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mon cursus universitaire. Si je me suis intéressé au monde de la recherche c’est en très grande
partie grâce à toi. Benoı̂t, merci d’abord de m’avoir fait confiance pour mener ces travaux de
recherche au sein de PSA. Ta grande connaissance de l’automobile dans les détails les plus tech-
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Je souhaiterais ensuite remercier le jury de la thèse : les rapporteurs Prof. Pierre-Alain Boucard
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ABSTRACT

One of the most challenging tasks in modern engineering is that of keeping the cost of manufac-
tured goods small. With the advent of computational design, prototyping for instance, a major
source of expenses, is reduced to its bare essentials. In fact, through the use of high-fidelity
models, engineers can predict the behaviors of the systems they design quite faithfully. To be
fully realistic, such models must embed uncertainties that may affect the physical properties or
operating conditions of the system.

This PhD thesis deals with the constrained optimization of structures under uncertainties in the
context of automotive design. The constraints are assessed through expensive finite element
models. For practical purposes, such models are conveniently substituted by so-called surrogate
models which stand as cheap and easy-to-evaluate proxies. In this PhD thesis, Gaussian process
modeling and support vector machines are considered.

Upon reviewing state-of-the-art techniques for optimization under uncertainties, we propose
a novel formulation for reliability-based design optimization which relies on quantiles. The
formal equivalence of this formulation with the traditional ones is proved. This approach is
then coupled to surrogate modeling. Kriging is considered thanks to its built-in error estimate
which makes it convenient to adaptive sampling strategies. Such an approach allows us to
reduce the computational budget by running the true model only in regions that are of interest
to optimization. We therefore propose a two-stage enrichment scheme. The first stage is aimed
at globally reducing the Kriging epistemic uncertainty in the vicinity of the limit-state surface.
The second one is performed within iterations of optimization so as to locally improve the
quantile accuracy. The efficiency of this approach is demonstrated through comparison with
benchmark results.

An industrial application featuring a car under frontal impact is considered. The crash behav-
ior of a car is indeed particularly affected by uncertainties. The proposed approach therefore
allows us to find a reliable solution within a reduced number of calls to the true finite element
model. For the extreme case where uncertainties trigger various crash scenarios of the car, it
is proposed to rely on support vector machines for classification so as to predict the possible
scenarios before metamodeling each of them separately.

Keywords: Surrogate modeling, Adaptive design, Uncertainties, Reliability-based design opti-
mization, Quantiles, Frontal impact.
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RÉSUMÉ

Cette thèse s’inscrit dans le cadre des travaux menés par PSA Peugeot Citroën pour l’allègement
de ses véhicules. Les optimisations masse multi-prestations réalisées sur le périmètre de la
structure contribuent directement à cette démarche en recherchant une allocation d’épaisseurs
de tôles à masse minimale qui respectent des spécifications physiques relatives à différentes
prestations (choc, vibro-acoustique, etc.). Ces spécifications sont généralement évaluées à tra-
vers des modèles numériques à très haute-fidélité qui présentent des temps de restitution par-
ticulièrement élevés. Le recours à des fonctions de substitution, connues sous le nom de méta-
modèles, reste alors la seule alternative pour mener une étude d’optimisation tout en respectant
les délais projet. Cependant la prestation qui nous intéresse, à savoir le choc frontal, présente
quelques particularités (grande dimensionnalité, fortes non-linéarités, dispersions physique et
numérique) qui rendent sa métamodélisation difficile.

L’objectif de la thèse est alors de proposer une approche d’optimisation basée sur des méta-
modèles adaptatifs afin de dégager de nouveaux gains de masse. Cela passe par la prise en
compte du choc frontal dont le caractère chaotique est exacerbé par la présence d’incertitudes.
Nous proposons ainsi une méthode d’optimisation fiabiliste avec l’introduction de quantiles
comme mesure de conservatisme. L’approche est basée sur des modèles de krigeage avec en-
richissement adaptatif afin de réduire au mieux le nombre d’appels aux modèles éléments finis.
Une application sur un véhicule complet permet de valider la méthode.

Mots clés : Métamodèles, Plan d’expériences adaptatifs, Incertitudes, Optimisation robuste et
fiable, Quantiles, Choc frontal.
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1
INTRODUCTION

Context of the study

Man-made global warming has been constantly increasing since the industrial revolution and
the need to burn fuel to power machines, to heat buildings or to transport goods and people.
The latter is a major cause of carbon dioxide (CO2) emissions, the main greenhouse gas. Glob-
ally speaking, passenger cars are responsible for 10% of CO2 emissions from human sources,
with an average of 124 g of CO2/km per car in Europe (PSA Peugeot Citroën, 2012). In an at-
tempt to reduce our ecological footprint, the European Union has adopted a legislation in 2009
mandating car manufacturers to lower their car average CO2 emissions to 95 g of CO2/km per
car by 2020.

As a leading car manufacturer, PSA Peugeot Citroën has been permanently working towards
meeting this binding requirement. Recently the company has taken back the lead in terms of
emissions reductions with an average of 110 g of CO2/km per car. Various strategies have been
adopted at different levels to reduce the gas emissions of PSA Peugeot Citroën cars. Among
them, improvement of engines performances, lightweight design, improvement of rolling re-
sistance, aerodynamic efficiency and energy management. For lightweight design, beside the
use of light materials (e.g. composite or high-strength steel), the optimization of the thicknesses
of parts belonging to the body-in-white is a promising approach for weight saving. In general,
saving 10 kg approximately leads to reducing the CO2 emissions by 1 g.

We are interested here in the latter strategy of weight savings. The body-in-white or automo-
tive body structure is a collection of metal sheets that are welded together. A main concern
for engineers is to optimally distribute tens of metal sheets thicknesses while satisfying the
safety and comfort requirements (e.g. fatigue, vibro-acoustic behavior, crashworthiness, etc.).
These requirements are assessed by high-fidelity models whose simulations may be extremely
time-consuming, i.e. up to 24 hours per simulation. For optimization study, where several
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1. INTRODUCTION

allocations of thicknesses are evaluated, a classical approach through finite element (FE) sim-
ulations is not an option given the project lead times. So far, the approach considered is the
substitution of these FE simulations by so-called metamodels or surrogate models. In a nutshell,
a metamodel is an analytical function which aims at approximating a black-box function (i.e.
whose inputs/outputs are only known pointwise) by learning over a limited set of experiments.
This has shown to be effective for optimization against particular specifications (e.g. lateral im-
pact and vibro-acoustic analysis), thus leading to fair weight savings. However, for some other
specifications such as the frontal impact, the outputs of the simulation models are particularly
non-linear and noisy. That, in conjunction with the high dimensionality of the problem (i.e.
the number of parts to optimize), makes the accuracy of the built metamodels insufficient for
a proper optimization. The main objective of this PhD thesis is to propose a methodology for
high-fidelity adaptive metamodeling, so as to open a path to further weight savings. The phys-
ical specifications which are to be approximated by surrogate models in a general framework
are introduced in the following.

Physical specifications for car design

Cars are designed and manufactured to meet customers’ needs. These include comfort, safety
and price. To ascertain that these requirements are fulfilled, car manufacturers may physically
test their products using prototypes. However, with the growing demand, an exhaustive test
approach is neither cost-effective nor time-efficient. So, engineers rely on numerical methods,
more specifically finite element analyses, to simulate the vehicles behaviors.

In a design cycle as given by the so-called systems engineering, the customer needs are translated
into physical specifications that are simulated. The lightweight design through optimization
mainly investigates two specification families. The first one is related to the ride comfort of
passengers and is analyzed under the framework of Noise Vibration & Harshness (NVH). The
associated analyses are essential to the car manufacturer since they are viewed by potential
customers as a guarantee of the car quality. They are henceforth considered in the early design
stages and especially during weight optimization. The second one, which concerns us here, re-
lates to the occupant safety and is analyzed through finite element explicit non-linear dynamic
analysis.

Safety requirements

With the ever-increasing road fatalities, safety has become a concern of utmost importance to
car manufacturers. PSA Peugeot Citroën works on three complementary aspects of safety:

• Primary safety which aims at preventing accidents;

• Secondary safety which aims at protecting the occupants in the event of an accident;

• Tertiary safety which deals with emergency.

As a consequence of the increase in road fatalities, European legislation requires that all ve-
hicles pass some minimal crash-tests before any commercialization. The European New Car
Assessment Program (Euro NCAP) goes further with more constraining requirements in order
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to promote safety among car manufacturers. Hence, they provide customers with independent
safety assessment of new vehicles. The main crash-tests are:

• Frontal impact: The scenario involves a car hitting a deformable barrier at the speed of
64 km/h. Since the most frequent type of roads crashes involves only a part of the vehicles
fronts, the barrier is offset with an overlap of 40%. The aim of the designer is to control the
crash scenario by absorbing as much as possible the vehicle kinetic energy through plastic
deformation of the front end metal sheets. The idea is also to lower the crash deceleration
pulse below the limit of the human body tolerance.

Figure 1.1: Frontal impact test (Courtesy of Euro NCAP)

• Side impact: The side impact resistance of a vehicle is assessed through the car-to-car and
pole side impacts. The former is simulated by propelling a mobile deformable barrier at the
speed of 50 km/h into the driver’s door. The latter consists of propelling the car sideways into
a fixed narrow pole at the speed of 29 km/h. They represent the second most frequent types
of cars accidents. The designer objective is to reduce as much as possible the car body parts
intrusions into the occupant compartments.

3
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Figure 1.2: Car-to-car side impact test (Courtesy of Euro NCAP)

• Pedestrian impact: This test replicates accidents involving child and adult pedestrians.
Three zones are investigated: the lower leg, the upper leg and the head. The first assesses
that the bumper is pedestrian-friendly, i.e. it deforms at the contact of the leg and spreads the
crush force along the entire leg to prevent serious injuries. The upper leg and head tests as-
sess that the bonnet (the hinged cover of the engine compartment) could be sufficiently bent
to absorb the energy at the impact. To achieve this, it is necessary to provide enough space
between the bonnet and the stiff components beneath it. Some cars are even provided with
pop-up bonnets which lift when an accident involving a pedestrian is detected.

(a) Lower leg (b) Upper leg (c) Head

Figure 1.3: Pedestrian impact tests (Courtesy of Euro NCAP)

The limitations with frontal impact

The simulation of frontal impact is realized at PSA with the RADIOSS software, a finite element
solver developed by Altair Engineering. It is a challenging non-linear dynamic problem which
is handled by an explicit formulation. The differential equations that govern the physical be-

4



havior of the car and barrier during the impact are solved in a weak form (Du Bois et al., 2004).
This involves both spatial and time discretization of the problem. With an appropriate choice of
the parameters for the time discretization, the problem may be solved using an iterative scheme
where only the mass matrix is inverted. This is known as the explicit formulation in contrast to
the implicit one and only requires the solution of a system of uncoupled equations. At each
iteration, nodal displacements are calculated as a function of the previous step. For the short
time impacts in the automotive industry (usually around 120 ms), this explicit formulation has
shown to be the most robust.

However, it also comes with some drawbacks for there is numerical scatter in the finite element
simulations. In fact, the code by itself is deterministic, i.e. running two identical models on the
same computer gives the same results. In contrast, any change in the input, even insignificant,
leads to dramatic variations of the outputs. For instance, moving infinitesimally the position
of one node of the mesh may produce significantly different results. The reasons for this lie in
the chaotic behavior of crash. Schematically, crash can be seen as a succession of events in a
short time-lapse featuring bifurcations triggered by input variability which ends up in different
solution paths or crash scenarios. The typical example is the on-off contact, i.e. whether a contact
between two parts occurs or not or any inversion in the chronology of the events. In the same
way, buckling of parts such as the sidemember which may bend in a given direction or crush
axially can alter the crash scenario. On top of that, there are non-physical parameters, such as
spatial and time discretization, contact detections, round-off errors which add to the variability
of the outputs. Many studies have been carried out in order to identify the origins of the
instability in crash simulations (Wauquiez and Zeitouni, 2008; Thole and Mei, 2003). They can
be mainly grouped into physical and numerical causes (Roux et al., 2006).

Furthermore, crash is known to be a chaotic phenomenon. This means that the slightest varia-
tion in the initial conditions leads to dramatic changes in the crash outcome. The explanations
are twofold. First is the physical variability of the initial conditions. Uncertainties are indeed in-
herent to real life systems. As such, two crash tests of the same car are always different, despite
the scrutiny in the test protocol. The difference may come from the manufacturing process, e.g.
parts dimensional tolerances or spot welding. They may also result from the crash protocol
itself, e.g. variability in the initial speed, the position or stiffness of the barrier.

All these causes put together make the frontal impact simulation noisy. Engineers should how-
ever deliver stable models for a proper utilization. At PSA Peugeot Citroën, the stability of
a frontal impact simulation is assessed through Monte Carlo sampling. In the case of physi-
cal scatter, parameters that are identified to be the most relevant are considered random with
known distributions. For numerical scatter, the Monte Carlo sampling is set up by infinitesi-
mally perturbing the model mesh nodes. Figure 1.4 illustrates results from a physical scatter
Monte Carlo sampling, which consists of a sample set of 100 points: In the left panel, time-
curves of one output of interest (herein a force) and in the right one a histogram of the distri-
bution of the specific required value (here the maximum force). In the same fashion, results of
a numerical scatter Monte Carlo sampling are shown in Figure 1.5. Now an acceleration in a
given point is considered.

The idea with these simulations is to assess the scatter in the outputs. More specifically, the
numerical scatter analysis evaluates the stability and thereby the quality of the finite element
models whereas the physical scatter analysis checks their robustness. The variability must
be kept below a given threshold, otherwise misconception is assumed. As for the present PhD
thesis, this observation motivates the methodology we propose for robust optimization of body-
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in-white under crashworthiness constraints.
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Figure 1.4: Example of a Monte Carlo simulation with different models considering the physi-
cal parameters variability.
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Figure 1.5: Example of a Monte Carlo simulation with different models considering the numer-
ical parameters variability.
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Objective of the thesis and outlines

Beside the noisy nature of crash simulation mentioned above, other difficulties arise when
building surrogate models to substitute them. In fact, the outputs are highly non-linear and
the dimensionality of the problem (i.e. the number of parts to optimize) is relatively large.
For these reasons, frontal impact is not directly considered in current lightweight designs. In
fact, all other specifications but frontal impact are considered during optimization. Among the
solutions, the ones which satisfy frontal impact-related constraints are kept.

The aim of this thesis is therefore to propose a methodology to overcome these difficulties
and thereby include frontal impact in the optimization process. This will allow the designers
to increase the weight savings through body-in-white lightweight design. This manuscript is
organized as follows.

Chapter 2 is devoted to structural design optimization. After a brief introduction of design
optimization, the limitations of a deterministic approach are pointed out. Then, a probabilistic
viewpoint is introduced with its associated approaches. They involve robust and reliability-
based design optimization (RBDO). The state-of-the art of structural reliability methods are
reviewed. In the last section, we propose an alternative formulation of RBDO which is based
on quantiles as a measure of conservatism.

Chapter 3 is mainly focused on a literature review of two types of surrogate modeling tech-
niques, namely support vector machines and Kriging. They are selected as they are, to the
author’s knowledge, the most appropriate ones to account for noisy data. A specific attention
is paid to the calibration of their hyperparameters.

Chapter 4, which is the core of this manuscript, is about surrogate-based optimization. Krig-
ing is considered due to its local accuracy measure. Adaptive techniques, which consist in
iteratively updating Kriging models so as to ensure fitting quality only in regions that matter
for optimization, are investigated. A substantial part of this chapter is dedicated to a litera-
ture review of the methods allowing to achieve this. The surrogate and quantile-based RBDO
problem is formulated. A methodology with two stages of enrichment is proposed. The first
is global and the second, which is local, is coupled with optimization. In this work, a global
search algorithm is considered, in particular the covariance matrix adaptation evolution strat-
egy (CMA-ES).

Chapter 5 eventually validates the proposed methodology. In the first part, analytical models
are considered with different configurations for the probabilistic models. The results provided
by our methodology are compared to those found in the literature on benchmark examples. A
detailed study on two car models under frontal impacts is then presented. The effects of nu-
merical and physical scatter are investigated. Eventually, we apply the proposed methodology
to the lightweight design of a car while considering uncertainties coming from the crash test
protocol.
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2. STRUCTURAL DESIGN OPTIMIZATION

Introduction

The need to find the most effective and efficient solution among various alternatives has al-
ways been a concern for researchers in different disciplines such as economy, biology or engi-
neering. Newton and Leibniz’s works on calculus during the 17th century provided a unified
mathematical framework for solving optimization problems in these disciplines. In mechani-
cal engineering, the concern is put on structural design optimization which is the task of finding
the best performance of load-carrying structures while preserving their integrity. Examples of
such structures are aircrafts, automobiles or buildings. The early contributions to this field can
be traced back to the middle of the 20th century (Schoofs, 1993). First, Prager and Taylor (1968)
and Venkayya et al. (1968) introduced the so-called optimality criteria for the optimization of
simple structures such as beams, plates and trusses using respectively analytical and numeri-
cal forms. About the same time, Schmit (1960) laid the foundations of the coupling between
finite element analysis and optimization for structural design in an iterative scheme.

With the advent of computer-aided engineering, the designers have acquired the flexibility to
explore alternate concepts or designs using virtual prototypes. In this context, optimization
does not only serve as a mean to reduce a cost (e.g. by reducing a weight) but also allows
the designers to better understand their products, i.e. their strengths and weaknesses. All this
ultimately lead to a drastic reduction of the cost of goods manufactured.

In general, the optimization problems can be classified into three categories: size, shape and
topology optimization. This classification is defined according to the types of design variables.
In size optimization, material properties or geometrical dimensions such as thicknesses and
cross-sectional areas are considered. Most of the applications fall under this category. Shape
optimization leverages over parameters describing the shape of some structural parts. Finally,
topology optimization focuses on allocating matter and voids in a structure so as to optimally
distribute the load paths. It is the most general case and may serve to identify a starting point
for size or shape optimization.

In this thesis, we are focusing on size optimization. Our ultimate aim is the lightweight design
of an automotive body structure where the sizing variables are the thicknesses of some set of
metal sheets. For this application, numerous sources of uncertainties can be identified. For a
safe design, it is necessary to consider them in the process of optimization. This is done here
through a probabilistic approach. In this chapter, we first describe the general framework for
optimization in a deterministic context. Then, we discuss the means for optimization under
uncertainties, while specifically focusing on robust and reliability-based design optimization
(respectively RDO and RBDO). Finally, we introduce a special case where the probabilistic
content of RBDO is handled through quantiles. An associated formulation of quantile-based
RBDO is henceforth proposed.

2.1 Introduction to design optimization

2.1.1 Deterministic design optimization

For design optimization, we seek to minimize a cost, generally expressed in a mathematical
form by a merit function. This is usually done by iterating on alternate admissible designs, the
space of which is delimited by some constraint functions. A general formulation of a determin-
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istic design optimization problem may read as follows:

d∗ = arg min
d∈D

c (d) subject to:
{

fj (d) ≤ 0, {j = 1, . . . , ns}
gk (d, z) ≥ 0, {k = 1, . . . , nh} .

, (2.1)

where a cost function c is minimized with respect to design variables d ∈ D ⊂ Rsd while satisfy-
ing to a collection of ns soft and nh hard constraints.

The hard constraints, g = {gk, k = 1, . . . , nh}, denote the requirements the structure needs to
meet to perform adequately. In structural design, they ensure the mechanical integrity of the
structure and are usually assessed through finite element methods. This might be for instance
the maximal value of a nodal displacement or that of an element stress. In this case, they
can be cast as gk (d, z) = ḡk −Mk (d, z), where ḡk is a threshold not to be exceeded and Mk
the mathematical or black-box function representing the response of the structure. Beside the
design variables d, the limit state function is explicitly written here with respect to another
type of parameter, the so-called environmental variables z. In DDO, their values actually remain
constant. We however introduce them here anticipating the probabilistic case (next section),
where they can vary around their nominal values. Likewise, the soft constraints are introduced
separately from the hard ones despite they are both treated in the same way in DDO. In fact,
the soft constraints are simple analytical functions bounding the design space D.

In Eq. (2.1), equality constraints have been omitted without loss of generality. Moreover, we
have considered a single objective function. However, in a wide number of applications, many
objectives might be of interest. This is known as multi-criteria optimization as opposed to mono-
criterion optimization introduced here. In such a case, the definition of the optimal design is
ambiguous. One seldom finds a solution with the best merit for all the objective functions.
Compromising becomes necessary. Two alternatives are possible: a priori choice and a posteri-
ori choice (Baudoui, 2012). In the approaches qualified as a priori, one has to rank the objective
functions with respect to their relative importances. This way, the multi-objective problem is
transformed into a mono-objective one. The simplest way to do this is to consider a weighted
combination of the initial objective functions as the new one to minimize. The difficulty here
is of course the allocation of the weights. Alternatively, lexicographic ordering methods can
be used so as to solve a sequence of mono-objective optimization problems in order of priority.
That is, the optimization is initialized by solving a sub-problem where only the first objective
function is considered. The others are set as inequalities. Once a solution is found, the first
is set as equality, the second optimized and the others set as inequalities. The procedure is re-
peated until all objective functions have been optimized. In any of these approaches, the result
is highly correlated with the preference settings. In a posteriori choices, the solution is rather
based on the notion of Pareto set, which consists of a subset of feasible solutions which do not
dominate each other. A solution is said to dominate another one in the sense of Pareto if it is
not worse in all the criteria and has a better merit in at least one of them. A method based on
Pareto-optimality is more interesting from the designer’s viewpoint since it allows him to have
an overview of the solutions, a valuable information for decision making.

To be exhaustive, we shall also mention multidisciplinary design optimization (MDO) concerned
with complex structures such as aircrafts or automobiles. In MDO two or more disciplines are
considered. There may exist coupling between them through shared design variables. This
thesis is concerned with the lightweight design of automotive body structures under multiple
constraints. These constraints come from several disciplines such as crashworthiness or vibro-
acoustic analyses. However, there is no coupling at all between the disciplines. This allows us
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to treat them separately. As a matter of fact, we will only focus on the crash-related constraints
for the application of this thesis.

2.1.2 An overview of optimization algorithms

The solution of an optimization problem such as in Eq. (2.1) generally resorts to numerical
methods and search algorithms. An exhaustive list of these algorithms is hardly possible be-
cause of their diversity and quantity. In this section, we review some of the widely used ones
and briefly introduce those used throughout this thesis. The choice of a given algorithm mostly
depends on the class of problem at hand. Whether the objective function is linear, quadratic,
smooth, multi-modal, differentiable or not highly affects the performance of a given algorithm.
This performance is generally measured by the number of functions evaluations required be-
fore convergence to a solution. Wolpert and Macready (1997) show, through the no free lunch
theorem for optimization, that there is not such case where a single algorithm performs well on
all class of problems. There is indeed a strong connection between an algorithm effectiveness
and the problem it solves, which makes it difficult to a priori decide which one to use.

Beside, when solving an optimization problem, one is often concerned with finding the global
minimum. Most algorithms only ensure the convergence to a local minimum despite some
have a greater likelihood of not being trapped in local minima. However, in the case where
the problem is convex (i.e. the objective function and the feasible set are convex), the local
minimum is necessarily a global one. But in general, such assumption is not possible. It is just
empirically accepted that gradient-based approaches are likely to be trapped in local minima
while gradient-free approaches offer greater chances to find a global optimum.

In this section, we present some general-purpose algorithms for solving optimization problems.
Despite most of the problems we are concerned with are constrained, the algorithms we intro-
duce focus on unconstrained cases without loss of generality. The consideration of constraints
may be implemented by various techniques with only minor adaptations of the algorithms
such as penalty methods or accept-reject approaches.

2.1.2.1 Gradient-based methods

Gradient-based methods make use of the derivatives of the objective function to locally search
for better designs. Using them requires that the first-order and often the second-order deriva-
tives exist. One of the classical gradient-based approaches is the family of Newton methods
that we briefly describe below.

Newton method
The Newton method assumes that the cost can be locally approximated by a quadratic func-

tion, more specifically by its second-order Taylor expansion. This expansion around a given
point d writes:

c (d + ∆d) ≈ c (d) + ∆dT∇c (d) + 1
2

∆dT H (d)∆d, (2.2)

where ∆d represents a small increment around d and H ≡ ∇2c denotes the Hessian matrix or
second-order derivatives of c. ∇ stands for the gradient operator.

The idea here is to find the optimal value of the increment that leads to a stationary point
of c. This is achieved by finding the root of the gradient ∇c with respect to ∆d, which can be
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computed from Eq. (2.2). In mathematical terms, this leads to:

∆d = −H−1 (d)∇c (d) . (2.3)

Starting from an initial guess d(0), the method proceeds by iteratively updating the design
following Eq. (2.3). At iteration k, the updating formula reads:

d(k+1) = d(k) − H−1 (d)∇c (d) . (2.4)

This converges in only one iteration if the objective function is quadratic. However in general,
the convergence to a local minimum is not sure. Starting from a guess point which is too far
from a local minimum may lead the algorithm to diverge. In fact the Hessian matrix is required
to be positive definite. But far from the minimum, this condition might not be fulfilled. Beside,
each iteration requires the inversion of the Hessian of size sd × sd, where sd is the number of
design variables. This operation can be expensive for high dimensional problems. Often a
simple approximation of the Hessian and its inverse is enough for the algorithm to converge.
Methods which rely on these approximations are known as quasi-Newton methods.

Quasi-Newton methods
The class of quasi-Newton methods aims at bypassing the difficulty associated to the inver-

sion of the matrix in Eq. (2.4). One of the simplest approach is to replace the Hessian by the
identity matrix I. This actually means that the objective is locally approximated by a linear
function. The convergence can subsequently be slower. This approach is also known as the
steepest descent method. The associated updating formula reads:

d(k+1) = d(k) −∇c (d) . (2.5)

Another approach consists in approximating the Hessian by rank-one updates of the objective
function’s gradients. The update is made so as to gradually converge to the true Hessian as the
number of iterations grows. One of the most popular approach is the so-called Broyden-Fletcher-
Goldfarb-Shanno (BFGS) algorithm (Shanno, 1970) which updates the Hessian approximation as
follows:

B(k) = B(k−1) +

(
y(k−1) − B(k−1)∆d(k−1)

) (
∆d(k−1)

)T

(
∆d(k−1)

)T ∆d(k−1)
, (2.6)

where ∆d(k−1) = d(k) − d(k−1), y(k−1) = ∇c
(

d(k)
)
−∇c

(
d(k−1)

)
and B(k−1) is the approxima-

tion of the Hessian at the point d(k−1). Its initial value is set at B(0) = I.

Other methods such as the conjugate gradient can also be used for unconstrained gradient-
based optimization. In this thesis, the BFGS algorithm is used to find the optimal hyperparam-
eters of the Kriging model introduced in the next chapter.

2.1.2.2 Gradient-free methods

Local search
Gradients by construction are well fitted to local search. When they are not available, say

because the objective function is discontinuous, local search is still possible. The family of so-
called pattern search algorithms explores the design space without any derivative information
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(Dennis et al., 1994). In essence, pattern search methods rely on moving a pattern through the
design space so as to iteratively find better designs. In fact, the objective function is sampled
on some points around the current design following a predefined pattern. If a point with a
better merit is found, this step is considered successful. If not, the pattern size is reduced and
this exploratory move is performed again. After a successful step, the pattern is moved so that
its base corresponds to the newly found best point. The process is eventually restarted until
convergence is achieved. This is the crudest approach. In most case, many tricks are used to
make the search robust, leading to several variants of pattern search.

Global search
In contrast to the previous methods, global search algorithms do not rely on local sensitiv-

ities of the cost function. Instead, they proceed by evaluating the cost function in the entire
design space in order to find regions with best merit. Most of them mimic natural selection or
biological mechanisms e.g. genetic algorithm, particle swarm or ant colony optimization. Due
to their wide variety, an exhaustive enumeration would not be possible. We focus here on those
which are used throughout this thesis for various purposes such as model calibration.

• Simulated annealing
Simulated annealing implements a very elegant algorithm which allows the optimizer to

escape from local minima. It is inspired from annealing in metallurgy, a physical process by
which a material is initially heated and then slowly cooled so that at any given temperature,
thermodynamical equilibrium is reached. By this heat treatment, the particles progressively
arrange themselves eventually reaching a state of minimum energy (van Laarhoven and Aarts,
1987). This increases the material ductility, making further treatment, such as stamping or
forming, easier. Metropolis et al. (1953) proposed a Monte Carlo algorithm to simulate the
cooling of the material and its successive thermodynamical equilibrium states. The Metropolis
algorithm proceeds by generating a new state from the current one thanks to a predefined tran-
sition mechanism. The energy of the resulting state is then compared with the previous one. If
it is lower, then this state is accepted as the new one. If in contrast it is higher, the new state
is only accepted with probability p = exp

(
−∆E

T

)
, where ∆E is the difference in energy and T

the temperature. Kirkpatrick et al. (1983) adopted this technique to propose a combinatorial
optimization algorithm. The analogy is the following: the states correspond to different con-
figurations or designs of the system, the energy is the cost function and the temperature is a
free parameter that controls the algorithm convergence to a global minimum. Higher tempera-
ture allows the algorithm to adopt uphill moves, hence preventing premature convergence to
a local minimum. One of the greatest issues here is the setting of the annealing schedule, in
other words, the scheme by which the temperature is decreased. Usually, the algorithm starts
with a high value of T, then the temperature is decreased according to a predefined scheme.
In the early iterations, the algorithm explores the design space by allowing uphill moves and
in the latter ones it focuses on small regions to decrease the cost function. The convergence
is achieved when temperature is equal to 0 (no possibility of accepting any new state as the
acceptance probability is 0) or when the maximum budget for evaluating the cost function has
been reached.

In this thesis, simulated annealing is used as an optimization algorithm to construct optimal
Latin hypercubes as described in Appendix A.

14



2.1. Introduction to design optimization

• Genetic algorithm
Genetic algorithm (Goldberg, 1989) was developed by Holland (1975) who was inspired by

the biological mechanisms involved in natural selection. The basic idea is to evolve a popula-
tion of candidate solutions to a problem by using variations-inducing operators so as to select
those with expected better performance. The terminology from genetic science is also adapted.
The cost function is therefore translated into a fitness function that is to be maximized. Any
candidate solution is called a chromosome, most often coded by bit strings. The algorithm
proceeds by first generating a set of chromosomes and evaluates their fitness. Afterwards,
genetics-inspired operators are used for evolution to the next generation (Mitchell, 1995). The
first one is selection where some chromosomes are selected to be parents. The higher their fit-
ness, the more likely they are to be selected. The second operator is crossover, a recombination
technique used to generate offsprings with the genetic material of the fittest chromosomes. Two
offsprings are actually created by randomly combining subsequences of the chromosomes of
two selected parents. The final operator is mutation which consists in randomly flipping the bits
of the offsprings. It occurs with some probability, usually small. This operator allows the algo-
rithm to spring out from a local minimum, so its probability of occurrence can be set high in
the early iterations and low in the latter ones. By the end of these operations, a new generation
of candidates emerges and replaces the old one. The process is repeated until convergence.

According to the type of problem or for the matter of improving performance, a wide variety of
genetic algorithms have been developed. Usual instances are multi-island genetic algorithms
or the non-dominated sorting genetic algorithm (NSGA-II). In the former, the population is
split into many islands which are handled separately. The latter is well suited to multi-criteria
problems. In this thesis, genetic algorithms are used as one of the methods to calibrate the
Kriging parameters (see section 3.4.4.1).

• Cross-entropy method for optimization
The cross-entropy method was initially developed by Rubinstein (1997) as a simulation tech-

nique for the estimation of probabilities of rare events. Rubinstein and Davidson (1999) later
adapted it for the optimization of multi-extremal problems. Let us restate the optimization
problem in terms of maximization of an objective instead of minimization. In other words we
search:

γ∗ = arg max
d∈D

c (d) . (2.7)

The idea is to associate this optimization problem with a rare event estimation problem which
is tackled by an adaptive approach (Kroese et al., 2006). For Eq. (2.7), this so-called associated
stochastic problem reads:

` (γ) = Pv (c (D) ≥ γ) = Ev I{c(D)≥γ}, (2.8)

where D is a random variable drawn following a distribution f (•, v), v ∈ V . Pv and Ev are
respectively probability measures and expectation over v.

If γ is close to γ∗, f (•, v∗) assigns most of its probability mass in the area around d∗ (Boer
et al., 2004). In this case, f (•, v∗) may be used to sample an approximate solution to Eq. (2.7).
On the other hand, estimating ` for a value of γ close to γ∗ makes {c (D) ≥ γ} a rare event.
Resorting to simple Monte Carlo simulation would require a huge amount of samples. The
cross-entropy method suggests to solve this through a multi-level approach. A sequence of
tuples {(γk, vk)} converging to (γ∗, v∗) is therefore generated. More specifically, the algorithm
proceeds as follows. Let us define a sufficiently small quantile $ and an initial set of parameters
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v0. At iteration k, γk is defined such that:

Pνt−1 (c (D) ≥ γk) = $, (2.9)

where D ∼ f (•, νk−1). The second stage consists in updating νk, which can be done as follows:

νk = arg max
ν

Eνk−1 I{c(D)≥γ} ln f (D, v) . (2.10)

For the developments getting to this final equation, refer to Boer et al. (2004) (p. 9 – 12). This
updating formula can be obtained analytically for a certain type of PDFs such as the natural
exponential family (normal, Gamma, Poisson, etc.). In the case of normal distribution, v stands
for the two parameters of the distribution i.e. mean and standard deviation.

The algorithm therefore consists in the following steps:

1. Set the parameters of the initial distribution: v0 = {µ0, σ0} and k = 1;

2. Sample a population {d1, d2, . . . , dN} from the multivariate normal distribution: di ∼
N
(
µk−1, σ2

k−1

)
for any i = {1, . . . , N}.

3. Evaluate the objective function on these samples: ci = c (di)

4. Compute the (1− $)-quantile of the performance and define the set of indices I =

{i ∈ {1, . . . , N} |ci ≥ γk}
5. Compute the statistics of the elite samples

µ̃k =
1

N$
∑
i∈I

di,

σ̃2
k =

1
N$

∑
i∈I

(d− µ̃k)
2 ,

(2.11)

where N$ is the length of I .

6. Update the distribution parameters:

µk = αµ̃k + (1− α) µk−1

σk = βσ̃k + (1− β)σk−1
(2.12)

where α and β are weighting parameters introduced to smooth out the convergence.

7. If not converged, set k← k + 1 and go to step 2.

In this thesis, cross-entropy is used as a search algorithm to set the hyperparameters of the
support vector machine models. Its parameters are tuned so as to fit the problem at hand as
described in Section 3.3.5.2.

• Covariance marix adaptation - Evolution strategy (CMA-ES)
In a nutshell, CMA-ES is an evolution strategy which relies on multivariate normal distribu-

tions to iteratively sample solutions in the descent direction of the objective function (Hansen,
2005). At iteration k, a sample population of size λ is generated as follows:

d(k+1)
i ∼ m(k) + σ(k)N

(
0, C(k)

)
, for i = 1, . . . , λ, (2.13)
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where m(k) is the mean value of the search distribution, σ(k) is the size-step and C(k) is the
scaled covariance matrix of the search distribution at iteration k.

The parameters for the next generation are generated by simultaneously moving the mean and
adapting the covariance matrix. In general, the new mean is obtained as a weighted average of
µ selected points among λ generated offsprings:

m(k+1) =
µ

∑
i=1

wid
(k)
(i) (2.14)

where wi are positive weight coefficients defined such that ∑
µ
i wi = 1 and w1 ≥ w2 ≥ . . . ≥ wµ.

In general one takes wi = 1/µ for any i = {1, . . . , µ}. d(k)
(i) is the i-th best individual with respect

to the objective function i.e. c
(

d(k)
(1)

)
≤ c

(
d(k)
(2)

)
≤ . . . ≤ c

(
d(k)
(µ)

)
.

On the other hand, the covariance matrix can be adapted from scratch as follows:

C(k+1) =
µ

∑
i=1

wi

(
d(k)
(i) −m(k)

) (
d(k)
(i) −m(k)

)T
(2.15)

In general, for this covariance matrix to be reliable, the number of samples must be high
enough. When the population size λ is small, CMA-ES achieves fast convergence by imple-
menting the so-called rank-µ-update. This technique consists in considering also information
from previous iterations by weighting the current covariance matrix with the previous ones.
Numerous benchmarks have shown efficiency of CMA-ES in solving various optimization
problems (Hansen and Kern, 2004; Auger and Hansen, 2005; Arnold and Hansen, 2010). The
main assets of CMA-ES over other similar evolution strategies is that it relies on a relatively
small population size and number of tunable parameters.

A limiting case, known as (1 + 1)-CMA-ES, has been developed by Igel et al. (2006). In (1 + 1)-
CMA-ES, one parent generates one offspring in each iteration. Let us consider that at iteration k,
a mutation ν(k) has considerably increased the fitness of the objective function. The basic idea
behind the (1 + 1)-scheme is to reproduce such a successful step by shifting the mutation dis-
tribution toward the direction that produced it. In the family of normal distributions with zero
mean, N

(
0, ν(k)ν(k)T

)
is the one with the highest probability of generating ν(k) (Hansen and

Ostermeier, 2001). This naturally leads to the following adaptation of the covariance matrix:

C(k+1) = (1− c)C(k) + cν(k)ν(k)T
, (2.16)

where c ∈ [0, 1] is a weighting coefficient.

To make the search robust, the update is rather based on a so-called search path which is an
exponentially fading record of previous successful mutations. Besides, from a practical point
of view, new candidates are sampled according to:

d(k+1) = d(k)
s + σ(k)A(k)z(k), (2.17)

where z(k) ∼ N (0, I), σ(k) is the global step size, A(k) is the Cholesky decomposition of the
covariance matrix C(k) and d(k)

s is the current best sample.
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Igel et al. (2006) proposed an updating formula directly based on A(k) to avoid the costly succes-
sive Cholesky decomposition of C(k). Furthermore, in the case of constrained problems, Arnold
and Hansen (012a) proposed an alternative updating scheme which additionally decreases the
probability of sampling in the direction of the unfeasible region. This latter algorithm is used
throughout this thesis for the application on lightweight design. Appendix B provides further
details on its implementation.

2.1.3 Beyond the deterministic framework

In the previous two subsections, we have formulated a constrained optimization problem and
briefly introduced some of the means to solve it. Usually, the optimal design is found at the
boundary of the feasible space. The slightest change in the initial or operating conditions may
turn this optimal design into an unfeasible one. It is therefore crucial to account for any cir-
cumstance that might lead to such a change. Uncertainties, on top of modeling error, are ac-
knowledged to be the sources of observed discrepancy between an optimal design and its real
manufactured counterpart. The designer should hence pay a special care to them, especially
when safety is of concern.

2.1.3.1 Sources of uncertainties

There are many factors that can explain the departure between a system behavior and its real
life counterpart. Following the taxonomy proposed by Oberkampf et al. (2002), we consider
the model error and uncertainty.

Model error
Model error refers to the bias due to the modeling of the physical behavior of interest. In fact,

and especially in structural design, the natural phenomena are modeled through mathematical
equations. As sophisticated as they can get, they remain only abstract representation of reality
and therefore cannot always model its complex behavior. Besides, simplifying assumptions
and approximations, that further depart the simulation from reality, are often made. Let us
consider for instance the frontal impact simulation which is of interest in this thesis. The typi-
cal example is the control of the time discretization scheme. Recall that we are running a fast
dynamics problem in an explicit formulation. The explicit scheme is conditionally stable i.e. for
the shock wave to propagate properly, the time step in each cycle should not be higher than
a critical value. This threshold is often very low and for scheduling constraints, the engineers
cannot afford such a small time step. Instead, its value is artificially increased. This artifact
induces an error in the model which is acknowledged and monitored. In general, these mod-
eling errors can be dealt with by considering higher fidelity models. But the expected benefit
might not worth the induced cost. In this work, we consider that the finite element simulation
is the best model representation of reality we can afford given the available technology and at
a reasonable cost. We rather focus on the second source of errors i.e. uncertainties.

Uncertainty
The ubiquity of uncertainties in engineering has been largely mentioned in the literature,

especially in the risk assessment field (Rowe, 1994; Hora, 1996). Given the diversity of their
origins, uncertainties can be classified into two groups: aleatory and epistemic uncertainty. This
distinction provides helpful insight into the nature of uncertainty and allows for an easier treat-
ment.
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Aleatory uncertainty represents inherent variation of a process (Oberkampf et al., 2002). It is
also known as irreducible or stochastic uncertainty. It is associated with natural variability either
in the initial conditions of a process or in its defining parameters. Let us for instance consider
the thickness of a metal sheet in the body-in-white. Due to manufacturing conditions, two
parts resulting from the same design specifications may not end up having identical measured
thicknesses. The same can be said on material properties. The treatment of aleatory uncer-
tainty resorts to probability theory. Under this framework, any identified source of uncertainty
is parametrized and modeled by random variables which are characterized by probability and
cumulative density distributions. These distributions can be interpreted as relative frequency
of occurrence and their full elicitation requires the availability of data in a relatively large quan-
tity.

Epistemic uncertainty, on the other hand, is rather linked to a lack of knowledge. As a mat-
ter of fact, epistemic comes from the Greek word episteme which means knowledge. It is also
known as reducible uncertainty. This is to emphasize that one can reduce or eliminate it by in-
creasing his knowledge of the process under study through e.g. the collection of more data. Its
treatment mostly resorts to non-probabilistic approaches. Among them, the Dempster-Shafer
theory of evidence (Dempster, 1967; Shafer, 1976) which uses belief and plausibility as measures
of uncertainty. The two quantities somehow describe a lower and upper bound of the event
without any additional information upon which value is more likely to occur (Argawal, 2004).
Likewise, possibility (Dubois and Prade, 1988, 2011; Zadeh, 1978) or fuzzy set theory (Klir and
Folger, 1987; Zimmermann, 1996) can be used. They rely on incomplete or vague information
from, say, experimental data or expert judgment.

Globally speaking, a sharp distinction between epistemic and aleatory uncertainty may not
be possible. In some cases, the two co-exist. As to which uncertainty representation model
should be used mostly resort to the amount of data available. However, probability theory is
the prevailing model for uncertainty propagation. This is because it provides a mathematical
framework which is convenient for uncertainty propagation and related studies such as robust
or reliability-based design optimization. We therefore introduce the associated notations in the
next section before moving to optimization under uncertainty.

2.1.3.2 Probability theory

Probability theory finds its origin in the games of chance during the sixteenth century. Promi-
nent thinkers such as Pierre de Fermat and Blaise Pascal were among the first to apply math-
ematics to gambling issues (Grinstead and Snell, 2006). The modern mathematical formalism
was laid by Andrei Kolmogorov’s Grundbegriffe der Wahrscheinlichtkeitsrechnung in 1933 (Shafer
and Vovk, 2006). Today, probability represents an entire branch of mathematics which is con-
cerned with the analysis of random events. In this work, probability is used as a mean to model
uncertainty. We therefore succinctly introduce the main concepts and notations useful for the
sequel. A comprehensive treatment can be found for instance in Ash (1970) or Durrett (2011),
should the reader be interested.

Probability space
Let us consider a random experiment. The set of all possible outcomes is called sample space

and is denoted by Ω. For instance, we may take Ω = {1, 2, 3, 4, 5, 6} in dice rolling. From this
experiment, we may also introduce the concept of event as any question that can be answered
by a simple ”yes” or ”no” after the experiment is run. To the question of whether the outcome
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of the experiment is an odd number corresponds the event A = {1, 3, 5}. From the same
experiment, multiple events can be defined. For example, one may also look for outcomes with
values lower than 3: B = {1, 2}. The set of all possible events is denoted by F and is assumed
to be a σ-algebra i.e. a collection of non-empty subsets of Ω which is closed under countable
operators (finite union and complement). In other words, F is a σ-algebra if the following two
statements are true:

• (i) A ∈ F implies that its complement Ā ∈ F and;

• (ii) For a countable sequence of sets, Ai ∈ F implies that their union ∪i Ai ∈ F
These two elements form a measurable space (Ω,F ). It is therefore possible to put a measure
on the events of this space. This is achieved through the probability measure, defined as the
application P → [0, 1] which follows the Kolmogorov axioms:

P (A) ≥ 0 ∀A ∈ F ,
P (Ω) = 1,
P (A ∪ B) = P (A) + P (B) A, B ∈ F ; A ∩ B = ∅,

(2.18)

where ∅ denotes the empty set. The triplet (Ω,F ,P) defines the probability space.

The probability measure assigns numbers to events which somehow reflect how likely they are
to occur. From general agreement, the interpretation of probability endows a frequentist con-
notation. That is, if we consider an event A ∈ F , then P (A) should converge towards the ratio
between the number of outcomes favorable to A and the total number of outcomes as the exper-
iment is repeated over and over again. This classical view of probability is quite convenient but
is not the only one (O’Hagan and Oakley, 2004; Cooke, 2002; Ramsey, 1926). Subjective inter-
pretation may also be regarded. In this sense, the probability reflects one’s degree of belief (or
knowledge for epistemic uncertainty). The more plausible the event, the higher the assigned
probability. This is also known as Bayesian interpretation and proves convenient when it comes
to Bayesian inference where the probability can be sequentially updated as evidence (data) is
acquired. This is achieved through the well-known Bayes formula which reads:

P (A|B) = P (B|A)P (A)

P (B)
, (2.19)

where P (A|B) is the conditional probability of A given B, also defined by:

P (A|B) = P (A ∩ B)
P (B)

. (2.20)

Random variables and probability distribution
A random variable X is a real-valued function on the sample space:

X : Ω→ DX ⊂ R

ω 7→ X (ω) = x,
(2.21)

where DX is the support of X. It may be discrete or continuous in which case the random
variable is said to be respectively discrete or continuous. Usually the capital letter denotes the
random variable and its realization is written with the corresponding lower case letter.
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With this definition, it is possible to distribute probability mass to events according to their rel-
ative likelihood of occurrence. We may for instance look for the probability that the realization
of a random variable is within a given interval. The cumulative distribution function gives such
an information and reads:

FX (x) = P (X ≤ x) , (2.22)

with FX (x) ∈ R.

Similarly, the probability density function (PDF) indicates how distributed is the weight as-
signed to any point of the support DX:

fX (x) = lim
h→0, h>0

P (x ≤ X ≤ x + h) /h, (2.23)

otherwise put:

fX (x) =
dFX (x)

dx
. (2.24)

Eventually, the probability that X belongs to an interval, say ]a, b], may therefore be computed
by:

P (a < X ≤ b) = FX (b)− FX (a) =
∫ b

a
fX (x) dx. (2.25)

Statistical moments of random variables
Beside the CDF which completely defines a random variable, other quantities can be derived

to give an idea of how the random variable is distributed over its support. The first one is the
mathematical expectation, which gives a probability-weighted average of the random variable
over its support:

E [X] = µX =
∫

DX

x fX (x) dx. (2.26)

The expectation corresponds to the first-order statistical moment of the random variable. Its
second-order moment is known as the variance and informs on how the random variable is
spread out around its expected value:

Var [X] =
∫

DX

(x− µX)
2 fX (x) dx = E

[
(X− µX)

2
]

, (2.27)

which is a non-negative number. A small value means that most of the samples of X with
respect to fX are close to the expectation µX and conversely a high value means that realizations
of X are scattered. The variance is commonly associated to the standard deviation σ, which is
simply its square-root:

σX =
√

Var [X]. (2.28)

Another quantity that gives a good account of the dispersion of a random variable with respect
to its expected value is the coefficient of variation. It is expressed as a ratio between the standard
deviation and the mean:

δX =
σX

|µX|
. (2.29)

Eventually, we should point out that additional information can be given on the distribution of
the random variable by higher order moments. The most common being skewness (third-order
moment) which indicates how asymmetric is the distribution and kurtosis which indicates how
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flat or peaked is the distribution (both with respect to normal distribution). They respectively
read:

δ3X =
1

σ3
X

∫

DX

(x− µX)
3 fX (x) dx,

δ4X =
1

σ4
X

∫

DX

(x− µX)
4 fX (x) dx.

(2.30)

Example of well-known distributions
Normal or Gaussian distribution is probably the most used distribution in statistics. It has

been widely used to model the distribution of physical quantities when no further information
is available. A random variable X with mean µX and standard deviation σX is said to follow a
normal distribution X ∼ N

(
µX, σ2

X
)

if its PDF writes as follows:

fX (x) =
1

σX
√

2π
exp

[
−1

2

(
x− µX

σX

)2
]

. (2.31)

The associated CDF is the integral of ϕ over the support of X. It cannot be computed analyti-
cally. One rather resorts to the so-called error function (erf) thus leading to:

FX (x) =
1
2

[
1 + erf

(
x− µX

σx
√

2

)]
. (2.32)

The special case where µX = 0 and σX = 1 corresponds to the standard Gaussian distribution.
Illustrations are given in Figure 2.1.
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Figure 2.1: Standard Gaussian distribution.

The wide use of Gaussian distributions can be attributed to the central limit theorem (CLT). In-
deed, the CLT states that, under mild conditions, the mean of randomly sampled quantities is
approximately normally distributed. In the case where the variables are known to be positive,
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the CLT theorem may be considered in the log domain. This has given rise to log-normal distri-
bution. A random variable is said to be log-normally distributed if its logarithm is normally
distributed. It is characterized by the scale and location parameters which respectively read:

ζX =
√

Var [ln X] =
√

ln
(
1 + δ2

X
)

λX =E [ln X] = ln (µX)−
1
2

ζ2
X.

(2.33)

The random variable X is therefore said to follow a lognormal distribution: X ∼ LN (λX, ζX).
The associated probability density function then reads:

fX (x) =
1

xζX
√

2π
exp

[
−1

2

(− ln x− λX

ζX

)2
]

. (2.34)

The PDF and CDF of a log-normal distribution are given in Figure 2.2. The PDF is asymmetric
with a higher weight at the left of the mean.
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Figure 2.2: Example of a lognormal distribution.

Another widely-used family of distribution is the uniform one under which the random variable
is equiprobably distributed within an interval. It is completely defined by the parameters a and
b which are respectively the minimum and maximum values and is denoted by X ∼ U (a, b).

2.1.3.3 Summary

In this section, we introduced structural optimization in a general context. A deterministic
formulation was presented followed by some algorithms to solve it. The limitations of a deter-
ministic view of optimization was highlighted. Model error and the presence of uncertainties
make it difficult to rely on a deterministic approach. Probabilistic approaches provide an ap-
pealing alternative. For this purpose, the basic concepts of probability theory were introduced.
In the next section, we will see how this knowledge can be used for an effective optimization
under uncertainties.
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2.2 Optimization under uncertainties

Because of model inadequacy and uncertainty, one can never be certain that a structure will per-
form exactly as planned by the designer. The performance might indeed decline because of vari-
ations of the design due to the manufacturing process or environmental conditions. A better
approach would be to eliminate or reduce the causes of the variability in the outputs. This im-
plies additional cost. As a matter of fact, a higher fidelity model will potentially delay the time-
to-market and tighter design tolerances would require to invest in expensive high-precision
tooling. Alternatively, one may simply account for these uncertainties in the model, thus pro-
ducing a design immune to small variations of its inputs. This may be achieved through robust
or reliability-based design optimization according to how the task is addressed. The two ap-
proaches are briefly reviewed in this section.

2.2.1 Robust design optimization

2.2.1.1 The concept of robust design

A robust design is one for which the sensitivity with respect to system variations at the optimal
point is kept as small as possible. The concept of robustness is inextricably rooted in operational
research and design engineering (Beyer and Sendhoff, 2007; Mulvey et al., 1995). Beside the
effect of uncertainty mentioned earlier, a robust concept is also meant to integrate the life-cycle
cost of the design, by anticipating maintenance and recycling capability. To this end, a robust
design should remain close to optimal and feasible as its environmental conditions change
during its entire life-cycle span.

An illustration of the concept of robustness is given in Figure 2.3 (Kang, 2005). Two feasible
solutions of a problem are shown. The horizontal axis represents the cost function and the ver-
tical one its distribution under random variation of the inputs in the neighborhood of the given
solution. µ∗c is the optimal solution found with respect to a deterministic approach. A nearly
optimal solution µ

(∗)
c is also provided. The two are compared according to their distributions.

It turns out that the optimal design is highly sensitive to random perturbation of its nominal
input. In contrast, the nearly optimal solution is associated with much less variability. From
the point of view of robustness, µ

(∗)
c is preferable to µ∗c despite the latter bears a smaller cost.

In principle, robust design implements methodologies that are more likely to yield solutions
like µ

(∗)
c rather than µ∗c . The first step consists in identifying the sources of uncertainty that

may cause the variability in the output. For an appropriate treatment, they are classified into
different categories. An alternative classification to the epistemological one presented above is
usually considered in the related literature (Beyer and Sendhoff, 2007). This classification offers
a more convenient way to deal with uncertainty in robust design optimization. They are the
following:

• Type A which refers to changing environmental conditions. They are not under the con-
trol of the designer. In this thesis, they correspond to the environmental variables z
(Eq. (2.1)). When a probabilistic approach is considered to account for the related un-
certainties, the random variable Z ∼ fZ is introduced.

• Type B which corresponds to production tolerances on the design due to the manufactur-
ing process. They are modeled here by the random variable X ∼ fX|d. The probability
distribution of X is indexed by the nominal value of the design variable d.
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cµ∗c µ
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Figure 2.3: Concept of robustness: Two solutions are shown with their associated variability.
The scattered solution is favored for robust design.

• Type C which is associated to model inadequacy, also coined model error. It includes
measuring errors as well.

To these three mentioned, we may also add the type D also known as feasibility uncertainty,
though it is not an additional source of uncertainty. In fact, it is the same as types A, B and C,
except that it is considered to act on the constraints rather than on the cost function.

According to the type that is of concern, different concepts of robustness can be found in the
literature. In the sequel, we briefly review the most important ones.

2.2.1.2 A glimpse on Taguchi’s pioneering work

The name of the Japanese quality expert Dr. Genichi Taguchi is profoundly linked to robust
design as he is the one who instilled the design philosophy underlying the concept of robust-
ness (Taguchi and Phadke, 1989). He contributed to generalizing the robust optimization idea
as a mean to control the quality of manufactured goods. The Taguchi’s methods involve some
concepts from statistics.

First is the introduction of a loss function which measures the discrepancy between an actual
outcome and the desired one. It is expressed in terms of a mean-square deviation which can take
three different forms according to the designer’s aim:

• The-smaller-the-better: the design goal is to have the cost as close as possible to zero. The
associated mean-square deviation therefore reads:

MSDS (d) =
1
N

N

∑
i=1

c (xi (d) , zi)
2 , (2.35)

where N is the size of the population required to estimate the mean-square deviation.
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• The-larger-the-better: here the aim is to maximize a cost.

MSDL (d) =
1
N

N

∑
i=1

c (xi (d) , zi)
−2 . (2.36)

• The-nominal-the-better: the design goal here is to be as close as possible to a nominal
value

MSDN (d) =
1
N

N

∑
i=1

(c (xi (d) , zi)− c̄)2 , (2.37)

where c̄ is the target cost. This situation may occur for instance when one seeks to machine
a part at a given thickness.

These loss functions are computed for a fixed value of the design d and are thereafter used to
compute so-called signal to noise ratios (S/N) defined as follows:

S/N (d) = −10 log10 (MSD• (d)) (2.38)

where • stands for the subscripts S, L or N. Eq. (2.38) is to be maximized with respect to d in
order to find a robust solution.

The question that arises now is how to select the set of points {(xi (d) , zi) , i = 1, . . . , N} that
is to be used to compute the mean-square deviation in Eqs.(2.35), (2.36) and (2.37). Taguchi
answers this question through the use of design of experiments with two layers. More specif-
ically, an orthogonal array is used. The inner array is constructed on the control parameters
(design variables d). For each point of this lattice, a sequence of noise parameters is considered
resulting in the set {(xi (d) , zi) , i = 1, . . . , N}. This sequence is referred to as the outer array.

With this approach, Taguchi translates the optimization of Eq. (2.38) into a discrete one by con-
sidering only the points sampled in the orthogonal array. Despite it is a pragmatic approach,
it has proven to be inefficient when the cost has highly non-linear effects. Moreover, to apply
this, one has to carefully set the design of experiments. The number of selected control and
noise parameters should be kept as small as possible in order to avoid conducting too many
experiments. Other limitations were pointed out by Box et al. (1988) or Nair et al. (1992), specifi-
cally regarding the use of the S/N ratio. Globally speaking, Taguchi’s method has been largely
praised for its philosophy of robustness, making quality search mainstream, but its practical
implementation through statistical approaches was proved to be either inefficient or unneces-
sarily complicated (Trosset, 1997).

2.2.1.3 Broader formulations for robust design optimization

Let us now review the main formulations of robust design from a broader perspective. Beyer
and Sendhoff (2007) give an overview over which this section is based.

Worst-case scenario
A usual approach for robust design consists in implementing worst-case scenarios. Let us

consider the objective function c (d). A robust counterpart of the optimization problem consid-
ering the local variability in the design and environmental parameters x (d) and z may write
as follows:

d∗ = arg min
d∈D

sup
(x,z)∈X×Z

c (x (d) , z) , (2.39)
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2.2. Optimization under uncertainties

where X and Z respectively denote the finite supports of x and z.

In this formulation, the cost is replaced by a robustness measure which ensures that for each
design (or control) parameter, the worst possible case is accounted for. To define such a case, the
probability distribution of random variables modeling the uncertainty is not necessary. Only
their bounded support is needed. The worst-case scenario is actually considered when one
does not have enough information on the uncertain parameters except for a vague knowledge
about their range of variations. In general this is an extremely conservative measure, which is
hardly applicable in industrial problems. Beside, this robustness measure might turn out to be
discontinuous because of the sup operator.

Moments-based measures
Beyer and Sendhoff (2007) presented another robustness measure based on a utility function

which is defined by:
U (c) = sign (c) |c|k, (2.40)

where the positive power coefficient k can be tuned so as to put more or less emphasis on
extreme values of the cost function. The smaller the value of k, the less emphasis is put on
extreme values of c.

The associated robustness measure is constructed by taking the expectation of the utility func-
tion. This gives the following robust counterpart of c:

d∗ = arg min
d∈D

E [U (c) |d] , (2.41)

where the expectation is computed with respect to X ∼ fX|d and Z ∼ fZ.

The special case k = 1 corresponds to the expectation of c as described in Trosset (1997):

d∗ = arg min
d∈D

E [c|d] = arg min
d∈D

∫

Rs
c (x, z) fX|d (x) fZ (z) dxdz, (2.42)

where s is the number of design and environmental variables.

By Eq. (2.42), the cost function is averaged around the nominal value of the control parameter.
As a consequence, a smoother version is actually minimized thus reducing the likelihood of
finding an optimum located in regions where the gradient of the cost function is considerably
high. A more straightforward approach to get the same result is to consider directly a disper-
sion measure of the cost function. One such measure is given by the variance, yielding to the
following optimization problem:

d∗ = arg min
d∈D

Var [c|d] = arg min
d∈D

∫

Rs
(c (x, z)−E [c|d])2 fX|d (x) fZ (z) dxdz. (2.43)

This measure focuses too much on the dispersion of the objective function around a nominal
value and does not take into account any information on its merit (i.e. whether the objective
function is actually minimized or not). In fact, plateau-like areas are somehow favored.

To illustrate this, let us consider the one-dimensional cost function presented in Lee et al. (2005)
which writes:

c (d) =
10

∑
i=1

aidi, (2.44)
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where {ai, i = 1, . . . , 10} are weighting coefficients. Their exact values are not necessary here
so we omit them for the sake of clarity (if needed, see Lee et al. (2005), p. 783).

We then consider a setting with no environmental variable but with randomness in the design
parameters, modeled by X ∼ N

(
d, 0.22) for any d ∈ [0, 10]. The blue line in Figure 2.4 illus-

trates the deterministic cost and its minimum value which corresponds to d∗ = 9.70. For its
robust counterpart, we consider the expectation and variance measures which are respectively
represented by the green and red lines. The integrals in Eq. (2.42) and Eq. (2.43) are computed
through Monte Carlo sampling. Their optimizations respectively yield dE = 0.74 and dV = 2.84.
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Figure 2.4: Robust design optimization: Comparison of different robustness measures.

This simple example shows how different the optimal solution of the deterministic problem can
be from that of its robust counterpart. In fact, the expectation measure has smoothed the func-
tion thus avoiding the region of large gradient where the deterministic design lies. As for the
variance measure, the optimum lies in a plateau-like area. Here it happens that it corresponds
to a local minimum of the function, but it need not always be the case. It might have as well
been on a local maximum of the function. To avoid this latter situation, a combination of the
two robustness measures is often used (Doltsinis and Kang, 2004; Medina and Taflanidis, 2014).
This results in a multi-objective optimization problem. One way to solve it is to aggregate the
two measures as follows:

d∗ = arg min
d∈D

(1− α)
µc (d)

µu
+ α

σc (d)
σu

(2.45)

where µc (d) = E [c|d], σc (d) =
√

Var [c|d], and α ∈ [0, 1] is a weighting coefficient. µu and
σu are normalizing coefficients. They are actually coordinates of the so-called utopia point corre-
sponding to the optimal solutions of each optimization problem taken separately.
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2.2. Optimization under uncertainties

With the formulation above, the remaining task is that of finding an appropriate weight param-
eter. Alternatively, one may directly search for a Pareto set. Then the designer has to decide
which solution is the most suitable. This decision can be made by considering some preferences
or objectives that were not stated in the initial problem. In the probabilistic framework, Medina
and Taflanidis (2014) introduced another robustness measure called probability of dominance to
help choosing one design from the Pareto-optimal solutions.

Probabilistic threshold measure
The third family of robustness measures can be derived by defining a probabilistic threshold

(Beyer and Sendhoff, 2007). This may be formulated through quantiles defined on the distribu-
tion of the cost function. The idea is to be conservative with respect to small scatter of the cost
that may result from the inputs variability. Following Baudoui (2012), the robust optimization
problem may read:

d∗ = arg min
d∈D

Qα (c|d) = arg min
d∈D

inf {q ∈ R : P (c (d) ≤ q) ≥ α} (2.46)

The degree of conservatism can be controlled by the parameter α. The higher it is, the more
conservative is the solution. The case α = 1 corresponds to the worst-case approach introduced
above, provided that the supports of the random variables are finite.

2.2.2 Reliability-based design optimization

2.2.2.1 From deterministic to probabilistic approach of safety

The previous section on robustness was concerned with the effect of randomness in the cost
function. The present one rather focuses on the safe performance of a structure during its life
time. The assessment of safety is usually carried out in the space of input parameters of the
mathematical model that governs the behavior of the structure. Let w = {x, z}T ∈ Rs be the
vector gathering the input parameters of the model. The input space is conventionally divided
into two sets, namely:

• Failure domain: Ω f = {w ∈ Rs|g (w) ≤ 0};
• Safety domain: Ωs = {w ∈ Rs|g (w) > 0}.

This partition is made by the so-called limit state function: w 7→ g (w) and the set defined by
{w ∈ Rs|g (w) = 0} is known as the limit state surface.

In deterministic design optimization, the solution most often lies on this boundary. As argued
earlier, this might not be truly safe because of uncertainties that can invalidate the solution. The
usual approach to cope with this situation within the deterministic philosophy is to introduce
so-called safety factors. To illustrate this, let us consider the widely-used capacity-and-demand
example where the limit state function reads:

g (d) = r− s, (2.47)

where d = {r, s}T with r being the capacity or resistance and s the demand or source. In a
deterministic context, the input parameters w reduce to the design variables d.

For safety factors, the limit state function is modified and recast as follows:

g (d) =
r

γr
− γss, (2.48)
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where the coefficients γr ≥ 1 and γs ≥ 1 are the specified safety factors.

This formulation leads to moving the solution away from the boundary of the failure domain.
The coefficients have to be set once and for all according to the degree of confidence the de-
signer has in his model. However, as pointed out in Ditlevsen and Madsen (1996), the expres-
sion of the limit state function is not unique. The limit state in Eq. (2.47) could have been
equally expressed as g (r, s) = r/s − 1. In this case, the value specified in Eq. (2.48) would
not bear the same results. A model invariant setting of the safety factors is therefore neces-
sary. A mean to achieve this is to directly set the safety factors on the input parameters of
the model. This approach is known as the partial safety factors method. The procedure is the
following: Let d = {d1, d2, . . . , ds} be a point in the safe domain. If the hyperrectangular vol-
ume ∏s

i=1
[
di/γl

i , γu
i di
]

is a subset of the safe domain, only then the solution is considered to
be acceptable. In practice, the verification is made only on the vertices of the hyperrectangle.
This involves 2s additional evaluations of the model, which might be problematic in high di-
mensional problems. This number can be reduced by considering simplifying assumptions
on the limit state surface such as monotonicity. That is, for parameters of resistance type, the
limit state function increases as the parameter becomes large. In contrast for source or demand
types, the limit state function decreases as the parameter grows. There is however some other
issues that are raised by the approach. In fact, for all the hyperrectangular volume delimited
by the vertices to be feasible, the limit state surface has to be convex. This assumption may
not always hold. Eventually, the value given to the partial safety factors should reflect the un-
certainty in each input parameter. However, their calibration does not fully acknowledge the
random distribution of the parameters when such information is available. This often results
in over-designed structures.

d1

d2
d∗1

d∗2

Safety domain

Failure domain

x0

g1
g2

Figure 2.5: Illustration of the partial safety factors concept. The vertices of the rectangular
neighborhood domain of the optimal solution are plotted as black bullets. Two cases are con-
sidered: convex (g1) and non convex (g2) limit state surfaces.
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To overcome the shortcomings discussed above, a probabilistic approach has been extensively
used. It consists in modeling the variability of the input parameters by random variables whose
PDFs are well defined. The associated uncertainty is therefore propagated to the model out-
puts through a so-called reliability analysis. The associated optimization problem, referred to as
reliability-based design optimization (RBDO) is introduced below.

2.2.2.2 Problem formulation

In reliability-based design optimization, the uncertainty in the inputs is modeled by random
variables and the hard constraints are assessed from a probabilistic viewpoint. This can be
formulated as follows (Dubourg, 2011):

d∗ = arg min
d∈D

c (d) subject to:
{

fj (d) ≤ 0, {j = 1, . . . , ns}
P (gk (X (d) , Z) ≤ 0) ≤ P̄fk , {k = 1, . . . , nh} . (2.49)

The notations are the same as those introduced in Eq. (2.1). As a reminder c is the cost function
that is to be minimized with respect to design variables d ∈ D ⊂ Rsd . This optimization
is to be carried out under some constraints. The soft constraints f =

{
fj, j = 1, . . . , ns

}
are

simple analytical functions that may for instance bound the design space. In contrast, the hard
constraints g = {gk, k = 1, . . . , nh} are the performance functions underlying the behavior of
the structure. As already pointed out, they most often result from a finite element model and
may be expressed as gk = ḡk −Mk, where Mk is an output from the FE model and ḡk is a
threshold which is not to be exceeded. The difference with the DDO formulation lies in the
introduction of the random variables X ∼ fX|d and Z ∼ fZ for a given design d. X ∈ Rsd is
indexed on the design variables and Z ∈ Rsz stands for the environmental variables. With this
probabilistic model, a probability of failure is computed for each constraint and is required to be
lower than a given threshold denoted by P̄fk . Let us gather the random parameters into a single
vector: W = {X, Z} which follows the joint multivariate distribution fW . The probability of
failure is therefore defined by:

Pfk (d) = P (gk (W) ≤ 0) =
∫

gk(W)≤0
fW (w) dw. (2.50)

The computation of this integral is not analytically tractable. One rather resorts to approximate
methods as shown in the next section. In the following, we will drop the subscript k for the sake
of clarity, thus considering only one constraint. The multiple constraints case can be handled
by specific reliability techniques that we will enumerate later on.

In this formulation, the cost function is supposed to be deterministic. This setting corresponds
to the application in this thesis. Many formulations in the literature of RBDO also assume such
deterministic cost functions. As argued in Dubourg (2011), a fully probabilistic formulation is
possible. The cost function would therefore be cast as an expectation: c (d) ≡ E [c (X (d) , Z)].
In our case, the computational cost required to evaluate this expectation is not high as the cost
function is usually a simple, often analytical, model. Accounting for uncertainties in the cost
function, it may also be possible to formulate a problem which seeks for a design that is both
robust and reliable. For robustness the cost function is simply replaced by one of the robustness
measures introduced in the previous section. Mourelatos and Liang (2006) formulate such a
problem where the variance of the cost function is considered as merit.
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We illustrate the difference between a DDO and an RBDO solution in Figure 2.6. The determin-
istic example is formulated as follows:

d∗ = arg min
d∈[0,10]2

10− d1 − d2 subject to: g (d) ≤ 80/
(
x2

1 + 8x2 + 5
)
+ 1. (2.51)

For RBDO, the probabilistic model simply consists of random design variables Xi ∼ N
(
di, 0.52) ,

i = {1, 2}. The probability of failure should be lower than P̄f = 0.05.

The deterministic optimal solution is found at d∗DDO = {4.00, 7.37}T and lies on the limit state
surface. For RBDO, the solution is found at d∗RBDO = {3.45, 6.74}T. Hence, the final cost for
the optimal solution is higher in RBDO (−0.19 against −1.38). This is to be expected with
RBDO as the reliability of the solution is traded against the cost. When the problem is well
expressed, this results in moving away the solution from the boundary of the failure domain
thus resulting in an increased cost. In fact, in RBDO one not only considers the nominal design
but possible realizations in its neighborhood. Figure 2.6 illustrates the point. A Monte Carlo
simulation using 1, 000 points is drawn according to the distribution of the design variables
at the optimal solution. A small portion, approximately 5%, of these points is not in the safe
domain. They are represented in red while those in the safe domain are green. This proportion
actually corresponds to the target probability of failure P̄f set to 0.05. This explains why the
optimal solution does not lie on the limit state surface. In general, the smaller the probability
of failure, the further the solution lies from the limit state surface.

0 2 4 6 8 10
0

2

4

6

8

10

Safety domain

Failure domain

d1

d 2

Limit-state surface
DDO solution
RBDO solution

−8

−6

−4

−2

0

2

4

6

8

Figure 2.6: Illustration of deterministic vs. reliability-based design optimization on a two-
dimensional problem.

In this example, the probability of failure was computed by a simple Monte Carlo simulation.
There exists many other approaches to estimate failure probabilities as will be explained in the
next subsection.
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2.2. Optimization under uncertainties

2.2.2.3 Structural reliability analysis

The methods used to estimate probabilities of failure in structural reliability analyses can be
classified into approximation and simulation methods (Madsen et al., 1986). We very briefly intro-
duce some of the most widely-used in this section.

Approximation methods
The first-order reliability method (FORM) is known as one of the most practical approaches

to approximate a probability of failure. The integration in Eq. (2.50) is computed in the standard
space. To this end, a mapping from the space of original random variables W to the standard
Gaussian space is performed:

u = T (w) ,

gu (u) = g
(

T−1 (u)
)

,
(2.52)

where T is the mapping application which varies according to the method used. We will come
back to the mapping later. For now, let us assume that we have independent normally dis-
tributed variables U.

FORM approximation proceeds by first identifying the point on the limit state-surface which is
closest to the origin. Since the standard Gaussian joint probability distribution ϕ (u) decreases
exponentially with the radial distance to the origin and is rotationally symmetric, this point is
the one with maximum likelihood over the failure domain. It is actually known as the design
point or most probable failure point (MPFP). Finding the MPFP resorts to a constrained optimiza-
tion problem:

u∗ = arg min
u
‖u‖ subject to: gu (u) = 0. (2.53)

Many algorithms were developed to specifically solve this equation. One reference algorithm
is the Hasofer-Lind-Rackwitz-Fiessler (HLRF) (Hasofer and Lind, 1974; Rackwitz and Fiessler,
1978). Since then, improved approaches have been developed (Liu and Der Kiureghian, 1992;
Santos et al., 2012) based on the following recursive formula:

uk+1 = uk + λkδk (2.54)

where the descent direction is given by:

δk =
1

‖∇gu (uk)‖2 (∇gu (uk) uk − gu (uk))∇gT
u (uk)− uk. (2.55)

λk is the step size. Many of the available algorithms only differ in how this size step is cali-
brated. Eventually, one may also consider general-purpose algorithms as those presented in
section 2.1.2 to solve the problem.

Once the problem in Eq. (2.53) is solved, the limit state function is linearized around the MPFP
following its first-order Taylor expansion:

gu (u) ≈ gu (u∗) +∇Tgu (u∗) (u− u∗) . (2.56)

Note that the first summand of the right-hand side of this equation is zero since u∗ belongs
to the limit state surface. Upon normalizing the remaining part of the equation, the following
normalized approximation of the limit state function can be derived:

g̃u (u) =
∇Tgu (u∗)
‖∇Tgu (u∗)‖

(u− u∗) = β− αTu, (2.57)
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where α = −∇Tgu (u∗) /‖∇Tgu (u∗)‖ and β = αTu∗ is the so-called reliability index. This lat-
ter quantity represents the shortest distance between the origin of the standard space and the
hyperplane that approximates the limit state surface. This geometrical interpretation is due to
Hasofer and Lind (1974) and it is therefore referred to as Hasofer-Lind reliability index.

The final step in FORM is to replace the probability of failure by the one computed with respect
to its above-approximation:

P (gu (u) ≤ 0) ≈ P (g̃u (u) ≤ 0) = P
(
−αTu ≤ −β

)
(2.58)

Since the quantity −αTu turns out to be a standard Gaussian random vector, the probability of
failure can be analytically evaluated and reads:

PfFORM = P
(
−αTu ≤ −β

)
= Φ (−β) , (2.59)

where Φ is the CDF of the standard Gaussian distribution.

This estimation is actually exact when the limit state surface is linear. An extension of FORM
which uses second-order polynomial approximation has been proposed by Breitung (1989).
Second-order reliability method (SORM) requires to compute the Hessian of the limit state func-
tion to construct a quadratic approximating surface at the design point. The probability of
failure obtained by FORM is hence corrected by including curvature terms derived from this
surface. This results in an asymptotic approximation which becomes exact as β→ ∞:

PfSORM = Φ (−β)
s

∏
i=1

(1− βκi)
−1/2 , (2.60)

provided that 1− βκi > 0 with κi being the main curvatures of the limit state surface.

These two methods have been extensively used in the literature. They generally provide fairly
good results at minimum cost for engineering problems. However, they assume the existence
of only one most probable failure point. Otherwise, it has been shown that they provide inac-
curate results (Der Kiureghian and Dakessian, 1998).

An illustration of the first- and second-order reliability methods is given in Figure 2.7. We
consider a two-dimensional problem. The left panel shows the limit state surface in the physical
space as well as the PDF of the joint distribution of the random variables W = {W1, W2}. The
mapping to the standard Gaussian space is illustrated in Figure 2.7b. The three limit state
surfaces are shown: the original, the FORM and the SORM approximations.

The developments above assumed that the random variables were independent and normally
distributed. However, this is often not the case and a mapping is then necessary. According to
the nature of the original random variables, one of the following mapping may be used.

• Normally distributed but correlated random variables. It is assumed in this case that W ∼
N (M, C) where M = (µ1, . . . , µs)

T. The covariance matrix reads C = DRD where D =
[
rij
]

s×s
is the linear correlation matrix and D = diag (σ1, . . . , σs) is the diagonal matrix of standard
deviations. The mapping therefore reads:

u = L−1D−1 (w−M) ,
w = DL (u−M) ,

(2.61)

where L is the lower triangular matrix of the Cholesky decomposition of R = LLT
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Figure 2.7: Schematic representation of FORM and SORM approximations with a mapping
from the physical to the standard Gaussian space.

• Non-normally distributed and independent random variables. In this case, an isoproba-
bilistic transformation can be performed. Let FWi be the marginal CDF of the original random
variables. By requiring that Φ (ui) = FWi (wi), the following mapping can be derived:

ui = Φ−1 [FWi (wi)] ,

wi = F−1
Wi

[Φ (ui)]
(2.62)

• General case: the Nataf and Rosenblatt transformations. For the most general case, the
Nataf transformation (Nataf, 1962; Liu and Der Kiureghian, 1986, 1992) proceeds in two steps,
combining the two previous transformations. The mapping may be defined as the composition
of two functions (Lebrun and Dutfoy, 2009a):

TN = TN
2 ◦TN

1 such that: TN
1 : W 7→ Y =

(
Φ−1 [FW1 (w1)] , . . . , Φ−1 [FWs (ws)]

)T

TN
2 : Y 7→ U = ΓY ,

(2.63)

where Γ is any square-root of R0, the correlation matrix computed between components of Y .

Similarly, one may use the Rosenblatt transformation (Rosenblatt, 1952; Lebrun and Dutfoy,
2009b) which involves a recursive formula defined by:

TR = TR
2 ◦TR

1 such that: TR
1 : W 7→ Y =




FW1 (w1)
FW2|W1

(w2)
...
FWs|W1,...Ws−1

(ws)




TR
2 : Y 7→ U =

(
Φ−1 (Y1) , Φ−1 (Y2) , . . . Φ−1 (Ys)

)T

(2.64)
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where FWs|W1,...Ws−1
is the cumulative distribution function of the conditional random variable

Ws|W1, . . . Ws−1.

Crude Monte-Carlo Sampling
Simulation techniques have been used as well for estimation of failure probabilities. Their

principle relies on rewriting the integral in Eq. (2.50) as:

Pf =
∫

g(W)≤0
fW (w) dw =

∫

DW

I (g (w)) fW (w) dw ≡ E fW [I (g (W))] , (2.65)

whereDW is the support of the random vector W and I is the indicator function which is equal
to 1 if g (w) ≤ 0 and to 0 otherwise. This way, the hardly tractable integration in Eq. (2.50)
becomes the expectation of the indicator function which can be estimated more easily. In fact,
crude Monte Carlo simulation consists in empirically estimating the probability of the failure
by:

PfMCS =
1
N

N

∑
i=1

I [g (wi)] =
n f

N
(2.66)

where {wi, i = 1, . . . , N} is a sequence on N independent realizations of the random vector W
and n f is the number of failed samples, i.e. such that g (wi) ≤ 0.

It can be shown that PfMCS is an unbiased estimator of the failure probability Pf . We are indeed
assured by the law of large numbers that PfMCS will eventually converge to Pf as N grows. The
remaining question is how fast. The answer lies in the variance of the estimator which reads:

Var
[
PfMCS

]
=

1
N

Pf
(
1− Pf

)
. (2.67)

The exact value of Pf is actually not known. Anyway, considering a target coefficient of varia-
tion, we can estimate how many samples are needed to compute a given probability of failure
within some prescribed accuracy. Indeed the coefficient of variation may be cast as:

δMCS =

√
1
N Pf

(
1− Pf

)

Pf
=

√
1− Pf

NPf
. (2.68)

From this relationship, one can conversely find the number of samples required for a given
probability of failure and coefficient of variance:

N =
1− Pf

δ2
MCSPf

. (2.69)

For instance, if we look for a probability of failure of 5% with a coefficient of variation of
5%, we would need approximately 7, 600 sampling points, which is quite reasonable. How-
ever, looking for a failure probability of 10−6 with the same level of accuracy would require
4 × 108 samples. This is hardly tractable even if g is cheap to evaluate. Other simulation
techniques have therefore been developed specifically for such purposes. They are known
as variance reduction techniques and implement various strategies to produce an equally accu-
rate estimator as Monte Carlo but with fewer samples. Well-known examples are importance
sampling, stratification (such as Latin hypercube sampling), splitting, control variates or condi-
tional Monte Carlo as described in Asmussen and Glynn (2007) (chapter 5). Most of them are
general-purpose algorithms but we present them here in the context of reliability analysis.
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2.2. Optimization under uncertainties

Importance sampling
Importance sampling, applied to reliability analysis, is aimed at by-passing the difficulty

associated to drawing samples in the failure domain when concerned with rare events. By
definition, such points are scarce in a crude Monte Carlo simulation. The idea is henceforth
to draw instead from another distribution which puts higher weight to samples in the failure
domain and then to correct the bias introduced by replacing the original distribution.

Let us consider the integral in Eq. (2.65). Importance sampling proceeds by recasting it as:

Pf =
∫

DW

I [g (w)]
fW (w)

hW (w)
hW (w) dw ≡ Eh

[
I [g (w)]

fW (w)

hW (w)

]
(2.70)

where hW (w) is a so-called instrumental PDF easy to sample from. It must be chosen such that
there is an algorithm to draw wi ∼ hW and that it is possible to evaluate the ratio fW /hW at
any wi (Owen and Zhou, 2000).

In practice, the probability of failure is obtained by:

Pf IS =
1
N

N

∑
i=1

I (wi)
fW (wi)

hW (wi)
(2.71)

where {wi, i = 1, . . . , N} are independent and identically distributed samples simulated accord-
ing to the PDF hW . If the instrumental PDF is chosen appropriately, by the law of large numbers,
the estimated probability of failure will converge to the true one. Its variance can be derived as
follows:

Var
[
Pf IS

]
=Var

[
1
N

N

∑
i=1

I (wi)
fW (wi)

hW (wi)

]
=

1
N2

N

∑
i=1

Var
[

I (wi)
fW (wi)

hW (wi)

]

=
1

N2 NVar
[

I (W)
fW (W)

hW (W)

]

=
1
N

(
Eh

[(
I [g (w)]

fW (w)

hW (w)

)2
]
−
(

Eh

[
I [g (w)]

fW (w)

hW (w)

])2
)

=
1
N

(
Eh

[
I [g (w)]

(
fW (w)

hW (w)

)2
]
− P2

f

)

(2.72)

The choice of the instrumental PDF is crucial in order to achieve a variance reduction. Examples
of appropriate choices can be found in Asmussen and Glynn (2007). In the case when FORM is
performed, a wise choice would be a multivariate normal distribution with mean centered on
the design point as proposed in Schuëller and Stix (1987). This assumes that the MPFP has been
found in a first stage. The method hence inherits the shortcomings of FORM i.e. those related
to finding a unique, in other words global, design point. In general, when the dimension of
the problem is high, finding an appropriate proposal distribution is not trivial. Bucher (1988)
has introduced a parametrization of hW , where the parameter is tuned adaptively during the
simulation. Au and Beck (1999) also implement an adaptive importance sampling using Monte
Carlo pre-samples.

We now illustrate importance sampling with the capacity-and-demand example. We consider
that the two parameters follow a normal distribution: R ∼ N (µr, σr) and S ∼ N (µs, σs). For
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this particular case, the probability of failure can be calculated analytically. In fact, the limit
state surface in the standard space reads:

gu (u) = σru1 − σsu2 + (µr − µs) , (2.73)

where u1 = (r− µr) /σs and u2 = (s− µs) /σs are the random variables expressed in the stan-
dard space. The distance from this hyperplane to the origin is the reliability index and reads:

β =
µr − µs√
σ2

r + σ2
s

. (2.74)

Let R ∼ N (100, 10) and S ∼ N (60, 6). The exact probability of failure in this case is Pf =

3.0182 × 10−4. Using a set of 5, 000 samples, we estimate this probability using both crude
Monte Carlo and importance sampling. By repeating, the simulation 10, 000 times, we obtain
the following means PfMCS = 2.9938× 10−4 and Pf IS = 3.0170× 10−4. The great difference lies in
the coefficient of variations which are respectively δMCS = 81.18% whereas δIS = 2.76%. From
this result, it is obvious how crude Monde Carlo is inappropriate for such a low probability of
failure given the limited number of samples.

Subset simulation
Subset simulation (Au and Beck, 2001), also known as multi-level splitting, is another sim-

ulation technique which starts from the premise that it is not trivial to obtain samples in the
failure domain under crude Monte Carlo sampling when it comes to rare events. The method
then suggests to compute small failure probabilities as the product of larger conditional ones.
In order to achieve this, the space is split into a sequence of nested domains F1 ⊃ F2 ⊃ . . . ⊃ Fm
where Fi = {W : g (W) ≤ yi, i = 1, . . . , n} is an intermediate event. The thresholds yi are cho-
sen such that y1 > y2 > . . . > ym = 0. The probability of failure is henceforth computed as
follows:

Pf =P (Fm) = P (Fm)P (Fm|Fm−1) = . . .

=P (Fm)P (Fm|Fm−1) . . .P (F2|F1)P (F1)

=P (F1)
m−1

∏
i=1
P (Fi+1|Fi) .

(2.75)

The events Fi are set such that each term of the product is computed at a low cost. This begs
the question of how to choose the intermediate thresholds. One approach is to set a priori
the values of yi. However by doing so, one does not control the intermediate probabilities of
failure and may therefore end up with another too small probability to estimate. The optimality
of the procedure is hence not achieved. Au and Beck (2001) proposes to rather set a fixed value
of the conditional probabilities, i.e. P (Fi|Fi−1) = p0 ∈ [0, 1]. This is achieved by adaptively
setting each threshold as the (1− p0)-quantile of the samples at each iteration. Cérou et al.
(2012) proves that the variance of the estimated probability of failure is optimal if the levels are
evenly spaced in terms of conditional probabilities. However, such a sequence is not always
easy to achieve in practice.

Another issue is the simulation of the conditional probabilities. A naive Monte Carlo, although
technically possible, would not be efficient. Instead, subset simulation implementations rather
resort to the so-called Markov Chain Monte Carlo (MCMC) algorithms (Andrieu et al., 2003;
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Metropolis et al., 1953). Basically MCMC is used when one can evaluate a PDF up to a nor-
malizing constant but cannot sample from it. Using a Markov Chain mechanism, MCMC al-
lows one to draw a sequence of samples whose stationary distribution is the target PDF. In the
case of subset simulation, Au and Beck (2001) used a modified Metropolis algorithm to gen-
erate samples with density distribution conditional to a given event Fi. In practice, the initial
probability p1 = P (F1) is obtained through a direct Monte Carlo simulation. Then the con-
ditional probabilities are sequentially computed though MCMC. At the i-th conditional level,
let
{

w(i)
k , k = 1, . . . N

}
be N samples generated by MCMC conditionally to Fi. The conditional

probability therefore reads:

P (Fi+1|Fi) ≈ pi+1 =
1
N

I
[
w(i)

k ∈ Fi+1

]
. (2.76)

The sequential procedure is stopped when a level yi < 0 is reached. This last threshold is then
replaced by ym = 0. The estimated probability of failure eventually reads:

PfSS = p1

m

∏
i=2

pi. (2.77)

This estimator can be accurate when the thresholds are appropriately set. However, it is biased
due to the intermediate quantile estimations (Walter and Defaux, 2015).

The techniques presented above can be used to compute probabilities of failure. The choice of
the appropriate one depends on the context and the characteristics of the problem at hand e.g.
linearity of the limit state, number of samples allocated by the computational budget, target
probability of failure, etc. In the next section, these methods are embedded in optimization
techniques so as to solve the RBDO problem.

2.2.2.4 Solution of the RBDO problem

Over the past few decades, various methods combining reliability analysis and optimization
have been proposed to efficiently solve RBDO problems. The present section reviews some of
them following Tsompanakis et al. (2008), more specifically the chapter by Chateauneuf and
Aoues (2008). A benchmark study is also performed in Aoues and Chateauneuf (2010). There,
the authors propose a general classification of RBDO methods into three groups: two-level, mono-
level and decoupled approaches. We adopt this classification in this thesis.

Two-level approach
Two-level approaches are among the most direct and probably natural ways to solve the

RBDO problem. They consist of two loops. The outer loop naturally explores the design space
by iterating on different values of d while the inner loop performs a reliability analysis. The
latter is usually also an optimization problem carried out in the random variables space when
MPFP-based methods are used, thus making the two-level approach a nested optimization
problem. However, simulation techniques can also be used instead while keeping the same
global strategy. Two main formulations have been developed in this category, namely the relia-
bility index approach (RIA) and the performance measure approach (PMA).

The reliability index approach (Enevoldsen and Sorensen, 1994) consists in using the FORM
analysis in the inner loop. For the sake of mathematical convenience, the probability of failure
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is equivalently replaced by the reliability index. The optimization problem therefore reads:

d∗ = arg min
d∈D

c (d) subject to:
{

fj (d) ≤ 0, {j = 1, . . . , ns}
β̄k − βk ≤ 0, {k = 1, . . . , nh}

. (2.78)

where βk = −Φ−1 (P (gk (X (d) , Z) ≤ 0)) is the generalized reliability index already intro-
duced and β̄k = −Φ−1 (P̄fk

)
is the corresponding threshold. From now on we consider that

nh = 1 for the sake of clarity.

The reliability index is computed after the MPFP has been found in the standard Gaussian
space following Eq. (2.53). As a reminder it writes:

u∗MPFP = arg min
u
‖u‖ subject to: gu (u) ≤ 0,

and the reliability index is hence given by β = αTu∗MPFP.

This approach requires to compute the sensitivities of the reliability index with respect to the
random variables. As argued in Enevoldsen and Sorensen (1994), they must be accurate for
stability of the optimization algorithm used.

An alternative formulation, known as the performance measure approach has been introduced
by Tu and Choi (1997). In PMA, the reliability problem is taken from another perspective.
Instead of searching to minimize the reliability index under non-linear (possibly complex) con-
straints, one rather sets a target reliability index. That is, the reliability index is set at its target
value and the limit state function is minimized. The formulation is as follows:

u∗MPTP = arg min
u

gu (u) subject to: ‖u‖ = β̄, (2.79)

where the subscript MPTP stands for minimum performance target point.

The introduced spherical constraint is easier to handle than the constraint of the RIA. PMA
only requires sensitivity of the limit state function with respect to design variables. The two
points make that PMA has generally a better convergence behavior than RIA and requires
fewer iterations (Lee et al., 2002). Tu et al. (1999) also show that the RIA can yield to singularity
issues when evaluating the probabilistic constraint. This occurs when the failure probability
for a given design is zero. In such a case, the reliability index numerically approaches infinity
and the RIA can fail to converge. On the other hand, thanks to the spherical constraint, PMA
can benefit from specific algorithms which are fitted for such constraints e.g. advanced mean
value (Wu et al., 1990) or more recently enhanced hybrid mean-value (Youn et al., 2005).

As pointed out in Tu et al. (1999), RIA and PMA are identical when all the constraints are active.
They however differ when some constraints are inactive or violated. The numerical instability
of RIA occurs in the presence of inactive constraints. Lee et al. (2002) compare the two ap-
proaches on three different problems and argue that PMA is numerically more advantageous
than RIA. Conceptually, the two approaches are illustrated in Figure 2.8. While RIA searches
for the smallest reliability index under the subset {u ∈ Rs|gu (u) = 0}, PMA rather searches
the minimum performance point under the subset

{
u ∈ Rs|‖u‖ = β̄

}
.

Mono-level approach
Because of the computational burden associated to the nested analyses above and scaling

issues, Madsen and Hansen (1992) have proposed a single-loop approach. This method is
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u1

u2

gu(u) > 0

gu(u) = 0

gu(u) < 0

+
u∗MPFP

Increasing values of gu

(a) Reliability index approach (RIA)

u1

u2

β̄

β̄

β̄

gu(u) > 0

gu(u) = 0

gu(u) < 0

{u ∈ Rs|‖u‖ = β̄}

Increasing values of gu

+
u∗MPTP

(b) Performance measure approach (PMA)

Figure 2.8: Comparison of the reliability index and the performance measure approaches.

based on Karush-Kuhn-Tucker optimality conditions of the design point. In fact, if u∗ is the
MPFP resulting from the reliability analysis, the necessary KKT conditions of Eq. (2.53) lead to:

u∗T∇ugu (u) + β‖∇ugu (u)‖ = 0 (2.80)

Following the idea of Madsen and Hansen (1992), Kuschel and Rackwitz (1997) have proposed
a mono-level formulation which can be stated as follows:

d∗ = arg min
d∈D

c (d) subject to:





fj (d) ≤ 0, {j = 1, . . . , ns} ,
gu (u) = 0,
uT∇ugu (u) + ‖u‖‖∇ugu (u)‖ = 0,
β̄− β ≤ 0.

(2.81)

It is worth noting that Kuschel and Rackwitz (1997) originally formulated the problem with
respect to a total cost. That is, the initial cost considered here plus an expected cost of failure.
We do not consider such a formulation in this thesis.

The advantage of this formulation is that any general-purpose non-linear optimization algo-
rithm can be used. However, to this end it is necessary to provide explicit mapping from the
physical to the standard space (and vice-versa). Both papers show that convergence is not
straightforward as often tricks are needed to avoid numerical instability (such as monotonic
transformation of the cost or constraints). More importantly, the reformulation is based on
RIA which has been shown to be numerically unstable. Agarwal et al. (2007) have proposed a
similar mono-level approach but which is rather based on the PMA formulation. Contrary to
the previous work on RIA, they also provide conditions under which the two-level and mono-
level formulations are equivalent (this involves convexity assumptions on the constraints in
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the standard space). They also restate the inverse FORM in Eq. (2.79) as:

u∗ = arg min
u

gu (u) subject to: ‖u‖ ≤ β̄, (2.82)

following the recommendation in Polak et al. (2000) (and other similar contributions) which
argue that inequality constraints are handled easier than equality in this case. The mono-level
approach can henceforth be stated as:

d∗ = arg min
d∈D

c (d) subject to:





fj (d) ≤ 0, {j = 1, . . . , ns} ,
gu (u) ≥ 0,
∇ugu (u) + λ u

‖u‖ = 0,
β− β̄ ≤ 0,
λ
(

β− β̄
)
= 0.

(2.83)

where λ ≥ 0 is a Lagrange multiplier. This formulation hence increases the dimension of
the optimization problem. It is however shown to be numerically more stable than that of
Eq. (2.81).

From another perspective, other approaches have been developed that convert the double-loop
into a single-loop approach. Chen et al. (1997) formulates a problem where it is assumed that all
random variables are associated to design parameters (i.e. no environmental variables). Under
this assumption, the probabilistic constraint is transformed into an equivalent deterministic
one. The idea is to evaluate the constraint at an approximated most probable failure point.
Thanks to the Gaussian assumption, the relation between the most probable failure point x(i)

and the design variable d(i) is straightforward. The equivalent deterministic formulation there-
fore reads:

d∗ = arg min
d∈D

c (d) subject to:

{
fj (d) ≤ 0, {j = 1, . . . , ns}
g
(

d(i), x(i)
)
≥ 0,

(2.84)

where x(i) is the approximated MPFP at iteration i and d(i) = µ(i) is the corresponding design
variable. The MPFP is approximated at each iteration as follows:

x(i) = µ
(i)
X − β̄σX α(i−1),

α(i) =
∇xg

(
d(i), x(i)

)

‖∇xg
(
d(i), x(i)

)
‖ .

(2.85)

This method is known as the single loop single vector approach. Liang et al. (2007) have proposed
a similar method known as the single loop approach as an extension to series system. Wang and
Kodiyalam (2002) have extended the approach to the case of random variables which are not
normally distributed. From another perspective Kharmanda et al. (2002) proposed to solve the
problem in a hybrid design space.

Decoupled approach
While the mono-level approach seeks to avoid reliability analysis, the decoupled approach

rather seeks to solve an equivalent deterministic problem followed (or preceded) by a reliabil-
ity analysis. This sequential strategy is aimed at reducing the overall cost with respect to a
standard double-loop approach. One of the most popular methods that fall into this category
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is the sequential optimization and reliability assessment (SORA) developed by Du and Chen (2004).
In SORA, successive cycles of deterministic optimization and reliability analysis are performed.
The probabilistic constraints are equivalently expressed by deterministic ones thanks to the in-
verse FORM method. In fact, the following equivalence is used:

P (g (X, Z) ≤ 0) ≤ P̄f ⇔ g (xMPTP, zMPTP) ≤ 0 (2.86)

where wMPTP = {xMPTP, zMPTP} is the minimum performance target point corresponding to
the target reliability 1− P̄f .

At each cycle, SORA solves the deterministic optimization by shifting the design variables
according to the MPTP found on the previous cycle. At cycle i, the problem reads:

d∗ = arg min
d∈D

c (d) subject to:

{
fj (d) ≤ 0 {j = 1, . . . , ns}
g
(

d− s(i), z(i−1)
)
≥ 0

. (2.87)

where s(i) = d(i−1) − x(i−1)
MPTP. At the first iteration, the MPTP is taken equal to the mean values

of the design and environmental variables.

By repeating these cycles, SORA eventually converges to the sought optimum. The number
of iterations may however be important. Cho and Lee (2011) have proposed an enhanced
alternative which combines SORA and convex linearization, thus reducing the number of calls
to the constraint functions.

Another family of decoupled approach has been developed based on the approximation of the
probabilistic constraints e.g. Taylor series expansion of the performance functions as proposed
by Chandu and Grandhi (1995) or the sequential approximate programming proposed by Cheng
et al. (2006).

2.2.3 Concluding remarks

This section was concerned with optimization under uncertainties. Two main concepts were
introduced: robustness and reliability. Robust design optimization seeks to produce a design
that has little or no sensitivity to uncertainties. Various formulations, relying on different ro-
bustness measures, exist. In contrast, reliability-based design optimization seeks to produce a
design that can still perform adequately despite the presence of uncertainties. This translates
into the specification of a probability of failure that is set arbitrarily low. The main difference
between RDO and RBDO is that the former focuses on the objective function whereas the latter
is concerned only with the constraints.

For the applications in this thesis, the effect of uncertainties on the objective function is negli-
gible. For the lightweight design of the automotive body structure for instance, the objective
function is the weight of some parts of the body-in-white. The possible scatter in the design
variables, i.e. the thicknesses of the parts, may only marginally affect the final weight. This
is therefore not a concern for the designers. In contrast, the constraints are highly sensitive to
uncertainties because of the chaotic nature of crash, as already argued. We therefore adopt the
reliability-based design optimization approach in order to integrate these uncertainties. Fur-
thermore, we introduce another formulation based on quantiles and Monte Carlo for reasons
that will become clear in the next section.
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2.3 Quantile-based RBDO

In this section, we propose another formulation of RBDO which relies on the quantile of the
constraints. We first motivate this choice and then reformulate the problem in Eq. (2.49) accord-
ingly.

2.3.1 Motivation

The methods presented above for RBDO have been successfully used in practice. The success
of each method relies upon the conditions in which it is used. For instance, it is widely accepted
that FORM is more likely to perform poorly when the limit state surface is highly non-linear.
Moreover, its implementation requires a few steps which might be hard to implement within
a general-purpose optimization framework. Double-loop approaches with Monte-Carlo sam-
pling on the other hand provide more accurate results. However, MCS becomes prohibitively
expensive when the target failure probability is low. Variance reduction techniques may serve
as substitute in this case. They however also require intermediate steps which are hard to
integrate in a general-purpose optimization algorithm.

In this thesis, we aim at proposing an RBDO formulation in an industrial context, this while
remaining within the prevailing culture and practice. The proposed methodology must remain
as close as possible to the current deterministic optimization so as to be easily implemented by
designers and this as straightforward as possible. With this, we start by emphasizing a partic-
ular aspect of the problem we aim to solve. The DDO has proven to be inefficient because of
the scatter that can be observed in frontal impact experiments and simulations. RBDO is there-
fore considered as a means to account for this scatter for a safe design within a probabilistic
context. To this end, the uncertainties in the design variables and environmental conditions
are modeled by random variables. These uncertainties are propagated to the outputs of the
constraints. Target probabilities of failure are set as a means to be conservative. Their sole role
is conservatism: we are not concerned with rare events so the failure probabilities thresholds
are set relatively high. Their order of magnitude is indeed 1%− 10%. In such a context we do
not need any sophisticated variance reduction technique. Crude Monte Carlo sampling allows
us to accurately estimate the failure probabilities within a reasonable computational budget.

Moreover, instead of explicitly expressing the probabilistic constraint in terms of a probability
of failure, we rather consider quantiles of the constraints distribution. In this way, the com-
puted quantile can be directly plugged in the workflow of the already existing deterministic
design process without difficulty. This is therefore a double-loop approach. While the outer
loop explores the design space, the inner loop simply reduces to the computation of the quan-
tile of the constraints.

2.3.2 Formulation

To formulate the quantile-based RBDO method, let us first restate the probabilistic constraint.
Considering the mathematical modelMk which represents the system output , the following
equivalence holds:

P (gk (X (d) , Z) ≤ 0) ≤ P̄fk ⇔ P (Mk (X (d) , Z) ≥ ḡk) ≤ P̄fk , (2.88)

where ḡk is the threshold not to be exceeded.
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Let us now define the quantile as an alternative to express the probability of failure:

Qαk (d;Mk (X (d) , Z)) = inf {qαk ∈ R|P (Mk (X (d) , Z) ≤ qαk) ≥ αk} , (2.89)

where αk = 1− P̄fk .

For a given design d(i) during the optimization process, this quantile is computed by sampling
a Monte Carlo population of size N following the distribution of the random variables X ∼ fX|d
and Z ∼ fZ:

Cq

(
d(i)
)
=
{(

x(j), z(j)
)

, j = 1, . . . , N
}

. (2.90)

We emphasize that x(j) depends on the design variable d(i). It is assumed that the input pa-
rameters are independent. For numerical stability, this Monte Carlo simulation is generated
using common random numbers. That is, the same seed is used to generate the samples within
iterations of the optimization algorithm. As a consequence, the same realizations of Z are used
throughout the optimization. This has shown to improve convergence of the algorithm.

To estimate the quantile, the mechanical model is evaluated on these samples resulting in a
set of points

{
y(j) =Mk

(
x(j), z(j)

)
, j = 1, . . . , N

}
and eventually giving a distribution of the

mechanical response. These points are ranked in ascending order such that y(1) ≤ y(2) ≤ . . . ≤
y(N). Eventually, the quantile is estimated as:

Qαk

(
d(i);Mk

(
X
(

d(i)
)

, Z
))
≡ qαk

(
d(i)
)
= y(bNαkc), (2.91)

where b•c denotes the floor function. In general, we consider N = 104.

Using the above notation, the target probability of failure can be equivalently expressed by a
constraint on quantiles as follows:

P
(
Mk

(
X
(

d(i)
)

, Z
)
≥ ḡk

)
= P̄fk ⇔ qαk

(
d(i)
)
= ḡk. (2.92)

This equivalence is illustrated in Figure 2.9 where the distributions of the response are plotted
for two different design variables. The quantiles corresponding to target failure probabilities
are thereafter compared with the threshold ḡk resulting in two configurations which are safe
and unsafe. The median value q0.5 is also illustrated. It may for instance correspond to the
value checked in deterministic design optimization, although this is not systematic. In this
situation, both configurations would have been considered safe.

Following the above assessment of safety, the RBDO problem in Eq. (2.49) can eventually be
reformulated as:

d∗ = arg min
d∈D

c (d) subject to:
{

fj (d) ≤ 0, {j = 1, . . . , ns}
Qαk (d;M (X (d) , Z)) ≤ ḡk, {k = 1, . . . , nh}

. (2.93)

We finally consider that the failure modes are independent. The system fails when at least
one constraint is not satisfied. This corresponds to a series system as opposed to parallel systems
where all constraints need to be violated for the failure system to occur.
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Pfk
= 1−αk

PDF ofMk(X(d),Z)

Mk(x , z)q0.5 ḡk
qαk

(a) Safe design: P (Mk (X (d) , Z) ≥ ḡk) ≤ P̄fk

Pfk
= 1−αk

PDF ofMk(X(d),Z)

Mk(x , z)q0.5 ḡk
qαk

(b) Unsafe design: P (Mk (X (d) , Z) ≥ ḡk) ≥ P̄fk

Figure 2.9: Definition of a quantile of the response with two configurations corresponding to
safe and unsafe designs.

2.3.3 Analytical examples

We now illustrate the RBDO methodology on some validation examples. Four analytical cases
are considered: two with mathematical functions and two with mechanical models. The first
mathematical example only serves for illustration purpose. The remaining examples are used
to validate the approach thanks to analytical solutions or by comparison with results available
in the related literature.

2.3.3.1 Mathematical models

Two-dimensional non-linear limit state function
This example is meant to illustrate the methodology, especially the computation of the quan-

tile. The function will be a running example for the developments in this thesis. The mathemat-
ical model comes from Janusevskis and Le Riche (2013) and reads:

M (d, z) =
(

1
3

z4 − 2.1z2 + 4
)

z2 + dz + 4d2 (d2 − 1
)

, (2.94)

where d ∈ [−1, 1] and z is an environmental variable whose deterministic mean value is 0.5. In
this reference, the authors used this function for robust optimization. Here we rather consider
RBDO, so the optimization problem is defined differently and reads:

d∗ = arg min
d∈[−1,1]

(d + 1)2 subject to: P (0.5−M (X (d) , Z) ≤ 0) ≤ 0.05 (2.95)

where X ∼ N
(
d, 0.052) and Z ∼ N

(
0.5, 0.052).

This probability of failure corresponds to a quantile value of 0.95. The equivalent quantile-
based RBDO formulation therefore reads:

d∗ = arg min
d∈[−1,1]

(d + 1)2 subject to: Qα (d;M (X (d) , Z)) ≤ 0.5 (2.96)

Constrained (1+1)-CMA-ES is used for optimization and is followed by a gradient-based ap-
proach to fine-tune the solution (MATLAB’s fmincon function). Starting from an initial point
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d(0) = 0.6, convergence is achieved after eight iterations of CMA-ES. The optimal solution is
d∗ = −0.9322.

Figure 2.10a shows the function M (x, z) in its space of definition. Two sets of Monte Carlo
samples C

(
d(0)
)

and C (d∗) corresponding respectively to the initial and optimal points are
plotted as blue and green crosses. The distributions used to generate them are also illustrated.
The simulated quantile over the domain D = [−1, 1] is shown in Figure 2.10b. The special
cases of qα

(
d(0)
)

and qα (d∗) are also highlighted. If the estimation of the quantile is noiseless,
the RBDO actually behaves as if we were optimizing with respect to d under the constraint
defined by the function qα (d). The solution d∗ actually lies at the boundary of the feasible
space delimited by the red line.
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Figure 2.10: Two-dimensional mathematical illustration example.

Three non-linear limit state functions
This example involves a problem with three non-linear constraints. The optimization prob-

lem reads:

d∗ = arg min
d∈[0,10]2

10− d1 + d2 s.t.:





g1 (d) =
d2

1d2

20
− 1 ≤ 0

g2 (d) =
(d1 + d2 − 5)2

30
+

(d1 − d2 − 12)2

120
− 1 ≤ 0

g3 (d) =
80(

d2
1 + 8d2 + 5

)
− 1
≤ 0

.

(2.97)

We consider the setting in Lee and Jung (2008) where an associated RBDO problem is solved.
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The probabilistic model consists of the random design variables Xi ∼ N
(
di, 0.62) , i = {1, 2}.

The authors consider a reliability index of β = 2 for all constraints which corresponds to a
failure probability Pfk = 0.0228, k = {1, 2, 3}. The corresponding quantile level is αk = 1−
0.0228 = 0.9772, k = {1, 2, 3}. We may formulate the quantile-based RBDO as follows:

d∗ = arg min
d∈[0,10]2

10− d1 + d2 s.t.:





Qα1 (d;M1 (X (d))) ≤ 0,
Qα2 (d;M2 (X (d))) ≤ 0,
Qα3 (d;M3 (X (d))) ≤ 0.

(2.98)

Lee and Jung (2008) solve the problem using the performance mean approach and find an opti-
mal design d∗ = {5.28, 3.79}T. We apply the quantile-based RBDO combined with constrained
(1+1)-CMA-ES to solve the same problem. Figure 2.11 shows the history of the optimization.
The left panel shows the cost function and the three limit state surfaces respectively in blue, red
and yellow. The points sampled during the optimization by CMA-ES are also represented. The
red color implies that the design is not feasible. The feasible samples with improved fitness
are shown in green. The right panel simply shows the value of the cost function with respect
to the iteration number. Due to its random nature, CMA-ES explores the design space by sam-
pling points which do not improve the value of the cost function. The history of the feasible
samples with improved fitness is also represented in green. Due to the convexity of the prob-
lem, a naive gradient-based algorithm would have been sufficient and more efficient in terms
of function evaluations.
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(a) Convergence of CMA-ES in the design space
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(b) Monte Carlo sample at the optimal solution

Figure 2.11: Three non-linear limit state functions

The algorithm converges to d∗ = {5.29, 3.76}T which is quite close to the solution found in
Lee and Jung (2008). Figure 2.12 illustrates the similarity between the quantile-based and
the performance measure approaches used in Lee and Jung (2008). In this figure, the sets
{d ∈ D|qαk (d) = 0, k = {1, 2, 3}} are plotted in dashed lines. The optimum found is shown
as a green diamond. The associated Monte Carlo, used to compute the quantile at this point is
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represented as well. The blue color corresponds to points falling in the safe domain whereas
the red one to those falling in the failure domain. As explained earlier, PMA searches the point
of minimum performance on the circle of radius β in the standard Gaussian space. In the phys-
ical space, this circle is centered on the design point and has a radius of 0.6β = 1.2 (0.6 being
the standard deviation of the random design variables). At the optimal solution, it is shown as
the black curve in Figure 2.12. This circle is, as expected, tangent to the two active constraints
showing good convergence of the algorithm. In contrast, for the quantile-based approach, a
MC centered on the optimum produces a given proportion of points that fall in the failure
domain. This proportion actually corresponds to the target failure probability P̄f = Φ

(
−β̄
)
.
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Figure 2.12: Conceptual comparison of PMA and quantile-based approach on the three non-
linear mathematical model.)

2.3.3.2 Mechanical models

Column under compression
In this section we consider the optimal design of a column under compression as shown

in Figure 2.13, also studied in Dubourg (2011). The column is of rectangular cross-section
b× h and is submitted to a service load Fser. We aim at minimizing this section while avoiding
buckling. For such a column, buckling can occur if the service load is higher than a so-called
Euler critical force. The later may be obtained by:

Fcr =
π2EI

L2 , (2.99)

where L is the length of the column, E is the Young’s modulus of its constitutive material and
I = bh3/12 (b > h) is the column area moment of inertia.
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Figure 2.13: Column under compression

Table 2.1: Probabilistic model for the column under compression example.

Parameter Distribution Mean (µ) COV (δ%)
k Lognormal 0.6 10
E (MPA) Lognormal 10000 5
L (mm) Lognormal 3000 1
Fser (kN) − 1.4622× 106 −

To account for noise that may affect the Euler force, an additional multiplicative parameter k is
considered. The deterministic optimization problem therefore reads:

d∗ = arg min
d∈[150,350]2

bh subject to:





f (d) = h− b ≤ 0,

g (d, z) = Fser − k
π2Ebh3

12L2 ,
(2.100)

where z = {k, E, L}T is the vector of environmental variables.

For the RBDO application, we consider that there is randomness only in the environmental
variables. The probabilistic model is summarized in Table 2.1.

All distributions are lognormal. In this case, it is possible to analytically compute the solution
of both the DDO and RBDO problems (Dubourg, 2011). As a matter of fact, they respectively
read:

• DDO solution

b∗ = h∗ =
(

12µ2
LFser

π2µkµ2
E

)1/4

(2.101)
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• RBDO solution

b∗ = h∗ =
12Fser

π2 exp
(

λk + λE − 2λL + Φ−1
(

Pf
)√

ζ2
k + ζ2

E + 4ζ2
L

) , (2.102)

where {λ•, ζ•}, • = {k, E, L} are the parameters of the lognormal distributions. They can
be retrieved by the transformation described in Eq. (2.33).

Considering a probability of failure P̄f = 0.05, the numerical application yields b∗ = h∗ =
227.25 mm for DDO and b∗ = h∗ = 238.45 mm for RBDO.

Alternatively, we may solve the problem using the quantile-based approach. Figure 2.14 shows
the history plot of samples during the optimization. The red area denotes the failure domain
due to the buckling while the blue one corresponds to the soft constraint b > h. The DDO
solution lies at the boundary of the two areas. For RBDO, the solution remains on the boundary
of the soft constraint. However, it is moved away from the hard constraint boundary. The
found value b∗ = h∗ = 238.59 mm is close to the analytical one.
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Figure 2.14: Convergence of the Euler problem using CMA-ES

Bracket structure
This last application example involves a two-member bracket structure proposed by Aoues

and Chateauneuf (2010) which is represented in Figure 2.15. The member CD is horizontal and
AB is inclined by 60◦. The two are pin-joined at the point B. They support a vertical load P
which is applied on D at a distance L of the hinge. The aim is to minimize the structure’s weight
under two constraints:
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Figure 2.15: Illustration of the bracket structure (from Dubourg (2011))

• The first one is related to the bending stress in the member CD. Its maximal value σb,
located at the point B, should be lower than the yield stress fy. The maximum bending
stress reads:

σb =
6MB

wCD
t2, (2.103)

where MB = PL/3 + ρgwCDtL2/18. In this equation, ρ is the unit mass of the bracket’s
constitutive material and L the length of the member CD as illustrated in Figure 2.15.

• The second constraint concerns the compression force FAB in the member AB which must
be lower than the Euler critical force of buckling Fb. The compression force reads:

FAB =
1

cosθ

(
3P
2

+
3ρgwCDtL

4

)
, (2.104)

where θ is the inclination angle of the member AB which is equal to 60◦. On the other
hand, the critical load is given by:

Fb =
πEI
L2

AB
=

π2Etw3
AB

12 (2L/3sinθ)2 , (2.105)

where LAB is the length of the member AB.

The optimization problem eventually reads:

d∗ = arg min
d∈[5,30]3

ρtL

(
4
√

3
9

wAB + wCD

)
subject to:





f (d) = wAB − t ≤ 0
g1 (d) = fy − σb ≥ 0
g2 (d) = Fb − FAB ≥ 0

. (2.106)
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The RBDO application is constructed by a probabilistic model whose parameters are given in
Table 2.2. The three random design parameters d = {wAB, wCD, t}T follow a normal distribu-
tion with a coefficient of variation of 5%. Five environmental variables are considered random.
Their distributions and parameters are given in Table 2.2. The target reliability index is set at
β̄1 = β̄2 = 2 corresponding to a failure probability of 0.023.

Table 2.2: Parameters of the variables defining the probabilistic model for the bracket structure
problem.

Parameter Distribution Mean COV (δ%)
Width of AB (wAB in m) Normal wAB 0.05
Width of CD (wCD in m) Normal wCD 0.05
Thickness (t in m) Normal t 0.05
Applied load (P in kN) Gumbel 100 0.15
Young’s modulus (E in GPa) Gumbel 200 0.08
Yield stress ( fy in MPa) lognormal 225 0.08
Unit mass (ρ in kg/m3) Weibull 7860 0.10
Length (L in m) Normal 5 0.05

We solve this problem using the quantile measure for reliability. Constrained (1+1)-CMA-ES is
used as optimization algorithm. We compare the results with two reference solutions from the
literature respectively that of Dubourg (2011) and Aoues and Chateauneuf (2010). The former
author uses importance-sampling based on a global approximation of the limit state surface.
The latter proposes several approaches among which we select the PMA. The solutions are
given in Table 2.3. While PMA and Meta-RBDO give relatively close results, the quantile-based
approach yields to a fundamentally different design. The resulting weight is lower than that of
the two others. This may be explained by the fact that we use a global search algorithm, namely
CMA-ES, in contrast to the two other reference solutions that were found with gradient-based
approaches.

Table 2.3: Comparative results for the bracket structure. The PMA result comes from Aoues
and Chateauneuf (2010) and Meta-RBDO from Dubourg (2011).

Design method Weight (kg) wAB (cm) wCD (cm) t (cm) β1 β2

PMA 1673 6.08 15.68 20.91 1.99 2.01
Meta-RBDO 1584 5.80 12.80 23.30 1.98 1.94
Quantile-based RBDO 1357 5.35 7.40 30.00 2.00 2.00

2.3.3.3 Summary

In this section, we have presented an alternative approach for solving RBDO problems which is
based on quantiles. Some application examples were used to validate the approach. Three dif-
ferent cases for the probabilistic model were covered by the examples: randomness in design
variables only, randomness in environmental variables only and randomness in both design
and environmental variables. The first mathematical problem was used only for illustration
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purpose. The second one aims at validating the proposed approach by comparison with a
reference solution found in the literature. The column under compression problem was intro-
duced in order to validate the approach with respect to the exact analytical solution. Finally
the bracket structure was included as an additional item in an existing benchmark.

Despite the approach is shown here to effectively be able to solve RBDO problems, it lacks of
one crucial quality. In fact, we did not mention the computational cost of the method. Crude
Monte Carlo sampling is indeed greedy in terms of functions evaluations. When the limit state
functions are expensive to evaluate, this issue becomes prohibitive for the approach. It is the
object of the next chapter to introduce techniques that will allow us to reduce the computational
cost of the method.

2.4 Conclusion

This chapter has set the general framework for structural design optimization. The traditional
deterministic viewpoint was first introduced. It was then argued why a deterministic design
suffers from serious drawbacks. This argumentation relies upon the notion of model error
and uncertainties which are inherent to any real-world problem. This naturally lead to the
introduction of different approaches to account for uncertainty in optimization i.e. robust and
reliability-based design optimization.

Despite robust design may serve as an interesting tool to reduce the sensitivity of a given de-
sign to randomness, it was argued that it is not the most suited to the problem we seek to solve.
In fact, for the lightweight design of automotive body structures, reliability-based design opti-
mization is the most appropriate approach since it allows us to account for the scatter in frontal
impact-related constraints. RBDO problems may in general be solved by various techniques.
The most widely-used ones were presented here.

In this thesis, we additionally introduce an approach which combines crude Monte Carlo sam-
pling and quantiles of the constraints. The methodology was validated on a few test cases.
However, its application to non-academic cases is seriously jeopardized by the high compu-
tational budget it requires. In general, this drawback is common to all simulation-based ap-
proaches. In fact, most of the applications in the literature rely on MPFP-based methods such
as FORM. However, it has been shown how inaccurate they may be. They might even fail to
converge for real industrial problems which are complex because of their dimensionality and
non-linearity, i.e. a set of features that is met in frontal impact simulations. To by-pass the cost
of simulation techniques, one method has been shown to be useful, namely surrogate model-
ing. Surrogate models are actually mathematical functions which can substitute the mechanical
model response and are cheaper to evaluate. In this thesis, we will consider combining surro-
gate models and the quantile-based approach for the lightweight design of automotive body
structures. The next chapter introduces the surrogate models that will be used to that end.
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3.1 Introduction

Historically there are two ways of thinking which are deductive (from the general to the particu-
lar) and inductive (from the particular to the general). The deductive approach is used in mod-
ern science to derive first-principle models to explain natural phenomena or a physical system
behavior. Such models stem from idealized mathematical formulations which are validated
afterwards through experimental observations. In opposition, the inductive approach makes
use of already available observations to infer general assumptions about a system behavior. In
the past few decades, the interest in learning from data has been growing because of the lack of
sound deductive models. This lack is mostly due to the complexity of the systems that are to
be described (e.g. meteorological phenomena). But most often, the growing interest in learning
from data can be attributed to the availability of data in increasingly large amounts thanks to
the fast development of recording tools and computational power. Identifying key features in
these data and exploiting them is now an economical asset.

The fields of application are various and range for example from financial engineering (pre-
dicting future prices in a stock market from past data), to business intelligence (using big data
to feed marketing strategies) and medical diagnosis. Notwithstanding this wide variety, the
developed learning techniques share the same conceptual framework (Cherkassky and Mulier,
2007).

This manuscript is concerned with the field of mechanical engineering, in a slightly different set-
ting. We consider that we have a modelM describing the physical behavior of a given system.
The model consists of a set of partial differential equations whose solutions are numerically
approximated by finite element codes. These codes have reached a high level of sophistica-
tion allowing them to be extremely accurate. However this increase of accuracy comes at the
expense of time efficiency. Computationally intensive studies like optimization, reliability or
sensitivity analyses are non affordable with such time-consuming models. In the framework
of learning from data, they may alternatively be substituted by easy-to-evaluate mathematical
functions known as surrogate models or metamodels. In the fashion of physical experiments, so-
called computer experiments are performed to gather the data necessary to build such surrogate
models.

In this chapter, we start by introducing the general concepts and notations associated to surro-
gate modeling. Then we introduce in two different sections the two metamodels types that will
be used throughout this manuscript, namely support vector machines and Kriging.

3.2 An introduction to computer experiments

3.2.1 Concepts and notations

In the computer experiments settings, we consider that the physical system is described by a
mapping x 7→ y = M (x), where x ∈ X ⊂ Rs is an s-dimensional input vector and y is the
system output. y may either span a continuous space or a set of discrete values. In the statis-
tical learning paradigm, the two cases respectively correspond to regression and classification
tasks, often grouped into supervised learning techniques. In contrast, only inputs are provided
in unsupervised learning. The goal is then to identify patterns such as clusters of points in the
input space or more generally density distributions (Hastie et al., 2001). In this thesis, both
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techniques will be used in various degrees but we are primarily concerned with the regression
problem.

Restricting our study to the case of scalar outputs, let us consider the following set of observa-
tions:

D = {(xi, yi) , i ∈ {1, . . . , n} , xi ∈ X ⊂ Rs, yi ∈ Y ⊂ R} . (3.1)

The outputs result from a deterministic mapping M (black-box function) with a fixed but un-
known density p (x, y). We are interested in estimating the dependency between the inputs
and outputs by learning over the limited set of observations D, also known as the design of
experiments. The idea is then to exploit this dependency to build up the metamodel, denoted
by M̂, which allows us to predict the response of the system at any new input point.

Formally, we search for a function f (x) in the hypothesis space of continuous functions S such
that the discrepancy between the prediction and the output of the true model is minimum.
Its quality is measured by a so-called loss function which is basically the penalty incurred for
predicting f (x) instead of y. More specifically, the expectation of the loss also known as risk
functional is minimized as follows:

f ∗ = arg min
f∈S

R ( f ) =
∫

X×Y
L (y, f (x)) p (x, y) dxdy, (3.2)

where L denotes a given loss function.

However, the probability density function p (x, y) is not known and the risk functional may
only be approximated over the discrete set of observations D. This leads to the so-called empir-
ical risk:

Remp ( f ) =
n

∑
i=1
L (yi, f (xi)) . (3.3)

Fitting a surrogate model by minimizing Eq. (3.3) is referred to as empirical risk minimization
(ERM) principle. It is an ill-posed problem. In fact, if the hypothesis space S is sufficiently rich,
one can find an infinite number of functions which perfectly fit the data, i.e. with Remp ( f ) = 0.
Such functions are not necessarily good at predicting over a new set of points. This pitfall is
known in the related literature as overfitting. According to the type of metamodels, various
strategies have been developed to bypass this difficulty e.g. regularization or complexity con-
trol as will be seen in the sequel.

3.2.2 Quality of a metamodel

Before reviewing different types of metamodels, let us introduce some metrics that will be used
throughout this manuscript to assess the quality of a given surrogate model.

Derived from the quadratic loss function for regression, one of the most widely-used error mea-
sures for surrogate models is the mean-square error (MSE) and its normalized version (NMSE):

MSE =
1
N

N

∑
i=1

( f (χi)− ŷi)
2 ,

NMSE =
∑N

i=1 ( f (χi)− ŷi)
2

∑N
i=1 (ȳ− ŷi)

2 ,

(3.4)
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where χi ∈ X are input points from a validation set of size N, ŷi are the corresponding predic-
tions by the metamodels and ȳ = 1/N ∑N

i=1 f (χi) is the mean of the true outputs.

Obviously for this error to be truly representative of the generalization ability of the metamodel,
the points in this validation set should not belong to the design of experiments. Usually one
creates a training set to fit the metamodel and a disjoint validation set to assess its quality.

In some cases, the cost of evaluating the true model is too high and one might not be willing
to create a separate validation set beside the design of experiments. It is possible to use re-
sampling techniques instead. That is, the design of experiments is randomly partitioned into
non-overlapping training and validation sets. There are many ways to re-sample, the most
exhaustive one requiring to consider all (k

n) combinations for k = {1, ..., n}. This is generally
known as cross-validation and is non-affordable, especially when n is high. A more practical
approach, the so-called k-fold cross validation, consists in splitting the dataset D into K subsets
D(i) of roughly equal sizes such that:

∪K
i=1 D(i) = D and D(i) ∩D(j) = ∅ ∀i, j = {1, . . . , K} , i 6= j. (3.5)

With this partitioning, one can train on D(−i) = ∪j 6=iD(j) and test on D(i) for all i = {1, . . . , K}.
This random partitioning may be repeated and the error averaged over different partitions.

Eventually, the leave-one-out (LOO) procedure is a special case of K-fold cross-validation where
K = n. The leave-one-out error is then defined by:

eloo =
1
n

n

∑
i=1

(
f (−i) (xi)− yi

)2
, (3.6)

where f (−i) denotes the metamodel built by removing the pair (xi, yi) from the training set.
Note that the LOO error is defined here with respect to the L2-norm. One may also consider an
LOO error with respect to the L1-norm.

There have been empirical studies aiming at choosing the best value of K for model validation.
Following the idea of Efron and Tibshirani (1993), Meckesheimer et al. (2002) have tried many
configurations with different metamodels. They conclude that the optimal choice depends
of the type of metamodel. They suggest K ≈ 0.1n or K ≈

√
N for Kriging and K = n for

polynomials and radial basis functions. Breiman and Spector (1992) suggest that for K-fold
cross-validation, K = 5 gives a less biased error measure than K = n. In fact, there is no
consensus for the best choice of K. Anyway, in this thesis the cross-validation procedure will
be used for model calibration rather than model validation. With this respect, the leave-one-out
procedure is the most appropriate choice because, for many metamodel types, there exits an
approximation of the LOO error as a byproduct of the model construction. As a matter of fact,
we will use an estimate of the LOO to calibrate the support vector machines in this manuscript.

3.2.3 A brief overview of existing methods

Before focusing on the two metamodels that are object of this work, let us review briefly the
existing ones.

The most widely known is probably the polynomial surface response (Box and Draper, 1986; Box
and Wilson, 1951; Kleijnen, 2007), where the approximation is viewed as a linear combination
of monomials. The coefficients of this expansion are fitted based on observed data so as to
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minimize the generalization error. They were first developed to fit physical experiments before
an extension to numerical experiments. The applications are mostly geared toward establishing
causes and effects relationships. Studies, such as screening which aims at identifying the more
important variables of a system, are largely based on polynomial surface responses (Goupy
and Creighton, 2006). However, the main drawback of such a model is that the produced
function is non local. Capturing local non-linearities requires higher order polynomials which
are expensive to train. Other more flexible metamodels are used for such applications.

Another widely used class of metamodels is artificial neural networks (ANN), first developed by
the neurologists McCulloch and Pitts (1988) after their preliminary work on frogs eyes (Lettvin
et al., 1959). The idea is to mimic the way a brain processes information to learn complex
problems and predict new situations. That is, an ANN is a set of so-called neurons (non-linear
functions) which process information from inputs to output when inter-connected in a given
architecture. Training a neural network involves two tasks. The first one consists in choosing
an appropriate architecture i.e. the number of hidden layers and nodes and the connection
scheme. This may be done either thanks to the user’s experience or by trial and error. Then
one has to adjust the weights parameters through minimization of a risk. The pitfall to avoid
here is the convergence to a local minimum or, most often overfitting. Besides, the behavior
of the ANN might sometimes be unpredictable because of its complexity, leading to erroneous
interpretations. Radial basis functions (RBF) networks are a particular and simpler case of ANN
introduced by Broomhead and Lowe (1988). As explicitly suggested by the name, they consist
of a linear combination of radially symmetric functions, mostly based on Euclidean distance
(φ̃ (x) = φ (‖x‖)). RBF networks are easier to train than ANNs. Thanks to their simplicity, they
are quite popular in industrial applications.

Coming from the stochastic mechanics field, Polynomial Chaos expansions have been used in a
probabilistic context as a metamodel (Ghanem and Spanos, 2003; Sudret, 2007). The approxi-
mation relies upon considering the output of a system as a random response which is a linear
combination of multivariate orthonormal polynomials in the input variables. The inputs here are
considered as random variables and there are families of polynomial corresponding to classical
probabilities distribution functions (e.g. Hermite polynomials for the Gaussian PDF or Legen-
dre polynomials for uniform PDF, etc). In the non-intrusive approach, which supported the fast
development of the method, many techniques can be applied to identify the deterministic coef-
ficients of the expansion (spectral projection, least-square regression or stochastic collocations
methods, see Blatman (2009) for further details). Recently, a metamodel, called PC-Kriging,
combining both Kriging and Polynomial chaos expansion has been proposed by Schöbi et al.
(2015); Schöbi and Sudret (2014). They have shown on a few examples, that its performance is
at least equal to the best of the two approaches.

In the present work, we are interested in metamodels which, beside generalization ability, will
allow us to consider the noise in the outputs. This means to somehow take into account un-
certainties in the data. Among the metamodels briefly introduced above, the PC expansions
are the only one dealing with uncertainties. However, despite they are particularly suited to
uncertainties propagation, they do not feature a tool to handle noisy outputs. Some other mod-
els, which are more suitable to the task, exist. More specifically, we will focus in this thesis on
support vector machines and Kriging. The former is particularly adapted to noisy observations
thanks to its insensitive zone as we will explain shortly. The latter, with its nugget effect may also
account for noisy outputs. Moreover, Kriging has a probabilistic framework which provides a
local error estimator very useful in our applications. This will be the object of the next chapter.
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3.3 Support vector machines

Support vector machines have been developed by Vapnik and its associate at AT&T Bells lab-
oratories in the late 1980s. Based on a sound theoretical framework, they were first developed
for classification problems. Later, a regression extension was proposed by the same authors.
Support vector machines have been used in many engineering applications. For instance, Os-
una et al. (1997) used support vector classification (SVC) for face detection. For the automotive
industry, Guo et al. (2012) proposed an algorithm for pedestrian detection based on SVC. As for
regression, applications on structural optimization under crashworthiness exist in the literature
(Pan et al., 2010; Zhu et al., 2012).

3.3.1 An introduction to the structural learning theory

3.3.1.1 From empirical to structural risk minimization

In the previous section, we explained that the empirical risk may be the practical substitute for
the unknown risk functional in model selection. For this to be possible, other conditions have
to be fulfilled (Vapnik, 1998). A crucial one is asymptotic consistency, meaning that the empirical
risk should converge toward the true and possibly minimal risk function when the sample size
grows. Besides, the rate of convergence of the empirical risk to the true one should be fast
and distribution-independent. These are quite abstract conditions and cannot be implemented
for learning problems. For practical purpose, the conditions must be explicitly expressed in
terms of properties of the set of approximating functions. This is done by introducing bounds
on the true risk which are functions of the empirical risk. To derive such bounds, Vapnik and
Chervonenkis (1971) introduced an index describing the complexity of a family of functions
named VC dimension.

In the sequel, we will define the VC dimension and the resulting bounds for classification
problems. Similar concepts and results exist for regression but to the author’s opinion, they are
conceptually easier to understand with classification.

In a nutshell, the VC dimension of a set of functions reflects its capacity to separate data into
two sets. More formally speaking, the VC dimension of a set of functions is the maximum
number of vectors h that can be separated in all 2h configurations by this set of functions. The
function is then said to shatter the data. As an example, let us consider the family of linear
indicators in a two-dimensional space with labels y ∈ {−1, 1}. Up to three points can be
shattered by linear functions in all 23 = 8 possibilities as shown in Figure 3.1. This cannot be
said of four points. For this example the VC dimension is hence equal to three. In general, it
has been shown that the VC dimension of hyperplanes in a s-dimensional space is s + 1.

This notion of VC dimension is used to derive bounds of the difference between the unknown
true risk and the empirical risk. The finiteness of the VC dimension for a set of functions
actually ensures its ability for generalization. As a matter of fact, Vapnik (1995) has shown that
with probability 1− η (η << 1), the risk for the function f ∗ which minimizes the empirical risk
satisfies the inequality:

R ( f ∗) < Remp ( f ∗) +
ε (n)

2

(
1 +

√
1 + 4Remp ( f ∗)

ε (n)

)
, (3.7)

where n is the number of training points, h the VC dimension, and ε (n) =
4h ln

( 2n
h + 1

)
− ln

( η
4

)

n
.
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y = {−1,−1,−1} y = {−1,−1,+1} y = {−1,+1,−1} y = {−1,+1,+1}

y = {+1,−1,+1} y = {+1,−1,+1} y = {+1,+1,−1} y = {+1,+1,+1}

Figure 3.1: VC dimension: How three points can be shattered in all eight configurations by a
set of lines in a two-dimensional space.

The second part of the right-hand side of Eq. (3.7) is called the confidence interval. With all other
parameters fixed, it monotonically decreases as the ratio n/h increases. That is, for relatively
large sample sizes, the empirical risk converges to the true risk and one can apply with enough
confidence the empirical risk minimization principle. However, when the number of training
points is small with respect to the VC dimension of the set of learning functions (i.e. n/h < 20),
the confidence interval cannot be ignored, otherwise overfitting may occur. The structural risk
minimization principle, developed by Vapnik, is in this respect a good alternative.

3.3.1.2 The structural risk minimization principle

In contrast to the ERM principle where the learning problem is addressed by minimizing the
empirical risk, the structural risk minimization (SRM) principle rather seeks to minimize an up-
per bound of the true risk, more specifically the right-hand side of Eq. (3.7). The aim is to find
a trade-off between the empirical risk minimization and the complexity of the set of functions
used for learning. Recall that if the hypothesis space is rich, that is, the set of functions has a
high degree of complexity or capacity, the minimizer of the empirical risk is not necessarily the
one of the true risk. On the other hand, if the hypothesis space is too restricted, one might not
find a function which truly approximates the system’s behavior. This is known as underfitting
as opposed to overfitting. The VC dimension has been developed to essentially capture this no-
tion of complexity. The idea of the SRM principle is to balance the empirical risk minimization
and the complexity of the set of functions. Its scheme is described as follows.

Let us introduce a structure of nested hypothesis spaces Shi with increasing VC dimension hi,
i.e. Sh1 ⊂ Sh2 ⊂ . . . ⊂ Shk . The strategy provided by the SRM principle is to a) select in each
hypothesis space the function that minimizes the empirical risk, b) find the confidence interval
of the true risk for the selected functions c) estimate the bounds of the true risk and d) select
the function from the structure with the lowest bound on the true risk. The idea is illustrated
in Figure 3.2.
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Empirical risk

Confidence interval
Bound on true risk

Error

hh∗h1 hk

Underfitting Overfitting

Figure 3.2: Illustration of the SRM principle: the best model is chosen as a trade-off between
the empirical risk and the optimal complexity of nested structures (Vapnik, 1998).

As an example, consider the family of polynomials of degree p. A nested structure as described
above can be constructed with such a family. Restricting the candidates to polynomial of low
orders, say p = {0, 1}, one might not find any polynom that approximates accurately the
actual model. On the contrary, if p is chosen too high, the resulting approximation may be too
complex and despite explaining perfectly the data, it will not be good at generalization. The
SRM principle suggests to find an optimal trade-off between the two aspects.

This principle has been a solid foundation for the implementation of new types of learning
machines, among which the support vector machines.

3.3.2 Support vector machines for classification

Support vector machines implement the structural risk minimization principle in a slightly
different scheme (Cherkassky and Mulier, 2007). The search is restricted to hyperplanes (not
necessarily in the input space as will be seen later). Within families of hyperplanes with equiv-
alent empirical risks, the optimal one is chosen as the one having the smallest VC dimension.
This is done by introducing so-called margin-based loss functions.

3.3.2.1 Classification of linearly separable data

In the context of classification, we are given a set of experiments D where the outputs can take
two values or labels, say yi ∈ {−1, 1} (for the less general case of binary classification). From this
finite set of data, we would like to define an indicator function or classifier which will allow us
to determine the class of a new input vector.

We first consider the case of linearly separable data (this assumption will be relaxed later). We
seek for the hyperplane that perfectly separates the data into the two classes with labels −1
and 1, respectively. There are infinitely many such hyperplanes. However, there is only one for
which the distance between the closest points to each class is maximal. This separator is called
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the optimal separating hyperplane and the distance between the two classes is the margin. This
idea is illustrated in Figure 3.3 for a two-dimensional case.

(a) Multiple separating lines

Optim
al

se
par

ati
ng hyper

plan
e

M
argin

(b) The optimal seprarating line

Figure 3.3: A simple linear classification example. Left: The classes of data are separated by
various lines. Right: The unique and optimal separating hyperplane is shown, together with
its margin.

Let us write the separating hyperplane as follows:

f (x) = 〈w, x〉+ b, (3.8)

where the coefficient w and the bias parameter b are to be set and 〈•, •〉 denotes the inner
product in X, i.e. the classical scalar product in Euclidean spaces.

For a separating hyperplane with a margin of width 2ρ, the following classification constraints
must be satisfied:

〈w, xi〉+ b ≥ +ρ if yi = +1,
〈w, xi〉+ b ≤ −ρ if yi = −1,

(3.9)

or in a more compact form,
yi (〈w, xi〉+ b) ≥ ρ. (3.10)

On the other hand, the distance of a point xi to an hyperplane defined by Eq. (3.8) reads:

d (xi, f ) =
|〈w, xi〉+ b|
‖w‖ . (3.11)

From Eq. (3.11), it turns out that maximizing the margin is equivalent to minimizing ‖w‖. By
rescaling the coefficients w and b so that Eq. (3.10) is represented in a canonical form, the SVM
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problem has the following form:

min
w

1
2
‖w‖2,

subject to yi (〈w, xi〉+ b)− 1 ≥ 0, i = {1, . . . , n} .
(3.12)

The solution of Eq. (3.12) with respect to the unknown parameters w and b allows one to define
the optimal separating hyperplane as a function of the training data only. As intended by the
support vector machines, the complexity of the separator is controlled by the margin. That is,
bigger margins reduce the flexibility of the separator and thus the possibility of correctly shat-
tering the points. For a rather formal insight, Vapnik (1995) has shown that the VC dimension
of a set of hyperplanes with a margin ρ is bounded:

h ≤ min
(

R2/ρ, s
)
+ 1, (3.13)

where R is the radius of the smallest hypersphere enclosing all the training points. This re-
lationship shows that the margin is inversely proportional to the VC dimension. Once again
maximizing the margin leads to decreasing the VC dimension and therefore the confidence
interval on the true risk.

Another important feature here is that the margin is independent of the dimensionality of the
problem. One can thus expect good generalization ability in high dimension (Bennett and
Campbell, 2000). However, solving Eq. (3.12) for high dimensional problems is hardly tractable.
Since it is a quadratic convex optimization problem with linear constraints, one can rather solve
its dual formulation by introducing Lagrange multipliers.

The Lagrangian therefore reads:

L (w, b; α) =
1
2
‖w‖2 −

n

∑
i=1

αi (yi (〈w, xi〉+ b)− 1) , (3.14)

where α = {αi ≥ 0, i = {1, . . . , n}} are the Lagrange multipliers.

The solution of the Lagrangian is given by its saddle point, i.e. the one that minimizes L with
respect to w and b and maximizes it with respect to α. Applying the optimality conditions of
Karush-Kuhn-Tucker translates into:





∂L
∂w

= w−
n

∑
i=1

αiyixi = 0,

∂L
∂b

=
n

∑
i=1

αiyi = 0.
(3.15)

To get the saddle point, the Lagrangian may be expressed in terms of α only by introducing
Eq. (3.15) in Eq. (3.14):

L (w, b; α) =
1
2
〈w, w〉 −

n

∑
i=1

αiyixiw− b
n

∑
i=1

αiyi +
n

∑
i=1

αi,

which ultimately leads to:

L (α) = −1
2

n

∑
i=1

n

∑
j=1

αiαjyiyj〈xi, xj〉+
n

∑
i=1

αi. (3.16)
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Eventually, the formulation of the dual optimization problem reads:

max
α

− 1
2

n

∑
i=1

n

∑
j=1

αiαjyiyj〈xi, xj〉+
n

∑
i=1

αi,

subject to
n

∑
i=1

αiyi = 0, αi ≥ 0, i = {1, . . . , n} .

(3.17)

Solving this equation gives the coefficients α of the SVM expansion. Besides, the Karush-Kuhn-
Tucker conditions state that any solution corresponding to non-zero Lagrange multipliers sat-
isfies the inequality of the primal problem with equality. That is,

ys (〈w, xs〉+ b− 1) = 0, ∀ {s = 1, . . . , n : αs 6= 0} . (3.18)

The value of b is henceforth given by:

b = ys −
n

∑
i=1

αiyi〈xi, xs〉, (3.19)

for any pair (xs, ys).

The optimal separating hyperplane may finally be recast as follows:

f (x) =
n

∑
i=1

αiyi〈xi, x〉+ b. (3.20)

An important feature of support vector machines is carried by the solution of the Lagrangian
problem. In fact, the data points (called ”vectors” here) whose Lagrange multipliers are non-
zeros lie on the margin as expressed in Eq. (3.18). Beside, they are the only vectors which
are actually meaningful in expressing Eq. (3.20). They are henceforth called support vectors.
In Figure 3.4, the support vectors corresponding to the example introduced in Figure 3.3 are
circled in black. Additionally, we have stressed another geometrical interpretation of the dual
problem. That is, the optimal separating hyperplane is the one that bisects the minimal distance
between the convex hulls of the two classes of data (Cherkassky and Mulier, 2007).

3.3.2.2 Classification of non-linearly separable data

Hard margin versus soft margin
In the section above, we have explained how to build the SVC model. We were in the simplest

case of linearly separable data. Such a model is referred to as hard margin classifier. However,
it may exist situations where this assumption no longer holds. It is henceforth necessary to
resort to the so-called soft margin classifier: one should consider points lying inside the margin
or in the wrong class. This is achieved by introducing the so-called slack variables and a penalty
function. The slack variables simply measure the deviation of a sample point from its class
(margin included). The optimization problem in Eq. (3.12) then becomes:

min
w

1
2
‖w‖2 + C

n

∑
i=1

ξi,

subject to: yi (〈w, xi〉+ b) ≥ 1− ξi, i = {1, . . . , n} ,

(3.21)
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|

|

Figure 3.4: Geometrical interpretation of the dual problem: The optimal separating hyperplane
bisects the shortest line between the two convex hulls of the data. The support vectors are
circled in black.

where ξi is the slack variable associated to the data pair (xi, yi) and C a penalty term trading
the margin maximization with the accepted misclassification error. Cortes and Vapnik (1995)
shows that the solution to this problem also exists and is unique for any training set. In fact,
the dual problem is similar to the one in Eq. (3.17) except that here the coefficients αi are upper-
bounded by C.

The feature space
So far we were interested in linear separators. Support vector machines also allow one to

specify non-linear boundaries. This is achieved by mapping the training points into a high
dimensional feature space where the data could be separated linearly, following the idea by Aiz-
erman et al. (1964). Figure 3.5 shows a naive yet representative illustration of the idea behind
the mapping into a higher dimensional space. In this example, we consider data separable by

a circle in a two-dimensional space. The mapping Φ : R2 → R3, (x1, x2) 7→
(

x1, x2,
√

x2
1 + x2

2

)

allows the data to be separated in the resulting three-dimensional space by a plane.

A drawback from a higher dimensional space is that the construction of the optimal separating
hyperplane would be much more complicated. The so-called kernel trick is used to bypass this
difficulty. Recall that the expansion of the SVM relies on the inner product in the input space.
Consequently, if xi is replaced by its image in the feature space Φ (xi), Eq. (3.20) shows that
the only information needed to construct the model is the inner product in the feature space
〈Φ (xi) , Φ (x)〉. It turns out that this computation may also be equivalently carried out by a
so-called kernel function. Thus, there is no need to carry out any direct operation in the feature
space or even to know an explicit form of the mapping.

Let us denote the kernel function as follows:

k
(
x, x′

)
= 〈Φ (x) , Φ

(
x′
)
〉. (3.22)
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(a) Input space (b) Feature space

Figure 3.5: Feature space: The data are separated by a circle in the input space and by the gray
hyperplane in the feature space

For a given kernel, the so-called Mercer’s conditions need to be fulfilled for the underlying map-
ping to exist (Cherkassky and Mulier, 2007). In fact, k (x, x′) is any function such that:

∫∫
k
(

x, x′
)

ϕ (x) ϕ
(
x′
)

dxdx′ ≥ 0, ∀ϕ 6= 0,
∫

ϕ2 (x)dx < ∞. (3.23)

Indeed any function satisfying Mercer’s conditions corresponds to an inner product in some
feature space. As it happens, many widely used functions fall into this category. Examples are:

• Polynomials: (〈x, x′〉+ d)p, where d ∈ R and p ∈N∗;

• Radial basis functions: exp
(
− ‖x−x′‖2

2l2

)
where l > 0 is a characteristic length scale;

• Neural networks: tanh (ν‖x− x′‖+ a) where ν > 0 and a ∈ R, etc.

With all the above mentioned topics, the general formulation of the SVM classifier for a new
point x reads:

f (x) =
n

∑
i=1

αiyik (xi, x) + b. (3.24)

The sign of f (x) gives the predicted class for x. Besides, if −1 ≤ f (x) ≤ 1, then x is inside the
margin.

3.3.3 Support vector machines for regression

For real-valued outputs, support vector regression implements the same concept beneath SVM
for classification. Repeating the same arguments, Vapnik came up with the so-called ε-insensitive
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loss function. Tuning the parameters of this loss function is actually equivalent to maximizing
the margin. In this section, we will go straight to the formulation of the soft-margin regression
problem since the derivations are exactly the same as for classification.

3.3.3.1 Formulation of the SVR problem

In the SVR problem, a regression is performed on the data based on some penalization. We
first start by describing the problem in the simplified case of linear regression. Generalization
to non-linear cases will be dealt with later. The concept of ε-insensitive loss is illustrated in
Figure 3.6 and states the following: As long as the difference between the actual and predicted
values for a given point is less than ε, the loss function is zero. Beyond this limit, the point
is penalized linearly. This is formulated as follows (Vapnik et al., 1997; Smola and Schölkopf,
2004):

Lε =

{
0 if | f (x)− y| < ε,

| f (x)− y| − ε otherwise.
(3.25)

y

x

•

•

•
•
•
• •

•
•
•

•

•
ε

ε

xj

yj

< w, xj > +b

ξ∗i
ξj

xi

Figure 3.6: Concept of support vector regression: Only the vectors outside the ε-insensitive
tube (gray-shaded area) are penalized (Smola and Schölkopf, 2004).

By similarity with classification, the SVR problem is formulated as follows:

min
w

1
2
‖w‖2 + C

n

∑
i=1

(ξi + ξ∗i ) ,

subject to yi − 〈w, xi〉 − b ≤ ε + ξi,
〈w, xi〉+ b− yi ≤ ε + ξ∗i ,
ξi, ξ∗i ≥ 0.

(3.26)

Adopting the margin-based structures as for classification, the capacity or complexity is equiv-
alently controlled by the insensitive tube width ε. From another perspective, the objective func-
tion of Eq. (3.26) may be regarded as a regularized risk functional where C is the regularization
constant (Evgeniou et al., 2000; Smola and Schölkopf, 2004).
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Once again, the solution of this problem is carried out in its dual form by introducing the
Lagrangian:

L (w, b, ξ, α, η) =
1
2
‖w‖2 + C

n

∑
i=1

(ξi + ξ∗i )−
n

∑
i=1

(ηiξi + η∗i ξ∗i )

−
n

∑
i=1

αi (ε + ξi − yi + 〈w, xi〉+ b)−
n

∑
i=1

α∗i (ε + ξ∗i + yi − 〈w, xi〉 − b) ,
(3.27)

where αi ≥ 0, α∗i ≥ 0, ηi ≥ 0 and η∗i ≥ 0 are Lagrange multipliers.

The KKT conditions lead to the following relations:




∂L
∂w

= w−
n

∑
i=1

αixi +
n

∑
i=1

α∗i xi = 0 ⇒ w = ∑n
i=1 (αi − α∗i ) xi,

∂L
∂b

= −
n

∑
i=1

αi +
n

∑
i=1

α∗i = 0 ⇒ ∑n
i=1 (αi − α∗i ) = 0,

∂L
∂ξi

= C− αi − ηi = 0 ⇒ ηi = C− αi,

∂L
∂ξ∗i

= C− α∗i − η∗i = 0 ⇒ η∗i = C− α∗i ,

(3.28)

By appropriately grouping the terms in Eq. (3.27) such that:

L (w, b, ξ, α, η) =
1
2
〈w, w〉 −

n

∑
i=1

(αi − α∗i ) 〈w, xi〉+
n

∑
i=1

(C− αi − ηi) ξi

+
n

∑
i=1

(C− α∗i − η∗i ) ξ∗i −
n

∑
i=1

(αi + α∗i ) ε +
n

∑
i=1

(αi − α∗i ) yi − b
n

∑
i=1

(αi − α∗i ) ,

and introducing the relations of Eq. (3.28), the Lagrangian can be recast as a function of α and
α∗ only:

L (α, α∗) = −1
2

n

∑
i=1

n

∑
j=1

(αi − α∗i )
(

αj − α∗j
)
〈xi, xj〉 −

n

∑
i=1

(αi + α∗i ) ε +
n

∑
i=1

(αi − α∗i ) yi. (3.29)

The solution to this optimization problem is given by the saddle point of the Lagrangian:

max
α,α∗

L (α, α∗) , subject to:
n

∑
i=1

(αi − α∗i ) = 0 and 0 ≤ αi, α∗i ≤ C. (3.30)

After Eq. (3.30) has been solved, the following expression gives the prediction for a new point:

f (x) = 〈w, x〉+ b =
n

∑
i=1

(αi − α∗i ) 〈xi, x〉+ b. (3.31)

The expression of b will be given in the sequel.

As a final step, we introduce the kernel function as the inner product in the high-dimensional
feature space to allow for non-linear regression. The prediction then reads:

f (x) = wT Φ (x) + b =
n

∑
i=1

(αi − α∗i ) k (xi, x) + b. (3.32)
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Some comments have to be made on the different configurations resulting from the solution of
Eq. (3.30) (Smola and Schölkopf, 2004). First, αi and α∗i cannot be simultaneously nonzero as
there is no point xi which could lie on both sides of the ε-tube. Second, the solution depends
only on points for which αi − α∗i 6= 0. Here again such points are called support vectors. Finally,
the two last relationships stemming from the KKT conditions in Eq. (3.28) imply that 0 ≤ α

(∗)
i ≤

C since η
(∗)
i ≥ 0, where •(∗)i refers to both •i and •∗i . The support vectors for which α

(∗)
i = C

are called bounded support vectors and those for which 0 < α
(∗)
i < C are called unbounded support

vectors. The former correspond only to the points lying strictly outside the ε-insensitive tube
(defined by the gray-shaded area in Figure 3.6) and the latter to those lying at the boundary of
the ε-insensitive tube.

The unbounded SVs are useful when it comes to computing the bias (Gunn, 1998). In fact for
those SVs, the slack variables vanish and the inequalities in the constraints of Eq. (3.26) become
equalities, leading to the following expression of b:

b = sign (αusv − α∗usv) ε + yusv −
n

∑
i=1

(αi − α∗i ) k (xi, xusv) , (3.33)

for any couple (xusv, yusv) corresponding to an unbounded support vector with coefficients α
(∗)
usv.

For a more robust value of b, this expression may be averaged over the entire set of unbounded
support vectors.

3.3.3.2 Implementation of the regression problem

The problem in Eq. (3.30) is a linearly constrained quadratic optimization problem. Let us
recast it so that it fits the nominal form of a classical quadratic programming (QP) problem:

min
αi ,α∗i

1
2

n

∑
i=1

n

∑
j=1

(αi − α∗i )
(

αj − α∗j
)

k
(
xi, xj

)
+

n

∑
i=1

(ε− yi) αi +
n

∑
i=1

(ε + yi) α∗i

subject to:
n

∑
i=1

(αi − α∗i ) = 0,

(3.34)

which in matricial form reads:

min
α,α∗

1
2

[
α
α∗

]T [ K −K
−K K

] [
α
α∗

]
+

[
ε− y
ε + y

]T [
α
α∗

]

subject to:
[

1
−1

]T [
α
α∗

]
=

[
0
0

]
, 0 ≤ α, α∗ ≤ C,

(3.35)

where K is an n× n matrix, known as the Gram matrix, whose components are kij = k
(
xi, xj

)
,

i, j = {1, . . . , n}.
As it is a quadratic convex optimization problem, the solution always exists. It is unique and
global. Besides, in this generic formulation many available algorithms are readily usable to
solve it. Smola and Schölkopf (2004) briefly review some known optimization packages and
algorithms. The major issue in the related literature is the size of the training set as the Gram
matrix K becomes too large to be computed and stored when n is large. This aspect is actually
rooted in the nature of SVM for classification where the problems often correspond to extremely
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large sets of data. To overcome this difficulty, decomposition methods were introduced (Chang
and Lin, 2011; Osuna et al., 1997) and have been also used for regression problems. These
methods mainly rely on the sparsity property of SVM (among the training data, only the SVs
are needed to construct the model). For the SVs are not known beforehand, one could rather
select a subset of points as the working set and solve optimization sub-problems. Then proceed
iteratively by adding or replacing new points in the working set so as to converge toward a
solution where the KKT conditions are met. An efficient algorithm which falls in this category is
the sequential minimal optimization (SMO) developed by Platt (1999). Here, the optimization
problem is reduced to only two variables at each step and the solution of each sub-problem is
analytically computed.

In this thesis, we are interested in building SVR as surrogate models for crashworthiness de-
sign. In this respect, the size of the training set is relatively small (since the computation of a
single training point is quite expensive). The sampling size is thus not a concern for us (up to
a certain point where the concerns shifts to the time required for model training). We will thus
favor more straightforward approaches. We therefore use an interior point algorithm (Vander-
bei, 1994) as Bompard (2011) did. Another asset of using such an algorithm is that the slack
variables ξ

(∗)
i and the bias b are by-products of the algorithm.

3.3.3.3 Other formulations of support vector regression

In the previous section, we presented the traditional formulation of SVR with the ε-insensitive
loss function. The penalization was linear with respect to the slack variables. Other SVR for-
mulations derived from different loss functions also exist. Two of them are now presented.

L2-SVR with the ε-insensitive loss function
L2-SVR implements the quadratic penalization of the ε-insensitive loss function. Accordingly,

the primal problem reads:

min
w

1
2
‖w‖2 + C

n

∑
i=1

(
ξ2

i + ξ∗2i
)

,

subject to yi − 〈w, xi〉 − b ≤ ε + ξi,
〈w, xi〉+ b− yi ≤ ε + ξ∗i ,
ξi, ξ∗i ≥ 0.

(3.36)

Following the same developments as for L1-SVR, the dual formulation of the problem is then
cast as:

min
α,α∗

1
2
(α− α∗)T K̃ (α− α∗) +

n

∑
i=1

(ε− yi) αi +
n

∑
i=1

(ε + yi) α∗i ,

subject to:
n

∑
i=1

(αi − α∗i ) = 0, αi, α∗i ≥ 0, i = {1, . . . , n} ,
(3.37)

where K̃ = K + (1/C) I and I the identity matrix of size n× n.

The L2-SVR problem differs from L1-SVR in two aspects related to the difference in the deriva-
tives of the Lagrangians with respect to the slack variables. First, the diagonal of Gram matrix
is modified by adding the inverse of the penalty term C. For high values of C, this operation
actually serves as a regularization of the Gram matrix making the QP problem easier to solve.
Second, the Lagrange multipliers α and α∗ are no longer upper-bounded by C.
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Quadratic loss function
The quadratic loss function simply writes:

Lquad = ( f (x)− y)2 . (3.38)

Following Gunn (1998), the associated dual optimization problems reads:

min
α

1
2

αTKα−
n

∑
i=1

yiαi +
1

2C

n

∑
i=1

α2
i ,

subject to:
n

∑
i=1

αi = 0, αi ≥ 0, i = {1, . . . , n} .
(3.39)

The interest of this formulation is that the optimization problem reduces to n unknown (instead
of 2n for the ε-insensitive loss function). In contrast there is no insensitive zone. All vectors are
therefore support vectors. The regression thus loses in robustness and sparsity, which might be
problematic in cases when the training data are noisy and of large size.

To be nearly exhaustive, we should also mention least square-support vector machines intro-
duced by Suykens and Vandewalle (1999) for classification and Saunders et al. (1998) for re-
gression. The idea is here to replace the inequalities constraints of the primal formulation by
target equalities. This results in a linear programming problem which is easier to solve. Some
applications of these ideas are given in de Brabanter (2011).

3.3.4 Model training in SVR

3.3.4.1 Overview of training techniques

It is widely accepted that the performance of a SVM largely relies on a good choice of the model
hyperparameters. For regression, these hyperparameters are:

• The regularization or penalty term C: It represents the trade-off between the complexity
of the model and the amount up to which errors are tolerated. When C is small, the model
is smooth with a wide acceptance of errors whereas a too large C results in focusing on
the minimization of the empirical risk;

• The insensitivity parameter ε: It represents the amount up to which deviations from the
target value are tolerated. It scales with the number of support vectors (the wider the less
support vectors) and can be seen in this sense as a parameter affecting the complexity of
the model;

• Kernel parameter: The choice of an appropriate kernel depends on the practitioner ex-
perience and the type of problem considered. In this thesis, we will essentially consider
radial basis kernels as they have proven to be efficient. In this case, the parameter to cal-
ibrate is the characteristic length scale l which somehow represents the radius of influence
of one vector to its neighborhood.

There are a number of heuristics suggested by various authors that may be used to wisely select
the parameters a priori given a set of observations. We will refer to them as manual selection.
On the other hand, automatic selection may be used to thoroughly search for the optimal values
of the parameters in their entire definition space.
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Manual selection
For the selection of the penalty term, Mattera and Haykin (1999) suggests, under the assump-

tion that ε and l are somehow known, that a good choice of C can be the range of the outputs.
This value is however sensitive to outliers in the data and may hence not truly represent the
range of the outputs in the true model. Cherkassky and Ma (2004) came up with the following
more robust representation:

C = max
(∣∣∣ȳ + 3s∗y

∣∣∣ ,
∣∣∣ȳ− 3s∗y

∣∣∣
)

, (3.40)

where ȳ and s∗y are respectively the mean and standard deviation of the training data outputs.

As for the insensitive tube width selection, Kwok (2001) first considers that the outputs are
actually a sum of a mean value and an independent noise ζ. He then shows that there is a
linear dependency between ε and the level of noise in the output. He consequently sets a
relationship between ε and the noise variance σ2

ζ for different distributions, namely Gaussian,

Laplacian and uniform. For instance, with a Gaussian noise defined by ζ ∼ N
(

0, σ2
ζ

)
, the

optimal value of ε said to be 1.0043σζ . However the distribution of noise in usual applications
is not known. Taking a fully different perspective, Smola and Schölkopf (2004) argue that there
is anyway no need to use the ε-insensitive loss function if the distribution of the noise is known:
the maximum likelihood loss function is likely to be more efficient.

Automatic selection
For an automatic selection, we look for the best model w.r.t. some generalization error. For

reasons explained in section 3.2.2, the search is usually based on the leave-one-out error. That
is, we search for the model parameters which minimize the LOO error. To automatically tune
the parameters in this perspective, some techniques may be used:

• A simple yet practical method is the grid search. In grid searching, the parameter space
is bounded and discretized. The model is then built with all possible combinations from
the resulting grid. The one with the lowest error is selected as the final model. It leads
to rather good results but suffers of two main drawbacks. First, the user should know a
priori some bounds of the parameters to avoid costly search in useless regions. Second,
the solution depends too much on the fineness of the discretization: the finer the grid, the
more accurate the solution. However, too fine a grid is time-consuming.

• Another approach is to use global optimization algorithms to find the best model. As
shown in Bompard (2011), the testing error is multimodal in the parameters space. Local
optimization algorithms are therefore inefficient and one may only use global ones. Chen
and Wang (2007) implemented SVR for tourism demand forecasting using a genetic algo-
rithm for parameters selection. Momma and Bennett (2002) implemented a method based
on the pattern search algorithm to tune the parameters for their application in drug de-
sign. In this manuscript we rely on the cross-entropy method, a random search technique
well fitted to solve multi-extremal optimization problems (Hu and Hu, 2009; Kroese et al.,
2006; Boer et al., 2004).

The techniques as presented above rely on the actual computation of the LOO error. This
means that for a given set of parameters, the number of SVR trainings is equal to the number
of training points. Considered in an iterative scheme, the computation of the LOO becomes too
expensive. In the past few years, many researchers have developed bounds on the LOO error
which are cheaper to compute. We will focus on this approach in the next section.
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3.3.4.2 Approximation of the leave-one-out error

As mentioned earlier, the development of support vector machines is based on sound theoret-
ical analysis of the generalization error. This includes several works on defining approxima-
tions and bounds on the generalization errors. More specifically the leave-one-out error, which
is well suited to problems where the training set size is relatively small, gives an almost unbi-
ased estimation of the generalization error. In classification, such bounds include for example a
very loose one based on the count of support vectors (Vapnik, 1995) or the radius-margin bound
based on the radius of the smallest hypersphere enclosing all the training vectors in the feature
space. More recently, Vapnik and Chapelle (2000) have developed a tighter bound based on
the notion of span of support vectors. Chang and Lin (2005) have extended these bounds for re-
gression problems. In this manuscript, we will adopt the latter span bound estimate for both
regression and classification.

Let us first introduce the following set of points in the feature space, for any p = {1, . . . , n}:

Λp =



∑
I−p

usv

λiΦ (xi) : λi ∈ R ∀i ∈ I−p
usv ∑

i∈I−p
usv

λi = 1



 , (3.41)

where Iusv = {i ∈ {1, . . . , n} : 0 < αi + α∗i < C} denotes the set of unbounded support vectors
and I−p

usv = Iusv \ {p} ∀p ∈ {1, . . . , n}.
The span of the support vector xp is defined as its distance to Λp and reads:

S2
p = d2 (Φ

(
xp
)

, Λp
)
= min

λi∈R,i∈I−p
usv

‖Φ
(
xp
)
− ∑

i∈I−p
usv

λiΦ (xi)‖2, s.t.: ∑
i∈I−p

usv

λi = 1. (3.42)

Based on this span, Chang and Lin (2005) have derived approximations of the leave-one-out
error. That is, under the assumption that the set of support vectors remains the same during
the leave-one-out procedure, the following equation gives an accurate approximation of the
LOO error for L1-SVR:

êloo =
1
n

(
n

∑
p=1

(
αp + α∗p

)
S2

p +
n

∑
p=1

(
ξp + ξ∗p

))
+ ε, (3.43)

where α(∗) and ξ(∗) are solutions of Eq. (3.35).

With Eq. (3.43), one is able to estimate the leave-one-out error without proceeding to its actual
computation. One would however need to solve the optimization problem in Eq. (3.42) for any
p = {1, . . . , n}. Hopefully, this task can be further simplified (Chapelle, 2002). For doing so, let
us first re-order the support vectors so that the unbounded ones are indexed by {1, . . . , nusv}
and introduce a Lagrange multiplier µ to enforce the constraint ∑i∈I−p

usv
λi = 1. In the feature

space, the optimization problem in Eq. (3.42) may be recast as:

S2
p = min

λ
max

µ





Φ

(
xp
)
− ∑

i∈I−p
usv

λiΦ (xi)




2

+ 2µ


 ∑

i∈I−p
usv

λi − 1





 ,
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which after expansion gives:

S2
p = min

λ
max

µ


〈Φ

(
xp
)

, Φ
(

xp
)
〉+ ∑

i∈I−p
usv

(λiΦ (xi))
2 − 2 ∑

i∈I−p
usv

λi
(
〈Φ
(
xp
)

, Φ (xi)〉 − µ
)
− 2µ


 .

(3.44)
Let now Kusv be the nusv × nusv matrix of the dot products in the feature space between the
unbounded support vectors, i.e.

Kusv =
[
k
(

xi, xj
)]

i,j∈Iusv
and nusv = Card (Iusv) .

The following matricial notation is introduced:

K̃usv =

[
Kusv 1
1T 0

]
and λ̃ =

[
λ
µ

]
, (3.45)

where λ = (λi)i∈Iusv
. Eq. (3.44) then rewrites:

S2
p = min

λ
max

µ

[
k
(
xp, xp

)
+ λ̃T Hpλ̃− 2ṽT

p λ̃
]

, (3.46)

where ṽp is the p-th column of Kusv and Hp =

[
K−p

usv 1
1T 0

]
, with Kusv =

[
k
(
xi, xj

)]
i,j∈I−p

usv
.

By requiring the gradient of Eq. (3.46) with respect to λ to be zero, one can get the expression
of λ̃ as follows:

∂S2
p

∂λ
= 2Hpλ̃− 2ṽp,

which implies:
λ̃ = H−1

p ṽp. (3.47)

By injecting Eq. (3.47) into Eq. (3.46), the expression of S2
p boils down to:

S2
p = k

(
xp, xp

)
− ṽT

p H−1
p ṽp. (3.48)

At this point, it is possible to further simplify this expression. However it depends of the
category to which the vector xp belongs:

• xp is not a support vector (αp = 0)

In this case, removing the point from the training set would not change the SVR model. There
is hence no need to even compute the span. The LOO error is zero.

xp is an unbounded support vector (0 < αp < C)

In this case, a further simplification is possible by introducing the so-called Woodbury formula
(Lütkepohl, 1996) which reads:

[
A1 AT

A A2

]−1

=

[
B1 BT

B B2

]
, (3.49)
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where B1 =
(

A1 − AA−1
2 AT

)−1
, B and B2 are matrices of appropriate sizes.

This formula, applied to Eq. (3.48) with A1 = k
(
xp, xp

)
, A = ṽp and A2 = Hp, leads to the

following expression of the span:

S2
p =

1(
K̃−1

usv

)
pp

. (3.50)

The last equality is due to the fact that the left-hand side of Eq. (3.49) is equal to Kusv with its
p-th row and column reordered.

• xp is a bounded support vector (αp = C)

In this case the simplification brought by the Woodbury formula is no more possible. However,
we can point out that Hp = K̃usv since K̃usv = Kusv. The expression of the span is therefore the
following:

S2
p = k

(
xp, xp

)
− ṽT

p K−1
usvṽp. (3.51)

To sum this up, an approximation of the leave-one-out error can be computed as a by-product
of the model construction following Eq. (3.43). The only additional computation required is the
inversion of the matrix K̃usv of size (nusv + 1)× (nusv + 1) while computing the span estimates
from Eq. (3.50) and (3.51).

To be exhaustive, we should also point out that the same developments have been made by
Chang and Lin (2005) for L2-SVR as well. The resulting approximation reads:

êloo =
1
n

(
n

∑
p=1

(
αp + α∗p

)
S2

p

)
+ ε, (3.52)

where α(∗) is solution of Eq. (3.37) and S2
p is computed this time by considering the span of all

support vectors (i.e. {i : αi + α∗i > 0}), not the only unbounded ones.

Finally, for classification, the LOO errors are also computed in the same way, see for example
Chapelle et al. (2002).

3.3.5 An illustration of support vector regression

In this section, we illustrate the outcomes of parameters identification in different settings for
support vector regression. The target function is one-dimensional and reads:

M (x) = 4x2 (x2 − 1
)
− 0.5x2 + 1, (3.53)

where x is defined in X = [−1, 1].

For now, we disregard the matter of selecting the most adequate design of experiments. The
dataset therefore consists of eight points evenly distributed over X. Gaussian kernel is consid-
ered by default.
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3.3.5.1 Manual selection

Let us start by a manual choice of the parameters. Four cases are investigated as described
in Table 3.1. Case #1 is the closest to the heuristics introduced above. That is, C is set equal
to the range of the outputs and l the average distance between the input points. As for ε, we
could not use the suggestion of Kwok (2001) as our data are generated noise-free. We therefore
arbitrarily set it as roughly 1% of the output range. In cases #2, #3 and #4, the three parameters
are dramatically altered one-by-one. The idea is to highlight the effect of each parameter in the
model.

Table 3.1: Random choice of the SVR parameters

Parameter Case #1 Case #2 Case #3 Case #4
C 1.2 0.12 1.2 1.2
l 0.2 0.2 0.02 0.2
ε 0.05 0.05 0.05 0.25

Figure 3.7 illustrates the resulting models. The setting of case #1 results in a rather good model.
All the points are unbounded support vectors as they belong to the boundary of the insensitive
tube. In case #2, C is divided by ten. This produces a ”flatter” model than the one in case #1.
This makes sense as the emphasis is shifted from the empirical risk to the regularization term.
In case #3, l is made ten times smaller than in case #1 whereas C takes on its original value. The
approximation is now almost interpolating (with respect to the ε-insensitive tube) with high
variations near the sampling point. The regression considers each point independently as their
radius of influence is significantly reduced. Finally in case #4, the ε-tube is made wider. The
number of SVs is thus halved. This parameter actually controls the amount of support vectors
among the training points.

3.3.5.2 Automatic selection

Comparison of the true and estimated leave-one-out errors
We have explained earlier how to compute an estimate of the leave-one-out error. In this

section, we compare it with its true value, i.e. to the one obtained from a real leave-one-out
resampling.

For this purpose, we start by exploring the dependence of the LOO errors to the parameters
C and l while ε = 0.05 is held constant. The ranges of variation of C and l are set wide and
shown in a log10 scale. Figure 3.8 shows the true and estimated values of the LOO error for
both L1- and L2-SVR. As expected, the estimated error is quite close the true one. We have the
same trend when considering the two other pairs of parameters ((C, ε) and (l, ε)). There are
interesting properties that can be extracted from these figures. Despite a good accuracy, the es-
timated error exhibits some noise. The magnitude of the noise depends on many factors. First,
the noise exists only in some regions of the space. Often, but not always, the approximation re-
mains smooth for high values of C and small values of ε. Coincidentally, it is the region where
the LOO error is minimal. Secondly, the noise is more important for L1-SVR than for L2-SVR.
The explanation for this fact lies in the very computation of the span estimate. Recall that, the
computation of the span of a vector depends on the category it belongs to. The difficulty arises
in the discrimination of the bounded and unbounded SVs. In fact, we never have α(∗) = C in

77



3. METAMODELING TECHNIQUES

−1 −0.5 0 0.5 1

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

x

y

 

 

True function
SVR approximation
Training points
Support Vectors

(a) Case #1: C = 1.2, l = 0.2, ε = 0.05
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(b) Case #2: C = 0.12, l = 0.2, ε = 0.05
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(c) Case #3: C = 1.2, l = 0.02, ε = 0.05
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(d) Case #4: C = 1.2, l = 0.2, ε = 0.25

Figure 3.7: SVR models with different set of hyperparameters. The blue triangles are the train-
ing points. Among them, the support vectors are circled in cyan. The plain and dotted lines
are respectively the true function and SVR approximations.

a numerical implementation but rather
∣∣∣α(∗) − C

∣∣∣ very small for bounded SVs. Chapelle (2002)

decides that a SV is bounded when
∣∣∣α(∗) − C

∣∣∣ ≤ 10−6 max α(∗). In our experience the inversion
of K is less difficult when we have few bounded SVs. We then set an arbitrarily very low thresh-
old (in the magnitude of 10−12). For L2-SVR, all support vectors are considered. There is no
discrimination between the two kinds of SVs. This results in an easily invertible matrix K and
therefore to a smoother LOO error for L2-SVRs.

Minimizing the span estimate of leave-one-out error
As illustrated above, the estimate of the LOO error is a noisy function. In order to optimize it,

Vapnik and Chapelle (2000) smoothed it by introducing a regularization term in the expression
of S2

p. This allowed them to consider gradient-based algorithms to find the optimal value of

78



3.3. Support vector machines

−2

0

2

4

6

8

10

−2

−1

0

1

2

0

0.5

1

1.5

 

log10(C)
log10(l)

 

e
L
O
O

0

0.5

1

1.5

(a) L1-SVR: True leave-one-out error
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(b) L1-SVR: Estimated leave-one-out error
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(c) L2-SVR: True leave-one-out error
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(d) L2-SVR: Estimated leave-one-out error

Figure 3.8: Comparison of the true and estimated LOO errors.

the model parameters. Chang and Lin (2005) used the same trick in LIBSVM (Chang and Lin,
2011). In this thesis, we have opted for a first-order optimization method. Many authors have
considered such algorithms, e.g. simulated annealing as in Pai and Hong (2006); Lin et al.
(2008) or particle swarm optimization as in Lin et al. (2008). Here, we specifically use the
cross-entropy-based optimizer, a stochastic global optimization algorithm well suited for noisy
multi-extremal problems (Bourinet, 2015). It is hence not crucial to smooth the error estimates
to be minimized.

The cross-entropy method is a random search technique developed by Rubinstein (1997). It
copes with multi-extremal or non-convex objective functions. It is also robust with noisy func-
tions and therefore well suited for the span estimate of the LOO. It proceeds by generating a
random sequence of solutions which are steered toward the optimal or near-optimal solution.
Typically, the samples are generated by a random mechanism, say a probability distribution
function of given parameters. General details of the method can be found in Hu and Hu (2009),
Kroese et al. (2006) or Boer et al. (2004).
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In our case, we explore the parameter space by sampling candidates through a truncated nor-
mal distribution. At each iteration, a percentage of the best candidates are selected and the
parameters of the normal PDF are updated accordingly: the mean and standard deviation of
the best samples are used to generate the next candidates. Practically, the following steps are
implemented:

1. Define the initial PDF by its mean µ0 and standard deviation σ0. Set i = 1;

2. Generate a sample of N points following N
(
µi−1, σ2

i−1

)
;

3. Generate N SVR models with parameters corresponding to the N sampled candidates
and evaluate theirs span estimates of the LOO error.

4. Select the best Nel candidates with respect to the LOO error minimization;

5. Compute the mean µ̃i and standard deviation σ̃i of these points;

6. Update the PDF parameters according to the following scheme:

µi = αµ̃i + (1− α) pbest,
σi = βiσ̃i + (1− βi)σi−1,

(3.54)

where α and βi = β + β (1− 1/i)q are smoothing parameters and pbest is the vector gath-
ering the parameters that produced the best model so far;

7. Stop when max σ ≤ δCE , otherwise update i and restart the steps 2 to 6.

There are a few parameters to tune. The range of the search space is set quite large. The
starting point is chosen as its center. Its associated standard deviation is equal to twice the
range in each direction. The smoothing parameters are chosen dynamic for σ. This is intended
to help us avoid premature convergence to a local minimum. We set α = β = 0.4 and q = 10.
The number of points sampled in each iteration depends on the difficulty of the optimization
problem. The higher it is the more robust the algorithm. However, when the design size is
large, the cost of constructing the model is relatively important. So we capped N to 300 for
high-dimensional problems. Of course, for smooth functions, we can afford a smaller size of N.
Finally for the next iteration, we usually take Nel = 0.05N.

As an application, we use this procedure to select the parameters of the model to approximate
the function used throughout this section. Figure 3.9 illustrates the results for L2-SVR. The
surrogate model perfectly matches the true function. The insensitive tube is almost zero and
all data points are support vectors. In Table 3.2, we compare the results produced by the man-
ual and the cross-entropy based selections. As it will be the case in all the applications in this
manuscript the value of C is extremely high, much higher than the suggestion of various heuris-
tics proposed. Conversely ε tends to zero. This will also be the case anytime the space is not
densely sampled. The value ε does scale with the level of noise in the data, yet for this noise to
be detectable by the model, a high density of points in the design space is required.
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Figure 3.9: L2-SVR model with parameters set up by cross-entropy search

Table 3.2: Heuristics versus cross-entropy based selection of the parameters

Selection Model C l ε NMSE êloo

Heuristics
L1-SVR 1.2445 0.2857 0.01 0.0386 0.4543
L2-SVR 1.2445 0.2857 0.01 0.0490 0.4910

Cross-entropy method
L1-SVR 1.67 107 1.9729 1.07 10−7 8.63 10−8 0.0041
L2-SVR 3.03 1013 1.9719 5.53 10−8 8.70 10−8 0.0042
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3.4 Kriging or Gaussian process modeling

The early ideas on Gaussian process modeling have been developed in the 1950s by the South-
African mining engineer Danie G. Krige in his master thesis (Krige, 1951). His work was moti-
vated by the need to map ores concentrations in the Witwatersrand soils. The resulting predic-
tion methodology has later been formalized by the French Georges Matheron (Matheron, 1962)
who named it Kriging as a tribute to Krige.

Let us recall the set of observations introduced in the previous section D = {(xi, yi) , i ∈
{1, . . . , n} , ∀xi ∈ X ⊂ Rs, yi ∈ Y ⊂ R}. In geostatistics, the inputs xi are considered to be spa-
tial coordinates and the outputs yi are for example concentration values. The main idea is
then to assume spatial correlations between the outputs. Indeed for ore mining, near locations
are more likely to have similar concentration values. This spatial dependency is essentially
characterized by the so-called variogram. Another main concept is to consider the output as a
realization of an unknown stochastic process Y as will be explained in the remainder of this
section.

This approach was limited to two or three dimensional problems. It has later been adapted to
computer experiments by Sacks et al. (1989). In this context, the inputs are no longer restricted
to spatial coordinates but may be high-dimensional parameters.

3.4.1 Introduction to Gaussian random functions

We have introduced in Chapter 2 some elements of probability theory. We now extend the list
to an additional element which is the root for inference in Kriging, namely a stochastic process.
It is defined as a set {Y (x) | x ∈ X} of random variables. Formally speaking, it writes as the
following mapping (Dubourg, 2011):

Y (x) : X×Ω→ Y

(x, ω) 7→ y (x) ,
(3.55)

where Ω is the sample space introduced in section 2.1.3.2, y (x) = Y (x, ω) is a realization or
sample path of the random process for a particular value ω, say ω = ω0. Conversely, for a
particular value of x, say x = x0, Y (x0, ω) is a random variable over the probability space
(Ω,F ,P).
The above definition is quite general. For the purpose of Kriging, we are particularly interested
in Gaussian stochastic processes and this, for two reasons (Cressie, 1993). The first one is prag-
matic as inference and prediction are clearly easier to develop analytically using the Gaussian
assumption. The second is related to the central limit theorem which allows us to expect that
the combination of small non-Gaussian effects will asymptotically tend to a Gaussian distri-
bution. In this light, a stochastic process is said Gaussian if for any subset {x1, . . . , xn}, the
vector {Y (x1) , . . . , Y (xn)} has a multivariate normal distribution (Santner et al., 2003). Such a
process is entirely determined by its mean and covariance functions:

µ (x) ≡ E [Y (x)] for x ∈ X

C(x, x′) ≡ Cov
[
Y (x) , Y

(
x′
)]

for x, x′ ∈ X,
(3.56)

There are many restricting assumptions that have to be made for inference using Gaussian
random processes to be possible. Defining such assumptions is beyond the scope of this
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manuscript (see e.g. Adler (1981); Cressie (1993)). We will however comment some desired
relevant properties.

Without getting too much into details, one property of prime importance required for inference
from a single stochastic process to be possible is ergodicity. In fact, recall that we are only given a
set of observations Y = {y1 = y (x1) , . . . , yn = y (xn)} which are considered to be realizations
for a particular value of ω0 ∈ Ω. We thus have only partial information on the process Y. For
inference to be possible despite this limited knowledge of Y, the function needs to exhibit some
regularity over X. It turns out that this characteristics is guaranteed by the ergodicity property.
Furthermore an ergodic random function is a subset of a class of widely used processes, namely
the stationary one. A process is said to be stationary if its properties are invariant by translation.
That is, its mean is constant and its covariance only depends on the shift τ = x− x′:

µ (x) = µ0, x ∈ X

Cov
[
Y (x) , Y

(
x′
)]

= C
(
x− x′

)
= C (τ) , x, x′ ∈ X.

(3.57)

One of the advantages of using Gaussian random functions is that it allows for an easily veri-
fiable sufficient condition for ergodicity. In fact any second-order stationary process is ergodic
if C (τ) = 0 as τ → ∞ (Cressie (1993) following Blum and Reich (1982)). This crucial prop-
erty makes inference from a single sample path valid. Therefore, expectations over Ω can be
estimated by spatial averages.

3.4.2 The two-stage model

3.4.2.1 The different types of Kriging

To learn from a limited set of samples, Kriging catches two levels of variability, namely global
and local. The underlying model is considered to be a realization of a stochastic process which
reads:

Y (x) = µ (x) + Z (x) , (3.58)

where µ (x) is a deterministic function approximating the mean trend of the model and Z (x) is
a second-order stationary Gaussian process with zero mean and autocovariance Cov [Z (x) , Z (x′)]
= σ2R (x− x′). Here we have introduced the process variance σ2 = C(0) and the so-called auto-
correlation function R that provides the dependency properties.

This representation is known as a two-stage Gaussian prior model. The first stage gives the
large scale variability of the model and may consist of linear combinations of a functional basis.
The second one accounts for short scale variability. This allows a greater flexibility in the class
of possible learning functions while keeping the advantages, in term of theoretical simplifica-
tions provided by stationarity. In fact, Y is not stationary but Z is.

The nature of the deterministic part gives rise to various types of Kriging:

• Simple Kriging: The deterministic part is supposed to be known and constant;

• Ordinary Kriging: The deterministic part is supposed to be constant but is unknown. It
is usually considered as the mean value of the observations;

• Universal Kriging: The deterministic part depends on x and is cast as a linear combina-
tion of basis functions:

µ (x) =
p

∑
j=1

β j f j (x) , (3.59)
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where β =
{

β j, j = 1, . . . , p
}

is a weight vector and f =
{

f j, j = 1, . . . , p
}

is a collection
of regression functions.

In the sequel, we make all the developments with the universal Kriging as it is the most general
case. But in practice, we mostly use ordinary Kriging. Two main reasons justify this choice.
First, the choice of the functional basis is not obvious. One has to make assumptions about the
underlying model. We will readily use such assumptions when available, say from an expert
knowledge. Yet in general, we do not have any information about the trend and it is preferable
to stick to ordinary Kriging. Second, the number of functions p in the regression basis is quite
important as it conditions the number of points required in the training set. Indeed to estimate
the regression weights, the number of observations n should be at least equal to p. For example,
a second-order polynomial (with interactions) in an s-dimensional space would require n ≥
p = 1

2 (s + 1) (s + 2). We are therefore limited in the choice of the functional basis due to limits
imposed on the sample size.

On the other hand, the departure from the mean trend is caught by the zero-mean process Z,
which is entirely determined by its covariance function. Alternatively, it may be more conve-
niently defined by the auto-correlation function R:

R (τ) =
1
σ2 C (τ) , for τ = x− x′ and x, x′ ∈ X, (3.60)

where σ2 = C (0) > 0 is the variance of the process.

In this respect, the first step in learning with Kriging is the choice of the deterministic trend
and the autocorrelation function. We now review some widely used autocorrelation functions.
Before this, let us start by briefly describing which properties are needed for a given autocorre-
lation to be valid.

3.4.2.2 Auto-correlation functions for Kriging

Admissible correlation functions
The first requirement for a covariance or correlation function is symmetry. Indeed , for a

stationary Gaussian stochastic process (GSP), we have Cov [Y (x) , Y (x′)] = Cov [Y (x′) , Y (x)]
and henceforth the symmetry about the origin:

C (τ) = C (−τ) and R (τ) = R (−τ) . (3.61)

Besides, admissible auto-covariance functions must be non-strictly positive definite. That is, for
any subset X = {x1, . . . , xn} and any vector w = {w1, . . . , wn} ∈ Rn, the following inequality
holds:

n

∑
i=1

n

∑
j=1

wiwj C
(
xi, xj

)
≥ 0. (3.62)

Eventually, we introduce the properties relating to the average behavior of the sample paths,
more specifically the mean-square continuity. Following Santner et al. (2003), a stationary process
Z with finite second moments is said to be mean-square continuous on x0 ∈ X if

lim
x→x0

E
[
(Z (x)− Z (x0))

2
]
= 0. (3.63)
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This expectation may be written in terms of the covariance function:

E
[
(Z (x)− Z (x0))

2
]
= 2 (C (0)− C (x− x0)) . (3.64)

So Z is mean-square continuous on X if C (h) → C (0) = σ2 as h → 0. In terms of auto-
correlation function, the MS continuity condition reads:

R (τ) =
1
σ2 C (τ)→ 1 as τ → 0. (3.65)

This property provides a way of generating valid covariance functions using spectral distribu-
tions (see Santner et al. (2003) for some examples). Next we review some widely used ones as
described in Rasmussen and Williams (2006) for instance.

3.4.2.3 Sample path properties

Examples of auto-correlation functions
The sample paths generated for a given process are highly affected by the choice of the

auto-correlation function. These properties can be controlled by some parameters of the auto-
correlation functions. Let us gather them in the vector θ so that R (x, x′) ≡ R (x− x′; θ).

For mathematical convenience, the study is usually restricted to the case of auto-correlation
functions which write as a product of univariate ones:

R
(
x, x′; θ

)
= R

(
x− x′; θ

)
=

s

∏
i=1

R
(
xi − x′i ; θi

)
. (3.66)

Another important property of an auto-correlation function is its differentiability at the origin
(i.e. when x → x′). This property actually controls the smoothness of the generated process.
Hence, this information should be taken into account while choosing the appropriate family of
auto-correlation functions, according to the designer experience of the function to approximate.

Let us now introduce examples of widely used auto-correlation functions (Rasmussen and
Williams, 2006; Koehler and Owen, 1996). For the sake of simplicity, we consider one-dimensional
cases knowing that the multi-dimensional extension can be formulated following Eq. (3.66).

• Linear

R
(

x, x′; l
)
= max

(
0, 1− |x− x′|

l

)
, (3.67)

where l > 0 is the so-called characteristic length-scale.

• Generalized exponential

R
(

x, x′; θ
)
= exp

(
−
(

x− x′

l

)γ)
for 0 < γ ≤ 2 and l > 0, (3.68)

where θ = {l, γ}. There the parameter γ directly controls the degree of smoothness of the
associated process. The higher the value, the smoother the sample path. There are two
widely used cases. When γ = 1, we have the exponential auto-correlation function pro-
ducing the so-called Orstein-Uhlenbeck process. The other remarkable case is when γ = 2,
which corresponds to the Gaussian auto-correlation function introduced below. It is actu-
ally the only value of γ for which the generated process is mean-square differentiable.
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• Gaussian

R
(
x, x′; l

)
= exp

(
−1

2

(
x− x′

2l

)2
)

, (3.69)

It is probably the most used auto-correlation function for learning problems. The gener-
ated processes are infinitely differentiable and thus very smooth.

• Matérn

R
(

x, x′; θ
)
=

1
2ν−1Γ (ν)

(√
2ν
|x− x′|

l

)ν

Kν

(√
2ν
|x− x′|

l

)
, (3.70)

where θ = {l, ν}, ν ≥ 1/2 is the so-called shape parameter, Γ the Euler Gamma function
and Kν the modified Bessel function of the second kind. This auto-correlation, just as
the generalized exponential, has a control parameter for the smoothness, namely ν. It
is even more flexible. In fact, it is up to k-times differentiable for any positive integer
k such that ν > k. More interesting, if ν is chosen as a half-integer, that is ν = k +
1/2, an analytical expression of the auto-correlation can be derived. The most practical
cases correspond to ν = 3/2 and ν = 5/2 which are respectively once and two-times
differentiable. Rasmussen and Williams (2006) argue that, in the absence of any other
prior knowledge, there is no use for higher-order differentiability (i.e. , from ν = 7/2 and
so on) because one cannot make any difference in their smoothness. So the Matérn 3/2
and Matérn 5/2 are mostly used and respectively write:

R
(
x, x′; l

)
=

(
1 +
√

3
|x− x′|

l

)
exp

(
−
√

3
|x− x′|

l

)
, when ν = 3/2, (3.71)

R
(

x, x′; l
)
=

(
1 +
√

5
|x− x′|

l
+

5
3
(x− x′)2

l2

)
exp

(
−
√

5
|x− x′|

l

)
, when ν = 5/2,

(3.72)

Some illustrations
To end this section, some trajectories of Gaussian processes are illustrated by focusing on

the general exponential auto-correlation function. The trajectories are generated based on a
Cholesky decomposition method. That is, consider a Gaussian random vector Z ∼ N (µ, C) of
size n. It may be simulated following:

Z = LΞ + µ, (3.73)

where L, defined such that C = LLT, is the lower triangular matrix of the Cholesky decompo-
sition of C and Ξ = {Ξi ∼ N (0, 1) , i = 1 . . . , n}.
In the subsequent examples, we consider a zero-mean process with unit variance. The param-
eters of the auto-correlation function are varied one-by-one to highlight their effects on the
generated trajectories. The same realizations of Ξ are used for all the cases.

Some examples with different values of the shape parameter: γ = {1, 1.5, 2} are plotted in
Figure 3.10. As expected, the trajectories are smoother when increasing the value of γ and
appear differentiable for γ = 2.

On the other hand, the characteristic length-scale values are varied within l = {0.01, 0.1, 1}
in Figure 3.11 where the Gaussian auto-correlation function is considered. This parameter de-
scribes how far a given point influences its neighborhood. As shown in Figure 3.11a, the shorter
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(a) Generalized exponential auto-correlation function
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(b) Corresponding trajectories of Gaussian processes

Figure 3.10: Illustration of the smoothness of Gaussian process trajectories with the generalized
exponential autocorrelation function with different values of the power parameter.
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(a) Gaussian auto-correlation function

−1 −0.5 0 0.5 1
−3

−2

−1

0

1

2

3

4

x

Z
(x
,
ω
0
)

 

 

l = 0.01
l = 0.1
l = 1

(b) Correponding trajectories of Gaussian processes

Figure 3.11: Illustration of the speed of variation of Gaussian process trajectories considering
the Gaussian autocorrelation function with different characteristic length-scales.

the characteristic length-scale, the faster R (τ, l) tends to zero. The corresponding trajectories
become less and less correlated as l becomes large.

In summary, the shape parameter controls the regularity and the length-scale the speed of
variation of the process. We will see in the sequel how these two information are used when
building a Kriging model. Usually, the type of auto-correlation function is chosen a priori. This
includes a given value of the shape parameter, when available. However, the length-scales are
selected while training the model.
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3.4.3 Formulation of the Kriging model

3.4.3.1 The generalized least-square estimate of the parameters

As said earlier, we will focus on the most general formulation, namely universal Kriging. Recall
that the function to approximate is considered as a realization of a Gaussian stochastic process
which reads:

Y (x) =
p

∑
j=1

β j f j (x) + Z (x) , (3.74)

where
{

f j, j = 1, . . . , p
}

are preselected deterministic functions and
{

β j, j = 1, . . . , p
}

are coeffi-
cients to be determined.

The first step is then to estimate the parameters β and σ of the regression model. For that pur-
pose, a frequentist approach is considered. In this setting, the departure of the linear regression
from the observation is assumed to be a Gaussian random noise:

Z = Y − Fβ ∼ N
(
0, σ2R

)
, (3.75)

where Y = {Yi = Y (xi) , i = 1, . . . , n} and F is an n× p matrix defined by F ={
Fij = f j (xi) , i = 1, . . . , n, j = 1, . . . p

}
.

By requiring this noise to be minimal, one can derive the least-square estimates of the parameters
β and σ. Another point of view would be to search for the parameters so that the noise is most
likely to be Gaussian as assumed a priori. This results in the so-called maximum likelihood esti-
mates. As argued by Myung (2003), these two approaches are equivalent since the least-square
and maximum likelihood methods result in the same estimates when the data are independent
and normally distributed.

In this case, the likelihood function is obtained by inverting the role of the observations and
the parameters in the multivariate normal probability function:

L
(

β, σ2|y
)
=

1
(
(2πσ2)n det R

) 1
2

exp
(
− 1

2σ2 (y− Fβ)T R−1 (y− Fβ)

)
. (3.76)

Maximizing Eq. (3.76) is equivalent to minimizing its opposite logarithm. For convenience, the
latter approach is preferred to the former. The estimates are henceforth sought according to the
following optimization problem:
(

β̂, σ̂
)
= arg min

(β,σ)∈Rp×R∗+
− log L (β, σ|y)

= arg min
(β,σ)∈Rp×R∗+

− log
1

(
(2π)n det R

) 1
2
+ n log σ +

1
2σ2 (y− Fβ)T R−1 (y− Fβ) .

(3.77)

The first-order optimality conditions then read:



∇β (− log L (β, σ|y)) = 0
∂ (− log L (β, σ|y))

∂σ
= 0

(3.78)
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By expanding the first condition, we have:

∇β (− log L (β, σ|y)) = 1
σ2 FTR−1 (y− Fβ) = 0

⇔ FTR−1y− FTR−1Fβ = 0,

This leads to the following least-square estimate of β:

β̂ =
(

FTR−1F
)−1

FTR−1y. (3.79)

As for the second condition, the following expansion may be written:

∂ (− log L (β, σ|y))
∂σ

=
n
σ
− 1

σ3 (y− Fβ)T R−1 (y− Fy) ,

which leads to the following least-square estimate of σ2:

σ̂2 =
1
n
(y− Fβ)T R−1 (y− Fβ) . (3.80)

Once R is known, Eq. (3.79) and (3.80) will provide the estimators
(

β̂, σ̂2
)

necessary in the
expression of the Kriging predictor.

3.4.3.2 Kriging as the best linear unbiased predictor

The universal Kriging formulation is obtained by requiring the prediction for a new point Y0 =
Y (x0) to respect three conditions:

• Linearity with respect to the observations

Ŷ0 =
n

∑
i=1

aiYi = aTY , (3.81)

where a ≡ a (x0) = {ai, i = 1, . . . , n} are coefficients to be determined.

• Non-biasedness
E
[
Ŷ0 −Y0

]
= 0, (3.82)

• Minimal variance i.e. the best predictor among all

Ŷ∗0 = arg min
Ŷ0

E

[(
Ŷ0 −Y0

)2
]

. (3.83)

Following the development in Santner et al. (2003), the conditions in Eq. (3.81) and (3.82) lead
to:

E
[
Ŷ0 −Y0

]
= E

[
aTY −Y0

]

= E
[

aT (Fβ + Z)− f (x0)
T β− Z0

]

= E
[

aTZ− Z0

]
+
(

aT F − f (x0)
T
)

β = 0.
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The first summand of the right-hand side of the above equality is zero since the quantity aTZ−
Z0 is a linear combination of Gaussian random variables with zero mean. The non-biasedness
condition reduces then to:

aT F − f (x0)
T = 0. (3.84)

In consequence, the minimal variance condition of Eq. (3.83) can be expanded using Eq. (3.84):

E

[(
Ŷ0 −Y0

)2
]
= E

[(
aTZ− Z0 +

(
aT F − f (x0)

T
)

β
)2
]

= E

[(
aTZ− Z0

)2
]

= E
[

aTZZTa− 2aTZZ0 + Z0ZT
0

]

= aTE
[

ZZT
]

a− 2aTE [ZZ0] + E
[

Z0ZT
0

]

= aTσ2Ra− 2aTσ2r0 + σ2,

where r0 = {R (xi, x0) , i = 1, . . . , n} is a vector gathering the value of the autocorrelation func-
tion computed between x0 and each point of X , such that E [Z, Z0] = σ2r0.

So the minimal variance condition may be recast as a quadratic optimization problem with
respect to the coefficients a and with linear equality constraints:

a∗ = arg min
a∈Rn

aTσ2Ra− 2aTσ2r0 + σ2

subject to: aT F − f (x0)
T = 0.

(3.85)

Naturally, it is solved in its dual form. By introducing the Lagrangian, it is equivalent to solv-
ing:

(a∗, λ∗) = arg max
λ∈Rn+

arg min
a∈Rn

L (a, λ) = σ2
(

1 + aT (Ra− 2r0)
)
+
(

aT F − f (x0)
T
)

λ, (3.86)

where λ is a vector of Lagrange multipliers. The first optimality conditions eventually give:
{ ∇aL (a, λ) = 2σ2 (Ra− r0) + Fλ = 0
∇λL (a, λ) = aT F − f (x0)

T = 0
(3.87)

By pre-multiplying the first equality by − 1
2σ2 FTR−1, we have:

− FTR−1Ra + FTR−1r0 −
1

2σ2 FTR−1Fλ = 0

− f (x0) + FTR−1r0 −
1

2σ2 FTR−1Fλ = 0,

since FTR−1Ra = FTa = f (x0) according to Eq. (3.84). So the Lagrange vector reads:

λ∗ = 2σ2
(

FTR−1F
)−1 (

FR−1r0 − f (x0)
)

.

Re-introducing this in the expression of ∇aL eventually gives the coefficients a:

a∗ = R−1
(

r0 − F
(

FTR−1F
)−1 (

FTR−1r0 − f (x0)
))

. (3.88)
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The last step is then to inject this expression of a∗ in Eq. (3.81) to get the mean and variance of
the best linear unbiased predictor (BLUP) Ŷ0:

µŶ0
= f T

0 β̂ + rT
0 R−1

(
y− FT β

)
,

σ̂2
Ŷ0

= σ2
(

1− rT
0 R−1r0 + uT

(
FTR−1F

)−1
u
) (3.89)

where β̂ is the MLE from Eq. (3.79) and u = FTR−1r0 − f
(

x(0)
)

has been introduced for the
sake of brevity, see e.g. Dubourg (2011) for the details of the calculations.

This Kriging variance acts as a local estimator of the model error. In fact, it stands for the
epistemic uncertainty due to the lack of knowledge, in this case, the limited (finite) set of ob-
servations. This is not to be confused with aleatory uncertainty. The former can be reduced
by improving our knowledge, more specifically by increasing the size of the design of experi-
ments. For a practical accounting of this uncertainty, confidence intervals of the predictor are
usually derived following the Gaussian assumption. That is,

Ŷ0 ∈
[
µŶ0
−Φ−1

(
1− α

2

)
σ̂Ŷ0

, µŶ0
+ Φ−1

(
1− α

2

)
σ̂Ŷ0

]
with probability 1− α, (3.90)

where Φ (•) denotes the Gaussian cumulative distribution function and (1− α) is the confi-
dence level.

We will see in the next chapter how this information is used to improve the quality of the
Kriging predictor in regions that matter. For now, let us explain how the Kriging model can be
trained.

3.4.4 Model training in Kriging

At this point, we know the general formulation of a Kriging predictor. The dependency struc-
ture has been chosen beforehand through the specification of a family of parametric auto-
correlation functions. To fully define the model, we still need to specify the parameters of
the auto-correlation function. This is achieved by various techniques, the most widely-used
one being cross-validation and maximum likelihood.

3.4.4.1 Maximum likelihood estimation

In the maximum likelihood approach, the hyper-parameters are sought such that the observed
data are consistent with the Gaussian assumption.

Let us re-introduce the log-likelihood function from Eq. (3.77) while highlighting its depen-
dency in θ and plugging the MLE estimates β̂ and σ̂2 from Eq. (3.79) and (3.80):

− log L
(

β, σ2; θ|y
)
=− log

1
(
(2π)n det R (θ)

) 1
2
+ n log σ̂ (θ) +

1
2σ̂2 (θ)

(y− Fβ)T R−1 (θ) (y− Fβ)

= log (2π)
n
2 + log det R ({θ) 1

2 +
n
2

log σ̂2 (θ) +
n
2

.
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The last summand directly comes from Eq. (3.80). This equation can be further written in the
following form:

− log L
(

β, σ2; θ|y
)
=

n
2
(1 + log (2π)) + log

(
σ̂2 (θ)det R (θ)

1
n

)
. (3.91)

The maximum likelihood (ML) of θ is equivalently found by minimizing Eq. (3.91) which ulti-
mately boils down to the following optimization problem:

θ̂ = arg min
θ∈Rd

ψ (θ) = σ̂2 (θ)det R (θ)
1
n , (3.92)

where d is the number of parameters in θ and ψ (θ) is the so-called reduced likelihood function.

This reduced likelihood function is not easy to minimize for various reasons. Lophaven et al.
(2002a) showed how badly conditioned is the auto-correlation function for some values of θ,
leading to inaccuracy propagation in the optimization process. Beside, ψ (θ) may also have
many local minima. Lophaven et al. (2002a) used a pattern search algorithm to tackle these
problems (Lophaven et al., 2002b) as implemented in their Matlab toolbox. In the author expe-
rience, this toolbox is somehow limited for providing accurate estimates. Remaining in Matlab,
the UQLAB toolbox (Lataniotis and Sudret, 2015) implements more efficient algorithms. In this
manuscript, most of the Kriging applications are run using the R package DiceKriging (Rous-
tant et al., 2012). As in UQLAB, many algorithms are available. In our case we use an hybrid
approach. The solution of a genetic algorithm is used as a starting-point for a local gradient-
based search through a second-order BFGS (Broyden-Fletcher-Goldfarb-Shanno) algorithm.

3.4.4.2 Cross-validation

The cross-validation (CV) procedure is as explained in Section 3.2.2. It consists in searching for
the values of the parameters that minimize the generalization error through re-sampling. As
explained earlier, applying this brute force approach is expensive as one has to build n Kriging
models for a DOE of size n, in the specific case of a true leave-one-out. This means solving a n
systems of n× n linear equations for a single value of the hyper-parameters. Fortunately, just
as for support vector machines, Dubrule (1983) has proposed a reliable estimate of the leave-
one-out error which is obtained solely by inverting a matrix of size n× n. He even generalized
it to leave-K-out procedure. Another similar technique of LOO estimate for Kriging is used in
Bompard (2011) following the work of Rippa (1999) with radial basis functions.

For the record, the two latter toolboxes also implement the cross-validation method for model
calibration. Bachoc (2013) compares the two approaches. They conclude that ML gives better
results when the covariance structure is well specified, that is it coincides with the one from
which the data have been generated. In the case of misspecification, CV is better. On the
ground of similar arguments Bompard (2011) uses CV for model calibration, arguing that CV
is not influenced by the statistical framework, most specifically the Gaussian assumption . In
this thesis, we focus on ML because the tools we use (DiceKriging) is more robust with ML
than with CV.

3.4.5 An illustration of Kriging

3.4.5.1 Some properties of Kriging predictor

We now illustrate the Kriging prediction using the same one-dimensional function as for SVR,
see Eq. (3.53). The design of experiments consists of eight points randomly drawn in X =
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[−1, 1].

Ordinary Kriging with exponential and Gaussian auto-correlation functions are used for pre-
diction in X. Figure 3.12 shows the resulting approximation together with its 95% confidence
interval. The first difference between the two cases is that as expected the exponential auto-
correlation function produces a predictor which is C0 at the training points, i.e. continuous but
non-differentiable. On the other hand, the predictor for the Gaussian auto-correlation function
is differentiable at the training points.
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(a) Exponential auto-correlation
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(b) Gaussian auto-correlation

Figure 3.12: Kriging approximation with two different auto-correlation functions: exponential
and Gaussian.

In the two cases, the prediction goes exactly through the training points and the associated
variance is zero. Interpolation is indeed one of the main properties of Kriging and can be
proved easily using the expression of the mean in Eq. (3.89). Another important property is
asymptotic consistency. That is, the variance reduces to zero everywhere as the design space is
sampled denser. A proof is given in Vazquez (2005) with the condition that the covariance σ2R
is regular (i.e. R(0) = 1). An example is shown in Figure 3.13 where the dataset size goes from
8 to 12 and 20. The corresponding confidence interval volume decreases accordingly and it is
almost zero for the largest dataset. We should stress here that this margin shrinking is hardly
achieved for high-dimensional problems.

3.4.5.2 The nugget effect

We have mentioned in the previous section that the Kriging prediction interpolates the training
points. In the case of noisy data, we shall not require the prediction to be interpolating. For this
purpose, the common practice is the introduction of the so-called nugget effect. This technique
comes from geostatistics as well where the properties of the auto-correlation function (or more
specifically the variogram) are suddenly modified at the origin due to the presence of a nugget.
In fact, when there are, say gold nuggets in a region, the gold concentration abruptly changes
at the boundaries of the nugget. This phenomenon is taken into account in geostatistics by
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Figure 3.13: Illustration of asymptotic consistency: The variance decreases almost everywhere
as the design size increases.

introducing a discontinuity at the origin of the sought variogram.

In practice, an independent noise U (x) is considered as an additional term of the stochastic
process in Eq. (3.58):

Y (x) = µ (x) + Z (x) + U (x) , (3.93)

where U (x) is a zero-mean Gaussian variable with variance σ2
ζ .

This actually corresponds to adding a Dirac auto-correlation function. The corresponding
auto-covariance is the unit matrix, leading to the following modified expression of the auto-
covariance function of Y (x)

C = σ2R + σ2
ζ In (3.94)

where C is the covariance matrix defined by Cij = Cov
[

xi, x(j)
]

and In is the identity matrix of
size n× n.

Since the Dirac distribution has all its mass concentrated at the origin, the nugget effect trans-
lates by the discontinuity at the origin of the auto-covariance.

An application example is given in Figure 3.14. A Gaussian noise of variance σ2
ζ = 0.12 is added

to the outputs of the training points. The nugget estimation is then enabled while building the
Kriging model. As expected, the approximation is no longer interpolating. Besides, the Kriging
variance does not go to zero at the training points. Instead, it is equal to σ2

ζ . The estimated
nugget effect in this example is close to 0.01.

However, this needs not be the case all the time. In fact, for the nugget to be well estimated,
the design of experiments must be dense. In the applications we are interested in for this thesis,
we will not face such settings. The design of experiments will most likely be scarce. So our use
of the nugget will be for a different purpose. More specifically, the introduction of the nugget
generally smooths the optimization problem of the MLE and thus enables a better prediction.
In this case, the nugget is extremely small and behaves more like a ridge.
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Figure 3.14: Kriging with nugget estimation for the prediction with noisy observations.

3.5 Conclusion

In this chapter, we have introduced two types of surrogate models for supervised learning,
namely support vector machines and Kriging. SVM has been developed around the structural
learning theory. It offers good generalization ability, especially in high dimension. Kriging has
been developed earlier in a different framework assuming that the true model is a realization
of a Gaussian stochastic process.

In this thesis, we are concerned primarily with regression problems. However, classification
is also of interest to us. An application is given in Chapter 5. Typically, we seek to classify
different crash scenarios. For this purpose, we use support vector machines for classification.

On the other hand, the constrained lightweight design application, which is the core of this
thesis, will rely upon Kriging. The reasons for this choice are two-fold. First, Kriging provides
us with a local measure of its own accuracy thanks to the Gaussian assumption. This error is
due to the epistemic uncertainty raised by the substitution of the true model with a metamodel
trained over a limited set of samples. It can be locally reduced by adding points in the design
space. As a matter of fact, a wide number of techniques have been developed in the literature to
take advantage of this feature by adaptively updating the design of experiments. The method-
ology for optimization through surrogate models, proposed in the next chapter, is based on
such a technique. Second, we have carried out a benchmark analysis of Kriging and support
vector regression, with application on crashworthiness design (Moustapha et al., 2014a). It is
shown that isotropic Kriging and support vector regression approximately give the same level
of accuracy. However, the introduction of anisotropy in Kriging dramatically improves the
accuracy of the surrogate model leading to an overall better prediction with Kriging.

These two reasons advocate for the choice of Kriging over support vector regression. We should
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however note that there are several works which aim at deriving a probabilistic interpretation
for SVR, see for example Gao et al. (2002); Lin and Weng (2004). So the methodology proposed
in the next chapter may also be applicable with SVR, provided that its probabilistic version
behaves as well as Kriging.
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4. SURROGATE-BASED OPTIMIZATION

4.1 Introduction

In the first part of this thesis we have introduced on the one hand, a methodology for opti-
mization under uncertainty and, on the other hand the concept of surrogate modeling. In this
chapter, the two items are combined for an efficient reliability-based design optimization. The
motivations are the following. First, the models used to evaluate the constraints of mechanical
systems are usually expensive. Second, optimization techniques require repeated evaluations
of these models. This becomes even worse for reliability-based design optimization as the reli-
ability assessment relies as well on numerous model evaluations. The overall number of calls
to the model may in this case reach unreasonably high values (i.e. in the range of thousands
to hundreds of thousands). For instance, let us consider the lightweight design of automotive
structures which concerns us here. The validity of a design depends on some performance crite-
ria in frontal impact. The corresponding constraints are assessed by a fast dynamic simulation
through finite element methods. The resulting analysis may last up to 24 hours in distributed
CPUs. Direct optimization is in this case simply not affordable.

In the past few years, surrogate modeling has emerged as an interesting tool to lessen the
computational burden of analyses such as optimization and reliability. Indeed, by offering to
replace expensive models by easy-to-evaluate mathematical functions, the use of metamodels
took the potential applications of RBDO to the realm of industrial problems. Several such ap-
plications exist in the literature. Glaz et al. (2008) used Kriging as a surrogate to reduce the
vibrations induced by an helicopter rotor blades during forward flight. In Bellary et al. (2015),
computational fluid dynamics were considered for the optimization of turbo-machinery sys-
tems. This high fidelity model, which costs 13 hours of CPU, was replaced by blind Kriging for
efficient optimization. In a context close to our application, i.e. the design of automotive body
structures under safety constraints, several applications can be found as well. Su et al. (2011)
considered polynomial response surfaces and genetic algorithms to optimize a bus frame un-
der rollover constraints. Side-impact was considered in Xu et al. (2013). In most of these ap-
plications, the authors first performed a benchmark of several metamodels and then selected
the best one to perform optimization. In contrast, Gu et al. (2015) considered an ensemble of
metamodels for the design of occupant protection systems. In this work, the authors consider
simultaneously Kriging, support vector regression, radial basis functions and polynomial re-
sponse surfaces. The four are weighted following a heuristic based on cross-validation error.
Frontal impact has also been investigated. Gu et al. (2013) compared multi-objective determin-
istic, robust and reliability-based design optimizations. In this respect, they used polynomial
response surfaces for the objective function and radial basis functions for the constraints.

In this chapter, the frontal impact simulations are replaced by surrogate models for safe design
of automotive body structures. The first section formulates the problem combining surrogate
models and quantile-based RBDO proposed in section 2.3. In the afore-mentioned references,
optimization with surrogate models was one-shot i.e. the metamodel is built once for all and
optimization is performed on it. However, it has been shown that the computational cost can
be further reduced by adopting adaptive design of experiments (Jones et al., 1998; Bichon et al.,
2008). The second section reviews such methods. In the last section, we present a methodology
for RBDO based on surrogate models and enrichment for the estimation of quantiles.
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4.2 Global optimization using surrogate models

4.2.1 Problem formulation

In principle, the substitution of a high-fidelity model by a metamodel is straightforward to im-
plement. Let us consider a surrogate model denoted M̂k which approximates the mechanical
modelMk. A global approximation of the limit state surface simply reads:

ĝk (x) = ḡk − M̂k (x) . (4.1)

By this simple trick, computing the failure probability with respect to the approximate limit
state surface becomes cheap. The use of surrogate models to compute failure probabilities has
received much attention in the past few decades. Artificial neural networks have been success-
fully used by Chapman and Crossland (1995), Papadrakakis and Lagaros (2002) or Hurtado
and Alvarez (2003). Gayton et al. (2003) considered quadratic polynomial response surfaces
for the same task. Sparse polynomial chaos have also been used (Blatman, 2009; Blatman and
Sudret, 2008, 2010; Hu and Youn, 2011). Hurtado and Alvarez (2001) proposed to rely on clas-
sifiers rather than regression models by introducing support vector machines to structural re-
liability analysis. Basudhar and Missoum (2009) also use SVM to approximate random fields
in the context of reliability analysis. In the aforementioned references, the failure probability is
computed by Monte Carlo sampling. To achieve variance reduction while using SVM, subset
sampling is considered in Bourinet et al. (2011) or Deheeger (2008) and importance sampling
in Hurtado (2007). Finally the three simulations methods have been combined with Kriging
such as in Echard et al. (2011); Picheny et al. (2010) for MCS, Bichon et al. (2008); Dubourg et al.
(2011, 2013); Balesdent et al. (2013); Cadini et al. (2015) for IS.

In this thesis, we focus on Monte Carlo sampling to estimate quantiles of the constraints. The
RBDO formulation in Eq. (2.93) with respect to the surrogate model therefore reads:

d∗ = arg min
d∈D

c (d) subject to:

{
fj (d) ≤ 0, {j = 1, . . . , ns}
Q̂αk

(
d;M̂k (X (d) , Z)

)
≤ ḡk, {k = 1, . . . , nh}

, (4.2)

where Q̂αk is the function which computes the quantile according to the metamodel.

As a reminder, the quantile for the model M̂k is computed by first sampling the following
Monte Carlo population of size N:

Cq (d) =
{

w(1), w(2), . . . , w(N)
}

, (4.3)

where w(i) =
{

x(i), z(i)
}T

. x(i) and z(i) are respectively the i-th realizations of X ∼ fX|d and
Z ∼ fZ.

Second, the response of the surrogate models at these points is computed, thus giving the set:

Ŷ =
{

ŷ(1), ŷ(2), . . . , ŷ(N)
}

, (4.4)

where by definition ŷ(i) = M̂k

(
w(i)

)
. The estimated quantile is eventually given by:

q̂αk = ŷb(Nαk)c, (4.5)
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where ŷ(i) ∈ Ŷ is defined such that ŷ(1) ≤ ŷ(2) ≤ . . . ≤ ŷ(N) and b•c denotes the floor function.

The efficiency of the RBDO is enhanced here by introducing the so-called common random num-
bers (CRN) technique to build the set Cq for different designs. That is, the same seed is used to
generate all random variables throughout the optimization. In particular, the same realizations
of the environmental variables are considered in all iterations. This results in more stability for
optimization and also reduces the variance of the estimated quantiles since the induced error
is consistent within different designs. The bias in the solution is however kept small as the size
of the Monte Carlo population is relatively large.

Eventually, to achieve accuracy in estimating quantiles through surrogate models, it is neces-
sary that any point from the Monte Carlo population Cq falls within the definition space of the
surrogate model. When considering optimization in a deterministic setting, this space of defini-
tion may obviously be set as the design space. However for optimization under uncertainties,
we need to build the surrogate model in an augmented space to account for random variables
that come in addition to the design parameters.

4.2.2 The augmented reliability space

4.2.2.1 A brief literature review

In this section, we define how to build the surrogate model for application in RBDO. As a
premise, let us consider a double-loop approach coupled to the FORM/SORM philosophy. In
FORM/SORM, for each design, a local approximation of the limit state surface is built in the
standard Gaussian space after an appropriate mapping from the physical space. Applying
the same strategy for surrogate-based RBDO consists in building a new surrogate model in
the standard Gaussian space at each iteration of the optimization. This would require a large
number of evaluations of the expensive true model. The overall added value of using the
surrogate model would therefore be lost. More efficient approaches have been defined in the
literature where a unique space which accounts for both the deterministic and the random
variables is considered. Such a space is referred to as the augmented reliability space, but endows
a variety of interpretations as reviewed in the sequel.

Kharmanda et al. (2002) defines a hybrid formulation as an alternative to the nested optimiza-
tion problem in classical RBDO. In this hybrid formulation, a new cost function is defined as
the product of the initial cost and the image of the reliability index in the physical space. This
cost is minimized under the deterministic soft and hard constraints. As defined, the new cost is
directly expressed with respect to the deterministic design variables (original cost) and random
variables (reliability index). The hybrid design space therefore consists of the tensor product of
the design and random variables {d, w}T, where it is assumed that W = {W1, W2, . . . , Ws} is a
set of uncertain parameters whose joint PDF is fW |d. This allows the authors to carry out simul-
taneously the optimization task and reliability analysis, thus reducing the computational effort.
However, a major drawback is that the dimension of this hybrid problem is higher and this
ultimately increases the complexity of the problem to solve. This affects the efficiency of the op-
timization algorithm and hampers the building of an accurate surrogate model. Eventually, as
argued in Dubourg (2011), there is no bijectivity between the space of the random variables and
that of the design variables. That is, a particular sample w(i) may have been equally generated
by multiple values of design variables d. It is not clear how this affects the results provided by
the approach.
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Alternatively, Au (2005) has introduced an augmented reliability problem to efficiently compute
the failure probability for a given design. The basic idea of the proposed approach is to artifi-
cially consider the design parameters as random. By means of conditional sampling and Bayes’
theorem, the failure probability given a realization of design variable can be computed. The au-
thors rely on subset sampling to achieve this. Taflanidis and Beck (2008) constructs a stochastic
optimization algorithm based on this definition of the augmented reliability problem. In this
way, RBDO does not suffer from increased dimension.

Adopting the same philosophy as in Taflanidis (2007) and Taflanidis and Beck (2008, 2009),
Dubourg (2011) also suggests to solve the RBDO problem in an augmented space. In this work,
the design and environmental variables are treated separately resulting in an augmented ran-
dom vector W = {X, Z}T. For each type of parameters, a confidence region is defined such
that samples with extreme values (i.e. design variables at the boundary of the design space
or realization of environmental variables away from their mean values) fall within this confi-
dence region. For design variables, this region corresponds to a hyperrectangle whose bounds
are defined by extending the design space with multi-dimensional confidence intervals accord-
ing to fX|d. The confidence region for the environmental variables covers a hypersphere in
the standard Gaussian space whose radius corresponds to a high reliability index, say β = 8.
An inverse isoprobabilistic transform allows one to map this confidence region in the physical
space. In the general case, the associated volume is not regular. This implies that the points
should be sampled uniformly in the standard Gaussian space in order to build the surrogate
model. The augmented reliability space is eventually given by the tensor product between the
confidence regions of the two types of parameters.

4.2.2.2 The proposed augmented space

The approach we adopt in this thesis is similar to that of Dubourg (2011) or Dubourg et al.
(2011) in the sense that we also consider the augmented space as a tensor product between two
confidence regions defined on the design and environmental variables. However, we do not
rely on a hypersphere for the environmental variables. This is essentially because we do not
work in the standard Gaussian space. The augmented space is thus hyperrectangular. Another
important point here is that the normalization often needed to build surrogate models is simply
achieved by a linear mapping. There is no need of non-linear isoprobabilistic transform which
may add complexity to the surrogate model surface.

The basic idea underlying the use of confidence region is that we need to make sure that the
probability of sampling a point outside the space over which the surrogate model has been
built remains small. By defining a threshold on this probability, the confidence region may
be obtained by quantiles of the parameters distributions. By additionally assuming that the
parameters are mutually independent, the augmented space may be written as a tensor product
of unidimensional intervals.

The confidence regions associated to the design and environmental variables are respectively
denoted by X and Z. The former defines a hyperrectangular volume obtained by the following
tensor product:

X =
sd

∏
i=1

[
q−di

, q+di

]
, (4.6)

where sd is the number of design parameters and q−di
and q+di

are quantiles defined respectively
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on the lower and upper bounds of the design variable di. These quantiles read as follows:

q−di
= F−1

Xi |di
(αas/2)

q+di
= F−1

Xi |di
(1− αas/2) ,

(4.7)

where Xi follows the marginal distribution fXi |di
whose associated joint PDF fX|d has been al-

ready defined, F−1
Xi |di

is the associated inverse CDF, d−i and d+i are respectively the lower and
upper bounds of the design variable di, and αas is the probability of sampling outside the aug-
mented space.

Similarly, the hyperrectangular volume associated to the environmental variables is defined
by:

Z =
sz

∏
i=1

[
q−zi

, q+zi

]
, (4.8)

where sz is the number of environmental variables and the bounds are defined by:

q−zi
= F−1

Zi
(αas/2) ,

q+zi
= F−1

Zi
(1− αas/2) .

(4.9)

Here Zi follows the marginal distribution fZi as well.

These quantiles may be obtained analytically for usual PDFs. In this thesis, we consider a
confidence interval equivalent to 6σ for normal distributions which corresponds to setting
αas = 0.0027. For distributions other than the Gaussian, the quantiles may be computed an-
alytically or by an iso-probabilistic transform. In the most general case, where no analytical
expression is available, the quantiles may be estimated by a large Monte Carlo simulation.

For illustration, let us consider the example introduced in section 2.3.3.1 where a two-dimensional
problem consisting of a random design variable X ∼ N

(
d, 0.052) and a random environmen-

tal variable Z ∼ N
(
0.5, 0.052) is considered. The design space is defined by D = [−1, 1]. The

bounds therefore read:

q−d = µX|d− − 3σX|d− = −1− 3× 0.05 = −1.15,

q+d = µX|d+ + 3σX|d+ = 1 + 3× 0.05 = 1.15,

q−z = µZ − 3σZ = 0.5− 3× 0.05 = 0.35,
q+z = µZ + 3σZ = 0.5 + 3× 0.05 = 0.65.

Figure 4.1 illustrates this example. The augmented space corresponds to the gray-shaded area.
The design space over which the optimization problem is defined is simply the line whose
bounds are d− and d+, highlighted in blue. It should be stressed here that fX|d− and fX|d+ may
have different standard deviations. This situation typically occurs when the distribution of the
random variables is expressed in terms of a constant coefficient of variation.

In general, the augmented space is constructed according to the probabilistic model. The exam-
ple above consists of both random design and environmental variables. Alternatively, it may
happen that the randomness is considered only for the design variables. In this case the aug-
mented space is simply X since the environmental variables have fixed values. Conversely, we
may have randomness in environmental variables only. In such a case, the augmented space
is D×Z. This corresponds to a particular setting where the design variables are considered
random but with standard deviations equal to 0, thus leading to q±di

= d±i .
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X×Z

D

Figure 4.1: Illustration of the augmented space for a two-dimensional problem with both ran-
dom design and environmental variables. Directions x and z do not have the same scale for the
sake of clarity. Distances are somehow stretched along z.

4.2.3 Analytical validation example

4.2.3.1 Presentation of the problem

To illustrate the quantile-based RBDO with surrogate models, we consider a two-dimensional
highly-non linear limit state surface, which we refer to as the Haupt function (Dubourg, 2011).
The deterministic design optimization problem reads:

d∗ = arg min
d∈D

(d1 − 3.7)2 + (d2 − 4)2 s.t. g (d) = −d1 sin (4d1)− 1.1 sin (2d2) ≤ 0. (4.10)

The RBDO problem is formulated by considering that the design variables follow independent
normal distributions: Xi ∼ N

(
di, 0.12). A reliability index β̄ = 2 corresponding to a target

failure probability P̄f = Φ
(
−β̄
)
= 0.0228 is considered.

Figure 4.2 illustrates the optimization problem. The left panel shows the highly-non linear
mathematical model. In the right one, the limit state surface is shown in red and contours of
the cost are shown in a gray-scale plot. The design space D = [0, 3.7]× [0, 4] is bounded by the
blue rectangle. The augmented space in this example only consists of an extension of D and
corresponds to X = [−0.3, 4]× [−0.3, 4.3] as highlighted by the gray rectangle.

To solve this problem we consider first a brute-force approach i.e. directly relying on the true
model. Then we replace the model by both support vector regression and Kriging approxi-
mations. More specifically, L1-SVR and anisotropic Kriging are considered with respectively
Gaussian and Matérn 5/2 auto-correlation functions.

4.2.3.2 Results

The brute-force approach leads to an optimum d∗re f = {2.83, 3.24}T which is considered as the
reference solution. Computing the quantile for each design requires N = 104 samples. Em-
bedded in an optimization scheme, the total number of calls to the true model is in the order
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Figure 4.2: Illustration of the Haupt problem

of 106 − 107 (i.e. considering 100 to 1, 000 iterations of the (1 + 1)-CMA-ES optimization algo-
rithm). For the surrogate-based approach, we only need a few sample points that will be used
to build the metamodels. The optimization will be performed on these approximations after-
wards. In this example, we consider five cases where the size of the design of experiments is
increased from 20 to 100 by steps of 20. Since, these points are sampled randomly, the exper-
iment is repeated ten times for each case. Results are shown as box-plots in Figure 4.3 where
the reference solution is represented by the dashed black line. The surrogate models built with
less than 60 points for SVR and 40 points for Kriging clearly lead to spurious optima. This is
because they fail to capture the high non-linearity of the mathematical model. Kriging is more
accurate on this example thanks to the anisotropic assumption. For the remaining cases, the
found optima match the reference solution found through the brute-force approach. However,
the number of calls to the true model is drastically reduced, i.e. only 80 and 100 calls respec-
tively. This is in strong contrast with the 106 − 107 calls required by the brute-force approach
and thus motivates the need to recourse to surrogate models.

To illustrate the differences between the converged and failed solutions, we plot the true and
surrogate models with 20 and 60 points in Figure 4.4. On the right panel, the limit state sur-
face is almost accurately approximated by Kriging. For SVR, it turns out that it is not enough
accurate in the region where the optimum lies. From 80 points and more, both metamodels per-
fectly match the limit state surface. However, in the left panel with only 20 points, the surrogate
models are far from representing the limit state surface. This means that the substitution of the
true model works fine only if the surrogate model is capable of truly approximating the limit
state surface. This is not systematic as shown in this example. Thanks to the asymptotic consis-
tency of both Kriging and SVR, it was expected that they become more accurate as the number
of samples increases. However, one does not know in advance how many points are needed
to achieve the required accuracy. Anyway, this number depends on how the experiments are
chosen to fill the input space of the surrogate model. Many techniques exist to construct such
design of experiments. We review some of them in the first part of the next section. It is also
possible to go further by requiring the surrogate model to be accurate only in regions that mat-
ter as it was the case with the SVR model of 60 points in Figure 4.4b. The second part of the
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Figure 4.3: Solution of the Haupt problem with different sizes of the DOE.

next section focuses on some techniques that allow one to achieve this objective.

4.3 Adaptive design of experiments

As shown in the example above, the validity of the optimum found with surrogate-based op-
timization completely relies on the accuracy of the surrogate model. In a naive approach, one
would fill the space as densely as possible to achieve the required accuracy. However as al-
ready mentioned, the evaluation of the true model may be expensive for industrial problems
(recall our finite element run that lasts 20 hours). In such a case, each point in the design of
experiments should be carefully chosen. So-called space-filling designs allow one to cover the
space as much as possible with the smallest number of points. In this section, we review some
of them. Moreover, other techniques allow one to further reduce the number of calls to the
true model. These techniques start from the premise that for optimization there is no need to
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Figure 4.4: Approximation of the true limit state surface by SVR and Kriging (KRG): Design of
experiments of 20 and 60 points.

be accurate in the entire design space since there are only a few regions that are of interest to
the designer (i.e. those where the constraints are closed to be violated and where the cost func-
tion decreases). These techniques iteratively update an initial scarce design of experiments to
improve the metamodels accuracy in regions of interest. They are known as adaptive design of
experiments. The remaining part of this section is devoted to such techniques.

In this section, the input parameters are denoted by x. For the sake of consistency, there is no
reference to the random design variables introduced above. We consider in fact that we are in
a deterministic setting.

4.3.1 A word on initial design of experiments

The first step in building surrogate models for optimization is to generate a design of experi-
ments (DOE). In the literature, many techniques exist to build DOEs. They can be classified
into three groups:

• Deterministic designs: The design sites are chosen according to predefined schemes. Well-
known examples include full factorial or geometric criteria based-designs (i.e. maximin
and minimax).

• Random designs: They come from Monte Carlo techniques where points are randomly
drawn in the unit hypercube. Latin hypercube sampling, a stratified method, is one of
the most widely-used among this category. To improve their ability to uniformly fill the
space, initial sampled random designs can be optimized with respect to some predefined
criteria.

• Quasi-random designs: They consist of well-chosen deterministic sequences whose discrep-
ancy (i.e. departure from uniform sampling) is small. Well-known examples are Sobol’ or
(t, m, s)-nets.
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4.3. Adaptive design of experiments

Appendix A presents in details a wide variety of techniques used to build designs of exper-
iments. They perform almost equally in a low-dimensional setting when one can afford a
relatively large number of samples with respect to the dimension. In contrast, when one is
concerned with high-dimensional problems, some of these techniques are less relevant than
the others. This might be for instance due to the high number of points required to truly fill
the space e.g. factorial designs or Monte Carlo sampling. Another issue is the computational
effort such as for those relying on the optimization of some metrics (e.g. minimax, Bayesian
designs or OLH). The question of computational time is solved by quasi-random designs. Low-
discrepancy sequences can indeed be easily built thanks to pre-defined deterministic sequences.
However, the sequences fill the space in cycles whose length depends on the basis of the b-adic
expansion, henceforth conditioning the size of the design. Most of the applications in this the-
sis are based either on Sobol’ designs which are straightforward to build or on optimized Latin
hypercube with respect to L2-discrepancy. The generation of the latter may take time for high-
dimensional problems. But we argue that in our case, where one simulation takes as long as
24 hours, the relative time used to build the design, which amounts in minutes only, is not a
concern.

For the sake of completeness, let us now mention briefly some specificities of the problem we
aim to solve. The characteristics of a high-dimensional space are actually extremely different
from its low-dimensional counterpart (Lee and Verleysen, 2007; Verleysen, 2003). Its proper-
ties are counter-intuitive and the term curse of dimensionality, first coined by Bellman (1961)
expresses well what is happening. The main property is the empty space phenomenon (Scott and
Thompson, 1983) which refers to the fact that high-dimensional data are inherently sparse. For
instance, consider filling an s-dimensional space with a density similar to that of filling a one-
dimensional space with 10 points. One would need actually 10s points to reach such a density,
which is clearly not affordable. Furthermore, most of the volume of high-dimensional hyper-
cubes (i.e. as those in which we sample and build surrogate models here) are concentrated
around their vertices. This can be seen by considering the ratio between a hypersphere and
its corresponding circumscripted hypercube. It can be shown that this ratio tends to zero as
the dimension increases. This means that all the volume is located away from the center. As
pointed out in Verleysen (2003), hypercubes in high-dimension look like sea urchins where the
spikes occupy all the volume letting only a negligible part to the spherical body. Another prop-
erty is the concentration of norms and distances. It can be easily shown that when sampling in
high dimensions all the points are equally distant. All these properties seem unexpected be-
cause of the intuitions we have made over two- and three-dimensional representations of data.
Nonetheless they make the task of learning from high-dimensional data difficult. Introducing
simplifying assumptions such as smoothness of the model may attenuate these effects. Beside,
in physical systems, only a few number of parameters are relevant. One can therefore use
methods such as feature selection (e.g. screening) or feature extraction (e.g. principal component
analysis).

We assume for the lightweight design of automotive body structures that an empirical screen-
ing study has been made thanks to expert knowledge, so that the remaining parameters we
use for optimization are the most relevant. Furthermore, instead of trying to fill the space, we
rather rely on adaptive techniques which allow us to incorporate further knowledge of the
problem by directing the sampling to restricted regions of interest.
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4.3.2 Using a surrogate model for the objective function

This section is concerned with the adaptive enrichment of an initial design. As mentioned ear-
lier, we aim at developing metamodels as surrogates of expensive-to-evaluate functions. These
metamodels are used for constrained optimization problems. The previous section presented
some space-filling designs which have the property of fairly exploring the entire design space.
However, the optimization problem we would like to address is high dimensional and filling
the design space would require a non-affordable number of simulations of the true expensive
models. The question that arises then is whether it is really necessary to evenly span the data in
the entire design space. There are certainly regions of the space which are of more interest than
the others, say those where the objective function is optimal. Many researchers have lingered
on this question leading to several infill sampling criteria (Sasena, 2002). The idea is to start with
a fair initial design, build the surrogate model and then iteratively update the design according
to various criteria so as to improve the metamodel accuracy. The sampling criteria are derived
according to the designers aim i.e. whether it is the objective or the constraint functions that are
approximated. We are concerned with the latter case. However, the enrichment criteria have
been originally developed for the former. For the sake of clarity, we first introduce sampling
criteria for the minimization w.r.t. a surrogate model.

4.3.2.1 Sampling at the current minimum

The most obvious approach is to consider checking the validity of the solution a posteriori, i.e.
after an optimal solution has been found. The basic idea is to evaluate the model on the current
point found by the optimizer and if it is not accurate enough, then add this point so as to locally
improve the metamodel accuracy. The following steps achieve this in an iterative scheme:

1. Sample an initial design;

2. From the current design, build a surrogate model;

3. Find the minimum of this surrogate model;

4. Compute the true function at the location of this minimum;

5. Add this new point at the current design and go to step 2, unless a predefined conver-
gence criterion is met.

This simple approach may probably work for some functions. However, if the initial meta-
model is too inaccurate, it may converge in a local optimum.

Figure 4.5 illustrates the point. The functionM (x) defined by equation Eq. (2.94) is minimized
in X = [−1, 1]. An initial sample of six points is randomly drawn in X. This figure shows
that updating the dataset with the current solution found by the metamodel leads to a local
minimum. This is due to the poor quality of the initial response surface which mislead the
overall optimization.

This shortcoming may be avoided by considering the epistemic uncertainty associated to the
metamodel. Using a Kriging model, we show in Figure 4.6 the initial mean prediction of the
Kriging approximation and its associated 95% confidence interval (CI). It can be observed on
the left panel that beside the neighborhood of the local minimum, the leftmost region is associ-
ated with high uncertainty due to the sparsity of samples there. Considering this uncertainty,
this region, which actually contains the global minimum, would be a good searching candidate.
However by the above-strategy, the successive enrichments have helped reduce the uncertainty
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Figure 4.5: Minimization of a function through a metamodel. The updating of the design by
the minimum of the metamodel leads to a local minimum.

around the local minimum without exploring the region with the global minimum (Figure 4.6b).
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Figure 4.6: Kriging approximation with its 95% confidence intervals (CI) before (left) and after
enrichment (right).

This shows the necessity of considering a probabilistic framework while optimizing through a
response surface. The criteria presented in the sequel make use of it.

4.3.2.2 Probabilistic framework for surrogate-based optimization

As shown in the previous example, simply relying on a model approximation is not enough
when one cannot fully trust the prediction given by the surrogate model. One must therefore
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account for potential discrepancies between the true and surrogate models. Such information is
not readily available at the time of optimization. However, using metamodels such as Kriging,
one may rely on the prediction variance which gives an idea on where the model might lack
of accuracy. Jones et al. (1998) have introduced the so-called expected global optimization (EGO)
which is based on this concept. EGO seeks to solve the surrogate-based optimization problem
by balancing the search strategy to regions where the surrogate model is minimized (exploita-
tion) and those where its variance is high (exploration). This strategy allows one to achieve a
global search and avoid the pitfall illustrated in the previous example. Many algorithms that
exploit the same idea can be found in the literature. We present some of them below.

Lower confidence bound
The most natural way to include model epistemic uncertainty is to consider the lower bound

of the confidence interval (Cox and John, 1997), though it is not the historical first approach
(Kushner (1964) had earlier introduced a criterion based on the so-called probability of improve-
ment). Considering a Kriging predictor of mean µM̂(x) and variance σ2

M̂(x), the updating
formula is given as follows:

xnext = arg min
x∈X

µM̂(x)− κσM̂(x), (4.11)

where κ is a coefficient to set.

This way, regions with current minimum and high uncertainty are balanced. A high value of
κ puts more emphasis on the region with high uncertainty whereas a low value concentrates
the search toward the local minimum. In the previous example of Figure 4.6, taking κ = 1.96
would result in searching lower bound of the 95% confidence interval. It is clear that the al-
gorithm would add samples in the regions of the global minimum and would converge. On
the contrary, it is not sure that a too small value of κ would allow to spring out of the local
minimum (e.g. κ = 0.25). Thus this approach shares the same drawback with Kuhsner’s prob-
ability of improvement, i.e. somehow an improvement objective is fixed. To avoid choosing a
parameter, Jones et al. (1998) came up with the so-called Expected Improvement function.

Expected improvement
An efficient way to take into account the uncertainty of the prediction is presented in Jones

et al. (1998) and earlier in Mockus (1974). Consider an initial DOE D = {(xi, yi) , i = 1, . . . , n}
and a Gaussian process predictor M̂, the so-called improvement is defined as:

I (x) = max
x∈X

(
ymin − M̂(x), 0

)
, (4.12)

where ymin = min (yi, i = 1, . . . , n).

This improvement is a truncated positive Gaussian variable. The expected improvement is de-
fined as its expectation:

EI(x) = E [I (x)] =
∫ ymin

−∞
(ymin − y)ϕ

(
y− µM̂(x)

σM̂(x)

)
dy. (4.13)

After integration by parts of Eq. (4.13), a closed form of the expected improvement can be
derived (a proof is given in Ginsbourger (2009), p.109):

EI (x) =
(
ymin − µM̂ (x)

)
Φ
(

ymin − µM̂ (x)
σM̂ (x)

)
+ σM̂ (x) ϕ

(
ymin − µM̂ (x)

σM̂ (x)

)
. (4.14)
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The next point in the sample is thus defined as the one which maximizes EI(x). This function
has two complementary parts. The first half is a product between the improvement and the
probability that the point is lower than the current minimum. The second part rather grows
when the Kriging variance σ2

M̂ at a given point is high. Both regions are henceforth likely
to be explored by the algorithm. The example in Figure 4.7 is plotted with the previously
introduced initial design. The lower panels show the expected improvement as a function of x.
The argument that maximizes them is chosen as the next point to add in the DOE. After a first
update of the design near the local minimum, the algorithm explores the region of the space
with high uncertainty and eventually converges towards the global minimum.
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Figure 4.7: Kriging approximation with its 95% confidence intervals (CI) before (left) and after
enrichment (right).

Balance between minimum and variance
Instead of searching the minimum of the metamodel, it might be needed to rather seek to

reduce the variance of the predictor. This can be accomplished by putting more emphasis on
the variance of the predictor than on the current minimum improvement. In this way, one
could direct the algorithm to local or global search. The so-called Generalized Expected Improve-
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ment (GEI) provides an additional parameter to direct the optimization. It was introduced by
Schonlau (1997), considering a positive integer g and reads:

Ig (x) = max
x∈X

((
ymin − M̂ (x)

)g
, 0
)

. (4.15)

Taking its expectation, the closed-form of the generalized expected improvement is obtained
with the following recursive formula:

EIg (x) = σ
g
M̂

g

∑
k=0

(−1)k
(

g!
k!(g− k)!

)(
ymin − µM̂

σM̂

)g−k

Tk

with T0 = Φ
(

ymin − µM̂
σM̂

)
T1 = −ϕ

(
ymin − µM̂

σM̂

)

and for k > 1, Tk = −ϕ

(
ymin − µM̂

σM̂

)(
ymin − µM̂

σM̂

)k−1

+ (k− 1) Tk−2.

(4.16)

The dependence of µM̂ and σM̂ on x has been left aside for the sake of clarity.

The parameter g is used to switch from local to global search and vice-versa. The case g = 1
corresponds to the standard expected improvement. The higher the integer g, the more empha-
sis is put on the variance. The challenging task is that of finding the value of g which switches
the search strategy.

Many authors proposed heuristics to alternate the optimization between local and global search.
Sasena (2002) presented in his PhD thesis a cool criterion. He started from the observation that
too high a value of g would converge too slowly, whereas if g is chosen too small, the algorithm
would overlook the global minimum. He then proposed a simulated annealing-like algorithm,
i.e. the algorithm starts with a high value of g and reduces as the optimization progresses.
Hence the early iterations globally seek to reduce the overall variance of the metamodel while
the latter search more accurately around the identified local minima.

Jones (2001) used the probability of improvement criterion. Since the search strategy depends
on the value of the target improvement, he proposed to compute the probability of improve-
ment for many values of the target so as to find their maximum and then cluster them. This
way, it is possible to add simultaneously many points in the design for both local and global
searches.

This is actually a good way to make full use of computational capabilities. Indeed, in an indus-
trial context (though not only), clusters of computers allow to launch in parallel many compu-
tations. It is therefore appealing to use this capacity to accelerate the optimization by adding
simultaneously many points at each iteration. Ginsbourger et al. (2008) extended EI to multi-
points by introducing the q-EI, where q points are simultaneously added to the design at each
iteration. The authors developed a closed form for q = 2 using the uni- and bi-variate standard
Gaussian CDF. For q ≥ 3, the general expression is too complex for analytical solution so they
resort to numerical strategies (Monte Carlo Simulation). An implementation is available in the
R package DiceOptim.

4.3.3 Using surrogate models for the constraints

We have introduced above some sampling criteria originally used in EGO for optimization. The
problem to solve is however slightly different in our case. In fact, our problematic is lightweight
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design of vehicles under crashworthiness constraints. So the objective function is the weight
of some parts of the body-in-white. With the inputs being parts thicknesses, the weight can
be easily computed by simple algebra. Thus there is no need to substitute the objective func-
tion by a metamodel. On the other hand, the constraints are finite-element-based expensive
functions and therefore require to be approximated by metamodels. Hence the EGO algorithm
introduced above is not appropriate, since the response surfaces are not being optimized. The
adaptive enrichment of the design would rather serve to improve the quality of the metamodel,
and preferably on regions where the constraints are likely to be violated.

4.3.3.1 Adaptations of the expected improvement

Some authors have adapted the widely-used expected improvement to fit the problem of con-
straints handling. We review some of them below.

Adjusted expected improvement
Schonlau et al. (1998) introduced a method to deal with non-linear constraints in optimiza-

tion. It consists of multiplying the expected improvement by the probability that a constraint
is respected. The problem may be cast as:

EIa(x) = EI(x)
nh

∏
k=1

P
(
M̂k(x) ≤ ḡ

)
, (4.17)

where P is a probability measure associated to the epistemic uncertainty of the surrogate model,
herein Kriging. It must not be confused with the probability measure P introduced earlier
in this manuscript and which rather accounts for the randomness in input parameters of the
model.

The next sampling point is defined as the one that maximizes EIa(x). Hence, when a sample is
likely to violate the constraint, the multiplication of EI(x) by the low probability P

(
M̂k(x) ≤ ḡ

)

makes EIa(x) small. This method does not really eliminate the possibility of sampling an un-
feasible point, it just reduces its likelihood. Since it is involved in an iterative scheme, the
method would eventually converge to a feasible global optimum. As for our problem, keeping
the expected improvement on a perfectly known function is a waste even if the constraints are
handled.

Expected violation
Audet et al. (2000) proposed a method for constraints handling which relies on the so-called

expected violation (EV). It is an adaptation of the expected improvement to constraints violations
and is defined as:

EVk(x) =





(ḡ− µM̂k
(x))Φ

(
ḡ−µM̂k

(x)

σM̂k
(x)

)
+ σM̂k

(x)ϕ

(
ḡ−µM̂k

(x)

σM̂k
(x)

)
if σM̂k

(x) > 0,

0 if σM̂k
(x) = 0.

(4.18)

where µM̂k
(x) and σM̂k

(x) are respectively the mean and standard deviation of the prediction
for the constraint k (k = {1, . . . , nh}).
By analogy with the expected improvement, EV is made of two contributions. The first part of
the expression is low when the constraint µM̂k

(x) ≥ ḡ, i.e. when the constraint is likely to be
violated. The second part is high when the uncertainty in the prediction grows.
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Audet and his co-authors use this technique together with the traditional EI. They actually
sample a set of points for which they compute the expected violations. Those points which
respect predefined criteria on the EV are then selected and their corresponding EI’s are calcu-
lated. Eventually, the q best points with respect to EI are selected as additional samples for the
design update.

Constrained EGO formulation
Using the similarities with methods based on merit functions to solve constrained optimiza-

tion problems, Bichon et al. (2009) introduced the so-called constrained EGO formulation. They
actually use the augmented Lagrangian principle to transform the original optimization prob-
lem into a unique non-constrained problem:

arg min
x∈X

c (x) + λg (x) + rp (g (x))2 , (4.19)

where λ ≥ 0 is a Lagrange multiplier and rp ≥ 0 is a penalty coefficient.

Considering that c (x) and g (x) can be approximated by Gaussian processes, the idea is to
introduce them in an EGO process with computation of the expected improvement. However,
recall that the simple analytical formulation of the expected improvement has been derived
only for Gaussian processes. In Eq. (4.19), the combination will not be a Gaussian process
because of the square in the penalty term. So instead, Bichon et al. (2009) suggested the use of
the expected violation function as constraints. Eq. (4.19) then becomes:

arg min
x∈X

c (x) + λEV (x) + rpEV (x)2 , (4.20)

where EV (x) is the expected violation function introduced in Eq. (4.18).

As EV (x) is deterministic, the objective function of Eq. (4.20) remains a Gaussian process. It is
henceforth readily usable for the computation of the expected improvement.

Expected improvement for contour estimation
Ranjan et al. (2008) adopted an approach where priority is given to the accurate estimation of

the contour
{

x ∈ X : M̂ (x) = ḡ
}

. For this purpose, they introduced an improvement function
which aims at selecting trials where the surrogate is in the vicinity of the level ḡ. It reads:

Iḡ(x) = ε2(x)−min
((
M̂ (x)− ḡ

)2
, ε2 (x)

)
, (4.21)

where ε(x) = αεσM̂(x), with αε being a positive multiplier coefficient.

This improvement function allows one to sample points where the prediction is in the neigh-
borhood of ḡ. To allow one to consider the uncertainty of the prediction as well, its expectation
is computed and reads:

E [Iḡ (x)] =
[
α2

εσ2
M̂ (x)−

(
µM̂ (x)− z

)2
] [

Φ

(
ḡ− µM̂ (x)

σ2
M̂ (x)

+ αε

)
−Φ

(
ḡ− µM̂ (x)

σ2
M̂ (x)

− αε

)]

+ 2
(
µM̂ (x)− ḡ

)
σ2
M̂ (x)

[
ϕ

(
ḡ− µM̂ (x)

σ2
M̂ (x)

+ αε

)
− ϕ

(
ḡ− µM̂ (x)

σ2
M̂ (x)

− αε

)]

−
∫ ḡ+αεσM̂(x)

ḡ−αεσM̂(x)

(
y− µM̂ (x)

)2
ϕ

(
y− µM̂ (x)

σM̂

)
dy.

(4.22)
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The properties of this function are similar to the traditional expected improvement. The three
terms of Eq. (4.22) have complementary aspects. The first term dominates when the prediction
is close to the level ḡ. The second is rather high when the prediction is far from the ε-band
defined by Iḡ(x) and the variance of the prediction is high. Finally the third term tends to
dominate when the prediction is close to ḡ and the uncertainty is high. This means that samples
are also added to sparse regions of the space near the sought contour.

4.3.3.2 Expected feasibility function

Bichon et al. (2008) have introduced a new optimization technique similar to EGO, the so-called
Efficient Global Reliability Analysis (EGRA). Applied in a context of reliability and inspired by
the work of Ranjan et al. (2008) previously introduced, they came up with the so-called expected
feasibility function. It gives an insight on how well the true value of the surrogate function is
expected to satisfy the constraint M̂ (x) = ḡ in the vicinity of ḡ± ε and reads:

EF (x) =
(
µM̂ − ḡ

) [
2Φ
(
ḡ− µM̂

σM̂

)
−Φ

(
ḡ− − µM̂

σM̂

)
−Φ

(
ḡ+ − µĜ

σM̂

)]

− σM̂

[
2φ

(
ḡ− µM̂

σM̂

)
− φ

(
ḡ− − µM̂

σM̂

)
− φ

(
ḡ+ − µM̂

σM̂

)]

+ ε

[
Φ
(
ḡ+ − µM̂

σM̂

)
−Φ

(
ḡ− − µM̂

σM̂

)]
,

(4.23)

where ḡ± = ḡ± ε.

Here as well, ε is chosen so as to be proportional to σM̂. This function behaves as the previously
introduced improvement functions. It is likely to be high when the prediction is close to the
contour level ḡ and when the variance of the prediction is high.

4.3.3.3 Deviation number

In a reliability analysis context, Echard et al. (2011) proposed a new sequential enrichment
technique called AK-MCS (for active Kriging combined with Monte Carlo sampling). In this
technique, candidates for enrichment are selected among the samples of an initial MCS which
minimize the so-called U -function, defined by:

U (x) =

∣∣ḡ− µM̂(x)
∣∣

σM̂(x)
. (4.24)

The behavior of the function is quite simple as it is minimum when either the prediction is
near the contour level (µM̂ → ḡ), when its associated variance is high or both. The AK-
MCS algorithm then consists in selecting among an initial large Monte Carlo sample C ={

x(i) ∈ X, i = {1, . . . , m}
}

, the point that minimizes U (x) and to iteratively process until U (x)
is small enough. The stopping criterion is usually taken to be:

min
i∈{1,...,m}

U
(

x(i)
)
≥ 2. (4.25)

In other words, this criterion means that the probability of misclassifying any point (i.e. consid-
ering it feasible whereas it is not and vice-versa) in the MC candidates for enrichment is lower
than Φ(−2) ≈ 0.05.
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4.3.3.4 Margin probability function

This criterion was used by Dubourg (2011) in his PhD thesis. It relies on the margin of uncertainty
of the Gaussian Process predictor. Such a margin is defined as a confidence region with respect
to the Gaussian process epistemic uncertainty and writes:

M1−α =
{

x ∈ X : ḡ− k1−ασM̂ ≤ µM̂ ≤ ḡ+ k1−ασM̂
}

, (4.26)

where k1−α is a coefficient associated to the confidence level. We consider throughout this thesis
a 95%-confidence margin for which k0.95 ≈ 2.

The margin probability function (MPF) is then defined as the probability that M̂ (x) belongs to
M1−α and reads:

MPF(x) = P
[
M̂ (x) ≤ ḡ+ k1−ασM̂

]
−P

[
M̂ (x) ≤ ḡ− k1−ασM̂

]

= Φ
(
ḡ+ k1−ασM̂ − µM̂

σM̂

)
−Φ

(
ḡ− k1−ασM̂ − µM̂

σM̂

)
.

(4.27)

The next sampling point is then defined as the one that maximizes MPF(x).

4.3.3.5 Illustration examples

Many criteria were presented above. Most of those which are based on the adaptation of EI
have been developed while considering that the objective function is also to be approximated
by a surrogate model. Therefore there may not be optimal for our case. We thus focus on the
remaining three i.e. expected feasibility (EFF), margin probability (MPF) and deviation number
(DNF) functions. In this section, we perform a comparative analysis of these criteria based on
two analytical functions. The first is the one presented earlier in this chapter (see section 4.2.3.1)
in Eq. (4.10). The second is the so-called three-hump camel function which has the interesting
property of featuring three isolated feasible regions when used as a constraint. It reads:

M (x) = x6
1 + 2x2

1 − 1.05x4
1 + x1x2 + x2

2. (4.28)

The associated constraint isM (x) ≤ ḡ over the domain X = [−2, 2]2, where ḡ = 0.5. Figure 4.8
illustrates the function.

For all the following examples, we consider an anisotropic Kriging with a constant trend and
an automatic calibration of the nugget. The model is set up using DiceKriging in R with an
hybrid algorithm for the maximum likelihood estimation of the hyperparameters: a global
search by genetic algorithm followed by a local BFGS method. In this section, the initial design
of experiments consists of a L2-discrepancy based optimized Latin hypercube sample of ten
points.

Figure 4.9 illustrates the initial settings. The DOE then consists of the ten blue triangles. The
true contour is plotted in a thick blue line whereas the Kriging mean prediction is red. The
limits of the margin confidence are plotted in black (the dashed line being the lower limit). In
the subsequent examples, the next best points to sample will be presented as black diamonds
whereas the points already added in previous iterations will be red squares. It should be noted
that in the following plots, the input parameters have been mapped to the unit square.
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Figure 4.8: Illustration of the three-hump camel function.
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(b) Three-hump camel function

Figure 4.9: Initial set up before adaptive sampling (in the reduced space)

Highly non-linear limit state function
In this example only four iterations are presented: 7, 15, 22 and 30. The first observation is

that the deviation number and the margin probability function behave the same way. Up to
iteration #15, exactly the same points are added with either one of the criteria. There is some
divergence starting from that iteration. But this is merely due to the Kriging model. In fact
for some reason and despite the DOE is the same, the two MLE optimizations fail to converge
to the same hyperparameters. The one obtained during MPF iterations seem erroneous as the
hyperparameter in the direction of x2 is too high, producing a slow-varying process in this
direction (Figure (4.10e).

On the other hand, the behavior of the expected feasibility is quite different from the two others.
It actually tends to add a lot of points at the boundary of the design space in the early iterations.
For this reason, the spread of the margin at the last iteration is higher than those of MPF and
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DNF. However, the contour is accurate enough and difference cannot be made between the
three (at least visually).
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(l) EFF interation #15

Figure 4.10: Adaptive design for the estimation of contour with ḡ = 0 of the Haupt function

Three-hump camel function
We proceed in the same way for this second example. The idea is now to be able to detect the

three distinct contours leading to local minima of the function (as shown in Figure 4.8b). Once
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again, MPF and DNF behave exactly in the same way. The functions U (x) and MPF (x) are
represented respectively in Figures 4.12a and 4.12b. One can see that in the vicinity of the limit
states, their landscapes are quite similar (considering that we minimize U (x) and maximize
MPF (x)). However, in general they put too much emphasis on exploitation at the detriment
of exploration. The second contour at the lower right corner is found only at the iteration #25
and then all subsequent points are added there. At the last iteration the contour at the upper
left corner is still not identified. On the contrary EFF, thanks to its tendency to add points at
the boundaries of the design space, catch up quite early the local minima and hence produces
a much more accurate contour.
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Figure 4.11: Adaptive design for the estimation of contour with ḡ = 0.5 of the three-hump
camel function.
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Figure 4.12: U (x) and MPF(x)

4.3.4 Multiple points enrichment

To make full use of the available computational power, parallel computation is often used for
crash simulations. In such a context, it is appealing to add many points per iteration. The
number of points to add is then to match with the number of available CPUs.

Beside these pragmatical considerations, there are other situations where adding many points
at once becomes a necessity. As can be seen in the previous examples, the updating criteria are
multi-modal. In terms of improvement of the contour estimation, there might not be one single
best point but many equally important candidates. Let us take the previous three hump-camel
example with MPF. The third contour level could not be identified after 30 iterations. Look-
ing closely at the refinement criteria, one can realize that after a few iterations, it gets trapped
by high maxima concentrated on extremely small areas in the vicinity of the middle contour.
Thus, large regions of uncertainties are not explored (the two corners) because their local max-
ima remain slightly lower than the global one located around the middle contour. Figure 4.13
illustrates the point. Contours of the MPF function at iterations 15 and 22 and the associated
best next point to add in the learning set are illustrated. During the intermediate iterations
and beyond, the optimizer focuses on high peaks in the middle region largely overlooking the
local maxima. In this sense, a better strategy would be to seek for the volume under the criteria
in small subregions of the design space. The same result can be achieved by multiple points
enrichment. In fact, adding many points per iteration will weight the value of the sampling
criterion with the size of the region in the input space where uncertainty lies and hence may
avoid being trapped in only one part of the contour.

4.3.4.1 Sampling from the learning function

This approach was introduced in Dubourg (2011); Dubourg et al. (2011). They proposed to
consider the sampling criterion as a probability density function (up to a normalizing constant)
of the best point to add in the learning dataset. The idea is then to sample a large number
of candidates according to this distribution. Regions with high expected improvement of the
contour will naturally have a higher concentration of points. A statistical reduction technique,
herein K-means clustering, is then used to summarize the provided information by identifying
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(a) Enrichment criterion at iteration #15.
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(b) Enrichment criterion at iteration #22.

Figure 4.13: Contours of MPF(x) at two different iterations of enrichment.

only K clusters centers. As a last step, the points for enrichment are selected as those in the
Monte Carlo set og candidates which are the closest to the K clusters centers.

Any sampling criterion might be used as a probability density function, provided that it fulfills
some requirements. More specifically, it should be positive (or zero) in Rs and maximum at
the best point. These two requirements can be met by simple analytical transformations on any
function. Besides, its integral should be finite on Rs, which is not the case here since the Kriging
variance increases far from the sampling points. However, since the design space in bounded
in X, it was proposed to multiply it by a pseudo-PDF so as to avoid sampling in regions far
from the design space. The simplest one, an indicator function, was assumed. Hence, the next
best point is considered as a random variable p whose PDF is

fP (p) ∝ E (p) 1X (p) , (4.29)

where E is any of the above enrichment function and 1X is an indicator function equals to 1 if
p ∈ X and 0 otherwise. MPF and EFF can be taken as such but not DNF. In fact, the criterion
should be maximized. Despite −U fulfills this condition, ϕ (−U ) is preferred because it is
smoother.

Sampling according to fP (p) resorts to Markov Chain Monte Carlo (MCMC) techniques. A wide
variety of MCMC algorithms exist (Andrieu et al., 2003). For the following example, we con-
sider the so-called slice sampler (Neal, 2003; Damien et al., 1999). In a nutshell, slice sampling
proceeds by sampling uniformly in the region that lies under fP (p). This is achieved by in-
troducing an auxiliary variable u, sampling jointly (u, p) and eventually ignoring u. To the
authors experience for the purpose of contour refinement, slice sampling works better than the
more general Gibbs sampler or the traditional Metropolis-Hastings algorithm. The main asset
is that it does not feature tunable parameters as the latter two. As argued in Dubourg (2011), it
is more adapted to the task because of the multi-modal and highly skewed form of E (p) (for
instance, see the middle panels of Figures 4.14 and 4.15).

Figure 4.14 shows iterations 1, 4, 7 and 10 of the MCMC approach for adaptively sampling
three points per iteration. The MCMC samples are shown as green crosses in the right end
of each row of the figure. One can see that the three contours are identified quite early. Of
course the choice of the three points is convenient as we have three disjoint contours. However,
examples with two points per iteration also proved to work equally fine.
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(b) Sampling criterion - Iter. # 1
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(c) MCMC samples - Iter. # 1
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(d) Kriging approximation - Iter. # 4
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(e) Sampling criterion - Iter. # 4
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(f) MCMC samples - Iter. # 4
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(g) [Kriging approximation - Iter. # 7
x1

x
2

 

 

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
M

P
F

0.2

0.4

0.6

0.8

(h) Sampling criterion - Iter. # 7
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(i) MCMC samples - Iter. # 7
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(k) Sampling criterion - Iter. # 10
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(l) MCMC samples - Iter. # 10

Figure 4.14: Multiple points enrichment based on the MCMC approach. Three points are added
per iteration.

4.3.4.2 Weighted K-means clustering

Schöbi and Sudret (2014) proposed a framework for adding multiple points using AK-MCS.
Starting from an initial MC sampling, they define the set of points belonging to the margin of
uncertainty:

M =
{

x ∈ X : ḡ− 2σM̂ (x) ≤ µM̂ (x) ≤ ḡ+ 2σM (x)
}

. (4.30)
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4. SURROGATE-BASED OPTIMIZATION

Next, they select K points as the centroids of K clusters derived from a weighted K-means
clustering with weight w (x) = ϕ (−U (x)), where ϕ is the standard Gaussian PDF. We can
extend this here to other refinement criteria. As with the MCMC-based approach, when a
cluster centroid is not within the predefined margin of uncertainty, its closest point in this
margin is selected instead.

Figure 4.15 shows some history plots of the enrichment procedure. This technique has the ad-
vantage of simplicity and is straightforward to implement. Especially, it is not as computation-
ally intensive as the MCMC-based approach. We will therefore rely on it for the applications in
this thesis.

4.3.5 Multi-constraints handling

In the previous section, we have presented some enrichment functions that can be used for
constrained surrogate-based optimization. The enrichment criteria apply to single limit state
surfaces. However, most of the applications consist of multi-constrained problems. Additional
measures may be taken to account for them. Dubourg et al. (2011) consider to enrich the limit
state surfaces sequentially. This is the simplest approach but may not be optimal. In fact, some
constraints may be more important than others and focusing on the least important ones may
lead to wasting computational budget. Beside, one looses the advantage brought by parallel
computing as each time the DOE is updated, one has to re-build all the surrogate models.
Finally, it does not assume that all the limit state surfaces can be obtained by a single call to
a mechanical model i.e. a finite element model herein.

Alternatively, Fauriat and Gayton (2014) have proposed a global criterion for AK-MCS in the
case of system reliability. For series systems, i.e. those whose failure probability may be ob-
tained as follows:

Pf = P
(

nh⋃

k=1

gk (X, Z) ≤ 0

)
. (4.31)

They define a composite limit state surface which reads:

gcomp ≡ min
k

gk. (4.32)

Running a component reliability analysis on this single limit state surface is equivalent to run-
ning a system reliability analysis. One may therefore approximate this unique composite func-
tion. However, due to its highly irregular shape, the task of metamodeling is made unnecessar-
ily harder. Fauriat and Gayton (2014) propose to rather apply the composite criterion directly
on the enrichment function. For the deviation number, this criterion reads:

Ucomp =

∣∣∣ḡk0(x) − µM̂k0(x)
(x)
∣∣∣

σM̂k0(x)
(x)

, (4.33)

where
{

k0 (x) ∈ {1, . . . , nh} |ĝk0(x) (x) = minnh
k=1 ĝk (x)

}
denotes the ”most violated” constraint.

Recall that the limit state functions are defined by ĝk (x) = ḡk − M̂k (x), k = {1, . . . , nh}.
This criterion may be generalized to the other learning functions by simply writing:

Ecomp (x) = E
(

µM̂k0(x)
(x) , σM̂k0(x)

(x)
)

, (4.34)
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(c) ϕ (−U )-weighted samples - Iter. # 1
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(e) Sampling criterion - Iter. # 4
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(f) ϕ (−U )-weighted samples - Iter. # 4
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(h) Sampling criterion - Iter. # 7
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(i) ϕ (−U )-weighted samples - Iter. # 7

x1

x
2

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(j) [Kriging approximation - Iter. # 10
x1

x
2

 

 

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

M
P

F

0.2

0.4

0.6

0.8

(k) Sampling criterion - Iter. # 10
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Iter. # 10

Figure 4.15: Multiple points AK-MCS. Three points are added per iteration.

where the index k0 (x) is selected as above. The model M̂k0(x) is therefore the one associated to
the most violated constraint.

This approach might be flawed in cases where the different constraints have values not ex-
pressed in the same scale. The ranking of the constraints in terms of the degree of violation
would require a normalization. If one constraint dominates the other in terms of magnitude,
then the enrichment will focus on this constraint. This effect was shown in Moustapha et al.
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4. SURROGATE-BASED OPTIMIZATION

(2015) where the approach was applied to the lightweight design of an automotive body struc-
ture sub-system. A turn-around would be to consider directly ranking the constraints with
respect to their U -values. The function is actually normalized so one may write instead:

Ucomp = min
k∈{1,...,nh}

Uk (x) =

∣∣∣ḡk − µM̂k
(x)
∣∣∣

σM̂k
(x)

. (4.35)

The two approaches are compared in Figure 4.16. The upper panel shows the approximated
limit states surfaces. The dots are points in C2 which are used to compute the criterion. The col-
ors refer to the constraint that is used for the computation of Ucomp in either of the approaches.
The lower panel shows contours of the resulting criterion and the next best points (black dia-
monds).
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(d) Criterion on mink Uk: contour of Ucomp

Figure 4.16: Comparison of the two approaches to account for multiple constraints: the com-
posite criterion proposed by Fauriat and Gayton (2014) and the one we proposed simply based
on the minimum of the deviation number.
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4.4 RBDO with surrogate model and enrichment

4.4.1 Introduction

The above items are now combined so as to propose a methodology for reliability-based de-
sign optimization with surrogate models and quantiles measures of conservatism in the design.
Three steps can be clearly identified.

1. Start an initial design over which a surrogate model is built. This initial DOE can be as
scarce as possible so that the computational budget is saved for refinement of the contour
in regions where the constraints are likely to be violated;

2. Iteratively update the initial design so that the surrogate models are accurate enough on
the limit state surfaces;

3. Proceed to optimization on the surrogate model.

The first step may be achieved by one of the designs introduced in Appendix A. In this the-
sis, we mainly consider a L2-discrepancy optimized Latin hypercube. The second step resorts
to any of the criteria for contour refinement i.e. deviation number, margin probability or ex-
pected feasibility functions. The three approaches, despite some minor differences, roughly
lead to the same results. We consider the deviation number for its simplicity. However, the
criteria were introduced in the case of deterministic analysis. Therefore, we propose below to
adapt it to quantile estimation. Eventually, the third step can be solved by any general-purpose
optimization algorithm. CMA-ES has been selected as the default optimizer in this thesis.

4.4.2 Contour refinement with quantile estimation

The criteria introduced for contour refinement are readily applicable for deterministic design
optimization. In the case of quantile-based RBDO, some adaptations must be made. In fact,
we seek to refine the surrogate model so that the quantiles are accurately estimated in regions
where the constraints are likely to be violated. The constraints are expressed in the design space
D but the surrogate model is built in the augmented space X×Z. The trick is then to find a
point in X×Z which will most likely improve the metamodel so that, in fine, the quantile is
more accurate in the regions of interest. To achieve this, we devise the following algorithm
(summarized in Figure 4.19), adapting the deviation number:

1. Sample a set of candidates for enrichment C =
{

d(i) ∈ D, i = 1, . . . , n
}

;

2. For any design d(i) ∈ C:

a) Build the Monte Carlo set C(i)
q =

{(
x(j), z(j)

)
, j = 1, . . . , N

}
needed to compute the

quantile, see Eq. (2.90);

b) Compute the quantile q̂α

(
d(i)
)
= ŷ(bNαc) as defined in Eq. (2.91)

c) Identify the following point:

(
x(i)α , z(i)α

)
=
{
(x, z) ∈ C

(i)
q |q̂α

(
d(i)
)
= µM̂ (x, z)

}
; (4.36)
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4. SURROGATE-BASED OPTIMIZATION

d) Compute the criterion on this point:

Ũ
(

d(i)
)
≡ U

(
x(i)α , z(i)α

)
=

∣∣∣ḡ− µM̂

(
x(i)α , z(i)α

)∣∣∣

σM̂

(
x(i)α , z(i)α

) ; (4.37)

3. Select the next best point as the one which minimizes the deviation number:

(xnext, znext) = arg min
(xα,zα)∈Cα

Ũ (d) , (4.38)

where Cα is the set of all points defined in Eq. (4.36).

Figure 4.17 illustrates how the point are chosen for the computation of the deviation number
in Eq. (4.37). In the left panel, four points are selected in the design space. They are shown as
blue crosses. For each of them, the MC population C

(i)
q used to compute the quantile is shown

as colored dots. The corresponding points
(

x(i)α , z(i)α

)
are highlighted by the red crosses. These

points are the one used to compute the U criterion.
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dates for enrichment
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(b)M (x, z) in the augmented space and resulting quan-
tile qα (d)

Figure 4.17: Illustration of enrichment in the augmented space while the constraint is defined
in the design space.

The entire methodology is also illustrated in Figure 4.18. We consider the two-dimensional
function introduced in Eq. (2.94). The left column shows contours of the enrichment function
in the augmented space. The contour

{
(x, z) ∈ X×Z|µM̂ (x, z) = 0

}
is also shown as the

black dashed line. The small crosses define the set Cα which are the input points for compu-
tation of U in Eq. (4.37). In the right column, the true and approximated quantiles are plotted
respectively in blue and black. The initial DOE consists of six points (blue triangles). The figure
illustrates four iterations of the enrichment. The convergence occurs after 11 iterations when
the confidence interval of the quantile estimation has shrunk considerably. This confidence
interval [q−α , q+α ] is computed here by evaluating the quantiles with respect to µM̂ ± 2σM̂.
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(c) Augmented space (left) and design space (right): iteration #7
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(d) Augmented space (left) and design space (right): iteration #10

Figure 4.18: Enrichment with the function (d, z) 7→ M (d, z) =
(
1/3z4 − 2.1z2 + 4

)
z2 + dz +

4d2 (d2 − 1
)
. In the left panel, the augmented space with contour of the enrichment functions

and the set Cα shown as small crosses. In the right panel, the quantities qα, q−α and q+α respec-
tively in black, red and cyan. Triangles and squares respectively stand for initial and enrich-
ment points.
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1. Initialization

2. Global enrichment

Build the augmented space - (section 4.2.2.2)

Build/Update DOE of size n in X × Z

Build Kriging models M̂k, k = {1, . . . , nh}

Generate candidates for enrich-
ment C =

{
d(i) ∈ D, i = 1, . . . , m

}

i = 1

Build C
(i)
q ={(

x(d(i)), z
)
∈ X×Z, i = 1, . . . , N

}
−

Eq. (2.90)

Compute the quantile and get (x(i)α , z(i)α ) ={
(x, z) ∈ C

(i)
q |qα

(
d(i)
)
= µM̂ (x, z)

}

- Eq. (4.36)

Compute Ũ
(

d(i)
)

- Eq. (4.37)

Is i = m ?

i = i + 1

Is min Ũ > 2 ?

n = n + 1

Proceed to optimization
on the Kriging models

End

no
yes

no

yes

Figure 4.19: Flowchart of the methodology with enrichment for quantile estimation
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4.5 RBDO with two stages of enrichment

4.5.1 Motivations and first stage of enrichment

The stopping criterion proposed here is quite conservative. Requiring min Ũ ≥ 2 leads to
focusing in the vicinity of the limit state surface in the entire design space. This would definitely
lead to a needlessly high number of points. Besides, there are regions of the space where the
objective function increases and which consequently are not of interest to the designer. EGRA
approach does not indeed account for information about the fitness of the objective function as
EGO does.

For these reasons, we propose a two-stages enrichment methodology. The first stage consists in
globally updating the design of experiments as proposed in the previous section. However, the
conservative stopping criterion is modified. Instead of requiring Ũ to be higher than 2 for all
points of C, we relax the condition to only a portion of the points. Let us consider the following
subset of C

C2 =
{

d ∈ C|Ũ (d) ≤ 2
}

. (4.39)

The relaxed stopping criterion for this first stage of enrichment is considered achieved when:

η = Card (C2) /Card (C) ≤ η̄. (4.40)

η ∈ [0, 1] is hence the percentage of points for which Ũ ≤ 2. This threshold can be tuned to
control the global accuracy of the surrogate model in the vicinity of the limit state surface. The
early stopping criterion min Ũ ≥ 2 corresponds to η̄ = 0. For our applications, we set η̄ = 0.15.
Figure 4.20 shows two quantile estimates for two different iterations of enrichment in the ex-
ample introduced above. The right panel shows the last iteration for η̄ = 0 whereas the left
one corresponds to η̄ = 0.15. The latter does not match perfectly the true quantile in the entire
design space. But achieving this in the former case had required 6 additional iterations thus
doubling the computational budget for enrichment. We argue here that such an accuracy is
not really necessary. In fact, let us consider the optimization problem introduced in Eq. (2.96)
whose objective function is min (d + 1)2. The rightmost region of the space corresponds to
increased values of the objective function, and we do not need to be extremely accurate there.
Instead, we henceforth advocate to stop this first stage of enrichment with respect to the relaxed
criterion. The residual model uncertainty can be further reduced during the optimization pro-
cess as explained in the sequel. A pseudo-algorithm for this global enrichment strategy is given
in Algorithm 1.

4.5.2 The second stage of enrichment

The idea for this second stage of enrichment is to bring an additional information to the enrich-
ment in the fashion of EGO. The optimization algorithm starts with a surrogate model which
is known to be globally accurate i.e. roughly all regions of interest have been located but there
remains a residual epistemic uncertainty in these regions. During the optimization, each time
the surrogate model is called, its accuracy is checked. In the case it is not deemed satisfactory,
a local enrichment is performed so as to improve the accuracy of the quantile estimate.
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Figure 4.20: Global enrichment of the function (d, z) 7→ M (d, z) =
(
1/3z4 − 2.1z2 + 4

)
z2 +

dz + 4d2 (d2 − 1
)

with two values of the thresholds for enrichment. In the left panel, the crite-
rion we propose. In the right panel, the original criterion min Ũ ≥ 2

4.5.2.1 Enrichment for quantile accuracy

To assess the accuracy of the quantiles, let us first introduce upper and lower bounds on the
quantiles, respectively denoted q+α and q−α . These two quantities are defined with respect to the
upper and lower margins of uncertainty as defined by the Kriging model with a 95% confidence
level. In other words, the values of q+α and q−α are defined by computing the quantile with
respect to µM̂ + 2σM̂ and µM̂ − 2σM̂. The following relationship holds for any d ∈ D:

q̂−α (d) ≤ q̂α (d) ≤ q̂+α (d) , (4.41)

since σM̂ (x, z) ≥ 0 for any point (x, z) ∈ X×Z.

The quantities q−α and q+α therefore bound the quantile estimate. The width of the correspond-
ing margin decreases with σM̂, that is as the Kriging epistemic uncertainty is reduced. This
bound can therefore be used to quantify the error brought by replacing the true model by sur-
rogate models. Dubourg et al. (2013) and earlier Deheeger and Lemaire (2007) used similar
bounds to assess accuracy of failure probabilities estimated with respect to Kriging and sup-
port vector machines. Here we consider the relative width of this quantile margin with respect
to the threshold. This leads to the following accuracy criterion:

ηq (d) =
q̂+α (d)− q̂−α (d)

ḡ
≤ η̄q, (4.42)

if ḡ 6= 0. Otherwise, only the numerator is considered and the threshold η̄q is modified to
account for it.

If at the i-th iteration of optimization ηq(d(i)) > η̄q, then it is considered that the accuracy of the
quantile with respect to the threshold is not enough. Since the margin width is proportional
to the Kriging epistemic uncertainty, the means to reduce it boil down to adding points to
the design of experiments. In this respect, the candidates for enrichment are taken among the

132



4.5. RBDO with two stages of enrichment

Algorithm 1 Global enrichment strategy with quantiles as constraints

Initialization:
Initial DOE D . Here optimal Latin hypercube
Initial metamodel M̂
Global accuracy criterion threshold η̄ . By default here η̄ = 0.15
Size of the Monte Carlo candidates for enrichment m . By default here m = 5, 000
Quantile value α . By default here α = 0.95
Size of the Monte Carlo set for quantile computation N . By default here N = 10, 000

1: repeat
2: Sample uniformly C =

{
d(1), . . . , d(m)

}
in the design space D

3: for i = 1 to m do
4: Draw samples (x1, z1) , . . . (xN , zN) in the augmented space where X ∼ fX|d(i) and

Z ∼ fZ
5: for j = 1 to N do
6: ŷj = µM̂

(
xj, zj

)

7: end for
8: qα

(
d(i)
)
= quantile

({
ŷj
}N

j=1 , α
)

9: Identify the point
(

x(j)
α , z(j)

α

)
. As in Eq. (4.36)

10: Ũj =
∣∣∣ḡ− µM̂

(
x(j)

α , z(j)
α

)∣∣∣ /σM̂

(
x(j)

α , z(j)
α

)

11: end for
12: if K == 1 then . The point that minimizes Ũ is chosen

13: (xnext, znext) = arg min
{
Ũj

}N

j=1
14: else . K points are chosen among the N candidates
15: (xnext, znext) = Weighted K-means clustering with weight ϕ

(
−Ũj

)

16: end if
17: Update DOE D and metamodel M̂
18: Compute accuracy criterion η . Following Eq. (4.40)
19: until η ≤ η̄

points (x, z) ∈ C
(i)
q since they are the very points used to compute the quantile. The deviation

number can henceforth be adapted so as to find points that enable an improvement of the
quantile. In this respect, the following criterion can be derived:

U (x, z) =

∣∣∣q̂α

(
d(i)
)
− µM̂ (x, z)

∣∣∣
σM̂ (x, z)

, (4.43)

where (x, z) ∈ C
(i)
q .

The arguments that minimize Eq. (4.43) are the one that will improve the quantile estimate.
Sequentially adding points in the design of experiments following this scheme will eventually
lead to an accurate estimate of the quantile. In the particular case when only one point is added,
the argument that minimizes U is actually

(
x(i)α , z(i)α

)
defined in Eq. (4.36).
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This enrichment scheme is embedded in optimization. We avoid gradient-based approaches
since the problems we aim to solve are multi-modal and therefore not well fitted to local search
methods. We rather consider a global search technique, more specifically the covariance matrix
adaptation evolution strategy method (CMA-ES). Furthermore, we consider the (1+ 1)-scheme
where design points are sampled sequentially, i.e. one parent generates one offspring. This
setting allows us to check for all sampled points that the quantile accuracy is below a given
threshold before moving to the next one. However a more general setting where many points
are sampled in each generation of the optimization algorithm may also be considered. The
enrichment strategy would however need to be slightly modified so as to select the particular
design points for which the U criterion are calculated. This methodology is summarized in the
pseudo-algorithm 2.
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Algorithm 2 Adaptive Kriging Quantile-based RBDO

Initialization:
Initial DOE D . Here based on optimal Latin hypercube
Initial metamodel M̂
Optimization starting point d(0)

Number of enrichment points per iteration K . Here by default K = 3
Constraint and quantile accuracy thresholds ḡ and η̄q . Here by default η̄q = 0.1
Size of the Monte Carlo set for quantile estimation N . Here by default N = 10, 000

1: i = 0
2: while Not converged do
3: Draw samples C

(i)
q = {(x1, z1) , . . . (xN , zN)} in the augmented space where X ∼ fX|d(i)

and Z ∼ fZ
4: for j = 1 to N do
5: ŷj = µM̂

(
xj, zj

)

6: ŷ−j = µM̂
(

xj, zj
)
− 2σM̂

(
xj, zj

)

7: ŷ+j = µM̂
(

xj, zj
)
+ 2σM̂

(
xj, zj

)

8: end for
9: qα

(
d(i)
)
= quantile

(
{ŷ}N

j=1 , α
)

10: q−α
(

d(i)
)
= quantile

(
{ŷ−}N

j=1 , α
)

. Lower bound of the quantile

11: q+α
(

d(i)
)
= quantile

(
{ŷ+}N

j=1 , α
)

. Upper bound of the quantile

12: if (q+α − q−α ) /ḡ > η̄q then
13: for k = 1 to N do
14: Uk =

∣∣µM̂ (xk, zk)− qα

∣∣ /σM̂ (xk, zk)
15: end for
16: if K == 1 then . The point that minimizes U is chosen
17: (xnext, znext) = arg min {Uk}N

k=1
18: else . K points are chosen among the N candidates
19: (xnext, znext) = Weighted K-means clustering with weight ϕ (−Uk)
20: end if
21: end if
22: Update DOE D and metamodel M̂
23: d(i) ← d(i) + ν(i) . Explore the next design point (here we use (1 + 1)-CMA-ES)
24: i← i + 1
25: Check convergence of the optimization algorithm
26: end while
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4. SURROGATE-BASED OPTIMIZATION

4.5.2.2 A summary of the proposed methodology

The entire methodology for quantile-based RBDO with enrichment of an initial design of exper-
iments is summarized in the flowchart of Figure 4.21. The initialization consists in setting the
size of the starting design of experiments n, the number of points that are added per iteration in
the first and second stages of enrichment, respectively denoted by K1 and K2 and thresholds η̄
and η̄q. The size of the initial design of experiments can be set relatively low. As for η̄, the lower
it is, the more residual uncertainty will be left before the second stage of enrichment is started.
The overall optimization time may therefore be affected by the setting of these parameters. In
an industrial context, where the project lead times matter a lot, it is necessary to fine-tune these
parameters so as to avoid too many iterations of enrichment. One leverage is of course the
recourse to parallel computations to add many points per iteration. Besides, from a more prac-
tical point of view, one knows in advance what the computational budget approximately is for
industrial applications. In principle for a given total number of calls to the model, the surrogate
model is more accurate when the enrichment is distributed over more iterations. But this does
not favor a reduction of the project lead-time. The trick is then to adapt the choices of n, η̄ and
η̄q so as to trade the optimization time with the number of different iterations of enrichment.

Once these parameters are set, an initial design of experiments is generated and the Kriging
models are built. Then the first stage of enrichment starts as described in Section 4.4.2. This
may be seen as a global enrichment stage. The algorithm first searches to locate all regions of
interest. In contrast, the following second stage of enrichment is local. Points are added locally
around the current design to improve the quantile estimate. The optimization algorithm we
use is the (1 + 1)-CMA-ES for constrained problems (Arnold and Hansen, 012a). In this second
stage some tricks may be used to fine-tune the efficiency of the enrichment scheme. In fact, it
is expected that the optimization algorithm explores the design space in the early iterations
and then will focus on exploiting the identified local minima in the latter iterations. In such a
case, it is not necessary to be extremely accurate in the early iterations, so the threshold η̄q may
be relaxed. Likewise, during optimization, the algorithm may sample points which are either
unfeasible or which do not improve the fitness with respect to the current best point. In such
cases, it might also be interesting to relax the threshold. These two points can be used to fine-
tune the enrichment scheme. Especially, one can consider a decreasing sequence of thresholds
in a simulated-annealing fashion i.e. a threshold that is relatively high in the early iterations
and that decreases in the latter ones as the optimization algorithm starts exploitation.
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4.5. RBDO with two stages of enrichment

1. Initialization (Figure 4.19)

2. Global enrichment (Figure 4.19)

i = 0

Build C
(i)
q

Compute the quantile
qα(d(i)), the bounds q±α (d(i))

and the criterion η
(i)
q

Is η
(i)
q ≤ η̄q ?

Update DOE following Eq. (4.43)

Update Kriging models

Run one iteration of CMA-
ES: d(i+1) = d(i) + ν(i)

Convergence achieved ?

End

i = i + 1

yes

no

no

yes

Figure 4.21: Flowchart of the methodology with enrichment for quantile estimation
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4. SURROGATE-BASED OPTIMIZATION

4.5.3 Validation example

To illustrate and validate this methodology, we consider the Haupt problem already introduced
in this chapter. The optimization problem reads:

d∗ = arg min
d∈D

(d1 − 3.7)2 + (d2 − 4)2 s.t. g (d) = −d1 sin (4d1)− 1.1 sin (2d2) ≤ 0. (4.44)

The RBDO problem was formulated by considering that the design variables follow indepen-
dent normal distributions: Xi ∼ N

(
di, 0.12). A reliability index β̄ = 2 corresponding to a

target failure probability P̄f = Φ
(
−β̄
)
= 0.0228 was also considered.

In section 4.2.3.1, the optimization was performed with models built on different DOEs of in-
creasing sizes. The results were accurate only with the designs of 80 and 100 points. In this
section, we apply the enrichment strategy introduced here. We start with a scarce initial design
of size 10.

For the first stage of enrichment, we consider η̄ = 0.15. This leads to adding 24 points in the
design. For the record, letting the algorithm run until the criterion min Ũ ≥ 2 is reached leads to
adding 47 points. Figure 4.22 shows the resulting DOE and Kriging models after enrichment for
each of the two cases. The true and approximated limit state surfaces are respectively plotted in
red and blue. In the left panel, the contour of the limit state surface is well identified however
the approximation is not completely accurate as residual uncertainty of the Kriging model
has been left on purpose for the next stage. In the right panel, the Kriging model completely
matches the true model in the entire design space. This enhanced accuracy however comes at
the cost of model evaluations which almost double between the two cases.
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4

x1

x 2

(a) Final state with the stopping criterion η̄ = 0.15

0 2 4

0

2

4

x1

x 2

(b) Final state with the stopping criterion η̄ = 0
(minU ≥ 2)

Figure 4.22: DOE and resulting Kriging models after the first stage of enrichment. In the left
panel, the relaxed threshold we propose and in the right one, the original criterion min Ũ > 2.

Considering the setting in Figure 4.22a, we start optimization using constrained (1+1)-CMA-ES.
The optimization converges to the reference solution after updating the design ten times. The

138



4.5. RBDO with two stages of enrichment

overall number of model evaluations in the entire process is 45. This is to compare with the
introduction example in section 4.2.3.1 where an accurate solution could not be found with an
initial design of size 60. Likewise, there are still less points in the designs as if we were to use the
initial criterion of min Ũ ≥ 2. The optimization process is illustrated in Figure 4.23. The final
Kriging model is shown to be accurate in the region around the minimum. In fact, enrichment
points were added only there. The accuracy of region with increased objective function has
not been improved, hence avoiding the waste of model evaluations. In this figure, we also
plot the points sampled by CMA-ES. The red points are those falling in the unfeasible set. The
green pattern show the successive best points sampled during optimization up to the optimal
solution shown as green diamond. Finally, the blue points are feasible but did not improve
the current best point at the moment they were sampled. These information may be used to
further reduce the computational cost. For instance, one may relax the accuracy criterion for
blue and red points in the latter iterations as one already knows that they will not be kept by
the optimizer.

0 2 4

0

2

4

x1

x 2

c

Figure 4.23: Convergence of CMA-ES: Points sampled during optimization

Eventually, history plots of the enrichment criteria for each stage are shown in Figure 4.24
below. The thresholds are plotted in dashed red lines. For the second stage, the threshold
was set dynamically. Three levels of decreasing values were considered. In fact by setting the
threshold high in the early iterations and lowering in the latter one, we avoid enriching too
much while CMA-ES is exploring. Enrichment is carried out each time the blue plot is above
the red line. As the design is enriched and the optimization starts focusing on a region of the
space, the quantile accuracy criterion ηq becomes small.
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(a) Evolution of the criterion η for the first stage of en-
richment
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(b) Evolution of the criterion ηq of the second stage of
enrichment

Figure 4.24: DOE and resulting Kriging models after the first stage of enrichment.

4.6 Conclusion

In this chapter, we have introduced a surrogate modeling approach for reliability-based design
optimization. This RBDO problem is solved thanks to a double-loop approach where the inner
loop simply consists of the computation of quantiles of the approximated constraints. The
surrogate models are built on the augmented space so as to cover a sufficiently large area where
the realizations of the random parameters lie. Various techniques for sampling in this space
were reviewed. It was shown on a few examples that it is necessary to rely on adaptive designs
of experiments in order to reduce the computational cost. Among the numerous techniques,
deviation number, whose main virtue is simplicity, was considered for applications.

A methodology for RBDO with two stages of enrichment was eventually proposed. The first
stage consists of global enrichment. The aim is to identify all regions where the constraints
are likely to be violated. The surrogate models, herein Kriging, are then refined in these re-
gions but only up to a certain point. The second stage combines optimization and enrichment.
The idea is to bring additional information to the optimizer by redirecting the computational
budget in regions with increased fitness. The approach was illustrated on a problem with a
two-dimensional highly non-linear limit state function. Efficiency of the RBDO is shown to be
enhanced thanks to this approach. In the next chapter, applications are shown on other analyti-
cal problems with a special emphasis on comparison with solutions found in literature. Finally,
the lightweight design of an automotive body structure is performed.
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5. ACADEMIC AND INDUSTRIAL APPLICATIONS

5.1 Introduction

In the previous chapter, we have introduced a methodology for quantile-based RBDO. This
chapter is devoted to an application of this methodology to the lightweight design of an au-
tomotive body structure. Prior to this, we validate the approach on analytical examples. The
investigated problems were selected so as to cover the three possible cases for the definition of
the probabilistic model:

• Case #1: Randomness in environmental variables only;

• Case #2: Randomness in design variables only;

• Case #3: Randomness in both design and environmental variables.

Furthermore, for the two latter cases, the efficiency of the approach is cross-validated thanks to
data available in the literature. As to the first one, only the accuracy of the found optimum is
checked since an analytical exact solution can be derived.

The second part of this chapter concerns the lightweight design of an automotive body struc-
ture under frontal impact-related constraints. As pointed out in the introduction of this thesis,
frontal impact is chaotic in nature. Thus as a preliminary stage, we study some effects of this
chaotic behavior, i.e. numerical scatter of crash simulations and the possibility of various crash
scenarios. The latter makes use of support vector machines for classification introduced in Sec-
tion 3.3.2. Afterwards, we apply the adaptive-Kriging quantile-based RBDO to the design of a
vehicle.

5.2 Academic validation examples

In this section, we validate the approach introduced in the previous chapter. The three cases
mentioned above are treated. Kriging is selected as default surrogate model in this section.
More specifically, we consider anisotropic Kriging with a constant trend (i.e. ordinary Kriging).
The nugget effect is turned on so as to facilitate the maximum likelihood estimation of the
Kriging hyperparameters. Matérn 5/2 kernel is used as an auto-correlation function. The
initial model is built with a design consisting of an optimal Latin hypercube sampling. As
for optimization, we consider (1 + 1)-CMA-ES for constrained problems completed by an SQP
(gradient-based) algorithm through MATLAB’s fmincon function.

5.2.1 Column under compression

Problem definition
This example was introduced in Section 2.3.3.2. It consists of a column with rectangular cross-

section submitted to compressive loading Fser. The aim is to minimize its section b× h while
avoiding buckling. Buckling is assessed thanks to the critical Euler force which reads:

Fcr =
π2EI

L2 , (5.1)

where L is the length of the column, E is the Young’s modulus of its constitutive material and
I = bh3/12 (b > h) is the column moment of inertia.
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The associated limit state surface therefore reads:

g (d, z) = Fser − k
π2Ebh3

12L2 , (5.2)

where k is a coefficient introduced to account for noise arising from unidentified sources that
may affect the Euler force, d = {b, h}T and z = {k, E, L, Fser}T are respectively vectors gathering
the design and environmental variables. The probabilistic model for this example is reminded
in Table 5.1. Three of the environmental variables are considered as random. The target proba-
bility of failure is P̄f = 0.05. The analytical solution leads to b∗ = h∗ = 238.45 mm, as detailed
in page 51.

Table 5.1: Probabilistic model for the column under compression.

Parameter Distribution Mean (µ) COV (δ%)
k Lognormal 0.6 10
E (MPa) Lognormal 10, 000 5
L (mm) Lognormal 3, 000 1
Fser (kN) − 1.4622× 106 −

First stage of enrichment
To solve this five-dimensional problem, we consider an initial design of size 10. We set the

threshold for global enrichment to η̄ = 0.15. This leads to adding two points in the design.
The successive values of the global accuracy criterion are therefore η = {0.21, 0.15, 0.12}. The
initial value of η is quite low, despite the design of experiments of size 10 is scarce with respect
to the dimension of the problem (five). This means that the constraint is smooth and therefore
easy to approximate. Contour plots of the limit state surface confirm this.

Optimization and Second stage of the enrichment
In this second stage, we start the optimization with the following three values of the accuracy

thresholds in a simulated annealing fashion. For iterations up to 30 we set η
(1)
q = 1 between

iterations 31 and 100, η
(2)
q = 0.5 and beyond 100, η

(3)
q = 0.1. The algorithm converges to the

solution b∗ = h∗ = 239.12 mm which corresponds to a relative error of 0.28 % with respect to
the reference solution. Figure 5.1 illustrates the convergence of the problem. In Figure 5.1a,
the points sampled by CMA-ES are shown in the design space. The red and blue areas delimit
the infeasible space and contours of the objective function are shown in shades of gray. The
points for which the quantile accuracy was beyond the threshold are circled in cyan. History
plots of this criterion is shown Figure 5.1b where ηq and η̄q are plotted respectively in blue and
red. Five enrichments were necessary before convergence. The total number of functions calls
amounts to 18 which is quite low if one is to consider the dimension of the problem. Beside,
when we consider to perform optimization without enrichment with an initial DOE of size 18,
convergence to the true solution is most of the time not achieved.
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(a) Points sampled during CMA-ES in the design space
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Figure 5.1: Convergence of the column under compression optimization problem. In the left
panel, the green points are the successive best points. The blue one are admissible points that
did not improve the best point at the moment they were sampled. The red points are unfeasible
sampled designs. The points encircled in cyan are those around which enrichment has been
done during optimization. In the right panel the cyan circles show iterations where enrichment
has been done.

5.2.2 Choi problem

Problem presentation
A similar example was introduced in Section 2.3.3.1. Here, the objective function and prob-

abilistic model are slightly modified so as to fit the cases treated in the literature. The DDO
problem reads:

d∗ = arg min
d∈[0,10]2

d1 + d2 s.t.:





g1 (d) =
d2

1d2

20
− 1 ≤ 0

g2 (d) =
(d1 + d2 − 5)2

30
+

(d1 − d2 − 12)2

120
− 1 ≤ 0

g3 (d) =
80(

d2
1 + 8d2 + 5

)
− 1
≤ 0

. (5.3)

For the probabilistic model, we consider the settings in Shan and Wang (2008) and Dubourg
(2011) for comparison purposes. In these settings, the design variables are considered as ran-
dom with the following distribution Xi ∼ N

(
di, 0.32), i = {1, 2}. The reliability index is set

at β̄1 = β̄2 = β̄3 = 3. The corresponding failure probability is Pf = 0.0013. The two afore-
mentioned references solve this problem considering different approaches. Some of them are
metamodel-free.

Results and comparison
We start with an initial design of 15 points. For the first stage of enrichment, setting the
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threshold to η̄ = 0.15 leads to adding 19 points to that design. The evolution of the accuracy
criterion is shown in Figure 5.2. It decreases steadily. In fact, when looking at the history of the
added points, one can observe that the enrichment focuses too much on one single constraint,
i.e. g3. Figure 5.3a illustrates this. The blue triangles represent the initial DOE, the red squares
the added points and the black crosses, the points remaining in the set C2 (Eq. (4.40)). The
contours {d ∈ D|gi (d) = 0} are plotted respectively in blue, red and yellow for i = {1, 2, 3}.
The dotted lines represent the associated quantiles qαi . The constraints g1 and g2 are actually
accurately approximated. Despite many points were added around g3, its accuracy is not suffi-
cient. It is actually the one which slows convergence of the first stage of enrichment. However,
it turns out that it is not even active in the optimization problem. So in the second stage there
is no enrichment as the surrogate models are accurate enough in the vicinity of the optimal
solution. Figure 5.3b shows the points sampled by CMA-ES.
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Figure 5.2: Evolution of the global enrichment criterion. The red line shows the threshold η̄.

The solution found here is compared with those in the aforementioned references as shown
in Table 5.2. The brute-force approach consists in optimizing with the true constraints con-
sidering Monte Carlo simulation with 104 samples for the estimation of the quantile. Except in
Dubourg (2011), the other approaches do not rely on surrogate models. PMA and SORA clearly
lead to a larger number of calls to the true models. For the remaining cases, the quantile-based
approach has a larger number of calls to the true models. This can be explained by the en-
richment strategy. As mentioned above, the global enrichment focuses too much on a function
which is not even active. For instance, Dubourg (2011) directly considers the enrichment dur-
ing optimization. Thus, the author only enriches once (adding simultaneously 10 points) on
the first constraint. This is enough to converge. It appears that our strategy is not optimally
tuned for this specific example. For instance, considering a higher threshold, say η̄ = 0.5, leads
to converge with less than 20 calls to the true functions without any loss in the accuracy of the
found optimum.
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(a) Enrichment points for the Choi problem: The enrich-
ment points are shown in red whereas the blue ones
represent the initial DOE. The small black crosses are
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(b) Convergence of CMA-ES. The green points are the suc-
cessive best points. The blue one are admissible points that
did not improve the best point at the moment they were
sampled. The red points are unfeasible sampled designs.

Figure 5.3: Illustration of the Choi problem

Table 5.2: Results comparison for the Choi problem.

Method d∗1 d∗2 c (d∗) g-calls
Brute force 3.45 3.30 6.75 ≈ 106

PMA1 3.43 3.29 6.72 1, 551
SORA2 3.44 3.29 6.73 151
Single loop3 3.43 3.29 6.72 19
RDS1 3.44 3.28 6.72 27
Meta-RBDO4 3.46 3.27 6.74 20(20/10/10)
Quantile-RBDO 3.45 3.29 6.74 34

1 As calculated in Shan and Wang (2008)
2 As calculated in Du and Chen (2004)
3 As calculated in Liang et al. (2004)
4 As calculated in Dubourg (2011)
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5.2.3 Bracket structure

Problem definition
A two-member bracket structure described in Section 2.3.3.2 is considered for this last me-

chanical validation example. The mechanical problem was introduced in Chateauneuf and
Aoues (2008) (in the book by Tsompanakis et al. (2008)) and later exploited by Dubourg (2011).
A sketch of the problem is shown in Figure 5.4. Beside from their own weight, the two mem-
bers which are pin-joined at a point B, support a vertical load P applied at a distance L from
their left ends.

Figure 5.4: A sketch of the bracket structure (as illustrated in Dubourg (2011))

The aim is to minimize the structure weight. Two failure modes are considered:

• The maximum bending stress in the member CD should be lower than the yield strength
fy. The resulting limit state function reads:

g1 (d, z) = fy − σb, (5.4)

where σb = 6MB/wCDt2 is the maximum bending stress with MB = PL/3+ ρgwCDtL2/18.
In these equations, wCD and t are respectively the width and height of the beam CD and
ρ is the unit mass of its constitutive material.

• The compression force FAB in the bar AB must be lower than the critical Euler force Fb:

g2 (d, z) = Fb − FAB, (5.5)

where

Fb =
π2EI
L2

AB
=

π2Etw3
AB

12 (2L/3sinθ)2 , (5.6)

and

FAB =
1

cosθ

(
3P
2

+
3ρgwCDtL

4

)
. (5.7)
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Here wAB and LAB are respectively the width and length of the bar AB and θ is its inclination
angle as shown in Figure 5.4.

Considering these two failure modes, the optimization problem reads:

d∗ = arg min
d∈[5,30]3

ρtL

(
4
√

3
9

wAB + wCD

)
subject to:





f (d) = wAB − t ≤ 0
g1 (d) = σy − σb ≥ 0
g2 (d) = Fb − FAB ≥ 0

. (5.8)

where d = {wAB, wCD, t}T and z =
{

P, E, σy, ρ, L
}T are the vectors gathering respectively the

design and environmental variables.

In this example, we consider the case where both the design and environmental variables are
considered random. The probabilistic model is reminded in Table 5.3. The coefficient of varia-
tion of the design variables are kept constant throughout the optimization.

Table 5.3: Parameters of the variables defining the probabilistic model for the bracket structure.

Parameter Distribution Mean COV (δ%)
Width of AB (wAB in m) Normal wAB 0.05
Width of CD (wCD in m) Normal wCD 0.05
Thickness (t in m) Normal t 0.05
Applied load (P in kN) Gumbel 100 0.15
Young’s modulus (E in GPa) Gumbel 200 0.08
Yield stress ( fy in MPa) Lognormal 225 0.08
Unit mass (ρ in kg/m3) Weibull 7, 860 0.10
Length (L in m) Normal 5 0.05

Results and comparison
The initial setting consists of an optimal Latin hypercube design of size 50 for this 8-dimensional

problem. In the first stage of enrichment, 10 points are added per iteration. The threshold is set
to η̄ = 0.30. Its value has been increased to account for the results above where a too low value
of η̄ has lead to refine too much in regions of the space where the objective function is far from
optimal. With this threshold, the design of experiments is enriched six times as illustrated in
Figure 5.5, corresponding to the final value of η being 0.27. This sums up to 110 points at the
end of the first stage of enrichment.

We then start the optimization with the constrained (1 + 1)-CMA-ES whose solution is refined
by Matlab fmincon function. During CMA-ES, the Kriging models are refined 15 times. In this
example, the thresholds are ḡ = 0, so the criterion ηq = (q+α − q−α ) /ḡ introduced in Eq. (4.42)
is not applicable. Therefore, we replace the denominator by the value of the quantile so as to
quantify the relative width of the margin of uncertainty with respect to the quantile estimate
itself. The criterion therefore reads:

η̃q (d) =
q̂+α (d)− q̂−α (d)

qα (d)
. (5.9)

Figure 5.6 shows this criterion together with the three thresholds. In the first iterations, the
criterion is quite high, but after five enrichments, its average value drops. However, in the last
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Figure 5.5: Evolution of the convergence criterion for the first stage of enrichment. The red line
shows the threshold η̄.

iterations, some values of η̃q are extremely high. This is due to the optimizer which is in the
vicinity of the limit state surface where the optimum lies. The associated values of qα are there-
fore close to zero. Despite this noise, the optimization problem converges to a solution close to
the brute-force approach (see the reference solution computed in Section 2.3.3.2). However, the
number of calls to the true function is small compared to the brute-force approach.
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Figure 5.6: Evolution of the convergence criterion for the second stage of enrichment. The red
line shows the threshold η̄q.
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In total, only 125 calls to the true limit state functions have been necessary. This is slightly
smaller from the one of Dubourg (2011) and much smaller than that of Chateauneuf and Aoues
(2008). It should be however stressed that the latter results did not rely on surrogate models.
These results are summarized in Table 5.4. Once again, the design we found is fundamentally
different from that of the other two references, but rather close to the brute force solution. Here
again this might be due to the fact that we use a global search algorithm (CMA-ES) in contrast
to the benchmark solutions which rely on local search methods.

Table 5.4: Comparative results for the bracket structure. The PMA result comes from
Chateauneuf and Aoues (2008) and Meta-RBDO from Dubourg (2011).

Design method Weight (kg) wAB (cm) wCD (cm) t (cm) g-calls
Brute force 1357 5.35 7.40 30.00 ≈ 106

PMA1 1673 6.08 15.68 20.91 2340
Meta-RBDO2 1584 5.80 12.80 23.30 160(160/90)
Quantile-based RBDO 1364 5.57 7.28 30.00 125

1 As computed by Chateauneuf and Aoues (2008)
2 As calculated by Dubourg (2011)

5.3 Toward an industrial application

The industrial application of the proposed methodology concerns the lightweight design of an
automotive body structure. As a preliminary stage, we first introduce elements of fast dynamic
simulations so as to shed light on the specificity of the problem that we are addressing. An
insight to numerical and physical scatter is given through case studies of two different models.
The first one concerns a so-called side-member subsystem and the second one comprises an entire
car under frontal impact.

5.3.1 Elements of non-linear dynamic analysis

Before the application, let us introduce some elements of non-linear dynamic analysis. In
this PhD work, the finite element simulations are used as black-box functions. Thus, we only
present the fundamental equations. More detailed considerations are beyond the scope of the
present work. However, we enumerate some points that might explain the difficulties encoun-
tered when building surrogate models as approximations of the FE responses.

The crash behavior of a car is governed by general differential equations. The discretized equa-
tion of motion without accounting for damping reads (Altair Engineering, 2009; Du Bois et al.,
2004):

Mü + Ku = fext, (5.10)

where M and K are respectively the inertia and stiffness matrices, ü is the nodal acceleration
vector and fext is the sum of external forces. The internal nodal forces here are given by fint =
Ku. To solve this problem, the so-called Newmark-β method is adopted. With this integration
scheme, the nodal displacement and the first-order derivative (velocity) at the time step n is
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generally given by:

un = un−1 + δt u̇n−1 + δt2 (1/2 ün−1 + β (ün − ün−1)) ,
u̇n = u̇n−1 + δt ((1− γ) ün−1 + γün) ,

(5.11)

where δt is the time increment, γ and β are some parameters of the integration scheme.

In the context of crash simulation, the so-called explicit formulation is considered. In such a
technique, the equilibrium is expressed at a time where all nodal displacements are known
(Du Bois et al., 2004). In other words, at a given time step, nodal positions are computed as a
function of quantities from the previous step. Explicit formulation is achieved when the two
parameters of the Newmark scheme take the values β = 0 and γ = 1/2, thus leading to:

un = un−1 + δtu̇n−1 + 1/2 δt2ün−1,
u̇n = u̇n−1 + 1/2 δt (ün−1 + ün) ,

Mün = fext − fint.

(5.12)

This formulation has the advantage of being fast since only a system of uncoupled equations
has to be solved. In contrast, the implicit formulation requires to solve a matrix problem. Ad-
ditionally, a lump-mass approach is used and this means that there is no matrix to invert at
all.

However, this approach also comes with some drawbacks. First, the problem as formulated
is only conditionally stable contrary to an implicit formulation which is always stable. This
conditional stability means that the analysis time steps should not be higher than the so-called
critical time step whose value is given by the Courant condition and reads:

δt <
lc

c
, (5.13)

where δt is the analysis time step, lc is the characteristics element length which depends on the
shape and size of the element and c is the sound velocity throughout the material, given by
c =

√
E/ρ, with E and ρ being respectively the Young’s modulus and density of the material.

The instability occurs when the Courant condition is not respected i.e. when a stress wave
propagates across more than one element in a given time step. The critical time step is directly
related to the spatial discretization of the model (lc) and the material used (E and c). These
three levers may be tuned to avoid too small time steps and consequently time-consuming
simulations. Increasing lc is not a good option as it requires to remesh the model without
accurately fitting the shape of the components. Modifying E is not really an option. Hence,
the common procedures recommend to artificially increase the density so as to keep the time
step at an acceptable level. This however modifies the kinetic energy of the car and therefore,
it is required to check locally and globally the weight increase in the model before any post-
processing. When a threshold is reached, the computation is considered not valid.

Second, the transmission of forces all over the car through body parts is ensured by the defini-
tion of contacts. This is considered in the models by setting up rules to avoid interpenetrations
of individual parts. These are the so-called master-slave conditions where sets of nodes, edges or
surfaces are not allowed to cross predefined contact areas. In the event the distance between a
slave and master entity is less than a given threshold, herein called gap, a spring between them
is activated. This spring is annihilated as soon as the entities get again far enough from each
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other. The difficulty associated to the contact definition is on the one hand the setting of the
spring stiffness. Too flexible a spring may result in large penetrations and kinematic discontinu-
ities while a too stiff spring might lead to numerical instabilities. On the other hand, detecting
the contact is not a straightforward task and the algorithms used for that are not always fully
efficient.

Beside these numerical difficulties, frontal impact is known to be a chaotic phenomenon. It
can be schematically expressed as bifurcations triggered by initial conditions which lead to dra-
matic variations of the responses for small changes in the inputs. Many studies have been done
in order to identify the origins of the instability in crash simulations (Wauquiez and Zeitouni,
2008; Thole and Mei, 2003). They can be mainly grouped into physical and numerical causes
(Roux et al., 2006).

The physical scatter is mainly due to the geometric imperfections during the manufacturing
process and non-repeatability of the crash tests, e.g. variability in the thicknesses of car body
parts, position of the barrier or car speed during the crash tests. For robust design, these scat-
ters are taken into account in the simulations by representing the input parameters and initial
conditions as random variables.

These physical variabilities when considered in the simulation are amplified by the numerical
instabilities. In fact, different bifurcations in the process may be triggered by one or another
initial condition and lead to different solution paths. The typical example is the on-off impact,
i.e. whether a contact between two parts occur or not or even a slight change in the chronology
of events may lead to noticeable different crash scenarios. In the same way, buckling of parts
such as the sidemember which may bend in a given direction or crush axially may alter the
crash scenario. On top of that, there are non-physical parameters, such as spatial and time
discretization, contact detections, round-off errors which add to the variability of the outputs.

5.3.2 Numerical noise in frontal impact

In this section, we study the numerical noise in a frontal impact. To this end we introduce the
so-called side-member subsystem. The side-member is actually a part in the front end of the car
whose main objective is to absorb the kinetic energy of the crash by proper crushing. There-
fore the subsystem introduced here consists of a collection of parts in the front end of the car
including the side-member. The parameters of this model are tuned so as to achieve the same
level of numerical noise as in a entire car model. Its main asset is that it is less computationally
intensive. One model run lasts only 10 to 15 minutes (in distributed CPUs) in contrast to that
of an entire car which may last up to 24 hours. This allows us to perform Monte Carlo based
studies without worrying much about the reduced computational time.

The finite element model consisting of the sidemember subsystem and a barrier is illustrated
in Figure 5.7. For optimization purpose, five parts are considered as annotated in the figure.

The usual approach using the Radioss software to perform a numerical scatter analysis is to
randomly move each node of the mesh in all directions with a given amplitude. The ampli-
tude varies from one node to the other. So each displacement follows a uniform distribution
U
(
−10−6, 10−6) mm. We consider for this case study 10, 000 such models.

The first question that comes to mind is how distributed are the outputs. A total of 29 outputs
is available for each run of the model. We illustrate only a few. Figure 5.8 shows the resulting
distributions for four selected outputs: maximum sidemember compression, maximum contact
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Forward side-member 

Rear side-member 

Lower bulkhead 

Forward side-member base 

Wheel arch 

Figure 5.7: Side-member subsystem problem finite element model

force, maximum force along the left sidemember, maximum force along the right sidemember.
At first sight, the distributions seem different, even when looking within groups of similar
outputs (forces, intrusions or accelerations).

In general, the distributions look Gaussian. For instance a Kolmogorov-Smirnov test fails to
reject the null hypothesis of Gaussian distribution at 5% significance level for the fourth output
plotted (Maximum forward right sidemember force). Howewer this hypothesis is rejected for
three other outputs. Their empirical cumulative distribution functions (when normalized) are
quite close to the standard Gaussian CDF though. This is illustrated in Figure 5.9. In these
figures, ui are the normalized values of yi, i.e. ui = (yi − µyi)/σyi .

The issue of checking Gaussianity is the following. Kriging allows one to account for noisy
observations by including noise variance at each observation (Roustant et al., 2012). If we
assume the noise to be Gaussian, we can use this knowledge when building the Kriging models.
Despite Kriging may assume heterogeneity of noise at the observations, running a numerical
scatter analysis at each DOE point would be cumbersome. The second question that arises is
whether the noise is the same in all the design space or not. If it is the case, one would compute
this variance once and for all in the early stage where the finite element model is validated, and
use this value as input for the Kriging nugget.

To answer this question, we consider two configurations of the model. The five parts high-
lighted in Figure 5.7 are considered. In the first configuration, the nominal values of the thick-
nesses are considered. These are the default values in the above Monte Carlo sampling. The
second configuration is based on an optimization result presented in Moustapha et al. (2014b).
The five parameters are listed in Table 5.5.

The same Monte Carlo analysis is performed with the two configurations. We emphasize that
the seeds for the random number generation are the same, thus identical perturbations are
made on the mesh nodes in both cases. The size of the MCS is reduced to 500. An empirical
analysis showed that this is enough to obtain a reasonable estimate of the noise variance. Dis-
tributions of the four selected outputs are shown in Figure 5.10. The left column corresponds
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(d) Maximum forward right sidemember force

Figure 5.8: Numerical scatter analysis on the sidemember subsystem problem: Histogram of
four outputs of interest.

Table 5.5: Parameters values for the two configurations used to perform numerical scatter anal-
ysis on the sidemember subsystem.

Configuration d1 d2 d3 d4 d5

Nominal 2.00 1.80 2.00 1.70 0.65
Optimal 2.16 1.50 2.00 1.93 0.60

to the nominal design and the right one to the optimum. In most cases, the distributions look
similar. However, the parameter values differ. There is a shift in the mean values which is
expected since we have changed the design. However, the coefficients of variation in some
cases are significantly different. For extreme values of design parameters, the variation can be
even more pronounced. This can be explained by the fact that the quality of the finite element
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Figure 5.9: Comparison of empirical and standard Gaussian CDF for the four outputs of inter-
est.

models are fine-tuned for ranges of parameters around the nominal model. For parameters too
far from the nominal values, the numerical noise may be considerably larger.
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Table 5.6: Parameters values for the two configurations used to perform numerical scatter anal-
ysis. The two rows between lines correspond to the same output.

Output mean std. dev. COV (%)

y1 (mm)
506.20 4.40 0.87
523.11 1.28 0.25

y2 (kN)
166.47 10.66 6.40
151.90 0.50 0.33

y3 (kN)
14.35 0.01 0.06
14.35 0.01 0.04

y4 (kN)
121.28 0.06 0.05
132.00 0.18 0.14
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Figure 5.10: Comparison of outputs distributions with two configurations of the model for the
numerical scatter analysis of the sidemember subsystem.
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In summary, the numerical noise in this model can be assumed to be Gaussian. Furthermore
it is heteroscedastic, i.e. the dispersion is not the same for all design points. Thus, to account for
numerical noise, one cannot consider a Kriging model with homogeneous nugget variance, al-
though this would be a first stage in accounting for this noise. We may also think of learning the
noise through automatic calibration of the nugget. However, this requires either to fill a space
with such a sample density we cannot afford or to repeat observations (including the numerical
noise), something we cannot afford either. Finally, we must stress here that the absolute value
of the numerical noise variance is not that high when compared to the variability of the output
in the entire design space. Besides, as we show in the sequel, the physical scatter is also to be
accounted for. In fact, this one does encompass the numerical noise. The physical scatter can
be accounted for through reliability-based design optimization. The quantile-based approach
we propose in this thesis is aimed at giving conservative values to these noisy constraints.

5.3.3 Frontal impact crash scenarios

The ultimate aim of this thesis is to add frontal impact in the current optimization so as to
increase the potential weight savings. In the current process where all specifications but the
frontal impact-related ones are considered, the parts selected for optimization shall have little
or no influence on frontal impact results. Thus, parts in the front end of the car are avoided. An
example of optimization parts for the current process is given in Figure 5.11a. When integrating
frontal impact to the optimization, the increase of weight savings may only be achieved by
enlarging the perimeter of optimization parts. To this end, parts belonging to the front end are
considered. In the example below, such parts belong in the area encircled in red in Figure 5.11b.

(a) Initial optimization parts (b) Additional optimization parts

Figure 5.11: Extension of the number of parts before including frontal impact. In the left panel,
the initial set of parts belong to the passenger compartment. The set of parts encircled in the
right panel are those added to the initial one when frontal impact is included in the multi-
disciplinary optimization.

The effects of the chaotic nature of frontal impact are amplified when considering such parts as
those belonging to the front end. In this section, we study closely these effects with the set up
presented above. We consider a model with the initial optimization parts shown in Figure 5.11a
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to which we add some of the parts in the circled area of Figure 5.11b. The final problem consists
of 37 design parameters, when considering symmetries and linked parts. A 132-point optimal
Latin hypercube makes the initial design of experiments.

Let us now consider a particular output quantity which perfectly illustrates the bifurcations we
have mentioned. We call this criterion, which is defined in terms of a displacement at the front
end of the sidemember, yB. To illustrate our point, let us consider the time-history plots for
two designs of experiments based on the two configurations. They are shown in Figure 5.12.
It is clear in these figures that in the first case (Figure 5.12a), where no parts belonging to the
front end are considered, only one crash scenario can be identified. However in the second case
(Figure 5.12b) which is of interest to us, the behavior is more scattered and one can identify two
groups of curves. In general, the designer looks at the output value at 40 ms, i.e. yB = yth

B (40).
In this case, we can distinguish the two sets of curves.
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(b) Updated optimization parts

Figure 5.12: Time history plots related to yB for the two configurations i.e. sets of parts for
optimization without (left) and with (right) frontal impact.

Figure 5.13 shows the distributions of the runs with respect to each group. Let us call A and
B respectively the upper and lower sets. The presence of these distinct groups confirm that,
according to the region of the design space, the car response to frontal impact is significantly
different. This may explain the difficulties in building surrogate models for frontal impact-
related constraints. As pointed out in the benchmark in Moustapha et al. (2014a) numerical
noise alone does not explain the difficulties in building accurate metamodels. In the sequel, we
introduce a methodology to account for these groups of crash scenarios. In short it consists in
three steps:

1. Unsupervised classification: The different groups are identified through K-means cluster-
ing. This algorithm partitions the points with respect to their relative distances (in the
output space). For this example, the two groups are shown in Figure 5.13.

2. Supervised classification: In order to build a single surrogate model for each group, it is
necessary to know a priori to which group a new point belongs. To this end, a support
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Figure 5.13: Distribution of yB with respect to the run number for the set of parts for which
frontal impact is also considered. The blue triangles and black squares respectively represent
the points belonging to group A (class +1) and group B (class −1).

vector classifier is built with the initial design of experiments.

3. Regression: Eventually, a surrogate model is built for each group. At this point, either
Kriging or support vector regression can be used.
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5.3.3.1 Application with available data (Initial experimental design)

We now apply the approach presented above with the data available, i.e. the 132 initial sim-
ulation results. To validate the results, we consider a validation set consisting of 125 points
(resulting from an optimal Latin hypercube design used in another study).

On the one hand we build a single and global surrogate model, i.e. as in the usual approach.
On the other hand, we build one surrogate model for each class. Unfortunately, with the avail-
able data, the group B is too poorly populated to build a sound metamodel (27 points in a
37-dimension problem). Thus in a first step, we only consider the group A. The results are
shown in Figure 5.14. In the left panel, the true versus the predicted values are plotted. The
blue and black colors stand respectively for global and local (i.e. on group A) metamodels. The
right panel shows histograms of the gap between the two approaches with the dataset of group
A only. It is clear from these figures that focusing on one group by building a surrogate model
increases the accuracy of this latter. This motivates the approach we have proposed above.
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(b) Histograms of the predicted responses with respect to
training points consisting of group A only (blue) and all data
points (black).

Figure 5.14: Comparison of metamodeling by considering all training points or only a those
belonging to the class +1.

We now proceed to build a support vector classifier on the available basis. The prediction by
this classifier on the validation set is shown in Figure 5.15. As mentioned earlier, the squares
and triangles stand respectively for groups A and B. The green color shows points that are well
classified and red the misclassified ones. Out of 125, 11 are in the latter situation, i.e. misclassi-
fied. Despite being relatively few (less than 10%), such misclassifications are problematic since
the two metamodels are completely different.

To summarize, two limitations have been raised at this stage:

• Unbalanced groups: One behavior occurs much more often than the other. The training
set is made of 107 sample points of group A and 25 of group B. In the same way, the
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Figure 5.15: Classification of the outputs by support vector machine on a separate validation
set. The squares and triangles respectively represent groups A and B. Points drawn in red are
misclassified by the SVC model.

validation set consists of 100 points from group A and 25 from group B. In both cases, the
datasets were obtained by space-filling sampling. It is therefore difficult, if not impossible,
to build accurate surrogate metamodels for the smaller group. In such a case, the idea of
local surrogate modeling loses much of its relevance.

• Classification errors: With a limited number of experiments, it is not straightforward to
obtain a 100% accurate classifier. This means that during the evaluation of new points,
we are prone to errors as we might use the wrong surrogate model for a given point.

5.3.3.2 Application with enrichment of the initial dataset

To by-pass the two limitations highlighted above, we propose to enrich the initial dataset. To
this end, two aims are simultaneously sought after:

• Improving the quality of the classifier;

• Adding points specifically in the less populated group so as to reach the critical size
necessary to build a sound surrogate model.

The enrichment here is made in two stages as well, so as to fulfill each of the two objectives
above. The first stage is aimed at improving the classifier only. To achieve this, we rely on
one major property of support vector machines. Let us consider a design of experiments with
two identified classes: D = {(xi, yi) , xi ∈ Rs, yi = {−1, 1} , i = 1, . . . , n}. The classifier as intro-
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duced in Eq. (3.24) for a new point reads:

ŷ (x) =
n

∑
i=1

αiyik (xi, x) + b, (5.14)

where αi’s are the support vector coefficients, k is the kernel function and b is the offset param-
eter.

The classification rules state that if ŷ (x) > 0, then x belongs to the class labeled +1 and con-
versely if ŷ (x) < 0, x belongs to the class labeled −1. The points for which −1 < ŷ < 1
constitute the margin, somehow a region of uncertainty. The support vectors, which are the
only points in the training set that are actually relevant to the classifier, belong to this margin.
Thus, to improve the classifier, points for enrichment should be selected within this margin.
We consequently sample points for enrichment uniformly in this margin. This can be achieved
in three steps:

1. Sample a large number of points in the entire space, say NSVC = 104;

2. Evaluate them with the support vector classifier and select only those that are in the
margin, i.e. the set {x ∈ Rs| − 1 < ŷ (x) < 1};

3. Reduce this set to K points thanks to K-means clustering.

The K points are used to update the design of experiments. These steps are repeated until the
classifier is judged accurate enough. This is considered to be true when the predictions on a
large number of points among a given set does not change between two iterations. In practice,
we sample a large Monte Carlo set. At each iteration, we keep track of the percentage of points
whose predictions signs change (i.e. which move from one class to the other according to the
classifier). When this percentage is small enough and does not evolve, we consider that adding
points will not improve significantly the classifier and stop the iterations.

Once this first stage of enrichment is over, we sample uniformly points in the less populated
group to balance the two classes.

Illustration example
To illustrate this methodology, we consider a two-dimensional problem where the space is

divided into two classes as follows:

x ∈ [0, 1]2 :
{

y (x) = −1 if x2 < f (x1) = x1 sin (x1) + 1,
y (x) = 1 if x2 ≥ f (x1) = x1 sin (x1) + 1.

(5.15)

Figure 5.16 illustrates the problem in its initial setting. The green line is the separator function
f (x1) = x1 sin (x1) + 1. As shown by the figure, the space devoted to one class dominates the
other in terms of area. The initial design of experiments consists of an OLH design of 20 points.
The built support vector classifier is shown as the dashed black line. The associated margin is
bounded by the blue and red dashed lines. The support vectors are those points on the margin
encircled in cyan. The gray-shaded mapping shows the prediction of the SVC model on the
input-space. The brighter the color the higher the value of ŷ (x).

We first proceed by adding iteratively three points per iteration in the margin of the successive
models. To assess the convergence of the classifier, we consider a Monte Carlo sample set of
10, 000 points. We then compute the relative number of points that change signs w.r.t. two suc-
cessive classifiers. The evolution of this percentage, denoted pm is shown in Figure 5.17a. This
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Figure 5.16: Classification in a two-dimensional space with the function x1 7→ x1 sin (x1). The
blue triangles are the training points. The black dashed line is the classifier which should
approximate the true boundary shown by the green line. The red and blue lines correspond
respectively to the lower and upper SVM margin. Support vectors are encircled in cyan. Out-
puts of the SVC model is represented by the gray-shaded scale in the background: the lighter
the color the higher the value.

first stage of enrichment is stopped at iteration 7 since the classifier does not evolve perceptibly
between the 6th and 7th iterations.

By the end of the first stage, the design of experiments consists of 32 points, among which 22
belong to class +1 and merely 10 to class −1. In the second stage, only class −1 is enriched so
that its size is big enough for a proper metamodeling by regression or interpolation. To achieve
this, we first sample a large Monte Carlo set in the design space. Then we select the subset
defined by {x ∈ Rs|ŷ (x) < 0}. This subset is statistically reduced to 15 points by K-means
clustering. Within these points, three turn out not to belong to class −1 as predicted by the
classifier. Thus the final design of experiments consists of 47 points, among which 25 belong to
class +1 and 22 to class −1. Figure 5.18 shows the final setting. Compared to Figure 5.16, the
SVC model has been improved and the distribution of points between the two classes is almost
even.
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(a) Evolution of the accuracy criterion for the SVC mod-
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(b) State at the end of the first stage of enrichment

Figure 5.17: First stage of enrichment to improve the SVC model. In the right panel: The blue tri-
angles are the training points. The black dashed line is the classifier which should approximate
the true boundary shown by the green line. The red and blue lines correspond respectively
to the lower and upper SVM margins. Support vectors are encircled in cyan. Outputs of the
SVC model is represented by the gray-shaded scale in the background: the lighter the color the
higher the value.
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Figure 5.18: Final state after two stages of enrichment. The blue triangles are the training points.
the black dashed line is the classifier which should approximate the true boundary shown by
the green line. The red and blue lines correspond respectively to the lower and upper SVM
margins. Support vectors are encircled in cyan. Outputs of the SVC model is represented by
the gray-shaded scale in the background: the lighter the color, the higher the value.
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Application on a vehicle model
We now return to the case study where we first considered to build surrogate models by

group. In the present version, the methodology above is applied before building the surrogate
models. As a reminder, the initial DOE consists of 132 points, among which 27 belong to class
−1 (group B). In the first stage of enrichment, 10 points are added per iteration. This step
is stopped after 120 points have been added to the initial DOE. Convergence, as shown in
Figure 5.19, is not strictly achieved since the number of points changing signs is not very stable
between iterations. The stopping is rather due to reaching the allocated computational budget.
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Figure 5.19: Evolution of the enrichment criterion in the second stage.

After this first stage of enrichment 42 points are added in group B to increase its size. In total,
the final DOE consists of 294 points with the following distribution: 172 in group A and 122 in
group B. This is shown in Figure 5.20 where the different stages are separated by the vertical
lines (i.e. before enrichment and after stages 1 and 2 of enrichment). In the first stage of enrich-
ment, the points from the two classes are closer with respect to yB. This is because they were
selected in the margin of the classifier. In the second stage, among the 42 points selected for
enrichment of group B, four were actually in group A.

To build the surrogate models by group, we start by predicting the class of each point of the
validation set. Figure 5.21 shows the two groups. The squares and triangles respectively stand
for group A and B. In green are the points that are well classified by the SVC model. In this
example, there is a gain in prediction accuracy. However, not all data are well classified as
pointed out by the four red points. This is not surprising given that the boundary between the
two classes is not clear-cut. In fact, it is sometimes difficult to decide to which group belongs a
simulation, even after analyzing the time-history plot.
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Figure 5.20: Classification of the different runs in the validation set after the two stages of
enrichment. The black squares and blue triangles correspond respectively to groups A and B.
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Figure 5.21: Classification of the outputs by support vector machine on a separate validation
set after the two stages of enrichment. The squares and triangles respectively represent groups
A and B. Points drawn in red are misclassified by the SVC model.
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Once we have predicted groups, we build one Kriging model for each class. Each point in the
validation set is evaluated with the corresponding Kriging model. To validate the methodology,
we also build a single Kriging model. We therefore have three Kriging models:

• M̂A: a model built on group A which consists of 172 training points;

• M̂B: a model built on group B which consists of 122 training points;

• M̂G: a global model built considering the 172 + 122 = 294 points altogether.

The true model versus predicted values on the validation set χ is shown in Figure 5.22. χA and
χB are the points of the validation set that were predicted to belong respectively to group A and
B. It can be seen that local metamodeling globally improves the accuracy of the prediction. The
computation of the normalized mean-square error may confirm this. We should emphasize
here that the global surrogate model was built with 294 points whereas the local with only
172 and 122 points respectively. Despite this, the local surrogates are more accurate. The four
misclassified points are clearly predicted as outliers of their respective groups. To lower the
amplitudes of such errors, it might be interesting to consider weighted Kriging models where
the weight given to each model is somehow proportional to the confidence associated to the
SVC model prediction at a given point.
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Figure 5.22: Comparison of the true and predicted responses by the Kriging models with the
final set of points.

5.3.3.3 Concluding remarks

In this section, we have studied in details the specificities of frontal impact simulations. Two
case studies were concerned. In the first one, numerical scatter on the side-member subsystem
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was investigated. It appears that the numerical noise on the outputs is close to Gaussian. Be-
sides, it is heteroscedastic, i.e. its amplitude does not remain the same when moving from one
design to another. This point invalidates the possibility of feeding the Kriging model with a
known homogeneous nugget variance. Furthermore, we cannot learn this noise through auto-
matic calibration of the Kriging nugget because of the limited computational budget. From a
broader perspective, it can be shown that the numerical noise is much smaller than the physi-
cal one. Therefore, by adopting a probabilistic approach where only variability in the physical
parameters is considered, we might include the effects of numerical noise. To this end, the
quantile-based approach proposed in this thesis is applied for weight optimization of cars. The
quantile is considered here simply as a conservative measure of feasibility which accounts for
the noise of different sources that can be encountered when simulating frontal impact. It shall
not be seen as a failure probability of designed cars from a frequentist point of view.

The second study was done with the aim of improving accuracy of the surrogate models that
are built to approximate frontal impact-related constraints. By experience, it is known that
many crash scenarios are possible according to the input parameters. In this example, two
groups were identified. They correspond to distinct physical behaviors, i.e. the deformations
of the parts in the front end follow two different patterns. We show that including this knowl-
edge when building Kriging models allows one to improve the prediction accuracy. As such,
this methodology cannot be combined with RBDO for frontal impact as the overall computa-
tional budget would be too high. However, there are other disciplines where classification of
different behaviors can be used. For instance, we may consider that engineers would like to
avoid one of the behavior. In such a case, an additional constraint in optimization may help
avoiding unwanted scenarios. The typical example is the lightweight design of a subsystem
with respect to seatbelt anchorage. In such a study, some configurations of initial designs lead
to the breaking of the seatbelt anchorage. This produces unrealistic efforts which stand as
outliers, thus perturbing the optimization. Classification of the two scenarios (i.e. break and
non-break) may help to avoid this situation.

5.4 RBDO application on a vehicle frontal impact

Safety is one of the main concerns in automotive design. Frontal impact being among the
most frequent and dangerous types of accidents, a particular attention is given to it. Various
regulations (according to the targeted market) provide some minimal crash tests that must be
successfully passed for approval of new vehicles. They aim at ensuring that the driver and
passengers are well protected from the steering mechanism in the event of a frontal impact.
Besides, there also exists consumerist tests among which the European New Car Assessment
Program (EuroNCAP) that aims at stimulating competition between car manufacturers. The
idea is to foster continuous efforts toward increasing safety by rating the cars (in a five-star
scale). The applications we present below falls into this category.

Two models are considered. First, we apply the methodology to the sidemember subsystem
introduced earlier in this chapter. Thanks to the reduced CPU time of the associated model run,
we can validate the approach by actually computing quantiles on the found optimum. The
second example is a full-scale car model with industrial settings. It should be noted here that
the numerical values are somewhat modified for confidentiality reasons.
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Figure 5.23: Euro NCAP frontal impact test of a Peugeot 308 (Courtesy of Euro NCAP).

5.4.1 Application on the sidemember subsystem

5.4.1.1 Problem formulation

The finite element model used for this example is shown in Figure 5.24a. Five parts are consid-
ered for optimization as shown in this figure. The initial design and the bounds of the design
space are illustrated in Figure 5.24b. In this configuration the subsystem weighs 9.67 kg. Two
parameters among the crash protocol are considered important enough to be included as en-
vironmental variables. These are respectively the initial speed and the lateral position of the
barrier. The probabilistic model is defined with the following distributions:

• Initial speed: V ∼ U (34, 35) km/h;

• Lateral barrier position displacement: P ∼ N (0, 2) mm.

Two constraints are considered for the optimization problem: the maximum wall force which
must be kept below 170 kN and the maximum sidemember compression whose value must not
exceed 525 mm. To be conservative, the quantile values for RBDO are set to α1 = α2 = 0.95 for
each constraint.

For both constraints, we consider anisotropic Kriging with Matérn 5/2 auto-correlation func-
tion and constant trend. The initial DOE consists of 70 points OLH for this 7-dimensional
problem.

5.4.1.2 Results and discussion

In the first stage of enrichment, we consider a Monte Carlo set of 5, 000 points for enrichment
in the design space. The quantiles are computed with N = 104 samples. A total of K = 10
points are added per iteration of enrichment. The threshold for global accuracy is set to η̄ =
0.2 (See Eq. (4.42)). Convergence is achieved after only two iterations. Figure 5.25 shows the
evolution of the corresponding accuracy criterion. Thanks to these two enrichments, the design
of experiments is now of size 90.
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Figure 5.24: 5-part-sidemember subsystem: Finite element model and the initial design to-
gether with admissible bounds in the subsystem.
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Figure 5.25: 5-part side-member subsystem convergence of the first stage of enrichment after
two iterations.

For the second stage of enrichment, we slightly modify the enrichment strategy. We globally set
the threshold for quantile accuracy to η̄q = 0.1 (that is, we accept an error of 10%). As explained
earlier, the constrained (1 + 1)-CMA-ES algorithm we use is a global stochastic approach. In
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fact, the algorithm samples points in the entire space in an iterative scheme. The covariance
matrix adaptation scheme allows it to direct the search to regions of space with increased fitness.
However, this is not straightforward, i.e. most of the sampled points are not feasible nor do
they increase the current fitness. Although such points are not kept by the optimizer, they
give information that help to appropriately adapt the covariance matrix. Figure 5.26 shows
the global step size of CMA-ES. This parameter indicates how far the next sampled point is
likely to be from the current best point. Given this figure, in the early iterations, the sample
step size increases, meaning that the algorithm is exploring properly the space. In the end, it
decreases as the algorithm starts to sample in the vicinity of the current best point. Thus, we
take into account this information in our enrichment scheme. In the latter iteration, we skip
the enrichment if the sample point does not improve the fitness with respect to the current best
point. In contrast, for any admissible point that increases the current best point, the accuracy
threshold is set to the conservative value η̄q = 0.01 (i.e. we only accept a relative error lower
than 1%).
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Figure 5.26: Global size step of CMA-ES for optimization of the 5-part sidemember subsystem
problem.

Given these settings, convergence is achieved after 300 iterations. Among these iterations, en-
richment was performed 8 times with K = 3 additional points per enrichment. Overall the
second stage of enrichment lead to adding 24 points in the DOE. This brings the total number
of calls to the true model to 114. The initial and optimal designs are compared in Figure 5.27.
Table 5.7 gives the constraints for the found solution and the associated weight. As a reminder,
the maximum admissible values for the two constraints are respectively 170 kN and 525 mm.
The table shows that the second constraint, i.e. maximal sidemember compression, is the siz-
ing one. The weight savings is approximately 1.08 kg, which corresponds to 11.15% of the
initial weight. Likewise, the initial solution was only admissible with respect to a deterministic
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approach.
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Figure 5.27: Comparison of the initial and optimal designs with respect to each parameter for
the 5-part sidemember subsystem. The blue color stands for the nominal design and the green
color for the optimal one.

Table 5.7: Comparison of the responses and weights associated to the initial and optimal de-
signs for the 5-part sidemember subsystem.

Design q̂α1 (kN) q̂α2(mm) c (kg)
d0 177.27 527.20 9.67
d∗ 155.62 523.12 8.59

Let us now validate the accuracy of the surrogate model in estimating the quantile in the vicin-
ity of the optimal solution. In this respect, we randomly sample 100 points in the augmented
space with environmental variables realizations following their distributions. The quantiles
throughout optimization were computed with N = 10, 000 points. We cannot afford to run the
true model on such a large number of points. We therefore limit our validation to 100 points but
only focus on the discrepancy between the quantiles computed by the metamodel and those
computed thanks to the true model. We however consider the mean values given by 500 boot-
strap replications to lower the error in the estimation of the quantile due to this reduced set of
points. Table 5.8 shows the results in the two settings. The quantiles estimated by the surrogate
models are quite close to those computed by the true model. The relative errors are within the
threshold set during optimization.
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Table 5.8: Results of simulation with respect to the true finite element model computed on
100 points with 500 bootstrap replicates. qαi represents the quantile computed with the true
responses and q̂αi the one computed with respect to the surrogate models. The quantiles are
computed based on the 100 points resulting from the Monte Carlo set.

Model qα1 (kN) q̂α1 (kN) qα2 (mm) q̂α2(mm)
Bootstrap mean 150.66 148.02 527.81 528.04

In summary, the application of the quantile-based RBDO and the two stages of enrichment
proposed here allowed us to propose a solution to the lightweight design on this reduced car
model. In fine, only 114 calls to the true model were necessary in this 7-dimensional problem.
In CMA-ES, the accuracy criterion for quantile was kept less than 1% for all successive current
best design. This was validated with a reduced Monte Carlo sampling on the optimal design
(considering variability in the environmental designs). Next, we try to apply this methodology
to a full car. In terms of numerical noise the two models are somewhat similar. The difference
lies in the number of parameters and constraints.

5.4.2 Application on a full automotive body structure

5.4.2.1 Presentation of the finite element model

The model we consider here simulates Euro NCAP frontal impact crash test. The simulation is
carried out using the software Radioss developed by Altair Engineering. The model consists
of an entire car, without some equipment, and a barrier. Figure 5.28 shows the finite element
model of the car we consider. It is mainly made of the body-in-white or automotive body
structure. Since the front parts play an essential role in the crash scenario, the bumper and the
parts in the engine compartment (i.e. the powertrain) are modeled as well. Rigid bodies allow
to reach the true equipped car weight as this parameter is important in frontal impact (there is
kinetic energy to dissipate). In this model, the car hits a fixed barrier at the speed of 64 km/h.
The barrier is slightly offset so as to cover only 40% of the front car on the driver’s half side of
the car. It is made of an a aluminum honeycomb structure whose stiffness is supposed to be
close to that of another car front end. As already pointed out, the solution of the finite element
problem resorts to an explicit formulation. One run of the model lasts approximately 20 hours
while distributed on 48 CPUs, hence the need of surrogate modeling.

5.4.2.2 Problem formulation

The lightweight design we perform is based on a reduced number of parts which belong to the
front end of the car. They result from a first empirical screening (i.e. from expert knowledge)
of the initial set of parts. As already argued, these selected parts are the most relevant for
frontal impact-related specifications. In total, there are 39 distinct parts considered. However,
due to symmetry and linked parts, the optimization problem consists of 20 design parameters.
Figure 5.30 shows different views of the selected parts for optimization. They are highlighted
in a transparent model so as to show their locations. The initial parameters values are shown in
Figure 5.29 together with their bounds for optimization. For this application, the search space
is defined in the region within ±0.3 mm around each design. This is actually the maximum
thickness variation that would not require adaptation of manufacturing tooling. The initial
weight for this set of parts is 44.882 kg.
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Figure 5.28: Finite element model of a Peugeot 308 for frontal impact analysis.
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Figure 5.29: Thickness values of the nominal design together with their bounds for the 39-part
body shell problem.
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Eight constraints are considered here. They refer to maximum accelerations at a given point,
some intrusions and a particular angle. Table 5.9 gives their maximal admissible values.

Table 5.9: Thresholds for the eight constraints of the 39-part body shell optimization problem.

Constraint ḡ1 (m/s2) ḡ2 (mm) ḡ3 (mm) ḡ4 (mm) ḡ5 (mm) ḡ6 (mm) ḡ7 (mm) ḡ8 (rad)
Thresholds 44 26 25 30 26 28 17 4

To apply the quantile-based RBDO, we set the quantile levels to αi = 0.95, i = {1, . . . , 8} as
a conservative measure for the constraints. The input probabilistic model consists of three
environmental variables. They all come from the crash test protocol:

• Initial speed: V ∼ U (63.5, 64.5) km/h;

• Displacement of the lateral position of the barrier Uy ∼ U (−20, 20) mm;

• Displacement of the vertical position of the barrier Uz ∼ U (−20, 20) mm.

The initial design of experiments consists of 200 points in the augmented 23-dimensional space.
This is actually a composite design made of an OLH of 150 points (among which some runs
failed) completed by already available observations. For the Kriging models, we consider
anisotropy with Matérn 5/2 auto-correlation function. The mean trend is constant (ordinary
Kriging).
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(a) Perspective view (b) Front view

(c) side view (d) Top view

Figure 5.30: Representation of the 39 parts that are selected for optimization. They all belong
to the front end of the car as highlighted.
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5.4.2.3 Results and discussions

Before starting optimization, we proceed to a global enrichment of the design of experiments.
Given the time allocated for this study, we have a restricted budget for model runs. Therefore,
only two iterations of enrichment are performed with 50 points each. Among these, 20% of
the simulations failed to converge. This ratio is quite high and shows that we are running the
models with parameters for which the finite element model was not optimally designed. In
most of the computations, energy error occurred (i.e. the model created energy for unknown
reasons). In such cases, the simulations are considered invalid. Thus at the end of the first stage
of enrichment, the DOE consists of 281 points. The global enrichment criterion is still close to
1, that is it has almost not been reduced. This is way above the thresholds we have set for the
sidemember subsystem (i.e. η̄ = 0.2). Yet this is the best we could afford given the project
lead-time.

We now start optimization using CMA-ES. We consider the same enrichment scheme that was
used for the sidemember subsystem, i.e. enrichment is made only for sampled designs that
improve the current best solution. This leads to four enrichments of five points each. Once
again, more than 25% of the model simulations failed to converge. This leaves us with only
14 additional points to the DOE. By convergence of CMA-ES, the final DOE is of size 295. The
final solution given by CMA-ES is refined by local search using Matlab’s fmincon function
(interior-point algorithm).

Unfortunately, we could not find any admissible solution despite numerous iterations of CMA-
ES. It seems that the responses are extremely scattered. The conservative measure given by
the quantiles are too penalizing for this car model. Let us however consider the best solution
that we could find, i.e. the one which violates the less the constraints. For a given design, we
measure the relative constraint violation as follows:

ḡ%
i (d) = 100

qαi (d)− ḡi

ḡi
, i = {1, . . . , 8} , (5.16)

where qαi (d) is the quantile of the constraint i, computed on the design d.

Table 5.10 gives the relative percentage of constraints violations for each of them. A positive
value means that the constraint is violated. They are emphasized in the table with bold fonts.
In this case, five constraints are violated in various degrees. For g1 and g3, it is still accept-
able. However, the constraint g2 is violated by 7.50%. This occurs despite increasing the initial
weight. One of the reasons for this actually lies in the numerical noise of the finite element
model. As a matter of fact, a prior numerical scatter analysis as introduced in Section 5.3.2
would have pinpointed an abnormally high level of noise. Let us consider a Monte Carlo sam-
pling of the nominal design while infinitesimally perturbing the mesh nodes positions. Recall
that this is the method used to assess the quality of the models with respect to a non-linear
dynamic analysis.

Figure 5.31 shows the resulting time-history for the four most scattered outputs. They all cor-
respond to displacements. Three of them (y2, y3 and y4) refer to an intrusion on the same part.
The different colors correspond to different runs. The Monte Carlo simulation consists of 50
points. The black curves correspond to the simulation of the nominal model. For the optimiza-
tion problem, the designer look at the maximum of each curve. These are the scalar values that
are meta-modeled. A quick look at these figures show that most of the responses lie above the
thresholds defined by the optimization problem. For instance, let us consider the output y2
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Table 5.10: Relative constraint violations for different designs with respect to the 39-part body-
in-white optimization problem.

Design ḡ%
1 (m/s2) ḡ%

2 (%) ḡ%
3 (%) ḡ%

4 (%) ḡ%
5 (%) ḡ%

6 (%) ḡ%
7 (%) ḡ%

8 (%)
d∗95% 0.13 7.50 0.85 2.69 3.60 −1.83 −10.70 −13.10
d∗90% −2.06 −3.02 −19.59 −4.04 −1.71 −11.30 −10.55 −15.63
d∗det −2.34 0.00 −15.02 −10.11 0.00 0.00 −9.55 −9.54

(Figure 5.31a) for which the threshold is ḡ2 = 26. All simulations, nominal included, produce
maximal values above this threshold. As argued earlier, the quantile-based RBDO we propose
here is aimed at taking into account physical variability arising from the crash protocol. In this
setting we consider that the numerical noise, supposedly smaller, is implicitly handled. How-
ever, according to these figures, the numerical noise alone is quite high and its amplitude does
not let room for any design improvement.
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(a) Numerical scatter for constraint g1

0 20 40 60 80 100 120
0

5

10

15

20

25

30

35

40

t (ms)

yth 3
(m

m
)

(b) Numerical scatter for constraint g2
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(c) Numerical scatter for constraint g3
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(d) Numerical scatter for constraint g4

Figure 5.31: Time-history plots of four of the most scattered outputs resulting from a numerical
noise Monte Carlo sampled runs. The different colors represent the different MC runs. The
black bold curve is the nominal design.

The distribution of the outputs with respect to the physical input variability is given in Fig-
ure 5.32 for the four most scattered outputs. These histograms are generated using the surro-
gate models. They may not be completely accurate but give an insight on the variability we are
trying to take into account. The red and black lines correspond respectively to the 95% quantile
and constraints limits. The distribution are skewed with a higher weight at the left of the me-
dian. Thus, a small variation of the quantile level α in the right tail of the distribution leads to
a large variation of the associated quantile value. For this reason, we also perform an optimiza-
tion while considering a quantile level α = 90%. This leads to an admissible design d∗90% whose
relative constraint violation is given in Table 5.10 as well. This corresponds to a weight saving
of 1.568 kg. Given the parts selected for optimization, this weight saving is rather good. How-
ever, it also implies that reliability has a cost in terms of weight reduction. For comparison, we
eventually perform a deterministic design optimization. The resulting thickness distribution
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d∗det is shown in Figure 5.33 together with that of the other designs. The corresponding weight
saving is as expected much higher, i.e. 5.144 kg. The results for all three designs are gathered
in Table 5.11.
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(a) Physical scatter for constraint g1
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(b) Physical scatter for constraint g2
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(c) Numerical scatter for constraint g3
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(d) Physical scatter for constraint g4

Figure 5.32: Physical scatter for four of the most noisy outputs with respect to the unfeasible
design d∗95%. The histograms are generated by Monte Carlo sampling with respect to the surro-
gate models. The black and red curves represent the constraint threshold and the 95% quantile
respectively.

It seems important to emphasize two points here. First, the solutions presented above are con-
ditional to the surrogate models accuracy. We could only check the true solution with respect to
the deterministic solution. In turned out that roughly all the constraints were satisfied, except
for y2 and y6 which where violated respectively by only 0.38% and 2.54%. This was considered
small enough for the design to be validated. We could not run a Monte Carlo simulation for the
RBDO results. However, the responses of the FE models considering the nominal values of the
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Table 5.11: Final weight for the different solutions compared to the nominal design d0.

Design d0 d∗95% d∗90% d∗det
Weight (kg) 44.882 45.720 43.314 39.738
Weigth variation − 0.838 −1.568 −5.144
Relative weight saving (%) − 1.87 −3.49 −11.46
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Figure 5.33: Thicknesses of the various parts corresponding to different solutions compared to
the nominal one. The black lines bound the search space for each thickness.

environment variables were also shown to be globally acceptable. Second, these weight sav-
ings, i.e. 1.568 kg and 5.144 kg respectively for RBDO and DDO, are only the contributions of
frontal impact related parts to the overall weight reduction of the full body shell. In fact, recall
that the weight optimization here is multi-disciplinary. Therefore, thanks to experts knowledge,
distinct perimeters of parts are defined for each discipline so that there is no coupling between
the different responses. Optimization is therefore carried out sequentially for each subset of
parts within each discipline. The overall weight saving is henceforth substantial.
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5.5 Conclusion

This chapter has presented numerical analyses with the proposed adaptive Kriging and quantile-
based RBDO approach. The chapter is divided into two parts. The first one was aimed at
validating the proposed methodology with respect to literature references. Three applications
examples were treated. They all differ in the type of probabilistic models considered, i.e. ran-
domness in design variables only, randomness in environmental variables and eventually ran-
domness in all types of variables. The first example allowed us to validate the methodology
with respect to an analytical solution. An accurate solution could indeed be found in a reduced
number of calls to the true model. In the two other examples, comparison was made with other
available reference solutions. This allowed us to validate the efficiency of the approach as the
number of calls to the true model was shown to be either smaller or roughly equal to these
benchmark solutions.

The second part of the chapter is devoted to applying the methodology to the lightweight
design of an automotive body shell under frontal impact. Prior to this application, we inves-
tigate the specificity of the frontal impact, i.e. the presence of noise and its chaotic behavior.
In this respect, two case studies were carried out. The first study allows us to have a deeper
understanding of how the numerical noise affects the simulations. The important aspect is its
heteroscedasticity which disables the possibility of feeding the Kriging model with an already
known homogeneous noise variance. Accounting for heterogeneous noise is not possible be-
cause of the computational budget it would require. The second study was concerned with
the chaotic behavior of cars in frontal impact which leads to different crash scenarios. It was
shown how support vector machines for classification may help improve surrogate modeling
in presence of multiple physical behaviors.

Eventually, RBDO was applied to the two models, namely the 5-part sidemember subsystem
and a 39-part full body shell model. Thanks to a relatively low dimension in the sidemember
subsystem (s = 7), the methodology was applied successfully. The metrics for accuracy in
the two stages were monitored and were shown to decrease as enrichment was applied. A
reliable solution with reduced weight was found. As for the full body-in-white problem, the
application was somehow difficult for various reasons. First, the model is highly noisy. This
makes any attempt to find conservative solutions extremely difficult. We could however find
some designs while slightly decreasing the degree of conservatism. Second, the high dimension
of the problem (s = 23) made it hard to train accurate Kriging models for the 8 outputs. Because
of time restriction (we perform the optimization in a project-like environment), we could not
make many iterations of enrichments. Beside, given the high dimension of the problem, the
Kriging margin shrinking is not easy to achieve. Therefore, the accuracy criteria remain quite
high despite enrichment. A better strategy in such a case would be to start the second stage of
enrichment in the very last iterations of optimization, i.e. once the region with optimal solution
has been identified.
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CONCLUSION

The need to explore new approaches for efficient lightweight design of new cars has motivated
the work presented in this PhD thesis. In particular, the automotive body shell, also known as
body-in-white, provides an interesting potential for design to the strictly necessary, i.e. there is
room for further weight saving that might be achieved through constrained multidisciplinary
optimization. This work primarily deals with the lightweight design of an automotive body
structure under frontal impact. The following section restates the problem and summarizes
the approaches explored for a solution.

Summary and main contributions

The lightweight design of an automotive body structure under frontal impact

To achieve weight reduction of the automotive body structure, one searches for an optimal dis-
tribution of its part thicknesses while satisfying a collection of constraints resulting from safety
and comfort requirements. In this work, we are concerned with frontal impact since it is the
one which causes the most difficulties in optimization. This is due to its chaotic nature which
makes any finite element simulation noisy. The noise may come either from inherent physical
variability of the input parameters or from modeling error. The latter is termed in this thesis nu-
merical noise. In this work, it was proposed to handle this problem by introducing a probabilistic
framework which allows us to propagate the input variability to the outputs and henceforth
to search for a conservative design. This can be achieved through design optimization under
uncertainties.

Optimization under uncertainties

Design optimization under uncertainties is an important field of research in which scientists
contributions have been constantly increasing. Chapter 2 of this thesis aimed at reviewing the
state-of-the-art techniques developed to account for uncertainties in design optimization. The
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limitations of a deterministic design in a context where uncertainty is ubiquitous were first
highlighted. Then the various sources of uncertainties were analyzed, followed by the possible
ways of handling them. From the point of view of design safety, robust and reliability-based
design optimizations (respectively RDO and RBDO) provide the necessary tools. Given that
uncertainties in the problems of interest primarily act on the constraints, we argue that RBDO
is the most appropriate approach. We therefore review reliability analysis tools and RBDO
techniques. The latter involves methods that can be grouped into two-level, mono-level and
decoupled approaches.

In this chapter, we propose an alternative approach to solve RBDO problem. This approach is
based on the computation of the constraints quantiles. Its formulation is motivated by some char-
acteristics of our applications. First, we are not concerned with the simulation of rare events.
In fact, the RBDO is simply meant to account for inputs variability and thereafter to propa-
gate them to the outputs where a conservative solution is sought. In this respect, the quantile
is used as an arbitrary measure of conservatism. Its possible values are henceforth relatively
high. In this case, there is no need of any of the sophisticated variance-reduction simulation
techniques traditionally used in RBDO. A quantile estimated through a basic Monte Carlo sam-
pling is enough for our application. The approach may therefore be seen as double-loop where
the outer loop explores the design space and the inner one quantifies the conservatism of the
design thanks to a straight Monte Carlo sampling. The second aspect of our problem is that it is
meant to be applied in an industrial context where deterministic design optimization is the cul-
tural reference. Providing an approach which can be built upon the current workflow without
requiring intrusive developments is essential. As such, the quantile can be directly plugged as
constraints into the current optimization algorithms. This will supposedly facilitate the transi-
tion from a deterministic design optimization to its reliable counterpart.

The application of such a direct approach to an industrial problem is however not possible
because of the high computational budget it would require. Chapter 3 was concerned with
methods to alleviate the high cost of implementing an RBDO approach in an industrial context.

Surrogate modeling

An exponential increase of computational power has been observed during the last few decades.
This gave designers the possibility to refine their modeling of the physical behaviors they aim
to simulate. Thus, the progress made in computers followed the complexity of mechanical
models. In the automotive industry, high-fidelity models now allow designers to simulate a
frontal impact extremely finely, hence reducing the cost of physical prototyping. However, the
associated computational cost in terms of CPU time is quite a hurdle to any optimization anal-
ysis as the latter requires repeated evaluations of the time-consuming model. Lately, surrogate
modeling has emerged as a tool to overcome these difficulties.

Chapter 3 of this thesis is mainly concerned with two types of surrogate models, namely Krig-
ing and support vector machines. Support vector machines (SVM), whose development has
been based on structural risk minimization principles, provides a mathematical framework
for learning from data. Regression and classification are possible through SVM. In this thesis,
the latter is used for classification of crash scenarios in an attempt to improve predictability.
Kriging, a.k.a. Gaussian Process modeling, has been extensively used in the literature for the
approximation of black-box functions. In this work, the main asset of Kriging is that it provides
a local measure of its own accuracy. Given in a form of a probabilistic measure, this enables
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the development of adaptive techniques which allows us to improve accuracy only in regions
of interest. The main contributions of this work rely on this point.

Quantile-based optimization and enrichment

It was proposed in Chapter 4 to combine the quantile-based RBDO method introduced in Chap-
ter 2 with an adaptive refinement of the Kriging models. The idea is to reduce the overall
number of calls to the true time-consuming finite element model by only focusing in regions
of the space that are meaningful to the problem at hand. To this end, a two-stage enrichment
scheme is proposed. The first stage is global. The idea is to identify all limit-state surfaces and
to add new training points in their vicinity so that the associated Kriging margin of uncertainty
is made small enough. This means that we only search accuracy in regions of space where the
constraints are likely to be violated. A metric that allows us to monitor the convergence of this
enrichment has been defined. The second stage of enrichment is local. In fact, it is coupled with
optimization. As the algorithm explores the design space, accuracy of the estimated quantiles
is estimated. A metric which consists of an upper and a lower bounds on the quantiles has
been derived to assess this accuracy. An iteration of enrichment is performed when the rela-
tive distance between the bounds is beyond a pre-defined threshold. By coupling optimization
and enrichment, we direct the enrichment (and therefore the computational budget) to regions
where the objective function is decreasing (assuming we consider a minimization problem).
Tricks were also suggested to keep the enrichment to the strict necessary amount.

Perspectives and future research

Applications of this enrichment strategy on analytical and mechanical problems has shown
the accuracy and the enhanced efficiency brought by the approach. However, this is only true
for problems of moderate dimensions. In the case of high-dimensional problems, some diffi-
culties have been encountered. In this section, we review their possible causes and suggest
a few avenues of thought for future work aiming at applying RBDO to lightweight design of
automotive body structures.

Application to high-dimensional problems

The approach we have proposed here might be challenged in two ways. The first point is
related to its application in an industrial context. The enrichment scheme implies that model
evaluations are made sequentially. Despite the overall number of model runs is reduced, this
sequencing extends the time necessary to carry out the optimization. When schedules are tight,
one might not be able to fully apply the methodology. Beside, for high-dimensional problems,
the surrogate models trainings and the numerous computations of quantiles (i.e. in the first
stage of enrichment) make the approach prohibitively ”heavy”.

Second, we faced several difficulties, especially due to the curse of dimensionality, in the full
body-in-white application. From the viewpoint of Kriging, it is hard to train an accurate model.
More importantly, the approach relies on the shrinking of the margin of uncertainty in areas
where points are added to the DOE. The metrics to assess improvement of the fitting accuracy
were developed with respect to this concept. However, in a high-dimensional setting the re-
finement criteria stall for a large number of enrichments iterations. Such criteria are certainly
not well adapted in this case. Alternatively, one may consider other types of surrogate models.

187



6. CONCLUSION

In this thesis, we have presented support vector machines for regression. They are theoretically
well adapted to high-dimensional problems. However, in contrast to Kriging, SVR in its na-
tive formulation does not feature any tool to assess its local accuracy. Many works have been
achieved in order to implement a probabilistic framework to support vector machines (Gao
et al., 2002; Lin and Weng, 2004). One may therefore consider applying them to this work in
replacement of Kriging. The recourse to bootstrap to derive a measure of local error in SVR
may also be investigated. We should however stress here that the calibration of a SVR hyper-
parameters is quite a challenging task. Gradient-based approaches often fail to produce good
models. In this thesis, we used a global search method, namely the cross-entropy based opti-
mizer which is quite expensive. The cost of training therefore grows with both the dimension
and the size of the training set.

From another perspective, model reduction techniques should be exploited to reduce the size
of the problems. Screening techniques may be used to lower the dimension of the optimization
problem and henceforth that of the augmented space in which the surrogate models are built.
Likewise, the high number of constraints in optimization increases the number of models train-
ings. Feature extraction methods such as principal component analysis may also help reduce
the number of models trainings. Eventually, it is widely accepted that the metamodeling of
outputs which are maximum values of processes is difficult. It may be interesting to develop
approaches that would allow us to directly approximate the time-history curves given by the
finite element models. This is however acknowledged to be a tough assignment.

Implementation in an industrial context

From a broader perspective, some challenges still need to be faced in order to implement a
RBDO approach to body shell lightweight design in an industrial environment. The prime
aspect that comes to mind is the quality of the finite element models. Recall the percentage of
failed simulations when creating and updating the DOE for the full car application. There was
20% of the simulations that failed. Of course this ratio is not the same for all models and is
usually smaller. However, it shows that the finite element model was not optimally designed
for parameters which depart too much from the nominal values. Besides, the numerical noise,
which is attributed to modeling error and other simplifying assumptions, was quite high in
this application. This made the finding of an admissible reliable solution for relatively high
values of the quantiles difficult (e.g. 95%). There is certainly much to be gained by providing
the designers with more robust FE models. Beside, the number of calls to the true model is
necessarily increased in RBDO in comparison to a DDO approach. Here again there is much
to be gained by increasing the computational power in terms of available CPUs. This would
allow the designers to run models in a shorter time-lapse and reduce the restitution time of a
job (which is often much higher than that of a single model simulation).

Finally, to close this discussion, we must also mention cultural barriers that refrain engineers
from fully considering uncertainties in the early stage of new concepts developments. Despite
the role of uncertainties in real-life problems is widely accepted, there is still a long path way to
go before uncertainties are systematically accounted for in engineering processes. In this thesis,
we have considered the physical variability in the crash protocol as the main source of uncer-
tainties. The difficulty here is how to quantify these uncertainties and propose appropriate
distributions for each of them. Furthermore, many other aspects are sources of uncertainties
but quantifying them is quite challenging. All these reasons make the implementation of such
an RBDO approach difficult. Moreover, one of the objectives of this work was also to handle the
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numerical noise alone since this has seriously bothered engineers. This would have been a first
milestone toward systematic consideration of uncertainties. Further work is still necessary to
achieve this. However, we have proposed an approach which accounts for uncertainties from a
broader perspective. This approach may allow the engineers to directly include frontal impact
to lightweight design of automotive body structures. An application has shown the potential
gain in terms of weight savings and therefore a contribution to the reduction of CO2 emissions.
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INITIAL DESIGN OF EXPERIMENTS: A SHORT

STATE-OF-THE-ART

According to the methods that are used to build them, space-filling designs can be classified
into three groups: deterministic, random and quasi-random designs. We briefly review some of
the most-widely used here while focusing on quasi-random designs.

A.1 Deterministic design of experiments

By deterministic, it is simply meant that there is no randomness in the choice of the input
parameters values. The design sites are chosen thanks to a predefined scheme. Examples of
such designs are given below.

A.1.1 Factorial designs

A full factorial design is an s-dimensional L-level grid i.e. L > 1 levels are chosen in each dimen-
sion and the points of the learning basis are generated considering all possible combinations
of these levels. Such designs are known to be well suited to polynomial models as their prop-
erties make the interpretation of the model coefficients easy. They are also very easy to build
but their size grows dramatically with both the dimension and the number of levels: n = Ls.
This makes them hardly tractable when either the dimension or the number of levels is high. In
such a case, one may consider fractional factorial designs which are constructed as a subset of full
factorial designs where only a fraction of the combinations of levels is considered. This results
in sparser designs. The selection of the fraction of points to keep is based on the sparsity-of-
effect principle (Goupy and Creighton, 2006). Under this principle, it is assumed that the model
is primarily driven by marginal effects and possibly second-order interactions. Higher-order
interactions are considered negligible. These two types of designs are mainly used with poly-
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nomial response surfaces, often of low orders. They may not be suitable for general-purpose
surrogate models such as Kriging.

A.1.2 General linear specific designs

When one knows exactly which type of model is to be built, it is possible to use this knowledge
to design an experiment that conveniently suits the model. These types of designs exist for gen-
eral linear models. Such models, which consists of a linear combination of regression functions,
are calibrated by tuning the regression coefficients. The variance of these coefficients is known
to be proportional to the so-called information matrix FTR−1F, where F and R are respectively
the regression and auto-correlation matrix. A family of designs based on criteria minimizing
this variance have been developed, among which:

• A-optimality which consists of minimizing the trace of the information matrix:

DA = arg min
D∈D

trace
(

FTR−1F
)−1

; (A.1)

• D-optimality which avoids the inversion above by rather maximizing the determinant of
the information matrix

DD = arg max
D∈D

det
(

FTR−1F
)

. (A.2)

Other designs, such as the G-optimal which minimizes the maximum variance of the estimates,
exist. Despite their apparent simplicity, their implementations require the solution of a high-
dimensional optimization problem of size s× n. For the D-optimal criterion for example, the
commonly used technique relies upon exchanging coordinates, which turns out to be a combi-
natorial optimization problem (a technique used in Matlab statistical toolbox).

A.1.3 Bayesian designs

Just as for the above general linear models, some designs have been developed specifically for
Bayesian predictors. They attempt to exploit a prior knowledge of the autocorrelation function.
In this category, Lindley (1956) introduced the maximum entropy criterion for statistical theory
based upon Shannon’s entropy (Shannon, 1948). The work of Shannon in information theory
was concerned with the measure of the amount of information received during the process of
its transmission. In statistical theory, this idea is equivalent to considering the knowledge we
have about a process before and after an experiment is performed. Consider now an initial
design D ∈ D. We would like to predict the output of a system in the unsampled points of
D: D̄ = D\D using Bayesian methods, say Kriging. As shown in the previous chapter, the
prediction relies on a stochastic process Y. The best design, in the sense of entropy, is the one
that maximizes (Lindley, 1956):

H (Y) = EY [log fY (Y)] , (A.3)

where EY denotes the expectation w.r.t. Y and fY is the density of Y.

For Bayesian process with Gaussian priors, Currin et al. (1988) have shown that the criterion
becomes:

DE = max
D∈D

det [C] , (A.4)

192



A.1. Deterministic design of experiments

where C is the covariance matrix of the process Y. Under the assumption of stationarity, the
criterion reduces to maximizing det [R], R being the autocorrelation matrix. This criterion has
been successfully applied to computer experiments by Shewry and Wynn (1987) and Currin
et al. (1988), among others. The resulting optimization is however not trivial to solve. Currin
et al. (1991) proposed an efficient algorithm to handle it.

Figure A.1 illustrates this criterion for a Gaussian process with auto-correlation length of 0.4.
In the left panel, an initial random design is sampled. The determinant of its auto-correlation
is 3.51 10−5. The right panel shows a design obtained by maximizing det [R] to a value of 0.21.
The optimization was carried out with the R package DiceDesign (Franco et al., 2013). Despite
the resulting design clearly fills the space in a better way than the initial one, the optimization
problem may be hard to solve, especially for high dimensional cases.
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(a) Randomly sampled initial design
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(b) Final design after entropy maximization

Figure A.1: A two-dimensional maximum entropy design of size 20.

Other well-known Bayesian designs are based on the mean-square error, more specifically the
integrated and maximum mean-square error (Sacks et al., 1989). But just as the entropy criterion,
they result from high-dimensional optimization problems. It has also been shown that they
have a tendency to gather points inside the design space in the expense of the boundaries
(Koehler and Owen, 1996).

A.1.4 Geometric criteria based designs

These designs, introduced by Johnson et al. (1990), are based on the optimization of some Eu-
clidean distances on the design space. Starting from a random design, they developed so-called
maximin and minimax criteria.

Let consider an initial design X . The prediction at a new point x is likely to be more accurate
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when x is close to a design site and is on the contrary less accurate when x is remote from
all design sites. Minimax designs are constructed accordingly with this observation. This is
achieved by searching a design that makes the maximum distance of all points in the design
space with their closest points inX as small as possible. In a formal way, the following minimax
distance criterion is minimized:

ΦmM (X ) = min
x∈D

max
xi∈X
‖x− xi‖. (A.5)

Geometrically, this can be seen as covering the design space with the smallest balls centered on
the design sites (Pronzato and Müller, 2011).

Alternatively one might need to spread the design sites as much as possible. This is achieved
in maximin designs which consist in maximizing the so-called maximin distance criterion:

ΦMm (X ) = min
i 6=j
‖xi − xj‖, i, j = {1, 2, . . . , n} . (A.6)

By analogy with minimax designs, they seek to maximize the radius of non-intersecting balls
centered on the design sites. (Pronzato and Müller, 2011).

A.2 Random designs

The introduction of randomness in design sampling comes from Monte Carlo techniques where
an integral of a function f is approximated in the unit hypercube by averaging the values it
takes on some randomly drawn points:

∫

[0,1]s
f (t) dt =

1
n

n

∑
i=1

f (xi) , (A.7)

where s is the dimension of the space and {xi, i = {1, . . . , n}} is a set of independent and iden-
tically distributed points in [0, 1]s.

The variance of this estimate is σ2
f /n, where σ2

f denotes the variance of f . A good estimation of
this integral requires the unit hypercube to be filled as uniformly as possible. For this purpose,
many techniques have been developed. By extrapolation, they have been brought to the field
of surrogate modeling where they serve for the design of experiments. The most natural one
is Monte Carlo sampling which consists in drawing from a uniform distribution in the unit
hypercube:

XMCS =
{

xij, i = {1, . . . , n} , j = {1, . . . , s}
}

. (A.8)

Such a design is quite easy to implement. However its rate of convergence to the uniform
distribution, in the order of 1/

√
n, is quite slow. It thus fails to truly fill the unit hypercube

when its size is not large enough. Alternative designs, known as stratified sampling allow to
increase this rate of convergence.

A.2.1 Latin hypercube sampling

Latin hypercube sampling has been developed by McKay et al. (1979) as an improvement of
MCS. The authors that the associated variance is smaller than that of MCS. This reduction is
achieved by ensuring the uniformity in any dimension. Hence, each input variable has all
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portion of its distribution represented by a sample point. LHS is quite easy to implement,
which makes it a powerful and widely-used design. It takes the form:

XLHS =

{
xij =

πij − 1 + uij

n
, {i = 1, . . . , n} , {j = 1, . . . , s}

}
, (A.9)

where πij is the i-th element of a random permutation of the sequence {1, . . . , n} along the
dimension j and uij is a realization of a uniform random variable U in [0, 1].

In a practical point of view, to construct this design, one divides each unit axis corresponding
to a input variable into n bins of equal width. The tensor product of these bins gives rise to a
mesh of ns cells. One then chooses n cells so that each interval of the marginal input variables
is represented only once. Eventually, one randomly places a sample point in each of the chosen
cells.

Despite LHS reduces MCS asymptotic variance, its rate of convergence is not better than that
of MCS, i.e. ∝ 1

√
n. Furthermore, the uniformity in the marginal input variables does not guar-

antee uniformity in the entire design space. For instance, consider a 2-dimensional ten points
LHS with the following permutations: π1 = {1, 2, . . . , 10} and π2 = {10, 9, . . . , 1}. The result-
ing is plot in Figure A.2. The picked cells turn out to be in the diagonal and the distribution is
far from being uniform over the unit square.
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Figure A.2: Latin hypercube sampling with an ill-chosen permutation sequence

Of course, this example is one of the worst possible cases and its occurrence is not very likely.
However, it illustrates the limitation of a pure Latin hypercube sampling. Many authors have
attempted to improve LHS by implementing the so-called optimal Latin hypercube (OLH) sam-
pling. They proceed by combining the good one-dimensional projection property of LHS with
another criterion such as maximin (Morris and Mitchell, 1995), IMSE and entropy (Park, 1993)
or discrepancy (Fang et al., 2002). Many authors proposed algorithms to handle the task such
as simulated annealing search in Morris and Mitchell (1995), an exchange and Newton-type
algorithms (Park, 1993) or a genetic algorithm in Bates et al. (2004). The resulting optimization
problems have prohibitive computational costs, especially for high values of s and n. Near op-
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timal Latin hypercube designs are an alternative where a good, but not the best, OLH is sought
(e.g. in Viana et al. (2010) which also provides ready-to-use Matlab codes).

A.2.2 Orthogonal arrays

Owen (1992) and Tang (1993) independently introduced orthogonal arrays for computer experi-
ments, which are generalizations of Latin hypercube designs in dimension s. They are defined
as follows (Owen, 1992, 1994).

An orthogonal array of strength r and symbol q is a matrix of n rows and s columns with ele-
ments taken in {0, 1, . . . , q− 1} such that in every submatrix of size n× r, each of the possible qr

rows occur the same number of times λ (note that n = λqr). They are denoted by OA (n, s, q, r).

Owen (1992) also showed that an orthogonal array remains orthogonal if the symbols
{0, 1, . . . , q− 1} are permuted. He then proposed the following randomized orthogonal array
sampling formulation:

XOA = {x0, x1, . . . , xn−1} ,

with xij =
πj
(

Aij
)
+ uij

q
,

(A.10)

where πj is the permutation of the sequence {0, . . . , q− 1}, Aij are elements of the orthogonal
array and uij is a realization of a uniform random variable in [0, 1].

The main asset of an orthogonal array of strength r is that it allows one to generalize in di-
mension r the good projection properties in dimension one of Latin hypercubes. However, for
projection in dimensions lower than r, there is no guarantee that the projection properties are
good. Besides, the cost to build an OA can be quite high especially with increasing values of
λ = nq−r. Given a strength and a symbol, it is thus recommended to build an OA with λ = 1
(Franco, 2008).

Figure A.3 shows a three-dimensional randomized orthogonal array of strength r = 2 and
symbol q = 7 with n = 49 points. It was generated with the R package DiceDesign. The
projection in all two sub-dimensions are shown for (x1, x2), (x1, x3), (x2, x3) respectively in
Figures A.3b, A.3c and A.3d. As expected, all unit axes are divided in q = 7 cells and each cell
contains exactly λ = 49× 7−2 = 1 point. Thus, the uniformity in all the subspaces of dimension
2 are ensured. Note that, without the random noise u , the projections in the two-dimensional
subspaces are nothing but 7-level full factorial designs.

A.3 Quasi-random designs

Quasi-random or Quasi-Monte Carlo designs were introduced in an attempt to improve MCS
as well. They actually replace the random sampling in MCS by a well-chosen deterministic
sequence. The reasons for their use are two-fold. First, it is not possible to generate in a strict
sense random sequences of numbers since randomness in computers spring from determinis-
tic algorithms. They are known as pseudo-random numbers (see Niederreiter (1992) for a deeper
insight). Then if we could only hope to generate pseudo-random numbers or otherwise said,
quasi-random points, we might as well search those which rate of convergence toward unifor-
mity is higher than the one of a pure MCS (Jourdan, 2000) (recall that the more uniform the
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(b) Projection of the design in (x1, x2)
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(c) Projection of the design in (x1, x3)
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(d) Projection of the design in (x2, x3)

Figure A.3: Randomized orthogonal array in three dimensions: OA(49,3,7,2)

design, the better the integral approximation in a Monte Carlo technique). This is the aim of
quasi-Monte Carlo designs. In these techniques, the uniformity of a sequence is measured by
the so-called discrepancy.

A.3.1 A short introduction to discrepancy

The discrepancy is a measure of the deviation of a given sequence from uniformity. Let us
consider a sequence of at least n points X in the unit hypercube Is = {0, 1}s. Uniformity
ensures that the proportion of points in any subset of Is is asymptotically equal to its volume.
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Mathematically this translates into (Hlawka, 1964):

A(P,X , n)
n

n→+∞→ λ(P), (A.11)

where P is any subset of Is, A(P,X , n) is the number of points of the sequence X belonging
to P and λ(P) is the Lebesgue measure of P. The Lebesgue measure of a subset is actually its
s-dimensional volume and coincides for s = {1, 2, 3} with respectively the length, the area and
the volume. In the sequel, we will simply call it ”volume”.

Figure A.4 depicts the 128 points of a random sequence and two subsets P1 and P2, each of
which has a volume of 1/16. A necessary condition for this sequence to be uniform is that the
number of points they contain equals 128/16 = 8. However, one has A(P1,X , n) = 13 and
A(P2,X , n) = 6. Both of them are different from 8. These deviations are somehow measured
by the discrepancy (Dn(X )). Various definitions of discrepancy exist, among which (Thiemard,
2000; Dick and Pillichshammer, 2010; Franco, 2008):
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Figure A.4: A random sample of 128 points in I2 and two subsets P1 and P2

• Extreme discrepancy

Dext
n (X ) = max

P⊂Is

∣∣∣∣
A(P,X , n)

n
− λ(P)

∣∣∣∣ . (A.12)

Here P is any subset of the form ∏s
i=1[ai, bi] such that 0 ≤ ai < bi < 1, ∀i = {1, . . . , s}.

• Star discrepancy is a less conservative definition and writes:

D∗n(X ) = max
P⊂I∗s

∣∣∣∣
A(P,X , n)

n
− λ(P)

∣∣∣∣ , (A.13)

where I∗s represents all the subsets of Is anchored at the origin, i.e. in the form ∏s
i=1[0, bi)

(e.g. P1 ⊂ I∗s in Figure A.4).
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• L2-discrepancy

DL2
n (X ) =

[∫

P⊂I∗s

(
A(P,X , n)

n
− λ(P)

)2

dP

]1/2

. (A.14)

A property which follows from these definitions is that 0 ≤ Dn(X ) ≤ 1. A sequence is said to be
uniform when Dn(X )

n→+∞→ 0. The computation of the discrepancy for any given sequence is
however not straightforward and many authors resort to lower and higher bounds (Thiemard,
2000). In dimensions one and two, there exists some simple formulations of discrepancy as
derived by Niederreiter (1992) for example. For a Monte-Carlo sampling, the discrepancy is
known to be 1/

√
n. The discrepancy of a full factorial design is 1/n.

A.3.2 Some low-discrepancy sequences

Many authors have developed sequences for which the discrepancy is lower than the one of
Monte-Carlo. They are usually in the order of log(n)s/n and are known as low-discrepancy
sequences. Some important results are reported in the sequel.

A.3.2.1 van der Corput sequence

This sequence, introduced by J.G. van der Corput in 1935 (van der Corput, 1935), features a
small discrepancy and is easy to implement. It is based on the so-called b-adic inverse radical
function. Any integer i ∈N has the following finite b-adic expansion: i = n0 + n1b + n2b2 + . . ..
Its associated radical inverse function φb(i) : N→ {0, 1} is defined as:

φb(i) =
n0

b
+

n1

b2 +
n2

b3 + . . . (A.15)

The first n points of a van der Corput (VDC) sequence are then defined as any sequenceXVDC =
{x0, x1, . . . , xn−1} where xi = φb(i). It can be shown that a VDC sequence for the prime integer
b consists of monotonically increasing cycles of length b. At each cycle, the gaps between the
points of the previous cycles are filled. This allows an asymptotic uniform coverage of the
space.

Table A.1 below illustrates the construction of the first ten points of a VDC sequence in base
2. The third column shows the increasing cycles of length 2: (0, 0.5),(0.25, 0.75), etc. In this
particular case, the sequence fills alternatively the segments [0, 0.5] and [0.5, 1].

A.3.2.2 Hammersley sequence

Hammersley (1960) developed an s-dimensional generalization of the van der Corput sequence.
Halton (1960) has demonstrated that the discrepancy of this sequence is in the same order as
the one of van der Corput, as postulated by Hammersley. The first n points of the sequence are
given by:

XHAM = {x0, x1, . . . , xn−1} ,

with xi =

(
i
n

, φb1(i), . . . , φbs−1(i)
)

,
(A.16)

where φbj is the bj-adic radical inverse function introduced above, and bj are integers that are
prime to each other.
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i ibase2 φ2(i) Sequence Sample
0 0000 0

1 0001 1
21 =

1
2

2 0010 1
22 =

1
4

3 0011 1
21 +

1
22 =

3
4

4 0100 1
23 =

1
8

5 0101 1
21 +

1
23 =

5
8

6 0110 1
22 +

1
23 =

3
8

7 0111 1
21 +

1
22 +

1
23 =

7
8

8 1000 1
24 =

1
16

9 1001 1
21 +

1
24 =

9
16

Table A.1: The first ten points of a VDC sequence.

Faure has developed an upper bound of the discrepancy of a Hammersley sequence (Thiemard,
2000):

D∗n(XHAM) ≤ s
n
+

1
n

s−1

∏
i=1

(
bi − 1

2 log bi
log n +

bi + 1
2

)
. (A.17)

This bound exhibits a dominating constant: ∏s−1
i=1

bi−1
2 log bi

. It is thus possible to reduce the dis-
crepancy by choosing the s− 1 first prime integers.

For comparison with MCS and LHS, a Hammersley sequence in dimension two is plotted in
Figure A.5 together with a Halton sequence (introduced in the next section). They all consist
of 100 points. It is clear from these figures that the two quasi-random designs offer a better
uniform coverage of the unit square.

The main drawback of the Hammersley sequence is that one has to know beforehand the de-
sired sample size n since it is directly used in the computation of the coordinate of the points
in the first dimension (xi1 = i/n) . Besides, for an already built sequence, adding points is not
natural and would deteriorate the sequence properties. Halton (1960) proposed an alternative
to Hammersley sequences.

A.3.2.3 Halton sequence

Halton sequences are also s-dimensional generalizations of van der Corput sequences. Unlike
Hammersley, they do not feature the n-dependent term in the first dimension and solely consist
of radical inverse functions (Halton, 1960):

XHAL = {x0, x1, . . . , xn−1} ,
with xi = (φb1(i), φb2(i), . . . , φbs(i)) .

(A.18)
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(c) Hammersley Sequence (b1 = 2)
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(d) Halton Sequence (b1 = 2, b2 = 3)

Figure A.5: Different designs of 100 points

Hence they are easier to update. It is only required to have integers bj prime to each other
and once more, selecting the s first prime integers leads to the best results. However in high
dimensions, the sequence exhibits some inconvenient correlations resulting in diagonal strips.

Figure A.6a above shows projection of an 8-dimensional Halton sequence on the two last di-
mensions (corresponding to the bases 17 and 19). The parallel lines are due to the linear cor-
relation between the bases 17 and 19. Franco (2008) points out that this phenomenon is more
likely to occur in high dimensions and when the relative difference between the two bases is
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(a) Halton sequence
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(b) Scrambled Halton sequence

Figure A.6: The first 100 points of a Halton and scrambled Halton sequences projected in di-
mensions 7 (basis 17) and 8 (basis 19)

small. A well-known remedy is to randomize the sequence by applying a permutation πbj on
the sequence (0, 1, . . . , bj) for each prime integer bj. The so-called scrambled Halton sequence is
then obtained with the following scrambled radical inverse function:

SΦbj
(i) =

πbj(n0)

bj
+

πbj(n1)

b2
j

+
πbj(n2)

b3
j

+ . . . (A.19)

So far, the best known scrambled Halton sequences have been obtained by Braaten and Weller
(1979). They proposed a sequential scrambling method which holds 0 fixed and showed that
the resulting discrepancies are much better than the one of a conventional Halton sequence.
They also set up a table with the suggested permutations for the prime integers up to 53. In
Figure A.6b, we used the following permutation as in Braaten and Weller (1979)

π17 = (0 8 13 3 11 5 16 1 10 7 14 4 12 2 15 6 9) ,
π19 = (0 9 14 3 17 6 11 1 15 7 12 4 18 8 2 16 10 5) .

(A.20)

A.3.2.4 Faure sequence

Faure (1982) introduced some sequences for which he explicitly formulated the discrepancies.
He proved that for these sequences the discrepancy is also in the order of log(n)s/n. Their
definition is based on the radical inverse function and the Pascal matrix C = (ckl) defined as:

ckl =

(
l − 1
k− 1

)
=

{
(l−1)!

(k−1)!(l−k)! if k ≤ l,
0 otherwise

∀k, l ∈N∗. (A.21)
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A Faure sequence in base b is then defined as follows (Franco, 2008):

XFAU =
{

x(0), x(1), . . .
}

,

with x(i)j = φb(Cj−1i),

and Cj−1 =

(
j− 1
i− 1

)
(j− 1)j−i mod b.

(A.22)

where Cj−1 is the generator matrix of the j-th dimension of the sequence in dimension s and b
is a prime number such that b ≥ s.

It has been proven that better discrepancies are obtained when selecting the smallest prime
integer higher or equal to s. As pointed out in Morokoff and Caflisch (1995), each dimension
of a Faure sequence is nothing but a permutation of a Halton sequence. Henceforth, for any
prime b, an optimal permutation sequence is prescribed and the problems due to large primes
in Halton sequences do not occur quickly. Note that other generalizations of a Halton sequence
exist. For instance a Sobol’ sequence, which is not presented here, is a generalization in base 2.
Figure A.7 illustrates three Faure sequences in dimension two with respectively 30, 50 and 100
points. The prime integer used is 2 as it is the smallest higher or equal to the dimension. The
designs were also generated with DiceDesign.
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(a) Faure design with 30 points
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(b) Faure design with 50 points
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(c) Faure design with 100 points

Figure A.7: The 30, 50 and 100 first points of a Faure sequence in dimension two

A.3.3 (t, m, s)-nets and (t, s)-sequences

Niederreiter (1987) introduced the concepts of (t, m, s)-nets or simply nets and (t, s)-sequences
as low-discrepancy sequences. Dick and Pillichshammer (2010) point out that their construc-
tions were motivated by the fact that there exists no sequence for which the discrepancy actu-
ally equals zero. However, it is possible to define a class of subsets in Is = [0, 1]s for which
the local discrepancy is always zero. Such a sequence is called a net and a (t,s)-sequence is an
infinite sequence in Is for which finite segments are nets. By construction, they are appropri-
ate and good candidates for low-discrepancy sequences. Niederreiter (1987) even showed that
their discrepancy has the same upper bound as those of the previously presented sequences
with smaller constants and developed expressions of these bounds for some values of s and b.
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Let us start by defining the class of subsets we are referring to. They are the so-called elementary
intervals in base b and are any interval in the form:

s

∏
j=1

[
aj

bdj
,

aj + 1

bdj

)
, (A.23)

where aj , dj ∈N and aj < bdj ∀j = {1, . . . , s}.
An obvious consequence of this definition is that the volume of such an interval always writes
in the form b−d , where d = ∑s

j=1 dj. Figure A.8 shows three subsets. P1 and P2 are actual elemen-
tary intervals in base 2 as they respectively write

[ 0
22 , 1

22

)
×
[ 1

21 , 2
21

)
and

[ 2
22 , 3

22

)
×
[ 1

22 , 2
22

)
. Their

respective volumes are 2−3 = 1/8 and 2−4 = 1/16. The subset P3 ([0.1, 0.4) × [0.1, 0.3083)),
despite its volume is 0.625 = 1/16, is not an elementary interval since it could not be cast as in
Eq. (A.23).
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Figure A.8: Three subsets in I2. P1 and P2 are elementary intervals in base 2 whereas P3 is not.

The construction of a (t,m,s)-net follows from this definition. Consider two integers t and m
such that 0 ≤ t ≤ m. A (t, m, s)-net in base b is a sequence Xtms of bm points in Is such that
A(P,Xtms, bm) = bt for all elementary intervals P in base b of volume λ(P) = bt−m.

Let us give an example of a (0, 2, 2)-net in base 3. By definition, the number of points of this
sequence is bm = 32 = 9. The volume of the elementary intervals for this net is bt−m = b0−2 =
1/9. For this specific volume and considering the definition of the elementary interval above
(Eq. (A.23)) there are three couples (d1, d2) satisfying 2 = d1 + d2, which are (2, 0), (1, 1) and
(0, 2). Figure A.9 illustrates the three classes of elementary intervals: Figure A.9a for the couple
(2, 0), Figure A.9b for (1, 1) and Figure A.9c for (0, 2). It could be easily checked that they all
have a volume of 3−2. Since the sequence illustrated in this figure is a (0, 2, 2)-net, there should
be exactly bt = 30 = 1 point in each elementary interval, which is indeed the case. Note that
for this figure, we built this sequence with the following formulation:

xij =
Aij + uij

9
, i = {0, . . . , 8} , j = {1, 2} . (A.24)

where uij is a realization of a uniform random variable in [0, 1] and A is a sequence carefully
chosen and defined by A1 = (1, 6, 3, 2, 7, 4, 0, 5, 8) and A2 = (2, 3, 7, 5, 1, 0, 8, 4, 6).

204



A.3. Quasi-random designs

0 1/9 2/9 3/9 4/9 5/9 6/9 7/9 8/9 1
0

1

x1

x
2

(a) Elementary intervals with the cou-
ple (2, 0)

0 1/3 2/3 1
0

1/3

2/3

1

x1

x
2
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(c) Elementary intervals with the cou-
ple (0, 2)

Figure A.9: A (0, 2, 2)-net in base 3

A (t, s)-sequence is an infinite generalization of nets and is defined as follows. Consider an
integer t ≥ 0. A (t, s)-sequence in base b is a sequence {x0, x1, x2, . . .} such that for all couples
of integers k ≥ 0 and m ≥ t, the sequence

{
x(kbm), . . . , x((k+1)bm−1)

}
is a (t, m, s)-net in base b.

Some of the designs introduced above are particular cases of nets or (t, s)-sequences. Many
authors have implemented algorithms or tables of (t, m, s)-nets and (t, s)-sequences. Clayman
et al. (1997) present an updated survey of known constructions of these sequences for various
parameters. First a Latin hypercube of size b is a (0, 1, s)-net in base b. In fact, the only ele-
mentary intervals of volume b−1 are in the form [0, 1) ×

[ a
b , a+1

b

)
and

[ a
b , a+1

b

)
× [0, 1). These

intervals should contain b0 = 1 point as in a Latin Hypercube design. The (0, 2, 2)-net in base
3 shown in Figure A.9 above is also (0, 1, 2)-net in base 9. It is clear from Figure A.9a and Fig-
ure A.9c that it is also a Latin hypercube of size 9. Furthermore, it could also be proven that a
Latin hypercube based on an Orthogonal array OA(b2, s, b, s) is a (0, 2, s)-net in base b. Again,
the (0, 2, 2)-net in base 3 of the example in Figure A.9 is also a OA(9, 2, 3, 2) as highlighted in
Figure A.9b.

Finally Franco (2008) and Thiemard (2000) point out that a van der Corput sequence in base b is
a (0, 1) sequence in base b, a Sobol’ sequence is a (t, s) sequence in base 2 and a Faure sequence
is a (0, s) sequence in base b ≥ s.
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IMPLEMENTATION OF THE (1 + 1)-CMA-ES

ALGORITHM FOR CONSTRAINED
OPTIMIZATION PROBLEMS

We present here a pseudo-algorithm of the (1 + 1)-CMA-ES optimizer we are using. It is based
on the paper by Arnold and Hansen (012a). The reader may refer to Hansen (2005) for a well-
detailed explanation of the mechanisms underlying the covariance matrix adaptation scheme.
Other references such as Arnold and Hansen (2010); Auger and Hansen (2005); Igel et al. (2006);
Hansen and Kern (2004) implement various declinations of the CMA-ES method.

We consider here a general formulation of the constrained optimization as introduced in Eq. (2.1):

d∗ = arg min
d∈D

c (d) subject to:
{

fj (d) ≤ 0, {j = 1, . . . , ns}
gk (d, z) ≤ 0, {k = 1, . . . , nh} .

. (B.1)

For the sake of clarity, we consider that the environmental variables z remain constant. We
also merge the soft and hard constraints. The optimization problem solved using the pseudo-
algorithm in the sequel therefore reads:

d∗ = arg min
d∈D

c (d) subject to: gj (d) ≤ 0, {j = 1, . . . , n} , (B.2)

where n = ns + nh.
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B. IMPLEMENTATION OF THE (1 + 1)-CMA-ES ALGORITHM FOR CONSTRAINED

OPTIMIZATION PROBLEMS

Algorithm 3 Constrained (1 + 1)-CMA-ES algorithm (Arnold and Hansen, 012a)

Initialization:
Starting point d(0)

dbest = d(0), cbest = c
(

d(0)
)

. Best admissible solution

Bounds of the search space dmax and dmin

Initial value of the global step size σ(0) . By default σ(0) = 1/3 max{k=1,...,s}
(
dmax

k − dmin
k

)

Initial success probability Ps . Ps = 2/11
Initial Cholesky decomposition of the CMA-ES covariance matrix A0 . A0 = Is×s
Initial constraints vectors vj = 0s×1 and wj = 0s×1 , j = {1, . . . , n}
Initial record of succesful steps s = 0s×1
Convergence threshold ηd and maximum number of iterations Nmax
Initialize counter i = 1
Optimally tuned internal parameters of CMA-ES (Arnold and Hansen, 2010, 012a)
m = 1 + s/2, c = 2/(s + 2), cp = 1/12, Pt = 2/11 . s is the dimension
cc = 1/(s + 2), β = 0.1/(s + 2)
c+c = 2/(s2 + 6), c−c = min(0.4/(s1.6 + 1), 1/(2‖z‖2 − 1))

1: repeat
2: Sample a new design d(i) ∼ dbest + σ(i)A(i)z
3: where z = {zk ∈ R|zk ∼ N (0, 1) , k = 1, . . . , s}
4: for j = 1 to n do
5: if gj (d) > 0 then
6: vj = (1− cc)vj + cc A(i)z
7: end if
8: end for
9: if d(i) is unfeasible then

10: for j = 1 to n do
11: wj = A(i)−1

vj
12: end for
13:

14: A(i) ← A(i) − β

∑n
j=1 1gj>0

∑n
j=1 1gj>0

vjwT
j

wT
j wj

15: else
16:
17: Ps ← (1− cp)Ps + cp1ci≤cbest . Update the success probability
18:
19: σ(i) ← σ(i) exp

(
1
m

Ps−Pt
1−Pt

)
. Update the global step size

20: end if
21: if ci ≤ cbest then
22: dbest = d(i)

23: cbest = ci
24: s← (1− c)s +

√
c(2− c)A(i)z

25: u = A(i)−1
s

26: A(i) ←
√

1 + c+c A(i) +

√
1+c+c
‖u‖2

(√
1 + c+c ‖u‖2

1−c+c
− 1
)

suT
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27: else if ci > cbest and i ≥ 5 and (cbest > ci−1 and cbest > ci−2 and cbest > ci−3 and cbest > ci−4)
then

28:

29: A(i) ←
√

1 + c−c A(i) +

√
1+c−c
‖z‖2

(√
1− c−c ‖z‖2

1+c−c
− 1
)

A(i)zzT

30: end if
31:
32: i← i + 1
33: until ‖di − di−1‖ > ηd or i = Nmax
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Suykens, J. A. K. and J. Vandewalle (1999). Least squares support vector machine classifiers.
Neural Process. Lett. 9(3), 293–300.

Taflanidis, A. (2007). Stochastic system design and applications to stochastic robust structural control.
Ph. D. thesis, California Institute of Technology, Pasadena, California, USA.

Taflanidis, A. and J. L. Beck (2008). Stochastic subset optimization for optimal reliability prob-
lems. Prob. Eng. Mech 23, 324–338.

Taflanidis, A. A. and J. L. Beck (2009). Stochastic subset optimization for reliability optimization
and sensitivity analysis in system design. Comput. Struct. 87, 318–331.

Taguchi, G. and M. Phadke (1989). Quality engineering through design optimization. In
K. Dehnad (Ed.), Quality Control, Robust Design, and the Taguchi Method, pp. 77–96. Springer.

Tang, B. (1993). Orthogonal array-based Latin Hypercubes. J. Am. Stat. Assoc. 88(424).

Thiemard, E. (2000). Sur la calcul et la majoration de la discrépance à l’origine. Ph. D. thesis, Uni-
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