
HAL Id: tel-01343385
https://theses.hal.science/tel-01343385

Submitted on 8 Jul 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Automated test generation for production systems with
a model-based testing approach

William Durand

To cite this version:
William Durand. Automated test generation for production systems with a model-based testing
approach. Other [cs.OH]. Université Blaise Pascal - Clermont-Ferrand II, 2016. English. �NNT :
2016CLF22691�. �tel-01343385�

https://theses.hal.science/tel-01343385
https://hal.archives-ouvertes.fr

N° d’ordre : D.U. 2691
EDSPIC : 753

UNIVERSITÉ BLAISE PASCAL - CLERMONT-FD II

ECOLE DOCTORALE

SCIENCES POUR L’INGÉNIEUR DE CLERMONT-FD

Thèse
Présentée par

William Durand
pour obtenir le grade de

Docteur d’Université
Spécialité : Informatique

Automated Test Generation for production systems

with a Model-based Testing approach

Soutenue publiquement le 04 mai 2016, devant le jury :

PRÉSIDENTE
Hélène Waeselynck Directrice de Recherche, LAAS/CNRS, Toulouse
RAPPORTEURS
Ana Rosa Cavalli Professeur à Télécom SudParis
Roland Groz Professeur à l’Institut Polytechnique de Grenoble
EXAMINATEURS
Farouk Toumani Professeur des Universités, UBP/LIMOS, Clermont-Ferrand
Pascal Lafourcade Maître de Conférences HDR, UBP/LIMOS, Clermont-Ferrand
DIRECTEUR DE THÈSE
Sébastien Salva Professeur des Universités, UDA/LIMOS, Clermont-Ferrand
INVITÉ
Stéphane Simonnet Architecte, Manufacture Française des Pneumatiques Michelin

Abstract

This thesis tackles the problem of testing (legacy) production systems such as those
of our industrial partner Michelin, one of the three largest tire manufacturers in the
world, by means of Model-based Testing. A production system is defined as a set of
production machines controlled by a software, in a factory. Despite the large body of
work within the field of Model-based Testing, a common issue remains the writing of
models describing either the system under test or its specification. It is a tedious task
that should be performed regularly in order to keep the models up to date (which
is often also true for any documentation in the Industry). A second point to take
into account is that production systems often run continuously and should not be
disrupted, which limits the use of most of the existing classical testing techniques.

We present an approach to infer exact models from traces, i.e. sequences of events
observed in a production environment, to address the first issue. We leverage
the data exchanged among the devices and software in a black-box perspective to
construct behavioral models using different techniques such as expert systems, model
inference, and machine learning. It results in large, yet partial, models gathering the
behaviors recorded from a system under analysis. We introduce a context-specific
algorithm to reduce such models in order to make them more usable while preserving
trace equivalence between the original inferred models and the reduced ones. These
models can serve different purposes, e.g., generating documentation, data mining,
but also testing.

To address the problem of testing production systems without disturbing them, this
thesis introduces an offline passive Model-based Testing technique, allowing to detect
differences between two production systems. This technique leverages the inferred
models, and relies on two implementation relations: a slightly modified version
of the existing trace preorder relation, and a weaker implementation proposed to
overcome the partialness of the inferred models.

Overall, the thesis presents Autofunk, a modular framework for model inference and
testing of production systems, gathering the previous notions. Its Java implementa-
tion has been applied to different applications and production systems at Michelin,
and this thesis gives results from different case studies. The prototype developed
during this thesis should become a standard tool at Michelin.

iii

Keywords. Model inference, expert system, production system, offline passive
testing, conformance.

iv

Résumé

Ce manuscrit de thèse porte sur le problème du test basé modèle de systèmes de
production existants, tels ceux de notre partenaire industriel Michelin, l’un des trois
plus grands fabricants de pneumatiques au monde. Un système de production est
composé d’un ensemble de machines de production contrôlées par un ou plusieurs
logiciels au sein d’un atelier dans une usine. Malgré les nombreux travaux dans
le domaine du test basé modèle, l’écriture de modèles permettant de décrire un
système sous test ou sa spécification reste un problème récurrent, en partie à cause
de la complexité d’une telle tâche. De plus, un modèle est utile lorsqu’il est à jour
par rapport à ce qu’il décrit, ce qui implique de le maintenir dans le temps. Pour
autant, conserver une documentation à jour reste compliqué puisqu’il faut souvent le
faire manuellement. Dans notre contexte, il est important de souligner le fait qu’un
système de production fonctionne en continu et ne doit être ni arrêté ni perturbé, ce
qui limite l’usage des techniques de test classiques.

Pour pallier le problème de l’écriture de modèles, nous proposons une approche
pour construire automatiquement des modèles depuis des séquences d’événements
observés (traces) dans un environnement de production. Pour se faire, nous utilisons
les informations fournies par les données échangées entre les éléments qui composent
un système de production. Nous adoptons une approche boîte noire et combinons les
notions de système expert, inférence de modèles et machine learning, afin de créer
des modèles comportementaux. Ces modèles inférés décrivent des comportements
complets, enregistrés sur un système analysé. Ces modèles sont partiels, mais
également très grands (en terme de taille), ce qui les rend difficilement utilisable par
la suite. Nous proposons une technique de réduction spécifique à notre contexte qui
conserve l’équivalence de traces entre les modèles de base et les modèles fortement
réduits. Grâce à cela, ces modèles inférés deviennent intéressant pour la génération
de documentation, la fouille de données, mais également le test.

Nous proposons une méthode passive de test basé modèle pour répondre au problème
du test de systèmes de production sans interférer sur leur bon fonctionnement. Cette
technique permet d’identifier des différences entre deux systèmes de production
et réutilise l’inférence de modèles décrite précédemment. Nous introduisons deux
relations d’implantation : une relation basée sur l’inclusion de traces, et une seconde

v

relation plus faible proposée, pour remédier au fait que les modèles inférés soient
partiels.

Enfin, ce manuscrit de thèse présente Autofunk, un framework modulaire pour
l’inférence de modèles et le test de systèmes de production qui aggrège les notions
mentionnées précédemment. Son implémentation en Java a été appliquée sur
différentes applications et systèmes de production chez Michelin dont les résultats
sont donnés dans ce manuscrit. Le prototype développé lors de la thèse a pour
vocation de devenir un outil standard chez Michelin.

Mots-clés. Inférence de modèles, système expert, système de production, test passif,
conformité.

vi

vii

viii

Acknowledgement

Je tiens tout d’abord à remercier Ana Rosa Cavalli et Roland Groz pour avoir pris le
temps de rapporter ce manuscrit de thèse, pour leurs remarques et conseils, mais
également leur présence lors de ma soutenance. Je souhaite ensuite remercier Hélène
Waeselynck, Farouk Toumani, Pascal Lafourcade et Stéphane Simonnet d’avoir bien
voulu examiner mon travail et assister à ma soutenance.

Merci également à Sébastien, mon directeur de thèse, pour cette collaboration
pendant trois belles années. Je ne saurais jamais assez exprimer l’immense recon-
naissance, respect et humilité que j’ai envers lui.

Bien entendu, cette thèse n’aurait pu se faire sans le concours de l’entreprise Michelin.
Je tiens à remercier Thierry D., Ludovic L., Etienne S., Stéphane S., Yann G., Thomas
B., Jean D., Pierre P., Gabriel Q., Alain L., Isabelle A., Stephen N. et l’ensemble des
équipes "AI". Dans le même esprit, je tiens à remercier le laboratoire LIMOS et son
directeur, Farouk Toumani, de m’avoir accueilli.

Mère, père, vous avez forcément votre place ici. Merci de m’avoir donné goût au
savoir et à la réflexion, de m’avoir rendu si responsable et autonome, et de m’avoir
permis d’apprendre de mes erreurs. Vous m’avez également donné cette petite soeur,
Camille, qui m’a toujours supporté et que je remercie énormément ici. De peur
d’oublier certain(e)s, je ne me risquerais pas à lister toutes les personnes, famille ou
ami(e)s, qui font partie de ma vie mais à qui je pense forcément.

Ce document n’aurait probablement pas été celui que vous commencez à parcourir
sans l’aide précieuse de Bérénice B., Pascal L., Pascal B. et Jonathan P. Un grand
merci à vous !

Une dernière pensée pour mes collègues, camarades et/ou amis de l’IUT de Clermont-
Ferrand, du laboratoire LIMOS, de l’école ISIMA et, plus généralement, à toutes
les personnes que j’ai pu rencontré et qui m’ont, d’une manière ou d’une autre,
sciemment ou non, façonné.

ix

x

Contents

List of Definitions xv

List of Figures xvii

List of Tables xxiii

1 Introduction 1
1.1 General context and motivations . 1
1.2 Problems and objectives . 3
1.3 Contributions of the thesis . 4
1.4 Overview of the thesis . 5

2 State of the art 9
2.1 Software testing . 10

2.1.1 Types of testing . 11
Test selection . 14

2.1.2 Model-based Testing . 15
What is a model? . 15
Model definitions . 17
Conformance testing . 22

2.1.3 Passive testing . 24
2.2 Model inference . 26

2.2.1 Active model inference . 28
L∗-based techniques and related 28
Incremental learning . 31
Model inference of GUI applications 33

2.2.2 Passive model inference . 36
Passive inference using event sequence abstraction 38
Passive inference using state-based abstraction 39
White-box techniques . 41
Model inference from documentation 43

2.3 Conclusion . 44

3 Model inference for web applications 47
3.1 Introduction . 48

xi

3.2 Overview . 49
3.3 Inferring models with rule-based expert systems 51

3.3.1 Layer 1: Trace filtering . 53
3.3.2 Layer 2: IOSTS transformation 56

Traces to runs . 57
IOSTS generation . 57
IOSTS minimization . 59

3.3.3 Layers 3-N: IOSTS abstraction 62
Layer 3 . 62
Layer 4 . 67

3.4 Getting more samples by automatic exploration guided with strategies 71
3.5 Implementation and experimentation 72
3.6 Conclusion . 76

4 Model inference for production systems 79
4.1 Introduction . 80
4.2 Context at Michelin . 81
4.3 Autofunk’s models generator revisited 83

4.3.1 Production events and traces 86
4.3.2 Trace segmentation and filtering 88
4.3.3 STS generation . 90

4.4 Improving generated models’ usability 93
4.4.1 STS reduction . 93
4.4.2 STS abstraction . 96

4.5 Implementation and experimentation 97
4.5.1 Implementation . 97
4.5.2 Evaluation . 99

4.6 A better solution to the trace segmentation and filtering problem with
machine learning . 104

4.7 Conclusion . 106

5 Testing applied to production systems 109
5.1 Introduction . 110
5.2 Normalization of the inferred models 111
5.3 Passive testing with Autofunk . 112

5.3.1 First implementation relation: ≤ct 113
5.3.2 Second implementation relation: ≤mct 114

STS D(S) . 116
5.3.3 Offline passive testing algorithm 117

Soundness of Algorithm 4 . 118
Complexity of Algorithm 4 . 119

5.4 Implementation and experimentation 122

xii

5.4.1 Implementation . 122
5.4.2 Experimentation . 122

5.5 Conclusion . 125

6 Conclusions and future work 127
6.1 Summary of achievements . 127
6.2 New challenges in model inference 128

6.2.1 Building exact, or rather, more precise models 128
6.2.2 Scalability as a first-class citizen 129
6.2.3 Bringing together different methods and research fields 130

6.3 Testing and beyond . 131
6.3.1 Improving usability . 131
6.3.2 Online passive testing . 133
6.3.3 Integrating active testing with Autofunk 137
6.3.4 Data mining . 140
6.3.5 Refuting our main hypothesis 141

6.4 Final thoughts . 141

Bibliography 145

xiii

xiv

List of Definitions

1 Labeled Transition System . 17
2 Trace . 18
3 Variable assignment . 18
4 Symbolic Transition System . 19
5 Labeled Transition System semantics 20
6 Run and trace . 21
7 Input/Output Symbolic Transition System 21

8 Structured HTTP trace . 54
10 IOSTS tree . 57

12 Symbolic Transition System . 84
13 Traces(Sua) . 87
14 The ∼(pid) relation . 89
15 Complete trace . 90
16 Structured run . 91
18 Run set to STS . 91
21 STS set S . 92
22 The Mat operator . 93
23 STS branch equivalence class . 94
24 Reduced STS R(Si) . 95
26 STS set R(S) . 96

27 Compatibility of SN and Sut . 112
28 Implementation relation ≤ct . 113
30 Implementation relation ≤mct . 114
32 Derived STS D(SN

i) . 116

xv

xvi

List of Figures

2.1 Sorts of testing. We can sort testing techniques by aspect (character-
istics of quality), by phase (related to the target of the test), and by
accessibility (related to the information available, e.g., to construct the
test cases). 13

2.2 A simplified diagram showing how MBT works. This is a three-step
process: (i) we model the requirements (1 and 2), (ii) we generate the
test cases (3), and (iii) we run the test cases (4 and 5) that produce
verdicts (6), which we can evaluate (7 and 8). Dotted arrows represent
feedback, not "actions". 16

2.3 An example of a Labeled Transition System representing a coffee ma-
chine and its internal actions (τ). 18

2.4 An example of Symbolic Transition System representing a simple slot-
machine. 20

2.5 An example of Input/Output Symbolic Transition System representing
a simple slot-machine. 22

2.6 Illustration of the trace preorder relation between two LTSs. 24
2.7 Active model inference principle. Interactions are performed with

queries that produce feedback a learner can use to build a model. . . . 28
2.8 The principle of L∗-based learning algorithms with two kinds of queries:

membership queries and equivalence queries. 29
2.9 The principle of inferring models with crawling techniques. The learner

asks a test engine to stimulate the software under test through its GUI,
and constructs a model using the information gathered by the test engine. 33

2.10 Passive model inference principle. The learner does not interact with
the software system but rather relies on a fixed set of information
(knowledge). 36

3.1 Very first overall architecture of Autofunk (v1), our model generation
framework targeting web applications. 50

3.2 The Models generator stack. Each layer yields a model that is reused by
the next layer to yield another model, and so on. An orthogonal layer
describes any kind of exploration strategy by means of rules. 51

3.3 An example of HTTP request and response. HTTP messages are sent in
plain text, according to RFC 7230 [FR14]. 54

xvii

3.4 Filtering rule example that retracts the valued actions related to PNG
images based on the request’s file extension. 56

3.5 IOSTS S1 obtained after the application of Layer 2. 61
3.6 Login page and logout action recognition rules. The first rule adds a new

assignment to any transition having a response’s content containing
a login form. The second transition adds a new assignment to all
transitions where the uri (guard) matches /logout, identifying logout
actions. 63

3.7 An inference rule that represents a simple aggregation identifying a
redirection after a POST request, leading to the creation of a new
PostRedirection transition. 65

3.8 IOSTS S2 obtained after the application of Layer 3. 66
3.9 This rule recognizes an action that we call "deauthentication", i.e. when

a user logs out. 68
3.10 Authentication recognition by leveraging information carried by the

rule given in Figure 3.7. When a user browses a web page containing a
login form, following by a PostRedirection, this is an Authentication

action. 68
3.11 User profile recognition. This rule is specific to the application under

analysis, and works because profile pages are anything but /edu and
/explore. 69

3.12 Project choice recognition. Here again, this is a specific rule for the
application under analysis that works because the routing of this appli-
cation defines projects at URIs matching /{username}/{project name}. 69

3.13 The final IOSTS S3 obtained after the application of Layer 4. 70
3.14 Two rules used to implement a Breadth-first search (BFS) exploration

strategy. 73
3.15 A semantic-driven exploration strategy that focuses on the term "buy"

in the HTTP responses, i.e. displayed the web pages. 74
3.16 This model is the IOSTS S4 obtained from a trace set composed of 840

HTTP requests and responses, and after the application of 5 layers
gathering 18 rules. 75

3.17 This model S5 is the over-generalization of the model S4. 76

4.1 A workshop owns a set of known entry and exit points. A continuous
stream of products starts from known entry points, and ends at known
exit points. This figure shows two production lines: the grey line having
two exit points (represented by the circles), and the black one having
only one real exit point, not two. The red dotted line represents a false
positive here, which is a problem we have to take into account while
detecting (entry and) exit points. 82

xviii

4.2 Overview of Autofunk v2. It is a set of different modules (in grey) along
with their corresponding steps. The last module (STS abstraction) is
optional. 84

4.3 An example of some production events. Each event is time-stamped,
has a label (e.g., 17011), and may own assignments of variables (e.g.,
nsys). 85

4.4 Initial trace set Traces(Sua) based on the events given in Figure 4.3. . 87
4.5 An example of inference rules used for filtering purpose. It contains

two rules: the first one is used to remove events including the INFO

label, the second one is used to omit events that are repeated. 87
4.6 First generated Symbolic Transition System model, based on the traces

given in Figure 4.4. 92
4.7 Reduced Symbolic Transition System model obtained from the model

depicted in Figure 4.6. 95
4.8 Two rules adding value to existing transitions by replacing their actions

by more intelligible ones. These names are part of the domain language
used by Michelin experts. 97

4.9 An inference rule that aggregates two transitions of a Symbolic Tran-
sition System into a single transition. An example of its application is
given in Figure 4.10. 98

4.10 The construction of the final Symbolic Transition System model. The
final model is on the right, obtained after having applied all the abstrac-
tion rules given in Figures 4.8 and 4.9. 99

4.11 The architecture of Autofunk that has been used to conduct our first
experiments with Michelin log files. A newer (and better) architecture
is given in Figure 4.12. 100

4.12 The overall architecture built at Michelin to use Autofunk in a produc-
tion environment. Events are sent over RabbitMQ to another server
in order to minimize the overhead. Collected events are stored in a
database. Autofunk can then fetch these events, and build the models. 102

4.13 Execution time vs events. According to the trend shown by the linear
regression, we can state that our framework scales well. 103

4.14 Proportions of complete traces for the different experiments. This chart
shows that Autofunk considers a lot of traces to infer models, but there
is still room for improvement. 104

4.15 Execution time vs memory consumption. This version 2 of Autofunk is
still a prototype, and memory consumption remains an issue. 105

4.16 k-means clustering explained: the intuition is to partition n observations
into k clusters in which each observation belongs to the cluster with the
nearest mean. 106

4.17 Final design of our framework Autofunk (v3), designed for quickly
inferring models of Michelin’s production systems. 107

xix

5.1 Overview of Autofunk v3 with the passive testing extension. While the
previous Autofunk design has been kept, there are two new modules:
"STS Normalization" and "check", representing the passive conformance
testing part. 113

5.2 The first Symbolic Transition System inferred in Chapter 4. 115
5.3 Reduced Symbolic Transition System model (with its matrix) obtained

from the model depicted in Figure 5.2. 115

6.1 Insight of an approach discussed with Michelin to use a replay technique
with Autofunk in order to track what has changed between two versions
of a production system. 139

6.2 Dashboard displaying various business metrics created with Kibana, a
visualization tool. 140

xx

xxi

xxii

List of Tables

2.1 An overview of some works on GUI application crawling. Column 2
represents the type of application under analysis. Column 3 indicated
the accessibility (black-, grey-, or white-box). Column 4 gives whether
the technique requires an external environment. Column 5 indicates
whether the technique builds formal models or informal models. Col-
umn 6 gives the strategy or algorithm used to crawl the application.
Last column (7) shows whether the technique handles potential crashes,
i.e. errors encountered during crawling. 37

4.1 This table shows the results of 6 experiments on a Michelin production
system with different event sets. 101

5.1 Summary of the different Autofunk versions. Autofunk v3 is based on
Autofunk v2, which has been developed from scratch (even though
inspired by Autofunk v1). 123

5.2 This table shows the results of our offline passive testing method based
on a same specification. 124

xxiii

xxiv

1Introduction

Contents
1.1 General context and motivations 1

1.2 Problems and objectives . 3

1.3 Contributions of the thesis . 4

1.4 Overview of the thesis . 5

1.1 General context and motivations

Almost a decade ago, quality assurance (QA) was not a common practice in most
software companies, and researchers had to prove, for instance, what the benefits
of testing could be. Generally speaking, quality assurance is a way of preventing
faults in manufactured products, which is defined in ISO 9000 as “part of quality
management focused on providing confidence that quality requirements will be
fulfilled” [ISO05]. Software testing provides information about the quality of software.
For instance, “testing can prove confidence of a software system by executing a
program with the intent of finding errors” [Mye79], also known as "bugs".

Nowadays, quality assurance and software testing are well-known in the Industry,
and everyone understands the need for them. Yet, testing is often performed by
hand, which is complicated and far from perfect. Software testing is often seen as a
sequence of three major steps: “(i) the design of test cases that are good at revealing
faults, according to a certain level of requirement [Kan03], (ii) the execution of these
test cases, and (iii) the determination of whether the produced output is correct
[Wey82]” [Lak09].

Sadly, the test case execution is often the only fully automated aspect of this activity
in the Industry. Continuous Integration (CI) [Boo91] is now associated with the
automation of the execution of test cases and quick feedback, often received by
email. There are countless tools and services 1 to automate this process, but too
few tools have emerged to tackle the problem of the automatic test case generation.
Fortunately, in Academia, researchers have studied such a problem for decades
[Ber07].

1For example, Travis CI: https://travis-ci.org/.

1

A relatively recent field to automate and improve testing is Model-based Testing
(MbT). While the original idea has been around for decades [Moo56], there has been
a growing interest over the last years. MbT is application of (formal) Model-based
design for designing and optionally also executing artifacts to perform software
testing [Jor95]. The use of a model allows to formally describe the expected
behaviors of a software, from which it is possible to automatically generate test
cases, and then to execute them. Nonetheless, writing such models is tedious and
error-prone, which is a drawback and can also explain the slow adoption of MbT in
the Industry.

Model inference is a research field that aims at automatically deriving models, ex-
pressing functional behaviors of existing software. These models, even if incomplete,
help understand how a software behaves. That is why model inference is interesting
to solve the limitation of MbT mentioned previously. Most of the model inference
techniques that are used for testing purpose are not designed to infer large models
or to test large software systems though. Anti-Model-based Testing [Ber+04] is
somehow related to this idea, although Anti-Model-based Testing is more about
using testing to reverse-engineer a model, and then check such a model to detect
whether the software behaves correctly.

Michelin, one of the three largest tire manufacturers in the world, has been our
industrial partner for the last three years. The company designs most of its factories,
production machines, and software itself. In a factory, there are several workshops
for the different parts of the manufacturing process. From our point of view, a
workshop is seen as a set of production machines controlled by a software. That is
what we call a production system. Such systems deal with many physical devices,
databases, and also human interactions. Most of these systems run for years, up to
20 years according to our partner. Maintaining and updating such legacy software
is complicated as documentation is often outdated, and the developers who wrote
these software are not available anymore. In this thesis, we propose a solution to the
problem of testing such systems called Autofunk, a framework (and a tool) combining
different techniques to: (i) infer formal models from large (legacy) production
systems, and (ii) perform Model-based Testing (using the inferred models) in order
to detect potential regressions.

The next section discusses in detail the problems this thesis addresses. Section 1.3
presents the contributions of this thesis. Finally, Section 1.4 gives the overview of
this thesis.

1.1 General context and motivations 2

1.2 Problems and objectives

Michelin is a tire manufacturer since 1889. With a strong but old culture of secret,
the company uses to design most of its factories, production machines, and software
itself. The engineering department is dedicated to the construction of these items,
and gathers embedded software engineers, control engineers, mechanical engineers,
and also software engineers. The computing sub-department deals with software
that have been built for decades, and we can count about 50 different applications,
and even more when we consider the different versions with customization made
for the different factories. For the record, Michelin owns factories in more than 70
countries.

Different programming languages have been used for building such software, as well
as different development frameworks, and various paradigms. This context leads to
a large and disparate set of legacy applications that have to be maintained, but also
updated with new features. As most of these software are built for controlling and
supervising a set of production machines in a factory, they are considered critical
in the sense that they can break the production flow. The main issue faced by the
software engineers is the introduction of regressions. A regression is a software fault
that makes a feature stop functioning as intended after a certain event, for instance,
the deployment of a new version of a software. Regressions have to be revealed as
soon as possible in order to avoid production downtimes.

The goal of this thesis is to propose technical solutions to Michelin’s engineers to
prevent such regressions with testing, i.e. performing regression testing on Michelin’s
production systems based on behavioral models of such systems. Such models have
to be up to date, hence we cannot rely on existing documentation. We determine, by
means of Model-based Testing, whether a change in one part of a software affects
other parts of it. To avoid disturbing the system, we use a passive testing approach,
which only observes the production system under test and does not interact with it.
The main assumption in this work is that we choose to consider a running production
system in a production environment (that is, a factory) as a fully operational system,
i.e. a system that behaves correctly. Such a hypothesis has been expressed by our
partner Michelin. The inferred models can be employed for different purposes,
e.g., documentation and testing, but it is manifest that they should not be used for
conformance testing in general. Last but not least, we propose scalable techniques
because production systems exchange thousands production events a day.

In this thesis, we provide solutions for making Michelin’s production systems more
reliable by means of testing, to ease software engineers’ work, thanks to two main
lines:

1.2 Problems and objectives 3

• The inference of partial yet exact models of production systems in a fast and ef-
ficient manner, based on the data exchanged in a (production) environment. A
method to extract knowledge from data available in a production environment
has to be defined before inferring models;

• The design of a conformance testing technique based on the inferred models,
targeting production systems. It is worth mentioning that it is possible to per-
form conformance testing here thanks to the assumption introduced previously.
Finally, due to the nature of these systems, the testing method should scale.

1.3 Contributions of the thesis

The contributions of this thesis are:

1. A preliminary study introducing our model inference framework, called Auto-
funk (v1), on web applications. This framework is framed upon a rule-based
expert system capturing knowledge of human business experts. Autofunk is
also combined with an automatic testing technique to interact with web appli-
cations in order to improve the completeness of the inferred models. Several
models can be built at different levels of abstraction, allowing to create, for
instance, human-readable documentation. This preliminary work targeting
web applications validates our ideas and concepts to infer models from data
recorded in a (production) environment;

2. Autofunk (v2), the enhanced version of our framework, now combining several
techniques originating from different fields such as expert systems, machine
learning and model inference, for inferring formal models of legacy software
systems. Our main goal is to infer models of Michelin’s production systems
with a black-box approach. We choose to leverage the data exchanged among
the devices and software in order to target most of the existing Michelin appli-
cations without having to consider the programming languages or frameworks
used to develop any of these applications. Autofunk’s modular architecture
allows multiple extensions so that we can take different data sources as input,
and perform various tasks based on the inferred models, e.g., testing.

3. An evaluation of the model inference of Michelin’s production systems with
Autofunk, proving that it is able to build exact models in an efficient manner,
based on large sets of traces. For now, we define a set of traces as information
collected from a production system, and describing its behaviors. A more
formal definition is given in the sequel of this thesis. Exactness of our in-
ferred models is defined by the trace-equivalence and trace-inclusion relations

1.3 Contributions of the thesis 4

proposed in [PY06]. Results show that our model inference technique scales
well;

4. A reduction technique for symbolic transition systems that is both fast and
efficient, keeping the exactness of the models, and targeting large models. This
technique has successfully been applied to large Michelin’s production systems.
This context-specific reduction technique is a key element to enable testing of
Michelin’s production systems because it improves the usability of the inferred
models, which also favors the adoption of Autofunk at Michelin;

5. An offline passive testing technique leveraging the inferred models for testing
production systems, along with a case study. This work is an extension of
Autofunk introducing two implementation relations: (i) the first relation refers
to the trace preorder relation [DNH84], and (ii) the second relation is used
to overcome a limitation caused by the partialness of the inferred models.
This testing extension detects differences between two production systems, i.e.
potential regressions.

Publications. Most of these contributions have been published in the following
international conference proceedings:

• Actes de la 13eme édition d’AFADL, atelier francophone sur les Approches Formelles
dans l’Assistance au Développement de Logiciels (AFADL’14) [DS14a];

• Proceedings of the Fifth Symposium on Information and Communication
Technology (SoICT’14) [DS14b];

• Proceedings of Formal Methods 2015 (FM’15) [DS15a];

• Proceedings of the 9th International Conference on Distributed Event-Based
Systems (DEBS’15) [SD15];

• Proceedings of the 13th International Conference on Formal Methods and
Models for Co-Design (MEMOCODE’15) [DS15b].

1.4 Overview of the thesis

The work presented in this thesis deals with two main research realms: (i) (software)
model inference, and (ii) software testing. Hence, Chapter 2 is split into two main
sections: Section 2.1 introduces important notions of software testing, and Section
2.2 reviews the literature on software model inference techniques. Chapters 3 and
4 are dedicated to the model inference of software systems (web applications first,

1.4 Overview of the thesis 5

and production systems then). Chapter 5 is dedicated to the testing of production
systems. Chapter 6 ends this thesis with conclusions and perspectives for future
work. We give more details about each chapter below.

Chapter 2 surveys the literature in software testing first, and then in model inference
applied to software systems. The chapter starts by introducing what software testing
means, mentioning some important notions as well as the different types of testing.
It then presents what Model-based Testing (MbT) is, along with a few definitions
and common terms employed in MbT. The software testing part ends with a review
on some passive testing techniques, and why they are interesting in our case. The
second part of this chapter presents what model inference is, from active inference,
i.e. methods interacting with a software system to extract knowledge about it, to
passive inference, i.e. techniques that infer models from a fixed set of knowledge,
such as a set of execution traces, source code, or even documentation.

Chapter 3 presents our work on model inference based on the remarks made in
Chapter 2. This chapter introduces a preliminary work on model inference of
web applications that gave birth to Autofunk, our modular framework for inferring
models (and later, performing testing). This chapter gives an overview of Autofunk’s
very first architecture, called Autofunk v1. It then presents how Autofunk relies
on an automatic testing technique to extract more knowledge about the targeted
web applications. This is important to infer more complete models. A note on its
implementation is given, following by an experimentation. This work has been
published in Actes de la 13eme édition d’AFADL, atelier francophone sur les Approches
Formelles dans l’Assistance au Développement de Logiciels (AFADL’14) [DS14a], and
in the Proceedings of the Fifth Symposium on Information and Communication
Technology (SoICT’14) [DS14b].

Chapter 4 introduces our framework Autofunk revisited to target production systems.
This chapter gives the context that led to our choices regarding the design of Autofunk
v2. Our reduction technique that heavily reduces models is then presented, along
with the results of experiments on Michelin’s production systems. A whole section is
dedicated to the implementation of Autofunk for Michelin. Last significant part of
this chapter is the use of a machine learning technique to maximize one step of our
model inference technique, which led to the creation of Autofunk v3. This work has
been published in the Proceedings of Formal Methods 2015 (FM’15) [DS15a], and
in the Proceedings of the 9th International Conference on Distributed Event-Based
Systems (DEBS’15) [SD15].

Chapter 5 tackles the problem of passively testing production systems, without
disturbing them, and without having any specification. It presents our work on
offline passive testing, by extending Autofunk v3’s model inference framework. After

1.4 Overview of the thesis 6

having presented the overall idea, our passive algorithm is given and explained.
The results of experiments on Michelin’s production systems are also given. This
work has been published in the Proceedings of the 13th International Conference on
Formal Methods and Models for Co-Design (MEMOCODE’15) [DS15b].

Chapter 6 closes the main body of the thesis with concluding comments and propos-
als for future work.

1.4 Overview of the thesis 7

1.4 Overview of the thesis 8

2State of the art

In this chapter, we survey the literature in software testing first, and then in model
inference applied to software systems. We start by introducing what software testing
means, mentioning some important notions as well as the different types of testing.
We then present what Model-based Testing (MbT) is, along with a few definitions
and common terms employed in MbT. The software testing part ends with a review
on some passive testing techniques, and why they are interesting in our case. The
second part of this chapter presents what model inference is, from active inference,
i.e. methods interacting with a software system to extract knowledge about it, to
passive inference, i.e. techniques that infer models from a fixed set of knowledge,
such as a set of execution traces, source code, or even documentation.

Contents
2.1 Software testing . 10

2.1.1 Types of testing . 11

2.1.2 Model-based Testing . 15

2.1.3 Passive testing . 24

2.2 Model inference . 26

2.2.1 Active model inference 28

2.2.2 Passive model inference 36

2.3 Conclusion . 44

9

2.1 Software testing

“Software testing is the process of executing a program or system with the intent of
finding errors” [Mye79]. Indeed, “testing shows the presence, not the absence of
bugs”, i.e. faults or errors, as Edsger Wybe Dijkstra used to say [BR70].

Testing is achieved by analyzing a software to detect the differences between existing
and required conditions (that is, bugs) and to evaluate the features of this software.
As Myers explained in [Mye79], testing is used to find faults, but it is also useful
to provide confidence of reliability, correctness, and absence of particular faults on
software we develop. This does not mean that the software is completely free of
defects. Rather, it must be good enough for its intended use. Testing is a verification
and validation (V&V) process [WF89]. One uses to (informally) explain both terms
with the following questions [Boh79]:

• Validation: “are we building the right software?”

• Verification: “are we building the software right?”

In other words, formal verification is the act of proving or disproving the correctness
of intended algorithms underlying a system with respect to a certain formal specifi-
cation or property, using formal methods of mathematics. Model checking [Cla+99],
runtime verification [LS09], theorem proving [Fit12], static analysis [LA+00], and
simulation are all verification methods.

Validation is testing as the act of revealing bugs. That is what most people think
testing is, and also the meaning we give to the word "testing" in the sequel of
this thesis. Testing involves a (software) System Under Test (SUT). The prevailing
intuition of testing is reflected in its operational characterization as an activity in
which a tester first generates and sends stimuli, i.e. test input data, to a system under
test in order to observe phenomena (mainly behaviors). Such phenomena can be
represented by the existence of test outputs for instance. We then have to decide on
a suitable verdict, which expresses the assessment made. The two most well-known
verdicts are Pass and Fail. We call Test Case (TC), a structure that is compound
of test data, i.e. inputs which have been devised to test the system, an expected
behavior, and an expected output [ISO10b]. A set of test cases is called a Test Suite
(TS).

Such an intuition refers to the active testing methodology, i.e. when the system
under test is stimulated. Most of the classical testing techniques and tools found
in the Industry tend to perform active testing, e.g., the xUnit frameworks 1. On the

1http://www.martinfowler.com/bliki/Xunit.html

2.1 Software testing 10

contrary, in passive testing, the tester does not interact with the system under test,
it only observes. For instance, a monitor can be used to collect the execution traces
of a (running) system under test. We define the term trace (or execution trace) as a
finite sequence of observations made on a software system.

In the following section, we introduce the software testing realm. In Section 2.1.2,
we focus on (active) Model-based Testing along with some definitions used in the
rest of this thesis. We present what passive testing is in Section 2.1.3.

2.1.1 Types of testing

Nowadays, software testing, if not always applied, is well-known in the Industry. It is
considered a good practice and many techniques and tools have been developed over
the last 10 years. Most of them are different in nature and have different purposes.
In both Academia and the Industry, there are a lot of terms that all end with "Testing"
such as: Unit Testing, Integration Testing, Functional Testing, System Testing, Stress
Testing, Performance Testing, Usability Testing [DR99; TR03], Acceptance Testing,
Regression Testing [LW89; Won+97], Beta Testing, and so on.

All these terms refer to different testing practices that can be sorted in three different
manners as depicted in Figure 2.1: by aspect, by phase, and/or by accessibility.

First, ISO 9126 [ISO01], replaced by ISO/IEC 25010:2011 [ISO10a], provides six
characteristics of quality (also called aspects) that can be used to sort these testing
techniques into six testing types:

• Efficiency testing: the capability of the software product to provide appro-
priate performance, related to the amount of resources used, under stated
conditions [ISO01];

• Functionality testing: the capability of the software product to provide func-
tions which meet stated and implied needs when the software is used under
specified conditions [ISO01];

• Maintainability testing: the capability of the software product to be modified.
Modifications may include corrections, improvements or adaptation of the
software to changes in environment, and in requirements and functional
specifications [ISO01];

• Portability testing: the capability of the software product to be transferred
from one environment to another [ISO01];

2.1 Software testing 11

• Reliability testing: the capability of the software product to maintain a speci-
fied level of performance when used under specified conditions [ISO01];

• Usability testing: capability of the software product to be understood, learned,
used and attractive to the user, when used under specified conditions [ISO01].

ISO/IEC 25010:2011 [ISO10a], which replaced ISO 9126 [ISO01], counts eight
product quality characteristics, including two new categories:

• Security: the degree to which a product or system protects information and
data so that persons or other products or systems have the degree of data
access appropriate to their types and levels of authorization [ISO10a];

• Compatibility: the degree to which a product, system or component can
exchange information with other products, systems or components, and/or
perform its required functions, while sharing the same hardware or software
environment [ISO10a].

Yet, these classifications can not be generally accepted as single or complete. In
[BD04], authors suggested to classify the different techniques based on the target of
the test (sometimes we refer to this classification as level of detail or phase as shown
in Figure 2.1):

• Unit testing: individual units (e.g., functions, methods, modules) or groups of
related units of the system are tested in isolation [IEE90]. Typically this testing
type implies access to the source code being tested;

• Integration testing: interactions between software components are tested
[IEE90]. This testing type is a continuous task, hence the continuous integra-
tion (CI) practice;

• System Testing: the whole system is taken into consideration to evaluate the
system’s compliance with its specified requirements [IEE90]. This testing type
is also appropriate for validating not-only-functional requirements, such as
security, performance (speed), accuracy, and reliability (fault tolerance).

These requirements are sometimes seen as objectives of testing, leading to even more
different testing types as listed before. There are also different test approaches
[ISO10b] (or perspectives) to perform testing, depending on the information avail-
able, for instance, to construct the test cases, i.e. accessibility:

2.1 Software testing 12

Fig. 2.1: Sorts of testing. We can sort testing techniques by aspect (characteristics of
quality), by phase (related to the target of the test), and by accessibility (related
to the information available, e.g., to construct the test cases).

• White-box testing: (also known as glass box [ISO10b]) a method that tests the
internal structure of a SUT. It is usually done at the unit level. This technique
is also known as structural testing [ISO10b];

• Black-box testing: a method that tests the functionalities of a SUT without
knowing its internal structure. The behavior of the implementation under test
(IUT) is only visible through a restricted interface called Points of Control and
Observation (PCOs). Such a technique is often known as functional testing
[ISO10b];

• Grey-box testing: the combination of white-box testing and black-box testing.
One has access to the relevant parts of a SUT such as limited knowledge of
the internal part of the SUT, and also knowledge of its fundamental aspects
[KK12]. This technique is sometimes called translucent testing.

In active testing, independently of the sort of testing one chooses, a common problem
is to determine a relevant and efficient set of test cases. Because testing cannot
guarantee the absence of faults, a challenge is to select subset of test cases from all
possible test cases with a high chance of detecting most faults. It is especially the
case for regression testing since it is usually an expensive process [RH97; Gra+01].
We refer to this choice as the test selection, which we present below.

2.1 Software testing 13

Test selection

A lot of research on test selection (or strategies) has been done, and there are numer-
ous existing methods. For instance, Combinatorial Testing (also known as Pairwise)
[TL98] is based on the observation that most faults are caused by interactions of
at most two factors. Here we test all the possible discrete combinations of the
parameters involved. Even though Pairwise Testing is often used with black-box
approaches, it has been adapted for white-box, e.g., in [Kim+07].

In addition, and because we cannot test all the possible input domain values for
practical reasons, Equivalence Partitioning [HP13] is a technique that divides the
test input data into a range of values, and selects one input value from each range.
Similarly, Boundary Value Analysis [Ram03] is used to find the errors at boundaries of
input domain rather than finding those errors in the center of input. On the contrary,
Fuzz Testing also known as Random Testing [DN81; God+08] is a method that applies
random mutations to well-formed inputs of a program, and test the resulting values.
Even if it is often used in a white-box context, Random Testing can also be applied
using a black-box approach, e.g., [BM83]. On the other hand, Statistical Testing
[Wal+95] is a technique where test data is generated by sampling from a probability
distribution chosen so that each element of the software’s structure is exercised with
a high probability.

We can also mention Functional Coverage (also known as Inductive Testing) [Wal+10]
where a test set is good enough when it achieves a given level of code coverage,
but also all techniques related to the code structure, such as Statement Testing, Path
Testing, Branch Testing, Condition Testing, Multiple Condition (MC) Testing, and Loop
Testing. Another strategy acts on the source code by mutating it, i.e. seeding the
implementation with a fault by applying a mutation operator, and then determining
whether testing identifies this fault. This is known as Mutation Testing [Ham77].

While the Industry created many different testing tools (often originating from
Academia), they mostly perform testing by hand. Researchers in software testing
have worked for decades on automatic test generation. Automatic testing is, for
instance, one way to automate white-box approaches [TH08], but there are many
other techniques. On the contrary, Model-based Testing (MbT) [Jor95] is one research
area that tries to automate the testing phase from models. In this thesis, we are
interested in making production systems more reliable by means of Model-based
Testing.

2.1 Software testing 14

2.1.2 Model-based Testing

Model-based Testing (MbT) is application of Model-based design for designing and
optionally also executing artifacts to perform software testing [Jor95]. Models can be
used to represent the desired behavior of an SUT, or to represent testing strategies
and a test environment. Model-based Testing can be summarized as a three-step
process, which is extended in Figure 2.2:

1. Formally modeling the requirements (specification). This is usually done
by humans (#1 in Figure 2.2), yet feedback about the requirements can be
obtained from the model to ease the process (#2);

2. Generating the test cases from the model (#3 in Figure 2.2);

3. Running these test cases against the SUT, and evaluating the results. The test
cases provide the information to control (#4 in Figure 2.2) the implementation.
The latter yields outputs that are observed by the tester (#5). The results allow
to issue a verdict (#6), which provides feedback about the implementation
(#7). Verdicts may also indicate that a mistake was made when creating the
model or that the requirements were wrong in the first place (#8).

What is a model?

Generally speaking, a model is a representation of a "thing" that allows for investi-
gation of its properties, and most of the time, a model hides the complexity of the
item it represents. In the software engineering field, models help describe software
systems in order to: (i) ease the process of studying them, (ii) leverage them to build
tools or generate documentation, or (iii) reveal defects (validation or verification).

Such models usually describe the behaviors of the software being modeled, and can
also be known as specifications, helping understand and predict its behavior. In the
Industry, we often encounter a "specifications phase", as in the V-model [Roo86;
MM10], that is done before the "coding phase". Yet, the term "specification" refers to
“a detailed formulation [...], which provides a definitive description of a system for
the purpose of developing or validating the system” [ISO10b]. There are numerous
models for expressing software systems, and each describes different aspects of
software. For example, control flow, data flow, and program dependency graphs
express how the implementation behaves by representing its source code structure. It
is worth mentioning that a partial model can be effective, i.e. a model does not have
to describe all behaviors of a software system to be usable, which also means that an
implementation can have more features than those expressed in its specification.

2.1 Software testing 15

Fig. 2.2: A simplified diagram showing how MBT works. This is a three-step process: (i) we
model the requirements (1 and 2), (ii) we generate the test cases (3), and (iii) we
run the test cases (4 and 5) that produce verdicts (6), which we can evaluate (7
and 8). Dotted arrows represent feedback, not "actions".

We classify formal models that can be employed for testing into two categories (these
lists are not exhaustive):

• Behavior/Control oriented: Finite Automata (like Finite State Machines, Sym-
bolic Transition Systems, and Labeled Transition Systems) are well-known in
software testing. They are very generic and flexible, and are a good fit when it
comes to model software systems. For real-time and/or safety-critical systems,
we often rely on synchronous languages such as Lustre [Hal+91] and SCADE
[LS11]. We can also mention Petri Nets, and Timed Automata [AD94];

• Data oriented (pre/post): often using annotation languages originating from
the Design-By-Contract paradigm [Mey92]. These languages make it possible
to express formal properties (invariants, pre/post-conditions) that directly
annotate program entities (such as classes, methods, attributes) in the source
code. Many annotation languages exist, such as the Java Modeling Language
(JML) [Lea+99], Spec# [Bar+11], the Object Constraint Language (OCL)
[WK99], the B Language and Method [Lan96], and Praspel [End+11].

2.1 Software testing 16

In [SS97], Sommerville and Sawyer give some guidelines for choosing a model for
software requirements. The choice of a model depends on many factors, such as
aspects of the system under test or the testing goals.

Below, we introduce a few definitions of formal models that we use in this thesis.
We mainly work with behavior-oriented models based on finite automata since they
are particularly suitable for modeling both web applications and production systems
behaviors.

Model definitions

Labeled Transition Systems. A Labeled Transition System (LTS) [Mil80] is a model
compound of states and transitions labeled with actions. The states model the system
states and the labeled transitions model the actions that a system performs to change
its state. We give the definition of the LTS model below, but we refer to [Tre96b;
Tre08] for a more detailed description.

Definition 1 (Labeled Transition System) A Labeled Transition System (LTS) is a
4-tuple < Q, L, T, q0 > where:

• Q is a countable, non-empty set of states;

• L is a countable set of labels;

• T ⊆ Q × (L ∪ {τ}) × Q, with τ �∈ L, is the transition relation;

• q0 ∈ Q is the initial state.

We write q
t−→ q′ if there is a transition labeled t from state q to state q′ , i.e. (q, t, q′) ∈ T .

The labels in L represent the observable actions of a system, i.e. the interactions of the
system with its environment. Internal actions are denoted by the special label τ �∈ L.
Both τ and states are assumed to be unobservable for the environment.

The class of all labeled transition systems over L is denoted by LTS(L) [Tre96b].

Example 2.1.1 Figure 2.3 presents the Labeled Transition System ltsmachine rep-
resenting a coffee machine. There is a first label representing a button interaction
(button), and two other labels for coffee (coffee) and tea (tea). It is represented as
a graph where nodes represent states, and labeled edges represent transitions.

2.1 Software testing 17

We have ltsmachine =< {S1, S2, S3, S4}, {button, coffee, tea}, {< S1, button, S2 >

, < S2, coffee, S3 >, < S2, tea, S4 >}, S1 >, and we can write S1 button−−−−→ S2, and
also S1 button·coffee−−−−−−−−→ S3, but S1 � button·tea−−−−−−→ S3.

Fig. 2.3: An example of a Labeled Transition System representing a coffee machine and its
internal actions (τ).

Based on this definition, we give the formal definition of a trace:

Definition 2 (Trace) A trace is a finite sequence of observable actions. The set of all
traces over L is denoted by L∗, with ε denoting the empty sequence. We have q

σ=⇒ =def

∃ q′ : q
σ=⇒ q′ with q, q′ ∈ Q and σ ∈ L∗. We also have Traces(p) =def {σ ∈ L∗ | p

σ=⇒}
with p being a state.

Symbolic Transition Systems. Symbolic Transition Systems (STSs) [HL95] extend
on LTSs by incorporating the notion of data and data-dependent control flow. The
use of symbolic variables helps describe infinite state machines in a finite manner.
This potentially infinite behavior is represented by the semantics of a Symbolic
Transition System (STS), given in terms of LTS. We give some definitions related to
the STS model below, but we refer to [Fra+05] for a more detailed description.

Definition 3 (Variable assignment) We assume that there exists a domain of values
denoted by D, and a variable set X taking values in D. The variable assignment (also
called valuation of variables in Y ⊆ X to elements of D is denoted by the function
α : Y → D. α(x) denotes the assignment of the variable x to a value in D. The empty
variable assignment is denoted by v∅.

We denote by DY the set of all variable assignments over Y : DY = {α : Y → D |
v is a variable assignment of Y }. We also denote by idY the identity assignment over
Y : ∀x ∈ Y, idY (x) = x.

Finally, the satisfaction of a first order formula [HR04] (i.e. a guard) φ with respect to
a given variable assignment α is denoted by α |= φ.

2.1 Software testing 18

Definition 4 (Symbolic Transition System) A Symbolic Transition System (STS)
consists of locations and transitions between locations. Locations can be seen as
symbolic states. A STS is defined as a tuple < L, l0, V, V 0, I, Λ, →> where:

• L is a countable set of locations;

• l0 ∈ L is the initial location;

• V is a finite set of location (or internal) variables. Dv denotes the domain of the
variable v;

• V 0 is an initialization of the location variables V ;

• I is a finite set of parameters (also known as interaction variables), disjoint from
V ;

• Λ is a finite set of symbolic actions a(p) with a a symbol (or action), and
p = (p1, . . . , pk) a finite set of parameters in Ik(k ∈ N);

• → is a finite set of symbolic transitions. A symbolic transition t = (li, lj , a(p), G,

A) ∈→, from the location li ∈ L to lj ∈ L, also denoted by li
a(p),G,A−−−−−→ lj , is

labeled by:

– A symbolic action a(p) ∈ Λ;

– A guard G ⊆ DV × Dp that restricts the firing of the transition;

– An assignment A : DV ×Dp → DV that defines the evolution of the variables,
Ax being the function in A defining the evolution of the variable x ∈ V .

For readability purpose, if A is the identity function idV , we denote a transition by

li
a(p),G−−−−→ lj .

We also use the generalized transition relation ⇒ to represent STS paths:

l
(a1,G1,A1)...(an,Gn,An)===============⇒ l′ =def ∃ l0 . . . ln, l = l0 (a1,G1,A1)−−−−−−−→ l1 . . . ln−1

(an,Gn,An)−−−−−−−→ ln =
l′.

Example 2.1.2 Figure 2.4 presents the Symbolic Transition System stsmachine

representing a simple slot-machine, as in [Fra+05]. The first arrow on L0 indicates
the initial location, and the fact that the machine starts with no money (v = 0). A
player can insert a coin (coin), and win the jackpot in a non-deterministic manner
(v coins are passed over parameter i of output action tray), or lose his money

2.1 Software testing 19

((i == 0)). After that, the machine behaves as initially, but with a different amount
of coins.

We have stsmachine =< {L0, L1, L2, L3}, L0, {v}, {v �→ 0}, {i}, {coin, tray}, →>

where → is given by the directed edges between the locations in Figure 2.4. We can

write L2 tray(i),[(i==0)]−−−−−−−−−−→ L0.

Fig. 2.4: An example of Symbolic Transition System representing a simple slot-machine.

Labeled Transition System semantics. A STS is associated with a Labeled Transi-
tion System to formulate its semantics [Fra+05]. A LTS semantics corresponds to a
valued automaton without symbolic variables, which is often infinite: the LTS states
are labeled by internal variable assignments while transitions are labeled by actions
combined with parameter assignments.

Definition 5 (Labeled Transition System semantics) As defined in [Fra+05], the
semantics of a STS S =< L, l0, V, V 0, I, Λ, →> is the LTS ||S|| =< Q, q0,

∑
, →>

where:

• Q = L × DV is a finite set of states;

• q0 = (l0, V 0) is the initial state;

•
∑ = {(a(p), α) | a(p) ∈ Λ, α ∈ Dp} is the set of valued actions;

• → is the transition relation Q × Σ × Q defined by the following rule:

l1
a(p),G,A−−−−−→l2, α∈Dp, v∈DV ,v′∈DV ,v∪α|=G,v′=A(v∪α)

(l1,v)
a(p),α−−−→(l2,v′)

2.1 Software testing 20

The rule above can be read as follows: for a STS transition l1
a(p),G,A−−−−−→ l2, we obtain

a LTS transition (l1, v) a(p),α−−−−→ (l2, v′) with v a variable assignment over the internal
variable set if there exists an assignment α such that the guard G evaluates to true
with v ∪ α. Once the transition is executed, the internal variables are assigned with
v′ derived from the assignment A(v ∪ α).

Runs and traces, which represent executions and event sequences, can also be derived
from LTS semantics [Jér06]:

Definition 6 (Run and trace) Given a STS S = < L, l0, V, V 0, I, Λ, →>, interpreted
by its LTS semantics ||S|| =< Q, q0,

∑
, →>, a run q0·(a1(p), α1)·· · ··(an−1(p), αn−1)·qn

is an alternate finite sequence of states and valued actions, concatenated with the ·
operator. Runs(S) is the set of runs of S. A trace of a run r ∈ Runs(S) is the projection
proj∑(r) of r on actions. Traces(S) =def proj∑(Runs(S)) denotes the set of traces
of S.

Input/Output Symbolic Transition Systems. An Input/Output Symbolic Transition
System (IOSTS) [Rus+00] is a STS where the action set is divided into two subsets:
one containing the inputs, beginning with ?, to express actions expected by the sys-
tem, and another containing outputs, beginning with !, to express actions produced
by the system.

Definition 7 (Input/Output Symbolic Transition System) As defined in [Rus+00],
an Input/Output Symbolic Transition System (IOSTS) S is a tuple < L, l0, V, V 0, I, Λ,

→> where:

• L is a finite set of locations;

• l0 ∈ L the initial location;

• V is a finite set of location (or internal) variables;

• V 0 is an initialization of the location variables V ;

• I is a finite set of parameters, disjoint from V ;

• Λ is a finite set of symbolic actions a(p), with a a symbol, and p = (p1, . . . , pk) a
finite set of parameters in Ik(k ∈ N). p is assumed unique. Λ is partitioned into a
set of input actions ΛI and a set of output actions ΛO, and we write Λ = ΛI ∪ ΛO:
ΛI ;

• → is a finite set of symbolic transitions. A symbolic transition (li, lj , a(p), G, A),
from the location li ∈ L to lj ∈ L, also denoted by li

a(p),G,A−−−−−→ lj , is labeled by:

2.1 Software testing 21

– An action a(p) ∈ Λ;

– A guard G over (p∪V ∪T (p∪V)), which restricts the firing of the transition.
T (p ∪ V) is a set of functions that return boolean values only (also known
as predicates) over p ∪ V ;

– An assignment A that defines the evolution of the variables. A is of the form
(x := Ax)x∈V , where Ax is an expression over V ∪ p ∪ T (p ∪ V).

Example 2.1.3 Figure 2.5 is the IOSTS of the slot-machine introduced in Exam-
ple 2.1.2 on page 20. We have iostsmachine =< {L0, L1, L2, L3}, L0, {v}, {v �→
0}, {i}, {coin?, tray!}, →> with ΛI = {coin?} and ΛO = {tray!}.

Fig. 2.5: An example of Input/Output Symbolic Transition System representing a simple
slot-machine.

In this thesis, we chose to use these models to represent the behaviors of web
applications and production systems in order to perform Model-based Testing, i.e.
relying on models to perform testing, mainly to prevent regressions. Conformance
Testing is a black-box testing method leveraging formal methods [Tre92], which is
both efficient and well-established. We give a few definitions related to conformance
testing below.

Conformance testing

In this section, we introduce a few common terms defining what Conformance Testing
[Bri89; Tre92; Tre94] is, and how it works in general.

2.1 Software testing 22

Test hypothesis. Executing a test case on a system yields a set of observations.
Every observation represents a part of the implementation model of the system. The
set of all observations made with all possible test cases represents the complete
implementation model of the system. The test hypothesis [Ber91] is that, for every
system, there is a corresponding observational equivalent implementation model:
∀ iut ∈ IMPS, ∃ iiut ∈ MODS, where iut is a concrete implementation under test,
IMPS is the universe of implementations, iiut is an implementation model of iut,
and MODS is the universe of the models of all implementations under test.

Conformance. To check whether an implementation under test iut conforms to a
specification spec, we need to know precisely what it means for iut to conforms to
spec, i.e. a formal definition of conformance is required [Tre08]. As iut is a real,
physical "thing", which consists of software (and sometimes physical devices), we
cannot use it as a formal object. We rely on the test hypothesis mentioned previously
to reason about implementations under test as if they were formal implementations.
By doing this, we can define conformance with a formal relation between models of
implementations and specifications, i.e. an implementation relation.

Implementation relation. To formally define conformance between an implementa-
tion under test iut and a specification spec, we use the notion of an implementation
relation: imp ⊆ MODS ×SPECS, with SPECS the set of specifications. An imple-
mentation iut conforms to a specification spec if the existing model iiut ∈ MODS

of iut is imp-related to spec: iiut imp spec.

There are many implementation (or conformance) relations in the literature, e.g.,
Isomorphism, Bisimulation Equivalence [Mil89; Fer89], Trace Equivalence [Tan+95],
Testing Equivalence [Abr87], Refusal Equivalence [Phi86], Observation Preorder [Mil80;
HM80], Trace Preorder [DNH84; Vaa91], Testing Preorder [DNH84; Beo+15], Refusal
Preorder [Phi87], Input-Output Testing [Tre96b], Input-Output Refusal [HT97], ioconf
[Tre96a], and ioco [Tre96b].

A simple and easy to understand relation is the trace preorder relation ≤tr. The
intuition behind this relation is that an implementation i may show only behavior, in
terms of traces of observable actions, which is specified in the specification s, i.e. let
i, s ∈ LTS(L), then i ≤tr s =def Traces(i) ⊆ Traces(s) [Tre96b].

Example 2.1.4 Figure 2.6 illustrates the trace preorder relation. The traces of the
LTS S1 are included in those of the S2, i.e. S1 ≤tr S2. On the contrary, Traces(S2) �⊆
Traces(S1) because the trace button · tea is not observable in S1, hence S2 �≤tr S1.

2.1 Software testing 23

Fig. 2.6: Illustration of the trace preorder relation between two LTSs.

Testing. Conformance testing assesses conformance to an unknown implementa-
tion under test iut to its specification spec by means of test experiments. In active test-
ing, experiments consist of stimulating iut in certain ways and observing its reactions
with a tester. This process is called test execution. Test execution may be successful, i.e.
the observed behaviors correspond to the expected ones, or it may be unsuccessful.
The successful execution of a test case TC can be written as follows: iiut passes TC.
We extend it to a test suite TS: iiut passes TS ⇔ ∀ TC ∈ TS : iiut passes TC. On
the contrary, iiut fails TC ⇔ iiut ¬passes TC.

This leads to three properties on the test suite TS [Tre96a]:

• Soundness: ∀ iiut ∈ MODS, iiut imp spec =⇒ iiut passes TS;

• Exhaustiveness: ∀ iiut ∈ MODS, iiut passes TS =⇒ iiut imp spec;

• Completeness: ∀ iiut ∈ MODS, iiut imp spec ⇔ iiut passes TS.

Until now, we mostly introduced active testing notions. For the record, active
testing works by stimulating the system under test, i.e. observing outputs of an
implementation for predefined inputs. In the next section, we introduce a different
approach that does not actively interact with a system, known as passive testing.

2.1.3 Passive testing

Passive testing examines the input/output behavior of an implementation without
preordaining the input. One advantage of passive testing is that it does not disturb

2.1 Software testing 24

the system. While most of the works on passive testing are related to networks,
protocols, and web services, such a technique is particularly suitable for production
systems such as Michelin’s systems.

Several works, dealing with passive testing of protocols or components, have been
proposed over the last decade. For all of these, the tester is made up of a module,
called monitor, located in the implementation environment, which collects trace sets.
These works can be grouped in three different categories:

• Invariant satisfiability: invariants represent properties that are always true.
They are often constructed by hand from a specification, and later checked on
the collected traces. Similarly to runtime verification [LS09], this approach
allows to test complex properties on an implementation. It gave birth to several
works in the literature. For instance, the passive testing method presented
in [Cav+09b] aims to test the satisfiability of invariants on Mobile ad hoc
network (MANET) routing protocols. Different steps are required: definition
of invariants from the specification, extraction of execution traces with sniffers,
verification of the invariants on the trace set. Other works focus on Component-
based System Testing: in this case, passive methods are usually used to check
conformance or security. For instance, the TIPS tool [Mor+10] performs
an automated analysis of the captured trace sets to determine if a given
set of timed extended invariants are satisfied. As in [Cav+09b], invariants
are constructed from the specification and traces are collected with network
sniffers. Cavalli et al. propose an approach for testing the security of web
service compositions in [Cav+09a]. Security rules are here modeled with the
Nomad language [Cup+05], which expresses authorizations or prohibitions
by means of time constraints. Preliminary, a rule set is manually constructed
from a specification. Traces of the implementation are extracted with modules
that are placed at each workflow engine layer that executes web services.
Then, the method checks, with the collected traces, that the implementation
does not contradict security rules. Andrés et al. presented a methodology to
perform passive testing of timed systems in [And+12]. The paper gives two
algorithms to decide the correctness of proposed invariants with respect to a
given specification and algorithms to check the correctness of a log, recorded
from the implementation under test, with respect to an invariant;

• Forward checking: implementation reactions are given on-the-fly to an algo-
rithm that detects incorrect behaviors by covering the specification transitions
with these reactions. Lee et al. proposed a passive testing method dedicated
to wired protocols, e.g., [Lee+06]. Protocols are modeled with Event-driven
Extended Finite State Machines (EEFSM), compound of variables. Several al-
gorithms on the EEFSM model and their applications to the Open Shortest

2.1 Software testing 25

Path First (OSPF) protocol and Transmission Control Protocol (TCP) state
machines are presented. Algorithms check whether partial traces, composed
of actions and parameters, meet a given symbolic specification on-the-fly. The
analysis of the symbolic specification is performed by means of configuration.
A configuration represents a tuple gathering the current state label, and a set
of assignments and guards modeling the variable state;

• Backward checking: Alcalde et al. proposed an approach that processes a
partial trace backward to narrow down the possible specifications in [Alc+04].
The algorithm performs two steps. It first follows a given trace backward, from
the current configuration to a set of starting ones, according to the specifica-
tion. With this step, the algorithm finds the possible starting configurations of
the trace, which lead to the current configuration. Then, it analyses the past of
this set of starting configurations, also in a backward manner, seeking for con-
figurations in which the variables are determined. When such configurations
are reached, a decision is taken on the validity of the studied paths (traces are
completed). Such an approach is usually applied as a complement to forward
checking to detect more errors.

It is worth mentioning that passive testing has also been successfully applied for
fault management [MA01], fault detection [Ura+07], performance requirements
[CM13], and security purpose [Mal+08]. To summarize, while passive testing is
less powerful than active testing, because the latter allows a closer control of the
implementation under test, passive testing still presents interesting advantages:

• Passive testing does not disturb the system or its environment, i.e. “passive
testing only observes and does not intervene” [Cav+03];

• Passive testing can be applied to large systems where active testing is not even
feasible, such as systems with many different components, e.g., service oriented
architectures, distributed systems (as well as cloud computing [Cav+15]), but
also production systems such as the ones we target in this thesis.

2.2 Model inference

In the Industry, software models as defined in Chapter 2.1 • Section 2.1.2 (page 15)
are often neglected: specifications are not up to date (or even missing), models are
neither accurate nor sound, and also rarely formals.

Such a situation can be comprehensible because writing complete documentation
and especially formal models is often a tedious and error prone task. That is why

2.2 Model inference 26

lightweight and incomplete models are usually found in the Industry. This leads to
several issues, e.g., the toughness of testing applications with a good test coverage,
the difficulty to diagnose failures, or to maintain models up to date since they are
poorly documented.

Solutions to these problems can be initiated by means of model inference. This
research domain originates from works on language learning started in the 1970’s
with Gold [Gol67], based on previous work to formalize natural languages. Model
inference here describes a set of methods that infer a specification by gathering and
analyzing system executions and concisely summarizing the frequent interaction
patterns as state machines that capture the system’s behavior. These models, even if
partial, can be examined by a developer, to refine the specification, to identify errors,
and can be very helpful for in-depth analysis, etc. Models can be generated from
different kinds of data samples such as affirmative and negative answers [Ang87],
execution traces [Krk+10], documentation [Zho+11], source code [Sal+05; PG09],
network traces [Ant+11] or from more abstract documentation such as Web Service
Description Language (WSDL) description [Ber+09]. Model inference is employed
for different purposes. One can infer models from log files in order to retrieve impor-
tant information in order to identify failure causes [MP08]. It has also successfully
been applied to intrusion detection [MG00], searching for features in execution
traces that allow to distinguish browsers from other software systems, and security
testing [Gro+12]. Among all, two uses of model inference are Model-based Testing
[Lor+08; MS11; Ama+14] and verification [Amm+02; Gro+08].

In the literature, we find different techniques to infer models that can be organized
in two main categories. In the first category, we find the techniques that interact
with systems or humans to extract knowledge that is then studied to build models.
We refer to these methods as active methods. Other works infer models by assuming
that system samples, e.g., a set of traces, is provided for learning models. We refer to
this principle as passive methods since no interaction is required.

In the following section, we give an overview of prominent active inference ap-
proaches: we introduce L∗-based techniques on the next page, incremental learning
techniques on page 31, and the model generation by means of automatic testing of
event-driven applications providing Graphical User Interfaces (GUIs) on page 33.
Passive inference techniques are extensively described in Section 2.2.2 on page 36.
We cover passive inference techniques using event sequence-based abstraction on
page 38, using state-based abstraction on page 39. Then, we present some white-
box approaches on page 41, and we also mention a few techniques that leverage
documentation to infer models on page 43.

2.2 Model inference 27

2.2.1 Active model inference

Active inference refers to algorithms that actively interact with black-box systems
or people to extract knowledge about a (software) system, which is then expressed
in a model. As depicted in Figure 2.7, interactions are performed with kinds of
queries, which are sometimes replaced by testing techniques. A model generator or
learner then uses this feedback to incrementally build several models, or to refine
the model under generation. Many existing active inference techniques have been
initially conceived upon two concepts: the L∗ algorithm, presented on page 28,
and incremental learning, presented on page 31. Several more recent papers also
proposed crawling techniques of Graphical User Interface (GUI) applications, i.e.
exploring them through their GUIs with automatic testing. We introduce some of
them on page 33.

Fig. 2.7: Active model inference principle. Interactions are performed with queries that
produce feedback a learner can use to build a model.

L∗-based techniques and related

The L∗ algorithm by Angluin [Ang87] is one of the most widely used active learning
algorithm for learning Deterministic Finite Automata (DFA). The algorithm has indeed
been applied to various problem domains, e.g., protocol inference or the testing of
circuits. It is designed to learn a regular language L by inferring a minimal DFA A

such that L(A) = L, with L(A) the set of strings of A leading to one of its states from
its initial one. The algorithm, also known as the learner, knows nothing about A
except its input alphabet. It relies on two roles, a teacher, who may answer whether
a given string is in the language, and an oracle, answering whether the current DFA
proposed by the learner is correct or not. The learner interacts with the teacher and
the oracle by asking them two kinds of queries, as depicted in Figure 2.8:

2.2 Model inference 28

• “A membership query, consisting in asking the teacher whether a string is
contained in the regular language” [Ber06]. If the string is accepted, it is
considered as a positive example, otherwise it represents a negative example;

• “An equivalence query, consisting in asking the oracle whether a hypothesized
DFA M is correct, i.e. L(M) = L(A)” [Ber06]. When the oracle answers no, it
provides a counterexample.

Fig. 2.8: The principle of L∗-based learning algorithms with two kinds of queries: member-
ship queries and equivalence queries.

By taking counterexamples into account, the L∗ algorithm iterates by asking new
queries and constructing a new hypothesized DFA M, until it gets an automaton
that is equivalent to the black-box. The L∗ algorithm uses an observation table to
classify the strings given in membership queries as members or non-members of
the unknown regular language. In an observation table, the rows are filled with
prefix-closed strings, the columns are labeled by suffix-closed strings. The algorithm
gradually fills the entry (u, v) for row u and column v by a boolean value after
receiving a reply for a membership query for uv. Once the oracle answers yes,
the minimal DFA for the language is derived from this observation table. The L∗

algorithm has also been applied to Mealy machines [Mea55] as shown in [Nie03;
Ste+11]. With Mealy machines, the alphabet is segmented into input and output
events. The rows of the table are filled with prefix-closed input sequences. The
columns of the table are labeled with input suffix sequences, which represent the
distinguishing sequences of the states of the future Mealy machine. The table cells
are completed by the last output event given by the teacher after receiving the
concatenations of prefixes and suffixes.

In domains such as model inference where strings and answers usually do not come
from human experts but from experiments, active learning with query synthesis
is considered a promising direction [Set09]. Nevertheless, this method has the
disadvantages of requiring a lot of iterations and an heavy use of an expert oracle.

2.2 Model inference 29

Several papers focused on these issues by revisiting [Ber+06; Ber+08], optimizing
and/or upgrading L∗ [Raf+05; Irf+12] as summarized below.

Raffelt et al. introduced LearnLib [Raf+05], a library for learning both DFA and
Mealy machines. It implements the L∗ [Ang87] learning algorithm, which is opti-
mized with approximate equivalence queries. Furthermore, the notion of teacher is
replaced with conformance testing techniques. The query optimization is mainly
based on filters, which are specific properties of reactive systems that help in the
removal of useless queries. A query whose response can be deduce from the previous
ones is also ignored. Additionally, statistical data acquisition can be employed to
evaluate the learning procedure. These features make LearnLib a powerful tool if
a teacher is available. Later, Merten et al. revisited LearnLib in a tool called Next
Generation LearnLib (NGLL) [Mer+11], a machine learning framework providing
infrastructure for practical application, including the tool LearnLib Studio, a graphical
interface for designing and executing learning and experimentation setups, plus a
set of Java libraries. Howar et al. pursued the inference of models and proposed
a technique and an implementation on-top of LearnLib to actively learn register
automata in [How+12a]. Register automata, also known as Finite Memory Automata
[KF94], are models that are capable of expressing the influence of data on control
flows. The algorithm directly infers the effect of data values on control flows as part
of the learning process. As a consequence, the models are more expressive than
DFA, and the implementation also outperforms the classic L∗ algorithm. Howar et
al. optimized this approach and proposed a method to infer semantic interfaces of
data structures on the basis of active learning and systematic testing in [How+12b].
Semantic interfaces transparently reflect the behavioral influence of parameters at
the interface level. They defined Register Mealy Machines (RMMs) to express the
data structures behavior concisely, but also because RMMs can be learned much
more efficiently than both Register Automata and plain Mealy machines.

Berg et al. also revisited the L∗ algorithm in [Ber+06] to infer parameterized
systems, which are kinds of automata composed of parameters and guards over
parameters (boolean expressions) labeled on transitions. The approach completes the
L∗ algorithm with guard inference. This algorithm is intended to infer parameterized
systems where guards of transitions use only a small subset of all parameters of a
particular action type. Such a work has been used later to infer state machines for
systems with parameterized inputs [Ber+08]. Here, behavioral models are inferred
(finite-state Mealy machine) for finite data domains, and then, models are abstracted
to symbolic Mealy machines, encoding extrapolated invariants on data parameters
as guarded transitions.

Other works proposed to optimize the L∗ algorithm itself. For instance, Irfan et al.
proposed the L1 algorithm [Irf+12] to infer Mealy machines, which uses a modified

2.2 Model inference 30

observation table and avoids adding unnecessary elements to its columns and rows.
In short, the algorithm only keeps the distinguishing input sequences and their
suffixes in the columns of the observation table, and the access sequences, i.e. the
input sequences allowing to reach a state, in the rows. These improvements reduce
the table size, and lower the worst case time complexity.

A common problem to the algorithms presented above is the time spent querying the
oracle or the teacher, and several competitions, e.g., the ZULU challenge [Com+10]
have been proposed to optimize the learning task by trying to make easier queries,
or queries for which the oracle’s answer is simpler. Concretely, the purpose of such
competitions is to optimize the learning algorithm with heuristics to reduce the
number of equivalence and membership queries. But having an oracle knowing
all about the target model is a strong assumption. Hence, other works propose a
completely different solution called incremental learning.

Incremental learning

Instead of querying teachers and oracles to check whether strings and models are cor-
rect, incremental learning techniques assumes receiving positive or negative samples,
also called observations, one after another. Several models are incrementally built in
such a way that if a new observation α is not consistent with the current model, the
latter is modified such that α becomes consistent with the resulting new model. In
general, a learning algorithm is said incremental if: (i) it constructs a sequence of
hypothesis automata H0, . . . , Hn from a sequence of observations o0, . . . , on about
an unknown automaton A, and (ii) the construction of hypothesis Hi can reuse
aspects of the construction of the previous hypothesis Hi−1.

Dupont proposed an incremental extension of the Regular Positive and Negative
Inference (RPNI) algorithm, called Regular Positive and Negative Incremental Inference
(RPNII) [Dup96]. In short, RPNI requires positive and negative samples as a whole
and builds DFA. It merges the blocks of states having the same prefixes (strings
accepted from a state leading to all the other states) and such that the prefixes
augmented by one symbol are not in the negative samples. The inference process of
the RPNI algorithm can be seen as a passive approach that is not incremental since
it has to be restarted from scratch when new learning data are available. The RPNII
algorithm overcomes this limitation by dealing with sequential presentation, i.e. the
learning data are presented one at a time in a random order.

Parekh et al. [Par+98] proposed an incremental extension of Angluin’s ID algorithm
[Ang81], the latter being not incremental since only a single model is ever produced.
This extension called Incremental ID (IID) constructs DFA from observation sets.

2.2 Model inference 31

Membership queries are sent to an oracle to check whether the current DFA is correct.
IID is guaranteed to converge to the target DFA, and has polynomial time and space
complexities. Sindhu et al. also enhanced the ID algorithm by proposing another
incremental version called Incremental Distinguishing Sequences (IDS) [SM12]. The
state merging is here performed by generating the distinguishing sequence set DS of
every state and by refining blocks of states such that two blocks of states are distinct
if and only if they do not have the same DS sets. IDS also has polynomial time and
space complexities. In contrast with IID, the IDS algorithm solves some technical
errors and its proof of correctness is much simpler.

Meinke introduced the Congruence Generator Extension (CGE) algorithm in [Mei10]
to infer Mealy automata by applying the term rewriting theory and a congruence gen-
erator. Here congruence is an equivalence relation on states and on outputs. Meinke
describes this algorithm as being both sequential and incremental. First, it produces
a sequence of hypothesis automata A0, . . . ,An, which are approximations to an un-
known automaton A, based on sequence of information (queries and results) about
A. CGE is incremental because the computation of a new hypothesis automaton
Ai is based upon the previous Ai−1. Meinke shows here that using finite generated
congruences increases the efficiency of hypothesis automaton representation, which
are deterministic and can be directly analyzed (e.g, for verification purpose). CGE
has some features in common with the RPNII algorithm mentioned previously: both
RPNII and CGE perform a recursive depth-first search of a lexicographically ordered
state set with backtracking. Nevertheless, RPNII is designed for Moore machines
while CGE is designed for Mealy machines and, according to Meinke, “RPNII repre-
sents the hypothesis automaton state set by computing an equivalence relation on
input strings whereas CGE relies on finite generated congruence sets represented as
string rewriting systems that are used to compute normal forms of states” [Mei10].

Some incremental learning algorithms have been associated with testing techniques
to detect bugs without having an initial specification. In [Mei04; MS11], this concept
is called Learning-Based Testing. It aims at automatically generating the test cases
by combining model-checking with model inference. For example, Meinke and
Sindhu [MS11] introduced an incremental learning algorithm named Incremental
Kripke Learning (IKL) for Kripke structures modeling reactive systems. Here, the
test cases are generated and executed to extract observations. Afterwards, models
are derived from these observations with an incremental learning algorithm, and
model-checking is applied to the inferred models to check if initial requirements are
met. If not, counterexamples are collected, and the test cases are generated from
them.

Combining incremental model inference with testing has also been studied with
applications providing Graphical User Interfaces (GUIs), which are event-driven. We

2.2 Model inference 32

present some works related to the model inference of GUI applications in the next
section.

Model inference of GUI applications

The works presented in this section originate from the testing of GUI applications,
i.e. event-driven applications offering a Graphical User Interface (GUI) to interact
with, and which respond to a sequence of events sent by a user. Partial models can
be inferred by exploring interfaces with automatic testing techniques. As depicted
in Figure 2.9, models are generated by a learner that updates the model under
generation using events and states given by an automatic test engine. This test
engine stimulates the application through its GUI (by triggering events, e.g., clicking
on a button or a link), and collects all the observed screens. Screen after screen,
the application is explored (the technical term is: crawled) until there is no more
new screen to explore or until some conditions (e.g., based on the processing time
or the code coverage rate) are satisfied. The collected events and screens are often
represented with transitions and states in a graph or state machine, which expresses
the functional behavior of the application observed from its GUI. As the number of
screens may be infinite, most of the approaches require state abstractions to limit the
model size [Ama+14; Ngu+13; Ama+11; Yan+13; SL15], and a few others merge
equivalence states [Mes+12; Ama+08] (the equivalence relation being defined with
regard to the context of the application).

Fig. 2.9: The principle of inferring models with crawling techniques. The learner asks a
test engine to stimulate the software under test through its GUI, and constructs a
model using the information gathered by the test engine.

All these approaches focus on different applications seen in different viewpoints. We
chose to summarize them in Table 2.1, considering the following features:

• Type of application and accessibility (col. 2 and 3): most of the approaches
focus on desktop, web, or mobile applications. These applications share some
common features, e.g., the events that can be applied to screens. Some papers

2.2 Model inference 33

focus on other kinds of systems though, e.g., distributed and legacy systems
[Hun+02].

Applications are often seen as black-boxes even though some authors prefer to
consider white- or grey-boxes. Column 3 in Table 2.1 indicates the accessibility
chosen for each technique. Some works consider a grey-box perspective to
reduce the exploration complexity. Azim et al. chose to apply static analyses on
Android application source code to guide the application exploration [AN13].
Yang et al. [Yan+13] perform static analyses of Android application source
code as well in order to list the available events that may be applied to screens;

• Application environment (col. 4): a few works [AN13; SL15] take the
external environment (e.g., the operating system) of the GUI application into
account. The approach proposed by Azim et al. [AN13] exercises Android
applications with User Interface (UI) events but also with system events to
improve code coverage. Examining application environments while testing
is more complicated in practice, and it requires more assumptions on the
applications. On the other hand, considering the application environment
helps build more complete and accurate models [SL15];

• Model generation (col. 5): all the approaches cited in Table 2.1 learn either
formal (FM) or informal models (IM). Memon et al. [Ngu+13] introduced
the tool GUITAR for scanning desktop applications. This tool produces event
flow graphs and trees showing the GUI execution behaviors. The tool Crawljax
[Mes+12], which is specialized in Asynchronous JavaScript and XML2 (AJAX)
applications, produces state machine models to capture the changes of Docu-
ment Object Model3 (DOM) structures of web documents by means of events
(click, mouseover, etc.). Amalfitano et al. proposed in [Ama+12] a crawler
that generates straightforward models, called GUI trees, only depicting the
observed screens. In [Yan+13], Yang et al. presented an Android application
testing method that constructs graphs expressing the called methods. Salva
and Laurençot proposed in [SL15] a crawler of Android applications that infers
Parameterized Labeled Transition Systems (PLTSs) capturing the UI events, the
parameters used to fill the screens, and the screen contents (widget properties).

These models, and specifically the formal ones, offer the advantage to be
reusable for Model-based methods (e.g., Model-based Testing and Verification
methods). Nevertheless, the model inference of GUI applications is often
paired with the state space explosion problem. To limit the state space, these
approaches [Ama+14; Ngu+13; Ama+11; Yan+13; SL15] require state-

2A term and a technique that has been coined in 2005: http://adaptivepath.org/ideas/
ajax-new-approach-web-applications/.

3http://www.w3.org/DOM/

2.2 Model inference 34

abstractions specified by users, given in a high level of abstraction. This
choice is particularly suitable for comprehension aid, but it often implies a
lack of information when it comes to generate test cases. Alternatively, some
approaches try to reduce the model on-the-fly. The algorithms introduced in
[Mes+12; Ama+08] reduce the model size by concatenating identical states
of the model under construction. But this cannot be applied to all applications
in a generic manner because a state abstraction definition has to be (manually)
given;

• Exploration strategy (col. 6): many papers propose at least one strategy to
explore GUI applications. The Depth-First Search (DFS) is often considered
because this strategy offers the advantage of resetting the application under
test fewer time than any other strategy. Nonetheless, some works proposed
different strategies [Ama+12; Ama+11; Mes+12; Yan+13] and demonstrated
that it can either reduce the exploration time or help increase code coverage.
In [SL15], Salva and Laurençot combined the Ant colony optimization heuris-
tic with a model inference engine to support different kinds of exploration
strategies. For instance, their algorithm supports semantics-based strategy, i.e.
strategies guided by the content found in the application’ screens;

• Crash report (col. 7): we define a crash as any unexpected error encountered
by an application. Crash reporting is another feature supported by some of the
approaches in Table 2.1. When crashes are observed, reports are proposed to
give the error causes and the corresponding application states. Furthermore,
the methods proposed in [Ama+14; Ngu+13; SL15] perform stress testing
for trying to reveal more bugs, for instance by using random sequences of
events. The resulting models are completed thanks to these fault observations.
In addition, the tool AndroidRipper [Ama+12] generates the test cases for each
crash observed.

Generally speaking, these techniques focus more on the GUI application exploration
to detect bugs than on the model generation. For instance, a small number of
algorithms consider state merging or the definition of state equivalence classes
to reduce the model size. At the time of writing, only Choi et al. introduced
an algorithm combining testing and the use of active learning [Cho+13]. This
algorithm is close to the L∗-based approaches presented on page 28, but it also limits
the number of times an application has to be reset. A test engine, which replaces the
teacher, interacts with the GUI application to discover new application states. The
events and states are given to a learning engine that builds a model accordingly. If
an input sequence contradicts the current model, the learning engine rebuilds a new
model that meets all the previous scenarios. This learning-based testing algorithm
avoids restarts and aggressively merges states in order to quickly prune the state

2.2 Model inference 35

space. Consequently, the authors show that their solution outperforms the classical
L∗ technique but models are over-approximated. Salva and Laurençot also shown
in [SL15] that this approach requires much more time to build a model than the
others.

Active inference approaches repeatedly query systems or humans to collect positive
or negative observations. Nonetheless, this can lead to some issues like disturbing
the system for instance. That is why we did not choose to perform active model
inference, but rather passive model inference, i.e. without stimulating the software
system. In the next section, we introduce some of these passive model inference
techniques.

2.2.2 Passive model inference

The passive model inference category includes all techniques that infer models
from a fixed set of samples, such as a set of execution traces, source code, or even
documentation, as shown in Figure 2.10. Since there is no interaction with the
system to model, theses techniques are said passive or offline. In contrast to active
model inference, the samples are usually considered positive elements only. Also,
models are often constructed by initially representing sample sets with automata
whose equivalent states are merged. This section presents an overview of these
techniques.

Fig. 2.10: Passive model inference principle. The learner does not interact with the software
system but rather relies on a fixed set of information (knowledge).

A substantial part of the papers covering this topic proposes approaches either based
upon event sequence abstraction or state-based abstraction to infer models. We
introduce them on page 38 and page 39. We present some white-box techniques,
which retrieve models from source code, on page 41, as well as a few alternative
works leveraging documentation on page 43.

2.2 Model inference 36

Pa
pe

r
Ty

pe
A

cc
es

si
bi

lit
y

Ex
te

rn
al

en
vi

ro
nm

en
t

M
od

el
ge

ne
ra

ti
on

St
ra

te
gy

C
ra

sh
re

po
rt

[H
un

+
02

]
D

is
tr

ib
ut

ed
sy

st
em

s
B

la
ck

-b
ox

N
o

Fo
rm

al
L

∗
N

o
[J

M
12

]
M

ob
ile

B
la

ck
-b

ox
N

o
In

fo
rm

al
D

FS
Ye

s
[D

al
+

12
]

W
eb

B
la

ck
-b

ox
N

o
In

fo
rm

al
-

Ye
s

[A
m

a+
11

;A
m

a+
12

]
M

ob
ile

B
la

ck
-b

ox
N

o
In

fo
rm

al
B

FS
,D

FS
Ye

s
[N

gu
+

13
;A

m
a+

14
]

de
sk

to
p,

M
ob

ile
B

la
ck

-b
ox

N
o

Fo
rm

al
D

FS
Ye

s
[M

es
+

12
]

W
eb

B
la

ck
-b

ox
N

o
Fo

rm
al

M
ul

ti
pl

e
N

o
[A

m
a+

08
]

W
eb

B
la

ck
-b

ox
N

o
In

fo
rm

al
D

FS
N

o
[C

ho
+

13
]

M
ob

ile
B

la
ck

-b
ox

N
o

Fo
rm

al
D

FS
N

o
[Y

an
+

13
]

M
ob

ile
G

re
y-

bo
x

N
o

In
fo

rm
al

M
ul

ti
pl

e
N

o
[A

N
13

]
M

ob
ile

G
re

y-
bo

x
Ye

s
In

fo
rm

al
D

FS
Ye

s
[S

L1
5]

M
ob

ile
B

la
ck

-b
ox

Ye
s

Fo
rm

al
M

ul
ti

pl
e

Ye
s

Ta
b.

2.
1:

A
n

ov
er

vi
ew

of
so

m
e

w
or

ks
on

G
U

I
ap

pl
ic

at
io

n
cr

aw
lin

g.
C

ol
um

n
2

re
pr

es
en

ts
th

e
ty

pe
of

ap
pl

ic
at

io
n

un
de

r
an

al
ys

is
.

C
ol

um
n

3
in

di
ca

te
d

th
e

ac
ce

ss
ib

ili
ty

(b
la

ck
-,

gr
ey

-,
or

w
hi

te
-b

ox
).

C
ol

um
n

4
gi

ve
s

w
he

th
er

th
e

te
ch

ni
qu

e
re

qu
ir

es
an

ex
te

rn
al

en
vi

ro
nm

en
t.

C
ol

um
n

5
in

di
ca

te
s

w
he

th
er

th
e

te
ch

ni
qu

e
bu

ild
s

fo
rm

al
m

od
el

s
or

in
fo

rm
al

m
od

el
s.

C
ol

um
n

6
gi

ve
s

th
e

st
ra

te
gy

or
al

go
ri

th
m

us
ed

to
cr

aw
lt

he
ap

pl
ic

at
io

n.
La

st
co

lu
m

n
(7

)
sh

ow
s

w
he

th
er

th
e

te
ch

ni
qu

e
ha

nd
le

s
po

te
nt

ia
lc

ra
sh

es
,i

.e
.

er
ro

rs
en

co
un

te
re

d
du

ri
ng

cr
aw

lin
g.

2.2 Model inference 37

Passive inference using event sequence abstraction

Most of the following approaches, which build models from execution traces by
means of event sequence abstraction, are build on-top of these two algorithms: kTail
[BF72] and kBehavior [MP07].

kTail generates Finite State Automata (FSA) from trace sets in two steps. First, it
builds a Prefix Tree Acceptor (PTA), which is a tree whose edges are labeled with the
event names found in traces. Then, kTail transforms the PTA into a FSA by merging
each pair of states as far as they exhibit the same future of length k, i.e. if they
have the same set of event sequences having the maximum length k, which are all
accepted by the two states. This state merging step often yields over-generalized
models containing undesirable behaviors though [LK06].

Reiss and Renieris modified the kTail algorithm to reduce the size of the final FSA.
Indeed, their algorithm merges two states if they share at least one k-future [RR01].
By using a merging criterion that is weaker, their variant actually merges more states
than kTail. Yet, the resulting FSA express much more behaviors than those possible
in the real system. They are usually more approximate than the models obtained
with kTail. Lo et al. [Lo+09] also enhanced the kTail algorithm to lower over-
approximation. Traces are mined to extract temporal properties that statistically
hold in most of the traces. Such temporal properties aim at capturing relations
between non consecutive events. The kTail algorithm is then upgraded to prevent
the merging of states with the same k-future, which would produce FSA that violate
the inferred properties.

Lorenzoli et al. extended kTail to produce Extended Finite State Machines (EFSMs),
which are FSMs extended with parameters and algebraic constraints on transitions
[Lor+08]. Their technique, called gkTail, generates an EFSM from a set of traces,
which incorporates information about both the event sequences and the values of
the parameters associated with the event sequences. gkTail starts by combining the
traces that share the same event sequence, each event being associated with the
set of values obtained as the union of all value assigned to this same event in each
merged trace. gkTail infers a constraint from the values associated with each event,
and combines this constraint with the associated event. Finally, the kTail algorithm
is applied to these traces.

kBehavior [MP07] is another algorithm, which works quite differently than kTail.
It generates a FSA from a set of traces by taking every trace one after one, and by
completing the FSA such that it accepts the trace. More precisely, whenever a new
trace is submitted to kBehavior, it first identifies the sub-traces that are accepted
by sub-automata in the current FSA (the sub-traces must have a minimal length k,

2.2 Model inference 38

otherwise they are considered too short to be relevant). Then, kBehavior extends the
model with the addition of new branches that connect the identified sub-automata,
producing a new version of the model that accepts the entire trace. They successfully
applied this algorithm to automatically analyze log files and retrieved important
information to identify failure causes [MP08]. They also automatically analyzed
logs obtained from workloads to highlight useful information that can relate the
failure to its cause [Cot+07]. Both works [MP08; Cot+07] use an extended version
of kBehavior, called kLFA, that supports events combined with data values. kLFA
performs a preliminary step by analyzing the traces to infer parameter constraints.
It encodes these constraints in the event names with specific symbols to yield new
traces. kBehavior is then called to infer a FSA whose transitions are still labeled with
an event and a symbol representing a data constraint.

Lo et al. presented an empirical comparative study of kTail, kBehavior, gkTail, and
kLFA with a set of 10 case studies extracted from real software systems in [Lo+12].
This study quantifies both the effect of adding data flow information within automata
and the effectiveness of the techniques when varying sparseness of traces. One of the
main conclusions is that adding algebraic constraints to FSA does not compromise
quality but negatively affects performance. This is the case for gkTail for instance,
which becomes extremely slow. The study also revealed that increasing the trace set
improves the rate of correct behaviors in models, especially for kTail and kBehavior.
But increasing the trace set does not particularly affect illegal behavior rates, i.e. the
number of behaviors found in the models but not in the traces. This can be explained
by the fact that these algorithms are not really able to control over-generalization
when only positive samples are available. A comparison has also been made between
the kTail- and kBehavior-based methods. In short, kTail provides low illegal behavior
rate, but also low correct behavior rate. On the other hand, kBehavior has higher
illegal behavior rate, but good correct behavior rate.

The next section gathers the approaches building models from traces that also
consider invariants to merge states.

Passive inference using state-based abstraction

Most of the approaches presented in this section rely on the generation of state
invariants to define equivalence classes of states that are combined together to form
final models. The Daikon tool [Ern+99] was originally proposed to infer invariants
composed of data values and variables found in execution traces. An invariant is
a property that holds at a certain point or points in a software. These are often
used in assert statements, documentation, and formal specifications. An invariant
generator mines the data found in the traces that a software system produces, and

2.2 Model inference 39

then reports properties that are true over the observed executions. This is a machine
learning technique that can be applied to arbitrary data. Daikon is used in many
different kinds of works, e.g., for generating test cases, predicting incompatibilities
in component integration, automating theorem proving, repairing inconsistent data
structures, and checking the validity of data streams, among other tasks [Ern+07].

Krka et al. inferred object-level behavioral models (FSA) from object executions, by
using both invariants, representing object states, and dynamic invocation sequences,
expressing method invocations [Krk+10]. Invariants are still generated with Daikon.
The authors show that their FSA inference technique offers more precise models
than those obtained with kTail, which means that the rate of over-approximation
is lower. These results are not surprising since they use a state merging technique
combining event sequence abstraction and state abstraction. Hence, state merging is
here done with more precision.

In [Ghe+09], Ghezzi et al. described an approach called SPY to recover a specifi-
cation of a software component from its traces. They infer a formal specification
of stateful black-box components (Java classes that behave as data containers with
their own states). Model inference is performed in two main steps. It starts by
building a DFA that models the partial behavior of the instances of the classes.
Then, the DFA is generalized via graph transformation rules that are based upon
the following assumption: the behavior observed during the partial model inference
process benefits from the so called "continuity property" (i.e. a class instance has
a sort of "uniform" behavior). Transformation rules generate data constraints that
hold for each encountered data value found in the instance pools. Such constraints
add over-approximation to the model though.

Walkinshaw et al. presented the Query-driven State Merging (QSM) algorithm in
[Wal+07], an interactive grammar inference technique to infer the underlying state
machine representation of software. The QSM algorithm does not infer invariants
but uses the Price’s "blue-fringe" state merging algorithm [Lan+98], which is mainly
based upon fixed invariants defining order relations over states. QSM generalizes a
supplied trace set obtained from an application by applying two steps: (i) a trace
abstraction is performed with functions given by a user, and (ii) states are merged
with the Price’s blue-fringe state merging algorithm. To avoid over-generalization,
the algorithm queries the user whenever the resulting machine accepts or rejects
sequences that have not been ratified. This approach can be compared to the
work done by Hungar in [Hun+04], who used the L∗ algorithm instead. But the
QSM algorithm presumes that the input sequences offer some basic coverage of the
essential functionality of the system, in which case the machine can be inferred
relatively cheaply by a process of state merging, compared to the L∗ technique that
systematically and comprehensively explores the state space of the target machine.

2.2 Model inference 40

Some tools such as Synapse [LS+14] implement the QSM algorithm to perform
automatic behavior inference and implementation comparison for the programming
language Erlang.

Taking another direction by leveraging genetic algorithms, Tonella et al. [Ton+13]
applied a data-clustering algorithm to infer FSMs from traces. Traces are transformed
into a first FSM where every state is considered as one distinct equivalence class,
called cluster. Then, invariants are generated with Daikon for each cluster in order to
group states. The clustering is iteratively improved by using a genetic algorithm that
randomly updates the clusters. But the clustering is yet guided with the computation
of quality attributes on the current FSM model. Each distinct set of invariants
produced for each cluster at the end of the optimization represents an abstract state,
and is used as the abstraction function that maps states to more abstract ones. Even
though this approach offers originality, it is time consuming, especially with a large
set of traces.

The works presented in this section adopted either a grey- or black-box approach.
The next section introduces some white-box techniques.

White-box techniques

The works presented in this section adopt a white-box perspective. Models are built
by following two different procedures: (i) the source code is instrumented and
the system is executed or tested to collect traces from which a specification can be
generated, and (ii) the source code is statically analyzed to directly infer models.

Ammons et al. reuse the kTail algorithm to produce non-deterministic automata
from source code [Amm+02]. The latter is instrumented to collect the function
calls and parameters. Application traces are collected and scenarios (small sets of
interdependent interactions) are then derived. kTail is finally employed to build
automata. Several automata are generated from the different scenarios.

Whaley et al. suggested to use multiple FSM submodels to model object-oriented
component interfaces [Wha+02]. A FSM is built for each attribute of a class,
with one state per method that writes that attribute. The FSMs are reduced with
restrictions on the methods: a distinction is made between side-effect-free methods,
i.e. those that do not change the object state, and the others. The side-effect-free
methods are ignored to build FSMs. The others are completed with dotted transitions
to represent the states from which it is possible to call these side-effect-free methods.
Two techniques are given to automatically construct such models: (i) a dynamic
instrumentation technique that records real method call sequences, and (ii) a static

2.2 Model inference 41

analysis that infers pairs of methods that cannot be called consecutively. The work
described in [Alu+05] generates behavioral interface specifications from Java classes
by means of predicate abstraction and active learning. This is a white-box approach
inspired by [Wha+02] that, first, uses predicate abstraction to generate an abstract
version of the considered class. Afterwards, a minimal version (interface) of this
abstraction is constructed by leveraging the L∗ algorithm. The tool Java Interface
Synthesis Tool (JIST) is the resulting implementation of such a technique. It takes
Java classes as input, and generates useful and safe interfaces automatically.

Still in the purpose of modeling object invocation, Salah et al. proposed Scenari-
ographer [Sal+05], an algorithm and a tool to estimate the usage scenarios of a
class from its execution profiles. The results are quite different than the above ap-
proaches tough, since Scenariographer infers a set of regular expressions expressing
the generalized usage scenarios of the class over its methods. The source code is
still instrumented to collect method calls, but this approach employs the notion
of canonical sets to categorize method sequences into groups of similar sequences,
where each group represents a usage scenario for a given class.

Yang et al. [Yan+06] also focused on the model inference of Java programs but
they use a state abstraction technique generating temporal invariants. The source
code is instrumented to collect method invocations. Then, temporal invariants are
extracted to capture relations among several consecutive or non-consecutive events.
The resulting tool Perracotta infers temporal invariants and FSMs from traces. It is
able to scale to large software systems since it can infer models from millions of
events. Additionally, it works effectively with incomplete trace sets typically available
in industrial scenarios. Scalability is here obtained by the use of heuristics to prune
the set of inferred invariants.

In [PG09], Pradel and Gross presented a scalable dynamic analysis that infers
extremely detailed specifications of correct method call sequences on multiple
related objects. Again, Java applications are executed to collect with debuggers
methods calls. This produces a large set of traces. Given that methods generally
implement small and coherent pieces of functionality, the source code is statically
analyzed to identify small sets of related objects (object collaborations), and method
calls that can be analyzed separately. Then, they derive FSMs that model legal
sequences of method calls on a set of related objects. This work has been extended in
[Dal+10] by means of active testing. The inference engine generates the test cases
that cover previously unobserved behaviors, systematically extending the execution
space and enriching the models while detecting bugs. Such an approach is similar to
the crawling techniques presented in Section 2.2.1 except that crawlers take GUI
applications as input.

2.2 Model inference 42

Even though the remaining papers are oriented towards the same purpose, that is
model inference from source code, they do not collect traces from executions but
perform static analysis only. Shoham et al. introduced an approach to infer finite
automata describing method calls of an API from source code of the client side, i.e.
the code that calls the API [Sho+07]. Finite automata are constructed with two main
steps: (i) abstract-traces are collected with a static analysis of the source code and
split into sets called abstract histories that give birth to several finite automata, and
(ii) a summarization phase filters out noise. This step is done thanks to two available
criteria: either all the histories are considered (no filter) or the histories having the
same k-future (as with kTail) are assembled together. Despite encouraging results,
the inferred specifications are often too detailed, and their solution does not scale
well.

In [Was+07], Wasylkowski et al. proposed JADET, a Java code analyzer to infer
method models. One finite state automaton is built for every class to express the
method calls. JADET then infers temporal properties grouped into patterns that can
be used to automatically find locations in programs that deviate from normal object
usage. Temporal properties are obtained by the use of the data mining technique
frequent item set mining, which is applied to the source code. These properties
are fed into a classifier that detects and removes the abnormal properties. It then
identifies the methods that violate the remaining ones.

The next section introduces a few other works leveraging documentation to infer
models.

Model inference from documentation

We present in this section some other passive inference techniques that rely on
other sets of knowledge to infer models. Their main disadvantage lies in the use of
external documentation that can be outdated, leading to models describing incorrect
behaviors (over-approximation). Furthermore, the resulting models are often under-
approximated since documentation is usually not complete. That is probably why
there are few works based on documentation mining in the literature.

Bertolino et al. presented StrawBerry in [Ber+09], a method that infers a Behavior
Protocol automaton from a Web Service Description Language (WSDL) document.
WSDL is a format for documenting web service interactions, containing information
about the inputs, outputs, and available methods. StrawBerry automatically derives
a partial ordering relation among the invocations of the different WSDL operations,
that is represented as an automaton called Behavior Protocol automaton. This
automaton models the interaction protocol that a client has to follow in order to

2.2 Model inference 43

correctly interact with a web service. The states of the behavior protocol automaton
are web service execution states, and the transitions, labeled with operation names
and input/output data, model possible operation invocations from the client to the
web service.

Later, Zong et al. [Zho+11] proposed to infer specifications from API documentation
to check whether implementations match it. A linguistic analysis is applied as API
documentation is written in a natural language. It results in a set of methods that
are linked together with action-resource pairs that denote what action the method
takes on which resource. Then, a graph is built from these methods and a predefined
specification template. Such specifications do not reflect the implementation behav-
iors though. Furthermore, this method can be applied only if the API documentation
is available in a readable format, and if a specific template is provided.

2.3 Conclusion

As stated previously, the use of active inference techniques is not possible in our
industrial context. Production systems are both distributed and heterogeneous event-
driven systems, compound of software and several physical devices (e.g., points,
switches, stores, and production machines). Applying active inference on them
without disturbing them is therefore not feasible in practice. We are not supposed to
cause damages on these systems while studying them, that is why we investigated
the existing passive inference techniques.

Given the constraints formulated in Chapter 1 • Section 1.2 (page 3), we are not
able to leverage white-box or documentation-based works. For the record, we cannot
safely reuse existing documentation, and due to the heterogeneous set of software we
target, we cannot rely on white-box approaches either. At first glance, and because
production systems are event-driven, techniques using event sequence abstraction
seemed the most relevant to us.

Yet, our main concern regarding methods such as kTail and kBehavior was the
over-approximation tied to the inferred models. Indeed, while it may not always
be an issue, depending on the use cases, our context requires exact models for
testing. That is why we present two new approaches combining passive model
inference, machine learning, and expert systems to infer models from traces for
web applications (Chapter 3) and industrial systems (Chapter 4) in the sequel. The
second technique is an adaptation of the first one.

We believe that knowledge of human domain experts is valuable, hence the use of
expert systems to integrate their knowledge with our inference techniques. Expert

2.3 Conclusion 44

systems are computer systems that emulate the decision-making abilities of humans.
We "transliterate" knowledge of domain experts into inference rules, which our
inference techniques leverage thanks to expert systems. Our work is still similar
to those using event sequence abstraction (page 38), except that state merging
is replaced with a context-specific state reduction based on an event sequence
abstraction. This state reduction can be seen as the kTail algorithm introduced
previously where k would be dynamic and as high as possible. Furthermore, our two
simple yet scalable techniques infer exact models for testing purpose. We focus on
both speed and scalability to be able to construct models of Michelin’s production
systems in an efficient manner, which is often a must-have for adoption in the
Industry.

Among all potential use cases, we need such models to perform passive testing on
these production systems (Chapter 5). We chose to perform passive testing for the
same reasons mentioned before, i.e. because passive testing does not disturb the
system, and because it can be applied to large and heterogeneous systems.

2.3 Conclusion 45

2.3 Conclusion 46

3Model inference for web
applications

Our target has always been to construct models of (legacy) production systems in an
automated fashion. But, before tackling the model inference of production systems,
we chose to formulate our ideas and concepts by applying them on web applications.
Given a black-box approach, web applications are often smaller and less complex
than production systems: no physical devices involved, a well-known client-server
architecture, and a well-defined protocol to exchange information.

In this chapter, we introduce the first version of Autofunk (v1), our modular frame-
work for inferring models, i.e. Input/Output Symbolic Transition Systems here, by
using a rule-based expert system. A bisimulation minimization technique [Par81]
is applied to reduce the model size. This framework generates several models of a
same application at different levels of abstraction. Autofunk relies on an automatic
testing technique to improve the completeness of the inferred models. We evaluate
our tool on the GitHub1 website, showing encouraging results.

Contents
3.1 Introduction . 48

3.2 Overview . 49

3.3 Inferring models with rule-based expert systems 51

3.3.1 Layer 1: Trace filtering 53

3.3.2 Layer 2: IOSTS transformation 56

3.3.3 Layers 3-N: IOSTS abstraction 62

3.4 Getting more samples by automatic exploration guided with strate-
gies . 71

3.5 Implementation and experimentation 72

3.6 Conclusion . 76

1https://github.com/

47

3.1 Introduction

Web applications are often smaller and easier to understand than production systems.
The design of web applications is well-established: we have a web server that runs
the application, no matter its underlying programming language, and a client (a web
browser most of the time) that connects to the web server so that it can communicate
with the application. Hypertext Transfer Protocol (HTTP) is the protocol that allows
such a discussion by means of HTTP requests and HTTP responses [FR14]. Usually,
the client initiates a request, and the server responds to it. That is why we consider
web applications as event-driven applications: they react to events. Requests embed
HTTP verbs (or methods), Unique Resource Identifiers (URIs also known as the "web
links"), and sometimes parameters along with their values. When one submits a
registration form on a web page, it is likely that the HTTP verb is POST , and that
there are at least as many parameters and values as fields in the form. By clicking
on the "submit" button (or "save", "register", etc.), the web browser crafts an HTTP
request containing all the information, and sends it to the web server that delivers
the request to the application. When the application sends back the appropriate
response, it also goes through the web server. By hooking between the web browser
and the web server, we are able to read both HTTP requests and responses as far as
there is no Secure Socket Layer (SSL) or Transport Layer Security (TLS) involved, i.e.
the communication channel should not be encrypted.

The information collected by reading HTTP requests and HTTP responses are known
as (HTTP) traces. We use such traces to infer raw models of the behaviors of a web
application. We then construct more abstract models that can be used for different
purposes, e.g., documentation or test case generation. We chose to work on this to
explore different options for production systems in the future. We present an active
technique that uses automatic testing to stimulate the web application in order to
enhance the completeness of the inferred models.

We start by giving an overview of this framework called Autofunk in the next section,
which we detail in Section 3.3 and Section 3.4, which covers the notion of strategies
to infer more complete models. We present our results in Section 3.5, and we
conclude on this chapter in Section 3.6.

Publications. This work has been published in Actes de la 13eme édition d’AFADL,
atelier francophone sur les Approches Formelles dans l’Assistance au Développement de
Logiciels (AFADL’14) [DS14a], and in the Proceedings of the Fifth Symposium on
Information and Communication Technology (SoICT’14) [DS14b].

3.1 Introduction 48

3.2 Overview

We propose a new approach to infer models of web applications, which is divided into
several modules as depicted in Figure 3.1. The Models generator is the centerpiece
of this framework. It takes HTTP traces as inputs, which can be sent by a Monitor
collecting them on-the-fly. Such a monitor would be responsible for reading HTTP
requests and responses in our case. Nonetheless, it is worth mentioning that the
traces can also be sent by any tool or even any user, as far as they comply to a chosen
standard format like HTTP Archive (HAR), which is implemented in recent browsers’
developer tools. The Models generator is based upon an expert system, which is an
artificial intelligence engine emulating acts of a human expert by inferring a set of
rules representing his knowledge. Such knowledge is organized into a hierarchy of
several layers. Each layer gathers a set of inference rules written with a first-order
logic. Typically, each layer creates a model, and the higher the layer is, the more
abstract the model becomes. Models are then stored and can be later analyzed by
experts, verification tools, etc. The number of layers is not strictly bounded even
though it is manifest that it has to be finite. We choose to infer Input/Output Symbolic
Transition Systems (IOSTSs) to model behaviors of web applications. Indeed, such
models are suitable to describe communicating systems, e.g., systems based on
client-server architectures, with data by means of automata along with inputs and
outputs [Rus+00].

The Models generator relies upon traces to construct IOSTSs (cf. Chapter 2 •
Section 2.1.2 (page 21)), but the given trace set may not be substantial enough
to generate relevant IOSTSs. More traces could be yet collected as far as the
application being analyzed is an event-driven application. Such traces can be
produced by stimulating and exploring the application with automatic testing. In
our approach, this exploration is achieved by the Robot explorer, which is our second
main contribution in this framework. In contrast with most of the existing crawling
techniques, which are detailed in Chapter 2 • Section 2.2.1 (page 33), our robot
does not cover the application in blind mode or with a static traversal strategy.
Instead, it is cleverly guided by the Models generator, which applies an exploration
strategy carried out by inference rules. This involves the capture of new traces by
the Monitor or by the Robot explorer that returns them to the Models generator. The
advantages of this approach are manifold:

• It takes a predefined set of traces collected from any kind of applications
producing traces. In the context of web applications, traces can be produced
using automatic testing;

• The application exploration is guided with a strategy that can be modified
according to the type of application being analyzed. This strategy offers

3.2 Overview 49

Fig. 3.1: Very first overall architecture of Autofunk (v1), our model generation framework
targeting web applications.

the advantage of directly targeting some states of the application when its
state number is too large for being traversed in a reasonable processing time.
Strategies are defined by means of inference rules;

• The knowledge encapsulated in the expert system can be used to cover trace
sets of several applications thanks to generic rules. For instance, the same
rules can be applied to the applications developed with the same framework
or programming language;

• But, the rules can also be specialized and refined for one application to yield
more precise models. This is interesting for application comprehension;

• Our approach is both flexible and scalable. It does not produce one model but
several ones, depending on the number of layers of the Models generator, which
is not limited and may evolve in accordance to the application’s type. Each
model, expressing the application’s behaviors at a different level of abstraction,
can be used to ease the writing of complete formal models, to apply verification
techniques, to check the satisfiability of properties, to automatically generate
functional test cases, etc.

3.2 Overview 50

In the following section, we describe our model inference method.

3.3 Inferring models with rule-based expert systems

The Models generator is mainly composed of a rule-based expert system, adopting a
forward chaining. Such a system separates the knowledge base from the reasoning:
the former is expressed with data also known as facts and the latter is realized with
inference rules that are applied to the facts. Our Models generator initially takes
traces as an initial knowledge base and owns inference rules organized into layers
for trying to fit the human expert behavior. These layers are depicted in Figure 3.2.

Fig. 3.2: The Models generator stack. Each layer yields a model that is reused by the next
layer to yield another model, and so on. An orthogonal layer describes any kind of
exploration strategy by means of rules.

Usually, when a human expert has to read traces of an application, she often filters
them out to only keep those that make sense against the current application. She has
a general understanding of the application, and she is able to "infer" more abstract
behaviors of the traces read with a focus on relevant information only. This step
is done by the first layer whose role is to format the received HTTP traces into
sequences of valued actions and to delete those considered as unnecessary. The rules
of this layer depend on the nature of the input traces. The resulting structured trace
set, denoted by ST , is then given to the next layer. This process is incrementally done,
i.e. every time new traces are given to the Models generator, these are formatted

3.3 Inferring models with rule-based expert systems 51

and filtered before being given to Layer 2. The remaining layers yield an IOSTS each
Si(i ≥ 1), which has a tree structure derived from the traces. The role of Layer 2 is
to carry out a first IOSTS transformation from the structured traces of ST , and then
to yield a minimized IOSTS S1. The next layers 3 to N (with N a finite integer) are
composed of rules that emulate the ability of a human expert to simplify transitions,
to analyze the transition syntax for deducing its meaning in connection with the
application, and to construct more abstract actions that aggregate a set of initial
ones. Theses deductions are often not done in one step. This is why the Models
generator supports a finite but not defined number of layers. Each of these layers i

takes the IOSTS Si−1 given by the direct lower layer. This IOSTS, which represents
the current base of facts, is analyzed by the rules of a expert system to infer another
IOSTS whose expressiveness is more abstract than the previous one. We state that
the lowest layers (at least Layer 3) should be composed of generic rules that can be
reused on several applications of the same type. In contrast, the highest layers should
own the most precise rules that may be dedicated to one specific application.

For readability purpose, we chose to represent inference rules with the Drools2

rule inference language. Drools is a rule-based expert system adopting a forward
chaining, i.e. it starts with the available information and uses inference rules to
extract more information. A Drools rule has the following rough structure:

rule "name"
when

LHS
then

RHS
end

LHS stands for Left-Hand Side. It is the conditional part of the rule, containing the
premises of the rule. RHS is the Right-Hand Side of the rule, i.e. the actions that
are executed (also known as conclusions) whenever LHS is evaluated to true. The
rule above could have been expressed as follows: LHS

RHS , but for more complex rules,
the Drools formalism is more readable. Furthermore, one of the biggest advantages
of Drools is its ability to handle structured data as facts, such as Java objects.

Independently on the application’s type, Layers 2 to N handle the following fact types:
Location, which represents an IOSTS location, and Transition, which represents an
IOSTS transition composed of two locations Linit, Lfinal, and two data collections
Guard and Assign. It is manifest that the inference of models has to be done in a
finite time and in a deterministic way, otherwise our solution may not be usable

2http://www.jboss.org/drools/

3.3 Inferring models with rule-based expert systems 52

in practice. To reach that purpose, we formulate the following hypotheses on the
inference rules:

1. Finite complexity: a rule can only be applied a limited number of times to
the same knowledge base;

2. Soundness: the inference rules are Modus Ponens, i.e. simple implications that
lead to sound facts if the original facts are true (P implies Q; P is asserted to
be true, so therefore Q must be true.);

3. No implicit knowledge elimination: after the application of a rule r ex-
pressed by the relation r : Ti → Ti+1(i ≥ 2), with Ti a transition base, for a
transition t = (ln, lm, a(p), G, A) extracted from Ti+1, ln is still reachable from
l0, i.e. rules should not break the existing IOSTS paths.

In the following, we illustrate each layer with examples.

3.3.1 Layer 1: Trace filtering

Traces of web applications are based upon the HTTP protocol, conceived in such a
way that each HTTP request is followed by only one HTTP response. Consequently,
the traces, given to Layer 1, are sequences of couples (HTTP request, HTTP response).
This layer begins formatting these couples so that these can be analyzed in a more
convenient way.

An HTTP request is a textual message containing an HTTP verb (also called method),
followed by a Unique Resource Identifier (URI). It may also contain header sections
such as Host, Connection, or Accept. The corresponding HTTP response is also
a textual message containing at least a status code. It may encompass headers
(e.g., Content-Type, Content-Length) and a content. All these notions can be easily
identified. For instance, Figure 3.3 depicts an HTTP request followed by its response.
This is a GET HTTP request, meaning a client wants to read the content of the
/hello resource, which is, in this case, a web page in HTML.

For a couple (HTTP request, HTTP response), we extract the following information:
the HTTP verb, the target URI, the request content that is a collection of data
(headers, content), and the response content that is the collection (HTTP status,
headers, response content). A header may also be a collection of data or may be null.
Contents are textual, e.g., HTML. Since we wish to translate such traces into IOSTSs,
we turn these textual items into a structured valued action (a(p), α) with a the HTTP
verb and α a valuation over the variable set p = {URI, request, response}. This is
captured by the next definition.

3.3 Inferring models with rule-based expert systems 53

GET /hello HTTP/1.1
Host: example.org
Connection: keep-alive
Accept: text/html

HTTP/1.1 200 OK
Content-Type: text/html
Content-Length: 13
Hello, World!

Fig. 3.3: An example of HTTP request and response. HTTP messages are sent in plain text,
according to RFC 7230 [FR14].

Definition 8 (Structured HTTP trace) Let t = req1, resp1, . . . , reqn, respn be a
raw HTTP trace composed of an alternate finite sequence of HTTP request reqi and
HTTP response respi. The structured HTTP trace σ of t is the sequence of valued actions
σ(t) = (a1(p), α1) . . . (an(p), αn) where:

• ai is a HTTP verb used to make the request in reqi;

• p is a parameter set {URI, request, response};

• αi is a valuation p → Dp that assigns a value to each variables of p. α is deduced
from the values extracted from reqi and respi.

The resulting structured HTTP trace set derived from the raw HTTP traces is denoted by
ST .

Example 3.3.1 If we take back the HTTP messages given in Figure 3.3, we obtain
the structured HTTP trace σ = (Get(p), α) with α = {URI := ”/hello”, request :=
{headers = [Host := ”example.org”, Connection := ”keep − alive”, Accept :=
”text/html”]}, response := {status_code := 200, headers = [Content − Type :=
”text/html”, Content − Length := 13], content := ”Hello, World!”}}.

For a main request performed by a user, many other sub-requests are also launched
by a browser in order to fetch images, CSS3 and JavaScript files. Generally speaking,
these do not enlighten a peculiar functional behavior of the application. This is why
we propose to add rules in Layer 1 to filter these sub-requests out from the traces.
Such sub-requests can be identified by different ways, e.g., by focusing on the file
extension found at the end of the URI or on the content-type value of the request

3Cascading Style Sheets

3.3 Inferring models with rule-based expert systems 54

headers. Consequently, this layer includes a set of rules, constituted of conditions on
the HTTP content found in an action, that remove valued actions when the condition
is met.

A straightforward rule example that removes the actions related to the retrieval
of PNG4 images is formally given below (with σ being a trace). A human expert
knows that the retrieval of a PNG image implies a GET HTTP request of a file whose
extension is png or whose content type is image/png (defined in a header of the
response):

valued_action = (Get(p), α) ∈ σ, α |= [(request.file_extension == ′png′)
∨(response.headers.content_type == ′image/png′]

σ = σ \ {valued_action}

Yet, the Drools rule language is much simple and more convenient, especially for
the domain experts who have to write such rules. That is why we chose to write
inference rules with this language. In the sequel, inference rules for Autofunk are
given as Drools rules.

For example, the inference rule above can be written with the Drools formalism
as depicted in Figure 3.4. $valued_action is a variable representing a Get valued
action. Actions own request and response attributes, respectively representing the
HTTP request and HTTP response for that given valued action. Such attributes
can be accessed into the action’s parentheses: Action(request.attr1, response.attr2)
where attr1 is a request’s attribute (such as file_extension) and attr2 a response’s
attribute (such as headers, which is also a set), along with logical symbols such as
or, and, and not. Actions can be manipulated in the then part of the rule, as shown
in Figure 3.4. The retract keyword is used to remove a fact from the knowledge
base.

After the instantiation of the Layer 1 rules, we obtain a formatted and filtered trace
set ST composed of valued actions. At this point, we are ready to extract the first
IOSTS.

Completeness, soundness, and complexity of Layer 1. HTTP traces are sequences
of valued actions modeled with positive facts, which form Horn clauses [Hor51].
Furthermore, inference rules are Modus Ponens (soundness hypothesis introduced
previously). Consequently, Layer 1 is sound and complete [MH07]. Keeping in mind
the finite complexity hypothesis, its complexity is proportional to O(m(k + 1)) with
m the number of valued actions, and k the number of rules (worst case scenario is
when every valued action is covered k + 1 times in the expert system engine).

4Portable Network Graphics

3.3 Inferring models with rule-based expert systems 55

rule "Filter PNG images"
when

$valued_action: Get(
request.file_extension = ’png’ or
response.headers.content_type = ’image/png’

)
then

retract($valued_action)
end

Fig. 3.4: Filtering rule example that retracts the valued actions related to PNG images based
on the request’s file extension.

3.3.2 Layer 2: IOSTS transformation

An IOSTS is also associated with an Input/Output Labeled Transition System (IOLTS)
to formulate its semantics [Rus+05; Fra+05; Fra+06]. Intuitively, IOLTS semantics
correspond to valued automata without symbolic variables, which are often in-
finite. IOLTS states are labeled by internal variable valuations, and transitions
are labeled by actions and parameter valuations. The semantics of an IOSTS
S =< L, l0, V, V 0, I, Λ, →> is the IOLTS �S� =< S, s0, Σ, →>, where:

• S = L × DV is a set of valued states;

• s0 = (l0, V 0) ∈ S is the initial state;

• Σ is a set of valued actions;

• → is the transition relation.

Given an IOSTS transition l1
a(p),G,A−−−−−→ l2, we obtain an IOLTS transition (l1, v)

a(p),α−−−−→ (l2, v′) with v a set of valuations over the internal variable set if there exists a
parameter valuation set α such that the guard G evaluates to true with v ∪ α. Once
the transition is executed, the internal variables are assigned with v′ derived from
the assignment A(v ∪α). Our IOSTS transformation relies upon this IOLTS semantics
transformation that we have reversed. In order to generate the first IOSTS denoted
by S1, the associated runs are first computed from the structured traces by injecting
states between valued actions. These steps are detailed below.

3.3 Inferring models with rule-based expert systems 56

Traces to runs

Given a structured HTTP trace σ = (a1(p), α1) . . . (an(p), αn), a run r is first derived
by constructing and injecting states on the right and left sides of each valued action
(ai(p), αi) of σ. Keeping in mind the IOLTS semantics definition, a state shall be
modeled by the couple ((URI, k), v∅) with v∅ the empty valuation. (URI, k) is
a couple composed of a URI and an integer (k ≥ 0), which shall be a location
of the future IOSTS. All the runs r of the run set SR start with the same state
(l0, v∅). Then, a run is constructed by incrementally covering one trace: for an action
(ai(p), αi) found in a trace, we extract the valuation URI := val from αi giving
the URI value of the next resource reached after the action ai, and we complete
the current run r with (ai(p), αi) followed by the state ((val, k), v∅). Since we wish
to preserve the sequential order of the actions found in the traces, when a URI
previously encountered is once more detected, the resulting state is composed of
the URI accompanied with an integer k, which is incremented to yield a new and
unique state (Proposition 9).

The translation of the structured traces into a run set is performed by Algorithm
1, which takes a trace set ST as input, and returns a run set SR. It owns a set
States storing the constructed states. All the runs r of SR start with the same
initial state (l0, v∅). Algorithm 1 iterates over the valued actions (ai(p), αi) of a
trace σ in order to construct the next states s. It extracts the valuation URI := val

(line 10) from αi giving the URI value of the next resource reached after the action
ai. The state s = ((val, k + 1), v∅) is constructed with k such that there exists
((URI, k), v∅) ∈ States composed of the greatest integer k ≥ 0. The current run r is
completed with the valued action (ai(p), αi) followed by the state s (line 16). The
operator · denotes this completion. Finally, SR gathers all the constructed runs (line
17).

Proposition 9 For each trace σ ∈ ST , Algorithm 1 constructs a run r = s0·(a0(p), α0)·
s1 · · · · ·sn · (an(p), αn) ·sn+1 ∈ SR such that ∀(ai(p), αi)(0<i≤n) ∈ σ, ∃ ! si · (ai(p), αi) ·
si+1 in r.

IOSTS generation

The first IOSTS S1 is now derived from the run set SR in which runs are disjoint
except for the initial state (l0, v∅). Runs are translated into IOSTS paths that are
assembled together by means of a disjoint union. The IOSTS forms a tree compound
of paths, each expressing one trace, and starting from the same initial location.

3.3 Inferring models with rule-based expert systems 57

Algorithm 1: Traces to runs algorithm
Input : Trace set ST
Output : Run set SR

1 BEGIN;
2 States = ∅ is the set of the constructed states;
3 if ST is empty then
4 SR = {(l0, v∅)};

5 else
6 SR = ∅;
7 foreach trace σ = (a0(p), α0)...(an(p), αn) ∈ ST do
8 r = (l0, v∅);
9 for 0 ≤ i ≤ n do

10 extract the valuation URI := val from αi;
11 if ((val, 0), v∅) /∈ States then
12 s = ((val, 0), v∅);
13 else
14 s = ((val, k + 1), v∅) with k ≥ 0 the greatest integer such that

((val, k), v∅) ∈ States;

15 States = States ∪ {s};
16 r = r · (ai(p), αi) · s;

17 SR = SR ∪ {r};

18 END;

Definition 10 (IOSTS tree) Given a run set SR, the IOSTS S1 is called the IOSTS
tree of SR, and corresponds to the tuple < LS1 , l0S1 , VS1 , V 0S1 , IS1 , ΛS1 , →S1> such
that:

• LS1 = {li | ∃ r ∈ SR, (li, v∅) is a state found in r};

• l0S1 is the initial location such that ∀ r ∈ SR, r starts with (l0S1 , v∅);

• VS1 = ∅;

• V 0S1 = v∅;

• IS1 is a finite set of parameters, disjoint from VS1;

• ΛS1 = {ai(p) | ∃ r ∈ SR, (ai(p), αi) is a valued action in r};

• →S1 is defined by the inference rule given below, applied to every run r =
s0 · (a0(p), α0) · s1 · · · · · si · (ai(p), αi) · si+1 ∈ SR:

3.3 Inferring models with rule-based expert systems 58

s0=(l0S1 ,v∅), si=(li,v∅), si+1=(li+1,v∅), Gi=
∧

(xi:=vi)∈αi

(xi == vi)

l0
ai(p),Gi,(x:=x)x∈V−−−−−−−−−−→S1 li+1

The inference rule given in the definition above states that each run r ∈ SR is
transformed into a unique IOSTS path, only sharing a common initial location l0.
And for each path, the guard is defined as the conjunction of the assignments of the
variables found in the corresponding trace.

IOSTS minimization

Methods such as gkTail and KLFA could be applied to reduce the previous inferred
IOSTS tree, but due to the way these methods work, it would likely lead to an over-
generalized model (cf. Chapter 2 • Section 2.2.2 (page 38)). We prefer rejecting
such solutions to preserve the trace equivalence [PY06] of the IOSTS S1 against the
structured trace set ST before applying inference rules. Instead, we propose the use
of a minimization technique that does not create over-generalization.

This IOSTS tree can be reduced in term of location size by applying a bisimulation
minimization technique that still preserves the functional behaviors expressed in the
original model. This minimization constructs the state sets (blocks) that are bisimilar
equivalent [Par81]. Two states are said bisimilar equivalent, denoted by q ∼ q′ if
and only if they simulate each other and go to states from where they can simulate
each other again. Two bisimulation minimization algorithms are given in [Fer89;
Abd+06].

When receiving new traces from the Monitor (cf. Figure 3.1), the model yield by
this layer is not fully regenerated, but rather completed on-the-fly. New traces are
translated into IOSTS paths that are disjoint from S1 except from the initial location.
We perform a union between S1 and IOSTS paths. Then, the resulting IOSTS is
minimized again.

Completeness, soundness, complexity. Layer 2 takes any structured trace set ob-
tained from HTTP traces. If the trace set is empty then the resulting IOSTS S1 has a
single location l0. A structured trace set is translated into an IOSTS in finite time:
every valued action of a trace is covered once to construct states, then every run is
lifted to the level of one IOSTS path starting from the initial location. Afterwards,
the IOSTS is minimized with the algorithm presented in [Fer89]. Its complexity is
proportional to O(mlog(m + 1)) with m the number of valued actions. The sound-
ness of Layer 2 is based upon the notion of traces: an IOSTS S1 is composed of
transition sequences derived from runs in SR, itself obtained from the structured

3.3 Inferring models with rule-based expert systems 59

trace set ST . S1 is a reduction of ST (trace inclusion) as defined in [PY06], i.e.
Traces(S1) ⊆ Traces(ST).

Example 3.3.2 We take as example a trace obtained from the GitHub website 5

after having executed the following actions: login with an existing account, choose
an existing project, and logout. These few actions already produced a large set
of requests and responses. Indeed, a web browser sends thirty HTTP requests on
average in order to display a GitHub page. The trace filtering from this example
returns the following structured traces where the request and response parts are
concealed for readability purpose:

Get(https://github.com/)
Get(https://github.com/login)
Post(https://github.com/session)
Get(https://github.com/)
Get(https://github.com/willdurand)
Get(https://github.com/willdurand/Geocoder)
Post(https://github.com/logout)
Get(https://github.com/)

After the application of Layer 2, we obtain the IOSTS given in Figure 3.5. Locations
are labeled by the URI found in the request and by an integer to keep the tree
structure of the initial traces. Actions are composed of the HTTP verb enriched
with the variables URI, request, and response. This IOSTS exactly reflects the trace
behavior but it is still difficult to interpret. More abstract actions shall be deduced
by the next layers.

5https://github.com/

3.3 Inferring models with rule-based expert systems 60

Fig. 3.5: IOSTS S1 obtained after the application of Layer 2.

3.3 Inferring models with rule-based expert systems 61

3.3.3 Layers 3-N: IOSTS abstraction

As stated earlier, the rules of the upper layers analyze the transitions of the current
IOSTS for trying to enrich its semantics while reducing its size. Given an IOSTS S1,
every next layer carries out the following steps:

1. Apply the rules of the layer and infer a new knowledge base;

2. Apply a bisimulation minimization;

3. Store the resulting IOSTS.

Without loss of generality, we now restrict the rule structure to keep a link between
the generated IOSTSs. Thereby, every rule of Layer i (i ≥ 3) either enriches the
sense of the actions (transition per transition) or aggregates transition sequences
into one unique new transition to make the resulting IOSTS more abstract. It results
in an IOSTS Si−1 exclusively composed of some locations of the first IOSTS S1.
Consequently, for a transition or path of Si−1, we can still retrieve the concrete path
of S1. This is captured by the following proposition:

Proposition 11 Let S1 be the first IOSTS generated from the structured trace set
ST . The IOSTS Si−1(i > 1) produced by Layer i has a location set LSi−1 such that
LSi−1 ⊆ LS1 .

Completeness, soundness, complexity. The knowledge base is exclusively com-
posed of (positive) transition facts that have a Horn form. The rules of these layers
are Modus Ponens (soundness hypothesis). Therefore, these inference rules are
sound and complete. With regard to the (no implicit knowledge elimination) hypoth-
esis and to Proposition 11, the transitions of Si−1 are either unchanged, enriched, or
combined together into a new transition. The application of these layers ends in a
finite time (finite complexity hypothesis).

Layer 3

This layer includes a (potentially empty) set of generic rules that can be applied to a
large set of applications sharing similarities, e.g., applications written with the same
framework or same programming language. This layer has two roles:

• The enrichment of the meaning captured in transitions. In this step, we
chose to mark the transitions with new internal variables. These shall help
deduce more abstract actions in the upper layers. These rules are of the form:

3.3 Inferring models with rule-based expert systems 62

rule "Layer 3 rule"
when

$t: Transition(conditions on action, Guard, Assign)
then

modify ($t) {
Assign.add(new assignment over internal variables)

}
end

$t is a transition object, like the valued actions in the previous rules. The
modify keyword allows to change information on a given object.

For example, the rules depicted in Figure 3.6 aims at recognizing the receipt
of a login or logout page. The first rule means that if the response content,
which is received after a request sent with the GET method, contains a login
form, then this transition is marked as a "login page" with the assignment on
the variable isLoginPage;

rule "Identify Login page"
when

$t: Transition(
Action == "GET",
Guard.response.content contains(’login-form’)

)
then

modify ($t) {
Assign.add("isLoginPage := true")

}
end

rule "Identify Logout action"
when

$t: Transition(
Action == "GET",
Guard.uri matches("/logout")

)
then

modify ($t1) {
Assign.add("isLogout := true")

}
end

Fig. 3.6: Login page and logout action recognition rules. The first rule adds a new assign-
ment to any transition having a response’s content containing a login form. The
second transition adds a new assignment to all transitions where the uri (guard)
matches /logout, identifying logout actions.

3.3 Inferring models with rule-based expert systems 63

• The generic aggregation of some successive transitions. Here, some tran-
sitions (two or more) are analyzed in the conditional part of the rule. When
the rule condition is met, then the successive transitions are replaced by one
transition carrying a new action. These rules have the following form:

rule "Simple aggregation"
when

$t1: Transition(
conditions on action, Guard, ..., $lfinal := Lfinal

)
$t2: Transition(Linit == $lfinal, conditions)
not exists Transition(

Linit == $lfinal and Lfinal != $t2.Lfinal
)

then
insert(new Transition(

new Action(),
Guard($t1.Guard, t2.Guard),
Assign($t1.Assign, $t2.Assign),
Linit := $t1.Linit,
Lfinal := $t2.Lfinal

))
retract($t1)
retract($t2)

end

Both $t1 and $t2 are transition objects. Transitions own guards (Guard at-
tribute), assignments (Assign attribute), but also two locations: Linit and
Lfinal. In order to aggregate two consecutive transitions, we have to add a
condition on the initial location of the second transition (Linit == $lfinal),
i.e. the final location of the first transition must be the initial location of
the second transition, otherwise these two transitions are not consecutive.
The third line in the LHS part ensures the absence of any other transition
following t1 that is not t2. The insert keyword in the then part is used to add
a new fact to the knowledge base. Here, we add a new transition with a more
meaningful action (that reflects the aggregation), the unions of the guards
and assignments of both transitions $t1 and $t2, and we set the initial location
of this new transition to the initial location of the first transition and we set
the final location of this new transition to the final location of the section
transition.

3.3 Inferring models with rule-based expert systems 64

rule "Identify Redirection after a POST"
when

$t1: Transition(
Action == "POST",
(Guard.response.status = 301 or Guard.response.status = 302),
$t1final := Lfinal

)
$t2: Transition(

Action == "GET", Linit == $t1final
)
not exists Transition(

Linit == $t1final and Lfinal != $t2.Lfinal
)

then
insert(new Transition(

"PostRedirection",
Guard($t1.Guard, $t2.Guard),
Assign($t1.Assign, $t2.Assign),
$t1.Linit,
$t2.Lfinal

)
retract($t1)
retract($t2)

end

Fig. 3.7: An inference rule that represents a simple aggregation identifying a redirection
after a POST request, leading to the creation of a new PostRedirection transition.

The rule given in Figure 3.7 corresponds to a simple transition aggregation. It
aims at recognizing the successive sending of information with a POST request
followed by a redirection to another web page. If a request sent with the
POST method has a response identified as a redirection, (identified by the
status code 301 or 302), and a GET request comes after, both transitions are
reduced into a single one carrying the new action PostRedirection. Just like
valued actions, guards can be accessed: Guard.something where something

is a guard. The Drools rule language also provides keywords such as contains

or match to deal with the values.

Example 3.3.3 When we apply these rules on the IOSTS example given in Figure
3.5, we obtain a new IOSTS illustrated in Figure 3.8. Its size is reduced since it has
6 transitions instead of 8 previously. Nonetheless, this new IOSTS does not precisely
reflect the initial scenario yet (it is not as straightforward and understandable as
what a project manager or a customer would express for instance). Rules deducing
more abstract actions are required. These are found in the next layer.

3.3 Inferring models with rule-based expert systems 65

Fig. 3.8: IOSTS S2 obtained after the application of Layer 3.

3.3 Inferring models with rule-based expert systems 66

Layer 4

This layer aims at inferring a more abstract model composed of more expressive
actions and whose size should be reduced. Its rules may have different forms:

• They can be applied to a single transition only. In this case, the rule replaces the
transition action to add more sense to the action. The rule given in Figure 3.9
is an example, which recognizes a user "deauthentication", i.e. when a user
logs out, and adds a new action Deauthentication. This rule means that if a
PostRedirection action is triggered against a "Logout" endpoint (given by the
variable isLogout added by Layer 3), then this is a deauthentication;

• The rules can also aggregate several successive transitions up to complete
paths into one transition labeled by a more abstract action. For instance, the
rule illustrated in Figure 3.10 recognizes a user authentication thanks to the
variable isLoginPage added by Layer 3. This rule means that if a "login" page
is displayed, followed by a redirection triggered by a POST request, then this
is an authentication step, and the two transitions are reduced into a single one
composed of the action Authentication.

Other rules can also be application-specific, so that these bring specific new knowl-
edge to the model. For instance, the GitHub web application has a dedicated URL
grammar (a.k.a. routing system). GitHub users own a profile page that is available
at: https://github.com/{username} where {username} is the nickname of the user.
However, some items are reserved, e.g., edu and explore. This is typically the piece
of information a human expert would give us, and that has been transliterated in
the rule given in Figure 3.11, whose aim is to produce a new action ShowProfile

offering more sense. Similarly, a GitHub page describing a project has a URL that
always matches the pattern: https://github.com/{username}/{project_name}. The
rule given in Figure 3.12 captures this pattern and derives a new action named
ShowProject.

Example 3.3.4 The application of the four previous rules leads to the final IOSTS
depicted in Figure 3.13. Now, it can be used for application comprehension since
most of its actions have a precise meaning, and describe the application’s behav-
iors.

3.3 Inferring models with rule-based expert systems 67

rule "Identify Deauthentication"
when

$t: Transition(
action == "PostRedirection",
Assign contains "isLogout := true"

)
then

modify ($t) {
setAction("Deauthentication")

}
end

Fig. 3.9: This rule recognizes an action that we call "deauthentication", i.e. when a user
logs out.

rule "Identify Authentication"
when

$t1: Transition(
Action == "GET",
Assign contains "isLoginPage := true",
$t1final := Lfinal

)
$t2: Transition(

Action == "PostRedirection",
Linit == $t1final

)
not exists Transition(

Linit == $t1final and Lfinal != $t2.Lfinal
)

then
insert(new Transition(

"Authentication",
Guard($t1.Guard,$t2.Guard),
Assign($t1.Assign, $t2.Assign),
$t1.Linit,
$t2.Lfinal

)
retract($t1)
retract($t2)

end

Fig. 3.10: Authentication recognition by leveraging information carried by the rule given in
Figure 3.7. When a user browses a web page containing a login form, following
by a PostRedirection, this is an Authentication action.

3.3 Inferring models with rule-based expert systems 68

rule "GitHub profile pages"
when

$t: Transition(
action == "GET",
(Guard.uri matches "/[a-zA-Z0-9]+$",
Guard.uri not in ["/edu", "/explore"])

)
then

modify ($t) {
setAction("ShowProfile")

}
end

Fig. 3.11: User profile recognition. This rule is specific to the application under analysis,
and works because profile pages are anything but /edu and /explore.

rule "GitHub project pages"
when

$t: Transition(
action == "GET",
Guard.uri matches "/[a-zA-Z0-9]+/.+$",
$uri := Guard.uri

)
then

String s = ParseProjectName($uri)
modify ($t) {

setAction("ShowProject")
Assign.add("ProjectName := " + s)

}
end

Fig. 3.12: Project choice recognition. Here again, this is a specific rule for the application
under analysis that works because the routing of this application defines projects
at URIs matching /{username}/{project name}.

3.3 Inferring models with rule-based expert systems 69

Fig. 3.13: The final IOSTS S3 obtained after the application of Layer 4.

3.3 Inferring models with rule-based expert systems 70

3.4 Getting more samples by automatic exploration
guided with strategies

Because the inference of our models depends on both the amount and the quality
of the collected traces, these models are said partial. In order to improve the
completeness of our inferred models, we rely on an automatic testing technique
(that is, crawling) to interact with the application. This is the role of the Robot
explorer, driven by the Models generator.

Rather than using a static traversal strategy as in [Mem+03; Ana+12; Mes+12;
Ama+12; Yan+13], we propose the addition of an orthogonal layer in the Models
generator to describe any kind of exploration strategy. This layer is compound of an
algorithm that chooses the next states to explore with respect to a given exploration
strategy, modeled with inference rules.

The simplified algorithm of the Strategy layer is given in Algorithm 2. The latter
applies the rules on any stored IOSTS Si chosen by the user. It emerges a location list
Loc that are marked with "explored" by the rules to avoid re-using them twice (line
4). Then, the algorithm goes back to the first generated IOSTS S1 in order to extract
one complete and executable path p ended by a location l of Loc (line 5). This step
is sound since all the locations of Si belong to the location set of S1 (Proposition 11).
Such an IOSTS preamble is required by the Robot explorer for trying to reach the
location l by executing every action of p. The algorithm finally returns a list of paths
List, which is sent to the Robot explorer. The exploration ends once all the locations
of Si or of S1 are visited (line 3). The algorithm returns unexplored locations even if,
while executing the algorithm, the IOSTS Si is regenerated several times because the
marked locations are also stored in the set L. Hence, if a location of Si is chosen a
second time by the rules, the algorithm checks whether it has been previously visited
(line 7).

The rules of the Strategy layer can encode different strategies. We propose two
examples below:

• Classical traversal strategies (e.g., Depth-First Search and Breadth-First
Search) can still be performed. For example, Figure 3.14 depicts two rules
expressing the choice the next location to explore in a breadth-wise order first.
The initial location l0 is chosen and marked as explored (rule BFS). Then, the
transitions having an initial location marked as explored and a final location
not yet explored are collected by the rule BFS2, except for the transitions car-
rying an HTTP error (response status upper or equal to 400). The accumulate

keyword is a Drools function that allows to operate on sets of data, which we

3.4 Getting more samples by automatic exploration guided with strategies 71

Algorithm 2: Exploration strategy
Input : IOSTS S1, Si

Output : List of preambles List
1 L := ∅ is the list of explored locations of S1;
2 BEGIN;
3 while L �= LS1 and L �= LSi

do
4 Apply the rules on Si and extract a location list Loc;
5 Go back to S1;
6 foreach l ∈ Loc do
7 if l /∈ L then
8 Compute a preamble p from l0S1 that reaches l;
9 L := L ∪ {l};

10 List := List ∪ {p};

11 END;

used to transcribe the previous sentence. The selected locations are marked as
explored in the IOSTS Si with the method SetExplored in the "then" part of
the rule;

• Semantic-driven strategies could also be applied, when the meaning of some
actions is recognizable. For instance, for e-commerce applications, the login
step and the term "buy" are usually important. Thereby, a strategy targeting
firstly the locations of transitions carrying theses actions can be defined by the
rule "semantic-driven strategy" given in Figure 3.15. It is manifest that the
semantic-driven strategy domain can be tremendously vast since it depends on
the number of recognized actions and on their relevance.

Many other strategies could be defined in relation to the desired result in terms
of model generation and application coverage. Other criteria, e.g., the number of
UI elements per Graphical User Interface (GUI) or the number of observed crashes
could also be taken into consideration.

3.5 Implementation and experimentation

We implemented this technique in a prototype tool called Autofunk v1. A user
interacts with Autofunk through a web interface and either gives a URL or a file
containing traces. These traces have to be packaged in the HTTP Archive (HAR)
format as it is the de facto standard to describe HTTP traces, used by various HTTP
related tools. Such traces can be obtained from many HTTP monitoring tools (Mozilla
Firefox or Google Chrome included). Then, Autofunk produces IOSTS models, which
are stored in a database. The last model is depicted in a web interface.

3.5 Implementation and experimentation 72

rule "BFS"
when

$l: Location(name == l0, explored == false)
then

$l.SetExplored()
end

rule "BFS2"
when

$Loc: ArrayList<Location>() from accumulate(
$t: Transition(Guard.response.status > 199

&& Guard.response.status < 400
&& Linit.explored == true
&& Lfinal.explore==false

),
init(ArrayList<Transition> Loc = new ArrayList<Transition>()),
action(Loc.add($t.Lfinal)),
result(Loc)

)
then

Loc.SetExplored()
end

Fig. 3.14: Two rules used to implement a Breadth-first search (BFS) exploration strategy.

The JBoss Drools Expert tool has been chosen to implement the rule-based system.
Such an engine leverages Object-Oriented Programming in the rule statements and
takes knowledge bases given as Java objects (e.g., Location, Transition, Get, Post

objects in this work). Inference rules are written in .drl files, which makes it simple
for human domain experts to write rules. These files are then read by the Drools
engine during its initialization. Our prototype does not allow its user to add rules
through the web interface though.

The GitHub website 6 is an example of application giving significant results. We
recorded a trace set composed of 840 HTTP requests / responses. Then, we applied
Autofunk to them with a Models generator composed of 5 layers gathering 18 rules
whose 3 are specialized to GitHub. After having performed trace filtering (Layer
1), we obtained a first IOSTS tree composed of 28 transitions. The next 4 layers
automatically inferred a last IOSTS tree S4, given in Figure 3.16, that is composed of
12 transitions from which 9 have a clear and intelligible meaning. Layers 4 and 5
include inference rules that are specific to GitHub. For other websites, these rules
cannot be reused and have to be rewritten.

6https://github.com/

3.5 Implementation and experimentation 73

rule "semantic-driven strategy"
when

$t: Transition (
Assign contains "isLogin := true"
or Guard.response matches "*buy*"

)
then

ArrayList Loc = new ArrayList()
Loc.add($t.Linit, $t.Lfinal)
Loc.SetExplored()

end

Fig. 3.15: A semantic-driven exploration strategy that focuses on the term "buy" in the
HTTP responses, i.e. displayed the web pages.

Based on the IOSTS tree S4, we also built an over-generalized model S5 by merging
similar states (i.e. those having the same URI). Figure 3.17 depicts this model, which
is now close to a UML state diagram. Such a model S5 cannot be used for testing,
yet it becomes interesting for documentation purpose because its representation
reflects what a user uses to work with when it comes to write documentation (i.e.
UML diagrams).

3.5 Implementation and experimentation 74

Fig. 3.16: This model is the IOSTS S4 obtained from a trace set composed of 840 HTTP
requests and responses, and after the application of 5 layers gathering 18 rules.

3.5 Implementation and experimentation 75

Fig. 3.17: This model S5 is the over-generalization of the model S4.

3.6 Conclusion

In this chapter, we presented an original approach combining model inference, expert
systems, and automatic testing to derive IOSTSs (Input/Output Symbolic Transition
Systems) models by means of a model transformation using inference rules. We
chose a minimization technique over existing algorithms such as gkTail and KLFA to
keep exactness of the inferred models. Our proposal yields several models, reflecting
different levels of abstraction of the same application with the use of inference rules
that capture the knowledge of a human expert. The first contribution lies in the
flexibility and scalability brought by the inference rules since they can be applied
to several applications or on a single application only when the rules are specific.
The whole framework does not have to be re-implemented for each application, but
inference rules have to. Our approach can be applied to event-driven applications
since our framework supports their exploration. Furthermore, it can also be applied
to other kinds of application as far as they produce traces.

Combining expert systems (gathering knowledge) and formal models is really inter-
esting but this is not a silver bullet. Indeed, writing rules is still a heavy task, and
thus not suitable as is. It is almost as difficult as writing a formal model, hence the
need for an automated way to write the rules of Layers 3 to N. Ideally, the framework
itself should generate a set of rules, e.g., using a machine learning technique, or at

3.6 Conclusion 76

least ease the process of writing and managing these rules, but we did not pursue
this path.

We chose to model behaviors of web applications using IOSTSs. Yet, we did not
leverage is main characteristic, i.e. the distinction between input and output actions.
At first, we thought that distinguishing HTTP requests from HTTP responses would
have made sense but it was a mistake. Indeed, to represent a full action of a
web application, one cannot separate the HTTP request from its HTTP response.
Our inferred IOSTSs are actually STSs, which is perfectly fine because IOSTS is a
specialization of STS. In the sequel, we use STS models.

The first results on model inference were very encouraging, so we decided to rework
our architecture to build a better framework on top of this one in order to construct
models of production systems. That is the purpose of the next chapter.

3.6 Conclusion 77

3.6 Conclusion 78

4Model inference for production
systems

In this chapter, we introduce Autofunk v2 and Autofunk v3. This is our passive model
inference framework, improving Autofunk v1’s capabilities, and focused on inferring
models of production systems. It combines model inference, machine learning,
and expert systems to infer Symbolic Transition Systems (STSs). We replaced the
minimization technique presented in the previous chapter by a context-specific re-
duction method, still preserving exactness of the inferred models, but more efficient
in terms of processing time. This is illustrated by some experiments with Autofunk
v2. These results conducted to the release of Autofunk v3. The main difference
between Autofunk v2 and Autofunk v3 is the use of the k-means clustering method.
This is a machine learning technique that we leverage to segment and filter input
trace sets, so that inferred models contain complete behaviors only.

Contents
4.1 Introduction . 80

4.2 Context at Michelin . 81

4.3 Autofunk’s models generator revisited 83

4.3.1 Production events and traces 86

4.3.2 Trace segmentation and filtering 88

4.3.3 STS generation . 90

4.4 Improving generated models’ usability 93

4.4.1 STS reduction . 93

4.4.2 STS abstraction . 96

4.5 Implementation and experimentation 97

4.5.1 Implementation . 97

4.5.2 Evaluation . 99

4.6 A better solution to the trace segmentation and filtering problem
with machine learning . 104

4.7 Conclusion . 106

79

4.1 Introduction

In the Industry, building models for production systems, i.e. event-driven systems
that run in production environments and are distributed over several devices and
sensors, is frequent since these are valuable in many situations like testing and
fault diagnosis for instance. Models may have been written as storyboards or
with languages such as the Unified Modeling Language (UML) or even more formal
languages. Usually, these models are designed when brand-new systems are built.
It has been pointed out by our industrial partner that production systems have
a life span of many years, up to 20 years, and are often incrementally updated,
but their corresponding models are not. This leads to a major issue which is to
keep these models up to date and synchronized with the respective systems. This
is a common problem with documentation in general, and it often implies rather
under-specified or not documented systems that no one wants to maintain because
of lack of understanding.

In this chapter, we focus on this problem for production systems that exchange
thousands of events a day. Several approaches have already been proposed for
different types of systems. Yet, we noticed that these approaches were not tailored
to support production systems. From the literature, Chapter 2 • Section 2.2 (page
26), we deduced the following key observations:

• Most of the existing model inference approaches give approximate models
capturing the behaviors of a system and more. In our context, we want exact
models that could be used for regression testing, and fault diagnosis;

• Applying active inference on production systems is complicated since these
must not be disrupted (otherwise it may lead to severe damages on the pro-
duction machines), but also because we cannot rely on any (human) oracle or
teacher;

• Production systems exchange thousands and thousands events a day. Again,
most of the model inference approaches cannot take such a huge amount of
information to build models. We need a solution that is scalable.

Based on these observations, we propose a pragmatic passive model inference ap-
proach that aims at building formal models describing functional behaviors of a
system. Our goal is to quickly build exact models from large amounts of production
events. Furthermore, execution speed takes an important place for building up to
date models. Such models could also be used for diagnosis every time an issue
would be experienced in production. The strong originality of our approach lies in
the combination of two domains for model inference: model-driven engineering and

4.1 Introduction 80

expert systems. We consider formal models and their definitions to infer models
by means of different transformations. But we also take into consideration the
knowledge of human experts captured by expert systems. A part of our approach is
based upon this notion of knowledge implemented with inference rules. We reuse
what worked well for web applications and enhance many parts of our framework
to come up with a better version of our Autofunk framework, which is presented
throughout this thesis.

In the following section, we describe the context in which this work has been
conducted. In Section 4.3, we present Autofunk for Michelin’s production systems
along with a case study. Section 4.4 highlights our work on improving usability of the
generated models. We give our results in Section 4.5. We highlight an improvement
made on our framework in Section 4.6, which is part of Autofunk v3. We conclude
on this chapter in Section 4.7.

Publications. This work has been published in the Proceedings of Formal Methods
2015 (FM’15) [DS15a], and in the Proceedings of the 9th International Conference
on Distributed Event-Based Systems (DEBS’15) [SD15].

4.2 Context at Michelin

Michelin is a worldwide tire manufacturer and designs most of its factories, produc-
tion systems, and software by itself. Like many other industrial companies, Michelin
follows the Computer Integrated Manufacturing (CIM) approach [RK04], using com-
puters and software to control the entire manufacturing process. In this thesis, we
focus on the Level 2 of the CIM approach, i.e. all the applications that monitor and
control several production devices and points, i.e. locations where a production
line branches into multiple lines, in a workshop. In a factory, there are different
workshops for each step of the tire building process. At a workshop level, we observe
a continuous stream of products from specific entry points to a finite set of exit
points, i.e. where products go to reach the next step of the manufacturing process,
and disappear of the workshop frame in the meantime, as shown in Figure 4.1.
Depending on the workshops, products can stay in this frame for days up to several
weeks. Indeed, a workshop may contain storage areas where products can stay for a
while, depending on the production campaigns or needs for instance. Thousands
and thousands of production events are exchanged among the industrial devices of
the same workshop every day, allowing some factories to build over 30,000 tires a
day.

Although there is a finite number of applications, each has different versions deployed
in factories all over the world, potentially highlighting even more different behaviors

4.2 Context at Michelin 81

Fig. 4.1: A workshop owns a set of known entry and exit points. A continuous stream of
products starts from known entry points, and ends at known exit points. This figure
shows two production lines: the grey line having two exit points (represented by
the circles), and the black one having only one real exit point, not two. The red
dotted line represents a false positive here, which is a problem we have to take
into account while detecting (entry and) exit points.

and features. Even if a lot of efforts are put into standardizing applications and
development processes, different programming languages and different frameworks
are used by development teams, making difficult to focus on a single technology.
Last but not least, the average lifetime of these applications is 20 years. This set is
large and too disparate to apply conventional testing techniques, yet most of the
applications exchange events using dedicated custom internal protocols.

Our industrial partner needs a safe way to infer up to date models, independent
of the underlying technical details, and without having to rely on any existing
documentation. Additionally, Michelin is interested in building regression test
suites to decrease the time required to deploy or upgrade systems. We came up
to the conclusion that, in order to target the largest part of all Michelin’s Level 2
applications, taking advantage of the production events exchanged among all devices

4.2 Context at Michelin 82

would be the best solution, as it would not be tied to any programming language or
framework. In addition, these events contain all information needed to understand
how a whole industrial system behaves in production. Event synchronization is
guaranteed by Michelin’s custom exchange protocols. All these events are collected
synchronously through a (centralized) logging system. Such a system logs all events
with respect to their order, and does not miss any event. From these, we chose not
to use extrapolation techniques to infer models (i.e. model inference techniques that
build over-approximated models), meaning our proposal generates exact models for
testing purpose, exclusively describing what really happens in production.

This context leads to some assumptions that have been considered to design our
framework:

• Black-box systems: production systems are seen as black-boxes from which
a large set of production events can be passively collected. Such systems are
compound of production lines fragmented into several devices and sensors.
Hence, a production system can have several entry and exit points. We denote
such a system by Sua (system under analysis);

• Production events: an event of the form (a(p), α) must include a distinctive
label a along with an assignment α over the parameter set p. Two events
(a(p), α1) and (a(p), α2) having the same label a must own assignments over
the same parameter set p. The events are ordered and processed with respect
to this order;

• Traces identification: traces are sequences of events (a1(p), α1) . . . (an(p), αn).
A trace is identified by a specific parameter that is included in all variable
assignments of the same trace. This identifier is denoted by pid and identifies
products, e.g., tires at Michelin. Besides this, variable assignments include a
time stamp to sort the events into the traces.

4.3 Autofunk’s models generator revisited

In this section, we introduce our framework Autofunk v2, whose main architecture is
depicted in Figure 4.2. This new version also contains different modules (in grey in
the figure): four modules are dedicated to build models, and an optional one can be
used to derive more abstract and readable models.

Here, we consider Symbolic Transition Systems (STSs) as models for representing
production system behaviors (cf. Chapter 2 • Section 2.1.2 (page 18)). As a reminder,
STSs are state machines incorporating actions (i.e. events in this context), labeled on

4.3 Autofunk’s models generator revisited 83

Fig. 4.2: Overview of Autofunk v2. It is a set of different modules (in grey) along with their
corresponding steps. The last module (STS abstraction) is optional.

transitions, that show what can be given to and observed on the system. In addition,
actions are tied to an explicit notion of data. In this chapter, we consider STSs of the
form:

Definition 12 (Symbolic Transition System) A STS is defined as a tuple < L, l0, V,

V 0, I, Λ, →> where:

• L is a countable set of locations;

• l0 ∈ L is the initial location;

• V is a finite set of location (or internal) variables;

• V 0 is a condition on the initialization of the location variables V ;

• I is a finite set of parameters (also known as interaction variables), disjoint from
V ;

• Λ is a finite set of symbolic actions a(p) with a a symbol, and p = (p1, . . . , pk) a
finite set of parameters in Ik(k ∈ N);

4.3 Autofunk’s models generator revisited 84

• → is a finite set of symbolic transitions. A symbolic transition t = (li, lj , a(p), G,

A) ∈→, from the location li ∈ L to lj ∈ L, also denoted by li
a(p),G,A−−−−−→ lj , is

labeled by:

– A symbolic action a(p) ∈ Λ;

– A guard G over (p ∪ V), which restricts the firing of the transition. Through-
out this thesis, we often consider guards written as conjunctions of equalities:∧
x∈I∪V

(x == val);

– An assignment A that defines the evolution of the variables, Ax being the
function in A defining the evolution of the variable x ∈ V .

We also denote by projx(G) the projection of the guard G over the variable x ∈ I ∪V ,
which extracts the equality (x == val) from G. For example, given the guard
G1 = [(nsys == 1) ∧ (nsec == 8) ∧ (point == 1) ∧ (pid == 1)], projnsys(G1) =
(nsys == 1).

Autofunk v2 is a better version of the work introduced in the previous chapter,
targeting production systems. Given a system Sua and a set of production events,
Autofunk v2 builds trace-included models [PY06], i.e. the traces of a model S are
included in the traces of Sua.

17-Jun-2014 23:29:59.00|INFO|New File

17-Jun-2014 23:29:59.50|17011|MSG_IN [nsys: 1] \
[nsec: 8] [point: 1] [pid: 1]

17-Jun-2014 23:29:59.61|17021|MSG_OUT [nsys: 1] \
[nsec: 8] [point: 3] [tpoint: 8] [pid: 1]

17-Jun-2014 23:29:59.70|17011|MSG_IN [nsys: 1] \
[nsec: 8] [point: 2] [pid: 2]

17-Jun-2014 23:29:59.92|17021|MSG_OUT [nsys: 1] \
[nsec: 8] [point: 4] [tpoint: 9] [pid: 2]

Fig. 4.3: An example of some production events. Each event is time-stamped, has a label
(e.g., 17011), and may own assignments of variables (e.g., nsys).

Example 4.3.1 To explain how Autofunk v2 works with production systems, we
consider a case study based upon the example of Figure 4.3. It depicts simplified
production events similar to those extracted from Michelin’s logging system. INFO,

4.3 Autofunk’s models generator revisited 85

17011, and 17021 are labels along with assignments of variables e.g., nsys, which
indicates an industrial device number, and point, which gives the product position.
Real events own around 20 parameters in average. Such a format is specific to
Michelin but other kinds of events could be considered by updating the first module
of Autofunk. In this example, each line represents an event that happened in the
system. This format has been borrowed from Michelin’s logging system, hence its
special formatting. It is worth mentioning that the first line of this set is an event
that is tied to the logging system, not the production system we are interested in.

4.3.1 Production events and traces

Autofunk v2 takes production events as input from a system under analysis Sua.
To avoid disrupting the (running) system Sua, we do not instrument the industrial
equipment composing the whole system. Everything is done offline with a logging
system or with monitoring. We start by formatting these events to obtain a set of
events of the form (a(p), α) with a a label, and α an assignment over the parameter
set p. We call these formatted events, valued events. Valued events are similar
to valued actions (as in Chapter 3) except that this term is more accurate in our
industrial context. Performing such a step allows to collect productions events from
various sources, and still be able to perform the next steps in a unique manner.

In this set, some of these valued events are irrelevant. For instance, some events
may capture logging information and are not part of the functioning of the system.
In Figure 4.3, the event having the type INFO belongs to this category and can be
safely removed. Filtering is achieved by an expert system and inference rules. Here
again, a human expert knows which events should be filtered out, and inference rules
offer a natural way to express his knowledge. We use the same form of inference
rules as seen in Chapter 3, that is:

When (a(p), α), condition on (a(p), α), then retract (a(p), α).

Example 4.3.2 The remaining valued events are time-ordered to produce an initial
set of traces denoted by Traces(Sua). Figure 4.4 illustrates this set obtained from
the events of Figure 4.3.

Figure 4.5 shows two concrete rules applied to Michelin systems. These two rules
are written with the Drools formalism, already introduced in the previous chapter.
The first rule removes valued events including the INFO parameter, which do not
contain any business value. The variable $valued_event is a valued event (instance
of V aluedEvent), containing parameter assignments (Assign attribute) that can be

4.3 Autofunk’s models generator revisited 86

Traces(Sua) = (17011({nsys, nsec, point, pid}), {nsys := 1, nsec := 8, point
:= 1, pid := 1}) 17021({nsys, nsec, point, tpoint, pid}, {nsys := 1, nsec := 8,
point := 3, tpoint := 8, pid := 1}) 17011({nsys, nsec, point, pid}, {nsys := 1,
nsec := 8, point := 2, pid := 2}) 17021({nsys, nsec, point, tpoint, pid}, {nsys
:= 1, nsec := 8, point := 4, tpoint := 9, pid := 2})

Fig. 4.4: Initial trace set Traces(Sua) based on the events given in Figure 4.3.

accessed using the following notation: Assign.foo where foo is a name and the
result its corresponding value.

The second rule in Figure 4.5 removes valued events extracted from very specific
events, i.e. those whose key matches a pattern and having a inc value that is not
equal to 1. To fully understand the syntax of this rule, one has to know that when
there is no logical connective between the conditions, it defaults to a conjunction.
Such a rule has been given by a Michelin expert and allows to remove some duplicate
events. In the context of Michelin, we use four inference rules to remove all irrelevant
events.

rule "Remove INFO events"
when:

$valued_event: ValuedEvent(Assign.type == TYPE_INFO)
then

retract($valued_event)
end

rule "Remove events that are repeated"
when

$valued_event: ValuedEvent(
Assign.key matches "KEY_NAME_[0-9]+",
Assign.inc != null,
Assign.inc != "1"

)
then

retract($valued_event)
end

Fig. 4.5: An example of inference rules used for filtering purpose. It contains two rules: the
first one is used to remove events including the INFO label, the second one is
used to omit events that are repeated.

From this filtered valued event base, we reconstruct the corresponding traces from
the trace identifier pid, present in each valued event, and time stamps. We call the
resulting trace set Traces(Sua):

4.3 Autofunk’s models generator revisited 87

Definition 13 (Traces(Sua)) Given a system under analysis Sua, Traces(Sua) de-
notes its formatted trace set. Traces(Sua) includes traces of the form (a1(p), α1) . . .

(an(p), αn) such that (ai(p), αi)(1≤i≤n) are ordered valued events having the same
identifier assignment.

We can now state that a STS model S is said trace-included if and only if Traces(S) ⊆
Traces(Sua) as defined in [PY06].

4.3.2 Trace segmentation and filtering

In Section 4.2, we indicated that products could stay in a workshop for days and
even weeks. From our point of view, this means that we can likely collect partial
executions, i.e. events belonging to products that were present in the workshop
we are observing before we start to collect any events. We can determine which
product was present in the workshop before by retrieving the first event tied to it.
If the physical location of this event is not one of the known entry points of the
workshop, then the product was there before. In a similar manner, we are able to
retrieve incomplete executions related to the end of the collection, i.e. the events tied
to products that did not reach any of the known exit points of the workshop.

We define a complete trace as a trace containing all events expressing the path taken
by a product in a production system, from the beginning, i.e. one of its entry points,
to the end, i.e. one of its exit points. In the trace set Traces(Sua), we do not want to
keep incomplete traces, i.e. traces related to products which did not pass through one
of the known entry points or moved to the next step of the manufacturing process
using one of the known exit points. In addition, we chose to split Traces(Sua)
constructed in the previous step into subsets STi ∈ ST , one for each entry point
of the system under analysis Sua. Later, every trace set STi shall give birth to
one model, describing all possible behaviors starting from its corresponding entry
point.

An Autofunk module performs these two steps, which are summarized in Algorithm
3. The first step starts by splitting Traces(Sua) into several trace sets STi, one for
each entry point of the system Sua, and then removes incomplete traces. Since
we want a framework as flexible as possible, we first chose to perform a naive
statistical analysis on Traces(Sua) aiming at automatically detecting the entry and
exit points. In Michelin systems, the parameter point stores the product physical
location and can be used to deduce the entry and exit points of the systems. This
analysis is performed on the assignments (point := val) found in the first and
last valued events of the traces of Traces(Sua) since point captures the product
physical location and especially the entry and exit points of Sua. We obtain two

4.3 Autofunk’s models generator revisited 88

ratios Rinit((point := val1)) and Rfinal((point := val2)). Based on these ratios,
one can deduce the entry point set POINTinit and the exit point set POINTfinal if
Traces(Sua) is large enough. Pragmatically, we observed that the traces collected
during one or two days are not sufficient because they do not provide enough
differences between the ratios. In this case, we assume that the number of entry
and exit points, N and M , are given and we keep the first N and M ratios only. On
the other hand, a week offers good results. We chose to set a fixed yet configurable
minimum limit to 10%. Assignments (point := val) having a ratio below this limit
are not retained. Then, for each assignment αi = (point := val1) in POINTinit, we
construct a trace set STi such that a trace of STi has a first valued event including the
assignment αi, and ends with a valued event including an assignment (point := val2)
in POINTfinal. We obtain the set ST = {ST1, . . . , STN } with N the number of
entry points of the system Sua.

Example 4.3.3 In our straightforward example, we obtain one trace set ST1 =
Traces(Sua) ∈ ST .

The second step consists in scanning the traces in ST to detect repetitive patterns
p . . . p. A pattern is a sequence of valued events that should contain at least one val-
ued event. For example, px = (ax(p), αx) is a pattern, and py = (ay(p), αy)(ay(p), αy)
is another pattern, which is not equivalent to px. This notion of pattern is specific to
our industrial context where physical devices may send information multiple times
until they get an acknowledgment.

If Autofunk finds a trace t having a repetitive pattern p, and another equivalent trace
t′ including this pattern p once, then t is removed since we suppose that t does not
express a new and interesting behavior. Traces are removed rather than deleting the
repetitive patterns to prevent from modifying traces and to keep the trace inclusion
[PY06] property between CTraces(Sua) and Traces(Sua). The ∼(pid) relation is
used to define equivalence between two traces:

Definition 14 (The ∼(pid) relation) Let t and t′ be two traces. We denote by ∼(pid)
the relation that defines the equivalence between t and t′, and we write t ∼(pid) t′, if
and only if t and t′ have the same successive valued events after having removed the
assignments of the variable pid.

In Algorithm 3, two traces t = σi p . . . p σj and t′ = σ′
i p′ σ′

j are said equiva-
lent if the patterns p, p′, and the sub-traces σi = (a1(p), α1) . . . (ai(p), αi), σj =
(aj(p), αj) . . . (an(p), αn), σ′

i, σ′
j are equivalent, i.e. p ∼(pid) p′, σi ∼(pid) σ′

i, and
σj ∼(pid) σ′

j , and we can remove t from ST .

4.3 Autofunk’s models generator revisited 89

At the end of Algorithm 3 we obtain the complete trace set CTraces(Sua), which is
the union of all complete traces of each trace set STi.

Algorithm 3: Trace segmentation algorithm
Input : Traces(Sua), optionally the number of entry points N and/or the number

of exit points M
Output : ST = {ST1, . . . , STn}, CTraces(Sua) =

⋃
1≤i≤n

STi

1 BEGIN;
2 Step 1. Traces(Sua) segmentation
3 foreach t = (a1(p), α1) . . . (an(p), αn) ∈ Traces(Sua) do
4 Rinit((point := val1) ∈ α1) + +;
5 Rfinal((point := val2) ∈ αn) + +;

6 POINTinit = {(point := val) | Rinit((point := val)) > 10% or belongs to the N
highest ratios};

7 POINTfinal = {(point := val) | Rfinal((point := val)) > 10% or belongs to the M
highest ratios};

8 ST = ∅;
9 for i = 1, . . . , n do

10 foreach αi = (point := val) ∈ POINTinit do
11 STi = {(a1(p), α1) . . . (an(p), αn) ∈ Traces(Sua) | αi ∈ α1, ∃ (point :=

val2) ∈ αn ∧ (point := val2) ∈ POINTfinal};
12 ST = ST ∪ {STi};

13 Step 2. Trace filtering
14 for i = 1, . . . , n do
15 foreach t = σi p . . . p σj ∈ STi do
16 if ∃ t′ = σ′

i p′ σ′
j ∈ STi | p ∼(pid) p′ ∧ σi ∼(pid) σ′

i ∧ σj ∼(pid) σ′
j then

17 STi = STi \ {t};

18 CTraces(Sua) =
⋃

1≤i≤n

STi;

19 END;

Definition 15 (Complete trace) Let Sua be a system under analysis and Traces(Sua)
be its trace set. A trace t = (a1(p), α1) . . . (an(p), αn) ∈ Traces(Sua) is said complete
if and only if α1 includes an assignment (point := val1), which denotes an entry point
of Sua, and αn includes an assignment (point := val2), which denotes an exit point.

The complete traces of Sua are denoted by CTraces(Sua) ⊆ Traces(Sua).

4.3.3 STS generation

One model Si is then built for each trace set STi ∈ ST by reusing the technique
introduced in Chapter 3 • Section 3.3.2 (page 57).

4.3 Autofunk’s models generator revisited 90

The translation of STi into a run set denoted by Runsi is done by completing traces
with states. Each run starts by the same initial state (l0, v∅) with v∅ the empty
assignment. Then, new states are injected after each event. Runsi is formally given
by the following definition:

Definition 16 (Structured run) Let STi be a complete trace set obtained from Sua.
We denote by Runsi the set of runs derived from STi with the following inference rule:

σk(1≤k≤n)=(a1(p),α1)...(an(p),αn) ∈ STi

(l0,v∅)·(a1(p),α1)·(lk1,v∅)·····(lkn−1,v∅)·(an(p),αn)·(lkn,v∅) ∈ Runsi

The above definition preserves trace inclusion [PY06] between Runsi and Traces(Sua)
because we only inject states between valued events, and we can deduce the follow-
ing proposition:

Proposition 17 Let STi be a trace set obtained from Sua. We have Traces(Runsi) ⊆
Traces(Sua).

Runs are transformed into STS paths that are assembled together by means of a
disjoint union. The resulting STS forms a tree compound of branches starting from
the initial location l0, mimicking what we have done in the previous chapter but
generalizing the definition to any run. Parameters and guards are extracted from
the assignments found in valued events:

Definition 18 (Run set to STS) Given a run set Runsi, The STS Si =< LSi
, l0Si

, VSi
,

V 0Si
, ISi

, ΛSi
, →Si

> expresses the behaviors found in Runsi where:

• LSi
= {li | ∃ r ∈ Runsi, (li, v∅) is a state found in r};

• l0Si
= l0 is the initial location such that ∀r ∈ Runsi, r starts with (l0, v∅). l0 is

a common location shared by all Si;

• VSi
= ∅;

• V 0Si
= v∅;

• ISi
is a finite set of parameters, disjoint from VSi

;

• →Si
and ΛSi

are defined by the following inference rule applied to every element
r ∈ Runsi:

(li,v∅)·(ai(p),αi)·(li+1,v∅)∈ r, p={x|(x:=v)∈αi},Gi=
∧

(x:=v)∈αi

(x == v)

li

ai(p),Gi,idVSi−−−−−−−→Si
li+1

4.3 Autofunk’s models generator revisited 91

We obtain a model having a tree structure and whose traces are equivalent [PY06]
to those of CTraces(Sua) because each run is transformed into a unique STS path,
only sharing a common initial location l0, and for each path, the guard corresponds
to the conjunction of the assignments of the variables found in the trace. This is
captured by the proposition below:

Proposition 19 Let STi be a complete trace set obtained from Sua, and Runsi the set
of runs derived from STi. We have Traces(Runsi) = CTraces(Sua) ⊆ Traces(Sua).

At this point, production events are called actions of the STS.

Example 4.3.4 Figure 4.6 depicts the model obtained from the traces given in
Figure 4.4. Every initial trace is now represented as a STS branch. Parameter
assignments are modeled with constraints over transitions, called guards.

Fig. 4.6: First generated Symbolic Transition System model, based on the traces given in
Figure 4.4.

This STS expresses the behaviors found in Traces(Sua) but in a slightly different
manner. Trace inclusion [PY06] between an inferred STS and Traces(Sua), and
trace equivalence [PY06] between an inferred STS and CTraces(Sua) are captured
by the following proposition:

Proposition 20 Let Sua be a system under analysis and Traces(Sua) be its trace set.
Si is an inferred STS from Traces(Sua). We have Traces(Si) = CTraces(Sua) ⊆
Traces(Sua).

Definition 21 (STS set S) We denote by S = {S1, . . . , Sn} the set of all Symbolic
Transition Systems Si built from each trace set STi ∈ ST , and sharing the same
common initial location l0.

4.3 Autofunk’s models generator revisited 92

4.4 Improving generated models’ usability

The size of the generated models is likely too large to be used in an efficient manner.
That is why we added a reduction step, described in the next section. Then, we
revisit the abstraction mechanism already introduced in the previous chapter.

4.4.1 STS reduction

A model Si ∈ S constructed with the steps presented before is usually too large, and
thus cannot be beneficial as is. Using such a model for testing purpose would lead
to too many test cases for instance. That is why we use a reduction step, aiming at
diminishing the first model into a second one, denoted by R(Si) that is more usable.
As discussed in Chapter 3, most of the existing approaches propose two solutions: (i)
inferring models with high levels of abstraction, which leads to over-approximated
models, (ii) applying a minimization technique, which guarantees trace equivalence.
Nonetheless, after having investigated this path in Chapter 3, we concluded that
minimization is costly and highly time consuming on large models.

Given that a production system has a finite number of elements and that there should
only be deterministic decisions, the STS Si should contain branches capturing the
same sequences of events (without necessarily the same parameter assignments).
As a result, we chose to apply an approach tailored to support large models that
consists in combining STS branches that have the same sequences of actions so
that we still obtain a model having a tree structure. When branches are combined
together, parameter assignments are wrapped into matrices in such a way that trace
equivalence between the first model and the new one is preserved. More precisely,
a sequence of successive guards found in a branch is stored into a matrix column.
By doing this, we reduce the model size, we can still retrieve original behaviors
(and only these ones, i.e. no approximation), and we still preserve trace inclusion
between the reduced STS and Traces(Sua). The use of matrices offers here another
advantage: the parameter assignments are now packed into a structure that can be
easily analyzed later. As shown later in Section 4.5, this straightforward approach
gives good results in terms of STS reduction, and requires low processing time, even
with millions of transitions.

Given a STS Si, every STS branch is adapted to express sequences of guards in a
vector form to ease the STS reduction. Later, the concatenation of these vectors shall
give birth to matrices. This adaptation is obtained with the definition of the STS
operator Mat:

Definition 22 (The Mat operator) Let Si =< LSi
, l0Si

, VSi
, V 0Si

, ISi
, ΛSi

, →Si
> be

a STS. We denote by Mat(Si) the STS operator that consists in expressing guards of

4.4 Improving generated models’ usability 93

STS branches bi in a vector form, such that Mat(Si) =< LMat(Si), l0Mat(Si), VMat(Si),

V 0Mat(Si), IMat(Si), ΛMat(Si), →Mat(Si)> where:

• LMat(Si) = LSi
;

• l0Mat(Si) = l0Si
;

• IMat(Si) = ISi
;

• ΛMat(Si) = ΛSi
;

• VMat(Si), V 0Mat(Si), and →Mat(Si) are given by the following rule:

bi = l0
(a1(p1),G1,A1)...(an(pn),Gn,An)==================⇒ln

V 0Mat(Si) := V 0Mat(Si) ∧ Mi =

⎡
⎢⎢⎢⎢⎢⎣
G1
...

Gn

⎤
⎥⎥⎥⎥⎥⎦

l0Mat(Si)
(a1(p1),Mi[1],idV)...(an(pn),Mi[n],idV)=====================⇒Mat(Si) ln

Given a branch bi ∈ (→Mat(Si))n, we also denote by Mat(bi) = Mi the vector used with
bi.

It is now possible to merge the STS branches that have the same sequences of actions.
This last sentence can be interpreted as an equivalence relation over STS branches
from which we can derive equivalence classes:

Definition 23 (STS branch equivalence class) Let Si =< LSi
, l0Si

, VSi
, V 0Si

, ISi
,

ΛSi
, →Si

> be a STS obtained from Traces(Sua) (and having a tree structure).

[b] denotes the equivalence class of Si branches such that: [b] = {bj = l0Si

(a1(p1),G1j ,A1j)...(an(pn),Gnj ,Anj)======================⇒ lnj(1 ≤ j) | b = l0Si

(a1(p1),G1,A1)...(an(pn),Gn,An)====================⇒ ln}.

One of the main advantages of such a relation is that its computation can be done
very quickly with an algorithm based on hash functions (cf. Section 4.5.1).

The reduced STS denoted by R(Si) of Si is obtained by concatenating all the branches
of each equivalence class [b] found in Mat(Si) into one branch. The vectors found
in the branches of [b] are concatenated as well into the same unique matrix M[b]. A
column of this matrix represents a complete and ordered sequence of guards found
in one initial branch of Si. R(Si) is defined as follows:

4.4 Improving generated models’ usability 94

Definition 24 (Reduced STS R(Si)) Let Si =< LSi
, l0Si

, VSi
, V 0Si

, ISi
, ΛSi

, →Si
> be

a STS inferred from a structured trace set Traces(Sua). The reduction of Si is modeled
by the STS R(Si) =< LR, l0R, VR, V 0R, IR, ΛR, →R> where:

[b] = {b1, . . . , bm}, b = l0Si

(a1(p1),G1,A1)...(an(pn),Gn,An)==================⇒Mat(Si) ln

V 0R := V 0R ∧ M[b] = [Mat(b1), . . . , Mat(bm)] ∧ (1 ≤ c[b] ≤ m),
l0R

(a1(p1),M[b][1,c[b]],idV)...(an(pn),M[b][n,c[b]],idV)===========================⇒R (ln1 · · · lnm)

The resulting model R(Si) is a STS composed of variables assigned to matrices whose
values are used as guards. A matrix column represents a successive list of guards
found in a branch of the initial STS Si. The choice of the column in a matrix depends
on a new variable c[b].

Example 4.4.1 Figure 4.7 depicts the reduced model obtained from the STS de-

picted in Figure 4.6. Its guards are placed into two vectors M1 =
[
G1
G2

]
and

M2 =
[
G3
G4

]
, combined into the same matrix M[b]. The variable c[b] is used to take

either the guards of the first column or the guards of the second one.

Fig. 4.7: Reduced Symbolic Transition System model obtained from the model depicted in
Figure 4.6.

The STS R(Si) has less branches but still expresses the initial behaviors described by
the STS Si. R(Si) and Si are said trace equivalent [PY06]. This is captured by the
following proposition:

4.4 Improving generated models’ usability 95

Proposition 25 Let Sua be a system under analysis and Traces(Sua) be its traces set.
R(Si) is a STS derived from Traces(Sua). We have Traces(R(Si)) = Traces(Si) ⊆
CTraces(Sua) ⊆ Traces(Sua).

Definition 26 (STS set R(S)) We denote by R(S) = {R(S1), . . . , R(Sn)} the set of all
reduced Symbolic Transition Systems R(Si).

4.4.2 STS abstraction

Given the trace set STi ∈ ST , the generated STS R(Si) can be used for analysis
purpose, but it is still difficult to manually interpret, even for experts. This fifth
Autofunk module aims to analyze R(Si) in order to produce a new STS S

↑
i whose level

of abstraction is lifted by using more intelligible actions. This process is performed
with inference rules, which encode the knowledge of the expert of the system. These
rules are fired on the transitions of R(Si) to deduce new transitions. We consider
the same two types of rules as in Chapter 3 • Section 3.3.3 (page 62):

• The rules replacing some transitions by more comprehensive ones. These rules

are of the form: When Transition l1
a(p),G,A−−−−−→R(Si) l2, condition on a(p), G, A,

Then add l1
a′(p′),G′,A′
−−−−−−−→

S
↑
i

l2 and retract l1
a(p),G,A−−−−−→R(Si) l2;

• The rules that aggregate some successive transitions to a single transition com-
pound of a more abstract action. These rules are of the form When Transition

l1
(a1,G1,A1)...(an,Gn,An)===============⇒ ln, condition on (a1, G1, A1) . . . (an, Gn, An), Then add

l1
a(p),G,A−−−−−→

S
↑
i

ln, and retract l1
(a1,G1,A1)...(an,Gn,An)===============⇒ ln.

The generated STSs represent recorded scenarios modeled at a higher level of
abstraction. These can be particularly useful for generating documentation or better
understanding how the system behaves, especially when issues are experienced in
production. On the other hand, it is manifest that the trace inclusion property is lost
with the STSs constructed by this module because sequences are modified. In other
words, such models cannot be used for testing purpose.

Example 4.4.2 If we take back our example, the actions of the STS depicted in
Figure 4.7 can be replaced thanks to the inference rules given in Figure 4.8. Such
rules change the labels 17011 and 17021 to more intelligible ones. The STS depicted
on the left in Figure 4.10 is the result of the application of these rules on the model
given in Figure 4.7.

The rule shown in Figure 4.9 aggregates two transitions into a unique transition
indicating the movement of a product in its production line. Transition are facts

4.4 Improving generated models’ usability 96

modeling STS transitions as seen in Chapter 3. We need a variable $lfinal that
retains the final location of the first transition $t1, so that we can reuse it in the
condition of the second transition $t2. The final location of the first transition
must be the initial location of the second transition (Linit == $lfinal) to perform
the aggregation. Because our STSs have a tree form, there is no need to ensure
the absence of more than one transition starting from the final location of $t1
($lfinal).

From 5 initial production events that are not self-explanatory, we generate a simpler
STS constituted of one transition, clearly expressing a part of the functioning of the
system. The result of this rule is shown in Figure 4.10 (on the right).

rule "Mark destination requests"
when:

$t: Transition(action == "17011")
then

$t.setAction("DestinationRequest")
end

rule "Mark destination responses"
when:

$t: Transition(action == "17021")
then

$t.setAction("DestinationResponse")
end

Fig. 4.8: Two rules adding value to existing transitions by replacing their actions by more
intelligible ones. These names are part of the domain language used by Michelin
experts.

4.5 Implementation and experimentation

In this section, we briefly describe the implementation of our model inference
framework for Michelin. Then, we give an evaluation on real production systems.

4.5.1 Implementation

Our framework Autofunk v2 is also developed in Java and still leverages Drools. In
our industrial context, we have several bases of facts used throughout the different
Autofunk modules, represented as Java objects such as: Events, Trace sets STi, Runs,
Transitions, and STSs. We chose to target performance while implementing Autofunk.
That is why most of the steps are implemented with parallel algorithms (except the

4.5 Implementation and experimentation 97

rule "Aggregate destination requests/responses"
when

$t1: Transition(
action == "DestinationRequest", $lfinal := Lfinal

)
$t2: Transition(

action == "DestinationResponse" , Linit == $lfinal
)

then
insert(

new Transition(
"ProductAdvance",
Guard($t1.Guard, $t2.Guard),
Assign($t1.Assign, $t2.Assign),
$t1.Linit,
$t2.Lfinal

)
)
retract($t1)
retract($t2)

end

Fig. 4.9: An inference rule that aggregates two transitions of a Symbolic Transition System
into a single transition. An example of its application is given in Figure 4.10.

production event parsing) combined with Java 8 parallel streams1 and processing
mechanisms. Figure 4.11 shows the initial setup of Autofunk. We have sets of log
files to parse coming from Michelin’s logging system. Autofunk reads these files, and
transforms them into traces, that are then used to build models.

The input trace collection is constructed with a classical parser, which returns Event

Java objects. By now, we are not able to parallelize this part because of an issue we
faced with Michelin’s logging system. The resulting drawback is that the time to parse
traces is longer than expected and heavily depends on the size of data to parse. The
Event base is then filtered with Drools inference rules as presented in Section 4.3.1.
Then, we call a straightforward algorithm for reconstructing traces: it iterates over
the Event base and creates a set for each assignment of the identifier pid. These sets
are sorted to construct traces given as Trace Java objects. These objects correspond
to Traces(Sua). The generation of the trace subsets ST = {ST1, . . . , STN } and
of the first STSs are done with Drools inference rules applied in parallel with one
thread per trace set.

The STS reduction, and specifically the generation of STS branches equivalence
classes, has been implemented with a specific algorithm for better performance.

1https://docs.oracle.com/javase/tutorial/collections/streams/parallelism.html

4.5 Implementation and experimentation 98

Fig. 4.10: The construction of the final Symbolic Transition System model. The final model
is on the right, obtained after having applied all the abstraction rules given in
Figures 4.8 and 4.9.

Indeed, comparing every action in STS branches in order to aggregate them is time
consuming. Given a STS S, this algorithm generates a signature for each branch
b, i.e. a hash (SHA12 algorithm) of the concatenation of the signatures of the
actions of b. The branches which have the same signature are gathered together and
establish branch equivalence classes (as described in Section 4.4.1). Implementing
equivalence classes using hashes allows to quickly reduce STS of any size, especially
because this technique scales well. Thereafter, the reduced R(S) is constructed
thanks to the inference rule given in Section 4.4.1.

At the time of writing, we are working on the architecture depicted in Figure
4.12. It shows how we plan to integrate Autofunk with any Michelin production
system. Events are collected on-the-fly from a system under analysis, and sent to
a database (Elasticsearch3 here) thanks to a message broker (namely RabbitMQ4).
Initial benchmarks revealed that such an infrastructure allows to collect up to 10,000
events per second with a negligible overhead on the system. Autofunk then queries
the database to fetch product events, and finally build models. This approach also
solves the issue mentioned previously. Furthermore, it allows to leverage the data
for other purposes, e.g., visualization or more extensive analyses.

4.5.2 Evaluation

We conducted several experiments with real sets of production events, recorded in
one of Michelin’s factories at different periods of time. We executed our implemen-

2Secure Hash Algorithm 1
3https://www.elastic.co/products/elasticsearch
4https://www.rabbitmq.com/

4.5 Implementation and experimentation 99

Fig. 4.11: The architecture of Autofunk that has been used to conduct our first experiments
with Michelin log files. A newer (and better) architecture is given in Figure 4.12.

tation of Autofunk v2 on a Linux (Debian) machine with 12 Intel(R) Xeon(R) CPU
X5660 @ 2.8GHz and 64GB RAM.

We present here the results of 6 experiments on the same production system with
different event sets collected during 1, 8, 11, 20, and 23 days. These results are
depicted in Table 4.1. The third column gives the number of production events
recorded on the system. The next column shows the trace number obtained after the
parsing step. N and M represent the entry and exit points automatically computed
with the statistical analysis. The column Trace Subsets shows how Traces(Sua)
is segmented into subsets {ST1, . . . , STN } and the number of traces included in
each subset. These numbers of traces also correspond to the numbers of branches
generated in the STSs S1, . . . , SN . The eighth column, # R(Si), represents the
number of branches found in each reduced STSs R(S1), . . . , R(SN). Finally, execution
times are rounded and expressed in minutes in the last column.

First, these results show that our framework can take millions of production events
and still builds models quickly. With sets collected during one day up to one
week (experiments A, B, C, and D), models are inferred in less than 10 minutes.

4.5 Implementation and experimentation 100

Ex
pe

ri
m

en
t

N
um

be
r

of
da

ys
N

um
be

r
of

ev
en

ts
C

a
rd

(T
ra

ce
s(

S
u

a
))

N
M

#
Tr

ac
e

su
bs

et
s

#
R

(S
i)

Ex
ec

.
ti

m
e

(m
in

)
A

1
1

66
0,

43
1

16
,6

02
2

3
4,

82
2

33
2

1
A

2
1,

31
0

19
3

B
1

8
3,

95
2,

90
6

66
,8

80
3

3
28

,5
55

91
4

9
B

2
18

,9
00

78
8

B
3

6,
68

1
51

C
1

11
3,

61
5,

21
5

61
,1

25
3

3
28

,3
02

88
9

9
C

2
14

,6
05

68
1

C
2

7,
82

4
80

D
1

11
3,

85
1,

26
4

73
,3

64
2

3
35

,5
41

92
4

9
D

2
17

,4
02

83
7

E
1

20
7,

63
5,

49
4

13
4,

90
8

2
3

61
,7

95
1,

44
1

16
E

2
35

,7
99

1,
40

1
F

1
23

9,
23

1,
16

0
16

1,
03

5
2

3
77

,0
58

1,
58

7
24

F
2

43
,5

36
1,

58
5

Ta
b.

4.
1:

Th
is

ta
bl

e
sh

ow
s

th
e

re
su

lt
s

of
6

ex
pe

ri
m

en
ts

on
a

M
ic

he
lin

pr
od

uc
ti

on
sy

st
em

w
it

h
di

ff
er

en
t

ev
en

t
se

ts
.

4.5 Implementation and experimentation 101

Fig. 4.12: The overall architecture built at Michelin to use Autofunk in a production envi-
ronment. Events are sent over RabbitMQ to another server in order to minimize
the overhead. Collected events are stored in a database. Autofunk can then fetch
these events, and build the models.

Therefore, Autofunk can be used to quickly infer models for analysis purpose or to
help diagnose faults in a system. Experiment F handled almost 10 million events
in less than half an hour to build two models including around 1,600 branches. As
mentioned earlier in this section, the parsing process is not parallelized yet, and it
took up to 20 minutes to open and parse around 1,000 files (number of Michelin log
files for this experiment). This issue should be solved by the architecture presented
in Figure 4.12. The graph shown in Figure 4.13 summarizes the performances of
our framework, and how fast it is at transforming production events into models
(experiments B, C and D run in about 9 minutes). It also demonstrates that
doubling the event set does not involve doubling its execution time. The linear
regression reveals that the overall framework scales well, even with the current
parsing implementation.

In Table 4.1, the difference between the number of trace subsets (7th column) and
the number of branches included in the STSs R(Si) (8th column) clearly shows that

4.5 Implementation and experimentation 102

our STS reduction approach is effective. For instance, with experiment B, we reduce
the STSs by 91.88% against the initial trace set Traces(Sua). In other words, 91%
of the original behaviors are packed into matrices. As a reminder, such results are
tied to the specific context of Michelin production systems. The reduction ratio may
vary with other systems.

Fig. 4.13: Execution time vs events. According to the trend shown by the linear regression,
we can state that our framework scales well.

We also extracted the values of columns 4 and 7 in Table 4.1 to depict the stacked
bar chart illustrated in Figure 4.14. This chart shows, for each experiment, the
proportion of complete traces kept by Autofunk to build models, over the initial
number of traces in Traces(Sua). Autofunk has kept only 37% of the initial traces in
Experiment A because its initial trace set is too small and contains many incomplete
behaviors. During a day, most of the recorded traces do not start or end at entry
or exit points, but rather start or end somewhere in production lines (cf. Section
4.2). That is why, on a single day, we can find so many incomplete traces. With more
production events, such a phenomenon is limited because we absorb these storage
delays.

We can also notice that experiments C and D have similar initial trace sets but
experiment C owns more complete traces than experiment D by 12%, which is
significant. Furthermore, experiments B and C take 3 entry points into account
while the others only take 2 of them. This is related to the fixed limit of 10% we
chose to ensure truly entry points to be automatically selected. The workshop we
analyzed has three entry points, two of which are mainly used. The third entry point
is employed to balance the production load between this workshop and a second
one located close to it in the same factory. Depending on the period, this entry point
may be more or less solicited, hence the difference between experiments B, C and
experiment D. Increasing the limit of 10% to a higher value would change the value

4.5 Implementation and experimentation 103

Fig. 4.14: Proportions of complete traces for the different experiments. This chart shows
that Autofunk considers a lot of traces to infer models, but there is still room for
improvement.

of N for experiments B and C, but would also impact experiment A by introducing
false results since incorrect entry points could be selected. By means of a manual
analysis, we concluded that 10% was the best ratio for removing incomplete traces
in our experiments. 30% of initial traces have been removed, which is close to the
reality.

Another potential issue with our parsing implementation is that every event has to be
loaded in memory, so that we can perform computation and apply our algorithms on
them. But working with millions of Java objects requires a lot of memory, i.e. memory
consumption depends on the amount of initial traces. We compared execution time
and memory consumption in Figure 4.15, showing that memory consumption tends
to follow a logarithmic trend. In the next version of Autofunk, we plan to work on
improving memory consumption even if it has been considered acceptable as is by
Michelin.

4.6 A better solution to the trace segmentation and
filtering problem with machine learning

In Section 4.3.2, we presented a naive statistical analysis to segment and filter the
initial trace set used to infer models, part of Autofunk v2. Nevertheless, experiments

4.6 A better solution to the trace segmentation and filtering problem with machine learning 104

Fig. 4.15: Execution time vs memory consumption. This version 2 of Autofunk is still a
prototype, and memory consumption remains an issue.

(as seen in the previous section) revealed that this empirical method was not stable,
in other words the use of a configurable minimum limit (manually given), which
is neither smart nor accurate. That is why we chose to work on a new solution to
segment and filter traces, which gave birth to Autofunk v3.

Autofunk v3 now relies on a machine learning technique to segment a trace set into
several subsets, one per entry point of the system Sua. We leverage this process to
also remove incomplete traces, i.e. traces that do not express an execution starting
from an entry point and ending to an exit point. These can be extracted by analyzing
the traces and the variable point, which captures the product physical location.

In order to determine both entry and exit points of Sua, we rely on an outlier
detection approach [HA04]. An outlier is an observation that deviates so much from
the other observations as to arouse suspicions that it was generated by a different
mechanism. More precisely, we chose to use the k-means clustering method [JAH79],
a machine learning algorithm, which is both fast and efficient, and does not need to
be trained before being effectively used (that is called unsupervised learning, and it
is well-known in the machine learning field). k-means clustering aims to partition n

observations into k clusters as shown in Figure 4.16.

In our context, observations are represented by the variable point present in each
trace of Traces(Sua), which captures the product physical location, and k = 2
as we want to group the outliers together, and leave the other points in another
cluster. Once the entry and exit points are found, we segment Traces(Sua) and

4.6 A better solution to the trace segmentation and filtering problem with machine learning 105

Fig. 4.16: k-means clustering explained: the intuition is to partition n observations into k
clusters in which each observation belongs to the cluster with the nearest mean.

obtain a set ST = {ST1, . . . , STn}, whose union forms the set of complete traces
CTraces(Sua). Then, we apply the same generation and reduction steps as de-
scribed in Section 4.3.3 and Section 4.4.1 so that we obtain the set of reduced
models R(S) = {R(S1), . . . , R(Sn)}.

In our implementation, we chose to rely on the MLlib5 machine learning library from
Apache Spark6, a fast and general Java engine for large-scale data processing. The
MLlib library provides an efficient Java implementation of k-means clustering.

4.7 Conclusion

In this chapter, we presented our revisited framework Autofunk, combining model
inference, machine learning, and expert systems to generate models from production
systems. Figure 4.17 shows the final architecture of our third version of Autofunk
along with the technologies used in each module. Given a large set of production
events, our framework infers exact models whose traces are included in the initial
trace set of a system under analysis [PY06]. We chose to design Autofunk for
targeting high performance. Our evaluation shows that this approach is suitable in
the context of production systems since we quickly obtain STS trees reduced by 90%
against the original trace sets of the system under analysis.

While there is still room for improvement on how we generate exact models, we
decided to go deeper and use such models for testing purpose. In the next chapter, we
describe our testing technique that leverages the work presented in this chapter.

5https://spark.apache.org/mllib/
6https://spark.apache.org/

4.7 Conclusion 106

Fig. 4.17: Final design of our framework Autofunk (v3), designed for quickly inferring
models of Michelin’s production systems.

4.7 Conclusion 107

4.7 Conclusion 108

5Testing applied to production
systems

In this chapter, we tackle the problem of testing production systems, without dis-
turbing them, and without having any specification a priori. Those two constraints
sounds familiar as they have already been taken into consideration in Chapter 4. We
present a passive testing technique built on-top of Autofunk v3. First, we infer refer-
ence models of a system under analysis Sua using the technique presented previously.
Then, we check whether a system under test Sut conforms to these inferred models
by means of two implementation relations. We use a slightly modified version of
the trace preorder relation to strictly check conformance between the two systems.
Because the inferred models are partial, they likely lack information, which implies
that our first strict relation may be too "strong". That is why we propose a second
(weaker) implementation relation to comply with Michelin’s needs. Such a relation
is less strict than the first one in order to accept non-standard behaviors down to
a certain point. These two relations are leveraged in an algorithm for performing
offline passive conformance testing. We end this chapter with a few results on this
testing technique.

Contents
5.1 Introduction . 110

5.2 Normalization of the inferred models 111

5.3 Passive testing with Autofunk . 112

5.3.1 First implementation relation: ≤ct 113

5.3.2 Second implementation relation: ≤mct 114

5.3.3 Offline passive testing algorithm 117

5.4 Implementation and experimentation 122

5.4.1 Implementation . 122

5.4.2 Experimentation . 122

5.5 Conclusion . 125

109

5.1 Introduction

Manual testing is, by far, the most popular technique for testing, but this technique
is known to be error-prone as well. As already formulated in this thesis, production
systems are usually composed of thousands of states (i.e. sets of conditions that
exist at a given instant in time) and production events, which makes testing time
consuming. In this context, we propose a passive testing framework for production
systems that is compound of: (i) a model inference engine, already presented in
Chapter 4, and (ii) a passive test engine, which is the purpose of this chapter. Both
parts have to be fast and scalable to be used in practice.

The main idea of our proposal is that, given a running production system, for which
active testing cannot be applied, we extract knowledge and models. Such models
describe the functional behaviors of the system, and may serve different purposes,
e.g., testing another production system. The latter can be a new system roughly
comparable to the first one in terms of features, but it can also be an updated version
of the first one. Indeed, upgrades might inadvertently introduce faults, and it could
lead to severe damages.

In our context, testing the updated system means detecting potential regressions
before deploying changes in production. This is usually performed by engineers at
Michelin, yet their "testing" phase is actually a manual task performed in a simulation
room where they check a couple of known scenarios for a long period (about 6
months). Most of the time, such a process works well, but it takes a lot of time,
and there is no guarantee regarding the number of covered scenarios. In addition,
engineers who write or maintain the applications are likely the same who perform
these manual testing phases, which can be problematic because they often know too
well the applications. We designed our testing framework to help Michelin engineers
focus on possible failures, automatically highlighted by the framework in a short
amount of time. At the end, engineers still have to perform a few manual tasks, but
they are more efficient as they have only a few behaviors to check (instead of all
possible behaviors), given in a reliable and fast manner.

Generally speaking, a passive tester (also known as observer) aims at checking
whether a system under test conforms to a model. It can be performed in either
online or offline mode, as defined below:

• Online testing: it means that traces are computed and analyzed on-the-fly to
provide verdicts, and no trace set is studied a posteriori;

• Offline testing: it means that a set of traces has been collected while the
system is running. Then, the tester gives verdicts afterwards.

5.1 Introduction 110

In this Chapter, we present an offline passive testing technique. We collect the traces
of the system under test by reusing Autofunk v3’s Models generator, and we build a
set of traces whose level of abstraction is the same as those considered for inferring
models. Then, we use these traces to check whether the system under test conforms
to the inferred models. In previous works, we used to work with fixed sets of traces.
We noticed that, by taking large trace sets, we could build more complete models,
and performing offline passive testing allows to use such large trace sets.

Conformance is defined with two implementation relations, which express precisely
what the system under test should do. The first relation is based on the trace preorder
[DNH84], which is a well-known relation based upon trace inclusion, and heavily
used with passive testing. Nevertheless, our inferred models are partials, i.e. they
do not necessarily capture all the possible behaviors that should happen. That is
why we propose a second implementation relation, less restrictive on the traces that
should be observed from the system under test.

In Section 5.2, we introduce an extra step of the model inference method described
in Chapter 4 that is required to enable testing. In Section 5.3, we present our
offline passive testing technique, built on-top of this model inference framework. We
present key results on offline passive testing in Section 5.4. Finally, we conclude on
this chapter in Section 5.5.

Publication. This work has been partially published in the Proceedings of the 13th
International Conference on Formal Methods and Models for Co-Design (MEM-
OCODE’15) [DS15b].

5.2 Normalization of the inferred models

In order to perform testing, we reuse the reduced model set R(S) = {R(S1), . . . , R(Sn)
} inferred with Autofunk that we normalize to get rid of some runtime-dependent
information of the system under analysis Sua. Indeed, both models Si and R(Si)
include parameters that are dependent to the products being manufactured. That is
a consequence of generating models that describe behaviors of a continuous stream
of products that are strictly identified. For instance, each action in a given sequence
owns the assignment (pid := val) (for the record, pid stands for product identifier).
Collected traces are also time-dependent, which would make testing of another
production system unfeasible. These information are typically known by a human
domain expert, and we can use inference rules to identify and remove assignments
one more time.

5.2 Normalization of the inferred models 111

Given the model sets S = {S1, . . . , Sn} and R(S) = {R(S1), . . . , R(Sn)}, we remove
the assignments related to product identifiers and time stamps to produce normalized
model sets, denoted by SN = {SN

1 , . . . , SN
n } and R(SN) = {R(SN

1), . . . , R(SN
n)}.

Furthermore, we label all the final locations with "Pass". We flag these locations
as verdict locations, and gather them in the set Pass ⊆ LSN

i
. Both SN

i and R(SN
i)

represent more generic models, i.e. they express some possible complete behaviors
that should happen. These behaviors are represented by the traces TracesP ass(SN) =⋃
1≤i≤n

TracesP ass(SN
i) = TracesP ass(R(SN)). We refer to these traces as pass traces,

and we call the other traces possibly fail traces.

5.3 Passive testing with Autofunk

We consider both model sets SN and R(SN) of a system under analysis Sua, generated
by our inference-based model generation framework, as reference models. In this
section, we present the second part of our testing framework, dedicated to the
passive testing of a system under test Sut.

Figure 5.1 depicts the design of our offline passive testing technique. A set of
production events has been collected beforehand from Sut in the same way as
for Sua. These events are grouped into traces to form the trace set Traces(Sut),
and then filtered to obtain a set of complete traces denoted by CTraces(Sut) (cf.
Chapter 4 • Section 4.6 (page 104)). Finally, we perform passive testing to check if
Sut conforms to SN .

Our industrial partner wishes to check whether every complete execution trace of
Sut matches a behavior captured by SN . In this case, the test verdict must reflect
a successful result. On the contrary, if a complete execution of Sut is not captured
by SN , one cannot conclude that Sut is faulty because SN is a partial model, and it
does not necessarily includes all the correct behaviors. Below, we formalize these
verdict notions with two implementation relations. Such relations between models
can only be written by assuming the following test assumption: the black-box system
Sut can be described by a model, here with a Labeled Transition System as defined
in Chapter 2.1 • Section 2.1.2 (page 17). For simplicity purpose, we also denote this
model by Sut.

It is manifest that both the models and Sut must be compatible, i.e. the production
events captured on Sua and Sut must lead to similar valued events. Otherwise, all
traces of Sut will likely be rejected, and the testing process will become wasteful:

5.3 Passive testing with Autofunk 112

Fig. 5.1: Overview of Autofunk v3 with the passive testing extension. While the previous
Autofunk design has been kept, there are two new modules: "STS Normalization"
and "check", representing the passive conformance testing part.

Definition 27 (Compatibility of SN and Sut) Let SN = {SN
1 , . . . , SN

n } be a STS set,
and Sut be a LTS (semantics), which is assumed to behave as the production system.

SN and Sut are said compatible if and only if: ΣSut ⊆
⋃

1≤i≤n

⋃
a(p)∈Λ

SN
i

a × Dp.

5.3.1 First implementation relation: ≤ct

The first implementation relation, denoted by ≤ct, refers to the trace preorder rela-
tion [DNH84; Vaa91] (cf. Example 2.1.4 on page 23). It aims at checking whether
all the complete execution traces of Sut are pass traces of SN = {SN

1 , . . . , SN
n }. The

first implementation relation can be written with the following definition:

5.3 Passive testing with Autofunk 113

Definition 28 (Implementation relation ≤ct) Let SN be an inferred model of Sua,
and Sut be the system under test. When Sut produces complete traces also captured by
SN , we write: Sut ≤ct S

N =def CTraces(Sut) ⊆ TracesP ass(SN).

Pragmatically, the reduced model set R(SN) sounds more convenient for passively
testing Sut because it is strongly reduced in terms of size compared to SN . The test
relation can also be written as below because both models SN and R(SN) are trace
equivalent (cf. Proposition 25 in Chapter 4):

Proposition 29 Sut ≤ct S
N ⇔ CTraces(Sut) ⊆ TracesP ass(R(SN)).

5.3.2 Second implementation relation: ≤mct

As stated previously, the inferred model SN of Sua is partial, and it might not
capture all the behaviors that should happen on Sut. Consequently, our partner
wants a weaker implementation relation that is less restrictive on the traces that
should be observed from Sut. This second relation aims to check that, for every
complete trace t = (a1(p), α1) . . . (am(p), αm) of Sut, we also have a set of traces
of TracesP ass(SN) having the same sequence of symbols such that every variable
assignment αj(x)(1≤j≤m) of t is found in one of the traces of TracesP ass(SN) with
the same symbol aj .

Example 5.3.1 Figure 5.2 recalls the example considered in Chapter 4. The
trace t = (17011({nsys, nsec, point, pid}), {nsys := 1, nsec := 8, point := 1, pid :=
1}) 17021({nsys, nsec, point, tpoint, pid}, {nsys := 1, nsec := 8, point := 4, tpoint

:= 9, pid := 1}) is not a pass trace of SN because this trace cannot be extracted from
one of the paths of the STS depicted in Figure 5.2, on account of the variables point

and tpoint, which do not take the expected values. Nonetheless, both variables are
assigned with (point := 4) and (tpoint := 9) in the second path. This is interesting
as it indicates that such values may be correct since they are actually used in a similar
action in a similar path. Our second implementation relation aims at expressing that
such a trace t captures a correct behavior as well.

The second implementation relation, denoted by ≤mct, is defined as follows:

Definition 30 (Implementation relation ≤mct) Let SN be an inferred model of Sua,
and Sut be a system under test. We write: Sut ≤mct SN if and only if ∀ t =
(a1(p), α1) . . . (am(p), αm) ∈ CTraces(Sut), ∀ αj(x)(1≤j≤m), ∃ SN

i ∈ SN and t′ ∈
TracesP ass(SN

i) such that t′ = (a1(p), α′
1) . . . (am(p), α′

m) and α′
j(x) = αj(x).

5.3 Passive testing with Autofunk 114

Fig. 5.2: The first Symbolic Transition System inferred in Chapter 4.

According to the above definition, the successive symbols and variable assignments of
a trace t ∈ CTraces(Sut) can be found into several traces of TracesP ass(SN

i), which
have the same sequence of symbols a1 . . . am as the trace t. The reduced model
R(SN

i) was previously constructed to capture all these traces in TracesP ass(SN
i),

having the same sequence of symbols. Indeed, given a STS SN
i , all the STS paths

of SN
i , which have the same sequence of symbols labeled on the transitions, are

packed into one STS path b in R(SN
i) whose transition guards are stored into a

matrix M[b].

Example 5.3.2 Given our trace example t = (17011({nsys, nsec, point, pid}), {nsys

:= 1, nsec := 8, point := 1, pid := 1}) 17021({nsys, nsec, point, tpoint, pid}, {nsys

:= 1, nsec := 8, point := 4, tpoint := 9, pid := 1}), and the reduced model de-
picted in Figure 5.3, t is a pass trace with respect to ≤mct because each assignment
αj(x) satisfies at least one guard of the matrix line j. For instance, the assignment
(point := 4), which is given with the second valued event of t, satisfies one of the
guards of the second line of the matrix M[b].

Fig. 5.3: Reduced Symbolic Transition System model (with its matrix) obtained from the
model depicted in Figure 5.2.

Given a trace (a1(p), α1) . . . (am(p), αm) ∈ CTraces(Sut) and a STS path b of R(SN
i)

having the same sequence of symbols a1 . . . am, the relation can now be formulated

5.3 Passive testing with Autofunk 115

as follows: for every valued event (aj(p), αj), each variable assignment αj(x) must
satisfies at least one of the guards of the matrix line j in M[b][j, ∗].

Consequently, we propose to rewrite the implementation relation ≤mct as:

Proposition 31 Sut ≤mct SN if and only if ∀ t = (a1(p), α1) . . . (am(p), αm) ∈
CTraces(Sut), ∃ R(SN

i) ∈ R(SN) and b = l0R(SN
i)

(a1(p1),M[b][1,c[b]])...(aj(pj),M[b][j,c[b]])========================⇒
lm with (1 ≤ c[b] ≤ k) such that ∀ αj(x)(1≤j≤m), αj(x) |= M[b][j, 1] ∨ · · · ∨ M[b][j, k],
and lm ∈ Pass.

The disjunction of guards M[b][j, 1] ∨ · · · ∨ M[b][j, k], found in the matrix M[b], could
be simplified by gathering all the equalities (x == val) together with disjunctions
for every variable x that belongs to the parameter set pj of aj(pj). Such equalities
can be extracted with the projection operator proj (see Definition 12). We obtain
one guard of the form

∧
x∈pj

((x == val1) ∨ · · · ∨ (x == valk)). This can be expressed

by deriving new STSs from R(S).

STS D(S)

Given a STS R(SN
i), the STS D(SN

i) is constructed with the disjunction of guards
described in the previous section:

Definition 32 (Derived STS D(SN
i)) Let R(SN

i) =< LR, l0R, VR, V 0R, IR, ΛR, →R>

be a STS of R(SN). We denote by D(SN
i) the STS < LD, l0D, VD, V 0D, ID, ΛD, →D>

derived from R(SN
i) such that:

• LD = LR;

• l0D = l0R;

• ID = IR;

• ΛD = ΛR;

• VD, V 0D and →D are defined by the following inference rule:

b = l0R

(a1(p1),M[b][1,c[b]])...(am(pm),M[b][m,c[b]])==========================⇒R lm, (1 ≤ c[b] ≤ k) in V 0R

l0D
(a1(p1),Mb[1])...(am(pm),Mb[m])====================⇒D lm, V 0D = V 0D ∧ Mb,

Mb[j](1≤j≤m) =
∧

x∈pj

(projx(M[b][j, 1]) ∨ · · · ∨ projx(M[b][j, k]))

The set of derived models is denoted by D(SN) = {D(SN
1), . . . , D(SN

n)}.

5.3 Passive testing with Autofunk 116

The second implementation relation ≤mct can now be expressed by:

Proposition 33 Sut ≤mct SN if and only if ∀ t = (a1(p), α1) . . . (am(p), αm) ∈
CTraces(Sut), ∃ D(SN

i) ∈ D(SN) and l0D(SN
i)

(a1(p1),G1)...(am(pm),Gm)================⇒ lm such that
∀ αj (1≤j≤m), αj |= Gj and lm ∈ Pass.

The implementation relation ≤mct now means that a trace of Sut must also be a pass
trace of the model set D(SN) = {D(SN

1), . . . , D(SN
n)}. This notion of trace inclusion

can also be formulated with the first implementation relation ≤ct as follows:

Proposition 34 Sut ≤mct SN if and only if CTraces(Sut) ⊆ TracesP ass(D(SN)),
and Sut ≤mct S

N ⇔ Sut ≤ct D(SN).

Now, the implementation relation ≤mct is expressed with the first relation ≤ct, which
implies that our passive testing algorithms shall be the same for both relations except
that they shall take different reference models.

Furthermore, because D(SN) is derived from R(SN), i.e. the guards of the model
D(SN

i) are the disjunctions of the guards of the model R(SN
i) (cf. Definition 32), we

have TracesP ass(R(SN)) ⊆ TracesP ass(D(SN)). Therefore, if Sut ≤ct S
N , we have

Sut ≤mct S
N :

Proposition 35 Sut ≤ct S
N =⇒ Sut ≤mct S

N .

In the next section, we introduce the offline passive testing algorithm that uses these
two implementation relations.

5.3.3 Offline passive testing algorithm

Our offline passive testing algorithm, which aims to check whether the two previous
implementation relations hold, is given in Algorithm 4. It takes the complete traces
of Sut, as well as the model sets R(SN) and D(SN), with regard to Proposition 29
and Proposition 34. It returns the verdict "Pass≤ct" if the relation ≤ct is satisfied,
and the verdict "Pass≤mct" if ≤mct is satisfied, along with the possibly fail traces with
respect to ≤ct, gathered in the set T1. Otherwise, it returns both T1, and the possibly
fail traces with respect to ≤ct, gathered in the set T2.

Algorithm 4 relies upon the function check(Trace trace, STS S) to check whether
the trace trace = (a1(p), α1) . . . (am(p), αm) is a trace of S. If a STS path b is
composed of the same sequence of symbols as trace (line 27), the function tries to
find a matrix column (i.e. a vector) M = M[b][∗, c[b]] (1 ≤ c[b] ≤ k) such that every

5.3 Passive testing with Autofunk 117

variable assignment αj satisfies the guard M [j]. If such a column of guards exists,
the function returns True, and False otherwise (cf. Proposition 37).

Algorithm 4 covers every trace trace of CTraces(Sut), and tries to find a STS R(SN
i)

such that trace is also a trace of R(SN
i) with check(trace, R(SN

i)) (line 7). If no
model R(SN

i) is found, trace is added to the set T1 (line 11), which gathers the
possibly fail traces with respect to ≤ct. Thereafter, this algorithm performs the same
step but using the STS D(SN) (line 13). One more time, if no model D(SN

i) is
found, the trace trace is added to the set T2 (line 17), which gathers the possibly fail
traces with respect to the relation ≤mct. Finally, if T1 is empty, the verdict "Pass≤ct"
is returned, which means that the first implementation relation holds. Otherwise,
T1 is provided. If T2 is empty, the verdict "Pass≤mct" is returned. Otherwise T2 is
returned.

When one of the implementation relations does not hold, this algorithm offers the
advantage of providing the possibly fail traces of CTraces(Sut). Such traces can be
later analyzed to check if Sut is correct or not as these traces may be false positives,
because of the partialness of the reference models for instance. That is very helpful
for Michelin engineers because it allows them to only focus on what are potentially
faulty behaviors, reducing debugging time, and making engineers more efficient.

Soundness of Algorithm 4

Proposition 36 Let SN be a STS set, and Sut be a LTS compatible to SN .

Sut ≤ct S
N =⇒ Algorithm 4 returns "Pass≤ct", "Pass≤mct".

Sut ≤mct S
N =⇒ Algorithm 4 returns "Pass≤mct".

Sketch of proof: Proposition 36 can be split into three points:

1. Sut ≤ct S
N =⇒ Algorithm 4 returns "Pass≤ct";

2. Sut ≤mct S
N =⇒ Algorithm 4 returns "Pass≤mct";

3. Sut ≤ct S
N =⇒ Algorithm 4 returns "Pass≤ct", "Pass≤mct".

For each point, Algorithm 4 relies on the function check:

Proposition 37 Let t ∈ CTraces(Sut) be a trace, and SN a STS set such that Sut ≤ct

SN . ≤ct means that there exists a model SN
i such that t ∈ TracesP ass(SN

i).

(∃ (1 ≤ i ≤ n) : t ∈ TracesP ass(SN
i)) =⇒ the function check(t, SN

i) returns True.

5.3 Passive testing with Autofunk 118

Sketch of proof: ∃ (1 ≤ i ≤ n), t ∈ TracesP ass(SN
i) implies ∃ (1 ≤ i ≤ n), t ∈

TracesP ass(R(SN
i)). The Traces and LTS semantics definitions imply: ∃ p =

l0R(SN
i)

(a1(p1),G1,A1)...(an(pn),Gn,An)====================⇒ ln, ln ∈ Pass, and t ∈ TracesP ass(p).

Given the trace t = (a1(p), α1) . . . (an(p), αn), the function check(t, R(SN
i)):

• seeks b = l0R(SN
i)

(a1(p1),G′
1,A′

1)...(an(pn),G′
n,A′

n)
====================⇒ ln, ln ∈ Pass (line 27), with

M[b] be the matrix n × k of b such that G′
j = M[b][j, c[b]] (1 ≤ c[b] ≤ k and

1 ≤ j ≤ n);

• ensures that ∃ (1 ≤ c[b] ≤ k) : αj |= M[b][j, c[b]] (1 ≤ j ≤ n) (lines 31-36).

The function check(t, SN
i) seeks b such that t ∈ TracesP ass(b), and returns True

if b exists (line 38). Therefore, ∃ p = l0R(SN
i)

(a1(p1),G1,A1)...(an(pn),Gn,An)====================⇒ ln, ln ∈
Pass | t ∈ TracesP ass(p) implies the function check(t, SN

i) returns True. �

Sketch of proof for (1): Sut ≤ct SN ⇔ CTraces(Sut) ⊆ TracesP ass(R(SN))
(Proposition 29) can be written as follows: ∀ t ∈ CTraces(Sut), ∃ (1 ≤ i ≤ n) : t ∈
TracesP ass(R(SN

i)).

Given that, and according to Proposition 37, the function check(t, SN
i) returns True

for every trace t ∈ CTraces(Sut) (lines 6-9). Therefore the set T1 is empty (line 18),
and Algorithm 4 returns "Pass≤ct" (line 19). �

Sketch of proof for (2): Sut ≤mct SN ⇔ CTraces(Sut) ⊆ TracesP ass(D(SN))
(Proposition 34) can be written as follows: ∀ t ∈ CTraces(Sut), ∃ (1 ≤ i ≤ n) : t ∈
TracesP ass(D(SN

i)).

Given that, and according to Proposition 37, the function check(t, SN
i) returns True

for every trace t ∈ CTraces(Sut) (lines 12-15). Therefore the set T2 is empty (line
21), and Algorithm 4 returns "Pass≤mct" (line 22). �

Sketch of proof for (3): Sut ≤ct S
N =⇒ Sut ≤mct S

N (Proposition 35), therefore
Algorithm 4 returns "Pass≤ ct", "Pass≤mct". �

Complexity of Algorithm 4

The complexity of the function check(t, SN
i) is O(m×k) with m the number of valued

events in the trace t (i.e. its length), and k the number of columns in M[b], which
is likely large as reduced models still express all complete behaviors found in the

5.3 Passive testing with Autofunk 119

traces of a system under analysis. Finding a branch in a model is negligible thanks
to the hash mechanism, hence we only take the matrix traversal into account.

The complexity of Algorithm 4 is O(t × n × (m × k)) with t the number of complete
traces of Sut, n the number of models, and (m×k) the complexity of the check(t, SN

i

function. Compared to the number of traces and columns, the number of models n

is negligible (i.e. n << t and n << k), which means that the overall complexity is
O(t × m × k).

In our first experiments, we found that m << k, hence the complexity of the function
check(t, SN

i) can be updated to O(k), and the overall complexity becomes: O(t × k)
(with t ≈ k).

5.3 Passive testing with Autofunk 120

Algorithm 4: Offline passive testing algorithm

Input : R(SN), D(SN), CTraces(Sut)
Output : Verdicts and/or possibly fail trace sets T1, T2

1 BEGIN;
2 T1 = ∅;
3 T2 = ∅;
4 foreach trace ∈ CTraces(Sut) do
5 check = False;
6 for i = 1, . . . , n do
7 if check (trace, R(SN

i)) then
8 check = True;
9 break;

10 if check == False then
11 T1 = T1 ∪ {trace};
12 for i = 1, . . . , n do
13 if check (trace, D(SN

i)) then
14 check = True;
15 break;

16 if check == False then
17 T2 = T2 ∪ {trace};

18 if T1 == ∅ then
19 return "Pass≤ct";

20 else
21 if T2 == ∅ then
22 return "Pass≤mct" and T1;

23 else
24 return T1 and T2;

25 END;

26 Function check(Trace trace, STS S) : boolean is

27 if ∃ b = l0S
(a1(p1),G1,A1)...(am(pm),Gm,Am)=====================⇒ lm | trace = (a1(p), α1) . . . (an(p), αm)

and lm ∈ Pass then
28 M[b] = Mat(b) is the matrix m × k of b;
29 c[b] = 1;
30 while c[b] ≤ k do
31 M = M[b][∗, c[b]];
32 sat = True;
33 for j = 1, . . . , m do
34 if αj �|= M [j] then
35 sat = False;
36 break;

37 if sat == True then
38 return True;

39 c[b] + +;

40 return False;

5.3 Passive testing with Autofunk 121

5.4 Implementation and experimentation

In this section, we summarize the work done on the different Autofunk implemen-
tations for Michelin. Then, we give a few results on our offline passive testing
technique.

5.4.1 Implementation

By adding a testing module to Autofunk v3, we have developed a complete tool for
testing production systems at Michelin.

According to the cloc tool1, the latest version of Autofunk has 2831 lines of code
written in Java 8, along with 4 Drools rules used in Layer 1 of the model inference
module. According to JaCoCo2 (which stands for Java Code Coverage) tool, the
test suite (compound of 119 test cases) covers 90% of the code, with both unit and
functional tests. Our algorithms are extensively tested.

Users of Autofunk v3 interact with it using the command line. We designed par-
allelizable algorithms that we have used in combination with Java 8 streams and
parallel processing abilities. This gives interesting performance results on multi-core
processors, without affecting code readability. Autofunk v3 still embeds Drools, and
can either run a local Spark instance or connect to a Spark cluster (for the k-means
clustering), which is better for performance. Models are persisted on disk using
the Kryo3 serialization library. Finally, this tool is highly configurable thanks to the
(Typesafe) Config4 library.

Table 5.1 presents the differences across all Autofunk versions. All versions use
Drools to perform model inference, but only Autofunk v3 can perform testing as
explained in this chapter. Autofunk v1 does not segment the trace set because it is
primarily used for web applications, for which this task does not apply. Autofunk
v3 is heavily based on Autofunk v2, hence both use a context-specific reduction
technique by means of branch equivalence classes. Yet, Autofunk v3 uses MLlib for
its k-means implementation, and is more extensively tested.

5.4.2 Experimentation

We conducted some experiments with real sets of production events, recorded in
one of Michelin’s factories at different periods of time. The results given in this

1https://github.com/AlDanial/cloc
2https://github.com/jacoco/jacoco
3https://github.com/EsotericSoftware/kryo
4https://github.com/typesafehub/config

5.4 Implementation and experimentation 122

Au
to

fu
nk

U
se

D
ro

ol
s?

Pe
rf

or
m

in
fe

re
nc

e?
Pe

rf
or

m
te

st
in

g?
Se

gm
en

ta
ti

on
al

go
ri

th
m

R
ed

uc
ti

on
al

go
ri

th
m

C
od

e
co

ve
ra

ge
v1

�
�

×
N

on
e

B
is

im
ul

at
io

n
m

in
im

iz
at

io
n

<
50

%
v2

�
�

×
St

at
is

ti
ca

la
na

ly
si

s
B

ra
nc

h
eq

ui
va

le
nc

e
cl

as
se

s
70

%
v3

�
�

�
K-

m
ea

ns
(S

pa
rk

/
M

Ll
ib

)
B

ra
nc

h
eq

ui
va

le
nc

e
cl

as
se

s
90

%

Ta
b.

5.
1:

Su
m

m
ar

y
of

th
e

di
ff

er
en

t
Au

to
fu

nk
ve

rs
io

ns
.

Au
to

fu
nk

v3
is

ba
se

d
on

Au
to

fu
nk

v2
,w

hi
ch

ha
s

be
en

de
ve

lo
pe

d
fr

om
sc

ra
tc

h
(e

ve
n

th
ou

gh
in

sp
ir

ed
by

Au
to

fu
nk

v1
).

5.4 Implementation and experimentation 123

section are focused on our offline passive testing technique, built on-top of Autofunk
v3. We executed our implementation on a Linux (Debian) machine with 12 Intel(R)
Xeon(R) CPU X5660 @ 2.8GHz and 64GB RAM.

Table 5.2 shows the results of three experiments on the same production system with
different trace sets, recorded at different periods of time, with the latest Autofunk
version. The first column shows the experiment number (#), columns 2 and 3
respectively give the sizes of the trace sets of the system under analysis Sua and of
the system under test Sut. The two next columns show the percentage of pass traces
with respect to the relations ≤ct and ≤mct. The last column indicates the execution
time (in minutes) for the testing phase.

Card(CTraces(Sua)) Card(CTraces(Sut)) Card(T1) Card(T2) Time
1 2,075 2,075 0 0 1
2 53,996 2,075 62 1452 4
3 53,996 25,047 500 500 10

Tab. 5.2: This table shows the results of our offline passive testing method based on a same
specification.

In Experiment 1, we decided to use the same production events for both inferring
models, i.e. specifications, and testing. This experiment shows that our implementa-
tion behaves correctly when trace sets are similar, i.e. when behaviors of both Sua
and Sut are equivalent. That is why there are no possibly fail traces.

Experiment 2 has been run with traces of Sut that are older than those of Sua, which
is unusual as the de facto usage of our framework is to build specifications from a
production system Sua, and to take a newer or updated system as Sut. Here, only
30% (1452 traces in T2) of the traces of Sut are pass traces with respect to the
second implementation relation (same sequence of symbols with different values).
There are two explanations: (i) the system has been strongly updated between the
two periods of record (4 months), and (ii) production campaigns, i.e. grouping of
planned orders and process orders to produce a certain amount of products over a
certain period of time, were different (revealed by Autofunk, indicating that values
for some key parameters were unknown).

Finally, experiment 3 shows good results as the specification models are rich enough,
i.e. built from a larger set of traces (10 days) than the one collected on Sut. Such
an experiment is a typical usage of our framework at Michelin. The traces of Sut
have been collected for 5 days, and it took only 10 minutes to check conformance.
While 98% of the traces are pass traces, the remaining 2% (500 traces) are new
behaviors that never occurred before. Such a piece of information is essential for
Michelin engineers to detect potential regressions. Even though 2% may represent

5.4 Implementation and experimentation 124

a large set to analyze (500 traces in this experiment), Autofunk eases the work
of Michelin engineers by highlighting the traces to focus on. Instead of having
to check 25,000 traces manually, they only have to check 500 traces, which is a
significant improvement on a daily basis. Yet, such a subset may contain false
positives depending on the richness of the models, but using large sets of traces to
infer the models usually reduces the number of false positives.

5.5 Conclusion

In this chapter, we presented a fast passive testing framework built on-top of our
model inference framework Autofunk v3, which combines different techniques such
as model inference, expert systems, and machine learning.

In this work, we focus on complete traces exclusively because production systems
run continuously, and a few irrelevant behaviors are likely to happen, e.g., collecting
traces can be turned either on or off at any time, but also human operators in
a factory can act on the products. Tracking such irrelevant behaviors would be
inefficient as it would mean more processing time for results of no interest.

Given a large set of production events, our framework infers exact models whose
traces are included in the initial trace set of a system under analysis. Such models
are then reused as specifications to perform offline passive testing using a second
set of traces recorded on a system under test. Using two implementation relations
based on complete trace inclusion, Autofunk is able to determine what has changed
between the two systems. This is particularly useful for our industrial partner
Michelin because potential regressions can be detected while deploying changes
in production. Initial results on this offline method are encouraging, and Michelin
engineers see a real potential in this framework.

Given the preliminary results, We know that 2% of a large trace set (as mentioned
in the previous section) still represents many traces, which may be difficult to
analyze. Nonetheless in our manufacturing context, this is still valuable because,
before Autofunk, engineers had to manually test everything by hand. Now, Autofunk
performs most of the work automatically, and engineers only have to manually check
a small subset of traces compared to the initial trace set, which saves a lot of time.

In the next chapter, we give our thoughts on how to improve Autofunk as well as
perspectives for future work.

5.5 Conclusion 125

5.5 Conclusion 126

6Conclusions and future work

Contents
6.1 Summary of achievements . 127

6.2 New challenges in model inference 128

6.2.1 Building exact, or rather, more precise models 128

6.2.2 Scalability as a first-class citizen 129

6.2.3 Bringing together different methods and research fields . 130

6.3 Testing and beyond . 131

6.3.1 Improving usability . 131

6.3.2 Online passive testing 133

6.3.3 Integrating active testing with Autofunk 137

6.3.4 Data mining . 140

6.3.5 Refuting our main hypothesis 141

6.4 Final thoughts . 141

6.1 Summary of achievements

This thesis has proposed a novel approach to infer models of software systems
in order to perform conformance testing of production systems, with a technique
that leverages such models. The original aims and objectives of the thesis were as
follows:

• To infer partial yet exact models of production systems in a fast and efficient
manner, based on the data exchanged in a (production) environment;

• To design a conformance testing technique based on the inferred models,
targeting production systems. The main idea was to detect regressions across
similar production systems (e.g., a software update or a hardware upgrade).

Chapters 3 and 4 addressed the first of the objectives by proposing two approaches
combining model inference, machine learning, and expert systems to infer exact
models for web applications and production systems, wrapped into the Autofunk
framework. The expert system is composed of rules, capturing the knowledge of
human experts, and used either to filter the trace set to remove the undesired ones,

127

to infer Symbolic Transition Systems (STSs), or to build more abstract STSs. In
Chapter 4, the state merging is replaced with a context-specific state reduction based
on an event sequence-based abstraction. This state reduction can be seen as the
kTail algorithm [BF72] where k is as high as possible for every initial branch (or
path) of the original Symbolic Transition System (STS). This state reduction ensures
that the resulting models do not over-approximate the system under analysis, but it
is also very context-specific, and cannot be generalized. We also showed that our
approach is scalable: it can take thousands and thousands of traces and can still
build models quickly thanks to our specific state merging process.

The second objective was achieved by enhancing Autofunk with a passive testing
technique, presented in Chapter 5. Given a large set of production events, Autofunk
reuses the inferred models as specifications to perform offline passive testing, using
a second set of traces recorded on a system under test, and two implementation
relations to determine what has changed between the two systems. This is particu-
larly useful for our industrial partner Michelin because potential regressions can be
detected while deploying changes in production.

The next section introduces some perspectives for future work on model inference.
Section 6.3 is dedicated to future work on the testing part of our work. Section 6.4
closes this thesis.

6.2 New challenges in model inference

Model inference is a research field that has received a lot of attention over the past
three decades, and it is still gaining ground with the emergence of new kinds of
applications. Many recent works consider model inference to later perform analyses
of the models or automatic testing in order to check different aspects of the software
system such as robustness, security, and even regression testing, as presented in
this thesis. Nonetheless, model inference still has a few drawbacks, which require
further investigation, and we believe that the next three major directions could be
very beneficial.

6.2.1 Building exact, or rather, more precise models

When the inferred models are used for analysis purpose (verification or testing),
they must be as precise as possible. From the literature, we observed that the main
feature leading to over-approximation is the state merging process. A trivial solution
would be to use minimization techniques instead, e.g., a bisimulation minimization
as described in Chapter 3 of this thesis. As a reminder, the bisimulation relation
associated with a minimization technique merges the state sets that are bisimilar

6.2 New challenges in model inference 128

equivalent. This relation is stronger than a classical trace equivalence relation, but
it may be considered too strong since the bisimulation minimization usually does
not merge enough states, and thus may still produce large models. If another more
suitable relation can be used, and if verification or testing techniques can work well
with larger yet more precise models, which results can we expect? In this thesis, we
provided a preliminary answer to this question (which is context-specific), but there
is still a lot of work that could be done.

Another solution to limit non-approximation is to define and estimate quality metrics
[Ton+12; Lo+12] to guide the model construction. In [Ton+12], three metrics,
related to over- and under-approximation rates and model size, are measured to
balance over-approximation and under-approximation of the inferred models with
two search-based algorithms: (i) a multi-objective genetic algorithm, and (ii) the
non-dominated sorting genetic algorithm NSGA-II [Deb+02]. But this process is
time-consuming and can only be applied to small systems because the complete
models, i.e. the models compound of all the observations, are incrementally re-
generated from scratch to improve the metrics. An iterative process performed by
adding the observations one after another in the model could also be considered.
Other metrics could also be chosen depending on the context of the software system.
In Autofunk, a similar improvement would be to build submodels of a production
system. By now, we consider a whole workshop as a production system to infer
models. We distinguish the production lines, but apart from that, we do not make
any distinction among the different parts of the workshop. Nonetheless, there are
parts that are more critical than the others, at least in Michelin’s workshops. Being
able to focus on specific locations of a workshop would be interesting to build
smaller models, and this should bring significant improvements to the end users of
Autofunk.

6.2.2 Scalability as a first-class citizen

In this thesis, we tackled the problem of inferring models from production systems.
Such systems are distributed over several devices, and generate thousands of events
a day. Collecting, storing, and analyzing such amount of data becomes more and
more complicated, and model inference algorithms have to take these points into
account. To our knowledge, too few studies [Yan+06; PG09] take scalability into
account. That is also why we have proposed techniques that scale well in this thesis.
We shew that adopting contextual algorithms was interesting for performance (e.g.,
our context-specific reduction). We also believe that the use of specific parallel
programming paradigms and heuristics would be an interesting addition to quickly
build models or to find state equivalence classes. That is what we did in our Java
implementation. Besides, such challenges are close to those of what we now call "big

6.2 New challenges in model inference 129

data" [Hu+14]. This term not only defines the large volume of data but also new
processing algorithms and applications since the traditional ones are inadequate.

To pursue this path, we could consider other kinds of systems because applications
in the Industry become more and more complex, especially with the rise of Service-
Oriented Architectures (SOA), distributed systems, and more recently microservices1

[Tho15]. For instance, microservices are emerging as a new architectural style,
aiming at creating software systems as a set of small services, i.e. small applications,
each developed and deployed on its own. This package of services form the complete
software system. Inferring models of such systems is not doable with most of the
existing model inference techniques. On the other hand, Autofunk can use many
data sources to infer models. We chose to gather heterogeneous events between
different devices and software, which could be a path to follow if one would want to
infer models of microservices as each service owns its data.

6.2.3 Bringing together different methods and research fields

Some papers chose to combine different algorithms for optimizing model inference.
For instance, several works [Alu+05; Raf+05; Mer+11] replaced teachers and
oracles with testers to answer queries. Other works [AN13; Yan+13] combined static
analyses of source code with crawlers to increase code coverage rates, and reduce
exploration time. Other research domains, such as machine learning and data mining,
have also been considered to avoid the classical state merging stage. Ammons et
al. [Amm+02] developed a machine learning approach, called specification mining
to infer state machines. The authors focused on the most frequent interaction
patterns found in a scenario set. In this thesis, we also adopted machine learning to
automatically slice a trace set into several subsets so that we can infer several models
of a production system in a workshop (cf. Chapter 4 • Section 4.6 (page 104)).
Leveraging different domains such as the ones mentioned here sounds promising for
optimizing model inference. As an example, state merging might be replaced with a
kind of mechanism that would be automatically extracted from the characteristics or
the context of the software system.

In the next section, we give some perspectives related to our implementation of
Autofunk, the second main line of our work (i.e. software testing), and several ideas
for future works.

1http://martinfowler.com/articles/microservices.html

6.2 New challenges in model inference 130

6.3 Testing and beyond

Despite the promising results obtained by Autofunk in Chapter 5, there is room for
improvement. The next section is focused on Autofunk’s usability, i.e. how, we think,
Autofunk could be enhanced to be more widely used.

On the other hand, we only covered offline passive testing of production systems in
this thesis. To go further, we give the insight of an online passive version in Section
6.3.2, and we discuss the integration of some active testing concepts into Autofunk
in Section 6.3.3. Section 6.3.4 introduces our thoughts on data mining, which are
semi-related to the previous section on active testing. Finally, Section 6.3.5 discusses
our main assumption used throughout this thesis, i.e. we infer models of systems
that behave correctly, and what we could do to reject it.

6.3.1 Improving usability

Our implementation of Autofunk has primarily been built to validate our work, but
also to fill the gap between research and industrial applicability, thanks to our partner
Michelin. At the time of writing, Autofunk is a Java console application with about
3,000 lines of code, and 119 unit tests covering 90% of the code.

Nevertheless, it is clear that this tool is still a prototype, and not a production-
ready tool. As pointed out in this thesis, memory consumption remains an issue
for example, because we load all objects in memory in order to act on them. At
the time of writing, we partially fixed this problem by reducing Autofunk’s memory
footprint with better object representations in memory, but it is not future-proof.
With the rise of big data technologies and tools, it should be possible to find a better
solution to this issue. For instance, Autofunk v3 includes Apache Spark2, a framework
for large-scale data processing, which, among all, provides an implementation of
the k-means clustering algorithm. Such a framework is designed to handle large
data sets. It should be possible to make Autofunk more efficient by adapting our
algorithms on-top of Apache Spark or any similar big data framework, e.g., with a
Map-Reduce approach [DG08]. This is a programming model that allows to process
large data sets with distributed parallel algorithms. Most of the algorithms presented
in this thesis are already executable in parallel, but not distributed yet. Nonetheless,
running Autofunk on a computer cluster, i.e. a set of interconnected computers seen
as a single logical unit, should bring significant performance improvements, but it
should also refine the overall scalability.

2https://spark.apache.org/

6.3 Testing and beyond 131

By now, inference rules written with the Drools rule language, which are at the
heart of Autofunk, have to be packaged within the Java application. It would be
better to allow the configuration of such rules at runtime, e.g., using a graphical
user interface. This could also be helpful to write and manage the different sets of
inference rules, which is an issue we already mentioned earlier in this thesis. An
interface may mitigate such a drawback, but writing such inference rules remains a
delicate task. That is why we would like to investigate different approaches to avoid
such a labor. As we are already familiar with machine learning, we would like to
pursue in this path by proposing a machine learning technique that replaces some
of the inference rules. For instance, because the events in a production system are
text-based and readable, the inference rules needed during the filtering step might
be replaced by a method inspired by the works on automated text categorization
[Seb02]. Yet, it is manifest that the inference rules used to lift abstraction of the
models, as presented in Chapter 3 • Section 3.3.3 (page 62), still have to be written,
and cannot be easily replaced, because they strongly depend on the business.

Another point that would be worth working on is the visualization of the inferred
models and test results. At the time of writing, Autofunk is able to generate graphs
representing the generated models, but they are not really usable in practice because
of the size of the models. In most cases, the models represent behaviors of a
production system. The models fit a system’s physical layout in a factory. When a
possibly fail trace is raised, it would be nice to highlight the possibly faulty behavior
directly using the layout of the production system under test. That way, an engineer
would have all the information required to quickly determine what caused such a
behavior, and state whether it is a bug or a false positive. We could relate this idea
to the research field on fault localization [Jon+02; WD10], except that we would
locate faults in a physical manner in a factory.

Finally, we would like to reduce the number of false positives yield by our test
engine as presented in Chapter 5 • Section 5.4 (page 122). For the record, false
positives are behaviors that are considered possibly faulty, even though they are
correct, because such behaviors are not part of the reference models. We already
know that inferring reference models from large sets of traces reduces the number
of false positives, but there might be other methods to overcome this issue. For
instance, we proposed a weaker implementation relation that works well to avoid
false positives with similar behaviors that are (partially) known. Unfortunately, this
is not simply a problem of safe (regression) test selection [Ors+04] because we
cannot plainly reject all new behaviors (as we could do in some more traditional
testing scenarios). A naive approach would be to teach the test engine to recognize
the new yet correct behaviors, but it seems cumbersome. Instead, we believe that
improving Autofunk’s testing module with an online mode and some active testing
concepts may be more effective.

6.3 Testing and beyond 132

6.3.2 Online passive testing

In Chapter 5, we presented an offline passive testing technique, which we started to
adapt in order to propose an online passive testing technique as well. Both offline
and online modes are not completely unalike, they also serve different purposes. Our
online passive testing approach records traces on a system under test on-the-fly, and
then checks whether those traces satisfy specifications, still generated from a system
under analysis. It enables what we call just-in-time fault detection. Faults can be
revealed in near real-time on a running system so that users can be notified as soon
as possible. Here, our approach only indicates when a fault has been detected.

In online mode, we do not have complete traces (such as CTraces(Sut)), but traces
that are constructed on-the-fly by an instance of tester, every time an event is received.
Yet, we still consider a set of filtered traces, and not Traces(Sut) directly, because
it is possible to reuse the set of rules of Layer 1 in the model inference process (cf.
Chapter 4 • Section 4.3.1 (page 86)), so that irrelevant events are filtered out.

Each new production event passes through a proxy whose role is to distribute the
incoming events across the different instances of tester. The proxy functioning is
given in Algorithm 5. Each event is filtered (line 4) and transformed into a filtered
valued event (line 6), from which we extract its product identifier pid (line 7). The
valued event is then forwarded to the two right testers (lines 14 and 15), i.e. the
two instances for this pid, one for each STS set (R(SN) and D(SN)). If there is no
instance for a given model set yet, we create a new tester for this pid first (lines
8-13).

At this point, there should be two instances of tester running the same algorithm per
pid, i.e. per product being manufactured. Such an algorithm is of type checker-state,
which, for each valued event received (sent by the proxy), constructs runs based on
the models in either R(SN) or D(SN), until it reaches:

• a verdict location (cf. Chapter 5 • Section 5.2 (page 111)), which means
that the trace complies with the reference model set chosen (either R(SN) or
D(SN));

• an unexpected event that has been received or a guard that has not been
satisfied, which leads to a Fail verdict;

• a deadlock, which happens when no event is received after a certain delay,
which may lead to a Fail verdict too. This situation may occur when a product
is removed from the production line by a human operator for instance.

6.3 Testing and beyond 133

Algorithm 5: Online passive testing proxy

Input : Production events, model sets R(SN) and D(SN)
Output : Verdicts: Fail≤ct or Fail≤mct

1 BEGIN;
2 Instances = ∅;
3 while production event event do
4 if event is filtered by Layer 1 rules then
5 continue;

6 transform event into a valued event (a(p), α);
7 extract the product identifier pid′ from (a(p), α);
8 if � ∃ i1pid ∈ Instances | pid == pid′ then
9 create new tester i1pid(R(SN)) with pid = pid′;

10 Instances = Instances ∪ {i1pid};

11 if � ∃ i2pid ∈ Instances | pid == pid′ then
12 create new tester i2pid(D(SN)) with pid = pid′;
13 Instances = Instances ∪ {i2pid};

14 forward (a(p), α) to i1pid;
15 forward (a(p), α) to i2pid;

16 if i1pid has returned T �= ∅ then
17 return Fail≤ct;

18 if i2pid has returned T �= ∅ then
19 return Fail≤mct;

20 END;

When it cannot construct any run (or when a deadlock is detected), it means that
the observed trace does not lead to a Pass location, hence this trace is considered a
possibly fail trace. We introduce two new verdicts Fail≤ct and Fail≤mct that indicate
whether a trace does not comply with either R(SN) or D(SN). Such verdicts are
returned by the proxy given in Algorithm 5, depending on the result of the execution
of the testers (lines 16-19).

Algorithm 6 is executed by each tester instance. Its aim is to construct a trace trace

on-the-fly, and to returns a trace set T , which is empty if the current trace complies
with the model set SN , or not empty when there is either a deadlock or a guard that
has not been satisfied, i.e. when a fault has been detected.

Each model SN
i has its own set of runs RUNSi, which contains tuples of runs (r) and

column indices (col). Each run set is initialized with a tuple (q0, 0) | r = q0, col = 0
(line 3). When receiving a new valued event, the algorithm constructs a trace (line
5). For each model SN

i , the algorithm tries to find a tuple (r, col) in RUNSi so that
the location l associated with its run’s state qj−1 has, at least, one transition with the
symbolic action a(p) (line 8).

6.3 Testing and beyond 134

If the current tuple is the initial one (q0, 0), the algorithm loops over all transitions
t (in all branches b) having the symbolic action a(p) with G = M[b][j, ∗]. Here, the
goal is to find the columns c[b] in M[b] for which α ∪ v satisfies the guard M[b][j, c[b]]
(lines 10-12). When it finds a column that is satisfied, the algorithm computes a new
state qnext, and constructs a new run by completing r with the current valued event
and the new state: r · (a(p), α) · qnext (line 13). This new run is added to the run set
RUNS′ (line 14), which contains all runs found for a current valued event.

When the current tuple is not (q0, 0), the algorithm is already aware of the column
(col) in M[b], hence it does not need to retrieve it. For each transition t with
G = M[b][j, col], the algorithm determines whether α ∪ v satisfies M[b][j, col] (lines
16-17). In this case, it also computes a new state qnext, and completes the current
run r as before, which leads to a new run added to RUNS′ (line 19).

Once all runs have been covered, we replace the runs in RUNSi with those in
RUNS′ (line 20). Once all models SN

i have been covered, we check the presence of,
at least, one run in any of RUNSi (line 21). If there is no run, the algorithm has not
been able to find a transition that can be fired with the last received valued event,
i.e. there is no more transition or the guards have not been satisfied. That is why it
has not been able to create any run, and all run sets RUNSi are therefore empty.
Such a situation means that the trace does not comply with SN , and we return a
non-empty trace set T = {trace} (line 22), which is handled by the proxy to return
the right verdict (cf. Algorithm 5).

When we do not receive any valued event anymore, the algorithm has reached a
deadlock situation. There are two cases depending on the location l of the last state
q of the run r, for all (r, col) ∈ RUNSi (line 25). If l is not a verdict location, the
trace does not comply with SN , and we return a non-empty trace set T = {trace}.
Otherwise, we return an empty set T (line 27).

6.3 Testing and beyond 135

Algorithm 6: Online passive testing algorithm

Input : A STS set SN = {SN
1 , . . . , SN

n }, valued events (a(p), α)
Output : A set of traces T , which may be empty

1 BEGIN;
2 trace = ∅;
3 RUNSi = {(q0, 0) | q0 = (l0SN

i
, V 0SN

i
)}, (1 ≤ i ≤ n);

4 while valued event (a(p), α) do
5 trace = trace · (a(p), α);
6 for i = 1, . . . , n do

7 RUNS′ = ∅;
8 foreach (r, col) ∈ RUNSi | r = q0(a1(p), α1) . . . qj−1 with

qj−1 = (l, v) ∈ LSN
i

and l
a(p)==⇒ do

9 if (r, col) == (q0, 0) then

10 foreach t = l
a(p),G,A−−−−−→ lnext ∈→SN

i
with G = M[b][j, ∗] do

11 for c[b] = 1, . . . , k do
12 if α ∪ v |= M[b][j, c[b]] then
13 qnext = (lnext, vnext = A(v ∪ α));
14 RUNS′ = RUNS′ ∪ {(r · (a(p), α) · qnext, c[b])};

15 else

16 foreach t = l
a(p),G,A−−−−−→ lnext ∈→SN

i
with G = M[b][j, col] do

17 if α ∪ v |= M[b][j, col] then
18 qnext = (lnext, vnext = A(v ∪ α));
19 RUNS′ = RUNS′ ∪ {(r · (a(p), α) · qnext, col)};

20 RUNSi = RUNS′;

21 if ∀ i ∈ {1, . . . , n}, RUNSi == ∅ then
22 return {trace};

23 // No more valued event received (deadlock)

24 T = ∅;
25 if ∀ i ∈ {1, . . . , n}, ∃(r, col) ∈ RUNSi | r ends with q = (l, v) and l �∈ Pass then
26 T = T ∪ {trace};

27 return T ;

28 END;

6.3 Testing and beyond 136

At the time of writing, there are still open-ended questions regarding this online
method to devise a complete online passive algorithm. First of all, we need to find a
way to properly identify deadlocks. We know that products can stay for days in a
production system, hence it is complicated to set a timed limit. Another approach
would be to compute average delays between the events in the models R(Si) thanks
to the event’s time stamps, which can be retrieved in the valued events.

The current algorithm also does not support the presence of repetitive patterns. For
the record, a repetitive pattern is “a sequence of valued events that should contain
at least one valued event”, which we chose to remove during the model inference
because they do “not express a new and interesting behavior”. It was not an issue
in offline passive testing because we applied the same process on the traces of
both Sua and Sut, but in online mode, it is not possible anymore as we construct
a trace on-the-fly. It might be possible to deal with the repetitive patterns in our
online technique by considering a set of patterns P , defined a priori, for which the
algorithm would be able to detect them on-the-fly, and to construct a special run
with a cycle to express the detected pattern.

The issue above is linked to the fact that we get a stream of production events from
Sut, which we filter to remove irrelevant events only (i.e. is incomplete traces). Yet,
we are not able to remove incomplete traces on-the-fly. This is worth noting because
it will likely lead to more false positives in online mode than in offline mode (for
which we consider complete traces of Sut exclusively).

Last but not least, running two testers per product (pid) will result in many instances
executed in parallel as there are thousands of products in a factory at any given
time. Such a situation may not scale well, especially with the notion of deadlocks
mentioned previously. Indeed, we might have too many instances executed in
parallel, which would freeze the testing process. One option to avoid too many
instances at the same time would be to maintain two fixed pools of instances for
both the model sets R(SN) and D(SN), and to store the runs RUNSi out of these
instances (e.g., in a in-memory database). That way, the instances could be reused.
Nonetheless, there are many events exchanged at the same time in a production
system, and we need to find a non-blocking solution to accept and handle these
events.

6.3.3 Integrating active testing with Autofunk

Active testing, as defined in Chapter 2.1 • Section 2.1.3 (page 24), works by stimu-
lating a system under test. We chose not to take this direction because stimulating a
production system might break it if one sends incorrect data. Indeed, as there are
physical devices behind software, it could lead to severe damages.

6.3 Testing and beyond 137

Nonetheless, and according to our partner Michelin, it should be possible to repro-
duce a production environment in a simulation room, and thus to simulate a whole
production system without the physical devices (only the logical controllers). We
could then leverage our inferred models, which contain the data collected from a
real environment, to construct a set of inputs, which we would reuse on the system
under test in simulation room. It is worth mentioning that this principle is not strictly
active testing because we do not generate the test cases that lead to verdicts. Yet, we
believe that adding such an active approach to Autofunk would speed up the testing
process significantly by avoiding to collect traces of a system under test for a long
period, and it would also make its adoption easier.

A simplistic way to integrate active testing with Autofunk would be to "replay" [TH00;
OK05] the data previously "recorded", i.e. the data available in the inferred models.
This is a path Michelin would like to explore. Figure 6.1 gives the insight of their
use case. A system under analysis Sua in a production environment is used to build
a first set of models. A system under test Sut, which is likely a different version
of the system under analysis, is set up in a simulation environment (as already
mentioned before). Replaying the data from Sua in Sut should produce new events
that would be used to infer models of Sut. At this point, it should be possible to
reuse the passive testing technique described in this thesis. Nevertheless, the main
unanswered question is how to replay the data in a safe manner? Such an approach
also implies that the initial conditions are exactly the same between the system
under analysis and the system under test. This is yet another strong assumption we
would prefer not to make.

Instead, we would like to leverage our inferred models to extract input test data, for
instance, by mining realistic domains as defined in [End+11]. Realistic domains are
data domains found in concrete implementations. A data domain should come with
a practical way to generate values in it. This would be particularly useful to actively
interact with a system as it would ease the process of generating test data by means
of a sampler for instance, i.e. a value generator.

Mining realistic domains for testing purpose is not the only use case in which we
believe. Indeed, our inferred models own a lot of interesting information related
to the behaviors of a production system running in production, and it could be
interesting to apply data mining techniques on them.

6.3 Testing and beyond 138

Fig. 6.1: Insight of an approach discussed with Michelin to use a replay technique with
Autofunk in order to track what has changed between two versions of a production
system.

6.3 Testing and beyond 139

6.3.4 Data mining

Data mining [Cha+06] is an interdisciplinary research domain whose goal is to
extract information from a data set. For example, visualization, which we already
mentioned in a previous section, is a component of data mining. In our case, given
the collected trace sets and/or the inferred models, we have a lot of information
available for data mining.

As an example, a side project we quickly set up with Michelin engineers was to
visualize the data collected by Autofunk. We relied on a tool called Kibana3 to show
different business metrics, such as the usage rates of some stores in a workshop, the
number of manufactured products per day, but also the usage rates of the production
machines themselves as depicted in Figure 6.2. Such information could be used to
create models that might predict maintenance operations for instance. The main
objective of predictive maintenance [Mob02] is to decide when to maintain a system
according to its state, which we could deduce by mining the data contained in the
inferred models.

Fig. 6.2: Dashboard displaying various business metrics created with Kibana, a visualization
tool.

We could also extract time data from the models. A potential use case would be to
detect slowness in the production lines. That way, we might highlight imperceptible
abnormal functioning slowing down the whole manufacturing process. This is

3https://www.elastic.co/products/kibana

6.3 Testing and beyond 140

somehow related to the workload-based performance testing approach introduced by
Avritzer et al. [Avr+02], and more generally, to the Performance Testing [VW98] and
Knowledge Management [PS15] fields.

6.3.5 Refuting our main hypothesis

As stated in the introduction of this thesis (cf. Chapter 1 • Section 1.2 (page 3)),
we consider a system under analysis as a system which behaves correctly. In other
words, such a system does not produce any fault. It is not entirely unrealistic
since this assumption has been validated with our industrial partner Michelin. In
fact, Michelin’s production systems run continuously with only a few scheduled
downtimes, i.e. periods when either the whole factory or only a workshop is
unavailable, e.g., for maintenance. Otherwise systems are fully operational.

That being said, their need for a reliable method to perform upgrades, which led to
the work presented in this thesis, demonstrates that such systems are not error-proof.
Putting it differently, inferring models representing behaviors of a software under
analysis from production data is compelling, but it comes at a price: it is likely that
Autofunk will infer erroneous behaviors due to a fault that happened in a production
environment, which will not be revealed by our testing module. It is not an issue
when performing, for instance, robustness testing, but it should not be used for
conformance testing. We were able to perform conformance testing only because of
Michelin’s conditions, which we could extend to most of the existing industrial and
manufacturing contexts. Nevertheless, it cannot be applied in all cases.

Based on this state, we would like to reject such a hypothesis to perform conformance
testing based on our inferred models, but also to make the models more accurate.
We already highlighted a few paths to improve the accuracy of the inferred models
in Section 6.2.1. To go a step further, we could apply model checking [BK+08] if we
consider our inferred models as the system models. Model checking is a verification
technique that explores all possible system states, described in a system model, in a
brute-force manner thanks to a model checker. It is useful to show whether a given
system model truly satisfies a certain property. Nonetheless, such properties have to
be provided, and we hit a known issue again: the lack of up-to-date documentation
and/or specification of legacy systems.

6.4 Final thoughts

In this thesis, we proposed a solution to a practical problem that led to two main
research directions, each opening the door to many different fields as well as many
new challenges. The collaboration with Michelin has been successful, yet we believe

6.4 Final thoughts 141

that working with other industrial companies would be a huge benefit, and moving
toward a consortium would be interesting for both Academia and Industry people.

Over the last three years, we met several researchers who were working on legacy
systems. Such systems may be outdated or simply old, given how software are deeply
established in our lives, computer scientists are just at the beginning of the research
realm on these systems.

6.4 Final thoughts 142

6.4 Final thoughts 143

6.4 Final thoughts 144

Bibliography

[Abd+06] Parosh Aziz Abdulla, Lisa Kaati, and Johanna Hogberg. Bisimulation Minimiza-
tion of Tree Automata. Tech. rep. In Proc. 11th Int. Conf. Implementation and
Application of Automata, volume 4094 of LNCS, 2006 (cit. on p. 59).

[Abr87] Samson Abramsky. “Observation Equivalence As a Testing Equivalence”. In:
Theoretical Computer Science 53.2–3 (1987), pp. 225 –241 (cit. on p. 23).

[AD94] Rajeev Alur and David L. Dill. “A Theory of Timed Automata”. In: Theoretical
Computer Science 126 (1994), pp. 183–235 (cit. on p. 16).

[Alc+04] Baptiste Alcalde, Ana Cavalli, Dongluo Chen, Davy Khuu, and David Lee.
“Network Protocol System Passive Testing for Fault Management: A Backward
Checking Approach”. In: Formal Techniques for Networked and Distributed
Systems–FORTE 2004. Springer, 2004, pp. 150–166 (cit. on p. 26).

[Alu+05] Rajeev Alur, Pavol Černý, P. Madhusudan, and Wonhong Nam. “Synthesis of
Interface Specifications for Java Classes”. In: SIGPLAN Not. 40.1 (Jan. 2005),
pp. 98–109 (cit. on pp. 42, 130).

[Ama+08] D. Amalfitano, A.R. Fasolino, and P. Tramontana. “Reverse Engineering Finite
State Machines from Rich Internet Applications”. In: Reverse Engineering, 2008.
WCRE ’08. 15th Working Conference On. 2008, pp. 69–73 (cit. on pp. 33, 35,
37).

[Ama+11] D. Amalfitano, A.R. Fasolino, and P. Tramontana. “A GUI Crawling-Based Tech-
nique for Android Mobile Application Testing”. In: Software Testing, Verification
and Validation Workshops (ICSTW), 2011 IEEE Fourth International Conference
On. 2011, pp. 252–261 (cit. on pp. 33–35, 37).

[Ama+12] Domenico Amalfitano, Anna Rita Fasolino, Porfirio Tramontana, Salvatore
De Carmine, and Atif M. Memon. “Using GUI Ripping for Automated Testing
of Android Applications”. In: Proceedings of the 27th IEEE/ACM International
Conference on Automated Software Engineering. ASE 2012. New York, NY, USA:
ACM, 2012, pp. 258–261 (cit. on pp. 34, 35, 37, 71).

[Ama+14] Domenico Amalfitano, Anna Rita Fasolino, Porfirio Tramontana, Bryan Dzung
Ta, and Atif M. Memon. “MobiGUITAR – A Tool for Automated Model-Based
Testing of Mobile Apps”. In: IEEE Software (2014) (cit. on pp. 27, 33–35, 37).

[Amm+02] Glenn Ammons, Rastislav Bodík, and James R. Larus. “Mining Specifications”.
In: SIGPLAN Not. 37.1 (Jan. 2002), pp. 4–16 (cit. on pp. 27, 41, 130).

145

[AN13] Tanzirul Azim and Iulian Neamtiu. “Targeted and Depth-First Exploration for
Systematic Testing of Android Apps”. In: Proceedings of the 2013 ACM SIGPLAN
International Conference on Object Oriented Programming Systems Languages
& Applications. OOPSLA ’13. Indianapolis, Indiana, USA: ACM, 2013,
pp. 641–660 (cit. on pp. 34, 37, 130).

[Ana+12] Saswat Anand, Mayur Naik, Mary Jean Harrold, and Hongseok Yang. “Au-
tomated Concolic Testing of Smartphone Apps”. In: Proceedings of the ACM
SIGSOFT 20th International Symposium on the Foundations of Software Engi-
neering. FSE ’12. New York, NY, USA: ACM, 2012, 59:1–59:11 (cit. on p. 71).

[And+12] César Andrés, Mercedes G Merayo, and Manuel Núnez. “Formal Passive Testing
of Timed Systems: Theory and Tools”. In: Software Testing, Verification and
Reliability 22.6 (2012), pp. 365–405 (cit. on p. 25).

[Ang81] Dana Angluin. “A Note on the Number of Queries Needed to Identify Regular
Languages”. In: Information and Control 51.1 (1981), pp. 76 –87 (cit. on p. 31).

[Ang87] Dana Angluin. “Learning Regular Sets from Queries and Counterexamples”.
In: Information and Computation 75.2 (1987), pp. 87 –106 (cit. on pp. 27, 28,
30).

[Ant+11] J. Antunes, N. Neves, and P. Verissimo. “Reverse Engineering of Protocols
from Network Traces”. In: Reverse Engineering (WCRE), 2011 18th Working
Conference On. 2011, pp. 169–178 (cit. on p. 27).

[Avr+02] Alberto Avritzer, Joe Kondek, Danielle Liu, and Elaine J Weyuker. “Software
Performance Testing Based on Workload Characterization”. In: Proceedings
of the 3rd International Workshop on Software and Performance. ACM. 2002,
pp. 17–24 (cit. on p. 141).

[Bar+11] Mike Barnett, Manuel Fahndrich, K. Rustan M. Leino, et al. “Specification and
Verification: The Spec# Experience”. In: Communications of the ACM 54.6
(2011), pp. 81–91 (cit. on p. 16).

[BD04] P. Bourque and R. Dupuis. “Guide to the Software Engineering Body of Knowl-
edge 2004 Version”. In: Guide to the Software Engineering Body of Knowledge,
2004. SWEBOK (2004) (cit. on p. 12).

[Beo+15] Harsh Beohar, Mahsa Varshosaz, and Mohammad Reza Mousavi. “Basic Be-
havioral Models for Software Product Lines: Expressiveness and Testing Pre-
Orders”. In: Science of Computer Programming (2015), pp. – (cit. on p. 23).

[Ber+04] Antonia Bertolino, Andrea Polini, Paola Inverardi, and Henry Muccini. “Towards
Anti-Model-Based Testing”. In: Proc. DSN 2004 (Ext. abstract) (2004), pp. 124–
125 (cit. on p. 2).

[Ber+06] Therese Berg, Bengt Jonsson, and Harald Raffelt. “Regular Inference for State
Machines with Parameters”. English. In: Fundamental Approaches to Software
Engineering. Ed. by Luciano Baresi and Reiko Heckel. Vol. 3922. Lecture Notes
in Computer Science. Springer Berlin Heidelberg, 2006, pp. 107–121 (cit. on
p. 30).

Bibliography 146

[Ber+08] Therese Berg, Bengt Jonsson, and Harald Raffelt. “Regular Inference for State
Machines Using Domains with Equality Tests”. English. In: Fundamental Ap-
proaches to Software Engineering. Ed. by JosÃ©Luiz Fiadeiro and Paola Inver-
ardi. Vol. 4961. Lecture Notes in Computer Science. Springer Berlin Heidelberg,
2008, pp. 317–331 (cit. on p. 30).

[Ber+09] Antonia Bertolino, Paola Inverardi, Patrizio Pelliccione, and Massimo Tivoli.
“Automatic Synthesis of Behavior Protocols for Composable Web-Services”. In:
Proceedings of the the 7th Joint Meeting of the European Software Engineering
Conference and the ACM SIGSOFT Symposium on the Foundations of Software
Engineering. ESEC/FSE ’09. New York, NY, USA: ACM, 2009, pp. 141–150
(cit. on pp. 27, 43).

[Ber06] Therese Berg. “Regular inference for reactive systems”. In: (2006) (cit. on
p. 29).

[Ber07] Antonia Bertolino. “Software Testing Research: Achievements, Challenges,
Dreams”. In: Future of Software Engineering, 2007. FOSE ’07. 2007, pp. 85–103
(cit. on p. 1).

[Ber91] Gilles Bernot. “Testing Against Formal Specifications: A Theoretical View”.
In: Proceedings of the International Joint Conference on Theory and Practice
of Software Development on Advances in Distributed Computing (ADC) and
Colloquium on Combining Paradigms for Software Development (CCPSD): Vol.
2. TAPSOFT ’91. Brighton, United Kingdom: Springer-Verlag New York, Inc.,
1991, pp. 99–119 (cit. on p. 23).

[BF72] A.W. Biermann and J.A. Feldman. “On the Synthesis of Finite-State Machines
from Samples of Their Behavior”. In: Computers, IEEE Transactions on C-21.6
(1972), pp. 592–597 (cit. on pp. 38, 128).

[BK+08] Christel Baier, Joost-Pieter Katoen, et al. Principles of Model Checking. MIT
press Cambridge, 2008 (cit. on p. 141).

[BM83] D.L. Bird and C.U. Munoz. “Automatic Generation of Random Self-Checking
Test Cases”. In: IBM Systems Journal 22.3 (1983), pp. 229–245 (cit. on p. 14).

[Boh79] Barry W. Bohem. “Software Engineering; R & D Trends and Defense Needs”.
In: Research Directions in Software Technology (Ch. 22). Ed. by P. Wegner.
Cambridge, MA: MIT Press, 1979, pp. 1–9 (cit. on p. 10).

[Boo91] G. Booch. Object Oriented Design: With Applications. The Benjamin/Cummings
Series in Ada and Software Engineering. Benjamin/Cummings Pub., 1991
(cit. on p. 1).

[BR70] J. N. Buxton and B. Randell, eds. Software Engineering Techniques: Report of a
Conference Sponsored by the NATO Science Committee, Rome, Italy, 27-31 Oct.
1969, Brussels, Scientific Affairs Division, NATO. 1970 (cit. on p. 10).

[Bri89] Ed Brinksma. “Formal Approach to Conformance Testing”. In: Proc. Int. Work-
shop on Protocol Test Systems. North-Holland. 1989, pp. 311–325 (cit. on
p. 22).

[Cav+03] Ana Cavalli, Caroline Gervy, and Svetlana Prokopenko. “New approaches
for passive testing using an extended finite state machine specification”. In:
Information and Software Technology 45.12 (2003), pp. 837–852 (cit. on p. 26).

Bibliography 147

[Cav+09a] A Cavalli, Azzedine Benameur, Wissam Mallouli, and Keqin Li. “A Passive
Testing Approach for Security Checking and Its Pratical Usage for Web Services
Monitoring”. In: NOTERE 2009 (2009) (cit. on p. 25).

[Cav+09b] Ana Cavalli, Stephane Maag, and Edgardo Montes de Oca. “A Passive Confor-
mance Testing Approach for a MANET Routing Protocol”. In: Proceedings of
the 2009 ACM Symposium on Applied Computing. SAC ’09. New York, NY, USA:
ACM, 2009, pp. 207–211 (cit. on p. 25).

[Cav+15] Ana R Cavalli, Teruo Higashino, and Manuel Núñez. “A survey on formal active
and passive testing with applications to the cloud”. In: annals of telecommunications-
annales des télécommunications 70.3-4 (2015), pp. 85–93 (cit. on p. 26).

[Cha+06] Soumen Chakrabarti, Martin Ester, Usama Fayyad, et al. “Data Mining Curricu-
lum: A Proposal (Version 1.0)”. In: Intensive Working Group of ACM SIGKDD
Curriculum Committee (2006) (cit. on p. 140).

[Cho+13] Wontae Choi, George Necula, and Koushik Sen. “Guided GUI Testing of Android
Apps with Minimal Restart and Approximate Learning”. In: Proceedings of the
2013 ACM SIGPLAN International Conference on Object Oriented Programming
Systems Languages and Applications. OOPSLA ’13. New York, NY, USA: ACM,
2013, pp. 623–640 (cit. on pp. 35, 37).

[Cla+99] Edmund M Clarke, Orna Grumberg, and Doron Peled. Model checking. MIT
press, 1999 (cit. on p. 10).

[CM13] Xiaoping Che and Stephane Maag. “Passive testing on performance require-
ments of network protocols”. In: Advanced Information Networking and Applica-
tions Workshops (WAINA), 2013 27th International Conference on. IEEE. 2013,
pp. 1439–1444 (cit. on p. 26).

[Com+10] David Combe, Colin De La Higuera, and Jean-Christophe Janodet. “Zulu:
An Interactive Learning Competition”. In: Finite-State Methods and Natural
Language Processing. Springer, 2010, pp. 139–146 (cit. on p. 31).

[Cot+07] Domenico Cotroneo, Roberto Pietrantuono, Leonardo Mariani, and Fabrizio
Pastore. “Investigation of Failure Causes in Workload-Driven Reliability Testing”.
In: Fourth International Workshop on Software Quality Assurance: In Conjunction
with the 6th ESEC/FSE Joint Meeting. ACM. 2007, pp. 78–85 (cit. on p. 39).

[Cup+05] Frederic Cuppens, Nora Cuppens-Boulahia, and Thierry Sans. “Nomad: A
Security Model with Non Atomic Actions and Deadlines”. In: Computer Security
Foundations, 2005. CSFW-18 2005. 18th IEEE Workshop. IEEE. 2005, pp. 186–
196 (cit. on p. 25).

[Dal+10] Valentin Dallmeier, Nikolai Knopp, Christoph Mallon, Sebastian Hack, and
Andreas Zeller. “Generating Test Cases for Specification Mining”. In: Proceedings
of the 19th International Symposium on Software Testing and Analysis. ISSTA
’10. New York, NY, USA: ACM, 2010, pp. 85–96 (cit. on p. 42).

[Dal+12] Valentin Dallmeier, Martin Burger, Tobias Orth, and Andreas Zeller. “WebMate:
A Tool for Testing Web 2.0 Applications”. In: Proceedings of the Workshop on
JavaScript Tools. JSTools ’12. New York, NY, USA: ACM, 2012, pp. 11–15 (cit.
on p. 37).

Bibliography 148

[Deb+02] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan. “A
Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II”. In: Evolutionary
Computation, IEEE Transactions on 6.2 (2002), pp. 182–197 (cit. on p. 129).

[DG08] Jeffrey Dean and Sanjay Ghemawat. “MapReduce: Simplified Data Processing
on Large Clusters”. In: Communications of the ACM 51.1 (2008), pp. 107–113
(cit. on p. 131).

[DN81] Joe W. Duran and Simeon Ntafos. “A Report on Random Testing”. In: Pro-
ceedings of the 5th International Conference on Software Engineering. ICSE ’81.
Piscataway, NJ, USA: IEEE Press, 1981, pp. 179–183 (cit. on p. 14).

[DNH84] Rocco De Nicola and Matthew CB Hennessy. “Testing Equivalences for Pro-
cesses”. In: Theoretical computer science 34.1 (1984), pp. 83–133 (cit. on pp. 5,
23, 111, 113).

[DR99] Joseph S Dumas and Janice Redish. A Practical Guide to Usability Testing.
Intellect Books, 1999 (cit. on p. 11).

[DS14a] William Durand and Sébastien Salva. “Inférence De Modeles Dirigée Par La
Logique Métier”. In: Actes de la 13eme édition d’AFADL, atelier francophone
sur les Approches Formelles dans l’Assistance au Développement de Logiciels, juin
2014. (2014), p. 31 (cit. on pp. 5, 6, 48).

[DS14b] William Durand and Sébastien Salva. “Inferring Models with Rule-Based Expert
Systems”. In: Proceedings of the Fifth Symposium on Information and Commu-
nication Technology, SoICT ’14, Hanoi, Vietnam, December 4-5, 2014. 2014,
pp. 92–101 (cit. on pp. 5, 6, 48).

[DS15a] William Durand and Sébastien Salva. “Autofunk: An Inference-Based Formal
Model Generation Framework for Production Systems”. In: FM 2015: Formal
Methods - 20th International Symposium, Oslo, Norway, June 24-26, 2015,
Proceedings. 2015, pp. 577–580 (cit. on pp. 5, 6, 81).

[DS15b] William Durand and Sebastien Salva. “Passive Testing of Production Systems
Based on Model Inference”. In: Formal Methods and Models for Codesign (MEM-
OCODE), 2015 ACM/IEEE International Conference On. 2015, pp. 138–147
(cit. on pp. 5, 7, 111).

[Dup96] Pierre Dupont. “Incremental Regular Inference”. In: Proceedings of the Third
ICGI-96. Springer, 1996, pp. 222–237 (cit. on p. 31).

[End+11] Ivan Enderlin, Frédéric Dadeau, Alain Giorgetti, and Abdallah Ben Othman.
“Praspel: A Specification Language for Contract-Based Testing in PHP”. In:
Proceedings of the 23rd IFIP WG 6.1 International Conference on Testing Software
and Systems. ICTSS’11. Berlin, Heidelberg: Springer-Verlag, 2011, pp. 64–79
(cit. on pp. 16, 138).

[Ern+07] Michael D. Ernst, Jeff H. Perkins, Philip J. Guo, et al. “the Daikon System for
Dynamic Detection of Likely Invariants”. In: Science of Computer Programming
69.1–3 (2007). Special issue on Experimental Software and Toolkits, pp. 35
–45 (cit. on p. 40).

Bibliography 149

[Ern+99] Michael D. Ernst, Jake Cockrell, William G. Griswold, and David Notkin. “Dy-
namically Discovering Likely Program Invariants to Support Program Evo-
lution”. In: Proceedings of the 21st International Conference on Software En-
gineering. ICSE ’99. New York, NY, USA: ACM, 1999, pp. 213–224 (cit. on
p. 39).

[Fer89] Jean-Claude Fernandez. “An Implementation of an Efficient Algorithm for
Bisimulation Equivalence”. In: Science of Computer Programming 13 (1989),
pp. 13–219 (cit. on pp. 23, 59).

[Fit12] Melvin Fitting. First-order logic and automated theorem proving. Springer Sci-
ence & Business Media, 2012 (cit. on p. 10).

[FR14] R. Fielding and J. Reschke. Hypertext Transfer Protocol (HTTP/1.1): Message
Syntax and Routing. RFC 7230. http://www.rfc-editor.org/rfc/rfc7230.
txt. RFC Editor, 2014 (cit. on pp. 48, 54).

[Fra+05] L. Frantzen, J. Tretmans, and T.A.C. Willemse. “Test Generation Based on
Symbolic Specifications”. In: FATES 2004. Ed. by J. Grabowski and B. Nielsen.
Lecture Notes in Computer Science 3395. Springer, 2005, pp. 1–15 (cit. on
pp. 18–20, 56).

[Fra+06] L. Frantzen, J. Tretmans, and T. A. C. Willemse. “A Symbolic Framework
for Model-Based Testing”. In: Proceedings of the First Combined International
Conference on Formal Approaches to Software Testing and Runtime Verification.
FATES’06/RV’06. Seattle, WA: Springer-Verlag, 2006, pp. 40–54 (cit. on p. 56).

[Ghe+09] Carlo Ghezzi, Andrea Mocci, and Mattia Monga. “Synthesizing Intensional
Behavior Models by Graph Transformation”. In: Proceedings of the 31st Inter-
national Conference on Software Engineering. ICSE ’09. Washington, DC, USA:
IEEE Computer Society, 2009, pp. 430–440 (cit. on p. 40).

[God+08] Patrice Godefroid, Michael Y. Levin, and David Molnar. “Automated Whitebox
Fuzz Testing”. In: In NDSS. 2008 (cit. on p. 14).

[Gol67] E Mark Gold. “Language Identification in the Limit”. In: Information and control
10.5 (1967), pp. 447–474 (cit. on p. 27).

[Gra+01] Todd L Graves, Mary Jean Harrold, Jung-Min Kim, Adam Porter, and Gregg
Rothermel. “An Empirical Study of Regression Test Selection Techniques”. In:
ACM Transactions on Software Engineering and Methodology (TOSEM) 10.2
(2001), pp. 184–208 (cit. on p. 13).

[Gro+08] Roland Groz, Keqin Li, Alexandre Petrenko, and Muzammil Shahbaz. “Modular
system verification by inference, testing and reachability analysis”. In: Testing
of Software and Communicating Systems. Springer, 2008, pp. 216–233 (cit. on
p. 27).

[Gro+12] Roland Groz, Muhammad-Naeem Irfan, and Catherine Oriat. “Leveraging
Applications of Formal Methods, Verification and Validation. Technologies for
Mastering Change: 5th International Symposium, ISoLA 2012, Heraklion, Crete,
Greece, October 15-18, 2012, Proceedings, Part I”. In: ed. by Tiziana Margaria
and Bernhard Steffen. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.
Chap. Algorithmic Improvements on Regular Inference of Software Models and
Perspectives for Security Testing, pp. 444–457 (cit. on p. 27).

Bibliography 150

[HA04] Victoria J. Hodge and Jim Austin. “A Survey of Outlier Detection Method-
ologies”. In: Artificial Intelligence Review 22 (2 2004), pp. 85–126 (cit. on
p. 105).

[Hal+91] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. “The synchronous dataflow
programming language Lustre”. In: Proceedings of the IEEE 79.9 (1991), pp. 1305–
1320 (cit. on p. 16).

[Ham77] R.G. Hamlet. “Testing Programs with the Aid of a Compiler”. In: Software
Engineering, IEEE Transactions on SE-3.4 (1977), pp. 279–290 (cit. on p. 14).

[HL95] Matthew Hennessy and Huimin Lin. “Symbolic Bisimulations”. In: Theoretical
Computer Science 138.2 (1995), pp. 353–389 (cit. on p. 18).

[HM80] Matthew Hennessy and Robin Milner. On Observing Nondeterminism and Con-
currency. Springer, 1980 (cit. on p. 23).

[Hor51] Alfred Horn. “On Sentences Which Are True of Direct Unions of Algebras”. In:
The Journal of Symbolic Logic 16 (01 Mar. 1951), pp. 14–21 (cit. on p. 55).

[How+12a] Falk Howar, Bernhard Steffen, Bengt Jonsson, and Sofia Cassel. “Inferring
Canonical Register Automata”. English. In: Verification, Model Checking, and Ab-
stract Interpretation. Ed. by Viktor Kuncak and Andrey Rybalchenko. Vol. 7148.
Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2012, pp. 251–
266 (cit. on p. 30).

[How+12b] Falk Howar, Malte Isberner, Bernhard Steffen, Oliver Bauer, and Bengt Jonsson.
“Inferring Semantic Interfaces of Data Structures”. English. In: Leveraging
Applications of Formal Methods, Verification and Validation. Technologies for
Mastering Change. Ed. by Tiziana Margaria and Bernhard Steffen. Vol. 7609.
Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2012, pp. 554–
571 (cit. on p. 30).

[HP13] Wen-ling Huang and Jan Peleska. “Exhaustive Model-Based Equivalence Class
Testing”. English. In: Testing Software and Systems. Ed. by Hüsnü Yenigün,
Cemal Yilmaz, and Andreas Ulrich. Vol. 8254. Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 2013, pp. 49–64 (cit. on p. 14).

[HR04] Michael Huth and Mark Ryan. Logic in Computer Science: Modelling and Rea-
soning About Systems. Cambridge University Press, 2004 (cit. on p. 18).

[HT97] Lex Heerink and Jan Tretmans. “Refusal Testing for Classes of Transition
Systems with Inputs and Outputs”. In: Formal Description Techniques and
Protocol Specification, Testing and Verification. Springer, 1997, pp. 23–39 (cit.
on p. 23).

[Hu+14] Han Hu, Yonggang Wen, Tat-Seng Chua, and Xuelong Li. “Toward Scalable
Systems for Big Data Analytics: A Technology Tutorial”. In: Access, IEEE 2
(2014), pp. 652–687 (cit. on p. 130).

[Hun+02] Hardi Hungar, Tiziana Margaria, and Bernhard Steffen. “Model Generation for
Legacy Systems”. In: Radical Innovations of Software and Systems Engineering
in the Future, 9th International Workshop, RISSEF 2002, Venice, Italy, October
7-11, 2002, Revised Papers. 2002, pp. 167–183 (cit. on pp. 34, 37).

Bibliography 151

[Hun+04] Hardi Hungar, Tiziana Margaria, and Bernhard Steffen. “Model Generation
for Legacy Systems”. English. In: Radical Innovations of Software and Systems
Engineering in the Future. Ed. by Martin Wirsing, Alexander Knapp, and Simon-
etta Balsamo. Vol. 2941. Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2004, pp. 167–183 (cit. on p. 40).

[Irf+12] Muhammad-Naeem Irfan, Roland Groz, and Catherine Oriat. “Improving Model
Inference of Black Box Components Having Large Input Test Set.” In: ICGI.
Citeseer. 2012, pp. 133–138 (cit. on p. 30).

[JAH79] M. A. Wong J. A. Hartigan. “Algorithm AS 136: A K-Means Clustering Algo-
rithm”. In: Journal of the Royal Statistical Society. Series C (Applied Statistics)
28.1 (1979), pp. 100–108 (cit. on p. 105).

[JM12] Mona Erfani Joorabchi and Ali Mesbah. “Reverse Engineering IOS Mobile
Applications”. In: Proceedings of the 2012 19th Working Conference on Reverse
Engineering. WCRE ’12. Washington, DC, USA: IEEE Computer Society, 2012,
pp. 177–186 (cit. on p. 37).

[Jon+02] James A Jones, Mary Jean Harrold, and John Stasko. “Visualization of Test In-
formation to Assist Fault Localization”. In: Proceedings of the 24th International
Conference on Software Engineering. ACM. 2002, pp. 467–477 (cit. on p. 132).

[Jor95] Paul C. Jorgensen. Software Testing: A Craftsman’s Approach. 1st. Boca Raton,
FL, USA: CRC Press, Inc., 1995 (cit. on pp. 2, 14, 15).

[Jér06] Thierry Jéron. “Model-Based Test Selection for Infinite State Reactive Systems”.
In: From Model-Driven Design to Resource Management for Distributed Embedded
Systems. Springer, 2006, pp. 35–44 (cit. on p. 21).

[Kan03] Cem Kaner. “What is a good test case”. In: Star East (2003), p. 16 (cit. on p. 1).

[KF94] Michael Kaminski and Nissim Francez. “Finite-Memory Automata”. In: Theoret-
ical Computer Science 134.2 (1994), pp. 329 –363 (cit. on p. 30).

[Kim+07] Jangbok Kim, Kyunghee Choi, D.M. Hoffman, and Gihyun Jung. “White Box
Pairwise Test Case Generation”. In: Quality Software, 2007. QSIC ’07. Seventh
International Conference On. 2007, pp. 286–291 (cit. on p. 14).

[KK12] Mohd Ehmer Khan and Farmeena Khan. “A Comparative Study of White Box,
Black Box and Grey Box Testing Techniques”. In: Editorial Preface 3.6 (2012)
(cit. on p. 13).

[Krk+10] Ivo Krka, Yuriy Brun, Daniel Popescu, Joshua Garcia, and Nenad Medvidovic.
“Using Dynamic Execution Traces and Program Invariants to Enhance Behav-
ioral Model Inference”. In: Proceedings of the 32Nd ACM/IEEE International
Conference on Software Engineering - Volume 2. ICSE ’10. New York, NY, USA:
ACM, 2010, pp. 179–182 (cit. on pp. 27, 40).

[LA+00] Tal Lev-Ami, Thomas Reps, Mooly Sagiv, and Reinhard Wilhelm. “Putting static
analysis to work for verification: A case study”. In: ACM SIGSOFT Software
Engineering Notes. Vol. 25. 5. ACM. 2000, pp. 26–38 (cit. on p. 10).

[Lak09] Kiran Lakhotia. “Search–Based Testing”. PhD thesis. King’s College London,
2009 (cit. on p. 1).

Bibliography 152

[Lan+98] Kevin J. Lang, Barak A. Pearlmutter, and Rodney A. Price. “Results of the
Abbadingo One DFa Learning Competition and a New Evidence-Driven State
Merging Algorithm”. In: Proceedings of the 4th International Colloquium on
Grammatical Inference. ICGI ’98. London, UK, UK: Springer-Verlag, 1998, pp. 1–
12 (cit. on p. 40).

[Lan96] Kevin Lano. The B Language and Method: A Guide to Practical Formal Develop-
ment. 1st. Secaucus, NJ, USA: Springer-Verlag New York, Inc., 1996 (cit. on
p. 16).

[Lea+99] GaryT. Leavens, AlbertL. Baker, and Clyde Ruby. “JML: A Notation for Detailed
Design”. English. In: Behavioral Specifications of Businesses and Systems. Ed. by
Haim Kilov, Bernhard Rumpe, and Ian Simmonds. Vol. 523. The Springer
International Series in Engineering and Computer Science. Springer US, 1999,
pp. 175–188 (cit. on p. 16).

[Lee+06] D. Lee, Dongluo Chen, Ruibing Hao, et al. “Network Protocol System Monitoring-
a Formal Approach with Passive Testing”. In: Networking, IEEE/ACM Transac-
tions on 14.2 (2006), pp. 424–437 (cit. on p. 25).

[LK06] D. Lo and Siau-Cheng Khoo. “QUARK: Empirical Assessment of Automaton-
Based Specification Miners”. In: Reverse Engineering, 2006. WCRE ’06. 13th
Working Conference On. 2006, pp. 51–60 (cit. on p. 38).

[Lo+09] David Lo, Leonardo Mariani, and Mauro Pezzè. “Automatic Steering of Be-
havioral Model Inference”. In: Proceedings of the the 7th Joint Meeting of the
European Software Engineering Conference and the ACM SIGSOFT Symposium
on the Foundations of Software Engineering. ESEC/FSE ’09. New York, NY, USA:
ACM, 2009, pp. 345–354 (cit. on p. 38).

[Lo+12] David Lo, Leonardo Mariani, and Mauro Santoro. “Learning Extended {FSA}
from Software: An Empirical Assessment”. In: Journal of Systems and Software
85.9 (2012). Selected papers from the 2011 Joint Working IEEE/IFIP Confer-
ence on Software Architecture (WICSA 2011), pp. 2063 –2076 (cit. on pp. 39,
129).

[Lor+08] Davide Lorenzoli, Leonardo Mariani, and Mauro Pezzè. “Automatic Genera-
tion of Software Behavioral Models”. In: Proceedings of the 30th International
Conference on Software Engineering. ICSE ’08. New York, NY, USA: ACM, 2008,
pp. 501–510 (cit. on pp. 27, 38).

[LS+14] Pablo Lamela Seijas, Simon Thompson, Ramsay Taylor, Kirill Bogdanov, and
John Derrick. “Synapse: Automatic Behaviour Inference and Implementation
Comparison for Erlang”. In: Proceedings of the Thirteenth ACM SIGPLAN Work-
shop on Erlang. Erlang ’14. New York, NY, USA: ACM, 2014, pp. 73–74 (cit. on
p. 41).

[LS09] Martin Leucker and Christian Schallhart. “A Brief Account of Runtime Verifica-
tion”. In: The Journal of Logic and Algebraic Programming 78.5 (2009). The 1st
Workshop on Formal Languages and Analysis of Contract-Oriented Software
(FLACOS’07), pp. 293 –303 (cit. on pp. 10, 25).

[LS11] Thierry Le Sergent. “SCADE: A Comprehensive Framework for Critical System
and Software Engineering”. In: Proceedings of the 15th International Confer-
ence on Integrating System and Software Modeling. SDL’11. Berlin, Heidelberg:
Springer-Verlag, 2011, pp. 2–3 (cit. on p. 16).

Bibliography 153

[LW89] Hareton KN Leung and Lee White. “Insights into Regression Testing [software
Testing]”. In: Software Maintenance, 1989., Proceedings., Conference On. IEEE.
1989, pp. 60–69 (cit. on p. 11).

[MA01] R.E. Miller and K.A. Arisha. “Fault Management Using Passive Testing for Mo-
bile IPv6 Networks”. In: Global Telecommunications Conference, 2001. GLOBE-
COM ’01. IEEE. Vol. 3. 2001, 1923–1927 vol.3 (cit. on p. 26).

[Mal+08] W. Mallouli, F. Bessayah, A. Cavalli, and A. Benameur. “Security Rules Specifi-
cation and Analysis Based on Passive Testing”. In: Global Telecommunications
Conference, 2008. IEEE GLOBECOM 2008. IEEE. 2008, pp. 1–6 (cit. on p. 26).

[Mea55] George H. Mealy. “A Method for Synthesizing Sequential Circuits”. In: Bell
System Technical Journal, The 34.5 (1955), pp. 1045–1079 (cit. on p. 29).

[Mei04] Karl Meinke. “Automated Black-Box Testing of Functional Correctness Using
Function Approximation”. In: Proceedings of the 2004 ACM SIGSOFT Interna-
tional Symposium on Software Testing and Analysis. ISSTA ’04. New York, NY,
USA: ACM, 2004, pp. 143–153 (cit. on p. 32).

[Mei10] Karl Meinke. “CGE: A Sequential Learning Algorithm for Mealy Automata”.
English. In: Grammatical Inference: Theoretical Results and Applications. Ed.
by JoséM. Sempere and Pedro García. Vol. 6339. Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 2010, pp. 148–162 (cit. on p. 32).

[Mem+03] Atif Memon, Ishan Banerjee, and Adithya Nagarajan. “GUI Ripping: Reverse
Engineering of Graphical User Interfaces for Testing”. In: Proceedings of the
10th Working Conference on Reverse Engineering. WCRE ’03. Washington, DC,
USA: IEEE Computer Society, 2003, pp. 260– (cit. on p. 71).

[Mer+11] Maik Merten, Bernhard Steffen, Falk Howar, and Tiziana Margaria. “Next
Generation LearnLib”. English. In: Tools and Algorithms for the Construction
and Analysis of Systems. Ed. by ParoshAziz Abdulla and K.RustanM. Leino.
Vol. 6605. Lecture Notes in Computer Science. Springer Berlin Heidelberg,
2011, pp. 220–223 (cit. on pp. 30, 130).

[Mes+12] Ali Mesbah, Arie van Deursen, and Stefan Lenselink. “Crawling Ajax-Based Web
Applications Through Dynamic Analysis of User Interface State Changes”. In:
ACM Transactions on the Web (TWEB) 6.1 (2012), 3:1–3:30 (cit. on pp. 33–35,
37, 71).

[Mey92] Bertrand Meyer. “Applying "Design by Contract"”. In: Computer 25.10 (Oct.
1992), pp. 40–51 (cit. on p. 16).

[MG00] Christoph Michael and Anup Ghosh. “Using Finite Automata to Mine Execution
Data for Intrusion Detection: A Preliminary Report”. English. In: Recent Ad-
vances in Intrusion Detection. Ed. by Hervé Debar, Ludovic Mé, and S.Felix Wu.
Vol. 1907. Lecture Notes in Computer Science. Springer Berlin Heidelberg,
2000, pp. 66–79 (cit. on p. 27).

[MH07] Mike Lewicki Martial Hebert. Artificial Intelligence, Logic and Reasoning. Lec-
ture. Available from https://www.cs.cmu.edu/afs/cs/academic/class/15381-
s07/www/slides/022707reasoning.pdf. 2007 (cit. on p. 55).

[Mil80] Robin Milner. A Calculus for Communicating Processes, Volume 92 of Lecture
Notes in Computer Science. 1980 (cit. on pp. 17, 23).

Bibliography 154

[Mil89] Robin Milner. Communication and Concurrency. Vol. 84. Prentice hall New York
etc., 1989 (cit. on p. 23).

[MM10] Sonali Mathur and Shaily Malik. “Advancements in the V-Model”. In: Interna-
tional Journal of Computer Applications 1.12 (2010) (cit. on p. 15).

[Mob02] R Keith Mobley. An Introduction to Predictive Maintenance. Butterworth-Heinemann,
2002 (cit. on p. 140).

[Moo56] Edward F. Moore. “Gedanken Experiments on Sequential Machines”. In: Au-
tomata Studies. Princeton U., 1956, pp. 129–153 (cit. on p. 2).

[Mor+10] G. Morales, S. Maag, A. Cavalli, et al. “Timed Extended Invariants for the Pas-
sive Testing of Web Services”. In: Web Services (ICWS), 2010 IEEE International
Conference On. 2010, pp. 592–599 (cit. on p. 25).

[MP07] Leonardo Mariani and Mauro Pezze. “Dynamic Detection of COTS Component
Incompatibility”. In: IEEE Software 24.5 (2007), pp. 76–85 (cit. on p. 38).

[MP08] L. Mariani and F. Pastore. “Automated Identification of Failure Causes in System
Logs”. In: Software Reliability Engineering, 2008. ISSRE 2008. 19th International
Symposium On. 2008, pp. 117–126 (cit. on pp. 27, 39).

[MS11] Karl Meinke and MuddassarA. Sindhu. “Incremental Learning-Based Testing
for Reactive Systems”. English. In: Tests and Proofs. Ed. by Martin Gogolla and
Burkhart Wolff. Vol. 6706. Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2011, pp. 134–151 (cit. on pp. 27, 32).

[Mye79] Glenford J. Myers. Art of Software Testing. New York, NY, USA: John Wiley &
Sons, Inc., 1979 (cit. on pp. 1, 10).

[Ngu+13] BaoN. Nguyen, Bryan Robbins, Ishan Banerjee, and Atif Memon. “GUITAR: An
Innovative Tool for Automated Testing of GUI-Driven Software”. English. In:
Automated Software Engineering (2013), pp. 1–41 (cit. on pp. 33–35, 37).

[Nie03] Oliver Niese. “An Integrated Approach to Testing Complex Systems”. PhD thesis.
Dortmund University of Technology, 2003 (cit. on p. 29).

[OK05] Alessandro Orso and Bryan Kennedy. “Selective Capture and Replay of Program
Executions”. In: SIGSOFT Softw. Eng. Notes 30.4 (May 2005), pp. 1–7 (cit. on
p. 138).

[Ors+04] Alessandro Orso, Nanjuan Shi, and Mary Jean Harrold. “Scaling Regression
Testing to Large Software Systems”. In: ACM SIGSOFT Software Engineering
Notes. Vol. 29. 6. ACM. 2004, pp. 241–251 (cit. on p. 132).

[Par+98] Rajesh Parekh, Codrin Nichitiu, and Vasant Honavar. “A Polynomial Time
Incremental Algorithm for Learning DFA”. English. In: Grammatical Inference.
Ed. by Vasant Honavar and Giora Slutzki. Vol. 1433. Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 1998, pp. 37–49 (cit. on p. 31).

[Par81] David Park. “Concurrency and Automata on Infinite Sequences”. In: Proceedings
of the 5th GI-Conference on Theoretical Computer Science. London, UK, UK:
Springer-Verlag, 1981, pp. 167–183 (cit. on pp. 47, 59).

Bibliography 155

[PG09] Michael Pradel and Thomas R. Gross. “Automatic Generation of Object Us-
age Specifications from Large Method Traces”. In: Proceedings of the 2009
IEEE/ACM International Conference on Automated Software Engineering. ASE
’09. Washington, DC, USA: IEEE Computer Society, 2009, pp. 371–382 (cit. on
pp. 27, 42, 129).

[Phi86] Iain Phillips. “Refusal Testing”. In: Automata, Languages and Programming,
13th International Colloquium, ICALP86, Rennes, France, July 15-19, 1986,
Proceedings. 1986, pp. 304–313 (cit. on p. 23).

[Phi87] Iain Phillips. “Refusal Testing”. In: Theoretical Computer Science 50.3 (1987),
pp. 241–284 (cit. on p. 23).

[PS15] Stella Pachidi and Marco Spruit. “The Performance Mining Method: Extracting
Performance Knowledge from Software Operation Data”. In: International
Journal of Business Intelligence Research (IJBIR) 6.1 (2015), pp. 11–29 (cit. on
p. 141).

[PY06] Alexandre Petrenko and Nina Yevtushenko. “Conformance Tests As Checking
Experiments for Partial Nondeterministic FSM”. English. In: Formal Approaches
to Software Testing. Ed. by Wolfgang Grieskamp and Carsten Weise. Vol. 3997.
Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2006, pp. 118–
133 (cit. on pp. 5, 59, 60, 85, 88, 89, 91, 92, 95, 106).

[Raf+05] Harald Raffelt, Bernhard Steffen, and Therese Berg. “LearnLib: A Library
for Automata Learning and Experimentation”. In: Proceedings of the 10th
International Workshop on Formal Methods for Industrial Critical Systems. FMICS
’05. New York, NY, USA: ACM, 2005, pp. 62–71 (cit. on pp. 30, 130).

[Ram03] Muthu Ramachandran. “Testing Software Components Using Boundary Value
Analysis”. In: Proceedings of the 29th Conference on EUROMICRO. EUROMICRO
’03. Washington, DC, USA: IEEE Computer Society, 2003, pp. 94– (cit. on
p. 14).

[RH97] Gregg Rothermel and Mary Jean Harrold. “A Safe, Efficient Regression Test
Selection Technique”. In: ACM Trans. Softw. Eng. Methodol. 6.2 (Apr. 1997),
pp. 173–210 (cit. on p. 13).

[RK04] J.A. Rehg and H.W. Kraebber. Computer-Integrated Manufacturing. Pearson
Prentice Hall, 2004 (cit. on p. 81).

[Roo86] Paul Rook. “Controlling Software Projects”. In: Software Engineering Journal
1.1 (1986), p. 7 (cit. on p. 15).

[RR01] S.P. Reiss and M. Renieris. “Encoding Program Executions”. In: Software Engi-
neering, 2001. ICSE 2001. Proceedings of the 23rd International Conference On.
2001, pp. 221–230 (cit. on p. 38).

[Rus+00] Vlad Rusu, Lydie du Bousquet, and Thierry Jéron. “An Approach to Symbolic
Test Generation”. In: Proceedings of the Second International Conference on
Integrated Formal Methods. IFM ’00. London, UK, UK: Springer-Verlag, 2000,
pp. 338–357 (cit. on pp. 21, 49).

[Rus+05] Vlad Rusu, Hervé Marchand, and Thierry Jéron. “Automatic Verification and
Conformance Testing for Validating Safety Properties of Reactive Systems”. In:
FM 2005: Formal Methods. Springer, 2005, pp. 189–204 (cit. on p. 56).

Bibliography 156

[Sal+05] Maher Salah, Trip Denton, Spiros Mancoridis, and Ali Shokouf. “Scenariog-
rapher: A Tool for Reverse Engineering Class Usage Scenarios from Method
Invocation Sequences”. In: In ICSM. IEEE Computer Society, 2005, pp. 155–164
(cit. on pp. 27, 42).

[SD15] Sébastien Salva and William Durand. “Autofunk, a Fast and Scalable Frame-
work for Building Formal Models from Production Systems”. In: Proceedings of
the 9th ACM International Conference on Distributed Event-Based Systems, DEBS
’15, Oslo, Norway, June 29 - July 3, 2015. 2015, pp. 193–204 (cit. on pp. 5, 6,
81).

[Seb02] Fabrizio Sebastiani. “Machine Learning in Automated Text Categorization”. In:
ACM Comput. Surv. 34.1 (Mar. 2002), pp. 1–47 (cit. on p. 132).

[Set09] Burr Settles. Active Learning Literature Survey. Computer Sciences Technical
Report 1648. University of Wisconsin–Madison, 2009 (cit. on p. 29).

[Sho+07] Sharon Shoham, Eran Yahav, Stephen Fink, and Marco Pistoia. “Static Specifi-
cation Mining Using Automata-Based Abstractions”. In: Proceedings of the 2007
International Symposium on Software Testing and Analysis. ISSTA ’07. New York,
NY, USA: ACM, 2007, pp. 174–184 (cit. on p. 43).

[SL15] Sébastien Salva and Patrice Laurençot. “Model Inference and Automatic Testing
of Mobile Applications”. In: International Journal On Advances in Software.
Vol. 8. 1,2. Iaria, June 2015 (cit. on pp. 33–37).

[SM12] Muddassar A. Sindhu and Karl Meinke. “IDS: An Incremental Learning Algo-
rithm for Finite Automata”. In: CoRR abs/1206.2691 (2012) (cit. on p. 32).

[SS97] Ian Sommerville and Pete Sawyer. Requirements Engineering: A Good Practice
Guide. 1st. New York, NY, USA: John Wiley & Sons, Inc., 1997 (cit. on p. 17).

[Ste+11] Bernhard Steffen, Falk Howar, and Maik Merten. “Introduction to Active Au-
tomata Learning from a Practical Perspective”. English. In: Formal Methods for
Eternal Networked Software Systems. Ed. by Marco Bernardo and Valérie Issarny.
Vol. 6659. Lecture Notes in Computer Science. Springer Berlin Heidelberg,
2011, pp. 256–296 (cit. on p. 29).

[Tan+95] Q. M. Tan, A. Petrenko, G. v Bochmann, and G. Luo. Testing Trace Equiv-
alence for Labeled Transition Systems. Université de Montréal, Département
d’informatique et de recherche opérationnelle, 1995 (cit. on p. 23).

[TH00] Henrik Thane and Hans Hansson. “Using Deterministic Replay for Debugging
of Distributed Real-Time Systems”. In: Real-Time Systems, 2000. Euromicro RTS
2000. 12th Euromicro Conference On. IEEE. 2000, pp. 265–272 (cit. on p. 138).

[TH08] Nikolai Tillmann and Jonathan de Halleux. “Pex - White Box Test Generation
for .NET”. In: Proc. of Tests and Proofs (TAP’08). Vol. 4966. LNCS. Prato, Italy:
Springer Verlag, 2008, 134–153 (cit. on p. 14).

[Tho15] Johannes Thones. “Microservices”. In: Software, IEEE 32.1 (2015), pp. 116–116
(cit. on p. 130).

[TL98] Kuo chung Tai and Yu Lei. “A Test Generation Strategy for Pairwise Testing”. In:
IEEE Transactions on Software Engineering 28 (1998), p. 2002 (cit. on p. 14).

Bibliography 157

[Ton+12] Paolo Tonella, Alessandro Marchetto, Cu Duy Nguyen, et al. “Finding the
Optimal Balance Between over and Under Approximation of Models Inferred
from Execution Logs”. In: Software Testing, Verification and Validation (ICST),
2012 IEEE Fifth International Conference On. IEEE. 2012, pp. 21–30 (cit. on
p. 129).

[Ton+13] Paolo Tonella, Cu Duy Nguyen, Alessandro Marchetto, Kiran Lakhotia, and
Mark Harman. “Automated Generation of State Abstraction Functions Using
Data Invariant Inference”. In: 8th International Workshop on Automation of
Software Test, AST 2013, San Francisco, CA, USA, May 18-19, 2013. 2013,
pp. 75–81 (cit. on p. 41).

[TR03] Mary Frances Theofanos and Janice (Ginny) Redish. “Bridging the Gap: Be-
tween Accessibility and Usability”. In: interactions 10.6 (Nov. 2003), pp. 36–51
(cit. on p. 11).

[Tre08] Jan Tretmans. “Formal Methods and Testing”. In: ed. by Robert M. Hierons,
Jonathan P. Bowen, and Mark Harman. Berlin, Heidelberg: Springer-Verlag,
2008. Chap. Model Based Testing with Labelled Transition Systems, pp. 1–38
(cit. on pp. 17, 23).

[Tre92] Gerrit Jan Tretmans. “A Formal Approach to Conformance Testing”. In: (1992)
(cit. on p. 22).

[Tre94] Jan Tretmans. “A Formal Approach to Conformance Testing”. In: Proceedings of
the IFIP TC6/WG6.1 Sixth International Workshop on Protocol Test Systems VI.
Amsterdam, The Netherlands, The Netherlands: North-Holland Publishing Co.,
1994, pp. 257–276 (cit. on p. 22).

[Tre96a] Jan Tretmans. “Conformance Testing with Labelled Transition Systems: Imple-
mentation Relations and Test Generation”. In: Computer networks and ISDN
systems 29.1 (1996), pp. 49–79 (cit. on pp. 23, 24).

[Tre96b] Jan Tretmans. “Test Generation with Inputs, Outputs, and Quiescence”. In:
(1996), pp. 127–146 (cit. on pp. 17, 23).

[Ura+07] Hasan Ural, Zhi Xu, and Fan Zhang. “An Improved Approach to Passive Testing
of FSM-Based Systems”. In: Proceedings of the Second International Workshop
on Automation of Software Test. AST ’07. Washington, DC, USA: IEEE Computer
Society, 2007, pp. 6– (cit. on p. 26).

[Vaa91] Frits W Vaandrager. “On the Relationship Between Process Algebra and In-
put/output Automata”. In: Logic in Computer Science, 1991. LICS’91., Proceed-
ings of Sixth Annual IEEE Symposium On. IEEE. 1991, pp. 387–398 (cit. on
pp. 23, 113).

[VW98] Filippos I Vokolos and Elaine J Weyuker. “Performance Testing of Software
Systems”. In: Proceedings of the 1st International Workshop on Software and
Performance. ACM. 1998, pp. 80–87 (cit. on p. 141).

[Wal+07] Neil Walkinshaw, Kirill Bogdanov, Mike Holcombe, and Sarah Salahuddin.
“Reverse Engineering State Machines by Interactive Grammar Inference”. In: In
Proceedings of the 14th Working Conference on Reverse Engineering (WCRE’07.
IEEE, 2007 (cit. on p. 40).

Bibliography 158

[Wal+10] Neil Walkinshaw, Kirill Bogdanov, John Derrick, and Javier Paris. “Increasing
Functional Coverage by Inductive Testing: A Case Study”. In: Proceedings of
the 22Nd IFIP WG 6.1 International Conference on Testing Software and Systems.
ICTSS’10. Berlin, Heidelberg: Springer-Verlag, 2010, pp. 126–141 (cit. on
p. 14).

[Wal+95] Gwendolyn H. Walton, J. H. Poore, and Carmen J. Trammell. “Statistical Testing
of Software Based on a Usage Model”. In: Softw. Pract. Exper. 25.1 (Jan. 1995),
pp. 97–108 (cit. on p. 14).

[Was+07] Andrzej Wasylkowski, Andreas Zeller, and Christian Lindig. “Detecting Object
Usage Anomalies”. In: Proceedings of the the 6th Joint Meeting of the European
Software Engineering Conference and the ACM SIGSOFT Symposium on the
Foundations of Software Engineering. ESEC-FSE ’07. New York, NY, USA: ACM,
2007, pp. 35–44 (cit. on p. 43).

[WD10] W Eric Wong and Vidroha Debroy. “Software Fault Localization.” In: Encyclope-
dia of Software Engineering 1 (2010), pp. 1147–1156 (cit. on p. 132).

[Wey82] Elaine J Weyuker. “On testing non-testable programs”. In: The Computer Journal
25.4 (1982), pp. 465–470 (cit. on p. 1).

[WF89] Dolores R Wallace and Roger U Fujii. “Software Verification and Validation: An
Overview”. In: IEEE Software 3 (1989), pp. 10–17 (cit. on p. 10).

[Wha+02] John Whaley, Michael C. Martin, and Monica S. Lam. “Automatic Extraction of
Object-Oriented Component Interfaces”. In: SIGSOFT Softw. Eng. Notes 27.4
(July 2002), pp. 218–228 (cit. on pp. 41, 42).

[WK99] Jos Warmer and Anneke Kleppe. The Object Constraint Language: Precise Mod-
eling with UML. Boston, MA, USA: Addison-Wesley Longman Publishing Co.,
Inc., 1999 (cit. on p. 16).

[Won+97] W Eric Wong, Joseph R Horgan, Saul London, and Hira Agrawal. “A Study of
Effective Regression Testing in Practice”. In: Software Reliability Engineering,
1997. Proceedings., the Eighth International Symposium On. IEEE. 1997, pp. 264–
274 (cit. on p. 11).

[Yan+06] Jinlin Yang, David Evans, Deepali Bhardwaj, Thirumalesh Bhat, and Manu-
vir Das. “Perracotta: Mining Temporal API Rules from Imperfect Traces”. In:
Proceedings of the 28th International Conference on Software Engineering. ICSE
’06. New York, NY, USA: ACM, 2006, pp. 282–291 (cit. on pp. 42, 129).

[Yan+13] Wei Yang, Mukul R. Prasad, and Tao Xie. “A Grey-Box Approach for Auto-
mated GUI-Model Generation of Mobile Applications”. In: Proceedings of the
16th International Conference on Fundamental Approaches to Software Engineer-
ing. FASE’13. Berlin, Heidelberg: Springer-Verlag, 2013, pp. 250–265 (cit. on
pp. 33–35, 37, 71, 130).

[Zho+11] Hao Zhong, Lu Zhang, Tao Xie, and Hong Mei. “Inferring Specifications for
Resources from Natural Language API Documentation”. In: Autom. Softw. Eng.
18.3-4 (2011), pp. 227–261 (cit. on pp. 27, 44).

[IEE90] IEEE. “IEEE Standard Glossary of Software Engineering Terminology”. In: IEEE
Std 610.12-1990 (1990), pp. 1–84 (cit. on p. 12).

Bibliography 159

[ISO01] ISO. ISO/IEC 9126-1:2001, Software Engineering – Product Quality – Part 1:
Quality Model. Tech. rep. International Organization for Standardization, 2001
(cit. on pp. 11, 12).

[ISO05] E.N. ISO. “9000: 2005”. In: Quality management systems-Fundamentals and
vocabulary (ISO 9000: 2005) (2005) (cit. on p. 1).

[ISO10a] ISO/IEC. ISO/IEC 25010 - Systems and Software Engineering - Systems and
Software Quality Requirements and Evaluation (SQuaRE) - System and Software
Quality Models. Tech. rep. 2010 (cit. on pp. 11, 12).

[ISO10b] ISO/IEC/IEEE. “Systems and Software Engineering – Vocabulary”. In: ISO/IEC/IEEE
24765:2010(E) (2010), pp. 1–418 (cit. on pp. 10, 12, 13, 15).

Bibliography 160

Bibliography 161

Bibliography 162

Colophon

This thesis was typeset with LATEX 2ε. It uses the Clean Thesis style developed by
Ricardo Langner. The design of the Clean Thesis style is inspired by user guide
documents from Apple Inc.

Download the Clean Thesis style at http://cleanthesis.der-ric.de/.

