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AbstratDi�usion weighted magneti resonane imaging (DW-MRI) is a non-invasive modality, ableto measure the di�usion of water moleules in living tissues. Fitting tensors models onDW-MRI data allows to represent the di�usion in 3D spae at every voxel in that tissue.Seond (T2) and fourth (T4) order tensors are studied extensively. This thesis fouses onthe problems of statistial populations omparison and individual against a healthy groupomparison, in DW-MRI.Examining the di�usivity allows us to study the struture of omplex organs. For thepurposes of this study, the human brain is seleted. A variety of brain pathologies altersthe struture of the neural �bers in the brain, either globally (e.g. multiple slerosis (MS),Alzheimer's disease (AD), neuromyelitis optia (NMO)), or in spei� regions (e.g. loked-insyndrome (LIS)). Therefore, DW-MRI analysis is suitable to extrat knowledge related to apartiular disease e.g. through biomarker detetion, disease staging and patient follow-up.Given a healthy population (as a referene) and a group of patients (related to the same dis-ease), apturing the variability of eah group, biomarkers detetion, disease staging (throughdi�erent aquisitions in time) and patient follow-up an be performed via statistial popula-tions omparisons. On the other hand, laking of enough pathologial data, patient follow-upan be ahieved through individual statistial omparisons against the referene population.In this thesis, two methods are proposed (one for eah problem, populations or individualomparisons), apable to produe fruitful maps of statistis (i.e. statistial atlases).Undoubtedly, omparing di�erent subjets presupposes that all data are normalized in aommon spae. In the ase of orientated data (e.g. DW-MRI, tensor images), a singleregistration step will produe inoherent �ber orientations. Thus the registration should bealways followed by a reorientation step. In this dissertation, reorientation methods for T4sare studied.To ontinue, one of the fundamental points of the proposed statistial methods is the estima-tion of the redued dense spae of the tensor models using Isomap, a nonlinear dimensionalityredution tehnique. One the redued spae is estimated, a �exible Gaussian mixture modelis �tted to eah group (or only to the referene group) and statistis are alulated robustly.Moreover, p-values are estimated with the aid of permutation testing or Monte Carlo simula-tions. Furthermore, in ontrast to many statistial approahes found in the literature whihhalt their alulations in a single p-value estimation per voxel, we propose to further analyseour approximations by �nding a Highest Probability Density interval for eah p-value.Appliations of the proposed methods to syntheti and real ases were aomplished. Thee�etiveness of the proposed methods is ompared favorable or even better than many stateof the art approahes. In the ase of real data, the NMO disease and the LIS syndrome wereseleted to be analysed. The obtained results are oherent with medial knowledge.
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viiRésumé long en français1. IntrodutionLe erveau humain est un organe multi-fontionnel, et l'un des organes les plus importantsdu orps humain. Étudier la struture et la fontionnalité du erveau a toujours fasiné lesmédeins. De nos jours, une grande partie des apaités du erveau reste inonnue.Par ailleurs, l'étude de la spéi�ité de nombreuses pathologies du erveau et l'extrationdes formes et strutures qui les aratérisent sont des sujets auxquels la ommunauté si-enti�que s'intéresse. Par exemple, les maladies in�ammatoires peuvent se développer ini-tialement dans des régions spéi�ques du erveau puis di�user progressivement, tandis qued'un autre �té peuvent exister des pathologies stritement loalisées dans ertaines zones.En onséquene, des outils d'analyse spéi�ques et e�aes qui peuvent aider au diagnos-ti préoe et au pronosti, mais aussi à l'extration de onnaissanes liées à une maladiedonnée et au suivi des patients, sont néessaires. Ces examens médiaux devraient permet-tre d'extraire des aratéristiques multidimensionnelles qui ne sont pas extratibles ave lesexamens lassiques.L'imagerie par résonane magnétique de di�usionDurant les dernières déennies, la physique, l'informatique et la médeine ont joint leursfores pour numériser, modéliser et étudier le erveau, sous le nom de Neurosiene. Des ex-amens ont été élaborés et adaptés pour mesurer les di�érentes propriétés des tissus érébrauxd'une manière non-invasive, in vivo, a�n de aratériser orretement de nombreuses patholo-gies. Par exemple, l'Imagerie par Résonane Magnétique de di�usion (IRMd) est une vari-ation de l'IRM lassique et permet de suivre le mouvement des moléules d'eau en 3D.L'IRMd renseigne ainsi sur l'anatomie struturelle des onnexions neuronales dans le erveau.De plus, la neuroinformatique, une siene dont ertains objetifs sont de traiter des imagesmédiales, de modéliser les données aquises et de les analyser, a sa propre plae dans eontexte. Il est ourant de modéliser des données IRMd en utilisant des tenseurs (pourplus d'informations, le leteur est renvoyé au hapitre 2), a�n de visualiser et d'analyserdes données brutes d'IRMd. Les tenseurs d'ordre deux (T2s) sont largement utilisés et bienonnus, mais leurs apaités sont limitées à la desription de �bres simples. Pour etteétude, nous avons hoisi de travailler ave les tenseurs d'ordre quatre (T4s), ar ils peuventreprésenter beauoup plus en détail la struture sous-jaente de la �bre que les T2s, enpartiulier dans le as du roisement de �bres.



viiiAppliations médiales de ette thèseL'analyse d'une pathologie donnée, ave pour objetif ultime l'extration de biomarqueurs,exige une très grande base de données de sujets traités, a�n de disposer de populationsreprésentatives (une pour le groupe témoin et l'autre pour le groupe pathologique), apablesde apturer la variabilité de la maladie. Alternativement, si notre objetif prinipal est desuivre l'état du patient ave de multiples analyses dans le temps, il n'est pas obligatoire deonstruire deux populations, puisque haque sujet pathologique sera examiné individuelle-ment au regard de la population saine.Dans ette thèse, les omparaisons de populations ainsi que les omparaisons d'une personneonsidérée individuellement ave une population normale sont traitées par des tests statis-tiques spéi�ques originaux, dans un but de diagnosti préoe, de pronosti, de détetionde biomarqueurs, d'évaluation du stade de la maladie et de suivi des patients.Lorsqu'un patient arrive en vue d'un diagnosti, on utilise les biomarqueurs extraits via laomparaison de populations pour analyser les données du patient ou l'on réalise une analysestatistique en omparant e patient au groupe de référene. Le diagnosti est réalisé enfontion des résultats obtenus.En�n, les appliations des méthodes proposées à la neuromyélite optique aiguë (neuromyelitisoptia, NMO), ou maladie de Devi et à la maladie loked-in syndrome (LIS) sont présentées.Contributions de la thèseLe traitement d'un grand nombre de sujets pour �nalement onstruire un atlas statistiquelié à une maladie, par exemple par omparaison de populations, exige une étape de pré-traitement ruiale, appelée normalisation des données, de sorte que les sujets seront or-retement realés spatialement les uns ave les autres, par exemple en utilisant un modèlede référene ommun. Malheureusement, dans le as de données IRMd (ou d'images detenseurs) une simple étape de realage ne su�t pas, ar les données ontiennent des in-formations orientées. En onséquene, une étape de réorientation doit ompléter la tâhede normalisation. Pendant la première année de ette thèse, nous avons traité le problèmede la réorientation des tenseurs d'ordre quatre. Notre étude sur la réorientation de T4 estprésentée dans le hapitre 3.A�n de omparer les sujets dans l'espae des tenseurs, des métriques e�aes qui onsidèrentl'ensemble des informations omprises dans le modèle de tenseur doivent être hoisies. Mal-heureusement, la majorité des métriques de tenseur de la littérature sont dé�nies uniquementpour les modèles T2s, alors que nous nous intéressons essentiellement aux tenseurs d'ordresupérieur. Suite à l'étude des métriques de la littérature, nous avons proposé une nouvellemétrique de tenseur, adaptée à tout modèle de tenseur (un état de l'art des di�érentesmétriques de tenseur, ainsi que la métrique proposée, sont présentés dans le hapitre 2).Au ours des deux années suivantes de préparation de la thèse, nos e�orts se sont foaliséssur le développement d'approhes statistiques avanées pour résoudre deux problèmes, d'une



ixpart les omparaisons de populations (le groupe normal versus le groupe pathologique/anor-mal) et d'autre part les omparaisons d'une personne anormale versus la population normale,ave pour objetif ultime la détetion de biomarqueurs, le suivi des patients et le diagnostipréoe. Les méthodes statistiques proposées ainsi que leur appliation à des as réels etsynthétiques sont présentés dans les hapitres 5 à 7.Organisation de la thèseL'organisation de ette thèse est la suivante. Le hapitre 1 est l'introdution de ette thèse.Le hapitre 2 est un hapitre d'introdution aux données IRMd et aux moyens de les modé-liser (par exemple, à l'aide de tenseurs). En outre, un ensemble de métriques de tenseurdépendant de l'ordre du modèle est présenté, ainsi que la métrique proposée. Le hapitrese termine par une mention brève de desriptions de niveau supérieur de données IRMd, àsavoir les �bres et les onnetomes.Le hapitre 3 détaille les étapes de prétraitement des données IRMd, soulignant la réorien-tation des T4s. Notre étude sur e sujet ave l'évaluation expérimentale est inluse.Le hapitre 4 présente le problème de la onstrution d'atlas statistiques permettant l'extra-tion de biomarqueurs. En outre, les méthodes de l'état de l'art sont présentées.Les hapitres 5 et 6 ontiennent la première approhe statistique proposée, pour le problèmede la omparaison de populations. L'appliation à la maladie NMO, ainsi que l'appliationaux tests synthétiques, sont également présentées.Dans le hapitre 7, la deuxième approhe statistique proposée, pour le problème de la om-paraison d'un individu ave une population normale, est dérite. Cette approhe est appli-able dans le as de populations pathologiques lairsemées. L'appliation à la maladie LISest présentée.En�n, le hapitre 8 ontient la onlusion de ette thèse ainsi que les perspetives proposées.2. Modèles de tenseur pour les données IRMdUn ensemble de modèles de tenseurs permettant de dérire les données IRMd existe dans lalittérature. Dans le adre de ette thèse, les tenseurs d'ordre deux et quatre sont utilisés.Tenseurs d'ordre deuxL'imagerie du tenseur de di�usion (di�usion tensor imaging, DTI) a été la première tentativepour représenter des données IRMd à l'aide de T2s. Un tenseur T2 peut être dé�ni ommeune matrie symétrique 3× 3 omme suit :
D2 =



D11 D12 D13

D21 D22 D23

D31 D32 D33


 . (1)



x
Figure 1: Modèles T2s (à gauhe) et modèles T4s (à droite) dans une ertaine région duerveau. Comme prévu, le modèle T4 est plus �n que le modèle T2, et apture ave plusde détails les roisements de �bres.La fontion de di�usivité d(g) (pour la modélisation de tenseurs de di�usion) ou la fontionde distribution d'orientation de �bres (�ber orientation distribution funtion, fODF) f(g)(pour la modélisation de tenseurs de fODF) (pour plus d'informations, voir le hapitre 2)liée à un T2 onstitue la grandeur d'intérêt (la di�usion ou l'orientation de �bres). Selonune diretion g = (g1, g2, g3) de gradient donnée, la grandeur d'intérêt, d(g) ou f(g), estdé�nie par la relation :
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Dij gi gj . (2)Tenseurs d'ordre quatreLes modèles d'ordre supérieur à l'ordre deux existent dans la littérature. Dans e mémoire,nous allons nous onentrer sur les modèles T4s qui sont en mesure de représenter jusqu'àtrois faiseaux de �bres distints en un seul voxel et peuvent être dérits par la matriesymétrique 6× 6 suivante :
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Par similarité au as T2, la fontion de di�usivité (ou la fontion de fODF) d'un T4 s'érit :
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Dijkl gi gj gk gl . (4)Un exemple visuel de la supériorité des T4s par rapport aux T2s pour produire des desrip-tions plus représentatives de la struture des �bres est proposé �gure 1. Il est à noter que lemodèle T4 (appartenant à R
15, dérit par 15 oe�ients uniques) est plus performant quele modèle T2 (appartenant à R

6), en partiulier dans le as du roisement de �bres. Ceiprovient du fait que le modèle T2 est un as partiulier de modèle T4.



xiMétrique de tenseur proposéeEn raison de l'absene de métriques dé�nies pour des tenseurs d'ordre supérieur et béné�iantdes propriétés souhaitées du logarithme, nous avons proposé une nouvelle metrique.D'après le travail de Tarantola [153℄ sur les distanes entre fontions positives, nous pro-posons i-dessous la distane entre deux pro�ls d1, d2 de di�usivité (ou deux pro�ls de fODF)qui peut être utilisée pour tous les modèles de tenseurs :
dist(d1, d2) =

∫∫ ∣∣∣∣log
d1(θ, φ)

d2(θ, φ)

∣∣∣∣ sin θ dθ dφ , (5)où φ ∈ [0, π] est l'angle polaire et θ ∈ [0, 2π] est l'angle d'azimut qui paramètrent la sphèreunité en 3D.3. Étapes de prétraitement des données IRMd et importane de laréorientation des T4sÉtapes de prétraitementAvant d'appliquer un test statistique approprié, un ensemble d'étapes de prétraitement estobligatoire. La première étape est la orretion de ourants de Fouault (eddy urrent orre-tion) où les données sont débarrassées de tout mouvement de l'objet et de tout mouvementdû à des pulsations sanguines. Dans la deuxième étape, nous devons extraire le volume duerveau en éliminant ertaines zones, par exemple le râne ou les yeux. Troisièmement, nousdevons normaliser les données (realage spatial et réorientation de tenseurs ou de donnéesIRMd) dans un espae de référene ommun, en alulant une transformation linéaire ounon-linéaire à l'aide de la arte d'anisotropie frationnelle (image FA, frational anisotropy)et en�n, nous devons réduire l'erreur de realage soit par lissage, soit par l'approhe parpath que nous proposons (voir la setion 5.1.2 pour plus de détails).Étude sur la réorientation des T4sDans la première année de ette thèse, le problème de la normalisation de tenseur a été étudié,et en partiulier elui des réorientations de T4. L'importane de l'étape de réorientationaprès le realage spatial des données est mise en évidene dans la �gure 2, où il est évidentque les modèles realés (simplement realés et non réorientés) ne sont pas adaptés à lanouvelle orientation de la �bre.Les proédures de réorientation de T4 étudiées (voir le hapitre 3) sont basées sur les dé-ompositions en T2s suivies par les réorientations des T2s. Les déompositions spetrales(spetral deomposition, SD) de T4s produisant six T2s, ainsi que les déompositions baséessur le théorème de Hilbert (Hilbert deomposition, HD) produisant trois T2s ont été testées,ave les réorientations de T2s de type �nite strain (FS) et la préservation des diretions
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Figure 2: Champs synthétiques de T4 après normalisation spatiale ([x′, y′]T = [x, y +
sin(x)]T ). Figure du haut : après realage, sans réorientation. Figure du bas : aprèsrealage et réorientation. On onstate que la �gure du haut ne rend pas ompte de lastruture des �bres sous-jaentes.prinipales (preservation of prinipal diretions, PPD). La proédure de réorientation de T4proposée par Renard pendant sa thèse [134℄ est onstruite sur la ombinaison HD ave PPD.Des résultats expérimentaux à la fois sur des données synthétiques et sur des données réelles,omplétés des proédures d'évaluation pour haque as, �gurent dans le hapitre 3.Bien entendu, au lieu de normaliser les images de tenseurs, il serait possible de normaliser lesdonnées IRMd brutes. Cela semble être plus sûr, ar une variation des oe�ients du tenseuraura un plus grand impat, dans de nombreuses diretions de di�usion, qu'une perturbationdans les données IRMd.



xiii4. Introdution aux atlas statistiques pour les données IRMdUn atlas statistique est une desription de la variabilité d'une ou de plusieurs grandeursd'intérêt au sein d'une ou de plusieurs populations. Les atlas statistiques permettront dedéteter des biomarqueurs liés à une pathologie. Il existe trois moyens pour e�etuer uneanalyse statistique : a) l'analyse selon une région d'intérêt (ROI - region of interest), oùles régions d'intérêt sont prédé�nies b) l'analyse fondée sur les voxels (VB - voxel-based) eten�n ) l'analyse basée sur les �bres prédé�nies (trat-based). Dans ette thèse, nous nousonentrerons sur l'analyse statistique VB.Appliation d'un test statistique appropriéLe hoix d'un test statistique approprié pour la omparaison de populations est une étapeimportante. Il devrait être sensible et su�samment �exible pour extraire les zones ompor-tant des lésions. Dans ette thèse, trois tests statistiques partiuliers ont été hoisis, quiapparaissent dans la littérature, ou que nous avons synthétisé en ombinant di�érents élé-ments de la littérature. Plus préisément, le premier test a été proposé pour la omparaisonde populations et sera utilisé tel quel. Nous avons synthétisé un seond test en ombinantdeux omposants trouvés dans la littérature. Le troisième test provient de la théorie desforêts aléatoires et sera adapté à notre problème. Ces tests orrespondent à l'ensemble desapprohes de l'état de l'art et seront omparés à notre propre approhe pour le problème dela omparaison de populations.La première approhe hoisie a été proposée par Verma et al. en 2007 [165℄ et onsiste en uneanalyse statistique VB pour les modèles T2s. Les auteurs ont remarqué que l'appliationd'un modèle statistique standard pour les T2s n'était pas �able, ar les T2s ne suiventpas des lois gaussiennes multivariées dans leur espae initial (i.e. R
6). Par onséquent,la tentative des auteurs pour estimer la sous-variété non-linéaire de l'espae des T2s, util-isant l'Isomap [154℄ (une tehnique de rédution de dimension non-linéaire, qui ombinela méthode multidimensional saling (MDS) [96℄ ave la théorie des graphes) était fondéeet totalement innovante. De ette manière, les données sont transformées d'un espae degrande dimension où la métrique est riemannienne vers un espae de faible dimension oùla distane est eulidienne. Une fois l'espae réduit déterminé ('est-à-dire R

2 selon leurstravaux), Verma et al. ont proposé de omparer les populations en utilisant le test T 2 deHotelling, qui ompare la moyenne des deux populations en supposant qu'elles ont la mêmematrie de ovariane. Bien sûr, leur test statistique est également appliable au as desT4s, en estimant l'espae réduit orrespondant aux T4s. Bien que leur méthode omportebeauoup d'idées très prometteuses et intéressantes, le test T 2 de Hotelling n'est pas trèspuissant et son inonvénient sera mis en évidene dans la setion expérimentale sur desdonnées synthétiques (setion 6.3.2).Nous avons synthétisé le deuxième test statistique en ombinant un test sur deux populations[23℄, apable d'analyser des données de grande dimension même lorsque la dimension desdonnées est très supérieure au nombre des observations, ave le test de permutation appliquésur la matrie de distane inter-point proposé en [133℄. Le test proposé par Biswas et Ghosh



xiven 2014 [23℄ est non paramétrique et dé�ni pour tous les types de matries de distane. Ilnous o�rira la statistique d'intérêt. Ce omposant donne une grande performane au teststatistique, alors que la majorité des tests statistiques paramétriques ou non paramétriquesest inapable de traiter es problèmes mal posés. En outre, nous avons hoisi d'e�etuer destests de permutation basés sur la redistribution des étiquettes des observations ('est-à-direde sujets normaux/anormaux), spéialement onstruits pour des matries de distane entrepoints par Reiss et al. en 2010 [133℄, a�n de simuler la distribution de la statistique d'intérêt('est-à-dire la statistique de Biswas et Ghosh). Cette distribution nous permettra de testersi la statistique assoiée au vrai étiquetage est une valeur extrême. Par ailleurs, un intervallede rédibilité (highest probability density (HPD) interval) est alulé pour haque p-valeur.Pour plus d'informations, le leteur est renvoyé à la setion 4.3.2.La troisième méthode béné�ie de la théorie des forêts aléatoires (random forests, RF), pro-posée par Breiman en 2001 [30℄. Les RFs sont un outil polyvalent et ompétitif, y omprispour l'analyse statistique. Ses appliations sont nombreuses, par exemple pour des prob-lèmes de lassi�ation/régression, de détetion d'anomalies (via l'estimation de densité),d'apprentissage de variétés (manifold learning), et. [41, 42℄. Dans le as de la omparaisonde populations, les lassi�eurs RF peuvent être utilisés, tandis que l'erreur de généralisation(GE) mesurée pour haque donnée inonnue sera la statistique d'intérêt. Si les deux popu-lations sont similaires, la GE sera très élevée, e qui signi�e qu'il est di�ile de disriminerles deux groupes, tandis que d'autre part la GE est faible lorsque les populations se dis-tinguent nettement. En outre, puisque le RF est un ensemble d'arbres de déision formésaléatoirement, où haque arbre utilise un sous-ensemble aléatoire pour l'apprentissage, nouspouvons aluler une p-valeur ave son intervalle de rédibilité en divisant le nombre de mau-vaises lassi�ations par le nombre total d'éhantillons inonnus utilisés dans la validationde haque arbre de déision.5. Modèles statistiques proposésDans les deux approhes statistiques proposées, les modèles T4s sont séletionnés en raisonde leur grande apaité à représenter des strutures omplexes de �bres (les T2s fournissentdes représentations moins justes). Ces T4s ont été estimés sur les données IRMd qui ont étéinitialement normalisées à l'aide de la méthode de Duarte-Carvajalino et al. [51℄ proposéeen 2013. Cette méthode est une extension, pour les transformations non-linéaires, de laméthode de Tao et Miller [152℄ proposée pour les transformations linéaires en 2006.Un autre point ommun aux deux méthodes proposées est que nous avons besoin de onstrui-re une matrie de distane inter-point, pour toutes les paires possibles de données (normaleset anormales) où haque distane est alulée onformément à la métrique de tenseur pro-posée (eq. 5). En outre, les distanes entre voxels sont impréises en raison de l'erreur derealage résiduelle. Pour ontourner et obstale, au lieu de lisser les données, nous pro-posons d'introduire des informations de voisinage, sous la forme de deux paths 3 × 3 × 3(un path par sujet et par voxel d'intérêt). Chaque path est extrait de deux voisinages plus



xvgrands (par exemple, des voisinages 5 × 5 × 5). Les paths séletionnés sont eux, parmieux possibles, qui minimisent la somme des distanes inter-voxel.Ensuite, d'après le travail de Verma et al. [165℄ pour estimer la sous-variété de T2 utili-sant l'Isomap [154℄, nous avons hoisi de aluler de façon similaire la sous-variété de T4.Plusieurs méthodes de rédution de dimension ont été testées, par exemple lemaximum vari-ane unfolding (MVU) [171℄, le loality preserving projetion (LPP) [77, 78℄ et l'Isomap, sansremarquer auune di�érene partiulière d'un point de vue disriminatoire. Par onséquent,l'Isomap a également été séletionné dans le as des T4s. La matrie de distane inter-pointontient toutes les informations néessaires pour e�etuer l'Isomap. La représentation del'erreur de reonstrution en fontion de la dimension réduite d (1 6 d 6 15) a permis deonlure que le travail en 2D est adéquat pour le as des T4s (ette dimension avait étéretenue pour les T2s, par Verma et al.).En�n, les deux méthodes sont appliquées à l'analyse statistique voxel par voxel (VB).En outre, nous avons pour objetif de aluler des p-valeurs, 'est-à-dire la probabilitéd'obtenir une statistique (par exemple une dissimilarité entre les populations) plus extrêmeque la valeur ourante étant donnée la distribution de notre statistique sous l'hypothèsed'indisernabilité. De plus, un intervalle de rédibilité sera estimé pour haque p-valeur.Première méthode proposée : omparaison statistique de populations - Appli-ation à la pathologie NMOLa première méthode proposée se réfère aux travaux présentés dans le hapitre 5, ave sonévaluation dans le hapitre 6. Dans e as, les modèles de fODF T4 ont été séletionnés [172℄pour dérire les données IRMd, ar notre objetif ultime était d'appliquer le test statistiqueproposé à la neuromyélite optique (NMO), pathologie qui en général provoque des lésionsqui modi�ent l'orientation de la di�usion.Pour haque voxel dans le erveau, une fois que toutes les données normales et anormalessont transformées dans l'espae réduit, nous proposons de dérire haque population à l'aidede modèles de mélange de lois gaussiennes (Gaussian mixture model, GMM), en onsidérantun noyau gaussien assoié à haque point. Nous travaillons ainsi dans le adre kernel densityestimation (KDE). En outre, nous dé�nissons omme statistique d'intérêt la distane ('est-à-dire l'éart) entre les PDFs des deux GMMs. L'idée initiale était d'utiliser la versionsymétrique de la divergene de Kullbak-Leibler (sKL), mais malheureusement il n'y a pasde formulation exate pour aluler le sKL pour les GMMs et le alul numérique est trèslong. En onséquene, nous avons trouvé dans la littérature une distane, notée P , proposéepar S�kas et al. en 2005 [143℄, diretement appliable aux GMMs.A�n de aluler la p-valeur ν⋆ liée à e problème, la distribution p(P) de la divergene
P est néessaire. Puisque ette distribution ne peut pas être déterminée analytiquement,nous proposons de déterminer la p-valeur par méthode de Monte Carlo, en redistribuant lesétiquettes des données (test de permutation), e qui nous permettra de produire de façonaléatoire un grand nombre d'éhantillons {P1, . . . ,PN} de ette distribution. La p-valeur ν⋆



xviest dé�nie omme P (Pn > P0) sous l'hypothèse nulle que les populations sont indisernables,où P0 est la distane se référant à l'étiquetage réel des points. Par ailleurs, il est possiblede aluler la distribution a posteriori de la p-valeur ν, 'est-à-dire p(ν|P1, . . . ,PN), e quinous permet d'extraire l'intervalle de rédibilité de la p-valeur, omprenant par exemple 99%de la masse a posteriori de p(ν|P1, . . . ,PN).

(a) (b)Figure 3: Visualisation des biomarqueurs obtenus (orrespondant aux voxels pour lesquelsla limite supérieure d'intervalle de rédibilité de la p-valeur est inférieure à 0.05 mise enévidene par la ouleur rouge) d'une région partiulière, représentée sur une image FA,pour (a) T4 fODF et (b) T2 fODF. On peut onstater que le as T4 fODF produit plus debiomarqueurs que le as T2 fODF.Le premier test statistique proposé a été évalué ave des données synthétiques et des donnéesréelles. On met en évidene que les performanes des modèles T4s sont meilleures que ellesdes modèles T2s, ar plusieurs de biomarqueurs sont extraits dans le as de T4 que le asde T2 et les résidus de T2 ontiennent de l'informations. En outre, l'approhe statistiqueproposée est plus sensible que le test T 2 de Hotelling. De plus, dans le as de données réellesoù les régions liées à la maladie NMO ont été identi�ées, l'approhe statistique proposéeest en ohérene ave les tests statistiques onstruits sur lassi�eurs RF et les tests depermutation de la matrie de distane inter-point. La �gure 3 représente la limite supérieuredes intervalles de rédibilité des p-valeurs induites (les biomarqueurs extraits ave les p-valeurs inférieures à 0.05 sont représentés en rouge).Deuxième méthode proposée : omparaison statistique d'un sujet anormal ver-sus la population normale - Appliation à la pathologie LISLa seonde approhe statistique est proposée au hapitre 7 pour le problème de la omparai-son d'un individu ave la population normale, dans le as de données anormales disperséesqui ne peuvent pas apturer toute la variabilité de la population anormale.



xviiDe la même manière que pour la première méthode, les données IRMd sont normalisées dansun espae ommun. Initialement, nous avons pensé travailler ave les fODF T4s, mais nosexpérimentations ont montré que la maladie LIS ne produisait pas beauoup de lésions dansl'orientation de la di�usion. Nous avons don hoisi de onsidérer les pro�ls de di�usion,modélisés omme des T4s [11℄.Une autre di�érene se situe dans la détermination de l'espae réduit via Isomap. Contraire-ment à la méthode préédente, nous déterminons maintenant l'espae réduit en introduisantdans Isomap seulement les distanes inter-point relatives aux distanes entre les ouples dedonnées normales. De ette manière, le nuage normal ne sera pas in�uené par les donnéesanormales. Une fois l'espae réduit déterminé, les points anormaux sont plaés dans l'espaeréduit sans modi�er la position des points normaux.Conernant le test statistique révisé, un seul GMM est néessaire, onstruit omme préé-demment, a�n de dérire la population normale. La similitude de haque point anormalau nuage normal est mesurée en alulant sa densité de probabilité ave le KDE/GMM dugroupe normal. Cette densité est la statistique d'intérêt.Ensuite, omme pour le test de permutation, on va approximer la p-valeur à l'aide desimulations de Monte Carlo. On génère des éhantillons selon le KDE/GMM, e qui délivredes densités pi. La p-valeur mise en jeu est égale à la probabilité P (pi 6 p0) sous l'hypothèsenulle que le sujet à évaluer appartient à la population normale. En plus, un intervalle HPDpeut être extrait pour haque p-valeur, de façon similaire à l'approhe préédente.L'appliation aux données réelles a été e�etuée, en partiulier pour la pathologie LIS. Deszones spéi�ques, omprenant le système moteur, ont été séletionnées pour être étudiées.Dans ette étude, notre objetif était de aluler le pourentage de lésions par zone ('est-à-dire le pourentage de voxels pour lesquels la limite supérieure de l'intervalle de rédibilité dela p-valeur est inférieure à 0.05). Ces zones peuvent être séparées en deux grandes régions.La première région (région 1) ontient des zones prohes de la moelle épinière (située dans lapartie inférieure du erveau, par exemple pontine rossing trat, ortiospinal trat gauheet droit, medial lemnisus gauhe et droit), tandis que la seonde région (région 2) regroupeles zones situées dans les parties moyenne et supérieure du volume du erveau relié à lamoelle épinière (omme posterior limb of internal apsule gauhe et droit, superior oronaradiata gauhe et droit).L'analyse statistique a onlu que le pourentage de lésions dans la région 1 était plus élevéque dans la région 2. En outre, la quantité de lésions dans la région 2 dépend du patient.Par ailleurs, l'analyse statistique est ohérente ave l'avis médial.Les pourentages de lésions détetées par les méthodes proposées ont susité notre intérêtpour explorer les performanes de di�érentes variations de la métrique de tenseur, onstruitesà partir de la métrique initiale, proposée dans l'équation 5. Ces variations peuvent nousfournir un outil plus sensible pour disriminer plusieurs di�érenes. Nos expérimentations(voir la setion 7.2.4) ont montré qu'en e�et il y a une variation partiulière de la métrique detenseur qui peut fournir de meilleures performanes que la métrique utilisée pour le moment.



xviiiEn�n, les omparaisons entre les modèles T4 et T2 de di�usion sont présentées. De plus, desomparaisons ave les approhes lassiques fondées sur les statistiques du z-sore relativesaux mesures de FA et MD ont été e�etuées. Les analyses des T2s de di�usion et d'imagesFA/MD produisent des pourentages de lésions plus élevés que l'approhe proposée sur lemodèle de T4. Malheureusement, en raison de l'absene de vérité terrain, il est di�ilede tirer des onlusions sûres. Peut-être une omparaison sur des données synthétiquespourrait-elle nous élairer davantage pour tirer des onlusions. D'autre part, nous pouvonsa�rmer qu'un modèle de tenseur d'ordre supérieur, omme le T4, a la potentialité de mieuxapturer la variabilité de la maladie qu'un autre modèle moins adapté, omme le T2, ou lesmesures salaires simples (par exemple, les images FA et MD).6. Conlusion et perspetivesPour onlure e résumé, nous avons hoisi de souligner quelques points aratéristiques etde donner des orientations pour les travaux futurs.Le premier point auquel prêter attention est la normalisation des données. Puisque lesdonnées de tenseur ou d'IRMd ontiennent des informations d'orientation, la normalisationde données se ompose de deux étapes, le realage spatial et la réorientation de données.À e stade, nous devrions indiquer que la normalisation d'IRMd est moins risquée que lanormalisation de tenseurs.Deuxièmement, la prise en ompte des T4s au lieu des T2s a onduit à une analyse statistiqueplus e�ae et robuste, en partiulier dans le as des roisements de �bres. Il faut noterqu'un modèle plus juste présente un meilleur potentiel pour un diagnosti préoe.Troisièmement, le alul de la sous-variété des modèles T4 a l'un des r�les les plus inon-tournables dans nos approhes. Les distanes eulidiennes en grande dimension peuventlisser les di�érenes. Par opposition, les distanes géodésiques utilisées pour déterminer lamatrie de distanes inter-points ensuite utilisée par l'Isomap, permettent de mieux mettreen évidene les dissimilarités. En outre, la prise en ompte de l'erreur de realage résidu-elle à l'aide de paths les mieux adaptés et en introduisant des informations de voisinagedans l'estimation de la matrie de distane inter-point a montré de meilleurs résultats quele lissage des données.Par ailleurs, avoir les deux approhes statistiques proposées nous donne la �exibilité nées-saire pour analyser les données pathologiques indépendamment de leur nombre.En e qui onerne les orientations pour les travaux futurs, nous proposons d'examiner laombinaison du realage d'IRMd (on reale les données brutes sans les orienter) suivi parl'estimation de tenseurs sur les données obtenues omplétées par la réorientation de estenseurs. Par exemple, dans le as de la réorientation de T4 (ou même T2), les méthodesprésentées dans le hapitre 3 peuvent être utilisées.



xixDeuxièmement, l'analyse statistique basée sur la nouvelle variation de la métrique proposéesur le tenseur (mentionnée dans la setion 7.2.4) devrait être également évaluée. Proba-blement, les pourentages de lésions détetées peuvent être plus élevés que eux déteteatuellement.Une autre perspetive est liée à la onstrution de haque GMM par population. Il sera trèsintéressant de onneter plusieurs sujets dans l'espae réduit au même noyau gaussien, aulieu de onsidérer un noyau par sujet. De ette manière, tous les problèmes de surajustementoasionnel peuvent être évités.Pour ontinuer, dans ette étude nous avons onentré nos e�orts dans l'étude de e qui sepasse dans ertaines régions du erveau, déjà onnues omme atteintes par la maladie. Dansle as des maladies in�ammatoires, il peut être fasinant d'étudier et de déteter d'éventuelleslésions potentielles dans d'autres régions du erveau, peut-être totalement nouvelles pour laommunauté médiale.Ensuite, une étude approfondie des propriétés de di�usivité liées à haque voxel extraitomme biomarqueur, par exemple en analysant le niveau signi�atif des variations de ladi�usion dans haque diretion, pourrait permettre d'évaluer quelles diretions de di�usionsont responsables de la aratérisation du voxel omme biomarqueur.De plus, les apaités des approhes statistiques proposées pour réaliser un diagnosti préoerestent à examiner, sous l'expertise de neurologues.Pour onlure, les appliations des approhes proposées pour analyser des desripteurs deplus haut niveau (par example les faiseaux de �bres et les onnetogrammes) peuvent êtretestées.
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Chapter 1
Introdution
This introdutory hapter presents the sienti� problem, the ontribution of the thesis, andthe organization of the dissertation.1.1 De�nition of the Sienti� ProblemUnderstanding human brain's struture and funtionality has always fasinated the humankind, sine the brain is one of the most fundamental organs, but also the most omplex andmulti-task organ in our body. Figure 1.1 illustrates a few harateristi steps through theevolution of brain studies in the past enturies. Nowadays, a onsiderable perentage of thebrain's apabilities still remains unidenti�ed and open to researh.Another reason that triggered the interest of the sienti� ommunity to extensively om-prehend the brain is the lak of deep knowledge onerning the spei�ity of various brainpathologies. For instane, ertain disorders are restrited to spei� areas of the brain (e.g.loked-in syndrome (LIS), Parkinson's disease, dyslexia et.), while, on the ontrary, severalin�ammatory or neurodegenerative diseases an potentially a�et the entire human brain(neuromyelitis optia (NMO), multiple slerosis (MS), Alzheimer's disease et.) [104℄. Thedevelopment of e�ient and omprehensive automated diagnosti tools an help us under-stand the aspets of the disease, and eventually allows us to monitor the patient's ondition.Additionally, treating the disease as early as possible by systematially guiding the dotor'sdeisions onerning the adjustment of patient's treatment is always desirable.For many deades, omputer and medial sienes have been ollaborating in this diretionwith the aid of physis, under the names of Neurosiene and Neuroinformatis. In order togain knowledge related to a disease, handy examinations were onstruted that are suitableto extrat measurements useful to haraterize partiular diseases. Highly informative dataaquisition tehniques, suh as Magneti Resonane Imaging (MRI), Di�usion Weighted1



2 CHAPTER 1: IntrodutionMagneti Resonane Imaging (DW-MRI) and funtional Magneti Resonane Imaging (f-MRI) were developed to observe the brain and gather various interesting measurementsonerning the struture and the funtion of the brain.

(a) (b)

() (d)Figure 1.1: The evolution of brain studies. (a) medieval view of brain's struture andfuntion (by Magnus Hundt, in 1501 - probably �rst printed anatomial �gure of the head),(b) drawing appeared in Book VII of Andreas Vesalius's Fabria (1543) depiting horizontalsegments of the human head, () image from Félix Viq d'Azyr's atlas of the human brain(1786 - the most aurate before the development of neurohistology) and (d) a modernMRI san of the brain (1971 - nowadays).For example, DW-MRI is the �rst tehnique to apture information related to the struturalanatomy of white matter (WM) or even grey matter of the brain, in vivo (although otherompetitive tools, more suitable for grey matter studies than DW-MRI, also exist). Infat, DW-MRI measures the di�usion of water moleules aross several diretions in the 3D



1.2. THESIS' CONTRIBUTIONS 3spae, revealing the struture of the white matter (WM) of the brain. Moreover, DW-MRIis a totally non-invasive routine, due to the fat that the patient is not injeted with anyradioative traer. Neither does any exposure to ionizing radiation take plae through thewhole examination, reduing the appearane of ompliations to a minimum level. Generallyspeaking, DW-MRI data will monopolize our interest in this study.Suh an innovative imaging modality lead us to seek advaned tools for image proessing,modelling and analysis. For instane, DW-MRI data are ommonly modelled using tensors(the reader is referred to hapter 2 and [112℄ for more information). These tensor modelsonentrate solid lues about the strutural representation of the di�usion and o�er aneasier way to visualize the di�usion properties at eah voxel of the brain than raw DW-MRIdata. Due to the fat that the human brain ontains omplex strutures representing severalbundles of �bers in a high perentage of voxels (almost 50%), powerful and ompetitive tensormodels suh as High Order Tensor (HOT) models [14, 122, 172℄ are needed. HOT tensorsan assist us to de�ne representative desriptions that an apture as muh information aspossible that is embedded in the DW-MRI data.Finally, studying a partiular disease, for example with a view to biomarker extration, re-quires a signi�antly large repository of data, so as to de�ne the ontrol (normal) populationwith healthy subjets, and to haraterize the variability of the disease by onsidering anextensive pathologial (abnormal) population. On the other hand, if the desirable task is tofollow up patients' state, eah patient an be alternatively tested individually, for a givenset of di�erent in time sans, against the normal population.In this thesis, populations omparisons, along with individual versus normal populationomparisons, are addressed via spei� statistial tests that we propose, potentially aimingat early diagnosis, biomarker extration and patient follow-up. Notiing the lak of mappingtehniques and statistial analysis tools for HOTs in the literature, and onsidering theirpowerful abilities to desribe DW-MRI data, we hose to work with fourth order tensors(T4s) [11, 172℄, whih is a partiular ase of HOTs.1.2 Thesis' ContributionsPerforming population omparisons requires an initial important task, known as data nor-malization (e.g. for DW-MRI or tensor data), in order to align brains of di�erent subjetstogether. Due to the fat that DW-MRI data and tensor models ontain orientated in-formation, a single spatial registration is not enough. A reorientation step is ruial andmandatory, too. During the �rst year of this thesis, we foused on the problem alled tensorreorientation [2, 5, 135℄. In this ase, the tensor models should be orretly reorientated inorder to math with the new underlying �ber orientation in the new ommon spae. Theresults of this work on T4 models are presented in hapter 3.To ontinue, in order to ompare di�erent subjets in the tensor spae, metris taking intoonsideration the properties of the di�usivity pro�les should be de�ned (see hapter 2 where



4 CHAPTER 1: Introdutiona proposed tensor metri is presented, inspired by the work of Tarantola [153℄ in physis,along with other metris that an be found in the literature). These tensors metris willallow us to onstrut inter-point distane matries that will be introdued into dimensionalityredution tehniques in order to perform statistial analysis, robustly, in a redued spae.The need for sensitive models and statistial tests with a view to early diagnosis and prog-nosis, disease staging, patient follow-up et. started to grow rapidly. Comparisons betweenhealthy and pathologial data in order to detet patterns of lesions for a given disease, orto extrat biomarkers via population modelling and omparisons, drew our attention dur-ing the next two years of this work. The majority of this thesis is foused on developingadvaned statistial tests for high order tensor models in order to solve the problem of pop-ulations omparison (i.e. healthy versus pathologial groups, see hapter 5). In this ase,given a normal population orresponding to a set of healthy individuals, and an abnormalpopulation ontaining pathologial datasets, we an highlight voxels, or group of voxels inthe brain with strutural abnormalities resulting from the disease (i.e. biomarkers), withthe aid of a suitable statistial test, that will ompare the two populations.Furthermore, individual pathologial datum versus the healthy population omparisons werestudied and proposed in this thesis with view to patient follow-up (see hapter 7). Inthis ase, methods perform statistial omparisons individually for eah patient againstthe normal population in time series of sans. The last appliation is onsidered to bevery helpful and sometimes the only solution in ases where the variability of the diseasedpopulation annot be fully aptured (e.g. diseases with no spei� drawn patterns, eithermuh variability e.g. often in traumati brains, or a minor number of patients availablerelated to the same disease).To sum up, the main ontributions of this thesis are ontained in the following points:
• Proposed tensor metri (hapter 2, setion 2.3.4).
• Study and evaluation of T4 reorientation shemes (hapter 3).
• Statistial models using tensor information for the following problems:� Population VS Population: appliation to NMO disease (hapters 5, 6).� Individual VS Normal Population: appliation to LIS syndrome (hapter 7).1.3 Organization of the DissertationThe dissertation is organized as follows:Chapter 2 presents the DW-MRI modality and the possible ways to model the aquired data,for example using tensor models. In addition, several tensor metris are presented, along



1.3. ORGANIZATION OF THE DISSERTATION 5with an original one. Furthermore, high level desriptions of DW-MRI data are disussed,suh as �ber trats and onnetomes.Chapter 3 addresses the pre-proessing steps for DW-MRI data. The problem of tensorreorientation is explained and a study on reorientation shemes for T4 models is presented,based on T4 deompositions into T2s followed by T2 reorientations. Two T4 deompositionsare desribed along with two T2 reorientation methods. Experimental results on synthetiand real data are inluded.In hapter 4, the general steps to devise statistial atlases are highlighted and the problemof biomarkers detetion is explained. Moreover, state-of-art tehniques are presented anddisussed.The onstrution of a statistial atlas, for the problem of population versus populationomparison, is addressed in hapter 5. The proposed approah �ts T4 models on the DW-MRI data and performs voxelwise statistial analysis in a redued spae. Appliations tosyntheti ases were ahieved along with appliation to NMO disease whih allowed us toevaluate the proposed method in omparison with several other methods. Experimentalresults are inluded in hapter 6.For the ase of sparse (pathologial) populations, we propose in hapter 7 a solution to theproblem of individual versus normal population. Appliation to LIS pathology is seletedand presented.Finally, the onlusion of this thesis along with suggestions for future work are ontained inhapter 8.





Chapter 2
In Vivo Probing and Modelling theDi�usion of Water Moleules in theHuman Brain
In 1965, Stejskal's and Tanner's method for probing the di�usion of water moleules byusing Nulear Magneti Resonane (NMR) resulted into a non-invasive tehnique alledDi�usion Weighted Magneti Resonane Imaging (DW-MRI) [149℄. DW-MRI's ability toapture information related to the underlying white matter (WM) struture of the brainwas revolutionary. In this hapter, a brief introdution about the properties of the di�usionof water moleules in the human brain is presented, along with the desription of severalsuitable models to represent DW-MRI data.2.1 Brownian Motion of Water MoleulesAround 77− 78% of the human brain onsists of water [105℄. DW-MRI measures the signalof the proton (1H) in water moleules (H20), whih orresponds to the movement of watermoleules, by applying a set of magneti gradient diretions to the subjet that we examine.This permits us to measure the motion of the moleules aross these diretions. This randommovement is known as intra-voxel inoherent motion (IVIM), random motion, or Brownianmotion. Examples showing di�erent kind of Brownian motions are presented in �gure 2.1.Unfortunately, this is not the only motion whih an be observed in the measured signal.Another type of deteted motion is known as bulk motion. It is the result of the subjet'smovements during the sanning proedure. Furthermore, brain pulsation is also onsideredas bulk motion. The magnitude of this motion is usually larger than Brownian motion andan be easily removed or orreted as an artifat.Conerning the aspets of the applied magneti �eld, it is always parallel to the z axis,but it varies in spae. It is modulated aording to the urrent 3D position (x, y, z):7



8 CHAPTER 2: Probing & Modelling Di�usion of Water

Figure 2.1: Di�erent examples of di�usion. (a) random isotropi di�usion of water withunonstrained shape, (b) and (d) anisotropi shape onstrained di�usion and () isotropishape onstrained di�usion. Image reprodued from [112℄.
B(x, y, z) = B0 [0, 0, (ax+ by + cz + 1)]T , given the main magneti �eld B0 (see �gure 2.2).In this way, the set of magneti gradient diretions onsists of unit vetors of the form
g = [a, b, c]T / ‖ [a, b, c]T ‖. Applying spei� gradients in many diretions allows us tomeasure the Brownian motion by sampling the 3D unit sphere or hemisphere, useful tounderstand the neural network (i.e. struture) of the brain. For more details about theaquisition proess, the reader is referred to [112℄.

Figure 2.2: The strength of the magneti �eld B (red arrow) is linearly modulated alongeah of the three axes. Figure appeared in [112℄.The measured di�usion an be isotropi (meaning the same signal in eah gradient diretionthat an orrespond to trapped water without any partiular information, e.g. �g. 2.1 a)and )), or anisotropi that reveals, exept from the magnitude of the di�usion, also the



2.2. DW-MRI DATA 9orientation of the underlying �ber struture and has the potential to indiate several neuralonnetions, strutures et. (e.g. �g. 2.1 b) and d)).The Propagator Desription of Water MoleulesRandom di�usion of water moleules �owing from point r to r′ in time t an be desribedby a probability density funtion (PDF) p(r′, t|r) [92℄ whih follows Fik's law:
∂p(r′, t | r)

∂t
= D∇2p(r′, t | r), (2.1)assuming that the di�usion is homogeneous in the medium, where ∇2 is the Laplaianoperator and D is the orresponding di�usion tensor (see setion 2.3.1.1).Equation 2.1 desribes the propagator of a single water moleule, but several water moleulesan exist in a voxel, partiipating in the same motion. For that reason, another usefulquantity is the probability of moleules to reah point r′ in time t, also known as ensembleaverage propagator (EAP):

p(r′, t) =

∫
p(r) p(r′, t | r) dr, (2.2)where p(r) orresponds to the density of water moleules in the initial position r.Given the initial state where partiles start at point r, p(r′, 0 | r) = δ(r′ − r), the Dirafuntion, the solution of eq. 2.1 provides us with the following Gaussian desription of thepropagator [92, 134℄

p(r′ − r, t) =
(
(4πt)3 |D|

)−1/2
exp

(
−(r′ − r)TD−1(r′ − r)

4t

)
. (2.3)2.2 DW-MRI DataSeveral books address the DW-MRI aquisition proess (see e.g. [91, 92, 112℄). As a result,the purpose of this setion is not to fous on this proedure, but to mention the mostimportant properties of DW-MRI data and to remind the equations that desribe them.First of all, the harateristi term of "di�usion-weighted" is given due to the utilization ofa set of magneti gradient diretions along whih the di�usion is measured [112℄. In otherwords, grey levels in DW images represent the di�usion (along eah gradient diretion). Themost ommon equation that de�nes the aquired signal intensity S in a gradient diretiong (3D unit vetor) is the following:

S(g) = S0e
−b d(g), (2.4)



10 CHAPTER 2: Probing & Modelling Di�usion of Waterwhere S0 is the signal intensity with zero gradient (i.e. g = (0, 0, 0)), S(g) is the measuredsignal along the gradient diretion g, b is known as b-value and is the aquisition parameter,and �nally d(g) is the (positive) di�usion value depending on g. For example, given di�usiontensor D (i.e. seond order tensor, setion 2.3.1.1), equation 2.4 is written as:
S(g) = S0e

−b gT D g. (2.5)For more information about how equations 2.4 and 2.5 were derived the reader is referredto [92, 112℄. An example of DW-MRI signal is shown in �gure 2.3.

Figure 2.3: Three slies of DW-MRI data in a given gradient diretion. (left) oronalview, (middle) sagittal view and (right) axial view of the human head.Due to the fat that eah DW-MRI image, that stores the signal onneted to the di�usionin a single diretion, an be altered by the presene of noise, we need to gather as manyimages as possible, for a set of di�erent gradient diretions in a limited san-time, in orderto inrease the auray of the measurements. Aquisition tehniques with a lot of gradientsdiretions (e.g. 30, 40 et.) are known as HARDI (High Angular Resolution Di�usionImaging) methods [160℄. A more extensive disussion about HARDI tehniques will takeplae in the following setions.2.3 Models for DW-MRI Data2.3.1 Tensor ModelsDi�usion models are tools that allow us to represent the di�usion of water moleules thataptures the struture of the WM of the brain. The �rst attempt took plae by the in-trodution of Di�usion Tensor Imaging (DTI). DTI uses very few gradients (e.g. 6) andan only desribe a single diretion of di�usion in the underlying �ber arhiteture (seesubsetion 2.3.1.1). As neuroimaging gained knowledge, it was proved that more omplexstrutures ontaining bundles of �bers an appear in the human brain (in almost 50% of



2.3. MODELS FOR DW-MRI DATA 11voxels) [91, 92, 160, 161℄, meaning that more �exible models that an apture, in detail,the underlying shape of the �bers are required [12, 14, 159, 172, 173℄. In this diretion,Higher Order Tensor (HOT) models beame popular (see subsetion 2.3.1.2). Tensor mod-els an desribe di�usion (i.e. apparent di�usion oe�ient - ADC pro�les) and �bersorientation (�ber Orientation Distribution Funtions - fODF pro�les) (subsetion 2.3.2).Subsetion 2.3.4 de�nes some important tensor metris, that will be needed in the rest ofthe dissertation.2.3.1.1 Di�usion Tensor Imaging and Seond Order TensorsDTI tensors, often alled seond order tensors or simply T2s, were proposed by Basser etal. in 1994 [18℄. Basser et al. modelled the propagator (eq. 2.3) in the form of ellipsoids.Although it is named as di�usion ellipsoid, in fat it represents the iso-probability densityof the propagator (eq. 2.3) and it should not be onfused with the di�usion pro�le (whihis ommonly visualized by a "peanut" shaped representation, as we will show later).As it is known, an ellipsoid is de�ned by six parameters (�g. 2.4). Theoretially, at least sixDW-MRI measurements aross six independent gradient diretions are need to determinean ellipsoid.The information enlosed in the six previously mentioned parameters of an ellipsoid anbe mathematially gathered in a tensor matrix D2, suh that the diagonalization of D2produes the three eigenvetors v1, v2, v3 and their orresponding eigenvalues λ1, λ2, λ3. AT2 tensor an be represented by the following 3x3 symmetrial matrix:
D2 =



Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz


 =



D11 D12 D13

D21 D22 D23

D31 D32 D33


 . (2.6)Given matrix D2 and a variable µ = (µ1, µ2, µ3)

T in the 3D spae, Basser et al.'s ellipsoidis de�ned as the set of µ's suh that µT D−1
2 µ = c, where c is a onstant (notie theonnetion with the numerator in the exponential of the Gaussian propagator in eq. 2.3).

Figure 2.4: Six parameters (three eigenvalues λ1, λ2, λ3, two parameters to de�ne the�rst eigenvetor v1, one for the seond v2, and zero for the third one v3) are needed tode�ne a 3D ellipsoid (image reprodued from [112℄).



12 CHAPTER 2: Probing & Modelling Di�usion of WaterThe symmetry property of the tensor matrix D2 (Dij = Dji) results into having six uniqueoe�ients (same in number as the parameters of the ellipsoid). These oe�ients allowus to de�ne another representation of the T2 as a 6 × 1 vetor using Voigt's notation,
[Dxx, Dyy, Dzz, Dyz, Dxz, Dxy]

T .In addition, a useful funtion that an be de�ned with the use of a tensor matrix (eq. 2.6),is known as "di�usivity funtion". It is a symmetrial positive real-valued funtion whihreturns the di�usion along a given gradient diretion g = (g1, g2, g3)
T , where ‖g‖ = 1:

d(g) = 3∑

i=1

3∑

j=1

Dij gi gj = gT D2 g. (2.7)The di�usivity funtion d(g) has the shape of a peanut in ontrast to the ellipsoid of thepropagator (see �gure 2.5). In this dissertation, we will work with the peanut shaped glyphs.

Figure 2.5: Plotting 2D slies of the 3D di�usion ellipsoid for c = λ1 (on the left) andthe di�usivity funtion d(g) as "peanut shaped" representation (on the right).Anisotropy indies for DTITwo popular salar maps proposed by Basser and Pierpaoli in 1996 [21℄, the frationalanisotropy (FA) and the relative anisotropy (RA), have been widely used in DTI:FA =

√
3

2

√
(λ1 − 〈λ〉)2 + (λ2 − 〈λ〉)2 + (λ3 − 〈λ〉)2

√
λ2
1 + λ2

2 + λ2
3

, (2.8)RA =

√
1

3

√
(λ1 − 〈λ〉)2 + (λ2 − 〈λ〉)2 + (λ3 − 〈λ〉)2

〈λ〉 , (2.9)where 〈λ〉 is the mean di�usivity (MD) and is de�ned as:
〈λ〉 = λ1 + λ2 + λ3

3
, (2.10)and FA ∈ [0, 1], while FA = 0 orresponds to the isotropi di�usion.



2.3. MODELS FOR DW-MRI DATA 13T2 Model limitations and e�ient ways to irumvent themAs an be imagined, the simpliity of the T2 model omes with a prie. It appears that thehuman brain ontains omplex strutures with more than one bundle of �bers rossing eahother, in almost 50% of voxels [91, 92, 160, 161℄. Figure 2.6 desribes some harateristiases of �ber bundles that appear frequently in real DW-MRI data, and unfortunately T2fails to represent orretly the underlying �ber strutures. Fiber Orientation DistributionFuntions (fODF), shown in the fourth olumn, give better results than T2s. A fODF is afuntion on the sphere, desribing the orientation of the �bers (see subsetion 2.3.2).

Figure 2.6: Several examples of bundles of �bers that our frequently in real data (�rstolumn). The seond olumn ontains the T2 models, while the third olumn ontains theprinipal diretion of the T2 models and �nally the fourth olumn shows the fODF results,whih are better than T2s. (original image appeared in [91℄).In order to bypass the T2 limitations, researhers started thinking about the points whereinformation is lost. Firstly, it is undoubtable that �tting a model able to desribe moreomplex data is the �rst key point. A solution to this problem is given by onsideringmore omplex tensor models (further disussion is proposed in setion 2.3.1.2). But beforeaddressing this point, there are two more points to stand.The seond limitation takes plae during the data aquisition proess. Usually, hardware'sability to measure the signal is limited around 2− 3 mm per dimension. In order to ahievehigher resolution of DW-MRI images, novel hardware should be onstruted, whih ouldprodue larger magneti �elds (orresponding to b-value higher than 1000 s/mm2 urrentlyused in DTI). Moreover, inreasing the magnitude of the magneti �eld also inreases therisk taken by the patient and the researher should further study that risk. At the time whenT2 models appeared, 1.5 Tesla �elds were ommonly used. But nowadays the situation isbetter sine for example, in experimental level, human studies have been performed at upto 9.4 Tesla [162℄ and animal studies have been performed at up to 21.1 Tesla [132℄.
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Figure 2.7: Three di�erent sampling shemes for di�usion MRI. (a) DTI , (b) DSI and() QBI (image reprodued from [92℄).The third ause of information loss is related to the low number of gradients used to aquirethe signal, whih may not be su�ient to apture in detail the underlying �ber struture.For this reason, methods belonging to the HARDI family [121, 160℄, whih inrease theangular resolution by using a large number of gradient diretions, started to be developed.Multi-model �tting algorithms [84, 170℄, or model-independent methods [159℄, bene�tedfrom spei� HARDI aquisitions (suh as di�usion spetrum imaging (DSI), Q-ball imag-ing (QBI)), whih estimate the di�usion Orientation Distribution Funtion - dODF (seesubsetion 2.3.2), have been proposed. Moreover, methods based on spherial deonvolutione.g. [4, 44, 90, 157, 158℄, whih estimate the fODF and require signi�antly less samplesthan DSI, beame popular in the following years after T2 models. Figure 2.7 shows di�erentsampling shemes and highlights the large number of gradient diretions needed in DSI.Furthermore, �gure 2.8 illustrates a dODF path stemming from Q-ball imaging (a model-free approah) on real data that ontains rossing �bers.

Figure 2.8: A path with dODF pro�les resulted from Q-Ball imaging using 492 gradientdiretions in an area ontaining rossing �bers (image appeared in [161℄).



2.3. MODELS FOR DW-MRI DATA 152.3.1.2 Higher Order TensorsAs previously said, it is possible to inrease the number of gradient diretions during DW-MRI aquisition, so that more aurate representations of the underlying fODF (or otherpro�les) an be obtained. Due to the fat that HARDI approahes are not based on stru-tured models (suh as tensors), numerous samples are required, resulting into long timesans.Alternatively, higher order tensors inrease the auray of the desription. De�ning a more�exible model than the limiting T2 model, by inreasing the order of the tensor, looks asthe ideal ase. The order N of a suitable tensor must be an even number, sine the di�usion
d(g) is a symmetrial funtion. A T2 tensor (N = 2) is represented by K = 6 uniqueoe�ients (as was previously shown). A fourth order tensor (T4) is desribed by N = 4and K = 15 (as we will justify later), and so on, N = 6, K = 28 and N = 8, K = 45et. (see setion 2.3.3 for the omputation of K). As a onsequene, it is important toselet wisely whih model is suitable to our data, and avoid inreasing the tensor's orderwith no ontrol, sine it will inrease the number of the unknowns and probably ine�etiveand pointless oe�ients. Examples of methods modelling di�usion or fODF pro�les withHOT estimation an be found in [14, 122, 172℄, while for using T4 with positive de�niteonstraints estimations the reader is referred to [11, 12, 64, 176℄.Aording to [121℄, the di�usivity funtion of a N th order tensor DN with elements Di1i2...iN ,given a 3D gradient diretion g = (g1, g2, g3)

T an be written as:
d(g) = 3∑

i1=1

3∑

i2=1

. . .
3∑

iN=1

Di1i2...iN gi1 gi2 . . . giN , (2.11)where gi1, . . . , giN take values from the oe�ients {g1, g2, g3} of g.For the purposes of this dissertation, we will fous on the fourth order tensor model (T4).T4 models an represent up to three learly separated bundles of �bers. A T4 tensor anbe desribed by the following 6× 6 symmetri matrix:
D4 =




D1111 D1122 D1133 D1112 D1123 D1113

D2211 D2222 D2233 D2212 D2223 D2213

D3311 D3322 D3333 D3312 D3323 D3313

D1211 D1222 D1233 D1212 D1223 D1213

D2311 D2322 D2333 D2312 D2323 D2313

D1311 D1322 D1333 D1312 D1323 D1313



, (2.12)

whih an be ompressed in a vetor with 15 unique oe�ients [D1111, D2222, D3333, D1122,

D2233, D1133, D1233, D1123, D1333, D1223, D1113, D1112, D2333, D2223, D1222]
T , sine for ex-ample D1122 = D2211 = D1212, D1333 = D3313 et. Moreover, the estimation of a T4 requiresat least 15 DW-MRI measurements instead of 6 in the T2 ase.



16 CHAPTER 2: Probing & Modelling Di�usion of WaterFollowing equation 2.11, the di�usivity funtion of a T4 writes:
d(g) = 3∑

i=1

3∑

j=1

3∑

k=1

3∑

l=1

Dijkl gi gj gk gl. (2.13)It should be mentioned that the T2 model D is a partiular ase of the T4 model T , justi�edby equalizing the di�usivity funtions in equations 2.7, 2.13 and onsidering g21+g22+g23 = 1:
(

3∑

i=1

3∑

j=1

Dij gi gj

)
(
g21 + g22 + g23

)
=

3∑

i=1

3∑

j=1

3∑

k=1

3∑

l=1

Tijkl gi gj gk gl. (2.14)

(a)

(b)Figure 2.9: Comparison between T2 and T4 models for a ROI that ontains rossing�bers in the human brain. (a) T2 and (b) T4 resulting tensor �elds. T4s represent the�ber struture more aurately than T2s.Figure 2.9 shows that fourth order models are �exible and allow to apture in muh moredetail the underlying fODF in omparison to seond order models. It an be notied thatwhen the voxels ontain rossing �bers, the T2 approah is unable to apture in detail theshape of the �bers, given a solution more lose to isotropi di�usion, while the T4 modelsbetter their shape. Moreover, it is mandatory to mention that a more detailed model anbe muh more useful to early diagnosis than less aurate tehniques.



2.3. MODELS FOR DW-MRI DATA 17Anisotropy indies for HOTsInteresting indies for high order tensors have been proposed in [122℄. Among them, onereally useful index is the Generalized Anisotropy (GA) whih is a ontrast funtion of thevariane of the di�usion and is de�ned as:
GA = 1− 1

1 + (250V )ε(V )
, (2.15)where V ∈ [0, 1] is the variane of the normalized di�usivity (see [122℄ for the details of thatindex) and the exponent ε(V ) writes:

ε(V ) = 1 +
1

1 + 5000V
. (2.16)GA's objetive is to highlight areas in WM with anisotropi properties (e.g. �bers), similarlyas FA, RA in the T2 ase. High values of GA haraterize the WM. Moreover, visualizingthe GA as greysale 2D/3D images, low ontrast an be notied between anisotropi voxelsor between very low anisotropy, suh as isotropi water. As a result, it is useful to separatethe white matter from the grey matter. Figure 2.10 plots both GA and ε(V ) funtions.

Figure 2.10: Plotting GA (on the left and the enter) and ε(V ) (on the right).2.3.2 ADC, dODF and fODF Pro�lesIn 1977, Tanner proposed to relate the measured NMR signal to a single salar, alledapparent di�usion oe�ient (ADC), sine only one gradient diretion (g = g(1)) was used.Replaing d(g) in equation 2.4 with ADC, yields equation 2.17:ADC = −1

b
ln

(
S
(g(1))
S0

)
. (2.17)Using more than one gradient g in the aquisition results into estimating whole di�usion(ADC) pro�les similarly to eq. 2.17: ADC(g(i)

)
= − (1/b) ln

(
S
(
g(i)
)
/S0

).Unfortunately, the di�usion (ADC) pro�le does not math with the underlying �ber orien-tation (see �g. 2.12). This mismath was e�iently explained in [71℄ with the next example.



18 CHAPTER 2: Probing & Modelling Di�usion of WaterGiven two rossing �bers with di�erent sales f1, f2, modelled by two tensors D(1), D(2) theaquired signal an be desribed by the following equation:
S(g, b) = f1S1(g, b) + f2S2(g, b) (2.18)

=
[
f1 exp

{
−bgTD(1)g

}
+ f2 exp

{
−bgTD(2)g

}]
S0 = [exp {−bADC(g)}]S0.In this ase, the di�usion (ADC) pro�le will be given by:ADC(g) = −1

b
ln
[
f1 exp

{
−bgTD(1)g

}
+ f2 exp

{
−bgTD(2)g

}]
. (2.19)As an be notied, the two �ber desriptions are ombined non linearly in eq. 2.19, while alinear ombination of the �bers would math the orret orientation (see �g. 2.12).To bypass this misalignment, Orientation Distribution Funtions (ODF) were proposed [47,158, 159, 170, 172℄.To be more preise, di�usion Orientation Distribution Funtions (dODF) hoose to desribethe EAP propagator (eq. 2.2) as follows:dODF(g) = ∫ ∞

0

p(rg, t) dr. (2.20)In 2004, Tuh [159℄ initially proposed the "model-free" onept of Q-Ball imaging, in orderto approximate the dODF using aquisitions on the spherial q spae (presented in �gure2.7()). One year later, Hess et al. [79℄ used Spherial Harmonis to de�ne dODFs. In 2007,Desoteaux et al. [47℄ proposed a more robust Q-Ball imaging.Realling the previous example, the orresponding EAP propagator will be de�ned by thefollowing linear equation, given the two individual propagators one for eah �ber p1(r, t),
p2(r, t):

p(r, t) = f1p1(r, t) + f2p2(r, t). (2.21)In the same diretion, �ber Orientation Distribution Funtions (fODF) (e.g. [4, 158, 172℄)desribe the aquired signal S via spherial onvolution of the fODF pro�le with a responsefuntion R (modelling a single �ber) over the unit sphere (see �g. 2.11):
S(θ, φ) = fODF (θ, φ)⊗ R(θ), (2.22)where θ and φ are the spherial oordinates.Moreover, the spherial onvolution is visually expressed in �gure 2.11. The syntheti fODFfuntion presented in �g. 2.11 is de�ned as the linear ombination of two Dira delta fun-tions. In pratie, fODF funtions an appear di�erently than linear ombinations of Diradelta funtions due to the presene of noise.
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Figure 2.11: An explanation in 2D of the spherial onvolution proedure used in fODFestimations (image reprodued from [158℄).In order to better understand the di�erenes between ADC and fODF pro�les, we onsiderthe �ber strutures (drawn as blue rossing lines) illustrated in �gure 2.12. It is lear thatthe orientation of the ADC pro�les (seond row) has nothing in ommon with the underlying�ber orientation (espeially when the two bundles are well separated). This happens due tothe non linear ombination of the �bers in the ADC pro�les (eq. 2.19). On the ontrary,fODF pro�les (third row) desribe signi�antly better the orret orientation by ombinglinearly the �bers.

Figure 2.12: Comparisons of ADC and fODF pro�les. The �rst row orresponds to theunderlying �ber struture, the seond row ontains the ADC pro�les, the third row showsthe fODF pro�les (original image appeared in [172℄).ADC and fODF omputations using tensor modelsAs we previously showed, di�usion (ADC) and fODF pro�les an be alulated independentlyof a tensor model given the limited set of gradients used in the aquisition. Alternatively,if someone has already estimated a tensor model on ADC/fODF pro�les, it is possibleto estimate the orresponding pro�le in larger sets of gradients, using the orrespondingequation 2.23 for di�usion (ADC) pro�les, or eq. 2.24 for fODF pro�les:
d(g) = 3∑

i1=1

3∑

i2=1

. . .

3∑

iN=1

Ddiff
i1i2...iN

gi1 gi2 . . . giN , (2.23)
f(g) = 3∑

i1=1

3∑

i2=1

. . .
3∑

iN=1

DfODF
i1i2...iN

gi1 gi2 . . . giN . (2.24)



20 CHAPTER 2: Probing & Modelling Di�usion of Water2.3.3 Spherial Harmonis and their Connetion to TensorsThe mathematial framework of Spherial Harmonis (SH) was initially introdued byLaplae in 1782, during his investigation of Newton's law for universal gravitation. TheSH of order ℓ = 0, 1, 2, . . . and index m = −ℓ, . . . , 0, . . . , ℓ is de�ned as:
Ym

ℓ (θ, φ) =

√
(2ℓ+ 1)(ℓ−m)!

4π (ℓ+m)!
Pm
ℓ cos θ ei mφ, (2.25)where θ ∈ [0, π] is the polar angle, φ ∈ [0, 2π) is the azimuth angle and Pm

ℓ is the assoiatedLegendre polynomial.Eah SH is a funtion on the sphere, and as a result, a set of di�erent pairs ℓ, m anonstrut a set of orthonormal basis for spherial funtions. Figure 2.13 exhibits a fewspherial harmonis, for di�erent ℓ, m values.

Figure 2.13: Examples of Spherial Harmonis of order ℓ and index m (image reproduedfrom [92℄).Given a tensor in DW-MRI that de�nes a symmetrial and positive real-valued funtion
d (θ, φ) (di�usion, either dODF or fODF pro�le) on the unit sphere, it is possible to desribe
d (θ, φ) with the aid of K SHs:

d (θ, φ) =

K∑

k=1

ck Yk (θ, φ) , (2.26)where ck are the oe�ients related to d (θ, φ) as they appear in the modi�ed SH basis of[47℄ and
Yk (θ, φ) =





√
2 Re(Y |m|

ℓ (θ, φ)
) , if m < 0,

Y m
ℓ (θ, φ) , if m = 0,

(−1)m+1 Im (Y m
ℓ (θ, φ)) , if m > 0.

(2.27)



2.3. MODELS FOR DW-MRI DATA 21In addition, the antipodally symmetri property of di�usion/dODF/fODF pro�les, resultsinto needing only even order (ℓ) spherial harmonis to desribe di�usion/dODF/fODFpro�les. Moreover, in DW-MRI K = 1
2
(ℓ + 1)(ℓ + 2) [47, 92℄. Some interesting work in the�eld of di�usion MRI that handles SH funtions an be found in the referenes [47, 137, 158℄.2.3.4 Tensor MetrisInitially, Eulidean distanes between tensor oe�ients were onsidered. These distanesappeared to be unsuitable to apture the preise di�erenes of tensor data, and as a onse-quene Riemannian metris were introdued. For those kind of metris, the shortest on-neting path between two points is a urve, known as geodesi urve, instead of a straightline as in an Eulidean spae. The following two metris that will be presented are de�nedin Riemannian spaes.The �rst useful metri that we are going to need in this dissertation is alled Log-Eulideandistane and was proposed by Arsigny et al. [6℄ in 2006. It is important to notie that it isonly de�ned for seond order tensors D(i)
2 as:

dist(D(1)
2 ,D(2)

2 ) =
∥∥∥log

(D(1)
2

)
− log

(D(2)
2

)∥∥∥ , (2.28)where ‖.‖ is the Frobenius norm and log
(D(i)

2

) uses the outputs of the spetral deompo-sition of the 3× 3 matrix D(i)
2 :

log
(D(i)

2

)
= V T

i log(Λi)Vi, (2.29)and Vi ontains row-wise the eigenvetors and Λi is the diagonal matrix with diagonal ele-ments the eigenvalues. Furthermore, several other metris have been proposed for DTI andT2s in the literature [57, 99℄.Inspired by the work of [153℄ on distanes between positive funtions, we de�ne the seonduseful distane, between two di�usivity pro�les (ADC/dODF/fODF) d1, d2:
dist(d1, d2) =

∫∫ ∣∣∣∣log
d1(θ, φ)

d2(θ, φ)

∣∣∣∣ sin θ dθ dφ, (2.30)where φ ∈ [0, π] is the polar angle, θ ∈ [0, 2π] is the azimuth angle that parameterize the
3D sphere. This distane an be used for both T2 and HOT tensors.As an be notied, both metris use the logarithm. Choosing log-based distanes as metrisattributes the same impat to small di�erenes (e.g. 10−3 and 10−2) and to large di�erenes(e.g. 102 and 103) on the distane. A non log-based distane will be greatly a�eted by largedi�erenes and the ontribution of small ones will be elipsed. Suh (non log-based) distanesan be found in the literature e.g. for the fourth order tensor ase [11, 15, 48, 110, 111℄.



22 CHAPTER 2: Probing & Modelling Di�usion of WaterPratial omputation of dist(d1, d2)The distane de�ned in eq. 2.30 an be approximated as the sum of N samples of theADC/fODF/dODF pro�les on the 3D unit hemisphere by onstruting a regular grid with
Nθ, Nφ samples in the θ and φ axes respetively (∆θ = 2π/Nθ, ∆φ = π/2Nφ, N = NθNφ):

dist (d1, d2) ≃
Nθ∑

i=1

Nφ∑

j=1

∣∣∣∣log
d1(θi, φj)

d2(θi, φj)

∣∣∣∣ sin (θi)∆θ∆φ. (2.31)The quality of the approximation in equation 2.31 depends on the number N of samples.Due to the fat that we are interested in T4 models in this work, we performed a simulationtest measuring the distanes of all possible ombinations between eight syntheti T4s shownin �gure 2.14, in order to �nd the proper N that stabilizes the distanes. The minimum Nvalue derived from that simulation proess (visually from the obtained distanes presentedin �gure 2.16) is N = 242 samples on the unit hemisphere (see �g. 2.15).
Figure 2.14: T4 representation of: (a) isotropi water, (b)-(d) three main �bers, whilethe largest di�usion ours on y-axis, x-axis, z-axis, respetively, (e) a single �ber, (f)-(g)two rossing �bers and (h) three rossing �bers with equal di�usion in eah diretion. Theolor of the tensors highlights the orientation of the largest �ber aording to the templatein the top right orner of the �gure.

Figure 2.15: The �gure depits the resulting sampling sheme with 242 samples thatstabilized the distanes in �g.2.16.
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(a)

(b)Figure 2.16: Simulation test in order to determine a su�ient number N of samples inthe approximation of eq. 2.31. (a) Shows the distanes for all pairs of ombinations of T4sin �gure 2.14 and (b) represents the zoom-in view of the bottom part of sub�gure (a). Itis notieable that between 230− 250 samples in the hemisphere, the distane is stabilized.



24 CHAPTER 2: Probing & Modelling Di�usion of Water2.4 High Level Desription of DW-MRI Data2.4.1 FibersUntil a few years ago, mapping the onnetion paths between di�erent parts of the brainhad only been possible via ex vivo invasive tehniques, e.g. anatomial dissetion, or invivo hemial traer methods. As a onsequene, non-invasive tehniques to monitor andstudy in vivo brain lesions, development et. that will a�et those networks were welome.Fitting tensor models (see setion 2.3.1) to DW-MRI data permits us to approximate theunderlying �ber struture and to speify the main diretions of di�usion. The strategy todetermine onnetion paths of the brain whih uses information derived from tensor modelsis known as tratography. Tratography methods an be ategorized into two types:(a) deterministi and (b) probabilisti. An extensive review of various white mattertratography methods an be found in [97℄.Brie�y, deterministi tratography exploits the information given by the prinipal diretionof di�usion of eah tensor (i.e. tensor major eigenvetor). Figure 2.17 illustrates examplesof �ber trats, obtained using a deterministi method alled "Streamlines" proposed byBasser in 1998 [17℄, of two parts of the human brain (the superior longitudinal fasiulus andthe left ingulum). Moreover, �gure 2.18 ontains �ber trats of one of the most extensivepart of the human brain, the orpus allosum, produed by a method based on Basser'sstreamlines and published in 2002 [34℄.

(a) (b)Figure 2.17: Streamlines tratographies of (a) the superior longitudinal fasiulusand (b) the left ingulum (lateral view). Images adapted from [34, 35℄.On the other hand, probabilisti tratography approahes were proposed in order to bypassthe weakness of deterministi tratography not being able to give information about theon�dene in the �ber estimations, but also not produing all possible trats e.g. dueto branhing. In this ase, probability density funtions (PDFs) of �ber orientations are
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Figure 2.18: Tratography of the orpus allosum, a part of the brain that joins theortex of both erebral hemispheres. A) lateral view, B) superior view. Image appeared in[34, 35℄.alulated at eah voxel and several trats an be sampled from that PDF, instead of gettinga single output, suh as the major eigenvetor (e.g. in deterministi approahes). For moreinformation about �ber PDF estimations, the reader is referred to [91, 92℄.A omparison between deterministi and probabilisti tratographies is presented in �g-ure 2.19. It is lear that the probabilisti approah yields muh more trajetories than thedeterministi one and besides that it is possible to know the on�dene of them.
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Figure 2.19: Comparison between deterministi and probabilisti tratographies. Tra-tographies of the orpus allosum appear in the �rst row and the pyramidal fasiulusin the seond row. (a) Trats by using deterministi approah from [113℄ and (b) by usingprobabilisti method from [130℄. Images appeared in [130℄.2.4.2 ConnetomesFrom the beginning of neurosiene, understanding the funtionality and the onnetivityof neural elements of the brain and identifying anatomial units has puzzled and fasinatedsientists. The evolution of siene and the invention of di�erent tehniques, suh as fMRI,EEG et. or even tratographies produed from previously mentioned tehniques, permitus to measure the ativity of neurons and to loalize their onnetions so that interestingrelational paths between them an be depited. As a onsequene, the need of a proper wayto model that information ame to the foreground.The answer to the problem of representing the onnetivity was found with the aid ofgraph theory. The nodes of the networks represent neural units, while the edges re�et theassoiations between neural strutures. These edges are undireted and an be weighted.The weights may ontain information, for example the number of �bers onneting two neuralstrutures (i.e. strutural properties), or the oherene of the two nodes (i.e. funtionalproperties), yielding adjaeny matries after thresholding.



2.4. HIGH LEVEL DESCRIPTION OF DW-MRI DATA 27At this point, it is interesting to present the types of networks that we an have, as they areategorized in [148℄. There are three main types of brain onnetivity:1. Strutural onnetivity is represented by a group of physial or strutural onne-tions between anatomially linked neurons. Connetion sale varies from loal onne-tions of single ells to larger networks. These paths an be dynamially hanged dueto synapti remodelling, development of the brain during aging or learning proedures[148℄. Examples of strutural onnetivity algorithms of the whole human brain aregiven in �gures 2.20, 2.21.

Figure 2.20: An example of the onstrution proedure of a whole brain strutural on-netivity network. (1) High-resolution T1 weighted and di�usion spetrum MRI (DSI) isaquired. DSI is represented with a zoom on the axial slie of the reonstruted di�u-sion map, showing an orientation distribution funtion at eah position represented by adeformed sphere whose radius odes for di�usion intensity. Blue odes for the head-feet,red for left-right, and green for anterior-posterior orientations. (2) White and grey mattersegmentation is performed from the T1-weighted image. (3a) 66 ortial regions with learanatomial landmarks are reated and then (3b) individually subdivided into small regionsof interest (ROIs) resulting in 998 ROIs. (4) Whole brain tratography is performed pro-viding an estimate of axonal trajetories aross the entire white matter. (5) ROIs identi�edin step (3b) are ombined with result of step (4) in order to ompute the onnetion weightbetween eah pair of ROIs. The result is a weighted network of strutural onnetivityaross the entire brain. Figure obtained from [75℄.
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Figure 2.21: Steps of the Magneti Resonane Connetome Automated Pipeline (MR-CAP). MRCAP tehnique ombines DTI tratography with strutural MRI (MPRAGE)to onstrut a MR onnetome. Original �gure appeared in [166℄.



2.4. HIGH LEVEL DESCRIPTION OF DW-MRI DATA 292. Funtional onnetivity draws patterns of deviations related to statistial indepen-dene between spatially remote neural strutures [59, 60℄. These time series data anbe extrated from ellular reording tehniques, fMRI, EEG, MEG, or other means. Inontrast to strutural onnetivity, funtional networks depend extremely on time andan hange. In addition, the funtional proess an be stimulated by external fators(e.g. movements of the �ngers, onversation with the patient et.) that an ativatedi�erent neural sensors in the brain, but also the internal state of the patient.3. E�etive onnetivity onstruts the paths of ausal in�uenes between neurons[59℄. As for funtional onnetivity, e�etive onnetivity is also time dependent andan be stimulated by external or internal fators.The term "onnetome" was originally proposed by Olaf Sporns et al. [148℄ in 2005, inorder to desribe the strutural network of the human brain. In the same year, Hagmann[74℄ named as "onnetomis" the siene that studies onnetome data. These terms anbe used to desribe any type of onnetivity.There are several obstales that we must deal with during the onstrution of a humanbrain onnetome. The omplexity of the 3D struture of the human brain, its developmentand the variability of its funtions, inrease the number of di�ulties for onstruting auniversal onnetome of the human brain (or even partiular parts of it). Moreover, invasiveanatomial tehniques, suh as postmortem examination (whih is ommonly used in otherspeies), are not always appliable, due to physial onstraints of brain tissues or the abseneof suitable postmortem traing methods [148℄.On the other hand, this is not the only hoie. The use of non-invasive methods, suh asdi�usion MRI is promising. The di�usion of water moleules an reveal �ber trats, espeiallyin the white matter of the brain where the di�usion is anisotropi in most of the ases (inomparison to the di�usivity of the grey matter where it is loser to isotropi). Fittingdi�usion models to DW-MRI data an help us to ompute tratographies, whih an beused to de�ne onnetomes. Figure 2.22 shows an example of the human brain onnetome,resulting from the proessing of di�usion MRI tratographies of the whole brain.A simple look at �gure 2.22 is enough to understand that these kind of networks are highlyomplex, inluding a large number of nodes and edges. As a result, a more ompat versionof them ould allows us easier to derive onlusions. The alulation of modules (i.e.lusters of nodes that share more edges within the nodes of the module than with nodes ofother modules) e.g. [36℄ and hub nodes (i.e. nodes that integrate a highly diverse set ofsignals and are apable to manage the �ow of information between individual parts of thebrain) e.g. [147℄ an assist in this diretion. Figure 2.23 shows an example of module andhub lassi�ation.For the explanation of abbreviations onerning the anatomial areas shown in �g. 2.22and 2.23, the reader is referred to [75℄, from whih the images are obtained.
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Figure 2.22: The human onnetome. Images show the �ber arhiteture of the humanbrain as revealed by di�usion imaging (left) and a reonstruted strutural brain network(right). Images obtained from [75℄Individual E�ortsConnetivity studies of the whole brain were performed using di�usion MRI tehniques.Iturria-Medina et al. [87℄ worked on 70-90 ortial and basal grey matter areas, Gong et al.[69℄ on 78 ortial regions of the human brain and they also identi�ed several hubs, both byusing DTI methods. Hagmann et al. [75℄ ombined DSI data of the whole brain, alulatedby using [170℄, with the graph analysis of [147℄ allowed them to study the human ortialonnetivity.Colletive E�ortsOne of the largest projets whose goal was to de�ne the anatomial and funtional networkof the healthy human brain started in 2009 and is alled the Human Connetome Projet(HCP - http : //humanconnectome.org/). Finaned by sixteen omponents of the NationalInstitutes of Health in USA, it onsists of several leading institutes in the neurosiene�eld, suh as Harvard University, Massahusetts General Hospital, Washington Universityin Saint Louis, the University of Minnesota and the University of California in Los Ange-les. Moreover, another omplementary ontribution of this projet an be to enlighten thestudy of di�erent brain disorders that a�et the onnetivity paths, suh as Alzheimer'sdisease, traumati brain injury, stroke et. Moreover, in 2009, the 1000 Funtional Con-netomes Projet (FCP - http : //fcon_1000.projects.nitrc.org/) has been launhed byleading members of the fMRI ommunity. In 2011 the FCP idea resulted into developingthe International Neuroimaging Data-sharing Initiative (INDI), initially by merging under
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Figure 2.23: Modularity and hub lassi�ation. Six modules are shown as grey irlesentered on their enter of mass and sized aording to their number of members. Edgesorrespond to the average onnetion densities of eah region with the member regions ofeah of the six modules. Image obtained from [75℄the same name eight other individual e�orts (taking plae at Baylor College of Mediine,Beijing Normal University, Berlin Mind and Brain Institute, Harvard-MGH, MPI-Leipzig,NKI-Rokland, NYU Institute for Pediatri Neurosiene and the Valenia node of the Span-ish Resting State Network), in order to enhane its database with global ontributors, butalso to establish a ommon sharing protool. Furthermore, the Brain Arhiteture Projet(http : //brainarchitecture.org/) aims to extrat knowledge about human's, mouse's, mar-moset's, zebra �nh's brain arhiteture and strutural organization.2.5 Partial ConlusionDW-MRI is a non-invasive tehnique that permits us to probe in vivo the di�usion of watermoleules in the tissues of the human brain. It reveals the strutural information of thebrain. DW-MRI data orrespond to raw data that should be mathematially modelled inorder to perform useful alulations.



32 CHAPTER 2: Probing & Modelling Di�usion of WaterIn this hapter, di�erent kind of di�usion models were analysed, starting from DTI and itslimiting T2 model, ontinuing to T4 models that an represent up to three learly separatedbundles of �bers and their generalization to N-order tensors. The higher the order of model,the more detailed the obtained desription of the underlying �ber struture. Moreover, sev-eral measures of anisotropy per model were enumerated, and the di�erene between ADC,dODF and fODF pro�les was highlighted. Depending on the pathology of interest, if theorientation of the �bers is hanged or if only lesions on the di�usion appear, someone anhoose between fODF pro�les for the �rst ase, and ADC pro�les for the seond ase. Propertensor metris are useful in both ases. Finally, high levels of DW-MRI desriptions were dis-ussed, suh as �ber trats and onnetomes. Although �ber trats are di�ult to validate,non-invasive studies suh as high-resolution di�usion imaging are the most promising wayfor mapping omprehensive strutural onnetivity at the marosale. Moreover, olletivee�orts in onstruting onnetomes of the brain look very promising and auspiious.Although the next hapters are foused on voxel-based analysis, it is lear that statistialanalysis an be applied on any prede�ned �ber trats and onnetomes, by de�ning dis-tane matries between �ber trats and onnetomes. This aspet onstitutes a remarkableperspetive of the present work.



Chapter 3
Pre-proessing Steps for DW-MRI Datawith Emphasis on T4 Reorientation
In this hapter, the pre-proessing steps of the most ommonly used proedures in statistialanalysis of DW-MRI data are presented. The di�ulties of T4 reorientation are desribedand a brief overview of existing work is given in setion 3.3. In setion 3.4, two T4 deom-positions into T2s are studied, while setion 3.5 desribes two T2 reorientation shemes.Setion 3.6 presents our study on the fourth order tensor reorientation sheme proposed inthesis [134℄ and setion 3.7 ontains the experimental results. Finally, setion 3.8 is thepartial onlusion of the hapter.3.1 Pre-proessing the Raw DW-MRI DataA few standard pre-proessing steps are usually required for eah datum (in normal andpathologial groups), before the omputation of the statistis:

• Eddy Current Corretion is ruial due to the presene of eddy urrents (also knownas Fouault urrents [55℄) in the gradient oils that generate strethes and shears inthe reonstruted volumes (i.e. DW-MRI data) during the data aquisition proess.These distortions are di�erent for eah gradient diretion. Head movements and bloodpulsation are also orreted, by using a�ne registration to a referene volume (usuallythe DW-MRI image that orresponds to b = 0).
• Brain Extration aids us to approximate the borders of the brain by exludinguninformative areas suh as the skull, the eyes, the nasal and oral avities. It will helpus to gain proessing time sine we are interested only in the voxels of the brain, butalso sine the template images usually do not inlude that information.
• Calulating FA images is a usual step in the onstrution of an atlas, sine they willbe used in the estimation of the transformation between the initial patient spae and33



34 CHAPTER 3: Pre-proessing Steps for DW-MRI Data - Emphasis on T4 Reorientationthe atlas spae of the ommon template image whih often orresponds to a FA image.Of ourse, other templates (e.g. DW images) an be used too.
• The estimation of a linear/non-linear transformation between the estimated pa-tient's FA image and the template FA (e.g. MNI152, JHU-ICBM ommon spae[114, 115℄) is mandatory, in order to transform (register and reorientate via data nor-malization, see next setion 3.2) eah DW-MRI data to a ommon spae. Typially,a non-linear transformation is used to gain auray, and is initialized by a linear one.A more detailed desription of the data normalization problem will be presented insetion 3.2.
• Redution of the registration error is usually performed by smoothing the data,for example with a 3D Gaussian �lter. Sine in this ase we risk to lose importantinformation due to over-smoothing, we propose to deal with any registration errors leftat the time of omparing two individuals, by searhing for the best alignment betweentwo 3D pathes (one for eah individual) in the wide extended neighborhood of theurrent voxel. Moreover, neighboring information an be introdued (for more details,the reader is referred to the next setion 5.1.2).3.2 Data NormalizationIt is known that the anatomial struture of the human brain varies between di�erent pa-tients [156℄. In addition, the relative position of the brain between di�erent aquisitions analso be di�erent. Therefore, data normalization is a ruial and mandatory step for atlasonstrution and population omparisons. All individuals must be aligned to a ommonspae (e.g. template), usually alled atlas spae.First of all, it is important to note that the term "data normalization" does not refer onlyto the spatial registration of the data, but also to the reorientation of the di�usiondiretions in order to address properly the new underlying �ber orientation, altered by thespatial registration.Seondly, we should ontinue by answering the following question: "What kind of datashould be normalized?". Sine no standard guideline to follow exists in literature, mostof the approahes are ategorized into two kind of strategies. The �rst strategy registersspatially the raw DW-MRI images, and reorientates the gradient diretions of the magneti�eld (i.e. b-vetors) in order to �t tensor models on the normalized data. Normalizationmethods belonging to this ategory are, for example, [51, 152℄ for linear and non-lineartransformations, respetively, where the b-vetors are reorientated using the rotation partof the transformation. Moreover, Hong et al. [82℄ proposed a spatial normalization of fODFfor HARDI data, where the transformation is applied on the 3D sampling vetors of thefODF funtion. On the other hand, the seond strategy �rstly estimates a tensor model fromthe data and onsequently normalizes the tensor images, by registering serially all tensoroe�ients (onsidering eah oe�ient as a separate image), and reorientates afterwards the



3.3. INTRODUCTION TO TENSOR REORIENTATION 35embedded registered tensor models. Examples of methods belonging to the seond ategoryare [2, 13, 15, 73, 135℄. For more information about the seond ategory the reader is referredto setion 3.3.3.3 Introdution to Tensor ReorientationAs was previously mentioned, applying a spatial transformation T to the tensor images, forexample, that will onvert the tensor �eld of �gure 3.14(a) to 3.14(b), will result into inoher-ene between the main diretions of the tensors 3.17(b) and the underlying fODF 3.17(a) inthe new spae. This phenomenon ours due to the fat that tensors ontain diretional in-formation onerning the di�usion. As a result, ations should be made to �x all impendingmisalignments.Barmpoutis et al. proposed initially a reorientation method for T4 models in [15℄ and thenthey generalized the idea to HOTs in [13℄, in order to apply an estimated rotation matrixto the tensor models. Their approah is limited to linear transformations, when the wholeinformation an be aptured by an a�ne matrix. Unfortunately, unlike T2 models, a lineartransformation that ontains strething or shearing e�ets is not diretly appliable to T4models on aount of two fundamental reasons. Firstly, due to the fat that more thanone main diretion an be desribed by the T4 model, and seondly, eah diretion will bedi�erently a�eted by the transformation. In that sense, Barmpoutis et al. fail to reorientateseparately eah main diretion.On the other hand, sine gold standard methods for T2 reorientation exist in the literature,e.g. [2℄, HOT reorientation strategies that deompose the HOT model to several T2 om-ponents, suh as [15, 20℄, started to appear [73, 135℄. These approahes assume that eahof the obtained T2s will be aligned with one �ber of the HOT model. As a onsequene,the appliation of the transformation an be transferred to the level of eah T2. Inspiredby the last onept, we will fous on T4 deompositions into T2s, as an intermediate stepof T4 reorientation. The following two setions give us more details onerning the deom-positions proposed in [15, 20℄ and the T2 reorientation sheme of [2℄, that will help us tode�ne Renard's method [134℄ to reorientate T4s.3.4 T4 Deomposition ShemesIn this setion, T4 deompositions into T2s will be presented. Firstly, the Spetral Deom-position (SD) (subsetion 3.4.1) proposed in [20℄ and seondly the Hilbert Deomposition(HD) (subsetion 3.4.2) [15℄ will be desribed, both studied also by Renard et al. in [135℄,in order to apply the transformation on the obtained T2s.



36 CHAPTER 3: Pre-proessing Steps for DW-MRI Data - Emphasis on T4 Reorientation3.4.1 Spetral DeompositionBasser and Pajevi proposed in [20℄ to deompose eah fourth order tensor D, written asa symmetri 6 × 6 matrix, with the aid of eigenanalysis into six eigenvalues µi and sixeigenvetors Di
2, whih orrespond to seond order tensors without any onstraint of eitherpositivity or rank:

D =
6∑

i=1

µiD
i
2D

iT
2 . (3.1)The advantage of SD deomposition is that the obtained solution is unique. On the otherhand, six T2s representing up to six bundles of �bers (in ontrast to three desribed bythe T4 model) are more than we need, expeting that the remaining three eigenvetors willorrespond to zero eigenvalues. Experiments showed that it is possible to obtain eigenvalueslose to zero, or even negative, depiting T2s as rosses (e.g. seond olumn and third rowin �g. 3.1) due to the presene of noise, without any physial meanings in di�usion MRI,whih onstitutes an important drawbak.

Figure 3.1: Four T4 SD deompositions. The �rst two are syntheti and the last twoare seleted from real data. The �rst line displays the T4 representation and the next sixlines ontain the six T2s produed by the SD deomposition.



3.4. T4 DECOMPOSITION SCHEMES 373.4.2 Hilbert DeompositionBarmpoutis et al. applied Hilbert's theorem (Theorem 1.) on the di�usivity funtion d(g)of a fourth order tensor in [12℄.The di�usivity funtion d(g) of a T4 D an be written as:
d(g) =

3∑

i,j,k,l=1

Dijkl gi gj gk gl, (3.2)where g = [g1, g2, g3] is a vetor of the 3D unit sphere.Theorem 1. (Hilbert's theorem) Every real positive ternary quarti funtion d an beexpressed as a sum of three squared quadrati forms
d(g) =

(
vTq1

)2
+
(
vTq2

)2
+
(
vTq3

)2
= vTQQTv, (3.3)where v is a vetor of monomials [g21, g22, g23, g1g2, g1g3, g2g3], qi are 6 × 1 vetors ontainingthe oe�ients of the ith quadrati funtion that orresponds to a seond order tensor and

Q orresponds to a 6× 3 summary matrix ontaining the three qi's.Although the solution onsists of three T2s (equal to the number of �bers in T4), Ghoshet al. [63℄ notie the non-uniity of this deomposition. As we an see in Eq. 3.4, we anobtain one solution QR for eah 3× 3 rotation matrix R.
vTGv = vTQQTv = vTQRRTQTv = vTQ′Q′Tv. (3.4)

Figure 3.2: Di�erent rotation matries R an reompose the same fourth order tensorin HD. The �rst row shows the T4 representation. The three last rows display the threeresulting T2s orresponding eah to a di�erent R. The �rst olumn orresponds to the R̂that minimizes L (de�ned by the method, see setion 3.6.In fat, another reason that lari�es the right hoie of the rotation matrixR is the possibilitythat the resulting T2s in QR may not math in shape with the individual �bers in the T4



38 CHAPTER 3: Pre-proessing Steps for DW-MRI Data - Emphasis on T4 Reorientationrepresentation, showing us the requirement of a T2 rotation. Additionally, due to the abseneof positivity onstraints on T2s, they an be negative (i.e. related to negative eigenvalues),whih someone an apparently assume as a drawbak. Negative T2s are represented asrosses without any physial meaning (�g. 3.2) and T2 reorientation, as the PPD (a state-of-art method that will be desribed later), is not appliable in the presene of negative T2s.On the other hand, the e�et of negative T2s is eliminated sine the obtained signal is alwayspositive onsidering the square of T2 in QQT . Moreover, the maximum number of T2s isequal to the maximum number of �bers that the T4 model an represent. Furthermore, ifsomeone desires to eliminate the appearane of rossing (negative) T2s in the deomposition(at a minimum possible level), the de�nition of an optimization problem with a proper ostfuntion L is feasible. The minimization of L with respet toR will redue that phenomenon.For example, in �gure 3.2 the �rst olumn is related to the orret rotation matrix R.3.5 T2 Reorientation ShemesIt is known that every transformation T suh that x′ = T (x) an be loally expressed byan a�ne matrix F. If T is a�ne or rigid (represented by a matrix A), then matrix F doesnot depend on the position x (F = A). Otherwise, if T is non linear, a matrix F(x) an bede�ned at eah point x as Eq. 3.5 shows:
F(x) = I3x3 + Ju(x), (3.5)where I3x3 is the 3x3 identity matrix and Ju(x) is the Jaobian matrix of the vetorial �eldu= [ux, uy, uz]

T at point x aording to [2℄.After all the desirable seond order tensors were obtained, reorientation of eah T2 is needed.For this ase, two methods proposed by Alexander et al. [2℄ are presented. The �rstone is alled Finite Strain (subsetion 3.5.1) and the seond one Preservation of PrinipalDiretions (subsetion 3.5.2).3.5.1 Finite StrainThe Finite Strain (FS) algorithm belongs to the theory of ontinuum mehanis for distor-tion. In this approah, the original transformation T is approximated by a rotation matrix
R that is extrated from the a�ne transformation F by using the polar deomposition [80℄as follows:

F = RS = LMNT =
(
LNT

) (
NMNT

)
, (3.6)where LMNT is the singular value deomposition (SVD) of matrix F, LNT is an orthogonalmatrix and NMNT is a symmetri positive de�nite matrix. By identi�ation, the desirablerotation matrix is R = LNT .



3.6. T4 REORIENTATION SCHEME BASED ON HD AND PPD 39Obviously, FS method arries a weakness, sine information an be lost if a rotation matrixis extrated, for example, when the transformation ontains shearing e�ets, leading tosigni�ant limitations and errors [73℄, [135℄.3.5.2 Preservation of Prinipal DiretionsTo bypass the limitations of the FS sheme, Alexander et al. [2℄ proposed the method ofPreservation of Prinipal Diretions (PPD). The main idea of this approah is to apply thewhole transformation F on eah positive T2 and then normalize them to keep their initialform. Equations 3.7, 3.8 and 3.9 are the summary of the PPD steps.
n1 =

Fe1

‖Fe1‖
, (3.7)

n2 =
Fe2 −

(
nT
1Fe2

)
n1

‖Fe2 − (nT
1Fe2)n1‖

, (3.8)
n3 = n1 × n2, (3.9)where ei are the eigenvetors of eah T2, sorted in asending order aording to their eigen-values. Lastly, a general remark is that PPD is assumed to be the gold standard methodfor DTI reorientation.3.6 T4 Reorientation Sheme based on HD and PPDThere are three main steps for the T4 reorientation sheme presented in [134℄. Firstly,equation 3.3 is solved with respet to Q by using the least squares method. As we haveshown, Q is not unique. Theoretially, the optimal solution of R is derived by solving anoptimization problem parametrized by the three angles of the possible diretions of rotation.Instead of that, in order to deal with it without losing signi�ant time in solving anothertime-onsuming optimization problem, a set of 1000 randomly onstruted rotation matries

R is de�ned, in the seond step of the method. For eah matrix R we alulate L usingeq. 3.10 and the R̂ whih orresponds to the minimum L is retained.
L = min

(
λ+

λtot

,
λ−

λtot

)
, L ∈ [0, 0.5], (3.10)where λtot = (λ+ + λ−), λ+, λ− are the absolute values of the sum of the positive andnegative eigenvalues of the T2s that QR ontains, respetively. In this way, we fore tominimize the problemati ase of appearing negative and positive eigenvalues, both at thesame matrix QR.Both SD and the methods based on Hilbert's theorem, without imposing any positivityonstraints to the resulting T2s, an give tensors ategorized into three ases: a) all positive



40 CHAPTER 3: Pre-proessing Steps for DW-MRI Data - Emphasis on T4 ReorientationT2s, b) all negative T2s and ) both positive and negative T2s. In the last two ases apre-proessing step must be done. It is important to larify that the mix of both negativeand positive T2s is the problemati ase. A onnetion between the previously mentionedases and the L value is the following: L = 0 is the ase of having stritly positive or negativetensors. The greater L we get, the more lose to rosses the T2s look like (ase (), pleaserefer to �g. 3.2 for some examples).From a mathematial point of view, this means that both positive and negative eigenvaluesare obtained. Experiments showed that the last senario ours quite often, but the usage ofeq. 3.10 redues its ourrene, signi�antly (but in some ases it is not totally eliminated),so that the impat of the remaining negative eigenvalues in the deomposition is small [134℄.When the �nal solution Q̂ = QR̂ of the T2s is obtained, if the T2s are positive, thenPPD reorientation (subsetion 3.5.2) is applied to eah seond order tensor. In the pres-ene of negative T2s, the absolute value of the eigenvalues of eah T2 is used in the PPDreorientation to set the order of the prinipal diretions.Finally, the 15 oe�ients of the reorientated T4 are extrated from the reorientated matrix
G = Q̂reoQ̂

T
reo

as shown in Eq. 3.11 aording to [12℄. Values a,b,,d,e,f orrespond to freeparameters depending on the resulting matrix G and they do not a�et the 15 oe�ientsof the tensor.
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. (3.11)
3.7 Experimental ResultsRenard's T4 reorientation method [134℄ (i.e. HD+PPD) was laking of experimental re-sults on real data. In this dissertation, a further study and analysis of both syntheti andreal data was performed. Subsetion 3.7.1 ontains the syntheti data ase and desribesthe evaluation sheme that is proposed and was used in this thesis, while subsetion 3.7.2orresponds to the real data ase and the orresponding proposed evaluation shemes.3.7.1 Syntheti DataSyntheti Example 1Figure 3.4 shows the �rst example of a sine transformation applied on the x parameter of a
30× 30 template with T4s that represents two main bundles of �bers (one vertial and one



3.7. EXPERIMENTAL RESULTS 41horizontal), rossing eah other in the enter of the image. Figure 3.4(b) shows that afterapplying a spatial transformation on a tensor �eld, it is always needed to reorientate theembedded tensors in order to math properly with the underlying �ber orientation.Figures 3.5- 3.6 ontain the resulting reorientated tensor �elds for eah tested tehnique.As shown, FS reorientation fails to apply the transformation orretly, sine the extrationof the rotation transformation that F ontains produes signi�ant errors due to loss ofinformation. On the other hand, SD and Renard's method with HD, both using PPD,manage to apply the whole transformation F by produing notably less error than FS.At this point, we must de�ne an evaluation sheme in order to ompare our results (see�g. 3.3). D in �gure 3.3 orresponds to the estimated reorientated main diretions, on-struted by applying transformation matrix F to the extrated main diretions (3D vetors)of the fODF funtion of the T4 (B), with the aid of the loal maxima funtion of Dipylibrary [62℄, whih ontains several interesting tools for analysis of di�usion-MRI data. Dwill be assumed as the ground truth (GT) solution. To ontinue, D' will be the resultingnormalized tensor by registering spatially the tensor oe�ients and then reorientating theregistered T4s with one of the three ompared methods.

Figure 3.3: Evaluation sheme for syntheti data: measure the angular error (AE) be-tween D and D'.In this way, the angular error an be measured between peaks of D andD' for both horizontaland vertial bundle of �bers.In detail, �gure 3.7 shows the ground truth (GT) and the initial peaks, while �gures 3.8, 3.9ontain the extrated peaks produed from eah reorientation tehnique. Figure 3.11 showsthe horizontal angular errors, while �gure 3.12 presents their orresponding histograms.Moreover, �gure 3.13 shows the resulting vertial angular error in the FS ase.As shown in table 3.1, the HD+PPD method gives results very lose to SD+PPD, whileFS produes signi�ant errors, espeially in the vertial bundle of �bers, where initiallythere was no angular error. This happened beause FS rotates the whole tensor and noteah main diretion separately as SD+PPD and HD+PPD do.
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(a)

(b)Figure 3.4: First example: syntheti tensor �elds. 3.4(a) The template of the tensor �eldand 3.4(b) the initial registered template (no reorientation yet).
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(a)

(b)Figure 3.5: First example: syntheti tensor �elds. 3.5(a) FS and 3.5(b) SD+PPDreorientated tensor �elds. It is lear that FS gave wrong solutions in the vertial bundleof �bers.
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(a)Figure 3.6: First example: syntheti tensor �elds. 3.6(a) HD+PPD reorientated tensor�eld.
Method Avg Horizontal AE Avg Vertial AEINITIAL (no reo) 15.36 0FS [2℄ 7.58 11.82SD+PPD [2℄ 3.25 0HD+PPD [134℄ 3.59 0Table 3.1: First syntheti example: Angular errors (AE) for the ompared methods.SD+PPD and HD+PPD gave similar solutions, while FS provided solutions with largerAE than the others.
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(a) Ground truth

(b) Initial PeaksFigure 3.7: First example: syntheti tensor's peaks. 3.7(a) GT and 3.7(b) initial peaks.
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(a) FS Peaks

(b) SD+PPD PeaksFigure 3.8: First example: syntheti tensor's peaks. 3.8(a) FS and SD+PPD resultingpeaks.
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(a) HD+PPD PeaksFigure 3.9: First example: syntheti tensor's peaks. 3.9(a) HD+PPD resulting peaks.



48 CHAPTER 3: Pre-proessing Steps for DW-MRI Data - Emphasis on T4 ReorientationAnother way to ompare visually the methods is to determine �ber trats on them. Fig-ure 3.10 ontains all orresponding tratographies, for the initial spatially registered T4�elds and the three reorientated �elds. As we an notie, SD+PPD and HD+PPD gaveidential trats, while FS has problems espeially in the vertial bundle of �bers.

(a) Initial (b) FS

() SD+PPD (d) HD+PPDFigure 3.10: First example: syntheti tensor's tratographies. As it is seen, FS produedwrong trats espeially in the vertial bundle of �bers, while SD+PPD and HD+PPDgive equivalent trats.
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(a) Initial Horizontal AE (b) FS Horizontal AE

() SD+PPD Horizontal AE (d) HD+PPD Horizontal AEFigure 3.11: First example: 3.11(a)- 3.11(d): the horizontal angular errors (AE).SD+PPD and HD+PPD perform better than FS.
(a) Initial Horiz. AE Histogram (b) FS Horizontal AE Histogram
() SD+PPD Horiz. AE Hist. (d) HD+PPD Horiz. AE Hist.Figure 3.12: First example: 3.12(a)- 3.12(d): the orresponding histograms of the hor-izontal AE presented in �gure 3.11. Although, all methods manage to redue the highinitial horizontal error, FS did not sueed to reah the performanes of SD+PPD andHD+PPD.
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(a) FS Vertial AE (b) FS Vertial AE HistogramFigure 3.13: First example: resulting vertial angular error (AE) (on the left) and theorresponding histogram (on the right) in the FS ase.Syntheti Example 2Another testing senario is onstruted by inreasing the initial average angular error in thehorizontal bundle of �bers in the �rst example (e.g. inrease the angle of the sine transfor-mation). This example highlights interesting limitations of the T4 model in representing tworossing �bers when their main diretions are very lose to eah other. Figure 3.14 displaysthe initial and �gures 3.15, 3.16 the resulting tensor �elds. Figures 3.17- 3.19 ontain theextrated peaks produed from eah tehnique and �gure 3.20 their tratographies. Ob-serving the tratographies, it seems that FS's horizontal trats are better than SD+PPDand HD+PPD. In fat, the two last methods transformed a few tensors in the enter fromrosses to single �bers and as a onsequene, the horizontal trats are interrupted.On the other hand, �gures 3.21 and 3.23 show the horizontal and the vertial AE of eahase, while �gure 3.22 and 3.24 orrespond to the histograms of the horizontal and vertialAE of the seond syntheti example, respetively. SD+PPD and HD+PPD managed toredued signi�antly the initial angular errors and gave idential results. On the ontrary,FS produed vertial AE, but also did not manage to redue a lot the horizontal AE, sineFS does not apply the whole transformation, but uses only the rotation part of it.To ontinue our previous disussion, a areful observation of �gures 3.18(b) and 3.19 on-ludes to the existene of areas where instead of having two main diretions we obtained onlyone (left part of the enter view of the image). Figure 3.25 shows the evolution of the trans-formation in the enter of the tensor �eld that ontains tensors representing two rossing�bers. By plotting the fODFs of the three T4s on a 2D grid onstruted by the parametersof the sampling sheme of the 3D unit hemisphere (the elevation and the azimuth, denotedas "theta" and "phi", respetively, in the graphs), with 0.5 degrees of sampling step, it islear that as we move from the right part of the tensor �eld to the left, (and from the topto the bottom in this �gure) the two initial peaks are redued to one.Despite the errors beause of the model's limitation, table 3.2 shows thatHD+PPDmethodis equivalent with SD+PPD and both are signi�antly better than FS.
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(a)

(b)Figure 3.14: Seond example: Syntheti tensor �elds. 3.14(a) The template of the tensor�eld and 3.14(b) the initial registered template (no reorientation yet).
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(a)

(b)Figure 3.15: Seond example: Syntheti tensor �elds. 3.15(a) FS and 3.15(b) SD+PPDreorientated tensor �elds. FS as it was expeted had still problems in the vertial bundleof �bers.
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(a)Figure 3.16: Seond example: Syntheti tensor �elds. 3.16(a) HD+PPD reorientatedtensor �eld.
Method Avg Horizontal AE Avg Vertial AEINITIAL (no reo) 31.95 0FS [2℄ 14.62 15.66SD+PPD [2℄ 3.67 4.52e−06HD+PPD [134℄ 3.67 4.52e−06Table 3.2: Seond syntheti example: Angular errors (AE) for the ompared methods.
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(a) Ground truth

(b) Initial PeaksFigure 3.17: Seond example: Syntheti tensor's peaks. 3.17(a) GT and 3.17(b) initialpeaks.
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(a) FS Peaks

(b) SD+PPD PeaksFigure 3.18: Seond example: Syntheti tensor's peaks. 3.18(a) FS and 3.18(b)SD+PPD resulting peaks. In the SD+PPD ase, it is notieable that a few T4s inthe enter produed one prinipal diretion instead of two, due to the T4 limitation todesribe well very lose to eah other �bers.
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(a) HD+PPD PeaksFigure 3.19: Seond example: Syntheti tensor's peaks. HD+PPD resulting peaks.Similarly to the SD+PPD ase, HD+PPD highlighted the T4 limitation to present welltwo very lose to eah other �bers.
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(a) Initial (b) FS

() SD+PPD (d) HD+PPDFigure 3.20: Seond example: Syntheti tensor's tratographies. SD+PPD andHD+PPD give similar results. Although FS horizontal trats look better than SD+PPDand HD+PPD, a areful observation of the angular errors signify that FS is not lose tothe right answer. SD+PPD and HD+PPD horizontal trats appear to be disontinuousas a result of getting one lobe (i.e. one prinipal diretion of di�usion), instead of two,sine the two initial diretions got very lose after the reorientation for some tensors inthe enter. These resulting single diretions are used in vertial trats. In addition, FSvertial trats are signi�antly di�erent than the orret answer.
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(a) Initial Horizontal AE (b) FS Horizontal AE

() SD+PPD Horizontal AE (d) HD+PPD Horizontal AEFigure 3.21: Seond example: 3.21(a) 3.21(d): horizontal angular errors (AE).

(a) Initial Horiz. AE Histogram (b) FS Horizontal AE Histogram
() SD+PPD Horiz. AE Hist. (d) HD+PPD Horiz. AE Hist.Figure 3.22: Seond example: 3.22(a)- 3.22(d): the orresponding histograms of thehorizontal AE presented in �gure 3.21.
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(a) Initial Vertial AE (b) FS Vertial AE

() SD+PPD Vertial AE (d) HD+PPD Vertial AEFigure 3.23: Seond example: 3.23(a)- 3.23(d): the vertial angular errors (AE).

(a) Initial Vertial AE Histogram (b) FS Vertial AE Histogram
() SD+PPD Vertial AE Hist. (d) HD+PPD Vertial AE Hist.Figure 3.24: Seond example: 3.24(a)- 3.24(d): the orresponding histograms of thevertial AE presented in �gure 3.23.
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Figure 3.25: In�uene of the transformation in areas that ontain two rossing �bers, inthe seond syntheti example. In the left part, the ground truth and the resulting peaksare displayed, while in the right part the fODFs, estimated in the unit hemisphere of eahtensor, highlight the limitation of the T4 model to represent two bundle of �bers with smallangular di�erene, in detail.



3.7. EXPERIMENTAL RESULTS 613.7.2 Real DataEvaluation on real data was performed by using a HARDI dataset of a healthy person. Thesize of the images is 128×128×41 for a resolution of 1.8×1.8×3.5mm3 and 30 non olineargradient diretions (sanned twie) were used, while b value is equal to 1000s/mm2.Figures 3.27, 3.28 show the reorientated T4 �elds for a seleted 20 × 20 path ontainingrossing �bers. Looking at the fODF glyphs, we an laim that SD+PPD and HD+PPDprodued slightly di�erent results, while on the other hand, FS's solution has many dif-ferenes, as a onsequene of extrating and using only the rotation part of the estimatednon-linear transformation F . In fat, the FS reorientated T4s are very similar to the reg-istered T4s (but not reorientated), meaning that probably the non-linear transformationontains shearing or saling e�ets that annot be inluded in the rotation part that FSuses.Figure 3.29 shows the orresponding tratographies in a seleted ROI (inluding the same
20×20 path along with 3 more frames in the z-axis). SD+PPD and HD+PPD methodsmanaged to produe more dense tratographies than FS, espeially in the bottom part ofthe images. Moreover, FS tratography seems not to vary signi�antly from the initialtratography on the registered data with no reorientation step.In ontrast to the syntheti ases where we an alulate the real orientation (GT) of themain diretions (given the number of them and the transformation matrix F ), we annotwork similarly in the real data ase. For that reason, another evaluation sheme is proposedin �gure 3.26. In order to use the new evaluation proess, a proper distane must be seletedas an error metri. In this study, the approximation of the distane de�ned in eq. 2.30,between two fODF funtions is seleted (eq. 2.31).At this point that the distane is seleted, let us desribe the urrent evaluation strategy.Firstly, we will measure the registration error between points A and A' of �gure 3.26(a).Point A orresponds to the initial tensor �elds, without performing either registration orreorientation. Point A' is onstruted by applying forward and then inverse registration onthe tensor oe�ients. As a result, no reorientation error is inluded in tehnique 3.26(a).Equivalently, we will alulate the total normalization error (registration + reorientation)of eah of the three methods via the strategy of �gure 3.26(b). Of ourse, it is possible tomeasure the reorientation error diretly, without �rstly alulating the registration error.Figure 3.30 enumerates the distanes measured in frame 33 (in z-axis) of the DW-MRIdata. Values of −10 in the distane images orrespond to voxels outside the WM area (sothat those voxels an be marked and exluded from the alulation of the average distanespresented in tables 3.3, 3.4). The WM an be loated using a threshold in the FA images(as in our ase), or by using a template. It is observed that the majority of errors are loseto zero (very low), while areas with larger errors are loated in the same parts of the brainfor all the three ompared methods. Figure 3.31 depits the orresponding histograms ofthe distanes presented in �gure 3.30 (z-frame 33).
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(a)
(b)Figure 3.26: Evaluation shemes for real data: measure the error between A andA'. 3.26(a) Registration error and 3.26(b) Registration + Reorientation error.Observing the order of errors (10−1) in tables 3.3 (of z-frame 33), 3.4 (of all z-frames) weunderstand that these errors are very low in omparison to the higher distanes presented inthe simulation test of �gure 2.16 (10− 102), onluding that the obtained solutions ontaina very small amount of error.Theoretially, we would expet to notie no errors in the FS method, sine the shape ofthe tensors is intat, but in pratie we obtained errors whih an be justi�ed due to thepresene of registration errors and the estimation of the rotation part of the transformationthat FS uses.On the other hand, heking only the average errors an potentially hide any sparse largererrors. For example, maximum errors in �g. 3.30 are lose to 8, similarly to the bottompart of �g. 2.16. The appearane of suh errors does not ensure us that they are as large asto produe false biomarker detetions (or in the ontrary to over the really di�erenes) instatistial analysis. For that reason, the registration and reorientation of tensor oe�ientsshould be arefully tested.Method Avg Distane (frame 33)INITIAL (no reo) 0.02FS [2℄ 0.51SD+PPD [2℄ 0.57HD+PPD [134℄ 0.6Table 3.3: Distanes of the ompared methods in the real data ase of frame 33. Thealulated errors are signi�antly low. FS errors should not be exepted, however theyexists due to the presene of registration errors and the approximated rotation part of thetransformation.



3.7. EXPERIMENTAL RESULTS 63Method Avg Distane (all frames)INITIAL (no reo) 0.02FS [2℄ 0.70SD+PPD [2℄ 0.75HD+PPD [134℄ 0.77Table 3.4: Distanes of the ompared methods in the whole real data. The alulatederrors are signi�antly low.

(a) reg. T4s NO reo. (frame 46) (b) FS (frame 46)

() SD+PPD (frame 46) (d) HD+PPD (frame 46)Figure 3.27: Resulting tensor �elds (in a path of 20×20 size) of the ompared methods ina ROI with both single and rossing �bers. The fODF glyphs are plotted on the estimatedFA images obtained by DTI analysis with the FSL toolkit [89℄.
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(a) FS (frame 46) (b) SD+PPD (frame 46) () HD+PPD (frame 46)Figure 3.28: Zoom in partiular areas of �gure 3.27 in order to loate the di�erenes.It seems that all the methods di�er (more or less) from eah other. SD+PPD andHD+PPD are more similar than FS whih di�ers signi�antly in many areas.
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(a) reg. T4s NO reo. Tratography (frames 44-47) (b) FS Tratography (frames 44-47)

() SD+PPD Tratography (frames 44-47) (d) HD+PPD Tratography (frames 44-47)Figure 3.29: Resulting tratographies of the ompared methods in a ROI with both singleand rossing �bers.
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(a) Registration Error (b) FS Error

() SD+PPD Error (d) HD+PPD ErrorFigure 3.30: Distanes of frame 33 (size of image: 128 × 128). Note: maximum value ofsub�gure 3.30(a) equals to 0.48.
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(a) Histogram of Registration Error (b) Histogram of FS Error

() Histogram of SD+PPD Error (d) Histogram of HD+PPD ErrorFigure 3.31: Histograms of the distanes of frame 33.
3.8 Partial ConlusionIn this hapter, several methods for T4 reorientation are studied, disussed and evaluatedin both syntheti and real data. Moreover, the performane of HD+PPD (the partiularmethod of our interest) was further analysed, espeially due to the lak of testing real asesin Renard's thesis [134℄. HD+PPD is ompetitive with respet to SD+PPD method andbetter than FS whih uses only the rotation part of the transformation.Although in this hapter T4 normalizations were studied, afterwards DWI normalizationwas hosen to be used in the proposed statistial analyses for two main reasons. Firstly, aquite-promising method for non-linear DWI normalization was proposed in 2013. Seondly,the reorientation of a rossing T4 an potentially redue the number of the main diretionsof di�usion, resulting into totally di�erent �ber struture than the underlying one (as waspreviously shown, see �g. 3.25).As part of future work, someone ould try to spatially register the raw DWI data (instead ofregistering the tensor images), then �t tensor models on the registered DWI data and �nally



68 CHAPTER 3: Pre-proessing Steps for DW-MRI Data - Emphasis on T4 Reorientationreorientate the tensor models with FS, SD+PPD and HD+PPD (instead of rotatingthe b-vetors as the DWI normalization is performed in [51, 152℄ and then �tting tensormodels). In this way, we avoid tensor image registration, whih is more risky than DWIregistration (errors in tensor oe�ients an a�et many more diretions of di�usion thanerrors in DWI images). Moreover, it is e�ient to use the whole transformation matrix Fin order to reorientate the tensors, instead of using the rotation part of F , as it is the asefor FS (tensor reorientation) and DWI normalization [51, 152℄.In the next hapter, the onstrution of statistial atlases for the ase of DW-MRI data isintrodued, along with some interesting statistial models appliable to our ase that willbe used to ompare their performane against the proposed statistial approahes.



Chapter 4
DW-MRI Data Statistial Analysis - aReview
Generally in medial imaging, the term "atlas" (i.e. olletion of maps) refers to an anatomi-al 3D representation of an area/organ (e.g. brain). An atlas is onstruted by aumulatingdata of one or more subjets in a ommon oordinate system [145℄. Moreover, a map an beuseful, as a standard-spae template, in the alignment of many subjets/measurements onthe same spae, for example in order to ompare individuals/populations statistially [145℄.Of ourse, aligning di�erent subjets to a ommon spae requires a mandatory and spei�step of reorientation depending on the type of the data (e.g. raw DWI data, tensors et. seesetion 3.2). In DW-MRI, an atlas an ontain information onerning the brain's struture(e.g. FA template, �ber trats templates et., suh as in the JHU atlas [114, 115℄).As the number of onsidered patients is inreasing, statistial atlases may be devised byextrating patterns haraterizing a partiular property/disease et. [145℄. For example,these patterns an be alulated given a set of individual DW-MRI data that an be splitinto two groups, the normal population (or ontrol group) and the abnormal population (orpathologial or testing group) that ontains patients of a spei� disease (ommon betweenall abnormal individuals). Statistial atlases apture the variability of spei� patterns ineah population and are useful to determine biomarkers. For the rest of the dissertationwe will refer to the term "probabilisti atlas" simply as "atlas".In the ase where the number of individuals is large enough to ompletely apture thevariability of both populations, then the projet of onstruting atlases related to a disease,by measuring the variability of the groups, is linked to the biomarker extration problem.This is addressed through population versus population omparisons. On the otherhand, when the data are sparse (often happening in the ase of the abnormal population)or when there is no ommon disease patterns between patients, it is hard (or meaningless)to onstrut the disease's atlas, but it is possible to ompare the state of eah abnormalindividual to the normal population via an individual versus normal population test.69



70 CHAPTER 4: DW-MRI Data Statistial Analysis - a Review4.1 Categories of DW-MRI Data AnalysisVoxels (or region of voxels in the brain) whih are a�eted by the disease and appear signi�-antly di�erent (e.g. lesions) in omparison to the normal population are alled biomarkers.Those biomarkers are usually determined by performing populations omparisons (normalversus abnormal population). A olletion of suh biomarkers o�ers a powerful tool to thephysiians, whih an aid them to extrat diagnosti and prognosti fators of predisposi-tion of the disorder (not only in already known regions of lesions, but also in potential newregions) so that for example patient's treatment an preede the expansion of the in�am-mation. In addition, they an be useful to monitor the patient's ondition.Populations omparisons (and individual against normal population omparisons) an beperformed either by voxel-based, or by ROI-based, or by trat-based analysis, similarly asmentioned in [92℄ for the DTI ase. Historially, analysis based on region of interest(ROI), suh as anatomial volumes (e.g. tapetum, hippoampus et.), or geometrial shapes(e.g. retangular, ellipsoidal et.) were �rst developed. One advantage of ROI-based analysisis the sensitivity to slight variations (espeially for small ROIs) [92℄. Ideally, it is appliablewhen the study is related to partiular areas of the brain that an be de�ned easily andwhen there is no limit to the omputation time. On the ontrary, it is typially a�eted byinter-observer variability [54, 107, 136℄, whih an be redued by a manual positioning of theROIs of a single person, but annot totally be eliminated [136℄. Nowadays, the existene oftemplates with ROIs assists us to redue more that e�et. One the ROIs are de�ned, we analulate the standard deviation and the mean of our measurements (e.g. FA images) or wean perform histogram analysis. In general, due to the fat that large ROIs tend to reduethe standard deviation, ROI analysis is proposed for the detetion of subtle di�erenes inwell-de�ned small ROIs [92℄. More examples an be found in the referenes of Park et al.[125℄.Voxel-based analysis (VB) was originally proposed to ompare the mean grey mattervolume of two populations by Ashburner and Friston [7℄ in 2000. It is based on spatiallyregistering all individual datasets into a ommon template, in order to alulate statistisvoxel-by-voxel in an unbiased way. Aording to Park et al. [125℄, VB analysis is moreexploratory and suitable for identifying new areas with lesions without any prior knowledgeof their existene. Foong et al. [58℄ in 2002 and Buhel et al. [32℄ in 2004 applied VBanalysis on DTI. The main advantage of VB is that it does not require any prior knowledgefor the loalization of the disease, sine spei� areas with signi�ant di�erenes will beautomatially extrated [92℄. On the other hand, the seletion of a ommon template andany registration errors left may a�et the quality of the results.Trat-based analysis (TB) does not explore the whole human brain, but it is assistedwith user pre-de�ned trats to loate voxels with lesions. Pagani et al. in 2005 [123℄ usedDi�usion Tensor MRI tratography to onstrut a probability map for the pyramidal tratby measuring the hanges in MD and FA images in patients with early multiple slerosis(MS). In the same year, Gong et al. [70℄ identi�ed the ingulum via DTI tratography. One



4.2. RECENT RELATED WORK 71year later, Lin et al. [100℄ loated the pyramidal trats in order to perform quantitativeanalysis based on DTI measurements (suh as FA images, primary di�usivity, or transversedi�usivity based on the eigenanalysis of the tensor model) for neuromyelitis optia (NMO)disease. Jones et al. presented in [93℄ that registering the individual data in a ommontemplate an be avoided. On the ontrary, brain atrophy an possibly e�et the results [91℄.4.2 Reent Related WorkAtlases an be lassi�ed into two groups: a) salar-based statistial atlases and b) statistialatlases on multidimensional data.Methods belonging to the �rst ategory exploit the information provided by salar mea-surements, suh as frational anisotropy (FA) and apparent di�usion oe�ient (ADC) asemployed in [53℄, or possibly mean di�usivity (MD), relative anisotropy (RA) [16℄, salarsderived from T2 models, and possibly generalized anisotropy (GA) [122℄ or generalized fra-tional anisotropy (GFA) [159℄ for HOTs. Moreover, trat-based spatial statistis (TBSS) wasproposed in 2006 [144℄ and is available in FSL [89℄. TBSS alulates voxelwise statistis onFA aross the estimated skeletons (trats). Furthermore, working in the same diretion byproessing salar measurements, Ghosh et al. in 2012 [65℄, inspired by the work of [20, 22℄,expanded the proposed invariants of [61℄ to T2 and T4 models.In the seond group of statistial atlases, multidimensional informative models, more om-plex than salar images, were taken into onsideration. For instane, in 2005, Daurignaet al. [43℄ designed disease-spei� probabilisti atlases in order to study aloholism andto identify patterns of funtional and strutural lesions due to aloholism using MRI andDTI. In the same year, Shwartzman et al. [139℄ proposed a method for voxelwise analysisalulating F statistis to address the problem of populations omparison, by studying theprinipal eigenvetor of the T2 model modelled by the bipolar Watson distribution on theunit sphere [103℄. Their statistial test veri�es whether both populations have the samemean diretion (derived from the bipolar Watson distribution). False disovery rate (FDR)was used to overome the multiple omparisons problem and to orret the false positivedetetions. In 2008, Shwartzman et al. [140℄ extended their previously mentioned idea byalulating T statistis and assuming global parametrization of their statistial test (om-mon for all the voxels). Spatial smoothing was used to redue loally the noise variane andinrease the e�etiveness of FDR analysis.In 2007, Whither et al. [174℄ proposed a set of non-parametri and parametri multivariatetests for populations omparisons that ould bene�t from the whole information inluded inT2 models. In this way, they have shown that proessing T2s using Log-Eulidean metrisould extrat more di�erenes than working with salar images (e.g. FA). In addition, Com-mowik et al. in 2008 [38℄ proposed a onept for statistial omparison of individual againstnormal population in MS disease relying on T2 models, too. The authors presented howto ompute an unbiased atlas of T2s derived from the set of normal individuals, through



72 CHAPTER 4: DW-MRI Data Statistial Analysis - a ReviewDTI normalization and �nite strain T2 reorientation (FS - see setion 3.5.1) followed bytensor resampling and averaging using Log-Eulidean metris in order to obtain the meanT2 healthy template. Finally, they ompared statistially eah abnormal individual to themean normal template, by alulating z-sores (i.e. Mahalanobis distanes) and their or-responding p-values. In 2013, Osborne et al. [120℄ presented a non-parametri bootstrapmethod for two-sample tests applied to DTI on homogeneous Riemannian manifolds. Os-borne et al. tested the equality of the generalized Frobenious means of the two populationson the spae of symmetri positive matries (e.g. T2 matrix).Moreover, multivariate regression models based on T2 oe�ients [178℄ and general linearmodels on T2 oe�ients [28℄ (both inluding ovariates, suh as age and gender) have beenproposed reently (2009 and 2014, respetively). In 2014, Naylor et al. [116℄ proposed twodi�erent onepts for voxelwise analysis of multiple MRI modalities. Their �rst method isbased on �tting multiple univariate linear regression models (one for eah modality) and theseond approah is desribed by a single multivariate linear regression model (without as-suming independene of the modalities). The multivariate linear regression model appearedto be more e�ient than �tting multiple univariate linear regression models.In early 2015, Caruyer and Verma [33℄ proposed to study the oe�ients of the SH repre-sentation of ADC pro�les based on HARDI data by omputing 12 (for rank-4 SHs) or 25(for rank-6 SHs) rotationally invariant markers in order to better desribe the WM of thebrain. Although all these invariants are informative, it is hard to physially explain them.Furthermore, in 2011 Ingalhalikar et al. [86℄ proposed a high-dimensional non-linear SVMlassi�ation methodology for regional features extrated from DTI data. This approah anbe also used to assign a probabilisti abnormality sore per patient (i.e. individual vs normalpopulation). Appliation to autism spetrum disorder (ASD) was presented. In the sameyear, Bloy et al. [25℄ extended the idea of [86℄, by using the following variations. Firstly,di�usion ODF (dODF) models [158℄ were de�ned (via spherial deonvolution of the DW-MRI data, without any prior tensor model, or SH et.), instead of DTI. For eah individual,several ROIs with homogeneous WM struture were determined and orientation invariantfeatures of eah ROI's average fODF are inluded into a feature vetor. To ontinue, PCAis used to redue linearly the dimension of the data and a linear SVM lassi�er is trainedon the resulting oe�ients. Lastly, the trained SVM lassi�er alulates a probabilistisore per testing individual referring to its likelihood given eah group. In addition, in 2012Bloy et al. [26℄ used again the dODF model of [158℄ in order to onstrut a WM dODFatlas that onsists of automatially lustered regions aording to the homogeneity of theembedded �ber struture and orientation. In the same year, Grigis et al. [72℄ presentedtheir longitudinal study on NMO and MS diseases, formulated as population omparisons,by deteting statistial di�erenes in DWI signals using a multivariate statistial test basedon bootstrap tehnique. In Marh 2015, Commowik et al. [39℄ generalized and extendedtheir idea presented in [38℄, for voxelwise individual versus normal population statistialanalysis applied to MS disease, by altering the DTI model (limited to desribe single andnot rossing �bers) with the orientation distribution funtion (ODF) produed by any HOTmodel. Although, statistial omparisons of any given abnormal ODF (formed as a vetor)



4.3. APPLICATION OF A SUITABLE TEST 73against any/all normal ODFs are possible and straightforward, they hose to inrease therobustness of the method by performing prinipal omponent analysis (PCA), in order totreat any artifat or registration error left in the ODF values, prior to statistial analysis.Another innovative idea is inluded in methods whih determine the manifold of theirdata and perform geodesi analysis (in non-Eulidean or Riemannian spaes), suh as[56, 109, 129℄ for tensor models or [49, 50, 67, 68℄ for ODF pro�les (derived from HARDIdata) represented as PDF funtions de�ned on the unit sphere without any need of �ttingtensor models, or SHs et. In this diretion, Verma et al. [164, 165℄ performed voxelwiseT2 statistial analysis, �rstly by introduing the onept of estimating the non-linear sub-manifold that 2nd order tensors lie on (via dimensionality redution - Isomap [154℄ and theestimated geodesi T2 distanes), and seondly, by applying multivariate statistis (suh as,the Hotelling T 2 test) on the estimated Eulidean submanifold. An analytial desriptionof this method is presented in subsetion 4.3.1.Finally, populations omparisons an be set by solving lassi�ation problems (with twolasses, i.e. the normal lass and the abnormal lass, or more). Training a lassi�er andthen evaluating its performane by measuring the generalization error (GE) in unseen dataan provide evidene if the two populations are similar or not. A variety of lassi�ers an befound in the literature suh as linear (e.g. pereptron), quadrati, non-linear (e.g. SVM),non-parametri or parametri statistial lassi�ers (e.g. k-NN, Deision Trees, RandomForests, Bayesian). For the purposes of this dissertation, Random Forest Classi�ers will bestudied and tested (for more information see subsetions 4.3.3, 6.3.4).To sum up, it seems that tensor model analysis is more e�ient than working with salarimages. Moreover, reduing the dimension of the working spae is really interesting andassists to alulate statistis robustly. To the best of our knowledge, statistial analysisbased on T4 models do not exist in literature. As a result, in this study we will fous onvoxel-based statistial atlases that enapsulate and ompare the information provided byT4 tensor models.4.3 Appliation of a Suitable TestTo begin with, prior to the seletion of a suitable test, we should speify the problem'stype. Is it the "populations omparison" problem, or the "individual versus normal group"approah in order to ompare pro�les (ODF/di�usion)?Aording to Verma et al. [165℄, lesions indued by white matter disorders are better ap-tured by statistial population omparisons. Given two quite large groups of healthy andpathologial individuals, we an onstrut ontrol patterns on whih we an measure thevariability of any pathologial population.In this setion, three seleted approahes are further disussed and presented that will beneeded in hapter 6 to be ompared with the proposed method of hapter 5. The �rst one



74 CHAPTER 4: DW-MRI Data Statistial Analysis - a Reviewan be found in the literature, the seond is synthesized by the ombination of two separatedmethods and the third one is onstruted by using the theory of Random Forests.4.3.1 Representing and Analyzing T2s in a Redued SpaeVerma et al. [165℄ proposed their method for voxel-based analysis. They noted that whenworking with di�usion tensors (T2s), whih lie on a non-linear submanifold of the spae R6,it is not safe to apply diretly any standard statistial model, due to the fat that T2s do notfollow multivariate Gaussian distributions in R
6. In addition, most of DTI statistial analysisat that time was based on salar (e.g. FA images) or vetorial di�usivity measurements(e.g. prinipal di�usivity) that require prior knowledge of the pathologially a�eted areas(whih is not always available) and they do not enlose any information about the embeddedsubmanifold struture or they do not introdue any geodesi distane metris. A lear visualomparison between the Eulidean distane between two T2s (i.e. green dotted line) andthe underlying geodesi distane (i.e. red urve) is shown in �gure 4.1.

Figure 4.1: The hoie of a proper geodesi distane is mandatory. Eah ellipsoid or-responds to a T2 loated in a non-linear submanifold in R
6. The green dotted line shows theEulidean distane between T2s, whih does not orrespond to the ideal geodesi distane(denoted by the red line) whih is alulated throughout the T2 submanifold. Imageobtained by [165℄.For all previously mentioned reasons, Verma et al. [165℄ hose to estimate a dense reduedsubspae of the initial sparse T2 spae, by using proper geodesi distanes between T2 tensormodels, in order to apply standard multivariate statistis and measure the mean and thevariane of the populations in a redued dimensional spae.Determination of the redued spae using IsomapVerma et al. [165℄ hose to determine the redued spae by using Isomap [154℄, a non-lineardimensionality redution tehnique whih ombines the well-known multidimensional saling(MDS) method [96℄ with graph theory, and partiularly shortest paths alulations basedon geodesi distanes. In this ase, Isomap alulates an inter-point distane matrix for allouples of individuals via a graph representation and a shortest path alulation (via theFloyd-Warshall algorithm [40℄) whih inludes the k neighbors' tensor Riemannian distanes(e.g. tensor metri appeared in [56℄) for eah ouple of individuals. One the distane matrixis alulated, MDS is used to determine the redued spae in a way that distanes between



4.3. APPLICATION OF A SUITABLE TEST 75points in the redued spae mimi the orresponding distanes in the initial spae. Finally,by plotting the residual variane for di�erent values of dimension (d ≤ 6), the resultingL-shaped elbow plot onluded that working in the redued dimension of 2 is safe for theT2 ase.Hotelling T 2 statistial testAt this moment that all individual points (normal and abnormal) are mapped into the re-dued Eulidean spae, the Hotelling T 2 test an be applied to ompare the means of thetwo groups (sine groups' ovarianes are assumed to be equal). For further informationabout that spei� statistial test, the reader is referred to Appendix A. Although alulat-ing statistis in a redued dense spae an be signi�antly helpful, omparing the means oftwo Gaussian distributions an hide important information or an lead to signi�ant errorsthat ould probably be avoided if someone ould study the whole embedded informationderived by assuming a more omplex model per group. We will set some omparisons in thisdiretion in the hapters with the experimental results that will be presented later.4.3.2 Analyzing the Inter-point Distane Matrix in High Dimen-sional SpaeHotelling T 2 test and many parametri statistial tests are based on strong assumptions fordata modelling. For example, Hotelling T 2 test works properly only for Gaussian distributeddata with the same ovariane for both groups and uses the loation (i.e. mean) informa-tion to ompare the two groups. To irumvent these restritive assumptions, multivariatenonparametri tests have been proposed in the literature (see the review [118℄). However,many parametri and nonparametri tests may not be used when the dimension of data isgreater than their number, or may show poor performane for high dimensional data.One of the most important steps in populations omparison is the alulation of an inter-point distane matrix ∆ whih ontains the distanes between all possible ombinations ofindividual data (M normal and N abnormal). As a result, ∆ orresponds to a symmetrimatrix of size (M + N) × (M + N) with zero diagonal elements. Working with tensors(as is the ase in this dissertation), the omputation of eah non-diagonal element an beaomplished by using one of the tensor metris presented in setion 2.3.4, for instaneequation 2.30 whih is de�ned independently of the order of the tensor. A well-de�ned andsuitable tensor metri yields matrix ∆ with signi�ant information about the separabilitybetween the two populations.Statisti of interestWorking in this diretion, Biswas and Ghosh [23℄ proposed in 2014 a nonparametri two-sample test, appliable to high dimensional data and formed on any type of inter-point



76 CHAPTER 4: DW-MRI Data Statistial Analysis - a Reviewdistanes. Moreover, a variety of other statistial tests based on inter-point distanes anbe found also in [23℄.Given two populations related to two distributions F , G with {x1, . . . ,xM} ∼ F and
{y1, . . . ,yN} ∼ G i.i.d. observations of eah distribution, Biswas and Ghosh proposedto rejet the Null Hypothesis (i.e. F = G) for high values of the following statisti:

TM,N = ‖µ̂∆F
− µ̂∆G

‖2, (4.1)where ‖.‖ is the Eulidean norm and µ̂∆i
, i ∈ {F,G} represent 2D vetors de�ned as follows:

µ̂∆F
= [µ̂FF, µ̂FG] , µ̂∆G

= [µ̂FG, µ̂GG] , (4.2)embedding the following oe�ients:
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‖xi − yj‖∆. (4.3)The symboli norm ‖.‖∆ in equations 4.3 orresponds to the inter-point distane elements ofmatrix ∆. Qualitatively, µ̂ii, i ∈ {F,G} represents the average inter-point distane betweenall ouples of points in the same group i, whereas µ̂FG represents the average inter-pointdistane between all ouples of points belonging to di�erent groups.Biswas' and Ghosh's statistial test is rotation invariant, free of distributional assumptions,simple and omputationally e�ient [23℄. It is appliable to any high dimensional datawhih provide a distane funtion. In high dimensional well-posed (i.e. the number ofthe measurements is equal or greater than the number of unknowns) problems, this testoutperforms other tests for the loation, the sale and the sale and loation problems.Furthermore, it performs well in low number of samples, even in ill-posed problems, wheremany methods perform poorly and pratially annot be used. Finally, it an be generalizedfor multi-sample tests (see [23℄).Proposed extension: Highest Probability Density (HPD) interval of the embed-ded p-valueAt this point that the statisti of interest is seleted, we propose to estimate the p-value(assoiated to the statisti), along with its orresponding HPD interval, using a permuta-tion test, espeially designed for distane matries, proposed by Reiss et al. in 2010 [133℄.Working with the same onept of label shu�ing, Reiss et al. proposed the following wayto permute the entries of a given inter-point distane ∆:
∆ρ = Eρ∆Eρ

T , (4.4)



4.3. APPLICATION OF A SUITABLE TEST 77where Eρ =
(
eρ(1) . . . eρ(M+N)

)T , orresponding to a (M +N)× (M +N) matrix ontainingthe permutation binary vetors of permutation funtion ρ(). More preisely, ei is de�nedas the (M+N)-dimensional vetor with 1 in the i-th element and 0 in the other elements.Therefore, a new statisti T (π)
M,N an be alulated for eah permutation iteration π.Furthermore, given the real statisti T (R)

M,N (orresponding to the initial distane matrix ∆)and a set of Π statistis T
(π)
M,N , 1 6 π 6 Π resulting from the permutation test, we anapproximate the p-value ν⋆ of getting statistis equal or more extreme than the refereneone (the e�etive statisti) through randomly sampling the distribution of the statisti.
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= ν̂, (4.5)where p(T (π)

M,N = x
) is the distribution of T (π)

M,N under the hypothesis of indisernible popu-lations.In addition, the redibility interval of the p-value ν⋆ will be determined as follows. A setof binary values Q = {q1, . . . , qΠ} is olleted by omparing the referene statisti T
(R)
M,Nwith eah T

(π)
M,N . If T

(π)
M,N > T

(R)
M,N then qπ(.) = 1 and 0 otherwise. As a onsequene,the set Q ontains samples of the Bernoulli distribution of parameter the unknown p-value

ν⋆. Assuming as a prior that ν⋆ is uniformly distributed, we an estimate the redibilityinterval of the unknown p-value ν⋆, as the 99% of the a posteriori mass of p (ν | q1, . . . , qΠ) ∼
Beta(α + 1, β + 1), where α is the number of 1's and β the number of 0's in Q.

Figure 4.2: Illustration of the HPD interval estimation by alulating the 99% of thedistribution mass with the aid of Dihotomy.



78 CHAPTER 4: DW-MRI Data Statistial Analysis - a ReviewThat interval is also known as Highest Probability Density (HPD) interval and is extratedvia Dihotomy (atually, three steps of Dihotomy, one for the PDF value and two for thelower and upper bound of the HPD interval) as presented in �gure 4.2.At this point we have to mention that HPD interval's length depends on the number of thepermutations. If someone wants to redue that length, more iterations should be inludedin the permutation test.4.3.3 Analyzing Classi�ation Errors using Random Forest Classi-�ersPopulations omparisons an be solved as lassi�ation problems. For example, if two popu-lations are very mixed together (i.e. similar), then the lassi�ation task fails to disriminatethe two groups.A Brief IntrodutionRandom Forest (RF orresponds to its registered trademark) proposed by Leo Breiman in2001 [30℄ is a versatile and ompetitive tool for statistis. Classi�ation, regression, abnor-mality detetion (via density estimation), manifold learning, semi-supervised appliations,suh as image segmentation et. are some among several of its appliations [41, 42℄.A RF is an ensemble of T randomly trained Deision Trees (DT) [31℄. The attribute ofrandomness is gained via bootstrap sampling, sine eah tree uses two random subsets ofsamples, one random (bootstrapped) subset for training and the other one ontaining theunseen samples for testing (evaluation). In this way, the out-of-bag (OOB) sore (e.g. theperentage of orretly lassi�ed points), or the onverse of OOB sore, the generalizationerror (GE), an be alulated on previously unseen data (i.e. data in testing set). Moreover,eah tree node is split aording to a random subset of the sample's features.Another interesting key point that should be mentioned is the fat that eah deision tree isexpanded and left unpruned without having to deal with over-�tting problems due to therandomness property.To ontinue, a RF is de�ned by a set of parameters (for example, the number T of the trees,the maximum depth D of the trees et.). For a full list of them the reader is referred to[41, 42℄, where the e�et of eah parameter is also tested and disussed.Every DT will be separately evaluated on its own testing set, produing a loal GE. Theglobal representative GE of the RF will be the average of the individual GEs.Introduing a point v into the RF means that every DT will examine the point v onludingto an individual predition. The �nal, single, predition of the RF is obtained by averaging(or voting) the individual tree preditions.



4.3. APPLICATION OF A SUITABLE TEST 79For the purposes of this study, we will fous on RF Classi�ers. A simple example of RFlassi�er an be found in �gure 4.3.

Figure 4.3: A RF lassi�er with three DTs. Assigning sample v to a lass is ahieved byaveraging the three posterior (not binary) pt(c|v) of eah tree. Image appearing in [41℄.Appliations of Random Forests in DW-MRIRF were very reently applied to DW-MRI. For example, DTI tratography analysis usingRFs for the MS disease were proposed in 2011 [95℄ and in 2012 [106℄. Preditors of linialimpairment between the erebellum and the erebral hemispheres were analysed using RFson DTI data for MS disease in 2014 [131℄. In addition, the e�et of lesions deteted usingDTI WM tratography to global disease severity and ognitive and behavioural disturbaneswere studied using RFs for the progressive supranulear palsy disease in 2014 [1℄. In thesame year, RFs were applied to measure the independent ontribution of the FA and theMD to language impairment detetion in a TB analysis of pediatri epilepsy patients [124℄.Furthermore, a ertain group of studies bene�ts from the RF ability to analyse high di-mensional data. Multivariate RFs on multimodal MR Imaging (Di�usion, Perfusion, andSpetrosopy) were de�ned to determine whih riteria ould di�erentiate between gradesand genotypes of oligodendroglial tumors in 2013 [52℄. Lesion segmentations for ishemistroke were implemented using RF Classi�ers on multimodal MRI data, suh as TI-weighted,T2-weighted, FLAIR, and ADC MRI images in 2014 [108℄, or funtional, anatomial anddi�usion data for stroke in 2015 [37℄. Segmentation of thalamus (a ruial task during theevaluation of many brain disorders) using T1-weighted MRI data and nulear parellationon DW-MRI data were proposed in 2014 [150℄. In the latter study, FA images, �ber orienta-tion and onnetivity between the thalamus and the ortial lobes were seleted as featurevetors to de�ne RF Classi�ers. A few more appliations are the following [3, 29, 81℄.Finally, the existene of numerous reent approahes based on RFs for DW-MRI, proposedfor problems similar to ours, highlights the potentiality of the method to ahieve ompetitiveresults.



80 CHAPTER 4: DW-MRI Data Statistial Analysis - a ReviewStatistial ModelPopulations omparison an be ahieved using Random Forest Classi�ers. A RF Classi�ermeasures the generalization error (GE) of all unseen data and onludes to similarity if GEis very high, while on the ontrary it results to dissimilarity when GE is very low.In pratie, it an be explained that if the lassi�ation task fails to disriminate the twogroups (i.e. similar groups), it will result into high values in GE. If the two populations arewell separated (i.e. dissimilar), the GE is low. Figure 4.4 depits the RF lassi�ations offour di�erent syntheti ases, given a RF with 500 deision trees and maximum tree depth4. As the distane between the two populations is inreased, the GE is redued.

(a) (b)

() (d)Figure 4.4: Examples of resulting lassi�ations given a RF with 500 deision trees andmaximum tree depth equal to 4, on syntheti 2D data. (a) GE = 0.38, (b) GE = 0.29,() GE = 0.14 and (d) GE = 0.02. We an see that as the two populations are movingaway from eah other, (a)→(d), the GE dereases. The olorful bakground is related to
p(c|v), labeled as RGB olor vetors [p(c = ”abnormal”|v), p(c = ”normal”|v), 0]. Areaswith green olor orrespond to points with higher probability to belong to the normal groupthan belonging to the abnormal one, and red otherwise. Finally, brown levels orrespondto areas with high levels of unertainty.



4.4. PARTIAL CONCLUSION 81As a onsequene, we will onsider the GE as our statisti of hoie, and moreover we willalso alulate its own HPD interval, similarly to what was done for the previous statistialmethod. In fat, there is no need to de�ne a permutation test in order to estimate the HPDinterval of the GE, sine we an bene�t from the randomness of eah tree's testing set (insize and in samples).Given a set of T trees along with their orresponding testing sets Vt, 1 ≤ t ≤ T and
|Vt| = lt (i.e. the number of samples in Vt), a list Q = {q11, . . . , ql11, . . . , q1T , . . . , qlT T} anbe onstruted, ontaining binary values for all testing points of eah tree, where qit is equalto 1 if the point i is mislassi�ed in tree t and 0 otherwise. Therefore, GE is related to theprobability ̺, whih is the probability of getting a point i mislassi�ed in tree t:

P (qit) =

{
̺ , if qit = 1,

1− ̺ , if qit = 0,
(4.6)Moreover, two useful lists an be obtained, Lwrong = {w1, . . . , wT} and Llength = {l1, . . . , lT},where wt orresponds to the number of wrong lassi�ations and lt the total number of testedsamples in tree t, 1 ≤ t ≤ T . In this way, we an �nd the HPD interval of the GE, as the

99% of the a posteriori mass of P (GE|Q, ̺) ∼ Beta(̺;α + 1, Ltot − α + 1) (see �g. 4.2)
P (GE | Q, ̺) ∝ ̺α(1− ̺)Ltot−α, (4.7)where α =

∑T
i wi ontains the total number of wrong lassi�ations in Ltot =

∑T
i li totalnumber of tested samples.4.4 Partial ConlusionIn this hapter, the onept of statistial atlases was presented along with referenes toexisting state-of-art tehniques. In addition, three methods to perform statistial analysiswere seleted and further desribed (eah one for spei� reasons) with the ultimate goalto ompare them with the proposed methods in the next hapters. The �rst one, althoughbased on Hotelling T 2 test (a quite weak statistial test due to its draonian assumptions),bene�ts from the idea of working in a redued spae, whih is favorable and promising. Theseond method was seleted as an innovative method whih an handle high dimensionaldata with no need to perform dimensionality redution. Finally, the third approah is basedon RF lassi�ers, whih are assumed to be �exible in statistial alulations even in highdimension. Experimental results for all of these methods are inluded in hapter 6.In the next hapter, the de�nition of the proposed statistial model, appliable to populationversus population omparison, will be presented and disussed.





Chapter 5
Population VS Population Comparison:Proposed Statistial Model for T4s
In this hapter an innovative statistial model is proposed, aiming to o�er e�ient earlydiagnosis, prognosis and patient follow up for a given disease. The proposed statistialtest gains in sensitivity due to the use of the T4 fODF parameterization to desribe thedata, whih produes better representation of the �ber struture than the T2 fODF model.Moreover, due to the high dimension of the data, we seleted to redue the dimension,in order to alulate robust statistis in a dense spae. In this thesis, appliation of theproposed statistial test to populations omparison was ahieved in the ase of the NMOdisease (experimental results are available in hapter 6).5.1 Preliminary StepsBefore alulating the statistis, some preliminary steps are required. Firstly, data normal-ization is a ruial step in order to transform all data into the same spae. Seondly, T4fODF model parametrization and the de�nition of a proper metri that ompares two T4fODF pro�les are hosen to alulate an inter-point distane matrix. Finally, the onsideredpart of neighboring information is de�ned, assisting to eliminate any registration error left.5.1.1 Seleted Data NormalizationMentioning the term "normalization", we refer to the proedure of transferring all data to thesame ommon referene spae. To ahieve that, one an alulate a spatial transformation(e.g. linear, non-linear) and apply it on eah datum. Due to the fat that our data (tensorimages or raw DW-MRI data in our ase) ontain information about the orientation ofthe di�usion at eah point, their spatial registration will result into important errors onnot aounting of the new underlying �ber's struture. To bypass that obstale, di�erent83



84 CHAPTER 5: Population VS Population: Proposed Statistial Model for T4snormalization tehniques were proposed in the literature, as desribed in setion 3.2. DWInormalization uses only the rotation part of the whole transformation, but tensor imagenormalization an produe muh more signi�ant errors (due to the registration step ontensor's oe�ients), than normalizing the raw DWI data. In other words, a small variationin the tensor oe�ients an produe a totally di�erent fODF pro�le, while a small variationin the DWI signal may not a�et notably the estimated tensor model.Initially in this study, tensor normalization (see setion 3.3) was hosen in the absene of anon-linear DWI normalization method. In the reent years, a ompetitive method for DWInormalization was proposed in 2013 [51℄ and our initial hoie altered to the new approah.Calulating the FA image of eah datum (by �tting voxelwise T2 tensor models) allowed usto estimate the non-linear transformations between eah FA image (eq. 2.8) in the initialspae and a referene FA template (e.g. JHU-FA-2mm) by alling standard proedures fromthe FSL toolkit [89℄. The estimated transformation is applied on the DWI data and theirreorientation is ahieved by extrating the loal rotation omponent of the transformationand applying it to the spatially registered DWI data with the aid of a proper FSL pathavailable on the web and proposed in [51℄.5.1.2 Seletion of a T4 fODF Parametrization, a Proper Metriand the fODF PathesEquation 2.24 in hapter 2 shows that a fODF funtion f(g) an be desribed, for exampleby a T4 tensor model. In this study, the oe�ients of the T4 fODF model were estimatedaording to [172℄ by minimizing a quadrati ost funtion under the positivity onstraintof the estimated model.T4 tensor model parameters belong to R
15. We must de�ne a proper metri in that spae.Choosing an Eulidean distane between the oe�ients of two T4s would not be pertinent,sine it would not take into onsideration properly the whole information provided by theorresponding pro�les de�ned on the sphere. For example, a small variation in R

15 will notorrespond to the same variation in the pro�les on the sphere. A proper distane should bede�ned between two positive valued fODF funtions on the 3D unit sphere. Experimentsshowed that seleting an Eulidean distane integrated on the sphere is not su�ient, sinefor example, di�erenes between di�usivity values 102 and 103 will overlap any signi�antdifferenes between values 10−2 and 10−3. For that reason, log-based distanes beamepopular, suh as the log-Eulidean distane for T2s in [6℄, or distanes desribed in [153℄.For the purposes of this study, we hose to work with the distane de�ned in equation 2.30.An illustrative omparison between the Eulidean distane (L2 norm) and the proposed one(both integrated on the sphere) is depited in �gure 5.1. Eah point orresponds to a T4fODF tensor represented in the 2D redued spae by using an inter-point distane matrixontaining distanes between all possible pairs of tensors in a feature extrating algorithm(e.g. Isomap [154℄). The red point represents an outlier orresponding to an fODF related toa T4 model for whih one of the oe�ients was divided by 60. In the ase of the proposed



5.2. FEATURE EXTRACTION (ISOMAP) 85distane, the outlier is reognized and penalised by separating it from the mass of the othertensors (i.e. ideal ase), while in the ase of the Eulidean distane the outlier is not wellseparated.
(a) (b)Figure 5.1: Comparison between the Eulidean distane and the proposed distane ofeq.2.30. The outlier (red point) should be separated from the mass, as is the ase for theseleted distane and not for the Eulidean distane.At this point, we should note that voxelwise distanes are not e�ient enough, espeiallywhen data ontain potential registration errors. In order to deal with these registrationerrors, many approahes hoose to smooth data, risking to lose useful information. Anotheroption ould be to rely on skeletons of white matter bundles of �ber [144℄, but the risk oflosing information is still not totally eliminated. Introduing information ontained in theneighborhood of eah voxel is another solution, whih seems more suitable and less risky.As a result, we seleted to sum all the distanes between two seleted 3× 3× 3 pathes pervoxel. The seleted pathes are de�ned by searhing among all the possible oupled pathesin two 5 × 5 × 5 neighborhoods for the one that minimizes the sum of all the distanes inthe smaller pathes. Figure 5.2, illustrates the idea of searhing all possible 3 × 3 oupledpathes in a 5× 5 neighborhood, for simpliity.

Figure 5.2: The hoie of the best 3× 3 pathes between two 5× 5 neighborhoods (oneper individual dataset that is inluded in the omparison).5.2 Feature Extration (ISOMAP)For eah voxel (or a 5× 5× 5 neighborhood referring to that voxel), an inter-point distanematrix an be alulated. The dimension of the urrent spae is 15 (for a single T4) or



86 CHAPTER 5: Population VS Population: Proposed Statistial Model for T4s
5 × 5 × 5 × 15 = 1875 for a 5 × 5 × 5 neighborhood of voxels. Assuming a number of data(orresponding to pathologial and healthy patients) lose to the order of tens or hundreds,it an be diretly onluded that this spae will be sparse and not suitable for alulatingoherent statistis with robustness. As a onsequene, reduing the dimension of the spaewill provide a more dense spae to work with.To address the fat that the data lie on a manifold and onsider geodesi distanes, we resortto non-linear dimension redution tehniques. We tested several methods, suh as Isomap[154℄, maximum variane unfolding (MVU) [171℄ and loality preserving projetion (LPP)[77, 78℄. We hose to work with Isomap, similarly to [165℄ sine in general, there were nopartiular di�erenes from a disriminative point of view (see table 5.1 and �gure 5.3).Non-linear Methodase / p-value's HPD interval MVU LPP ISOMAP(a) Almost Dissimilarity / [0.04, 0.065] 9 12 9(b) Clear Dissimilarity / [0.0, 0.0046] 12 9 10Table 5.1: Comparison between di�erent non-linear methods, suh as MVU, LPP andISOMAP. The table ontains the number of wrong lassi�ations between 22 individualsof the normal group and 36 individuals of the abnormal group (totally 58 samples). Twoharateristi ases are extrated from real data alulations, where the estimation of thep-values signify in (a) almost di�erent populations while in (b) signi�antly di�erent pop-ulations. As we an see Isomap gave slightly better solution in average than the otherapproahes.

ase (a) MVU ase (a) LPP ase (a) Isomap
ase (b) MVU ase (b) LPP ase (b) IsomapFigure 5.3: Plots of the 2D redued spae for the 58 samples of the two ases presentedin Table 5.1 whih ontains 22 normal individuals (denoted by the blue olor) and 36abnormal individuals (orresponding to red olor).



5.3. STATISTIC OF INTEREST 87

Figure 5.4: Sree plot of the reonstrution error in funtion to the redued dimension.On the basis of this plot, we hose to work with a redued spae of dimension 2 for the T4ase (similar to the T2 ase as in [165℄).Other important reasons whih explain the need to perform dimensionality redution arethe following. Firstly, working in high dimensional spaes is not e�ient, sine they anbe sparsely �lled with data. Seondly, laking of statistial tests for multidimensional datais another obstale. As a onsequene, onstruting a redued dense spae where statistisan be alulated robustly is ruial. This redued spae should be built by inorporatinggeodesi distanes in the initial spae. Verma et al. [165℄ highlighted that spei� property intheir study for T2 models (see �gure 4.1). In this diretion, Isomap orrelates the strutureof the data points in the initial spae, with the new struture of the points in the reduedspae by retaining the geodesi inter-point distanes. In other words, the distanes betweenpoints in the redued spae mimi the distanes between the orresponding points in theinitial spae. Sree plot presented in �gure 5.4 lead us to hose d = 2 as the dimension ofthe redued spae, whih is similar to the T2 ase that Verma et al. analyzed.5.3 Statisti of InterestGiven a normal and an abnormal population onsisting of several points in the reduedspae (determined in the previous step), we propose to represent the probability densities
pi, i = 1, 2 of eah population i by using kernel density estimation, assuming that eah pointis assoiated to a Gaussian kernel [76℄. Eah population's PDF has one free parameter, theovariane matrix onneted to eah population's point. It is determined with the aid ofSott's rule [142℄.At this point that populations' PDFs are de�ned, the seletion of a proper metri to omparethe two populations is needed. In our �rst attempt, we hose to work with the popularsymmetrized Kullbak-Leibler divergene. Unfortunately, there is no losed formula knownfor the ase of mixture of Gaussian distributions assoiated to the de�nition of kernel density



88 CHAPTER 5: Population VS Population: Proposed Statistial Model for T4sestimations. As a result, only a numerial approximation ould give an answer to ourproblem and in pratie it is very time onsuming.As a onsequene, for all previously mentioned reasons, we hose to build our statistialmodel on another measure of disrepany P proposed by S�kas et al. in [143℄, suitableto ompare mixtures of Gaussian distributions, whih provides e�ient results in muhless omputational time. In fat, our experimentations indiated that P is alulated 150times faster than our previous numerial approximation (e.g. with 5600 samples of theworking spae) of the symmetrized Kullbak-Leibler (sKL) divergene. To be more preise,omputation of P needed 10−3 minutes to ompare two PDFs in a single permutation, ina omputer with 4 proessors at 3.20 GHz and 8 GB of RAM memory. On the otherhand, sKL required 0.15 minutes in a single permutation (meaning that the orrespondingomputational time for a typial set of 1000 permutations will be 150 minutes). In addition,the disrepany P and the sKL approximation produed equivalent haraterizations of thepopulations (similar/dissimilar).The disrepany P is our statisti of interest and is generally de�ned as follows [151℄, [143℄:
P (p1, p2) = − log
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2 dx . (5.1)This metri is symmetrial and beomes zero if p1, p2 are equal and positive otherwise.Aording to [143℄, if we onsider the following two mixtures of Gaussian distributions (onefor eah population, normal and abnormal):
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5.4. ESTIMATION OF THE P-VALUE AND ITS CREDIBILITY INTERVAL 89for a in {1, 2} and b in {1, 2}. Indies i, j, a, b were omitted from V , k, and µ for simpliity.In addition, the previous formulas may be simpli�ed, sine Σ
(a)
i does not depend on i andsimilarly, sine Σ

(b)
j does not depend on j.5.4 Estimation of the p-value and its redibility intervalFor the purposes of performing population omparison, the distane P is handled as astatisti. Therefore, our statistial problem is formulated as heking if the referene distane

P0 (i.e. the one that ompares the populations' PDFs given the initial-true labelling of theindividual points) is an extreme value with respet to the distribution p(P) of the distanes.Due to the fat that p(P) is generally unknown, we produe random samples of the distri-bution of P via permutation testing. We selet to approximate the probability of gettingdistanes P equal or greater than the referene one P0, P(Pπ > P0), with the aid of MonteCarlo distane samples Pπ, under the Null Hypothesis that both populations are indis-ernible. This probability is also known as p-value and we will denote it ν⋆ and is equalto:
ν⋆ = P (Pπ > P0) =

∫ +∞

P0

p (P) dP . (5.7)Many statistial approahes are omplaent to alulate only a single value for estimating
ν⋆. For example, a possible solution ν̂ ould be to divide the number of random distanesthat satisfy Pπ > P0, with the total number Π of label shu�ings.On the other hand, eah estimated p-value ν̂ has its own redibility interval, whih dependson the number of permutations. For that reason, in order to have insight in the preisionreahed, we propose to alulate a redibility interval of the approximated p-value ν̂. Thelength of the interval an be redued by inreasing the number of the label shu�ings.The steps of the proposed permutation test are the following: initially, we permute thelabels of the individual points Π times and at eah iteration of the permutation test weestimate the value of P. Eah omparison of Pπ with the referene distane P0 produes abinary value qπ (qπ = 1 if Pπ > P0, and 0 otherwise). Eah qπ onsists in a sample of theBernoulli distribution parametrized by the unknown p-value ν⋆. At this point, the problemis translated into estimating ν⋆ by using the binary samples q1, . . . , qΠ .

P (qπ) =

{
ν , if qπ = 1,

1− ν , if qπ = 0.
(5.8)Assuming a uniform prior for ν⋆, we an alulate the posterior p (ν | q1, . . . , qΠ) whih fol-lows a Beta distribution Beta(α+1, Π−α+1), where α is the number of 1's in {q1, . . . , qΠ}.:

P (ν | q1, . . . , qΠ) ∝ να(1− ν)Π−α, (5.9)



90 CHAPTER 5: Population VS Population: Proposed Statistial Model for T4sThe smallest interval enlosing the 99% of the a posteriori mass p (ν | q1, . . . , qΠ), i.e. theHighest Probability Density (HPD) interval, is onsidered to be the interval of ν that weare searhing for.More details about how to alulate the HPD are shown in �gure 4.2. The main idea is thatwe start from the maximum point and by performing dihotomy on both axes we an loatethe interval orresponding to the 99% of the mass. In this way, we have two harateristivalues for eah p-value, the upper and the lower bound of the HPD interval.A summary of the proposed statistial pipeline an be found in �gure 5.5.

Figure 5.5: The steps of the proposed approah.5.5 Partial ConlusionA statistial model based on tensors (partiularly T4s whih present better auray thanT2s, but any order tensor an be used) for the population omparison problem was proposedin this hapter. After the enumeration of all needed pre-proessing steps, the importane ofdimensionality redution was highlighted and explained.The proposed statistial test is based on the omparison of Gaussian kernel density PDFsby resorting to permutation testing. Moreover, instead of limiting our method in alulatingonly a single orresponding p-value for eah voxel, we ontinue further by estimating theHPD interval of eah p-value. To fastly ompare the two kernel density estimations, a rapidand e�etive disrepany, proper for mixtures of Gaussian distributions, was derived fromthe literature and used in this study.It is ommon that many methods proposed for statistially medial analysis stop to thepoint of loating areas with small p-values (assisted by a seleted threshold, usually equalto 0.05). In this study, we onsider that onstruting a list of sorted p-values will extrat



5.5. PARTIAL CONCLUSION 91the most di�erent voxels in the top of that list, sine the ranking of eah voxel is muh moreinformative than its p-value, espeially when we want to ompare if di�erent methods givethe same result (e.g. ranking).In the following hapter, the experimental evaluation of the proposed method is presentedalong with many other omparisons to methods presented in hapter 3.





Chapter 6
Group Comparisons: Evaluation onNMO disease and syntheti ases
Applying the proposed statistial approah within a region of interest for a spei� diseasean reveal an interesting list of p-values sorted in asending order. It an highlight the mostsigni�antly di�erent voxels (i.e. biomarkers) in the top of that list, whih �nally an helpus to de�ne regions of interest for eah partiular disease.Neuromyelitis optia (NMO) disease, or Devi's Syndrome, is an in�ammatory neurodegen-erative autoimmune pathology that results in simultaneous Wallerian degeneration in regionswhih are diretly onneted to the spinal ord and to the opti nerves. Moreover, NMOauses gradual demyelination due to in�ammation in several regions rih in aquaporin-4of the human brain suh as the periventriular, the hypothalami and the periaquedutalregions and the bottom part of the fourth ventrile. The main symptoms of NMO diseaseare the opti neuritis and the transverse myelitis that ause blindness and paralysis of theextremities, respetively. Due to the fat that there is no standard ure for NMO, the ob-jetive is to stop or delay the evolution of the disease. Moreover, the development of uttingedge tools that ould provide early diagnosis and prognosis are ruial.Population omparisons of Normal and Abnormal groups aid us to extrat interestingbiomarkers, or regions of them, that will signify that those spei� regions are harateristiareas a�eted by the disease. In this way, we an provide useful information by guiding thedotors through their examination or to properly adjust the patient's treatment.In order to set our experiments, 22 normal (healthy individuals) and 36 abnormal (patho-logial individuals) DW-MRI datasets were used. The brain sanning proedure providedus with HARDI data, where 30 non olinear gradient diretions (signal is measured twiein eah diretion) and b-value= 1000 s/mm2 were used, resulting into images of size of
128× 128× 41 and resolution 1.8× 1.8× 3.5 mm3. The proposed statistial model was im-plemented in python/ython, while speial routines from the FSL toolkit [89℄ were used forthe registration and reorientation steps. Moreover, all other methods used for omparisonwere also implemented in python. 93



94 CHAPTER 6: Group Comparisons: Evaluation on NMO disease and syntheti ases6.1 Appliation of the Proposed Method to the T4 fODFaseSeleting a ROI with 2741 voxels in the brain, suh as the left and right anterior limb of theinternal apsule, the left and right posterior limb of the internal apsule and the left and rightposterior thalami radiation (inluding opti radiation), that are already known as diretlya�eted by the NMO disease aording to medial knowledge and the literature, allowedus to verify that the proposed method is apable to highlight the region as pathologiallya�eted by NMO, too. Figure 6.1 illustrates the histogram of the obtained p-values (HPD'supper bound), onluding into the haraterization of the region as a ROI for NMO, sinea peak appears in the bin with the lowest p-values ([0, 0.05]). On the other hand, a regionwith no lesion would produe a "�at" histogram over the interval [0, 1].

Figure 6.1: The histogram of the resulting p-values (HPD's upper bound) of the proposedmethod applied on T4 models in a ROI with 2741 voxels (bin size = 0.05). The peak inlow p-values signi�es that the seleted region is pathologially a�eted by NMO disease.Figure 6.2 depits three harateristi ases of voxels that were found throughout the experi-ments. Firstly, the ase of getting dissimilar populations when the probability density of thenormal population is totally di�erent than the abnormal probability density. In this voxel,if we smooth our data, instead of �nding the best math of the fODF pathes, the obtainedresult would signify that the populations are similar. The seond ase represents an inter-mediate ase that seems to onverge to similarity, and �nally, the third voxel orrespondsto a similar ase where both probability densities look almost idential.Table 6.1 summarizes the resulting HPD intervals of the three presented ases of �g. 6.2.The number of permutations was 1000. The length of eah interval an be redued, byinreasing the number of the label shu�ings. Eah statistial test took 3 minutes on astandard omputer. Most of the omputation time was devoted to determining the bestmathed pathes in the alulation of the inter-point distane matrix.



6.1. APPLICATION OF THE PROPOSED METHOD TO THE T4 FODF CASE 95

(a)

(b)

()Figure 6.2: Visualization of probability densities, based on Gaussian kernel density esti-mation, in the redued spae. Green points: normal individuals; red squares: abnormalindividuals. Presentation of three harateristi ases: (a) dissimilar populations, (b) and() similar populations. Left olumn: representation of the probability density orrespond-ing to the normal population. Right olumn: representation of the probability densityorresponding to the abnormal population. Blue: low density, red: high density. The sameolor sale is used aross all sub�gures.



96 CHAPTER 6: Group Comparisons: Evaluation on NMO disease and syntheti asesFig.6.2 p-value width of PopulationsCases HPD interval interval are(a) [0, 0.0046] 0.0046 Dissimilar(b) [0.35, 0.43] 0.08 Similar() [0.988, 0.999] 0.011 SimilarTable 6.1: HPD intervals of the p-values for the ases depited in Fig. 6.2, by performing
1000 label shu�ings.In the next setions of the hapter, the appliation of the proposed statistial model on T2tensors is presented, along with some other benhmark omparisons.6.2 Appliation of the Proposed Method to the T2 fODFaseThe appliation of the proposed statistial model on T2 tensors and the omparison withthe obtained results of the T4 ase was the �rst point that we would like to test. It is knownthat the T4 model an desribe with muh more auray a fODF that represents a omplexstruture of �bers (up to 3 main bundles, see �gure 2.9) than the T2 model, and as a result,a more representative model ould potentially produe muh more biomarkers.Exept from omparing the fODF pro�les of the T2 models by using equation 2.30 (similarlyto the T4 ase), another popular metri exists in the literature for T2 tensor models, thelog-Eulidean distane (eq. 2.28). As a onsequene, we will present both resulting statistisby onstruting the inter-point distane matrix at eah voxel using both distanes. Then,this matrix will be introdued into the Isomap step, in order to produe the points in theredued spae.To begin with, �gure 6.3 shows the distribution of the obtained p-values (HPD's upperbound) in the T2 ase by omparing the T2 fODFs on the unit sphere (the same distaneas for T4 ase), in the same ROI as in T4 ase. Diretly, we an notie that T2 fODFase also onludes that the ROI has inreased interest as being pathologially a�eted byNMO. On the other hand, we an see that the peak in the lowest p-values ontains lessbiomarkers in the T2 fODF ase than in T4 fODF ase, meaning that our initial thoughtfor the amount of biomarkers is validated and T4 fODFs is able to detet biomarkers thatannot be highlighted with T2 fODFs.To ontinue, plugging the log-Eulidean distane in our proedure would result into substi-tuting the omparison between fODF pro�les with the omparison between the 6 oe�ientsof the T2 model. The obtained distribution of the resulting p-values an be seen in �gure6.4. Although, in this ase a peak in the lowest p-values was obtained too, we observe that



6.2. APPLICATION OF THE PROPOSED METHOD TO THE T2 FODF CASE 97the number of biomarkers is redued a lot, muh more than the T2 fODF ase. As a onse-quene, if someone hoose to work with T2 models, it will be signi�antly better to resortto fODF omparisons instead of omparing the tensor's oe�ients.

Figure 6.3: The histogram of the resulting p-values of the proposed statistial modelapplied on T2 fODF ase in a ROI with 2741 voxels (bin size = 0.05). The peak in lowp-values signi�es that the seleted region is pathologially a�eted by NMO disease, but itprodued less biomarkers than the T4 ase.

Figure 6.4: The histogram of the resulting p-values of the proposed statistial modelapplied on T2 ase using the log-Eulidean distane (eq.2.29) in a ROI with 2741 voxels(bin size= 0.05). The peak in low p-values signi�es that the seleted region is pathologiallya�eted by NMO, although it produed less biomarkers than the T4 and T2 fODF ases.



98 CHAPTER 6: Group Comparisons: Evaluation on NMO disease and syntheti asesComparisons between T4 and T2 statistisSupplementary to the histograms of �gures 6.1-6.4, �gure 6.5 depits the obtained biomarkers(p-value ≤ 0.05), noted by red olor, in a partial view of the total ROI of 2741 voxels (namedas ROI 1). A areful look at those three images onludes that working with T4 fODF ismore produtive and sensitive than T2 models. Moreover, in the T2 ase, it is muh moree�etive to proess T2 fODFs instead of T2 oe�ients (regarding the number of extratedbiomarkers).

(a) (b) ()Figure 6.5: Plot the obtained biomarkers (p-value ≤ 0.05, highlighted by red olor) of apartiular region (we will refer to it as ROI 1) on the top of a FA template, in (a) T4 fODFase, (b) T2 fODF ase and () T2 oe�ients ase. As it an be seen the T4 fODF aseprodued more biomarkers than the other ases. In addition, working with T2 fODF ismuh better than T2 oe�ients. Top images orrespond to oronal views, middle imagesorrespond to axial views and bottom images orrespond to sagittal views.Additionally, sine we are interested in omparing the ranking of the biomarkers betweendi�erent tehniques, we ame up with the idea of heking if the set of the top N = 1272biomarkers onsists of the same voxels in the three di�erent approahes (i.e. T4 fODF, T2fODF, T2 oe�ients). The value of N was hosen by the fat that the top 1272 biomarkershad same HPD intervals for the p-values in the T4 ase (aiming to work with smaller HPDintervals will eventually lead to smaller N). Working in this diretion, a 3-label olorful mapan be produed. Voxels appearing in both testing shemes are ategorized by the �rst ase(i.e. green label), voxels appear only in the list of method (a) (and not in method (b)) willbe assigned to the seond ase (i.e. purple label) and �nally voxels appear only in method(b) (and not in method (a)) belong to the third ase (i.e. blue label).Figures 6.6, 6.7 and 6.8 represent two slies (ROI 1, ROI 2) of the 3-label olorful mapsseleted by the total 1272 most signi�antly di�erent voxels extrated from the ROI of the2741 voxels, in "T4 fODF vs T2 fODF", "T4 fODF vs T2 oe�ients" and "T2 fODF vsT2 oe�ients" ases, respetively.
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ROI 1 ROI 2Figure 6.6: Comparison of the ranking of T4 fODF statistis with T2 fODF statistisin two di�erent ROIs. Green voxels orresponds to the ase of getting both ranks in thetop N = 1272 dissimilar voxels, purple voxels appeared only in the T4 fODF's top Ndissimilar voxels and blue voxels only in the T2 fODF's top N dissimilar voxels. Greysaleimages orrespond to FA template. Top images orrespond to oronal views, middle imagesorrespond to axial views and bottom images orrespond to sagittal views.
# of Green Purple BlueTested Voxels (Both ases) (only T4 fODF) (only T2 fODF)
1500 1044 228 228Table 6.2: Number of voxels with green, purple and blue olor of the T4 fODF's versusT2 fODF's statistis.Tables 6.2, 6.3 and 6.4 ontain the number of voxels belonging to eah of the three labels(green, purple and blue). In the ase of "T4 fODF vs T2 fODF" 17.9% (= 228/1272) ofthe top N = 1272 voxels are di�erent, while the orresponding perentages of "T4 fODF vsT2 oe�ients", "T2 fODF vs T2 oe�ients" are equal to 25.9% (= 330/1272) and 21.6%

(= 275/1272), respetively.
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ROI 1 ROI 2Figure 6.7: Comparison of the ranking of T4 fODF statistis with T2 oe�ients statistisin two di�erent ROIs. Green voxels orresponds to the ase of getting both ranks inthe top N = 1272 dissimilar voxels, purple voxels appeared only in the T4 fODF's top
N dissimilar voxels and blue voxels only in the T2 oe�ients' top N dissimilar voxels.Greysale images orrespond to FA template. Top images orrespond to oronal views,middle images orrespond to axial views and bottom images orrespond to sagittal views.

# of Green Purple Blue (onlyTested Voxels (Both ases) (only T4 fODF) T2 oe�ients)
1602 942 330 330Table 6.3: Number of voxels with green, purple and blue olor of the T4 fODF's versusT2 oe�ients' statistis.The above perentages of di�erenes between T4 and T2 tensor models triggered us toexamine the reasons why those di�erenes happen. A more detailed examination of theobtained sorted lists of p-values indiated us voxels where the deision (Similar/Dissimilarpopulations) does not agree between T4 and T2 models.
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ROI 1 ROI 2Figure 6.8: Comparison of the ranking of T2 fODF statistis with T2 oe�ients statistisin 2 di�erent ROIs. Green voxels orresponds to the ase of getting both ranks in the top
N = 1272 dissimilar voxels, purple voxels appeared only in the T2 oe�ients' top Ndissimilar voxels and blue voxels only in the T2 fODF's top N dissimilar voxels. Greysaleimages orrespond to FA template. Top images orrespond to oronal views, middle imagesorrespond to axial views and bottom images orrespond to sagittal views.

# of Green Purple (only Blue (onlyTested Voxels (Both ases) T2 oe�ients) T2 fODF)
1547 997 275 275Table 6.4: Number of voxels with green, purple and blue olor of the T2 fODF's versusT2 oe�ients' statistis.Reliability of T2 StatistisComparing the �nal deision (similar/dissimilar) of our statistial test between T4 and T2ases, we notie that disagreements ourred in some ases. Testing a set of those voxels indisagreement, by building the redued spae with the assistane of an inter-point distanematrix whih ontains the L1 di�erenes of the model's residuals (T4 and T2, separately)



102 CHAPTER 6: Group Comparisons: Evaluation on NMO disease and syntheti asesintegrated on the sphere and then applying the proposed statistial model on that reduedspae, we ame up with the onlusion that the T4 model gave the orret answer, sinethe information of dissimilarity is ontained in the T2 residuals. In other words, the lesse�ient and less aurate T2 model an in�uene the onlusion of the statistial test.6.3 Other ComparisonsIn order to better evaluate the preision of the T4 model in omparison to the T2 model,and in addition, to test the proposed statistial model against other approahes, we set thefollowing omparisons on both syntheti and real data.6.3.1 T2 and T4 fODF models' ontributions to populations om-parisons - Evaluation on syntheti dataKnowing that T2 models provide less aurate desriptions for rossing �bers, resulting intomore lose to isotropi or spherial representations, we ame up with the onstrution of thefollowing syntheti test.Two tensor templates (one for eah population, �rst two rows of �gure 6.9) were onstruted,representing two orthogonally rossing �bers of the same di�usion (on left the T2, on rightthe T4). The whole abnormal tensor template is rotated by 5 degrees in omparison to thenormal one (with the aid of [10℄). We de�ned a set of 22 normal and 36 abnormal individualsby adding Gaussian noise to the referene tensor templates.Appliation of the proposed statistial model on T4 fODF pro�les resulted into harateriz-ing the two populations as dissimilar, while on the other hand T2 fODF pro�les onludedto similarity (see �gure 6.9 and the orresponding p-values in the left part of table 6.5).fODF fODF Residual Residualase p-value Deision p-value DeisionT2 [0.73, 0.80] Similar [0, 0.0046] DissimilarT4 [0.0058, 0.025] Dissimilar [0.061, 0.091] SimilarTable 6.5: Calulated HPD intervals of p-values on fODF pro�les (left part) and onthe models' residuals (right part) of the ase presented in �g.6.9 and 6.10, along with theharaterization of eah ase. T4 fODF onluded to dissimilar populations, while T2fODF to similar. The disagreement ourred due to T2 model's residuals.In order to examine why T4s and T2s disagreed, we heked the residuals of both T2 andT4 fODF tensor models. These residuals were initially alulated using the set of gradientdiretions of the aquisition, a set that generally di�ers from one patient to another. Forthat reason we hose to extrapolate the residuals to a ommon for all patients and moredense
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T2 fODF ase T4 fODF aseFigure 6.9: Statistial omparisons on the T2 and T4 fODF models. The �rst two rowsgive an example of two samples from the normal population (�rst row) and the abnormalpopulation (seond row) for both T2 (on the left) and T4 (on the right) fODF models.Abnormal tensors are rotated by 5 degrees in omparison to the normal tensors. The22 green points orrespond to the normal population and the 36 red squares orrespondto the abnormal population. All individuals are onstruted by adding noise to theirorresponding template. The third row depits the PDF distribution of the normal points,while the fourth row shows the PDF of the abnormal points. We an notie that normaland abnormal distributions are dissimilar in the T4 fODF ase and quite similar in T2fODF ase. Populations' PDFs use the same olor sale in eah ase (olumn). Red olor:high density, blue olor: low density.
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T2's RESIDUAL ase T4's RESIDUAL aseFigure 6.10: Statistial omparisons on T2 and T4 residuals of the fODF models usingthe L1 norm integrated on the sphere. The �rst two rows give an example of two samplesfrom the normal population (�rst row) and the abnormal population (seond row) for bothT2 (on the left) and T4 (on the right) fODF models. Abnormal tensors are rotated by 5degrees in omparison to the normal tensors. The 22 green points orrespond to the normalpopulation and the 36 red squares orrespond to the abnormal population. All individualsare onstruted by adding noise to their orresponding template. The third row depitsthe PDF distribution of the normal points, while the fourth row shows the PDF of theabnormal points. As we an see, normal and abnormal distributions are more similar inthe T4 ase than in T2, meaning that the residual of the T2 model is di�erent betweennormal and abnormal individuals. In other words, the T2 model annot apture all theinformation Populations' PDFs use the same olor sale per eah ase (olumn). Red olor:high density, blue olor: low density.



6.3. OTHER COMPARISONS 105sampling set of diretions on the sphere. In this way, we an ompare all possible oupledresidual pro�les by integrating their L1 di�erenes on the sphere, resulting into obtaining aninter-point distane matrix useful to estimate our new redued spae related to the model'sresiduals. Appliation of the proposed statistial approah on that spae signi�ed that T2residuals an in�uene the �nal haraterization of the test, sine populations omparisonson T2 residuals resulted to dissimilarity. On the other hand, populations omparison onT4 residuals onluded to similarity, meaning that all individual T4s had the same kind ofresidual in both populations. In other words, T2 residuals ontain patterns of informationapable to a�et the statistial analysis, whereas T4 residuals do not ontain information.Furthermore, �gure 6.10 represents the PDF of eah population (normal and abnormal) forboth T2 and T4 ases (built on the residuals), while the right part of table 6.5 ontains theestimated HPD intervals of the p-values.In the next two setions the proposed statistial method is �rstly ompared to the Hotelling
T 2 test on syntheti data, and seondly to one method based on permutations for highdimensional real data (i.e. permutations in the inter-point distane matrix).6.3.2 PDF analysis VS population's mean analysis in the reduedspae - Evaluation on syntheti dataThe purpose of the following omparison is to highlight the superiority of statistial methodsbased on omparing the whole distribution of the groups, instead of omparing the groups'mean, as ahieved by the Hotelling T 2 test.A normal and an abnormal tensor template are onstruted, desribing two orthogonallyrossing �bers with di�erent di�usion for eah �ber. The �ber with the lowest di�usion (i.e.vertial) of the abnormal template is rotated by 5 degrees and has a sale di�erent thanthe orresponding �ber in the normal tensor (the data were synthesized with the method of[10℄ using the provided Matlab ode). We de�ned 22 normal and 36 abnormal tensors byadding uniform noise to eah orresponding tensor template. In this ase, the redued spaeis determined by omparing the fODFs of the tensors, similarly to the ommon ase.Figure 6.11 shows the PDFs of eah normal and abnormal population in both T2 and T4ases. In addition, table 6.6 ontains the HPD intervals of the estimated p-values for theproposed statistial test (both T2 and T4), along with the resulting p-values of the Hotelling
T 2 test. We an notie that, in both T2 and T4 ases, the proposed statistial test hara-terized the populations as dissimilar, while on the ontrary Hotelling T 2 test failed in bothases, onluding to similarity.Furthermore, table 6.7 ontains the obtained p-values for the previous syntheti ase of �g-ure 6.9. As previously shown, T2 models failed to reognize the populations as dissimilarusing the proposed statistial test. In addition, the Hotelling test failed in the T2 ase too.On the other hand, T4 models allowed both statistial tests to �nd the orret answer.
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T2 ase T4 aseFigure 6.11: The �rst two rows ontain the representation of T2 and T4 fODF modelsin the normal group (�rst row) and in the abnormal group (seond row). The abnormalindividuals di�er from the normal ones, by hanging the angle and the sale of the smallvertial �ber. The 22 green points orrespond to the normal population and the 36 redsquares orrespond to the abnormal population. The �rst row gives an example of twosamples from the normal population and the abnormal population for both T2 (on the left)and T4 (on the right) fODF models. Normal and abnormal individuals are onstrutedby adding uniform noise to eah group template (presented in the �rst two rows). Thethird row depits the PDF orresponding to the normal group, while the fourth row showsthe PDF of the abnormal group. It is easy to onlude that both T2 and T4 fODFs andisriminate the di�erene between the two populations, but as mentioned in table 6.6, theHotelling T 2 test fails to detet the dissimilarity.



6.3. OTHER COMPARISONS 107Proposed Proposed Hotelling's Hotelling'sase p-value Deision p-value DeisionT2 [0, 0.0046] Dissimilar 0.90 SimilarT4 [0, 0.0046] Dissimilar 0.83 SimilarTable 6.6: Calulated p-values (HPD intervals for the proposed method) of the asepresented in �g. 6.11, by omparing the proposed statistial method against the Hotelling
T 2 test on T2 and T4 fODF pro�les.Proposed Proposed Hotelling's Hotelling'sase p-value Deision p-value DeisionT2 fODF [0.73, 0.80] Similar 0.76 SimilarT4 fODF [0.0058, 0.025] Dissimilar 0.0016 DissimilarTable 6.7: HPD intervals of p-values on fODF pro�les using the proposed statistial test(left part) and the Hotelling test (right part) for the ase presented in �g. 6.9, along withthe deision for eah ase. T4 fODF onluded to dissimilar, while T2 fODFs to similarpopulations (for both tests). The disagreement ourred due to strutured T2 residuals.6.3.3 PDF analysis in the redued spae VS inter-point distanematrix analysis in high dimensional spae - Evaluation onreal NMO dataAs presented in hapter 4, setion 4.3.2, it is possible to de�ne statistis in high dimensionalspae assisted by an inter-point distane matrix [23℄. Moreover, setting a permutation test onthe row/olumn elements of the inter-point distane matrix and measuring at eah iterationthe statisti proposed in [23℄ and mentioned in eq. 4.1, allows us to estimate a p-value andits redibility interval.Similarly to the T2-T4 omparisons on real data, we would like to hek the onsistenyof the proposed statistial test with this partiular permutation test on the inter-pointdistane matrix based on T4 fODF models. One again we would like to ompare the top

N = 1272 sorted list of voxels for both approahes. Figure 6.12 depits voxels in the sametwo ROIs olored by the green-purple-blue oded sheme, where green orresponds to thevoxels appearing both in top N voxels, purple produed only by the T4 fODF in the reduedspae by the proposed statistial test and blue appear only in the top N voxels resulted bythe permutation tests on the distane matrix.
# of Green Purple Blue (only T4Tested Voxels (Both ases) (only T4 fODF) Matrix shu�es)
1531 1013 259 259Table 6.8: Count of voxels in green, purple and blue olor of the T4 fODF's versus T4matrix permutations' statistis.



108 CHAPTER 6: Group Comparisons: Evaluation on NMO disease and syntheti asesTable 6.8 ontains the exat numbers of voxels in eah olor ase. The perentage of di�er-enes in ranking is 20.36% (= 259/1272) in the top N = 1272 most signi�ant voxels.

ROI 1 ROI 2Figure 6.12: Comparison of the ranking of T4 fODF statistis with statistis basedon permutations on the inter-point distane matrix of the T4 models in two di�erentROIs. Green voxels orresponds to the ase of getting both ranks in the top N = 1272dissimilar voxels, purple voxels appeared only in the T4 fODF's top N dissimilar voxelsand blue voxels only in the T4 matrix permutations' top N dissimilar voxels. Greysaleimages orrespond to FA template. Top images orrespond to oronal views, middle imagesorrespond to axial views and bottom images orrespond to sagittal views.Figure 6.13 illustrates the histograms of the resulting p-values (i.e. upper bound of theHPD interval of eah p-value), for the ase of permutation testing in the inter-point distanematrix, in the whole pathologial ROI of the 2741 voxels, for T4 fODF, T2 fODF andT2 oe�ients ases. A �rst omparison between the sub�gures of �gure 6.13 and �gures6.1, 6.3 and 6.4 reveals the higher sensitivity of the proposed statistial approah againstpermutation testing in the inter-point distane matrix, in a spei� pathologial area, for allthe three ases (T4 fODFs and T2 fODFs using the proposed tensor metri and T2 oe�ientsusing the log-Eulidean distane). Seondly, muh more biomarkers were extrated by theproposed statistial method, than the inter-point distane statistial analysis.
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(a)

(b)

()Figure 6.13: Histograms of the upper bounds of the p-values' HPD intervals using permu-tation testing in the inter-point distane matrix for the same pathologial ROI with 2741voxels (bin size = 0.05). (a) T4 fODF ase, (b) T2 fODF ase, both using the proposeddistane (eq. 2.30) and () T2 oe�ients using log-Eulidean distane (eq. 2.28).



110 CHAPTER 6: Group Comparisons: Evaluation on NMO disease and syntheti ases6.3.4 PDF analysis in the redued spae VS RF lassi�ation anal-ysis in di�erent feature spaes - Evaluation on real NMO dataIt is known that RFs are apable to handle e�iently high dimensional data. In our ase, RFlassi�ers are used. Therefore, we started working with di�erent kind of high dimensionalreal data and gradually redued the dimension, by using dimensionality redution tehniques,suh as Isomap [154℄, in order to keep the ohereny with the previously mentioned methods.Given the same set of 58 samples (22 normal and 36 related to NMO datasets), we testeddi�erent kind of RF parameterizations (espeially for the number of trees and the maximumtree depths) in eah feature spae. We will present the best parameterization for eah ase.Introduing neighboring information in the fODF spaeWorking in the fODF spae of the T4s, we need to disretize the fODF funtion by samplingit on the unit hemisphere, in order to de�ne a feature vetor per patient. Moreover, addingneighboring information at eah voxel, for example 5 × 5 × 5 fODF pathes, we ome upwith a set of 58 samples in the dimension of 5×5×5×N , where in our ase N = 242 fODFsamples. Finally the sample's features dimension is 30250.The RF with 2500 deision trees and maximum tree depth D = 4 was the best parameteri-zation for this ase. HPD intervals of the GE and the p-value of the proposed method werealulated in a given ROI with 2742 voxels. Figure 6.14 ompares the middle values of theHPD intervals between GE and the resulting p-value of the proposed method (eah point inthe �gure orresponds to a voxel in the ROI).

Figure 6.14: Comparing the middle values of the HPD intervals between the p-value ofthe proposed statistial method (horizontal axis) and the GE of the RF lassi�er in the
5 × 5 × 5 × 242 fODF spae (vertial axis) in a given ROI of 2742 voxels in the brain.Working in this spae did not ful�l our expetations for a dense and inreasing form.Sine we would expet to observe a �t forming an inreasing funtion (so that both methodswill agree to the same deision e.g. similar=high value) and did not happen, we thought to



6.3. OTHER COMPARISONS 111hange the feature dimension and instead of working with 242 fODF values in eah voxel,to work with the T4 spae (15D) in order to obtain possibly the best RF results.To ontinue, we should note that RF results are assumed inorret. Stritly speaking RFresults should be veri�ed using medial expertise. Sine it is not done, we assume that theproposed method provides us with robust results, beause it bene�ts from ertain attributes,suh as the geodesi distanes between fODF pro�les, the redued working spae in om-parison to high dimensional spae with probably no strutured and sparse populations as inthe RF ase.Introduing neighboring information in the T4 spaeNeighboring information in the T4 spae of the 15 tensor oe�ients, yields a workingspae of dimension 5 × 5 × 5 × 15 = 1875. An optimized RF lassi�er with T = 2500 and
D = 4 provided us the results of �gure 6.15. Unfortunately, it did not improve the resultssigni�antly, sine many deviations still remain.

Figure 6.15: Comparing the middle values of the HPD intervals between the p-value ofthe proposed statistial method (horizontal axis) and the GE of the RF lassi�er in the
5× 5× 5× 15 T4 spae (vertial axis) in a given ROI of 2742 voxels in the brain.At this point we should remember that the 15D spae of T4s an be sparsely �lled, due tolak of data, or even due to the fat that T4s lie on a submanifold in 15D. Taking intoonsideration geodesi distanes between T4s ould allow us to ahieve more aurate solu-tions. Therefore, we thought to assist the RF lassi�er by identifying that T4 submanifold,not neessarily 2D as before, but we an start working from a higher dimensional spae, forexample 5D (or even higher).5D redued spae using IsomapThe very high dimension of our two previous ases, along with the medium quality of theobtained results, led us to the redution of the dimension of the data, similarly to theproposed statistial method, in order to work in more densely �lled spaes. Initially, we



112 CHAPTER 6: Group Comparisons: Evaluation on NMO disease and syntheti aseshose to transform our data to the 5D spae, where an optimized RF lassi�er with T = 500and D = 4 gave results muh more onsistent with the ones given by our method. Figure6.16 presents the orresponding omparison for this set of experiments.

Figure 6.16: Comparing the middle values of the HPD intervals between the p-value ofthe proposed statistial method (horizontal axis) and the GE of the RF lassi�er in the 5Dredued spae (vertial axis) in a given ROI of 2742 voxels in the brain.Thereby, we deided to redue the dimension more and we deided to work with 2D data,the same dimension as the proposed statistial model.2D redued spae using IsomapFitting a RF with T = 500 and D = 4 in 2D data gave the best ohereny between the fourtested ases, as shown in �gure 6.17.

Figure 6.17: Comparing the middle values of the HPD intervals between the p-value ofthe proposed statistial method (horizontal axis) and the GE of the RF lassi�er in the 2Dredued spae (vertial axis) in a given ROI of 2742 voxels in the brain.



6.3. OTHER COMPARISONS 113Three harateristi ases (very similar, similar and dissimilar voxels, represented by green,yellow and red stars in �g. 6.17) are isolated and further studied in �gure 6.19, where we ansee the green points representing the normal population and the red points displaying theabnormal one. The bakground olor illustrates the RF lassi�ation aording to the givensets of normal and abnormal individuals. Areas with higher probability to belong to thenormal group than the abnormal one are depited with green, in ontrast to the red-odedabnormal group. Moreover, areas with high unertainty are oded with brown-level olors.Sorting the p-values (and the generalization errors) of all voxels in a ROI reveals the mostimportant biomarkers of that ROI. Connetion between p-value's ranking and RF general-ization error's ranking onludes that RF are oherent with the proposed statistial approah(see �gure 6.18, data are spread around the y = x line).

Figure 6.18: Comparing the ranking of the middle values of the HPD intervals betweenthe p-value of the proposed statistial method (horizontal axis) and the GE of the RFlassi�er in the 2D redued spae (vertial axis) in a given ROI of 2742 voxels in the brain.The points follow in general the y = x line.Our initial expetation was that RF models ould perform better in the initial high di-mensional spae. Probably, given the omplexity of the struture of T4/fODF spaes, inpratie, it was shown that reduing the dimension is important. RF in 2D redued spae,gave results oherent with the proposed method, although the ruial task was performedby Isomap and the alulation of the redued spae.Finally, we an say that the proposed method produed more biomarkers than the RFmodels.
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(a)

(b)

()Figure 6.19: Visualization of the RF (T = 500,D = 4) lassi�ations for three hara-teristi ases (extrated from �g. 6.17) and omparison with the resulting p-values (with1000 label shu�ings) of the proposed statistial method. (a) Similarity: GE = [0.50, 0.53],p-value = [0.988, 0.999], (b) Similarity: GE = [0.48, 0.50], p-value = [0.35, 0.43] and ()Dissimilarity: GE = [0.28, 0.30], p-value = [0.0, 0.0046].



6.4. PARTIAL CONCLUSION 1156.4 Partial ConlusionExperimental results of the proposed method were presented in this hapter. Several evalua-tive shemes, on syntheti and on real NMO data, showed the oherene of the proposedmethod with medial knowledge. Moreover, the superiority of the T4 tensor model againstthe T2 model was shown. Results obtained by the methods desribed in setion 4.3 areonsistent with those derived from the proposed method, or are even worse.As part of future work, it will be interesting to apply the proposed statistial model inROIs with no diret relation with pathologial areas, with ultimate view to disovery newbiomarkers, sine in�ammatory diseases, suh as NMO, an potentially spread all over thebrain.The next hapter ontains an alternative proposed statistial analysis, suitable for individualversus normal population omparisons. Appliation to LIS disease will be presented.





Chapter 7
Individual VS Normal Population:Method and Appliation to LIS disease
In ases where the variability of the abnormal population annot be totally aptured dueto the lak of enough pathologial data, it is not pertinent and even not safe to rely onpopulation vs population approahes, inluding the proposed method in hapter 5. Theexistene of empty (unlabeled) areas in the spae, due to the lak of (abnormal) points,lose to the mass of the normal population will result in data being probably mislassi�edas normal, in the absene of knowing ompletely the variability of the abnormal group.Moreover, under ertain irumstanes, it is muh more robust to evaluate the state of everypatient separately, for example, in patient follow-up. As a onsequene, eah inomingabnormal dataset should be tested individually versus the normal population (in most ofthe ases is well-de�ned by a large dataset), whih will permit us to follow the state of thepatient aross several in time sans.In this hapter, a variation of the method proposed in hapter 5 is desribed, aiming to alu-late voxelwise statistis in the ase of sparse populations. Experimental results for Loked-insyndrome (LIS) are ahieved by olleting and post-proessing the voxelwise statistis in spe-i� regions of interest related to the motor system, whih are harateristially a�eted byLIS. Both fODF and di�usion (ADC) pro�les produed by di�erent T4 models were ex-amined. Finally, omparisons between the proposed sheme and lassial approahes areinluded.7.1 Proposed Statistial ModelAlthough many elementary steps suh as the DW-MRI normalization, the use of fourthorder tensors, the omputation of the inter-point distane matrix, based on the same tensormetri (eq. 2.30) inluding neighboring information (i.e. 3 × 3 × 3 best pathes) and theidea of determining the redued spae with Isomap retain attahed to the ore of the newmethod of this hapter, a few parts di�er from our previous sheme.117



118 CHAPTER 7: Individual Comparisons: Method and Appliation to LIS diseaseTo begin with, instead of �tting and transforming all individual datasets (normal and ab-normal) in the redued spae at one, meaning that the distanes referring to the abnormalindividuals will a�et the position of the normal points (as is the ase for the population vspopulation problem), at this time, the redued spae for the normal points is onstrutedby taking into onsideration the part of the inter-point distane matrix only between thenormal datasets. In other words, the referene model of the redued spae will not dependon any abnormal point. This is done to avoid estimating a shrunken normal group due tothe presene of large distanes related to the abnormal points.One the normal population is determined in the redued spae, eah abnormal individualwill be treated as an independent inoming datum, that will be transformed to a newpoint in the redued spae by �tting it to the referene model, orresponding to the normalpopulation, by introduing its relative part of the inter-point distane matrix (i.e. distanevetor referring to abnormal i vs all normal individuals). It is important to note thattransforming the abnormal individuals in the redued spae an be implemented in parallel,without altering either the position of the normal points, or the previously tested abnormalpoints. In addition, following the analysis of Isomap's reonstrution error with respetto several values of the redued dimension that was presented in setion 5.2, we will keepworking in 2D.7.1.1 Statisti of Interest and Determination of HPD Interval perp-valueAt this point, we have the normal points in the redued spae, for a given voxel. Similarlyto the previously proposed method, we hoose to �t a Gaussian kernel at eah normal point,thus representing the normal population as a Gaussian Mixture Model (GMM) (eq. 7.1)with the aid of kernel density estimation (KDE) [76℄:
p (x) =

1

I

I∑

i=1

N (x;µi,Σ) . (7.1)The ovariane Σ is idential for all kernels and is determined aording to Sott's rule [142℄.For eah inoming transformed abnormal point y, we onsider its PDF value p (y) giventhe distribution of the normal population, as our statisti of interest (in ontrast to thedisrepany, that was measured between two PDFs and used in the previous method). Inthis way, we an estimate the p-value ν⋆, referring to the probability of getting a PDF equalor lower than p (y) under the Null Hypothesis that the abnormal point y belongs to thenormal population.Theoretially, ν⋆ =
∫
X
p (x) dx, X = {x | p (x) 6 p (y)}, but in pratie this integral annotbe omputed analytially. For this reason, we hose to estimate the p-value ν⋆ via MonteCarlo simulations and the generation of K random samples from p (x) (e.g. K = 5000,

{x1, . . . , xK} samples, xk ∼ p (x)).



7.2. EXPERIMENTAL RESULTS 119HPD Interval Estimation for eah p-valueDue to the fat that we are not satis�ed with a pointwise estimator ν̂ of the p-value ν⋆at eah voxel (eq. 7.3), we wish to determine the solution's preision by extrating a HPDinterval for eah p-value, in a similar manner as was done in the populations omparisonproblem (e.g. setion 5.4).Eah omparison p (x) 6 p (y) will result in a binary value q (x) equal to 1 when theondition is true and 0 otherwise. We will denote qk = q (xk).
P (qk) =

{
ν , if qk = 1,

1− ν , if qk = 0.
(7.2)

ν⋆ =

∫

X

p (x) dx =

∫
q(x)p (x) dx ≃ 1

K

K∑

k=1

qk = ν̂. (7.3)Assuming a uniform prior for ν⋆, it is possible to alulate the posterior p (ν | q1, . . . , qK)whih follows a Beta(α + 1, β + 1) distribution, with α equals to the number of 1's and βthe number of 0's in {qk}, 1 6 k 6 K sequene:
P (ν | q1, . . . , qK) = P (q1,...,qK |ν) P (ν)

P (q1,...,qK)
,

P (q1, . . . , qK | ν) ∝ να(1− ν)β





⇒ P (ν | q1, . . . , qK) ∝ να(1− v)β

∼ Beta(α + 1, β + 1) (7.4)To ontinue, we an estimate the interval of the underlying p-value ν, as the HPD interval(see �g. 4.2) referring to the 99% of the a posteriori mass p (ν | q1, . . . , qK). One again,inreasing the number of samples K an e�etively redue the length of the estimatedinterval.7.2 Experimental ResultsEvaluation of the proposed method on real data was ahieved using a set of 22 normal DW-MRI data, desribing the normal population, and 4 abnormals referring to two separate sansfor eah of the two LIS patients in our data repository. DW-MRI data represent HARDIdata onsisting of 30 non olinear gradient diretions (sanned twie), with a b-value equalto 1000 s/mm2, a resolution of 1.8× 1.8× 3.5 mm3 and an image size of 128× 128× 41.Although the proposed statistial test an be performed voxelwise aross the whole volumeof the brain's WM, for the purposes of this thesis we will fous on spei� regions of interest(ROIs). These ROIs ompose the motor system. The ROIs are the pontine rossing trat, theleft and right ortiospinal trats, the left and right medial lemnisus, found in the bottompart of the brain (in a lateral view, lose to the spinal ord) and �nally the left and rightposterior limb of the internal apsule and the left and right superior orona radiata, loated



120 CHAPTER 7: Individual Comparisons: Method and Appliation to LIS diseasein the middle and upper parts of the brain. The de�nitions of these ROIs are available inthe JHU-ICBM-labels template of FSL [89℄. Patients with LIS are onsious, but unableto move or to ommuniate (i.e. quadriplegia) exept using eye movements in some ases.LIS syndrome produes anatomial lesions at the ventral part of the pons, whih indueinterruptions of WM trats, espeially the ortiospinal trat. As a onsequene, the motorsystem is generally onsidered as a keypoint system that ontains lesions due to LIS.In the next setions, we will disuss the performane of the proposed statistial method forthe individual versus normal population problem, by using fODF and di�usion (ADC) T4models to represent our DW-MRI data. In this study, we partiularly fous on T4 models,sine T4s ahieve higher auray in desribing the di�usion properties and �ber struturethan the orresponding T2s (see �g. 7.1 whih highlights the better representation of thedi�usion T4s/DT4s against di�usion T2s/DT2s in spei� ROIs of the motor system).In addition, ways to improve the performane will be disussed via variations of the proposedtensor metri. Finally, omparisons of the proposed method against lassial approahesbased on standard statistis on FA and MD salar images will be presented.7.2.1 Results based on fODF T4s and on DT4sTo begin with, our goal is to measure the perentage of lesions (i.e. the amount of voxelsrelated to p-value 6 0.05) in eah ROI. Initially working, by default, with fODF T4 models,we observed that the perentages of lesions per ROI (i.e. table 7.1 or �gure 7.2 for bothpatients) were not as high as we expeted, knowing that these ROIs are assoiated with LIS.A possible explanation ould be that sine fODF pro�les are saled funtions paying moreattention to the di�usion's orientation properties than the di�usivity values, the statistialtest did not detet many lesions depending on the orientation of the DW-MRI data (i.e.geometry of the �ber struture), meaning that �bers' orientation would possibly maintainits normality in high levels.In addition, the lower than expeted perentages of lesions based on fODF T4 modelsprompted us for a more detailed study, whih was ahieved by estimating DT4s [11℄. Ob-serving the results inluded between parentheses in table 7.1, the obtained perentages oflesions using DT4s are signi�antly higher than the orresponding fODF ases. In otherwords, it is impressive to note that LIS datasets ontain muh more lesions a�eting the dif-fusivity's properties, suh as the magnitude of di�usion, for example related to the numberof �bers passing through eah voxel, rather than lesions a�eting the geometrial properties(e.g. orientation of di�usion).Furthermore, observation of table 7.1 (or �gure 7.2) permits us to give several useful di-retions of thinking to the physiians, onerning the patient follow up proedure. It isremarkable that the perentages of lesions in the top �ve ROIs presented in the table, whihare loated lose to the spinal ord, are higher than the perentages of lesions appearingin the middle and upper parts of the brain, loations where trats started from the spinal



7.2. EXPERIMENTAL RESULTS 121

(a)

(b)Figure 7.1: Visualization of the embedded (a) DT4 and (b) DT2 models in �ve pathesof spei� ROIs of the motor system. ROIs' labels orrespond to JHU-ICBM-labels-2mmtemplate of FSL [89℄. 2: pontine rossing trat, 7: right and 8: left ortiospinal trat, 9:right and 10: left medial lemnisus. It is notieable that DT4s are more aurate modelsthan DT2s.



122 CHAPTER 7: Individual Comparisons: Method and Appliation to LIS diseasePATIENT 1 PATIENT 1Name of ROI San 1 San 2fODF T4 (DT4) fODF T4 (DT4)Pontine rossing trat 7.1% (23.5%) 21.86% (62.84%)Cortiospinal trat R 0.57% (10.23%) 6.25% (28.41%)Cortiospinal trat L 3.37% (14.04%) 11.24% (30.9%)Medial lemnisus R 0.0% (0.0%) 6.98% (17.44%)Medial lemnisus L 6.02% (16.87%) 4.82% (20.48%)Post. limb of internal apsule R 2.99% (6.59%) 3.59% (18.76%)Post. limb of internal apsule L 5.24% (5.45%) 5.45% (13.21%)Superior orona radiata R 1.63% (8.48%) 2.72% (23.15%)Superior orona radiata L 7.36% (9.63%) 11.04% (18.72%)PATIENT 2 PATIENT 2Name of ROI San 1 San 2fODF T4 (DT4) fODF T4 (DT4)Pontine rossing trat 3.83% (8.74%) 2.73% (26.78%)Cortiospinal trat R 6.25% (18.18%) 4.55% (19.89%)Cortiospinal trat L 12.36% (23.03%) 4.49% (19.1%)Medial lemnisus R 5.81% (17.44%) 9.3% (25.58%)Medial lemnisus L 7.23% (21.69%) 12.05% (24.1%)Post. limb of internal apsule R 0.4% (5.99%) 0.2% (3.59%)Post. limb of internal apsule L 2.52% (10.27%) 2.1% (11.53%)Superior orona radiata R 3.37% (3.91%) 1.96% (4.35%)Superior orona radiata L 1.41% (5.09%) 1.41% (2.6%)Table 7.1: LIS Patient 1 (top) and 2 (bottom) follow-up for 9 ROIs (from JHU-ICBM-labels template of FSL [89℄) related to the motor system. Perentage of lesions (p-value
6 0.05) per ROI for both sans using T4 fODF pro�les and T4 di�usion pro�les (betweenparentheses) are presented in the table. It is obvious that the perentages of lesions arehigher in the di�usion than in fODF pro�les.ord are passing through or end at that level (e.g. four ROIs in the bottom of the table)for both patients. The lesions deteted in the top �ve ROIs are oherent with the medialexpetations, sine these ROIs are the �rst keypoint areas to detet lesions related to LIS.Appearane of lesions in the four last ROIs (middle and upper parts of the brain) may beaused by Wallerian degeneration. Moreover, someone ould say that lesions in the last setof ROIs reat di�erently depending on the patient. For example, patient 2 exhibits lesslesions in the middle-upper part of the brain than patient 1.Another interesting point is the inreasing perentages of lesions between the two sans,for both patients in most of the ROIs. Although the linial status of the patients did nothange remarkably between sans, sine both patients were totally paralysed from the �rsttime san, the inreasing perentages an be seen as the expeted evolution of the orruptedtrats.



7.2.EXPERIMENTALRESULTS
123Figure 7.2: Plotting the perentages of lesions deteted using the proposed method on fODF T4s and di�usion T4s (as presented in table7.1). The labels are oded as "PiSj-data" referring to "Patient i San j on spei� data". The vertial dotted lines separate the two groupsof ROIs (ROIs in the bottom part of the brain on the left and ROIs in the middle and upper parts of the brain on the right).
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Figure 7.3: Two examples of redued spae on�gurations using DT4s. The green pointsdesribe the atlas (i.e. referene data), the bakground represents the PDF (blue: lowvalues; yellow to red: high values). The four red squares desribe inoming abnormal data.
1st voxel of interest (left sub�gure): all inoming data are identi�ed as abnormal ; 2nd voxel(right sub�gure): all inoming data are identi�ed as normal.To ontinue, �gure 7.3 depits the redued spae of the normal points (i.e. green points)along with their population PDF (i.e. olorful bakground, where blue orresponds to lowPDF values and red to high) and the four transformed abnormal points (i.e. red squares) oftwo interesting voxels extrated through proessing DT4s. In the left �gure, we an notiethat all abnormal points are punished, loated outside the ore of the normal population,due to their highly abnormal DT4 properties. On the other hand, in the right �gure,all abnormals are onsidered to be healthy, equivalent to the normal points, sine theyare loated in the mass of the normal population. Of ourse, other on�gurations an beextrated too, espeially when the state of the patient's health is altered due to rerudeseneof the pathology. In the last ase, some red squares ould be loated in the mass of normality(i.e. healthy state) and some other outside the periphery of it (i.e. abnormal state).Due to the fat that DT4s are more sensitive, managing to distinguish higher perentagesof lesions than the fODF T4 models within areas related to the LIS disease, it will be betterto build our statistial analysis model on DT4 data for this partiular disease.In the next setions, omparisons of the proposed statistial approah adapted to DT4 andDT2 models are presented. Furthermore, lassial statistial analysis of FA and MD imageswill be desribed.7.2.2 Results based on DT2sDi�usion T2s (DT2s) are widely used to desribe and analyse DWI data. Despite theirpopularity, DT2s are limited sine they model only a single prinipal diretion of di�usion,o�ering poor representations for omplex rossing �bers and potentially inaurate statistialanalysis.



7.2. EXPERIMENTAL RESULTS 125Table 7.2 ontains the perentages of lesions deteted using the proposed statistial analysisof DT2 models, at eah ROI in the motor system of the brain and �gure 7.4 visualizes them.Cases where DT2 deteted more lesions exeed the DT4 ases. The absene of ground truth,in order to speify the false positive and false negative rates, hardens the task of derivingonlusions. PATIENT 1 PATIENT 1Name of ROI San 1 San 2DT4 (DT2) DT4 (DT2)Pontine rossing trat 23.5% (35.52%) 62.84% (70.49%)Cortiospinal trat R 10.23% (17.61%) 28.41% (34.09%)Cortiospinal trat L 14.04% 13.48%) 30.9% (35.96%)Medial lemnisus R 0.0% (2.33%) 17.44% (23.26%)Medial lemnisus L 16.87% (10.84%) 20.48% (12.05%)Posterior limb of internal apsule R 6.59% (12.57%) 18.76% (30.54%)Posterior limb of internal apsule L 5.45% (8.18%) 13.21% (22.43%)Superior orona radiata R 8.48% (19.13%) 23.15% (40.98%)Superior orona radiata L 9.63% (21.1%) 18.72% (31.39%)PATIENT 2 PATIENT 2Name of ROI San 1 San 2DT4 (DT2) DT4 (DT2)Pontine rossing trat 8.74% (11.48%) 26.78% (42.08%)Cortiospinal trat R 18.18% (22.16%) 19.89% (22.73%)Cortiospinal trat L 23.03% (21.35%) 19.1% (24.16%)Medial lemnisus R 17.44% (13.95%) 25.58% (33.72%)Medial lemnisus L 21.69% (22.89%) 24.1% (36.14%)Posterior limb of internal apsule R 5.99% (6.59%) 3.59% (4.79%)Posterior limb of internal apsule L 10.27% (16.98%) 11.53% (16.35%)Superior orona radiata R 3.91% (8.7%) 4.35% (8.8%)Superior orona radiata L 5.09% (7.9%) 2.6% (5.74%)Table 7.2: Comparison between DT4 and DT2 (obtained using FSL) statistial analyses.Table shows the perentage of lesions (p-value 6 0.05) per ROI for both LIS patients -both sans. Between parentheses the perentage of lesions (p-value 6 0.05) derived fromthe DT2 analysis. Highlighted perentages orrespond to ases where DT4 deteted morelesions than DT2.7.2.3 Classial statistial analysis of FA and MD imagesIn the literature (see e.g. [92℄), many lassi statistial approahes have been proposedto analyze salar di�usion images, suh as FA or MD images, derived from T2 models.Using salar images is onvenient for simple statistial alulations, for example FA/MDhistogram analysis per voxel/ROI, voxelwise or ROI-based alulations of z-sores (alsoknown as standard sores) et.



126CHAPTER7:IndividualComparisons:MethodandAppliationtoLISdiseaseFigure 7.4: Plotting the perentages of lesions deteted using the proposed method on di�usion T4s and di�usion T2s (as presented intable 7.2). The labels are oded as "PiSj-data" referring to "Patient i San j on spei� data". The vertial dotted lines separate the twogroups of ROIs (ROIs in the bottom part of the brain on the left and ROIs in the middle and upper parts of the brain on the right).



7.2. EXPERIMENTAL RESULTS 127For the purposes of this study, we hose to estimate voxelwise z-sores per patient, based onnormal population's mean and standard deviation of FA/MD values of all healthy individualsat eah voxel. The z-sores will be post-proessed in order to determine the perentages oflesions (i.e. voxels with |z-sore| > 1.96) in eah ROI (using similar proess to the proposedmethod) of eah patient. The threshold of 1.96 is equivalent to a p-value of 0.05 in atwo-tailed hypothesis.DT4s p-values versus FA z-soresThe statistial analysis of FA images by alulating z-sores for both patients and both dataaquisitions is presented in table 7.3 (between parentheses) along with the obtained resultsof the proposed method on DT4 models. It is notieable (in both table 7.3 and �gure 7.5)that the perentages of lesions based on FA analysis are higher than the orrespondingperentages derived from the proposed method.PATIENT 1 PATIENT 1Name of ROI San 1 San 2DT4 (FA) DT4 (FA)Pontine rossing trat 23.5% (79.78%) 62.84% (91.8%)Cortiospinal trat R 10.23% (66.48%) 28.41% (74.43%)Cortiospinal trat L 14.04% (61.8%) 30.9% (65.73%)Medial lemnisus R 0.0% (61.63%) 17.44% (67.44%)Medial lemnisus L 16.87% (63.86%) 20.48% (63.86%)Post. limb of internal apsule R 6.59% (32.53%) 18.76% (55.49%)Post. limb of internal apsule L 5.45% (30.19%) 13.21% (31.03%)Superior orona radiata R 8.48% (24.35%) 23.15% (29.24%)Superior orona radiata L 9.63% (17.75%) 18.72% (24.03%)PATIENT 2 PATIENT 2Name of ROI San 1 San 2DT4 (FA) DT4 (FA)Pontine rossing trat 8.74% (75.96%) 26.78% (81.97%)Cortiospinal trat R 18.18% (48.86%) 19.89% (54.55%)Cortiospinal trat L 23.03% (37.64%) 19.1% (37.64%)Medial lemnisus R 17.44% (73.26%) 25.58% (75.58%)Medial lemnisus L 21.69% (59.04%) 24.1% (71.08%)Post. limb of internal apsule R 5.99% (42.51%) 3.59% (32.93%)Post. limb of internal apsule L 10.27% (25.58%) 11.53% (23.27%)Superior orona radiata R 3.91% (11.3%) 4.35% (11.41%)Superior orona radiata L 5.09% (31.71%) 2.6% (25%)Table 7.3: Comparison between DT4 and FA image statistial analyses. Table shows theperentage of lesions (p-value 6 0.05) per ROI for both LIS patients - both sans. Betweenparentheses the perentage of |z-sore| > 1.96 based on FA analysis is inluded.



128CHAPTER7:IndividualComparisons:MethodandAppliationtoLISdiseaseFigure 7.5: Plotting the perentages of lesions deteted using the proposed method on di�usion T4s and z-sores on FA images (aspresented in table 7.3). The labels are oded as "PiSj-data" referring to "Patient i San j on spei� data". The vertial dotted linesseparate the two groups of ROIs (ROIs in the bottom part of the brain on the left and ROIs in the middle and upper parts of the brain onthe right).



7.2. EXPERIMENTAL RESULTS 129Figure 7.6 depits the evolution of patient 1's FA images through the two sans for threetypially a�eted ROIs (pontine rossing trat and right and left ortiospinal trats), inomparison to a healthy FA template. Due to the absene of any ground truth solution itis hard to say whih method is better than the other (it is impossible to measure the falsepositive and false negative rates per method).
(a) (b) ()Figure 7.6: FA's axial slies showing the disease's evolution of LIS patient 1 in threeROIs. (a) JHU-FA template, (b) Patient1-san1 and () Patient1-san2. Red ROI: Pontinerossing trat, green ROI: Cortiospinal trat R and blue ROI: Cortiospinal trat L. (b)-()ontain lower FA values (i.e. darker olors) in omparison to ontrol image (a).In favour of the proposed method, we ould larify that T4 di�usion pro�les do not olletthe same type of information as FA images. Probably, DT4s should be ideally ompared toMD images whih measure the mean di�usivity aross the three main diretions, aligned tothe three eigenvetors resulting from the spetral analysis of the T2 matrix (see eq. 2.10).DT4s p-values versus MD z-soresTable 7.4 ontains between parentheses the statistial analysis of MD images by alulating z-sores, next to the obtained results of the proposed method on DT4s and �gure 7.7 visualizesthem. Generally speaking, MD's perentages in many ROIs are lower than the orrespondingperentages obtained in the FA ase (of ourse there are some exeptions, suh as the lasttwo rows of the tables, referring to Superior orona radiata R and L), signifying that eventwo salar measurements derived from the same T2 models an produe di�erent statistis,pointing that the absene of a ground truth solution, one again, makes the evaluationproess hard for safe onlusions.In the next setion, an evaluation of the proposed statistial approah on fODF T4 datawill be presented, by measuring its performane on a leave-one (normal datum)-out sheme.Furthermore, a set of variations of the proposed distane (eq. 2.30) will be also evaluated.7.2.4 Leave-one-out Evaluation Sheme in the fODF T4 CaseThe low obtained perentages of lesions, for example in the fODF T4 ase, inreased ourinterest to measure the ability of the proposed statistial test (based on the proposed tensormetri of eq. 2.30) to orretly lassify every unseen normal individual as a healthy person.



130 CHAPTER 7: Individual Comparisons: Method and Appliation to LIS diseasePATIENT 1 PATIENT 1Name of ROI San 1 San 2DT4 (MD) DT4 (MD)Pontine rossing trat 23.5% (54.65%) 62.84% (92.9%)Cortiospinal trat R 10.23% (56.82%) 28.41% (71.59%)Cortiospinal trat L 14.04% (41.57%) 30.9% (62.36%)Medial lemnisus R 0.0% (19.77%) 17.44% (46.51%)Medial lemnisus L 16.87% (44.58%) 20.48% (51.81%)Post. limb of internal apsule R 6.59% (34.73%) 18.76% (63.07%)Post. limb of internal apsule L 5.45% (37.74%) 13.21% (44.23%)Superior orona radiata R 8.48% (71.85%) 23.15% (91.41%)Superior orona radiata L 9.63% (66.88%) 18.72% (81.49%)PATIENT 2 PATIENT 2Name of ROI San 1 San 2DT4 (MD) DT4 (MD)Pontine rossing trat 8.74% (27.32%) 26.78% (56.83%)Cortiospinal trat R 18.18% (46.02%) 19.89% (51.14%)Cortiospinal trat L 23.03% (46.63%) 19.1% (51.12%)Medial lemnisus R 17.44% (43.02%) 25.58% (61.63%)Medial lemnisus L 21.69% (56.63%) 24.1% (77.11%)Post. limb of internal apsule R 5.99% (35.93%) 3.59% (26.55%)Post. limb of internal apsule L 10.27% (33.54%) 11.53% (35.22%)Superior orona radiata R 3.91% (38.48%) 4.35% (50.54%)Superior orona radiata L 5.09% (47.73%) 2.6% (48.05%)Table 7.4: Comparison between DT4s and MD image statistial analyses. Table showsthe perentage of lesions (p-value 6 0.05) per ROI for both LIS patients - both sans.Between parentheses the perentage of |z-sore| > 1.96 based on MD analysis is inluded.This is done with a serial leave one normal dataset out of the training proedure, during theestimation of the redued spae of the normal population (via Isomap).At this point, we should larify that our new working sope is the whole brain, instead of asingle voxel, sine we are interested in omparing a whole normal brain versus the normalpopulation. As a result, a single inter-point distane matrix will be onstruted and eah ofthe matrix's elements will take into aount the sum of all (orM largest) voxelwise distanesthroughout the whole volume of the brain's WM.Eah normal datum left out of the training step as well as the four abnormal datasets willbe statistially ompared to the urrent normal population. An example illustrating theorret lassi�ation ase and an inorret lassi�ation are presented in �gure 7.8.Initially, we hose to onsider all voxels. In this ase, the redued spae was unfortunatelydisturbed by the small distanes related to similar voxels in the sum. This led to very spreadnormal populations where the abnormal points were also inluded in the mass of the normalpopulation. It was impossible to distinguish them as pathologial ases.



7.2.EXPERIMENTALRESULTS
131Figure 7.7: Plotting the perentages of lesions deteted using the proposed method on di�usion T4s and z-sores on MD images (aspresented in table 7.4). The labels are oded as "PiSj-data" referring to "Patient i San j on spei� data". The vertial dotted linesseparate the two groups of ROIs (ROIs in the bottom part of the brain on the left and ROIs in the middle and upper parts of the brain onthe right).
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Figure 7.8: Visualization of the leave-one-out evaluation. Left �gure orresponds to theorret lassi�ation, sine the unseen normal (i.e. purple pentagon) has larger p-valuethan the 4 abnormal (i.e. red squares) individuals and it is loated in the ore of thenormal population whih ontains the green points. On the right, the wrong lassi�ationis presented, sine the normal point (purple one) has lower p-value than 3 out of 4 abnormalpoints. The olorful bakground orresponds to the PDF of the normal population.Alternatively, we thought to sum only the M largest voxelwise distanes, orrespondingto the most signi�antly di�erent voxels in the brain for eah given ouple of individuals.Several values for M ∈ {10, 50, 100, 500, 1000, 2000, 4000} were examined and the number ofnormal datasets whih were orretly lassi�ed as healthy people were ounted. An unseennormal datum is onsidered as orretly lassi�ed if its p-value is larger than all the four p-values related to the four abnormal datasets. The best performane is for M = 1000, where
14/22 = 63.6% normal individuals were orretly lassi�ed. The orresponding p-values ofthe M = 1000 test an be found in table 7.5. We should mention that the majority of thep-values (not for normal points whih was expeted, but for most of the abnormals) aregreater than 0.05, meaning that the evaluation sheme did not work very well. Probably,the low perentages of lesions deteted globally in the brain using fODF pro�les is onereason. Moreover, a areful study in order to estimate an alternative abnormality thresholdis required, in order to determine the orret lassi�ations of the pathologial brains (i.e.as abnormals).Variations of the Proposed Tensor Metri tested for the LIS diseaseThinking of possible ways to improve the performane of the method, we turned our attentionto the de�nition of the proposed tensor metri that we seleted to ompare the fODF pro�les.If someone arefully observes the proposed tensor metri in eq. 2.30, she will notie thattwo interesting degrees of freedom an be derived, for example onsidering the parameters
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k, p in equation 7.5 (N = 242 is kept �xed).

dist (d1, d2) ≃
(

N∑

i=1

∣∣∣∣log
d1(θi, φi)

d2(θi, φi)

∣∣∣∣
k

sin (θi)∆θ∆φ

)p

. (7.5)Therefore, investigating the performane of the proposed method, in the previously desribedleave-one-out assessment, using a variety of parameterizations in eq. 7.5 is worth testing.

Figure 7.9: Performane of several variations of the proposed tensor metri (eq. 2.30)in the leave-one-out evaluation sheme. The vertial axis of the �gure orresponds tothe number of orretly lassi�ed unseen normal data, while the horizontal axis ontainsthe number of the maximum M voxelwise distanes inluded in the inter-point distanematrix, for M ∈ {10, 50, 100, 500, 1000, 2000, 4000}. The initial version of the proposedtensor metri (k = 1, p = 1) ahieved a sore of 14/22 orret lassi�ations, while anobservation in the �gure will onlude that for k = 2 and p = 1 in eq. 7.5 and M = 2000top maximum voxelwise distanes, outperforms with sore = 16/22 orret lassi�ations.Figure 7.9 depits the performane of di�erent sets of k, p values in eq. 7.5 for a given number
M ∈ {10, 50, 100, 500, 1000, 2000, 4000}. The best performane was ahieved by the k = 2,
p = 1 parameterization, introduing M = 2000 largest voxelwise distanes in the inter-point distane matrix, onluded into 16/22 = 72.7% of orretly lassi�ed unseen normaldatasets, in omparison to the initial formulation of the tensor metri whose performanewas equal to 14/22 = 63.6%.7.3 Partial ConlusionIndividual versus normal population omparisons has the potentiality to assist the physiiansthrough patient follow-up proedures. In this hapter we proposed a statistial approah to



134 CHAPTER 7: Individual Comparisons: Method and Appliation to LIS diseaseprovide a solution to this problem.Statistial analysis of ertain ROIs sensitive to LIS onluded that areas lose to the spinalord (suh as the pontine rossing trat, left and right ortiospinal trats and left and rightmedial lemnisus) ontain higher perentages of lesions, in omparison to areas in the middleand upper parts of the brain, onneted with the spinal ord (e.g. left and right posteriorlimb of internal apsule and left and right superior orona radiata). Furthermore, patientsreat di�erently in the seond ase.The evaluation proess of the experimental results signi�ed that it is hard to make safeonlusions about whih method performs better than the other, in the absene of groundtruth solution. A thoughtful lue is that higher order tensor models are more detailed andas a onsequene more apable to apture the disease's spei�ity, due to the omplexity ofthe model, than naive T2 models, or salar measures, suh as FA/MD images. Statistialanalysis in syntheti ases ould be probably useful to evaluate the performane of the testedmethods.As part of future work, it would be interesting to measure the perentages of lesions perROI using the new variation of the proposed tensor metri that was found to outperformthe seleted de�nition of the tensor metri in subsetion 7.2.4.
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Left-out Normal p-value p-value p-value p-value p-valuepoint k Normal k Patient 1 / San 1 Patient 1 / San 2 Patient 2 / San 1 Patient 2 / San 2
1 0.2386 0.4823 0.0173 0.4738 0.4738
2 0.9264 0.4331 0.0138 0.4497 0.4536
3 0.2112 0.3835 0.0197 0.4503 0.453
4 0.9296 0.8238 0.0145 0.7118 0.7056
5 0.1681 0.9464 0.0073 0.2827 0.2938
6 0.9321 0.0705 0.007 0.3272 0.6324
7 0.9935 0.9544 0.03 0.3205 0.5632
8 0.7851 0.4616 0.0095 0.4505 0.4518
9 0.5729 0.5152 0.0126 0.4193 0.4136
10 0.3166 0.5387 0.0219 0.5088 0.5996
11 0.9438 0.8047 0.018 0.7714 0.7611
12 0.8935 0.574 0.0665 0.5636 0.5638
13 0.1034 0.6 0.0065 0.3946 0.3902
14 0.7133 0.8212 0.0525 0.6835 0.6769
15 0.9995 0.528 0.011 0.5001 0.5033
16 0.952 0.9213 0.016 0.4644 0.4679
17 0.6195 0.4967 0.0095 0.4215 0.585
18 0.8497 0.9975 0.0063 0.7159 0.7049
19 0.4596 0.4386 0.0353 0.5598 0.5614
20 0.9572 0.4123 0.0404 0.4685 0.4718
21 0.637 0.1848 0.0208 0.2023 0.2076
22 0.9233 0.9129 0.0115 0.3958 0.4829Table 7.5: Estimating p-values in the ase of the best performane (M = 1000 → 14/22 orretly lassi�ed normal points) in the leave-one-out evaluation sheme. The grey level rows orrespond to the orretly lassi�ed normal points (i.e. normal's p-value is greater than allfour abnormals). Initially, working in the same diretion as previously, a p-value lower than 0.05 would signify the point as pathologiallya�eted. It is notieable that all normal points are related to greater than 0.05 p-values (i.e. not a�eted by LIS, as it was expeted).Moreover, the majority of the abnormal p-values are greater than 0.05 (exept from Patient 1 / San 2). This might be a lue to hoose amore suitable abnormality threshold than 0.05.





Chapter 8
Conlusion and Perspetives
In this �nal hapter of the dissertation, several remarkable issues whih should be kept inmind sine they have been onluded through studying the problems of biomarker extrationand patient follow-up, ompleted by the development of the proposed methods, are disussed.Furthermore, many diretions as part of future work are highlighted and presented.8.1 DisussionComparing data from di�erent subjets obliges us to normalize the data in a ommon re-ferene spae. In the ase of DW-MRI data, or tensor images, due to the spei�ity of thedata, a simple spatial registration is insu�ient, laking of a mandatory step, known asreorientation, in order to align the registered data to the new underlying �ber orientation.At this point, we should mention that registering tensor images (through spatial registra-tion of eah tensor oe�ient separately and �nally olleting all registered oe�ients inone volume) is muh more exposed to distortion than registering the raw DW-MRI data.Imagine that a distortion aused to some of the tensor oe�ients (on aount of regis-tration errors) will have greater impat on altering the di�usivity or fODF pro�les arossseveral diretions, than absorbing noise in a few diretions in the DW-MRI dataset beauseof DW-MRI registration. Although in the beginning of this thesis we started working withT4 normalizations, thereafter a quite-promising method for non-linear DWI normalizationwas proposed in 2013. In addition, the reorientation of a rossing T4, using T2 deomposi-tions and reorientations, in order to apply a transformation a�eting two peaks of di�usion(e.g. prinipal diretions of di�usion) to get very lose to eah other, will potentially resultinto losing mistakenly one of the peaks (altering totally the underlying �ber struture, as itis derived from our study in hapter 3). For these reasons, we hose to normalize the rawDW-MRI data.Our seletion to represent the DW-MRI data with HOTs, suh as the T4 model, allowed usto inrease the robustness and sensitivity of the proposed statistial models by desribing the137



138 CHAPTER 8: Conlusion and Perspetivesdata with more aurate models than T2s, espeially in ases of rossing �bers. Additionally,we should not forget that a more aurate model will eventually lead us feasibly to earlierdiagnosis.Following the suggestion of Verma et al. [165℄ to perform statistial analysis in a reduedspae seems ruial and reasonable for many reasons. First of all, the de�nition of theinter-point distane matrix using a proper distane, suh as the proposed tensor metri(eq. 2.30), permitted us to introdue not only information about the di�usion, but alsoabout the orientation of the di�usion through the integration on the unit sphere. Seondly,Isomap partiularly, assisted us to �nd the non linear tensor's subspae, by adding geodesiproperties to the estimation of the redued spae through the embedded graph theory.Moreover, our suggestion to deal with any registration error left at this point by �nding thebest mathed pathes (for eah oupled ombination of our data), ontributed to eliminate asmuh as possible any potential registration error and produed more sensitive models, sinewe observed that smoothing the measurements (e.g. fODF pro�les), whih is an alternativepopular tehnique followed by many approahes, an lead to wrong onlusions due to over-smoothing e�ets and important information lost. Additionally, statistial analysis basedon Random Forest Classi�ers, whih in general are assumed to be powerful tools for highdimensional data, shown less e�ieny than expeted, due to the high omplexity of thetensor models, and they an be overome by RFs bene�ting from a dimensionality redutionstep, in advane.Another interesting topi worth mentioning onerns the ability of the proposed statistialapproahes to analyze the levels of abnormality in the pathologial data, independently ofthe size of the abnormal population, given a well-grown normal population (whih is feasiblein general). To ahieve our goals, the statistial analysis is divided in two approahes,one for the ase where the number of the treated abnormal datasets is proli� to build anabnormal population and the other ase where it is not possible to apture the variabilityof the abnormal population.In the ase where the pathologial population, assoiated with a ertain disease, an bebuilt with an abundant number of patients (e.g. appliation to NMO disease presented inhapter 6), we proposed to perform voxelwise populations omparisons whih o�ers us thepotentiality to onstrut an atlas of abnormality that will haraterize the a�etion of adisease of our interest in every part of the brain. Modelling eah population with the aidof GMM in the redued spae, followed by the de�nition of a permutation test, based ona plethora of label shu�ings of the points, that ould approximate the distribution of themeasured distane between GMMs PDFs (i.e. statisti of interest), allowed us to estimatea p-value per voxel, and partiularly a HPD interval for eah p-value, onluding if thedistane related to the true labeling of the points is an extreme value given the distributionof the distanes that is produed randomly via label shu�ings. At this point we shouldemphasize that many statistial approahes in the literature are redued to estimate a singlep-value, whih is an approximation, without justifying the on�dene of their estimation byalulating the interval that eah p-value is enlosed in.



8.2. FUTURE WORK 139On the other hand, the ase of laking enough patients, an impratiable situation to on-strut robustly the abnormal population, lead us to the formulation of the "individual versusnormal population" problem (e.g. appliation to LIS disease presented in hapter 7). In thispartiular ase, voxelwise statistis will be estimated by �tting a GMM only to the normalpopulation, while eah abnormal datum will be examined by measuring its PDF value (i.e.statisti of interest) given the estimated distribution of the normal population. Moreover,the orresponding p-value's HPD interval an be alulated relying on Monte Carlo simu-lations. Generating randomly samples from the normal (i.e. healthy) GMM, assists us toompare eah PDF related to the abnormal points to the samples' PDFs. Thereby, an out-growth of the proposed statistial analysis an be the patient follow-up, throughout severalexaminations.Finally, we should emphasize that the diagnosis of a new inoming datum (i.e. patient)an be performed, either using the extrated biomarkers (alulated through populationsomparisons), or by running individual statistial omparisons versus the normal population.Afterwards, the new patient is lassi�ed to the normal or to the abnormal population,without needing to re-de�ne any population again.8.2 Future WorkIn the end of every onstrutive researh, suggested diretions for future work should beindiated. Therefore, following our aquired knowledge through this thesis on DW-MRIdata proessing and statistial analysis, we ome up with many zestful points.To begin with, in this thesis, data normalization was ahieved either by registering the DW-MRI data followed by the reorientation of the embedded b-vetors (limited to apply only therotation part of the estimated non-linear transformation), or through serial registrations ofevery T4 oe�ient, thereafter, resynthesis of the tensor models by olleting all registeredtensor oe�ients into one volume and �nally reorientation of the registered T4 models withthe aid of the methods presented in hapter 3 using the whole transformation (e.g. SD+PPD,or HD+PPD) or the rotation part (e.g. FS). In both mentioned ways to normalize our data,we foused on ompleting the proess on the same type of data, but in fat, it is possibleand worthy to be tested to register the DW-MRI data and then to �t T4 models on theregistered DW-MRI in order to reorientate eventually the T4 models (by using methodsfrom hapter 3).The next points are referred to the statistial model. The evaluation of the proposed tensormetri along with its variations presented in subsetion 7.2.4 onluded to the existene of apartiular variation whih manage to outperform our initial de�nition. As a onsequene, itwill be interesting to estimate the redued spae using the best variation of the tensor metri.Maybe the disrepany between the ontrol and the pathologial points an be inreased,resulted into more sensitive statistial analysis.



140 CHAPTER 8: Conlusion and PerspetivesThirdly, we proposed to �t one Gaussian kernel on eah point in the redued spae, inorder to desribe every population with a �exible and more representative GMM model.Another fruitful approah, a little bit more ompliated than our initial thought, but anpotentially avoid any oasional over�tting problem, ould be to luster neighboring pointsinto similar groups, supposing that these points are produed by the same single Gaussiankernel. In this ase, the orresponding Gaussian kernel ould be de�ned by the followingmean µi =
1
J

∑J
j=1 xj (if xj are the J points inluded in the same luster) and it will berelated to a ovariane matrix equals to J times the ovariane of a single point in the samepopulation.Fourthly, our study in this thesis was onentrated in examining ROIs proposed in the litera-ture as pathologially a�eted by the NMO and LIS diseases. In the ase of an in�ammatorydisease, suh as, NMO, multiple slerosis, Alzheimer et., investigating ROIs outside the al-ready known related areas, ould lead to outstanding and innovative results, whether newareas an be extrated as pathologially onneted to the disease of our interest. Moreover,it an be useful through the whole proedure of disease staging and patient follow-up.In the �fth point, the appliation of the proposed methods on �ber trats and onnetomes,instead of voxels, an be also fruitful. In this ase, the inter-point distane matrix should bede�ned inluding distanes between �ber trats or onnetomes (depending the approah).Furthermore, the assessment to detet the statistial signi�ane of di�erenes in the levelof every diretion in the di�usion/fODF pro�les, related to the most signi�antly di�erentvoxels in the brain, is indiated via the proposed statistial models. In other words, it is pos-sible to detet whih diretions in the di�usion/fODF pro�les ontributed in haraterizingthe voxel as a biomarker.To onlude, evaluating the abilities of the proposed statistial approahes to perform earlydiagnosis remain to be tested, under the orientated supervision provided from the neuro-logists.



Appendix A
Multivariate Two-sample Hotelling T 2Test
Hotelling T 2 test is the generalization of the Student's t-test [85℄. Multivariate two-sampleHotelling T 2 test ompares two populations X, Y by assuming that both populations followNormal distributions with di�erent means, but the same ovariane matrix. Let us onsider
N i.i.d. data assigned to populationX denoted as {X1, X2, . . . , XN}, Xi ∈ R

p, ∀i = 1, . . . , Nand M i.i.d. data belong to the seond population Y, {Y1, Y2, . . . , YM}, Yj ∈ R
p, ∀j =

1, . . . ,M .The means µX , µY of the two populations orrespond to vetors of size p× 1 and are equalto:
µX =

1

N

N∑

i=1

Xi, µY =
1

M

M∑

j=1

Yj, (A.1)while the sample ovariane matries SX , SY are equal to:
SX =

1

N − 1
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T , SY =

1

M − 1

M∑

j=1

(Yj − µY ) (Yj − µY )
T . (A.2)Due to the assumption that both populations have equal ovariane matrix S⋆

p , the ovarianematries of the samples SX , SY an help us to estimate S⋆
p onsidering Ŝp:

Ŝp =
(N − 1)SX + (M − 1)SY

N +M − 2
. (A.3)The testing Null Hypothesis is onsidered as H0 : µX = µY , meaning that the two popula-tions are equal if their means are equal.
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142 APPENDIX A: Multivariate Two-sample Hotelling T 2 TestThe T 2 statisti signi�es the di�erenes in the populations by omparing their means and isalulated as:
T 2 = (µX − µY )

T
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Sp
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1
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)}−1

(µX − µY ) . (A.4)At this point the T 2 statisti is transformed to F-statisti using the following expression:
Fstat =

N +M − p− 1

p(N +M − 2)
T 2 ∼ Fp,N+M−p−1, (A.5)where the PDF of the F -distribution is given by
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) (A.6)As a result the orresponding p-value is equal to 1− CDFFp,N+M−p−1
(Fstat).
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Theodosios GKAMASModélisation statistique de tenseurs d'ordresupérieur en imagerie par résonanemagnétique de di�usionRésuméL'IRMd est un moyen non invasif permettant d'étudier in vivo la struture des�bres nerveuses du erveau. Dans ette thèse, nous modélisons des données IRMdà l'aide de tenseurs d'ordre 4 (T4). Les problèmes de omparaison de groupes oud'individu ave un groupe normal sont abordés, et résolus à l'aide d'analyses statistiquessur les T4s. Les approhes utilisent des rédutions non linéaires de dimension, etbéné�ient des métriques non eulidiennes pour les T4s. Les statistiques sont aluléesdans l'espae réduit, et permettent de quanti�er la dissimilarité entre le groupe (oul'individu) d'intérêt et le groupe de référene. Les approhes proposées sont appliquées àla neuromyélite optique et aux patients atteints de loked in syndrome. Les onlusionstirées sont ohérentes ave les onnaissanes médiales atuelles.Mots-lés : IRMd, tenseur d'ordre supérieur, métrique non-eulidienne, rédu-tion de dimension non linéaire, omparaison de groupe ou d'individu vs groupe normal,analyse statistique, test de permutation, maladie NMO, LIS syndrome.Résumé en anglaisDW-MRI is a non-invasive way to study in vivo the struture of nerve �bers inthe brain. In this thesis, fourth order tensors (T4) were used to model DW-MRIdata. In addition, the problems of group omparison or individual against a normalgroup were disussed and solved using statistial analysis on T4s. The approahesuse nonlinear dimensional redutions, assisted by non-Eulidean metris for T4s. Thestatistis are alulated in the redued spae and allow us to quantify the dissim-ilarity between the group (or the individual) of interest and the referene group.The proposed approahes are applied to neuromyelitis optia and patients with lokedin syndrome. The derived onlusions are onsistent with the urrent medial knowledge.Keywords: DW-MRI, high order tensor, non-Eulidean metri, nonlinear dimen-sion redution, group or individual vs normal group omparison, statistial analysis,permutation testing, NMO disease, LIS syndrome.
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