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Chapter 1

Introduction

The human body is known to have many Degree Of Freedoms or DOFs: it has redundant

anatomical DOFs (at muscles and joints), redundant kinematic DOFs (the same task

can be achieved with different trajectories, velocities, and accelerations), and redundant

neurophysiological DOFs (multiple motoneurons synapsing on the same muscle, and vice

versa). One well-known difficulty in understanding human motor control is the way the

central nervous system (CNS) ”chooses” a subset of these near-infinite DOFs. Numer-

ous experimental studies suggested that the CNS overcomes the redundancy of human

movement accomplishment by following some rules and principles. These principles were

investigated by many researchers in the framework of the optimal control theory and it

is assumed that the human movements possess motion invariants that are the results of

an optimization process [4] involving one or more objective functions (or cost functions

or criteria). Several of such cost functions have been proposed and can be found in

literature, but the actual/true objective functions remain unknown.

If the main point is to identify the human movements to be optimal with respect to one

of these proposed cost functions, a dynamical model of the human system is required.

This means that the value that can be controlled i.e the controls need to be related

to the values corresponding to the current state of the system, i.e. the states, through

a differential equation. Combining a chosen cost functions with the dynamical model

of the human being and with the constraints stating the motor task, a mathematical

optimal control problem can be identified. Under the hypothesis that the proposed

human model captures well the dynamical aspects and that the cost function is the

actual/real one, the optimal control problem should estimate well the observed human

motion. Even so, this optimal control problem is only a modeling tool with a range of

assumptions that need to be specified, and it should not be confused or identified with

the real biological system. Nevertheless, this modeling tool can only exist if we have an

1
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idea about the actual cost function minimized during a motor task. If we accept the idea

that the human motor control can be considered to be an optimal process, the following

question arises: Which cost function does the human motor control minimize when

doing a certain motor control task? We attempt to answer this question, by solving the

inverse optimal control or the inverse optimization problem, that consists in imputing

the cost function that can explain the observations of the optimal expert trajectories.

In literature, there are found multiple ways of solving this kind of problem, and the next

section presents a detailed literature review on this matter.

The idea of having a cost function that can explain daily human tasks arises in the

need of having humans and robots collaborate intuitively in an industrial, medical or

daily life environment. Because the environment is a non-static one and also due to

the changes of human decisions when performing a task, an adaptive control in online

applications is required in order to control the robot. Consequently, if we understand

some of the principles on which the human motor control works, the robots can be

controlled accordingly and thus increasing their motion anticipation when collaborating

with humans.

1.1 Related works

In 1964, Kalman first formulated the inverse optimal control for the linear quadratic

regulator, which has triggered ever since the research efforts in that direction, with

applications in a variety of domains spanning from economics to control and robotics.

Recently, this issue regained further interest, especially in the humanoid robotics. In-

terestingly, [5] used an inverse optimization approach to model piecewise affine (PWA)

dynamical systems as the outcome of an optimization process, with nice perspectives

for model predictive control (MPC) implementation with PWA or nonlinear systems. In

the robotics field, the inverse optimal control and the inverse optimization techniques

were used, for instance, to address the stabilization design for a rigid spacecraft [6], to

develop autonomous outdoor robots [7], or robots capable of navigating through crowds

[8], and also to make drones capable of deciding by themselves as an expert human pilot

[9],[10].

The researchers also used the inverse optimal control to study the human locomotion

data by defining the objective cost functions that can explain the given observations

[11, 12, 13, 14]. The latter imputed cost functions were then implemented on actual

robots that could walk or move in an autonomous way. [15] proposed new solution

techniques to address the inverse optimal control for the time-invariant linear quadratic
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regulator (LQR) and returned results that may provide a useful insight on the goals

of the human motor control goal. [16] proposed an approximate local inverse optimal

control algorithm, where the reward function was learned from motion-captured demon-

strations of human running, then reconstructed in simulation the locomotion behavior of

a humanoid robot in new environments including running on flat ground, rough terrain

and under strong lateral perturbation.

Very recently, the inverse optimal control problem has been addressed in the framework

of human-robot collaboration. Co-robotics requires robots to act in anticipation of

future human behavior and to realize the desired levels of seamless interaction. [17]

imputed from the actual data, the objective cost functions underlying a human-human

collaborative task, which were then used within a direct motion planning algorithm to

predict the motion of a human avatar in the presence of a moving collaborator. [18]

proposed a complementary approach to linearization and quadratic approximation for

learning the human acceptable manipulation trajectories. [19] extended the maximum

entropy inverse optimal control linear quadratic regulator model to the task of predicting

target intentions and inferring continuous hand motion trajectories using depth camera

data. Other works also focused on tight human-robot cognitive interaction [20, 21, 22].

Inverse problems were also addressed for stochastic optimal control problems. [23] used

the inverse optimization approach to the stabilization in probability of the discrete-time

stochastic nonlinear systems. [24] considered statistical machine learning techniques to

solve an inverse optimal control problem to predict probabilistic pointing-at-target tasks

in graphic user interfaces. [25] solved inverse optimal control using the maximum en-

tropy principle within the Markov Decision Process to model route preferences for taxi

drivers using hundreds of thousands of miles of collected GPS data. [26] addressed in-

verse optimal control with partially observable Markov decision processes. [27], [28] and

[29] used inverse reinforcement learning for Markov decision processes. [30] proposed

an approach for unsupervised Inverse Reinforcement Learning with noisy data using a

hidden variable of the Markov Decision Processes representation, to address the agent’s

behavior during surveillance scenarios. [31] combined the behavioral cloning and the

inverse optimal control to address the imitation learning, with application to the turn-

prediction for taxi drivers, and the pedestrian’s prediction within an office environment.

[32] synthesized a nonlinear optimal control law for a class of nonlinear time delay sys-

tems by making use of inverse optimality based on combining the Control Lyapunov

Function (CLF) framework with the complete type of the Lyapunov-Krasovskii func-

tionals. The feasibility of their method was demonstrated by considering two processes

with transport delay. [33] proposed a new inverse optimality design method based on

the Hamilton-Jacobi-Bellman equations, where the cost function is built with a linear
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function, mainly the Gaussian Radial Basic one and [34] focused on finding the cost

function, consisting on graph edges, by solving the shortest inverse path problem while

given sets of observations of the shortest path. [35] employed a class of games with

utilities that are linear functions of features defined over the outcome space and they

extended the inverse optimal control problem to multi-agent settings by combining the

principle of maximum entropy with the game-theoretic notion of regret. They showed

how their formulation led to a simple gradient-based optimization procedure. [36] stud-

ied the inverse optimal control in an apprenticeship learning algorithms framework, that

is not specific for the helicopters, and was able to create the first autonomous helicopter

capable of flying as an human expert pilot. [37] solves the inverse optimal control by

using the max-margin inverse reinforcement learning method, where the cost function

that produces realistic trajectories needs to be recovered.

The inverse optimal control is solved with the inverse optimization idea in a polynomial

framework, where a proper solution is to search the right Lagrangian candidate, while

the Hamilton-Jacobi-Bellman optimality equation is an appropriate tool for analyzing

and solving the problem [38, 39] and another one is to impute the proper polynomial

cost function while given observations, while making use of the Putnar’s positivstellen-

satz theorem benefits [40]. [38] and [39] solve the inverse optimal control problem by

searching the proper lagrangian candidate. In their study, they claim that the Hamilton-

Jacobi-Bellman optimality equation is an appropriate tool for analyzing and solving the

inverse optimal control problems. They proposed a method, by using HJB optimality

condition or its relaxation (translated into a positivity condition for certain function or

some set), based on polynomial optimization, semi-definite programs (SDPs) or linear

matrix inequalities (LMIs). [40] considers the inverse optimization problems in order

to impute the proper polynomial cost function for the given observations in a poly-

nomial optimization framework. This includes a large class of optimization problems

i.e. nonconvex, discrete and nonlinear ones. This framework benefits from Putnar’s

positivstellensatz theorem that can adapt to the actual computational capabilities for a

given problem size. They also describe how a practical inverse optimization is reduced

to solving a semidefinite program and exhibit the canonical form of the optimal solution

for the l1-norm.

In this thesis, we will focus on the methods available for deterministic systems. For such

systems, some solving methods use the Hamilton-Jacobi-Bellman optimality equation

([39, 33]) or the Pontryagin maximum principle ([13]), whereas most techniques use the

parametrized Lagrangians to obtain finite-dimensional problems. In the latter form,

available methods work under two different perspectives: the bi-level approach and the

approximately optimal approach.
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[11] presented the bi-level approach, where the observations are regarded as the outcome

of a perfect human motor control decision process while all imperfections reside in the

observations. The method implements two optimization loops. The inner loop (or lower

level loop) solves a direct optimal control problem for a given composite objective cost,

written as a weighted sum of base objective functions. The outer loop (or upper level

loop) then chooses the optimal values for the weights in order to minimize the least square

error between the actual motion trajectory observations and the ones reconstructed by

the direct optimal control problem. This method was used for instance by [41] and [42]

for finding the weighted sum of objective functions that can explain an arm-pointing-to-

a-bar paradigm. In [42] is proved that this paradigm is better explained when minimizing

a composite objective cost. Moreover, the results from [41] support the previous idea

and also show that even though we humans don’t have prior knowledge of the bar end-

target we are restricting ourselves in the same region on the bar. [43] and [44] used the

same method in order to explain and to better understand the human arm motion in an

industrial screwing task. In these papers, it was concluded that the criteria that needs

to be minimized, in this kind of human motion planning, is a combination of known

criteria, mainly energy and geodesic expenditure. This approach can also be applied on

hybrid systems [5], where the goal is to find proper classes of criteria suitable to use

when trying to explain and analyze this kind of systems.

[45] proposed a strategy that transformed the bilevel problem to a standard (one-level)

optimization problem, by using the Karush-Kuhn-Tucker (KKT) conditions of optimal-

ity. In order to do that, they applied the KKT conditions to the lower level loop and

then coupled them to the upper level loop, transforming the bilevel problem into a stan-

dard constrained optimization one. The latter, minimizes the squared difference error

between the actual motion trajectory observations and the reconstructed ones, while

satisfying the KKT conditions associated to the lower level loop. This approach was

used to analyze the human arm movements [45], the rest-to-rest arm movements for

different external dynamics [46] and the human navigation problems including the case

of crossing interferer [47]. Also, in [48] they used this approach to infer the criteria

minimized during the human reaching task in a kitchen environment, in order to use

them on a 53 DoF iCub humanoid robot, so that the robot has a human-like behavior.

Contrariwise to the bi-level approach, [49] considers imperfections in the motor con-

trol decision process hence introducing the idea of approximately optimal decisions that

may explain measured observations. Using parametrized Lagrangians, they interestingly

showed that solving the inverse problem boils down to linear least square optimization,

hence with explicit solution derived far more quickly than with the bi-level approach.

In fact, they applied the residual techniques for inverse parametric optimization to the
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KKT optimality conditions of the nonlinear program underlying a direct optimal control

or an optimal planning problem. The method was then used, further emphasizing her

nice computational performance with either continuous nonlinear systems ([50, 51]) and

hybrid dynamical systems [52]. Recently, the inverse approximately optimal approach

was used by [14] to analyze human locomotion paths data; they imputed a composite

criterion involving energy expenditure and distance to target.

Nevertheless, when it is used with actual noisy data, the least square problem underlying

the inverse approximately optimal approach needs to be handled with care because in

such cases, the regressor may contain noise correlated to the noise acting on the right-

hand side, then the outcome will be biased [53]. To prevent this issue, one has to apply

filtering on the actual data or to use the instrumental variable method [54]. [55] shows

how spline fitting and output filtering can be applied to the inverse optimal control

problem in order to obtain better solutions in the presence of sampled and noisy data

and proposed a recursive version of the inverse optimal control solution for differentially

flat systems. They used this approach to obtain a model for the human stair ascent with

application to learning controllers for lower limb prosthetic devices.

Finally, in our previous study [53], we proposed a new way of solving the inverse optimal

control problem, when dealing with errors or uncertainties acting on the observations.

We only assume that the errors are bounded with known bounds, otherwise unknown

and we are interested in finding the outer set of feasible criteria solutions, while satisfying

the KKT conditions.

1.2 Problem statement

The inverse optimal control problem can briefly be formulated as follows.

Given system dynamics:

ẋ(t) = f(x(t), u(t)), (1.1)

with possible state and/or control constraints:

x(t) ∈ X , u(t) ∈ U , t ∈ [t0, tf ] (1.2)

and a set of trajectories

(x(t) , u(t))t∈[t0,tf ],x0∈X (1.3)

parametrized by time and initial states.
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The goal of the inverse optimal control is to impute the unknown parameter vector (c)

associated to the preselected basis of criteria functions (Φ : X × U → <) with respect

to which all state and control trajectories are optimal trajectories for the direct optimal

control problem with integral cost:

minimize
x,u

∫ tf

t0

cΦ(t, x(t), u(t))dt

subject to hj(t, x(t), u(t)) = 0, j = 1, . . . ,m1.

gj(t, x(t), u(t)) ≤ 0, j = 1, . . . ,m2.

(1.4)

with fixed or free terminal time tf . Where c is an unknown parameter vector associated

to the preselected basis of criteria, x(t) ∈ X ⊂ <n is the state, u(t) ∈ U ⊂ <m is

the input, Φ : X × U → < are the preselected basis of criteria, while h(t, x(t), u(t)) :

<k −→ <m2 and g(t, x(t), u(t)) : <k −→ <m1 are the possible equality and inequality

constraints.

In practical settings, one rarely has access to complete trajectories. Typical experiments

produce discrete samples from trajectories and possibly with additional experimental

noise. The time samples consists of a set of n ∈ N points (ti, x(ti), u(ti))i=1...n. In our

study we replace the integral from problem (1.4) by a discrete sum:

minimize
xi,ui

1

n

n∑
i=1

cΦ(ti, x(ti), u(ti))

subject to hj(ti, x(ti), u(ti)) = 0, j = 1, . . . ,m1.

gj(ti, x(ti), u(ti)) ≤ 0, j = 1, . . . ,m2.

(1.5)

In this thesis, when analyzing experimental data by the means of an inverse optimal

control problem, we assume that we have perfect observations of the system evolution

while the imperfections are considered in the motor control decision process.

1.3 Outline of the thesis and contributions

In the followings, the organization of the thesis is discussed.

This thesis consists of a methodological part and an application on experimental data

one. Chapter 2 and Chapter 6 correspond to the methodological part, while the other

three (Chapter 3 to Chapter 5) illustrate Chapter’s 2 methodology on human observed

trajectories for three different human motor control tasks: the human arm trajectories
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during an industrial screwing task, the postural coordination in a visual tracking task

and the walking gait initialization task.

In Chapter 2, the approximately inverse optimal control approach is discussed. This

chapter starts (see section 2.1) by presenting the KKT optimality conditions for a con-

strained optimization problem, and showing how these ones, combined with the residual

techniques can reduce the inverse optimal control problem to a least square optimization

one. The latter is known to be subjected to bias when dealing with noisy and sampled

data and we illustrate this fact by imputing 3 criteria from simulated uniform distributed

noisy data, with different noise variances. The simulated data is generated by using the

unicycle robot type model and by solving an optimal control problem. This analysis is

done to acknowledge the fact that before using the method on measured data, filtering

or interpolation techniques need to be applied to them. We use this approach to infer

criteria for experimental paradigms, in chapters 3 - 5, as it can be found stated below.

The above mentioned chapters are dealing with three different human motor tasks.

For each of the three examples we impute the criteria that can explain the collected

experimental data. All these tasks have in common the fact that they describe human

tasks where humans select characteristic controls, but the tasks differ in the complexity of

dynamics, constraints and criteria. Consequently, for each task we address the aspects of

modeling problems. For all of these three tasks we assume that the human motor control,

considered to be an optimal ’expert’ process, is imperfect while the observed trajectories

are perfect, considering the approximately inverse optimal control framework. Also the

observations are the ones planned by the human motor control. Moreover, for each of

the three applications an open loop analysis is performed. We will now briefly describe

each task and the structure of the according chapter.

In chapter 3, the human arm trajectories during an industrial screwing task is analyzed,

by addressing the approximately optimal control problem on the collected human arm

trajectories. Section 3.1 introduces the state of the art of various related disciplines. In

literature, this task is analyzed by the mean of a bi-level inverse optimal control problem

with the price of a prolonged computational time and thus, the necessity of proposing

the approximately optimal approach in order to reduce the computational time. The

proposed task, the collected experimental data, the dynamical and geometrical human

arm model are described in section 3.2. In section 3.3 is presented the direct optimal

control problem with the equality and inequality constraints stating the human arm

motion. The choice of the pre-selected basis of criteria needed to formulate the inverse

optimal control problem is also discussed. The proposed criteria are the one found in the

literature when analyzing the human arm motions. Certainly, each of these criteria have
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certain limitations and the actual one used by the human motor control is unknown.

Consequently, we propose our Inverse Approximately Optimal Control (IAOC) algorithm

that will be firstly applied to the artificial data in section 4.5. In the next section (see

section 3.5), we apply our algorithm to actual arm trajectories and we analyze the results.

The used experimental data and the dynamical and geometrical models are provided by

Prof. Dr. Philippe Fraisse, Dr. Vincent Bonnet and Dr. Nahema Sylla that they used

in [44].

The second example of the application of our IAOC algorithm (from section 4.5 of

chapter 3), consists of the postural coordination in a visual tracking task and is the

subject of discussion in chapter 4. For this application, as for the previous one, we start

with a literature review in section 4.1. The measurements, dynamical modeling and the

conditions stating this human task are discussed in section 4.3 and section 4.3. This

particular human motor control task has a bistable postural response, namely an in-

phase mode and an anti-phase one. In this chapter, we will apply our algorithm to both

in-phase and anti-phase modes, for which the problem is convex. The IAOC algorithm

is applied in section 4.6, to the artificial data and in section 4.5 to the experimental

ones. In both cases the numerical results of our algorithm are discussed. A further

aspect related to this task consists in operating it in a closed loop. This aspect, along

with a gain synthesis method are proposed for artificial data in section 4.7. The used

experimental data is provided by Prof. Dr. Philippe Fraisse and Dr. Vincent Bonnet.

The third example of the IAOC algorithm application is discussed in chapter 5. Here,

a pilot study for the human walking gait initialization task for non-parkinsonian and

parkinsonian subjects is proposed. This chapter, starts with a literature review on the

topic. We choose to model this paradigm by using a model predictive control (MPC)

scheme, as it was done in [56]. The selected criteria are already proposed in literature

and they can be found in section 5.2. The task consists of asking non-parkinsonian and

parkinsonian subjects to start a normal and a quick walk on a force platform. After

collecting the observations, i.e. the center of pressure returned by the force platform,

we apply a pattern generator schema, proposed in [57], to reconstruct the center of

mass trajectories (see section 5.3). Section 5.4 presents, on the one hand, the optimal

control problem that is planning the walking gait initialization task. On the other hand,

we apply the IAOC algorithm on artificial data and a first study is done for 6 non

parkinsonian and 5 parkinsonian subjects, one trial per subject. The used experimental

data is provided by EcoTech ANR project consortium.

Chapter 6 represents a methodological contribution of this thesis, in which we propose

another approach to solve the inverse optimal control in a bounded error framework.
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Solving the inverse optimal control problem in a bounded error framework arises because

usually the errors and uncertainties action on the system and the observations may have

a barely known nature. We formulated the problem in section 6.1, where it is discussed

that this approach will find the convex hull of the set of feasible cost function solutions

that can explain the optimal trajectories. Moreover, we have the certainty that the

actual criteria is within the found convex hull set. Our method is capable of finding

a set of feasible cost functions and not only one criterion or a combination of criteria.

We validate it, in section 6.2, on the simulated uniform distributed noisy data described

in Chapter 2. In subsection 6.2.3, we propose a way of numerically guaranteeing our

method by using the IBEX tool, usually used for interval arithmetic and contractor

programming. Our proposed approach will satisfy the KKT optimality constraints and

therefore we assume that the imperfection are in the observations while the human motor

control is a perfect optimal process.

Finally, conclusions on the presented results are stated in Chapter 7. Future work

research ideas completes this thesis.



Chapter 2

Approximately inverse optimal

control

The main objective of this chapter is to formally describe the approximately inverse

optimal control approach in order to solve the inverse optimal control. We use the

discretized unicycle robot type model, usually used when validating this approach [50],

to generate noise free and uniform distributed noisy data in simulation to validate the

approach.

2.1 Problem formulation

We consider an optimization problem with constraints, in which a decision x is made

based on the optimization of a criterion subject to constraints:

minimize
x

f(x)

subject to hi(x) = 0, i = 1, . . . ,m1.

gi(x) ≤ 0, i = 1, . . . ,m2.

(2.1)

where x ∈ <n is the optimization variable, f(x) is the known criterion also known

as objective function or cost function to be minimized, h is the set of m1 equality

constraints such as h(x) : <k −→ <m1 , while g is the set of m2 inequality constraints

like g(x) : <k −→ <m2 .

11
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We define the Lagrangian L ∈ <n×<m1 ×<m2 → < associated to the problem (2.1) as:

L(x, ν, λ) = f(x) +

m1∑
i=1

νihi(x) +

m2∑
i=1

λigi(x), (2.2)

where νi and λi are known as the Lagrange multiplier associated with the ith equality

constraint hi(x) = 0 and inequality gi(x) = 0, respectively. The Lagrange multipliers νi

and λi are called the dual variables or Lagrange multiplier vector associated with the

problem (2.1).

2.1.1 Karush-Kuhn-Tucker optimality conditions

If the given objective function, the equality and inequality constraints functions are

differentiable functions, any pair of primal and dual variables must satisfy the KKT

conditions [58].

We consider x∗ and (ν, λ) to be the primal and dual optimal points with zero duality gap

(meaning one can think of (ν, λ) as a certificate that proves x∗ is optimal and similarly,

we think of x∗ as the assurance that proves (ν, λ) is dual optimal).

Since the primal optimal x∗ minimizes the Lagrange associated to problem (2.1) over x,

it implies that the Lagrangian gradient must be equal to zero at x∗ :

∇xL(x∗, ν, λ) = ∇xf(x∗) +

m1∑
i=1

νi∇xhi(x∗) +

m2∑
i=1

λi∇xgi(x∗) = 0. (2.3)

We can now introduce the Karush-Kuhn-Tucker (KKT) conditions

gi(x
∗) ≤ 0, i = 1, . . . ,m2 (2.4)

hi(x
∗) = 0, i = 1, . . . ,m1 (2.5)

λigi(x
∗) = 0, i = 1, . . . ,m2 (2.6)

λi ≥ 0, i = 1, . . . ,m2 (2.7)

∇xf(x∗) +

m2∑
i=1

λi∇xgi(x∗) +

m1∑
i=1

νi∇xhi(x∗) = 0, (2.8)

where the first two conditions (2.4)-(2.5) are known as the primal feasibility conditions,

Eqs. (2.6)-(2.7) are known as the complementary slackness conditions and the condition

(2.8) is known as the stationarity condition. The latter condition is also known as La-

grange duality which takes into account the constraints by augmenting the criteria with
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a weighted sum of the equality and inequality constraint functions. The complementary

slackness condition implies:

λi > 0 =⇒ gi(x
∗) = 0 and gi(x

∗) < 0 =⇒ λi = 0 (2.9)

When the problem (2.1) is convex, the KKT conditions are necessary and sufficient for

the x∗ and (ν, λ) points to be primal and dual optimal, with zero duality gap.

The formulation above is a direct optimization problem and it is used when one questions

the optimal decision x∗ when optimizing a known criteria f .

The purpose of this thesis is to solve the inverse problem of (2.1), which enables to

impute the unknown criteria f and the dual optimal variables (ν, λ) while the constraints

functions g and h and the primal optimal variables x∗ are assumed known, as given by

a set of observations.

To make the problem tractable, the focus of this thesis will be on the class of optimal

control problems where the sought criterion is written as a weighted sum, hence a linear

combination of known criteria base functions.

The criterion in (2.1) is now written as

f(x∗) =
k∑
i=1

cifi(x
∗), ci ≥ 0, (2.10)

where k is the number of pre-selected base functions and c = {ci} ∈ <k+ is the unknown

vector of weight values associated to each base function fi(x).

Here the choice ci ≥ 0, i = 1, . . . , k ensures that the composite criterion f is also convex

when the basis functions fi are convex.

Thanks to this parametrization, the stationarity and complementarity slackness KKT

conditions (2.6)-(2.8) can be rewritten in compact form introducing also the residuals

[49]

rc,i(λ, x
∗) ≡ λigi(x∗), i = 1, . . . ,m2 (2.11)

and

rs(c, λ, ν, x
∗) ≡

k∑
i=1

ci∇xfi(x∗) +

m2∑
i=1

λi∇xgi(x∗) +

m1∑
i=1

νi∇xhi(x∗), (2.12)

while the primal feasibility KKT conditions are satisfied, i.e. gi(x
∗) ≤ 0, i = 1, . . . ,m2

and hi(x
∗) = 0, i = 1, . . . ,m1.
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Then, solving the inverse optimal problem boils down to finding the weight vector c ∈ <k+
and the dual optimal variables λ ∈ <m2

+ , ν ∈ <m1 such as:

(rs(c, λ, ν, x
∗) = 0) ∧ (∀i ∈ {1, . . . ,m2} rc,i(λ, x∗) = 0) (2.13)

2.1.2 Approximately inverse optimal control approach

The idea underlying the approximately optimal solution resides in the relaxation of con-

straints (2.13), i.e. the latter conditions are only held approximately, hence the residuals

should be close to zero or merely minimized [49]. In the latter case, the magnitude of

the residuals norm and of the dual variables may be used to assess the validity of the

results: a large residuals norm and large values for the dual variables should indicate

that the imputed composite criterion is not a good solution for the inverse optimization

problem.

Observations x∗ are now only approximately optimal, hence solving the inverse opti-

mization problem boils down to :

minimize
c, λ, ν

‖rs(c, λ, ν, x∗)‖2 +

m2∑
i=1

‖rc,i(λ, x∗)‖2

subject to λi ≥ 0, i = 1, . . . ,m2,

ci ≥ 0, i = 1, . . . , k.

(2.14)

Note that the solution is obtained from the stationarity and complementarity residuals,

while the equality and inequality residuals are only used to check the feasibility of

solution x∗.

Interestingly, the residuals are linear with respect to the unknown variables c, λ and

ν, it is easy to see that the problem (2.14) is a convex one and it should simplify to

a least-square estimation. Gathering the gradients as column vectors of the following

matrix A0 as follows, where x∗ dependence is omitted,

A0 = [∇xf1, . . . ,∇xfk, g1 +∇xg1, . . . , gm2 +∇xgm2 , ∇xh1, . . . , ∇xhm1 ], (2.15)

and defining

z0 = [c λ ν] , (2.16)
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Eq. (2.14) becomes

minimize
z0=[c λ ν]

‖A0(x
∗)z0‖2

subject to λi ≥ 0, i = 1, . . . ,m2,

ci ≥ 0, i = 1, . . . , k.

(2.17)

The formulation (2.17) emphasizes well that the inverse optimal control problems are

ill-posed problems. Firstly, when matrix A0 is not singular, trivial solutions arise. For

instance, z0 = 0 is clearly a solution. Furthermore, if a given composite criterion f is

a solution, so do G ◦ f or f + κ, where G is any convex increasing function and κ any

constant. This issue is classically handled by using some prior knowledge on the sought

objective function, hence one of the weights is arbitrary fixed to 1 [11]. In the sequel,

we will denote this particular basis function as a pivot and denote the index by i∗,

pivot ≡ i∗ ⇒ ci∗ = 1. (2.18)

Remark 1. Given the experimental paradigms we will analyze in this thesis, we do not

have access to such prior information. Therefore, we will have to consider all the basis

functions as a potential pivot.

Using (2.18), we can build sub-matrix A from A0 by removing ∇xfi∗ ,

A = [∇xf1, . . . ,∇xfi∗−1, ∇xfi∗+1, . . . ,∇xfk,

g1 +∇xg1, . . . , gm2 +∇xgm2 , ∇xh1, . . . , ∇xhm1 ] ∈ <m×n, (2.19)

and define vector

b = −∇xfi∗ ∈ <m. (2.20)

Defining the sub-vector

c∗ = {c1, . . . , ci∗−1, ci∗+1, . . . , ck}, (2.21)

If we have more equations than variables, i.e A is a ’tall’ matrix (more rows than columns

m ≥ n) with linearly independent columns, Eq. (2.17) is an overdetermined least square

one and can be rewritten as

minimize
z=[c∗ λ ν]

‖A(x∗)z − b(x∗)‖2

subject to λi ≥ 0, i = 1, . . . ,m2,

ci ≥ 0, i = 1, . . . , i∗ − 1, i∗ + 1, . . . , k.

(2.22)
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where A(x∗) ∈ <m×n and b(x∗) ∈ <m are problem’s data and z ∈ <n is the variable

composed of the criteria weights c∗, inequality λ and equality ν Lagrange multipliers.

To the contrary, if there are more variables than equations, i.e A is a ’wide’ matrix (more

columns than rows m ≺ n) with linearly independent rows, Eq.(2.17) is an underdeter-

mined least square one and can be solved by using l1 norm regularization techniques:

minimize
z=[c∗ λ ν]

‖A(x∗)z − b(x∗)‖2 + η |z|1

subject to λi ≥ 0, i = 1, . . . ,m2,

ci ≥ 0, i = 1, . . . , i∗ − 1, i∗ + 1, . . . , k.

(2.23)

where η is a small positive value.

To ensure an unique solution, for both underdetermined and overdetermined least square

problems, the A matrix needs to be not singular i.e. its rows for the underdetermined

case and columns for the overdetermined one are linearly independent.

Remark 2. In the case of each experimental task analyzed in this thesis, if the A matrix

is found singular, it means that the chosen basis of criteria is redundant. In order to

prevent this, a closer study will be done for each experimental paradigm. The study will

consist in analyzing the form correlation between each criteria gradient’s vectors.

The correlation between two vectors X and Y is calculated with the following mathe-

matical expression:

Corr(X,Y ) =

∑n
i=1(xi − x)(yi − y)√∑n

i=1(xi − x)2
∑n

i=1(yi − y)2
(2.24)

where x and y are the sample means of X and Y vectors.

If, for example, two criteria gradient’s vectors (∇f1 and ∇f2) are found correlated:

|Corr(X,Y )| ≥ ξ, (2.25)

where ξ’s value is equal to 0.95 for each application, we will conclude that this 2 gradient

vectors cannot be used together. This can be explained by geometrical interpretation

means, as follows: if the Corr(X,Y ) value is close to ± 1, the two vectors are collinear.

So, they cannot be separated at the minimum value and it will be sufficient to keep only

one in the A matrix.
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2.2 Application to simulated data

2.2.1 Artificial optimal trajectories generation

We consider the discrete model of the unicycle robot type where the start and the end

points are supposed known: 

xi+1 = xi + τu1,i cos θi

yi+1 = yi + τu1,i sin θi

θi+1 = θi + τu2,i

ζ0 = ζstart

ζN−1 = ζtarget

(2.26)

Where τ is the sampling rate and i = 0 : N − 1 is the time step, (x, y) the position,

θ the orientation and u1, u2 the forward (linear) speed and angular speed respectively

and ζ =
[
x y θ u1 u2

]T
.

Then the artificial data is generated by solving an equality constrained optimization

problem:

minimize
ζ

1

2
τ
N−1∑
i=0

‖u2,i‖2 + c1 ‖u1,i‖2 + c2 ‖θi‖2 + c3 ‖ϕ(ζ, ζtarget)i‖2

subject to eq.(2.26)

ci ≥ 0 i = 1 : 3

(2.27)

with ϕ(ζ, ζtarget) the error between orientation and direction to the goal:

ϕ(ζi, ζtargeti) = arctan(
ytargeti − yi
xtargeti − xi

)− θi, i = 0 : N − 1

2.2.2 The defining of the residual functions

Based on the equations formulated in Section 2.1, we apply the approximately optimal

control approach to the (2.27) in order to recover the unknown weights c = {ci} ∈ <3×1

associated to the linear velocity, orientation and squared error between orientation and

direction to the goal. The residual functions, presented in (2.11)-(2.12), associated to
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the optimization problem (2.27) are:

req = hj(ζ), j = 1, . . . , 3N

rs(c, ν) = ∇ζ ‖u2‖2 + c1∇ζ ‖u1‖2 + c2∇ζ ‖θ‖2 + c3∇ζ ‖ϕ‖2 +

+
∑3N

j=1 νj∇ζhj(ζ)

(2.28)

Where hj(ζ) represents the first three equality constraints presented in eq.(2.27). In this

approach the measurements are supposed optimal, therefore req needs to be satisfied,

whereas the stationarity residuals, rs vector, have the following form:

rs(c, ν
j) =



c3(∇x1 ‖ϕ‖
2) +

∑3N
j=1 νj∇x1hj(ζ)

c3(∇x2 ‖ϕ‖
2) +

∑3N
j=1 νj∇x2hj(ζ)

c2(∇θ ‖θ‖2) + c3(∇θ ‖ϕ‖2) +
∑3N

j=1 νj∇θhj(ζ)

c1(∇u1 ‖u1‖
2) +

∑3N
j=1 νj∇u1hj(ζ)

∇u2 ‖u2‖
2 +

∑3N
j=1 νj∇u2hj(ζ)


(2.29)

Finally, the solution is given by an unconstrained least square problem, easier than the

first one (see (2.27)):

minimize
c,νj

‖rs(c, νj , νj+1)‖2

ci ≥ 0 i = 1 : 3

(2.30)

The dimension of the residual, rs, is of (5N, 1), where N is the number of time sample

and ζ ∈ <5. This problem is solved using algorithms for unconstrained least-squares

problems presented in [58].

2.2.3 The criteria weights recovery

By testing the approach on the noise free data, we concluded that it is capable of finding

the exact true criteria’s weight.

First, we generate a trajectory using the optimization problem described in (2.27) with

{c1, c2, c3} chosen randomly to be equal to {1.8508, 42.0533, 0.6590}. The observations

on position, orientation, linear and angular velocities are used to solve the unconstrained

least square optimization problem (2.30). Furthermore, uniform distributed noise with

zero mean and three different values for the p variance is added to the observations and

100 trajectories for each of the three different variance values are generated.

We start by adding :
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• σ1 case: 0.5% of error to the positions and linear velocities, 1% error to the orien-

tation and angular velocities.

• σ2 case: 1.5% of error to the positions and linear velocities, 3% error to the orien-

tation and angular velocities.

• σ3 case: 2% of error to the positions and linear velocities, 4% error to the orienta-

tion and angular velocities

and we generated 100 trajectories for each of the three cases as presented in Fig. 2.1.

Figure 2.1: The trajectory obtained for {c1, c2, c3} equal to {1.8508, 42.0533, 0.6590},
using the unicycle model (red trajectory) with three different noisy trajectories. Uni-
formly distributed noise is added to the obtained trajectory as follows: 0.005 of error
to the positions and the linear velocities, 0.01 error to the orientation and the angular
velocities (cyan trajectories), 0.015 of error to the positions and the linear velocities,
0.03 error to the orientation and the angular velocities (magenta trajectories), 0.02 of
error to the positions and the linear velocities, 0.04 error to the orientation and the

angular velocities (green trajectories)

An unconstrained least square optimization problem is used to recover the {c1, c2, c3}
weight values for each generated trajectory. The results illustrates a well known fact,

that is least square with noisy regressor yields biased results [54].

Fig.2.2 shows that when noise variance is increased, the method exhibits bias in finding

the criteria weights that can explain the observations.
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Figure 2.2: {c1, c2, c3} values obtained via the inverse approximately optimal control
approach with 300 trials, 100 for each σi, i = {1, 2, 3} case, where the correct value is

represented by the pink dash line ({c1, c2, c3} = {1.8508, 42.0533, 0.6590})

These results clearly show that the approximately inverse optimal approach is very

sensitive to the presence of noise in the measurement. In order to reduce bias, one

should add minima filter data, use more advanced estimation methods [54] or use spline

interpolation on measurements [55].

2.3 Summary

The use of the approximately optimal control approach to solve the inverse optimal

control problem was presented in this chapter. Direct benefits of this approach is the

computational time efficiency (it recovers the unknown criteria weight in 2 seconds) and

reduces the initial constrained optimization problem to a least square one (eq.(2.22) or

eq.(2.23)) in order to estimate criteria weights that can explain optimal trajectories.

When using this approach on noise free optimal observations, it is capable of finding the

true value of the criteria weights. The fact that solving least square problems with noisy

regressor can encounter bias problems is well known. The study of the noisy artificial

data was done to acknowledge the fact that before using this method on measured data

(usually noisy with unknown type of noise) one should use existing methods of filtering

the regressor.

In this thesis, different experimental data will be analyzed by using the approximately

optimal approach in order to impute the criteria that can explain them. Before applying

it to measured data, we interpolate the experimental data with cubic splines (see Chapter

3 and Chapter 5) or with Fourier coefficients (see Chapter 4).
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While analyzing the approximately optimal approach we had the idea about how solving

the inverse optimal control in a bounded error framework. This is because usually the

errors and uncertainties acting on the system and observations may have a barely known

nature. This new approach will be the subject of discussion in Chapter 6.



Chapter 3

The human arm movement

analysis during an industrial

screwing task

In this chapter, we analyze the human arm movement during an industrial screwing task

by the means of the approximately inverse optimization, in order to impute criteria that

can explain this kind of task.

3.1 The analysis of human arm movements

During the years, efforts were made to explain the observed trajectories from human

arm movements as a solution to the optimization problems. Hence, different optimal

models have been proposed in literature and grouped [41] into five models: kinematics

models, dynamic models, geodesic models, energetic models and neural or effort models.

The term optimal models is understood as the criteria minimized in an optimization

problem.

The kinematics models help us to obtain maximum smoothness in Cartesian or joint

spaces and includes the minimization of hand jerk [59], the minimization of the angle jerk

[60] and the constraint minimization of the angle acceleration [61]. The dynamic models

are taken into account to avoid inverse dynamics and/or kinematics computations and

to obtain the motor commands. These models plan the minimization of the torque [62]

and of the torque change [63]. The geodesic model was proposed to predict human arm

22
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movements in 3D dimensions [64, 65] and it is based upon the hypothesis that the spatial-

temporal characteristics of the movements are evaluated separately. The temporal aspect

suggests that the arm trajectories are obtained while minimizing the minimum jerk

criteria, while the spatial aspect is described in the Riemannian manifold. Hence, the

geodesic model selects the shortest path in the configuration space by using the kinetic

energy metric and it presents the connection between the dynamic and kinematic models

[65]. The energetic model was widely used in literature [66, 67, 68, 69] to predict human

arm movements. This model involves the peak of work’s minimization of torques [70], the

positive work of torques [67] and the total absolute work of torques [68, 69] minimization.

The latter corresponds to the mechanical energy spent to move the arm. Also, it has been

considered that the total absolute work of torques or of muscular forces minimization can

explain the inactivation principle. Meaning that both agonistic and antagonistic muscles

acting on a joint during fast movements inactivates simultaneously [68, 69]. The neural

models were often used to minimize the motor neural activity during a movement [71, 72].

Moreover, [41] assumed that the motor neurons give the motor command composed of

efforts taken as torques accelerations as neural input to muscles.

All the optimal models presented above were used as a pre-selected base of objective

functions for the inverse optimal control analysis of human arm movements, e.g. for the

arm pointing to a bar paradigm [41, 42]. In these studies the bi-level approach was used

and it was attain that this paradigm is better explained when minimizing not only one,

but a combination of energy expenditure and joint-level smoothness [42], with further

evidence presented in [41]. This shows that even though we, humans, do not have prior

knowledge of bar end-target position we restrict it to the same region on the bar.

More recently, [43] and [44] investigated the motor task consisting in human arm motion

during an industrial screwing task using inverse optimal control. They used the bi-

level approach to impute the criteria with experimental data collected in human arm

motion with and without exoskeleton assistance. The pre-selected basis of the objective

functions they used were composed of seven objective functions related to the four

optimal models, i.e. the kinematics, the dynamics, the geodesic and the energetic models.

They showed that the human arm motion could be planned by optimizing a combination

of energetic expenditure and geodesic criterion.

However, the outcomes of the bi-level approach were reached at the price of a prolonged

computation time (around 30h as reported in [44]), significantly hampering its use for

online applications. In this chapter, we will show that our method built upon the inverse

approximately optimal control approach is capable of giving more thorough results in a

very small computation time, in less than 1min.
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3.2 The industrial screwing task

3.2.1 The task description

Eight right handed subjects (height: 1.70 m ± 0.5 m; weight: 63 kg ± 11 kg; age: 24 ±
7 years old), not familiar with the task to reproduce a typical screwing task. The task

procedure can be summarized as follows: starting from an initial position with both

hands across the body, they were asked to reach a target located 2 m above the ground,

holding on a 0.95 kg screw gun in their right hand (seen fig. 3.1(a)). They maintained

the target position for about 3 seconds, until they heard a sonar signal that indicated

to return to the initial position. No instruction was given to the subjects about how to

perform the movement. The subjects therefore performed the task in a natural way and

at a preferred velocity.

(a) (b)

Figure 3.1: The investigated motor task fig. 3.1(a); The different phases of the
screwing task fig. 3.1(b)

The screwing task is composed of five operations, as presented in Fig. 3.1(b) :

• Phase 1. (0% to 20%) The subjects are in the initial position.

• Phase 2. (20% to 30%) The subjects raise their right arm to reach the target.

• Phase 3. (30% to 70%) The screw position is maintained and the right hand is

above the heart.

• Phase 4. (70% to 80%) The subjects return to their initial position.

• Phase 5. (80% to 100%) The initial position is maintained.
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In this thesis, we are only interested in analyzing phase 2 between 20% and 30% from

the screw task cycle, during which subjects rise their arm.

3.2.2 The experimental measurements

A motion caption system of type VICON composed of 6 MX cameras that operate at

100 Hz, in combination with a set of 38 retro-reflective markers placed on anatomical

landmarks in accordance with the Plug-in-Gait, the whole body marker template (Vicon

Motion Systems) was used to record 3D kinematic quantities.

Subjects’ joint angles averages and standard deviation were normalized to 100 points as it

can be seen in fig. 3.3(c). One can see in this figure the relative low standard deviation

of joint angles, showing that subjects perform similar and consistent movements to

accomplish the screwing task. As it can be observed the wrist joints range of motion

are very small (see θ5 and θ6). In consequence, the wrist joints will be neglected from

the human arm model due to the small values exhibited when the shoulder is rotated,

flexioned or extended and when the wrist is inclined. The human arm model used in

this study contains only 4 DOF as represented in fig. 3.3(a).

3.2.3 The geometrical model

The used articular variables θ1, θ2, θ3 and θ4 are properly redefined in table 3.1. The

Angular position Degree of freedom (DoF)

θ1 flexion/extension of the shoulder

θ2 abduction/adduction of the shoulder

θ3 pronation/supination of the forearm

θ4 flexion/extension of the elbow

Table 3.1: The articular variables used in human arm modeling definition

kinematic equations are given by the Denavit-Hartenberg parameters and the articular

frames in the base reference frame can be seen in fig. 3.3(b). The direct geometric model

(DGM) is used in order to calculate the orientation matrices and the hand Cartesian

positions (x(t), y(t), z(t)) in the base frame with respect to angular position variables

(θ1, θ2, θ3, θ4).
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Figure 3.2: The average and the standard deviation of measured shoulder flexion/ex-
tension (θ1), shoulder abduction/adduction (θ2), forearm pronation/supination (θ3),
elbow flexion/extension (θ4), wrist flexion/extension (θ5) and wrist abduction adduc-
tion (θ6), during phase 2 (20%-30% of the cycle) where the subjects raise their right

arm to reach the target.

3.2.4 The dynamical model

The vector of joint torques are computed via the inverse dynamical model, derived from

Lagrange formulation:

Γ = M(θ)θ̈ + C(θ, θ̇)θ̇ +G(θ) (3.1)

where θ = [ θ1 θ2 θ3 θ4 ]T corresponds to the vector of joint angles, Γ = [ Γ1 Γ2 Γ3 Γ4 ]T

is the vector of joint torques, M(θ) ∈ <4×4 is the inertial matrix, C(θ, θ̇) ∈ <4×4 is the

Coriolis and Centrifugal effect matrix and G(θ) ∈ <4×1 is the gravity vector. One can
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(a) (b) (c)

Figure 3.3: The human arm kinematic model used [1].

find presented in more details the calculation of this matrices in [73], where the inertial

parameters are estimated from the anthropomorphic table presented in [74].

3.3 The inverse optimal control problem solution

We will now analyze the arm movement joint trajectories collected during the screwing

task by means of the inverse approximately optimal approach. To do this, we need

to formulate first the direct optimal control (DOC) problem and the underlying KKT

optimality conditions.

3.3.1 The direct optimal control problem

The direct problem is formulated as a planning problem where joint angle trajectories

are sought, which minimize a given composite criterion and satisfy the constraints. To

curb the planning problem complexity, we will use parameterized joint trajectories with

B-spline interpolation as it is classically done in robotics motion planning, but also in the

framework of inverse optimal control (a.o. [55, 44]). As a consequence, the actual joint

trajectories will also be interpolated by applying spline-fitting on the observed data as

in [55]. Finally, the optimal planning problem will be solved with respect to the B-spline

knots vectors w.
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Interestingly, spline interpolation will act as a filtering procedure and should prevent

any distortion in the estimation that can be due to the presence of correlated noise in

the regressor of the least square problem (2.22). In addition, the angular positions and

their derivatives are afterwards deduced from the knots by using a spline interpolation

with the degree dependent on the number of derivatives desired to be found. Generally a

spline of rth order can be differentiated (r− 2)th times. Since we need the 3rd derivative

of the angular position, a 5th order spline should be enough in order to obtain good

interpolation. Here, we will use then a spline polynomials of the 5th order with n′ = 13

knots per joint angular position trajectory. Finally, in the direct optimization problem,

we assume that the initial and final joint positions are known by the subjects, then the

direction optimal planning problem formulates as follows:

The direct optimal control problem: ”Find the n ≡ 4(n′ − 2) knots vector w,

between a prior known initial and final positions, such as this spline-interpolated joint

trajectories passing through the knots can achieve the industrial screwing task while

satisfying given bounds on joint angle positions and minimizing a given composite cri-

teria”.

3.3.1.1 The inequality constraints

In order to obtain realistic human arm movements, the optimal trajectories need to

satisfy the joint angular limitation values, as defined in the literature [75, 76]. The

inequality constraints are gathered below:

g1(θj) = θjmin − θj , k = 1 : 4.

g2(θj) = θj − θjmax , k = 1 : 4.
(3.2)

where θjmin and θjmax are the minimal and maximal angular values for each joint position

presented in table 3.2.

Table 3.2: The angular limitation values for the 4 joints

θmin [deg] θmax [deg]

θ1 -180 50

θ2 -150 30

θ3 -90 85

θ4 -160 0
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3.3.1.2 The choice of the objective functions

The selected optimal control objective functions used as a basis for the composite cri-

terion are the ones usually encountered when studying the human arm motion tasks.

Our basis consists of the following objective functions already discussed in Sect.3.1: the

Cartesian jerk criterion which is related to hand motion smoothness, the joint angle ac-

celeration and angle jerk criteria which characterize joint angle motion smoothness, and

the torque, torque change, geodesic, energy (absolute work of forces) and effort related

criteria. The eight basis objective functions are gathered in table 3.3, seven of which are

differentiable, whereas the energy criterion is non-smooth. The latter function is usually

considered when studying human arm movements and has been shown to be related to

the inactivation principle [69]; it was found that during fast arm movements simulta-

neous inactivation periods of both antagonistic and agonistic muscles can be predicted

using a non-smooth criterion. We assume as in [69], that the CNS can minimize the

non-smooth function to predict muscle inactivation, along with some integral costs for

smoothness and precision of the arm movements.

The direct optimal control problem that needs to be solved in order to generate human

arm displacements, boils down to solving the following optimization problem:

minimize
w

8∑
i=1

cifi(w),

subject to gj(w) ≤ 0 j = 1, . . . , 8.

(3.3)

Note that now the decision variables are the B-spline knots gathered in vector w ∈
<n. The constraint and objective functions depends on the interpolated joint angle

trajectories, which in turn are function of knots vector w.

3.3.2 The inverse approximately optimal control problem

We can now address the inverse approximately optimal control problem using the method

described in Chapter 2. We just need to specify matrix A ∈ <m×n in Eq. (2.19) and

vector b ∈ <m in Eq. (2.20), composed of criteria gradient’s vectors. For this case, the

A matrix is a tall not singular one having more columns than rows (m ≥ n). Moreover,

we checked the correlation (see eq.(2.24)) between each criteria gradient’s vectors and

they were found uncorrelated, for both artificial and experimental data. So, the criteria

will be imputed by solving the overdetermined least square problem (2.22).
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Table 3.3: The pre-selected basis of objective functions;
N : number of time samples

Criterion Cost function (fi) References

Cartesian jerk f1 =
∑N

i=1
...
xj

2+
...
yj

2+
...
zj

2

N [59]

Angular jerk f2 =

∑N
i=1

∑4
i=1

...
θ

2
ij

N [60]

Angle acceleration f3 =

∑N
i=1

∑4
i=1 θ̈

2
ij

N [61]

Torque f4 =

∑N
i=1

∑4
i=1 τ

2
ij

N [62]

Torque change f5 =

∑N
i=1

∑4
i=1 τ̇

2
ij

N [63]

Geodesic f6 =
∑N

i=1(θ̇
TM(x)θ̇)1/2

N [64]
[65]

Energy f7 =

∑N
i=1

∑4
i=1

∣∣∣θ̇ij τij ∣∣∣
N [66]

[67]
[68]
[69]

Effort f8 =

∑N
i=1

∑4
i=1 τ̈

2
ij

N [69]

Secondly, we must choose which basis objective function will act as pivot i∗. As previ-

ously discussed, the choice of the pivot relies on prior knowledge of the sought composite

criterion. In order not to corrupt any conclusion to be derived when analyzing the indus-

trial screwing task, we consider that there is no such prior knowledge. As a consequence,

we will have to consider any basis function as potential pivot. Then, comparing the so-

lutions of the problem (2.22) we will keep the solutions that show good consistency with

the experimental data, those which minimize both the residuals norm (3.4) and the root

mean square (RMSE) (3.5) described below.
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The residuals norm is defined as

1

n
‖∇wL(ĉ)‖ =

1

n
‖Aĉ− b‖2, (3.4)

and the RMSE is defined as

RMSE =

√∑N
j=1(θmesj − θestj )2

N
(3.5)

where θmesj represents the actual observed joint angle positions, θestj represents some

estimated joint angle position and N is the number of time samples of the joint angle

position trajectory.

Finally, our algorithm for solving the inverse problem is as follows:

Algorithm IAOC (input: x∗, output: {ĉ})

• For pivot i∗ = 1 to k (here k = 8)

1. build matrix A as in Eq. (2.19),

2. build vector b as in Eq. (2.20),

3. solve problem Eq. (2.22) and obtain vector ĉ,

4. compute residuals norm 1
n‖∇wL(ĉ)‖ as defined by Eq. (3.4),

5. use ĉ and solve DOC problem Eq. (3.3) to generate planned joint

angle trajectories θest,

6. compute RMSE defined by Eq. (3.5).

• Keep solution vectors ĉ that minimize both residuals norm and RMSE.

3.4 Evaluation on artificial data

In this section, we perform the evaluation of the performance of our method using arti-

ficial data. Using the 4 DOF thorough dynamical model of the human arm (introduced

in Sect.3.2), we solve DOC problem (3.3) with vector c tuned such that only one sin-

gle basis objective function is active at the time. We come with eight planned joint

trajectories, each minimizing a single basis objective function given in Table 3.3.

For each artificial data generated, we apply our algorithm IAOC as defined in Sect.3.3.2.

When the objective function used as pivot is the actual objective function, we obtain

the smallest residuals norm and an RMSE of 0. The results are gathered in Table 4.2.
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Table 3.4: The results obtained on artificially generated optimal trajectories; I =
{1, . . . , 8}

Optimal trajectory generated using : A b 1
n‖∇L(ĉ)‖ RMSE [deg]

min f1 [∇fi], i ∈ I \ {1} −∇f1 0.0001 0

min f2 [∇fi], i ∈ I \ {2} −∇f2 0.0007 0

min f3 [∇fi], i ∈ I \ {3} −∇f3 0.00003 0

min f4 [∇fi], i ∈ I \ {4} −∇f4 0.0001 0

min f5 [∇fi], i ∈ I \ {5} −∇f5 0.0001 0

min f6 [∇fi], i ∈ I \ {6} −∇f6 0.000004 0

min f7 [∇fi], i ∈ I \ {7} −∇f7 0.001 0

min f8 [∇fi], i ∈ I \ {8} −∇f8 0.002 0

Table 3.5: The results obtained for the optimal trajectory number 6 generated by
minimizing f6 criterion; A = [∇fi], i ∈ {1, . . . , 8} \ {i∗}, b = −∇fi∗

i∗
Contribution [%]

1
n‖∇L(ĉ)‖ RMSE [deg] γf1 f2 f3 f4 f5 f6 f7 f8

1 67.78 0 0 0 0 0 32.22 0 0.362 14.59 +

2 0 0.18 0 0.04 0 99.78 0 0 1 5.78 -

3 0 0 0.33 0.13 0 99.53 0.01 0 0.058 4.76 -

4 0 0 0.45 99.55 0 0 0 0 0.489 35.18 +

5 0 0 0 0 100 0 0 0 0.282 15.71 +

6 0 0.01 0 0 0 99.99 0 0 0.000004 0

7 0.34 0 0 0 0 0 99.65 0 0.03 13.05 +

8 0 0 0 0 0 0 0 100 2.601 15.43 +

Analyzing further the results, there were some cases where the imputed composite cri-

terion included the correct objective function even if the actual one is not used as pivot.

However, in such cases, the residuals norms were too large. Let us illustrate in details

the case of the artificial data generated by minimizing f6. Thorough results are gath-

ered in Table 3.5. The first column indicates the pivot used, and for each case, the line

contains the imputed composite criterion thus obtained. The contribution of each basis

objective function is given as relative contribution in percentage computed as:

fj = 100
cjfj∑8
i=1 cifi

[%], j = 1 : 8. (3.6)

Each line contains also the residuals norm and the RMSE. The last column contains the

sign of the inner product

γ = sign〈∇wfi∗ ,∇wf6〉. (3.7)

Table 3.5 clearly shows three types of results.

• When one sets pivot i∗ to 6, the inverse optimal control problem emphasizes

that the imputed composite criterion includes f6 which contribution is larger than
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99.99% with very small residuals norm and zero RMSE.

• When one sets pivot i∗ to 2 or 3, the inverse optimal control problem emphasizes

that the imputed composite criterion includes f6 which contribution is larger than

99.53%. However, both the residuals norm thus computed and the RMSE are

large. In particular, the residuals norms are 1000 times larger than the case i∗ =

6.

• When one sets pivot i∗ to 1, 4, 5, 7 or 8, then none of the imputed composite

criterion contains f6, and even more both residuals norm and RMSE are large. In

particular, RMSE computed are at least three times the ones obtained with i∗ set

to 2 or 3.

These outcomes can be explained by considering a geometrical perspective. Solving least

square problem (2.22) is equivalent to the projection of vector b onto the manifold defined

by the span of A matrix column vectors. However, since this projection is constrained to

non-negative values of c∗, the true objective function cannot appear if the inner product

between the gradient of the pivot objective function (∇fi∗) and the gradient of the true

one (∇f6) is positive.

To clarify, let us consider the case of a basis with two objective functions only, {fi∗ , f6}.
We have

(sign〈∇fi∗ ,∇f6〉 > 0) ⇒ ∃ζ > 0, ∇fi∗ = ζ∇f6 +∇f⊥i∗
⇒ ∃ζ > 0, ∇fi∗ − ζ∇f6 = ∇f⊥i∗

(3.8)

where ∇f⊥i∗ is such that 〈∇f⊥i∗ ,∇f6〉 = 0. In this case, the imputed composite function

weights are c = {1, −ζ} which contradicts the constraint ci ≥ 0. Satisfying the latter

positivity constraints, the only feasible solution is ζ = 0. The inner product γ is negative

for i∗ = 2 or 3, therefore objective function f6 can appear in the imputed composite

criterion. To the contrary, the inner product γ is positive for i∗ = 1, 4, 5, 7 or 8, therefore

objective function f6 cannot appear in the imputed composite criterion.

This emphasizes the necessity to test each basis objective function as a potential pivot

and to retain the solutions which minimizes both the residuals norm and the RMSE.

The computation time for realizing these tests on a Intel(R) Core(TM) i7-3630QM

CPU@2.40GHz breaks down as follows. The computation of the eight gradients using

finite differentiation takes less than 10s. Solving the eight inverse problems (2.22) (one

per pivot) takes less than 25s. Solving one DOC for either generating the artificial

data or validating the imputed composite objective function takes an average of 1200s.

Finally, once the data are generated, solving one inverse optimal control using our IAOC

algorithm, i.e. computing gradients and solving problem (2.22) takes less than 35s.
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These results clearly demonstrate the nice performance of the inverse approximately

optimal approach.

3.5 Experimental results

In this section, we use our algorithm as defined in Sect. 3.3.2 to analyze actual joint

position data gathered during the screwing task described in Sect.3.2 using the objective

functions basis given in Table 3.3.

The outcomes of the IAOC algorithm are gathered in Table 3.6. Each line contains

the results obtained for a given choice of pivot i∗, as indicated in the first column. It

also contains the imputed composite criterion thus obtained, where the contributions

are given as in (4.1), the residuals norm as defined in (3.4) and the RMSE as defined

in (3.5). The DOC problem (3.3) performed for computing the RMSE uses the knots

vector fitting the actual data as initial guess for the optimization algorithm.

Using the residuals norm as a measure of consistency, Table 3.6 clearly shows two possible

candidates :

• The best candidate, i.e. the one which yields minimal residual norm, is R6. It uses

f6 as pivot and obtains 100% contribution for the geodesic criterion;

• The second best candidate with a small residual norm, 10 times larger, is R78. It

uses f7 as pivot and yields 99.66% contribution for the energy expenditure and

0.34% contribution for the effort criterion.

The other combinations all exhibit larger residuals norms (more than 20 times the norm

obtained for the best candidate) and should be discarded.

Now, using the RMSE as a measure of consistency, Table 3.6 also clearly shows two

possible candidates :

• The best candidate, i.e. the one which yields minimal RMSE is R78.

• The second best candidate with an acceptable RMSE is R6.

The other combinations all exhibit very large RMSE (10 times the best RMSE) and

should be discarded.

The first conclusion is that the two measures derive consistent results as they both

exclude all results computed using pivot i∗ ∈ I \ {6, 7} and both point at candidate
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Table 3.6: The IAOC algorithm results obtained for actual data. A = [∇fi], i ∈
{1, . . . , 8} \ {i∗}, b = −∇fi∗

i∗
Contribution [%] 1

n‖∇L(ĉ)‖ RMSE [deg]
J1 J2 J3 J4 J5 J6 J7 J8

1 8.89 0 0 6.02 0 0 85.09 0 275.122 21.93
2 0 79.18 0 20.82 0 0 0 0 11239 24.15
3 0 0 68.03 31.97 0 0 0 0 8 20.58
4 0 0 0 99.92 0.01 0 0 0.07 0.3 35.61
5 0 0 0 30.61 58.78 0 10.62 0 2.245 21.58

6 0 0 0 0 0 100 0 0 0.005 4.07 R6

7 0 0 0 0 0 0 99.66 0.34 0.059 2.56 R78

8 0 0 0 19.82 0 0 77.99 2.19 867.145 27.85

solutions R6 and R78 as obtained with pivot i∗ ∈ {6, 7}. For the latter candidate

solutions, Table 3.7 shows the RMSE repartition onto of the four joint angles. The

table also shows the correlation coefficient between the reconstructed trajectories and

the actual one, a coefficient we use as a measure of similarity.

Since the RMSE obtained for the two candidate solutions, R6 and R78, are quite close,

and since the DOC (3.3) is convex, this suggests that almost any combination of the two

candidate solutions may also be a solution. To assess this claim, we have performed DOC

computations for several combination of the two solutions. The results are gathered in

Table 3.7 : combination T1 ≡ 75%R6 + 25%R78, T2 ≡ 50%R6 + 50%R78 and T3 ≡
28%R6 + 72%R78. Figures 3.4-3.5 gather all the joint trajectories reconstructed along

with the actual data. These results suggest that all the combinations of R78 and R6

tested could be acceptable by considering an RMSE bound of 7 degrees.

Nevertheless, the smallest residuals norm obtained with the actual data (5·10−3, solution

R6) remains quite large when compared to the best residuals norm obtained with the

artificial data (4 · 10−6, Table 3.5, line i∗ = 6). This suggests that the pre-selected

objective functions basis is incomplete and may be enriched with other criteria.

To summarize, the inverse approximately optimal control approach presents a significant

advantage when compared with the results of the bi-level method used on this paradigm

and as reported in [44]. The inverse approximately optimal approach results can nat-

urally provide a subset of composite cost functions that contribute to the movement.

Within the subset selected, one could further investigations by solving direct optimal

control problems and determine which combination is the best in term of average RMSE,

for instance. Moreover, the structure of the bi-level approach yields an unique compos-

ite criterion without any proof that this is the global minimum while requiring a huge

computation time, reported larger than 30h on this paradigm [44].
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Table 3.7: RMSE evaluation for DOC using candidate solutions R6 and R78 and
combination T1 = 75%R6+25%R78, T2 =50%R6+50%R78 and T3 = 28%R6+72%R78

R6 T1 T2 T3 R78

RMSE Corr RMSE Corr RMSE Corr RMSE Corr RMSE Corr
[deg] [deg] [deg] [deg] [deg]

θ1 2.06 0.99 10.05 0.97 1.75 0.99 1.66 0.99 1.11 0.99

θ2 1.64 -0.42 0.96 -0.10 0.96 0.05 0.97 -0.18 1.19 0.26

θ3 6.52 0.60 4.88 0.79 4.57 0.81 4.62 0.81 4.73 0.81

θ4 4.11 0.99 5.74 0.98 2.08 0.99 1.89 0.99 1.15 0.99

RMSE total
4.07 6.30 2.70 2.67 2.56

[deg]

Figure 3.4: The observed angle displacements (red line) and the estimated angle dis-
placement(doted blue line and doted green line) while minimizing the exhibited criteria

from the inverse optimal control while using f7 and f6 as pivots
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Figure 3.5: The observed angle displacements (red line) and the estimated angle
displacement: doted green line in the T1 case, doted blue line in the T2 case and the

doted magenta line in the T3 case
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3.6 Summary

In this chapter, we introduced a general procedure to efficiently impute the composite

criterion that can explain the human movement. We used our procedure to analyze the

human arm movement within an industrial screwing task.

We manage to successfully solve the inverse optimal control problem in a very fast

and efficient way. Our procedure, built upon the inverse approximately optimal control

approach, yields results 3000 times faster than the bi-level approach, when used on the

same experimental paradigm. Including the verification steps, consistent results can be

obtained more than 60 times faster than the bi-level approach.

This significant reduction in computation time makes it now possible to consider using

the inverse optimal control approaches for online applications. One can apply this new

procedure for inverse optimal control within clinical studies involving a large number of

patients as well as within ergonomic studies in industrial environments.

The reduction in computation time will also make it possible to embed motion capture

systems with online and adaptive capabilities for quantitative movement analysis based

on inverse optimal control approaches. The inverse approximately optimal control ap-

proach is able to provide within 35s the subset of the weight coefficients involved in the

human movement.

Moreover, our procedure can naturally exhibit a set of candidate solutions for the com-

posite criterion, if they exist. Therefore, it may be used as a fast on-line classification

tool to build human movement categories.

This method is to be considered a good candidate for clinical studies with a large number

of patients as well as for ergonomic studies in industrial environment to evaluate the

impact of exoskeletons or specific movements in assembly lines [43]. Indeed, in the

clinical studies, the assessment of movement rehabilitation protocol on patients could

use this approach to provide the therapist with a fast result showing the trend in the

way of recovery. In conclusion, we can underline the efficiency of the method to provide

quickly a subset of cost function candidates attached to a specific movement. Then, the

result can be refined by using forward optimal control to find the best combination of

all contributions minimizing the average of RMSE.

Finally, this significant reduction in computation time clears the limitations preventing

from using a basis with a larger number of objective functions. It is now tractable

to consider some other objective function basis, for instance by computing one basis
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objective function per joint angle, thus allowing to break down the contribution of each

joint angle optimal control model to the whole movement.



Chapter 4

The analysis of the postural

coordination in a visual tracking

task

4.1 Related literature

In the study of the human movement, the experimental paradigm consisting in tracking

a visual moving target in a balanced stance has often been a subject of interest [77, 78,

79, 80, 81].

[78] considered a visual tracking task in the sagittal plane and examined the full body

joint coordination. The experiment implied having participants moving back and forth

in the sagittal plane in order to track a virtual target. This experimental paradigm em-

phasized key properties for the human postural control system, such as phase transition,

multistability, critical fluctuations, hysteresis, and critical slowing down.

In [82], two postural strategies are observed when the whole body reacts to an external

perturbation: ankle and hip strategies. In the ankle strategy, the oscillation of the

body is around the ankle joint, and in the hip strategy the upper body leans backward

and forward. This result inspired the development of balance controllers that helped

humanoids recover from a disturbances while still maintaining an upright posture [83].

The latter it also presented a model tracking control algorithm to make humanoids

robots behave in a similar way to humans.

After a more detailed study, the experimental paradigm proposed by [78], [84] imple-

mented the obtained coordination modes on the HOAP3 and HRP2 humanoid robots.

40
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They show that the in-phase mode corresponds to the minimum energy mode, and that

only the anti-phase mode was able to maintain balance for high frequencies. A control

framework for humanoid robots was presented in [85]; it includes both a balance and a

tracking controller that use all joints simultaneously to track motion capture data while

maintaining balance. [86] developed a standing balance controller that handles unex-

pected pushes. The linear quadratic regulator was compared to an optimal controller,

using the same optimization criterion, to demonstrate the performance of their proposed

method.

An offline optimization of a dynamical model prediction is proposed in [80] in order

to analyze the experimental findings reported in [78]. The joint angles trajectories

were approximated with a Fourier series, then an integral torque change criterion was

minimized under a balance constraint. The results show that the optimization process

predicts two coordination modes that depended on the target’s motion frequency: the

ankle strategy (or the in phase mode) and the hip strategy (or the anti phase mode), as

discussed above. They also evaluate the influence of two constraints, an environmental

and intentional one, on postural strategy.

Taking into account these remarks, [87, 78] analyzed the ankle-hip joint relative phase

transition in an experimental paradigm consisting in tracking a moving target with the

head while maintaining balance (we will refer to this experience as Bardy’s paradigm),

and found that a phase shift is produced as a response to the biomechanical system

constraints, namely environmental i.e. support surface properties, intrinsic i.e. height

of different body segments, height of center of mass or intentional i.e. task constraint.

Bardy’s paradigm, studied by several researchers [80, 81, 87, 78], brings to light impor-

tant aspects on human postural control system such as: phase transition, multistability,

hysteresis and critical slowing down [78].

[80] studied Bardy’s paradigm, in an open loop situation. They investigated whether

the postural planning process is related to an optimization method that minimizes a

dynamic criterion under balance constraints. Indeed their results confirmed Bardy’s

conclusions: in-phase and anti-phase coordination modes were found, visual task was

achieved while maintaining balance and also it was emphasized that the phase shift was

induced by the balance constraint.

In this chapter, we aim to provide a class of criteria that can explain Bardy’s paradigm.

We are interested in doing this, because in the previous studies this paradigm was

analyzed by the means of an optimization process that minimized different criteria,

torque or torque change, where similar results were obtained.
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In order to do so, we collected experimental data and we applied the inverse approxi-

mately optimal control, as described in Chapter 2 to the Fourier interpolated collected

data. Also, we propose a richer basis of criteria, composed of five optimal models, i.e.

the kinematics, the dynamics, the neural and the energetic models, already discussed in

Chapter 3 along with one criterion that ensures balance, keeping the Center of Pressure

(CoP) within the base of support (BoS).

4.2 The postural coordination in a visual tracking task

4.2.1 The task description

Following previous studies [88, 79], the experiment consists in tracking a moving target

with the head while standing. Participants stood on a force platform in front of a

physical target moved by a linear motor in antero-posterior direction, with the knees

locked and the soles constantly in contact with the ground (Fig. 4.1-4.2).

(a) t=0 sec (b) t=1 sec (c) t=2.5 sec

Figure 4.1: The human typical experiments at 0.2Hz. Coordinative in-phase small
displacement of the ankle and the hip.[2]

(a) t=0 sec (b) t=0.5 sec (c) t=1.3 sec

Figure 4.2: The human typical experiments at 0.6Hz. Coordinative anti-phase dis-
placement of the ankle and the hip. The hip amplitude is larger than the ankle one.[2]
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The experiment was performed on 10 healthy male subjects, 1 trial for each, with an

average age of 25, average weight of 75kg and average height of 1.79m. Target motion

was sinusoidal with 10cm as amplitude, the frequency increases from 0.1Hz to 0.65Hz

by 0.05Hz steps and during 12 periods. To capture the joint positions, a motion capture

system (VICON NEXUS) was used, with 8 cameras (MX13) tracking 15 makers on the

right side of the subject.

Figure 4.3: [2] Typical human experimental results. (a) The ankle/hip relative phase,
showing a transition frequency around 0.4Hz (b) Peak to peak joint positions. (c) The

estimation of joint torque amplitudes.

4.2.2 Experimental measurements

Fig.4.3 shows typical results for a representative subject (weight 75kg, height 1.80m). In

Fig. 4.3a, the average values of the relative phase (Hilbert-transformed) between ankle

and hip positions are represented as a function of the frequency step. The depicted

error bars correspond to the standard deviations during the 12 oscillations achieved at

each frequency step. A transition is observed from in-phase to anti-phase mode around

0.4Hz. Joint positions are presented on Fig. 4.3b by minimum and maximum values.
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Each point is the average value of the maximum (or minimum) joint position reached

during the 12 oscillation periods performed at each frequency step. For the in-phase

mode, i.e. at low frequencies, the joint positions amplitude difference are small, with

individual differences in terms of joint amplitude. At the transition frequency, the ankle

amplitude becomes very small, and the relative phase between ankle and hip is difficult

to estimate. This strong reduction of the ankle amplitude is typical for the human

phase transition [88, 79, 89]. The hip amplitude is larger than the ankle amplitude for

the anti-phase mode as mentioned in [88, 79, 89]. Fig. 4.3(c) depicts average values for

torque amplitude estimation at each frequency step. Torque values were estimated by

using the inverse dynamical model of the double inverted pendulum. They indicate a

larger ankle torque amplitude for in-phase mode and a larger hip torque amplitude for

anti-phase in agreement with the ankle and hip strategy reported in [82] and by Runge

et al. [90].

These observations hold for all participants and are in accordance with [88, 91, 89],

even though the actual transition frequency and joint amplitudes depend on the specific

subject body type.

In order to do the average joint displacements, the 10 joint measurements collected for

the 10 subjects will be separated into 2 sets. This separation was done after analyzing

the way the subjects behaved during the trials. We observed that 6 of the subjects have

similar behavior so they will be part of the first set, while the remaining 4 will be part

of the second set due to their similar behavior during the trial.

For each set we will take the average joint displacements and we will analyze only the

fourth period out of the total of 12 oscillations achieved at each frequency step, because

during the 12 oscillations the subjects behavior was constant.

4.3 The choice of the model

When analyzing the human balance control, the human body can be modeled as one or

multi-dimensional inverted pendulum chain.

The one-dimensional inverted pendulum modeling ([92], [93], [94]) is accepted if the

movements in the other joints are artificially blocked ([93]), so the biomechanical system

will be described only by-one variable: the angle of the ankle joint. Even so [95] argued

that a single chain inverted pendulum approximation is not sufficient to completely

explain balance properties, even for standing balance. In this regard, a common model
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(a)

(b)

Figure 4.4: The fourth period achieved at each frequency step (0.1Hz: 0.05 :0.65Hz)
for the measured joint displacements and its average. (a) corresponds to the first set

and (b) to the second one

used in several studies is the double inverted pendulum model [96, 80, 97]. Also a three-

dimensional inverted pendulum chain was used, by including the knee [98], to model

human body.

Modeling the human body as a multi-dimensional inverted pendulum chain permitted

to study human postural responses for simple task experimental paradigms as forward

pushes applied to the back of a standing subject [99], fast backward perturbations to

the force platform while human quite stance [97] or sudden perturbations of humans in

quite stance by backward displacement of the support platform [98] and also for dual-task

experimental paradigm as tracking a target with the head while balance [96, 81, 80, 100].
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When modeling human body as multi-dimensional inverted pendulum chain, dependency

of torques on joint angles and angular velocities is determined by the biomechanical

model.

4.3.1 The biomechanical model

During the visual head tracking task, the biomechanical model is represented as a two-

link inverted pendulum (DIP). The two rigid links represent the head, arms, torso, both

legs and both feet. The head, arms and torso were represented by a link according to

the minimal motion observed between these segments [101].

Figure 4.5: The double inverted pendulum representation for postural coordination
modeling in sagittal plane

The nonlinear motion equations have the following form:

M(q, q̇)q̈ + C(q)q̇ +G(q) = τ (4.1)

Where q, q̇, q̈ are the vector of joint angles, the angular velocities and accelerations, τ is

the vector of joint torques, the inertia matrix M , the coriolis matrices C and the gravity

vector G of the double inverted pendulum are composed of the mass m, length of the

segments l, k, center of mass position kl, gravity constant g.

The nonlinear motion equations were linearized with respect to the horizontal axis [99]:

Mq̈ −Gq = τ (4.2)

where M is the inertial matrix and G is the gravity matrix. τ is the joint torque where

muscles act as actuators.
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4.3.2 The balance constraint

The balance, maintained during the tracking task in the sagittal plane, depends on

the position of the Center of Pressure (CoP) in the Base of Support (BoS). Balance is

ensured when the sum of total momentum is equal to zero, hence:

FverXCoP + Fhord− τ1 −m0k0g = 0 (4.3)

where Fver and Fhor represent the vertical and horizontal ground reaction force compo-

nents and τ1 is the ankle torque.

These two components can be calculated using Euler’s equations as showed in [102].

They can be related to the change of the respective horizontal and vertical linear mo-

menta of the whole system at each time t.
Fver = (m1k1l1 +m2l1)cos(q1)q̈1 +m2k2l2cos(q1 + q2)(q̈1 + q̈2)− (m1k1l1 +m2l1)sin(q1)(q̇1

2)

−m2k2l2(sin(q1 + q2))(q̇1 + q̇2)
2 + (m0 +m1 +m2)g

Fhor = −(m1k1l1 +m2l1)(sin(q1))q̈1 −m2k2l2(sin(q1 + q2))(q̈1 + q̈2)

−(m1k1l1 +m2l1)(cos(q1))q̇21 −m2k2l2(cos(q1 + q2))(q̇1 + q̇2)
2

The position of the CoP on the x-axis is finally given by

XCoP =
τ1 +m0k0g − Fhord

Fver
(4.4)

4.4 The inverse optimal control problem solution

In this section, we apply the IAOC algorithm to experimental data in order to recover

the class of criteria that can explain the task.

Our focus is to do this in the context of humanoid robot control in order to imple-

ment it on a humanoid robot and to give it the ability of accomplishing the task in

an autonomous way. One can find in literature [11], a HRP2 robot that is capable

of generating locomotion trajectories by itself, by solving the inverse optimal control

via ’bi-level’ optimization methods. This approach worked and the HRP2 robot is the

prove of it. Still due to the expensive computationally time it is difficult to be used for

online applications. As underlined in Chapter 3, our IAOC algorithm has an efficient

computational time, so we will analyze the angular displacements collected during the



Chapter 4. Postural coordination in a visual tracking task 48

steady-state postural sways by it means. To do this, we need to formulate the direct

optimal control (DOC) problem and to underlie KKT optimality conditions.

4.4.1 The direct optimal control problem

The direct problem is formulated as a planning problem, where joint angle trajectories

are the ones which minimize a given composite criterion and satisfy the constraints.

To curb the planning problem complexity, we will use joint trajectories described by a

N-harmonic Fourier series interpolation as done in [80]. Finally, the optimal planning

problem will be solved with respect to the 2(2n + 1) coefficients of the Fourier series

vectors Fc = [a01, . . . , an1, b01, . . . , bn1, a02, . . . , an2, b02, . . . , bn2].

Interestingly, Fourier interpolation will act as a filtering procedure and should prevent

any distortion in the estimation that can be due to the presence of correlated noise in

the regressor of the least square problem (2.22). In addition, the angular positions and

their derivatives are deduced afterwards from the coefficients of the Fourier series by

using n = 3 harmonics in the optimization research.

Finally, the direct optimization problem is formulated as follows: ”Find the 2(2n +

1) coefficients of Fourier vector Fc, such as the Fourier-interpolated joint trajectories

described by the coefficients of Fourier can achieve the postural sway during head tracking

task and minimize a given composite criteria while the head had to move in phase and

with the same amplitude with the target”.

The direct optimal control problem that needs to be solved comes down to solving the

following optimization problem:

minimize
Fc

8∑
i=1

cifi(Fc),

subject to hj(Fc) = 0 j = 1, . . . , N.

(4.5)

where N is the number of time samples.

Note that now the decision variables are the Fourier coefficients gathered in vector

Fc ∈ <n. The constraint and objective functions depends on the interpolated joint angle

trajectories, which in turn are function of Fourier coefficients vector Fc.
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4.4.1.1 The equality constraints

The head had to move in phase and with the same amplitude with the target , during

the postural sway:

hj(Fc) = −headrefx,j + hx,j , j = 1 : N, (4.6)

where the head position on horizontal axes hx is calculated using the direct kinematic

model:

hx,j = l1sin(θ1,j) + l2sin(θ1,j + θ2,j), j = 1 : N (4.7)

headrefx represents the subject head position on the horizontal axes, θ1 and θ2 are the

ankle and hip displacements, while l1,l2 are the lower and upper body lengths and N

the number of time samples.

4.4.1.2 The choice of the objective functions

The selected optimal models used as a basis for the composite criterion are the Cartesian

jerk criterion which is related to the motion smoothness, the joint angle acceleration and

angle jerk criteria. They characterize joint angle motion smoothness, and the torque,

torque change, energy (absolute work of forces) and effort related criteria, already dis-

cussed and used in Chapter 3. To ensure that the center of pressure remains within the

base of support i.e to assure balance during the task, another criterion will be consid-

ered to the basis of criteria, consisting in the difference between the center of pressure

and the middle value of the base of support. The eight basis objective functions are

gathered in table 4.1 and the list of criteria is composed of 7 differentiable functions and

one non-smooth (non-differentiable) represented by the energy expenditure.

To summarize, a composite criterion will be build from this eight basis objective func-

tions and the inverse optimal control algorithm will estimate among the Lagrange coef-

ficients, the weight corresponding to each criterion proposed in table 4.1.
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Table 4.1: The pre-selected basis of objective functions;
N : number of time samples

Criterion Cost function (fi) References

Torque f1 =

∑N
i=1

∑2
i=1 τ

2
ij

N [62]

Torque change f2 =

∑N
i=1

∑2
i=1 τ̇

2
ij

N [63]

Effort f3 =

∑N
i=1

∑2
i=1 τ̈

2
ij

N

Energy f4 =

∑N
i=1

∑2
i=1

∣∣∣θ̇ij τij ∣∣∣
N

Center of pressure f5 =
∑N

i=1(XCoP−
xa−xb

2
)2

N

Angle acceleration f6 =

∑N
i=1

∑2
i=1 θ̈

2
ij

N

Angular jerk f7 =

∑N
i=1

∑2
i=1

...
θ

2
ij

N

Cartesian jerk f8 =
∑N

i=1

...
headx

2
+

...
heady

2

N
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4.4.1.3 The postural coordination responses: the in-phase and the anti-

phase modes

In this subsection we want to see the dependance between the Lagrangian and the

Fourier coefficients by representing the contour of the obtained Lagrangian value for

100 trajectories. We generated these trajectories by minimizing the f1 criterion (with

different values for the Fourier coefficients Fc). As it can be seen in fig. 4.6 two transition

modes were obtained: in-phase and the anti-phase one, this being in accordance with

previous study [100].

Figure 4.6: Lagrangian contour for 100 different values of Fourier’s coefficients

This paradigm is a bistable one, due to the phase mode and the anti-phase mode, and

it is known to be locally convex, only at the minimum values. In this study, we are only

interested in locally analyzing it, at the in-phase mode and the anti-phase one.

4.4.2 The inverse approximately optimal control problem

Now, we can address the inverse approximately optimal control problem using the

method described in Chapter 2.

We specify the matrix A ∈ <m×n as in Eq.(2.19), which is composed of the criteria

and equality gradient’s vectors with respect to the Fourier’s coefficients, and the vector

b ∈ <m as in Eq.(2.20) which contains the chosen objective function gradient vector to

act as pivot i∗. For this paradigm the A matrix is a ’wide’ one (has more columns than
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rows m ≺ n) so the criteria will be imputed by solving the underdetermined problem

(2.23).

As previously discussed, the choice of the pivot relies on prior knowledge of the wanted

composite criterion. In order to derive accurate conclusions when analyzing the postural

sway during head tracking task, we consider that there is no such prior knowledge. As

a consequence, we will have to consider all the basis function as potential pivot. Then,

comparing the solutions of problem (2.23) we will keep the solutions that show good

consistency with the experimental data, those which minimize both the residuals norm

(3.4) and the root mean square error (RMSE) (3.5) described below.

4.5 Evaluation on artificial data

In this section, we perform the evaluation of the performance of our method using

artificial data. Using the 2 DOF dynamical model of the task (introduced in Sect. 4.3),

we solve the DOC problem (4.5) with vector −→c tuned so that only one single basis

objective function is active at the time. We come with eight planned joint trajectories,

each minimizing a single basis objective function given in Table 4.1.

When analyzing the correlation (see eq (2.24)) between each calculated criteria gradient’s

vectors we found strong correlation between them, and we formed groups of correlated

criteria gradient’s vectors for each artificial data generated while the in-phase mode

(freq = 0.1Hz) and the anti-phase mode (freq = 0.5Hz).

All the criteria gradient’s vectors that are correlated and the ones that were kept for the

next steps of the IAOC algorithm have been gathered in table 4.2:

• For in-phase mode the followings were obtained:

1. minimizing fi, i = 2, 3, 5, 6, 7, 8: for these cases were found a strong correla-

tion between all criteria gradient’s vectors, therefore any of these criteria can

be used to explain the artificial optimal trajectories generated by minimizing

any fi.

2. minimizing fi, i = 1, 4: two groups of correlated criteria gradient’s vectors

were reported, therefore for this cases we’ll keep only one criterion from each

group and we continue testing the IAOC algorithm, as following: we keep

(∇f1, ∇f8) when working with data generated by minimizing f1 and (∇f1,
∇f4) when working with data generated by minimizing f4.



Chapter 4. Postural coordination in a visual tracking task 53

Table 4.2: The groups of correlated gradients. For simplicity we use ∇ instead of ∇Fc

in-phase mode 0.1Hz

Data generated by
Groups of correlated gradients

Retained gradients
G1 G2 G3

min f1 ∇f1 to ∇f7 ∇f8 ∇f1,∇f8
min f2 ∇f1 to ∇f8 ∇f2
min f3 ∇f1 to ∇f8 ∇f3
min f4 ∇f1 to ∇f3, ∇f5 to ∇f8 ∇f4 ∇f1,∇f4
min f5 ∇f1 to ∇f8 ∇f5
min f6 ∇f1 to ∇f8 ∇f6
min f7 ∇f1 to ∇f8 ∇f7
min f8 ∇f1 to ∇f8 ∇f8

anti-phase mode 0.5Hz

Data generated by
Groups of correlated gradients

Retained gradients
G1 G2 G3

min f1 ∇f1 to ∇f5, ∇f8 ∇f6,∇f7 ∇f1,∇f6
min f2 ∇f1 to ∇f5, ∇f8 ∇f6,∇f7 ∇f2,∇f6
min f3 ∇f1 to ∇f5, ∇f8 ∇f6,∇f7 ∇f3,∇f6
min f4 ∇f1 to ∇f5, ∇f8 ∇f6,∇f7 ∇f4,∇f6
min f5 ∇f1 to ∇f3, ∇f5, ∇f8 ∇Fcf6,∇f7 ∇f4 ∇f4,∇f5,∇f6
min f6 ∇f1 to ∇f3, ∇f5, ∇f8 ∇f6,∇f7 ∇f4 ∇f1,∇f4,∇f6
min f7 ∇f1 to ∇f3, ∇f5, ∇f8 ∇f6,∇f7 ∇f4 ∇f1,∇f4,∇f7
min f8 ∇f1 to ∇f3, ∇f5, ∇f8 ∇f6,∇f7 ∇f4 ∇f4,∇f6,∇f8

• and for the anti-phase mode the results are the following:

1. minimizing fi, i = 1, 2, 3, 4: two groups of correlated criteria gradient’s vectors

were found and we will keep (∇f1, ∇f6) when working with data generated by

minimizing f1, (∇f3, ∇f6) when working with data generated by minimizing

f3 and (∇f4,∇f6) for minimizing f4.

2. minimizing fi, i = 5, 6, 7, 8: three groups of correlated criteria gradient’s vec-

tors were found and we will keep: (∇f5, ∇f6, ∇f4) when working with data

generated by minimizing f5, (∇f1, ∇f6, ∇f4) when working with data gener-

ated by minimizing f6, (∇f1, ∇f7, ∇f4) when working with data generated

by minimizing f7 and (∇f8, ∇f6, ∇f4) when working with data generated by

minimizing f8.

For each artificial data generated, we apply our algorithm IAOC as defined in Chapter

3. We applied the steps of the algorithm to the kept criteria gradient’s vectors, proposed

in table 4.2, and the results were gathered in table 4.3. The first column indicates the

criteria that were minimized to obtain the artificial data, the second one the used A

matrix, while the b vector is presented in the table’s caption, the third one contains the
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Table 4.3: The results obtained on artificially generated optimal trajectories;b =
−[∇Fc

fi∗ ]. For simplicity we use ∇ instead of ∇Fc

in-phase mode 0.1Hz

A i∗ γ 1
n′ ‖∇L(ĉ)‖ RMSE [deg]

min f1
[∇f8 ∇hj ] 1 + 5.6e−07 0
[∇f1 ∇hj ] 8 + 0.029 0.1

min f2 [∇hj ] 2 1.1e−08 0

min f3 [∇hj ] 3 4.9e−13 0

min f4
[∇hj ] 1 + 0.026 0.1
[∇hj ] 4 + 6e−05 0

min f5 [∇hj ] 5 3.5−15 0

min f6 [∇hj ] 6 6.1−15 0

min f7 [∇hj ] 7 2.3−15 0

min f8 [∇hj ] 8 2.4−13 0

anti-phase mode 0.5Hz

A i∗ γ 1
n′ ‖∇L(ĉ)‖ RMSE [deg]

min f1
[∇f6 ∇hj ] 1 + 5.3e−07 0

[∇Fcf1 ∇hj ] 6 + 9.2e−05 0

min f2
[∇f6 ∇hj ] 2 + 9.2e−06 0
[∇f2 ∇hj ] 6 + 0.2 0.06

min f3
[∇f6 ∇hj ] 3 + 2e−06 0
[∇f3 ∇hj ] 6 + 0.003 0.06

min f4
[∇f6 ∇hj ] 4 + 1.5e−07 0
[∇f4 ∇hj ] 6 + 0.2 0.06

min f5

[∇f5 ∇f6 ∇hj ] 4 + 0.2 0.06
[∇f4 ∇f6 ∇hj ] 5 + 6e−06 0
[∇f4 ∇f5 ∇hj ] 6 + 1e−05 0.06

min f6

[∇f4 ∇f6 ∇hj ] 1 + 1.9e−05 0
[∇f1 ∇f6 ∇hj ] 4 + 0.2 1.7e−04

[∇f1 ∇f4 ∇hj ] 6 + 1.9e−07 0

min f7

[∇f4 ∇f7 ∇hj ] 1 + 1.9e−05 0.06
[∇f1 ∇f7 ∇hj ] 4 + 0.2 0.06
[∇f1 ∇f4 ∇hj ] 7 + 1e−06 0

min f8

[∇f6 ∇f8 ∇hj ] 4 + 0.2 0.06
[∇f4 ∇f8 ∇hj ] 6 + 0.0043 0.06
[∇f4 ∇f6 ∇hj ] 8 + 6e−08 0

pivot used, the fourth column contains the sign of the inner product (proposed in eq.

(3.7)) while the last two columns contain the residuals norm and the RMSE values.

The contribution of each basis objective function, given as relative contribution in per-

centage computed as in (4.1), was found of 100% for the objective function used as pivot,

due to the positive sign found in all the presented cases.

Also, table 4.3 clearly shows that when using as pivot the criterion that was minimized

to obtain the artificial data the residuals norm is the smallest and the RMSE is equal
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to 0.

Let’s take for example the trajectory generated while minimizing f1. We kept only f1

and f8 as potential criteria (the other ones were found correlated, as explained above).

When we tested the approach, the residuals norm and RMSE has the smallest value

when f1 is used as pivot. What it is interestingly is that when f8 is used as pivot, it

obtained a RMSE equal to 0.1, even if its residual norm values is 4 times larger than

when f1 was used as pivot. Even so, our algorithm will discharge the case when f8 is

used as pivot, keeping only the case where the residual norm and RMSE values are the

smallest i.e. the one when f1 is used as pivot that is the correct one.

This results clearly show the nice performances of the inverse approximately optimal

approach.

4.6 Experimental results

The focus of our analysis in this section, is the use of the IAOC algorithm onto the

two average joint displacements presented in section 4.2.2 and represented in fig.4.4(a)

and fig.4.4(b). Out of all the shown frequencies for the two average joint displacements,

we are only interested in analyzing the in-phase mode (freq = 0.1Hz), the transition

frequency between in-phase and anti-phase mode (freq = 0.4Hz) and the anti-phase

mode (freq = 0.6Hz).

4.6.1 One at the time criterion analysis

Firstly, we test the IAOC algorithm onto each criterion from table 4.1 and we solve

a direct optimization problem by minimizing them and by comparing the estimated

trajectories with the measured ones.

The DOC problem, performed for computing the RMSE values, uses the Fourier’s co-

efficients that fit the actual data to which a 5% of error is added as initial guess for

the optimization problem. In table 4.4 and table 4.5, the obtained results are gathered

and it can be seen that for both sets of average joint displacements, each criterion from

table 3.3 exhibits small residuals norm values. This means that each criteria can be

a good candidate for explaining the two sets of average joint displacements. Also, by

using the RMSE values as a measure of consistency and accepting an estimation error

smaller than 2 degree, each criterion from the chosen pre-selected basis of criteria can be

considered potential candidate to explain the observations. The fig. 4.8 and the fig. 4.7
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(a)

(b)

(c)

Figure 4.7: The 1st set of average joint displacements: Measured average joint dis-
placements (black trajectory for the hip joint displacement and red trajectory for the
ankle joint displacement) with the estimated joint displacements while minimizing each
criterion from table 3.3 (doted blue trajectory for the ankle joint displacements and
doted green trajectory for the hip joint displacements), for (a) the in-phase mode
(0.1Hz), (b) the in-phase mode to the anti-phase mode shift (0.4Hz) and (c) the anti-

phase mode (0.6Hz)
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(a)

(b)

(c)

Figure 4.8: The 2nd set of average joint displacements: Measured average joint dis-
placements (black trajectory for the hip joint displacement and red trajectory for the
ankle joint displacement) with the estimated joint displacements while minimizing each
criterion from table 3.3 (doted blue trajectory for the ankle joint displacements and
doted green trajectory for the hip joint displacements), for (a) the in-phase mode
(0.1Hz), (b) the in-phase mode to the anti-phase mode shift (0.4Hz) and (c) the anti-

phase mode (0.6Hz)



Chapter 4. Postural coordination in a visual tracking task 58

Table 4.4: The 1st set of average joint displacements: Results while testing the IAOC
algorithm and the DOC for each of the criterion presented in table 3.3, consisting in the
residuals norm and RMSE values for the in-phase mode (0.1Hz), the in-phase mode to

the anti-phase mode shift (0.4Hz) and the anti-phase mode (0.6Hz)

A = ∇Fchj

b = −∇Fcfi∗
0.1Hz 0.4Hz 0.6Hz

j = 1 : N

1
n‖∇L(ĉ)‖ RMSE 1

n′ ‖∇L(ĉ)‖ RMSE 1
n′ ‖∇L(ĉ)‖ RMSE

i∗ = 1 3.4e−12 0.23 3.5e−10 1.11 5.2e−10 1.14
i∗ = 2 6.1e−08 1.7e−05 2.1e−05 1.08 1.1e−04 1.14
i∗ = 3 5e−13 1.5e−08 1.4e−08 0.1 9.8e−08 1.14
i∗ = 4 3.2e−08 2.3e−06 6.8e−06 3.1e−04 1e−05 4.2e−05

i∗ = 5 9.8e−15 0.001 2.4e−12 0.11 1.7e−12 1.05
i∗ = 6 3.7e−15 0.48 1.6e−12 0.12 6e−12 0.003
i∗ = 7 1.6e−15 0.57 1.2e−11 1.6e−05 7.8e−11 1.1
i∗ = 8 2e−13 0.10 8e−09 0.11 3.9e−08 3e−06

Table 4.5: The 2nd set of average joint displacements:Results while testing the IAOC
algorithm and the DOC for each of criterion presented in table 3.3, consisting in the
residuals norm and RMSE values for the in-phase mode (0.1Hz), the in-phase mode to

the anti-phase mode shift (0.4Hz) and the anti-phase mode (0.6Hz)

A = ∇Fchj

b = −∇Fcfi∗
0.1Hz 0.4Hz 0.6Hz

j = 1 : N

1
n‖∇L(ĉ)‖ RMSE 1

n‖∇L(ĉ)‖ RMSE 1
n‖∇L(ĉ)‖ RMSE

i∗ = 1 9.3e−12 6e−07 2.3e−09 0.09 9.7e−09 1.13
i∗ = 2 3.8e−07 0.43 4.3e−05 1.21 8.7e−05 1.13
i∗ = 3 1.3e−12 0.78 9.9e−08 1.2 1.9e−06 1.88
i∗ = 4 2e−07 0.1 3.7e−06 0.3 3.1e−05 0.64
i∗ = 5 2.1e−14 0.05 5e−12 3.5e−05 1.5e−11 9e−12

i∗ = 6 4e−15 0.58 1e−12 0.06 5.6e−12 1.09
i∗ = 7 1.5e−15 0.71 6e−12 0.06 7.6e−11 0.99
i∗ = 8 2.6e−13 1.14 2.7e−09 4.6e−11 3.7e−08 9.1e−07

present the measured joint displacements and the joint displacements ones estimated by

minimizing each criterion from the selected basis of criteria.

4.6.2 The basis of criteria analysis

We test our algorithm, for all the criteria proposed in the basis of criteria. The correlation

between the criteria gradient’s vectors is verified (see eq. (2.24)) and the results of the

correlated groups of criteria gradient’s vectors are gathered in table 4.6. For both sets

of average joint displacements, the followings were found:

1. For the in-phase mode, 0.1Hz: two groups of correlated criteria gradient’s vectors

were found, the G1 group and the G2 group (see table 4.6). We keep only one

gradient vector out of the first group, let’s say the ∇f1 criterion gradient vector,

and the ∇f4 criterion gradient vector out of the second group.
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2. For the in-phase mode to the anti-phase mode shift, 0.4Hz and the anti-phase

mode, 0.6Hz: three groups of correlated criteria gradient’s vectors were found,

G1, G2 and G3 groups (see table 4.6). We keep only one gradient vector out of the

three groups, let’s say the ∇f1, the ∇f4 and the ∇f6 gradient’s vectors.

Table 4.6: The 1st and the 2nd set of average joint displacements: Results obtained
after verifying the form correlation between each criteria gradient’s vectors. For sim-

plicity we use ∇ in place of ∇Fc

1st
Groups of correlated gradients

Retained gradientsG1 G2 G3

0.1Hz ∇f1to∇f3, ∇f5to∇f8 ∇f4 ∇f1,∇f4
0.4Hz ∇f1to∇f3, ∇f5, ∇f8 ∇f6,∇f7 ∇f4 ∇f1,∇f4,∇f6
0.6Hz ∇f1to∇f3, ∇f5, ∇f8 ∇f6,∇f7 ∇f4 ∇f1,∇f4,∇f6

2nd
Groups of correlated gradients

Retained gradientsG1 G2 G3

0.1Hz ∇f1to∇f3, ∇f5to∇f8 ∇f4 ∇f1,∇f4
0.4Hz ∇f1to∇f3, ∇f5, ∇f8 ∇f6,∇f7 ∇f4 ∇f1,∇f4,∇f6
0.6Hz ∇f1to∇f3, ∇f5, ∇f8 ∇f6,∇f7 ∇f4 ∇f1,∇f4,∇f6

We finally applied the next steps of the IAOC algorithm to the kept criteria gradient’s

vectors, as explained above, and the outcomes were gathered in table 4.7 for the first set

and in table 4.8 for the second one. We obtained similar results for both sets, such as:

For the in-phase mode (0.1Hz):

• The 1st set of average joint displacements: when using as pivot f1 or f4, their

contribution will be 100%, due to the positive inner product γ sign; moreover,

when using as pivot the f1, the residuals norm value is smaller than when using

the f4. While the RMSE value is larger than when using the f4 as a pivot.

• The 2nd set of average joint displacements: when using as pivot f1 or f4, their

contribution will be 100%, due to the positive inner product γ sign; moreover,

when using as pivot the f1, the residuals norm and the RMSE values are smaller

than when using the f4,

and for the in-phase mode/anti-phase mode shift (0.4Hz) and for the anti-phase mode

(0.6Hz) the findings are similar as follows:

• When pivoting after f4, the residual norm is 8 times larger for 0.4Hz and 7 times

larger for 0.6Hz, therefore this case will be discharged. When pivoting after f1

and f6, the residuals norm values are the smallest and the RMSE values are the

ones obtained when minimizing them one at the time, as reported in the previous

subsection.
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Table 4.7: The 1st set of average joint displacements: Results while testing the
IAOC algorithm and the DOC for the retained uncorrelated criteria gradient’s vectors,
consisting in criteria contribution, the inner product sign and the residuals norm and
RMSE values for in-phase mode (0.1Hz), the in-phase mode to the anti-phase mode
shift (0.4Hz) and the anti-phase mode (0.6Hz).. For simplicity we use ∇ in place of

∇Fc

1st

group
A b

Contribution
[%]

γ 1
n‖∇L(ĉ)‖ RMSE

[deg]

f1 f4 γ14
[∇hj∇f4] −∇f1 100 0 + 3e−08 0.230.1Hz
[∇hj∇f1] −∇f4 0 100 + 0.01 2.3e−06

f1 f4 f6
[∇hj∇f4∇f6] −∇f1 100 0 0 γ14 =-, γ16 =+ 6.1e−07 1.11
[∇hj∇f1∇f6] −∇f4 73.76 26.24 0 γ41 =-,γ46 =+ 1.03 0.008

0.4Hz

[∇hj∇f1∇f4] −∇f6 0 0 100 γ61 =+,γ64 =+ 1.7e−08 0.12

f1 f4 f6
[∇hj∇f4∇f6] −∇f1 100 0 0 γ14 =+,γ16 =+ 2.1e−05 1.14
[∇hj∇f1∇f6] −∇f4 0 18.64 81.36 γ41 =+,γ46 =- 2.1 7.8e−07

0.6Hz

[∇hj∇f1∇f4] −∇f6 0 0 100 γ61 =+,γ64 =- 2e−07 0.003

Table 4.8: The 2nd set of average joint displacements: Results while testing the
IAOC algorithm and the DOC for the retained uncorrelated criteria gradient’s vectors,
consisting in criteria contribution, the inner product sign and the residuals norm and
RMSE values for in-phase mode (0.1Hz), the in-phase mode to the anti-phase mode
shift (0.4Hz) and the anti-phase mode (0.6Hz). For simplicity we use ∇ in place of

∇Fc

2nd

group
A b

Contribution
[%]

γ 1
n‖∇L(ĉ)‖ RMSE

[deg]

0.1Hz
f1 f4 γ14

[∇hj∇f4] −∇f1 100 0 + 3.2e−04 6e−07

[∇hj∇f1] −∇f4 0 100 + 0.02 0.1

0.4Hz

f1 f4 f6
[∇hj∇f4∇f6] −∇f1 100 0 0 γ14 =-, γ16 =+ 0.002 0.09
[∇hj∇f1∇f6] −∇f4 73.76 26.24 0 γ41 =-,γ46 =+ 1.04 0.1
[∇hj∇f1∇f4] −∇f6 0 0 100 γ61 =+,γ64 =+ 1.6e−08 0.06

0.6Hz

f1 f4 f6
[∇hj∇f4∇f6] −∇f1 100 0 0 γ14 =+,γ16 =+ 2.1e−05 1.13
[∇hj∇f1∇f6] −∇f4 0 100 0 γ41 =+,γ46 =+ 2.3 0.64
[∇hj∇f1∇f4] −∇f6 0 0 100 γ61 =+,γ64 =+ 2e−07 1.09
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The results exhibited by our algorithm are coherent with the findings, when analyzing

each criterion one at the time. This means that, for the choice of selecting to keep the

f1, f4 and f6 in our algorithm, they were found as possible candidates for the task.

If a combination between this criteria was found they were discharged, due to a large

residuals norm value.

4.6.3 Summary

In this study, we tested each criterion one at the time and the obtained results suggest

that any criterion from the basis of criteria can be a possible candidate for the visual

tracking task. Moreover, when applying our algorithm the same conclusions were drawn.

This findings are consistent with previous studies, where this paradigm was analyzed

while minimizing the torque or the torque change and, in both cases similar results were

obtained.

In the next section we proposed a closed loop modeling with feedback gain synthesis, on

artificial data.

4.7 The closed-loop modeling with gain synthesis on sim-

ulated data

In this section, we aim to investigate whether the human biomechanical model, repre-

sented by a linearized double inverted pendulum, in a closed loop optimal control can

efficiently model the visual tracking task. More precisely, we will close the loop with

the help of two PD feedback loops: a short loop that will address the balancing issue,

and a long loop that will address the visual tracking task. The two PD feedback control

gains are synthesized by using three different integral criterion (torque, torque change

and head jerk presented in table 4.1).

The idea of using feedback loops to model the human motor control system is not new. In

[97], human postural responses to platform perturbations during standing are described

in terms of a linear dynamical model with Proportional-Derivative (PD) feedback loops

were control gains are scaled and selected by the central nervous system (CNS). The

appropriate values for the gains are obtained via model-data fitting using actual exper-

imental data. Moreover, [99] showed that a PD feedback loop with scaled gains can

accurately model the postural response to a forward push recovery, the scaling depend-

ing on the type of perturbation. During the trials, for backward ([97], [98]) and forward
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([99]) push recoveries studies, it was observed that when the perturbation magnitude

increases, the ankle torque control gain decreases while hip torque control gain increases.

For the same experimental paradigm, [81] proposed a non-linear closed-loop optimal

model that predicted changes between the in-phase and the anti-phase postural coordi-

nation. In the latter study, the control torque related to the tracking task was obtained

by using a pseudo-inverse Jacobian matrix while an adaptive saturation of ankle torque

was used to satisfy the balance constraint.

[80] and [81] used a similar constraint in the optimization algorithm that ensured bal-

ance: the Center of Pressure(CoP) had to remain within the base of support (BoS)[103].

Balance issue was also studied on humanoids for different purposes. For example, a

hydraulic humanoid was used in [104] to have a practical exploration of the effects of

modeling error and unknown forces on state estimation for dynamic humanoids balance.

In [105] a feedback controller for the joint position was designed, where a switching was

performed between gains according to the Zero Moment Point (ZMP) location in order

to maintain balance.

Previous studies presented human postural responses to a sudden and impulsive back-

wards perturbation of the support platform in quiet stance. This situation can be

described in terms of feedback loop control. Feedback control gains, represented by

stiffness and viscosity coefficients, obtained as the optimal parameters of a regression

model, were found scaling with the perturbation’s type ([97]). This result brings to light

suggestions from previous studies ([106]) where it was supposed that the CNS selects

muscle activation, not only because of some type/magnitude of perturbation, but also

because of the biomechanical constraints. For the same experimental paradigm used in

[97], [98] modeled postural responses as a triple inverted pendulum in feedback paradigm;

they obtained the stiffness and viscosity gains with the eigenmovements approach, which

is a special case of feedback full state control. They concluded that the study did not

exhibit a significant dependence of the stiffness gains on perturbation amplitude, while

the viscosity ones were found decreasing with the perturbation amplitude. For forward

impulsive pushes onto human body’s back while in a quiet stance ([99]), human postural

responses were described in terms of feedback control gains, and as in [97] the feedback

control gains were found scaling with the perturbation’s type.

Describing the human postural responses in terms of feedback control gains, all the

presented studies obtained realistic human postural responses i.e ankle/hip strategies

and moreover some of these studies exhibited fully or partially the selection of feedback

gain and the scaling was dependent on the type of perturbation [99, 97, 98]. The ankle

and hip strategies appeared while increasing perturbation/target magnitude.
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By investigating the same experimental paradigm and by modeling it as a double inverted

pendulum, operated in a closed feedback framework, [81] exhibited realistic human co-

ordination modes. The method proposed by [81] is able to predict the in-phase and the

anti-phase coordination modes. Firstly, they solved the redundancy problem using the

pseudo-inverse Jacobian matrix, and secondly they use an adaptive ankle torque satura-

tion to ensure balance. This saturation ensures human stance, while the pseudo-inverse

Jacobian minimize the instantaneous norm of the torque vector.

The use of continuous feedback ensures some advantages as it provides dynamic stability

for the quiet stance when there are no external perturbations, and reacts to multiple

perturbations because the response represents the outcome of the interactions between

the perturbation and the feedback system. Although feedback control has these advan-

tages, human postural responses depend on biomechanical properties, such as body and

surface configuration as well as task objectives. Therefore strategies should change and

different sets of feedback control gains may be required.

We modeled Bardy’s paradigm as a two-dimensional inverted pendulum, as presented

in section 4.3.1, operated by two independent PD feedback loops, one to ensure balance

while the visual task is realized, and another to achieve the tracking task while the bal-

ance task is accomplished. We also want to go further and claim a predictive constrained

optimization algorithm. Our method investigates human postural responses and opti-

mizes the viscosity, stiffness and the cross gain coefficients in a closed loop framework

situation. The redundancy is solved by transposing the operational space into an ar-

ticular one without using an explicit inverted Jacobian matrix. The feedback control

gains, necessary to accomplish our experimental paradigm, are synthesized and selected

frequency by frequency for different target magnitudes in 3 optimization cases: (a) min-

imizing a torque criterion, (b) minimizing a torque change criterion and (c) minimizing

a head jerk one, under both tracking ( or environmental) and balance ( or intentional)

constraints.

4.7.1 The closed-loop modeling

While performing the visual tracking task in a closed loop situation, a corrective joint

torque is applied to the ankle and hip joints. Our modeling paradigm relies on two

PD controllers, one to maintain balance while doing the task and another, to achieve

the target tracking task while keeping balance. The state space vector θ of the joint

kinematics is defined as:
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θ = [q1 q2 q̇1 q̇2]
T

where q1, q2 are the ankle and hip angular positions, while q̇1, q̇2 are the ankle and hip

angular velocities, respectively.

The feedback control input τ is represented by the ankle and hip joint torques τ =

[τ1 τ2]
T . It is generated by a full-state feedback, that has the following form:

τ =
[
Ap Ad

]
∆θ +H

(
∆h

∆ḣ

)
(4.8)

where Ap =

(
kp11 kp12

kp21 kp22

)
and Ad =

(
kd11 kd12

kd21 kd22

)
are the proportional and deriva-

tive gains matrices (Ap ∈ <2x2, Ad ∈ <2x2) respectively for the balancing PD controller,

while H =

(
kp1 kd1

kp2 kd2

)
is the proportional and derivative gain matrix (H ∈ <2x2) for

the PD controller that accomplishes the visual tracking task. ∆θ = θ0−θ, where θ0 rep-

resents quiet standing (angular position and velocity are equal to 0). ∆h = href (t)− h,

where href is the system input represented by the target’s position and h is the subject

head position on the horizontal axes.

The direct kinematic model used to calculate the head position on horizontal hx and

vertical hy axes, is given by:

hx = l1 sin q1 + l2 sin (q1 + q2)

hy = l1 cos q1 + l2 cos (q1 + q2)
(4.9)

4.7.2 The gain synthesis method

Considering human postural activity as composed of two-joint motion, postural re-

sponses are transformed into a mathematical optimization problem with an objective

function, that firstly, specifies the minimization of the sum of joint torque changes, sec-

ondly, the minimization of the sum of joint torques and thirdly, the minimization of the

sum of head jerk.
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Figure 4.9: The controller block diagram for postural coordination (DIP model in
sagittal plane. Characteristics of ankle-foot group)

minimize
K

J(K) = 1
2



(a)
Tc∫
0

((
dτ1
dt

)2
+
(
dτ2
dt

)2)
dt,

(b)
Tc∫
0

(
(τ1)

2 + (τ2)
2
)
dt,

(c)
Tc∫
0

((
d3hx
d3t

)2
+
(
d3hy
d3t

)2)
dt,

(4.10)

subject to hx(z, t)− aref = 0, t = Tc
4 (4.11)

hx(z, t) + aref = 0, t = 3Tc
4 (4.12)

dhx
dt (z, t) = 0, t = Tc

4 (4.13)

dhx
dt (z, t) = 0, t = 3Tc

4 (4.14)

hy(z, t) ≥ 0.5 · body height (4.15)

τankleMIN ≤ τ1(z, k, t) ≤ τankleMAX , ∀t ∈ [0, Tc]. (4.16)

τhipMIN ≤ τ2(z, k, t) ≤ τhipMAX , ∀t ∈ [0, Tc]. (4.17)

Xa ≤ XCoP (τ, z, k, t) ≤ Xb, ∀t ∈ [0, Tc]. (4.18)

where Tc = 1/fref is the period of the target motion, fref and aref are the target’s

frequency and magnitude and [Xa, Xb] represent the extremal positions of the CoP in

forward and backward directions with respect to the ankle joint ([80]).

The nonlinear constrained optimization consists in: ’finding the optimal feedback con-

trol gains that minimize a given criterion (4.10) under balance (4.18), horizontal track-

ing ((4.11)-(4.12)) and vertical tracking ((4.15)) at a null velocity ((4.13)-(4.14)) and

bounded torques ((4.16)-(4.17)), equality/inequality constraints’.
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4.7.2.1 The numerical experiment

The initial values of joint position and velocity are considered to be equal to 0, hence one

should see a transient response that should not be taken into account in the optimization

process. Each trial is studied only for the fourth period of the target displacement.

To perform the visual tracking task, specific input data values were chosen [103]. All

optimization trials were done for a typical subject: body height = 1.8 m and mass =

75 kg. The anthropometric parameters values were: d = 0.07 m, l1 = 0.88 m, l2 =

0.85 m, m0 = 2.18 kg, m1 = 21.98 kg, m2 = 50.85 kg, k0 = 0.07, k1 = 0.55, k2 = 0.63

and the inertia Ii = mi(kili)
2.

The input signal is a sine wave in the Cartesian space. In our study, the magnitude for

the target’s motion used was equal to 10 cm and the length of support base was equal to

±10 cm. Taking into account that we have 12 gains to synthesize with the optimization

program, it is safer to start from a feasible point. For each magnitude, 70 different

frequencies are studied: 0.1 Hz : 0.01 : 0.79 Hz. These frequencies are usually the

ones investigated in literature for the same experimental paradigm.

The starting point, taken for the feedback gains in the optimization search is almost the

same in all simulations. Considering that we have to find 12 gains with the optimization

program, it is wiser for us to start from a feasible point. In fact, the gains are initialized

as follows: the initial values for the balance controller’s gains correspond to the ones

obtained from actual data in [107], whereas the initial values for the tracking controller

are adjusted manually, so that the tracking task is approximately satisfied.

4.7.2.2 Analysis

The optimal feedback control gains values obtained via optimization, for ±10 cm support

base length, 10 cm for the target displacement and for low/high frequencies (0.1 Hz :

0.01 : 0.79 Hz), are reported on Fig.4.10, Fig.4.11 and Fig.4.12.

Two different postural coordination strategies, namely the ankle and the hip strategies

(Figure 4.14), appear on the joint trajectories when increasing the target’s oscillation

frequency. The in-phase coordination mode shows that the ankle joint torque and hip

torque extend simultaneously, and that the ankle one has a greater impact on the postu-

ral coordination mode responses, even when the biomechanical constraints are inactive.

Yet, in contrast, the anti-phase coordination mode presents the influence of the hip

torque during the activation of the biomechanical constraints.



Chapter 4. Postural coordination in a visual tracking task 67

Figure 4.10: The proportional gains values for the balance control (Ap). The blue
feedback gains resulted while minimizing the torque criterion, the green ones resulted
while minimizing the head jerk and the red ones while minimizing the torque change.

Figure 4.11: The derivative gains values for the balance control (Ad). The blue
feedback gains resulted while minimizing the torque criterion, the green ones resulted
while minimizing the head jerk and the red ones while minimizing the torque change.
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Figure 4.12: The proportional and the derivative gains values for the tracking control
(H). The blue feedback gains resulted while minimizing the torque criterion, the green
ones resulted while minimizing the head jerk and the red ones while minimizing the

torque change.

Also, it can be seen that for the in-phase coordination mode, the angular displacement

magnitude for the ankle joint is greater than the hip joint. When phase shift happens,

in the anti-phase coordination mode case, the angular displacement magnitudes are

smaller at ankle joint than at the hip ones (Figure 4.14). Figure 4.13 shows that the

visual tracking and the balance constraints are satisfied while increasing the frequency

during the synthesis method.

Figure 4.13: The angular positions; the target amplitude = 10 cm, the in-phase (until
0.39 Hz) and the anti-phase ( after 0.39 Hz) coordination modes
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Figure 4.14: The joint torque displacement; the target amplitude = 10 cm, the in-
phase (until 0.39 Hz) and the anti-phase ( after 0.39 Hz) coordination modes

Figure 4.15: The head displacement; the target magnitude = 10 cm for all range of
frequencies

In terms of feedback control gains, it can be observed that a trend is exhibited until

phase shift (until 0.39 Hz) and after the transition frequency, the trend will change

(after 0.39 Hz) (see Fig. 4.10, Fig. 4.11 and Fig. 4.12). The feedback control gains

were obtained via a constrained optimization programming using a nonlinear equation

solver (fmincon, Matlab R©).

The synthesis method yields a closed loop feedback framework that exhibits behaviors

consistent with the experimental findings, namely the ankle and the hip strategies, the

in-phase/ anti-phase coordination modes for low/high frequencies. The minimization of
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the torque change [63], torque change and head jerk, provided suitable responses for the

chosen experimental paradigm as it was expected and also the feedback control gains

behavior is similar.

During the synthesis method, the ankle joint torque is restricted due to it’s dependance

with the CoP (Fig.4.13) in order to satisfy the balance constraint. For the same ex-

perimental paradigm, modeled in the open loop [80] results revealed that during ankle

strategy the balance constraints are not active and during the hip strategy the con-

straints become active.

Feedback gains exhibited smooth, increased, decreased or constant behaviors for the

in-phase coordination mode, while for the anti-phase coordination mode, the feedback

gains exhibited non smooth increase, decrease or a constant behavior.

During the use of our synthesis method, we considered a sinusoidal wave as the input to

our system, but actually, this input consists of a more complex vision model with infor-

mation coming from the vestibular and somato-sensory systems. In order to synthesize

the feedback control gains for the measured data, the input of the system also need to

be estimated, therefore the problem becomes more complicated.

Finally, we were able to show that similar conclusions are drawn when applying the

inverse optimal control problem and when solving the synthesized method. As presented

in the sections that solve the inverse optimal control problem, this paradigm can be

explain by using different criteria. Hence, it was not a surprise to obtain similar feedback

gains control behaviors when testing different criteria for this paradigm.

4.8 Summary

In this chapter, the postural coordination in a visual tracking task was analyzed. Firstly,

the inverse approximately optimal control approach was applied in order to find the class

of criteria that can explain this experimental task. The results presented the fact that

any criterion, chosen in the basis of criteria, can be a potential candidate for explaining

this task. This result is consistent with the literature, meaning that this task was

described in literature by minimizing the torque criterion or the torque change criterion

and the found results, in terms of postural responses, were the same.

Secondly, we modeled the visual tracking of a target with the head in a closed loop

optimal control, consisting in two PD feedback loops: a short loop that addresses the

balancing issues, and a long one that addresses the visual tracking task. The closed loop
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was used for the simulated data while using three criteria considered candidate by our

algorithm. The obtained results where consisting in both an open loop and a closed loop

situation: if our IAOC algorithm exhibits certain criteria, the results obtained in the

closed loop for this criteria, presents similar behaviors in terms of feedback gains (the

PD feedback gains have the same behavior).
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The analysis of the human

walking gait initialization task.

5.1 Related literature

One of the hardest phenomenon that come in elderly is the loss of autonomy and this

leads to slips or falls. Nowadays, this phenomenon has become common in our society,

resulting in injuries and even death each year. Due to its importance, the balance control

loss (’BCL’) has become a widely studied subject within the research communities such

as biology, neuroscience, engineering and so on. All these communities are trying to

work together in order to use knowledge from all the fields in order to come up with

ways to prevent or to give solutions to this universal problem. The field of our interest

are biomechanics, control and robotics, and we are trying to model balance control loss

in Parkinson’s disease. The latter is a neurodegenerative disorder and it is characterized

by progressive loss of muscle control, which leads to tremor in limbs and head while at

rest, with stiffness, slowness, and impaired balance [108]. As the symptoms worsen, it

may become difficult to walk, talk, and complete simple tasks.

A considerable number of experimental studies have focused on the balance control loss,

in order to find simplified models or to enhance our understanding of this phenomenon.

Taking into account the amount of experimental observations, the balance recovery

strategies presented in Fig. 5.1 can be divided into 2 classes:

• Fixed-Support strategies, which include the ankle and hip strategies. In ankle

strategy, the oscillation of the body is around the ankle joint and it is commonly

used to tackle small external perturbations. In the hip strategy, the upper body

72
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leans backwards and forwards around the hip joint and, it is often used for slightly

larger disturbances.

• Change-of-support strategies, which can involve the use of compensatory step-

ping. This strategy is suitable for large disturbances where the fixed-support

strategies are not sufficient to recover balance.

Figure 5.1: The fixed-support strategies (the ankle and hip strategies) and the change-
of-support or the stepping strategy [3]

The fixed-support strategies for balance recovery

When analyzing human balance control, human body can be modeled as one or multi-

dimensional inverted pendulum chain. The one-dimensional inverted pendulum model

[92, 93, 94] is accepted, if the movements in the other joints are artificially blocked [93],

so the biomechanical system will be described only by-one variable: the angle of the

ankle joint. Even so, [95] argued that a single chain inverted pendulum approximation

is not sufficient to completely explain balance properties, even for standing balance.

When modeling the human body as a multi-dimensional inverted pendulum chain, the

dependency of torques on joint angles and angular velocities is determined by the stiffness

and the viscosity gain coefficients respectively. Therefore the change of torque in any

joints will have an impact on all the joints. Accordingly, a common model used in several

studies and also in our study presented in chapter 3 is the double inverted pendulum

model [96, 80, 97, 100]. Also a three-dimensional inverted pendulum chain was used, by

including the knee joint [98], to model human body.

For more details on how these strategies are modeled can be found in our previous study

from chapter 3, where we used, as stated previously, a double inverted pendulum model

in order to guarantee balance during postural coordination in a visual tracking task (see

chapter 3 for more details and related literature).
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The change-of-support strategies for balance recovery

When certain boundary values are exceeded (in angle position or velocity) during the hip

strategy a new one called stepping strategy is identified. This strategy is characterized

by two variables: the step length (the sum of length preparation) and step time (the

leg-swing times). [109] found this 2 variables as factors between failing and successful

recoveries in human subjects. The step length and step time are positively correlated,

so a larger step requires more time to execute meanwhile the system continues to fall.

Conversely, a quicker step cannot be placed beyond a certain distance due to actuation

constraints. Hence, a trade-off is to be found between these two variables for a successful

balance recovery [110]. It was showed that the stepping strategy is preferred over the

fixed-support strategies even before the fixed-support strategies have not reached its

theoretical limits [111]. The age-related difference impact in the balance recovery ability

was studied for young and elderly subjects during various disturbances paradigms, in

order to compare their responses. Elderly prefer the use of the stepping strategy to

recover balance and they are more likely to use a higher number of steps in order to

recover balance than the young subjects [112].

The most common simplified model for biped robots is the Inverted Pendulum proposed

by [113] which assumes telescopic legs and constrains the CoM to move in the horizon

plane above the ground, but it neglects the rotational effects of different body parts. The

upper body inertia effects are included by using an inertia wheel centered at the CoM

level [114]. To incorporate leg compliance, [115] proposed a simplified model consisting in

a massless spring attached to a point mass and demonstrate realistic dynamic properties

of human walking and running. An improved match of walking data was exhibited while

modeling human gait dynamics as a compliant legged bipedal model with continuous

pivot translation profile which emulates empirical CoP excursion during the stance phase

[116]. By using damping compliant legs inverted pendulum model to match the human

ground reaction forces at different gait speed suggested that humans may benefit from

spring-like leg mechanics [117]. Moreover, the same way of modeling the human body

while walking implies that the human walking dynamics and the variation with respect

to age, can be well captured by the spring-like leg mechanics [118]. [119] modeled a leg,

while analyzing human walking, as a simple two-link system with two joints at a hip

and a knee, where the trunk moves horizontally at a constant speed and it found that

the experimental data of human walking showed common characteristics.
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Modeling human gait

The human gait requires the maintenance of balance (postural control with ankle and

hip strategies) and continuous movement (locomotion with stepping strategy) simulta-

neously.

There are two ways of modeling human gait by mixing the three sets of strategies:

(a) Proposing a model while in fixed support strategies and switching to another model

while in change of support strategies.

(b) Proposing only one model that can take into account the three sets of strategies,

namely the ankle, the hip and the stepping.

The mix between the three sets of strategies can be found modeled when trying to

explain human balance recovery while important external perturbations are applied. In

this sens, [120] proposed a scheme that predicts multiple step placements, by modeling

the dynamics of a running cart on the table [121, 57, 122]. The scheme is composed of a

simple balance recovery model, represented by an inverted pendulum with a foot model,

based on the Linear Model Predictive Control. This schema is more complex then the

one in previous studies, by predicting multiple step recovery while taking into account

the step execution time, working in a sagittal plane.

Furthermore, in [123] they improved their mechanical model that explains the human

balance recovery, introducing the upper body inertia (UBI) influence on modeling human

balance recovery. They studied the recovery paradigm in a model predicted control

framework by modeling it as a flywheel linear inverted pendulum plus a foot model and

they exhibit realistic step lengths. Their results show the influence of the UBI onto the

step lengths. Finally, making use of this model and analyzing different sets of criteria

they propose in [124] a single Model Predictive Control scheme for biped humanoid

robots. In this study, they propose a schema that minimizes sets of criteria with proper

relative weight coefficient values. Along the set of criteria, the penalization of the swing

foot acceleration showed an impact to recovery improvement. This scheme improves the

balance recovery response to external perturbations while properly combining the ankle,

hip and stepping strategies.

[3] implements a method that smoothly shifts between ankle and hip strategies when

studying balance control, while continuous external forces are applied to a humanoid

robot.

[125] studies the human balance stability while standing and it introduces a new stability

condition, the extrapolated center of mass position (XCoM), that requires the center of

mass within the base of support in order to accomplish balance.
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[126] proposed an online walking motion generation in order to demonstrate the ability of

the model predictive control to generate stable walking motions without using predefined

foot steps. In [56], the walking motion generation was expanded to enhance its flexibility

and independence by controlling appropriate feet and trunk orientation. [127] used this

online walking motion generation based on the model predictive control to show that it

is possible to obtain a continuous adaptation of the foot placement even in the presence

of strong perturbations.

In this chapter, we are focused on finding a suitable model for the walking gait initializa-

tion task and the criteria that can explain experimental data collected during the task.

The models mentioned above are modeling the human locomotion task and their analy-

sis is not connected to the gait initialization. In our study, we will firstly use the studies

mentioned in the subsection 5.1 to achieve the modeling part and, secondly we will ad-

dress our IAOC algorithm to find the potential criteria candidates that can explain the

experimental data collected for parkinsonians and non-parkinsonian subjects.

5.2 The model predictive control scheme

In this section, we start with a brief description of the model predictive control, that

will be used in our study. Moreover, here we will present the model predictive optimal

control scheme used to model the walking paradigm. But this does not mean that we

are going to neglect our objective of modeling the gait initialization, as this one is the

initial phase of the walking paradigm.

The Model Predictive Control (MPC) is a control technique which amounts to repeatedly

solving online a series of Optimal Control problems, always taking into account the latest

observation of the real state of the system. It usually takes the form of minimizing at

every time tk a cost function L, considering a prediction of the dynamics of the system

over a time horizon of the length T :

minuk

∫ tk+T

tk

L(uk)dt (5.1)

The control u(tk) that results from this optimization is applied to the system until the

next observation time tk+1 and the process is repeated.
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5.2.1 The biomechanical model

The dynamic system used to model the ankle, the hip and the stepping strategies in 2D

- sagittal and horizontal plane (with the assumption that the CoM height is constant

on the horizontal plane) - is the one proposed and described in [56]. The dynamics are

those of a running cart on a table [121]:

px = cx −
cz
g
c̈x (5.2)

where cz is the constant height of the CoM position above the ground, g is the norm of

the gravity force, while cx and px are the coordinates on x axes of CoM and CoP.

We consider trajectories of the CoM which have piecewise constant jerk
...
c x over time

intervals of constant length T so that we can compute the corresponding dynamics at a

discrete time tk: x̂k+1 = Ax̂k +B
...
c (tk)

ŷk = Cx̂k

(5.3)

with

x̂k+1 =


c(tk)

ċ(tk)

c̈(tk)

 , ŷk = pk (5.4)

and

A =


1 T T 2

0 1 T

0 0 1

 , B =


T 3

6
T 2

2

T

 , C =
(

1 0 −cz/g
)

(5.5)

where cx and px are the coordinates on x axes of COM and COP.

5.2.2 The original MPC controller scheme

The controller proposed in [120, 56] anticipates future motion on a prediction horizon

composed of N time intervals of equal length T . During the motion, on the future

horizon, the third derivative
...
c over each time interval is considered zero. The CoM

position, velocity and acceleration can be related to the corresponding constant third

derivative
...
c , through simple matrices, by integrating over the whole prediction horizon:
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Xk+1 =


xk+1

...

xk+N

 = Spx̂k + Pp
...
c k (5.6)

Ẋk+1 =


ẋk+1

...

ẋk+N

 = Svx̂k + Pv
...
c k (5.7)

Ẍk+1 =


ẍk+1

...

ẍk+N

 = Sax̂k + Pa
...
c k (5.8)

pxk+1 =


pxk+1

...

pxk+N

 = Sppx̂k + Ppp
...
c k (5.9)

with

...
c k =


...
c k
...

...
c k+N−1

 . (5.10)

Where Sp, Sv, Sa, Spp ∈ <N×3 and Pp, Pv, Pa, Ppp ∈ <N×N are matrices that are

obtained from a recursive application of the dynamic system.

The original MPC schema, proposed in [121], consists in minimizing over a predictive

horizon of length NT the jerk of CoM with the tracking of a reference position (pref ) of

the CoP. The CoP is chosen to be in the middle of the base of support, for an enhanced

robustness against perturbations. This can be expressed as the following quadratic

program:

minimize...
c x

α

2
‖...c x‖2 +

β

2

∥∥∥pxk+1 − p
xref
k+1

∥∥∥2 . (5.11)

5.2.3 The cost function

The choice of criteria

In the original MPC scheme proposed in [121] and described previously, the minimiza-

tion of the jerk of the CoM is necessary to generate stable motions, but also it was

showed that a weakly weighted minimization helps smoothing the contact forces and
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therefore the resulting motion. Moreover, the minimization of the tracking of a refer-

ence position of the CoP was necessary to generate a feasible motion, but also a weakly

weighted minimization allows faster and more robust reactions to changes in the state

of the system. These criteria were widely used in robotics to propose a walking pattern

generator [128, 121, 57, 122, 129]. Some recent studies analyzed the human balance

recovery and ensured standing position based on robotic approaches, by taking into ac-

count upper body inertia effects [124]. The minimization of the CoM and the trunk

rotation velocities always allow quicker steps.

In this study, we want to model human gait initialization and compare it with experi-

mental data, therefore we’ll choose as criteria the jerk, the velocity and the acceleration

of CoM in order to guarantee smooth trajectories and the tracking of a reference position

of the CoP. We do this in order to ensure balance maintenance while gait initialization.

5.2.4 The kinematic and the dynamic constraints

5.2.4.1 The inequality constraints

Center of pressure

Center of pressure (CoP) is the term given to the point where the ground reaction force

is balanced. The ground reaction force vector represents the sum of all forces acting

between a physical object and its supporting surface.

The static balance is ensured if the CoP always stays within the base of support (support

polygon) during the single and double support while walking (see Fig.5.2). Hence, this

constraint is represented in the optimization program by eq (5.12):

Figure 5.2: The CoP and the base of support representation

− a ≤ CoP ≤ lf − a (5.12)
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where a is the ankle to heel horizontal distance and lf represents the foot length.

Foot step placements

To ensure feasible step placements generated by our optimization program algorithm,

we’ll bound the position of the next foot step depending on the current position of the

foot in the air:

−Dmax ≤ Xf (i)−Xf (i− 1) ≤ Dmax, (5.13)

where

Dmax = (ttouchdown(i)− ttouchdown(i− 1))vmax (5.14)

with Xf (i), the position of the next foot step on x axes, Xf (i− 1) the current position

of the foot in the air on x axes, vmax a vector of approximate maximum Cartesian speed

and ttouchdown the time when the foot in the air is planned to touch the ground.

5.2.4.2 The equality constraints

Center of mass position and velocity

The center of mass is the geometric point where every particle of a body’s mass is

equally distributed, as presented in Fig. 5.3, being equal to the product between each

body particle position and its mass divided by the sum of each particle’s mass.

Figure 5.3: The CoM representation

During the optimization program algorithm we require the CoM position and velocity

to be equal with the ones observed, in order to assure final feasible values:

cx(end) = cxdata(end)

ċx(end) = ċxdata(end)
(5.15)
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5.2.5 The proposed MPC controller: design and scheme

The MPC scheme proposed in [56] balances over a prediction horizon, the minimization

of the jerk of the CoM with the tracking of a reference position of the CoP which is

chosen to lie in the middle of the base of support for an enhanced robustness against

perturbations. In this study, we are analyzing human gait and because we do not need

to recover after perturbations we’ll balance over the entire horizon the minimization of

the jerk of the CoM and the positions of the following steps while maintaining the CoP

within the base of support with a prior final position and velocity of the CoM. We can

express this minimization problem in the corresponding quadratic program to be solved:

minimize
uk

α

2
‖...c x‖2 +

β

2
‖ċx‖2 +

δ

2
‖c̈x‖2 +

γ

2

∥∥∥pxk+1 − p
xref
k+1

∥∥∥2 .
subject to hi(uk) = 0, i = 1, . . . , 2.(5.15)

gi(uk) ≤ 0, i = 1, . . . , 4.(5.12), (5.13)

(5.16)

where

uk =

( ...
c x

Xf

)
, (5.17)

and ċx, c̈x, pxk+1 are the state vector defined in (5.7), (5.8) and (5.9), while
...
c x represents

the optimization decision variable. Because we do not want the CoP to track a trajectory

fixed in advance, we define:

pxrefk+1 = U cXfc + Uk+1X
f , (5.18)

so that it can lie in the middle of the foot positions actually decided by the optimization

algorithm. Xfc is the current position of the foot on the ground (which can not be
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changed) and Xf are the positions of the next steps, where:

U c =



1
...

1

0.5

0
...

0

0
...

0



∈ <N , Uk+1 =



0 0
...

...

0 0

0.5 0

1 0
...

...

0.5 0.5

0 1
...

...

0 1
. . .



∈ <N×m. (5.19)

The 1 values from the above matrices indicates which sampling times tk fall into which

step and the 0.5 values indicate the fact that during the double support phase the

sampling times tk fall in the middle of the feet and m represent the number of steps

defined in advanced.

5.3 Experimental data: the center of mass reconstruction

5.3.1 Description

We tested 6 non-parkinsonian subjects, by asking them to start (one trial per subject)

a normal and a quick walk on a force platform. Also, 5 parkinsonian subjects were

asked to perform a normal walk before and after Levadopa (or L-dopa) treatment and

a quick one before and after Levadopa (or L-dopa) treatment on the force platform,

one trial per subject. While analyzing the CoP observed trajectories for each subject,

we saw that every subject has a different behavior, showing different step length values

and step duration, therefore we need to apply our algorithm for each subjects’ observed

trajectory.

For each subject, in the CoP position was observed and the CoM position needs to be

recontructed in order to analyze and model walking gait initialization task. The CoM

position is reconstructed by using the following pattern generator scheme.
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5.3.2 The pattern generator scheme

Due to the fact that observed outputs are sampled and noisy we interpolated the mea-

surements by applying a spline-fitting of the observed outputs as proposed in [55]. There-

fore the observed output, the CoP position in our case, is interpolated with a 7th order

spline with 60 knots.

On the interpolated CoP position we apply the pattern generator proposed and pre-

sented in [57], in order to reconstruct the CoM position and its derivatives. The pattern

generator consists in minimizing the error between the reference position of the CoP (in

this case it is the observed CoP and interpolated with a spline curve) and the obtained

CoP from the running cart on a table dynamics ([121]).

The pattern generator comes down to minimizing the following criteria:

minimize
z

NL∑
j=1

(
CoP refj − CoPj

)
. (5.20)

where NL is the future step at every sampling time, z represent the state vector of the

following system representation:


˙CoM

¨CoM

˙CoP

 =


0 1 0

g
hCoM

0 − g
hCoM

0 0 0



CoM

˙CoM

CoP

+


0

0

1

 ˙CoP

CoP =
[

0 0 1
]

CoM

˙CoM

CoP


(5.21)

where g is the norm of gravity force and hCoM represents the height of the center of

mass.

5.3.3 Results

Fig. 5.4(a) and fig. 5.4(b) present the results of one trial for one of the subjects, while

performing two steps (fig. 5.4(b)) and three steps (fig. 5.4(a)). It can be seen that we

have dynamic stability, namely the CoP is directly below the body CoM.
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(a) One subject performing 3 steps

(b) One subject performing 2 steps

Figure 5.4: The measured CoP trajectory (the blue line) and the reconstructed CoM
trajectory (the red line) with the pattern generator

5.4 The inverse optimal control solution

We first formulate the direct optimal control (DOC) problem and the KKT optimality

conditions. Secondly, we address our IAOC algorithm described in Chapter. 2 and

solving Eq.(2.22).

5.4.1 The direct optimal control problem

The used direct optimal control problem is formulated in section 5.2, eq. (5.16), and

minimizes a given composite criterion while satisfying constraints.

Before applying the direct optimal control, the CoP collected trajectories are interpo-

lated by b-spline curves. After this interpolation, the resulted CoP trajectories are used

to reconstruct the CoM trajectories by applying the pattern generator described above.
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Finally, the direct optimization problem which helps us to obtain the walking task is

formulate.

The direct optimal control problem for walking task: ”Find the CoM jerk tra-

jectory and the foot steps positions,while minimizing a given composite criteria as in

table 5.1 while maintaining balance (eq. (5.12) ), ensuring feasible step placements (eq.

(5.13)) and a feasible final CoM position and velocity values (eq. (5.15))”.

Table 5.1: The pre-selected basis of objective functions;
N : number of time samples

Criterion Cost function (fi) References

CoM jerk f1 =
∑N

i=1

...
CoM(i)2

N [126, 127]

CoM velocity f2 =
∑N

i=1
˙CoM(i)2

N [126, 127]

CoM acceleration f3 =
∑N

i=1
¨CoM(i)2

N [126, 127]

CoP tracking f4 =
∑N

i=1(CoP (i)−CoP ref (i))2

N [126, 127]

The inequality constraints gj(uk) are presented and explained in subsection 5.2.4.1,

where j have different length for each subject.

5.4.2 The inverse approximately optimal control problem

Firstly, we need to specify matrix A ∈ <m×n as in Eq. (2.19), which is composed

of criteria and equality gradient’s vectors, and the vector b ∈ <m as in Eq. (2.20),

composed of the criterion gradient vector chosen as pivot. The A matrix is a ’tall’ one

(it has more columns than rows m ≥ n), therefore we impute the criteria by solving the

overdetermined least square problem (2.22).

Secondly, we must choose which basis objective function will act as pivot i∗. As pre-

viously discussed, the choice of the pivot relies on the prior knowledge of the sought

composite criterion. In order not to corrupt any conclusion to be derived when analyz-

ing the industrial screwing task, we consider that there is no such prior knowledge. As a

consequence, we will have to consider any of the basis function as potential pivot. Then,



Chapter 5. The human walking gait initialization task 86

comparing the solutions of the problem (2.22) we will keep the solutions that show good

consistency with the experimental data, those which minimize both the residuals norm

(3.4) and the CoP and CoM root mean square (RMSE CoP and RMSE CoM) (3.5)

described below.

5.4.2.1 Evaluation on the artificial data

In this section, we perform the evaluation of the performance of our method using arti-

ficial data. Using the human walking gait initialization model (introduced in subsection

5.4.1), we solve a DOC problem 5.16 with vector ~c tuned so that only one single basis

objective function is active at the time. We come with four optimal trajectories, each

minimizing a single basis objective function given in Table 3.3.

Firstly, we verified if the A matrix columns are correlated (see eq. (2.24)) for each

optimal trajectory, and we concluded that:

• for 3 out of 4 optimal trajectories (min f1, f3 and f4) there were found 2 groups of

correlated criteria gradient’s vectors (∇ukf2,∇ukf3) and (∇ukf2,∇ukf4). For these

cases, we kept only three criteria: f1, f3 and f4 and we continued the following

steps of the algorithm.

• for the case, where f2 is minimized, the same groups of correlated criteria gradient’s

vectors were found, therefore, for this case, we kept only the f1 criterion and the

f2 one.

Secondly, we apply the steps of our algorithm IAOC as defined in the previous chap-

ters and the results are gathered in Table 5.2. The first column indicates the optimal

trajectory analyzed, the second and the third ones indicate the A matrix and the pivot

used. The contribution of each basis objective function is given in the next columns as

a relative contribution in the percentage computed as in (4.1).

Following the contribution result columns, is the sign of the inner product, as defined in

eq. (3.7). Finally, the last columns contain the residuals norm and the RMSE values.

Table 5.2 clearly shows the following types of results:

• min f1, min f2 and min f4 cases: When pivot i∗ is set to be the true minimized

objective function, the inverse optimal control problem emphasizes that the im-

puted composite criterion includes the true criteria whose contribution is 100% for
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Table 5.2: The results obtained by our algorithm for the artificial data. b = −[∇Fc
fi∗ ]

data
while:

A i∗
Contributions

[%]
γ 1

n‖∇L(ĉ)‖ RMSE
com
[m]

RMSE
cop
[m]

f1 f3 f4 γ13 γ14 γ34

min f1

[∇ukf3∇ukf4] 1 100 0 0
+ - -

0.06 0 0
[∇ukf1∇ukf4] 3 0 100 0 0.1 0.08 0.1
[∇ukf1∇ukf3] 4 0 0 100 0.09 0.08 0.09

min f3

[∇ukf3∇ukf4] 1 4.45 39.56 55.99
+ - -

0.04 0.02 0.02
[∇ukf1∇ukf4] 3 3.72 40.36 55.92 0.001 0.01 0.01
[∇ukf1∇ukf3] 4 3.77 40.12 56.11 0.01 0.02 0.02

min f4

[∇ukf3∇ukf4] 1 0.33 0.69 98.98
+ - -

0.03 0.01 0.01
[∇ukf1∇ukf4] 3 0.33 0.7 98.97 0.002 0.01 0.01
[∇ukf1∇ukf3] 4 0.33 0.68 98.99 3.7e−05 0.01 0.01

min f2

f1 f2 γ12
[∇ukf2] 1 99 1 - 1.45 0.10 0.13
[∇ukf1] 2 5.6 94.4 - 0.2 0.001 0.009

the first case, 94.4% for the second one and 98.99% for the final one, with small

residuals norm and RMSE values.

• min f3 case: When pivot i∗ is set to be 1, 4 or 3, the inverse optimal control problem

emphasizes that the imputed composite criterion includes the true criteria whose

contribution is 39.56% for i∗ = 1, 40.36% for i∗ = 3 and 40.12% for i∗ = 4.

However, both the residuals norm thus computed and the RMSE values when

choosing the pivot to be 1 or 4, are 10 to 40 times for the residual norm and 2

times in term of RMSE rather than the case i∗ = 3, which is the true criterion.

For the case where we min f3, the inner product between (∇f1,∇f4) and (∇f3,∇f4)
is negative, therefore the objective function f3 can appear in the imputed composite

criterion. To the contrary, the inner product γ13 is positive for the case where f1 is

minimized, therefore objective function f1 cannot appear in the imputed composite

criterion when pivoting after the other criteria gradient’s vectors.

To conclude, our algorithm on artificial optimal trajectories shows that when using the

true objective function as pivot, the residuals norm and RMSE values are smaller than

in the other cases.

5.4.2.2 Experimental results

In this section, we use our algorithm as defined in Chapter 3 to analyze the gait initial-

ization data gathered during the walking task described in Sect.5.3, using the objective

functions basis given in Table 5.1.
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After verifying the A matrix column’s correlation (see eq. (2.24)), for both non-parkinsonian

and parkisonian subjects, it turned out that there are three groups of correlated gradi-

ents: (∇f2,∇f3), (∇f2,∇f4) and (∇f3,∇f4). In our study, we will choose to keep f1 and

f4 criteria in order to apply our algorithm. But f1 and f4 are not the only solution, we

can also choose to replace f4 by f2 or f3 according to our will, thus not changing our

outcomes as f2, f3 and f4 are correlated at the minimum. Hence, the outcomes of the

IAOC algorithm are gathered in Table 5.3 for the 6 non-parkinsonian subjects while

gait initialization during normal and quick walk, and for the parkinsonian subjects while

gait initialization during normal and quick walk before and after L-dopa treatment in

Table 5.4 and Table 5.5, respectively.

In Table 5.3 each line contains the results obtained for all the non-parkinsonian subjects,

the number of trials, the criteria contribution, the sign between the criteria gradient’s

vectors, and the residuals norm, RMSE CoM and RMSE CoP values.

Comparing the obtained results for all subjects, both parkinsonians and non-parkinsonians,

while using as pivot i∗ = 1 with the ones obtained in the other case, we can conclude:

• for non-parkinsonian subjects: the results obtained while pivoting after i∗ = 4 were

found in terms of residuals norm value between 10000 and 40000 higher than when

pivoting after i∗ = 1, and 2 times higher in terms of RMSE than when pivoting

after i∗ = 1, and it should be discarded.

• for parkinsonian subjects: the results obtained while pivoting after i∗ = 4 were

found in terms of residuals norm value between 10000 and 20000 higher than when

pivoting after i∗ = 1, and 2 times higher in terms of RMSE than when pivoting

after i∗ = 1, and it should be discarded.

• for all subjects the results obtained in terms of RMSE are smaller while using as

pivot i∗ = 1 than in the other case.

We randomly choose the second parkinsonian subject and we graphically represented the

cop and com trajectories, estimated via direct optimal control with the results obtained

when the pivot is i∗ = 1 (the green dotted trajectory in the CoP fig. 5.7(b) and CoM

fig. 5.7(a) cases) and i∗ = 4 (the blue dotted trajectory in the CoP and CoM cases).

After analyzing the results we decided that the best option is to keep the case where the

pivot is f1 i.e. the com jerk gradient vector, because as we can see from the explanations

above, the results are the one that comply with the requirements of our algorithm.

As far as the contributions are concerned, the followings are obtained for the non-

parkinsonian subjects, (see Table 5.3):
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• the algorithm found 2 out of 6 subjects for which the CoM jerk criterion is the

best candidate with a value equal to 100 %, for both the normal and the quick

walk. During the normal walk task, our algorithm found a combination between

the CoM jerk and the CoP tracking criteria for all the other 4 subjects. On the

other hand, during the quick walk task, the CoP tracking criterion contribution

will decrease while the CoM jerk increases for 3 out of 4 subjects. During the quick

walk task for S5, our algorithm found that the combination consisting in half of

the CoM jerk criterion and of the CoP tracking one can be a good candidate for

this subject.

and for the parkinsonian subjects (see Table 5.4 for the normal and the quick walk

before L-dopa treatment and Table 5.5 for the normal and the quick walk after Ldopa

treatment):

• for S1 and S2 the algorithm found that the CoM jerk criterion can explain the

observed trajectories in all 4 cases, i.e. the normal walk and the quick walk before

L-dopa treatment and after L-dopa treatment. To simplify, we denote the normal

walk before L-dopa treatment with NWBL, the quick walk before L-dopa treatment

with QWBL, the normal walk after L-dopa treatment with NWAL, and the quick

walk after L-dopa treatment with QWAL.

• NWBL case: for S3 and S4 it was found that the combination between the CoM

jerk and CoP tracking criteria is considered to be a good candidate, while in the

case of S5 the algorithm returned only the CoM jerk.

• NWAL case: for S3 it was found that the combination between the CoM jerk and

CoP tracking criteria is considered to be a good candidate, while in the case of S4

and S5 the algorithm returned only the com jerk.

• QWBL case: for S3 and S5 it was found that the combination between the CoM

jerk and CoP tracking criteria is considered to be a good candidate, while in the

case of S4 the algorithm returned only the CoM jerk.

• QWAL case: for S3 it was found that the combination between the CoM jerk and

CoP tracking criteria is considered to be a good candidate, while in the case of S4

and S5 the algorithm returned only the CoM jerk.

In the case of the parkinsonian subjects for which a combination between the CoM jerk

and CoP tracking criteria was found: such as S3 and S4, a change between the NWBL

and QWBL cases can be seen, meaning that the CoP tracking contribution is decreasing
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for both subjects. The same behavior can be observed in the case of S3 and S5 for the

NWAL and QWAL cases, in the case of S3 ,S4 and S5 for the NWBL and NWAL cases

and also in the case of S3 and S5 for the QWBL and QWAL cases.

The inverse approximately optimal approach results can naturally provide a single crite-

rion (the S4 and S6 non-parkinsonian subjects and the S1 and S2 parkinsonian subjects)

or a composite one (for the other subjects) that can be considered as candidates to the

walking gait initialization task.

The obtained residuals norm values are very small and this can suggest that the selected

basis of criteria is sufficient to explain the studied task. We should mention the fact

that the direct optimal control program used in the estimation of the step length, CoP

and CoM trajectories considers the step duration as a known value and equal for all

the steps. A way of improving the RMSE values is considered to be a future research

study, by taking into account the step duration as an optimization variable to the direct

optimal control problem. This means that the step duration will be refined through the

optimization problem and not chosen in advanced.

(a) (b)

Figure 5.5: The contribution found for the 6 non parkinsonian subjects during the
normal walk (a) and during the quick walk (b). The blue bars correspond to the com

jerk criterion while the magenta ones correspond to the cop tracking criterion.
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(a) (b)

(c) (d)

Figure 5.6: The contribution found for the 5 parkinsonian subjects during the normal
walk before L-dopa treatment (a), the quick walk before L-dopa treatment (b), the
normal walk after L-dopa treatment (c) and the quick walk after L-dopa treatment (d).
The blue bars correspond to the com jerk criterion while the magenta ones correspond

to the cop tracking criterion.
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Table 5.3: The results obtained by our algorithm for the 6 non-parkinsonian subjects
during the normal and the quick walk

normal walk

Subject
nb

i∗
contribution

[%] γ 1
n‖∇L(ĉ)‖ RMSE [m]

f1 f4 com cop

S1
1 68.59 31.41

-
5e−04 0.02 0.07

4 0.07 99.93 2.8 0.06 0.09

S2
1 87.82 13.18

+
4e−04 0.02 0.06

4 0.07 99.93 1.1 0.03 0.07

S3
1 88.46 11.54

+
4e−04 0.03 0.05

4 0.07 99.93 1 0.04 0.06

S4
1 100 0

+
4e−04 0.09 0.11

4 0.07 99.93 1.1 0.10 0.12

S5
1 66.79 33.21

+
5e−04 0.02 0.07

4 50.13 49.87 1.9 0.05 0.12

S6
1 100 0

+
3e−04 0.03 0.07

4 0 100 1.4 0.09 0.12

quick walk

Subject
nb

i∗
contribution

[%] γ 1
n‖∇L(ĉ)‖ RMSE [m]

f1 f4 com cop

S1
1 90.08 9.92

-
8e−04 0.04 0.11

4 0.07 99.93 2.1 0.08 0.13

S2
1 88.86 11.14

-
6e−04 0.03 0.09

4 0.1 99.99 3.3 0.08 0.12

S3
1 88.49 11.51

-
6e−04 0.03 0.09

4 0.02 99.98 3.4 0.10 0.15

S4
1 100 0

+
5e−04 0.04 0.10

4 0 100 2.5 0.06 0.12

S5
1 50.13 49.87

-
5e−04 0.03 0.10

4 0.09 99.91 1.3 0.04 0.11

S6
1 100 0

+
4e−04 0.03 0.07

4 0 100 1.8 0.05 0.09
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Table 5.4: The results obtained by our algorithm for the 5 parkinsonian subjects
during the normal walk before and after the L-dopa treatment

normal walk before L-dopa

Subject
nb

i∗
contribution

[%] γ 1
n‖∇L(ĉ)‖ RMSE [m]

f1 f4 com cop

S1
1 100 0

+
4.9e−04 0.02 0.05

4 0 100 1.4 0.04 0.07

S2
1 100 0

+
3e−04 0.09 0.08

4 0 100 1.3 0.10 0.11

S3
1 71.85 28.15

+
5e−04 0.01 0.06

4 0.2 99.98 1 0.03 0.07

S4
1 67.4 32.6

+
3e−04 0.03 0.08

4 0.02 99.98 3.3 0.05 0.09

S5
1 100 0

+
4e−04 0.04 0.06

4 0 100 1 0.05 0.07

normal walk after L-dopa

Subject
nb

i∗
contribution

[%] γ 1
n‖∇L(ĉ)‖ RMSE [m]

f1 f4 com cop

S1
1 100 0

+
9e−04 0.006 0.06

4 0 100 3.2 0.06 0.09

S2
1 100 0

+
4e−04 0.03 0.07

4 0 100 1.8 0.04 0.09

S3
1 78.98 21.02

+
6e−04 0.03 0.08

4 0.2 99.98 1.2 0.05 0.09

S4
1 100 0

+
7e−04 0.01 0.04

4 0 100 2.7 0.04 0.07

S5
1 100 0

+
5e−04 0.08 0.12

4 0 100 1.8 0.09 0.13
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Table 5.5: The results obtained by our algorithm for the 5 parkinsonian subjects
during the quick walk before and after the L-dopa treatment

quick walk before L-dopa

Subject
nb

i∗
contribution

[%] γ 1
n‖∇L(ĉ)‖ RMSE [m]

f1 f4 com cop

S1
1 100 0

+
9.4e−04 0.007 0.07

4 0 100 2.5 0.04 0.09

S2
1 100 0

+
4e−04 0.05 0.09

4 0 100 0.9 0.06 0.10

S3
1 79.57 20.43

+
7e−04 0.02 0.07

4 0.2 99.98 1.3 0.07 0.09

S4
1 100 0

+
3e−04 0.10 0.12

4 0 100 0.4 0.11 0.14

S5
1 100 0

+
5.7e−04 0.04 0.08

4 0 100 1.9 0.06 0.10

quick walk after L-dopa

Subject
nb

i∗
contribution

[%] γ 1
n‖∇L(ĉ)‖ RMSE [m]

f1 f4 com cop

S1
1 100 0

+
0.001 0.02 0.07

4 0 100 4 0.06 0.09

S2
1 100 0

+
5.3e−04 0.03 0.06

4 0 100 1.5 0.04 0.08

S3
1 81.49 18.51

+
7.6e−04 0.03 0.09

4 0.1 99.99 1.3 0.07 0.10

S4
1 100 0

+
5.6e−04 0.01 0.04

4 0 100 2.1 0.04 0.06

S5
1 92 8

-
5.3e−04 0.04 0.09

4 0.03 99.97 2.5 0.06 0.07
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(a) The com representation for the cases when the com jerk criterion is chosen as pivot
(the green dotted trajectory ) and when the cop tracking criterion is chosen as pivot (the
blue dotted trajectory )

(b) The cop representation for the cases when the com jerk criterion is chosen as pivot (the
green dotted trajectory ) and when the cop tracking criterion is chosen as pivot (the blue
dotted trajectory )

Figure 5.7: The com (a) and the cop (b) estimated by the direct optimal control
problem for the results obtained by our algorithm with the observed com and cop

trajectories (the red trajectory in the com (a) and cop (b) representation)
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5.5 Summary

In this chapter, we propose a pilot study for the human walking gait initialization task

for 6 non-parkinsonian subjects and 5 parkinsonian ones. We applied our algorithm to

one trial per subject and it found as a good candidate one criterion or a combination

between two criteria: CoM jerk and CoP tracking criteria. Further investigations on

this matter will be the subject of future work and we will describe our intentions in the

chapter dedicated to the perspectives of this thesis.

To summarize, in this chapter as in the previous ones, the inverse approximately optimal

control approach presents a significant advantage due to its computational time (testing

one subject one trial takes less then 85s for solving the inverse optimal control and a

forward optimal control one).



Chapter 6

The inverse optimal control in a

bounded-error framework

Due to the barely known nature of the errors and uncertainties acting on the system and

observations while trying to estimate unknown criteria that can explain the observations,

in this chapter we aim at working into a bounded-error framework [130]. The bounded

error framework approach was widely used and studied over the years. It has been

applied to state and parameters estimation for nonlinear discrete time systems ([130]

and reference there in), continuous-time systems [131, 132] or to show how to deal with

the presence of uncertainty in the model and data, located within prior intervals [133].

In this chapter, we introduce our bounded-error approach to solve inverse optimization

problems. We validate this approach in simulation by using the discretized unicycle

robot type model to generate uniformly distributed noisy data.

6.1 Problem formulation

The approximately optimal framework, presented in Chapter 2, assumes that the human

motor is an imperfect optimal control process, while all the imperfections resides in the

observation. To the contrary, in our new appoach we assume that the human motor

control is a perfect optimal control process and we will explicitly consider noise and

disturbance on the observations or any modeling error and only assume that the errors

are bounded with known bounds, otherwise unknown. As it can be seen in fig. 6.1(b), all

trajectories passing through the feasible tube of optimal measurements will be solution

to our problem.

97
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(a) Optimal measurements (b) Feasible domain/tube of optimal measurements

Figure 6.1: Example of unbounded optimal measurements 6.1(a) and feasible do-
main/tube of optimal measurements 6.1(b)

In the sequel, we assume that the actual optimal variables are measured with bounded

uncertainties, i.e. the optimal variables x∗ are not exactly known but merely contained

in a bounded set with known bounds. Here, we consider simple bounds on vector x∗

components, i.e. bounded intervals [x∗] = [x∗, x∗], where x∗ denotes the lower bounds

of variable x∗ and x∗ the upper bounds. Therefore we are trying to find the feasible set

of the objective functions that can explain all the measurements from the feasible tube

(see Fig. 6.1(b)).

We use the bounded-error framework to find the feasible set of objective function weights

vector c ∈ <k+ and the dual variables λ ∈ <m2
+ and ν ∈ <m1 solutions such as:

S = {c × λ × ν × x∗ ∈ <k+ × <
m2
+ × <m1 × [x∗] s.t. Eq.(2.13)} (6.1)

Because of the large number of unknown variables S ∈ <k×m1×m2 and for a better un-

derstanding of our approach, we will consider below the case S ∈ <3. This enables us to

represent better an outline goal for our method.

Let’s suppose we are looking to find the set of feasible solutions:

S = {c× ν ∈ <2
+ ×<1 s.t. Property} ⊂ <3, (6.2)

composed of the objective function’s weight c ∈ <2
+ and the Lagrange multiplier ν ∈ <1.

As it can be seen in Fig. 6.2, the set S of feasible solutions is difficult to be charac-

terized, due to its unknown complicated shape. Therefore, we’ll reduce our problem by

searching only the projection of the feasible set of solutions on the subspace created by
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Figure 6.2: Fig on the left side: Geometric representation of the S set of feasible
solutions with three unknown variables; Fig on the right side: The set of feasible

solutions projected onto the objective function’s weight subspace

the parameters of interest c1 and c2, i.e objective function’s weight:

Sc = proj~c(S) = {c ∈ <2
+, s.t. ∃ν ∈ <1and Property} ∈ <2 (6.3)

Still, the set of feasible solution is not something that can be found easily, but we known

how to obtain the smallest box over approximating the solution set, i.e. the convex hull

of the set of feasible objective function’s weight solutions [Sc] (represented by the pink

box in fig.6.2). And we have the certainty that it contains the set of feasible solutions:

Sc ⊆ [Sc] =
[
c1, c1

]
×
[
c2, c2

]
(6.4)

The convex hull of the set of solutions is composed of the Cartesian product of
[
c1, c1

]
and

[
c2, c2

]
bounded intervals.

Following the example presented above we’ll use the same concept for the case where

S ∈ <k+m2+m1 . Because we are only mainly interested in imputing the weight vector

c ∈ <k the inverse optimization boils down to computing the convex hull approximation

of the set of objective function’s weight solutions:

[Sc] =
[
c1, c1

]
×
[
c2, c2

]
× . . .×

[
ck, ck

]
, (6.5)

where the bounds are computed component-wise [130] as follows.

The constraints that need to be considered while searching the lower and upper bounds

consist in satisfying the KKT conditions, the Lagrange multipliers, associated with the

inequality constraints, need to be positive as well as the weight vector c, while the
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measurements are within a bounded set and are grouped as following:

λi ≥ 0, i = 1, . . . ,m2

ci ≥ 0, i = 1, . . . , k

x ≥ x∗i , i = 1, . . . , n

x ≤ x∗i , i = 1, . . . , n

rs(c, λ, ν, x
∗) = 0

∀i ∈ {1, . . . ,m2} rc,i(λ, x∗) = 0

(6.6)

The lower bounds of the objective function’s weights are obtained by solving k con-

strained minimization problems, whereas the upper bounds ones are obtained by solving

k constrained maximization problems [130][pg. 111]:

∀j = 1 . . . k,

cj ← min
c ,λ ,ν, x

cj

subject to eq.(6.6)

cj ← max
c ,λ ,ν ,x

cj

subject to eq.(6.6)

(6.7)

Both lower and upper bounds of the objective function’s weight are used to obtain the

convex hull approximation of the set of objective function’s weight solutions. These can

be obtained by taking the Cartesian product of the weight bounded intervals. Also, the

feasible set of objective function’s weight solutions Sc is within the determined convex

hull:

Sc ⊆ [Sc] = [c1, c1]× [c2, c2]× . . .× [cj , cj ] (6.8)

6.2 Application on simulated data

We consider, as in the previous chapter, the discrete model of the unicycle robot type

xi+1 = xi + τu1,i cos θi

yi+1 = yi + τu1,i sin θi

θi+1 = θi + τu2,i

ζ0 = ζstart

ζN−1 = ζtarget

(6.9)
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where τ is the sampling rate and i = 0 : N − 1 is the time step, (x, y) the position, θ

the orientation and u1, u2 the forward (linear) speed and angular speed respectively and

ζ =
[
x y θ u1 u2

]T
.

The optimal artificial trajectories are generated by solving an equality constrained op-

timization problem:

minimize
ζ

1

2
τ

n∑
k=1

cTχn(ζ)

subject to eq(6.9)

(6.10)

where c ∈ <n×1 is the criteria’s weight vector, χ contains the pre-selected criteria and n

is the number of the chosen basis criteria to be minimized.

6.2.1 The three criteria case

We apply the bounded-error approach to estimate the weight of three criteria: the linear

velocity and the orientation respectively, where the angular velocities one is used as pivot

(its weight will be equal to 1.). Firstly, we generate data solving problem (6.10), where

the known basis criteria are

χ(ζ) =


‖u2‖2

‖u1‖2

‖θ‖2

 , (6.11)

where c = [1 5 1.5]T ∈ <3.

Secondly, an uniformly distributed noise is added to the generated optimal trajectories

as follows: ±0.4% of error to the positions and linear velocity and ±0.2% of error on

orientation and angular velocity, ±1% of error to the positions and linear velocity and

±0.5% of error on orientation and angular velocity, ±1.8% of error to the positions and

linear velocity and ±0.9% of error on orientation and angular velocity and we finish

by adding ±3% of error to the positions and linear velocity and ±1.5% of error on

orientation and angular velocity, as presented in table 6.1 and represented in fig. 6.3.

We define the KKT conditions

hj(ζ) = 0 j = 1, . . . , 3N

∇ζ ‖u2‖2 + c1∇ζ ‖u1‖2 + c2∇ζ ‖θ‖2 +
∑3N

j=1 νj∇ζhj(ζ) = 0
(6.12)

associated with the forward optimal control problem (6.10) that minimized the criteria

from eq.(6.11), used to generate the optimal trajectory.
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Table 6.1: The uniformly distributed
noise with four different values for the

p variance

Noise added to Noise added to
Case x,y and u1 θ and u2

×0.01 ×0.01

1 ±0.4 ±0.2

2 ±1 ±0.5

3 ±1.8 ±0.9

4 ±3 ±1.5

Figure 6.3: Trajectory obtained for c1 = 5 et c2 = 1, 5 using the unicycle model (red
line) with four different noisy trajectories. Uniformly distributed noise is added to the
obtained trajectory as described previously and presented in Table 6.1. The first case
is represented by the cyan boxes, the second one by the green boxes, the third one by

the blue boxes and the final one by the magenta boxes.

Then the convex hull of the set of feasible objective function’s weight solutions is:

[Sc] = [c1, c1]× [c2, c2] (6.13)

where the c1, c2 upper and lower bounds are obtained by solving four optimization

problems:

c1 ← min
z

c1

s.t. eq.(6.12)

c1 ≥ 0

c2 ≥ 0

ζ∗ ∈ [ζ∗]

c1 ← max
z

c1

s.t. eq.(6.12)

c1 ≥ 0

c2 ≥ 0

ζ∗ ∈ [ζ∗]

c2 ← min
z

c2

s.t. eq.(6.12)

c1 ≥ 0

c2 ≥ 0

ζ∗ ∈ [ζ∗]

c2 ← max
z

c2

s.t. eq.(6.12)

c1 ≥ 0

c2 ≥ 0

ζ∗ ∈ [ζ∗]

(6.14)

where z = [c1 , c2 , ν, ζ].

The values obtained for the two criteria’s weight are listed in table 6.2, while the smallest

box approximation of the objective function’s weight solutions are represented in Fig.

6.4. It can be seen that our bounded-error approach returns the true solution within the

exhibited convex hull of the set of feasible objective function’s weight solutions. Also,

while the noise variance increases the obtained convex hull is larger.

Nevertheless, the objective of this chapter is to find the convex hull set of feasible

objective function’s weight solutions in which we have the certainty that all feasible

solutions are included. Fig. 6.5 is presenting a bisection over c1 parameter that can give

a good idea about the set of feasible objective function’s weight solutions, represented

by the gray colored boxes.
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Table 6.2: The results obtained with
the bounded-error framework approach

for the three criteria case

Noise Convex hull of inverse optimal solution
×0.01 [Sc] = [c1, c1], [c2, c2]

Case1 [Sc] = [4.6510, 5.0779], [1.4876, 1.5075]

Case2 [Sc] = [4.1809, 5.1995], [1.4698, 1.5187]

Case3 [Sc] = [3.6390, 5.3715], [1.4472, 1.5339]

Case4 [Sc] = [2.9719, 5.6528], [1.4160, 1.5569]

Figure 6.4: The convex hull set of feasible objective function’s weight solutions for
the four different noisy trajectories, case 1 cyan box, case 2 green one, case 3 blue one
and in the last case the magenta one, with the true values for the criteria’s weight

represented by the red point

(a) (b)

(c) (d)

Figure 6.5: The convex hull set of objective function’s weight solutions for the four
different noisy trajectories ((a) case 1, (b) case 2, (c) case 3, (d) case 4) along with the
true values for the criteria’s weight represented by the red point for the three criteria
case; also, the bisection over the c1 criterion weight represented by the gray boxes for

each of the 4 noisy trajectories cases.
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We solved 100 forward optimal control problems for each of the four noisy trajectory

cases, by selecting random {c1, c2} values from the obtained set of feasible objective

function’s weight solutions represented by the gray colored boxes in fig. 6.5. As it can

be seen in fig.6.6 the obtained trajectories are passing through the feasible tube/domain

of optimal trajectories, representing certain possible solutions to our problem.

(a) (b)

(c) (d)

Figure 6.6: The trajectories obtained while applying the forward optimal control with
100 random parameter values, for each noisy trajectory case, from the set of feasible

solution represented by the red trajectories for the three criteria case.
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6.2.2 The four criteria case

In this subsection, we apply the bounded error approach to estimate the weight of

four criteria: the linear velocity, the robots orientation and the squared error between

orientation and direction to the goal, respectively, where the angular velocities one is

chosen as pivot (its weight will be equal to 1). Firstly, we generate data solving problem

(6.10) where the known basis criteria are

χ(ζ) =


‖u2‖2

‖u1‖2

‖θ‖2

‖ϕ(ζ, ζtarget)‖2

 (6.15)

where c = [1 1.8508 42.0533 0.6590]T ∈ <4, N is the number of samples and ϕ(ζ, ζtarget)

is the squared error between orientation and direction to the goal:

ϕ(ζi, ζtargeti) = arctan(
ytargeti − yi
xtargeti − xi

)− θi i = 0 : N − 1

Secondly, an uniformly distributed noise is added to the generated optimal trajectories

as follows: ±0.4% of error to the positions and linear velocity and ±0.2% of error on

orientation and angular velocity, ±1% of error to the positions and linear velocity and

±0.5% of error on orientation and angular velocity, ±1.8% of error to the positions and

linear velocity and ±0.9% of error on orientation and angular velocity and we finish

by adding ±3% of error to the positions and linear velocity and ±1.5% of error on

orientation and angular velocity, as presented in table 6.3 and represented in fig. 6.7.

We define the KKT conditions

hj(ζ) = 0 j = 1, . . . , 3N

∇ζ ‖u2‖2 + c1∇ζ ‖u1‖2 + c2∇ζ ‖θ‖2 + c3∇ζ ‖ϕ(ζ)‖2 +
∑3N

j=1 νj∇ζhj(ζ) = 0,
(6.16)

associated to the forward optimal control problem (6.10) that minimized the criteria

from (6.15), used to generate the optimal trajectory.

Then the convex hull of the set of feasible objective function’s weight solutions is:

[Sc] = [c1, c1]× [c2, c2]× [c3, c3] (6.17)
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Table 6.3: The uniformly distributed
noise with four different values for the

p variance

Noise added to Noise added to
Case x,y and u1 θ and u2

×0.01 ×0.01

1 ±0.4 ±0.2

2 ±1 ±0.5

3 ±1.8 ±0.9

4 ±3 ±1.5

Figure 6.7: Trajectory obtained for {c1, c2, c3} = {1.8508, 42.0533, 0.6590} using the
unicycle model (red trajectory) with four different noisy trajectories. Uniformly dis-
tributed noise is added to the obtained trajectory as described previously and presented
in Table 6.3. The first case is represented by the cyan boxes, the second one by the
green boxes, the third one by the blue boxes and the final one by the magenta boxes.

where the c1, c2, c3 lower and upper bounds are obtained by solving six optimization

problems:

c1 ← min
z

c1

s.t. eq.(6.16)

ci ≥ 0 , i = 1, 2, 3

ζ∗ ∈ [ζ∗]

c2 ← min
z

c2

s.t. eq.(6.16)

ci ≥ 0 , i = 1, 2, 3

ζ∗ ∈ [ζ∗]

c2 ← min
z

c3

s.t. eq.(6.16)

ci ≥ 0 , i = 1, 2, 3

ζ∗ ∈ [ζ∗]

c1 ← max
z

c1

s.t. eq.(6.16)

ci ≥ 0 , i = 1, 2, 3

ζ∗ ∈ [ζ∗]

c2 ← max
z

c2

s.t. eq.(6.16)

ci ≥ 0 , i = 1, 2, 3

ζ∗ ∈ [ζ∗]

c3 ← max
z

c3

s.t. eq.(6.16)

ci ≥ 0 , i = 1, 2, 3

ζ∗ ∈ [ζ∗]

(6.18)

where z = [c1 , c2 , c3 , ν, ζ].

Table 6.4: The results obtained with the bounded-error framework approach for the
four criteria case

Noise Convex hull of inverse optimal solution
×0.01 [Sc] = [c1, c1]× [c2, c2]× [c3, c3]

Case1 [Sc] = [0.0026, 1.8923]× [41.5961, 42.8394]× [1.5959e−08, 0.9254]

Case2 [Sc] = [0.0016, 1.9579]× [41.4327, 42.9719]× [1.9987e−08, 0.9601]

Case3 [Sc] = [0.0059, 2.0522]× [41.2184, 43.1503]× [3.9545e−07, 1.0059]

Case4 [Sc] = [0.0051, 2.2105]× [40.9046, 43.4220]× [1.9989e−08, 1.0736]

The values obtained for the three criteria’s weight are reported in table 6.4, while the

set of feasible objective function’s weight solutions are represented in Fig. 6.8. It can
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(a) (b)

(c) (d)

Figure 6.8: The computed convex hull set of feasible objective function’s weight
solutions for the four different noisy trajectories projected on the three criteria’s weight
subspace along with the true value for the criteria weight represented by the red point,

for the case with four criteria

be seen that our bounded error approach returns the true solution within the exhibited

convex hull of the set of feasible objective function’s weight solutions. Also, while the

noise variance increases also the obtained convex hull are larger. We solved 100 forward

optimal control problems for each of the four noisy trajectory cases, by selecting random

{c1, c2, c3} values from the obtained convex hull set of feasible objective function’s weight

solutions in fig. 6.8. As it can be seen in fig.6.9 the obtained trajectories are passing

through the feasible tube/domain of optimal trajectories, representing certain possible

solutions to our problem.
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(a) (b)

(c) (d)

Figure 6.9: The trajectories obtained while applying the forward optimal control with
100 random parameter values, for each noisy trajectory case, from the set of feasible

solution represented by the red trajectories for the four criteria case.
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6.2.3 The guarantee of the computed convex hull set

By applying our method, we simplify the initial problem to a constraint programming

one, where KKT constraints need to be satisfied, Lagrange multiplier and criteria’s

weight are required positive and measurements, placed within a bounded set are stated

in the form of constraints. All these constraints are taken into account when minimizing

and maximizing the criteria’s weight in order to obtain the convex hull set of feasible

objective function’s weight.

In this section we will numerically guarantee that the computed convex hull set of

feasible objective function’s weight i.e. [Sc] is the interval hull i.e. the smallest box

that contains the set of feasible objective function’s weight. This can be done by using

interval arithmetic and contractors programming [130].

All the known tools (e.g. IBEX) that solve this kind of problems are usually used when

dealing with small scale problems. The core algorithm of these tools automatically does

the following steps: verify if the solution is within the initially selected interval and

that the constraints are satisfied and if this is not the case the algorithm will then do

the bisection over the unknown variables. Finally the algorithm yields three pavings or

union of boxes:

• an inner approximation that is included in the solution set,

• an uncertainty layer that contains boxes that may contain solutions and

• the remaining sets that are proven to contain no solution.

The union of the inner approximation and the uncertainty layer constitutes the outer

approximation.

A disadvantage of this bisection is the computational time which increases exponen-

tially with the number of unknown variables. Therefore they are not usually employed

in solving large scale problems, but they can be efficiently used if the bisection over

the unknown variables is not applied. This is our approach to solving out large scale

problems, having <k+m1+m2 unknown variables, i.e. we use the known interval analysis

tools, without the bisection, to show that the computed convex hull is the smallest box

that contains the set of feasible solutions.

There is a possibility for the computed convex hull to encounter two situations, presented

in fig. 6.10, as follows:
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(a) (b)

Figure 6.10: The graphical representation of the two possible situations encounter by
the convex hull, where the convex hull is represented by the black box and the set of
feasible solutions by the green shape: (a) the computed convex hull omitted parts of the
set of feasible solutions; (b) the computed set includes all the set of feasible solutions

(a) (b)

Figure 6.11: The graphical representation of the convex hull and the intervals around
it, by adding a small coefficient to the convex hull δ = 0.01: (a) the intervals on the
left and on the right of the convex hull; (b)intervals above and below the convex hull

• the computed convex hull omitted parts of the set of feasible solutions (see fig.

6.10(a)).

• the computed set includes all the set of feasible solutions (see fig. 6.10(b)).

At first, we define all intervals which need to be tested. As fig.6.11 shows we test the

computed convex hull [Sc] as well as the intervals around it, where δ has a small value,

equal to 0.01 for our cases.

Therefore, by using δ we test the two situations presented above: if the computed convex

hull includes or omits some parts of the set of feasible solutions.

First, we define the interval boxes as presented in fig. 6.11, in order to check each of the

computed convex hull bounds:

1. Check upper bound of c1: Y1 = [c1 + δ,∞)× [c2, c2].
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(a) (b)

(c) (d)

Figure 6.12: The graphical representation of the results obtained after applying the
EASIBEX-MATLAB to the results obtained with our method on the three criteria case:
(a) case 1, (b) case 2, (c) case 3, (d) case 4. The blue sets correspond to the remaining
set (or sets with no solutions) and the red ones to the inner and the uncertainty sets

(or sets with solutions)

2. Check lower bound of c1: Y2 = [0, c1 − δ]× [c2, c2].

3. Check upper bound of c2: Y3 = [c1, c1]× [c2 + δ,∞).

4. Check lower bound of c2: Y4 = [c1, c1]× [0, c2 − δ].

Second, for each of this five boxes, i.e. the computed convex hull set and the ones around

it, we test its intersection with the set of feasible solutions.

Let’s consider the case when our algorithm checks the upper bound of c1 with the

associated box Y1 = [c1 + δ,∞) × [c2, c2]: If the intersection between Y1 and the set

of feasible solutions is empty then there are no solutions in the investigated Y1 box;

otherwise there are still solutions and the initial Y1 box will increase by doubling the

δ’s value, i.e. Y1 = [c1 + 2δ,∞)× [c2, c2], and the intersection will be repeated until an

empty one is obtained. If this is the case, then the computed convex hull encounters the

first case presented in fig. 6.12 and stated previously.

The fig 6.12 shows that the convex hull computed with our bounded error inverse optimal

control method encounters the second situation, being the smallest approximation at a

δ maximum value.
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6.3 Summary

The main focus of this chapter was the presentation of a new way of solving the inverse

optimal control problem that fosters on ideas developed for approximately inverse op-

timization. The method deals with errors or uncertainties acting on the observations.

This approach was validated using noisy artificial optimal trajectories, generated by

solving a direct optimal control problem on an unicycle robot type discrete model and

by adding uniformly distributed noise with four different variances. In order to sup-

port our approach two cases were considered, where the convex hull set of objective

function’s weight solutions needed to be found. In both cases one criteria was chosen as

pivot (therefore its weight was equal to 1), while the other 2 for the first case and respec-

tively 3 for the second one were estimated. The computed convex hull set of objective

function’s weight solution was obtained as the Cartesian product between the objective

function’s weight lower and upper bounds, obtained component-wise by solving k con-

strained minimization and k constrained maximization problems (where k represents

the number of unknown criteria’s weight). Finally, we numerically guaranteed that the

computed convex hull set is the smallest box that contains the set of objective function’s

weight solutions.



Chapter 7

Conclusions and Future works

The main focus of this thesis is to address the inverse optimal control problems as they

offer us a good opportunity to understand what cost functions are minimized by the

human motor control while performing a certain motor control task. In this thesis we

assume that the collected experimental observations are in accordance with what the

human motor control is planning. This understating can offer new opportunities for

the sciences that analyze the human behavior, to bring solutions for people in need as

patients with degenerative and locomotion diseases etc. or to obtain humanoid robots

with a human-like behavior that can, for example, facilitate the collaboration between

human and robots in an industrial environment or in everyday life scenarios.

The inverse optimal control problems can be solved in many ways in literature, as we

presented in the related work section, so we prefer to select the approximately inverse

optimal control one, that has a nice computation time thus offering the possibility to

use it for online applications. This approach assumes that the human motor control, is

an imperfect optimal control process, while the observed data is considered perfect. In

our study, we proposed an algorithm based on this approach. In the previous studies

on the topic, a basis of criteria was proposed for the studied tasks. Even if there

is not a prior knowledge of the actual cost functions minimized by the human motor

control, they tested a single criterion as a pivot. We propose the basis of criteria that

has been already analyzed in literature for the studied tasks, and we went further by

testing each criterion to be a pivot in solving the problem. This means that by testing

each criterion we do not tamper with the results, allowing the algorithm to find the

best candidates that exhibit small residuals norm values and better fit the experimental

data. Our proposed algorithm for the inverse optimal control problems was addressed

in three human motion examples: human arm movement from an initial point to a

final one, represented by screwing tasks in an industrial environment, a cyclic human

113
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movement consisting in visually tracking a target with the head and the human walking

gait initialization task for non parkinsonian and parkinsonian subjects.

For the first example, the algorithm obtained two classes of possible criteria. Also

we have observed that any combination between these two classes of criteria can be

a good choice to explain the collected experimental data for this task. In the second

example it was found that any criterion from the selected basis of criteria can be a good

candidate for explaining the experimental data. For this task we proposed a closed loop

modeling with a gain synthesis method for artificial data. The last example was a pilot

study conducted for the non parkinsonian during normal and quick walk and for the

parkinsonian subjects during the normal and quick walk before and after the L-dopa

treatment. As a first result, the algorithm presented different combination of proposed

criteria as possible candidates to explain the variability found in the experimental data.

While applying this method we came upon a new approach of solving the inverse optimal

control problem when dealing with errors and uncertainties acting on the system and

observations, where the errors are bounded with known bounds, otherwise unknown.

In this approach we assume that the human motor control is a perfect optimal control

process, while all imperfection resides in the observations. Our method returns the

convex hull set of feasible cost functions solutions and we have the certainty that the

true solution is within the obtained set.

In the perspective of our future works we have many opportunities and avenues to follow:

• First of all, the new inverse optimal control approach in a bounded error framework

can be addressed for the human motions studied in this thesis, but also for new

human motion tasks. By doing so we can get an idea about how the human motor

control works for a multitude of tasks thus having uncertainty domains of cost

functions that can be minimized by it.

• Our inverse approximately optimal control (IAOC) algorithm presented a signif-

icant reduction in computation time, for all the presented examples, and it can

be applied to clinical studies involving a large number of patients as well as for

ergonomic studies in an industrial environment.

• We can extend the pilot study for the human walking gait initialization task, by

analyzing it with a hybrid inverse optimal control problem. The literature of-

fers us an approximately optimal control problem for hybrid dynamical systems,

addressed on the ParkourBot biped robot [52]. Also, [5] proposed an inverse para-

metric bi-level optimization with an application to hybrid system control. A new
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perspective in solving this matter consists in the use of a bounded error frame-

work for addressing the hybrid inverse optimal control problem to the experimental

data.

• Another perspective of the use of the inverse optimal control is to obtain mod-

els for human tasks and after to control lower limb prosthetic devices by using

impedance control, as in [134] for helping amputee patients, or people with loco-

motion diseases.

• Nowadays there is a new trend in the robotic innovation, consisting in technologies

such as exoskeletons, which help people walk or makes them able of carrying heavy

loads. We can find this kind of technology in healthcare (for example: the Hybrid

Assistive Limb (HAL) exoskeleton suitable in walking and carrying heavy loads,

that detects bio-signals which appear on the skin surface when the user intents

to move and generates required forces for effort compensation, having as flaw the

complexity of its control i.e. requires calibration up to two month) or in the

military field ( for example Berkely Lower Extremily Exeskeleton, for battlefields,

that augments the soldiers strength and endurance, permitting them to carry heavy

loads during long distances. It works based on two control laws used during the

walking cycle: position control for stance leg and sensitivity amplification control

for the swing leg).

The humans wearing these exoskeletons need to control the robotic device and not

the other way around. The exoskeleton needs to be capable of following human lo-

comotion, performing the task easily without restricting their natural movements

and assuring safety while in contact with the human. Due to the obtained compu-

tational time of our IAOC algorithm, for the human tasks studied in this thesis,

we can think of future works consisting in developing fast methods for estimating

the human behavior by understanding and analyzing online the human movement

during physical interaction with the exoskeleton. The online analysis can be done

via the approximately or bounded error inverse optimal control and the obtained

cost functions can be used to generate input torques for the exoskeleton that ensure

natural motions for the one wearing the exoskeleton.

• All the examples of human motion were analyzed in an open loop optimization

process. We can consider analyzing the experimental data in a feedback closed loop

framework. If we want to do this, a new issue will arise, consisting in questioning

what input should be taken to the system? In the study of artificial data, the

input was considered to be a sinusoidal wave one, but in reality a more complex

state estimation model of sensory integration should be used or maybe one should
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estimate the input of the system along with the feedback gains. As proposed by

[135], the state estimation uses an internal model of the body and sensor dynamics

to process sensor information and determine body orientation. In the latter study,

three sensor information consisting in joint proprioception, vestibular organs in

the inner ear and vision were modeled and it was predicted that the absence of

one sensor lead to an unstable posture. Moreover, due to the known fact that body

and sensors dynamics changes throughout life, an internal model would have to be

continually updated with these changes and one should think of using an adaptive

state estimation.

With such a precise model we can think of testing what happens when any sensor

is missing. As in [135], where it was observed that the lack of the vestibular sense

leads to loss of balance. We can think of solving this by proposing new innovative

robotics systems, for example micro-prosthesis or microchips, that can replace the

missing sensors and thus helping people in need.

• According to scientific results, when analyzing the gait initialization task, the

gait encounters troubles that precedes falls which indicate neurological diseases.

Parkinson’s disease (PD) is known to be a degeneration of the dopaminergic neu-

rons in the substantia nigra pars compacta of the midbrain that projects to the

basal ganglia. The combination between medication and deep brain simulation

have revealed inefficient for the gait symptoms in PD. Therefore, tools are needed

in order to understand the brain functions in real life situations and to predict

warnings of postural events. In order to have an understanding of what is happen-

ing in PD, we need to have an idea about the implication of basal ganglia activity

in the complex motor coordination. Oscillatory activity in the basal ganglia is rel-

evant to movement disorders, so falls and blockage of gait rarely emerge in clinical

or laboratory conditions and cannot be adequately estimated and studied. Because

today it is not possible to record brain activity in embedded situations, first we

need to obtain a proper basal ganglia model and to use our understanding of the

problem to propose devices suitable for clinical use and that the PD patients can

use themselves. From a robotics researcher’s point of view, this problem may be

solved as follows: first, a proper model of basal ganglia needs to be found and also

we need to have a good understanding on how the human motor control works.

The second step consists in proposing an artificial basal ganglia such as robotic

microchips (X DARPA and Google are planning to develop a microchip prosthesis

which can be implanted on the human brain in order to erase some memories that
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can harm and invoke dependance, bad influences, depression etc.) that can be im-

planted to the patient brain in order to predict and solve the problems encountered

by a PD patient.

The idea of proposing artificial parts of human body that are somehow malfunc-

tioning is not new: for example [136] proposed to develop an autonomous artificial

pancreas by using an inverse neural optimal control for trajectory tracking, to

regulate glucose level for type 1 diabetes mellitus patients. The proposed inverse

optimal control law calculates the insulin delivery rate, which prevents hyper-

glycemia and hypoglycemia levels. In this study a virtual patient is implemented

on a PC host being interconnected with a FPGA controller. The proposed FPGA

controller based hardware architecture of a neural inverse optimal control can be

used to develop an autonomous artificial pancreas.
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                                 Adina M. PANCHEA 

 
Contrôle optimal inverse de systèmes de  

mouvements biologiques redondants. 
Résumé : Cette thèse aborde les problèmes inverses de contrôle optimal (IOCP) pour trouver les fonctions 
de coûts pour lesquelles les mouvements humains sont optimaux. En supposant que les observations de 
mouvements humains sont parfaites, alors que le processus de commande du moteur humain est imparfait, 
nous proposons un algorithme de commande approximative optimale. En appliquant notre algorithme pour 
les observations de mouvement humaines collectées: mouvement du bras humain au cours d'une tâche de 
vissage industrielle, une tâche de suivi visuel d’une cible et une tâche d'initialisation de la marche, nous 
avons effectué une analyse en boucle ouverte. Pour les trois cas, notre algorithme a trouvé les fonctions de 
coût qui correspondent mieux ces données, tout en satisfaisant approximativement les Karush-Kuhn-Tucker 
(KKT) conditions d'optimalité.  Notre algorithme offre un beau temps de calcul pour tous les cas, fournir une 
opportunité pour son utilisation dans les applications en ligne. Pour la tâche de suivi visuel d’une cible, nous 
avons étudié une modélisation en boucle fermée avec deux boucles de rétroaction PD. Avec des données 
artificielles, nous avons obtenu des résultats cohérents en termes de tendances des gains et les critères 
trouvent par notre algorithme pour la tâche de suivi visuel d’une cible. Dans la seconde partie de notre 
travail, nous avons proposé une nouvelle approche pour résoudre l’IOCP, dans un cadre d'erreur bornée. 
Dans cette approche, nous supposons que le processus de contrôle moteur humain est parfait tandis que 
les observations ont des erreurs et des incertitudes d'agir sur eux, étant imparfaite. Les erreurs sont 
délimitées avec des limites connues, sinon inconnu. Notre approche trouve l'ensemble convexe de  de 
fonction de coût réalisables avec la certitude qu'il comprend la vraie solution. Nous numériquement garanties 
en utilisant des outils d'analyse d'intervalle. 

Mots clés : Contrôle optimal inverse, optimisation et de contrôle optimal, biomimétique, la cinématique, le 
mouvement et la planification de parcours, suivi visuel, Direct / Inverse Dynamics formulation, Motion 
Control, systèmes redondants, Dynamics 

Inverse optimal control for redundant systems of biological motion. 
Summary : This thesis addresses inverse optimal control problems (IOCP) to find the cost functions for 
which the human motions are optimal. Assuming that the human motion observations are perfect, while the 
human motor control process is imperfect, we propose an approximately optimal control algorithm. By 
applying our algorithm to the human motion observations collected for: the human arm trajectories during an 
industrial screwing task, a postural coordination in a visual tracking task and a walking gait initialization task, 
we performed an open loop analysis. For the three cases, our algorithm returned the cost functions which 
better fit these data, while approximately satisfying the Karush-Kuhn-Tucker (KKT) optimality conditions. Our 
algorithm offers a nice computational time for all cases, providing an opportunity for its use in online 
applications. For the visual tracking task, we investigated a closed loop modeling with two PD feedback 
loops. With artificial data, we obtained consistent results in terms of feedback gains’ trends and criteria 
exhibited by our algorithm for the visual tracking task. In the second part of our work, we proposed a new 
approach to solving the IOCP, in a bounded error framework. In this approach, we assume that the human 
motor control process is perfect while the observations have errors and uncertainties acting on them, being 
imperfect. The errors are bounded with known bounds, otherwise unknown. Our approach finds the convex 
hull of the set of feasible cost function with a certainty that it includes the true solution. We numerically 
guaranteed this using interval analysis tools. 

Keywords : Inverse optimal control, Optimization and Optimal control, Biomimetic, Kinematics, Motion and 
Path Planning, Visual Tracking, Direct/Inverse Dynamics Formulation, Motion control, Redundant systems, 
Dynamics 
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