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La conception de systèmes embarqués devient de plus en plus complexe. Ces systèmes sont hétérogènes dans le sens où ils nécessitent l'intégration de composants décrits au moyen de plusieurs disciplines scientifiques, par exemple, l'électricité, l'optique, la thermique, la mécanique, la chimie ou la biologie.

De plus, ces disciplines peuvent être représentées dans des domaines temporels différents, par exemple, le domaine des événements discrets, celui du temps discret, ou celui du temps continu. Face à cette situation, les concepteurs ont besoin d'outils de modélisation et de simulation efficaces pour décrire le comportement d'un système hétérogène dans un environnement de simulation unique. Nous examinons la possibilité de modéliser, de simuler et de synchroniser les systèmes multidisciplines dans le même environnement, en utilisant comme référence la norme de simulation « SystemC Analog/Mixed-Signal (AMS) ». Nous analysons la méthode introduite par SystemC AMS pour synchroniser le domaine des événements discrets avec celui du temps discret, et nous identifions ses inconvénients. Nous proposons une formalisation du problème de synchronisation qui permet de détecter les problèmes existants dans un modèle avant la simulation. Nous proposons un prototype de simulateur appelé « SystemC Multi-Disciplinary Virtual Prototyping (MDVP) », qui est implémenté comme une extension de SystemC. Il permet la modélisation, l'élaboration, et la simulation hiérarchique de systèmes multi-disciplines au moyen de plusieurs modèles de calcul. Pour concevoir le simulateur MDVP, nous introduisons un nouveau principe de synchronisation entre plusieurs modèles de calcul. En outre, nous introduisons une méthodologie pour ajouter, dans le prototype de simulateur, des modèles de calcul représentés par plusieurs domaines temporels. Nous appliquons cette méthodologie pour ajouter un modèle de calcul « Timed Data Flow (TDF) » dans SystemC MDVP. Ce modèle de calcul repose sur la sémantique du temps discret introduite par SystemC AMS, et sur la formalisation du principe de synchronisation entre le domaine des événements discrets et celui du temps discret. Nous mettons en oeuvre le modèle de calcul TDF, dans le cas d'un capteur de vibrations et son circuit numérique. Ce modèle comporte une boucle d'asservissement et plusieurs interactions entre le domaine des événements discrets et celui du temps discret.

Context

Nowadays, a large percentage of devices, in addition to having microprocessors embedded and connected with the outside world through sensors and actuators, are connected with other devices thanks to the internet. This means that both physical and virtual worlds are merging [START_REF]Cyber-Physical Systems: Driving Force for Innovation in Mobility, Health, Energy and Production[END_REF]. When we talk of internet, we are referring to the evolving entity, growing in importance, which began as Internet of Computers, by offering a global network with services as the World Wide Web; which became Internet of People, by connecting millions of people through the social networks; and which is becoming in Internet of Things (IoT), by creating an ecosystem where billions of devices are interconnected and communicate with each other [START_REF] Coetzee | The Internet of Things -Promise for the Future? An Introduction[END_REF]- [4]. We are specifically referring to the "technological revolution in the future of computing and communication that is based on the concept of anytime, any place connectivity for anything" [5].

The valuable contribution of the IoT, of merging the physical world and the virtual world, has been possible thanks to the basis provided by the Cyber-Physical Systems (CPS), which are a particular variation of embedded systems including sensors and actuators. Using sensors, the embedded systems process the information from the physical world and make it available for the virtual world; and using actuators, the virtual world can directly impact the physical world [6].

Today, we consider that the modeling and simulation of CPS is an increasingly complex problem because they tend to become heterogeneous, in the sense that they include components associated to different physical/engineering disciplines: electrical, optical, thermal, mechanical, chemical, or biological are some examples. Besides, these disciplines can be described under different timed or untimed domains: continuous time, discrete time, synchronous data flow, or discrete event are some examples. This indicates that the challenge in the development of CPS is to bridge the gap among the different included disciplines.

On the one hand, the modeling attempts to represent real systems through a set of interconnected elements, which can be described at different abstraction levels, and which can have specific characteristics. On the other hand, the simulation ensures that these elements are always executed while respecting temporal semantics, provides mechanisms for sharing data at specific times, and proposes techniques for preserving the integrity of the transmitted information.

We also consider that it is very important that these systems of heterogeneous nature can be properly represented in virtual prototypes; which are fast and fully functional executable software models of hardware systems [START_REF]Virtual Prototypes: The Engine Behind "Shift left[END_REF]. They can be used in a set of simulation tests, which allow to verify design concepts, and improve the real systems development process.

The components of these functional models require two types of synchronization: (1) time synchronization, referring to the information exchanges at the right time, because components can operate at different computation speeds; and (2) data synchronization, referring to the information exchanges in the right format, because data transfers can require approximation of values among domains. Moreover, these virtual prototypes can be described and verified using two different approaches:

co-simulation and unified multi-domain simulation.

Co-simulation is the method by which several components or subsystems, described under different design languages or implemented by means of different design tools, are connected together and simulated in a distributed manner. Although co-simulation can address the interaction between timed or untimed domains, it requires a frequent synchronization between the parallel executions of different simulation environments, affecting significantly the overall simulation performance [START_REF] Moreno | Unified and Comprehensive Electronic System Level, Network and Physics Simulation for Wirelessly Networked Cyber Physical Systems[END_REF]. In general, interfaces for enabling the co-simulation should be defined. An example of a co-simulation environment, which proposes the interaction between the discrete event and the continuous time domains is presented in [START_REF] Bouchhima | A SystemC/Simulink Co-Simulation Framework for Continuous/Discrete-Events Simulation[END_REF].

For its part, the unified simulation is the approach proposing the joint design and simulation of hardware and software components in the same environment. It should reduce the modeling time, the number of design cycles, the development cost, and the unexpected effects produced by the interactions between components. An example of a unified simulation environment, which addresses the joint design of HW/SW/Analog systems is presented in [START_REF] Barnasconi | SystemC AMS Extensions: Solving the Need for Speed[END_REF].

Usually, the unified multi-domain simulation approach is expected to be able to define and verify the behavior of systems, whose components are described by means of different timed or untimed domains, without needing to worry about how these components will be synchronized. The idea of making available a simulation environment including these features, is maybe the ideal dream of many designers of heterogeneous systems.

Objectives and Research Contributions

At present, as several authors have discussed, the modeling and simulation of embedded systems is not an easy challenge: it is difficult to bring, handle and control worlds of different natures together [START_REF] Grimm | Towards Co-design of HW/SW/Analog Systems[END_REF]; the mix of analog and digital parts makes the design process more complicated [START_REF] Moreno | Unified and Comprehensive Electronic System Level, Network and Physics Simulation for Wirelessly Networked Cyber Physical Systems[END_REF]; and the heterogeneity is the major obstacle for developing model-based design tools for these systems [START_REF] Bajaj | Optimized selection of reliable and cost-effective cyber-physical system architectures[END_REF].

The purpose of this thesis is to explore the possibilities of simulating and synchronizing multidisciplinary systems with respect to the Discrete Event (DE) time domain, using as reference the simulation standard called SystemC Analog/Mixed-Signal (AMS) [13]. We consider the DE time domain for defining the simulation bases because the representation, processing, transmission and storage of the embedded systems' information is performed by general purpose systems described in the digital world (easily represented by discrete event time behaviors). Another purpose of this work is to make of the heterogeneous simulation a generic process, offering the possibility of coupling and integrating multiple physical/engineering disciplines. The specific contributions of this work are summarized below.

• Synchronization with the Discrete Event (DE) Domain through the Discrete Time (DT) Domain: we analyze the only synchronization method included in SystemC AMS and we identify its drawbacks. Thanks to this analysis, we formalize this synchronization method and improve it in two aspects:

-The detection of synchronization issues during a simulation period is now performed before the simulation phase.

-Suggestions to solve these synchronization issues are also identified and notified to the designer before the simulation phase.

Moreover, we highlight that the existing synchronization method is not sufficient to support the interactions of several domains with respect to the DE domain.

• Unified Simulator Prototype: we propose a new simulator prototype called SystemC Multi-Disciplinary Virtual Prototyping (MDVP), which includes generic methods to prepare and simulate heterogeneous models. The simulator kernel is proposed and implemented as an extension of the system design language called SystemC [START_REF]IEEE Standard for SystemC Language Reference Manual[END_REF].

• Addition of Models of Computation (MoCs): we introduce a methodology to add to the SystemC MDVP simulator prototype, MoCs described by means of different time domains. In this context, a Model of Computation is the term used to define the time abstraction, the computation rules, the semantics of communication and synchronization between processes in a process network [START_REF] Jantsch | Models of computation and languages for embedded system design[END_REF].

• Timed Data Flow (TDF) MoC: we design and implement a simplified version of the TDF MoC described in the SystemC AMS standard [13]. This implementation allows us to validate the methodology proposed to add MoCs in the unified simulator prototype. Moreover, thanks to the DT nature of the TDF MoC, we implement the synchronization method previously formalized between the DE and DT domains.

• Case Study: we implement and simulate the case study of a vibration sensor model and its digital front end circuit, using the TDF MoC included in the SystemC MDVP simulator prototype.

The model includes a DE feedback loop and multiple synchronization points with respect to the DE domain.

Thesis Organization

After defining, in Chapter 1, the context and the contributions of our work, this document is organized as described in the following.

In Chapter 2, we present our motivation focused on the modeling and simulation of multidisciplinary systems. We introduce SystemC, the modeling language based on a Discrete Event simulation kernel; and also the Analog/Mixed-Signal extensions of this language, which allow to simulate discrete time and continuous time behaviors. Additionally, we describe and analyze the SystemC-AMS proof-of-concept simulator [START_REF]SystemC AMS 2.0 Proof-of-Concept Implementation[END_REF] for finally defining the problems to be addressed in this thesis.

In Chapter 3, we summarize the state of the art associated with our research. We present several approaches for modeling and simulation of multi-disciplinary systems, we identify the level at which the heterogeneity can be expressed in each approach, if they are able to include different time domains, how such domains are included, and the synchronization methods defined for ensuring their interactions.

In Chapter 4, we explain the issues that can arise during the synchronization interactions between the Discrete Event and Discrete Time domains. We present a formalization of these interactions using a Coloured Petri Net (CPN) representation [START_REF] Jensen | Coloured Petri Nets. Modelling and Validation of Concurrent Systems[END_REF] and then, we propose a DE-TDF pre-simulation analysis useful to detect the synchronization issues, and offer possible solutions for these issues.

In Chapter 5, we describe the new simulator prototype called SystemC MDVP. We introduce the hierarchical synchronization principle adopted for the representation of interactions, and the generic methods proposed for the elaboration and simulation of multi-disciplinary models. Moreover, in this chapter we include an overview about the implementation of this prototype. Finally, we describe the methodology proposed to add Models of Computation in the SystemC MDVP simulator prototype.

In Chapter 6, we present a simplified version of TDF MoC, which works respecting a discrete time semantics. This MoC not only integrates the synchronization method formalized in Chapter 4, but also validates the methodology proposed in Chapter 5 for adding new MoCs in SystemC MDVP.

In Chapter 7, we show the case study of a vibration sensor model and its digital front end circuit, this model is described using the TDF MoC. In the case study, several TDF blocks contain nonunitary attributes and are interconnected in a TDF cluster, which includes a feedback loop and several interactions with the discrete event domain. In this chapter, we present the DE-TDF pre-simulation analysis applied in the model to detect the synchronization issues and also to propose solutions for such issues.

Finally, in Chapter 8, we conclude this research and give an outlook of the future works.

Introduction

The modeling and simulation of heterogeneous systems is becoming an important aspect in the design flow of Systems-on-Chip (SoC), which are integrated circuits including, in a single chip, components associated to different physical/engineering disciplines and described under different time domains.

They can integrate and mix, as shown in Figure 2.1, digital parts (processors, memories, interconnection busses, or timers), Radio Frequency (RF) parts (communication or transmission channels), Analog/Mixed-Signal (AMS) parts (converters or sensors), and also physical or mechanical parts. Figure 2.1: Wireless Sensor Network (WSN) application for the determination of the epicentre of a planar seismic perturbation (adapted from [START_REF] Leveque | SystemC-AMS Models for Low-Power Heterogeneous Designs: Application to a WSN for the Detection of Seismic Perturbations[END_REF]).

As the complexity of these systems is increasing, due to the heterogeneity of its components, its design flow requires a parallel and concurrent development of hardware and software, synthesis and verification. This means that design aspects, such as functionality, timing, physical design, and verification should be simultaneously addressed [START_REF] Keating | The System-On-Chip Design Process[END_REF].

The need to design these heterogeneous components in a same environment is increasing: the independent modeling and simulation of the embedded parts involves the use of dedicated tools.

These tools allow the isolated verification of components, and involve a complex and very costly design process. Interactions among parts should be analyzed, and carefully integrated to avoid an impact in the embedded system behavior.

The AMS extensions for the design and modeling languge called SystemC, were proposed to address this need. They facilitate the understanding of the complexity of heterogeneous embedded systems before its expensive fabrication. Using these extensions, models and applications can be described at different abstraction levels, and can be implemented using different time domains.

At present, the abstractions of time, computation, communication and synchronization offered by the AMS extensions of SystemC, are not sufficient for representing the behavior of complex multidisciplinary systems. The main drawback is that mechanisms to incorporate new abstractions to these extensions are missing. Additionally, the problem of detecting synchronization issues caused by the interactions among domains, has not been carefully analyzed.

In order to understand the specific problems to be addressed in this thesis, in Section 2.2, we present an introduction to the SystemC modeling language, its main features, and the elaboration and simulation semantics that make SystemC an extensible language. In Section 2.3, we describe the generalities of the SystemC AMS extensions, its architecture, models of computation, solvers, and synchronization methods. Moreover, we introduce the SystemC-AMS Fraunhofer Proof-of-Concept (PoC) simulator currently implemented, we identify its drawbacks, and we analyze how the main Model of Computation (MoC) included (Timed Data Flow (TDF) MoC) works in this simulator. In Section 2.4, we present the problem statement, and finally in Section 2.5, we conclude the chapter providing an overview of how the problems will be addressed.

SystemC

SystemC [START_REF] Black | SystemC: From the Ground Up[END_REF]- [START_REF] Grotker | System Design with SystemC[END_REF] is a system design modeling language, which adds to C++ a library created to address the modeling of both hardware and software systems. On the one hand, it is considered a system level specification language, which allows the modeling at the algorithmic level. On the other hand, it is considered a hardware description language, since it allows modeling of systems above the Register-Transfer Level (RTL) of abstraction.

The advantage of SystemC over other hardware description languages refers to the different abstraction levels offered: in the same language a system can be described in a high abstraction level, and can be progressively refined. Other languages do not support the modeling of high abstraction levels, e.g. Transaction Level Modeling (TLM) [START_REF]1666-2011 IEEE Standard for SystemC Language Reference Manual[END_REF]. Another advantage is the verification environment offered where C and C++ code can be easily integrated.

SystemC includes important hardware oriented features: [START_REF]Cyber-Physical Systems: Driving Force for Innovation in Mobility, Health, Energy and Production[END_REF] a global discrete time model, represented by 64 bits of resolution and whose progress is handled by a simulation kernel; (2) a concurrency concept, which refers to the concurrently execution of multiple processes supported by a cooperative multitasking model (scheduler); (3) hardware data types, supporting explicit bit widths for integer and fixed point quantities; (4) a hardware hierarchy implemented by constructs (modules); and (5) a communication and synchronization model implemented by different mechanisms (interfaces, ports and channels). These features are supported by the language architecture presented in Figure 2.2.

In this section we introduce the concepts required for understanding this thesis work. We focus on the description of the SystemC core language elements, the SystemC Discrete Event (DE) simulation kernel, and its operation phases. Thanks to these phases, the modeling language could be extended for supporting behaviors described in other time domains than DE.

Core Language Elements

SystemC follows a block-oriented approach in the sense that it allows the representation of systems by a combination and interconnection of blocks and signals: blocks represent particular or complex behaviors, and they can have multiple inputs and outputs; and signals ensures the communication among blocks. We consider that this approach is very interesting because users, without long experience in the design of electronic systems, can easily represent and simulate particular behaviors. [START_REF]IEEE Standard for SystemC Language Reference Manual[END_REF]).

In SystemC, as shown in Figure 2.3, the primitives which allow designers to partition models, and break complex systems into simpler sub-systems, are called modules. They may contain ports, interfaces and channels; and they can be hierarchical, this means that they may contain processes and other modules instantiated within them. [START_REF] Black | SystemC: From the Ground Up[END_REF]).

Module Module Channel

Port with interface

Port with interface

On the one hand, ports are the objects through which the module communicates with other modules and its environment. They are responsible for calling methods defined outside of modules, in particular defined by interfaces. These interfaces define sets of methods to access the channels, which are containers (e.g. FIFOs or signals) maintaining the modules' state and allowing communication, they hold and transmit data. Channels are responsible for implementing methods defined by interfaces.

In brief, ports are connected to channels through interfaces.

On the other hand, processes describe the operation of the modules, and provide mechanisms for simulating concurrent behaviors. They are specific functions implemented by the designer and called from the DE kernel during simulation. Two kind of processes can be defined in SystemC: (1) methods, which are always executed from beginning to end; and (2) threads, which can suspend itself during simulation using wait statements. These kinds of processes are also known as static processes because they are registered in the DE kernel before simulation. There is also the possibility of creating processes during simulation, in this case they are called dynamic processes [START_REF] Black | Dynamic Processes[END_REF]. The mechanism for creating dynamic processes will be presented in Chapter 6.

Processes can communicate using channels (e.g. signals), or using events, which are the objects able to determine whether and when a process should be triggered or resumed. The control of events is handled by the DE simulation kernel.

Discrete Event (DE) Simulation Kernel

The DE simulation kernel of SystemC provides the core features for the elaboration and simulation of models [START_REF]Elaboration and simulation semantics[END_REF]. Elaboration creates the data structures required to support the simulation semantics:

creates the module hierarchy, instantiates processes, bounds ports and channels, and sets the time resolution to be used (by default is 1ps). Simulation, runs the scheduler and deletes the data struc- The scheduler is the heart of SystemC, it controls the timing and the order for executing the processes. The scheduler execution is performed in five phases: [START_REF]Cyber-Physical Systems: Driving Force for Innovation in Mobility, Health, Energy and Production[END_REF] initialization, where all defined processes are entirely executed (methods) or until the first wait statement (threads); (2) evaluation,

where each process ready to run is selected and its execution is resumed (this may cause new processes ready to run in the same phase); (3) update, where channels are updated thanks to the results of the evaluation phase; (4) delta notification, where are analyzed the notifications made during the previous two phases: if they should be executed in the current simulation time then, the evaluation phase is re-executed; (5) timed notification, where the notifications are also evaluated: if they should not be executed in the current simulation time, such time is increased and then, the evaluation phase is re-executed. When no more notifications are present, the scheduler execution is stopped.

An important feature of the scheduler is that it supports the notion of delta cycle, which is an infinitesimal increase of time used to impose a partial order of the simulation actions. When the scheduler processes a delta cycle, it executes actions that are scheduled at the current time in the three consecutive evaluation, update and delta notification phases. At a particular simulation time, multiple delta cycles may occur.

In addition to the phases to create/destroy the module hierarchy, and to perform the scheduler execution, the SystemC standard offers four callbacks or virtual functions that can be overloaded by objects in the module hierarchy (modules, ports and channels) for allowing the applications to perform further elaboration and simulation actions. These callbacks are introduced below.

• before_end_of_elaboration(): it allows to perform elaboration actions depending on the properties of the module hierarchy, which can still be modified in this stage. The instantiation of modules, ports and channels; the port binding; and the instantiation of static processes are also allowed.

Using this callback, for example, some modules could be instantiated to monitor the module hierarchy.

• end_of_elaboration(): it allows to perform elaboration actions, which do not need to modify the module hierarchy. In this stage, the instantiation of objects derived from the SystemC modules, ports, and channels; and the creation of static and dynamic processes are allowed. Using this callback, for example, an application can perform rule checking, diagnostics about the module hierarchy, and internal actions to prepare the hierarchy for simulation.

• start_of_simulation(): it allows to perform actions at the start of simulation, for example: to open stimulus and files, or to print additional diagnostic messages. In this phase the instantiation of objects derived from the SystemC modules, ports, and channels; and the creation of dynamic processes are allowed.

• end_of_simulation(): it allows to perform actions at the end of simulation, for example: to close files and to print simulation results. In this phase SystemC objects cannot be instantiated, and new processes cannot be created.

The four callbacks previously introduced are very important because they make SystemC an extensible language. We will take advantage of this fact for making the heterogeneous simulation a generic process.

SystemC Analog/Mixed-Signal (AMS) Extensions

The AMS extensions of SystemC were created for increasing the capabilities of the modeling language to allow the design, simulation and verification of not only digital software and hardware systems, but also of analog/continuous time behaviors. Therefore, they attempt to address the needs from the telecommunication, automotive, and semiconductor industry [START_REF] Grimm | An Introduction to Modeling Embedded Analog/Mixed-Signal Systems Using SystemC AMS Extensions[END_REF].

These extensions are defined as a C++ standardized library, which follows the same block-oriented approach of SystemC to allow the creation of multi-disciplinary models, that can be simulated in the Discrete Event (DE), Discrete Time (DT), and Continuous Time (CT) domains. They were standardized by the Accellera Systems Initiative organization [START_REF]Accellera Systems Initiative organization[END_REF] with the specific purpose of providing: a methodology for modeling embedded AMS systems [START_REF] Barnasconi | SystemC AMS extensions User's Guide[END_REF], and also a complete definition of the AMS class library so that a SystemC AMS implementation can be developed [13]. At present, only one implementation of these extensions is available, it is the SystemC-AMS Proof-of-Concept (PoC) library [START_REF]SystemC AMS 2.0 Proof-of-Concept Implementation[END_REF] developed by the Fraunhofer Institute for Integrated Circuits IIS [29].

SystemC AMS Language Standard Architecture

Due to the heterogeneity involved in the complex embedded systems designed today, different description styles and Models of Computation (MoCs) should be combined within a system. Therefore, the architecture of the SystemC AMS language standard, as shown in Figure 2.5, is structured following a layered approach [START_REF] Vachoux | Towards Analog and Mixed-Signal SOC Design with SystemC-AMS[END_REF]. First, the synchronization layer, indicated with 1 and constructed on top of the SystemC standard, is responsible for scheduling the SystemC AMS simulation: it determines the time points at which the digital and analog simulations are synchronized, it activates each solver, and it performs the communication among the different solvers. A solver in SystemC AMS, is the object instantiated not only for computing the solution of systems by mathematical methods, but also for performing the specific elaboration and simulation phases associated to a MoC.

} } }

SystemC methodologyspecific elements

Primitives

Second, the solvers layer, indicated with 2 and constructed on top of the synchronization layer, computes the behavior of analog blocks and contains the algorithms proposed for solving specific systems. Third, the view layer, indicated with 3 , provides the interfaces used by the designer to write executable models, e.g. procedural behaviors or netlists. Besides, it contains the methods (accessible by solvers) for defining the structures to be used by each MoC during simulation. The current implementation of the synchronization layer includes a Synchronous Data Flow (SDF) algorithm, which uses a static scheduler for determining the order in which the AMS modules should be executed, and the order in which the analog solvers should be activated during simulation.

MoCs integrated in

Although this implementation can be efficiently simulated at high abstraction levels [START_REF] Einwich | Application of SystemC/SystemC-AMS for the Specification of Complex Wired Telecomunication Systems[END_REF], it imposes restrictions for the other MoCs included in the prototype. Only one synchronization mechanism (by means of TDF MoC) is available between the DE kernel and the existing MoCs, then, all MoCs are always executed under the control of the TDF MoC, which imposes temporal semantics for synchronization. This means that the time resolution in other MoCs is limited by the time resolution of the TDF MoC.

b. SystemC-AMS PoC Extension

At present, the MoCs included in the PoC simulator are not sufficient for representing the behaviors of complex multi-disciplinary systems: extensions require new formalisms for describing, for example, electromechanical or fluidic behaviors.

The drawback in SystemC AMS is that mechanism to add new MoCs is not well defined. Only programmers and experienced designers, with an extensive knowledge of the current implementation, can include new solvers and synchronization methods [START_REF] Einwich | Mixed-Signal Extensions for SystemC[END_REF].

Although there is not any document explaining the mechanism required to add new MoCs, two extensions have been proposed. The first [START_REF] Uhle | A SystemC AMS Extension for the Simulation of Non-Linear Circuits[END_REF], introduces a MoC enabling the modeling of non-linear networks; and states that in networks where DE, DT, and CT models are coupled, the synchronization becomes more complex. In this case specific details about the synchronization implementation are not provided. The second [START_REF] Maehne | Efficient Modelling ans Simulation Methodology for the Design of Heterogeneous Mixed-Signal Systems on Chip[END_REF], introduces a MoC facilitating the unified description of the power transfer within parts of heterogeneous systems, thanks to the Bond Graph formalism. The addition of this MoC is only based on the PoC simulator's internal details, which are not clearly specified in the standard. Due to the importance of the TDF MoC during the synchronization and the addition of MoCs in SystemC-AMS, the TDF MoC should be carefully analyzed.

Timed Data Flow (TDF) Model of Computation (MoC) in SystemC-AMS

The TDF MoC is based on the SDF formalism [START_REF] Lee | Static Scheduling of Synchronous Data Flow Programs for Digital Signal Processing[END_REF]. It is described as a DT modeling style that considers data as signal, which values are sampled with constant time steps. It was created with the aim of offering an efficient simulation approach for high abstraction levels. TDF not only keeps two important properties of the SDF formalism: the abilities to determine a static schedule, and to perform a periodic execution; but also adds temporal semantics to this SDF formalism, with the purpose of linking it with other timed MoCs. TDF is considered as a powerful modeling style for the creation of AMS descriptions in virtual prototypes, because it processes modules at DT points without directly using the dynamic schedule of the SystemC DE simulation kernel [START_REF] Barnasconi | SystemC AMS Extensions: Solving the Need for Speed[END_REF].

A TDF model, as shown in Figure 2 On the one hand, each TDF module is described with one attribute and one processing() function.

The attribute is the module time step Tm, which represents the time period in which the processing() function associated to the same module should be executed. The processing() function, is a mathematical function, which can depend on the module inputs or internal states. At each time step, a TDF module reads a fixed number of samples from each of its input ports, executes the processing() function, and writes a fixed number of samples to each of its output ports.

On the other hand, each TDF port is described with three attributes. During the TDF Elaboration, the TDF attribute settings stage executes in no particular order all the set_attributes() functions defined by TDF modules. The TDF time step calculation and propagation stage computes and propagates a time step value for each TDF port and each TDF module instantiated accordingly to the Equation 2.1, where Tm is the time step associated to a TDF module, Tp is the time step associated to a TDF port (belonging to preceding TDF module), and R is the rate associated the same TDF port. The time step associated to a port determines the time period in which the TDF samples are consumed/produced from/to each input/output TDF port. To achieve this stage at least one time step should be assigned in a module or a port of each TDF cluster included in the application.

Tm = Tp * R (2.1)
The TDF computability check stage determines whether each TDF cluster is computable. First, TDF ports (i and j), bounded by the same TDF signal should respect the Equation 2.2, where q M is the number of times that the module (to which the TDF port belongs) is activated during a execution period, and R is the rate associated to the TDF port. Second, there should exist an activation order (static schedule) that guarantees that each TDF module will be activated the number of times q M previously determined by a SDF analysis.

q M i * R i = q M j * R j (2.2)
The drawback identified during the TDF elaboration is that the DE/TDF interactions are not considered for determining the static schedule of each TDF cluster included in the application. This means that when the SDF analysis is applied, the read and write operations, performed by the input and output converter ports, are not included in the schedule. The last fact could cause synchronization problems later in simulation.

During the TDF simulation, the TDF initialization stage executes in no particular order all the initialize() functions defined by TDF modules; and the TDF processing stage executes the modules' processing() functions following the TDF schedule determined during elaboration. Unfortunately, as previously mentioned, temporal inconsistencies between the DE and DT domains can be detected in this stage due to the non-inclusion of DE/TDF interactions in the schedule.

The drawback for understanding the particular DT simulation, described by means of the TDF MoC, their interactions with the DE domain, and the detection of synchronization problems, is that the temporal TDF semantics is not formalized. Currently, we do not have precise information about how the time is handled in the TDF MoC, how the schedule is determined, and why all synchronization problems cannot be detected during elaboration.

Problem Statement

Having in mind the modeling, simulation and verification of muti-disciplinary systems, on the one hand we would like to have a simulation kernel built on top of the SystemC language standard allowing the independent addition of models of computation, that can be associated to different physical/engineering disciplines. In this sense, independent term refers that the simulation kernel is not modified when a new model of computation is added. Despite that the AMS extensions of SystemC allow the addition of new models of computation, this task is only in the hands of experts: a deep knowledge is needed about how the AMS simulator works, how the synchronization is defined, and how the models should be prepared in each MoC before the simulation phase. Today, we do not have a well-defined method to add any model of computation. Our idea is to propose a new simulation kernel defining the way in which the elaboration and simulation phases are called on a model, regardless of the different models of computations there involved then, to establish a method for implementing new models of computation, always preserving the same simulation kernel.

At present, the addition of new models of computation is also limited because only one synchronization method is available for synchronizing models of different natures with the discrete event domain, this is the synchronization method between the Timed Data Flow MoC and the SystemC DE simulation kernel. Besides, the addition of new synchronization methods is based on the TDF semantics. This means that when a new MoC is added it should respect the TDF semantics and provide the means to communicate and synchronize through it. To solve this issue, we want to propose an infrastructure to add new synchronization methods that are not forced to always respect the discrete time temporal semantics previously defined by the TDF MoC. The proposition rests on the idea of expanding the current synchronization possibilities.

On the other hand, we want to support the current synchronization method to manage the interactions between the TDF and DE MoCs, and we are interested in improving it. Actually, the verification and detection of synchronization errors between the TDF and DE MoCs is performed only during the simulation phase, when each module's processing() function is called. This means, that eventually during long-running simulations, the designer must wait long before discovering that his model is wrong. We believe that one synchronization analysis can be applied during the elaboration phase of models because all the TDF cluster attributes are known, and the accurate synchronization times can be determined in advance before simulation.

A formalization of the synchronization method implemented to synchronize the discrete time and discrete event domains could help to understand how the interactions are performed and when they occur, also it could help to detect the temporal inconsistencies during the execution of a model.

Unfortunately, attempts to formalize this synchronization method has not been carried out until now.

Conclusion and Outlook

After introducing in this chapter the SystemC language standard and its AMS extensions, we identify the four issues to be addressed during this thesis: the addition of models of computation in the current simulation prototype is not obvious, the interactions with the discrete event domain can be performed only through one synchronization method, the detection of synchronization errors in the available synchronization method is performed during the simulation phase instead of the elaboration phase, and there is not an available formalization to correctly analyze the synchronization interactions between the DE and TDF MoCs.

In the next chapters, after analyzing different techniques adopted for the simulation of multidisciplinary systems (Chapter 3), we follow a bottom-up approach to solve the identified issues. First, we demonstrate that the interactions between the DE kernel and the TDF MoC can be formalized, and then that this formalization can be used to detect and solve the synchronization problems before performing the simulation phase (Chapter 4 

Introduction

In order to identify the features and requirements to be considered for modeling, simulating and synchronizing multi-disciplinary systems, described under different timed or untimed domains, in this chapter, we introduce the state of the art of several simulation approaches based on metamodels, high-level programming languages, and the hardware description language called SystemC. In the next sections, we analyze these approaches by means of three key aspects:

• Modeling: we identify the basic elements used for representing models, how these models and their elements can be interconnected to each other, whether hierarchical modeling is allowed, and whether the notions of computation and communication among the model elements are well-separated. In this sense, computation refers to the means provided for encapsulating the information processing; and communication, refers to the means provided for transmitting the processed information.

• Heterogeneity: we identify the heterogeneity level (shallow or deep) supported by each framework [START_REF] Patel | Deep vs. Shallow, Kernel vs. Language -What is better for Heterogeneous Modeling in SystemC?[END_REF]. These heterogeneity levels are represented in Figure 3.1. -Shallow heterogeneity, is when syntactic extensions providing support for different Models of Computation (MoCs) are only implemented at the language-level. It means that there are constructs (types, channels, signals, etc.) in the design language that describe a model following a desired MoC, and that are mapped into a single simulation kernel.

-Deep heterogeneity, is when some syntactic extensions are implemented at the kernellevel. It means that there are constructs in the design language that describe a model following a desired MoC, and that are mapped into MoC-specific kernels responsible for simulating the different components of a model, according to the involved domains.

• Simulation: we present the execution semantics required for performing the model execution on each framework.

In Section 3.2, we discuss three simulation frameworks developed by the Center for Hybrid and Embedded Software Systems (CHESS) at University of California, Berkeley [START_REF]Center for Hybrid and Embedded Software Systems[END_REF]: Metropolis and Metro II, based on metamodels with formal semantics supporting simulation and formal analysis of complex electronic-system designs; and Ptolemy II, based on a high-level programming language, and which is considered as the promoter of the heterogeneous hierarchical system design.

In Section 3.3, we present three simulation frameworks (HetSC, HetMoC, and ForSyDe), which address the issue of the concurrent execution of processes, belonging to different MoCs, by means of SystemC-based components: processes, interfaces, and channels.

In Section 3.4, we discuss two frameworks extending the SystemC Discrete Event (DE) simulation kernel: SystemC-H, which provides a simulation kernel supporting heterogeneity by means of different models of computation; and SystemC-A, which provides a simulation kernel supporting digital and analog behaviors.

Finally, in Section 3.5, we conclude this chapter summarizing the features and requirements that will be considered for defining the means to ensure the multi-disciplinary synchronization, and the bases for a unified and extensible modeling and simulation environment.

Frameworks Based on Metamodels and High-Level Programming Languages

Metropolis

Metropolis [START_REF] Balarin | Metropolis: An Integrated Electronic System Design Environment[END_REF], [START_REF] Sangiovanni-Vincentelli | Quo Vadis, SLD? Reasoning About the Trends and Challenges of System Level Design[END_REF] is a platform-based design environment characterized by a flexible and formal semantics which supports simulation and formal analysis of embedded software. It is a specification based on Java, which allows communication between models working at different abstraction levels, and models concurrently working in the same abstraction level.

In Table 3.1, we introduce some terms useful for understanding how the modeling and simulation are addressed in Metropolis.

Term Definition

Heterogeneity Ability of a model to include processes associated to multiple domains.

Domain

Application area or discipline, e.g. multimedia, automotive, wireless communication, etc. 

a. Modeling in Metropolis

The framework infrastructure consists, in part, of an internal representation mechanism called Metropolis Meta Model (MMM), which is a set of abstract classes that can be derived to model a well-separated computation and communication semantics: it supports the notion of concurrent processes communicated through ports, interfaces and mediums (channels).

The metamodel semantics is powerful, it can be used for: [START_REF]Cyber-Physical Systems: Driving Force for Innovation in Mobility, Health, Energy and Production[END_REF] representing models at the functional abstraction level, (2) representing models at the architectural abstraction level, (3) supporting the encapsulation of both abstraction levels in a same network, and refining these networks and their behavior through the definition of common constraints.

(1) The functional abstraction level, as shown in Figure 3.2 (a), allows the representation of models as a set of interconnected objects, which take actions while communicating with one another. These objects, called processes, are atomic elements describing computations as sequential programs called threads. They communicate through ports, using a set of methods declared by means of interfaces.

As in the case of SystemC, the interfaces are implemented by other independent objects defined to be interconnected between ports, in Metropolis these objects are called mediums.

Using the objects previously described, the model designer can describe a network of functional processes, whose execution semantics is restricted by a set of logic formulas called constraints. These constraints must be specified by the designer, and they are responsible of the coordination and synchronization of processes. (

) 2 
The architectural abstraction level, as shown in Figure 3.2 (b), allows the representation of models based on: the functionality that can be modeled, and the efficiency with which it is modeled.

Functionality is expressed through a set of services in the architecture: methods bundled to interfaces; and efficiency is expressed by the execution cost of each service, which is measured by quantity managers.

These quantity managers are responsible for controlling the execution semantics of different architectural components, they ensure the coordination of the simulation, and can be used for modeling shared architectural resources, for example: buses, CPU scheduling algorithms or simulation times.

Although some quantities are available in the Metropolis framework, designers can write different ones to support specific application domains.

(3) The encapsulation of functional and architectural models, as shown in Figure 3.2 (c), defines a new network, and relates the execution of all the included components by means of additional synchronization constraints defined by the designer. Generally, the architectural model should provide services at a particular cost, while the functional model should use these services.

b. Representation of Heterogeneity in Metropolis

Specific and separated models of computation and solvers are not defined in Metropolis. Heterogeneity can only be represented using processes, mediums, quantities and constraints. Processes represent the modules, whose behaviors can be associated to different domains; mediums allow the interactions among them; and quantities and constraints control their execution. Heterogeneity is represented at the language-level making the metamodel semantics to be mapped on a single simulation kernel.

c. Simulation in Metropolis

As the execution order of the processes in Metropolis models should depend only of the constraints and quantity managers implemented by the designer, the simulation semantics is based on the interaction of two netlists: a scheduled netlist, which contains the processes and mediums representing the system behavior; and a scheduling netlist, which contains the constraints and quantity managers (e.g.

q-manager Energy, and q-manager Time shown in Figure 3.2), which mesure the execution costs and model the scheduling polices of a system. Two phases are performed by the Metropolis simulation kernel, as shown in Figure 3.3:

Verification and Execution

Solve Quantity Requirements

Quantity annotation

Enabled events • Phase 1 -Verification and Execution: where the scheduled netlist verifies the existence of events and the availability of services, if all associated conditions are satisfied, the events are executed.

In this phase, quantity annotations or requirements can be generated depending on whether two processes request access to the same service. When it occurs, the next phase begins.

• Phase 2 -Solve Quantity Requirements: where the requirements are solved by the scheduling netlist and the quantities are updated. Later, the first phase is re-executed.

d. Summary of the Metropolis Important Features

• In functional models the separation between computation and communication can be compared with SystemC (SC): notion of process (module in SC), which communicates through ports, thanks to the methods defined by interfaces and implemented by mediums (channels in SC).

• Hierarchical models are not allowed: all processes should be implemented in the same hierarchical level to be interconnected using mediums.

• The model designers have the difficult task of expressing the synchronization:

-Time synchronization by means of constraints and quantity managers.

-Data synchronization by means of mediums, which can be used as converter channels when two interconnected modules represent behaviors associated to different domains.

• The framework supports a shallow heterogeneity, where only one simulation kernel handles the processes' execution.

• The metamodel does not have a predefined notion of time, but developers can model it through quantities.

Metro II

Metro II [START_REF] Davare | A Next-Generation Design Framework for Platform-Based Design[END_REF] is a framework created to improve the design methodology proposed by Metropolis: it adds the ability to import pre-designed IP's (described in multiple programming languages), by means of components called wrappers; and adds the ability to separate the model's execution costs and the scheduling policies using two different types of quantities (annotators and schedulers).

In Table 3.2, we introduce some terms useful for understanding how the modeling and simulation are addressed in Metro II.

Term Definition

Heterogeneity Ability of a model to include components described under multiple MoCs.

MoC

Timed or untimed computation and communication semantics, e.g. continuous time, discrete time, synchronous data flow, etc. 

a. Modeling in Metro II

In this framework, models can be implemented using different objects as shown in Figure 3.4:

components, ports and connections for defining the specification; and constraints, assertions, adaptors, annotators and schedulers for controlling the execution.

• Components: are the blocks used to encapsulate zero or more processes, and can be related to other components through ports. There are two types of components: atomic components, where the behavior is specified in a particular language and encapsulated using wrappers; and composite components, where at least two elements (defined using the Metro II semantics) are interconnected. In the case of atomic components, wrappers are the elements specified by the designer to translate and expose the appropriate events and interfaces of a particular behavior (IP). • Ports: are the objects divided by functionality (coordination and view), which allow the communication among components. Coordination ports, allow an interaction of components using sequences of events (methods) limited by constraints. These ports can be connected to other ports, and implement different interaction policies. View ports, expose internal events of a component to the outside world, and cannot be connected to other ports.

• Connections: are the means by which the ports are interconnected.

• Constraints and assertions: while constraints are used to limit the execution of a model and specify it in a declarative form (as in Metropolis), assertions are used to check the execution following some restrictions during simulation. Both are declarative propositions allowing the port coordination. These objects impose restrictions for the time synchronization in a model.

• Adaptors: are the bridge between the semantics of components belonging to different MoCs, e.g. a data flow to analog adaptor can ensure the data synchronization among one data flow composite component and one continuous time atomic component.

• Annotators and schedulers: are the quantity managers implemented in Metropolis, but separated in two scenarios. Annotators write tags to events (for handling the model's execution costs), and schedulers enable or disable events (according to the scheduling polices defined). These objects collaborate with the time synchronization.

b. Representation of Heterogeneity in Metro II

Heterogeneity in Metro II can be mainly expressed by means of components and adaptors. Components describe the behaviors associated to a specific MoC; and adaptors allow the interaction among such MoCs. In this way, designers can express heterogeneity in the language-level and implement the objects responsible for ensuring the synchronization. During simulation, all the objects are mapped on a single simulation kernel, as in the Metropolis framework.

c. Simulation in Metro II

The execution of a Metro II model is based on the connection and coordination of components. It is performed in three phases, as shown in Figure 3.5: [START_REF] Davare | A Next-Generation Design Framework for Platform-Based Design[END_REF]).

• Phase 1-Base model: where the processes defined by the designer, as a set of events (by means of components), are executed. These executions can produce new set of events that will be later consumed.

• Phase 2 -Quantity annotation: where each new event is associated with several quantities (annotators and schedulers).

• Phase 3 -Scheduling: where some events are enabled to be executed, depending on the associated annotations or scheduling polices.

d. Summary of the Metro II Important Features

• A particular level of hierarchy is allowed by the definition of components.

• Despite the new design objects presented in Section 3.2.2.a, the model designer still has the difficult task of implementing the synchronization according to its needs:

-Time synchronization by means of constraints, assertions, annotators and schedulers.

-Data synchronization using adaptors.

• The framework supports a shallow heterogeneity, where only one simulation kernel handles the processes execution.

• The metamodel does not have a predefined notion of time, but developers can model it through annotators, which handle the time for the particular services offered by the model.

Ptolemy II

Ptolemy II [START_REF] Brooks | Heterogeneous Concurrent Modeling and Design in Java (Volume 1: Introduction to Ptolemy II)[END_REF]- [START_REF] Lee | Heterogeneous Actor Modeling[END_REF] is a software environment based on a structured and hierarchical heterogeneous approach, which focuses on the design and simulation of complex heterogeneous systems. It allows designers to formulate homogeneous systems capable of achieving heterogeneity by the interconnection of sub-models associated with different domains. These homogeneous systems refer to the set of interconnected components (network of actors) handled by a same execution and communication semantics.

In Table 3.3, we introduce some terms useful for understanding how the modeling and simulation are addressed in Ptolemy II.

Term Definition

Heterogeneity Ability of a model to include actors associated to multiple domains.

Domain

Implementation of a MoC.

MoC

Set of laws that govern the interactions and the execution of a model. [START_REF] Eker | Taming Heterogeneity -The Ptolemy Approach[END_REF]).

• Actors: are the basic concurrent blocks described in Java, and used for encapsulating a behavior associated to a particular domain. They can be separated in two types: atomic actors, which are described in the lowest hierarchical level; and composite actors, which can contain other composite or atomic actors.

• Ports: represent the communication points among actors. They are separated in three types according to their functionality: input, output and inout ports. When input and output ports are used to communicate between different levels of hierarchy, they are called external ports.

• Communication channels: are the explicit mechanisms used to transfer data among ports.

These mechanisms are available in the framework, according to each actor domain. Generally, actors communicate through ports using channels.

• Domains: represent the MoC implementation associated to a composite actor. They are defined using directors and receivers. While directors control the execution of sub-actors belonging to the composite actor where they are instantiated, receivers (implemented in inputs ports) define the communication mechanism between a communication channel and a port located in the same hierarchical level. This means that time synchronization is handled by means of directors and data synchronization by means of receivers.

In a model, designers can directly instantiate a director into a composite actor to ensure that all its sub-actors will follow a particular communication semantics. When a director is not instantiated in a composite actor, it takes the semantics defined by its upper hierarchical level. In the framework, the choice of the directors and receivers to be instantiated at each hierarchical level is in the hands of the model designers.

b. Representation of Heterogeneity in Ptolemy II

In Ptolemy II, deep heterogeneity is supported by the independent definition of different domains, each of which implements a MoC. In the framework, a domain has a set of available predefined actors, ports, channels, directors (including solvers for computing the control flow of actors), and receivers for controlling how the models can be defined and how they will be executed. This means that the heterogeneity is handled at the kernel-level: domain-specific kernels drive the simulation following an abstract execution semantics imposed on the Ptolemy actors. Some examples of domains included in Ptolemy II are presented in [START_REF] Brooks | Heterogeneous Concurrent Modeling and Design in Java (Volume 3: Ptolemy II Domains)[END_REF].

c. Simulation in Ptolemy II

In Ptolemy II, directors handle the execution of models defining the control flow of actors and their communication semantics. It is possible thanks to an abstract execution semantics [START_REF] Lee | Leveraging Synchronous Language Principles for Heterogeneous Modeling and Design of Embedded Systems[END_REF] • Phase 1 -Setup: is the phase in which the initialization occurs in two stages: (1) preinitialize, responsible of the definition of the structural required information, the dynamic construction of actors, and the receivers' creation; and (2) initialize, responsible of the initialization of the actor parameters, the reset of states, and the initial production of tokens associated to input or output ports.

• Phase 2 -Iterate: is the phase which refers to the execution of actors. In Ptolemy, the atomic executions are called iterations and are considered as finite computations that lead the actor to an inactive state. Specifically, in composite actors, the director determines how the iterations are related to the actors.

Iterations are divided in three stages: (1) prefire, which tests the required conditions for executing the actor; (2) fire, which performs the actor computation until it reaches a fixed point in which its state remains constant (consumes the inputs, processes the inputs, and produces the outputs);

(3) postfire, which updates the actor state.

• Phase 3 -Wrapup: is the phase in which the resources allocated by the actors are released.

Actors are designed assuming the definition of the abstract semantics previously introduced, not its specific implementation, because it is provided by the model of computation where each actor is embedded. This means that simulation phases are implemented by the directors instantiated at each particular hierarchical level. For example, in the model hierarchy shown in Figure 3.6, the director D 1 implements the actions to be performed when the setup(), prefire(), fire(), postfire() and wrapup() functions are called on the A and C actors; and the director D 2 implements the actions to be performed, when the same abstract functions are called on the B actor.

d. Summary of the Ptolemy II Important Features

• Composite actors provide the notion of hierarchy, which is the most powerful feature of Ptolemy.

• The domain's definition is composed by a set of predefined elements: actors, ports, channels, directors and receivers. Designers can use these elements for creating their models.

• The framework supports a deep heterogeneity, where multiple kernels control the simulation.

• Model designers have the task of instantiating the elements, which handle the synchronization:

-Time synchronization by means of directors.

-Data synchronization by means of receivers.

• As synchronization can be handled at different hierarchical levels, and each hierarchical level can represent a particular domain: hierarchical synchronization methods control the execution of a model.

• The notion of time in a composite actor is handled by the instantiated director: it always follows the time notions imposed by the director instantiated in the upper hierarchical level.

• The predefined directors and receivers implement the semantics for interfacing two different domains. Although several directors are available for a particular domain in Ptolemy II, only one can be instantiated by level of hierarchy.

• Simulation's execution is controlled by means of the abstract semantics associated to each actor in the framework.

Preliminary Conclusions

Having analyzed the simulation frameworks presented in Section 3.2, and summarizing them in Table 3.4, we can conclude that:

• A multi-domain simulation framework should offer:

-The means for supporting hierarchical modeling because it ensures a higher level of expressiveness.

-Predefined and independent elements for ensuring the time synchronization and data synchronization between model components belonging to different timed or untimed domains. In this way, designers avoid the difficult task of expressing the synchronization at the language-level.

• The heterogeneity implemented at the kernel-level allows a better separation among the different domains included in a framework, because each domain can be implemented and simulated using a specific kernel.

• The approach to hierarchically handle the simulation time and synchronization among timed or untimed domains is a powerful feature, which can reduce the complexity when simulating multi-disciplinary models.

Assuming a model implemented in two hierarchical levels, where each level represents a different domain, interactions between such hierarchical levels are simplified into a master-slave relation: the master domain (implemented at the higher hierarchical level) imposes the time or synchronization semantics to be followed by the slave domain (implemented at the lower hierarchical level).

• The abstract semantics provided by Ptolemy II introduces the principles for a generic simulation and synchronization of components described under different timed or untimed domains.

Frameworks Specified Using SystemC

HetSC

HetSC [START_REF] Herrera | A Framework for Heterogeneous Specification and Design of Electronic Embedded Systems in SystemC[END_REF], [START_REF] Herrera | HetSC User Manual -Methodology for Specification of Heterogeneous Embedded Systems in SystemC[END_REF] is a framework for the specification and design of concurrent heterogeneous embedded systems in SystemC. Its objective is to allow the designer to express heterogeneity based on the SystemC primitives; and propose mechanisms to include and interconnect within the same environment, processes belonging to different MoCs.

In Table 3.5, we introduce some terms useful for understanding how the modeling and simulation are addressed in HetSC.

HetSC is proposed in two levels described by means of a general specification methodology and a heterogeneous specification, as shown in Figure 3.8. -Time synchronization handled by means of directors.

-Data synchronization handled by means of receivers.

Time Notion

A global time notion is handled by means of quantities.

A global time notion is handled by means of annotators.

A distributed time notion is handled by the directors instantiated at each hierarchical level.

Advantages

Good separation between computation and communication.

-Good separation between computation and communication.

-Hierarchical modeling introduced.

-Good separation between computation and communication.

-Full hierarchical modeling.

-Hierarchical approaches for handling synchronization and local time notions in each domain.

-Domains are well-separated.

-Abstract semantics for controlling simulation. 

Disadvantages

Term Definition

Heterogeneity

Ability of the framework to support and integrate several MoCs in a same specification.

MoC

Primitives and specification rules for describing the characteristics of processes and the interactions among them. 

a. Modeling in HetSC

The HetSC general specification methodology includes the graphical representation of SystemC constructs, and defines the set of rules and guidelines imposed for the specification of concurrent systems. A typical HetSC specification is shown in Figure 3.9.

• Graphical representation is the set of graphical symbols used for developing a model.

• Rules and guidelines are the means by which a system is separated from its environment.

In the specification methodology several hierarchical levels can be implemented. The top-level instantiates a sc_main() function containing the model parts: (1) the environment, which provides stimuli and checks restrictions; and (2) the system, which encloses the definition of modules, ports, interfaces and channels in different hierarchical levels.

HetSC follows the same SystemC approach where the computation (represented by processes) is well-separated from the communication (represented by ports, interfaces and channels). This means that the only way to communicate processes is through channels. For this reason, channels involve the semantics for handling the synchronization among two or more processes belonging to the same model of computation: they can block or unblock the processes' execution.

The framework includes a library of predefined channels that can be instantiated for communicating several processes. Designers need to know the semantics and syntax of each predefined channel to instantiate and access them from the processes. Additional channels can be also defined by a designer according to their needs. Figure 3.9: Modeling in HetSC: Specification Primitives (adapted from [START_REF] Herrera | A Framework for Heterogeneous Specification and Design of Electronic Embedded Systems in SystemC[END_REF]).

b. Representation of Heterogeneity in HetSC

The HetSC Heterogeneous Specification supports the implementation of different MoCs at the language-level. It handles the MoC specification as a mechanism (rules and guidelines) to construct models, and defines the MoC interfaces allowing the communication and interaction between different MoCs. Some examples of MoCs implemented in HetSC are presented in [START_REF] Herrera | HetSC User Manual -Annexe B: Single MoC Specification[END_REF].

MoC interfaces are special border processes and border channels which connect processes described under different MoCs. They should implement a set of language primitives responsible for the interactions among MoCs. A representation of these interfaces is shown in Figure 3.10. • Border Processes: where the designer adds the code for adapting the interaction among channels, defined under two different MoCs. It is quite flexible because even in the predefined border processes, offered by the HetSC library, designers can modify the code for adapting the interactions. However, it is difficult because the designer should guarantee the synchronization among the channels bound to the border process.

• Border Channels: where the adaptation of semantics among MoCs is provided. Designers cannot modify them.

c. Summary of the HetSC Important Features

• Modules, ports, interfaces, and channels provide the notion of hierarchy.

• The framework supports a shallow heterogeneity, where all synchronization methods and MoC definitions are handled at the language-level; and are mapped on the SystemC DE kernel for ensuring simulation.

• Designers have the task of instantiating or implementing the elements, which handle the interaction and synchronization:

-Channels: link processes described under the same MoC.

-MoC Interfaces: synchronize processes described under different MoCs.

• Time and data synchronization methods are not separated in two independent elements. They have to be implemented by the designers according to its needs.

• The notion of time is handled by the SystemC DE simulation kernel, but some considerations needed for the MoC operation are implemented through channels, which provide the communication semantics between MoCs.

HetMoC

HetMoC [START_REF] Zhu | HetMoC: Heterogeneous Modelling in SystemC[END_REF] is a framework in SystemC for the specification and simulation of heterogeneous distributed systems. It is based on a formal base, which offers a clear separation between computation and communication.

In Table 3.6, we introduce some terms useful for understanding how the modeling and simulation are addressed in HetMoC.

Term Definition

Heterogeneity Ability of a model to support and integrate processes, signals and interfaces described under different MoC Domains.

MoC Domain

Continuous time, discrete time, synchronous/reactive or untimed semantics used for describing process in a network. 

a. Modeling in HetMoC

HetMoC Models, as shown in Figure 3.11, are represented as a set of processes and signals, which can be grouped into different MoC domains through elements called domain interfaces.

• Processes: specify the computation through a function, mapping input signals to output signals.

In the framework, they are fully implemented by the designer using SystemC threads which, at the same time, are encapsulated into SystemC modules. In this approach, the designer implements the functionality of processes by means of SystemC threads, and instantiates the predefined signals and domain interfaces offered by the HetMoC framework. The objective of the designer is to correctly relate their processes through the available predefined communication elements. Some examples are presented in [START_REF] Zhu | HetMoC: Heterogeneous Modelling in SystemC[END_REF].

b. Representation of Heterogeneity and Simulation in HetMoC

Heterogeneity is implemented at the language-level. By means of SystemC primitives, processes, signals and domain interfaces are defined and mapped on the SystemC DE kernel for performing the simulation. Unfortunately, details about the simulation semantics are not provided.

c. Summary of the HetMoC Important Features

• Hierarchical models are not allowed.

• The framework supports a shallow heterogeneity, where all modeling elements are defined using SystemC primitives and are simulated under a DE simulation kernel.

• Designers have the task of connecting their processes through predefined elements, which handle the interaction and synchronization:

-Signals: link processes described under the same MoC Domain.

-Domain interfaces: synchronize processes described under different MoC Domains.

ForSyDe

ForSyDe [START_REF] Attarzadeh Niaki | Formal Heterogeneous System Modeling with SystemC[END_REF]- [START_REF] Attarzadeh Niaki | Co-Simulation of Embedded Systems in a Heterogeneous MoC-Based Modeling Framework[END_REF] is a specification framework enabling the modeling and simulation of heterogeneous embedded systems. It is implemented as a C++-based class library on top of the SystemC standard, it reuses the SystemC DE simulation kernel and defines new modeling elements based on the SystemC primitives.

In Table 3.9, we introduce some terms useful for understanding how the modeling and simulation are addressed in ForSyDe.

Term Definition

Heterogeneity Ability of a model to support several MoCs.

MoC

Describes the semantics of computation and concurrency, and models the time abstraction of each process of a model. 

a. Modeling in ForSyDe

In ForSyDe, a system model separates computation from communication; and follows particular semantics [START_REF] Raudvere | The ForSyDe Semantics[END_REF], which can be executed using functional or high-level programing languages. This system model, as shown in Figure 3.12, is represented as a set of concurrent hierarchical process networks, which is integrated by processes and domain interfaces connected through signals. This approach improves the one presented in Section 3.3.2. • Processes: are functional objects defined by the designer to receive input tokens, invoke a function (defined by a constructor), and produce and communicate the output tokens to other processes. In the framework implementation, processes are realized by means of SystemC modules, which invoke functions provided by the designer.

Composite

Processes can be classified in two types: composite processes, which are created by composing other processes together; and leaf processes created using process constructors, which are pre-defined constructors available in a ForSyDe library. These predefined constructors ensure the computation and communication between processes.

• Domain Interfaces: are particular processes instantiated for allowing the connection between different models of computation: they should define the synchronization interface among processes belonging to different MoCs. In ForSyDe, a MoC is used to model the timing abstraction of processes.

• Signals: are the mechanisms used to communicate. They are considered as set of events conveying data tokens among processes. In the framework's implementation, signals are mapped to SystemC FIFO channels.

b. Representation of Heterogeneity in ForSyDe

ForSyDe supports the implementation of different MoCs at the language-level: the constructors of each MoC (SystemC module-based classes) are implemented based on an abstract simulation semantics (similar to the Ptolemy semantics), and they are mapped onto a single simulation model, which uses blocking writes to bounded FIFOS [START_REF] Attarzadeh Niaki | Formal Heterogeneous System Modeling with SystemC[END_REF]. This simulation model control the simulation execution.

c. Simulation in ForSyDe

The simulation model in ForSyDe is based on the abstract simulation semantics presented in • Initialization: where the memory allocations and the initialization of variables are performed.

• Iteration: where the next three stages are repeated until they consume all inputs, reach a deadlock or find the interruption of a process.

-Preparation: where the process prepares or updates its inputs.

-Application: where a function is provided to generate its outputs.

-Production: where the synchronization with the system kernel occurs, and the correct number of tokens are written to the output ports.

• Cleanup: where the resources allocated during execution are released.

The specific implementation of each stage in ForSyDe is provided by the definition of each MoC.

This means that different implementations of each init(), prep(), apply(), prod() and clean() functions are available according to the process instantiated in a model. An example of how the abstract semantics is implemented for different MoCs in ForSyDe is presented in [START_REF] Attarzadeh Niaki | Formal Heterogeneous System Modeling with SystemC[END_REF].

d. Summary of the ForSyDe Important Features

• The notion of hierarchy is provided by means of composite processes.

• The framework supports a shallow heterogeneity, where the synchronization methods are handled inside each particular MoC definition, and later they are mapped upon a single simulation model, which controls the simulation's execution.

• Designers have the task of instantiating and connecting the elements, which handle the interactions and synchronization among processes:

-Signals: link processes described under the same MoC.

-Domain interfaces: synchronize processes described under different MoCs.

• The notion of time is encapsulated in the process constructors associated with the different MoCs allowed in the framework.

• Simulation is handled by means of abstract semantics associated to processes in the framework.

Preliminary Conclusions

Having analyzed the simulation frameworks presented in Section 3.3, and summarizing them in Table 3.8, we can conclude that:

• SystemC-based approaches offer a prominent separation among communication and computation.

• Providing heterogeneous modeling based only in the DE kernel is not easy: only shallow heterogeneity is supported, and the simulation of processes is not well-separated by MoC.

• Modeling can be simplified by the separation of elements responsible for handling the interactions among processes described under the same timing abstraction (channels or signals), from the elements responsible for handling the interaction and synchronization among processes described under different timing abstractions (MOC interfaces or domain interfaces).

• Offering predefined elements for handling the synchronization is a powerful approach, but it leaves to the designer the responsibility of instantiating them at each hierarchical level, and this can become a complicated task.

• Abstract simulation semantics provides excellent means for separating and controlling synchronization at different levels of hierarchy.

Framework HetSC HetMoC ForSyDe

Hierarchical Modeling

It is allowed in multiple levels by means of SystemC components.

It is not allowed. It is allowed in multiple levels by means of processes (SystemC modules).

Separation between Computation and Communication

-Computation by means of processes.

-Communication by means of ports, interfaces and channels.

-Computation by means of processes.

-Communication by means of signals.

-Computation by means of processes.

-Communication by means of signals.

Heterogeneity Level

Language-level. Language-level. Language-level.

Synchronization

By means of MoC interfaces.

By means of domain interfaces.

By means of domain interfaces.

Time Notion

-Global time handled by the SystemC DE kernel.

-Particular time restrictions implemented through channels defined in each MoC.

Non-provided information.

Encapsulated in the process constructors defined inside each MoC, and mapped on the single simulation kernel.

Advantages

-Separation between computation and communication.

-Hierarchical modeling.

-Global time notion handled by the DE kernel.

-Library of predefined elements for controlling the synchronization.

-Interactions among domains handled by special elements (MoC interfaces).

-Separation between computation and communication.

-Interaction among domains is handled by means of special elements (domain interfaces).

-Separation between computation and communication.

-Hierarchical modeling.

-Notion of time handled by each MoC and mapped on a single simulation kernel.

-Interaction among domains is handled inside each MoC definition, by means of special elements (domain interfaces).

-Abstract simulation semantics.

Disadvantages

-Instantiation of elements controlling the synchronization (MoC interfaces) can be implemented or re-defined by the designer.

-Missing hierarchical modeling.

-Time notions are not clearly defined.

-Elements controlling the synchronization must be instantiated by the designer.

-Selection and instantiation of elements controlling the synchronization (domain interfaces) are the responsibility of the designer.

Table 3.8: Summary of Features of Frameworks Specified Using SystemC.

Frameworks Extending the SystemC Discrete Event (DE) Simulation Kernel

SystemC-H

SystemC-H [START_REF] Patel | Towards a Heterogeneous Simulation Kernel for System-Level Models: a SystemC Kernel for Synchronous Data Flow Models[END_REF]- [START_REF] Patel | HEMLOCK: HEterogeneous ModeL Of Computation Kernel for SystemC[END_REF] is a simulation prototype created for the heterogeneous modeling and simulation in SystemC. It is an approach, which extends and modifies the SystemC simulation kernel by adding three specific and separated MoCs: Synchronous Data Flow (SDF), Finite State Machine (FSM), and

Communicating Sequential Processes (CSP).

In Table 3.9, we introduce some terms useful for understanding how the modeling and simulation are addressed in SystemC-H.

Term Definition

Heterogeneity Ability of the framework to integrate several MoCs.

MoC

Set of constructors and process composition operators, which provide timing semantics for a model. Table 3.9: Heterogeneity and MoC Definitions in SystemC-H.

a. Modeling in SystemC-H

SystemC-H allows the description of models in only one hierarchical level and does not provide synchronization mechanisms among components, which are described by means of the different implemented MoCs.

In addition, the framework does not have a global modeling approach regardless of the MoC to be used. This means that the components of a model, parameters, means of connection among them, and implementation are imposed by a set of guidelines specific to each MoC, instead of inheriting the SystemC predefined components. Some examples of MoCs included in SystemC-H are presented in [START_REF] Patel | SystemC Kernel Extensions for Heterogeneous System Modeling -A Framework for Multi-MoC Modeling & Simulation[END_REF].

In this section, we do not analyze the MoC-specific modeling guidelines, because we are interested in proposing a generic simulation approach, where a model remains integrated by SystemC components, or derived from them.

b. Representation of Heterogeneity in SystemC-H

The heterogeneity in SystemC-H is supported by the independent definition of different MoCs: each one with a set of classes, which provide the specific modeling and simulation semantics associated to each domain. This means that the heterogeneity is handled at the kernel-level: MoC-specific kernels handle the simulation of processes.

c. Simulation in SystemC-H

Execution of models is based on a one-level master-slave relation, where a DE modified kernel supports the initialization and simulation of processes described by means of different MoC-specific kernels. In this approach the SystemC scheduler, introduced in Section 2.2.2, preserves the initialization, evaluate, update, delta and time notification phases, but some of them are modified as follows:

• Separation of initialization roles: although the processes are implemented under different MoCs, they remain SystemC methods, which are registered in the DE kernel to be executed once during the initialization scheduler phase. It is not desired for some MoCs, as is the case of the implemented SDF MoC, because the order of execution of their processes can be clearly specified before simulation. For this reason, the framework includes in the DE kernel one function for splitting the SDF processes from the regular SystemC method processes.

• Specification of an execution order: according to the framework approach, when the designers can determine by means of a MoC-specific kernel the execution order of their processes, they should have the possibility of forcing the DE kernel to respect it. For this reason, the function that executes all the SystemC processes in the scheduler is altered.

• Control of MoC processes' execution according to the DE time: as MoC-specific kernels can require particular time scales for executing their processes, a variable is added in the SystemC simulate() function for monitoring the edges of the SystemC clock.

The DE modified kernel proposed for handling the simulation of models in the framework was defined only based on particular MoCs implementations. This implies that the addition of new MoCs will probably involve the modification of the SystemC DE simulation kernel.

d. Summary of the SystemC-H Important Features

• Hierarchical modeling is not allowed.

• The framework supports a deep heterogeneity because several simulation kernels control the simulation.

• The SystemC DE simulation kernel is modified.

• Synchronization mechanisms are not available among components defined under different models of computation.

SystemC-A

SystemC-A [START_REF] Kazmierski | An Analogue and Mixed-Signal Extension to SystemC[END_REF], [START_REF] Zhao | An extension to SystemC-A to support mixed-technology systems with distributed components[END_REF] proposes an extended version of SystemC for allowing the modeling of AMS systems at different abstraction levels. It is proposed as an alternative to SystemC-AMS, which supports analog system variables and components that can be combined to automatically generate non-linear Ordinary Differential and Algebraic Equations (ODAEs) or Partial Differential Equations (PDEs).

a. Modeling in SystemC-A

In the SystemC extension, a system can be modeled by means of two types of elements: analog system variables as nodes, quantities, flows, efforts or partial quantities; and analog components as capacitors, resistors, voltage and current sources. The designer can interconnect these elements to define analog circuits using netlists, similar approach to the implemented by the ELN MoC of SystemC-AMS [13].

Although some predefined elements are provided by the extensions, the designer can define new variables, implement components, or modify them according to its needs. These modifications are implemented into a build() function, which specifies the analogue behavior of a component.

Elements in SystemC-A are implemented as a set of independent-SystemC classes sharing the base classes, which define the abstract semantics to be used by the variables and components during the analog simulation. The build() function is part of this abstract semantics, it is defined by a component base class and implemented into each SystemC-A component. Some examples of models implemented using SystemC-A are presented in [START_REF] Al-Junaid | SystemC-A Modeling of an Automotive Seating Vibration Isolation System[END_REF], [START_REF] Zhao | SystemC-A Modelling of Mixed-Technology Systems with Distributed Behaviour[END_REF].

b. Representation of Heterogeneity in SystemC-A

SystemC-A has a specific simulation kernel responsible for handling the analog components of a model. For this reason we consider that it follows a deep heterogeneity approach. Thanks to some language constructs, the system is specified by the designer, and later constructed and simulated in the hands of an independent analog kernel, which is able to synchronize with the SystemC DE simulation kernel.

c. Simulation in SystemC-A

The digital/analog simulation in this SystemC extension involves one change in the SystemC scheduler introduced in Section 2.2.2. As shown in Figure 3.14, the change implemented in the scheduler is a call to the analog kernel phases (iteration and verification) before the SystemC scheduler evaluation phase. • Analog Iteration Phase: where the analog elements and components are initialized, and scanned to build the linearized models; then these models are solved and the solutions are updated. If the solutions converge, the analog verification phase is executed; otherwise the analog iteration phase is re-executed.

Scheduler execution

Timed notification phase

• Analog Verification Phase: where the analog kernel calculates the time step sizes to be used by the DE simulator. It advances until the current DE simulation time, schedules an event at a time equal to the current simulation time plus the next selected time step, and then, it suspends.

More details about simulation are presented in [START_REF] Kazmierski | An Analogue and Mixed-Signal Extension to SystemC[END_REF], [START_REF] Zhao | An extension to SystemC-A to support mixed-technology systems with distributed components[END_REF].

d. Summary of the SystemC-A Important Features

• Hierarchical modeling is not allowed.

• The extension is implemented following a deep heterogeneity approach: an independent analog kernel control the analog simulation.

• SystemC DE simulation kernel is modified.

Preliminary Conclusions

The approaches presented in this section, provide a further step towards the creation of multidisciplinary simulators: they propose different ways for adding models of computation on the SystemC DE simulator kernel. Despite this, they present some features that we want to avoid:

• Hierarchical modeling unsupported.

• SystemC objects not considered for defining other MoC-specific components.

• SystemC DE kernel modified according to the constraints imposed by the included MoC.

• Synchronization mechanisms are not available among components defined under different domains (excluding DE).

We seek to add some extensions to SystemC, through a generic method, without altering the simulation cycle defined by the standard, and without depending of the MoC to be included. We believe that preserving the MoC components as SystemC objects, and exploring the SystemC object hierarchy provided by the kernel during elaboration, are means to reach our goal.

Conclusion and Outlook

Having analyzed how the modeling, heterogeneity and simulation are addressed in the different simulation approaches presented in this chapter, we can identify the existing means for ensuring the multi-disciplinary synchronization inside the same simulation environment, and we can define the features that an environment should have to ensure such synchronization means.

On the one hand, we identify that for ensuring the multi-disciplinary synchronization, the frameworks do not propose neither a single method to successfully convert the information transmitted among components belonging to different domains, nor a single method to ensure that the same information is transmitted in the right time. This means that for each specific pair of domains that want to interact within the same simulation environment, a method is defined for ensuring the data synchronization, and another one for ensuring the time synchronization. For example, the data synchronization is ensured by elements always connected among components belonging to a pair of domains The frameworks introduced in this section differ from the SystemC-AMS proof-of-concept, introduced in section 2.3.1, which proposes a unique synchronization method that is shared by all their included models of computation. This synchronization method, implemented under a discrete time semantics, is the one specified by the SystemC-AMS synchronization layer.

We have a particular interest to evaluate whether the proposed SystemC-AMS synchronization method is really sufficient to synchronize any pair of domains. Therefore, in Chapter 4, we first analyze such synchronization method, we introduce a formalization of the synchronization problem and a new algorithm to support it. Then, we discuss if it can be preserved as a unique synchronization method to be included into a multi-disciplinary simulation framework.

On the other hand, we define the features, that in our opinion, should define a true multidisciplinary simulation environment. These features, presented below, will be considered for the definition of the proof-of-concept introduced in Chapter 5.

• Supporting hierarchical modeling to ensure a high-level of expressiveness.

• Supporting heterogeneity at the kernel-level for allowing the separation, in terms of synchronization methods, among the different domains included in the simulator framework.

• Implementing a master-slave relation among the models of computation for controlling the hierarchical synchronization and simulation among different domains.

• Having predefined and well-separated elements for ensuring that the time and data synchronization of a model is not the responsibility of the designer.

• Proposing abstract semantics for allowing the generic simulation of the model's components.

• Following a SystemC-based approach, without modifying the SystemC DE kernel and implementing the MoC components as inherited-SystemC components.

Introduction

Before proposing the synchronization principles that will be used for defining a multi-disciplinary simulation environment, in this chapter, we carefully analyze the only synchronization method included in SystemC-AMS: we formalize, improve and evaluate it to know if it is able to ensure interactions among several domains. This synchronization method is the one defined between the SystemC Discrete Event (DE) simulation kernel (introduced in Section 2.2. In Section 4.2, we present the synchronization problems that may arise when TDF models are connected to models described in the DE domain. In order to provide a good understanding level, we demystify the semantics used for handling the TDF time: we identify the different time notions involved in simulations, which instantiate components described by means of DE and TDF MoCs; and we clarify how these time notions are related.

In Section 4.3, we introduce an approach to represent the TDF models and their interactions with the DE time domain. This approach is based on a formalism called Coloured Petri Nets (CPN), and is defined by means of a set of rules allowing the creation of equivalent models, which can be subsequently analyzed.

In Section 4.4, we propose an analysis method for equivalent CPN models, which allows to determine the causality of such models in regard to the DE domain. This analysis method, in the case of causal models, determines valid schedules including not only the order in which the TDF models are executed, but also the order in which their interactions with the DE domain are performed. Otherwise, it proposes model changes to fix the detected causality problems.

Finally, in Section 4.5, the chapter concludes on interactions between several domains.

Discrete Event (DE) and Timed Data Flow (TDF) Synchronization Issues

The SystemC-AMS TDF MoC is described by means of a DT particular semantics ensuring a data flow evenly distributed in time. This semantics includes timing information, which should be handled during simulation; and which should be synchronized with the timing information handled by the SystemC DE kernel.

Synchronizations involved during the DE-TDF simulations sometimes generate unwanted timing issues, which can corrupt the models' causality. In order to understand how and when these timing issues appear, we need to know how the time is handled in the TDF MoC, more specifically, how such time is handled inside each TDF module or port instantiated by the designer in a model.

TDF Time Management

As introduced in Section 2.3.2, the TDF modules and ports instantiated in a model have an attribute called timestep. This attribute should be assigned by the designer at least once inside each TDF cluster, either in a module or a port object, and later be automatically propagated (during the elaboration phase) to the remaining modules or ports that do not contain it.

To formalize the synchronization mechanism between the DE kernel and TDF MoC, we introduce the notion of timescale, which is associated either to a module or a port. On the one hand, in the case of modules, the timescale is responsible for governing the time instants in which the module's actions (embedded in a processing() function) are performed. On the other hand, in the case of ports, the timescale is responsible for determining which samples should be consumed or produced during each module execution.

In order to explain in detail how each timescale is handled inside a TDF model, we introduce the example shown in Figure 4.1. For the examples presented in this section, as we are interested in analyzing the TDF-DE synchronization issues, we assume that the attributes of each TDF module (Tm), the attributes of each TDF port (Tp, R and D), the number of times that each module should be executed (q) within a cluster period, the cluster period (Tcls), and the schedule (containing the execution order of TDF modules), have been previously determined. 

a. Time Management in TDF Modules

In SystemC-AMS each module M has a timestep Tm M indicating the time period in which its processing() function is executed. This means that the timescale associated to each TDF module progresses in time according to its own timestep.

For the example shown in Figure 4.1, during a time period of 12 ms (Tcls), the module A is executed every 6 ms (Tm A ): initially, the timescale of module A is initialized at 0 ms, when its processing() function is executed for the first time. Later, the same timescale progresses to 6 ms, to execute a second time its processing() function.

Similarly, the module B is executed every 4 ms (Tm B ): initially, the timescale of module B is initialized at 0 ms, when its processing() function is executed for the first time; later the timescale progresses to 4 ms, to execute a second time the same function; and finally, the timescale progresses to 8 ms, to execute a third time the same processing() function.

As the timescales of each module are independent from each other, the only condition considered to indicate the progress of such timescales is the schedule determined during elaboration. For the example shown in Figure 4.1, the relation between the execution order of the TDF modules (ABABB), and the progress of each TDF timescale is illustrated in Figure 4 

b. Time Management in TDF Ports

When the processing() function of a TDF module is executed, a fixed number of samples are read from its input ports, and another fixed number of samples are written on its output ports. These numbers of samples are determined by the rate attributes associated to each port. In the example shown in Figure 4.1, when the A module's processing() function is executed, three samples are produced on its A.out output port; and when the B module's processing() function is executed, two samples are consumed from its B.in input port.

The particularity of the read and written samples is that they are annotated with a time stamp, which indicates their relative temporal position with respect to the local time of the consumer or producer TDF module.

In SystemC-AMS the timestep assigned to a port determines the time period with which the samples are annotated in such port. This means that the timescale associated to each TDF port progresses according to its own timestep.

During simulation, based on the attributes assigned by the designer (Tm, D, R and Tp), each module can automatically determine, by means of mathematical equations, the time stamp value t stamp in of the samples that should be consumed from each of its input ports, and the time stamp value t stamp out of the samples that should be produced to each of its output ports. In order to formulate these equations, we propose the generic model shown in Figure 4.3.

On the one hand, to determine the time stamp value of the samples that should be consumed from a TDF input port n, belonging to a TDF module N, we use the Equation 4.1. Where j N is the number of times that the module N has been executed, Tm N is the timestep associated to module N, Tp n is the time step associated to port n, and k is an index going from 1 to the rate R n associated to port n.

It is important to clarify that the number of times that a module has been executed (j) is increased when: the number of samples indicated by the rates associated to the input ports have been consumed, the processing() function of the module has been performed, and the number of samples indicated by the rates associated to the output ports have been produced.

On the other hand, to determine the time stamp value of the samples that should be produced by a TDF output port m, belonging to a TDF module M, we use the Equation 4.2. Where j M is the number of times that the module M has been executed, Tm M is the timestep associated to module M, D m is the delay associated to port m, D n is the delay associated to port n (TDF port connected to m), Tp m is the time step associated to port m, and i is an index going from 1 to the rate R m associated to the port m. 

t stamp in = (j N * Tm N ) + ((k -1) * Tp n ) k = [1 ... R n ] (4.1)
t stamp out = (j M * Tm M ) + ((D m + D n ) * Tp m ) + ((i -1) * Tp m ) i = [1 ... R m ] (4.2)
Using the previously defined equations, the time stamps associated to the samples produced or consumed can be determined. For the example shown in 

Occurrence of Synchronization Issues

Having clarified how the time notion is handled inside TDF models, we can discuss the synchronization issues that can arise when these TDF models are interconnected, by means of TDF converter ports, with models described in the DE domain.

During a DE-TDF simulation, it is important to remember that the DE simulation time must remain monotonically increasing, and the actions generated from TDF clusters should not violate this principle. This means that for a TDF cluster, a valid static schedule must guarantee that the discrete events generated by a TDF cluster cannot happen earlier than the current DE time. These events can be named synchronization actions, which correspond with the read operations getting information from the DE domain, by means of input converter ports; and the write operations providing information to the DE domain, by means of output converter ports.

At present, the principle previously introduced is not guaranteed by the SystemC-AMS TDF MoC.

As the schedule determined during elaboration only includes the order in which the TDF modules should be executed, regardless to their interactions with the DE domain, several causality problems may appear during the execution of this schedule. To illustrate the problem, we propose the model shown in 5

The next module to be executed is A (third in the schedule). As this module has a timestep 

Tm A =
D req m = diff Tp m (4.3) 
In Figure 4.5(c), we observe that adjusting the delay value in B.out and following the schedule determined during elaboration, the simulation is fully executed for a TDF cluster period Tcls = 12 ms.

Details, about how this simulation is performed, are presented below.

1 When a delay attribute D = 1 is assigned in B.out, an initial sample is available is such port when the simulation starts. This sample has a time stamp associated of 0 ms, indicating the time at which the first read synchronization operation should be performed. As initially t DE = 0 ms, the sample is written on the sig3 DE signal. 

Preliminary Conclusions

• The discussed example shows how causality problems arise in multi-rate TDF models due to DE-TDF synchronization. At present, these problems can be only detected during simulation because the synchronization operations (read/write operations from/to DE) are not considered for determining the cluster's schedule during elaboration.

• The graphical representation used in • We need another approach to represent the TDF models and their interactions with the DE time domain, determine the order in which the TDF modules' executions and their synchronization operations should be performed, and detect and analyze the causality problems present in the models. This approach is presented in Section 4.3.

CPN-Based Representation of DE and TDF Synchronization Interactions

The TDF MoC is based on the Synchronous Data Flow (SDF) formalism [START_REF] Lee | Static Scheduling of Synchronous Data Flow Programs for Digital Signal Processing[END_REF], [START_REF] Lee | Synchronous Data Flow[END_REF], which considers models as a network (graph) of synchronous data flow blocks, as shown in Figure 4.6. This network is composed of a set of blocks (nodes interconnected by means of directed arcs), representing functions that are invoked (fired) to consume a known number of inputs (input rate) and produce a known number of outputs (output rate). The only condition required to fire each block is that the number of inputs required to be consumed, is available on each of the input arcs associated to the same block. This network of SDF blocks may also be represented by means of Petri Nets (PN) [START_REF] Cassandras | Petri Nets[END_REF], as shown in Figure 4.7. This representation is defined as a directed bipartite graph, which interconnects transitions and places by means of a set of directed arcs. Transitions can be considered as functions invoked to consume a fixed number of inputs, and produce a fixed number of outputs; and places as the containers where such inputs and outputs are stored. These inputs and outputs are called tokens. In the case of PN, for firing a transition (execute the function that it represents), it should be enabled; this means that the number of inputs to be consumed (input required tokens) is available into each of the input places associated to the same transition. as tokens, TDF input rates as the number of tokens to be consumed by a transition, TDF output rates as the number of tokens to be produced by a transition, and TDF delays as the initial tokens that are stored in the input or output places associated to the transitions. Using this representation, pre-simulations of TDF models, which does not include DE-TDF interactions, can be performed regardless to the time notions handled by TDF modules and classical TDF ports. Pre-simulations are performed following the execution rules of Petri Nets, and the ones imposed by TDF:

R a = 1 R b = 2 R c = 1 R d = 2 R e = 1 R f = 1
A out R:3 D:0 B in R:2 D:0 sig2 q A = 2 q B = 3

TDF Cluster Equivalent Petri

• In PN, a transition T can be fired when it is enabled.

• In PN, a transition T is enabled when the input required tokens are available in the input places associated to the same transition.

• In TDF, a module M (represented as a PN transition T) should be executed (fired) q M times per period.

• In TDF, a module M (represented as a PN transition T) is immediately executed (fired) when it has enough samples in their input ports to be consumed, according to the input rate values associated.

As an example, we apply the PN and TDF rules to the example of These pre-simulations guarantee a static schedule, and bounded channels' memory for each TDF cluster:

• Static Schedule: the order in which the transitions (representing TDF modules) are fired for a TDF cluster period. This period is detected during the PN execution, when the PN reaches its initial state; it is when the number of tokens contained into each of its places is equal to the number of tokens initially contained there (before starting the execution).

• Bounded Channels' Memory: the maximum number of tokens contained into each place during the execution (for a TDF cluster period).

Considering that the execution order of TDF modules (which does not include interactions with the DE domain) can be found without involving the internal TDF time stamps, we can deduce that the time management inside a TDF cluster can be omitted in a representation proposed to analyze the synchronization issues between the DE kernel and the TDF MoC.

At present, we need to extend the representation of a TDF cluster as a Petri Net, which includes the timing information handled by the TDF converter ports in the model. This timing information corresponds to the DE timescale handled by the SystemC DE kernel. To this end, we have analyzed different PN extensions allowing the introduction of timing information, and selected the Coloured Petri Nets extensions.

Coloured Petri Nets (CPN) Extension

Coloured Petri Nets (CPN) is a discrete-event modeling language combining the capabilities of Petri nets (graphical representation for modeling concurrency, communication, and synchronization) with the capabilities of a high-level programming language (primitives for the definition of data types, for the description of data manipulation, and for the creation of compact and parametric models). This formalism allows to investigate different scenarios, to explore the system behavior, and to debug the system design. All these features and the CPN formal definitions presented below have been defined

by Jensen and Kristensen in their book "Coloured Petri Nets, Modelling and Validation of Concurrent

Systems" [START_REF] Jensen | Coloured Petri Nets. Modelling and Validation of Concurrent Systems[END_REF].

A CPN model, as shown in Figure 4.10, is a graphical representation, which contains places, transitions, directed arcs, coloured tokens, and textual inscriptions. • Transitions: represent the actions that can be performed in a model. They can associate both priority levels and guard conditions, which control the activation and execution of the represented actions.

• Places: represent the state of a model. This state is defined as the combination of the number of tokens contained in the places, and the data value attached to each token (token colour). In a CPN, the state can be only modified by the transitions' firing (execution of the actions allowed in the model).

• Directed Arcs: are the means by which the transitions and places are interconnected. They can associate variables or functions, which determine how the state of a model changes after each transition execution.

• Coloured Tokens: are tokens which have an attached data value, called token colour. This data value is defined by means of a type, i.e. integer, string, bool, etc. In CPN, each token respects a multiset notation consisting of a back-quote operator " `", which takes an integer as left argument specifying the number of appearances of the data value provided as right argument.

When several tokens are grouped in a place, they are separated using the operator "++".

In addition to the data value, a token can carry a second value called time stamp, useful for involving timing information of a model. This time stamp is added to the token using the operator "@", and indicates the time at which the token is ready to be consumed by an occurring transition.

• Textual Inscriptions: are expressions written in the CPN ML programming language [START_REF] Jensen | CPN ML Programming[END_REF] that can be attached to transitions, places or arcs.

-Transition Inscriptions: can represent the priority level for the execution of a transition, by means of an integer value; or the guard condition limiting its execution.

-Place Inscriptions: represent the type of tokens (colour set) contained in a place.

-Arc Inscriptions: represent the expressions evaluated during simulation for consuming or producing tokens. These inscriptions can be variables or functions, which sometimes include timing information.

Note: when a CPN model contains timing information, it is called Timed CPN [START_REF] Jensen | Timed Coloured Petri Nets[END_REF].

Representation of DE-TDF Models as Equivalent Timed CPN

In this section we develop an equivalent representation of TDF clusters and their interactions with the DE domain using timed CPN. This representation facilitates the understanding of the TDF simulation, the detection of timing inconsistencies, and the proposition of solutions for the synchronization issues presented in Section 4.2.2.

a. Equivalent CPN for TDF Modules

The first step for the construction of an equivalent timed CPN is the representation of TDF modules.

To illustrate this representation, we consider the generic TDF module shown in Figure 4.11, where M is the module name, j M is the number of times that the module M has been executed, and q M is the number of times that the module M should be executed within a TDF period. As this TDF model is isolated from DE, there is no need of representing explicitly timing information. For representing this TDF module, we propose the equivalent CPN model shown in Figure 4.12: it is defined by means of one transition, one place, two directed arcs, and a set of equations written using the CPN ML language. 

M j M q M
M:q M LOW [ j M <> q M ] j M j M + 1 Counter M INT 1 InitCount M
val LOW = 3 (4.6) val InitCount M = 1 `0 (4.7)
Initially, the TDF module execution action is represented by means of a transition with three defined textual inscriptions:

• A name M:q M , to identify the transition.

• A guard [ j M <>q M ], which represents a Boolean expression used to evaluate whether the transition is enabled.

• A priority level LOW , defined in Equation 4.6, which restricts the transition occurrence.

In addition, the TDF module's current execution number j M is stored in a place with three defined textual inscriptions:

• A name Counter M, which identifies the place.

• A color set INT, defined in Equation 4.4, which indicates the token data type that can be contained therein. In this case the place can contain only integer values.

• An initial marking InitCount M , defined in Equation 4.7, which specifies the initial tokens of the place. The initial marking (1 `0 ) indicates that one token with an integer data value equal to zero is contained in the place, before starting the CPN execution.

Later, to complete the TDF module representation, directed arcs link the defined transition and the defined place. Textual inscriptions next to arcs indicate that the j M value is incremented when the M:q M transition is fired. 

b. Equivalent CPN for TDF Connections

The second step for the construction of an equivalent timed CPN is the representation of TDF connections. To illustrate this representation, we consider the generic TDF model shown in wn MmNn i (j M ) 

INT N:q N rn MmNn k (j N ) M:q M S N DelayS N D m+n

fun wn MmNn

i (j M : INT) = (j M * R m ) + (D m + D n ) + i i = [1 ... R m ] (4.8) fun rn MmNn k (j N : INT) = (j N * R n ) + k k = [1 ... R n ] (4.9) val DelayS N = 1 `1 + + 1 `2 + + ... + + 1 `Dm+n D m+n = D m + D n (4.10)
Initially, the TDF modules M and N are represented using the reduced model previously presented in Figure 4.13, and the TDF signal S is represented using a place with three textual inscriptions:

• The name S N (signal S connected to an input port of module N).

• The color set defined in Equation 4.4, which indicates that only tokens with integer data values can be contained in the place.

• The initial marking defined in Equation 4.10, indicating the multiset of delay tokens associated to the TDF signal. Note that the delay tokens number of the place D m+n is the addition of the delay attributes associated to the interconnected ports.

Later, the transition representing the producer (source) module M:q M is linked to the S N place, using a directed arc annotated with the Equation 4.8. This equation calculates the identifier of the token that should be produced when M:q M is fired. The identifier represents the position of the token in the S N place.

Similarly, the S N place is linked to the transition representing the consumer (sink) module N:q N , using a directed arc annotated with the Equation 4.9. This equation calculates the identifier of the token that should be consumed when N:q N is fired.

Note that in multi-rate models, the number of arcs linking transitions and places, are determined by the involved port rates (in the equations, it is represented using the i and k index). For the TDF input converter port shown in Figure 4.17, we introduce the equivalent CPN model shown in Figure 4.18: it is defined by means of several transitions, places, directed arcs, and equations (4.12 -4.21) written using the CPN ML language.

wn SMm (j S ) @+wt SMm (j S )

INT_TIMED Delay m M:q M rn SMm k (j M ) @+rt SMm k (j M ) M.m D m LOW j S j S + 1 Counter S INT

Read S

InitCount 

fun rn SMm k (j M : INT) = (j M * R m ) + k k = [1 ... R m ] (4.16
)

fun rt SMm k (j M : INT) = (j M * Tm M ) + ((k -1) * Tp m ) -t CPN k = [1 ... R m ] (4.17)
val Delay m = 1 `1@0 + +1 `2@(1 * Tp m ) + + ... + +1 `Dm @(D m -1) * Tp m (4.18)

val rEvents S = 1 `1@0 + +1 `2@(1 * Tp m ) + + ... + +1 `x@(x -1) * Tp m x = [1 ... (q M * R m )] (4.19) val InitCount S = 1 `0 (4.20) val HIGH = 1 (4.21)
• The S read ops. list place stores the reading synchronization events defined in Equation 4.19

for one cluster period.

• The Enable S read op. transition enables a read synchronization operation at time t CPN .

• The S read op. enabled place stores the read synchronization operation that is enabled at time t CPN .

• The Counter S place stores the number of read synchronization operations that have been executed at t CPN .

• The Read S transition represents the read synchronization operation to be performed from the DE to the DT domain.

• The M.m place stores the available tokens, which can be consumed by the M:q M transition. This place represents the input converter port m, belonging to the module M. Note that the initial marking of this place (Equation 4.18) is present when m has a delay attribute associated.

On the other hand, to illustrate the representation of output converter ports, we consider the generic TDF model shown in 

fun wn MmS i (j M : INT) = (j M * R m ) + D m + i i = [1 ... R m ] (4.24) fun wt MmS i (j M : INT) = (j M * Tm M ) + (D m * Tp m ) + ((i -1) * Tp m ) -t CPN i = [1 ... R m ] (4.25)
val Delay m = 1 `1@0 + +1 `2@(1 * Tp m ) + + ... + +1 `Dm @(D m -1) * Tp m (4.26)

val wEvents S = 1 `1@0 + +1 `2@(1 * Tp m ) + + ... + +1 `x@(x -1) * Tp m x = [1 ... (q M * R m )] (4.27) val MEDIUM = 2 (4.28)
• The S write ops. list place stores the writing synchronization events defined in Equation 4.27

for one cluster period.

• The Enable S write op. transition enables a write synchronization operation at time t CPN .

• The S write op. enabled place stores the write synchronization operation enabled at time t CPN .

• The M.m place stores the available tokens, which should be written in the DE domain by the M:q M transition. This place directly represents the output converter port m, belonging to module M. Note that the initial marking of this place (Equation 4.26) is present when m has a delay attribute associated.

• The Write S transition represents the DE write synchronization operation to be performed from the DT to DE domain.

In the models shown in Figures 4. [START_REF] Leveque | SystemC-AMS Models for Low-Power Heterogeneous Designs: Application to a WSN for the Detection of Seismic Perturbations[END_REF] is associated to some of the defined places: it indicates that the tokens stored in the places contain not only an identifier (integer value), but also a time stamp indicating when they can be consumed; this time stamp is added to the token using the operator "@". A.in B.out

1`1@0 ++ 1`2@6
1`1@0 ++ 1`2@4 ++ 1`3@8 The proposed representation was validated using CPN Tools [START_REF] Jensen | CPN Tools 4.0.0[END_REF], a tool for editing and simulating CPN. For the example shown in Figure 4.24, we verified that the semantics of the CPN equivalent model is properly represented; its execution when D out = 1 yields the simulation trace shown in 

Preliminary Conclusion

In this section, we have proposed equivalent CPN models that can be built for representing a TDF cluster and its interactions with the DE domain. This representation may be executed once before simulation, for analyzing the computability of the TDF cluster. A TDF cluster will be computable when its execution for a cluster period is not interrupted due to DE-TDF causality problems.

Based on the CPN execution rules and the restrictions imposed for executing TDF models, we have developed a method for analyzing equivalent CPN models, detecting the causality problems and fixing them. This method is presented in Section 4.4.

DE-TDF Pre-Simulation Analysis

In this section, we introduce a DE-TDF pre-simulation analysis method, which determines the computability of a TDF cluster, represented by means of an equivalent CPN model. This analysis method is based on the principle that a TDF cluster is computable, when the execution of its equivalent CPN model is performed without interruptions for a cluster period T_cpn. Following this principle, our method is defined by means of three phases:

• Phase 1 -Transitions Firing: all the enabled transitions of an equivalent CPN model are fired.

During this phase:

-The transitions are fired according to their priority levels.

-The schedule required for planning the TDF cluster execution is constructed under certain conditions (only low priority transitions are added in the schedule).

-The CPN execution time t_cpn is increased, without exceeding the T_cpn value.

When no more transitions are enabled, the phase 2 begins.

• Phase 2 -Final State Verification: the CPN is evaluated for determining if its final state is reached. During this phase, we have three possible scenarios:

-The final state is reached the first time that this phase is executed: it means that DE-TDF causality problems are not present in the model. In this scenario, the model is identified computable and the analysis method ends.

-The final state is not reached: it means that causality problems are present in the model, and they should be solved. In this scenario, the model is identified non-computable and the phase 3 begins.

-The final state is reached, but previously the model was identified non-computable: it means that all model's causality problems were successfully identified. In this scenario, the changes proposed for solving such causality problems are notified to the designer, and the analysis method ends.

• Phase 3 -Unlocking and correction: the objects (transitions and places), which disable the execution of the CPN for a time t_cpn are identified; and the attributes associated to these objects are temporarily modified. Once the modifications are performed, new CPN transitions are then enabled, thus the phase 1 is re-executed.

Using our analysis method, when the TDF model is computable, we can determine the schedule required for planning the TDF cluster execution; otherwise, we can identify and notify to the designer, a solution for the causality problems present in the TDF cluster.

In order to summarize the analysis method previously described, we propose the algorithm shown in Listing 4.1. It takes as arguments: the cpn structure on which the analysis is performed; the schedule structure where the execution order is stored; and the T_cpn cluster period, which corresponds to the period of the represented TDF cluster.

1 bool analyze_computability (cpn, schedule, T_cpn) { Once the CPN is temporarily unlocked, the execution continues until a new locked scenario is found (Listing 4.1, line [START_REF] Bajaj | Optimized selection of reliable and cost-effective cyber-physical system architectures[END_REF]. This means that the CPN analysis is performed while it has not yet reached its final state. Finally, when the CPN final state is reached and the model is marked as non-computable, the delay changes required to solve the causality problems are presented (Listing 4.1, lines [START_REF]SystemC AMS 2.0 Proof-of-Concept Implementation[END_REF][START_REF] Jensen | Coloured Petri Nets. Modelling and Validation of Concurrent Systems[END_REF].

Using an implementation of this algorithm in C++, equivalent CPN models can be analyzed. For example, the model show in Figure 4.24 can be analyzed in two scenarios (D out = 0 and D out = 1).

Results of these analysis are summarized in Table 4.1. When D out = 0, the causality problems are detected, the schedule is not valid, and the delay changes are proposed. When D out = 1, the CPN directly reaches its final state and the schedule is constructed, indicating the execution order and the DE times at which the TDF modules and their interactions with the DE domain should be performed.

Initial

More details about the implementation and execution of this analysis are presented in the next sections. We introduce how the transitions are fired, how the CPN final state is verified, and how the causality problems are detected and fixed in an equivalent CPN model.

Firing Transitions in Equivalent CPN Models

The enabled transitions are fired in an equivalent CPN model according to the defined priority levels and the timed CPN execution rules [START_REF] Jensen | Timed Coloured Petri Nets[END_REF]. In our approach, the HIGH priority transitions are reserved to enable the DE read operations, the MEDIUM ones to enable the DE write operations, and the LOW ones to enable the TDF executions. Once a transition is fired, it can be added to the schedule according to the next rules:

• Only the low priority transitions are added in the schedule, because they represent the executions of TDF modules (M:q M transitions), and the interactions of such TDF modules with the DE domain (Read S and Write S transitions).

• A transition is added to the schedule while the model is considered computable.

In order to summarize the method for firing transitions, we introduce the algorithm shown in Listing 4.2. It takes as arguments: the cpn structure on which the analysis is performed; the schedule structure where the execution order is stored; the model computability status computable, the current CPN execution time t_cpn, and the T_cpn cluster period. In this algorithm, initially the CPN is assumed enabled to be executed at time t_cpn, and the minimum CPN time used for increasing t_cpn during execution, is initialized at zero (Listing 4.2, lines 3-4).

1 void fire_enabled_transitions (cpn, schedule, computable, t_cpn, T_cpn) { (a) The first transition enabled (Enable sig1 read op.) has a HIGH priority level associated, and has a least one available token (with t stamp = 0 ms) to be consumed (at t CPN = 0 ms). When this transition is fired, it consumes the token "1@0" from the sig 1 read ops. list place, and produces the token "1@0" to the sig1 read op. enabled place. This action indicates that the first read synchronization operation will be enabled to be performed in the TDF cluster at time t DE = 0 ms. (b) The second transition enabled (Enable sig3 write op.) has a MEDIUM priority level associated, and has a least one available token (with t stamp = 0 ms) to be consumed (at t CPN = 0 ms). When this transition is fired, it consumes the token "1@0" from the sig 3 write ops. list place, and produces the token "1@0" to the sig3 write op. enabled place. This action indicates that the first write synchronization operation will be enabled to be performed in the TDF cluster at time t DE = 0 ms.

(c) The third transition enabled (Read sig1) has a LOW priority level associated, and has one available token (with t stamp = 0 ms) to be consumed (at t CPN = 0 ms). When this transition is fired, it consumes the token "1@0" from the sig 1 read op. enabled place, and produces the token "1@0" to the A.in place. This action indicates that the first read synchronization operation will be performed in the TDF cluster at t DE = 0 ms, making a TDF sample available in the input converter port A.in, with a time stamp associated of 0 ms. (d) The fourth transition enabled (A:2) has a LOW priority level associated, and has one available token (with t stamp = 0 ms) to be consumed (at t CPN = 0 ms). When this transition is fired, it consumes the token "1@0" from the A.in place, and produces three tokens to the sig2 B place. This action represents the first execution of module A in the TDF cluster, making three TDF samples available in the TDF signal sig2.

t CPN = 0ms 1`1@0 1 1`2@6 1 1`1@0 1 1`2@6 1 1`1@0 1 1`2@4 ++ 1`3@8 2 1`1@0 1 1`2@6 1 1`1@0 1
(e) The fifth transition enabled (B:3) has a LOW priority level associated, and has at least two available tokens to be consumed. When this transition is fired, it consumes two tokens from the sig2 B place, and produces one token (with t stamp = 0 ms) to the B.out place. This action represents

• When a TDF cluster is not computable, we should detect all the causality problems presented in a model for a TDF cluster period, and propose solutions to fix them, by means of delay attributes' modifications.

Unlike SystemC-AMS, causality problems in TDF models are not detected one by one during simulation. Then, the designer does not need to perform several complete simulations to determine all the delay attribute changes required in the model.

Conclusion and Outlook

In this chapter, after analyzing the TDF MoC semantics, we demonstrated that the causality problems arising in multi-rate TDF clusters interacting with the DE domain can be detected and resolved before simulation.

We also showed that our approach of analyzing an equivalent CPN constructed from a TDF cluster for these problems yields a valid schedule for causal TDF clusters. In addition to the order of the TDF module activations and their interactions with the DE domain, this schedule also includes the DE times at which they should be performed.

On the one hand, the approach can be used to support the synchronization between the DE and TDF MoCs. It allows the construction of TDF clusters by means of equivalent CPN models, and the analysis of such equivalent models for a TDF cluster period. This analysis, in the case of computable clusters, will allow the TDF cluster scheduling, ensuring that the simulation will not be stopped by temporal inconsistencies. In the case of non-computable clusters, it will avoid the execution of simulations that cannot be finished due to temporal inconsistencies with the DE domain.

On the other hand, the approach cannot be used to support the synchronization between DE and other domains, without imposing the TDF semantics on them, which means that all the TDF models have to follow the time constraints imposed by the TDF MoC. In some cases, forcing a model to follow the TDF semantics may affect the simulation accuracy. For this reason, we believe that the DE-TDF synchronization approach cannot be the only one considered for synchronizing several domains inside the same multi-disciplinary simulation environment.

In order to define a new method for handling the synchronization in a multi-disciplinary simulation environment, in Chapter 5 we introduce a hierarchical synchronization approach, which is based on the principle that two different MoCs may be synchronized if, and only if, at least one synchronization method is defined to handle the different timescales involved between them. In this way, for example, the synchronization between the DE and TDF MoCs will follow the approach presented in this chapter; but the synchronization among the DE and other MoCs requires the definition of new specific synchronization methods.

Based on this hierarchical synchronization approach, we will define a multi-disciplinary simulator prototype called SystemC MDVP.

Introduction

In this chapter, we introduce the modeling, synchronization, generic elaboration and simulation principles used to define a simulator prototype called SystemC Multi-Disciplinary Virtual Prototyping (MDVP), which is implemented as an extension of the SystemC design modeling language. It is a prototype designed to support the modeling and simulation of heterogeneous systems, by means of well-separated Models of Computation (MoCs).

Principles presented in this chapter are the result of multiple discussions carried out by a working group of the Laboratory of Computer Sciences of Paris 6, within the framework of the European project CATRENE CA701 Heterogeneous Inception (H-INCEPTION) [START_REF]Heterogeneous Inception Project[END_REF].

In Section 5.2, we introduce the definition of Model of Computation in SystemC MDVP.

In Section 5.3, based on the block-oriented approach followed by SystemC and SystemC AMS, we present the modeling principles used to describe models in SystemC MDVP. We define the elements, which can be interconnected to represent particular behaviors under different MoCs; the means by which these elements are related; how the computation and communication are handled and well-separated; and how the hierarchical modeling is allowed.

In Section 5.4, we introduce the definition of solver in SystemC MDVP. We describe the synchronization principle introduced to ensure that the interactions between different MoCs are not limited by Discrete Time (DT) semantics, to allow the definition of generic elaboration and simulation methods, and to simplify the addition of MoCs. We clarify how the heterogeneity is handled, and how the MoCs to be included in SystemC MDVP can be related to each other following a hierarchical approach.

In Section 5.5, we introduce the hierarchical elaboration and simulation principles proposed to prepare and execute multi-disciplinary models in SystemC MDVP. Based on the elaboration and simulation phases implemented by the SystemC Discrete Event (DE) simulation kernel, we present an extension of these phases that can be performed on models regardless of the MoCs involved.

In Section 5.6, we present an overview about the implementation of the SystemC MDVP simulation kernel. We describe the classes created to represent the simulation objects, the building methods associated to these objects, and the abstract methods allowing the elaboration and simulation phases in the simulator prototype. In addition, we explain how the SystemC DE and the SystemC MDVP simulation kernels are interconnected.

In Section 5.7, we introduce a methodology to add models of computation to the SystemC MDVP simulation kernel. These MoCs can be implemented at different hierarchical levels to ensure interactions with one or more of the already defined models of computation.

Finally, in Section 5.8, we conclude this chapter discussing the MDVP simulation approach.

Model of Computation in SystemC MDVP

Model of Computation (MoC) is the term used to define the time abstraction, computation, communication, synchronization, elaboration and simulation semantics under which the components of a model can be described.

• The time abstraction is the representation of time handled by the components of a model (e.g. continuous, discrete, sampled).

• The computation semantics defines how a model is processed. In SystemC MDVP, the MoC computation semantics is implemented by means of modules.

• The communication semantics defines how the information is transmitted between the components of a model. In SystemC MDVP, the MoC communication semantics is implemented by means of ports, interfaces and channels.

• The synchronization semantics defines how the components of a model can interact with other ones described in different MoCs. In SystemC MDVP, the MoC synchronization semantics is implemented by means of solvers.

• The elaboration and simulation semantics defines how the components of a model are analyzed, initialized and prepared for the model execution. In SystemC MDVP, the MoC elaboration and simulation semantics is also implemented by means of solvers.

In SystemC MDVP, modules, ports, interfaces and channels are the components used by the designer to describe a particular behavior, as introduced in Section 5.3; and solvers are the objects automatically instantiated by the simulator to handle the interactions, elaboration and simulation of MoCs, as introduced in Section 5.4.

Modeling in SystemC MDVP

Model Components

SystemC MDVP follows the block oriented approach of SystemC, presented in Section 2.2.1, where a system can be represented by the composition and connection of different components: modules, ports implementing interfaces, and channels.

In SystemC MDVP, as shown in Figure 5.1, modules belonging to different MoCs contain ports, that are connected to channels through interfaces. These ports, channels and interfaces also belong to particular MoCs. • Modules: are the objects which process the information, and encapsulate the behaviors associated to a particular MoC. They are identified with a unique name in the model, and have a set of ports through which they communicate the information that they are responsible for processing. According to the definition of the MoC to which a module belongs, it can be implemented by means of a sequential function, or can be predefined as a primitive ready to be instantiated by the designer.

• Ports: are the objects through which the modules communicate with other modules belonging, or not, to the same MoC in which they are defined. This means that, despite being defined in a particular MoC, ports can ensure not only the internal MoC communication, but also the communication and data synchronization between different MoCs. They are divided in:

-Classical ports: are the objects through which two modules, belonging to the same MoC in which the ports are defined, can communicate. For the example shown in Figure 5 • Interfaces and Channels: interfaces define the set of methods to access the channels, which are the data structures containing the information transmitted between modules. As channels are associated to particular MoCs in a model, they can be connected between ports following the rules presented below:

-A channel, belonging to a MoC 1 , can be connected between classical ports belonging to the same MoC 1 .

-A channel, belonging to a MoC 1 , can be connected from a classical port belonging to a MoC 1 , to an input converter port belonging to a MoC 2 . In this case, the input converter port ensures the data synchronization from the MoC 1 to the MoC 2 .

-A channel, belonging to a MoC 1 , can be connected from an output converter port belonging to a MoC 2 , to a classical port belonging to a MoC 1 . In this case, the output converter port ensures the data synchronization from the MoC 2 to the MoC 1 .

Thanks to the last described components, the computation and communication are well-separated in a model: regardless of the MoCs included, computation is handled by means of modules; and communication by means of ports implementing interfaces, and channels.

MoC Hierarchical Approach

Using SystemC MDVP, designers have the task of implementing the modules, belonging to one or several MoCs, and linking them using predefined ports and channels. This task should be accomplished following a MoC hierarchical approach, which allows the simulator to automatically encapsulate, into structures called clusters, the modules interconnected and described in the same MoCs. The creation of these clusters will facilitate the synchronization, elaboration and simulation of multi-disciplinary models.

Our approach is based on the principle that a set of modules described in a single model of computation MoC 2 , and interconnected using signals belonging to the same MoC 2 , can interact with other sets of modules, through converter ports belonging to the MoC 2 , if the two following conditions are satisfied:

• The other sets of modules are described in one, and only one, model of computation MoC 1 .

• There are converter ports, defined in MoC 2 , which ensure the data synchronization between the MoC 1 and the MoC 2 .

To illustrate the principle, we consider the model shown in Once the model is defined by the designer, the simulator encapsulates the modules as shown in Figure 5.3. Using this representation, we can observe that:

• A model in SystemC MDVP is hierarchically organized according to the models of computation involved.

• Clusters are considered as black boxes, which behave as the modules located in the same hierarchical level in which they are defined.

• Clusters can contain modules and other clusters.

• Clusters are always limited by converter ports defined to perform interactions between two particular MoCs: the MoC which handles the hierarchical level where the cluster is located, and the one which handles the hierarchical level where the cluster's components are located. 

Note:

As the SystemC MDVP simulator kernel is implemented on top of the SystemC DE kernel, we consider that the highest hierarchical level will be always handled by the DE MoC.

Solver in SystemC MDVP

An advantage of the MoC hierarchical approach introduced in Section 5.3.2, is that the interactions between the MoCs associated to the components instantiated in a model, can be easily identified and handled by means of particular elements called solvers.

A solver in SystemC MDVP is the element defined by the MoC designer (inside a model of computation), which will be automatically instantiated by the simulator in a particular cluster for:

• Handling the time synchronization between a pair of master-slave MoCs. The master is the MoC which will impose the synchronization constraints to be followed by the cluster components, and the slave is the MoC in which the solver is defined.

• Handling the elaboration and simulation of the components encapsulated in the cluster, in which this solver is instantiated.

Note:

In SystemC MDVP, multiple solvers can be defined in a same MoC.

Details about how the time synchronization is handled in a MoC hierarchy, are presented in Section 5.4.1; and details about how the elaboration and simulation are generically handled, are presented in Section 5.4.2.

MoC Synchronization

As previously introduced in Section 2.3.1, the current implementation of the SystemC AMS language standard defines only one direct interaction method between the DE MoC and the Timed Data -Second, the DE-MoC 1 solver instances proceed with the execution of the elements contained inside the MoC 1 clusters.

-Third, when the DE-MoC 1 solver instances reach synchronization actions, they return the control to the DE kernel ( 5 in Figure 5.4), via wait() statements to request a reactivation in the future.

An example of a MoC, which can be located under DE, is the TDF MoC. In this case, the interactions between the DE and TDF MoCs could be performed by a DE-TDF solver, which during elaboration can execute the mechanism formalized in Chapter 4, for analyzing a TDF cluster, detecting its synchronization issues, and determining the schedule and synchronization actions for a cluster period.

During simulation, first, the DE kernel can provide the current simulation time; second, the DE-TDF solver can follow the schedule previously determined to perform the execution of the modules and their interactions with the DE MoC; and third, when a DE-TDF synchronization operation is required, the solver can return the simulation control to the DE kernel.

Following the same approach, interactions between the MoC 1 and the MoC 2 ( 6 in Figure 5.4) will be performed by a MoC 1 -MoC 2 solver ( 8 in Figure 5.4):

• During elaboration, instances of the MoC 1 -MoC 2 solver are responsible for the analysis and preparation of MoC 2 clusters, which want to interact with the MoC 1 .

• During simulation, the same solver instances handle the time synchronization, also achieved in three phases:

-First, the MoC 1 kernel imposes the time synchronization constraints that should be satisfied during the MoC 2 cluster executions ( 7 in Figure 5.4).

-Second, the MoC 1 -MoC 2 solver instances proceed with the execution of the elements contained inside the MoC 2 clusters.

-Third, when the MoC 1 -MoC 2 synchronization actions are required, the solver instances return the simulation control to the MoC 1 kernel ( 9 in Figure 5.4), via statements defined in the MoC 1 .

Similarly, interactions between the DE MoC and MoC 2 ( 10 in Figure 5.4) could be performed by a DE-MoC 2 solver ( 12 in Figure 5.4). This means that a synchronization mechanism ( 11 in Figure 5.4) will be defined between the DE MoC and MoC 2 .

In SystemC MDVP the implementation of new synchronization mechanisms ( 13 in Figure 5.4), should consider the three phases to be performed between a master MoC and a slave MoC: first, the master MoC will impose, on the slave MoC, the time synchronization constraints to be satisfied; second, the slave MoC solver will execute the simulation; and third, the slave MoC solver will interrupt, or send the results to the master MoC at the indicated time. This indicates, that the process executing the slave MoC will run in the context of the master MoC leading to a hierarchization of the MoCs.

The advantage of the synchronization approach is for the system designer, since this approach allows the automatic selection of synchronization mechanisms for the simulation of a model. Although several synchronization mechanisms are defined in the SystemC MDVP simulator, by means of the available solvers, only the mechanisms best suited to this model will be selected. For each cluster in the model, a pair of master-slave MoCs will be detected and used by the simulator to select the solver that will be instantiated on each cluster. This solver will be responsible for the elaboration, simulation and synchronization of the cluster's components.

For the example shown in were defined in the MoC 2 .

The detection of MoCs and the instantiation of solvers imply that the hierarchy of clusters, initially detected by the simulator, is transformed in a hierarchy of solvers, which will be used for controlling the elaboration and simulation of components in heterogeneous models. For the example shown in In the hierarchy of solvers, despite that the components of a cluster C i are described in different MoCs, they will be handled following a same set of rules called elaboration and simulation semantics.

These set of rules are defined by the solver instantiated in the cluster C i . For the example shown in In SystemC MDVP, the elaboration and simulation semantics will be associated to each particular MoC implemented in the simulator. They will be defined by means of abstract classes called MoC interfaces, and implemented by the modules and solvers described in such particular MoCs.

MoC Elaboration and Simulation Semantics

The elaboration and simulation semantics associated to a MoC in SystemC MDVP, are abstract methods called by the simulator to perform the elaboration and simulation phases on a set of modules and solvers instantiated inside a cluster.

To ensure that the SystemC MDVP modules and solvers instantiated in the same hierarchical level are elaborated and simulated under the same rules:

• Each module should implement the abstract semantics defined by the MoC in which it is defined.

• Each solver of a MoC 2 should implement the abstract semantics defined by the MoC 1 with which their components want to communicate. The DE MoC interface is defined by means of two abstract methods elaborate() and simulate(). These methods are implemented in different ways according to the semantics of the MoC, which wants to communicate with DE. An example is shown in Figure 5.6.

Assuming that the elaboration and simulation semantics defined by the MoC 1 correspond to the abstract methods elab_m1() and sim_m1(), and the semantics defined by the MoC 2 correspond to the abstract methods elab_m2() and sim_m2(), then:

• The elaborate() and simulate() methods implemented in the DE-MoC 1 solver call the elab_m1() and sim_m1() methods, respectively, on each one of its components (modules described inside the MoC 1 , and solvers which want to interacts with the MoC 1 ).

• Similarly, the elaborate() and simulate() methods implemented in the DE-MoC 2 solver call the elab_m2() and sim_m2() methods, respectively, on each one of its components (modules described inside the MoC 2 ).

• Using the same approach, the elab_m1() and sim_m1() methods in the MoC 1 -MoC 2 solver, call the elab_m2() and sim_m2() methods, respectively, on each one of its components (modules described in the MoC 2 ).

In the SystemC MDVP, the implementation of the abstract methods in solvers will be performed by the MoC designer when such solvers are created. On the other hand, during the SystemC MDVP Simulation, we introduce one generic method for performing the initialization of modules instantiated in a model, and the registration of the clusters' simulation in the DE kernel. This method is executed under the context of the SystemC start_of_simulation() callback.

Elaboration Phase a. Creation of Clusters

In this stage, a hierarchical view of the model is created by means of the exploration of instantiated modules, ports and channels. During exploration, we identify the different clusters of interconnected modules, which belong to a same MoC. These clusters can be considered as homogeneous regions limited by converter ports, which perform the communication between two different MoCs. An example of the cluster identification was shown in Figure 5.2.

Once the clusters have been identified, the hierarchical view of the model is constructed by means of a tree data structure. Nodes contained in such tree are objects called cluster nodes, which encapsulate the information associated to each identified cluster. This information corresponds to the set of attributes described below:

• Master MoC: is the model of computation which imposes the time synchronization constraints for the execution of the cluster's components (modules or clusters). It is identified by exploring the converter ports, which limit the cluster. When converter ports are not present in a cluster, the DE MoC is selected by default.

• MoC: is the model of computation in which the cluster's components are defined. It is identified by exploring the modules instantiated inside the current cluster.

• List of modules: is the structure containing the modules instantiated inside the current cluster.

• List of cluster nodes: is the structure containing the clusters identified inside the current cluster.

For the example previously shown in The information associated to cluster nodes determines how the components of each cluster will be elaborated and simulated. For the last example, we can deduce that components of C1 and C3, follow the time synchronization constraints and implement the elaboration and simulation semantics imposed by the DE MoC; and components of C2, the semantics imposed by the MoC 1 .

Once the hierarchical view has been constructed, the pairs of master-slave MoCs which want to interact in the model are also detected. Using these pairs, and the solvers implemented when a MoC is defined, a dictionary of solvers is constructed. This dictionary is a structure containing the pair of identified MoCs, and the prototypes of solvers able to handle the interactions between such pair of MoCs. For the example shown in Figure 5.8, the dictionary of solvers corresponds to the structure shown in Table . 5.1. This dictionary will be later used to determine the solver required for the elaboration and simulation of each cluster node. The definition and implementation of this stage of creation of clusters has been developed in the framework of another thesis work [START_REF] Ben Aoun | Principes et réalisation d'un environnement de prototypage virtuel de systèmes hétérogènes composables[END_REF], which addresses the compatibility checks of dimensions and units included in a model, its functional verification, and the monitoring and tracing mechanisms that will be also included in the SystemC MDVP simulator prototype.

Pair of MoCs

b. Instantiation of Solvers

In this stage, the solver instances responsible for the elaboration, simulation and synchronization of a model, are created and assigned on the cluster nodes previously instantiated.

To this end, the simulator performs a depth-first traversal of the hierarchy of clusters, locates and selects the clusters nodes from the bottom to the top of the hierarchy, and executes on each cluster node the three steps presented below:

1. Creating a pair of master-slave MoCs: this pair is created using the attributes associated to the cluster node. The master is the MoC imposing the elaboration and simulation semantics (Master MoC attribute); and the slave is the MoC in which the cluster's components are defined (MoC attribute).

2. Finding a suitable solver prototype: the pair of master-slave MoCs previously created is found in the dictionary of solvers. Then, the solver prototype associated to this pair of MoCs is selected.

3. Cloning the solver prototype: a new solver instance is created by coping the prototype selected from the dictionary of solvers. This new solver instance is assigned on the current cluster node.

At the end of this stage, the hierarchical view of the model is converted in a hierarchy of solvers, where each component is a solver instance, with the responsibility of controlling the elaboration, simulation and synchronization of the set of modules and solvers that belong to it. For the example shown in Figure 5.8, the hierarchy of instantiated solvers is shown in Figure 5.9.

c. Hierarchical Elaboration of Modules by means of Solvers

In this stage, each module instantiated by the designer is elaborated. This elaboration is performed on the hierarchy of solvers previously constructed, using the DE MoC elaboration semantics (previously defined in Section 5.4.2).

As shown in Figure 5.9, in the first level of the hierarchy, we always have solvers which want to interact with the DE MoC. By definition, these solvers implement the elaborate() method defined in the DE MoC interface, which is responsible for the elaboration of the modules and solvers contained in the clusters interacting with DE. Therefore, the hierarchical elaboration is defined as a function, which calls the elaborate() methods of the solvers encapsulated in the cluster node Master. This results in the call of the elaboration methods defined for each cluster component included in the hierarchy. In the example shown in Figure 5.9:

• When the elaborate() method of the DE -MoC 1 solver is called, the elaboration method elab_m1() implemented by the module A, module B, and MoC 1 -MoC 2 solver is automatically performed: -In the modules, the elab_m1() method could be defined by the designer.

-In the solver, such method calls the elaboration method elab_m2() implemented by each one of its components (module P and module Q).

• Similarly, when the elaborate() method of the DE -MoC 2 solver is called, the elaboration method elab_m2() implemented by the module R and module S is automatically performed.

At the end of the stage, thanks to the MoC elaboration semantics defined when each MoC is implemented in the simulator, all the modules instantiated by the designer are elaborated. An example of implementation of a MoC and its elaboration semantics is presented in Chapter 6.

d. Hierarchical Elaboration of Ports and Channels

To perform the elaboration of ports and channels, SystemC MDVP imposes the condition that an elaborate() method must be implemented by each port and channel instantiated in a model. The method implementation will be generically specified for each type of port or channel added in the simulator when a MoC is defined.

By default, this method should not be defined by the designer. This means for example, that when a MoC is created, the methods for determining the initial values of ports, or the size of channels, can be encapsulated on elaborate() methods associated to each type of object.

Imposing the previous condition, the hierarchical elaboration of ports and channels is reduced to the stages presented below:

1. Performing a depth-first traversal of the hierarchy of solvers.

2. Locating and selecting the modules or solvers from the bottom to the top of the hierarchy.

3. Accessing to the ports and channels associated to each module or solver.

4. Calling the elaborate() method of each port and channel, which has not been elaborated.

Note: access from a module to a port, and from a port to a channel will be guaranteed by the SystemC MDVP kernel, which takes advantage of the methods provided by SystemC for traversing the hierarchy of modules defined when the SystemC elaboration phase starts.

At the end of the present stage, all ports and channels associated to the modules are elaborated and prepared for the simulation.

Simulation Phase

Following the same approach used during elaboration, the initialization and registration of the simulation is performed on the hierarchy of solvers previously constructed, using the DE MoC simulation semantics (previously defined in Section 5.4.2).

As previously discussed, in the first level of the hierarchy, we always have solvers which want to interact with the DE MoC. By definition, these solvers implement the simulate() method defined in the DE MoC interface, which is responsible of:

• Initializing the modules and solvers contained in the clusters interacting with DE.

• Registering, in the SystemC DE simulation kernel, a simulation thread containing the information required to trigger the simulation of the solvers interacting with DE. This registration creates a SystemC dynamic process, by means of the method sc_spawn().

Therefore, the hierarchical initialization and simulation is defined as a function, which calls the simulate() methods of the solvers encapsulated in the cluster node Master. This results in the call of the simulation methods defined for each cluster component included in the hierarchy. In the example shown in Figure 5.9:

• When the simulate() method of the DE -MoC 1 solver is called, the simulation method sim_m1() implemented by the module A, module B, and MoC 1 -MoC 2 solver is automatically performed: -In the modules, the sim_m1() method could be defined by the designer, or by default, implemented by the MoC in which the module is defined.

-In the solver, such method calls the simulation method sim_m2() implemented by each one of its components (module P and module Q).

• Similarly, when the simulate() method of the DE -MoC 2 solver is called, the simulation method elab_m2() implemented by the module R and module S is automatically performed.

At the end of the stage, thanks to the MoC simulations semantics defined when each MoC is implemented in the simulator, all the modules instantiated by the designer are initialized and registered to be simulated. An example of the implementation of a MoC and its simulation semantics is presented in Chapter 6.

Overview of the SystemC MDVP Kernel Implementation

This section describes how the SystemC MDVP kernel, introduced in previous sections, can be implemented as an extension of the SystemC standard.

Kernel Requirements

The SystemC MDVP kernel needs to fulfill several requirements to successfully ensure the generic elaboration and simulation phases defined in Section 5.5, and allow the addition of MoCs.

• To take advantage of the constructors, hierarchy of modules, and elaboration and simulation callbacks offered by the SystemC kernel, the SystemC MDVP modules, solvers, channels and ports should be implemented as classes directly inherited from the ones implementing the SystemC objects.

• To perform the SystemC MDVP elaboration and simulation phases under generic and recursive methods, modules and solvers should be handled using the same SystemC MDVP object. This object will be called MoC Interface.

• To implement traversal hierarchy methods in SystemC MDVP:

-Each module or solver should offer an access to the ports instantiated inside it.

-Each channel should offer an access to the ports connected to it.

-Each port should offer an access to the channel to which it is bound, and to the module which contains it.

• To perform the instantiation of solvers in a model, an abstract method clone() should be implemented by each solver, which is defined when a MoC is added to the SystemC MDVP kernel.

• To ensure the elaboration and simulation of solvers, which want to interact with the DE MoC, an interface to communicate with the DE MoC should be defined. This interface will contain the definition of the abstract methods elaborate() and simulate().

• To ensure the elaboration and simulation of ports and channels, an abstract method elaborate() should be implemented by each specific port or channel, which is defined when a MoC is added to the SystemC MDVP kernel.

• To handle the generic elaboration and simulation phases, regardless of the MoCs included, a class called simulation context should be defined. It will be the bridge between the SystemC DE and the SystemC MDVP simulation kernels.

SystemC MDVP Kernel Classes

Taking into account the requirements defined in the last section, the hierarchy of classes defined for the SystemC MDVP kernel is shown in Figure 5.10. These classes will be the basis for the definition of MoCs in the simulator. More details are presented in Section 5.7. Note: in order to preserve a name compatibility with SystemC-AMS, we use the prefix sca for naming the SystemC MDVP classes. • The sca_core::sca_module is the base class used for implementing specific modules associated to different MoCs in the simulator. Its constructor ( 1 in Figure 5.11), in addition of calling the SystemC module constructor, is responsible for registering such module in the SystemC MDVP simulation context. Besides, it offers a method ( 2 in Figure 5.11) for registering a port within itself. Such registration ensures that a port can be accessed from a module.

• The sca_core::sca_solver is the base class used for implementing specific solvers associated to different MoCs in the simulator. In order to be handled as an element of the hierarchy of objects offered by SystemC, it inherits from the sc_object class. Similarly to the module, thanks to its constructor ( 3 in Figure 5.11), it is registered in the SystemC MDVP simulation context.

• The sca_core::sca_moc_if is the class created to generically handle the modules and solvers during the SystemC MDVP elaboration and simulation phases. During elaboration, instances of this class will be used to represent the hierarchy of solvers constructed for a model.

The class attributes ( 4 in Figure 5.11) indicate that an instance of a sca_core::sca_moc_if, for example the solver instantiated on a cluster node C1, can contain:

-moc_interfaces_: is the list of modules and solvers instantiated inside the current sca_moc_if instance, for example the components of cluster node C1.

-ports_: is the list of ports of the current sca_moc_if instance, for example the converter ports associated to cluster node C1.

-moc_: is the model of computation associated to the current sca_moc_if instance, for example the model of computation associated to cluster node C1.

-elaborated_: is the status of elaboration of the current sca_moc_if instance.

In addition, several methods ( 5 in Figure 5. -ports_: is the list of ports bound to the current channel. Having this list, any channel can access any port connected to it.

-moc_: is the model of computation associated to a sca_prim_channel instance.

-elaborated_: is the status of elaboration of a sca_prim_channel instance. This class in addition of implementing a constructor, which registers each channel in the Sys-temC MDVP simulation context, includes several methods ( 2 in Figure 5.12) to provide the access to the attributes of the current class, and one method ( 3 in Figure 5.12) which performs the registration of a port in a channel.

Moreover, as this class is created to generically handle the channels included in SystemC MDVP, it defines the abstract method elaborate() ( 4 in Figure 5.12), which should be implemented by the specific channels defined by each MoC in the simulator.

c. Port Classes (shown in Figure 5.13)

• The sca_core::sca_port_base is the base class created to generically handle the ports in SystemC MDVP, regardless of its type, implemented interface, or MoC in which they are defined. It defines the common attributes required to identify a port during elaboration or simulation. These attributes ( 1 in Figure 5.13) are presented below:

-connected_ports_: is the list of ports connected to the current port. They are stored to ease the traversal of the hierarchy.

-moc_: is the model of computation associated to a sca_port_base instance.

-conversion_moc_: in the case of converter ports, it is the model of computation to which a sca_port_base instance wants to communicate.

-input_, output_ and converter_: are the attributes indicating the type of a sca_port_base instance. This attributes should be initialized when a port is constructed in a specific MoC.

-elaborated_: is the status of elaboration of a sca_port_base instance. Similarly to channels, a set of methods ( 2 in Figure 5.13) are defined to provide the access to the port attributes. Other set of abstract methods ( 3 in Figure 5.13) are defined to guarantee the access from a port to a channel, or from a port to the MoC interface (module or solver) which contains it.

Moreover, as this class is created to generically handle the ports included in SystemC MDVP, it defines the abstract method elaborate() ( 4 in Figure 5.13), which should be implemented by the specific ports defined by each MoC in the simulator.

• The sca_core::sca_port<IF> is the base class defined for implementing specific ports in the simulator.

It inherits the methods defined by the sc_port class, and the attributes and methods defined by the sca_port_base class. It also implements the abstract methods defined in the sca_port_base class.

The constructor of this class ( 5 in Figure 5.13) is responsible for registering the port instance in the module which contains it. This is possible because SystemC provides a method to get the parent object of a port (the module which contains it), and our class sca_module provides a method register_port() which can be used to this end.

Moreover, this class overloads the bind() method ( 6 in Figure 5.13), for registering the port instance, in the channel to which it will be bound. The sca_de::sca_moc_if is the class which defines the interface for communicating with the DE MoC. This interface, as defined in Section 5.4.2, includes the abstract methods elaborate() and simulate(), called by the simulator to perform the elaboration and simulation phases of the solvers which want to interact with the DE MoC.

SystemC MDVP Kernel Implementation Details

In this section we introduce the hierarchy of classes used by the simulator to perform the elaboration and simulation phases defined in Section 5.5. This hierarchy is shown in Figure 5.15.

• The sca_core::detail::sca_simcontext is the class which controls the call to the elaboration and simulation phases in SystemC MDVP. As only one object of this class will be instantiated per simulation, it is implemented using a singleton creational design pattern [START_REF] Gamma | Creational Patterns[END_REF].

Via the implementation of the end_of_elaboration callback ( 1 in Figure 5.15), this class performs the elaboration phase defined in Section 5.5.1. In the class, specific methods ( 3 in Figure 5.15)

are defined for each one of the stages accomplished during elaboration.

Via the implementation of the start_of_simulation callback ( 2 in Figure 5.15), this class performs the simulation phase defined in Section 5.5.2. As for the elaboration, a specific method ( 4 in Figure 5.15) is defined for the stage accomplished during simulation.

• The sca_core::detail::sca_cluster_node is the class used for defining the cluster nodes that should be encapsulated in a hierarchy of clusters, during the SystemC MDVP elaboration phase. A cluster node, in addition to have the four attributes introduced in Section 5.5.1.a: master_moc_, moc_, moc_ifs_ (list of modules) and nodes_ (list of cluster nodes); it has an attribute moc_interface_, to store the solver instance, which is responsible for the synchronization between the pair of MoCs associated to the current cluster. The access to the cluster nodes attributes ( 5 in Figure 5.15), is guaranteed by means of the set of methods also defined in this class ( 6 in Figure 5.15). • The sca_core::detail::sca_moc_interface_creator is the class created to handle the instantiation of solvers in a model. It can be considered as the factory of solver prototypes, which is implemented following a prototype creational design pattern [START_REF] Gamma | Creational Patterns[END_REF]. It contains:

-The dictionary of solver prototypes that can be instantiated in a model ( 7 in Figure 5.15).

-The method add_prototype() ( 8 in Figure 5.15), which allows the simulator to add new solver prototypes in the dictionary.

-The method find_and_clone() ( 9 in Figure 5.15), which receives a pair of MoCs, searches this pair in the dictionary of solver, locates the solver associated to the pair of MoCs, and calls the clone() method implemented by the located solver.

SystemC and SystemC MDVP Interconnection

As introduced in Section 2.2.2, four callbacks (see Figure 2.4) are automatically executed during the elaboration and simulation phases of SystemC for allowing the applications to perform further elaboration and simulations actions. These callbacks are abstract methods, which can be overloaded by SystemC objects or object derived from them.

As the sca_simcontext class (SystemC MDVP simulation context) inherits from the sc_core::sc_module class, the interconnection between the SystemC and SystemC MDVP kernels, and the automatic execution of the elaboration and simulation phases in the simulator, can be easily performed:

• SystemC MDVP elaboration is encapsulated in the end_of_elaboration() callback.

• SystemC MDVP simulation is encapsulated in the start_of_simulation() callback.

Methodology to Add Models of Computation in SystemC MDVP

In order to add a MoC in SystemC MDVP, a set of classes should be implemented to allow the modeling under a specific time abstraction, and particular computation, communication, synchronization, elaboration and simulation semantics, as previously introduced in Section 5.2. To this end, the requirements presented below should be considered.

• Define the MoC Interface: it is the specification of the set of abstract methods allowing the elaboration and simulation of:

-Modules described in the MoC being defined.

-Solvers created to communicate with the MoC being defined.

• Provide the designer with specific MoC components: it is the specification of modules, ports and channels classes, which inherit from the SystemC MDVP kernel classes previously presented in Figure 5.10.

• Locate the MoC inside the SystemC MDVP architectural model: as described in Section 5.4.1, a MoC can be implemented in a particular hierarchical level, according to the desired interactions.

When a MoC is located under one of the existing MoCs, it should define:

-Conversion ports to handle the data synchronization between the MoC being defined, and the one over it.

-A solver able to handle the elaboration and simulation of the MoC components, and the time synchronization between the MoC being defined, and the one over it.

In this section, by means of generic examples, we introduce a methodology for adding MoCs in SystemC MDVP. We show how a MoC can be added at different levels in the hierarchy of classes, and how it can be defined to directly communicate with the DE MoC, or with any other MoC. We have simplified the task of adding MoCs by means of four phases: addition of MoC's modules, addition of MoC's channels, addition of MoC's ports, and addition of MoC's solvers.

Addition of MoC's Modules

In order to implement the objects responsible for encapsulating the behaviors associated to a particular MoC 1 , two classes should be defined as shown in Figure 5.16. • The sca_moc1::sca_module class ( 2 in Figure 5.16), which is provided to the designer to be inherited or instantiated in a model. In the case where this is an abstract class, the designer can inherit from it to represent a block with a particular behavior. Otherwise, the designer can directly instantiate it, because it represents a predefined block (primitive). In this case, all the abstract methods defined in the sca_moc1::sca_moc_if class are implemented. This class should inherit the attributes and methods defined by the sca_core::sca_module class, and the sca_moc1::sca_moc_if class.

Regardless of the location of a MoC in the SystemC MDVP architectural model, MoC modules should be always implemented following the description previously presented. For example, the implementation of modules belonging to a MoC 2 is summarized by the definition of:

• The sca_moc2::sca_moc_if class ( 3 in Figure 5.16), which inherits the attributes and methods from the sca_core::sca_moc_if class, defines the MoC interface of MoC 2 , defines the attributes of MoC 2 modules, and defines and implements the methods to be generically called on components belonging to MoC 2 clusters.

• The sca_moc2::sca_module class ( 4 in Figure 5.16), which is provided to the designer to be inherited or instantiated in a model; and inherits the attributes and methods defined by the sca_core::sca_module and the sca_moc2::sca_moc_if classes.

Addition of MoC's Channels

In order to implement predefined channels associated to a particular MoC 1 , several classes should be defined as shown in Figure 5.17 • The sca_moc1::sca_channel_base class ( 1 in Figure 5.17), which is created to generically handle the channels defined in MoC 1 . This class should inherit the attributes and methods defined by the sca_core::sca_prim_channel class; initialize the inherited moc_ and elaborated_ attributes; and implement the inherited elaborate() abstract method, which will be called during the stage of elaboration of ports and channels introduced in Section 5.5.1.d.

• The sca_moc1::sca_channel_if<T> class ( 2 in Figure 5.17), which defines the interface to be implemented by a specific port. It implements the data structure containing the information of type T transmitted between modules, and defines the methods to be called on such data structure (e.g.

read() and write() methods). This class can be decomposed in several classes when the MoC architect wants to provide different interfaces (e.g. input and output interfaces) for the implemented ports. It should inherit from the sca_core::sca_interface and the sca_moc1::sca_channel_base classes.

• The sca_moc1::sca_channel<T> class ( 3 in Figure 5.17), which is provided to the designer to be instantiated in a model. This class should inherit the attributes and methods defined by the sca_core::sca_channel_if<T> class.

Regardless of the location of a MoC in the SystemC MDVP architectural model, channels belonging to each MoC should be always implemented following the description previously presented. For example, the implementation of a channel belonging to a MoC 2 is summarized by the definition of the classes: sca_moc2::sca_channel_base ( 4 in Figure 5.17), sca_moc2::sca_channel_if<T> ( 5 in Figure 5.17), and sca_moc2::sca_channel<T> ( 6 in Figure 5.17).

These classes follow the same description and the same inheritance rules presented for the implementation of the MoC 1 channels.

Addition of MoC's Ports

In order to implement predefined ports associated to a particular MoC 1 , several classes should be defined as shown in Figure 5.18.

• The sca_moc1::sca_port_base class ( 1 in Figure 5.18), which is created to generically handle the ports defined in the MoC 1 . This class should inherit the attributes and methods defined by the sca_core::sca_port_base class, initialize the inherited moc_ and elaborated_ attributes; and implement the inherited elaborate() abstract method, which will be called during the stage of elaboration of ports and channels introduced in Section 5.5.1.d. In addition, this class defines and initializes the attributes of the MoC 1 ports, and implements the methods of the MoC 1 ports, which do not depend on the port type.

• The sca_moc1::sca_port<IF,T> class ( 2 in Figure 5.18), which implements functions responsible for calling the methods defined by the interfaces (e.g. read() and write()). This class should inherit the attributes and functions defined in the sca_core::sca_port<IF> and sca_moc1::sca_port_base classes.

• The sca_moc1::sca_in<T> and sca_moc1::sca_out<T> classes ( 3 in Figure 5.18), which represent the MoC 1 classical ports provided to the designer to be instantiated in a module described in a MoC 1 .

Each one of these classes implements a particular interface (sca_moc1::sca_moc_if<T>) and provides to the designer the methods to access the information contained in the channel associated to each port. These classes should inherit from the sca_moc1::sca_port<IF,T>, implement the interface IF desired, and initialize the inherited input_, output_, and converter_ port attributes. • The sca_moc1::sca_de::sca_in<T> and sca_moc1::sca_de::sca_out<T> classes ( 4 in Figure 5.18), which represent the MoC 1 -DE converter ports provided to the designer, to be instantiated in modules defined in the MoC 1 . Each one of these classes implements a particular DE interface (eg. sc_signal_in_if<T> or sc_signal_inout_if<T>), provides to the designer the methods required to access the information there contained, and implements functions for calling the methods defined by the DE interfaces (to have the access to the DE channels). In these classes, the data synchronization between the MoC 1 and the DE MoC should be ensured.

If necessary, these ports can overload the elaborate() function for implementing elaboration semantics particular to the converter ports which want to communicate with DE. In addition these classes should initialize the inherited attributes converter_ and conversion_moc_.

The description previously presented should be respected for adding the ports of a MoC, which wants to interact with the DE MoC. For example, the implementation of the ports belonging to a Another possibility provided by our approach, is the addition of converter ports which want to interact with any other MoC already defined in the simulator. For example, if MoC 2 wants to interact with MoC 1 , specific converter ports are required. In this case, as shown in Figure 5.18, the MoC 2 -MoC 1 converter ports ( 9 in Figure 5.18) should be defined as classes inherited from the sca_moc1::sca_port<IF,T> and sca_moc2::sca_port_base. In this way, such classes will have the access to the functions, which handle the methods implemented by the MoC 1 channels connected to the MoC 2 -MoC 1 converter ports, and the access to the attributes and particular functions defined for the MoC 2 ports.

Addition of MoC's Solvers

The addition of a solver in the simulator depends on the pair of master-slave MoCs, which such solver expects to handle. The master MoC is the model of computation which imposes the time synchronization constraints, and the slave MoC is the model of computation in which the solver is implemented. Two conditions have to be fulfilled for such implementation:

• The solver inherits from the base class sca_core::sca_solver.

• The solver implements the abstract methods defined in the master's MoC interface. These are the methods called to perform the elaboration and simulation of components defined in the slave MoC.

These conditions are illustrated by means of Figure 5.19, where:

• The sca_moc1::detail::sca_de_solver class ( 1 in Figure 5. [START_REF] Keating | The System-On-Chip Design Process[END_REF], handles the interactions between the MoC 1 and the DE MoC. It inherits the methods from the sca_core::sca_solver class, and implements the abstract methods (elaborate() and simulate()) defined in the sca_de::sca_moc_if class.

• The sca_moc2::detail::sca_de_solver class ( 2 in Figure 5. [START_REF] Keating | The System-On-Chip Design Process[END_REF], handles the interactions between the MoC 2 and the DE MoC. It inherits the methods from the sca_core::sca_solver class, and implements the abstract methods (elaborate() and simulate()) defined in the sca_de::sca_moc_if class.

• The sca_moc2::detail::sca_moc1_solver class ( 3 in Figure 5. [START_REF] Keating | The System-On-Chip Design Process[END_REF], handles the interactions between the MoC 2 and the MoC 1 . It inherits the methods from the sca_core::sca_solver class, and implements the abstract methods defined in the sca_moc1::sca_moc_if class.

Note: Implementation of solvers is performed following the elaboration and simulation semantics defined in Section 5.4.2. When modules, channels, ports and solvers have been defined, the model of computation is ready to be used by the designer.

Conclusion and Outlook

After introducing in this chapter the approach followed to describe models in the SystemC MDVP simulator prototype, we presented the synchronization principles, which ensure the hierarchical modeling and the implementation of the simulator's heterogeneity at the kernel-level. Heterogeneity is implemented by means of well-separated, and hierarchically organized models of computation.

Models of computation provide the set of modules, channels and ports, which can be instantiated and interconnected by the designer in order to describe a model. The simulator identifies the model's clusters, determines the master-slave relation associated to each cluster, and automatically selects the solver to be instantiated on each identified cluster. This means that, in the simulator, the designer is neither responsible for implementing nor instantiating the elements, which handle the elaboration, simulation and synchronization of the model's components.

Additionally, we defined generic elaboration and simulation phases for the simulator, which are automatically executed under the control of the SystemC DE kernel. These phases perform the elaboration and simulation methods selected for each model's cluster, and ensure that the addition of a new model of computation does not modify the SystemC MDVP simulator kernel.

We introduced how the SystemC MDVP simulator kernel is implemented as an extension of SystemC. We described the base classes for handling modules, channels, ports and solvers during the elaboration and simulation phases. The implementation of these classes does not modify the DE kernel.

Finally, we introduced a methodology to add models of computation in the SystemC MDVP simulator prototype. In this methodology, the MoC designer should define the abstract methods which allow the MoC elaboration and simulation; should specify the MoC components to be instantiated by the system designer; should select the master MoC with which the MoC being defined wants to interact; and should implement the converter ports and solver responsible for handling the data synchronization and time synchronization between the MoC being defined and the master MoC previously selected.

In order to validate the methodology introduced for adding a MoC in SystemC MDVP, in Chapter 6, we present a simplified version of the TDF MoC described in the SystemC AMS standard [13], which directly interacts with the DE MoC. We detail how the TDF elaboration and simulation phases are defined, and how the solver, performing the DE-TDF interactions, is implemented.

Introduction

In In Section 6.4, we present an overview about the implementation of the TDF MoC. We describe the classes created to represent the TDF simulation objects, and the methods allowing the elaboration and simulation phases in the TDF MoC.

In Section 6.5, by means of an illustrative example, we show the advantages offered by the TDF MoC included in SystemC MDVP.

Finally, in Section 6.6, we conclude this chapter discussing the TDF MoC implementation.

Requirements for the TDF MoC Implementation

Definition of the TDF MoC Interface

The first requirement to be considered for implementing a MoC in SystemC MDVP is the definition of the MoC interface. As described in Chapter 5, the MoC interface is the set of abstract methods allowing the elaboration and simulation of modules described in the MoC being defined, and solvers created to communicate with the MoC being defined.

According to the SystemC AMS standard, as introduced in Section 2.3.2, to describe a TDF module, three functions can be implemented by the designer: set_attributes(), used for fixing the TDF module and port attributes during elaboration; initialize(), used for fixing initial sample values in TDF ports during simulation; and processing(), used for implementing the function, which describes the behavior of the module. In SystemC MDVP, as the solvers which want to interact with the TDF MoC will be handled as TDF modules, the set_attributes(), initialize(), and processing() functions should be implemented by the MoC designer. Therefore, these three functions will be included in the TDF MoC Interface.

In addition, we should include in the TDF MoC interface the methods required to generically prepare the execution of modules and solvers included in TDF clusters (e.g., methods for handling and verifying the time step relations between modules and ports). These required methods will be identified in Section 6.3.

Specification of the TDF MoC Components

The second requirement to be considered for implementing a MoC in SystemC MDVP is the specification of the TDF MoC components offered to the designer for modeling applications in the DT domain. These components are the TDF modules, TDF channels and classical TDF ports, which provide a set of member functions matching the semantics defined by the SystemC AMS standard [13].

a. TDF Modules

The specification of a TDF module in SystemC MDVP is the responsibility of the designer. A base class sca_tdf::sca_module should provide the abstract method processing(), by means of which the module behavior will be implemented; and provide the access to the methods, which set and get the module attribute time step (Tm). Implementation details of the class sca_tdf::sca_module are presented in Section 6.4.1.

b. TDF Channels

The specification of a TDF channel in SystemC MDVP is not the responsibility of the designer. In the TDF MoC, one predefined channel should be available, by means of the class sca_tdf::sca_signal, to be directly instantiated in TDF models. Implementation details of this class are presented in Section 6.4.2.

TDF channels may be connected to one or more TDF ports, as long as the conditions presented below are satisfied:

• The TDF channel is connected at least from a TDF output port to a TDF input port.

• The TDF channel is connected from one, an only one, TDF output port.

• The TDF channel is connected to one or several TDF input ports.

This means, that only one TDF output port can write information inside the predefined channel, but several TDF input ports can read information from the predefined channel at the same time.

The predefined channel should be specified as an abstract data type, which contains circular data buffers used to temporarily store the information transmitted through the channel. An example is shown in Figure 6.1.

• By default, a buffer should be instantiated inside the channel during elaboration. It will be used to store the initial information contained in the TDF output port bound to the channel, before starting simulation; and the information produced by the TDF output port, during simulation.

The size of this circular data buffer is determined after performing, on the TDF cluster, the DE-TDF pre-simulation analysis previously presented in Section 4.4.

• Additional in_delay_buffers should be also instantiated inside the channel during elaboration.

They will be used to store the initial information contained in each TDF input port bound to the channel, before starting simulation. The in_delay_buffers size will be determined by the delay attribute value associated to each one of the TDF input ports bound to the channel. The buffer and in_delay_buffers instantiated inside the channel should be accessed thanks to the channel interface, which will be defined by means of three methods: initialize(), read() and write().

1. initialize(p, val, id): is the method called from a TDF input or output port for initializing the values of ports with a delay attribute previously assigned. This method, in addition to receiving as argument the reference of the port p to be initialized, receives:

• The initial data value val of the sample to be stored in the channel before starting simulation.

• The index id of the sample being initialized. A sample can be indexed from zero to a value less than the delay attribute value associated to the port calling the initialize() method.

As shown in Figure 6.2, according to the type of TDF port calling this method, different data buffers can be initialized.

a When the method is called from a TDF input port p, the data value val is stored in the position id of the in_delay_buffer corresponding to such port p.

b When the method is called from a TDF output port p, the data value val is stored in the position id of the buffer instantiated inside the channel.

2. read(p, id): is the method called from a TDF input or output port for reading a data value contained inside the channel. This method in addition of receiving as argument the reference of the port p, which wants to read; it receives the index id of the sample to be read. This index should be less than the rate attribute associated to the port p. According to the reading raw position read rpos (determined by the Equation 6.1) and the type of port calling this method, different data buffers can be read. In this equation, j M is the number of times that the module M has been executed (M is the module where the port p is instantiated), R p is the rate associated to port p, D p is the delay associated to port p, and id is the index of the sample that the port p wants to read.

read rpos = (j M * R p ) -D p + id (6.1)
As shown in Figure 6.3, when the read rpos < 0, a delay sample should be read from the channel, according to the next conditions:

a If the method is called from a TDF input port p, the delay sample is read from the read pos of the in_delay_buffer corresponding to port p. This read pos is determined by the Equation 6.2.

b If the method is called from a TDF output port p, the delay sample is read from the read pos of the buffer instantiated inside the channel. This read pos is determined by the Equation 6.2.

read pos = (j M * R p ) + id (6.2)
Conversely, when the read rpos ≥ 0, a sample should be read from the channel, according to the next conditions:

c If the method is called from a TDF input port p, the sample is read from the read pos of the buffer instantiated inside the channel. In this case, the read pos is determined by the Equation 6.3, where B size is the size of the buffer instantiated inside the channel. d If the method is called from a TDF output port p, the sample is read from the read pos of the buffer instantiated inside the channel. In this case, the read pos is determined by the Equation 6.4.

read pos = ((j M * R p ) + id) % B size (6.4)

3. write(p, val, id): is the method called from a TDF output port to write a data value in the buffer instantiated inside the channel. This method in addition of receiving as argument the reference of the port p, which wants to write; it receives:

• The data value val of the sample to be written in the channel.

• The index id of the sample to be written. This index should be less than the rate attribute associated to the port p.

The position of the buffer where the sample is written, is determined by the Equation 6.5. There, j M is the number of times that the module M has been executed (M is the module where the port p is instantiated), R p is the rate associated to port p, D p is the delay associated to port p, id is the index of the sample that the port p wants to write, and B size is the size of the buffer instantiated inside the channel. An example is shown in Figure 6.4. 

c. Classical TDF Ports

The specification of classical TDF ports in SystemC MDVP is not the responsibility of the designer. In the TDF MoC, two types of predefined classical ports should be available to be instantiated inside TDF modules. These ports will be specified by means of two classes: sca_tdf::sca_in (for classical input TDF ports), and sca_tdf::sca_out (for classical output TDF ports). Implementation details of these classes are presented in Section 6.4.3.

On the one hand, designers should be able to initialize classical TDF input ports before starting simulation, and read them during simulation. It will be possible by means of the initialize() and read() methods implemented in such ports, as shown in Figure 6.5.

As a classical TDF input port n can access to the channel S to which it is bound, the methods initialize() and read() will be implemented as functions calling the initialize() and read() methods respectively implemented in the channel S.

On the other hand, designers should be able to initialize classical TDF output ports before starting simulation, read and write them during simulation. It will be possible by means of the initialize(), read() and write() methods implemented in such ports, as shown in Figure 6.5.

As a classical TDF output port m can access the channel S to which it is bound, the methods initialize(), read() and write() are implemented as functions calling the initialize(), read() and write() methods respectively implemented in the channel S. The position of the in_buffer where the sample is written, is determined by the Equation 6 b read(id): is the method called by the designer for reading a sample from the TDF input converter port p. This method receives as argument the index id of the sample to be read. This index should be less than the rate attribute associated to the port p.

According to a reading raw position read rpos (determined by the Equation 6.7), different buffers can be read . In this equation, j M is the number of times that the module M has been executed

(M is the module where the port p is instantiated), R p is the rate associated to port p, D p is the delay associated to port p, and id is the index of the sample to be read.

read rpos = (j M * R p ) -D p + id (6.7)
As shown in Figure 6.6, when the read rpos < 0, a delay sample should be read from the read pos of the in_delay_buffer instantiated inside p. In this case, the read pos is determined by the Equation 6.8.

read pos = (j M * R p ) + id (6.8)
Conversely, when the read rpos ≥ 0, a sample should be read from the read pos of the in_buffer instantiated inside p. In this case, the read pos is determined by the Equation 6.9, where B in size is the size of the in_buffer instantiated inside the port p.

read pos = ((j M * R p ) -D p + id) % B in size (6.9)

In addition, the TDF input converter port p should provide to the designer, a method initialize(val, id)

for initializing the in_delay_buffer in the position id, when p has a delay attribute assigned. This method, receives as arguments:

• The initial data value val of the sample to be stored in p before starting simulation.

• The index id of the sample being initialized. A sample can be indexed from zero to a value less than the delay attribute value associated to p.

b. TDF Output Converter Ports

TDF output converter ports should be responsible for handling the data synchronization from the TDF MoC to the DE MoC. To this end, we have decided that a TDF output converter port should be specified as an abstract data type, which contains a circular data buffer, called out_buffer, as

shown in Figure 6.7. It will be used to temporarily store the information to be written in the DE signal (bound to the output converter port) during simulation. The size of the out_buffer is determined after performing, on the TDF cluster, the DE-TDF pre-simulation analysis previously presented in Besides, as shown in Figure 6.7, we have decided to handle the TDF-DE data synchronization by means of two methods: write() and write_sc_signal(). These methods are described below.

a write(val, id): is the method called by the designer for writing a sample on the TDF output converter port p. This method receives as arguments the data value val of the sample to be stored inside the out_buffer of port p, and the index id of the sample to be written.

The position of the out_buffer where the sample is written, is determined by the Equation 6.10.

There, j M is the number of times that the module M has been executed (M is the module where the port p is instantiated), R p is the rate associated to port p, D p is the delay associated to port p, id is the index of the sample to be written, and B out size is the size of the out_buffer instantiated inside the port p. The position of the out_buffer where the sample is read, is determined by the Equation 6.11.

There, t is the DE time at which the TDF-DE data synchronization is required, Tp p is the time step associated to port p, and B out size is the size of the out_buffer instantiated inside the port p.

write pos = t Tp p % B out size (6.11) In addition, the TDF output converter port p should provide to the designer, a method initialize(val, id)

for initializing the out_buffer in the position id, when p has a delay attribute assigned. This method, receives as arguments:

• The initial data value val of the sample to be stored in p before starting simulation.

• The index id of the sample being initialized. A sample can be indexed from zero to a value less than the delay attribute value associated to p.

c. DE-TDF Solver

The DE-TDF solver should be responsible for handling the time synchronization between the DE and TDF MoCs. To this end, it should implement the abstract methods defined in the DE MoC interface. As defined in Section 5.4.2, these are the abstract methods elaborate() and simulate(). In the TDF MoC:

• The elaborate() method implements the TDF elaboration phase, presented in Section 6.3.1.

• The simulate() method implements the TDF simulation phase, presented in Section 6.3.2.

TDF Elaboration and Simulation Phases in SystemC MDVP

Based on the semantics defined by the SystemC MDVP kernel, we extend the elaboration and simulation phases as shown in Figure 6.8. These phases will be performed by each DE-TDF solver instantiated in a model.

On the one hand, during the TDF elaboration, we add methods to perform the attribute settings on each one of the modules or ports encapsulated inside the TDF cluster, on which the DE-TDF solver is instantiated; calculate and propagate the time step attributes between such modules and ports; and check the TDF cluster's computability.

On the other hand, during the TDF simulation, we add methods to perform the initialization and the registration of the processing of TDF modules belonging to the TDF cluster, on which the DE-TDF solver is instantiated.

SystemC MDVP Simulation

Hierarchical initialization of modules and registration of simulation by means of solvers

SystemC MDVP Simulation

Hierarchical initialization of modules and registration of simulation by means of solvers 

SystemC MDVP Elaboration

TDF Elaboration Phase a. TDF Attribute Settings

When the designer writes a TDF model, he can specify by means of the set_attributes() method, offered by the TDF MoC interface, the attributes to be assigned to each module or port there instantiated.

When the elaboration phase begins, the first stage performed is the TDF attribute settings. In this stage, using the hierarchy of solvers constructed by SystemC MDVP (see Section 5.5.1.b), the set_attributes() function is called on each TDF module instantiated by the designer, and on each solver instantiated by the simulator on the clusters which want to interact with TDF. An example is shown in Figure 6.9.

In the case of TDF modules, the TDF attribute settings corresponds to the execution of the implementation defined by the designer inside the set_attributes() function, where for example, the designer can assign a time step to a module (by means of the set_timestep() function) or assign a time step, rate or delay attribute to a port (by means of the set_timestep(), set_rate() or set_delay() functions).

In the case of solvers, which want to interact with TDF, the set_attributes() corresponds to the execution of the specific elaboration phases of the MoC where such solver is defined.

At the end of this stage, the simulator verifies that at least one component per TDF cluster has a time step attribute assigned. It is a required condition to continue the TDF elaboration. When multiple time steps are assigned in a same TDF cluster, during this stage, the simulator verifies that such time steps are cosistent according to Equations 6.12 -C.5.

c. TDF Computability Check

In order to verify that a TDF cluster is computable and then, determine the schedule to be used for the execution of such cluster, in this stage we perform two analysis phases. First, an analysis phase, based on the Synchronous Data Flow (SDF) formalism [START_REF] Lee | Static Scheduling of Synchronous Data Flow Programs for Digital Signal Processing[END_REF], to verify the rate consistencies in the cluster, and calculate the number of times (q) that each module should be executed within a cluster period (Tcls). Second, the analysis presented in Chapter 4, to detect and propose solutions for the causality issues, which can arise in TDF models interacting with the DE domain; and determine the TDF cluster schedule, which contains not only the order in which the TDF modules should be executed, but also the order of its interactions with the DE domain.

Considering the example shown in Figure 6.10, we explain how the simulator applies the SDF formalism to verify the rate consistencies within the TDF cluster. Knowing that the precondition in the TDF standard for a correct data synchronization is that the value read from a converter port should be available at the first delta cycle of the corresponding time point in the DE domain [START_REF] Barnasconi | SystemC AMS extensions User's Guide[END_REF], each TDF cluster can be isolated to be initially analyzed without considering its interactions with the DE domain. In the example, as shown in Figure 6.11, the TDF cluster is isolated from full model. Following the SDF formalism, it is possible to build a SDF graph from a TDF cluster, as shown in Analyzing this SDF graph, a topology matrix Γ i,j can be calculated, where each (i, j)th entry is the amount of data produced by a node j on an arc i. The number of columns on the matrix corresponds to the number of existing nodes in the SDF graph, and the number of rows corresponds to the number of edges.

Rate consistencies can be determined calculating the rank of the matrix Γ i,j , which should be equal to N-1 (being N the number of existing nodes in the SDF graph). It is a necessary condition to ensure the existence of a valid schedule. This means that a valid schedule cannot be found when the condition is not fulfilled. For the example, the condition is verified in Equation 6. [START_REF] Jantsch | Models of computation and languages for embedded system design[END_REF].

Γ i,j = 3 -2 Rank Γ i,j = 1 = N -1 (6.15)
After rate verifications, the number of executions q j,1 of each TDF module during a cluster period can be determined using the Equation 6.16. This corresponds to find a solution to the system of equations proposed. As shown in the example: module A will be executed twice and module B will be executed three times.

Γ i,j • q j,1 = 0 (6.16)

3 -2 • q A q B = 0 q A q B = 2 3 123
• If the schedule's element corresponds to a TDF module, it executes the processing() method associated to such TDF module.

• If the schedule's element corresponds to a DE-TDF synchronization operation, which reads a DE signal, it executes the read_sc_signal() method associated to the input converter port bounded to the same DE signal.

• If the schedule's element corresponds to a TDF-DE synchronization operation, which writes a DE signal, it executes the write_sc_signal() method associated to the output converter port bounded to same DE signal.

Overview of the TDF MoC Implementation

This section describes how the TDF MoC, introduced in the previous sections, is implemented following the methodology presented in Section 5.7.

The hierarchy of classes defined for the TDF MoC is shown in Figure 6.13. These classes directly inherit from the SystemC MDVP kernel classes. 

Implementation of the TDF Module

Following the methodology proposed in Section 5.7. -set_buffer_size() ( a in Figure 6.15), which sets the size required to instantiate the buffer in the channel. This buffer is used to store the initial information contained in the TDF output port bound to the channel, before starting simulation; and the information produced by the TDF output port, during simulation.

-create_buffer() and create_in_delay_buffer() ( b in Figure 6.15), which instantiate the buffer and in_delay_buffers in the channel, as previously introduced in Section 6.2.2.b.

elaborate() ( c in Figure 6.15), which calls the create_buffer() method; and depending on the delay attributes associated to each one of the TDF input ports bound to the channel, calls the create_in_delay_buffer() method.

• The sca_tdf::sca_signal_if<T> ( 2 in Figure 6.15) is the class defining the interface offered by the predefined TDF channel ( d in Figure 6.15).

• The sca_tdf::sca_signal_in_if<T> ( 3 in Figure 6.15) is the class implementing the interface to be respected by the TDF input ports. This interface is composed by the methods initialize() and read() previously described in Section 6.2.2.b.

• The sca_tdf::sca_signal_inout_if<T> ( 4 in Figure 6.15) is the class implementing the interface to be respected by the TDF output ports. This interface, besides inherits the methods from the sca_tdf::sca_signal_in_if<T> class, implements the method write(), also described in Section 6.2.2.b.

• The sca_tdf::sca_signal<T> ( 5 in Figure 6.15) is the class provided to the designer to directly instantiate the predefined channel in its model.

Implementation of the Predefined TDF Ports

Following the methodology proposed in Section 5.7.3, we create several TDF classes for implementing the predefined TDF ports. These classes are shown in Figure 6.16.

• The sca_tdf::sca_port_base ( 1 in Figure 6.16) is the class created to handle the TDF ports. This class defines the attributes of TDF ports ( a in Figure 6.16), and implements the methods ( b in Figure 6.16) to set and get such TDF port attributes.

• The sca_tdf::sca_port<IF,T> ( 2 in Figure 6.16) is the class defining and implementing the methods initialize(), read() and write() ( c in Figure 6.16), which can be performed on TDF ports. These methods were previously introduced in Section 6.2.2.c.

• The sca_tdf::sca_in<T> ( 3 in Figure 6.16) is the class implementing the IF=sca_tdf::sca_signal_in_if interface. It provides to the designer the predefined classical TDF input port, which makes available:

-The methods inherited from the sca_tdf::sca_port_base class ( d in Figure 6.16), to set and get port attributes.

-The methods initialize() and read() ( e in Figure 6.16), inherited from the sca_tdf::sca_port class.

• The sca_tdf::sca_out<T> ( 4 in Figure 6.16) is the class implementing the IF=sca_tdf::sca_signal_inout_if interface. It provides to the designer the predefined classical TDF output port, which makes available:

-The methods inherited from the sca_tdf::sca_port_base class ( f in Figure 6.16), to set and get port attributes.

-The methods initialize() and write() ( g in Figure 6.16), inherited from the sca_tdf::sca_port class.

• The sca_tdf::sca_de::sca_in<T> ( 5 in Figure 6 -set_buffer_size() ( h in Figure 6.16), which sets the size required to instantiate the in_buffer in the TDF input converter port. This in_buffer is used to store the information read from the DE signal (bound to the TDF input converter port), during simulation.

-create_buffer() and create_in_delay_buffer() ( i in Figure 6.16), which instantiate the in_buffer and in_delay_buffer in the TDF input converter port, as previously introduced in Section 6.2.3.a.

elaborate() ( j in Figure 6.16), which calls the create_buffer() method; and depending on the delay attributes associated to the TDF input converter port, calls the create_in_delay_buffer() method.

-read_sc_signal() ( k in Figure 6.16), which is called by the simulator to read the DE signal bound to the input converter port; and store in such TDF input converter port, a sample with the information read. This method was introduced in Section 6.2.3.a.

In addition, this class makes available to the designer:

-The method initialize() ( l in Figure 6.16), which can be called by the designer, to store initial values in TDF input converter ports with assigned delay attributes.

-The method read() ( m in Figure 6.16), which can be called by the designer, inside the context of a processing() function, to read the TDF sample contained in the TDF input converter port, and provide this sample to the module where such port is instantiated.

-The methods inherited from the sca_tdf::sca_port_base class ( b in Figure 6.16), to set and get port attributes.

• The sca_tdf::sca_de::sca_out<T> ( 6 in Figure 6.16) is the class implementing the SystemC interface IF=sc_core::sc_signal_inout_if. It provides to the designer the predefined TDF output converter port, which implements the methods:

-set_buffer_size() ( n in Figure 6.16), which sets the size required to instantiate the out_buffer in the TDF output converter port. This out_buffer is used to store the information to be written in the DE signal (bound to the output converter port), during simulation.

-create_buffer() ( o in Figure 6.16), which instantiates the out_buffer in the TDF output converter port, as previously introduced in Section 6.2.3.b.

elaborate() ( p in Figure 6.16), which calls the create_buffer() method.

-write_sc_signal() ( q in Figure 6.16), which is called by the simulator to write in the DE signal, bound to the output converter port, the information contained in such port. This method was introduced in Section 6.2.3.b.

In addition, this class makes available to the designer:

-The method initialize() ( r in Figure 6.16), which can be called by the designer, to store initial values in TDF output converter ports with assigned delay attributes.

-The method write() ( s in Figure 6.16), which can be called by the designer, inside the context of a processing() function, to write in a TDF output converter port the sample generated by the module where such port is instantiated.

-The methods inherited from the sca_tdf::sca_port_base class ( b in Figure 6.16), to set and get port attributes.

Implementation of the DE-TDF Solver

Following the methodology proposed in Section 5.7.4, we create one TDF class for implementing the DE-TDF solver responsible for executing the elaboration and simulation phases in TDF clusters. This class is shown in Figure 6.17 • The method clone() ( a in Figure 6.17), returns a new instance of the DE-TDF solver. This method will be called during the phase of instantiation of solvers presented in Section 5.5.1.b.

• The method elaborate() ( b in Figure 6.17), performs the TDF elaboration phase presented in Section 6.3.1. This method internally calls:

-The set_attributes() method implemented by each module in the TDF cluster.

-The check_timestep() method ( d in Figure 6.17), which verifies that at least one TDF module or port in a TDF cluster has a time step assigned.

-The propagate_timestep() method ( e in Figure 6.17), which propagates the time step inside the TDF cluster, according to the rules presented in Section 6.3.1.b.

-The analyze_tdf_cluster_as_sdf_graph(), create_cpn() and analyze_cpn_computability methods ( f in Figure 6.17), which performs the TDF computability check stage, presented in Section 6.3.1.c.

• The method simulate() ( c in Figure 6.17), performs the TDF simulation phase presented in Section 6.3.2. It internally calls:

-The initialize() method implemented by each module in the TDF cluster.

-The sc_core::sc_spawn() method, which registers in the SystemC DE simulation kernel, the execute_schedule() method ( g in Figure 6.17). It will be responsible for executing the cluster's schedule determined during the TDF computability analysis phase, as shown in Section 6.3.2.b.

Execution of a Basic TDF Example

In order to demonstrate the advantages of the TDF MoC implemented in SystemC MDVP, we simulate, using the SystemC-AMS proof-of-concept and the SystemC MDVP simulator prototype, the example previously shown in Figure 6.10, where the delay attributes are set to zero. Results of both simulations, shown in Figures 6.18 and 6.19, are compared below. We can observe that both simulations are interrupted due to the existence of a synchronization issue in the output converter port of module B, but they are not interrupted at the same time.

On the one hand, in SystemC-AMS, the execution of the set_attributes() function implemented inside each TDF module is performed during the elaboration phase 1 . Then, the simulation begins:

2 The execution of the initialize() function implemented inside each TDF module is performed. The notification provided to the designer indicates that a valid TDF schedule cannot be found, shows the TDF cluster information 3 (attributes associated to each TDF component), shows the incomplete schedule determined before finding the synchronization issues 4 , and indicates the delay changes proposed for solving the synchronization issues present in the TDF cluster 5 .

The main advantage of the SystemC MDVP simulation is that the existing synchronization issues of a TDF cluster can be detected before starting simulation, it is before calling the initialize() and processing() functions implemented inside each TDF module. Besides, a single notification is provided to the designer, in order to summarize the delay changes suggested for solving all the synchronization issues of a TDF cluster. An example of a TDF cluster with several synchronization issues is discussed in Chapter 7.

Conclusion and Outlook

In this chapter, we introduced the implementation of a MoC according to the methodology, presented The proposed TDF MoC provides solid foundations, which can be extended to include all the functions defined in the SystemC AMS standard. For example, functions to embed linear dynamic equations in TDF modules, or functions to handle TDF modules' and ports' attributes changes during simulation.

Adding the TDF MoC in the SystemC MDVP simulator prototype, we have validated the DE-TDF synchronization approach introduced in Chapter 4, and the methodology to add MoCs interacting with the DE MoC. Additional models of computation should still be included in the simulator prototype to validate the genericity of the proposed approach.

Introduction

In this chapter, in order to demonstrate the advantages of the Timed Data Flow (TDF) Model of Computation (MoC) implemented in the SystemC MDVP simulator prototype, and the advantages of the synchronization method proposed to ensure the interactions between the Discrete Event (DE) and Discrete Time (DT) domains, we present a case study of a vibration sensor model and its digital front end circuit, which includes a feedback loop and several interactions with the DE domain. This case study was inspired by the models presented in [START_REF] Maehne | Bond Graph Support in SystemC AMS[END_REF], [START_REF] Maehne | UVM-SystemC-AMS based Framework for the Correct by Construction Design of MEMS in their Real Heterogeneous Application Context[END_REF].

In Section 7.2, we introduce the modeling of the case study. We describe the functionality of the model components, and the attributes associated to each one of them.

In Section 7.3, we detail how the model is elaborated. We present the validation of the rate attributes, the equivalent Coloured Petri Nets (CPN) model constructed, and the DE-TDF pre-simulation analysis applied to detect the DE-TDF synchronization issues.

In Section 7.4, we present and discuss the model elaboration and simulation results in two scenarios.

First, when the model present several DE-TDF synchronization issues, we show that the simulator detects these issues and proposes the delay changes required. Second, when issues are not present, we

show the execution trace of the model. In both scenarios, results are compared with the ones obtained with the SystemC-AMS proof-of-concept simulator.

Finally, in Section 7.5, we conclude this chapter.

Case Study Description

A vibration sensor and its digital front end circuit has been modeled using the TDF MoC. As shown in Figure 7.1, this model is composed of six TDF modules, some of them with multi-rate attributes;

and one DE module, involved in a control closed loop. In addition, it handles interactions with the DE domain by means of the input and output converter ports instantiated in TDF modules. • The source SRC is modeled by means of a TDF module, which generates a vibration signal as a sequence of sinusoidal wavelets (representing a displacement x_sig in meters). The amplitude (4 µm) and the offset (-8 µm) of the generated signal are constant, and its oscillation frequency can take one of the three values: 2 kHz, 4 kHz, or 8 kHz.

• The vibration sensor SENSOR is modeled by means of a TDF module, which takes as input, the displacement (x_sig) caused by the vibration; and generates as output, a voltage signal (v_sig) proportional to the vibration velocity. This voltage signal is determined using the Equation 7.1.

v_sig = k trans • x_sig ′ with k trans = 1 V s m -1 (7.1) 
• The programmable gain amplifier PGA is modeled by means of a TDF module, which amplifies the input voltage signal (v_sig) by a gain (2 kin ). This gain is controlled by an input factor (kin) read from the DE domain. In this module, the output (vamp_sig) is saturated when the amplified voltage exceeds a supply voltage (v_max = 5 V). The amplified voltage is determined using the Equation 7.2. This equation indicates that -5 V ≤ vamp_sig ≤ 5 V.

vamp_sig =        -v_max 2 kin • v_sig < -v_max 2 kin • v_sig -v_max ≤ 2 kin • v_sig ≤ v_max v_max 2 kin • v_sig > v_max (7.2)
• The analog to digital converter ADC is modeled by means of a TDF module, which digitizes the amplified voltage (vamp_sig) in a n-bits integer (with n = 5), in which the most significant bit correspond to the sign bit. This integer is later transmitted by a TDF signal (adc_sig). It is the unique module in the system, in which the time step attribute Tm ADC = 10 µs is assigned. In this module, the output (adc_sig) is determined using the Equation 7.3.

adc_sig n-bits ≈ vamp_sig v_max • 2 n-1 (7.3) 
• The TDF to DE converter TDF2DE is modeled by means of a TDF module, which forwards the digitized value (adc_sig n-bits ) to the DE domain, using a DE signal (out_sig n-bits ).

• The amplitude estimator AAVG is modeled by means of a TDF module, which calculates the absolute average amplitude of the n s received samples (n s = 64, which is the rate attribute associated to the input port of the AAVG module). The absolute average amplitude (amp_sig) is determined using the Equation 7.4. 

threshold_min = 20% • 2 n-1 (7.5) threshold_max = 60% • 2 n-1 (7.6)
The particularity of this model is that its multi-rate TDF cluster becomes part of a closed loop including a path through the DE domain. As the TDF cluster itself contains no loops, it could be assumed that port delay assignments are not necessary to calculate a valid schedule [START_REF] Barnasconi | SystemC AMS extensions User's Guide[END_REF], but this is only valid for single-rate TDF models. In order to demonstrate this condition, and evaluate the detection of synchronization issues in this model, delay attributes are not assigned in TDF ports and it will be executed following the time synchronization constraints imposed by its master MoC (DE).

As the pair of master-slave MoCs identified in the model is the <DE-TDF> pair, the simulator instantiates a DE-TDF solver on the identified cluster. This solver, as introduced in Chapter 6, is the responsible of executing the TDF elaboration and simulation phases. The representation of the hierarchy of solvers created by the simulator for the model previously presented, is shown in Figure 7.3.

Elaboration of Modules by means of Solvers

When the SystemC MDVP kernel calls the elaborate() method on the TDF-DE solver, the TDF elaboration phase runs, according to the different phases presented in Section 6. Tm AAVG = 640us Third, the TDF cluster computability is checked. By means of the analysis based on the Synchronous Data Flow (SDF) formalism, the rate consistencies are verified; and the number of times (q) that each TDF module should be executed in the cluster period (Tcls) are calculated. In addition, by means of the analysis based on Coloured Petri Nets (CPN), the synchronization issues, which arise when the TDF cluster interacts with the DE domain, are detected. A solution is proposed to the designer. The TDF cluster computability check is described below.

a. Analysis based on the SDF formalism

Isolating the TDF cluster from the DE domain, it can be represented using the SDF graph, shown in Figure 7.5. Based on this graph, the topology matrix Γ i,j is constructed (Equation 7.7), and its rank is calculated (Equation 7.8). In the matrix, each (i, j)th entry is the amount of data produced by a node j (SRC, SENSOR, PGA, ADC, TDF2DE, AAVG) on an arc i (x_sig, v_sig, vamp_sig, adc_sig TDF2DE , adc_sig AAVG ). As the rank of the Γ i,j matrix is equal to N-1 (N = 6 is the number of nodes is the SDF graph), the rate consistencies are confirmed in the model.

SRC SENSOR

Rank Γ i,j = 5 = N -1 (7.8)

Therefore the number of executions q j,1 of each TDF module in a cluster period, are determined as shown in Equation 7.9.

Γ i,j • q j,1 = 0 (7.9) • The places TDF2DE.out, AAVG.amp and AAVG.clk have no tokens to be consumed at time t CPN = 0 µs.

         1 -1 0 0 0 0 0 1 -1 0 0 0 0 0 1 -10 0 0 0 0 0 1 -1 0 0 0 0 1 0 -64          •             q SRC q SENSOR q PGA q ADC q TDF2DE q AAVG             = 0             q SRC q SENSOR q PGA q ADC q TDF2DE q AAVG             =            
• Therefore, the transitions Write out_sig, Write amp_sig and Write clk_sig are locked, then the write synchronization operations cannot be performed.

In order to continue with the analysis for detecting all the synchronization problems in the model, the simulator temporarily fixes these problems, following the approach presented in Section 4.4.4:

• The tokens "1@0" are deleted from the out_sig write op. enabled, amp_sig write op. enabled and clk_sig write op. enabled places.

• The delay attribute in the TDF2DE.out, AAVG.amp, and AAVG.clk places is increased to D out = 1, D amp = 1 and D clk = 1.

After delay modifications, the model analysis continues until the CPN is locked again, without finding its final state (it is shown with blue inscriptions in Figure 7.8). Then, the simulator detects a new synchronization problem at t CPN = 320 µs, as shown in the yellow block of Figure 7.8:

• The place clk_sig write op. enabled indicates that one write synchronization operation should be performed at t CPN = 320 µs.

• The place AAVG.clk has no tokens to be consumed at time t CPN = 320 µs.

• Therefore, the transition Write clk_sig is locked, then the write synchronization operation cannot be performed.

The detected problem is temporarily solved deleting the token "2@320" from the clk_sig write op. enabled place, and increasing the delay attribute in the AAVG.clk place to D clk = 2. After this modification, the model analysis is completed for the TDF cluster period Tcls = 640 µs.

At the end of the analysis, as synchronization problems were detected, the model is not considered computable, the schedule cannot be defined, and the delay attributes changes are notified to the designer, as shown in Figure 7.9. This determined delay changes, D out = 1, D amp = 1 and D clk = 2, are required to solve the causality problems in the model. Using this information, the designer can modify the model and restart its execution.

If, in comparison to our approach, the unmodified TDF model is run in the SystemC-AMS proofof-concept simulator, the errors will be detected one by one during simulation. Thus, the designer needs to perform three complete simulations to determine all required delay attribute changes. Error: SystemC MDVP: Error elaborating the TDF-DE solver instantiated for the TDF cluster containing the modules -TDF2DE -AAVG -ADC -PGA -SENSOR -SRC -: a valid TDF schedule cannot be completely determined for this cluster because some synchronization problems are present. 

Model Simulation

Once the model has been modified by the designer (to set D out = 1, D amp = 1 and D clk = 2), and the execution is restarted, the SystemC MDVP simulator:

• Determines during elaboration the schedule, which includes the order at which the TDF modules and its DE interactions should be executed.

• Initializes the TDF modules with delay attributes associated, as introduced in Section 6.3.2.a.

• Performs the registration of the determined schedule in the SystemC DE kernel, as introduced in Section 6.3.2.b. • The source generates a sinusoidal signal (x sig ) with amplitude 4 µm, offset -8 µm and frequencies between 2 kHz, 4 kHz, and 8 kHz, which represents the vibration displacement.

• The vibration sensor generates a voltage signal (v sig ) proportional to the vibration velocity.

• This voltage signal is amplified (vamp sig ) by a factor of gain (2 ksig ), and digitized (adc sig ). The amplified and digitized voltage are saturated when they exceed ±5 V.

• The DE signal (amp sig ) represents the absolute average amplitude for every 64 samples received from the ADC.

Conclusion

In this chapter, we presented a case study of a vibration sensor model and its digital front end circuit, which includes a feedback loop and several interactions with DE domain. We demonstrated that:

• The synchronization issues arising in TDF clusters interacting with the DE domain can be detected and resolved before simulation.

• A single notification is provided to the designer, in order to summarize the delay changes suggested for solving all the synchronization issues of a TDF cluster.

• Multi-rate clusters, which include DE loops, require port delay assignments to calculate a valid schedule. 

Conclusion

In this thesis, we explored the possibilities of modeling, simulating, and synchronizing multi-disciplinary systems with respect to the Discrete Event (DE) domain, using as reference the SystemC Analog/Mixed Signal (AMS) simulation standard [13]. We analyzed the SystemC-AMS proof-of-concept simulator and identified the issues limiting its extension:

• The addition of Models of Computation (MoCs) is in the hands of experts.

• The interactions with DE are handled through only one synchronization method. This method is defined between the SystemC DE simulation kernel and the Timed Data Flow (TDF) MoC.

Regarding this unique synchronization method, we identified some drawbacks:

• The detection of synchronization errors is performed during the simulation phase.

• We miss a formalized method to analyze the interactions and the occurrence of the synchronization errors between DE and TDF.

In order to provide a solution to the identified issues, we introduced and implemented a new simulator prototype called SystemC Multi-Disciplinary Virtual Prototyping (MDVP). In this thesis, the issues were addressed as presented below.

• The advantage in SystemC MDVP is that designers are notified of all the existing problems before starting simulation.

• Synchronization, elaboration and simulation of MoCs: in Chapter 5, we introduced the Sys-temC MDVP hierarchical synchronization approach, which is based on the principle that two different MoCs can be synchronized if, and only if, at least one synchronization method is defined to handle the different timescales involved between them. This means that several synchronization methods can be defined to perform the direct interaction of MoCs with the DE domain, and to perform the interactions between different pairs of MoCs, without being limited by the discrete time semantics implemented by the TDF MoC.

Besides, we defined new generic elaboration and simulation phases, which identify the clusters of a model, detect the pair of master-slave MoCs associated to each cluster, and instantiate the solver responsible for handling the elaboration, simulation and synchronization of the cluster's components.

The advantage is that the identification and instantiation of solvers in multi-disciplinary models is automatically performed by the simulator.

• Addition of MoCs: in Chapter 5, we also defined a methodology to add models of computation in SystemC MDVP. This methodology includes the definition of the abstract methods, which allow the MoC elaboration and simulation; the specification of the MoC components (modules, ports and channels) that will be provided to the designer; and the selection of the models of computation with which the MoC being defined wants to interact. Once these MoCs are selected, additional MoC components should be defined: converter ports, to handle the data synchronization; and solvers to handle the time synchronization.

The advantage in SystemC MDVP is that the addition of MoCs does not modify the generic elaboration and simulation phases defined by this simulator.

The proposed solutions were validated in Chapter 6, by means of the addition of a TDF MoC in SystemC MDVP. This MoC was designed to directly communicate with the DE domain, it implemented the DE-TDF pre-simulation analysis introduced in Chapter 4, and it was added to SystemC MDVP following the methodology proposed in Chapter 5.

In addition, in Chapter 7, a case study was presented to demonstrate the advantages of the TDF MoC implemented:

• The synchronization issues arising in TDF clusters interacting with the DE domain can be detected and resolved before simulation.

• A single notification is provided to the designer, in order to summarize the delay changes suggested for solving all the synchronization issues of a TDF cluster.

• Multi-rate clusters, which include DE loops, require port delay assignments to calculate a valid schedule.

Future Work

The presented work introduced the principles used to define and implement the SystemC MDVP simulator prototype. Based on these principles, the following topics can be investigated:

• Extension of the TDF MoC: in order to provide all the TDF features defined in the SystemC AMS standard, the TDF MoC should be extended to include:

-The ability to model Continuous Time (CT) behaviors inside a TDF module, by means of the definition of linear transfer functions on the Laplace domain, or state-space equations.

These functions or equations should be handled by a TDF-CT solver able to provide solutions at the discrete time synchronization points imposed according to the TDF sematics.

-Dynamic TDF features to allow the modification of the TDF module attribute (timestep) and the TDF port attributes (timestep, rate and delay) during simulation. To this end, new abstract functions should be defined and included in the TDF elaboration and simulation phases proposed for SystemC MDVP. Besides, a method should be implemented to reexecute the attribute settings, time step calculation and propagation, and computability check stages, after performing changes in a model during simulation. The cost of reexecuting these stages should be carefully evaluated.

• Implementation of new MoCs: in order to validate the genericity of the approach presented in this thesis, new MoCs, described in different time domains, should be defined and added • Implementation of new features in SystemC MDVP: alike the computability checks of dimensions and units included in a model, the functional verification of properties in models, and the implementation of monitoring and tracing mechanisms. These aspects are being investigated in the framework of another thesis work [START_REF] Ben Aoun | Principes et réalisation d'un environnement de prototypage virtuel de systèmes hétérogènes composables[END_REF]. -La synchronisation du temps s'appuie sur les directeurs.

-La synchronisation des données est gérée par les receveurs.

La représentation du temps

Horloge globale gérée par les quantités.

Horloge globale gérée par les écrivains.

Horloge distribuée gérée par les directeurs instanciés à chaque niveau hiérarchique. 

Avantages
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 23 Figure 2.3: SystemC Components (adapted from[START_REF] Black | SystemC: From the Ground Up[END_REF]).

  tures created during elaboration. The elaboration and simulation semantics defined by the SystemC standard are summarized in Figure2.4.
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 24 Figure 2.4: SystemC Elaboration and Simulation Semantics.
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 25 Figure 2.5: SystemC AMS Language Standard Architecture (adapted from [28]).

  SystemC AMS attempt to follow the layered architecture, and represent the set of rules for defining the behavior and interactions among AMS components. The Timed Data Flow (TDF) MoC, allows discrete time modeling, and efficient simulation of signal processing algorithms and communication systems at the functional and architectural level; the Linear Signal Flow (LSF) MoC, supports modeling of continuous time behaviors through a set of predefined primitives for nonconservative system descriptions; and the Electrical Linear Network (ELN) MoC enables modeling of electrical networks, also in the continuous time domain. Despite the three MoC independent formalisms and the well-separated layered architecture proposed by the standard, some drawbacks are present in the SystemC-AMS PoC implementation during the synchronization with the DE domain, and the addition of new MoCs. These aspects are discussed below. a. SystemC-AMS PoC Synchronization Based on the principle of describing continuous time behaviors to be embedded in timed data flow clusters (set of interconnected timed data flow modules), SystemC-AMS allows the communication and synchronization with the DE domain only through the TDF MoC.

  .6, is basically composed of a set of TDF modules (indicated with 1 ) and it can be interconnected using TDF signals (indicated with 2 ). Connections among TDF modules and TDF signals are established through TDF ports (indicated with 3 ). Sometimes, a TDF model can interact with SystemC (SC) modules (indicated with 4 ). In this case, the SC modules which have SC ports (indicated with 5 ) are interconnected with the TDF modules using SC signals (indicated with 6 ). Connections from SC modules to TDF modules are established through TDF input converter ports (indicated with 7 ), and connections from TDF modules to SC modules are established through TDF output converter ports (indicated with 8 ). The set of interconnected TDF modules (indicated with 9 ) is called TDF cluster. In Figure 2.6, two clusters are presented: the first is composed by A and B modules, and the second is composed by C and D modules.
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 26 Figure 2.6: Example of a Basic Multirate TDF Model with 2 TDF Clusters, 4 TDF Modules and 2 TDF Signals. It Interacts with the DE Domain Using TDF Converter Ports.
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 27 Figure 2.7: SystemC-AMS Elaboration and Simulation Semantics.
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 31 Figure 3.1: Shallow vs. Deep Heterogeneity (adapted from[START_REF] Patel | Deep vs. Shallow, Kernel vs. Language -What is better for Heterogeneous Modeling in SystemC?[END_REF]).
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  Encapsulation of Functional and Architectural Abstraction Levels
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 32 Figure 3.2: Modeling in in Metropolis (adapted from[START_REF] Balarin | Metropolis: An Integrated Electronic System Design Environment[END_REF]).
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 33 Figure 3.3: Simulation Phases in Metropolis.
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 34 Figure 3.4: Modeling in Metro II (adapted from[START_REF] Davare | A Next-Generation Design Framework for Platform-Based Design[END_REF]).
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 35 Figure 3.5: Simulation Phases in Metro II (adapted from[START_REF] Davare | A Next-Generation Design Framework for Platform-Based Design[END_REF]).
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 37 Figure 3.7: Simulation Phases in Ptolemy II.
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 38 Figure 3.8: Architecture of the HetSC Framework (adapted from[START_REF] Herrera | HetSC User Manual -Methodology for Specification of Heterogeneous Embedded Systems in SystemC[END_REF]).
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 310 Figure 3.10: MoC Interfaces in HetSC (adapted from[START_REF] Herrera | A Framework for Heterogeneous Specification and Design of Electronic Embedded Systems in SystemC[END_REF]).
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 311 Figure 3.11: Modeling in HetMoC: Processes, Signals and Domain Interfaces (adapted from [49]).
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 312 Figure 3.12: Modeling in ForSyDe: Processes, Signals and Domain Interfaces (adapted from [50]).
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 33 Figure 3.13. This semantics is similar to the one presented in Section 3.2.3.
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 314 Figure 3.14: Changes Involved in the SystemC DE Kernel for enabling the Analog Simulation.

  (in Metro II by adaptors; in Ptolemy II by receivers; and in HetSC, HetMoC and ForSyDe by domain interfaces or MoC interfaces); and the time synchronization is ensured by the language-level definitions or the elements implemented for handling the time constraints among a pair of domains (in Metropolis and Metro II by constraints; in Ptolemy II by directors; and in HetSC, HetMoC and ForSyDe by domain interfaces or MoC interfaces).

  2 and described in the DE domain), and the Timed Data Flow (TDF) Model of Computation (MoC) (introduced in Section 2.3.2, and described in the Discrete Time (DT) domain). Due to the lack of documentation analyzing how the time notions are handled in the SystemC-AMS TDF MoC during simulation, and how the time synchronization is performed between the SystemC DE kernel and the TDF MoC, we dedicate part of this chapter to such analysis.
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 41 Figure 4.1: Example of a Basic TDF Cluster Composed by 2 TDF Modules and 1 TDF Signal.
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 42 Figure 4.2: Time Management in TDF Modules Belonging to TDF Cluster shown in Figure 4.1.
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 43 Figure 4.3: Example of a Generic TDF Cluster Composed by 2 TDF Modules and 1 TDF Signal.
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 41 the consumption and production of samples, together with their particular time stamps are illustrated in Figure4.4.
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 44 Figure 4.4: Time Management in TDF Ports Belonging to TDF Cluster shown in Figure 4.1.
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 45 Figure 4.5: Transient Simulation of a TDF Cluster with DE-TDF Synchronization.
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  Figure 4.5(b) shows the simulation trace when all the delay parameters are fixed to zero, and Figure 4.5(c) shows the simulation trace when the delay parameter of the output converter port B.out is fixed to one. These delay values were strategically selected to demonstrate that only including the execution order of TDF modules in the schedule, we cannot ensure the causality of a model in the DE domain. Causality also depends of the parameter values selected by the designer. In the graphical representation that we developed, two kinds of time lines are represented: the ones having white circles denote a DE timescale, while the ones having black circles and grey boxes denote the TDF timescales. The position of a grey box indicates when a TDF module is activated and the solid arcs indicate its consumption and production of samples, in that order. For the sake of simplicity, the trace details of the TDF ports are omitted. The dashed arcs denote either the sampling of a DE signal (read synchronization operation), or the generation of an event on a DE signal (write synchronization operation). The double dashed arrows indicate the advance of DE time by a timed wait() statement. In Figure 4.5(b), following the schedule determined during elaboration, the simulation is executed until it detects a causality problem. When it occurs, the simulation is stopped and the designer has the responsibility to fix such problem. Details, about how the simulation is performed, are presented below. To activate the module A (first in the schedule), the DE signal sig1 is sampled at the discrete event time t DE = 0 ms. It makes a TDF sample available in the input converter port A.in, with a time stamp associated of 0 ms. function; and writes (produces) three TDF samples (with time stamps associated of 0 ms, 2 ms and 4 ms), through the output port A.out, to the TDF signal sig2. 3 Now, the module B (second in the schedule) can be activated at t TDF B = 0 ms, to consume two of the available samples (with time stamps associated of 0 ms and 2 ms) from the signal sig2, through the input port B.in; execute the B processing() function; and produce one sample (with time stamp associated of 0 ms) to the output converter port B.out. The time stamp associated to the samples stored in output converter ports indicates the DE time at which the write synchronization operations should be performed. 4 As the current DE time is t DE = 0 ms, and the sample generated in the port B.out should be written in the DE domain at 0 ms, then, the write synchronization operation is performed on the DE signal sig3.

  Figures 4.5(b) and 4.5(c) is very helpful to understand the TDF and DE-TDF semantics, and diagnose any causality problem. This representation however reaches its limits when the DE-TDF model has a more complex topology, important rate differences, many delays, and feedback loops.
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 46 Figure 4.6: Example of a Synchronous Data Flow Graph (adapted from[START_REF] Lee | Static Scheduling of Synchronous Data Flow Programs for Digital Signal Processing[END_REF]).
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 47 Figure 4.7: Example of a Petri Net.
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 48 Figure 4.8: Equivalent Petri Net for a Basic TDF Cluster.
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 4849 Figure 4.9: Execution of the Equivalent Petri Net shown in Figure 4.8.
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 410 Figure 4.10: Example of a Coloured Petri Net Model.
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 411 Figure 4.11: TDF Module to be Represented as an Equivalent CPN.
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 412 Figure 4.12: Equivalent CPN for the TDF Module shown in Figure 4.11.
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 4 Figure 4.13: Reduced CPN for the TDF Module shown in Figure 4.11.
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 414 Figure 4.14: TDF Connections to be Represented as an Equivalent CPN.

Figure 4 . 15 :

 415 Figure 4.15: Equivalent CPN for the TDF Connections shown in Figure 4.14.
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 4164 Figure 4.16: Reduced CPN for the TDF Connections shown in Figure 4.14.
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 4181414 Figure 4.18: Equivalent CPN for the TDF Input Converter Port shown in Figure 4.17.
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 4419 Figure 4.19: TDF Output Converter Port to be Represented as an Equivalent CPN.For the TDF output converter port shown in Figure4.19, we introduce the equivalent CPN model shown in Figure4.20: it is also defined by means of several transitions, places, directed arcs, and equations (4.23 -4.28) written using the CPN ML language.
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 420 Figure 4.20: Equivalent CPN for the TDF Output Converter Port shown in Figure 4.19.

  and 4.20, a new color set INT_TIMED (defined in Equation 4.12)
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 421 Figure 4.21: Example of a Petri Net's Inhibitor Arc.
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 422 Figure 4.22: Reduced CPN for the TDF Input Converter Port shown in Figure 4.17.
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 423 Figure 4.23: Reduced CPN for the TDF Output Converter Port shown in Figure 4.19.

  , 4.16, 4.22 and 4.23, any TDF cluster can be represented using a timed CPN. As an example, Figure 4.24 shows the equivalent timed CPN model for the DE-TDF model proposed in Figure 4.5(a).

3 INT_TIMEDFigure 4 . 24 :

 3424 Figure 4.24: Equivalent CPN the DE-TDF Model shown in Figure 4.5(a).
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 4 Figure 4.5(c), for a TDF cluster period; and its execution when D out = 0 yields the simulation trace shown in Figure 4.5(b), which is interrupted due to DE-TDF causality problems.

Listing 4 . 1 :

 41 Algorithm to analyze the computability of a TDF cluster by means of an equivalent CPN model. In this algorithm, initially the model is assumed computable, the CPN final state is assumed not reached, and the CPN execution time t_cpn is initialized at zero (Listing 4.1, lines 3-5). The first called function (Listing 4.1, line 7) implements the first phase of our method. It is responsible for firing all enabled transitions and adding to the schedule, the order and the times at which the low priority transitions are fired. The timescale handled during the CPN execution corresponds to the DE timescale handled by the represented DE-TDF cluster. Details about how the transitions are fired in an equivalent CPN model, are presented in Section 4.4.1. Once the CPN is locked (transitions are disabled), it is necessary to check if the CPN final state is reached (second phase of our method). It is implemented by means of the function shown in Listing 4.1, line 8. Details about how the final state is verified in an equivalent CPN model, are presented in Section 4.4.2. If the final state is directly reached, the algorithm returns true indicating that the schedule was completed and that no causality problems were found. Otherwise, the model is marked as noncomputable (Listing 4.1, line 10), the CPN is temporarily unlocked, and the delay changes required to solve the causality problems are determined (Listing 4.1, line 11). It corresponds to the third phase of our method. Details about how the causality problems are detected and fixed in an equivalent CPN model, are presented in Section 4.4.3 and Section 4.4.4.

= 1 D out = 1 0

 11 mswrite sig3, read sig1, A, B true none 4 mswrite sig3 6 msread sig1, A, B, B 8 mswrite sig3

2 :

 2 Algorithm to fire the CPN enabled transitions.

For a time

  t_cpn, following the CPN execution rules, transitions are fired according to the defined priority levels (Listing 4.2, lines 7-13). If the model is computable, the low priority transitions are added to the schedule (Listing 4.2, line 13). Once the model is non-computable, the construction of the schedule halts: the low priority transitions are fired, but they are not added to the schedule (Listing 4.2, line 11). The example shown in Figures 4.25

  and 4.26, illustrates how the transitions are fired in the equivalent CPN model shown in Figure 4.24 (with D out = 0), according the CPN execution rules and the priority levels associated to each transition (for a CPN execution time t CPN = 0 ms).

Figure 4 . 25 :

 425 Figure 4.25: Firing Transitions in the Equivalent CPN Model shown in Figure 4.24 (I).
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 51 Figure 5.1: SystemC MDVP Components.

Figure 5 . 2 , 2 Figure 5 . 2 :

 52252 Figure 5.2: Example of Identification of Clusters in a SystemC MDVP Model.

Figure 5 . 3 :

 53 Figure 5.3: Encapsulation of SystemC MDVP Modules into Clusters, for the Example shown in Figure 5.2.
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 454 Figure 5.4: SystemC MDVP Architectural Model.

Figure 5 . 3 ,

 53 as the Cluster C1 is handled as a DE module, but contains components (modules and clusters) handled as MoC 1 modules, then, the pair DE-MoC 1 is the masterslave pair of MoCs detected for the Cluster C1. This pair is used to determine that the DE-MoC 1 solver will be instantiated on the Cluster C1. In consequence, the components of Cluster C1, handled by the MoC 1 (slave MoC), will be executed following the time synchronization constraints imposed by the DE MoC (master MoC). Similarly, on the Cluster C2, it will be instantiated a MoC 1 -MoC 2 solver; and on the Cluster C3, it will be instantiated a DE-MoC 2 solver. In SystemC MDVP, as shown in Figure 5.4, the DE-MoC 1 solver was defined in the MoC 1 , and the DE-MoC 2 solver and the MoC 1 -MoC 2 solver

Figure 5 . 3 ,Figure 5 . 5 :

 5355 Figure 5.3, the hierarchy of solvers constructed is shown in Figure 5.5.

Figure 5 . 5 ,

 55 Figure 5.5, the components of Cluster C1 (module A, module B described in the MoC 1 ; and MoC 1 -MoC 2 solver described in the MoC 2 ) will be elaborated and simulated following the rules imposed by the DE-MoC 1 solver.

For

  the case of DE modules, as the elaboration and simulation are ensured by the SystemC DE kernel, we define only DE abstract semantics for handling the solvers which want to communicate with DE. This corresponds to define a set of abstract methods and encapsulate them in a class called DE MoC interface. In the example shown in Figure 5.5, the DE abstract semantics correspond to the methods which will trigger the elaboration and simulation phases of the DE-MoC 1 solver and the DE-MoC 2 solver.
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 57 Figure 5.7: SystemC MDVP Elaboration and Simulation Phases.
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 5221258 Figure 5.8: Cluster Nodes' Hierarchy of the SystemC MDVP Model shown in Figure 5.2.

< MoC 1 , 2 > 1 -

 121 MoCMoC MoC 2 solver Table 5.1: Dictionary of Solver Prototypes Constructed for the Example shown in Figure 5.8.
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 59 Figure 5.9: Hierarchy of Solvers of the SystemC MDVP Model shown in Figure 5.2.
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 510 Figure 5.10: Overview of the SystemC MDVP Kernel Classes.
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 456511 Figure 5.11: Overview of the SystemC MDVP Module, Solver, and MoC Interface Classes.
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 5 Figure 5.12), regardless of the model of computation to which it is associated:
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 1243512 Figure 5.12: Overview of the SystemC MDVP Interface and Channel Classes.
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 5 Figure 5.13: Overview of the SystemC MDVP Port Classes.
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 514 Figure 5.14: Overview of the SystemC MDVP DE MoC Interface Class.
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 515 Figure 5.15: Overview of the SystemC MDVP Implementation Details.
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 516 Figure 5.16: Overview of the Addition of MoC's Modules in SystemC MDVP.

  .

Figure 5 . 17 :

 517 Figure 5.17: Overview of the Addition of MoC's Channels in SystemC MDVP.

Figure 5 . 18 :

 518 Figure 5.18: Overview of the Addition of MoC's Ports in SystemC MDVP.

MoC 2 ,

 2 located under the DE MoC in the SystemC MDVP architectural model, is summarized in the definition of the classes: sca_moc2::sca_port_base ( 5 in Figure 5.18), sca_moc2::sca_port<IF,T> ( 6 in Figure 5.18), sca_moc2::sca_in<T> and sca_moc2::sca_out<T> ( 7 in Figure 5.18), and sca_moc2::sca_de::sca_in<T> and sca_moc2::sca_de::sca_out<T> ( 8 in Figure 5.18). These classes follow the same description and the same inheritance rules presented for the implementation of the ports in the MoC 1 (located under the DE MoC).

3 Figure 5 . 19 :

 3519 Figure 5.19: Overview of the Addition of MoC's Solvers in SystemC MDVP.

  this chapter, we define and implement a Timed Data Flow (TDF) Model of Computation (MoC) in the SystemC Multi-Disciplinary Virtual Prototyping (MDVP) simulator prototype. This MoC respects the Discrete Time (DT) semantics, and the computation and communication rules introduced by the SystemC AMS standard [13]. Besides, it includes the synchronization method proposed in Chapter 4, for ensuring the interactions between the Discrete Event (DE) and DT domains. In Section 6.2, we introduce the requirements to be considered for adding the TDF MoC in Sys-temC MDVP: the definition of the TDF MoC interface; the specification of the TDF MoC components available for the designer (modules, ports and channels); and the selection of the hierarchical level, where the TDF MoC is located inside the SystemC MDVP architectural model. In Section 6.3, we define the TDF elaboration and simulation phases, which are automatically called by the SystemC MDVP simulator kernel. We describe how the TDF attributes are assigned in TDF modules and ports, how the TDF clusters are analyzed and initialized, and how the TDF cluster execution is registered in the SystemC DE simulation kernel.
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 61 Figure 6.1: Specification of the TDF Predefined Channel.
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 62 Figure 6.2: Calling initialize() Method in the TDF Predefined Channel.

Figure 6 . 3 :

 63 Figure 6.3: Calling read() Method in the TDF Predefined Channel.
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 64 Figure 6.4: Calling write() Method in the TDF Predefined Channel.
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 66 Figure 6.6: Specification of TDF Input Converter Ports.
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 67 Figure 6.7: Specification of TDF Output Converter Ports.
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 68 Figure 6.8: TDF Elaboration and Simulation Phases.
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 2610 Figure 6.10: Example of Time Step Calculation and Propagation in a TDF Cluster.
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 611 Figure 6.11: Isolated TDF Cluster Composed of 2 TDF Modules and 1 TDF Signal.

Figure 6 . 12 .Figure 6 .

 6126 Figure 6.12. TDF modules are represented as nodes, TDF signals are represented as edges, output rates are represented as the number of samples produced to an edge, and input rates are represented as the number of samples consumed from an edge.

Figure 6 .

 6 Figure 6.13: Overview of the TDF MoC Classes.
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 614642 Figure 6.14: Overview of the TDF MoC Interface and Module Classes.

5 TFigure 6 . 15 :

 5615 Figure 6.15: Overview of the TDF Channel Classes.
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 616 Figure 6.16: Overview of the TDF Port Classes.

  .
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 617 Figure 6.17: Overview of the DE-TDF Solver Class.
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  The TDF module A is activated. It reads one sample from the DE signal sig1, through the TDF input converter port A.in; and writes three samples on the TDF signal sig2, through the TDF output port A.out. 4 The TDF module B is activated. It reads two samples from the TDF signal sig2, through the TDF input port B.in; and writes one sample on the DE signal sig3, through the TDF output converter port B.out. 5 The TDF module A is activated again. It reads one sample from the DE signal sig1, through the TDF input converter port A.in; and writes three samples on the TDF signal sig2, through the TDF output port A.out. -----Module B / Executing set_attributes() -----Module A / Executing set_attributes() Error: SystemC MDVP: Error elaborating the DE-TDF solver instantiated for the TDF cluster containing the modules -B -A -: a valid TDF schedule cannot be completely determined for this cluster because some synchronization problems are present. TDF cluster information: |--Cluster timestep = 12 ms |--Modules: | |--name = B, --time step = 4 ms, --calls per period = 3 | |--ports: The synchronization issue is detected and notified to the designer. The detection is performed by means of the equivalent CPN constructed and analyzed during the TDF computability check stage.

in Chapter 5 ,

 5 to add MoCs in SystemC MDVP. Initially, we defined the TDF MoC interface to be respected by TDF modules, and solvers which want to interact with TDF; and we specified how the most important functions of the TDF modules, TDF channels and TDF ports are implemented. As the TDF MoC was the first MoC added to SystemC MDVP, we located it under the DE MoC in the SystemC MDVP architectural model. Therefore, we defined the TDF converter ports ensuring the data synchronization between the DE and TDF MoCs, and the DE-TDF solver ensuring the time synchronization between the same MoCs. This solver included the synchronization principles proposed in Chapter 4.Using the SystemC MDVP TDF MoC, we implemented and simulated a basic TDF cluster, which includes interactions with the DE MoC. Once simulated, we compared the results provided by the MDVP simulator with the ones provided by SystemC-AMS. Thanks to the comparison, we demonstrated the main advantage of our DE-TDF synchronization approach, which is the detection of synchronization issues before simulation.

Figure 7 . 1 :

 71 Figure 7.1: Vibration Sensor Model and its Digital Front End Circuit.

•Figure 7 . 2 :

 72 Figure 7.2: Finite-State Machine of Gain Controller.

( 1 .

 1 D out = 0, D amp = 0 and D clk = 0). More details about the implementation of the vibration sensor model shown in Figure 7.1 are presented in Appendix A. Creation of Clusters and Instantiation of Solvers During the first stage of the SystemC MDVP elaboration, one TDF cluster is identified in the model shown in Figure 7.1. It contains six TDF modules (SRC, SENSOR, PGA, ADC, TDF2DE and AAVG);

Figure 7 . 3 :

 73 Figure 7.3: Hierarchy of Solvers Constructed for the Model shown in Figure 7.1.

Figure 7 . 4 :

 74 Figure 7.4: Time Step Propagation inside the Model shown in Figure 7.1.

Figure 7 . 5 :

 75 Figure 7.5: SDF Graph of the Isolated TDF Cluster Identified for the Model shown in Figure 7.1.

  Finally, the TDF cluster period is calculated as shown in Equation7.10.

Figure 7 . 6 :

 76 Figure 7.6: Vibration Sensor Model and its Equivalent CPN Model. When the simulator executes the analysis, presented in Section 4.4, on the previous timed CPN equivalent model with delay attributes D out = 0, D amp = 0 and D clk = 0, the causality problems are detected during elaboration.

First, at

  t CPN = 0 µs, when the transitions Read k_sig, SRC, SENSOR, SRC, PGA, SENSOR, and SRC have been executed and added to the schedule, the CPN is locked and has not reached its final state (it is shown with blue inscriptions in Figure7.7). Then, the simulator detects several synchronization problems, as shown in the yellow block of Figure7.7:• The places out_sig write op. enabled, amp_sig write op. enabled and clk_sig write op. enabled indicate that three write synchronization operations should be performed at t CPN = 0 µs.

Figure 7 . 7 :Figure 7 . 8 :

 7778 Figure 7.7: First Detection of Synchronization Problems, at t CPN = 0 µs, in the Equivalent CPN Model shown in Figure 7.6, with D out = 0, D amp = 0 and D clk = 0.

1 |Figure 7 . 9 :

 179 Figure 7.9: Execution of the Vibration Sensor Model (with D out = 0, D amp = 0 and D clk = 0) Using SystemC MDVP.

Figure 7 .

 7 Figure 7.10 shows the results obtained once the schedule previously registered (by SystemC MDVP) is executed under the control of the SystemC DE kernel. These results match the ones obtained when the model is run in the SystemC-AMS proof-of-concept simulator.

Figure 7 . 10 :

 710 Figure 7.10: SystemC MDVP Simulation Traces of the Vibration Sensor Model with D out = 1, D amp = 1 and D clk = 2.

  Analysis and formalization of DE-TDF interactions: in Chapter 4, we identified the different timescales handled during the execution of TDF models; described how the synchronization problems can arise between DE and TDF; proposed a method for representing DE-TDF clusters using Coloured Petri Nets (CPN); and introduced a DE-TDF pre-simulation analysis method for determining, in advance, when the TDF clusters interact with the DE domain during simulation.Thanks to this analysis, when DE-TDF models do not have synchronization problems, Sys-temC MDVP can determine and register in the SystemC DE simulation kernel, before simulation, the execution order between the TDF modules and their interactions with the DE domain. It ensures that DE-TDF models can be executed without interruptions once the simulation begins.• Detection of DE-TDF synchronization problems: using the DE-TDF pre-simulation analysis, SystemC MDVP can also identify the synchronization problems, which can arise in TDF models interacting with the DE domain, and determine the required delay attribute changes to solve the timing inconsistencies.

to

  SystemC MDVP. At present, the addition of two MoCs in SystemC MDVP is being investigated in the framework of the European project CATRENE CA701 Heterogeneous Inception (H-INCEPTION) [66]. First, the BG (Bond Graph) MoC, designed for the description of conservative (energy conserving) behavior. Second, the SPH (Smoothed-Particle Hydrodynamics) MoC designed to describe and simulate fluid flows.
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 17181932021 Figure C.17: Vue d'ensemble des classes du simulateur SystemC MDVP.

Figure C. 32 :

 32 Figure C.32: Traces de simulation SystemC MDVP du modèle du capteur de vibration] avec D out = 1, D amp = 1 et D clk = 2.
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  The first attribute is the port time step Tp, which represents the time period in which the samples are read or written by a TDF port. The second attribute called rate R, represents the number of read or written samples by a TDF port during a module time step. The third attribute called delay D, corresponds to the initial available samples in a TDF port when simulation starts.

Additionally, TDF modules can define two functions: set_attributes(), useful for fixing the TDF module and TDF port attributes previously described; and initialize(), for fixing initial sample values before starting simulation.

Following the SystemC approach, the execution of AMS applications, including TDF modules, is performed in two phases: TDF elaboration, executed in the context of a SystemC end_of_elaboration() callback; and TDF simulation, registered in the context of a SystemC start_of_simulation() callback, and executed in the first delta cycle of the SystemC scheduler. Actions performed during these phases are summarized in Figure

2

.7.

  ). Second, we propose a new simulation kernel integrating generic phases for the elaboration and simulation of models, which can involve different timed or untimed domains. In addition, we introduce a mechanism to add new models of computation, where each one has the possibility of integrate multiple synchronization methods (Chapter 5). Finally, as a first attempt to validate the proposed solutions, we present the implementation of a simplified version of the TDF MoC included in the AMS extensions of SystemC (Chapter 6), and also a case study of a model described in the DE and TDF MoCs (Chapter 7).
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	.3: Heterogeneity, Domain and MoC Definitions in Ptolemy II.
	a. Modeling in Ptolemy II
	Ptolemy II advocates an actor-oriented view of a system, as shown in Figure 3.6, where the structure
	is modeled by actors and ports, and the interactions are modeled by communication channels and
	domains.

Atomic Actor A Parameters Atomic Actor C Parameters Director D 1 Channel Channel Input Port Input Port Output Port Output Port Receiver Director D 2 Channel Atomic Actor D Parameters Input Port Output Port Atomic Actor E Parameters Input Port Output Port Receiver External Port External Port Receiver Domain 1 Domain 2

  

	P 1 Receiver	Composite Actor B	P 2
	P 1		
			P 2
	Figure 3.6: Hierarchical Modeling in Ptolemy II (adapted from

Table 3 .

 3 4: Summary of Features of Frameworks Based on Metamodels and High-Level Programming Languages.

	-Missing hierarchical	-Synchronization and	Instantiation of
	modeling.	global time notion	elements controlling the
	-Synchronization and	handled by the designer	time synchronization in
	global time notion	at the language-level.	each hierarchical level
	handled by the designer	-MoCs are not well	(directors) is the
	at the language-level.	separated.	responsibility of
	-Domains are not well		designers.
	separated.		

Table 3 .

 3 5: Heterogeneity and MoC Definitions in HetSC.

			Heterogeneous Specification
	2nd Level		MoC Interfaces MoC Interfaces
		MoC 1	MoC 2	MoC 3	...
		General Specification Methodology
	1st Level	Graphical Representation	General Rules & Guidelines
			HetSC Library
		SystemC DE Simulation Kernel

Finite Process Endless Process System Environment Channel Channel Channel Port Port Port Port Port Port Interface Interface Export Port Module Module Endless Process Module Module Port Port Interface

  

Table 3 .

 3 

6: Heterogeneity and MoC Domain Definitions in HetMoC.

Table 3 .

 3 

7: Heterogeneity and MoC Definitions in ForSyDe.

  .2.

	(a) Schedule : ABABB		(b) Schedule : ABABB		(c) Schedule : ABABB		
		t TDF B					t TDF B					t TDF B				
		t TDF A					t TDF A					t TDF A				
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	B					B					B					
												2				
		0	2	4	6	8 t/ms	0	2	4	6	8 t/ms	0	2	4	6	8 t/ms
			TDF module execution	t TDF A	Timescale of module A	t TDF B	Timescale of module B	
	(d) Schedule : ABABB		(e) Schedule : ABABB		(f) Schedule : ABABB		
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  The DE time progression is scheduled, from the TDF cluster, by means of a wait() statement, which is registered in the DE simulation kernel. This operation suspends the execution of the TDF cluster until the DE time reaches the value provided as argument of the wait() statement. In the example, a wait(6ms) is registered. three TDF samples (with time stamps associated of 6 ms, 8 ms and 10 ms), through the output port A.out, to the TDF signal sig2. In this moment t DE = t TDF A = 6 ms. Later, the module B (fourth in the schedule) can be activated at t TDF B = 4 ms, to consume two of the available samples (with time stamps associated of 4 ms and 6 ms) from the signal sig2, The time stamp associated to the sample stored in B.out indicates the DE time t DE = 4 ms at which the write synchronization operation should be performed, but this constitutes a DE causality issue because the DE time cannot decrease. Remember that previously, for performing the last read synchronization operation (in 6 ), the DE time was increased to t DE = 6 ms.

6 ms, its second execution should be performed at t TDF A = 6 ms. Besides, as this module has an input converter port A.in, a sample is required there, to start its execution. The generation of this sample in A.in indicates a read synchronization operation, which involves a DE time progression from 0 ms to 6 ms. 8 through the input port B.in; execute the B processing() function; and produce one sample (with time stamp associated of 4 ms) to the output converter port B.out. 9 To avoid the synchronization issue detected, thanks to the representation proposed, we can determine that the sample generated in the output converter port B.out at t TDF B = 4 ms, should be shifted 2 ms to be written in 6 ms (current DE time). This value diff = 2 ms, should be added in the port B.out to fix the causality in the model. It is possible increasing the delay attribute value associated to B.out. The delay value required D req m in a port m can be determined by the Equation 4.3.

5

  As the current DE time is t DE = 0 ms, and the sample generated in the port B.out should be written in the DE domain at 4 ms, then, a DE time progression should be scheduled from the TDF cluster, by means of a wait(4ms) statement. When the DE time reaches t DE = 4 ms, the write synchronization operation is performed. The next module to be executed is A (third is the schedule). As this module has a timestep Tm A = 6 ms, its second execution should be performed at t TDF A = 6 ms. Besides, as this module has an input converter port A.in, a sample is required there to start its execution. The generation of this sample in A.in indicates a read synchronization operation, which involves a DE time progression from 4 ms to 6 ms. This progression is scheduled from the TDF cluster, by means of a wait(2ms) statement. Finally, as the current DE time is t DE = 8 ms, and the third sample generated in the port B.out should be written in the DE domain at 12 ms, then, a DE time progression is scheduled from the TDF cluster, by means of a wait(4ms) statement.

6 7 through the input port B.in; execute the B processing() function; and produce one sample (with time stamp associated of 8 ms) to the output converter port B.out.

11 As the module B has still samples to be consumed, it is activated at t TDF B = 8 ms, to consume the two available samples (with time stamps associated of 8 ms and 10 ms) from the signal sig2, through the input port B.in; execute the B processing() function; and produce one sample (with time stamp associated of 12 ms) to the output converter port B.out. 12 As the current DE time is t DE = 6 ms, and the second sample generated in the port B.out should be written in the DE domain at 8 ms, then, a DE time progression is scheduled from the TDF cluster, by means of a wait(2ms) statement. 13 When the DE time reaches t DE = 8 ms, the write synchronization operation is performed. 14 When the DE time reaches t DE = 12 ms, it is the end of the current TDF cluster period. Therefore, the sample available in the output converter port B.out represents the initial delay sample for the next TDF cluster period execution.
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 4 1: Analysis Results of the CPN Model shown in Figure 4.24.
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	DE Module	DE channel	MoC 1 Module
		DE port	DE -MoC 1 converter
			port

  .1, a pair of classical ports, belonging to a MoC 2 , is used to relate two modules, belonging to the same MoC 2 , by means of a channel also belonging to the MoC 2 .

-Converter ports: are the objects through which two modules, belonging to different MoCs can communicate. As shown in Figure 5.1, this communication can be performed in the input or output of a module. We can classify this type of ports in: * Input converter ports: which perform the communication from a module belonging to a MoC 1 , to a module belonging to a MoC 2 (MoC in which the port is defined), by means of a channel belonging to a MoC 1 . * Output converter ports: which perform the communication from a module belonging to a MoC 2 (MoC where the port is defined), to a module belonging to a MoC 1 , by means of a channel belonging to a MoC 1 .

Solver DE -MoC 2 Cluster Node Master Solver MoC 1 -MoC 2

  

	Function elaborate()				Function elaborate()
	for each component do				for each component do
	elab_m1();				elab_m2();
	end				end
	end				end
	Function simulate() for each component do	Solver DE -MoC 1		Function simulate() for each component do
	sim_m1(); end	Cluster Node C1	Cluster Node C3	sim_m2(); end
	end				end
		Module	Module	Module	Module
		A	B	R	S
	Function elab_m1()			
	for each component do elab_m2(); end	Cluster Node C2	
	end			
	Function sim_m1()			
	for each component do			
	sim_m2(); end end	Module P	Module Q	

  .6. There, t the DE time at which the DE-TDF data synchronization is required, Tp p is the time step associated to port p, and B in size is the size of the in_buffer instantiated inside the port p.

	write pos =	t Tp p	% B in size	(6.6)

  write pos = ((j M * R p ) + D p + id)% B out size (6.10) b write_sc_signal(t): is the method called by the simulator for reading a sample from the out_buffer instantiated inside p; and next, writing at DE time t, a data value on the DE channel bound to the output converter port p.

  1, we create two TDF classes for implementing the TDF module. These classes are shown in Figure6.14.

	sca_core	
	sca_module	sca_moc_if
	sca_tdf	
		sca_moc_if
	-calls_per_period_ : ulong
	-call_counter_: ulong
	-timestep_set_: sca_core::sca_time
	...	
	...	
	# set_attributes(): void
	# initialize(): void	
	# processing(): void	
	# set_timestep(tstep: sca_core::sca_time): void
	# get_timestep(): sca_core::sca_time
	...	

a } b } 1 sca_module ... # sca_module(nm: sc_module_name) + set_timestep(tstep: sca_core::sca_time): void + get_timestep(): sca_core::sca_time ...

Table C .

 C 1: Résumé des caractéristiques des environnements de modélisation et simulation de systèmes multidisciplines s'appuyant sur les Meta-Modèles et les Langages de programmation haut-niveau.

	Environnement	HetSC	HetMoC	ForSyDe
	La modélisation	Multi-niveaux via les	Non autorisée.	Multi-niveaux via les
	hiérarchique	composants SystemC.		processus (modules
				SystemC).
	Séparation entre le	-Le calcul s'appuie sur	-Le calcul s'appuie sur	-Le calcul s'appuie sur
	calcul et la	les processus.	les processus.	les processus.
	communication	-La communication	-La communication	-La communication
		s'appuie sur les ports,	s'appuie sur les signaux.	s'appuie sur les signaux.
		interfaces et canaux.		
	Degré d'hétérogénéité	Langage.	Langage.	Langage.
	La synchronisation	Utilise les MoC	Utilise les domain	Utilise les domain
		interfaces.	interfaces.	interfaces.
	La représentation du	-Horloge globale du	Information non	Encapsulée dans le
	temps	noyau de SystemC.	disponible.	constructeurs des
		-Restrictions définies		processus propres à
		dans les canaux propres		chaque MoC, pour un
		à chaque MoC.		noyau de simulation
				unique.
	Avantages	-Calcul et	-Calcul et	-Calcul et
		communication sont	communication sont	communication sont
		clairement séparés.	clairement séparés.	clairement séparés.
		-Modélisation	-Les interactions entre	-Modélisation
		hiérarchique.	domaines sont gérées	hiérarchique.
		Calcul et -Horloge globale du	-Calcul et via des éléments dédiés	-Calcul et -Chaque MoC a sa
		communication sont noyau SystemC DE. (domain interfaces). communication sont propre gestion du temps, communication sont
		clairement séparés. -Bibliothèque	clairement séparés.	clairement séparés. appliquée à un noyau de
		d'éléments prédéfinis	-Introduction de la	-Modélisation simulation unique.
		pour contrôler la	modélisation	entièrement -Les interactions entre
		synchronisation.	hiérarchique.	hiérarchique. domaines sont gérées de
		-Les interactions entre		-Gestion hiérarchique de façon propre à chaque
		domaines sont gérées		la synchronisation et des MoC via des éléments
		via des éléments dédiés		horloges locales à dédiés (domain
		(MoC interfaces).		chaque domaine. interfaces).
				-Les domaines sont -Sémantique abstraite
				clairement séparés. de simulation.
				-Sémantique abstraite
				pour le contrôle de la
	Inconvénients	-L'instanciation des	-Absence de	simulation. -Le choix et
		éléments qui contrôlent	modélisation	l'instanciation des
	Inconvénients	-Absence de hiérarchie. la synchronisation (MoC hiérarchique. -La synchronisation et éléments qui contrôlent L'instanciation des
		-La synchronisation et interfaces) peut être -La représentation du l'horloge globale sont à la synchronisation éléments pour contrôler
		l'horloge globale sont à implémentée ou temps n'est pas la charge du concepteur (domain interfaces) sont la synchronisation des
		la charge du concepteur redéfinie par le clairement définie. au niveau langage.	temps à travers la à la charge du
		au niveau langage. concepteur.	-Les MoCs ne sont pas -L'instanciation des concepteur. hiérarchie (directeurs)
		-Les différents domaines éléments qui contrôlent clairement séparés.	est sous la responsabilité
		ne sont pas clairement la synchronisation est à	des concepteurs.
		séparés.	la charge du concepteur.	

Table C .

 C 2: Résumé des caractéristiques des environnements de modélisation et simulation de systèmes multidisciplines s'appuyant sur SystemC.-Les ports de conversion pour déterminer la synchronisation des données entre ce nouveau MoC et son maître.-Un solveur capable de traiter les phases d'élaboration et de simulation des composants de ce MoC, et la synchronisation temporelle entre les données produites ou lues par ce MoC avec son MoC maître.

This sample allows to activate the module A at t TDF A = 0 ms, which reads (consumes) the TDF sample available in the port A.in (with a time stamp associated of 0 ms); executes the A processing()

When the execution is resumed, because the t DE = 6 ms, the DE signal sig1 is sampled. This makes a TDF sample available in the input converter port A.in, with a time stamp associated of 6 ms.

Now, module A is activated at t TDF A = 6 ms, to consume the TDF sample available in the port A.in (with a time stamp associated of 6 ms); execute the A processing() function; and produce

As before, to activate the module A (first in the schedule), the DE signal sig1 is sampled at the discrete event time t DE = 0 ms. It makes a TDF sample available in the input converter port A.in, with a time stamp associated of 0 ms.

This sample allows to activate the module A at t TDF A = 0 ms, which consumes the TDF sample available in the port A.in (with a time stamp associated of 0 ms); executes the A processing() function; and produces three TDF samples (with time stamps associated of 0 ms, 2 ms and

ms), through the output port A.out, to the TDF signal sig2. 4 Now, the module B (second in the schedule) can be activated at t TDF B = 0 ms, to consume two of the available samples (with time stamps associated of 0 ms and 2 ms) from the signal sig2, through the input port B.in; execute the B processing() function; and produce one sample (with time stamp associated of 4 ms) to the output converter port B.out.

When the execution is resumed, because the t DE = 6 ms, the DE signal sig1 is sampled. This makes a TDF sample available in the input converter port A.in, with a time stamp associated of 6 ms.

Now, module A is activated at t TDF A = 6 ms, to consume the TDF sample available in the port A.in (with a time stamp associated of 6 ms); execute the A processing() function; and produce three TDF samples (with time stamps associated of 6 ms, 8 ms and

ms), through the output port A.out, to the TDF signal sig2. In this moment t DE = t TDF A = 6 ms.10 Later, the module B (fourth in the schedule) can be activated at t TDF B = 4 ms, to consume two of the available samples (with time stamps associated of 4 ms and 6 ms) from the signal sig2,

The TDF module B is activated again. It reads two samples from the TDF signal sig2, through the TDF input port B.in; and detects a synchronization issue, which prevents the writing of a sample on the DE signal sig3.
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1`2@4 ++ 1`3@8

1`2@4 ++ 1`3@8 (f) The sixth transition enabled (Write sig 3) has a LOW priority level associated, and has into each of their input places, one available token (with t stamp = 0 ms) to be consumed (at t CPN = 0 ms).

When this transition is fired, it consumes the tokens "1@0" from the sig 3 write op. Enabled and the B.out places. This action indicates that the first write synchronization operation will be performed in the TDF cluster at t DE = 0 ms.

Note: observe that only the low priority transitions are added to the schedule.

To continue with the description of the algorithm shown in Listing 4.2, we present the condition for increasing the CPN execution time t_cpn in equivalent CPN models. As long as time t_cpn is different to the T_cpn period and no more transitions are enabled, the time t_cpn is increased to the minimum time stamp value contained in the CPN places (Listing 4.2, lines [START_REF] Jantsch | Models of computation and languages for embedded system design[END_REF][START_REF]SystemC AMS 2.0 Proof-of-Concept Implementation[END_REF][START_REF] Jensen | Coloured Petri Nets. Modelling and Validation of Concurrent Systems[END_REF][START_REF] Leveque | SystemC-AMS Models for Low-Power Heterogeneous Designs: Application to a WSN for the Detection of Seismic Perturbations[END_REF][START_REF] Keating | The System-On-Chip Design Process[END_REF]. As the time increase enables new transitions, the algorithm will be re-executed (Listing 4.2, lines [6][START_REF]Virtual Prototypes: The Engine Behind "Shift left[END_REF][START_REF] Moreno | Unified and Comprehensive Electronic System Level, Network and Physics Simulation for Wirelessly Networked Cyber Physical Systems[END_REF][START_REF] Bouchhima | A SystemC/Simulink Co-Simulation Framework for Continuous/Discrete-Events Simulation[END_REF][START_REF] Barnasconi | SystemC AMS Extensions: Solving the Need for Speed[END_REF][START_REF] Grimm | Towards Co-design of HW/SW/Analog Systems[END_REF][START_REF] Bajaj | Optimized selection of reliable and cost-effective cyber-physical system architectures[END_REF][13][START_REF]IEEE Standard for SystemC Language Reference Manual[END_REF][START_REF] Jantsch | Models of computation and languages for embedded system design[END_REF][START_REF]SystemC AMS 2.0 Proof-of-Concept Implementation[END_REF][START_REF] Jensen | Coloured Petri Nets. Modelling and Validation of Concurrent Systems[END_REF][START_REF] Leveque | SystemC-AMS Models for Low-Power Heterogeneous Designs: Application to a WSN for the Detection of Seismic Perturbations[END_REF][START_REF] Keating | The System-On-Chip Design Process[END_REF][START_REF] Black | SystemC: From the Ground Up[END_REF][START_REF] Bhasker | A SystemC Primer[END_REF]. An example of this condition is shown in Figure 4.27. 

Write sig3

{ 0ms
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Write sig3

{ 0ms

1`2@4 ++ 1`3@8 (g) When no more transitions are enabled in the equivalent CPN model at time t CPN = 0 ms, the next transition to be enabled is the one, which has in their input places the token with the minimum time stamp (Enable sig3 write op. transition). This minimum value (t stamp = 4 ms) represents the time to which t CPN will be increased.

(h) When t CPN is increased to 4 ms, the enabled transition is fired to consume the token "2@4" from the sig 3 write ops. list place, and produce the token "2@4" to the sig3 write op. enabled place. This action indicates that the second write synchronization operation will be enabled to be performed in the TDF cluster at time t DE = 4 ms.

Verification of Final States in Equivalent CPN Models

Three conditions should be verified for ensuring the final state in equivalent CPN models:

• All the initial synchronization tokens have been consumed from the S read ops. list place and the S write ops. list place.

• The M:q M transitions have been fired q M times.

• The number of tokens contained in the M:q M and S N places is equal to the initial number of tokens contained there, when the execution began.

When these conditions are not satisfied, we can ensure that the equivalent CPN representation has not been completely executed for a TDF cluster period. An example of verification is shown in Figure 4.28:

• Synchronization tokens should yet be consumed from the sig1 read ops. list place and the sig3 write ops. list place.

• A:2 transition has been executed once instead of twice; and B:3 transition has been executed once instead three times.

• The number of tokens contained in the sig2 B place (current n = 1) are greater than the number of tokens initially contained there (initial n = 0). 

Schedule : { 0ms

Write sig3

{ 0ms
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Detection of Synchronization Issues in Equivalent CPN Models

The causality problems in a TDF cluster occur when during the execution of its equivalent CPN representation, one or more of the following conditions are fulfilled: it is locked, it has not reached its final state, a DE write operation is required, and the sample to be written in the DE domain has not yet been generated by a TDF output converter port.

In the equivalent CPN model, the detection of this problem corresponds to identifying the locked Write S transition, because its S write op. enabled connected place has one token indicating that the write operation should be realized at time t CPN ; and its M.m connected place has no token to be consumed at time t CPN . An example of this detection is shown in the yellow block of Figure 4.29:

• The CPN is locked and has not reached its final state.

• The place sig3 write op. enabled indicates that a write synchronization operation should be performed at time t CPN = 4 ms.

• The place B.out has no token to be consumed at time t CPN = 4 ms.

• The Write sig3 transition is locked, then the write synchronization operation cannot be performed. 

Schedule : { 0ms

Write sig3

{ 0ms
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Fixing Synchronization Issues in Equivalent CPN Models

Once a synchronization issue has been detected in an equivalent CPN model, the delay changes required to solve such issue are determined. It consists in selecting the locked Write S transition (source of the causality issue), deleting the token contained in its S write op. enabled connected place, and increasing the delay attribute associated to the M.m connected place. This delay attribute is increased by the number of samples contained in the S write op. enabled connected place. After these modifications, the result is a CPN able to continue its execution. For the example shown in Figure 4.29:

• The token "2@4" is deleted from the to the sig3 write op. enabled place.

• The delay attribute in the B.out place is increased (D out = 0 → D out = 1).

Preliminary Conclusions

In this section, we have proposed a method for analyzing, before simulation, the computability of a TDF cluster represented by means of an equivalent CPN model. Using this method:

• When a TDF cluster is computable, we should automatically determine the static schedule to be used during simulation, including TDF module executions and DE-TDF interactions. In order to detail the steps followed by the simulator, in Section 5.5, we define the generic elaboration and simulation phases of the SystemC MDVP simulator kernel.

Elaboration and Simulation Phases in SystemC MDVP

When a designer creates a model in SystemC MDVP, and calls the sc_start() method, the model is ready to be analyzed and prepared for simulation. 

Because the

Location of the TDF MoC inside the SystemC MDVP Architectural Model

As TDF is the first model of computation added to SystemC MDVP, it is located at the second hierarchical level of the architectural model introduced in Section 5.4.1. This means that the TDF MoC is located under the DE MoC. Therefore, it should define:

• Converter ports to handle the data synchronization between the TDF MoC and the DE MoC.

• A solver able to handle the time synchronization between the TDF MoC and the DE MoC.

a. TDF Input Converter Ports

TDF input converter ports should be responsible for handling the data synchronization from the DE MoC to the TDF MoC. To this end, we have decided that a TDF input converter port should be specified as an abstract data type, which contains circular data buffers used to temporarily store the information transmitted from a DE module to a TDF module. An example is shown in Figure 6.6.

• By default, an in_buffer should be instantiated inside the TDF input converter port during elaboration. It will be used to store the information read from the DE signal (associated to the input converter port) during simulation. The size of this circular buffer is determined after performing, on the TDF cluster, the DE-TDF pre-simulation analysis previously presented in Section 4.4.

• One additional in_delay_buffer should be also instantiated inside the TDF input converter port during elaboration. It will be used to store the initial information contained in the TDF input converter port, before starting simulation. The in_delay_buffer size will be determined by the delay attribute value associated to the TDF input converter port.

Besides, as shown in Figure 6.6, we have decided to handle the DE-TDF data synchronization by means of two methods: read_sc_signal() and read(). These methods are described below. 

b. TDF Time Step Calculation and Propagation

When at least one time step has been assigned inside a cluster, it should be propagated to the remaining modules or ports (belonging to the same cluster) that do not contain it. Thanks to the methods offered by SystemC MDVP, we can traverse the model in depth to assign or verify, according to the rules presented below, the time step value associated to each module or port instantiated inside the TDF cluster. When the time step has been assigned in a module, the propagation is performed as introduces b.1 . Conversely, when the time step has been assigned in a port, the propagation is performed as introduces b.2 . b.1 Propagate the time step from a module M: when the time step is assigned to a module M, this time step should be propagated to each port m belonging to M, according to the Equation 6.12.

There, Tp m is the port time step to be propagated, Tm M is the module time step, and R m is the rate attribute assigned to port m.

Then, starting from the port where the time step was propagated, a new propagation should be performed.

Knowing the number of executions of each TDF module (q) and its time step (Tm), the period of the TDF cluster (Tcls) can be found using the Equation 6.17. The cluster period in the example is 12 ms. Tcls = Tm j • q j (6.17)

Once the analysis based on the SDF formalism is accomplished, the simulator considers again the model shown in Figure 6.10, and creates its CPN equivalent model following the rules proposed in Section 4.3.2. Then, it performs the analysis proposed in Section 4.4. For the example, the results of this analysis were summarized in Table 4.1.

d. TDF Elaboration of Ports and Channels

As introduced in Section 5.5.1.d, the elaboration of ports and channels in a SystemC MDVP model is performed by means of the execution of the elaborate() functions implemented in the MoC. In the case of TDF, only the channels and converter ports need to be elaborated, then:

• A function elaborate() is implemented in the predefined TDF channel, in order to create the circular data buffers used to temporarily store the information transmitted through the channel. These are the buffers and in_delay_buffers presented in Section 6.2.2.b.

• A function elaborate() is implemented in the TDF input converter port, in order to create the circular data buffers used to store the information transmitted from a DE module to a TDF module.

These are the in_buffer and in_delay_buffer presented in Section 6.2.3.a

• A function elaborate() is implemented in the TDF output converter port, in order to create the circular data buffer used to store the information to be transmitted from a TDF module to a DE module. This is the out_buffer presented in Section 6.2.3.b.

Note: the size of buffers to be instantiated is identified by the simulator during the analysis of the TDF cluster in form of equivalent CPN model.

TDF Simulation Phase a. TDF Initialization

When the designer writes a TDF model, he can specify by means of the initialize() function offered by the TDF MoC interface, the initial values of the samples that will be stored in channels or TDF converter ports before starting simulation.

Similar than the phase of TDF attribute settings, in this stage, using the hierarchy of solvers constructed by SystemC MDVP (see Section 5.5.1.b), the initialize() function is called on each TDF module instantiated by the designer, and on each solver instantiated by the simulator on the clusters which want to interact with TDF. At the end of this stage, the TDF model is ready to be simulated.

b. TDF Processing Registration

In this stage, the registration of the TDF module's execution is performed by means of the sc_spawn() method provided by the SystemC standard. This method allows the simulator to create and register a dynamic process [START_REF] Black | Dynamic Processes[END_REF] in the SystemC DE kernel after the sc_start() has been called.

In the TDF MoC, the process to be registered in the SystemC DE kernel is the responsible of executing the schedule determined during the analysis of the TDF cluster in form of equivalent CPN model. The algorithm of this process is summarized in Listing 6.1.

As the process is registered in the SystemC DE kernel, it will be automatically called by the Sys-temC scheduler. It is considered as a simulation thread, which can be suspended by means of wait() statements.

1 void execute_schedule() { This process implements an infinite loop, which traverses the schedule and executes each one of its elements (Listing 6.1, lines [6][START_REF]Virtual Prototypes: The Engine Behind "Shift left[END_REF][START_REF] Moreno | Unified and Comprehensive Electronic System Level, Network and Physics Simulation for Wirelessly Networked Cyber Physical Systems[END_REF][START_REF] Bouchhima | A SystemC/Simulink Co-Simulation Framework for Continuous/Discrete-Events Simulation[END_REF][START_REF] Barnasconi | SystemC AMS Extensions: Solving the Need for Speed[END_REF][START_REF] Grimm | Towards Co-design of HW/SW/Analog Systems[END_REF][START_REF] Bajaj | Optimized selection of reliable and cost-effective cyber-physical system architectures[END_REF][13][START_REF]IEEE Standard for SystemC Language Reference Manual[END_REF][START_REF] Jantsch | Models of computation and languages for embedded system design[END_REF][START_REF]SystemC AMS 2.0 Proof-of-Concept Implementation[END_REF][START_REF] Jensen | Coloured Petri Nets. Modelling and Validation of Concurrent Systems[END_REF][START_REF] Leveque | SystemC-AMS Models for Low-Power Heterogeneous Designs: Application to a WSN for the Detection of Seismic Perturbations[END_REF][START_REF] Keating | The System-On-Chip Design Process[END_REF]. When the time associated to the schedule's element to be executed (current_time) is different from the time of the last schedule's element executed (last_time), a wait() statement is registered in the DE kernel. After this wait(), the schedule's element is executed (Listing 6.1, lines 10-14). Conversely, when the time associated to the schedule's element to be executed (current_time) is equal to the time of the last schedule's element executed (last_time), then the schedule's element is immediately executed (Listing 6.1, lines [START_REF]IEEE Standard for SystemC Language Reference Manual[END_REF][START_REF] Jantsch | Models of computation and languages for embedded system design[END_REF][START_REF]SystemC AMS 2.0 Proof-of-Concept Implementation[END_REF]. Once the schedule has been traversed, another wait() statement is automatically registered to suspend the process until the next TDF time period, where the schedule will be re-executed (Listing 6.1, line 18).

The method execute(), associated to each schedule's element, is able to identify the function to be performed during simulation:

-----Module A / Executing set_attributes() -----Module B / Executing set_attributes() Error: SystemC-AMS: sca-de synchronization failed in: 0 ../../../../../src/scams/impl/core/sca_solver_base.cpp line: 526 current sca-time: 4 ms current sc-time: 6 ms sca-next-time: 8 ms insert da delay of at least: 2 ms in: B.out In file: ../../../../../src/scams/impl/core/sca_solver_base.cpp:544 In process: sca_implementation_0.cluster_process_0 @ 6 ms

SystemC AMS extensions 2.0 Version: 2.0_beta2 ---BuildRevision: 1808

Copyright (c) 2010-2014 by Fraunhofer-Gesellschaft Institut Integrated Circuits / EAS Licensed under the Apache License, Version 2.0 The SystemC-AMS simulation trace corresponds to the one previously presented and analyzed in Section 4.2.2, where the synchronization issue is detected during simulation.

Incomplete schedule determined for the TDF cluster: On the other hand, in SystemC MDVP, only the elaboration phase is executed before detecting the synchronization issue:

1 The execution of the set_attributes() function implemented inside each TDF module is performed. Tcls = Tm j • q j (7.10)

Tcls = 640 µs Note: In the simulator, this phase is performed using the Eigen library [START_REF]Eigen C++ Template Library for Linear Algebra[END_REF].

b. Analysis based on CPN

Considering the transformation rules presented in Section 4.3.2, the TDF cluster is represented by means of a timed CPN, shown in Figure 7.6. In this model:

• The number of read synchronization operations to be performed by the TDF input converter port kin of module PGA is read ops kin = q PGA * R kin = 640 * 1 = 640.

• The number of write synchronization operations to be performed by the TDF output converter port out of module TDF2DE is write ops out = q TDF2DE * R out = 64 * 1 = 64.

• The number of write synchronization operations to be performed by the TDF output converter port amp of module AAVG is write ops amp = q AAVG * R amp = 1 * 1 = 1.

• The number of write synchronization operations to be performed by the TDF output converter port clk of module AAVG is write ops amp = q AAVG * R amp = 1 * 2 = 2.

1`1@0 1`1@0 ++ 

APPENDIX

B Publications

• L. Andrade, T. Les caractéristiques de SystemC et de SystemC AMS, utiles pour expliquer les contributions de la thèse à la modélisation et la simulation de systèmes hétérogènes, sont expliquées dans la suite de cette section.

C.2.2. Principes de simulation à événements discrets (DE) du standard SystemC

SystemC [START_REF] Black | SystemC: From the Ground Up[END_REF]- [START_REF] Grotker | System Design with SystemC[END_REF] est un langage de modélisation qui permet de représenter le matériel "numérique" et le logiciel embarqué sur un SOC, sous la forme d'une bibliothèque C++. Il est considéré à la fois comme un langage de spécifications (exécutables) au niveau système et comme un langage de description de matériel, puis qu'il permet d'aller jusqu'au niveau RTL. SystemC met en oeuvre plusieurs concepts qui sont bien adaptés à la modélisation du matériel : une horloge globale, qui est gérée par un moteur de simulation, les processus concurrents qui sont gérés par un ordonnanceur, des types de données de type entiers ou bits, la hiérarchie, la communication entre modules à travers des interfaces, ports et canaux.

Le moteur de simulation de SystemC [START_REF]Elaboration and simulation semantics[END_REF] 

C.2.3. La standardisation du langage SystemC AMS

Dans cet esprit, les extensions AMS de SystemC ont été proposées dans le but d'offrir un simulateur de systèmes mixtes analogiques-numériques, à temps continu pour répondre aux demandes de nombreuses applications industrielles dans le domaine des télécommunications, de l'automobile, et de l'industrie des semi-conducteurs [START_REF] Grimm | An Introduction to Modeling Embedded Analog/Mixed-Signal Systems Using SystemC AMS Extensions[END_REF].

Ces extensions ont été définies comme une bibliothèque de fonctions C++, qui peut traiter aussi bien la simulation à événement discret (DE), que celle en temps discret ou échantillonné (alors appelé TDF) et celle en temps continu. Le premier Language Reference Manual (LRM) a été standardisé par l'OSCI en 2010 [13], accompagné par un guide de l'utilisateur [START_REF] Barnasconi | SystemC AMS extensions User's Guide[END_REF]. Actuellement il n'existe qu'une seule preuve de concept [START_REF]SystemC AMS 2.0 Proof-of-Concept Implementation[END_REF] Un module M est décrit par :

SystemC methodologyspecific elements

Primitives

• un attribut Tm. Il s'agit de la période d'exécution de la fonction processing() du module.

• une fonction processing(). Il s'agit d'une fonction, au sens mathématique du terme, qui dépend des entrées du module et éventuellement de son état, et calcule les sorties.

Un port est quant à lui décrit par 3 attributs :

• le pas de temps Tp. Il s'agit de la période à laquelle un port peut lire ou écrire des données.

• le taux d'échantillonnage R. Il s'agit du nombre de données qui peuvent être lues ou écrites par un port durant une prériode Tp.

• Pendant la phase d'élaboration de la simulation AMS/TDF, les modules sont regroupés en cluster.

Pour chaque cluster, le simulateur établit un ordonnancement statique. Cette étape commence par vérifier qu'un ordonnancement existe. Ceci suppose de vérifier à l'intérieur d'un cluster, la cohérence des périodes d'activation de chacun des modules et de leurs ports qui doivent satisfaire la condition C.1:

et que les ports reliés par un même signal TDF vérifient l'équation C.2 : 

C.3. État de l'art (chapitre 3)

Le chapitre 3 présente un état de l'art des approches rencontrées pour modéliser et simuler des systèmes multi-disciplines, ou cyber-physiques (CPS). Nous avons distingué trois classes d'approches :

• Les environnements de modélisation et simulation qui s'appuient sur les méta-modèles et les langages de programmation haut niveau. Il s'agit de Metropolis [START_REF] Balarin | Metropolis: An Integrated Electronic System Design Environment[END_REF], [START_REF] Sangiovanni-Vincentelli | Quo Vadis, SLD? Reasoning About the Trends and Challenges of System Level Design[END_REF], Metro II [START_REF] Davare | A Next-Generation Design Framework for Platform-Based Design[END_REF] et

Ptolemy II [START_REF] Brooks | Heterogeneous Concurrent Modeling and Design in Java (Volume 1: Introduction to Ptolemy II)[END_REF]- [START_REF] Lee | Heterogeneous Actor Modeling[END_REF]. Ils sont présentés par le Tableau C.1.

• Les environnements de modélisation et simulation fondés sur SystemC. Il s'agit de HetSC [START_REF] Herrera | A Framework for Heterogeneous Specification and Design of Electronic Embedded Systems in SystemC[END_REF], [START_REF] Herrera | HetSC User Manual -Methodology for Specification of Heterogeneous Embedded Systems in SystemC[END_REF], HetMoC [START_REF] Zhu | HetMoC: Heterogeneous Modelling in SystemC[END_REF] • l'absence de représentation hiérarchique,

• les classes SystemC ne sont pas utilisées comme fondement de nouveaux composants,

• le noyau de simulation de SystemC est modifié,

• on ne trouve pas de mécanisme de synchronisation avec des domaines autres que le domaine des événements discrets de SystemC.

C'est pourquoi, après avoir examiné les approches existantes, nous souhaitons définir un environnement de modélisation et simulation qui possède les caractéristiques suivantes :

• la modélisation hiérarchique,

• l'hétérogénéité profonde mettant en oeuvre plusieurs noyaux de simulation,

• les modèles de calcul liés par des relations maître-esclave,

• des composants assurant la synchronisation du temps et des données, sans être à la charge du concepteur du SoC,

• la sémantique de synchronisation définie de façon formelle,

• le noyau de simulation de SystemC conservé et les nouvelles classes de composants héritant des propriétés des classes de SystemC. 

C.4. La synchronisation entre le domaine des événements discrets et le do

C.4.2. Modélisation par un Réseau de Pétri Coloré (CPN)

Le MoC TDF s'appuie sur le modèle des SDF [START_REF] Lee | Static Scheduling of Synchronous Data Flow Programs for Digital Signal Processing[END_REF], [START_REF] Lee | Synchronous Data Flow[END_REF] comme nous l'avons vu. Les SDF peuvent être représentés par un réseau de Petri [START_REF] Cassandras | Petri Nets[END_REF]. Ces réseaux sont également bien adaptés à l'étude des MoCs A l'aide de ce modèle, on peut établir l'ordonnancement d'un cluster purement TDF, sans interaction DE-TDF, en suivant les règles des réseaux de Petri et du standard TDF :

• Une transition T d'un réseau de Petri peut être franchie si elle est validée.

• Une transition T d'un réseau de Petri est validée lorsque les jetons (ou marques) requis par le franchissement sont disponibles dans la place correspondante.

• Un module TDF M (représenté par une transition T) doit être exécuté un nombre de fois q M par période d'exécution du cluster correspondant.

• Un module TDF M (représenté par une transition • Les transitions : ce sont les actions effectuées par les modules. Elles ont un degré de priorité (priority levels) et leur franchissement peut être soumis à une condition (guard condition).

• Les places : elles représentent l'état d'un modèle. Cet état est caractérisé par le nombre de jetons contenus dans une place, ainsi que par le type de donnée associée au jeton, déterminée par sa couleur (token colour). Dans un réseau CPN, l'état d'un modèle évolue suivant le franchissement des transitions.

• Les arcs dirigés : ils relient une place à une transition, soit une transition à une place. Une variable ou une fonction peut être associée à un arc pour préciser l'évolution de l'état du modèle après franchissement de la transition.

• Les jetons (ou marques) colorés : ils représentent les échantillons multiples. Au jeton est associé un type de donnée, appelée "la couleur". On la note par un type (i.e. entier, nom, booléen) à droite de l'opérateur " `" , le nombre d'occurrence étant, lui, noté à gauche de cet opérateur. A un jeton peut être associée une deuxième information, appelée date, qui indique à quel instant le jeton est susceptible d'être consommé par la transition.

• Les annotations : elles sont exprimées dans le langage de programmation CPN ML [START_REF] Jensen | CPN ML Programming[END_REF] et peuvent être associées à une transition, une place ou un arc. Elles permettent de caractériser :

-une transition : par son degré de priorité (priority level) ou une condition de franchissement (guard condition).

-une place : par le type de données contenues dans la place (colour set).

-un arc : en exprimant une fonction évaluée au cours de la simulation, qui peut consommer et produire des jetons. -Les transitions sont franchies suivant leur degré de priorité.

-En s'appuyant sur les transitions de degré de priorité le plus bas, qui représentent les transitions des modules TDF (M:q M ) et les interactions entre modules TDF et modules DE (transitions Read S et Write S), on construit un ordonnancement statique du système.

-On augmente le temps t_cpn d'exécution du réseau CPN, sans dépasser la période T_cpn.

• Phase 2 -Etat final atteint . On vérifie si l'état final est atteint. 2 cas peuvent se présenter :

-L'état final est atteint à la première exécution: il existe un ordonnancement du système. L'analyse est terminée.

-L'état final n'est pas atteint. Il existe un problème de causalité. L'analyse passe en phase 3.

-L'état final est atteint, après détection d'une erreur de synchronisation. Les problèmes de synchronisation ont été détectés et corrigés à la phase 3. Un diagnostic est adressé au concepteur et l'analyse est terminée.

• Phase 3 -Conditions de blocage et correction. On identifie les composants du CPN (transitions et places) qui sont à l'origine du blocage au temps t_cpn. On modifie les attributs de ces objets en conséquence. On relance la phase 1 de l'analyse.

Cette analyse a été appliquée à l'exemple de la A.in B.out Une fois l'erreur détectée, elle est corrigée en repérant la transition fautive Write S, puis en supprimant les jetons de la place correspondante S write op. enabled et en incrémentant le retard de la place correspondante M.m du nombre de jetons présents dans la place S write op. enabled. Ce qui se traduit dans l'exemple considéré par :

• Le jeton "2@4" est supprimé de la place sig3 write op. enabled.

• Le retard de la place B.out est incrémenté de 1 (D out = 0 → D out = 1). 

Schedule : { 0ms

Write sig3

{ 0ms • La sémantique de communication définit les interactions entre composants d'un même MoC.

En SystemC MDVP, ces interactions sont construites avec des ports, des interfaces et des canaux.

• La sémantique de synchronisation définit les interactions entre composants représentés suivant différents MoCs, utilisant des domaines temporels distincts. En SystemC MDVP, ces interactions sont déterminées par les solveurs.

• • La hiérarchie d'un modèle SystemC MDVP suit la hiérarchie des MoCs instanciés.

• Les clusters sont considérés comme des boîtes noires qui se comportent comme les modules du niveau hiérarchique (MoC) avec lesquels ils sont interconnectés.

• Les clusters peuvent contenir des modules ou des clusters.

• Les limites d'un cluster sont définies par les ports de conversion qui synchronisent deux MoCs : celui qui instancie le cluster et celui du cluster lui même. 

C.5.3. Définition d'un solveur en SystemC MDVP

Un solveur de SystemC MDVP est défini par le concepteur du MoC. Son rôle est de :

• traiter la synchronisation temporelle entre une paire de 2 MoCs, l'un étant le maître et l'autre l'esclave. Le MoC maître impose les contraintes de synchronisation et l'esclave est le MoC qui contient le solveur.

• traiter les phases d'élaboration et de simulation des composants qui relèvent de ce MoC, conformément au noyau de SystemC. • La création des clusters (grâce aux ports de conversion)

Alors que la POC

• L'instanciation des solveurs (suivant la hiérarchie des clusters et les paires de MoCs maîtreesclave)

• L'élaboration hiérarchique de modules (attributs et ordonnancement selon les MoCs) • Interface de programmation de ce MoC (sca_moc_if) : il s'agit de la spécification de l'ensemble des méthodes pour réaliser les phases d'élaboration et de simulation :

des modules spécifiques à ce MoC, -des solveurs qui vont produire et échanger des données. Un canal TDF peut être relié à plusieurs ports TDF si les conditions suivantes sont satisfaites :

• Un canal TDF relie au moins un port de sortie TDF à un port d'entrée TDF.

• Un canal TDF est relié à un et un seul port de sortie TDF. • TDF computability check. Cette fonction effectue le calcul de l'ordonnancement statique de chaque cluster TDF. Ce calcul est réalisé en 2 étapes. La première repose sur une analyse de type SDF [START_REF] Lee | Static Scheduling of Synchronous Data Flow Programs for Digital Signal Processing[END_REF], pour vérifier la cohérence des temps et le nombre d'exécution de chaque module au sein d'une période d'un cluster. La deuxième étape construit un réseau de Petri coloré temporisé (CNP) équivalent (Cf. chapitre 4 du document anglais, ou la section C.4.4 de ce chapitre), pour effectuer l'analyse de synchronisation qui consiste à détecter et corriger les problèmes de synchronisation éventuels entre DE et TDF. Le résultat de cette étape est un ordonnancement valide non seulement des modules TDF au sein de leur cluster, mais aussi des événements induits par l'interaction DE-TDF.

SystemC MDVP Simulation

Hierarchical initialization of modules and registration of simulation by means of solvers

SystemC MDVP Simulation

Hierarchical initialization of modules and registration of simulation by means of solvers

SystemC MDVP Elaboration

Creation of clusters

Instantiation of solvers

Hierarchical elaboration of modules by means of solvers

SystemC MDVP Elaboration

• TDF ports' and channels' elaboration. Cette fonction concerne les canaux et les ports de conversion. Elle consiste à déterminer les buffers requis et leur taille, en s'appuyant sur le modèle équivalent CPN construit à l'étape précédente.

Quant à la phase de simulation du MoC TDF, elle réalise les opérations suivantes:

• TDF initialization. C'est une fonction offerte au concepteur pour imposer des valeurs initiales à certains échantillons.

• TDF Processing Registration. Cette phase est l'exécution des processus des modules TDF.

Elle utilise la fonction sc_spawn() du standard SystemC pour créer et enregistrer un processus dynamique [START_REF] Black | Dynamic Processes[END_REF] après l'appel de sc_start(). En ce qui concerne le MoC TDF, un tel processus est chargé de l'exécution de l'ordonnancement calculé à la fin de la phase d'élaboration, issu de l'analyse du modèle CPN équivalent. • Le capteur de vibration génère un signal (v sig ) proportionnel à la vitesse de vibration.

• Ce signal est amplifié (vamp sig ) d'un facteur gain (2 ksig ), et numérisé (adc sig ). Le seuil de saturation vaut ±5 V.

• Le signal DE (amp sig ) est la moyenne de la valeur absolue de 64 échantillons reçus de l'ADC.

L'étude de ce cas a permis de présenter plusieurs propriétés du simulateur SystemC MDVP :

• Les problèmes de synchronisation entre le cluster TDF et le domaine DE ont été détectées et corrigées avant la simulation effective.

• Le concepteur reçoit une notification unique qui récapitule toutes les propositions pour corriger les erreurs de modélisation qui entraînent des erreurs de synchronisation du cluster TDF.

• Les clusters qui présentent des taux d'échantillonnage multiples et des boucles avec le domaine DE, requièrent sur leurs ports des retards non nuls pour établir un ordonnancement valide.

C.8. Conclusions et perspectives (chapitre 8)

Le chapitre 8 du document anglais présente les conclusions de cette thèse et les perpectives.

Cette thèse a abordé la modélisation et la simulation de systèmes hétérogènes, multi-disciplines et multi-domaines temporels dans l'idée de fournir un environnement de simulation SystemC MDVP pour développer des prototypes virtuels.

SystemC MDVP fournit de nouveaux services par rapport à la preuve de concept existante SystemC-AMS :

• Une analyse et une formalisation des interactions DE-TDF. Grâce à la modélisation par réseau de Petri coloré temporisé, il est possible de modéliser les interactions DE-TDF et de détecter d'éventuels problèmes de synchronisation avant la phase d'exécution effective de la simulation.

Lorsque les modèles sont validés, la simulation s'effectue sans interruption jusqu'à la fin.

• Une approche générique et systématique pour la synchronisation, l'élaboration et la simulation de MoCs. SystemC MDVP met en oeuvre une méthode hiérarchique de simulation permettant de synchroniser plusieurs modèles de calculs (MoC) liés par des relations de paires maître-esclave.

• Ajout d'un MoC. SystemC MDVP inclut une méthode pour ajouter un nouveau modèle de calcul.

Elle nécessite la définition des composants du MoCs : modules, ports et canaux; ainsi que des éléments spécifiques pour traiter la synchronisation : les ports de conversion pour les données et les solveurs pour traiter la synchronisation temporelle. Cette méthode permet de ne pas modifier le comportement des MoCs déjà définis dans le simulateur.

Les perspectives de ce travail sont nombreuses, citons en particulier :

• L'extension du MoC TDF pour réaliser toutes les fonctionnalités définies par le standard SystemC AMS.

• L'ajout de nouveaux MoCs.

• L'ajout de fonctionnalités pour le test et la vérification du comportement de systèmes hétérogènes.

Error: SystemC MDVP: Error elaborating the TDF-DE solver instantiated for the TDF cluster containing the modules -TDF2DE -AAVG -ADC -PGA -SENSOR -SRC -: a valid TDF schedule cannot be completely determined for this cluster because some synchronization problems are present.