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Nomenclature

ρ density
q velocity vector
u, v, w velocity components in the aerodynamic reference frame
ω vorticity vector ω = ∇× q

t time
p static pressure

pi stagnation pressure pi = p
(
1 + γ−1

2 M2
) γ
γ−1

T temperature

Ti stagnation temperature Ti = T
(
1 + γ−1

2 M2
)

σ stress tensor σ = −p1+ τ

τ deviatoric viscous stress tensor
τx longitudinal viscous stress vector τx = τ · i
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s entropy
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H stagnation enthalpy H = h+ q2

2
Cp specific pressure heat
γ ratio of specific heats
r gas constant
a speed of sound
M Mach number
Re Reynolds number
µ dynamic viscosity

ν kinematic viscosity ν =
µ

ρ
µt turbulent eddy viscosity
k turbulent kinetic energy
ω rate of viscous dissipation
α angle of attack
Sref reference surface

Cp pressure coefficient: Cp =
p− p∞

1
2ρ∞u

2
∞Sref

ϕ velocity potential: q = ∇ϕ for a potential flow
S rate-of-stress tensor: S = 1
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Ω vorticity tensor: Ω = 1
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)

Q Q-criterion: Q = 1
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Nomenclature

uirr axial velocity under irreversible flow assumptions
urev axial velocity under reversible flow assumptions
u†irr irreversible axial velocity defined from urev
u∗rev enthalpy-corrected axial velocity under reversible flow assumptions
u∗irr irreversible axial velocity defined from u∗rev
∆u irreversible axial velocity defect defined by Van der Vooren and Destarac [90]: ∆u = uirr − u∞
Dp pressure drag
Df friction drag
Dnf near-field drag
Dvw profile drag Dvw = Dw +Dv

Dw wave drag
Dv viscous drag
Di induced drag
Dm motion drag
Dff far-field drag
Dsp spurious drag

CD drag coefficient CD =
D
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2
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n normal vector pointing outside the flow domain
i unitary freestream direction vector
V control volume
Sa surface of the body
Se outer surface of the fluid volume
Sd downstream wake plane
Sw surface for the integration of wave drag
S′
w downstream plane of Sw
Swd downstream wake plane of the streamtube enclosing the shock
Sv surface for the integration of viscous drag
Svd downstream wake plane of the streamtube enclosing the body and its boundary layer
Scd complementary downstream wake plane Scd = Sd \ (Swd ∪ Svd)
Vw volume enclosed within Sw
Vwd volume downstream of Vw
Vv volume enclosed within Sv
Vc complementary volume Vc = V \ (Vw ∪ Vwd ∪ Vv )
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∞ freestream state

Superscript
p practice (integration surfaces and volumes used in practice in the postprocessing tool)

Acronyms
CFD Computational Fluid Dynamics
DNS Direct Numerical Simulation
RANS Reynolds Averaged Navier Stokes
URANS Unsteady Reynolds Averaged Navier Stokes
DES Detached Eddy Simulation
ZDES Zonal Detached Eddy Simulation
d.c. drag count (10−4)
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General Introduction

Context

Economical and ecological considerations drive all aeronautics actors to work at improving the
performance in terms of fuel consumption of their aircraft. There are several means to do so: the effi-
ciency of the engines can be improved, by using counter-rotating open rotors (CROR) for example, the
weight of the materials can be reduced through the use of composites for example, or the aerodynamic
performance can be enhanced. This aerodynamic performance is mainly measured in terms of drag,
that is to say the force which opposes the flight motion and brakes the aircraft, due to both friction
and pressure effects on the skin. There exist three main ways to reduce the drag of an aircraft: one
can optimize the shape of the wing, fuselage, etc to reach the least drag shape, one can also apply
flow control to the aircraft, such as blowing actuators which reduce the drag due to a separation at a
geometric discontinuity, or one can explore innovative breakthrough designs, such as winglets or riblets.

If we are to reduce the drag of an aircraft or of an engine, it is therefore required to accurately
measure and predict this drag, and to identify its phenomenological sources. As far as the measuring
is concerned, experimental methods have first been extensively used, with the means of balance to
measure the net force applied on a model, pressure probes at the skin, friction sensitive paints, or
wake probing with far-field methods. The development of numerical simulation tools, and especially
the raise of CFD methods, have led to a wider and wider resorting to numerical evaluations of aircraft
configurations. Wind tunnel testing is indeed very expensive, and impractical if one wants to compare
many different designs. Numerical methods for drag prediction have therefore been developed. The
first and most direct method is the so-called near-field method, which likewise to the experimental
method, consists in computing the stress, friction and pressure, at the skin of the aircraft. If the
accuracy is most of the time very satisfactory, it does not allow to identify the phenomenological
sources responsible for the drag measured. This information is however crucial for an aerodynamic
designer. Hence the introduction of so-called far-field methods.

An aircraft evolving in a free stream flow experiences a drag force exerted by the surrounding
flow. It can also be seen the other way around: a free stream flow, perturbed by the presence of
an aircraft, sees the appearance of aerodynamic phenomena, such as shock waves, viscous boundary
layers and wakes, or vortices. By integrating the stresses in the flow itself rather than at the skin of
the aircraft, one can equivalently compute the drag force experienced by the airplane. This leads to
the definition of three phenomenological components of drag:

• the wave drag is the drag caused by the presence of a shock wave in the flow field (see Figure 1(a))

• the viscous drag is the drag due to the viscous stresses within the boundary layer around the
body, and in its wake (see Figure 1(b))

• the induced drag for steady flows is the drag induced by the rotation of the lift force due to the
presence of wingtip vortices (see Figure 1(c))

3



General Introduction

(a) Shock (b) Viscous (c) Induced

Figure 1 – Visualization thanks to favorable atmospheric conditions of the phenomenological sources of drag

Although all these phenomena are interlinked, superimposed in the flow field and interacting
with each other, a drag breakdown method attempts to artificially isolate each contribution. It can of
course only be a modeling of the intricate flow physics, and leads to an utopian decomposition.

Problem Statement

The numerical methods for drag prediction and breakdown have been developed and extensively
used for the past years. They have proved their reliability and accuracy on many steady cases, that
is to say in cruise conditions, in high-lift conditions assuming a steady flow, around rotors in quasi-
static conditions, etc. The performance in those conditions has therefore almost reached its highest
level. To this day, no reliable method for the breakdown of drag into phenomenological components
for unsteady flows only has been developed. Losses are however observed at the boundary of the flight
envelop, at take-off or landing for example, when unsteadiness of the flow develops and cannot be
neglected anymore. Those losses can imply important reduction of the overall performance, which
can no more be left aside. Another point to keep in mind is the performance assessment of complex
innovative systems, such as CRORs, which by nature cannot be evaluated in a quasi-static frame.
The lack of information concerning the drag and its sources of such breakthrough designs brakes their
development.

Many authors have looked into experimental and numerical drag breakdown methods for steady
flows over the years. A detailed state-of-the-art review can be found in the first part of this dissertation.
The contributions from the main authors are summarized here.

Van der Vooren [90] has for example developed a phenomenological drag breakdown formulation
based on thermodynamic considerations. He succeeded in formulating a method which allows to
evaluate the drag due to shock waves, the drag due to viscous interaction within the boundary layers
and wakes, and the drag due to wingtip vortices in the case of finite-span wings. Destarac [23] then
enhanced the method by identifying and defining a spurious drag component, which is mainly due to
the artificial diffusion introduced by numerical schemes. Their formulation has proved to be reliable and
robust, and is now widely used in the designing phase by the industrial sector. It is however restricted
to steady flows. Moreover, the induced drag component is defined by default as the remaining part of
drag once the wave and viscous components defined. It does therefore not perfectly correspond to the
phenomenological source which is the wingtip vortex. Finally, the formulation requires the use of an
irreversible axial velocity which can become ill-defined in certain zones of the flow.

A first attempt in generalizing this formulation to unsteady flows has been proposed by Gariépy
[31]. He included additional terms coming from the unsteadiness in the equations for conservation
of momentum and mass in a non-inertial reference frame. He also adopted an alternative expression
for the irreversible axial velocity which had been developed by Méheut [58], so as to get rid of the
ill-definition problem. His resulting unsteady drag breakdown method, which takes all unsteady terms
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into account, has been successfully tested on three unsteady test cases. He however chose to assign
the unsteady additional contributions to a new drag component called unsteady drag, which does not
correspond to a phenomenological source. The other drag components are also deprived from terms
which would ensure a synchronization in time by taking the propagation in time and space into account.

Another family of formulations, which rely on replacing the pressure term by velocity and its
derived variables such as vorticity, has also been extended to unsteady flows. The original steady version
has been developed by Wu, Ma, and Zhou [100] with contributions from Noca, Shiels, and Jeon [65]. A
breakdown of the drag for compressible flows has been suggested by Mele and Tognaccini [59]. Finally,
Marongiu and Tognaccini [52] proposed a breakdown in the unsteady case. These formulations may be
promising for a drag breakdown in the unsteady case, since the physics involved is richer, and should
allow defining the induced component directly rather than by default. However, the few breakdown
attempts have proved rather unsatisfactory, when compared to other drag breakdown methods. The
physics involved is also quite complex, and difficult to link to phenomenological observations. The
maturity of such methods can therefore be questioned.

As a conclusion, we can summarize this short literature review as follows: on the one hand,
several authors have contributed to the development of accurate and robust drag breakdown methods
in the steady case. A first attempt in a generalization to unsteady flows has been suggested, but leads
to the definition of drag components which are not phenomenological. On the other hand, formulations
based on the velocity vector have been developed, with extension to compressible and unsteady flows.
Despite their rich and promising physical content, they do not allow a convincing drag breakdown for
the time being.

Hence this study. It consists in developing a far-field drag prediction method aiming at a
phenomenological breakdown of drag for unsteady flows.

Thesis Outline

The approach consists in developing an unsteady formulation starting from Van der Vooren’s
formulation. The first step consists in identifying the difficulties which we are likely to encounter. The
second step is to propose a new proof of Van der Vooren’s formulation which is directly generalizable to
unsteady flows, the main contribution of this work concerning the volume splitting. The assumptions
restricted to steady cases are also pinpointed at this step. The formulation is then rigorously extended
to unsteady flows, including unsteady contributions into each drag component, wave, viscous and
unsteady. Finally, the resulting method is discussed, and flaws identified. (Chapter I)

The next step consists in trying to improve the flaws detected at the end of the previous chapter.
Concerning the robustness of the formulation, an alternative expression for the irreversible axial velocity
found in the literature is studied and compared on steady cases. An unsteady version of the criterion
used for the definition of the wave volume is also evaluated on two unsteady test cases. The physical
background for the definition of the unsteady induced drag component is then looked into. Acoustic
effects are highlighted and quantified, and a further breakdown proposed. Finally, the method is
summarized, along with good practice recommendations. (Chapter II)

The new unsteady drag breakdown method is then applied to natural unsteady cases. A vortex
shedding and a buffet case are chosen in order to assess increasingly complex cases. The wave com-
ponent adds indeed to the breakdown for the buffet case. Orders of magnitude and synchronization
in time are looked into in order to validate the results. Comparisons with another unsteady formu-
lation are also performed, as well as comparisons with steady breakdown on the averaged flow field.
(Chapter III)

The next step consists in assessing the formulation on mobile test cases: a pitching airfoil in
both inviscid and viscous flows. The same method is used for the validation of the breakdown, with
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the addition of the investigation of the influence of the reduced frequency. Comparisons with steady
computations at each angle of attack are finally carried out. (Chapter IV)

Finally, the unsteady drag breakdown is applied to complex cases. The aim is here to demon-
strate the capabilities of the formulation. The first complex case is a 3-D pitching case. A wing tip
vortex develops and evolves along with the pitching motion, allowing to better understand the break-
down of the induced drag component. A buffet case simulated with ZDES (Zonal Detached Eddy
Simulations) is the last test case of this study. The rich content in terms of both spatial and time
resolution gives promising results as far as the drag breakdown is concerned. URANS and ZDES results
are also compared. (Chapter V)
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The formulation obtained at the end of Chapter I has also been published in the AIAA Journal, and
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Presentation of the Main Existing Methods

of Numerical Drag Prediction

The aim of this state-of-the-art review is to present the historical background which has led to
the drag breakdown formulations used nowadays, and to introduce innovative axes recently explored
by peers.

The first section concerns the review of the historical formulations for thermodynamic drag
breakdown, starting from 1925. The formulations proposed by Betz, Jones, Oswatitsch, Maskell and
Van der Vooren are presented, focusing on the assumptions used and the domain of application of each
method. A set of illustrative examples of the capabilities of drag breakdown, using Van der Vooren’s
formulation, are also presented.

The formulations using asymptotic developments are deliberately left aside to focus in the second
section on the formulations based on the velocity vector. These formulations have the benefit of having
a very rich physical content. Breakdown into induced and profile components have been suggested and
tested in the incompressible case. However, achieving a decomposition in the compressible case appears
much more difficult.

There exist a few attempts of generalization to unsteady flows. Unsteady versions of the formu-
lations based on the velocity vector are first looked into, with both incompressible and compressible
versions. The breakdown in this case is however an even harder issue. The only unsteady formula-
tion which allows a phenomenological breakdown, proposed by Gariépy as a generalization of Van der
Vooren’s theory, is finally presented, along with one of its application case: a pitching profile.
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1 Historical presentation of the main thermodynamic methods

The far-field philosophy was inspired by Von Kármán, who suggested to apply the conserva-
tion laws on a control volume surrounding a body. The effort exerted on the body skin can thus
be equivalently evaluated by integrations in the fluid domain. The drag can then be broken down
into phenomenological components, such as lift-induced drag, which has been identified at the very
beginning of aerodynamics for aircraft.

This section gives a review of the historical developments concerning thermodynamic formula-
tions, starting from the steady theory which has led to Van der Vooren’s formulation, now widely used,
towards a first attempt in generalizing to unsteady flows, by Gariépy. Applications demonstrating the
capabilities of far-field drag breakdown are also presented.

1.1 Steady methods

The thermodynamic breakdown of drag has first been developed for steady flows. The first
formulation for the drag breakdown has been proposed in 1925. Other formulations have then been
developed, but they only gave an expression for the profile drag. The first precise formulation for the
induced drag dates back to 1972.

1.1.1 Betz

Far-field drag breakdown was first introduced by Betz [8] in 1925. His aim was to evaluate
the profile drag of an aircraft using experimental measurements. Induced drag was indeed at the
time approximated by formulas based on elliptic loading and aspect ratio. The profile drag was then
evaluated as the difference between the total drag measured or computed and this approximated
induced drag. The estimation of profile drag therefore lacked accuracy. The idea of Betz’s formulation
is to compute the profile drag from wake measurements. His formulation is valid for incompressible
flows only.

In order to do so, he assumes that the velocity on a wake plane Sd is aligned with the free stream
velocity, and that the variations of stagnation temperature are negligible:

• v = w = 0

• Ti = Ti∞

The resulting expression is the following:

DBetz
vw =

∫

Sd

(pt∞ − pt) dS −
ρ

2

∫

Sd

(u′ − u)(2u∞ − u′ − u) dS (1.1)

where pt denotes the total pressure pt = p + 1
2ρu

2, pt∞ the total pressure upstream of the body, and
u′ the velocity of a potential flow which would be identical to the real flow outside the vortical region.
The second integral therefore limits to the vortical region. Betz admits that this second term is non
trivial to compute, but shows, using orders of magnitude arguments, that it is negligible compared to
the first one (less than 1

20).
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1.1.2 Jones

Jones [42] proposed another formulation in 1936. It is still valid for incompressible flows only,
although extensions to compressible flows have been proposed later [9]. He uses more restrictive as-
sumptions in order to get rid of the second integral in Betz’s formulation which could not be easily
evaluated by wake measurements. He assumes that on the wake plane Sd the static pressure is homo-
geneous and equal to the reference static pressure, and that the velocity is aligned with the free stream
velocity:

• p = p∞

• v = w = 0

Jones obtains a formulation which depends only on the dynamic and static pressure for the
estimation of profile drag:

DJones
vw = pd∞

∫

Sd

2
√
p∗d − p∗(1−

√
p∗d) dS (1.2)

where p∗d and p∗ are the dimensionless dynamic and static pressure: p∗d = pd
pd∞

and p∗ = p
pd∞

, the

dynamic pressure being defined as pd = 1
2ρu

2 = pt − p.
The surface Sd can now be limited to the wake boundary of the streamtube enclosing the body,

the boundary layer, and the wake. In practice, Jones advises to move the wake plane close to the
trailing edge of the body. He indeed observes that the formulation does not depend on the location of
the wake plane, except in what he calls dead zones. These dead zones are regions where p∗d becomes
negative, hence the formulation becomes undefined. These zones may appear very close behind a bluff
body.

Jones applied his formulation to a flight test case. He used the airplane Hart K.1442 and
performed the drag evaluation using static-pressure tubes. He compared the drag prediction using two
variants of his formulation, and Betz’s formulation, as shown in Figure 2. We can see that Betz’s and
Jones’s formulations are equivalent, except when the integration is performed too close to the trailing
edge. Jones also investigated the effect of smooth or fabric wings, proving that the profile drag was
indeed reduced using smooth surfaces.

1.1.3 Oswatitsch

Oswatitsch [66] developed in 1956 a formulation for the profile drag which differs from the
previous ones by its nature. He indeed chose to use thermodynamic considerations instead of assuming
no transverse velocity on a wake plane. Expressing the velocity and pressure as a function of the
thermodynamic variables H and s, and neglecting second order terms and assuming isenthalpic flow,
he achieves the expression for the profile drag:

DOswatitsch
vw =

T∞
u∞

∫

Sd

ρu∆s dS (1.3)

This definition allows avoiding using restrictive assumptions on a wake plane. Méheut has shown
during his Ph.D. thesis [56] that all three formulations are equivalent at first order.

1.1.4 Maskell

In 1972, Maskell [54] achieved a further step into drag breakdown by proposing an expression for
the induced drag as well. He starts from an expression for the total drag, obtained using the definition
of the total pressure, and keeps the cross components of the velocity vector.
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Figure 2 – Evolution of the profile drag coefficients with respect to the position of the wake plane by Jones
using two variants of his formulation, and Betz’s formulation (extracted from [42])
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His expression for the profile drag remains very similar to Betz’s formulation, except for the
introduction of a blocking velocity ub which allows taking the blocking of the wind tunnel into account
in the experimental case.

DMaskell
vw =

∫

Sd

(pt∞ − pt) dS +
ρ

2

∫

Sd

(u′ − u)
(
u′ + u− 2(u∞ + ub)

)
dS (1.4)

The expression of the induced drag is obtained from the difference between an expression of the
total drag and this profile drag. An alternative expression as a function of the stream function ψ, the
velocity potential φ, the axial vorticity ζ = ∂w

∂y
− ∂v

∂z
, and the source term σ = ∂v

∂y
+ ∂w

∂z
:

DMaskell
i = ρ

∫

Sd

(v2 + w2) dS = ρ

∫

Sd

(ψζ − φσ) dS (1.5)

This second expression allows reducing the integration surface Sd to the downstream boundary
of the streamtube enclosing the body, the boundary layer, and the wake.

Another important contribution was brought by Kusunose [43, 44] who extended their appli-
cation domain to compressible flows, suggesting to breakdown the profile drag into wave and viscous
components using distinct integration surfaces. All these formulations were designed in order to address
experimental results probed in a wake plane. The objective was therefore to obtain the best accuracy
level with the smallest measuring plane. The development of CFD methods has led to a completely
different approach, with data available anywhere in the flow. Methods better suited for numerical
results have therefore been developed, Van der Vooren’s formulation being the most advanced and
practical one.

1.1.5 Van der Vooren and Destarac

Van der Vooren first addressed the thermodynamic breakdown of far-field drag in 1990 with
Slooff [91], in the framework of a state-of-the-art review. His method is like a crossover between
the assumptions on a wake plane and the thermodynamic considerations of Oswatitsch. The main
contribution is the breakdown of the profile drag into wave and viscous components. It was however
not directly applicable to industrial cases due to discrepancies between the near-field and far-field
values as observed earlier by Yu, Chen, Samant and Rubbert [109], and Steger and Baldwin [79]. This
discrepancy issue was solved by the notion of spurious drag first introduced by Lock [48] and formalized
by Destarac in 1993 [23].

Destarac and Van der Vooren then associated to implement a drag breakdown method in a code
at ONERA. The method was also extended to powered configurations and published in [90]. The
formulation for non propelled aircraft presented hereafter is drawn from this article.

1.1.5.1 Theoretical formulation for non-propelled aircraft

The formulation starts from the far-field equation, obtained applying the conservation of mass
and momentum in a control volume V whose boundary is SA ∪ SF ∪ SD (see Figure 3):

∫

SA

(
(p−p∞)(i ·n)− (τx ·n)

)
dS = −

∫

SF∪SD

(
ρ(u−u∞)(q ·n)+ (p−p∞)(i ·n)− (τx ·n)

)
dS (1.6)

The near-field drag can be recognized on the left-hand side, with its pressure and friction com-
ponents. The right-hand side defines the far-field drag. The upstream and lateral surfaces SF are
chosen at infinity, so that the integration limits to SD.
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Figure 3 – Control volume and boundaries as defined by Destarac and Van der Vooren (extracted from [90])

The formulation aims at breaking down this total drag definition. The principle consists in
assuming a flow free of vortices, i.e. a case where only profile drag is exerted on the body. In this case,
the flow on a wake plane SD far from the sources is such that:

• τx = 0

• v = w = 0

• p = p∞

Under these assumption, the axial velocity defect u− u∞ can be expressed as:

∆u = u∞

√√√√1 +
2∆H

u2∞
−

2

(γ − 1)M2
∞

(
e
γ−1
γ

∆s
r − 1

)
− u∞ (1.7)

The notation ∆u is linked to the notation uirr used in this manuscript by the simple relation:
∆u = uirr − u∞.

The total far-field drag, which is equal to the profile drag Dvw in the case of a flow free of
vortices, can now be derived using the former assumptions:

D = Dvw = −

∫

SD

ρ∆u(q · n) dS (1.8)

This wake surface integral is then turned into a volume integral over the volumes Vw and Vv
surrounding the sources of drag, as defined in Figure 3, using the divergence theorem and assuming
truly inviscid flow outside Vw ∪ Vv. No other justification is provided by the authors. The profile
drag can then naturally be broken down into a wave and a viscous contribution from a splitting of the
integration volumes:

Dw = −

∫

Vw

∇ · (ρ∆uq) dV (1.9)

Dv = −

∫

Vv

∇ · (ρ∆uq) dV (1.10)
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The complementary part defines the induced drag, which is also written as a volume term, so
that the integration on the body skin coming from the divergence theorem can be written as a function
of the near-field components:

Di = −

∫

Vw∪Vv

∇ ·
(
ρ(u− u∞ −∆u)q + (p− p∞)i− τx

)
dV −Dp −Df (1.11)

This expression was obtained using the property of vector f = −ρ(u− u∞)q − (p− p∞)i + τx :

∇ · f = 0 (1.12)

The balance between near-field and far-field total drag is theoretically ensured.

1.1.5.2 Numerical deviations from the theory and practical refinements

Besides this formulation which allows a breakdown into the three phenomenological drag com-
ponents with a correct balance of the total drag, the main contribution of this method is the notion of
spurious drag.

Two causes of numerical deviations are identified in the article:

• the spurious contribution of ∇ · (ρ∆uq) in the near-field outside Vw ∪ Vv, which is due to the
artificial creation of entropy.

• the numerical and physical dissipation of the trailing vortices further outside of Vw ∪ Vv which
causes conversion of apparent induced drag into apparent viscous drag.

These spurious phenomena can be accounted for by defining a spurious drag component Dsp and
by enlarging the integration volume for the induced drag. Denoting Vsp the volume outside Vw ∪ Vv:

Dsp = −

∫

Vsp

∇ · (ρ∆uq) dV (1.13)

Di = −

∫

V

∇ ·
(
ρ(u− u∞ −∆u)q + (p− p∞)i− τx

)
dV −Dp −Df (1.14)

The balance between near-field and far-field can then be written as:

Dp +Df = Dw +Dv +Di +Dsp (1.15)

This formulation has known many extensions and refinements over the years. Among the exten-
sions:

• propelled aircraft [90]

• rotating frames with ALE simulations (hovering helicopter rotors [94] and counter rotating open
rotors [57])

The practical refinements, such as the attribution of the friction contribution to the profile drag
instead of the induced drag, the use of a one vector formulation, or the use of integration surfaces
instead of volumes [24, 25, 37], are detailed in Chapter I. Other Ph.D. dissertations dedicated to
far-field drag extraction inspired from Van der Vooren’s theory are also listed in the bibliography
[1, 2, 7, 27, 56, 95].
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1.1.5.3 Examples of application on steady non-propelled cases

There have been many applications of Van der Vooren’s formulation, implemented and refined
in the ONERA code family ffd. Far-field drag prediction is used to assess the performance of new
designs, and to optimize one or several drag components through shape deformations or flow control.
Here is a representative set of applications which allow to illustrate the capabilities of the formulation.

Study of the wave drag reduction using bumps on a profile

The first example is a study of the wave drag reduction using local curvature modifications
slightly downstream of the shock wave location on a supercritical profile, in the framework of a coop-
eration between ONERA and Airbus Germany [24]. The aim was to assess the improvement in terms
of performance suggested by Ashill and Fulker [3], and to evaluate which drag component was affected
by such a shape deformation.

Two bumps have been designed (see Figure 4(a)). The performance of the three profile shapes
have then been assessed both experimentally in the ONERA T2 wind tunnel and numerically at Mach
number 0.762. The results of the drag extraction are presented in Figure 4(b). We can see that
the wave drag component is effectively decreased of 20% for the bump 1 and 50% for the bump 2,
whereas the viscous drag remains approximately constant. There is also a good agreement with the
experimental results, with an error of approximately 10 drag counts, and very similar relative gains in
terms of total drag.

(a) Visualization of the bump shapes on the profile (b) Results of the drag breakdown

Figure 4 – Study of the wave drag reduction thanks to bumps using Van der Vooren’s formulation
(extracted from [24])

Study of the induced drag reduction using unconventional wingtips designs

The second example is the reduction of the induced drag by modifying the wingtip of a wing,
extracted from a paper by Grenon [34]. Induced drag can indeed be reduced by the use of devices at
the tip of wings, such as winglets. The levels of drag reduction are however generally small and require
accurate drag prediction. The effect of the wingtip devices on the other drag components must also
be carefully looked into. Phenomenological breakdown provides insight into the balance between the
reduction of one component and the possible penalty for another.

Three wingtip devices have been tested: two winglets of different heights and a spiroid, the
overall span being kept constant (see Figure 5(a)). The four configurations have been numerically
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simulated in an inviscid flow using the Euler equations. The results of the application of Van der
Vooren’s formulation are presented in Figures 5(b), and 5(c). We can see that all three wingtip devices
allow to slightly reduce the induced drag (Figure 5(b)), the long winglet 2 being the most efficient.
The wave drag component (Figure 5(c)) remains approximately constant with both winglets designs.
It is however slightly increased with the spiroid, as a small shock wave appears on the spiroid itself.
The induced drag reduction achieved by the use of the spiroid is unfortunately canceled by the wave
drag penalty.

The successful phenomenological breakdown teaches us that the performance of the spiroid could
be improved by redesigning its shape to avoid the formation of the small shock wave.

Optimization of competing drag components

The third example is drawn from an article by Yamazaki, Matsushima and Nakahashi [105]. It
consists in the aerodynamic shape optimization of the planform of the DLR F6 wing configuration,
using a Taylor expansion of Van der Vooren’s formulation developed by Tognaccini [83].

Yamazaki et al. first show an interesting result on a preliminary study: they show that taking
the far-field expression of drag instead of the near-field, which includes the spurious drag, allows to
better reduce the drag on the profile. They then tackle the issue of planform design optimization with
a multi-objective approach: they search a trade-off between induced and wave drag components using
a genetic algorithm. They obtain a Pareto set, as depicted in Figure 6.

The designs corresponding to several points of the Pareto front are also presented in Figure 7.
This optimization method allows to isolate the effect of each drag coefficient, and to obtain very
rich design information. The designer can then choose which physical drag component, or which
corresponding design, he wants to promote, based on the targeted mission of feasibility considerations.

Performance evaluation of a wing-body configuration

The last example is the performance assessment of the wing-body configuration from the 5th
edition of the AIAA Drag Prediction Workshop [36]. Figure 8 shows the integration surfaces for the
wave and viscous drag components computed by the ONERA code ffd72. The formulation is integrated
on these surfaces determined using physical criteria (see Chapter I, Section 2.4.3.3).

The results of the far-field drag extraction are presented in Figures 9(a), and 9(b). We can see
in Figure 9(a) that the three phenomenological drag components increase with the angle of attack,
while the friction part of the viscous component remains approximately constant. The evolution of
the share of each component, represented in Figure 9(b) is very interesting: the share of the viscous
drag decreases while the share of the wave drag increases, and the share of the induced drag remains
almost constant.

There are many other examples of application [90, 57, 24], in particular contributions to the Drag
Prediction Workshops organized by AIAA, where ONERA with the ffd72 code compares often very
well with the other participants [37, 36]. An interesting application is also a mesh refinement method
based on the spurious drag coefficient developed by Yamazaki [104]. The formulation has therefore
proven its accuracy and robustness on steady cases, but is however not applicable as such on unsteady
cases. Another flaw of the formulation is the definition by default of the induced drag component.

There exists a second family of formulations, which rely on asymptotic expansions, along the
same line of thoughts as Oswatitsch, and which are valid only for wake integrations [33, 39]. The idea
was also used by Chao and Van Dam [18] and Tognaccini [83]. All these formulations however lack
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(a) Wingtip designs; from
top to bottom: spiroid,
winglet 2, winglet 1,

baseline

(b) Relative induced drag variations from the baseline design

(c) Relative wave drag variations from the baseline design

Figure 5 – Study of the induced drag reduction thanks to unconventional wingtips using Van der Vooren’s
formulation (extracted from [34])
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Figure 6 – Results of the multi-objective optimization of a wing using a Taylor expansion of Van der Vooren’s
far-field breakdown method (extracted from [105])

accuracy and are not easily generalizable to unsteady flows due to the many restrictive assumptions
made.

1.2 First unsteady generalization of Van der Vooren’s formulation

Gariépy tackled during his Ph.D. thesis [29] the issue of a generalization to unsteady flows of Van
der Vooren’s formulation. He proposed in 2013 [31] a first generalization of the far-field drag breakdown
to unsteady flows. His method consists in computing the additional terms due to the unsteadiness of
the flow and to allocate them to a new drag component: the unsteady drag Duns . The other drag
components are slightly modified compared to Van der Vooren’s definition. An alternative expression
for the axial velocity defect, first introduced by Méheut in a study of experimental drag breakdown
[58], is in particular used.

1.2.1 Theoretical developments

Gariépy starts with writing the far-field equation in the relative reference frame (see Figure 10):

∂

∂t

∫

V

ρ(u− u∞) dV +

∫

∂V

(
ρ(u− u∞)(qr ·n) + (p− p∞)(i ·n)− (τx ·n)

)
dS +

∫

V

ax dm = 0 (1.16)

where qr denotes the relative velocity, and ax the relative acceleration of the control volume.
He then applies the same reasoning as Van der Vooren and Destarac for the profile drag, assuming

a flow free of vortices to define the irreversible part of drag. A divergence with the steady theory is
the use of an alternative expression for the irreversible axial velocity defect ∆u. As Jones [42] had
first foreseen, this expression can indeed be undefined in certain regions of the flow for given values of
local stagnation pressure (see Chapter I, Section 4.1.1 for the detailed proof). Since this situation can
occur more frequently for unsteady flows, Gariépy chooses to use an alternative expression of the axial
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Figure 7 – Examples of designs obtained from the multi-objective optimization of a wing using a Taylor
expansion of Van der Vooren’s far-field breakdown method (extracted from [105])

Figure 8 – Integration surfaces computed by the ONERA code ffd72 (extracted from [36])
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(a) Polars of the drag components as a function of the angle of attack

(b) Polars of the share of the drag components as a function of the angle of
attack

Figure 9 – Results of the drag prediction of the DPW5 case using Van der Vooren’s formulation
(extracted from [36])
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Figure 10 – Schematic representation of the moving and rotating control volume as defined by Gariépy
(extracted from [31])

velocity defect using the reversible axial velocity u∗ suggested by Méheut [58], and studied in [30]:

∆u∗ = u− u∗ = u− u∞

√√√√√1 +
2∆H

u2∞
−

2

(γ − 1)M2
∞



(
p

p∞

)γ−1
γ

− 1


−

v2 + w2

u2∞
(1.17)

He then uses the divergence theorem in order to turn the surface integral into a volume integral.
The next step consists in splitting the control volume into regions enclosing the sources of drag, the
exact same way Van der Vooren proceeded. He also chooses to allocate the contribution outside these
sources to a spurious drag component, arguing that ∆u∗ should be theoretically zero outside Vw and
Vv:

Dw = −

∫

Vw

∇ · (ρ∆u∗qr) dV (1.18)

Dv = −

∫

Vv

∇ · (ρ∆u∗qr) dV (1.19)

Dsp = −

∫

V \(Vw∪Vv)
∇ · (ρ∆u∗qr) dV (1.20)

Gariépy then argues that the stagnation enthalpy variation is solely due to reversible processes
and linked to a time derivative, so that its contribution should be assigned to the unsteady drag
component, along with the time derivative and the acceleration of the control volume terms. To do so,
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he defines a reversible axial velocity u∗,s assuming a steady flow:

u∗,s = u∞

√√√√√1−
2

(γ − 1)M2
∞



(
p

p∞

)γ−1
γ

− 1


 −

v2 + w2

u2∞
(1.21)

and computes the reversible axial velocity caused by unsteady fluctuations as u∗,u = u∗ −u∗,s. He can
therefore define the unsteady drag component as:

Duns = −

∫

V

∇ ·
(
ρu∗,uqr

)
dV −

∂

∂t

∫

V

ρ(u− u∞) dV −

∫

V

ax dm (1.22)

The induced drag component is defined similarly to the steady theory by default as the com-
plementary part in the total drag. Using again the divergence theorem, Gariépy defines the induced
component as a volume integral:

Di = −

∫

V

∇ ·
(
ρu∗,sqr + (p− p∞)i − τx

)
dV −Dp −Df (1.23)

The formulation can be summarized as:

Dp +Df = Dw +Dv +Di +Duns +Dsp (1.24)

1.2.2 Results on a pitching case

Gariépy presents results on three unsteady cases: a motionless profile with a variation in time
of the reference Mach number, a profile pitching between -0.5 and +0.5 deg at the reduced frequency
of 0.04, and a profile pitching between -5 and +5 deg at the reduced frequency of 0.1. The latter is
summarized hereafter.

The test case is a NACA0012 airfoil pitching in a flow at Mach 0.3 and Reynolds number 6.6
million. Concerning the definition of the integration volume, the authors use the same physical criteria
as at ONERA, but the extension of the volumes is said to vary during the convergence process so as
to minimize the gap between near-field and far-field estimations. The resulting volumes are not shown
in the article.

The drag components are extracted over one period. Figure 11(a) shows the evolution of the
total drag coefficients, computed using the far-field and near-field expressions. The drag coefficients
reach a maximum when the angle of attack is at +5 and -5 deg. There is a very good agreement
between the near-field and the far-field estimations.

The results of the unsteady drag breakdown are presented in Figure 11(b). Only the viscous
and unsteady components are visible. There is no mention of the induced component, although both
curves do not add up to give the far-field drag curve. The wave drag component is zero since the flow
is subsonic and therefore the volume for the integration of wave drag is zero. We can see that the
viscous drag evolves very little as a function of the angle of attack. This is due to the fact that α
remains small so that there is no flow separation. The variations in drag come therefore mainly from
the variations of the unsteady component.

Gariépy’s formulation will be discussed in Chapter I, Section 4.3. The results of his formulation,
which has been implemented in the ONERA code ffd72 will also be compared in Chapters III, and IV.

A radically different family of far-field methods, the family of formulations based on the velocity
vector, or vortex methods as they are sometimes called, seem promising in terms of physical content.
The induced drag components in particular, which was defined by default in the previous methods,
may have a true definition, at least in the steady case. They are summarized in the next section.
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(a) Far-field and near-field drag components

(b) Viscous and unsteady drag components

Figure 11 – Results of the drag prediction of the DPW5 case using Van der Vooren’s formulation
(extracted from [31])
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2 Presentation of the formulations based on the velocity vector

In 1989, Wu and Wu [101] proposed to replace the integral of pressure in the far-field equation
by an integral of velocity related variables. This manipulation is especially interesting for experimental
studies where the velocity field is easily acquirable contrarily to the pressure. As far as drag breakdown
is concerned, it also allows to introduce the vorticity vector, as well as the Lamb vector, which seem
promising for defining the induced drag component. The way to a whole new family of drag formulations
was open.

2.1 Formulation for steady incompressible flows

The formulation as first expressed by Wu and Wu is described in [101]. They use integration
by parts to replace the surface pressure integration by volume integral using velocity and vorticity
components. In this first paper, the authors also use enthalpy and entropy to suggest a breakdown
into friction, wake vortices, and pressure variations components.

In 1997, Noca derived in his Ph.D. thesis [64] another expression of the force for unsteady,
incompressible flows, which was later rederived and included in Wu’s book [100]. The unsteady ex-
tension of Noca will be described in Section 2.5.1. The proof is similar to Wu’s first method: it uses
mathematical identities for the pressure and the impulse-momentum which allow replacing the surface
pressure integral by a volume integral of velocity and vorticity combinations, with the appearance of
the spatial dimension as a parameter.

The expression for the force F (drag and lift components), for steady incompressible cases, is:

F = −
ρ

N − 1

∫

V

x× (∇× l) dV −
µ

N − 1

∫

Se

x×
(
n× (∇×ω)

)
dS + µ

∫

Se

ω × n dS (2.1)

where l = ω × q denotes the Lamb vector, µ the dynamic viscosity, x the position vector, and N the
spatial dimension.

The main issue consists now in breaking down this expression into phenomenological drag com-
ponents.

2.2 Breakdown into induced and profile components for steady incompressible

cases

No breakdown is directly achievable with Equation 2.1. Wu, Ma, and Zhou therefore proposed
an alternative expression:

F = −ρ

∫

V

l dV −
ρ

N − 1

∫

∂V

x× (n× l) dS + F Se (2.2)

where F Se denotes the sum of the last two surface integrals:

F Se = −
µ

N − 1

∫

Se

x×
(
n× (∇× ω)

)
dS + µ

∫

Se

ω × n dS (2.3)

At high Reynolds numbers, F Se has been shown to be negligible, and the authors argue that
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the volume integral yields the lift and induced drag, while the surface integral yields the profile drag:

Di = ρ

∫

V

(vωz − wωx) dV (2.4)

Dvw = −
ρ

N − 1

∫

∂V

(yly + zlz) dS (2.5)

Yang, Zhang, An, and Wu [107] applied in 2007 the steady incompressible formulation on a
slender delta-wing. They first notice that the Lamb-vector field is highly localized in the flow field,
within the near wall zone of the boundary layer, and has a very complicated behavior, with high peaks,
as depicted in Figure 12.

Figure 12 – Contours of the z component of the Lamb vector on a sectional plane of the delta-wing (extracted
from [107])

The breakdown into induced and profile component is very difficult to validate, owing to the
fact that no alternative value is provided in the paper. The results are presented in Figures 13(a),
and 13(b).

Marongiu, Tognaccini, and Ueno also addressed this issue in 2010 [89]. They first proved that
Equation 2.4 is equivalent to Prandtl’s lifting line theory [68] for a steady inviscid incompressible flow
around a large aspect ratio wing at small angles of attack. Applications on 2-D and 3-D test cases
were also proposed, but the comparisons with Maskell’s formulation [54] for the induced drag and
Tognaccini’s formulation [83] for the profile drag were not very accurate. The profile drag estimation
by Equation 2.5 was described as less robust.

In 2013, they applied the breakdown on more test cases, with more accurate comparisons [53].
The authors show in particular that the integration domain for the Lamb vector can be reduced to
the boundary layer region without implying a loss of accuracy. Figure 14 shows that the induced drag
computed by Equation 2.4 is very close to the induced drag using Maskell’s formulation (Equation 1.5).
The volume expression however seems less robust when the downstream extension of the integration
volume is reduced towards the trailing edge.

The breakdown into induced and profile drag in the steady incompressible case can therefore be
considered satisfactory. Civil aircraft applications however require to study compressible cases as well.
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(a) Evolution of the induced drag coefficient along
the chord

(b) Evolution of the profile drag coefficient along
the span

Figure 13 – Results of the drag breakdown using the steady incompressible velocity-based formulation
(extracted from [107])

Figure 14 – Evolution of the induced drag coefficient with respect to the downstream extension by Lamb
vector integral compared to Maskell’s formulation (extracted from [53])
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The breakdown may not be as easily achieved in this case.

2.3 Extension to steady compressible flows

Compressible extension of the formulation has been addressed by Wu, Ma, and Zhou [100]. They
simply add the density gradient terms which had been neglected. The expression for the total force in
the compressible case is the following:

F = −

∫

V

(
ρl −

1

2
q2∇ρ

)
dV −

1

N − 1

∫

∂V

x×

(
n×

(
ρl−

1

2
q2∇ρ

))
dS + F Se (2.6)

In 2007, Zhu, Beanman, and Graham [110] used a similar steady compressible formulation to
compute the total drag of a 3-D configuration, without any breakdown. The total drag is accurately
predicted by the formulation.

2.4 Breakdown in the steady compressible case

A first attempt of breakdown has been proposed by Mele and Tognaccini in 2014 [59]. They
manipulate Equation 2.6 in order to gather the density gradients terms into a same force component:

F l = −

∫

V

ρl dV (2.7)

F ρ =
1

N − 1

∫

V

x×

(
∇×

(
1

2
q2∇ρ

))
dV (2.8)

F S = −
1

N − 1

∫

∂V

x× (n× (ρl)) dS (2.9)

The component on the outer surface Se of the surface term F S is shown to be negligible for the
test cases considered. An alternative breakdown is also proposed, where density gradient terms are
kept in the surface component F S, but the results seem less promising.

This compressible formulation is applied on a 2-D viscous test case, a NACA0012 airfoil, for
several Mach numbers. The results of the drag breakdown are summarized in Figure 15. We can see
that the coefficients CD l and CDρ compensate each other until M∞ = 0.7, above which the values
are said to lack accuracy. The drag due to compressibility effects is actually a thrust. The total drag
is accurately predicted by CDS. Therefore, this breakdown method does not allow to extract a wave
component yet, since compressibility effects produce thrust according to this decomposition.

For completeness, we can also cite Chang, Su and Lei [17] who proposed an extension to com-
pressible flows of the projection theory introduced by Quartapelle and Napolitano [70]. Their formula-
tion however provides only the pressure contribution, and requires the knowledge of proper harmonic
functions.

2.5 Generalization to unsteady flows

Extension to unsteady flows of the velocity-based formulations presented in the previous section
has been proposed as early as 1997 by Noca [64]. Unsteady compressible flows have also been addressed
very recently, with a few hints provided regarding a possible breakdown of drag into phenomenological
components.
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Figure 15 – Drag coefficients for several Mach numbers computed by the steady compressible velocity-based
formulation (extracted from [59])

2.5.1 Noca

Noca studied the extension of the vortex force theory to unsteady flows during his Ph.D. His
thesis [64] is remarkably well detailed and pedagogical. His formulation has been summarized in Wu’s
book [100], and can be written in the incompressible case as:

F = −
ρ

N − 1

∫

V

x×
∂ω

∂t
dV − ρ

∫

V

l dV −
ρ

N − 1

∫

Se

x× (n× l) dS + F Se + F Sa (2.10)

where F Se is still defined by Equation 2.3 and F Sa is the force exerted on the body surface Sa:

F Sa =
ρ

N − 1

∫

Sa

x× σa dS (2.11)

where σa is the boundary vorticity flux due to the acceleration of the body surface.

Noca applied this formulation to compute the total drag of the unsteady flow around a circular
cylinder performing a transverse oscillation. The results of the total drag prediction computed from
experimental data are provided in [65], as depicted in Figure 16. No breakdown is however suggested.

2.5.2 Wu

As mentioned earlier, Wu also addressed the issue of extension to unsteady flows in his book.
In 2007, Wu, Lu, and Zhuang studied the behavior of the different terms in Equation 2.10 in the
case of the Von Kármán instability downstream of a circular cylinder in [99]. They plotted the field
distribution of each of the source terms in the formulation, and showed that some of them allowed
capturing different flow structures. The interpretation is however not easy, due to the complexity of
the flow considered and of the patterns observed for the source terms.
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Figure 16 – Total drag computed by the unsteady incompressible velocity-based formulation applied on
experimental data with respect to time (extracted from [65])

2.5.3 Marongiu

Marongiu also addressed this issue during his Ph.D. thesis [51]. He focused on the impact of
turbulence on the formulation. He also wrote an equivalent of Equation 2.10 in 2-D:

CD l = 2

∫

V

v ω dV (2.12)

CDuns = −2

∫

V

y
∂ω

∂t
dV (2.13)

CDS = −2

∫

Se

y ω q · n dS (2.14)

CDSa = 2

∫

Sa

yn× (a− l) dS (2.15)

where a is the fluid acceleration.
Marongiu and Tognaccini applied this unsteady formulation to a pitching profile in [52]. The

drag component CDSa computed at the skin is very low. The comparison between CDS and CD l allows
comparing the impact of the bound vorticity and the free vorticity respectively. The bound vorticity
(vorticity created in the boundary layer) leads to a lift contribution which is in phase with the angle
of attack, and a drag contribution shifted towards higher values (see Figure 17(a)), whereas the free
vorticity (vorticity shed in the wake) gives out of phase results (see Figure 17(b)). The unsteady
contribution CDuns is however not analyzed.

2.5.4 Xu

An extension to compressible flows of Equation 2.10 is easily achievable, similarly to the steady
case. It was proposed by Wu, Ma, and Zhou [100]:

F =−
1

N − 1

∫

V

x×∇×
∂ρq

∂t
dV −

∫

V

(
ρl −

1

2
q2∇ρ

)
dV −

1

N − 1

∫

Se

x×

(
n×

(
ρl −

1

2
q2∇ρ

))
dS

+ F Se + F Sa (2.16)
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(a) Free vorticity term CDS (b) Bound vorticity term CD l

Figure 17 – Evolution of the drag coefficients defined by Marongiu with respect to the angle of attack
(extracted from [52])

When analyzing the drag experienced by a wavy cylinder, Xu, Chen, and Lu [103] used Equa-
tion 2.16 to breakdown the drag. They propose the following breakdown:

F l = −

∫

V

ρl dV −
1

N − 1

∫

∂V

x× (n× (ρl)) dS (2.17)

F ρ =

∫

V

1

2
q2∇ρdV +

1

N − 1

∫

∂V

x×

(
n×

(
1

2
q2∇ρ

))
dS (2.18)

F uns = −
1

N − 1

∫

V

x×∇×
∂ρq

∂t
dV (2.19)

The results on their test case is the following: F Se due to viscous effects gives a negligible
contribution. F Sa contributes to about half the total drag. The compressibility effects represented
by F ρ contribute to 3,500 d.c., and the vortex force F l gives a drag coefficient of 2,400 d.c. The
compressible effects are therefore more important in this test case, which is confirmed by another
article. No estimation for the unsteady drag is provided.

This breakdown is however not equivalent to a viscous/wave/induced breakdown, since the
vortex force thus defined contributes to several of these drag components, not only to the induced one.
The compressibility effects are also not limited to the wave contribution.

2.5.5 Other contributions to the unsteady generalization

There have also been many contributions from the experimental field, with authors using this
family of unsteady formulations with time-resolved PIV data [26, 75, 80, 96]. They have however
shown no interest in the breakdown of drag. In 2014, Liu et al. [47] proposed a breakdown of the drag
starting from the velocity vector based formulation, in terms of longitudinal and transverse components,
which are respectively related to compressibility and irreversible thermodynamics, and shearing. This
breakdown is however difficult to link with the usual phenomenological components.

Niu and Chang also proposed an extension of their theory to unsteady flows in [63], which
again requires the computation of proper harmonic functions. The breakdown suggested in terms of
acceleration of the body, velocity of the body, pressure force due to vorticity in the flow field, and
surface vorticity and friction, gives little information about the phenomena at stake.
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Chapter Summary

A historical review of the thermodynamic formulations for the break-
down of drag has been presented. The advantages and limits of such
methods have been highlighted, and Van der Vooren’s formulation has
stood out as the most advanced and practical one. A first generalization
attempt, proposed by Gariépy, has also been extensively analyzed, show-
ing deficiency in the phenomenological breakdown. Another family of
formulations, based on the velocity vector, has then been investigated.
The literature review has shown that unsteady compressible formula-
tions exist, although the few breakdown suggestions, even in the steady
case, are not equivalent to the classical wave/viscous/induced decom-
position aimed at in this study. These methods therefore do not seem
mature enough yet. This study will therefore focus on a new general-
ization of Van der Vooren’s theory to unsteady flows.



Chapter I

Development of an Unsteady Formulation

starting from Van der Vooren’s Formulation

The aim of this first chapter is to extend Van der Vooren’s formulation [90] to unsteady flows.
This formulation was chosen for its robustness and precision for steady cases (see Chapter Presentation
of the main existing methods of numerical drag prediction). It was also the choice of Gariépy [31]. His
formulation however contained a drag coefficient which is not considered a phenomenological compo-
nent, and the synchronization in time does not seem to be correctly accounted for inside each drag
coefficient, since steady formulas have been used. A new careful generalization is therefore required.

In order to generalize the steady formulation to unsteady flows, the obstacles and difficulties to
avoid are first identified. The propagation in time and space is particularly looked into.

A new proof of Van der Vooren’s theory is then derived by carefully noting all the assumptions
required. The first step consists in obtaining the far-field equation. The thermodynamic breakdown is
then carried out following the line of reasoning of Van der Vooren, in particular assuming a flow free of
vortices in a wake plane. The main contribution of this work comes from the volume splitting, which
allows to breakdown the profile drag. We chose to work in a streamtube in order to rigorously identify
the assumptions made when reducing the integration surfaces.

Once all the assumptions and mechanisms of the demonstration identified, the formulation can
be rigorously extended to unsteady flows. The far-field equation is first generalized to unsteady flows,
with the emergence of additional terms. The attribution of these terms into the various phenomeno-
logical components has led to several attempts before resulting in the final formulation which has been
published in [86]. The key point is to obtain unsteady contributions into each drag component, and to
take the wakes into account.

The formulation is then discussed. It is first compared to Gariépy’s formulation. The robustness
and the physical background are also carefully looked into.
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Chapter I. Development of an Unsteady Formulation starting from Van der Vooren’s Formulation

1 What is difficult about a generalization to unsteady flows?

The first step in the generalization of a method is to identify the obstacles. Before trying to
obtain the unsteady formulation, let us take a little time to locate the difficulties we shall encounter.

1.1 To account for all the additional terms due to unsteadiness and relate them

to phenomenological components

It may seem obvious but in order to be certain not to forget any additional term due to the
unsteadiness of the flow, one should start back from the balance of mass and momentum equations in
order to obtain the correct far-field equation. Trying to add time derivative terms in the expression of
the total far-field drag would lead to a wrong starting point.

Furthermore, these additional terms, once correctly accounted for, must be attributed to existing
drag components, or to new ones. There are a few studies in the literature concerning unsteady drag
in incompressible multiphase cases, which can be applied to moving airships for example. A so-called
virtual mass force, first identified by Prandtl [69], and a Basset force [4] have been defined as resulting
from the acceleration of the body.

However, nothing was found in the literature for transonic cases which we are interested in. The
first and only team who has tackled the question of unsteady drag breakdown [31] has chosen to create
a so-called unsteady drag coefficient, which is not satisfactory on the physical and phenomenological
point of view.

The difficulty will therefore be to identify the physical source of this additional drag. Is it an
unsteady contribution into each drag component, such as the contribution of a moving shock in a buffet
case? Are there new phenomena which cause drag when the flow is unsteady, such as acoustics? Can
it be considered a phenomenological component of drag?

1.2 To avoid applying the steady theory as such

We have now settled that the demonstration for the steady theory should be adapted to unsteady
flows from the very beginning, that is to say the derivation of the far-field equation. Now another
obstacle may arise in the following steps of the demonstration. The assumptions used in the steady
theory, which can have been used without being clearly mentioned in the original paper from Van der
Vooren and Destarac [90], may indeed be inapplicable to unsteady flows. All the assumptions made
will therefore have to be pinpointed and adapted to unsteady flows.

Another point is that we need to ponder in the unsteady framework, when we are rather used to
thinking in a steady framework. It may for example seem unnatural that a snapshot at a given time
of the flow around an object can be sufficient to give the force applied by the fluid on the body at the
exact same instant. This is however what the momentum and mass balance equations tell us. The
information which allows to account for propagation delays and history of the flow is provided by the
time derivative terms as we will see later.

1.3 To take the propagation delays into account

The last obstacle consists in taking correctly into account the propagation in time and space,
which imply delays in the transmission of perturbations. The history of the flow must also somehow be
taken into account to correctly assess the force experienced at a given instant by the body. Remember
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that the principle of far-field methods consists of integrating phenomena occurring in the flow over a
control volume.

A concrete example will make it more clear. Let us consider an airfoil in a flow field, with a
shock wave on the upper surface. The viscous effects are assumed to be one order higher than those
due to the shock wave and its motion, and are therefore neglected. A streamtube encloses the wave, as
depicted in Figure I.1(a) at time t = ti. Now let us consider a perturbation of this shock wave, say that
it suddenly moves downstream at time t = ti +∆t as sketched in Figure I.1(b). This perturbation of
the shock wave induces a perturbation of the flow which is shed downstream in the wake of the wave,
inside the streamtube, such as in Figure I.1(c).

(a) t = ti

(b) t = ti +∆t

(c) t = ti + 2∆t

Figure I.1 – Schematic representation of the propagation in the wake of a shock wave of a perturbation due to
the motion of the wave

The perturbation information will go on propagating downstream until dissipating in the flow
field or leaving the boundaries of our control volume. Now the idea of far-field methods consists in
integrating flow field quantities on surfaces or volumes surrounding the sources of drag. In steady
cases, it is usual to choose the integration surface for the shock wave close to the wave (the order of
a few grid cells). The perturbation will accordingly cross and leave this surface quite soon, and the
later propagation will not be accounted for. It however plays a role in the force experienced by the
profile at every instant. A means to take this history and propagation process is therefore required
when considering unsteady flows.

36



Chapter I. Development of an Unsteady Formulation starting from Van der Vooren’s Formulation

2 Derivation of a directly generalizable proof of Van der Vooren’s

steady formulation

Van der Vooren’s formulation allows to split the drag into three phenomenological components:
wave, viscous and induced drag, using a thermodynamic breakdown. A spurious contribution is also
assessed. It accounts for a part of the numerical drag due to numerical dissipation and can be of
great interest to characterize the quality of a mesh or to optimize a configuration with a poor mesh
quality. This steady formulation has proven its robustness and precision in many industrial cases and
has been developed conjointly by Van der Vooren and Destarac at ONERA for about 20 years. A
historical review of the existing drag prediction methods is given in the Chapter Presentation of the
main existing methods of numerical drag prediction .

The idea in this section is to give a new derivation of Van der Vooren’s theory [90], since some
steps are missing in the original demonstration and restrictive assumptions regarding the extension
to unsteady flows are used. There are three main steps in the method: the derivation of the far-
field equation from conservation equations, the thermodynamic breakdown into induced and profile
components, and the volume splitting of the profile component into a wave and a viscous component.

The approach adopted here keeps the same process, but differs as far as the volume splitting is
concerned. All steps will however be demonstrated in details in order to ensure that no hypothesis is
forgotten. Practical refinements will then be presented.

2.1 Derivation of the far-field equation in the steady case

The far-field theory consists in computing the aerodynamic force from the flow field analysis
instead of the integration of the local stress on the body. The balance between the two approaches
relies on the conservation of fluid momentum. It requires no further hypothesis and is thus valid for
unsteady compressible flows.

In an inertial reference frame, the conservation of mass in a control volume V with a closed
surface ∂V (see Figure I.2) is: ∫

∂V

ρ (q · n) dS = 0 (I.2.1)

We can multiply this equation by the free stream velocity q∞ which is constant:
∫

∂V

ρq∞ (q · n) dS = 0 (I.2.2)

We also have that the integration of the reference pressure p∞ over the closed surface ∂V is zero:
∫

∂V

p∞n dS = 0 (I.2.3)

The conservation of momentum in the same control volume also gives:
∫

∂V

ρq (q · n) dS +

∫

∂V

pn dS −

∫

∂V

(τ · n) dS = 0 (I.2.4)

Finally, subtracting Equations I.2.2, and I.2.3 to Equation I.2.4, we get:
∫

∂V

ρ (q − q∞) (q · n) dS +

∫

∂V

(p− p∞)n dS −

∫

∂V

(τ · n) dS = 0 (I.2.5)
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In the steady case, this equation gives the conservation of flux momentum at the boundaries
∂V , a closed surface.

The drag is obtained by projecting this vector equation along the free stream velocity direction:
∫

∂V

ρ (u− u∞) (q · n) dS +

∫

∂V

(p− p∞) (i · n) dS −

∫

∂V

(τx · n) dS = 0 (I.2.6)

Figure I.2 – Control volume, surfaces and normal vectors

The frontier of the domain ∂V is then split into the body surface Sa and the outer surface Se
(∂V = Sa ∪ Se , see Figure I.2). The body has to be motionless in the inertial reference frame with a
steady flow, so that the normal velocity at the skin is zero. Rearranging the terms, we get:
∫

Sa

(
(p− p∞) (i · n)− (τx · n)

)
dS =

∫

Se

(
− ρ (u− u∞) (q · n)− (p− p∞) (i · n) + (τx · n)

)
dS

(I.2.7)
The left-hand side of the equation is the near-field drag Dnf , which can be broken down into

pressure drag Dp and friction drag Df .

Dnf = Dp +Df (I.2.8)

Dp =

∫

Sa

(p− p∞) (i · n) dS (I.2.9)

Df =

∫

Sa

− (τx · n) dS (I.2.10)

The right-hand side defines the far-field drag, which can be written:

Dff =

∫

Se

(f · n) dS (I.2.11)

with f = −ρ (u− u∞)q − (p− p∞) i+ τx.
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Chapter I. Development of an Unsteady Formulation starting from Van der Vooren’s Formulation

This equation represents the flux of momentum through the outer surface and the forces applied
on Se . It also gives a property of the vector f which will be used in the following paragraphs, but is
valid only for steady flows:

∇ · f = 0 (I.2.12)

No assumption other than classical fluid mechanics flow description has been made so far. Ad-
ditional terms must however be added in these equations in the unsteady case. Let us first carry on
the demonstration in the steady case.

The physical decomposition of drag is then obtained in two steps. The first step consists in break-
ing down the vector f into two distinct parts, reversible and irreversible. This notion of reversibility is
to be understood in the thermodynamic sense, involving assumptions on the entropy variations, rather
than in the temporal sense (no flow phenomenon is strictly reversible, in the temporal sense). The
second step consists in splitting the control volume V into several volumes attached to the distinct
drag sources, in order to breakdown the so-called irreversible drag into wave and viscous contributions.
The principles of the decomposition for steady flows are presented in the next sections.

2.2 Thermodynamic breakdown

The aim here is to breakdown the far-field expression of drag obtained in Equation I.2.11 into
phenomenological components. It was noted that the drag due to the wing-tip vortices, i.e. the induced
drag was linked to reversible phenomena. On the contrary, shock waves and viscous interactions are
irreversible phenomena, in the sense that entropy is created. The notion of irreversibility commonly
used is not strictly rigorous, since enthalpy is also created and taken into account for the profile drag,
which is the sum of the wave and viscous drag components. It should rather be called entropic and
enthalpic rather than irreversible. We will however stick to the usual terminology for the sake of
simplicity.

2.2.1 Breakdown of vector f

Let us first reduce the integration domain for the total far-field drag. Upstream of the body,
we have u = u∞, p = p∞ and τx = 0. On the lateral surfaces sufficiently far or aligned with the
streamlines, q · n = 0 and τx · n = 0, so that

Dff =

∫

Sd

(f · n) dS (I.2.13)

Let us assume that we are in the irreversible case. On a wake plane Sd sufficiently far downstream
from the drag sources, with a flow submitted to only irreversible processes, it is assumed that:

• p = p∞ the pressure goes back to the reference pressure

• v = w = 0 the velocity is parallel to the reference velocity q∞

The assumption concerning the pressure can be justified by taking the y and z components of
Equation I.2.5, assuming that the y and z components of the viscous stress tensor are negligible on
the wake plane and applying the second assumption (v = w = 0).

We denote uirr the axial velocity on Sd under these assumptions. This so-called irreversible
axial velocity will be computed in the next section. We can now introduce the assumptions into f in
order to obtain the irreversible part of f :

firr = −ρ (uirr − u∞) q + τx (I.2.14)
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The complementary is the reversible part:

frev = f − firr = −ρ (u− uirr )q − (p− p∞) i (I.2.15)

The profile and induced drags can then be defined as:

Dvw =

∫

Sd

(firr · n) dS =

∫

Sd

(
− ρ (uirr − u∞)q + τx

)
· n dS

Di =

∫

Sd

(frev · n) dS =

∫

Sd

(
− ρ (u− uirr ) q − (p− p∞) i

)
· n dS

(I.2.16)

(I.2.17)

We now have expressions for the irreversible drag, or profile drag, and the reversible drag, or
induced drag. An element of the equations is however missing: the expression of the irreversible axial
velocity uirr , which is the axial velocity measured on the wake plane when assuming an irreversible
flow.

2.2.2 Derivation of the irreversible axial velocity

The computation of uirr is derived from a general expression of the axial velocity as a function
of the thermodynamic variables.

2.2.2.1 Derivation of the general expression of the full axial velocity

The aim is here to express the full axial velocity as a function of the thermodynamic variables:
the stagnation enthalpy H and the entropy s. Owing to the definition of the stagnation enthalpy:

∆H = H −H∞ = h+
q2

2
−

(
h∞ +

u2∞
2

)
(I.2.18)

So that:
q2 = u2∞ + 2∆H − 2 (h− h∞) (I.2.19)

Reminding that q2 = u2 + v2 + w2 and h = CpT :

u2 = u2∞ + 2∆H − 2Cp (T − T∞)−
(
v2 + w2

)
(I.2.20)

Dividing by u2∞:

u2

u2∞
= 1 +

2∆H

u2∞
−

2CpT∞
u2∞

(
T

T∞
− 1

)
−
v2 +w2

u2∞
(I.2.21)

We now want to include the entropy in the expression of u. Let us recall that the entropy can
be expressed as:

∆s = Cp ln


 T

T∞

(
p∞
p

)γ−1
γ


 (I.2.22)

We can therefore write:

e
∆s
Cp =

T

T∞

(
p∞
p

)γ−1
γ

(I.2.23)

40



Chapter I. Development of an Unsteady Formulation starting from Van der Vooren’s Formulation

Injecting this expression for
T

T∞
into Equation I.2.21 yields:

u2

u2∞
= 1 +

2∆H

u2∞
−

2CpT∞
u2∞


e

∆s
Cp

(
p

p∞

)γ−1
γ

− 1


−

v2 + w2

u2∞
(I.2.24)

Using the expressions of the heat capacity Cp =
rγ

γ − 1
, the sound velocity a2∞ = γrT∞ and the

Mach number M∞ =
u∞
a∞

:

u2

u2∞
= 1 +

2∆H

u2∞
−

2

(γ − 1)M2
∞


e

γ−1
γ

∆s
r

(
p

p∞

)γ−1
γ

− 1


−

v2 + w2

u2∞
(I.2.25)

The general expression of the axial velocity is therefore:

u = u∞

√√√√√1 +
2∆H

u2∞
−

2

(γ − 1)M2
∞


e

γ−1
γ

∆s
r

(
p

p∞

)γ−1
γ

− 1


−

v2 +w2

u2∞
(I.2.26)

Note that no hypothesis was made in this step. The equations used are simply the definitions
of stagnation enthalpy and entropy and are valid in all cases. The derivation of the irreversible axial
velocity is now straightforward.

2.2.2.2 Application of the assumptions to obtain the irreversible expression

The irreversible velocity is defined as the axial velocity measured on the wake plane Sd where
we apply the assumptions of an irreversible flow, i.e. a flow free of vortices (see Figure I.3): p = p∞
and v = w = 0.

Figure I.3 – Schematic representation of the computation of the irreversible axial velocity on a wake plane Sd

The irreversible axial velocity uirr can now be computed plugging these assumptions into Equa-
tion I.2.26:

uirr = u∞

√√√√1 +
2∆H

u2∞
−

2

(γ − 1)M2
∞

(
e
γ−1
γ

∆s
r − 1

)
(I.2.27)
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This axial velocity depends only on the entropy and the stagnation enthalpy variations from
the reference state, hence the name irreversible. Note that this expression is valid only on the wake
plane Sd , where the entropy and stagnation enthalpy variations, created across the shock waves and
within the boundary layers and viscous wakes, are probed. Outside the wake, there are no entropy or
enthalpy variations, so that this irreversible velocity becomes the reference velocity u∞.

2.3 Volume splitting using streamtubes

The irreversible drag (or profile drag) has now to be further broken down into a wave and a
viscous drag. This splitting is possible thanks to the location of the sources of drag in distinct zones of
the flow, as depicted in Figure I.4. The shock-boundary layer interaction zone is however an exception:
both phenomena are there intricate and strongly linked with one another. A choice must therefore
be made. It was arbitrarily chosen by Destarac [24] to attribute this contribution to the viscous drag
component.

Figure I.4 – Schematic representation of the streamtubes enclosing the shock wave and the body with its
boundary layer

The local splitting is then achieved successively considering each source of irreversible drag
isolated. The drag computation carried out by Van der Vooren and Destarac [90] involves the fact that
∇ · f = 0 for steady flows. Since it is no more true for unsteady cases, the expressions of the drag
coefficients were derived using a new methodology relying on a balance over streamtubes. This new
argument is presented hereafter.

2.3.1 Wave drag

Let us first assume an inviscid flow with an isolated shock, i.e. without any boundary layers,
streamwise vorticity, or wakes. The total drag coefficient is then equal to the wave drag coefficient and
the wake integration is reduced to the downstream surface of the streamtube enclosing the shock Swd
(see Figure I.5):

D = Dw =

∫

Swd

(firr · n) dS (I.2.28)

The viscous stress tensor is negligible on the wake plane Swd . The key point is to now legitimize
the restriction of the integration to Swd . This restriction is mandatory to split into wave and viscous
components. Since we are working in the streamtube enclosing the shock wave, we know that the
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Figure I.5 – Streamtube enclosing the shock wave with the surfaces used in the demonstration

flow is isentropic and isenthalpic outside of it, and that neither entropy nor stagnation enthalpy was
created there. The irreversible velocity is thus equal to the reference velocity on Sd \ Swd , as noted in
Section 2.2.2.2, giving a zero contribution outside of Swd .

We then try to move the wake surface of integration, Swd to S′
w , i.e. closer to the source of

wave drag. The aim is to be able to process complex configurations with several shock waves or bodies
intersecting the wake of the shock, and to improve the numerical accuracy since the cells are usually
much smaller closer to the aircraft than in the far-field. Applying the divergence theorem in Vwd
(volume located between Swd and S′

w , i.e. downstream of the shock wave as depicted in Figure I.5),
given that the lateral contribution is zero since q · n = 0 on a streamline, we get:

Dw =

∫

S′
w

−ρ (uirr − u∞) (q · n) dS −

∫

Vwd

∇ ·
(
ρ (uirr − u∞) q

)
dV (I.2.29)

Using the continuity equation for steady flows ∇ · (ρq) = 0:

∇ ·
(
ρ (uirr − u∞) q

)
= ρ q ·∇ (uirr − u∞) (I.2.30)

Since the reference velocity is constant, it can be taken out of this equation. The irreversible
axial velocity depends only on entropy and enthalpy, so that the chain rule gives:

ρ q ·∇uirr = ρ
∂uirr
∂s

q ·∇s+ ρ
∂uirr
∂H

q ·∇H (I.2.31)

It is assumed that the flow is isentropic and isenthalpic downstream of the shock so that both
terms on the right hand side are zero. The wave drag is then:

Dw =

∫

S′

w

−ρ (uirr − u∞) (q · n) dS (I.2.32)

It is as if the entropy and stagnation enthalpy were probed on this surface close to the shock,
but one must keep in mind that it really is an integration on a wake plane far from the sources of drag.
The local axial velocity is on no account equal to uirr this close to the shock wave. Note that even if
this property is here used only for the wave drag, it is also true for the viscous and the induced drag,
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so that the choice of the integration volumes has theoretically no impact on the results for the drag
breakdown, so long as the flow remains isentropic and isenthalpic on the wake plane.

When several shock waves are present on a body, it becomes necessary to turn the wake integral
into closed surfaces enclosing the shock waves. Another benefit of using closed surface integrals is
the numerical robustness. A closed surface is for example easier to define by the outer boundary of a
volume determined using physical criteria.

The wake surface integral is therefore always transformed into a closed surface integral denoted
Sw as defined in Figure I.6. This manipulation is directly valid since q ·n = 0 on the lateral surface of
the streamtube, and uirr = u∞ on the upstream plane (there is no variation of entropy and stagnation
enthalpy upstream of the source). The final expression for the wave drag is then:

Dw =

∫

Sw

−ρ (uirr − u∞) (q · n) dS (I.2.33)

Figure I.6 – Integration surfaces in the steady case

Note that the choice of the small surface Sw enclosing the shock wave must be such that the
flow is indeed isentropic and isenthalpic downstream of it. The wake surface integral can indeed be
moved as far upstream as these assumptions are valid.

Finally, it must be noted that Van der Vooren original formulation [90] used the volume form of
this equation. The surface form is however much more robust since the integration limits to a surface
enclosing a part of the fluid. The ffd72 code does indeed use the surface form described here.

2.3.2 Viscous drag

We then apply the same reasoning to the viscous drag, assuming a subsonic flow without vortices.
Denoting Svd the downstream surface of the streamtube enclosing the body, its boundary layer, and
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its wake, we get for the viscous drag:

Dv =

∫

Svd

(firr · n) dS (I.2.34)

Here, the viscous stress tensor could also be neglected on the wake plane Svd similarly to Van der
Vooren’s article [90]. Destarac has however shown that its inclusion into the viscous drag component
gave more reliable results [24]. We therefore choose to include it in the unsteady case as well. We
could similarly to the wave drag move the surface Svd as close to the trailing edge as possible, that is
to say as long as the flow is isentropic and isenthalpic. The viscous stress tensor should nevertheless be
neglected in order to do so. We judge that the surface manipulation is not mandatory in the viscous
component case, since the downstream boundary could not be moved very close to the trailing edge,
given that the assumption of isentropic flow is not valid very close to the body. It actually represents
a refinement level that we consider premature here. It could however constitute a further development
of the unsteady formulation.

The wake surface is turned into a closed surface Sv (see Figure I.6) with the same arguments as
in the shock wave case:

Dv =

∫

Sv

(
− ρ (uirr − u∞)q + τx

)
· n dS (I.2.35)

Again, in the original formulation by Van der Vooren, the volume form of this equation is used,
but the surface one is used in practice at ONERA.

2.3.3 Another justification of the use of streamtubes

The use of streamtubes comes rather naturally when we want to isolate each drag source. Another
physical justification arises when we try to compute the force applied by a shock wave on a body in an
inviscid flow. The total drag, equal in that case to the wave drag, is indeed expressed as the integral
of the vector f on the skin of the body in the near-field vision:

D = Dw = −

∫

Sa

(f · n) dS (I.2.36)

A balance of the vector f over the boundary of the streamtube enclosing the body Ωa gives:
∫

∂Ωa

(f · n) dS = 0 (I.2.37)

In 2-D, the boundary of Ωa can be split into Sau , Σ2, Sad , Σ3, and Sa (as defined in Figure I.7).
A similar reasoning can be applied in 3-D.

∫

Sau

(f · n) dS −

∫

Σ2

(f · n) dS +

∫

Sad

(f · n) dS +

∫

Σ3

(f · n) dS +

∫

Sa

(f · n) dS = 0 (I.2.38)

Since the flow is inviscid without vortices, the pressure and the velocity on Sau and Sad are
equal to their reference values p∞ and u∞, and the friction is negligible. The contributions on the
upstream and downstream boundaries of Ωa are therefore zero. The same balance can be made on the
streamtube Ω2, with zero contributions everywhere, so that we can deduce that the contribution on
Σ3 is also zero. Finally:

Dw = −

∫

Σ2

(f · n) dS (I.2.39)
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Figure I.7 – Surfaces and normal vectors used to demonstrate the force applied by a shock wave on a body

Let us now apply the same reasoning on the streamtube Ωw enclosing the shock wave:
∫

∂Ωw

(f · n) dS = 0 (I.2.40)

Splitting the frontier:
∫

Swu

(f · n) dS +

∫

Σ1

(f · n) dS +

∫

Swd

(f · n) dS +

∫

Σ2

(f · n) dS = 0 (I.2.41)

For the same reason as before, the contribution on the upstream boundary Swu is zero. We can
again apply the same balance on the streamtube above, Ω1, deducing that the contribution over Σ1 is
also zero. Finally:

Dw =

∫

Swd

(f · n) dS (I.2.42)

If Swd is chosen such that the assumptions p = p∞ and v = w = 0 apply, we obtain the starting
point from Section 2.3.1, which is:

Dw =

∫

Swd

(firr · n) dS (I.2.43)

This proof also leads to a physical interpretation of the wave drag: due to the creation of
entropy across the shock wave and conservation of mass flux, the streamtube downstream of the shock
is enlarged, resulting in an obstruction of the streamtube enclosing the body itself. A pressure force
thus arises which is through the fluid applied on the body skin. Its longitudinal component is what we
call the wave drag.

2.4 Derivation of the final steady formulation

Now that all elements are defined, the final formulation can be obtained. A "raw" version
is first given. Refinements were carried out over the years and resulted into a robust and reliable
postprocessing tool used by industry, the ONERA code ffd72.

2.4.1 A first "raw" formulation

As far as induced drag is concerned, it is defined as the complementary drag, i.e. the integral
of the reversible part of f . This definition by default rather than by using physical assumptions is the
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main flaw of Van der Vooren’s theory. Other physical phenomena can indeed be taken into account in
this drag component.

The last step consists in computing the far-field drag as the sum of the three drag compo-
nents. The resulting formulation is theoretically equivalent to the one exposed in Van der Vooren and
Destarac’s paper [90], the only difference being the use of surface integrals rather than volume ones.

Dw =

∫

Sw

−ρ (uirr − u∞) (q · n) dS

Dv =

∫

Sv

(
− ρ (uirr − u∞)q + τx

)
· n dS

Di =

∫

Se

(
− ρ (u− uirr ) q − (p− p∞) i

)
· n dS

Dff = Dw +Dv +Di

(I.2.44)

(I.2.45)

(I.2.46)

(I.2.47)

The formulation was implemented in the early version of the drag extraction codes family ffd.
Deviations from the theory were then observed, and refinements were proposed by Destarac [24] so as
to result in a reliable and accurate tool.

2.4.2 Numerical deviations from the theory

The far-field drag as defined in this formulation is theoretically equal to the near-field drag.
There are in practice numerical deviations from the theory.

2.4.2.1 Spurious drag

The first deviation is the spurious drag due to the assumptions made when deriving the equations.
This physical spurious drag component, denoted Dphy

sp , can be evaluated from the neglected term, that
is to say the irreversible part of f in the volume outside Sw and Sv , denoted Vsp :

Dphy
sp =

∫

Vsp

(∇ · firr ) dV +

∫

Se\Svd

(τx · n) dS (I.2.48)

The spurious drag can also originate from numerical effects. The quality of the mesh has indeed
an influence on the far-field drag computed from integrations in the fluid domain, whereas the near-
field drag depends only on the mesh quality at the skin. Moreover, the numerical scheme can induce
additional spurious diffusion which can also imply further discrepancy between far-field and near-field
values. Moreover, errors may arise from the boundary conditions chosen. In 2-D, vortex type boundary
conditions can be applied to reduce these errors. Note finally that the near-field drag is also affected
by numerical errors. These errors are however often small compared to the errors in the far-field
coefficient, and will not be accounted for in this method.

An estimation of the numerical spurious drag Dnum
sp can be defined. Its exact expression cannot

be directly obtained. We can however compute the total spurious drag as the balance between the
near-field and the far-field, neglecting the errors on the near-field coefficient:

Dsp = Dnf −Dff (I.2.49)

The numerical spurious drag is then defined as:

Dnum
sp = Dnf −Dff −Dphy

sp (I.2.50)
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This is a strong benefit of the far-field formulation: it allows extracting the spurious drag,
which stands for a part of the numerical errors (with the restriction that the near-field drag must be
sufficiently accurately computed). This spurious drag can be useful to evaluate the quality of a mesh,
the accuracy of a numerical scheme, or in an optimization process to optimize a physical component
rather than the numerical errors, as illustrated by Destarac [23].

2.4.2.2 Vortex decay

Another discrepancy between the theoretical and the numerical behavior of the flow concerns
the decay of the trailing vortices downstream from finite lifting surfaces. In computations, mainly
because of the coarseness of the grid in the downstream far-field, and to the spurious diffusion due
to the numerical scheme, numerical smoothing dominates over physical dissipation and causes the
trailing vorticity to decay. Induced drag expressed through a surface integral as in Equation I.2.46,
will decrease as the downstream extension of Se increases. Such losses of apparent induced drag (which
are also a loss of crossflow kinetic energy) due to a spurious dissipative phenomenon will be matched
by the production of spurious viscous drag. There is neither loss nor production of total drag, but a
transfer of one form of drag to another.

2.4.3 Practical refinements of the theoretical formulation

Many refinements of the raw formulation were carried out over the years at ONERA in order to
develop a robust tool.

2.4.3.1 The single vector formulation

Destarac [24] relied on the fact that for steady flows, we have ∇ · f = 0 to express all drag
coefficients as a function of only one part of vector f = firr + frev . He observed that the results were
losing accuracy and robustness when using only firr , without being able to explain the phenomenon.
It would seem that the physical equation ∇ · f = 0 is numerically not accurately verified. Moreover,
the numerical behavior of firr and frev is different. The numerical errors in ∇ · f seem to mainly
originate from firr .

As a result, Destarac chose to use a formulation using only the reversible part frev . The expres-
sions of each drag coefficient have first to be turned into volume integrals to do so, using the divergence
theorem:

Dw =

∫

Vw

(∇ · firr ) dV (I.2.51)

Dv =

∫

Vv

(∇ · firr ) dV −

∫

Sa

(firr · n) dS (I.2.52)

Di =

∫

V

(∇ · frev ) dV −

∫

Sa

(frev · n) dS (I.2.53)

The body surface integrals simply give the near-field drag coefficients (since q · n = 0 at the
skin):

∫

Sa

(firr · n) dS =

∫

Sa

(
− ρ (uirr − u∞)q + τx

)
· n dS =

∫

Sa

(τx · n) dS = −Df (I.2.54)
∫

Sa

(frev · n) dS =

∫

Sa

(
− ρ (u− uirr )q − (p− p∞) i

)
· n dS = −

∫

Sa

(p− p∞) (i · n) dS = −Dp

(I.2.55)
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Now, using ∇ · f = 0 and f = firr + frev , we can write:

Dw = −

∫

Vw

(∇ · frev ) dV (I.2.56)

Dv = −

∫

Vv

(∇ · frev ) dV +Df (I.2.57)

Di =

∫

V

(∇ · frev ) dV +Dp (I.2.58)

We can then apply again the divergence theorem to go back to surface integrals which allow
integrating on a smaller domain:

Dw = −

∫

Sw

(frev · n) dS (I.2.59)

Dv = −

∫

Sv

(frev · n) dS −

∫

Sa

(frev · n) dS +Df (I.2.60)

Di =

∫

Se

(frev · n) dS +

∫

Sa

(frev · n) dS +Dp (I.2.61)

So that finally:

Dw = −

∫

Sw

(frev · n) dS

Dv = −

∫

Sv

(frev · n) dS +Dnf

Di =

∫

Se

(frev · n) dS

(I.2.62)

(I.2.63)

(I.2.64)

This one-vector formulation has the advantages of being both faster to compute and more ac-
curate. In particular, the viscous stress coefficient, a second order derivative subject to accuracy
difficulties, is required only at the skin and not in the far-field.

2.4.3.2 The decomposition of the viscous drag coefficient

When the one-vector formulation is used, a further breakdown of the viscous drag coefficient is
achievable. The friction drag has indeed appeared in Equation I.2.60 and can be removed to define
the viscous pressure drag coefficient.

Dvp = −

∫

Sv

(frev · n) dS +Dp (I.2.65)

So that:

Dv = Dvp +Df (I.2.66)

The viscous pressure drag component is the part of the viscous drag which is reducible, for
instance by minimizing flow separation through shape modifications. The friction drag component is
indeed only due to the viscous stress occurring at the skin, and is almost impossible to reduce, except
by using riblets on the skin of the aircraft [5].
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2.4.3.3 Criteria used for the definition of the integration surfaces

The theory as derived here requires the definition of streamtubes as integration surfaces for the
wave and viscous drag components. The induced surface is in the raw version defined as the outer
surface of the control volume. In practice, it has been observed that smaller surfaces imply better
robustness. It also has consequences on the spurious drag coefficient, which has been observed to be
smaller with smaller surfaces. Moreover, streamtubes are not easily constructed in a postprocessing
tool. Physical criteria are consequently used in practice, leading to small discrepancies with the
theoretical definitions. The corresponding surfaces will be denoted with a superscript p for practice.

Wave drag criterion

We have seen with our definition that the downstream face of the streamtube enclosing the shock
could be moved close to the shock wave. Since the surface is quite small around the shock wave, and
since the contributions over lateral surfaces will remain small whatever their shape, a physical criterion
of shock detection is in practice used to define the integration surface.

This criterion was first used by Tognaccini [83]. It allows to detect the presence of a shock wave
from the comparison between the local velocity in the direction of the pressure gradient and the speed
of sound: if this velocity is greater than the speed of sound, then the cell must be inside the shock
integration surface. In practice, a coefficient cshock close to 1 is added. It is chosen equal to 0.95 in
most cases but can be tuned by the user.

q ·∇p ≥ cshock a ‖∇p‖ ⇒ cell ∈ Sp
w (I.2.67)

Defaults values and the number of cell layers added in ffd72 can be found in the Chapter Methods
used in this work .

Viscous drag criteria

In the theoretical demonstration, the surface chosen for the viscous drag was the streamtube
enclosing the body and its boundary layer. The downstream extension can be reduced similarly to
the shock wave case, provided that the viscous dissipation is negligible in the wake. Again, the
streamtube is replaced by a physical contour based on viscous stress and turbulent considerations.
The greatest contribution to drag comes from the downstream plane again, since the lateral surfaces
are almost aligned with the streamlines where the integration of the normal components cancel out.
The contribution of the viscous stress and momentum flux on the lateral boundaries is actually very
small and considered negligible compared to the contribution of the downstream boundary.

The first physical criterion consists in comparing the local viscous stress tensor to the mean
value at the skin ‖τ skin‖. This allows detecting the boundary layers. If the local value is stronger
than a small percentage of the value at the skin, then the cell must be inside the viscous integration
surface. This percentage cskin close to 10% is again used for tuning.

‖τ‖ ≥ cskin ‖τ skin‖ ⇒ cell ∈ Sp
v (I.2.68)

The second criterion regards the turbulent level in the flow in the vicinity of the skin, in order
to detect the boundary layers as well as the wakes. The eddy viscosity is compared to the dynamic
viscosity: if it is stronger, then the cell must be located within the viscous surface. A tunable coefficient
cturb close to 1 is also used.

µt ≥ cturb µ⇒ cell ∈ Sp
v (I.2.69)
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Cell layers are also added for robustness, and the downstream extension can be tuned. See
Chapter Methods used in this work for details and default values.

Induced drag criteria

In the theory, the integration surface for the induced drag is the outer surface of the control
volume. However, as noted in Section 2.4.2, it was observed that the induced drag prediction was
more accurate when integrating closer to the trailing edges of the body due to the numerical vortex
decay. Geometrical criteria are therefore used to define a box around the airplane, with a downstream
extension a given distance from the wing tips.

Examples of integration surfaces

Figure I.8 shows an example of integration surfaces computed on a wing-body-tail configuration.
The frontiers visible inside the surfaces are simply due to the frontiers between the different grid types,
since the case is a chimera mesh. The box for the induced drag integration stops at a given distance
from the most downstream position of the wings trailing edge. The tail of the aircraft is also included
in the surface, with a margin chosen as a given distance from the skin.

Figure I.8 – Integration surfaces for the CRM with tail [36]: Sp
w (red), Sp

v (green) and Sp
i (blue)

2.4.3.4 Final formulation used in practice in the ONERA code ffd72

All these refinements put together lead to the formulation as implemented in the ONERA code
ffd72. This postprocessing software is presented in details in the Chapter Methods used in this work .
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2. Derivation of a directly generalizable proof of Van der Vooren’s steady formulation

The equations can now be written as:

Dw =

∫

S
p
w

(
ρ (u− uirr )q + (p− p∞) i

)
· n dS

Dvp =

∫

S
p
v

(
ρ (u− uirr ) q + (p− p∞) i

)
· n dS +Dp

Dv = Dvp +Df

Di =

∫

S
p
i

(
− ρ (u− uirr )q − (p− p∞) i

)
· n dS

Dff = Dw +Dv +Di

Dsp = Dnf −Dff

(I.2.70)

(I.2.71)

(I.2.72)

(I.2.73)

(I.2.74)

(I.2.75)

with the integration surfaces as described earlier. The drag coefficients are defined as the non-
dimensional version of the drag components described here:

CD =
D

1
2ρ∞u

2
∞Sref

(I.2.76)

where Sref is the reference surface, usually chosen as the planform area of the wing of the aircraft.
This formulation has proved its robustness and accuracy over the years. Many extensions have

also been added, such as propulsive configurations, relative rotating reference frames, or the computa-
tion of sensitivities for optimization. It is however restricted to steady flows.
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3 Generalization of Van der Vooren’s formulation to unsteady flows

The extension to unsteady flows of Van der Vooren’s theory is not as straightforward as it
seems. Where some authors [31] chose to define an unsteady drag coefficient concentrating all unsteady
contributions, we have finally decided to allocate unsteady terms to each drag component, in order
to take the early drag creation and propagation in the fluid into account. The main difficulty tackled
here is indeed the synchronization of the fluid phenomena and the loading experienced by the body at
the same instant.

In order to do so, we have derived a new proof of Van der Vooren’s formulation and carefully
located all the assumptions which have been made:

• The unsteady terms in the balance of mass and momentum equations were removed.

• During the thermodynamic breakdown step, under the hypothesis of an only irreversible flow, it
was assumed that the pressure went back to the reference pressure and the velocity was parallel
to the reference velocity in a downstream wake plane.

• At the volume splitting step, it was assumed that the flow was not affected by the presence of
the shock wave or the boundary layer outside the streamtube enclosing the source.

• When moving the integration surfaces, it was assumed that the flow was isentropic and isenthalpic
downstream of a shock wave.

The generalization is now made achievable. We only have to adapt all the assumptions to
unsteady flows, starting with the first step: the derivation of the far-field equation.

3.1 Implementation of the additional unsteady terms in the far-field equation

The derivation of the far-field equation follows the same principle as in the steady case, with
additional terms into each conservation equation due to the unsteadiness. Note that all physical
variables are now time dependent. We will therefore write the conservation equations at a given
instant t.

In an inertial reference frame, the conservation of mass in a control volume V with a closed
surface ∂V is: ∫

V

∂ρ

∂t
dV = −

∫

∂V

ρ (q · n) dS (I.3.1)

We can multiply this equation by the free stream velocity q∞ which is constant:
∫

V

∂ρq∞
∂t

dV = −

∫

∂V

ρq∞ (q · n) dS (I.3.2)

As in the steady case, the integration of the reference pressure p∞ over the closed surface ∂V is
zero: ∫

∂V

p∞n dS = 0 (I.3.3)

The conservation of momentum in the same control volume also gives:
∫

V

∂ρq

∂t
dV = −

∫

∂V

ρq (q · n) dS −

∫

∂V

pn dS +

∫

∂V

(τ · n) dS (I.3.4)
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Finally, subtracting Equations I.3.2, and I.3.3 to Equation I.3.4, we get:
∫

V

∂ρ (q − q∞)

∂t
dV = −

∫

∂V

ρ (q − q∞) (q · n) dS −

∫

∂V

(p− p∞)n dS +

∫

∂V

(τ · n) dS (I.3.5)

This equation gives the balance between the variation of fluid momentum in a control volume V
with the aerodynamic force and the momentum flux at the boundaries ∂V , a closed surface, at instant
t.

The drag is obtained by taking the component parallel to the free stream velocity:
∫

V

∂ρ (u− u∞)

∂t
dV = −

∫

∂V

ρ (u− u∞) (q · n) dS −

∫

∂V

(p− p∞) (i · n) dS +

∫

∂V

(τx · n) dS (I.3.6)

Splitting the frontier of the domain ∂V into the body surface Sa and the outer surface Se
(∂V = Sa ∪ Se , see Figure I.2) and rearranging the terms, we get:
∫

Sa

(
(p− p∞) (i · n)− (τx · n)

)
dS =

∫

Se

(
− ρ (u− u∞) (q · n)− (p− p∞) (i · n) + (τx · n)

)
dS

−

∫

Sa

ρ (u− u∞) (q · n) dS −

∫

V

∂ρ (u− u∞)

∂t
dV (I.3.7)

The left-hand side of the equation still defines the near-field drag at instant t in the exact same
way as in the steady case:

Dnf (t) =

∫

Sa

(
(p− p∞) (i · n)− (τx · n)

)
dS (I.3.8)

The right-hand side defines the far-field drag at instant t, which can be written:

Dff (t) =

∫

Se

(f · n) dS −

∫

Sa

ρ (u− u∞) (q · n) dS −

∫

V

∂ρ (u− u∞)

∂t
dV (I.3.9)

The first surface term represents the flux of momentum through the outer surface and the forces
applied on Se similarly to the steady case. The second surface term is the variation of longitudinal
momentum due to the motion of the body. It is zero in steady cases in the inertial reference frame.
The volume term accounts for the time dependence as well as the propagation in time of momentum.

The notion of far-field can be considered abusive, given that it now includes a contribution at
the skin and in the fluid volume which extends from the skin to the far-field. The designation of
far-field drag is however deliberately kept as in opposition to near-field drag which consists only of an
integration at the skin.

These equations also give a property of the vector f which will be used in the following sections:

∇ · f =
∂ρ (u− u∞)

∂t
(I.3.10)

Note that this result is quite different from the steady case, where we had ∇ · f = 0. This
justifies the choice of deriving the splitting step using streamtubes rather than the property of the
vector f .

Before trying to obtain the breakdown in the unsteady case, let us remind the main objective of
our work: we will focus on ensuring the synchronization between the integration in the far-field and the
effort experienced by the body at the same instant. The volume time derivative term will be playing
a key role.
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3.2 Derivation of the four components unsteady formulation

The unsteady formulation is achieved using the new demonstration of the steady theory given
in Section 2. The presentation of this breakdown method is an opportunity of giving the rigorous
demonstration.

Like for the steady case, the wave drag Dw is first defined for a flow where we assume that only
one shock occurs. This approach is generalized to the viscous drag Dv . The unsteady induced drag,
Dui , is defined as the complementary part. It can obviously enclose other unsteady phenomena and is
not only due to vorticity variations, hence the denomination unsteady induced.

3.2.1 Unsteady wave drag expression

Let us first consider the wave drag of an isolated normal shock moving in a perfect fluid. It is
assumed that there are no other processes within the flow like boundary layers or vortices. We will
again work in the streamtube enclosing the shock as defined for the steady case (see Figure I.9). We
choose for the downstream boundary Swd such that p = p∞ and v = w = 0. We obtain the same
irreversible velocity as in Equation I.2.27.

If the flow is supersonic, there is no information propagating upstream of the shock wave, so
that the integration can be reduced to the downstream part of the streamtube. In the subsonic
case, however, there can be information ascent, e.g. acoustic waves. We assume that the upstream
contribution is negligible. The neglected part will be assigned to the unsteady induced drag component
as we will see in Section 3.2.3. As a conclusion, we limit the integration to the downstream part of
the streamtube, that is to say Vw ∪ Vwd . The time-derivative term now adds to the steady terms. The
wave drag is indeed by definition caused by entropy creation and volume effects downstream of the
shock. The total drag, which is equal to the wave drag, is therefore:

D = Dw =

∫

Swd

−ρ (uirr − u∞) (q · n) dS −

∫

Vw∪Vwd

∂ρ (u− u∞)

∂t
dV (I.3.11)

Figure I.9 – Streamtube enclosing the unsteady shock wave with the surfaces used in the demonstration

The wave drag is the sum of the flux on Swd of loss of axial momentum due to the irreversible
process (shock) and the variation in time of axial momentum in the streamtube.

Like for steady flows, the flux integrated on Swd is transformed into the same flux but integrated
on S′

w (see Figure I.9). The aim is here to probe the entropy due solely to the shock wave. The entropy
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3. Generalization of Van der Vooren’s formulation to unsteady flows

probed on Swd contains indeed a viscous component which we are trying to get rid of. The application
of the divergence theorem in Vwd gives:

Dw =

∫

S′

w

−ρ (uirr − u∞) (q · n) dS −

∫

Vw

∂ρ (u− u∞)

∂t
dV

−

∫

Vwd

(
∂ρ (u− u∞)

∂t
+∇ ·

(
ρ (uirr − u∞) q

))
dV (I.3.12)

The last term, I, can be written:

I = −

∫

Vwd

∂ρ (u− uirr )

∂t
dV −

∫

Vwd

(
∂ρ (uirr − u∞)

∂t
+∇ ·

(
ρ (uirr − u∞)q

))
dV (I.3.13)

We can expand the last two terms J under the integral as:

J = ρ
∂ (uirr − u∞)

∂t
+ ρq ·∇ (uirr − u∞) + (uirr − u∞)

∂ρ

∂t
+ (uirr − u∞)∇ · (ρq) (I.3.14)

The last two terms cancel out due to the continuity equation ∂ρ
∂t

+∇ · (ρq) = 0:

J = ρ
d (uirr − u∞)

dt
= ρ

(
ds

dt

∂uirr
∂s

+
dH

dt

∂uirr
∂H

)
(I.3.15)

By assumption, the flow is isentropic in Vwd so
ds

dt
= 0 in Vwd . The second term is however

non-zero, contrarily to the steady case. Starting from the definition of the stagnation enthalpy H =

e+
p

ρ
+
u2

2
, one can write a local balance of stagnation enthalpy:

ρ
dH

dt
= ρ

de

dt
+

dp

dt
+ ρ

d

dt

(
u2

2

)
(I.3.16)

A local balance of internal energy in the absence of heat flux gives:

ρ
de

dt
= ∇ · (σ · q)−

(
∇ · σ

)
· q (I.3.17)

On the other hand, a local balance of kinetic energy gives:

ρ
d

dt

(
u2

2

)
=
(
∇ · σ

)
· q (I.3.18)

so that
(
∇ ·σ

)
·q cancels out. Given the definition of the stress tensor σ = −p1+ τ , it can be written

that: ∇ · (σ · q) = −∇p · q +∇ · (τ · q).
The definition of the time derivative yields for the pressure:

dp

dt
=
∂p

∂t
+∇p · q (I.3.19)

so that the term ∇p · q cancels out as well. As a result, the time derivative of stagnation enthalpy can
be expressed as simply:

dH

dt
=

1

ρ

∂p

∂t
+∇ · (τ · q) (I.3.20)
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Assuming that the viscous effects are negligible in the wake of a shock wave, we get:

dH

dt
=

1

ρ

∂p

∂t
(I.3.21)

The only term left to compute is the partial derivative of the irreversible axial velocity with
respect to stagnation enthalpy:

∂uirr
∂H

=
2

u2∞

u∞

2

√
1 +

2∆H

u2∞
−

2

(γ − 1)M2
∞

(
e
γ−1
γ

∆s
r − 1

) =
1

uirr
(I.3.22)

Finally:

I = −

∫

Vwd

(
∂ρ (u− uirr )

∂t
+

1

uirr

∂p

∂t

)
dV (I.3.23)

Concerning the surface contribution, it can be turned into a closed surface integral Sw similarly
to the steady case, assuming that uirr = u∞ on the upstream surface, and q · n = 0 on the lateral
surfaces aligned with the streamtube.

As a result, the unsteady wave drag definition is:

Dw =

∫

Sw

−ρ (uirr − u∞) (q · n) dS −

∫

Vw

∂ρ (u− u∞)

∂t
dV

−

∫

Vwd

(
∂ρ (u− uirr )

∂t
+

1

uirr

∂p

∂t

)
dV (I.3.24)

It must be noted that for a steady flow this equation gives the classical steady wave drag. The
unsteady wave drag is the sum of three elements. The two first stand for the instantaneous creation of
drag due to the entropy creation across the shock wave in the thin volume Vw . The first integral is the
flux of momentum and the second one the volume creation. The third element takes into account the
propagation and the past effects of entropy production downstream of the shock. The fluid is assumed
inviscid for the latter, so that it only stands for the propagation of the past creation of entropy in the
volume Vw . It is obvious that irreversibilities take place downstream of the shock. The drag due to
these physical phenomena is small compared to Dw . This contribution may appear in the viscous drag
coefficient if the volume Vv is sufficiently large, or else in the induced drag coefficient.

3.2.2 Unsteady viscous drag expression

We now consider a profile isolated in a flow, without shock waves and reversible processes. We
work again in the streamtube enclosing the body, its boundary layer and its wake. We again neglect
the upstream part of the streamtube and work in the volume Vv (see Figure I.10). The time-derivative
term also adds to the steady term:

Dv =

∫

Sv

(
− ρ (uirr − u∞)q + τx

)
· n dS −

∫

Vv

∂ρ (u− u∞)

∂t
dV (I.3.25)

One could also move the wake surface a little upstream similarly to the shock case, the same
volume term would appear, but we do not judge it necessary here since irreversibilities occur within
the wake itself, so that the wake integral would remain large. In order to reduce numerical errors due
to the dissipation of the entropy downstream of the body, the control domain can however be bound
at a given distance of the trailing edge, as long as a sufficient part of the wake is included.
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Figure I.10 – Integration volumes and surfaces in the unsteady case

3.2.3 Unsteady induced drag expression

As for the steady case, the induced drag is here defined as the complementary part of the drag.
Since it will likely enclose other unsteady phenomena, we decided to call it unsteady induced drag Dui

rather than simply induced drag. The notion of lift induced is kept in order to highlight the strong
connection between this component and the variations of lift.

We define the complementary volume Vc = V \ (Vw ∪ Vwd ∪ Vv ) and the complementary down-
stream surface Scd = Sd \ (Swd ∪ Svd) (see Figure I.11).

Dui =

∫

Sd

(
− ρ (u− uirr )q − (p− p∞) i

)
· n dS

+

∫

Scd

−ρ (uirr − u∞) (q · n) dS −

∫

Vc

∂ρ (u− u∞)

∂t
dV (I.3.26)

The second term has the same structure as the original expression of wave drag in Equation I.3.11,
given that Scd is the downstream boundary of Vc . The idea comes naturally to simplify this expression
using the same process as in the wave drag case, that is to say to move the downstream integration Scd
towards the upstream infinity Su , the same volume terms arising since the flow has the same properties

in the complementary volume
(ds
dt

= 0 and
dH

dt
=

1

ρ

∂p

∂t

)
. We can thus write:

∫

Scd

−ρ (uirr − u∞) (q · n) dS −

∫

Vc

∂ρ (u− u∞)

∂t
dV

=

∫

Su

−ρ (uirr − u∞) (q · n) dS −

∫

Vc

(
∂ρ (u− uirr )

∂t
+

1

uirr

∂p

∂t

)
dV (I.3.27)
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Figure I.11 – Complementary volumes and surfaces used for the demonstration of the unsteady induced drag
component

Similarly to the wave drag case, this manipulation enables to reduce the numerical errors by
ensuring the isentropic feature of the flow.

The integration on the upstream surface Su gives a zero contribution since uirr = u∞ there.
Using the usual assumption that the contributions on the lateral surfaces are zero, the wake integral
can be turned into a closed surface integral over the outer surface. The final expression for the induced
drag component is therefore:

Dui =

∫

Se

(
− ρ (u− uirr ) q − (p− p∞) i

)
· n dS −

∫

Vc

(
∂ρ (u− uirr )

∂t
+

1

uirr

∂p

∂t

)
dV (I.3.28)

If the fluid is inviscid without any shock, then Vd becomes the whole volume and thus the whole
drag is taken into account. It must be noted that this expression of induced drag takes into account,
within the volume term, phenomena which can be part of the irreversible drag, such as propagation
of viscous interactions outside the viscous volume. We will focus in the applications on analyzing its
behavior.
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3. Generalization of Van der Vooren’s formulation to unsteady flows

3.2.4 Final decomposition

The spurious drag is defined as the balance between the near-field and the far-field approaches,
similarly to the steady case. The final decomposition is then:

Dw =

∫

Sw

−ρ (uirr − u∞) (q · n) dS −

∫

Vw

∂ρ (u− u∞)

∂t
dV

−

∫

Vwd

(
∂ρ (u− uirr )

∂t
+

1

uirr

∂p

∂t

)
dV

Dv =

∫

Sv

(
− ρ (uirr − u∞) q + τx

)
· n dS −

∫

Vv

∂ρ (u− u∞)

∂t
dV

Dui =

∫

Se

(
− ρ (u− uirr ) q − (p− p∞) i

)
· n dS −

∫

Vc

(
∂ρ (u− uirr )

∂t
+

1

uirr

∂p

∂t

)
dV

Dm =

∫

Sa

−ρ (u− u∞) (q · n) dS

Dff = Dw +Dv +Di +Dm

Dsp = Dnf −Dff

(I.3.29)

(I.3.30)

(I.3.31)

(I.3.32)

(I.3.33)

(I.3.34)

Note that if we remove all the time-derivative terms, we obtain the steady formulation as ex-
pressed in Section 2. This unsteady formulation has been published in [85],[84] and [86]. The definition
of the surfaces and volumes is shown in Figure I.10. Again, the drag coefficients are defined as the
non-dimensional version:

CD =
D

1
2ρ∞u

2
∞Sref

(I.3.35)

Since the whole volume is here taken into account, the spurious drag should come from both the
numerical errors and the assumptions made during the demonstration. There are three:

• The flow was assumed isentropic in the complementary volume and in the wake of the shock.

• The viscous contribution in the equation for the stagnation enthalpy variation was neglected in
the complementary volume and in the wake of the shock.

• The longitudinal viscous stress vector was neglected outside the viscous volume.

The neglected terms can consequently be considered as a physical definition of the spurious drag, to
which the numerical errors have to be added. Another definition of the spurious drag is then:

Dsp = Dphy
sp +Dnum

sp (I.3.36)

Dphy
sp = −

∫

Vc∪Vwd

(
ρ
∂uirr
∂∆s

d∆s

dt
+
∂uirr
∂∆H

∇ · (τ · q)

)
dV +

∫

Se\Svd

(τx · n) dS (I.3.37)

Dnum
sp = Dnf −Dff −Dphy

sp (I.3.38)

3.3 Criteria used in practice for the integration volumes definition

We have seen in the theory that the equations are valid on streamtubes enclosing the shock wave
or the body and its boundary layer. In practice, such a surface is not trivial to compute, especially
since the postprocessing tool takes only the conservative variables in the fluid domain as inputs. For
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unsteady turbulent flow simulated by DES methods in particular, such a streamtube can even be ill-
defined if it is intersected by turbulent structures. An almost equivalent, more practical, definition has
thus been found.

The idea is to find a physical criterion which allows to make the distinction between the shock
wave and its wake and the boundary layer and the viscous wake. The variables which allow this
distinction are the entropy and the vorticity:

• Entropy is created across the shock wave and is advected downstream in the wake of the shock,
following the streamlines. Assuming a regular structure for the shock wave, we can say that there
is no or very little vorticity in the wake of a shock.

• Entropy and vorticity are created in the boundary layers by the friction between fluid particles.
Both are advected along the wake as well.

Critical values are user defined for the entropy and the vorticity. The steady criteria are also
used since refinements were made over the years to ensure the continuity of the surfaces and a sufficient
distance from the body (with cell layers added for example). The deviatoric viscous stress tensor is also
used to avoid holes in the volumes. The routine for the definition of the new surfaces is the following:

• Vw : same criterion as in the steady case (see Section 2.4.3.3).

• Vwd : five criteria are used. In the following, – sign stands for a logical and. A cell is tagged as
inside Vwd if:

– outside Vw

– outside V p
v (volume inside Sp

v , defined in the steady case in Section 2.4.3.3)

– ∆s ≥ centropy

– ‖ω‖ ≤ cvorticity

– τ ≤ cfrictionτm

• Vv : three criteria are used. A cell is tagged as inside Vv if:

– outside Vw

– inside V p
v or

– ∆s ≥ centropy or
– ∆s ≥ centropy

– ‖ω‖ ≥ cvorticity – τ ≥ cfrictionτm

• Vc : no refinement on the induced volume is used. The surface Se is the outer surface of the control
domain, and Vc is the complementary volume of the whole control domain. The downstream
extension of the control volume can however be tuned.

Examples of the resulting integration volumes are shown in Figure I.12. We can see that the wake
of the shock wave is effectively included in Vwd . The viscous volume extends also further downstream
than in the steady case. Finally, the complementary volume used for the integration of the unsteady
induced drag is as large as the control volume.

When there is no shock wave, V p
v is used for the unsteady viscous drag. Other refinements

similar to the steady formulation, such as a one vector formulation or the definition of a viscous
pressure component, could be made. The method is however not considered mature enough to address
such advanced improvements.
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3. Generalization of Van der Vooren’s formulation to unsteady flows

Figure I.12 – Integration volumes for the CRM with tail [36] with the unsteady criteria: V p
w (red), Vwd

(orange), Vv (green) and Vc (blue)
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4 Discussion

This new unsteady formulation, although derived with as much care as possible, may lack robust-
ness. It is therefore crucial to discuss its validity and the assumptions made during its derivation. A
main flaw, which is the physics behind the unsteady induced drag component, also requires attention.
Finally, it is natural to compare the formulation with the only other one available in the literature.

4.1 Robustness of the formulation

Let us now look into the robustness of the formulation. Two main possible issues are identified:
the domain of definition of the irreversible axial velocity and the physical criteria used for the definition
of the integration volumes.

4.1.1 Domain of definition of the irreversible axial velocity

The first source of loss of robustness is the use of the irreversible axial velocity uirr . As first
pointed out by Méheut [58], this variable can indeed be undefined in certain zones of the flow. Its
expression comes from the application of a flow free of vortices on a wake plane far from the sources.
The irreversible velocity is there always defined. However, we have seen in Section 2.3 that this
velocity was in practice probed on surfaces closer to the sources of drag. It is therefore required to
check whether its expression is still valid there. We need to check whether the expression under the
square root, denoted Γirr , can become negative:

Γirr = 1 +
2∆H

u2∞
−

2

(γ − 1)M2
∞

(
e
γ−1
γ

∆s
r − 1

)
(I.4.1)

The entropy and stagnation enthalpy variations can also be written as a function of the stagnation
temperature and pressure:

∆s = Cp ln


 Ti
Ti∞

(
pi∞
pi

)γ−1
γ


 (I.4.2)

∆H = Cp (Ti − Ti∞) (I.4.3)

So that:

Γirr = 1 +
2Cp

u2∞
(Ti − Ti∞)−

2

(γ − 1)M2
∞


 Ti
Ti∞

(
pi∞
pi

)γ−1
γ

− 1


 (I.4.4)

We have seen earlier that
Cp

u2∞
=

1

(γ − 1)M2
∞T∞

, which gives:

Γirr =
2

(γ − 1)M2
∞


(γ − 1)M2

∞

2
+

1

T∞
(Ti − Ti∞)−

Ti
Ti∞

(
pi∞
pi

)γ−1
γ

+ 1


 (I.4.5)
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4. Discussion

The definition of the stagnation temperature gives Ti∞ = T∞

(
1 +

(γ − 1)M2
∞

2

)
, so that:

Γirr =
2

(γ − 1)M2
∞


Ti∞ − T∞

T∞
+
Ti − Ti∞
T∞

−
Ti
Ti∞

(
pi∞
pi

)γ−1
γ

+ 1


 (I.4.6)

Γirr =
2

(γ − 1)M2
∞


 Ti
T∞

−
Ti
Ti∞

(
pi∞
pi

)γ−1
γ


 (I.4.7)

The expression for the irreversible velocity uirr is hence defined if:

Γirr ≥ 0 ⇔

(
pi∞
pi

)γ−1
γ

≤
Ti∞
T∞

=

(
pi∞
p∞

)γ−1
γ

⇔ pi ≥ p∞ (I.4.8)

This formulation is therefore undefined if pi < p∞. Recall that this expression has been devised
on a wake plane far from the sources. It is thus not surprising that it may become undefined in other
zones of the flow. This situation can happen in the regions where the fluid is detached, in the core of
strong vortices, in the boundary layers if M > M∞ locally and downstream of strong shocks, which
means inside almost any kind of drag source.

Another physical explanation can be found from Section 2.3.3. The ratio between the upstream
and downstream boundaries of the streamtube Swu and Swd can indeed be expressed as:

Swu
Swd

=
ρd
ρu

ud
uu

=
e
γ−1
γ

∆s
r

√
1 + 2∆H

u2
∞

− 2
(γ−1)M2

∞

(
e
γ−1
γ

∆s
r − 1

) (I.4.9)

pi becoming smaller than p∞ corresponds to an entropy variation becoming large, so that the
downstream boundary Swd becomes large as well. We can therefore interpret the non definition of the
irreversible axial velocity defect as a complete obstruction of the streamtube enclosing the body, as
depicted in Figure I.13.

For steady cases, the zones where uirr is undefined can be easily enclosed within Sp
v or Sp

w ,
resulting in small discrepancies on the drag coefficients.

The physics for unsteady flows may however lead to issues. The unsteady flow could indeed
be such that the non-definition zones become much larger and evolve in time. Including them into
Sp
v would then lead to absurd contours, or even impossible separation between the viscous and the

wave surfaces. Not including them involves to choose a default value to these cells, leading to a loss of
accuracy. An alternative expression would therefore be the best solution, as long as the accuracy and
robustness is kept.

4.1.2 Physical criteria used for the definition of the integration volumes

The criteria used for the definition of the integration domains Sw and Sp
v recalled in Sec-

tion 2.4.3.3 and still used in the unsteady case are valid for steady flows only. Let us check whether it
is still the case for unsteady flows.
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Chapter I. Development of an Unsteady Formulation starting from Van der Vooren’s Formulation

Figure I.13 – Schematic representation of the obstruction process due to the increase of the entropy variation
across a shock wave

4.1.2.1 Wave drag criterion

The wave drag criterion compares the local velocity in the direction of the pressure gradient
to the speed of sound. In unsteady flows, we can encounter a moving shock wave. In that case, the
criterion should be applied in the shock frame of reference. Indeed, in the inertial reference frame, a
shock wave traveling in the opposite direction of the fluid motion can exist even if the velocity of the
fluid is less than the speed of sound. Figure I.14 shows an example of a shock wave moving upstream
in a tube. The relative velocity, in the shock frame of reference, is: qr = q− (−qshock) = q+ qshock can
be larger than a even though q < a.

Figure I.14 – Schematic representation of a shock wave in a tube traveling in the upstream direction

This shock wave might therefore be undetected: the criterion used to define Sw lacks robustness
for unsteady flows.

4.1.2.2 Viscous drag criteria

The viscous drag criteria rely on viscous stress and turbulence level considerations. The velocity
is not involved in the definitions, so that the criteria do not depend on the reference frame chosen.
They are therefore valid for unsteady flows as such.
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4. Discussion

4.2 Physical background for the definition of the unsteady induced drag

It must be understood that the breakdown method, both thermodynamically and in terms of
location, remains an artificial decomposition. All phenomena are actually linked and intricate in the
fluid. If the wave and viscous components can be considered correctly defined, the definition of the
induced component by default is a main flaw. In the unsteady case in particular, it must enclose several
types of sources of drag, due to the unsteadiness.

This force remains however strongly associated with variations of lift, so that we chose to keep
the notion of lift induced drag in the name of this drag component. It includes the force caused by
reversible phenomena at first order, such as vortices and acoustics, as well as second order irreversible
phenomena, such as the propagation of viscous interactions outside the viscous volume or variations
of momentum upstream of the shock wave. These second order irreversible contributions are global in
the fluid domain. This is why we chose to keep them in this induced drag component.

4.3 Comparison with Gariépy’s formulation

The only other unsteady breakdown method found in the literature is Gariépy’s formulation [31].
The authors introduce a new definition of the axial velocity defect [30] within the steady decomposition
and suggest to include the time derivatives into an unsteady drag coefficient. It is detailed in the
Chapter Presentation of the main existing methods of numerical drag prediction. The comparison
with our formulation requires to write both of them in the same reference frame. Gariépy had indeed
chosen to derive the equations in the mobile reference frame. His formulation, translated in the inertial
reference frame, gives, with similar notations:

DG
w =

∫

Sw

−ρ (u− u∗rev ) (q · n) dS (I.4.10)

DG
v =

∫

Sv

(
− ρ (u− u∗rev )q + τx

)
· n dS (I.4.11)

DG
i =

∫

Se

(
− ρ (urev − u∞) q − (p− p∞) i

)
· n dS (I.4.12)

DG
uns =

∫

Se

−ρ (u∗rev − urev ) (q · n) dS −

∫

V

∂ρ (u− u∞)

∂t
dV (I.4.13)

DG
sp =

∫

Vc∪Vwd

∇ ·
(
− ρ (u− u∗rev )q + τx

)
dV (I.4.14)

Dm =

∫

Sa

−ρ (u− u∞) (q · n) dS (I.4.15)

DG
ff = DG

w +DG
v +DG

i +DG
uns +DG

sp +Dm (I.4.16)

Here is a list of differences between the two formulations:

• Use of an unsteady drag component: unsteady terms are gathered in DG
uns rather than distributed

in the wave and viscous drag components. As a result, the synchronization with the force exerted
on the skin is not ensured, and the drag coefficients are likely to be dependent on the extension
of the integration surfaces.

• Theoretical expression for the spurious drag: the authors choose an analytic definition of the
spurious drag, based on ∇ · firr being allegedly zero. However, we have seen that it was not
the case. This definition of the spurious drag may therefore lead to abnormally large values of
artificial drag.
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Chapter I. Development of an Unsteady Formulation starting from Van der Vooren’s Formulation

• No accounting for the wake of the shock in the wave drag component: we have seen in the
derivation that the assumption of irreversible flow was valid only on a wake plane far from the
sources. Applying the assumption on a surface closer to the shock wave requires to take the wake
of the shock into account. Gariépy does not take it into account, so that his definition of wave
drag lacks time history properties.

• Use of another definition of the axial velocity defect: an alternative expression first introduced
by Méheut [58] is used here. Its robustness and accuracy needs validation on steady cases. A
comparative study of both expressions is carried out in Chapter II.

Both unsteady formulations will be compared on simple unsteady test cases in Chapters III,
and IV.
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Chapter Summary

The obstacles of the generalization to unsteady flows have been identi-
fied. The steady formulation chosen has been carefully redemonstrated
in order to locate all the assumptions made. The formulation has then
been generalized to unsteady flows. The result is a breakdown method
which includes unsteady contribution into each phenomenological drag
component. Finally, flaws in the robustness and physical background
have been discussed. Axes to improve these two points will now be
explored.



Chapter II

Study of Improvement Axes

for the Robustness and the Physical Background

This chapter aims at improving the robustness and the physical background of the formulation
developed in the previous chapter. It has indeed been noted that the irreversible axial velocity could be
undefined in certain regions of the flow, inducing loss of robustness. The criterion used for the definition
of the wave volume can also lack accuracy with a moving shock wave. Robustness is however of crucial
importance in a generalization to unsteady flows. Complex unsteady flows around innovative designs
or at the boundary of the flight envelop are indeed the targeted applications. Another flaw of the
unsteady formulation, which comes from the steady method itself, is the lack of physical background
for the induced drag, which is derived by default, as the complementary part of drag once the other
components defined.

The robustness is first looked into, with both issues that are the definition of the irreversible axial
velocity and the criterion used for the wave drag integration. A possible improvement found in the
literature for the first is the use of an alternative expression for the irreversible axial velocity proposed
by Méheut. The derivation of the alternative expression is recalled in order to analyze its validity in
the frame of the drag breakdown method. The theoretical accuracy is then studied, especially when the
integration surfaces are moved. Finally, the formulation using this alternative expression is compared
to the classical one on a whole set of steady test cases. The aim here is to assess the accuracy of the
drag prediction on simple and well known steady test cases, and to infer the results for unsteady flows.

The second cause of robustness loss is then tackled. An unsteady version of the wave criterion
found in the literature to improve the robustness of the computation of the wave surface is looked into,
implemented and tested on unsteady test cases, with and without a moving shock. The effect of a
filter, which is mandatory with the unsteady wave criterion, is also investigated.

The last axis of improvement concerns the physical background. The source terms of the un-
steady induced drag are analyzed, the aim being to identify contributions of other sources of drag.
These contributions may come from either the irreversible sources, wave or viscous, whose second or-
der effects may have propagated outside the streamtubes, or new sources existing only in unsteady
flows, such as acoustics. The share of each contribution also needs to be quantified.

Finally, a definitive formulation is proposed, along with good practice recommendations drawn
from this study.
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Chapter II. Study of Improvement Axes for the Robustness and the Physical Background

1 Study of an alternative expression for the irreversible axial velocity

to improve the robustness

Méheut [58] introduced another expression for the irreversible axial velocity, since the non def-
inition of uirr in certain regions of the flow may cause robustness trouble. The applications targeted
in his paper were only drag prediction from experimental data, with measurements in a wake plane
about one chord downstream of the model. The use of this expression closer to the body in numerical
simulations could however imply an accuracy loss, so that a careful comparative study is required.

1.1 Derivation of the expression developed by Méheut

The definition of the new uirr is obtained by tackling the problem the other way around: Méheut
assumes that the flow is reversible, which means isentropic and isenthalpic according to Van der
Vooren’s theory, in order to obtain a reversible axial velocity urev as a function of p, v and w. He can
therefore assume that, on a plane Sd (as depicted in Figure II.1), there has been neither entropy nor
stagnation enthalpy production:

• ∆s = 0 the entropy is equal to its reference state

• ∆H = 0 the stagnation enthalpy is equal to its reference state

Figure II.1 – Schematic representation of the computation of the reversible axial velocity on a wake plane Sd

These assumptions are actually valid on any plane downstream of a body. There is no need to
use a wake plane far from the sources as in Van der Vooren’s theory.

The general expression for the axial velocity as a function of the thermodynamic variables
obtained in Equation I.2.26 is valid for any flow:

u = u∞

√√√√√1 +
2∆H

u2∞
−

2

(γ − 1)M2
∞


e

γ−1
γ

∆s
r

(
p

p∞

)γ−1
γ

− 1


−

v2 + w2

u2∞
(II.1.1)
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1. Study of an alternative expression for the irreversible axial velocity to improve the robustness

Simply applying the assumptions of reversibility gives the expression of a reversible axial velocity
urev :

urev = u∞

√√√√√1−
2

(γ − 1)M2
∞



(
p

p∞

)γ−1
γ

− 1


−

v2 + w2

u2∞
(II.1.2)

This velocity depends only on the pressure variations probed on the wake plane, and on the
cross velocity components. Now we can define the alternative irreversible axial velocity as:

u†irr = u− urev + u∞ (II.1.3)

The reversible and irreversible parts of f are then defined using this alternative expression u†irr ,
or equivalently the reversible axial velocity defined:

f†
rev

= −ρ(u− u†irr )q − (p− p∞) i = −ρ (urev − u∞)q − (p− p∞) i (II.1.4)

f
†
irr

= −ρ(u†irr − u∞)q + τx = −ρ (u− urev )q + τx (II.1.5)

The rest of the breakdown method is identical. The resulting induced and profile drag coefficients
are denoted D†

i , D
†
w and D†

v :

D†
i =

∫

Sd

(
f†
rev

· n
)
dS (II.1.6)

D†
w =

∫

Swd

(
f
†
irr

· n
)
dS (II.1.7)

D†
v =

∫

Svd

(
f
†
irr

· n
)
dS (II.1.8)

1.2 Domain of definition of the reversible axial velocity

The motivation behind the use of an alternative expression of the axial velocity was the question
of the domain of definition. Let us now check whether this reversible axial velocity is indeed defined
everywhere in the fluid, i.e. whether the term under the square root is always positive:

Γrev = 1−
2

(γ − 1)M2
∞



(
p

p∞

)γ−1
γ

− 1


−

v2 + w2

u2∞
≥ 0 (II.1.9)

Since the flow is now assumed isentropic and isenthalpic, we know that the stagnation pressure
is constant:

pi = pi∞ (II.1.10)

Using the isentropic laws, we can therefore write:

p

(
1 +

γ − 1

2
M2

) γ
γ−1

= p∞

(
1 +

γ − 1

2
M2

∞

) γ
γ−1

(II.1.11)

So that:
(
p

p∞

)γ−1
γ

=
1 +

γ − 1

2
M2

∞

1 +
γ − 1

2
M2

(II.1.12)
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Adding -1:
(
p

p∞

)γ−1
γ

− 1 =

γ − 1

2

1 +
γ − 1

2
M2

(
M2

∞ −M2
)

(II.1.13)

Multiplying by − 2
(γ−1)M2

∞

therefore yields:

−
2

(γ − 1)M2
∞



(
p

p∞

)γ−1
γ

− 1


 = −

1

1 +
γ − 1

2
M2

(
1−

M2

M2
∞

)
(II.1.14)

Owing to the fact that
M2

M2
∞

=
q2

u2∞

a2∞
a2

, and using the isentropic law a2∞ = a2
(
1 + γ−1

2 M2
)
:

−
2

(γ − 1)M2
∞



(
p

p∞

)γ−1
γ

− 1


 = −

1

1 +
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2
M2

+
q2

u2∞
(II.1.15)

Adding 1− v2+w2

u2
∞

:

1−
2

(γ − 1)M2
∞



(
p

p∞

)γ−1
γ

− 1


−

v2 + w2

u2∞
= 1−

1

1 +
γ − 1

2
M2

+
q2

u2∞
−
v2 + w2

u2∞
(II.1.16)

Factoring 1
1+ γ−1

2
M2

finally yields:

Γrev =
1

1 +
γ − 1

2
M2

(
γ − 1

2
M2 +

γ − 1

2
M2 u

2

u2∞
+
u2

u2∞

)
(II.1.17)

which is always positive.
We have therefore proved that the reversible axial velocity is defined everywhere.

1.3 Study of its theoretical validity

Now remember that in order to obtain the final formulation, the integration surfaces are moved
upstream closer to the source of drag. In this step, it is assumed that the flow is isentropic and
isenthalpic downstream of the sources. This step is mandatory to justify why we can integrate on a
small surface around the shock wave, but also explains why the choice of the integration surfaces, as
long as they enclose the sources, has a small impact on the drag coefficients. This point is of course
very important since the method must give the same results with any position of the wake integration
surface.

Here though, the alternative irreversible axial velocity does not depend only on ∆s and ∆H
anymore. We can indeed write:

u†irr = u

(
∆s

r
,
∆H

u2∞
,
p

p∞
,
v2 + w2

u2∞

)
− urev

(
0, 0,

p

p∞
,
v2 + w2

u2∞

)
+ u∞ (II.1.18)
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1. Study of an alternative expression for the irreversible axial velocity to improve the robustness

Now let us expand at the first order this expression of u†irr for small variations of normalized
entropy ∆s∗ = ∆s

r , stagnation enthalpy ∆H∗ = ∆H
u2
∞

, pressure p∗ = p
p∞

, and cross velocity q∗vw = v2+w2

u2
∞

.
The perturbations are assumed to be of the same order of magnitude. Using Taylor’s theorem, we get:

u†irr ∼ u(0, 0, 1, 0) +
∂u

∂∆s∗
∆s∗ +

∂u

∂∆H∗
∆H∗ +

∂u

∂p∗
p∗ +

∂u

∂q∗vw
q∗vw

− urev (0, 0, 1, 0) −
∂urev
∂p∗

p∗ −
∂urev
∂q∗vw

q∗vw + u∞ +O(∆s∗) +O(∆H∗) +O(p∗) +O(q∗vw ) (II.1.19)

We have u(0, 0, 1, 0) = urev (0, 0, 1, 0) = u∞. Furthermore, we can assume that at first order
∂u

∂p
≃

∂urev
∂p

and
∂u

∂(v2 + w2)
≃

∂urev
∂(v2 + w2)

. We thus obtain a first order approximation of this

alternative expression of the irreversible axial velocity:

u†irr ∼ u∞ +
∂u

∂∆s
∆s+

∂u

∂∆H
∆H ∼ uirr (II.1.20)

As a conclusion, both expressions for the irreversible axial velocity are equivalent at first order .
However, it is no more the case at the second order, since the second order crossed terms will no more
cancel out, and the assumption that the derivatives of u and urev are close will no more hold. Both
expressions should accordingly have similar behaviors if the variations in the fluid remain small, but it
can be expected divergences when they become larger. We will verify this allegation shortly hereafter.

1.4 Analysis of the variant suggested by Gariépy

Gariépy and Trépanier assert in their article [30] that ∆H should be taken into account in urev ,
which is equivalent at first order to withdrawing it from u†irr . It may be of limited consequences for
steady test cases. It might however become very large for unsteady cases, since the stagnation enthalpy
varies strongly versus time. We will denote it u∗rev and add a ∗ superscript to the corresponding
variables.

u∗rev = u∞

√√√√√1 +
2∆H

u2∞
−

2

(γ − 1)M2
∞



(
p

p∞

)γ−1
γ

− 1


−

v2 + w2

u2∞
(II.1.21)

u∗irr = u− u∗rev + u∞ (II.1.22)

They try to show that stagnation enthalpy variations are solely caused by reversible effects,
expressing the material derivative of H as a function of the time derivative of pressure: dH

dt = 1
ρ
∂p
∂t

.
Since the variations of pressure on a wake plane are related to reversible processes, they infer that the
variations of stagnation enthalpy probed on the wake plane are solely due to reversible effects.

If this statement might be true, there is no theoretical motivation for the variations of stagnation
enthalpy in the whole fluid domain, as it is computed by the formulation, to be due to reversible effects
only. The time derivative of pressure should in particular not be linked to reversible processes only.
This is why we chose to keep this term in our evaluation of u†irr . The variation of stagnation enthalpy
due to the unsteadiness of a shock should for example appear inside the wave drag.

All three formulations will now be compared for several steady applications.

1.5 Comparison of the three expressions on several steady test cases

The three expressions derived for the irreversible axial velocity defect, uirr , u
†
irr and u∗irr , are

now compared on a whole set of steady test cases, with a growing complexity. The aim is to assess
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the robustness and accuracy of the alternative expressions, especially when moving the downstream
extension of the integration surfaces. For all test cases, second order central discretization with Jameson
artificial viscosity and the turbulence model of Spalart-Allmaras, when the flow is viscous and turbulent,
are used.

1.5.1 Airfoil in a transonic inviscid flow: assessment of CDw

The first test case consists in isolating the wave drag component. The inviscid transonic flow
around a 2-D airfoil is therefore studied. The wave drag component can therefore be compared to the
near-field drag evaluation.

Description of the test case

The test case is a NACA0012 profile. The mesh is a very regular 1,048,276 elements grid adapted
for Euler computations, courtesy from Vassberg and Jameson [93], which can be seen in Figure II.2(a).
The mesh extends to 150 chord lengths around the airfoil. The aerodynamic conditions are: M∞ = 0.8,
and α = 0 deg.

Convergence study

The convergence of the CFD computation can be analyzed in Figure II.2(b). The simulation
reaches convergence after 2,000 iterations. The near-field drag coefficient is then CDnf = 83.52 d.c.
and varies less than a thousandth of drag counts. This value for the total drag is quite close from the
one achieved by Vassberg and Jameson with their finest grid (83.42 d.c.). A grid convergence study
has been carried out and is presented in Appendix B, Section B.1.

(a) Mesh visualization
(b) Convergence curves

Figure II.2 – Mesh and convergence curves for the steady Euler transonic case

Analysis of the flow field resulting from the simulation
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1. Study of an alternative expression for the irreversible axial velocity to improve the robustness

A visualization of the flow field can be found in Figure II.3(a). We can see that a strong shock
wave is present on both the upper and the lower sides, at about mid-chord.

Application of the drag extraction method

The quantity uirr is defined everywhere in this case, so that there is no issue with the integration
surface. The wave surface Sw computed by ffd72, using the physical criteria with three additional cell
layers, encloses the shock wave, as we can see in Figure II.3(b).

(a) Mach contours (b) Sw with three cell layers

Figure II.3 – Flow field and integration surface for the steady viscous subsonic case

Analysis of the drag breakdown results

The previous wave surface is then progressively extended downstream by varying the number of
cell layers. This number is also reduced to zero in order to analyze the behavior of all three expressions
for the drag coefficient. The resulting curves are visible in Figure II.4. We can see that the classical
expression CDw , which uses uirr , rapidly converges to a value very close to the near-field value (83.59
d.c.).

On the contrary, CD
†
w and CD

∗
w , which use u†irr and u∗irr , converge towards a different value

(about 77 d.c.). Moreover, the behavior of CD∗
w very close to the source of drag is very different from

the other two expressions, with strong discrepancies. The discrepancy with CD
†
w can only be explained

by numerical enthalpy variations very close to the shock wave which are not taken into account in this
expression. As noted in the theoretical study, the expressions are equivalent at first order only, so that
discrepancies close to the source of drag could be expected.

1.5.2 Airfoil in a subsonic viscous flow: assessment of CDv

The second drag component looked into is the viscous drag. To do so, a 2-D airfoil in a viscous
subsonic flow is studied.
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Figure II.4 – Evolution of the wave drag coefficient with respect to the downstream extension of the
integration surface for the steady Euler transonic case

Description of the test case

The test case is a NACA0012 profile in a viscous subsonic flow, at M∞ = 0.2, α = 0 deg, and
Re = 3 × 106 based on the free stream velocity and the chord. The mesh is a 262,144 elements grid,
extending 150 chords around the airfoil, as depicted in Figure II.5(a).

Convergence study

The convergence curves for the residuals converge slowly but decrease of about 6 orders, as we
can see in Figure II.5(b). The near-field drag coefficient is also converged to the thousandth of drag
count after 10,000 iterations. A grid convergence study has also been carried out in this case and can
be found in Appendix B, Section B.2.

Analysis of the flow field resulting from the simulation

A visualization of the flow field can be found in Figure II.8. The boundary layer developing
around the airfoil and the wake are clearly visible.

Application of the drag extraction method

The viscous surface is computed using the physical criteria described earlier. We can see in
Figure II.7(a) that the boundary layer and the wake are completely enclosed within the surface. There
exist cells where uirr is undefined in this case. They are located in the first cell layer around the skin, on
the upper and the lower side of the airfoil, leading edge and trailing edge excluded (see Figure II.7(b)).
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(a) Mesh visualization
(b) Convergence curves

Figure II.5 – Mesh and convergence curves for the steady viscous subsonic case

Figure II.6 – Mach contours for the steady viscous subsonic case
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They are easily enclosed within the viscous surface, without needing to deform it, so that the drag
results should not be impacted.

(a) Sv (b) Cells where uirr is undefined

Figure II.7 – Integration surface and cells where uirr is undefined for the steady viscous subsonic case

Analysis of the drag breakdown results

The downstream extension of the viscous volume is varied from 0 to 5 chords downstream of the
trailing edge in Figure II.8. We can see that all three formulations converge towards the same value,
which is consistent with the near-field value CDnf = 90.64 d.c. The two variants of the reversible
expression CD

†
v and CD

∗
v give almost superimposed curves. There is actually a very small discrepancy

between both curves when the convergence is reached. We can however see that the classical expression
CDv converges more rapidly. We can conclude that the use of uirr allows to bring the integration surface
much closer to the trailing edge than the use of u†irr or u∗irr . This confirms the equivalence at first
order only highlighted in the theoretical study.

Figure II.8 – Evolution of the wave drag coefficient with respect to the downstream extension of the
integration surface for the steady viscous subsonic case
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1.5.3 Wing in a subsonic inviscid flow: assessment of CD i

The third test case is a 3-D wing in a subsonic inviscid flow. The aim is here to isolate the third
drag component: the induced drag.

Description of the test case

The wing is an elliptic wing based on the NACA0012 profile, with an aspect ratio λ = 8. The
grid has been adapted from the 2-D grids of Vassberg and Jameson by Destarac and are available
online [92]. The mesh is about 8 million elements, with an extension of 150 chord lengths around the
wing, and is represented in Figure II.9(a). The aerodynamic conditions are a Mach number M∞ = 0.2,
and α = 6 deg.

Convergence study

The residuals of density and stagnation energy decrease of more than 8 orders after 4,000 iter-
ations, as shown in Figure II.9(b). The near field drag coefficient is also converged to the thousandth
of drag count, so that the convergence is considered satisfactory. A grid convergence study is also
provided in Appendix B, Section B.3.

(a) Mesh visualization
(b) Convergence curves

Figure II.9 – Mesh and convergence curves for the steady Euler subsonic 3-D case

Analysis of the flow field resulting from the simulation

The flow field around the elliptic wing is provided in Figure II.10. The flow is subsonic around
the airfoil and a vortex develops at the tip of the wing, as highlighted by the isosurface of Q criterion.

Application of the drag extraction method

In this case, there is no zone where uirr is undefined. The induced volume consists in considering
the whole fluid domain cut at a given downstream extension.
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Figure II.10 – Mach contours, isosurface of Q criterion colored by the vorticity magnitude, and stream ribbons
for the steady Euler subsonic 3-D case

Analysis of the drag breakdown results

Figure II.11 shows the evolution of the induced drag coefficient as the downstream extension of
the induced surface is increased starting from the trailing edge to five chords downstream of the wing.
As usual with far-field methods, the induced component decreases as the distance from the trailing
edge increases, due to the numerical dissipation of the wingtip vortex by the CFD solution. There is
already a discrepancy of about 4 d.c. between the induced drag CD i measured at the trailing edge
and the near-field value, which can be explained by the numerical dissipation linked to the coarseness
of the grid (see the grid convergence study in Appendix B, Section B.3). The theoretical value of the
induced drag, computed for an elliptic loading as CD

th
i = CL2

πλ
is 131 d.c. The usual values retained

for the position of the plane are between 0 and 1 chord.
The discrepancy is even stronger with the alternative expressions CD†

i and CD
∗
i , which give very

similar results. Again, the equivalence at first order only can explain these discrepancies between the
various far-field formulations in this zone close to the trailing edge.

1.5.4 Wing in a transonic viscous flow: assessment of all three drag components

This fourth test case is a synthesis case, which allows to evaluate the behavior of all three drag
components when all phenomena are present.

Description of the test case

The wing is a rectangular NACA0012-based wing with an aspect ratio of 8. The mesh is around
1 million elements and is shown in Figure II.12(a). It extends up to 30 chord lengths around the wing
in every direction. The aerodynamic conditions are: M∞ = 0.8, α = 2.5 deg and Re = 2.7× 106 based
on the free stream velocity and the reference chord.
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Figure II.11 – Evolution of the wave drag coefficient with respect to the downstream extension of the
integration surface for the steady Euler subsonic 3-D case

Convergence study

The convergence curves in Figure II.12(b) show that the computation is well converged after
10,000 iterations. The variation of the near-field drag coefficient (in blue) in particular is less than a
thousandth of drag count (CDnf = 283.31 d.c.).

(a) Mesh visualization

(b) Convergence curves

Figure II.12 – Mesh and convergence curves for the steady viscous transonic 3-D case
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Analysis of the flow field resulting from the simulation

The flow field is presented in Figure II.13. The shock wave on the upper side is quite strong. The
Q-criterion defined by Hunt [40] allows locating vortices in a flow field. An isosurface of this criterion
is plotted in Figure II.13, highlighting the wingtip vortex in this case.

Figure II.13 – Mach contours and isosurface of Q-criterion colored by the vorticity magnitude for the steady
viscous transonic 3-D case

Application of the drag extraction method

The flow field is post-processed after 10,000 iterations. Figure II.14(a) shows an example of the
integration surfaces for a given downstream extension.

(a) Integration surfaces

(b) Cells where uirr is undefined

Figure II.14 – Integration surfaces and cells where uirr is undefined for the steady viscous transonic 3-D case

The cells where uirr is undefined, shown in black in Figure II.14(b), are located very close to
the skin and a little downstream of the shock. They are entirely enclosed within the viscous surface,
so that there is no trouble for using uirr .
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Analysis of the drag breakdown results

The downstream extension of the surfaces was set to vary in Figures II.15(a), and II.15(b),
allowing a comparison between the drag coefficients obtained with the three expressions of the axial
velocity defect. For the viscous and induced drag coefficients, the downstream extension of the inte-
gration surface expands quickly in the wake, whereas for the wave drag coefficient the surface is slowly
increased with a certain amount of cell layers. The converged values of drag are around 104 d.c. for
the wave drag, 154 d.c. for the viscous drag and 27 d.c. for the induced drag. The lift is 0.256, so that

the theoretical induced drag for an elliptic load is CD
th
i =

CL
2

πλ
= 26 d.c.

(a) Viscous and induced drag coefficients (b) Wave drag coefficient

Figure II.15 – Evolution of the wave, viscous and induced drag coefficients with respect to the downstream
extension of the integration surfaces for the steady viscous transonic 3-D case

The results of the synthesis test case confirm the observations made in the previous test cases:
the classical expression CD using uirr as defined by Van der Vooren is quite reliable, depending
very little on the distance to the body, even very close to the sources of drag. The expressions
CD

† and CD
∗, using u†irr and u∗irr , give less satisfactory results: they are strongly dependent on

the integration volumes, especially close to the trailing edge. These expressions are therefore valid
for experimental data measured far from the body but less reliable for numerical results. These
observations are consistent with the theoretical remarks made in Section 1.3. Another comment is
that there is very little difference between CD

† and CD
∗ in the steady case, since the variation of

stagnation enthalpy is then very small. It will no more be the case for unsteady flows.
The conclusion of this first study is that the integration volumes and surfaces must be chosen

very carefully when using u†irr or u∗irr . Although these conclusions are valid only for steady flows, we
draw some recommendations for unsteady flows: we chose to keep uirr in our unsteady formulation,
and the downstream extension will also be chosen sufficiently far from the body when using Gariépy’s
formulation.
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2 Study of new criteria for the robustness of the volume definitions

As noted in Chapter I, Section 4.1.2, the physical criterion used for the determination of the
surface enclosing the shock wave may lose robustness in the case of a mobile shock wave or a mobile
body. A literature review [111] indicates that there exist filters as well as an unsteady version of the
wave criterion in order to account for transient phenomena. They have been implemented in the ffd72
code, and assessed on two unsteady cases, with and without shock waves.

2.1 Expression of the unsteady criterion

The criterion for a mobile shock wave has first been introduced by Lovely and Haimes [49], and
has been used by Gariépy [31]. The idea consists in adding an unsteady term to the steady physical
criteria as expressed in Equation I.2.67. Lovely and Haimes note that, in the unsteady case, a transient
shock wave corresponds to a material derivative of pressure such that, in the inertial reference frame:

dp

dt
≥ a ‖∇p‖ (II.2.1)

The definition of the material derivative yields:

dp

dt
=
∂p

∂t
+ q ·∇p (II.2.2)

The unsteady version of the criterion can therefore be expressed as:

q ·∇p+
∂p

∂t
≥ cshock a ‖∇p‖ ⇒ cell ∈ Suns

w (II.2.3)

Removing the unsteady term ∂p
∂t

allows retrieving the steady criterion. Since the computation
of a time derivative requires computational effort and storage, Lovely and Haimes then transform the
time derivative of pressure into a divergence term. Gariépy also chose to use this expression with a
divergence. However, since we are already computing time derivatives for the formulation itself, we
choose to keep the original expression of Equation II.2.3 in order to avoid errors in the computation
of the gradient.

2.2 Evaluation on an unsteady subsonic test case

The unsteady wave criterion is first tested on an unsteady case which is free of shock. The aim
is here to make sure that the criterion does not wrongly detect cells as belonging to a shock surface.
The test case is presented in details in Chapter III, Section 1. It consists of a NACA0012 profile placed
in a flow field at low Mach number M∞ = 0.2 and at very high angle of attack α = 20 deg. A natural
instability develops as the flow separates, forming two vortices which are periodically emitted and
advected along the wake. There is no shock wave, so that the criterion should stay inactive everywhere
in the fluid. Figure II.16 shows however that many cells activate the unsteady wave criterion, whereas
the steady criterion is never activated. This is quite problematic for a low Mach number case as this
one.
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Figure II.16 – Cells activating the unsteady criterion for the subsonic vortex shedding case, without filtering

2.3 Evaluation on an unsteady transonic test case

The unsteady wave criterion is then tested on a buffet case. The test case is presented in details
in Chapter III, Section 2. The supercritical profile OAT15A is placed in a flow field at Mach number
M∞ = 0.73 with an angle of attack α = 4.5 deg. Due to the interaction between the shock wave and
the boundary layer, a natural instability develops: the shock wave starts oscillating on the upper side
of the airfoil.

During the motion of the shock wave in the upstream direction, the situation described in
Chapter I, Section 4.1.2 may occur: the shock wave may go undetected if the velocity of the fluid
becomes less than the speed of sound due to the upstream motion, the relative velocity being still as
strong. It is therefore a good test case.

The computation of the integration volumes and surfaces by the ffd72 code using both steady and
unsteady wave criteria however gives very different results. Without filtering, the unsteady criterion
tags many cells which do not belong to the wave surface as such, as depicted in Figure II.17. The
steady criterion on the other hand seems to give satisfactory results. The time evolution of the Sp

w

surfaces is presented in Appendix C, Figure C.33.

2.4 Filtering

Lovely and Haimes also observed these falsely tagged cells in the whole fluid domain. They
explained it by the errors in the time derivative which become of the same order of magnitude as the
time derivative itself. The zones in red in Figure II.16 and Figure II.17 also correspond to zones where
the acoustics may play a role, as we will see in Section 3.2.
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Figure II.17 – Cells activating the unsteady criterion for the buffet case, without filtering

In order to solve this problem, Lovely and Haimes propose several filtering techniques. The
conclusion of their study is that a simple filter on the pressure gradient is the best solution, since shock
waves correspond to zones with high pressure gradients. The main issue is however to find the correct
threshold value. They devise a sophisticated method using the derivative of the curve representing the
number of cells for each value of the pressure gradient.

We decided to initially test the filter on the pressure gradient using an arbitrary threshold value:

‖∇p‖ ≤ ‖∇p‖threshold ⇒ cell /∈ Suns,filtered
w (II.2.4)

For the subsonic case, since we want all tagged cells to be cut out of the wave surface, the
threshold value simply has to be chosen large enough. The transonic case is a more challenging issue.
Several threshold values have been manually tested. The best value was ‖∇p‖threshold = 106 Pa.m−1.
The results evolving with respect to time are presented in Appendix C, Figure C.35. We can see that
cells around the leading edge are still tagged despite the filtering. A larger threshold value actually
removes cells from the surface around the shock wave rather than at the leading edge. Despite this
observation, the surface using the filtered unsteady criterion Suns,filtered

w is very close, even slightly
larger, to Sp

w as the shock wave is moving upstream, i.e. when the criterion is expected to be better
suited, as in Figure II.18(b). On the contrary, as the shock wave moves downstream, there are more
discrepancies between both surfaces, and Suns,filtered

w becomes even much smaller, as at time step 400
in Figure II.18(a). The foot of the shock wave is also excluded from the wave surface at most time
steps.
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(a) Time step 400 (b) Time step 700

Figure II.18 – Cells activating the steady criterion (red), and cells activating the unsteady criterion for the
buffet case, with filtering (black)

2.5 Conclusions on the validity of the unsteady wave criterion

As a conclusion, although the filtered unsteady wave criterion gives acceptable results for the
buffet case when the shock wave is moving in the upstream direction, the other results are not sat-
isfactory. In particular, it is quite problematic that wave surfaces should be identified in a subsonic
flow. In practice, we would advise not to use this unsteady criterion, except if the steady version fails
at detecting a moving shock wave, which has not yet occurred in this work.

On the theoretical point of view, the fact that the criterion without filter selects almost all cells
in the fluid domain is actually quite astonishing. It is in fact as if only the filtering on the pressure
gradient allowed defining the wave surface. Questions about the theoretical validity of the unsteady
criterion are therefore raised.
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3 Study of the physical interpretation of the volume term in the un-

steady induced drag component

We have seen in Chapter I, Section 4.2 that the unsteady induced drag component, defined
by default as the remaining component once the wave and viscous components defined, could enclose
phenomena other than lift induced ones. A careful physical study is therefore required in order to be
able to correctly interpret the behavior of this drag component.

3.1 Link between surface and volume terms

The aim here is to better understand the role played by the volume term in the unsteady
induced drag component. Let us imagine that the induced drag is defined only by the surface term
in Equation I.3.28. The definition should not depend on the choice of the wake integration plane Sd .
Let us consider a wake plane S′

d located further downstream. The volume between these two planes is
denoted Vd , as in Figure II.19.

Figure II.19 – Schematic representation of the effect of a change in the wake surface on the induced drag
component

We can similarly as before reduce the integration surface to the wake plane Sd . The induced
drag can therefore be expressed as:

Di =

∫

Sd

(
− ρ (u− uirr ) q − (p− p∞) i

)
· n dS (II.3.1)

We want the induced drag computed on the wake plane S′
d to be equal to this expression. A
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correction term denoted Dcorr needs to be added:

Di =

∫

S′

d

(
− ρ (u− uirr )q − (p− p∞) i

)
· n dS +Dcorr (II.3.2)

We can now compute this corrective term as the difference between both surface terms:

Dcorr =

∫

Sd

(
−ρ (u− uirr )q− (p− p∞) i

)
·n dS−

∫

S′

d

(
−ρ (u− uirr )q− (p− p∞) i

)
·n dS (II.3.3)

Applying the divergence theorem, and using the fact that the contributions on the lateral surfaces
are once again zero, we can express this corrective term as a volume integral:

Dcorr = −

∫

Vd

∇ ·
(
− ρ (u− uirr ) q − (p− p∞) i

)
dV (II.3.4)

Expanding the integrand I:

I = −∇ ·
(
ρuq

)
−
∂p

∂x
+ ρq ·∇uirr + uirr∇ ·

(
ρq
)

(II.3.5)

The x-component of the Navier-Stokes equations, neglecting the viscous term, implies that:

∂ρu

∂t
+∇ ·

(
ρuq

)
= −

∂p

∂x
(II.3.6)

On the other hand, the definition of the material derivative of uirr gives:

duirr
dt

=
∂uirr
∂t

+ q ·∇uirr (II.3.7)

Plugging Equations II.3.6, and II.3.7 into Equation II.3.5, we get:

I =
∂ρu

∂t
+ ρ

duirr
dt

− ρ
∂uirr
∂t

+ uirr∇ ·
(
ρq
)

(II.3.8)

The second term has already been computed in Chapter I, Section 3.2.1:

ρ
duirr
dt

=
1

uirr

∂p

∂t
(II.3.9)

The third term can be written:

ρ
∂uirr
∂t

=
∂ρuirr
∂t

− uirr
∂ρ

∂t
(II.3.10)

The continuity equation
∂ρ

∂t
+∇ ·

(
ρq
)
= 0 allows to cancel out the last term with the last term

from Equation II.3.8. We finally get:

Dcorr = −

∫

Vd

(
∂ρ(u− uirr )

∂t
+

1

uirr

∂p

∂t

)
dV (II.3.11)

This expression corresponds exactly to the volume term in the definition of the unsteady induced
drag. We can therefore deduce that this term allows accounting for the non dependence on the
integration surface, as well as for the synchronization in time.

Now we can analyze separately the surface and the volume terms. The surface term indeed
accounts for the reversible effect measured on the wake plane, whereas the volume term allows to
remove the dependency on the position of the wake surface. This volume term is in practice computed
over the whole complementary volume Vc . It may therefore enclose other sources of drag. We will now
focus on analyzing its physical content.
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3.2 Acoustic effects

One of the first ideas to better understand what the volume term may enclose has been to plot
the field distribution of its source term. It has been done with all unsteady test cases.

The first unsteady test case is the vortex shedding case presented in the previous section and in
details in Chapter III, Section 1. The source term is plotted in the flow field in Figure II.20. The color
scale was chosen so as to highlight the phenomena occurring in the far field. Acoustic waves can be
recognized in red and blue, mainly centered around the trailing edge of the airfoil. They also propagate
around the airfoil as time goes by. The shape of the circles is slightly deformed by the reference velocity,
which is relatively small (M∞ = 0.2). The distance between two waves in the direction of the upcoming
flow has been checked to be equal to the speed of sound corrected by the reference velocity, multiplied
by the time separating two successive waves. The wake of vortices also seems to behave like a secondary
acoustic source. A positive and a negative wave are emitted respectively over and under the airfoil, so
that the acoustic field is very similar to the field emitted by an acoustic dipole.

Figure II.20 – Visualization in the flow field of the volume term of the unsteady induced drag component for
the vortex shedding case

The same kind of flow visualization has been applied to the second unsteady test case, the
buffet case (details can be found in Chapter III, Section 2). The waves propagating around the airfoil
are also quite specific of acoustic phenomena, as depicted in Figure II.21. The circles are here much
more deformed than in the vortex shedding case, due to the fact that the reference velocity is larger
(M∞ = 0.73). Again, the distance between two waves corresponds to the distance traveled by a
perturbation propagating at the speed of sound in the field moving at the reference velocity during the
time separating two waves. The alternating positive and negative waves are also very similar to the
acoustic field around a dipole source.

The source term of the volume integral,
∂ρ(u− uirr )

∂t
+

1

uirr

∂p

∂t
, therefore seems to be a very

good indicator of acoustic effects. Further investigation has revealed that both terms were equally

strong and both showed the same kind of pattern in the flow field. Only the term −
∂ρuirr
∂t

is negligible
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Figure II.21 – Visualization in the flow field of the volume term of the unsteady induced drag component for
the buffet case

since the entropy and enthalpy variations responsible for the irreversible axial velocity are very low
in the far-field. Alternative expressions for this source term have also been derived, similarly to the
derivation carried out in Section 3.1:
∂ρ(u− uirr )

∂t
+

1

uirr

∂p

∂t
= ∇ ·

(
ρ (uirr − u) q

)
+
∂p

∂x
=
∂ρ(u− u∞)

∂t
+∇ ·

(
ρ (uirr − u∞)q

)
(II.3.12)

The behavior of each term in every formulation is however always the same: strong variations
in time and correlation between the two of them.

Although the presence of acoustic effects has been proven, it may be interesting to know whether
acoustics can be a source of drag and, if so, what is the order of magnitude of such effects, in particular
whether it is negligible with respect to the other phenomena or not.

3.3 Breakdown of the unsteady induced drag component

We have seen in the previous section that acoustics could be a source of unsteady drag worth
accounting for, and that its contribution was enclosed within the volume term of the unsteady in-
duced drag component. Other sources of drag can be enclosed within this volume term: second order
irreversible phenomena can appear, such as the propagation of viscous interactions outside the vis-
cous volume, or variations of momentum upstream of a shock wave. These second order irreversible
contributions are global in the fluid domain.

The idea in this section is to achieve a breakdown of the volume term, in order to part the
unsteady induced drag component into a contribution related to acoustics, and a component related
to lift variations, and global contributions in the fluid domain. The idea consists in retrieving the
Riemann invariant for a potential flow R+ = u+ 2a

γ−1 .
We can write the volume term I as:

I =
∂ρ(u− uirr )

∂t
+

1

uirr

∂p

∂t
= ρ

∂(u− uirr )

∂t
+ (u− uirr )

∂ρ

∂t
+

1

uirr

∂p

∂t
(II.3.13)
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Assuming an isentropic flow, which is a valid assumption in the considered volume, we can write:
∂p

∂t
= a2

∂ρ

∂t
. Therefore:

I = ρ
∂u

∂t
− ρ

∂uirr
∂t

+

(
u− uirr +

a2

uirr

)
∂ρ

∂t
(II.3.14)

Unsteady Bernoulli theorem says:

γ

γ − 1

p

ρ
+
q2

2
+
∂ϕ

∂t
=

a2∞
γ − 1

+
u2∞
2

(II.3.15)

Deriving with respect to time, assuming a 1-D flow and applying the isentropic law for the
pressure, yields:

a2

ρ

∂ρ

∂t
+ u

∂u

∂t
+
∂2ϕ

∂t2
= 0 (II.3.16)

So that the derivative of density can be written as:

∂ρ

∂t
= −

ρ

a2

(
u
∂u

∂t
+
∂2ϕ

∂t2

)
(II.3.17)

The Bernoulli theorem as written in Equation II.3.15 also yields:

∆H = −
∂ϕ

∂t
(II.3.18)

So that the time derivative of the irreversible axial velocity can be written:

∂uirr
∂t

= −
1

uirr

∂2ϕ

∂t2
(II.3.19)

As a result, Equation II.3.14 yields:

I =
ρ(uirr − u)

a2

(
∂2ϕ

∂t2
+

(
u+

a2

uirr

)
∂u

∂t

)
(II.3.20)

The time derivative of the Riemann invariant is expressed as:

∂R+

∂t
=
∂u

∂t
+

2

γ − 1

∂a

∂t
(II.3.21)

The time derivative of the Bernoulli theorem, written with the speed of sound, yields:

2

γ − 1

∂a

∂t
= −

u

a

∂u

∂t
−

1

a

∂2ϕ

∂t2
(II.3.22)

The time derivative of the Riemann invariant can therefore be expressed as:

∂R+

∂t
= −

1

a

(
∂2ϕ

∂t2
+ (u+ a)

∂u

∂t

)
(II.3.23)

Finally, we get for the volume term I:

I =
ρ(uirr − u)

a

(
−
∂R+

∂t
+

(
1

a
−

1

uirr

)
∂u

∂t

)
(II.3.24)
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3. Study of the physical interpretation of the volume term in the unsteady induced drag component

We can now isolate an acoustic contribution, expressed as a function of the Riemann invariant,
in the volume term of the unsteady induced drag component. It may also enclose other reversible
propagation effects. The resulting drag coefficient is therefore called propagation and acoustics drag
component Dpa :

Dpa =

∫

Vc

ρ(uirr − u)

a

∂R+

∂t
dV (II.3.25)

The residual term is then added to the surface term of the unsteady induced drag, so as to define
an induced drag component Di :

Di =

∫

Se

(
− ρ (u− uirr )q − (p− p∞) i

)
· n dS −

∫

Vc

ρ (u− uirr )

(
1

a
−

1

uirr

)
∂u

∂t
dV (II.3.26)

Although the theoretical content of this term is difficult to analyze, it exhibits interesting fea-
tures, such as positiveness, good orders of magnitude, and independence on the integration volume
chosen, if sufficiently far from the body. Remember that the whole volume term was the one responsi-
ble for the independence on the integration surface. We have split this term in two, and kept only the
residual term. It appears however that this residual can ensure the independence once sufficiently far
from the body. It should be equivalent to the whole volume term in this zone.
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Chapter II. Study of Improvement Axes for the Robustness and the Physical Background

4 Description of the final method used for the unsteady applications

Taking all these reflections and observations into account, we have devised a robust drag break-
down method which is summarized here.

4.1 Final formulation with five components

Introducing the breakdown of the unsteady induced drag derived in Section 3.3 into the unsteady
formulation developed in Chapter I yields:

Dw =

∫

Sw

−ρ (uirr − u∞) (q · n) dS −

∫

Vw

∂ρ (u− u∞)

∂t
dV

−

∫

Vwd

(
∂ρ (u− uirr )

∂t
+

1

uirr

∂p

∂t

)
dV

Dv =

∫

Sv

(
− ρ (uirr − u∞) q + τx

)
· n dS −

∫

Vv

∂ρ (u− u∞)

∂t
dV

Di =

∫

Se

(
− ρ (u− uirr ) q − (p− p∞) i

)
· n dS −

∫

Vc

ρ (u− uirr )

(
1

a
−

1

uirr

)
∂u

∂t
dV

Dpa =

∫

Vc

ρ(uirr − u)

a

∂R+

∂t
dV

Dm =

∫

Sa

−ρ (u− u∞) (q · n) dS

Dff = Dw +Dv +Di +Dpa +Dm

Dsp = Dnf −Dff

(II.4.1)

(II.4.2)

(II.4.3)

(II.4.4)

(II.4.5)

(II.4.6)

(II.4.7)

This formulation has been implemented in the ffd72 code. It has also been published in [88].

4.2 Good practice recommendations

The good practice recommendations drawn from the studies carried out in this chapter are
summarized in Table II.1.

Problem General case Special case Special recommendation

uirr or u†irr? uirr u†irr if the zone of non
definition deforms the
viscous surface

use a larger downstream ex-
tension

which wave crite-
rion?

steady criterion unsteady wave criterion
if the steady one fails

remove spurious cells by hand

downstream
extension?

more than 3 chord
lengths

Table II.1 – Good practice recommendations for the robustness of the method
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Chapter Summary

Ideas to improve the robustness of the unsteady drag breakdown method
have been explored. The contemplated solutions have proved disap-
pointing, while the solutions used in the steady method actually raise
no issue with all the test cases considered so far. The use of the alter-
native irreversible axial velocity as well as the unsteady wave criterion
should therefore be used only when the classical tools fail. The knowl-
edge of the physical background of unsteady induced drag has also been
improved, highlighting in particular acoustic effects. A new breakdown
of this drag component has been accordingly proposed. The resulting
final formulation, as well as good the practice recommendations, can
now be applied to unsteady test cases.



Chapter III

Assessment of the Wave, Viscous, and Acoustic

Drag Components on Naturally Unsteady Cases

This chapter aims at assessing the wave, viscous, and propagation and acoustics drag components
which are expected to appear in 2-D naturally unsteady cases. Since no other data is available for
the breakdown of drag, only the total far-field drag can be validated against the near-field drag. The
behavior of the components will therefore have to be analyzed in terms of order of magnitude and
synchronization in time with the flow features. The decomposition will also be compared to Gariépy’s.

The first test case is the shedding of vortices downstream of an airfoil at high angle of attack.
The instability is natural, and the flow is inviscid, so that the only expected drag components are
the viscous, and the propagation and acoustics drag coefficients. The conditions of the simulation are
first introduced, the convergence is then evaluated, as well as the resulting unsteady flow field. The
drag breakdown method can then be applied. The behavior of the resulting drag coefficients is then
analyzed and compared to the ones obtained applying Gariépy’s formulation, and steady methods.

The second test case is a buffeting instability on the upper side of a supercritical airfoil at
transonic speed. A wave drag component will therefore add to the viscous and propagation and
acoustics components. The flow simulation is carried out and converged, before being post-processed.
The evolution in time of the drag coefficients resulting from the breakdown is then analyzed, in terms of
orders and magnitude as well as synchronization in time with the flow features. Gariépy’s formulation
and steady methods are also compared. Conclusions regarding the validity of the far-field breakdown
can finally be drawn.
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Chapter III. Assessment of the Wave, Viscous, and Acoustic Drag Components

on Naturally Unsteady Cases

1 Application to a vortex shedding case

The first unsteady case is the natural instability which develops downstream of an airfoil at very
high angles of attack and low speed: similarly to the wake behind a bluff body, positive and negative
free vorticity is alternatively shed in the wake. This test case is representative of the flow which can
be experienced by the blades of a rotor, for which the local angle of attack can reach such high values.
The drag components playing a role in this test case should be the viscous and the propagation and
acoustics components.

1.1 Quick literature review

The idea for this simple test case has been found in a Ph.D. dissertation about unsteady op-
timization [72]. This test case has been chosen since it is one of the most simple: a motion less 2-D
airfoil, and no shock waves. Only viscous and acoustic effects are present in this case. The features
of this type of flow are: a strong separation with emission of positive and negative vortices, which are
shed in the wake. In this Ph.D. dissertation, the flow is simulated by URANS simulations at Reynolds
number 2 million.

Such a simple test case has not been often studied. An experimental study by Mesquita [61]
show that an average drag of around 2,000 d.c. is experienced by the NACA0012 airfoil when the angle
of attack reaches 20 deg at Reynolds number 1 million. Studies of the frequency of the vortex shedding
experimentally measured for several Reynolds number and angles of attack have been carried out by
Huang and Lin [35], and Lee and Huang [45], showing that the Strouhal number at 20 deg is around 0.2
for small Reynolds numbers (up to 30,000). No data for larger Reynolds numbers is however provided.

A numerical study of the vortex shedding downstream of a NACA0012 profile at a low Reynolds
number (50,000), and for two smaller angles of attack (9.25 and 12 deg), with DNS simulations, has
also been performed by Rodriguez et al. [71], highlighting the flow structures appearing on the upper
side of the airfoil.

1.2 Description of the test case

The considered airfoil is a NACA0012 profile. The aerodynamic conditions are a very high angle
of attack α = 20 deg, a low Mach number M∞ = 0.2, and a Reynolds number Re = 2 × 106 based
on the free stream velocity and the chord. The turbulence model Menter k − ω SST was chosen for
its better capabilities on detached flows (see Appendix A for details), and the numerical scheme is
AUSM-P. The mesh is a 270,000 elements 2-D mesh (see Figure III.1(a)) whose extension is 20 chord
lengths in every direction, and adapted for a wake with a high skew angle.

1.3 Convergence study

The time step is 5× 10−6 s, which corresponds to 3,200 steps by period. A steady computation
has first been carried out, from which the unsteady simulation has been run. Several periods have
been simulated before extracting the flow field. The convergence to a periodic state is ensured looking
at the lift vs drag curve shown in Figure III.1(b) which is an almost closed loop.
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1. Application to a vortex shedding case

(a) Mesh visualization

(b) Polar of lift as a function of drag

Figure III.1 – Mesh and convergence curve for the vortex shedding case

1.4 Analysis of the flow field resulting from the simulation

The flow field is presented in Figure III.2, with the visualization of vorticity contours. We can
see that pockets of negative and positive vorticity are periodically emitted from the trailing edge and
the leading edge respectively. These structures are then advected along the wake, before dissipating
far from the airfoil.

Figure III.2 – Flow field visualization taken at time step 2,000 for the vortex shedding case

Figures retracing the evolution in time of this vorticity field are presented in Appendix C,
Figure C.27. In these animated figures, we can see how the pockets of vorticity detach from the airfoil
and interact with each other.
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1.5 Application of the drag extraction method

Once the flow field obtained from the numerical simulation and stored every 50 time steps, the
postprocessing method can be applied. The first step consists in computing the integration volumes
using the criteria described in Chapter I and Chapter II, with a downstream extension of 20 chord
lengths. They are computed at each extraction of drag. An example of the viscous volume is shown
in Figure III.3. The induced surface is there again the outer surface and the integration volume is the
complementary of the viscous volume.

Figure III.3 – Integration volume taken at time step 2,000 for the vortex shedding case

The evolution in time of this viscous volume is also presented in Appendix C, Figure C.29. We
can see that the wake is correctly enclosed within the volume at each time step.

The domain of non definition of uirr depicted in Figure III.4 is rather large, with pockets within
at most three negative vortices. Its evolution in time is also plotted in Appendix C, Figure C.30. In
spite of the relatively high number of cells concerned, we can see that the automatic inclusion within
the viscous surface does not deform it. There is therefore no need to use u†irr .

Figure III.4 – Cells where uirr is undefined taken at time step 2,000 for the vortex shedding case

1.6 Analysis of the drag breakdown results

The final formulation derived in Chapter II, Section 4.1 can now be applied. The drag extraction
is carried out over one period. The resulting time evolution curves are shown in Figure III.5. The total
drag varies between 1825 and 1975 drag counts. The total far-field drag (pink) is in good agreement
with the near-field drag (black). Accordingly, the spurious drag in orange is quite small, around 1% of
the total drag.

As far as the breakdown into phenomenological components is concerned, a validation is not
achievable. We can only try to evaluate the order of magnitudes and the behavior in time compared
to the evolution of the flow features. The main contribution to drag is here the viscous drag (in green)
with around 1800 d.c., as was expected. Both induced and propagation and acoustics drag components,
in dark and light blue respectively, are very small in comparison, around 50 d.c. each.

The synchronization between the far-field drag components and the phenomena occurring in the
flow can also be discussed. The viscous drag is the strongest around time step 2400. If we look at the
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1. Application to a vortex shedding case

Figure III.5 – Evolution of the drag coefficients with respect to time for the vortex shedding case

corresponding flow visualization in Appendix C, Figure C.27, we can see that it corresponds roughly
to the instant when both pockets of positive and negative vorticity being emitted are both strong and
close to each other. In Appendix C, Figure C.28, we can see that it is also the instant when two pockets
of low velocity merge to create a larger one.

The induced drag is rather small in this case, but not negligible. It was expected from the
experience with steady flows to be almost zero for a 2-D case. We can try to interpret its evolution
in time by comparing it with the evolution of the square of the lift coefficient, as has been done in
Figure III.6(a). There is a strong correlation between both coefficients, similarly to a law of the form
CD

th
i = CL2

πλ
which is used for steady elliptical loading in 3-D cases. We can however observe a small

time delay between both coefficients, which may indicate a more complex law in this case. It could
also be due to second order irreversible phenomena which could not be separated from the rest. The
conclusion is therefore that the variations in time of the lift coefficient induce small variations of the
induced drag component as defined with this formulation, whereas it was zero for a steady case where
the lift was constant.

The propagation and acoustics drag component is also small, but not negligible. This can
be explained by the fact that the reference Mach number is small, so that the compressible effects
are low. We have already seen that the acoustic propagation did exist in this case, as visualized in
Figure III.6(b). The evolution in time of this drag component is however very difficult to validate.

1.7 Comparison with Gariépy’s formulation

Gariépy’s formulation, as adapted in Chapter I, Section 4.3, has been implemented and applied
on this test case. The corresponding results are presented in Figure III.7. The far-field drag is here
closer to the near-field drag since the spurious drag coefficient is included in its definition. The spurious
drag component, on the other hand, is much stronger: at most 100 d.c. or 5% of the total drag. The
viscous drag is smaller, around 1500 d.c., whereas the unsteady drag component is large and varies
strongly. The induced drag is almost constant, with a small negative value which can be considered
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(a) Induced drag coefficient and square of the lift
coefficient with respect to time

(b) Visualization of acoustic waves

Figure III.6 – Assessment of the induced and acoustic drag components for the vortex shedding case

negligible.

Figure III.7 – Evolution of the drag coefficients defined by Gariépy with respect to time for the vortex
shedding case

Concerning the synchronization in time, it was found during the study that the downstream
extension of the integration volumes had a very strong impact on the phase of the drag coefficients.
In Figures III.8(a), and III.8(c), we can see for example the evolution of the viscous and the unsteady
drag coefficients respectively as the downstream extension of the volume is set to vary. The results
given in Figure III.7 correspond to the largest downstream extension, for which the spurious drag was
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1. Application to a vortex shedding case

smallest. We can see that the phase as well as the amplitude vary strongly. The synchronization in
time is therefore not ensured with this formulation. In Figures III.8(b), and III.8(d), the same study
has been carried out with our definitions of the viscous and induced drag components. We can see that
there is this time very little dependence on the volume, and that the phase, i.e. the synchronization
in time, is in particular very stable.

(a) Gariépy’s viscous drag (b) ONERA’s viscous drag

(c) Gariépy’s unsteady drag (d) ONERA’s induced drag

Figure III.8 – Effect of the downstream extension on the drag coefficients for the vortex shedding case (in
distance from the leading edge, recalling that the chord is 1)

1.8 Comparison between steady and time-averaged unsteady results

The idea is now to compute the averaged drag coefficients, as well as the standard deviations,
and to compare the results with the steady formulation applied to the averaged flow field. The results
are expected to be different. The aim is to prove that a steady evaluation cannot be considered reliable.

This comparison is presented in Table III.1. The total drag is quite similar for both cases. The
viscous drag component is however quite different between both cases. The steady formulation predicts
no induced drag while it is non negligible in the unsteady case. Propagation and acoustics drag is also
present in the unsteady case. The unsteady analysis is also richer since it provides the time evolution
of the coefficients as well as their maximal values.
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formulation/flow CDnf CDv CD i CDpa CDsp CDff

average/unsteady 1893.76 1795.45 44.69 45.14 8.33 1885.28

(± standard deviation) (± 52.64) (± 43.95) (± 7.80) (± 12.94) (± 7.62) (± 52.78)

steady/average 1893.76 1894.32 - - -0.56 1894.32

Table III.1 – Comparison between steady and averaged unsteady results for the vortex shedding case
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2 Application to a buffet case simulated by a URANS method

The second unsteady test case consists in studying the drag coefficients of an airfoil subject
to buffeting. Buffet is a natural instability which can appear on a supercritical airfoil at transonic
regimes: the interaction between the shock wave and the boundary layer causes the development of
an instability which triggers the motion of the shock wave along the upper side of the airfoil. The
expected drag components are the wave, viscous, and propagation and acoustics coefficients.

2.1 Quick literature review

In transonic flow conditions, the shock wave/turbulent boundary layer interaction and flow sepa-
rations induce flow instabilities called buffet. This unsteady behavior of the flow may provoke structure
vibrations named buffeting, which can have an important influence on the aerodynamic behavior of
the aircraft. Design standards for aeroplanes limits the intensity of the buffeting phenomenon, and
so, the prediction of the onset of the buffet is a problem of outstanding importance, which cannot be
solved easily in wind tunnel experiments because of the dynamic behavior of the structure of models.
A good way to predict the onset of the buffet is the numerical approach. A numerical drag breakdown
analysis could also provide an interesting analysis tool to better predict and control this instability.

Buffet has been extensively studied for the past 30 years. First experimentally, as in the work of
Benoit and Legrain [6], or Caruana et al. [16], then numerically. The first numerical studies focused on
the prediction of the apparition of the instability itself, using steady computations [19]. The unsteady
behavior was however not predicted with such methods. Unsteady simulations for 2-D airfoils have
then been initiated [97], encountering difficulties when using RANS models. The development of the
instability was indeed ill-predicted compared to the experimental data, as well as the pressure coefficient
curves. The simulations were particularly sensitive to the turbulence model chosen. Brunet [11] finally
achieved a satisfactory unsteady simulation of a 2-D case using the k−ω turbulence model from Wilcox
[98], although the instability appeared at α = 4.5 deg rather than 3.5 deg in the experiments. He also
studied the influence of the numerical scheme, and obtained good comparisons with the experimental
data by Jacquin et al. [41]. The influence of the test section geometry has also been assessed by Thiéry
and Coustols [82], highlighting the major effects of upper and lower walls as well as side walls with
corner flow separations on the dynamics of the shock motion.

2.2 Description of the test case

This test case consists of an OAT15A profile under buffet conditions from Brunet [11]. The chord
is 0.23 m, and the mesh is 2-D with around 150,000 elements (see Figure III.9(a)), extending about
10 m upstream, downstream and laterally. The turbulence model is k − ω Wilcox and the numerical
scheme is Roe, chosen for their favorable comparison with experimental results. The Mach number is
M∞ = 0.73, α = 4.5 deg and Re = 3× 106 based on the free stream velocity and the chord.

2.3 Convergence study

The study was carried out over one period, with a time step of 1.7×10−5 s, which corresponds to
1,000 steps by period. The unsteady computation was converged over several periods in order to reach
the full periodicity and avoid transient phenomena. Figure III.9(b) shows that the periodic regime is
almost reached, since the loop of lift as a function of drag is almost closed.
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2. Application to a buffet case simulated by a URANS method

(a) Mesh visualization

(b) Polar of lift as a function of drag

Figure III.9 – Mesh and convergence curve for the buffet case

2.4 Analysis of the flow field resulting from the simulation

Figures III.10(a), and III.10(b) show the instantaneous flow field taken at two different time
steps. The time evolution of the vorticity field can be seen in Appendix C, Figure C.31. A strong
shock appears on the upper side which oscillates in time as a consequence of the interaction between
the shock wave and the boundary layer. A separation occurs right downstream of the shock when it is
in an upstream position as seen in Figure III.10(b).

(a) Time step 500 (b) Time step 725

Figure III.10 – Flow field visualization taken at time steps 500 and 725 for the buffet case

2.5 Application of the drag extraction method

The integration volumes computed by ffd72 at the same time steps are shown in Figures III.11(a),
and III.11(b). Recall that the integration surface for the induced drag is the outer surface, and Vc is
the complementary of the volumes shown in these figures in the whole domain. The evolution along
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the period is also presented in Appendix C, Figure C.33. It confirms that the criteria are capable to
trace the shock wave and the evolution of the boundary layer.

(a) Time step 500 (b) Time step 725

Figure III.11 – Integration volumes taken at time steps 500 and 725 for the buffet case

The cells where uirr is undefined (see Figures III.12(a), and III.12(b)) are more numerous than
in a steady case, extending further downstream of the shock, especially when the flow is detached.
Their evolution during the period of the instability is described in Appendix C, Figure C.34. The
automatic inclusion within the viscous volume does not lead to incongruous viscous volumes.

(a) Time step 500 (b) Time step 725

Figure III.12 – Cells where uirr is undefined taken at time steps 500 and 725 for the buffet case

2.6 Analysis of the drag breakdown results

The drag extraction was carried out over one period. The resulting time evolutions are shown
in Figure III.13. The near-field drag varies between 500 and 800 drag counts. The total far-field drag
(pink) increases while the shock moves downstream and decreases while the shock moves upstream. It
is in good agreement with the near-field drag. The spurious drag (orange), computed as the balance
between near-field and far-field, is indeed at most 20 drag counts or 2% of the total drag. As far as
the order of magnitude of the drag components are concerned, we can see that the drag is mainly due
to viscous, wave, and acoustic effects, as was expected. The viscous drag, in green, varies strongly,
which is in agreement with the strong variations in the flow from attached to separation states. The
wave drag, in red, varies much less. Although the shock waves is in motion above the upper side of
the airfoil, the Mach number does not vary, so that these small variations are logical. We have also
computed the theoretical expression of the irreversible axial velocity for a normal shock in motion, and
found that the expression varies very little when the velocity of the shock varies. On the other hand,
the propagation and acoustics drag, in light blue, varies strongly around zero. The flow is this time
transonic, however the variations were not expected to be this strong. The induced drag, in dark blue,
is very small compared to the other components, and remains almost positive during the period, as
expected.

Now let us focus on the synchronization in time. The wave drag coefficient is strongest around
time step 350, and lowest around time step 750. The evolution of the Cp curves at the skin is presented
in Appendix C, Figure C.32. We can see that the most downstream position occurs around time step
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Figure III.13 – Evolution of the drag coefficients with respect to time for the buffet case

450, and the most upstream position around time step 850. There is therefore a small time delay
between the position of the shock wave and the wave drag coefficient, which can be explained by the
relaxation time. The local Mach number probed right upstream of the shock wave gives very close
entropy jumps for both time steps, about 1.08 J.K−1 at time step 350 and 1.09 J.K−1 at time step 750.
The stagnation enthalpy variation is however quite different, 20598 J at time step 350 and 20318 J at
time step 750. The stronger enthalpy variation can explain the stronger unsteady wave drag coefficient
at time step 350, when the shock wave is in the downstream position, as expected. The theoretical
expression of the irreversible axial velocity for a normal shock wave as a function of the velocity of the
shock, computed earlier, tells us that it is strongest with a positive velocity, i.e. when the shock moves
in the downstream direction. The time evolution can therefore be considered consistent.

The viscous drag is strongest around time step 750. Looking at the time evolution of the vorticity
field in Appendix C, Figure C.31, we can see that there is a strong flow separation at this instant. The
time evolution of this coefficient seems therefore valid as well. The induced drag variations, although
small, can again be correlated to the variations of the square of lift, as depicted in Figure III.14(a),
similarly to the law for steady elliptically loaded 3-D wings CD

th
i = CL2

πλ
. The small time shift can

again be explained by the second order irreversible phenomena, or a more complex correlation law. The
acoustic effects, already recognized in Figure III.14(b), can explain the variations of the propagation
and acoustics component.

2.7 Comparison with Gariépy’s formulation

Gariépy’s formulation results are presented in Figure III.15. The far-field drag in pink is here
again very close to the near-field drag (in black), owing to the fact that the spurious drag is included
in its definition. The latter (in orange) is however very strong, at most 15% of the total drag, which
is quite close to physical components such as the wave or the unsteady ones. It also varies strongly in
time. As suggested in Chapter I, Section 4.3, the reason for that is probably that the term integrated
is not theoretically zero but encloses some physical drag. The order of magnitude of the wave and
viscous drag components are rather similar to the ones obtained with our formulation. The induced
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(a) Induced drag coefficient and square of the lift
coefficient with respect to time

(b) Visualization of acoustic waves

Figure III.14 – Assessment of the induced and acoustic drag components for the buffet case

drag is quite small and constant in time, which could be expected for a 2-D airfoil. The unsteady drag
coefficient (light blue) on the contrary is strong with positive and negative values. We can also note
that the sum of Gariépy’s induced and unsteady components is roughly consistent with the sum of our
induced and propagation and acoustics component. However, his unsteady drag coefficient encloses
more than just unsteady contributions due to the buffet phenomenon.

Figure III.15 – Evolution of the drag coefficients defined by Gariépy with respect to time for the buffet case

The synchronization in time raises however questions: it was indeed found that the choice of
the integration surfaces, in particular the downstream extension, had again a very strong impact on
the results. You can see in Figure III.16(a) the effect of the downstream extension on the wave drag
coefficient, in Figure III.16(c) the effect on the viscous one, and in Figure III.16(e) on the unsteady
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one. The order of magnitude is almost not affected but the phase shifts as the downstream extension
changes. In Figure III.15, the downstream extension for the viscous volume was chosen of 3 chords
(or 0.69 m in Figure III.16(c)), 11 for the unsteady volume, and Sw for the wave surface. This choice
has been made in order to get the least spurious drag. Our definitions of the viscous and wave drag
coefficients on the contrary give quite stable results (see Figures III.16(b), and III.16(d)). For the
induced drag, the extension has to be increased further in the wake in order to reach a convergence, as
depicted in Figure III.16(f). This can be explained by the use of the residual volume term only rather
than the whole volume term, as was already commented in Chapter II, Section 3.3.

2.8 Comparison between steady and time-averaged unsteady results

We can finally compare the unsteady results with steady results obtained using the steady
formulation. The idea is to both validate the unsteady formulation and conclude whether the steady
formulation is enough to predict the average drag, a question raised by designers. Table III.2 compares
the averaged results. The first line stands for the average of the unsteady results presented above. The
second line stands for the steady formulation applied to the average unsteady flow. The mean unsteady
induced drag is close to zero, which is the value expected with a steady formulation. The wave drag
is stronger for the steady calculation, resulting in a total drag higher for the steady case. The viscous
drag is however lower. The spurious drag is stronger for the steady case. It can be explained by the
fact that the criteria for the shock detection are not so effective on the mean flow. This comparison
confirms that a study of the unsteady flow field with the steady formulation does not allow to predict
the drag coefficients correctly.

formulation/flow CDnf CDw CDv CD i CDpa CDsp CDff

average/unsteady 620.96 218.73 391.75 11.18 -11.46 10.50 610.91

(± standard
deviation)

(± 101.99) (± 35.65) (± 122.04) (± 13.69) (± 101.37) (± 6.75) (± 102.66)

steady/average 640.47 302.03 341.36 - - -56.22 696.69

Table III.2 – Comparison between steady and averaged unsteady results for the buffet case
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Chapter III. Assessment of the Wave, Viscous, and Acoustic Drag Components

on Naturally Unsteady Cases

(a) Gariépy’s wave drag (b) ONERA’s wave drag

(c) Gariépy’s viscous drag (d) ONERA’s viscous drag

(e) Gariépy’s unsteady drag (f) ONERA’s induced drag

Figure III.16 – Effect of the downstream extension on the drag coefficients for the buffet case (distance in m
from the leading edge, recalling that the chord is 0.23 m)
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on Naturally Unsteady Cases

3 Conclusions regarding the validity of the method

Conclusions can be drawn from these first two unsteady cases, although no rigorous validation
can be achieved concerning the phenomenological breakdown.

• The total drag is accurately predicted compared to the near-field values.

• The orders of magnitude of the phenomenological components seem consistent and correct.

• The drag components do not depend on the downstream extension of the integration volumes,
except for the induced and propagation and acoustics components which require large downstream
extensions in order to converge towards a stable curve.

• The behavior in time is correlated to physical phenomena occurring in the flow, with time delays
which can be attributed to relaxation times.

• The propagation and acoustics component is not negligible. Acoustic phenomena propagating in
the flow have been highlighted, but the behavior in time cannot be straightforwardly evaluated.

• Gariépy’s formulation has three main flaws: the unsteady drag component, which is not related
to any physical phenomenon, is large with strong contributions, the drag components depend
on the integration volumes, so that the synchronization in time cannot be assessed, and the
spurious component is large, reaching the same order of magnitude as the phenomenological
drag components.

• A steady drag evaluation performed on the mean flow does not allow to retrieve the mean values
of the drag components observed with the unsteady method.
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Chapter Summary

The unsteady formulation has been successfully applied to two natu-
rally unsteady test cases, a vortex shedding and a buffet case. The wave
and viscous components have been analyzed in terms of both orders of
magnitude and synchronization in time. Their behavior is considered
validated. The strong unsteady induced drag, as defined in Chapter I,
is surprising but can be explained by the breakdown suggested in Chap-
ter II into acoustic effects and lift-induced effects. The comparison with
steady results has also proved the benefit of such methods. The formu-
lation will now be assessed on mobile cases, with the apparition of new
drag components.



Chapter IV

Assessment of the Motion, Induced, and

Propagation Drag Components on Mobile Cases

The formulation can now be applied to mobile cases, in order to validate the motion, induced,
and propagation and acoustics drag components. Again, there is no other data available concerning
the evolution in time of the drag coefficients. Their behavior will therefore be assessed in terms of
order of magnitude and synchronization in time. Gariépy’s results, as well as steady computations at
each position will also be used for comparison.

The first mobile test case is an airfoil pitching around its axis in an inviscid and subsonic
flow. The numerical configuration is first described, then the evolution in time of the flow field is
presented. The drag breakdown method is then applied. The behavior of the resulting drag components
is extensively analyzed, with a study of the influence of the reduced frequency. Comparisons with
Gariépy’s formulation are also performed, with a study of the dependence on the integration volume
chosen. The results are also compared to steady computations at each angle of attack.

The second mobile test case consists of the exact same pitching motion, in a viscous flow. The
viscous drag component will therefore add up, allowing us to confirm the breakdown into viscous and
induced components. The same studies are performed, in terms of influence of the reduced frequency,
extension of the integration volumes, and comparison with another formulation and steady evaluations.
From these two studies are drawn conclusions concerning the validity of the breakdown method.
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1 Application to a pitching airfoil in an inviscid flow

This first mobile test case is an airfoil oscillating in pitch in a subsonic and inviscid flow. The
aim is here to focus on the induced and propagation drag components.

1.1 Quick literature review

Pitching cases have been extensively studied, whether in order to study dynamic stall on heli-
copters rotors, the moderate oscillations at high frequencies of a structure in aeroelasticity cases, or
the aerodynamic efficiency of flapping flight. Most study focus on very large variations of the angle
of attack, and solve the viscous RANS equations to model the very complex behavior of realistic flow
fields. We are however focusing here on inviscid flows and small variations of the angle of attack, in
order to validate our drag coefficients. Little material can be found for such simple cases.

The theoretical framework has been established by Theodorsen [81] for potential flows. Pitching
in an inviscid incompressible flow is expected to behave consistently with this theory. Hunsaker and
Phillips [38] have compared numerical inviscid results with Theordorsen’s theoretical results for the
pitching of an airfoil between -5 and +5 deg in an inviscid and incompressible flow. Good agreement
has been obtained for the averaged and time-dependent forces at high reduced frequency (above 0.1).
Another study by Yang, Luo, and Liu [106] compared Euler compressible simulations with experimental
data for the pitching of a NACA0012 profile between -5 and +5 deg at the reduced frequency 0.2,
focusing on the influence of the mean angle of attack of the pitching motion. They obtained a good
agreement with the experimental data, as well as with the incompressible linear theory for the general
trends.

1.2 Description of the test case

The airfoil is a NACA0012 profile, in an inviscid flow at Mach number M∞ = 0.3. The motion
is an oscillation in pitch around the first quarter of chord point. The mesh is rotated around this point
as a block, the angle of attack oscillating between −5 and +5 deg at the reduced frequency k = 0.1,
following the equation:

α(t) = 5 sin(2M∞kt) (IV.1.1)

The mesh is a very fine mesh, courtesy of Vassberg and Jameson [93]. Several levels of refinements
were tested but trouble was encountered in the vicinity of the skin, which could lead to loss of accuracy
for the computation of the motion drag coefficient with coarse grids. These troubles at the skin had
already been observed with our solver for Euler flows. A correction of the pressure at the skin has also
been applied. The very fine mesh chosen has about 4 million elements (2048 × 2048). It extends up to
150 chord lengths around the airfoil. A visualization of the 1 node over 4 grid (512 × 512) is proposed
in Figure IV.1(a). With the benefit of insight, the effects on the motion drag component were probably
very small compared to the computational effort required with such a grid. We would recommend for
other studies to use coarser grids for such inviscid cases.

1.3 Convergence study

In order to further enhance the quality of the simulation near the body, the computation was first
converged in a steady state with the profile fixed, before triggering the motion. A pressure correction
was also applied on the boundary condition. Due to the size of the mesh, the number of time steps
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1. Application to a pitching airfoil in an inviscid flow

(a) 1 node over 4 mesh visualization

(b) Polar of lift as a function of drag

Figure IV.1 – Mesh and convergence curve for the inviscid pitching case

by period was reduced to 2,000, so that the time step is 1.54 × 10−4 s. The convergence is ensured
looking at the polar of lift vs drag after 4 periods in Figure IV.1(b), which is a closed loop.

The curve has the shape of a butterfly, starting from the black dot (α = 0 deg), following the
arrows, reaching a drag maximum before the maximum lift, then the angle of attack decreases again
until zero (grey dot on the figure), and the behavior is symmetric for the negative angles. We can
also note that there are two regions where the drag is negative, i.e. where the pitching motion creates
thrust. Finally, there exists a point where both lift and drag are zero, but shifted compared to the
angle of attack. We can explain this phenomenon by the fact that it corresponds to a quasi-steady
flow at α = 0 deg delayed by the relaxation time. The shape of the curve is also very similar with
the results from Yang, Luo, and Liu [106] previously cited, although the reduced frequency is slightly
higher in their study (0.2).

1.4 Analysis of the flow field resulting from the simulation

The flow field can be seen in Figure IV.2. The evolution in time of the Mach contours can also
be seen in Appendix C, Figure C.36. The Cp curves at the skin for the unsteady mobile computation
and the steady computation at the same angle of attack is also provided in Appendix C, Figure C.37.
We can see the periodicity between the positive and negative angles, but the flow is not symmetrical
between the ascent and the descent at the same angle of attack. The flow field at α = 0 deg is in
particular not symmetrical. This is due to the relaxation time. Note also that the flow in the vicinity
of the skin is not very well predicted, despite our efforts to improve the convergence.

1.5 Application of the drag extraction method

The only volume used here is the fluid domain for the integration of induced and propagation
and acoustics drag. The downstream extension is chosen as far as possible. There is no cell where the
irreversible axial velocity uirr is undefined in this case. The postprocessing method is simply applied,
taking the angle of attack at each time step into account. A study of the influence of the downstream
extension of the integration volumes has been carried out, similarly to the applications in Chapter III,
showing that the formulation gave drag curves which are independent on the extension chosen.
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Figure IV.2 – Flow field visualization taken at time step 500 (5 deg) for the inviscid pitching case

1.6 Analysis of the drag breakdown results

Figure IV.3 shows the results of the drag breakdown over a period. The total drag, in black,
exhibits two positive peaks, which correspond to the largest angles of attack α = 5 deg and α = −5
deg. We can first note that the drag coefficients exhibit a negative phase shift compared to the angle
of attack, whereas the lift coefficient, in red in the bottom figure, has a small positive phase shift.

The far-field drag, in pink, matches the near-field drag rather well. The spurious drag, in orange,
which oscillates between -9 and 3 drag counts, is a little stronger than in the other unsteady cases.
This could be due to the lack of accuracy in the vicinity of the skin or to the large time step chosen.
The motion drag, in grey, takes values between -1 and 5 drag counts. It is largest when the angle of
attack is around 0 deg, and smallest when the angle of attack is around +5 or -5 deg. This evolution
is consistent since the velocity of the pitching airfoil follows the same variations (largest velocity at
α = 0 deg and zero velocity at α = ±5 deg).

The induced drag varies between -10 and 30 drag counts. Its variations are quite in phase with
the total drag, i.e. with a slight advance of phase compared to the angle of attack. In Figure IV.4, we
can see that the variations are again strongly correlated with the variations of the square of lift, with
a small time shift. The propagation and acoustics drag component is here very strong and oscillates
between -20 and 65 drag counts. The synchronization in phase is identical to the induced drag’s.

1.7 Comparison with Gariépy’s formulation

Gariépy’s formulation has also been applied to this test case. Figure IV.5 shows the corre-
sponding results. Gariépy’s formulation was written in the relative reference frame as described in the
Chapter Presentation of the main existing methods of numerical drag prediction. It has been rewritten
in the inertial reference frame for comparison in Chapter I, Section 4.3, so that the same motion drag
is also present here. The far-field drag in pink is in good agreement with the near-field drag. The
spurious drag (orange) is very small, which is logical given its definition and the fact that the flow is
inviscid.

The induced drag, in dark blue, has the same order of magnitude as our formulation’s, but its
phase is shifted. It has been shown in Chapter III that the phase with this formulation was dependent
on the extension of the integration volumes chosen. It is also true for this test case, which explains the
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1. Application to a pitching airfoil in an inviscid flow

Figure IV.3 – Evolution of the drag coefficients with respect to time for the inviscid pitching case

Figure IV.4 – Induced drag coefficient and square of the lift coefficient for the inviscid pitching case
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Figure IV.5 – Evolution of the drag coefficients defined by Gariépy with respect to time for the inviscid
pitching case

phase shift. The unsteady drag component is quite strong, varying between -75 and 80 drag counts.
The same observation can be made about the phase shift.

1.8 Influence of the reduced frequency

The reduced frequency is then decreased, from k = 0.1 to k = 0.05 and k = 0.01. The aim here is
to evaluate the behavior of the drag components as the flow is closer from a steady solution. The results
are also compared to the steady computations at each angle of attack. The influence of the reduced
frequency on the polars of lift vs drag is shown in Figure IV.6(a). The steady drag is zero for all angles
of attack since the flow is inviscid and subsonic. As the reduced frequency decreases, the relaxation
of the flow is expected to be fast enough for the field to be considered quasi-static. The total drag
should therefore converge to zero. On the other hand, the lift coefficient for the steady computations
shows variations. We can see that the polars converge towards the steady line, the amplitude of the
variations of the near-field drag being drastically reduced. This phenomenon can also be visualized
in Figure IV.6(b). We can see that the curve of lift with respect to time is very little affected by the
change of reduced frequency (the phase shift is reduced), whereas the drag sees its amplitude decrease,
and its phase shifted to the left.

The evolution of the induced drag coefficient depending on the reduced frequency can also be
seen in Figure IV.6(c). The amplitude of oscillation varies very little between k = 0.1 and k = 0.05,
and is then drastically reduced for k = 0.01, whereas the phase is weakly affected. The same study has
also been carried out on the propagation and acoustics component in Figure IV.6(d). Both amplitude
and phase are affected for this coefficient, which is mainly responsible for the evolution of the total
drag. The same behaviors are indeed observed for CDnf and CDpa .

The drag breakdown results for both reduced frequencies are also presented in Figures IV.7(a),
and IV.7(b). We can see there that the order of magnitude of the induced and propagation and acoustics
drag components are very close for the smaller reduced frequencies. The spurious drag coefficient is
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1. Application to a pitching airfoil in an inviscid flow

(a) Polar of lift as a function of drag (b) Near-field coefficients

(c) Induced drag coefficient (d) Propagation and acoustics drag coefficient

Figure IV.6 – Influence of the reduced frequency on the drag and lift coefficients for the viscous pitching case
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also stronger as the reduced frequency decreases, which is due to the time step being larger (the same
number of iterations by period has been kept for a computing cost issues).

(a) k = 0.05 (b) k = 0.01

Figure IV.7 – Drag breakdown results for two smaller reduced frequencies for the inviscid pitching case

1.9 Comparison between steady and time-averaged unsteady results

The averaged results for the drag breakdown are now compared to steady results, obtained from
applying the steady formulation to the airfoil fixed at zero angle of attack. This comparison is given
in Table IV.1. We can see that the steady formulation predicts no drag, except a tenth of drag count
due to spurious effects, whereas the averaged total drag is more than 30 d.c. This can be explained
by the energy supplied to the airfoil to perform the pitching motion, although the motion drag is very
low. The main contribution to drag in average is the propagation and acoustics drag. This can be
explained by the fact that we have an inviscid, subsonic flow, so that inertia, relaxation, and vorticity
effects are preponderant, and are likely enclosed in this drag component.

formulation/flow CDnf CDm CD i CDpa CDsp CDff

average/unsteady 31.97 2.50 11.44 21.54 -3.50 35.47

(± standard deviation) (± 52.27) (± 2.04) (± 16.18) (± 32.83) (± 3.89) (± 48.45)

steady/average (0 deg) 0.08 - - - 0.08 0.00

Table IV.1 – Comparison between steady and averaged unsteady results for the inviscid pitching case
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2 Application to a pitching airfoil in a viscous flow

Now that the motion, induced, and propagation components have been assessed in an inviscid
case, we can move on to a viscous case. The same airfoil follows the same pitching motion, in a viscous
flow. The viscous drag component will therefore be added.

2.1 Quick literature review

As it has already been mentioned in Section 1, pitching cases have been extensively studied for
high angles of attack and dynamic stall conditions, in order to reproduce animal flapping flights, which
researchers attempt to mimic for the propulsion of micro air vehicles. Panda and Zaman [67] have
for example investigated the flow field around such airfoils using flow visualization techniques, and
estimated the lift from wake measurements for several motions. Lee and Gerontakos [46] have carried
out similar studies, with the qualitative measurement of lift, drag, and moment coefficients. Finally,
Gibertini et al. [32] have also used far-field techniques to compute the drag from experimental wake
measurements of an oscillating profile in dynamic stall conditions. No breakdown is however suggested.

Numerical studies have also been performed. We can cite Young and Lai [108], and Xie et al.
[102], who attempted to assess the propulsion performance of such motions depending on the motion
characteristics or shape of the airfoil. An unsteady optimization of the shape of the airfoil using
adjoint methods has even been performed by Mani and Mavriplis [50], for small pitching amplitudes
but transonic Mach numbers. As a matter of fact, little can be found in the literature concerning
non-stalled motions (small amplitudes for the oscillating motion). Only Gariépy [31] has chosen this
kind of configuration for the validation of his drag breakdown method.

2.2 Description of the test case

It is the same configuration as the last case of the paper [31], which has been described in the
Chapter Presentation of the main existing methods of numerical drag prediction, Section 1.2.2. The
pitching angle is oscillating between −5 and +5 deg at the reduced frequency k = 0.1, following the
equation:

α(t) = 5 sin(2M∞kt) (IV.2.1)

The Mach number is M∞ = 0.3 and the Reynolds number based on the free stream velocity and
the chord is Re = 6.6× 106. Jameson numerical scheme and the turbulence model of Spalart-Allmaras
are used. The grid used here is a 530,000 elements 2-D mesh as shown in Figure IV.8(a). The size of
the computational domain is 20 chord lengths in the downstream direction and 25 chord lengths in the
other directions.

This grid may seem very coarse compared to the one used for the inviscid case. As mentioned in
the previous section, the very fine grid for the Euler case had been chosen to solve troubles at the skin
with our solver. RANS simulations do not exhibit such issues, so that a reasonably fine mesh could
be chosen. The extension chosen is also smaller, but experience with steady cases tells us that it is
usually widely enough.

2.3 Convergence study

The time step chosen is 3.42× 10−5 s, which corresponds to 9,000 steps by period. The conver-
gence is quickly reached after three or four periods and the drag extraction was carried out over the
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(a) Mesh visualization

(b) Polar of lift as a function of drag

Figure IV.8 – Mesh and convergence curve for the viscous pitching case

sixth period. The polar of lift vs drag is then a perfectly closed loop, as seen in Figure IV.8(b), so that
the periodicity of the flow is considered reached. The curve exhibits again the same characteristics
(maximum drag before maximum lift), the position where the angle of attack is zero being marked
with dots, and the path direction being indicated with arrows. The lift is very close to the inviscid
case, but the drag is now shifted to the right of about 100 d.c., so that the thrust regions are now lost
due to the viscous effects.

2.4 Analysis of the flow field resulting from the simulation

A snapshot of the flow field is shown in Figure IV.9(a). It is very close to the inviscid case, with
the addition of the boundary layer and the viscous wake. There is no flow separation even at the highest
angles of attack. The evolution in time of the Mach contours is given in Appendix C, Figure C.38. The
Cp curves at the skin for the unsteady mobile computation and the steady computation at the same
angle of attack is also provided in Appendix C, Figure C.39. Again, we can see that the flow is periodic
but not symmetric between the positive and negative angles of attack during ascent or descent, due to
the relaxation time.

2.5 Application of the drag extraction method

The integration volume at the same instant for the viscous drag is presented in Figure IV.9(b).
The evolution in time of this volume is also presented in Appendix C, Figure C.40. It matches the
boundary layer and the wake nicely along the pitching motion. The cells where uirr is undefined are
concentrated very close to the skin (see Figure IV.9(c)) and are of course enclosed within the viscous
surface without implying deformations. They never expand further around the airfoil, so that it was
not judged necessary to show their evolution in time for this test case.

2.6 Analysis of the drag breakdown results

The curves of evolution of the drag as a function of time are presented in Figure IV.10. The
total drag over one period has two peaks, one for each maximal angle (−5 deg and +5 deg), with again
a negative phase shift. It varies between 65 and 190 drag counts. The lift, on the other hand, has
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(a) Mach contours

(b) Viscous integration volume

(c) Cells where uirr is undefined

Figure IV.9 – Flow field and integration surfaces taken at time step 2250 (5 deg) of the viscous pitching case

one positive peak and one negative peak, with a small positive phase shift. This is consistent with the
paper [31]. The far-field drag (pink) is again in very good agreement with the near-field drag (black):
both curves are almost superimposed. The spurious drag in orange is indeed very small, less than a
drag count. We can first focus on the orders of magnitude.

Figure IV.10 – Evolution of the drag coefficients with respect to time for the viscous pitching case

The motion drag in grey (hardly visible behind the orange spurious drag) is almost zero. Let us
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recall its expression from Equation II.4.5:

Dm =

∫

Sa

−ρ (u− u∞) (q · n) dS (IV.2.2)

This very low value can be explained by the fact that the velocity on the upper side projected on
the normal vector cancels out with the lower side, as depicted in Figure IV.11(a). The density is also
present in the formula, but the flow is almost incompressible (M∞ = 0.3), and the frequency is high
so that the relaxation time prevents it from evolving too much between both sides. Density variations
are also one order higher than velocity variations.

(a) Schematic explanation of the low values of
motion drag (b) Induced drag coefficient and square of the lift

coefficient with respect to time

Figure IV.11 – Assessment of the motion and induced drag components for the viscous pitching case

The viscous drag in green varies around 100 drag counts. This value is very close to the shift
of total drag between the inviscid and the viscous case, so that the order of magnitude seems correct.
The induced drag in dark blue is positive with relatively small values, i.e. below 30 drag counts. It
is not negligible, but remains rather small. The propagation and acoustics component, in light blue,
varies more strongly, with positive and negative values. Acoustic waves are not so easily visible in this
case, probably due to the size of the fluid domain.

As far as the synchronization in time is concerned, the viscous drag shows two peaks which are
quite in phase with the angle of attack. The variations are not so strong since there is no separation
of the flow and the angle of attack remains small. The induced drag variations are in advance of phase
compared to the angle of attack. The comparison with the square of the lift coefficient, shown in
Figure IV.11(b), confirms the strong correlation with a phase shift, which can again be explained by
the effect of second order irreversible phenomena. The negative values of the propagation and acoustics
component correspond to a thrust occurring as the airfoil is moving upwards or downwards.

A study of the influence of the grid refinement level can also be found in Appendix B, Section B.4.

2.7 Comparison with Gariépy’s formulation

Difficulties were encountered with the choice of the integration volumes with Gariépy’s formu-
lation. The domain had to be reduced to 10 chords in the upstream and vertical directions, and three
in the downstream direction, in order to match the far-field with the near-field. The discrepancy is
probably due to the quality of the mesh. The computation on a coarser mesh confirmed that the
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balance between far-field and near-field required an even smaller integration domain with a coarser
grid. Our formulation proved to be quite robust to any choice of domain extension with both mesh
qualities. Another difficulty occurs when trying to retrieve the results shown in the paper [31]. The
choice of the integration volumes has indeed a great influence on the results and they were not specified
in the original paper. The results presented in Figure IV.12 are the best achieved in this study, i.e.
the closest to the results from [31].

Figure IV.12 – Evolution of the drag coefficients defined by Gariépy with respect to time for the viscous
pitching case

The viscous drag in green is stronger, varying little around 100 drag counts instead of 85. The
induced drag in dark blue is not zero but remains positive. No result for the induced drag was mentioned
in the article [31], although the curves of viscous and unsteady components do not add up to give the
total far-field drag curve. The phase shift of the viscous and induced drag coefficients depends on the
downstream extension chosen and can therefore not be analyzed. The unsteady drag (light blue) varies
between -60 and 70 drag counts instead of -15 and 110. The phase is also shifted. The spurious drag
(orange) is small, at most 2 drag counts.

2.8 Influence of the reduced frequency

The reduced frequency has then be decreased to k = 0.05 and k = 0.01. The unsteady simula-
tions have been run starting from the oscillatory state obtained with the reduced frequency k = 0.1.
The same time step has been kept in order to keep reasonable restitution times, so that the convergence
level may be less satisfactory as the reduced frequency is decreased. Steady computations at each angle
of attack have also been performed, the drag coefficients being predicted by the steady formulation.
The results for each drag coefficient, as well as the lift coefficient, are presented in Figure IV.13.

We can first see in Figure IV.13(a) that the polar of lift as a function of drag converges towards
the steady curve. The magnitude of drag variations is in particular strongly attenuated. The lift
coefficient is very little affected by the change of frequency, as we can see in Figure IV.13(b). Its phase
shift with the angle of attack is reduced, and the order of magnitude converges towards the steady
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(a) Polar of lift as a function of drag (b) Lift coefficient

(c) Near-field drag coefficient (d) Viscous drag coefficient

(e) Induced drag coefficient (f) Propagation and acoustics drag coefficient

Figure IV.13 – Influence of the reduced frequency on the drag and lift coefficients for the viscous pitching case
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(a) Loci of the real and imaginary components of
unsteady lift on an oscillating flat plate as a

function of the reduced frequency
(extracted from [55])

(b) Drag breakdown results for k = 0.05

(c) Drag breakdown results for k = 0.01

Figure IV.14 – Influence of the reduced frequency for the viscous pitching case

value. The total drag on the other hand sees its amplitude drastically reduced (see Figure IV.13(c)).
The phase is also progressively shifted towards a larger advance in phase. We can imagine that the
phase delay varies with respect to the reduced frequency similarly as in Figure IV.14(a), the considered
frequencies being in the negative part of the solid curve.

The viscous drag coefficient is also relatively little affected by the change of reduced frequency, as
we can see in Figure IV.13(d). The phase is almost constant, and the order of magnitude is very close
to the steady results, with a gap of about 5 d.c. between unsteady and steady results. We can therefore
consider that the viscous drag coefficient is correctly accounted for, since a change of frequency does
not impact the viscous phenomena. The amplitude of the induced drag coefficient is strongly reduced
(see Figure IV.13(e), giving even small negative values around the horizontal position. This may be
due to the convergence level which is not as good as for the highest reduced frequency. The phase
is however not affected by the change of frequency, contrarily to the inviscid case. The phase change
observed for the total drag actually comes from the propagation and acoustics coefficient, as depicted
in Figure IV.13(f). The evolution of this drag component is actually very similar to the inviscid case.

The drag breakdown results for the two reduced frequencies are also given in Figures IV.14(b),
and IV.14(c). We can see how the induced and propagation and acoustics components are attenuated
whereas the viscous component becomes the main contribution to drag.
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2.9 Comparison between steady and time-averaged unsteady results

The averaged unsteady results were also compared to the steady formulation, applied to the
steady flow field around the airfoil at 0 deg angle of attack. The comparison could also be made for
each angle of attack. One can see in Table IV.2 that the total average drag is again largely under
estimated by the steady evaluation. The difference comes from both the induced and the propagation
and acoustics drag components. Note that the average of CDpa is almost zero. The spurious drag is
in both cases quite low.

formulation/flow CDnf CDm CDv CD i CDpa CD sp CDff

average/unsteady 127.56 -0.04 99.65 18.47 9.69 -0.22 127.78

(± standard
deviation)

(± 44.94) (± 0.07) (± 3.76) (± 10.95) (± 30.58) (± 0.31) (± 45.01)

steady/average
(0 deg)

96.39 - 96.34 - - 0.05 96.35

Table IV.2 – Comparison between steady and averaged unsteady results for the viscous pitching case
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3 Conclusions regarding the validity of the method

Again, no rigorous validation of the phenomenological drag components could be made, but
strong arguments supporting the validity of the method have been highlighted. The conclusions drawn
in the previous applications (Chapter III, Section 3) still apply in the mobile cases. Additional con-
clusions can be added:

• The order of magnitude of the viscous component is consistent with the drag jump between
inviscid and viscous cases.

• The motion drag is almost negligible in these cases, which can be explained by the nature of the
pitching motion.

• The propagation and acoustics drag component is not negligible in these low speed mobile cases
either, with negative values and an evolution in phase with the total drag.

• The behavior of the drag components with respect to the reduced frequency is consistent: they
converge to quasi-static results.

• The viscous effects simply add to the inviscid behavior without changing the general behavior of
the system.

• Steady evaluations at each angle of attack do not allow to correctly predict the instantaneous
drag.
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Chapter Summary

The unsteady formulation has been applied to pitching cases, both in-
viscid and viscous. The motion drag component has been validated, and
observed to be negligible for such motions. The correct behavior of the
viscous drag has been confirmed on the viscous case. The breakdown
between induced and propagation and acoustics components is again
not easily explained. Arguments towards a satisfactory estimation have
however been given, such as the influence of the reduced frequency,
the correlation with the lift coefficient, or the comparison with steady
results. Although not strictly validated, the unsteady method is now
considered ready to use on complex unsteady cases.



Chapter V

Application of the Unsteady Formulation

to Complex Cases

This chapter aims at demonstrating the capabilities of the unsteady formulation on complex
cases. The aimed applications are indeed flows with complex turbulent features, such as a realistic
buffet case, the separated flow downstream of a spoiler, or the flow around a counter-rotating open
rotor. The first step towards a realistic complex application consists in moving on to 3-D cases. The
first complex test case chosen is therefore a 3-D pitching case. The second step consists in taking the
time and spatial complexity of the flow into account, so that the second test case is a ZDES simulation.
Since the complexity is addressed for the first time in this chapter, and due to the cost of the numerical
computations, no advanced study, such as the ones carried out in the previous chapters, will be done
here. The resulting evolution of the drag coefficients will only be qualitatively commented.

The first complex case is the pitching of a 3-D wing in an inviscid flow. Beyond the demonstration
that the code is effective on a 3-D case, it is hoped that the induced drag component will be better
understood for this test case where a wing tip vortex is present and evolves in time along with the
pitching motion.

The second case is a three dimensional buffet case simulated by the ZDES model. This method
allows a fine representation of a large scope of turbulent scales, and is therefore much more realistic
than URANS simulations. The aim is here to evaluate the behavior of the formulation on such rich
results. The drag results will also be qualitatively compared to the ones obtained previously with
URANS simulations.
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Chapter V. Application of the Unsteady Formulation to Complex Cases

1 Application to a pitching wing in an inviscid flow

The third test case is a 3-D version of the 2-D inviscid case presented in Chapter IV, Section 1.
A vortex will now appear and evolve in time with the flapping of the wing, so that the induced drag
component should be affected.

1.1 Quick literature review

If little could be found in the literature concerning non-stalled 2-D cases, as pointed out in
Chapter IV, even less is available concerning non-stalled 3-D inviscid cases. Most studies focus indeed
on stall behavior in viscous flows. Good examples of such studies can be found in the work of Brunton
et al. [13], with experimental, numerical, and modeling results and comparisons, or in the work of
Campobasso et al. [15].

The paper which is the closest from our study was proposed by Neef and Hummel [62]. They
numerically study a rectangular wing based on a NACA0012 profile in an inviscid flow, experiencing
a plunging/pitching motion with a twisting motion at the tip. They get only thrust over the period,
if the mean angle of attack is zero, but which is reduced by the presence of induced drag compared to
the 2-D case.

1.2 Description of the test case

The wing considered is an elliptic wing based on the NACA0012 profile, with an aspect ratio
λ = 8. The Mach number is still M∞ = 0.3, and the pitching motion is again the same:

α(t) = 5 sin(2M∞kt) (V.1.1)

The mesh is an 8 million nodes grid as shown in Figure V.1(a). It is much coarser than the mesh
for the 2-D case but was already very costly for an unsteady application. Lack of accuracy is therefore
expected close to the skin.

(a) Mesh visualization

(b) Polar of lift as a function of drag

Figure V.1 – Mesh and convergence curve for the 3-D pitching case
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1. Application to a pitching wing in an inviscid flow

1.3 Convergence study

The time step chosen is here 7.7 × 10−5 s, corresponding to 4,000 time steps by period. The
convergence is considered reached after 3 periods since the curve of lift vs drag in Figure V.1(b) is a
closed loop. The same general behavior as for the 2-D cases is observed: starting at α = 0 deg on the
black dot, the angle of attack increases when following the arrows. A maximum of drag is reached,
before a maximum of lift. The angle of attack is then decreasing, reaching a minimum of drag, before
passing in the horizontal position again at the grey dot. The symmetric behavior is observed for the
negative angles. The shape of the butterfly is however slightly different from the viscous 2-D case: the
thrust zones are smaller and the wings are more stretched.

1.4 Analysis of the flow field resulting from the simulation

The flow field is shown in Figure V.2 with a visualization in a cross plane on the left and a
3-D one on the right. The Mach contours in a cross plane (Figure V.2(a)) are very similar to the 2-D
ones, except in the vicinity of the skin where unexpected jumps are visible. It is the same issue as
in the 2-D case, but a very fine grid could not be used in this case for computational cost reasons.
A wing tip vortex is visible in Figure V.2(b) with the help of the Q-criterion. As the wing pitches,
the vortex sequentially vanishes, then reappears with the vorticity oriented in the opposite direction,
before vanishing again. This evolution in time is described in Appendix C, Figure C.41.

(a) Mach contours in a transverse plane
(b) Isosurface of Q-criterion colored by the vorticity

magnitude, pressure contours on the skin, and
stream ribbons

Figure V.2 – Flow field visualizations for the 3-D pitching case

1.5 Application of the drag extraction method

There is neither viscous nor wave volumes in this case, and the volume for the induced drag
integration is the whole fluid domain. There is also no cell where the irreversible axial velocity is
undefined.
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Chapter V. Application of the Unsteady Formulation to Complex Cases

1.6 Analysis of the drag breakdown results

The results of the drag extraction are visible in Figure V.3. The results for the total drag look
similar to the Euler 2-D case although the negative or thrust zones are smaller and the curves have a
smoother variation. The same negative phase shift with the angle of attack is observed. The near-field
drag takes values between -12 and 101 drag counts. The far-field drag is again in good agreement, with
a spurious drag between -3 and 5 drag counts. The lift is smaller than in the 2-D case, but exhibits
the same small positive time shift with respect to the angle of attack. The phase shifts observed for
both near-field lift and drag coefficients are consistent in trend with the results from [62]. The motion
drag is almost zero.

Figure V.3 – Evolution of the drag coefficients with respect to time for the 3-D pitching case

As far as the induced drag coefficient is concerned, the downstream extension of the integration
volume has to be reduced since the wing tip vortex is quickly dissipated by numerical effects. In this
case, the corresponding dissipated drag is actually attributed to the spurious component. Closer to the
body, the definition chosen for the induced component is however dependent on the volume chosen,
especially for the phase. A compromise was found at 15 chords downstream of the body, where the
phase is almost converged but the induced drag is not too dissipated. The corresponding induced drag
takes values between -10 and 80 drag counts. The strongest values correspond to instants when the
wing tip vortex is the strongest. The evolution of the induced drag coefficient is also compared to the
theoretical steady expression of the induced drag as a function of the square of lift in Figure V.4. The
same strong correlation, with a negative time shift, is again observed. There is also a shift in the order
of magnitude which can be attributed to the numerical dissipation of the wingtip vortex.

The propagation drag is not negligible, varying between -10 and 20 drag counts, but the dominant
drag component is now the induced one, which was expected for a 3-D case.

A study of the influence of the grid refinement level can also be found in Appendix B, Section B.5.

141



1. Application to a pitching wing in an inviscid flow

Figure V.4 – Induced drag coefficient and square of the lift coefficient for the 3-D pitching case
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Chapter V. Application of the Unsteady Formulation to Complex Cases

2 Application to a buffet case simulated by the ZDES method

The aim of this last test case is to demonstrate the capabilities of the formulation on a complex
case and compare the results to those obtained in Chapter III, Section 2 with URANS simulations.
The ZDES, from Zonal Detached Eddy Simulation, is a powerful simulation method developed by Deck
[21]. The characteristics and benefits of the method are exposed in Appendix A, Section A.1.3.2.

2.1 Quick literature review

We have seen in Chapter III, Section 2 that the buffet phenomenon had been studied by several
authors with URANS simulations. Although the comparisons of global variables with experimental
data was satisfactory (rms, pressure distribution), we have seen that the angle of attack needed to be
increased to 4.5 deg instead of 3.5 to trigger the instability, and that the fine temporal features are not
predicted with such methods (typically, only the first frequency of a spectrum is predicted). Authors
such as Fan et al. [28] have therefore attempted to use DES methods to predict the detailed unsteady
behavior of the flow. The agreement with the experimental results was however disappointing, and the
angle of attack also had to be increased to 4 deg. Deck then used the ZDES method to study the buffet
over an airfoil [20], comparing the results to experimental data by Jacquin et al. [41]. He obtained the
instability at 3.5 deg, and very good agreement with the experiments, despite a relatively coarse grid
compared to today’s standards. These fine computations allow retrieving the rich temporal content of
the flow which can help us better understand this complex instability.

Note finally that the buffet over a 3-D configuration is much more complex: in 2-D, the motion
of the shock wave over the airfoil is periodic, whereas no single characteristic frequency can be observed
in 3-D, and most of time there is a broad band frequency distribution which presents high instability
levels. This is due to the the strong interaction between the turbulence of the separation downstream
of the shock and the shock itself on the upper side of wings. One can easily conclude that 2-D and
3-D buffet are completely different phenomena since the 2-D one is a kind of resonant flow and the 3-D
one can be more considered as an important excitation of the separation which is very energetic and
pilots the shock location and motion. 3-D buffet has been studied with ZDES simulations by Brunet
and Deck [12].

We will focus on 2-D buffet only in this preliminary test case.

2.2 Description of the test case

The case is the transonic buffet over the supercritical OAT15A profile with chord 0.23 m at
M∞ = 0.73, α = 3.5 and Re = 12.14× 106. The time step is 5× 10−7 s, so that there are about 29,000
time steps in one period. The mesh is a 2 million nodes grid shown in Figure V.5.

The DES zones are located around and downstream of the shock above the upper side of the
airfoil and in the wake, as depicted in Figure V.6(a). This corresponds to the ZDES mode 2. More
details can be found in [20].

2.3 Convergence study

In Figure V.6(b), we can see the polars of lift with respect to drag over ten periods. Variations
in the lift and drag values do occur between two periods of movement of the shock wave. The position
of the shock wave is actually not quite periodic. The loops keep however the same general shape, so
that the convergence is considered reached for the ten periods considered.
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2. Application to a buffet case simulated by the ZDES method

(a) Grid in a longitudinal plane (b) Grid in a transverse plane

Figure V.5 – Mesh visualizations for the ZDES buffet case

(a) Zones where the DES simulations are
applied (extracted from [20]) (b) Mesh visualization

Figure V.6 – Scheme of the ZDES approach used and convergence curve for the ZDES buffet case
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Chapter V. Application of the Unsteady Formulation to Complex Cases

2.4 Analysis of the flow field resulting from the simulation

A visualization of the flow field at time step 90,000, i.e. when the shock wave is in an upstream
position and a strong separation occurs, is proposed in Figure V.7(a). The turbulent structures are
depicted by the isosurfaces of Q-criterion colored by the vorticity magnitude and the shock wave by
the Mach contours. We can see that the flow is separated downstream of the shock and that small
and large structures are shed in the wake. The pressure waves created at the sharp trailing edge and
propagating upstream, as well as the turbulent structures originated from the foot of the shock wave,
are visualized in Figure V.7(b).

(a) Isosurfaces of Q-criterion colored by the
vorticity magnitude, and Mach contours in a

transverse plane

(b) Contours of the norm of density gradient
normalized by the density

Figure V.7 – Visualization of the instantaneous flow field at time step 90,000 for the ZDES buffet case

The evolution in time of this flow field is also provided in Appendix C, Figure C.42. We can see
the 3-D separated flow as the shock wave is in an upstream position, stabilizing to a reattached flow
as the shock moves downstream, then perturbing to 2-D spanwise structures, which then become 3-D
with the separation of the flow downstream of the shock wave as it moves upstream again.

2.5 Application of the drag extraction method

The drag breakdown method is applied the exact same way as in URANS cases: every 50 time
steps, the integration volumes are computed using the physical criteria, and the integration of the
equations defining the drag components is carried out. The integration surfaces and volumes at time
step 90,000 are presented in Figure V.8(a). The shock is well enclosed in the wave volume, its wake is
also well detected, as well as the boundary layer and the turbulent wake. In Appendix C, Figure C.43,
you can find the evolution in time of these volumes over one period.

The criteria are however put to their limits, and a few cells are in the wrong zones (orange cells
under the viscous volume or in front of the shock wave for example in Figure V.8(a)). These few
cells must however not account for large contributions to the drag coefficients and their influence is
neglected in this study. The behavior of the criteria should however be studied in details before moving
on to industrial cases.
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2. Application to a buffet case simulated by the ZDES method

(a) Integration volumes (b) Cells where uirr is undefined

Figure V.8 – Integration surfaces and cells where uirr is undefined at time step 90,000 for the ZDES buffet case

The cells where the irreversible axial velocity uirr is undefined are also plotted for the same time
step in Figure V.8(b). They are slightly more numerous than in the URANS case but do not imply a
deformation of the viscous surface in this case either. The evolution in time over one period of these
cells is also provided in Appendix C, Figure C.44.

The time derivatives, computed by finite differences between two time steps as described in
Appendix A, Section A.2, were not accurate with only a one time step difference. This can be explained
by the fact that the time step is very small for ZDES computations, so that the flow evolves very little in
between and numerical errors become the same order of magnitude as the derivative itself. A distance
of 10 time steps has therefore been chosen for the computation of the time derivatives, which is a good
compromise for the accuracy.

2.6 Analysis of the drag breakdown results

Figure V.9 shows the results of the drag extraction over ten pseudo-periods. We can first notice
that a secondary frequency appears when the flow is detached, and vanishes as the flow reattaches.
The drag breakdown will be analyzed in further details over one period.

2.7 Spectral analysis

A spectral analysis has also been performed in order to investigate the possibilities offered by
such rich information on the evolution of the drag coefficients, and to compare the frequencies obtained
for the drag coefficients with the ones measured in the flow field. In Figure V.10(a), we can see a power
spectral density function of the wave drag coefficient. This can be compared to Figure V.10(b), where
the power spectral density function of the pressure fluctuations obtained by Deck [20] is plotted: the
first four peaks have the same frequency. We can conclude that the wave drag coefficient is strongly
correlated with the pressure fluctuations measured on the upper skin of the airfoil.
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Chapter V. Application of the Unsteady Formulation to Complex Cases

Figure V.9 – Evolution of the drag coefficients with respect to time over ten periods for the ZDES buffet case

(a) Power spectral density of the wave drag
coefficient

(b) Power spectral density of the pressure
fluctuations probed at mid-chord on the upper side

of the skin (extracted from [20])

Figure V.10 – Spectral analysis for the ZDES buffet case
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2. Application to a buffet case simulated by the ZDES method

2.8 Comparison with URANS results

Remember that the URANS simulation in Chapter III, Section 2, has been performed at an
angle of attack of 4.5 deg, since URANS methods fail to predict buffet at smaller angles of attack.
Furthermore, the physics simulated in the boundary layer by both models is completely different. The
results can therefore only be compared as trends.

Figure V.11 shows the comparison over one pseudo-period of the ZDES results on the left and
the URANS results on the right. We can see that the trends are quite similar in terms of phase between
the components and with the motion of the shock wave. ZDES gives more detailed evolutions in time
when the flow is separated, i.e. between time steps 80,000 and 95,000. The viscous drag coefficient in
particular is especially similar. The average wave drag is smaller in the ZDES case, which is consistent
with the angle of attack being smaller. The amplitude of oscillation is also slightly smaller. The induced
drag has a similar behavior in both cases. The propagation drag also has a similar behavior with a
slightly stronger amplitude in the URANS case. The conclusion of this comparison is that the trends
are remarkably similar between both simulation methods, and richer with the ZDES computations
when the flow is detached.

(a) ZDES (b) URANS

Figure V.11 – Comparison of ZDES and URANS results over one pseudo-period for the buffet case

The induced drag takes here values between -10 and 25 drag counts. It is compared to the square
of lift coefficient in Figure V.12. The correlation seems less strong in this case, with a peak of lift not
observed on the induced drag coefficient. The same time shift as in the others cases is also observed.
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Chapter V. Application of the Unsteady Formulation to Complex Cases

Figure V.12 – Induced drag coefficient and square of the lift coefficient for the ZDES buffet case
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Chapter Summary

The new unsteady formulation has been applied to two complex cases,
and has demonstrated robustness and efficiency. The first test case, a 3-
D complex case, has allowed to confirm the seemingly correct behavior of
the induced drag component defined in Chapter II. The second test case,
the ZDES simulation of a buffeting instability, has demonstrated the
capabilities of the formulation on such a rich flow field. The information
level which can be drawn from such drag prediction results is also quite
interesting. Finally, the comparison with URANS results has confirmed
the good behavior of the unsteady drag prediction method.



General Discussion

The objective of this thesis was to develop a formulation for the phenomenological breakdown
of drag for unsteady flows, to implement it in a postprocessing code, to validate it on simple test cases,
and finally to apply it to complex cases. All steps of the method have now been carried out. The
fulfillment of the objectives can now be discussed, before concluding this work.

Concerning the theoretical formulation

The first objective was to obtain a formulation as rigorous and robust as possible, and to ensure
the synchronization in time and the independence on the integration volumes for each phenomenological
drag component. To do so, a new proof of Van der Vooren’s formulation has been derived, and then
been carefully generalized to unsteady flows. The main flaw of the demonstration is however the
definition by default of the unsteady induced drag. This starting point will always remain shaky. The
physical background of the induced drag component has then been improved, with the highlighting
of acoustic effects. A propagation and acoustics drag component has been isolated. Doubts however
remain concerning the validity of the breakdown, as well as the physical background of the remaining
term which has been attributed to the induced drag component. In order to improve the robustness of
the method, an alternative expression of the ill-defined irreversible axial velocity has been studied and
compared on several test cases, proving to be less robust and not as accurate. An unsteady extension
of the criterion used for the definition of the wave surface has also been studied, with disappointing
results. These attempts to improve the robustness have therefore been dropped, and the robustness
remains an issue.

Concerning the numerical implementation

The second objective was to implement this new formulation in a postprocessing code. It has
been done as an extension of the Onera code ffd72. There are however limits for the resulting post-
processing tool: the code has to be run entirely for each time step, so that there is a great waste in
computational cost. The computation of the time derivatives, defined for the time being as a finite
difference between two instant of the flow at a given grid node, has been corrected in order to account
for rigid body motions, but cannot be used for deforming meshes. There is no theoretical restriction
for that, it is only a computational issue.

Concerning the validation on test cases

The third objective consists in validating the formulation on simple test cases. Two motionless
and two simple pitching cases have been chosen to achieve this goal. The orders of magnitude, synchro-
nization in time, influence of the viscous effects, and influence of the frequency have been investigated.
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General Discussion

Comparisons with the only other unsteady drag breakdown formulation have also been carried out.
The conclusions confirm the correct behavior of the wave, viscous, and motion components, and the
absence of synchronization in time for the other formulation. The induced drag component has shown
unexpected results, but which have been partially explained and linked with physical phenomena. We
have however been unable to validate the behavior of the propagation and acoustics drag. Finally,
all validations are qualitative only, since no quantitative result can be found for the unsteady drag
components. This point remains an important limit to this study.

Concerning the demonstration on complex cases

Finally, the last objective was to demonstrate the capabilities of the method on complex cases.
Two cases have been studied: a 3-D inviscid pitching case, and a buffet case simulated with the ZDES
method. The method has proved to be robust to such difficulties. These two complex cases have also
allowed confirming the correct behavior of the induced drag component, as well as the satisfactory
comparison between URANS and ZDES results on similar test cases. The number of application cases
and their complexity remains however limited.

This general discussion leads to many perspectives, which will be described in the next section.
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Conclusion and Perspectives

Synthesis

Several steps have led to the fulfillment of the previously described objectives. Each step has brought
out important results hereafter summarized:

• A new proof of Van der Vooren’s steady formulation has been devised. This rigorous demonstra-
tion should remain a starting point for other attempts in the development of unsteady far-field
drag formulations.

• An unsteady far-field drag breakdown formulation has been developed in a rigorous manner. Two
versions are available, one with four components, and one with five components.

• New drag components have been identified and isolated, namely a motion drag linked to the
motion of a body, and a propagation and acoustics drag linked to acoustic effects. Other possible
sources of unsteady drag have also been discussed.

• A ready-to-use postprocessing tool has been implemented. A Python routine has also been
written in order to compute the evolution in time of the drag coefficients over a given period.
Good practice recommendations have finally been formulated.

• The estimation of the wave, viscous, induced, and motion drag components has been validated
on simple cases, fixed and mobile. The orders of magnitude as well as the synchronization in
time with the flow phenomena has indeed be judged correct. The propagation and acoustics
component probably encloses several phenomena and is therefore difficult to validate.

• The results have been compared to the results using Gariépy’s formulation, the only other un-
steady drag breakdown method available, showing that the same orders of magnitude were ob-
tained. The synchronization in time could however not be compared since it depended on the
extension of the integration volumes with this other formulation, unlike with ours.

• The method has been validated with several turbulence models, and several fidelity levels of flow
simulation, proving its robustness for all methods considered.

• The unsteady drag breakdown formulation has allowed to better understand the phenomena at
stake for all test cases considered, as well as the drag creation processes. It has also confirmed
that steady estimation could not be used, even for the estimation of the average drag levels.
Finally, new postprocessing perspectives have been open, in particular for the spectral analysis
of a flow using a global variable.
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Perspectives

Limits to these positive results have been identified in the General Discussion. They lead towards a
potential for improvement, as well as widening perspectives:

Concerning the theoretical formulation and the physical understanding

• An interesting perspective would be to try to combine this formulation with the ones based on
the velocity vector summarized in the first part of this thesis, in order to improve the theoret-
ical definition of the induced drag component, and get rid of the definition by default of this
component.

• The criterion used for the definition of the integration surface for the computation of the wave
component could be generalized to unsteady flows in a better way. Nothing was found in the
literature for such developments.

• The propagation and acoustics drag component could be further explored, for example by nu-
merically computing the drag in the presence of an acoustic source only. A further decomposition
of the term, by isolating contributions rather related to non-acoustic propagation, could also be
attempted. An analytic evaluation of the drag created by an acoustic dipole is being studied and
will be published in a future paper.

Concerning the numerical implementation

• The loop currently used for the computation of drag at each time step could be directly included
within the postprocessing code, and even within the CFD code, so that no storage of the flow
field would be required.

• The time derivatives could be directly extracted from the data used in the CFD code, in order
to be able to apply the method to more complex motions, with deformations of the mesh.

Concerning the aerospace applications

• Cases with unsteady experimental data for the drag components, if achievable, would be a means
to finally validate the unsteady breakdown. Experimental data of pitching cases isolating each
drag components (similarly to the steady cases used in this study) may be a first step towards
this validation.

• The method could be applied to the detached flow downstream of a spoiler. Simulations with
the ZDES method are already available at Onera for this test case. It may be interesting for the
aircraft designers to better understand the role of the viscous and induced drag components in
this configuration.

• The unsteady formulation could also be useful for aeroelasticity problems, such as flutter. The
understanding of this complex instability driven by the interaction between the stiffness of the
structure and the aerodynamic loading may indeed benefit from such drag breakdown analysis.

• The unsteady loading experienced by flapping wings is another promising application case. Flap-
ping flight is indeed still being extensively studied, and only clues have been raised so far.

• Unsteady optimization of one of the drag component may also be achievable with this formulation.
Optimization of the total unsteady drag is already being carried out by other research teams. We
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can easily imagine to use the wave drag for example in an optimization problem. The objective
could be a target time evolution of the coefficient, or to minimize the average value or even the
peak values. Adjoint methods would however not be a realistic path, since the computation of
the sensitivities with this unsteady formulation would require a huge effort.

• Finally, the most promising application case for the aircraft designer in 2015 is the performance
assessment of a Counter-Rotating-Open-Rotor (CROR). It is indeed crucial to finally have access
to reliable data concerning the performance of such a breakthrough configuration, before the
technology leap can be seriously contemplated for a commercial use. This tool could indeed
provide information concerning the location of the sources of drag, the interactions between the
front and the rear propellers, and could help enhance the global performance.
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Appendix A

Numerical tools used for the applications

This appendix quickly describes the tools used for the applications, from the modeling and
simulation of aerodynamics, to the codes used.

A.1 Modeling of aerodynamics

If the viscosity is neglected, the governing equations for the flow field can be simplified to the
Euler equations, with no turbulence involved. However, if the viscosity cannot be neglected, turbulent
features appear for aerospace applications operating at high Reynolds numbers. A turbulent flow is
dominated by vorticity dynamics, which explains the chaotic character of the flow when the non-linear
mechanisms are preponderant. As a result, a completely turbulent flow presents many different spatial
and temporal scales which are correlated.

In the Kolmogorov cascade theory, the major part of the kinetic energy is carried by the biggest
structures, which interact with the mean motion and whose kinetic energy is too high to be dissipated
by the viscosity. That energy is transferred to the smaller structures by a mechanism of eddy stretching,
up to a certain scale of eddy, the scale of Kolmogorov, permitting the viscous dissipation. This smallest
length-scale for eddy structures is noted η. We can distinguish three ranges of scales:

• the integral scales, enclosing the biggest structures, carrying the major part of the energy and
interacting with the mean flow

• the inertial scales which for the mechanism of cascade happens

• the dissipative scales

The resolution of the Navier-Stokes equations up to the smallest scales implies many constraints
of enforcement. The computational cost of such a Direct Numerical Simulation (DNS) becomes rapidly
prohibitive and must be restricted to simple cases at low Reynolds numbers, up to the thousand. For
example, Spalart et al [78] indicate that a DNS on a complete aircraft would require about 1016

mesh points. The current computing capabilities impose to model turbulent interactions. Two main
approaches are currently used, the Reynolds Averaged Navier-Stokes (RANS) approach and the Large
Eddy Simulation (LES) approach. These two approaches are both based on a separation of scales and
are described in the next sections.

The main idea to solve the Navier-Stokes equations without calculating all the spectra of tur-
bulent structures is to separate variables in the following manner :

f = 〈f〉+ f ′ (A.1)

with 〈f〉 the solved part of the variable and f ′ the unsolved part of the variable. It represents a filtering
of the equations by the operator 〈〉.
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Figure A.13 – Spectral distribution of kinetic energy of isotropic homogeneous turbulence

For compressible flows, it is useful to introduce the Favre decomposition:

f̃ =
〈ρf〉

〈ρ〉
, f = f̃ + f” (A.2)

Additional terms appear when this decomposition is introduced into the Navier-Stokes equations,
among which the turbulent stress tensor τ tur

ij which requires modeling.

A.1.1 RANS approach

In the RANS approach, the scale separation operator 〈〉 is the statistical average. In practice,
it is assimilated to a temporal average operator, by doing the ergodicity hypothesis. Thus, the solved
part of the field is the mean field and the unsolved part of the field is the time-varying field. The
turbulent stress tensor becomes:

τ tur
ij = 〈ρ〉 ũi”uj” (A.3)

In the various RANS models, it only remains to model the Reynolds stress tensor to close the
system of averaged Navier-stokes equations.

A.1.1.1 The Boussinesq hypothesis

Most of common RANS models are based on the concept of turbulent viscosity developed by
Boussinesq in 1897 [10]. The turbulent viscosity enables to link the Reynolds stress tensor to the mean
field by the equation:

− 〈ρ〉ũi”uj”−
2

3
〈ρ〉k̃ii = µt

(
∂ũi
∂xj

+
∂ũj
∂ui

−
2

3

∂ũk
∂xk

δij

)
(A.4)

It can be observed the analogy with the kinematic viscosity, but it is important to notice that
the kinematic viscosity is a property of the fluid whereas the turbulent viscosity is a property of the
flow. The turbulent conduction is evaluated thanks to the turbulent Prandtl number:

Prt =
µtCp

κtur
(A.5)
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The value commonly used for RANS models is Prt = 0.9.
Thus, classical RANS models based on the Boussinesq assumption try to express µt with the

mean field to close the system. Many ways have been developed in the literature: algebraic models,
models with transport equations of one or more variables, etc.

In the following paragraph, the Spalart-Allmaras and k − ω turbulence models are presented in
more details.

A.1.1.2 The Spalart-Allmaras turbulence model

The Spalart-Allmaras model [77] is a one-equation turbulence model based on the Boussinesq
assumption, which focuses on the determination of µt as a function of the mean field. The model
proposes to solve a transport equation for the quantity ν̃:

∂ν̃

∂t
+uj

∂ν̃

∂xj
= cb1(1−ft2)S̃ν̃−

[
cw1fw −

cb1
K2

ft2

]( ν̃
d

)2

+
1

σ

[
∂

∂xj

(
(ν + ν̃)

∂ν̃

∂xj

)
+ cb2

∂ν̃

∂xi

∂ν̃

∂xi

]
(A.6)

The different terms of the right hand side have been determined heuristically and calibrated
from increasingly complex flows. Details can be found in [77].

This model is successfully used in the industry, but often tends to predict too massive separations,
due to an overestimation of the turbulent viscosity in the vortex center.

A.1.1.3 k − ω model

Wilcox [98] suggested a two-equations turbulence model. Coupled transport equations for the
turbulent kinetic energy k and the rate of viscous dissipation ω are added to the model. They can be
written as:

∂ρk

∂t
+
∂ρujk

∂xj
= P − β∗ρωk +

∂

∂xj

((
µ+ σk

ρk

ω

)
∂k

∂xj

)
(A.7)

∂ρω

∂t
+
∂ρujω

∂xj
=
γω

k
P − βρω2 +

∂

∂xj

((
µ+ σω

ρk

ω

)
∂ω

∂xj

)
(A.8)

The turbulent eddy viscosity is then expressed as µt =
ρk
ω

.
The transport equation for the rate of viscous dissipation ω can however lack robustness far from

the wall, so that Menter [60] proposed a correction: he suggests to replace this transport equation by
the transport equation for the viscous dissipation ǫ far from the walls. The Shear Stress Transport
(SST) correction also allows to bound the value of µt so as to avoid overestimation of shearing stress
in presence of positive pressure gradients.

A.1.1.4 Unsteady RANS

The RANS equations are actually time-dependent. If a resolved time step is used to simulate an
unsteady flow, one can therefore access to an unsteady flow field. This is often referred to as Unsteady
RANS (URANS), in order to insist on the unsteady feature of such simulations. The resulting time-
dependent flow field must however be carefully looked into, since the turbulence models used to close
the equations are valid only as long as the time over which these changes in the mean flow occur is
large compared to the time scales of the turbulent motion containing most of the energy.
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A.1.2 LES Approach

In the RANS approach, all the turbulent scales are modeled, which provides very low computing
costs. On the contrary, in the LES approach, a big part of these scales is solved. The largest structures
interacting with the mean flow, as well as a part of structures in the inertial range are solved, whereas
the smallest dissipative ones are modeled. It is assumed that, in the inertial range and beyond, the
turbulence is locally isotropic, justifying the modeling of the smallest turbulent length scales. The
scale-separator operator 〈〉 is submitted to a low-pass filter of width ∆ (in the wave number space).

This width is dependent on the grid refinement. To capture a certain length scale of turbulent
structures, it is required to get a sufficiently refined mesh, at least as small as the length scale. In some
ways, the grid acts as a filter. Many different filters exist in the literature, the most common of them
being:

• The "box" or top-hat filter, providing a spatial average on a given length. It is a cardinal sinus
in the spectral space.

• The "spectral or sharp cutoff" filter, representing a cardinal sinus in the physical space but is an
ideal low-pass filter in the spectral space (and owns the idempotence property).

• The Gaussian filter whose representations in the physical and spectral space is a Gaussian dis-
tribution.

Once the filtering applied with the Favre decomposition, the term τ turij has to be modeled. In
the LES approach, τ tur

ij can be noted τ SGS
ij , where SGS means Sub-Grid Scales, as the modeling deals

with scales lower than ∆. It exists various ways to model this tensor that have been classified by
Sagaut [73].

In the functional models all the tensor τ SGS
ij is modeled in the aim to reproduce the behavior of

the sub-grid turbulence and its interactions with solved scales. Such an approach requires a very fine
analysis of the physics of turbulent interactions and is largely based on the Kolmogorov’s cascade. A
strong hypothesis often used is that the effect of the subgrid scales on the resolved scales is essentially
dissipative, the action of subgrid scales can be summarized by the energy equilibrium with the resolved
scales. It is then assumed that subgrid scales have locally an isotropic behavior which is not necessarily
the case in fully turbulent flows other than isotropic homogeneous turbulence. In this frame, it yields
to introduce the notion of subgrid viscosity µsgs =< ρ > νsgs to model the energy transfer mechanisms
from the resolved to the subgrid scales, by analogy with the molecular mechanisms used in the RANS
approach:

τSGS
ij −

1

3
τSGS
kk δij = −〈ρ〉νsgs

(
∂(ũi)

∂xj
+
∂(ũj)

∂xi
−

2

3
µ
∂(ũk)

∂xk
δij

)
(A.9)

A closure equation to evaluate νsgs is now required. Many subgrid viscosity models have been de-
veloped in the literature, among which the Smagorinsky model will be used later. It can be summarized
as such:

• Only the forward energy cascade process is taken into account, i.e. the action of subgrid scales
on the resolved scales (backward process) is neglected.

• A characteristic length l0 and a characteristic time t0 are sufficient for describing the subgrid
scales.

• There exists a total separation between the subgrid and resolved scales.

• The flow is in constant spectral equilibrium, there is no accumulation of energy at any frequency.
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That leads to the following expression of the subgrid viscosity νsgs:

νsgs = (Cs∆)2‖S̃ij‖ (A.10)

The constant Cs can be determined by different manners but is often estimated assuming an
equilibrium between the production and dissipation terms in isotropic homogeneous turbulence. The
common value is Cs = 0.18, but it can be tuned according to the application, between 0.1 and 0.2.

A.1.3 Hybrid RANS/LES approaches

The LES approach requires a computing cost which is still prohibitive at high Reynolds numbers
with the current calculation capabilities. In order to reduce this CPU cost, the idea has been advanced
to couple the RANS and the LES approaches to solve complex flows. Thus, the hybrid approach
combines the efficiency of the RANS and the high resolution level of the LES. The hybrid RANS/LES
methods take profit of the similarity of filtered equations form of the two approaches which only differ
by the scale separation operator. Despite the mechanisms modeled in the tensor τSGS

ij and τRANS
ij are

very different, the common formalism enables to switch from one modeling to the other. Switching
from one model to another one is equivalent to change the effective filtering, or in other words, the
characteristic length scale. All the challenge is to manage the transfer from one model to the other, as
they do not represent the same physics.

A very large number of hybrid RANS/LES strategies have been developed over the last two
decades, as SDM, LNS, VLES, XLES, DES, SAS, DDES, ZDES,... The reader is invited to report to
the review of Sagaut, Deck and Terracol [74] to get a quite exhaustive insight on these methods.

In the following, only the Detached Eddy Simulations, and its extension Zonal Detached Eddy
Simulation, methods are described.

A.1.3.1 Detached Eddy Simulation

One of the most popular hybrid approach for simulating industrial flows is the Detached Eddy
Simulation (DES), originally developed by Spalart [78]. Considering that RANS modeling is very
efficient close to the wall to simulate an attached boundary layer, but exhibits many difficulties to
provide realistic solutions of massively separated flows, and that LES requirements are prohibitive in
the boundary layer, the main idea of this approach lies in the modification of the transport equation of
the turbulent variables depending on the wall-distance, imposing thus a RANS model close to the wall
and a LES model further. In the originated DES of Spalart et al. [78], the initial turbulent viscosity
of the RANS model, close to the wall, is modified toward a subgrid viscosity of Smagorinsky type in
the free stream and flow separated areas, thanks to the introduction of a new characteristic length d̃,
which replaces the wall distance dw in the pseudo-viscosity transport equation. This length scale is
defined as:

d̃ = min(dw, CDES∆) (A.11)

with ∆ = ∆max = max(∆x,∆y,∆z) the characteristic mesh length and CDES a constant settled to
0.65.

The definition of d̃ based on ∆max induces a switching from the RANS modeling to the LES
modeling according to the local mesh refinement. It allows the use of RANS grid standards close to the
wall (which is a very big advantage of this approach) and to satisfy LES grid standards far from the
solid walls. Nevertheless the transition area between the two models remains uncertain when dw ≈ ∆,
the "grey zone" as called by the authors of DES [78]. In particular, if this grey zone is located inside
the boundary layer, i.e. ∆x or ∆z is equivalent to the boundary layer thickness δ, a drop of the eddy

163



Appendix A. Numerical tools used for the applications

viscosity in this area can occur. As the mesh is not yet adapted to the LES mode and the eddy viscosity
does not decrease fast enough to allow the eddies development, it yields an under-estimation of the
Reynolds stress levels.

A.1.3.2 Zonal Detached Eddy Simulation

Inspired from the previous approach, the Zonal Detached Eddy Simulation (ZDES) was first
proposed by Deck, and the complete formulation that proposes an efficient solution to prevent delay
in the formation of instabilities has been recently published in [21].

This approach takes full advantage of its zonal nature, not only to allow the user to specify
RANS and LES regions, but also to allow the use of various formulations within the same calculation.
ZDES offers thus an attractive flexibility in the treatment of turbulent flows in technical applications
and has been applied often with good results over a wide range of Mach numbers and configurations
(see [22]).

Three specific hybrid length scale formulations, also called modes, are then optimized to be
employed on three typical flow field topologies (see Figure A.14). Mode 1 concerns flows where the
separation is triggered by a relatively abrupt variation in the geometry, mode 2 is retained when the
location of separation is induced by a pressure gradient on a gently-curved surface, and is the one used
in this work, and mode 3 for flows where the separation is strongly influenced by the dynamics of the
incoming boundary layer.

Figure A.14 – Classification of typical flow problems (adapted from [21])
I: separation fixed by the geometry

II: separation induced by a pressure gradient on a curved surface
III: separation strongly influenced by the dynamics of the incoming boundary layer

Figure A.15 summarizes the different methods available for the simulation of turbulent flows.

A.2 Codes used

Two codes have mainly been used in this study, one for the flow simulation, and one for the
postprocessing, following the scheme presented in Figure A.16.

The Onera elsA code [14] is an object-oriented CFD software. The conservative variables of the
flow field, computed and extracted by elsA at each instant, are used as input for the postprocessing
tool. The time derivative in particular can be extracted from elsA, but, in the present work, they are
computed as a finite difference between the field at a given grid node at two consecutive time steps,
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Figure A.15 – Different methods available for the simulation of turbulent flows

Figure A.16 – Schematic representation of the unsteady postprocessing execution chain
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and a correction is added in the case of a rigid body rotation or translation of the mesh:

∂ρ

∂t
=
δρ

δt
−w ·∇ρ (A.12)

∂ρq

∂t
=
δρq

δt
−w ·∇ (ρq) +Ω× (ρq) (A.13)

where w and Ω denote the velocity and rotation vector of the grid respectively. More complex motions,
with deforming grids for example, can therefore not be treated with this numerical setup so far.

The Onera far-field drag post-processing tool dates back to 1993, with the first ffd, for far-
field drag, code. A cell-by-cell approach with physical sensors was developed and a correction for
spurious vortex diffusion was implemented one year later. Face-based management was adopted in
2003 for the drag extraction to allow the post-processing of flow solutions computed on both structured
and unstructured grids. Multiblock structured data are converted into unstructured solutions. This
feature is particularly useful for treating numerical solutions from various flow solvers, especially for
cell-centered solvers (elsA) and cell-vertex solvers (DLR-TAU [76]).

The ffd72 code contains about 300 subroutines for 75,000 lines before the present development.
The unsteady formulation developed in Chapters I, and II has been implemented in the ffd72 code.
The developments represent about 20 new routines, and about 1,000 lines. As far as the practical use
of the unsteady method is concerned, the user can specify the time step if the time derivatives are
computed manually. The output of ffd72 is then a text file containing the results of the drag breakdown
at the given instant. A small Python program has been written in order to run ffd72 for each time
step, read the output file, and add the results to a data file containing at the end the evolution in time
of all the drag components.

166



Appendix B

Grid studies

This appendix summarizes the grid studies carried out during this thesis. All test cases could
not benefit from such grid studies, however two or three levels of grid density have been considered for
five cases.

B.1 Airfoil in a steady transonic inviscid flow

The first convergence study concerns the steady test case used to assess the behavior of the wave
drag component (see Chapter II, Section 1.5.1). The flow is inviscid, with a transonic Mach number
M∞ = 0.8. Three levels of grid density are considered here, courtesy of Vassberg and Jameson [93].
The coarse mesh shown in Figure B.17(a) is a 65,536 elements grid (256 × 256). The medium grid
presented in Figure B.17(b) has 262,144 elements (512×512), and the fine mesh shown in Figure B.17(c)
1,048,576 elements (1024 × 1024).

(a) Coarse (b) Medium (c) Fine

Figure B.17 – Mesh visualizations for the steady Euler transonic case

The convergence of the near-field drag coefficients for the three grid levels is depicted in Fig-
ure B.18(a). All three computations are converged to the thousandth of drag count. The fine grid
seems to be very close to the converged value for the near-field drag, since there is less than half a
drag count between the medium and the fine grid. The far-field estimation of the wave drag, as the
downstream extension of the integration surface is set to vary, is shown in Figure B.18(b). We can
see again that the fine grid offers a satisfactory level of convergence. What is remarkable is the little
dependence on the refinement level of the drag computing using uirr . The computations using u†irr or
u∗irr are much more dependent. For the coarse and the medium grids, CD†

w and CD
∗
w do not converge

to a given value but keep increasing with the number of cell layers. The discrepancy between CD
†
w

and CD
∗
w close to the shock wave is also stronger with the coarse mesh.
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(a) Convergence of the near-field drag coefficient (b) Evolution of the wave drag coefficients with
respect to the downstream extension

Figure B.18 – Grid convergence curves of the drag coefficients for the steady Euler transonic case

B.2 Airfoil in a steady subsonic viscous flow

The second steady test case, the airfoil in a subsonic (M∞ = 0.2) viscous flow in order to evaluate
the evolution of the viscous drag component from Chapter II, Section 1.5.2, has also been subject to
a grid convergence study. Three levels of mesh refinements are considered: 16,384 elements (256× 64)
as depicted in Figure B.19(a), 65,536 elements (512× 128) as depicted in Figure B.19(b), and 262,144
elements (1024 × 256) as depicted in Figure B.19(c).

(a) Coarse (b) Medium (c) Fine

Figure B.19 – Mesh visualizations for the steady viscous subsonic case

The convergence history of the near-field drag coefficient is presented in Figure B.20(a). The
converged values are very close for the three grid levels, and the distance is decreased between the
medium and the fine levels. The results of the far-field evaluation are given in Figure B.20(b). The
fine grid can be considered to give drag values very close to the converged ones. As far as the alternative
expressions are concerned, we can see that the discrepancies in the trailing edge zone are larger when
the grid is coarser, especially with u∗irr .
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(a) Convergence of the near-field drag coefficient (b) Evolution of the viscous drag coefficients with
respect to the downstream extension

Figure B.20 – Grid convergence curves of the drag coefficients for the steady viscous subsonic case

B.3 Wing in a steady subsonic inviscid flow

The third and last grid convergence study on a steady case has been carried out on the 3-D
subsonic and inviscid test case from Chapter II, Section 1.5.3. Three grid levels have been used:
a coarse mesh of 131,072 elements (64 × 64 × 32) presented in Figure B.21(a), a medium grid of
1,048,576 elements (128× 128× 64) presented in Figure B.21(b), and a fine grid of 8,388,608 elements
(256 × 256× 128) presented in Figure B.21(c).

(a) Coarse (b) Medium (c) Fine

Figure B.21 – Mesh visualizations for the steady Euler subsonic 3-D case

In Figure B.22(a), we can see the convergence history of the near-field drag for the three grid
levels. The values of drag are very different from one grid level to another in that case. This can
be explained by the strong dependence of the solution on the mesh quality, which is a well known
phenomenon for Euler flows. It also exists for the far-field value, as depicted in Figure B.22(b), for
which the wing tip vortex dissipation is also dependent on the mesh quality. The near-field and far-field
drag coefficients seem however to converge towards a common value about 108 drag counts. An even
finer grid would have been better suited. We can however conclude that again CD

†
i and CD

∗
i are even

further from CD i in the vicinity of the trailing edge when the mesh is coarser. CD
∗
i shows also larger

169



Appendix B. Grid studies

discrepancies with CD
†
i with the coarse grid.

(a) Convergence of the near-field drag coefficient (b) Evolution of the induced drag coefficients
with respect to the downstream extension

Figure B.22 – Grid convergence curves of the drag coefficients for the steady Euler subsonic 3-D case

B.4 Pitching airfoil in a viscous flow

Two levels of grid refinement have also been used in the unsteady viscous pitching case. The
coarse grid is about 70,000 elements, and can be seen in Figure B.23(a). The fine grid is about 530,000
elements, as visualized in Figure B.23(b).

(a) Coarse (b) Fine

Figure B.23 – Mesh visualizations for the viscous pitching case

The drag breakdown method has been applied on these two refinement levels. The corresponding
results can be seen in Figure B.24. We can first notice that all drag components vary little with the
grid refinement level. The total far-field drag (in pink) is in particular almost identical, whereas the
near-field drag varies more: the spurious drag, in orange, is indeed smaller with the fine grid, which
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confirms that far-field prediction allows to put aside a part of the numerical artificial drag, even for
unsteady cases. A small phase shift can be observed for the viscous (green) and induced drag (dark
blue) components, which may be explained by the frontier between viscous and complementary volumes
which is less accurate with a coarse grid. The propagation and acoustics component (light blue) sees
its amplitude decrease with a finer mesh. The motion drag, in grey, is very slightly affected.

Figure B.24 – Evolution of the drag coefficients with respect to time for two grid refinement levels
(dashed: coarse, solid: fine) for the viscous pitching case

B.5 Pitching wing in an inviscid flow

The last grid study concerns the application case of the pitching wing in an inviscid flow. Two
grid levels were retained: a 1,048,576 elements grid (128 × 128 × 64) as in Figure B.25(a), and a
8,388,608 elements grid (256 × 256 × 128) as in Figure B.25(b).

The evolution in time of the drag components for both grids is presented in Figure B.26. The
grid dependence is here stronger, since the vortex decay for this 3-D flow is more sensitive to grid
refinement as we can see with the near-field drag in black. The total far-field drag, in pink, is however
remarkably stable or in other words, the spurious drag (orange) is much stronger with the coarse grid.
The induced drag component (dark blue) sees its maximal peaks reduced with a coarse grid, which
is probably due to the vortex decay. The propagation and acoustics drag (light blue) is accordingly
increased. There is actually a transfer from one drag component to the other due to the dissipation of
the wingtip vortex. The motion drag (grey) is again very slightly affected.
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(a) Coarse (b) Fine

Figure B.25 – Mesh visualizations for the 3-D pitching case

Figure B.26 – Evolution of the drag coefficients with respect to time for two grid refinement levels
(dashed: coarse, solid: fine) for the 3-D pitching case
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Time evolution figures

The unsteady results are presented in this appendix as series of instantaneous figures. The time
steps corresponding to each figure is the same for each family of pictures. The evolution in time is
indicated by the arrows between each line of figures.

The first group of figures concerns the vortex shedding case. Figure C.27 shows the time evolution
of the flow field. The integration volumes computed at each iteration of ffd72 are shown in Figure C.29.
Finally, the cells where uirr is undefined are plotted for each time step in Figure C.30.

The second group of figures concerns the buffet case. Figure C.31 shows the time evolution of the
flow field. The evolution in time of the Kp curves is plotted in Figure C.32. The integration volumes
computed at each iteration of ffd72 are shown in Figure C.33. The cells where uirr is undefined are
plotted for each time step in Figure C.34. Finally, the wave surfaces defined using the filtered wave
criterion are compared to those using the steady criterion in Figure C.35.
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Figure C.27 – Time evolution of the vorticity field for the vortex shedding case
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Figure C.28 – Time evolution of the Mach contours for the vortex shedding case
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Figure C.29 – Time evolution of the viscous integration volume for the vortex shedding case
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Figure C.30 – Time evolution of the cells where uirr is undefined for the vortex shedding case
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Figure C.31 – Time evolution of the vorticity field for the buffet case
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Figure C.32 – Time evolution of the Cp curves for the buffet case
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Figure C.33 – Time evolution of the integration volumes for the buffet case
(red: Vw , orange: Vwd , and green: Vv )
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Figure C.34 – Time evolution of the cells where uirr is undefined for the buffet case

181



Appendix C. Time evolution figures

Time step = 150 Time step = 200 Time step = 250

y

Time step = 400

x

Time step = 350 Time step = 300

Time step = 450 Time step = 500 Time step = 550

y

Time step = 700

x

Time step = 650 Time step = 600

Time step = 750 Time step = 800 Time step = 850

Figure C.35 – Time evolution of Sp
w (red) and Suns,filtered

w (black) for the buffet case
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Figure C.36 – Time evolution of the Mach contours for the inviscid pitching case
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Figure C.37 – Comparison of the time evolution of the Cp curves for the unsteady inviscid pitching airfoil
(blue) and steady airfoil (black)
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Figure C.38 – Time evolution of the Mach contours for the viscous pitching case
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Figure C.39 – Comparison of the time evolution of the Cp curves for the unsteady viscous pitching airfoil
(blue) and steady airfoil (black)
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Figure C.40 – Time evolution of the viscous integration volume for the viscous pitching case
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Figure C.41 – Time evolution of the isosurface of Q-criterion colored by the longitudinal vorticity for the 3-D
pitching case

188



Appendix C. Time evolution figures

Time step = 67,000 Time step = 69,000 Time step = 71,000

y

Time step = 77,000

x

Time step = 75,000 Time step = 73,000

Time step = 79,000 Time step = 81,000 Time step = 83,000

y

Time step = 89,000

x

Time step = 87,000 Time step = 85,000

Time step = 91,000 Time step = 93,000 Time step = 95,000

Figure C.42 – Time evolution of the Q-criterion colored by vorticity magnitude, and Mach contours, for the
ZDES buffet case
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Figure C.43 – Time evolution of the integration volumes for the ZDES buffet case
(red: Vw , orange: Vwd , and green: Vv )
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Figure C.44 – Time evolution of the cells where uirr is undefined for the ZDES buffet case
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Prediction and phenomenological breakdown of drag for unsteady flows

Accurate drag prediction is now of a major issue for aircraft designers. Its phenomenological
sources need to be identified and quantified for an efficient design process. Far-field methods, which
allow such phenomenological drag breakdown, are however restricted to steady flows.

This study consists in developing a far-field drag prediction method aiming at a phenomeno-
logical breakdown of drag for unsteady flows. The first step has consisted in generalizing the steady
formulation of Van der Vooren to unsteady flows, starting from a new rigorous proof. Axes for the
improvement of the robustness and physical background have then been explored. Acoustic contribu-
tions have in particular been highlighted and quantified. The resulting five-components formulation
has then been applied to simple cases, in order to validate as best as possible the phenomenological
breakdown. The behavior of the drag components has proved to be consistent with the physics of the
flow. Finally, the method has been applied to complex cases in order to demonstrate its capabilities:
a 3-D case and a flow simulated by the ZDES method.

In the future, it would be interesting to further improve the definition of the induced drag
component, for example by using velocity-based formulations. As far as the application cases are
concerned, the performance evaluation of a Counter-Rotating-Open-Rotor would strongly benefit from
such a method. Unsteady optimization of one of the drag component could also be contemplated.
Finally, applications in aeroelasticity or flapping flight would be an interesting perspective.

Keywords: DRAG; FAR-FIELD; PERFORMANCE; AERODYNAMICS; CFD; UNSTEADY

Prévision et décomposition phénoménologique de la traînée

pour des écoulements instationnaires

L’estimation précise de la traînée est aujourd’hui un enjeu majeur pour les avionneurs. Il est
nécessaire d’identifier et de quantifier ses sources phénoménologiques dans le cadre d’un processus de
design efficace. Les méthodes champ lointain, qui permettent une telle décomposition de la traînée,
sont cependant limitées aux applications stationnaires.

Cette étude consiste à développer une méthode d’extraction champ lointain destinée à permettre
une décomposition phénoménologique de la traînée pour des écoulements instationnaires. La première
étape a consisté à généraliser la formulation stationnaire de Van der Vooren aux écoulements instation-
naires, en partant d’une nouvelle démonstration rigoureuse de sa méthode. Des axes pour l’amélioration
de la robustesse et du contenu physique ont ensuite été explorés. Des contributions acoustiques ont
en particulier été mises en évidence et quantifiées. La formulation à cinq composantes ainsi obtenue a
ensuite été appliquée à des cas tests simples, dans le but de valider aussi bien que possible la décom-
position phénoménologique. Le comportement des composantes de traînée s’est avéré cohérent avec la
physique de l’écoulement. Enfin, la méthode a été appliquée à des cas complexes afin de démontrer ses
capacités : un cas instationnaire 3D ainsi qu’un écoulement simulé en ZDES.

Dans l’avenir, il serait intéressant de continuer à explorer la définition de la composante de traînée
induite, par exemple en utilisant les formulations basées sur le vecteur vitesse. En ce qui concerne
les cas d’application, l’évaluation de la performance d’un doublet d’hélices contra-rotatives pourrait
fortement bénéficier de l’utilisation d’une méthode comme celle-ci. L’optimisation instationnaire d’une
des composantes de traînée pourrait également être envisagée. Enfin, des applications en aéroélasticité
ou en vol d’ailes battantes pourraient être d’intéressantes perspectives.

Mots-clés : TRAÎNÉE ; CHAMP LOINTAIN ; PERFORMANCE ; AÉRODYNAMIQUE ; CFD ;
INSTATIONNAIRE
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