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Abstract

Diffusion weighted magnetic resonance imaging (DW-MRI) is a non-invasive modality, able
to measure the diffusion of water molecules in living tissues. Fitting tensors models on
DW-MRI data allows to represent the diffusion in 3D space at every voxel in that tissue.
Second (T2) and fourth (T4) order tensors are studied extensively. This thesis focuses on
the problems of statistical populations comparison and individual against a healthy group
comparison, in DW-MRI.

Examining the diffusivity allows us to study the structure of complex organs. For the
purposes of this study, the human brain is selected. A variety of brain pathologies alters
the structure of the neural fibers in the brain, either globally (e.g. multiple sclerosis (MS),
Alzheimer’s disease (AD), neuromyelitis optica (NMO)), or in specific regions (e.g. locked-in
syndrome (LIS)). Therefore, DW-MRI analysis is suitable to extract knowledge related to a
particular disease e.g. through biomarker detection, disease staging and patient follow-up.

Given a healthy population (as a reference) and a group of patients (related to the same dis-
ease), capturing the variability of each group, biomarkers detection, disease staging (through
different acquisitions in time) and patient follow-up can be performed via statistical popula-
tions comparisons. On the other hand, lacking of enough pathological data, patient follow-up
can be achieved through individual statistical comparisons against the reference population.
In this thesis, two methods are proposed (one for each problem, populations or individual
comparisons), capable to produce fruitful maps of statistics (i.e. statistical atlases).

Undoubtedly, comparing different subjects presupposes that all data are normalized in a
common space. In the case of orientated data (e.g. DW-MRI, tensor images), a single
registration step will produce incoherent fiber orientations. Thus the registration should be
always followed by a reorientation step. In this dissertation, reorientation methods for T4s
are studied.

To continue, one of the fundamental points of the proposed statistical methods is the estima-
tion of the reduced dense space of the tensor models using Isomap, a nonlinear dimensionality
reduction technique. Once the reduced space is estimated, a flexible Gaussian mixture model
is fitted to each group (or only to the reference group) and statistics are calculated robustly.
Moreover, p-values are estimated with the aid of permutation testing or Monte Carlo simula-
tions. Furthermore, in contrast to many statistical approaches found in the literature which
halt their calculations in a single p-value estimation per voxel, we propose to further analyse
our approximations by finding a Highest Probability Density interval for each p-value.

Applications of the proposed methods to synthetic and real cases were accomplished. The
effectiveness of the proposed methods is compared favorable or even better than many state
of the art approaches. In the case of real data, the NMO disease and the LIS syndrome were
selected to be analysed. The obtained results are coherent with medical knowledge.
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Résumé long en francais

1. Introduction

Le cerveau humain est un organe multi-fonctionnel, et I’'un des organes les plus importants
du corps humain. Etudier la structure et la fonctionnalité du cerveau a toujours fasciné les
médecins. De nos jours, une grande partie des capacités du cerveau reste inconnue.

Par ailleurs, I'é¢tude de la spécificité de nombreuses pathologies du cerveau et ’extraction
des formes et structures qui les caractérisent sont des sujets auxquels la communauté sci-
entifique s’intéresse. Par exemple, les maladies inflammatoires peuvent se développer ini-
tialement dans des régions spécifiques du cerveau puis diffuser progressivement, tandis que
d’un autre coté peuvent exister des pathologies strictement localisées dans certaines zones.
En conséquence, des outils d’analyse spécifiques et efficaces qui peuvent aider au diagnos-
tic précoce et au pronostic, mais aussi a ’extraction de connaissances liées a une maladie
donnée et au suivi des patients, sont nécessaires. Ces examens médicaux devraient permet-
tre d’extraire des caractéristiques multidimensionnelles qui ne sont pas extractibles avec les
examens classiques.

L’imagerie par résonance magnétique de diffusion

Durant les derniéres décennies, la physique, I'informatique et la médecine ont joint leurs
forces pour numériser, modéliser et étudier le cerveau, sous le nom de Neuroscience. Des ex-
amens ont été élaborés et adaptés pour mesurer les différentes propriétés des tissus cérébraux
d’une maniére non-invasive, in vivo, afin de caractériser correctement de nombreuses patholo-
gies. Par exemple, I'Imagerie par Résonance Magnétique de diffusion (IRMd) est une vari-
ation de 'IRM classique et permet de suivre le mouvement des molécules d’eau en 3D.
L’IRMd renseigne ainsi sur I’anatomie structurelle des connexions neuronales dans le cerveau.

De plus, la neuroinformatique, une science dont certains objectifs sont de traiter des images
médicales, de modéliser les données acquises et de les analyser, a sa propre place dans ce
contexte. Il est courant de modéliser des données IRMd en utilisant des tenseurs (pour
plus d’informations, le lecteur est renvoyé au chapitre 2), afin de visualiser et d’analyser
des données brutes d’TRMd. Les tenseurs d’ordre deux (T2s) sont largement utilisés et bien
connus, mais leurs capacités sont limitées a la description de fibres simples. Pour cette
étude, nous avons choisi de travailler avec les tenseurs d’ordre quatre (T4s), car ils peuvent
représenter beaucoup plus en détail la structure sous-jacente de la fibre que les T2s, en
particulier dans le cas du croisement de fibres.
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Applications médicales de cette thése

L’analyse d’une pathologie donnée, avec pour objectif ultime I'extraction de biomarqueurs,
exige une trés grande base de données de sujets traités, afin de disposer de populations
représentatives (une pour le groupe témoin et ’autre pour le groupe pathologique), capables
de capturer la variabilité de la maladie. Alternativement, si notre objectif principal est de
suivre I'état du patient avec de multiples analyses dans le temps, il n’est pas obligatoire de
construire deux populations, puisque chaque sujet pathologique sera examiné individuelle-
ment au regard de la population saine.

Dans cette thése, les comparaisons de populations ainsi que les comparaisons d’une personne
considérée individuellement avec une population normale sont traitées par des tests statis-
tiques spécifiques originaux, dans un but de diagnostic précoce, de pronostic, de détection
de biomarqueurs, d’évaluation du stade de la maladie et de suivi des patients.

Lorsqu’un patient arrive en vue d’un diagnostic, on utilise les biomarqueurs extraits via la
comparaison de populations pour analyser les données du patient ou I’on réalise une analyse
statistique en comparant ce patient au groupe de référence. Le diagnostic est réalisé en
fonction des résultats obtenus.

Enfin, les applications des méthodes proposées a la neuromyélite optique aigué (neuromyelitis
optica, NMO), ou maladie de Devic et a la maladie locked-in syndrome (LIS) sont présentées.

Contributions de la thése

Le traitement d’un grand nombre de sujets pour finalement construire un atlas statistique
lié & une maladie, par exemple par comparaison de populations, exige une étape de pré-
traitement cruciale, appelée normalisation des données, de sorte que les sujets seront cor-
rectement recalés spatialement les uns avec les autres, par exemple en utilisant un modéle
de référence commun. Malheureusement, dans le cas de données IRMd (ou d’images de
tenseurs) une simple étape de recalage ne suffit pas, car les données contiennent des in-
formations orientées. En conséquence, une étape de réorientation doit compléter la tache
de normalisation. Pendant la premiére année de cette thése, nous avons traité le probléme
de la réorientation des tenseurs d’ordre quatre. Notre étude sur la réorientation de T4 est
présentée dans le chapitre 3.

Afin de comparer les sujets dans ’espace des tenseurs, des métriques efficaces qui considérent
I’ensemble des informations comprises dans le modéle de tenseur doivent étre choisies. Mal-
heureusement, la majorité des métriques de tenseur de la littérature sont définies uniquement
pour les modeéles T2s, alors que nous nous intéressons essentiellement aux tenseurs d’ordre
supérieur. Suite a I’étude des métriques de la littérature, nous avons proposé une nouvelle
métrique de tenseur, adaptée a tout modéle de tenseur (un état de l'art des différentes
métriques de tenseur, ainsi que la métrique proposée, sont présentés dans le chapitre 2).

Au cours des deux années suivantes de préparation de la thése, nos efforts se sont focalisés
sur le développement d’approches statistiques avancées pour résoudre deux problémes, d'une
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part les comparaisons de populations (le groupe normal versus le groupe pathologique/anor-
mal) et d’autre part les comparaisons d’une personne anormale versus la population normale,
avec pour objectif ultime la détection de biomarqueurs, le suivi des patients et le diagnostic
précoce. Les méthodes statistiques proposées ainsi que leur application a des cas réels et
synthétiques sont présentés dans les chapitres 5 a 7.

Organisation de la thése
L’organisation de cette thése est la suivante. Le chapitre 1 est I'introduction de cette thése.

Le chapitre 2 est un chapitre d’introduction aux données IRMd et aux moyens de les modé-
liser (par exemple, a I’aide de tenseurs). En outre, un ensemble de métriques de tenseur
dépendant de 'ordre du modéle est présenté, ainsi que la métrique proposée. Le chapitre
se termine par une mention bréve de descriptions de niveau supérieur de données IRMd, a
savoir les fibres et les connectomes.

Le chapitre 3 détaille les étapes de prétraitement des données IRMd, soulignant la réorien-
tation des T4s. Notre étude sur ce sujet avec 1’évaluation expérimentale est incluse.

Le chapitre 4 présente le probléme de la construction d’atlas statistiques permettant ’extrac-
tion de biomarqueurs. En outre, les méthodes de 1’état de I’art sont présentées.

Les chapitres 5 et 6 contiennent la premiére approche statistique proposée, pour le probléme
de la comparaison de populations. L’application & la maladie NMO, ainsi que I'application
aux tests synthétiques, sont également présentées.

Dans le chapitre 7, la deuxiéme approche statistique proposée, pour le probléme de la com-
paraison d’un individu avec une population normale, est décrite. Cette approche est appli-
cable dans le cas de populations pathologiques clairsemées. L’application a la maladie LIS
est présentée.

Enfin, le chapitre 8 contient la conclusion de cette thése ainsi que les perspectives proposées.

2. Modéles de tenseur pour les données IRMd

Un ensemble de modéles de tenseurs permettant de décrire les données IRMd existe dans la
littérature. Dans le cadre de cette thése, les tenseurs d’ordre deux et quatre sont utilisés.

Tenseurs d’ordre deux

L’imagerie du tenseur de diffusion (diffusion tensor imaging, DTT) a été la premiére tentative
pour représenter des données IRMd a I’aide de T2s. Un tenseur T2 peut étre défini comme
une matrice symétrique 3 X 3 comme suit :

Dy Dy Dys
Dy = | Dy Dy Dos| . (1)
D3y D3y Dsg
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FIGURE 1: Modeles T2s (& gauche) et modeles T4s (& droite) dans une certaine région du
cerveau. Comme prévu, le modele T4 est plus fin que le modele T2, et capture avec plus
de détails les croisements de fibres.

La fonction de diffusivité d(g) (pour la modélisation de tenseurs de diffusion) ou la fonction
de distribution d’orientation de fibres (fiber orientation distribution function, fODF) f(g)
(pour la modélisation de tenseurs de fODF) (pour plus d’informations, voir le chapitre 2)
lite & un T2 constitue la grandeur d’intérét (la diffusion ou l'orientation de fibres). Selon
une direction g = (g1, g2, g3) de gradient donnée, la grandeur d’intérét, d(g) ou f(g), est

définie par la relation :
3 3

) Dijgig- (2)

i=1 j=1
Tenseurs d’ordre quatre

Les modéles d’ordre supérieur a 'ordre deux existent dans la littérature. Dans ce mémoire,
nous allons nous concentrer sur les modéles T4s qui sont en mesure de représenter jusqu’a
trois faisceaux de fibres distincts en un seul voxel et peuvent étre décrits par la matrice
symétrique 6 x 6 suivante :

Dllll D1122 D1133 D1112 D1123 D1113
D2211 D2222 D2233 D2212 D2223 D2213
D4 _ D3311 D3322 D3333 D3312 D3323 D3313 ) (3)
D1211 D1222 D1233 D1212 D1223 D1213

D2311 D2322 D2333 D2312 D2323 D2313
_D1311 D1322 D1333 D1312 D1323 D1313_

Par similarité au cas T2, la fonction de diffusivité (ou la fonction de fODF) d’un T4 s’écrit :
3 3 3
Z Z Z ZDijkl 9i 95 9k 9u - (4)

Un exemple visuel de la supériorité des T4s par rapport aux T2s pour produire des descrip-
tions plus représentatives de la structure des fibres est proposé figure 1. Il est a noter que le
modéle T4 (appartenant a R, décrit par 15 coefficients uniques) est plus performant que
le modéle T2 (appartenant & RG), en particulier dans le cas du croisement de fibres. Ceci
provient du fait que le modéle T2 est un cas particulier de modéle T4.
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Métrique de tenseur proposée

En raison de I’absence de métriques définies pour des tenseurs d’ordre supérieur et bénéficiant
des propriétés souhaitées du logarithme, nous avons proposé une nouvelle metrique.

D’aprés le travail de Tarantola [153] sur les distances entre fonctions positives, nous pro-
posons ci-dessous la distance entre deux profils dy, dy de diffusivité (ou deux profils de fODF)
qui peut étre utilisée pour tous les modéles de tenseurs :

dist(dy, dy) — // d;gg Zi

d
ou ¢ € [0, 7] est ’angle polaire et 6 € [0, 27] est ’angle d’azimut qui paramétrent la sphére
unité en 3D.

log sinf df d¢ , (5)

3. Etapes de prétraitement des données IRMd et importance de la
réorientation des T4s

Etapes de prétraitement

Avant d’appliquer un test statistique approprié, un ensemble d’étapes de prétraitement est
obligatoire. La premiére étape est la correction de courants de Foucault (eddy current correc-
tion) ou les données sont débarrassées de tout mouvement de I'objet et de tout mouvement
di & des pulsations sanguines. Dans la deuxiéme étape, nous devons extraire le volume du
cerveau en éliminant certaines zones, par exemple le crane ou les yeux. Troisiétmement, nous
devons normaliser les données (recalage spatial et réorientation de tenseurs ou de données
IRMd) dans un espace de référence commun, en calculant une transformation linéaire ou
non-linéaire a I’aide de la carte d’anisotropie fractionnelle (image FA, fractional anisotropy)
et enfin, nous devons réduire I'erreur de recalage soit par lissage, soit par ’approche par
patch que nous proposons (voir la section 5.1.2 pour plus de détails).

Etude sur la réorientation des T4s

Dans la premiére année de cette thése, le probléme de la normalisation de tenseur a été étudié,
et en particulier celui des réorientations de T4. L’importance de ’étape de réorientation
aprés le recalage spatial des données est mise en évidence dans la figure 2, ou il est évident
que les modéles recalés (simplement recalés et non réorientés) ne sont pas adaptés a la
nouvelle orientation de la fibre.

Les procédures de réorientation de T4 étudiées (voir le chapitre 3) sont basées sur les dé-
compositions en T2s suivies par les réorientations des T2s. Les décompositions spectrales
(spectral decomposition, SD) de T4s produisant six T2s, ainsi que les décompositions basées
sur le théoréme de Hilbert (Hilbert decomposition, HD) produisant trois T2s ont été testées,
avec les réorientations de T2s de type finite strain (FS) et la préservation des directions
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FIGURE 2: Champs synthétiques de T4 aprés normalisation spatiale ([2/,y']T = [z,y +

sin(x)]”). Figure du haut : aprés recalage, sans réorientation. Figure du bas : aprés

recalage et réorientation. On constate que la figure du haut ne rend pas compte de la
structure des fibres sous-jacentes.

principales (preservation of principal directions, PPD). La procédure de réorientation de T4
proposée par Renard pendant sa thése [134] est construite sur la combinaison HD avec PPD.

Des résultats expérimentaux a la fois sur des données synthétiques et sur des données réelles,

complétés des procédures d’évaluation pour chaque cas, figurent dans le chapitre 3.

Bien entendu, au lieu de normaliser les images de tenseurs, il serait possible de normaliser les
données IRMd brutes. Cela semble étre plus siir, car une variation des coefficients du tenseur
aura un plus grand impact, dans de nombreuses directions de diffusion, qu'une perturbation

dans les données TRMd.
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4. Introduction aux atlas statistiques pour les données IRMd

Un atlas statistique est une description de la variabilité d'une ou de plusieurs grandeurs
d’intérét au sein d’une ou de plusieurs populations. Les atlas statistiques permettront de
détecter des biomarqueurs liés & une pathologie. Il existe trois moyens pour effectuer une
analyse statistique : a) Panalyse selon une région d’intérét (ROI - region of interest), ou
les régions d’intérét sont prédéfinies b) I’analyse fondée sur les voxels (VB - vozel-based) et
enfin ¢) I'analyse basée sur les fibres prédéfinies (tract-based). Dans cette thése, nous nous
concentrerons sur ’analyse statistique VB.

Application d’un test statistique approprié

Le choix d’un test statistique approprié pour la comparaison de populations est une étape
importante. Il devrait étre sensible et suffisamment flexible pour extraire les zones compor-
tant des lésions. Dans cette thése, trois tests statistiques particuliers ont été choisis, qui
apparaissent dans la littérature, ou que nous avons synthétisé en combinant différents élé-
ments de la littérature. Plus précisément, le premier test a été proposé pour la comparaison
de populations et sera utilisé tel quel. Nous avons synthétisé un second test en combinant
deux composants trouvés dans la littérature. Le troisiéme test provient de la théorie des
foréts aléatoires et sera adapté a notre probléme. Ces tests correspondent & I’ensemble des
approches de I’état de I’art et seront comparés a notre propre approche pour le probléme de
la comparaison de populations.

La premiére approche choisie a été proposée par Verma et al. en 2007 [165] et consiste en une
analyse statistique VB pour les modeéles T2s. Les auteurs ont remarqué que I'application
d’un modéle statistique standard pour les T2s n’était pas fiable, car les T2s ne suivent
pas des lois gaussiennes multivariées dans leur espace initial (i.e. R®). Par conséquent,
la tentative des auteurs pour estimer la sous-variété non-linéaire de 1’espace des T2s, util-
isant I'Isomap [154] (une technique de réduction de dimension non-linéaire, qui combine
la méthode multidimensional scaling (MDS) [96] avec la théorie des graphes) était fondée
et totalement innovante. De cette maniére, les données sont transformées d’un espace de
grande dimension ou la métrique est riemannienne vers un espace de faible dimension ot
la distance est euclidienne. Une fois l'espace réduit déterminé (c’est-a-dire R* selon leurs
travaux), Verma et al. ont proposé de comparer les populations en utilisant le test T de
Hotelling, qui compare la moyenne des deux populations en supposant qu’elles ont la méme
matrice de covariance. Bien siir, leur test statistique est également applicable au cas des
T4s, en estimant 'espace réduit correspondant aux T4s. Bien que leur méthode comporte
beaucoup d’idées trés prometteuses et intéressantes, le test 72 de Hotelling n’est pas trés
puissant et son inconvénient sera mis en évidence dans la section expérimentale sur des
données synthétiques (section 6.3.2).

Nous avons synthétisé le deuxiéme test statistique en combinant un test sur deux populations
[23], capable d’analyser des données de grande dimension méme lorsque la dimension des
données est trés supérieure au nombre des observations, avec le test de permutation appliqué
sur la matrice de distance inter-point proposé en [133|. Le test proposé par Biswas et Ghosh
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en 2014 [23| est non paramétrique et défini pour tous les types de matrices de distance. Tl
nous offrira la statistique d’intérét. Ce composant donne une grande performance au test
statistique, alors que la majorité des tests statistiques paramétriques ou non paramétriques
est incapable de traiter ces problémes mal posés. En outre, nous avons choisi d’effectuer des
tests de permutation basés sur la redistribution des étiquettes des observations (c’est-a-dire
de sujets normaux/anormaux), spécialement construits pour des matrices de distance entre
points par Reiss et al. en 2010 [133], afin de simuler la distribution de la statistique d’intérét
(c’est-a-dire la statistique de Biswas et Ghosh). Cette distribution nous permettra de tester
si la statistique associée au vrai étiquetage est une valeur extréme. Par ailleurs, un intervalle
de crédibilité (highest probability density (HPD) interval) est calculé pour chaque p-valeur.
Pour plus d’informations, le lecteur est renvoyé a la section 4.3.2.

La troisitme méthode bénéficie de la théorie des foréts aléatoires (random forests, RF), pro-
posée par Breiman en 2001 [30]. Les RFs sont un outil polyvalent et compétitif, y compris
pour 'analyse statistique. Ses applications sont nombreuses, par exemple pour des prob-
lemes de classification/régression, de détection d’anomalies (via Pestimation de densité),
d’apprentissage de variétés (manifold learning), etc. [41, 42|. Dans le cas de la comparaison
de populations, les classifieurs RF peuvent étre utilisés, tandis que I’erreur de généralisation
(GE) mesurée pour chaque donnée inconnue sera la statistique d’intérét. Si les deux popu-
lations sont similaires, la GE sera trés élevée, ce qui signifie qu’il est difficile de discriminer
les deux groupes, tandis que d’autre part la GE est faible lorsque les populations se dis-
tinguent nettement. En outre, puisque le RF est un ensemble d’arbres de décision formés
aléatoirement, ol chaque arbre utilise un sous-ensemble aléatoire pour I’apprentissage, nous
pouvons calculer une p-valeur avec son intervalle de crédibilité en divisant le nombre de mau-
vaises classifications par le nombre total d’échantillons inconnus utilisés dans la validation
de chaque arbre de décision.

5. Modéles statistiques proposés

Dans les deux approches statistiques proposées, les modeéles T4s sont sélectionnés en raison
de leur grande capacité a représenter des structures complexes de fibres (les T2s fournissent
des représentations moins justes). Ces T4s ont été estimés sur les données IRMd qui ont été
initialement normalisées a ’aide de la méthode de Duarte-Carvajalino et al. [51] proposée
en 2013. Cette méthode est une extension, pour les transformations non-linéaires, de la
méthode de Tao et Miller [152] proposée pour les transformations linéaires en 2006.

Un autre point commun aux deux méthodes proposées est que nous avons besoin de construi-
re une matrice de distance inter-point, pour toutes les paires possibles de données (normales
et anormales) ou chaque distance est calculée conformément & la métrique de tenseur pro-
posée (eq. 5). En outre, les distances entre voxels sont imprécises en raison de l'erreur de
recalage résiduelle. Pour contourner cet obstacle, au lieu de lisser les données, nous pro-
posons d’introduire des informations de voisinage, sous la forme de deux patchs 3 x 3 x 3
(un patch par sujet et par voxel d’intérét). Chaque patch est extrait de deux voisinages plus
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grands (par exemple, des voisinages 5 X 5 x 5). Les patchs sélectionnés sont ceux, parmi
ceux possibles, qui minimisent la somme des distances inter-voxel.

Ensuite, d’aprés le travail de Verma et al. [165] pour estimer la sous-variété de T2 utili-
sant 1'Isomap [154], nous avons choisi de calculer de fagon similaire la sous-variété de T4.
Plusieurs méthodes de réduction de dimension ont été testées, par exemple le mazimum vari-
ance unfolding (MVU) [171], le locality preserving projection (LPP) [77, 78| et 'lsomap, sans
remarquer aucune différence particuliére d’un point de vue discriminatoire. Par conséquent,
I'Isomap a également été sélectionné dans le cas des T4s. La matrice de distance inter-point
contient toutes les informations nécessaires pour effectuer I’'Isomap. La représentation de
Ierreur de reconstruction en fonction de la dimension réduite d (1 < d < 15) a permis de
conclure que le travail en 2D est adéquat pour le cas des T4s (cette dimension avait été
retenue pour les T2s, par Verma et al.).

Enfin, les deux méthodes sont appliquées a l'analyse statistique voxel par voxel (VB).
En outre, nous avons pour objectif de calculer des p-valeurs, c’est-a-dire la probabilité
d’obtenir une statistique (par exemple une dissimilarité entre les populations) plus extréme
que la valeur courante étant donnée la distribution de notre statistique sous I’hypothése
d’indiscernabilité. De plus, un intervalle de crédibilité sera estimé pour chaque p-valeur.

Premiére méthode proposée : comparaison statistique de populations - Appli-
cation a la pathologie NMO

La premiére méthode proposée se référe aux travaux présentés dans le chapitre 5, avec son
évaluation dans le chapitre 6. Dans ce cas, les modéles de fODF T4 ont été sélectionnés [172]
pour décrire les données IRMd, car notre objectif ultime était d’appliquer le test statistique
proposé a la neuromyélite optique (NMO), pathologie qui en général provoque des lésions
qui modifient 'orientation de la diffusion.

Pour chaque voxel dans le cerveau, une fois que toutes les données normales et anormales
sont transformées dans I’espace réduit, nous proposons de décrire chaque population a ’aide
de modéles de mélange de lois gaussiennes (Gaussian mizture model, GMM), en considérant
un noyau gaussien associé a chaque point. Nous travaillons ainsi dans le cadre kernel density
estimation (KDE). En outre, nous définissons comme statistique d’intérét la distance (c’est-
a~dire 1’écart) entre les PDFs des deux GMMs. L’idée initiale était d’utiliser la version
symétrique de la divergence de Kullback-Leibler (sKL), mais malheureusement il n’y a pas
de formulation exacte pour calculer le sKL pour les GMMs et le calcul numérique est tres
long. En conséquence, nous avons trouvé dans la littérature une distance, notée P, proposée
par Sfikas et al. en 2005 [143], directement applicable aux GMMs.

Afin de calculer la p-valeur v* liée & ce probléme, la distribution p(P) de la divergence
P est nécessaire. Puisque cette distribution ne peut pas étre déterminée analytiquement,
nous proposons de déterminer la p-valeur par méthode de Monte Carlo, en redistribuant les
étiquettes des données (test de permutation), ce qui nous permettra de produire de fagon
aléatoire un grand nombre d’échantillons {Py, ..., Py} de cette distribution. La p-valeur v*
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est définie comme P(P,, > Py) sous I’hypothése nulle que les populations sont indiscernables,
ou Py est la distance se référant a I'étiquetage réel des points. Par ailleurs, il est possible
de calculer la distribution a posteriori de la p-valeur v, c’est-a-dire p(v|Py, ..., Pn), ce qui
nous permet d’extraire I'intervalle de crédibilité de la p-valeur, comprenant par exemple 99%
de la masse a posteriori de p(v|P1,..., Pn).

FIGURE 3: Visualisation des biomarqueurs obtenus (correspondant aux voxels pour lesquels

la limite supérieure d’intervalle de crédibilité de la p-valeur est inférieure & 0.05 mise en

évidence par la couleur rouge) d’une région particuliére, représentée sur une image FA,

pour (a) T4 fODF et (b) T2 fODF. On peut constater que le cas T4 fODF produit plus de
biomarqueurs que le cas T2 fODF.

Le premier test statistique proposé a été évalué avec des données synthétiques et des données
réelles. On met en évidence que les performances des modéles T4s sont meilleures que celles
des modeéles T2s, car plusieurs de biomarqueurs sont extraits dans le cas de T4 que le cas
de T2 et les résidus de T2 contiennent de 'informations. En outre, 'approche statistique
proposée est plus sensible que le test 72 de Hotelling. De plus, dans le cas de données réelles
ou les régions liées a la maladie NMO ont été identifiées, I’approche statistique proposée
est en cohérence avec les tests statistiques construits sur classifieurs RF et les tests de
permutation de la matrice de distance inter-point. La figure 3 représente la limite supérieure
des intervalles de crédibilité des p-valeurs induites (les biomarqueurs extraits avec les p-
valeurs inférieures a 0.05 sont représentés en rouge).

Deuxiéme méthode proposée : comparaison statistique d’un sujet anormal ver-
sus la population normale - Application a la pathologie LIS

La seconde approche statistique est proposée au chapitre 7 pour le probléme de la comparai-
son d’un individu avec la population normale, dans le cas de données anormales dispersées
qui ne peuvent pas capturer toute la variabilité de la population anormale.
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De la méme maniére que pour la premiére méthode, les données IRMd sont normalisées dans
un espace commun. Initialement, nous avons pensé travailler avec les fODF T4s, mais nos
expérimentations ont montré que la maladie LIS ne produisait pas beaucoup de lésions dans
Iorientation de la diffusion. Nous avons donc choisi de considérer les profils de diffusion,
modélisés comme des T4s [11].

Une autre différence se situe dans la détermination de I'espace réduit via Isomap. Contraire-
ment & la méthode précédente, nous déterminons maintenant I’espace réduit en introduisant
dans Isomap seulement les distances inter-point relatives aux distances entre les couples de
données normales. De cette maniére, le nuage normal ne sera pas influencé par les données
anormales. Une fois ’espace réduit déterminé, les points anormaux sont placés dans I’espace
réduit sans modifier la position des points normaux.

Concernant le test statistique révisé, un seul GMM est nécessaire, construit comme précé-
demment, afin de décrire la population normale. La similitude de chaque point anormal
au nuage normal est mesurée en calculant sa densité de probabilité avec le KDE/GMM du
groupe normal. Cette densité est la statistique d’intérét.

Ensuite, comme pour le test de permutation, on va approximer la p-valeur a l'aide de
simulations de Monte Carlo. On génére des échantillons selon le KDE/GMM, ce qui délivre
des densités p;. La p-valeur mise en jeu est égale a la probabilité P(p; < po) sous I'hypothése
nulle que le sujet a évaluer appartient a la population normale. En plus, un intervalle HPD
peut étre extrait pour chaque p-valeur, de facon similaire & I’approche précédente.

L’application aux données réelles a été effectuée, en particulier pour la pathologie LIS. Des
zones spécifiques, comprenant le systéme moteur, ont été sélectionnées pour étre étudiées.
Dans cette étude, notre objectif était de calculer le pourcentage de lésions par zone (c¢’est-a-
dire le pourcentage de voxels pour lesquels la limite supérieure de 'intervalle de crédibilité de
la p-valeur est inférieure a 0.05). Ces zones peuvent étre séparées en deux grandes régions.
La premiére région (région 1) contient des zones proches de la moelle épiniére (située dans la
partie inférieure du cerveau, par exemple pontine crossing tract, corticospinal tract gauche
et droit, medial lemniscus gauche et droit), tandis que la seconde région (région 2) regroupe
les zones situées dans les parties moyenne et supérieure du volume du cerveau relié a la
moelle épiniére (comme posterior limb of internal capsule gauche et droit, superior corona
radiata gauche et droit).

[’analyse statistique a conclu que le pourcentage de lésions dans la région 1 était plus élevé
que dans la région 2. En outre, la quantité de lésions dans la région 2 dépend du patient.
Par ailleurs, ’analyse statistique est cohérente avec I’avis médical.

Les pourcentages de lésions détectées par les méthodes proposées ont suscité notre intérét
pour explorer les performances de différentes variations de la métrique de tenseur, construites
a partir de la métrique initiale, proposée dans I’équation 5. Ces variations peuvent nous
fournir un outil plus sensible pour discriminer plusieurs différences. Nos expérimentations
(voir la section 7.2.4) ont montré qu’en effet il y a une variation particuliére de la métrique de
tenseur qui peut fournir de meilleures performances que la métrique utilisée pour le moment.
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Enfin, les comparaisons entre les modéles T4 et T2 de diffusion sont présentées. De plus, des
comparaisons avec les approches classiques fondées sur les statistiques du z-score relatives
aux mesures de FA et MD ont été effectuées. Les analyses des T2s de diffusion et d’images
FA/MD produisent des pourcentages de lésions plus élevés que I'approche proposée sur le
modeéle de T4. Malheureusement, en raison de ’absence de vérité terrain, il est difficile
de tirer des conclusions stires. Peut-étre une comparaison sur des données synthétiques
pourrait-elle nous éclairer davantage pour tirer des conclusions. D’autre part, nous pouvons
affirmer qu’un modéle de tenseur d’ordre supérieur, comme le T4, a la potentialité de mieux
capturer la variabilité de la maladie qu’un autre modéle moins adapté, comme le T2, ou les
mesures scalaires simples (par exemple, les images FA et MD).

6. Conclusion et perspectives

Pour conclure ce résumé, nous avons choisi de souligner quelques points caractéristiques et
de donner des orientations pour les travaux futurs.

Le premier point auquel préter attention est la normalisation des données. Puisque les
données de tenseur ou d’IRMd contiennent des informations d’orientation, la normalisation
de données se compose de deux étapes, le recalage spatial et la réorientation de données.
A ce stade, nous devrions indiquer que la normalisation d’IRMd est moins risquée que la
normalisation de tenseurs.

Deuxiémement, la prise en compte des T4s au lieu des T2s a conduit & une analyse statistique
plus efficace et robuste, en particulier dans le cas des croisements de fibres. Il faut noter
qu'un modéle plus juste présente un meilleur potentiel pour un diagnostic précoce.

Troisiémement, le calcul de la sous-variété des modéles T4 a 1'un des roles les plus incon-
tournables dans nos approches. Les distances euclidiennes en grande dimension peuvent
lisser les différences. Par opposition, les distances géodésiques utilisées pour déterminer la
matrice de distances inter-points ensuite utilisée par 1’Isomap, permettent de mieux mettre
en évidence les dissimilarités. En outre, la prise en compte de 'erreur de recalage résidu-
elle a l'aide de patchs les mieux adaptés et en introduisant des informations de voisinage
dans l'estimation de la matrice de distance inter-point a montré de meilleurs résultats que
le lissage des données.

Par ailleurs, avoir les deux approches statistiques proposées nous donne la flexibilité néces-
saire pour analyser les données pathologiques indépendamment de leur nombre.

En ce qui concerne les orientations pour les travaux futurs, nous proposons d’examiner la
combinaison du recalage d’TRMd (on recale les données brutes sans les orienter) suivi par
I’estimation de tenseurs sur les données obtenues complétées par la réorientation de ces
tenseurs. Par exemple, dans le cas de la réorientation de T4 (ou méme T2), les méthodes
présentées dans le chapitre 3 peuvent étre utilisées.
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Deuxiémement, 1’analyse statistique basée sur la nouvelle variation de la métrique proposée
sur le tenseur (mentionnée dans la section 7.2.4) devrait étre également évaluée. Proba-
blement, les pourcentages de lésions détectées peuvent étre plus élevés que ceux détecte
actuellement.

Une autre perspective est liée a la construction de chaque GMM par population. Il sera tres
intéressant de connecter plusieurs sujets dans I’espace réduit au méme noyau gaussien, au
lieu de considérer un noyau par sujet. De cette maniére, tous les problémes de surajustement
occasionnel peuvent étre évités.

Pour continuer, dans cette étude nous avons concentré nos efforts dans I’étude de ce qui se
passe dans certaines régions du cerveau, déja connues comme atteintes par la maladie. Dans
le cas des maladies inflammatoires, il peut étre fascinant d’étudier et de détecter d’éventuelles
lésions potentielles dans d’autres régions du cerveau, peut-étre totalement nouvelles pour la
communauté médicale.

Ensuite, une étude approfondie des propriétés de diffusivité liées & chaque voxel extrait
comme biomarqueur, par exemple en analysant le niveau significatif des variations de la
diffusion dans chaque direction, pourrait permettre d’évaluer quelles directions de diffusion
sont responsables de la caractérisation du voxel comme biomarqueur.

De plus, les capacités des approches statistiques proposées pour réaliser un diagnostic précoce
restent a examiner, sous l’expertise de neurologues.

Pour conclure, les applications des approches proposées pour analyser des descripteurs de
plus haut niveau (par example les faisceaux de fibres et les connectogrammes) peuvent étre
testées.



XX




Contents

Acknowledgements iii
Abstract v
Résumé long en francais vii
Contents xxi
List of Figures XXV
List of Tables xxviii
Abbreviations XXXIi

1 Introduction 1
1.1 Definition of the Scientific Problem . . . . . . .. .. ... ... ... .... 1
1.2 Thesis” Contributions . . . . . . . . . . . . . 3
1.3 Organization of the Dissertation . . . . . . . . .. .. ... ... ... .... 4

2 In Vivo Probing and Modelling the Diffusion of Water Molecules in the

Human Brain 7
2.1 Brownian Motion of Water Molecules . . . . . . . .. ... ... ... .... 7
2.2 DW-MRIData . ... ... ... . . 9
2.3 Models for DW-MRI Data . . . . ... .. .. ... ... ... ........ 10
2.3.1 Tensor Models. . . . . . . . . . . . . 10
2.3.1.1 Diffusion Tensor Imaging and Second Order Tensors . . .. 11

2.3.1.2  Higher Order Tensors . . . . .. ... ... ... ...... 15

2.3.2 ADC, dODF and fODF Profiles . . . . . . ... ... ... ... ... 17
2.3.3 Spherical Harmonics and their Connection to Tensors . . . . . .. .. 20
2.3.4 Tensor Metrics . . . . . . . . . ... 21

2.4 High Level Description of DW-MRI Data . . . . ... ... .. ........ 24
2.4.1 Fibers . . . . . e 24
2.4.2 Connectomes . . . . . . . . .. e 26

2.5 Partial Conclusion . . . . . . . . . ... e 31

xXx1



xxii CONTENTS

3 Pre-processing Steps for DW-MRI Data with Emphasis on T4 Reorienta-

tion 33
3.1 Pre-processing the Raw DW-MRI Data . . . . . ... ... .. ... ..... 33
3.2 Data Normalization . . . . . . .. ... .. .. .. ... 34
3.3 Introduction to Tensor Reorientation . . . . . . . . . ... .. ... ..... 35
3.4 T4 Decomposition Schemes . . . . . . .. .. ... ... ... . ... ... 35
3.4.1 Spectral Decomposition . . . . ... .. ... ... .. ... 36
3.4.2 Hilbert Decomposition . . . . . .. ... ... L 37

3.5 T2 Reorientation Schemes . . . . . .. .. .. ... ... ... ... ... 38
3.5.1 Finite Strain. . . . . . . . ... 38
3.5.2  Preservation of Principal Directions . . . . . . . .. .. .. ... ... 39

3.6 T4 Reorientation Scheme based on HD and PPD . . . . .. ... ... ... 39
3.7 Experimental Results . . . . . . . . ... L 40
3.7.1 Synthetic Data . . . . . . ... ... 40
3.72 RealData . . ... .. ... .. . .. 61

3.8 Partial Conclusion . . . . . . . . . . .. 67
4 DW-MRI Data Statistical Analysis - a Review 69
4.1 Categories of DW-MRI Data Analysis. . . . . ... ... ... .. ...... 70
4.2 Recent Related Work . . . . . . . . . . . . ... 71
4.3 Application of a Suitable Test . . . . . . . .. .. .. ... ... ... . ... 73
4.3.1 Representing and Analyzing T2s in a Reduced Space . . . ... ... 74
4.3.2 Analyzing the Inter-point Distance Matrix in High Dimensional Space 75
4.3.3 Analyzing Classification Errors using Random Forest Classifiers . . . 78

4.4 Partial Conclusion . . . . . . . . . ... 81

5 Population VS Population Comparison: Proposed Statistical Model for

T4s 83
5.1 Preliminary Steps . . . . . . . . .. 83
5.1.1 Selected Data Normalization . . . . . . .. ... ... ... ...... 83
5.1.2  Selection of a T4 fODF Parametrization, a Proper Metric
and the fODF Patches . . . . ... ... ... ... .......... 84
5.2 Feature Extraction (ISOMAP) . . . . . ... .. ... ... ... ..., . 85
5.3 Statistic of Interest . . . . . . ... 87
5.4 Estimation of the p-value and its credibility interval . . . . . . .. ... ... 89
5.5 Partial Conclusion . . . . . . . . . .. e 90
6 Group Comparisons: Evaluation on NMO disease and synthetic cases 93
6.1 Application of the Proposed Method to the T4 fODF case . ... ... ... 94
6.2 Application of the Proposed Method to the T2 fODF case . . .. ... ... 96
6.3 Other Comparisons . . . . . . . . . . . . . . e 102
6.3.1 T2 and T4 fODF models’ contributions to populations comparisons -
Evaluation on syntheticdata . . . . . . . ... ... .. ........ 102

6.3.2 PDF analysis VS population’s mean analysis in the reduced space -
Evaluation on syntheticdata . . . . . . .. ... ... ... ... ... 105



CONTENTS xxiil

6.3.3 PDF analysis in the reduced space VS inter-point distance matrix

analysis in high dimensional space - Evaluation on real NMO data . . 107

6.3.4 PDF analysis in the reduced space VS RF classification analysis in
different feature spaces - Evaluation on real NMO data . . . . .. .. 110
6.4 Partial Conclusion . . . . . . . . . ... 115

7 Individual VS Normal Population: Method and Application to LIS dis-

ease 117
7.1 Proposed Statistical Model . . . . . .. ... o oo 117
7.1.1 Statistic of Interest and Determination of HPD Interval per p-value . 118

7.2 Experimental Results . . . . . . . . . .. Lo 119
7.2.1 Results based on fODF T4sandon DT4s . . . . . . ... ... .... 120

7.2.2 Resultsbasedon DT2s . . . . . ... ... ... .. .. ... .... 124

7.2.3 Classical statistical analysis of FA and MD images . . . . . .. .. .. 125

7.2.4 Leave-one-out Evaluation Scheme in the fODF T4 Case . . . . . . .. 129

7.3 Partial Conclusion . . . . . . . . . ... 133

8 Conclusion and Perspectives 137
8.1 Discussion . . . . . . . .. e e 137
8.2 Future Work . . . . . . . . e 139

A Multivariate Two-sample Hotelling 77 Test 141
Bibliography 143

Author’s Publications 159



XxXiv CONTENTS




List of Figures

1.1

2.1
2.2

2.3
2.4
2.5
2.6
2.7
2.8

2.9

2.10
211

2.12
2.13
2.14
2.15

2.16

2.17
2.18
2.19
2.20

2.21
2.22
2.23

Modéles T2s et modeéles T4s dans une certaine région du cerveau. . . . . . . X
Champs synthétiques de T4 aprés une normalisation spatiale sinusoidale. . . xii
Visualisation des biomarqueurs obtenus d’une région particuliére, pour (a) T4

fODF et (b) T2 fODF. . . . . . . . . Xvi
The evolution of brain studies. . . . . . . . . ... ... ... L L. 2
Different examples of diffusion. . . . . . . .. ... oL oo 8
The strength of the magnetic field is linearly modulated along each of the

three axes. . . . . . . L 8
Three slices of DW-MRI data in a given gradient direction. . . . . . . . . .. 10
Six parameters are needed to define a 3D ellipsoid. . . . ... .. ... ... 11
Plotting 2D slices of the 3D diffusion ellipsoid and the diffusivity function. . 12
Several examples of bundles of fibers that occur frequently in real data. . . . 13
Three different sampling schemes for diffusion MRI. . . . . . ... ... ... 14
A patch with dODF profiles resulted from Q-Ball imaging in an area contain-

ing crossing fibers. . . . . ..o L 14
Comparison between T2 and T4 models for a ROTI that contains crossing fibers

in the human brain. . . . . . . .. ..o L oo 16
Plotting GA and (V). . . . . . . . . 17
An explanation in 2D of the spherical convolution procedure used in fODF

estimations. . . . . . . L. L L 19
Comparisons of ADC and fODF profiles. . . . .. .. ... ... ....... 19
Examples of Spherical Harmonics. . . . . . . . ... ... ..o 20
Examples of T4 representations of several fiber structures. . . . . .. .. .. 22
Resulting sampling scheme with 242 samples practically used in the approxi-

mation of the proposed tensor metric. . . . . . . . .. ... ... ... ... 22
Simulation test in order to determine a sufficient number N of samples in the

approximation of the proposed tensor metric. . . . . . .. ... ... ... .. 23
Examples of fiber tracts produced by Streamline tractography. . . . . . . .. 24
Other illustrated extracted fiber tracts. . . . . . . . .. .. .. .. ... ... 25
Comparison between deterministic and probabilistic tractographies. . . . . . 26
An example of the construction procedure of a whole brain structural con-

nectivity network. . . . . .. L. 27
Steps of the Magnetic Resonance Connectome Automated Pipeline (MRCAP). 28
The human connectome. . . . . . . . . . .. ... 30
Modularity and hub classification. . . . . . . ... .. ... ... . ... ... 31

XXV



XXVi LIST OF FIGURES
3.1 Four examples of T4 SD decompositions. . . . . . . . ... ... ... .... 36
3.2 Examples of different rotation matrices R that can recompose the same fourth

order tensor in HD. . . . . . . .. ... 37
3.3 Evaluation scheme for synthetic data: measure the angular error (AE) be-

tween Dand D’. . . . ... 41
3.4 First example: synthetic tensor fields. 3.4(a) The template of the tensor field

and 3.4(b) the initial registered template (no reorientation yet). . . . . . . . 42
3.5 First example: synthetic tensor fields. 3.5(a) FS and 3.5(b) SD+PPD reori-

entated tensor fields. . . . . ... ..o 43
3.6 First example: synthetic tensor fields. 3.6(a) HD+PPD reorientated tensor

field. . . . 44
3.7 First example: synthetic tensor’s peaks. 3.7(a) GT and 3.7(b) initial peaks. . 45
3.8 First example: synthetic tensor’s peaks. 3.8(a) FS and SD+PPD resulting

peaks. ..o e 46
3.9 First example: synthetic tensor’s peaks. 3.9(a) HD+PPD resulting peaks. . 47
3.10 First example: synthetic tensor’s tractographies. . . . . . . . . . . ... ... 48
3.11 First example: 3.11(a)- 3.11(d): the horizontal angular errors (AE). . . . . . 49
3.12 First example: 3.12(a)- 3.12(d): the corresponding histograms of the horizon-

tal AE presented in figure 3.11. . . . . . . . . .. . oo 49
3.13 First example: resulting vertical angular error (AE) and the corresponding

histogram in the FS case. . . . . ... . ... ... ... . 50
3.14 Second example: Synthetic tensor fields. 3.14(a) The template of the tensor

field and 3.14(b) the initial registered template (no reorientation yet). . . . 51
3.15 Second example: Synthetic tensor fields. 3.15(a) FS and 3.15(b) SD+PPD

reorientated tensor fields. . . . . . . ... oo oo 52
3.16 Second example: Synthetic tensor fields. 3.16(a) HD+PPD reorientated ten-

sor field. . . . .. 53
3.17 Second example: Synthetic tensor’s peaks. 3.17(a) GT and 3.17(b) initial

peaks. ... e 54
3.18 Second example: Synthetic tensor’s peaks. 3.18(a) FS and 3.18(b) SD+PPD

resulting peaks. . . . . ... 55
3.19 Second example: Synthetic tensor’s peaks. HD+PPD resulting peaks. . . . 56
3.20 Second example: Synthetic tensor’s tractographies. . . . . . .. ... .. .. 57
3.21 Second example: 3.21(a) 3.21(d): horizontal angular errors (AE). . . . . . .. 58
3.22 Second example: 3.22(a)- 3.22(d): the corresponding histograms of the hori-

zontal AE presented in figure 3.21. . . . . .. ... L. 58
3.23 Second example: 3.23(a)- 3.23(d): the vertical angular errors (AE). . .. .. 59
3.24 Second example: 3.24(a)- 3.24(d): the corresponding histograms of the vertical

AE presented in figure 3.23. . . . . .. ... 59
3.25 Influence of the transformation in areas that contain two crossing fibers, in

the second synthetic example. . . . . . . .. ..o L0000 60
3.26 Evaluation schemes for real data: measure the error between A and A’. 3.26(a)

Registration error and 3.26(b) Registration + Reorientation error. . . . . . . 62
3.27 Resulting tensor fields (in a patch of 20 x 20 size) of the compared methods

in a ROI with both single and crossing fibers. . . . . ... ... ... .... 63
3.28 Zoom in particular areas of figure 3.27 in order to locate the differences. . . . 64



LIST OF FIGURES xXxXVil

3.29 Resulting tractographies of the compared methods in a ROI with both single

and crossing fibers. . . . . ... Lo L 65
3.30 Distances of frame 33 (size of image: 128 x 128).. . . . . . ... ... .. .. 66
3.31 Histograms of the distances of frame 33. . . . . . .. ... ... .. ..... 67
4.1 The choice of a proper geodesic distance is mandatory. . . . ... ... ... 74
4.2 Tlustration of the HPD interval estimation by calculating the 99% of the
distribution mass with the aid of Dichotomy. . . . . . . .. . ... ... ... 7
4.3 A RF classifier with three DTs. . . . . . . ... ... ... ... ....... 79
4.4 Examples of resulting classifications given a RF with 500 decision trees and
maximum tree depth equal to 4, on synthetic 2D data. . . .. ... ... .. 80
5.1 Comparison between the Euclidean distance and the proposed distance of
eq.2.30. . 85
5.2 The choice of the best 3 x 3 patches between two 5 x 5 neighborhoods. . . . 85
5.3 Plots of the 2D reduced space for the 58 samples of the two cases presented
in Table 5.1. . . . . . . . e 86
5.4 Scree plot of the reconstruction error in function to the reduced dimension. . 87
5.5 The steps of the proposed approach. . . . .. ... ... ... ........ 90
6.1 The histogram of the resulting p-values (HPD’s upper bound) of the proposed
method applied on T4 models in a ROI with 2741 voxels. . . . . . ... ... 94
6.2 Visualization of probability densities, based on Gaussian kernel density esti-
mation, in the reduced space. . . . . . .. .. .. ... ... 95
6.3 The histogram of the resulting p-values of the proposed statistical model
applied on T2 fODF case in a ROI with 2741 voxels. . . . .. .. .. .. .. 97

6.4 The histogram of the resulting p-values of the proposed statistical model
applied on T2 case using the log-Euclidean distance (eq.2.29) in a ROI with

2741 voxels. . ..o 97
6.5 Plot the obtained biomarkers of a particular region on the top of a FA tem-

plate, in three cases of tensors or metrics. . . . . . . . ... ... ... .... 98
6.6 Comparison of the ranking of T4 fODF statistics with T2 fODF statistics in

two different ROIs. . . . . . . . . o 99
6.7 Comparison of the ranking of T4 fODF statistics with T2 coefficients statistics

in two different ROIs. . . . . . .. .. . L o 100
6.8 Comparison of the ranking of T2 fODF statistics with T2 coefficients statistics

in 2 different ROIs. . . . . . . . . o 101
6.9 Statistical comparisons on the T2 and T4 fODF models. . . . .. ... ... 103
6.10 Statistical comparisons on T2 and T4 residuals of the fODF models using the

Ly norm integrated on the sphere. . . . . . .. ... oL 0oL 104
6.11 Synthetic example used to emphasize the limited performance of the Hotelling

7 106

6.12 Comparison of the ranking of T4 fODF statistics with statistics based on
permutations on the inter-point distance matrix of the T4 models in two
different ROIs. . . . . . . . . . . 108



XXVviii LIST OF FIGURES
6.13 Histograms of the upper bounds of the p-values’ HPD intervals using per-
mutation testing in the inter-point distance matrix for the same pathological
ROT with 2741 voxels. . . . . . . . . . . 109
6.14 Comparing the middle values of the HPD intervals between the p-value of the
proposed statistical method and the GE of the RF classifier in the 5x5x5x242
fODF space in a given ROI of 2742 voxels in the brain. . . . . . . ... ... 110
6.15 Comparing the middle values of the HPD intervals between the p-value of the
proposed statistical method and the GE of the RF classifier in the 5x5x5x 15
T4 space in a given ROI of 2742 voxels in the brain. . . . . . . .. ... ... 111
6.16 Comparing the middle values of the HPD intervals between the p-value of
the proposed statistical method and the GE of the RF classifier in the 5D
reduced space in a given ROI of 2742 voxels in the brain. . . . . . . . . . .. 112
6.17 Comparing the middle values of the HPD intervals between the p-value of
the proposed statistical method and the GE of the RF classifier in the 2D
reduced space in a given ROI of 2742 voxels in the brain. . . . . . .. .. .. 112
6.18 Comparing the ranking of the middle values of the HPD intervals between the
p-value of the proposed statistical method and the GE of the RF classifier in
the 2D reduced space in a given ROI of 2742 voxels in the brain. . . . . . . . 113
6.19 Visualization of the RF (7" = 500, D = 4) classifications for three characteris-
tic cases and comparison with the resulting p-values of the proposed statistical
method. . . . . .. 114
7.1 Visualization of the embedded DT4 and DT2 models in five patches of specific
ROIs of the motor system. . . . . . .. .. .. ... ... . 121
7.2 Plotting the percentages of lesions detected using the proposed method on
fODF T4s and diffusion T4s (as presented in table 7.1). . . . . . .. . .. .. 123
7.3 Two examples of reduced space configurations using DT4s. . . . . . . . ... 124
7.4 Plotting the percentages of lesions detected using the proposed method on
diffusion T4s and diffusion T2s (as presented in table 7.2). . . ... ... .. 126
7.5 Plotting the percentages of lesions detected using the proposed method on
diffusion T4s and z-scores on FA images (as presented in table 7.3). . . . . . 128
7.6 FA’s axial slices showing the disease’s evolution of LIS patient 1 in three ROIs.129
7.7 Plotting the percentages of lesions detected using the proposed method on
diffusion T4s and z-scores on MD images (as presented in table 7.4). . . . . . 131
7.8 Visualization of the leave-one-out evaluation. . . . . . . .. .. .. ... ... 132
7.9 Performance of several variations of the proposed tensor metric in the leave-

one-out evaluation scheme. . . . . . . . .. .. 133



List of Tables

3.1
3.2
3.3
3.4

5.1

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

7.1

7.2
7.3
7.4
7.5

First synthetic example: Angular errors (AE) for the compared methods. . . 44
Second synthetic example: Angular errors (AE) for the compared methods. 53
Distances of the compared methods in the real data case of frame 33. . . . . 62
Distances of the compared methods in the whole real data. . . . . .. .. .. 63

Comparison between different non-linear methods, such as MVU, LPP and

ISOMAP. . . 86
HPD intervals of the p-values for the cases depicted in Fig. 6.2, by performing
1000 label shufflings. . . . . . . . .. .o 96
Number of voxels with green, purple and blue color of the T4 fODF’s versus
T2 fODF’s statistics. . . . . . . . . . . o e 99
Number of voxels with green, purple and blue color of the T4 fODF’s wversus
T2 coefficients’ statistics. . . . . . . . . . . . . ... 100
Number of voxels with green, purple and blue color of the T2 fODF’s versus
T2 coefficients’ statistics. . . . . . . . . . .. o 101
Calculated HPD intervals of p-values on fODF profiles and on the models’
residuals of the case presented in fig.6.9 and 6.10. . . . . . . . .. ... ... 102

Calculated p-values (HPD intervals for the proposed method) of the case
presented in fig. 6.11, by comparing the proposed statistical method against
the Hotelling T2 test on T2 and T4 fODF profiles. . . . ... .. ... ... 107
HPD intervals of p-values on fODF profiles using the proposed statistical test
(left part) and the Hotelling test (right part) for the case presented in fig. 6.9. 107
Count of voxels in green, purple and blue color of the T4 fODF’s versus T4
matrix permutations’ statistics. . . . . . ... ... Lo oL 107

LIS patients follow-up for 9 ROIs related to the motor system using T4 fODF

profiles and T4 diffusion profiles. . . . . . . . . . .. ... ... ... .... 122
Comparison between DT4 and DT?2 statistical analyses. . . . . . . ... ... 125
Comparison between DT4 and FA image statistical analyses. . . . . . . . .. 127
Comparison between DT4s and MD image statistical analyses. . . . . . . .. 130

Estimating p-values in the case of the best performance in the leave-one-out
evaluation scheme. . . . . . .. .00 Lo 135

XXIX






Abbreviations

AD Alzheimer’s Disease

ADC Apparent Diffusion Coefficient

AE Angular Error

CDF Cumulative Distribution Function

dODF diffusion Orientation Distribution Function
DSI Diffusion Spectrum Imaging

DT Decision Tree

DTI Diffusion Tensor Imaging

DT4 4th order Diffusion Tensor

DW-MRI Diffusion Weighted Magnetic Resonance Imaging

EAP Ensemble Average Propagator

EEG ElectroEncephaloGraphy

FA Fractional Anisotropy

fMRI functional Magnetic Resonance Imaging
fODF fiber Orientation Distribution Function
FS Finite Strain algorithm

GA Generalized Anisotropy

GFA Generalized Fractional Anisotropy
GMM Gaussian Mixture Model

HARDI High Angular Resolution Diffusion Imaging
HD Hilbert Decomposition

HOT Higher Order Tensor

HPD Highest Probability Density

i.i.d. independent and identically distributed

XXX1



xxxil ABBREVIATIONS

IVIM Intra-Voxel Incoherent Motion
KDE Kernel Density Estimation

LIS Locked-In Syndrome

LPP Locality Preserving Projection
MD Mean Diffusivity

MDS MultiDimensional Scaling

MEG MagnetoEncephaloGraphy

MRI Magnetic Resonance Imaging

MS Multiple Sclerosis

MVU Maximum Variance Unfolding
NMO NeuroMyelitis Optica disease
NMR Nuclear Magnetic Resonance
ODF Orientation Distribution Function
PCA Principal Component, Analysis
PDF Probability Density Function
PPD Preservation of Principal Directions algorithm
QBI Q-ball Imaging

RA Relative Anisotropy

RF Random Forest

ROI Region Of Interest

SD Spectral Decomposition

SH Spherical Harmonics

sKL symmetrized Kullback Leibler divergence
SVD Singular Value Decomposition
SVM Support Vector Machine

T2 2nd order Tensor

T4 4th order Tensor

TB Tract-Based analysis

VB Voxel-Based analysis

WM White Matter of brain



Chapter 1

Introduction

This introductory chapter presents the scientific problem, the contribution of the thesis, and
the organization of the dissertation.

1.1 Definition of the Scientific Problem

Understanding human brain’s structure and functionality has always fascinated the human
kind, since the brain is one of the most fundamental organs, but also the most complex and
multi-task organ in our body. Figure 1.1 illustrates a few characteristic steps through the
evolution of brain studies in the past centuries. Nowadays, a considerable percentage of the
brain’s capabilities still remains unidentified and open to research.

Another reason that triggered the interest of the scientific community to extensively com-
prehend the brain is the lack of deep knowledge concerning the specificity of various brain
pathologies. For instance, certain disorders are restricted to specific areas of the brain (e.g.
locked-in syndrome (LIS), Parkinson’s disease, dyslexia etc.), while, on the contrary, several
inflammatory or neurodegenerative diseases can potentially affect the entire human brain
(neuromyelitis optica (NMO), multiple sclerosis (MS), Alzheimer’s disease etc.) [104]. The
development of efficient and comprehensive automated diagnostic tools can help us under-
stand the aspects of the disease, and eventually allows us to monitor the patient’s condition.
Additionally, treating the disease as early as possible by systematically guiding the doctor’s
decisions concerning the adjustment of patient’s treatment is always desirable.

For many decades, computer and medical sciences have been collaborating in this direction
with the aid of physics, under the names of Neuroscience and Neuroinformatics. In order to
gain knowledge related to a disease, handy examinations were constructed that are suitable
to extract measurements useful to characterize particular diseases. Highly informative data
acquisition techniques, such as Magnetic Resonance Imaging (MRI), Diffusion Weighted
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Magnetic Resonance Imaging (DW-MRI) and functional Magnetic Resonance Imaging (f-
MRI) were developed to observe the brain and gather various interesting measurements
concerning the structure and the function of the brain.

FIGURE 1.1: The evolution of brain studies. (a) medieval view of brain’s structure and

function (by Magnus Hundt, in 1501 - probably first printed anatomical figure of the head),

(b) drawing appeared in Book VII of Andreas Vesalius’s Fabrica (1543) depicting horizontal

segments of the human head, (c) image from Félix Vicq d’Azyr’s atlas of the human brain

(1786 - the most accurate before the development of neurohistology) and (d) a modern
MRI scan of the brain (1971 - nowadays).

For example, DW-MRI is the first technique to capture information related to the structural
anatomy of white matter (WM) or even grey matter of the brain, in vivo (although other
competitive tools, more suitable for grey matter studies than DW-MRI, also exist). In
fact, DW-MRI measures the diffusion of water molecules across several directions in the 3D
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space, revealing the structure of the white matter (WM) of the brain. Moreover, DW-MRI
is a totally non-invasive routine, due to the fact that the patient is not injected with any
radioactive tracer. Neither does any exposure to ionizing radiation take place through the
whole examination, reducing the appearance of complications to a minimum level. Generally
speaking, DW-MRI data will monopolize our interest in this study.

Such an innovative imaging modality lead us to seek advanced tools for image processing,
modelling and analysis. For instance, DW-MRI data are commonly modelled using tensors
(the reader is referred to chapter 2 and [112] for more information). These tensor models
concentrate solid clues about the structural representation of the diffusion and offer an
easier way to visualize the diffusion properties at each voxel of the brain than raw DW-MRI
data. Due to the fact that the human brain contains complex structures representing several
bundles of fibers in a high percentage of voxels (almost 50%), powerful and competitive tensor
models such as High Order Tensor (HOT) models [14, 122, 172| are needed. HOT tensors
can assist us to define representative descriptions that can capture as much information as
possible that is embedded in the DW-MRI data.

Finally, studying a particular disease, for example with a view to biomarker extraction, re-
quires a significantly large repository of data, so as to define the control (normal) population
with healthy subjects, and to characterize the variability of the disease by considering an
extensive pathological (abnormal) population. On the other hand, if the desirable task is to
follow up patients’ state, each patient can be alternatively tested individually, for a given
set, of different in time scans, against the normal population.

In this thesis, populations comparisons, along with individual versus normal population
comparisons, are addressed via specific statistical tests that we propose, potentially aiming
at early diagnosis, biomarker extraction and patient follow-up. Noticing the lack of mapping
techniques and statistical analysis tools for HOTs in the literature, and considering their
powerful abilities to describe DW-MRI data, we chose to work with fourth order tensors
(T4s) [11, 172], which is a particular case of HOTs.

1.2 Thesis’ Contributions

Performing population comparisons requires an initial important task, known as data nor-
malization (e.g. for DW-MRI or tensor data), in order to align brains of different subjects
together. Due to the fact that DW-MRI data and tensor models contain orientated in-
formation, a single spatial registration is not enough. A reorientation step is crucial and
mandatory, too. During the first year of this thesis, we focused on the problem called tensor
reorientation [2, 5, 135]. In this case, the tensor models should be correctly reorientated in
order to match with the new underlying fiber orientation in the new common space. The
results of this work on T4 models are presented in chapter 3.

To continue, in order to compare different subjects in the tensor space, metrics taking into
consideration the properties of the diffusivity profiles should be defined (see chapter 2 where
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a proposed tensor metric is presented, inspired by the work of Tarantola [153] in physics,
along with other metrics that can be found in the literature). These tensors metrics will
allow us to construct inter-point distance matrices that will be introduced into dimensionality
reduction techniques in order to perform statistical analysis, robustly, in a reduced space.

The need for sensitive models and statistical tests with a view to early diagnosis and prog-
nosis, disease staging, patient follow-up etc. started to grow rapidly. Comparisons between
healthy and pathological data in order to detect patterns of lesions for a given disease, or
to extract biomarkers via population modelling and comparisons, drew our attention dur-
ing the next two years of this work. The majority of this thesis is focused on developing
advanced statistical tests for high order tensor models in order to solve the problem of pop-
ulations comparison (i.e. healthy versus pathological groups, see chapter 5). In this case,
given a normal population corresponding to a set of healthy individuals, and an abnormal
population containing pathological datasets, we can highlight voxels, or group of voxels in
the brain with structural abnormalities resulting from the disease (i.e. biomarkers), with
the aid of a suitable statistical test, that will compare the two populations.

Furthermore, individual pathological datum versus the healthy population comparisons were
studied and proposed in this thesis with view to patient follow-up (see chapter 7). In
this case, methods perform statistical comparisons individually for each patient against
the normal population in time series of scans. The last application is considered to be
very helpful and sometimes the only solution in cases where the variability of the diseased
population cannot be fully captured (e.g. diseases with no specific drawn patterns, either
much variability e.g. often in traumatic brains, or a minor number of patients available
related to the same disease).

To sum up, the main contributions of this thesis are contained in the following points:

e Proposed tensor metric (chapter 2, section 2.3.4).
e Study and evaluation of T4 reorientation schemes (chapter 3).
e Statistical models using tensor information for the following problems:

— Population VS Population: application to NMO disease (chapters 5, 6).
— Individual VS Normal Population: application to LIS syndrome (chapter 7).

1.3 Organization of the Dissertation

The dissertation is organized as follows:

Chapter 2 presents the DW-MRI modality and the possible ways to model the acquired data,
for example using tensor models. In addition, several tensor metrics are presented, along
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with an original one. Furthermore, high level descriptions of DW-MRI data are discussed,
such as fiber tracts and connectomes.

Chapter 3 addresses the pre-processing steps for DW-MRI data. The problem of tensor
reorientation is explained and a study on reorientation schemes for T4 models is presented,
based on T4 decompositions into T2s followed by T2 reorientations. Two T4 decompositions
are described along with two T2 reorientation methods. Experimental results on synthetic
and real data are included.

In chapter 4, the general steps to devise statistical atlases are highlighted and the problem
of biomarkers detection is explained. Moreover, state-of-art techniques are presented and
discussed.

The construction of a statistical atlas, for the problem of population versus population
comparison, is addressed in chapter 5. The proposed approach fits T4 models on the DW-
MRI data and performs voxelwise statistical analysis in a reduced space. Applications to
synthetic cases were achieved along with application to NMO disease which allowed us to
evaluate the proposed method in comparison with several other methods. Experimental
results are included in chapter 6.

For the case of sparse (pathological) populations, we propose in chapter 7 a solution to the
problem of individual versus normal population. Application to LIS pathology is selected
and presented.

Finally, the conclusion of this thesis along with suggestions for future work are contained in
chapter 8.






Chapter 2

In Vivo Probing and Modelling the
Diffusion of Water Molecules in the
Human Brain

In 1965, Stejskal’s and Tanner’s method for probing the diffusion of water molecules by
using Nuclear Magnetic Resonance (NMR) resulted into a non-invasive technique called
Diffusion Weighted Magnetic Resonance Imaging (DW-MRI) [149]. DW-MRTI’s ability to
capture information related to the underlying white matter (WM) structure of the brain
was revolutionary. In this chapter, a brief introduction about the properties of the diffusion
of water molecules in the human brain is presented, along with the description of several
suitable models to represent DW-MRI data.

2.1 Brownian Motion of Water Molecules

Around 77 — 78% of the human brain consists of water [105]. DW-MRI measures the signal
of the proton (*H) in water molecules (H50), which corresponds to the movement of water
molecules, by applying a set of magnetic gradient directions to the subject that we examine.
This permits us to measure the motion of the molecules across these directions. This random
movement is known as intra-voxel incoherent motion (IVIM), random motion, or Brownian
motion. Examples showing different kind of Brownian motions are presented in figure 2.1.

Unfortunately, this is not the only motion which can be observed in the measured signal.
Another type of detected motion is known as bulk motion. It is the result of the subject’s
movements during the scanning procedure. Furthermore, brain pulsation is also considered
as bulk motion. The magnitude of this motion is usually larger than Brownian motion and
can be easily removed or corrected as an artifact.

Concerning the aspects of the applied magnetic field, it is always parallel to the z axis,
but it varies in space. It is modulated according to the current 3D position (x,y, 2):

7
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FIGURE 2.1: Different examples of diffusion. (a) random isotropic diffusion of water with
unconstrained shape, (b) and (d) anisotropic shape constrained diffusion and (c) isotropic
shape constrained diffusion. Image reproduced from [112].

B(x,y,2) = By [0,0, (az 4 by + ¢z + 1)]", given the main magnetic field B, (see figure 2.2).
In this way, the set of magnetic gradient directions consists of unit vectors of the form
g = la,b,d" / ||a,b,d"||. Applying specific gradients in many directions allows us to
measure the Brownian motion by sampling the 3D unit sphere or hemisphere, useful to
understand the neural network (i.e. structure) of the brain. For more details about the
acquisition process, the reader is referred to [112].

X-Gradian

Y-Gradiani

Z-Gradian

FIGURE 2.2: The strength of the magnetic field B (red arrow) is linearly modulated along
each of the three axes. Figure appeared in [112].

The measured diffusion can be isotropic (meaning the same signal in each gradient direction
that can correspond to trapped water without any particular information, e.g. fig. 2.1 a)
and c)), or anisotropic that reveals, except from the magnitude of the diffusion, also the
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orientation of the underlying fiber structure and has the potential to indicate several neural
connections, structures etc. (e.g. fig. 2.1 b) and d)).

The Propagator Description of Water Molecules

Random diffusion of water molecules flowing from point 7 to 7’ in time ¢ can be described
by a probability density function (PDF) p(r’, t|r) [92] which follows Fick’s law:

op(r',t|r)

_ 2 /
g =DVp(r',t|r), (2.1)

assuming that the diffusion is homogeneous in the medium, where V? is the Laplacian
operator and D is the corresponding diffusion tensor (see section 2.3.1.1).

Equation 2.1 describes the propagator of a single water molecule, but several water molecules
can exist in a voxel, participating in the same motion. For that reason, another useful
quantity is the probability of molecules to reach point 7’ in time ¢, also known as ensemble
average propagator (EAP):

p(r 1) = / p(r) p(r' t | v) dr, (2.2)

where p(r) corresponds to the density of water molecules in the initial position 7.

Given the initial state where particles start at point =, p(r/,0 | ) = §(v' — r), the Dirac
function, the solution of eq. 2.1 provides us with the following Gaussian description of the
propagator [92, 134]

p(r' —r,t) = ((4rt)’ |D|)71/2 exp (— (=) [4)t_ - r>)- (2.3)

2.2 DW-MRI Data

Several books address the DW-MRI acquisition process (see e.g. [91, 92, 112]). As a result,
the purpose of this section is not to focus on this procedure, but to mention the most
important properties of DW-MRI data and to remind the equations that describe them.

First of all, the characteristic term of "diffusion-weighted" is given due to the utilization of
a set of magnetic gradient directions along which the diffusion is measured [112]. In other
words, grey levels in DW images represent the diffusion (along each gradient direction). The
most common equation that defines the acquired signal intensity S in a gradient direction
g (3D unit vector) is the following:

S(g) = Spe ™" 1@, (2.4)



10 CHAPTER 2: Probing & Modelling Diffusion of Water

where Sy is the signal intensity with zero gradient (i.e. g = (0,0,0)), S(g) is the measured
signal along the gradient direction g, b is known as b-value and is the acquisition parameter,
and finally d(g) is the (positive) diffusion value depending on g. For example, given diffusion
tensor D (i.e. second order tensor, section 2.3.1.1), equation 2.4 is written as:

S(g) = Spe b8 Pe (2.5)

For more information about how equations 2.4 and 2.5 were derived the reader is referred
to [92, 112]. An example of DW-MRI signal is shown in figure 2.3.

FIGURE 2.3: Three slices of DW-MRI data in a given gradient direction. (left) coronal
view, (middle) sagittal view and (right) axial view of the human head.

Due to the fact that each DW-MRI image, that stores the signal connected to the diffusion
in a single direction, can be altered by the presence of noise, we need to gather as many
images as possible, for a set of different gradient directions in a limited scan-time, in order
to increase the accuracy of the measurements. Acquisition techniques with a lot of gradients
directions (e.g. 30, 40 etc.) are known as HARDI (High Angular Resolution Diffusion
Imaging) methods [160]. A more extensive discussion about HARDI techniques will take
place in the following sections.

2.3 Models for DW-MRI Data

2.3.1 Tensor Models

Diffusion models are tools that allow us to represent the diffusion of water molecules that
captures the structure of the WM of the brain. The first attempt took place by the in-
troduction of Diffusion Tensor Imaging (DTI). DTT uses very few gradients (e.g. 6) and
can only describe a single direction of diffusion in the underlying fiber architecture (see
subsection 2.3.1.1). As neuroimaging gained knowledge, it was proved that more complex
structures containing bundles of fibers can appear in the human brain (in almost 50% of
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voxels) [91, 92, 160, 161], meaning that more flexible models that can capture, in detail,
the underlying shape of the fibers are required [12, 14, 159, 172, 173|. In this direction,
Higher Order Tensor (HOT) models became popular (see subsection 2.3.1.2). Tensor mod-
els can describe diffusion (i.e. apparent diffusion coefficient - ADC profiles) and fibers
orientation (fiber Orientation Distribution Functions - fODF profiles) (subsection 2.3.2).
Subsection 2.3.4 defines some important tensor metrics, that will be needed in the rest of
the dissertation.

2.3.1.1 Diffusion Tensor Imaging and Second Order Tensors

DTT tensors, often called second order tensors or simply T2s, were proposed by Basser et
al. in 1994 [18]. Basser et al. modelled the propagator (eq. 2.3) in the form of ellipsoids.
Although it is named as diffusion ellipsoid, in fact it represents the iso-probability density
of the propagator (eq. 2.3) and it should not be confused with the diffusion profile (which
is commonly visualized by a "peanut" shaped representation, as we will show later).

As it is known, an ellipsoid is defined by six parameters (fig. 2.4). Theoretically, at least six
DW-MRI measurements across six independent gradient directions are need to determine
an ellipsoid.

The information enclosed in the six previously mentioned parameters of an ellipsoid can
be mathematically gathered in a tensor matrix Ds, such that the diagonalization of D,
produces the three eigenvectors vy, vy, v3 and their corresponding eigenvalues A\j, Ao, A3. A
T2 tensor can be represented by the following 3x3 symmetrical matrix:

Da:a: Da:y Dzz Dll D12 D13
DQ = Dyz Dyy Dyz = D21 Dgz D23 . (26)
sz Dzy Dzz D31 D32 D33

Given matrix Dy and a variable g = (1, f12, 13)7 in the 3D space, Basser et al.’s ellipsoid
is defined as the set of p's such that u” D;' u = ¢, where c is a constant (notice the
connection with the numerator in the exponential of the Gaussian propagator in eq. 2.3).

FIGURE 2.4: Six parameters (three eigenvalues A1, A2, A3, two parameters to define the
first eigenvector vy, one for the second vy, and zero for the third one v3) are needed to
define a 3D ellipsoid (image reproduced from [112]).
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The symmetry property of the tensor matrix Dy (D;; = D;;) results into having six unique
coefficients (same in number as the parameters of the ellipsoid). These coefficients allow
us to define another representation of the T2 as a 6 x 1 vector using Voigt’s notation,
[Dyw. Dy, Dz, Dy, Do, Doy )

In addition, a useful function that can be defined with the use of a tensor matrix (eq. 2.6),
is known as "diffusivity function". It is a symmetrical positive real-valued function which

returns the diffusion along a given gradient direction g = (g1, g2, g3)*, where ||g|| = 1:

3
d(g) = Z ZDij 9i9;=g Dyg. (2.7)
i=1 j=1

The diffusivity function d(g) has the shape of a peanut in contrast to the ellipsoid of the
propagator (see figure 2.5). In this dissertation, we will work with the peanut shaped glyphs.

d(g)

A€

VA€ . . . . . . . . .

€ 4 -2 0 2 4 6 8 4 -2 0 2 4 6

FIGURE 2.5: Plotting 2D slices of the 3D diffusion ellipsoid for ¢ = A1 (on the left) and
the diffusivity function d(g) as "peanut shaped" representation (on the right).

& b o v & @
& & b o N 2o

Anisotropy indices for DTI

Two popular scalar maps proposed by Basser and Pierpaoli in 1996 [21|, the fractional
anisotropy (FA) and the relative anisotropy (RA), have been widely used in DTT:

B D Qe = ()P + (s — ()
FA — \@ N ES ST : (2.8)

T3/ = )2 + O — () + (s — ()
RA = \/; o : (2.9)
where (\) is the mean diffusivity (MD) and is defined as:

At s A
(= T2t 32+ % (2.10)

and FA € [0, 1], while FA = 0 corresponds to the isotropic diffusion.
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T2 Model limitations and efficient ways to circumvent them

As can be imagined, the simplicity of the T2 model comes with a price. It appears that the
human brain contains complex structures with more than one bundle of fibers crossing each
other, in almost 50% of voxels [91, 92, 160, 161]. Figure 2.6 describes some characteristic
cases of fiber bundles that appear frequently in real DW-MRI data, and unfortunately T2
fails to represent correctly the underlying fiber structures. Fiber Orientation Distribution
Functions (fODF), shown in the fourth column, give better results than T2s. A fODF is a
function on the sphere, describing the orientation of the fibers (see subsection 2.3.2).

Aher configuration T2 Principal direction  f-0DF

Parallel - | !
Fanning - . !
Bending . . :
Crossing - . x
(acute)

Crossing - . ? -“

FIGURE 2.6: Several examples of bundles of fibers that occur frequently in real data (first

column). The second column contains the T2 models, while the third column contains the

principal direction of the T2 models and finally the fourth column shows the fODF results,
which are better than T2s. (original image appeared in [91]).

In order to bypass the T2 limitations, researchers started thinking about the points where
information is lost. Firstly, it is undoubtable that fitting a model able to describe more
complex data is the first key point. A solution to this problem is given by considering
more complex tensor models (further discussion is proposed in section 2.3.1.2). But before
addressing this point, there are two more points to stand.

The second limitation takes place during the data acquisition process. Usually, hardware’s
ability to measure the signal is limited around 2 — 3 mm per dimension. In order to achieve
higher resolution of DW-MRI images, novel hardware should be constructed, which could
produce larger magnetic fields (corresponding to b-value higher than 1000 s/mm? currently
used in DTT). Moreover, increasing the magnitude of the magnetic field also increases the
risk taken by the patient and the researcher should further study that risk. At the time when
T2 models appeared, 1.5 Tesla fields were commonly used. But nowadays the situation is
better since for example, in experimental level, human studies have been performed at up
to 9.4 Tesla [162] and animal studies have been performed at up to 21.1 Tesla [132].
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FIGURE 2.7: Three different sampling schemes for diffusion MRI. (a) DTT , (b) DSI and
(c) QBI (image reproduced from [92]).

The third cause of information loss is related to the low number of gradients used to acquire
the signal, which may not be sufficient to capture in detail the underlying fiber structure.
For this reason, methods belonging to the HARDI family [121, 160|, which increase the
angular resolution by using a large number of gradient directions, started to be developed.
Multi-model fitting algorithms [84, 170], or model-independent methods [159], benefited
from specific HARDI acquisitions (such as diffusion spectrum imaging (DSI), Q-ball imag-
ing (QBI)), which estimate the diffusion Orientation Distribution Function - dODF (see
subsection 2.3.2), have been proposed. Moreover, methods based on spherical deconvolution
e.g. [4, 44, 90, 157, 158|, which estimate the fODF and require significantly less samples
than DSI, became popular in the following years after T2 models. Figure 2.7 shows different
sampling schemes and highlights the large number of gradient directions needed in DSI.

Furthermore, figure 2.8 illustrates a dODF patch stemming from Q-ball imaging (a model-
free approach) on real data that contains crossing fibers.

FIGURE 2.8: A patch with dODF profiles resulted from Q-Ball imaging using 492 gradient
directions in an area containing crossing fibers (image appeared in [161]).



2.3. MODELS FOR DW-MRI DATA 15

2.3.1.2 Higher Order Tensors

As previously said, it is possible to increase the number of gradient directions during DW-
MRI acquisition, so that more accurate representations of the underlying fODF (or other
profiles) can be obtained. Due to the fact that HARDI approaches are not based on struc-
tured models (such as tensors), numerous samples are required, resulting into long time
scans.

Alternatively, higher order tensors increase the accuracy of the description. Defining a more
flexible model than the limiting T2 model, by increasing the order of the tensor, looks as
the ideal case. The order /N of a suitable tensor must be an even number, since the diffusion
d(g) is a symmetrical function. A T2 tensor (N = 2) is represented by K = 6 unique
coefficients (as was previously shown). A fourth order tensor (T4) is described by N = 4
and K = 15 (as we will justify later), and so on, N = 6, K = 28 and N = 8, K = 45
etc. (see section 2.3.3 for the computation of K). As a consequence, it is important to
select, wisely which model is suitable to our data, and avoid increasing the tensor’s order
with no control, since it will increase the number of the unknowns and probably ineffective
and pointless coefficients. Examples of methods modelling diffusion or fODF profiles with
HOT estimation can be found in [14, 122, 172|, while for using T4 with positive definite
constraints estimations the reader is referred to [11, 12, 64, 176].

According to [121], the diffusivity function of a Nth order tensor Dy with elements D; ;, .,
. . . . T .
given a 3D gradient direction g = (g1, g2,93)" can be written as:

3 3 3
d@) =Y > > Diisin Gir Gin - Gin: (2.11)
i1=lig=1  iy=1
where ¢;,, ..., gy take values from the coefficients {g1, g2, g3} of g.

For the purposes of this dissertation, we will focus on the fourth order tensor model (T4).
T4 models can represent up to three clearly separated bundles of fibers. A T4 tensor can
be described by the following 6 x 6 symmetric matrix:

D, — D331 Dssas Dsszs Dagia Dssas Dagis (2.12)

which can be compressed in a vector with 15 unique coefficients [D1111, D222, D3sss, D11,
T .

Daozs, Diiss, Digss, D12z, Disss, Dizes, Dii1z, Dine, Dasss, Dagos, D1222] , since for ex-

ample D1122 = D2211 = Dlglg, D1333 = D3313 etc. MOI‘GOVQI‘, the estimation of a T4 requires

at least 15 DW-MRI measurements instead of 6 in the T2 case.



16 CHAPTER 2: Probing & Modelling Diffusion of Water

Following equation 2.11, the diffusivity function of a T4 writes:

d(g) = Z Z >N Dijwi gi 95 9 91 (2.13)

It should be mentioned that the T2 model D is a particular case of the T4 model T', justified
by equalizing the diffusivity functions in equations 2.7, 2.13 and considering g7 + g3 + g5 = 1:

3 3

3 3 3
(ZZDU 9i gj> (97 + 95 +93) = ] ZZZTJM 9i 95 9k 91 (2.14)

i=1 j=1
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FIGURE 2.9: Comparison between T2 and T4 models for a ROI that contains crossing
fibers in the human brain. (a) T2 and (b) T4 resulting tensor fields. T4s represent the
fiber structure more accurately than T2s.

Figure 2.9 shows that fourth order models are flexible and allow to capture in much more
detail the underlying fODF in comparison to second order models. It can be noticed that
when the voxels contain crossing fibers, the T2 approach is unable to capture in detail the
shape of the fibers, given a solution more close to isotropic diffusion, while the T4 models
better their shape. Moreover, it is mandatory to mention that a more detailed model can
be much more useful to early diagnosis than less accurate techniques.
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Anisotropy indices for HOTs

Interesting indices for high order tensors have been proposed in [122]. Among them, one
really useful index is the Generalized Anisotropy (GA) which is a contrast function of the
variance of the diffusion and is defined as:

1
GA=1-— 2.15
T 250V ) (2.15)

where V' € [0, 1] is the variance of the normalized diffusivity (see [122] for the details of that
index) and the exponent £(V') writes:

1

V=14 +
V) =1+ 15007

(2.16)
G A’s objective is to highlight areas in WM with anisotropic properties (e.g. fibers), similarly
as FA, RA in the T2 case. High values of GA characterize the WM. Moreover, visualizing
the GA as greyscale 2D /3D images, low contrast can be noticed between anisotropic voxels
or between very low anisotropy, such as isotropic water. As a result, it is useful to separate
the white matter from the grey matter. Figure 2.10 plots both GA and (V') functions.

~

05 ] T 05 ] =15

0 0.2 04 0.6 0.8 1 -4 -3 -2 -1 0 0 0.002 0.004 0.0068 0.008 0.01
i log10(V) v

FIGURE 2.10: Plotting GA (on the left and the center) and (V') (on the right).

2.3.2 ADC, dODF and fODF Profiles

In 1977, Tanner proposed to relate the measured NMR signal to a single scalar, called
apparent diffusion coefficient (ADC), since only one gradient direction (g = g()) was used.
Replacing d(g) in equation 2.4 with ADC, yields equation 2.17:

_ 1 (5(s")
ADC = 3 In (T) : (2.17)

Using more than one gradient g in the acquisition results into estimating whole diffusion
(ADC) profiles similarly to eq. 2.17: ADC(g?) = — (1/b)In (S (g™) /S).

Unfortunately, the diffusion (ADC) profile does not match with the underlying fiber orien-
tation (see fig. 2.12). This mismatch was efficiently explained in [71] with the next example.
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Given two crossing fibers with different scales f;, f», modelled by two tensors DM, D) the
acquired signal can be described by the following equation:

S(g,b) = f/15:(g, D) + f25(g, b) (2.18)
= [fl exp {—bgTD(l)g} + faexp {—bgTD(z)gH So = [exp {—bADC(g)}] So.

In this case, the diffusion (ADC) profile will be given by:

ADC(g) = —% In [frexp {~bg"DWg} + frexp {-bg"DPg}]. (2.19)

As can be noticed, the two fiber descriptions are combined non linearly in eq. 2.19, while a
linear combination of the fibers would match the correct orientation (see fig. 2.12).

To bypass this misalignment, Orientation Distribution Functions (ODF) were proposed [47,
158, 159, 170, 172].

To be more precise, diffusion Orientation Distribution Functions (IODF) choose to describe
the EAP propagator (eq. 2.2) as follows:

dODF(g) = /Ooop(rg, t) dr. (2.20)

In 2004, Tuch [159] initially proposed the "model-free" concept of Q-Ball imaging, in order
to approximate the dODF using acquisitions on the spherical ¢ space (presented in figure
2.7(c)). One year later, Hess et al. [79] used Spherical Harmonics to define dODFs. In 2007,
Descoteaux et al. [47] proposed a more robust Q-Ball imaging.

Recalling the previous example, the corresponding EAP propagator will be defined by the
following linear equation, given the two individual propagators one for each fiber p(r,t),
po(r, t):

p(r,t) = fipr(r,t) + fopa(r,t). (2.21)

In the same direction, fiber Orientation Distribution Functions (fODF) (e.g. [4, 158, 172|)
describe the acquired signal S via spherical convolution of the fODF profile with a response
function R (modelling a single fiber) over the unit sphere (see fig. 2.11):

S(0,¢) = FODF(0,6) ® R(0), (2.22)
where 6 and ¢ are the spherical coordinates.

Moreover, the spherical convolution is visually expressed in figure 2.11. The synthetic fODF
function presented in fig. 2.11 is defined as the linear combination of two Dirac delta func-
tions. In practice, fODF functions can appear differently than linear combinations of Dirac
delta functions due to the presence of noise.
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-

S(6.9) R(6) ® fODF®.9)

Si5109) + 564

FIGURE 2.11: An explanation in 2D of the spherical convolution procedure used in f{ODF
estimations (image reproduced from [158]).

In order to better understand the differences between ADC and fODF profiles, we consider
the fiber structures (drawn as blue crossing lines) illustrated in figure 2.12. It is clear that
the orientation of the ADC profiles (second row) has nothing in common with the underlying
fiber orientation (especially when the two bundles are well separated). This happens due to
the non linear combination of the fibers in the ADC profiles (eq. 2.19). On the contrary,
fODF profiles (third row) describe significantly better the correct orientation by combing
linearly the fibers.

I II ll s gl . s e e
maﬂﬂfﬁ’d’oﬂeﬂwu
PSP RPRPe oo oo

F1GURE 2.12: Comparisons of ADC and fODF profiles. The first row corresponds to the
underlying fiber structure, the second row contains the ADC profiles, the third row shows
the fODF profiles (original image appeared in [172]).

ADC and fODF computations using tensor models

As we previously showed, diffusion (ADC) and fODF profiles can be calculated independently
of a tensor model given the limited set of gradients used in the acquisition. Alternatively,
if someone has already estimated a tensor model on ADC/fODF profiles, it is possible
to estimate the corresponding profile in larger sets of gradients, using the corresponding
equation 2.23 for diffusion (ADC) profiles, or eq. 2.24 for fODF profiles:

3 3 3
i1=112=1 in=1
3 3 3

F@) =YY DI G G - Gine (2.24)

i1=112=1 in=1
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2.3.3 Spherical Harmonics and their Connection to Tensors

The mathematical framework of Spherical Harmonics (SH) was initially introduced by
Laplace in 1782, during his investigation of Newton’s law for universal gravitation. The
SH of order £ =0,1,2,... and index m = —/¢,...,0,...,¢ is defined as:

20+ 1)(0 —m)! ,
Y["(0,0) = \/( 47—: )E£+Z§! P cosf e ™, (2.25)

where 0 € [0, 7] is the polar angle, ¢ € [0, 27) is the azimuth angle and P} is the associated
Legendre polynomial.

Each SH is a function on the sphere, and as a result, a set of different pairs ¢, m can
construct a set of orthonormal basis for spherical functions. Figure 2.13 exhibits a few
spherical harmonics, for different ¢, m values.

m=0
E=oe
m=1
£=1$ \E
m=2
=@ @ S
m=3
=@ @B P =
m=4
G @ A <= 4

FIGURE 2.13: Examples of Spherical Harmonics of order ¢ and index m (image reproduced
from [92]).

Given a tensor in DW-MRI that defines a symmetrical and positive real-valued function
d (6, ¢) (diffusion, either dODF or fODF profile) on the unit sphere, it is possible to describe
d (6, ¢) with the aid of K SHs:

d(0,¢) = e Yi(0,0). (2.26)

where ¢ are the coefficients related to d (6, ¢) as they appear in the modified SH basis of
[47] and

V2 Re (Y}m' (0, ¢)) ifm <0,
Ye(0.9) =9 Y/ (6,0) Lif m =0, (2.27)
(—1)™ In (Y™ (6,9)) ,if m > 0.
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In addition, the antipodally symmetric property of diffusion/dODF /fODF profiles, results
into needing only even order (¢) spherical harmonics to describe diffusion/dODF /fODF
profiles. Moreover, in DW-MRI K = (¢ + 1)(¢ + 2) [47, 92]. Some interesting work in the
field of diffusion MRI that handles SH functions can be found in the references [47, 137, 158].

2.3.4 Tensor Metrics

Initially, Euclidean distances between tensor coefficients were considered. These distances
appeared to be unsuitable to capture the precise differences of tensor data, and as a conse-
quence Riemannian metrics were introduced. For those kind of metrics, the shortest con-
necting path between two points is a curve, known as geodesic curve, instead of a straight
line as in an Euclidean space. The following two metrics that will be presented are defined
in Riemannian spaces.

The first useful metric that we are going to need in this dissertation is called Log-Euclidean
distance and was proposed by Arsigny et al. [6] in 2006. Tt is important to notice that it is
only defined for second order tensors Dg) as:

dist(DY, DP) = Hlog (D;”) ~log (D§>) H , (2.28)

where ||.|| is the Frobenius norm and log (D?) uses the outputs of the spectral decompo-

sition of the 3 x 3 matrix Dg):

log (DY) = V7 log(Ai)Vi, (2.29)

and V; contains row-wise the eigenvectors and A; is the diagonal matrix with diagonal ele-
ments the eigenvalues. Furthermore, several other metrics have been proposed for DTI and
T2s in the literature [57, 99].

Inspired by the work of [153] on distances between positive functions, we define the second
useful distance, between two diffusivity profiles (ADC/dODF /fODF) dy, d»:

dist(dy, ds) ://‘log Z;EZ?;;

where ¢ € [0, 7] is the polar angle, § € [0, 2] is the azimuth angle that parameterize the
3D sphere. This distance can be used for both T2 and HOT tensors.

sinf df do, (2.30)

As can be noticed, both metrics use the logarithm. Choosing log-based distances as metrics
attributes the same impact to small differences (e.g. 1073 and 1072) and to large differences
(e.g. 10? and 10?) on the distance. A non log-based distance will be greatly affected by large
differences and the contribution of small ones will be eclipsed. Such (non log-based) distances
can be found in the literature e.g. for the fourth order tensor case [11, 15, 48, 110, 111].
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Practical computation of dist(d;, ds)

The distance defined in eq. 2.30 can be approximated as the sum of N samples of the
ADC/fODF /dODF profiles on the 3D unit hemisphere by constructing a regular grid with
Ny, Ny samples in the 6 and ¢ axes respectively (A8 = 27/Ny, Ap = 1/2Ny, N = NyNy):

¢;)
¢>)

dist dl, dg Zg Zd)

=1 j=1

log sin (0;) AGA@. (2.31)

The quality of the approximation in equation 2.31 depends on the number N of samples.
Due to the fact that we are interested in T4 models in this work, we performed a simulation
test measuring the distances of all possible combinations between eight synthetic T4s shown
in figure 2.14, in order to find the proper N that stabilizes the distances. The minimum N
value derived from that simulation process (visually from the obtained distances presented
in figure 2.16) is N = 242 samples on the unit hemisphere (see fig. 2.15).

[--\#n%

(@ (b)) (e} (d) (e) () (h)

FIGURE 2.14: T4 representation of: (a) isotropic water, (b)-(d) three main fibers, while

the largest diffusion occurs on y-axis, x-axis, z-axis, respectively, (e) a single fiber, (f)-(g)

two crossing fibers and (h) three crossing fibers with equal diffusion in each direction. The

color of the tensors highlights the orientation of the largest fiber according to the template
in the top right corner of the figure.
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FIGURE 2.15: The figure depicts the resulting sampling scheme with 242 samples that
stabilized the distances in fig.2.16.
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FIGURE 2.16: Simulation test in order to determine a sufficient number N of samples in
the approximation of eq. 2.31. (a) Shows the distances for all pairs of combinations of T4s
in figure 2.14 and (b) represents the zoom-in view of the bottom part of subfigure (a). It
is noticeable that between 230 — 250 samples in the hemisphere, the distance is stabilized.
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2.4 High Level Description of DW-MRI Data

2.4.1 Fibers

Until a few years ago, mapping the connection paths between different parts of the brain
had only been possible via ex vivo invasive techniques, e.g. anatomical dissection, or in
vivo chemical tracer methods. As a consequence, non-invasive techniques to monitor and
study in vivo brain lesions, development etc. that will affect those networks were welcome.
Fitting tensor models (see section 2.3.1) to DW-MRI data permits us to approximate the
underlying fiber structure and to specify the main directions of diffusion. The strategy to
determine connection paths of the brain which uses information derived from tensor models
is known as tractography. Tractography methods can be categorized into two types:
(a) deterministic and (b) probabilistic. An extensive review of various white matter
tractography methods can be found in [97].

Briefly, deterministic tractography exploits the information given by the principal direction
of diffusion of each tensor (i.e. tensor major eigenvector). Figure 2.17 illustrates examples
of fiber tracts, obtained using a deterministic method called "Streamlines" proposed by
Basser in 1998 [17], of two parts of the human brain (the superior longitudinal fasciculus and
the left cingulum). Moreover, figure 2.18 contains fiber tracts of one of the most extensive
part of the human brain, the corpus callosum, produced by a method based on Basser’s
streamlines and published in 2002 [34].

SHORT FIBRES

FRONTALSS "L + \

FIGURE 2.17: Streamlines tractographies of (a) the superior longitudinal fasciculus
and (b) the left cingulum (lateral view). Images adapted from [34, 35].

On the other hand, probabilistic tractography approaches were proposed in order to bypass
the weakness of deterministic tractography not being able to give information about the
confidence in the fiber estimations, but also not producing all possible tracts e.g. due
to branching. In this case, probability density functions (PDFs) of fiber orientations are
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FIGURE 2.18: Tractography of the corpus callosum, a part of the brain that joins the
cortex of both cerebral hemispheres. A) lateral view, B) superior view. Image appeared in
[34, 35].

calculated at each voxel and several tracts can be sampled from that PDF, instead of getting
a single output, such as the major eigenvector (e.g. in deterministic approaches). For more
information about fiber PDF estimations, the reader is referred to [91, 92].

A comparison between deterministic and probabilistic tractographies is presented in fig-
ure 2.19. It is clear that the probabilistic approach yields much more trajectories than the
deterministic one and besides that it is possible to know the confidence of them.
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(b)

FIGURE 2.19: Comparison between deterministic and probabilistic tractographies. Trac-

tographies of the corpus callosum appear in the first row and the pyramidal fasciculus

in the second row. (a) Tracts by using deterministic approach from [113] and (b) by using
probabilistic method from [130]. Images appeared in [130].

2.4.2 Connectomes

From the beginning of neuroscience, understanding the functionality and the connectivity
of neural elements of the brain and identifying anatomical units has puzzled and fascinated
scientists. The evolution of science and the invention of different techniques, such as fMRI,
EEG etc. or even tractographies produced from previously mentioned techniques, permit
us to measure the activity of neurons and to localize their connections so that interesting
relational paths between them can be depicted. As a consequence, the need of a proper way
to model that information came to the foreground.

The answer to the problem of representing the connectivity was found with the aid of
graph theory. The nodes of the networks represent neural units, while the edges reflect the
associations between neural structures. These edges are undirected and can be weighted.
The weights may contain information, for example the number of fibers connecting two neural
structures (i.e. structural properties), or the coherence of the two nodes (i.e. functional
properties), yielding adjacency matrices after thresholding.
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At this point, it is interesting to present the types of networks that we can have, as they are
categorized in [148|. There are three main types of brain connectivity:

1. Structural connectivity is represented by a group of physical or structural connec-
tions between anatomically linked neurons. Connection scale varies from local connec-
tions of single cells to larger networks. These paths can be dynamically changed due
to synaptic remodelling, development of the brain during aging or learning procedures
[148]. Examples of structural connectivity algorithms of the whole human brain are
given in figures 2.20, 2.21.

MRI Acquisition

Segmentation T1w high res. Diffusion Spectrum Imaging

Partmon into 66 anatomical subreg|ons : l
SUPe’w centr
@I‘IE(B .
o ‘ incy ronta
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Whole brain structural
connection network

FIGURE 2.20: An example of the construction procedure of a whole brain structural con-
nectivity network. (1) High-resolution T1 weighted and diffusion spectrum MRI (DSI) is
acquired. DSI is represented with a zoom on the axial slice of the reconstructed diffu-
sion map, showing an orientation distribution function at each position represented by a
deformed sphere whose radius codes for diffusion intensity. Blue codes for the head-feet,
red for left-right, and green for anterior-posterior orientations. (2) White and grey matter
segmentation is performed from the T1-weighted image. (3a) 66 cortical regions with clear
anatomical landmarks are created and then (3b) individually subdivided into small regions
of interest (ROIs) resulting in 998 ROIs. (4) Whole brain tractography is performed pro-
viding an estimate of axonal trajectories across the entire white matter. (5) ROIs identified
in step (3b) are combined with result of step (4) in order to compute the connection weight
between each pair of ROIs. The result is a weighted network of structural connectivity
across the entire brain. Figure obtained from [75].
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Brain-graph pipeline

Gyral labeling Tractography
"-“_-__ _.__.,-r

graph

FIGURE 2.21: Steps of the Magnetic Resonance Connectome Automated Pipeline (MR-
CAP). MRCAP technique combines DTI tractography with structural MRI (MPRAGE)
to construct a MR connectome. Original figure appeared in [166].
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2. Functional connectivity draws patterns of deviations related to statistical indepen-
dence between spatially remote neural structures [59, 60]. These time series data can
be extracted from cellular recording techniques, fMRI, EEG, MEG, or other means. In
contrast to structural connectivity, functional networks depend extremely on time and
can change. In addition, the functional process can be stimulated by external factors
(e.g. movements of the fingers, conversation with the patient etc.) that can activate
different neural sensors in the brain, but also the internal state of the patient.

3. Effective connectivity constructs the paths of causal influences between neurons
[59]. As for functional connectivity, effective connectivity is also time dependent and
can be stimulated by external or internal factors.

The term "connectome" was originally proposed by Olaf Sporns et al. [148] in 2005, in
order to describe the structural network of the human brain. In the same year, Hagmann
[74] named as "connectomics" the science that studies connectome data. These terms can
be used to describe any type of connectivity.

There are several obstacles that we must deal with during the construction of a human
brain connectome. The complexity of the 3D structure of the human brain, its development
and the variability of its functions, increase the number of difficulties for constructing a
universal connectome of the human brain (or even particular parts of it). Moreover, invasive
anatomical techniques, such as postmortem examination (which is commonly used in other
species), are not always applicable, due to physical constraints of brain tissues or the absence
of suitable postmortem tracing methods [148].

On the other hand, this is not the only choice. The use of non-invasive methods, such as
diffusion MRI is promising. The diffusion of water molecules can reveal fiber tracts, especially
in the white matter of the brain where the diffusion is anisotropic in most of the cases (in
comparison to the diffusivity of the grey matter where it is closer to isotropic). Fitting
diffusion models to DW-MRI data can help us to compute tractographies, which can be
used to define connectomes. Figure 2.22 shows an example of the human brain connectome,
resulting from the processing of diffusion MRI tractographies of the whole brain.

A simple look at figure 2.22 is enough to understand that these kind of networks are highly
complex, including a large number of nodes and edges. As a result, a more compact version
of them could allows us easier to derive conclusions. The calculation of modules (i.e.
clusters of nodes that share more edges within the nodes of the module than with nodes of
other modules) e.g. [36] and hub nodes (i.e. nodes that integrate a highly diverse set of
signals and are capable to manage the flow of information between individual parts of the
brain) e.g. [147] can assist in this direction. Figure 2.23 shows an example of module and
hub classification.

For the explanation of abbreviations concerning the anatomical areas shown in fig. 2.22
and 2.23, the reader is referred to |75, from which the images are obtained.
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FIGURE 2.22: The human connectome. Images show the fiber architecture of the human
brain as revealed by diffusion imaging (left) and a reconstructed structural brain network
(right). Images obtained from [75]

Individual Efforts

Connectivity studies of the whole brain were performed using diffusion MRI techniques.
[turria-Medina et al. [87] worked on 70-90 cortical and basal grey matter areas, Gong et al.
[69] on 78 cortical regions of the human brain and they also identified several hubs, both by
using DTT methods. Hagmann et al. [75] combined DSI data of the whole brain, calculated
by using [170], with the graph analysis of [147] allowed them to study the human cortical
connectivity.

Collective Efforts

One of the largest projects whose goal was to define the anatomical and functional network
of the healthy human brain started in 2009 and is called the Human Connectome Project
(HCP - http : //humanconnectome.org/). Financed by sixteen components of the National
Institutes of Health in USA, it consists of several leading institutes in the neuroscience
field, such as Harvard University, Massachusetts General Hospital, Washington University
in Saint Louis, the University of Minnesota and the University of California in Los Ange-
les. Moreover, another complementary contribution of this project can be to enlighten the
study of different brain disorders that affect the connectivity paths, such as Alzheimer’s
disease, traumatic brain injury, stroke etc. Moreover, in 2009, the 1000 Functional Con-
nectomes Project (FCP - http : //fcon_1000.projects.nitrc.org/) has been launched by
leading members of the fMRI community. In 2011 the FCP idea resulted into developing
the International Neuroimaging Data-sharing Initiative (INDI), initially by merging under
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FIGURE 2.23: Modularity and hub classification. Six modules are shown as grey circles

centered on their center of mass and sized according to their number of members. Edges

correspond to the average connection densities of each region with the member regions of
each of the six modules. Image obtained from [75]

the same name eight other individual efforts (taking place at Baylor College of Medicine,
Beijing Normal University, Berlin Mind and Brain Institute, Harvard-MGH, MPI-Leipzig,
NKI-Rockland, NYU Institute for Pediatric Neuroscience and the Valencia node of the Span-
ish Resting State Network), in order to enhance its database with global contributors, but
also to establish a common sharing protocol. Furthermore, the Brain Architecture Project
(http : //brainarchitecture.org/) aims to extract knowledge about human’s, mouse’s, mar-
moset’s, zebra finch’s brain architecture and structural organization.

2.5 Partial Conclusion

DW-MRI is a non-invasive technique that permits us to probe in vivo the diffusion of water
molecules in the tissues of the human brain. It reveals the structural information of the
brain. DW-MRI data correspond to raw data that should be mathematically modelled in
order to perform useful calculations.
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In this chapter, different kind of diffusion models were analysed, starting from DTI and its
limiting T2 model, continuing to T4 models that can represent up to three clearly separated
bundles of fibers and their generalization to N-order tensors. The higher the order of model,
the more detailed the obtained description of the underlying fiber structure. Moreover, sev-
eral measures of anisotropy per model were enumerated, and the difference between ADC,
dODF and fODF profiles was highlighted. Depending on the pathology of interest, if the
orientation of the fibers is changed or if only lesions on the diffusion appear, someone can
choose between fODF profiles for the first case, and ADC profiles for the second case. Proper
tensor metrics are useful in both cases. Finally, high levels of DW-MRI descriptions were dis-
cussed, such as fiber tracts and connectomes. Although fiber tracts are difficult to validate,
non-invasive studies such as high-resolution diffusion imaging are the most promising way
for mapping comprehensive structural connectivity at the macroscale. Moreover, collective
efforts in constructing connectomes of the brain look very promising and auspicious.

Although the next chapters are focused on voxel-based analysis, it is clear that statistical
analysis can be applied on any predefined fiber tracts and connectomes, by defining dis-
tance matrices between fiber tracts and connectomes. This aspect constitutes a remarkable
perspective of the present work.



Chapter 3

Pre-processing Steps for DW-MRI Data
with Emphasis on T4 Reorientation

In this chapter, the pre-processing steps of the most commonly used procedures in statistical
analysis of DW-MRI data are presented. The difficulties of T4 reorientation are described
and a brief overview of existing work is given in section 3.3. In section 3.4, two T4 decom-
positions into T2s are studied, while section 3.5 describes two T2 reorientation schemes.
Section 3.6 presents our study on the fourth order tensor reorientation scheme proposed in
thesis [134] and section 3.7 contains the experimental results. Finally, section 3.8 is the
partial conclusion of the chapter.

3.1 Pre-processing the Raw DW-MRI Data

A few standard pre-processing steps are usually required for each datum (in normal and
pathological groups), before the computation of the statistics:

e Eddy Current Correction is crucial due to the presence of eddy currents (also known
as Foucault currents [55]) in the gradient coils that generate stretches and shears in
the reconstructed volumes (i.e. DW-MRI data) during the data acquisition process.
These distortions are different for each gradient direction. Head movements and blood
pulsation are also corrected, by using affine registration to a reference volume (usually
the DW-MRI image that corresponds to b = 0).

e Brain Extraction aids us to approximate the borders of the brain by excluding
uninformative areas such as the skull, the eyes, the nasal and oral cavities. It will help
us to gain processing time since we are interested only in the voxels of the brain, but
also since the template images usually do not include that information.

e (Calculating FA images is a usual step in the construction of an atlas, since they will
be used in the estimation of the transformation between the initial patient space and

33
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the atlas space of the common template image which often corresponds to a FA image.
Of course, other templates (e.g. DW images) can be used too.

e The estimation of a linear /non-linear transformation between the estimated pa-
tient’s FA image and the template FA (e.g. MNI152, JHU-ICBM common space
[114, 115]) is mandatory, in order to transform (register and reorientate via data nor-
malization, see next section 3.2) each DW-MRI data to a common space. Typically,
a non-linear transformation is used to gain accuracy, and is initialized by a linear one.
A more detailed description of the data normalization problem will be presented in
section 3.2.

e Reduction of the registration error is usually performed by smoothing the data,
for example with a 3D Gaussian filter. Since in this case we risk to lose important
information due to over-smoothing, we propose to deal with any registration errors left
at the time of comparing two individuals, by searching for the best alignment between
two 3D patches (one for each individual) in the wide extended neighborhood of the
current voxel. Moreover, neighboring information can be introduced (for more details,
the reader is referred to the next section 5.1.2).

3.2 Data Normalization

It is known that the anatomical structure of the human brain varies between different pa-
tients [156]. In addition, the relative position of the brain between different acquisitions can
also be different. Therefore, data normalization is a crucial and mandatory step for atlas
construction and population comparisons. All individuals must be aligned to a common
space (e.g. template), usually called atlas space.

First of all, it is important to note that the term "data normalization" does not refer only
to the spatial registration of the data, but also to the reorientation of the diffusion
directions in order to address properly the new underlying fiber orientation, altered by the
spatial registration.

Secondly, we should continue by answering the following question: "What kind of data
should be normalized?". Since no standard guideline to follow exists in literature, most
of the approaches are categorized into two kind of strategies. The first strategy registers
spatially the raw DW-MRI images, and reorientates the gradient directions of the magnetic
field (i.e. b-vectors) in order to fit tensor models on the normalized data. Normalization
methods belonging to this category are, for example, [51, 152| for linear and non-linear
transformations, respectively, where the b-vectors are reorientated using the rotation part
of the transformation. Moreover, Hong et al. [82] proposed a spatial normalization of fODF
for HARDI data, where the transformation is applied on the 3D sampling vectors of the
fODF function. On the other hand, the second strategy firstly estimates a tensor model from
the data and consequently normalizes the tensor images, by registering serially all tensor
coefficients (considering each coefficient as a separate image), and reorientates afterwards the
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embedded registered tensor models. Examples of methods belonging to the second category
are |2, 13, 15, 73, 135]. For more information about the second category the reader is referred
to section 3.3.

3.3 Introduction to Tensor Reorientation

As was previously mentioned, applying a spatial transformation 7" to the tensor images, for
example, that will convert the tensor field of figure 3.14(a) to 3.14(b), will result into incoher-
ence between the main directions of the tensors 3.17(b) and the underlying fODF 3.17(a) in
the new space. This phenomenon occurs due to the fact that tensors contain directional in-
formation concerning the diffusion. As a result, actions should be made to fix all impending
misalignments.

Barmpoutis et al. proposed initially a reorientation method for T4 models in [15] and then
they generalized the idea to HOTs in [13], in order to apply an estimated rotation matrix
to the tensor models. Their approach is limited to linear transformations, when the whole
information can be captured by an affine matrix. Unfortunately, unlike T2 models, a linear
transformation that contains stretching or shearing effects is not directly applicable to T4
models on account of two fundamental reasons. Firstly, due to the fact that more than
one main direction can be described by the T4 model, and secondly, each direction will be
differently affected by the transformation. In that sense, Barmpoutis et al. fail to reorientate
separately each main direction.

On the other hand, since gold standard methods for T2 reorientation exist in the literature,
e.g. |2], HOT reorientation strategies that decompose the HOT model to several T2 com-
ponents, such as [15, 20|, started to appear |73, 135]. These approaches assume that each
of the obtained T2s will be aligned with one fiber of the HOT model. As a consequence,
the application of the transformation can be transferred to the level of each T2. Inspired
by the last concept, we will focus on T4 decompositions into T2s, as an intermediate step
of T4 reorientation. The following two sections give us more details concerning the decom-
positions proposed in [15, 20] and the T2 reorientation scheme of [2], that will help us to
define Renard’s method [134] to reorientate T4s.

3.4 T4 Decomposition Schemes

In this section, T4 decompositions into T2s will be presented. Firstly, the Spectral Decom-
position (SD) (subsection 3.4.1) proposed in [20] and secondly the Hilbert Decomposition
(HD) (subsection 3.4.2) [15] will be described, both studied also by Renard et al. in [135],
in order to apply the transformation on the obtained T2s.
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3.4.1 Spectral Decomposition

Basser and Pajevic proposed in [20] to decompose each fourth order tensor D, written as
a symmetric 6 x 6 matrix, with the aid of eigenanalysis into six eigenvalues p; and six
eigenvectors D}, which correspond to second order tensors without any constraint of either
positivity or rank:

6
D= DDy (3.1)

i=1

The advantage of SD decomposition is that the obtained solution is unique. On the other
hand, six T2s representing up to six bundles of fibers (in contrast to three described by
the T4 model) are more than we need, expecting that the remaining three eigenvectors will
correspond to zero eigenvalues. Experiments showed that it is possible to obtain eigenvalues
close to zero, or even negative, depicting T2s as crosses (e.g. second column and third row
in fig. 3.1) due to the presence of noise, without any physical meanings in diffusion MRI,
which constitutes an important drawback.

L
“
s
:
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FiGURE 3.1: Four T4 SD decompositions. The first two are synthetic and the last two

are selected from real data. The first line displays the T4 representation and the next six
lines contain the six T2s produced by the SD decomposition.
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3.4.2 Hilbert Decomposition

Barmpoutis et al. applied Hilbert’s theorem (Theorem 1.) on the diffusivity function d(g)
of a fourth order tensor in [12].
The diffusivity function d(g) of a T4 D can be written as:
3
d(g) = Z Dijii 9i 95 9 91, (3.2)
i g kl=1
where g = [g1, g2, 93] is a vector of the 3D unit sphere.

Theorem 1. (Hilbert’s theorem) FEuvery real positive ternary quartic function d can be
expressed as a sum of three squared quadratic forms

d(g) = (v'a1)" + (vTa)” + (vTas)” =v7'QQTv, (3.3)

where v is a vector of monomials [¢7, g3, g3, G192, 9193, 9293, Qi are 6 x 1 vectors containing
the coefficients of the ith quadratic function that corresponds to a second order tensor and
Q corresponds to a 6 x 3 summary matrix containing the three q;’s.

Although the solution consists of three T2s (equal to the number of fibers in T4), Ghosh
et al. |63] notice the non-unicity of this decomposition. As we can see in Eq. 3.4, we can
obtain one solution QR for each 3 x 3 rotation matrix R.

viGv =v7QQTv = v QRR'Q"v =vTQ' Q" v. (3.4)

FiGURE 3.2: Different rotation matrices R can recompose the same fourth order tensor

in HD. The first row shows the T4 representation. The three last rows display the three

resulting T2s corresponding each to a different R. The first column corresponds to the R
that minimizes L (defined by the method, see section 3.6.

In fact, another reason that clarifies the right choice of the rotation matrix R is the possibility
that the resulting T2s in QR may not match in shape with the individual fibers in the T4
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representation, showing us the requirement of a T2 rotation. Additionally, due to the absence
of positivity constraints on T2s, they can be negative (i.e. related to negative eigenvalues),
which someone can apparently assume as a drawback. Negative T2s are represented as
crosses without any physical meaning (fig. 3.2) and T2 reorientation, as the PPD (a state-
of-art method that will be described later), is not applicable in the presence of negative T2s.
On the other hand, the effect of negative T2s is eliminated since the obtained signal is always
positive considering the square of T2 in QQ?. Moreover, the maximum number of T2s is
equal to the maximum number of fibers that the T4 model can represent. Furthermore, if
someone desires to eliminate the appearance of crossing (negative) T2s in the decomposition
(at a minimum possible level), the definition of an optimization problem with a proper cost
function L is feasible. The minimization of L with respect to R will reduce that phenomenon.
For example, in figure 3.2 the first column is related to the correct rotation matrix R.

3.5 T2 Reorientation Schemes

It is known that every transformation T such that x’ = T'(x) can be locally expressed by
an affine matrix F. If T is affine or rigid (represented by a matrix A), then matrix F does
not depend on the position x (F = A). Otherwise, if T is non linear, a matrix F(x) can be
defined at each point x as Eq. 3.5 shows:

F(x) = Isxs + Ju(x), (3.5)

where I3y3 is the 3x3 identity matrix and J,(x) is the Jacobian matrix of the vectorial field
u= [uy, Uy, uz]T at point x according to [2].

After all the desirable second order tensors were obtained, reorientation of each T2 is needed.
For this case, two methods proposed by Alexander et al. [2] are presented. The first
one is called Finite Strain (subsection 3.5.1) and the second one Preservation of Principal
Directions (subsection 3.5.2).

3.5.1 Finite Strain

The Finite Strain (FS) algorithm belongs to the theory of continuum mechanics for distor-
tion. In this approach, the original transformation 7T is approximated by a rotation matrix
R that is extracted from the affine transformation F by using the polar decomposition [80]
as follows:

F =RS =LMN" = (LN") (NMN"), (3.6)

where LMINT is the singular value decomposition (SVD) of matrix F, LN is an orthogonal
matrix and NMNT is a symmetric positive definite matrix. By identification, the desirable
rotation matrix is R = LNT.
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Obviously, F'S method carries a weakness, since information can be lost if a rotation matrix
is extracted, for example, when the transformation contains shearing effects, leading to
significant limitations and errors 73], [135].

3.5.2 Preservation of Principal Directions

To bypass the limitations of the FS scheme, Alexander et al. [2] proposed the method of
Preservation of Principal Directions (PPD). The main idea of this approach is to apply the
whole transformation F on each positive T2 and then normalize them to keep their initial
form. Equations 3.7, 3.8 and 3.9 are the summary of the PPD steps.

F61
n, = -—2+ (3.7)
| Fe |
Fe, — (nfFe;) n,
ny, = T y (38)
|[Fes — (ni Fez) ny |
n3 =n; X Ny, (39)

where e; are the eigenvectors of each T2, sorted in ascending order according to their eigen-
values. Lastly, a general remark is that PPD is assumed to be the gold standard method
for DTT reorientation.

3.6 T4 Reorientation Scheme based on HD and PPD

There are three main steps for the T4 reorientation scheme presented in [134]. Firstly,
equation 3.3 is solved with respect to Q by using the least squares method. As we have
shown, Q is not unique. Theoretically, the optimal solution of R is derived by solving an
optimization problem parametrized by the three angles of the possible directions of rotation.
Instead of that, in order to deal with it without losing significant time in solving another
time-consuming optimization problem, a set of 1000 randomly constructed rotation matrices
R is defined, in the second step of the method. For each matrix R we calculate L using
eq. 3.10 and the R which corresponds to the minimum L is retained.

, At

L=min|~—,—),L€]0,0.5], (3.10)
)\tot )\tot

where Aoy = (AT + A7), AT, A7 are the absolute values of the sum of the positive and

negative eigenvalues of the T2s that QR contains, respectively. In this way, we force to

minimize the problematic case of appearing negative and positive eigenvalues, both at the

same matrix QR.

Both SD and the methods based on Hilbert’s theorem, without imposing any positivity
constraints to the resulting T2s, can give tensors categorized into three cases: a) all positive
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T2s, b) all negative T2s and c) both positive and negative T2s. In the last two cases a
pre-processing step must be done. It is important to clarify that the mix of both negative
and positive T2s is the problematic case. A connection between the previously mentioned
cases and the L value is the following: L = 0 is the case of having strictly positive or negative
tensors. The greater L we get, the more close to crosses the T2s look like (case (c), please
refer to fig. 3.2 for some examples).

From a mathematical point of view, this means that both positive and negative eigenvalues
are obtained. Experiments showed that the last scenario occurs quite often, but the usage of
eq. 3.10 reduces its occurrence, significantly (but in some cases it is not totally eliminated),
so that the impact of the remaining negative eigenvalues in the decomposition is small [134].

When the final solution Q = Qf{ of the T2s is obtained, if the T2s are positive, then
PPD reorientation (subsection 3.5.2) is applied to each second order tensor. In the pres-
ence of negative T2s, the absolute value of the eigenvalues of each T2 is used in the PPD
reorientation to set the order of the principal directions.

Finally, the 15 coefficients of the reorientated T4 are extracted from the reorientated matrix
G = Qreoneo as shown in Eq. 3.11 according to [12]. Values a,b,c,d,e,f correspond to free
parameters depending on the resulting matrix G and they do not affect the 15 coefficients
of the tensor.

D111 « b %D1112 %Dlllfﬂ d
Q Doz c %D1222 € %D2223
G=|, b . & D3333 f . %D1333 . %D2333 (3‘11)
§D1112 §D1222 f D112z — 2 §D1123 —d §D1223 —¢€
%D1113 e %Dlll?, %Dnzg —d Doy, %D1233 —f
d 1D3903 3Dasss 5Dis2s —e $Dioss — f Dogg — 2¢

3.7 Experimental Results

Renard’s T4 reorientation method [134] (i.e. HD4+PPD) was lacking of experimental re-
sults on real data. In this dissertation, a further study and analysis of both synthetic and
real data was performed. Subsection 3.7.1 contains the synthetic data case and describes
the evaluation scheme that is proposed and was used in this thesis, while subsection 3.7.2
corresponds to the real data case and the corresponding proposed evaluation schemes.

3.7.1 Synthetic Data

Synthetic Example 1

Figure 3.4 shows the first example of a sine transformation applied on the z parameter of a
30 x 30 template with T4s that represents two main bundles of fibers (one vertical and one
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horizontal), crossing each other in the center of the image. Figure 3.4(b) shows that after
applying a spatial transformation on a tensor field, it is always needed to reorientate the
embedded tensors in order to match properly with the underlying fiber orientation.

Figures 3.5- 3.6 contain the resulting reorientated tensor fields for each tested technique.
As shown, FS reorientation fails to apply the transformation correctly, since the extraction
of the rotation transformation that F contains produces significant errors due to loss of
information. On the other hand, SD and Renard’s method with HD, both using PPD,
manage to apply the whole transformation F by producing notably less error than F'S.

At this point, we must define an evaluation scheme in order to compare our results (see
fig. 3.3). D in figure 3.3 corresponds to the estimated reorientated main directions, con-
structed by applying transformation matrix F to the extracted main directions (3D vectors)
of the fODF function of the T4 (B), with the aid of the local maxima function of Dipy
library [62], which contains several interesting tools for analysis of diffusion-MRI data. D
will be assumed as the ground truth (GT) solution. To continue, D’ will be the resulting
normalized tensor by registering spatially the tensor coefficients and then reorientating the
registered T4s with one of the three compared methods.

Extract main Apply F to the

directions . main directions .
. registration

FIGURE 3.3: Evaluation scheme for synthetic data: measure the angular error (AE) be-
tween D and D’.

reorientation

—

In this way, the angular error can be measured between peaks of D and D’ for both horizontal
and vertical bundle of fibers.

In detail, figure 3.7 shows the ground truth (GT) and the initial peaks, while figures 3.8, 3.9
contain the extracted peaks produced from each reorientation technique. Figure 3.11 shows
the horizontal angular errors, while figure 3.12 presents their corresponding histograms.
Moreover, figure 3.13 shows the resulting vertical angular error in the F'S case.

As shown in table 3.1, the HD+PPD method gives results very close to SD+PPD, while
FS produces significant errors, especially in the vertical bundle of fibers, where initially

there was no angular error. This happened because F'S rotates the whole tensor and not
each main direction separately as SD+PPD and HD+PPD do.



and 3.4(b) the initial registered template (no reorientation yet).
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FIGURE 3.4: First example: synthetic tensor fields. 3.4(a) The template of the tensor field
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3.7. EXPERIMENTAL RESULTS

synthetic tensor fields. 3.5(a) FS and 3.5(b) SD+PPD
of fibers.

reorientated tensor fields. It is clear that F'S gave wrong solutions in the vertical bundle

FiGure 3.5: First example:
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FIGURE 3.6: synthetic tensor fields. 3.6(a) HD+PPD reorientated tensor

field.

First example:

Method

Avg Horizontal AE

Avg Vertical AE

INITTAL (no reo)

15.36

0

FS |2]

7.58

11.82

SD+PPD [2]

3.25

0

HD+PPD [134]

3.59

0

TABLE 3.1: First synthetic example: Angular errors (AE) for the compared methods.
SD+PPD and HD+PPD gave similar solutions, while F'S provided solutions with larger
AE than the others.
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FIGURE 3.7: First example: synthetic tensor’s peaks. 3.7(a) GT and 3.7(b) initial peaks.
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(b) SD+PPD Peaks

FIGURE 3.8: First example: synthetic tensor’s peaks. 3.8(a) FS and SD+PPD resulting
peaks.
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FIGURE 3.9: First example: synthetic tensor’s peaks. 3.9(a) HD+PPD resulting peaks.
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Another way to compare visually the methods is to determine fiber tracts on them. Fig-
ure 3.10 contains all corresponding tractographies, for the initial spatially registered T4
fields and the three reorientated fields. As we can notice, SD+PPD and HD+PPD gave
identical tracts, while FS has problems especially in the vertical bundle of fibers.

) Initial

) HD+PPD

) SD+PPD

FIGURE 3.10: First example: synthetic tensor’s tractographies. As it is seen, FS produced
wrong tracts especially in the vertical bundle of fibers, while SD+PPD and HD+PPD
give equivalent tracts.
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FIGURE 3.11: First example: 3.11(a)- 3.11(d): the horizontal angular errors (AE).
SD+PPD and HD+PPD perform better than FS.
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(c) SD+PPD Horiz. AE Hist. (d) HD+PPD Horiz. AE Hist.

FIGURE 3.12: First example: 3.12(a)- 3.12(d): the corresponding histograms of the hor-

izontal AE presented in figure 3.11. Although, all methods manage to reduce the high

initial horizontal error, F'S did not succeed to reach the performances of SD+PPD and
HD+PPD.
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) F'S Vertical AE (b) FS Vertlcal AE Hlstogram

FIGURE 3.13: First example: resulting vertical angular error (AE) (on the left) and the
corresponding histogram (on the right) in the F'S case.

Synthetic Example 2

Another testing scenario is constructed by increasing the initial average angular error in the
horizontal bundle of fibers in the first example (e.g. increase the angle of the sine transfor-
mation). This example highlights interesting limitations of the T4 model in representing two
crossing fibers when their main directions are very close to each other. Figure 3.14 displays
the initial and figures 3.15, 3.16 the resulting tensor fields. Figures 3.17- 3.19 contain the
extracted peaks produced from each technique and figure 3.20 their tractographies. Ob-
serving the tractographies, it seems that FS’s horizontal tracts are better than SD+PPD
and HD+PPD. In fact, the two last methods transformed a few tensors in the center from
crosses to single fibers and as a consequence, the horizontal tracts are interrupted.

On the other hand, figures 3.21 and 3.23 show the horizontal and the vertical AE of each
case, while figure 3.22 and 3.24 correspond to the histograms of the horizontal and vertical
AE of the second synthetic example, respectively. SD+PPD and HD+PPD managed to
reduced significantly the initial angular errors and gave identical results. On the contrary,
FS produced vertical AE, but also did not manage to reduce a lot the horizontal AE, since
FS does not apply the whole transformation, but uses only the rotation part of it.

To continue our previous discussion, a careful observation of figures 3.18(b) and 3.19 con-
cludes to the existence of areas where instead of having two main directions we obtained only
one (left part of the center view of the image). Figure 3.25 shows the evolution of the trans-
formation in the center of the tensor field that contains tensors representing two crossing
fibers. By plotting the fODFs of the three T4s on a 2D grid constructed by the parameters
of the sampling scheme of the 3D unit hemisphere (the elevation and the azimuth, denoted

s "theta" and "phi", respectively, in the graphs), with 0.5 degrees of sampling step, it is
clear that as we move from the right part of the tensor field to the left, (and from the top
to the bottom in this figure) the two initial peaks are reduced to one.

Despite the errors because of the model’s limitation, table 3.2 shows that HD+PPD method
is equivalent with SD+4+PPD and both are significantly better than FS.
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3.7. EXPERIMENTAL RESULTS

FIGURE 3.14: Second example: Synthetic tensor fields. 3.14(a) The template of the tensor

field and 3.14(b) the initial registered template (no reorientation yet).



teeceeeeoee N\ \N\\VYL )l eeeeeoeeeoeeoe

pespsnsas s rEELERAR AR dernrnnen e » s v 85 v 8 9 8 88 s § 1} I 1 1 e 0000006
s s essesecsse ittt )eceesence R
P - - s o s 8 s s s s ssss fLLLr PP LS v s e s
—.:ct-_“““t““““““““www”unuuunun ¥ 8 8 8 8 8 8 8 8 88 PRI S 58 s 5 88 88
SRR RPN PPN Y YRR A 1.} % Ay 0 el
URE RS S T e RN AN A R R S RS s 8 8 8 8 9 98 8 8 8 2P PP 9 88 8 6 6
““”””””““““““““““w-nq“nctnuno 89 89 8 88 8 8L S S8 88 s 888 s e
Y Y R R YRR NN R bt 4.5. 14,5351y by . bl
1!(!1!1%\%%\\%%%\(1!((l.l.tl! s 8 8 8 9 8 88 QL LPLLLPLPLSPLPSL ®» 5 5 8 8 8 855 8095
esetsemecesehhh bbbt e~ FEpRIRRRTasG Ry Y W S QI S N QF DF (7 S
o setessomindpippppippppPpniniminicininsmimmmn | | e N O e e
lllllllMMMMMMMMMMI!III!%II!.:I s escoccosccaedpdpdpdpdpdpdpdy dpdp e oo me oo oo we o oo - e o me
steretalet e greteatmtetereTesgmen o oo ve vo vo vove va gy y By By by By dy By By co vo oo vo oo vs ve 2o ve w2 va va
\\\l\l\l\l\li\\&#k#k#&k##\l\l\l\\\\l\\\\\l . ’Q“t:l"l3:“.".“‘“.“.“.“.“.“‘".‘.‘.“.‘i‘t'O"’.“‘.’.
R R B R e e e e e (a\ o e ve e ve ve ve cs e BGB B O 80,0 ,8 8,8 00 co s vs v ve o ve v se e
L R LR T T R oW ON N RO OR RN N R S e e LR YRR R R
ttwtccaacacﬂﬂé#ﬁ”ﬁéﬂc‘(c(%J(ii ¥ ow oW % oW oW o ouowowowow YL L NN, e R ouowowow
Httnttut“LLMWMMMMMMMM(‘(C(((( @ @ 3 @ 4 @ 3 % o33 @3 YYYLLLLLLYYe e e oo
@ @ @ @ @ - « @ @ @ @ @ & @ @ @ @ @ e a 1 i t Y e e @ a e @
ctnczmltmgtuu““uu-“um(mtttt:c il g i ol HERI R cc.

H , . : : ¢ 9 9 9 9 99 9 9 e e YL EYeeeees oo
ttmttttlmmtuumwmkmeM_Jc(lwnrf ¢ 0o 9o 9 9 0 9 90 8 688 PP LPL2LL2IPIYIs s s e
t....t..tttm.w“““““w““w““(cc(tvc(c e o s 0 o 80 88 0 s PRPIPPPIPLS 89 e s s s
e RERR N e I L Sl B B P R T T R R I 2 8 5 & P e 888
LA A AU AU Y O A A AF B A A & o S BB IR IR R ttzttzttzet““\\“\\”“\m\\“\\““\\“\\“ttmtnvt!t
AR R R R A A A A A A A O S LRI A R 0 e8P 88 s e e s e E

52 CHAPTER 3: Pre-processing Steps for DW-MRI Data - Emphasis on T4 Reorientation

of fibers.

FIGURE 3.15: Second example: Synthetic tensor fields. 3.15(a) FS and 3.15(b) SD+PPD

reorientated tensor fields. F'S as it was expected had still problems in the vertical bundle
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FIGURE 3.16: Second example: Synthetic tensor fields. 3.16(a) HD-+PPD reorientated

tensor field.
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TABLE 3.2: Second synthetic example: Angular errors (AE) for the compared methods.
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FIGURE 3.17: Second example: Synthetic tensor’s peaks. 3.17(a) GT and 3.17(b) initial
peaks.
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FIGURE 3.18: Second example: Synthetic tensor’s peaks. 3.18(a) FS and 3.18(b)

SD+PPD resulting peaks. In the SD+PPD case, it is noticeable that a few T4s in
the center produced one principal direction instead of two, due to the T4 limitation to
describe well very close to each other fibers.
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FIGURE 3.19: Second example: Synthetic tensor’s peaks. HD-+PPD resulting peaks.
Similarly to the SD+PPD case, HD+PPD highlighted the T4 limitation to present well
two very close to each other fibers.
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FIGURE 3.20: Second example: Synthetic tensor’s tractographies. SD+PPD and
HD+PPD give similar results. Although FS horizontal tracts look better than SD+PPD
and HD+PPD, a careful observation of the angular errors signify that F'S is not close to
the right answer. SD+PPD and HD-+PPD horizontal tracts appear to be discontinuous
as a result of getting one lobe (i.e. one principal direction of diffusion), instead of two,
since the two initial directions got very close after the reorientation for some tensors in
the center. These resulting single directions are used in vertical tracts. In addition, F'S
vertical tracts are significantly different than the correct answer.
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FIGURE 3.21: Second example: 3.21(a) 3.21(d): horizontal angular errors (AE).
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FIGURE 3.22: Second example: 3.22(a)- 3.22(d):
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F1GURE 3.23: Second example: 3.23(a)- 3.23(d): the vertical angular errors (AE).
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FI1GURE 3.25: Influence of the transformation in areas that contain two crossing fibers, in

the second synthetic example. In the left part, the ground truth and the resulting peaks

are displayed, while in the right part the fODFs, estimated in the unit hemisphere of each

tensor, highlight the limitation of the T4 model to represent two bundle of fibers with small
angular difference, in detail.
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3.7.2 Real Data

Evaluation on real data was performed by using a HARDI dataset of a healthy person. The
size of the images is 128 x 128 x 41 for a resolution of 1.8 x 1.8 x 3.5mm3 and 30 non colinear
gradient directions (scanned twice) were used, while b value is equal to 1000s/mm?.

Figures 3.27, 3.28 show the reorientated T4 fields for a selected 20 x 20 patch containing
crossing fibers. Looking at the fODF glyphs, we can claim that SD+PPD and HD+PPD
produced slightly different results, while on the other hand, FS’s solution has many dif-
ferences, as a consequence of extracting and using only the rotation part of the estimated
non-linear transformation F'. In fact, the F'S reorientated T4s are very similar to the reg-
istered T4s (but not reorientated), meaning that probably the non-linear transformation
contains shearing or scaling effects that cannot be included in the rotation part that FS
uses.

Figure 3.29 shows the corresponding tractographies in a selected ROI (including the same
20 x 20 patch along with 3 more frames in the z-axis). SD+PPD and HD+PPD methods
managed to produce more dense tractographies than FS, especially in the bottom part of
the images. Moreover, FS tractography seems not to vary significantly from the initial
tractography on the registered data with no reorientation step.

In contrast to the synthetic cases where we can calculate the real orientation (GT) of the
main directions (given the number of them and the transformation matrix F'), we cannot
work similarly in the real data case. For that reason, another evaluation scheme is proposed
in figure 3.26. In order to use the new evaluation process, a proper distance must be selected
as an error metric. In this study, the approximation of the distance defined in eq. 2.30,
between two fODF functions is selected (eq. 2.31).

At this point that the distance is selected, let us describe the current evaluation strategy.
Firstly, we will measure the registration error between points A and A’ of figure 3.26(a).
Point A corresponds to the initial tensor fields, without performing either registration or
reorientation. Point A’ is constructed by applying forward and then inverse registration on
the tensor coefficients. As a result, no reorientation error is included in technique 3.26(a).
Equivalently, we will calculate the total normalization error (registration -+ reorientation)
of each of the three methods via the strategy of figure 3.26(b). Of course, it is possible to
measure the reorientation error directly, without firstly calculating the registration error.

Figure 3.30 enumerates the distances measured in frame 33 (in z-axis) of the DW-MRI
data. Values of —10 in the distance images correspond to voxels outside the WM area (so
that those voxels can be marked and excluded from the calculation of the average distances
presented in tables 3.3, 3.4). The WM can be located using a threshold in the FA images
(as in our case), or by using a template. It is observed that the majority of errors are close
to zero (very low), while areas with larger errors are located in the same parts of the brain
for all the three compared methods. Figure 3.31 depicts the corresponding histograms of
the distances presented in figure 3.30 (z-frame 33).
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FIGURE 3.26: Evaluation schemes for real data: measure the error between A and
A’. 3.26(a) Registration error and 3.26(b) Registration + Reorientation error.

Observing the order of errors (107!) in tables 3.3 (of z-frame 33), 3.4 (of all z-frames) we
understand that these errors are very low in comparison to the higher distances presented in
the simulation test of figure 2.16 (10 — 10?), concluding that the obtained solutions contain
a very small amount of error.

Theoretically, we would expect to notice no errors in the FS method, since the shape of
the tensors is intact, but in practice we obtained errors which can be justified due to the
presence of registration errors and the estimation of the rotation part of the transformation
that F'S uses.

On the other hand, checking only the average errors can potentially hide any sparse larger
errors. For example, maximum errors in fig. 3.30 are close to 8, similarly to the bottom
part of fig. 2.16. The appearance of such errors does not ensure us that they are as large as
to produce false biomarker detections (or in the contrary to cover the really differences) in
statistical analysis. For that reason, the registration and reorientation of tensor coefficients
should be carefully tested.

Method Avg Distance (frame 33)
INITTAL (no reo) 0.02
FS 2] 0.51
SD1PPD [2] 0.57
HD 1 PPD [134] 0.6

TABLE 3.3: Distances of the compared methods in the real data case of frame 33. The

calculated errors are significantly low. FS errors should not be excepted, however they

exists due to the presence of registration errors and the approximated rotation part of the
transformation.
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Method Avg Distance (all frames)
INITTAL (no reo) 0.02
FS [2] 0.70
SD+PPD [2] 0.75
HDPPD [134] 0.77

TABLE 3.4: Distances of the compared methods in the whole real data. The calculated

errors are significantly low.
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FIGURE 3.27: Resulting tensor fields (in a patch of 20 x 20 size) of the compared methods in
a ROI with both single and crossing fibers. The fODF glyphs are plotted on the estimated

FA images obtained by DTT analysis with the FSL toolkit [89].
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(a) FS (frame 46) (b) SD+PPD (frame 46) (c) HD+PPD (frame 46)

FIGURE 3.28: Zoom in particular areas of figure 3.27 in order to locate the differences.
It seems that all the methods differ (more or less) from each other. SD+PPD and
HD-+PPD are more similar than F'S which differs significantly in many areas.
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) reg. T4s NO reo. Tractography (frames 44-47) ) F'S Tractography (frames 44-47)
) SD+PPD Tractography (frames 44-47) d) HD+PPD Tractography (frames 44-47)

FIGURE 3.29: Resulting tractographies of the compared methods in a ROI with both single
and crossing fibers.
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FIGURE 3.30: Distances of frame 33 (size of image: 128 x 128). Note: maximum value of
subfigure 3.30(a) equals to 0.48.
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F1GURE 3.31: Histograms of the distances of frame 33.

3.8 Partial Conclusion

In this chapter, several methods for T4 reorientation are studied, discussed and evaluated
in both synthetic and real data. Moreover, the performance of HD+PPD (the particular
method of our interest) was further analysed, especially due to the lack of testing real cases
in Renard’s thesis [134]. HD4PPD is competitive with respect to SD+PPD method and
better than F'S which uses only the rotation part of the transformation.

Although in this chapter T4 normalizations were studied, afterwards DWI normalization
was chosen to be used in the proposed statistical analyses for two main reasons. Firstly, a
quite-promising method for non-linear DWI normalization was proposed in 2013. Secondly,
the reorientation of a crossing T4 can potentially reduce the number of the main directions
of diffusion, resulting into totally different fiber structure than the underlying one (as was
previously shown, see fig. 3.25).

As part of future work, someone could try to spatially register the raw DWT data (instead of
registering the tensor images), then fit tensor models on the registered DWT data and finally
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reorientate the tensor models with FS, SD4+PPD and HD+PPD (instead of rotating
the b-vectors as the DWI normalization is performed in [51, 152] and then fitting tensor
models). In this way, we avoid tensor image registration, which is more risky than DWI
registration (errors in tensor coefficients can affect many more directions of diffusion than
errors in DWT images). Moreover, it is efficient to use the whole transformation matrix F'
in order to reorientate the tensors, instead of using the rotation part of I, as it is the case
for FS (tensor reorientation) and DWI normalization [51, 152].

In the next chapter, the construction of statistical atlases for the case of DW-MRI data is
introduced, along with some interesting statistical models applicable to our case that will
be used to compare their performance against the proposed statistical approaches.



Chapter 4

DW-MRI Data Statistical Analysis - a
Review

Generally in medical imaging, the term "atlas" (i.e. collection of maps) refers to an anatomi-
cal 3D representation of an area/organ (e.g. brain). An atlas is constructed by accumulating
data of one or more subjects in a common coordinate system [145]. Moreover, a map can be
useful, as a standard-space template, in the alignment of many subjects/measurements on
the same space, for example in order to compare individuals/populations statistically [145].
Of course, aligning different subjects to a common space requires a mandatory and specific
step of reorientation depending on the type of the data (e.g. raw DWT data, tensors etc. see
section 3.2). In DW-MRI, an atlas can contain information concerning the brain’s structure
(e.g. FA template, fiber tracts templates etc., such as in the JHU atlas [114, 115]).

As the number of considered patients is increasing, statistical atlases may be devised by
extracting patterns characterizing a particular property/disease etc. [145]. For example,
these patterns can be calculated given a set of individual DW-MRI data that can be split
into two groups, the normal population (or control group) and the abnormal population (or
pathological or testing group) that contains patients of a specific disease (common between
all abnormal individuals). Statistical atlases capture the variability of specific patterns in
each population and are useful to determine biomarkers. For the rest of the dissertation
we will refer to the term "probabilistic atlas" simply as "atlas".

In the case where the number of individuals is large enough to completely capture the
variability of both populations, then the project of constructing atlases related to a disease,
by measuring the variability of the groups, is linked to the biomarker extraction problem.
This is addressed through population versus population comparisons. On the other
hand, when the data are sparse (often happening in the case of the abnormal population)
or when there is no common disease patterns between patients, it is hard (or meaningless)
to construct the disease’s atlas, but it is possible to compare the state of each abnormal
individual to the normal population via an individual versus normal population test.

69
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4.1 Categories of DW-MRI Data Analysis

Voxels (or region of voxels in the brain) which are affected by the disease and appear signifi-
cantly different (e.g. lesions) in comparison to the normal population are called biomarkers.
Those biomarkers are usually determined by performing populations comparisons (normal
versus abnormal population). A collection of such biomarkers offers a powerful tool to the
physicians, which can aid them to extract diagnostic and prognostic factors of predisposi-
tion of the disorder (not only in already known regions of lesions, but also in potential new
regions) so that for example patient’s treatment can precede the expansion of the inflam-
mation. In addition, they can be useful to monitor the patient’s condition.

Populations comparisons (and individual against normal population comparisons) can be
performed either by voxel-based, or by ROI-based, or by tract-based analysis, similarly as
mentioned in [92] for the DTT case. Historically, analysis based on region of interest
(ROI), such as anatomical volumes (e.g. tapetum, hippocampus etc.), or geometrical shapes
(e.g. rectangular, ellipsoidal etc.) were first developed. One advantage of ROI-based analysis
is the sensitivity to slight variations (especially for small ROIs) [92]. Ideally, it is applicable
when the study is related to particular areas of the brain that can be defined easily and
when there is no limit to the computation time. On the contrary, it is typically affected by
inter-observer variability [54, 107, 136], which can be reduced by a manual positioning of the
ROIs of a single person, but cannot totally be eliminated [136]. Nowadays, the existence of
templates with ROIs assists us to reduce more that effect. Once the ROIs are defined, we can
calculate the standard deviation and the mean of our measurements (e.g. FA images) or we
can perform histogram analysis. In general, due to the fact that large ROIs tend to reduce
the standard deviation, ROI analysis is proposed for the detection of subtle differences in

well-defined small ROIs [92]. More examples can be found in the references of Park et al.
[125].

Voxel-based analysis (VB) was originally proposed to compare the mean grey matter
volume of two populations by Ashburner and Friston [7] in 2000. It is based on spatially
registering all individual datasets into a common template, in order to calculate statistics
voxel-by-voxel in an unbiased way. According to Park et al. [125], VB analysis is more
exploratory and suitable for identifying new areas with lesions without any prior knowledge
of their existence. Foong et al. [58] in 2002 and Buchel et al. [32| in 2004 applied VB
analysis on DTI. The main advantage of VB is that it does not require any prior knowledge
for the localization of the disease, since specific areas with significant differences will be
automatically extracted [92]. On the other hand, the selection of a common template and
any registration errors left may affect the quality of the results.

Tract-based analysis (TB) does not explore the whole human brain, but it is assisted
with user pre-defined tracts to locate voxels with lesions. Pagani et al. in 2005 [123] used
Diffusion Tensor MRI tractography to construct a probability map for the pyramidal tract
by measuring the changes in MD and FA images in patients with early multiple sclerosis
(MS). In the same year, Gong et al. [70| identified the cingulum via DTT tractography. One



4.2. RECENT RELATED WORK 71

year later, Lin et al. [100] located the pyramidal tracts in order to perform quantitative
analysis based on DTT measurements (such as FA images, primary diffusivity, or transverse
diffusivity based on the eigenanalysis of the tensor model) for neuromyelitis optica (NMO)
disease. Jones et al. presented in [93] that registering the individual data in a common
template can be avoided. On the contrary, brain atrophy can possibly effect the results [91].

4.2 Recent Related Work

Atlases can be classified into two groups: a) scalar-based statistical atlases and b) statistical
atlases on multidimensional data.

Methods belonging to the first category exploit the information provided by scalar mea-
surements, such as fractional anisotropy (FA) and apparent diffusion coefficient (ADC) as
employed in [53], or possibly mean diffusivity (MD), relative anisotropy (RA) [16], scalars
derived from T2 models, and possibly generalized anisotropy (GA) [122] or generalized frac-
tional anisotropy (GFA) [159] for HOTs. Moreover, tract-based spatial statistics (TBSS) was
proposed in 2006 [144]| and is available in FSL [89]. TBSS calculates voxelwise statistics on
FA across the estimated skeletons (tracts). Furthermore, working in the same direction by
processing scalar measurements, Ghosh et al. in 2012 [65], inspired by the work of [20, 22|,
expanded the proposed invariants of [61] to T2 and T4 models.

In the second group of statistical atlases, multidimensional informative models, more com-
plex than scalar images, were taken into consideration. For instance, in 2005, Daurignac
et al. [43] designed disease-specific probabilistic atlases in order to study alcoholism and
to identify patterns of functional and structural lesions due to alcoholism using MRI and
DTTI. In the same year, Schwartzman et al. [139] proposed a method for voxelwise analysis
calculating F' statistics to address the problem of populations comparison, by studying the
principal eigenvector of the T2 model modelled by the bipolar Watson distribution on the
unit sphere [103|. Their statistical test verifies whether both populations have the same
mean direction (derived from the bipolar Watson distribution). False discovery rate (FDR)
was used to overcome the multiple comparisons problem and to correct the false positive
detections. In 2008, Schwartzman et al. [140] extended their previously mentioned idea by
calculating T' statistics and assuming global parametrization of their statistical test (com-
mon for all the voxels). Spatial smoothing was used to reduce locally the noise variance and
increase the effectiveness of FDR analysis.

In 2007, Whitcher et al. [174] proposed a set of non-parametric and parametric multivariate
tests for populations comparisons that could benefit from the whole information included in
T2 models. In this way, they have shown that processing T2s using Log-Euclidean metrics
could extract more differences than working with scalar images (e.g. FA). In addition, Com-
mowick et al. in 2008 [38| proposed a concept for statistical comparison of individual against
normal population in MS disease relying on T2 models, too. The authors presented how
to compute an unbiased atlas of T2s derived from the set of normal individuals, through
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DTT normalization and finite strain T2 reorientation (FS - see section 3.5.1) followed by
tensor resampling and averaging using Log-Euclidean metrics in order to obtain the mean
T2 healthy template. Finally, they compared statistically each abnormal individual to the
mean normal template, by calculating z-scores (i.e. Mahalanobis distances) and their cor-
responding p-values. In 2013, Osborne et al. [120] presented a non-parametric bootstrap
method for two-sample tests applied to DTT on homogeneous Riemannian manifolds. Os-
borne et al. tested the equality of the generalized Frobenious means of the two populations
on the space of symmetric positive matrices (e.g. T2 matrix).

Moreover, multivariate regression models based on T2 coefficients [178] and general linear
models on T2 coefficients [28] (both including covariates, such as age and gender) have been
proposed recently (2009 and 2014, respectively). In 2014, Naylor et al. [116] proposed two
different concepts for voxelwise analysis of multiple MRI modalities. Their first method is
based on fitting multiple univariate linear regression models (one for each modality) and the
second approach is described by a single multivariate linear regression model (without as-
suming independence of the modalities). The multivariate linear regression model appeared
to be more efficient than fitting multiple univariate linear regression models.

In early 2015, Caruyer and Verma [33| proposed to study the coefficients of the SH repre-
sentation of ADC profiles based on HARDI data by computing 12 (for rank-4 SHs) or 25
(for rank-6 SHs) rotationally invariant markers in order to better describe the WM of the
brain. Although all these invariants are informative, it is hard to physically explain them.

Furthermore, in 2011 Ingalhalikar et al. [86] proposed a high-dimensional non-linear SVM
classification methodology for regional features extracted from DTI data. This approach can
be also used to assign a probabilistic abnormality score per patient (i.e. individual vs normal
population). Application to autism spectrum disorder (ASD) was presented. In the same
year, Bloy et al. [25] extended the idea of [86], by using the following variations. Firstly,
diffusion ODF (dODF) models [158] were defined (via spherical deconvolution of the DW-
MRI data, without any prior tensor model, or SH etc.), instead of DTI. For each individual,
several ROIs with homogeneous WM structure were determined and orientation invariant
features of each ROT’s average fODF are included into a feature vector. To continue, PCA
is used to reduce linearly the dimension of the data and a linear SVM classifier is trained
on the resulting coefficients. Lastly, the trained SVM classifier calculates a probabilistic
score per testing individual referring to its likelihood given each group. In addition, in 2012
Bloy et al. [26] used again the dODF model of [158] in order to construct a WM dODF
atlas that consists of automatically clustered regions according to the homogeneity of the
embedded fiber structure and orientation. In the same year, Grigis et al. [72] presented
their longitudinal study on NMO and MS diseases, formulated as population comparisons,
by detecting statistical differences in DWI signals using a multivariate statistical test based
on bootstrap technique. In March 2015, Commowick et al. [39] generalized and extended
their idea presented in [38], for voxelwise individual versus normal population statistical
analysis applied to MS disease, by altering the DTT model (limited to describe single and
not crossing fibers) with the orientation distribution function (ODF) produced by any HOT
model. Although, statistical comparisons of any given abnormal ODF (formed as a vector)
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against any/all normal ODFs are possible and straightforward, they chose to increase the
robustness of the method by performing principal component analysis (PCA), in order to
treat any artifact or registration error left in the ODF values, prior to statistical analysis.

Another innovative idea is included in methods which determine the manifold of their
data and perform geodesic analysis (in non-Euclidean or Riemannian spaces), such as
[56, 109, 129] for tensor models or [49, 50, 67, 68] for ODF profiles (derived from HARDI
data) represented as PDF functions defined on the unit sphere without any need of fitting
tensor models, or SHs etc. In this direction, Verma et al. [164, 165] performed voxelwise
T2 statistical analysis, firstly by introducing the concept of estimating the non-linear sub-
manifold that 2nd order tensors lie on (via dimensionality reduction - Isomap [154] and the
estimated geodesic T2 distances), and secondly, by applying multivariate statistics (such as,
the Hotelling 72 test) on the estimated Euclidean submanifold. An analytical description
of this method is presented in subsection 4.3.1.

Finally, populations comparisons can be set by solving classification problems (with two
classes, i.e. the normal class and the abnormal class, or more). Training a classifier and
then evaluating its performance by measuring the generalization error (GE) in unseen data
can provide evidence if the two populations are similar or not. A variety of classifiers can be
found in the literature such as linear (e.g. perceptron), quadratic, non-linear (e.g. SVM),
non-parametric or parametric statistical classifiers (e.g. k-NN, Decision Trees, Random
Forests, Bayesian). For the purposes of this dissertation, Random Forest Classifiers will be
studied and tested (for more information see subsections 4.3.3, 6.3.4).

To sum up, it seems that tensor model analysis is more efficient than working with scalar
images. Moreover, reducing the dimension of the working space is really interesting and
assists to calculate statistics robustly. To the best of our knowledge, statistical analysis
based on T4 models do not exist in literature. As a result, in this study we will focus on
voxel-based statistical atlases that encapsulate and compare the information provided by
T4 tensor models.

4.3 Application of a Suitable Test

To begin with, prior to the selection of a suitable test, we should specify the problem’s
type. Is it the "populations comparison" problem, or the "individual versus normal group"
approach in order to compare profiles (ODF /diffusion)?

According to Verma et al. [165], lesions induced by white matter disorders are better cap-
tured by statistical population comparisons. Given two quite large groups of healthy and
pathological individuals, we can construct control patterns on which we can measure the
variability of any pathological population.

In this section, three selected approaches are further discussed and presented that will be
needed in chapter 6 to be compared with the proposed method of chapter 5. The first one
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can be found in the literature, the second is synthesized by the combination of two separated
methods and the third one is constructed by using the theory of Random Forests.

4.3.1 Representing and Analyzing T2s in a Reduced Space

Verma et al. [165] proposed their method for voxel-based analysis. They noted that when
working with diffusion tensors (T2s), which lie on a non-linear submanifold of the space R®,
it is not safe to apply directly any standard statistical model, due to the fact that T2s do not
follow multivariate Gaussian distributions in R®. In addition, most of DTT statistical analysis
at that time was based on scalar (e.g. FA images) or vectorial diffusivity measurements
(e.g. principal diffusivity) that require prior knowledge of the pathologically affected areas
(which is not always available) and they do not enclose any information about the embedded
submanifold structure or they do not introduce any geodesic distance metrics. A clear visual
comparison between the Euclidean distance between two T2s (i.e. green dotted line) and
the underlying geodesic distance (i.e. red curve) is shown in figure 4.1.

FIGURE 4.1: The choice of a proper geodesic distance is mandatory. Each ellipsoid cor-

responds to a T2 located in a non-linear submanifold in R®. The green dotted line shows the

Euclidean distance between T2s, which does not correspond to the ideal geodesic distance

(denoted by the red line) which is calculated throughout the T2 submanifold. Image
obtained by [165].

For all previously mentioned reasons, Verma et al. [165] chose to estimate a dense reduced
subspace of the initial sparse T2 space, by using proper geodesic distances between T2 tensor
models, in order to apply standard multivariate statistics and measure the mean and the
variance of the populations in a reduced dimensional space.

Determination of the reduced space using Isomap

Verma et al. [165] chose to determine the reduced space by using Isomap [154], a non-linear
dimensionality reduction technique which combines the well-known multidimensional scaling
(MDS) method [96] with graph theory, and particularly shortest paths calculations based
on geodesic distances. In this case, Isomap calculates an inter-point distance matrix for all
couples of individuals via a graph representation and a shortest path calculation (via the
Floyd-Warshall algorithm [40]) which includes the k neighbors’ tensor Riemannian distances
(e.g. tensor metric appeared in [56]) for each couple of individuals. Once the distance matrix
is calculated, MDS is used to determine the reduced space in a way that distances between
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points in the reduced space mimic the corresponding distances in the initial space. Finally,
by plotting the residual variance for different values of dimension (d < 6), the resulting
L-shaped elbow plot concluded that working in the reduced dimension of 2 is safe for the
T2 case.

Hotelling 77 statistical test

At this moment that all individual points (normal and abnormal) are mapped into the re-
duced Euclidean space, the Hotelling 7 test can be applied to compare the means of the
two groups (since groups’ covariances are assumed to be equal). For further information
about that specific statistical test, the reader is referred to Appendix A. Although calculat-
ing statistics in a reduced dense space can be significantly helpful, comparing the means of
two Gaussian distributions can hide important information or can lead to significant errors
that could probably be avoided if someone could study the whole embedded information
derived by assuming a more complex model per group. We will set some comparisons in this
direction in the chapters with the experimental results that will be presented later.

4.3.2 Analyzing the Inter-point Distance Matrix in High Dimen-
sional Space

Hotelling 72 test and many parametric statistical tests are based on strong assumptions for
data modelling. For example, Hotelling T test works properly only for Gaussian distributed
data with the same covariance for both groups and uses the location (i.e. mean) informa-
tion to compare the two groups. To circumvent these restrictive assumptions, multivariate
nonparametric tests have been proposed in the literature (see the review [118]). However,
many parametric and nonparametric tests may not be used when the dimension of data is
greater than their number, or may show poor performance for high dimensional data.

One of the most important steps in populations comparison is the calculation of an inter-
point distance matrix A which contains the distances between all possible combinations of
individual data (M normal and N abnormal). As a result, A corresponds to a symmetric
matrix of size (M + N) x (M + N) with zero diagonal elements. Working with tensors
(as is the case in this dissertation), the computation of each non-diagonal element can be
accomplished by using one of the tensor metrics presented in section 2.3.4, for instance
equation 2.30 which is defined independently of the order of the tensor. A well-defined and
suitable tensor metric yields matrix A with significant information about the separability
between the two populations.

Statistic of interest

Working in this direction, Biswas and Ghosh [23] proposed in 2014 a nonparametric two-
sample test, applicable to high dimensional data and formed on any type of inter-point
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distances. Moreover, a variety of other statistical tests based on inter-point distances can
be found also in [23].

Given two populations related to two distributions F, G with {x,...,xy} ~ F and
{yy,...,yn} ~ G i.i.d. observations of each distribution, Biswas and Ghosh proposed
to reject the Null Hypothesis (i.e. F' = G) for high values of the following statistic:

Taiw = |, — fiag |l (4.1)
where ||.|| is the Euclidean norm and fi,,, i € {F, G} represent 2D vectors defined as follows:
ﬁAF = [ZZFF’ ZZFG] ) ﬁAG = [ZZFG, ,ZIGG] ) (42)

embedding the following coefficients:

M -1 N N

AN N
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The symbolic norm ||.||a in equations 4.3 corresponds to the inter-point distance elements of
matrix A. Qualitatively, 1i;;, ¢ € {F, G} represents the average inter-point distance between
all couples of points in the same group 4, whereas [ipg represents the average inter-point
distance between all couples of points belonging to different groups.

Biswas’ and Ghosh’s statistical test is rotation invariant, free of distributional assumptions,
simple and computationally efficient [23]. It is applicable to any high dimensional data
which provide a distance function. In high dimensional well-posed (i.e. the number of
the measurements is equal or greater than the number of unknowns) problems, this test
outperforms other tests for the location, the scale and the scale and location problems.
Furthermore, it performs well in low number of samples, even in ill-posed problems, where
many methods perform poorly and practically cannot be used. Finally, it can be generalized
for multi-sample tests (see [23]).

Proposed extension: Highest Probability Density (HPD) interval of the embed-
ded p-value

At this point that the statistic of interest is selected, we propose to estimate the p-value
(associated to the statistic), along with its corresponding HPD interval, using a permuta-
tion test, especially designed for distance matrices, proposed by Reiss et al. in 2010 [133].
Working with the same concept of label shuffling, Reiss et al. proposed the following way
to permute the entries of a given inter-point distance A:

A, = E,AE,", (4.4)



4.3. APPLICATION OF A SUITABLE TEST 77

where E, = (e, . . . ep(M+N))T, corresponding to a (M + N) x (M + N) matrix containing
the permutation binary vectors of permutation function p(). More precisely, e; is defined
as the (M+N)-dimensional vector with 1 in the i-th element and 0 in the other elements.
Therefore, a new statistic TE)N can be calculated for each permutation iteration .

Furthermore, given the real statistic ijf 3\, (corresponding to the initial distance matrix A)

and a set of Il statistics T&r)N, 1 < 7 < II resulting from the permutation test, we can
approximate the p-value v* of getting statistics equal or more extreme than the reference
one (the effective statistic) through randomly sampling the distribution of the statistic.

v =P (15 > 1) = / 0 (T > TN p (TN =) ar
1 17
~ =3 (T > T ) = 7. (4.5)
=1

where p <T]&T )N = a:) is the distribution of T]EZ )N under the hypothesis of indiscernible popu-

lations.

In addition, the credibility interval of the p-value v* will be determined as follows. A set

of binary values @ = {q,...,qn} is collected by comparing the reference statistic ngﬁv
with each TE)N If TE)N > T}f}v then ¢.(.) = 1 and 0 otherwise. As a consequence,

the set () contains samples of the Bernoulli distribution of parameter the unknown p-value
v*. Assuming as a prior that v* is uniformly distributed, we can estimate the credibility
interval of the unknown p-value v*, as the 99% of the a posteriori mass of p (v | qi1,...,qu) ~
Beta(a+ 1,8 + 1), where « is the number of 1’s and 5 the number of 0’s in Q.
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FIGURE 4.2: Tllustration of the HPD interval estimation by calculating the 99% of the
distribution mass with the aid of Dichotomy.
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That interval is also known as Highest Probability Density (HPD) interval and is extracted
via Dichotomy (actually, three steps of Dichotomy, one for the PDF value and two for the
lower and upper bound of the HPD interval) as presented in figure 4.2.

At this point we have to mention that HPD interval’s length depends on the number of the
permutations. If someone wants to reduce that length, more iterations should be included
in the permutation test.

4.3.3 Analyzing Classification Errors using Random Forest Classi-
fiers

Populations comparisons can be solved as classification problems. For example, if two popu-
lations are very mixed together (i.e. similar), then the classification task fails to discriminate
the two groups.

A Brief Introduction

Random Forest (RF corresponds to its registered trademark) proposed by Leo Breiman in
2001 [30] is a versatile and competitive tool for statistics. Classification, regression, abnor-
mality detection (via density estimation), manifold learning, semi-supervised applications,
such as image segmentation etc. are some among several of its applications [41, 42].

A RF is an ensemble of T' randomly trained Decision Trees (DT) [31]. The attribute of
randomness is gained via bootstrap sampling, since each tree uses two random subsets of
samples, one random (bootstrapped) subset for training and the other one containing the
unseen samples for testing (evaluation). In this way, the out-of-bag (OOB) score (e.g. the
percentage of correctly classified points), or the converse of OOB score, the generalization
error (GE), can be calculated on previously unseen data (i.e. data in testing set). Moreover,
each tree node is split according to a random subset of the sample’s features.

Another interesting key point that should be mentioned is the fact that each decision tree is
expanded and left unpruned without having to deal with over-fitting problems due to the
randomness property.

To continue, a RF is defined by a set of parameters (for example, the number T of the trees,
the maximum depth D of the trees etc.). For a full list of them the reader is referred to
[41, 42], where the effect of each parameter is also tested and discussed.

Every DT will be separately evaluated on its own testing set, producing a local GE. The
global representative GE of the RF will be the average of the individual GEs.

Introducing a point v into the RF means that every DT will examine the point v concluding
to an individual prediction. The final, single, prediction of the RF is obtained by averaging
(or voting) the individual tree predictions.
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For the purposes of this study, we will focus on RF Classifiers. A simple example of RF
classifier can be found in figure 4.3.
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FIGURE 4.3: A RF classifier with three DTs. Assigning sample v to a class is achieved by
averaging the three posterior (not binary) p.(c|v) of each tree. Image appearing in [41].
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Applications of Random Forests in DW-MRI

RF were very recently applied to DW-MRI. For example, DTI tractography analysis using
RFs for the MS disease were proposed in 2011 [95] and in 2012 [106]. Predictors of clinical
impairment between the cerebellum and the cerebral hemispheres were analysed using RFs
on DTT data for MS disease in 2014 [131]. In addition, the effect of lesions detected using
DTI WM tractography to global disease severity and cognitive and behavioural disturbances
were studied using RFs for the progressive supranuclear palsy disease in 2014 [1]. In the
same year, RFs were applied to measure the independent contribution of the FA and the
MD to language impairment detection in a TB analysis of pediatric epilepsy patients [124].

Furthermore, a certain group of studies benefits from the RF ability to analyse high di-
mensional data. Multivariate RFs on multimodal MR Imaging (Diffusion, Perfusion, and
Spectroscopy) were defined to determine which criteria could differentiate between grades
and genotypes of oligodendroglial tumors in 2013 [52|. Lesion segmentations for ischemic
stroke were implemented using RF Classifiers on multimodal MRI data, such as TI-weighted,
T2-weighted, FLAIR, and ADC MRI images in 2014 [108|, or functional, anatomical and
diffusion data for stroke in 2015 [37]. Segmentation of thalamus (a crucial task during the
evaluation of many brain disorders) using T1-weighted MRI data and nuclear parcellation
on DW-MRI data were proposed in 2014 [150]. In the latter study, FA images, fiber orienta-
tion and connectivity between the thalamus and the cortical lobes were selected as feature
vectors to define RF Classifiers. A few more applications are the following [3, 29, 81].

Finally, the existence of numerous recent approaches based on RFs for DW-MRI, proposed
for problems similar to ours, highlights the potentiality of the method to achieve competitive
results.
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Statistical Model

Populations comparison can be achieved using Random Forest Classifiers. A RF Classifier
measures the generalization error (GE) of all unseen data and concludes to similarity if GE
is very high, while on the contrary it results to dissimilarity when GE is very low.

In practice, it can be explained that if the classification task fails to discriminate the two
groups (i.e. similar groups), it will result into high values in GE. If the two populations are
well separated (i.e. dissimilar), the GE is low. Figure 4.4 depicts the RF classifications of
four different synthetic cases, given a RF with 500 decision trees and maximum tree depth
4. As the distance between the two populations is increased, the GE is reduced.

FIGURE 4.4: Examples of resulting classifications given a RF with 500 decision trees and
maximum tree depth equal to 4, on synthetic 2D data. (a) GE = 0.38, (b) GE = 0.29,
(c) GE = 0.14 and (d) GE = 0.02. We can see that as the two populations are moving
away from each other, (a)—(d), the GE decreases. The colorful background is related to
p(c|v), labeled as RGB color vectors [p(c = ”abnormal”|v), p(c = "normal”|v),0]. Areas
with green color correspond to points with higher probability to belong to the normal group
than belonging to the abnormal one, and red otherwise. Finally, brown levels correspond
to areas with high levels of uncertainty.
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As a consequence, we will consider the GE as our statistic of choice, and moreover we will
also calculate its own HPD interval, similarly to what was done for the previous statistical
method. In fact, there is no need to define a permutation test in order to estimate the HPD
interval of the GE, since we can benefit from the randomness of each tree’s testing set (in
size and in samples).

Given a set of T trees along with their corresponding testing sets V;, 1 < ¢t < T and
|Vi| = l; (i.e. the number of samples in V;), a list Q@ = {q11,---, @1, @11y - - -, Qpr} CAN
be constructed, containing binary values for all testing points of each tree, where ¢;; is equal
to 1 if the point ¢ is misclassified in tree ¢ and 0 otherwise. Therefore, GE is related to the
probability o, which is the probability of getting a point ¢ misclassified in tree ¢:

0 7ifqit:1a
(i) {1—g , if gir = 0, (4:6)

Moreover, two useful lists can be obtained, Lyyong = {w1, ..., wr} and Liepgn = {01, ..., 1},
where w; corresponds to the number of wrong classifications and [; the total number of tested
samples in tree ¢, 1 < ¢t < T. In this way, we can find the HPD interval of the GE, as the
99% of the a posteriori mass of P(GE|Q, 0) ~ Beta(o;a + 1, Lisy — o + 1) (see fig. 4.2)

P(GE | Q,0) x 0*(1 = )", (4.7)

where o = Z;‘F w; contains the total number of wrong classifications in L;,; = ZZT l; total
number of tested samples.

4.4 Partial Conclusion

In this chapter, the concept of statistical atlases was presented along with references to
existing state-of-art techniques. In addition, three methods to perform statistical analysis
were selected and further described (each one for specific reasons) with the ultimate goal
to compare them with the proposed methods in the next chapters. The first one, although
based on Hotelling T2 test (a quite weak statistical test due to its draconian assumptions),
benefits from the idea of working in a reduced space, which is favorable and promising. The
second method was selected as an innovative method which can handle high dimensional
data with no need to perform dimensionality reduction. Finally, the third approach is based
on RF classifiers, which are assumed to be flexible in statistical calculations even in high
dimension. Experimental results for all of these methods are included in chapter 6.

In the next chapter, the definition of the proposed statistical model, applicable to population
versus population comparison, will be presented and discussed.






Chapter 5

Population VS Population Comparison:
Proposed Statistical Model for T4s

In this chapter an innovative statistical model is proposed, aiming to offer efficient early
diagnosis, prognosis and patient follow up for a given disease. The proposed statistical
test gains in sensitivity due to the use of the T4 fODF parameterization to describe the
data, which produces better representation of the fiber structure than the T2 fODF model.
Moreover, due to the high dimension of the data, we selected to reduce the dimension,
in order to calculate robust statistics in a dense space. In this thesis, application of the
proposed statistical test to populations comparison was achieved in the case of the NMO
disease (experimental results are available in chapter 6).

5.1 Preliminary Steps

Before calculating the statistics, some preliminary steps are required. Firstly, data normal-
ization is a crucial step in order to transform all data into the same space. Secondly, T4
fODF model parametrization and the definition of a proper metric that compares two T4
fODF profiles are chosen to calculate an inter-point distance matrix. Finally, the considered
part of neighboring information is defined, assisting to eliminate any registration error left.

5.1.1 Selected Data Normalization

Mentioning the term "normalization", we refer to the procedure of transferring all data to the
same common reference space. To achieve that, one can calculate a spatial transformation
(e.g. linear, non-linear) and apply it on each datum. Due to the fact that our data (tensor
images or raw DW-MRI data in our case) contain information about the orientation of
the diffusion at each point, their spatial registration will result into important errors on
not accounting of the new underlying fiber’s structure. To bypass that obstacle, different

83
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normalization techniques were proposed in the literature, as described in section 3.2. DWI
normalization uses only the rotation part of the whole transformation, but tensor image
normalization can produce much more significant errors (due to the registration step on
tensor’s coefficients), than normalizing the raw DWT data. In other words, a small variation
in the tensor coefficients can produce a totally different fODF profile, while a small variation
in the DWT signal may not affect notably the estimated tensor model.

Initially in this study, tensor normalization (see section 3.3) was chosen in the absence of a
non-linear DWI normalization method. In the recent years, a competitive method for DWI
normalization was proposed in 2013 [51] and our initial choice altered to the new approach.
Calculating the FA image of each datum (by fitting voxelwise T2 tensor models) allowed us
to estimate the non-linear transformations between each FA image (eq. 2.8) in the initial
space and a reference FA template (e.g. JHU-FA-2mm) by calling standard procedures from
the FSL toolkit [89]. The estimated transformation is applied on the DWI data and their
reorientation is achieved by extracting the local rotation component of the transformation
and applying it to the spatially registered DWI data with the aid of a proper FSL patch
available on the web and proposed in [51].

5.1.2 Selection of a T4 fODF Parametrization, a Proper Metric
and the fODF Patches

Equation 2.24 in chapter 2 shows that a fODF function f(g) can be described, for example
by a T4 tensor model. In this study, the coefficients of the T4 fODF model were estimated
according to [172] by minimizing a quadratic cost function under the positivity constraint
of the estimated model.

T4 tensor model parameters belong to R'®. We must define a proper metric in that space.
Choosing an Euclidean distance between the coefficients of two T4s would not be pertinent,
since it would not take into consideration properly the whole information provided by the
corresponding profiles defined on the sphere. For example, a small variation in R" will not
correspond to the same variation in the profiles on the sphere. A proper distance should be
defined between two positive valued fODF functions on the 3D unit sphere. Experiments
showed that selecting an Euclidean distance integrated on the sphere is not sufficient, since
for example, differences between diffusivity values 10? and 10% will overlap any significant
differences between values 1072 and 1073. For that reason, log-based distances became
popular, such as the log-Euclidean distance for T2s in [6], or distances described in [153].

For the purposes of this study, we chose to work with the distance defined in equation 2.30.
An illustrative comparison between the Euclidean distance (L, norm) and the proposed one
(both integrated on the sphere) is depicted in figure 5.1. Each point corresponds to a T4
fODF tensor represented in the 2D reduced space by using an inter-point distance matrix
containing distances between all possible pairs of tensors in a feature extracting algorithm
(e.g. Isomap [154]). The red point represents an outlier corresponding to an fODF related to
a T4 model for which one of the coefficients was divided by 60. In the case of the proposed
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distance, the outlier is recognized and penalised by separating it from the mass of the other
tensors (i.e. ideal case), while in the case of the Euclidean distance the outlier is not well

separated.
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FiGURE 5.1: Comparison between the Euclidean distance and the proposed distance of
eq.2.30. The outlier (red point) should be separated from the mass, as is the case for the
selected distance and not for the Euclidean distance.

At this point, we should note that voxelwise distances are not efficient enough, especially
when data contain potential registration errors. In order to deal with these registration
errors, many approaches choose to smooth data, risking to lose useful information. Another
option could be to rely on skeletons of white matter bundles of fiber [144], but the risk of
losing information is still not totally eliminated. Introducing information contained in the
neighborhood of each voxel is another solution, which seems more suitable and less risky.
As a result, we selected to sum all the distances between two selected 3 x 3 x 3 patches per
voxel. The selected patches are defined by searching among all the possible coupled patches
in two 5 X 5 x 5 neighborhoods for the one that minimizes the sum of all the distances in
the smaller patches. Figure 5.2, illustrates the idea of searching all possible 3 x 3 coupled
patches in a 5 x 5 neighborhood, for simplicity.

FIGURE 5.2: The choice of the best 3 x 3 patches between two 5 x 5 neighborhoods (one
per individual dataset that is included in the comparison).

5.2 Feature Extraction (ISOMAP)

For each voxel (or a 5 x 5 x 5 neighborhood referring to that voxel), an inter-point distance
matrix can be calculated. The dimension of the current space is 15 (for a single T4) or
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5x b x5 x1h=1875 for a 5 x 5 x 5 neighborhood of voxels. Assuming a number of data
(corresponding to pathological and healthy patients) close to the order of tens or hundreds,
it can be directly concluded that this space will be sparse and not suitable for calculating
coherent statistics with robustness. As a consequence, reducing the dimension of the space
will provide a more dense space to work with.

To address the fact that the data lie on a manifold and consider geodesic distances, we resort
to non-linear dimension reduction techniques. We tested several methods, such as Isomap
[154], maximum variance unfolding (MVU) [171] and locality preserving projection (LPP)
[77, 78]. We chose to work with Isomap, similarly to [165] since in general, there were no
particular differences from a discriminative point of view (see table 5.1 and figure 5.3).

Non-linear Method

case / p-value’s HPD interval MVU | LPP | ISOMAP
(a) Almost Dissimilarity / [0.04,0.065] 9 12 9
(b) Clear Dissimilarity / [0.0,0.0046] 12 9 10

TABLE 5.1: Comparison between different non-linear methods, such as MVU, LPP and
ISOMAP. The table contains the number of wrong classifications between 22 individuals
of the normal group and 36 individuals of the abnormal group (totally 58 samples). Two
characteristic cases are extracted from real data calculations, where the estimation of the
p-values signify in (a) almost different populations while in (b) significantly different pop-
ulations. As we can see Isomap gave slightly better solution in average than the other

approaches.
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FIGURE 5.3: Plots of the 2D reduced space for the 58 samples of the two cases presented
in Table 5.1 which contains 22 normal individuals (denoted by the blue color) and 36
abnormal individuals (corresponding to red color).
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FIGURE 5.4: Scree plot of the reconstruction error in function to the reduced dimension.
On the basis of this plot, we chose to work with a reduced space of dimension 2 for the T4
case (similar to the T2 case as in [165]).

Other important reasons which explain the need to perform dimensionality reduction are
the following. Firstly, working in high dimensional spaces is not efficient, since they can
be sparsely filled with data. Secondly, lacking of statistical tests for multidimensional data
is another obstacle. As a consequence, constructing a reduced dense space where statistics
can be calculated robustly is crucial. This reduced space should be built by incorporating
geodesic distances in the initial space. Verma et al. [165] highlighted that specific property in
their study for T2 models (see figure 4.1). In this direction, Isomap correlates the structure
of the data points in the initial space, with the new structure of the points in the reduced
space by retaining the geodesic inter-point distances. In other words, the distances between
points in the reduced space mimic the distances between the corresponding points in the
initial space. Scree plot presented in figure 5.4 lead us to chose d = 2 as the dimension of
the reduced space, which is similar to the T2 case that Verma et al. analyzed.

5.3 Statistic of Interest

Given a normal and an abnormal population consisting of several points in the reduced
space (determined in the previous step), we propose to represent the probability densities
pi, © = 1,2 of each population ¢ by using kernel density estimation, assuming that each point
is associated to a Gaussian kernel [76]. Each population’s PDF has one free parameter, the
covariance matrix connected to each population’s point. It is determined with the aid of
Scott’s rule [142].

At this point that populations’ PDFs are defined, the selection of a proper metric to compare
the two populations is needed. In our first attempt, we chose to work with the popular
symmetrized Kullback-Leibler divergence. Unfortunately, there is no closed formula known
for the case of mixture of Gaussian distributions associated to the definition of kernel density
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estimations. As a result, only a numerical approximation could give an answer to our
problem and in practice it is very time consuming.

As a consequence, for all previously mentioned reasons, we chose to build our statistical
model on another measure of discrepancy P proposed by Sfikas et al. in [143], suitable
to compare mixtures of Gaussian distributions, which provides efficient results in much
less computational time. In fact, our experimentations indicated that P is calculated 150
times faster than our previous numerical approximation (e.g. with 5600 samples of the
working space) of the symmetrized Kullback-Leibler (sKL) divergence. To be more precise,
computation of P needed 102 minutes to compare two PDFs in a single permutation, in
a computer with 4 processors at 3.20 GHz and 8 GB of RAM memory. On the other
hand, sKL required 0.15 minutes in a single permutation (meaning that the corresponding
computational time for a typical set of 1000 permutations will be 150 minutes). In addition,
the discrepancy P and the sKL approximation produced equivalent characterizations of the
populations (similar/dissimilar).

The discrepancy P is our statistic of interest and is generally defined as follows [151], [143]:
2 [ (@) (@) da

/(pl(m))2d$+/(p2(m))2dm (5.1)

P(p17p2) = —log

This metric is symmetrical and becomes zero if p;, py are equal and positive otherwise.

According to [143], if we consider the following two mixtures of Gaussian distributions (one
for each population, normal and abnormal):

pe(@) = Zw N (1, 2()
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: (5.2)

we will come up with the following straightforward relation
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for a in {1,2} and b in {1,2}. Indices i, j, a, b were omitted from V' k, and p for simplicity.

In addition, the previous formulas may be simplified, since @ does not depend on i and
similarly, since Ey)) does not depend on j.

5.4 Estimation of the p-value and its credibility interval

For the purposes of performing population comparison, the distance P is handled as a
statistic. Therefore, our statistical problem is formulated as checking if the reference distance
Po (i.e. the one that compares the populations’ PDFs given the initial-true labelling of the
individual points) is an extreme value with respect to the distribution p(P) of the distances.

Due to the fact that p(P) is generally unknown, we produce random samples of the distri-
bution of P wia permutation testing. We select to approximate the probability of getting
distances P equal or greater than the reference one Py, P(P, > Py), with the aid of Monte
Carlo distance samples P, under the Null Hypothesis that both populations are indis-
cernible. This probability is also known as p-value and we will denote it v* and is equal
to:

v =P (P, > Po) = /+Oop(73) dP. (5.7)

Many statistical approaches are complacent to calculate only a single value for estimating
v*. For example, a possible solution 7 could be to divide the number of random distances
that satisfy P, > Py, with the total number IT of label shufflings.

On the other hand, each estimated p-value v has its own credibility interval, which depends
on the number of permutations. For that reason, in order to have insight in the precision
reached, we propose to calculate a credibility interval of the approximated p-value 7. The
length of the interval can be reduced by increasing the number of the label shufflings.

The steps of the proposed permutation test are the following: initially, we permute the
labels of the individual points I1 times and at each iteration of the permutation test we
estimate the value of P. Each comparison of P, with the reference distance P, produces a
binary value ¢, (¢, = 1 if P, > Py, and 0 otherwise). Each ¢, consists in a sample of the
Bernoulli distribution parametrized by the unknown p-value v*. At this point, the problem
is translated into estimating v* by using the binary samples ¢1, ..., qy.

v Jif g =1,

P(gx) = { (5.8)

1—v ,ifg, =0.

Assuming a uniform prior for v*, we can calculate the posterior p (v | ¢, ..., qy) which fol-
lows a Beta distribution Beta(a+1, IT —a+1), where « is the number of 1’sin {q1, ..., qi}.:

Pw|a,... qp) o< v*(1—wv)i= (5.9)
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The smallest interval enclosing the 99% of the a posteriori mass p (v | q1,...,qm), i.e. the
Highest Probability Density (HPD) interval, is considered to be the interval of v that we
are searching for.

More details about how to calculate the HPD are shown in figure 4.2. The main idea is that
we start from the maximum point and by performing dichotomy on both axes we can locate
the interval corresponding to the 99% of the mass. In this way, we have two characteristic
values for each p-value, the upper and the lower bound of the HPD interval.

A summary of the proposed statistical pipeline can be found in figure 5.5.

Input: Statistics Output:
T4 fODF tensors Most significantly
on Reg. & reo. different
DWI data s mootid Feature Population biomarkers N
> g Extraction i Compariso >
~
] ...and sum all the Element of the
Find the best match* for o distances in these inter-point
two 3x3x3 fODF patches in@® | two 3x3x3 fODF patches. distance matrix
two 5x5x5 neighborhoods...
*the one that minimizes
Feature the sum of distances? -
— > Matching | between the two
chiebeliolplFibiiei-  “log-based distance

hetween fODF profiles

FIGURE 5.5: The steps of the proposed approach.

5.5 Partial Conclusion

A statistical model based on tensors (particularly T4s which present better accuracy than
T2s, but any order tensor can be used) for the population comparison problem was proposed
in this chapter. After the enumeration of all needed pre-processing steps, the importance of
dimensionality reduction was highlighted and explained.

The proposed statistical test is based on the comparison of Gaussian kernel density PDFs
by resorting to permutation testing. Moreover, instead of limiting our method in calculating
only a single corresponding p-value for each voxel, we continue further by estimating the
HPD interval of each p-value. To fastly compare the two kernel density estimations, a rapid
and effective discrepancy, proper for mixtures of Gaussian distributions, was derived from
the literature and used in this study.

It is common that many methods proposed for statistically medical analysis stop to the
point of locating areas with small p-values (assisted by a selected threshold, usually equal
to 0.05). In this study, we consider that constructing a list of sorted p-values will extract
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the most different voxels in the top of that list, since the ranking of each voxel is much more
informative than its p-value, especially when we want to compare if different methods give
the same result (e.g. ranking).

In the following chapter, the experimental evaluation of the proposed method is presented
along with many other comparisons to methods presented in chapter 3.






Chapter 6

Group Comparisons: Evaluation on
NMO disease and synthetic cases

Applying the proposed statistical approach within a region of interest for a specific disease
can reveal an interesting list of p-values sorted in ascending order. It can highlight the most
significantly different voxels (i.e. biomarkers) in the top of that list, which finally can help
us to define regions of interest for each particular disease.

Neuromyelitis optica (NMO) disease, or Devic’s Syndrome, is an inflammatory neurodegen-
erative autoimmune pathology that results in simultaneous Wallerian degeneration in regions
which are directly connected to the spinal cord and to the optic nerves. Moreover, NMO
causes gradual demyelination due to inflammation in several regions rich in aquaporin-4
of the human brain such as the periventricular, the hypothalamic and the periaqueductal
regions and the bottom part of the fourth ventricle. The main symptoms of NMO disease
are the optic neuritis and the transverse myelitis that cause blindness and paralysis of the
extremities, respectively. Due to the fact that there is no standard cure for NMO, the ob-
jective is to stop or delay the evolution of the disease. Moreover, the development of cutting
edge tools that could provide early diagnosis and prognosis are crucial.

Population comparisons of Normal and Abnormal groups aid us to extract interesting
biomarkers, or regions of them, that will signify that those specific regions are characteristic
areas affected by the disease. In this way, we can provide useful information by guiding the
doctors through their examination or to properly adjust the patient’s treatment.

In order to set our experiments, 22 normal (healthy individuals) and 36 abnormal (patho-
logical individuals) DW-MRI datasets were used. The brain scanning procedure provided
us with HARDI data, where 30 non colinear gradient directions (signal is measured twice
in each direction) and b-value= 1000 s/mm2 were used, resulting into images of size of
128 x 128 x 41 and resolution 1.8 x 1.8 x 3.5 mm?. The proposed statistical model was im-
plemented in python/cython, while special routines from the FSL toolkit [89] were used for
the registration and reorientation steps. Moreover, all other methods used for comparison
were also implemented in python.

93
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6.1 Application of the Proposed Method to the T4 fODF
case

Selecting a ROI with 2741 voxels in the brain, such as the left and right anterior limb of the
internal capsule, the left and right posterior limb of the internal capsule and the left and right
posterior thalamic radiation (including optic radiation), that are already known as directly
affected by the NMO disease according to medical knowledge and the literature, allowed
us to verify that the proposed method is capable to highlight the region as pathologically
affected by NMO, too. Figure 6.1 illustrates the histogram of the obtained p-values (HPD’s
upper bound), concluding into the characterization of the region as a ROI for NMO, since
a peak appears in the bin with the lowest p-values ([0,0.05]). On the other hand, a region
with no lesion would produce a "flat" histogram over the interval [0, 1].
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0.0 0.2 0.4 0.6 0.8 1.0

FIGURE 6.1: The histogram of the resulting p-values (HPD’s upper bound) of the proposed
method applied on T4 models in a ROT with 2741 voxels (bin size = 0.05). The peak in
low p-values signifies that the selected region is pathologically affected by NMO disease.

Figure 6.2 depicts three characteristic cases of voxels that were found throughout the experi-
ments. Firstly, the case of getting dissimilar populations when the probability density of the
normal population is totally different than the abnormal probability density. In this voxel,
if we smooth our data, instead of finding the best match of the fODF patches, the obtained
result would signify that the populations are similar. The second case represents an inter-
mediate case that seems to converge to similarity, and finally, the third voxel corresponds
to a similar case where both probability densities look almost identical.

Table 6.1 summarizes the resulting HPD intervals of the three presented cases of fig. 6.2.
The number of permutations was 1000. The length of each interval can be reduced, by
increasing the number of the label shufflings. FEach statistical test took 3 minutes on a
standard computer. Most of the computation time was devoted to determining the best
matched patches in the calculation of the inter-point distance matrix.
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(c)

FIGURE 6.2: Visualization of probability densities, based on Gaussian kernel density esti-

mation, in the reduced space. Green points: normal individuals; red squares: abnormal

individuals. Presentation of three characteristic cases: (a) dissimilar populations, (b) and

(c) similar populations. Left column: representation of the probability density correspond-

ing to the normal population. Right column: representation of the probability density

corresponding to the abnormal population. Blue: low density, red: high density. The same
color scale is used across all subfigures.
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Fig.6.2 p-value width of | Populations
Cases | HPD interval | interval are
(a) [0, 0.0046] 0.0046 Dissimilar
(b) [0.35,0.43] 0.08 Similar
(c) [0.988,0.999] 0.011 Similar

TABLE 6.1: HPD intervals of the p-values for the cases depicted in Fig. 6.2, by performing
1000 label shufflings.

In the next sections of the chapter, the application of the proposed statistical model on T2
tensors is presented, along with some other benchmark comparisons.

6.2 Application of the Proposed Method to the T2 fODF
case

The application of the proposed statistical model on T2 tensors and the comparison with
the obtained results of the T4 case was the first point that we would like to test. It is known
that the T4 model can describe with much more accuracy a fODF that represents a complex
structure of fibers (up to 3 main bundles, see figure 2.9) than the T2 model, and as a result,
a more representative model could potentially produce much more biomarkers.

Except from comparing the fODF profiles of the T2 models by using equation 2.30 (similarly
to the T4 case), another popular metric exists in the literature for T2 tensor models, the
log-Euclidean distance (eq. 2.28). As a consequence, we will present both resulting statistics
by constructing the inter-point distance matrix at each voxel using both distances. Then,
this matrix will be introduced into the Isomap step, in order to produce the points in the
reduced space.

To begin with, figure 6.3 shows the distribution of the obtained p-values (HPD’s upper
bound) in the T2 case by comparing the T2 fODFs on the unit sphere (the same distance
as for T4 case), in the same ROI as in T4 case. Directly, we can notice that T2 fODF
case also concludes that the ROI has increased interest as being pathologically affected by
NMO. On the other hand, we can see that the peak in the lowest p-values contains less
biomarkers in the T2 fODF case than in T4 fODF case, meaning that our initial thought
for the amount of biomarkers is validated and T4 fODFs is able to detect biomarkers that
cannot be highlighted with T2 fODFs.

To continue, plugging the log-Euclidean distance in our procedure would result into substi-
tuting the comparison between fODF profiles with the comparison between the 6 coefficients
of the T2 model. The obtained distribution of the resulting p-values can be seen in figure
6.4. Although, in this case a peak in the lowest p-values was obtained too, we observe that
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the number of biomarkers is reduced a lot, much more than the T2 fODF case. As a conse-
quence, if someone choose to work with T2 models, it will be significantly better to resort
to fODF comparisons instead of comparing the tensor’s coefficients.
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FIGURE 6.3: The histogram of the resulting p-values of the proposed statistical model

applied on T2 fODF case in a ROI with 2741 voxels (bin size = 0.05). The peak in low

p-values signifies that the selected region is pathologically affected by NMO disease, but it
produced less biomarkers than the T4 case.
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FIGURE 6.4: The histogram of the resulting p-values of the proposed statistical model
applied on T2 case using the log-Fuclidean distance (eq.2.29) in a ROT with 2741 voxels
(bin size = 0.05). The peak in low p-values signifies that the selected region is pathologically
affected by NMO, although it produced less biomarkers than the T4 and T2 fODF cases.
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Comparisons between T4 and T2 statistics

Supplementary to the histograms of figures 6.1-6.4, figure 6.5 depicts the obtained biomarkers
(p-value < 0.05), noted by red color, in a partial view of the total ROI of 2741 voxels (named
as ROT 1). A careful look at those three images concludes that working with T4 fODF is
more productive and sensitive than T2 models. Moreover, in the T2 case, it is much more
effective to process T2 fODFs instead of T2 coefficients (regarding the number of extracted
biomarkers).

FIGURE 6.5: Plot the obtained biomarkers (p-value < 0.05, highlighted by red color) of a
particular region (we will refer to it as ROT 1) on the top of a FA template, in (a) T4 fODF
case, (b) T2 fODF case and (c¢) T2 coefficients case. As it can be seen the T4 fODF case
produced more biomarkers than the other cases. In addition, working with T2 fODF is
much better than T2 coefficients. Top images correspond to coronal views, middle images
correspond to axial views and bottom images correspond to sagittal views.

Additionally, since we are interested in comparing the ranking of the biomarkers between
different techniques, we came up with the idea of checking if the set of the top N = 1272
biomarkers consists of the same voxels in the three different approaches (i.e. T4 fODF, T2
fODF, T2 coefficients). The value of N was chosen by the fact that the top 1272 biomarkers
had same HPD intervals for the p-values in the T4 case (aiming to work with smaller HPD
intervals will eventually lead to smaller V). Working in this direction, a 3-label colorful map
can be produced. Voxels appearing in both testing schemes are categorized by the first case
(i.e. green label), voxels appear only in the list of method (a) (and not in method (b)) will
be assigned to the second case (i.e. purple label) and finally voxels appear only in method
(b) (and not in method (a)) belong to the third case (i.e. blue label).

Figures 6.6, 6.7 and 6.8 represent two slices (ROI 1, ROI 2) of the 3-label colorful maps
selected by the total 1272 most significantly different voxels extracted from the ROI of the
2741 voxels, in "T4 fODF vs T2 fODF", "T4 fODF wvs T2 coefficients" and "T2 fODF wvs
T2 coefficients" cases, respectively.
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ROI'1 ROI 2

FIGURE 6.6: Comparison of the ranking of T4 fODF statistics with T2 fODF statistics
in two different ROIs. Green voxels corresponds to the case of getting both ranks in the
top N = 1272 dissimilar voxels, purple voxels appeared only in the T4 fODF’s top N
dissimilar voxels and blue voxels only in the T2 fODF’s top IV dissimilar voxels. Greyscale
images correspond to FA template. Top images correspond to coronal views, middle images
correspond to axial views and bottom images correspond to sagittal views.

# of Green Purple Blue
Tested Voxels | (Both cases) | (only T4 fODF) | (only T2 fODF)
1500 1044 228 228

TABLE 6.2: Number of voxels with green, purple and blue color of the T4 fODF’s versus
T2 fODF’s statistics.

Tables 6.2, 6.3 and 6.4 contain the number of voxels belonging to each of the three labels
(green, purple and blue). In the case of "T4 fODF vs T2 fODF" 17.9% (= 228/1272) of
the top N = 1272 voxels are different, while the corresponding percentages of "T4 fODF wvs
T2 coefficients", "T2 fODF vs T2 coefficients" are equal to 25.9% (= 330/1272) and 21.6%
(= 275/1272), respectively.
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ROI 2

FIGURE 6.7: Comparison of the ranking of T4 fODF statistics with T2 coefficients statistics
in two different ROIs. Green voxels corresponds to the case of getting both ranks in
the top N = 1272 dissimilar voxels, purple voxels appeared only in the T4 fODF’s top
N dissimilar voxels and blue voxels only in the T2 coefficients’ top N dissimilar voxels.
Greyscale images correspond to FA template. Top images correspond to coronal views,
middle images correspond to axial views and bottom images correspond to sagittal views.

# of Green Purple Blue (only
Tested Voxels | (Both cases) | (only T4 fODF) | T2 coefficients)
1602 942 330 330

TABLE 6.3: Number of voxels with green, purple and blue color of the T4 fODF’s versus
T2 coefficients’ statistics.

The above percentages of differences between T4 and T2 tensor models triggered us to
examine the reasons why those differences happen. A more detailed examination of the
obtained sorted lists of p-values indicated us voxels where the decision (Similar/Dissimilar
populations) does not agree between T4 and T2 models.
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ROI'1

FIGURE 6.8: Comparison of the ranking of T2 fODF statistics with T2 coefficients statistics
in 2 different ROIs. Green voxels corresponds to the case of getting both ranks in the top
N = 1272 dissimilar voxels, purple voxels appeared only in the T2 coefficients’ top N
dissimilar voxels and blue voxels only in the T2 fODF’s top IV dissimilar voxels. Greyscale
images correspond to FA template. Top images correspond to coronal views, middle images
correspond to axial views and bottom images correspond to sagittal views.

ROI 2

# of Green Purple (only Blue (only
Tested Voxels | (Both cases) | T2 coefficients) | T2 fODF)
1547 997 275 275

TABLE 6.4: Number of voxels with green, purple and blue color of the T2 fODF’s versus

T2 coefficients’ statistics.

Reliability of T2 Statistics

Comparing the final decision (similar/dissimilar) of our statistical test between T4 and T2

cases, we notice that disagreements occurred in some cases. Testing a set of those voxels in

disagreement, by building the reduced space with the assistance of an inter-point distance

matrix which contains the L; differences of the model’s residuals (T4 and T2, separately)
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integrated on the sphere and then applying the proposed statistical model on that reduced
space, we came up with the conclusion that the T4 model gave the correct answer, since
the information of dissimilarity is contained in the T2 residuals. In other words, the less
efficient and less accurate T2 model can influence the conclusion of the statistical test.

6.3 Other Comparisons

In order to better evaluate the precision of the T4 model in comparison to the T2 model,
and in addition, to test the proposed statistical model against other approaches, we set the
following comparisons on both synthetic and real data.

6.3.1 T2 and T4 fODF models’ contributions to populations com-
parisons - Evaluation on synthetic data

Knowing that T2 models provide less accurate descriptions for crossing fibers, resulting into
more close to isotropic or spherical representations, we came up with the construction of the
following synthetic test.

Two tensor templates (one for each population, first two rows of figure 6.9) were constructed,
representing two orthogonally crossing fibers of the same diffusion (on left the T2, on right
the T4). The whole abnormal tensor template is rotated by 5 degrees in comparison to the
normal one (with the aid of [10]). We defined a set of 22 normal and 36 abnormal individuals
by adding Gaussian noise to the reference tensor templates.

Application of the proposed statistical model on T4 fODF profiles resulted into characteriz-
ing the two populations as dissimilar, while on the other hand T2 fODF profiles concluded
to similarity (see figure 6.9 and the corresponding p-values in the left part of table 6.5).

fODF fODF Residual Residual

case p-value Decision p-value Decision
T2 0.73,0.80] Similar [0,0.0046] | Dissimilar
T4 | [0.0058,0.025] | Dissimilar | [0.061,0.091] Similar

TABLE 6.5: Calculated HPD intervals of p-values on fODF profiles (left part) and on

the models’ residuals (right part) of the case presented in fig.6.9 and 6.10, along with the

characterization of each case. T4 fODF concluded to dissimilar populations, while T2
fODF to similar. The disagreement occurred due to T2 model’s residuals.

In order to examine why T4s and T2s disagreed, we checked the residuals of both T2 and
T4 fODF tensor models. These residuals were initially calculated using the set of gradient
directions of the acquisition, a set that generally differs from one patient to another. For
that reason we chose to extrapolate the residuals to a common for all patients and more
dense
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T2 fODF case T4 fODF case

FIGURE 6.9: Statistical comparisons on the T2 and T4 fODF models. The first two rows
give an example of two samples from the normal population (first row) and the abnormal
population (second row) for both T2 (on the left) and T4 (on the right) fODF models.
Abnormal tensors are rotated by 5 degrees in comparison to the normal tensors. The
22 green points correspond to the normal population and the 36 red squares correspond
to the abnormal population. All individuals are constructed by adding noise to their
corresponding template. The third row depicts the PDF distribution of the normal points,
while the fourth row shows the PDF of the abnormal points. We can notice that normal
and abnormal distributions are dissimilar in the T4 fODF case and quite similar in T2
fODF case. Populations’ PDFs use the same color scale in each case (column). Red color:
high density, blue color: low density.
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T2’s RESIDUAL case T4’s RESIDUAL case

FIGURE 6.10: Statistical comparisons on T2 and T4 residuals of the fODF models using
the Ly norm integrated on the sphere. The first two rows give an example of two samples
from the normal population (first row) and the abnormal population (second row) for both
T2 (on the left) and T4 (on the right) fODF models. Abnormal tensors are rotated by 5
degrees in comparison to the normal tensors. The 22 green points correspond to the normal
population and the 36 red squares correspond to the abnormal population. All individuals
are constructed by adding noise to their corresponding template. The third row depicts
the PDF distribution of the normal points, while the fourth row shows the PDF of the
abnormal points. As we can see, normal and abnormal distributions are more similar in
the T4 case than in T2, meaning that the residual of the T2 model is different between
normal and abnormal individuals. In other words, the T2 model cannot capture all the
information Populations’ PDFs use the same color scale per each case (column). Red color:

high density, blue color: low density.
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sampling set of directions on the sphere. In this way, we can compare all possible coupled
residual profiles by integrating their L, differences on the sphere, resulting into obtaining an
inter-point distance matrix useful to estimate our new reduced space related to the model’s
residuals. Application of the proposed statistical approach on that space signified that T2
residuals can influence the final characterization of the test, since populations comparisons
on T2 residuals resulted to dissimilarity. On the other hand, populations comparison on
T4 residuals concluded to similarity, meaning that all individual T4s had the same kind of
residual in both populations. In other words, T2 residuals contain patterns of information
capable to affect the statistical analysis, whereas T4 residuals do not contain information.

Furthermore, figure 6.10 represents the PDF of each population (normal and abnormal) for
both T2 and T4 cases (built on the residuals), while the right part of table 6.5 contains the
estimated HPD intervals of the p-values.

In the next two sections the proposed statistical method is firstly compared to the Hotelling
T? test on synthetic data, and secondly to one method based on permutations for high
dimensional real data (i.e. permutations in the inter-point distance matrix).

6.3.2 PDF analysis VS population’s mean analysis in the reduced
space - Evaluation on synthetic data

The purpose of the following comparison is to highlight the superiority of statistical methods
based on comparing the whole distribution of the groups, instead of comparing the groups’
mean, as achieved by the Hotelling T2 test.

A normal and an abnormal tensor template are constructed, describing two orthogonally
crossing fibers with different diffusion for each fiber. The fiber with the lowest diffusion (i.e.
vertical) of the abnormal template is rotated by 5 degrees and has a scale different than
the corresponding fiber in the normal tensor (the data were synthesized with the method of
[10] using the provided Matlab code). We defined 22 normal and 36 abnormal tensors by
adding uniform noise to each corresponding tensor template. In this case, the reduced space
is determined by comparing the fODFs of the tensors, similarly to the common case.

Figure 6.11 shows the PDFs of each normal and abnormal population in both T2 and T4
cases. In addition, table 6.6 contains the HPD intervals of the estimated p-values for the
proposed statistical test (both T2 and T4), along with the resulting p-values of the Hotelling
T? test. We can notice that, in both T2 and T4 cases, the proposed statistical test charac-
terized the populations as dissimilar, while on the contrary Hotelling T test failed in both
cases, concluding to similarity.

Furthermore, table 6.7 contains the obtained p-values for the previous synthetic case of fig-
ure 6.9. As previously shown, T2 models failed to recognize the populations as dissimilar
using the proposed statistical test. In addition, the Hotelling test failed in the T2 case too.
On the other hand, T4 models allowed both statistical tests to find the correct answer.



106 CHAPTER 6: Group Comparisons: Evaluation on NMO disease and synthetic cases

T2 case T4 case

FIGURE 6.11: The first two rows contain the representation of T2 and T4 fODF models
in the normal group (first row) and in the abnormal group (second row). The abnormal
individuals differ from the normal ones, by changing the angle and the scale of the small
vertical fiber. The 22 green points correspond to the normal population and the 36 red
squares correspond to the abnormal population. The first row gives an example of two
samples from the normal population and the abnormal population for both T2 (on the left)
and T4 (on the right) fODF models. Normal and abnormal individuals are constructed
by adding uniform noise to each group template (presented in the first two rows). The
third row depicts the PDF corresponding to the normal group, while the fourth row shows
the PDF of the abnormal group. It is easy to conclude that both T2 and T4 fODFs can
discriminate the difference between the two populations, but as mentioned in table 6.6, the
Hotelling 72 test fails to detect the dissimilarity.
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Proposed | Proposed | Hotelling’s | Hotelling’s
case | p-value Decision p-value Decision
T2 | [0,0.0046] | Dissimilar 0.90 Similar
T4 | [0,0.0046] | Dissimilar 0.83 Similar

TABLE 6.6: Calculated p-values (HPD intervals for the proposed method) of the case
presented in fig. 6.11, by comparing the proposed statistical method against the Hotelling
T2 test on T2 and T4 fODF profiles.

Proposed | Proposed | Hotelling’s | Hotelling’s
case p-value Decision p-value Decision
T2 fODF [0.73,0.80] Similar 0.76 Similar
T4 fODF | [0.0058,0.025] | Dissimilar 0.0016 Dissimilar

TABLE 6.7: HPD intervals of p-values on fODF profiles using the proposed statistical test
(left part) and the Hotelling test (right part) for the case presented in fig. 6.9, along with
the decision for each case. T4 fODF concluded to dissimilar, while T2 fODFs to similar
populations (for both tests). The disagreement occurred due to structured T2 residuals.

6.3.3 PDF analysis in the reduced space VS inter-point distance
matrix analysis in high dimensional space - Evaluation on
real NMO data

As presented in chapter 4, section 4.3.2, it is possible to define statistics in high dimensional
space assisted by an inter-point distance matrix [23]. Moreover, setting a permutation test on
the row/column elements of the inter-point distance matrix and measuring at each iteration
the statistic proposed in [23] and mentioned in eq. 4.1, allows us to estimate a p-value and
its credibility interval.

Similarly to the T2-T4 comparisons on real data, we would like to check the consistency
of the proposed statistical test with this particular permutation test on the inter-point
distance matrix based on T4 fODF models. Once again we would like to compare the top
N = 1272 sorted list of voxels for both approaches. Figure 6.12 depicts voxels in the same
two ROIs colored by the green-purple-blue coded scheme, where green corresponds to the
voxels appearing both in top N voxels, purple produced only by the T4 fODF in the reduced
space by the proposed statistical test and blue appear only in the top N voxels resulted by
the permutation tests on the distance matrix.

# of Green Purple Blue (only T4
Tested Voxels | (Both cases) | (only T4 fODF) | Matrix shuffles)
1531 1013 259 259

TABLE 6.8: Count of voxels in green, purple and blue color of the T4 fODF’s versus T4
matrix permutations’ statistics.
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Table 6.8 contains the exact numbers of voxels in each color case. The percentage of differ-
ences in ranking is 20.36% (= 259/1272) in the top N = 1272 most significant voxels.
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FIGURE 6.12: Comparison of the ranking of T4 fODF statistics with statistics based
on permutations on the inter-point distance matrix of the T4 models in two different
ROIs. Green voxels corresponds to the case of getting both ranks in the top N = 1272
dissimilar voxels, purple voxels appeared only in the T4 fODF’s top N dissimilar voxels
and blue voxels only in the T4 matrix permutations’ top N dissimilar voxels. Greyscale
images correspond to FA template. Top images correspond to coronal views, middle images
correspond to axial views and bottom images correspond to sagittal views.

Figure 6.13 illustrates the histograms of the resulting p-values (i.e. upper bound of the
HPD interval of each p-value), for the case of permutation testing in the inter-point distance
matrix, in the whole pathological ROI of the 2741 voxels, for T4 fODF, T2 fODF and
T2 coefficients cases. A first comparison between the subfigures of figure 6.13 and figures
6.1, 6.3 and 6.4 reveals the higher sensitivity of the proposed statistical approach against
permutation testing in the inter-point distance matrix, in a specific pathological area, for all
the three cases (T4 fODFs and T2 fODFs using the proposed tensor metric and T2 coefficients
using the log-Euclidean distance). Secondly, much more biomarkers were extracted by the
proposed statistical method, than the inter-point distance statistical analysis.
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FIGURE 6.13: Histograms of the upper bounds of the p-values’ HPD intervals using permu-

tation testing in the inter-point distance matrix for the same pathological ROI with 2741

voxels (bin size = 0.05). (a) T4 fODF case, (b) T2 fODF case, both using the proposed
distance (eq. 2.30) and (c) T2 coefficients using log-Euclidean distance (eq. 2.28).
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6.3.4 PDF analysis in the reduced space VS RF classification anal-
ysis in different feature spaces - Evaluation on real NMO data

It is known that RFs are capable to handle efficiently high dimensional data. In our case, RF
classifiers are used. Therefore, we started working with different kind of high dimensional
real data and gradually reduced the dimension, by using dimensionality reduction techniques,
such as Isomap [154], in order to keep the coherency with the previously mentioned methods.

Given the same set of 58 samples (22 normal and 36 related to NMO datasets), we tested
different kind of RF parameterizations (especially for the number of trees and the maximum
tree depths) in each feature space. We will present the best parameterization for each case.

Introducing neighboring information in the fODF space

Working in the fODF space of the T4s, we need to discretize the fODF function by sampling
it on the unit hemisphere, in order to define a feature vector per patient. Moreover, adding
neighboring information at each voxel, for example 5 x 5 x 5 fODF patches, we come up
with a set of 58 samples in the dimension of 5 x 5 x5 x N, where in our case N = 242 fODF
samples. Finally the sample’s features dimension is 30250.

The RF with 2500 decision trees and maximum tree depth D = 4 was the best parameteri-
zation for this case. HPD intervals of the GE and the p-value of the proposed method were
calculated in a given ROI with 2742 voxels. Figure 6.14 compares the middle values of the
HPD intervals between GE and the resulting p-value of the proposed method (each point in
the figure corresponds to a voxel in the ROI).
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FIGURE 6.14: Comparing the middle values of the HPD intervals between the p-value of

the proposed statistical method (horizontal axis) and the GE of the RF classifier in the

5 x5 x5 x 242 fODF space (vertical axis) in a given ROT of 2742 voxels in the brain.
Working in this space did not fulfil our expectations for a dense and increasing form.

Since we would expect to observe a fit forming an increasing function (so that both methods
will agree to the same decision e.g. similar=high value) and did not happen, we thought to
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change the feature dimension and instead of working with 242 fODF values in each voxel,
to work with the T4 space (15D) in order to obtain possibly the best RF results.

To continue, we should note that RF results are assumed incorrect. Strictly speaking RF
results should be verified using medical expertise. Since it is not done, we assume that the
proposed method provides us with robust results, because it benefits from certain attributes,
such as the geodesic distances between fODF profiles, the reduced working space in com-
parison to high dimensional space with probably no structured and sparse populations as in
the RF case.

Introducing neighboring information in the T4 space

Neighboring information in the T4 space of the 15 tensor coefficients, yields a working
space of dimension 5 x 5 x 5 x 15 = 1875. An optimized RF classifier with 7" = 2500 and
D = 4 provided us the results of figure 6.15. Unfortunately, it did not improve the results
significantly, since many deviations still remain.
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FIGURE 6.15: Comparing the middle values of the HPD intervals between the p-value of
the proposed statistical method (horizontal axis) and the GE of the RF classifier in the
5 x5 x5 x 15 T4 space (vertical axis) in a given ROT of 2742 voxels in the brain.

At this point we should remember that the 15D space of T4s can be sparsely filled, due to
lack of data, or even due to the fact that T4s lie on a submanifold in 15D. Taking into
consideration geodesic distances between T'4s could allow us to achieve more accurate solu-
tions. Therefore, we thought to assist the RF classifier by identifying that T4 submanifold,
not necessarily 2D as before, but we can start working from a higher dimensional space, for
example 5D (or even higher).

5D reduced space using Isomap

The very high dimension of our two previous cases, along with the medium quality of the
obtained results, led us to the reduction of the dimension of the data, similarly to the
proposed statistical method, in order to work in more densely filled spaces. Initially, we
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chose to transform our data to the 5D space, where an optimized RF classifier with 7" = 500
and D = 4 gave results much more consistent with the ones given by our method. Figure
6.16 presents the corresponding comparison for this set of experiments.
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FIGURE 6.16: Comparing the middle values of the HPD intervals between the p-value of
the proposed statistical method (horizontal axis) and the GE of the RF classifier in the 5D
reduced space (vertical axis) in a given ROI of 2742 voxels in the brain.

Thereby, we decided to reduce the dimension more and we decided to work with 2D data,
the same dimension as the proposed statistical model.

2D reduced space using Isomap

Fitting a RF with T'= 500 and D = 4 in 2D data gave the best coherency between the four
tested cases, as shown in figure 6.17.
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FIGURE 6.17: Comparing the middle values of the HPD intervals between the p-value of
the proposed statistical method (horizontal axis) and the GE of the RF classifier in the 2D
reduced space (vertical axis) in a given ROI of 2742 voxels in the brain.
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Three characteristic cases (very similar, similar and dissimilar voxels, represented by green,
yellow and red stars in fig. 6.17) are isolated and further studied in figure 6.19, where we can
see the green points representing the normal population and the red points displaying the
abnormal one. The background color illustrates the RF classification according to the given
sets of normal and abnormal individuals. Areas with higher probability to belong to the
normal group than the abnormal one are depicted with green, in contrast to the red-coded
abnormal group. Moreover, areas with high uncertainty are coded with brown-level colors.

Sorting the p-values (and the generalization errors) of all voxels in a ROI reveals the most
important biomarkers of that ROI. Connection between p-value’s ranking and RF general-
ization error’s ranking concludes that RF are coherent with the proposed statistical approach
(see figure 6.18, data are spread around the y = z line).
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FIGURE 6.18: Comparing the ranking of the middle values of the HPD intervals between

the p-value of the proposed statistical method (horizontal axis) and the GE of the RF

classifier in the 2D reduced space (vertical axis) in a given ROI of 2742 voxels in the brain.
The points follow in general the y = x line.

Our initial expectation was that RF models could perform better in the initial high di-
mensional space. Probably, given the complexity of the structure of T4/fODF spaces, in
practice, it was shown that reducing the dimension is important. RF in 2D reduced space,
gave results coherent with the proposed method, although the crucial task was performed
by Isomap and the calculation of the reduced space.

Finally, we can say that the proposed method produced more biomarkers than the RF
models.
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FIGURE 6.19: Visualization of the RF (7" = 500, D = 4) classifications for three chara-

cteristic cases (extracted from fig. 6.17) and comparison with the resulting p-values (with

1000 label shufflings) of the proposed statistical method. (a) Similarity: GE = [0.50, 0.53],

p-value = [0.988,0.999], (b) Similarity: GE = [0.48,0.50], p-value = [0.35,0.43] and (c)
Dissimilarity: GE = [0.28,0.30], p-value = [0.0,0.0046].
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6.4 Partial Conclusion

Experimental results of the proposed method were presented in this chapter. Several evalua-
tive schemes, on synthetic and on real NMO data, showed the coherence of the proposed
method with medical knowledge. Moreover, the superiority of the T4 tensor model against
the T2 model was shown. Results obtained by the methods described in section 4.3 are
consistent with those derived from the proposed method, or are even worse.

As part of future work, it will be interesting to apply the proposed statistical model in
ROIs with no direct relation with pathological areas, with ultimate view to discovery new
biomarkers, since inflammatory diseases, such as NMO, can potentially spread all over the
brain.

The next chapter contains an alternative proposed statistical analysis, suitable for individual
versus normal population comparisons. Application to LIS disease will be presented.






Chapter 7

Individual V.S Normal Population:
Method and Application to LIS disease

In cases where the variability of the abnormal population cannot be totally captured due
to the lack of enough pathological data, it is not pertinent and even not safe to rely on
population vs population approaches, including the proposed method in chapter 5. The
existence of empty (unlabeled) areas in the space, due to the lack of (abnormal) points,
close to the mass of the normal population will result in data being probably misclassified
as normal, in the absence of knowing completely the variability of the abnormal group.
Moreover, under certain circumstances, it is much more robust to evaluate the state of every
patient separately, for example, in patient follow-up. As a consequence, each incoming
abnormal dataset should be tested individually versus the normal population (in most of
the cases is well-defined by a large dataset), which will permit us to follow the state of the
patient across several in time scans.

In this chapter, a variation of the method proposed in chapter 5 is described, aiming to calcu-
late voxelwise statistics in the case of sparse populations. Experimental results for Locked-in
syndrome (LIS) are achieved by collecting and post-processing the voxelwise statistics in spe-
cific regions of interest related to the motor system, which are characteristically affected by
LIS. Both fODF and diffusion (ADC) profiles produced by different T4 models were ex-
amined. Finally, comparisons between the proposed scheme and classical approaches are
included.

7.1 Proposed Statistical Model

Although many elementary steps such as the DW-MRI normalization, the use of fourth
order tensors, the computation of the inter-point distance matrix, based on the same tensor
metric (eq. 2.30) including neighboring information (i.e. 3 x 3 x 3 best patches) and the
idea of determining the reduced space with Isomap retain attached to the core of the new
method of this chapter, a few parts differ from our previous scheme.

117
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To begin with, instead of fitting and transforming all individual datasets (normal and ab-
normal) in the reduced space at once, meaning that the distances referring to the abnormal
individuals will affect the position of the normal points (as is the case for the population vs
population problem), at this time, the reduced space for the normal points is constructed
by taking into consideration the part of the inter-point distance matrix only between the
normal datasets. In other words, the reference model of the reduced space will not depend
on any abnormal point. This is done to avoid estimating a shrunken normal group due to
the presence of large distances related to the abnormal points.

Once the normal population is determined in the reduced space, each abnormal individual
will be treated as an independent incoming datum, that will be transformed to a new
point in the reduced space by fitting it to the reference model, corresponding to the normal
population, by introducing its relative part of the inter-point distance matrix (i.e. distance
vector referring to abnormal ¢ vs all normal individuals). It is important to note that
transforming the abnormal individuals in the reduced space can be implemented in parallel,
without altering either the position of the normal points, or the previously tested abnormal
points. In addition, following the analysis of Isomap’s reconstruction error with respect
to several values of the reduced dimension that was presented in section 5.2, we will keep
working in 2D.

7.1.1 Statistic of Interest and Determination of HPD Interval per
p-value

At this point, we have the normal points in the reduced space, for a given voxel. Similarly
to the previously proposed method, we choose to fit a Gaussian kernel at each normal point,
thus representing the normal population as a Gaussian Mixture Model (GMM) (eq. 7.1)
with the aid of kernel density estimation (KDE) [76]:

p(@) =7 SN (@, ). (7.1)

The covariance X is identical for all kernels and is determined according to Scott’s rule [142].

For each incoming transformed abnormal point y, we consider its PDF value p (y) given
the distribution of the normal population, as our statistic of interest (in contrast to the
discrepancy, that was measured between two PDFs and used in the previous method). In
this way, we can estimate the p-value v*, referring to the probability of getting a PDF equal
or lower than p(y) under the Null Hypothesis that the abnormal point y belongs to the
normal population.

Theoretically, v* = [, p(x)dx, X = {x | p(x) < p(y)}, but in practice this integral cannot
be computed analytically. For this reason, we chose to estimate the p-value v* via Monte
Carlo simulations and the generation of K random samples from p(x) (e.g. K = 5000,

{x1,..., 2k} samples, z}, ~ p(x)).
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HPD Interval Estimation for each p-value

Due to the fact that we are not satisfied with a pointwise estimator 7 of the p-value v*
at each voxel (eq. 7.3), we wish to determine the solution’s precision by extracting a HPD
interval for each p-value, in a similar manner as was done in the populations comparison
problem (e.g. section 5.4).

Each comparison p(x) < p(y) will result in a binary value ¢ (x) equal to 1 when the
condition is true and 0 otherwise. We will denote ¢, = ¢ (zy).

v Jif g =1,

Pla) = { (72)

1—v ,ifg, =0.

V= /Xp(a:) da = /q(m)p () de ~ %;qk =7 (7.3)

Assuming a uniform prior for v*, it is possible to calculate the posterior p (v | ¢, ..., qK)
which follows a Beta(a + 1,5 + 1) distribution, with a equals to the number of 1’s and /3
the number of 0’s in {qx}, 1 < k < K sequence:

_ Pla1,...gxlv) P(v)
 qr) = P(q1,.qx) 7

Plv|aq,...
= Plv|q,... qx) < v®(l—uv)’
P(qi,...,qx | v) cv®(1 —v)P
~ Beta(a+1,5+1) (7.4)

To continue, we can estimate the interval of the underlying p-value v, as the HPD interval
(see fig. 4.2) referring to the 99% of the a posteriori mass p (v | q1,...,qx). Once again,
increasing the number of samples K can effectively reduce the length of the estimated
interval.

7.2 Experimental Results

Evaluation of the proposed method on real data was achieved using a set of 22 normal DW-
MRI data, describing the normal population, and 4 abnormals referring to two separate scans
for each of the two LIS patients in our data repository. DW-MRI data represent HARDI
data consisting of 30 non colinear gradient directions (scanned twice), with a b-value equal
to 1000 s/mm?, a resolution of 1.8 x 1.8 x 3.5 mm? and an image size of 128 x 128 x 41.

Although the proposed statistical test can be performed voxelwise across the whole volume
of the brain’s WM, for the purposes of this thesis we will focus on specific regions of interest
(ROIs). These ROIs compose the motor system. The ROIs are the pontine crossing tract, the
left and right corticospinal tracts, the left and right medial lemniscus, found in the bottom
part of the brain (in a lateral view, close to the spinal cord) and finally the left and right
posterior limb of the internal capsule and the left and right superior corona radiata, located
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in the middle and upper parts of the brain. The definitions of these ROIs are available in
the JHU-ICBM-labels template of FSL [89]. Patients with LIS are conscious, but unable
to move or to communicate (i.e. quadriplegia) except using eye movements in some cases.
LIS syndrome produces anatomical lesions at the ventral part of the pons, which induce
interruptions of WM tracts, especially the corticospinal tract. As a consequence, the motor
system is generally considered as a keypoint system that contains lesions due to LIS.

In the next sections, we will discuss the performance of the proposed statistical method for
the individual versus normal population problem, by using fODF and diffusion (ADC) T4
models to represent our DW-MRI data. In this study, we particularly focus on T4 models,
since T4s achieve higher accuracy in describing the diffusion properties and fiber structure
than the corresponding T2s (see fig. 7.1 which highlights the better representation of the
diffusion T4s/DT4s against diffusion T2s/DT2s in specific ROIs of the motor system).

In addition, ways to improve the performance will be discussed via variations of the proposed
tensor metric. Finally, comparisons of the proposed method against classical approaches
based on standard statistics on FA and MD scalar images will be presented.

7.2.1 Results based on fODF T4s and on DT4s

To begin with, our goal is to measure the percentage of lesions (i.e. the amount of voxels
related to p-value < 0.05) in each ROI. Initially working, by default, with fODF T4 models,
we observed that the percentages of lesions per ROI (i.e. table 7.1 or figure 7.2 for both
patients) were not as high as we expected, knowing that these ROIs are associated with LIS.

A possible explanation could be that since fODF profiles are scaled functions paying more
attention to the diffusion’s orientation properties than the diffusivity values, the statistical
test did not detect many lesions depending on the orientation of the DW-MRI data (i.e.
geometry of the fiber structure), meaning that fibers’ orientation would possibly maintain
its normality in high levels.

In addition, the lower than expected percentages of lesions based on fODF T4 models
prompted us for a more detailed study, which was achieved by estimating DT4s [11]. Ob-
serving the results included between parentheses in table 7.1, the obtained percentages of
lesions using DT4s are significantly higher than the corresponding fODF cases. In other
words, it is impressive to note that LIS datasets contain much more lesions affecting the dif-
fusivity’s properties, such as the magnitude of diffusion, for example related to the number
of fibers passing through each voxel, rather than lesions affecting the geometrical properties
(e.g. orientation of diffusion).

Furthermore, observation of table 7.1 (or figure 7.2) permits us to give several useful di-
rections of thinking to the physicians, concerning the patient follow up procedure. It is
remarkable that the percentages of lesions in the top five ROIs presented in the table, which
are located close to the spinal cord, are higher than the percentages of lesions appearing
in the middle and upper parts of the brain, locations where tracts started from the spinal
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(b)

FIGURE 7.1: Visualization of the embedded (a) DT4 and (b) DT2 models in five patches

of specific ROIs of the motor system. ROIs’ labels correspond to JHU-ICBM-labels-2mm

template of FSL [89]. 2: pontine crossing tract, 7: right and 8: left corticospinal tract, 9:

right and 10: left medial lemniscus. It is noticeable that DT4s are more accurate models
than DT2s.
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PATIENT 1 PATIENT 1
Name of ROI Scan 1 Scan 2

fODF T4 (DT4)

fODF T4 (DT4)

Pontine crossing tract
Corticospinal tract R
Corticospinal tract L
Medial lemniscus R
Medial lemniscus L

7.1% (23.5%)
0.57% (10.23%)
3.37% (14.04%)

0.0% (0.0%)
6.02% (16.87%)

21.86% (62.84%)
6.25% (28.41%)
11.24% (30.9%)
6.98% (17.44%)
4.82% (20.48%)

Post. limb of internal capsule R
Post. limb of internal capsule L
Superior corona radiata R
Superior corona radiata L

2.99% (6.59%)
5.24% (5.45%)
1.63% (8.48%)
7.36% (9.63%)

3.59% (18.76%)
5.45% (13.21%)

2.72% (23.15%)
11.04% (18.72%)

Name of ROI

PATIENT 2
Scan 1
fODF T4 (DT4)

PATIENT 2
Scan 2
fODF T4 (DT4)

Pontine crossing tract
Corticospinal tract R
Corticospinal tract L
Medial lemniscus R
Medial lemniscus L

3.83% (8.74%)
6.25% (18.18%)
12.36% (23.03%)
5.81% (17.44%)
7.23% (21.69%)

2.73% (26.78%)
4.55% (19.89%)
4.49% (19.1%)
9.3% (25.58%)
12.05% (24.1%)

Post. limb of internal capsule R
Post. limb of internal capsule L
Superior corona radiata R
Superior corona radiata L

0.4% (5.99%)
2.52% (10.27%)
3.37% (3.91%)
1.41% (5.09%)

0.2% (3.59%)
2.1% (11.53%)
1.96% (4.35%)
1.41% (2.6%)

TABLE 7.1: LIS Patient 1 (top) and 2 (bottom) follow-up for 9 ROIs (from JHU-ICBM-

labels template of FSL [89]) related to the motor system. Percentage of lesions (p-value

< 0.05) per ROI for both scans using T4 fODF profiles and T4 diffusion profiles (between

parentheses) are presented in the table. It is obvious that the percentages of lesions are
higher in the diffusion than in fODF profiles.

cord are passing through or end at that level (e.g. four ROIs in the bottom of the table)
for both patients. The lesions detected in the top five ROIs are coherent with the medical
expectations, since these ROIs are the first keypoint areas to detect lesions related to LIS.
Appearance of lesions in the four last ROIs (middle and upper parts of the brain) may be
caused by Wallerian degeneration. Moreover, someone could say that lesions in the last set
of ROIs react differently depending on the patient. For example, patient 2 exhibits less
lesions in the middle-upper part of the brain than patient 1.

Another interesting point is the increasing percentages of lesions between the two scans,
for both patients in most of the ROIs. Although the clinical status of the patients did not
change remarkably between scans, since both patients were totally paralysed from the first
time scan, the increasing percentages can be seen as the expected evolution of the corrupted
tracts.
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FIGURE 7.3: Two examples of reduced space configurations using DT4s. The green points

describe the atlas (i.e. reference data), the background represents the PDF (blue: low

values; yellow to red: high values). The four red squares describe incoming abnormal data.

15! voxel of interest (left subfigure): all incoming data are identified as abnormal ; 2"¢ voxel
(right subfigure): all incoming data are identified as normal.

To continue, figure 7.3 depicts the reduced space of the normal points (i.e. green points)
along with their population PDF (i.e. colorful background, where blue corresponds to low
PDF values and red to high) and the four transformed abnormal points (i.e. red squares) of
two interesting voxels extracted through processing DT4s. In the left figure, we can notice
that all abnormal points are punished, located outside the core of the normal population,
due to their highly abnormal DT4 properties. On the other hand, in the right figure,
all abnormals are considered to be healthy, equivalent to the normal points, since they
are located in the mass of the normal population. Of course, other configurations can be
extracted too, especially when the state of the patient’s health is altered due to recrudescence
of the pathology. In the last case, some red squares could be located in the mass of normality
(i.e. healthy state) and some other outside the periphery of it (i.e. abnormal state).

Due to the fact that DT4s are more sensitive, managing to distinguish higher percentages
of lesions than the fODF T4 models within areas related to the LIS disease, it will be better
to build our statistical analysis model on DT4 data for this particular disease.

In the next sections, comparisons of the proposed statistical approach adapted to DT4 and
DT2 models are presented. Furthermore, classical statistical analysis of FA and MD images
will be described.

7.2.2 Results based on DT2s

Diffusion T2s (DT2s) are widely used to describe and analyse DWI data. Despite their
popularity, DT2s are limited since they model only a single principal direction of diffusion,
offering poor representations for complex crossing fibers and potentially inaccurate statistical
analysis.
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Table 7.2 contains the percentages of lesions detected using the proposed statistical analysis
of DT2 models, at each ROI in the motor system of the brain and figure 7.4 visualizes them.
Cases where DT2 detected more lesions exceed the DT4 cases. The absence of ground truth,
in order to specify the false positive and false negative rates, hardens the task of deriving
conclusions.

Name of ROI

PATIENT 1
Scan 1
DT4 (DT2)

PATIENT 1
Scan 2
DT4 (DT2)

Pontine crossing tract

Corticospinal tract R
Corticospinal tract L
Medial lemniscus R
Medial lemniscus L

23.5% (35.52%)
10.23% (17.61%)
14.04% 13.48%)
0.0% (2.33%)
16.87% (10.84%)

62.84% (70.49%)
28.41% (34.09%)
30.9% (35.96%)
17.44% (23.26%)
20.48% (12.05%)

Posterior limb of internal capsule R

6.59% (12.57%)

18.76% (30.54%)

Posterior limb of internal capsule L 5.45% (8.18%) 13.21% (22.43%)
Superior corona radiata R 8.48% (19.13%) 23.15% (40.98%)
Superior corona radiata L 9.63% (21.1%) 18.72% (31.39%)

PATIENT 2 PATIENT 2
Name of ROI Scan 1 Scan 2
DT4 (DT2) DT4 (DT2)

Pontine crossing tract

Corticospinal tract R
Corticospinal tract L
Medial lemniscus R
Medial lemniscus L

8.74% (11.48%)

18.18% (22.16%)
23.03% (21.35%)
17.44% (13.95%)
21.69% (22.89%)

26.78% (42.08%)
19.89% (22.73%)
19.1% (24.16%)
25.58% (33.72%)
24.1% (36.14%)

Posterior limb of internal capsule R
Posterior limb of internal capsule L
Superior corona radiata R
Superior corona radiata L

5.99% (6.59%)
10.27% (16.98%)
3.91% (8.7%)
5.09% (7.9%)

3.59% (4.79%)
11.53% (16.35%)
4.35% (8.8%)
2.6% (5.74%)

TABLE 7.2: Comparison between DT4 and DT2 (obtained using FSL) statistical analyses.

Table shows the percentage of lesions (p-value < 0.05) per ROI for both LIS patients -

both scans. Between parentheses the percentage of lesions (p-value < 0.05) derived from

the DT2 analysis. Highlighted percentages correspond to cases where DT4 detected more
lesions than DT?2.

7.2.3 Classical statistical analysis of FA and MD images

In the literature (see e.g. [92]), many classic statistical approaches have been proposed
to analyze scalar diffusion images, such as FA or MD images, derived from T2 models.
Using scalar images is convenient for simple statistical calculations, for example FA/MD
histogram analysis per voxel /ROI, voxelwise or ROI-based calculations of z-scores (also
known as standard scores) etc.



,bd';- &Q- &\' ‘,\, 6‘2* e\' %y
%’\'\ «(bb < @(; g (}\:’ ¥ &> %& ‘,& § '5? & s
A P P CAIRAR CE g _
° YR Y SR & © 52 @ g
(\Q’(} \b°"Q {;@D%Q a‘,\‘b\\' 5§ g?‘(\\ & (Jo‘-°° (J&(’Q = P151-DT4 & &QO”Q &&‘9 & @ &rf &"’@ (JO<0° & mpis1oDR2
O & & 4 N B S & & 8 § R
N o o s A N o o & LR
& ¢ ¢ & @. 8 @SO Qé\o Qé@ = P1S2.DT4 & ¢ ¢ I &S Q@“\o & = P152-DT2
\.-\> \.-\.'\ < < &\> A < <
&
QQ QO Qo Qo
100% : 100% i
90% : 90% |
70% : 70% :
60% : i :

X = *x < ~ & * ~ <« ~ Y ~
& X =] 2 B \ > > & & & ) R & @ > @
RS IO s A R S P Ol
&S @ &S \C?Q &K & & & @ & & \(}‘-‘Q & B
Q N N @ < 2 2 2 2 © é\ Q\ N N: 2 2 (@_
¢ R F YN EE S S B PN & &S
& TG E E s & & FE & & @ E mpsiDn
Qo(‘ S & L \0& & e é\o Qoi‘ & & QO & g & 9}‘0 é\o
£ mP252- : ® P252-DT2
&S}@ \\-/\(Q %QQ (_)\}Q P252-DT14 \‘\}6\ &\>§{\ “)\)’Q t_)\\ﬂ
I & & ©

FIGURE 7.4: Plotting the percentages of lesions detected using the proposed method on diffusion T4s and diffusion T2s (as presented in
table 7.2). The labels are coded as "PiSj-data" referring to "Patient ¢ Scan j on specific data". The vertical dotted lines separate the two
groups of ROIs (ROIs in the bottom part of the brain on the left and ROIs in the middle and upper parts of the brain on the right).

9¢1

aseasip QI 03 uorjesrddy pue poylapy :suostreduro)) [enpiapuy 2 YALJIVHD



7.2. EXPERIMENTAL RESULTS 127

For the purposes of this study, we chose to estimate voxelwise z-scores per patient, based on
normal population’s mean and standard deviation of FA /MD values of all healthy individuals
at each voxel. The z-scores will be post-processed in order to determine the percentages of
lesions (i.e. voxels with |z-score| > 1.96) in each ROI (using similar process to the proposed
method) of each patient. The threshold of 1.96 is equivalent to a p-value of 0.05 in a
two-tailed hypothesis.

DT4s p-values versus FA z-scores

The statistical analysis of FA images by calculating z-scores for both patients and both data
acquisitions is presented in table 7.3 (between parentheses) along with the obtained results
of the proposed method on DT4 models. It is noticeable (in both table 7.3 and figure 7.5)
that the percentages of lesions based on FA analysis are higher than the corresponding
percentages derived from the proposed method.

Name of ROI

PATIENT 1
Scan 1
DT4 (FA)

PATIENT 1
Scan 2
DT4 (FA)

Pontine crossing tract
Corticospinal tract R
Corticospinal tract L

235% (79.78%)
10.23% (66.48%)
14.04% (61.8%)

62.84% (91.8%)
28.41% (74.43%)
30.9% (65.73%)

Medial lemniscus R 0.0% (61.63%) | 17.44% (67.44%)
Medial lemniscus L 16.87% (63.86%) | 20.48% (63.86%)

Post. limb of internal capsule R | 6.59% (32.53%) | 18.76% (55.49%)
Post. limb of internal capsule L | 5.45% (30.19%) | 13.21% (31.03%)
Superior corona radiata R 8.48% (24.35%) | 23.15% (29.24%)
Superior corona radiata L 9.63% (17.75%) | 18.72% (24.03%)

PATIENT 2 PATIENT 2
Name of ROI Scan 1 Scan 2
DT4 (FA) DT4 (FA)

Pontine crossing tract
Corticospinal tract R
Corticospinal tract L
Medial lemniscus R
Medial lemniscus L

8.74% (75.96%)
18.18% (48.86%)
23.03% (37.64%)
17.44% (73.26%)
21.69% (59.04%)

26.73% (31.97%)
19.89% (54.55%)
19.1% (37.64%)
25.58% (75.58%)
24.1% (71.08%)

Post. limb of internal capsule R
Post. limb of internal capsule L
Superior corona radiata R
Superior corona radiata L

5.99% (42.51%)
10.27% (25.58%)
3.91% (11.3%)
5.09% (31.71%)

3.59% (32.93%)

11.53% (23.27%)

4.35% (11.41%)
2.6% (25%)

TABLE 7.3: Comparison between DT4 and FA image statistical analyses. Table shows the
percentage of lesions (p-value < 0.05) per ROT for both LIS patients - both scans. Between
parentheses the percentage of |z-score| > 1.96 based on FA analysis is included.
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Figure 7.6 depicts the evolution of patient 1’s FA images through the two scans for three
typically affected ROIs (pontine crossing tract and right and left corticospinal tracts), in
comparison to a healthy FA template. Due to the absence of any ground truth solution it
is hard to say which method is better than the other (it is impossible to measure the false
positive and false negative rates per method).

FIGURE 7.6: FA’s axial slices showing the disease’s evolution of LIS patient 1 in three

ROIs. (a) JHU-FA template, (b) Patientl-scanl and (c) Patientl-scan2. Red ROI: Pontine

crossing tract, green ROTI: Corticospinal tract R and blue ROI: Corticospinal tract L. (b)-(c)
contain lower FA values (i.e. darker colors) in comparison to control image (a).

In favour of the proposed method, we could clarify that T4 diffusion profiles do not collect
the same type of information as FA images. Probably, DT4s should be ideally compared to
MD images which measure the mean diffusivity across the three main directions, aligned to
the three eigenvectors resulting from the spectral analysis of the T2 matrix (see eq. 2.10).

DT4s p-values versus MD z-scores

Table 7.4 contains between parentheses the statistical analysis of MD images by calculating z-
scores, next to the obtained results of the proposed method on DT4s and figure 7.7 visualizes
them. Generally speaking, MD’s percentages in many ROIs are lower than the corresponding
percentages obtained in the FA case (of course there are some exceptions, such as the last
two rows of the tables, referring to Superior corona radiata R and L), signifying that even
two scalar measurements derived from the same T2 models can produce different statistics,
pointing that the absence of a ground truth solution, once again, makes the evaluation
process hard for safe conclusions.

In the next section, an evaluation of the proposed statistical approach on fODF T4 data
will be presented, by measuring its performance on a leave-one (normal datum)-out scheme.
Furthermore, a set of variations of the proposed distance (eq. 2.30) will be also evaluated.

7.2.4 Leave-one-out Evaluation Scheme in the fODF T4 Case

The low obtained percentages of lesions, for example in the fODF T4 case, increased our
interest to measure the ability of the proposed statistical test (based on the proposed tensor
metric of eq. 2.30) to correctly classify every unseen normal individual as a healthy person.
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PATIENT 1 PATIENT 1
Name of ROI Scan 1 Scan 2
DT4 (MD) DT4 (MD)

Pontine crossing tract
Corticospinal tract R
Corticospinal tract L

23.5% (54.65%)
10.23% (56.82%)
14.04% (41.57%)

62.84% (92.9%)
28.41% (71.59%)
30.9% (62.36%)

Medial lemniscus R 0.0% (19.77%) | 17.44% (46.51%)
Medial lemniscus L 16.87% (44.58%) | 20.48% (51.81%)
Post. limb of internal capsule R | 6.59% (34.73%) | 18.76% (63.07%)
Post. limb of internal capsule L | 5.45% (37.74%) | 13.21% (44.23%)
Superior corona radiata R 8.48% (71.85%) | 23.15% (91.41%)
Superior corona radiata L, 9.63% (66.88%) | 18.72% (81.49%)

PATIENT 2 PATIENT 2

Name of ROI Scan 1 Scan 2
DT4 (MD) DT4 (MD)

Pontine crossing tract
Corticospinal tract R
Corticospinal tract L
Medial lemniscus R
Medial lemniscus L

8.74% (27.32%)
18.18% (46.02%)
23.03% (46.63%)
17.44% (43.02%)
21.69% (56.63%)

26.78% (56.83%)
19.89% (51.14%)
19.1% (51.12%)
25.58% (61.63%)
24.1% (77.11%)

Post. limb of internal capsule R
Post. limb of internal capsule L
Superior corona radiata R
Superior corona radiata L

5.99% (35.93%)
10.27% (33.54%)
3.91% (38.48%)
5.09% (47.73%)

3.59% (26.55%)
11.53% (35.22%)
4.35% (50.54%)
2.6% (48.05%)

TABLE 7.4: Comparison between DT4s and MD image statistical analyses. Table shows
the percentage of lesions (p-value < 0.05) per ROI for both LIS patients - both scans.
Between parentheses the percentage of |z-score| > 1.96 based on MD analysis is included.

This is done with a serial leave one normal dataset out of the training procedure, during the
estimation of the reduced space of the normal population (via Isomap).

At this point, we should clarify that our new working scope is the whole brain, instead of a
single voxel, since we are interested in comparing a whole normal brain versus the normal
population. As a result, a single inter-point distance matrix will be constructed and each of
the matrix’s elements will take into account the sum of all (or M largest) voxelwise distances
throughout the whole volume of the brain’s WM.

Each normal datum left out of the training step as well as the four abnormal datasets will
be statistically compared to the current normal population. An example illustrating the
correct, classification case and an incorrect classification are presented in figure 7.8.

Initially, we chose to consider all voxels. In this case, the reduced space was unfortunately
disturbed by the small distances related to similar voxels in the sum. This led to very spread
normal populations where the abnormal points were also included in the mass of the normal
population. It was impossible to distinguish them as pathological cases.
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FIGURE 7.7: Plotting the percentages of lesions detected using the proposed method on diffusion T4s and z-scores on MD images (as
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FIGURE 7.8: Visualization of the leave-one-out evaluation. Left figure corresponds to the
correct classification, since the unseen normal (i.e. purple pentagon) has larger p-value
than the 4 abnormal (i.e. red squares) individuals and it is located in the core of the
normal population which contains the green points. On the right, the wrong classification
is presented, since the normal point (purple one) has lower p-value than 3 out of 4 abnormal
points. The colorful background corresponds to the PDF of the normal population.

Alternatively, we thought to sum only the M largest voxelwise distances, corresponding
to the most significantly different voxels in the brain for each given couple of individuals.
Several values for M € {10, 50, 100, 500, 1000, 2000, 4000} were examined and the number of
normal datasets which were correctly classified as healthy people were counted. An unseen
normal datum is considered as correctly classified if its p-value is larger than all the four p-
values related to the four abnormal datasets. The best performance is for M = 1000, where
14/22 = 63.6% normal individuals were correctly classified. The corresponding p-values of
the M = 1000 test can be found in table 7.5. We should mention that the majority of the
p-values (not for normal points which was expected, but for most of the abnormals) are
greater than 0.05, meaning that the evaluation scheme did not work very well. Probably,
the low percentages of lesions detected globally in the brain using fODF profiles is one
reason. Moreover, a careful study in order to estimate an alternative abnormality threshold
is required, in order to determine the correct classifications of the pathological brains (i.e.
as abnormals).

Variations of the Proposed Tensor Metric tested for the LIS disease

Thinking of possible ways to improve the performance of the method, we turned our attention
to the definition of the proposed tensor metric that we selected to compare the fODF profiles.
If someone carefully observes the proposed tensor metric in eq. 2.30, she will notice that
two interesting degrees of freedom can be derived, for example considering the parameters
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k, p in equation 7.5 (N = 242 is kept fixed).

| Y di6, 00| ’
dist (dy, ds) ~ (2 log d; G| (6;,) AOAS | . (7.5)

Therefore, investigating the performance of the proposed method, in the previously described
leave-one-out assessment, using a variety of parameterizations in eq. 7.5 is worth testing.
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FIGURE 7.9: Performance of several variations of the proposed tensor metric (eq. 2.30)
in the leave-one-out evaluation scheme. The vertical axis of the figure corresponds to
the number of correctly classified unseen normal data, while the horizontal axis contains
the number of the maximum M voxelwise distances included in the inter-point distance
matrix, for M € {10,50, 100,500, 1000, 2000,4000}. The initial version of the proposed
tensor metric (k = 1, p = 1) achieved a score of 14/22 correct classifications, while an
observation in the figure will conclude that for k =2 and p =1 in eq. 7.5 and M = 2000
top maximum voxelwise distances, outperforms with score = 16/22 correct classifications.

Figure 7.9 depicts the performance of different sets of &k, p values in eq. 7.5 for a given number
M € {10, 50, 100, 500, 1000, 2000, 4000}. The best performance was achieved by the k = 2,
p = 1 parameterization, introducing M = 2000 largest voxelwise distances in the inter-
point distance matrix, concluded into 16/22 = 72.7% of correctly classified unseen normal

datasets, in comparison to the initial formulation of the tensor metric whose performance
was equal to 14/22 = 63.6%.

7.3 Partial Conclusion

Individual versus normal population comparisons has the potentiality to assist the physicians
through patient follow-up procedures. In this chapter we proposed a statistical approach to
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provide a solution to this problem.

Statistical analysis of certain ROIs sensitive to LIS concluded that areas close to the spinal
cord (such as the pontine crossing tract, left and right corticospinal tracts and left and right
medial lemniscus) contain higher percentages of lesions, in comparison to areas in the middle
and upper parts of the brain, connected with the spinal cord (e.g. left and right posterior
limb of internal capsule and left and right superior corona radiata). Furthermore, patients
react differently in the second case.

The evaluation process of the experimental results signified that it is hard to make safe
conclusions about which method performs better than the other, in the absence of ground
truth solution. A thoughtful clue is that higher order tensor models are more detailed and
as a consequence more capable to capture the disease’s specificity, due to the complexity of
the model, than naive T2 models, or scalar measures, such as FA/MD images. Statistical
analysis in synthetic cases could be probably useful to evaluate the performance of the tested
methods.

As part of future work, it would be interesting to measure the percentages of lesions per
ROI using the new variation of the proposed tensor metric that was found to outperform
the selected definition of the tensor metric in subsection 7.2.4.



Left-out Normal | p-value p-value p-value p-value p-value
point k Normal k | Patient 1 / Scan 1 | Patient 1 / Scan 2 | Patient 2 / Scan 1 | Patient 2 / Scan 2

1 0.2386 0.4823 0.0173 0.4738 0.4738
) 0.9264 0.4331 0.0138 0.4497 0.4536
3 0.2112 0.3835 0.0197 0.4503 0.453
4 0.9296 0.8238 0.0145 0.7118 0.7056
d 0.1681 0.9464 0.0073 0.2827 0.2938
6 0.9321 0.0705 0.007 0.3272 0.6324
7 0.9935 0.9544 0.03 0.3205 0.5632
8 0.7851 0.4616 0.0095 0.4505 0.4518
9 0.5729 0.5152 0.0126 0.4193 0.4136
10 0.3166 0.5387 0.0219 0.5088 0.5996
11 0.9438 0.8047 0.018 0.7714 0.7611
12 0.8935 0.574 0.0665 0.5636 0.5638
13 0.1034 0.6 0.0065 0.3946 0.3902
14 0.7133 0.8212 0.0525 0.6835 0.6769
15 0.9995 0.528 0.011 0.5001 0.5033
16 0.952 0.9213 0.016 0.4644 0.4679
17 0.6195 0.4967 0.0095 0.4215 0.585
18 0.8497 0.9975 0.0063 0.7159 0.7049
19 0.4596 0.4386 0.0353 0.5598 0.5614
20 0.9572 0.4123 0.0404 0.4685 0.4718
21 0.637 0.1848 0.0208 0.2023 0.2076
o 0.9233 0.9129 0.0115 0.3958 0.4829

TABLE 7.5: Estimating p-values in the case of the best performance (M = 1000 — 14/22 correctly classified normal points) in the leave-

one-out evaluation scheme. The grey level rows correspond to the correctly classified normal points (i.e. normal’s p-value is greater than all

four abnormals). Initially, working in the same direction as previously, a p-value lower than 0.05 would signify the point as pathologically

affected. It is noticeable that all normal points are related to greater than 0.05 p-values (i.e. not affected by LIS, as it was expected).

Moreover, the majority of the abnormal p-values are greater than 0.05 (except from Patient 1 / Scan 2). This might be a clue to choose a
more suitable abnormality threshold than 0.05.
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Chapter 8

Conclusion and Perspectives

In this final chapter of the dissertation, several remarkable issues which should be kept in
mind since they have been concluded through studying the problems of biomarker extraction
and patient follow-up, completed by the development of the proposed methods, are discussed.
Furthermore, many directions as part of future work are highlighted and presented.

8.1 Discussion

Comparing data from different subjects obliges us to normalize the data in a common re-
ference space. In the case of DW-MRI data, or tensor images, due to the specificity of the
data, a simple spatial registration is insufficient, lacking of a mandatory step, known as
reorientation, in order to align the registered data to the new underlying fiber orientation.
At this point, we should mention that registering tensor images (through spatial registra-
tion of each tensor coefficient separately and finally collecting all registered coefficients in
one volume) is much more exposed to distortion than registering the raw DW-MRI data.
Imagine that a distortion caused to some of the tensor coefficients (on account of regis-
tration errors) will have greater impact on altering the diffusivity or fODF profiles across
several directions, than absorbing noise in a few directions in the DW-MRI dataset because
of DW-MRI registration. Although in the beginning of this thesis we started working with
T4 normalizations, thereafter a quite-promising method for non-linear DWI normalization
was proposed in 2013. In addition, the reorientation of a crossing T4, using T2 decomposi-
tions and reorientations, in order to apply a transformation affecting two peaks of diffusion
(e.g. principal directions of diffusion) to get very close to each other, will potentially result
into losing mistakenly one of the peaks (altering totally the underlying fiber structure, as it
is derived from our study in chapter 3). For these reasons, we chose to normalize the raw
DW-MRI data.

Our selection to represent the DW-MRI data with HOTs, such as the T4 model, allowed us
to increase the robustness and sensitivity of the proposed statistical models by describing the
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data with more accurate models than T2s, especially in cases of crossing fibers. Additionally,
we should not forget that a more accurate model will eventually lead us feasibly to earlier
diagnosis.

Following the suggestion of Verma et al. [165] to perform statistical analysis in a reduced
space seems crucial and reasonable for many reasons. First of all, the definition of the
inter-point distance matrix using a proper distance, such as the proposed tensor metric
(eq. 2.30), permitted us to introduce not only information about the diffusion, but also
about the orientation of the diffusion through the integration on the unit sphere. Secondly,
[somap particularly, assisted us to find the non linear tensor’s subspace, by adding geodesic
properties to the estimation of the reduced space through the embedded graph theory.
Moreover, our suggestion to deal with any registration error left at this point by finding the
best matched patches (for each coupled combination of our data), contributed to eliminate as
much as possible any potential registration error and produced more sensitive models, since
we observed that smoothing the measurements (e.g. fODF profiles), which is an alternative
popular technique followed by many approaches, can lead to wrong conclusions due to over-
smoothing effects and important information lost. Additionally, statistical analysis based
on Random Forest Classifiers, which in general are assumed to be powerful tools for high
dimensional data, shown less efficiency than expected, due to the high complexity of the
tensor models, and they can be overcome by RFs benefiting from a dimensionality reduction
step, in advance.

Another interesting topic worth mentioning concerns the ability of the proposed statistical
approaches to analyze the levels of abnormality in the pathological data, independently of
the size of the abnormal population, given a well-grown normal population (which is feasible
in general). To achieve our goals, the statistical analysis is divided in two approaches,
one for the case where the number of the treated abnormal datasets is prolific to build an
abnormal population and the other case where it is not possible to capture the variability
of the abnormal population.

In the case where the pathological population, associated with a certain disease, can be
built with an abundant number of patients (e.g. application to NMO disease presented in
chapter 6), we proposed to perform voxelwise populations comparisons which offers us the
potentiality to construct an atlas of abnormality that will characterize the affection of a
disease of our interest in every part of the brain. Modelling each population with the aid
of GMM in the reduced space, followed by the definition of a permutation test, based on
a plethora of label shufflings of the points, that could approximate the distribution of the
measured distance between GMMs PDFs (i.e. statistic of interest), allowed us to estimate
a p-value per voxel, and particularly a HPD interval for each p-value, concluding if the
distance related to the true labeling of the points is an extreme value given the distribution
of the distances that is produced randomly wvia label shufflings. At this point we should
emphasize that many statistical approaches in the literature are reduced to estimate a single
p-value, which is an approximation, without justifying the confidence of their estimation by
calculating the interval that each p-value is enclosed in.
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On the other hand, the case of lacking enough patients, an impracticable situation to con-
struct robustly the abnormal population, lead us to the formulation of the "individual versus
normal population" problem (e.g. application to LIS disease presented in chapter 7). In this
particular case, voxelwise statistics will be estimated by fitting a GMM only to the normal
population, while each abnormal datum will be examined by measuring its PDF value (i.e.
statistic of interest) given the estimated distribution of the normal population. Moreover,
the corresponding p-value’s HPD interval can be calculated relying on Monte Carlo simu-
lations. Generating randomly samples from the normal (i.e. healthy) GMM, assists us to
compare each PDF related to the abnormal points to the samples’ PDFs. Thereby, an out-
growth of the proposed statistical analysis can be the patient follow-up, throughout several
examinations.

Finally, we should emphasize that the diagnosis of a new incoming datum (i.e. patient)
can be performed, either using the extracted biomarkers (calculated through populations
comparisons), or by running individual statistical comparisons versus the normal population.
Afterwards, the new patient is classified to the normal or to the abnormal population,
without needing to re-define any population again.

8.2 Future Work

In the end of every constructive research, suggested directions for future work should be
indicated. Therefore, following our acquired knowledge through this thesis on DW-MRI
data processing and statistical analysis, we come up with many zestful points.

To begin with, in this thesis, data normalization was achieved either by registering the DW-
MRI data followed by the reorientation of the embedded b-vectors (limited to apply only the
rotation part of the estimated non-linear transformation), or through serial registrations of
every T4 coefficient, thereafter, resynthesis of the tensor models by collecting all registered
tensor coefficients into one volume and finally reorientation of the registered T4 models with
the aid of the methods presented in chapter 3 using the whole transformation (e.g. SD-+PPD,
or HD+PPD) or the rotation part (e.g. FS). In both mentioned ways to normalize our data,
we focused on completing the process on the same type of data, but in fact, it is possible
and worthy to be tested to register the DW-MRI data and then to fit T4 models on the
registered DW-MRI in order to reorientate eventually the T4 models (by using methods
from chapter 3).

The next points are referred to the statistical model. The evaluation of the proposed tensor
metric along with its variations presented in subsection 7.2.4 concluded to the existence of a
particular variation which manage to outperform our initial definition. As a consequence, it
will be interesting to estimate the reduced space using the best variation of the tensor metric.
Maybe the discrepancy between the control and the pathological points can be increased,
resulted into more sensitive statistical analysis.



140 CHAPTER 8: Conclusion and Perspectives

Thirdly, we proposed to fit one Gaussian kernel on each point in the reduced space, in
order to describe every population with a flexible and more representative GMM model.
Another fruitful approach, a little bit more complicated than our initial thought, but can
potentially avoid any occasional overfitting problem, could be to cluster neighboring points
into similar groups, supposing that these points are produced by the same single Gaussian
kernel. In this case, the corresponding Gaussian kernel could be defined by the following
mean p, = %ijl z; (if x; are the J points included in the same cluster) and it will be
related to a covariance matrix equals to J times the covariance of a single point in the same
population.

Fourthly, our study in this thesis was concentrated in examining ROIs proposed in the litera-
ture as pathologically affected by the NMO and LIS diseases. In the case of an inflammatory
disease, such as, NMO, multiple sclerosis, Alzheimer etc., investigating ROIs outside the al-
ready known related areas, could lead to outstanding and innovative results, whether new
areas can be extracted as pathologically connected to the disease of our interest. Moreover,
it can be useful through the whole procedure of disease staging and patient follow-up.

In the fifth point, the application of the proposed methods on fiber tracts and connectomes,
instead of voxels, can be also fruitful. In this case, the inter-point distance matrix should be
defined including distances between fiber tracts or connectomes (depending the approach).

Furthermore, the assessment to detect the statistical significance of differences in the level
of every direction in the diffusion/fODF profiles, related to the most significantly different
voxels in the brain, is indicated via the proposed statistical models. In other words, it is pos-
sible to detect which directions in the diffusion/fODF profiles contributed in characterizing
the voxel as a biomarker.

To conclude, evaluating the abilities of the proposed statistical approaches to perform early
diagnosis remain to be tested, under the orientated supervision provided from the neuro-
logists.



Appendix A

Multivariate Two-sample Hotelling 72
Test

Hotelling 72 test is the generalization of the Student’s t-test [85]. Multivariate two-sample
Hotelling T test compares two populations X, Y by assuming that both populations follow
Normal distributions with different means, but the same covariance matrix. Let us consider
N i.i.d. data assigned to population X denoted as { X7, Xo,..., Xy}, X; € R, Vi=1,..., N
and M ii.d. data belong to the second population Y, {Y3,Y5,..., Yy}, Y; € RP, Vj =
1,..., M.

The means px, py of the two populations correspond to vectors of size p x 1 and are equal
to:

1 N 1 M
==Y X ==Yy Al
Hx Ni:1 iy Wy szl R ( )

while the sample covariance matrices Sy, Sy are equal to:

S = s S (K= ) (K= )T, Sy = e SV ) (% — )T (A2)

i=1 j=1

N M

Due to the assumption that both populations have equal covariance matrix Sy, the covariance

matrices of the samples Sx, Sy can help us to estimate S, considering 3;:

= (N-1)Sx+ (M —1)Sy

= N+ M —2 (A.3)

The testing Null Hypothesis is considered as Hy : yx = py, meaning that the two popula-
tions are equal if their means are equal.
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The T? statistic signifies the differences in the populations by comparing their means and is
calculated as:

7 = = ) {5, (54 77 } (1 — 1v). (A.4)

At this point the T2 statistic is transformed to F-statistic using the following expression:

N+M-p—1

Fsa -
(N 4+ M —2)

T% ~ Fynini—p-1, (A.5)

where the PDF of the F-distribution is given by

(chx) ™ dy?
(dyz+dg)d1 142

z Beta (%, d2—2)

f(xidi,do) = (A.6)

As a result the corresponding p-value is equal to 1 — CDFg . (Fitar).
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Theodosios GKAMAS
__#  Modélisation statistique de tenseurs d’ordre iCUBE
4 supérieur en imagerie par résonance \J
magnétique de diffusion

Résumé

L’TRMd est un moyen non invasif permettant d’étudier in wvivo la structure des
fibres nerveuses du cerveau. Dans cette thése, nous modélisons des données IRMd
a laide de tenseurs d’ordre 4 (T4). Les problémes de comparaison de groupes ou
d’individu avec un groupe normal sont abordés, et résolus a 1’aide d’analyses statistiques
sur les T4s. Les approches utilisent des réductions non linéaires de dimension, et
bénéficient des métriques non euclidiennes pour les T4s. Les statistiques sont calculées
dans Vespace réduit, et permettent de quantifier la dissimilarité entre le groupe (ou
I'individu) d’intérét et le groupe de référence. Les approches proposées sont appliquées a
la neuromyélite optique et aux patients atteints de locked in syndrome. Les conclusions
tirées sont cohérentes avec les connaissances médicales actuelles.

Mots-clés : IRMd, tenseur d’ordre supérieur, métrique non-euclidienne, réduc-
tion de dimension non linéaire, comparaison de groupe ou d’individu vs groupe normal,
analyse statistique, test de permutation, maladie NMO, LIS syndrome.

Résumé en anglais

DW-MRI is a non-invasive way to study in wvivo the structure of nerve fibers in
the brain. In this thesis, fourth order tensors (T4) were used to model DW-MRI
data. In addition, the problems of group comparison or individual against a normal
group were discussed and solved using statistical analysis on T4s. The approaches
use nonlinear dimensional reductions, assisted by non-Euclidean metrics for T4s. The
statistics are calculated in the reduced space and allow us to quantify the dissim-
ilarity between the group (or the individual) of interest and the reference group.
The proposed approaches are applied to neuromyelitis optica and patients with locked
in syndrome. The derived conclusions are consistent with the current medical knowledge.

Keywords: DW-MRI, high order tensor, non-Euclidean metric, nonlinear dimen-
sion reduction, group or individual vs normal group comparison, statistical analysis,
permutation testing, NMO disease, LIS syndrome.
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