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Abstract

Abstract

Ethnomusicology is the study of musics around the world that emphasize their cul-
tural, social, material, cognitive and/or biological. This PhD subject, initiated by Pr.
Marc CHEMILLIER, ethnomusicolog at the laboratory CAMS-EHESS, deals with the
development of an automatic transcription system dedicated to the repertoires of the
traditional marovany zither from Madagascar. These repertoires are orally transmitted,
resulting from a process of memorization/transformation of original base musical motives.
These motives represent an important culture patrimony, and are evolving continually
under the influences of other musical practices and genres mainly due to globalization.
Current ethnomusicological studies aim at understanding the evolution of the traditional
repertoire through the transformation of its original base motives, and preserving this
patrimony. Our objectives serve this cause by providing computational tools of musical
analysis to organize and structure audio recordings of this instrument.

Automatic Music Transcription (AMT) consists in automatically estimating the notes
in a recording, through three attributes: onset time, duration and pitch. On the long
range, AMT systems, with the purpose of retrieving meaningful information from com-
plex audio, could be used in a variety of user scenarios such as searching and organizing
music collections with barely any human labor. One common denominator of our different
approaches to the task of AMT lays in the use of explicit music-related prior knowledge
in our computational systems. A first step of this PhD thesis was then to develop tools
to generate automatically this information. We chose not to restrict ourselves to a spe-
cific prior knowledge class, and rather explore the multi-modal characteristics of musical
signals, including both timbre (i.e. modeling of the generic “morphological” features of
the sound related to the physics of an instrument, e.g. intermodulation, sympathetic res-
onances, inharmonicity) and musicological (e.g. harmonic transition, playing dynamics,
tempo and rhythm) classes. This prior knowledge can then be used in computational sys-
tems of transcriptions. The research work on AMT performed in this PhD can be divided
into a more “applied research” (axis 1), with the development of ready-to-use operational
transcription tools meeting the current needs of ethnomusicologs to get reliable automatic
transcriptions, and a more “basic research” (axis 2), providing deeper insight into the
functioning of these tools.

Our first axis of research requires a transcription accuracy high enough (i.e. average
F-measure superior to 95 % with standard error tolerances) to provide analytical supports
for musicological studies. Despite a large enthusiasm for AMT challenges, and several
audio-to-MIDI converters available commercially, perfect polyphonic AMT systems are
out of reach of today’s algorithms. In this PhD, we explore the use of multichannel cap-
turing sensory systems for AMT of several acoustic plucked string instruments, including
the following traditional African zithers: the marovany (Madagascar), the Mvet (Camer-
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oun), the N’Goni (Mali). These systems use multiple string-dependent sensors to retrieve
discriminatingly some physical features of their vibrations. For the AMT task, such a sys-
tem has an obvious advantage in this application, as it allows breaking down a polyphonic
musical signal into the sum of monophonic signals respective to each string. Then, we come
back to a monophonic transcription problem, which is considered as practically solved. For
sake of flexibility and robustness, various sensor types (optical, piezoelectric and electro-
magnetic) have been comparatively tested. After experimentation, piezoelectric sensors,
although quite invasive, prove to provide the best signal-to-noise ratio and multichannel
separability. The development of this technology has allowed the constitution of a new
sound dataset dedicated to AMT evaluation for plucked-string instrument repertoires. We
gathered in these datasets audio recordings, MIDI-like transcripts and sound samples over
the instrument pitch ranges. We also performed field recordings in Madagascar with local
musicians during two missions (in July 2013 and 2014), using our multi-sensor retrieval
systems. Such systems were also explored towards applications of human-machine inter-
action (through the project ImproteK) and musical creativity (through “MIDIfication” of
traditional acoustic instruments).

Our second axis of research tackles the AMT task on audio recordings with more
fundamental investigations on the use of prior knowledge in transcription performance,
in regards to different plucked-string instrument repertoires. AMT is often divided into
different processing stages, generally a multi-pitch estimation stage, followed by note seg-
mentation and post-processing stages. In this PhD thesis, we mainly build our AMT
framework from two methods, namely Probabilistic Latent Component Analysis (PLCA)
for multi-pitch estimation and Hidden Markov Models (HMMs) for note segmentation and
sequential post-processing. PLCA belongs to a spectrogram-factorization class of methods
which is based on the modeling of a signal as a sum of basic elements. HMMs are a ubiqui-
tous statistical tool to model time series data. We then develop different configurations of
these methods to provide a powerful probabilistic framework covering the time-frequency
domain on different time-scales, in which we develop original integration methods of prior
knowledge. Timbre prior knowledge class is used to constrain generic signal models with
acoustics-based information. A pitch-dependent sparsity prior has then been developed
by modifying the EM update rules of PLCA, which is informed by the phenomenon of
sympathetic resonances characterized acoustically. The use of pitch-wise multi-templates
corresponding to different playing modes (e.g. dynamics, plucking techniques) have also
been investigated, as well as the characterization of pitch activation profiles, which can be
informed by specific temporal envelop modulations (e.g. intermodulation). For its part,
musicological knowledge concerns more temporal musical structure and can be integrated
conveniently into the HMM framework to build informed relations between frame-wise
estimations. We develop original first- and second-order HMMs to model musicological
polyphonic harmonic transitions between note mixtures, as well as higher-order HMMs in-
cluding note duration modeling applied to note segmentation. This research axis has first
allowed achieving successful transcription enhancements in the marovany repertoires, by
optimizing selectively the integration of prior knowledge. As an illustrative result, the tra-
ditional repertoire of the marovany benefits mostly from timbre-related prior knowledge,
namely spectral inharmonicity and energy modulation, intermodulation and sympathetic
resonances. These features have been highlighted by our acoustic characterization pre-
ceding the task of AMT, used to guide the design of the repertoire-specific priors. Also,
we provide a complete framework to have a better understanding about the issues arising
from the explicit inclusion of specific prior knowledge in specific instrument repertoires,
and to investigate whether it is really valuable when targeting tasks such as AMT. In that
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direction, we also developed the PLCA plus particle filtering framework, aiming in partic-
ular to resolve current limits of the EM algorithm in the PLCA parameter estimation, as
well as proposing a more flexible unifying framework for prior integration.

Through our study of the marovany zither, we pave the way towards the development
of AMT systems dedicated to other traditional plucked-string instruments. In future
investigations, we will transpose this research framework to the repertoires of the Indian
sitar and the Chinese GuQin zither.

Keywords

Automatic Music Transcription, Statistical modeling and learning, Musical Acoustics
knowledge, Non-eurogenetic music, Computational Ethnomusicology, Audio Signal Pro-
cessing

Développement d’un système de transcription automatique
de musique dédié aux répertoires de la cithare marovany

Résumé

L’ethnomusicologie est l’étude de la musique en mettant l’accent sur les aspects cultu-
rels, sociaux, matérielles, cognitives et/ou biologiques. Ce sujet de thèse, motivé par Pr.
Marc Chemillier, ethnomusicologue au laboratoire CAMS-EHESS, traite du développe-
ment d’un système automatique de transcription dédié aux répertoires de musique de la
cithare marovany de Madagascar. Ces répertoires sont transmis oralement, résultant d’un
processus de mémorisation/transformation de motifs musicaux de base. Ces motifs sont
un patrimoine culturel important du pays, et évoluent en permanence sous l’influence
d’autres pratiques et genres musicaux. Les études ethnomusicologiques actuelles visent à
comprendre l’évolution du répertoire traditionnel, et de préserver ce patrimoine. Pour ser-
vir cette cause, notre travail consiste à fournir des outils informatiques d’analyse musicale
pour organiser et structurer des enregistrements audio de cet instrument.

La transcription automatique de musique consiste à estimer les notes d’un enregistre-
ment à travers les trois attributs : temps de début, hauteur et durée de note. Notre travail
sur cette thématique repose sur l’incorporation de connaissances musicales a priori dans
les systèmes informatiques. Une première étape de cette thèse fût donc de générer cette
connaissance et de la formaliser en vue de cette incorporation. Cette connaissance explorer
les caractéristiques multi-modales du signal musical, incluant le timbre, le langage musical
et les techniques de jeu. La recherche effectée dans cette thèse se distingue en deux axes :
un premier plus appliqué, consistant à développer un système de transcription de musique
dédié à la marovany, et un second plus fondamental, consistant à fournir une analyse plus
approfondie des contributions de la connaissance dans la transcription automatique de
musique.
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Notre premier axe de recherche requiert une précision de transcription très bonne (c.a.d
une F-measure supérieure à 95 % avec des tolérances d’erreur standardes) pour faire of-
fice de supports analytiques dans des études musicologiques. Pour cela, nous utilisons une
technologie de captation multicanale appliquée aux instruments à cordes pincées. Les sys-
tèmes développés à partir de cette technologie utilisent un capteur par corde, permettant
de décomposer un signal polyphonique en une somme de signaux monophoniques respec-
tifs à chaque corde, ce qui simplifie grandement la tâche de transcription. Différents types
de capteurs (optiques, piézoélectriques, électromagnétiques) ont été testés. Après expéri-
mentation, les capteurs piézoélectriques, bien qu’invasifs, se sont avérés avoir les meilleurs
rapport signal-sur-bruit et séparabilité inter-capteurs. Cette technologie a aussi permis le
développement d’une base de donnée dite “ground truth” (vérité de terrain), indispensable
pour l’évaluation quantitative des systèmes de transcription de musique.

Notre second axe de recherche propose des investigations plus approfondies concernant
l’incorporation de connaissance a priori dans les systèmes automatiques de transcription
de musique. Deux méthodes statistiques ont été utilisées comme socle théorique, à savoir
le PLCA (Probabilistic Latent Component Analysis) pour l’estimation multi-pitch et le
HMM (Hidden Markov Models) pour le post-traitement des estimations et la segmenta-
tion de notes. La méthode PLCA appartient à la famille des méthodes de factorisation
non-négative de spectrogrammes, basé sur une modélisation du signal musical comme une
somme de noyaux harmoniques, dites bases spectrales. HMM permet une modélisation
probabiliste du processus génératif de séries temporelles. Nous avons développé différentes
extensions de ces méthodes de base, pour constuire un cadre probabiliste général couvrant
les domaines fréquentielles et temporelles à différentes échelles, dans lequel nous avons pu
incorporer différentes composantes de connaissance a prior. Les composantes de connais-
sance sur le timbre sont utilisées pour contraindre des modèles de signaux en paramétrant
leurs paramètres acoustiques. Un a priori de parcimonie spécifique à chaque base spec-
trale a été défini en modifiant les règles d’update de l’algorithme EM, et qui est informé
par de l’information sur le phénomène de résonance par sympathie. L’utilisation de tem-
plates multiples spécifique à chaque base spectrale correspondant à différents modes de
jeu (par exemple, dynamique de jeu, techniques de pincement) ont été développés. Nous
avons aussi proposé une caractérisation acoustique des profils d’activation temporels, basé
sur la connaissance acoustique de l’enveloppe temporelle des notes. Les composantes de
connaissance sur le langage musical sont utilisées pour modéliser la structure temporelle
d’une pièce musicale, et les transitions harmoniques entre aggrégats de notes, par diffé-
rentes méthodes basées sur des HMM. Cet axe de recherche a permis d’accomplir des gains
en transcription significatifs sur des répertoires de marovany, en optimisant sélectivement
les composantes de connaissance. Un résultat illustratif est que le répertoire de Velonjoro
bénéficie principalement des composantes timbrales, telles que l’inharmonicité spectrale,
la modulation énergétique de l’enveloppe, l’intermodulation et la résonance par sympa-
thie. Nous avons aussi développé un cadre d’analyse plus général pour la compréhension
de l’impact des connaissances a priori dans les systèmes de transcription automatique de
musique, en relation avec différents répertoires et instruments de musique.

Mots-clés

Transcription Automatique de Musique, Modélisation acoustique et statistique, Acous-
tique Musicale, Musique non-eurogénétique, Analyse musicologique informatisée
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Notations

All notations of terms are listed by order of appearance in the thesis.

List of acronyms

Disciplines
AMT Automatic Music Transcription
MPE Multi-Pitch Estimation
CE Computational Ethnomusicology
MCSS Multichannel Capturing Sensory System

Algorithms
FP Filtering Particle
PLCA Probabilistic Latent Component Analysis
EM Expectation-Maximization
DAEM Deterministic Annealing Expectation-Maximization
HMM Hidden Markov Model

Acronyms of notions
KCMA Knowledge Components in Musical Acoustics

Generic variables
NboldA Number of elements in the set A ()
ι Inter-Pitch Matrix of mutual influences between the I×I couples of different pitches
ιij Likelihood scores between pitches i and j

i Pitch index, i ∈ {1, · · · , I}
I Number of pitches
M Set of note mixtures
Mtk Note mixture indexed by its starting time tk
PDF Probability Density Functions
t ∈ [1,T ] time-frame index, with T the number of frames
f ∈ [1,F ] frequency-bin index
ft frequency of bin with time-frame index t
F0 Fundamental frequency, or pitch
Fs Sample frequency
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Sound Database
MAPS MIDI Aligned Piano Sounds (Emiya et al., 2010)
RWC Real World Computing (Goto et al., 2003)

List of method-specific variables

MCSS parameters
x(t) desired sensor signal
xn(t) noise sensor signal

MPE parameters
Ui,k pitch-wise activation intervals for pitch i, indexed by k in time
LN(i,k) list of binary note candidates for pitch i, indexed by k in time
L̂N(i,k) list of probabilistic note candidates for pitch i, indexed by k in time

PLCA parameters
m Playing mode index
Mn Binary mixtures of notes
NMn Number of estimated mixtures of notes
M̂n Probabilistic mixtures of notes

HMM parameters
Si state i, Si ∈ S, S = {S1, S2, ..., SNs}, with Ns the number of states
qt state at frame t, q ∈ S
A Transition probability matrix, with coefficients aij , i,j ∈ [1,...,Ns]
yt observation at frame t, q ∈ S
B Emission probability matrix, with coefficients bij , i ∈ [1,...,No] and j ∈ [1,...,No]
δ Score of the candidate optimal partial path
Od order of duration for state transition
Oe order of emission

Dictionary of templates
Wn dictionary of spectrum note templates
Ws dictionary of spectrum sound state templates
Wm dictionary of motif templates



Introduction

Background

Musical signal

As a starting point, let’s consider the musical chain production illustrated in figure
1. Musical Knowledge (Step 1) conditions any musical production. Musical signals have
very rich temporal and spectral structures, and it is natural to think of them as being
organized in a hierarchical way. At the lowest level of this organization, two universal
processes in temporal organization of auditory sequences have been identified (Drake,
1998) : (1) segmentation sequence into groups of events; and (2) the extraction of an
underlying pulse. The first, based on changes in pitch duration and salience, is already
present in early infancy (Krumhansl, 1990). The second involves the extraction of temporal
regularities and likewise appears early in infants (Baruch and Drake, 1997), and is assumed
to be culture transcending (Carterette and Kendall, 1999). At the highest “symbolic”
level of this organization, we have “prescribed rules” for music execution, which may
be the score of a piece, as intended by a composer, or more generally standard codes
characterizing musical practices of orally transmitted repertoires. Then, on the basis
of these rules, the performers add their interpretation to music (Step 2), and render
the score into a collection of ”control signals”, which are both characteristics of their
instrument timbre and playing style. Let’s now move towards the “signal” aspect of
music, which should first be captured by some recording device and digitalized (Step
3). For example, most music recordings from CDs are recorded with a microphone, and
digitalized using the PCM sampling method, with a sampling frequency Fs of 44.1 kHz
and 16-bit resolution. Musical signal can then be observed for analysis through specific
computational representation methods (Step 4), the most popular one being the FFT-
based time-frequency plane called spectrogram, where time flows from left to right and
different F0 are arranged in an ascending order on the vertical axis.

As illustrated in figure 2, spectrograms allow for a direct observation of the hierarchical
aspect of music. In the time domain, tempo and beat specify the range of likely note
transition times, drawing abrupt step-like vertical lines in the spectrogram at the time
locations of these transitions. In the frequency domain, two levels of structure can be
considered. First, each note is composed of a fundamental frequency (related to the
pitch of the note), and partials whose relative amplitudes determine locally the timbre
of the note (which is in reality a complex non-linear time-domain system (Fletcher and
Rossing, 1998)). The frequencies of the partials are approximately integer multiples of
the fundamental frequency, although this clearly does not apply for instruments such as
bells and tuned percussion. Second, as audio signals are both additive and oscillatory
(i.e. musical objects superimpose and not conceal each other), several notes played at the
same time due to polyphony will merge their respective spectral structures. Eventually,
when performing musical analysis, a multiple-F0 estimator produces horizontal lines which
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Figure 1 – A general musical chain production with the successive steps of (1) Musical
Knowledge, (2) Musical Production, (3) Signal Acquisition and (4) Signal Analysis.

indicate the probabilities of different notes to be active as a function of time. It is visually
clear from the spectra of a note that it will be quite easy to estimate the pitch from single-
note data that is well segmented in time (so that there is not significant overlap between
more than one separate musical note within any single segment). Metrical analysis, in
turn, produces a framework of vertical ”grid lines” which can be used to segment the note
activation curves into discrete note events and to quantize their timing.
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Figure 2 – Spectrogram illustrating the different hierarchical structures present in musical
signal. This 10-s musical excerpt comes from the piano piece Hungarian Rhapsody No 2
by Liszt. Spectrogram parameters: sampling rate Fs: 44.1 kHz, frame size: 22 ms (1024
samples), 50% overlap (temporal resolution: 11 ms), FFT size: 1024 samples (spectral
resolution: 11 Hz), Hamming window.

Low-level musical parameters & Piano-roll representation

Low-level representation

In describing music, we are usually interested in an abstract representation synthesizing
music information, which abstracts us away from the signal details. A common approach
for this is to characterize the notes played in a musical piece by the four basic parameters
of Onset Location, Pitch, Duration and Loudness, through an operation called low-level
transcription, and represent them graphically into a time-pitch plane. Such low-level
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information is sufficient to be compiled into a MIDI 1 file. In this format standard, the
time-pitch plane is called a piano-roll (an illustrative example is given in figure 3), in
which continuous physical values of note parameters are discretized into different scales,
as detailed in table 1.

Figure 3 – Spectrogram of a 15-s musical signal, with its piano-roll plotted below.

Such such discrete scales are of course way too restrictive for general music represen-
tation, which for example does not follow the assumption of equal temperament tuning.
However, the format of MIDI files can still be used with physical continuous values on
Onset Location and Duration, and extensions of the MIDI standard exist with finer scales
for pitch (e.g. the MIDI tuning standard (MIDIwebPage, 2015)). Furthermore, MIDI files
also present the precious advantage of being readable and editable on any audio sequencer
and score edition program. For these reasons, this format will be adopted to format our
transcription results. We now describe in more details these four note parameters, both
from the points of view of psychoacoustics and signal processing.

Note parameters Discrete MIDI scale
Onset location Integer multiple of Ta

Pitch From A0 (27 Hz) to C8 (4186 Hz)
Duration Integer multiple of Ta
Velocity Arbitrary scale of 127 levels

Table 1 – The discrete MIDI scales of the four different note parameters. For onset
location and duration, we defined the Tatum Ta (time quantum) as the smallest metrical
unit (Klapuri et al., 2004). This notion refers to the shortest durational values in music
that are still more than incidentally encountered. For pitch, this discrete scale corresponds
to the semi-tone scale using an equal temperament tuning.

1. MIDI stands for Musical Instrument Digital Interface, and is a technical standard that describes
a protocol, digital interface and connectors and allows a wide variety of electronic musical instruments,
computers and other related devices to connect and communicate with one another (Wikipedia, 2015).
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Onset

Perceptually, human ears are able to distinguish between two onsets as close as 10 ms
apart (Moore, 1997). This acuity make them play an important role in our perception of
music. Studies showed that onsets play a pivotal role in the perception of timbre, as it is
much more difficult to recognize the timbre of tones with removed onsets (Handel, 1995;
Martin, 1999). Additionally, music cognition experiments have shown that features related
to the beginning of music notes can help humans to discriminate different instrument notes.
There is also some evidence that the onset coding plays an important role in direction
finding through representation of interaural time and level differences (Rouiller, 1997).
And more globally, onsets also make it easier to detect new information in music; we can
detect tones with pronounced onsets well before we can determine their pitch (Newton
and Smith, 2012). At a larger scale, onset succession build the musical measure pulse,
which is usually related to the harmonic change rate.

As a signal parameter to be analysed, an onset is usually defined as the exact time
a note or instrument starts sounding after being played. However, this timing is hard
to determine, and thus it is impossible to annotate the real onset timing in complex
audio recordings with multiple instruments, voices, and effects. Thus, the most commonly
used method for onset annotation is marking the earliest time point at which a sound is
audible by humans. This instant cannot be defined in pure terms (e.g., minimum increase
of volume or sound pressure), but is a rather complex mixture of various factors.

Pitch

Perceptually, perceived pitch is a complex function of the fundamental and all partials.
Only a few cycles are needed to identify a pitched note (Robinson and Patterson, 1995).
Actually, the human auditory system tries to assign a pitch to almost all kinds of acoustic
signals (Meddis and Hewitt, 1991).

As a signal parameter, we define the concept of fundamental frequency, labelled F0,
which has to be limited to periodic or nearly periodic sounds.

Duration

Duration in music refers to how long or short notes are. Durations, and their beginnings
and endings, can then be described as long, short, or taking a specific amount of time.
A tone may be sustained for varying lengths of time. It is often cited as one of the
fundamental aspects of music, encompassing rhythm, form, and even pitch. Durational
patterns are the foreground details projected against a background metric structure, which
includes meter, tempo, and all rhythmic aspects which produce temporal regularity or
structure. Duration patterns may be divided into rhythmic units and rhythmic gestures.

As a signal parameter, the definition of a note offset has been a long-time ill-posed
problem. It is often stated that for “decay instruments”, the offset time is only important
in a limited period of time, because after some point the sound energy will be below the
threshold of hearing (Zwicker and Fastl, 1999), even if from the musician point of view
the note is still playing.

Amplitude

Perceptually, the note amplitude is correlated to the sensation of loudness. This per-
ception is strongly non-linear and frequency-dependent.
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As a signal parameter, the strong non-linear aspect of intensity perception and the
absence of a precise normalization in MIDI make this parameter very hard to define. Ad-
hoc relative measures, such as the root mean square value (abbreviated RMS or rms, and
defined as the statistical measure defined as the square root of the mean of the squares of
a sample), are generally proposed.

Automatic Music Transcription

In this section, we propose a global overview of the computational task of Automatic
Music Transcription (AMT), along with more specific issues related to this research field.

Background

Due to the widespread use of the Information Technologies in the distribution and con-
sumption of music, the topic of automatic description/annotation of audio recordings has
become a research topic with many practical applications. This research is being carried
out within the field that is known as Music Information Retrieval (MIR). This research
field is part of a larger research area of multimedia information retrieval. Researchers
working in this area focus on retrieving information from different types of media content:
images, video, and sounds. Although these types of content differ from each other, separate
disciplines of multimedia information retrieval share techniques like pattern recognition
and learning techniques. This research field was born in the 80’s, and initially focused
on computer vision (Lew et al., 2006). The first research works on audio signal analysis
started with automatic speech recognition and discriminating music from speech content
(Typke et al., 2005).

MIR is the interdisciplinary science (bridging musicology, signal processing, psychol-
ogy) of retrieving any meaningful information from complex audio, which may then be
used in a variety of user scenarios such as searching and organizing music collections.
Some of the problems that the MIR community attempts to solve include classification
and organization of music, recommendation systems and everything up to and including
complex analysis of large musical databases by musical experts. Such problems are dealt
with in disciplines called (MIREX, 2011): audio identification, beat detection, prominent
melody extraction, genre identification, cover song detection, or query by humming. Many
of these problems have very tangible commercial premise, but most are related to the sim-
ple desire to understand basically how music functions by utilizing large databases and
the power of computer processing. As in definitive, by increasing the quantity and quality
of what the computer can ”listen to”, we can develop more effective tools for indexing and
manipulating large audio collections as well as improve musician-computer interactions.

Moving now to the task of AMT, Piszczalski and Galler (1977) proposed the first
monophonic music transcription system which is limited to certain types of instruments
with strong fundamental frequencies. This frequency domain approach simply chooses the
most pronounced spectral peak as the fundamental frequency. In the same year, Moorer
(1977) proposed the first polyphonic music transcription system, focusing on duets with
a limitation to two monophonic instruments playing at the same time.

Goal & Applications

AMT is the process according to which a structured symbolic representation is inferred
from a musical signal. This process can be seen as reverse-engineering the source code
of a music signal (Klapuri, 2004a). As illustrated in figure 1, the process of AMT can
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be thought as the one closing the loop of the musical chain production. Conventionally,
such symbolic representation generally results from highly time-consuming manual works,
which also require a certain degree of musical education. Also, information retrieval for
music transcription can be classed into two levels (Klapuri, 2004a) : the low-level (with
the four parameters defined above), and the high-level (tonality, instrument recognition),
which asks for more global and complex notions. In a traditional sense, transcribing a piece
of music implies a number of these high-level tasks, such as estimating the tempo, metre
and key of each section of the piece, identifying and labeling ornamentations and timbre
information, recognising the instruments being played, and segregating “voices” according
to the instrument that played them and to their function, i.e. melody, accompaniment,
etc. However, performing such a high-level operation is totally out-of-reach of today AMT
technology (Benetos et al., 2013b), and most proposed algorithms reduce the issue of
transcribing music to identifying the four basic parameters of a note event.

For what concerns applications, in addition to the transcription application itself, com-
putational music transcription systems, even in its low-level encoding, can be further used
for a wide range of high-level applications including automatic search and annotation (e.g.
retrieval of musically-similar recordings) from large audio databases, real-time interaction
between musicians and computers, analysis of recordings of the same piece by different
performers and audio to score alignment (also used in automatic music tutors, as it aims
to match the performance of the user with the original notation in order to help the music
student to align her/his performance visually) (Mayor et al., 2009).

Another AMT application of particular interest in this PhD concerns computational
musicology. The term Computational Musicology comes from the research tradition of
musicology, field that has focused on the study of the symbolic representations of music
(scores) of the classical western music tradition. This research perspective takes advantage
of the availability of scores in machine-readable format. Music theoretical models, like the
one by Lerdahl and Jackendoff (1983), are very much followed and current research focuses
on the understanding and modeling of different musical facets such as melody, harmony,
or structure, of western classical music. Eventually, AMT systems would also aim to help
amateur musicians without proper music education, or musicians whose countries do not
possess a culture of music writing, such as orally transmitted traditional repertoires of
Madagascar, to write down their musical compositions (Wang et al., 2003). Although
this second category of music repertoires will require much more research works before
automatizing the process of transcribing them, as fundamental questions should be ad-
dressed beforehand about the identification/representation of their musical codes, which
may present strong singularities with standard euro-genetic 2 music language.

Challenges & perspectives

In order to fully solve the AMT problem and have a system that provides an output
that is equivalent to conventional sheet music, additional issues need to be addressed,
such as metre induction, rhythm parsing, key finding, note spelling, dynamics, fingering,
expression, articulation and typesetting. Then, the transcription of real-world music with
an unknown number of coinciding notes, arbitrary instrumentation, various musical genre
and tempi, or percussive accompaniment suffers from many unsolved problems. As a con-

2. The term euro-genetic is used in this paper to avoid the misleading dichotomy of western and non-
western music (Lartillot et al., 2008). It was proposed by Prof. Robert Reigle (MIAM, Istanbul) in personal
communication, and was first used in specialized AMT literature by Benetos and Holzapfel (2013). Euro-
genetic music refers mostly to “savant” classical music developed in Europe between the 17th and 19th
centuries.
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sequence, most AMT systems adopt simplifying processing scenarios, such as restricting
their musical corpus to certain musical genres or even to only one specific class of instru-
ments (Bello et al., 2006; Gainza et al., 2004). In particular, piano music attracted a lot of
attention due to its comparatively limited spectral and temporal variations (Marolt et al.,
2002; Poliner and Ellis, 2007; Emiya et al., 2010). Most current AMT systems are also
limited to obtain only a partial transcription of complex musical signals, e.g. restricting
the transcription to the dominant melody or bass lines (Ryynanen and Klapuri, 2008), or
to pitch estimation of several concurrent sounds over short frames of a recording. This
last sub-task of AMT, called Multi-Pitch Estimation (MPE), is at the core of AMT and
is often used as a front-end representation to retrieve higher-level note parameters needed
for AMT. Beyond these practical problems of retrieving physical features from a complex
signal, the main challenge of current automatic transcription of music would be to capture
all components which make the musicality of a piece, which cannot simply reduce to signal
variations of pitch and amplitude. For example, it is often stated by musicologists that
musical breathing guides segmentation of music, but how can such a concept be objec-
tively captured by mathematical descriptors ? In the following, we describe two specific
challenges for AMT methods which particularly interest this PhD project.

Facing music diversity

The meeting between Music Information Retrieval and Ethnomusicology 3 has given
way to a new scientific discipline called Computational Ethnomusicology (CE) (Tzanetakis
et al., 2007), which aims to adapt MIR tools and develop specific ones to the corpus of
ethnic music. Following the conferences of the International Society of Music Information
Retrieval, we can see this progress and identify the current trends (Downie et al., 2009).
The community is quite conscious of the limitations of the current approaches (Lidy et al.,
2010) and advancements are being explored by increasing the sizes of the audio collections
and the variety of the data types used. Also, the expansion of the Folk Music Analysis
(FMA) workshop (with a 5th edition organized by our team at the University of Pierre
and Marie Curie in Paris) also largely confirms this tendency.

On the contrary to MIR, which focuses more on the fundamental development of
generic computational tools, quite regardless of the evaluation sound datasets, CE projects
rather start from musical corpus to choose/adapt/develop their computational tools. Sev-
eral PhD projects have already been completed in this field, we can mention Gomez (2006),
who worked on methods of tonality induction, including in her test corpus a great variety
of musical genres which extend the ”usual” classical sound dataset. Kranenburg (2010)
developed content-based retrieval systems for a vast corpus of folk song melodies. Gedik
(2012) was interested in automatic transcription of traditional Turkish art music. More
major research projects have also been initiated, such as the CompMusic (2011-2017) and
DIADEMS (2012-2015) projects.

This research field of CE has already known the pitfall of opposing too radically be-
tween “western” and “non-western” (terms used in Gomez and Herrera (2008)) repertoires
in their computational studies (see interesting review of (Lartillot et al., 2008) about
Gomez and Herrera (2008)’s paper), without addressing explicitly the fundamental ques-
tion of knowing to what extent and regarding which features the computational analysis,
especially AMT, of non-eurogenetic music could be seen as more complex than euro-genetic

3. Blacking (1979) proposed the following definition of ethnomusicology : ”The main task of ethnomu-
sicology is to explain music and music making with reference to the social, but in terms of the musical
factors involved in performance and appreciation”.
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repertoires. Several papers have raised such concerns in those terms (Moelants et al., 2006,
2007; Lidy et al., 2010).

Incorporating musical knowledge

To overcome current limitations of AMT systems, a practical engineering solution
was to use computational techniques from statistics and digital signal processing allowing
the insertion of prior knowledge from cognitive science, musicology and musical acoustics
(Engelmore and Morgan, 1988; Ellis, 1996). This approach is close to human experience,
in which the perception of sounds is embedded with prior knowledge, using a collection of
global properties such as musical genre, tempo, and orchestration, as well as more specific
properties, such as the timbre of a particular instrument.

An important aspect of current AMT programs in regards of musical knowledge is that
they are strongly oriented towards eurogenetic instrument repertoires. While the classical
solo piano is indeed the most represented instrument in AMT studies (Emiya et al., 2010),
most of them also follow a series of assumptions based on cultural concepts. These assump-
tions apply to structural aspects (e.g. equal temperament, tonal key, assumption of octave
equivalence, instrumentation), social organisation of the music (e.g. composers, perform-
ers, audience) and technical aspects (e.g. record company, release date). To address this
gap between current AMT technologies and actual diversity of musical repertoires around
the world, the Music Information Retrieval (MIR) and Ethnomusicology communities have
met to give way to a new scientific discipline called Computational Ethnomusicology (CE)
(Tzanetakis et al., 2007). This new discipline aims to adapt MIR tools to the multiple cor-
pus of non-eurogenetic music. As a result, this global tendency of AMT systems has raised
many concerns (Tzanetakis et al., 2007; Moelants et al., 2007; Lidy et al., 2010) about the
appropriateness of current AMT systems to efficiently transcribe repertoires from differ-
ent musical cultures. Investigations on the subject have already been initiated, either in
a broad perspective with a radical eurogenetic / non-eurogenetic opposition (Gomez and
Herrera, 2008; Lidy et al., 2010), or through a single traditional instrument repertoire
(e.g. Benetos and Holzapfel (2013) in Turkish Makam music). In this PhD project, we
will focus on the instrument repertoires of the marovany zither from Madagascar.

Motivations, Contributions & Plan

Motivations

Dr. Marc Chemillier in the department of ethnomusicology at the EHESS, contacted
researchers from the d’Alembert Institute of University of Pierre and Marie Curie to collab-
orate with him on the development of computational tools to analyse the marovany zither
repertoires from Madagascar. Traditional music repertoire of the marovany is evolving
continually under the influences of other musical practices and genres due to globalization.
Current ethnomusicological studies carried out by Dr. Chemillier aim at understanding
the evolution of the traditional repertoire through the transformation of its original base
motives. The question of computational representation and notation of orally transmitted
music is also addressed, as well as the ways on how preserving this patrimony.
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Context & Objectives

Within this PhD project, we will deal with the task of automatic transcription of
polyphonic music from solo instruments 4. All instruments study in this PhD, including the
marovany zither as main instrument of investigation, are decay instruments, i.e. producing
sounds characterized by a sudden transient attack with a rapid rise to its peak amplitude.
This attack is followed by a long decay envelop. For plucked string instruments and piano,
these two successive phases respectively result from the sudden excitation of a string, and
then from the free-resonating behaviour of the soundboard.

The two underlying objectives of this PhD project are to 1. develop efficient automatic
music transcription systems dedicated to different repertoires of pluck string instruments,
with a case study on the marovany zither from Madagascar, and 2. understand the
contributions of musical knowledge in the optimization of these systems to the different
repertoires. These two goals call for both “practical research” with short-term develop-
ments of operational tools, and “fundamental research” providing deeper insight into the
functioning of these tools.

Our long-term objectives would serve ongoing ethnomusicological studies by providing
computational tools able to generate automatically ready-to-use robust transcriptions, so
they can be used as analytical supports for ethnomusicologs. They would further help
in organizing and structuring audio recordings of this instrument, and thus in better
understanding the evolution of the traditional repertoire.

Methodological approach

Our methodological framework is at the crossroads of different research fields. The
science of instrumental acoustics (1) study the mechanisms that produce the sound us-
ing precise physical modeling of the vibrations and couplings which take place in musical
instruments when subject to a player excitation (Fletcher and Rossing, 1998; Rossing,
2010). This physics-based approach allows relating the signal characteristics of a tone to
the physical properties of the sound producing components of an instrument (e.g. the
materials and the geometry of strings and soundboard, the string-sound board coupling,
etc.). In our PhD project, we will not perform complex physical modeling and modal
analysis of our instruments, but rather use generic physics formula and principles to guide
and validate them through our signal analysis. This approach actually consists in mixing
instrumental acoustics with audio signal processing (2), which rather aims at modeling
musical sounds according to their “morphological” attributes, without necessarily paying
due regard to the particular instruments that are played. Eventually, the science of statis-
tics learning and modeling (3), such as sparse coding (Mallat and Zhang, 1993), Bayesian
modeling (Gelman et al., 2003), or rank reduction methods (Cichocki et al., 2009), is
also used, which allows building probabilistic signal modeling with the incorporation of
instrument-specific musical knowledge.

The marovany zither of Madagascar

In Malagasy, marovany means “with many strings”. This zither is derived from the
valiha, a tubular zither made of bamboo that is considered as the national instrument of
Madagascar. In figure 4, we give a photo of the valiha, and a map of Madagascar, on which

4. We remind that music from solo instruments is not in any way equivalent to monophonic music,
meaning that the performer is playing only one note at a time, as solo instruments frequently have notes
overlapping in both time and frequency domains.
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a)

Tananarive

Tuléar

Majunga

Ambovombe

Tamatave

Photo-Credits:-http://www.museedelhistoire.ca/
cmc/exhibitions/arts/resonance/res1_14f.shtml

Map-Credits:-http://www.vidiani.com/large-detailed-road-
and-tourist-map-of-madagascar-with-cities-and-aircraft-routes/

b)

Figure 4 – a) Photo of a valiha; b) Map of Madagascar with the most important cities,
indicated in colors, for marovany music

we indicated the most important cities for marovany music. Especially, the emblematic
marovany player Rakoutzav was born in Tamatave. During this PhD, Marc Chemillier
and I performed in June 2013 a field mission in the city of Majunga during two weeks,
where we recorded the musician Velonjoro. Marc Chemillier performed two other missions
during my PhD, in Tuléar in June 2012 and in Tananarive in 2014, during which he also
recorded the musician Velonjoro.

The marovany is a tall zither in the form of a rectangular box built from recycled
wood products (the box is commonly made in plywoods, and the easels in rosewoods), as
illustrated with four different models of this instrument in figure 5. Table 2 shows the
physical dimensions of our different marovany models. The metallic strings, measuring up
to 1 m 20, and mostly coming from brake cables type motorcycle, are stretched on each
side of the box. They are nailed at each end on an easel, made of wood or metal, and are
raised by battens whose places along a string determines its pitch. Then, during a song, to
each string corresponds a single pitch. However, musicians may switch pitches and tuning
of their marovany between different songs. Wood type, sizing and number of strings of
a zither are not fixed. One can indeed find zithers made of light or heavy weight wood,
measuring from 1 to 2 meter in length, possessing from 10 to 12 strings on each side, with
battens also ranging from 2 cm to 0.5 cm in height (it is known that bringing strings closer
to the soundboard produce more powerful sounds, according to an effect called mafo be,
i.e. “louder”). Each set of strings of the marovany forms, like the famous tubular zither
valiha, an alternating diatonic scale. The minimal harmonic interval of this instrument
is then the semi-tone, although tuning deviations from the well-tempered scale are often
observed, as described later.

Originally, the marovany is a traditional instrument of Madagascar, whose musicians
often take part to trance rituals called tromba. The marovany repertoires are mostly
orally transmitted, resulting from a process of memorization/transformation of original
base musical motives. These motives represent an important culture patrimony. Nowa-
days, it has been exported outside the country, mainly by native musicians participating
to World Music festivals, subject to the influences of different musical genres and practices.
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N2

N3 N4

N1

Figure 5 – Photos of the four marovany models used in this PhD, labelled from N1 to N4.

Although the valiha zither has already been subjected by past research studies (Razafind-
rakoto, 1999; Domenichini, 1984), there is currently no large-scale systematic analysis and
classification of the marovany repertoires, based on precise musical (rhythmic, modal,
structural properties) criteria. Especially, the total absence of manuscript support for the
traditional repertoire of the instrument has further impeded the development of such a
work. The most common feature of CE studies so far is indeed the use of audio recordings
instead of symbolic data (as many traditional repertoires are transmitted orally, without
well-established musical codes), which calls for the need of transcribing sampled record-
ings of music into a piano-roll type representation. The relevance of this endeavour to
the CE community is straightforward: piano-roll provides a cartoon-like representation of
musical data that is extremely compact when compared to the sampled audio data, yet
retains the necessary information for many content based analyses and queries. The au-
tomation of this process is made imperative as manual transcriptions are cumbersome and
time-consuming. Also, the complexity of this transcription (due to speed of playing, poly-
phonic characteristics, noisy environment) implies a great variability in hand-made results,
making them prone to errors, without systematic estimation of transcription accuracy.

Instrument model label Instrument maker Dimensions (L × H × W ) in cm String Number Pitch range
N1 Velonjoro (Madagascar) 114 × 37 × 9 23 [F3 : D6]
N2 Velonjoro (Madagascar) 108 × 32 × 8 22 [F3 : C6]
N3 Velonjoro (Madagascar) 81 × 26 × 8 20 [G3 : B5]
N4 Charles Kely (France) 76 × 25 × 7 22 [A3 : G5]

Table 2 – Physical characteristics (L=Length, H= Height, W=Width) of the four
marovany models used in this PhD, labelled from N1 to N4.

Contributions

As interdisciplinarity has been the hallmark of this research project, it is completely
in character that its main contributions divide into different scientific fields. In the fol-
lowing, we list the contributions brought by our PhD project, along with our research
communications supporting them, in the fields of:

Automatic Music Transcription,

1. with the development of an engineering system dedicated based on multichannel
capturing sensory systems and used to generate AMT ground truths of differ-
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ent plucked-string instruments, including non-eurogenetic ones (Conference 1,
Conference 2, Conference 3) ;

2. with the development of an automatic music system with original priors spe-
cially conceived and optimized for the marovany instrument (Article 1) ;

3. by investigating the impact of priors on different instrument repertoires, and
addressing the broader question of the appropriateness of current state-of-the-
art AMT algorithms for traditional instruments ;

Computational General Musicology,

1. with an extensive analytical work dedicated to the marovany zither, includ-
ing the multifacets of its repertoires and instrument makings (Conference 4,
Conference 5);

2. by making the marovany a benchmark instrument on test/validation experi-
ments of MIR tools (Article 4) ;

Statistical modeling & Audio Signal Processing,

1. with the theoretical development of a particular filter based system for PLCA
parameter estimation, aiming to resolve current limits of the EM algorithm
(Article 3) ;

Musical Creativity,

1. with the integration of traditional instrument in the ImproteK project of human-
machine interaction (Book 1) ;

2. using the creative potential of our retrieval system in musical performances,
through the collaboration with three musicians playing different instruments,
each one having his own personal project on how using this ”new” instrument ;

Despite a few shortcomings, we think the general methodology described in this thesis
is of high interest, and is undoubtedly useful as a brief tutorial on the use of computa-
tional methods in comparative music research with large corpora. As such, the thesis is
rather technical, although we tried adding more explanation, examples, and illustrations
to increase its accessibility to empirical musicologists.

Plan

This PhD thesis is organized as follows. Chapter 1 presents the different Knowledge
Components of Musical Acoustics (KCMA) used to help in transcription, and develops the
methods used to identify and extract these components. Chapter 2 details the different
baseline statistical methods used for transcription, which also constitute the statistical
background for KCMA incorporation, with the methods detailed in Chapter 3. Chapter
4 presents the methods we developed to create our ground truth sound database, which is
mainly based on the Multi-Channel Sensory System (MCSS) technology. We eventually
present results in Chapter 5 and discuss some specific questions around the notion of
KCMA in AMT systems.



Chapter 1

Generating knowledge from
Musical Acoustics

Abstract

This chapter aims to define different Knowledge Components in Musical Acoustics
(KCMA) covering the multi-facets of musical signal, in view of assisting the task of Auto-
matic Music Transcription (AMT). We will develop the computational processes of knowl-
edge generation, which has been automatized in order to process a vast corpus quickly and
reliably. The descriptors used in this process have all been validated on reduced labelled
datasets to ensure a good reliability in knowledge generation. Figure 1.1 illustrates the
relation of this chapter with the others.

Musical 
knowledge

Musical 
Production

Signal 
Acquisition

Signal
Analysis

Chapter I
Generating knowledge from 

Musical Acoustics in view of AMT

Figure 1.1 – Schematic diagram of the PhD organization for chapter 1.
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1.1 Introduction

Musically, the occurrence of simultaneous notes can result either from “acoustic polyphony”,
or from “musical polyphony”. ”Acoustics polyphony” is strongly related to the timbre of
the instrument, and more precisely to the physical phenomena of mutual resonances and
note persistence. Although this type of polyphony is an integral part of instrument timbre,
it represents a noise signal added to the actual played note from the point of view of music
transcription. For what concerns “musical polyphony”, it corresponds to the note com-
binations played by the musician and intended by a composer with a proper polyphonic
writing. It directly provides useful information about which notes are commonly played
simultaneously in a musical piece. In this PhD thesis, we will formalize all knowledge
one can collect on these two types of music polyphony through the notion of Knowledge
Components of Musical Acoustics.

1.1.1 Sources of KCMA

We will begin this chapter by presenting the different data sources used in this PhD
project to generate our different Knowledge Components in Musical Acoustics (KCMA).
These components cover the multi-facets of musical signal, from timbre to music language.
Based on their different sources, the KCMA extracted can be roughly categorized into
three types of musical acoustics knowledge, as described in table 1.1. Although these
different categories have been designed for sake of clarity, they should not be understood
as exclusive categories, as they are of course strongly correlated in musical practice. In
the following, we briefly present the different data sources of our KCMA.

Theoretical musical codes

Two different sciences have been studied to compose this first data source of KCMA.
From the science of pyschoacoustics, many theories have been put forward about the de-
gree of acceptance and pleasure when listening to certain acoustic events. For example,
studies show that concurrent harmonic sounds (sharing harmonic partials in simple al-
gebraic relation) are preferred, in comparison to noisy or inharmonic sounds. Specific
knowledge about psychoacoustic similarities between chords can also be deduced from
these theoretical concepts. From the science of musicology, euro-genetic is well-known to
have a long history of theorization, from which many different musicological concepts have
been created, such as the notions of tonality and equal temperament.

Isolated note samples

This second data source of KCMA consist of instrument isolated sound samples. Musi-
cal knowledge extracted from these samples allows extracting various components of musi-
cal acoustics knowledge. It basically allows learning timbre features, which can be used to
constrain generic signal models with acoustics-based information in different instrument-
dedicated AMT systems (e.g. Emiya et al. (2010) and Rigaud et al. (2013) using inhar-
monicity measures for the piano instrument, Benetos and Holzapfel (2013) using pitch-wise
spectral acoustic signatures for the ney instrument Turkish makam music). But it can
also allows to extract the precise tuning of an instrument, which is more of a musicological
information, and also to identify the impact of specific playing techniques on instrumental
note acoustics.
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Transcripts from playing

This fourth data source is commonly obtained from a technology called Multichannel
Capturing Sensory System, which allows a physical measure of the musical playing directly
on the instrument being played. Such a technology will be developed in Sec. 4 of this PhD
thesis. Such transcripts encompass both the “prescribed” musical features, as found in
written scores, as well as the “interpreted” musical features, i.e. to the particular playing
style of a musician, and include all knowledge informing the question on how an instrument
is played (e.g. the use of the soft pedal in piano, or palm mute in guitar), which modifies
intrinsic acoustic properties of the instrument, as characterized by isolated note samples.

Written Scores

Musical knowledge extracted from our third data source of KCMA, namely written
scores, is rather related to music language itself. This language encompasses “prescribed’
features, which refer more to standard codes characteristic of a musical piece, and possi-
bly to its belonging musical genre. “Prescribed” features include note-to-note harmonic
transitions, tonality, rhythmical figures, base musical motives.

Index Data sources Categories of KCMA
I Theoretical musicological codes → Musical codes
II Isolated note samples → Musical codes / Timbre / Playing style
III Transcripts from playing → Musical codes / Playing style
IV Written scores → Musical codes

Table 1.1 – Description of data sources from which we extracted our KCMA. Musical
codes refer to ”Prescribed features”, while playing style refers to ”Interpreted features”.

1.1.2 Preliminary discussions of notions

Temporal scaling: frames / note events

Most MPE algorithms do not focus on note objects and their features but generally
refer to a data granularity of a lower abstraction level: frames (labelled t ∈ T). A frame
is a short chunk (typically on the order of 10 ms) of audio, from which both time and
frequency domain features can be computed. Consecutive frames are usually considered
with some overlap for smoother analyses. Furthermore, note segmentation is commonly
done by a simple energy-based aggregation of successive frames (see Sec. 2.3.3), without
considering longer observation time scales. However, using notes as the basic analysis
units, instead of pitched frames, enables a more profound melody modeling, since the
musicological relationships between these units are well-defined when examining them as
constituents of melodies and musical context.

Then, when formatting our KCMA, the question of their time scale is of first impor-
tance. Indeed, although frame-based knowledge is more easily fused with algorithm estima-
tions, as sharing the same time scale, note event-based knowledge is much more pertinent
for music language modeling than frame-based information, especially for time-dependent
sequential knowledge (e.g. a same melody played at different tempi will provide different
frame-based modeling on harmonic transitions). Furthermore, note event-based informa-
tion can be directly interpreted and informed by musicologists, and allows inter-repertoire
comparisons based on explicit musical features. In literature, the work of Ryynanen and
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Klapuri (2005) is one of the very few examples which adopted such a note event-based
approach for music knowledge incorporation in their AMT system.

Analysis musical event: chords / note mixtures

Studies interested in chord segmentation and recognition (e.g. Bello and Pickens
(2005); Papadopoulos and Peeters (2007); Lee and Slaney (2008)) naturally build their
sequential musicological knowledge on the musical object of chords. The chord is a funda-
mental unit of music structure, and corresponds to attributes of Western chord notation
such as “minor”, “major”, “diminished” ... It is determined both by its constituent pitch
classes, and also by the syntactical context in which the chord occurs. Contextual signif-
icance is then a consequence both of the chord’s position relative to other chords within
a temporally organized sequence and also to its functional relationships to other chords
and (ultimately) to an underlying “tonic”. Furthermore, because the chord as a structure
comprised essentially of pitches, its contextual identity (and the perceptibility thereof) is
typically strong enough to shine through the addition or deletion of individual notes.

However the musical object of chords has limited applications in music retrieval tasks
other than chord recognition, such as AMT, as it is not flexible enough to allow for a
general modeling of music language. To answer this concern, we introduce in this PhD
thesis the concept of the note mixture event (which will be defined mathematically in Sec.
2.4.5). This notion of mixture events refer to any grouping of notes simultaneous in time.

1.1.3 Definition of the matrix of inter-pitch influence ι

This 12-dimensional matrix ι quantifies the likelihood that the 12 pitch classes within
an octave range either combine with each other, or transit from one to another. This
matrix can easily be generalized to a size of I2, with I the number of pitches. The matrix
ι is then defined as follows, ∀(i, j) ∈ {1, · · · , I}2,

ι =

ι11 · · · ι1I
... ιij

...
ιI1 · · · ιII

 (1.1)

where ιij denotes the likelihood that pitch i is combined with or is followed by pitch
j. It is noteworthy that simpler modeling of prior knowledge, such as a simple pitch-
dependent vector, can also take the form of a diagonal matrix ι of size I2, with the vector
values put into this diagonal (the zero-coefficients of S provide an unitary prior value which
does not affect particle weights).

1.1.4 Context and objectives

In this PhD, our different KCMA are listed in table 1.2. Although we have reviewed
in our Introduction all data sources of KCMA for sake of completeness, in our context of
orally transmitted music, i.e. without any written supports, a priori knowledge can only
be extracted from the first three data sources from table 1.1.

1.2 Knowledge source I : from theoretical concepts

We propose in the following knowledge-based musicological modeling, where the output
distribution parameters are fixed based on an expert’s music theoretical knowledge. In
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Knowledge sources KCMA name Likelihood princple Polyphony dimension KCMA category

Theo1 Psychoacoustic emphasis of
chord acoustic properties Transition Musical codes

Theo2 / Theo3 Minor and Major keys given key Combination / Transition Musical codes
Theoretical concepts Theo4 / Theo5 Minor and Major keys Combination / Transition Musical codes

Theo6 Circle of fifths Transition Musical codes
Theo7 Krumhansl tone profiles Combination Musical codes
IsoNo0 Signal samples Note object Timbre / Playing techniques

IsoNo1-IsoNo4 Acoustic descriptors Note object Timbre

Isolated note samples IsoNo5 Acoustic phenomena of sympathetic
resonances between strings Combination Timbre

IsoNo6 Non-tempered tuning, i.e. deviation
in cents from equal temperament Combination Musical codes

TraPla1 / TraPla2 Frequency counting Combination / Transition Musical codes
Transcripts from playing TraPla3 Pitch-wise frame-to-frame transition Transition Playing style

TraPla4 Pitch-wise note duration Transition Playing style
TraPla5 Melodic motive dictionnary Transition Musical codes

Table 1.2 – Table detailing the characteristics of the different KCMA.

typical tonal music, most note mixture progressions are repeated in a cyclic fashion as
the piece unfolds. Also, notes comprising a note mixture act as central polarities for the
choice of notes at the next note mixture in a musical piece. Furthermore, given that a
particular temporal region in a musical piece is associated with a certain note mixture,
notes comprising that mixture or sharing some harmonics with notes of that mixture
are more likely to be present. These “universal” musical tendencies provide a strong
prediction on note succession and superposition. Such a “universal” musical tendency
will be modeled in the following with two different approaches, from pyschoacoustics and
musicology. In our following section titles, we report the name of the KCMA (like e.g.
(KCMA ∼ Theo1)), as listed in table 1.2, described in the given section.

1.2.1 By Psychoacoustics (KCMA ∼ Theo1)

In this first section, psychoacoustic considerations on acoustic properties of note mix-
tures will be used to compute a likelihood on note transition. This likelihood will quantify
perceptual acoustic similarity in the transition from one mixture to another. This model-
ing starts with the assignment of a single timbre for each group of observed notes forming
a note mixture (Vassilakis, 1999).

Parametric note model The frequency content of an idealized musical note i is com-
posed of a fundamental frequency F0,i and integer multiples of that frequency. The ampli-
tude of the h-th harmonic Fh,i = h F1,i of note i can be modeled with geometric decaying
ρh, with 0 < ρ < 1. A slightly more complex signal modeling will be used here, which in-
cludes a parameter of inharmonicity β in the relation between fundamental and harmonics.
For real strings, the frequencies of the partials obey the formula

Fh,i = hF0,i

√
1 + β(h2 − 1) (1.2)

where F is the fundamental frequency, h the harmonic index (partial number ≥ 1),
and β the inharmonicity factor (Fletcher and Rossing, 1998). This inharmonicity phe-
nomenon is due to the stiffness of real strings and causes the higher-order partials to
be slightly shifted upwards in frequency. Furthermore, to take into account the spec-
tral energy spreading around each harmonic location, a harmonic spectrum is modeled as
the sum of Gaussians representing the partials, similarly to the HTC model (Kameoka
et al., 2007). Indeed, due to the convolutive nature of this kind of source-filter model, the
harmonic partials can be designed independently of the pitch of a note and the spectral
spreading of its partials.
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Perceptual bin-wise loudness We then map this harmonic model with frequency f to
a discrete pitch scale with a 20-cents resolution 1, and define a perceived loudness of each
spectral bin bf present in a note mixture Mtk (this notion will be defined later in Sec.
2.4.5) as

lk(bf ) = max
h∈N,i∈Mtk

(ρh|m(fh,i) = bf ) (1.3)

The max function is used instead of a sum in order to account for the masking ef-
fect (Moore, 1997). For each note mixture Mtk , we then have lk = {l1(i1), · · · , ld(id)}
corresponding to the perceived strength of the harmonics related to every note id of the
well-tempered scale.

Perceptual loudness within an octave We can eventually use octave invariance to
give a measure vk of the relative strength of each spectral bin in a given note mixture. We
then obtain 1200

20 = 60 bins bfo within an octave, i.e. 5 bins per pitch class, forming the
note mixture representation vk = {vk(0), · · · , vk(59)}, whose elements are defined as

vk(bfo) =
∑

(bfmod60)=i
l(bf ) (1.4)

where i is the pitch. Figure 1.2 shows an example of a GMM-based parametric model
(top graph) for the note mixture C4, F4, G4, A4#, with its corresponding perceptual bin-
wise loudness lk (middle graph) and perceptual loudness wrapped within an octave (bot-
tom graph).
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Figure 1.2 – Example of a GMM-based parametric note mixture model (top graph, each
color representing a note model) for the note mixture C4, F4, G4, A4#, with its corre-
sponding perceptual bin-wise loudness lk (middle graph) and perceptual loudness within
an octave vi (bottom graph).

1. This spectral resolution higher than the twelve-tone equal temperament commonly used in chord
modeling allows us taking into account tuning deviations and inharmonicity.
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Perceptual similarity From the previous timbre-related note mixture modeling vk, we
need to define a transition probability between two note mixtures. Perceptually similar
mixtures tend also to be close in Euclidian distance (Krumhansl, 1990), which motivate
us to define our probability as

Ed =‖ vi − vj ‖2 (1.5)

and from this timbre information, we can obtain a transition probability between two
mixtures by computing

Theo1 ∼ P (i, j) = e−Ed(i,j)∑
j e
−Ed(i,j) (1.6)

1.2.2 By Musicology

Major and minor keys given the key (KCMA ∼ Theo2/Theo3)

Key is an architectonic system of contextual relationships, and has been foundational
to Western music, both classical and popular, since the 17th century. The term key (or
tonality) is usually defined as the relationship between a set of pitches having a tonic
as its main tone, after which the key is named (Kennedy and Bourne, 1996). A key is
then defined by both its tonic and its mode, and generates expectations favouring certain
pitch sequences. The tonic identifies to one of the 12 semitones of the chromatic scale
within an octave range. The mode is usually minor or major, depending on the used
scale. The major and minor keys then rise to a total set of 24 different tonalities. Figure
1.3 represents the key signatures of the 24 major and minor keys. Euro-genetic music is
mainly governed by the chord templates (e.g. see http://www.piano-keyboard-guide.
com/major-chords.html)), defined as the theoretical chroma vectors corresponding to
the 24 Major and minor triads.

Figure 1.3 – Major and minor chords (from http://hymns.reactor-core.org/
keysignatures.html).

Knowing the key of a piece of course provides very valuable information about the
chords as well, as in Euro-genetic tonal music, a key and chords are very closely related.
For instance, if a musical piece is in the key of C major, then we can expect frequent
appearances of chords such as C major, F major, and G major, which correspond to
the tonic, subdominant, and dominant chord, respectively. On the other hand, minor or
major chord do not appear, since neither has any harmonic function in a C major key.
Based on the key information, we can then compute 24 ι matrices of harmonic transitions,

http://www.piano-keyboard-guide.com/major-chords.html
http://www.piano-keyboard-guide.com/major-chords.html
http://hymns.reactor-core.org/keysignatures.html
http://hymns.reactor-core.org/keysignatures.html
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one for each key, as illustrated in figures 1.4 for the keys A major and C sharp major.
The amplitude of a note in the key is set to 1 if the note belongs to the considered key.
These matrices can then be used as KCMA for both note combination, i.e. ∼ Theo2, and
transition, i.e. ∼ Theo3.

Figure 1.4 – Transition probability matrices of musicological modeling. It gets its knowl-
edge from the theoretical keys described in Sec. 1.2.2. One state transition matrix is
created for each key, as here for example, are represented matrices associated with keys A
major and C sharp major.

Major and minor keys (KCMA ∼ Theo4/Theo5)

When key information is not available, a more global modeling can be performed using
knowledge of all major and minor keys, by summing and normalizing element-wise the 24
ι matrices respective to each key. As previously, this matrix can then be used as KCMA
for both note combination, i.e. ∼ Theo4, and transition, i.e. ∼ Theo5.

Figure 1.5 – State transition matrices of musicological modeling 1. It gets its knowledge
from the theoretical keys described in Sec. 1.2.2.

The circle of fifths (KCMA ∼ Theo6)

Chords succeed to one another following certain rules. The transition probability
between two chords can be derived from musical knowledge: their distance in the doubly-
nested circle of fifths, as proposed by Bello and Pickens (2005) (see this reference for
details) and represented in figure 1.6. The doubly-nested circle of fifths depicts relation-
ships among the 12 equal-tempered pitch classes comprising the chromatic scale. Although
we do not know which state is going to follow another one, musical rules allow us to make
hypotheses that are more probable than others. For instance, especially in popular western
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music, an A major chord is more likely to be followed by a F# minor or D major chord
than by a G# Major chord. It is also assumed through this model that most music tends
not to make large and quick harmonic shifts, but rather one might gradually wander from
the C to the F#, but not immediately.

Theo6 is computed by forming a ι matrix obtained from this chord-based modeling by
decomposing them into their constitutive notes, and report to the individual pitches their
different likelihoods from the chords they belong.

Figure 1.6 – Doubly-nested circle of fifths, with the minor triads (lower case) staggered
throughout the major triads (upper case). Triads closer to each other on the circle are
more consonant, and thus receive higher initial transition probability mass than triads
further away. From Bello and Pickens (2005).

Krumhansl (1990)’s tone profiles (KCMA ∼ Theo7)

Krumhansl and Shepard (1979) have shown that stable pitch distributions give rise
to mental schemas that structure expectations and facilitate the processing of musical
information, making individuals intuitively expect and perceive basic patterns of tonal
organization, almost as if they were born with this understanding (Krumhansl, 1990).
Using the now famous probe-tone method, Krumhansl (1990) showed that listeners’ ratings
of the appropriateness of a test tone in relation to a tonal context is directly related to
the relative prevalence of that pitch-class in a given key. The Krumhansl tone profiles for
major and minor keys (Krumhansl, 1990, p. 67), represented in figure 1.7 have been widely
used in key recognition research (e.g. Temperley (2002); Hu and Saul (2009)). Theo7 is
directly identified to these tone profiles in order to predict most likely note combination
according to this theoretical knowledge, given the key.

1.3 Knowledge source II : from isolated note samples

1.3.1 Signal samples (KCMA ∼ IsoNo0)

In our knowledge incorporation, we will use isolated note samples x(t) to extract
probabilistic templates which directly fit the spectral characteristics of these notes. Figure
1.8 reveals that even from these simple representations, clear differences can be observed
between notes with different pitches. The spectra of these note samples are classically
computed using the short-time Fourier transform of the signal x(t), defined as
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Figure 1.7 – Krumhansl tone profiles for major and minor keys.

X(f, t) =
∫ +∞

−∞
[x(τ)w(t− τ)]e−j2πfτdτ (1.7)

with w(t− τ) a gliding hamming-window, f ∈ F the frequency bin and t ∈ T the time
frame index.
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Figure 1.8 – Illustration in the temporal waveforms and spectra of two different notes,
with pitches C4 (on the top) and D2 (on the bottom).

Furthermore, acoustic analysis of musical signals (Fletcher and Rossing, 1998) reveal
that the timbre of an instrument varies over its pitch range, as well as over different playing
dynamics. This dynamics refers to the volume of a note, whose variations, called nuances,
are crucial for expressiveness in music. Also, in plucked string instruments the strings
may be either plucked or rubbed at truly different distances from the bridge on which
they pass, involving also a great spectral envelop variety for each different pitch. As a
result, this greatly varies the intrinsic acoustic signature of an instrument inducing a local
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timbre alteration. As it will be explained later (see Sec. 4.4), the recording of isolated
note samples allows including different instrument models and playing techniques, with
their corresponding modifications in acoustic features.

1.3.2 Basic acoustic descriptors

Any instrument has a specific acoustic signature, which makes them recognizable
among different plucked string instruments playing a same pitch 2. It is well known that
timbre is multidimensional, i.e. it is not correlated with a single acoustic property. Among
these properties, attack and decay transients, inharmonicity and changes in the distribu-
tion (i.e. amplitude and shape) of spectral energy contribute to the perception of timbre
(Iverson and Krumhansl, 1993; Handel, 1995; Godsmark and Brown, 1999). We propose
in the following a low-modeling of this timbre through the computation of four acoustic
descriptors on isolated note samples (see Annex A for computational details).

Note duration (KCMA ∼ IsoNo1)

Physical duration of a note is related to both the strength of the excitation and the
vibratory properties of the resonating structure, e.g. shorter string with strong stiffness
(i.e. higher pitch) tends to have a shorter duration (Fletcher and Rossing, 1998). We use
the descriptor EffDur, detailed in Annex A, taken from Peeters et al. (2011).

Amplitude of Energy Modulation (KCMA ∼ IsoNo2)

Amplitude of Energy Modulation aims to quantify a signal modulation depth (i.e.
peak-to-valley difference) in the temporal envelop of a sound. The phenomenon of inter-
modulation in musical sound is characterized by a strong amplitude of energy modulations
with most often the formation of several valleys in the envelop. The marovany timbre
presents a certain emphasis of this feature, depending on pitches and playing modes. We
use the descriptor AmpMod, detailed in Annex A, taken from Peeters et al. (2011).

Spectrum Inharmonicity (KCMA ∼ IsoNo3)

Spectrum Inharmonicity quantifies small departure from exact harmonicity, particu-
larly the overtone series is slightly stretched in the high-frequency band, as illustrated in
figure 1.9. To quantify automatically this feature, we use the descriptor HD, detailed in
Annex A.
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Figure 1.9 – Illustration of the phenomena of inharmonicity in the note D2 of marovany.

2. Definition of the timbre (Fletcher and Rossing, 1998).
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Spectrum Variability (KCMA ∼ IsoNo4)

Spectrum Variability quantifies frame-to-frame differences in spectral envelops. We
use the descriptor SpecV ar, detailed in Annex A.

In certain instruments, this acoustic signature encompassed by these different acoustic
descriptors can be very variable through the different pitches, as illustrated in figure 1.10
for the marovany. As we study decay instruments, with small variations on the onset part,
the two KCMA ∼ IsoNo1 and IsoNo2 encompass most of the temporal timbre signature
characteristic of each instrument.
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Figure 1.10 – Box plots of different timbre descriptors, computed on an isolated note
dataset of a single marovany model (on the left), and on four different models of marovany
(on the right). From top to bottom, these descriptors are the duration, the intermodula-
tion, the spectrum inharmonicity and the spectrum variability.

1.3.3 Sympathetic resonances (KCMA ∼ IsoNo5)

Background

Mutual resonances (also called sympathetic resonance or sympathetic vibration) re-
sult from a harmonic phenomenon wherein a formerly passive string or vibratory body
responds (or modes) to external vibrations to which it has a harmonic likeness (Rossing,
2010). For strings on a bowed, plucked, or hammered instruments, mutual resonances
result from sympathetic strings, which vibrate (and thereby sound a note) in sympathetic
resonance with the note sounded near them by some other agent (Kennedy and Bourne,
1996). Unison or octave will provoke the largest response as there is maximum likeness in
vibratory motion.
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Measurement protocol & Quantified measure

To generate knowledge for this prior, we quantify the acoustic residuals in pitches j
due to mutual resonances from a played pitch i 6= j. It takes the form of the matrix ι. To
compute each coefficient ιij , we used two datasets of isolated notes, a first one composed
of free-resonating notes, and a second one in which all strings were muted excepting the
played one. For each note sample of these two datasets, the spectrum was computed with
a FFT using a 4096-sample Hamming window after the onset, unitary normalized and
labelled X(d,i) for pitch i and dataset d (equal to 1 or 2). We then used the algorithm 1
to get the different scores ιij .

Algorithm 1 Computation of coefficients ιij from sympathetic resonances.
1: for For each pitch i ∈ {1, · · · , NI} do
2: X̃i = ||X(1,i) −X(2,i)||
3: Binary thresholding of X̃i, i.e.

X̃i(f) =
{

1 for f = arg(X̃i ≥ 0.5)
0 otherwise

4: for Each pitch j ∈ {1, · · · , NI}, j 6= i do
5: ιij = X(2,j) · X̃i, with [·] the element-wise product
6: end for
7: end for

It is noteworthy that due to different acoustic behaviors of mutual resonances de-
pending on the excited pitch, the matrix ι corresponding to KCMA ∼ IsoNo6 is not
symmetrical. Figure 1.11 provides an example of such a matrix for the marovany, using
the instrument model N1.
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Figure 1.11 – Illustration of sympathetic resonances through an inter-pitch influence matrix
ι, computed on a marovany model.

1.3.4 Non-tempered tuning (KCMA ∼ IsoNo6)
Background

In a “non-tempered” scale, harmonic intervals within each octave are not multiple of
a common unity, the semi-tone. Tempered scale, as instaured in the MIDI scale, has
been introduced in the XVIII century. Octave are correctly tuned in the sense of natural
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resonances, i.e. frequencies are in a rapport of 2, but smaller harmonic intervals are
multiple of the semi-tone, which results in the equal temperament, where neither thirds
and fifths are correctly tuned in the sense of natural resonances, i.e. their frequencies are
not in a simple division of 3 or 5. In the XVIIe century, other musical temperament were
used to tune harpsichord for example, such as bare fifths (Pythagore temperament) or
bare thirds (Zarlino temperament).

Although theoretical pitch scale with equal temperament can be assigned to marovany
repertoires for convenience of analysis and music transcription, as illustrated in figure 1.12,
it appears from quantitative measurements that the players do not systematically adopt
this standard tuning. Especially traditional marovany players, without any influences from
eurogenetic music concepts, tend to tune their instrument with the “just” intervals for
thirds, fifths and, minor sevenths, i.e. at an exact sub-multiple of the chord fundamental
note frequency.

Figure 1.12 – Theoretical tuning for the marovany model N3 based on equal temperament.

Measurement protocol & Quantified measure

According to our training data, this tuning deviation has a reasonably strong presence
in Velonjoro repertoire in particular, with a variation from 5 cents to 45 cents depending
on the pitch (i.e. almost up to half of a semi-tone, as this interval is equal to 100 cents),
as shown in figure 1.13. These measures have been performed automatically using the
YIN pitch tracker (de Cheveigné and Kawahara, 2002), and subtracting these physical
measures to the theoretical values of the equal temperament.
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Figure 1.13 – Tuning deviation (in cents) from the equal temperament against MIDI
pitches, computed for a marovany musical repertoire.



40 Chapter 1. Generating knowledge from Musical Acoustics

1.4 Knowledge source III : from playing-based transcripts

1.4.1 Data-based frequency counting of note mixture occurrences (KCMA ∼
TraP la1/TraP la2)

Let’s first model which pitches are the most likely to be played together, which is done
here by a frame-wise counting of pitches j played simultaneously to pitch i from a training
dataset. This counting can then be unitary normalized and identified to the coefficients
of matrix ι (eq. 1.1). As previously, this matrix is used as the KCMA ∼ TraP la1. Figure
1.15 provides an example of such a matrix.

Figure 1.14 – Pitch co-occurrence probability matrix corresponding to a data-based mod-
eling with a simple frequency counting of note mixture observations.

Similarly, to compute the KCMA ∼ TraP la2 on note transitions, we perform a fre-
quency counting of successive note mixture events Mk and Mk+1. To train Mk transitions,
we count the number of occurrences of each Mk transition in the training set. By antic-
ipation on our AMT methods (see Chapter 2), this data-based approach allows a direct
modeling of harmonic transitions on note mixtures, also learned from the training dataset.
Then, in this KCMA, we keep the musical object of note mixtures as the modeling unit.
Figure 1.15 provides an example of a dictionary of note mixtures, along with the matrix
ι modeling their likely harmonic transitions.

Figure 1.15 – Representation of the different note mixtures (on the left), and log-transition
probability matrix between these mixtures obtained with a simple frequency counting (on
the right).

1.4.2 Pitch-wise frame-to-frame transition (KCMA ∼ TraP la3)
Special playing techniques on an instrument repertoire, such as palm muting, pizzicato,

staccato and pedal effects, mainly deviates the temporal waveform of a note from its free-
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resonating behaviour. These transitions are determined by sampling the training MIDI
transcripts at the precise times corresponding to the analysis frames of the activation
matrix, and just checking for the presence of a note in each frame.

1.4.3 Duration-informed pitch-wise frame-to-frame transition (KCMA ∼
TraP la4)

A more refined modeling of (KCMA ∼ TraP la3) is obtained by including a duration
information in the previous pitch-wise frame-to-frame transition model. In contrast to the
physical duration of each pitch, as already measured for KCMA ∼ IsoNo1 in Sec. 1.3.2,
we extract a pitch-wise duration distribution from notes under musical playing, which are
directly readable from our transcript data by counting successive frames corresponding to
active notes.

1.4.4 Motive structure (KCMA ∼ TraP la5)

Background

In music theory, Schenker (1954) asserted that repetition is what gives rise to the
concept of the motive, which is defined as the smallest structural element within a musical
piece. Ockelford (2005) argued that repetition/imitation is what brings order to music,
and order is what makes music aesthetically pleasing. Melodic progressions then constitute
a fixed, non-dynamic structure in time and thus can be used to aid in describing long-term
musical structure. Ruwet and Everist (1987) used repetition as a criterion for dividing
music into small parts, revealing the syntax of the musical piece. A ground-truth example
of the motive structure in a marovany musical piece is given in figure 1.16.
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Figure 1.16 – Ground-truth example of the motive structure in the marovany musical piece
called Folera by Kilema.

Constitution of a motif dictionary (KCMA ∼ TraP la4)

The learning phase generates a dictionary of the Nmax most recurrent of D-long note
patterns, with d ∈ [Dmin : Dmax]. This dictionary has a size of (Dmax−Dmin).Nmax. The
parameters (Dmin;Dmax;Nmax) are set arbitrarily by the user, depending on the quantity
of information he wants to integrate in the modeling. A maximal probability is assigned
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to each different pattern with a simple counting strategy as performed previously. Figure
1.17 illustrates a dictionary with (Dmin = 4;Dmax = 8;Nmax = 4).
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Figure 1.17 – Example of a motif dictionary computed from the instrument repertoire of
classical piano.

1.5 Conclusion

In this chapter, we have developed several Knowledge Components of Musical Acous-
tics (KCMA) in order to characterize an instrument repertoire in view of its automatic
transcription.



Chapter 2

Baseline statistical methods for
AMT

Abstract

This chapter presents the baseline statistical methods we used to perform Automatic
Music Transcription (AMT), which are mainly based on Probabilistic Latent Component
Analysis (PLCA) and Hidden Markov Models (HMMs). PLCA is a probabilistic subspace
analysis method which can be used for decomposing audio spectrograms. HMMs belong
to dynamic Bayesian networks, and are especially known for their applications in modeling
and recognition of time series. These two statistical methods use Bayesian probabilistic
frameworks, which allow powerful modeling with the incorporation of prior knowledge.
PLCA is frame-based, performing the bottom level of analysis against individual spectral
slices derived from short time frames. Since note events typically last for many frames,
temporal continuity is introduced by some higher-level processing modeled by HMM. These
two methods are then complementary by covering both the time and frequency domains
of music signals. Figure 2.1 illustrates the relation of this chapter with the others.
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Figure 2.1 – Schematic diagram of the PhD organization for chapter 2.
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2.1 Introduction

2.1.1 AMT methods in three families

Classically, the four processing steps of the AMT process are as follows

1. Multi-pitch estimation: within the MIR framework, the goal of Multi-Pitch Esti-
mation (MPE) is to extract the fundamental frequencies of all (possibly concurrent)
notes within a polyphonic musical piece.

2. Harmonic (vertical) prior / post-processing
3. Sequential (horizontal) prior / post-processing
4. Note segmentation

The methods proposed so far for AMT perform these steps in different ways, and can
be roughly categorized into three main families, according to which signal representation
or modeling methods they are based on.

Feature-based

Methods from this family mainly use signal feature properties in a blind way to extract
information. Klapuri (2003) estimates the notes present in each frame using an algorithm
that iteratively estimates and removes the fundamental frequencies of notes present. Bello
et al. (2006) report a novel method for multiple-F0 estimation using both frequency and
time domain information. The signal frames considered are a linearly weighted sum of
waveforms in a database of individual piano notes. In Emiya et al. (2010), the likelihood
maximization principle is accounted for, assuming a sinusoidal model with coloured back-
ground noise and an autoregressive spectral envelope for the overtones. Based on this
principle, a F0 estimator is developed to find the fundamental frequency that maximally
flattens both the noise spectrum and the sinusoidal spectrum. Klapuri (2008)’s system
uses a computational model of the human auditory periphery, followed by a periodicity
analysis mechanism where fundamental frequencies are iteratively detected and cancelled
from the mixture signal. Yeh et al. (2005) present a method for evaluating together mul-
tiple F0 hypotheses based on three physical principles: harmonicity, spectral smoothness
and synchronous amplitude evolution within a single source. Evaluation of each possible
harmonic sound is performed using a score function, which formulates the guiding princi-
ples in a mathematical way. In Goto (2004), Goto proposes a F0 estimation method, called
PreFEst, which obtains the most predominant F0 by estimating the relative dominance of
each possible F0 (represented as a probability density function of the F0). The method uses
MAP (maximum a posteriori probability) estimation and accounts for temporal continuity
by using a multiple-agent architecture.

Spectrogram factorization-based

As audio signals are both additive and oscillatory, it is not possible for example to
look for energy and harmonic changes simply by differentiating the original signal in the
time domain; this has to be done on an intermediate signal that reflects, in a simplified
form, the local structure of the original. Hence, methods from ranking reduction and
source separation methods have been employed. A powerful method for MPE is then to
represent spectra as a linear combination of vectors from a dictionary. Such models take
advantage of the inherent low-rank nature of magnitude spectrograms to provide compact
and informative descriptions.
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Musical signals are highly structured, and it is then possible to state the whole multiple-
F0 estimation problem in terms of a signal model, the parameters of which should be
estimated. The parametric model paradigm (Itoyama, 2008; Heittola et al., 2009; Ewert
and Muller, 2011) allows to obtain a note-wise parametrization of the spectrogram. Event-
driven feature analysis has been shown to give more accurate musical feature extraction
than more traditional approaches based on frames of equal length (Bello et al., 2005).

In Leveau et al. (2008), the audio signal is decomposed into a small number of sound
atoms or molecules bearing explicit musical instrument labels. Each atom consists of a sum
of windowed harmonic partials, whose relative amplitudes are specific to one instrument.
Each molecule is composed of several atoms from the same instrument spanning successive
time windows. The Specmurt technique is proposed by Saito et al. (2008). This technique
consists in searching the fundamental frequency distribution by deconvolving the observed
spectrum with an assumed common harmonic structure. In Canadas et al. (2008), har-
monic decompositions are modified in order to maximize the spectral smoothness for those
atom amplitudes that belong to the same harmonic structure.

Statistic and model-based

Here, expert systems incorporating models of sound characteristics or musical prop-
erties are employed. These experts allow for solving otherwise ambiguous situations and
obtaining meaningful transcription results. Poliner and Ellis (2007) treat transcription as
a classification problem, using support vector machines to classify individual frames as
to whether they contain particular notes or not. Kameoka et al. (2007) have proposed
the Harmonic Temporal structured Clustering (HTC) method. This method decomposes
the energy patterns diffused in the time-frequency space into distinct clusters, grouping
patterns from the same source.

Ryynanen and Klapuri (2005) use two probabilistic models: a note event model, used
to represent note candidates, and a musicological model, which controls the transitions
between note candidates by using key estimation and computing the likelihoods of note
sequences. In the note event model, a three-state HMM is allocated to each MIDI note
number in each frame. The states in the model represent the temporal regions of note
events, comprising namely an attack, a sustain and a noise state, and therefore tak-
ing into consideration the dynamic properties and peculiarities of musical performances.
State observation likelihoods are determined with recourse to features such as the pitch
difference between the measured F0 and the nominal pitch of the modelled note, pitch
salience and onset strength. The observation likelihood distributions are modelled with
a four-component Gaussian Mixture Model (GMM) and the HMM parameters are calcu-
lated using the BaumâĂŞWelch algorithm. The note and the musicological models then
constitute a probabilistic note network, which is used for the transcription of melodies
by finding the most probable path through it using a token-passing algorithm. Tokens
emitted out of a note model represent note boundaries.

2.1.2 Context and objectives

The objectives of this chapter are to expose theoretically our baseline methods for
AMT, which are based on Probabilistic Latent Component Analysis (PLCA) method 2.2
and Hidden Markov Models (HMMs) 2.4. These baseline frameworks will allow to cover
the first three processing steps of the AMT process. At the end of this chapter, we also
present our baseline methods to perform note segmentation.
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2.2 Probabilist Latent Component Analysis

2.2.1 Background

Probabilistic Latent Component Analysis (PLCA) belongs to a class of probabilistic
models, known as latent class models, that attempt to explain the observed histograms as
having been drawn from a set of latent classes, each with its own distribution. In other
words, latent component models enable one to attribute the observations as being due
to hidden or latent factors. The PLCA model is then probabilistic in the sense that the
objective is to develop a structured representation for an empirically developed probability
mass function characterizing the probability distribution for vibration amplitude “quanta”
as a function of frequency f and time t. The main characteristic of these models is con-
ditional independence, i.e. multivariate data are modeled as belonging to latent classes
such that the random variables within a latent class are independent of one another.

Originally, PLCA is a straightforward extension of Probabilistic Latent Semantic In-
dexing (Hofmann, 1999) which deals with an arbitrary number of dimensions and can
exhibit various features such as sparsity or shift-invariance. PLCA can also be seen as
a direct probabilistic extension of Non-Matrix Factorization (NMF) to obtain a better
semantic interpretation, leading to enhanced modeling.

Unlike NMF which tries to characterize the observed data directly, latent class models
characterize the underlying distribution P (x1, x2). This subtle difference of interpretation
preserves all the advantages of NMF, while overcoming some of its limitations by providing
a framework that is easy to generalize, extend, and interpret. From past studies, the
following advantages of PLCA have been highlighted, in particular from the NMF method:

1. It is efficient for modeling non-stationary sound since the learnt dictionary ac-
commodates invariant characteristics of input sound, for this reason, linear com-
binations of its dictionary elements (basis) are sufficient for representing the time-
varying patterns in audio signal ;

2. It can separate the non-negative components without assumptions about their or-
thogonality ;

3. Its probabilistic nature makes it possible to utilize additional a priori information,
in particular to follow sparseness assumptions

2.2.2 General formulation

In more technical terms, PLCA decomposes a multi-dimensional distribution as a
mixture of latent components where each component is given by the product of one-
dimensional marginal distributions. Recently, it has been shown that PLCA is numeri-
cally identical to NMF for two-dimensional input, and non-negative tensors for arbitrary
dimensions (Smaragdis et al., 2008). The basic model is defined as

P (x) =
∑
z

P (z)
J∏
j=1

P (xj |z) (2.1)

where P (x) is an J-dimensional distribution of the random variable x = (x1, . . . , xJ),
z is a latent variable and the P (xj |z) are one dimensional distribution with j ∈ {1, . . . , J}.

Such a general model has been successfully applied to audio signal, with a theoretical
framework developed by Smaragdis et al. (2006). PLCA method is then based on the
assumption that a suitably normalized magnitude spectrogram, V, can be modeled as a
joint distribution over time and frequency, P (f, t). This quantity can be factored into
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a frame probability P (t), which can be computed directly from the observed data, and
a conditional distribution over frequency bins P (f |t); spectrogram frames are treated as
repeated draws from an underlying random process characterized by P (f |t). We can model
this distribution with a mixture of latent factors as follows:

P (f, t) =
∑
z

P (z, t)P (f |z) (2.2)

where P (f |z) is a multinomial distribution of frequencies for latent component z. It
can be viewed as a spectral vector from a dictionary. P (z, t) is a multinomial distribution
of weights for the aforementioned dictionary elements at time t, i.e. time activations.

Using an asymmetric factorization, which treats f and t differently, we can decompose
P (f, t) as a product of a spectral basis matrix and a component activity matrix, as follows

P (f, t) = P (t)
∑
z

P (f |z)P (z|t) (2.3)

where z is the component index, P (t) is the energy of the input spectrogram (known
quantity), P (f |z) is the spectral template that corresponds to the zth component, and
P (z|t) is the activation of the zth component.

Note that when there is only a single latent variable z this is identical to NMF. The la-
tent variable framework, however, as already said, has the advantage of a clear probabilistic
interpretation which makes it easier to introduce additional parameters and constraints.
It is worth emphasizing that the distributions in PLCA are all multinomials. This can
be somewhat confusing as it may not be immediately apparent that they represent the
probabilities of time and frequency bins rather than specific values; it is as if the spec-
trogram were formed by distributing a pile of energy quanta according to the combined
multinomial distribution, then seeing at the end how much energy accumulates in each
time-frequency bin. This subtle yet important distinction is at the heart of how and why
these factorization-based algorithms work.

2.2.3 Formulation for Automatic Music Transcription

We now propose a reformulation of this generic method for our task of AMT of poly-
phonic solo instrument. The magnitude spectrogram of a sound source can be viewed as
a histogram of “sound quanta” across time and frequency. With this view, probabilistic
factorization, which is a type of non-negative factorization, has been used to model a
magnitude spectrogram as a linear combination of spectral vectors from a dictionary.

The model then takes as input a log-frequency spectrogram Xf,t and, as stated above,
approximates it as a joint distribution over time and log-frequency P (f, t) (f is the log-
frequency index and t the time index), that is

XN (f, t) ≈ P (f, t) (2.4)

with XN = |X(f,t)|∑
f,t
|X(f,t)| the normalized spectrogram making it a distribution of acous-

tic energy across the time-frequency plane. This quantity can be factored into a frame
probability P (t), which can be computed directly from the observed data (i.e. energy
spectrogram), and a conditional distribution over frequency bins P (f |t), as follows

P (f, t) = P (t)P (f |t) (2.5)
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Spectrogram frames are then treated as repeated draws from an underlying random
process characterized by P (f |t). Let’s first define the latent variable z = {i,m}, repre-
senting respectively pitch and playing mode, with i ∈ I, I being the set of pitches, and
m ∈ {1, · · · ,M}, M being the number of playing modes considered. We can then model
this distribution with a mixture of latent factors related to music transcription as follows:

P (f |t) =
∑
i,m

P (f |i,m)P (t|i,m) (2.6)

=
∑
i,m

P (f |i,m)P (m|i, t)P (i|t) (2.7)

where P (f |i,m) are the spectral templates (also called kernel distribution) for pitch i
and playing mode m. For the selected pitch i, the frequency f is selected in a probability
distribution P (f |i,m). No orthogonality between the different spectral basis P (f |i) can
be assumed as several of these basis are mixed into the same frequency f, or in other
words, these basis overlap in frequency. P (m|i, t) is the playing mode activation, and
P (i|t) is the pitch activation (i.e. the transcription, also called impulse distribution). The
playing mode m will refer to different dynamics of instrument playing (i.e. note loudness).
The constant-Q Transform (CQT) is usually used to compute the logarithm spectrogram.
Annex A.3.2 provides details about this representation. When employed on a constant-Q
transform of a mixture of notes, PLCA can be used to decompose the input data into
a summation of convolutions of pitch spectra and the pitch track corresponding to their
temporal activation.

2.2.4 Shift-Invariant PLCA

For what concerns its algorithmic implementation, we use the Shift-Invariant PLCA
(Smaragdis et al., 2008) extension of the PLCA, exploiting the fact that in a CQT, a change
of fundamental frequency is traduced by a simple frequency translation of its partials,
resulting in a shift invariance over log-frequency. SI-PLCA then performs a multi-pitch
detection with a frequency resolution higher than MIDI scale. Shifting of templates are
performed by re-writing eq. 2.7 as

P (f |t) =
∑
i,δf ,m

P (f − δf |i,m)P (m|i, t)P (i|t)P (δf |i, t) (2.8)

where δf is the pitch shifting factor. To constrain δf so that each sound state template
is associated with a single pitch, the shifting occurs in a semitone range around the ideal
position of each pitch. Thus because we are using in this paper a log-frequency represen-
tation with a spectral resolution of 60 bins/octave, i.e. a 20 cent resolution, we have δf ∈
[-2:2].

2.2.5 EM-based model parameter estimation

Classical EM-based estimation

To estimate the model parameters P (m|i, t) and P (i|t), since there is usually no closed-
form solution for the maximization of the log-likelihood or the posterior distributions,
iterative update rules based on the Expectation-Maximization (EM) algorithm (Demp-
ster et al., 1977) are employed. We then follow the likelihood principle (McLachlan and
Basford, 1988), which leads us to maximize the log-likelihood function of eq. 2.5, i.e.
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L =
∑
f∈F

∑
t∈T

n(f, t)log(P (f, t)) (2.9)

where n(f, t) denotes the term frequency, i.e., the number of times f occurred in t.
As stated by Hofmann (1999), “a standard procedure for maximum likelihood estimation
in latent variable models is the EM-algorithm (Dempster et al., 1977)”. EM alternates
two steps: (i) an expectation (E) step where posterior probabilities are computed for the
latent variables z, based on the current estimates of the parameters, (ii) an maximization
(M) step, where parameters are updated for given posterior probabilities computed in the
previous E-step.

For the Expectation step, we compute the contribution of latent variables i, δf and m
over the complete model reconstruction using Bayes’ theorem as follows

P (i, δf ,m|f, t) = P (f − δf |i,m)P (δf |i, t)P (i|t)P (m|i, t)∑
i,δf ,m

P (f − δf |i,m)P (δf |i, t)P (i|t)P (m|i, t) (2.10)

For the Maximization step, we utilize the posterior of eq. 2.10 for maximizing the
log-likelihood of eq. 2.9, resulting in the following update equations:

P (δf |i, t) =

∑
f,m

P (i, δf ,m|f, t)XN (f, t)∑
δf ,f,m

P (i, δf ,m|f, t)XN (f, t) (2.11)

P (m|i, t) =

∑
f,δf

P (i, δf ,m|f, t)XN (f, t)∑
m,f,δf

P (i, δf ,m|f, t)XN (f, t) (2.12)

P (i|t) =

∑
f,δf ,m

P (i, δf ,m|f, t)XN (f, t)∑
i,f,δf ,m

P (i, δf ,m|f, t)XN (f, t) (2.13)

P (f |m, i) =

∑
δf ,t

P (i, δf ,m|f + δf , t)XN (f + δf , t)∑
f,t,δf

P (i, δf ,m|f + δf , t)XN (f + δf , t)
(2.14)

Alternating eq. 2.10 with eq. 2.11-2.13 defines a convergent procedure that approaches
a local maximum of the log-likelihood in eq. 2.9. Typically 15-20 iterations are sufficient.
This convergence towards a fixed point can be monitored by calculating the log-likelihood
(eq. 2.9) associated with the model for each iteration.

Although this set of EM equations can be commonly found in specialized literature
(Hofmann, 1999; Smaragdis et al., 2008; Benetos et al., 2013a), this EM-solved optimiza-
tion problem coming with the parameter estimation of PLCA-based models has never
been properly posed and justified. We then propose in our Technical note 1 to re-define
the theoretical framework of this problem, with the motivation of making it clearer to
understand, and more admissible for further developments of PLCA-based computational
systems. The pitch activity matrix P (i, t) is deduced from P (i|t) with the Baye’s rule

P (i, t) = P (t)P (i|t) (2.15)
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Limits of EM-based estimation

The major limitation of current PLCA models lies in the inherent problems of the
EM algorithm. This algorithm was originally introduced by Dempster et al. (1977) to
overcome the difficulties in maximizing likelihoods of missing data models. The main ad-
vantage of that method is its easy implementation, consisting of initializing the parameters
and iterating expectation and maximization likelihoods in a step-by-step process until con-
vergence. Its major drawback, besides the requirement of convex likelihoods, lies in its
sensitiveness to initialization, which increase the risks to local convergences (Robert and
Casella, 1999). That issue is exacerbated in the case of multimodal likelihoods. Indeed,
the increase of the likelihood function at each step of the algorithm ensures its convergence
to the maximum likelihood estimator in the case of unimodal likelihoods, but implies a
dependence on initial conditions for multimodal likelihoods. Alternative techniques have
also been proposed to optimize the search of global maxima, such as running the algo-
rithm a number of times with different, random starting points, or using variants from
the basic EM algorithm such as Deterministic Annealing EM (DAEM) algorithm (Ueda
and Nakano, 1998). These theoretical issues have reached research fields working on audio
signals.

To tackle the problem of dependency to initialization, some authors (Grindlay and
Ellis, 2010; Benetos and Dixon, 2013) perform a training of the instrument templates,
which has proved to be an effective way to initialise the spectral bases. Indeed, depen-
dency to initialization should be a problem in the basic PLCA model when both basis
functions and activations are estimated from a given magnitude spectrogram. If, however,
one of the two is fixed, the estimation of the other is effectively a gradient descent method
with a convex cost function which should converge against a global optimum. In other
words, by fixing them without data-driven updating, we obtain a stable output for the
gain function, independent of its initialisation. However, when the model becomes more
complex with for example the introduction of different instrument variables, performing
robust initialization is more difficult. For what concerns the local convergence problem,
some works (Hoffman et al., 2009; Grindlay and Ellis, 2010; Cheng et al., 2013) have used
the DAEM algorithm based on a temperature parameter. This limitation becomes partic-
ularly critical when integrating priors into the PLCA framework. Generally speaking, this
integration introduces generic problems in optimization convergence to global maxima,
especially when the prior has a multi-modality form. Indeed, when a prior is injected,
the maximization step becomes a maximum a posteriori step and the log posterior prob-
ability needs to have the good properties for maximization. Fuentes et al. (2013) used
of a numerical fixed point algorithms to solve the modified EM equations with a sparsity
prior, whose convergence is only theoretically supposed, but ”observed in practice” (al-
though the sensitivity of the algorithm convergence to the evaluation sound dataset is not
detailed). Benetos and Dixon (2013) privileged the use of pre-defined templates, which
allows them to skip computing the EM update equation of templates, and just to apply
a sparsity constraint on the pitch activity matrix and the pitch-wise source contribution
matrix. Also, the simultaneous use of several priors on a same model parameter leads to
some difficulties in terms of mathematical calculation and increases convergence problems
Fuentes et al. (2013).

To overcome such limitations, two estimation algorithms are now proposed as alter-
natives of the classical EM algorithm, namely the Deterministic Annealing EM (DAEM)
and the Filtering Particle (FP) algorithms.
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2.2.6 Deterministic Annealing EM (DAEM) -based estimation

Deterministic Annealing EM (DAEM) is an extension of the algorithm EM, proposed
by Ueda and Nakano (1998), and already applied to PLCA by Cheng et al. (2013). EM
equations are modified to integrate a temperature coefficient β as follows

P (i, δf ,m|f, t) = P (f − δf |i,m)P (δf |i, t)P (i|t)P (m|i, t)β∑
i,δf ,m

P (f − δf |i,m)P (δf |i, t)P (i|t)P (m|i, t)β (2.16)

2.2.7 Filtering particle -based model parameter estimation

State space representation

The PLCA model can be expressed as :

P (x, t) =
∑
z

P (z, t)P (x|z)

=
∑

z1,...,zK

P (z1, . . . , zK , t)
J∏
j=1

P (xj |z1, . . . , zK)

=
∑

z1,...,zK

P (zK , t)
K−1∏
k=1

P (zk|zk+1, . . . , zK , t)

J∏
j=1

P (xj |z1, . . . , zK) (2.17)

with :
— z ∈ Z1 × . . .× ZK is a vector of K latent components (z1, . . . , zK) associated to a

finite subset Zk = {1, . . . , Lk}
— t ∈ {0, . . . , T} is the time variable
— x ∈ X1 × . . .×XJ is a vector of J features (x1, . . . , xJ) where Xj = {1, . . . , Fj}
In this decomposition, P (zK , t) can be seen as the activation distribution of the la-

tent variable zK , P (zk|zk+1, . . . , zK , t) as the weight of the variable zk conditionally to
(zk+1, . . . , zK) and P (xj |z1, . . . , zK) as the J features basis.

To estimate the set of parameters pt = {P (zK , t), P (zk|zk+1, . . . , zK , t)∀k ∈ {1, . . . ,K−
1}} at each time t ∈ {0, . . . , T}, the model can be rearranged as a state space process

pt ∼ f(pt|pt−1) (2.18)

yt ∼ g(yt|pt) (2.19)

where f is the transition state density function for pt defined above and g the obser-
vation function of yt.

Transition and observation densities

Transition density Assuming that each latent variable zk ∈ Zk is i.i.d, each marginal
vector P (zK , t) and P (zk|zk+1, . . . , zK , t) can be independently estimated. Recalling that
at a given time t, P (zK , t) and P (zk|zk+1, . . . , zK , t) represent distributions, Dirichlet
priors are injected to ensure that their elements belong to [0, 1], as follows, ∀(z2, . . . , zK) ∈
Z2 × . . .× ZK , ∀k ∈ {1, . . . ,K − 1}
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P (zK , t) ∼ Dir(θ1
t , . . . , θ

LK
t ) (2.20)

P (zk|zk+1, . . . , zK , t) ∼ Dir(δk(zk, . . . , zK−1)1
t ,

. . . , δk(zk, . . . , zK−1)LKt ) (2.21)

where θ and δk are random variables representing the weight of each component of zK
in P (zK , t) and P (zk|zk+1, . . . , zK , t). That injection leads to the following hierarchical
model

Ht → Ht+1
↓ ↓
Pt Pt+1
↓ ↓
Yt Yt+1

(2.22)

with Ht = (Θt,∆t) the new states defined by

Θt = {θzKt ,∀zK ∈ ZK} (2.23)

∆t = {δk(zk, . . . , zK−1)zKt ,∀zK ∈ ZK} (2.24)

where we have defined

θzKt+1 = θzKt × α
zK
t , αzKt ∼ φ (2.25)

δk(zk, . . . , zK−1)zKt+1 = δk(zk, . . . , zK−1)zKt ×
γzKt , γzKt ∼ ψk (2.26)

with φ and ψk are positive distributions.

Observation density yt has been defined as a representation of x at time t. In that
state space approach, each component of yt is represented by the sum of the PLCA model
and a white noise, ∀x ∈ X1 × . . .×XJ ,

yt(x) = P (x, t) + Vt =
∑

z1,...,zK

Pt(z1, . . . , zK)

J∏
j=1

Pt(xj |z1, . . . , zK) + Vt (2.27)

where Vt ∼ N(0, σ2). Denoting ŷt the vector of components P (x, t), the observation
density g follows a normal distribution, i.e. g ∼ N(ŷt, σ2).

2.2.8 Definition of spectral templates P (f |i, m)
Fixed parametric note model

Here, the spectral templates P (f |i,m) are extracted from isolated note spectra of each
pitch using a one component PLCA, and are not updated during parameter estimation. In
our baseline PLCA system, labelled B0 in the following, note spectra are built synthetically
with parametric harmonic note models. We model a note spectrum as a weighted sum
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of fixed narrowband harmonic spectra, called kernels, convolved with a pitch impulse
distribution. Amplitudes of kernels are fixed, and set to decrease as 1 over the square of
the harmonic number. This acoustic model intends to be as generic as possible in modeling
plucked-string instrument sounds.

EM-updated parametric note model

In the PLCA model developed by Fuentes et al. (2013), at a given time t, the spectrum
of the mth polyphonic source is decomposed as a weighted sum of different harmonic notes,
each one having its own fundamental frequency and spectral envelope. These authors then
use the algorithm EM to adapt these parametric kernel amplitudes, i.e. spectral envelop,
to the input audio data.

Pre-recorded note samples

Kernels can be learned from pre-recorded isolated notes using a one component PLCA
model, as performed by Benetos et al. (2013a). This prior makes use of a single tem-
plate per pitch, selected as the one with the highest amplitude. These templates can be
adaptively updated with input data, or kept fixed.

Data-based template adaptation & Conservative transcription

As a last strategy to define PLCA templates, the concept of conservative transcription
for data-based template adaptation has been lately proposed (Tidhar et al., 2010; Benetos
et al., 2014a), using the EM update eq. 2.14. When updating templates on unlabelled
data, one has to avoid that one latent variable is scattered into P (i|t) and P (f |i,m) for
multiple bases, which consequently degrades the accuracy of these magnitudes, leading
to an incorrect solution. To answer this problem, some authors (Tidhar et al., 2010;
Benetos et al., 2014a) have then introduced the concept of conservative transcription.
This particular transcription first consists of identifying only those detected note events
for which we have a high degree of confidence (i.e. the system returns few false alarms but
might miss several notes present in the recording), and omitting any unsure candidates.
This is performed with a PLCA model using a generic fixed template dictionary.

Note events are then extracted by thresholding the event activation matrix P (i, t) =
P (t)P (i|t), and select only the time intervals Tp whose activity values exceed the threshold
Thresfix (see Sec. 2.3). We will now use these intervals to learn the template dictionaries,
adaptively to the input data. As before, a one-component PLCA is used for each time
interval, taking as input X(f, tk) with tk ∈ Tp. The output for each latent component z
is a spectral template P (f |z) which can be used in order to expand the present dictionary.
Following Benetos et al. (2014a), this template adaptation can be controled by a parameter
ε through the following equation

P (f |z) =
∑
t εPt(z|f)X(f, t) + (1− ε)wtheo∑
f,t εPt(z|f)X(f, t) + (1− ε)wtheo

(2.28)

with wtheo = P (f |z) corresponding to some initial template dictionaries. Pt(z|f) is the
posterior of the model (defined in Benetos et al. (2013a)). Higher values of the parameter
ε, which will be set to 0.02 here, allows increasing template adaptation. This parameter
controls the levels of precision/recall: a low threshold has a high recall and low precision;
the opposite occurs with a high threshold, which is done for our conservative segmentation.



54 Chapter 2. Baseline statistical methods for AMT

We can now use these intervals to learn the template dictionaries corresponding to the
different pitches, adaptively to the input data.

2.3 Note segmentation

2.3.1 Notations

This note segmentation stage allows estimating a subset of played notes Ĩ ⊂ I, and the
time intervals U (i)

tk
= [tk, · · · , tk + length(U (i)

tk
)] on which a note is played, for each pitch

i ∈ Ĩ. Each interval U (i)
tk

is indexed by its starting time frame tk. Based on these different
intervals, we can compute the binary piano-roll transcription output P̂ (i, t) ∈ {0, 1},
defined as

P̂ (i, t) =
{

1 for t ∈ U (i)
tk

0 otherwise

2.3.2 Monophonic transcription

A first simple note segmentation is to choose the most likely pitch in each frame by
using the MAP estimator, ∀t

P̂ (i, t) =
{ 1 for i = argmax

i
{P (i|t)}

0 otherwise

2.3.3 Simple thresholding

Eventually, as in most spectrogram factorization-based transcription or pitch tracking
methods (Grindlay and Ellis, 2011; Mysore and Smaragdis, 2009; Dessein et al., 2010), we
use a simple threshold-based detection of the note activations from the pitch activity ma-
trix P (i, t), followed by a minimum duration pruning. The threshold on note activations,
is labelled Thresfix and set to 0.6 by default. The threshold for minimum duration for
pruning was set to 130 ms as in Dessein et al. (2010). In comparative studies of AMT
systems, the use of this simple thresholding method allows one to better highlight the
differences between these different systems, or brought by the incorporation of different
KCMA. The binary matrix P̂ (i, t) is given by

P̂ (i, t) =
{

1 for {i, t} = {i, t|P (i, t) ≥ Thresfix}
0 otherwise

2.3.4 Adpative thresholding

In this paper, we first extracted onsets from P (i, t) using a pitch-wise energy-based
Onset Detection Function (ODF), which computes a spectral flux on each activation band
to emphasize local energy changes, followed by a half-wave rectification (Bello et al., 2005)
so that negative peaks marking the offset of a musical event are discarded and only positive
values are taken into account. Most ODFs are post-processed with a dynamic thresholding
Thresdyn(t) to take into account the loudness variations of a music piece, and in our case
the corresponding activation probabilities, which can be computed (adapted from Bello
et al. (2005)) as
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Thresdyn(t) = Thresfix +median(max(P (:, t−M)), ...,max(P (:, t+M))) (2.29)

with Thresfix an offset coefficient. All these peaks are then stored, and unitary nor-
malized over all peak values. An onset activation score is itself defined as the likelihood
averaged over four temporal frames just after the frame where the onset has been located.
Based on this score, we define the offset time of each note as the time it takes to the onset
activation score to decrease by 80 % of its value. The binary matrix P̂ (i, t) is given by

P̂ (i, t) =
{

1 if {i, t} = {i, t|P (i, t) ≥ Thresdyn(t)}
0 otherwise

2.4 Hidden Markov Models

2.4.1 Theoretical Background

The two main questions to be addressed when developing Hidden Markov Models
(HMMs) are

1. What are your observations ? From which one will compute observation probabil-
ities ;

2. What is the supposed generative process of these observations ? From which one
will compute transition probabilities between different states to explain the obser-
vations.

Markov Chain

Consider a system that is described by a set of N distinct states Sk, where Sk ∈ S =
{S1, S2, ..., SNs}. The states of the system may change with time, and at the time instants
t, they are denoted by qt, a discrete-time random variable taking value in the finite set
S. The dynamics of the system is described by a homogeneous first-order Markov chain,
that is, when at time t the system is in state Si , there is a fixed probability that at time
t, it will be in state Sj , where the probability depends only on the state at time t-1. This
Markov chain is then defined as follows:

P (qt = Sj |qt−1 = Si, qt−2 = Sk, ...) = P (qt = Sj |qt−1 = Si) = aij (2.30)

where A = [aij ] is an Ns × Ns transition matrix, with

aij ≥ 0 and,
N∑
j=1

aij = 1

Training Markov chains (of any order) from data is fairly straightforward if state values
are directly observable, as they are for symbolic data such as text and musical scores. To
obtain the Markov chain under which the observed data are most likely to have occurred,
one simply sets the transition probability vector from each state to match the relative
frequencies of each observed transition.
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Hidden Markov Chain

Although simple Markov chains lend themselves well to applications involving symbolic
data, to model continuous data such as feature vector sequences describing audio we need
to add another layer of complexity. In such modeling scenarios, the state sequence is not
directly observable, but hidden from the observer. Then Hidden Markov Model (HMM)
assumes that each state is associated with an emission probability density function that
generates our observed data. A HMM can then be seen as a doubly stochastic generative
process, with two components: a set of hidden variables that can not be observed directly
from the data, and a Markov property that is usually related to some dynamical temporal
behaviour of the hidden variables.

In mathematical terms, at every time instant t, the system generates an observation
yt according to a probability distribution that depends on the underlying state qt. If
the number of distinct observations is No and the set of observation symbols is υ =
{υ1, υ2, ..., υNo}, the probability distributions of observed symbols are given by an Ns ×
No matrix B, whose elements bjk are known as emission probabilities and are defined
according to

bjk = P (yt = vk|qt = Sj), 1 ≤ j ≤ Ns and, 1 ≤ k ≤ No (2.31)

with

bjk =
No∑
k=1

bjk = 1 (2.32)

Finally, to complete the specification of the model, one needs to provide the initial
state distribution defined by Π = (Π1 . . .ΠNs), where Πi = P (q1 = Si). The three
probability distributions described by A, B and Π are, in short, denoted by λ= {A,B,Π}.
Typically, a common assumption for an observed sequence yT = [y1, y2, ..., yT ] is that its
joint probability mass function conditioned on the state sequence qT = [q1, q2, ..., qT ] and
the parameters λ is given by

P (y|q,λ) =
T∏
t=1

P (yt|qt,λ) (2.33)

which means conditional independence of the observations.

Sigmoid projection

The following sigmoid function f is applied to this observation distribution, in order to
project non-negative data into the range [0 : 1],

f(x) = 1
1 + exp−x−λ (2.34)

where the parameter λ controls the smoothing strength, i.e. the higher its value,
the more low probability values will be discarded. The use of this sigmoid function has
already been proposed in the literature (Benetos and Dixon, 2013). We propose in our
Technical note 2 a theoretical development generalizing the use of this sigmoid function
to format observation distributions before note segmentation, relating its parameters to
explicit music characteristics. For parameter estimation, we employ a GEM algorithm.
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HMM problems

There are three basic problems related to HMMs (Rabiner, 1989), and in order of
increasing complexity, they are the following:

1. Given a set of observations yT = [y1, y2, ..., yT ] and the model parameters λ, the
objective is to find the probability of the observed sequence y, P(y|λ) ;

2. Given a set of observations yT = [y1, y2, ..., yT ] and the model parameters λ, the
objective is to find the corresponding state sequence q ;

3. Given a set of observations yT = [y1, y2, ..., yT ], the objective is to find the state
sequence q as well as the model parameters λ

The solutions to these three problems are well known (Rabiner, 1989). The first
problem can be solved efficiently by the forward-backward procedure, the second, by the
Viterbi algorithm, and the third by the iterative method of BaumâĂŞWelch.

Viterbi resolution

We develop here the well-known resolution of the problem 2 described above, using the
Viterbi algorithm Dempster et al. (1977). It is very complex and difficult to directly model
the joint probability density function of the observation sequence. A reasonable approach
is to group nearby observations of similar characteristics as being produced by the same
state and then consider how do the states progress and how does a state sequence produce
the observation sequence. Hence, the model is split into two parts, the first part considers
the probability of a state sequence and the second part considers the observation sequence
based on a state sequence, and the joint probability distribution given by the model is
written as, given a sequence of measurements y1, ..., yT and assuming a certain sequence
of hidden states q1, ..., qT ,

P (q1, ..., qT , y1, ..., yT ) = P (q1)P (y1|q1)
T∏
t=2

P (yt|qt) · P (qt|qt−1) (2.35)

From this equation 2.35, we define the score of the candidate optimal partial path that,
at time t, reaches state i

δ(i, t) = max
q1,...,qt

ln(P (y1, ..., yT , q1, ..., qt = i)) (2.36)

The most likely state sequence Q is then given by

Q = argmax
i,t
{δ(i, t)} (2.37)

which can be estimated by the Viterbi algorithm (Dempster et al., 1977). Once we have
the initial model parameters, this algorithm is used to decode the training data and obtain
the new optimal state sequences. Then, we can re-estimate the model parameters based
on the new optimal state sequences. The decoding and re-estimation procedure is iterated
until the likelihood score of the data converges or a prescribed number of iterations are
reached.
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Higher-Order HMM

So far, we have made the assumption that the future state of a process depends only
on its single most recent state, in terms of state transition and output observation. Con-
sequently, the feature vectors of consecutive sound frames belonging to the same state are
independent identically distributed, and trajectory modeling (i.e., frame correlation) in
the frame space is not included. Such modeling characteristics are often unreasonable and
reveal limits of first-order HMMs, especially in regards to state duration modeling as they
violate the high correlations among successive frame-wise states. Indeed, the piecewise
stationary assumption does not precisely match the non-stationary nature of the actual
sound process.

In regards to such limitations, it sometimes makes sense to take more than one previous
state into account using a higher-order Markov chain to get a higher prediction accuracy.
HO-HMMs can be defined by making transition probabilities depend on the last k states
in addition to the most recent state. Ching (2004) and Ching et al. (2008) proposed the
high-order (kth-order) Markov models. To a kth-order (k > 1) Markov chain, the present
state relies not only upon the last one state, but also on the k-1 previous states. We can
define a kth-order Markov chain as follows

P (qt = Sj |qt−1 = Si, qt−2 = Sk, ...) = P (qt = Sj |qt−1 = Si, ..., qt−k = Sl) = ai...l (2.38)

HO-HMMs have received a great deal of interest to model frame state duration (Mari
et al., 1997; Ching et al., 2008). By definition, one can actually build more “memory”
into states by using a high-order Markov model with a trajectory modeling within state
sequences.

Mathematically, if we consider that state transition depends only on the previous Od
states and output depends only on the previousOe states, then the model can be thought as
an HO-HMM of orders (Od, Oe). The joint probability of state and observation sequences
of eq. 2.35 can then be re-written as

P (q1, ..., qT , y1, ..., yT ) = P (q1)P (y1|q1)
· P (q2|q1)P (y2|q1, q2)

· P (qt|qt−Od , ..., qt−1)P (yt|qt−c+1, ..., qt)
· P (qT |qT−Od , ..., qT−1)P (yT |qT−c+1, ..., qT ) (2.39)

From eq. 2.39, we can see that there is an enormous number of parameters to be
estimated (about NOd transition probabilities and NOe probability density functions for
an N-state HO-HMM). The corresponding transition matrix A is an NOd × N matrix.
Obviously, the total number of independent parameters is NOd × (N − 1), which grows
exponentially with the order Od, so that it’s impossible to achieve effective parameters
estimation perfectly.

It is noteworthy that some researchers (Dubnov, 2003) have shown that at very low
orders - such as the second order or so-called bigram Markov models - generate strings
that do not recognizably resemble strings in the corpus, while at very high orders, the
model simply replicates strings from the corpus.

2.4.2 General applications in audio

In audio recognition systems, especially in speech, based on HMMs are very popular
not only because of its modeling power but also because there are powerful mathematical
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tools that can be used to efficiently estimate the model parameters, calculate the likelihood
scores, and guide the design of systems. Applied to music, the HMM paradigm is used
to solve three main tasks, namely classification, segmentation and learning, which can be
related to these three HMM problems mentioned above (see Sec. 2.4.1).

Problem 1 Given several candidate HMM models representing different acoustic sources
(musical instruments in our case), the classification problem computes the probability that
the observations came from these models. The model that gives the highest probability is
chosen as the likely source of the observation.

Problem 2 The segmentation problem means finding the most likely sequence of the
hidden states given an observation o1, ..., oT . HMMs have been used to address musical
segmentation problems by several researchers (e.g. Raphael (1999); Aucouturier and San-
dler (2001)). These works dealt with segmentation of a sound into large-scale entities such
as characterizing repetitive patterns (Logan and Chu, 2000), with the purpose of perform-
ing tasks such as score following or identification of texture changes in a musical piece. In
the same vein, HMMs have also been used for music structure analysis at a smaller scale,
with harmonic analysis (Raphael and Stoddard, 2003) and chord estimation (Bello and
Pickens, 2005; Lee and Slaney, 2008).

Problem 3 Learning is the first problem that needs to be solved in order to use a HMM
model, unless the parameters of the model are externally specified. It means estimating
the parameters of the models, usually iteratively done by the EM algorithm (Dempster
et al., 1977).

For what concerns the task of AMT, the sequential structure that may be inferred
from musical signals can be usefully integrated to systems with HMMs. Indeed, as ap-
proaches consisting of a Multi-Pitch Estimation stage, or even classification approach
(Poliner and Ellis, 2007), display the obvious fault of processing each frame independently
of its neighbors: the inherent temporal structure of music is not exploited. HMMs have
then been used for three main tasks: note modeling, note segmentation and sequential
post-processing. All these tasks fall within the second HMM problem defined above, and
are now developed in the following sections. In this PhD thesis, we put a special focus on
the last two ones, which will be used in Chapter 3 for KCMA incorporation.

2.4.3 Acoustic modeling of note events

HMMs have made use of the inherent temporal structure of audio and have shown
to be particularly powerful in modeling sounds in which temporal structure is important,
such as speech (Rabiner, 1989). Two different approaches can be distinguished here. A
first one which integrates HMMs directly into MPE methods, such as NMF (Nakano,
2010) and PLCA (Mysore and Smaragdis, 2009; Benetos and Dixon, 2013). A second one
which uses HMMs to model note events from the salience function of the system during a
post-processing stage. Ryynanen and Klapuri (2005) and Ryynanen and Klapuri (2008)
define a left-to-right HMM topology to model acoustically note events. Grosche et al.
(2012) use two models for segmenting the semitone bands. An on model that captures
properties of sounding notes and an off model which captures regions where no note is
active. The on model exhibits three states with a left-right topology. This reflects the
assumption that a note consists of an attack, decay, and sustain part.
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P (yt|qt = S1)
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Figure 2.2 – On the left, graphical representation of transition probabilities between three
hidden states. On the right, probability density functions for the observed data given the
underlying state of the model yt is the observation at time t, and qt is the underlying state
label at time t.

2.4.4 HMM-based note segmentation

As a replacement of the simple thresholding (see Sec. 2.3.3), HMM can be used to
perform pitch-wise note segmentation from a salience matrix. This function of HMMs
consists in a time filtering of note detection decision and generates smoothed note bound-
aries. We propose two HMM models for this task, the first order two-state on/off HMMs,
developed by Poliner and Ellis (2007), and an original one which extends this model by
including note duration modeling through a higher order. Here, the hidden stochastic
process for HMMs in AMT is associated to the activation matrix P (i, t) computed during
the multi-pitch estimation stage.

First-order two-state on/off HMM

This model has been introduced in Poliner and Ellis (2007). Each pitch is modelled as a
two-state on/off HMM, i.e. Si ∈ {0, 1}, which denotes pitch activity/inactivity. The state
dynamics, transition matrix, and state priors are estimated from our “directly observed”
state sequences, i.e. the training MIDI transcripts, which are sampled at the precise times
corresponding to the analysis frames of the activation matrix. The initial probability
P (q1) for each note is supposed to be 1 for the off state, because all notes are inactive
at the beginning of a recording. There are only four transition probabilities P (qt|qt−1),
which correspond to the following state transitions: on/on, on/off, off/on, off/off. These
probabilities are strongly dependent on the tempo of the considered composition. P (yt|qt)
is the observation probability, whose values are extracted frame-wisely from the PLCA
activation matrix. Figure 2.2 provides a graphical representation of transition probabilities
between two hidden states with this model, along with their observation distribution.

Od-Order two-state on/off HMM

In this HMM model, as we only have two states, Si ∈ {0, 1}, the left-to-right HMM
topology allows for a simple modeling of their temporal dynamic through the duration that
the last state has stayed. Through this model, we no longer consider consecutive states
belonging to a same state as independent identically distributed, but aggregate them in
groups according to the duration of staying in a state. The knowledge memorized in this
modeling is then about note duration, and allows for an efficient reduction of the HMM
parameters to be estimated. Mathematically, eq. 2.39 can be reduced to
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P (q1, ..., qT , y1, ..., yT ) = P (q1)P (y1|q1, d1(q1))
· P (qt|qt−1, dt−1(qt−1))P (yt|qt, dt(qt))

· P (qT |qT−1, dT−1(qT−1))P (yT |qT , dT (qT )) (2.40)

where dt(st) ∈ {1, ..., Od}, represents the duration that state qt has stayed up to time
t, and is equal to Od when it exceeds the maximum dependency order Od. Figure 2.3
provides a graphical representation of transition probabilities between three hidden states
with this model, along with their observation distribution. We now need to define the
score of the candidate optimal partial, which will depend on state i and staying duration
d, at a given time t. Such a score can be defined as, for 0 ≤ d ≤ Od,

δ(i, d, t) = max
q1,...,qt−d−1

ln(P (q1, ..., qt−d−1,

qt−d = i− 1, qt−d+1 = · · · = qt = i, y1, ..., yT )) (2.41)

and for d=Od,

δ(i,D, t) = max
q1,...,qt−Od−1

ln(P (q1, ..., qt−Od ,

qt−D+1 = · · · qt = i, y1, ..., yT )) (2.42)

This HO-HMM model is actually equivalent to OdN-state first order HMM and can
then be recursively solved with a Viterbi algorithm. Algorithm 2 presents this resolution
for two on/off states Si ∈ {0, 1}. In this algorithm, the probability of transition from state
i to itself after staying for d frames is denoted by ã(i, d). Briefly, in the initialization step
(step 1) of the algorithm, the first frame is constrained to be in state S1=0 (i.e. a sequence
begins with silence). For d=1 (step 6), the first entrance of state S1 is from state S2 with
a stay time of 1 through Od, and reciprocally. For d > 2 (step 8), the previous frame
must be at the same state with stay time equal to d-1. For d =Od (step 10), the first
entrance of state S1 is from state S2 with a stay time at state Od− 1, and reciprocally. In
the termination step (step 14), the last frame is constrained to be at state S1=0, and it
should be at the end boundary state after the last frame.

One major advantage of this algorithm is that it allows the complex topology of equiv-
alent first order HMMs to be automatically learned from the training data. Initially, the
training data are uniformly segmented according to the state number. The observation
vectors belonging to the same state and staying time are grouped. From the uniformly
segmented state sequence, we can accumulate the state transition counts and then esti-
mate state transition probabilities. Let C(i,d), d ≤ Od, denote the times that state i has
stayed d frames and let C(i,Od+) denote the times that state i has stayed for more than
Od frames. Then, the state transition probabilities can be estimated by

ã(i, d) = C(i, d+ 1)
C(i, d) , 1 ≤ d < Od (2.43)

ã(i, Od) = C(i, Od+)
C(i, Od)

(2.44)



62 Chapter 2. Baseline statistical methods for AMT
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Figure 2.3 – On the left, graphical representation of transition probabilities between three
hidden states. On the right, probability density functions for the observed data given the
underlying state of the model yt is the observation at time t, and qt is the underlying state
label at time t.

Algorithm 2 Viterbi Algorithm adapted for a Od-order two-state on/off HMM
1: Initialization (t=1)
2: δ(1, 1, 1) = ln(b11(y1))
3: δ(1, i, d) = − inf, for i ∈ {1, 2}, 1 < d < Od
4: for 1<t<T do
5: for i, j ∈ {1, 2}, with i 6= j do
6: δ(t, i, 1) = max

1<τ<Od
δ(t− 1, i− 1, τ) + ln(ã(j, τ)) + ln(bi1(yt))

7: for 2 < d < Od do
8: δ(t, i, d) = δ(t− 1, i, d− 1) + ln(ã(i, d− 1)) + ln(bid(yt))
9: end for

10: δ(t, i, Od) = max
Od−1<τ<Od

δ(t− 1, j, τ) + ln(ã(i, τ)) + ln(biOd(yt))
11: end for
12: end for
13: Termination (t=T) :
14: δopt = max

1<d<Od
δ(T, 1, d) + ln(ã(2, d))



2.4. Hidden Markov Models 63

2.4.5 Note mixture-based HMM for sequential post-processing

In this section, we develop an original HMM-based post-processing method, which
consists in rejecting unlikely successions of note mixtures based on prior knowledge of
polyphonic harmonic transitions. Instead of keeping a list of binary notes as in P̂ (i, t),
we will define probabilistic note candidates and further weight their respective likelihoods
using a note mixture-based HMM method.

Definition of the note mixture event

In the note segmentation stage (Subsec. 2.3), we have defined the time intervals U (i)
tk

on which a note is played, for each pitch i ∈ Ĩ. Then, each appearance of a new note
event, occurring at the different starting time frames tk ∈ T, will create a note mixture
Mtk , also indexed by tk. Before defining these mixtures, in order to reduce the number of
defined note mixtures, we aligned the intervals U (i)

tk
whose starting times are closer than

46 ms (i.e. 4 time frames, see Sec. 5.1.3 for details on numerical values).. This way, we aim
to identify more conveniently symbolic music units by aggregating individual estimations,
and only keep the most significant grouping of notes.

Over the duration of a musical sequence, and after note segmentation, we obtain a
list M = {Mt1 , · · · ,Mtk , · · · ,MtK}, with K the number of starting points in a musical
sequence, and where each note mixture is indexed in time by its starting time tk. Each
note mixture Mtk is then parametrized by the vectors of size NĨ , defined as

Υtk = [Υtk(1), · · · ,Υtk(NĨ)]
T (2.45)

ytk = [ytk(1), · · · , ytk(NĨ)]
T (2.46)

Υtk(•) contains binary values Υ ∈ {0, 1} indicating if each pitch is played in the note
mixture or not. ytk is the observation vector, where we defined the salience scores stk(i)
as the median of the pitch activity contained in the activation interval U (i)

tk
, i.e.

stk(i) = median
t∈U(i)

tk

(P (i, t)) (2.47)

Then, for a given test musical sequence, the set of HMM states will be formed as follows
S = {Stest,Strain}, where Stest = [Mt1 , · · · ,MtNStest

]T6=, where the suffix 6= expresses the
fact that the elements in this set are all distinct 1, with NStest ≤ K the total number of
states. A supplementary set of HMM states Strain from the training material is also added
to this initial set. This operation can be performed as the observation probability for each
note mixture is computed through their individual constitutive pitches. To extract these
supplementary HMM states from training data, we adopt the strategy of selecting the
mixtures that

1. are the most recurrent in the training material, identified through a simple fre-
quency counting ;

2. share common pitches with the note mixtures from the test sequence. For example,
a note mixture {D3, F3, A3, B3} in the initial set can bring the supplementary states
{D3, F3, A3} and {D3, F3} from the training data

The numbers NStest and NStrain
are around 45, depending on the instrument repertoire

and test sequences, and 20.

1. This distinctiveness between elements is done w.r.t the Υtk
vectors.
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State-conditional observation likelihood

We then need to assign an observation probability likelihood to each Mtk HMM state.
The first step of this process consists in learning sample histograms of salience values
respective to each pitch, and separating values from played notes and not-played notes, as
illustrated in figure 2.4. These sample histograms are then smoothed using two analytical
PDF models fitting their distributions, H(i)(s(i|i)) and H̄(i)(s(i|̄i)), where s(i|i) and
s(i|̄i) refer to the salience values of the played and not-played notes of pitch i, respectively.
The first one describes the observed salience values given that note of pitch i was played
according to the annotation of the training material. Similarly, the second PDF describes
the observed salience values when note was not played according to the annotation. Normal
and log-normal distributions are respectively used, as follows

H(i)(s(i|i)) = 1
σs(i)
√

2π
e
−

(s(i)−µs(i))2

2σ2
s(i) (2.48)

H̄(i)(s(i|̄i)) = 1
s(i)σs(i)

√
2π
e
−

(ln(s(i))−µs(i))2

2σ2
s(i) (2.49)

In figure 2.4, we represented three examples of learning of these sample histograms and
their respective PDF models. The pitches C4, G4 and E5 from the Velonjoro repertoire
(see Sec. 4.4 for details on the datasounds of this PhD) have been used for this learning.
Their salience values have been discretized into 80 observation scores.
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Figure 2.4 – On left graphs, sample histograms of the salience values s(i|i) in the training
data when the notes with pitch i were played according to the annotation (bars), and the
corresponding model PDFs H(i)(s(i|i)) (red curves). On right graphs, sample histograms
of the salience values s(i|̄i) in the training data when the notes with pitch i were not played
according to the annotation (bars), and the corresponding model PDFs H̄(i)(s(i|̄i)) (red
curves).

The state-conditional observation likelihood given a mixture Mtk is then defined as
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P (ytk |qtk = Mtk) =
NĨ∏
i=Ĩ

P (stk(i)|ΥMtk
(i)) (2.50)

=
NĨ1∏
i=Ĩ1

NĨ2∏
j=Ĩ2

P (stk(i)|ΥMtk
(i) = 1)︸ ︷︷ ︸

H(i)(stk (i))

·P (stk(j)|ΥMtk
(j) = 0)︸ ︷︷ ︸

H̄(j)(stk (j))

(2.51)

where Ĩ1 is the set of played pitches in the mixture, Ĩ2 the complementary set of not-
played pitches in the mixture (with NĨ1

+ NĨ2
= NĨ). Eventually, at each starting time

tk, the different observation probabilities are normalized so as to satisfy condition given
by eq. 2.32,

P (ytk |qtk = Mtk) = P (ytk |qtk = Mtk)∑NS
j=1 P (ytk |Sj)

(2.52)

with Sj ∈ S.

Guiding example

To complete this section, we propose a simple example to help understanding this
method, as illustrated in figure 2.5. After learning sample histograms of salience values
and their PDF models (step A), the note segmentation stage of the PLCA pitch activity
matrix (step B) allows identifying the time frames during which a note is estimated to be
played, filled with coloured rectangles, and defining the different time intervals U (i)

t . The
values of P (i, t) are also noted in each pitch-time frame. Then, at step C, we define the
different note mixtures Mtk , indexed by the starting times tk and the set of vectors Υ,

Υ = [Υt1 , · · · ,Υt4 ]T =

1 0 1 0
0 1 0 0
0 0 0 1

 (2.53)

We can then compute the salience values stk(i) according to eq. 2.47. Eventually, the
state-conditional observation likelihood is computed according to eq. 2.50, as detailed at
step D.

2.5 Conclusion

This chapter has presented the baseline statistical methods we used to perform Auto-
matic Music Transcription (AMT), which are mainly based on Probabilistic Latent Com-
ponent Analysis (PLCA) and Hidden Markov Models (HMMs). PLCA is a probabilistic
subspace analysis method which can be used for decomposing audio spectrograms. HMMs
belong to dynamic Bayesian networks, and are especially known for their applications in
modeling and recognition of time series. These two statistical methods use Bayes-based
probabilistic frameworks, which allow powerful modelings with the incorporation of ex-
ternal musical knowledge. Put in combination, they cover both the time and frequency
domains, a necessary condition to model music signals.
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Figure 2.5 – Illustrative example explaining the computation of the state-conditional like-
lihood probability.



Chapter 3

Incorporating Knowledge
Components from Musical
Acoustics in AMT systems

Abstract

In this chapter, we develop methods to incorporate our Knowledge Components of Mu-
sical Acoustics (KCMA), as identified and extracted in chapter 1, in the baseline statistical
methods described in chapter 2. In the PLCA framework, we incorporate frequency-
domain knowledge, which acts as priors by constraining parameter estimation, and in
the HMM framework, we incorporate time-domain knowledge in a post-processing stage.
Figure 3.1 illustrates the relation of this chapter with the others.

Musical 
knowledge

Musical 
Production

Signal 
Acquisition

Signal
Analysis

Chapter III
Incorporating KCMA 

in AMT models

Figure 3.1 – Schematic diagram of the PhD organization for chapter 3.



68 Chapter 3. KCMA in AMT systems

3.1 Introduction

3.1.1 Background

A musical signal is highly structured, in both time and frequency domains. In time
domain, tempo and beat specify the range of likely note transition times. In the frequency
domain, as audio signals are both additive and oscillatory (musical objects in polyphonic
music superimpose and not conceal each other), several notes played at the same time
form chords, or polyphony 1, merging their respective spectral structures. When designing
priors for an AMT system, one basically aims to help the system figuring out ”which
notes are present at time t” and ”by which ones they will be followed”. These two types of
information belong respectively to frame-wise spectral priors (e.g. sparseness, spectrum
modeling including inharmonicity (Rigaud et al., 2013)) and to frame-to-frame temporal
priors (e.g. harmonic content transitions, smoothing of spectrum envelop).

Many previous works (Poliner and Ellis, 2007; Grindlay and Ellis, 2011; Benetos and
Dixon, 2013) on AMT have used sequential priors to model each pitch activity/inactivity
phases, which is done using two-state on/off HMMs for each of them during a post-
processing stage. This operation performs a time filtering of note detection decision, which
mainly avoids a lot of single miss errors and smooths note boundaries. But musically,
the information is very restricted, as it consists only in knowing how long a given pitch
note remains active, which can result from both playing techniques of the musician and
vibratory properties of the instrument.

In principle any acoustic or score-related information that can facilitate the transcrip-
tion process can act as prior information for the system. However, to be of use in a practical
application, it is important that it does not require too much time and effort, and that the
required information can be reliably extractable by the user, who might not be an expert
musician. Depending on the expertise of the targeted users, information that is easy to
provide could include key, tempo and time signature of the piece, structural information,
information about the instrument types in the recording, or even asking the user to label
a number of notes for each instrument. Although many proposed transcription systems
-often silently- make assumptions about certain parameters, such as the number or types
of instruments in the recording, not many published systems explicitly incorporate prior
information from a human user.

In the context of source separation, Ozerov et al. (2012) proposed a framework that
enables the incorporation of prior knowledge about the number and types of sources, and
the mixing model. The authors showed that by using prior information, a better separation
can be achieved than with completely blind systems. A system for user-assisted music
transcription was proposed in Kirchhoff et al. (2012), where the user provides information
about the instrument identities or labels a number of notes for each instrument. This
knowledge enabled the authors to sidestep the error-prone task of source identification or
timbre modelling, and to evaluate the proposed non-negative framework in isolation.

3.1.2 Two main families of knowledge incorporation

Knowledge is commonly incorporated in retrieval methods to better fit the decompo-
sition to specific properties of input data. These properties can be either physics-based or
signal-based. In the first case, knowledge can be explicitly modeled and incorporated in
the statistical framework.

1. Here polyphonic music refers to a signal where several sounds occur simultaneously. Whereas in
monophonic signals, at most one note is sounding at a time.
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Signal-based

For instance, when isolated note recordings are available, on the same instrument and
with the same recording conditions, the spectra of the dictionary can be learned inde-
pendently (Niedermayer, 2008; Dessein et al., 2010). In that case, since the dictionary
is learned on monophonic data and fixed at the learning step, high transcription perfor-
mances can be obtained.

Physics-based

For example, note templates can be parametrized by some prior information on har-
monicity (Bertin et al., 2010; Hennequin et al., 2010), temporal evolution of spectral en-
velop (Hennequin et al., 2011), sparsity of simultaneously activated notes (Hoyer, 2004),
beat structure (Ochiai et al., 2012), etc., which is used to model the dictionary or the
time-activation matrices.

3.1.3 Objectives & Plan

In this chapter, we make the link between the music related knowledge detailed in
chapter 1, and listed as KCMA in table 1.2, and the algorithms for AMT in which they
can be incorporated. The resulting overall transcription system is then of probabilistic
nature, with a cascade of note probability weighting, delaying the final decision made on
the estimation of active notes. In the first section 3.2, we describe the different theoretical
methods used for the incorporation of our KCMA into our baseline methods for AMT.
The first two methods incorporate knowledge as priors, which apply a direct constraint
on the PLCA parameter estimation through modifications of EM equations. The next
three methods incorporate KCMA in a post-processing stage, re-weighting candidate note
probabilities in the activation matrix before note segmentation. It is noteworthy that in
recent literature Sigtia et al. (2014, 2015), the expression of “re-transcription” has been
used, with the computation of priors from a first transcription step, and using it in a
second transcription step by re-weighting model parameter estimation in EM equations.
Our processing stage is different from this approach in the sense that we do not go through
the EM algorithm again to re-weight pitch probabilities. Eventually, in section 3.4 we list
all KCMA implemented in our AMT baseline system. They are categorized accordingly
to their respective datasound sources, as already done in Sec. 1.

3.2 Mathematical prior incorporation

3.2.1 Sparse entropy-like prior in PLCA

As mentioned in Sec. 2.2, PLCA has the advantage that it enables to use a priori
knowledge of domains. From the very first works on PLCA (Shashanka et al., 2008;
Smaragdis and Mysore, 2009; Smaragdis et al., 2009), sparseness assumptions have been
introduced in the PLCA framework as “entropic priors” to PLCA. The most generic
mechanic to introduce priors in PLCA models is through the use of a Dirichlet distribution,
which is a conjugate prior distribution to the PLCA multinomial distributions P (f |z) and
P (t|z) (Smaragdis and Mysore, 2009). It can then be used to constrain the structure of
the model distribution. The priors Pr for all the frequency distributions Λf , and temporal
distributions Λt, are
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Pr(Λf ) ∼
∏
z

∏
f

P (f |z)κzα(f |z) (3.1)

Pr(Λt) ∼
∏
z

∏
t

P (t|z)µzα(t|z) (3.2)

where α(•) are the positive and real hyperparameters defining the Dirichlet distribu-
tion. The weight scalars κz and µz can be interpreted as the prior strengths. Using the
above priors, our EM estimation equations for P (f |z) and P (t|z) (eq. 2.13 and 2.14,
respectively) now change to:

P (f |m, i) =

∑
δf ,t

P (i, δf ,m|f + δf , t)XN (f + δf , t) + κzα(f |m, i)∑
f,t,δf

P (i, δf ,m|f + δf , t)XN (f + δf , t) + κzα(f |m, i) (3.3)

P (i|t) =

∑
f,δf ,m

P (i, δf ,m|f, t)XN (f, t) + µzα(t|m, i)∑
i,f,δf ,m

P (i, δf ,m|f, t)XN (f, t) + µzα(t|m, i) (3.4)

The first prior type will impose a sparsity on P (f |m, i) so that each spectral basis
component consists of only a few bins on the spectrum, while the second prior will impose
a sparsity on P (i|t) so that only a few pitches i are active in the same time. A third type
of entropy-like prior exists, imposing a sparsity between spectral basis components so that
spectral basis components P (f |m, i) for different pitches i are not similar to each other.
This prior takes the form of a cross-entropy defined by (Smaragdis et al., 2009)

H({Pk}k, {Qk}k) = −
∑
k

PklogQk −
∑
k

QklogPk (3.5)

which measures the similarity between the two distributions {Pk}k and {Qk}k on their
common dimension, and will be used as follows in our context

Pr = β
∑

i,i′|i 6=i′
H({P (f |i)}f , {P (f |i′)}f ) (3.6)

where we defined the parameter β is the prior strength. These sparseness prior is
added to the general likelihood eq. 2.9 as a cost function Pr:

L =
∑
f∈F

∑
t∈T

n(f, t)log(P (f, t))− Pr (3.7)

which leads, following the classical EM resolving procedure, to this template update
equation

P (f |i) = B(0,
∑
t

P (i|f, t)XN (f, t)−
∑
i=i′

P (f |i′)) (3.8)

where

B(β, γi) = %(i)
I−1∑

i′=1,6=i
%(i′)

(3.9)

and
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%(i) = βγi + αG(β, γi)α

(α− 1)
I−1∑

i′=1,6=i
G(β, γi′)α

(3.10)

The estimation of eq. 3.8 is computed iteratively with the two equations 3.9 and 3.10
until convergence. As already mentioned for the concept of conservative transcription,
these sparseness assumptions also allow to avoid that one pitch is scattered into P (i|t)
and P (f |i) for multiple bases, which consequently degrades the accuracy of P (i|t) and
that of P (f |i), leading to an incorrect solution. For our AMT application, in particular
this inter-basis sparseness prior is important to impose a discriminability between the
different pitches.

3.2.2 Inter-pitch sparse prior in PLCA

The inter-pitch matrix ι (eq. 1.1) is injected in the PLCA framework by constraining
the impulse distribution coefficients P (i, t,m) with the term

P (θ) ∝ exp(−θ′ι∗θ)

where ι∗ is obtained by, ∀i, j,

ι∗(i, j) =
{

0 for i = j
Π(ιi,j) otherwise (3.11)

with the operator Π defined as

Π(x) = 1− x

max(x) (3.12)

which defines an information rejecting the hypothesis of certain pitch combinations,
and where ι∗ is then the matrix M whose diagonal coefficients have been set to 0. It
is noteworthy that simpler modeling of prior knowledge, through for example a pitch-
dependent vector, can also take the form of a diagonal matrix of size I2, with the vector
values put into this diagonal (the zero-coefficients of ι provide an unitary prior value which
does not affect particle weights). When developing eq. 3.2.2, we get the following form

P (θ) ∝ exp(−
NI∑
i=1

NI∑
j=1
ι∗(i, j)θiθj) (3.13)

The usual maximization step is replaced by a maximum a posteriori (MAP) process,
i.e. instead of maximizing the log expected likelihood QΛ, the log posterior probability
D(θ) = QΛ + ln(P (θ)) is maximized. This maximized function is defined by

D(θ) : Ω =]0, 1[NI→ R (3.14)

D(θ) =
NI∑
j=1

wj ln(θj)−
NI∑
i=1

NI∑
j=1
ι∗(i, j)θiθj (3.15)

with wj =
∑
f,z
VftP (i, s, z, c = h|f, t). Working with probability distributions, the

following system is obtained :
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maxD(θ) (3.16)

u.c.g(θ) =
NI∑
j=1

θj = 1 (3.17)

A maximum θ̂ exists since D is continuous and upper bounded by 0 on Ω. To maximize
that function under the constraint g(θ) = 1, we introduce a Lagrangian system :

L(θ, λ) : Ω× R→ R (3.18)
(θ, λ) 7→ D(θ)− λ(g(θ)− 1) (3.19)

Moreover, the maximum θ̂ verifies the first order necessary conditions proper to local
maxima (Lagrange theorem) since D and g are both differentiable According to these two
points, there exists a unique λ ∈ R such that :

∇L(θ̂, λ) = 0 (3.20)

The previous equation (eq. 3.20) leads to, ∀j ∈ {1, · · · , NI},

θ̂j = wj
NI∑
i=1

ι∗ij θ̂i + λ

(3.21)

There is no closed-form solution for each θj , but following Fuentes et al. (2013), a
fixed point algorithm can be used to find a solution increasing the posterior probability
at each iteration of the EM algorithm. Numerical simulations showed that the fixed point
Algorithm 1 always converges to a solution that makes the posterior probability increase
from one iteration of the EM algorithm to the next.

Algorithm 3 Fixed-point method for the mutual resonance prior

1: ∀j ∈ {1, · · · , NI}, θ̂j ← wj∑
k
θk

;
2: while Convergence not reached do
3: ∀j ∈ {1, · · · , NI}, rj ←

∑
k
ι∗jkθk

4: Find the unique λ such that
∑
j

wj
rj+λ = 1 and ∀j, wj

rj+λ ≥ 0

5: ∀j ∈ [1, J ], θ̂j ← wj
rj+λ

6: end while

3.2.3 A Bayesian estimation of frame-wise note number

At a given time t and playing mode m, conditionally to the data y = P (i, t), let’s
define the posterior distribution P (θ = k|y) of the impulse distribution vector P (i, t,m).
Thanks to Bayes rule, and ∀k ∈ {1, · · · , dmax}, we have

P (θ = k|y) ∝ P (y|θ = k)P (θ = k) (3.22)

where dmax is the maximum degree of polyphony and P (θ = k) = (α1, · · · , αdmax) iden-
tifies to the distribution of the polyphonic degree associated to prior P1. In a statistical



3.2. Mathematical prior incorporation 73

framework, θ follows a multinomial distribution in {1, · · · , dmax} associated to probabil-
ities {α1, · · · , αdmax}. Then, as P (y|θ = k) is composed of the k greater components
(y∗1, · · · , y∗k) of y, we simply compute it as the probability P (y|θ = k) = P (y∗1, · · · , y∗k), i.e.
the activity scores (s∗1, · · · , s∗k) of the corresponding pitches, as y = P (i, t). Considering
the independence assumption between pitch activations, the posterior distribution 3.22
can be rewritten in

P (θ|y) =



α1s
∗
1

...

αk
k∏
i=1

s∗i

...

αdmax
dmax∏
i=1

s∗i


Then, the degree of polyphony at a given time t is the kth element of θ which maximizes

P (θ|y).

3.2.4 Modifying activation temporal profiles

We propose here a method to incorporate the KCMA ∼ IsoNo1 and IsoNo2, respec-
tively on note duration and amplitude energy modulation. These descriptors have been
computed on the sound template sets of each instrument, to get for each pitch i the prior
parameters ∆i and βi (defined as the median of the descriptor values for the sound sam-
ples of pitch i, and normalized by the maximum of all values). The prior parameter ∆i is
used as a pitch-specific minimum duration for pruning, as defined in step 3 of the pseudo-
algorithm 4. βi is used in an acoustics-informed smoother function of pitch-wise activation
intervals Ui,k, indexed by k. Following the pseudo-code 4, this smoother computes within
each activation interval, the minimum/maximum filter defined as

P (i, Ui,k(n)) =
{
min(P (i, Ui,k(Int))) if median(P(i,Ui,k(Int))) ≤ Θ
max(P (i, Ui,k(Int))) otherwise (3.23)

with Int = [n − η/2 : n + η/2] and η defining the temporal window of activity, and
Θ the threshold ordering the switch between minimum and maximum filters. These two
parameters define the smoothing strength. The higher is η and the lower is Θ, the smoother
are the resulting activation intervals. These two parameters are constrained to range
from [2 : min(10, length(Ui,k))] frames and [0.1 : 0.9max(P (i, Ui,k))], respectively. Their
positions in these ranges are linearly indexed by the value of βi, so that the higher is βi,
the smoother are the resulting activation intervals (i.e. the higher is η and the lower is Θ).
Also, the value of 250 ms is learnt from the training, defined as the minimal note duration
so as a significant AmpMod degree appears. Figure 3.2 illustrates the application of this
intermodulation-informed smoother on the activation of an intermodulated note.

3.2.5 Note mixture-based HMM in post-processing

First-order NMn-state HMM for harmonic transitions

This model follows a classical first-order HMM with NMn states. Figure 3.3 provides a
graphical representation of transition probabilities between three hidden states with this
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Figure 3.2 – Activation curve obtained with three different AMT systems, on an inter-
modulation note. Our intermodulation-informed smoother is also plotted, which results
in flatting the activation dip.

Algorithm 4 Minimal Duration Pruning and Intermodulation-informed smoother
1: for Each pitch i, do
2: Find pitch-wise intervals Ui,k, such that median(P (i, Ui,k)) > 0.4 ;
3: for Each interval Ui,k, do % Minimal Duration Pruning
4: if length(Ui,k) ≤ ∆i then
5: Pruning Ui,k
6: end if
7: if length(Ui,k) ≥ 250 ms then % AmpMod-informed smoother
8: Apply Minimum/Maximum filtering (eq. 3.23) to Ui,k
9: end if

10: end for
11: end for
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Figure 3.3 – On the left, graphical representation of transition probabilities between three
hidden states. On the right, probability density functions for the observed data given the
underlying state of the model yt is the observation at time t, and qt is the underlying state
label at time t.

model, along with their observation distribution. In this model, transition probabilities are
defined as the probability to switch between two successive mixtures of notes in a musical
piece, simply computed by counting their occurrence frequency. These probabilities give
us a global view of the usual and unusual harmonic transitions of an instrument repertoire,
and are trained using MIDI scores. Despite the size of the learning database, novel note
transitions may appear in test sequences without being trained, which will then not have
estimated likelihoods. The distribution values must be smoothed to address tiny likelihood
values for the note transitions that were not found in the learning database. Then, the
Witten-Bell discounting algorithm (Witten and Bell, 1991) can be used to perform this
smoothing. The algorithm is based on a principle of zero-frequency N-grams, i.e., the N-
grams that have not yet occurred in the database. The zero-frequency N-gram likelihoods,
however, may be estimated by the N-grams that have occurred once. Consequently, the
zero-frequency likelihoods may be used to smooth the distribution.

Second-order NMn-state HMM for harmonic transitions

We used the extended second-order Viterbi algorithm already published in the litera-
ture (He, 1988).

3.3 Prior incorporation in the filtering particle framework

3.3.1 Background

In mathematical terms, priors are used to sharpen up estimation of model parameters
by emphasizing the most likely values in their distributions. This prior integration is per-
formed during state generation, by re-weighting each particle value with a corresponding
prior gain. Adding prior knowledge on parameters pt leads up to sample from the posterior
distribution,

P (pt|yt) ∼ P (yt|pt)P (pt) (3.24)
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where P (yt|pt) identifies to the observation density g and P (pt) the prior knowledge.
When the prior and the likelihood are conjugate, sampling from the posterior distribution
is rather straightforward. When the posterior does not have a well known form, as it is
the case in most real-life applications, computational statistics methods can be introduced
to sample from the posterior. The Metropolis-Hasting algorithm (Roberts et al., 1997;
Newman and Barkema, 1999; Robert and Casella, 1999), based on Monte Carlo methods,
brings a powerful framework to tackle that issue. This algorithm is a random walk that
uses an acceptance/rejection rule to converge to the specified target distribution, and
proceeds as described in the algorithm 5.

Algorithm 5 Metropolis-Hasting algorithm for prior integration.
1: Draw a starting point p0

t , for which P (p0
t |yt) > 0, from a starting distribution p0(pt) ;

2: for q = 1, 2, . . . do
3: Sample a proposal p∗t from a jumping distribution at iteration q, Jq(p∗t |p

q−1
t ) ;

4: Calculate the ratio of densities,

r = P (p∗t |yt)/Jq(p∗t |p
q−1
t )

P (pq−1
t |yt)/Jq(pq−1

t |p∗t )
(3.25)

5: Set

pqt =
{
p∗t with probability min(r, 1)
pq−1
t otherwise (3.26)

6: end for

Considering the filtering particle framework defined above, few remarks about the
different steps can be highlighted. First, the initial draw is replaced by the PF draw
we want to interfere in. Even if the posterior distribution is unknown, the ratio r can be
computed as the ratio of the product of the likelihood and the prior since the normalization
constant is removed in the ratio.

r = g(yt|p∗t )p(p∗t )/Jq(p∗t |p
q−1
t )

g(yt|pq−1
t )p(pq−1

t )/Jq(pq−1
t |p∗t )

(3.27)

The jumping distribution Jq is chosen as a normal distribution to simplify the ratio
computation. Indeed, the symmetry property of the normal distribution involves that Jq
can be removed in eq. 3.27, to get

r = g(yt|p∗t )p(p∗t )
g(yt|pq−1

t )p(pq−1
t ))

(3.28)

The PLCA-PF framework allows a general insertion of the matrix ι through the term
P (pt) of eq. 3.24, to which we can give the following form

P (pt) ∝ exp(−p′tιKpt) (3.29)

where pt ∈ {At, Bt(s), P rt(s, δf )}, ∀(s, δf ) ∈ {1, . . . , S} × {1, . . . ,∆f}, and Kpt is a
vector of length NI associated to pt.
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3.3.2 Sparse priors

During the multi-pitch estimation step of an AMT process, a too much large number
of non-zero activation scores is often observed, making the operation of “finding the right
notes” more difficult. In order to overcome this flaw, a sparseness prior can reduce the
number of active notes per frame in selecting the most salient ones. Previous works mostly
use pitch-independent sparse prior in PLCA-EM algorithms. Fuentes et al. (2013) compute
a sparseness prior P (At) to constrain the impulse distribution At, as follows

P (At) ∝ exp
(
−2β
√
J ||At)||1/2

)
(3.30)

with ||At||1/2 =
∑
i

√
At(i) and β a positive hyperparameter indicating the strength

of the prior. With this prior, a numerical fixed point algorithm is required to obtain a
solution with the EM algorithm. Other works Grindlay and Ellis (2011); Benetos and
Dixon (2011, 2013) impose sparsity on the pitch activity matrix and the pitch-wise source
contribution matrix by modifying EM equations. The common point to all these EM-based
sparse priors is that they are pitch-independent, and rely on hyper-parameters, which are
either arbitrary set and/or optimized on a given sound dataset. In this PhD, we define
sparse priors informed by explicit musical acoustics related knowledge.

Eventually, for a sparse type prior ιspa, the set of prior parameters pt in eq. 3.29 is
equal to At and Kpt is set to At , which becomes

Pspa(At) ∝ exp(−A′tιspaAt) (3.31)

3.3.3 Sequential priors on harmonic transitions

Such a sequential prior Ptra is represented through a matrix ιtra. Eventually, for this
sequential type prior, pt in eq. 3.29 is equal to At and Kpt is set to At−1, which leads to

Ptra(At) ∝ exp(−A′tιtraAt−1) (3.32)

3.3.4 Prior combination

The PLCA-PF framework offers an easy-to-implement unifying way of integrating
priors from both time and frequency domains. In this framework, priors are injected during
the filtering process through eq. 3.24, and modify the parameters without disturbing their
generation. In the set of parameters pt, the independence between each parameter pnt
leads to

P (pt) ∝
∏
n

P (pnt ) (3.33)

Within a defined parameter pnt , the general prior P (pnt ) can be seen as the product of
the different priors Pnprior associated to pnt

P (pnt ) ∝
∏
prior

Pnprior(pnt ) (3.34)

Using equations 3.29, 3.33 and 3.34, we combine the different priors, characterized by
their respective matrices Sprior, as follows

P (pt) ∝ exp(−
∑
n

∑
prior

pnt
′SnpriorK

n
prior) (3.35)
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3.4 List of the KCMA implemented in our AMT systems

We complete this chapter by listing the different combinations of KCMA (Chap. 1) -
baseline AMT methods (Chap. 2) - KCMA incorporation methods (Chap. 3), resuming
the different families of KCMA presented in Chapter 1.

3.4.1 From theoretical concepts (KCMA source I)

In statistical modeling methods based on learning data, the problem is that most
often typical learning music databases are very small compared to the complexity of the
polyphonic music signal. The undesirable effect is that different instances of a given note
mixture can be mapped to different available states, usually those that are initialized
closely. If we had an infinite amount of data, we could simply represent each note mixture
as a distinct observation. To compensate for this, theoretical concepts, or general model-
based knowledge, can be incorporated in the statistical framework for recognition of note
mixture progressions, in order to redistribute efficiently a certain amount of probability
mass to unseen events during training. The KCMA from theoretical concepts (Source I,
from Sec. 1.1.1) we implemented are detailed in the second column from the left of table
3.1. There are 7 such KCMA.

Prior index KCMA Names Baseline methods KCMA incorporation methods
H1:3 Theo2, 4, 7 PLCA Sparse entropy prior (eq. 3.3, Sec. 3.2.1)
H4:7 Theo1, 3, 5, 6 HMM First-order NMn-state HMM for harmonic transitions (Sec. 3.2.5)

Table 3.1 – Table of the different KCMA from theoretical concepts (source I) implemented
in our AMT system.

3.4.2 From isolated note samples (KCMA source II)

The KCMA from isolated note samples (Source II, from Sec. 1.1.1) we implemented
are detailed in the second column from the left of table 3.2. There are 7 such KCMA in
this PhD project. In the following, we make specific comments for a few.

Prior index KCMA Names Baseline methods KCMA incorporation methods
T1 Pitch range PLCA Spectral basis range
T2 IsoNo1 and IsoNo2 Frame-to-note conversion Re-weighting of activity matrix (Sec. 3.2.4)
T3 IsoNo0 PLCA Template learning (Sec. 2.2.8)
T4 IsoNo5 PLCA Inter-pitch prior matrix (Sec. 3.2.2)
T5 IsoNo0 - Playing dynamic (local timbre alteration) PLCA Template learning (Sec. 2.2.8)
T6 IsoNo0 - Excitation modes (local timbre alteration) PLCA Template learning (Sec. 2.2.8)
T7 IsoNo6 SI-PLCA Template shifting (Sec. 2.2.4)

Table 3.2 – Table of the different KCMA from isolated note samples (source II) imple-
mented in our AMT system.

T1 : Pitch range The pitch range of an instrument, given in a semi-tone spacing, is
directly defined by the extrema of an instrument pitch range. For the marovany, taking
the range extrema of our different models N1 to N4, we selected the following pitch range
: from F3 to D6, with a semi-tone spacing, which gave us a range of 34 notes. By default,
an AMT system would consider a much larger pitch range covering the 5 to 6 octaves of
instruments such as the piano or the harp. Algorithmically, the knowledge of pitch range
is set as the range of spectral basis in the PLCA algorithm.
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Prior index KCMA Names Baseline methods KCMA incorporation methods
M1 TraP la1 PLCA Bayesian note number estimation (Sec. 3.3)
M2 Known played notes PLCA Re-weighting of Activity matrix
M3 TraP la2 HMM First-order NMn-state HMM for harmonic transitions (Sec. 3.2.5)
M4 TraP la3 HMM First-order Two-state HMM (Sec. 2.4.4)
M5 TraP la4 HMM Higher-order Two-state HMM (Sec. 2.4.4)
M6 TraP la5 HMM Second-order NMn-state HMM for harmonic transitions (Sec. 3.2.5)

Table 3.3 – Table of the different KCMA from transcripts from playing (source III) im-
plemented in our AMT system.

T4 : Mutual resonances This sparseness prior informed by sympathetic resonances is
introduced to reduce the number of active notes in selecting the most salient ones, and
applies a constraint on the EM algorithm update rules.

T5 : Dynamics of instrument playing (i.e. local timbre alteration) To model
dynamics of the instrument playing, we assigned multiple templates per pitch in the PLCA
framework. These templates are extracted from pre-recorded isolated notes covering a
complete range of playing dynamics.

T6 : Excitation modes (i.e. local timbre alteration) To model excitation modes,
multi-templates per pitch can also be used as in the prior T5, only now we use sound
samples related to specific excitation modes.

T7 : Non-tempered tuning For what concerns the algorithmic implementation of T7,
we use the Shift-Invariant PLCA (Smaragdis et al., 2008) (Sec. 2.2.4) extension of the
PLCA, exploiting the fact that in a CQT, a change of fundamental frequency is traduced
by a simple frequency translation of its partials, resulting in a shift invariance over log-
frequency. SI-PLCA then performs a multi-pitch detection with a frequency resolution
higher than MIDI scale.

3.4.3 Transcripts from playing (KCMA source III)

The KCMA from transcripts from playing (Source III, from Sec. 1.1.1) we implemented
are detailed in the second column from the left of table 3.3. There are 6 such KCMA in
this PhD project. In the following, we make specific comments for a few.

M1 : Polyphonic degree As already mentioned, polyphony is due either to an “acous-
tic polyphony”, for instruments whose repertoires do not have a vertical writing properly
speaking (e.g. the marovany repertoire with its fast arpeggios and strong mutual reso-
nances), or a polyphonic writing (e.g. contrapuntal Bach pieces). The former has already
been characterized by the prior T4, and the prior M1 deals with the second.

M2 : Knowing the played notes When performing a musical piece, an instrument
only plays pitches from a reduced part of its pitch range. This information of knowing
which notes are actually played can be used as a simple prior in our AMT system, which
is directly used to define the set of PLCA spectral basis which can be activate during
parameter estimation, all others receiving a null activity score.
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M3 : Probabilistic transition between note mixtures This prior is based on the
first-order HMM detailed in Sec. 3.2.5, whose states are defined with the different note
mixturesMk identified after note segmentation. The sequential post-processing we propose
now consists in correcting the succession of Mk based on some knowledge of polyphonic
harmonic transitions.

M6 : Second-order Nc-state HMM for harmonic transitions We used the ex-
tended second-order Viterbi algorithm already published in the literature He (1988). Only
now, training of state transition probabilities implies counting two-state sequences.

3.5 Conclusion

In this chapter, we were interested in developing a generic transcription system based
on a PLCA post-processed with a HMM block, which makes possible to supply it with all
kind of prior knowledge at different levels of abstraction.



Chapter 4

Multichannel capturing sensory
systems for transcription
ground-truth creation

Abstract

In this chapter we propose a method of automating the daunting task of providing
the machine-learning models with labeled data for training and evaluation. This method
is based on the technology of Multichannel Capturing Sensory Systems (MCSSs), which
allow decomposing a multi-source audio signal into simple identifiable components, and
simplifying more particularly the complex analysis of a polyphonic sequence by processing
individually several monophonic sequences. A large amount of reliable ground truth can
thus be provided thanks to this automatic generation process. This is a crucial step in the
investigation of automatic transcription of orally transmitted music repertoires, including
the marovany zither one. Figure 4.1 illustrates the relation of this chapter with the others.

Musical 
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Musical 
Production
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Acquisition

Signal
Analysis

Chapter IV
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Multichannel Capturing 
Sensory System

Figure 4.1 – Schematic diagram of the PhD organization for chapter 4.
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4.1 Introduction

4.1.1 Background on MCSSs

In this chapter, we explore the use of Multichannel Capturing Sensory Systems (MC-
SSs) (also named ”divided pickup” in specialized literature) for AMT of acoustic plucked
string instruments. MCSSs are made of several pickup devices, one for each string. A
pickup device is a transducer that captures mechanical vibrations from stringed instru-
ments (e.g. the electric guitar or electric violin), and converts them to an electrical signal
that is amplified and recorded. A MCSS is then capable of picking up signals from each
individual string and outputting these signals individually. This information allows to
detect accurate performance information for each individual string, and supports analysis
of an instrument performance that would be challenging to extract and decouple from the
audio signal. Efforts made in the development of capturing sensory retrieval systems aim
to select the signal type which provides the best support to extract the basic note pa-
rameters necessary for music transcription. Additionally, since the output signal is analog
-the same as traditional pickups -it faithfully conveys all guitar-playing techniques. For
the AMT task, such a system has an obvious advantage in this application, as it allows
to break down a polyphonic musical signal into the sum of monophonic signals respective
to each string. Then, we come back to a monophonic transcription problem, which can
be understood as a special simple case of polyphonic transcription, and is considered as
practically solved (Klapuri, 2004b).

Among the pioneer works towards the development of MCSSs, we can mention the
Gittler guitar, an experimental guitar with six pickups, one for each string. Some time
after, Gibson created the HD-6X Pro guitar with The Hex Pickup that captures a separate
signal for each individual string and sends it to the onboard analog/digital converter. The
output can be routed as a single summed mono signal to an amplifier or recording console.
It can also send the E, A, and D strings to one amp or recording channel and the G, B,
and high E to a separate amp or channel. Or it can send the output of all six individual
strings to six different amps or channels. These six individualized outputs can used to
create various effects.

First projects developing MCSSs dedicated to AMT for acoustic instruments go back
some time. In the 1980’s, Trimpin designed a system to capture which fingers were pressing
which key on a grand piano. Currently one of the most robust systems to capture this
information is commercially available. It is the Piano Bar, designed by Don Buchla in 2002
and now sold by Moog Music. It captures the full range of expressive piano performance
by using a scanner bar that lies above any 88-key piano, gathering note velocity as well as a
pedal sensor which gathers a performer’s foot movement. Researchers at Osaka University
in Japan designed a system for real-time fingering detection using a camera-based image
detection technique, by coloring the finger nails of the performer (Takegawa et al., 2006).
In O’Grady and Rickard (2009), they propose an alternative paradigm to electric guitar
transcription, where the signal generated by each string at the guitar pickup is captured
separately using a hexaphonic guitar ; thus changing a polyphonic transcription problem
into a monophonic one, which ameliorates subsequent analysis and allows finger position
identification for tablature generation.

4.1.2 Ground truth for AMT evaluation

First, a caveat: any evaluation system inherently assumes some idea of ground truth
against which the candidate is evaluated. Then, when interesting to the evaluation of AMT



4.1. Introduction 83

performances, the question is: what to compare the output of an algorithm with ? It is
common practice in MIR fields to collect reference set or ground-truth data by inquiring
musicological experts or by crowd-sourcing. These data are considered the intended output
of the computational model and the model is evaluated in terms of its ability to reproduce
the ground-truth.

In the field of Automatic Music Transcription, annotated sound databases are then
needed both to develop and to evaluate algorithms. However, such ground truth databases
are rather scarce, mostly due to the fact that manual transcription is a very cumbersome
and time-consuming task. Private databases like those used in contests like MIREX exists
(MIREX, 2011), but are not made available to the entire community of researchers, hence
the development of public databases. For example, the RWC music database (Goto et al.,
2003) is a widely-used database in this field, which is composed of real-world music excerpts
with several levels of polyphony and different instrumental sounds covering different music
styles. But actually only a very few exist, as a number of issues are commonly encountered
: little amount of sounds, either to copyright and distribution problems, or recording
conditions, the ground truth is often generated a posteriori, with some inaccurate or
erroneous values of pitch or onset and offset times, and a time-consuming process. Also,
Hainsworth (2004) within MIR literature figured out that manual transcription strategies
can be quite different resulting various degrees of divergence from the original performance.
Similarly, the study of Cemgil (2004) shows that there is no unique ground truth for manual
transcription even among well-trained musicians.

The question of ground truth datasets was then at the core of this PhD thesis, which
raises many methodological questions when one is interested to original instrument reper-
toires.

4.1.3 MCSSs for ground truth generation

One of the main reasons explaining why the investigation of non-eurogenetic music
has fallen behind the one dedicated to eurogenetic music is because of the current lack
of ground truth sound datasets. This is related to the absence of written supports often
associated to orally transmitted repertoires, and so an absence of extensive inventories of
these repertoires. Technologically, also, traditional instruments are mostly unplugged, i.e.
wholly acoustic, which do not make easier the process of recording and collecting musical
pieces of these repertoires, whereas instruments such as piano and guitar have sensory
systems to allow for efficient extensive census of their repertoires.

The use of MCSSs has direct application to the automatic generation of ground truth
for AMT, by capturing in-situ the musical production of a musician through the resonating
parts of its instrument. The classical piano is the most studied music instrument in
MIR, which is to be related to the fact that technology similar to MCSSs, such as the
Disklavier (used in the MAPS dataset (Emiya et al., 2010)), is already widely used for
this instrument. Research on MCSSs should help transposing such technology to different
music instruments.

The main advantage of MCSSs is that it captures original precise musical interpreta-
tions of musicians, and is not fixed by scores. Indeed, the problem is whether the original
notation or the manual transcription can exactly match with performance due to personal
interpretations of both performer and transcriber. However this point especially becomes
a problem when automatic transcription is defined as obtaining original notation from
performance as a kind of reverse-engineering (Klapuri, 2004a).
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4.1.4 Other Applications of MCSSs

Musical analysis

Retrieval systems with multichannel outputs could help in performing string-based
musical analysis, such as isolating the specific rhythmical characteristic within groups of
strings, and better understanding the playing methods. In our database, low-level scores 1

are now available in machine-readable formats, it is possible to perform directly all kinds
of musical analysis.

Human-machine interaction

Human-machine interaction is part of research, called Augmented Instruments or Mul-
timodal Environment, aiming to obtain accurate perception about computer system which
can analyze, perform and compose human action (Rowe, 2004). To do so, multimodal sen-
sory retrieval systems are often used. The idea of extending traditional acoustic instru-
ments with sensors to capture performance information has been explored in Machover
and Chung (1989). Other systems response which have influenced the community in
this domain are Dannenberg’s score following system (Dannenberg, 1984), George Lewis’s
Voyager (Lewis, 2000), and Pachet’s Continuator (Pachet, 2002). There are few systems
that have closed the loop to create a real live human/robotic performance system: Mari
Kimura’s recital with the LEMUR GuitarBot (Singer et al., 2003), Gil Weinberg’s robotic
drummer Haile (Weinberg et al., 2005, 2006), Benning et al. (2007)’s interactive robot for
Indian music. The ESitar developed by Kapur (2002) is an Indian sitar retrofitted with
a variety of sensors for capturing gestures of the performer while still producing sound
acoustically and being playable as a traditional sitar. An exponentially distributed set
of resistors is used in order to detect what fret is played by the performer. A sensor is
placed under the right hand thumb and is used to deduce the direction and patterns of
plucking. A force sensing resistor captures the applied force, which varies based on the
stroke direction.

MIDIfication of acoustic instruments

The process of MIDIfication involves to equip an acoustic instrument with an array of
electronic features allowing MIDI connectivity that supports communication with comput-
ing devices and external MIDI instruments. Famous models of MIDIfication of acoustic
instruments already exist. The typical Disklavier is a real acoustic piano outfitted with
electronic sensors for recording and electromechanical solenoids for playback. Sensors
record the movements of the keys, hammers, and pedals during a performance, and the
system saves the performance data as a Standard MIDI File. On playback, the solenoids
move the keys and pedals and thus reproduce the original performance.

4.2 Sensoring systems: models, set-ups, quality check

This section aims to study comparatively different sensory systems in order to choose
the right sensor for the task of AMT. Indeed, as this task calls for very specific signal
processing operations, qualifying any of these operations of ’optimal’ is strictly tied to the
given sensory system, and the performance of an optimal processing with a given sensory

1. Similar to physical pianoroll, where notes are represented in terms of their physical duration and
onset location, but using discrete MIDI-scaled pitches and amplitudes.
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system may be less than the performance of a non-optimal processing with another sensory
system. We then perform in the following a quantitative study to evaluate the appropri-
ateness of several sensory systems to the task of AMT of plucked-string instruments. We
start by listing the three different sensor types studied, and then by characterizing them
through a set of specific numerical descriptors corresponding to required criteria on signals
for AMT. Specific requirements must be respected when installing MCSSs on acoustic in-
struments, and exploiting their output signals for AMT. Our choice of sensor types has
been made by attempting at best to comply with all the constraints listed above.

4.2.1 Sensor type I: optical

Background

Optical pickup guitars were first shown at the 1969 NAMM in Chicago, by Ron Hoag.
In 2000, Christopher Willcox, founder of LightWave Systems 2, unveiled a new beta tech-
nology for an optical pickup system using infrared light. In May 2001, LightWave Systems
released their second generation pickup, dubbed the “S2”. The S2 featured LightWave
Systems’ monolithic bridge, six-channel motherboard, and a host of other improvements,
making the technology more practical for use in both live and recording studio settings.
LightWave Systems began producing their own guitars in the late 2000s. Currently the
company features the Saber bass and the Atlantis ElectroAcoustic guitar. These models
are the only guitars that come with the LightWave Systems optical pickup installed.

Optical-based systems have already found various applications, such as metrological
measures of string displacement (Seydoux, 2012; Chabassier, 2012) or a MIDIfication 3 of
a piano through the Moog piano-bar technology (Mowat, 2005; Assayag and Bloch, May
2008).

Physical principle

The selected optical sensor are slotted optical switches consisting of an infrared emit-
ting LED and an NPN silicon phototransistor, that work by sensing the interruption of
a light beam by a vibrating string. It has a fork design, with the string placed between
the two branches as illustrated in the close-up of the figure 4.2. On one side, the light-
emitting diode (LED) emits a light beam. On the other side, the phototransistor has a
peak of sensitivity at 850 nm. The emitter casts a shadow of the string onto the photode-
tectors. As the string vibrates, the size and shape of the shadow changes accordingly and
modulates a current which passes through the photodetectors. This current is the analog
electrical signal which represents an accurate depiction of the vibrating string. In order
to maximize the dynamic of the optical signals and obtain sharp transient attacks, the
narrowest possible diameter for the laser is used. Such sensor then acts as a digital switch
with a robust sensitivity to string displacements.

Sensor models and set-up

We mainly tested the two following models of optical sensors:
— Photomicrosensor (Transmissive) EE-SX398/498 at OMRON (technical sheets at

) ;
— Slotted Optical Switch OPB610 (technical sheets at http://optekinc.com/datasheets/

opb610.pdf) ;

2. See http://lightwave-systems.com/
3. Acronym meaning the in-situ conversion of an acoustic instrument into its homologous MIDI.

http://optekinc.com/datasheets/opb610.pdf
http://optekinc.com/datasheets/opb610.pdf
http://lightwave-systems.com/
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These two sensors are represented in figure 4.2. The optical sensor OPB610 presents
the most advantageous features for our application: reduced size, narrow beam light with
a diameter of 0.5mm and a wavelength of 940 nm, reduced sensitivity to external lights.
The power pack of the optical sensors needs a continue tension of 5 V. An enhanced low
current roll-off is used to improve contrast ratio and immunity to background irradiance.
The power pack of the sensors is thermally isolated, which makes it well aligned with field
conditions.

a) b)

Figure 4.2 – Photos of the two models of optical sensors tested, with on the left the
EE-SX398/498 model, and on the right the OPB610 model.

Figure 4.3 shows photos of the set-up installation, where all optical sensors are fixed
on a vertical bar along the strings, and also this MCSS in condition of playing.

Figure 4.3 – Photos of the set-up installation, where all optical sensors are fixed on a
vertical bar along the strings, and also this MCSS in condition of playing

4.2.2 Sensor type II: piezoelectric

Background

Piezoelectric belong to the family of contact pickup. Many semi-acoustic and acoustic
guitars, and some electric guitars and basses, as well as other string instruments such as
violins, have been fitted with piezoelectric pickups instead of, or in addition to, magnetic
pickups. Solid bodied guitars with only a piezo pickup are known as silent guitars, which
are usually used for practicing by acoustic guitarists. Piezo pickups can also be built into
electric guitar bridges for conversion of existing instruments. Contact microphones are
usually used to amplify acoustic instruments for live performance, or to record sounds.

Physical principle

The piezoelectric element is composed of a piezoelectric ceramic and a metal plate held
together with adhesive. Both sides of the piezoelectric ceramic plate contain an electrode
for electrical conduction. Piezo materials exhibit a specific phenomenon known as the



4.2. Sensoring systems: models, set-ups, quality check 87

piezoelectric effect and the reverse piezoelectric effect. Exposure to mechanical strain will
cause the material to develop an electric field, and vice versa.

Piezo-elements are made from two conductors separated by a layer of piezo crystals.
Quartz crystals are used in most piezoelectric sensors to ensure stable, repeatable opera-
tion. The quartz crystals are usually preloaded in the housings to ensure good linearity.
When the crystal is stressed with an external pressure, bending the metal conductor lay-
ers, a voltage is generated across the crystal layer. Piezoelectric pickups have a very high
output impedance, appearing as a capacitance in series with a voltage source, and routed
through a special low-noise cable to an impedance-converting amplifier.

When an alternating voltage is applied to the piezoceramic element, the element ex-
tends and shrinks diametrically. This characteristic of piezoelectric material is utilized to
make the ceramic plate vibrate rapidly to generate voltage.

Figure 4.4 – Scheme of the functioning principle of piezolectric sensors (from http://www.
cui.com/product-spotlight/piezo-and-magnetic-buzzers/).

Sensor models

In our study, we examined two different types of piezoelectric sensors:
— the acoustic gold RMC pickup sold by Roland http://www.rmcpickup.com/acousticgold.

html;
— the Variax piezoelement sold by Line 6 http://fr.line6.com/store/item/267/

Both are sold by their respective providers as individual components. These two sensor
models are represented in figure 4.5. These piezo pickups have been mounted under the
central easels of the marovany, forming part of the bridge assembly itself, which capture
the vibrations imparted on the bridge by the strings.

a) b)

Figure 4.5 – Photos of the two models of piezolectric sensors tested, with on the left the
Gold RMC pick-up, and on the right the Variax piezoelement.

http://www.cui.com/product-spotlight/piezo-and-magnetic-buzzers/
http://www.cui.com/product-spotlight/piezo-and-magnetic-buzzers/
http://www.rmcpickup.com/acousticgold.html
http://www.rmcpickup.com/acousticgold.html
http://fr.line6.com/store/item/267/
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4.2.3 Sensor type III: electromagnetic

Background

Electromagnetic sensors are commonly used as pick-up in electric guitars.

Physical principle

Magnetic pick-ups, as applied in electric guitars, register the vibrations of nickel or
steel strings in a magnetic field. A magnetic pickup consists of a permanent magnet with
a core of material such as alnico or ceramic, wrapped with a coil of several thousand turns
of fine enameled copper wire. The permanent magnet creates a magnetic field; the motion
of the nearby soft-magnetic vibrating steel strings modulates the magnetic flux linking the
coil, which induces a voltage in the coil. This signal is then carried to amplification or
recording equipment via a cable. More generally, the pickup operation can be described
using the concept of a magnetic circuit. In this description, the motion of the string varies
the magnetic reluctance in the circuit created by the permanent magnet.

Some high-output pickups achieve this by employing very strong magnets, thus creating
more flux and thereby more output. This can be detrimental to the final sound because
the magnet’s pull on the strings can cause problems with intonation as well as damp
the strings and reduce sustain. The turns of wire in proximity to each other have an
equivalent self-capacitance that, when added to any cable capacitance present, resonates
with the inductance of the winding. This resonance can accentuate certain frequencies,
giving the pickup a characteristic tonal quality. The more turns of wire in the winding, the
higher the output voltage but the lower this resonance frequency. The inductive source
impedance inherent in this type of transducer makes it less linear than other forms of
pickups, such as piezo-electric or optical.

Sensor models

— The GK-3 by Roland http://roland.com/V-Guitar/about.html, designed a strip
of electromagnetic sensors dedicated to acoustic guitars ;

— Handcrafted sensor based on magnetic scanning heads of mini-K7
The electromagnetic sensors we used were handcrafted sensors built with magnetic

scanning heads of mini-K7. The commercialized GK-3 Roland sensor was used to calibrate
our own electromagnetic sensors, illustrated on the right graph of figure 4.6. These two
sensors are represented in figure 4.6. The commercialized GK-3 Roland sensor was used
to calibrated our own electromagnetic sensors.

b)a)

Figure 4.6 – Photos of the two models of electromagnetic sensors tested, with on the left
the GK3 model, and on the right our handcrafted sensors.

http://roland.com/V-Guitar/about.html
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Set-up installation

The pickup is most often mounted on the body of the instrument, but can be attached
to the bridge, neck or pickguard, as on many electro-acoustic archtop jazz guitars and
string basses. In our project, we used a portable bridge for our pickup sensors, and
attached it to the body of the instrument. This MCSS was especially used for the mvet
zither.

4.2.4 Quality check on Sensor Installation

Non-intrusiveness

The system must not be too cumbersome and disturbs the playability of the instrument.
Specific playing techniques such as palm muting and excitation point displacements require
a playing zone which must not be disturbed by the devices. The ideal sensory system would
also not require a specific instrument-making.

Sensor placement in regards to string vibrations

The measuring point of string displacement may create a bias in the amplitude mea-
sure. Indeed, as this displacement consists of a superposition of vibratory modes, defined
as a succession of nodes and anti-nodes, if a sensor is placed on a modal node the energy
contribution of the corresponding mode is null. To answer these two constraints, the bar
of sensors is positioned near the easel, in such a way that the playing zone is less disturbed
and that the sensors are roughly placed on the ascending slope of the anti-node follow-
ing directly the easel-related node common to all modes. When installing the sensors on
instruments, one has to take care of avoiding placements on ”nodal modes”.

4.2.5 Quality check on Sensor Signal

We now quantify the quality of each sensor signal in view of AMT on the marovany
instrument. Although pickup devices are most often evaluated for sensor transparency in
the restitution of sound quality, for the task of AMT we rather focus on the ability of
sensors to efficiently retrieve the four basic musical parameters in AMT: onset location,
pitch, duration and amplitude. This quality check is performed with classical acoustic
descriptors (detailed in Annex A).

A mechanical arm of calibration

A mechanical arm, illustrated in figure 4.7, is used to set precisely a reference strength
to the excitation source. Three different heights h of the arm were used to define three
different reference excitations (arbitrarily assigned to the musical nuances of pp, mf and
ff), while keeping the height hs fixed and equal to the height of the string excited. The
distance d is also kept fixed for the different excitations. Also, using this mechanical
arm, we were able to calibrate the output level of each sensor, relatively to the reference
excitation levels provided by the arm. Electronic gains respective to each sensor can then
be deduced and apply in a post-processing stage to the signals.

Evaluation protocol

Eight different signal criteria Cc, with c ∈ {1, · · · , 8}, will be evaluated on each sensor
signal xs(t), with s ∈ {1, 2, 3}. Each signal criteria Cc employs a characteristic function
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Figure 4.7 – Mechanical device used to provide reference excitation amplitudes.

χc emphasizing a specific feature of the signal. All measures are based on the same set of
test notes Itest:

1. Three different amplitude levels (pp, mf and ff), provided by the mechanical arm ;
2. Six different strings with the following pitches: D3#-A3-C4-E4-B4-D5 ;

The three MCSSs have been installed on the marovany zither N1, and their respectively
signals are acquired simultaneously. The size of this set of notes is then NItest = 3× 6 =
18. Furthermore, microphone signals, on which audio processing is usually applied, are
here used as reference to characterize physical properties of our sensor signals. Unless
mentioned otherwise, we then define the normalized measure bCcc as follows

bCcc = median
i∈Itest

(χc(xis(t))− χc(xi0(t))) (4.1)

The sign resulting from this operation does not have any physical meaning, but just
indicates whether the value is higher or smaller than the respectiveχc(x0(t)) value.

Salience measures

We first compute the onset detection function Fodf described in Ellis (2007), followed
by a peak finding function which identifies the location of each onset. Our first signal
quality criteria C1 is the degree of salience of the detected peaks. We simply compute the
signal-to-noise-ratio associated to each test note p, defined as

χ1 = max(h(t))
h(Tn) (4.2)

where h(t) = Fodf (x(t)), and Tn is defined as the first 10 windows. The sharpness
of the peak (C2), which informs on the accuracy of time location of the onset, is also
computed. This measure of sharpness is made through the following dispersion measure

χ2 = argt(h(t) = max(h(t))
4 ) (4.3)

These measures are illustrated in figure 4.8.

Spectral measures

Our third numerical criteria C3 characterizes the harmonic content of the signal, and is
computed using eq. 4.1, with χ3 defined by the Harmonic Energy descriptor, i.e. HarmErg
in Peeters et al. (2011) (detailed in Annex A). This descriptor ranges from 0 to 1. We
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Figure 4.8 – Illustration of the salience measures S1 and S2, respectively the salience and
the sharpness of the onset, through the onset detection function Fodf .

also compare the pitch estimations obtained with the YIN algorithm (de Cheveigné and
Kawahara, 2002) on the different sensor signals, defining C4, with χ4 defined by the YIN
pitch tracking function. We normalize the values of this descriptor.

Temporal measures

The signal criteria C5 is on note duration, taking χ5 ∼ EffDur, with EffDur the
descriptor Effective Duration defined in Peeters et al. (2011). The Modulation Ratio of
the temporal envelop (MOD) is also computed for criteria C6, taking χ6 ∼ MOD. This
second descriptor ranges from 0 to 1.

Inter-note temporal interval measure

We must have a good separability of successive notes of a same string, with ideally
inter-notes blanks resulting corresponding to the finger-string contacts. The descriptor C7
measures the time interval between two successive notes. As illustrated in figure 4.9, we
first computed the energy envelop in the location of the inter-note space, and then simply
measured the time interval Ts between these notes at a same energy level, set at three
times the noise level of the sensor signal.
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Figure 4.9 – Illustration of the inter-note temporal interval Ts measure.
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Signal criteria Measures Unity MCSS1 MCSS2 MCSS3

Salience bC1c dB - 5.1 ± 2.2 - 2.3 ± 2.9 - 8.7 ± 1.7
bC2c ms - 23 ± 23 - 11.5 ± 11.5 -11.5 ± 23

Spectral bC3c X - 0.23 ± 0.09 -0.11 ± 0.03 0.19 ± 0.05
bC4c Hz 23.4 ± 8.2 10.1 ± 4.5 55.9 ± 5.6

Temporal bC5c ms - 320 ± 32 - 168 ± 21 - 563 ± 69
bC6c X -0.1 ± 0.03 - 0.36 ± 0.07 - 0.26 ± 0.11

Segmentation C7 ms 19 16 6
Separability C8 X 2.7 3.4 1.1

Table 4.1 – Numerical values of the different signal criteria evaluated, for our three different
MCSS, being respectively optical, piezoelectric and electromagnetic. Values of bCcc allows
comparison between the different sensor signals, as well as with the microphone signal.
Values of C8 allow only relative comparisons between sensor signals. The sign X means
dimensionless criteria.

Multichannel separability

This signal criteria C8 is a measure of the degree of “repisse” in our multichannel
output, using all pitches of our instrument pitch range. Each of these pitches is successively
played, and we measured the residual RMS-energy level occurring at the same time in all
other sensor signals. A single value is obtained by summing all elements of this matrix,
providing a general estimation of sensor energy residual due to inter-sensor repisse.

Results and Discussion

Table 4.1 provides the numerical results obtained for each signal criteria with our
different sensor types. We also propose in figure 4.10 a more concise representation of
our results, allowing a direct quantitative comparison between our different MCSSs. We
normalized the values of table 4.1 using simple mathematical transformations following
the rules of quality for the task of AMT:

— bC1c The higher the onset salience, the easier the identification of onset locations ;
— bC2c The higher the onset sharpness, the easier the identification of onset locations

;
— bC3c The richer the harmonic content of a sensor signal, the harder the pitch

estimation is. In other words, sensors filtering out higher frequency components
while emphasizing the string fundamental vibratory mode tends to greatly make
the pitch estimation easier ;

— bC4c The higher the accuracy of F0 measure, the better the transcription ;
— bC5c The higher the accuracy of note duration, the better the transcription ;
— bC6c The smaller the temporal envelop modulation, the easier it is to segment note

boundaries ;
— C7 The larger the inter-note space, the easier it is to segment successive notes ;
— C8 To perform monophonic transcriptions, the independence of each sensor signal

is of first importance, each sensor having to detect solely the vibration associated
to its string. Then, the higher the independence of each sensor signal, the easier
the monophonic transcription is. Furthermore, although the multichannel “repisse”
can result from sympathetic resonances between strings, it is still seen as a parasite
signal from the point of view of AMT, and sensor signals which flatten out residual
signals are consequently more advantageous.
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Figure 4.10 – Numerical scores on our signal criteria for the different sensor types.

Based on table 4.1 and figure 4.10, we can first observe that globally all sensor signals
have sharper onsets than those in the microphone signal, which can be partly explained
by the fact that a sharp signal pattern is obtained at the beginning of plucking during
the period of finger-string contact. However salience values are slightly below microphone
ones. Piezoelectric and optical sensors offer the highest salience and sharpness of onsets.
The magnetic pickups appear to extraneous noise to the sound, while optical has virtually
no inherent noise. Even when putting an amp at high volume, piezoelectric and optical
sensors experience an increased dynamic range and sensitivity, i.e. loud notes are loud
and clear, while soft notes and subtle nuances are not masked by background noise.

Second, our sensor signals tend to have a poorer harmonic energy than microphone
signals, but a stronger harmonicity, which can be explained by the fact that a direct
measure of string displacement privileges its own vibratory behavior, emphasizing the
string fundamental frequency and minimizing the effects of coupling with the more complex
modes of the soundboard. Furthermore, piezoelectric and electromagnetic sensors tend to
exert more their own influence or color on the strings’ vibratory properties.

Third, all sensors have a detrimental impact on temporal profiles of marovany sounds,
and none are able to read string vibration for its full duration. Piezoelectric and electro-
magnetic sensors interfere with string vibration. Piezoelectrics as they are in direct contact
with strings, and electromagnetic sensors with the magnetic influence which ”pulls” on the
metal strings. As a non-contact sensor, optics do not interact with the movement of the
string, and even if they restore the most faithfully the string vibration temporal waveform,
they also distort it due to their intrinsic response.

Fourth, one of the most conspicuous advantages of sensors over the microphone is the
formation of a space between successive notes, both in time and amplitude, resulting from
the mechanical contact between string and finger. Piezoelectric sensors appear to provide
the largest inter-note space.

Fifth, we observed that globally most leakage signal are negligible in our sensor signals,
expect for certain couples of pitches resulting from the sympathetic resonances of the
instrument. Electromagnetic sensors offer the best channel separability, while optical and
piezoelectric sensors appear to be a little more affected by the repisse between each string.
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4.3 Methods for Automatic transcription of Monophonic
sensor signals

We will restrict ourselves to retrieve the musical information necessary for low-level
transcription, i.e. measuring the activity and basic parameters (onset location, amplitude,
pitch, duration) of played notes. Figure 4.11 shows the block diagram of successive pro-
cessing steps in the MCSS-based AMT. We tested two basic transcription algorithms: a
feature based algorithm, which can be implemented in real-time applications, and a spec-
trogram factorization based algorithm, based on a PLCA-learning of a template dictionary
for both harmonic and noise signals.
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Figure 4.11 – Block diagram.

4.3.1 Feature-based

Left bottom graph in figure 4.11 represents the evolution of a waveform signal processed
through this algorithm. From left top to right bottom: original optical signal, denoised
signal, residual r with location of onsets, and segmented signals.

Blind adaptive denoiser

A blind denoising method (Ephraim and Malah, 1985) is applied to optimize the signal
to noise ratio, mainly deteriorated by parasite noise coming indiscriminately from electron-
ics and mutual resonances of strings. This algorithm of denoising takes as inputs segments
of noises (defined as the first second of acquisition signals), and allows their subtraction
to the signal by minimizing a prediction error with a least-mean square optimization.



4.3. Transcription of Monophonic sensor signals 95

Onset detector

Then, a 0.049-s hamming window with a 0.005-s overlapping (that is 11.6 ms, providing
a temporal resolution whose order of magnitude is similar to the time attack) scans the
entire sequence. Each onset of notes is detected using a spectral difference which takes
into account the phase increment, as introduced by (Bello et al., 2004):

X̂k,n = |Xk,n−1|ej(2φk,n−1−φk,n−2) (4.4)

with n the index of each window. As marovany sounds consist roughly of a super-
position of short stationary sinusoids, the occurrence of an onset generates a peak in the
prediction error defined by

r(n) =
N∑
n=1
|X̂k,n −Xk,n| (4.5)

Windows for which this residual exceeds a fixed threshold are validated as onsets.

Note segmentation

From this detected onset, the descriptor E (eq. A.7) is computed for the neighbour-
ing windows to search the local maximum Emax(i) associated to pitch i, assuming this
maximum is located near the onset, as expected for notes played by plucked string instru-
ments. Then, E is computed on all the windows following the onset until the energetic
value decreases below 5 % of Emax(i), which may then be read as an adaptive note-specific
energy threshold, or until another peak in the residual r is found. This estimation allows
us to deduce note duration (eq. A.2), and its amplitude by averaging the energy over all
windows within the note. We are not interested in the absolute amplitude of the notes,
but only in their relative values within an air, in reference to a value determined by the
MIDI gain.

4.3.2 Matrix factorization based method

The frequency marginals P (f |z) of a PLCA model can be used as a model for certain
kinds of sounds, which will now allow us to tackle the tasks of detection using separate
class modeling. In a given MCSS sequence, two sound classes are assumed to be present,
namely the background noise from the electronic device, and the instrumental notes. In the
following, we then define two different template dictionaries, whose elements are defined by
the frequency marginals distribution Pi(f |z) and Pn(f |z), with z ∈ Zi and Zn, respectively
the sets of latent variables for the note and noise classes. The following two-class PLCA
for sound/noise detection will be used,

P (f, t) = P (t)(
∑
z∈Zn

P (f |z)P (z|t)

+
∑
z∈Zi

P (f |z)P (z|t))
(4.6)

To impose a better discriminability between the spectral basis of our two latent families,
i.e. enforcing a certain dissimilarity between them, we use the sparseness prior eq. 3.8 (Sec.
3.2.1). In particular, as we do not know exactly the optimal number of latent variables to
best explain vocal sounds, this prior then allows to adapt our basis decomposition to the
specific data multi-dimensionality.
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A crucial step before performing a PLCA-based analysis is to properly initialize tem-
plate dictionaries, which allows EM-based parameter estimation to be much more pre-
cise. We perform a first initialization of these templates using generic sounds from each
class. Figure 4.12 provides some examples of these template dictionaries. The frequency
marginals extracted from the instrument notes have a clear and spaced harmonics struc-
ture with a distinct pitch, while the marginals of noise display a more broadband and
inharmonic spectrum. Once the frequency marginals are known for a certain sound in a
mixture, they can be used to extract this kind of sound from the mixture in a supervised
way Smaragdis et al. (2007).
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Figure 4.12 – Examples of spectral templates for the two PLCA latent classes of instrument
notes and noise.

We then perform a data-based learning of template dictionaries using the conservative
transcription method (see Sec. 2.2.8). After adapting our template dictionaries to input
data, we extract the instrumental ntotes from the mixture by setting noise activations
P (z) for z ∈ Zn to zero, and therefore, a denoised reconstructed PLCA model of sound
spectra Pi(f, t) can be obtained by:

Pi(f, t) ≈ P (t)
∑
z∈Zi

P (f |z)P (z|t) (4.7)

To make this PLCA-based denoising process even more efficient, we also implemented
in the preceding system the spectral re-weighting operation developed by Ye (2014), based
on a frequency band-wise reconstruction error. It is grounded on the fact in human audi-
tory that noise corrupted sound is recognized via processing the audio in local high SNR
frequency bands Cooke (2006). It computes the following frequency band-wise reconstruc-
tion error possibility distribution

P (f |e) =
∑
t(X(f, t)− Pi(f, t))2∑

t

∑
f (X(f, t)− Pi(f, t))2 (4.8)
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where X is input noise spectrogram and X̃ is the denoised reconstructed spectrogram
by PLCA model. P (f |e) presents spectral error possibility distribution.

ωf = 1− P (f |e)
max(P (f |e)) (4.9)

From this model error distribution ωf , we can know which frequency bands of the
the denoised reconstructed spectrogram by PLCA model present the strongest similarity
with the input spectrogram. After this denoising process, we use a simple threshold-based
detection of the note activations from the activity matrix P (z, t), followed by a minimum
duration pruning. The threshold for minimum duration for pruning was set to 200 ms.

4.3.3 Results and discussion

We created ground truth by semi-automatically hand-labeling several musical sequences
captured with different MCSSs, extracting precise information on note onset location, du-
ration, amplitude and pitch. To do so, we use a custom user-friendly interface, developed
in Matlab and illustrated in figure 4.13, which implements an energy-based semi-automatic
system optimized for the transcription of our MCSS signals.

Figure 4.13 – Screen shot of our semi-automatic transcription system to extracted instru-
mental notes from our MCSS signals.

Figure 4.14 provides the ROC (Receiver Operating Characteristic, see Kay (1998) for
details) curves with the error metrics FPR and TPR on our monophonic transcriptions
of sensor signals, for our two feature-based and PLCA-based methods. Solid lines show
transcription performance with an evaluation based only on pitch and onset location, and
dashed lines show performance with a full evaluation based on the four parameters of a
note, i.e. adding duration and amplitude. Our PLCA-based method provides the best
performance for this transcription task, with accuracy (average F-measure) higher than
96 % over a large interval of thresholds (i.e. 0.11 -0.87). When considering all note
parameters, transcription performance decreases.
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Figure 4.14 – ROC curves with the error metrics FPR and TPR on our monophonic
transcriptions of sensor signals, for our two feature-based and PLCA-based methods. Solid
lines show transcription performance with an evaluation based only on pitch and onset
location, and dashed lines show performance with a full evaluation based on the four
parameters of a note, i.e. adding duration and amplitude.

4.4 Development of the PSIFAMT (Plucked-String Instru-
ments For Automatic Music Transcription) sound database

4.4.1 Context

Large and very diverse solo database are needed for training and evaluation of the AMT
process. In the international MIR community, euro-genetic music, especially through the
classical piano, has received the most attention from researchers, while non-eurogentic
music has been rather left outside. Also, sound database for AMT may include a Musical
Instrument Sample Database of Isolated Notes (MISDIN), which is a collection of sound
samples of one or more musical instruments where each sample contains a recording of a
single note played by one instrument. MISDINs are commonly used by electronic musical
instruments, such as synthesizers and samplers, to reproduce sounds of other instruments.
MISDINs are also utilized by the majority of music information retrieval (MIR) algo-
rithms, including pitch estimation (Li and Wang, 2007), music representation (Leveau
et al., 2008) and others, as evaluation data for experiments and for modeling sounds of
different musical instruments. One major issue with creating a spectrogram factorization
based transcription system for non-eurogenetic music is the lack of isolated note recordings
for creating a training set. An isolated sounds database tends to considerably improve the
performance (Benetos and Holzapfel, 2013).

4.4.2 Motivations

In this context, we have launched this research project in June 2013 of developing a
Big Music Database of non-commercial recordings dedicated to plucked-string instruments.
Our main long-term motivation is to provide original sound material for AMT evaluation,
so as to bring the development of AMT systems closer to the actual world-wide music
diversity and complexity. In response to this concern, our sound database first consists
exclusively of the family of plucked-string instruments. These instruments are particularly
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interesting as they present a great diversity in terms of timbre (e.g. inharmonicity, envelop
spectrum variability, temporal profile modulation), playing styles and effects (e.g. differ-
ent string excitation modes, palm muting, glissandi, vibrato, tremolo, harmonic notes).
Second, our sound database wishes to include non-eurogenetic instrument repertoires, em-
phasizing even more the diversity related to timbre and playing techniques mentioned
above. Indeed, acoustic measurements on isolated tone datasets of the marovany and
the mvet reveal a more complex timbre (noticeably in terms of spectral envelop variabil-
ity) than a standard instrument like the classical piano. Also, non-eurogentic musical
repertoires encompass a great diversity in musicological codes (e.g. micro-rhythm, tuning
based on non-equal temperament, modal scale), especially for orally transmitted musical
repertoires, which also raise complex questions on transcription representation.

4.4.3 Technical specifications for recording

Place

Recordings mainly took place in a semi-anechoic chamber of the LAM, designed to
perform recordings with absorbent panels on the walls (SNR ≈ 50 dBA). Recordings
in Madagascar with insular musicians have also been performed, where we took care
of finding rooms as quiet as possible. Furthermore, close proximity of the microphone
to the instrument (around 40 cm) also favours to remove surrounding sound ambient.
This homogenization of recording conditions allows for inter-recording comparisons which
process only features related to the instrument repertoire, such as timbre, musicology and
playing technique. It is noteworthy that nowadays, diversity in recording conditions of
real-life audio recordings can be simulated subsequently, with computational tools such as
the Degradation Toolbox (Mauch and Ewert, 2013).

Equipment

Figure 4.15 details the different elements of our recording equipment. It is composed
of a sound card RME Fireface UFX, connected to RME pre-amps. Sensor signals are
eventually stored synchronously onto the hard drive of a PC laptop with the music pro-
duction/recording software Cubase LE. Each string’s signal then starts out analog, and
stays that way throughout up to the digital sound card.

All our recordings respect the following technical details:
— Schoeps stereo microphone, CMC 6 (capsule MK4), arranged following the ORTF

setup (18 cm d’Ãľcart inter-microphones) ;
— Microphone is held at the instrument height, in front of it, with an average distance

microphone/instrument soundboard of 50 cm ;
— The recordings are sampled at 44.1 kHz and stored as 24 bit WAV files ;
— To remove infrasonic disturbances the signals were highpass filtered with a fourth-

order Butterworth filter with a cutoff frequency of 52 Hz ;

4.4.4 Recording types

Musical pieces

All the musical pieces recorded in this database are fully human-played. All the mu-
sicians are recognized professional, specialist of their instrument, and are asked to play
representative pieces of their repertoire. Each piece can last from 2 to 6 minutes. The
musician is also asked to define a pulsation track on which he will play all his musical
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Instrument with MCSS RME sound cards 
and pre-amps

Figure 4.15 – Photos of the different elements of our recording set-up.

sequences. Certain musicians preferred to play their instruments without predefined pul-
sation, and reproduced it afterwards. We did not consider it as a bias in our experiment,
as such musicians feel an interior pulsation. The tuning of each musical piece is identified
trough precise F0 measures on isolated note samples for each pitch.

Ground truth

Our ground truth has been built from transcriptions not based on examinations of
musicological experts but rather on signal features, making it more objective. Our ground
truth for each musical piece results from the use of Multichannel Capturing Sensory Sys-
tems, able to capture independent string-specific signals. When fulfilling the specific signal
criteria previously exposed in Sec. 4.2.5, their transcription does not pose great difficulties,
in comparison to the processing of the audio microphone signal. Although quite invasive
as needing a complex experimental set-up during recording sessions, such a system allows
for fast and very reliable polyphonic transcriptions.

Isolated tones

Each single instrument model recorded in our database has its own set of isolated
notes, recorded in a same period (never exceeding 1 week). Pitch tones are tuned in
the MIDI scale, so as to normalize our different datasets on the same pitch scale. 10
different occurrences of notes are recorded for each pitch, varying playing dynamic over
three levels (pp, mf and ff), as well as more variable factors due to playing techniques such
as distance to the easel, string pluck intensity, attack mode (nail or finger pulp) and finger
inclination. The complete pitch range of the instrument is recorded. Also, we minded all
spurious noises (e.g. finger scraping on the string) during recording. Also, each musician
was asked to play all notes of the instrument once, from which we extracted the precise
tuning (± 20 cents) respective to each musical piece.

For each pitch of the instrument pitch range, we have 12 different tones per instrument
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model, which are equally divided into two categories. A first category in which note sam-
ples are obtained by varying playing dynamic only, with a fixed position of the excitation
point, centred in the playing area. A second category in which only excitation modes are
varied, i.e. distance from the easel and plucking mode (e.g. fingertip or nail), with an
almost-constant playing dynamic. All the isolated note samples have been recorded using
a semi-tone scale, so as to guarantee generality regardless specific repertoires presenting
micro-deviations in tunings.

4.4.5 Current state of database (ongoing database)

Details of the databases are given in table 4.2. All in all, this database currently
holds X solo performances, by X different musicians. The overall size of the database
is about X GB, i.e. about X hours of audio recordings. This sound database contains
mainly recordings of the maraovany, as it was the research instrument of this PhD. For
this instrument, it supplies a good generalization of the different sound possibilities of
each instrument in various playing techniques and musical repertoires. It thus provides
a good generalization of the sounds each instrument is producing in different recordings.
We wish to make this sound database available under a Creative Commons license in a
near feature.

Instrument type Recording sessions Musician name Place / Date
of recordings

Instrument
model MCSS Technology Number of Pieces /

Total duration (in h)
Total number of

played notes
D1 Velonjoro Madagascar / June 2012 N3 Optical 4 / 0.29 11569
D2 Velonjoro Madagascar / June 2013 N1 Optical 5 / 0.4 16548
D3 Kilema LAM (Paris) / May 2014 N1 Piezoelectric 6 / 0.45 15496

Marovany D4 Charles Kely LAM (Paris) / April 2014 N1 Piezoelectric 6 / 0.43 18962
D5 Velonjoro Madagascar / June 2014 N1 Piezoelectric 8 / 0.77 31324
D6 Charles Kely LAM (Paris) / May 2015 N1 Piezoelectric 6 / 0.41 13265
D7 Kilema LAM (Paris) / June 2015 N1 Piezoelectric 6 / 0.4 12267

Mvet D8 Francois Essindi LAM (Paris) / February 2014 Mvet1 Electromagnetic 4 / 0.44 6598
D9 Francois Essindi LAM (Paris) / April 2014 Mvet1 Electromagnetic 5 / 0.48 7123
D10 Adrien LAM (Paris) / March 2014 Taylor 114-CE Electromagnetic 9 / 0.72 17469

Folk Steel Gutiar D11 Charles Kely LAM (Paris) / September 2014 Taylor 114-CE Electromagnetic 4 / 0.39 8756
D12 Damily LAM (Paris) / May 2015 Taylor 114-CE Electromagnetic 5 / 0.55 12009

N’Goni D13 Joseph LAM (Paris) / February 2015 N’Goni1 Piezoelectric 2 / 0.16 2641

Table 4.2 – Catalogue of musical pieces in the PSIFAMT database.

4.4.6 Biographies of the marovany players

In the following, we provide short biographies of the three marovany players who
participated to this PhD project.

Velonjoro Born in Ambovombe, Velonjoro has never left Madagascar, and has lived in
Tuléar in isolation from western culture. One of his occupations is marovany player in
trance rituals of tromba, making him an emblematic player of a vernacular and traditional
repertoire of the marovany.

Kilema Born in Tuléar, Cément Randrianantoandro KILEMA is a malagasy profesion-
nal musician of marovany, but also of Kabosy and Katsa (native instruments), as well as a
lead vocal singer. With the “Justin Vali Trio”, a malagasy band, he performed in Japan,
Australia, New Zealand, and Woodstock 1994 among others. In 1999, Kilema presented
his first solo album Ka Malisa, an introspective into the music of southern Madagascar,
his own birthplace. During the past three years, Kilema has been touring the main Eth-
nic and world Music Festivals in Spain. Through the recordings of four CDs, Kilema’s
continued investigation and diffusion of traditionnal Malagasy music.
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Website: http://www.aido.fr/kilema.html

Charles Kely Born in Tananarive, the capital of Madagascar, Charles Kely is a profes-
sional player of guitar, marovany, valiha. He begun his career with his brother by covering
traditional malagasy songs that they adapt to folk music. In 1997, Charles Kely is chosen
by Rajery, the great valiha player, to tour around the world with his band. Together, they
play in Paris, Chicago, Seattle, New Orleans and at the International festival of Louisiane.
Since 2008, as a guitarist, Charles has also toured with prestigious world music artists as
Tony Rabeson, Mounira Mitchala, Razia Said... He is now focusing on his solo career with
the release of the CD Zoma Zoma in his own and unique manner : the open gasy style,
an acoustic music from Madagascar, with a touch of bossa, jazz, blues, funk and subtle
African influences.

Website: http://www.charleskely.com/

Velonjoro Kilema Charles Kely

Figure 4.16 – Photos of the marovany musicians recorded in the PSIFAMT database.

4.5 Conclusion

In this chapter we propose to use the technology of Multichannel Capturing Sensory
Systems (MCSSs) to automatically generate a large amount of reliable ground truth,
in particular for the repertoires of the marovany zither. Among the most conspicuous
technological advantages of these systems, we can mention the high signal to noise ratio,
the multichannel output with independent signals corresponding to the played strings and
the automatic demarcation between successive notes of a same string.

http://www.aido.fr/kilema.html
http://www.charleskely.com/


Chapter 5

Results and Discussions

Abstract

In this chapter, we present our main results obtained in this PhD project, and pro-
pose several discussions around the use of knowledge from musical acoustics in automatic
transcription systems of music. Our different components of musical knowledge have been
successively injected in our baseline transcription systems, consisting mainly of a Prob-
abilistic Latent Component Analysis (PLCA) algorithm post-processed with a Hidden
Markov Model (HMM), and their impacts on transcription results have been compara-
tively evaluated. Figure 5.1 illustrates the relation of this chapter with the others.

Musical 
knowledge

Musical 
Production
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Acquisition

Signal
Analysis

Chapter V
Investigating the 

use of KCMA 
in AMT models

Figure 5.1 – Schematic diagram of the PhD organization for chapter 5.
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5.1 Evaluation Methods

5.1.1 Evaluation procedure

Background

There are various evaluation metrics for AMT based on comparison of transcription
and reference notation. Fonseca and Ferreira (2009) classify evaluation metrics as frame-
based and note-based approaches. Frame-based approach is based on the comparison of
two notations for every analysis temporal windows. The note-oriented approach is based
on numerical rules identifying transcribed notes as corrects, depending on whether their
onsets, pitches and/or durations are within a certain neighbourhood of the respective
reference data. Another note-oriented evaluation metric is edit distance (ED), where
the transcription is compared with reference notation on the basis of number of correct,
inserted and deleted notes (Unal et al., 2008).

Note-based evaluation

For assessing the performance of our proposed transcription system, we perform a note-
level evaluation stating that a note event is assumed to be correct if it fills four conditions
on:

1. Onset location. Its onset must be within a ∆o (in ms) range of a ground-truth
onset. A value of 50 ms is commonly used for ∆o (Bello et al., 2005; MIREX,
2011). Such tolerance level is considered to be “a fair margin for an accurate
transcription” according to Seeger (1958), although it is far more tolerant than
human ears would, as we remind that those are able to distinguish between two
onsets as close as 10 ms apart (sounds arriving to the ear with lower time intervals
are perceptually merged) (Moore, 1997). A stricter tolerance error of 40 ms has
been used by Collins (2005) for percussive sounds. Our error tolerance was set
based on figure 5.2, which provides the distribution of inter-onset intervals in the
studied corpus. We put our tolerance error far below the smallest value of these
intervals in order to be sure that our transcription systems are able to distinguish
between all successive notes of our corpus. A value of 40 ms was retained for ∆o ;

2. Pitch. Its pitch needs to be within a ± ∆i (in cents) tolerance around the ground-
truth pitch. A value of 20 cents is commonly used for ∆i in eurogenetic music
(Fonseca and Ferreira, 2009). This error resolution is equal to one fifth of a semitone
;

3. Duration. Its duration needs to be within a ± ∆d (in s) tolerance around the
ground-truth duration. In most AMT studies, duration is not evaluated, stating
that especially for “decay instruments”, the offset time is only important in a
limited period of time, because after some point the sound energy will be below
the threshold of hearing (Zwicker and Fastl, 1999), even if from the musician point
of view the note is still playing. But ∆d can be set relatively to 20% of the ground
truth note duration (MIREX, 2011). Actually, the definition of a note offset has
been a long-time ill-posed problem, and its effect on the success rate has actually
never been clear in past studies. Much more than any other musical parameters, the
offset suffers from the arbitrary of the ground truth, that is why we set a relatively
higher error tolerance on this parameter ;

4. Amplitude. Its amplitude needs to be within a ± ∆a (normalized dimensionless
value) tolerance around the ground-truth normalized amplitude. All amplitudes
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Figure 5.2 – Distribution of Inter-Onset intervals on the complete repertoire of the
marovany., including in red the tolerance threshold ∆Onset for onset evaluation. This
distribution present two broad beaks around 120 ms and 250 ms.

to be evaluated are first normalized by the maximum value, and only relative
amplitude rapports to this value are then evaluated. Only a few AMT studies have
tackled the problem of estimating note amplitudes, among which we can mention
Marolt (2004), who computed this note amplitude based on the energy of its first
harmonic, and Ewert and Muller (2011), who used a parametric model of the
spectrogram to estimate this amplitude.

Table 5.1 details our ∆ values for our different note parameters. As mentioned above,
our thresholds of error tolerances on note duration and amplitude are pretty high, both
because these parameters have never been properly defined in literature, and also because
we know from section 4.3.3, that our ground truth transcriptions do not have a sufficient
precision on their estimation (i.e. TPR and FPR ≤ 80 % from the ROC curves).

Note parameters ∆ values
Onset location ∆o = 25 ms

Pitch ∆i = 20 cents
Duration ∆d = 40% . RGroundTruth
Velocity ∆a = 40% . AGroundTruth

Table 5.1 – Tolerance thresholds for the evaluation of each note parameter. We defined
RGroundTruth and AGroundTruth the note duration and amplitude from the ground truth.

Furthermore, we used a binary approach to transcription (i.e. the original note is
perfectly transcribed or it is not transcribed at all) with a one-to-one mapping when
comparing transcription results, i.e., if a match is detected between an original note and
a transcribed one, none of those can be used again on other note matches (Ryynanen and
Klapuri, 2005; MIREX, 2011). The main idea is to avoid situations on which 2 different
original notes could be matched to a single transcribed one (for instance, two quick notes
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been transcribed as one), or vice-versa, allowing a perfect score even in situations that
have different number of notes.

Evaluation metrics

Evaluation metrics are defined by equations 5.1-5.4 MIREX (2011), resulting in the
note-based recall (TPR), precision (PPV), fall-out (FPR) and the harmonic mean of pre-
cision and recall (F-measure):

TPR = TP

TP + FN
(5.1)

PPV = TP

TP + FP
(5.2)

FPR = FP

FP + TN
(5.3)

F −measure = 2.PPV.TPR
PPV + TPR

(5.4)

where TP, FP and FN scores stand for the well-known True Positive, False Positive
and False Negative detections. The recall is the ratio between the number of relevant
and original items; the precision is the ratio between the number of relevant and detected
items; and the F-measure is the harmonic mean between precision and recall. For all
these evaluation metrics, a value of 1 represents a perfect match between the estimated
transcription and the reference one.

Evaluation technique

From our different sound databases, we extracted different sets of training and test
data. Within each dataset, the musical sequences were randomly split into training and
testing sequences, using by default 30 % of sequences for testing, and the 70% remaining
ones for training. Sequences from a same musical piece were constrained to appear either in
training or in test data. Also, the learning of note templates (see T3, T5 and T6) was made
on instrument models different from the one used in test sequences. This procedure allows
preventing any overfitting of our data in our simulation experiments, and is repeated five
times, with an average computed on the resulting transcription scores. It is noteworthy
that usually, results on AMT evaluation (Dessein et al., 2010; Benetos and Dixon, 2011;
Grindlay and Ellis, 2011) are presented by selecting the parameter values (e.g. the sparsity
coefficient in Benetos and Dixon (2013)) that maximizes the average accuracy in a dataset.

5.1.2 Evaluation AMT algorithms

Tolonen2000’s algorithm

This algorithm (Tolonen and Karjalainen, 2000) is an efficient model for multipitch
and periodicity analysis of complex audio signals. The model essentially divides the signal
into two channels, below and above 1000 Hz, computes a “generalized” autocorrelation
of the low-channel signal and of the envelope of the high-channel signal, and sums the
autocorrelation functions.
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Emiya2010’s algorithm

This algorithm (Emiya et al., 2010) models the spectral envelope of the overtones
of each note with a smooth autoregressive model. For the background noise, a moving-
average model is used and the combination of both tends to eliminate harmonic and sub-
harmonic erroneous pitch estimations. This leads to a complete generative spectral model
for simultaneous piano notes, which also explicitly includes the typical deviation from exact
harmonicity in a piano overtone series. The pitch set which maximizes an approximate
likelihood is selected from among a restricted number of possible pitch combinations as
the one.

Fuentes2013’s HALCA algorithm

The Harmonic Adaptive Latent Component Analysis (HALCA) algorithm 1 (Fuentes
et al., 2013) is used as a state-of-the-art reference. This algorithm was recently evaluated
by MIREX and obtained the 2nd best score in the MPE task, 2009-2012 (MIREX, 2011).
It mainly differentiates from our baseline algorithm B0 by the EM estimation of kernel
weights, which are not kept fixed but update with data. This model also includes a noise
model and different priors on sparsity, monomodality and temporal continuity of spectral
envelops.

Benetos2013’s algorithm

This PLCA-based AMT system 2 (Benetos et al., 2013a) uses pre-fixed templates, and
has been ranked first in the MIREX transcription tasks MIREX (2011).

Proposed system 1 (BaseCaz1(Ci))

This first system corresponds to our baseline PLCA plus HMM system, with the in-
corporation of a combination of KCMA given by Ci. When Ci is empty, this system then
uses the simple PLCA system presented in 2.2.8.

Proposed system 2 (BaseCaz2(Ci))

This first system corresponds to our baseline PLCA plus PF system, with the incor-
poration of a combination of KCMA given by Ci.

5.1.3 Numerical parameters & Default configuration

For all methods, as a time-frequency representation, the constant-Q transform (CQT)
with 60 bins/octave was used, with a half-overlapped Hamming window of 23 ms (i.e. 1024
coefficients at 44.1-kHz sampling rate). The number of EM iterations is experimentally
set to 25. By default, and unless said otherwise, we use the simple thresholding method
(see section 2.3.3), which should allow one to better highlight the differences brought by
musical knowledge. Also, unless said otherwise, we will only evaluate Onset location and
Pitch, as judging that we did not have sufficiently reliable ground truth data for this
evaluation, and also because those are not evaluated in most AMT studies. Also, after
numerical experimentations, an optimal value of ε = 0.08 in eq. 2.28 has been set.

1. Codes are available at http://www.benoit-fuentes.fr/.
2. Codes are available at https://code.soundsoftware.ac.uk/projects/amt_mssiplca_fast.

http://www.benoit-fuentes.fr/
https://code.soundsoftware.ac.uk/projects/amt_mssiplca_fast
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5.2 Results of AMT performance I : on the marovany reper-
toires

In this section, we wish to investigate the impact of KCMA incorporation in AMT
systems on our different marovany repertoires. Our research publication Article 2 resumes
a large proportion of the content of this chapter, although with a smaller sound dataset.

5.2.1 Evaluation sound dataset

For this first set of numerical experimentations, three different repertoires Ri of the
marovany zither were composed from our PSIFAMT database, corresponding respectively
to R1 = {D1, D5} (Velonjoro’s repertoire), R2 = {D4, D6} (Charles Kely’s repertoire) and
R3 = {D3, D7} (Kilema’s repertoire). 12 different musical pieces were taken from each
musical repertoire. We then selected 8 non-overlapping sequences of 30 seconds in each
piece, for a total of 144 sequences (i.e. 48 minutes) per repertoire. All musicians played
the major musical pieces of their repertoire on the same marovany model (model N1),
equipped with an original multi-sensor retrieval system Conference 2. Datasets R1 to R3
in combination with the note sample dataset N1 compose our oracle systems 3. A fourth
“universal” sound database R4 was also constituted by mixing all MIDI repertoires and
template sets. Figure 5.3 provides an illustrative example of a test sequence (cut to 15
seconds) from the marovany piece Folera played by the musician Kilema, with different
transcription outputs.

Figure 5.3 – Illustration of different stages of our AMT system on a test musical sequence,
with from top to bottom: ground truth, pitch activity matrix P (i, t), piano-roll tran-
scription output using a simple thresholding and piano-roll transcription output using the
combination of priors {T2, T4, T5,M4} (taken from our Article 2).

3. An oracle system is defined as a transcription system using note samples from the same instrument
source, which is meant to demonstrate the upper performance limit of the transcription system.
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5.2.2 Performance of Baseline systems

In this first section, we test the performance of the different algorithms on the test
bench, which allows placing our baseline transcription algorithm performance in the con-
text of state-of-the-art algorithms.

Evaluation on Onset location and Pitch

As displayed in table 5.2, our baseline system algorithm BaseCaz1 provided transcrip-
tion results of 57.5 %, 60.3 % and 62.5 % for the different R1 to R3, respectively, with
slightly worst results for our algorithm BaseCaz2. Globally, the state-of-the-art AMT sys-
tem of Benetos2013 provides the best transcription results. However, it must be reminded
that, on the contrary to other the other systems, Benetos2013 uses pre-fixed instrument
templates per pitch, i.e. musical knowledge specific to the instrument repertoire. Whereas
the worst performing system is Tolonen2000, which is a feature-based algorithm without
any prior information on the signals to be retrieved. This last approach appears to suffer
the most from ambiguities in multi-pitch estimation.

Baseline systems R1 R2 R3 Rtot
Tolonen2000 52.2 % 57.4 % 57.1 % 55.5 %
Emiya2010 55.9 % 56.1 % 55.7 % 56.8 %
Fuentes2013 58.3 % 61.6 % 61.2 % 59.1 %
Benetos2013 60.5 % 64.1 % 60.1 % 61.3 %

BaseCaz1 57.5 % 60.3 % 62.5 % 58.6 %
BaseCaz2 56.8 % 60.6 % 61.4 % 58.2 %

Table 5.2 – Average F-measures obtained with our baseline systems using the two note
parameters of Onset location and Pitch for evaluation, for our different evaluation datasets.

Evaluation on all note parameters

As displayed in table 5.3, our baseline system algorithm BaseCaz1 provided transcrip-
tion results of 52.7 %, 48.5 % and 50.2 % for the different R1 to R3, respectively. As
expected, by taking into account all note parameters in the AMT evaluation (with the er-
ror tolerance thresholds detailed in table 5.1), our transcription performance is drastically
deteriorated.

Baseline systems R1 R2 R3 Rtot
Tolonen2000 49.1 % 51.9 % 45.8 % 48.7 %
Emiya2010 49.7 % 53.1 % 52.3 % 51.2 %
Fuentes2013 49.8 % 51.2 % 54.6 % 52.9 %
Benetos2013 51 % 54.2 % 49.5 % 50.6 %

BaseCaz1 52.7 % 48.5 % 50.2 % 51.4 %
BaseCaz2 48.7 % 49.5 % 50.1 % 49.9 %

Table 5.3 – Average F-measures obtained with our baseline systems using all note param-
eters for evaluation, for our different evaluation datasets.
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Evaluation of a monophonic mode transcription

This lower level AMT task of monophonic transcriptions may be useful in many differ-
ent application such as melody extraction, and identification of motive structures on larger
time-scales. As displayed in table 5.4, our baseline system algorithm BaseCaz1 (using the
note segmentation mode described in section 2.3.2) provided transcription results of 67.1
%, 67.9 % and 65.1 % for the different R1 to R3, respectively. In this evaluation set-up,
our different AMT systems are rebalanced, while still outperforming more feature-based
algorithms such as Tolonen2000.

Baseline systems R1 R2 R3 Rtot
Tolonen2000 59.4 % 62.3 % 59.1 % 59.6 %
Emiya2010 59.9 % 62.5 % 64.2 % 61.3 %
Fuentes2013 68.4 % 69.5 % 66.7 % 68.3 %
Benetos2013 67.5 % 68.9 % 66.2 % 68.7 %

BaseCaz1 67.1 % 67.9 % 65.1 % 66.4 %
BaseCaz2 62.1 % 63.4% 64.8 % 61.2 %

Table 5.4 – Average F-measures obtained with our baseline systems in the monophonic
mode transcription, for our different evaluation datasets.

Sensitivity to threshold-based note segmentation methods

We now study dependency of our results on our threshold-based note segmentation
methods, being either the simple fixed threshold (see section 2.3.3) or the adaptive one
(see section 2.3.4). Figure 5.4 displays the evolution of the F −measure (in %) against
the value of the fixed threshold Thresfix (in dB) for three different baseline methods. A
same tendency can be observed for the different curves, with a clearly identified optimal
threshold for transcription, i.e. best compromise between true transcribed notes and
false alarms. The adaptive-threshold segmentation method brings more enhancements for
the AMT systems HALCA and BaseCaz1, supposedly because more variations occur in
their activity matrices, in comparison to methods based on pre-fixed templates such as
Benetos2013.

Sensitivity to template learning methods

Figure 5.5 proposes a comparison of transcription performance based on ROC curves
using our different template learning methods, presented in section 2.2.8, in our baseline
PLCA model BaseCaz1. The method of pre-fixing the templates before model parameter
estimation proves to provide the highest performance in our simulations, while the method
of data-based template adaptation using a conservative transcription presents similar per-
formance to the HALCA template learning process.

5.2.3 Testing each KCMA individually

Each single KCMA incorporated in our AMT system BaseCaz1, described in tables 3.1-
3.3, was successively incorporated in our transcription framework, composed of the three
blocks (PLCA-Postprocessing-HMM). To quantify the impact of KCMA on transcription
performance, we computed the measure Gp, called Gain prior, and defined as FPriork−FB0 ,
where FB0 is our reference F-measure obtained with our baseline algorithm BaseCaz1, and
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Figure 5.6 – Prior gains Gp for each individual prior, detailed for the different datasets.

FPriork the F-measure obtained by integrating the prior k to the transcription system. This
gain can be either positive or negative, depending on whether it enhances or degrades
transcription results of the PLCA baseline system algorithm. Figure 5.6 shows their
impacts on transcription performance in terms of the measure Gp. From this figure, we
see that the Gp values respective to each individual prior ranged from + 4.2 to -1.3. Also,
the dataset R1 is the only one to benefit from a positive Gp for all priors, whereas the
dataset R4 is the one on which priors have the strongest negative impact, with only 4
positive contributions.

5.2.4 Testing combinations of KCMA

Best transcription gains

Table 5.5 shows the best transcription gains obtained from our baseline algorithms
BaseCaz1 and BaseCaz2. By incorporating KCMA in AMT systems, we see that the prior
gains brought in our system BaseCaz1(P1c), which is as high as +6.6% for Velonjoro’s
repertoire, outperforms the state-of-the-art AMT algorithms reported in table 5.2. This
tendency is confirmed through our different marovany repertoires, although the prior gains
significantly differ from one repertoire to another.

Methods R1 R2 R3 Rtot
BaseCaz1(P1c) 64.1 % 66 % 67.3 % 60.7 %

Gp(P1c) + 6.6 % + 5.7 % + 4.8 % + 2.1 %
P1c {T1, T3, T4, T7,M5} {T1, T5,M2,M5} {H1, T1, T5,M2,M4} {H2, H6, T3,M2}

BaseCaz2(P2c) 63.2 % 65.3 % 65 % 61.1 %
Gp(P2c) + 6.4 % + 4.7 % +3.6 % + 2.9 %
P2c {T3, T4,M4} {H5, T1, T5,M2,M3} {H1, T5,M4} {H2, H7,M2}

Table 5.5 – Average F-measures obtained with the systems BaseCaz1(P1c) and
BaseCaz2(P2c) (with P1c and P2c the combination of priors with the highest Gp value, for
each dataset, respectively for BaseCaz1 and BaseCaz2), and the Gp(P1c) and the Gp(P2c)
values, for our different evaluation datasets.
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Figure 5.7 – Prior gains Gp of the first 40 best ranking prior combinations, detailed for
the different datasets.

In details

We will now evaluate the impact of prior knowledge on AMT performance by consid-
ering different combinations of individual priors. To do so, we first formed all possible
combinations of priors, and successively evaluated their impact on transcription results
using each time the same test and learning sequences. In the same way that for figure
5.6, figure 5.7 plots the prior gain Gp for each prior combinations and each dataset. It
can be noted that the dataset R1 has a positive prior gain Gp over the 40 first best per-
forming prior combinations, while the dataset R2, R3 and R4 cross the zero gain score at
the ranks 36, 37 and 24, respectively. The higher this rank, and the higher the usefulness
of knowledge prior in enhancing the transcription accuracy of a repertoire. It can then
be mentioned that the repertoire R1 benefits the most from prior knowledge. On the
contrary, dataset R4 has a negative prior gain Gp from the 24th prior combination.

To provide a more detailed insight in these prior combinations, figure 5.8 represents
the relative proportions according to which each individual prior is present over the first 40
prior combinations presenting the highest Gp values, for the four repertoires. For example,
we can see that in most repertoires, high values are obtained for priors T5 and T6, which
mean that these priors are present in many of the best performing prior combinations.

5.2.5 Discussion

Our baseline performance remains not satisfactory enough to provide robust musical
analysis supports, but they remain close to the average performance level of current AMT
systems on polyphonic solo-instruments, which is around 60 % in the average F−measure
with note-based evaluation metrics (Benetos et al., 2013b). By incorporating KCMA in our
system BaseCaz1 (see table 5.5), we achieve transcription enhancements as high as +6.6%
in the average F −measure for Velonjoro’s repertoire, and outperforms significantly the
state-of-the-art AMT algorithms reported in table 5.2 for all repertoires. This confirms well
that model-driven transcription systems (Ellis, 1996), which make use of prior knowledge
specific to their data under analysis, outperform globally data-based systems, whose more
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Figure 5.8 – Gp values cumulated over the first 40 best ranking prior combinations, re-
spective to each prior, and for the four different datasets R1 to R4.

general application often costs a decrease in transcription performance.
We highlight the major contribution of pre-recorded templates per pitch in transcrip-

tion tasks, which was particularly noticeable in contrast to the individual parametric
spectral models, as in the HALCA algorithm. Templates have been used in pattern-
matching operations and are very efficient in multi-pitch tracking tasks (Mysore, 2010;
Benetos and Dixon, 2013). As far as the choice of templates is concerned, Kirchhoff et al.
(2012) stated that the highest transcription accuracies are obtained when spectral tem-
plates are learned directly from the recording under analysis or from isolated notes of the
same instrument model, whereas Benetos and Dixon (2013) seemed to suggest that having
a large set of templates that might include instruments not present in the recording does
in fact improve transcription accuracy. Also, Benetos and Dixon (2013) suggested the use
of isolated sounds database to build spectral templates, instead of extracting them from
solo performances. Our simulation experiments seem to confirm these last two statements,
especially when adding a variety of template models able to encompass both the intrinsic
timbre properties of an instrument and the acoustic modifications which can be induced
to different playing style, as proposed by the RWC database (Goto et al., 2003). Such
a combination of different instrument templates might better approximate the spectra of
the produced notes, as observed by Benetos and Dixon (2013). Prior gains associated to
the use of templates show great promises for all marovany repertoires, and even higher
transcription performance can be expected with a more advanced characterization of their
instrument acoustics. One can speculate on the fact that more complex and variable acous-
tic signatures exist for these instruments due to their non-standardization and “precarity”
of their making, in contrast to commercialized eurogenetic instruments. A higher acoustic
complexity which has been indeed observed in Conference 4, particularly in regards to in-
harmonicity and spectral envelope variability. Further studies will be needed to validate a
correlation between acoustic timbre complexity and the usefulness of timbre-related prior
knowledge for non-eurogenetic repertoires. However, the current rarity of datasounds for-
matted for AMT evaluation of more traditional instrument repertoires is the first problem
to be solved. In that direction, the authors have undertaken the development of a sound



5.2. Results of AMT performance I 115

database dedicated to plucked string instruments of traditional African repertoires.
Also, our results provide interesting basis to discuss inter-repertoire differences, which

will be further explored in the following by studying how prior knowledge impact each
repertoire transcription. It is the musical repertoire R1 of Velonjoro which gets both
the lowest baseline and HALCA transcription results and the highest positive gain from
priors. In other words, this repertoire leaves much room for prior-based transcription
improvements, and benefits the most from specific prior knowledge. The repertoire of
Velonjoro consists of a succession of melodic phrases most often played in arpeggios. There
is no vertical writing properly speaking in this music, excepting a few punctual chords.
However, the high tempo at which notes are played, combined with the facts that strings
are barely muted within a musical phrase and that they often resonate with each other,
confers to this music a complexity of analysis comparable to that provided by polyphonic
music. The high-level of polyphony and virtuosity style of this musical corpus constitutes
classical difficulties for automatic transcription. In addition to that, Velonjoro tuning is
quite deviating from the typical well-tempered scale, as well as “non-octaving”, i.e. scale
is not the same depending on the octave (e.g., in 1st variation of Sojerina, the flat C
in octave 3 is a natural C in octave 4 and 5). All these musical features contribute in
decreasing transcription performance obtained with the HALCA algorithm, while their
proper identification and characterization allowed the development of specific priors quite
efficient on this repertoire. Mostly, this repertoire benefits the most from the KCMA
category of timbre (see relations between KCMA and their categories in table 1.1), which
fits well the fact that in the traditional musical playing of the marovany, players like
Velonjoro interfere at the minimum on its intrinsic timbre, and even excite it as louder as
possible (an effect called mafo be). In particular, prior T3 (related to timbre) is at the
same level as the other template-based priors T5 and T6 (related to playing style), which
are much more predominant in the other marovany repertoires.

Concerning sequential prior knowledge, injected in the HMM framework, we can men-
tion that the knowledge-based priors H globally outperforms the data-based prior M3
for the modeling of harmonic transitions, resulting simply from the fact that taking into
account musical knowledge such as tonality provides more accurate transition probabili-
ties, which are robust to the different datasets, whereas the probabilistic note transition
contains a superposition of the different tonalities, with a too local information to be
representative of different musical repertoires. In repertoires with simpler harmonic struc-
tures, as in Velonjoro, the prior gains of these two types of priors (knowledge-based vs
data-based) are rebalanced.

Priors integrating information on note duration and temporal envelop appears to be
beneficial, especially for Velonjoro’s repertoire. In particular, a previous in-depth analysis
of model errors on an annotated marovany dataset showed that most of the false negatives
are actually produced by a strong intermodulation on certain notes. The valleys appearing
in temporal envelops of intermodulated notes are a strong cause of false alarm detection,
as they can be seen as quick re-occurrences of a same note, which should actually be
caused by particular musical figures (e.g. fast arpeggio). These two quite simple priors
work surprisingly well against these errors, especially in Velonjoro’s repertoire where notes
are most often let in free-resonance.

Eventually, when considering the dataset R4, in comparison to the oracle datasets
R1 to R3, we observe that globally all prior contributions decrease, with more noticeable
negative impacts on priors T5 and T6, the two multi-template based priors. Then, we can
state that even within a same instrument repertoire, the integration of prior knowledge
should also take into account specificities from different musicians and instrument models,
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as is the case here for the marovany.

5.3 Results of AMT performance II : on inter- instrument
repertoires

In this section, we wish to investigate the impact of KCMA incorporation in AMT
systems on different instrument repertoires, especially between classical piano, folk guitar
and the marovany. To do so, we will proceed using the same steps as in section 5.2. Our
research publication Article 1 resumes a large proportion of the content of this chapter.

5.3.1 Evaluation sound dataset

Three different decay instruments were selected, namely classical piano, steel-string
acoustic guitar and the marovany zither from Madagascar, labelled R1 to R3. For the
first two instruments, isolated note samples were extracted both from the RWC database
(Goto et al., 2003). For the marovany, all note samples were recorded by the authors in a
semi-anechoic chamber of our laboratory, as no publically available sound databases exist
for this instrument. For each pitch of an instrument pitch range, we have three different
note samples from three different instrument models, for a total of 9 note samples per pitch
per instrument type. These note samples are obtained by varying playing dynamic only
(covering approximately the nuances of piano, mezzo forte, and forte), and with a fixed
position of the excitation point, centred in the playing area, for the two plucked-string
instruments.

For what concerns musical pieces, as in section 5.2, 12 different musical pieces were
taken from each musical repertoire. We then selected 8 non-overlapping sequences of 30
seconds in each piece, for a total of 144 sequences (i.e. 48 minutes) per repertoire. For
classical piano, musical pieces were taken randomly from the MAPS database (Emiya
et al., 2010). These pieces belong to the euro-genetic classical music from the 18th and
19th centuries. For our two plucked-string instruments, our musical pieces were randomly
taken from our PSIFAMT database, corresponding respectively to R2 = {D10 : D12} and
R3 = {D1, D4, D5}. Figure 5.3 provides an illustrative example of a test sequence (cut
to 15 seconds) from a classical piano piece (MAPS database), with different transcription
outputs.

5.3.2 Performance of Baseline systems

In this first section, we test the performance of the different algorithms on the test
bench, which allows placing our baseline transcription algorithm performance in the con-
text of state-of-the-art algorithms. As displayed in table 5.6, our baseline system algorithm
BaseCaz1 provided transcription results of 62.2 %, 59.7 % and 59.2 % for the different
repertoires R1 to R3, respectively. The best performing system is the one of Benetos2013,
with a score of 64.8 % for the classical piano repertoire, which is of the order of magnitude
found in the literature (Benetos et al., 2013a), and 61.5 % for the marovany repertoire.

5.3.3 Testing combinations of KCMA

Best transcription gains

Table 5.7 shows the best transcription gains obtained from our baseline algorithms
BaseCaz1 and BaseCaz2. With the prior gain, we see that our AMT system BaseCaz1(P1c)
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Figure 5.9 – Illustration of different stages of our BaseCaz2 system on a test musical
sequence, with from top to bottom: ground truth, pitch activity matrix P (i, t) and piano-
roll transcription output.

Baseline systems R1 R2 R3 Rtot
Tolonen2000 55.4 % 57.6 % 53.4 % 56.6 %
Emiya2010 61.5 % 58.7 % 56.4 % 57.9 %
Fuentes2013 63.2 % 61.4 % 59.5 % 60.6 %
Benetos2013 64.8 % 62.3 % 61.5 % 62.9 %

BaseCaz1 62.2 % 59.7 % 59.2 % 61.4 %
BaseCaz2 61.8 % 59.9 % 58.1 % 59.7 %

Table 5.6 – Average F-measures obtained with our baseline systems, for our different
evaluation datasets.

outperforms the state-of-the-art AMT algorithms reported in table 5.6. Once again, the
incorporation of optimal KCMA in our systems BaseCaz1 and BaseCaz2 enhances sig-
nificantly our transcription performance, which brings it to the same order of magnitude
as Benetos2013 for the classical piano, and outperforms this one for the marovany reper-
toires. Also, we can observe strong inter-repertoire differences in the impact of KCMA on
the AMT system BaseCaz1(P1c) , with a difference in Gp(P1c) as high as 3.1 % between
the repertoires of classical piano R1 and marovany R3.

In details

We will now evaluate the impact of prior knowledge on AMT performance by consid-
ering different combinations of individual priors. To do so, we first formed all possible
combinations of priors, and successively evaluated their impact on transcription results
using each time the same test and learning sequences. Figure 5.10 plots the prior gain Gp
for each prior combinations and each dataset. It can be noted that the dataset R1 has
a positive prior gain Gp over the 40 first best performing prior combinations, while the
dataset R1, R2 and R4 cross the zero gain score at the ranks 31, 33 and 15, respectively.
The higher this rank, and the higher the usefulness of knowledge prior in enhancing the
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Methods R1 R2 R3 Rtot
BaseCaz1(P1c) 65.2 % 64.1 % 65.3 % 59 %

Gp(P1c) + 3 % + 4.4 % + 6.1 % + 1.1 %
P1c {H1,M1,M2,M4} {T1, T5,M2,M4} {T1, T3, T4, T7,M5} {H3, H7,M2}

BaseCaz2(P2c) 64.5 % 64 % 63.4 % 61.3 %
Gp(P2c) + 2.7 % + 4.1 % + 5.3 % + 1.6 %
P2c {H1,M2,M4} {H5, T6,M2,M4} {T1, T4, T5,M5} {H2, H6,M2}

Table 5.7 – Average F-measures obtained with the systems BaseCaz1 + P1c and BaseCaz2
+ P2c (with P1c and P2c the combination of priors with the highest Gp value, for each
dataset, respectively for BaseCaz1 and BaseCaz2), and the Gp(P1c) and the Gp(P2c)
values, for our different evaluation datasets.
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Figure 5.10 – Prior gains Gp of the first 40 best ranking prior combinations, detailed for
the different datasets.

transcription accuracy of a repertoire. It can then be mentioned that the repertoire R3
benefits the most from prior knowledge. On the contrary, dataset R4 has a negative prior
gain Gp from the 15th prior combination.

To provide a more detailed insight in these prior combinations, figure 5.11 represents
the relative proportions according to which each individual prior is present over the first
40 prior combinations presenting the highest Gp values, for the four repertoires.

5.3.4 Discussion

To begin with, it can be first noticed that all priors considered in our analysis induce
enhancements in the transcription results of state-of-the-art algorithms, on at least one
of the instrument repertoires. With the results from this section, some inter-repertoire
differences related to KCMA incorporation are clearly highlighted. Numerically, prior
gains range are of 3 %, 4.4 % to 6.1 %, respectively for the classical piano, folk guitar and
marovany repertoires. This tendency can be first explained by the fact that transcription
performance of baseline systems are higher for classical piano (see table 5.6), and so
there is less room for improvement with the incorporation of musical knowledge. Also,
transcription enhancements are more important for our two plucked-string instruments, in
comparison to classical piano, but are more similar for knowledge-based KCMA (source I).
This supports the idea that musical features related to both timbre and playing style may
be more complicated in plucked-string instrument repertoires. This makes sense indeed
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Figure 5.11 – Gp values cumulated over the first 40 best ranking prior combinations,
respective to each prior, and for the four different datasets R1 to R4.

when comparing the different playing techniques feasible on plucked-string instruments,
such as plucking position and excitation modes.

Then, the results of this section 5.3 learns us that the marovany repertoire benefits
the most from musical knowledge, whatever musical knowledge is considered, whereas our
“universal” dataset R4 calls for more carefully selected and well-dosed external information
(in our simulation experiments, most knowledge components result unnecessary and often
detrimental), risking to decrease drastically transcription results. A tendency supported
by the important predominance of very specific musical information which do not depend
on data, such as the known played notes and the tonality-based probabilistic transitions
between note mixtures. Such a result suggests the non-universality of prior knowledge,
and the consequent need to adapt information depending on repertoires. Also, when
comparing this universal dataset from section 5.3 to the one from section 5.2, we see that
the transcription performance gains from KCMA are less degraded within the marovany
repertoires.

Like for results from section 5.2, the most stable KCMAs are, as expected, the ones
from the Source I, whose contributions are not really affected by the mixing of the different
repertoires in the dataset R4. Such KCMAs are naturally in generic AMT systems (see
e.g. Benetos et al. (2014b)), although our results reveal that their performance gains are
quite limited in comparison to KCMA specific to an instrument repertoire.

5.4 Conclusion

In this chapter, we were interested in performing an in-depth investigation of their
impact on music transcription. In order to identify prior contributions in transcription
results, we used only knowledge components built on explicit information from various
music-related domains of knowledge, namely the timbre, musicological and playing style
classes. Our numerical experiments lead us to several interesting observations on the use of
knowledge in a state-of-the art AMT system, such as the complementarity of the different
knowledge classes and the non-universality of prior knowledge in regards to the diversity
of instrument repertoires across the world.
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Summary content

This PhD thesis deals with the development of an automatic transcription system
dedicated to the repertoires of the traditional Marovany zither from Madagascar. The
common denominator of the different approaches developed to the task of AMT lays in
the use of explicit music-related prior knowledge in computational systems. The AMT
framework was build upon two main methods, namely Probabilistic Latent Component
Analysis (PLCA) for multi-pitch estimation and Hidden Markov Models (HMMs) for note
segmentation and sequential post-processing, and different configurations of these methods
were developed to provide a powerful probabilistic framework, covering the time-frequency
domain on different time-scales, in which original integration methods of prior knowledge
were developed. We were interested in developing a generic transcription system based
on a PLCA post-processed with a HMM block, which makes possible to supply it with
all kind of prior knowledge at different levels of abstraction, and performing an in-depth
investigation of their impact on music transcription. In order to identify prior contributions
in transcription results, we used only knowledge components built on explicit information
from various music-related domains of knowledge, namely the timbre, musicological and
playing style classes. Our numerical experiments lead us to several interesting observations
on the use of knowledge in a state-of-the art AMT system, such as the complementarity
of the different knowledge classes and the non-universality of prior knowledge in regards
to the diversity of instrument repertoires across the world.

Also, an important part of this PhD project dealt with the constitution of a database
of ground-truth transcriptions of a not yet studied instrument repertoires. This involved
the development of specific acquisition and processing tools to automatize this process,
and takes part to a larger ambition of making available to the MIR community a sound
database dedicated to various plucked-string instrument repertoires, especially including
traditional ones.

Review of Objectives

In terms of our initial objectives, this PhD has achieved the three main following points
— First, the development of Multichannel Capturing Sensory Systems dedicated to

plucked-string instruments, and more specifically to the marovany, has achieved to
provide numerous reliable transcriptions of instrument repertoires, in an automatic
and time-saving way. Such transcriptions have been exploited as ground truth
transcriptions in the task of Automatic Music Transcription (see below), and also
in computational musicological studies ;

— Second, the development of an automatic music system with original knowledge
components from musical acoustics incorporated in it, specially conceived and op-
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timized for the marovany instrument repertoire. A first major result was the greater
transcription performance of templates learned from pre-recorded samples, includ-
ing “interpreted” note samples which result from specific playing techniques, in
comparison to more generic parametric note models. The timbre of marovany,
which can vary a lot in playing condition, on the contrary to notes of classical
piano for example, then really benefit from a more instrument-specific modeling of
note spectral envelops. Other knowledge components specific to this instrument
repertoire include sympathetic resonances, intermodulated notes, shift-invariant
templates, pitch-wise note duration. Optimal incorporations of this knowledge in
music transcription systems have allowed significant enhancements in transcription
performance, outperforming state-of-the-art systems ;

— Third, the development of a vast set of knowledge components from musical acous-
tics, covering both timbre and music language features of an instrument repertoire,
have allowed investigating the impact of knowledge components on different in-
strument repertoires. We then highlighted significant inter-repertoire differences
through the incorporation of these components in our baseline music transcription
system.

We really wish this work to help researchers in the community of computational eth-
nomusicology, who would like to apply tools of automatic music transcription to their
repertoires. The analytical framework developed in this PhD should help such researchers
in choosing the appropriate knowledge to incorporate in computational systems, as we
showed that it is inappropriate to use all music knowledge, in terms of both the quantity
and nature, regardless the instrument repertoire under study. The methodology and re-
sults of this PhD should also help in better understanding how current music transcription
algorithms could be adapted to new instrument repertoires. Through the explicit links
we made between musical acoustics knowledge and automatic transcription accuracy, one
could directly predict the best knowledge components to use for transcription after having
identified and characterized the most characteristic musical features in its repertoires (e.g.
highly variable spectral envelops of played notes → learning of pre-recorded templates;
non-tempered tuning → shifting templates in frequency)

Prospects

Dealing with musicological issues, and ethnomusicological issues in particular, is not
a simple subject for computer scientists, as explained by Lartillot et al. (2008): “We
hope expert ethnomusicologists will understand the experimental aspect of such a cross-
disciplinary undertaking, and will pardon the potential imperfection in this computational
attempt toward cross-cultural understanding. The argumentation of the paper might
betray for some readers some residual of Eurocentrism. We would like to emphasize that
the authors of this work are aware of the limitation of this opposition between Western and
non-Western music, which is proposed as an experimental state before the development
of further research aimed at the modeling of “stylistic features proper to different stylistic
areas”.”This PhD thesis tried at best to follow these recommendations, while bringing clear
evidences that the study of a non-eurogenetic repertoire such as the marovany repertoire
raises specific issues, and a consequent need of adapting and developing specific tools to
answer them. Also, the authors are aware of focusing on a very specific music culture,
which make the selected priors and results not easily generalizable. However, there are
clear analogies and similar phenomenon occurring in many music cultures. Therefore we
believe this document can be a good reference to many researchers working in the AMT
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tasks, and also a useful starting point in tailoring AMT systems as an aid to musicological
studies involving melody.

Our research interests for future studies will be to test the validity of our results
on sound databases with real recordings, to quantify the precise representativeness and
amount of musical pieces in regards to a complete instrument repertoire, and to undertake
the development of a semi-automatic transcription tool, integrating a large and flexible
number of prior knowledge which can all be directly understood and modified by an
external user.

For what our PSIFAMT database, the motivations of developing this new sound
database are multifold:

— Making available a new sound database for AMT evaluation in the MIR community,
which is now indispensable to test the robustness of current algorithms to music
diversity, and face them to more complex musical features ;

— Plucked-string instruments present a great diversity in terms of timbre (e.g. inhar-
monicity, envelop spectrum variability, temporal profile modulation), playing styles
and effects (e.g. different string excitation modes, palm muting, glissandi, vibrato,
tremolo, harmonic notes) ;

— Put the attention on non-eurogentic traditional repertoires, encompassing the great-
est diversity of musicological codes (e.g. micro-rhythm, tuning based on non-equal
temperament, modal scale) and of musical practice, and complexity in music en-
coding ;

We wish to complete the formatting of this sound database so it can be permanently
hosted on the Web, and keep on expanding it with other recordings from new instruments.



Publication list

This thesis consists of several publications, listed in the following, along with their
section locations of the thesis in which they appear, or partially appear.

Peer-reviewed journal article

Article 1 Cazau, D., Revillon, G., Krywyk, J. and Adam, O. (Accepted in JASA after
minor revisions). An investigation on Musical Acoustics knowledge in Automatic
Music Transcription systems

Article 2 Cazau, D., Wang, Y., Chemillier, M. and Adam, O. (In reviewing). An
automatic music transcription system dedicated to the repertoires of the marovany
zither from Madagascar, Submitted to J. of New Music Research

Article 3 Cazau, D., Revillon, G., Wang, Y. and Adam, O. (In reviewing). Particle
filtering for PLCA model, with an application to Automatic Music Transcription,
Submitted to IEEE, Trans. on Signal Processing

Article 4 Cazau, D., Revillon, G. and Adam, O. (2015). Deep scattering transform
applied to onset detection and instrument recognition of decay instruments, Sub-
mitted to Acta Acustica, Signal Processing

Peer-reviewed conferences

Conference 1 Cazau, D.; Adam, O. and Chemillier, M. ”Système de captation optique
pour la transcription automatique de la musique de cithare malgache Marovany”,
Proc. JIM (JournÃľes d’Informatique Musicale), p. 51-58, Saint-Denis, France,
May 2013.

Conference 2 Cazau, D.; Adam, O. and Chemillier, M. ”Information retrieval of
marovany zither music with an original optical-based system”, Proc. DAFx, p.
1-6, Maynooth, Ireland, September 2013.

Conference 3 Cazau, D.; Adam, O. and Chemillier, M. ”An original optical-based
retrieval system applied to music automatic transcription of the marovany zither”,
Proc. FMA (Folk Music Analysis workshop), p. 44-50, Amsterdam, Netherlands,
June 2013.

Conference 4 Cazau, D.; Adam, O. and Chemillier, M. ”Etude comparative des tim-
bres d’instruments Ãă cordes pincées occidentaux et traditionnels d’Afrique”, Proc.
Congress of the Acoustical Society of France, p. 1608, Poitiers, France, April 2014.

Conference 5 Cazau, D.; Adam, O. and Chemillier, M. ”A study of contrametric-
ity in traditional musical repertoire of Africa”, Proc. FMA (Folk Music Analysis
workshop), p. 100-101, Istanbul, Turkey, June 2014.

Conference 6 Cazau, D., Adam, O. and Chemillier, M. ”Automatic Music Transcrip-
tion of the marovany repertoires, based on musical acoustics knowledge”, Proc.



124 Publication list

FMA (Folk Music Analysis workshop), Paris, France, June 10th-12th, 2015

Seminar

Seminar 1 Cazau, D. ”Multichannel capturing sensory system for the marovany zither
of Madagascar”, Seminar at EHESS, Paris, 2014 May 14th, video available on the
web 4.

Seminar 2 Cazau, D. ”Vers une automatisation de l’analyse ethnomusicologique ? Un
bilan”, Journées Doctorales d’Ethnomusicologie at Sorbonne, Paris, France, 2014
October 18th.

Book chapter

Book 1 Cazau, D.; Chemillier, M. and Adam, O. (Accepted) ”Computational Music
Analysis approaches for automatic transcription of orally transmitted repertoires,
with application to human-machine interaction environment”, in book : Trends in
Music Information Seeking, Behavior, and Retrieval for Creativity, Editors: Kosta-
giolas, P., Martzoukou, K. and Lavranos, C.

Technical note

Note 1 Cazau, D. and Nuel, G. ”Understanding the Probabilistic Latent Component
Analysis Framework”

Note 2 Cazau, D. and Nuel, G. ”Relating sigmoid parameters to explicit musical
features in view of HMM-based note segmentation”

Other research works

— Adam, O.; Cazau, D.; Gandilhon, N.; Fabre, B.; Laitman, J. T. and Reidenberg,
J. S. (2013). New acoustic model for Humpback whale sound production, Applied
Acoustics, 74, 1182-1190

— Cazau, D.; Adam, O.; Laitman, J. T. and Reidenberg, J. S. (2013). Understand-
ing the intentional acoustic behavior of humpback whales: a production-based ap-
proach, J. Acoust. Soc. Am., 134, 2268-2273

— Gandilhon, N.; Adam, O.; Cazau, D.; Laitman, J. T. and Reidenberg, J. S. (2014).
Two new theoretical roles of the laryngeal sac of humpback whales, Marine Mammal
Science, DOI: 10.1111/mms.12187

4. http://www.dailymotion.com/video/x1zkcla_kilema-ehess-5-7_music

http://www.dailymotion.com/video/x1zkcla_kilema-ehess-5-7_music
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The marovany in ImproteK

Some research (e.g. Dubnov (2003)) seek to capture some of the regularity apparent
in the composition process by using statistical and information-theoretic tools to analyze
musical pieces. The resulting models can be used for inference and prediction and, to a
certain extent, to generate new works that imitate the style of the great masters. A gen-
erative theory of music can be constructed by explicitly coding music rules in some logic
or formal grammar. HMMs have been used in this context of style modeling, allowing to
build a computational representation of the musical surface that captures important stylis-
tic features. Statistical analysis of a corpus reveals some of the possible recombinations
that comply with the constraints or redundancies typically found in a particular style.
Interesting applications include style characterization tools for the musicologist, genera-
tion of stylistic metadata for intelligent retrieval in musical databases, music generation
for Web and game applications, machine improvisation with or without interaction with
human performers, and computer-assisted composition. One of machine learning’s main
purposes is to create the capability to sensibly generalize.

While the real-time conversion of an acoustic instrument into a multichannel numerical
signal provides a robust optimal method for audio acquisition and post-processing, it also
opens original artistic prospects. The capacity of integrating real-time audio transforma-
tions (filtering, dynamic and timbre changing âĂę) in live performance has already found
some interests in renowned cithara players like Rajery. Also, a MIDI conversion method of
the cithara audio signal could also bring new applications in the field of musician-machine
interaction systems. Actually this study is connected to the IMPROTECH project enti-
tled “Technologies and Musical Improvisation” (grant ANR-09-SSOC-068 by the French
National Research Agency) that includes a partnership with IRCAM. A computer environ-
ment called OMax, which learns in real time from human performers, has been developed
in this context. The improvisation kernel is based on sequence modeling and statistical
learning. It allows capturing stylistic musical surface rules in a manner that allows mu-
sically meaningful interaction between humans and computers. Recently an international
workshop was held in New York ? dedicated to the exploration of the links between musical
improvisation and digital technologies that gathered researchers and artists from both re-
search & creation scenes. Through this current study we aim to connect our optical-based
MIDI conversion system developed for the marovany cithara to improvisation environ-
ments such as OMax, in order to explore the musical interest of such an interaction and
help folk music to be represented in such events.

Study of the marovany repertoire in trance tromba, founded on musical criteria, and
complementing other behavioral indices observed with an audio-visual device and audio
data, should bring original elements of investigation to the fascinating relationships be-
tween music and trance. Another application theme of such a system would be the Human-
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Machine musical interaction, through the OMAX improvisation IT environment Nika and
Chemillier (2012) (developed from the OMax environment Assayag et al. (2010-2014) in
collaboration with IRCAM). Future musical projects could involve malagasy musicians in
this environment, using MIDI data from our retrieval system. Questions of a more aes-
thetic character (acceptability of musical formulas derived from a known repertoire, oral
transmission of this skill, musical interest in the amplification, virtual re-orchestration of a
musical environment and real-time modifications of musical parameters) will be considered
in future investigations following this direction.

Research publications This thematic has been the subject of the following research
publications:



Annex



Appendix A

Acoustic & Musical Descriptors

The features are calculated using a short time analysis window with duration 10-40
milliseconds. In addition, the means and variances of the features over a larger texture
window (0.2-1.0 seconds) are computed resulting in a feature set with eight dimensions.

A system for the extraction of audio descriptors is usually organized according to the
properties of the descriptors. We can distinguish three main properties of an audio de-
scriptor: (1) the temporal extent over which the descriptor is computed (a specific region
in time, such as the sustain, or the whole duration of a sound file), (2) the signal repre-
sentation used to compute it (e.g., the waveform, the energy envelope or the short-term
Fourier transform), and (3) the descriptor concept described by it (e.g., the description
of the spectral envelope or the energy envelope over time) (Peeters et al., 2011). We first
used classical descriptors covering both physical domains, temporal and spectral, allowing
to quantify temporal variations of acoustic properties within a sound unit. Most of them
have already been used in the acoustic characterization of mysticetes sound units (Fristrup
and Watkins, 1992; Au et al., 2006; Mercado et al., 2010). They were selected for their
physical meaning easily interpreted.

The temporal extent denotes the segment duration over which the descriptor is derived.
A descriptor can either directly represent the whole sound event (e.g., the Attack Time
descriptor, because there is only one attack in a sound sample) or represent a short-
duration segment inside the event (e.g., the time-varying spectral centroid, which is derived
from a spectral analysis of consecutive short-duration segments of a sound, usually of 60
ms duration).

Descriptors of the first group are called ”global descriptors,” and those of the second
group are called ”time-varying descriptors.” Time-varying descriptors are extracted within
each time frame of the sound and therefore form a sequence of values. In order to summa-
rize the sequence in terms of a single value, we use descriptive statistics, such as minimum
or maximum values, the mean or median, and the standard deviation or interquartile
range (i.e., the difference between the 75th and 25th percentiles of the sequence of values).
As such, the structure of an audio descriptor system usually separates the extraction of
global descriptors (which are directly considered as the final results) from the extraction
of time-varying descriptors (which are subsequently processed to derive the descriptive
statistics).

A.1 Global descriptors

AT , the attack time (in s) is defined by the necessary time for the signal to reach 95
% of its maximal energy Emax
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s(n = AT ) = 0.95Emax (A.1)

EffDur , the physical duration of the signal (in s) will be defined as the time during
which the signal energy remains between 5 % and 95 % of its maximal energy Emax

EffDur = {n/s(n) > 0.05Emax & s(n) < 0.95Emax} (A.2)

DT , the decreasing time (in s) is defined by the necessary time for the signal to reach
5 % of its maximal energy Emax from this value

s(n = DT/n > AT ) = 0.05Emax (A.3)

TGC , the Temporal Gravity Center (in s) is the average value of the time energy
distribution, which divides a temporal profile in two parts of equal energy :

TGC =
∑K
k=0 kEnv(k)∑K
k=0Env(k)

(A.4)

with Env(k) the temporal envelop of the signal ;
AmpMod, the Amplitude Modulation quantifies energetic variations within a tem-

poral profile :

AmpMod = max0≤k≤N Env(k)
1
N

∑N
k=1 Env(k)

(A.5)

A value close to one traduces a stationary behavior of the signal, whereas strong
values traduce transitory variations ;

FM, the Frequency Modulation quantifies energetic variations within a temporal
profile :

FM = max0≤k≤N F0(k)
1
N

∑N
k=1 F0(k)

(A.6)

with F0 the temporal frequency curve. A value close to one traduces a stationary
behavior of the signal, whereas strong values traduce transitory variations ;

Enveloppe , the temporal envelope e(tn) of the audio signal s(tn) is derived from
the amplitude of the analytic signal sa(tn) given by the Hilbert transform of s(tn).
This amplitude signal is then low-pass filtered using a third-order Butterworth filter
with a cutoff frequency of 5 Hz. e(tn) has the same sampling rate and duration as
that of s(tn).

A.2 Time-varying descriptors

It should be noted that, in our system, all window durations and hop sizes are defined
in seconds and then converted to samples according to the sampling rate of the input
audio signal. This guarantees that the same spectral resolution will be obtained whatever
the sampling rate of the signal. However, the content of the representation itself will differ
according to the sampling rate. This is because the upper frequency of the STFT depends
on the sampling rate (it is equal to fmax.sr/2).
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All descriptors will be computed computed in a 0.049-s (1024 samples) hamming win-
dow at 0.01-s intervals with a 0.005-s overlapping. Classical speech analysis is usually
conducted over such a duration.

Energy , the energetic level rms (in Pa) of a signal is defined by

E(k) =

√√√√ 1
K

K∑
k=1
|(x+ kN)|2 (A.7)

computed for K successive frames of N samples. Given the difficulty of charac-
terizing amplitude values of sounds recorded from free-ranging animals in an open
acoustic environment (Au et al., 2006), as the amplitude of any field-recorded sound
is necessarily affected by a number of sources of measurement error, including varia-
tions in the distance between source and microphone, in the relative orientations of
source and microphone, in the effects of intervening sound barriers, and in ambient
background noise levels, these figures on the energy must be only seen as relative
indicators allowing to compare very roughly the intensity levels respective to each
type.
Also, since microphone sensitivity (or clipping level) is often unavailable, sound
levels could only be found as values relative to some arbitrary level, chosen such
that the weakest click level corresponded to 0 dB. Hence, we report only “relative
vocalization levels”, by which we mean the difference between the current click level
and the minimum click level (over all clicks) ;

HD, the Harmonicity Detector (adimensioned) is an indicator of harmonicity. The
principle Youngmoo and Whitman (2002) is to automatically scan the spectral
density of a signal with a comb filter whose fundamental frequency F0 and varies
within a given range of interest. When the valleys of this filter coincides with
the peaks of an harmonic sequence for a particular F0, their product will result
in a very weak value which traduces the presence of an important harmonicity.
Mathematically, we define it as

HD = min(Epond
Einit

) (A.8)

with Einit =
∑
|Y (k)|2 and Epond = Filt(k, ko)Einit, where Filt is a comb filter

defined as Filt = 2(1− |cos(πFF0
)|).

SGC, the Spectral Gravity Center is the average value of the spectral energy distri-
bution, which divides a spectral profile in two parts of equal energy :

SGC =
∑K
k=0 fkak∑K
k=0 ak

(A.9)

where ak represents the spectral amplitude of the sample k, fk its bin and K the
total number of bins ;

ROF, the roll-off point estimates the amount of high frequency in the signal consists
in finding the frequency such that a certain fraction (αROF ) of the total energy is
contained below that frequency. This ratio is fixed by default to .85 Tzanetakis
and Cook (2002). We can define as

ROF∑
k=0

a2
k = αROF

Fe/2∑
k=0

a2
k (A.10)
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THD, the Total Harmonic Distorsion measures the energetic weigth of harmonics
relatively to the fundamental one, defined by :

THD =

√
(
∑N
i Hi)2)
H0

(A.11)

with N the number of harmonics with non-negligible amplitudes ;
Df, the formant dispersion (in Hz), which is the average distance between each adja-

cent pair of formants, was calculated using the following formula

Df =
∑N
i (Fi+1 − Fi)
N − 1 (A.12)

where N is the total number of formants measured, and Fi is the frequency (in Hz)
of the formant i ;

ZCR, the Zero Crossing Rate is a simple indicator of noisiness consisting in counting
the number of times the signal crosses the X-axis (or, in other words, changes sign).

DeltaF 0, this descriptor computes the difference between successive frames of the F0
curve, i.e.

DeltaF 0(i) = (F0(i+ 1)− F0(i)) (A.13)

The sign of this descriptor gives the sense (upwards / backwards) of the sound
modulation.

A.3 Musical descriptors and transforms

A.3.1 Key detection

Prior knowledge of the key results from an automatic detection based on a chroma-
based frequency analysis Shenoy et al. (2004), performed on each training and test se-
quence.

A.3.2 Constant-Q transform
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Musical sound representation

For humans the perceptual distance between 220 and 440 Hz is the same as between
440 and 880 Hz. A pitch representation that takes this logarithmic relation into account
is more practical for some purposes. Luckily there are a few:

MIDI note number The midi standard defines note numbers from 0 to 127, inclusive.
Normally only integers are used but any frequency f in Hz can be represented with a
fractional note number n using this equation

n = 69 + 12.log2( f

440) (B.1)

n = 12.log2(f
r

) (B.2)

with

r = 440
269/12 = 8.176Hz (B.3)

Rewriting Equation (A1) to (A2) shows that midi note number 0 corresponds with a
reference frequency of 8.176 Hz which is C−1 on a keyboard with A4 tuned to 440 Hz. It
also shows that the midi standard divides the octave into 12 equal parts. To convert a
midi note number n to a frequency f in Hz one of the following equations can be used.

f = 440.2(n− 69/12) (B.4)

f = r.2(n/12) (B.5)

Using pitch represented as fractional midi note numbers makes sense when working
with midi instruments and midi data. Although the midi note numbering scheme seems
oriented towards Western pitch organization (12 semitones) it is conceptually equal to the
cent unit which is more widely used in ethnomusicology.

Cent Von Helmholtz and Ellis (1912) introduced the nowadays widely accepted cent
unit. To convert a frequency f in Hz to a cent value c relative to a reference frequency r
also in Hz:

c = 1200.log2(f
r

) (B.6)
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With the same reference frequency r Equations (A5) and (A2) differ only by a constant
factor of exactly 100. In an environment with pitch representations in midi note numbers
and cent values it is practical to use the standardized reference frequency of 8.176 Hz.

r = r.2c/2000 (B.7)

Savart & Millioctaves Divide the octave in 301.5 and 1000 parts respectively, which
is the only difference with cents.

Pitch ratio representation Pitch ratios are essentially pitch intervals, an interval of
one octave, 1200 cents equal to a frequency ratio of 2/1. To convert a ratio t to a value
in cent c:

c = 1200. ln(t)
ln(2) (B.8)

The natural logarithm, the logarithm base e with e being Euler’s number, is noted as
ln. To convert a value in cent c to a ratio t:

t = exp cln(2)
1200 (B.9)

Discussion of the different representations Further discussion on cents as pitch
ratios can be be found in appendix B of Sethares (2005). There it is noted that: There are
two reasons to prefer cents to ratios: Where cents are added, ratios are multiplied; and it
is always obvious which of two intervals is larger when both are expressed in cents. For
instance, an interval of a just fifth, followed by a just third is (3/2)(5/4) = 15/8, a just
seventh. In cents, this is 702 + 386 = 1088. Is this larger or smaller than the Pythagorean
seventh 243/128? Knowing that the latter is 1110 cents makes the comparison obvious.

The cent unit is mostly used for pitch interval representation while the midi key and
Hz units are used mainly to represent absolute pitch. The main difference between cent
and fractional midi note numbers is the standardized reference frequency. In our software
platform Tarsos we use the exact same standardized reference frequency of 8.176 Hz which
enables us to use cents to represent absolute pitch and it makes conversion to midi note
numbers trivial. Tarsos also uses cents to represent pitch intervals and ratios.

B.1 Table of main harmonic relations

Interval name Size
(semitones) F0 relation

Octave 12 2:1
Perfect fifth 7 3:2

Perfect fourth 5 4:3
Major third 4 5:4
Minor third 3 6:5

Major second 2 9:8



Appendix C

Filtering Particle

In the framework of Bayesian variable selection, Markov Chain Monte Carlo, or Particle
filtering (PF), type approaches have been proposed Févotte and Godsill (2006a); Févotte
et al. (2008). These methods consist in scanning the whole posterior distribution, making
them more demanding than their EM-like counterparts, but which also, in return, offer
increased robustness in convergence (i.e. reduced problems of convergence to local minima)
and a complete Monte Carlo description of this parameter posterior density Févotte and
Godsill (2006b,a); Févotte et al. (2008).

C.1 General Overview

Many problems in statistical signal processing Fong et al. (2002); Andrieu et al. (2003);
Vermaak et al. (2000) can be stated in a state space form as follows,

xt+1 ∼ f(xt+1|xt) (C.1)

yt+1 ∼ g(yt+1|xt+1) (C.2)

where {xt} are unobserved states of the system and {yt} are observations made over
some time, t. f(.|.) and g(.|.) are pre-specified state evolution and observation densities.
A primary concern in many state-space inference problems is the sequential estimation of
the filtering distribution p(xt|y1:t), and the simulation of the entire smoothing distribution
p(x1:t|y1:t), where y1:t = (y1, y2, · · · , yt) and x1:t = (x1, x2, · · · , xt). Updating of the
filtering distribution can be achieved, in principle, using the standard filtering recursions
Robert and Casella (1999)

p(xt+1|y1:t) =
∫
p(xt|y1:t)f(xt+1|xt)dxt (C.3)

p(xt+1|y1:t+1) = g(yt+1|xt+1)p(xt+1|y1:t)
p(yt+1|y1:t)

(C.4)

Smoothing can also be performed recursively backwards in time using the smoothing
formula Robert and Casella (1999)

p(xt|y1:T ) =
∫
p(xt+1|y1:T )p(xt|y1:t)f(xt+1|xt)

p(xt+1|y1:t)
dxt (C.5)

In practice, these filtering (eq. C.3) and smoothing (eq. C.5) computations can only be
performed in closed form for linear Gaussian models using the Kalman filter / smoother,
and for finite state-space hidden Markov models. In the case of non-linear non-Gaussian
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models, there is no general analytic expression for the computations of these density func-
tions. As a consequence, an approximation strategy is required to estimate the filtering
and smoothing densities, which is commonly performed with the PF method, also known
as sequential Monte Carlo methods. Within the PF framework, the filtering distribu-
tion is approximated with an empirical distribution formed from point masses also called
particles,

p(xt|y1:t) ≈
N∑
i=1

w
(i)
t δ(xt − x

(i)
t ) (C.6)

N∑
i=1

w
(i)
t = 1, w(i)

t ≥ 0 (C.7)

where δ(.) is the Dirac delta function and w
(i)
t is a weight attached to particle x(i)

t .
Given this particle approximation to the posterior distribution, we can estimate the ex-
pected value of any function f w.r.t the distribution I(f, t), defined as I(ft) =

∫
f(xt)p(xt|y1:t)dxt,

using the following Monte Carlo approximation

I(ft) ≈
N∑
i=1

f(x(i)
t )wt(i) (C.8)

Particle smoothers generate batched realisations of p(x1:T |y1:T ) based on the forward
PF results. In other words, the particle smoothers are an efficient method for generating
realisations from the entire smoothing density p(x1:T |y1:T ) using filtering approximation.

C.1.1 Filtering

We consider the filtering distribution p(xt|y1:t). Using the Bayes’ rule, this distribution
can be rewritten as follows,

p(xt|y1:t) = p(xt|yt, y1:t−1) (C.9)
∝ p(yt|xt, y1:t−1)p(xt|y1:t−1) (C.10)
∝ g(yt|xt)p(xt|y1:t−1) (C.11)

∝
∫
g(yt|xt)f(xt|xt−1)p(x1:t−1|y1:t−1)dx1:t−1 (C.12)

Assuming that a particle approximation to p(x1:t−1|y1:t−1) has already been generated,

p(x1:t−1|y1:t−1) ≈
N∑
i=1

δ(x1:t−1 − x(i)
1:t−1) (C.13)

Then, assuming that f(xt|xt−1) and g(yt|xt) can be evaluated pointwise, we gen-
erate, for each state trajectory x

(i)
1:t−1, a random sample from a proposal distribution

q(xt|x(i)
1:t−1, y1:t). Then, the weights wt of the filtering distribution (eq. C.6) can be ap-

proximated by

w
(i)
t ≈

g(yt|x(i)
t )f(x(i)

t |x
(i)
t−1)

q(x(i)
t |x

(i)
1:t−1, y1:t)

(C.14)

Finally, we perform a multinomial resampling step, such that the probability that x(i)
t

is selected is proportional to w
(i)
t , to obtain an unweighted approximate random draw
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from the filtering distribution p(xt|y1:t). It is noteworthy that if the resampling step is
forgotten, a degeneracy phenomenon can occur. Indeed, after a few iterations, all but one
particle will have negligible weight. Doucet et al. (2000) has shown that the variance of
the importance weights can only increase over time, and thus, it is impossible to avoid
the degeneracy phenomenon. This degeneracy implies that a large computational effort is
devoted to updating particles whose contribution is almost zero. As a result, a resampling
step is needed to eliminate particles with small weights and generate a new set {x(i)

t }i,
which is an i.i.d. (independent and identically distributed) sample from the approximate
density p(xt|y1:t), with a resetting of the weights {w(i)

t }i to 1/N .

C.1.2 Smoothing

The entire smoothing density p(x1:T |y1:T ) can be factorized as :

p(x1:T |y1:T ) = p(xT |y1:T )
T−1∏
t=1

p(xt|xt+1:T , y1:T ) (C.15)

Using the filter approximation (eq. C.6) to p(xt|y1:t) and the Markovian assumptions
of the model, we can write,

p(xt|xt+1:T , y1:T ) ∝ p(xt|y1:t)f(xt+1|xt)

≈
N∑
i=1

w
(i)
t|t+1δ(xt − x

(i)
t ) (C.16)

with the modified weights

w
(i)
t|t+1 = w

(i)
t f(xt+1|x(i)

t )∑N
j=1w

(j)
t f(xt+1|x(j)

t )
(C.17)

This revised particle distribution can be used to generate states successively in the
reverse-time direction, conditioning upon future states.

C.2 Our contributing work

The main objective of this paper is to propose an alternative formulation of current
PLCA models applied to audio signals, replacing the EM algorithm by a more generic
parameter estimation algorithm based on a PF method. We call this new algorithm
PLCA-PF in the following. The main advantage expected from this new algorithm is to
be able to scan the whole parameter space so as to take into account any features of the
parameters, and thus overcoming the limitations underlined in our introduction specific
to current PLCA models. In regards to prior integration particularly, this new framework
allows releasing the constraints on prior mathematical forms and number. This paves the
way towards more complete modelings of the multi-faceted information carried by musical
signals, covering both time (e.g. tempo and rhythm) and frequency (e.g. note spectra and
chords) domains, and the different prior knowledge classes related to musicology, timbre
and playing style.
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