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Résumé

Ce mémoire de thèse est consacrée à l'étude des problèmes d'évolution où la dy-

namique est régi par l'opérateur de di�usion de sous-gradient. Nous nous intéressons

à deux types de problèmes d'évolution.

Le premier problème est régi par un opérateur local de type Leray-Lions avec un

domaine borné. Dans ce problème, l'opérateur est maximal monotone et ne satisfait

pas la condition standard de contrôle de la croissance polynomiale. Des exemples

typiques apparaît dans l'étude de �uide non-Neutonian et aussi dans la description

de la dynamique du �ux de sous-gradient. Pour étudier le problème nous traitons

l'équation dans le contexte de l'EDP non linéaire avec le �ux singulier. Nous utilisons

la théorie de gradient tangentiel pour caractériser l'équation d'état qui donne la

relation entre le �ux et le gradient de la solution. Dans le problème stationnaire, nous

avons l'existence de la solution, nous avons également l'équivalence entre le problème

minimisation initial, le problème dual et l'EDP. Dans l'équation de l'évolution, nous

proposons l'existence, l'unicité de la solution.

Le deuxième problème est régi par un opérateur discret. Nous étudions

l'équation d'évolution discrète qui décrivent le processus d'e�ondrement du tas

de sable. Ceci est un exemple typique de phénomènes auto-organisés critiques

exposées par une slope critique. Nous considérons l'équation d'évolution discrète

où la dynamique est régie par sous-gradient de la fonction d'indicateur de la

boule unité. Nous commençons par établir le modèle, nous prouvons existence et

l'unicité de la solution. Ensuite, en utilisant arguments de dualité nous étudions le

calcul numérique de la solution et nous présentons quelques simulations numériques.

Mots-clés : la di�usion de sous-gradient, l'opérateur de type Leray-Lions, �ux sin-

gulier, gradient tangentielle, la dualité, équation elliptique, équation parabolique, la

contraction, sandpile e�ondrement, l'équation de l'évolution discrète.





Abstract

This thesis is devoted to the study of evolution problems where the dynamic is

governed by sub-gradient di�usion operator. We are interest in two kind of evolution

problems.

The �rst problem is governed by local operator of Leray-Lions type with a boun-

ded domain. In this problem, the operator is maximal monotone and does not sa-

tis�ed the standard polynomial growth control condition. Typical examples appears

in the study of non-Neutonian �uid and also in the description of sub-gradient fows

dynamics. To study the problem we handle the equation in the context of nonlinear

PDE with singular �ux. We use the theory of tangential gradient to characterize the

state equation that gives the connection between the �ux and the gradient of the

solution. In the stationary problem, we have the existence of solution, we also get

the equivalence between the initial minimization problem, the dual problem and the

PDE. In the evolution problem, we provide the existence, uniqueness of solution.

The second problem is governed by a discrete operator. We study the discrete

evolution equation which describe the process of collapsing sandpile. This is a

typical example of Self-organized critical phenomena exhibited by a critical slop.

We consider the discrete evolution equation where the dynamic is governed by

sub-gradient of indicator function of the unit ball. We begin by establishing the

model, we prove the existence and uniqueness of solution. Then by using dual

arguments we study the numerical computation of the solution and we present

some numerical simulations.

Keywords : sub-gradient di�usion, Leray-Lions operator, singular �ux, tangential

gradient, duality, elliptic equation, parabolic equation, contraction, collapsing sand-

pile, discrete evolution equation.
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Introduction

This thesis is devoted to the study of evolution problems where the dynamic

is governed by sub-gradient di�usion operator. We are interest in two kind of

evolution problems. The �rst problem is governed by local operator of Leray-Lions

type with a bounded domain and the second one is governed by a discrete operator.

Let Ω ⊆ Rn be an open bounded set with Lipschitz boundary. Let us consider

the following evolution problem :

∂tu(t)−∇ · Φ = µ(t)

Φ(x) ∈ ∂ξJ(x,∇u(x))

 in Ω, for t ∈ (0, T )

u = 0 on Σ := (0, T )× Γ,

u(0) = u0 in Ω

(1)

where ∂tu denotes the partial derivative of u with respect to t, and ∂ξJ(x, ξ) denotes

the subdi�erential of J with respect to ξ. The functions u0 = u0(x) and µ = µ(t, x)

are given. This problem is well studied in the case where ∂ξJ(x, ξ) is replaced by a

Leray-Lions operator a(x, ξ) . That is a is a Carathéodory function, i.e. a is a vector

valued mapping from Ω×IRn into IRn, (Carathéodory mean continuous w.r.t. x ∈ Ω

and measurable w.r.t. ξ ∈ IRn), there exists 1 < p <∞, such that :

(L1) for any ξ, η ∈ IRn, ξ 6= η

(
a(x, ξ)− a(x, η)

)
.(ξ − η) ≥ 0 a.e. x ∈ Ω

1
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(L2) there exists C > 0 such that, for any ξ ∈ IRn

a(x, ξ).ξ ≥ C|ξ|p for a.e. x ∈ Ω

(L3) there exists σ > 0 and k ∈ Lp′(Ω) where p′ =
p

p− 1
, for any ξ ∈ IRn

|a(x, ξ)| ≤ σ(k(x) + |ξ|p−1) a.e. x ∈ Ω

Leray-Lions type operators motivated many studies and new developments in the

theory of nonlinear elliptic and parabolic PDE.

In the case where 1 < p < +∞, the existence and uniqueness of solution of this type

equation is studied widely. If µ ∈ Lp′(Q), u0 ∈ Lp(Ω) we can apply the Leray-Lions

theorem, there is a unique solution in Lp(0, T,W 1,p
0 (Ω)) (cf. Theorem 1.2 page 162

[70]). If µ is a measure, the existence theorems for weak solutions have been given

[31]. More about the summability with respect to space and time of the gradients

of solutions are obtained [30].

To provide the uniqueness, the new concepts of solution have been de�ned. If

µ ∈ L1(Q), u0 ∈ L1(Ω), the authors studied the existence and uniqueness of entropy

solution [6]. In the framework of renormalized solution, the notion was introduced

by Lions and Di Perna [71], the existence and the uniqueness has been proved, see

[27], [28]. And in [53], the author prove that the notion of renormalized solution

and entropy solution for parabolic equation of Leray-Lions type are equivalent.

The case where p = 1, the equation (1.2) appear as models for heat, mass

transfer in turbulent �uids or in the theory of phase transitions (see [9]). Some

variant appears also in the context of image denoising and reconstruction (see

[9]). In this situations the equation (1.2) appears as a border case with respect to

the standard assumptions (L1-L3). Its study has developed many new theoretical

and numerical tools (see [9]) currently essential for nonlinear PDEs analysis in

the spaces BV, the set of function of bounded variation. Indeed, due to the linear

growth condition, the natural energy space to study (1.2) in this case is the space

of functions of bounded variation and the �ux is a bounded function.



3

Typical examples for the opposite borderline case p → ∞ (p′ = 1), appears

in the study of sub-gradient �ow dynamics. In [16], the authors interpret the limit

problem as a simple physical model for growing sandpile.

The aim of the �rst part of this thesis is to study the case where J : Ω× IRn →
[0,∞] ; J(x, ξ) is continuous with respect to x, l.s.c. with respect to ξ, and satis�es

J(x, 0) = 0, for any x ∈ Ω and, moreover

(J1) There exists M(x) in L∞(Ω) such that, the domain of J(x, .) ⊆ B(0,M(x))

for all x in Ω.

This condition is equivalent to : for any p ≥ 1, J(x, ξ) ≥ ((|ξ| −M(x))+)p, for

any (x, ξ) ∈ Ω× IRn.

(J2) For any x ∈ Ω, J(x, .) is convex.

(J3) 0 ∈ Int(D(J(x, .))), for any x ∈ Ω.

Where, the domain of J(x, .) is the set

D(x) := D(J(x, .)) := {ξ ∈ IRn : J(x, ξ) <∞}.

To understand our situations, we consider the stationary problem
−∇ · φ = µ

φ ∈ ∂ξJ(x,∇u(x))

}
in Ω

u = 0 on ∂Ω.

We start by minimizing the following integral functional, for 1 < p <∞ :

min I[u] = min
u∈W 1,p

0 (Ω)

{ˆ
Ω

J(x,∇u)dx−
ˆ

Ω

fudx

}
, (2)

where J : Ω × IRn → [0,+∞) ; J(x, ξ) is continuous with respect to x, l.s.c. with

respect to ξ, f ∈ L2(Ω).

There exist many standard studies of this type equation. If we suppose that J(x, .)

is convex, satis�es the coercive inequality J(x,∇u) ≥ α|∇u|p − β, then there exists

a solution of minimization problem. By using the standard duality argument we get
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the dual problem as the following :

max I∗[φ] = max
φ∈Lp′ (Ω)n

{
−
ˆ

Ω

J∗(x, φ)dx : −∇ · φ = f

}
.

In term of PDE, the Euler- Lagrange equation associated to this problem is elliptic

equation, with Dirichlet boundary condition :
−∇ · φ = f

φ(x) ∈ ∂ξJ(x,∇u)

}
in Ω,

u = 0 on ∂Ω,

(3)

Moreover, if we assume that J(x, .) satis�es the growth condition

sup{|w|;w ∈ ∂ξJ(x, ξ)} ≤ C(1 + |ξ|p−1), (4)

then we have "the equivalence between the three problems". (see section 2 of

chapter 1 for details).

In the case where the assumptions (L3) fails to be true, the operator A(x, .) may

grows rapidly with respect to ξ. In this situation, the �ux is not a Lebesgue function

in general. It is a vector valued Radon measure. So we need to handle the equation

(1) in the context of nonlinear PDE with singular �ux. The questions are, can we

apply the standard approach to solve this problem ? Even in the stationary case, an

elliptic equation, how can we de�ne the solution and have the existence of solution ?

How can we characterize the singular �ux ? How can we get the equivalence between

the initial minimization problem, the dual problem and the PDE? The questions

are more di�cult in the evolution problem. How can we get the uniqueness of

solution ? Those questions will be answered in chapter 1, chapter 2 and chapter 3.

The aim of the second part of this thesis is to study the evolution problem where

the dynamic is governed by a discrete operator. We study the discrete evolution

equation which describe the process of collapsing sandpile. This is a typical example

of Self-organized critical phenomena exhibited by a critical slop. We consider the

discrete evolution equation where the dynamic is governed by the indicator function

of the unit ball in IRn and we also give some numerical results. This is the aim of
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chapter 4.

0.1 Chapter 1

In the section 1 of this chapter, we recall some useful tools that we use in the thesis.

In section 2, by starting from the minimization problem, we summarize the standard

Euler-Lagrange approach to solve the stationary problem. From this, we understand

the role of each assumption. Another approach to solve problem is using the dual

arguments and the PDE come from the extremality relations. At the end of this

chapter, we show why we can't apply those approach to our situation.

0.2 Chapter 2

In this chapter, we consider the stationary problem associated with (1), with

Dirichlet boundary condition. Let µ ∈ Mb(Ω) be a given Radon and g ∈ C(∂Ω) be

given, we consider the following equation

(P1)


−∇ · Φ = µ

Φ ∈ ∂ξJ(x,∇u)

}
in Ω

u = g on ∂Ω.

where J : Ω× IRn → [0,∞) ; J(x, ξ) is continuous with respect to x, and l.s.c. with

respect to ξ, and satis�es J(x, 0) = 0, for any x ∈ Ω. Moreover, we assume that J

satis�es the following assumptions

(J1) There exists M(x) in L∞(Ω) such that D(x) ⊆ B(0,M(x)) for all x in Ω.

(J2) For any x ∈ Ω, J(x, .) is convex.

(J3) 0 ∈ Int(D(x))

The aim of this chapter is to prove existence of a solution to problem (P1). Moreover,

we give the connection between the PDE, the minimization problem and the dual

problem.

To solve the problem, we approximate the function J by Yosida approximation Jλ.

We consider the regularization problem in W 1,p(Ω) and we get the approximate
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solutions uλ. We prove that uλ in W 1,∞(Ω). Using the compactness arguments we

get a solution u in W 1,∞(Ω) and a �ux Φ. Actually, we show that the �ux is a vector

valued measure. The regular part Φr (with respect to Lebesgue measure) leaves in

∂ξJ(x,∇u) and, the singular part Φs is concentrated on the boundary of D(x) and

is connected to the tangential gradient of u, ∇|Φs|u where |Φs| is the total variation
of Φs, through the support function of D(x). A reminder on all these tools is given

in chapter 2. To set our �rst main result, we denote by

K =
{
z ∈ W 1,∞(Ω) ; ∇z(x) ∈ D(x), a.e. x ∈ Ω, z = g in ∂Ω

}
and

Hg =
{
u ∈ W 1,p(Ω) such that u = g on ∂Ω

}
.

For any x ∈ Ω, let us denote by SD(x) the support function of D(x), given by

SD(x)(φ) = sup
{
φ · q ; q ∈ D(x)

}
, for any (x, φ) ∈ Ω× IRn.

We consider the function g in the following set :

G = {g ∈ C(∂Ω),∃g0 ∈ W 1,∞(Ω) : ∇g0 ∈ D(x); g0 = g in ∂Ω}.

Theorem 0.1. Assume that J satis�es the assumptions (J1)-(J2). For any µ ∈
Mb(Ω), g ∈ G, the problem

(P2) min

{ˆ
Ω

J(x,∇z(x)) dx−
ˆ

Ω

z dµ ; z ∈ Hg

}
has a solution u. If, moreover J satis�es (J3), then u is a solution of (P2) if and

only if u ∈ K and, there exists Φ ∈Mb(Ω)n such that

Φr(x) ∈ ∂ξJ(x,∇u(x)), Lna.e. x ∈ Ω (5)

Φs

|Φs|
(x) · ∇|Φs|u(x) = SD(x)

(
Φs

|Φs|
(x)

)
, |Φs|- a.e. in Ω (6)

and ˆ
Ω

Φr · ∇ξ dx+

ˆ
Ω

∇|Φs|ξ dΦs =

ˆ
Ω

ξ dµ, for any ξ ∈ C1
0(Ω). (7)
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If ∇|Φs|u(x) ∈ D(x), |Φs|- a.e. x ∈ Ω, then (6) is equivalent to

Φs

|Φs|
(x) ∈ ∂II

D(x)
(∇|Φs|u(x)) |Φs|- a.e.x ∈ Ω, (8)

where ∂II
D(x)

denotes the subdi�erential of the indicator function of D(x). Roughly

speaking (6) with the fact that ∇u(x) ∈ D(x), Ln-a.e. x ∈ Ω, is a generalized

formulation of the standard formulation (8). Formally, we can say that the problem

(P1) is governed by the following formulation

(P ′1)



−∇ · Φ = µ

Φr ∈ ∂ξJ(x,∇u),
Φs

|Φs|
∈ ∂ξIID(x)

(∇|Φs|u)

 in Ω

u = g on ∂Ω.

Throughout this chapter, the couple (u,Φ) ∈ W 1,∞(Ω)×Mb(Ω)n given by Theorem

0.1 will be called the weak solution of (P1), and (P ′1) will be called the weak formu-

lation of (P1). As to the problem (P2), thanks to Theorem 0.1, it is the minimization

problem associated with (P1).

In particular, by using the de�nition ∂II
D(x)

, we can deduce the existence of a

solution for the variational formulation associated with the problem (P1)

ˆ
Ω

Φ · ∇(u− ξ) ≤
ˆ

Ω

(u− ξ) dµ, for any ξ ∈ K, (9)

as well as its equivalence with a weak formulation and the minimization problem.

The equivalence between the three formulations is summarized in the following Co-

rollary

Corollary 0.1. Under the assumptions (J1-J3), let µ ∈ Mb(Ω) and (u,Φ) ∈ K ×
Mb(Ω)n be given. The following propositions are equivalent :

1. (u,Φ) is a weak solution of (P1).

2. (u,Φr) is a variational solution of (P1).

3. u is a solution of the minimization problem (P2).
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Another important fact is the connection between (P1), (P2) and the dual pro-

blem for (P1). To this aim, we denote by J∗ : Ω × IRn → IR the Legendre-Fenchel

conjugate function of J(., ξ) which is de�ned by

J∗(x, y∗) = sup
{
〈y∗, ξ〉 − J(x, ξ) : ξ ∈ IRn

}
; for any x ∈ Ω.

We �x g̃ ∈ C1(Ω) be such that g̃ = g in ∂Ω and we denote by

T (g, ψ) =

ˆ
Ω

∇g̃dψ −
ˆ

Ω

g̃dµ

Remark 0.1. We will see that in our results, the value of T (g, ψ) not depends on

the choice of g̃ inside Ω and depends only on the trace of g̃ on ∂Ω which is equal to

g. Indeed, T (g, ψ) =

ˆ
∂Ω

g ψ · ndS. In this direction we can see the works of G.Q.

Chen and H. Frid where the authors give directly a sense of the trace of a measure

ψ ∈Mb(Ω)n such that div (ψ) ∈Mb(Ω) (see c.f. [42] [43], [44]).

We get the following theorem

Theorem 0.2. Let µ ∈Mb(Ω). Under the assumptions (J1-J3), the problem

(P3)

min

{ˆ
Ω

J∗(x, ψr(x)) dx+

ˆ
Ω

SD(x)

(
ψs(x)

|ψs(x)|

)
d|ψs(x)| − T (g, ψ) ; ψ ∈ S(µ)

}
has a solution Φ ∈ S(µ). Moreover, Φ is a solution of problem (P3) if and only if

there exists u ∈ K such that (u,Φ) is a weak solution of the problem (P1).

(See Section 1.1 for more details about de�nition of S(µ)).
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0.3 Chapter 3

In this chapter we consider the evolution equation

∂tu(t)−∇ · (Φ(t)) = µ(t)

Φ ∈ ∂ξJ(x,∇u)

 in Ω, for t ∈ (0, T )

u = 0 on Σ := (0, T )× ∂Ω,

u(0) = u0 in Ω.

(10)

where, 0 < T <∞, Q = (0, T )×Ω and recall that J satis�es the following assump-

tions (the same as chapter 2)

(J1) There exists M(x) in L∞(Ω) such that D(x) ⊆ B(0,M(x)) for all x in Ω.

(J2) For any x ∈ Ω, J(x, .) is convex.

(J3) 0 ∈ Int(D(x)).

Here µ in BV (0, T ;w∗ −Mb(Ω)) which is a subspace of L1(0, T ;w∗ −Mb(Ω)) (for

more about this space, see 1.1.3). We denote by

K =
{
z ∈ W 1,∞

0 (Ω) ; ∇z(x) ∈ D(x), a.e. x ∈ Ω
}
.

KT =
{
z ∈ C([0, T );L2(Ω)) ∩ L∞(0, T ;W 1,p

0 (Ω)) ; z(t) ∈ K for any t ∈ [0, T )
}
.

So, for any u ∈ KT and µ ∈ L1(0, T ;w∗ −Mb(Ω)) the quantity

ˆ ˆ
Q

u dµ is well

de�ned.

Thanks to chapter 2, the weak formulation of this equation is given by :
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∂tu(t)−∇ · (Φr(t) + Φs(t)) = µ(t)

Φr(t) ∈ ∂ξJ(x,∇u(t)),
Φs(t)

|Φs(t)|
· ∇|Φs|u(t) = SD(x)

(
Φs(t)

|Φs(t)|

)


in (0, T )× Ω,

u = 0 on Γ, for (0, T )× ∂Ω,

u(0) = u0 in Ω.

(11)

For the existence, we consider the regularization problem and using the compactness

arguments, we get a weak solution of (10). Then we prove that this solution also

gives a variational solution. For the uniqueness, we use the doubling and dedoubling

variables techniques to get the quadratic contraction of variational solutions. By

passing to the limit in the approximate solutions, we prove the L1-contractions of

our solutions.

To begin with, we give our �rst main result is the coming of the existence and

uniqueness of variational solution.

Theorem 0.3. For any u0 ∈ K and µ ∈ BV (0, T ;w∗ −Mb(Ω)), (10) has a varia-

tional solution (u,Φ) ; i.e. u ∈ KT , u(0) = u0, Φ ∈ L1(Q)n, and for any ξ ∈ K

1

2

d

dt

ˆ
Ω

|u(t)− ξ|2 +

ˆ
Ω

Φ(t) · ∇(u(t)− ξ) ≤
ˆ

Ω

(u(t)− ξ) dµ(t) in D′(0, T ). (12)

Moreover, if (ui,Φi) is a variational solution of (Pµi), for i ∈ {1, 2}, then

1

2

d

dt

ˆ
Ω

|u1(t)− u2(t)|2 ≤
ˆ

Ω

(u1(t)− u2(t)) d(µ1(t)− µ2(t)) in D′(0, T ).

In particular, we have the uniqueness of u, such that (u,Φ) is a variational solution

of (10).

For the weak formulation (11), we prove the following result

Theorem 0.4. Let u0 ∈ K and µ ∈ BV (0, T ;w∗ −Mb(Ω)). Then, (u,Φr) is the

variational solution of (10) if and only if u ∈ KT , u(0) = u0, ∂tu ∈ L∞(0, T ;w∗ −
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Mb(Ω)), Φs ∈ L∞(0, T ;w∗ −Mb(Ω)n) Φs(t)⊥ Ln, and for L1 − a.e. t ∈ (0, T ) we

have

Φr(t) ∈ ∂ξJ(.,∇u), Ln-a.e. Ω,

Φs(t)

|Φs(t)|
· ∇|Φs|u(t) = SD(x)

(
Φs(t)

|Φs(t)|

)
|Φs(t)| - a.e. in Ω.

Moreover, for any ξ ∈ C1
0(Ω), we have

d

dt

ˆ
Ω

u(t) ξ +

ˆ
Ω

Φr(t) · ∇ξ +

ˆ
Ω

∇|Φs(t)|ξ dΦs(t) =

ˆ
Ω

ξ dµ(t), in D′(0, T ).

0.4 Chapter 4

In this chapter, we contribute to the study of the dynamic of a sandpile. We study

the discrete model for the collapse of a pile. We begin by establishing the model,

we prove existence and uniqueness of the solution. Then by using dual arguments

we study the numerical computation of the solution and we present some numerical

simulations.

We consider the surface of the pile to be divided into cubes of integer point i ∈ ZZn.

The model here consists in �nding for each t > 0 the application application u :

ZZn → IR, where u(i) describes the density of cubes at the position i , satisfying the

following discrete equation

(DM)



∂tu(t, i) +
∑
j:j∼i

σ(t, i, j) = 0, t > 0, i ∈ ZZn,

|u(t, i)− u(t, j)| ≤ c(t) for i ∼ j,

σ(t, i, j) = −σ(t, j, i) and support(σ(t, ., .)) ⊆ Xc(t)(u(t)).

where i ∼ j means |i− j| ≤ 1, the function c : [0, T )→ IR+ satisfying lim
t→T

c(t) = 1

and

Xr(v) := {(i, j) ∈ ZZn × ZZn : |v(i)− v(j)| = r and i ∼ j}.

We get the unique solution of (DM) in the following theorem
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Theorem 0.5. Assume that c ∈ W 1,∞(0, T ), u0 ∈ K(c(0)) and 0 < T <∞. Then

the problem (DM) has a unique solution u ∈ W 1,1
(

0, T ; `2(ZZn)
)
and u satis�es


ut(t) + ∂IIK(c(t))(u(t)) 3 0 for t ∈ (0, T )

u(0) = u0.

Moreover, if uλ is a λ- approximate solution, then

uλ −→ u in C([0, T ); `2(ZZn)) as λ −→ 0.

For the numerical computation, we attempt to discretize (DM) by the Euler implicit

scheme, we have the generic problem is given by

(DSP )



v(i) +
∑
j:j∼i

σ(i, j) = g(i) for any i ∈ ZZn,

v ∈ K(r), σ(i, j) = −σ(j, i) for any (i, j) ∈ ZZn × ZZn,

and support(σ) ⊆ Xr(v),

where r ≥ 1 is a given constant and g : ZZ2 → IR is a given application.

For a given r > 0, we introduce the convex set

K(r) = {z ∈ `2(ZZn) : |z(i)− z(j)| ≤ r for i ∼ j}.

We prove the following main result

Theorem 0.6. Let g ∈ `2(ZZn) and v ∈ K(r). Then v = IPK(r)(g) if and only if,

there exists σ ∈ `1(ZZn × ZZn), such that the couple (v, σ) satis�es (DSP).

Remember that v = IPK(r)(g) if and only if v ∈ K(r) and

J(v) =
1

2
‖v − g‖2

`2(ZZn) = min
z∈K(r)

J(z). (13)
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Let G : `1(ZZn × ZZn) −→ IR is de�ned by

G(η) = −1

2

∑
i

(∑
j:j∼i

η(i, j)−η(j, i)
)2

−
∑
i

(∑
j:j∼i

η(i, j)−η(j, i)
)
g(i)−r

∑
i,j

|η(i, j)|.

(14)

We denote by Sas =
{
µ̂ ∈ `1

as(ZZ
n × ZZn) ; µ̂(i, j) = 0 for |i− j| > 1

}
, where

`1
as(ZZ

n × ZZn) =
{
µ̂ ∈ `1(ZZn × ZZn) ; µ̂(i, j) = −µ̂(j, i), for any (i, j) ∈ ZZn × ZZn

}
We prove that

Theorem 0.7. Let g ∈ `2(ZZn) and v := IPK(r)(g). Then, there exists w ∈ Sas and
v ∈ K(r) such that

G(w) = max
η∈Sas

G(η) = min
z∈K(r)

J(z) = J(v).

Moreover, for any i ∈ ZZn, v(i) = g(i) +
∑
j:j∼i

(
w(i, j)− w(j, i)

)
.

From this, we give the numerical method to minimize the functional G. Then we

get some numerical simulations for our model.
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1 Preliminaries

1.1 Notation, spaces and basic tools

Let Ω ⊂ IRn be a bounded open domain. We denote by Ln the n−dimensional

Lebesgue measure of IRn. For 1 ≤ p < +∞, Lp(Ω), W 1,p(Ω) and W 1,p
0 (Ω) denote

respectively, with respect to Ln, the standard Lebesgue space, Sobolev space and

the closure of D(Ω) in W 1,p(Ω). Otherwise, we denote by Lpµ(Ω), the standard Lp

space with respect to the measure µ.

1.1.1 Measure space

We denote by M(Ω) the space of Radon measures in Ω. We recall that M(Ω)

can be identi�ed with the dual space of the set of continuous functions with compact

support in Ω ; i.e. M(Ω) =
(
Cc(Ω)

)∗
, in the sense that, every µ ∈ M(Ω) is equal

to ξ ∈ Cc(Ω)→
ˆ

Ω

ξ dµ.

For µ ∈ M(Ω), we denote by µ+, µ− and |µ| the positive part, negative part

and the total variation measure associated with µ, respectively. Then we denote,

Mb(Ω) the space of Radon measures with bounded total variation |µ|(Ω). Recall

thatMb(Ω) equipped with the norm |µ|(Ω) is a Banach space.

We denote by M(Ω)n the space of IRn-valued Radon measures of Ω ; i.e. X ∈
M(Ω)n if and only if X = (X1, ...,Xn) with Xi ∈ M(Ω). We recall that the total

variation measure associated with X ∈M(Ω)n, denoted again by |X |, is de�ned by

|X |(B) = sup

{
∞∑
i=1

|X (Bi)| ; B = ∪∞i=1Bi, Bi a Borel set

}

15
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and belongs to M+(Ω), the set of nonnegative Radon measure. The subspace

Mb(Ω)n equipped with the norm ‖X‖ = |X |(Ω) is a Banach space. It is clear that

M(Ω)n endowed with the norm ‖ ‖ is isometric to the dual of Cc(Ω)n. The duality

is given by 〈
X , ξ

〉
=

n∑
i=1

ˆ
Ω

ξi dXi,

for any X = (X1, ..,Xn) ∈M(Ω)n and ξ = (ξ1, ..., ξn) ∈ Cc(Ω)n.

Theorem 1.1 (Lebegue-Radon-Nicodym decomposition). [Theorem 6.10 [82]] Let

µ be a positive σ-�nite measure on a σ-agebra M in a set X, and let λ be a complex

measure on M

• There is unique a pair of complex measures λa and λs on M such that :

λ = λa + λs, λa << µ, λs ⊥ µ

If λ is positive and �nite, then so are λa, λs

• There is unique h ∈ L1(µ) such that

λa(A) =

ˆ
A

hdµ

for everay A ∈M

For any X ∈ Mb(Ω)n and ν ∈ Mb(Ω)+, X is absolutely continuous with respect

to ν ; denoted by X << ν, provided ν(A) = 0 implies |X |(A) = 0, for any A ⊂ Ω.

Thanks to Radon-Nicodym decomposition Theorem, we know that for any X ∈
Mb(Ω)n and ν ∈Mb(Ω) such that X << ν, there exists unique bounded IRn−valued
Radon measure denoted by

dX
dν

, such that

X (A) =

ˆ
A

dX
dν

dν for any A ⊆ Ω ;

dX
dν
∈ Mb(Ω)n is the density of X with respect to ν, that can be computed by

di�erentiating. In particular, it is not di�cult to see that, for any X ∈ M(Ω)n, we

have X << |X | and dX
d|X |

∈ L1
|X |(Ω)n and

∣∣∣∣ dXd|X |
∣∣∣∣ = 1, |X |-a.e. in Ω (see for instance
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[82]). In connection with the polar factorization, in general,
dX

dvertX|
is denoted by

X
|X |

. So, for any X ∈Mb(Ω)n, we have

X (A) =

ˆ
A

X
|X |

d|X |, for any A ⊆ Ω,

and, every X ∈M(Ω)n can be identi�ed with the linear application

ξ ∈ Cc(Ω)n →
ˆ

Ω

X
|X |
· ξ d|X |.

For any X ∈Mb(Ω)n and µ ∈Mb(Ω), we say that −∇ · X = µ in D′(Ω) provided

−
ˆ

Ω

X
|X |
· ∇ξ d|X | =

ˆ
Ω

ξ dµ for any ξ ∈ D(Ω) ;

in particular this remains true for any ξ ∈ C1
0(Ω), where C1

0(Ω) is the set of C1

function in Ω, such that ξ and ∇ξ are null on the boundary of Ω. In particular,

−∇ ·X = µ in D′(Ω) is equivalent to −∇ ·
(
X
|X |
|X |
)

= µ in D′(Ω). To simplify the

presentation we'll use the notation

ˆ
Ω

η dX :=

ˆ
Ω

X
|X |
· η d|X |, for any η ∈ Cc(Ω)n.

For a given µ ∈Mb(Ω), we say that X ∈Mb(Ω)n satis�es the PDE

−∇ · X = µ, in Ω (1.1)

if and only if ˆ
Ω

∇ξ dX =

ˆ
Ω

ξ dµ for any ξ ∈ C1
0(Ω).

We denote by S(µ) the set of vector valued Radon measure X ∈Mb(Ω)n satisfying

the PDE (1.1). For any X ∈Mb(Ω)n, we denote by XrLn +Xs the Radon-Nicodym
decomposition of the vector valued measure X with respect to Ln. So, X ∈ S(µ) is
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equivalent to say that

ˆ
Ω

∇ξ · Xr dx+

ˆ
Ω

∇ξ dXs =

ˆ
Ω

ξ dµ for any ξ ∈ C1
0(Ω).

1.1.2 Sobolev embedding

Theorem 1.2 (Rellich-Kondrachov Theorem). [Theorem 9.16 [41]] Suppose that Ω

is a bounded subset of IRn, class C1. We have the following compact injection :

W 1,p(Ω) ↪→ Lq(Ω) ∀q ∈ [1, p?], where
1

p∗
=

1

p
− 1

n
, if p < n,

W 1,p(Ω) ↪→ Lq(Ω) ∀q ∈ [p,∞], if p = n,

W 1,p(Ω) ↪→ C(Ω̄) if p > n.

Theorem 1.3 (Poincaré inequality). [5.8.1 [57]] Assume Ω is bounded, connected,

open subset of IRn with a C1 boundary ∂Ω . Assume 1 ≤ p ≤ ∞. Then there exists

C(n, p,Ω), such that

‖u− uΩ‖Lp(Ω) ≤ C ‖∇u‖Lp(Ω)

for each function u ∈ W 1,p(Ω)

1.1.3 Space involving time

For any 1 ≤ q <∞, Lq(0, T ;V ) is the space of measurable functions

ψ : [0, T ]→ V

such that

‖ψ‖Lq(0,T ;V ) =

(ˆ T

0

‖ψ(t)‖qV dt
) 1

q

<∞

and L∞(0, T ;V ) is

‖ψ‖Lq(0,T ;V ) = sup(0,T )‖ψ(t)‖V .

For any 1 ≤ q ≤ ∞, Lq(0, T ;V ) is Banach space. If V ′ is a dual space of V , separable

then the dual space of Lq(0, T ;V ) can be identi�ed with Lq
′
(0, T ;V ′).

SinceMb(Ω) = (Cc(Ω))∗ and Cc(Ω) is separable, then, for a given T > 0, any weak∗-
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measurable function ψ : (0, T ) → Mb(Ω) is such that t ∈ (0, T ) → |ψ(t)|(Ω) is

measurable (see [49]). So, for any 1 ≤ q ≤ ∞, we de�ne

Lq(0, T ;w∗−Mb(Ω)) =
{
ψ : (0, T )→Mb(Ω) weak∗-measurable ;

ˆ T

0

|ψ(t)|q(Ω)dt <∞
}
.

Recall that the space Lq(0, T ;w∗ −Mb(Ω)) equipped with the norm

‖ψ‖
Lq(0,T ;w∗−Mb(Ω)) =



(ˆ T

0

(|ψ(t)|(Ω))q dt

) 1
q

if q <∞

ess-supt∈(0,T )|ψ(t)|(Ω) if q =∞

is a Banach space. If q > 1, then (cf. [48]) Lq(0, T ;w∗ −Mb(Ω)) can be identi�ed

with
(
Lq
′
(0, T ; C0(Ω))

)∗
the dual space of Lq

′
(0, T ; C0(Ω)), where q′ =

q

q − 1
. The

identi�cation is given by the application

I : Lq(0, T ;w∗ −Mb(Ω))→
(
Lq
′
(0, T ; C0(Ω))

)∗
with I(µ)(ξ) =

ˆ T

0

ˆ
Ω

ξ(t) dµ(t).

The set BV (0, T ;w∗ −Mb(Ω)) is the subspace of L1(0, T ;w∗ −Mb(Ω)) de�ned by

µ ∈ BV (0, T ;w∗ −Mb(Ω)) if and only if µ ∈ L1(0, T ;w∗ −Mb(Ω)) and

V (µ, T ) := lim sup
h→0

1

h

ˆ T−h

0

|µ(τ + h)− µ(τ)|(Ω) dτ < ∞.

If µ ∈ BV (0, T ;w∗ −Mb(Ω)), then it is essentially bounded and has an essential

limit from the right, denoted by µ(t+), for every t ∈ [0, T ).We also use the notation

V (µ, t+) = lim sup
h→0

1

h

ˆ t

0

|µ(τ + h)− µ(τ)|(Ω) dτ for 0 ≤ t < T.

We recall the following classical embedding result. Let H be a Hilbert space such

that :V ↪→ H ↪→ V ′.

Theorem 1.4. Let u ∈ Lq(0, T ;V ) be such that
∂u

∂t
(is de�ned in the distributional

sense) belongs to Lq(0, T ;V ′). Then u belongs to C([0, T ];H).
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For more detailed proofs and general results, see Theorem 1 [Chapter XVIII [48]].

In our situation, we consider the embedding

W 1,p
0 (Ω) ↪→ L2(Ω) ↪→ W−1,p′(Ω).

1.1.4 Parabolic equation of Leray-Lions type

We consider the following evolution equation
∂tu(t)−∇ · (a(x,∇u(t)) = µ(t) in Ω, for t ∈ (0, T ),

u = 0 on Σ := (0, T )× Γ,

u(0) = u0 in Ω,

(1.2)

where a is a Leray-Lions operator.

Under the conditions (L1, L2, L3), the problem (1.2) falls into the scope of the

abstract evolution problem 
du

dt
+ A(u) = f,

u(0) = u0.
(1.3)

where A is a nonlinear operator from Lp(0, T ;W 1,p
0 (Ω)) to Lp

′
(0, T ;W−1,p′(Ω)).

Theorem 1.5 (cf. Theorem 1.2 page 162 [70]). Let A nonlinear operator satis�es

• ‖A‖ ≤ c ‖u‖p−1.

• A is monotone.

• (A(u), u) ≥ α ‖u‖p where α > 0, for all v ∈ W 1,p
0 (Ω).

then there exists a unique solution u ∈ Lp(0, T ;W 1,p
0 (Ω)) of ( 1.3) for initial data u0

in W 1,p
0 (Ω).

We recall the following theorem which is useful for our regularization problem

Theorem 1.6 (see cf. Proposition 5.7 [21]). Let f ∈ W 1,1([0, T ];L2(Ω)), u0 ∈
W 1,p

0 (Ω) be such that ∇ · η0 ∈ L2(Ω) for η0 ∈ Lq(Ω) and η0 ∈ a(x,∇u0) a.e. in

Ω. Then there is a unique strong solution of (1.2) such that

• u ∈ L∞(0, T ;W 1,p
0 (Ω)) ∩W 1,∞([0, T ];L2(Ω)),

• d+

dt
u(t)−∇ · η(t) = f(t) for all t ∈ [0, T ],
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where η ∈ L∞([0, T ];L2(Ω)), η(x, t) ∈ a(x,∇u(x, t)) a.e. (x, t) ∈ Q .

1.1.5 Chain rule di�erentiation

Theorem 1.7 (cf. Proposition 9.5 [41]). Let G : IR → IR be a Lipschitz function

such that G(0) = 0. Then for every u ∈ W 1,p(Ω), we have G(u) ∈ W 1,p(Ω) and

∇G(u) = G′(u)∇u a.e. Ω.

Hence, we are able to consider the composition of functions in W 1,p(Ω) with some

useful function. One is the truncation function Tk(r) = max(−k,min(k, r)) and

another one is, for any r in IR

Hε(r) =


1 if r ≥ ε,
r

ε
if − ε ≤ r ≤ ε,

−1 if − ε ≥ r.

1.1.6 Variation calculus tools

Let J : Ω× IRn → (−∞,+∞] be a function.

The domain of J(x, .) is the set :

dom(J(x)) := {ξ ∈ IRn : J(x, ξ) <∞}.

The sub-level set of J(x, .) at level γ ∈ IR is de�ned by :

levγJ(x) := {ξ ∈ IRn : J(x, ξ) ≤ γ}.

J(x, .) is lower-semicontinuous a.e x ∈ Ω if sub-level sets levγJ(x) are closed for any

γ ∈ IR.

De�nition 1.1. The function J(x, .) is called proper convex if it is not identically

equal to +∞ and satis�es :

J(x, tξ + (1− t)y) ≤ tJ(x, ξ) + (1− t)J(x, y),
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for all ξ and y in IRn when 0 < t < 1.

De�nition 1.2. A subgradient of J(x,.) at ξ ∈ IRn is a vector φ ∈ IRn such that

J(x, y) ≥ J(x, ξ) + 〈φ, y − ξ〉 for all y ∈ IRn.

For each ξ, we denote by ∂ξJ(x, ξ) the set of all subgradients of J(x, .) at ξ. The

subdi�erential of J(x, .) is a multi-valued mapping ∂ξJ(x, .) which assigns the set

∂ξJ(x, ξ) to each ξ.

Proposition 1.1. (cf. Theorem A [80]) If J(x, .) is lower-semicontinuous proper

convex function then for any x, ∂ξJ(x, .) is maximal monotone in IRn.

De�nition 1.3. The Legendre-Fenchel conjugate associated with J is the function

J∗ : Ω× IRn → IR de�ned by :

J∗(x, y∗) = sup
y∗∈IRn

{〈y∗, ξ〉 − J(x, ξ) : ξ ∈ domJ(x)} ; for any x ∈ Ω.

Proposition 1.2. (cf. [58]) For all φ, ξ ∈ IRn, we have 〈φ, ξ〉 ≤ J∗(x, φ) + J(x, ξ).

Moreover, we get the equality if and only if φ ∈ ∂ξJ(x, ξ).

1.2 Minimization problem and PDE

1.2.1 Convex minimization problem

We start by the following de�nition

De�nition 1.4. The function f : X → IR ∪ {+∞} is coercive if

lim
‖x‖→+∞

f(x) = +∞.

Recall that, in the re�exive Banach space, every coercive function is weakly inf-

compact. So, we have the following theorem

Theorem 1.8. (cf. Theorem 3.3.4 [17]) Let X be a re�exive Banach space and

f : X → IR ∪ {+∞} be weakly − l.s.c. and coercive. Then there exist x∗ ∈ X such
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that

f(x∗) ≤ f(x) for all x ∈ X.

Specially, when a function is convex the l.s.c is equivalent to the weakly − l.s.c.

Then we also use the fact that every closed convex and bounded subset of a re�exive

Banach space is weakly compact, we get

Theorem 1.9. (cf. Theorem 2.11 [22]) Let X be a re�exive Banach space and

f : X → IR ∪ {+∞} is a l.s.c., proper and convex function. If M is closed convex

subset of X and f satis�es the coercive condition

lim
x∈M,‖x‖→+∞

f(x) = +∞,

then there exist x∗ ∈M such that

f(x∗) ≤ f(x) for all x ∈M.

1.2.2 Minimization of integral functionals

Let J : Ω× IRn → (−∞,+∞] be a convex, proper function. For 1 < p <∞ and

µ ∈ W−1,p′(Ω), we consider the following integral functional :

I : W 1,p(Ω)→ [0,+∞)

u 7→ I(u) =


ˆ

Ω

J(x,∇u)dx−
ˆ

Ω

udµ if J(x,∇u) ∈ L1(Ω)

+∞ otherwise

where µ ∈ W−1,p′(Ω).

We summarize the results related to the minimization problem

min {I(z) ; z ∈ A} , (1.4)

in the case where either A = W 1,p
0 (Ω) or A = {u ∈ W 1,p(Ω),

ˆ
Ω

u = 0}.

The direct method give us the way to obtain the minimizer, by proving the
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l.s.c. and the coercivity of I with respect to a suitable topology. Among the tools,

the l.s.c. of the integral functionals play an important role and has been studied

wildly. For detail results, see [75], [76], [47], [72], [73].

The following de�nition and theorem give the necessary and su�cient condi-

tions for the l.s.c. of general integral functional. We recall here the de�nition of

quasi-convex functional, which is given the �rst time by Morrey (see [76]) then by

Meyers (see [75]).

De�nition 1.5. Let g : IRN×n → IR be a locally bounded integrand. g is called

quasi-convex if and only if for u(x) = Ax + b, where a ∈ IRN and A ∈ MN×n, and

w ∈ u+W 1,∞
0 (e, IRN), e is unitary cube in IRn, we have

g(A) ≤
ˆ
e

g(∇w(x))dx.

Theorem 1.10. (cf. see [73]) Let 1 ≤ p < ∞ and f be a Caratheodory integrand

satisfying

0 ≤ f(x, u, ξ) ≤ C(1 + |u|q + |ξ|p)

for (u, ξ) ∈ IRn× IRN×n, q ≤ np

n− p
if p<n and q ≥ 1 if p ≥ n. Then, the functional

F : W 1,p(Ω, IRN)→ [0,∞) given by

F =

ˆ
Ω

f(x, u(x),∇u(x))dx.

is well de�ned. Moreover, F is weakly − l.s.c. in W 1,p(Ω, IRN) if and only if F is

quasi-convex with respect to the last variable ξ.

The quasi-convex notion restricted to the scalar case (N=1) is equivalent to convex

one. For N>1, it is very hard to check that a given function is quasi-convex or not.

Then Ball ([18]) introduced the polyconvexity (convex for all minors of a matrix) to

get su�cient condition for quasi-convexity.

In our situation, it is easier to get the l.s.c of I, because we are in the scalar case

and the function J does not depend on u. Before giving the necessary condition

for l.s.c., we recall the Mazur's Lemma. This is an important result that allows a

passage from weak to strong convergence.
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Lemma 1.1 (Mazur). (cf. Theorem 2, section V [83]) Let (X, ‖.‖) is a normed

linear space and let xn ⇀ x in X. Then there exists a sequence {yk} of convex

combination of x′js i.e.

yk =

j∑
i=1

aki xi where

j∑
i=1

aki = 1, aki ≥ 0

such that yk → x in X.

Theorem 1.11. (c.f. see [47]) Let 1 < p <∞. If J(x, .) be a Caratheodory function,

l.s.c, convex and bounded below. Then, I is weakly − l.s.c. in W 1,p(Ω)

Remark 1.1. We see that the weak convergence in W 1,p(Ω) can be replaced by

the weak∗ convergence in W 1,∞(Ω). Therefore, the convexity of J(x, .) implies the

weakly∗ − l.s.c. of I in W 1,∞(Ω).

Another ingredient to get minimum is the coercivity, it depends on the space

and its topology

De�nition 1.6. An integral funtional I(u) satis�es the coercive condition in a subset

A ⊆ W 1,p(Ω) if and only if

lim
u∈A,‖u‖W1,p→∞

I(u) = +∞.

Remark 1.2. If we assume that

J(x, ξ) ≥ C(1 + |ξ|p) for ξ ∈ IRn. (1.5)

By using Poincaré's inequality in A we get I[u] ≥ C ‖∇u‖pLp(Ω)−C ‖u‖W 1,p(Ω). Then

I(u) satis�es the coercive condition.

Now, we have the following theorem

Theorem 1.12. Let 1 < p < ∞ and J be a Caratheodory function,l.s.c., convex,

bounded from below satisfying the coercive condition, then I attains its minimum in

A .
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Proof : Set m = inf
A
I[u]. If m = ∞ then we do nothing and we can suppose

m <∞. So, there exist {uk} such that

F [uk]→ m.

Using the coercive condition we have ‖∇uk‖Lp ≤ M . So lucky, we can apply Poin-

caré's inequality in A, then ‖uk‖W 1,p ≤ C. Therefore,

uk ⇀ u in W 1,p(Ω).

Finally, we have, u ∈ A and I[u] = m, which ends the proof. 2

1.2.3 Euler-Lagrange equation

In this section, we want to connect the problem (1.4) with the partial di�erential

equation. This come very naturally from the following general result

Theorem 1.13. Let (X, ‖.‖) be a Banach space and g : X → IR be a C1 function,

bounded from below that satis�es the Palais-Smale condition, i.e. if {uk}∞k=1 is a

sequence such that : {g(uk)}∞k=1 is bounded, and g′(uk)→ 0, then it has a convergent

subsequence. Then, g attains the inf at some point x̄ ∈ X. Moreover, x̄ is critical

point of g, i.e. Dg(x̄) = 0.

In the case where function J is "good" enough so that the integral functional

I[u] satis�es all the conditions of this theorem, the critical point of

I[u] =

ˆ
Ω

J(x,∇u)dx−
ˆ

Ω

fudx,

where u ∈ C∞c (Ω), will give us the Euler-Lagrange equation. Indeed, formally for
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any w ∈ C∞c (Ω) we consider the real-value function, i(ε) := I[u+ εw]. We have

d

dε
I[u+ εw]ε=0 =

d

dε
[

ˆ
Ω

J(x,∇u+ ε∇w)dx−
ˆ

Ω

f(u+ εw)]ε=0

=

ˆ
Ω

∇ξJ(x,∇u) · ∇w −
ˆ

Ω

fw

= −
ˆ

Ω

(∇ · ∇ξJ(x,∇u)− f)w.

From i′(0) = 0 we get the associated Euler- Lagrange equation of our problem is the

following elliptic equation

−∇ · ∇ξJ(x,∇u) = f in Ω. (1.6)

If I is not di�erentiable, the question is how does a solution of minimization problem

become a solution of Euler-Lagrange system ? Let us explain in the case of Dirichlet

boundary condition. In the standard Leray-Lions situation, it is usually assumed

that J has a derivative which satis�es the growth condition :

|∇ξJ(x, ξ)| ≤ σ(k(x) + |ξ|p−1) where k(x) ∈ Lp′(Ω). (1.7)

Under that assumption we have :

|∇ξJ(x,∇u)|p′ = |∇ξJ(x,∇u)|
p
p−1 ≤ σ(k(x) + |∇u|p−1)

p
p−1 ≤ σ(|k(x)|p′ + |∇u|p).

So that ∇ξJ(x,∇u) ∈ Lp′(Ω)n, for any u in W 1,p(Ω). Then we have the following

de�nition :

De�nition 1.7. We say that u ∈ W 1,p(Ω) is a weak solution of Euler-Lagrange

equation if and only if

ˆ
Ω

∇ξJ(x,∇u) · ∇vdx =

ˆ
Ω

fvdx,

for all v ∈ W 1,p(Ω).

Theorem 1.14. Suppose that J is convex, satis�es the growth condition (1.7), then

the minimizer of min
{
I(z) ; z ∈ W 1,p(Ω)

}
is a weak solution of Euler-Lagrange
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equation (1.6).

Proof : In the following proof, we see that the growth condition plays an important

role to get the di�erential under the integration. First, J is convex and satis�es

condition (1.7), so

|J(x,∇u)| ≤ |∇ξJ(x,∇u)| |∇u| ≤ σ(k(x) + |∇u|p−1)|∇u| ≤ σ|k(x)||∇u|+ |∇u|p.

This implies that the function I[u + εw] is well de�ned and is �nite for all u,w in

W 1,p(Ω).

If we denote

gε(x) =
J(x,∇u+ ε∇w)− J(x,∇u)

ε
,

then

gε(x) =
1

ε

ˆ ε

0

d

dt
J(x,∇u+ t∇w)dt

=
1

ε

ˆ ε

0

∇ξJ(x,∇u+ t∇w) · ∇w dt.

Now, by using the growth condition we have

|gε(x)| ≤ 1

ε

ˆ ε

0

σ(|∇u+ t∇w|p−1 + k(x))|∇w| dt

≤ 1

ε

ˆ ε

0

σ|∇u+ t∇w|p−1|∇w| dt+ σ|k(x)| |∇w|

≤ C1|∇u|p−1|∇w| + C2ε
p−1|∇w|p + σ|k(x)||∇w|.

Since u,w in W 1,p(Ω), k(x) in Lp
′
(Ω), this implies that |gε(x)| ∈ L1(Ω). Using

Dominated convergence theorem, we have

lim
ε→0

i(ε)− i(0)

ε
= lim

ε→0

ˆ
Ω

J(x,∇u+ ε∇w)− J(x,∇u)

ε
dx−

ˆ
Ω

fw

=

ˆ
Ω

lim
ε→0

J(x,∇u+ ε∇w)− J(x,∇u)

ε
dx−

ˆ
Ω

fw

=

ˆ
Ω

∇ξJ(x,∇u) · ∇w dtdx−
ˆ

Ω

fw

= −
ˆ

Ω

(∇ · ∇ξJ(x,∇u)− f)w +

ˆ
∂Ω

∂

∂n
∇ξJ(x,∇u)w
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Using the fact that u is a minimizer, we have this limit is equal to 0, in another

words, u is a weak solution of Euler-Lagrange equation (1.6). 2

Remark 1.3. See that under the assumption (1.7), setting a(x, ξ) = ∇ξJ(x, ξ),

the problem (1.6) falls into the scope of Leray-Lions type elliptic equation. So, the

equation has a unique solution.

For f /∈ L2(Ω), the problem is more di�cult. In [31], by approximating f and

using the compactness arguments, the authors get the existence of weak solution

u ∈ W 1,1
0 (Ω) for also f ∈ L1(Ω) and f ∈Mb(Ω).

In the case where f ∈ L1(Ω), the authors proved the existence and the uniqueness

of entropy solutions of (1.6) [26] . Review the author in [7] for more general results.

In the case where f ∈ Mb(Ω) and if p > n we have the embedding Mb(Ω) in

W−1,p′ and solutions turn out to become continuous. Then the theory of entropy

solutions is easily adapted. The case where p ≤ n, the authors introduced the

notation p − capacity of a set [32]. They considered space Mp
b(Ω) of all signed

Radon measure µ ∈Mb(Ω) such that µ(E) = 0 for all set E of p− capacity equal to
0. Then they decomposed this space as L1(Ω) + W−1,p′(Ω). Finally, they obtained

the existence and the uniqueness of entropy solutions.

1.2.4 Maximal monotone type operator

Remark 1.4. We consider the following equation :

−∇ · a = f in Ω (1.8)

when a is a multi-valued graph in (Ω, IRn)× IRn. The conditions (L2) and (L3) can

be replaced by

(L∗2) there exists C > 0 such that, for any ((x, ξ);w) ∈ a

w.ξ ≥ C|ξ|p for a.e. x ∈ Ω
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(L∗3) there exists σ > 0 and k ∈ Lp′(Ω) where p′ =
p

p− 1
, for any ξ ∈ IRn

sup{|w|;w ∈ a(x, ξ) ≤ σ(k(x) + |ξ|p−1) a.e. x ∈ Ω.

We have the following theorem

Theorem 1.15. (c.f. theorem 2.17 [21]) Suppose that a is maximal monotone graph,

satis�es condition (L∗2) and (L∗3). There is unique weak solution u ∈ W 1,p
0 (Ω) of (1.8)

in the following sense ˆ
Ω

w · ∇vdx =

ˆ
Ω

fvdx,

for all v ∈ W 1,p
0 (Ω), where w(x) ∈ a(x,∇u) a.e x in Ω.

Remark 1.5. Let J : Ω× IRn → (−∞,+∞], we want to connect the hypothesis on

J and the hypothesis of Leray-Lions operator

• J(x, .) is convex, J(x, .) = 0.

We have ∂ξJ(x, .) is a maximal monotone operator, for any ξ, η ∈ IRn, ξ 6= η

(
∂ξJ(x, ξ)− ∂ξJ(x, η)

)
.(ξ − η) ≥ 0 a.e. x ∈ Ω.

• For any ξ ∈ IRn, there exist C > 0 such that J(x, ξ) ≥ C(1 + |ξ|p).
By using the convexity of J and J(., 0) = 0 we have w · ξ ≥ J(x, ξ), where

w ∈ ∂ξJ(x, ξ). This implies that

w.ξ ≥ C(1 + |ξ|p) a.e. x ∈ Ω.

• The ∂ξJ satis�es the growth condition

sup{|w|;w ∈ ∂ξJ(x, ξ) ≤ σ(k(x) + |ξ|p−1) a.e. x ∈ Ω. (1.9)

Finally, we get :

Theorem 1.16. Suppose that J is convex, satis�es the coercivity and the growth

condition (1.9). Then u is the minimizer of min
{
I(z) ; z ∈ W 1,p

0 (Ω)
}
if and only if
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u is a weak solution of Euler-Lagrange equation

−∇ · ∂ξJ(x,∇u) = f in Ω.

(c.f. see [21] for more details)

1.2.5 Dual approach

Let V, Y are Banach space, in this section we denote by

I(u, p) = G(p) + F (u)

where p ∈ Y and u ∈ V , we consider the following optimize problem (P )

inf
u∈V
{G(Λu) + F (u)}.

Using the standard duality argument (cf. [58]) , we get easily the dual problem (P ∗)

sup
p∗∈Y ∗

{−G∗(−p∗)− F ∗(Λ∗p∗)}.

Theorem 1.17. (cf. Theorem 4.2 and Remark 4.2, Chapter III [58]) Let us assume

that V is re�exive Banach space, if F,G is convex and

(I1) lim
‖u‖→∞

I(u,Λu) = +∞,

(I2) there exist u0 ∈ V , F (u0) < +∞ and G(Λu0) < +∞, the function G(Λu0)

being continuous at Λu0.

Then P and P ∗ have at least one solution, inf P = supP ∗. More over, ū ∈ V , the
solution of P , and p̄∗ ∈ V ∗ , the solution of P ∗, satisfy the extremality relations

Λ∗p̄∗ ∈ ∂F (ū),

−p̄∗ ∈ ∂G(Λū).

Remark 1.6.

• Condition [I1] is the coercive condition, with the convexity of F and G are
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necessaries conditions to get the existence of solution of primary problem.

• [I2] is called stability criterion, is very important hypothesis, sometime can

be called the quali�cation hypothesis. This condition implies the existence of

solution of the dual problem.

See [58] for more detailed proofs, general results and examples.

Return to our situation, we have the following proposition

Proposition 1.3. Suppose J is convex, coercive, 0 ∈ int(domJ) and satis�es the

growth condition (1.9), we denote by P1

inf
u∈W 1,p

0 (Ω)

{ˆ
Ω

J(x,∇u)−
ˆ

Ω

fu

}
,

then, the dual problem is

sup
φ∈Lp′ (Ω)n

−∇·φ=f

{
−
ˆ

Ω

J∗(x, φ)

}

Then P1 and P ∗1 have at least one solution, respectively u and φ. Moreover we

inf P1 = supP ∗1 an the extremality relation reads

φ ∈ ∂ξJ(x,∇u). (1.10)

Proof : We have

G(p) =

ˆ
Ω

J(x, p) and F (u) = −
ˆ

Ω

fu.

The operator Λ now is the gradient ∇, V is Lp(Ω) and Y is Lp(Ω)n. Now we apply

the dual argument to calculate

G∗(p∗) = sup
p∈Lp(Ω)n

{< p∗, p > −
ˆ

Ω

J(x, p)}

= sup
p∈Lp(Ω)n

{
ˆ

Ω

p∗ · p−
ˆ

Ω

J(x, p)}

=

ˆ
Ω

J∗(x, p∗).

F ∗(Λ∗u∗) =

{
0 if − Λ∗u∗ = f

+∞ otherwise .
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Finally, the dual problem is

sup
φ∈Lp′ (Ω)n

{
−
ˆ

Ω

J∗(x, φ);−∇ · φ = f

}

Now we check the condition [I2], the more di�cult one is the continuous of G at

∇u0. We prove that G is continuous at 0. Using the fact that 0 ∈ int(domJ) then

J is continuous at 0. Let {pn} is a consequence convergent to 0. Using the growth

condition (1.9), we get

|J(x, pn)| ≤ σ|k(x)||pn|+ |pn|p.

Since pn in Lp(Ω)n, k(x) in Lp
′
(Ω), this implies that |J(x, pn)| ∈ L1(Ω). Then

lim
ε→0

ˆ
Ω

J(x, pn) =

ˆ
Ω

J(x, 0).

This implies the continuous of G at 0. Finally, we easily get the extremality relations.

2

In the following examples, we have the equivalence between the PDE, the minimi-

zation and the dual problem

Example 1 (Dirichlet Problem) For f ∈ L2(Ω), the PDE is{
−∆u = f in Ω,

u = 0 on ∂Ω.

The minimization problem is

min
u∈H1

0 (Ω)

ˆ
Ω

1

2
|∇u|2 dx−

ˆ
Ω

fudx.

The dual problem is

max
φ∈L2(Ω)n

{ˆ
Ω

−1

2
|φ|2 dx; s.t. − div (φ) = f

}
.
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Example 2 (p-Laplace) For f ∈ Lp′(Ω), the PDE is{
−∇ · (|∇u|p−1∇u) = f in Ω

u = 0 on ∂Ω,

The minimization problem

min
u∈W 1,p

0 (Ω)

ˆ
Ω

1

p
|∇u|p dx−

ˆ
Ω

fudx.

The dual problem is

max
φ∈Lp′ (Ω)n

{ˆ
Ω

− 1

p′
|φ|p

′
dx; s.t. − div (φ) = f

}
.



2 Sub-gradient Di�usion Leray-Lions

Operator

Let µ ∈Mb(Ω) be a given Radon and g ∈ G be given. We consider the following

equation, with Dirichlet boundary condition

(P1)


−∇ · Φ = µ

Φ(x) ∈ ∂ξJ(x,∇u(x))

}
in Ω

u = g on ∂Ω.

More precisely, we are interested in the case where, for any x ∈ Ω, Φ(x, .) is a

maximal monotone graph in IRn given by

Φ(x, ξ) = ∂ξJ(x, ξ), (2.1)

where J : Ω× IRn → [0,∞) ; J(x, ξ) is continuous with respect to x, and l.s.c. with

respect to ξ, and satis�es J(x, 0) = 0, for any x ∈ Ω. Moreover, we assume that J

satis�es the following assumptions

(J1) There exists M(x) in L∞(Ω) such that D(x) ⊆ B(0,M(x)) for all x in Ω.

(J2) For any x ∈ Ω, J(x, .) is convex.

(J3) 0 ∈ Int(D(x)).

In the following section, we begin with some preliminaries, recalling the main

tools we use to handle a PDE with singular �ux, like tangential measure and tan-

gential gradient. Then, we prove two technical results that will be useful for the proof

of our main result. In Section 3, we present our main results. Under the assumptions

(J1)-(J3), we begin with the characterization of the solution of the optimization pro-

35
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blem (P2) as a solution of the PDE (P1) with Dirichlet boundary condition. Actually,

we show that the �ux is a vector valued measure. The regular part (with respect

to Lebesgue measure) leaves in Φ(x,∇u) and the singular part is concentrated on

the boundary of D(x) and is connected to the tangential gradient of u through a

support function of D(x). Then, we present an equivalent characterization using

the notion of variational solution and duality. Then, we give the proof of our main

results. We consider a regularization of the problem (P2) by taking the Yosida ap-

proximation of J, and we use compactness arguments for the proofs. Finally, we give

some corollaries.

2.1 Tangential gradient

Nowadays, the Monge-Kantorovich equation which corresponds to the limit as

p → ∞, in the p−Laplacien operator is extensively used in the study of optimal

mass transportation problem (cf. [13], [56]) as well as in the optimal mass transfer

problem (cf. [37]). It is also used in the description of the dynamics of granular mat-

ter like the sandpile (cf. [77], [56] and [51]) and also in the deformation of polymer

plastic during compression molding (cf. [15]). In this situation A(x, ξ) = ∂IIB(0,1)(ξ),.

Its study allowed the development of new useful tools like tangential gradient with

respect to a Radon measure. The pioneering work in this direction which opened a

possible way to manage the di�culties related to PDE with singular �ux is [36],

where Bouchitté, Buttazzo and Seppecher introduced a new notion of tangent space

to a measure on IRn. They use these tools in order to model the elastic energy

of low-dimensional structures. One can see also the paper [39] where these tools

was used for the �rst time in the study of the limit as p → ∞ in the p−Laplacien
equation.

As we notice in the introduction, the PDE (1) involves Lipschitz continuous func-

tions as an energy space and vector valued measure �ux. So, the standard Sobolev

space as well as the standard gradient de�ned with respect to Lebesgue measure

is not enough to handle the state equation (2.1). To overcome this di�culties, we

will use the notion of tangentiel gradient introduced by Bouchitté, Buttazzo and

Seppecher in [36]. For a given Φ ∈ Mb(Ω)n, let us consider γ ∈ Mb(Ω)+ and
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σ ∈ L1(Ω, dγ)N be such that Φ = σγ. Notice that this is always possible, since

one can take γ = |Φ| and σ =
Φ

|Φ|
. Among the objective of the tangential gradient

theory is to give a sense to the variation of a Lipschitz continuous function in the

Lebesgue space with respect to γ, so that, if ∇ · Φ =: ν ∈ Mb(Ω), the integration

by parts formula has a sense ; i.e.

ˆ
u dν =

ˆ
′′∇u′′ · σ dγ,

for a suitable ′′∇u′′. Thanks to [36], this is possible if the measure Φ is a tangential

measure. That is σ(x) ∈ Tγ(x), γ−a.e, where Tγ(x) ⊆ IRn is the tangential space

with respect to γ. In the case where γ coincides with the k−dimensional Hausdor�

measure on a smooth k−dimensional manifold S ⊂ IRn, Tγ(x) coincides γ−a.e. with
the usual tangent bundle TS given by di�erential geometry. In general, it coincides

with

Tγ(x) = γ − ess ∪
{
σ(x) ; σ ∈ L1

γ(Ω)n, ∇ · (σ γ) ∈Mb(Ω)
}
.

Here, the γ−essential union is de�ned as a γ−measurable closed multifunction given

by

� if σ ∈ L1
γ(Ω)n and ∇ · (σγ) ∈Mb(Ω), then σ(x) ∈ Tγ(x), for γ−a.e. x ∈ Ω.

� between all the multi-functions with the previous property, the γ essential

union is minimal with respect to the inclusion γ−a.e.
Now, denoting by Pγ(x) the orthogonal projection on Tγ(x), for γ−a.e x ∈ Ω, we

have

Proposition 2.1 (cf. [38]). The linear operator u ∈ C1(Ω) → Pγ(x)∇u(x) ∈
L∞γ (Ω)n can be extended uniquely to a continuous linear operator :

∇γ : Lip(Ω)→ ∇γu ∈ L∞γ (Ω)n,

where Lip(Ω) is equipped with the uniform convergence on a bounded subsets of

Lip(Ω) and L∞γ (Ω)n with the weak star topology. Then, ∇γu is called the tangential

gradient of u with respect to γ.

For the integration by parts formula, we have

Proposition 2.2 (cf. [38]). For any γ ∈ Mb(Ω)+ and σ ∈ L1(Ω, dγ)n such that



38 2. Sub-gradient Di�usion Leray-Lions Operator

σ(x) ∈ Tγ(x), γ−a.e and ∇ · (σ γ) =: µ ∈Mb(Ω), we have

ˆ
u dµ =

ˆ
Ω

σ · ∇γu dγ, for any u ∈ Lip(Ω).

The question now is to identify the set of vector valued Radon measure for which

the integration by parts formula is true. Thanks to the previous proposition, let us

de�ne

MT (Ω) =
{
λ = σγ ; γ ∈M+(Ω), σ(x) ∈ Tγ(x), γ − a.e

}
.

The so called tangential space of Ω.

Proposition 2.3. [cf. [38]] Let λ ∈ Mb(Ω)n be given. Then, λ ∈ MT (Ω) if and

only if there exists Φ ∈ L1(Ω)n such that ∇ · λ = ∇ · Φ in D′(Ω).

For any X ∈Mb(Ω)n, we denote by XrLn +Xs the Radon-Nicodym decomposi-

tion of the vector valued measure X with respect to Ln. So, X ∈ S(µ) is equivalent

to say that

ˆ
Ω

∇ξ · Xr dx+

ˆ
Ω

∇ξ dXs =

ˆ
Ω

ξ dµ for any ξ ∈ C1
0(Ω).

Using the previous propositions, we have the following integration by parts formula

for the vector valued measure of S(µ), which involves the singular part.

Lemma 2.1. Let µ ∈ Mb(Ω) and X ∈ Mb(Ω)n be given. Then, X ∈ S(µ) if and

only if

ˆ
Ω

∇ξ(x) · Xr(x) dx+

ˆ
Ω

∇|Xs|ξ dXs =

ˆ
Ω

ξ dµ, for any ξ ∈ C1
0(Ω).

2.2 Technical lemmas

Thanks to the assumption (J2), the set D(x) is convex for any x ∈ Ω. For any

x ∈ Ω, let us denote by SD(x) the support function of D(x), given by

SD(x)(p) = sup
{
p · q ; q ∈ D(x)

}
, for any (x, p) ∈ Ω× IRn.
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Recall that, for any x ∈ Ω, the function ξ ∈ IRn → SD(x)(ξ) is a nonnegative,

convex and positively homogeneous function. So, thanks to [14] (see also [12]), for

any Φ ∈ Mb(Ω)n, the Radon measure SD(.)(Φ) ∈ Mb(Ω) is well de�ned by the

following formula

SD(.)(Φ)(B) =

ˆ
B

SD(x)(Φs(x)) dx =

ˆ
B

SD(x)

(
Φs(x)

|Φs(x)|

)
d|Φs(x)|,

for any Borel set B ⊆ Ω.

Moreover, if Φ << λ, for a given λ ∈Mb(Ω)+, then

SD(.)(Φ)(B) =

ˆ
B

SD(x)

(
dΦ

dγ
(x)

)
dγ(x) for any Borel set B ⊆ Ω.

In particular, for any Φ ∈Mb(Ω)n, we have

SD(.)(Φ)(B) =

ˆ
B

SD(x)

(
Φ(x)

|Φ(x)|

)
d|Φ(x)| for any Borel set B ⊆ Ω.

Proposition 2.4. Let γ ∈ Mb(Ω)+, g ∈ C(∂Ω) and σ ∈ L1(Ω, dγ)n be such that

σ(x) ∈ Tγ(x), γ−a.e x ∈ Ω. If u ∈ W 1,∞(Ω), u = g, Ln−1-a.e. on ∂Ω, and ∇u(x) ∈
D(x), Ln−a.e. x ∈ Ω, then

1. There exists a sequence (uε)ε>0 in D(Ω), such that ∇uε(x) ∈ D(x), for any

x ∈ Ω and uε → u in W 1,∞-weak.

2. We have

σ(x) · ∇γu(x) ≤ SD(x)(σ(x)), γ − a.e x ∈ Ω. (2.2)

Proof : First, let us prove the result for g = 0. Following the same idea of the proof

of Lemma 3.2 [68], for a given ε > 0, we consider the application Iε : IR → IR,

de�ned by

Iε(r) =

{
0 if |r| ≤ ε

r − sign(r) ε if |r| > ε.

Then, we choose

ũε = Iε(u), a.e. in Ω.

One sees that ũε is compactly supported in Ω. Moreover, there exists 0 < α < 1 and
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ε0 > 0, such that

zε = ũε ∗ ραε ∈ D(ω), for any 0 < ε < ε0,

where ω ⊂⊂ Ω. Now, for any x ∈ IRn, let us consider the dual function of SD(x)

given by

S∗D(x)(q) = max
{
q · p ; SD(x)(p) ≤ 1

}
.

Recall that q ∈ D(x) if and only if S∗D(x)(q) ≤ 1. Now, arguing like in the proof of

Lemma 3.1 [25]) (see also the proof of Lemma 1 of [65]), we consider

ω(δ) := sup
{∣∣S∗D(x)(A)− S∗D(y)(A)

∣∣ ; |x− y| ≤ δ and |A| ≤ ‖∇u‖∞
}
,

the uniform modulus of continuity x→ S∗D(x)(A). Then, we set

uε :=
1

1 + ω(αε)
zε ∈ D(Ω).

Then, it is not di�cult to see that uε → u in W 1,∞-weak. And, moreover

S∗D(x)(∇uε(x)) ≤ 1.

Indeed, using Jensen inequality, we have

S∗D(x)(∇uε(x)) ≤ 1

1 + ω(αε)

ˆ
ραε(x− y)S∗D(x)(∇u(y)) dy

≤ 1

1 + ω(αε)

ˆ
ραε(x− y)S∗D(y)(∇u(y)) dy

+
1

1 + ω(αε)

ˆ
ραε(x− y)

(
S∗D(x)(∇u(y))− S∗D(y)(∇u(y))

)
dy

≤ 1.
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Now, we see that, for any open subset B ⊂ Ω, we have

ˆ

B

σ · ∇γu dγ = lim
ε→0

ˆ

B

σ · ∇γuε dγ

= lim
ε→0

ˆ

B

σ · ∇uε dγ

≤ lim
ε→0

ˆ

B

SD(x)(σ(x)) S∗D(x)(∇uε(x)) dγ(x)

≤
ˆ

B

SD(x)(σ(x))dγ(x).

Now, for general g, we take g̃ ∈ C1(Ω) be such that g̃ = g in ∂Ω. Then ũ = u− g̃ ∈
W 1,∞

0 (Ω).

Denote by D̃(x) := {q −∇g(x); q ∈ D(x)}. Then, D̃(x) is convex and ∇ũ ∈ D̃(x).

It's easy to see that

SD̃(x)(σ(x)) + σ(x) · ∇g̃(x) = SD(x)(σ(x).

Apply the result when g = 0, there exists a sequence (ũε)ε>0 in D(Ω), such that

∇ũε(x) ∈ D̃(x), for any x ∈ Ω and ũε → ũ in W 1,∞-weak.

Now, take uε = ũε + g̃ we get ∇uε(x) ∈ D(x), for any x ∈ Ω and uε → u in

W 1,∞-weak. Moreover,

ˆ

B

σ · ∇γu dγ = lim
ε→0

ˆ

B

σ · ∇uε dγ

= lim
ε→0

ˆ

B

σ · (∇ũε +∇g) dγ

= lim
ε→0

ˆ

B

σ · ∇ũε dγ +

ˆ

B

σ · ∇g̃ dγ

≤
ˆ

B

(
SD̃(x)(σ(x)) + σ(x) · ∇g̃(x)

)
dγ(x).

≤
ˆ

B

SD(x)(σ(x))dγ(x).
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This ends up the proof. 2

Proposition 2.5. Let γ ∈ Mb(Ω)+ and σ ∈ L1(Ω, dγ)n be such that σ(x) ∈ Tγ(x),

γ−a.e x ∈ Ω. If u ∈ W 1,∞(Ω) and ∇u(x) ∈ D(x), Ln−a.e. x ∈ Ω, then the following

assertions are equivalent :

1. σ(x) · ∇γu(x) = SD(x) (σ(x)) , γ-a.e. x ∈ Ω.

2.

ˆ
SD(x) (σ(x)) dγ(x) ≤

ˆ
∇γu · σ dγ.

Moreover, if ∇γu(x) ∈ D(x), Ln-a.e. x ∈ Ω, then 1) and 2) are equivalent to

σ(x) ∈ ∂II
D(x)

(∇γu(x)) γ- a.e. x ∈ Ω.

Proof : The proof is a simple consequence of Proposition 2.4 and the de�nition of

∂II
D(x)

. 2

2.3 Main results

For any x ∈ Ω, let us denote by SD(x) the support function of D(x), given by

SD(x)(φ) = sup
{
φ · q ; q ∈ D(x)

}
, for any (x, φ) ∈ Ω× IRn.

To set our �rst main result, we denote by

K =
{
z ∈ W 1,∞(Ω) ; ∇z(x) ∈ D(x), a.e. x ∈ Ω; z = g in ∂Ω

}
and

Hg =
{
u ∈ W 1,p(Ω) such that u = g on ∂Ω

}
.

See here that, in general K could be an empty set. Then it is important to assume

that the function g in the following set :

G = {g ∈ C(∂Ω),∃g0 ∈ W 1,∞(Ω) : ∇g0 ∈ D(x); g0 = g in ∂Ω}.

This implies K 6= ∅.

Remark 2.1. In general, G 6= ∅. Indeed, 0 ∈ G.
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Remark 2.2. If D(x) is closed set then

G := {g ∈ C(∂Ω), g(x)− g(y) ≤ SJ(y, x)}.

For any y, x ∈ Ω, we de�ne SJ(y, x) = min
ϕ∈Ly,x

ˆ 1

0

S∗D(ϕ(t))(ϕ̇(t))dt where

Ly,x = {ϕ ∈ C1[0, 1], ϕ(0) = y, ϕ(1) = x}.

Thanks to [60], we know that SJ is quasi-metric. The nonempty of G is deduced from

the following proposition

Proposition 2.6. Let g ∈ G, then function g0 de�ned by

g0(x) = inf
y∈∂Ω
{S(y, x) + g(y)}

satis�es

• g0 ∈ W 1,∞(Ω), g0 = g in ∂Ω.

• ∇g0 ∈ D(x).

Proof : The proof of this Proposition follows by showing that g0 is a subsolution

of the Hamilton-Jacobi equation :{
SD(x)(∇u) = 1,

u = g on ∂Ω,

For the details we refer the reader to the Proposition 4.7 [60]. 2

Remark 2.3. If D(x) is a open set, we do not know which kind of geometrical

condition characterize the element of G.

Theorem 2.1. Assume that J satis�es the assumptions (J1)-(J2). For any µ ∈
Mb(Ω) and g ∈ G, the problem

(P2) min

{ˆ
Ω

J(x,∇z(x)) dx−
ˆ

Ω

z dµ ; z ∈ Hg

}
has a solution u. If, moreover J satis�es (J3), then u is a solution of (P2) if and
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only if u ∈ K and, there exists Φ ∈Mb(Ω)n such that

Φr(x) ∈ ∂ξJ(x,∇u(x)), Lna.e. x ∈ Ω (2.3)

Φs

|Φs|
(x) · ∇|Φs|u(x) = SD(x)

(
Φs

|Φs|
(x)

)
, |Φs|- a.e. in Ω (2.4)

and ˆ
Ω

Φr · ∇ξ dx+

ˆ
Ω

∇|Φs|ξ dΦs =

ˆ
Ω

ξ dµ, for any ξ ∈ C1
0(Ω). (2.5)

If ∇|Φs|u(x) ∈ D(x), |Φs|- a.e. x ∈ Ω, then (2.4) is equivalent to

Φs

|Φs|
(x) ∈ ∂II

D(x)
(∇|Φs|u(x)) |Φs|- a.e.x ∈ Ω. (2.6)

Roughly speaking (2.4) with the fact that ∇u(x) ∈ D(x), Ln-a.e. x ∈ Ω, is a

generalized formulation of the standard formulation (2.6).

We �x g̃ ∈ C1(Ω) be such that g̃ = g in ∂Ω and we denote by

T (g, ψ) =

ˆ
Ω

∇g̃dψ −
ˆ

Ω

g̃dµ

Theorem 2.2. Let µ ∈Mb(Ω), g ∈ G. Under the assumptions (J1-J3), the problem

(P3)

min

{ˆ
Ω

J∗(x, ψr(x)) dx+

ˆ
Ω

SD(x)

(
ψs(x)

|ψs(x)|

)
d|ψs(x)| − T (g, ψ) ; ψ ∈ S(µ)

}
has a solution Φ ∈ S(µ). Moreover, Φ is a solution of problem (P3) if and only if

there exists u ∈ K such that (u,Φ) is a weak solution of the problem (P1).

Remark 2.4. Roughly speaking, the solution of (P3) depends only on the trace of

g̃ on ∂Ω which is equal to g. Indeed, T (g, ψ) =

ˆ
∂Ω

g ψ · ndS. See Remark 0.1 in

Chapter 0 Introduction.
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2.4 Regularization problem and estimates

We �x p > n, we consider the Yosida approximation of J :

Jλ(x, δ) = min
y∈Rn

{
J(x, y) +

1

pλp−1
‖y − δ‖p

}
.

Lemma 2.2. We have Jλ(x, .) is convex, C
1-function and its gradient ∇ξJλ is Lip-

chitzs continuous. Moreover, for each δ ∈ IRn we have

lim
λ→0

Jλ(x, δ) = J(x, δ) for all x ∈ Ω.

Proof : We consider

g(δ, y) := J(x, y) +
1

pλp−1
‖y − δ‖p ,

for each δ, g(δ, .) is a strictly convex function, so it has at most one minimum. Since

g(δ, .) is 1-coercive and l.s.c, it has one minimum. There exists yδλ such that

Jλ(x, δ) = J(x, yδλ) +
1

pλp−1

∥∥yδλ − δ∥∥p . (2.7)

Therefore, Jλ(x, .) is di�erentiable and its gradient is

∇ξJλ(x, δ) =
1

λp−1

∥∥yδλ − δ∥∥p−2
(δ − yδλ),

(c.f. [63] Theorem 3.4.1 and the same argument as Example 3.4.4).

Let δ ∈ D(x), remark that J(x, ξ) ≥ 0 and using (2.7) we get

1

pλp−1

∥∥yδλ − δ∥∥p ≤ Jλ(x, δ) ≤ J(x, δ),

which implies that
∥∥yδλ − δ∥∥p ≤ J(x, δ)pλp−1. Then lim

λ→0
yδλ = δ. So, using the l.s.c of

J(x, .) we get

J(x, δ) ≤ lim inf
λ→0

J(x, yδλ).
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Moreover, from (2.7) we also have

J(x, yδλ) ≤ Jλ(x, δ) ≤ J(x, δ).

Then we can conclude that lim
λ→0

Jλ(x, δ) = J(x, δ).

Let δ /∈ D(x), we prove that lim
λ→0

Jλ(x, δ) = +∞. We argue by contradiction,

if we assume that there is a subsequence {λk} such that Jλk(x, δ) ≤ C. Again, from

(2.7) we get lim
λk→0

yδλk = δ. Then

+∞ = J(x, δ) ≤ lim inf
λk→0

J(x, yδλk) ≤ lim inf
λk→0

Jλk(x, δ) ≤ C.

This is a contradiction. 2

Now, we consider the functional

Jλ : L2(Ω)→ [0,+∞)

u 7→ Jλ(u) =


ˆ

Ω

Jλ(x,∇u)dx if Jλ(.,∇u) ∈ L1(Ω)

+∞ otherwise

First, we begin with the regular minimization problem :

min

{ˆ
Ω

Jλ(x,∇z)−
ˆ

Ω

zdµ ; z ∈ Hg

}
. (2.8)

Lemma 2.3. For any λ > 0, there exists uλ ∈ Hg solution of the problem (2.8).

Moreover wλ := ∇ξJλ(x,∇u) ∈ L1(Ω)n satis�es the PDE

−∇ · wλ = µ in Ω. (2.9)

Proof : Let us consider the functional

z ∈ W 1,p(Ω)→ I(z) =

ˆ
Ω

Jλ(x,∇z)−
ˆ

Ω

zdµ.

Since Jλ is convex, C
1, bounded below and is coercive, the functional z ∈ W 1,p(Ω)→
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ˆ
Ω

Jλ(x,∇z(x)) dx is lower semi-continuous. Thus I is l.s.c. Moreover, since Hg is

closed, the minimization problem (2.8) has a solution uλ ∈ Hg. The function Jλ

satis�es the growth condition then we have the second assertion in the thesis of

Lemma. See Theorem 1.14 . 2

2.5 Compactness and passage to the limit

Lemma 2.4. The sequences (uλ)λ>0 and (wλ)λ>0 are bounded in W 1,p(Ω) and

L1(Ω)n, respectively. Moreover,

1. there exists C = C(Ω, p, µ, g0) bounded as p→∞, such that

1

2p

ˆ
Ω

(|∇uλ| −M(x))+p ≤ C(Ω, p, µ, g0). (2.10)

2. for any ξ ∈ C(Ω), such that ξ(x) ∈ D(x), for any x ∈ Ω, we have

ˆ
Ω

ξ dΦλ ≤
ˆ

Ω

J(x, ξ) dx+

ˆ
Ω

(uλ − g0) dµ. (2.11)

Proof : First, let us see that

1

2p−1
|ξ|p ≤ pλp−1Jλ(x, ξ) + |M(x)|p . (2.12)

We see that

Jλ(x, ξ) ≥
1

pλp−1
((|ξ| −M(x))+)p. (2.13)

Indeed, for a given x ∈ Ω, any ξ ∈ IRn, there exist y ∈ IRn, |y| ≤M(x), such that

Jλ(x, ξ) = J(y) +
1

pλp−1
|ξ − y|p
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Using the assumption (J1) and the fact that |y| ≤M(x), we get :

Jλ(x, ξ) ≥ ((|y| −M(x))+)p +
1

pλp−1

∣∣∣ |ξ| − |y| ∣∣∣p
≥ 1

pλp−1

∣∣∣ |ξ| − |y| ∣∣∣p
≥ 1

pλp−1
((|ξ| −M(x))+)p.

Then (2.12) is simple consequence of (2.13) and the inequality :

1

2p−1
|ξ|p ≤ ((|ξ| −M(x))+)p + |M(x)|p

Now, since Jλ(x, .) is convex, for any x ∈ Ω, we have

Jλ(x,∇uλ) ≤ ∇ξJλ(x,∇uλ) · ∇uλ, for any λ > 0.

Then

0 ≤
ˆ

Ω

Jλ(x,∇uλ) ≤
ˆ

Ω

∇ξJλ(x,∇uλ) · (∇uλ −∇g0) +

ˆ
Ω

Jλ(x,∇g0)

≤
ˆ

Ω

(uλ − g0) dµ+

ˆ
Ω

Jλ(x,∇g0) (2.14)

where g0 is in G. We have ∇g0 in D(x) then

ˆ
Ω

Jλ(x,∇g0) is bounded. Moreover

uλ − g0 in W 1,p
0 (Ω), for C(Ω, p) the constant of Poincaré inequality and C(Ω), the

constant of the continuous embedding of L∞(Ω) in W 1,p(Ω), we get

ˆ
Ω

(uλ − g0) dµ ≤ ‖uλ − g0‖L∞(Ω) µ(Ω)

≤ C(Ω) ‖uλ − g0‖W 1,p(Ω) µ(Ω)

≤ C(Ω, p)C(Ω) ‖∇uλ −∇g0‖Lp µ(Ω).
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Hence ˆ
Ω

(uλ − g0) dµ ≤ Cp (‖|∇uλ|+ |∇g0|‖Lp) , (2.15)

where Cp := C(Ω, p)C(Ω)µ(Ω). Using (2.13) we get

1

2p−1

ˆ
Ω

(|∇uλ| −M(x))+p ≤
ˆ

Ω

Jλ(x,∇uλ) ≤
ˆ

Ω

(uλ − g0) dµ+

ˆ
Ω

Jλ(x,∇g0),

then by using (2.15) and Young inequality we get

1

2p−1

ˆ
Ω

(|∇uλ| −M(x))+p

≤ Cp (‖|∇uλ|+ |∇g0|‖Lp) + C

≤ Cp
(∥∥(|∇uλ| −M)+

∥∥
Lp

+ ‖|∇g0|+M‖Lp
)

+ C

≤ Cp

(
εp

p

ˆ
Ω

(|∇uλ| −M(x))+p +
1

εp′p′
+ ‖|∇g0|+M‖Lp

)
+ C.

This implies that

1

2p−1

ˆ
Ω

(|∇uλ| −M(x))+p ≤ εpCp
p

ˆ
Ω

(|∇uλ| −M(x))+p

+Cp

(
1

εp′p′
+ ‖|∇g0|+M‖Lp

)
+ C.

Taking εp =
p

2pCp
, we have εp

′
=

1

2

(
p

2Cp

) 1
p−1

and

1

2p

ˆ
Ω

(|∇uλ| −M(x))+p ≤ Cp

 1
1
2
( p

2Cp
)

1
p−1

p− 1

p
+ ‖|∇g0|+M‖Lp

+ C.

1

2p

ˆ
Ω

(|∇uλ| −M(x))+p ≤ Cp

(p− 1)2
p
p−1C

1
p−1
p

p
p
p−1

+ ‖|∇g0|+M‖Lp

+ C.
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Since the Poincaré constant C(Ω, p) is bounded as p tend to +∞ (cf. [45]) and

g0 ∈ W 1,∞(Ω), we deduce that there exists C = C(Ω, p, µ, g0) bounded as p → ∞,
such that

1

2p

ˆ
Ω

(|∇uλ| −M(x))+p ≤ C(Ω, p, µ, g0). (2.16)

In particular, this implies that∇uλ is bounded in Lp(Ω)n. Using the fact that uλ = g,

Ln−1−a.e. ∂Ω, we deduce that uλ is bounded in W 1,p(Ω). To prove that (wλ)λ>0 is

bounded in L1(Ω)n, recall that, for any ξ ∈ IRn and a.e. x ∈ Ω, we have

wλ(x) · ξ ≤ Jλ(x, ξ) + wλ(x) · ∇uλ(x)− Jλ(x,∇uλ(x))

≤ Jλ(x, ξ) + wλ(x) · ∇uλ(x).

This implies that

ˆ
Ω

wλ(x) · ξ dx ≤
ˆ

Ω

Jλ(x, ξ) dx+

ˆ
Ω

wλ(x) · ∇uλ(x)dx

≤
ˆ

Ω

Jλ(x, ξ) dx+

ˆ
Ω

(uλ − g0) dµ.

In one hand, using (2.15) and∇uλ is bounded in Lp(Ω)n, we see that

ˆ
Ω

(uλ−g0)dµ is

bounded. On the other hand, we see that

ˆ
Ω

J(x, ξ)dx is bounded for any ξ ∈ B(0, α).

This implies that wλ · ξ is bounded in L1(Ω), for any ξ ∈ B(0, α). Here thanks to

assumption (J3), α > 0 is given, such that B(0, α) ⊆ D(x) This implies that wλ is

bounded in L1(Ω)n. Indeed, it's enough to take ξ =
αwλ

2 |wλ|
. This ends up the proof.

2

Lemma 2.5. There exists (u,Φ) ∈ W 1,p(Ω) ×Mb(Ω)n and a subsequence that we

denote again by λ→ 0, such that

uλ → u, in W 1,p(Ω)- weak (2.17)

and

ωλ → Φ, inMb(Ω)n- weak∗. (2.18)
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Moreover, u = g in ∂Ω and we have

1. The measure Φ satis�es −∇ · Φ = µ, in Ω

2. For any ξ ∈ IRn, ϕ ∈ D(Ω), z ∈ C1(Ω) and λ0 > 0, we have

ˆ
Ω

J(x, ξ)ϕ ≥
ˆ

Ω

Jλ0(x,∇u)ϕ+

ˆ
Ω

ϕ (ξ −∇z)dΦ +

ˆ
Ω

ϕ (z − u) dµ

+

ˆ
Ω

∇ϕ (u− z)dΦ.

3. Denoting the limit (u,Φ) by (up,Φp), the sequence (up,Φp)p≥1 satis�es

(a) for any p ≥ 1,

1

2p

ˆ
Ω

(|∇up| −M(x))+p ≤ C(Ω, p, µ, g0)., (2.19)

where C(Ω, p, µ, g0) is given by Lemma 2.4.

(b) for any ξ ∈ D(x),

ˆ
Ω

ξ dΦp ≤
ˆ

Ω

J(x, ξ) dx+

ˆ
Ω

(up − g0) dµ. (2.20)

Proof : Thanks to Lemma 2.4, there exist u in W 1,p(Ω), Φ ∈ Mb(Ω)n and a

subsequence such that (2.22) and (2.23) are ful�lled. Moreover, we see that for g0 as

in Lemma 2.4, we have (uλ − g0) in W 1,p
0 (Ω). Using the fact that W 1,p

0 (Ω) is weakly

closed in W 1,p(Ω) we get u− g0 in W 1,p
0 (Ω), which implies u = g in ∂Ω.

By using the Rellich-Kondrachov Theorem [Theorem 9.16 [41]], we get

uλ → u, in C(Ω̄) strongly

and ˆ
Ω

uλdµ→
ˆ

Ω

u dµ.

Recall that for any ϕ ∈ D(Ω) such that ϕ ≥ 0, we have

ˆ
Ω

J(x, ξ)ϕ ≥
ˆ
Jλ(x,∇uλ)ϕ+

ˆ
Ω

ωλ(ξ −∇uλ)ϕ.

Since, for any (x, ξ) ∈ Ω× IRn, (Jλ(x, ξ))λ≥0 is nondecreasing with respect to λ, for
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any 0 < λ ≤ λ0, we have :

ˆ
Ω

Jλ(x, ξ)ϕ ≥
ˆ

Ω

Jλ0(x,∇uλ)ϕ+

ˆ
Ω

ωλ · (ξ −∇uλ)ϕ

≥
ˆ

Ω

Jλ0(x,∇uλ)ϕ+

ˆ
Ω

ωλ · (ξ −∇z)ϕ+

ˆ
Ω

ωλ · ∇(ϕ (uλ − z))

+

ˆ
Ω

ωλ · ∇ϕ (uλ − z)

≥
ˆ

Ω

Jλ0(x,∇uλ)ϕ+

ˆ
Ω

ωλ · (ξ −∇z)ϕ−
ˆ

Ω

ϕ (uλ − z)dfλ

+

ˆ
Ω

ωλ · ∇ϕ (uλ − z). (2.21)

Moreover, since Jλ0(., ξ) is convex, l.s.c. and nondecreasing, we have

ˆ
Ω

Jλ0(x,∇up)ϕ ≤ lim
λ→0

inf

ˆ
Ω

Jλ0(x,∇uλ)ϕ.

So, letting λ → 0 in (2.21), we get (2.19). The last part of the lemma follows by

using (2.16) and (2.11).

2

Lemma 2.6. Let n ≤ q <∞, and (up,Φp)p≥q be the sequence given by Lemma 2.5.

There exists (u,Φ) ∈ W 1,∞(Ω) ×Mb(Ω)n and, a subsequence that we denote again

by p→∞, such that

up → u, in W 1,q(Ω)- weak, (2.22)

and

Φp → Φ, inMb(Ω)n- weak∗. (2.23)

Moreover, we have

1. The measure Φ satis�es −∇ · Φ = µ, in Ω

2. For any ξ ∈ IRn, ϕ ∈ D(Ω) and λ0 > 0, we have

ˆ
Ω

J(x, ξ)ϕ ≥
ˆ

Ω

Jλ0(∇u)ϕ+

ˆ
Ω

Φr · (ξ −∇u) ϕdx+

ˆ
Ω

ϕ(ξ −∇|Φs|u)dΦs.

Proof : Thanks to (2.20), it is clear that the sequence (Φp)p≥q is bounded

in Mb(Ω)n and (2.23) holds to be true. As to the sequence (up)p≥q, using Holder
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inequality and (2.20) we have

1

2q

ˆ
Ω

(|∇up| −M(x))+q ≤
(

1

2p

ˆ
Ω

(|∇up| −M(x))+p

)q/p
|Ω|

p−q
p

(2.24)

≤ C(Ω, p, µ, g0)q/p|Ω|
p−q
p .

Using the fact that C(Ω, p, µ, g0) is bounded as p → ∞, we deduce that (up)p≥q is

bounded in W 1,q(Ω) and (2.22) holds to be true. By using the Rellich-Kondrachov

Theorem [Theorem 9.16 [41]], we get

up → u, in C(Ω̄) strongly

and ˆ
Ω

updµ→
ˆ

Ω

u dµ.

Moreover, letting p→∞ in (2.24) we get

1

2q

ˆ
Ω

(|∇u| −M(x))+q ≤ |Ω|

This implies that u ∈ W 1,∞(Ω)

Recall that letting λ→ 0 in (2.21), we get

ˆ
Ω

J(x, ξ)ϕ ≥
ˆ

Ω

Jλ0(x,∇up)ϕ+

ˆ
Ω

ϕ (ξ −∇z)dΦp +

ˆ
Ω

ϕ (z − u) dµ

+

ˆ
Ω

∇ϕ (u− z)dΦp.

In particular, taking z = uε where (uε)ε>0 is a sequence of Lipschitz function which

converges uniformly to u, letting p→∞ we get

ˆ
Ω

J(x, ξ)ϕ ≥
ˆ

Ω

Jλ0(x,∇u)ϕ+

ˆ
Ω

ϕΦr · (ξ −∇u)dx+ lim
ε→0

ˆ
Ω

ϕ (ξ −∇uε)dΦs,

where Φ = ΦrLn+Φs is the Radon-Nikodym decomposition of the measure Φ. Now,

since µ ∈ Mb(Ω) ⊂ {∇ · σ, σ ∈ L1(Ω)n} and −∇ · Φs = µ+∇ · Φr, we deduce that
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Φr ∈MT (Ω). So

lim
ε→0

ˆ
Ω

ϕ(ξ −∇uε)dΦs =

ˆ
Ω

ϕξdΦs − lim
ε→0

ˆ
Ω

ϕ
Φs

|Φs|
· ∇uεd|Φs|

=

ˆ
Ω

ϕξdΦs − lim
ε→0

ˆ
Ω

ϕ
Φs

|Φs|
· P|Φs|∇uεd|Φs|

=

ˆ
Ω

ϕξdΦs −
ˆ

Ω

ϕ
Φs

|Φs|
· ∇|Φs|ud|Φs|

=

ˆ
Ω

ϕ(ξ −∇|Φs|u)dΦs.

This ends up the proof of the Lemma. 2

Lemma 2.7. Under the assumptions of Lemma 2.6, let us consider the couple

(u,Φ) ∈ W 1,∞(Ω)×Mb(Ω)n given by Lemma 2.6. We have u ∈ K and

1. Φr(x) ∈ ∂J(x,∇u(x)) Ln − a.e. Ω

2.
Φs

|Φs|
(x) · ∇|Φs|u(x) = SD(x)

(
Φs

|Φs|
(x)

)
, |Φs|- a.e. x ∈ Ω.

Proof : Thanks to Lemma 2.6, for any ξ ∈ IRn and ϕ ∈ D(Ω), ϕ ≥ 0 we have

ˆ
Ω

J(x, ξ)ϕ ≥
ˆ

Ω

Jλ0(x,∇u)ϕ+

ˆ
Ω

ϕΦr · (ξ−∇u)dx+

ˆ
Ω

ϕ(ξ−∇|Φs|u)dΦs. (2.25)

This implies that

J(x, ξ) ≥ Jλ0(x,∇u(x)) + (ξ −∇u(x)) · Φr Ln p.p. Ω.

Hence, for any x ∈ Ω, Jλ0(x,∇u(x)) is bounded in Ω with respect to λ0. This implies

that

∇u(x) ∈ D(x), for a.e. x ∈ Ω. (2.26)

So, letting λ0 → 0 in (2.25) and using Fatou lemma, we get

ˆ
Ω

J(x, ξ)ϕ ≥
ˆ

Ω

J(x,∇u)ϕ+

ˆ
Ω

ϕΦr · (ξ −∇u)dx+

ˆ
Ω

ϕ(ξ −∇|Φs|u)dΦs, (2.27)

for any ϕ ∈ D(Ω), ϕ ≥ 0 and ξ ∈ IRn. In one hand, this implies that, for any ξ ∈ IRn,
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we have

J(x, ξ) ≥ J(x,∇u(x)) + (ξ −∇u(x)) · Φr(x) Ln − a.e. x ∈ Ω ;

so that Φr(x) ∈ ∂J(x,∇u), Ln- a.e. x ∈ Ω. On the other hand, thanks (2.27) we see

that for any ξ ∈ D(x)

(
ξ −∇|Φs|u

)
· Φs

|Φs|
≤ 0, |Φs|-a.e. in Ω.

This implies that

Φs

|Φs|
(x) · ∇|Φs|u(x) ≥ SD(x)

(
Φs

|Φs|
(x)

)
, |Φs|- a.e. in Ω

Combining this with the result of Proposition 2.4, we deduce the second part of the

lemma.

2

2.6 Existence of solution

Now we have the de�nition of weak solution of stationary problem as we expect

De�nition 2.1. The couple (u,Φ) ∈ K ×Mb(Ω)n is called the weak solution of (2)

if and only if

Φr(x) ∈ ∂ξJ(x,∇u(x)), Lna.e. x ∈ Ω,

Φs

|Φs|
(x) · ∇|Φs|u(x) = SD(x)

(
Φs

|Φs|
(x)

)
, |Φs|- a.e. x ∈ Ω,

and ˆ
Ω

Φr · ∇ξ +

ˆ
Ω

∇|Φs|ξ dΦs =

ˆ
Ω

ξ dµ, for any ξ ∈ C1
0(Ω).

Lemma 2.8. For any µ ∈Mb(Ω), the problem

min

{ˆ
Ω

J(x,∇z(x)) dx+
1

2

ˆ
Ω

z2(x) dx−
ˆ

Ω

z dµ ; z ∈ Hg

}
,

has at most one solution.
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Proof :

I(z) =

ˆ
Ω

J(x,∇z(x)) dx+
1

2

ˆ
Ω

z2(x) dx−
ˆ

Ω

z dµ.

Suppose that u1 and u2 are two solution of minimization problem. We denote by

v =
u1 + u2

2
and we have :

I(v) =

ˆ
Ω

J(x,∇u1 + u2

2
) dx+

1

2

ˆ
Ω

(
u1 + u2

2
)2(x) dx−

ˆ
Ω

u1 + u2

2
dµ

≤ I(u1) + I(u2)

2
.

From this we get u1 = u2 a.e. 2

Proof of Theorem 2.1 : First, thanks to Lemma 2.7, the problem (P1) has a

solution (u,Φ). For any ξ ∈ Hg, we have

ˆ
Ω

(ξ − u)dµ =

ˆ
Ω

Φr · ∇(ξ − u) +

ˆ
Ω

∇|Φs|(ξ − u)dΦs

≤
ˆ

Ω

J(x,∇ξ)− J(x,∇u).

This implies that u is solution of (P2).

For the converse part, let v be a solution of (P2). Let us denote by h the measure

given by

h = µ+ v Ln.

It is not di�cult to see that v is also a solution of

min

{ˆ
Ω

J(x,∇z(x)) dx+
1

2

ˆ
Ω

z2(x) dx−
ˆ

Ω

z dh ; z ∈ Hg

}
, (2.28)

Thanks to Lemma 2.8, the problem (2.28) has at most one solution. Thus v is the

unique solution. Now, following the same arguments of Section 2, let us consider the

regularization Jλ and the regularization problem

min

{ˆ
Ω

Jλ(x,∇z(x)) dx+
1

2

ˆ
Ω

z2(x) dx−
ˆ

Ω

z dh ; z ∈ Hg

}
. (2.29)

Following the same arguments of Lemma 2.3, (2.29) has a solution uλ, and wλ :=
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∂ξJ(x,∇uλ) satis�es {
−divωλ = h− uλ in Ω

uλ = g on ∂Ω.

The sequence uλ is bounded in L2(Ω), with implies that h − uλ Ln is bounded in

Mb(Ω). Thanks to Lemma 2.4, there exists (u, ω) ∈ W 1,∞(Ω) × Mb(Ω)n and a

subsequence that we denote again by λ, such that, as λ→ 0, we have

uλ → u in W 1,p(Ω)- weak

and

ωλ → w inMb(Ω)n- weak* .

Moreover, u ∈ K and the measure w satis�es

−∇ · w = h− u, in Ω.

And, setting w = ΦrLn + Φs, we have Φr(x) ∈ ∂J(x,∇u(x)), Ln − a.e. x ∈ Ω and
Φs

|Φs|
(x) · ∇|Φs|u(x) = SD(x)

(
Φs

|Φs|
(x)

)
, |Φs|- a.e. in Ω. So, thanks to the �rst part

of the proof, it follows that u is a solution of the problem (2.28). By uniqueness, we

get u = v, so that h− u = µ and we conclude that (v,Φ) is a weak solution of (P1).

2

2.7 Dual problem and equivalences

Lemma 2.9. For any µ ∈Mb(Ω), if (u,Φ) ∈ W 1,∞(Ω)×Mb(Ω)n is a weak solution

of the problem (P1), then Φ is a solution of problem (P3).

Proof : Taking (u,Φ) ∈ W 1,∞(Ω)×Mb(Ω)n is a weak solution of the problem (P1)
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and ψ ∈ S(µ). In one hand, thanks to (2.3) and (2.4), we have

ˆ
Ω

J∗(x,Φr) +

ˆ
Ω

J(x,∇u) +

ˆ
Ω

SD(x)

(
Φs(x)

|Φs(x)|

)
d|Φs(x)| − T (g,Φ)

=

ˆ
Ω

Φr · ∇u+

ˆ
Ω

∇|Φs|udΦs − T (g,Φ)

=

ˆ
Ω

udµ.

On the other hand, since ψ ∈ S(µ), by using Proposition 2.4, we get

ˆ
Ω

udµ =

ˆ
Ω

ψr · ∇u+

ˆ
Ω

∇|ψs|udψs − T (g, ψ)

≤
ˆ

Ω

J∗(x, ψr) +

ˆ
Ω

J(x,∇u) +

ˆ
Ω

SD(x)

(
ψs(x)

|ψs(x)|

)
d|ψs(x)| − T (g, ψ).

This implies that

ˆ
Ω

J∗(x,Φr) +

ˆ
Ω

SD(x)

(
Φs(x)

|Φs(x)|

)
d|Φs(x)| − T (g,Φ)

≤
ˆ

Ω

J∗(x, ψr) +

ˆ
Ω

SD(x)

(
ψs(x)

|ψs(x)|

)
d|ψs(x)| − T (g, ψ).

Since Φ ∈ S(µ) and ψ ∈ S(µ) is arbitrary, we deduce that

ˆ
Ω

J∗(x,Φr) +

ˆ
Ω

SD(x)

(
Φs(x)

|Φs(x)|

)
d|Φs(x)| − T (g,Φ)

= min
ψ∈S(µ)

{ˆ
Ω

J∗(x, ψr) +

ˆ
Ω

SD(x)

(
ψs(x)

|ψs(x)|

)
d|ψs(x)| − T (g, ψ)

}
.

2

Lemma 2.10. For any µ ∈ Mb(Ω), if Φ is a solution of (P3), then exists u such

that the couple (u,Φ) ∈ W 1,∞(Ω)×Mb(Ω)n is a weak solution of (P1).
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Proof : Let (u, Φ̄) be the couple given in Lemma 2.7, we have

I := J∗(x, Φ̄r) +

ˆ
Ω

J(x,∇u) +

ˆ
Ω

SD(x)

(
Φ̄r(x)

|Φ̄r(x)|

)
d|Φ̄r(x)| − T (g, Φ̄)

=

ˆ
Ω

Φ̄r · ∇u+

ˆ
Ω

SD(x)

(
Φ̄r(x)

|Φ̄r(x)|

)
d|Φ̄r(x)| − T (g, Φ̄)

=

ˆ
Ω

Φ̄r · ∇u+

ˆ
∇|Φ̄r| dΦ̄r − T (g, Φ̄),

so that

I =

ˆ
Ω

udµ. (2.30)

On the other hand, assuming that Φ is a solution of (P3), (2.30) implies that

ˆ
Ω

J∗(x,Φr)+

ˆ
Ω

J(x,∇u)+

ˆ
Ω

SD(x)

(
Φs(x)

|Φs(x)|

)
d|Φs(x)|−T (g,Φ) ≤

ˆ
Ω

udµ. (2.31)

Using the fact that Φ ∈ S(µ), Φr ·∇u ≤ J∗(x,Φr) +J(x,∇u) a.e. in Ω and
Φs

|Φs|
(x) ·

∇|Φs|u(x) ≤ SD(x)

(
Φs

|Φs|
(x)

)
, |Φs|- a.e. in Ω, we obtain

ˆ
Ω

udµ =

ˆ
Ω

Φr · ∇u+

ˆ
Ω

∇|Φs|udΦs − T (g,Φ)

≤
ˆ

Ω

J∗(x,Φr) +

ˆ
Ω

J(x,∇u) +

ˆ
Ω

SD(x)

(
Φs(x)

|Φs(x)|

)
d|Φs(x)| − T (g,Φ).

(2.32)

Thanks to (2.31) and (2.32), we have :

ˆ
Ω

Φr · ∇u =

ˆ
Ω

J∗(x,Φr) +

ˆ
Ω

J(x,∇u)

and ˆ
Ω

∇|Φs|udΦs =

ˆ
Ω

SD(x)

(
Φs(x)

|Φs(x)|

)
d|Φs(x)|

2
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Proof of Theorem 2.2 : Thanks to Theorem 1 there exists (u,Φ) ∈ W 1,∞(Ω)×
Mb(Ω)n a weak solution of (P1). The proof is a direct consequence of Lemma 2.9

and Lemma 2.10. 2

2.8 Corollaries

Corollary 2.1. Assume that J satis�es the assumptions (J1) and (J2). Moreover,

if we assume that J(x, ξ) is symmetric, then u is a solution of (P2) if and only if

u ∈ K and there exists Φ ∈Mb(Ω)n such that (2.3), (2.5) and (2.6) are ful�lled.

Proof of Corolarry 2.1 : If J(x, .) is symetric, then we have

D(x) = B(0, R(x)), for any x ∈ Ω,

where R : Ω→ [0,∞]. There fore,

|∇u(x)| ≤ R(x) Ln a.e. x ∈ Ω.

Using Lemma 1 of [65], there exists uε a sequence in D(Ω) such that uε → u ∈ C(Ω)

and |∇uε(x)| ≤ R(x) a.e. x ∈ Ω. In particular, this implies that

∣∣P|Φs|∇uε∣∣ ≤ R(x) |Φs| − a.e.

By using the L∞(Ω, d|Φs|)- weak* continuity of the operator ∇|Φs| we get∣∣∇|Φs|u(x)
∣∣ ≤ R(x), |Φs| − a.e. in Ω. (2.33)

This implies that ∇|Φs|u(x) ∈ D(x) |Φs| − a.e. in Ω. This ends up the proof of

Lemma. 2

Corollary 2.2. For any µ ∈Mb(Ω), the problem (P1) has a weak solution (u,Φ).

In particular, by using (2.4) we can deduce the existence of a solution for varia-

tional formulation associated with the problem (P1) as well as its equivalence with

a weak formulation and the minimization problem.
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Corollary 2.3. Under the assumptions (J1-J3), let µ ∈Mb(Ω) and u ∈ K be given.

Then, u is a solution of (P2) if and only if there exists Φ ∈ L1(Ω)n such that

ˆ
Ω

∇(u− ξ) · Φ dx ≤
ˆ

Ω

(u− ξ) dµ, for any ξ ∈ K. (2.34)

The equation (2.34) will be called the variational formulation associated with

(P1) and (u,Φ) ∈ K × L1(Ω)n given by Corollary 2.3 is a variational solution of

(P1).

The equivalence between the three formulations is summarized in the following

Corollary

Corollary 2.4. Under the assumptions (J1-J3), let µ ∈ Mb(Ω) and (u,Φ) ∈ K ×
Mb(Ω)n be given. The following propositions are equivalent :

1. (u,Φ) is a weak solution of (P1).

2. (u,Φr) is a variational solution of (P1).

3. u is a solution of the minimization problem (P2).
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3 Evolution Problem

We consider the following equation

∂tu(t)−∇ · (Φ(t)) = µ(t)

Φ ∈ ∂ξJ(x,∇u)

 in Ω, for t ∈ (0, T ),

u = 0 on Σ := (0, T )× Γ,

u(0) = u0 in Ω.

(3.1)

where J : Ω× IRn → [0,∞) ; J(x, ξ) is continuous with respect to x, and l.s.c. with

respect to ξ, and satis�es J(x, 0) = 0, for any x ∈ Ω. Moreover, we assume that J

satis�es the following assumptions

(J1) There exists M(x) in L∞(Ω) such that D(x) ⊆ B(0,M(x)) for all x in Ω.

(J2) For any x ∈ Ω, J(x, .) is convex.

(J3) 0 ∈ Int(D(x)).

In following section, we begin with our main results. In Section 3.2 and 3.3, we

consider a regularization problem by considering Yosida approximation of J and we

use the compactness arguments to get the existence of weak solution. In Section 3.4,

we prove that the weak solution also gives us a variational solution. In Section 3.5,

we use the doubling and dedoubling variables technique to get the uniqueness of

variational solutions. By passage to the limit of approximate solutions, we prove a

contractions principle for our solutions. Then, we give the proof of our main results.
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3.1 Main results

Throughout this chapter, 0 < T <∞, Q = (0, T )×Ω, Σ = (0, T )×Γ.We denote

by

K =
{
z ∈ W 1,∞

0 (Ω) ; ∇z(x) ∈ D(x), a.e. x ∈ Ω
}

KT =
{
z ∈ C([0, T );L2(Ω)) ∩ L∞(0, T ;W 1,∞

0 (Ω)); z(t) ∈ K for any t ∈ [0, T )}.

So, for any u ∈ KT and µ ∈ L1(0, T ;w∗ −Mb(Ω)) the quantity

ˆ ˆ
Q

u dµ is well

de�ned.

De�nition 3.1. The couple (u,Φ) is called a variational solution of (3.1) if u ∈ KT ,

u(0) = u0, Φ ∈ L1(Q)n, and for any ξ ∈ K

1

2

d

dt

ˆ
Ω

|u(t)− ξ|2 +

ˆ
Ω

Φ(t) · ∇(u(t)− ξ) ≤
ˆ

Ω

(u(t)− ξ) dµ(t) in D′(0, T ). (3.2)

De�nition 3.2. The couple (u,Φ) is called a weak solution of (3.1) if u ∈ KT ,

u(0) = u0, ∂tu ∈ L∞(0, T ;w∗−Mb(Ω)), Φs ∈ L∞(0, T ;w∗−Mb(Ω)n) and moreover

we have

• for L1- a.e. t ∈ [0, T ), Φs(t)⊥ Ln,

Φr(t) ∈ ∂ξJ(.,∇u(t)), Ln-a.e. Ω (3.3)

and
Φs(t)

|Φs(t)|
· ∇|Φs|u(t) = SD(x)

(
Φs(t)

|Φs(t)|

)
|Φs(t)| - a.e. in Ω. (3.4)

• for any ξ ∈ C1
0(Ω),

d

dt

ˆ
Ω

u(t) ξ +

ˆ
Ω

Φr(t) · ∇ξ +

ˆ
Ω

∇|Φs(t)|ξ dΦs(t) =

ˆ
Ω

ξ dµ(t), in D′(0, T ).

(3.5)

Theorem 3.1. For any u0 ∈ K and µ ∈ BV (0, T ;w∗ −Mb(Ω)), (3.1) has a va-

riational solution (u,Φ). Moreover, if (ui,Φi) is a variational solution of (Pµi), for
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i ∈ {1, 2}, then

1

2

d

dt

ˆ
Ω

|u1(t)− u2(t)|2 ≤
ˆ

Ω

(u1(t)− u2(t)) d(µ1(t)− µ2(t)) in D′(0, T ). (3.6)

Theorem 3.2. Let u0 ∈ K and µ ∈ BV (0, T ;w∗ −Mb(Ω)). Then, (u,Φr) is the

variational solution of (3.1) if and only if there exist Φs ∈ L∞(0, T ;w∗ −Mb(Ω)n)

Φs(t)⊥ Ln such that (u,Φ) is a weak solution of (3.1)

3.2 Regularization problem

We denoted by W−1,p′(Ω) the dual space of W 1,p
0 (Ω). When p > n, Mb(Ω) ↪→

W−1,p′(Ω) then for any µ ∈ L1([0, T ], w∗ −Mb(Ω)), there exist {fi}ni=0, such that

for any v ∈ Lp(Ω), we have

< µ(t), v >=

ˆ
Ω

f0(t)v +
n∑
i=1

ˆ
Ω

fi(t)
∂v

∂xi

where fi(t) ∈ Lp
′
(Ω) (see Proposition 9.20 [41]). Using that fact µ ∈ L1([0, T ], w∗ −

Mb(Ω)) we get fi ∈ L1([0, T ], w∗ −Mb(Ω)). By taking

fλ(t, x) = f0(t, x) ∗ ρλ −
n∑
i=1

∂

∂x
(fi(t, x) ∗ ρλ),

where ρλ is a sequence of molli�ers, we have fλ ∈ C∞(Q) and fλ(t) →
µ(t) inMb(Ω)- weak* . Moreover,

fλ(t+ h)− fλ(t)
h

=
(f0(t+ h)− f0(t)) ∗ ρλ(t)

h
−

n∑
i=1

∂

∂xi
(fi(t+ h)− fi(t)) ∗ ρλ(t)

h
.

Then we have

fλ(t+ h)− fλ(t)
h

→ µ(t+ h)− µ(t)

h
inMb(Ω)- weak* .

So if µ ∈ BV (0, T, w ∗ −Mb(Ω)), we have V (fλ, T ) is bounded. 2
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Lemma 3.1. For any fλ ∈ W 1,1(0, T, L2(Ω)) ; there exists uλ ∈
L∞([0, T ];W 1,p(Ω)) ∩ W 1,∞([0, T ]);L2(Ω)) and ωλ = ∇ξJλ(x,∇uλ) ∈
L∞([0, T ], L2(Ω)) such that ωλ is a solution of : ∂tuλ − ∇ · ωλ = fλ in Q

where uλ(0) = u0 ∈ K.

Moreover for S ∈ C 1, S convex and S(0) = 0 we have

d

dt

ˆ
Ω

S(uλ − vλ)dx ≤
ˆ

Ω

(fλ − gλ)S ′(uλ − vλ)dx. (3.7)

In particular,

d

dt

ˆ
Ω

|uλ − vλ| ≤
ˆ

Ω

|fλ − gλ| dx. (3.8)

Proof : The �rst part of lemma can be concluded by using the theory of parabolic

equation of divergence type (see Proposition 5.7 [21]), and the evolution equation of

type Leray-Lions (cf. 7.1 [41]). Remark that, we have ∇ξJλ(x, ξ) ≤ C
1

λp−1
|ξ|p−1.

We take Sn ∈ C2 such that Sn → S and S ′n → S ′. We have uλ − vλ ∈
W 1,∞(0, T ;L2(Ω)), then take S ′n(uλ − vλ) ∈ C1 as a test function of

∂t(uλ − vλ)−∇ · ∇Jλ(x,∇uλ)−∇ · ∇Jλ(x,∇vλ) = fλ − gλ.

we get

ˆ
Ω

∂t(uλ − vλ)S ′n(uλ − vλ) +

ˆ
Ω

(∇Jλ(x,∇uλ)−∇Jλ(x,∇vλ)) · ∇S ′n(uλ − vλ)

=

ˆ
Ω

(fλ − gλ)S ′n(uλ − vλ).

Using the fact that

(∇Jλ(x,∇uλ)−∇Jλ(x,∇vλ)) · (∇uλ −∇vλ)S ′′n(uλ − vλ) ≥ 0

we get ˆ
Ω

∂t(uλ − vλ)S ′n(uλ − vλ) ≤
ˆ

Ω

(fλ − gλ)S ′n(uλ − vλ).
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Then, ˆ
Ω

∂t(uλ − vλ)S ′(uλ − vλ) ≤
ˆ

Ω

(fλ − gλ)S ′(uλ − vλ)

which implies

ˆ
Ω

d

dt
S(uλ − vλ)dx ≤

ˆ
Ω

(fλ − gλ)S ′(uλ − vλ)dx.

The last part follows by taking S ′ = Hε, where

Hε(r) =


1 if r ≥ ε
r

ε
if − ε ≤ r ≤ ε

−1 if − ε ≥ r

and letting ε→ 0. 2

Lemma 3.2. We suppose that µ ∈ BV (0, T, w∗ −Mb(Ω)) and ∇ · ∇J(x,∇u0) ∈
L1(Ω), if uλ is the solution in Lemma 3.1, then ∂tuλ is bounded in L∞(0, T ;w∗ −
Mb(Ω)).

Proof : We follow the same idea as Lemma 3.4 [68]. We see that uλ(t+ h) is the

solution of −∇ ·∇Jλ(x,∇uλ(·+ h)) = fλ(·+ h)− ∂tuλ(·+ h) in (0, T − h)×Ω and

u0 = uλ(h). Then we apply (3.8), we have

ˆ
Ω

|uλ(t)− uλ(t+ h)| ≤
ˆ

Ω

|u0 − uλ(h)|+
ˆ t

0

ˆ
Ω

|fλ(s)− fλ(s+ h)| ds.

We have u0 is the solution of −∇ · ∇Jλ(x,∇uλ(t)) = −∇ · ∇Jλ(x,∇u0)− ∂tuλ. By
applying again (3.8) we have :

ˆ
Ω

|u0 − uλ(h)| ≤
ˆ h

0

ˆ
Ω

|∇ · ∇Jλ(x,∇u0)− fλ(t)|

≤
ˆ h

0

ˆ
Ω

|fλ(t)|+ h ‖∇ · ∇Jλ(x,∇u0)‖L1(Ω) .
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Then we get :

ˆ
Ω

|uλ(t)− uλ(t+ h)| ≤
ˆ h

0

ˆ
Ω

|fλ(t)|+ h ‖∇ · ∇Jλ(x,∇u0)‖L1(Ω)

+

ˆ T

0

ˆ
Ω

|fλ(s)− fλ(s+ h)| ds.

Dividing by h and letting h→ 0, we obtain

‖∂tuλ‖L∞(0, T ;w∗ −Mb(Ω)) ≤ ‖fλ(0)‖L∞(Ω) +‖∇ · ∇Jλ(x,∇u0)‖L1(Ω) +V (fλ, T )

(3.9)

Using the fact that V (fλ, T ) is bounded. We conclude that ∂tuλ is bounded by C

and this constant not depends on p. 2

Lemma 3.3. Under the assumption of Lemma 3.2, (uλ)λ≥0 is bounded in

L∞(0, T ;W 1,p(Ω)) and (wλ)λ≥0 is bounded in L∞(0, T ;L1(Ω)n).

Proof : For a.e. t in [0, T ], using Sobolev embedding and inequalities as Lemma

2.4, we have

ˆ
Ω

uλ(t)fλ(t)dx ≤ Cp ‖∇uλ(t)‖Lp(Ω) ‖fλ(t)‖L∞(Ω) (3.10)

and

ˆ
Ω

uλ(t)d(∂tuλ(t)) ≤ Cp ‖∇uλ(t)‖Lp(Ω) ‖∂tuλ(t)‖Mb(Ω) (3.11)

where Cp := C(Ω)C(Ω, p). Moreover, we have

1

2p−1

ˆ
Ω

(|∇uλ(t)| −M(x))+p ≤
ˆ

Ω

Jλ(x,∇uλ(t)) ≤
ˆ

Ω

uλ(t)fλ(t)−
ˆ

Ω

uλ(t)d∂tuλ(t),

then by using (3.10) and (3.11) we get

1

2p−1

ˆ
Ω

(|∇uλ| −M(x))+p ≤ Cp ‖∇uλ(t)‖Lp
(
‖fλ(t)‖L∞(Ω) + ‖∂tuλ(t)‖Mb(Ω)

)
≤ CpC

∥∥(|∇uλ| −M)+
∥∥
Lp

+ ‖M‖∞ |Ω|
1
p

≤ CpC

(
εp

p

ˆ
Ω

(|∇uλ| −M(x))+p +
1

εp′p′
+ ‖M‖∞ |Ω|

1
p

)
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where C = ‖fλ‖L∞(Q) +‖∂tuλ‖L∞(0, T ;w∗ −Mb(Ω)). This constant is bounded, not

depend on t, p. This implies that

1

2p−1

ˆ
Ω

(|∇uλ(t)| −M(x))+p ≤ εpCpC

p

ˆ
Ω

(|∇uλ(t)| −M(x))+p

+CpC

(
1

εp′p′
+ ‖M‖∞ |Ω|

1
p

)
.

Taking εp =
p

2pCpC
, εp

′
=

1

2

(
p

2CpC

) 1
p−1

and we have

(
1

2p−1
− 1

2p

) ˆ
Ω

(|∇uλ(t)| −M(x))+p

≤ CpC

 1
1
2
( p

2CpC
)

1
p−1

p− 1

p
+ ‖M‖∞ |Ω|

1
p

 .

Since the Poincaré constant C(Ω, p) is bounded as p tend to +∞ (cf. [45]) we deduce

that there exists C = C(Ω, p, µ) bounded as p→∞, such that

1

2p

ˆ
Ω

(|∇uλ(t)| −M(x))+p ≤ C(Ω, p, µ). (3.12)

In particular, this implies that ∇uλ(t) is bounded in L∞(Ω)n. Then uλ(t) is bounded

in W 1,∞
0 (Ω) . Hence uλ is bounded in L∞([0, T ];W 1,∞

0 (Ω)). Recall that, for any

ξ ∈ IRn, and a.e. x ∈ Ω we have

wλ(x, t) · ξ ≤ Jλ(x, ξ) + wλ(x, t) · ∇uλ(x, t)− Jλ(x,∇uλ(x, t))

≤ Jλ(x, ξ) + wλ(x, t) · ∇uλ(x, t).
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So for a.e. t we have

ˆ
Ω

wλ(x, t) · ξ dx ≤
ˆ

Ω

Jλ(x, ξ) dx+

ˆ
Ω

wλ(x, t) · ∇uλ(x, t)dx

≤
ˆ

Ω

Jλ(x, ξ) dx+

ˆ
Ω

uλ(t) (∂tuλ(t)− fλ(t))dx.

Using the same arguments as Lemma 2.4, we obtain that (wλ)λ≥0 is bounded in

L∞(0, T ;L1(Ω)n). 2

3.3 Existence of weak solution

Lemma 3.4. For any z ∈ KT , there exists (zε)ε>0 a sequence in L∞(0, T ; C1
0(Ω)) ∩

KT such that, as ε→ 0, for any q ≥ 1,

zε → z in Lq(0, T ;W 1,q
0 (Ω))− weak

and

zε → z uniformly in Q.

Proof : The proof follows exactly the same ideas of the proof of Proposition 2.4. 2

Lemma 3.5. Let u0 ∈ K. For any f ∈ BV (0, T ;w∗ − Mb(Ω)) there exists

(u,Φr,Φs) ∈ KT × L1(Q)n × L∞(0, T ;w∗ −Mb(Ω)n)), such that :

uλ → u in L∞(0, T ;W 1,p(Ω))- weak

ωλ(t)→ Φ(t) = Φs(t)Ln + Φs(t) in w* -Mb(Ω)n for L1 − a.e. t ∈ [0, T ).

Moreover (u,Φ) is a weak solution of (3.1)

Proof. By using the de�nition of ωλ, for any ϕ ∈ D(Q) such that ϕ ≥ 0, we have

ˆ
Q

J(x, ξ)ϕ ≥
ˆ
Q

Jλ(x,∇uλ)ϕ+

ˆ
Q

ωλ · (ξ −∇uλ)ϕ.
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Since for any ξ ∈ IRn, x ∈ Ω, (Jλ(x, ξ))λ≥0 is nondecreasing, we get :

ˆ
Q

J(x, ξ)ϕ ≥
ˆ
Q

Jλ0(x,∇uλ)ϕ+

ˆ
Q

ωλ · (ξ −∇uλ)ϕ

≥
ˆ
Q

Jλ0(x,∇uλ)ϕ+

ˆ
Q

ωλ · (ξ −∇z)ϕ+

ˆ
Q

ωλ · ∇(ϕ (uλ − z))

+

ˆ
Q

ωλ · ∇ϕ (uλ − z)

≥
ˆ
Q

Jλ0(x,∇uλ)ϕ+

ˆ
Q

ωλ(ξ −∇z)ϕ−
ˆ
Q

(fλ − ∂tuλ)ϕ (uλ − z)

+

ˆ
Q

ωλ · ∇ϕ (uλ − z).

Thank to Lemma 3.3, by using Rellich-Kondrachov Theorem we get

uλ → u in L∞([0, T ];C0(Ω))- weak .

ωλ(t)→ Φ(t) = Φs(t)Ln + Φs(t) in w* -Mb(Ω)n for L1 − a.e. t ∈ [0, T ).

where Φ(t) = Φr(t)Ln + Φs(t) is the Radon-Nikodym decomposition of the measure

Φ(t) for a.e. t ∈ [0, T ).

Moreover, we have u ∈ L∞([0, T ];W 1,∞
0 (Ω)).

Since

∂tuλ → ∂tu in L∞(0, T ;w∗ −Mb(Ω))- weak *

and

fλ → f in L∞(0, T ;w∗ −Mb(Ω))- weak * ,

passing to the limit in the same way as Lemma 2.6 and Lemma 2.7, we obtain

ˆ
Q

J(x, ξ)ϕ ≥
ˆ
Q

Jλ0(x,∇u)ϕ+

ˆ
Q

ϕΦr · (ξ −∇u)

+ lim
ε→0

ˆ T

0

ˆ
Ω

ϕ(ξ −∇uε(t))dΦs(t)dt
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Then for any ξ ∈ D(x) and ϕ ∈ D(Q) we have

ˆ
Q

J(x, ξ)ϕ ≥
ˆ
Q

J(x,∇u)ϕ+

ˆ
Q

ϕΦr · (ξ−∇u) +

ˆ T

0

ˆ
Ω

ϕ(ξ−∇|Φs(t)|u(t))dΦs(t)dt.

This implies �rst that,

J(x, ξ) ≥ J(x,∇u(t, x)) + (ξ −∇u(t, x)) · Φr(t, x) a.e. in Q;

hence

Φ ∈ ∂ξJ(.,∇u) Ln+1 − a.e.in Q.

On the other hand, for any ξ ∈ D(x)

(
ξ −∇|Φs(t)|u(t)

)
· Φs(t)

|Φs(t)|
≤ 0, |Φs(t)|-a.e. in Ω,

this implies that

Φs(t)

|Φs(t)|
· ∇|Φs(t)|u(t) = SD(x)

(
Φs(t)

|Φs(t)|

)
|Φs(t)| - a.e. in Ω.

As to the equation (3.5), this follows by taking ξ as a test function in ∂tuλ(t)−∇ ·
ωλ(t) = fλ(t) then passage to the limit λ→ 0.

We have W 1,p
0 (Ω) ↪→ L2(Ω) ↪→ W−1,p′(Ω) and the fact that if u ∈ Lq(0, T ;W 1,p

0 (Ω))

be such that
∂u

∂t
∈ Lq(0, T ;W−1,p′(Ω)). Then u belongs to C([0, T ];L2(Ω)) (cf. Theo-

rem 1 page 473 [48]).

3.4 Variational solution

Lemma 3.6. If (u,Φr,Φs) is a weak solution of problem (3.1) then (u,Φr) is a

variational solution.

Proof. For any h > 1 and ε > 0, let us consider

uhε (t, x) =
1

2h

ˆ t+h

t−h
uε(s, x)ds for any (t, x) ∈ Q.
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where uε is a sequence given by Lemma 3.4. It is not di�cult to see that uhε ∈
W 1,q(0, T ;W 1,∞

0 (Ω)) and, for any t ∈ (0, T )

uhε (t)→
1

2h

ˆ t+h

t−h
u(τ)dτ =: uh(t), uniformly in Ω, as ε→ 0.

Taking σuhε as a test function we get :

¨
Q

σ∇uhε dΦs +

¨
Q

σ∇uhε · Φr =

ˆ T

0

ˆ
Ω

σtuu
h
ε +

ˆ T

0

ˆ
Ω

σ(t)u(t)
uε(t+ h)− uε(t− h)

2h

+

ˆ T

0

σ(t)

ˆ
Ω

uhε (t)dµ(t)dt.

Since u ∈ C([0, T );L2(Ω)) we get :

lim
h→0

lim
ε→0

ˆ T

0

ˆ
Ω

σ(t)u(t)
uε(t+ h)− uε(t− h)

2h

= lim
h→0

ˆ T

0

ˆ
Ω

σ(t)u(t)
u(t+ h)− u(t− h)

2h

= − lim
h→0

ˆ T

0

ˆ
Ω

u(t)u(t)
σ(t+ h)− σ(t− h)

2h

= −1

2

ˆ T

0

ˆ
Ω

u2σt.

Then we have

lim
h→0

lim
ε→0

¨
Q

σ∇uhε dΦs =

¨
Q

1

2
σtu

2 +

¨
Q

σudµ−
¨
Q

σ∇u · Φr.

Using the de�nition of SD(x), we have

lim
h→0

lim
ε→0

¨
Q

σ(t)∇uhε (t)dΦs(t)dt ≤
¨
Q

σ(t)SD(x)

(
Φs(t)

|Φs(t)|

)
d |Φs(t)| dt.

Using the fact that u satisfying (3.4), for a.e. t ∈ [0, T ),

Φs(t)

|Φs(t)|
· ∇|Φs(t)|u(t) = SD(x)

(
Φs(t)

|Φs(t)|

)
|Φs(t)| - a.e. in Ω
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We deduce

¨
Q

σ(t)SD(x)

(
Φs(t)

|Φs(t)|

)
=

¨
Q

1

2
σtu

2 +

¨
Q

σudµ−
¨
Q

σ∇u · Φr. (3.13)

Another hand, let ξ ∈ K, we can take ξε as in Lemma 3.4, and σ ∈ D(0, T ). Then

taking σξε as a test function in (3.5) we get

¨
Q

σtuξ +

¨
Q

σξdµ−
¨
Q

σ∇ξ · Φr =

¨
Q

σ∇|Φs|ξdΦs(t)dt

≤
¨
Q

σ(t)SD(x)

(
Φs(t)

|Φs(t)|

)
d|Φs(t)|dt.

Using (3.13) we get

¨
Q

σtuξ +

¨
Q

σξdµ−
¨
Q

σ∇ξ · Φr ≤
¨
Q

1

2
σtu

2 +

¨
Q

σudµ−
¨
Q

σ∇u · Φr.

This ends up the proof.

3.5 Contraction

Lemma 3.7. If (u1,Φ1) and (u2,Φ2) is the variational solution of problem (Pµ) then

u1 = u2

Proof : We use the doubling and dedoubling variable technique. Let σ = σ(t1, t2) ∈
D(0, T )2 and u1 = u1(t1), u2 = u2(t2) we have :

−1

2

ˆ T

0

ˆ
Ω

σt1(t1, t2)|u1(t1)− u2(t2)|2dxdt1

+

ˆ T

0

ˆ
Ω

σ(t1, t2)Φ1(t1)(∇u1(t1)−∇u2(t2))dxdt1

≤
ˆ T

0

ˆ
Ω

σ(t1, t2)(u1(t1)− u2(t2))dµ(t1)dt1



3.5. CONTRACTION 75

and

−1

2

ˆ T

0

ˆ
Ω

σt2(t1, t2)|u1(t1)− u2(t2)|2dxdt2

+

ˆ T

0

ˆ
Ω

σ(t1, t2)Φ2(t2)(∇u1(t1)−∇u2(t2))dxdt2

≤
ˆ T

0

ˆ
Ω

σ(t1, t2)(u1(t1)− u2(t2))dµ(t2)dt2.

Integrating the �rst equality w.r.t t2, the second one w.r.t. t1, adding them together,

and using the fact that

(Φ1(t1)− Φ2(t2)) (∇u1(t1)−∇u2(t2)) ≥ 0, a.e. in Ω

we get

−1

2

ˆ T

0

ˆ T

0

ˆ
Ω

(σt1(t1, t2) + σt2(t1, t2))|u1(t1)− u2(t2)|2dxdt1dt2

≤
ˆ T

0

ˆ T

0

ˆ
Ω

σ(t1, t2)(u1(t1)− u2(t2))(dµ(t1)− dµ(t2))dt1dt2.

Let ξ ∈ D(0, T ), ξ ≥ 0 and ρε be a modi�er function in IR. We take

σ(t1, t2) = ρε

(
t1 − t2

2

)
ξ

(
t1 + t2

2

)
and we have

σt1(t1, t2) + σt2(t1, t2) = ρε

(
t1 − t2

2

)
ξ′
(
t1 + t2

2

)
.

We get

−1

2

ˆ T

0

ˆ T

0

ˆ
Ω

ρε

(
t1 − t2

2

)
ξ′
(
t1 + t2

2

)
|u1(t1)− u2(t2)|2dxdt1dt2 (3.14)

≤
ˆ T

0

ˆ T

0

ˆ
Ω

ρε

(
t1 − t2

2

)
ξ

(
t1 + t2

2

)
(u1(t1)− u2(t2))(dµ(t1)− dµ(t2))dt1dt2.
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Let ε→ 0 �rst term of (3.14) converge to

−1

2

ˆ T

0

ˆ
Ω

|u1(t)− u2(t)|2ξtdt.

Now, let us prove the last one converge to 0. To that aim, we set

g(t, s) =

ˆ
Ω

u1(t)dµ(s); f(t, s) =

ˆ
Ω

u2(t)dµ(s).

Then we get

I =

ˆ T

0

ˆ T

0

ρε

(
t1 − t2

2

)
ξ

(
t1 + t2

2

)
[g(t1, t1)− g(t1, t2)− f(t2, t1) + f(t2, t2)]dt1dt2

Setting z =
t1 − t2

2
, we have

I = C

ˆ T

0

(

ˆ T

0

ρε(z)ξ(t1 − z)[−g(t1, t1) + g(t1, t1 − 2z)

+f(t1 − 2z, t1)− f(t1 − 2z, t1 − 2z)]dz)dt1

= −C
ˆ T

0

g(t1, t1)[

ˆ T

0

ρε(z)ξ(t1 − z)dz]dt1

+C

ˆ T

0

[

ˆ T

0

ρε(z)ξ(t1 − z)g(t1, t1 − 2z)dz]dt1

+C

ˆ T

0

[

ˆ T

0

ρε(z)ξ(t1 − z)f(t1 − 2z, t1)dz]dt1

−C
ˆ T

0

[

ˆ T

0

ρε(z)ξ(t1 − z)f(t1 − 2z, t1 − 2z)dz]dt1.

When ε→ 0 we have the right hand side I converge to 0. Then we can conclude that

−1

2

ˆ T

0

ˆ
Ω

|u1(t)− u2(t)|2ξtdt ≤ 0.

This implies that
d

dt

ˆ
Ω

|u1(t)− u2(t)|2 ≤ 0 in D′(0, T ).

Since u ∈ C([0, T );L2(Ω)) and u1(0) = u2(0), then u1 = u2, Ln+1 − a.e in Q. 2
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Lemma 3.8. If (u1,Φ1) and (u2,Φ2) are the variational solutions of the problem

(Pµ1) and (Pµ2) respectively, then

1

2

d

dt

ˆ
Ω

|u1(t)− u2(t)|2 ≤
ˆ

Ω

(u1(t)− u2(t)) d(µ1(t)− µ2(t)) in D′(0, T ). (3.15)

Proof : Using the uniqueness of u1 and u2 (see Lemma 3.7), it is enough to

prove for uλ1 and uλ2 instead, and pass to the limit by letting λ→ 0 in (3.7). We get

−
ˆ T

0

ˆ
Ω

S(u1 − u2)ϕt ≤
ˆ T

0

ˆ
Ω

S ′(u1 − u2)d(µ1 − µ2)ϕ(t).

We denote by Tk(r) = max(−k,min(k, r)) and taking S ′(r) = Tk(r) and letting

k →∞ we get

−
ˆ T

0

ˆ
Ω

1

2
|u1 − u2|2 ϕt ≤

ˆ T

0

ˆ
Ω

(u1 − u2) d(µ1 − µ2)ϕ,

which imply (3.15).

2

3.6 Proof of theorems

Proof of Theorem 3.1 : The proof is a direct consequence of Lemma 3.5, Lemma

3.6 and Lemma 3.8 2

Proof of Theorem 3.2 : Thanks to Lemma 3.5 there exists (u,Φr,Φs) ∈ KT ×
L1(Q)n × L∞(0, T ;w∗ −Mb(Ω)n)) such that (u,Φ) is a weak solution of (3.1). The

proof is a direct consequence of Lemma 3.6 and Lemma 3.7. 2
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4 Discrete Collapsing Sandpile Model

The dynamics of granular materials has been studied quite intensively due to

their importance in various naturally occurring phenomena such as landslides, rock-

falls, desert dunes evolution, sediment transport in rivers, ... and engineering trans-

portation applications. The description of such �ows still represents a major chal-

lenge for the theory. In the last decade, several studies have been devoted to the ma-

thematical and numerical studies of granular system. Di�erent models have been pro-

posed using kinetic approach (cf. [23, 24]), cellular automata (cf. [50, 55, 64, 78]) or

partial di�erential equations (cf. [8, 10, 16, 19, 20, 29, 46, 51, 52, 54, 59, 62, 66, 77]).

Granular materials are complex objects and it is important to understand their

behavior by using simple prototypes. Actually, it is known that one of the approach

that may be relevant for their study is based on modeling the dynamics of pile

of cubes. That is, to imagine that the matter at the microscopic level consists of

particles similar to cubes (in some cases, a particle can be linked to a certain volume

of material) arranged on a regular grid. The principle after consists in establishing

simple rules across the unit cell and repeat until the interplay between cells occurs

by itself coherent structures or organized forms at the macroscopic scale. Of course,

the elementary constituents of a material are so numerous that the study at the

microscopic level needs probabilistic methods. However, appropriate scaling of time

enables a transition to deterministic models of nonlocal type (see for instance [55]

and [67]). These rescaling takes into account rigorously the fact that there is a very

large number of particles and there is a signi�cant gap between the time scales of

microscopic and macroscopic.

A typical example is the growing pile of cubes (cf. [55]) which corresponds to the

evolution of stack of unit cubes resting on the plane when new cubes are being added

to the pile. In [55], Evans and Rezakhanlou introduce a stochastic description of the

79
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dynamics and proved that, if we randomly add more and more, smaller and smaller

cubes, we obtain an interesting continuum limit, which is an evolution governed by

the sub di�erential of a convex functional that is very connected to Prigozhin model

for sandpile [77]. To that aim, they introduce an intermediate nonlinear discrete

dynamics of nonlocal type at the level of cubes. By using Partial Integro-Di�erential

Equation, N. Igbida shows in [67] that this discrete nonlocal equation gives a right

deterministic description of the dynamics of a growing pile of granular structure

when the component are not very small. Our aim here is to show how to use this

kind of discrete equation to model the collapsing of an unstable pile of cubes.

The chapter is organized as follows : in the next section we establish our discrete

model and study the existence and uniqueness of the solution. In section 3 we develop

a numerical study of the model based on duality argument. At last, we give numerical

simulations showing the stabilization of unstable discrete structures.

4.1 The discrete model for the collapse of a pile

It is well known by now, that the collapsing phenomena in granular materials

can be described by nonlinear evolution equations governed by nondecreasing critical

angles. In the continuous case, recall that combining the continuity equation of �uid

dynamics and phenomenological equation N. Igbida introduce in [66] (see also [54]

and [52]) a sub-gradient �ow for variational problems with time dependent gradient

constraints. The gradient constraints are interpreted as critical angle of sandpile. In

particular, the continuous model [66] produces an evolution in time of avalanches

in a drying of a sandpile, rather than instantaneous collapse. Our aim here is to

introduce a discrete non local model that we can associate with such phenomena.

4.1.1 The discrete model.

We consider the surface of the pile be divided into cubes of integer point i ∈
ZZn, n = 1 or 2. So, a stack of cubes can be described by an application u : ZZn → IR,

where u(i) describes the density of cubes at the position i.

The collapse is produced when the slope of the surface exceeds an angle of sta-

bility. In the discrete case the stability condition for a pro�le u reads (cf. [55] and
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[67])

|u(i)− u(j)| ≤ 1 for i ∼ j, (4.1)

where we use i ∼ j to describe |i− j| ≤ 1. Assume that, we start with un unstable

con�guration represented by u0 : ZZn → IR such that

|u0(i)− u0(j)| > 1 for some i ∼ j.

To reach a stable con�guration, we assume a suitable of various avalanches are

produced, so as to stabilize the pile. More precisely, we assume that the pile tends to

stabilizes itself by taking a continuous sequence of intermediate pro�le characterized

by

|u(i)− u(j)| ≤ c(t) for i ∼ j, (4.2)

where c : [0, T )→ IR+ is a given non increasing function satisfying

lim
t→T

c(t) = 1.

Here, the stability constraint, forces the pile to rearrange itself to reach a stable

pro�le. So, a suitable of various unstable con�gurations are produced with non

increasing angle of stability that converges to 1, as t→ T ≤ ∞.

The dynamics of the height u(t, i) of the pile at a �xed point i ∈ ZZn, can be

derived as follows. For a small time ∆t, the evolution of u is given by :

u(t+ ∆t, i) ' u(t, i) + ∆t Q(t, i),

where Q(t, i) is the rate of material arriving at the position i. We can express Q as

follows

Q(t, i) = I(t, i)−O(t, i),

where, I(t, i) records the material arriving to the position i from the neighborhood

positions and O(t, i) records the material leaving the position i towards neighbo-

rhood positions. We have

I(t, i) =
∑
j:j∼i

α(t, j, i) and O(t, i) =
∑
j:j∼i

α(t, i, j),
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where α(t, i, j) records the material arriving to the position j from the neighborhood

positions i. This implies that

u(t+ ∆t, i)− u(t, i)

∆t
+
∑
j:j∼i

(α(t, i, j)− α(t, j, i)) ' 0.

At each time t > 0, we put

σ(t, i, j) = α(t, i, j)− α(t, j, i).

Obviously, σ is anti-symmetric, i.e

σ(t, i, j) = −σ(t, j, i).

Letting ∆t→ 0, we obtain

∂tu(t, i) +
∑
j:j∼i

σ(t, i, j) = 0.

To complete the model we have to give the connection between σ and u. Since the

dynamics is induced by the discrete constraint (4.2), we can assume that the cubes

move only when the limiting condition is turning to be exceeded. So, the dynamics

in turn is concentrated on the set Xc(t)(u(t)), where

Xr(v) := {(i, j) ∈ ZZn × ZZn : |v(i)− v(j)| = r and i ∼ j}

for a given r > 0 and a given application v : ZZn → IR, so that

support(σ(t, ., .)) ⊆ Xc(t)(u(t)).
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Finally, our model is the following system :

(DM)



∂tu(t, i) +
∑
j:j∼i

σ(t, i, j) = 0, t > 0, i ∈ ZZn,

|u(t, i)− u(t, j)| ≤ c(t) for i ∼ j,

σ(t, i, j) = −σ(t, j, i) and support(σ(t, ., .)) ⊆ Xc(t)(u(t)).

In the case where c(t) = 1, for any t ∈ [0, T ), and the equation is subject to a

non null source term. This model describes a growing sandpile with respect to an

external source of cube. Indeed, in this case the system (DM) is the discrete model

that we can associate with the continuous nonlocal model for discrete structures in

IR2 (see [67] for more details).

To study this problem, we recall the in�nite-dimensional `p spaces de�ned by

`p(ZZn) =



{
η : ZZn −→ IR ; ‖η‖p :=

( ∑
i∈ZZn

|η(i)|p
)1/p

<∞
}
, for 1 ≤ p <∞

{
η : : ZZn −→ IR ; ‖η‖∞ := max

i∈ZZn
|η(i)| <∞

}
, for p =∞ .

For a given r > 0, we introduce the convex set

K(r) = {z ∈ `2(ZZn) : |z(i)− z(j)| ≤ r for i ∼ j}.

4.1.2 Existence and uniqueness of a solution.

For λ > 0, we consider
(
tl

)
l=1,...n

a λ− discretization of [0, T ), that is t0 = 0 <

t1 < ... < tn−1 < T = tn. For any λ > 0, we say that uλ is a λ−approximate solution

of (DM), if there exists
(
tl

)
l=1,...n

a λ− discretization of [0, T ), such that

uλ(t) =


u0 for t ∈ [0, t1],

ul for t ∈ ]tl−1, tl], l = 2, ...n

(4.3)
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and ul solves the Euler implicit time discretization of (DM)

ul(i) +
∑
j:j∼i

σl(i, j) = ul−1(i), i ∈ ZZn

ul ∈ K(c(tl)), σl(i, j) = −σl(j, i), i, j ∈ ZZn

and support(σl) ⊆ Xc(tl)(ul),


l = 1, ..., n. (4.4)

See that the generic problem is given by

(DSP )



v(i) +
∑
j:j∼i

σ(i, j) = g(i) for any i ∈ ZZn,

v ∈ K(r), σ(i, j) = −σ(j, i) for any (i, j) ∈ ZZn × ZZn,

and support(σ) ⊆ Xr(v),

where r ≥ 1 is a given constant and g : ZZ2 → IR is a given application. In this

chapter, we prove

Theorem 4.1. Let g ∈ `2(ZZn) and v ∈ K(r). Then v = IPK(r)(g) if and only if,

there exists σ ∈ `1(ZZn × ZZn), such that the couple (v, σ) satis�es (DSP).

In the Theorem IPK(r)(g) denote the standard projection onto the convex set

K(r). Remember that v = IPK(r)(g) if and only if v ∈ K(r) and

J(v) =
1

2
‖v − g‖2

`2(ZZn) = min
z∈K(r)

J(z). (4.5)

Now, let us consider IIK(r) the convex indicator function of K(r) given as

IIK(r)(z) =


0 if z ∈ K(r)

+∞ otherwise.

As a consequence of Theorem 4.1, the characterization of ∂IIK in terms of a discrete
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equation is given by the following Corollary :

Corollary 4.1. Let g ∈ `2(ZZn) and v ∈ K(r). Then, g ∈ ∂IIK(r)(v) if and only if

there exists σ ∈ `1(ZZn × ZZn), such that the couple (v, σ) satis�es

∑
j:j∼i

σ(i, j) = g(i) for any i ∈ ZZn,

v ∈ K(r), σ(i, j) = −σ(j, i) for (i, j) ∈ ZZn × ZZn,

and support(σ) ⊆ Xr(v).

In particular, this corollary gives the connexion between the evolution problem (DM)

and the nonlinear dynamics
ut(t) + ∂IIK(c(t))(u(t)) 3 0 for t ∈ (0, T )

u(0) = u0.

(4.6)

Again, for any λ > 0, we say that uλ is a λ−approximate solution of (4.6), if there

exists
(
tl

)
l=1,...n

a λ− discretization of [0, T ), such that

uλ(t) =


u0 for t ∈ [0, t1],

ul for t ∈ ]tl−1, tl], l = 2, ...n

and ul solves the Euler implicit time discretization scheme of (4.6), that is

ul = IPK(c(tl))ul−1, for l = 1, ...n.

It is clear that this problem is a particular case of the stationary problem

v + ∂IIK(r)(v) 3 g i.e.
∑
i∈ZZn

(g − v) v = max
ξ∈K(r)

∑
i∈ZZn

(g − v) ξ. (4.7)

Applying Corollary 4.1, for any g ∈ `2(ZZn), there exists a solution u of the problem
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(DSP) in the sense that u ∈ K(r) and∑
i

(
g(i)− u(i)

)(
u(i)− ξ(i)

)
≥ 0 for any ξ ∈ K(r).

For the existence and uniqueness of the solution of (DM), we prove the following

results

Theorem 4.2. Assume that c ∈ W 1,∞(0, T ), u0 ∈ K(c(0)) and 0 < T <∞. Then

the problem (DM) has a unique solution u ∈ W 1,1
(

0, T ; `2(ZZn)
)
and u satis�es


ut(t) + ∂IIK(c(t))(u(t)) 3 0 for t ∈ (0, T )

u(0) = u0.

(4.8)

Moreover, if uλ is a λ- approximate solution, then

uλ −→ u in C([0, T ); `2(ZZn)) as λ −→ 0.

Proof : It is not di�cult to see that u is a solution of (4.8) if and only if v(t) :=

u(t)/c(t) is a solution of
vt(t) + ∂IIK(1)(v(t)) + F (t, v(t)) 3 0 for t ∈ (0, T )

v(0) = u0/c(0),

(4.9)

where F (t, r) =
c′(t)

c(t)
r. It is clear that, F is measurable in t and Lipschitz continuous

with respect to r. Since
c′(t)

c(t)
∈ L∞(0, T ), thanks to Proposition 3.13 of [40], the

problem (4.9) has a unique solution v ∈ W 1,∞
(

0, T ; `2(ZZn)
)
. Then, using simi-

lar arguments of [66] combining v and uλ, one can prove that the λ−approximate

solution converges to u and this ends up the proof of the theorem. 2

Proposition 4.1. Assume that, there exists (σ, v) such that (σ, v) ∈ `1(ZZn×ZZn)×
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K(r) satisfying

v(i) +
∑
j:j∼i

σ(i, j) = g(i) for i ∈ ZZn,

σ(i, j) = −σ(j, i) for (i, j) ∈ ZZn × ZZn,

and σ(i, j) 6= 0⇒ |v(i)− v(j)| = r for (i, j) ∈ ZZn × ZZn,

(4.10)

then v is solution of the problem (4.7).

Proof : Let z ∈ K(r). First we see that

I =
∑
i

(g(i)− v(i))(v(i)− z(i))

=
∑
i

∑
j:j∼i

σ(i, j)(v(i)− z(i))

=
∑
i

∑
j:j∼i

σ(i, j)(v(i)− v(j) + v(j)− z(j) + z(j)− z(i))

=
∑
i

∑
j:j∼i

σ(i, j)(v(i)− v(j) + z(j)− z(i)) +
∑
i

∑
j:j∼i

σ(i, j)(v(j)− z(j))

=
∑
i

∑
j:j∼i

σ(i, j)(v(i)− v(j) + z(j)− z(i))−
∑
i

∑
j:j∼i

σ(j, i)(v(j)− z(j)).

Since (σ, v) ∈ `1(ZZn × ZZn)×K(r) and using Fubini's theorem, we have∑
i

∑
j:j∼i

σ(j, i)(v(j)− z(j)) =
∑
j

∑
i:i∼j

σ(j, i)(v(j)− z(j)).

Then

I =
∑
i

∑
j:j∼i

σ(i, j)(v(i)− v(j) + z(j)− z(i))−
∑
j

∑
i:i∼j

σ(j, i)(v(j)− z(j))

=
∑
i

∑
j:j∼i

σ(i, j)(v(i)− v(j) + z(j)− z(i))− I,

which implies that

2I =
∑
i

∑
j:j∼i

σ(i, j)(v(i)− v(j) + z(j)− z(i)).
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Now, using the condition σ(i, j) 6= 0⇒ |v(i)− v(j)| = r, then we obtain

� If v(i)− v(j) = r we get v(i)− v(j) + z(j)− z(i) ≥ 0 and σ(i, j) > 0, then

σ(i, j)(v(i)− v(j) + z(j)− z(i)) ≥ 0.

� If v(i) − v(j) = −r we have v(i) − v(j) + z(j) − z(i) ≤ 0 and σ(i, j) < 0,

then

σ(i, j)(v(i)− v(j) + z(j)− z(i)) ≥ 0.

Consequently, I ≥ 0 and this completes the proof of Proposition. 2

This proposition gives a �rst part of the proof of Theorem 4.1. The second and �nal

part of the proof is given at the end of Section 4.2.1.

4.2 Numerical study

Now, our aim is to study numerical approximation of PK(r)g. Thanks to theorem

4.1, the problem (DSP) has a unique solution v satisfying

v + ∂IIK(r)(v) 3 g. (4.11)

To give a numerical method for the approximation of the solution of (4.7), we use

dual arguments. Thanks to Theorem 4.1, a solution of (DSP) is given by

v = IPK(r)g, (4.12)

4.2.1 Dual formulation

To study the numerical approximation of PK(r)g, we use dual arguments. To this

aim, we introduce the set of anti-symmetric bounded sequence de�ned on ZZn×ZZn

by :

`1
as(ZZ

n × ZZn) =
{
µ̂ ∈ `1(ZZn × ZZn) ; µ̂(i, j) = −µ̂(j, i), for any (i, j) ∈ ZZn × ZZn

}
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and the set Sas(ZZn × ZZn) of sequences of `1
as(ZZ

n × ZZn) concentrated on the set{
(i, j) ∈ ZZn × ZZn ; : i ∼ j

}
; i.e.

Sas =
{
µ̂ ∈ `1

as(ZZ
n × ZZn) ; µ̂(i, j) = 0 for |i− j| > 1

}
.

Considering the operator Λ : `2(ZZn) −→ C0(ZZn × ZZn) de�ned by

Λz : ZZn × ZZn −→ IR+

(i, j) −→ Λz(i, j) =

{
z(i)− z(j) if i ∼ j

0 otherwise,

the problem (4.5) can be rewritten as

min
z∈`2(ZZn)

{
J(z) +H(Λz)

}
, (4.13)

where the function H : C0(ZZn × ZZn) −→ IR+ is given by

H(Λz)=

{
0 if ‖Λz‖∞ ≤ r

+∞ otherwise .

Using standard duality argument (cf. [58]), we compute the dual problem associated

to (4.5). This is the aim of the following proposition :

Proposition 4.2. Let g ∈ `2(ZZn). Then, the dual problem of (4.5) is given by

max
η∈`1(ZZn×ZZn)

G(η),

where G : `1(ZZn × ZZn) −→ IR is de�ned by

G(η) = −1

2

∑
i

(∑
j:j∼i

η(i, j)−η(j, i)
)2

−
∑
i

(∑
j:j∼i

η(i, j)−η(j, i)
)
g(i)−r

∑
i,j

|η(i, j)|.

(4.14)

Proof : Thanks to Theorem 4.2 of [58], the dual problem of (4.13) can be written

as :

max

η∗∈
(
C0(ZZn×ZZn)

)∗ {− J∗(Λ∗η∗)−H∗(−η∗)}, (4.15)
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where J∗, H∗ and Λ∗ are the conjugate of J, H and Λ, respectively. Recall that(
C0(ZZn × ZZn)

)∗
= `1(ZZn × ZZn). First, we see that, for any η ∈ `1(ZZn × ZZn), we

have
〈Λ∗η, z〉 = 〈η,Λz〉

=
∑
i

∑
j

η(i, j)Λz(i, j)

=
∑
i

∑
j:j∼i

η(i, j)
(

(z(i)− z(j)
)
.

=
∑
i

∑
j:j∼i

η(i, j)z(i)−
∑
j

∑
i:i∼j

η(j, i)z(i)

=
∑
i

∑
j:j∼i

(
η(i, j)− η(j, i)

)
z(i),

where we have used the fact that (i, j) −→ η(i, j)z(j) is in `1(ZZn×ZZn). This implies

that
Λ∗ : `1(ZZn × ZZn) −→ `2(ZZn)

η −→ (Λ∗η)(i) =
∑
j:j∼i

(
η(i, j)− η(j, i)

)
.

On the other hand, for any z∗ ∈ `2(ZZn), we have

J∗(z∗) = sup
z∈`2(ZZn)

∑
i

z∗(i)z(i)− 1

2

∑
i

|z(i)− g(i)|2

= sup
z∈`2(ZZn)

∑
i

z∗(i)(z(i)− g(i))− 1

2

∑
i

|z(i)− g(i)|2 +
∑
i

z∗(i)g(i)

= sup
y∈`2(ZZn)

∑
i

z∗(i)y(i)− 1

2

∑
i

|y(i)|2 +
∑
i

z∗(i)g(i)

=
1

2

∑
i

|z∗(i)|2 +
∑
i

z∗(i)g(i).

At last, for any p∗ ∈ `1(ZZn × ZZn), we have

H∗(p∗) = sup
p∈`1(ZZn×ZZn)

∑
i,j

p∗(i, j)p(i, j)−H(p)

= sup
p∈`1(ZZn×ZZn)

∑
i,j

p∗(i, j)p(i, j) if ||p||∞ ≤ r

= r
∑
i,j

|p∗(i, j)|,

and the proof is complete. 2
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Moreover, we have

Lemma 4.1. Assume that, there exists w ∈ `1(ZZn × ZZn) such that

G(w) = max
η∈`1(ZZn×ZZn)

G(η),

then w ∈ Sas.

Proof :We assume, by contradiction, that the maximum w of G satis�es w(i0, j0) 6=
0 at a point (i0 � j0), and take

w̄ =

{
w if (i, j) 6= (i0, j0)

0 if (i0, j0).

A simple calculation, gives

G(w) = −1

2

∑
i

(∑
j:j∼i

w(i, j)− w(j, i)
)2

−
∑
i

(∑
j:j∼i

w(i, j)− w(j, i)
)
g(i)− r

∑
i,j

|w(i, j)|

= G(w̄)− r|w(i0, j0)|,

then G(w̄) > G(w) and we get the contradiction with the maximality of G at w.

Now, taking w̃ ∈ Sas as the following :

w̃(i, j) =
1

2

(
w(i, j)− w(j, i)

)
w̃(j, i) =

1

2

(
w(j, i)− w(i, j)

)
,

we see that w̃(i, j)− w̃(j, i) = w(i, j)− w(j, i). On the other hand, we have

|w̃(i, j)| ≤ 1

2
|w(i, j)|+ 1

2
|w(j, i)|,

then −
∑
|w̃(i, j)| ≥ −

∑
|w(i, j)| and we deduce that

G(w̃) ≥ G(w).

From this, we get

max
η∈`1(ZZn×ZZn)

G(η) = max
η∈Sas

G(η).
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This completes the proof of Lemma. 2

As consequence of Proposition 4.2 and Lemma 4.1, we have the following result :

Theorem 4.3. Let g ∈ `2(ZZn) and v := IPK(r)(g). Then, there exists w ∈ Sas and
v ∈ K(r) such that

G(w) = max
η∈Sas

G(η) = min
z∈K(r)

J(z) = J(v).

Moreover, for any i ∈ ZZn,

v(i) = g(i) +
∑
j:j∼i

(
w(i, j)− w(j, i)

)
.

Proof : Thanks to proposition 4.2, we have

J(v) = min
z∈K(r)

J(z) = max
η∈`1(ZZn×ZZn)

G(η).

Using lemma 4.1, we obtain

max
η∈`1(ZZn×ZZn)

G(η) = max
η∈Sas

G(η) = G(w).

Thanks to the extremality relation between v and w, we have

(Λ∗w,−w) ∈
(
∂J(v), ∂H(Λv)

)
. (4.16)

Since Λ∗w ∈ ∂J(v), then we have∑
j:j∼i

w(i, j)− w(j, i) = v(i)− g(i), for any i ∈ ZZn.

We deduce, that

v(i) = g(i) +
∑
j:j∼i

(
w(i, j)− w(j, i)

)
, for any i ∈ ZZn.

and the proof is �nished. 2
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Proof of Theorem 4.1 �nished : Thanks to Proposition 4.1, we know that, if

there exists (σ, v) such that (σ, v) ∈ `1(ZZn × ZZn) × K(r) satis�es (4.10), then

v = IPK(r)(g). Now, taking g ∈ `2(ZZn) and v ∈ K(r) satis�es v + ∂IIK(r)(v) 3 g.

Thanks to Theorem 4.3, we have

v(i) +
∑
j:j∼i

σ(i, j) = g(i), for i ∈ ZZn,

where σ(i, j) = w(i, j) − w(j, i) = 2 w(i, j). Now we prove that, if σ(i, j) 6= 0 then

|v(i) − v(j)| = r for any (i, j) ∈ ZZn × ZZn. Indeed, thanks to (4.16), we have

−w ∈ ∂H(Λv), then we get

H(Λv) +H∗(−w) =< −w,Λv >

which implies that

r
∑
i,j

|w(i, j)| = −
∑
i

∑
j:j∼i

w(i, j)
(
v(i)− v(j)

)
,

and therefore, we have w(i, j) = 0 for i � j and

r|w(i, j)| = −w(i, j)
(
v(i)− v(j)

)
for i ∼ j.

Consequently

σ(i, j) 6= 0⇒ |v(i)− v(j)| = r for (i, j) ∈ ZZn × ZZn

and the proof is �nished. 2

4.2.2 Numerical results and simulations

To compute numerically the solution of the problem (4.6), we attempt to discre-

tize it by the Euler implicit scheme. Let us denote by ∆t the time step and un(i)

the approximate solution at time t = n∆t for n ∈ IN. Then the study of the problem

(4.6) becomes to solve a sequence of stationary equations. Starting with u0, we need
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to compute un+1 satisfying :

un+1 + ∂IIK(r)(u
n+1) 3 un + ∆tfn := gn (4.17)

where fn(i) = f(n∆t) for n = 0, 1, 2, ..., K ; where K ∈ IN is given. The problem

(4.17) can be rewritten as

J(un+1) = min
z∈K(r)

J(z). (4.18)

where J(z) =
1

2
‖z − gn‖2

`2(ZZ2). Thanks to Theorem 4.3, it is clear that the problem

is equivalent to �nd a numerical method to minimize the functional G̃ : Sas −→ IR

de�ned by

G̃(η) =
1

2

∑
i∈AN

(∑
j:j∼i

η(i, j)−η(j, i)
)2

+
∑
i∈AN

(∑
j:j∼i

η(i, j)−η(j, i)
)
gn(i)+r

∑
(i,j)∈AN×AN

|η(i, j)|

for a given gn(i), where AN :=
{
i = (i1, i2) ∈ ZZ2 such that − N ≤ i1, i2 ≤ N

}
with N is a given large (enough) integer.

Thanks to the fact that σ ∈ Sas the functional can be rewritten as

G̃(η) = 2
∑

−N≤i1,i2≤N

( ∑
k∈{−1,1}

η(i1, i2, i1 + k, i2) +
∑

l∈{−1,1}

σ(i1, i2, i1, i2 + l)
)2

+2
∑

−N≤i1,i2≤N

( ∑
k∈{−1,1}

η(i1, i2, i1 + k, i2) +
∑

l∈{−1,1}

σ(i1, i2, i1, i2 + l)
)
gn(i1, i2)

+r
∑

−N≤i1,i2≤N

( ∑
k∈{−1,1}

|η(i1, i2, i1 + k, i2)|+
∑

l∈{−1,1}

|σ(i1, i2, i1, i2 + l)|
)

and for convenience taking η(i1, i2, j1, j2) = 0 for max{j1, j2} > N or min{j1, j2} <
−N .

Since, the functional G̃ is non-di�erentiable, we use a relaxation algorithm (cf.

[61]). Denoting the cartesian basis vectors by ej for j = 1, ...,M with M = 8 N2 ;

the algorithm can be written as follows :

1. Initiate the algorithm with w0, set k = 0
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2. For j = 1, ...,M, we solve the one-dimensional subproblems min
ξ∈IR

Ψjk(ξ) where

Ψjk is de�ned as :

Ψjk : IR −→ IR

ξ 7−→ G̃(wk +
∑
i<j

ξik + ξej).

Since Ψjk is the sum of a polynomial of degree two and an absolute value,

we are used a Newton algorithm to �nd ξ∗k when Ψjk is di�erentiable, and

computing directly ξ∗k otherwise. After, taking ξjk = ξ∗k ej.

3. Take wk+1 = wk + λ
∑

j=1,...,M

ξjk , where λ ∈ (0, 2) is an over-relaxation para-

meter.

4. As stopping criterion we use : ||wk−wk+1||`2(IRM ) < tol, for a given convergence

tolerance tol.
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(a) Initial unstable structure (b) intermediate pro�le

(c) intermediate pro�le (d) Final stable structure

Figure 4.1 � Stabilization of unstable discrete structure.
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(a) Initial unstable structure (b) intermediate pro�le

(c) intermediate pro�le (d) Final stable structure

Figure 4.2 � Stabilization of unstable discrete structure.
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Our numerical algorithm enables us also to simulate the growing of a discrete

structure when we have a source of distribution of materials. Recall that in this case,

the problem may be written as :
ut(t) + ∂IIK(1)(u(t)) 3 f for t ∈ (0, T )

u(0) = u0,

where f modeling the source term.

The idea is to keep the stability condition ; i.e. c ≡ 1 and using the time

discretization of the problem, we compute successive projection of terms inclu-

ding the material that the source add per time. We present some numerical

experiments of a growing pile of cubes. In all the simulation below, we have

chosen relaxation parameter λ = 1.2, and convergence tolerance tol = 10−6. The

�rst case is devoted to the constant source term f(t, i) distributed on the subdomain.
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(a) Initial structure (b) intermediate pro�le

(c) intermediate pro�le (d) Final structure

Figure 4.3 � Growing discrete structure with central source.
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(a) Initial structure (b) intermediate pro�le

(c) intermediate pro�le (d) Final structure

Figure 4.4 � Growing discrete structure with moving source.
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