drive the global biogeochemical cycles 

that regulate the Earth system (Arrigo, 2005, Falkowski, 2008; Karl, 2007). Unicellular eukaryotes, or 

protists, cover a broad range of cell size (0.8-2000 µm). They are taxonomically very diverse with 

representatives in all of the 8 super-groups of the eukaryotic tree of life (Baldauf, 2005), whose roles 

in marine and Earth systems ecology are largely unexplored. Meso-zooplankton (metazoans; 

multicellular eukaryotes) range in size from 50 µm to several metres, and play a pivotal role in both 

the transfer of energy to higher trophic levels such as fish and other large predators, and in the vertical 

export of particulate matter produced at the surface of the ocean (Banse, 2013).  

 

Given that abundance is generally an inverse function of cell size (Figure 1.17; horizontal plane), and 

that we are interested in capturing the diversity of both dominant and less abundant organisms, we 

used a series of sampling devices that collect/filter enough volume of seawater to capture the diversity 

of organisms in the following 10 size fractions: <5 µm (or <3 µm), 5-20 µm (or 3-20 µm), <20 µm, 20-

180 µm and 180-2000 µm for sampling plankton viruses, prokaryotes and unicellular eukaryotes, and 

>50, >200, >300, >500 and >680 µm for sampling large plankton unicellular eukaryotes and metazoans. 

Whenever possible, replicate sampling was performed to assess plankton natural variability and to 

ensure long-term storage of samples in view of future re-analysis using new technologies, notably in 

the fields of high throughput imaging and -omics. 

 

Sampling plankton viruses, prokaryotes and unicellular eukaryotes. Plankton sampling devices used to 

collect small size organisms (<20 µm size fractions) include Niskin bottles mounted on the rosette 

[RVSS-NISKIN] or occasionally attached individually on a line [LINE-NISKIN], a High Volume Peristaltic 

pump [PUMP-HVP], and exceptionally a 10-L plastic bucket [BUCKET]. The choice of the sampling 

device was determined by weather conditions and the depth of the targeted environmental features. 

The “surface water layer” was systematically sampled using the pump [PUMP-HVP], and exceptionally 

(at 3 stations) using a 10-L plastic bucket [BUCKET]. The “deep chlorophyll maximum layer” was 

sampled preferentially with the pump [PUMP-HVP] or alternatively using multiple deployments of the 
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rosette [RVSS-NISKIN] when the sampling depth was >60 m. The “mesopelagic layer” was 

systematically sampled using multiple deployments of the rosette [RVSS-NISKIN]. Nets [NET-SINGLE-5] 

were used for the 5-20 µm size-fraction. Plankton from the 20-180 µm size-fraction were collected 

using a double plankton net with a 20 µm mesh size [NET-DOUBLE-20]. Plankton from the 180-2000 

µm size-fraction were collected using a 180 µm Bongo Net [NET-BONGO-180]. All the nets were 

lowered to the selected environmental feature and towed horizontally for 5-15 min. Upon recovery, 

all nets were rinsed from the outside with running seawater. After each use, nets, cod-ends, and sieves 

were rinsed with fresh water and checked for holes.  

 

Sampling plankton large unicellular eukaryotes and metazoans. Plankton sampling devices used to 

concentrate and collect the larger and less abundant organisms (>50 µm size fractions) consisted of 

plankton nets with mesh sizes ranging from 50 to 680 µm [NET-TYPE-MESH] and metal pan-shaped 

sieves [SIEVE-MESH] to remove large organisms as needed. Upon recovery, all nets were rinsed from 

the outside with running seawater. After each use, nets, cod-ends, and sieves were rinsed with fresh 

water and checked for holes. 

 

1.4.3. Tara Oceans integrated pipeline 

High throughput imaging platform. The high-throughput imaging platform used by Tara Oceans 

includes (i) on-board and on-land flow cytometers to monitor virus particles, bacteria, and small 

protists, (ii) on-land digital and confocal microscopy for detailed 2D/3D imaging of cells within the 5–

20-mm range, (iii) on-board and onland FlowCams and ZooScans for quantitative recognition of 

organisms ranging from 20 mm to a few cm, light sheet and confocal microscopes for 3D imaging, and 

(iv) on-land electron microscopes for detailed ultrastructural analyses of small protists and viruses 

(Karsenti et al., 2011).  

 

High throughput sequencing methods. High throughput sequencing methods were used to obtain 

both deep phylogenetic rDNA/rRNA tag data (metabarcodes) and metagenomic and 

metatranscriptomic functional profiles from size fractions covering the entire plankton community 

from viruses to fish larvae (Karsenti et al., 2011).  

 

Eco-, morpho- and genetic modelling. Tara Oceans aims to visualize, quantify, and genetically 

characterize ocean biodiversity within entire plankton ecosystems (Karsenti et al., 2011). The 

unprecedentedly comprehensive data sets are being employed to gain a deeper understanding of 

biodiversity gradients within and among systems and contrasting environments and can, thus, assist 

in establishing rules governing the self-organization of organism networks (Fuhrman, 2009; Raes et al., 
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2011). Also, they can be used to develop predictions about how these rules and communities will be 

affected by a changing environment.  

 

In summary, through a global network of researchers in more than 20 nations, the Tara Oceans 

Expedition (Karsenti et al., 2011) has engaged in a coordinated scientific program to develop the first 

planetary-scale data collection effort. Taken together, this comprehensive and systematic sampling 

strategy has opened the door to explore associations between biodiversity and function in marine 

planktonic ecosystem by integrating genomics, morphology and environmental data. This uniquely 

exhaustive expedition can be deemed as a much needed step towards integrating the biological 

complexity into predictive global-scale ecological models that can serve in managing the oceanic 

ecosystems in response to environmental changes. This integrated end-to-end interdisciplinary 

initiative will serve to address global issues from a holistic perspective.  
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Figure 1.18. Bioinformatics pipeline: from raw Illumina rDNA read production to biodiversity and ecology 
analyses. Raw V9 rDNA reads were first filtered based on sequence quality scoring and chimera removal analyses, 
and only reads present in atleast 3 copies and 2 independent samples were considered for downstream analyses. 
Filtered reads were dereplicated and taxonomically assigned by homology (ggsearch global alignment) to an 
expert-curated database (V9_PR2). Metabarcodes -identical dereplicated reads- were finally clustered into OTUs 
(Operational Taxonomic Units) using the Swarm algorithm (Mahe et al. 2014) for α- and β-diversity analyses (de 
Vargas et al., 2015).  
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1.5. Aim of the thesis  

The goal of my thesis was to assess the global diversity pattern of diatoms in world oceans and the 

impact of various abiotic factors on the diatom diversity. And these goals were accomplished by 

primarily looking into the following fundamental questions: 

(a) How does the diatom abundance and diversity vary in the world ocean? 

(b) Is the diversity consistent across different size classes and oceanic provinces? 

(c) How are the diatom communities structured? 

 

I used 63371 diatom metabarcodes (V9 region of SSU 18S rDNA) from 46 sampling sites sampled during 

Tara Oceans Expedition to address the following objectives: 

(a) To develop and evaluate the metabarcoding approach for the assessment and analysis of diatom 

diversity, encompassing species richness as well as spatial heterogeneity.  

(b) To investigate diversity choke points.  

(c) To determine the variation in diatom diversity varies across different oceanic provinces and size 

classes.  

(d) To test whether dispersal limitation affect diatom species richness, and how much variation in 

the community structure can be explained. 

(e) To investigate the impact of spatial, environmental and biotic drivers on patterns of species 

richness and composition. 

(f) To determine a substitute for classical diversity indices. 

(g) To test how the commonness and rarity varies across different stations and size classes. 

 

To explore holistic patterns of photic-zone eukaryotic plankton biodiversity, ~766 million ribosomal 

DNA (rDNA) sequence reads were generated from samples across the world’s oceans collected during 

the Tara Oceans expedition (de Vargas et al., 2015). A global metabarcoding approach was designed 

to cover the majority of eukaryotic plankton diversity, encompassing four organismal size fractions 

covering the majority of: piconano-plankton (0.8-5μm), nano-plankton (5- 20μm), micro-plankton (20-

180μm), and meso-plankton (180-2000μm). The V9 region of the nuclear 18S rDNA gene, that is suited 

for assessing general patterns of biodiversity of entire eukaryotic communities, was chosen as a 

barcode. A strict quality-check pipeline led to a final dataset of ~580 million reads or ~2.3 million 

unique sequence reads (Figure 1.18). These were assigned taxonomic entities by alignment to an 

expert-curated database (V9_PR2 database) containing 77,449 reference V9 rDNA barcodes 

representing 13,432 genera and 24,435 species from all known major lineages of the tree of eukaryotic 

life.  
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Figure 1.19. Phylogenetic distribution of the assignable part of eukaryotic plankton ribosomal diversity. (A) 
Schematic phylogeny of the 85 deep-branching eukaryotic morpho-lineages represented in our metabarcoding 
dataset, with broad ecological function (red = parasitic lineage; green = photoautotrophic lineage; blue = 
osmo/saprotrophic lineage; black = mostly hetero/phagotrophic lineage). Note that many well-known protistan 
lineages adapted specifically to marine benthic or terrestrial habitats were totally missing from photic-zone 
plankton and thus do not appear in the tree. (B) Number of reference V9 rDNA barcodes used to annotate the 
metabarcoding dataset (grey = with known taxonomy at the genus and/or species level; light blue = from previous 
18SrDNA environmental clone libraries). (C) Tara-Oceans V9 rDNA OTU richness (the dark-blue thicker bars 
indicate the 11 hyper-diverse lineages containing >1,000 OTUs). (D) Eukaryotic plankton abundance expressed 
as numbers of rDNA reads (the red bars indicate the 9 most abundant lineages with >5 million reads). E. 
Proportion of rDNA reads per organismal size fraction (light blue = piconano-; green = nano-; yellow = micro-; red 
= mesoplankton). (F) Percentage of reads and OTUs with [80-85%], [85-90%], [90-95%], [95-<100%], [100%] 
sequence similarity to a reference sequence. (G) Slope of OTUs rarefaction curves. (H) Mean geographic 
occupancy (de Vargas et al., 2015). 
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Sequencing of close to 2 million V9 rDNA reads from each of the 334 size-fractionated plankton 

samples was sufficient to approach saturation of both local and global eukaryotic biodiversity. This 

survey unveiled ~75% of eukaryotic ribosomal diversity in the photic zone of the ocean. The 

extrapolated total richness of ~150,000 OTUs is much higher than the ~11,400 formally described 

species of marine eukaryotic plankton, and given the relatively low taxonomic resolution power of V9 

rDNA barcodes, it likely represents a highly conservative, lower boundary estimate of the true number 

of eukaryotic species in this ecosystem.  

 

About one third of ribosomal diversity in Tara Ocean’s dataset did not match (at ≥80% identity) any 

sequence in the extensive V9_PR2 reference database. This significant unassignable diversity did not 

represent a large component (2.6% of reads), and increased in both richness and abundance in smaller 

organismal size fractions, suggesting that it corresponds to rare and minute taxa that have escaped 

traditional morphology-based analyses. The remaining 87,000 OTUs could be classified amongst 103 

monophyletic groups covering the full spectrum of catalogued eukaryotic diversity, i.e., the 7 

recognized super-groups and multiple incertae sedis lineages whose origins go back to the primary 

radiation of eukaryotic life in the Neo-Proterozoic. Many well-known lineages adapted specifically to 

marine benthic or terrestrial habitats were totally missing from photic-zone plankton and thus do not 

appear in Figure 1.19. The conventional, >150 year-old morphological view of marine eukaryotic 

plankton comprises ~11,400 catalogued species divided into three broad categories: ~5,700 species of 

metazooplankton (holoplanktonic animals), ~4,350 species of phytoplankton (microalgae), and ~1,320 

species of protozooplankton (relatively large, often biomineralized, heterotrophic protists) (Sournia, 

et al., 1991; Wiebe et al., 2010; Boltovskoy et al., 2005). A largely congruent picture of the distribution 

of diversity between and within these organismal categories exhibited a typically 3 to 8 times more 

rDNA OTUs than described morphospecies in the best-known lineages within these categories. This is 

within the range of the number of cryptic species typically detected in many globally-distributed 

pelagic taxa (e.g., de Vargas et al., 1999; Halbert et al., 2013). Despite this overall congruency for 

classical categories, OTUs related to morphologically-described taxa represented only a minor part of 

total eukaryotic plankton phylogenetic diversity. Only 31 of the 87 (36%) lineages represented in Figure 

1.19 have been regularly recognized in previous plankton biodiversity studies, 11 of which were known 

almost exclusively from clone library surveys (Figure 1.19C). 

 

Overall, less than 1% of OTUs were strictly identical to reference sequences, and OTUs were on average 

only 86% similar to any reference sequence (Figure 1.19G), indicating that the large majority of photic-

zone eukaryotic plankton diversity had not previously been sequenced from cultured strains, single-

cell isolates, or rDNA clone library surveys. Assessment, on a group by group basis, of the amount of 
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phylogenetic information added to current knowledge of total protistan rDNA diversity by Tara Oceans 

metabarcodes indicated that mean tree length increase was of 453%, reaching >100% in 43 lineages. 

Even in the best-referenced groups such as the diatoms (1,232 reference sequences, Figure 1.19B), 

abundant novel rDNA sequences were recorded both within known groups and forming entirely new 

clades. Surprisingly, >80% of eukaryotic plankton biodiversity was found in heterotrophic lineages. 11 

‘hyper-diverse’ lineages contained >1,000 OTUs, together representing ~88% and ~90% of all OTUs and 

reads, respectively (Figure 1.19C), amongst which the only phototrophic taxa were diatoms and about 

a third of dinoflagellates, together comprising ~20% and ~18% of ‘hyper-diverse’ OTUs and reads, 

respectively.  

 

Most hyper-diverse photic-zone plankton belonged to three super-groups, the Alveolata, Rhizaria, and 

Excavata, all poorly known in terms of their biology and functional ecology. The Alveolata, mainly 

consisting of phagotrophic and parasitic taxa (ciliates and most dinoflagellates, MALVs and 

apicomplexans, respectively), were by far the most diverse super-group, with ~42% of all assignable 

OTUs. The Rhizaria are a group of amoeboid heterotrophic protists with active pseudopods that also 

display a wide spectrum of ecological behavior from phagotrophy to parasitism and symbioses sensu 

lato (Burki and Keeling, 2014). Rhizarian diversity peaked in the Retaria, the group including giant 

protists that build complex skeletons in silicate (Polycystinea), strontium sulfate (Acantharea), or 

carbonate (Foraminifera), and comprise key microfossils for paleoceanography. Enormous 

unsuspected rDNA diversity (5,636 OTUs) was recorded within the Collodaria, which are mostly 

colonial, poorly silicified or naked polycystines that typically live in obligatory symbiosis with 

photosynthetic dinoflagellates and display remarkably complex behaviors (Swanberg, 1974). Arguably 

the most surprising component of novel biodiversity was the >12,300 OTUs related to reference 

sequences of diplonemids, an excavate lineage that has only two described genera of flagellate grazers, 

one of which parasitizes diatoms (Schnepf, 1994). Their ribosomal diversity was much higher than that 

observed in classical plankton groups such as Foraminifera, ciliates, or diatoms (50-fold, 6-fold, and 

3.8-fold higher, respectively), and was furthermore one of the only phylo-groups far from saturating 

(Figure 1.19E). 

 

Beyond these hyper-diverse eukaryotic lineages, our dataset revealed considerable phylogenetic 

diversity (>50 deep-branching groups) of unknown or very poorly known phagotrophic, osmotrophic, 

and parasitic protists. These results fundamentally challenge the common view of plankton diversity, 

inspired from terrestrial ecology, whereby phytoplankton and metazooplankton make up ~90% of 

eukaryotic plankton diversity and heterotrophic protists correspond to a minor compartment reduced 

in food web modeling to a single entity, often idealized as ciliate grazers.  
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This data set demonstrates that the diversity of eukaryotic plankton in the photic-zone of the world’s 

ocean is significantly higher than previously thought, but that it is a finite compartment whose 

taxonomic, functional, and ecological properties can be addressed holistically using a functional 

metabarcoding approach. In years to come, decoding the ecological and evolutionary rules governing 

this exceptional diversity will be essential for understanding one the most critical biomes for the 

functioning of the Earth system.  
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1.6. Thesis outline 

The results from this study are organized in three results chapters (Chapters 2-5) followed by 

conclusions and perspectives (Chapter 6) beyond this general introduction (Chapter 1). 

 

Chapter 2 provides a comprehensive understanding of global biodiversity patterns and structure of 

planktonic diatom communities across the world ocean by analysing photic zone samples from 46 

stations of the Tara Oceans sampling project (2009-2013) (Karsenti et al., 2011). The analysis was 

based on the use of environmental ribosomal DNA fragments (“meta-barcodes”) as markers of diatom 

biodiversity. The Protist Ribosomal Reference database (PR2; Guillou et al., 2013) was used to assign a 

traditional taxonomy to meta-barcodes, thus linking classical knowledge of diatom biodiversity to an 

analysis based on high-throughput sequencing. I then explored whether general patterns in the 

structure of diatom biodiversity emerge across size classes, genera and ecological niches. The 

abundance of different genera of diatoms varies primarily between size classes (pico-, nano-, micro- 

and meso- plankton), independently of the ecosystem studied and the sampling period.  

 

Chapter 3 assesses the impact of environmental (niche-based approach) and spatial (neutral 

processes) drivers in explaining the differences in species richness and composition pattern. In this 

chapter, the effects of various abiotic and biotic environmental variables, along with spatial variables 

were assessed for each sub-community (based on size) using multiple regression and canonical 

redundancy analysis (RDA) and their partial form to control for spatial variables effects. The observed 

distribution pattern of diatom barcode assemblages in the world ocean suggests that connectivity of 

local water masses to ocean circulation has a major impact on marine diatom biogeography.  

 

Chapter 4 investigated if the co-occurring ribotypes exhibit a distinct behavior and response to 

environmental conditions in a way that they can be expressed as a function of varying environmental 

parameters. This study aims to identify the distributional pattern for the identified clusters co-

occurring ribotypes and to examine the relative importance of environmental factors in explaining the 

structure of each cluster. 

 

Chapter 5 presents an in-depth analysis to explore the patterns of species abundance by employing 

rank abundance distributions (RADs) along with commonness and rarity patterns of protists in the 

world’s ocean. Rank abundance curve was obtained for each sample and its shape, especially of the 

tail, was studied. The plotted RADs for all the samples under study showed a heavy-tailed distribution 

which appears to follow a power-law behavior. A framework was developed to calculate and classify 
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the exponent of the tail. The underlying objective of this work was to relate the characteristic shapes 

and slope of the tail of RAD curve to some feature of the environment.  

 

In Chapter 6, I have discussed the importance of the results in identifying interconnections between 

associated theories and underlying drivers, and deduced implications for future studies. Promising 

novel research questions and directions are identified to explore how these marine communities are 

structured and to determine core community assembly rules. In the context of this thesis, I propose 

that the meta-barcoding approach provides a potential framework to investigate environmental 

diversity at a global scale, which is deemed as an essential step in answering a wide range of ecological 

research questions.   
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Abstract 

Diatoms (Bacillariophyta) constitute one of the most diverse and ecologically important 

phytoplanktonic groups. They are considered to be particularly important in nutrient-rich coastal 

ecosystems and at high latitudes, but considerably less so in the oligotrophic open ocean. The Tara 

Oceans circumnavigation collected samples from a wide range of oceanic regions using a standardized 

sampling procedure, allowing a broad comparison of plankton composition. In the present study, a 

total of approximately 12 million diatom V9-18S rDNA tags has been analyzed to explore diatom global 

diversity and community composition. This was done using 293 size-fractionated planktonic 

communites collected at 46 sampling sites across the global ocean’s euphotic zone. Based on the total 

assigned ribotypes, Chaetoceros was the most abundant and diverse genus, followed by Thalassiosira, 

Corethron and Fragilariopsis. We found only a few cosmopolitan ribotypes, displaying an even 

distribution across stations and high abundance, many of which could not be assigned to a known 

genus. Three distinct clusters from Equatorial, Mediterranean and Southern Ocean waters were 

identified that share a substantial percentage (~25-42%) of ribotypes within them. Sudden drops in 

diversity were observed at Cape Agulhas, which separates the Indian and Atlantic Oceans, and across 

the Drake Passage between the Atlantic and Southern Oceans, indicating the importance of these 

ocean circulation choke points in constraining diatom diversity patterns. We also observed 

unexpectedly high diatom diversity in the open ocean, suggesting that diatoms may be more relevant 

in these oceanic systems than generally considered. 

Keywords: Biodiversity, diatoms, metabarcoding, Tara Oceans, choke points, open ocean 

 

2.1. Introduction 

Diatoms are single-celled photosynthetic eukaryotes deemed to be of global significance in 

biogeochemical cycles and the functioning of aquatic food webs (Smetacek, 1998; Falkowski, 2002; 

Armbrust, 2009). They constitute a large component of aquatic biomass, particularly during 

conspicuous seasonal phytoplankton blooms, and have been estimated to contribute as much as 20% 

of the total primary production on Earth (Nelson et al., 1995; Field et al., 1998; Falkowski et al., 1998). 

They are widely distributed in almost all aquatic habitats, except the hottest and most hypersaline 

environments, and can also occur as endosymbionts in dinoflagellates and foraminifers (Round et al., 

1990). However, planktonic diatoms prefer cold, nutrient-rich regions encompassing polar as well as 

upwelling and coastal areas (Crosta et al., 2005).  

 

Diatoms constitute one of the most diverse planktonic groups with a wide range of species estimates 

(ranging between 10,000 and 200,000), including between 1,400 and 1,800 marine planktonic species 
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(Sournia et al., 1991). An early report on the number of diatom species on Earth, based on 

extrapolation and compilation of morphological data, estimated that there exist more than 200,000 

species (Mann and Droop, 1996). More recently, Guiry (2012) suggested a ‘conservative figure of 

12,000 described species of diatoms, with a further 8,000 to be discovered’. However, in recent years 

molecular studies have demonstrated the presence of cryptic diversity in many diatom taxa (e.g. 

Lundholm et al., 2006; Behnke et al., 2004), which also corresponds to mating incompatibility (Amato 

et al. 2005) and considerable functional diversity (Degerlund et al., 2012; Huseby et al., 2012). In view 

of that, a recent overview (Mann and Vanormelingen, 2013) estimated that the total number of extant 

species is at least 30,000. 

 

Despite their wide distribution, Vanormelingen et al. (2008) suggested that cosmopolitan diatom 

species are not the rule and that a considerable degree of endemism is likely in diatom communities. 

A few years later, Mann and Vanormelingen (2013) proposed an “intermediate dispersal hypothesis” 

stating that “long-distance dispersal is rare, but not extremely rare.” The quantification of diatom 

diversity and its variation across space (and time) is therefore important for understanding 

fundamental questions of diatom speciation.  

 

Characterization of diatom diversity requires accurate and consistent taxon identification. However, 

given the apparently large numbers of undescribed species, together with the cryptic and semi-cryptic 

diatom species, morphological analyses alone fail to provide a complete description of diatom 

diversity. Therefore, genetic investigations on environmental samples can be effectively used to 

consistently quantify and understand diversity for more robust and rapid community comparison 

(Rodríguez-Martinez et al., 2013). The past decade has seen tremendous advances in the field of 

molecular and biochemical methods for rapid taxon identification and characterization. The 

introduction of DNA sequence data to systematics has facilitated the discovery of numerous previously 

undescribed taxa, revealing distinct species identified by subtle or no morphological variations (e.g., 

Beszteri et al., 2007; Sarno et al., 2005). Allozyme electrophoresis (Gallagher 1980; Soudek and 

Robinson, 1983), DNA fingerprinting (Rynearson and Armbrust 2000), isozyme analysis (Skov et al., 

1997), and microsatellite marker analysis (Evans and Hayes, 2004) have also been used to assess 

diatom diversity at lower (intraspecific) taxonomic levels.  

 

Several efforts have been undertaken to develop alternative approaches for diversity analysis using 

sequence-based approaches on environmental DNA (Steele and Pires, 2011; Bik et al., 2012). With the 

advent of high-throughput DNA sequencing, DNA metabarcoding has now emerged as a rapid and 

effective method to develop a global inventory of biodiversity that cannot be detected using classical 
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microscopic methods (Yu et al., 2012; Ji et al., 2013; Sogin et al., 2006; Meusnier et al., 2008; Bittner 

et al., 2013). Metabarcoding combines DNA-based identification and high-throughput DNA sequencing 

and is based on the premise that differences in a diagnostic DNA fragment coincide with the biological 

separation of species. Limitations have been identified for metabarcoding (Will et al., 2005; Coissac et 

al., 2012; Bittner et al., 2013), mainly by its dependency on PCR and thus exposure to amplification 

artefacts (Bellemain et al., 2010; Taberlet et al., 2012), by its susceptibility to DNA sequencing errors 

(Coissac et al., 2012), and by the considerable investment required to build comprehensive taxonomic 

reference libraries (Taberlet et al., 2012; Yoccoz, 2012). However, compared to other classic methods 

metabarcode data sets are far more comprehensive, many times quicker to produce, and relatively 

independent from taxonomic expertise. 

 

Metabarcoding is hence receiving considerable interest, especially when classical species identification 

is time consuming and difficult due to the presence of diverse and widespread cryptic species, or when 

the organisms are too small to be observed. However, the choice of variable DNA region to be 

barcoded needs to be evaluated carefully (Riaz et al., 2011). For eukaryotes, recent reports have 

proposed the use of partial 18S rDNA sequences as potential molecular markers (Amaral-Zettler et al., 

2009). The 18S rDNA contains nine hypervariable regions (V1-V9) (Ki and Han, 2005). Amaral-Zettler et 

al. (2009) first employed the V9 region to assess general patterns in protistan diversity. They suggested 

that these regions have the potential to assist in uncovering novel diversity in microbial eukaryotes. 

 

Owing to their complex evolutionary history, diatoms have a “mix-and-match-genome” (Armbrust, 

2009) which provides them with a potential range of abilities like the presence of proton-pump-like 

rhodopsins (Slamovits et al., 2011), ice-binding proteins (Janech et al., 2006), biogenic silica formation 

(Kroger and Sumper, 2000), and a urea cycle (Allen et al., 2011). These abilities probably underlie their 

success in occupying a wide range of ecological niches. Despite the key role of diatoms in the 

functioning of many ecosystems, their biodiversity and geographical distributions are poorly 

understood at a global scale. Most of the research in this area has been focused towards understanding 

the patterns of biological diversity in a particular diatom genus of interest at a local or regional scale 

(e.g., Nanjappa et al., 2014). Here, we have performed a global analysis of diatom community 

composition using the V9 region of 18S rDNA as diversity marker. To achieve this, we employed 

taxonomic profiling of 293 samples derived from forty-six sampling sites (de Vargas et al., 2015) along 

the Tara Oceans circumnavigation (Karsenti et al., 2011). Experimental validation of the molecular data 

was established by light microscopy using samples from selected sites. Our study provides significant 

and novel insights into the current patterns of diatom genetic diversity for the first time on a global 

scale. 
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2.2. Results 

Our study, summarized in Figure 1, was structured to develop a framework for a rapid molecular-based 

analysis of diversity. The results are presented in three broad sections, namely (i) evaluation of the V9 

hypervariable region as a diversity marker for diatoms, (ii) correlation between the molecular and 

morphological estimates, and (iii) global biogeographical patterns exhibited by diatoms. 

 

2.2.1. Evaluation of V9 region of 18S rDNA as a diversity marker for diatoms 

To evaluate the limits of metabarcoding in a given organismal group, it is important to assess how the 

variable region under study relates to the genetic diversity in discriminating various taxa (Taberlet et 

al., 2012; Ficetola et al., 2010). In the present study, 2947 full-length 18S rDNA sequences were 

obtained from the PR2 reference database corresponding to 718 diatom species (Guillou et al., 2013). 

They were aligned and entropy along the full length was computed. The sequence variations along the 

entire length was used to assess the nine hypervariable regions (V1-V9) using the RNAstructure 

program (Fig. S1A). Regression of V1-V9 p-distances by Neighbor-Joining (NJ) algorithm onto those of 

full length 18S sequences showed that a combination of hypervariable sites can help in better 

discrimination of different species of diatoms. The performance of V9, the sequence used for Tara 

Oceans metabarcoding (de Vargas et al., 2015), was 23% less than that of the full-length 18S sequence, 

and taxa assignment at less than 70% identity in the V9 region was found to be insufficient for diatoms 

(Fig. S1B). Although the mean genetic distance for V9 was higher than the full length 18S rDNA, the 

phylogeny based on that fragment was found to be less reliable as compared to the full length 

sequence. Length variation and pairwise genetic distances calculated using the Kimura-2-parameter 

model for all nine hypervariable regions are shown in Figures S1B and S1C. We found that the V4 

region wrongly placed some raphid pennate diatoms within centric groups, whereas the V9 region 

could not differentiate well between radial and polar centric diatoms, nor between raphid and araphid 

pennate groups (Fig. S1D). Further, the resolving power of the V9 region was evaluated by computing 

pairwise p-distance between and among different genera. The results showed an average intergenus 

p-distance of 0.134, which is about two times larger than the mean intragenus distance (0.065), 

indicating fairly good discrimination ability exhibited by V9 at the genus level.  

 

2.2.2. Global dataset of diatom V9 metabarcodes 

A total of ~580 million quality-checked reads, representing ~2.3 million unique rDNA ribotypes (V9 

region of 18S rDNA), were generated from 334 photic-zone plankton communities sampled during the 

Tara Oceans expedition (de Vargas et al., 2015). Taxonomy assignments for all ribotypes were obtained 

through annotation against an expert-curated V9 reference database (for details, see de Vargas et al., 
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2015) using the global alignment search strategy implemented in the ggsearch36 program (Fasta 

package). This reference database contains sequences from both cultured strains and the 

environment, and contained 1,232 unique diatom V9 reference sequences corresponding to 159 

genera, with most genera being represented by more than one sequence (Fig. S2). Of the 159 genera 

in the reference dataset, we retrieved 86 genera in our dataset. However, only 76 out of 86 were 

assigned at an identity greater than 85% and were selected for further analysis. 

 

For the present study, 293 global samples encomapssing 46 stations from the photic zone (sub-surface 

(SRF) and deep chlorophyll maximum (DCM)) were used that corresponded to four size classes (0.8-5 

μm, 5-20 μm, 20-180 μm, 180-2000 μm). A total of 65,404 V9 rDNA diatom-assigned ribotypes 

(represented by ~14.6 million reads) were retrieved from the 293 communities. Rarefaction analysis 

indicated that the 65,404 diatom ribotypes approached saturation at a global scale (Fig. 2A), although 

individual oceanic regions such as the North Atlantic Ocean (NAO) and Red Sea (RS) were far from 

saturation. Preston log-normal distribution extrapolated the true diatom ribotype richness to 96,710 

ribotypes, of which 33,339 represent Preston’s veil and thus remain undiscovered. This data suggests 

that our survey has retrieved ~67% of diatom ribosomal diversity in the photic zone of the global ocean 

(Fig. 2B). Using the ‘swarm’ approach (Mahé et al. 2014), all the ribotypes were clustered into 

biologically meaningful operational taxonomic units (OTUs), yielding 4416 distinct OTUs. Each OTU was 

represented by the most abundant ribotype in the ‘swarm’ cluster. For these swarms, Preston’s veil 

revealed the completion in sampling to be 81% with an extrapolated number of OTUs to be 5468 (Fig. 

S3). The total number of OTUs was found to be two to three times the number of diatom species 

recognized in the marine plankton (1400-1800 species) in the literature (Sournia et al., 1991). 

 

Diatoms were found to be one of the most represented eukaryotic phototrophic lineages (#2 in 

eukaryotic phototrophic lineages and #5 with respect to all marine eukaryotic lineages) (de Vargas et 

al., 2015). Overall, diatom reads accounted for about 2.86% of the total eukaryotic reads retrieved in 

our set of samples, but represented more than 25% of the total eukaryotes at some locations, e.g., in 

the Southern Ocean (SO) (Fig. 2C). They formed 4.86% of the protist community; Collodaria (Radiolaria) 

being the most prominent protistan lineage (39% protistan reads). Diatoms contributed ~75% to the 

total photosynthetic community at Station 11 (MS, dominated by Leptocylindrus), more than 78% and 

65% at Stations 84 and 85, respectively (SO), 44% at Station 82 (SO), and more than 38% and 44% at 

Stations 122 and 123, respectively (Marquesas Islands; SPO), and globally represented 27.7% of the 

total eukaryotic photosynthetic planktonic community. The mean percentage of diatom reads across 

46 stations were 2.6%, 5% and 19.9% with respect to the total eukaryotic reads, protistan reads and 

photosynthetic reads, respectively (Fig. 2C). Stations in the MS (Stations 18, 20 and 30), RS (Stations 
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31, 32 and 33), Indian Ocean (IO; Stations 41, 45 and 48), South Atlantic (SAO; Stations 72, 76, 78) and 

SPO waters (Station 98) were found to be very scarce in diatoms in comparison to other photosynthetic 

groups such as dinoflagellates and haptophytes. In general, the normalized abundance of diatoms 

showed a significant decrease from coastal to open ocean (e.g., from Stations 65-67 to 68-78). 

 

2.3.3. Diatom community composition 

Nearly 55% of the reads corresponded to ribotypes (33,327) assigned at least up to the genus level and 

the large majority (>90%) of these assigned sequences belonged to planktonic genera. Of the 76 genera 

found, Chaetoceros was found to be the most abundant and diverse genus, representing 23.4% of total 

assigned sequences. Thalassiosira accounted for 14.4% of total assigned sequences, followed by 

Corethron (11.5%), Fragilariopsis (11.5%), Leptocylindrus (10.4%), Actinocyclus (8.9%), Pseudo-

nitzschia (4.6%) and Proboscia (4.1%) (Fig. 3a). However, there were also few sequences that were 

assigned to genera known from freshwater or benthic environment, but in many cases with a quite 

low similarity (e.g. Fragilariforma and Epithemia). The MARine Ecosystem biomass DATa (MAREDAT) 

project previously provided global abundance and biomass data for all major planktonic diatoms of the 

global ocean ecosystem (Leblanc et al., 2012). Our dataset showed an overlap of 44 diatom genera 

with MAREDAT (Fig. S4), while 32 diatom genera from our study were not found in MAREDAT, 

indicating the comprehensiveness of our dataset. A total of 23 genera present in both MAREDAT and 

the reference database were not found in our dataset. Most of the unmapped genera were either 

freshwater (e.g., Fragilariforma, Tabellaria, Ulnaria, Urosolenia) or benthic and marine littoral species 

(e.g., Amphiprora, Caloneis, Ardissonea, Hyalodiscus, Pseudostriatella, Entomoneis, Phaeodactylum) 

except for only a few pelagic marine genera (e.g., Bacterosira, Shionodiscus). Some of these have only 

been reported in northern latitudes, which may explain their absence in our data set.  

 

Intragenus diversity was found to vary from as low as one ribotype per genus (e.g., Nanofrustulum, 

Asteroplanus, Bellerochea, Tenuicylindrus) to as high as 6287 ribotypes (Chaetoceros) (Fig. 3b). 

Chaetoceros and Thalassiosira also accounted for the highest number of OTUs (Fig. 3c). The 5-20 and 

20-180 µm fractions contained the highest numbers of diatom ribotypes, as expected, although an 

unexpectedly high number were also found in the smaller size fractions, derived from smaller species 

(e.g., Nanofrustulum, Cyclotella, Minutocellus and Minidiscus) or probably broken cells of larger species 

(e,g, Attheya, Ditylum, Bellerochea, Licmophora). The 180-2000 µm size fraction contained the lowest 

number of ribotypes, mostly from chain-forming diatoms (e.g., Hyalosira, Fragilaria), epizoic species 

(Pseudohimantidium), but also from small cells probably ingested by larger organisms, or retained in 

that fraction due to net clogging (e.g., Nanofrustulum). A clear distinction was seen in the distribution 

among different size-fractions, e.g., Minidiscus, Epithemia, Licmophora, Attheya and Minutocellus 
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were found highly restricted to the smallest size fractions on the one hand whereas genera like 

Asterionellopsis, Lauderia and Odontella were found principally in 20-180 µm size-fractions (Fig. 3d). 

Pseudohimantidium was found principally in the largest size fraction, consistent with it being known 

to attach to marine copepods of the genera Corycaeus, Euterpina and Farranula (Skovgaard and Saiz, 

2006; Fernandes and Calixto-Feres, 2012; Garate-Lizarraga and Muneton-Gomez, 2009). Although 

some stations showed a majority of ribotypes in SRF samples (e.g., Stations 65, 67 and 85), others 

contained significantly more ribotypes in the DCM (e.g., Stations 52 and 66). Different genera were 

also found to prefer different depths, such as Actinoptychus, Corethron, Coscinodiscus, Fragilariopsis, 

Leptocylindrus and Rhizosolenia in sub-surface samples while Asterionellopsis, Bellerochea, 

Helicotheca, Nanofrustulum and Lithodesmium were seen mostly in DCM samples (Fig. 3e). The level 

of percentage identity to the reference sequence also varied across genera (Fig. 3f). At a level of 85% 

identity, a total of 63,371 ribotypes could be assigned to diatoms, although almost half of them 

(31,178) could not be assigned to any genus and were placed in one of the five unassigned classes 

mentioned above. Pseudo-nitzschia, Actinocyclus, Attheya, Chaetoceros, Eucampia, Fragilariopsis, 

Minutocellus and Thalassiosira were among the most cosmopolitan genera (see below), whereas many 

others (e.g., Leptocylindrus) were restricted to only a couple of stations (Fig. 3g).  

 

2.2.4. Unassigned sequences/ Novelty 

Overall, the sequences that could not be unambiguously assigned to any diatom genus on the basis of 

V9 rDNA annotation represented between 30% and 82% of diatom communities at different sampling 

sites. In general, unassigned ribotypes were particularly common in SPO and IO, with almost similar 

percentages at both depths (Fig. 4A). The diatoms in the smallest size fraction contributed most to the 

unknown sequences, with depth having no significant impact (Fig. 4B). The numbers of unassigned 

sequences in different oceanic provinces was generally consistent with the intensity of diatom 

research previously conducted in those areas, with MS and SO containing the best characterized 

diatom communities (Fig. 4C). On the other hand, the larger size-fractions (20-180 µm and 180-2000 

µm) contained the highest numbers of assigned ribotypes, again mainly in MS and SO, consistent with 

microplanktonic diatoms being the most common and the best studied. The highest numbers of 

unassigned diatom ribotypes from all the size-fractions are from SPO and RS (>65%).  

 

2.2.5. Comparison between light microscopy and V9 ribotype counts 

To investigate whether V9-based relative abundance estimates for diatoms are comparable to 

community composition studies based on classical morphological identification methods using light 

microscopy (LM), diatom counts from 20-180 µm fractions were compared between the two methods 
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for eleven sampling stations. A simple comparison was initially disappointing, however the correlation 

between the two kinds of data was significantly improved when “unassigned” and “not known” 

sequences were deleted from the V9 dataset, and when some specific adjustments were applied (see 

Methods) (Fig. 5). A few cases of mismatch still persisted, e.g., the surface sample from Station 84 was 

dominated only by Fragilariopsis sp. in LM counts while Chaetoceros and Fragilariopsis were equally 

dominant genera along with unknown centric diatoms in the V9 dataset. However, the overall match 

between the two data sets was sufficiently close, thus indicating that V9 counts can provide a reliable 

estimate of diatom relative abundance in a given sample. 

 

2.3.6. Global diversity patterns 

We next examined intragenus diversity (expressed as effective number of species; ENS) and 

distribution in different oceanic contexts for the twenty most abundant genera. Pseudo-nitzschia, 

Chaetoceros and Thalassiosira were the most diverse genera whereas Corethron, Leptocylindrus, 

Minidiscus and Planktoniella were among the least diverse (Fig. 6A). Most diatom genera were seen in 

most oceanic provinces, e.g., Actinocyclus, Eucampia, Proboscia and Pseudo-nitzschia. Their 

abundance pattern was highly variable across provinces, for instance, Chaetoceros, Corethron and 

Fragilariopsis were highly abundant in SO, in accordance with previous data (e.g., Gersonde and 

Zielinski, 2000); Attheya, Planktoniella and Haslea were seen principally in SPO (Fig. 6A); Leptocylindrus 

was found to be highly abundant in MS, especially at Station 11, in line with reports from the Gulf of 

Naples (Ribera d’Alcalà et al., 2004) and other Mediterranean sites (Siokou-Frangou et al., 2010). In 

terms of global biogeography, the diversity of each genus (expressed as the number of ribotypes) was 

found to be strikingly variable across the oceans (Figs. 6B and S6).  

 

Among surface samples, diversity and evenness across oceanic provinces varied greatly, attaining the 

highest values in RS, while among the DCM samples IO showed the highest diversity; SO was the least 

diverse at both depths (Fig. 7A). In terms of richness, the SO stations consistently showed the highest 

values owing to the presence of a majority of very low abundant ribotypes. Considerable variation in 

terms of overall ribotype diversity in different size fractions was observed (Fig. S7). In contrast with 

what was observed globally for marine planktonic eukaryotes in the Tara Oceans data set (de Vargas 

et al., 2015), diatom diversity did not consistently decrease with increasing size (Fig. S7). There were 

also no discernable differences in diatom diversity patterns between SRF and DCM samples. 

 

Diatom diversity followed a latitudinal gradient, albeit weak (Fig. 7B). However, a comparatively 

stronger gradient was seen in the 20-180 size fraction in contrast to there being almost no gradient 

observable in the largest size fraction. A sudden drop in diversity was also observed in the Agulhas 
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retroflection region going from IO (Station 65) to SAO (Stations 66/67/68), and across the Drake 

Passage from SAO (Station 78) to SO (Stations 82/84/85) (Figs. 7C). Diversity was significantly lower in 

the samples from the Maldives garbage zone (Station 45, North Indian Ocean), but increased towards 

the north and the south (Fig. S7). 

 

2.2.7. Community similarity 

Diatom-annotated ribotype distribution patterns were generally consistent across all the stations in 

that only a few ribotypes were abundant and the large majority of the richness was attributed to the 

rare ribotypes (Malviya et al., manuscript in preparation). The number of different ribotypes per 

station varied from as low as 46 (Station 48) to as high as 16,100 (Station 85), with a mean richness of 

4927. In general, it was found that the more abundant a ribotype, the more ubiquitous it was 

distributed (Fig. 8A). Several ribotypes with considerable abundance but low occupancy were also 

seen, possibly indicating endemism but more likely due to the marked seasonality in diatom 

occurrence. It was found that “rare” ribotypes constitute a substantial fraction and at the same time 

they tend to be different at different sampling sites (Malviya et al., manuscript in preparation). Only 

23 ribotypes were found in ≥90% of the studied sites, although these represented nearly 24% of the 

total relative abundance. The majority of these cosmopolitan ribotypes could not be assigned to a 

known diatom taxon (Fig. 8A). 

 

The total number of ribotypes seen in MS, RS, IO, SAO, SO and SPO were 13119, 4586, 23722, 16269, 

26846 and 29203, respectively. To first assess biogeography, we observed that most of the ribotypes in 

SO (53.3%), SPO (33.7%) and MS (26.9%) were not found elsewhere, whereas only a few ribotypes were 

specific to RS (2.3%). Similarly, IO (14.2%) and SAO (10.4%) showed only a small number of ribotypes 

specific to them (Fig. 8B). Altogether, nearly 52% (32,850 out of 63,371) of the ribotypes were seen 

only in one province. Interestingly, most of the ribotypes were shared between a combination of two 

provinces (in particular, SPO and IO (12,176 ribotypes), SAO and SPO (9,501 ribotypes), SAO/IO (8,569 

ribotypes), and SO/IO (7,330 ribotypes)), whereas only 576 ribotypes (out of 63,371; 0.9%) were 

present in all oceanic provinces (Fig. 8B). 

 

We then assessed similarity among surface stations for which all four size fractions were available (37 

stations). Stations in SPO, SO, and MS showed the highest degree of internal similarity (Fig. 9). The 

clustering of stations revealed four major groups, including one for each of these three provinces, and 

one containing stations where diatoms were only present at low abundance. Each of these clusters 

shared a considerable percentage (~20-37%) of ribotypes within them. The community in MS was most 

distinct from the others, while IO showed the most similarity with the others (Fig. S9A). Non-metric 
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multidimensional scaling (NMDS) indicated that communities grouped according to oceanic provinces, 

albeit with significant overlapping (stress=0.19) (Figs. S9B and S10). The SPO and MS stations were 

nonetheless each seen to cluster together without any overlapping and the SO stations showed a very 

distinct community structure. Each of these oceanic clusters were significantly different (ANOSIM; R = 

0.58; W = 0.001). 

 

2.3. Discussion  

In this study we explored diatom distribution and diversity employing a short hypervariable region (V9, 

~130 base pairs) of the small subunit of the 18S rDNA gene as a diversity marker. The availability of a 

taxonomically comprehensive reference database, highly conserved primer binding sites, and the 

potential of V9 to explore a broad range of eukaryotic diversity makes this sequence well suited as a 

biodiversity marker (de Vargas et al., 2015). We are conscious that its resolution should be evaluated 

for each organismal group under study. For the diatoms, we show here that while it may have limited 

resolution at the species level, it is nonetheless well suited to explore genus level diversity. Another 

potential caveat of metabarcoding is the presence of multiple copies of SSU rDNA in some species with 

respect to others (Godhe et al., 2008; Galluzzi et al., 2004; de Vargas et al., 2015), which may challenge 

the use of rDNA barcodes for diatom diversity analysis. The diversity estimates obtained in this study 

should therefore be interpreted conservatively, as ribosomal diversity rather than species diversity. 

Nonetheless, we argue that our diversity data are congruent, as demonstrated by the match between 

molecular and morphological methods. The overall coherence between these two methods indicates 

that, at least within the diatoms, the number of rDNA copies per genome are generally comparable, in 

contrast to dinoflagellates (Godhe et al., 2008). A further limitation is that our data set is based on a 

single sampling event at each location, whereas there is known to exist substantial temporal variation 

in community structure (Nolte et al., 2010). Despite this, it is noteworthy that by using the 

metabarcoding approach we can compare richness/diversities among areas and within areas because 

undersampling and underrecording are less important issues as compared to morphological 

approaches. Moreover, the extent of the dataset undoubtedly allows an unprecedented look at diatom 

community structure on a global scale. 

 

All the sampled communities followed comparable structural patterns, characterized by a few 

dominant ribotypes representing the majority of abundance and a large number of rare ribotypes 

constituting a long tail of rare sequences. A high number of v9 reads (~1.6 million) assigned to 

Chaetoceros indicated it to be the most dominant diatom genus consistent with previous 

morphological surveys, followed by Thalassiosira, Corethron, Fragilariopsis, Leptocylindrus, 



Global Diatom Biodiversity: an Assessment Using Metabarcoding Approach 

 

Chapter 2  S Malviya 

 

68 

Actinocyclus (~0.5-1 million).Our results showed that the top ten genera together accounted for more 

than 92.4% of the assigned reads. The dominance of these genera in the world oceans is similar to 

findings from other studies (e.g., Hinder et al., 2012). Regarding the biogeography of these most 

represented genera, our results clearly suggest that despite being widely distributed, all dominant 

genera do not exhibit similar abundance and diversity patterns across stations. Among the top ten 

genera, Leptocylindrus and Attheya displayed distinct geographical preferences, i.e., MS and SPO, 

respectively. Interestingly, it was observed that Chaetoceros, Corethron and Fragilariopsis were more 

abundant in SO, in agreement with previously reported data (Smol and Stoermer, 2010), whereas 

Thalassiosira, Actinocyclus, Pseudo-nitzschia, Proboscia, and Eucampia showed almost even world-

wide distributions across all provinces (e.g., Chamnansinp et al., 2013). These results are in agreement 

with evidence indicating that most diatom genera are likely to be cosmopolitan due to a high chance 

of large scale dispersal (Vanormelingan et al., 2008). Notably, except Navicula and Pleurosigma, some 

genera, like Skeletonema, Nitzschia, Achnanthes and Cocconeis, which are known to be 

common/abundant in coastal waters were under-represented in our dataset. For a sampling site, the 

maximum median ribotype diversity was observed for Chaetoceros, Thalassiosira and Pseudo-

nitzschia, whereas the minimum was seen in Minidiscus, Planktoniella and Leptocylindrus. However, 

the diversity within each genus varied greatly across stations suggesting variations in community 

structure, which warrant a more detailed analysis of the factors/processes influencing the distribution 

and diversity of each genus.  

 

Fourtanier and Kociolek (2003) have catalogued 900 diatom genera whereas our reference database 

has only 159 genera, indicating that many genera lack sequence information. Indeed, nearly 50% of 

the ribotypes remain unassigned due to the lack of representatives in the reference database. It is 

noteworthy that one third of the diatoms represented in the MAREDAT database do not have ribotype 

assignments. Moreover, some genera are represented by only one reference sequence which may also 

affect the assignation of some sequences. This also explains the assignment of some sequences to 

freshwater or benthic genera in our dataset. Previous studies have estimated nearly 1,400-1,800 

marine planktonic species (Sournia et al., 1991), whereas our results estimate 5,468 marine diatom 

planktonic species. To our knowledge, this is the largest dataset that allows to assess the total number 

of diatom species. Together with this, there is nonetheless likely to be a considerable amount of novel 

diversity within the diatoms as we found a higher proportion of unassigned ribotypes in areas that 

have historically been undersampled, such as the South Pacific and Indian Oceans. As shown in Figure 

8A, we have several abundant and cosmopolitan ribotypes that remain unassigned due to the lack of 

suitable reference sequence. Their future identification will thus lead to an enormous increase in the 

assignable fraction of diatoms. To explore the identity of these novel ribotypes, there is an ongoing 
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attempt to clone and sequence larger portions of the corresponding rDNA gene (results not shown). 

In addition to these attempts, building an exhaustive and representative reference databases 

represents the most critical issue limiting sequence assignation. In the future, continued efforts in this 

direction will lead us towards a more complete quantification of novelty and diversity.  

 

In general, marine planktonic diatoms are associated with nutrient rich waters and high biomass that 

are commonly found in coastal waters, upwelling areas or during seasonal blooms in the open oceans, 

such as the North Atlantic spring bloom (Cervato and Burckle, 2003; Bopp et al., 2005; Armbrust, 2009). 

Although our dataset only contains a few coastal sampling sites, the results reported here confirm that 

diatoms constitute a major component of phytoplankton and are most common in regions of high 

productivity (upwelling zones) and high latitudes (Southern Ocean). Furthermore, we show that 

diatom diversity is also high in offshore oligotrophic areas. At these sites, while diatom abundance is 

low (likely because their growth is limited most of the time), they are able to survive and be ready to 

take advantage of favorable ecological conditions when they arise. This reservoir of diversity is likely 

an essential asset ensuring an overall plasticity of response of the whole diatom community to 

environmental variability. 

 

Across the Indian Ocean, diversity decreases irregularly towards southwest stations from a high 

diversity epicenter in the Red Sea. Within the open ocean stations, diatom abundance was more 

uniform and significantly lower than those in the Southern Ocean (Stations 84 and 85) and in upwelling 

zones (Stations 67 and 82), characterized by low water temperature and high nutrient concentrations. 

Our study identified two diversity choke points, between Stations 65 and 67, and 78 and 82. These 

stations were situated at different sides of the Agulhas retroflection and the Drake Passage, 

respectively. Both areas are known to be choke points for ocean circulation (Siedler et al., 2013; 

Cunningham et al., 2003). We also observed that diversity tended to be higher in open ocean stations 

in comparison with nearby coastal stations. Previous studies on diatom fossil records reported that the 

Agulhas choke point is not a barrier to plankton dispersal (Cermeño and Falkowski, 2009). However, a 

recent study (Villar et al., 2015) reported strong contrasts in richness across the choke point and 

suggested that Agulhas rings are a means of connectivity between the basins. The second choke point 

is constrained by the Antarctic Circumpolar Current (ACC), and is an important conduit for exchange 

between the Atlantic, Southern, and Pacific Oceans. At the Drake Passage, the Antarctic Circumpolar 

Current branches off to give rise to the Malvinas Current which flows northward over the Argentine 

slope and outer shelf transporting saline, cold, nutrient-enriched waters (Peterson and Stramma, 

1991). The high abundance of diatoms at Station 82 can be attributed to these nutrient-enriched 

waters being transported by the Malvinas Current.  
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A more detailed analysis of community similarity showed that the spatially separated and isolated 

sampling sites clustered together, suggesting that these communities have evolved so that they are 

extremely similar, supporting the concept of convergent evolution of communities. A closer analysis 

displayed an interesting biogeographical pattern via clustering stations based on their latitudes. The 

five major clusters identified represent five distinct latitudinal bands suggesting a strong spatial impact 

on community structure. Previous studies have reported negative latitudinal gradients as a common 

pattern in marine ecosystems (Fuhrman et al., 2008; Sul et al., 2013). However, the extent to which 

these gradients can be generalized to marine communities remains uncertain. Diatom diversity also 

exhibited these large-scale diversity gradients, albeit only weakly. At the same time we understand 

that these regional and latitudinal patterns can also be results of non-synoptic sampling, meaning that 

we sampled distant areas in different periods/seasons of the year. Also, we cannot ignore the bias due 

to a single sampling event at each station.  

 

Our results indicate that diatoms exhibit wide geographical ranges, with a low to moderate structuring 

consistent with the oceanic provinces sampled. However, it was difficult to interpret any strong 

evidence in favor of local communities being structured under similar assembly rules across the world. 

A substantial number of ribotypes were seen exclusively in Pacific and Southern Ocean waters, which 

may suggest endemism. Also, various studies have reported that the Southern Ocean has high 

biodiversity and high endemism owing to its longer period of geographic isolation (Dayton, 1994). As 

mentioned above, endemism can also be attributed to the bias because of single sampling. But, here 

we would like to emphasize the unprecedented depth of sequencing which should have potentially 

covered everything.  

 

Based on the data reported here, Baas Becking’s hypothesis that “everything is everywhere, but the 

environment selects” (Baas Becking, 1934) holds only partially for diatom distributions. The worldwide 

distribution of different ribotypes from the most abundant diatom genera suggest that these protists 

have evolved to adapt to varying environmental conditions to exploit a range of ecological niches. This 

can be thought of as the underlying cause of ecotype differentiation that has made diatoms the most 

successful group of protists. The current study, using a metabarcoding approach, demonstrates the 

environmental diversity prevalent in highly adaptable phytoplanktonic diatom communities at a global 

scale. It has addressed a more generalized question on how marine communities are structured by 

assessing ecological patterns in their distribution and diversity. This study has thus laid a foundation 

for investigation in the direction of understanding the processes involved in structuring marine diatom 

communities and controlling their biodiversity. Along with this, the various physico-chemical 
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parameters and other contextual data collected during the Tara Oceans expedition has an immense 

potential to address a range of ecological questions raised by this study. 

 

2.4. Materials and methods 

2.4.1. Distance based Analysis 

The PR2 database v99 (Guillou et al., 2013) contains 2947 full length 18S unique diatom sequences. 

These sequences were aligned and sequence variations along the entire sequence were used to define 

the hypervariable regions. Entropy calculation was done on all reference sequences. Pairwise distances 

were calculated for the full length and all hypervariable regions using Kimura-2-parameter model 

(Tamura et al., 2013). V4 and V9 sequences were used to check the performance in differentiating the 

four prominent phylogenetic clades of diatoms, i.e., radial centric, polar centric, araphid pennate and 

raphid pennate. Each of the V4 and V9 hypervariable regions and full-length 18S rDNA sequences were 

aligned using MUSCLE and phylogenetic inference was done with NJ algorithm using pairwise distances 

in MEGA5. The tree was statistically tested using 1000 bootstraps.  

 

A reference database was obtained and all the reference sequences were aligned. Shorter sequences 

(less than 125 nucleotides) along with extremities were eliminated to obtain same sequence lengths. 

To evaluate the ability of V9 region to differentiate between the intragenus and intergenus variation 

among diatom V9 sequences, we calculated p-distance between all pairs of reference sequences.  

 

2.4.2. Metabarcoding dataset 

The Tara Oceans expedition (Karsenti et al., 2011) collected 293 planktonic samples from 46 sampling 

stations, from seven oceanographic provinces, i.e. North Atlantic Ocean (NAO), Mediterranean Sea 

(MS), Red Sea (RS), Indian Ocean (IO), South Atlantic Ocean (SAO), Southern Ocean (SO), and South 

Pacific Ocean (SPO). At each station, plankton communities were obtained for four size fractions from 

two water-column depths (SRF and DCM). Total nucleic acids (DNA + RNA) were extracted from all 

samples, and the hyper-variable V9 region of the nuclear 18S rDNA was PCR-amplified (Amaral-Zettler 

et al., 2009). The V9 reads were quality checked and to reduce the influence of PCR and sequencing 

errors, only sequences seen in at least two different samples with at least 3 copies were retained, 

giving a total of ~580 million reads represented by ~2.3 million unique metabarcodes (de Vargas et al., 

2015). These unique barcodes were taxonomically assigned to known eukaryotic entities based on the 

PR2 database (Guillou et al., 2013). From this, metabarcodes assigned to diatoms, at a percentage 

identity of ≥ 85% to the reference sequence, were selected. All the barcodes were clustered into 

biologically meaningful operational taxonomic units (OTUs) using the ‘Swarm’ approach described by 
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Mahé et al. (2014). This method uses 1 base pair difference (local threshold) between barcodes. It also 

overcomes input-order dependency induced by centroid selection, a typical bias of classical clustering 

methods (Mahe et al., 2014). Various environmental variables, such as temperature, salinity, 

chlorophyll, oxygen, nitrate, phosphate and silicate, were recorded for each sample. 

 

2.4.3. Morphological analyses 

The samples selected for microscopy analyses included SRF and DCM samples from the Cape Agulhas 

region (st52, st64, st65, st66, st67, st68), the South Atlantic transect (st70, st72, st76, st78), the 

Antarctic stations (st82, 84 and 85), and south Pacific stations (st122, st123, st124, st125) (for full 

details of the sampling protocols used during the Tara Oceans expedition, see Pesant et al., 2015). 

Three ml of each sample was placed in an Utermöhl chamber with a drop of calcofluor dye (1:100,000), 

which stains cellulose thus allowing to better detect and identify diatom species. Cells falling in 2 or 4 

transects of the chamber were identified and enumerated. Phytoplankton species were identified and 

enumerated using a light inverted microscopy (Carl Zeiss Axiophot200) at 400x magnification. The 

identification was performed at the species level when possible. 

 

2.4.4. Taxonomy-based clustering 

Metabarcodes were clustered based on their taxonomic affiliation at the level of genus and were 

organized under 86 genera. Five additional unassigned classes (unassigned, unassigned polar centric, 

unassigned radial centric, unassigned raphid pennate, unassigned araphid pennate) were defined to 

accommodate those reference sequences (n= 416) for which genus assignment was not available. 

Genus distribution and diversity was assessed for most represented genera. 

 

2.4.5. Global distribution analysis 

Deviations from Preston’s log-normal distribution was used to estimate the completeness of richness 

sampled. Also, the information from the samples was used to extrapolate the number of ribotypes that 

might be found if sampling is more intensive. The relation between abundance, occurrence and 

evenness of each ribotype was assessed. Pielou's evenness (Pielou, 1966) and exponentiated Shannon-

Weiner H′ diversity index (Hill, 1973), were used as an estimate of diversity. The percentage of shared 

ribotypes were calculated for each pair of stations and spearman correlation was used as a distance 

measure to cluster stations. Compositional similarity between stations were computed based on 

Hellinger-transformed abundance matrix and incidence matrix using Bray-Curtis and Jaccard indices 

respectively, as a measure of beta diversity. Non-metric multidimensional scaling (NMDS) was 

performed to visualize the level of similarity between different stations. The analysis of similarities 
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(ANOSIM) was used to test whether the groups were significantly different. For all statistical analyses, 

a value of P < 0.05 was considered significant. All the data analyses were performed in R (v.2.14.1). 
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Figure legends  

Figure 1. Flow Diagram showing the material and method used in the study.  

(A) Global diversity analysis was carried out using samples drawn from 46 global stations. At each 

station, eukaryotic plankton community was sampled at two depths (sub-surface (SRF) and Deep 

chlorophyll Maximum (DCM)), and fractionated into four size classes (i.e. 0.8-5 µm, 5-20 µm, 20-180 

µm and 180-2000 µm), corresponding to 293 samples altogether. (B) Illumina-based sequencing was 

performed on each sample targeting V9 rDNA region. All reads were quality checked and dereplicated. 

Taxonomy assigned was done by homology (ggsearch global alignment) employing V9 PR2 reference 

database (de Vargas et al., 2015). From these, a total of 63,371 diatom assigned ribotypes (represented 

by ~14.6 million reads) were selected for global diatom distribution and diversity analyses. Classical 

morphology-based identification methods using light microscopy (LM) was done on few selected 

samples to validate the molecular data. 

 

Figure 2. Photic-zone V9-rDNA diatom dataset.  

(A) V9 rDNA rarefaction curve. Upper panel, a sample-based rarefaction curve (Coleman), representing 

V9 rDNA richness for diatom. Lower panel, each curve illustrates the estimated number of V9 rDNA 

(Coleman) for each ocean province. The color code for the ocean provinces is given under the figure. 

Notice the scale difference in x axis in the upper and lower panel. (B) Preston lognormal distribution 

of the diatom ribotype abundance in the entire data set. The number of unique diatom ribotypes is 

plotted for logarithmically binned abundance intervals. The part of the curve on the left of Preston's 

veil line (dashed black vertical line) corresponds to ribotypes with less than one read in the sample, 

and thus not represented in the dataset. The theoretical richness inferred from Preston Veil was found 

to be 96,710 ribotypes, indicating 33,339 ribotypes missed during the sampling. (C) Percentage 

contribution of diatoms to the total (i) eukaryotic, (ii) protistan, and (iii) photosynthetic planktonic 

community. The red-dashed line represent the mean percentage contribution by diatom to each of the 

indicated planktonic community. Each station label is color coded based on the province it belonged 

to. The lower right panel shows whether the sample was drawn (filled box) for the indicated depth and 

size class or not. Abbreviations: NAO – North Atlantic Ocean; MS – Mediterranean Sea; RS – Red Sea; 

IO – Indian Ocean; SAO – South Atlantic Ocean; SO – Southern Ocean; SPO – South Pacific Ocean. See 

Figure 1 for the location of station. 

 

Figure 3. Summarizing diatom metabarcoding dataset.  

All ribotypes were clustered based on their taxonomic affiliation at the level of genus and were 

organized under 76 genera plus 5 unassigned groups (Unassigned, Polar centric_X, Radial centric_X, 
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Raphid pennate_X, Araphid pennate_X). The color code for a genus is as follows: dark blue – polar 

centric; light blue – radial centric; dark green – raphid pennate; light green – araphid pennate; black – 

unassigned diatoms. The benthic or freshwater diatom genera are marked with asterix (**). (a) 

Abundance expressed as numbers of rDNA reads, (b) richness expressed as number of unique rDNA 

sequence and (c) the corresponding number of V9 rDNA OTUs are shown for each indicated genera. 

(d) Percentage distribution of rDNA reads per size class. (e) Percentage distribution of rDNA reads per 

depth. (f) Boxplot showing the mean percentage sequence similarity to a reference sequence. (g) 

Occupancy (n) expressed as the number of stations in which the genus was observed. The color codes 

for the four size class, two depths and occupancy are given under the figure. 

 

Figure 4. Novelty inferred from Tara Oceans metabarcoding dataset.  

(A) Percentage of unassigned ribotypes in each station (left panel). Within each station, 31-81% of the 

ribotypes could not be assigned to known diatom genera. The highest proportion of unassigned 

ribotypes was seen in Station 45 (~82%) followed by stations in the Pacific Ocean (Stations 

109,110,111,122,123,124) (~63-66%). The most abundant stations (Stations 67 and 85) contained 

~33% of unassigned ribotypes. Percentage of unassigned diatom community per depth in each 

province (right panel). (B) Percentage of unassigned ribotypes per size class. Surface samples 

corresponding to 0.8-5µm appear to have the highest percentage of unassigned ribotypes, whereas 

size fraction 20-180 has the lowest. (C) Percentage of unassigned ribotypes per size class in each 

province.  

 

Figure 5. Comparisons of diatom community compositions estimated from V9 rDNA counts and by 

light microscopy.  

Community composition profiles obtained from light microscopy and ribotype relative abundance 

inferred from taxonomy-based clustering of assigned ribotypes from eleven selected stations are 

shown.  

 

Figure 6. Local and regional genus distribution and diversity inferred from Tara Oceans dataset.  

(A) Distribution of top 20 diatom genera in seven oceanic provinces. These genera accounted for 98.3% 

of the assigned reads in the entire dataset. Upper panel, the variation in diversity for each indicated 

genus inferred from Shannon Diversity Index across 46 stations. Pseudo-nitzchia, Chaetoceros and 

Thalassiosira were the most diverse genera whereas Corethron and Minidiscus were among the least 

diverse. Lower panel, segments composing each bar are the percentage of reads in an ocean province 

for each indicated genus. Chaetoceros, Corethron and Fragilariopsis were abundant in the Southern 

Ocean. Planktoniella and Haslea were majorly seen in the Pacific Ocean. Genera are sorted by total 
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number of reads in the entire dataset. Bars are color coded by ocean province, as indicated. (B) Global 

distribution and diversity of the 10 most abundant genera. These genera accounted for 92.4% of the 

assigned reads in the entire dataset. The number of reads (n) assigned to each genus is indicated. The 

area of the bubble is scaled to the total number of reads for each genus at each location. For each 

panel, color key is shown in the legend. Red - low richness; Green - high richness. 

 

Figure 7. Variation in diatom diversity across oceans.  

(A) Variation in richness (expressed as unique number of ribotypes), effective number of species (ENS; 

expressed as exponentiated Shannon diversity index) and evenness across provinces. Number of 

stations sampled in each province are as follows: NAO – 1; MS – 12; RS – 4; IO – 11; SAO – 7; SO – 3; 

SPO – 9. (B) Diatom latitudinal diversity gradients. Shannon diversity index was computed for those 

stations (37 stations) for which surface samples for all size classes were available. Stations were 

grouped based on their latitudes in five major groups. The group median shows an increase of diversity 

towards lower latitudes. (C) Variation in diatom diversity across stations. Spatial variation of diatom 

diversity across 37 stations inferred from effective number of species (ENS; expressed as 

exponentiated Shannon diversity index). Low Shannon diversity indices were found in Stations 11, 45 

and 84. The highest values of ribotype diversity were seen in Stations 65, 38 and 122. Each station 

(filled circle) is color coded based on the province it belonged to. 

 

Figure 8. Cosmopolitanism, total abundance and station evenness of each diatom ribotype.  

(A) Each bubble represent a ribotype (V9 rDNA); the radius being scaled to the number of reads it 

contains. The X-axis corresponds to the number of stations in which a ribotype occurs; the Y-axis 

corresponds to the evenness of the ribotype in those stations in which it occurs. The 20 most abundant 

ribotypes are labelled with their rank and assigned taxonomy. Many ribotypes showed high abundance 

(larger bubbles), low occupancy (x-axis) and low evenness (y-axis) For instance, ribotypes assigned to 

Leptocylindrus and Corethron (filled bubbles). Cosmopolitan ribotypes can be identified as those with 

highest occupancy. A range of evenness was exhibited by them. For instance, among the most 

abundant, ribotypes assigned to Fragilariopsis, Chaetoceros and Thalassiosira (filled bubbles) are 

cosmopolitan but with low evenness. This low evenness indicates that although present at all the 

stations, these ribotypes are dominant only in one or two. Ribotypes that could not be assigned to a 

genus level are indicated in red, to indicate the extent of undetermined diatom ribotypes. (B) Shared 

number of ribotypes among oceans. Bar graph showing the overlap cardinalities; sorted by overlap 

cardinality, presented from left to right, from greatest to least number of shared ribotypes. Counts are 

based on presence-absence. The color-coded numbers above the bars indicate the ribotypes exclusive 

to each province. 
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Figure 9. Biogeographic patterns.  

Percentage of ribotypes shared between stations. Only those stations (37 stations) for which surface 

samples for all size classes were available are reported. For each station, a pooled community over size 

classes were obtained. Dendrogram of complete linkage clustering is shown. Pearson correlation was 

used as a distance measure to cluster stations. The five major clusters can be identified that represent 

five distinct latitudinal bands. Two major groups were identified, one with majority of stations from 

Atlantic, Pacific and Southern Oceans and another with Mediterranean Sea and low abundant stations 

from all oceanic regions. A substantial degree of sharing was seen among stations from Southern, 

Pacific and Mediterranean waters.  
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Supplementary Material 

Supplementary Figure S1. Assessing V9 hypervariable sub-sequence (130 bp) of small-subunit (SSU) 

ribosomal DNA (rDNA) genes as diversity marker.  

(A) 2,947 full length 18S rDNA diatom sequences obtained from PR2 reference database were used. 

Sequence variations along the entire 18S rDNA sequence were used to define nine hypervariable 

regions (V1-V9). Regions in red are V1-V9. The bases are numbered according to the alignment 

position. (B-C) Hypervariable region performance against the 18S rDNA sequence. Pairwise distances 

were calculated for 2497 diatom 18S rDNA sequences using Kimura-2-parameter model. Length 

variation and genetic distances for V1-V9 are shown. Regression of V1-V9 p-distance by NJ on to that 

of 18S sequence shows that V5 could better explain the phylogeny, followed by V4. Although the mean 

genetic distances were better in V4 and V9, they may not explain the phylogeny well. V9 performance 

was less than that of 18S. Taxa assignment at less than 70 % identity in V9 region is not recommended 

for diatoms. (D) Phylogenetic inference on Bacillariophyta from full-length 18S rDNA sequence 

phylogeny, V4 rDNA phylogeny, and V9 rDNA based phylogeny. Four prominent phylogenetic clades of 

diatoms, i.e. radial centric, polar centric, araphid pennate, raphid pennate are known. V4 and V9 

sequences were used to check their performance in differentiating these four groups. Each of the 

hypervariable regions and full-length 18S rDNA sequences were aligned using MUSCLE and 

phylogenetic inference was done with NJ algorithm using pairwise distances in MEGA5. The tree was 

statistically tested using 1000 bootstrap.  

 

Supplementary Figure S2. Novelty in Tara Oceans diatom data set.  

Barplot showing the number of reference sequences present for each genus and the total number of 

unique V9 tags from Tara Oceans dataset assigned to it. The reference database has a total of 1,648 

V9 sequences annotated as being derived from diatoms. The level of percentage identity to the 

reference sequence varied across ribotypes, but for this analysis a similarity cut-off of 85% was used. 

From a total of 63,371 ribotypes, 30,041 ribotypes were unassigned due to the lack of reference 

sequence. 

 

Supplementary Figure S3. Photic-zone diatom OTU dataset.  

(A) OTU rarefaction curve. A sample-based rarefaction curve (Coleman), representing OTU richness for 

diatom. (B) Estimating the completeness of sampling based on OTUs. OTU abundances were log2-

transformed. Most of them were seen with intermediate abundances with a relatively few rare or very 

few ubiquitous OTUs. The area under the Preston curve provides an extrapolated estimate of richness 

and thus an indication of the completeness in the sampling effort. The theoretical OTU richness 
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inferred from Preston Veil was found to be 5,451 ribotypes, indicating 1,035 OTUs undetected. 

 

Supplementary Figure S4. Comparing diatom distributions obtained from our study to the 

distribution reported in MAREDAT dataset.  

(A) Venn diagram showing the overlap between Tara Oceans dataset, V9 PR2 reference database and 

MAREDAT. Green circle represents the subset of reference genera identified in the Tara Oceans 

dataset. (B) Coverage of MAREDAT database. (C) Coverage of Tara Oceans dataset. 

 

Supplementary Figure S5. NMDS ordination of community obtained from “V9” and “LM” approach.  

“V9” (red) and “LM” (blue) represent the results obtained from the genetic and microscopic methods, 

respectively. 

 

Supplementary Figure S6. Global distribution and diversity of the genera ranked 11 to 20 based on 

their abundance.  

The area of the bubble is scaled to the total number of reads for each genus at each location. For each 

panel, color key is shown in the legend. Red - low richness; Green - high richness. 

 

Supplementary Figure S7. Variation in diversity per depth and size class.  

(A) Ribotype richness. (B) Effective number of species (expressed as exponentiated SDI). (C) Evenness. 

The results indicate that 20-180 µm size fraction was the most diverse, showing higher diversity at 

DCM. The smaller 0.8-5 µm size fraction also showed a similar trend with higher level of diversity at 

DCM. The largest size fraction exhibited the lowest abundance and richness but have the highest 

evenness among all size fractions. In general, Surface was found to be less diverse and even than DCM 

samples. 

 

Supplementary Figure S8. Variation in diatom diversity across stations.  

Spatial variation of diatom diversity across 37 stations inferred from SDI and richness. 

 

Supplementary Figure S9. Diatom ribotype composition based on incidence-based measure.  

(A) Pairwise community dissimilarity (Bray-Curtis) across provinces, signifying higher dissimilarities for 

higher values. (B) Diatom ribotype composition (presence-absence). Pairwise Jaccard dissimilarity was 

used to cluster stations hierarchically (group-average linkage). A two-dimensional NMDS ordination is 

shown with a stress value of 0.19. Each station (filled circle) is color coded based on the province it 

belonged to. 
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Supplementary Figure S10. Diatom ribotype composition based on abundance-based measure.  

(A) Pairwise Bray–Curtis distance was used to cluster stations hierarchically (group-average linkage). 

(B) The two-dimensional NMDS ordination of the transformed data in reduced space with a stress 

value of 0.16 was used to visualize pairwise Bray-Curtis distance among stations. Hellinger 

transformation was performed on the abundance matrix to minimize the influence of rare ribotypes. 

Each symbol corresponds to a station, colored based on provinces.  
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Supplementary figure 1 
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V1 0.087 3 - 103 1664 84%

V2 0.250 92 - 290 1853 86%

V3 0.071 401 - 561 2204 86%

V4 0.070 588 - 781 2799 74%

V5 0.137 1003 - 1154 2815 87%

V7 0.264 1302 - 1565 2756 80%

V8 0.256 1448 - 1565 2501 84%
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Supplementary figure 4 
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Supplementary figure 5 
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Supplementary figure 6 
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Supplementary figure 7 
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Supplementary figure 9 
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Abstract 

In the past two decades, many studies have focused on assessing the impact of environmental (niche-

based approach) and spatial (neutral processes) drivers in explaining the differences in species richness 

and composition patterns. In the present study, I was interested to examine these patterns in oceanic 

diatom communities using a comprehensive set of 18S ribotypes derived from the Tara Oceans 

sampling expedition. The effects of various abiotic and biotic environmental variables were assessed 

for each size-fractionated sub-community using Mantel test and canonical redundancy analysis (RDA) 

and their partial form to control for effects of spatial variables. The models revealed the minimal sets 

of variables (selected using a forward selection approach) that best explain the variance of ribotype 

distribution and diversity. Temperature and salinity were found to be the most influential parameters 

in explaining diatom ribotype composition and richness patterns. The key variables identified were 

used for variation partitioning and the results demonstrated that the majority (56-81%) of the variation 

could not be explained by neither measured environmental factors nor spatial distances. This might be 

accounted for by biological interactions, historical events, ecosystem productivity, and other factors 

that have not been considered. The results suggest that both niche assembly and neutral processes 

have significant influences on diatom distributions and diversity. However, it is concluded that 

dispersal limitation is more important in shaping diatom community structure than environmental 

heterogeneity. 

 

3.1. Introduction 

 

“The niche-assembly perspective asserts that ecological communities are limited 

membership assemblages of species that coexist at equilibrium under strict niche 

partitioning of resources. […] The dispersal-assembly perspective asserts that ecological 

communities are open, continuously changing, non-equilibrium assemblages of species 

whose presence, absence, and relative abundance are governed by random speciation and 

dispersal, ecological drift, and extinction.”                                                 - Hubbell 2001 p. 29 

 

The study of beta diversity patterns is one of the most fundamental issues in biogeography, ecology 

and conservation. Whittaker (1960) defined beta diversity as “the extent of change of community 

composition, or degree of community differentiation, in relation to a complex gradient of environment, 

or a pattern of environments”. Since then, the term has been used to refer to a variety of phenomena, 

although all of these encompass some kind of compositional heterogeneity or differentiation between 

sites (Tuomisto, 2010; Anderson et al., 2011). A fundamental challenge in ecology is to understand the 

mechanisms that govern underlying compositional heterogeneity. There exists two distinct families of 
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theoretical models, “niche” and “neutral”, that are being debated for their merits and relevance for 

explaining patterns in community structure (McGill 2003; Turnbull et al. 2005; Volkov et al. 2007; 

Chesson 2000; Hubbell 2001, 2005; Chave et al. 2002; Chave 2004; Tilman 2004; Chase 2005; Gaston 

& Chown 2005). Several studies have proposed to move beyond this dichotomy between niche and 

neutral theory to a unified theory that can explain the full range of observed patterns in ecological 

communities. Apparently, there has been a growing consensus for the co-existence of both these 

processes (Gravel et al. 2006, Leibold and McPeek 2006). Fisher and Mehta (2014) put forth another 

interesting view that “there is a transition in diverse ecological communities between a selection-

dominated regime (the niche phase) and a drift-dominated regime (the neutral phase)”.  

 

The first law of geography states that “Everything is related to everything else, but near things are more 

related than distant things” (Tobler, 1970). In agreement with this, the distance decay of similarity 

(DDS) is one of the best recognized and fundamental patterns of biodiversity (Whittaker 1975). It has 

been defined as the decrease in compositional similarities along increasing geographic distances. This 

decrease in similarity can be explained either by neutral processes including random, dispersal-related 

(Hubbell 2001) and niche-related processes (environmental variability) (Cottenie, 2005). Beta diversity 

can provide useful insights into the importance of these two theories in describing the community 

structure along an ecological gradient. If one assumes neutral theory to be the sole determinant of 

community structure, then beta diversity is expected to increase along spatial distance (gradients) and 

to remain constant along an environmental gradient. In contrast, niche theory will demonstrate the 

opposite under the assumption that it is the sole determinant. Although such strict cases do not occur 

in nature, the dichotomy facilitates visualization of the underlying ecological processes. For instance, 

a high rate of similarity decay can be expected for organisms with low dispersal ability (Qian, 2009; 

Maloney and Munguia, 2011). With their widely varying abundance, diversity, and worldwide 

distribution, diatoms provide an excellent opportunity to elucidate the potential effect of dispersal 

ability on patterns in DDS. In addition to the significant contribution of diatoms to total global primary 

productivity, they play a crucial role in exporting carbon to the bottom of the ocean via the biological 

carbon pump, owing to their high ballasting effect (Smetacek et al., 2012). Understanding the forces 

that drive the patterns in diatom distribution is pivotal to explaining ecosystem functioning. Although 

some studies have emphasized that diatom community composition is predominantly determined by 

species sorting by the environment (Finlay and Fenchel, 1999; Finlay, 2002; Cermeno and Falkowski, 

2009; Cermeno et al., 2010), there is an ongoing debate about the dispersal ability of diatoms (Chust 

et al., 2013). Gothe and co-workers (2013) performed a small-scale experimental study with diatoms 

and suggested that their communities are structured by a combination of local (e.g., environmental 

filtering and biotic interactions) and regional factors (e.g., dispersal related processes). However, most 
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of the reported studies are constrained either to known genera or to a restricted area of study, so the 

mechanisms that govern marine diatom distribution have not been systematically investigated at a 

global scale. Hence, a global analysis can help to develop a more complete understanding of the 

potential mechanisms causing and maintaining diatom diversity.  

 

Structure of the study. In Chapter 2 the distribution and diversity of diatoms were investigated and it 

was found that diatoms do exhibit biogeographical patterns. The study indicated that diatoms exhibit 

wide geographical ranges with a majority of ribotypes seen exclusively in the South Pacific and 

Southern Ocean waters. The global study confirmed that they are most abundant in regions of high 

productivity and at high latitudes whereas they display a high diversity in stations sampled in 

oligotrophic areas. The study also revealed a considerable amount of novelty for this planktonic group. 

This work thus addressed general questions on how diatom distribution and diversity varies spatially. 

In the present chapter, the analysis was extended to identify the processes (niche and neutral) that 

are potentially responsible for the underlying biogeographical patterns identified in the previous 

chapter. Firstly, the smallest set of environmental variables that best explain the variance in diatom 

communities were identified. These variables were then studied to understand their effects on diatom 

richness and composition patterns. While we hypothesized that environmental heterogeneity is likely 

to structure the diatom community, we also expected a significant spatial signature in community 

structure due to neutral dynamics, as other studies have reported that diatoms have large dispersal 

abilities (Soininen et al., 2004; Wetzel 2012; Verleyen et al., 2009). We therefore examined the decay 

in beta diversity along both environmental and spatial gradients. The analysis was undertaken for all 

four size classes of diatoms to examine whether there is a uniform decline in community similarity or 

not. A faster decay in similarity with distance was expected for the largest size fractions because 

smaller diatoms are likely to be transported more efficiently by passive currents. Finally, the relative 

contribution of the niche-based and spatial processes was evaluated.  

 

3.2. Materials and methods 

3.2.1. Dataset 

Diatom data set. We obtained 293 diatom communities sampled from 46 Tara Oceans stations (two 

depths and four size classes). A total of 63,371 unique tags were obtained from these samples 

amounting to a total of ~ 12 million reads. A low-abundance filter was applied and ribotypes that were 

present with a relative abundance ≥0.0001 in at least one sample were selected. Of the total diatom 

ribotypes, ~40% met this criterion and were selected for further analysis. Based on size class, the 

ribotype abundance matrix was divided into four sub-communities (0.8-5 µm, 5-20 µm, 20-180 µm, 
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180-2000 µm) to investigate whether diatoms of different sizes respond differently to environmental 

and spatial factors. Each sub-community was represented by Hellinger transformed relative 

abundance data.  

 

Environmental matrix. An initial environmental exploratory dataset (Database 2, de Vargas et al., 

2015) was obtained to assess the multivariate effects of environmental variables on ribotype 

distribution, along with the distribution of plankton functional types (PFT1: Picoeucaryotes; PFT2: 

Phytoplankton calcifiers; PFT3: Phytoplankton DMS-producers; PFT4: Mixed-Phytoplankton; 

PFT5:Phytoplankton silicifiers; PFT6: Heterotroph Strontium sulphate skeleton; PFT7: Heterotroph 

Calcifiers; PFT8: Heterotroph Siliceous skeleton; PFT9: Parasites; PFT10: Picoheterotrophic eukaryotes 

(without Bacteria); PFT11: Proto-zooplankton; PFT12: Meso-zooplankton) (Lima-Mendez et al., 2015). 

A total of 33 variables were categorized into abiotic (14 variables; pressure, temperature, salinity, 

oxygen, depth (mixed layer depth), depth (maximum fluoroscence), depth (maximum N2), depth 

(maximum  O2), depth(minimum O2), NO2, NO2NO3, silicate, Lyapunov exponent, retention), biotic (17 

variables; chlorophyll, colored dissolved organic matter [CDOM], flux, net primary productivity [NPP], 

bacteria, PFT1-PFT12), and temporal (2 variables; season and phase of season) variables. All the abiotic 

and biotic variables (but not temporal variables) were log-transformed to improve normality and were 

standardized to scale effects.  

 

Spatial matrix. To understand the mechanisms generating spatial variation in our dataset of diatom 

ribotypes, spatial structures were modelled using Moran’s Eigenvector Maps (MEM), following a data-

driven approach described in Dray et al. (2006). This approach allows a set of spatial descriptors 

(eigenvectors) to be obtained from station coordinates, a network describing the connection between 

stations, and a weighting scheme for the connections. A total of 12 significant descriptors (MEM1-

MEM12) were obtained and were retained as explanatory spatial variables in subsequent analysis. The 

procedures were carried out using the package spacemakeR. 

 

3.2.2. Statistical analyses 

Distance decay analyses. For each sub-community, we used Bray-Curtis (compositional) and Jaccard 

(richness) indices to calculate pairwise similarities between stations. A common set of surface stations 

among four size classes were selected for this analysis to keep the similar number of comparisons. A 

matrix of environmental and spatial distances between stations were computed using Euclidean 

distance. Subsequently, a distance-based regression was performed on each sub-community, 

regressing Bray-Curtis/Jaccard community similarity against geographical and environmental distance. 
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Their standardized regression coefficients were used as a measure of the rate of decay of similarity as 

a function of geographic distance between stations (Wetzel, 2012). If all the sub-communities 

exhibited similar distance decay along environmental and spatial distance, then we can deduce that 

diatoms exhibit similar dispersal ability irrespective of their size. 

 

Mantel tests between pairwise beta diversity and distance. For each sub-community, Mantel analysis 

(Mantel, 1967) was performed to test for a significant linear distance-decay relationship by computing 

correlation between spatial distance and community dissimilarity. Mantel analysis using a spatial 

distance matrix is a direct test of the effect of geographic structure on community composition 

(Borcard and Legendre, 2002). The influence of environmental variables on community composition 

was also assessed using Mantel correlations. Finally, we conducted partial Mantel analysis while 

controlling for geographic distance and vice versa. The associated p-values were estimated using 9999 

permutations. The Mantel statistic (r) was reported for each comparison. 

 

Multiple regression analyses on individual environmental variables. To quantify the relative 

contributions of the individual environmental variables on diatom biogeography, we used 

permutation-based multiple regression on distance matrices (MRM) as described by Lichstein (2007). 

This allowed the inferences to be made at the level of individual environmental variables.  

 

Relative roles of niche-based and spatial processes. Previous studies (Lin et al., 2013; Chust et al., 

2013) have reported that the total variation in a community can be partitioned into four components, 

namely (i) variation explained by pure environmental heterogeneity, (ii) variation explained by pure 

geographic distance, (iii) variation explained by both environmental heterogeneity and distance, and 

(iv) unexplained variation. Variation partitioning was carried out using a series of partial redundancy 

analyses (pRDA) to decompose the variance into a pure environmental component, a pure spatial 

component, a spatially structured environmental component, and residual variation, along with their 

associated p-values. Forward selection (Blanchet et al., 2008) was performed separately on 

environmental and spatial (MEM vectors) explanatory variables to select a group of most parsimonious 

variables to avoid an overestimation of the amount of explained variance. Variance partitioning was 

also used to determine whether the impact of various environmental variables were independent or 

embedded within each other. The R2 values were adjusted (Adjusted R2
a) to account for the number of 

sampling sites and explanatory variables and the R2
a statistics were used to generate unbiased 

estimates of the contribution of the independent variables (Peres-Nato et al., 2006). Monte Carlo 

permutation tests (9999 permutations) were carried out to compute the significances of the different 

 



Global Diatom Biodiversity: an Assessment Using Metabarcoding Approach 
 

Chapter 3  S Malviya 

 

110 

 
 
 
 
 
Figure 3.1. Summary of study. The workflow illustrates the study designed to determine the role of niche-based 

and spatial processes in shaping diatom community structure. Fwd sel: Forward selection; Dist mat: Distance 
matrix; RDA: redundancy analysis, pRDA: partial redundancy analysis; MRM: Multiple regression on distance 
matrices; MEM:  Moran's eigenvector maps. 
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components. For all statistical analyses, a value of P < 0.05 was considered significant. All the data 

analyses were performed in R (v.2.14.1) using vegan (Oksanen, et al. 2013), ecodist, and MASS 

packages. 

 

3.3. Results 

A total of 11,776,170 reads belonging to 25,766 distinct ribotypes were used in this study. The results 

are organized into three sections, namely (i) distance-decay along geographic distance, (ii) assessment 

of which of the environmental variables drive niche-associated differences for each size class, and (iii) 

relative importance of niche and neutral processes in the assembly of marine diatom communities at 

a global scale. Figure 3.1 summarizes the design of the study.  

 

3.3.1. Distance-decay relationship (DDR) 

In general, the regression of similarity against geographic and environmental distance demonstrated 

that community similarities seem to exhibit a significant (p<0.001) distance-decay relationship for all 

size fractions (Figure 3.2 and 3.3). The decay in similarity along the spatial gradient suggested that 

diatoms of the three smallest size classes have nearly similar dispersal ability, which is very different 

from the largest size-class (decay rate is almost half in comparison to others) (Figure 3.2). On the other 

hand, the decay in community similarity along environmental gradients revealed small differences 

among different size-classes. The distance decay relationship along environmental distance was 

strongest for 20-180 µm fraction (slope=-0.0298±0.003, intercept=0.298±0.01, R2=0.096) compared 

with the others (0.8-5 µm: slope=-0.024±0.002, intercept=0.262±0.01, R2=0.08; 5-20 µm: slope=-

0.013±0.003, intercept=0.2±0.01; R2= 0.04; 180-2000 µm: slope=-0.011±0.002, intercept=0.16±0.01, 

R2= 0.02) (Figure 3.3). Similar patterns were observed for the community matrices computed using 

Jaccard index of similarity (richness) (Figure 3.2B and 3.3B). These results indicated that environmental 

heterogeneity may have a differential impact on diatoms of different sizes whereas all the 

communities, except the largest one, respond in a similar manner to geographic distance. However, a 

significant relationship between environmental/geographic distance and community (dis)similarity 

revealed that both play important roles in constraining diatom distribution and composition, similar to 

that reported for other microorganisms including bacteria (Nekola and White, 1999; Ramette and 

Tiedie, 2007; Martiny et al., 2011; Lin et al., 2013). However, their influence may be entangled within 

each other. There was no obvious trends with respect to size (see discussion for detail). 
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Figure 3.2. Relationship between community similarity and geographic distances. A. Bray-Curtis, and B. Jaccard 
similarities of diatom communities plotted against geographic distances between sites. 
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Figure 3.3. Relationship between community similarity and environmental distances. A. Bray-Curtis, and B. 
Jaccard similarities of diatom communities plotted against environmental distances between sites. 
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Table 3.1. Mantel’s matrix correlation statistics. Mantel tests in general show a significant relationship. The p-
value was estimated using 9999 randomizations. 
 

 
  

Filter size Community Dissimilarity Distance matrices Mantel statistic pValue

0.8-5µm Bray-Curtis dissimilarity Environmental distance 0.278 0.0002

Geographic distance distance 0.328 0.0001

Environmental distance|Geographic distance 0.252 0.0001

Geographic distance|Environmental distance 0.307 0.0001

5-20µm Environmental distance 0.209 0.0004

Geographic distance 0.284 0.0001

Environmental distance|Geographic distance 0.184 0.0012

Geographic distance|Environmental distance 0.266 0.0001

20-180µm Environmental distance 0.311 0.0001

Geographic distance 0.295 0.0001

Environmental distance|Geographic distance 0.286 0.0001

Geographic distance|Environmental distance 0.269 0.0001

180-2000µm Environmental distance 0.13 0.0289

Geographic distance 0.144 0.0002

Environmental distance|Geographic distance 0.113 0.0498

Geographic distance|Environmental distance 0.129 0.0014

0.8-5µm Jaccard dissimilarity Environmental distance 0.281 0.0001

Geographic distance 0.329 0.0001

Environmental distance|Geographic distance 0.254 0.0001

Geographic distance|Environmental distance 0.307 0.0001

5-20µm Environmental distance 0.219 0.0003

Geographic distance 0.285 0.0001

Environmental distance|Geographic distance 0.194 0.0004

Geographic distance|Environmental distance 0.267 0.0001

20-180µm Environmental distance 0.317 0.0001

Geographic distance 0.309 0.0001

Environmental distance|Geographic distance 0.293 0.0001

Geographic distance|Environmental distance 0.283 0.0001

180-2000µm Environmental distance 0.134 0.0211

Geographic distance 0.15 0.0004

Environmental distance|Geographic distance 0.117 0.0395

Geographic distance|Environmental distance 0.135 0.0006
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3.3.2. Mantel analysis 

Mantel analysis was performed to assess whether community composition was significantly correlated 

with the environmental and spatial variables. For all sub-communities, the results indicated that 

community dissimilarity was significantly correlated with spatial distance. This analysis yielded strongly 

significant relationships (p-value<0.05), demonstrating that stations closer to each other are 

compositionally more similar to each other (Table 3.1). Mantel analysis also indicated that 

environment had a significant (p-value<0.05) effect on the community composition suggesting that 

stations that are similar environmentally tend to be similar compositionally (Table 3.1). Overall 

patterns of significance were similar for both composition (Bray-Curtis) and richness-based (Jaccard) 

beta-diversity metrics. Partial Mantel test demonstrated that both environmental and spatial distances 

were often entangled with each other. All the sub-communities remained significantly correlated with 

both the environmental and spatial distance while correcting for the other. Altogether, these results 

emphasize that diatom community structure is an outcome of both environmental heterogeneity and 

geographic distance, indicating the role of both niche-based and spatial processes in diatom 

biogeography, except for 20-180 µm, the others were more related to geographic distance. 

 

3.3.3. Multiple regression analyses on individual environmental variables 

To interpret the impact of individual environmental predictors on diatom communities, permutation-

based multiple regression on distance matrices was performed as reported by Lichstein (2007). 

Temperature was found to be the most significant parameter to explain the diatom biogeographical 

patterns for all size fractions, except 5-20 µm (Figure 3.4). In the 0.8-5 µm sub-community, 

temperature and salinity were found to be the most influential parameters for explaining ribotype 

composition. Salinity was the variable with the highest impact on the 5-20 µm sub-community, while 

temperature alone could explain the variance in the 180-2000 µm sub-community. However, in the 

20-180 µm sub-community, temperature, salinity, NO2NO3, NPP, and phase of the season all had 

significant and higher impacts. Out of twelve PFTs used in the analysis, only seven were found to be 

significantly correlated, e.g., PFT1 (Picoeucaryotes), PFT2 (Phytoplankton calcifiers), PFT5 

(Phytoplankton silicifiers), PFT6 (Heterotroph Strontium sulphate skeleton), PFT7 (Heterotroph 

calcifiers), PFT10: (Picoheterotrophs eukaryotes), PFT12 (Meso-zooplankton). Among those, PFT1 and 

2 majorly explained the distribution of the smallest size class (0.8-5 µm), PFT2 significantly explained 

the distribution of 5-20 and 20-180 µm sizes, and PFT5 controlled the distribution of the 180-2000 size-

class. Despite being significant, the other PFTs explained only a small percentage of variation. Similar  
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Figure 3.4. Permutation-based multiple regression on distance matrices (MRM). Environmental variables 
significantly contributing to the variation in diatom community similarity are shown. Each environmental variable 
was used as an independent matrix. R-squared regression coefficient of each environmental variable is expressed 
as percent. 
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Figure 3.5. Environmental variables selected for each size class. Those environmental variables that significantly 
contributed to the variation in diatom community similarity were selected using forward selection. The 
cumulative adjusted R-squared regression coefficients of each environmental variable is shown in the bottom of 
each panel (significance level, <0.05, 9999 permutations). 
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Figure 3.6. Variation in community composition and richness explained by environmental and spatial variables 
and their shared effects. Barplot showing the results of the variation partitioning procedure carried out on the 
forward selected environmental and spatial (Moran’s eigenvector maps) variables for community composition. 
For community composition pattern (left panel), pure environment explained 6.5-12% of the total variation. Both 
environmental heterogeneity and Euclidean geographic distance together explained for 6-20% of the total 
variation. A pure spatial component accounted for 6-11% of variation in diatom communities. The majority of 
variance (56-81%) remained unexplained. For community richness patterns (right panel), pure environment 
explained 7-12% of the total variation. Spatially structured environmental heterogeneity accounted for 2-9% of 
the total variation. A pure spatial component explained only 3-8% of the total variation in diatom communities. 
The majority of variance (74-83%) remained unexplained. 
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variables were seen to explain the variation in richness patterns in each case. The lack of influence of 

silicate and PFT5 (phytoplankton silicifiers) was highly unexpected. 

 

3.3.4. Relative role of niche-based and spatial processes 

For each size-fractionated sub-community, a group of most parsimonious environmental and spatial 

variables that best explain diatom community composition were obtained using forward selection. For 

the 0.8-5 µm size fraction, the parsimonious model with fifteen selected environmental variables (p-

value=0.005) explained 33.4% of variation (Adjusted R2 = 0.33) (Figure 3.5). The partial model (p-

value=0.005) explained 30.8% of variance (Adjusted R2 = 0.3) when controlling for spatial structure. In 

the 5-20 µm sub-community, the model (p-value=0.005) retained ten variables that explained 21.1% 

of the variance (Adjusted R2 = 0.21) and 20.4% (Adjusted R2 = 0.2) by partial model controlling for 

spatial structure (p-value=0.05). In the two larger size classes, i.e., 20-180 µm and 180-2000 µm, the 

models (p-value=0.005) retained thirteen and eight variables explaining 33.1% (Adjusted R2 = 0.32) and 

13.2% (Adjusted R2 = 0.13) variation, respectively (Figure 3.5). Here, the spatial models (p-value 

=0.005) explained 33.1% (Adjusted R2 = 0.33) and 12.9% (Adjusted R2 = 0.12) variance, respectively. 

 

Variation partitioning of diatom community composition into environmental and spatial components 

showed that environmental parameters alone could explain only 6.5-12% of the total variation. Both 

environmental heterogeneity and geographic distance together could explain an additional 6-20% of 

the total variation (Figure 3.6). A pure spatial component alone could only explain a minor portion of 

the variation present in the diatom communities (6-11%), leaving a major portion (56-81%) of the total 

variation unexplained. These results show that even though both niche adaptation and neutral 

processes have significant influences on diatom distributions, neither are able to explain fully the 

variation in diatom community composition and richness. Biological interactions, historical events, 

ecosystem productivity, and other environmental factors may account for the unexplained. These 

results suggest that dispersal ability or currents are more important in shaping diatom community 

structure than environmental differentiation (i.e., niche). 

 

3.4. Discussion  

In the current study I found that the beta-diversity of diatom communities in the Tara Oceans data set 

follows both environmental and geographic gradients, indicating that stations which are similar 

environmentally or are closer to each other are more similar in their composition. The results further 

demonstrated that diatom populations do not distribute randomly on a large spatial scale and that 

their community structure is controlled by a combination of niche-based and neutral processes. This 
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was in close accordance with published reports and with Hubbell’s unified neutral theory, within which 

he anticipated (2001, p319): 

 

“[…] a truly unified theory that at a more fundamental level reconciles these two 

apparently conflicting perspectives”, (i.e., the niche-assembly and the dispersal-assembly 

approaches). 

 

However, environmental heterogeneity (pure and spatially structured) was found to explain the 

majority of the variation in each diatom sub-community. Many studies have reported that diatom 

species have particular habitat preferences and tolerances; their populations reflecting their response 

to stress and environmental changes (Schindler, 1987). Recently, several studies with phytoplankton 

have made similar observations [Pueyo et al., 2006; Chust et al., 2013), concluding that both neutral 

and non-neutral mechanisms co-occur. In another study, Vellend (2010) recognized four processes that 

influence community structure, specifically selection, drift, dispersal and speciation. The selection here 

is analogous to ‘niche selection’ or ‘species sorting’, which represents a process where the 

environment determines the species distribution whereas the other three processes have been 

accepted as components of ‘neutral’ processes. The ‘niche’ theory recognizes environmental filtering 

and biotic interactions as the major determinants of patterns of species diversity and composition, 

whereas ‘neutral’ theory emphasizes the role of dispersal, speciation and ecological drift in explaining 

the patterns. However, the results presented are contradictory to the views that emerge from recent 

global-scale studies of fossil diatom assemblages where marine diatom species are reported to possess 

global dispersal ranges (Cermeño and Falkowski, 2009). This previous study indicated that diatom 

distribution across oceans does not show any evidence of dispersal limitation and that environmental 

selection, rather than dispersal, dominates diatom community structure and explains these patterns. 

In a further study, they confirmed that diatom biogeographic patterns were associated with sharp 

environmental gradients (Cermeño et al., 2010)  

 

The classical view that “everything is everywhere but the environment selects”, as summarized by the 

Baas-Becking and Beijerink hypothesis (1934) outlines a scenario where environmental filtering is the 

main ecological process governing the different distributions of microbial populations, assuming 

equivalence among interacting individuals. Under this hypothesis microbial populations are considered 

as unlimited dispersers and only their niche’s differences shape the community composition in a given 

site. On the other hand, since the development of the Unified Neutral Theory of Biodiversity and 

Biogeography (UNTB) (Hubbell 2008), dispersal limitation is being considered as an important 

ecological process capable of reproducing some of the most universal patterns observed in natural 
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communities. This theory assumes equivalence among interacting individuals and purports that the 

community composition, at a given site, is shaped by three ecological processes (i.e., birth/death, 

speciation and dispersal). The previously mentioned niche vs. neutrality debate points out the need 

for disentangling the relative contributions of different ecological processes (mainly dispersal 

limitation and environmental filtering) in the assembly of marine diatom communities. But one has to 

be careful while interpreting the fitted neutral model as it does not necessarily imply the existence of 

a neutral process behind the pattern, but it might be offering only the simplest explanation consistent 

with current data. 

 

Dispersal limitation in controlling community structure. Spatial processes have been shown to play a 

stronger role in several studies with a range of different organismal groups, for instance, 

ectomycorrhizal fungi (Bahram et al., 2012), bacteria (Lindström and Östman, 2011), and thermophilic 

archaea (Whitaker et al., 2003). On the contrary, Finlay’s “no limits to dispersal” view states that below 

1 mm body size ‘everything is everywhere, but the environment selects’ (Finlay, 2002). Other studies 

have demonstrated that dispersal limitation varies between different phytoplankton groups (Chust et 

al., 2013). They further demonstrated that coccolithophores have a higher spatial structuring than 

diatoms and a higher slope in distance decay, indicating a dispersal limitation. Earlier, Nekola and 

White (1999) also reported that higher dispersal ability causes a decrease in distance decay rates. In 

other words, selection and drift increase the strength of the distance–decay relationship (i.e., they 

steepen the slope) whereas dispersal weakens the distance–decay relationship (i.e., it flattens the 

slope). Hanson et al. (2012) reported that evidence for biogeographic patterns can be divided into two 

categories that are “endemism” and a “distance-decay relationship”. My previous results (Chapter 2) 

demonstrated the first aspect, i.e., that diatoms exhibit little overlap in different sampling sites and 

oceanic provinces, indicating endemism at local and regional scales. This study demonstrated that 

community similarity decayed significantly along geographic distance, although there was no 

correlation between the distance decay rate and diatom size. However, the presence of distance-decay 

relationship in diatoms, albeit weaker, emphasizes the importance of dispersal in diatom community 

assembly. In general, the results were unable to support our initial hypothesis that dispersal ability is 

inversely related to size (Figure 3.2 and 3.3). An unexpected outcome was the smallest decay in 

similarity (absolute slope) in the largest size class (180-2000 µm) along both the environmental and 

spatial gradients. The non-uniform decline observed in community similarity suggests that some 

diatoms are more limited in dispersal than others. One may expect that niche-related processes are 

more important in structuring local communities for organisms with high dispersal ability (180-2000 

µm), as they can reach favorable locations in comparison to the ones with limited dispersal ability 
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(Martiny et al., 2006). In such organisms, species sorting may drive composition based on their 

environmental requirements.  

 

As mentioned above, diatom communities of different size-classes exhibit very little differences in their 

distance-decay rates. This may be due to the notion that dispersal ability is a species trait. In one 

previous study, Wetzel et al. (2012) tested whether the rates of decay in community similarity differ 

between diatom growth forms with different dispersal abilities (periphyton with lower dispersal ability 

and plankton with higher dispersal ability). They found that the rates of distance-decay in community 

similarity were higher for periphyton than for phytoplankton indicating the lower dispersal ability of 

periphytic taxa. In my study, the same diatom can be present in more than one size fraction and it can 

be expected that a community with nearly identical composition in terms of species will exhibit similar 

decay, as observed (very little difference in the slopes). Further, the studies that have reported 

dispersal ability to be inversely related to body size were performed on different biological groups (De 

Bie et al., 2012; Farjalla et al., 2012; Shurin et al., 2012; Van der Gucht et al., 2012). Therefore, one 

may expect a very small (or no) difference among the dispersal abilities among individuals of different 

sizes of the same biological group. Although the difference in the rate was not very pronounced, a 

comparison of slopes revealed that the largest communities (180-2000 µm) have the highest dispersal 

ability (less steep) in comparison to their smaller counterparts. This may be due to the ability to attach 

to other larger organisms. These attached larger diatoms may exhibit a different spatial structure than 

metacommunities of weakly attached smaller diatoms. Moreover, by virtue of the durability of their 

siliceous shells, diatoms achieve a wider geographical distribution; not only through wide dispersal by 

ocean currents but also with the help of larger organisms, such as tintinnids and other zooplankton. 

This can be majorly attributed to their resistant shell and their ability to withstand long periods of 

desiccation. With the onset of favorable conditions, larger diatoms divide more frequently and are 

subsequently removed from the system through dispersal. Thus, cell division and cell death influence 

net turnover and hence, their dispersal. In addition, this is essentially a sub-tropical expedition and 

thus, (i) diatoms can be found in the form of mats (e.g., Rhizosolenia) and hence in large size fractions, 

beyond expectation; (ii) if the larger size is made of such oligotrophic species, the higher dispersal 

ability of this size class might reflect the larger size of oligotrophic gyres when compared to eutrophic 

regions (e.g., upwelling or specific currents such as the ACC). 

 

Role of environmental heterogeneity in controlling community structure. The present study has 

provided a unique opportunity to investigate the spatial distribution of diatoms across a large 

geographical scale covering seven oceanic provinces and to examine relationships between diatoms 

and environmental variables. Temperature was the most significant environmental factor influencing 
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diatom composition and richness patterns for all diatom size-classes. Our results are well in concert 

with previous reports on temperature as the key variable associated with planktonic diatom 

communities (e.g. Patrick, 1971; Yao et al., 2011). Salinity was another variable that exhibited a major 

influence on diatom community structure. The relationship with environmental parameters were 

found to be intricate and strongly size-dependent. The case of 5-20 µm showed augmented correlation 

with salinity, which thereby suggests a relation with geography (e.g. MS and RS) and seems to be an 

interesting topic for investigation for the future. One fundamental issue in explaining the community 

structure is that many of the environmental variables are inter-correlated among themselves, and so 

it may be difficult to attribute a causal mechanism to a single variable even if it is significantly 

correlated. Working on the Tara Oceans Mitags dataset for prokaryotes, Sunagawa et al. (2015) 

demonstrated that the effect of highly correlated environmental predictor variables (temperature and 

oxygen) could be disentangled by independently modelling associations (using a binary input matrix to 

the elastic net fitting routines)  of each of the two predictor variables with taxonomic/functional 

composition for the SUR samples. They then tested the strength of these associations in DCM layers, 

where correlations between the two factors were much weaker, which allowed them to effectively 

decouple dissolved oxygen from temperature. A similar approach could be applied to this dataset to 

disentangle the effect of highly correlated factors. 

 

Mapping diatoms onto the metacommunity paradigms. A metacommunity has been described as “a 

set of local communities that are linked by dispersal of multiple interacting species” (Wilson 1992). 

Leibold et al. (2004) identified four “metacommunity paradigms”:  

Type A: “the neutral view” which assumes ecological equivalence of species with dispersal-

limited communities (Hubbell 2001; Bell 2001);  

Type B: “the species-sorting view” which assumes a sufficient dispersal of species in a 

heterogeneous environment with associated niche differences (Chase & Leibold 2003);  

Type C: “the mass-effects view” assumes a dispersal through source-sink relations that is 

independent of resource gradients (Holt 1993; Mouquet & Loreau 2002; 2003);  

Type D: “the patch-dynamic view” which is a form of niche differentiation where trade-offs lead 

to spatiotemporal niches (Hastings 1980; Tilman 1994).  

However, it is unlikely that all the species in a community will uniformly conform exclusively to one of 

the above mentioned perspectives. On one hand, it is difficult to draw clear cut boundaries among 

different metacommunity paradigms, while on the other there is a high probability that a real 

ecological community is subjected to a combination of these (Leibold et al., 2004). 
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In the present study, the variation in community composition was decomposed into four components 

(pure environment, pure spatial, shared effect, unexplained). The significance structure of these 

variation components was used to estimate the most important process (environmental, dispersal, or 

a combination of both) in determining the community structure, as described by Cottenie (2005). 

Based on the decision tree proposed by Cottenie (2005), we found that the diatom metacommunity is 

subjected to ‘species-sorting + mass-effect’ which corresponds to a combination of types ‘B’ and ‘C’ 

proposed by Leibold (2004). As mentioned above, this type of metacommunity is structured by both 

environmental and spatial variables, independently of each other. 

 

In particular, I studied the dispersal behavior of diatoms with ribotypes as the units of dispersal, by 

applying the “terrestrial” ecology approaches to the marine ecosystem. Previous studies were only 

based on geographically restricted areas and, hence, the environmental optima and tolerances could 

not represent the full ecological range of the studied taxon, as noted by Pienitz et al. (1995) and 

Weckstrom and Korhola (2001). Therefore, it is appropriate at this level to employ metacommunity 

theories or other related approaches mainly developed for terrestrial ecological studies, for obtaining 

useful insights for diatoms as also suggested by Grimm et al (2003). The lessons that would be learnt 

while verifying these hypotheses, will help to achieve crucial understanding about the key processes 

and structures dominating the marine environment. Nonetheless, these “terrestrial” ideas will likely 

pose limitations in applications for the marine system. The major shortcoming would be to identify a 

metacommunity. Another limitation of such a study would be the biased geographical distances (as 

the accurate distance in the ocean is based on Lagrangian measurements i.e. the one that follows the 

current). For instance, Stations 78 and 82 appear close on the map (Figure 2.1A), but they are much 

farther. In milieu of these suggestions, the results provide a baseline for further studies.  

 

Life strategies. Despite many efforts in the past, our understanding of how diatoms respond to 

environmental changes is still incomplete and limited. A current view is that diatoms are r-strategists, 

i.e., upon the onset of favorable conditions (e.g., light and nutrients) their rapid turnover allows them 

to dominate the phytoplankton community, associated with mixed waters and unpredictable 

conditions. Margalef (1978) examined the selection processes that organize different life-forms of 

phytoplankton as alternative strategies for survival. This study emphasized that the significant 

importance of an environmental factor in explaining a community structure has a genetic basis which 

may shift or evolve. This can be even true for any closely related organism when responding to a 

variable that is significantly correlated, e.g., temperature or salinity. This study also put forth the notion 

that general nutrient availability together with physical environment, advection and turbulence 

controls phytoplankton community composition (Margalef, 1978). These results along with those 
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presented in Chapter 2, regarding the distribution and diversity of diatoms, suggests that they are not 

exclusively r-strategists as previously believed but can exhibit varied life strategies. Their dispersal 

abilities vary a lot between species, thereby making it difficult to generalize as it is constrained by the 

match between optimality of life strategies with the environmental conditions along the ocean 

currents. In addition, it can be associated with a specific biology (e.g., adaptation to oligotrophy) rather 

than with their size. This is in consensus with Finlay’s “no limits to dispersal” view (Finlay, 2002), which 

suggests that diatom community composition is predominantly determined by species sorting (Finlay 

and Fenchel, 1999; Finlay, 2002). Nevertheless, size is a dominant trait for diatoms that armors them 

with several capabilities (e.g., reproduction, nutrient uptake, grazing defense). 

 

In general, marine ecosystems are believed to be highly connected and prone to frequent 

environmental changes (natural or anthropogenic). Many studies have demonstrated that if dispersal 

rates are low in comparison to the frequency of environmental changes, they primarily regulate the 

“assembly history” of local sites by dictating which species are present at that site (Post and Pimm 

1983; Rummel and Roughgarden 1985; Drake 1990; Morton and Law 1997). The presence of species 

will thus depend on their ability to colonize that site following the onset of favorable conditions. On 

the other hand, a high dispersal rate will alter the local population. As the newly immigrant population 

is not self-sustaining, its presence will lead to competitive suppression of other local self-sustaining 

populations which sometimes may get driven to extinction (Amarasekare and Nisbet 2001; Mouquet 

and Loreau, 2002; Leibold and Norberg, 2004). An important property of diatoms (and many 

phytoplankton in general) are the resting stages that represent organisms that are ecologically active 

but are protected from disturbances. Another notion worth mentioning is the constraints in population 

imposed by advection. It acts in two ways, firstly if the species transported via advection to an area 

that is not suited for them, which may lead to mortality. Secondly, these newly migrated individuals 

may well utilize the resource, reproduce and serve as food to consumers in potentially stronger ways. 

To conclude, it can be hypothesized that the variation in diatom distribution and diversity can be linked 

to the connection between different water masses and may not be the result of randomly distributed 

entities. Also, niche adaptation has a significant influence in governing diatom distribution. Biological 

interactions such as predation, parasitism and symbiosis are forces likely to be additional factors 

influencing the structures observed. This study also presented “sub-networks” or sub-ecosystems 

associated to diatoms and demonstrated grazers as a possible cause of the abundance modulation. 

The current results demonstrate interesting novelties, e.g. phytoplanktonic calcifiers correlated 

strongly to all the size-classes, which deems an in-depth analysis. 
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Nonetheless, the patterns illustrated in this study suggest that this may warrant more thought on how 

processes that occur at larger spatial scales alter dynamics and patterns of variation seen at the local 

scale. A comparison of distance-decay relationships among taxa with similar ecological requirements 

(thus controlling its effect) but with different dispersal ability to evaluate the pure effects of dispersal 

ability on beta-diversity patterns in diatoms remains a perspective for future work. The local 

importance of seasonality is another parameter that could be considered in a future study. 
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Abstract 

This study presents preliminary results from a global metabarcoding study dealing with diatom 

community assemblages. A set of selected “common diatom ribotypes” from 46 sampling stations were 

organized into assemblages based on their distributional co-occurrence. Using Ward’s hierarchical 

clustering, nine clusters were defined. The number of ribotypes and reads varied within each cluster; 

three clusters (II, VIII and IX) contained only a few reads whereas two of them (I and IV) were highly 

abundant. Of the nine clusters, seven can be divided into two categories defined by a positive 

correlation with phosphate and nitrate and a negative correlation with longitude and, the other by a 

negative correlation with salinity, temperature, latitude and positive correlation with Lyapunov 

exponent. All the clusters were found to be remarkably dominant in South Pacific Ocean and can be 

placed into three classes, namely Southern Ocean-South Pacific Ocean clusters (I, II, V, VIII, IX), South 

Pacific Ocean clusters (IV and VII), and cosmopolitan clusters (III and VI). 

 

4.1. Introduction 

 
“If we reduce nature to what we understand, we would not be able to survive.” 

                                                                                                         - Hans-Peter Dürr 
 

Several concepts of species association have been developed since the nineteenth century (Whittaker, 

1962). Dale (1977) stated that “Interspecific associations arise when two or more species co-occur 

either more or less frequently than expected due to chance alone. Positive associations between two 

species can occur when both select the same habitat or have the same environmental requirements”. 

Legendre and Legendre (1978) gave a statistical definition to species association as “a recurrent group 

of co-occurring or correlated species”, without emphasizing whether the association was positive or 

negative. Instead of having to describe the biology of each species individually, associations provide a 

means to assign ecological requirements common to most or all species in an association. One of the 

potential implications of such studies can be to employ these associations to predict environmental 

characteristics (Legendre, 2005).  

 

Ecological communities are characterized by a certain degree of diversity (Olszewski, 2004) and 

complex interactions among components operating on different spatial and temporal scales (Storch 

and Gaston, 2004; Steinnauer, 2009). There has been a varied interest in understanding the 

relationship between spatial distribution of microorganisms and the local environmental factors 

controlling their distribution. Association analyses are potentially a valuable tool with which one can 

generate hypotheses about the factors responsible for the distributional patterns. Understanding of 
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such patterns may help in the comprehension of underlying evolutionary or ecological processes. The 

most common method for classifying large numbers of individuals according to their geographical 

preferences/attributes is cluster analysis. These methods offer identification of groups of significantly 

associated species on the basis of their distributional co-occurrence; which are rational units within 

which ecological connections can be scrutinized.  

 

Diatoms are major players in the marine photosynthetic world, and represent diverse, ubiquitous, and 

sensitive environmental indicators (Round et al., 1990). As their distribution is strongly affected by 

environmental conditions (Charles, 1985), they have been successfully demonstrated as valuable 

proxies for a wide range of physico-chemical variables (Blanco et al., 2013; Stoermer and Smol, 1999). 

Interestingly, they may also be useful for studying the effect of trophic interactions on community 

structure as reflected by significant grazing effects on them, reported in various experimental studies 

(Lange et al., 2011; Gothe et al., 2013). However, the degree of their utility is dependent on 

understanding (i) the effect of environmental variables on their distribution, (ii) the extent to which 

environment explains variation in their community structure, and (iii) the general underlying processes 

that generate patterns in their distribution and diversity.  

 

Structure of the study. A previous chapter has revealed global diatom distributions and their 

remarkable diversity (Chapter 2). The results have demonstrated that connectivity of local water 

masses to ocean circulation has a major impact on marine diatom biogeography. Also, the substantial 

sharing between sampling stations separated by great distances (for instance, equatorial stations) 

suggested a widespread but not ubiquitous distribution. Most were characterized by a very different 

composition of ribotypes, with many of them being exclusively seen only in one province. Despite this, 

a remarkable number of ribotypes were also found to be shared among a combination of two 

provinces. Nonetheless, the majority of variation in the diatom communities remained unexplained by 

niche-based or spatial processes (see Chapter 3). This current study was designed to understand 

diatom community organization by identifying groups of associated ribotypes on the basis of 

distributional co-occurrences. In this chapter, a set of common diatom ribotypes representing the 

majority of diatom abundance (see Materials and methods for details) was used to investigate whether 

co-occurring ribotypes can be significantly associated into recognizable clusters. And if so, do they tend 

to exhibit a distinct behavior in a way that these clusters can be expressed as a function of varying 

environmental parameters?  Thus, these clusters can be reasonable entities which can be potentially 

useful in further examining ecological relationships. The major objectives of this study were (i) to 

identify significant ribotype clusters, (ii) to characterize each cluster taxonomically and by their 
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distributional patterns, and (iii) to search for environmental determinants which could explain or help 

delineate these clusters. 

 

4.2. Materials and methods 

4.2.1. Study area and dataset 

The dataset for this study is derived from the Tara Oceans expedition (Karsenti et al., 2011) and 

represents 293 planktonic samples from diverse oceanic provinces. At each station, plankton 

communities were obtained for four size fractions from two water-column depths (sub-surface water 

(SRF) and the Deep-chlorophyll maximum (DCM)). Total nucleic acids (DNA + RNA) were extracted from 

all samples, and the hyper-variable V9 region of the nuclear 18S rDNA was PCR-amplified (Amaral-

Zettler et al., 2009). The V9 reads were quality checked and to reduce the influence of PCR and 

sequencing errors, only sequences seen in at least two different samples with at least 3 copies were 

retained, giving a total of ~580 million reads represented by ~2.3 million unique metabarcodes (De 

Vargas et al., 2015). These unique barcodes were taxonomically assigned to known eukaryotic entities 

based on the PR2 database (Guillou et al., 2013). From this, metabarcodes assigned to diatoms (at a 

percentage identity of ≥ 85% to the reference sequence) were selected (Figure 4.1). Considering that 

this dataset contains many rare metabarcodes, only those metabarcodes that appeared in at least ten 

sampling stations surveyed with ≥100 reads (pooled across all samples) were selected for this study 

and were designated “common ribotypes”. The matrix was Hellinger transformed prior to analyses.  

 

An environmental matrix consisting of a set of environmental variables describing physico-chemical, 

nutrient and chlorophyll data of each sample was created (Table G4.1). All environmental variables 

were checked for normality and were log-transformed to reduce skew distributions. To avoid problems 

of logarithm zeros, the number one was added to the abundance of each ribotype {log10(x+1)}. After 

that, the transformed data were proportionally scaled between 0 and 1 in the range of the minimum 

and maximum for each variable. In addition, spatial variables, including longitude and latitude were 

obtained for each sampling site.  

 

For further characterization, all the stations were organized in six classes based on oceanic provinces, 

i.e., Mediterranean Sea (MS), Red Sea (RS), Indian Ocean (IO), South Atlantic Ocean (SAO), Southern 

Ocean (SO), and South Pacific Ocean (SPO). 

 

4.2.2. Statistical analyses 

The environmental dataset gathered a total of 37 variables (Table G4.1), and most of them were  
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Figure 4.1 Outline of the study. 
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 intercorrelated. For this reason, a variable-reduction procedure was used to identify a subset of 

predictor variables that minimized multicolinearity and maximized correlation with diatom 

distributions. This was done in two steps: (1) selecting environmental variables that were significantly 

correlated to diatom distribution, and (2) analysing the environmental correlation matrix to identify 

highly correlated variables and then selecting either one or two predictors that maximized the 

percentage deviance explained in diatom distribution. This second step was done using multiple 

regression models. 

 

PCA ordination of sampling sites. A principle component analysis (PCA) was employed to examine the 

variability in environmental parameters among and within the defined oceanic provinces. Analysis of 

similarities (ANOSIM) was performed to test whether there is a significant environmental difference 

between stations grouped according to the oceanic provinces. 

 

Influence of environmental variable on each ribotype. Spearman correlation was computed and its 

significance was used to determine whether any independent environmental variable was significantly 

correlated to each ribotype. Statistical significance was assessed at a p-value<0.05. 

 

Identifying significant diatom associations. Significant ribotype associations (cluster, hereafter) were 

identified using the method described by Legendre (2005). Firstly, a Pearson correlation matrix was 

computed for all the ribotypes and a distance matrix (1-correlation matrix) was obtained. Hierarchical 

clustering based on Ward's minimum variance method that aims at finding compact, spherical clusters 

was performed using hclust to identify clusters of covarying ribotypes. The vector for ribotype 

membership was obtained. To identify significant associations, Kendall’s coefficient of concordance 

was computed for each cluster through a permutation test using function kendall.global (vegan 

package). Kendall’s coefficient of concordance ranges from 0 to +1. A value closer to zero represents 

lack of agreement while a value closer to 1 represents perfect agreement in the rankings of the 

ribotypes among samples. Clusters that were globally significant (p-value < 0.05) were retained for 

further analysis. Spearman’s correlation between each environmental variable and each of the 

“common ribotypes” was computed to define a common characteristic in each case. 

 

Determining the relative importance of selected environmental variable. To assess their relative 

importance, R package relaimpo (Gromping, 2006) was used. This function calculates how much of the 

variance in community structure can be explained uniquely by each variable. This analyses was 

performed separately and in the exact same way for the each of the identified ribotype clusters. All 

statistical analyses were performed using R 2.5.1 (R Developmental Core Team).  
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Figure 4.2. Taxonomic composition of the dataset used in the study. Nearly 45% of the reads belonged to either 
unassigned diatoms or unassigned raphid pennates or unassigned polar centric (for details on taxonomic 
assignment, please see Chapter 5). (A) Total reads, and (B) Total ribotypes. AP: Araphid pennate, RP: Raphid 
pennate, RC: Radial centric; PC: Polar centric; Unassigned: Unassigned diatoms. 
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4.3. Results  

The “common ribotype” dataset used here consisted of 1479 ribotypes, representing ~90% of the total 

ribotype abundance (the total set of 63,371 ribotypes corresponds to 12,077,752 reads, while the 1479 

ribotypes represent 10,855,574 reads). Of these, 692 ribotypes (46.8%) could not be assigned to either 

a genus or species. Nearly 45% of the reads belonged to either unassigned diatoms or unassigned 

raphid pennates or unassigned polar centric diatoms (Figure 4.2). The most abundant ribotypes tended 

to be the most cosmopolitan (Figure 4.3A), while the majority were seen in 10-20 stations and 

represented the lowest abundance class (100-1000 reads) (Figure 4.3A and B). The environmental 

variables that were found to significantly correlate with diatom distribution are shown in Figure 4.4A, 

and their relationships with each other can be seen in Figure 4.4B. From this group of highly correlated 

environmental variables, one predictor variable that maximized the percentage deviance explained in 

diatom distribution matrix was selected. 

 

The results presented here are organized into five sections, (i) ordination of environmental variables 

to examine the variability among and within oceanic provinces, (ii) correlation of individual variables 

to each ribotype, (iii) identification of significant clusters and describing their characteristics, (iv) 

distribution, and (v) environmental determinants of the global distribution of clusters. 

 

4.3.1. Ordination of environmental variables 

Principle component (PC) analysis of environmental variables revealed that 55.5% of the variation 

could be explained by the first two axes (Figure 4.5A). The most important environmental variables in 

the delineation of stations in the ordination space were latitude, Lyapunov, fluorescence, flux, angular 

scattering and phosphate, indicated by the length of the arrow.  PC axis 1 differentiates high abundant 

stations from low abundant stations, accounting for 36.3% of the variance in the data. The 

environmental variables delineating stations along PC1 were phosphate, Fcdom, temperature and 

salinity. PC1 can be related to the environment supporting diatoms, as it was found that all the low-

abundant stations were towards the right (increasing value of temperature and salinity while 

increasing value of phosphate and Fcdom, for instance) whereas highly abundant stations were located 

on the left (decreasing values of temperature and salinity, for instance). This was in agreement with 

many diatoms being known to prefer environments that are cold, nutrient rich, and with low salinity. 

PC axis 2 explains 17.2% of the variance in the data, representing a gradient described by increasing 

NPP and decreasing fluorescence and Lyapunov exponent (Figure 4.5A). 

 

Stations from the Southern Ocean (SO) formed a distinct non overlapping cluster, whereas the rest of 



Global Diatom Biodiversity: an Assessment Using Metabarcoding Approach 
 

Chapter 4  S Malviya 

 

136 

 

 

 

Figure 4.3. Description of dataset used in the study. (A) The plot shows occupancy, cosmopolitanism and station 
evenness of each ribotype. Each dot corresponds to a ribotype, the larger it is, the more reads it contains. X-axis 
corresponds to the number of stations in which a ribotype occurs; Y-axis corresponds to the evenness of the 
ribotype in those stations in which it occurs. 1479 ribotypes were selected based on occupancy (seen in at least 
10 stations) and pooled abundance across all stations (≥100 reads). These were designated as ‘common 
ribotypes’, representing ~90% of the total reads assigned to diatoms. 46.8% (of ‘common ribotypes’) could not 
be assigned upto the genus level using PR2 reference database (for details on taxonomic assignment, please see 
Chapter 5). (B) Occupancy Vs abundance plot. The color represents the four abundance classes, (C) Number of 
ribotypes for four abundance classes.  
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Figure 4.4. (A) Description of environmental variables. All variables were log-transformed to obtain normality. 
Scatterplot matrix showing Spearman correlation between variables with significance asterisks (0.1[.], 0.05[*], 
0.01[**], 0.001[***], 0[*****]). Values in red and green indicates negative and positive correlations respectively.  
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Figure 4.4. (B) Clustering of environmental variables. Lat: Latitude; Long: Longitude; Temp: temperature; Sal: 
salinity, Chloro: chlorophyll; AngScat: angular scattering; BackScat: back scattering; bbp470: particulate 
backscattering coefficient at 470 nm; FCDOM: Fluorescent chromophoric dissolved organic matter; Beam Att: 
Beam Attenuation; Flux: carbon flux; Fluo: fluorescence; NO2: nitrite; PO4: phosphate; NO2NO3: nitrate and 
nitrite (Inorganic nitrogen); SI: silicate ; NPP_8d: net primary production (8 days); NPP_month: Net primary 
production (monthly); Okubo: Okubo-Weiss Parameter; Lyapunov: Lyapunov exponent. 
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Figure 4.5. (A) PCA ordination of sampling stations. Arrows (eigenvectors > 0.25) indicate the direction of 
maximum change for the environmental variables. (B) Analysis of similarities (ANOSIM). Boxplot showing 
dissimilarly rank for the one-way ANOSIM between oceanic provinces (999 permutations significance level (p) = 
0.001). MS: Mediterranean Sea; RS: Red Sea; IO: Indian Ocean; SAO: Antarctic Ocean; SO: Southern Ocean; SPO: 
South Pacific Ocean.  
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Figure 4.6. Multiple regression analysis. Spearman correlations were calculated individually between each 
ribotype distribution and abiotic variables. [Correlations significant at p < 0.05]. The highest number of ribotypes 
were found to be significantly correlated to temperature. However, silicate and flux showed highest number of 
ribotypes with positive correlation.  

  



Ribotype Association Analysis 
 

S Malviya  Chapter 4 

 

141 

the oceanic provinces exhibited overlap among them. SO was found to be negatively correlated to 

temperature, latitude and salinity, and positively correlated to phosphate, nitrate, Fcdom, silicate, flux 

and chlorophyll. SAO and SPO exhibited major overlaps, indicating similar environmental 

heterogeneity. Also MS and RS were quite similar; the stations sampled in these provinces being 

characterized by high latitude, high temperature and high salinity. Stations sampled in IO could be 

divided into two distinct groups along the PC2. The first was found to be highly similar to SAO and SPO, 

whereas the second was very different from others and was structured along the increasing gradient 

of NPP.  

 

The analysis of similarities (ANOSIM) affirms that the differences between oceanic provinces as 

illustrated by PC analysis are significant (R = 0.649, p = 0.001). Based on the (rank) similarity matrix 

underlying the ordination of samples (Clarke and Warwick 2001), this non-parametric permutation 

procedure (Monte Carlo tests, Hope 1968) accounts for the variability between stations grouped a 

priori to the respective oceanic provinces. The one-way ANOSIM test (Figure 4.5B) shows that different 

stations within one province are more similar to each other than to any stations from different 

provinces, although substantial overlap was seen. The Indian Ocean diatoms occupy an intermediate 

position with a large difference between northern and southern Indian Ocean stations. The remaining 

combinations within the Indian Ocean show that their environmental characteristics overlap. The 

Southern Atlantic Ocean also constituted a heterogeneous groups of stations, with Stations 66 and 68 

sharing a substantial band of common features which were distinctly separated from the other SAO 

stations. 

 

4.3.2. Correlation of individual variables to each ribotype  

The correlation computed between each individual ribotype and environmental variable indicated that 

significant relationship exist only for few ribotypes. For temperature, only 46.6% of the ribotypes 

showed a significant relationship and the majority were negatively correlated. On the other hand, 

many significantly related ribotypes exhibited negative correlation with latitude, bbp470, Fcdom, silicate, 

NPP and Lyapunov. About 14.8% of the ribotypes displayed no significant correlation to any variable 

(Figure 4.6). 

 

4.3.3. Taxonomic and environmental characterization 

Ward’s hierarchical clustering of common diatom ribotypes based on Pearson’s correlations defined 

nine clusters (Figure 4.7). Kendall’s coefficient of concordance affirmed a fair degree of significant 

agreement among the ribotypes of each cluster. All nine clusters could be broadly divided into three  
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Figure 4.7. Clustering of “common ribotypes” and their correlation to environmental variables. Significant 
Spearman’s correlations are depicted between the ten variables and selected “common ribotypes” (red-
negative, green-positive). Nine major clusters were identified, namely, I(132), II(87), III(80), IV(178), V(106) , 
VI(296), VII(220), VIII(71) and IX(265).  
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categories as follows: 

Category A - Phosphate(+)nitrate(+)longitude(-) assemblages: e.g., Clusters II, IV, VII.  

Category B - Salinity(-)temperature(-)latitude(-)Lyapunov(+) assemblages: e.g., Clusters I, V, VIII, IX. 

Category C - Variable assemblages: Those with no common trend. e.g., Clusters III, VI. 

 

The number of ribotypes and certain common characteristics identified for each cluster are described 

below (Figure 4.7, Figure 4.8 and Table G4.2):  

Cluster I is composed of 132 ribotypes and shows a significant negative correlation with salinity 

and latitude and a weak positive correlation with phosphate. It was characterized by the presence of 

Chaetoceros, Thalassiosira tumida, Thalassioisira weissflogii and Proboscia alata, as well as unassigned 

ribotypes.  

Cluster II is composed of 87 ribotypes and is correlated negatively with latitude and positively 

with phosphate and nitrate.  It represents a strict polar centric cluster of uncertain identity. 

Cluster III is composed of 80 ribotypes and correlates positively with salinity, latitude and 

bbp470. It was characterized by Chaetoceros rostratus, Proboscia alata, and Leptocylindrus.  

Cluster IV is composed of 178 ribotypes and shows a strong negative correlation with longitude 

and positive correlations with phosphate and nitrate. It was characterized by Actinocyclus curvatulus 

and Pseudo-nitzschia and a large number of unassigned raphid pennates.  

Cluster V is composed of 106 ribotypes and shows a significant negative correlation with salinity 

and a positive correlation with phosphate. It was characterized by Actinocyclus curvatulus, Chaetoceros 

rostratus and Corethron.  

Cluster VI is the largest cluster and is composed of 296 ribotypes. This cluster does not show any 

common characteristic as every member ribotype reacts differently to the broad scale of 

environmental gradients. It was characterized by Actinocyclus curvatulus and Thalassiosira, as well as 

many unassigned polar centrics and raphid pennates.  

Cluster VII is composed of 220 ribotypes and shows a significant negative correlation with 

longitude and positive correlations with phosphate and nitrate. It was found rich in Thalassioisira 

punctigera and unassigned Thalassiosira, together with many ribotypes that could not be assigned. 

Cluster VIII is the smallest cluster and is composed of 71 ribotypes showing a weak but 

significant negative correlation with nitrate. It was characterized by Corethrom inerme. 

Cluster IX is composed of 265 ribotypes and shows a significant negative correlation with 

salinity, temperature and latitude, and positive correlations with Lyapunov exponent. It was 

characterized by Fragillariopsis and Chaetoceros.  
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Figure 4.8A. How novel is a cluster? Taxonomic Composition of each cluster based on (i) richness (unique 
ribotypes) and (ii) abundance (total reads). I-IX represents nine clusters identified in the study (for detail, please 
refer Fig 4.7). Bar color corresponds to the color of clusters reported in Fig 4.7.  
  

(i) 

(ii) 
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Figure 4.8B. Characteristic genera and species of each cluster based on assigned fraction. (i) Richness. (ii) 
Abundance. 

 

 

(i) (ii) 
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Figure 4.9A. Distribution of clusters at surface. Upper Panel: Proportional distribution of pooled abundances of 
clusters across stations. Key for color-coded clusters is shown. Numbers in the parentheses indicate the number 
of ribotype members in each cluster. Lower Panel: Map showing the distribution of reads across stations for 
each cluster. The size of the bubble is proportional to the number of reads it contain, and is not the same for 
each cluster. 
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Focusing on the unassigned to assigned fraction of members, it was found that the ratio of unassigned 

to assigned within clusters I, IV, VI, VII and IX were nearly 1:1. On the other hand, Cluster II was found 

to be a strict polar centric cluster whereas Clusters III, V and VIII displayed a majority of assigned 

ribotypes. Unassigned polar centrics were seen principally in Clusters II and VI. Unassigned raphid 

pennates were clustered under IV, VI and VII. Altogether unassigned araphid pennates represent only 

3% of the common ribotypes and were seen principally in Cluster IV (Figure 4.8A and Table G4.2). 

 

4.3.4. Spatial characterization at local scale 

Each surface station exhibited a distinct composition (reads pooled over clusters for surface samples). 

The stations were organized under nine defined clusters based on their major component, as indicated 

below (upper panel in Figure 4.9A): 

Cluster I   : Stations 42, 82, 84, 85, 98. 

Cluster II  : Not a major component, except at Station 82. 

Cluster III  : Stations 11, 18, 20, 22, 23, 24, 25, 26, 30. 

Cluster IV  : Stations 31, 33, 34, 66, 68, 70, 72, 100, 102, 111, 122, 123. 

Cluster V  : Not a major component. 

Cluster VI  : Stations 4, 32, 36, 39, 41, 45, 64, 65, 67, 76, 78. 

Cluster VII : Stations 7, 9, 16, 38, 52, 109, 124, 125. 

Cluster VIII : Not a major component, although found predominantly at Stations 42, 85     

                                 and 98 

Cluster IX  : Station 48. 

Figure 4.10 shows the location of each station, color-coded based on the dominant cluster in the 

surface sample of each station. Based on the above outlined geographic preference common to most 

of the stations in a province, a generalized spatial depiction can be suggested for each cluster as shown 

in Figure 4.9A (lower panel). All the clusters exhibited almost similar geographical preferences at both 

depths (i.e. SRF and DCM) Figure 4.9B.  

 

4.3.5. Spatial characterization at regional scale 

The total number of reads within each cluster indicated that three clusters (II, VIII and IX) are 

represented by only a few reads whereas two of them (I and IV) were many times (2-10 times) greater 

than the rest (upper panel in Figures 4.11). Despite this, all the clusters were found to be remarkably 

dominant in SPO, particularly IV and VII. Clusters I and V related well with SO. Cluster III and VI were 

primarily seen in SPO but also exhibited signals for MS and IO, respectively (lower panel in Figure 4.11). 

Based on their relative distribution across provinces, three classes can be defined, namely SO-SPO 
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Figure 4.9B. Distribution of clusters at DCM. Upper Panel: Proportional distribution of pooled abundances of 
clusters across stations. Key for color-coded clusters is shown. Numbers in the parentheses indicate the number 
of members in each cluster. Lower Panel: Map showing the distribution of reads across stations for each cluster. 
The size of the bubble is proportional to the number of reads it contains and is not proportional between different 
clusters.
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Figure 4.11. Distribution of pooled abundances of clusters in oceanic provinces. I-IX represents nine clusters 
identified in the study (for detail, please refer Fig 4.7).   
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clusters (I, II, V, VIII, IX), SPO clusters (IV and VII), and cosmopolitan clusters (III and VI) (lower panel in 

Figure 4.11).  

 

4.3.6. Environmental determinants of the global distribution of clusters 

After defining clusters (ribotype associations), key environmental drivers were identified for each 

cluster. The percentage variation explained ranged between 8.31-68.3% (Figure 4.12); the lowest 

being in Cluster VIII and the highest corresponding to Cluster III. In the largest two clusters (I and IV), 

the total explainable variation was 39.78% and 29.31%, respectively. The main drivers for these 

clusters were latitude and temperature for Cluster I and longitude and bbp470 for Cluster IV. Cluster 

III was the one with maximum explained variation (68.3%) and the majority of variation was explained 

by temperature and latitude. Latitude explained the most variation in Cluster V. Longitude was found 

to be majorly explaining the variation in Clusters VI and VII with Fcdom and Fluorescence respectively. 

For the three smallest clusters, i.e., II, VIII, IX, the key drivers were latitude, salinity, and, latitude and 

Lyapunov, respectively (Figure 4.12). For each cluster, the variation explained by environmental 

variable, expressed as percentage contribution, is reported in Table G4.3.  

 

The impact of each individual environmental variable in best describing a cluster was assessed by 

scaling each variable by the maximum explained variation of that variable. For instance, for latitude, 

the percentage explained for each cluster was divided by 13.06 (see Table G4.3). The radar-plot 

presented in Figure 4.13 suggests that latitude had the major impact on III and V, and the least on 

Clusters IV and VIII. Similarly, temperature and salinity primarily controlled Cluster III. Angular 

scattering and bbp470 were seen to control Cluster I and, Clusters III and IV, respectively. Flux was 

found to be the most influential factor for Clusters I and III. NPP, NO2, PO4 and Lyapunov were 

comparatively important in Clusters I, IV, III and IX. Silicate had the strongest impact on Clusters III, VI 

and IX (Figure 4.13). 
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Figure 4.12. Quantifying the contribution of selected environmental variable to a multiple linear regression 
model. (A) The bar chart depicts the percentage variation explained by each variable in each case. The height of 
the bars represent the total explained variation. Lower panel: Radar plot depicting the importance of each 
variable in a cluster. 
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Figure 4.12. Quantifying the contribution of selected environmental variable to a multiple linear regression 
model. (B) Radar plot depicting the importance of each variable in a cluster. 

 
 

B 
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Figure 4.13. Relative importance of each environmental variable across nine clusters. Radar plot depicting the 
relative variation explained by each variable across all clusters (w.r.t. maximum variation explained by a 
respective variable among all clusters). 
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4.4. Discussion 

Despite the large number of studies carried out in the recent past on the effect of human pressure on 

diatom communities (Pan et al., 2000; Soininen, 2002; Potapova and Charles, 2003), the number of 

studies attempting to characterize the natural patterns and the relative weights of environmental 

parameters influencing this natural variability is still limited (Sabater and Roca, 1992; Stevenson, 1997). 

Various independent studies have reported the association of an array of environmental factors with 

the distribution of different diatom species. It has long been known that temperature, salinity and 

nutrients have a significant impact on the local abundance pattern of diatoms (e.g., Butcher, 1947; 

Fjerdingstad, 1950; Zelinka & Marvan, 1961). However, at a global scale these abiotic parameters fail 

to explain the variation present in community structure. This study was performed with the aim to 

identify a common set of properties (spatial/environmental) for a co-occurring group of species. The 

analysis demonstrates that most ribotypes were insignificantly correlated to different variables. 

However, for those which were significantly correlated, temperature, bbp470, and latitude were the 

most important ones in controlling their distribution (Figure 4.6). 

 

In the present study, cluster analysis was used to define clusters. The total number of reads for each 

cluster changed remarkably between stations, particularly from different provinces, indicating varied 

geographical preferences and/or ecological requirements. An evaluation of the influence of 

environmental variables on each of them suggested that although environmental heterogeneity 

influences their distribution, it could not completely explain the differences between clusters. This may 

be due to the point that all factors interact in a definitive manner to give a pattern rather than by acting 

at an individualistic level. Another explanation may be that these patterns can occur as a direct 

consequence of biotic interactions such as mutualism, competition and predation (Roxburgh and 

Chesson, 1998).  

 

Nine clusters displayed a varying number of ribotypes ranging from 71-296 ribotypes and their 

dominance was not related to their richness. There was some overlap in genus/species among 

different clusters, for example, the occurrence of Actinocyclus curvatulus among the dominant species 

of Clusters IV, V and VI. It is noteworthy that a few ribotypes for a particular species does not always 

mean a low number of reads for that species. For instance, in Cluster I, there were only very few 

ribotypes assigned as Corethron inerme, but the total number of reads represented by those few 

ribotypes was extraordinarily high. 

 

In each cluster, the numerically dominant species belonged to the most abundant diatoms known, like 
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Chatoceros, Thalassiosira, Fragilariopsis and Corethron. Chaetoceros was represented by nearly 13% 

ribotypes totaling to 14% reads. There were three species of Chaetoceros, e.g., C.muellerii, C.radicans, 

C.rostratus; along with unassigned Chaetoceros. All the clusters seem to have either of the variants, 

although Clusters I, III, V and IX were dominated by either unassigned Chaetoceros (I and IX) or C. 

rostratus (III and V). The other two species were represented by only a few ribotypes (and reads). 

Thalassiosira, Fragilariopsis and Corethron were the other genera which were abundant in the dataset. 

These along with Chaetoceros constituted the most abundant cluster, i.e. Cluster I. The environmental 

variables also indicted this to be a Southern Ocean cluster; negatively correlated to latitude and 

temperature. The second smallest of the nine clusters (Cluster III) was considered most typical of 

Mediterranean waters. This cluster contained a majority of reads from Leptocylindrus, Chaetoceros 

rostratus and Proboscia alata. Other diatom clusters also demonstrated regional differences and a 

dominant role of mostly a single resource.  

 

In addition to a very few numerically dominant species, each cluster had many species that were seen 

in low abundances. In spite of ecological requirements similar to the abundant ones, a systematic 

evaluation of individual species traits is desirable to understand their low abundance. Several trait-

based analyses (e.g., Bremnera et al., 2006) have been proposed in recent past providing a link 

between species, environments and ecosystem processes. Thus, using a summary of the biological trait 

composition of clusters, it is possible to gain a valuable explanation of ecological functioning. 

Integrating a range of traits from those that are closely linked to important ecosystem processes to 

the ones that are sensitive to anthropogenic impacts will potentially lead to a comprehensive 

description of ecological functioning. 
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Abstract 

This study presents an approach to discern and quantify the distribution of rare species in the protist 

community data sets generated by Tara Oceans. The plotted rank abundance distribution (RAD) for all 

the samples under study showed a long-tailed distribution whose tail appears to follow a power-law 

behavior. This work explores the patterns of species abundance by employing rank abundance 

distributions along with commonness and rarity patterns of protists in the world’s ocean. In addition, 

I assessed the ubiquity of a ribotype across sampling sites to understand the extent to which a rare 

ribotype remains rare in space. 

 

5.1. Introduction 

 

“The answers to general ecological questions are rarely universal laws, like those of 

physics. Instead, the answers are conditional statements such as: for a community of 

species with properties A1 and A2 in habitat B and latitude C, limiting factors X2 and X5 

are likely to predominate.”                                                           -Diamond and Case, 1986 

 

A major research aim in ecology has been to understand the mechanisms and processes that generate 

and shape the differences among species abundances and distribution (Whittaker 1965, 1970, 1972; 

McGill et al. 2007). This is fundamental to understand community structure, biology and ecology, 

thereby facilitating their characterization. It has been seen as a universal feature that each community 

is characterized by a few abundant, some moderately common, and many uncommon or rare species. 

However, different models predict that, when ordered according to their abundance, species within a 

community obey different distributions. 

 

5.1.1. Marine community structure: evident structuring processes 

Ecological communities are the product of both contemporary biotic and abiotic forces as well as 

historical (phylogenetic) contingencies (Westoby, 2006). For example, biogeography, local adaptive 

radiation, intra- and inter-specific interactions together with effects imposed on a community by 

habitat characteristics dictate the community assemblage. None of the processes are mutually 

exclusive and their relative strength varies at different temporal, geographical and phylogenetic scales.  

 

The various ecological processes central to community assembly, as reported in literature, can be 

summarized as follows: 

(a) Competition has long been considered to provide the mechanism that structures communities. 

It represents two (or more) species competing to utilize a common resource of limiting supply, 
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(b) Habitat filtering takes place through non-random colonization and invasion determined by 

environmental characteristics, 

(c) Predator-prey interactions take place between trophic levels. 

 

Terrestrial and marine ecosystems vary considerably in the processes that organize them. Community 

structure theories that have been developed to date were developed mainly with regard to terrestrial 

communities. Cloern and Dufford (2005) have proposed principles of phytoplankton community 

assembly which can be generalized to the total marine community assembly: (a) Fast and selective 

grazing, a powerful top-down force to shape phytoplankton communities, (b) Turbulent mixing, a 

physical process that selects species on the basis of their size and form (Margalef, 1978; Cullen et al., 

2002), (c) Mixotrophy, which allows some algal species to tap organic nutrient pools and to function 

at multiple trophic levels (Bird and Kalff 1986; Estep et al. 1986), (d) Species interactions across trophic 

levels (Carlsson et al.,1995; Teegarden, 1999; Calbet et al., 2002; Fistarol et al. 2003), (e) Variable life 

histories, alternating vegetative and resting stages (Dale 2001; Smetacek, 1985), (f) Dispersal and 

immigration, (g) Large-scale climatic periodicity (McGowan et al., 1998; Chiba and Saino, 2002; 

McQuoid and Nordberg, 2003; Zingone and Wyatt, 2004; Hallegraeff and Bolch, 1992), (h) Resource 

Partitioning, and (i) Habitat Heterogeneity. 

 

Out of the above mentioned factors, turbulent mixing is the factor that is exclusively important for the 

organization of marine communities. The marine life around the world is mostly dependent on 

patterns of ocean circulation. Thus, the analysis of ocean dynamics is an essential element in such 

studies. Oceans are not uniformly mixed but are structured in layers with distinct properties (Colling, 

1991; Knauss, 2005). Turbulent mixing creates currents and brings the exchange between different 

water masses leading to heat redistribution and nutrient circulation (Colling, 1991; Knauss, 2005). In 

addition to the fundamental role of vertical upwelling or downwelling movements in the circulation of 

nutrients, these movements give birth to retention areas. Other phenomena that play important roles 

in ocean circulation can be explained by “Ekman transport” patterns (Ekman, 1902). Following the 

momentum exerted by each layer of the ocean to the water beneath, its movement gets slightly 

deviated producing spiral structures (Ekman spiral). Thus, ocean mixing and coastal upwelling bring 

new supplies of nutrients up from deeper waters providing food for deep-dwelling species. When 

optimal light, temperature, and nutrient conditions coincide, plankton population explosions called 

“blooms” occur (Lazier, 2004). These sustain ocean life as they increase the availability of organic 

material, and are responsible for the later enrichment of the ocean floor by means of “marine snow” 

(Miller, 2004). In addition, this vertical movement allows the flow of particles to ocean depths which 

is a critical link in the global carbon cycle (Mann and Lazier, 2006). 
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Phytoplankton play several key roles in the ocean and climate systems and their dominance is a 

property of their adaptation to the local water properties (Litchman et al., 2007; Giovannoni and Stingl, 

2005; Bouman, et al. 2006). The characterization of planktonic communities is a fundamental problem 

as it raises the question of the predictability of ecosystems. d’Ovidio et al. (2010) reported that fluid 

dynamics and horizontal stirring have primary roles in shaping and maintaining phytoplankton 

community structure. They demonstrated that “in confluence regions, water masses with different 

properties are stirred, creating contrasted physicochemical conditions which favor the emergence of 

complex community distributions” (d’Ovidio et al., 2010). This recent shift in the view towards complex 

patterns of environmental variation fits in the scheme of “patch dynamics models” (Pickett and White. 

1985), which posits that marine planktonic community organization is shaped by both stochastic 

disturbance and biotic forces.  

 

The observation that species vary in number and abundance prompted the development of species 

abundance distribution (SAD) models (Mugurran, 2004) to describe the relationship between the two. 

SAD is the most frequently studied pattern in ecology and represents the frequency distribution of 

species abundances in an assemblage. In recent years, it has been used to test different hypotheses 

about the processes that determine the diversity of an ecological assemblage, notably the assumption 

that abundance of a species reflects its success at competing for limiting resources (Mugurran, 2004). 

SADs can be visualized using two main approaches, histograms of species having a number of 

individuals within exponentially increasing bin widths (Preston, 1948), and plots of ranked species 

abundances from the most to least common, known as rank-abundance distribution (RAD) curves 

(MacArthur, 1957; Whittaker, 1965). The latter has gained popularity as one of the most informative 

approaches (Nekola et al., 2008) to visualize SAD and to investigate community ecology hypotheses. 

 

Why ecologists look at RADs? Alternatively to SADs, abundance observations can be represented in 

terms of Rank-Abundance Distributions (RADs). These plots typically display the abundances (or 

relative abundances, sometimes called frequencies) of species as a function of their rank in an ordering 

going from the most common to the rarest. In addition to SADs, they are used as reporters of ecological 

processes to which the observed community is subjected. The shape of the RAD can be compared to 

the species distribution model that can best describe the community. Thus, by looking at these shapes, 

simple hypotheses can be made about the way species interact within communities, and on the effect 

of the environment on the community. For example, a steep plot signifies a community with high 

dominance, while a slow decay implies high evenness. These shapes constitute null models against 

which observational data can be challenged. Thus, their systematic evaluation and characterization can 

assist in understanding microbial communities which remains a major issue in ecological studies. 
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5.1.2. Overview of rank-abundance distribution (RAD) curves 

RADs plot species in decreasing order of their abundance along the x-axis, while the abundance of each 

species is displayed on the y-axis (often log10 or log2 transformed, to emphasize the rare species part 

of the distribution). Mugurran (2004) listed several advantages of using RAD curves over other 

methods. For instance, they 

(a) clearly display contrasting patterns of species richness, 

(b) highlight differences in the evenness amongst communities under study, 

(c) can effectively illustrate changes through succession or following an environmental 

disturbance. 

To seek general applicability and a better understanding of community organization, ecologists have 

applied various quantitative models to species abundance datasets (Barange and Campos, 1991). The 

most common of which are described below: 

(a) Log series model. Initially proposed by Fisher et al. (1943), log series pattern will occur when 

species arrive at an unsaturated habitat at random intervals of time (Boswell and Patil, 1971; 

May 1975). It is common in communities which have low richness and predicts an exponential 

SAD. 

(b) Log-normal model. Proposed by Preston (1948, 1962), log-normal distributions are common in 

communities with a few very common together with many rare species (i.e., highly right-

skewed). It is the most commonly observed distribution in large assemblages and is usually 

considered the undisturbed default for most communities (Ulrich et al. 2010).  As a community 

is disturbed, it tends towards the geometric series.   

(c) Geometric series model. This was proposed by Motomura (1932), and is predicted to occur when 

species will arrive at regular intervals of time and will each occupy a fraction of the available 

niche space. It assumes that the early arriving species can pre-empt resources and can become 

dominant in abundance and thereby limit late comers (resulting in a steep dominance-

distribution plot).  It tends to hold for communities with low richness and where there is only 

one or a few dominating environmental factors (e.g., light limitation for understory plants, or soil 

nutrient limitation for desert microbes). 

(d) Broken stick model. This was proposed by MacArthur (1957) and is common in those 

communities where most species are almost equally abundant. Hence, resource is partitioned 

more equitably and no severe dominance is possible resulting in a less-steep dominance-

diversity plot. They are typically found in narrowly defined communities of closely related 

species. 

These different models have been developed to describe species abundance data and can be broadly 

divided into statistical models and mechanistic models. The different forms of models result from 
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different processes. The advantage of statistical methods lies in that they enable the parameter of the 

distribution to be used as an index for biodiversity, which further facilitates the comparison of two 

communities. However, when the goal is to explain rather than describe, the biological or theoretical 

model is useful. Biological models can be based either on the assumption that an ecological community 

has a property called niche space that is divided among the species that live there, or on the 

assumption of neutrality (that is, the absence of niches) 

 

5.1.3. Commonness and rarity 

In previous sections, it has been mentioned that an ecological community is characterized by a few 

abundant and most rare species. Hanski (1982) proposed a “general rule” of nature where the common 

species are widely distributed and rare species are restricted. However, the boundary between the 

common and rare is a relative concept and depends on the scale of investigation. Also, sampling 

methodology may have a large impact on the perception of rarity. Rabinowitz and her colleagues 

(Rabinowitz 1981; Rabinowitz et al., 1986) proposed that a species rarity status is a function of three 

characteristics- geographic distribution, habitat specificity and local population size. Later, Gaston 

(1994) proposed that rare species as those that fall in the lower quartile in an assemblage. Likewise, 

the upper quartile can be used to identify common species (Figure 5.1), although this approach de-

emphasizes the proportion of low abundance species in an assemblage (Maina and Howe, 2000). In 

addition, this quartile criterion may mask the differences in the preponderance of rare species in 

different assemblages. However, it provides a starting point to subsequently divide the species as rare 

(tail, hereafter) and common (head, hereafter) (Section 5.2.5: defining head and tail species). 

 

In recent years, molecular methods for microbial community analysis have provided a new 

understanding of species distribution and diversity. The advent of culture-independent methods have 

created new opportunities to understand the genetic diversity, population structure, and ecological 

roles of communities of microorganisms. Perhaps molecular data has provided us with the greatest 

wealth of information, but the biggest problem has been to delimit species based on these sequences 

(single locus molecular data). A lack of suitable universal criteria to delimit Operational Taxonomic Units 

(OTU) the cluster of sequences roughly corresponding a microbial 'species' has remained a big 

challenge. This is because species are well separated in cases, like those of most multicellular 

organisms, where population size is small and birth rate is low. When organisms that are genetically 

distinguishable are morphologically very similar, or vice-versa, the correspondence between OTUs and 

species is more problematic. On the other hand, next generation DNA sequencing techniques have 

transformed microbial ecology. In particular, they allowed us to answer important questions such as 

what are the drivers of the enormous genetic and metabolic diversity in an environment by providing 
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Figure 5.1 Delimiting rare species. Gaston (1994) defined rare species as those that fall in the lower quartile (in 
terms of proportion of species) of the species distribution model. Likewise the upper quartile can be used to 
identify common species. 
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 a coverage of microbial diversity two-three orders of magnitude higher than morphology-based 

methods. In general, the dominant components of microbial communities always mask the detection 

of low abundance microorganisms which constitute a highly diverse “rare biosphere” in almost every 

environmental sample (Lauber et al. 2009). This “rare biosphere” is largely unexplored and offers a 

potentially inexhaustible genetic reservoir that is compatible with the ‘everything is everywhere, but 

the environment selects’ credo.  

 

5.1.4. Power-law distribution 

Despite their potential importance and wide occurrence in biological and ecological systems, power-

law distributions remain little explored in ecological studies. In community ecology, many phenomena 

are characterized by a sudden production and slow loss or vice-versa, which is expected to lead 

towards the emergence of power-law structures. In general, they are expected in a system that are 

repeatedly forced away from equilibrium conditions (Barenblatt, 1996; Bak et al., 1988).  

 

In general, power-law relationships are defined as the relationships where some quantity can be 

expressed as some power of another. It can be expressed as,  

y = βxα, 

where, α is the power-law exponent. The distributions characterized by power law functions will 

appear as a straight line in log-log plots. It should be stressed that, when a distribution exhibits a power 

law-like shape, it can do so only over a finite range of event sizes, either bounded between a lower 

and an upper cut-off, or above a lower threshold, i.e., only in the tail of the observed distribution. RADs 

often display a fast exponential decay in the tail indicating the distribution with tails to be a power-law 

distribution. 

 

Properties. There are two main characteristics associated with power-law relationships that set apart 

their theoretical and empirical importance. First, they display invariance under scale change, i.e., are 

scale-invariant (e.g., Sornette, 2000; Stanley et al., 2000; Gisiger, 2001), and second, their universality. 

Owing to their properties, the analysis of power-law relationships can help in identifying the existence 

of general/universal principles within ecological systems (Marquet et al., 2007). 

 

Power-laws in ecology. The property of scale-invariance makes them very well suited for the study of 

ecological systems, which show variability at different temporal, spatial and organizational scales such 

that there is no single ‘correct scale’ for their analysis (Levin, 1992). In the past two decades, many 

studies have attempted to fit ecological data to diagnose ecosystem complexity (Miramontes 1995; 

Bak, 1996; Keitt and Marquet, 1996; Rhodes et al., 1997; Ferrier and Cazelles, 1999; Gisiger, 2001; Roy 
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et al., 2003; Pascual and Guichard, 2005). For instance, Li (2002) studied the macroecological patterns 

of pico- and nano-phytoplanktonic communities and reported that their total abundance was related 

to assemblage mean cell size according to the 3/4 power-law of allometric scaling in biology. However, 

the exponent has been reported to be closer to –1 when analyzing species in more than one trophic 

level (de Boer and Prins, 2002; Cohen et al., 2003). Passy and Legendre (2006) found that the behavior 

of higher taxa richness is a function of species richness that conforms to power-law. All these studies 

have interrogated biomass-size spectra, metabolic spectra, and population growth rates to resolve 

ecological complexity (Marquet et al. 2005). In recent years, power-laws in population fluctuations 

have also been the focus of research. Instead of focusing on differences among species in a 

comparative frame, these studies seek to separate general patterns that are invariant across 

taxonomic groups (Seuront, 2010).  

 

The power-law behavior has been claimed for many distribution studies, for instance, species-area 

relationships (SARs) focusing on abundance distributions (Preston 1948; May, 1975), the allocation of 

individuals (Sizling and Storch, 2003; Plotkin et al., 2000), or population dynamics (Hubbell, 2001; 

Durrett and Levin, 1996). SARs are commonly described as a power-law function with a scaling 

exponent of ¼ (Lomolino, 2000; Schoener et al., 2001). Martín and Goldenfeld (2006) argued that 

power-law SARs are a robust consequence of a skewed species abundance distribution (SAD) 

resembling a log-normal with higher rarity. Based on mathematical relations, Irie and Tokita (2006) 

suggested a common mechanism for SADs and SARs. Using data on marine fish communities, Ferriere 

and Cazelles (1999) reported that intermittent rarity in communities of interacting species is governed 

by a well-defined -3/2 power-law. 

 

A recent metagenomics analysis of marine phage communities suggested that the long-term decay of 

isolated phage populations follows a power law (Hoffmann et al., 2007; Edwards and Rohwer, 2005). 

These study showed that molecular data can aid in unveiling ecological complexity of phage 

communities. Other studies on microbial communities have shown exponential tails (Goldenfeld, 

2013). It certainly would be interesting to investigate whether diversity in ecological systems can be 

explained by simple laws or principles. Power-law has emerged as a mathematical (and statistical) 

descriptor of the patterns in nature. Different communities, drawn at a global spatial scale, can be 

interrogated to see if there exist any universal patterns. If so then it would be equally interesting and 

important to see if it can be fitted with a power function. 
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5.1.5. Structure of the study 

Microbial eukaryotes on Earth actively influence the functioning of the Earth system, however the vast 

majority are still uncultured and uncharacterized. The introduction of molecular-based, culture-

independent techniques have facilitated new insights into the diversity of microbial eukaryotes and has 

assisted investigations of their global diversity. Using Illumina sequencing-based profiling (de Vargas et 

al., 2015) of the samples collected during the Tara Oceans expedition (Karsenti et al., 2011), a global 

community dataset was obtained. These data sets are unique in that they offer a view on marine 

ecosystems at different orders of magnitude in size. A total of 161 samples from sub-surface layer of 

the ocean, spanning four size classes, i.e. 0.8-5 µm, 5-20 µm, 20-180 µm and 180-2000 µm, were 

selected for this study. The underlying objective of this study was to study the organization of the sub-

surface communities of protists to develop an understanding about the processes controlling it. 

 

Different processes might be occurring at the same time even within a single level of observation, for 

instance, rare and common species might be subjected to different structuring processes if they are 

differently integrated in the ecosystem. To understand the varying impact of processes on the 

commonness or rarity pattern, the first step is to delineate rare and common ribotypes. In the present 

study, the variation in the total number of rare ribotypes across different sampling sites was studied. 

 

In the next level, I attempted to develop a framework that can be used as a potential tool to identify 

and classify structures in marine ecosystems and also to infer the underlying processes that generate 

the observed patterns. Rank abundance curve was obtained for each sample and its shapes, especially 

of the tail, was studied. The characteristic shapes of the tail of RAD curve can be used to hypothesize 

its origin. For instance, in phytoplankton community distribution, it can be speculated that mixing or 

changing nutrients and/or zooplankton concentrations will alter its distribution and intensity to the 

extent that they will affect the characteristic exponents. Thus, the identification and the classification 

of the exponent of the tail could allow one to relate its change to some feature of the environment.   

 

In the present study, I plotted RADs for all the protists in a globally distributed set of Tara Oceans 

surface samples and found a long-tailed distribution that appears to follow a power-law behavior. 

Further, a statistical approach was used to elucidate the nature and extent of microbial eukaryotic 

diversity. Li and co-workers (2012) have demonstrated that the variation of diversity within low 

abundant taxa cannot be sufficiently quantified with standard ecological diversity indices. This 

motivated me to see whether the slope of the tail fitted by power-law can be used as a diversity 

estimate. In brief, this work explores (i) the shape of the tail of RADs for marine protist communities, 

(ii) the range of the power law exponent of the fitted tail, (iii) commonness and rarity patterns. In  
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Figure 5.2. Protist dataset used in the study.  
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addition, we assessed the occurrence of a ribotype across sampling sites to understand the extent to 

which a rare ribotype remains rare in space (i.e., intermittent rarity). 

 

5.2. Materials and methods 

5.2.1. Protist dataset 

Tara Oceans has provided an unprecedented opportunity to examine microbial diversity within and 

across the oceans through Illumina sequencing-based profiling of the hypervariable V9 region (or 

ribotypes) of 18s rDNA gene sequences from 46 stations across six oceanic provinces (For detail, see 

Chapter I). For the current study, we selected those ribotypes that were assigned to one of the 

protistan lineages from this comprehensive dataset. On this, we further applied a low-abundance filter, 

which discarded ribotypes whose abundance (total reads) did not exceed 10 reads in a sample, to avoid 

fluctuation due to sampling artifact or sequencing error. Thus, for the four size classes (pico-nano, 

nano-, micro- and meso-plankton), a total of 161 surface samples (132,187,241 reads; 137,249 unique 

ribotypes) were analyzed. The workflow is presented in Figure 5.2.  

 

5.2.2. Delineating rare ribotypes in the world’s ocean  

There are two alternate ways to look at patterns of commonness and rarity, i.e., amongst samples and 

within a sample. Firstly, to study the pattern amongst samples, a rank was allocated to each ribotype 

in decreasing order of their abundance and mean relative rank was computed. This was done for each 

size class. The occupancy, i.e., the number of stations in which the ribotype was found in, was plotted 

against its mean relative rank. 

 

Secondly, to delineate head (common) and tail (rare) ribotypes within a sample, a fixed threshold of 

60% was used. More specifically, the first 40% of the ribotypes were tagged as head and later 60 % as 

tail, thus each community was divided into head (common) and tail (rare) sub-communities. The 

community dissimilarity was calculated using Jaccard distance and communities were then clustered 

based on average linkage to see if the tail is a result of sequencing error. Also the ribotype composition 

of tail communities were studied to explore how these vary across stations (locally) / oceans 

(regionally). 

 

5.2.3. Fitting power-laws to the community data  

Many ecological models can be written as: y = f(x, P) + ε, where y is a vector of n measurements of a 

response variable, x is a vector of predictor variables, P is a vector of p unknown parameters, and ε is 

a vector of errors, currently called residuals. To apply the maximum likelihood method, a probability 
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distribution (often normal distribution) is assumed for the residuals. 

 

Maximum Likelihood Estimation (MLE). Goldstein et al. (2004) stressed that methods for determining 

the exponent of a power-law tail by graphical means, often used in practice, provide biased and 

inaccurate estimates. MLE offers a mathematically sound alternative to graphical methods to produce 

more accurate and robust estimates of a power-law tail exponent. MLE was first developed by the 

famous geneticist and statistician R. A. Fisher. It has been accepted as a standard statistical technique 

to estimate model parameters. As the name implies, MLE proceeds to maximize a likelihood function, 

which measures the agreement between the model and the data. For each data point, one has a 

function of the distribution’s parameters. The joint likelihood of the full data set is the product of these 

functions. This product is generally very small indeed, so the likelihood function is normally replaced 

by a log-likelihood function. MLE has been recommended on practical grounds as the most popular 

estimation technique in statistics owing to its four theoretical properties, i.e. consistency, asymptotic 

normality, asymptotic efficiency and asymptotic invariance. 

 

Computing the power-law exponent using maximum-likelihood. We attempted to establish a method 

for identifying the power-law regime and for estimating the exponent of the power-law regime. The R 

function, stats4, was used to fit the RAD with MLE. The steps used were as follows: 

Step 1. For each community, ribotypes were ranked in decreasing order of their abundance. 

Step 2. An initial set of “tail” ribotype sub-communities were chosen based on Gaston’s quartile 

criterion (1994). The lowest-rank ribotype of the tail was stored (q). 

Step 3. An initial fit to a power-law (linear function in log-log scale) was performed, using MLE, with all 

ribotypes of the sample under study.  

Step 4. The same procedure was repeated on progressively smaller sub-communities, obtained 

augmenting of one the minimal rank represented. In this way, the fit is performed on parts of 

the RAD that progressively exclude the more abundant ribotypes. 

Step 5. The log-likelihood function for the MLE of the linear fit was stored. 

Step 6. Repeat step 4, until the ribotype ranked “q” was met. 

Step 7. Out of the set of candidate models for each community, the model with the maximum log-

likelihood value was selected and the set of parameters were reported. The standard error of 

the linear regression was also reported as a measure of precision to the slope estimate. 
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5.3. Results 

The results from this study are divided into two major sections: (i) potential insights into commonness 

and rarity patterns of protists in the world’s ocean, and (ii) discerning, quantifying and comparing 

power-law behavior in different size classes (pico-, nano-, micro- and meso-plankton). 

 

5.3.1. Potential insights into commonness and rarity patterns of protists in the world’s ocean 

For each size class, the occupancy of all ribotypes under study were plotted against mean ranks (Figure 

5.3). Each quadrant was characterized as follows: 

Quadrant I: high mean relative rank and high occupancy, 

Quadrant II: high mean relative rank and low occupancy, 

Quadrant III: low mean relative rank and low occupancy, 

Quadrant IV: low mean relative rank and high occupancy. 

Of these, we found that the majority (~82-90%) of the ribotypes were seen in the third quadrant (i.e., 

low mean relative rank and low occupancy), indicating that the majority of the ribotypes in the head 

are not cosmopolitan, in general. On the other hand there were only a few ribotypes in the first 

quadrant (i.e., high mean relative rank and high occupancy), indicating that rare ribotypes are not 

cosmopolitan. The overall shape of the distribution was very different for the smallest size fraction in 

comparison to the others (Figure 5.3). Ribotypes with high mean relative rank and high occupancy 

were seen only in the smallest size fraction. The taxonomic composition of each quadrant revealed 

that the overall composition of quadrant III (QIII; with majority of ribotypes) varies greatly among the 

four size classes (Figure 5.4). For the smallest size class, QIII was highly diverse, whereas it was 

dominated by Collodaria in the largest size class. 

 

A “head” and “tail” community for each station was obtained using a fixed threshold (40% and 60% in 

log-log scale, respectively). This threshold was used to obtain the head and tail sub-communities for 

each sample under study. Most of the ribotypes were seen in the “head” community in one station 

and in the “tail” community in other stations. This substantial overlap, i.e., the ribotypes appearing in 

both head and tail, suggested that there exist only a few ribotypes that were exclusively heads or tails, 

favoring the view of “intermittent rarity” (Ferriere and Cazelles, 1999). The community dissimilarity for 

“head” and “tail” were calculated using Jaccard distance and the dendrograms (Figure 5.5) illustrated 

that the “tail” (rare) communities clustered separately from the “head” (common) of the same RADs. 

This would not be the case if the tails were the effect of sequencing errors, in which case the probability 

that the same error occurred repeatedly in two different samples (even with a similar composition) 

would be minimal in the absence of massive sequencing biases. Thus, the study of dissimilarity  
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Figure 5.3. Occupancy vs mean relative rank. (A) Pico (0.8-5 µm), (B) nano (5-20 µm), (C) micro (20-180 µm) and 
(D) meso (180-2000 µm). Occupancy correspond to the number of stations in which a ribotype is seen, relativized 
by total number of stations for each group under study.  
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Figure 5.4. Taxonomic composition for each quadrant. (A) pico (0.8-5 µm), (B) nano (5-20 µm), (C) micro (20-
180 µm) and (D) meso (180-2000 µm). 
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Figure 5.5. Hierarchical clustering of head and tail communities. (A) pico (0.8-5 µm), (B) nano (5-20 µm), (C) 

micro (20-180 µm) and (D) meso (180-2000 µm). 
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Figure 5.6. How similar is the tail across stations? (A) Pico (0.8-5 µm), (B) nano (5-20 µm), (C) micro (20-180 µm) 

and (D) meso (180-2000 µm). 
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Figure 5.7. RAD grouped by size classes. Each curve represent a station color-code by the oceanic province. 
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between common and rare communities suggest that the tail does not appear to be due to sequencing 

errors. Moreover, the same conclusions are maintained at coarser taxonomic resolutions, when 

ribotypes are clustered into swarms. The tail-communities were found to differ significantly across 

various sampling stations, as evident from the very low (<0.15) Jaccard similarity indices (Figure 5.6), 

consistently with the observation of the paucity of rare cosmopolitan ribotypes.  

 

5.3.2. Discerning, quantifying and comparing power-law behavior 

 

5.3.2.1. Rank-abundance distributions (RADs)  

For each community (one size class of one station), the RAD based on ribotypes was plotted on a log-

log scale (Figure 5.7). Interestingly, on the first hand our data indicated that the tail appears to follow 

a power-law behavior for almost every protistan community of different sizes. 

 

5.3.2.2. Power-law fit to the community dataset 

In this study, I chose an initial subset of a rank ordered list (descending) of ribotypes (as tail; red curve 

in Figures H5.1, annex) in the lower quantile following Gaston’s quantile approach. This limit was 

extended (blue curve in Figures H5.1, annex) to include those ribotypes which best fit a power-law 

model. The exponent of such a power-law was estimated using the maximum likelihood (MLE) 

approach (Figures H5.1, annex). The slope varies primarily between size, independently of the 

ecosystem studied and the sampling period (Figure 5.8). For the pico-protist fraction, the slope statistic 

was found with a mean value of -1.54 and median of -1.58 (range: -1.96 to -0.98). For the nano-protist 

fraction, a slope statistic was found with a mean value of -1.33 and median of -1.32 (range: -2.29 to -

0.87). For the micro-protist fraction, the slope statistic was found with a mean value of -1.25 and 

median of -1.23 (range: -1.78 to -0.9). For the meso-protist fraction, the slope statistic was found with 

a mean value of -1.41 and median of -0.89 (range: -2.36 to -0.89). Interestingly, dropping a few outliers 

showed that the slope has very little variation and was in the range of -1.6 to -1.2 for all size fractions 

(shaded region, Figure 5.8). The power-law fit was more accurate in the pico- and micro size-classes, 

whereas it was not found to be a very convincing choice for the other two size-classes, probably due 

to under-sampling. Also, most of the outliers (mainly the large size-class) were the cases where the 

power-law was not a good fit, and all the outliers in the larger size fraction were from the low abundant 

communities, where a power-law may be potentially masked by under-sampling. Interestingly, all the 

communities in the Southern Ocean were outliers in the pico-communities for the power-law 

exponent, due to its large population size. In general, power-law was not a good fit for either the very 

abundant and low abundant communities. On one hand, the most stations with higher total abundance 

of ribotypes deviated toward the less steeper (less negative slope) and on the other hand the low  
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Figure 5.8. Variation in slope in communities from different sampling stations for each size class.  
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abundant stations exhibited a steep slope. The length over which the RADs were fitted with power-

law was over 3 decades in most cases. For the pico-communities, the size of the fit centered around 

3.5-3.75 decade class (Figures 5.9). Additionally, it appeared that the gradient of the fit was more 

similar within a station. 

 

5.3.2.3. Variation in power-law exponent 

Across size classes. We then explored whether general patterns in slope variation emerged across size 

classes (Figures 5.10). The meso-protist fraction showed the highest median slope whereas the pico-

protist fraction exhibited the lowest median slope. Mann-Whitney-Wilcoxon test was used to test if 

the median slopes were significantly different for each comparison (Table H5.1, annex) and it was 

found that the median slope for the pico-community was significantly different from the other size 

classes. A remarkable difference was found in the pico-protist community with respect to other 

protistan size classes.  

 

Across different oceanic provinces. For each oceanic province, the median slope of the tail showed 

remarkable variation for pico- and nano- communities. However, for bigger size classes comparatively 

less variation was seen. The median slope grouped based on the oceanic provinces showed that for 

the pico-community, the Mediterranean province has a very different slope, but for the rest of the size 

classes it was closer to the slopes of the other provinces (Figure 5.11 and H5.2). 

 

Across different latitudinal bands. The median slope grouped according to latitudinal bands showed 

unique patterns (Figure 5.12 and H5.3). For pico- and nano- communities, the southernmost latitudinal 

band exhibited a different median slope in comparison to the others. Besides this exception the 

median slope was highly similar in almost all latitudinal bands. 

 

5.3.2.4. Is there any correlation between slopes and other indicators of diversity 

For each size class, the Shannon Diversity Index (SDI) and richness were compared against the 

estimated slopes. We found a significantly strong negative correlation between SDI and slope for the 

smallest size-class only (0.8-5 µm) (Figure 5.13A-C).  For the richness, a significant positive correlation 

was seen for the micro community (20-180 µm) (Figure 5.13B-C). The pico-community showed an 

opposite relation to SDI (and richness) in comparison to the larger size-size-classes. 
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Figure 5.9. Size of the fit. (A) Scatterplot of the value of the slope vs the extension of the tail. (B) Frequency of 
computed slope exponents against each extension of tail corresponding to the size of fit.  
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Figure 5.10. Boxplot of slopes clustered based on size. (A) For all communities, (B) without outliers (pale shaded 
area in Figure 5.9).The overall dashed line represents the median for each class. 
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Figure 5.11. Boxplot of slope clustered based on oceanic provinces. Slope of the communities in the shaded 
portion in Figure 5.9 are used.  

 

 

 
Figure 5.12. For all size fractions, boxplot of slope clustered based on latitudinal bands. Slopes of the 
communities in the shaded portion in Figure 5.9 are used. 
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C 
Size class 

Shannon vs slope Richness vs slope 

r p-value r p-value 

Pico -0.66 0.00 -0.17 0.343 

Nano 0.39 0.070 0.22 0.324 

Micro 0.04 0.820 0.45 0.007 

Meso -0.08 0.734 0.08 0.599 

 

Figure 5.13. Is there is any correlation between slopes and other indicators of diversity? Comparison of (A) 

Shannon Diversity Index vs slope, and (B) log(richness) vs slope. For each size class, the Shannon Diversity Index 

was compared against the estimated slope. Dotted line represents a regression line across each point. There is a 

closer relation between Shannon and slope than richness for all size classes. (C) Pearson’s correlation coefficient. 

Open circle corresponds to outliers and were dropped from regression and correlation tests. 
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5.4. Discussion 

Quantifying diversity is of central importance for the study of structure, function and evolution of 

microbial communities. The estimation of microbial diversity has received renewed attention with the 

advent of large-sale metabarcoding studies, considering that diversity observed in a sample tells us 

about the diversity of the community being sampled. Many independent studies, from terrestrial to 

marine, have reported that an ecological community is characterized by a few abundant and most rare 

species. 

 

5.4.1. Potential insights into commonness and rarity patterns in the world’s ocean 

Rarity is common among ecological communities and is defined by two attributes, abundance and 

spatial distribution. An open question is why a particular species is common or rare. Another related 

question is: what are the potential ecological mechanisms that influence rarity or commonness? Kunin 

(1997) demonstrated that all species are rare everywhere. However, other studies have reported that 

some species are rare everywhere (Orians1997). A number of causes of rarity have been reported in 

literature (Gaston 1994; Kunin, 1997). The three major mechanisms include: ecological specialization, 

lack of dispersal, and historical contingency. To understand how rarity varies, one needs to define a 

“boundary” to distinguish rare from common. We chose to regard rarity as simply being the state of 

having a low abundance and/or a low occupancy (Figure 5.3). It should be emphasized here that rarity 

is influenced by the spatial scale at which the study is performed and that the categorization is made 

with respect to that particular spatial scale. Sampling artifacts is yet another issue which can inflate 

the number of ribotypes detected as rare. However, sometimes a rare species is not detected at all 

which leads to an underestimate of rare species.  

 

The temporal and spatial dynamics of many populations involves intermittent rarity, that is, the 

alteration of extremely low abundance and short outbreaks. One of the major causes of this could be 

the result of competitive interactions within and between species. These intermittently rare species 

serve as weak invaders in fluctuating communities (Ferriere and Cazelles, 1999). On a temporal scale, 

Ferriere and Cazelles (1999) proposed that the intermittent rarity is governed by a well-defined power-

law and that the scaling parameter (-3/2) is a universal feature of it. In brief, the dynamics of rarity 

have no characteristic time scale. At a global scale, the rarity and endemism (occurring only within a 

restricted area) are associated but not interchangeable concepts. This is well illustrated by the 

statement made by Kruckeberg and Rabinowitz (1985) that “the narrow or local endemic is the one 

that best fits the colloquial notion of rarity. However, the term endemism, in its classical geographic 

usage does not imply rarity or even small range”. Ridley (1993) demonstrated that rarity may influence 
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evolutionary dynamics through its two aspects (i.e., small local population and small range size). Other 

studies have reported that rarity may have differing evolutionary roles at different spatial, temporal 

or comparative scales. 

 

5.4.2. How plankton gets dispersed in random environments 

In this study, I explored different properties of the common versus the rare occurrences, separating 

‘heads’ and ‘tails’ of the distribution within every sample. This way, one can think of partitioning a 

community into common species that are adapted to the local environment (in the ‘head’, which will 

probably take an exponential form), and in rare species that may subsist in the background due to 

reduced selective pressure and immigration. Indeed, the expectations on its structure are different 

depending on the relation between the ribotypes of the ‘heads’ and ‘tails’. Further, if the tail was 

generated by sequencing mistakes or by small-scale ('within species') radiation, one would expect the 

tail to always cluster together with the head; different samples would give rise to different tails. Such 

a result might also be the consequence of the tight relationship of rare species within communities 

dominated by abundant ones. If the tail reflected instead a 'rare biosphere' that is present in the 

background whatever the dominant species are, then the tails might cluster (Figure 5.5) together at a 

scale larger with respect to the heads. Heads would show a stronger biogeographical connotation, and 

have a stronger correlation with environmental variables; tails would reflect the relationship with the 

environment on a longer time scale, and thus be more uniform across spatial and temporal scales due 

to stirring. Still, one would expect that biogeographical domains would be visible, e.g., that the rare 

biosphere of the North Pacific would be separated from the rare biosphere of the Indian Ocean (Figure 

5.6).  

 

5.4.3. Power laws in ecology 

Rank abundance distribution has been the method of choice to study species abundance distributions. 

The application of the power-law model, log(p) = log(c) + z log(a),  to describing species distribution 

was first proposed by Gaston (1994) and Kunin (1998). It was observed that ribotype RADs do not 

appear to fit to one single distribution type which indicates that it should be explained as a 

superposition of RAD types rather than a single one. The tail of rare species was fitted independently 

of the rest of the distribution with one law, while the head of most abundant ribotypes may be 

explained by another law (and possibly a different one in blooming stations with respect to oligotrophic 

ones). The crossing-over to a different 'regime' for rare species may however be absent, or take 

different forms depending on the way the ecosystem is looked at. At the first instance, it was observed 

that ribotype RADs have a power-law tail (Zipf's law) in almost all samples. However, the distribution 
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of common ribotypes exhibited a variation in shape. The striking feature of the distribution of rare 

species is that not only the power law extends over several orders of magnitude (usually, ecological 

data do not allow such a resolution), but also that the exponent of all samples lies in the interval (-2 to 

-1; Figure 5.9), suggesting a common origin. Interestingly, it was found that the median exponent 

appeared to be different in different size classes, indicating a fatter tail with the increase in size. Such 

a common origin could be artifactual, either due to similarities in the error patterns of the 

amplification-sequencing, or due to sampling issues. But it could equally be due to biological and 

ecological features of the ecosystem, for instance the persistence of rare species in a 'neutral' life style. 

The power-law would be in this case explained by the ongoing evolutionary processes at the molecular 

level, that continuously create new variants by mutation and recombination, and by the fact that those 

variants are not strongly selected. Other possible sources of polynomial tails might be intermittent 

physical forcing by ocean turbulence or another complex ecological dynamics of the planktonic 

populations. It is not entirely clear how to tease apart these different potential explanations.   

 

In the ocean, theoretical models classically predict that phytoplankton community structure is shaped 

heavily by ecological processes such as competition and dispersal. Both these processes are coupled 

to the peculiar physical properties of the open ocean such as advection and turbulence (Li, 2002). 

Competition is also likely to be a dominant process at short time scales, and in instances where the 

community experiences a bloom. Variants/species that are most adapted to a given environmental 

condition (typically defined by the water mass that contains the community) may quickly take over the 

community, thus resulting in a RAD very concentrated on a few classes (the blooming species and those 

that are directly connected to them because of mutualistic/parasitic/trophic interactions). The effect 

of competition may however be absent on the tail, representing rare classes that are completely out 

of the game. Such rare classes may persist in forms of dormancy, or take advantage of not having a 

direct competition with others. They may be carried around by currents and would be little affected 

by the ecological dynamics at a specific point in time and space. They would be broadly distributed, 

and they would correlate more weakly with specific environmental conditions. 

 

5.4.4. Explanations of power-laws 

The commonly used ecological indices for quantifying inter-sample diversity, Shannon and Simpson’s, 

can perform well when approximating the microbial diversity of common taxa. However, each may fall 

short as a single complete measure when examining the numerous low abundant organisms that 

dominate the composition of many microbial communities. Since these indices are unable to capture 

enough of the low abundant taxa, I attempted to formulate a rank based diversity measure, i.e., the 

slope of the tail. But this statistic was found to be stable and, hence, anything that is almost constant 
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cannot be used as a measure of variation. On the other hand, its constancy is what makes it interesting 

if one looks for 'universal' laws. 

 

With the aforementioned frequent occurrence of power-law distributions in biology and elsewhere, it 

seems natural to ask what are the explanation(s) for this widespread statistical feature in nature? 

Several reasonable mechanisms have been proposed that can possibly lead to a power-law behavior. 

Three of the utmost reported notions are (a) Out-of-equilibrium phase transitions and self-organized 

criticality (SOC; Bak et al., 1987), a property of dynamical systems that was proposed to explain the 

occurrence of complex phenomena. The term “self-organized criticality” emphasizes two aspects of 

system behavior. First, self-organization, to describe the ability of dynamic systems in the absence of 

control to develop specific structures and patterns. Second, criticality, to emphasize that a system stays 

at the border of stability and chaos; (b) highly optimized tolerance (HOT; Carlson and Doyle, 1999), a 

mechanism for complexity based on robustness tradeoffs in systems subject to uncertain (or evolving) 

environments. In evolution, it describes power-laws as optimal adaptations; and (c) theory of 

intermittent chaos (Pomeau and Manneville, 1979; 1980), projecting the intermittent chaos as the 

weak turbulent state in which the steady motion or the periodic motion is abruptly disturbed by 

random bursts, and that is found in many dynamical systems. For marine microbial ecosystems, which 

are far from equilibrium, power-laws may be explained due to turbulence and evolutionary branching. 

By getting an understanding of the principal mechanism, it is possible to identify the most relevant one 

for a given problem. This study is an attempt in this direction to elucidate the determinants of 

variability in species abundance, which has often been deemed as a central issue by ecologists. In this 

direction, the most important question one may ask is “whether those species that we presently regard 

as rare have also been rare in the past and are likely to be so in the future”.  

 

To explain the power-law by ongoing evolutionary processes at the molecular level, it would be 

interesting to check if the power-law tail is still present when clustering is performed (either with 

swarms or OTUs, provided they are in sufficient number for 'seeing' the tail). In principle, if we assume 

that sequencing errors have a similar effect as point mutations, all sequences that are artificially 

generated should fall into the same swarm. The use of swarms might thus cut the tail of the distribution 

drastically by filtering out artefacts; although it would also filter out real standing genetic diversity. If 

the tails are maintained with the swarm classification, this could indicate that they are not artefactual. 

However, one should check whether the power-law is still the same when swarms are used instead of 

ribotypes. Another aspect is that power-law distributions are predicted by models of branching, so 

that they may be expected at the level of barcodes if the exclusion of newly arising variants is slow 



Global Diatom Biodiversity: an Assessment Using Metabarcoding Approach  
 

Chapter 5  S Malviya 

 

188 

enough with respect to the process of radiation. On the other hand, they may be expected at the level 

of 'species' (using OTUs/swarms as a proxy), if 'speciation' was a fast enough process.  

 

To summarize, owing to their fundamental importance, the study of plankton biodiversity is a central 

element in ecological research. Many theories have been established to describe the distribution 

patterns and biodiversity at a global scale. This area of research has become important particularly due 

to the evolution of increasingly rapid circles under the influence of different actions, including human 

awareness of the importance of these trends in the environment. However, despite significant 

advances in the field, major obstacles remain and it is still very difficult to provide a relevant 

representation of the biodiversity at a global scale (Colwell, 2009). The study of marine microorganisms 

is no exception and has major difficulty related to the characteristics of the individuals being studied. 

Moreover, the notion of species along with size, variety, genetic proximity and more importantly 

ubiquity (Fenchel and Finlay, 2014) among these microbial organism demand an end-to-end systematic 

study. Considering the dichotomy between the dominant and rare types, it is possible to describe the 

characteristics of an environment with the shape of the rank abundance distribution and thereby this 

can provide a new biodiversity study tool. Studies have suggested a correlation between the chaotic 

movements and planktonic communities (Hernandez-Garcia and Lopez, 2004), which demonstrate a 

tendency towards power-law behavior (Stumpf and Porter, 2012). Using the plethora of sequencing 

data generated by Tara Oceans, the existence of a single slope suggests that common organizing 

processes may shape this seemingly universal feature of marine ecosystems.  The identification of the 

mechanism that underpin such property in the world oceans is beyond the scope of this study. 

However, the preliminary results presented in this chapter have nonetheless set the stage to gain a 

fine insight into some key ecological questions (using RADs), for instance, does species rank influence 

contribution to functional diversity? How do rare species contribute to functional diversity? Can we 

decouple ecological and evolutionary processes for microbial species in an environment that 

undergoes constant and massive perturbations? 



 

 

CHAPTER 6 

General Conclusions and Future Perspectives  
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“Ecological patterns, about which we construct theories, are only interesting if they are 

repeated. They may be repeated in space or in time, and they may be repeated from 

species to species. A pattern which has all of these kinds of repetition is of special interest 

because of its generality, and yet these very general events are only seen by ecologists 

with rather blurred vision. The very sharp-sighted always find discrepancies and are able 

to say that there is no generality, only a spectrum of special cases. This diversity of outlook 

has proved useful in every science, but it is nowhere more marked than in ecology.” 

–Robert MacArthur, 1968 

 
This study set out to explore global patterns of biodiversity of marine planktonic diatoms and to gain 

insights into the mechanisms involved in their community structure and assembly. The study also 

sought to examine Rank Abundance Distributions (RADs) within planktonic protistan communities to 

explore if there exists a universal power-law tail. Despite recent progress, our knowledge of the factors 

that account for biogeographic patterns remains limited. Owing to the enormous diversity prevalent 

in diatoms (and other microbial eukaryotes) in their natural environments, one of the major challenges 

remains the difficulty of fully addressing diversity, even with the advances in high-throughput 

sequencing technologies. This, in turn, limits our knowledge of the fundamental principles involved in 

microbial geography. However, diatoms are present ubiquitously and hence have allowed me to test 

microbial biogeographic theories to uncover the processes that might explain their diversity and 

distribution. To achieve an insight into biogeographical patterns, the key precept applied was to use a 

standardized DNA region, which can be used to identify known species and to aid in the discovery of 

undescribed ones (Hebert et al., 2003). The study sought to address the following key questions: to 

determine how diatom abundance and diversity vary in the world ocean, to evaluate if the diversity is 

consistent across different size classes and oceanic provinces, and to develop an understanding of how 

their communities are structured.  

 

A metabarcoding approach for diversity assessment was developed (Chapter 2) in this thesis. 

Comparable overlap between the classical morphological method using light microscopy (LM) and 

molecular identification method illustrated that the metabarcoding approach offers a promising way 

to perform diatom diversity assessments. In some samples, it was found that a few genera could be 

identified only by light microscopy. On the other hand, it was also observed that a few genera were 

identified based on their sequence, not by their morphology. The former observation is probably due 

to the lack of representative sequences in the reference database, whereas the latter might occur 

either due to those genera being cryptic species or them being over-shadowed by a few excessively 

dominant genera. A more complete reference database will be of immense help in concluding the 

inferences here. 
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The unprecedented Tara Oceans dataset allowed a detailed evaluation of global diatom distribution 

and diversity. The saturating rarefaction curve indicated the completeness of the data. Further, the 

number of unobserved ribotypes evaluated by parametric estimators revealed that the sampling was 

65 % complete. All such diversity analyses are always based on three assumptions. First, a sample is a 

representative of the whole community; second, the genetic marker diversity is representative of the 

overall organism diversity; third, when comparing samples from different environments, one assumes 

that all the biases, i.e., sampling, sequencing and diversity calculations, are similar across 

environments. 

 

This first in-depth global study of diatoms using metabarcoding revealed that,  

 diatom abundances and diversities show complex patterns, 

 there is considerable unknown diversity within diatom communities, 

 highest abundances were in Southern Ocean, Malvinas confluence, Benguela and Peruvian 

upwellings,  

 diatom communities show ecological and biogeographical patterns, 

 physical forcing is a major driver of diatom biodiversity, 

 there is exceptionally high diatom diversity in the open ocean. 

 

In addition, the distribution of well-studied genera was found to be consistent with other previously 

reported studies. The worldwide distribution of different ribotypes from the most abundant diatom 

genera is consistent with the fact that diatoms have evolved to adapt to varying environmental 

conditions to exploit a range of ecological niches.  

 

The diatoms are known to favor nutrient rich coastal environments. In contrast to coastal boundaries, 

the open oceans are areas away from the coast and continental shelves and are highly heterogeneous 

and dynamic in nature. The remarkably high diatom diversity recorded in such an area in this study is 

surprising as such areas are deprived of the essential nutrients that are required for species sustenance 

and growth. Although diatoms are known to be a widespread group and can adapt to varying 

environmental conditions, it is expected that only a few well-adapted species could tolerate such 

conditions. Our study revealed high diversity in these zones, which in turn also suggests a larger 

number of species interactions which can further fundamentally affect ecosystem properties. To-date, 

our knowledge regarding diversity patterns of diatoms in the open ocean is very scarce.  
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The various physico-chemical parameters and other contextual data collected during the Tara Oceans 

expedition offered to develop an understanding of the processes that are involved in structuring 

marine diatom communities and controlling their biodiversity. Over the past decade, there has been 

an enduring interest in identifying simple rules and laws which define the observed complex 

phenomena in nature, for instance, the spatial distribution of a microbial organism in the ocean. This 

complexity of a dynamic phenomenon is a result of interplay of relationships among the units of 

communities, acting at a spatial and temporal scale. In the recent past, ecologists have proposed 

several restricted theories or empirical models, e.g., niche theories, dispersal theories, power-laws, to 

capture an insight into the underlying complex dynamic phenomenon (e.g., Hubbell, 2011; Hutchinson, 

1957; Chase and Leibold, 2003; Levin et al., 2003).  There has been a long on-going debate on whether 

these restricted theories alone can explain all the aspects, considering these processes being inter-

dependent and non-linear. Collectively, these studies and the present thesis emphasize that the 

development and maintenance of ecological communities are controlled by multiple processes (e.g., 

Figure 6.1) that act together in an interactive manner. Here, I show that environmental heterogeneity 

is not always the only factor in structuring diatom communities but that dispersal limitation also 

mediates its structure (Chapter 3). The results have demonstrated that diatoms are not a randomly 

distributed entity at a large spatial scale, but rather represent a biogeographically structured ecological 

community, regulated by both environmental heterogeneity and spatial processes.  

 

Next, the distinct behavior and response to environmental conditions were evaluated by expressing 

co-occurring ribotypes in significantly associated clusters. Each identified cluster was expressed as a 

function of varying environmental parameters (Chapter 4).  

 

Finally, a broader study on the whole marine eukaryotic microbial community revealed that all the 

sampled communities followed comparable structural patterns. These were characterized by a few 

dominant ribotypes representing the majority of abundance and a large number of rare ribotypes 

representing a long tail (Chapter 5). Preliminary analyses demonstrated that the tail of the rank 

abundance distributions (RADs) exhibit a power-law behavior. However, detecting power-laws in these 

systems is subjected to caution as they are associated with chaotic events. Previous studies have 

emphasized the correlation between chaotic movements and planktonic communities which 

demonstrated a tendency towards power-law behavior.  

 
One of the most enduring principles of microbial ecology over the years has been “everything is 

everywhere, but the environment selects” (Baas Becking, 1934). It reflects the notion that microbial 

species are not limited by dispersion, and that a site’s species profile results from winnowing down a  
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Conceptual construct I 
(Source: Figure 4 from Vellend 2010). 

 

 
 
 
 

Conceptual construct II 
(Figure modified from HilleRisLambers et al. (2012)) 
 

 
 
Figure 6.1. Examples of existing organizational frameworks in Community Ecology. Upper panel: Selection, 
drift, speciation, and dispersal interact to determine community dynamics across spatial scales. Note that 
ecological drift as a key processes is important because it suggests that some patterns of abundance are simply 
stochastic which results from the demographic equivalence or similarity between species. Lower panel: Typical 
filter model of community assembly.  
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comprehensive list of organisms based on environmental parameters. In this thesis, large-scale 

diversity gradients were examined using 46 sampling stations across the world ocean and the overlap 

between diatom community structures was examined at local and regional scales. According to Bass 

Becking, organisms well suited to a demanding environment would have the same universal access to 

it regardless of its distance from a similar, already-colonized site. On the contrary, this study showed 

that community dissimilarity increases with the increasing spatial distance between sampling stations, 

suggesting that there exists something that inhibits global dispersal forces. This finding is in line with a 

similar study reported for bacteria (Sul et al., 2013). A latitudinal diversity gradient was also found for 

diatom communities, as reported for bacteria by Sul et al. (2013). A more complete picture in this 

regard can be obtained in the future as the data from 170 distinct Tara Oceans stations spread globally 

across the world ocean will shortly be available. Nevertheless, this study demonstrated that in addition 

to environmental factors, ocean currents, turbulence and/or advection play key roles in governing 

diatom diversity. The revised proclamation (Sul et al., 2013): “everything is not everywhere, and the 

environment selects” appears appropriate also for marine diatom communities. 

 

Various scientific reports have emphasized the key role of microbes in regulating Earth’s climate. 

However, microbial diversity, in itself, is being altered by the ongoing human-induced climate change. 

As a result of this alteration, dominant species may become extinct and completely unknown species 

may become dominant. In recent years, there has been an increasing interest in the discovery of 

marine microbial diversity, but still there is a long way to go. The biggest challenge posed for studying 

them is that the vast majority (>90%) of these microbes cannot be cultured and hence cannot be 

studied with classical methods. Therefore, in the light of loss or degradation of marine biodiversity and 

impacts of climate change which rapidly alter ecosystems worldwide, there is an urgent need for 

standardized and comparable data in order to detect changes of biodiversity. The metabarcoding 

approach described in this thesis provides a method for a comprehensive diversity assessment and 

evaluation. This method has been shown to be representative as well as pragmatic. 

 

Answers to various ecological questions and our increasing concerns about climate change and other 

environmental problems are major incentives for pursuing global marine diversity assessments and to 

unveil how these changes are altering ecosystems and their services. In years to come, decoding the 

ecological and evolutionary rules governing this exceptional diversity will be essential for 

understanding one the most critical biomes for the functioning of the Earth system. Under the largely 

human induced environmental change, development of predictive habitat distribution models will 

enable us to forecast how ecological systems will behave in the future. The impetus for this effort may 
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promote an understanding of the effects of environmental change on the world and what might be 

performed to mitigate or adapt to them.  

 

Future research directions 

Despite the limitations (e.g. seasonality, reference DB), this study has demonstrated not only the 

validity of the metabarcoding approach for diatoms, but also the ways in which diatoms are distributed 

in the world’s oceans. I contend that my results demonstrate that beta diversity can reveal important 

aspects on a global scale, much in the same way that species richness is considered at either the alpha 

(sample) level or the gamma (regional) level (Chapter 2). Given that environmental heterogeneity 

demonstrated varying and significant impacts on diatoms of different size classes (Chapter 3), this 

study emphasizes to study not only species richness/composition, but how local communities vary 

across oceanic provinces. 

 

Perhaps one of the most straightforward and immediately beneficial approaches based on this work 

will be to apply the framework developed herein to the forthcoming data sets from all the Tara Oceans 

sampling stations, that cover eight oceanic provinces, and to study distribution and diversity of other 

taxonomic lineages (de Vargas, 2015). Exploiting these data sets to gain a complete end-to-end 

diversity assessment increases the return on investments of both time and finances. I encourage other 

groups to test the methods herein on their existing datasets to get a better picture of the generality of 

the results I obtained.  

 

In order to best describe the influences of niche-based environmental heterogeneity and spatial 

processes on community structure, it will be important to explore functional and phylogenetic 

diversity. Importantly, thanks to the continuing advances in computing power together with the 

availability of modifiable, open source computer codes and diversity tools, this is no longer an 

intimidating task. This synthesis will generate an even better picture of the processes that lead to the 

incredible patterns of organismal diversity observed around the world. 

 

Furthermore, it will be important to validate the methods developed in Chapter 5. Clearly I have not 

fully tested the metrics. In addition, to improve upon the work conducted herein, the following 

recommendations can be made for future studies:  

 Known unknowns. To explore the identity of these novel ribotypes, cloning and sequencing 

larger portions of the corresponding rDNA gene is recommended. 
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 Building an exhaustive and representative reference databases represents the most critical issue 

limiting sequence assignation. In the future, continued efforts in this direction will lead us 

towards a more complete quantification of novelty and diversity. 

 Disentangling the effect of highly correlated environmental variables by independently 

modelling associations of each of the two predictor variables with taxonomic/functional 

composition is recommended. This can be achieved using the approach described by Sunagawa 

et al. (2015).  

 Investigating the influence of within- and cross-kingdom biological interactions on community 

heterogeneity.  

 Considering the dichotomy between the dominant and rare types, describing the characteristics 

of an environment with the shape of the rank abundance distribution. 

 Investigating the impact of clustering on the structure of the tail of RAD which may facilitate an 

understanding of the ongoing evolutionary processes at the molecular level.  

 

With the availability of an unprecedented Tara oceans (2009-2013) metabarcoding dataset from 210 

stations covering eight major oceanic provinces, the predictive habitat distribution models remains 

another interesting perspective for future work because diversity studies are pivotal in providing 

insights regarding how their richness and community composition contribute to ecosystem function. 

Such studies may support the development of predictive habitat distribution modeling that describe 

how microbial communities will respond/change to natural or anthropogenically mediated changes in 

environmental conditions (Caron et al., 2012). These models are generally based on various 

hypotheses as to how environmental factors control the distribution of species and communities. 

There is therefore ample opportunity to expand on the field of biogeography.  

 

 

“The history of the planet, 

and so the humanity, 

lies in the heart of the oceans. 

And its future too.” 
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A. Glossary 

Alpha diversity: The diversity within a particular area or ecosystem; usually expressed by the number 

of species (i.e., species richness) in that ecosystem. 

 

Beta diversity: A comparison of diversity between ecosystems, usually measured as the amount of 

species change between the ecosystems. 

 

Gamma diversity: A measure of the overall diversity within a large region. 

 

Complex systems: systems with a large number of mutually interacting parts, often open to their 

environment, which self-organize their internal structure and their dynamics with novel and 

sometimes surprising macroscopic “emergent” properties. 

 

Criticality (in physics): a state in which spontaneous fluctuations of the order parameter occur at all 

scales, leading to diverging correlation length and susceptibility of the system to external influences 

 

Power law distribution: a specific family of statistical distribution appearing as a straight line in a log-

log plot; does not possess characteristic scales and exhibit the property of scale invariance. 

 

Hellinger transformation: Relativization by row (sample unit) totals, followed by taking the square root 

of each element in the matrix. 

 

Distance Decay: the property by which two nearby points have more similar characteristics than two 

distant points. 

 

Distance Matrix: A square and (usually) symmetric matrix in which the rows and the columns represent 

(usually) samples. The entries represent some index of the difference between samples; the measure 

could be Euclidean distance, Manhattan (City Block) Distance, Bray-Curtis dissimilarity, the Jaccard 

coefficient, or any of a huge number of possibilities. The diagonal elements (the difference between a 

sample and itself) is usually zero. 

 

Environmental Gradient: a spatially varying aspect of the environment which is expected to be related 

to species composition. 

 

Jackknife: A (usually) computer-intensive method to estimate parameters, and/or to gauge 

uncertainty in these estimates. The name is derived from the method that each observation is removed 

(i.e. cut with the knife) one at a time (or two at a time for the second-order Jackknife, and so on) in 

order to get a feeling for the spread of data. 

 

Stress: A measure of the optimality of an ordination solution (i.e. the relationship between the 

similarity in species composition and the closeness in ordination space), used as part of the algorithm 

of NMDS.  
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Explained variance: Share of the total variance which is accounted for by the model. Explained 

variance is computed as the complement to residual variance, divided by total variance. It is expressed 

as a percentage. 

 

Multivariate analysis (MVA): It is based on the statistical principle of multivariate statistics, which 

involves observation and analysis of more than one statistical variable at a time. In design and analysis, 

the technique is used to perform trade studies across multiple dimensions while taking into account 

the effects of all variables on the responses of interest. 

 

Principal component (PC): Principal Components (PCs) are composite variables, i.e. linear functions of 

the original variables, estimated to contain, in decreasing order, the main structured information in 

the data. A PC is the same as a score vector, and is also called a latent variable or a factor. 

 

P-value: The p-value measures the probability that a parameter estimated from experimental data 

should be as large as it is, if the real (theoretical, non-observable) value of that parameter were actually 

zero. Thus, p-value is used to assess the significance of observed effects or variations: a small p-value 

means a small risk of mistakenly concluding that the observed effect is real. The usual limit used in the 

interpretation of a p-value is 0.05 (or 5%). If p-value < 0.05, the observed effect can be presumed to 

be significant and is not due to random variations. 

 

Regression coefficient: In a regression model equation, regression coefficients are the numerical 

coefficients that express the link between variation in the predictors and variation in the response. 

 

Residual: A measure of the variation that is not taken into account by the model. The residual for a 

given sample and a given variable is computed as the difference between observed value and fitted 

(or projected, or predicted) value of the variable on the sample. 

 

R-square: The R-square of a regression model is a measure of the quality of the model. Also known as 

coefficient of determination, it is computed as 1 - (Residual Y-variance), or (Explained Y-variance)/100. 

For Calibration results, this is also the square of the correlation coefficient between predicted and 

measured values, and the R-square value is always between 0 and 1. The closer to 1, the better. The 

R-square is displayed among the plot statistics of a Predicted vs. Reference plot. When based on the 

calibration samples, it tells about the quality of the fit. When computed from the validation samples 

(similar to the “adjusted R2” found in the literature) it tells about the predictive ability of the model. 

 

r selection: Selection of life-history traits which promote an ability to multiply rapidly in numbers - the 

traits being, broadly, small size, precocious reproduction, a large reproductive allocation and the 

production of many but small offspring. 

 

Realized niche: That portion of its fundamental niche occupied by a species when competitors or 

predators are present 

 

Rarefaction curve: The statistical expectation of the number of species in a survey or collection as a 

function of the accumulated number of individuals or samples, based on resampling from an observed 

sample set. 
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B. Diversity and similarity Indices 

Species richness. Species richness is the number of different species present in an area. The more 

species present in a sample the ‘richer’ the area. Species richness as a measure on its own takes no 

account of the number of individuals of each species present. It gives equal weight to those species 

with very few individuals and those with many individuals. A better measure of diversity should take 

into account the abundance of each species. 

 

Shannon-Wiener index. The Shannon diversity index (H) is another index that is commonly used to 

characterize species diversity in a community. Like Simpson's index, Shannon's index accounts for both 

abundance and evenness of the 

species present. The formula for 

calculating H is presented as: 

 

where, H = the Shannon diversity index 

            pi = the proportion of species i relative to total number of species present.  

            s  = numbers of species encountered 

  

The fact that the index incorporates both components of biodiversity can be seen as both a strength 

and a weakness. It is a strength because it provides a simple, synthetic summary, but it is a weakness 

because it makes it difficult to compare communities that differ greatly in richness 

 

Evenness/ Shannon's equitability. Shannon's equitability (EH) can be calculated as, 

EH = H / Hmax 

Equitability assumes a value between 0 and 1 with 1 being complete evenness.  

 

The effective number of species (H1). The effective number of species or true diversity, or, refers to 

the number of equally-abundant types needed for the average proportional abundance of the types 

to equal that observed in the dataset of interest (where all types may not be equally abundant). 

Shannon index can be converted to true diversities using the formulae, 

H1 = exp(SDI),  

Where, SDI is the value of Shannon index. 

 

Jaccardʼs index. A dissimilarity measure that applies to samples of presence/absence data, similar to 

the matching coefficient, but ignoring the number of co-absences between two samples. Jaccardʼs 

index is the simplest summary of this, taking the following form:  

cba S  S  S
J


 aS

 

Where, Sa and Sb are the numbers of species unique to samples a and b, respectively,  Sc is the 

number of species common to the two samples. It only utilizes the richness component of diversity 

and thus is simply the fraction of species shared between the samples.  

 


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Bray Curtis dissimilarity. A measure of dissimilarity commonly used in ecology, to measure differences 

between multivariate samples of species abundances or biomasses. The general formula for calculating 

the Bray-Curtis dissimilarity between samples ‘a’ and ‘b’ is as follows: 













ba

1

ba,
n  n

)(

B

J

j

bjaj nn

 

Where naj and nbj are the numbers of species unique to samples a and b, respectively 

 na+ and nb+ are the sample (row) totals.  

 

One of the assumptions of the Bray-Curtis measure is that the samples are taken from the same 

physical size, be it area or volume. This is because dissimilarity will be computed on raw counts, not 

on relative counts. This measure takes on values between 0 (samples identical) and 1 (samples 

completely disjoint). If the Bray-Curtis dissimilarity is subtracted from 1, a measure of similarity is 

obtained, called the Bray-Curtis index. 

 

Euclidean distances. A distance measure between vectors where squared differences between 

corresponding elements are summed, followed by taking the square root of this sum. The general 

formula for calculating the Euclidean distance between samples ‘a’ and ‘b’ is as follows: 
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C. Multivariate statistical methods  

Non-metric multidimensional scaling (NMDS). Maximizes rank-order correlation between distance 

measures and distance in ordination space. Points are moved to minimize "stress". Stress is a measure 

of the mismatch between the two kinds of distance. 

 

Principal components analysis (PCA). PCA is a projection of sample points from the multidimensional 

variable space onto a ‘best-fitting’ plane or other low-dimensional solution. Linear representation of 

the data: usually inadequate for community analysis but good for reducing environmental 

measurements and to detect patterns in the distribution of environmental variables.  PC axes reflect 

the sum of contributions from each of the environmental parameters and represent simple linear 

combinations of the abiotic variables, their coefficients termed eigenvectors. Dissimilarity between 

two samples j and k is defined as their Euclidean distance apart in the multidimensional space.  

Redundancy analysis (RDA). Extension of principal component analysis to include external explanatory 

variables; the solution is constrained to have dimensions that are linearly related to these explanatory 

variables. 

Mantel test. It computes a correlation between two n by n distance matrices. The null hypothesis is 

that the observed relationship between the two distance matrices could have been obtained by any 

random arrangement in space (or time, or treatment assignment) of the observations through the 

study area. The null hypothesis is no relationship between the two distance matrices. It calculates a 

rank correlation coefficient between all the elements of their respective similarity or dissimilarity 

matrices. Thus, if the among-sample relationships are the same, then the rank correlation R = 1, a 

perfect match.  

Partial Mantel Test. It allows a comparison to be made among two variables while controlling for the 

third.   

 

Multiple regression on distance matrices (MRM). MRM involves a multiple regression of a response 

matrix on any number of explanatory matrices, where each matrix contains distances or similarities (in 

terms of ecological, spatial, or other attributes) between all pair-wise combinations of n objects 

(sample units); tests of statistical significance are performed by permutation. 

 

Analysis of similarities (ANOSIM). An analysis that compares several groups, usually their mean values, 

can also be thought of as a variant of regression analysis when the independent variable is a categorical 

variable. If r̅W is defined as the average of all rank similarities among replicates within samples, and 

r̅B is the average of rank similarities arising from all pairs of replicates between different groups of 

samples, then  

 

where M = n(n-1)/2 and n is the total number of samples under consideration. R = 1 only if all replicates 

within sites are more similar to each other than any replicates from different sites. If R is approximately 

zero, similarities between and within sites will be the same on average.  
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Cluster analysis. A group-forming technique, which constructs groups of samples (or variables) that 

have high internal similarity, while maintaining low similarity between groups. 

 

Ward clustering. A specific hierarchical clustering algorithm which minimizes the within-cluster inertia 

at each clustering step, equivalent to maximizing the between-cluster inertia. 

Variation Partitioning. 

 

Linear and multiple regression. An approach for modeling the relationship between a scalar 

dependent variable y and one or more explanatory variables (or independent variable) denoted X. The 

case of one explanatory variable is called simple linear regression. For more than one explanatory 

variable, the process is called multiple linear regression. 

 

Maximum likelihood estimation. A method of estimating population characteristics from a sample by 

choosing the values of the parameters that will maximize the probability of getting the particular 

sample actually obtained from the population. 

 

Wilcoxon signed-ranks method. It tests the null hypothesis that two related medians are the same. 

This procedure allows testing for differences between paired scores of two related samples when the 

assumptions required by the paired-samples t test are not met. Ranks are based on the absolute value 

of the difference between the two test variables.  

Mann-Whitney U Test. This tests the differences between the two approaches by analyzing differences 

in the absolute values of the abundances measured. The test is based on the null hypothesis that two 

independent samples come from the same population and does not assume normality or equal 

variances in the data. 
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D. Resolution of V9 18S rDNA tags in diatom phylogeny 

Diatoms are traditionally divided into two orders: the Centrales and the Pennales. Of these, the former 

is considered paraphyletic to the later. Further, recent classification efforts, based on ultra-stuctural 

details of the frustule, have divided the diatoms into four “groups of convenience”: (i) polar centric 

(polar Coscinodiscophyceae), (ii) radial centric (polar Coscinodiscophyceae), (iii) araphid pennate 

(Fragilariophyceae) and (iv) raphid pennate (Bacillariophyceae). Figure D1 illustrates the accepted 

relationships between diatom classes based on Bayesian inference (Kooistra et al., 2003; 2007; Medlin 

et al., 2008; Rampen et al., 2009). The phylogeny was obtained using 18S rDNA sequences longer than 

1,500 nucleotides. These were aligned to sequences stored in the ARB database. The consensus trees 

was constructed using the program MrBayes 3.1.2. (Huelsenbeck et al. 2001), using the general-time- 

reversible (GTR) model with gamma-distributed rate variation across sites and a proportion of 

invariable sites (for detail, see Kooistra et al. 2003). 

 

 
 
Figure D1. Diatom phylogeny inferred with Bayesian inference analyses of 18S rDNA (modified from Kooistra 
et al., 2003). A principal dichotomy was revealed showing a clade of radial centrics (basal clade) and another 
with multipolar centrics and pennates. Centric diatoms are characterized by a typically circular to elliptical or 
polygonal valves. Araphid pennates are characterized by elongated valves while raphid pennates with the raphe 
slit. Green = raphid pennates, orange = araphid pennates, blue = bi (multi) polar centrics, black = radial centrics 
and grey = outgroup species. 
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Figure D2.  Bar plot illustrating the Shannon entropy associated with each position along an alignment of 2497 
diatom 18S rDNA sequences. Bars colour-coded in red correspond to positions in the V1-V9 regions of the gene. 
Blue color is conserved region.  
 

 

Figure D3. 18S rDNA based divergence determination of Bacillariophyta. 
  
 
Table 1.1.  Hypervariable region performance against the 18S rDNA sequence. Regression was onto full length 
18S rDNA pairwise distances. 

Hyper-variable 
region 

Regression value 
(R2) on all 18S 
diatom. 

Position in bp (with 
Phaeodactylum tricornutum 
as reference) 

Number of 
sequences 

Min. Percentage of 
identity to differentiate 
two species 

V1 0.087 3 - 103 1664 84% 

V2 0.250 92 - 290 1853 86% 

V3 0.071 401 - 561 2204 86% 

V4 0.070 588 - 781 2799 74% 

V5 0.137 1003 - 1154 2815 87% 

V7 0.264 1302 - 1565 2756 80% 

V8 0.256 1448 - 1565 2501 84% 

V9 0.219 1640 - 1755 1777 70% 

18S - 1 - 1767 2947 93% 
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Elucidating reference database 
Most of the 18S rDNA (region encoding the 18S rRNA) is highly conserved and is generally used for 
phylogenetic studies at higher taxonomic levels. PR2 reference database contains 2947 full length 18S 
diatom sequences from 718 diatom species (Guillou et al., 2013). From this resource, a V9 reference 
database comprising V9 hypervariable region constituting 361 unique diatom species was obtained. 
These 718 unique reference sequence were aligned and identical (100% identity) were dropped. This 
gave 361 unique reference sequences for further analysis.  
 
Defining Hypervariable regions (V1-V9) in diatom sequences 
Sequence variation along the entire length of 2947 18S rDNA sequences was quantified in terms of 
Shannon entropy and used to define hypervariable regions (V1-V9; Figure D2). Secondary structure 
prediction and the hyper-variable regions identification were done using RNAstructure program (Reute 
and Mathews, 2010). This secondary structure prediction was done on phaeodactylum sequence to 
identify Hypervariable region (they  form specific loop structure). Using this sequences, we extracted 
hypervariable regions with V-xtractor (Hartmann et al., 2010). 
  
Performance of V1-V9 region using phylogeny and pairwise distances 
Further, to analyze the performance of V1-V9 region we used p-distance between the sequences as a 
measure. Pairwise distances were calculated for 2497 diatom 18S rDNA sequences using Kimura-2-
parameter model. Length variation and genetic distances were shown (Table D1, Figure D3). As 
suggested in other eukaryotic species, a combination of hypervariable sites could help in better 
discrimination of different species of diatoms. For diatoms, V4 region is shown to be of higher length 
and showed better performance in terms of diversity determination. Regression of V1-V9 p-distance 
by NJ on to that of 18S sequence shows that V5 could better explain the phylogeny, followed by V4. 
Although the mean genetic distances were better in V4 and V9, they may not explain the phylogeny 
well. V9 performance was less than that of 18S. Taxa assignment at less than 70 % identity in V9 region 
is not recommended for diatoms.  
 
Differentiating 4 phylogenetic groups of Diatoms 
Four prominent phylogenetic clades of diatoms such as Radial centric, polar centric, Araphid pennate, 

raphid pennate were already known. V4 and V9 sequences were used to check the performance in 

differentiating the four groups. Each of the hypervariable regions and full-length 18S rDNA sequences 

were aligned using MUSCLE and phylogenetic inference was done with NJ algorithm using pairwise 

distances in MEGA5 (Tamura et al., 2011). The tree was statistically tested using 1000 bootstrap.V9 

could not differentiate the araphid and raphid pennates, as they were placing them in the same branch 

of the phylogenetic tree (Figure D4). 

 
Diatom v9 reference and the diversity 

718 species are available and of those 519 have V9 regions, but UCLUST based non-redundant removal 

(at 100% identity) resulted in 361 V9 sequences. At least 158 species have identical V9 region. Thus, 

approximately 30.4% species could not be detected by V9 reference sequences and remained 

ambiguous.  

 

V9 distance Vs Total SSU rDNA distance 

V9 region may not be compared with the full-length 18S sequences in terms of genetic distances. The 

slope of the regression line between V9 and 18S is shown in the graph. V9 and SSU were poorly 

correlated with R value of 0.46 (Figure D5). 
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Figure D4. Phylogenetic inference from the 18S rDNA sequence of Bacillariophyta. A. Full-length 18S rDNA 
sequence phylogeny. B. V4 sequence phylogeny. C. V9 region rDNA sequence based phylogeny. The color codes 
for branches are indicated under the figure. 

 
 
 

Figure D5. Comparison of complete 18S and V9 region of small-subunit rDNA sequences in establishing the 
genetic distances of Bacillariophytes. 
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E. Supplementary Information to Chapter 2  

 
Table E1. Abundance, richness, Shannon diversity indices and dominant genera for each station. 
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F. Supplementary Information to Chapter 3  

 

 

Figure F1. Estimating bias and variance using Jackknife method. This method works by calculating the statistic 
of interest leaving out one sample at a time. 
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Figure F2. Relationship between community similarity using Swarms and geographic distances/ environmental 

distances. (A) Bray-Curtis and (B) Jaccard similarity of diatom communities plotted against geographic distances 

between sites. (C) Bray-Curtis, and (D) Jaccard similarity of diatom communities plotted against environmental 

distances between sites.  
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Figure F3. Permutation-based multiple regression on distance matrices (MRM) using Swarms. Environmental 
variables significantly contributing to the variation in diatom community similarity are shown. Each 
environmental variable was used as an independent matrix. R-squared regression coefficient of each 
environmental variable is expressed as percent.  

 

 

Figure F4. Variation in community composition and richness explained by environmental and spatial variables 
and their shared effects computed using Swarms. 
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G. Supplementary Information to Chapter 4  

Table G4.1. Summary of all the environmental variables across the 46 sampling stations. 
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Table G4.2. Taxonomic Composition of each cluster. (A) Richness.  (B) Abundance. 

  
(A) 
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(B) 

 I  II  III  IV  V  VI  VII  VIII  IX

AP 298925 655 225 299805

AP|Asterionellopsis|Asterionellopsis+glacialis 111 13304 13415

AP|Catacombas|Catacombas+gaillonii 181 181

AP|Rhaphoneis|Rhaphoneis+sp. 1193 1193

AP|Synedra|Synedra+sp. 3662 3662

AP|Synedra|Synedra+toxoneides 3176 16265 19441

PC 584025 4376 384049 703 12432 162612 1148197

PC|Attheya|Attheya+longicornis 6621 81164 87785

PC|Chaetoceros 939 2736 3675

PC|Chaetoceros|Chaetoceros+muellerii 2112 2112

PC|Chaetoceros|Chaetoceros+radicans 212 212

PC|Chaetoceros|Chaetoceros+rostratus 123 629 536513 36235 2299 575799

PC|Chaetoceros|Chaetoceros+sp. 1200 560687 27902 234884 427 825100

PC|Cyclotella|Cyclotella+choctawhatcheeana 285 285

PC|Ditylum|Ditylum+brightwellii 434 434

PC|Eucampia 219 77037 10783 88039

PC|Minidiscus 23032 23032

PC|Minutocellus 14687 14687

PC|Odontella|Odontella+sinensis 2056 2056

PC|Pierrecomperia|Pierrecomperia+catenuloides 133 133

PC|Planktoniella|Planktoniella+sol 70852 70852

PC|Porosira 531 531

PC|Skeletonema 2166 2166

PC|Skeletonema|Skeletonema+grevillei 395 1350 1745

PC|Skeletonema|Skeletonema+menzellii 125 1551 1676

PC|Thalassiosira 2421 587 173793 5704 189 331270 513964

PC|Thalassiosira|Thalassiosira+aestivalis 1742 1742

PC|Thalassiosira|Thalassiosira+concaviuscula 1355 1355

PC|Thalassiosira|Thalassiosira+delicatula 2420 2420

PC|Thalassiosira|Thalassiosira+minima 180 180

PC|Thalassiosira|Thalassiosira+punctigera 248 212 154498 154958

PC|Thalassiosira|Thalassiosira+sp. 403 27668 28071

PC|Thalassiosira|Thalassiosira+tumida 87509 87509

PC|Thalassiosira|Thalassiosira+weissflogii 126 53091 53217

RC 86412 86412

RC|Actinocyclus|Actinocyclus+curvatulus 93753 135987 1132 11554 306066 548492

RC|Corethron 16449 257 16706

RC|Corethron|Corethron+hystrix 4015 9783 172 13970

RC|Corethron|Corethron+inerme 999 671047 262 182 2705 1315 11650 688160

RC|Coscinodiscus|Coscinodiscus+radiatus 12938 824 13762

RC|Coscinodiscus|Coscinodiscus+sp. 1739 1739

RC|Guinardia|Guinardia+flaccida 35020 968 35988

RC|Leptocylindrus 182 620267 2570 623019

RC|Leptocylindrus|Leptocylindrus+convexus 23490 23490

RC|Proboscia|Proboscia+alata 164 139596 101752 241512

RC|Rhizosolenia 2287 2287

RC|Rhizosolenia|Rhizosolenia+setigera 4508 4508

RC|Rhizosolenia|Rhizosolenia+shrubsolei 31366 7341 38707

RC|Stellarima|Stellarima+microtrias 2440 2440

RP 5121 1232 1058 316252 329208 313770 18294 700118 1685053

RP|Bacillariophyta|Bacillariophyta+sp. 708 708

RP|Craticula|Craticula+cuspidata 875 875

RP|Cylindrotheca|Cylindrotheca+closterium 1528 4455 5983

RP|Cymbella 1586 3489 5075

RP|Fragilariopsis 687342 619 12007 1918 102 1979 2565 706532

RP|Haslea|Haslea+spicula 339 22969 23308

RP|Navicula 283 283

RP|Navicula|Navicula+gregaria 162 162

RP|Navicula|Navicula+radiosa 1686 10715 12401

RP|Navicula|Navicula+salinicola 218 3162 3380

RP|Naviculales|Naviculales+sp. 9032 9032

RP|Pleurosigma|Pleurosigma+sp. 35405 5236 40641

RP|Pseudo-nitzschia 5431 121511 20131 147073

RP|Pseudo-nitzschia|Pseudo-nitzschia+australis 2896 1560 4456

RP|Pseudo-nitzschia|Pseudo-nitzschia+fraudulenta 491 491

RP|Pseudo-nitzschia|Pseudo-nitzschia+heimii 34311 48977 83288

RP|Pseudo-nitzschia|Pseudo-nitzschia+pseudodelicatissima 3775 10316 14091

RP|Pseudo-nitzschia|Pseudo-nitzschia+sp. 18674 18674

RP|RP_X|RP_X+sp. 2073 2073

unassigned 750916 340 3235 163332 1237 2532 242503 545098 1709193

Grand Total 1446960 586446 771799 612562 3380171 368169 321285 829321 2526880 10843593

Taxonomic Details
Clusters

Grand Total
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H. Supplementary Information to Chapter 5   

Rank-abundance curves of empirical protistan community samples 
 

A. Pico-eukaryote (Station 4 to 32) 
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A. Pico-eukaryote (Station 34 to 68)
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A. Pico-eukaryote (Station 70 to 111) 
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A. Pico-eukaryote (Station 122 to 125) 
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B. Nano-eukaryote (Station 4 to 34) 
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B. Nano-eukaryote (Station 36 to 72) 

 
  



Global Diatom Biodiversity: an Assessment Using Metabarcoding Approach 

 

Annexes  S Malviya 

 

248 

B. Nano-eukaryote (Station 76 to 123) 
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B. Nano-eukaryote (Station 124 to 125) 
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C. Micro-eukaryote (Station 4 to 32) 
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C. Micro-eukaryote (Station 33 to 67) 
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C. Micro-eukaryote (Station 68 to 109)
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C. Micro-eukaryote (Station 111 to 125)
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D. Meso-eukaryote (Station 4 to 30) 
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D. Meso-eukaryote (Station 31 to 65)
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D. Meso-eukaryote (Station 66 to 102) 
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D. Meso-eukaryote (Station 109 to 125) 

 
 
Figure H5.1. Rank-abundance curves of empirical protistan community samples. Abundance in the sample is 
plotted against ribotype rank in the sample. (A) pico (0.8-5 µm), (B) nano (5-20 µm), (C) micro (20-180 µm) and 
(D) meso (180-2000 µm).  
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 Figure H5.2. Boxplot of slopes clustered based on size (by oceanic provinces). 

 
 
 
 

 
Figure H5.3. Boxplot of slopes clustered based on size (by latitudinal bands). 

 
 
 
 

Table H5.1. Wilcoxon rank sum test statistics comparing the slopes between different size classes combination. 
P-values for the Mann-Whitney-Wilcoxon Test is reported with the test statistic. 
 

Data 1 Data 2 W p-value 

sur_085  sur_520 569.5 0.02686 

sur_085  sur_20180 341.5 1.437e-06 

sur_085  sur_1802000 195 5.504e-10 

sur_520 sur_20180 679 0.07247 

sur_520  sur_1802000 374 3.69e-06 

sur_20180  sur_1802000$ 460.5 1.408e-05 
 

  

   N25-N45            N0-N25            S0-S25           S25-S45         S45-S65   
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OCEAN PLANKTON

Eukaryotic plankton diversity in the
sunlit ocean
Colomban de Vargas,1,2*† Stéphane Audic,1,2† Nicolas Henry,1,2† Johan Decelle,1,2†
Frédéric Mahé,3,1,2† Ramiro Logares,4 Enrique Lara,5 Cédric Berney,1,2 Noan Le Bescot,1,2

Ian Probert,6,7 Margaux Carmichael,1,2,8 Julie Poulain,9 Sarah Romac,1,2
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Micah Dunthorn,3 Stefan Engelen,9 Olga Flegontova,15,16 Lionel Guidi,17,18 Aleš Horák,15,16

Olivier Jaillon,9,19,20 Gipsi Lima-Mendez,12,13,14 Julius Lukeš,15,16,21 Shruti Malviya,8

Raphael Morard,22,1,2 Matthieu Mulot,5 Eleonora Scalco,23 Raffaele Siano,24

Flora Vincent,13,8 Adriana Zingone,23 Céline Dimier,1,2,8 Marc Picheral,17,18

Sarah Searson,17,18 Stefanie Kandels-Lewis,25,26 Tara Oceans Coordinators‡
Silvia G. Acinas,4 Peer Bork,25,27 Chris Bowler,8 Gabriel Gorsky,17,18 Nigel Grimsley,28,29

Pascal Hingamp,30 Daniele Iudicone,23 Fabrice Not,1,2 Hiroyuki Ogata,31

Stephane Pesant,32,22 Jeroen Raes,12,13,14 Michael E. Sieracki,33,34 Sabrina Speich,35,36

Lars Stemmann,17,18 Shinichi Sunagawa,25 Jean Weissenbach,9,19,20
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Marine plankton support global biological and geochemical processes. Surveys of their
biodiversity have hitherto been geographically restricted and have not accounted for the
full range of plankton size. We assessed eukaryotic diversity from 334 size-fractionated
photic-zone plankton communities collected across tropical and temperate oceans during
the circumglobal Tara Oceans expedition. We analyzed 18S ribosomal DNA sequences
across the intermediate plankton-size spectrum from the smallest unicellular eukaryotes
(protists, >0.8 micrometers) to small animals of a few millimeters. Eukaryotic ribosomal
diversity saturated at ~150,000 operational taxonomic units, about one-third of which
could not be assigned to known eukaryotic groups. Diversity emerged at all taxonomic
levels, both within the groups comprising the ~11,200 cataloged morphospecies of
eukaryotic plankton and among twice as many other deep-branching lineages of
unappreciated importance in plankton ecology studies. Most eukaryotic plankton
biodiversity belonged to heterotrophic protistan groups, particularly those known to be
parasites or symbiotic hosts.

T
he sunlit surface layer of the world’s oceans
functions as a giant biogeochemical mem-
brane between the atmosphere and the
ocean interior (1). This biome includes plank-
ton communities that fix CO2 and other ele-

ments into biological matter, which then enters
the food web. This biological matter can be re-
mineralized or exported to the deeper ocean,
where it may be sequestered over ecological to
geological time scales. Studies of this biome have
typically focused on either conspicuous phyto- or
zooplankton at the larger end of the organismal
size spectrum or microbes (prokaryotes and vi-
ruses) at the smaller end. In this work, we studied
the taxonomic and ecological diversity of the in-
termediate size spectrum (from 0.8 mm to a few
millimeters),which includes all unicellular eukary-
otes (protists) and ranges from the smallest pro-
tistan cells to small animals (2). The ecological
biodiversity of marine planktonic protists has
been analyzed using Sanger (3–5) and high-
throughput (6, 7) sequencing ofmainly ribosomal
DNA (rDNA) gene markers, on relatively small
taxonomic and/or geographical scales, unveiling
key new groups of phagotrophs (8), parasites (9),
and phototrophs (10). We sequenced 18S rDNA
metabarcodes up to local and global saturations
fromsize-fractionatedplankton communities sam-

pled systematically across the world tropical and
temperate sunlit oceans.

A global metabarcoding approach

To explore patterns of photic-zone eukaryotic
plankton biodiversity, we generated ~766 mil-
lion raw rDNA sequence reads from 334 plank-
ton samples collected during the circumglobal
Tara Oceans expedition (11). At each of 47 sta-
tions, plankton communities were sampled at
two water-column depths corresponding to the
main hydrographic structures of the photic zone:
subsurface mixed-layer waters and the deep chlo-
rophyll maximum (DCM) at the top of the ther-
mocline. A low-shear, nonintrusive peristaltic
pump and plankton nets of various mesh sizes
were used on board Tara to sample and con-
centrate appropriate volumes of seawater to
theoretically recover complete local eukaryotic
biodiversity from four major organismal size
fractions: piconanoplankton (0.8 to 5 mm), nano-
plankton (5 to 20 mm), microplankton (20 to
180 mm), and mesoplankton (180 to 2000 mm)
[see (12) for detailed Tara Oceans field sampling
strategy and protocols].
We extracted total DNA from all samples,

polymerase chain reaction (PCR)–amplified the
hypervariable V9 region of the nuclear gene that

encodes 18S rRNA (13), and generated an average
of 1.73 T 0.65 million sequence reads (paired-end
Illumina) per sample (11). Strict bioinformatic
quality control led to a final data set of 580 mil-
lion reads, of which ~2.3 million were distinct,
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hereafter denoted “metabarcodes.”We then clus-
tered metabarcodes into biologically meaningful
operational taxonomic units (OTUs) (14) and as-
signed a eukaryotic taxonomic path to all meta-
barcodes and OTUs by global similarity analysis
with 77,449 reference, Sanger-sequencedV9 rDNA
barcodes covering the known diversity of eukary-
otes and assembled into an in-house database
called V9_PR2 (15). Beyond taxonomic assigna-
tion, we inferred basic trophic and symbiotic
ecologicalmodes (photo- versus heterotrophy; par-
asitism, commensalism, mutualism for both hosts
and symbionts) to Tara Oceans reads and OTUs
on the basis of their genetic affiliation to large

monophyletic andmonofunctional groups of ref-
erence barcodes. We finally inferred large-scale
ecological patterns of eukaryotic biodiversity
across geography, taxonomy, and organismal size
fractions based on rDNA abundance data and
community similarity analyses and compared
them to current knowledge extracted from the
literature.

The extent of eukaryotic
plankton diversity in the photic
zone of the world ocean

Sequencing of ~1.7 million V9 rDNA reads from
each of the 334 size-fractionated plankton sam-

ples was sufficient to approach saturation of eu-
karyotic richness at both local and global scales
(Fig. 1, A and B). Local richness represented, on
average, 9.7 T 4% of global richness, the latter
approaching saturation at ~2 million eukaryotic
metabarcodes or ~110,000 OTUs (16). The global
pool of OTUs displayed a good fit to the trun-
cated Preston log-normal distribution (17), which,
by extrapolation, suggests a total photic-zone
eukaryotic plankton richness of ~150,000 OTUs,
of which ~40,000 were not found in our survey
(Fig. 1C). Thus, we estimate that our survey un-
veiled ~75% of eukaryotic ribosomal diversity in
the globally distributed water masses analyzed.
The extrapolated ~150,000 total OTUs is much
higher than the ~11,200 formally described spe-
cies of marine eukaryotic plankton (see below)
and probably represents a highly conservative,
lower-boundary estimate of the true number of
eukaryotic species in this biome, given the rel-
atively limited taxonomic resolution power of
the 18S rDNA gene. Our data indicate that eu-
karyotic taxonomic diversity is higher in smaller
organismal size fractions, with a peak in the
piconanoplankton (Fig. 1A), highlighting the rich-
ness of tiny organisms that arepoorly characterized
in terms of morphotaxonomy and physiology (18).
A first-order, supergroup-level classification of all
Tara Oceans OTUs demonstrated the prevalence
(at the biome scale and across the >four orders of
size magnitude sampled) of protist rDNA bio-
diversity with respect to that of classical mul-
ticellular eukaryotes, i.e., animals, plants, and
fungi (Fig. 2A). Protists accounted for >85% of
total eukaryotic ribosomal diversity, a ratio that
may well hold true for other marine, freshwater,
and terrestrial oxygenic ecosystems (19). The
latest estimates of total marine eukaryotic bio-
diversity based on statistical extrapolations from
classical taxonomic knowledge predict the exis-
tence of 0.5 to 2.2 million species [including all
benthic and planktonic systems from reefs to
deep-sea vents (20, 21)] but do not take into ac-
count the protistan knowledge gap highlighted
here. Simple application of our animal–to–other
eukaryotes ratio of ~13% to the robust prediction
of the total number of metazoan species from
(20) would imply that 16.5million and 60million
eukaryotic species potentially inhabit the oceans
and Earth, respectively.

Phylogenetic breakdown of
photic-zone eukaryotic biodiversity

About one-third of eukaryotic ribosomal diver-
sity in our data set did not match any reference
barcode in the extensive V9_PR2 database (“un-
assigned” category in Fig. 2A). This unassignable
diversity represented only a small proportion
(2.6%) of total reads and increased in both rich-
ness and abundance in smaller organismal size
fractions, suggesting that it corresponds most-
ly to rare and minute taxa that have escaped
previous characterization. Some may also corre-
spond to divergent rDNA pseudogenes, known
to exist in eukaryotes (22, 23) or sequencing
artefacts (24), although both of these would be
expected to be present in equal proportion in all
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Fig. 1. Photic-zone eukaryotic plankton ribosomal diversity. (A) V9 rDNA OTUs rarefaction curves
and overall diversity (Shannon index, inset) for each plankton organismal size fraction. Proximity to
saturation is indicated by weak slopes at the end of each rarefaction curve (e.g., 1.2/100,000 means 1.2
novel metabarcodes obtained every 100,000 rDNA reads sequenced). (B) Saturation slope versus
number of V9 rDNA reads for all of the 334 samples (dots) analyzed herein. A slope of 0.02 indicates
that two novel barcodes can be recovered if 100 new reads are sequenced. Samples are colored
according to size fraction. (C) Global OTU abundance distribution and fit to the Preston log-normal
model. Most OTUs in our data set were represented by 3 to 16 reads, whereas fewer OTUs presented
less or more abundances. Quasi-Poisson fit to octaves (red curve) and maximized likelihood to log2
abundances (blue curve) approximations were used to fit the OTU abundance distribution to the Preston
log-normal model. Overall, the global (A) and local (B) saturation values indicate that our extensive
sampling effort (in terms of spatiotemporal coverage and sequencing depth) uncovered the majority of
eukaryotic ribosomal diversity within the photic layer of the world’s tropical to temperate oceans.
Calculation of the Preston veil, which infers the number of OTUs that we missed (or were veiled) during
our sampling (~40,000), confirmed that we captured most of the protistan richness, thus allowing
extraction of holistic and general patterns of eukaryotic plankton biodiversity from our data set.
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size fractions [details in (16)]. The remaining
~87,000 assignable OTUs were classified into
97 deep-branching lineages covering the full spec-
trum of cataloged eukaryotic diversity amongst
the seven recognized supergroups and multiple
lineages of uncertain placement (15) whose ori-
gins go back to the primary radiation of eukary-
otic life in the Neoproterozoic. Although highly
represented in the V9_PR2 reference database,
several well-known lineages adapted to terrestrial,
marine benthic, or anaerobic habitats (e.g.,
Embryophyta; apicomplexan and trypanosome
parasites of land plants and animals; amoebo-
flagellate Breviatea; and several lineages of
Amoebozoa, Excavata, and Cercozoa) were not
detected in our metabarcoding data set, sug-
gesting the absence of contamination during
the PCR and sequencing steps on land and re-
ducing the number of deep branches of eu-
karyotic plankton to 85 (Fig. 3).
We then extracted the metabarcodes assigned

tomorphologicallywell-knownplanktonic eukary-
otic taxa from our data set and compared them
with the conventional, 150 year-oldmorphological
view of marine eukaryotic plankton that includes
~11,200 cataloged species divided into three broad
categories: ~4350 species of phytoplankton (micro-
algae), ~1350 species of protozooplankton (rel-
atively large, often biomineralized, heterotrophic
protists), and ~5500 species of metazooplankton
(holoplanktonic animals) (25–27). A congruent
picture of the distribution of morphogenetic di-
versity among and within these organismal cat-
egories emerged from our data set (Fig. 2B), but
typically, three to eight times more rDNA OTUs
were found than describedmorphospecies in the
best-known lineages within these categories. This
is within the range of the number of cryptic
species typically detected in globally-distributed
pelagic taxa using molecular data (28, 29). The
general congruency between genetic and mor-
phological data in the cataloged compartment of
eukaryotic plankton suggests that the protocols
used, from plankton sampling to DNA sequenc-
ing, recovered the known eukaryotic biodiversity
without major qualitative or quantitative biases.
However, OTUs related to morphologically de-
scribed taxa represented only a minor part of the
total eukaryotic plankton ribosomal and phylo-
genetic diversity. Overall, <1% ofOTUswere strict-
ly identical to reference sequences, and OTUs
were, on average, only ~86% similar to any V9
reference sequence (Fig. 3F) (16). This shows that
most photic-zone eukaryotic plankton V9 rDNA
diversity hadnot been previously sequenced from
cultured strains, single-cell isolates, or even envi-
ronmental clone library surveys. TheTaraOceans
metabarcode data set added considerable phylo-
genetic information to previous protistan rDNA
knowledge, with an estimated mean tree-length
increase of 453%, reaching >100% in 43 lineages
(16). Even in the best-referenced groups such as
the diatoms (1232 reference sequences) (Fig. 3B),
we identified many new rDNA sequences, both
within knowngroups and formingnewclades (16).
Eleven “hyperdiverse” lineages each contained

>1000 OTUs, together representing ~88 and
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Fig. 2. Unknown and known components of eukaryotic plankton biodiversity. (A) Phylogenetic
breakdown of the entire metabarcoding data set at the eukaryotic supergroup level. All Tara Oceans V9
rDNA reads andOTUswere classified among the seven recognized eukaryotic supergroups plus the known
but unclassified deep-branching lineages (incertae sedis). The tree maps display the relative abundance
(upper part) and richness (lower part) of the different eukaryotic supergroups in each organismal size
fraction. Note that ~5% of barcodes were assigned to prokaryotes, essentially in the piconano fraction,
witnessing the universality of the eukaryotic primers used. Barcodes are “unassigned” when sequence sim-
ilarity to a reference sequence is <80% and “undetermined” when eukaryotic supergroups could not be
discriminated (at similarity >80%). (B) Ribosomal DNA diversity associated with the morphologically
known and cataloged part of eukaryotic plankton.The total number of morphologically described species
in the literature [red bars, based on (25–27)] and the corresponding total number of TaraOceans V9 rDNA
OTUs (blue bars) are indicated for each of the 35 classical lineages of eukaryotic phyto-, protozoo-, and
metazooplankton.The five classical groups that were found to be substantially more diverse than previously
thought (from 38- to 113-fold more OTUs than morphospecies) are highlighted. Note that in the classical
morphological view, phyto- and metazooplankton comprise ~88% of total eukaryotic plankton diversity.
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Fig. 3. Phylogenetic distribution of the assignable component of eukary-
otic plankton ribosomal diversity. (A) Schematic phylogeny of the 85 deep-
branching eukaryotic lineages represented in our global oceans metabarcoding
data set, with broad ecological traits based on current knowledge: red, parasitic;
green, photoautotrophic; blue, osmo- or saprotrophic; black, mostly phago-
trophic lineages. Lineages known only from environmental sequence data were
colored in black by default. For simplicity, three branches (denoted by asterisks)
artificially group a few distinct lineages [details in (15)]. (B) Number of reference
V9 rDNA barcodes used to annotate the metabarcoding data set (gray, with
known taxonomy at the genus and/or species level; light blue, from previous 18S
rDNA environmental clone libraries). (C) Tara Oceans V9 rDNA OTU richness.

Dark blue thicker bars indicate the 11 hyperdiverse lineages containing >1000
OTUs. Yellow circles highlight the 25 lineages that have been recognized as im-
portant in previousmarine plankton biodiversity and ecology studies using mor-
phological and/or molecular data [see also (15)]. (D) Eukaryotic plankton
abundance expressed as numbers of rDNA reads (the red bars indicate the nine
most abundant lineageswith >5million reads). (E) Proportion of rDNA reads per
organismal size fraction. Light blue, piconano-; green, nano-; yellow, micro-; red,
mesoplankton. (F) Percentage of reads and OTUs with 80 to 85%, 85 to 90%,
90 to 95%, 95 to <100%, and 100%sequence similarity to a reference sequence.
(G) Slope of OTU rarefaction curves. (H) Mean geographic occupancy (average
number of stations in which OTUs were observed, weighted by OTU abundance).
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~90% of all OTUs and reads, respectively (Fig.
3C). Among these, the only permanently photo-
trophic taxa were diatoms (Fig. 4A) and about
one-third of dinoflagellates (Fig. 4, B to F), to-
gether comprising ~15 and ~13% of hyperdiverse
OTUs and reads, respectively (30). Most hyper-
diverse photic-zone plankton belonged to three
supergroups—the Alveolata, Rhizaria, and Excavata
—about which we have limited biological or
ecological information. The Alveolata, which con-
sistmostly of parasitic [marine alveolates (MALVs)]
(Fig. 4F) and phagotrophic (ciliates and most
dinoflagellates) taxa, were by far themost diverse
supergroup, comprising ~42% of all assignable
OTUs. The Rhizaria are a group of amoeboid he-
terotrophic protists with active pseudopods dis-
playing a broad spectrum of ecological behavior,
from phagotrophy to parasitism and mutualism
(symbioses) (31). Rhizarian diversity peaked in

the Retaria (Fig. 4, C and D) a subgroup includ-
ing giant protists that build complex skeletons of
silicate (Polycystinea), strontium sulfate (Acan-
tharia) (Fig. 4C), or calcium carbonate (Forami-
nifera) and thus comprise key microfossils for
paleoceanography. Unsuspected rDNA diversity
was recorded within the Collodaria (5636 OTUs),
polycystines that are mostly colonial, poorly
silicified, or naked and live in obligatory symbi-
osis with photosynthetic dinoflagellates (Fig. 4D)
(32, 33). Arguably, the most surprising compo-
nent of novel biodiversity was the >12,300 OTUs
related to reference sequences of diplonemids,
an excavate lineage that has only two described
genera of flagellate grazers, one of which para-
sitizes diatoms and crustaceans (34, 35). Their
ribosomal diversity was not only much higher
than that observed in classical plankton groups
such as foraminifers, ciliates, or diatoms (50-fold,

6-fold, and 3.8-fold higher, respectively) but was
also far from richness saturation (Fig. 3E). Eu-
karyotic rDNA diversity peaked especially in the
few lineages that extend across larger size frac-
tions (i.e., metazoans, rhizarians, dinoflagellates,
ciliates, diatoms) (Fig. 3E). Larger cells or colonies
not only provide protection against predation via
size-mediated avoidance and/or construction
of composite skeletons but also provide support
for complex and coevolving relationships with of-
ten specialized parasites ormutualistic symbionts.
Beyond this hyperdiverse, largely heterotrophic

eukaryotic majority, our data set also highlighted
the phylogenetic diversity of poorly known pha-
gotrophic (e.g., 413 OTUs of Katablepharidophyta,
240 OTUs of Telonemia), osmotrophic (e.g., 410
OTUs of Ascomycota, 322 OTUs of Labyrinthu-
lea), and parasitic (e.g., 384 OTUs of gregarine
apicomplexans, 160 OTUs of Ascetosporea, 68

SCIENCE sciencemag.org 22 MAY 2015 • VOL 348 ISSUE 6237 1261605-5

Fig. 4. Illustration of key eukaryotic plankton lineages. (A) Stramenopila;
a phototrophic diatom Chaetoceros bulbosus, with its chloroplasts in red
(arrowhead). Scale bar, 10 mm. (B) Alveolata; a heterotrophic dinoflagellate
Dinophysis caudata harboring kleptoplasts [in red (arrowhead)]. Scale bar,
20 mm (75). (C) Rhizaria; an acantharian Lithoptera sp. with endosymbiotic
haptophyte cells from the genus Phaeocystis [in red (arrowhead)]. Scale bar,
50 mm (41). (D) Rhizaria; inside a colonial network of Collodaria, a cell sur-
rounded by several captive dinoflagellate symbionts of the genus Brandtodi-
nium (arrowhead). Scale bar, 50 mm (33). (E) Opisthokonta; a copepod whose
gut is colonized by the parasitic dinoflagellate Blastodinium [red area shows
nuclei (arrowhead)]. Scale bar, 100 mm (51). (F) Alveolata; a cross-sectioned,

dinoflagellate cell infected by the parasitoid alveolate Amoebophrya (MALV-II).
Each blue spot (arrowhead) is the nucleus of future free-living dinospores;
their flagella are visible in green inside the mastigocoel cavity (arrow). Scale
bar, 5 mm. The cellular membranes were stained with DiOC6 (green); DNA
and nuclei were stained with Hoechst (blue) [the dinoflagellate theca in (B)
was also stained by this dye]. Chlorophyll autofluorescence is shown in red
[except for in (E)]. An unspecific fluorescent painting of the cell surface (light
blue) was used to reveal cell shape for (A) and (F). All specimens come from
Tara Oceans samples preserved for confocal laser scanning fluorescent
microscopy. Images were three-dimensionally reconstructed with Imaris
(Bitplane).



OTUs of Ichthyosporea) protist groups. Amongst
the 85 major lineages presented in the phyloge-
netic framework of Fig. 3, less than one-third
(~25) have been recognized as important in pre-
vious marine plankton biodiversity and ecology
studies using morphological and/or molecular
data (Fig. 3C) (15). The remaining ~60 branches
had either never been observed in marine plank-
ton or were detected through morphological de-
scription of one or a few species and/or the
presence of environmental sequences in geo-
graphically restricted clone library surveys (15).
This understudied diversity represents ~25% of
all taxonomically assignable OTUs (>21,500) and
covers broad taxonomic and geographic scales,
thus representing a wealth of new actors to in-
tegrate into future plankton systems biology
studies.

Insights into photic-zone eukaryotic
plankton ecology

Functional annotation of taxonomically assigned
V9 rDNA metabarcodes was used as a first at-
tempt to explore ecological patterns of eukary-
otic diversity across broad spatial scales and
organismal size fractions, focusing on fundamen-
tal trophic modes (photo- versus heterotrophy)
and symbiotic interactions (parasitism to mutu-
alism). Heterotroph (protists and metazoans) V9
rDNA metabarcodes were substantially more di-
verse (63%) and abundant (62%) than photo-
troph metabarcodes that represented <20% of
OTUs and reads across all size fractions and geo-
graphic sites, with an increasing heterotroph-to-
phototroph ratio in the micro- and mesoplankton
(Fig. 5A, confirmed in 17 non–size-fractionated
samples (30). These results challenge the classical
morphological view of plankton diversity, biased
by a terrestrial ecology approach, whereby phyto-
andmetazooplankton (the plant-animal paradigm)
are thought to comprise ~88% of eukaryotic
plankton diversity (Fig. 2B) and heterotrophic
protists are typically reduced in food-web mod-
eling to a single entity, often idealized as ciliate
grazers.
An unsuspected richness and abundance of

metabarcodes assigned to monophyletic groups
of heterotrophic protists that cannot survivewith-
out endosymbiotic microalgae was found in lar-
ger size fractions (“photosymbiotic hosts” in
Fig. 5A). Their abundance and even diversity
were sometimes greater than those of all meta-
zoan metabarcodes, including those from cope-
pods.Most of these cosmopolitan photosymbiotic
hosts were found within the hyperdiverse radio-
larians Acantharia (1043 OTUs) and Collodaria
(5636 OTUs) (Figs. 3, 4B, and 5D), which have
often been overlooked in traditional morpholog-
ical surveys of plankton-net–collected material
because of their delicate gelatinous and/or easily
dissolved structures but are known to be very
abundant from microscope-based and in situ
imaging studies (36–38). All 95 known colonial
collodarian species described since the 19th cen-
tury (39) harbor intracellular symbiotic micro-
algae, and these key players for plankton ecology
are protistan analogs of photosymbiotic corals in

tropical coastal reef ecosystems with no equiv-
alent in terrestrial ecology. In addition to their
contribution to total primary production (36, 38),
these diverse, biologically complex, often biomin-
eralized, and relatively long-lived giant mixotro-
phic protists stabilize carbon in larger size fractions
andprobably increase its flux to the ocean interior
(38). Conversely, the microalgae that are known
obligate intracellular partners in open-oceanpho-
tosymbioses (33, 40–42) (Fig. 5B) were neither
very diverse nor highly abundant and occurred
evenly across organismal size fractions (Fig. 5C).
However, their relative contribution was greatest
in the mesoplankton category (10%) (Fig. 5C),
where the known photosymbionts of pelagic rhi-
zarians were found (together with their hosts)
(Fig. 5B). The stable and systematic abundance
of photosymbioticmicroalgae across size fractions
[a pattern not shown by nonphotosymbiotic
microalgae (30)] suggests that pelagic photo-
symbionts maintain free-living and potentially
actively growing populations in the piconano-
and nanoplankton, representing an accessible
pool for recruitment by their heterotrophic hosts.
This appears to contrast with photosymbioses in
coral reefs and terrestrial systems, where symbi-
otic microalgal populations mainly occur within
their multicellular hosts (43).
On the other end of the spectrum of biological

interactions, rDNA metabarcodes affiliated to
groups of known parasites were ~90 times more
diverse than photosymbionts in the piconano-
plankton, where they represented ~59% of total
heterotrophic protistan ribosomal richness and
~53% of abundance (Figs. 4 and 5C), although
this latter value may be inflated by a hypothet-
ically higher rDNA copy number in somemarine
alveolate lineages (18). Parasites in this size
fraction were mostly (89% of diversity and 88%
of abundance across all stations) within the
MALV-I and -II Syndiniales (30), which are known
exclusively as parasitoid species that kill their
hosts and release hundreds of small (2 to 10 mm),
nonphagotrophic dinospores (9, 44) that survive
for only a few days in the water column (45).
Abundant parasite-assigned metabarcodes in
small size fractions (Fig. 5, B and C) suggest the
existence of a large and diverse pool of free-living
parasites in photic-zone piconanoplankton, mir-
roring phage ecology (46) and reflecting the ex-
treme diversity and abundance of their known
main hosts: radiolarians, ciliates, and dinofla-
gellates (Fig. 3) (9, 47–49). Contrasting with the
pattern observed for metabarcodes affiliated to
purely phagotrophic taxa, the relative abundance
and richness of putative parasite metabarcodes
decreased in the nano- and microplanktonic size
fractions but increased again in themesoplankton
(Fig. 5C), where parasites are most likely in their
infectious stage within larger-sized host orga-
nisms. This putative in hospite parasites richness,
equivalent to only 23% of that in the piconano-
plankton, consisted mostly of a variety of alveo-
late taxa known to infect crustaceans: MALV-IV
such as Haematodinium and Syndinium; dino-
flagellates such as Blastodinium (Fig. 4E); and
apicomplexan gregarines, mainly Cephaloidopho-

roidea (Fig. 5B) (9, 50, 51). This pattern contrasts
with terrestrial systems wheremost parasites live
within their hosts and are typically transmitted
either vertically or through vectors because they
generally do not survive outside their hosts (52).
In the pelagic realm, free-living parasitic spores,
like phages, are protected from dessication and
dispersed by water diffusion and are apparently
massively produced, which likely increases hori-
zontal transmission rate.

Community structuring of photic-zone
eukaryotic plankton

Clustering of communities by their composi-
tional similarity revealed the primary influence of
organism size (P = 10−3, r2 = 0.73) on commu-
nity structuring, with piconanoplankton display-
ing stronger cohesiveness than larger organismal
size fractions (Fig. 6A). Filtered size-fraction–
specific communities separated by thousands of
kilometers were more similar in composition
than they were to communities from other size
fractions at the same location. This was empha-
sized by the fact that ~36% of all OTUs were
restricted to a single size category (53). Further
analyses within each organismal size fraction in-
dicated that geography plays a role in commu-
nity structuring, with samples being partially
structured according to basin of origin, a pat-
tern that was stronger in larger organismal size
fractions (P = 0.001 in all cases, r2 = 0.255 for
piconanoplankton, 0.371 for nanoplankton, 0.473
for microplankton, and 0.570 for mesoplankton)
(Fig. 6B). Mantel correlograms comparing Bray-
Curtis community similarity to geographic dis-
tances between all samples indicated significant
positive correlations in all organismal size frac-
tions over the first ~6000 km, the correlation
breaking down at larger geographic distances
(54). This positive correlation between commu-
nity dissimilarity and geographic distance, ex-
pected under neutral biodiversity dynamics (55),
challenges the classical niche model for photic-
zone eukaryotic plankton biogeography (56). The
significantly stronger community differentiation
by ocean basin in larger organismal size frac-
tions (Fig. 6B) suggests increasing dispersal
limitation from piconano- to nano-, micro-, and
mesoplankton. Thus, larger-sized eukaryotic plank-
ton communities, containing the highest abun-
dance and diversity of metazoans (Figs. 2A and
5B), were spatially more heterogeneous in terms
of both taxonomic (Fig. 6) and functional (Fig. 5A)
composition and abundance. The complex life
cycle and behaviors of metazooplankton, includ-
ing temporal reproductive and growth cycles and
vertical migrations, together with putative rapid
adaptive evolution processes to mesoscale ocean-
ographic features (57), may explain the stronger
geographic differentiation of mesoplanktonic com-
munities. By contrast, eukaryotic communities
in the piconanoplankton were richer (Fig. 1A)
and more homogeneous in taxonomic composi-
tion (Fig. 6), representing a stable compartment
across the world’s oceans (58).
Even though protistan communities were di-

verse, the proportions of abundant (>1%) and
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Phytoplankton

Total eukaryotes

Total eukaryotes

Symbionts sensu lato

Fig. 5. Metabarcoding inference of trophic and symbiotic ecological
diversity of photic-zone eukaryotic plankton. (A) Richness (OTU number)
and abundance (read number) of rDNA metabarcodes assigned to various
trophic taxo-groups across plankton organismal size fractions and stations.
Note that the nano size fraction did not contain enough data to be used in
this biogeographical analysis [for all size-fraction data, see (30)]. NA, not
applicable. (B) Relative abundance of major eukaryotic taxa across Tara
Oceans stations for (i) phytoplankton and all eukaryotes in piconanoplank-
ton (above the map) and (ii) all eukaryotes and protistan symbionts (sensu

lato) in mesoplankton (below the map). Note the pattern of inverted relative
abundance between collodarian colonies (Fig. 4) and copepods in, respec-
tively, the oligotrophic and eutrophic and mesotrophic systems. The dino-
flagellates Brandtodinium and Pelagodinium are endophotosymbionts in
Collodaria (33) and Foraminifera (40, 42), respectively. (C) Richness and
abundance of parasitic and photosymbiotic (microalgae) protists across
organismal size fractions.The relative contributions (percent) of parasites to
total heterotrophic protists and of photosymbionts to total phytoplankton
are indicated above each symbol.



rare (<0.01%) OTUs were more or less constant
across communities, as has been observed in
coastal waters (6). Only 2 to 17 OTUs (i.e., 0.2 to
8% of total OTUs per and across sample) dom-
inated each community (54), suggesting that a
small proportion of eukaryotic taxa are key for
local plankton ecosystem function. On a world-
wide scale, an occurrence-versus-abundance anal-
ysis of all ~110,000 Tara Oceans OTUs revealed
the hyperdominance of cosmopolitan taxa (Fig.
7A). The 381 (0.35% of the total) cosmopolitan
OTUs represented ~68% of the total number of
reads in the data set. Of these, 269 (71%) OTUs
had >100,000 reads and accounted for nearly
half (48%) of all rDNA reads (Fig. 7A), a pattern
reminiscent of hyperdominance in the largest
forest ecosystem on Earth, where only 227 tree
species out of an estimated total of 16,000 ac-
count for half of all trees in Amazonia (59). The
cosmopolitan OTUs belongedmainly (314 of 381)
to the 11 hyperdiverse eukaryotic planktonic lin-
eages (Fig. 3C) andwere essentially phagotrophic
(40%) or parasitic (21%), with relatively few (15%)
phytoplanktonic taxa (54). Of the cosmopolitan
OTUs, which represent organisms that are like-

ly among the most abundant eukaryotes on
Earth, 25% had poor identity (<95%) to reference
taxa, and 11 of these OTUs could not even be
affiliated to any available reference sequence
(Fig. 7B) (54).

Conclusions and perspectives

We used rDNA sequence data to explore the
taxonomic and ecological structure of total eu-
karyotic plankton from the photic oceanic biome,
and we integrated these data with existing mor-
phological knowledge. We found that eukary-
otic plankton are more diverse than previously
thought, especially heterotrophic protists, which
may display a wide range of trophic modes (60)
and include an unsuspected diversity of para-
sites and photosymbiotic taxa. Dominance of
unicellular heterotrophs in plankton ecosystems
likely emerged at the dawn of the radiation of
eukaryotic cells, together with arguably their
most important innovation: phagocytosis. The
onset of eukaryophagy in the Neoproterozoic (61)
probably led to adaptive radiation in heterotro-
phic eukaryotes through specialization of trophic
modes and symbioses, opening novel serial biotic

ecological niches. The extensive codiversification
of relatively large heterotrophic eukaryotes and
their associated parasites supports the idea that
biotic interactions, rather than competition for
resources and space (62), are the primary forces
driving organismal diversification inmarine plank-
ton systems. Based on rDNA, heterotrophic pro-
tists may be even more diverse than prokaryotes
in the planktonic ecosystem (63). Given that or-
ganisms in highly diverse and abundant groups,
such as the alveolates and rhizarians, can have
genomes more complex than those of humans
(64), eukaryotic plankton may contain a vast res-
ervoir of unknown marine planktonic genes (65).
Insights are developing into how heterotrophic
protists contribute to a multilayered and inte-
grated ecosystem. The protistan parasites and
mutualistic symbionts increase connectivity and
complexity of pelagic food webs (66, 67) while
contributing to the carbon quota of their larger,
longer-lived, and often biomineralized symbiotic
hosts, which themselves contribute to carbon ex-
port when they die. Decoding the ecological and
evolutionary rules governing plankton diversity
remains essential for understanding how the
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Fig. 6. Community structuring of eukaryotic plankton across
temperate and tropical sunlit oceans. (A) Grouping of local
communities according to taxonomic compositional similarity
(Bray-Curtis distances) using nonlinear multidimensional scaling.
Each symbol represents one sample or eukaryotic community,
corresponding to a particular depth (shape) and organismal size fraction
(color). (B) Same as in (A), but the different plankton organismal size frac-
tions were analyzed independently, and communities are distinguished by
depth (shape) and ocean basins’ origin (color). An increasing geographic
community differentiation along increasing organismal size fractions is visible
and confirmed by the Mantel test [P = 10−3, Rm = 0.36, 0.49, 0.50, and 0.51

for the highest piconano- to mesoplankton correlations in Mantel correlo-
grams; see also (54)]. In addition, samples from the piconanoplankton
only were discriminated by depth (surface versus DCM; P = 0.001, r2 =
0.2). The higher diversity and abundance of eukaryotic phototrophs in this
fraction (Fig. 5A) may explain overall community structuring by light and,
thus, depth.
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critical ocean biomes contribute to the func-
tioning of the Earth system.

Materials and methods

V9-18S rDNA for
eukaryotic metabarcoding

We used universal eukaryotic primers (68) to
PCR-amplify (25 cycles in triplicate) the V9-18S
rDNA genes from all Tara Oceans samples. This
barcode presents a combination of advantages for
addressing general questions of eukaryotic bio-
diversity over extensive taxonomic and ecological
scales: (i) It is universally conserved in length
(130 T 4 base pairs) and simple in secondary
structure, thus allowing relatively unbiased PCR
amplification across eukaryotic lineages followed
by Illumina sequencing. (ii) It includes both sta-
ble and highly variable nucleotide positions over
evolutionary time frames, allowing discrimination
of taxa over a substantial phylogenetic depth. (iii)
It is extensively represented in public reference
databases across the eukaryotic tree of life, allow-
ing taxonomic assignment among all known eu-
karyotic lineages (13).

Biodiversity analyses

Our bioinformatic pipeline included quality
checking (Phred score filtering, elimination of
reads without perfect forward and reverse prim-
ers, and chimera removal) and conservative
filtering (removal of metabarcodes present in
less than three reads and two distinct samples).
The ~2.3 million metabarcodes (distinct reads)
were clustered using an agglomerative, un-
supervised single-linkage clustering algorithm,
allowing OTUs to reach their natural limits while
avoiding arbitrary global clustering thresholds
(13, 14). This clustering limited overestimation
of biodiversity due to errors in PCR amplification
or DNA sequencing, as well as intragenomic

polymorphism of rDNA gene copies (13). Tara
Oceans metabarcodes and OTUs were taxon-
omically assigned by comparison to the 77,449
reference barcodes included in our V9_PR2 data-
base (15). This database derives from the Protist
Ribosomal Reference (PR2) database (69) but
focuses on the V9 region of the gene and in-
cludes the following reorganizations: (i) extension
of the number of ranks for groups with finer
taxonomy (e.g., animals), (ii) expert curation of
the taxonomy and renaming in novel environ-
mental groups and dinoflagellates, (iii) resolu-
tion of all taxonomic conflicts and inclusion of
environmental sequences only if they provide
additional phylogenetic information, and (iv) an-
notation of basic trophic and/or symbiotic modes
for all reference barcodes assigned to the genus
level [see (53) and (15) for details]. The V9_PR2
reference barcodes represent 24,435 species and
13,432 genera from all known major lineages of
the tree of eukaryotic life (15). Metabarcodes with
≥80% identity to a reference V9 rDNA barcode
were considered assignable. Below this threshold
it is not possible to discriminate between eukary-
otic supergroups, given the short length of V9
rDNA sequences and the relatively fast rate ac-
cumulation of substitution mutations in the DNA.
In addition to assignment at the finest-possible
taxonomic resolution, all assignable metabarcodes
were classified into a reference taxonomic frame-
work consisting of 97 major monophyletic groups
comprising all known high-rank eukaryotic diver-
sity. This framework, primarily based on a syn-
thesis of protistan biodiversity (19), also included
all key but still unnamed planktonic clades re-
vealed by previous environmental rDNA clone
library surveys (70) [e.g., marine alveolates
(MALV), marine stramenopiles (MAST), marine
ochrophytes (MOCH), and radiolarians (RAD)]
(15). Details of molecular and bioinformatics

methods are available on a companion Web site
at http://taraoceans.sb-roscoff.fr/EukDiv/ (53). We
compiled our data into two databases including
the taxonomy, abundance, and size fraction and
biogeography information associated with each
metabarcode and OTU (71).

Ecological inferences

From our Tara Oceans metabarcoding data set,
we inferred patterns of eukaryotic plankton
functional ecology. Based on a literature survey,
all reference barcodes assigned to at least the
genus level that recruited Tara Oceans meta-
barcodes were associated to basic trophic and
symbiotic modes of the organism they come from
(15) and used for a taxo-functional annotation of
our entire metabarcoding data set with the same
set of rules used for taxonomic assignation (53).
False positives were minimized by (i) assigning
ecological modes to all individual reference bar-
codes in V9_PR2; (ii) inferring ecological modes
to metabarcodes related to monomodal reference
barcode(s) (otherwise transferring them to a “NA,
nonapplicable” category); and (iii) exploring
broad and complex trophic and symbiotic modes
that involve fundamental reorganization of the
cell structure and metabolism, emerged relatively
rarely in the evolutionary history of eukaryotes,
and most often concern all known species within
monophyletic and ancient groups [see (15) for de-
tails]. In case of photo- versus heterotrophy, >75%
of the major, deep-branching eukaryotic lineages
considered (Fig. 3) are monomodal and recruit
~87 and ~69% of all TaraOceans V9 rDNA reads
and OTUs, respectively. For parasitism, ~91% of
Tara Oceans metabarcodes are falling within
monophyletic and major groups containing
exclusively parasitic species (essentially within
the major MALVs groups). Although biases could
arise in functional annotation of metabarcodes
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Fig. 7. Cosmopolitanism and abundance of eukaryotic marine plankton. (A) Occurrence-versus-abundance plot including the ~110,000 Tara Oceans V9
rDNA OTUs. OTUs are colored according to their identity with a reference sequence, and a fitted curve indicates the median OTU size value for each OTU
geographic occurrence value. The red rectangle encloses the cosmopolitan and hyperdominant (>105 reads) OTUs. (B) Similarity to reference barcode and
taxonomic purity [a measure of taxonomic assignment consistency defined as the percentage of reads within an OTU assigned to the same taxon; see (13)] of
the 381 cosmopolitan OTUs, along their abundance (y axis).

http://taraoceans.sb-roscoff.fr/EukDiv/


relatively distant from reference barcodes in the
few complex polymodal groups (e.g., the dino-
flagellates that can be phototrophic, heterotro-
phic, parasitic, or photosymbiotic), a conservative
analysis of the trophic and symbiotic ecological
patterns presented in Fig. 3, using a ≥99% as-
signation threshold, shows that these are stable
across organismal size fractions and space, inde-
pendently of the similarity cutoff (80 or 99%),
demonstrating their robustness across evolu-
tionary times (30).
Note that rDNAgene copy number varies from

one to thousands in single eukaryotic genomes
(72, 73), precluding direct translation of rDNA
read number into abundance of individual orga-
nisms. However, the number of rDNA copies per
genome correlates positively to the size (73) and
particularly to the biovolume (72) of the eukary-
otic cell it represents. We compiled published
data from the last ~20 years, confirming the
positive correlation between eukaryotic cell size
and rDNA copy number across a wide taxonomic
and organismal size range [see (74); note, how-
ever, the ~one order of magnitude of cell size
variation for a given rDNA copy number]. To
verify whether our molecular ecology protocol
preserved this empirical correlation, lightmicros-
copy counts of phytoplankton belonging to dif-
ferent eukaryotic supergroups (coccolithophores,
diatoms, and dinoflagellates) were performed
from nine Tara Oceans stations from the Indian,
Atlantic, and Southern oceans; transformed into
biomass and biovolume data; and then compared
with the relative number of V9 rDNA reads found
for the identified taxa in the same samples (74).
Results confirmed the correlation between bio-
volume and V9 rDNA abundance data (r2 = 0.97,
P = 1 × 10–16), although we cannot rule out the
possibility that some eukaryotic taxa may not
follow the general trend.
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OCEAN PLANKTON

Environmental characteristics of
Agulhas rings affect interocean
plankton transport
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Agulhas rings provide the principal route for ocean waters to circulate from the Indo-Pacific
to the Atlantic basin. Their influence on global ocean circulation is well known, but their
role in plankton transport is largely unexplored. We show that, although the coarse
taxonomic structure of plankton communities is continuous across the Agulhas choke
point, South Atlantic plankton diversity is altered compared with Indian Ocean source
populations. Modeling and in situ sampling of a young Agulhas ring indicate that strong
vertical mixing drives complex nitrogen cycling, shaping community metabolism and
biogeochemical signatures as the ring and associated plankton transit westward.
The peculiar local environment inside Agulhas rings may provide a selective mechanism
contributing to the limited dispersal of Indian Ocean plankton populations into the Atlantic.

T
he Agulhas Current, which flows down the
east coast of Africa, leaks from the Indo-
Pacific Ocean into the Atlantic Ocean (1).
This leakage, a choke point to heat and salt
distribution across the world’s oceans, has

been increasing over the last decades (2). The in-
fluence of the Agulhas leakage on global oceanic
circulation makes this area a sensitive lever in cli-
mate change scenarios (3). Agulhas leakage has
been a gateway for planetary-scale water transport
since the early Pleistocene (4), but diatom fossil
records suggest that it is not a barrier to plank-
ton dispersal (5). Most of the Agulhas leakage
occurs through huge anticyclonic eddies known
as Agulhas rings. These 100- to 400-km-diameter
rings bud from Indian Ocean subtropical waters
at the Agulhas Retroflection (1). Each year, up to
half a dozen Agulhas rings escape the Indian
Ocean, enter Cape Basin, and drift northwester-
ly across the South Atlantic, reaching the South
American continent over the course of several
years (1, 6). During the transit of Agulhas rings,
strong westerly “roaring forties” winds prevalent
in the southern 40s and 50s latitudes cause in-
tense internal cooling and mixing (7).
We studied the effect of Agulhas rings and the

environmental changes they sustain on plankton
dispersal. Plankton such asmicroalgae, which pro-
duce half of the atmospheric oxygen derived from
photosynthesis each year, are at the base of open-

ocean ecosystem food chains, thus playing an
essential role in the functioning of the biosphere.
Their dispersal is critical for marine ecosystem
resilience in the face of environmental change (8).
As part of the Tara Oceans expedition (9), we de-
scribe taxonomic and functional plankton assem-
blages inside Agulhas rings and across the three
oceanic systems that converge at theAgulhas choke
point: the western Indian Ocean subtropical gyre,
the South Atlantic Ocean gyre, and the Southern
Ocean below the Antarctic Circumpolar Current
(Fig. 1).

Physical and biological oceanography of
the sampling sites

The Indian, South Atlantic, and SouthernOceans
were each represented by three sites sampled
between May 2010 and January 2011 (Fig. 1 and
table S1). A wide range of environmental condi-
tions were encountered (10). We first sampled
the two large contiguous Indian and South Atlan-
tic subtropical gyres and the Agulhas ring struc-
tures that maintain the physical connection
between them. On the western side of the Indian
Ocean, station TARA_052 was characterized by
tropical, oligotrophic conditions. Station TARA_064
was located within an anticyclonic eddy repre-
senting the Agulhas Current recirculation. Sta-
tion TARA_065 was located at the inner edge of
the Agulhas Current on the South African slope

that feeds the Agulhas retroflection and Agulhas
ring formation (3). In the South Atlantic Ocean,
station TARA_070, sampled in late winter, was
located in the eastern subtropical Atlantic basin.
Station TARA_072 was located within the trop-
ical circulation of the South Atlantic Ocean, and
Station TARA_076 was at the northwest extreme
of the South Atlantic subtropical gyre. Two sta-
tions (TARA_068 and TARA_078) from the west
and east South Atlantic Ocean sampled Agulhas
rings. Three stations (TARA_082, TARA_084, and
TARA_085) in the SouthernOceanwere selected to
sample the Antarctic Circumpolar Current frontal
system. Station TARA_082 sampled sub-Antarctic
waters flowing northward along the Argentinian
slope, waters that flow along the Antarctic Cir-
cumpolar Current (11) with characteristics typical
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of summer sub-Antarctic surface waters and are
stratified by seasonal heating. Station TARA_084
was located on the southern part of the Antarctic
Circumpolar Current, in the Drake Passage be-
tween the Polar Front and the South Antarctic
Circumpolar Current front (11). Station TARA_085
was located on the southern edge of the South
Antarctic Circumpolar Current front with waters
typical of polar regions.
Wecomparedoverall planktoncommunity struc-

tures between the three oceans using imaging and
genetic surveys of samples from the epipelagic
zone of each station (12). Prokaryote, phyto-, and
zooplankton assemblageswere similar across Indian
and South Atlantic Ocean samples but different
from Southern Ocean samples (Fig. 2A). In the In-
dian and South Atlantic Oceans, zooplankton com-
munitieswere dominatedbyCalanoida, Cyclopoida
(Oithonidae), andPoecilostomatoida copepods (12);
phytoplankton communitiesweremainly composed
of chlorophytes, pelagophytes, and haptophytes
(12). In contrast, Southern Ocean zooplankton
communities were distinguished by an abundance
ofLimacina spp. gastropods andPoecilostomatoida
copepods. Southern Ocean phytoplankton were
primarily diatoms and haptophytes. The diver-
gence was even more conspicuous with respect
to prokaryotes, in that picocyanobacteria, dom-
inant in the Indian and South Atlantic Oceans,
were absent in the Southern Ocean. The South-
ern Ocean had a high proportion of Flavobacteria
and Rhodobacterales (12). Virus concentrations in
the <0.2-mmsize fractionswere significantly lower
in the southernmost Southern Ocean station (13).
Viral particles were significantly smaller in two of
the three Southern Ocean sampling sites, and two
Southern Ocean viromes had significantly lower
richness compared with the South Atlantic and
Indian Oceans (13). Although nucleocytoplasmic
large DNA viruses were similarly distributed
in the South Atlantic and Indian Oceans (12),
two Southern Ocean sites contained coccolitho-
viruses also found in the TARA_068 Agulhas ring
but not in the other Indian and South Atlantic
stations.

Biological connection across the Agulhas
choke point

Geneticmaterial as represented by ribosomal RNA
gene (rDNA) sequences showed exchange patterns
across the oceans (shared barcode richness) (14).
Despite a smaller interface between the Indian
and South Atlantic Oceans than either have with
theSouthernOcean,more than three timesasmuch
genetic material was in common between the In-
dian and South Atlantic Oceans than either had
with the Southern Ocean (Fig. 2B) (15). Indeed,
the Indian–South Atlantic interocean shared bar-
codes richness (32 T 5%) was not significantly
different from typical intraocean values (37 T 7%,
Tukey post hoc, 0.95 confidence). Shared barcode
richness involving the SouthernOceanwas signif-
icantly lower (9 T 3%) (Fig. 2C).We found that the
proportion of whole shotgun metagenomic reads
shared between samples, both intraoceanic and
Indian–South Atlantic interocean similarities,
were in the 18 to 30% range, whereas interocean

similarities with Southern Ocean samples were
only 5 to 6% (16). The statistically indistinguish-
able Indo-Atlantic intra- and interocean ge-
netic similarities revealed a high Indo-Atlantic
biological connection despite the physical basin
discontinuity.
Nonetheless, differences on either side of the

Agulhas choke point were evident. We found that
prokaryote barcode richness was greater in the
South Atlantic than in the IndianOcean (Fig. 3A)
(0.2- to 3-mm size fraction). The opposite trend
characterized eukaryotes larger than 20 mm in
size. We cannot rule out the possibility that the
higher prokaryote diversity observed in the South
Atlantic Ocean might be due to a protocol artifact
resulting from a difference in prefiltration pore
size from 1.6 mm (Indian Ocean) to 3 mm (South
Atlantic and Southern Oceans). As also evident
from the panoceanic Tara Oceans data set (17),
smaller size fractions showed greater eukaryote
diversity across the Agulhas system. In all size
fractions that we analyzed, samples from the
Southern Ocean were less diverse than samples
from the South Atlantic Ocean and Indian Ocean
(Fig. 3A).
When rDNA barcodes were clustered by se-

quence similarity and considered at operational
taxonomic unit (OTU) level (14), more than half
(57%) of the OTUs contained higher sub-OTU
barcode richness in the Indian Ocean than in the
South Atlantic Ocean, whereas less than a third
(32%) of OTUs were richer in the South Atlantic
Ocean, leaving only 11% as strictly cosmopolitan
(Fig. 3B). Taken together, these 1307 OTUs rep-
resented98%of thebarcode abundance, indicating
that the observed higher barcode richness within

OTUs in the Indian Ocean was not conferred by
the rare biosphere. Certain taxa displayed un-
usual sub-OTU richness profiles across the choke
point. Consistent with their relatively large size,
Opisthokonta (mostly copepods), Rhizaria (such
as radiolarians), and Stramenopiles (in particu-
lar diatoms) had much higher sub-OTU barcode
richness in the Indian Ocean, whereas only small-
sizedHacrobia (mostly haptophytes) showedmod-
est increased sub-OTU barcode richness in the
South Atlantic Ocean. The plankton filtering that
we observed in fractions above 20 mm through
the Agulhas choke point might explain the re-
duction of marine nekton diversity from the In-
dian Ocean to the South Atlantic Ocean (18) by
propagating up the food web (19).

In situ sampling of two Agulhas rings

Tounderstandwhether theenvironmentofAgulhas
rings, the main transporters of water across the
choke point, might act as a biological filter be-
tween the Indian Ocean and the South Atlantic
Ocean,we analyzed data collected in both a young
and an oldAgulhas ring. The young ring sampled
at station TARA_068 was located in the Cape Ba-
sin, west of South Africa, where rings are often
observed after their formation at the Agulhas Retro-
flection (7, 20). It was a large Agulhas ring that
detached from the retroflection about 9 to 10
months before sampling. This ring first moved
northward and then westward in the Cape Basin
while interactingwith other structures (red track
in Fig. 1) (21). Ocean color data collected by satel-
lite showed that surface chlorophyll concentra-
tions were higher in the Cape Basin than at the
retroflection, suggesting that vigorous vertical

1261447-2 22 MAY 2015 • VOL 348 ISSUE 6237 sciencemag.org SCIENCE

Fig. 1. The oceanic circulation around the Agulhas choke point and location of Tara Oceans
stations. The map shows the location of sampling stations, together with trajectories of the young and
old Agulhas rings (TARA_068 and TARA_078, red and green tracks, respectively).The stations here con-
sidered as representative of the main basins are (i) TARA_052, TARA_064, and TARA_065 for Indian
Ocean; (ii) TARA_070, TARA_072, and TARA_076 for the South Atlantic Ocean, and (iii) TARA_082,
TARA_084, and TARA_085 for the Southern Ocean.Themean ocean circulation is schematized by arrows
(currents) and background colors [surface climatological dynamic height (0/2000 dbar from CARS2009;
www.cmar.csiro.au/cars)] (70). Agulhas rings are depicted as circles. The Antarctic Circumpolar Current
front positions are from (13).
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mixing might have occurred in the Cape Basin
(22). At the time of sampling, the anticyclonic
Agulhas ring was 130 to 150 km in diameter, was
about 30 cm higher than average sea surface
height, and was flanked by a 130- to 150-km
cyclonic eddy to the north and a larger (>200 km)
one to the east (Fig. 4A) (23). Thermosalinograph
data showed that filaments of colder, fresher
water surrounded the young ring core (Fig. 4A)
(23). To position the biological sampling station
close to the ring core, a series of conductivity-
temperature-depth (CTD) casts was performed
(23, 24). The young Agulhas ring had a surface
temperature and salinity of 16.8°C and 35.7 prac-
tical salinity units (PSU), respectively, and the
isopycnal sloping could be traced down to CTD
maximal depth (900 to 1000 m). The core of the
ring water was 5°C cooler than Indian Ocean
subtropical source waters at similar latitudes

(TARA_065) (table S1), typical for the subtropical
waters south of Africa (17.8°C, 35.56 PSU, respec-
tively) (25). The mixed layer of the young ring
was deep (>250 m) compared with seasonal
cycles of the mixed layer depths in the region
(50 to 100 m) (Fig. 4C), typical of Agulhas rings
(26). At larger scales (Fig. 4B) (24), steep spatial
gradients were observed, with fresher and colder
water in the Cape Basin than in the Agulhas Cur-
rent because of both lateral mixing with waters
from the south and surface fluxes. This confirms
that the low temperature of the young Agulhas
ring is a general feature of this Indian to South
AtlanticOcean transitional basin. Air-sea exchanges
of heat and momentum promoted convection in
the ring core, which was not compensated by lat-
eralmixing and advection. The core of theAgulhas
ring thus behaved as a subpolar environment
traveling across a subtropical region.

At station TARA_078, we sampled a second
structurewhose originswere in theAgulhasRetro-
flection, likely a 3-year-old Agulhas ring. This old
ring, having crossed the SouthAtlantic Ocean, was
being absorbed by the western boundary current
of the South Atlantic subtropical gyre. The struc-
ture sampled at station TARA_078 was character-
ized by a warm salty core (27). As for the young
Agulhas ring sampled, the old ring also had a 100-m-
deeper pycnocline than surrounding waters, typ-
ical of large anticyclonic structures.
The plankton assemblage of both Agulhas rings

most closely resembled the assemblages found in
Indian and South Atlantic samples (Fig. 2A). At
higher resolution, barcodes (Fig. 2, B and C) and
metagenomic reads (16) sharedbetween theAgulhas
rings and the Indian or South Atlantic samples
showed that the young ring was genetically dis-
tinct fromboth Indian and SouthAtlantic samples,

SCIENCE sciencemag.org 22 MAY 2015 • VOL 348 ISSUE 6237 1261447-3

Fig. 2. Agulhas system plankton community struc-
ture. (A) Plankton community structure of the In-
dianOcean (IO), SouthAtlanticOcean (SAO), Southern
Ocean (SO), and Agulhas rings (stations 68 and 78,
in red). Bacterial 0.2- to 3-mm assemblage structure
was determined by counting clade-specific marker
genes from bacterial metagenomes. Size fractio-
nated (0.8 to 5, 20 to 180, and 180 to 2000 mm)
eukaryotic assemblage structure was determined
using V9 rDNA barcodes. Nucleocytoplasmic large
DNAviruses (NCLDV)0.2- to3-mmassemblage struc-
turewas determined by phylogeneticmapping using
16 NCLDV marker genes. OTU abundances were
converted topresence/absence to hierarchicallyclus-
ter samples using Jaccard distance. (B) Network of
pairwise comparisons of shared V9 rDNA barcode
richness (shared barcode richness) between the 11
sampling stations of the study. The width of each
edge is proportional to the number of shared bar-
codes between corresponding sampling stations.
(C) Box plot of shared barcode richness between
stations for0.8- to5-, 20- to 180-, and 180- to2000-mm
size fractions.The shared barcode richness analysis
considers that two V9 rDNA barcodes are shared
between two samples if they are 100% identical over
their whole length. Shared barcode richness between
two samples, s1 and s2, is expressed as the pro-
portion of shared barcode richness relative to the
average internal barcode richness of samples s1 and
s2. IO, Indian Ocean; SAO, South Atlantic Ocean; SO,
SouthernOcean;Y.RING, young ring;O.RING,old ring.



whereas the old ring was similar to its surround-
ing South Atlantic samples (Tukey post hoc, 0.95
confidence). Light microscopy analyses revealed
someplankton groups specific to the youngAgulhas
ring, such as Pseudo-nitzschia spp., which repre-
sented 20% of the phytoplankton counts but less
than 10% in all other stations (12). Other po-
tentially circumstantial plankton characteristic
of the young Agulhas ring included the tintinnid
Dictyocysta pacifica (12), the diatom Corethron
pennatum (12), and the dinoflagellate Tripos
limulus (12). A tiny (less than 15 mm long) pen-
nate diatom from the genusNanoneis,which we
saw only in the young Agulhas ring and Indian
Ocean stations around the African coasts (28), was
an example of the Indo-Atlantic plankton diver-
sity filtering observed at rDNA barcode level and
corroborated by microscopy. OTU clustered bar-
codes revealed a variety of young Agulhas ring
sub-OTU richness patterns compared with source
anddestination oceans (Fig. 5A). AmongCopepoda,
Gaetanus variabilis and Corycaeus speciosuswere
themore cosmopolitan species (Fig. 5B), whereas
Bradya species found in the young ring were
mainly similar to those from the Indian Ocean.
Acartia negligens and Neocalanus robustior dis-
playedhigh levels of barcode richness specific to each
side of the Agulhas choke point. Bacillariophyceae
were heavily filtered from Indian to South At-

lantic Oceans (Fig. 5C), andmost OTUs (17 out of
20) were absent in the young ring, suggesting
that diversity filtering could take place earlier in
the ring’s 9-month history. Consistent with the
observed particularities of the plankton in the
young ring, continuous underway optical mea-
surements showed that the ring core photosyn-
thetic community differed from surrounding
waters (29–31). Intermediate size cells, and rela-
tively low content of photoprotective pigments,
reflected low growth irradiance and suggested a
transitional physiological state. Thus, the plank-
ton community in the young Agulhas ring had
diverged from plankton communities typical of
its original Indian waters but, even 9 months af-
ter formation, had not converged with its sur-
rounding South Atlantic waters.

Deep mixing in Agulhas rings promotes
plankton bloom

Theupperwater columnof the young ring showed
a high nitrite concentration (>0.5mmolm−3) (Fig.
4D) (32). This observation, along with its partic-
ularly deep mixed layer (>250 m), suggested that
as Agulhas rings proceed westward in the Cape
Basin, vigorous deep mixing of their weakly strat-
ified waters may have entrained nitrate and stim-
ulated phytoplankton blooms. Typically, fresh
organic material would then either be exported

as sinking particles or locally recycled, sustaining
heterotrophicproductionofammoniumthatwould,
in turn, be consumed by photoautotrophs in the
euphotic layer but nitrified below. The resulting
nitrite, eventually oxidized to nitrate,might remain
evident at subsurface as observed in the nitrite
anomaly of the young ring detected here. This hy-
pothesis was supported by numerical simulations
of theMassachusetts Institute of TechnologyGen-
eral CirculationModel (33), which resolvedAgulhas
rings, their phytoplankton populations, and asso-
ciated nutrient cycling (Fig. 6A). We tracked 12
Agulhas rings in the ocean model and character-
ized their near-surface biogeochemical cycles (Fig.
6B) (34). As the rings moved westward, storms
enhanced surfaceheat loss, stimulating convection
and the entrainment of nitrate. In the model
simulations, proliferation of phytoplankton gen-
erated subsurface nitrite, which persisted because
phytoplankton were light-limited at depth and
because nitrification was suppressed by light at
the surface (35). The associated bloomswere dom-
inated by large opportunistic phytoplankton and
nitrate-metabolizing Synechococcus spp. analogs,
whereas populations of Prochlorococcus spp. ana-
logs dominated the quiescent periods (34). Each
of the 12 simulated Agulhas rings exhibited this
pattern in response to surface forcing by weather
systems, and all rings maintained a persistent
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Fig. 3. Diversity of plankton
populations specific to
Indian and Atlantic Oceans.
(A) Box plot of 16S (0.2 to
3 mm) and V9 rDNA barcodes
richness (0.8- to 5-, 20- to
180-, and 180- to 2000-mm
size fractions). Each box
represents three sampling
stations combined into Indian,
South Atlantic, and Southern
Ocean. Single Agulhas ring
stations are represented as
red (young ring) and orange
(old ring) crosses. (B) Plank-
ton sub-OTU richness filtering
across the Agulhas choke
point. Each vertical bar repre-
sents a single eukaryotic
plankton OTU, each of which
contains >10 distinct V9 rDNA
barcodes (14). For each OTU
are represented the number of
distinct barcodes (sub-OTU
richness) found exclusively in
the South Atlantic Ocean
(blue), exclusively in the Indian
Ocean (pink), and in both
South Atlantic Ocean and
Indian Ocean (gray). OTUs are
grouped by taxonomic anno-
tation (indicated above the bar
plot). For each taxonomic
group, the percentage of
OTUs with higher sub-OTU richness in the Indian Ocean (shaded in pink) or in the South Atlantic Ocean (shaded in blue) is indicated, respectively, at the top
and bottom of the bar plot. A total of 1307 OTUs are presented, representing 98% of total V9 rDNA barcode abundance.
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subsurface nitrite maximum in the region, as ob-
served in TARA_068 and in other biogeochem-
ical surveys (36).
The nitrite peak observed at TARA_068 in the

young Agulhas ring was associated with a differ-
ential representationof nitrogenmetabolismgenes
between the ring and the surrounding South At-
lantic and Indian Oceans metagenomes derived
from0.2- to 3-mmsize fractions (Fig. 7) (37). Agulhas
ring overrepresentedKEGG (Kyoto Encyclopedia
of Genes and Genomes) orthologs (KOs) were in-
volved in both nitrification and denitrification,
likely representing the overlap between plankton
assemblages involved in the conversion of nitrate
to nitrite on the one hand and in denitrification of
the accumulatingnitrite on the other.DistinctKOs
involved in successive denitrification steps were
found to be encoded by similar plankton taxa. For
instance, KO10945 and KO10946 (involved in am-
moniumnitrification) andKO00368 (subsequently

involved in nitrite to nitrous oxide denitrification)
appeared mostly encoded by Nitrosopumilaceae
archaea. KO00264 and KO01674 (involved in am-
monium assimilation) were mostly assigned to
eukaryotic Mamiellales, whereas the opposite
KO00367 and KO00366 (involved in dissimilato-
ry nitrite reduction to ammonium), followed by
KO01725 (involved in ammonium assimilation),
were encoded by picocyanobacteria. In the spe-
cific case of the picocyanobacteria, metagenomic
reads corresponding to nirA genes showed that
the observed young Agulhas ring KO00366 (dis-
similatory nitrite reduction) enrichmentwasmain-
ly due to the overrepresentation of genes from
Prochlorococcus (Fig. 8B). This enrichment was
found to be associated with a concomitant shift
in population structure from Prochlorococcus high-
light II ecotypes (HLII, mostly lackingnirA genes)
to codominance of high-light I (HLI) and low-
light I (LLI) ecotypes. Indeed, among the several

Prochlorococcus and Synechococcus ecotypes iden-
tified based on their genetic diversity and phys-
iology (38, 39), neutral marker (petB) (Fig. 8A)
recruitments showed that dominant clades in
the Indian Ocean upper mixed layer were Pro-
chlorococcusHLII and Synechococcus clade II, as
expected given the known (sub)tropical prefer-
ence of these groups (40). Both clades nearly com-
pletely disappeared (less than 5%) in the mixed
cold waters of the young ring and only began to
increase againwhen the surfacewater warmedup
along the SouthAtlanticOcean transect. Converse-
ly, young ring water was characterized by a large
proportion of Prochlorococcus HLI and LLI and
Synechococcus clade IV, two clades typical of tem-
perate waters. Besides temperature, the Prochlo-
rococcus community shift fromHLII toHLI + LLI
observed in the young ring was likely also driven
by the nitrite anomaly. Indeed, whereas most
Synechococcus strains isolated so far are able to
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Fig. 4. Properties of the young Agulhas ring (TARA_068). (A) Daily sea
surface height around young Agulhas ring station TARA_068 [absolute dynamic
topography (ADT) from www.aviso.altimetry.fr]. R, C1, and C2, respectively,
denote the centers of the Agulhas ring and two cyclonic eddies. The contour
interval is 0.02 dyn/m. The ADT values are for 13 September 2010. Light gray
isolines, ADT < 0.46 dyn/m. The crosses indicate the CTD stations, and the
square symbol indicates the position of the biological station TARA_068. The
biological station coincideswith thewesternmost CTD station. ADT is affected by
interpolation errors,which is why CTD casts were performed at sea so as to have
a fine-scale description of the feature before defining the position of the biological
station (23). Superimposed are the continuous underway temperatures (°C)
from the on-board thermosalinograph. (B) Same as (A) but at the regional scale.

Round symbols correspond to biological sampling stations.The contour interval
is 0.1 dyn/m. (C) Seasonal distribution of the median values of the mixed layer
depths and temperatures at 10 m (from ARGO) provided by the IFREMER/LOS
Mixed Layer Depth Climatology L2 database (www.ifremer.fr/cerweb/deboyer/
mld) updated to 27 July 2011. The mixed layer is defined using a temperature
criterion. The star symbol represents the young ring station TARA_068. (Inset)
Geographic position of the areas used to select themixed layer and temperature
data. The mixed layer depth measured at TARA_068 is outside the 90th per-
centile of the distribution of mixed layer depths for the samemonth for both the
subtropical (red andmagenta) regions.The temperaturematches themedian for
the same month and region of sampling. (D) Nitrite (NO2) concentrations from
CTD casts at different sampling sites (expressed in mmol/m3).
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use nitrate, nitrite, and ammonium, only the Pro-
chlorococcus LLI and IV and some populations of
HL clades, having acquired thenirA gene by lateral
gene transfer, are able to assimilate nitrite. In the
young ring, overrepresentation of cyanobacterial
orthologs involved in nitrite reduction could thus
have resulted from environmental pressure select-
ing LLI (87% of the nirA recruitments) and HL
populations (13%) that possessed this ability.
Because the capacity to assimilate nitrite in this
latter ecotype reflects the availability of this nu-
trient in the environment (41), these in situ ob-
servations of picocyanobacteria indicated that
the nitrogen cycle disturbance occurring in the

young ring exerts community-wide selective pres-
sure on Agulhas ring plankton.

Discussion

We found that whether or not the Agulhas choke
point is considered a barrier to plankton disper-
sal depends on the taxonomic resolution at which
the analysis is performed. At coarse taxonomic
resolution, our observations of Indo-Atlantic con-
tinuous plankton structure—from viruses to fish
larvae—suggested unlimited dispersal, consistent
with previous reports (5, 42). However, at finer
resolution, our genetic data revealed that the
Agulhas choke point strongly affects patterns

of plankton genetic diversity. As anticipated in
(5), the diversity filtering by Agulhas rings likely
escaped detection using fossil records because of
the limited taxonomic resolution afforded by fos-
sil diatommorphology (42). The community-wide
evidence presented here confirms observations on
individual living species (43, 44), suggesting that
dispersal filters mitigate the panmictic ocean hy-
pothesis for plankton above 20 mm.
The lower diversity we observed in the South At-

lanticOcean formicro- andmesoplankton (>20mm)
may be due to local abiotic/biotic pressure or to lim-
itations indispersal (33,45). Biogeographyemerging
from amodel with only neutral drift (46) predicts

1261447-6 22 MAY 2015 • VOL 348 ISSUE 6237 sciencemag.org SCIENCE

Fig. 5. Plankton diversity patterns. (A) Schematic representation of
four scenarios of diversity patterns between the Indian and South
Atlantic basins (I to IV): Plankton is transported from the Indian Ocean
(pink, right) to the South Atlantic Ocean (blue, left) through the choke
point (red, CP). The thickness of each colored section represents the
level of diversity specific to each region.The observed percentage of V9
rDNA OTUs corresponding to each scenario is indicated in the pie
charts to the left (out of 1063 OTUs of the full V9 rDNA barcode data
set). (B) V9 rDNA OTU diversity patterns for copepods and Bacillari-
ophyta. Each circle on the charts represents a V9 rDNA OTU plotted
with coordinates proportional to ribotypes specific to the Indian
Ocean (x axis) and the South Atlantic Ocean (y axis). For instance, the
copepod Acartia negligens in the top right corner of sector II corre-
sponds to the “bow tie” scenario II of (A) (i.e., a copepod with rep-
resentative V9 rDNA barcodes in both Indian and South Atlantic
Oceans, the vastmajority of which are specific to their respective ocean
basin). In contrast, the majority of barcodes for Sinocalanus sinensis in
sector III are found in both Indian and South Atlantic Oceans [cosmo-
politan OTU corresponding to the “Everything is everywhere” flat di-
versity diagram of (A), scenario III]. If more than 10 barcodes were
found in the young Agulhas ring (TARA_068), their distribution is indicated in a pie chart (colors are coded in the legend inset); otherwise, the OTU is represented
by an empty circle. Circle sizes are proportional to the number of considered barcodes for each OTU.The Bacillariophyta OTU defined as Raphid pennate sp. likely
corresponds to the Pseudo-nitzschia cells observed by light microscopy.
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basin-to-basin genetic differences that are qualita-
tively consistentwithourdata.However, the increased
proportion of ProchlorococcusHLpopulations car-
rying the nirA gene in the young Agulhas ring in-
dicates that selection is at work in Agulhas rings.
Based on our analysis of two Agulhas rings, we pro-
pose that environmental disturbances in Agulhas
rings reshape their plankton diversity as they trav-
el from the Indian Ocean to the South Atlantic
Ocean. Such selective pressure may contribute to
the South Atlantic Ocean plankton diversity shift
relative to its upstream Indo-Pacific basin. Thus,
environmental selection applied at a choke point
in ocean circulationmay constitute a barrier to dis-
persal (47, 48). Furthermore, we show that taxo-
nomic groupswere not equally affected by the ring
transport, bothwithin and between phyla, with a
noticeable effect of organism size. The differential
effects due to organism size highlight the difficulty
in generalizing ecological and evolutionary rules
from limited sampling of species or functional types.

Considering the sensitivity of Agulhas leakage
to climate change (1, 49), better understanding of
the plankton dynamics in Agulhas rings will be
required if we are to understand and predict eco-
system resilience at the planetary scale. Consid-
ering the breadth of changes already observed in
the 9-month-old Agulhas ring, it would be interest-
ing to acquire samples from specific Agulhas rings
tracked from early formation to dissipation. Final-
ly, our data suggest that the abundance of Indian
Ocean species in South Atlantic Ocean sedimentary
records, used as proxies of Agulhas leakage inten-
sity (4), may actually also depend on the physical
and biological characteristics of the Agulhas rings.

Materials and methods

Sampling

The TaraOceans sampling protocols schematized
in Karsenti et al. (9) are described in Pesant et al.
(50); specificmethods for 0.8- to 5-, 20- to 180-, and

180- to 2000-mm size fractions in de Vargas et al.
(17); for 0.2- to 3-mmsize fractions in Sunagawa et al.
(51); and for<0.2-mmsize fraction inBrum et al. (52).
Due to their fragility, 1.6-mm glass fiber filters ini-
tially used for prokaryote sampling were replaced
bymore resistant 3-mmpolycarbonate filters from
stationTARA_066onward. In thepresent text, both
0.2- to 1.6-mmand 0.2- to 3-mmprokaryote size frac-
tions are simply referred to as 0.2 to 3 mm.

Data acquisition

A range of analytical methods covering different
levels of taxonomic resolution (pigments, flow cy-
tometry, opticalmicroscopy,marker gene barcodes,
andmetagenomics)wereused to describe theplank-
tonic composition at each sampled station. Viruses
from the <0.2 mm size fraction were studied by
epifluorescencemicroscopy, by quantitative trans-
mission electron microscopy, and by sequencing
DNA as described in Brum et al. (52). Flow cy-
tometrywas used to discriminate high-DNA-content
bacteria (HNA), low-DNA-content bacteria (LNA),
Prochlorococcus andSynechococcuspicocyanobac-
teria, and two different groups (based on their
size) of photosynthetic picoeukaryotes, as described
previously (53). Pigment concentrations measured
byhigh-performance liquidchromatography (HPLC)
were used to estimate the dominant classes of phy-
toplankton using the CHEMTAX procedure (54).
Tintinnids, diatoms, and dinoflagellates were iden-
tified and countedby lightmicroscopy from the 20-
to 180-mmlugol or formaldehyde fixed-size fraction.
Zooplanktonenumerationwasperformedon formol
fixed samples using the ZOOSCANsemi-automated
classification of digital images (55). Sequencing,
clustering, and annotation of 18S-V9 rDNA bar-
codes are described in de Vargas et al. (17). Meta-
genome sequencing, assembly, and annotation
are described in Sunagawa et al. (51). NCLDV tax-
onomic assignations in the 0.2- to 3-mm samples
were carried out using 18 lineage-specific markers
asdescribed inHingamp et al. (56).Virome sequenc-
ing and annotation are described inBrum et al. (52).
Samples and their associated contextual data are
described at PANGAEA (57–59).

Data analysis

Origin of sampled Agulhas rings

Using visual and automated approaches, the ori-
gins of the TARA_068 andTARA_078 stationswere
traced back from the daily altimetric data (Fig. 1)
(21). The automated approach used either the
Lagrangian tracing of numerical particles initial-
ized in the center of a given structure and trans-
ported by the geostrophic velocity field calculated
from sea surface height gradients, or the connec-
tion in space and time of adjacent extreme values
in sea level anomaly maps.

V9 rDNA barcodes

Tonormalize for differences in sequencing effort,
V9 rDNA barcode libraries were resampled 50
times for the number of reads corresponding to
the smallest library ineach size fraction: 0.8 to 5mm,
776,358 reads; 20 to 180 mm, 1,170,592 reads; and
180 to 2000 mm, 767,940 reads. V9 rDNA barcode
countswere then converted to the average number
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Fig. 6. Modeled nitrogen stocks along Agulhas ring track. (Top) Simulated primary production (PP)
in the Agulhas system using the MIT-GCM model. The solid black line shows the average northwesterly
path of 12 distinct virtual Agulhas rings tracked over the course of the simulation.Color scale for PP is given
in the top right inset,with warmer colors indicating higher PP. (Bottom) Modeled profiles of NO3, NO2, and
NH4 along the Agulhas ring average track (x axis) presented in (A).The y axis is the depth (inmeters) in the
water column. The color scale is given in the bottom left inset, with warmer colors indicating higher
concentrations of nitrogen compounds.



of times seen in the 50 resampling events, and
barcodes with less than 10 reads were removed
as potential sequencing artifacts. We used down-
sampled barcode richness (number of distinct V9
rDNA barcodes) as a diversity descriptor because
using V9 rDNA barcode abundances to compare
plankton assemblages would likely be biased due
to (i) technical limitations described in de Vargas
et al. (17) and (ii) seasonality effects induced by the
timing of samplings (table S1). Barcode richness
was well correlated with Shannon and Simpson
indexes (0.94 and 0.78, respectively). The shared
barcode richness between each pair of samples (14)
was estimated by counting, for the three larger size
fractions (0.8 to 5, 20 to 180, and 180 to 2000 mm),
the proportion of V9 rDNA barcodes 100% iden-
tical over their whole length. V9 rDNA barcodes
were clustered into OTUs by swarm clustering
as described by de Vargas et al. (17). The sub-OTU
richness comparison between two samples s1 and
s2 (14) produces three values: the number of V9
rDNAbarcodes in common, thenumber ofV9 rDNA
barcodes unique to s1, and the number of V9 rDNA
barcodes unique to s2. These numbers can be rep-
resented directly as bar graphs (Fig. 3B) or as dot
plots of specific V9 rDNA barcode richness (Fig. 5).

Metagenomic analysis

Similarity was estimated using whole shotgun
metagenomes for all four available size fractions

(0.2 to 3, 0.8 to 5, 20 to 180, and 180 to 2000 mm).
Because pairwise comparisons of all raw meta-
genome reads are intractable given the present
data volume, we used a heuristic in which two
metagenomic 100–base pair (bp) reads were con-
sidered similar if at least two nonoverlapping
33-bp subsequences were strictly identical (Com-
pareadsmethod) (60). For prokaryotic fractions
(0.2 to 3 mm), taxonomic abundancewas estimated
using the number of 16S mitags (51). The func-
tional annotation, taxonomic assignation, and
geneabundanceestimationof thepanoceanicOcean
Microbial Reference Gene Catalog (OM-RGC) (243
samples, including all those analyzed here) gen-
erated from Tara Oceans 0.2- to 3-mm metage-
nomic reads are described in Sunagawa et al. (51).
Gene abundances were computed for the set of
genes annotated to the nitrogen metabolism KO
(61) group by counting the number of reads from
each sample that mapped to each KO-associated
gene. Abundances were normalized as reads per
kilobase per million mapped reads (RPKM). Gene
abundances were then aggregated (summed) for
each KO group. To compare abundances between
the young ring (TARA_068) and other stations, a
t test was used. KOs with a P value <0.05 and a
total abundance (over all stations) >10 were con-
sidered as significant (37). Prochlorococcus and
Synechococcus community composition was ana-
lyzed in the 0.2- to 3-mm size fraction at the clade

level by recruiting reads targeting the high-
resolutionmarker genepetB, coding for cytochrome
b6 (62). The petB reads were first extracted from
metagenomes using Basic Local Alignment Search
Tool (BLASTx+) against the petB sequences of
Synechococcus sp. WH8102 and Prochlorococcus
marinus MED4. These reads were subsequently
aligned against a reference data set of 270 petB
sequences using BLASTn (with parameters set at
-G 8 -E 6 -r 5 -q -4 -W 8 -e 1 -F “m L” -U T). petB
reads exhibiting >80% identity over >90% of se-
quence length were then taxonomically assigned
to the clade of the best BLAST hit. Read counts
per cladewere normalized based on the sequenc-
ing effort for each metagenomic sample. A simi-
lar approachwas usedwith nirA (KO 00366) and
narB genes (KO 00367), which were highlighted
in the nitrogen-related KO analysis (Fig. 7). Phylo-
genetic assignment was realized at the highest
possible taxonomic level using a reference data set
constituted of sequences retrieved from Cyanorak
v2 (www.sb-roscoff.fr/cyanorak/) and Global Ocean
Sampling (41, 63) databases.

Nitrogen cycle modeling

Numerical simulations of global ocean circula-
tion were based on the Massachusetts Institute of
Technology General CirculationModel (MIT-GCM)
(64), incorporating biogeochemical and ecologi-
cal components (65, 66). It resolved mesoscale
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Fig. 7. Nitrite anomaly in the young Agulhas ring is accompanied by shifts in nitrogen pathway–related genes.Metagenomic over- and underrepresented
nitrogen pathway genes in young Agulhas ring. Over- (red circles) and under- (green circles) represented metagenome functional annotations (KEGG Orthologs,
KO#) involved in the nitrogen pathway in the young ring compared to Indian and South Atlantic Oceans reference stations, at surface and deep chlorophyll
maximum depth. Pie charts inside circles represent the taxonomic distribution for each ortholog.
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features in the tropics and was eddy-permitting
in subpolar regions. The physical configurations
were integrated from 1992 to 1999 and constrained
to be consistent with observed hydrography and
altimetry (67). Three inorganic fixed nitrogen pools
were resolved—nitrate, nitrite, and ammonium—
as well as particulate and dissolved detrital or-
ganic nitrogen. Phytoplankton types were able
to use some or all of the fixed nitrogen pools.
Aerobic respiration and remineralization by
heterotrophic microbes was parameterized as
a simple sequence of transformations from de-
trital organic nitrogen, to ammonium, then ni-
trification tonitrite andnitrate. In accordancewith
empirical evidence (35), nitrification was assumed
to be inhibited by light. Nitrification is described in
the model by simple first-order kinetics, with
rates tuned to qualitatively capture the patterns
of nitrogen species in the Atlantic (66).

Continuous spectral analysis

A continuous flow-through system equippedwith
a high-spectral-resolution spectrophotometer (AC-S,
WETLabs, Inc.) was used for data collection during
the Tara Oceans expedition, as described previ-
ously (68). Phytoplankton pigment concentrations,
estimates of phytoplankton size g, total chlorophyll
a concentration, and particulate organic carbon

(POC) are derived from the absorption and at-
tenuation spectra (69) for the 1-km2-binned Tara
Oceans data set available at PANGAEA (http://
doi.pangaea.de/10.1594/PANGAEA.836318).
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Abstract 

Diatoms (Stramenopiles, Bacillariophyceae) are an ecologically important and one of the most diverse 

phytoplanktonic groups, with an estimated ~1,800 marine planktonic species. Although widely studied, 

their diversity and biogeographic distribution patterns are not well known. The advent of high-

throughput DNA sequencing has revolutionized molecular biodiversity studies facilitating the 

understanding of biogeography, community assembly and ecological processes. The two major goals 

of this thesis are (1) to investigate global biodiversity patterns and structure of marine planktonic 

diatom communities across the world’s oceans, and (2) to understand the mechanisms and processes 

determining their community structure and assembly. This thesis also presents an initial attempt to 

discern the distribution of rare species in protist communities. The study was conducted using the 

metabarcoding data generated from the biological samples and associated environmental data 

collected during the Tara Oceans (2009-2013) global circumnavigation covering all major oceanic 

provinces. A total of ~12 million diatom V9-18S rDNA tags from 46 sampling stations, constituting 293 

size fractionated samples represent the study material for the thesis. Using 63,371 unique diatom 

metabarcodes, this study presents an in-depth evaluation of global diatom distribution and diversity. 

The analyses study draw a number of revelations related to diatom biogeography, e.g. a new estimate 

of the total number of planktonic diatom species, a considerable unknown diversity, exceptionally high 

diversity in the open ocean, complex diversity patterns across oceanic provinces. The thesis then looks 

into the factors determining the beta-diversity patterns. The results suggest that diatoms represent 

biogeographically structured ecological communities regulated by both environmental heterogeneity 

and spatial processes. Nonetheless, the majority of the total variation in community composition 

remained unexplained by either the examined measured environmental factors or spatial distances, 

which warrants future analyses focusing on biological interactions, historical events, and other factors 

that are not considered. The thesis further outlines an approach to characterize significantly associated 

clusters of co-occurring ribotypes. Finally, a preliminary study of size-fractionated protistan 

communities reveals that the tail (of their rank-abundance distributions) appears to follow a power-

law behavior in almost all protistan communities. This observation may indicate a potential universal 

mechanism which can explain the organization of marine planktonic communities. In general, this work 

has presented a global comprehensive perspective on diatom distribution and diversity in the world’s 

oceans. The thesis offers an overall framework for metabarcoding-based global diversity assessments 

which in turn can be employed to study distribution and diversity of other taxonomic lineages. 

Consequently, this work provides a reference point to explore how microbial communities will 

respond/change in response to environmental conditions. 

 

  



 

 

Résumé 

Les diatomées (Stramenopiles, Bacillariophyceae) jouent un rôle important sur le plan écologique et 

sont l'un des groupes phytoplanctoniques les plus divers, avec environ 1800 espèces planctoniques 

estimées. Bien que largement étudiées, leurs modèles de diversité et de distribution biogéographique 

ne sont pas bien connus. L'avènement du séquençage de l'ADN à haut débit a révolutionné les études 

de biodiversité moléculaire facilitant la compréhension de la biogéographie, de la structure des 

communautés et des processus écologiques. Les deux principaux objectifs de cette thèse sont (1) 

d'enquêter sur les modèles de la biodiversité mondiale et la structure des communautés de diatomées 

planctoniques à travers les océans du monde, et (2) de comprendre les mécanismes et processus 

déterminants la structure de la communauté. Cette thèse présente également une première tentative 

de discerner la répartition des espèces rares dans les communautés de protistes. L'étude a été réalisée 

en utilisant les données de metabarcoding générées à partir des échantillons biologiques et des 

données environnementales associées recueillies au cours de la campagne Tara Oceans (2009-2013), 

une circumnavigation globale couvrant toutes les principales provinces océaniques. Le matériel 

d’étude pour cette thèse est constitué d’un total de 12 millions de séquences de la sous unité V9 du 

18S ribosomal (barcode), récoltées à partir de 46 stations soit 293 échantillons. Basée sur 63371 

metabarcodes de diatomées uniques, cette étude présente une évaluation approfondie de la 

distribution mondiale des diatomées et de leur diversité. Les analyses révèlent des faits marquants 

liées à la biogéographie des diatomées, par exemple une nouvelle estimation du nombre total 

d'espèces de diatomées planctoniques, une diversité considérable inconnue, une diversité 

exceptionnellement élevée en haute mer, et des patrons de diversité complexes entre les provinces 

océaniques. La thèse examine ensuite les facteurs qui déterminent les modèles de bêta-diversité. Les 

résultats suggèrent que les diatomées sont des communautés structurées et réglementées par 

l'hétérogénéité de l'environnement et des processus spatiaux. Néanmoins, la majorité de la variation 

totale dans la composition de la communauté ne peut être expliquée ni par les facteurs 

environnementaux, ni par les distances spatiales, ce qui justifie les analyses futures se concentrant sur 

les interactions biologiques, les événements historiques, et d'autres facteurs qui ne sont pas 

considérés. La thèse décrit en outre une approche pour caractériser les clusters significativement 

associés de ribotypes concomitants. Enfin, une étude préliminaire de communautés de protistes 

fractionnées par taille révèle que la queue (de leurs distributions rang abondance) semble suivre un 

comportement en loi de puissance dans presque toutes les communautés de protistes. Cette 

observation peut indiquer un mécanisme universel potentiel qui peut expliquer l'organisation de 

communautés planctoniques marines. De façon générale, ce travail présent une perspective globale 

et complète de la distribution et de la diversité des diatomées dans les océans du monde. La thèse 

propose un cadre global pour l'évaluation de la diversité mondiale basée sur le metabarcoding, qui 

pourra être utilisé pour étudier la distribution et la diversité des autres lignées taxonomiques. Par 

conséquent, ce travail fournit un point de référence pour explorer comment les communautés 

microbiennes feront face à la variation des conditions environnementales. 


