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Abstract

Projection of future extreme events is a major issue in a large number of areas including the
environment and risk management. Although univariate extreme value theory is well under-
stood, there is an increase in complexity when trying to understand the joint extreme behaviour
between two or more variables. Particular interest is given to events that are spatial by nature
and which define the context of infinite dimensions. Under the assumption that events corre-
spond marginally to univariate extremes, the main focus is then on the dependence structure
that links them.

First, we provide a review of parametric dependence models in the multivariate framework
and illustrate different estimation strategies. The spatial extension of multivariate extremes is
introduced through max-stable processes. We derive the finite-dimensional distribution of the
widely used Brown-Resnick model which permits inference via full and composite likelihood
methods.

We then use Skew-symmetric distributions to develop a spectral representation of a wider
max-stable model: the extremal Skew-t model from which most models available in the liter-
ature can be recovered. This model has the nice advantages of exhibiting skewness and non-
stationarity, two properties often held by environmental spatial events. The latter enables a
larger spectrum of dependence structures. Indicators of extremal dependence can be calculated
using its finite-dimensional distribution.

Finally, we introduce a kernel based non-parametric estimation procedure for univariate and
multivariate tail density and apply it for model selection. Our method is illustrated by the
example of selection of physical climate models.

Keywords

Extreme value theory, multivariate extremes, max-stable processes, finite-dimensional dis-
tributions, angular density, dependence, approximate likelihood, composite likelihood, skewed
distributions, exploratory data analysis, kernel estimators.





Résumé

Modélisation de la structure de dépendance d’extrêmes multiva-
riés et spatiaux

La prédiction de futurs évènements extrêmes est d’un grand intérêt dans de nombreux do-
maines tels que l’environnement ou la gestion des risques. Alors que la théorie des valeurs
extrêmes univariées est bien connue, la complexité s’accroît lorsque l’on s’intéresse au compor-
tement joint d’extrêmes de plusieurs variables. Un intérêt particulier est porté aux évènements
de nature spatiale, définissant le cadre d’un nombre infini de dimensions. Sous l’hypothèse que
ces évènements soient marginalement extrêmes, nous focalisons sur la structure de dépendance
qui les lie.

Dans un premier temps, nous faisons une revue des modèles paramétriques de dépendance
dans le cadre multivarié et présentons différentes méthodes d’estimation. Les processus max-
stables permettent l’extension au contexte spatial. Nous dérivons la loi en dimension finie du
célèbre modèle de Brown- Resnick, permettant de faire de l’inférence par des méthodes de
vraisemblance ou de vraisemblance composée.

Nous utilisons ensuite des lois asymétriques afin de définir la représentation spectrale d’un
modèle plus large : le modèle Extremal Skew-t, généralisant la plupart des modèles présents
dans la littérature. Ce modèle a l’agréable propriété d’être asymétrique et non-stationnaire, deux
notions présentées par les évènements environnementaux spatiaux. Ce dernier permet un large
spectre de structures de dépendance. Les indicateurs de dépendance sont obtenus en utilisant la
loi en dimension finie.

Enfin, nous présentons une méthode d’estimation non-paramétrique par noyau pour les
queues de distributions et l’appliquons à la sélection de modèles. Nous illustrons notre méthode
à partir de l’exemple de modèles climatiques.

Mots-clefs

Théorie des valeurs extrêmes, extrêmes multivariés, processus max-stables, lois de dimen-
sion finie, densité angulaire, dépendance, vraisemblance approximée, vraisemblance composée,
distributions asymétriques, analyse exploratoire de données, estimateurs à noyau.
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Introduction

The analysis of extremes concentrates on modelling events that have a very small proba-
bility of occurrence. It has had a growing interest over the last decades with a wide range of
applications which includes risk management, finance, insurance, economics, telecommunica-
tions, geology, hydrology, meteorology, environmental research and many others. The theory of
univariate extremes consists of looking at the limiting distribution of the normalized maximum
of a sequence of independent random variables with common distribution function. The limit-
ing distribution, characterized by Fisher and Tippett (1928) and Gnedenko (1943), is known as
the generalized extreme value distribution (GEV). The statistical analysis based on the GEV
distribution is referred as the block maxima since it models the maxima of observations that fall
within some blocks of time (annual or monthly maxima for example). This is closely linked to
a second approach: the peak over threshold approach (POT) which considers all the data that
exceeds some fixed high threshold. If the distribution of the rescaled maxima is GEV distributed
then the distribution of the exceedances converges to a generalized Pareto distribution (GPD),
see Balkema and de Haan (1974) and Pickands (1975).

The probability aspects and the statistical inference of univariate extreme distributions is
very well known (see for example Resnick (1987); Embrechts et al. (1997); Coles (2001); Beirlant
et al. (2006); de Haan and Ferreira (2006)) however in higher dimensions things are more com-
plicated. Finite and infinite sequences of ‘extreme’ random variables are discussed by the theory
of multivariate extremes and the extremes of stochastic processes such as spatial or temporal
extremes. In the multivariate case the definition of an extreme value is not obvious, therefore
many valid definitions are possible. From the probability point of view, the componentwise
maxima and pointwise maxima are the simple ones which are feasible to treat. Both block max-
ima and POT approaches have been largely covered in the literature. Different approaches to
model exceedances over threshold in a multivariate context have been investigated by Ledford
and Tawn (1996); Rootzén and Tajvidi (2006); Falk and Guillou (2008); Ferreira and de Haan
(2014) and lead to multivariate GPDs. However, the block maxima approach is our main interest
here and we will assume to be in this context for the remainder of this thesis.

The block maxima consists of computing for each variable the maxima per block (of time
for example). In the multivariate context, the focus is on the univariate marginal distributions
and the dependence structure. Dependence is a fundamental issue as it helps to understand how
the extremes in one component relate to the extremes in other components. Since stochastic
processes are characterized by their multivariate distribution then for spatial and temporal
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sequences of extremes, the focus is also on studying the marginal distributions and dependence
structure. Univariate extreme value theory is used to standardize these marginal distributions
allowing then to define some measures of the extremal dependence. In the context of multivariate
extremes, the dependence structure is described by the spectral measure (see Falk et al. (2011)),
the Pickands dependence function (Pickands, 1981), the angular density (de Haan and Resnick,
1977; Resnick, 1987), the exponent function (Buishand, 1984; Coles and Tawn, 1991; Smith,
1990), the stable tail dependence function (Huang, 1992; Drees and Huang, 1998) and the
coefficient of tail dependence (Ledford and Tawn, 1996, 1997). Additionally the dependence of
spatial extremes can be summarized through a spectral representation (de Haan, 1984; Giné
et al., 1990). More recently Schlather (2002) introduced a second spectral characterization and
Wang and Stoev (2010) proposed an approach based on extremal stochastic integrals.

Differently to the univariate case, in the multivariate case there is not an unique family
of limiting distributions when working with the vector of componentwise maxima. Therefore
the dependence structure cannot be estimated straight away from the distribution and requires
non-parametric or parametric techniques to do so.

Non-parametric estimators of the dependence summaries are given by Einmahl et al. (2001);
Einmahl and Segers (2009); de Carvalho et al. (2013) for the spectral measure, by Drees and
Huang (1998); Einmahl et al. (2012); Capéraà and Fougères (2000) for the stable tail dependence
function, by Ledford and Tawn (1996); Hill (1975) for the coefficient of tail dependence and
recently Marcon et al. (2014) for the Pickands dependence function.

Maximum Likelihood estimation is possible for multivariate extreme value distributions. The
derivation of the joint density involves differentiation of the exponent function whose complexity
increases with the exploding number of terms. Wadsworth and Tawn (2014) proposed a full like-
lihood estimation procedure based on the conditional distribution of max-stable processes but
other likelihood based estimation methods have also recently appeared. The growing interest in
high dimensional or spatial scenarios creates new challenges: the high dimensional distributions
of some models are not necessarily known, meaning that the usual maximum likelihood esti-
mation method is not possible, or the maximization procedure is computationally heavy. The
very advantageous and appealing composite likelihood methods (Lindsay (1988); see Varin et al.
(2011) for a review) have then arisen for spatial extremes, Padoan et al. (2010) being the first to
use pairwise composite likelihood in the context of spatial extremes using Gaussian max-stable
processes. It was also considered for high dimensional data by Smith and Stephenson (2009);
Blanchet and Davison (2011); Davison et al. (2012); Davison and Gholamrezaee (2012). The
use of triplewise or higher composite likelihood has been contemplated by Genton et al. (2011)
and Huser and Davison (2013) who respectively derived the finite-dimensional distributions of
Gaussian and Brown-Resnick max-stable processes and compared the efficiency gains between
pairwise and triplewise methods. From these experiments, it was concluded that the benefit
from using higher degree composite likelihood is only significant when the process is smooth,
which isn’t the case for most real spatial phenomena. A tapered version of the pairwise com-
posite likelihood was given by Sang and Genton (2014) who showed that not considering the
pairwise component between two location far away from each other can bring a gain of efficiency.
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Composite likelihoods have been widely used for spatial extremes but also for multivariate ex-
tremes, especially under the copula framework. In the latter it has been shown that multivariate
extremes modelling can be done through extreme value and non-extreme value copulas, however
closed form of the likelihood don’t always exist for extreme value copulas (see Ribatet and Sedki
(2013); Sang and Gelfand (2010)). Another class of likelihood based estimation procedures relies
on the fact that observations, transformed to pseudo-polar coordinates, above a high threshold
are approximately from a Poisson point process and the maximum likelihood estimation is then
approximated by maximising the product of angular densities. This method, simply called
approximate likelihood, has been considered by Coles and Tawn (1994); Cooley et al. (2010);
Engelke et al. (2012).

Bayesian methods are another possibility which requires knowledge about the density, hence
Ribatet et al. (2012) adapts the composite likelihood in the Bayesian setting. Similarly Sabourin
et al. (2013); Sabourin and Naveau (2014) presents the approximate likelihood in the Bayesian
setup.

A contribution of this thesis is to provide some advanced results on the modelling of the
dependence of multivariate extremes. Chapter 1 reviews the theory of multivariate extremes
and lists the parametric models the most widely encountered in the literature. For each of these
models, their construction, main features and an interpretation is provided. The expressions
of the exponent function and angular density on the d-dimensional simplex are provided. For
the Extremal-t model the angular density was not known and is derived for sub-spaces of the
simplex. This allows us to derive measures of the extremal dependence between more than two
components. Interpretation of the models’ features is given by looking at examples of the angular
density on the trivariate simplex. The extremal dependence between five air pollutants is esti-
mated to assess the air quality in the city of Leeds, UK. Models are fitted using the approximate
likelihood and Bayesian approximate likelihood approaches. Previously only models whose mass
is concentrated in the interior of the simplex were used for approximate likelihood. We show that
if the model does put mass on subspaces of the simplex (edges, vertices, . . . ) then these have
to be taken into account in the estimation procedure. Finally, the R package ExtremalDep (see
Beranger et al. (2015)) was created and includes angular densities for all parametric models, a
function to represent the density on the trivariate simplex, approximate likelihood and approxi-
mate Bayesian estimation methods are also available. This chapter corresponds to the accepted
manuscript Beranger and Padoan (2015) to appear in the book Extreme Value Modelling and
Risks Analysis: Methods and Applications. Eds. D. Dey and J. Yan. Chapman & Hall/CRC
Press. The real data analysis and graphical examples are all reproducible using ExtremalDep.

Chapter 2 reviews some important facts on the extremes of stochastic processes defined as
pointwise maxima of replicates of i.i.d. copies of a spatial or temporal process. Instead of
taking the componentwise maxima of some random variables, stochastic processes are used and
their convergence in the space of continuous functions is established. The limiting process is
called max-stable process. We review the theory of max-stable processes and show its close
relationship with Chapter 1. The canonical representations of such processes are defined and
the max-stables models that arise from them are presented. Most often it is convenient to also
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assume a parametric model for the dependence function; the characteristics of these models as
well as their advantages and drawbacks are discussed for different correlation functions. These
correlation functions do have an effect on the extremal dependence structure between spatial
locations but their limitations are also noticeable. Furthermore we provide the finite-dimensional
distribution for most max-stable models.

As mentioned above, the finite-dimensional distributions of some max-stable processes are
not always available. Therefore, new methods are developed to approximate the likelihood. Buis-
hand et al. (2008); Padoan et al. (2010); Blanchet and Davison (2011) among others, perform real
data analyses for spatial environmental phenomena. They share the burden of approximating
the full likelihood function in order to obtain a feasible model fitting, at a reasonable computa-
tional cost, when working with Brown-Resnick, Schlather and Smith marginal distributions. In
Chapter 3 we give a particular attention to the work of Buishand et al. (2008) which considers an
extension of the Brown-Resnick to the bivariate case, based on double sided Brownian motions.
It also includes the idea of including a parameter measuring the amount of spatial dependence
as suggested by de Haan and Pereira (2006). The bivariate marginal distributions of these types
of processes were derived in de Haan and Zhou (2008). Our main contribution is the derivation
of the analytical form of the marginal distributions for both univariate and bivariate Brown-
Resnick processes. This allows different scenarios to estimate the spatial dependence parameter.
However the results contained in this chapter haven’t been published. After completing this
work we discovered that identical results were derived and published in parallel by Huser and
Davison (2013) for the generalized Brown-Resnick model. Our results are proved through an
induction argument and a simulation study certifies their correctness. Results for univariate
processes can also be recovered as a special case of Huser and Davison (2013).

The max-stable processes given in Chapter 2 have some common features: they all are strictly
stationarity processes, i.e. a translation in space doesn’t affect the distribution, and they are
constructed from symmetric processes. It is however well known that environmental phenom-
ena often exhibit skewed distributions and are not stationary, see for example Genton (2004);
Arellano-Valle and Genton (2010) and Zhu et al. (2014). For the currently available models,
only anisotropy can be included in the model through the correlation function. Therefore it is
important to be able to study broader families of processes that allows for non-stationarity dis-
tributions and an asymmetric relationship among variables observed at different time or spatial
lags. Chapter 4 provides the main contribution of this thesis proposing a new family of pro-
cesses that overcome these challenges. Skew-symmetric distributions have the ability to describe
a wide range of dependence behaviours and we provide an additive stochastic representation of
Skew-Normal processes which can be shown to be non-stationary. It is then easy to define pos-
itive definite, non-stationary isotropic or anisotropic correlation functions and we derive a new
family of max-stable processes – the extremal Skew-t process. The flexibility of the model is
emphasized by visually showing the impact of the correlation function on the extremal depen-
dence structure. Additionally, we establish the analytical form of its d-dimensional marginal
distributions. The latter depends on a new class of asymmetric distribution: the non-central
extended Skew-t distribution which includes the standard extended Skew-t distribution defined
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by Arellano-Valle and Genton (2010). Density, distribution function and other properties such
as marginal and conditional distributions are provided. Constructions of the model are obtained
by considering the limiting distribution of appropriately rescaled Skew-t random variables but
also through its spectral representation, used for random generation. Furthermore the joint tail
dependence model given by Ledford and Tawn (1996) is used to show asymptotic independence.
Finally, the extremal Skew-t model contains most of the popular models listed in Chapter 2 like
the Extremal-t, Schlather and Smith models. The great flexibility and better fit provided by the
extremal Skew-t model are proved through an application to extreme wind speeds in Oklahoma,
USA. This chapter corresponds to the arXiv manuscript Beranger et al. (2015), that is under
revision for the Scandinavian Journal of Statistics.

Univariate and multivariate extreme values are located in the tails of the distribution. This
motivates us to investigate the estimation of tail densities in Chapter 5. The central role played
by parametric models in extreme value analysis is illustrated in Chapter 1. Non-parametric
estimators are often used to measure the accuracy of parametric models and for model selection.
Chapter 5 proposes an innovative non-parametric method to analyze tail distributions, based on
a modification of classical kernel estimators allowing a direct focus on the tail of the density. This
method allows us to take the advantage of the good visualisation property of kernel estimators
and their easy application to multivariate analysis. Moreover the asymptotic properties of our
estimator are of the same order as usual kernel estimators. We show by simulation that our
kernel based estimator is a good surrogate for the true underlying density and it can be used as
reference for model selection. Efficiency improvement in model selection due to the kernel based
tail density estimator is proved by comparison with histogram based estimators as considered in
Perkins et al. (2013). An application to extreme temperatures in Sydney, Australia is provided
with the aim is to project future extreme events which might severely affect humans and natural
ecosystems. Geophysical models are available to simulate weather and climate as it would
happen in the real world, and are compared to the observed climate. First the emphasis is put
on climate models that render the extremes of maximum temperatures the most accurately. A
second step consists of considering simultaneously large minimum and maximum values. This
paper is in preparation for submission.

The final chapter is a summary and discussion on the results given in this thesis and links
them to future research ideas.





Chapter 1

Extreme Dependence Models

Abstract

Extreme values of real phenomena are events that occur with low frequency, but can have
a large impact on real life. These are, in many practical problems, high-dimensional by nature
(e.g. Tawn, 1990; Coles and Tawn, 1991). To study these events is of fundamental importance.
For this purpose, probabilistic models and statistical methods are in high demand. There are
several approaches to modelling multivariate extremes as described in Falk et al. (2011), linked
to some extent. We describe an approach for deriving multivariate extreme value models and
we illustrate the main features of some flexible extremal dependence models. We compare
them by showing their utility with a real data application, in particular analyzing the extremal
dependence among several pollutants recorded in the city of Leeds, UK.

1.1 Introduction

Statistical analyses of extreme events are of crucial importance for risk assessment in many
areas such as the financial market, telecommunications, industry, environment and health. For
example governments and insurance companies need to statistically quantify the frequency of
natural disasters in order to plan risk management and take preventive actions.

Several examples of univariate analysis are available, for instance in Coles (2001). Two
main approaches are used in applications, the block-maximum and the peak over a threshold.
These are based on the generalized extreme value (GEV) distribution and the generalized Pareto
distridution (GPD), which are milestones of the extreme value theory, see e.g. Coles (2001, Ch.
3–4) and the references therein.

Many practical problems in finance, the environment, etc. are high-dimensional by nature,
for example when analyzing the air quality in an area, the amount of pollution depends on the
levels of different pollutants and the interaction between them. Today the extreme value theory
provides a sufficiently mature framework for applications in the multivariate case. Indeed a large
number of theoretical results and statistical methods and models are available, see for instance
the monographs Resnick (2007), de Haan and Ferreira (2006), Falk et al. (2011), Beirlant et al.
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(2006), Coles (2001) and Kotz and Nadarajah (2000). In this article we review some basic
theoretical results on the extreme values of multivariate variables (multivariate extremes for
brevity). With the block-maximum approach we explain what type of dependence structures can
be described. We discuss the main features of some families of parametric extremal dependence
models. By means of real data analysis we show the utility of these extremal dependence models
when assessing the dependence of multivariate extremes. Their utility is also illustrated when
estimating the probabilities that multivariate extreme events occur.

The analysis of real phenomena such as heavy rainfall, heat waves and so on is a challenging
task. The first difficulty is the complexity of the data, i.e. observations are collected over
space and time. In this case, theory deals with extremes of temporal- or spatial-processes (e.g.
de Haan and Ferreira, 2006, Ch. 9). Examples of such statistical analysis are Davison et al.
(2012), Davison and Gholamrezaee (2012), for a simple review see Padoan (2013a). This theory
is closely linked to that of multivariate extremes presented here. The second difficulty is that
the dependence of multivariate extremes is not always well captured by the models illustrated
here. Ledford and Tawn (1996, 1997) have shown that in some applications a more suitable
dependence structure is described by the so called asymptotic independence. This framework
has been recently extended to continuous processes (e.g. De Haan and Zhou, 2011; Wadsworth
and Tawn, 2012; Padoan, 2013c). These motivations make the multivariate extreme value theory
a very active research field at present.

The paper is organized as follows. In Section 1.2 a definition of multivariate extremes is
provided and the main characteristics are presented. In Section 1.3 some of the most popular
extremal dependence models are described. In Section 1.4 some estimation methods are discussed
and in Section 1.5 the analysis of the extremes of multiple pollutants is performed.

1.2 Multivariate Extremes

Applying the block-maximum approach to every component of a multivariate random vector
gives rise to a definition of multivariate extremes. Specifically, for d ∈ N, let I = {1, . . . , d}
be an index set and X = (X1, . . . , Xd) be an Rd-valued random vector with joint (probability)
distribution function F and marginal distribution functions Fj = F (∞, . . . , xj , . . . , ∞), j ∈ I.
Suppose that X1, . . . , Xn are n independent and identically distributed (i.i.d.) copies of X. The
sample vector of componentwise maxima (sample maxima for brevity) is Mn = (Mn,1, . . . , Mn,d),
where Mn,j = max(X1,j , . . . , Xn,j).

Typically, in applications the distribution F is unknown and so the distribution of the sample
maxima is also unknown. A possible solution is to study the asymptotic distribution of Mn as
n → ∞ and to use it as an approximation for a large but finite sample size, resulting in an
approximate distribution for multivariate extremes. At a first glance, this notion of multivariate
extremes may seem too simple to provide a useful approach for applications. However, a number
of theoretical results justify its practical use. For example, with this definition of multivariate
extremes, the dependence that arises is linked to the dependence that all the components of X

are simultaneously large. Thus, by estimating these dependence structures we are also able to
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estimate the probabilities that multiple exceedances occur.

1.2.1 Multivariate extreme value distributions

The asymptotic distribution of Mn is derived with a similar approach to the univariate
case. Assume there are sequences of normalizing constants an = (an1, . . . , and) > 0, with
0 = (0, . . . , 0), and bn = (bn1, . . . , bnd) ∈ Rd such that

pr
�

Mn − bn

an

≤ x
�

= F n(anx + bn) → G(x), n → ∞, (1.1)

for all the continuity points x of a non-degenerate distribution G. The class of the limiting
distributions in (1.1) is called multivariate extreme value distributions (MEVDs) (Resnick, 2007,
p. 263). A distribution function F that satisfies the convergence result (1.1) is said to be in the
(maximum) domain of attraction of G (de Haan and Ferreira, 2006, pp. 226–229). An attractive
property of MEVDs is the max-stability. A distribution G on Rd is max-stable if for every n ∈ N,
there exists sequences an > 0 and bn ∈ Rd such that

G(an x + bn) = G1/n(x), (1.2)

(Resnick, 2007, Proposition 5.9). As a consequence, G is such that Ga is a distribution for every
a > 0. A class of distributions that satisfies such a property is named max-infinitely divisible
(max-id). More precisely, a distribution G on Rd is max-id, if for any n ∈ N there exists a
distribution Fn such that G = F n

n (Resnick, 2007, p. 252). This means that G can always be
defined through the distribution of the sample maxima of n i.i.d. random vectors.

In order to characterize the class of MEVDs we need to specify: a) the form of the marginal
distributions, b) the form of the dependence structure.

a) To illustrate the first feature is fairly straightforward. If F converges, then so too does
the marginal distributions Fj for all j ∈ I. Choosing ajn and bjn for all j ∈ I as in de Haan and
Ferreira (2006, Corollary 1.2.4), implies that each marginal distribution of G is a generalized
extreme value (GEV), i.e.

G(∞, . . . , xj , . . . , ∞) = exp



−
�

1 + ξj

�
xj − µj

σj

��−1/ξj

+



 , j ∈ I,

where (x)+ = max(0, x), −∞ < µj , ξj < ∞, σj > 0 (de Haan and Ferreira, 2006, pp. 208–211).
Because the marginal distributions are continuous then G is also continuous.

b) The explanation of the dependence form is more elaborate, although it is not complicated.
The explanation is based on three steps: 1) G is transformed so that its marginal distributions
are equal, 2) a Poisson point process (PPP) is used to represent the standardised distribution, 3)
the dependence form is made explicit by means of a change of coordinates. Here are the steps.

1) Let Uj(a) = F ←
j

(1 − 1/a), with a > 1, be the left-continuous inverse of Fj , for all j ∈ I.
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The sequences anj and bnj in (1.1) are such that for all yj > 0,

lim
n→∞

Uj(nyj) − bn

an

=
σj(yξj

j
− 1)

ξj

+ µj , j ∈ I,

and therefore

lim
n→∞

F n{U1(ny1), . . . , Ud(nyd)}

= G

�
σ1(yξ1

1
− 1)

ξ1

+ µ1, . . . ,
σd(yξd

d
− 1)

ξd

+ µd

�

≡ G0(y), (1.3)

for all continuity points y > 0 of G0 (see de Haan and Ferreira, 2006, Theorems 1.1.6, 6.1.1).
G0 is a MEVD with identical unit Fréchet marginal distributions.

Now, for all y > 0 such that 0 < G0(y) < 1, by taking the logarithm on the right and left
side of (1.3) and using a first order Taylor expansion of log F{U1(ny1), . . . , Ud(nyd)}, as n → ∞,
it follows that

lim
n→∞

n[1 − F{U1(ny1), . . . , Ud(nyd)}] = − log G0(y) ≡ V (y). (1.4)

The function V , named exponent (dependence) function, represents the dependence structure
of multiple extremes (extremal dependence for brevity). According to (1.4) the derivation of V

depends on the functional form of F . In most of the practical problems the latter is unknown.
A possible solution is obtained exploiting the max-id property of G0, which says that every
max-id distribution permits a PPP representation, see Resnick (2007, pp. 257–262) and Falk
et al. (2011, pp. 141–142).

2) Let Nn(·) be a PPP defined by

Nn(A) :=
∞�

i=1

1I{P i}(A), 1I{P i}(A) =
�

1, P i ∈ A,

0, P i /∈ A,

where A ⊂ A with A := (0, ∞) × Rd
+,

P i =
�

i

n
,
�

1 + ξ1

�
Xi1 − bn1

an1

�� 1
ξ1

, . . . ,
�

1 + ξ1

�
Xid − bnd

and

�� 1
ξd

�

,

for every n ∈ N and Xi, i = 1, 2, . . . are i.i.d random vectors with distribution F . The intensity
measure is ζ × νn where ζ is the Lebesgue measure and for every n ∈ N and all critical regions
defined by By := Rd

+\[0, y] with y > 0,

νn(By) = n[1 − F{U1(ny1), . . . , Ud(nyd)}],

is a finite measure. If the limit in (1.3) holds, then Nn converges weakly to N as n → ∞, i.e. a
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PPP with intensity measure ζ × ν where

ν(By) = ν{(v ∈ Rd

+ : v1 > y or . . . or vd > yd)} ≡ V (y), y > 0,

is a finite measure, named exponent measure (see de Haan and Ferreira, 2006, Theorems 6.1.5,
6.1.11). See Appendix A for details on the convergence of simple point processes to PPP.
Observe that ν must concentrate on R = Rd

+\{0} in order to be uniquely determined. Also, ν

must satisfy ν(∞) = 0, see Falk et al. (2011, p. 143) for details.

This essentially means that numbering the rescaled observations that fall in a critical region,
e.g. see the shaded sets in the left panels of Figure 1.1, where at least one coordinate is large,
makes it possible for (1.3) to be computed using the void probability of N , that is

G0(y) = pr[N{(0, 1] × By} = 0]

= exp(−[ζ{(0, 1]} × ν(By)])

= exp{−V (y)} y > 0.

(1.5)

From Figure 1.1 we see that in the case of strong dependence (top-left panel) all the coordinates
of the extremes are large, while in the case of weak dependence (bottom-left panels) only one
coordinate of the extremes is large.

At this time it remains to specify the structure of the exponent measure. This task is simpler
to fulfill when working with pseudo-polar coordinates.

3) With unit Fréchet margins, the stability property (1.2) can be rephrased by Ga
0(ay) =

G0(y) for any a > 0, implying that ν satisfies the homogeneity property

ν(aBy) = ν(By)/a, (1.6)

for all By ⊂ R, where By := R\(0, y] with y > 0. Note that for a Borel set B ⊂ R we have
aB = {av : v ∈ B} and Bay = aBy. Now, let

W := (v ∈ R : v1 + . . . + vd = 1),

be the unit simplex on R (simplex for brevity), where d − 1 variables are free to vary and one is
fixed, e.g. vd = 1− (v1 + · · ·+vd−1). For any v ∈ Rd

+, with the sum-norm, �v� = |v1|+ · · ·+ |vd|,
we measure the distance of v from 0. Other norms can also be considered (e.g. Resnick, 2007,
pp. 270–274). We consider the one-to-one transformation Q : R → (0, ∞) × W, given by

(r, w) := Q(v) = (�v�, �v�−1v), v ∈ R. (1.7)

By means of this, the induced measure is ψ := ν ∗ Q, i.e. ψ(Wr) = ν{Q←(Wr)} for all sets
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Wr = r × W with r > 0 and W ⊂ W, is generated. Then, from the property (1.6) it follows that

ψ(Wr) = ν{(v ∈ R : �v� > r, v/�v� ∈ W)}

= ν{(ru ∈ R : �u� > 1, u/�u� ∈ W)}

= r−1H �(W),

where H �(W) := ν{(u ∈ R : �u� > 1, u/�u� ∈ W)}. The benefit of transforming the coordi-
nates into pseudo-polar is that the measure ν becomes a product of two independent measures:
the radial measure (1/r) and spectral measure or angular measure (H �) (e.g. Falk et al., 2011,
p. 145). The first measures the intensity (or distance) of the points from the origin and the
second measures the angular spread (or direction) of the points. This result is known as the
spectral decomposition (de Haan and Resnick, 1977). Hereafter we will use the term angular
measure.

The density of ψ is dψ(r, w) = r−2dr × dH �(w) for all r > 0 and w ∈ W, by means of which
we obtain the explicit form

ν(By) = ψ{Q(v ∈ R : v1 > y1 or . . . or vd > yd)}

= ψ[{(r, w) ∈ (0, ∞) × W : r > min(yj/wj , j ∈ I)}]

=
�

W

� ∞

min(yj/wj ,j∈I)

r−2drdH �(w)

=
�

W
max
j∈I

(wj/yj) dH �(w).

(1.8)

In pseudo-polar coordinates, extremes are the values whose radial component is higher than a
high threshold, see the red points in the middle panels of Figure 1.1. The angular components
are concentrated around the center of the simplex, in the case of strong dependence (middle-top
panel), while they are concentrated around the vertices of the simplex (middle-bottom panel),
in the case of weak dependence.

The measure H � can be any finite measure on W satisfying the first moment conditions
�

W
wj dH �(w) = 1, ∀ j ∈ I.

This guarantees that the marginal distributions of G0 are unit Fréchet. If H � satisfies the first
moment conditions, then the total mass is equal to

H �(W) =
�

W
(w1 + · · · + wd)dH �(w) =

�

j∈I

�

W
wjdH �(w) = d.

So setting H := H �/H �(W), then H is a probability measure satisfying
�

W
wjdH(w) = 1/d, ∀ j ∈ I. (1.9)

Concluding, combining (1.3), (1.4), (1.5) and (1.8) all together, we have that a MEVD with unit
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Figure 1.1: Examples of critical regions in R3
+ (left-panels) and its representation in pseudo-

polar coordinates (middle-panels). Red points are the extremes with strong (top-panels) and
weak (bottom-panels) dependence. Right panels display the angular densities on the simplex.

Fréchet margins is equal to

G0(y) = exp
�

−d
�

W
max
j∈I

(wj/yj) dH(w)
�

. (1.10)

1.2.2 Angular densities

The measure H can place mass on the interior as well as on other subspaces of the simplex,
such as the edges and the vertices. Thus H can have several densities that lie on these sets,
which are named angular densities. Coles and Tawn (1991) described a way to derive the angular
densities when G is absolutely continuous (see also Resnick, 2007, Example. 5.13).

Specifically, let S := P(I)\∅, where P(I) is the power set of I and S be the index set that
takes values in S. Given fixed d, the sets

Wd,S = (w ∈ W : wj = 0, if j /∈ S; wj > 0 if j ∈ S),

for all S ∈ S provide a partition of W in 2d − 1 subsets. Similar to the simplex, there are
k − 1 variables wj in Wd,S that are free to vary, where j ∈ S and k = |S| denotes the size of
S. We denote by hd,S the density that lies on the subspace Wd,S , where S ∈ S. When the
latter is a vertex ej of the simplex W, for any j ∈ I, then the density is a point mass, that is
hd,S = H({ej}).

Let S = {i1, . . . , ik} ⊂ I, when G0 is absolutely continuous the angular density for any



30 Chapter 1. Extreme Dependence Models

y ∈ Rd
+ is

hd,S

�
yi1�
i∈S yi

, · · · ,
yik−1�
i∈S yi

�

= −
�

�

i∈S
yi

�(k+1)

lim
yj→0,

j /∈S

∂kV

∂yi1 · · · ∂yik

(y). (1.11)

Two examples of a tridimensional angular density in the interior of the simplex are reported in
the right panels of Figure 1.1. These are the densities of a symmetric logistic model (Gumbel,
1960) with a strong and weak dependence. When S = {i} for any i ∈ I the angular density hd,S

represents the mass of H at the vertex ej with j = i, thus (1.11) reduces into

hd,S = H({ei}) = −y(2)

i
lim

yj→0,j /∈S

∂V

∂yi

(y). (1.12)

In the bivariate case these results are equal to the ones obtained by Pickands (1981). Kotz
and Nadarajah (2000) discussed the bivariate case in the following terms. With d = 2 the unit
simplex W = [0, 1] can be partitioned into

W2,{1} = {(1, 0)}, W2,{2} = {(0, 1)}, W2,{1,2} = {(w, 1 − w), w ∈ (0, 1)}.

The densities that lie on them are

h2,{1} = H({0}) = −y2
1 lim

y2→0

∂V

∂y1

(y1, y2),

h2,{2} = H({1}) = −y2
2 lim

y1→0

∂V

∂y2

(y1, y2),

and
h2,{1,2}(w) = − ∂2V

∂y1 ∂y2

(w, 1 − w).

respectively, for any y1, y2 > 0. The first two densities describe the case when extremes are only
observed in one variable. While the third density describes the case when extremes are observed
in both variables.

1.2.3 Extremal dependence

From (1.5) it emerges that the extremal dependence is expressed through the exponent
function. This is a map from Rd

+ to (0, ∞) satisfying the properties:

1. is a continuous function and homogeneous of order −1, the latter meaning that V (ay) =
a−1V (y) for all a > 0;

2. is a convex function, that is V (ay + (1 − a)y�) ≤ aV (y) + (1 − a)V (y�), for a ∈ [0, 1] and
y, y� ∈ Rd

+;

3. max (1/y1, . . . , 1/yd) ≤ V (y) ≤ (1/y1 + . . . + 1/yd), with the lower and upper limits
representing the complete dependence and independence cases respectively.
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See de Haan and Ferreira (2006, pp. 223–226) for details. In summary, let Y be a random
vector with distribution (1.10). When H places the total mass 1 on the center of the simplex
(1/d, . . . , 1/d), then Y1 = Y2 = · · · = Yd almost surely and hence G0(y) = exp{max (1/y1, . . . , 1/yd)}.
When H places mass 1/d on ej for all j ∈ I, i.e. the vertices of the simplex, then Y1, . . . , Yd are
independent and hence G0(y) = exp(1/y1 + . . . + 1/yd). This rephrased for a random vector X

with distribution (1.1) becomes

min{G1(x1), . . . , Gd(xd)} ≤ G(x) ≤ G1(x1) · . . . · Gd(xd), x ∈ Rd.

In order to visualise the exponent function more easily, its restriction in the simplex is
usually considered. This is a function A : W → [1/d, 1], named the Pickands dependence
function (Pickands, 1981), defined by

A(t) := d
�

W
max
j∈I

(wj tj) dH(w),

where zj = 1/yj , j ∈ I, tj = zj/(z1 + · · ·+zd) with j = 1, . . . , d−1 and td = 1− (t1 + · · ·+ td−1).
A inherits the above properties from V with the obvious modifications. In particular, 1/d ≤
max(t1, . . . , td) ≤ A(t) ≤ 1, where lower and upper bounds represent the complete dependence
and independence cases, and for the homogeneity property of A the exponent function can be
rewritten as

V (z) = (z1 + · · · + zd)A(t1, . . . , td), z ∈ Rd

+.

The exponential function can be profitably used in several ways. First, an important sum-
mary of the extremal dependence is given by

ϑ = V (1, . . . , 1) = d
�

W
max
j∈I

(wj)dH(w). (1.13)

This is named the extremal coefficient (Smith, 1990) and it represents the (fractional) number
of independent components of the random vector Y . The coefficient takes values in [1, d],
depending on whether the measure H concentrates near the center or the vertices of the simplex.
The bounds regard the cases of complete dependence and independence.

Second, for any y > 0 and failure region

Fy = (v ∈ R : v1 > y1 and . . . and vd > yd), (1.14)

the tail dependence function (Nikoloulopoulos et al., 2009; de Haan and Ferreira, 2006, p. 225)
is defined by

R(y) := ν{(v ∈ R : v1 > y1 and . . . and vd > yd)} ≡ ν(Fy), y > 0.

This counts the number of observations that fall in the failure region, i.e. all their coordinates
are simultaneously large. The tail dependence function is related to the exponent function by
the inclusion-exclusion principle. Using similar arguments to those in (1.8) and (1.9) it follows
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that
R(y) = d

�

W
min
j∈I

(wj/yj)dH(w) y > 0. (1.15)

By means of the tail dependence function, another important summary of the dependence be-
tween the components of Y is obtained. The coefficient of upper tail dependence is given by

χ = R(1, . . . , 1) = d
�

W
min
j∈I

(wj)dH(w). (1.16)

It measures the strength of dependence in the tail of the distribution of Y or in other terms
the probability that all the components of Y are simultaneously large. This coefficient was
introduced in the bivariate case by Joe (1997, Ch. 2) and extended to the multivariate case by
Li (2009). When H concentrates near the center or on the vertices of the simplex, then χ > 0
or χ = 0 respectively. In these cases we say that Y is upper tail dependent or independent.

In addition, the exponent and the tail dependence functions can be used for approximating
the probability that certain types of extreme events will occur. Specifically, let Y be a random
vector with unit Pareto margins. F is in the domain of attraction of a MEVD with Fréchet
margins. From (1.4) and for the homogeneity property of V we have that {1 − F (ny)} ≈ V (ny)
for large n. Then, for the relations (1.8) and (1.9), the approximating result follows

pr(Y1 > y1 or . . . or Yd > yd) ≈ d
�

W
max
j∈I

(wj/yj) dH(w), (1.17)

when y1, . . . , yd are high enough thresholds. Furthermore, with similar arguments to those in
Section 1.2.1 we have that

lim
n→∞

nF̄ (ny1, . . . , nyd) = R(y),

where F̄ is the survivor function of Y . R has the same homogeneity property of V . Hence,
F̄ (ny) ≈ R(ny) for large n. Then, for the relation (1.15), the approximating result also follows

pr(Y1 > y1 and . . . and Yd > yd) ≈ d
�

W
min
j∈I

(wj/yj) dH(w), (1.18)

when y1, . . . , yd are high enough thresholds.
Lastly, when χ = 0 the elements of Y are independent in the limit. However, they may

still be dependent for large but finite samples. Ledford and Tawn (1996) proposed another
dependence measure in order to capture this feature. For brevity, we focus on the bivariate case.
Suppose that F̄ for y → ∞ satisfies the condition

F̄ (y, y) ≈ y−1/τL (y), 0 < τ ≤ 1,

where L is a slowly function, i.e. L (ay)/L (y) → 1 as y → ∞ for any a > 0. Then for
large y, assuming L constant, different tail behaviours are covered. The case χ > 0 is reached
when τ = 1 and so the variables are asymptotically dependent. When 1/2 < τ < 1 this means
that χ = 0 and so the variables are asymptotically independent, but they are still positively
associated and the value of τ expresses the degree (see Ledford and Tawn, 1996, for details).
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1.3 Parametric models for the extremal dependence

From the previous sections, it emerges that both the exponent and tail dependence functions
depend on the angular measure. There is no unique angular measure that generates the extremal
dependence, any finite measure that satisfies the first moment conditions is suitable. In order
to represent the extremal dependence, in principle it is insufficient to use a parametric family of
models for the distribution function of the angular measure. However, flexible classes of para-
metric models can still be useful for applications, e.g. see Tawn (1990), Coles and Tawn (1991)
and Boldi and Davison (2007) to name a few. To this end, in previous years different parametric
extremal dependence models have been introduced in the literature. A fairly comprehensive
overview can be found in Kotz and Nadarajah (2000, Section 3.4), Coles (2001, Section 8.2.1),
Beirlant et al. (2006, Section 9.2.2) and Padoan (2013b). In the next sections we describe some
of the most popular models.

1.3.1 Asymmetric logistic model

The multivariate asymmetric logistic model is an extension of the symmetric, introduced by
Tawn (1990) (see also Coles and Tawn, 1991) for modelling extremes in complex environmental
applications.

Let S and S as in Section 1.2.2 and NS be a Poisson random variable with rate 1/τS . This
describes the number of storm events, nS , that takes place on the sites S in a time interval.
Given nS , for any site j ∈ S, let {Xj,S;i, i = 1, . . . , nS} be a sequence of i.i.d. random variables
that describe an environmental episode such as rain. For a fixed i, {Xj,S;i}j∈S is assumed to be a
dependent sequence. The maximum amount of rain observed at j is Xj,S = maxi=1...,nS {Xj,S;i}.
Let AS be a random effect with a positive stable distribution and stability parameter αS ≥ 1
(Nolan, 2003), representing an unrecorded additional piece of information on storm events.
Assume {Xj,S}j∈S |αS as an independent sequence. Define Yj = maxS∈Sj {Xj,S}, where Sj ⊂ S

contains all nonempty sets including j and so the maximum is over all the storm events involving
j. Then, the exponent function of the joint survival function of (Y1, . . . , Yd), after transforming
the margins into unit exponential variables, is

V (y; θ) =
�

S∈S

� �

j∈S
(βj,Sy−1

j
)αS

�1/αS
, y ∈ Rd

+,

where θ = {αS , βj,S}S∈S , αS ≥ 1, βS = τS/
�

S∈Sj
τS and βj,S = 0 if j /∈ S, and for j ∈ I,

0 ≤ βj,S ≤ 1 and
�

S∈S
βj,S = 1. The parameter βj,S represents the probability that the

maximum value observed at j is attributed to a storm event involving the sites of S. The
number of the model parameters is 2d−1(d + 2) − (2d + 1).

In this case the angular measure places mass on all the subspaces of the simplex. From (1.11)
it follows that the angular density is, for every S ∈ S and all w ∈ Wd,S equal to

hd,S(w; θ) =
k−1�

i=1

(iαS − 1)
�

j∈S
βαS

j,Sw−(αS+1)

j

� �

j∈S
(βj,S/wj)αS

�1/αS−k

.
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When S = I, αS = α, βj,S = βj and so the angular density on the interior of the simplex
simplifies to

h(w; θ) =
d−1�

i=1

(iα − 1)
�

j∈I

βα

j w−(α+1)

j

� �

j∈I

(βj/wj)α
�1/α−d

, w ∈ W.

When S = {j}, for all j ∈ I, then from (1.12) it follows that the point mass at each extreme
point of the simplex is hd,S = βj,s.

For example in the bivariate case, the conditions on the parameters are β1,{1} + β1,{1,2} = 1
and β2,{2} + β2,{1,2} = 1, so the masses at the corners of S2 = [0, 1] are given by h2,{1} = 1 − β1

and h2,{2} = 1 − β2, where for simplicity β1,{1,2} = β1 and β2,{1,2} = β2, while the density in the
interior of the simplex, for 0 < w < 1, is

h2,{1,2}(w) = (α − 1)(β1β2)α{w(1 − w)}α−2[(β1(1 − w))α + (β2w)α]1/α−2.

The top row of Figure 1.2 illustrates some examples of trivariate angular densities for dif-
ferent values of the parameters θ = (α, β1, β2, β3), where the subscript of the index set S =
{1, 2, 3} has been omitted for simplicity. The values of the parameters are, from left to right
{(5.75, 0.5, 0.5, 0.5); (1.01, 0.9, 0.9, 0.9); (1.25, 0.5, 0.5, 0.5); (1.4, 0.7, 0.15, 0.15)}. The first panel
shows that with large values of α and equal values of the other parameters, the case of strong
dependence among the variables is obtained. The mass is mainly concentrated towards the cen-
ter of the simplex. The second panel shows that when α is close to 1 and the other parameters
are equal, the case of weak dependence is obtained. The mass is concentrated on the vertices of
the simplex. The third panel shows the case of a symmetric dependence structure with the mass
near the corners of the simplex but not along the edges. Finally, the fourth panel shows a case
of an asymmetric dependence structure where the mass tends to be closer to the components
whose corresponding values of β are high.

1.3.2 Tilted Dirichlet model

Extremal dependence models with an angular measure that places mass on the interior, ver-
tices and edges of the simplex are more flexible than those with a measure that concentrates only
on the interior. An example is the asymmetric logistic model versus the symmetric. However,
the former has too many parameters to estimate, so parsimonious models may be preferred.
In order to derive a parametric model for the angular density whose mass concentrates on the
interior of the simplex, Coles and Tawn (1991) proposed the following method. Consider a con-
tinuous function h� : W → [0, ∞) such that mj =

�
Sd

vj h�(v)dv < ∞ for all j ∈ I. Then, the
function

h(w) = d−1(m1w1 + · · · + mdwd)−(d+1)h�{mw/(m1w1 + · · · + mdwd)}, w ∈ W

is a valid angular density. It satisfies the first moment conditions (1.9) and its mass is centered at
(1/d, . . . , 1/d) and integrates to one. For example, if h� is the density of the Dirichlet distribution,
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Figure 1.2: Examples of trivariate angular densities for the Asymmetric Logistic, Tilted Dirich-
let, Pairwise Beta, Hüsler-Reiss and Extremal-t models from top to bottom.

then we obtain the angular density

h(w; θ) =
Γ(

�
j∈I

αj + 1)
d(

�
j∈I

αjwj)d+1

d�

j=1

αj

Γ(αj)

�
αjwj�

j∈I
αjwj

�
αj−1

, w ∈ W, (1.19)
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where θ = {αj > 0}j∈I . This density is asymmetric and it becomes symmetric when α1 =
· · · = αd. Extremes are independent or completely dependent when for all j ∈ I the limiting
cases αj → 0 and αj → ∞ arise. The dependence parameters αj , j ∈ I, are not easy to
interpret. However, Coles and Tawn (1994) draw attention to the quantities r1 = (αi − αj)/2
and r2 = (αi +αj)/2 which can be interpreted as the asymmetry and intensity of the dependence
between pairs of variables.

In this case, the exponent function can not be analytically computed, nonetheless it can still
be evaluated numerically.

The second row of Figure 1.2 illustrates some examples of trivariate angular densities ob-
tained with different sets of the parameters θ = (α1, α2, α3). The plots from left to right have
been obtained using the parameter sets {(2, 2, 2); (0.5, 0.5, 0.5); (2, 2.5, 30); (0.1, 0.25, 0.95)}. The
first panel shows that, when values of the parameters are equal and greater than 1, the mass
concentrates in the center of the simplex leading to strong dependence. The second panel shows
the opposite, when values of α are equal and less than 1, it yields to the case of weak dependence
as the mass concentrates on the vertices of the simplex. The third panel shows the case of an
asymmetric dependence structure and this is obtained when the values of the parameters are
all greater than one. In this specific case the mass tends to spread towards the bottom and top
left edges. The fourth panel illustrates another case of an asymmetric dependence structure, in
this case obtained with all the values of the parameters that are less than 1, leading to a mass
that concentrates along the top right edge and vertices.

1.3.3 Pairwise beta model

The tilted Dirichlet model has been successfully used for applications (e.g. Coles and Tawn,
1991), although it suffers from a lack of interpretability of the parameters. Cooley et al. (2010)
proposed a similar model but with easily interpretable parameters. The definition of their
model is based on a geometric approach. Specifically, they considered the symmetric pairwise
beta function

h∗(wi, wj) = Γ(2βi,j)
Γ2(βi,j)

�
wi

wi + wj

�βi,j−1�
wj

wi + wj

�βi,j−1

, i, j ∈ I,

where wi and wj are two elements of w and βi,j > 0. This function has its center at the point
(1/d, . . . , 1/d) and it verifies the first moment conditions (1.9). Then, the angular pairwise beta
density is defined by summing together all the d(d − 1)/2 possible pairs of variables, namely

h(w; θ) = 2(d − 3)!Γ(αd + 1)
d(d − 1)Γ(2α + 1)Γ{α(d − 2)}

�

i,j∈I,i<j

h(wi, wj), w ∈ W,

where
h(wi, wj) = (wi + wj)2α−1{1 − (wi + wj)}α(d−2)−d+2 h∗(wi, wj)

and θ = (α, {βi,j}i,j∈I) with α > 0. Each parameter βi,j controls the level of dependence between
the ith and the jth components and the dependence increases for increasing values of βi,j . The
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function h∗ is introduced to guarantee that the dependence ranges between weak and strong
dependence. The parameter α controls the dependence of all the variables, when it increases
the overall dependence increases.

Also in this case the exponent function can not be computed in closed form and hence it can
only be evaluated numerically.

The third row of Figure 1.2 provides some examples of trivariate angular densities obtained
with different values of the parameters θ = (α, β1,2, β1,3, β2,3). The plots from left to right have
been obtained using the parameter sets {(4, 2, 2, 2); (0.5, 1, 1, 1); (1, 2, 4, 15); (1, 10, 10, 10)}. The
first panel shows a case of symmetric density obtained with all equal parameters βi,j i, j ∈ I.
A large value of the overall dependence parameter α pulls the mass towards the center of the
simplex, indicating a strong dependence between the variables. On the contrary, the second panel
shows that when the overall dependence parameter is close to zero then the mass concentrates
on the vertices of the simplex, indicating weak dependence among the variables. The third panel
illustrates a case of asymmetric angular density with strong dependence between the second and
third variables that is due to a large value of β2,3. Although the value of the global dependence
parameter α is not large, it is enough to slightly push the mass towards the center of the simplex.
The fourth panel shows a case of symmetric angular density, which is obtained with large values
of the pairwise dependence parameters and an average value of the global dependence parameter.
The mass is mainly concentrated on the center of the simplex and some mass tends to lie near
the centers of the edges.

1.3.4 Hüsler-Reiss model

One of the most popular models is the Hüsler-Reiss (Hüsler and Reiss, 1989). Let X1, . . . , Xn

be n i.i.d. copies of a zero-mean unit variance Gaussian random vector. Assume that for all
i, j ∈ I the pairwise correlation ρi,j;n satisfies the condition

lim
n→∞

log n(1 − ρi,j;n) = λ2
i,j ∈ [0, ∞).

Then, the exponent function of the limit distribution of bn(Mn − bn) for n → ∞, where
bn = (bn, . . . , bn) is a vector of real sequences (see Resnick, 2007, pp. 71-72), is

V (y; θ) =
d�

j=1

1
yj

Φd−1

��
λi,j + log yi/yj

2λi,j

�

i∈Ij

; Λ̄j

�
, y ∈ Rd

+, (1.20)

where θ = {λi,j}i,j∈I , Ij := I \ {j}, Φd−1 is d − 1 dimensional Gaussian distribution with partial
correlation Λ̄j . For all j ∈ I, the elements of Λ̄j are λk,i;j = (λ2

k,j
+ λ2

i,j
− λ2

k,i
)/(2λk,jλi,j),

for k, i ∈ Ij . The parameter λi,j , i, j ∈ I, controls the dependence between the ith and jth

elements of a vector of d extremes. These are completely dependent when λij = 0 and become
independent as λij → ∞.

In this case the angular measure concentrates on the interior of the simplex. Applying (1.11)
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it can be checked (Engelke et al., 2012) that the angular density is

h(w; θ) = φd−1

��

λi,1 + log wi/w1

2λi,1

�

i∈I1

; Λ̄1

� �

w2
1

d�

i=2

(wi2λi,1)
�−1

, w ∈ W,

where φd−1 is d − 1 dimensional Gaussian density with partial correlation matrix Λ̄1.
The second last row of Figure 1.2 provides some examples of trivariate angular densities ob-

tained with different values of the parameters θ = (λ1,2, λ1,3, λ2,3). The plots from left to right
have been obtained using the parameter sets {(0.3, 0.3, 0.3), (1.4, 1.4, 1.4), (1.7, 0.7, 1.1), (0.52, 0.71, 0.52)}.
The first panel shows that with small and equal values of parameters the case of strong depen-
dence among all the variables is obtained. In this case the mass concentrates around the center
of the simplex. On the contrary, the second panel shows that with large and equal values of the
parameters the case of weak dependence is obtained. In this case the mass is placed close to
the vertices of the simplex. The third panel shows that an asymmetric dependence structure is
obtained when the parameter values are different. In this case the mass tends to concentrate
around the vertices and edges that are concerned with the smaller values of the parameters.
The fourth panel shows that a symmetric dependence structure, with respect to the second
component is obtained setting the values of two parameters to be equal. In this case the mass
is equally divided up towards the two vertices and edges that are concerned with the smaller
values of the parameters.

1.3.5 Extremal-t model

The extremal-t model (Nikoloulopoulos et al., 2009) is more flexible than the Hüsler-Reiss
but it is still simple enough. It is easily interpretable and useful in practical applications (see
Davison et al., 2012). Let X1, . . . , Xn be n i.i.d. copies of a zero-center unit scale Student-t
random vector with dispersion matrix Σ and ν > 0 degrees of freedom (d.f.). Then, the exponent
function of the limiting distribution of Mn/an for n → ∞, where an = (an . . . , an) is a vector
of positive sequences (see Demarta and McNeil, 2005), is

V (y; θ) =
d�

j=1

1
yj

Td−1,ν+1

� ��
ν + 1

1 − ρ2
i,j

�� yi

yj

� 1
ν − ρi,j

��

i∈Ij

; Σ̄j

�

, (1.21)

for all y ∈ Rd
+, where θ = ({ρi,j}i,j∈I , ν) and Td−1,ν+1 is a d−1 dimensional Student-t distribution

with ν + 1 d.f. and partial correlation matrix Σ̄j . The correlation parameter ρi,j , i, j ∈ I, drives
the dependence between pairs of variables with the dependence that increases with the increasing
of ρi,j . The parameter ν controls the overall dependence among all the variables. For decreasing
values of ν the dependence increases and vice versa.

The Hüsler-Reiss model is a special case of the extremal-t. Indeed, for all i, j ∈ I if the
correlation parameters of the extremal-t distribution are equal to ρi,j;ν = 1 − λ2

i,j
/ν, then this

distribution converges weakly, as ν → ∞, to the Hüsler-Reiss (see Nikoloulopoulos et al., 2009).
In this case the angular measure places mass on all the subspaces of the simplex. When
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S = I, then applying (1.11) we obtain that the angular density is

h(w; θ) =
td−1,ν+1

���
ν+1

1−ρ
2
i,1

�
(wi/w1)1/ν − ρi,1

��
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2
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(wi/w1)(ν−1)/ν

�−1
, w ∈ W,

where td−1,ν+1 is d − 1 dimensional Student-t density with partial correlation matrix Σ̄1 (e.g.
Ribatet, 2013). When S = {j}, then applying (1.12) we obtain that the mass on the extreme
points of the simplex is

hd,S = Td−1,ν+1

��
−ρi,j(ν + 1)1/2/(1 − ρ2

i,j)1/2
�

i∈Ij

; Σ̄j

�
, j ∈ I.

The last row of Figure 1.2 provides some examples of the trivariate angular densities obtained
with different values of the parameters θ = (ρ1,2, ρ1,3, ρ2,3, ν). From left to right the plots are ob-
tained using the parameter values {(0.95, 0.95, 0.95, 2); (−0.3, −0.3, −0.3, 5); (0.52, 0.71, 0.52, 3);
(0.52, 0.71, 0.52, 2)}. The first panel shows that when the scale parameters ρij are all equal
and close to one and the d.f. ν are small, then the mass concentrates around the center of the
simplex and therefore the dependence is strong. The second panel shows the opposite, when the
correlations are close to zero and the d.f. are high, the mass concentrates around the vertices
of the simplex and hence the dependence is weak. The third panel shows that when two scale
parameters are equal then the dependence structure is symmetric with respect to the second
component and the mass tends to concentrate on the top vertex and the bottom edge and ver-
tices. The fourth panel shows that with the same setting but with smaller d.f. the mass is
pushed towards the center of the simplex and hence the dependence is stronger.

1.4 Estimating the extremal dependence

Several inferential methods have been explored for inferring the extremal dependence. Non-
parametric and parametric approaches are available. In the first case recent advances are Gu-
dendorf and Segers (2011), Gudendorf and Segers (2012) and Marcon et al. (2014), see also the
references therein. Both likelihood based and Bayesian inferential methods have been widely
investigated. Examples of likelihood based methods are the approximate likelihood (e.g. Coles
and Tawn, 1994; Cooley et al., 2010; Engelke et al., 2012) and the composite likelihood (e.g.
Padoan et al., 2010; Davison and Gholamrezaee, 2012). Examples of Bayesian techniques are
Apputhurai and Stephenson (2011), Sabourin et al. (2013), Sabourin and Naveau (2014).

For comparison purposes in the next section the real data analysis is performed using the
maximum approximate likelihood estimation method and the approximate Bayesian method
based on the approximate likelihood. Here is a brief description.

From the theory in Sections 1.2.1, if Y 1, . . . , Y n are i.i.d. copies of Y on Rd
+ with a

distribution in the domain of attraction of a MEVD, then the distribution of the sequence
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{Ri/n, W i, i = 1, . . . , n}, where Ri = Yi,1 + · · · + Yi,d and W i = Y i/Ri, converges as n → ∞ to
the distribution of a PPP with density dψ(r, w) = r−2dr × dH(w).

Assume that x1, . . . , xn are i.i.d. observations from a random vector with an unknown
distribution. Since the aim is estimating the extremal dependence, we transform the data into
the sample y1, . . . , yn with unit Fréchet marginal distributions. This is done by applying the
probability integral transform, after fitting the marginal distributions. Next, the coordinates of
the data-points are changed from Euclidean into pseudo-polar by the transformation

ri = yi,1 + · · · + yi,d wi = yi/ri, i = 1, . . . , n.

Then, the sequence {(ri, wi), i = 1, . . . , n : ri > r0}, where r0 > 0 is a large threshold, comes
approximately from a Poisson point process with intensity measure ψ. Let Wr0 = {(r, w) :
r > r0} be the set of points with a radial component larger than r0, then the number of points
falling in Wr0 is given by N(Wr0) ∼ Pois{1/ψ(Wr0)}. Conditionally to N(Wr0) = m, the points
{(r(i), w(i)), i = 1, . . . , m} are i.i.d. with common density dψ(r, w)/ψ(Wr0). If we assume that
H is known apart from a vector of unknown parameters θ ∈ Θ ⊂ Rp, then the approximate
likelihood of the excess is

L(θ; (r(i), w(i)), i = 1, . . . , m) = e−ψ(Wr0 )ψ(Wr0)m

m!

m�

i=1

dψ(r(i), w(i))
ψ(Wr0)

∝
m�

i=1

h(w(i), θ), (1.22)

where h is a parametric angular density function (e.g. Engelke et al., 2012; Beirlant et al., 2006,
pp. 170–171). In the next section the angular density models described in Section 1.3 are fitted
to the data by the maximization of the likelihood (1.22). For brevity the asymmetric logistic
model is not considered since it has too many parameters. The likelihood (1.22) is proportional
to the product of angular densities, therefore the maximizer of (1.22) is obtained equivalently
by maximizing the log-likelihood

�(θ) =
m�

i=1

log h(w(i), θ). (1.23)

Denote by �θ the maximizer of � and by ��(θ) = ∇θ �(θ) the score function. Since (1.22) provides
an approximation of the true likelihood, then from the theory on model misspecification (e.g.
Davison, 2003, pp. 147–148) it follows that

√
n(�θ − θ) d→ Np(0, J(θ)−1 K(θ) J(θ)−1), n → ∞,

where Np(µ, Σ) is the p-dimensional normal distribution with mean µ and covariance Σ, θ is
the true parameter and

J(θ) = −E{∇θ��(θ)}, K(θ) = Varθ{��(θ)},
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are the sensitive and variability matrices (Varin et al., 2011). In the case of misspecified models,
model selection can be performed by computing the Takeuchi Information Criterion (TIC) (e.g.
Sakamoto et al., 1986), that is

TIC = −2
�
�(�θ) − tr{K(�θ)J−1(�θ)}

�
,

where the log-likelihood, the variability and sensitive matrices are evaluated at �θ. The model
with the smallest value of the TIC is preferred.

In order to derive an approximate posterior distribution for the parameters of an angular den-
sity, the approximate likelihood (1.22) can be used within the Bayesian paradigm (see Sabourin
et al., 2013). Briefly, let q(θ) be a prior distribution on θ, then the posterior distribution of the
angular density’s parameters is

q(θ|w) =
�

m

i=1 h(w(i), θ) q(θ)
�

Θ

�
m

i=1 h(w(i), θ) q(θ) d θ
. (1.24)

With the angular density models in Section (1.3) the analytical expression of q(θ|w) can not
be derived. Therefore, we use a Markov Chain Monte Carlo method for sampling from an ap-
proximation of q(θ|w). Specifically, we use a Metropolis–Hastings simulating algorithm (e.g.
Hastings, 1970). With the pairwise beta models we use the prior distributions described by
Sabourin et al. (2013). With the tilted Dirichlet and Hüsler-Reiss model we use independent
zero-mean normal prior distributions with standard deviations equal to 3 for log αj and log λi,j

with i, j ∈ I. For the extremal-t model we use independent zero-mean normal prior distributions
with standard deviations equal to 3 for sign(ρij)logit(ρ2

ij
) with i, j ∈ I, where sign(x) is the sign

of x for x ∈ R and logit(x) = log(x/(1 − x)) for 0 ≤ x ≤ 1, and a zero-mean normal prior distri-
bution with standard deviations equal to 3 for log ν. Similar to Sabourin et al. (2013), for each
models’ parameter we select a sample of 50 × 103 observations from the approximate posterior,
after a burn-in period of length 30 × 103. These sizes have been determined using the Geweke
convergence diagnostics (Geweke, 1992) and the Heidelberger and Welch test (Heidelberger and
Welch, 1981) respectively.

Model selection is performed using the Bayesian Information Criterion (BIC) (e.g. Sakamoto
et al., 1986), that is

BIC = −2 �(�θ) + p{log m + log(2π)},

where p is the number of parameters and m is the sample size. The model with the smallest
value of the BIC is preferred.

1.5 Real data analysis: Air quality data

We analyze the extremal dependence of the air quality data, recorded in the city centre of
Leeds, UK. The aim is to estimate the probability that multiple pollutants will be simultaneously
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high in the near future. This dataset has been previously studied by Heffernan and Tawn (2004),
Boldi and Davison (2007) and Cooley et al. (2010). The data are the daily maximum of five
air pollutants: particulate matter (PM10), nitrogen oxide (NO), nitrogen dioxide (NO2), ozone
(03), and sulfur dioxide (SO2). Levels of the gases are measured in parts per billion, and those
of PM10 in micrograms per cubic meter. We focus our analysis on the winter season (from
November to February) from 1994 to 1998.

A preliminary analysis focuses on the data of triplets of variables. For brevity we only report
the results of the most dependent triplets: PM10, NO, SO2 (PNS), NO2, SO2, NO (NSN) and
PM10, NO, NO2 (PNN). For each variable, the empirical distribution function is estimated with
the data below the 0.7 quantile and a GPD is fitted to the data above the quantile (Cooley et al.,
2010). Then, each marginal distribution is transformed into a unit Fréchet. The coordinates of
the data-points are transformed to radial distances and angular components. For each triplet,
the 100 observations with the largest radial distances are retained. The angular density models
in Section 1.3 are fitted to the data using the methods in Section 1.4.

The results are presented in Table 1.1. Maximum likelihood estimates are similar to the
estimated posterior means and the estimated posterior standard deviations are typically larger
than the standard errors. For PNS we obtain the same maximum likelihood estimates as Cooley
et al. (2010) with the pairwise beta model, however we use (1.4) to compute the variances of
the estimates and so we attain larger standard errors than they do. Both the TIC and BIC lead
to the same model selection. The Hüsler-Reiss model provides the best fit for all the groups of
pollutants.

From top to bottom, Figure 1.3 displays the angular densities, computed with the posterior
means. From left to right the Hüsler-Reiss, the tilted Dirichlet and the pairwise beta densities
are reported. With PNS, we see that there are many observations along the edge that link
PM10 and NO, revealing strong dependence between these two pollutants. There are also
several observations on the SO2 vertex, reflecting that this pollutant is mildly dependent with
the other two. There are also some data in the middle of the simplex, indicating that there
is mild dependence among the pollutants. Similarly, with NSN we see that there is strong
dependence between NO and NO2, because there are many observations along the edge that
link them. There is a mild dependence between SO2 and the other pollutants, because there is
a considerable amount of data on the O3 vertex. Overall, there is mild dependence among the
pollutants, because there is a small amount of data in the middle of the simplex. With PNN we
see that most of the observations are placed on the middle of the simplex revealing an overall
strong dependence among the pollutants. There is a small amount of data along the edge that
link NO2 and NO and on the PM10 vertex. This reflects more dependence between NO2 and
NO than between NO2 and PM10 and PM10 and NO. All these features are well captured by
the angular densities estimated using the Hüsler-Reiss model.

With this analysis we found that O3 is only weakly dependent with the other pollutants.
This result was also found by Heffernan and Tawn (2004). Then, the second part of the analysis
focuses only on PM10, NO, NO2 and SO2. Now, because a larger number of parameters needs
to be estimated, then the 200 observations with the largest radial distances are selected (see
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Model Method Estimates �(�θ) TIC/BIC
TD �α1 �α2 �α3

PNS L 1.20(0.24) 0.67(0.07) 0.41(0.08) 199.63 −399.21
B 1.22(0.25) 0.68(0.11) 0.42(0.09) −379.90

NSN L 0.85(0.12) 0.39(0.08) 0.90(0.11) 200.84 −401.63
B 0.86(0.15) 0.39(0.09) 0.81(0.15) −382.32

PNN L 1.43(0.28) 1.55(0.31) 1.28(0.20) 186.35 −372.64
B 1.45(0.30) 1.57(0.28) 1.29(0.23) −353.36

PB �β1,2
�β1,3

�β2,3 �α
PNS L 3.21(0.70) 0.47(0.05) 0.45(0.04) 0.68(0.06) 95.95 −191.87

B 3.31(1.13) 0.48(0.11) 0.46(0.10) 0.68(0.09) −166.10
NSN L 0.40(0.03) 3.74(1.77) 0.50(0.05) 0.64(0.05)102.59 −205.13

B 0.40(0.09) 4.00(1.72) 0.51(0.12) 0.64(0.08) −179.36
PNN L 3.75(1.38) 0.71(0.09) 3.18(1.21) 1.35(0.18) 84.31 −168.55

B 3.83(1.75) 0.72(0.16) 3.70(1.80) 1.37(0.20) −142.66
HR �λ1,2

�λ1,3
�λ2,3

PNS L 0.65(0.06) 0.90(0.04) 0.98(0.03) 234.51 −468.93
B 0.65(0.04) 0.90(0.04) 0.98(0.04) −449.67

NSN L 1.00(0.04) 0.56(0.04) 0.96(0.04) 251.80 −503.54
B 1.00(0.04) 0.57(0.03) 0.97(0.04) −484.25

PNN L 0.60(0.05) 0.70(0.04) 0.51(0.03) 198.23 −396.38
B 0.60(0.03) 0.70(0.04) 0.51(0.03) −377.11

ET �ρ1,2 �ρ1,3 �ρ2,3 �ν
PNS L 0.87(0.02) 0.74(0.03) 0.66(0.03) 3.89(0.51)152.13 −304.18

B 0.87(0.02) 0.77(0.02) 0.72(0.01) 4.02(0.35) −275.13
NSN L 0.58(0.04) 0.87(0.02) 0.64(0.03) 3.50(0.01)141.92 −283.80

B 0.72(0.01) 0.89(0.02) 0.73(0.02) 4.00(0.33) −242.50
PNN L 0.88(0.02) 0.82(0.02) 0.89(0.01) 3.70(0.78)180.74 −361.38

B 0.86(0.02) 0.78(0.03) 0.87(0.02) 3.21(0.43) −330.33

Table 1.1: Summary of the extremal dependence models fitted to the UK air pollution data.
For each angular density model the estimation results of the triplets of pollutants are reported.
L and B denote the approximate likelihood and Bayesian inferential method. Estimates are
maximum likelihood (standard errors) and posterior means (standard deviations).

Tilted Dirichlet Pairwise Beta Hüsler-Reiss extremal-t
�(�θ) 654.3 402.5 762.7 532.3
TIC −1308.6 −805.0 −1525.3 −1064.5
BIC −1280.0 −753.4 −1475.5 −974.7

Table 1.2: Summary of the extremal dependence models fitted to the UK air pollution data.

Cooley et al., 2010). Table 1.2 presents the estimation results. For brevity we only report the
maximum value of the log-likelihood, the TIC and the BIC. The Hüsler-Reiss model provides
the smallest values of the TIC and BIC, revealing again that it better fits the pollution data.
Accordingly hereafter calculations will be made using this model and the estimates obtained
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Figure 1.3: Estimated angular densities in logarithm scale. Dots represent the largest 100
observations.

with the Bayesian approach.

We summarize the extremal dependence of the four variables using the extremal coefficient
(1.13) and the coefficient of tail dependence (1.16). Specifically, �ϑ = 2.267 with a 95% credible
interval is equal to (1.942, 2.602) and �χ = 0.242 with a 95% credible interval is (0.150, 0.361).
These results suggest a strong extremal dependence among the pollutants. The estimated ex-
tremal dependence can be used in turn to estimate the probability that multiple pollutants ex-
ceed a high threshold. Consider a value y whose radial component is a high threshold r0. Then,
the probability of falling in the failure region (1.14) is approximately equal to the right hand side
of (1.18). Because the exponent function is related to the tail function by the inclusion-exclusion
principle, then using (1.20) we have

pr{Y1 > y1, . . . , Yd > yd} ≈
d�

j=1

1
yj

Φ̄d−1

��
λk,j + log yk/yj

2λk,j

�

k∈Ij

; Λ̄j

�
, (1.25)
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Event 1 Event 2 Event 3
Excess / n 18/528 14/562 12/528
Emp. Est. 0.034 (0.019, 0.050) 0.025 (0.012, 0.038) 0.023 (0.010, 0.035)
Mod. Est. 0.038 0.030 0.030

Table 1.3: Probability estimates of excesses. The first row reports the number of excess and
the sample size. The second row reports the empirical estimates and between brackets the 95%
confidence intervals obtained with the normal approximation. The third row reports the model
estimates.

where Φ̄d−1 is the survival function of the multivariate normal distribution (Nikoloulopoulos
et al., 2009). Similar to Cooley et al. (2010) we define three extreme events: {PM10 > 95, NO >

270, SO2 > 95}, {NO2 > 110, SO2 > 95, NO > 270} and {PM10 > 95, NO > 270, NO2 >

110, SO2 > 95}. Then, we compute probability (1.25) using in place of the parameters their
estimates. Table 1.3 reports the results. For the three events the estimates fall inside the 95%
confidence intervals highlighting the ability of the model to estimate such extreme events.

The right-hand side of (1.25) can also be used for estimating joint return levels. In the
univariate case see Coles (2001, pp.49–50). In the multivariate case different definitions of
return levels may be available (Johansen, 2004). Let J ⊂ I, {xi, i ∈ I\J} be a sequence of fixed
high thresholds and p ∈ (0, 1) be a fixed probability. Given a return period 1/p, we define joint

Figure 1.4: Joint return level plots of single components NO2 and PM10 and of the two com-
ponents (SO2, NO2) and (NO, PM10)
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return levels the quantiles {yj;p, j ∈ J} that satisfy the equation

p = pr(Yj > yj;p, Yi > xi, j ∈ J, i ∈ I\J).

Figure 1.4 displays univariate and bivariate joint return level plots. When J = {j}, with
j ∈ I, then the joint return level plot displays yj;p against 1/p for different values of p. When
J = {i, j}, with i, j ∈ I, then for different values of 1/p the contour levels of (yi;p, yj;p) are
displayed. With solid lines, the top-left and right panels of Figure 1.4 report the estimated
return levels of NO2 and PM10 jointly to the extreme events {SO2 > 95, NO > 270} and
{NO > 270, NO2 > 110, SO2 > 95} respectively. The dots are the empirical estimates and the
red solid lines are the pointwise 95% confidence intervals. These are computed using the normal
approximation when p > 0.02 and using exact binomial confidence intervals when p < 0.02. The
bottom-left and right panels report the contour levels of the return levels for (NO2, SO2) and
(PM10, NO) jointly to events {NO > 270} and {NO2 > 110, SO2 > 95} respectively.

The joint return level can be interpreted as follows. For example, from the top-right panel
we have that the 50 years joint return level of PM10 is 166. Concluding, we expect that PM10
will exceed the level 166 together with the event that NO, SO2 and NO2 simultaneously exceed
the levels 270, 95 and 110 respectively, on average every 50 years.

1.6 Computational details

The figures and the estimation results have been obtained using the free software R (Team,
2013) and in particular the package ExtremalDep, available at https://r-forge.r-project.org/projects/extremaldep/.
Bayesian estimation is obtained using and extending some routines of the package BMAmev. The
left and middle panels of Figure 1.1 were obtain using the routines scatter3d and polygon3d
of the package plot3D.



Chapter 2

Max-stable Processes

2.1 Introduction

In the previous chapter, multivariate extreme value theory was applied to pollution data
from the city of Leeds, UK, in order to analyze the extremal dependence between five differ-
ent air pollutants. The goal was to evaluate the probability of some air pollutant levels to be
concurrently large, which may have a strong negative impact on the population and its environ-
ment. However some environmental phenomena are spatial by nature, which brings additional
challenges that cannot be resolved by the multivariate analysis of extremes only. This justifies
the use of stochastic processes and the analysis of their extreme behaviour as it generalizes mul-
tivariate analysis of extremes to a whole area of interest. This topic is considered as the study of
infinite-dimensional extremes. For example, consider the temperature over a region S defined as
{X(s)}s∈S and suppose X1, X2, . . . i.i.d. replicates of X representing the daily maxima (minima)
temperature across S. It might be of interest to predict where, on S, extreme temperatures are
expected to happen and what maximum (minimum) value they could reach. For example, this
can be summarized by the study the extremal behaviour of the aggregate process

�

S
X(s)ds,

or, under the assumption that there is a large number n of observations of the process, by the
estimation of a probability to exceed a deterministic function t across space such as

Pr(X(s) > t(s), ∀s ∈ S).

The function t represents the critical temperature level over S. Typically, authorities often define
a heat wave when the minimum temperature at night exceeds some high threshold (given by t)
for more than three consecutive days. It is most likely that the observed processes don’t reach
the critical level of temperature t causing trouble when estimating the tail distribution of the
processes. Limit theory is then introduced in order to bypass this problem, i.e. we consider the
case where n → ∞. The assumption that the observed temperatures are far from the critical
level, is still required in the limiting case. This means that t is actually a function of n that



48 Chapter 2. Max-stable Processes

approaches the upper bound of the distribution of X as n gets large and it leads us to study the
limit theory for the pointwise maxima of i.i.d. random processes.

This limit theory will be introduced on the set [0, 1] for convenience but most results can
be applied to any compact Euclidean space. We define by C[0, 1] the space of all continuous
functions on [0, 1] equipped with the uniform metric d∞(f, g) ≡ �f − g�∞ = supx |f(x) − g(x)|.
Since the set of continuous functions on [0, 1] is bounded, then (C[0, 1], d∞) is a metric space
that is separable and complete.

Throughout this chapter, we consider a stochastic process X on C[0, 1], meaning that it
has continuous sample paths, defined by {X(s)}s∈[0,1] with continuous marginal distribution
function Fs(x) = Pr(X(s) ≤ x). Assume also that there exists normalizing constants given as
two continuous functions of s, an(s) positive and bn(s) such that

{ηn(s)}
s∈[0,1]

:=
�

max
1≤i≤n

Xi(s) − bn(s)
an(s)

�

s∈[0,1]

D→ {η̃(s)}s∈[0,1], (2.1)

in C [0, 1], where X1, X2, . . . are i.i.d. replicates of X and η̃(s) has non-degenerate marginal
distributions. We denote the marginal distribution by Gs(x) = Pr(η̃(s) ≤ x). Note that if the
process X behaves badly, there might not exists normalizing constants an(s) and bn(s) such that
the rescaled maxima converges weakly in C[0, 1].

The notation D→ defines the convergence in distribution or weak convergence in a space to
be specified. In (2.1), convergence occurs in the C[0, 1] space, as the maximum of continuous
stochastic processes, rescaled by continuous functions, is still a continuous process. Note the
analogy with the multivariate case given in (1.1). Taking the temperature field example men-
tioned above with S = [0, 1], the replicates Xi(s) of the process {X(s)}s∈[0,1] can be seen as the
temperatures observed at time i at a location s in [0, 1].

Remark 2.1. Max-stable processes are built on the fundamental assumption (2.1) which relies
on the notion of weak convergence in C[0, 1]. Billingsley (1968, Theorem 8.1) states that the
process ηn converges in C[0, 1] if its finite-dimensional distribution converges and the tightness
criterion is met. Tightness is proved using Prohorov’s theorem applied to the characterization
of compact sets given by Arzelá-Ascoli theorem.

As explained in Chapter 1, the main goal is to derive the dependence structure and a com-
mon choice is to standardize the margins in order to be only focusing on this structure. This
standardization procedure of the marginal distributions is detailed in Section 2.2. Some theo-
retical results on the limiting distribution are presented, leading to the definition of max-stable
processes. The specification of the margins helps to define, in Section 2.3, the exponent mea-
sure which is used to characterize the dependence structure. Further, two characterizations of
these max-stable processes will be given as well as numerical summaries to assess the quantity
of spatial dependence (Section 2.4 and 2.5). Finally some parametric models will be listed in
Section 2.6 and their characteristics highlighted.
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2.2 On the form of the marginal distributions

In section 2.1 we assumed that the marginal distributions of X were continuous and given by
Fs. Also, the replicates X1, X2, . . . have the same marginal distributions. If there are sequences
of continuous functions such that the limiting result (2.1) occurs, then such convergence leads
to convergence also of the marginal distributions, that is

lim
n→∞

Pr
�

max
1≤i≤n

Xi(s) − bn(s)
an(s) ≤ x

�
= lim

n→∞
Pr

�
X1(s) − bn(s)

an(s) ≤ x, . . . ,
Xn(s) − bn(s)

an(s) ≤ x
�

= lim
n→∞

Pr
�

X(s) − bn(s)
an(s) ≤ x

�n

= lim
n→∞

F n

s (an(s)x + bn(s))

= Gs(x) ≡ Pr (η̃(s) ≤ x) (2.2)

uniformly for s ∈ [0, 1]. If the convergence results (2.1) and (2.2) hold, then for all fixed s ∈ [0, 1],
Gs must be a GEV distribution by construction. It is given by

Gs(x) = exp
�

−
�

1 + ξ(s)(x − µ(s))
σ(s)

�−1/ξ(s)
�

, with 1 + ξ(s)(x − µ(s))
σ(s) > 0. (2.3)

When the limiting result applies, we say that F is in the maximum domain of attraction of G.

Define two extreme value cdfs G and G� as being of the same type if G�(x) = G(ax + b), for
some a > 0 and b and for all x and where G is a Generalized Extreme Value (GEV) distribution
(Fisher and Tippett, 1928; Gnedenko, 1943). Using the parametrization of the extremal types
given by Misés (1936) and Jenkinson (1955) we consider that the Type I, II and III distributions
respectively refer to the Gumbel, Fréchet and Weibull distributions.

Without loss of generality, we assume for simplicity that the location µ(s) and scale σ(s)
functions are equal to the constants 0 and 1 for all s ∈ [0, 1]. Consequently, taking the logarithm
of (2.2) with the GEV assumption and using a first order Taylor expansion we obtain

lim
n→∞

n {1 − Fs(an(s)x + bn(s))} = (1 + ξ(s)x)1/ξ(s), (2.4)

where ξ is a continuous function of s called the index function. Due to the monotonicity property
of distribution functions, both left and right hand side of (2.4) are monotonic functions and hence
have an inverse. Let Us be the left-continuous inverse of 1/(1 − Fs), we can provide a similar
uniform convergence result as (2.4) for s ∈ [0, 1] considering the inverse functions. Then for
u ∈ (0, ∞), this yields of

lim
n→∞

Us(nu) − bn(s)
an(s) = uξ(s) − 1

ξ(s) . (2.5)
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Thus, an equivalence arises between (2.1), (2.5) and
�

max
1≤i≤n

1
n{1 − Fs(Xi(s))}

�

s∈[0,1]

D→
�

(1 + ξ(s)η̃(s))1/ξ(s)
�

s∈[0,1]
.

Set {η}s∈[0,1] := {(1 + ξ(s)η̃(s))1/ξ(s)}s∈[0,1], and denote by Gs,0(x) = Pr(η(s) ≤ x), then
for all fixed s in [0, 1], Gs,0(x) is a unit Fréchet distribution. Furthermore, a stochastic process
Z on C[0, 1], with non-degenerate margins, is said to be max-stable if there exist continuous
normalizing functions an(s) > 0 and bn(s) such that

{Z(s)}s∈[0,1]

D=
�

max
1≤i≤n

Zi(s) − bn(s)
an(s)

�

s∈[0,1]

,

where Zi are independent replicates of Z. de Haan (1984) proved that when the limiting process
in (2.1) exists then this must be a max-stable process.

Hereafter we assume to work with the process η(s) that has unit Fréchet marginal distri-
butions which is often named simple max-stable process. Hence the normalizing constants are
independent of s and, applying a classical result from univariate extreme value theory, given by
an(s) = n and bn(s) = 0.

2.3 The dependence structure

According to relation (2.5) we can focus only on positive functions in C[0, 1]. Hence, in this
section, we investigate the dependence structure of simple max-stable processes based on this
restriction. The link with the analysis of multivariate extremes dependence from Chapter 1 will
be highlighted.

Denote by C+[0, 1] the set of strictly positive functions that belongs to C[0, 1]. Set the
normalizing functions an(s) = n and bn(s) = 0, and let Y1, Y2, . . . be i.i.d. copies of a stochastic
processes Y in C+[0, 1] and in the domain of attraction of a simple max-stable process, that is

� 1
n

max
1≤i≤n

Yi(s)
�

s∈[0,1]

D→ {η(s)}s∈[0,1], (2.6)

in C+[0, 1], where η is unit Fréchet distributed for s ∈ [0, 1] and thus is simple max-stable.
When (2.6) occurs then the following facts follow. Suppose B a Borel set of C+[0, 1], then

(2.6) is equivalent to

Pr
� 1

n
max

1≤i≤n

Yi(s) ∈ B
�

→ Pr(η(s) ∈ B) = G(B), n → ∞,

where G represents the unit Fréchet distribution. Let F (B) = Pr(Y (s) ∈ B), then we have

Pr
� 1

n
max

1≤i≤n

Yi(s) ∈ B
�

= F n(nB)
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and thus
n(1 − F (nB)) → − log G(B).

Define the sequence of measures νn as

νn(Bc) = n(1 − F (nB))

= nPr(Y /∈ nB)

= nPr(n−1Y ∈ Bc),

hence we have νn(B) = nPr{n−1Y ∈ B}, where B is a Borel set contained in C+[0, 1]. Note
that the measure νn verifies the sub-additivity property and thus is well defined (Schilling, 2005,
Proposition 4.3, p.23).

Let C̄+
� [0, 1] = (0, ∞] × C̄+

1
[0, 1], where (0, ∞] is equipped with the metric �(x, y) := |1/x −

1/y| and C̄+

1
[0, 1] represents the space of positive functions in C[0, 1] with supremum norm equal

to 1.

Theorem 2.2 (de Haan and Ferreira (2006, Theorem 9.3.1)). Let Y, Y1, Y2, . . . be i.i.d. stochastic
processes in C+[0, 1], if (2.6) holds, then

νn

D→ ν

in C̄+
� [0, 1]. Equivalently, for every Borel set B in the space of positive functions of C[0, 1] such

that inf{�f�∞ : f ∈ B} > 0 and ν(∂B) = 0, where ∂B denotes the boundary of the set B, then
we have

lim
n→∞

νn(B) = ν(B).

Moreover the relation between the probability distribution of η and the measure ν is that for
m = 1, 2, . . .,

Pr {η ∈ AK,x} = exp
�

−ν
�
Ac

K,x

��
(2.7)

with, for K = (K1, . . . , Km) compact sets and x = (x1, . . . , xm),

AK,x :=
�

f ∈ C̄+
� [0, 1]; f(t) < xi for t ∈ Ki, i = 1, 2, . . . , m

�
.

Note that this weak convergence result is established in C̄+
� [0, 1], a complete and separable

metric space (CSMS), in which the space formed by the sequence of measures νn is relatively
compact (see Daley and Vere-Jones (1988)).

Identically as in multivariate case (see Section 1.2.1, Chapter 1), the measure ν is called
the exponent measure of the simple max-stable process which has the equivalent homogeneity
property as (1.6). For any Borel set B in {f ∈ C[0, 1] : f ≥ 0} such that inf{�f�∞ : f ∈ B} > 0
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and ν(∂B) = 0, and any a > 0

ν(aB) = a−1ν(B). (2.8)

Now, applying a one-to-one transformation to polar coordinates (equivalent to the transfor-
mation (1.7) in the multivariate case), Q : C̄+[0, 1] → (0, ∞] × C̄+

1
[0, 1], defined by

Q(f) = (�f�∞, f/�f�∞),

yields a spectral measure given as follows. Let W be a Borel set in C̄+

1
[0, 1] and for r > 0 define

the Borel set Br,W ⊂ C̄+[0, 1] by
Br,W := (r, ∞] × W,

and thus we have the relationship

Br,W = r(1, ∞] × W := rB1,W .

The measure induced by the transformation Q is the product measure ψ := ν ∗Q, i.e. ψ(Br,W) =
η{Q←(Br,W)} and using the homogeneity property (2.8) we get

ψ(Br,W) = ν{f ∈ C̄+[0, 1] : �f� > r, f/�f� ∈ W}

= ν{rg ∈ C̄+[0, 1] : �g� > 1, g/�g� ∈ W}

= r−1H �(B1,W) (2.9)

where r−1 represents the radial measure and H �(B1,W) := ν{g ∈ C̄+[0, 1] : �g� > 1, g/�g� ∈ W}
is a measure defined for each Borel set W in C̄+

1
[0, 1], called the spectral measure.

This spectral decomposition provides the basis structure with which different representations
of simple max-stable processes can be derived. There exist two main characterizations of such
processes and both are detailed in the next section.

2.4 Characterization of max-stable processes

In this section we still focus on the simple max-stable process given by (2.6), and use the spec-
tral decomposition of its dependence structure derived in the previous section. Two canonical
representations of such processes are introduced with the aim of facilitating their construction.
The parameter set [0, 1] is no longer considered here and replaced by any compact set Euclidean
space: S ⊂ Rd. Until now the choice of [0, 1] was purely for convenience and it is easy to see that
the set of interest is not essential. Thus, in order to be the most general, the following results
are given in the set S. Advantages and disadvantages of both representations are discussed at
the end of this section.

A first characterization comes from the spectral representation of de Haan (1984) (see also
Giné et al. (1990); Penrose (1992)) given in the following theorem
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Theorem 2.3. Let {(ζi, ψi), i ∈ N} denote the points of a Poisson point process on (0, ∞) ×
C+(S), where ψi, i ∈ N, are sequences of non-negative continuous functions on S, with intensity
ζ−2dζρ(dψ) for some locally finite measure ρ such that

�
ψ(s)ρ(dψ) = 1, s ∈ S.

The max-stable process {η(s)}s∈S, in (2.6), has the same distribution as
�

max
1≤i

ζiψi(s)
�

s∈S
. (2.10)

Remark 2.4 (de Haan (1984)). The above representation can also be expressed using a family of
deterministic functions acting on a homogeneous Poisson point process on (0, ∞) × T,T ⊂ Rd.
Specifically, there exist non-negative measurable functions fs(t) where s ∈ S and t ∈ T with

(i) for each t ∈ T, fs(t) is continuous in s,

(ii) for each s ∈ S, �

T
fs(t)dt = 1.

(iii) �

T
sup
s∈S

fs(t)dt < ∞

such that the max-stable process {η(s)}s∈S, in (2.6), has the same distribution as
�

max
1≤i

ζifs(Ti)
�

s∈S
(2.11)

where {(ζi, Ti)}1≤i denotes the points of a Poisson point process on (0, ∞) × T with intensity
measure ζ−2dζ × dρ(t). The function f is often called the spectral function.

The ζi component can be interpreted as the intensity of an event i centred at Ti whose shape
at s is given by fs(Ti). Furthermore, at any location s ∈ S, the aggregated effects of all events
centred a different locations t in T must be equal to one (condition (ii)). It is worth noting that
taking S = T and selecting a family of functions of the form {f(s − t) : s, t ∈ S} where f is
an appropriate probability density function, would be convenient and easily interpretable (see
for example Smith (1990)). Moreover the above spectral representation is not unique: different
measure ρ might lead to the same max-stable process (de Haan and Ferreira, 2006, Remark
9.6.2). In applications, a choice of the spectral function has to be made. An example of the
impact of a wrong choice is established in Kabluchko et al. (2009) and a criteria for the choice
of spectral function is first investigated by Oesting et al. (2013).

A second spectral characterization of max-stable processes was given later by Schlather
(2002), motivated by a rainfall example which will be detailed later on. The aim of this new
representation is to be able to asses a broader range of extremal events. It is summarized in the
theorem below.
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Theorem 2.5 (Schlather (2002, Theorem 2)). Let {ζi}1≤i be the points of a Poisson process on
(0, ∞) with intensity ζ−2dζ. Suppose that there exists a stochastic process W with continuous
sample paths such that E[W +(s)] = 1 for all s ∈ S where W + denote the positive part of W ,
that is W +(s) = max(0, W (s)), s ∈ S. Then the max-stable process {η(s)}s∈S has the same
distribution as

�
max
1≤i

ζiW
+

i
(s)

�

s∈S
, (2.12)

where Wi are independent copies of W .

Note that, in (2.12), if we define the shape of the i-th event by W +

i
(s) = fs(Ti) then

we recover (2.11). Furthermore, according to Lemma 3 from Schlather (2002), one may take
ζi = 1/(E1 + E2 + · · · + Ei) where {Ei}1≤i are i.i.d. standard exponential random variables,
independent of {Wi}1≤i. The following lemma provides the finite dimensional distributions of
max-stable processes and shows that both representations agree with each other.

Remark 2.6. Stoev and Taqqu (2005) introduced the concept of extremal stochastic integrals
producing a more general representation of max- stable processes (see also Wang and Stoev
(2010)).

Lemma 2.7. Let s1, . . . , sk ∈ S and x(s1), . . . , x(sk) = x1, . . . , xk > 0, the finite dimensional
distributions of a max-stable process η derived from Schlather’s characterization (2.12) are

Pr(η(s1) ≤ x1, . . . , η(sk) ≤ xk) = exp
�

−E
�

max
j≤k

W +(sj)
xj

��

,

whereas using de Haan’s characterization (2.11)

Pr(η(s1) ≤ x1, . . . , η(sk) ≤ xk) = exp
�

−E
�

max
j≤k

fsj (Tj)
xj

��

.

Proof. In the context of Theorem 2.5, let P denote the probability measure of W +, we have:

Pr(η(s1) ≤ x1, . . . , η(sk) ≤ xk)

= Pr
�

max
1≤i

ζiW
+

i
(s1) ≤ x1, . . . , max

1≤1
ζiW

+

i
(sk) ≤ xk

�

= Pr
�
ζiW

+

i
(s1) ≤ x1, . . . , ζiW

+

i
(sk) ≤ xk; for i = 1, 2, . . .

�

= Pr
�

ζi ≤ min
j≤k

xj/W +

i
(sj); for j = 1, . . . , k and i = 1, 2, . . .

�

This corresponds to the probability of the event that no points of the Poisson process are above
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the graph of minj≤k xj/W +(sj). Hence this is equal to

��

S

�

ζ>minj≤k xj/W +(sj)

ζ−2dζdP

�0

/0! × exp
�

−
�

S

�

ζ>minj≤k xj/W +(sj)

ζ−2dζdP

�

= exp
�

−
�

S
max
j≤k

W +(sj)
xj

dP

�

= exp
�

−E
�

max
j≤k

W +(sj)
xj

��

.

Secondly, the argumentation is identical in the context of Theorem 2.3. Consider the set

B = {(ζ, t) : ζfs(t) > x(s), for at least one s ∈ S}.

The event {η(s1) ≤ x1, . . . , η(sk) ≤ xk} occurs if and only if there are no points of the Poisson
process that lie in B. The measure of B is

�

T

�

ζ>minj≤k xj/fsj (t)

ζ−2dζdρ(t) = −
�

T
max
j≤k

fsj (t)
xj

dρ(t).

Hence, Pr(η(s1) ≤ x1, . . . , η(sk) ≤ xk) = exp
�

−
�
T maxj≤k

fsj (t)

xj
dρ(t)

�
, which completes the

proof.

From Lemma 2.7 it is easy to see that, under both representations, the marginal distributions
are unit Fréchet. The characterization of de Haan by (2.11) has the nice advantage of allowing
an easy interpretation through storms. This will be developed in the next section (see Smith
(1990)). Schlather’s representation (2.12) doesn’t allow such a nice and direct interpretation
but we showed that it contains de Haan’s characterization. Possible variations in the shape of
the event do exist using Schlather’s representation as the function f in (2.11) is replaced by a
stochastic process.

In Chapter 1 the spectral measure was presented as a natural object to use when handling
max-stable random vectors. However it is not as straightforward when dealing with stochastic
processes as the dimension of the spaces on which the spectral measures are defined might not
be the same. In this sense, using spectral functions (i.e. using the characterization of Theorem
2.3) might be easier as they are all defined on the same space.

According to representation (2.10), the max-stable process η is constructed as the pointwise
maximum of an infinite number of points. Exact simulation of the process is then in general
not straightforward. Nevertheless, not all the points (ζ, ψ) are necessary for the construction of
η since only the maximum over all functions ζψ counts. de Haan and Ferreira (2006, Corollary
9.4.4) demonstrate that, under mild conditions, only a finite number of points (ζ, ψ) is required
to evaluate the process at a point s ∈ S. Furthermore Schlather (2002) and Oesting et al. (2013)
provided stopping rules which led to exact simulations.

Being able to simulate max-stable processes is important. For example, when in high-
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dimensions (or dimensions higher than 2), the marginal distributions of the process might not
have a close form and is then addressed by simulations. Simulations are also used in applications
when some characteristics of a parametric model cannot be calculated (Buishand et al. (2008)
and Blanchet and Davison (2011)).

The emphasis on the key role of simulations is also put when trying to do predictions at
unobserved locations. This is done estimating the distribution at a location of interest (unob-
served) conditionally to the observations. This requires simulation procedures commonly called
conditional simulations (see Dombry and Eyi-Minko (2013) and Dombry et al. (2013)).

Parametric models arise from the characterizations (2.10) and (2.12). The mostly widely used
models are listed chronologically and their features (such as their distributions) are described in
Section 2.6.

2.5 Summary measures for extremal dependence

When modelling extremes of a stochastic process, information about the dependence is es-
sential, especially as this summarizes the evolution of the dependence through space or time.
Quite often the study area is large enough to make the assumption that the marginal distribution
varies across the area and characterizes the large scale effects. Small scale effects are due to the
spatial nature of individual events and their influence on multiple locations, this corresponds to
the dependence structure.

This section relies on the dependence measure given in Section 2.3. The dependence structure
between the components of a max-stable random vector is either provided through the exponent
measure ν or through its spectral decomposition (2.9), i.e. by the spectral measure H �. However,
simpler and easier interpretable summary measures of the dependence are needed.

One of the main metric that captures dependence is the well-known extremal coefficient func-
tion which appeared in Smith (1990) and was later developed in Schlather and Tawn (2003).
It consists of an extension of the definition of the extremal coefficient introduced in the mul-
tivariate case and given in (1.13) and now depends on the separation between two parameter
values where the process is evaluated. Recall that for all s1, . . . , sk ∈ Rd and x1, . . . , xk ∈ R+,
the finite-dimensional distribution function is

Pr (η(s1) ≤ x1(s1), . . . , η(sk) ≤ xk(sk)) = exp
�

−
�

T
max
j≤k

fsj (t)
xj(sj)dν(t)

�

= exp{−V (x1(s1), . . . , xk(sk)}.

Considering that η(·) is stationary, h ∈ Rd and using the homogeneity property of the exponent
measure (2.8), for all x ∈ R+, we can write

Pr{η(s1) ≤ x, . . . , η(sk) ≤ x} = exp{−V (1, . . . , 1)/x} = exp{−ϑ(s1, . . . , sk)/x},
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where
ϑ(s1, . . . , sk) =

�

T
max
j≤k

{fsj (t)}dν(t), ∀h ∈ Rd.

Erhardt and Smith (2012) showed the use of high-order extremal coefficient can be meaningful
and recently Genton et al. (2015) highlighted the possibility of working with an extended version
of the extremal coefficient when focusing on multivariate spatial extremes. However, the pairwise
extremal coefficient function is often taken into account in the literature and can be considered
as a function of the separation h between two parameter values. It then reduces to

Pr{η(s) ≤ x, η(s + h) ≤ x} = exp{−V (1, 1)} = exp{−ϑ(h)/x},

where
ϑ(h) =

�

T
max{fs(t), fs+h(t)}dν(t).

This pairwise coefficient ranges between 1 (complete dependence) and 2 (independence). Prop-
erties of this extremal function are listed in Schlather and Tawn (2003, Theorem 3). While the
extremal coefficient represents the dependence of the process at two different parameter values
where at least one component exceeds a high threshold, considering the upper tail dependence,
previously introduced in the multivariate case by (1.16), we can represent the dependence of the
process at two different parameter values where both components exceed a high threshold.

It is straightforward to prove the following relationship

χ(h) = 2 − ϑ(h).

Other summaries of the spatial dependence are present in the literature. In geostatistics,
the study of the spatial dependence structure of a process, generally Gaussian, is assessed by its
semi-variogram

γ(s1 − s2) = 1
2E[(Z(s1) − Z(s2))2], s1, s2 ∈ S. (2.13)

However it requires some assumptions (for instance finiteness of the mean), which might not
always be met when focusing on extremes (for example for unit Fréchet distributions). Hence
some variogram based approaches have recently emerged to bypass these assumption barriers.
An important work based on madograms was done by Cooley et al. (2006). The drawbacks
of madograms are identical to the ones for variograms, hence Cooley et al. (2006) started first
by considering GEV distributions with shape parameter less than one in order to ensure the
finiteness of first and second order moments. The choice of the GEV parameters being arbitrary,
a second summary was established by replacing the value of the max-stable random field in the
madogram approach by a function of it. This function being the unit Fréchet distribution this
new summary is called the F-madogram and it exhibits clear links with the extremal coefficient.
Based on the fact that this last madogram approach doesn’t characterize the full dependence of
a random field, Naveau et al. (2009) introduce the λ-madogram.
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2.6 Max-stable models

Based on (2.10) and (2.12), some parametric models for spatial extremes are created. Here we
list of the most encountered models in the literature, provide their finite dimensional distribution
in dimension 2 or higher and provide an interpretation when possible. The dependence structure
of each and every of these models will be summarized by their extremal coefficient and also their
angular density; examples will be provided.

2.6.1 The Smith model

First model to appear in the seminal unpublished technical report from Smith (1990), this
model’s foundations lay on de Haan’s spectral representation (2.11) and has the big advantage
to allow an easy interpretation as a storm model. Here T denotes the space of storm centers
and the measure ν represents the distribution of the storms over T. The shape of a given storm
centered at ti is given by f(·, ti) and its magnitude is ζi. Then ζif(s, ti) can be interpreted as
the amount of rainfall received at location s ∈ S for a storm of magnitude ζi and centered at ti.
The process η(s) denotes the maximum rainfall received at location s over an infinite number
of independent storms.

Following the suggestion from the previous section which says that a convenient choice is to
consider where S = T and f an appropriate density function. Smith takes S = T = Rd, f a
d-variate normal probability density function with mean 0 and covariance matrix Σ and lets ν

to the Lebesgue measure.

This model is often called the Gaussian extreme value model or simply the Smith model. If we
consider k parameter values {s1, . . . , sk} in S = Rd, then the k-dimensional cdf of (η(s1), . . . , η(sk))
at X = (x1, . . . , xk)� ∈ Rk

+, xi ≡ xi(si) ∈ R+, ∀i, is given by

Pr (η(s1) < x1, . . . , η(sk) < xk) = exp




−
k�

j=1

x−1

j
Φk−1(q(j)(x); Σ(j))




 , (2.14)

where Φk−1 is the k−1 dimensional normal cdf and q(j)(x) =
�
q(j)

1
(x), . . . , q(j)

j−1
(x), q(j)

j+1
(x), . . . , q(j)

k
(x)

��
∈

Rk−1, q(j)
p (x) = q(j)

p /2 − log(xj/xp) for j, p = 1, . . . , k and q(j)
p = (sj − sp)�Σ−1(sj − sp). More-

over Σ is a d × d positive definite matrix and Σ(j) =
�
sj1I�

k−1 − S−j

��
Σ−1

�
sj1I�

k−1 − S−j

�
, is a

(k − 1) × (k − 1) matrix where S = (s1, . . . , sk) ∈ Rd×k, S−j = S\sj ∈ Rd×(k−1) for j = 1, . . . , k

and 1Ik−1 is the k − 1 dimensional indicator function.

The associated extremal coefficient function is

ϑ(s1, . . . , sk) =
k�

j=1

Φk−1(q(j)/2; Σ(j)),

where the components of q(j) are q(j)
p for j, p = 1, . . . , k. The deduced pairwise extremal coeffi-
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cient is

ϑ(h) = ϑ(s, s + h) = 2Φ1

�√
h�Σ−1h

2

�

, h ∈ Rd. (2.15)

Furthermore, from the finite-dimensional distribution (2.14) the spectral density is derived by

h(w; θ) = φk−1(q(1)(w); Σ(1))




w2
1

k�

j=2

wjq(1)

j




 ,

where φk−1 represents the k − 1 dimensional normal density. The expression of the angular
density given above is equivalent to the angular density of the Hüsler-Reiss model given in
Section 1.3.4 in the multivariate setting where λj,p is replaced by

�
2q(j)

p .
Different Smith models may differ by their covariance structure which can be isotropic or

anisotropic. Isotropy implies that the covariance is a function of distance only. If Σ is a diagonal
matrix then we are in the isotropic case. Moreover if its diagonal terms are all equal then the
shape of the events (induced by η) are circular whereas if the diagonal terms are different then
the shape is elliptic and provide the rates of increase along each axis. If Σ is not a diagonal
matrix then we are in the anisotropic case and its eigen-decomposition is Σ = RDR� where R

is a rotation matrix and D a diagonal matrix whose diagonal elements are the corresponding
eigen-values. The eigen-values provide the rates of increase along each axis and the rotation
matrix the angle of the rotation.

Figure 2.1 represents realizations and the extremal coefficient (2.15) for the Smith model
under both the isotropic and anisotropic scenarios. The process is defined for s ∈ S = [0, 1]2

and some realizations are given on the top row (the margins are transformed to Gumbel mar-
gins for visualization purposes). The random fields were simulated through the R package
SpatialExtremes, Ribatet et al. (2013). Three different covariance matrices Σ = (σ12, σ12, σ22)
are considered. For the left column, the covariance matrix is Σ = (0.012, 0, 0.012) which consist
in the isotropic case where the rate of increase along both axes are the same. Consequently the
impact of the ’storms’ given by the Smith model is circular and can be assessed by looking at
the realization of the process or the extremal coefficient. Clearly, in this case the further away a
location is to another the more independent they get no matter the direction. The middle and
right columns exhibit anisotropy. The middle column has covariance matrix Σ = (0.012, 0, 0.006)
which means that an increase of two units along the x-axis leads to an increase of one unit along
the y-axis. The shape of the dependence structure is then elliptic. Independence is reached
twice as fast by moving along the y-axis than the x-axis. The right column adds a rotation
components which occurs due to the presence of a non-zero correlation coefficient on the ma-
trix Σ = (0.012, 0.01, 0.012). Lastly, extensions of the Smith model to other densities such as
Student-t and Laplace densities were given in de Haan and Pereira (2006).

2.6.2 The Schlather model

Schlather (2002) gave a new canonical representation of max-stable processes via Theorem
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Figure 2.1: Smith model on S = [0, 1]2 with different covariance matrices Σ. Top row represents
a realization of the process and bottom row shows the extremal coefficient. The left column deal
with the isotropic case with respectively σ11 = σ22 = 0.012 and σ12 = 0. The middle and right
column show the anisotropic case. The middle column has covariance matrix whose components
are σ11 = 0.012, σ22 = 0.006 and σ12 = 0, which leads to an elliptic form of the dependence. The
right column has a dependence structure given by σ11 = σ22 = 0.012 and σ12 = 0.01, adding a
rotation effect. The margins are transformed to be Gumbel.

2.5 motivated by the nature of some spatial extremal event whose specificities are different
from the ones given by the Smith model. The existence of different types of precipitation was
highlighted proving the need of different class of models. The Smith model introduced above
suits events that are convective, i.e., centered and with high intensity in a particular location
while there is almost no rainfall elsewhere. This new characterization puts the emphasis on a
different class of precipitation events, called cyclonic, that are spread over a region with variable
rainfall and clearly for which the shape of Gaussian densities is too restrictive. This leads to a
new model named the extremal Gaussian process, shortly: the Schlather model.

Let W be a stationary Gaussian process on S with correlation function ρ. The expected
value of the positive part of the process is E[W +(s)] = (2π)−1/2 hence we need to add a

√
2π

term in order to fulfill the condition on the mean. The process is then given by

{η(s)}s∈S =
�√

2π max
1≤i

ζiW
+

i
(s)

�
, (2.16)
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where Wi are i.i.d. replicates of W . Relating the model to precipitations, ζiW
+

i
(·) can be

thought as the daily spatial rainfall events with the same spatial dependence structure but
different magnitude. Following the Gaussian nature of the random field, this model is also
sometimes referred as the extremal Gaussian model.

The bivariate dimensional distribution is given, for all x1, x2 ∈ R+, by

Pr (η(s1) < x1, η(s2) < x2) = exp
�

−1
2

� 1
x1

+ 1
x2

� �

1 +
�
1 − 2{ρ (h) + 1}x1x2

(x1 + x2)2

�1/2
��

, (2.17)

where h ∈ Rd. The general k-dimensional distribution function isn’t available since, following
the steps of the proof in (Schlather, 2002, Appendix), a differential equation needs to be solved
but its solution is not known. However, the k-dimensional distribution and the spectral density
are obtained as a special case of the extremal-t model with the number of degrees of freedom
equal to one. The pairwise extremal coefficient function is derived from (2.17),

ϑ(h) = ϑ(s, s + h) = 1 +

�
1 − ρ(h)

2 , h ∈ Rd. (2.18)

Numerous parametric models for the correlation structure ρ are available in the literature (see
Chilès and Delfiner (1999); Gelfand et al. (2010) for a review). The main families of correlation
functions are Whittle-Matérn, Cauchy, Power Exponential and Bessel which have a range and
smoothness parameter. Other families are listed and available in the R package RandomFields
(Schlather et al., 2015). Anisotropy can be obtained by introducing a rotation matrix.

Figure 2.2 considers the Power Exponential and Bessel correlation functions (left to right)
and realizations of the process, extremal coefficients and correlation functions (top to bottom)
are given. Generation of the random fields was performed using the R package RandomFields
(Schlather et al., 2015). As expected from (2.18), the behaviour of the extremal coefficient is
driven by the correlation function. The left and middle columns provide examples respectively of
the isotropic and anisotropic Power Exponential correlation. For the anisotropic case a rotation
of π/4 is considered and for an increase by 1 unit along the x-axis there is an increase by 3
units along the y-axis. When considering the Bessel correlation it can be shown that is has the
property of being a non monotonic function and also allows negative values which is not the
case of the Power Exponential. The impact of the correlation function on the process is clear,
the stronger the slope of the function near the origin (short distance away from a location),
the rougher the process gets. The rate of decay of the correlation is the slowest for the Bessel
correlation resulting in a smoother field.

Suppose that ρ(h) → 0 as h → ∞ then limh→∞ ϑ(h) = 1 + 2−1/2. Furthermore if the
correlation function on S = R2 is positive definite isotropic then it can’t take values lower than
−0.403 which means that ϑ(h) ≤ 1.838, ∀h ∈ S. These two assertions show that no matter the
distance between two points, independence won’t be reached (independence is reached when
ρ(h) = −1). Note that all of the parametric families listed above don’t reach independence as
their range is [0, 1] except for the Bessel correlation function as seen in Figure 2.2.
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Figure 2.2: Representation of Schlather processes on S = [0, 1]2. The top row represents some
realizations of the process while the second and third row shows respectively the extremal
coefficient and the correlation function. The first and second column consider isotropic and
anisotropic power exponential correlation function ρ(h), h ∈ [−1, 1]2 with scale 0.1 and smooth-
ness 1. The model represented on the right column has Bessel correlation function with scale
0.1 and smoothness 0.2. The margins are transformed to be Gumbel.

Davison and Gholamrezaee (2012) bypass this problem by replacing the scaled stationary
standard Gaussian processes Wi(s) by the stationary process

W B
j (s) = Wj(s)IBj (s − Xj),

where IB is the indicator function of a compact random set B ∈ S with volume |B|, {Bj} are
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independent replicates of B and Xj are points of a Poisson process with rate E(|B|)−1. This
means that the daily spatial rainfall events characterize by ζjW +

j
(·) are only affecting the region

B + Xj . For x1, x2 ∈ R+, the distribution function (2.17) then becomes

Pr (η(s1) < x1, η(s2) < x2) = exp
�

−
� 1

x1

+ 1
x2

� �

1 − α(h)
2

�
1 − 2{ρ (h) + 1}x1x2

(x1 + x2)2

�1/2
��

,

where α(h) = E[|B ∩ (h + B)|]/E[|B|] lies on the unit interval. It is now straightforward to see
that the extremal coefficient given by

ϑ(h) = 2 − α(h)



1 −

�
1 − ρ(h)

2



 , h ∈ Rd,

can reach complete dependence and independence. If the distance h is large enough then the
set B ∩ (B + h) can be empty, leading to α(h) = 0 and thus ϑ(h) = 2. Flexible shapes of the set
B can be used to produce simple forms of α(h); Davison and Gholamrezaee (2012) first consider
a disc with fixed radius and then with random radius GPD distributed to be more realistic.
Elliptical shapes can also be included.

2.6.3 The Brown-Resnick model

The Brown-Resnick model get its name from the seminal paper from Brown and Resnick
(1977) and whose approach is based on the Schlather canonical representation (2.12) where the
stochastic process W is given by

W (s) = exp{�(s) − σ2(s)/2}, s ∈ R, (2.19)

where �(s) is a standard Brownian motion with variance Var(�(s)) = σ2(s) = |s|. Moreover,
even though W (s) is not stationary the resulting max-stable process η is stationary. Kabluchko
et al. (2009) extend this statement by proving that by subtracting an appropriate drift term
to any Gaussian process � with stationary increments leads to a stationary max-stable process.
Because of the stationarity of the increments the law of W is completely characterized by the
(semi)-variogram and the variance. The generalized Brown-Resinck process is then given by

{η(s)}s∈S =
�

max
1≤i

ζi exp{�i(s) − γ(s)}
�

s∈S
, (2.20)

where �i are i.i.d. replicates of a zero mean Gaussian process with stationary increments and
semi-variogram γ(h) = Var(�(s + h) − �(s))/2. The finite dimensional distributions were given
in Huser and Davison (2013) and have also simultaneously been derived and given in the next
chapter. Again letting xi ≡ xi(si) ∈ R+, their expression is the following

Pr (η(s1) < x1, . . . , η(sk) < xk) = exp




−
k�

j=1

x−1

j
Φk−1(q(j)(x); R(j))




 , (2.21)
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where q(j)(x) ∈ Rk−1 whose elements are q(j)
p (x) = q(j)

p /2 − log(xj/xp)/q(j)
p with j, p = 1, . . . , k,

p �= j and q(j)
p =

�
2γj,p, γj,p = γ(sj − sp). Moreover R(j) = (γj,u + γj,v − γu,v)/{2(γj,uγj,v)1/2},

for u, v = 1, . . . , k and u, v �= j, is a (k − 1) × (k − 1) correlation matrix.
The associated extremal coefficient function is

ϑ(s1, . . . , sk) =
k�

j=1

Φk−1(q(j)/2; R(j)),

where the components of q(j) are q(j)
p for j, p = 1, . . . , k, p �= j. The deduced pairwise extremal

coefficient is

ϑ(h) = ϑ(s, s + h) = 2Φ1

��
γs,s+h

2

�
, h ∈ Rd. (2.22)

Based on the finite-dimensional distribution (2.21), the angular density of the model has the
same form as the angular density of the Hüsler-Reiss model in Section 1.3.4 where the coefficients
λi,j are replaced by the variograms γi,j .

One of the most important Gaussian random process is the fractional Brownian motion
(Mandelbrot and Van Ness, 1968) � = {�(s), s ∈ S} which is a centered Gaussian random
process with covariance function

E[�i(s1)�j(s2)] = δij

2 (�s1�α + �s2�α − �s1 − s2�α) , ∀s1, s2 ∈ S,

where 0 < α ≤ 2, δij = 1 if i = j and 0 otherwise, and �·� is the Euclidean norm in S. Note that
the parameter α can be thought as the self-similarity parameter of �. Also, the semi-variogram
is easily calculated and is γ(h) ≡ γ(s, s + h) = �h�α, h ∈ S. This class of random processes also
has the big advantage of being isotropic.

In the case α = 1 we recover the standard Brownian motion case and the model reduces to the
one introduced by Brown and Resnick (1977) with (2.19). When α = 2 then �(s) = s��(1), �(1)
being multivariate standard Gaussian random variable (see Samorodnitsky and Taqqu (1994,
pp.318–319)), hence we can write �(s) = s�Σ−1/2Z, where Z is a multivariate random variable in
S with variance-covariance matrix Σ. Consequently, γ(h) = 1

2
h�Σ−1h, h ∈ S, which corresponds

to the Smith model from Section 2.6.1. Additionally, if the L1 norm is inserted in the expression
of the variogram, the resulting process is the one considered in Buishand et al. (2008) and
de Haan and Zhou (2008).

A strong interest on the simulation of Brown-Resnick processes has been shown in the recent
years. An accurate simulation of such processes is complicated: the naive simulation approach by
finite approximation may fail, large approximation errors occurs on large intervals, calculations
are computationally demanding; see for example Oesting et al. (2012); Oesting and Schlather
(2014) and Dombry and Eyi-Minko (2013). Recently Dieker and Mikosch (2015) proposed a new
representation of Brown-Resnick processes leading to the same finite-dimensional distributions
and the ability to perform exact simulations.

According to the simulation results from Oesting et al. (2012), the realizations of the process
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Figure 2.3: Representation of Brown-Resnick processes on S = [0, 1]2 constructed by fractional
Brownian motions i.e. with semi-variogram γ(h) = �h�α, h ∈ S, α ∈ (0, 2]. Top row represents
realizations of the process and bottom row shows the associated extremal coefficients. The left
column deals with the standard Brownian case, α = 1 given by (2.19). The middle considers
the case α = 1.5 whereas the right column corresponds to the isotropic Smith model (α = 2).
The margins are on the Gumbel scale.

given in the top row of Figure 2.3 have been simulated using the random shifts method available
in the R package RandomFields (see Schlather et al. (2015) for details). Figure 2.3 shows the
influence of the variogram on the smoothness of the max-stable process. From left to right the
smoothness parameter α is increasing, taking the values 1, 1.5 and 2 until the isotropic case
of the Smith model is reached. When α = 1 this corresponds to the original process (2.19)
introduced by Brown and Resnick (1977). The bottom row of the figure outlines the changes in
the extremal coefficient as α increases. Clearly when h → 0 then γ(h) → 0 complete dependence
is reached whereas if γ(h) is unbounded then ϑ(h) → 2 as �h� → ∞.

The generalized Brown-Resnick model given by (2.20) contains also the geometric Gaussian
model given in Davison et al. (2012) where

W (s) = exp{σ�(s) − σ2/2}, s ∈ S,

where �(s) is a standard Gaussian process with correlation function ρ(h) and σ(s) = σ, ∀s ∈ S.
The form of its distribution function is identical to the ones of the Smith model (2.14) and of the
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generalized Brown-Resnick (2.21) where the quantities q(j)
p would be respectively replaced by

2σ2{1−ρj,p(h)} and (2σ2{1−ρj,p(h)})1/2. The difference is only due to the fact the Smith model’s
distribution specifies the covariance matrix whereas for the Brown-Resnick the (correlation)
matrix. Thus the pairwise extremal coefficient can be deduced from (2.15) or (2.22) as

ϑ(h) = 2Φ



σ

�
1 − ρ(h)

2



 , h ∈ Rd,

which reaches complete dependence as σ → 0 or ρ(h) → 1 and independence as σ → ∞ for any
ρ.

In Chapter 3, we will provide results on Brown-Resnick processes. Hence we will first provide
a proof of the existence of such process (see Appendix B). Brown and Resnick (1977) have
successfully shown that the pointwise maxima of Brownian motions and Ornstein-Ulhenbeck
processes are converging to Poisson processes equivalent to the ones in (2.12). These have the
stationarity property.

2.6.4 The extremal t model

A more flexible class of processes which generalizes the extremal Gaussian (2.16) has been
introduced by Opitz (2013) and is commonly called the class of extremal-t processes. It is
a generalization of the extreme value copula to infinite dimensions (see Demarta and McNeil
(2005); Nikoloulopoulos et al. (2009); Davison et al. (2012); Ribatet and Sedki (2013)) which
are proved to be more flexible than Hüsler-Reiss copulas that are themselves generalized by the
Smith Gaussian model. Opitz (2013) defines the spectral representation of such processes based
on the Schlather characterization of max-stable process (2.12) by taking

W +

i
(s) = cν{max(�i(s), 0)}ν , ν ≥ 1

where cν =
√

πν1−ν/2/Γ((ν + 1)/2) and �i are i.i.d. replicates of a standard Gaussian process
with partial correlation function ρ. Clearly as c1 =

√
2π, the Schlather model arises as a special

case when ν = 1. The finite dimensional distributions are available and, letting xi ≡ xi(si) ∈ R+,
defined as

Pr (η(s1) < x1, . . . , η(sk) < xk) = exp




−
k�

j=1

x−1

j
Tk−1

�
q(j)(x); R(j), ν + 1

�



 , (2.23)

where Tk(·; R, ν) represents the k-dimensional Student-t cdf with correlation matrix R and degree
of freedom ν, q(j)(x) ∈ Rk−1 whose elements are q(j)

p (x) =
�

ν+1

1−ρ
2
j,p(h)

��
xp

xj

�
ν

− ρj,p(h)
�

for j, p =

1, . . . , k, p �= j. R(j) is a (k−1)×(k−1) partial correlation matrix defined as R(j) = ω−1

R̄(j)R̄
(j)ω−1

R̄(j)

with R̄(j) = R−j,−j − R−j,jRj,−j and ω
R̄(j) = diag

�
R̄(j)

�1/2

where the negative index means
that the associated row or column has been removed. Considering the pairwise distribution
and setting ν = 1 yields the distribution function (2.17) of the Schlather model. The finite-
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dimensional distribution of the Schlather model cannot be obtained through the construction
(2.16) but it can be derived by the extremal-t distribution setting the degree of freedom equal
to 1. conceptually this model is equivalent to the Extremal-t with degrees of freedom 1 and thus
can be given by (2.23). The associated extremal coefficient function is

ϑ(s1, . . . , sk) =
k�

j=1

Tk−1(q(j)/2; R(j), ν + 1),

where the components of q(j) are q(j)
p =

�
ν+1

1−ρ
2
j,p(h)

(1 − ρj,p(h)) for j, p = 1, . . . , k, p �= j. The

deduced pairwise extremal coefficient is

ϑ(h) = ϑ(s, s + h) = 2T1

��
ν + 1

1 − ρ2(h)(1 − ρ(h)); ν + 1
�

, h ∈ Rd. (2.24)

If ρ(h) = 0, it is straightforward to see that the range of the extremal coefficient is (1.5, 2):
independence is reached as the degree of freedom gets large i.e. ϑ(h) → 2 as ν → ∞, whereas
ϑ(h) → 1.5 as ν gets small. The degree of freedom ν is acting as a general dependence parameter.

The general k-dimensional angular density for the finite-dimensional distributions (2.23)
remains identical to the one provided for the Extremal-t model in the multivariate context
(Section 1.3.5).

Figure 2.4 displays, from top to bottom, realizations of the process (using RandomFields R
package), extremal coefficients and correlation functions. The left and middle columns of Figure
2.4 display two Extremal-t models with same degree of freedom ν = 2 but for the sake of being as
complete as possible, with two correlation which differ from the ones presented in the Schlather
model example. The left column introduces the widely used Whittle-Matérn correlation function
with smoothness equal to 0.8 whereas the middle column displays the example of the damped
cosine correlation function with smoothness 1 and scale 0.1. The effect of the scale on the
correlation structure and the link between the correlation structure and the extremal coefficient
are quite obvious. The scale being larger, the rate of decrease towards zero of the Whittle-
Matérn correlation function is much slower than for the damped cosine with scale 0.1. As
a result, according to the extremal coefficient the distance needed to reach independence is
much larger (independence is actually never reached on [0, 1]2 for the model with Whittle-
Matérn correlation with such parameters). Comparing the middle and right columns highlights
the general dependence role of the degree of freedom on the process itself. As ν increases
independence is reached faster, leading to a rougher process. Finally it is worth noting that the
bottom right panel gives a representation of the univariate damped cosine correlation. It shows,
more explicitly than the bivariate representation in the bottom middle panel, the ability of this
parametric model to take negative values.

To conclude, we have shown in this chapter that spatial extremes is an extensively studied
area with complex challenges. An accurate understanding of the spatial dependence structure
is fundamental and requires tools from Geostatistics. In Chapter 4 we define a more general
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Figure 2.4: Representation of Extremal-t processes on S = [0, 1]2. The top row represents
some realizations of the process while the second and third row shows respectively the extremal
coefficient and the correlation function. The first column considers a Whittle-Matérn correlation
function ρ(h) with smoothness parameter 0.8 and degree of freedom ν = 2. The second and
third column display the process with degrees of freedom respectively ν = 2 and 8 and the same
damped cosine correlation function ρ(h) with scale λ = 0.1 and smoothness 1. The middle and
right panels of the bottom row respectively provide the two and one-dimensional representations
of the isotropic correlation function. The margins are transformed to be Gumbel.

class of max-stable process which contains most of the models listed above as special cases. Its
spectral construction is provided and some of its properties are studied.



Chapter 3

On the bivariate Brown-Resnick
max-stable processes with spatial
dependence parameter

3.1 Motivation

Over the last decade, max-stable processes have been intensively applied to spatial envi-
ronmental events; see for example Buishand et al. (2008); Padoan et al. (2010); Blanchet and
Davison (2011); Engelke et al. (2012), Genton et al. (2015). However, in practice, such spatial
events often depend on other variables. Genton et al. (2015) give an extension of max-stable
processes to the multivariate setting.

The Brown-Resnick process (Brown and Resnick (1977) and Kabluchko et al. (2009)) dis-
cussed in Section 2.6.3 has received a particular interest in this context. The first authors to
work with a bivariate version of the Brown-Resnick process are de Haan and Zhou (2008) and
Buishand et al. (2008). The spatial components of the model are split such that they can be
considered as separate variables. An application to rainfall over the region of North Holland
in the Netherlands is given by Buishand et al. (2008). The aim of this analysis is to give an
overview of the global rainfall over the study region which can be taken into account to calculate
return levels.

A multivariate representation of Brown-Resnick processes is given by Molchanov and Stucki
(2013) and Oesting et al. (2013) give an application, in the bivariate context, to wind gusts
using the association between observable data and the corresponding forecast.

In this chapter the bivariate process defined by de Haan and Zhou (2008) and Buishand
et al. (2008) is taken into account. The balance between the simplicity of the model, its easy
simulation and its finesse are the main advantages of working with such process. Furthermore the
shift stationarity of the process is also an advantageous property for most spatial environmental
challenges.

The work presented in this chapter provides some extensions of the seminal works by Brown
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and Resnick (1977); de Haan and Zhou (2008) and can also be considered in the generalised
case of Kabluchko et al. (2009). A particular attention is drawn to the Brown-Resnick model
introduced in Section 2.6.3. An additional general dependence parameter β is incorporated in the
model (see de Haan and Pereira (2006)) to measure the quantity of spatial dependence. Unlike
the indicators of spatial dependence introduced in Section 2.5 which consist in summarising the
spatial dependence after fitting a max-stable model to the data, this parameter is considered as
an intrinsic parameter of the model, the purpose being to model its effects on the simulation of
extremes.

In order to use the process to analyse spatial extremes the spatial dependence parameter
needs to be estimated. Ideally, estimation should be done by analyzing the sample paths of n

processes but unfortunately, in practice, these are observed at a finite number of locations. In
their application to rainfall in the North Holland region, Buishand et al. (2008) estimated the
dependence parameter according to the method proposed by de Haan and Pereira (2006) which
consists in averaging the

�
p

2

�
pairwise dependence estimators between all p recording stations.

The spatial dependence parameter can be given as a function of the pairwise tail depen-
dence function for which a consistent and asymptotically normal non-parametric estimator is
available (see Huang (1992); Drees and Huang (1998); Einmahl et al. (2008)). Einmahl et al.
(2012) introduced the multivariate equivalent of the estimator of the tail dependence function.
Consequently if the d-dimensional marginal distributions of the process are known, then the
dependence parameter can be estimated straight away, without approximating it by the average
of its pairwise components. An insightful comparison study would be to assess the quality of
the parameter estimate when calculated by averaging pairwise coefficients or using the whole
information at once. The efficiency comparison of the estimates should also take into account
the computational load that both require. Additionally other estimates, based on triplewise,
quadruplewise or n-tuplewise coefficients, should be considered.

Section 3.2 sets the framework and defines the univariate and bivariate max-stable processes
as well as the construction of the unique parameter of the model. Results on the distribution of
the processes are given in Section 3.3 and their exactness is proved by simulation in Section 3.4.

3.2 Background and definitions

Our starting point is the Brown-Resnick process based on the representation of Theorem 2.5
and which was detailed in Section 2.6.3. Denote by β the general dependence parameter, the
univariate process is defined by

{η�(s)}s∈S :=
�

max
1≤i

ζi exp
�

�i(βs) − β|s|
2

��

s∈S
, (3.1)

where S ⊂ R. Appendix B proves the existence of this max-stable model and that the conditions
of Theorem 2.5 are met. Furthermore the process is a simple max-stable (its margins are unit
Fréchet) and, due to the stationarity of Ornstein-Ulhenbeck processes, it is also stationary. Small
values of β refer to strong dependence whereas large values are associated to weak dependence.
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In order to being able to explore the whole real line and not to be restricted to its positive
part, the �i represent independent copies of a double-sided Brownian motion �. Let B1 and B2

be independent Brownian motions then

�(s) :=
�

B1(s), s ≥ 0
B2(−s), s < 0

.

de Haan and Zhou (2008) and Buishand et al. (2008) define a natural extension of this process
to the two-dimensional context, for s = (s1, s2) ∈ S ⊂ R2, by

{η(s)}s∈S =
�

max
i≥1

ζi exp
�

�1i(βs1) + �2i(βs2) − β

2 (|s1| + |s2|)
��

s∈S
, (3.2)

where �1i and �2i are independent copies of the double-sided Brownian motion �. For all s1, s2 ∈
R, the bivariate process η given by (3.2) fulfills the conditions of Theorem 2.5:

E
�
exp

�
�1i(βs1) + �2i(βs2) − β

2 (|s1| + |s2|)
��

= 1,

and for a1 < b1, a2 < b2, a1, a2, b1, b2 ∈ R,

E



 sup
a1≤s1≤b1
a2≤s2≤b2

exp
�

�1i(βs1) + �2i(βs2) − β

2 (|s1| + |s2|)
�



 < ∞.

The process η can be written as a combination of two one-dimensional processes similar to η�.
Moreover, because the process η� can be obtained as the limit of the pointwise maxima of i.i.d.
Ornstein-Ulhenbeck processes, η is stationary.

Definition 3.1 (de Haan and Zhou (2008)).

(i) The two-dimensional marginal distributions of η� are

− log Pr(η�(s1) ≤ ex, η�(s2) ≤ ey) = e−xΦ
�√

βh�

2 + y − x√
βh�

�

+ e−yΦ
�√

βh�

2 + x − y√
βh�

�

,

for s1, s2 ∈ R, with h� = |s1 − s2|.

(ii) The two-dimensional marginal distributions of η are

− log Pr (η(s1) ≤ ex, η(s2) ≤ ey) = e−xΦ
�√

βh

2 + y − x√
βh

�

+ e−yΦ
�√

βh

2 + x − y√
βh

�

,

for si =
�
s(1)

i
, s(2)

i

��
∈ R2, i = 1, 2, with h =

���s(1)

1
− s(1)

2

��� +
���s(2)

1
− s(2)

2

���.

The distances h� and h represent the univariate and bivariate L1 distance (also called Man-
hattan or Taxicab distance). The L1 distance between two d-dimensional vectors s and t, in a
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real vector space is given by

h := h(s, t) =
d�

i=1

|si − ti|.

According to these distributions, both models can be said to be shift stationary or invariant
under a shift.

From the above definition, the amount of spatial dependence between two locations s1 and
s2 in R2 can be evaluated by

β = 4
h

�
Φ←

�
−1

2 log Pr(η(s1) ≤ 1, η(s2) ≤ 1)
��2

,

where Φ← denotes the inverse of Φ. Note that this result holds also for the univariate process η�

by substituting h by h�. The − log Pr(η(s1) ≤ 1, η(s2) ≤ 1) term corresponds to the stable tail
dependence function l at (1, 1) (see Chapter 1; Einmahl et al. (2008)) and thus can be estimated
using the non-parametric estimator introduced by Huang (1992) (see also Drees and Huang
(1998); Einmahl et al. (2008) and Einmahl et al. (2012)). Thus an estimate of β is obtained by
plugging an estimator of l in (3.2).

Consider X and Y two random variables and denote by {Xi,n}n

i=1
and {Yi,n}n

i=1
their order

statistics. Huang (1992) and Drees and Huang (1998) propose the following estimator of the
tail dependence function

l̂n(x, y) := 1
k

n�

i=1

1I{Xi≥Xn−kx+1,n or Yi≥Yn−ky+1,n},

and Einmahl et al. (2008) introduce a similar estimator through

l̂�n(x, y) := 1
k

n�

i=1

1I{Xi≥Xn−kx+1/2,n or Yi≥Yn−ky+1/2,n,}

which shows slightly better estimators for simulations of finite samples and gives similar results
for large samples. Both of these estimators are consistent under the condition that k = k (n) →
∞, k (n) /n → 0, n → ∞ and are asymptotically normal if adding extra mild conditions.

3.3 Results

This section showcases our main results on the distributions of the univariate and bivari-
ate Brown-Resnick process η and η�. Some preliminary results are listed before each of our
contributions.

3.3.1 Preliminary results to Section 3.3.2

Azzalini (1985) introduced the Skew-Normal distribution which was extended to the multi-
variate case by Azzalini and Dalla Valle (1996). Later Capitanio et al. (2003) provided a broader
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class of distributions which contains the Skew-Normal, called the extended Skew-Normal distri-
bution and defined as follows

Definition 3.2. Consider the vectors � = (�1, . . . , �d)� ∈ Rd, �∗ = (�0, �)� ∈ Rd+1 and let

�∗ = (�0, �)� ∼ Nd+1

�
0, Ω∗�

, Ω∗ =
�

1 δ�

δ Ω

�

where Ω∗ is a full rank correlation matrix.
Let Z = (�|�0 + τ > 0) then its probability density function is

fZ(z) = φd

�
z; Ω

�
Φ

�
α0 + α�z

�
Φ−1(τ)

where
α0 = τ

�
1 − δ�Ω−1

δ
�−1/2

, α =
�
1 − δ�Ω−1

δ
�−1/2

Ω−1
δ.

Equivalently we have

α0 = τ
�
1 + α�Ω−1

α
�1/2

, δ =
�
1 + α�Ω−1

α
�−1/2

Ωα.

The cumulative distribution function of Z is given by

FZ(z) = Φd+1

��
τ, z�

��
; Ω̃

�
Φ−1(τ), Ω̃ =

�
1 −δ�

−δ Ω

�

.

The following lemma arises from the distribution of the extended Skew-Normal distribution
given above.

Lemma 3.3. Let a = (a1, . . . , an)� and b = (b1, . . . , bn)� be two vectors of Rn and consider Rn

a n × n correlation matrix where [R]i,j = ρi,j (ρi,j = 1 if i = j). Let u ∈ R. Based on Definition
3.2 we have,

�
u

−∞
φ(x)Φk(a + bx; Rn)dx = Φk+1

��
u, a(1 + b2)−1/2

��
; Rn+1

�
,

where

Rn+1 =



 1 −
�

b

1+b2

��

−
�

b

1+b2

�
R�

n



 ,

and where R�
n is a n × n correlation matrix with [R�

n]i,j = (bibj + ρi,j)/
�

(1 + b2
i
)(1 + b2

j
), i, j =

1, . . . , k.

Another somewhat important result is given in Abramowitz and Stegun (1964) deals with
the decomposition of the bivariate normal pdf
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Lemma 3.4. Consider the zero mean bivariate normal pdf

φ2(x, y; ρ) = (2π)−1
�
1 − ρ2

�−1/2

exp
�

−1
2

�
x2 − 2ρxy + y2

1 − ρ2

��

,

then it can be decomposed as

φ2(x, y; ρ) =
�
1 − ρ2

�−1/2

φ(x)φ
�

y − ρx
�

1 − ρ2

�

.

3.3.2 Marginal distributions of univariate Brown-Resnick max-stable pro-
cesses

The two results given in this section are about the marginal distribution of the univariate
Brown-Resnick model η. First the 3-dimensional margins are detailed in order to show that it
is possible to extend the result given in Definition 3.1 and secondly a mathematical induction is
carried to establish the form of the d-dimensional margins.

Let ai,j = (β|sj − si|)1/2 and denote by Φd (x; Σ) the d-dimensional centered normal cdf
with variance-covariance matrix Σ of size d × d. If Σ is a correlation matrix then a vector of
correlation coefficients of size

�
n

2

�
will be provided.

Theorem 3.5. Suppose {η(s)}s∈S is defined as in (3.1). Then for x1, x2, x3 ∈ R and any
s1, s2, s3 ∈ R, the three-dimensional distribution function of (η(s1), η(s2), η(s3)) is given through

− log Pr(η(s1) ≤ ex1 ,η(s2) ≤ ex2 , η(s3) ≤ ex3)

= e−x1Φ2

��
(x3 − x1)a−1

3,1
+ 1

2
a3,1, (x2 − x1)a−1

2,1
+ 1

2
a2,1

��
; ρ1

2,3

�

+ e−x2Φ2

��
(x3 − x2)a−1

3,2
+ 1

2
a3,2, (x1 − x2)a−1

2,1
+ 1

2
a2,1

��
; ρ2

1,3

�

+ e−x3Φ2

��
(x2 − x3)a−1

3,2
+ 1

2
a3,2, (x1 − x3)a−1

3,1
+ 1

2
a3,1

��
; ρ3

1,2

�

where, for i, j, k = 1, 2, 3, the correlation coefficients ρi

j,k
are

ρ(i)

j,k
=






0 if sj < si < sk or sj > si > sk;
1 if sj = sk

min(ai,j ,ai,k)2

ai,jai,k
otherwise.

The proof of Theorem 3.5 involves lengthy but easy calculations which will be detailed in
Appendix C.1.

Theorem 3.5 proves that an analytical form of the marginal distributions of η� can be derived
through some tedious but somewhat simple calculations. Two induction arguments are used to
show that the marginal distributions can actually be given for any dimensions.

Lemma 3.6. Suppose x = (x1, . . . , xp)�, s = (s1, . . . , sp)� ∈ Rp such that s1 ≤ . . . ≤ sp and
let �(si) denote a Brownian motion at time si. Suppose that Z = exp{�n,1 − 1

2
sn,1 − xn} occurs
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with probability

Pr(�n,1 ≥ xn,1 + 1

2
sn,1, . . . , �n,n−1 ≥xn,n−1 + 1

2
sn,n−1,

�n+1,n ≤ xn+1,n + 1

2
sn+1,n, . . . , �p,n ≤ xp,n + 1

2
sp,n)

for 2 ≤ n ≤ p and where �i,j = �(si) − �(sj), xi,j = xi − xj, si,j = si − sj, then

E[Z] = e−xnPr(�n,1 ≤ x1,n + 1

2
sn,1, . . . , �n,n−1 ≤ xn−1,n + 1

2
sn,n−1,

�n+1,n ≤ xn+1,n + 1

2
sn+1,n, . . . , �p,n ≤ xp,n + 1

2
sp,n)

= e−xnΦp−1

�
(x−n − xn)|s−n − sn|−1/2 + |s−n − sn|1/2/2; R

�
,

where R is a correlation matrix, x−i = x\{xi} and s−i = s\{si} meaning that the i-th elements
of x and s are discarded.

Refer to Appendix C.2 for a detailed proof and the analytical form of R.

Theorem 3.7. Suppose x = (x1, . . . , xn)�, s = (s1, . . . , sn)� ∈ Rn. Denote x−i = x\{xi},
s−i = s\{si} and a−i,j = (a1,j , . . . , ai−1,j , ai+1,j , . . . , an,j)� where ai,j = (β|sj − si|)1/2. Then
the n-dimensional marginal distribution of {η�(s)}s∈S is given by

− log Pr(η�(s1) ≤ ex1 , . . . , η(sn) ≤ exn) =
n�

j=1

e−xiΦn−1

�
q(j); R(j)

�
,

where q(j) = (x−j−xj)a−1

−j,j
+a−j,j/2 and the correlation matrix is given by R(j) =

�
R(j)

k,l

�

k,l={1,...,n}\{j}
with

R(j)

k,l
=






0 if min(sk, sl) < sj < max(sk, sl),
1 if sk = sl,
min(aj,k,aj,l)

max(aj,k,aj,l)
= min(aj,k,aj,l)

2

aj,kaj,l
otherwise.

See Appendix C.3 for a proof.
We have demonstrated that it is possible to give the analytical form of the marginal distri-

butions of the univariate Brown-Resnick process. The second part of this section shows that it
is possible to provide similar results for the bivariate process. Again some preliminary results
are required.

3.3.3 Preliminary results to Section 3.3.4

Lemma 3.8. Suppose � and �� are normally distributed random variables with zero mean and
variances respectively u and v. For a, c �= 0, b and d constants, then

(i) If � = �� + ��� where ��� is independent of �� with mean 0 and variance u − v then

Ee�−u/2Φ2

�
{a� + b, c�� + d}�; ρ

�
= Φ2

��
au + b√
1 + a2u

,
cv + d√
1 + c2v

��
; ρ∗

�

,
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where ρ∗ = (ρ + acv)((1 + a2u)(1 + c2v))−1/2.
(ii) If � and �� are independent then

Ee�−u/2Φ2

�
{a� + b, c�� + d}�; ρ

�
= Φ2

��
au + b√
1 + a2u

,
d√

1 + c2v

��
; ρ∗

�

,

where ρ∗ = ρ((1 + a2u)(1 + c2v))−1/2.

See Appendix C.4 for a proof.

Lemma 3.9. Suppose �, �� and ��� are normally distributed random variables with zero mean
and variances respectively u, v and w. Suppose also that � is independent of �� and ��� which are
themselves correlated. For a, b, d, e �= 0 and c, f constants, if ��� = ��+���� where ���� is independent
of �� with mean 0 and variance w − v, then

Ee�−u/2Φ2

�
{a� + b�� + c,d� + e��� + f}�; ρ

�

= Φ2

��
au + c√

1 + a2u + b2v
,

du + f√
1 + d2u + e2w

��
; ρ∗

�

,

where ρ∗ = (ρ + adu + bev)((1 + a2u + b2v)(1 + d2u + e2w))−1/2.

See Appendix C.5 for a proof.

Lemma 3.10. Suppose �, �� and ��� are normally distributed and mutually independent random
variables with zero mean and variances respectively u, v and w. For a, b, c, e �= 0 and d, f

constants, then

E e�+�
�−(u+v)/2Φ2

�
{a� + b�� + c��� + d,e� + f}�; ρ

�

= Φ2

��
au + bv + d√

1 + a2u + b2v + c2w
,

eu + f√
1 + e2u

��
; ρ∗

�

,

where ρ∗ = (ρ + aeu)((1 + a2u + b2v + c2w)(1 + e2u))−1/2.

See Appendix C.6 for a proof.

3.3.4 Marginal distributions of bivariate Brown-Resnick max-stable processes

In this section we will consider the process {η(u)}, s =
�
s(1), s(2)

��
∈ R2, introduced in

(3.2) and define the expression of its multi-dimensional distribution functions. Throughout this
section we will make use of the following notations

si =
�
s(1)

i
, s(2)

i

��
∈ R2

h(k)

i,j
= β|s(k)

i
− s(k)

j
|, k = 1, 2

hi,j = h(1)

i,j
+ h(2)

i,j
= β|s(1)

i
− s(1)

j
| + β|s(2)

i
− s(2)

j
|

gi,j ≡ g(si, sj) = (hi,j)1/2.
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The following result gives the three-dimensional marginal distribution function of the bi-
variate process η� and helps us to understand the change in the correlation matrix when using
bivariate processes instead of univariate processes.

Theorem 3.11. Suppose x1, x2, x3 ∈ R and s1, s2, s3 ∈ R2, the three-dimensional distribution
function of (η(s1), η(s2), η(s3)) is given by

− log Pr(η(s1) ≤ ex1 ,η(s2) ≤ ex2 , η(s3) ≤ ex3)

= e−x1Φ2

��
(x2 − x1)g−1

1,2
+ 1

2
g1,2, (x3 − x1)g−1

1,3
+ 1

2
g1,3

��
; ρ1

2,3

�

+ e−x2Φ2

��
(x1 − x2)g−1

1,2
+ 1

2
g1,2, (x3 − x2)g−1

2,3
+ 1

2
g2,3

��
; ρ2

1,3

�

+ e−x3Φ2

��
(x1 − x3)g−1

1,3
+ 1

2
g1,3, (x2 − x3)g−1

2,3
+ 1

2
g2,3

��
; ρ3

1,2

�
,

where, for i, j, k = 1, 2, 3, the correlation coefficients ρi

j,k
are

ρ(i)

j,k
=






0 if min
�
s(l)

j
, s(l)

k

�
< s(l)

i
< max

�
s(l)

j
, s(l)

k

�
, ∀l = 1, 2

1 if sj = sk

min

�
βh

(1)
i,j ,βh

(1)
i,k

�
+min

�
βh

(2)
i,j ,βh

(2)
i,k

�

gi,jgi,k
otherwise.

All the tools required to prove this theorem are available above and details of the calculations
can be found in Appendix C.7. The comparison of the distributions of the processes η� and η

given in Theorem 3.5 and Theorem 3.11, draws the same conclusions as the ones already made
when comparing the results of de Haan and Zhou (2008) and summarised in Definition 3.1:
both are identical functions of the distance h between two locations and they only differ by the
expression of the L1 distance.

We are now able to extrapolate the n-dimensional marginal distribution of bivariate Brown-
Resnick max-stable processes, through the following theorem:

Theorem 3.12. Suppose x = (x1, . . . , xn)�, s = (s1, . . . , sn)� ∈ Rn. Denote x−i = x\{xi},
s−i = s\{si} and g−i,j = (g1,j , . . . , gi−1,j , gi+1,j , . . . , gn,j)�. Then the n-dimensional marginal
distribution of {η(s)}s∈S is given by

− log Pr(η(s1) ≤ ex1 , . . . , η(sn) ≤ exn) =
n�

j=1

e−xiΦn−1

�
q(j); R(j)

�

where q(j) = (x−j−xj)g−1

−j,j
+g−j,j/2 and the correlation matrix is given by R(j) =

�
R(j)

k,l

�

k,l={1,...,n}\{j}
with

R(i)

j,k
=






0 if min
�
s(m)

k
, s(m)

l

�
< s(m)

j
< max

�
s(m)

k
, s(m)

l

�
, ∀m = 1, 2

1 if sk = sl

min

�
h

(1)
j,k,h

(1)
j,l

�
+min

�
h

(2)
j,k,h

(2)
j,l

�

gj,kgj,l
otherwise.
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To prove Theorem 3.12, it is natural to use the proof of the n-dimensional result for univariate
processes given in Theorem 3.7 where the distance between two points ai,j is replaced by the
distance gi,j . The proof of Theorem 3.12 relies on a very similar induction argument to its
univariate equivalent, which is omitted here.

An important difference between the univariate and bivariate case is the expression of the
correlation coefficient R(i)

j,k
. If the denominator follows the same change of metric, the numerator

is now considering the sum of componentwise minima. Both the minima in the first and second
components, for all the locations involved, are involved in the calculation of each correlation
coefficient. Moreover it is clear that if either the first or the second component are not considered
Theorem 3.7 would be recovered.

The next section provide two simulation studies in order to support the exactness of Theorem
3.7 and Theorem 3.12.

3.4 Simulation results for high-dimensional marginal distribu-
tion of Brown-Resnick max-stable processes

In this section we provide simulation results for the marginal distributions of univariate and
bivariate Brown-Resnick process, in 2, 3, 4, 5, 6 and 7 dimensions.

Consider the two Brown-Resnick processes defined respectively in (3.1) and (3.2) with ζi =
1/(E1 + E2 + · · · + Ei) where Ei’s are i.i.d. standard exponential random variables.

Locations in space are randomly selected (in both R and R2). For simplicity the spatial de-
pendence parameter β is set to 1, and then each processes are simulated 1000 times at 2, 3, 4, 5, 6
and 7 of these locations. We suppose z = e−xi , i = 1, · · · , 7 in order to evaluate the empirical
and theoretical estimates of the marginal distributions. In other words, the joint probability
that the processes are less than or equal to the same critical value z. A total of 100 values of z,
equally spaced between 0.1 and 10 are considered.

Results are given in Figure 3.1 for the univariate process and in Figure 3.2 for the bivariate
process.

The empirical estimate of the marginal distribution consist in calculating the average of
times (out of 1000) that all the processes are taking a value less than or equal to z. In Figure
3.1 and Figure 3.2, the grey shaded area represents the 95% pointwise confidence band which
are calculated from some value z by

�
meane(z) ± meane(z)(1 − meane(z))

n − 1

�

where meane(z) denotes the empirical mean at z and n is the sample size (n = 1000). True
values are represented by solid black lines and calculated using the results of Theorem 3.7 and
Theorem 3.12.

In Figure 3.1, the true marginal distribution of univariate processes does lie within the
shaded area for all the dimensions considered. Processes were simulated using the R package
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Figure 3.1: 2, 3, 4, 5, 6 and 7-dimensional marginal distributions of the univariate Brown-
Resnick max-stable process. The grey shaded area corresponds to the 95% pointwise confidence
band for the empirical estimates. The black solid line provides the theoretical value.

SpatialExtremes (Ribatet et al. (2013)). The width of the confidence bands is relatively small
meaning that the simulation procedure is very robust, leading only to small variations. Moreover
the true joint probability is always within the band, meaning that the theoretical result is verified.

In Figure 3.2, the true joint probability is contained within the 95% confidence interval for
low dimensions. However, as the dimension increases, the distribution seems to be slightly over
estimated for small value of z. This may be due to the quality of the simulation procedure which
isn’t as straight forward as in the univariate case.

3.5 Conclusion and remarks

New asymptotic results on bivariate Brown-Resnick processes have been developed. The
univariate process has been extended to the bivariate case and a general dependence structure
is taken into account (see de Haan and Pereira (2006); de Haan and Zhou (2008); Buishand
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Figure 3.2: 2, 3, 4, 5, 6 and 7-dimensional marginal distributions of the bivariate Brown-Resnick
max-stable process. The grey shaded area corresponds to the 95% pointwise confidence band
for the empirical estimates. The black curve gives the theoretical value.

et al. (2008)). We derived the high-dimensional marginal distributions for both processes, al-
lowing easy estimation of the spatial dependence. Using empirical estimators from Einmahl
et al. (2012) the joint distribution can be estimated to derive an estimate of the spatial depen-
dence. Buishand et al. (2008) considered the average of

�
p

2

�
pairwise dependences (i.e. using the

pairwise marginal distribution function) and this method should have been compared to other
estimation procedures such as directly considering the p-dimensional distributions or other high
order distributions.

While these results were developed, we have become aware that Huser and Davison (2013)
derived at the same time the multivariate Brown-Resnick distribution in the univariate case. At
the moment our results are not ready for publication and extra work is needed to provide some
novelty to the present literature. In their work Huser and Davison (2013) provide a proof for
high order margins of the generalized Brown-Resnick process (see (2.20)). Clearly the results
from Theorem 3.7 and Theorem 3.12 can be recovered from their results by taking the right
semi-variogram. They considered pairwise likelihood approaches (pairwise and triplewise) to fit
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the max-stable process. It was found that there is no gain in efficiency to consider higher order
likelihood hence that pairwise composite likelihood was the most appropriate method to use (it
is also less computationally demanding). To conclude we would expect then similar results in
the setup of this Chapter, meaning that Buishand et al. (2008) used an efficient procedure to
estimate the spatial dependence despite being limited by only knowing the 2-dimensional result
from de Haan and Zhou (2008). Finally, a pattern has appeared when going from univariate
processes to bivariate processes, it seems then straightforward to establish the n-dimensional
marginal distribution of d-dimensional processes. It could allow to consider multiple variables
and to investigate about their dependence as suggested by Genton et al. (2015) and Oesting
et al. (2013).





Chapter 4

Models for extremal dependence
derived from skew-symmetric
families

Abstract

Skew-symmetric families of distributions such as the skew-normal and skew-t represent su-
persets of the normal and t distributions, and they exhibit richer classes of extremal behaviour.
By defining a non-stationary skew-normal process, which allows the easy handling of positive
definite, non-stationary covariance functions, we derive a new family of max-stable processes –
the extremal-skew-t process. This process is a superset of non-stationary processes that include
the stationary extremal-t processes. We provide the spectral representation and the resulting
angular densities of the extremal-skew-t process, and illustrate its practical implementation

Keywords: Asymptotic independence; Angular density; Extremal coefficient; Extreme values;
Max-stable distribution; Non-central extended skew-t distribution; Non-stationarity; Skew-
Normal distribution; Skew-Normal process; Skew-t distribution.

4.1 Introduction

The modern-day analysis of extremes is based on results from the theory of stochastic pro-
cesses. In particular, max-stable processes (de Haan, 1984) are a popular and useful tool when
modelling extremal responses in environmental, financial and engineering applications. Let
S ⊆ Rk denote a k-dimensional region of space (or space-time) over which a real-valued stochas-
tic process {Y (s)}s∈S with a continuous sample path on S can be defined. Considering a sequence
Y1, . . . , Yn of i.i.d. copies of Y , the pointwise partial maximum can be defined as

Mn(s) = max
i=1,...,n

Yi(s), s ∈ S.
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If there are sequences of real-valued functions, an(s) > 0 and bn(s), for s ∈ S and n = 1, 2, . . .,
such that �

Mn(s) − bn(s)
an(s)

�

s∈S
⇒ {U(s)}s∈S,

converges weakly as n → ∞ to a process U(s) with non-degenerate marginal distributions for
all s ∈ S, then U(s) is known as a max-stable process (de Haan and Ferreira, 2006, Ch. 9). In
this setting, for a finite sequence of points (sj)j∈I in some index set I = {1, . . . , d}, the finite-
dimensional distribution of U is then a multivariate extreme value distribution (de Haan and
Ferreira, 2006, Ch. 6). This distribution has generalised extreme value univariate margins and,
when parameterised with unit Fréchet margins, has a joint distribution function of the form

G(xj , j ∈ I) = exp{−V (xj , j ∈ I)}, xj > 0,

where xj ≡ x(sj). The exponent function V describes the dependence between extremes, and
can be expressed as

V (xj , j ∈ I) =
�

W
max
j∈I

(wj/xj)H(dw1, . . . , dwd),

where the angular measure H is a finite measure defined on the d-dimensional unit simplex
W = {w ∈ Rd : w1 + · · · + wd = 1}, satisfying the moment conditions

�
W wj H(dw) = 1, j ∈ I,

(de Haan and Ferreira, 2006, Ch. 6).

In recent years a variety of specific max-stable processes have been developed, many of which
have become popular as they can be practically amenable to statistical modelling (Davison et al.,
2012). The extremal-t process (Opitz, 2013) is one of the best-known and widely-used max-stable
processes, from which the Brown-Resnick process (Brown and Resnick, 1977; Kabluchko et al.,
2009), the Gaussian extreme-value process (Smith, 1990) and the extremal-Gaussian processes
(Schlather, 2002) can be seen as special cases. In their most basic form, the Brown-Resnick
and the extremal-t processes can be respectively understood as the limiting extremal processes
of strictly stationary Gaussian and Student-t processes. However, in practice, data may be
non-stationary and exhibit asymmetric distributions in many applications. In these scenarios,
skew-symmetric distributions (Azzalini, 2013; Arellano-Valle and Azzalini, 2006; Azzalini, 2005;
Genton, 2004; Azzalini, 1985) provide simple models for modelling asymmetrically distributed
data. However, the limiting extremal behaviour of these processes has not yet been established.

In this paper we characterise and develop statistical models for the extremal behaviour of
skew-normal and skew-t distributions. The joint tail behaviours of these skew distributions are
capable of describing a far wider range of dependence levels than that obtained under the sym-
metric normal and t distributions. We provide a definition of a skew-normal process which is
in turn a non-stationary process. This provides an accessible approach to constructing positive
definite, non-stationary covariance functions when working with non-Gaussian processes. Re-
cently some forms of non-stationary dependent structures embedded into max-stable processes
have been studied by Huser and Genton (2015). We show that on the basis of the skew-normal
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process a new family of max-stable processes – the extremal-skew-t process – can be obtained.
This process is a superset of non-stationary processes that includes the stationary extremal-
t processes (Opitz, 2013). From the extremal-skew-t process, a rich family of non-stationary,
isotropic or anisotropic extremal coefficient functions can be obtained.

This paper is organised as follows: in Section 4.2 we first introduce a new variant of the
extended skew-t class of distributions, before developing a non-stationary version of the skew-
normal process. In both cases we discuss the stochastic behavior of their extreme values. In
Section 4.3 we derive the spectral representation of the extended extremal skew-t process. Sec-
tion 4.4 discusses inferential aspects of the extremal skew-t dependence model, and Section 4.5
provides a real data application. We conclude with a Discussion.

4.2 Preliminary results on skew-normal processes and skew-t
distributions

We introduce two preliminary results that will be used in order to present our main contri-
bution in Section 4.3, the extremal-skew-t process. In Section 4.2.1 we define the non-central ex-
tended skew-t family of distributions, which is a new variant of the class introduced by Arellano-
Valle and Genton (2010), that allows a non-central parameter. In Section 4.2.2 we present the
development of a new non-stationary, skew normal random process.

Hereafter, we use Y ∼ Dd(θ1, θ2, . . .) to denote that Y is a d-dimensional random vector with
probability law D and parameters θ1, θ2, . . .. When d = 1 the subscript is omitted for brevity.
Similarly, when a parameter is equal to zero or a scale matrix is equal to the identity (both in
a vector and scalar sense) so that Dd reduces to an obvious sub-family, it is also omitted.

4.2.1 The non-central, extended skew-t distribution

While several skew-symmetric distributions have been developed (see e.g. Genton (2004)
and Azzalini (2013)), we focus on the skew-normal and skew-t distributions.

Denote a d-dimensional skew-normally distributed random vector by Y ∼ SNd(µ, Ω, α, τ)
(Arellano-Valle and Genton, 2010). This random vector has probability density function (pdf)

φd(y; µ, Ω, α, τ) = φd(y; µ, Ω)
Φ{τ/

�
1 + Q

Ω̄
(α)}

Φ(α�z + τ), y ∈ Rd, (4.1)

where φd(y; µ, Ω) is a d-dimensional normal pdf with mean µ ∈ Rd and d × d covariance matrix
Ω, z = (y − µ)/ω, ω = diag(Ω)1/2, Ω̄ = ω−1 Ω ω−1, Q

Ω̄
(α) = α�Ω̄α and Φ(·) is the standard

univariate normal cdf. The shape parameters α ∈ Rd and τ ∈ R are respectively slant and
extension parameters. The cdf associated with (4.1) is termed the extended skew-normal distri-
bution (Arellano-Valle and Genton, 2010) of which the skew-normal and normal distributions
are special cases (Arellano-Valle and Genton, 2010; Azzalini, 2013). For example, in the case
where α = 0 and τ = 0 the standard normal pdf is recovered.
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Definition 4.1. Y is a d-dimensional, non-central extended skew-t distributed random vector,
denoted by Y ∼ STd(µ, Ω, α, τ, κ, ν), if for y ∈ Rd it has pdf

ψd(y; µ, Ω, α, τ, κ, ν) = ψd(y; µ, Ω, ν)

Ψ
�

τ√
1+QΩ̄(α)

; κ√
1+QΩ̄(α)

, ν
�Ψ

�

(α�z + τ)
�

ν + d

ν + Q
Ω̄−1(z) ; κ, ν + d

�

,

(4.2)
where ψd(y; µ, Ω, ν) is the pdf of a d-dimensional t-distribution with location µ ∈ Rd, d × d

scale matrix Ω and ν ∈ R+ degrees of freedom, Ψ(·; a, ν) denotes a univariate non-central t cdf
with non-centrality parameter a ∈ R and ν degrees of freedom, and Q

Ω̄−1(z) = z�Ω̄−1z. The
remaining terms are as defined in (4.1). The associated cdf is

Ψd(y; µ, Ω, α, τ, κ, ν) = Ψd+1 {z̄; Ω∗, κ∗, ν}
Ψ (τ̄ ; κ̄, ν) , (4.3)

where z̄ = (z�, τ̄)�, Ψd+1 is a (d + 1)-dimensional (non-central) t cdf with covariance matrix
and non-centrality parameters

Ω∗ =
�

Ω̄ −δ

−δ� 1

�

, κ∗ =
�

0
κ̄

�

,

and ν degrees of freedom, and where

δ = {1 + Q
Ω̄

(α)}−1/2 Ω̄α, κ̄ = {1 + Q
Ω̄

(α)}−1/2 κ, τ̄ = {1 + Q
Ω̄

(α)}−1/2 τ. (4.4)

When the non-centrality parameter κ is zero, then the extended skew-t family of Arellano-
Valle and Genton (2010) is obtained. For the non-central skew-t family, we now demonstrate
modified properties to those discussed in Arellano-Valle and Genton (2010).

Proposition 4.2 (Properties). Let Y ∼ STd(µ, Ω, α, τ, κ, ν).

1. Marginal and conditional distributions. Let I ⊂ {1, . . . , d} and Ī = {1, . . . , d}\I iden-
tify the dI- and d

Ī
-dimensional subvector partition of Y such that Y = (Y �

I
, Y �

Ī
)�, with

corresponding partitions of the parameters (µ, Ω, α). Then

(a) YI ∼ STdI (µI , ΩII , α∗
I
, τ∗

I
, κ∗

I
, ν), where

α∗
I

= αI+Ω̄
−1
II Ω̄IĪαĪ�

1+QΩ̃ĪĪ·I
(αĪ)

, τ∗
I

= τ�
1+QΩ̃ĪĪ·I

(αĪ)

, κ∗
I

= κ�
1+QΩ̃ĪĪ·I

(αĪ)

, (4.5)

given Ω̃
Ī Ī·I = Ω̄

Ī Ī
− Ω̄

ĪI
Ω̄−1

II
Ω̄

IĪ
.

(b) (Y
Ī
|YI = yI) ∼ STdĪ

(µ
Ī·I , Ω

Ī·I , α
Ī·I , τ

Ī·I , κ
Ī·I , ν

Ī·I), where µ
Ī·I = µ

Ī
+ Ω

IĪ
Ω−1

II
(yI −

µI), Ω
Ī·I = ζIΩ

Ī Ī·I , ζI = {ν + Q
Ω

−1
II

(zI)}/(ν + dI), zI = ω−1

I
(yI − µI), ωI =

diag(ωII)1/2, Q
Ω

−1
II

(zI) = z�
I

Ω−1

II
zI , Ω

Ī Ī·I = Ω
Ī Ī

− Ω
ĪI

Ω−1

II
Ω

IĪ
, α

Ī·I = ω
Ī·Iω−1

Ī
α

Ī
,

ω
Ī·I = diag(Ω

Ī Ī·I)1/2, ω
Ī

= diag(ω
Ī Ī

)1/2, τ
Ī·I = ζ−1/2

I
{(α�

Ī
Ω̄

ĪI
Ω̄−1

II
+ α�

I
)zI + τ},

κ
Ī·I = ζ−1/2

I
κ and ν

Ī·I = ν + dI .
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2. Conditioning type stochastic representation. We can write Y = µ + ΩZ, where Z =
(X|α�X + τ > X0), and where X ∼ Td(Ω̄, ν) is independent of X0 ∼ T (κ, ν).

3. Additive type stochastic representation. We can write Y = µ+ΩZ, where Z =
�

ν+X̃
2
0

ν+1
X1+

δX̃0, X1 ∼ Td(Ω − δδ�, κ̄, ν + 1) is independent of X̃0 = (X0|X0 + τ̄ > 0), X0 ∼ T (κ̄, ν),
δ ∈ (−1, 1)d and where τ̄ and κ̄ are as in (4.4).

Proof in Appendix D.1.1

We conclude by presenting a final property of the non-central skew-t family. The next result
describes the extremal behaviour of observations drawn from a member of this class.

Proposition 4.3. Let Z1, . . . , Zn be i.i.d. copies of Z ∼ STd(Ω̄, α, τ, κ, ν) and Mn be the
componentwise sample maxima. Define an = (an,1, . . . , an,d)�, where

an,j =





n{Γ(ν/2)}−1Γ{(ν + 1)/2}ν(ν−2)/2 Ψ(α∗

j

√
ν + 1; κ, ν + 1)

√
πΨ

�
τ∗

j
/{1 + Q

Ω̄
(α∗

j
)}1/2; κ∗

j
/{1 + Q

Ω̄
(α∗

j
)}, ν

�






1/ν

where α∗
j

= α∗
{j}, τ∗

j
= τ∗

{j} and κ∗
j

= κ∗
{j} are the marginal parameters (4.5) under Proposition

4.2(1). Then Mn/an ⇒ U as n → +∞, where U has univariate ν-Fréchet marginal distributions
(i.e. e−x

−ν , x > 0), and exponent function

V (xj , j ∈ I) =
d�

j=1

x−ν

j
Ψd−1




��

ν + 1
1 − ω2

i,j

�
x+

i

x+

j

− ωi,j

�

, i ∈ Ij

��

; Ω̄+

j
, α+

j
, τ+

j
, ν + 1



 , (4.6)

where Ψd−1 is a (d − 1)-dimensional central extended skew-t distribution with correlation matrix
Ω̄+

j
, shape and extension parameters α+

j
and τ+

j
, and ν + 1 degrees of freedom, I = {1, . . . , d},

Ij = I\{j}, and ωi,j is the (i, j)-th element of Ω̄.
Proof (and further details) in Appendix D.1.4.

As the limiting distribution (4.6) is the same as that of the classic skew-t distribution (see
Padoan, 2011), it exhibits identical upper and lower tail dependence coefficients (e.g. Joe, 1997,
Ch 5). That is, the extension and non-centrality parameters, τ and κ, do not affect the extremal
behavior.

4.2.2 A non-stationary, skew-normal random process

While there are several definitions of a stationary skew-normal process (e.g. Minozzo and
Ferracuti, 2012), stationarity is incompatible with the requirement that all finite-dimensional
distributions of the process are skew-normal. We now construct a non-stationary version of the
skew-normal process through the additive-type stochastic representation (e.g. Azzalini, 2013,
Ch. 5). A similar approach was explored by Zhang and El-Shaarawi (2010) for the stationary
case.
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Definition 4.4. Let {X(s)}s∈S be a stationary Gaussian random process on S with zero mean,
unit variance and correlation function ρ(h) = E{X(s)X(s + h)} for s ∈ S and h ∈ Rk. For
X � ∼ N (0, 1) independent of X(s), ε ∈ R and a function δ : S �→ (−1, 1), define

X ��(s) := X �|X � + ε > 0, ∀ s ∈ S

Z(s) :=
�

1 − δ(s)2X(s) + δ(s)X ��(s), s ∈ S. (4.7)

Then Z(s) is a skew-normal random process.

We refer to δ(s) as the slant function. From (4.7), if δ(s) ≡ 0 for all s ∈ S, then Z is
a Gaussian random process. Note that Z is a random process with a consistent family of
distribution functions, since Z(s) = a(s)X(s) + b(s)Y (s) where a and b are bounded functions
and X and Y are random processes with a consistent family of distribution functions. For any
finite sequence of points s1, . . . , sd ∈ S the joint distribution of Z(s1), . . . , Z(sd) is SNd(Ω̄, α, τ),
where

Ω̄ = Dδ(Σ̄ + (D−1

δ
δ)(D−1

δ
δ)�)Dδ,

α = {1 + (D−1

δ
δ)�Σ̄−1(D−1

δ
δ)}−1/2D−1

δ
Σ̄−1(D−1

δ
δ), (4.8)

τ = {1 + Q
Ω̄

(α)}1/2 ε,

and where Σ̄ is the d × d correlation matrix of X, δ = (δ(s1), . . . , δ(sd))� and Dδ = {1d −
diag(δ2)}1/2, where 1d is the identity matrix (Azzalini, 2013, Ch. 5). As a result, for any lag
h ∈ Rk, the distributions of {Z(s1), . . . , Z(sd)} and {Z(s1 + h), . . . , Z(sd + h)} will differ unless
δ(s) = 0 for all s ∈ S. Hence, the distribution of Z is not translation invariant and the process
is not strictly stationary. For s ∈ S and h ∈ Rk, the mean m(s) and covariance function cs(h)
of the skew-normal random process are

m(s) = E{Z(s)} = δ(s)φ(ε)/Φ(ε)

and

cs(h) = Cov{Z(s), Z(s + h)} = ρ(h)
�

{1 − δ2(s)}{1 − δ2(s + h)} + δ(s)δ(s + h)(1 − r), (4.9)

where r =
�

φ(ε)

Φ(ε)

�
ε + φ(ε)

Φ(ε)

��
. Hence, the mean is not constant and the covariance does not

depend only on the lag h, unless δ(s) = δ0 ∈ (−1, 1) for all s ∈ S. In the latter case the
skew-normal random process is weakly stationary (Zhang and El-Shaarawi, 2010).

One benefit of working with a skew-normal random field is that the non-stationary covariance
function (4.9) is positive definite if the covariance function of X is positive definite, and if
−1 < δ(s) < 1 for all s ∈ S. Hence, a valid model is directly obtainable by means of standard
parametric correlation models ρ(h) and any bounded function δ in (−1, 1). If the Gaussian
process correlation function satisfies ρ(0) = 1 and ρ(h) → 0 as �h� → +∞, then the correlation
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of the skew-normal process is

ρs(h) = cs(h)
�

cs(0)cs(h)
≈ δ(s)δ(s + h)(1 − r)�

(1 − δ2(s)r)(1 − δ2(s + h)r)
,

as �h� → +∞, and ρs(0) = 1. Hence ρs(h) = 0 if either δ(s) or δ(s + h) are zero. Conversely, if
both δ(s) → ±1 and δ(s + h) → ±1 then ρs(h) → ±1.

The increments Z(s + h) − Z(s) are skew-normal distributed for any s ∈ S and h ∈ Rk (see
Appendix A.4.5) and the variogram 2γs(h) = Var{Z(s + h) − Z(s)} is equal to

2γs(h) = 2
�

1 − cs(h) − δ2(s + h) + δ2(s)
π

�

.

When h = 0 the variogram is zero, and when �h� → +∞ the variogram approaches a constant
≤ 2, respectively resulting in spatial independence or dependence for large distances h. We can
now infer the conditions required so that Z(s) has a continuous sample path.

Proposition 4.5. Assume that S ⊆ R. A skew-normal process {Z(s), s ∈ S} has a continuous
sample path if δ(s + h) − δ(s) = o(1) and 1 − ρ(h) = O(| log |h||−a) for some a > 3, as h → 0.

This result follows by noting that rs(h) = ρ(h)+δ2(s)(1−ρ(h))+o(1) as h → 0 and this is a
consequence of the continuity assumption on δ(s), where rs(h) = cs(h) + {δ2(s + h) + δ2(s)}/π.
Therefore, 1 − rs(h) = O(| log |h||−a) as h → 0. Thus, the proof follows from the results in
Lindgren (2012, page 48). This means that continuity of the skew-normal process is assured if
δ(s) is a continuous function, in addition to the usual condition on the correlation function of
the generating Gaussian process (e.g. Lindgren, 2012, Ch. 2).

Figure 4.1 illustrates trajectories of the skew-normal process for k = 1, with X(s) a zero mean
unit variance Gaussian process on [0, 1] with isotropic power-exponential correlation function

ρ(h; ϑ) = exp{− (h/λ)ξ}, ϑ = (λ, ξ), λ > 0, 0 < ξ ≤ 2, h > 0, (4.10)

with ξ = 1.5, λ = 0.3 and h ∈ [0, 1]. The first row shows the standard stationary case. The
second row illustrates the non-stationary correlation function obtained with s = 0.1 (solid line),
close to the stationary correlation. Thus the correlation of the process at two locations s and s+h

vanishes asymptotically as |h| → +∞. The second row illustrates the non-stationary correlation
function obtained with s = 0.1 (solid line) behaving close to the stationary correlation, with
this correlation decaying more slowly as s increases (but not approaching zero). The third row
demonstrates both that points may be negatively correlated and that ρs(h) is not necessarily
a decreasing function in h. The bottom row highlights this even more clearly – correlation
functions need not be monotonically decreasing – implying that pairs of points far apart can be
more dependent than nearby points.

Simulating a skew-normal random process is computationally cheap through Definition 4.4,
with the simulation of the required stationary Gaussian process achievable through many fast
algorithms (e.g., Wood and Chan, 1994; Chan and Wood, 1997). Rather than relying on (4.8),
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Figure 4.1: Simulations from four univariate skew-normal random processes on [0, 1] with ε = 0. The left
column shows the sample path (solid line) of the simulated process Z(s) and of the generating Gaussian
process X(s) (grey line). The middle column illustrates the slant function δ(s) (solid line) and the mean
m(s) of the process (dashed line). The right column displays the non-stationary correlation functions at
locations s = 0.1 (solid line), 0.5 and 0.75 (dot-dash). Rows 1–3 use slant function δ(s) = a sin(bs) with
a = 0.95 and b = 0, 1 and 3 respectively, whereas row 4 uses δ(s) = a2 sin(bs) cos(bs) with a = 1.3 and
b = 0.9.

for practical purposes, to directly simulate from a skew-normal process with given parameters
α, Ω̄ and τ , a conditioning sampling approach can be adopted (Azzalini, 2013, Ch. 5).

Specifically, let X(s) define a zero-mean, unit variance stationary Gaussian random field on
S with correlation function ω(h) = E{X(s)X(s + h)} and let Ω̄ be the d × d correlation matrix
of X(s1), . . . , X(sd). Specify α : S �→ R to be a continuous square-integrable function and let
�α, X� =

�
S α(s)X(s) ds be the inner product. Let X � be a standard normal random variable

independent of X and τ ∈ R. If we define

Z(s) =
�
X(s)|�α, X� > X � − τ

�
, s ∈ S (4.11)

then, for any finite set s1, . . . , sd ∈ S, the distribution of Z(s1), . . . , Z(sd) is SN (Ω̄, α, τ), where
α ≡ {α(s1), . . . , α(sd)}. For simplicity we also refer to α(s) as the slant function. More efficient
simulation of skew-normal processes can be achieved by considering the form Z(s) = X(s) if
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�α, X� > X � − τ and Z(s) = −X(s) otherwise (e.g. Azzalini, 2013, Ch. 5).
We conclude this section by discussing some extremal properties of the skew-normal process

Z(s). For a finite sequence of points s1, . . . , sd ∈ S, with d ≥ 2. Each margin Z(si) follows
a skew-normal distribution (Azzalini, 2013) and so is in the domain of attraction of a Gumbel
distribution (Chang and Genton, 2007; Padoan, 2011). Further, each pair (Z(si), Z(sj)) is
asymptotically independent (Bortot, 2010; Lysenko et al., 2009). However, in this case a broad
class of tail behaviours can still be obtained by assuming that the joint survival function is
regularly varying at +∞ with index −1/η (Ledford and Tawn, 1996), so that

Pr(Z(si) > x, Z(sj) > x) = x−1/η L (x), x → +∞, (4.12)

where η ∈ (0, 1] is the coefficient of tail dependence and L (x) is a slowly varying i.e., L (ax)/L (x) →
1 as x → +∞, for fixed a > 0. Considering L as a constant, at extreme levels margins are
negatively associated when η < 1/2, independent when η = 1/2 and positively associated when
1/2 < η < 1. When η = 1 and L (x) � 0 asymptotic dependence is obtained. We derive the
asymptotic behavior of the joint survival function (4.12) for a pair of skew-normal margins. As
our primary interest is in spatial applications, we focus on the joint upper tail of the skew-normal
distribution when the variables are positively correlated or uncorrelated.

Proposition 4.6. Let Z ∼ SN2(Ω̄, α), where α = (α1, α2)� and Ω̄ is a correlation matrix
with off-diagonal term ω ∈ [0, 1). The joint survivor function of the bivariate skew-normal
distribution with unit Fréchet margins behaves asymptotically as (4.12), where:

1. when either α1, α2 ≥ 0, or ω > 0 and αj ≤ 0 and α3−j ≥ −ω−1αj for j = 1, 2, then

η = (1 + ω)/2, L (x) = 2 (1+ω)

1−ω
(4π log x)−ω/(1+ω);

2. when ω > 0, αj < 0, and −ω αj ≤ α3−j < −ω−1αj, for j = 1, 2, then

(a) If α3−j > −αj/ᾱj then

η = (1−ω
2)ᾱ2

j

1−ω2+(ᾱj−ω)2 , L (x) = 2 ᾱ
2
j (1−ω

2)

(ᾱ2
j −ω)(1−ωᾱj)

(4π log x)1/2η−1;

(b) If α3−j < −αj/ᾱj then

η =
�

1−ω
2+(ᾱj−ω)2

(1−ω2)ᾱ2
j

+
�
α3−j + αj

ᾱj

�2
�−1

,

L (x) = −23/2
π

1/2
ᾱ

2
j (1−ω

2)(α3−j+αj/ᾱj)−1

(ᾱj−ω){1−ωᾱj+αj(αj+α3−j ᾱj)(1−ω2)}(4π log x)1/2η−3/2;

3. when either α1, α2 < 0, or ω > 0, αj < 0 and 0 < α3−j < −ω αj for j = 1, 2, then

η =
�

1

1−ω2

�
α

2
3−j(1−ω

2)+1

ᾱ
2
3−j

+ α
2
j (1−ω

2)+1

ᾱ
2
j

+ 2(α3−jαj(1−ω
2)−ω)

ᾱ3−j ᾱj

��−1

,

L (x) = −23/2
π

1/2
ᾱ

3/2
j ᾱ

2
3−j(1−ω

2)(αiᾱj+αj ᾱ3−j)−1

(ᾱj−ωᾱ3−j){1−ωᾱj+αj(αj+α3−j ᾱj/ᾱ3−j)(1−ω2)}(4π log x)1/2η−3/2;
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where ᾱj =
�

1 + α∗2
j

and α∗
j

:= α∗
{j} = αj+ωα3−j√

1+α3−j(1−ω2)
.

Proof in Appendix D.1.3.

As a result, when both marginal parameters are non-negative (case 1) then 1/2 ≤ η < 1,
with η = 1/2 occurring when ω = 0. As a consequence, as for the Gaussian distribution (for
which α = 0) the marginal extremes are either positively associated or exactly independent.
The marginal extremes are also completely dependent when ω = 1, regardless of the values of
the slant parameters, α. When one marginal parameter is positive and one is negative (case 2)
then η > (1 + ω)/2. In this case the extreme marginals are also positively associated, but the
dependence is greater than when the random variables are normally distributed. Finally, when
both marginal parameters are negative (case 3), then 0 < η < 1/2 implying that the extreme
marginals are negatively associated, although ω > 0. It should be noted that differently from
the Gaussian case (α = 0) where ω > 0 implies a positive association, in this case this is not
necessary true. In summary, the degree of dependence in the upper tail of the skew-normal
distribution ranges from negative to positive association and including independence.

4.3 Spectral representation for the extremal-skew-t process

The spectral representation of stationary max-stable processes with common unit Fréchet
margins can be constructed using the fundamental procedures introduced by de Haan (1984)
and Schlather (2002) (see also de Haan and Ferreira, 2006, Ch. 9). This representation can be
formulated in broader terms resulting in max-stable processes with ν-Fréchet univariate marginal
distributions, with ν > 0 (Opitz, 2013). In order to state our result we rephrase the spectral
representation so to also take into account non-stationary processes.

Let {Y (s)}s∈S be a non-stationary real-valued stochastic process with continuous sample
path on S such that E {sups∈S Y (s)} < ∞ and m+(s) = E[{Y +(s)}ν ] < ∞, ∀s ∈ S for ν > 0,
where Y +(·) = max{Y (·), 0} denotes the positive part of Y . Let {Ri}i≥1 be the points of
an inhomogeneous Poisson point process on (0, ∞) with intensity νr−(ν+1), ν > 0, which are
independent of Y . Define

U(s) = max
i=1,2,...

{RiY
+

i
(s)}/{m+(s)}1/ν , s ∈ S, (4.13)

where Y1, Y2, . . . are i.i.d. copies of Y . Then U is a max-stable process with common ν-Fréchet
univariate margins. In particular, for fixed s ∈ S and x(s) > 0 we have

Pr(U(s) ≤ x(s)) = exp
�

− E{Y +(s)ν}
xν(s)m+(s)

�

= exp{−1/xν(s)},

and for fixed s1, . . . , sd the finite dimensional distribution of U has exponent function

V (x(s1), . . . , x(sd)) = E
�

max
j

�
{Y +(sj)/x(sj)}ν

m+(sj)

��

, x(sj) > 0, j = 1, . . . , d (4.14)
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(de Haan and Ferreira, 2006, Ch. 9).
In this construction, the impact of a non-stationary process Y (s) would be that the de-

pendence structure of the max-stable process U(s + h) depends on both the separation h and
the location s ∈ S, and would therefore itself be non-stationary. The theorem below derives a
max-stable process U(s) when Y (s) is the skew-normal random field introduced in Section 4.2.2.

Theorem 4.7 (Extremal skew-t process). Let Y (s) be a skew-normal random field on s ∈ S with
finite dimensional distribution SNd(Ω̄, α, τ), as defined in equation (4.11). Then the max-stable
process U(s), given by (4.13), has ν-Fréchet univariate marginal distributions and exponent
function

V (xj , j ∈ I) =
d�

j=1

x−ν

j
Ψd−1




��

ν + 1
1 − ω2

i,j

�
x◦

i

x◦
j

− ωi,j

�

, i ∈ Ij

��

; Ω̄◦
j , α◦

j , τ◦
j , κ◦

j , ν + 1



 ,

(4.15)
where xj ≡ x(sj), Ψd−1 is a (d − 1)-dimensional non-central extended skew-t distribution (Def-
inition 4.1) with correlation matrix Ω̄◦

j
, shape, extension and non-centrality parameters α◦

j
, τ◦

j

and κ◦
j
, ν + 1 degrees of freedom, I = {1, . . . , d}, Ij = I\{j}, and ωi,j is the (i, j)-th element of

Ω̄.
Proof (and further details) in Appendix D.1.5.

We call the process U(s) with exponent function (4.15) an extremal skew-t process.
Note that in Theorem 4.7 when τ = 0, and the slant function is such that α(s) ≡ 0 for all

s ∈ S, then the exponent function (4.15) becomes

V (xj , j ∈ I) =
�

j∈I

x−ν

j
Ψd−1




��

ν + 1
1 − ω2

i,j

�
xi

xj

− ωi,j

�

, i ∈ Ij

��

; Ω̄◦
j , ν + 1



 . (4.16)

This is the exponent function of the extremal-t process as discussed in Opitz (2013).
If we assume τ = 0 in (4.11), then the bivariate exponent function of the extremal skew-t

process seen as a function of the separation h is equal to

V {x(s), x(s + h)} = Ψ(b(x∗
s(h)); α∗

s(h), τ∗
s (h), ν + 1)

xν(s) + Ψ(b(x+
s (h)); α+

s (h), τ+
s (h), ν + 1)

xν(s + h)

where Ψ is a univariate extended skew-t distribution, b(·) =
�

ν+1

1−ω2(h)
(· − ω(h)),

x∗
s(h) = x(s+h)Γs(h)

x(s)
, x+

s (h) = x(s)

x(s+h)Γs(h)
,

α∗
s(h) = α(s + h)

�
1 − ω2(h), α+

s (h) = α(s)
�

1 − ω2(h),

τ∗
s (h) =

√
ν + 1{α(s) + α(s + h)ω(h)}, τ+

s (h) =
√

ν + 1{α(s + h) + α(s)ω(h)},
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Figure 4.2: Examples of univariate (k = 1) non-stationary isotropic extremal coefficient functions θs(h),
for the extremal skew-t process over s ∈ [0, 1], using correlation function (4.10) where h ∈ [0, 1], λ = 1.5
and γ = 0.3. Slant functions are (left to right panels): α(s) = −1 − s + exp{sin(5s)}, α(s) = 1 + 1.5s −
exp{sin(8s)} and α(s) = 2.25 sin(9s) cos(9s). Solid, dashed and dot-dashed lines represent the fixed
locations s = 0.05, 0.25 and 0.8 respectively.

and

Γs(h) =




Ψ

�
α(s) + α(s + h)ω(h)

�
ν+1

α2(s+h){1−ω2(h)} ; ν + 1
�

Ψ
�
α(s + h) + α(s)ω(h)

�
ν+1

α2(s){1−ω2(h)} ; ν + 1
�





1/ν

.

Clearly, as the dependence structure depends on both the correlation function ω(h) and the
slant function α(s), and therefore on the value of s ∈ S, it is non-stationary dependence. From
the bivariate exponent function we can derive the non-stationary extremal coefficient function,
using the relation θs(h) = V (1, 1), which gives

θs(h) = Ψ(b(Γs(h)); α∗
s(h), τ∗

s (h), ν + 1) + Ψ(b(1/Γs(h)); α+
s (h), τ+

s (h), ν + 1). (4.17)

Figure 4.2 shows some examples of univariate (k = 1) non-stationary isotropic extremal co-
efficient functions obtained from (4.17) using the power-exponential correlation function (4.10).
Each panel illustrates a different slant function α(s), with the line-types indicating the fixed
location value of s ∈ S. The extremal coefficient functions θs(h) increase as the value of h in-
creases, meaning that the dependence of extremes decreases with the distance. θs(h) grows with
different rates depending on the location s ∈ S. Although the ergodicity and mixing proper-
ties of the process must be investigated, numerical results show that for some s, θs(h) → 2 as
|h| → +∞. By increasing the complexity of the slant function (e.g. centre and right panels)
it is possible to construct extremal coefficient functions which exhibit stronger dependence for
larger distances, h, compared to shorter distances. Similarly Figure 4.3 illustrates examples of
bivariate (k = 2) non-stationary geometric anisotropic extremal coefficient functions, θs(h), also
obtained from (4.17). Similar interpretations to the univariate case can be made (Figure 4.2),
in addition to noting that the level of dependence is affected by the direction (from the origin).
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Figure 4.3: Bivariate (k = 2) geometric anisotropic non-stationary extremal coefficient functions θs(h),
for the extremal skew-t process on s ∈ [0, 1]2, based on extremal coefficient function (4.17) with λ = 1.5
and γ = 0.3, where h = v�Rv, v = (v1, v2)� ∈ [−1, 1]2 and R is a 2 × 2 matrix whose diagonal elements
are 2.5 and off-diagonal elements 1.5. Slant functions are α(s) = exp{sin(4s1) sin(4s2) − s1s2 − 1} (top
panels) and α(s) = 2.25{sin(3s1) cos(3s1) + sin(3s2) cos(3s2)} (bottom), with s = (s1, s2)� ∈ [0, 1]2. Left
to right, panels are based on fixing s = (0.2, 0.2)�, s = (0.4, 0.4)� and s = (0.85, 0.85)� (top panels) and
s = (0.25, 0.25)�, s = (0.25, 0.8)� and s = (0.8, 0.8)� (bottom).

4.4 Inference for extremal skew-t processes

Parametric inference for the extremal-skew-t process can be performed in two ways. The
first uses the marginal composite-likelihood approach (e.g. Padoan et al., 2010; Davison and
Gholamrezaee, 2012; Huser and Davison, 2013), since only marginal densities of dimension up
to d = 4 are practically available (see Appendix D.2.1).

Let ϑ ∈ Θ denote the vector of dependence parameters of the extremal-skew-t process.
Consider a sample x1, . . . , xn ∈ Rk

+ of n i.i.d. replicates of the process observed over a finite
number of points s1, . . . , sd ∈ S. For simplicity, it is assumed that the univariate marginal
distributions are unit Fréchet. The pairwise or triplewise (m = 2, 3) log-composite-likelihood is
defined by

�m(ϑ; x) =
n�

i=1

�

E∈Em

log f(xi ∈ E; ϑ), m = 2, 3,

where x = (x1, . . . , xn)� and f is a marginal extremal-skew-t pdf associated with each member of
a set of marginal events Em. See e.g. Varin et al. (2011) for a complete description of composite
likelihood methods.

A second approach is to use the approximate likelihood function introduced by Coles and
Tawn (1994), which is constructed on the space of angular densities. The angular measure of
the extremal-skew-t dependence model (4.15) places mass on the interior as well as on all the
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other subspaces of the simplex, such as the edges and the vertices. We derive some of these
densities following the results in Coles and Tawn (1991).

Let J be an index set that takes values in I = P({1, . . . , d})\∅, where P(I) is the power set
of I. For any fixed d and all J ∈ I, the sets

Wd,J = (w ∈ W : wj = 0, if j /∈ J ; wj > 0 if j ∈ J)

provide a partition of the d-dimensional simplex W into 2d −1 subsets. Let k = |J | be the size of
J . Let hd,J denote the density that lies on the subspace Wd,J , which has k − 1 free parameters
wj such that j ∈ J . When J = {1, . . . , d} the angular density in the interior of the simplex is

h(w) =

ψd−1




��

ν+1

1−ω
2
i,1

��
w

◦
i

w
◦
1

�1/ν

− ωi,1

�
, i ∈ I1

��

; Ω◦
1, α◦

1, τ◦
1 , κ◦

1, ν + 1





w(d+1)

1

�
�

d

i=2
1

ν

�
ν+1

1−ω
2
i,1

�
w

◦
i

w
◦
1

� 1
ν −1

m
+
i

m
+
1

�−1
, w ∈ W (4.18)

where ψd−1 denotes the d − 1-dimensional skew-t density, Ij = {1, . . . , d}\j and where the
parameters Ω◦

1, α◦
1, τ◦

1 , κ◦
1 and w◦

i
= xi(m+

i
)1/ν are given in the proof to Theorem 4.7 (Appendix

D.1.5). When J = {i1, . . . , ik} ⊂ {1, . . . , d}, the angular density for any x ∈ Rd
+ is

hd,J

�
xi1�
i∈J

xi

, · · · ,
xik−1�
i∈J

xi

�

= −
�

�

i∈J

xi

�
k+1

lim
xj→0,

j /∈J

∂kV

∂xi1 · · · ∂xik

(x). (4.19)

Thus, when J = {j} for any j ∈ {1, . . . , d} then Wd,J is a vertex ej of the simplex and the
density is a point mass, denoted hd,J = H({ej}). In this case (4.19) reduces to

hd,J = Ψd−1






�

−
�

ν + 1
1 − ω2

i,j

ωi,j , i ∈ Ij

��

; Ω◦
j , α◦

j , τ◦
j , κ◦

j , ν + 1




 , (4.20)

where Ψd−1 denotes the d − 1-dimensional skew-t distribution with parameters again given in
the proof to Theorem 4.7 (Appendix D.1.5).

Computations of all 2d − 1 densities that lie on the edges and vertices of the simplex are
available for d = 3. In this case, the angular densities on the interior and vertices of the simplex
can be deduced from (4.18) and (4.20). For all i, j ∈ J = {1, 2, 3}, with i �= j, the angular
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density on the edges of Wd,J for w ∈ Wd,J is given by

h3,{i,j}(w) =
�

u,v∈{i,j},u �=v

�
ψ(b◦

u,v; ν + 1)
Ψ(τ̄u; ν + 1) Ψ2

�
{y◦

1(u, v), y◦
2(u, v)}� ; Ω̄◦◦

u , ν + 2
�

× 1
w 1

�
d2b◦

u,v

dwudwv

+
db◦

u,v)
dwv

�
db◦

u,v

dwu

(ν + 2)b◦
u,v

ν + 1 + b◦2
u,v

− 1
w 1

��

+ ψ{y◦
1(u, v); ν + 2}

�
ν + 2

1 − Ω◦2

u,[1,2]

b◦
u,vc

u,k̄
+ Ω◦2

u,[1,2]
(ν + 1)

(ν + 1 + b◦2
u,v)3/2

× Ψ





√
ν + 3

�
z◦

2(u, v)Ω◦◦
u,[1,1]

− z◦
1(u, v)Ω◦◦

u,[1,2]

�

��
Ω◦◦

u,[1,1]
{ν + 1 + b◦2

u,v} + z◦2
1

(u, v)
�

det(Ω◦◦
u )

; ν + 3



 (4.21)

+ ψ{y◦
2(u, v); ν + 2}

�
ν + 2

1 − Ω∗2

u,[1,3]

x(u, v)τ̄u + Ω∗2

u,[1,3]
(ν + 1)

{ν + 1 + b◦2
u,v}3/2

×Ψ


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�
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1(u, v)Ω◦◦
u,[2,2]

− z◦
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Ω◦◦
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u,v} + z◦
2
(u, v)2

�
det(Ω◦◦
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
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

 ,

where for all u, v ∈ J , with u �= v, and k̄ /∈ {i, j},

y◦
� (u, v) = z◦

�
(u, v)

�
Ω◦

u,[�,�]

�
ν + 2

ν + 1 + b◦2
u,v

, � = 1, 2, z◦
1(u, v) = c

u,k̄
− Ω◦

u,[1,2]
b◦

u,v,

cu,v = −ωu,v

�
ν + 1

1 − ω2
u,v

, z◦
2(u, v) = τ̄u − Ω◦

u,[1,3]
, b◦

u,v, Ω◦
u =

�
Ω̄u −δu

−δ�
u 1

�

,

δ�
u = Ω̄u

�
αv

�
1 − ω2

u,v, αk

�
1 − ω2

u,k

��
, Ω̄◦◦

u = ω◦
u

−1/2Ω◦◦
u ω◦

u

−1/2,

ω◦
u = diag(Ω◦◦

u ), Ω◦◦
u = Ω◦

u,[−1,−1]
−Ω◦

u,[−1,1]
Ω◦

u,[1,−1]
. Components of Ω◦

u and Ω◦◦
u are respectively

given by Ω◦
u,[i,j]

and Ω◦◦
u,[i,j]

for i, j ∈ J . See also Appendix D.1.5 for further details. When,
τ = 0 and α(s) = 0, then the densities (4.18), (4.20) and (4.21) reduce to the densities of the
extremal-t dependence model.

Figure 4.4 illustrates some examples of the flexibility of the trivariate extremal-skew-t de-
pendence structure. Here we write the correlation coefficients as ω = (ω1,2, ω1,3, ω2,3)� and the
slant parameters as α = (α1,2, α1,3, α2,3)�, and assume that ν = 2 and τ = 0 for simplicity.

The plots in the left column have α = (0, 0, 0)� and so correspond to the extremal-t angular
measure. The density in the top-left panel, obtained with ω = (0.52, 0.71, 0.52)�, has mass
concentrations mainly on the edge that links the first and the third variable, since they are the
most dependent (w1,3 = 0.71). Some mass is also placed on the corners of the second variable,
indicating that this is less dependent on the others (w1,2 = w2,3 = 0.52), and on the middle of
the simplex, because a low degree of freedom (ν = 2) pushes mass towards the centre of the
simplex. The top-middle and top-right panels are extremal skew-t angular densities obtained
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Figure 4.4: Trivariate extremal skew-t angular densities with ν = 2 degrees of freedom. Correlation
coefficients are ω = (0.52, 0.71, 0.52)� for the top row and ω = (0.95, 0.95, 0.95)� for the bottom. Left
and centre columns respectively have skewness α = (0, 0, 0)� and α = (−2, −2, 5)�. Right column has
α = (−10, 5, 1)� (top) and α = (−2, −2, −2)� (bottom). In all cases τ = 0 for simplicity.

with α = (−2, −2, 5)� and α = (−10, 5, 1)� respectively. Here the impact of the slant parameter
is to increase the levels of dependence – indeed the mass is clearly pushed towards the centre
of the simplex. In the middle panel dependence between the second and third variables has
increased, while in the right panel all variables are strongly dependent with a greater dependence
of the second variable on the others.

The bottom row in Figure 4.4 illustrates the spectral densities with correlation coefficients
ω = (0.95, 0.95, 0.95)�. The bottom-left panel is the standard extremal-t dependence (with
α = (0, 0, 0)�), which has a symmetric density with mass concentrated mainly in the centre
of the simplex and on the vertices. The top-middle and top-right panels show extremal skew-t
densities, obtained with α = (−2, −2, 5)� and α = (−2, −2, −2)� respectively. In this case the
impact of the slant parameter is to decrease the dependence – here the mass is pushed towards
the edges of the simplex. In the middle panel the second variable has become more dependent
on the others, while in the right panel the third variable is more dependent on the others. These
examples illustrate the great flexibility of the extremal skew-t model in capturing a wide range
of extremal dependence behaviour above and beyond that of the standard extremal t model.

Therefore, for d = 3 the estimation of dependence parameters can be based on the following
approach. Let {(ri, wi) : i = 1, . . . , n} be the set of observations, where ri = xi,1 + · · · + xi,d

and wi = xi/ri are pseudo-polar radial and angular components. Then the approximate log-
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likelihood is defined by
�(ϑ; w) =

�

i=1,...,n:

ri>r0

log h(wi; ϑ), (4.22)

where w = (w1, . . . , wn)�, for some radial threshold r0 > 0, and where h is the angular density
function of the extremal-skew-t dependence model. The components of the sum in (4.22) com-
prise the three types of angular densities lying on the interior, edges and vertices of the simplex.
Whether an angular component belongs either to the interior, an edge or a vertex of the simplex,
producing the associated density, is determined according the following criterion. We select a
threshold c ∈ [0, 0.1] and we construct the following partitions for an arbitrary (wi, wj , wk):
When Ci = {wi > 1 − c, wj < c, wk < c} for i = 1, 2, 3, j �= k �= i then an observation belongs
to vertex ei. When Eij = {wi, wj < 1 − c, wk < c, wi > 1 − 2wj , wj > 1 − 2wi}, for i, j = 1, 2, 3,
i �= j, k �= i, j, then an observation belong to edge between the ith and jth components. When
I = {wi < c, i = 1, 2, 3} then an observation belongs to the interior. Figure 4.5 displays with
the gray and shaded areas the partitions of the three-dimensional simplex into three corners and
edges respectively. Observations which angular components fall into such areas are considered
to belong to the corresponding subset of the simplex (corner, edge or interior).

For example, when w3 > 1−c (on the left of the green dashed line indicating the 1−c level for
w3), then w = (w1, w2, w3) is in the corner associated to the third component which corresponds
to the grey shaded triangle on the bottom left of the simplex. Similarly, if both w1 and w2 are
less than 1 − c (i.e. to the left of the blue dashed line indicating the 1 − c level of w1 and below
the red dashed line indicating the 1 − c level of w2), such that w1 > 1 − 2w2 and w2 > 1 − 2w1

(i.e. to the right of the black dashed line bisecting the corner of the second component and above
the black dashed line bisecting the corner of the first component) and if w3 < c (to the right
of the green dashed line indicating the 1 − c level of w3) then w = (w1, w2, w3) is on the edge

Figure 4.5: Partitions of the three-dimensional simplex
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between the first and second component which correspond to the positively hatched area on the
right hand side of the simplex. Finally if w1, w2, w3 > c (i.e. to the right of the blue dashed line,
above the red dashed line and to the left of the green dashed line, respectively indicating the c

levels of w1, w2 and w3) then w = (w1, w2, w3) is in the interior of the simplex, represented by
the white triangle in the centre of the simplex.

Observations then need to be rescaled so that the total mass is equal to the number of
components. That is

�

W
h(w)dw = kCi

3�

i=1

�

C
h3,{i}dw + kEij

3�

i=1

�

Eij

h2,{i,j}(w)dw + kI

�

I
h3,{1,2,3}(w)dw = 3,

where

kCi = 4√
3c2

, kEij =
�

1

0
h3,{i,j}

c

2

√
3(1 − 2c)

, kI =
�

1

0

�
1

0
h3,{1,2,3}(w)dw

�
1−2c

c

�
1−2c

c
h3,{1,2,3}(w)dw

.

In the bivariate case (d = 2), the appropriate modification only considers the mass on the
vertices and interior.

We now illustrate the ability of the approximate likelihood in estimating the extremal de-
pendence parameters in the bivariate and trivariate cases. We generate 500 replicate datasets
of sizes 5000 (bivariate) and 1000 (trivariate), with parameters ϑ2 = (ω, ν) = (0.6, 1.5) and
ϑ3 = (ω1,2, ω1,3, ω2,3, ν) = (0.6, 0.8, 0.7, 1). Each dataset is transformed to pseudo-polar coordi-
nates and the 100 observations with the largest radial component are retained. Parameters are
estimated through the profile likelihood where the dependence parameter ω is the parameter
of interest and the degree of freedom ν is considered as a nuisance parameter. Parameters are
estimated for different values of the threshold c = 0, 0.02, 0.04, 0.06, 0.08, 0.1. In order to com-
pare likelihoods for different values of c, the likelihood functions are evaluated using those data
points considered to belong to the interior of the simplex, multiplied by the mass at the corners
and/or edges in proportion to their rescaling constants.
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Figure 4.6: Left to right: Boxplots of the estimates of the dependence parameter ω, the degree of
freedom ν and the associated maximum of the likelihood function based on the rescaled angular density,
when c = 0, 0.02, 0.04, 0.06, 0.08 and 0.1. Boxplots are constructed from 500 replicate datasets of size
5000. Horizontal lines indicate the true values ω = 0.6 and ν = 1.5.
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Figures 4.6 and 4.7 provide (left to right) boxplots of the resulting estimates of the depen-
dence parameter(s) ω, the degree of freedom ν and of the likelihood function for increasing values
of c, for the 500 replicate datasets for both bivariate and trivariate cases. The true parameter
values are indicated by the horizontal lines.
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Figure 4.7: Left to right: Boxplots of the estimates of the dependence parameter ω = (ω1,2, ω1,3, ω2,3),
the degree of freedom ν and the associated maximum of the likelihood function based on the rescaled
angular density, when c = 0, 0.02, 0.04, 0.06, 0.08 and 0.1. Boxplots are constructed from 500 replicate
datasets of size 1000. Horizontal lines indicate the true values ω1,2 = 0.6, ω1,3 = 0.7, ω2,3 = 0.7 and ν = 1.

In the rightmost panel of each Figure, the largest values of the log-likelihood are globally
obtained for c = 0.02, for which the most accurate estimates of ω and ν are also obtained.
Conditional on c = 0.02 the mean estimates are ω̂ = 0.55 and ν̂ = 1.79 in the bivariate case
and ω̂ = (0.62, 0.80, 0.71) and ν̂ = 1.27 in the trivariate case. Note that the degree of freedom ν

appears to be slightly overestimated, and appears to be better estimated for slightly larger values
of c. Overall this procedure appears capable of efficiently estimating the model parameters. Note
that increased precision of estimates can be obtained by considering a denser range of threshold
values c.

An independent study comparing the efficiency of the maximum pairwise and triplewise
composite likelihood estimators is provided in Appendix D.3. This simulation study related
to that of Huser and Davison (2013), demonstrates that the triplewise maximum-likelihood
estimator can be more efficient than the pairwise maximum-likelihood estimator for the extremal-
t process.

4.5 Application to wind speed data

We illustrate use of the extremal skew-t process using wind speed data (the weekly maxi-
mum wind speed in km/h), collected from 4 monitoring stations across Oklahoma, USA, over
the March-May period during 1996–2012, as part of a larger dataset of 99 stations. An anal-
ysis establishing the marginal, station-specific skewness of these data is presented below. The
maximum daily observations of wind speed (1564 observations per station) are considered. The
t and skew-t distributions are fitted to the data using the maximum likelihood approach and a
chi-square test is performed in order to investigate if the slant parameter of the skew-t distribu-
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tion is significantly different from zero. Additionally the Fisher-Pearson coefficient of skewness
(γ) is calculated.

The marginal estimation results are collected in Table 4.1. The estimated parameters are
location µ, scale σ and degrees of freedom ν for the t distribution and in addition also the slant
α for the skew-t distributions. The table also displays the p-value of a chi-square test for the 4
monitoring stations (CLOU, CLAY, SALL and PAUL) that exhibit the most skewness according
to the slant coefficient. With a p-value of zero, the skewness of the data is proved marginally.

The red and blue solid lines in Figure 4.8 respectively show the fitted t and skew-t densities
compared to the histogram of the daily observations for each of the 4 monitoring stations high-
lighted above. Each of the plots clearly shows that the datasets are right skewed and that the
model with the ability to handle skewness provides a better fit.

Now we focus on the dependence structure between stations, where for simplicity the data
is marginally transformed to unit Fréchet distributions. Only extremal-t and extremal skew-t
models are considered, and parameter estimation is performed via pairwise composite likelihoods
detailed at the beginning of Section 4.4.

Model comparison is performed through the composite likelihood information criterion (CLIC;
Varin et al. (2011)) given by

CLIC = −2
�
�(ϑ̂) − tr{Ĵ(ϑ̂)Ĥ(ϑ̂)−1}

�
,

where ϑ̂ are the maximum composite likelihood estimates, �(ϑ̂) is the maximised pairwise com-
posite likelihood, and Ĵ and Ĥ are estimates of J(ϑ) = Var(∇�(ϑ)) and J(ϑ) = E(−∇2�(ϑ)),
the variability and sensibility (hessian) matrices.

Table 4.2 presents the pairwise composite likelihood estimates of ω = (ω12, ω13, ω23), α =
(α1, α2, α3) and ν for the extremal-t and extremal skew-t models obtained for all triplewise
combinations of the four locations CLOU, CLAY, PAUL and SALL. For each triple the extremal
skew-t model achieves a lower CLIC score than the extremal-t model, indicating its greater
suitability. Moreover the standard errors of the slant parameters α, that are (0.04, 0.14, 0.03),
(0.05, 0.97, 1.09), (0.17, 0.15, 0.63) and (0.03, 0.02, 3.49) for the four triples on Table 4.2 from
top to the bottom respectively, prove that these parameters are non-zero, strengthening the

Station Model µ̂ σ̂ α̂ ν̂ p-value γ
CLOU t 11.84 2.75 − 5.78 − −

skew-t 8.51 20.24 2.79 11.21 0 1.17
CLAY t 12.63 3.50 − 6.40 − −

skew-t 8.23 35.53 3.28 16.61 0 1.12
SALL t 14.66 4.27 − 7.47 − −

skew-t 9.02 58.76 4.20 50.98 0 0.92
PAUL t 15.76 4.25 − 9.31 − −

skew-t 11.43 38.55 1.78 17.81 0 0.79

Table 4.1: Outcome of the marginal analysis of the 4 stations that exhibit the strongest skewness.
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Figure 4.8: Histogram of the daily data, fitted t (red solid line) and skew-t (blue solid line) densities for
the 4 stations with the largest slant coefficient.

Stations Model ω̂ α̂ ν̂ CLIC
(CLOU,CLAY,SALL) ex-t (0.67, 0.57, 0.69) − 2.89 5395.73

ex-skew-t (0.42, 0.74, 0.52) (−0.80, 2.88, −0.23) 2.06 5385.07
(CLOU,CLAY,PAUL) ex-t (0.59, 0.50, 0.69) − 2.53 5503.54

ex-skew-t (0.45, 0.29, 0.65) (−0.68, 21.07, 23.41) 2.16 5496.90
(CLAY,SALL,PAUL) ex-t (0.65, 0.61, 0.53) − 1.55 5086.13

ex-skew-t (0.56, 0.51, 0.39) (3.55, 2.36, 8.49) 1.29 5075.87
(CLOU,SALL,PAUL) ex-t (0.37, 0.40, 0.42) − 1.88 5428.04

ex-skew-t (0.29, 0.30, 0.37) (−0.14, 1.04, 34.70) 2.11 5419.27

Table 4.2: Pairwise composite likelihood estimates ϑ̂ = (ω̂, ν̂) and ϑ̂ = (ω̂, α̂, ν̂) of the extremal-t (ext-t)
and extremal skew-t (ex-skew-t) models respectively, for all possible triplets of the four locations CLOU,
CLAY, PAUL and SALL.

argument of a better fit from the extremal skew-t model
For each location triple (X, Y, Z) we can also evaluate the conditional probability of exceed-

ing some fixed threshold (x, y, z) using each parametric model. Table 4.3 presents estimated
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probabilities of the two cases Pr(X > x|Y > y, Z > z) and Pr(X > x, Y > y|Z > z), along
with the associated empirical probabilities and their 95% confidence intervals (CI) for a range
of thresholds. For these specific thresholds, the extremal skew-t model provides estimates of the
conditional probabilities that fall within the 95% empirical CI. However, four probabilities esti-
mated with the extremal-t model are not consistent with the empirical CI. This indicates that
the additional flexibility of the extremal skew-t model allows it to more accurately characterise
the dependence structure evident in the observed data.

Threshold Extremal-t Extremal skew-t Empirical (95% CI)
X|Y, Z (q90

CO
, q70

CA
, q70

PA
) 0.2587 0.2737 0.3333 (0.2706, 0.3960)

(q90
SA

, q70
CA

, q70
PA

) 0.3268 0.3305 0.2973 (0.2356, 0.3590)
(q90

PA
, q70

CA
, q70

SA
) 0.3752 0.3356 0.2857 (0.2247, 0.3467)

(q90
CO

, q70
SA

, q70
PA

) 0.2686 0.3150 0.3333 (0.2706, 0.3960)
X, Y |Z (q90

CO
, q90

CA
, q70

SA
) 0.1196 0.0789 0.0781 (0.0420, 0.1142)

(q90
CA

, q90
PA

, q70
CO

) 0.1236 0.0776 0.0938 (0.0546, 0.1330)
(q90

CO
, q90

SA
, q70

PA
) 0.0896 0.1048 0.0938 (0.0550, 0.1326)

(q90
SA

, q90
PA

, q70
CO

) 0.1038 0.1071 0.0769 (0.0415, 0.1123)

Table 4.3: Extremal-t and extremal skew-t conditional probabilities of exceeding particular fixed
thresholds of the form Pr(X > x|Y > y, Z > z) and Pr(X > x, Y > y|Z > z), along
with empirical estimates. The windspeed thresholds (x, y, z) are constructed from the marginal
quantiles q70 = (q70

CO
, q70

CA
, q70

SA
, q70

PA
) = (18.04, 20.33, 24.18, 23.61) and q90 = (q90

CO
, q90

CA
, q90

SA
, q90

PA
) =

(22.11, 24.33, 29.05, 28.26) at each location.

Finally, Figure 4.9 provides examples of univariate (top panels) and bivariate (bottom) con-
ditional return levels for each triple of sites. The return levels are computed conditionally on
the wind at the remaining station(s) being higher than their upper 70% marginal quantile. The
univariate conditional return levels of both models follow the observed data fairly well, and are
mostly within the 95% empirical CI. Differences are that the extremal skew-t model return levels
stay within the empirical CI more often in the rightmost panel, and that they more closely follow
the most extreme observation in the centre panels compared to the extremal-t model.

The primary differences in the bivariate conditional return levels (bottom panels, Figure 4.9)
are asymmetric contour levels obtained with the extremal skew-t model (blue line) in contrast
with those symmetric obtained with the extremal-t model (red line). The difference is more
noticeable in the leftmost and rightmost panel. As expected, the leftmost panel shows smaller
return levels for the extremal skew-t model, and this is because (CLOU, SALL) have negative
slant parameters and so the joint tail is shorter than that of the extremal-t. Conversely, the
rightmost panel exhibits larger return levels for the extremal skew-t model, and this is because
(CLOU, PAUL) have a slant parameter that is close to zero and a very large slant parameter
and so the joint tail is longer than that of the extremal-t. The slight differences in the middle
panels may be explained as follows. The slant parameters of (CLAY, PAUL,SALL) are small
positive values and hence there is not much difference between the joint tails of extremal skew-t
and t models. The slant parameters of (CLOU,PAUL) are a large positive value and one slightly
negative. However, because the parameter of CLAY is also a large positive value this also makes
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Figure 4.9: Univariate (top row) and bivariate (bottom) conditional return levels for the triples (left-
to-right): (CLOU, CLAY, SALL), (CLOU, CLAY, PAUL), (CLAY, SALL, PAUL) and (CLOU, SALL,
PAUL). Red and blue lines respectively indicate return levels calculated from extremal-t and extremal
skew-t models. Points indicate the empirical observations and the black dashed lines their 95% confidence
interval.

that there is not much difference between the joint tails of the two models.
In summary, for these wind speed data, the more flexible extremal skew-t model is demonstra-

bly superior to the extremal-t model in describing the extremes of both the univariate marginal
distributions, and the extremal dependence between locations.

4.6 Discussion

Appropriate modelling of extremal dependence is critical for producing realistic and precise
estimates of future extreme events. In practice this is a hugely challenging task, as extremes
in different application areas may exhibit different types of dependence structures, asymptotic
dependence levels, exchangeability, and stationary or non-stationary behaviour.

Working with families of skew-normal distributions and processes we have derived flexible
new classes of extremal dependence models. Their flexibility arises as they include a wide range
of dependence structures, while also incorporating several previously developed and popular
models, such as the stationary extremal-t process and its sub-processes, as special cases. These
include dependence structures that are asymptotically independent, which is useful for describing
the dependence of variables that are not exchangeable, and a wide class of non-stationary,
asymptotically dependent models, suitable for the modelling of spatial extremes.

In terms of future development, semi-parametric estimation methods would provide powerful
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techniques to fully take advantage of the flexibility offered by non-stationary max-stable models.
Such methods can be computationally demanding, however. An interesting further direction
would be to design simple and interpretable families of covariance functions for skew-normal
processes for which it is then possible to derive max-stable dependence models that are useful
in practical applications.



Chapter 5

Exploratory data analysis for
extreme values using non-parametric
kernel methods

Abstract

Non-parametric kernel methods are applied to the analysis of univariate and multivariate ex-
treme values data. As kernel estimators possess excellent visualisation properties, they allow
for more informative visualisations beyond those provided by scatter plots or histograms for
graphical exploratory data analysis. As further analysis of extreme values data relies heavily on
parametric models, considerable efforts have expended in developing and understanding a wide
range of these models. Kernel estimators, as they place minimal assumptions on the data, are
well-placed to measure the appropriateness of a purported parametric model to the data sample,
and to improve model selection over currently available histogram based comparisons. We verify
the performance of these kernel based analyses for simulated and for experimental climate data.
For the latter, we investigate the ability of well-known geophysical climate models to predict
the observed extreme temperatures in Sydney, Australia during the twentieth century.

5.1 Introduction

Extreme values (very large or very small values) are of particular interest as they are closely
related to highly unlikely events with important consequences. For climate data, these extreme
events include heat waves (extreme high temperatures), cold snaps (extreme low temperatures),
floods (extreme high levels of waterways or tides or waves), storms (extreme high wind speeds
or amounts of precipitation), droughts (extreme low amounts of rainfall). For extreme values in
other contexts, see Kotz and Nadarajah (2000); Coles (2001). Historically univariate quantities
have been the most extensively studied. Let X be a random variable with cumulative distribution
function (c.d.f.) FX with probability density function (p.d.f.) fX . We focus on values which are
greater than a threshold u, denoted as X [u] ≡ X|X > u, with the corresponding tail distribution
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F
X[u] and tail density f

X[u] . The threshold u, which is unknown but non-random, determines
the support on which values of X are considered to be extreme values.

Our goal is to characterise the tail behaviour of X by estimating the tail density f
X[u] .

Common methods rely on parametric models based on the Generalised Extreme Value (GEV)
distributions. Numerous estimation procedures are available for GEV distributions. The most
accurate methods are maximum likelihood, studied by Prescott and Walden (1980); Hosking
(1985); Smith (1985) and Macleod (1989), and the probability weighted moments as considered
by Hosking et al. (1985). Cheng and Amin (1983) proposed an alternative using maximum
product spacing. Other methods include least squares estimation (Maritz and Munro, 1967), es-
timation based on order statistics and records (Pickands, 1975; Hill, 1975), method of moments
(Christopeit, 1994), and Bayes estimation (Lye et al., 1993). As with all parametric estimators,
these suffer from the possibility of misspecification. In order to avoid potential misspecifica-
tion, we rely on non-parametric estimation which does not require a pre-specified parametric
form. Markovich (2007, Chapter 3) provides a summary of non-parametric estimation of uni-
variate heavy-tail densities. We use kernel estimators, as they are amongst the most widely
used non-parametric estimators, see Wand and Jones (1995); Simonoff (1996) for an overview.
Kernel density estimators possess excellent visualisation properties which we incorporate within
a graphical exploratory analysis of extreme values data. However they can produce spurious
bumps in the tails of fX if it has heavy tails as is the case for extreme value analysis. Our
proposed approach focuses on modifications which attenuate these spurious bumps to obtain
an estimate of the tail density f

X[u] . Our first proposition is to focus on the truncated sample
greater than a threshold which resolves (or at least reduces) the appearance of these spurious
bumps. A second proposition is to apply transformation kernel estimators for tail densities.
Transformation kernel estimators based on log transformations are well-known already as they
map a bounded support to the unbounded Euclidean space, allowing the use of standard kernel
estimation in the transformed space. The crucial question of smoothing parameter selector has
not been addressed explicitly yet as it appears to be implied that smoothing parameter selection
and estimation are performed in the unbounded space and then back-transformed to the original
space. We establish the mean integrated squared error optimality of this implied approach.

A further advantage of kernel estimators is their straightforward extension to multivariate
data analysis. For multivariate extremes, non-parametric estimation of various indicators of
extremal dependence has been and is still currently an intensively studied field. The Pickands
or extremal dependence function (see Pickands (1975); Hall and Tajvidi (2000); Marcon et al.
(2014) among others), the tail dependence function (Huang, 1992; Drees and Huang, 1998;
Einmahl et al., 2008, 2012), the spectral measure (Einmahl et al., 2001; Einmahl and Segers,
2009; de Carvalho et al., 2013) are some examples of a growing interest. In contrast to these
authors who concentrate on quantitative measures, our primary focus is to provide exploratory
data analysis tools. This multivariate framework allows us to examine phenomena which are
simultaneously extreme in several different variables. As an example, many climate models
forecast a rise in the mean temperature for many locations on the Earth’s surface. Upon more
detailed inspection, some of them predict that this overall increase in the mean temperature will
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be accompanied by a simultaneous increase in warmer minimum and maximum temperatures.
Furthermore, as there are many competing climate climate models, a model selection procedure
that determines which of these models is most consistent with the empirical data is an important
tool. In this article we define a divergence or goodness-of-fit measure on the integrated difference
of the tail estimator and a hypothesised density, which is then used subsequently for model
selection. It is a generalisation of the goodness-of-fit measure in Perkins et al. (2007) which
compared an estimated and a hypothesised histogram for model selection. Our definition is
sufficiently general in that it is not tailored only to kernel estimators but can be applied to any
integrable density estimator (including histograms).

The layout of this article is as follows: we introduce tail samples for univariate and multivari-
ate data in Section 5.2, as well histogram density estimators and our proposed transformation
kernel density estimator. We also analyse the asymptotic behaviour of these two broad classes
of density estimators when using data-based methods to select the optimal amount of smooth-
ing for tail density estimation. We then proceed to develop a model selection procedure based
on the discrepancy between non-parametric density estimators to a suite of parametric models.
In Section 5.3 we verify our results on finite samples for simulated and experimental data and
Section 4 concludes with a discussion. All mathematical proofs are deferred to the Appendix.

5.2 Tail densities for extreme values

5.2.1 Density estimation

Let X1, . . . , Xm be a random sample drawn from the common univariate distribution FX

with density fX . Let n of these observations exceed the threshold u, to form the tail sample
X [u]

1
, . . . , X [u]

n where X [u]

i
∈ (u, ∞), i = 1, . . . , n. Standard kernel estimators are most often

defined for data with unbounded support. Using these kernel estimators without modification
on bounded data like X [u] can lead to increased bias at the boundary of the support. One
major class of modified estimators are based on the modifying the kernel function itself to avoid
assigning probability mass outside the data support, e.g. the linear boundary kernel Gasser and
Müller (1979) or the boundary beta kernel Chen (1999). We do not pursue these modifications
and instead we focus on an alternative modification based on transformation kernel estimators
where a known monotonic transformation t maps the data support to the real line where standard
kernel estimators are well-established, before back-transforming to the original bounded support,
see Devroye and Györfi (1985); Silverman (1986); Wand and Jones (1995).

Let Y = t(X [u]) be a transformed random variable, with distribution FY and density fY . The
relationship between the transformed random variable Y and the original X [u] at a non-random
point x is given by

f
X[u](x) = |t�(x)|fY (t(x))

where t� is the first derivative of t. Instead of directly approaching the difficult task of estimating
f

X[u] , we approach it indirectly via the simpler task of estimating fY . Consider the transformed
sample Y1, . . . , Yn where Yi = t(Xi), i = 1, . . . , n, and y = t(x). Since X [u]

1
, . . . X [u]

n are supported
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on (u, ∞), a suitable transformation would be t(x) = log(x − u). For data-based choices of the
transformation function, see Ruppert and Wand (1992); Ruppert and Cline (1994). We do not
need to pursue these as the logarithm function is adequate for our purposes. Now that Y1, . . . , Yn

are supported on the real line, fY can be estimated by the standard kernel density estimator

f̂Y (y; h) = n−1

n�

i=1

Kh(y − Yi)

where Kh(y) = h−1K(y/h) is a scaled kernel, h > 0 is the bandwidth or smoothing parameter
and K is a symmetric kernel density function. The tail density estimator can be defined by
replacing the true density by its kernel estimator

f̂
X[u](x; h) = |t�(t−1(y))|f̂Y (y; h).

A generalisation of this transformation kernel estimator to multivariate data is as follows.
Let X = (X1, . . . , Xd) be a d-dimensional random variable with distribution FX with density
fX . The random variable of values greater than a vector threshold u = (u1, . . . , ud) is denoted
as X [u] ≡ X|X > u where we mean that each marginal inequality must hold, i.e. Xj > uj for
j = 1, . . . , d. The support of X [u] is the Cartesian product (u, ∞) = (u1, ∞)×· · ·× (ud, ∞). For
x ∈ (u, ∞), the corresponding tail density is fX[u](x) = fX(x)/F̄X(u) and tail distribution is
FX[u](x) = FX(x)/F̄X(u), where F̄X(u) =

�
(u,∞)

fX(w)dw is the survival function of X evalu-
ated at u. Let X1, . . . , Xm be a random sample drawn from the common d-variate distribution
FX with density fX . Let n of these observations exceed the threshold u, to form the tail sample
X [u]

1
, . . . , X [u]

n . Consider the transformed random variable Y = t(X [u]) where t : (u, ∞) → Rd

is defined by t(x) = (t1(x1), . . . , td(xd)) where the tj are monotonic functions on (uj , ∞), e.g.
tj(xj) = log(xj − uj), j = 1, . . . , d. The density of X [u] is related to the density of Y by

fX[u](x) = fY (t(x))|Jt(x)|

where |Jt| is Jacobian of t. The transformed data sample are Y 1, . . . , Y n, with Y i = t(Xi), i =
1, . . . , n. The kernel estimator of fY at a non-random point y = (y1, . . . , yd) = t(x) is given by

f̂Y (y; H) = n−1

n�

i=1

KH(y − Y i)

where K is a symmetric d-variate density function, H is the bandwidth matrix which is a d × d

positive definite symmetric matrix of smoothing parameters, and the scaled kernel KH(y) =
|H−1/2|K(H−1/2y). Note that the bandwidth matrix corresponds to the squared data scale,
whereas the scalar bandwidth corresponds to the data scale, e.g. for the Gaussian kernel, H
is the variance matrix, and h is the standard deviation. The tail density can be defined by
replacing the true density function by its kernel estimator

f̂X[u](x; H) = |Jt(t−1(y))|f̂Y (y; H) (5.1)
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where t−1(y) = (t−1

1
(y1), . . . , t−1

d
(yd)) is the element-wise inverse of t(y). Under the regularity

conditions (A1)–(A4) in the Appendix, the mean integrated squared error (MISE) of the density
estimator f̂Y is

MISE f̂Y (·; H) = E
�

Rd
[f̂Y (y; H) − f(y)]2dy = O(tr H2 + n−1|H|−1/2)

using established procedures (see Lemma E.1 in the Appendix). That the MISE of f̂X[u] is the
same order follows from immediately from Equation (5.1). Using these MISE expressions, we
can define optimal bandwidth selectors as the minimiser of the MISE,

H∗ = argmin
H∈F

MISE f̂Y (·; H) = O(n−2/(d+4)) (5.2)

where F is the space of d × d symmetric positive definite matrices.
The following theorem asserts that we can carry out all the important steps of bandwidth

selection and estimation for the transformed data with unbounded support, allowing us to
take advantage of existing results and algorithms, and that this transformation does not affect
the asymptotic behaviour, and so we are able to recover the optimal convergence rates of the
unbounded data estimator.

Theorem 5.1. Suppose that the conditions (A1–A4) hold. The minimal MISE rate of the
tail density estimator fX[u] is asymptotically the same order as the minimal MISE rate of the
transformed kernel density estimator f̂Y , as n → ∞,

inf
H∈F

MISE f̂X[u](·; H) −
�

inf
H∈F

MISE f̂Y (·; H)
�

= O(n−4/(d+4)).

On the other hand, if we compute a standard kernel estimator of type f̂Y to the untrans-
formed bounded tail sample X [u]

1
, . . . , X [u]

n , the MISE is O(n−1|H|−1/2 + tr H) which leads to
a minimal MISE rate of O(n−2/(d+2)) which is asymptotically slower than the minimal MISE
rates of O(n−2/(d+4)) in Theorem 5.1, see Marshall and Hazelton (2010). This implies that it is
important to take the boundedness of the tail sample into account.

The optimal bandwidth selector defined in Equation (5.2) is mathematically intractable as it
depends on unknown quantities. A vast body of research has thus been constructed to provide
data-based optimal bandwidth selectors which estimate/approximate these quantities. There
are three main classes: (i) normal scale (or rule of thumb), (ii) plug-in and (iii) cross validation.

The class of normal scale selectors is an extension to the multivariate case of the quick and
simple bandwidth selectors where the unknown density f is replaced by a normal density,

ĤNS =
� 4

(d + 2)n

�2/(d+4)

Sn−2/(d+4),

where S is the sample variance matrix of Y 1, . . . , Y n, see Wand and Jones (1995, p. 111).
The class of plug-in selectors consists of a generalisation of the work of Sheather and Jones

(1991) by Wand and Jones (1994); Duong and Hazelton (2003). Plug-in selectors use as a starting
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point the AMISE formula where the only unknown quantity is the ψY ,4 =
�
Rd D⊗4fY (y)fY (y)dy

functional. The fourth order differential D⊗4 is expressed as a vector of length d4, resulting from
four-fold Kronecker product of the first order differential D, see Holmquist (1996). Replacing
this by an estimator ψ̂Y ,4 yields a plug-in criterion

PI(H) = 1

4
m2

2(K)(vec� H ⊗ vec� H)ψ̂Y ,4(G) + n−1R(K)|H|−1/2

where m2(K) is defined in condition (A2), vec is the operator that stacks the element of a matrix
column-wise into a vector, ψ̂Y ,4(G) = n−2

�
n

i,j=1 D⊗4LG(Y i − Y j), LG being the pilot kernel
with pilot bandwidth matrix G and R(K) =

�
Rd K(x)2dx. The plug-in selector ĤPI is the

minimiser over F of PI(H).
For the class of cross validation selectors we focus on unbiased (or least squares) cross

validation and smoothed cross validation. Unbiased cross validation (UCV) was introduced
by Bowman et al. (1984) and Rudemo (1982). The unbiased cross validation selector, ĤUCV, is
defined as the minimiser over F of

UCV(H) =
�

Rd
f̂Y (y; H)2dx − 2n−1

n�

i=1

f̂Y ,−i(Y i; H),

where f̂Y ,−i(Y i; H) = [n(n − 1)]−1
�

n

j=1 KH(Y i − Y j). The smoothed cross validation (SCV)
selector ĤSCV, is defined as the minimiser over F of

SCV(H) = n−2

n�

i=1

n�

j=1

(KH ∗ KH ∗ LG ∗ LG − 2KH ∗ LG ∗ LG + LG ∗ LG)(Y i − Y j)

+ n−1R(K)|H|−1/2,

where ∗ is the convolution operator, see Hall et al. (1992). If there are no replications in the
data, then SCV with G = 0 is identical to UCV as L0 can be thought of as the Dirac delta
function.

The UCV selector can be computed numerically as it contains no unknown quantities. On the
other hand, the question of the pilot bandwidth remains for the plug-in and SCV selectors. For
computational data-based algorithms which resolve this question, see Wand and Jones (1995);
Duong and Hazelton (2003) for plug-in selectors and Hall et al. (1992); Duong and Hazelton
(2005) for SCV selectors.

We conclude this section by defining a histogram. Histograms, especially for univariate
data, are widely used as alternatives to kernel estimators for visualising data samples. Their
advantages include a simple and computationally easy method of computation and that they do
not suffer from the boundary bias problems of standard kernel estimators. For the tail sample
X [u]

1
, . . . , X [u]

n , divide the data range into a regular partition of hypercubes Ai of size b1×· · ·×bd.
Let b = (b1, . . . , bd) ∈ Rd be the binwidth. The histogram estimator of f̃X[u] at a point x in a
bin Ai is

f̃X[u](x; b) = γi

nb1 · · · bd
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where γi represents the number of observations in the hypercube Ai. If conditions similar to
(A1) and (A3) are fulfilled then, by Scott (2015, Theorem 3.5), the MISE of the histogram
estimator is

MISE f̃X[u](·; b) = O((nb1 · · · bd)−1 + (b2
1 + · · · b2

d))

with minimal MISE
inf
b>0

MISE f̃X[u](·; b) = O(n−2/(d+2)).

which is asymptotically slower than O(n−4/(d+4)) minimal MISE rate for the transformation
kernel estimator f̃X[u] from Theorem 5.1. So from a MISE point of view, the transformation
kernel estimator is preferred to a histogram, especially as the dimension d increases.

Analogously to the data-based optimal bandwidth selectors, the normal scale optimal bin-
width, from Scott (2015, Theorem 3.5), is

b̂∗
j = 2 × 31/(d+2)πd/(d+4)sjn−1/(d+2) (5.3)

where sj , j = 1, . . . , d are the marginal sample standard deviations of X [u]

1
, . . . , X [u]

n . There have
not been the equivalent variety of binwidth selectors which generalise Equation (5.3) compared
to bandwidth selectors due the slower asymptotic performance of histograms as compared to
kernel estimators.

5.2.2 Model selection

Suppose that we have a suite of M parametric models, and we wish to determine which of
them is the most appropriate fit to an extreme values data set. Since the target underlying model
is unknown, we do not have a well-defined target to which to compare these parametric models.
Perkins et al. (2013) introduce the histogram estimator f̃X[u] of the observed data sample as the
surrogate for the unknown target, and so the fit of the parametric models is assessed according
to the discrepancy of the induced parametric density functions g1, . . . , gM and the histogram
f̃X[u] . Their tail index is given by

T̃ (gj) =
�

(u,∞)

|gj(x) − f̃X[u](x)|dx (5.4)

where (u, ∞) is short hand for the Cartesian product (u1, ∞) × · · · × (ud, ∞). The selected
model is the one which gives the smallest discrepancy

argmin
j∈{1,...,M}

T̃ (gj).

Our proposal is to replace the histogram in Equation (5.4) with a kernel estimator. The
artefacts induced by a histogram grid are avoided or least reduced, namely the anchor point
problem to choose where the histogram grid begins and the empty bin problem where it is not
clear whether histogram bins with empty counts should be interpreted as a true zero probability
or are due to insufficient observed data. This latter is important for extreme values as they are
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sparsely distributed in the tail regions. We can proceed to calculate the tail indices T̂ as

T̂ (gj) =
�

(u,∞)

|gj(x) − f̂X[u](x)|dx, (5.5)

Additionally, in order to highlight the purpose of working with transformed histogram, the
following standard kernel is considered for comparison:

T̂ ∗(gj) =
�

(u,∞)

|gj(x) − f̂X(x)|dx, (5.6)

where f̂X(x) represents the standard kernel density estimator. Again the selected models by
both kernel based tail indices are the ones which give the smallest discrepancy. The integrals in
Equations (5.4)–(5.6) are usually approximated by (weighted) Reimann sums.

5.3 Numerical results

5.3.1 Simulated data - univariate

A first set of simulations is carried out in order to show that the kernel density estimator
introduced in Section 5.2.1 is a good surrogate for the target density of extreme values. Secondly,
we carry out the model selection procedure in Section 5.2.2. These two simulation studies will
be carried out considering both univariate and bivariate data.

For the target densities, we use the well known 3-parameter Generalized Extreme Value
(GEV) and Generalized Pareto (GPD) distributions to generate simulated data. For the former,
the critical parameter is the third parameter which distinguishes the GEV distribution into the
Gumbel, Fréchet and Weibull distributions. For each target density, we can compute (at least
numerically) the target tail density f

X[u](x) = fX(x)/F̄X(u). We generate a sample of size
m = 2000 and set the threshold u at the 95% upper quantile to compute the tail sample of size
n = 100. For each sample, we compute the:

1. transformation kernel based estimators with the plug-in (KPI), unbiased cross validation
(KUC), smoothed cross validation (KSC), and normal scale (KNS) selectors, all with the
transformation t(x) = log(x − u)

2. standard kernel based estimators with the plug-in (KPI*), unbiased cross validation (KUC*),
smoothed cross validation (KSC*), and normal scale (KNS*) selectors.

3. histogram estimator with normal scale binwidth (HIS)

4. parametric estimators: Fréchet (FRE), Gumbel (GUM), Generalized Pareto (GPD).

The top row of Figure 5.1 provides an example of tail density estimation from three different
distributions, when n = 100. From left to right these distributions are Fréchet (with location
1, scale 0.5 and shape 0.25), Gumbel (with location 1.5 and scale 3) and GPD (with location
0, scale 1 and shape 0.25). The target density function is the solid black curve, the histogram
is the dashed red, and the plug-in kernel estimators are the dotted green (transformed) and
the dot-dashed blue (standard), where we display only the plug-in estimators for clarity. The
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transformed kernel estimators are more accurate estimators of the tail behaviour, exhibiting
less bias at the boundary of the support than standard kernel estimators. Also they have the
advantages of being continuous kernel estimators leading to better visualisation and are more
helpful when comparing it to a continuous target density. The optimal histogram binwidth tends
to be too small for these tail samples and so produces histograms which are more noisy than
the kernel estimators. The bottom row of Figure 5.1 provides diagnostics for extremes through
qq-plots of the target quantiles versus the non-parametric estimated quantiles. The histogram
HIS quantiles most consistently follow the 45◦ line, though the transformed kernel KPI quantiles
are more consistent for the target Gumbel. For the other two target densities, the KPI quantiles
are uniformly larger than the HIS quantiles. The standard kernel KPI* quantiles either under-
or over-estimate the target quantiles. As expected, histogram quantiles are more accurate than
the quantiles of the kernel density estimators, as the the latter aim to optimally estimate the
density function rather than the quantile function. Despite this under-performance of the KPI
estimator, it is convenient to recall here that their smoothness provides a more informative
graph, e.g. for visualising tangent slopes.

For more quantitative results, we generate 400 samples of size m = 500, 1000 and 2000
and set the threshold u at the 95% upper quantile to compute the tail sample of size n =
25, 50, 100. As these three sample sizes gave the similar results, we only present those for n = 100
for brevity. The measures of accuracy of an estimator will be the numerical approximation
(Reimann sum) of the L2 error

�
(u,∞)

[estimator offX[u](x) − fX[u](x)]2 dx, and of the χ2 error
�

(u,∞)
(estimator offX[u](x) − fX[u](x))2/fX[u] . Other common diagnostics for extremes such

as the Anderson-Darling divergence and extremal coefficients could also be computed but are
omitted here as the estimation of the cumulative distribution function is required.

In Figure 5.2, box-plots show the accuracy of each estimator of the tail density depending
on the model used to simulate the data, respectively Fréchet, Gumbel and Generalized Pareto,
from left to right. The top row considers the L2 error while the measure of error of the bottom
row is calculated using the χ2 error. Within each panel, the box-plots respectively correspond
to the Fréchet (FRE), Gumbel (GUM), Generalized Pareto (GPD), Histogram (HIS), plug-in
transformed kernel (KPI), unbiased cross validation transformed kernel (KUC), smoothed cross
validation transformed kernel (KSC) and normal scale transformed kernel (KNS) estimators.
The “∗” symbol indicates the standard kernel estimator. As expected, for each distribution
the most accurate density estimator is the correctly specified parametric model. Transformed
kernel estimators systematically perform better than the histogram estimator even though it
can produce larger variability (especially in the case of the GPD). Furthermore the standard
kernel estimator is consistently producing the worst estimate of the tail density with however an
improvement compared to other estimators for the GPD case. The differences in the accuracy
between the kernel estimators with different bandwidth selectors is small, in contrast to other
simulation studies where the bandwidth selection class is a crucial factor, see for example,
Sheather and Jones (1991) and Wand and Jones (1995, Chapter 3), as these extreme values
densities do not have complex, multimodal structures. Both measures of discrepancy provide
similar results.
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Figure 5.1: Non-parametric estimators of the univariate tail density (top) and of the tail quantiles
(bottom) when the target density is Fréchet (left), Gumbel (middle) and GPD (right). Sample size is
n = 100. Target density is represented by a solid black line. Histogram estimator with normal scale
binwidth (HIS) is represented by a dashed red line, the transformed kernel plug-in estimator (KPI) by a
doted green line and the standard kernel estimator (KPI*) by a dot-dashed blue line.

In Table 5.1, for each of the three target densities considered earlier and for sample size
n = 100, we compute the tail indices T̃ (histogram), T̂ (transformed kernel) and T̂ ∗ (standard
kernel) with respect to each parametric model. The tail indices are computed using both the L2

and χ2 errors (respectively top and bottom rows). The proportion of the 400 simulation trails
where the target model is correctly selected is given in bold. Because the Fréchet and Gumbel
distributions are nested we perform a deviance test. If the smaller model (Gumbel) provides
a significantly better fit than the larger model (Fréchet), meaning that the shape parameter
is significantly not different from zero, then we only consider the Gumbel and GPD fits. The
model selection for the L2 error is overall more accurate than the χ2 error. For any of the three
distributions, using kernel based estimators as a surrogate for the target density T̂ selects the
correct target in the vast majority of cases, with proportions higher than with a histogram tail
index T̃ , except for the standard kernel based tail index when the target density is GPD. With
the L2 error, when the target density is Fréchet, the histogram based tail index performs very



5.3. Numerical results 117

Target Féchet Target Gumbel Target GPD

FRE

HIS

KPI

KUC

KSC

KNS

KPI*

KUC*

KSC*

KNS*

−14 −12 −10 −8 −6 −4 −2
log(L2 error)

Es
tim

at
or

GUM

HIS

KPI

KUC

KSC

KNS

KPI*

KUC*

KSC*

KNS*

−15 −10 −5
log(L2 error)

Es
tim

at
or

GPD

HIS

KPI

KUC

KSC

KNS

KPI*

KUC*

KSC*

KNS*

−10 −5 0 5
log(L2 error)

Es
tim

at
or

FRE

HIS

KPI

KUC

KSC

KNS

KPI*

KUC*

KSC*

KNS*

−8 −6 −4 −2 0 2
log(χ2 error)

Es
tim

at
or

GUM

HIS

KPI

KUC

KSC

KNS

KPI*

KUC*

KSC*

KNS*

−8 −6 −4 −2 0 2 4 6
log(χ2 error)

Es
tim

at
or

GPD

HIS

KPI

KUC

KSC

KNS

KPI*

KUC*

KSC*

KNS*

−5 0 5
log(χ2 error)

Es
tim

at
or

Figure 5.2: Box-plots of the log L2 (top) and log χ2 (bottom) errors for the univariate Fréchet (FRE),
Gumbel (GUM), Generalized Pareto (GPD), Histogram (HIS), plug-in kernel (KPI), unbiased cross vali-
dation kernel (KUC), smoothed cross validation kernel (KSC) and normal scale kernel (KNS) tail density
estimators, for sample size n = 100. From left to right, the target densities are Fréchet, Gumbel and
GPD.

poorly. The transformation kernel based index exhibits more stability than the standard kernel,
consistently selecting the right model with high proportion. This inaccurate histogram model
selection is corrected when the χ2 error is considered, though at the expense of reducing the
accuracy with the GPD target.

5.3.2 Simulated data - multivariate

The analysis of multivariate extremes is a challenging area where numerous approaches have
been considered and applied to real examples. See for example Kotz and Nadarajah (2000);
Coles (2001); Beirlant et al. (2004); de Haan and Ferreira (2006); Falk et al. (2011) for theoretical
details and applications. The well known and commonly used GEV distribution available in the
univariate case unfortunately no longer exist in higher dimensions. The study of multivariate
extremes is then decomposed into two parts: first the margins are assumed to be GEV distributed
and then transformed to unit Fréchet. This allows us to make the assumption that the remaining
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T̃ selected model T̂ selected model T̂ ∗ selected model
Error Target FRE GUM GPD FRE GUM GPD FRE GUM GPD

FRE 0.03 0.18 0.79 0.92 0.00 0.08 0.89 0.00 0.11
L2 GUM 0.02 0.90 0.08 0.04 0.94 0.02 0.02 0.98 0.00

GPD 0.01 0.28 0.71 0.11 0.05 0.84 0.00 0.31 0.69
FRE 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00

χ2 GUM 0.04 0.94 0.02 0.04 0.96 0.00 0.04 0.96 0.00
GPD 0.78 0.00 0.22 0.20 0.00 0.80 0.58 0.00 0.42

Table 5.1: Proportion of selecting a parametric model using histogram T̃ , transformed kernel T̂ and
standard kernel T̂ ∗ based tail indices for the univariate Fré, Gumbel and GPD target densities, and for
sample size n = 100. The tail indices are calculated using the L2 (top rows) and χ2 (bottom rows) errors.
The proportion of correctly selecting the target model is given in bold.

variations are only due to the dependence structure between the random variables which is then
modelled in the second step. Beranger and Padoan (2015) review the main families of parametric
extremal dependence models and provide the expression of their multivariate distributions and
the densities are easily derived from there. We consider some models that are within the class
of logistic distributions: the asymmetric negative logistic (Joe, 1990) and the bilogistic (Smith
et al., 1990) distributions. The Hüsler-Reiss model (Hüsler and Reiss, 1989) is also considered.

We begin by taking an m ≈ 4000 sample from each of these three target densities: bilogistic
(BIL) with α = 0.80 and β = 0.52, asymmetric negative logistic (ANL) with dependence 1.3 and
asymmetry (0.2, 0.7) and Hüsler-Reiss (HR) with dependence 2.4. The bivariate extreme sample
is made of an n = 200 random selection of the observations that are exceed jointly the threshold
u which is set to the marginal sample 90% upper quantiles. For the parametric models, the
marginal parameters and the dependence structure are simultaneously estimated, and based on
the assumption that the margins are GEV distributed, their maximum likelihood estimates are
taken as starting values in the likelihood optimization. The non-parametric estimators are a
2D histogram with a normal scale binwidth (HIS) and a transformation kernel estimator with
a plug-in bandwidth (KPI), as we no longer consider the untransformed estimator KPI∗ due
to its poor performance for the univariate simulations. The results from the other bandwidth
selectors are not displayed for clarity.

In Figure 5.3, the target density is the solid black contours, the histogram the dashed red,
and the kernel estimator the dot-dashed blue. The contour lines indicate the 25, 50, 75 and
99% highest density level sets in the tail. It is known that 2D qq-plots are not well-defined
and consequently are not provided as in Figure 5.1. Unlike qq-plots, our density estimates
visualisations don’t suffer from this lack of well-definedness in higher dimensions. Furthermore,
the good visualisation provided by the kernel estimator provides easy interpretation of the tail
behaviour, in contrast to the blocky, discrete nature of the histogram which is unable to reveal
clearly this behaviour. The kernel estimator most accurately estimate the tail density of the HR
density, with the performance decreasing for the BIL and ANL densities.

In Figure 5.4 the box-plots compare the accuracy of the histogram and kernel estimators to
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Figure 5.3: Non-parametric estimators of the bivariate tail density when the target density is bilogistic
(BIL), asymmetric negative logisitic (ANL) and Hüsler-Reiss (HR). Target density – solid black, histogram
with normal scale binwidth (HIS) – dashed red, and kernel estimators with the plug-in (KPI) – dot-dashed
blue. Sample size is n = 200.

the target parametric estimator for bivariate tail samples drawn from the bilogistic, asymmetric
negative logistic and Hüsler-Reiss distributions for both measures of accuracy. As expected the
correctly specified parametric estimator of each distribution provides the smallest error, although
for the asymmetric negative logistic distribution the plug-in estimator performs equally well and
the histogram produces more accurate fits than for other distributions. The kernel estimators
provides uniformly lower errors than the histograms over all target densities.
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Figure 5.4: Box-plots of the log L2 (top) and log χ2 (bottom) errors for the bivariate bilogistic (BIL),
asymmetric negative logistic (ANL), Hüsler-Reiss (HR), histogram (HIS) and bivariate kernel (KPI) tail
density estimators. For each panel the bottom box-plot is the parametric estimator associated to the
target density. From left to right the target densities are BIL, ANL, HR. Sample size is n = 200.

We compute histogram and kernel based tail indices T̃ and T̂ with respect to each parametric
model, based on the L2 and χ2 measures of error. The proportions of parametric models that



120
Chapter 5. Exploratory data analysis for extreme values using

non-parametric kernel methods

these tail indices select are given in Table 5.2, with the correctly selected ones in bold. The bold
figures suggest that T̃ slightly outperforms T̂ when the bilogistic is the target density. Overall,
the L2 error is more accurate than the χ2 error in selecting the target model, with the notable
exception is the correctly selected ANL models with T̂ . This is in contrast to the univariate
model selection where the two error measures yield similar accuracy. Examining the L2 model
selections more thoroughly, the propensity of T̃ to select the right model more often than T̂

when the target density is the asymmetric negative logistic is highlighted. T̂ selects more often
the bilogistic than the true asymmetric logistic density. However note that when the target is
Hüsler-Reiss, T̂ selects the right model a large majority of the time (96%).

T̃ selected model T̂ selected model
Error Target BIL ANL HR BIL ANL HR

BIL 0.70 0.23 0.07 0.61 0.23 0.16
L2 ANL 0.15 0.84 0.01 0.74 0.26 0.00

HR 0.17 0.07 0.76 0.00 0.04 0.96
BIL 0.00 0.12 0.88 0.51 0.22 0.27

χ2 ANL 0.38 0.01 0.61 0.23 0.76 0.01
HR 0.00 0.01 0.99 0.00 0.00 1.00

Table 5.2: Proportion of selecting a parametric model using histogram T̃ and kernel T̂ based tail indices
using the L2 and χ2 measures of error for the bilogistic (BIL), asymmetric negative logistic (ANL),
Hüsler-Reiss (HR) densities, and for sample size n = 200. The proportion of correctly selecting the target
model is given in bold.

5.3.3 Analysis of climate models

Perkins et al. (2007, 2013) used histogram density estimators for visualisation and model
selection in the extreme value modelling to calculate return levels of minimum and maximum
temperatures in Australia, based on data generated from an ensemble of global climate models
(GCMs). The models which they considered are the climate models assessed by the Intergov-
ernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) to investigate
changes in temperature extremes. A well-known challenge for these models is to be able to
accurately project extreme temperatures Perkins et al. (2007, 2013); Sillmann et al. (2013a).
Perkins et al. (2013) consider three skills to assess the quality of the fit of each AR4 model. The
first skill principle relies on comparing the means of each model to the observed data, which
is an inadequate indicator of the model’s ability to simulate extremes Perkins et al. (2007). A
second approach was defined by Perkins et al. (2007) and provides a score reflecting the overlap
between the observed and modelled p.d.f’s. Although it is an improvement it was not designed
specifically to compare extreme values. The extension introduced by Perkins et al. (2013) fo-
cuses on the tail of the densities where the extreme events are located. This score reflects the
discrepancy between two tails where a model perfectly fits the observed data has zero score and
increasing scores imply an increasing lack-of-fit of the model to the observed data. Unlike for
the simulated parametric models in Section 5.3.1 and 5.3.2 , there is no closed form for the
density function gi, i = 1, . . . , M , to characterise the simulated values generated by the climate
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models. Perkins et al. (2013) replace the target density gi with a histogram g̃i, based on model
generated data, when computing the goodness-of-fit to the histogram of the observed data in
Equation (5.4), i.e. T̃ (g̃i), to decide the most appropriate model

We extend this analysis by considering a wider and more modern ensemble of global climate
models than those in Perkins et al. (2013), as well as exploring alternatives to T̃ (g̃i) as the
model selection criterion. Here we use M = 22 climate models participating in the World
Climate Research Programme’s 5th phase Coupled Model Intercomparison Project (CMIP5; see
Flato et al. (2013)). This ensemble of numerical models currently underpin global and regional
climate projections of extremes (e.g. Sillmann et al. (2013b)), and the subset used in this
study was based on the availability of daily maximum and minimum temperature data for the
historical experiment (∼ 1860 − 2005; see Taylor et al. (2012)). Other targeted temperature
extreme evaluation studies on the CMIP5 ensemble have found generally well-simulated changes
in observed trends of specific indices (e.g. Sillmann et al. (2013a); Flato et al. (2013)), however
unlike this study, have not considered the simulation of the underlying distributions.

The grid box that included, or was nearest to Sydney was extracted from each model for
both climate variables, and truncated in time to match the observations (see below).

We propose another criterion: T̂ (ĝi) (kernel tail index with respect to a kernel estimator)
of the model data. The observed data sample are the daily observed maximum temperatures
observed in the Sydney region in Australia from 01/01/1911 to 31/12/2005 yielding to a sample
of m = 34699 observations. Observations were obtained from the Australian Water Availability
Project dataset (Jones et al. (2009)), a gridded product covering all of Australia. The grid box
in which Sydney is located was extracted. All AR4 climate models have been run to generate
data in this same time frame.

The threshold for the maximum temperatures is the 95% upper quantile u = 30.98◦C and
tail sample size n = 1727. Table 5.3 contains the two variants of these tail indices for the
maximum temperatures, using both the L2 and χ2 errors, with the three minimal values given
in bold. From the table, the PMI-ESM-LR and MPI-ESM-MR models are selected by both T̃ (g̃i)
and T̂ (ĝi) for each the measure of error. The third model selected by the histogram indices is
CMCC-CESM whereas the CanESM2 and CNRM-CMS models are simultaneously selected by
the kernel indices. It is also important to note that for all selection criteria, the ACESS1-3,
NorESM1-M, IPSL-CM5* and MIROC-ESM* models produce inadequate fits.

Figure 5.5 plots the tail density estimators for the selected CMCC-CESM, HadGEM2-ES,
PMI-ESM-LR, MPI-ES-MR model data and observed data. The histograms are the solid lines,
kernel estimators the dashed lines. The observed data are black, and the simulated model data
blue. For PMI-ESM-LR and MPI-ES-MR models, both the histogram and kernel estimators
of the simulated data closely follow both the histograms and kernel estimator of the observed
data, so in these cases, the choice of the estimator of the observed data plays a small role. The
qq-plots confirm that the PMI-ESM-LR and MPI-ES-MR climate models most closely fit the
observed data, whereas the HadGEM2-ES and CMCC-CESM models fit the observed data less
well for maximum daily temperatures less than 38◦C.

For bivariate data, we consider the pairs of maximum and minimum temperatures over
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Model selection criterion
T̃ (g̃) T̂ (ĝ)

Error measure Error measure
Model L2 χ2 L2 χ2

ACCESS1-0 0.073 0.106 0.076 0.075
ACCESS1-3 0.299 2.047 0.296 6.344
CanESM2 0.058 0.081 0.040 0.015

CMCC-CESM 0.046 0.065 0.033 0.026
CMCC-CM 0.052 0.067 0.034 0.019
CMCC-CMS 0.063 0.096 0.059 0.046
CNRM-CMS 0.069 0.081 0.033 0.015

CSIRO-Mk3-6-0 0.061 0.083 0.055 0.040
HadCM3 0.064 0.095 0.065 0.069

HadGEM2-CC 0.055 0.086 0.034 0.028
HadGEM2-ES 0.058 0.076 0.030 0.017

IPSL-CM5A-LR 0.164 0.274 0.146 0.164
IPSL-CM5A-MR 0.108 0.130 0.085 0.056
IPSL-CM5B-LR 0.153 0.243 0.139 0.163

MIROC-ESM 0.189 0.483 0.176 0.303
MIROC-ESM-ECHM 0.184 0.458 0.167 0.283

MIROC5 0.066 0.078 0.046 0.019
PMI-ESM-LR 0.045 0.058 0.028 0.005
MPI-ESM-MR 0.045 0.057 0.024 0.005
MPI-ESM-P 0.077 0.104 0.072 0.044
MRI-CGCM3 0.075 0.121 0.078 0.113
NorESM1-M 0.124 0.576 0.072 0.138

Table 5.3: Histogram T̃ and kernel T̂ based indices respectively for histogram g̃ and kernel ĝ estimators of
the observed data, using the L2 and χ2 errors, for the 24 AR4 climate models for maximum temperatures.
The selected models with the three minimal criteria values are in bold.

the same time period, in order to investigate which of the climate models can predict a joint
increase. The threshold for the maximum temperatures are the 90% magrinal upper quantiles
u = (28.77◦C, 18.07◦C) and tail sample size is size n = 1387. Table 5.4 contains the two variants
of the tail indices based on both the L2 and χ2 errors for the (maximum, minimum) temperatures,
with the three minimal values given in bold. The CNRM-CMS model is selected by all four
indices and systematically provides the lowest values. HadCM3 has also been identified by T̃ (ĝ)
and T̂ (ĝ) as a good model for the prediction of extreme minimum and maximum temperatures.
Note that the NorESM1-M model which performed poorly for the marginal univariate maximum
temperature analysis above, becomes a viable model when considering the joint (maximum,
minimum) extremes.

Figure 5.6 illustrates the plots of the bivariate tail density estimators for the selected CNRM-
CMS and HadCM3 models. Similarly to Figure 5.5, histograms are the solid lines, kernel
estimators the dashed lines. The observed data are black, and the simulated model data blue.
The contour lines indicate the 25, 50, 75 and 99% highest density level sets in the bivariate tail
of the kernel estimator of the observed data. Both GCMs models appear to simulate extremes
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Figure 5.5: Histogram and kernel estimators of the tail densities for the selected AR4 models: CMCC-
CM, HadGEM2-ES, PMI-ESM-LR, MPI-ES-MR. Histograms estimators (HIS) are the solid lines and
kernel plug-in estimators (KPI) the dashed lines. Observed data (obs) is black and modelled data (model)
is blue.

of the maximum temperatures rather well, however the magnitude of minimum temperatures
are under-estimated (i.e. they are too warm). This indicates two possibilities: 1) that the kernel
estimators need to be further refined at the boundary; 2) physical parameters in the GCMs
need to be revised for a more realistic simulation of minimum temperature. While minimum
temperatures are somewhat easier for a climate model to simulate over maximum temperature
(Perkins et al. (2007)), the under-representation of the observed temperature distribution is
a well-known issue in GCMs, which is at least in part explained by their coarse resolution
(Seneviratne et al. (2012)). For example, dynamically downscaled regional climate models that
are run at finer resolutions for a limited spatial domain can offer some improvement in the
simulation of extreme temperatures (Seneviratne et al. (2012); Vautard et al. (2013); Perkins
et al. (2014)).

5.4 Discussion

We have introduced non-parametric kernel estimators for the analysis of the tail density
for univariate and multivariate extreme values data. Our contribution consists of applying
a transformation kernel estimation which accounts for the boundedness and skewness of the
tail sample to the tail sample only. In addition to excellent visualisations of this tail density
estimator, we included it in a model selection procedure based on tail index which measures its
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Model selection criterion
T̃ (g̃) T̂ (ĝ)

Error measure Error measure
Model L2 χ2 L2 χ2

ACCESS1-0 0.0486 8.4892 0.0018 7733.3500e0
ACCESS1-3 0.0282 6.0338 0.0036 1.8028e7
CanESM2 0.0220 4.2660 0.0018 6.6574e0

CMCC-CESM 0.0751 11.3020 0.0018 1.8374e4
CMCC-CM 0.0067 1.2834 0.0010 8313.6940e0
CMCC-CMS 0.1477 23.3683 0.0028 369.2623e0
CNRM-CMS 0.0034 0.6459 0.0005 0.3955e0

CSIRO-Mk3-6-0 0.0484 8.4685 0.0018 1528.0070e0
HadCM3 0.0042 0.9516 0.0007 9.4845e4

HadGEM2-CC 0.0354 5.4054 0.0016 2.0869e0
HadGEM2-ES 0.0333 5.5201 0.0013 4.5137e0

IPSL-CM5A-LR 0.0114 2.2945 0.0015 2.7308e0
IPSL-CM5A-MR 0.0176 3.3012 0.0014 4.7341e0
IPSL-CM5B-LR 0.0163 2.5026 0.0014 0.4354e0

MIROC-ESM 0.0259 5.3681 0.0014 9.3011e0
MIROC-ESM-ECHM 0.0335 7.0436 0.0083 27.6267e0

MIROC5 0.0481 7.4235 0.0044 241.9099e0
PMI-ESM-LR 0.0155 2.4104 0.0011 3293.9260e0
MPI-ESM-MR 0.0315 4.9851 0.0015 4858.4120e0
MPI-ESM-P 0.0178 2.4501 0.0011 4.4354e0
MRI-CGCM3 0.0554 11.1943 0.0024 1.3437e5
NorESM1-M 0.0063 0.7126 0.0012 0.1151e0

Table 5.4: Histogram T̃ and kernel T̂ based indices for histogram g̃ and kernel ĝ estimators of
the observed data, for the 24 AR4 climate models for (maximum, minimum) temperatures. The
selected models with the three minimal criteria values are in bold.
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Figure 5.6: Histogram and kernel estimators of the tail densities for the selected AR4 models:
CNRM.CMS, HadCM3. Histograms estimators (HIS) are the solid lines and kernel plug-in estimators
(KPI) the dashed lines. Observed data (obs) is black and modelled data (model) is blue.

discrepancy to the kernel estimators of a suite of parametric model tail densities. We verified
the performance of these analyses for simulated and climate experimental data.
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Future perspectives include refining the kernel estimator at the boundary to further improve
the visualisation as well as removing our heuristic double truncation to compute the tail index,
and to evaluate the limiting distribution of the tail index which would allow us to make prob-
abilistic statements about the observed tail index values. For the climate data, as the climate
models do not allow for probabilistic predictions, their analysis usually proceeds to another
round of model fitting, this time from a suite of statistical models. Once this is selected, we can
take advantage of its statistical properties to provide probabilistic interpretations of predictions
of extreme climactic events.





Summary and Discussion

In this section, we first state the main findings of this thesis, discuss their advantages but
also their potential drawbacks or limitations. We then put the emphasis on possible extensions
and future research ideas.

Chapter 1 provides an original contribution in the following sense. High-dimensional expres-
sions of the angular densities and exponent functions of the main extremal dependence models
in the multivariate setup are given. These are helpful in order to carry out parameter estimation
and to compute summaries of the dependence structure. We use the expression of the exponent
function of the extremal-t model given by Nikoloulopoulos et al. (2009) to derive its angular
density on all the sub-spaces of the simplex. The angular density derived from this model has
the particularity to put mass on all the subsets of the simplex. The expression of the density
on the interior and corners of the simplex are given while expression (4.19) enables their deriva-
tion on the other sub-spaces. We performed four-dimensional analyses of pollution data for
many different extremal dependence models using both the likelihood based approach and the
Bayesian approach described by Cooley et al. (2010) and Sabourin et al. (2013). Probabilities of
jointly exceeding some fixed high threshold are computed and used to estimate high-dimensional
return levels. They provide the estimated (return) period for combinations of air pollutants to
reach some high levels. The pros and cons of the approximate likelihood method are further
investigated and discussed in Chapter 4.

The main argument given in Chapter 3 is that any high-dimensional marginal distribution
of the Brown-Resnick can be analytically derived. They are given in the special case introduced
by de Haan and Pereira (2006), further applied to real data by Buishand et al. (2008), where a
general spatial dependence parameter is introduced and a bivariate construction is considered.
The result allows to fit the full likelihood estimation procedure to the model and not having
to use approximation methods. Another possibility is to keep approximating the likelihood
function by high degrees of the composite likelihood. However both of these suggestions lead
to an increase of the computational load and a trade-off has to be made. Unfortunately these
results were derived in parallel by Huser and Davison (2013) for the generalized Brown-Resnick
model and for which the efficiency of different composite likelihood estimators were compared.
This highlights the fact that spatial extremes is a very active research field motivated by the
growing interest in the projection of extreme events in areas like meteorology, for instance.

Chapter 4 provides a simple definition of a non-stationary non-normal process based on
the additive stochastic representation of skew-normal variables. With a covariance function de-
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pending on the spatial lag these processes are not strictly stationary, however, weak stationarity
occurs if the slant function is a fixed function of space. Moreover the joint tail dependence
model from Ledford and Tawn (1996) is used to show asymptotic independence for the skew-
normal distribution. We introduce the extremal skew-t process, a new max-stable process based
on an underlying skew-normal process and constructed using the spectral representation. The
main advantage of the extremal skew-t model is that, unlike most max-stable models, it exhibits
non-stationarity. This is due to the presence of the slant function in the dependence structure.
It allows to derive also non-stationary extremal coefficient functions which vary depending on
the spatial location. The finite-dimensional distributions are given as a function of non-central
extended skew-t cdfs. We define such distribution, not available before, which includes the stan-
dard extended skew-t distribution defined by Arellano-Valle and Genton (2010). Additionally,
we show that the same dependence structure can be obtained when considering the limiting
distribution of appropriately rescaled Skew-t random variables.

Furthermore, setting the slant parameters to zero reduces to the stationary Extremal-t model.
Similarly to Chapter 1, the expression of the angular density of both the interior and corners
of the simplex are given for arbitrary dimensions. The mass on other sub-spaces of the simplex
is also derived for the three and four-dimensional angular densities and thus the approximate
likelihood approach is considered for parameter estimation. It highlights the fact that the
density on all the subsets of the simplex are required for an accurate estimation. This is in
agreement with Sabourin et al. (2013) who stated that likelihood based on the angular density
needs to be computed by differentiation of order d (the dimension). Although approximate
likelihood might be less computationally demanding than composite likelihood methods, it has
the drawback of adding extra arbitrariness due to the allocation of a data point to a specific
subset of the simplex. In the spatial context, considering a simple correlation structure and using
the composite likelihood estimation method, we show that there seems to be a gain in efficiency,
when using triplewise rather than pairwise composite likelihood, for smoother processes.

Finally Chapter 5 presents a non-parametric estimation method for tail-densities using ker-
nel estimators. This kernel-based method provides a good graphical tool for exploratory data
analysis. It focuses on the tail sample only which is transformed to be unbounded and to enjoy
the good properties of kernel density estimators. We show that our estimator has the same
good asymptotic properties as usual kernel density estimators in both univariate and multi-
variate contexts. Moreover we demonstrate that our method outperforms other non-parametric
estimators such as standard kernel density estimators and histograms. Our estimator is then
used as a surrogate for the true underlying density and tail indices are computed for different
parametric models. An illustration of this method’s good performances for model selection is
given for datasets generated from different univariate and bivariate extreme value distributions.
Additionally it is shown to be more consistent than the histogram based tail index introduced
in Perkins et al. (2013). Finally a real data example showcases a scenario where our method is
required. The ability of several general circulation models (GCMs) to simulate extreme minimal
and maximal temperatures in the region of Sydney, Australia, is investigated. Again the kernel
based tail index exhibits more consistency than the histogram based tail index and the good
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visualisation it provides is highlighted.
As mentioned above, the simulation studies conducted in Chapter 1 and developed deeper

in Chapter 4 highlight some weakness of the approximate likelihood method. This promising
method requires further attention. Selecting a rule to decide whether a point belong to the
interior of the simplex or to another subspace of the simplex, can be established easily up to
three dimensions but is much harder in higher dimensions due to its representation. The rules
taken into account in Chapter 1 and 4 were homogeneous in the way they were identical for each
subspace. This lead to accurate results for three-dimensional data but keeping the same rule as
the dimension increases seems unlikely. Hence there is a strong motivation to define theoretical
results about the selection of these rule would strengthened the use of this method which is
still relatively untouched in the literature. An advantage of this method is that it reduces
the computational burden that is faced by full likelihood estimation or composite likelihood
(triplewise or higher) when there is a large number of spatial locations. This leads to a second
potential improvement of the approximate likelihood method. The possibility to derive of a
“composite approximate” likelihood method which could lead to much faster estimation and
bypass the decision rule dilemma (if restricted to triplewise composite approximate), will be
investigated.

Chapter 4 opens other questions. First, only a power-exponential correlation function has
been considered in the spatial setting. Section 2.6 introduced various types of continuous func-
tions. Their effect on the dependence structure of the extremal skew-t should be studied. More-
over, adding some extra conditions can lead to specific types of correlation structures that allow
for ergodic or mixing processes. Furthermore, it is important to study different correlation
structures in order to highlight the ones that are easy to fit and simple to use in practice.

Additionally, the model selection method given in Chapter 5 and based on the kernel-based
tail index, didn’t take the problem of bias at the boundary of the support into account. Because
the focus is on the observations in the far tail, a first solution to bypass this problem is to apply
a second truncation before calculating the tail indices in order to reduce the bias. Also, transfor-
mation functions to an unbounded support are not unique and even though the one considered
in Chapter 5 is the most natural, other transformations can reduce bumps at the boundary.
Furthermore, Geenens (2014) proposed an efficient method to reduce bias by combining a probit
transformation and a local likelihood density estimation. These solutions to a more accurate
estimate and to a better model selection, will be investigated in further research.

Finally, to conclude, the current context (global warming, financial crises, etc) make the
population more aware and worried about the possibility of extreme events. As the challenges
are expanding so are researchers interests in this field of statistics.





Appendix A

Convergence in law of a simple point
process to a Poisson point process

A.1 Basics

Skorohod’s theorem (Billingsley, 1971) states that for a simple point process Pn to converge
weakly to a Poisson point process P , there must exist a sequence of random elements defined
on the uniform probability space, with intensity measure the Lebesgue measure, such that this
sequence is equal in distribution to the simple point process Pn and converges almost surely.
Weak convergence means that actual realizations of the sequence of random variables do not
converge at all and oscillate widely. Skorohod’s theorem, however, proves the existence of an
equally likely sequence of random variables that converge with probability one.

Let Pn denote a simple point process on R+ × R+ with points
��

k

n
, nXk

�
, k ≥ 1

�
, where

X1, . . . , Xn are i.i.d. random variable uniformly distributed over [0, 1]. Our aim is to prove that
Pn converges weakly to a Poisson point process on R+ ×R+ with intensity measure the Lebesgue
measure.

In order to do so we will first define a sequence P̃n that is equal in distribution to Pn and then
we will prove that it converges almost surely. Denote by Qn the restriction of P to R+ × [0, n]
whose points are {(τk(n), yk(n)) , k ≥ 1} where the τk(n), k ≥ 1 are ordered. Abscissas τk(n)
correspond to the projection of the points of the Poisson point process on the x-axis, forming
a homogeneous Poisson point process on the [0, ∞). Furthermore the Lebesgue measure is a
product measure, meaning that the yk (n) are random variables uniformly distributed on [0, n]. It
is then straightforward to see that if P̃n defines a sequence whose points are

��
k

n
, yk(n)

�
, k ≥ 1

�
,

then P̃n

d= Pn and we are left with proving its almost convergence.
First, remark that P̃n can be obtained from Qn through through the horizontal shift, or

random mapping, k

n
− τk(n). Additionally, by construction Qn converges to P almost surely as

n get large and thus it suffices to show that the shift in the first coordinate of Qn converges to
zero as n increases to obtained almost sure convergence of P̃n. In other words we only need to
prove the convergence of the random mapping producing P̃n from Qn to the identity mapping as
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n increases. Without loss of generality we will restrict ourself to the analysis of the convergence
on (0, S) × R. For S > 0, we aim to show

sup
0≤k/n≤S

����
k

n
− τk(n)

����
a.s.−→ 0, as n → ∞,

and subsituting k/n by x, this is equivalent to

sup
0≤x≤S

|x − τ[nx](n)| a.s.−→ 0, as n → ∞.

The sequence {τk(n), k ≥ 1} is strictly increasing in k and so the function τ[nx](n) for 0 ≤ x ≤ S

is monotone for all n. Hence we can consider the limit of the inverse of f(x) = τ[nx](n) is given
by f−1(x) = n−1 maxk{τk (n) ≤ x}. The maximum term can be seen as the number of points of
the Poisson point process P that fall in the region (0, x] × (0, n]. Denote by Nk(x) the number
of points of P that fall in (0, x] × (k − 1, k] for k = 1, . . . , n, then this yields tp

lim
n→∞

n−1

n�

i=1

Ni(x) = 0,

by the law of large numbers. This proves that the horizontal shift tends to zero as n get large
and consequently P̃n converges almost surely to P .

A.2 In the context of Extremes

Let Pn now denote a simple point process on R+ × Rd
+ with points

��
k

n
,
Xk1 − bn1

an1

, . . . ,
Xkd − bnd

and

�
, k ≥ 1

�
,

where X1, . . . , Xn are i.i.d. random variable in Rd with distribution F and margins Fi, i =
1, . . . , d. The positive constant ani and bni, i = 1, . . . , d, are such that F is in the maximum
domain of attraction of some multivariate extreme value distribution G. It is well known that
if Ui denotes the inverse function of 1/(1 − Fi) i.e Ui(n) = F ←

i
(1 − 1/n), then

lim
n→∞

Ui(nxi) − bi(n)
ai(n) =

� 1
− log Gi

�←
(xi), i = 1, . . . , n, (A.1)

where Gi is a univariate extreme value distribution. The same restriction on the points of P

leads to the sequence Qn and from there a straightforward choice of the sequence P̃n is to let
its points be ��

k

n
,
U1(n/yk1(n) − bn1)

an1

, . . . ,
Ud(n/ykd(n) − bnd)

and

�
, k ≥ 1

�
,

where ai(n) = ani and bi(n) = bni and the sequence of i.i.d. random variables yki(n) are
uniformly distributed on [0, n]. Consequently using the definition of Ui, we can conclude that
the sequence {(U1(n/yk1(n)), . . . , Ud(n/ykd(n))) , k ≥ 1} has distribution function F and thus
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P̃n

d= Pn. The random shift to go from Qn to P̃n is similar to the one given in the previous
section but the transformation of the second parameter is no longer random. However, using the
same steps as previously, we are able to show that P̃n converges almost surely to a Poisson point
process P � obtained by applying the transformation given by the RHS of (A.1) to the second up
to the last coordinate of P . The transformation theory for Poisson point processes assures that
the intensity measure of P � is dt × dν evaluated at [0, t] × (x, ∞), x ∈ Rd which is −t log G(x).
Applying the mapping theorem from Billingsley (1968, Theorem 5.1), the convergence of the
point process with points

��
Xk1−bn1

an1
, . . . , Xkd−bnd

and

�
, k ≥ 1

�
to a Poisson point process on R with

intensity dν where ν(x, ∞) = − log G(x).





Appendix B

Construction of the Brown-Resnick
model

In this appendix, the model called Brown-Resnick in Section 2.6.3 is proved to be obtained
by considering the convergence in distribution of rescaled i.i.d. Ornstein-Ulhenbeck processes
and the conditions of Theorem 2.5 are verified. In a first section we need to define the norming
constants an and bn when studying the limiting distribution of the rescaled maxima of Gaus-
sian random variables. This result is then taken into account in a second section where the
convergence of the appropriately rescaled Brownian motions. Finally the extension to Ornstein-
Ulhenbeck processes is established, following closely the lines of the Brownian case.

B.1 Normalizing constants for a Normal distribution to be in
the maximum domain of attraction of an extreme value
distribution

Let X1, X2, . . . be i.i.d. normally distributed random variables with mean 0 and variance σ2

and denote their distribution by F and their maxima Mn = max(X1, . . . , Xn). Assume that, for
all n ∈ N, there exists constants an > 0 and bn such that

lim
n→∞

Pr
�

Mn − bn

an

≤ x
�

= G(x),

where G(x) is a type I extreme value distribution.
Using Mill’s ratio we have Φ̄(x) ∼ φ(x)/x and assume the right hand side to be the tail of

some H, i.e. Φ and H are tail equivalent. According to Embrechts et al. (1997, Proposition
3.3.28), if Φ and H have the same right endpoint xΦ = xH and Φ is in the maximum domain of
attraction of G (as defined above) then both distributions have the same norming constants if
and only if they are tail equivalent. Moreover it is easy to show that Φ is a Von Mises function
with auxiliary function a(x) = Φ̄(x)/φ(x) ∼ x−1 and hence the norming constants can be given
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by
an = a(bn) and bn = H←(1 − n−1),

which is equivalent to
an = b−1

n and H̄(bn) = n−1.

Using the tail equivalence, the second equation reduces to ln bn + 1

2
ln 2π + 1

2
b2

n = ln n and using
a Taylor expansion it yields

bn = (2 ln n)1/2 − ln ln n + ln 4π

2(2 ln n)1/2
+ o

�
(ln n)−1/2

�
.

An appropriate choice for an is then (2 ln n)−1/2.

B.2 Convergence in distribution of the maximum of Brownian
motions

Let us now consider {Wi(t)}i≥1,t≥0 a sequence of i.i.d. standard Brownian motions with
initial condition Wi(0) = 0 and zero drift. We will show the convergence in distribution of the
standardized maxima of the Wi’s in the neighborhood of some value t0 > 0. The normalization
introduced above allows us to define the following process

ξn,i(s) = bnt−1/2

0

�
1 + sb−2

n

�−1/2
�

Wi

�
t0

�
1 + sb−2

n

��
− bnt1/2

0

�
1 + sb−2

n

�1/2
�

, i ≥ 1

for s ≥ 0. We know that Mn(s) := max1≤i≤n ξn,i(s) converges in distribution to Y with type I
extreme value distribution. Furthermore {

√
t0W (s/t0)}, s ≥ 0 is standard Brownian motion for

any fixed t0 we choose t0 = 1. Without loss of generality, we will restrict ourself to prove the
convergence of the point process to a Poisson point process on C[0, 1].

Use the decomposition Wi(1 + sb−2
n ) = Wi(1) + b−1

n W ∗
i

(s), where {W ∗
i

, i ≥ 1} are i.i.d
standard Brownian motions. Note also that {W ∗

i
, i ≥ 1} and {(Wi(s), 0 ≤ s ≤ 1), i ≥ 1} are

independent. Then noting that bn ↑ ∞ and when n → ∞

�
1 + sb−2

n

�1/2

= 1 + 1
2sb−2

n + o
�
b−2

n

�
.

Then we can write that, uniformly over s ∈ [0, 1], we have,

ξn,i(s) = bn

�
Wi(1) + b−1

n W ∗
i (s) − bn − 1

2sb−1
n + o

�
b−1

n

�� �
1 + O

�
b−2

n

��

= bn(Wi(1) − bn) + W ∗
i (s) − s

2 + o
�
b−1

n

�
.

Define
ξ∗(s) = bn (Wi(1) − bn) + W ∗∗

i (s)

where for s ∈ [0, 1], {W ∗∗
i

(s), i ≥ 1} = {W ∗
i

(s) − s/2, i ≥ 1} are standard Brownian motions
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with drift −1/2, such that we have uniformly over 1 ≤ i ≤ n

lim
n→∞

|ξn,i − ξ∗
n,i| = 0.

Hence, if suffices to show the convergence of ξ∗ in order to establish the convergence in distri-
bution of ξ.

It can be summarized by saying that for any Borelian A ∈ R, #{ξn,i ∈ A} is equivalent to
#{ξ∗

n,i
∈ A}, where #{· ∈ A} =

�
1≥i≥n

1I{· ∈ A}. We will now prove that

#{ξ∗
n,i ∈ A} D−→ #{Tk + W ∗∗

k ∈ A}

where Tk are the realizations of a Poisson point process on (0, ∞] with intensity e−zdz.

Using the mapping theorem from Billingsley (1968, Theorem 5.1), we can focus on showing
that, for any Borelian A = A1 × A2 ∈ R × R, #{(bn(Wi(1) − bn), W ∗∗

i
) ∈ A} converges to

#{(Tk, W ∗∗
k

) ∈ A}. If we consider the random variables

X = #{(bn(Wi(1) − bn), W ∗∗
i

) ∈ A} and Y = #{(Tk, W ∗∗
k

) ∈ A},

it suffices to show that Pr{X = p} converges to Pr{Y = p}, for p = 1, 2, . . .. Because of
independence between {bn(Wi(1) − bn)}, {W ∗∗

i
} and {Tk}, we have

Pr{X = p} = Pr
�

(bn[Wp(1) − bn], W ∗∗
1 ) ∈ A ∩ · · · ∩

�
bn[Wp(1) − bn], W ∗∗

p

�
∈ A

�

=
p�

j=1

Pr{bn(Wj(1) − bn) ∈ A1}
p�

j=1

Pr{W ∗∗
j ∈ A2}

and

Pr{Y = p} = Pr
�

(T1, W ∗∗
1 ) ∈ A ∩ · · · ∩

�
Tp, W ∗∗

p

�
∈ A

�

=
p�

j=1

Pr{Tj ∈ A1}
p�

j=1

Pr{W ∗∗
j ∈ A2}.

Thus it suffices to prove the convergence of #{bn(Wi(1) − bn) ∈ A1} to #{Tk ∈ A1} for any
Borelian A1 ∈ R.

Note that {bn(Wi(1)−bn)} fulfills the conditions to be convergent in distribution to a double
exponential distribution (extreme value distribution of type I with µ = 0 and σ = 1).

It is straight forward that the conditions are met to apply the results on the convergence of
point processes given in Appendix A which lead to

{bn(Wi(1) − bn)} D−→ {Tk}, as n → ∞,

where the Tk is a Poisson random measure with mean measure e−tdt on (0, ∞]. Finally, applying
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one more time the mapping theorem from Billingsley (1968, Theorem 5.1) to ξn,i(s) we get

ξn(s) := max
1≤i

ξn,s(s) D−→ sup
k

{Tk + W ∗∗
k } := ξ.

B.3 Convergence in distribution of the maximum of Ornstein-
Ulhenbeck processes

A possible extension of the convergence result given in the previous section appears when
{X(s)}s∈R is taken to be a zero mean Ornstein-Ulhenbeck process, with variance σ2 = 1 and
correlation function exp(−α|t|) where t ∈ R and α = 1/2, defined by

X(s) =
�

s

−∞
e−(s−u)/2dW (u)

for all s ∈ R and W a Brownian motion on (−∞, ∞).

The proof of the convergence of the maxima of Ornstein-Ulhenbeck processes will follow
the lines of the Brownian motion case. According to the justification provided in de Haan and
Ferreira (2006), in order to create more dependence we now consider

ξn,i(s) = bn

�
Xi

�
s

b2
n

�
− bn

�
, i ≥ 1 (B.1)

Focusing on the convergence of {max1≤i≤n ξn,i(s)} and re-writing the process as

X(s) =
�

s

−∞
e−(s−u)/2dW (u)

= e−s/2

�
s

−∞
eu/2dW (u)

= e−s/2

��
0

−∞
eu/2dW (u) +

�
s

0

eu/2dW (u)
�

= e−s/2

�
X(0) +

�
s

0

eu/2dW (u)
�

. (B.2)

Then combining (B.1) and (B.2) we obtain

ξn,i(s) = bn

�

e−s/2b
2
n

�

X(0) +
�

s/b
2
n

0

eu/2dW (u)
�

− bn

�

= e−s/2b
2
n

�

bn

�

Xi(0) +
�

s/b
2
n

0

eu/2dW (u)
�

− b2
nes/2b

2
n

�

= e−s/2b
2
n

�

bn(Xi(0) − bn) + bn

�
s/b

2
n

0

eu/2dW (u) +
�
1 − es/2b

2
n

�
b2

n

�

.

Noting that for an arbitrary s0 such that −s0 ≤ s ≤ s0, Taylor series give e−s/b
2
n = 1 + O(1/b2

n),
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then we have

bn

�
s/b

2
n

0

eu/2dW (u) = bn

�
eu/2W (u)

�
s/b

2
n

0

= bnes/2b
2
nW

�
s/b2

n

�

= bn

�
1 + O

�
1/b2

n

��
W

�
s b2

n

�
. (B.3)

Taylor series also give es/b
2
n = 1 + s/2b2

n + 0
�
1/b4

n

�
for −s0 ≤ s ≤ s0 which leads to

�
1 − es/2b

2
n

�
b2

n =
�
−s/2b2

n + O
�
1/b4

n

��
b2

n

= −s/2 + O
�
1/b2

n

�
, (B.4)

and defining the standard Brownian motion W ∗ by W ∗(s) := bnW
�
s/b2

n

�
we can write

ξn,i(s) = bn(Xi(0) − bn) + W ∗
i (s) − s/2 + O

�
b−2

n

�

Following the steps of Section B.2, it is straightforward to establish the convergence:

ξn(s) := max
1≤i≤n

ξi,n(s) D−→ sup
k

{Tk + W ∗∗
k (s)} ,

where Tk are the realizations of a Poisson point process on (0, ∞] with intensity e−zdz and the
margins are assumed to be standard Gumbel.

One may choose to use the transformation x �→ ex to unit Fréchet margins with the limiting
process then being

sup
k

�
ZkeW

∗
i (s)−s/2

�
,

where {Zk}1≤k are realizations of a Poisson random measure with intensity z−2dz on (0, ∞].

To finish we can prove that for s ∈ R, Y (s) = eW (s)−|s|/2 does verify the assumption of
integrability E[sups∈S Y (s)] < ∞ and that EY (s) = 1. The former is straightforward whereas
the second one while be proved by showing that it is a martingale. First of all Y (s) is clearly
integrable and moreover, considering a filtration Fs, as a function of Fs-measurable random
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variables Y (s) is also Fs-measurable. For all 0 ≤ s < t < ∞ we have

E[exp{W (t) − t/2}|Fs] = exp{W (s) − s/2}E
� exp{W (t) − t/2}

exp{W (s) − s/2}

����Fs

�

= exp{W (s) − s/2}E
�
exp{W (t) − W (s) − (t − s)/2}

����Fs

�

= exp{W (s) − s/2}E [exp{W (t) − W (s) − (t − s)/2}]

= exp{W (s) − s/2}
�

R
exp

�
x + s − t

2

� 1
2π(s − t) exp

�

− x2

2(s − t)

�

dx

= exp{W (s) − s/2}
�

R

1
2π(s − t) exp

�

−(x − s + t)2

2(s − t)

�

dx

= exp{W (s) − s/2}.

Thus Y (s) is a martingale and so ∀s, EY (s) = EY (0) = E[exp{W (0) − 0/2}] = 1 which proves
that the assumption E [Y (s)] = 1. Thus conditions of Theorem 2.5 are met and the Brown-
Resnick from Section 2.6.3 is appropriately defined as the limit of i.i.d. Ornstein-Ulhenbeck
rocesses.
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Proof of the expressions of the
marginal distributions for the
Brown-Resnick model

C.1 Proof of Theorem 3.5

Let η�(s) be the process defined in (3.1) and consider firstly the case 0 ≤ s1 ≤ s2 ≤ s3.
According to Lemma 2.7 we have,

− log Pr(η�(s1) ≤ ex1 , η�(s2) ≤ ex2 , η�(s3) ≤ ex3)

= E
�
max

�
e�(βs1)−βs1/2−x1 , e�(βs2)−βs2/2−x2 , e�(βs3)−βs3/2−x3

��

= E
�
e�(βs1)−βs1/2 exp

�
max

�
−x1, �2,1 − 1

2
a2

2,1 − x2, �3,1 − 1

2
a2

3,1 − x3

���

= E
�
exp

�
max

�
−x1, �2,1 − 1

2
a2

2,1 − x2, �3,1 − 1

2
a2

3,1 − x3

���

where �i,j = �(βsi) − �(βsj). Note that the last two equalities are consequences of the indepen-
dency of the exponential terms and the fact that the Brown-Resnick process is a martingale.
By definition of Brownian motions, we know that �2,1 ∼ N

�
0, a2

2,1

�
and �3,2 ∼ N

�
0, a2

3,2

�
are

independent of each other. Noting that we have the relationship �3,1 = �3,2 + �2,1 then it is easy
to obtain the joint densities

f�2,1,�3,1(u, v) = c exp




−1
2




�

u

a2,1

�2

+
�

v − u

a3,2

�2









f�2,1,�3,2(u, v) = c exp




−1
2




�

u

a2,1

�2

+
�

v

a3,2

�2









f�3,1,�3,2(u, v) = c exp




−1
2




�

u − v

a2,1

�2

+
�

v

a3,2

�2








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where c = (2πa3,2a2,1)−1.

If we set Y = max
�
exp{−x1}, exp

�
�2,1 − 1

2
a2

2,1 − x2

�
, exp

�
�3,1 − 1

2
a2

3,1 − x3

��
then the

probability mass function (pmf) of Y is given by

Pr (Y = exp {−x1}) = Pr
�
�2,1 ≤ x2 − x1 + 1

2
a2

2,1, �3,1 ≤ x3 − x1 + 1

2
a2

3,1

�

Pr
�
Y = exp

�
�2,1 − 1

2
a2

2,1 − x2

��
= Pr

�
�2,1 ≥ x2 − x1 + 1

2
a2

2,1, �3,2 ≤ x3 − x2 + 1

2
a2

3,2

�

Pr
�
Y = exp

�
�3,1 − 1

2
a2

3,1 − x3

��
= Pr

�
�3,1 ≥ x3 − x1 + 1

2
a2

3,1, �3,2 ≥ x2 − x3 + 1

2
a2

2,1

�

Using Lemma 3.3, its expected value is then evaluated as follows

E[Y ] = e−x1
�

x3−x1+a
2
3,1/2

−∞

�
x2−x1+a

2
2,1/2

−∞
f�2,1,�3,1(u, v)dudv

+ e−x2
�

x3−x2+a
2
3,1/2

−∞

� ∞

x2−x1+a
2
2,1/2

exp
�

u − 1

2
a2

2,1

�
f�2,1,�3,2(u, v)dudv

+ e−x3
� ∞

x3−x2+a
2
2,1/2

� ∞

x3−x1+a
2
3,1/2

exp
�

u − 1

2
a2

3,1

�
f�3,1,�3,2(u, v)dudv

= e−x1
�

x3−x1+a
2
3,1/2

−∞

�
x2−x1+a

2
2,1/2

−∞
f�2,1,�3,1(u, v)dudv

+ e−x2
�

x3−x2+a
2
3,1/2

−∞

�
x1−x2−a

2
2,1/2

−∞
c exp




−1
2




�

u + a2
2,1

a2,1

�2

+
�

v

a3,2

�2







 dudv

+ e−x3
�

x2−x3−a
2
2,1/2

−∞

�
x1−x3−a

2
3,1/2

−∞
c exp




−1
2




�

u − v + a2
2,1

a2,1

�2

+
�

v + a2
3,2

a3,2

�2







 dudv

= e−x1
�

x2−x1+a
2
2,1/2

−∞
(2πa2,1)−1φ(u/a2,1)Φ

�
x3 − x1 + a2

3,1/2 − u

a3,2

�

du

+ e−x2Φ
�
(x3 − x2)a−1

3,2
+ 1

2
a3,2

�
Φ

�
(x1 − x2)a−1

2,1
+ 1

2
a2,1

�

+ e−x3
�

x2−x3−a
2
2,1/2

−∞
(2πa3,2)−1φ(v/a3,2 + a2

3,2)Φ
�

x1 − x3 − 1

2
a2

3,1 − v + a2
2,1

a2,1

�

dv

= e−x1Φ2

��
(x3 − x1)a−1

3,1
+ 1

2
a3,1, (x2 − x1)a−1

2,1
+ 1

2
a2,1

��
; a2,1/a3,1

�

+ e−x2Φ2

��
(x3 − x2)a−1

3,2
+ 1

2
a3,2, (x1 − x2)a−1

2,1
+ 1

2
a2,1

��
; 0

�

+ e−x3Φ2

��
(x2 − x3)a−1

3,2
+ 1

2
a3,2, (x1 − x3)a−1

3,1
+ 1

2
a3,1

��
; a3,2/a3,1

�
, (C.1)

which completes the proof for 0 ≤ s1 ≤ s2 ≤ s3. The reasoning is similar for any s1, s2 and
s3 ∈ R as soon as they are either all positive or all negative.

Now let us consider the case where one of the si, i = 1, 2, 3 has a different sign as the other
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two. For example we will consider the case where s1 ≤ 0 ≤ s2 ≤ s3.

− log Pr(η(s1) ≤ ex1 , η(s2) ≤ ex2 , η(s3) ≤ ex3)

= E
�
exp

�
max

�
�(βs1) + 1

2
βs1 − x1, �(βs2) − 1

2
βs2 − x2, �(βs3) − 1

2
βs3 − x3

���

=
� ∞

0

kdPr
�
exp

�
max

�
�(βs1) + 1

2
βs1 − x1, �(βs2) − 1

2
βs2 − x2, �(βs3) − 1

2
βs3 − x3

��
≤ k

�
.

(C.2)

Moreover the condition s1 ≤ 0 ≤ s2 ≤ s3 implies that �(βs1) is independent of both �(βs2) and
�(βs3) and thus

Pr(exp{max(�(βs1) + 1

2
βs1 − x1, �(βs2) − 1

2
βs2 − x2, �(βs3) − 1

2
βs3 − x3)} ≤ k)

= Pr
�
�(βs1) − 1

2
β|s1| − x1 ≤ log k

�

× Pr
�
�(βs2) − 1

2
βs2 − x2 ≤ log k, �(βs3) − 1

2
βs3 − x3 ≤ log k

�

It is easy to see that

Pr(�(βs1) − β|s1|/2 − x1 ≤ log k) = Φ
�

(log k + x1 + 1

2
β|s1|)/

�
β|s1|

�
:= F1(k).

Also, because the pdf of (�(βs2), �(βs3) − �(βs2)) is given by

f�(βs2),�(βs3)−�(βs2)(u, v) =
�

2πβ
�

s2(s3 − s2)
�−1

exp
�

−1
2

�
u2

βs2

+ v2

β(s3 − s2)

��

,

we then get

Pr(�(βs2) − βs2/2 − x2 ≤ log k, �(βs3) − βs3/2 − x3 ≤ log k)

= Φ2

��
(log k + x2 + βs2/2)/

�
βs2, (log k + x3 + βs3/2)/

�
βs3

��
, −

�
s2/s3

�
:= F2(k, k)

Additionally, differentiating the product F1(k)F2(k, k) w.r.t k, we obtain

dF1(k)F2(k, k) = F �
1(k)F2(k, k) + F1(k) ∂

∂k
F2(k, k), (C.3)

where
F �

1(k) =
�

k
�

β|s1|
�−1

φ
�

(log k + x1 + β|s1|/2) /
�

β|s1|
�

and

∂

∂k
F2(k, k) = 1

k
√

βs2

�
(log k+x3+βs3/2)/

√
βs3

−∞
φ2

��
u, (log k + x2 + βs2/2)/

�
βs2

��
;
�

s2/s3

�
du

+ 1
k
√

βs3

�
(log k+x2+βs2/2)/

√
βs2

−∞
φ2

��
(log k + x3 + βs3/2)/

�
βs3, v

��
;
�

s2/s3

�
dv.
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Thus, plugging (C.3) into (C.2) leads to,
� ∞

0

1
�

β|s1|
φ

�
(log k + x1 + 1

2
β|s1|)/

�
β|s1|

�

×
�

k

0

�
k

0

φ2

��
(log u + x3 + 1

2
βs3)/

�
βs3, (log v + x2 + 1

2
βs2)/

�
βs2

��
;
�

s2/s3

� dudvdk

uvβ
√

s2s3

+
� ∞

0

Φ
��

log k + x1 + 1

2
β|s1|

�
/
�

β|s1|
�

×
�

k

0

φ2

��
(log u + x3 + 1

2
βs3)/

�
βs3, (log k + x2 + 1

2
βs2)/

�
βs2

��
;
�

s2/s3

� dudk

uβ
√

s2s3

+
� ∞

0

Φ
��

log k + x1 + 1

2
β|s1|

�
/
�

β|s1|
�

×
�

k

0
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��
(log k + x3 + 1
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βs3)/

�
βs3, (log v + x2 + 1

2
βs2)/

�
βs2

��
;
�

s2/s3

� dvdk

vβ
√

s2s3

.

(C.4)

We can now calculate separately each of the three components above. Applying Fubini’s theorem,
Lemmas 3.3 and 3.4 and the change of variables u� = eu, v� = ev, the first component of (C.4)
can be re-written as

� ∞

0

�
log k

−∞

�
log k

−∞
(β|s1|)−1/2φ

�
(log k + x1 + β|s1|/2)/
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�
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�
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a2,1

��
; a2,1/a3,1

�
. (C.5)

Similarly as above, the second term of (C.4) can be firstly transformed using Fubini’s theorem,
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Lemmas 3.3 and 3.4 and the change of variable v� = ev leading to
� ∞
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�
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Φ
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(k + x1 + β|s1|/2)/

�
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�
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√
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��
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�
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�
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�
(x3 − x2)a−1

3,2
+ 1

2
a3,2

�
Φ

�
(x1 − x2)a−1

2,1
+ 1

2
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�
.

Finally, following the same method, the third and last term of (C.4) can be reduced to

� ∞

−∞

�
log k

−∞
Φ

�
(k + x1 + β|s1|/2)/

�
β|s1|

�
φ

�
(k + x3 + βs3/2)/

�
βs3

�
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2
a3,2, (x1 − x3)a−1

3,1
+ 1

2
a3,1

��
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�
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This completes the proof for the case s1 ≤ 0 ≤ s2 ≤ s3. The reasoning is similar whenever one
of the si, i = 1, 2, 3 has a different sign than the other two.

C.2 Proof of Lemma 3.6

Assume s1 ≤ . . . ≤ sp and let �(si) denote a Brownian motion at time si, i = 1, . . . , p. From
the properties of Brownian motions we know that, for 1 ≤ n ≤ p,

� = (�n,1, . . . , �n,n−1, �n+1,n, . . . , �p,n) ∼ Np−1(0, Σ),
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where �i,j = �(si)− �(sj) for i, j = 1, . . . , p, i �= j. Brownian motions have the property of having
independent increments, hence for 1 ≤ i, j, n, ≤ p, if i < j < n then,

Cov(�n,i, �n,j) = Cov(�(sn) − �(sj) + �(sj) − �(si), �(sn) − �(sj))

= Cov(�(sn) − �(sj), �(sn) − �(sj)) + Cov(�(sj) − �(si), �(sn) − �(sj))

= Var(�(sn) − �(sj))

= sn − sj = sn,j ,

and similarly,

Cov(�n,i, �n,j) = sn,i, if j < i < n, Cov(�n,i, �n,j) = si,n, if n < i < j,

Cov(�n,i, �n,j) = sj,n, if n < j < i, Cov(�n,i, �j,n) = 0, if i < n < j or j < n < i.

Thus the covariance matrix of the joint distribution is

Σ =





sn,1 sn,2 · · · sn,n−1 0 · · · 0 0
sn,2 sn,2 · · · sn,n−1 0 · · · 0 0

...
... . . . ...

...
...

...
sn,n−1 sn,n−1 · · · sn,n−1 0 · · · 0 0

0 0 · · · 0 sn+1,n · · · sn+1,n sn+1,n

...
...

...
... . . . ...

...
0 0 · · · 0 sn+1,n · · · sp−1,n sp−1,n

0 0 · · · 0 sn+1,n · · · sp−1,n sp,n





=



 Σ1 0
0 Σ2





where Σ1,1 is a (n−1)×(n−1) matrix and Σ2,2 a (p−n)×(p−n) matrix. Consequently, � can be
expressed as the product of two normally distributed random processes �1 = (�n,1, . . . , �n,n−1) and
�2 = (�n+1,n, . . . , �p,n), respectively with densities φn−1(u; Σ1), u ∈ Rn−1 and φp−n(v; Σ2), v ∈
Rp−n.

Thus the expected value of Z is

E [Z] = e−xnI1 × I2 (C.6)

where
I1 =

� ∞

xn,n−1+
1

2
sn,n−1

· · ·
� ∞

xn,1+
1

2
sn,1

eu1−
sd,1

2 φn−1(u; Σ1)du,

and

I2 =
�

xp,n+
1

2
sp,n

−∞
· · ·

�
xn+1,n+

1

2
sn+1,n

−∞
φp−n(v; Σ2)dv.

Before going any further two results, also obtained by induction, need to be stated. First, we
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prove that the following hypothesis:

H�
n : If Σn =





sn,1 sn,2 · · · sn,n−1

sn,2 sn,2 · · · sn,n−1

...
... . . . ...

sn,n−1 sn,n−1 · · · sn,n−1




then its inverse is

Σ−1
n =





1

s2,1
−1

s2,1
0 · · · 0 0 0

−1

s2,1
s3,1

s3,2s2,1
−1

s3,2
· · · 0 0 0

0 −1

s3,2
s4,2

s4,3s3,2
· · · 0 0 0

...
...

... . . . ...
...

...
0 0 0 · · · sn−2,n−4

sn−2,n−3sn−3,n−4
−1

sn−2,n−3
0

0 0 0 · · · −1

sn−2,n−3
sn−1,n−3

sn−1,n−2sn−2,n−3
−1

sn−1,n−2

0 0 0 · · · 0 −1

sn−1,n−2
sn,n−2

sn,n−1sn−1,n−2





(C.7)

is true for all n ≥ 2.

Let n = 2, then H�
2 : Σ2 = s2,1 and Σ−1

3
= s−1

2,1
.

Let n = 3, then H�
3 : Σ3 =

�
s3,1 s3,2

s3,2 s3,2

�

and Σ−1

3
= 1

s3,2s2,1

�
s3,2 −s3,2

−s3,2 s3,1

�

=




1

s2,1
−1

s2,1
−1

s2,1
s3,1

s3,2s2,1



.

Assume H�
n true for all k, 2 ≤ k ≤ n we consider the case k + 1. Here

Σk+1 =





sk+1,1 sk+1,2 · · · sk,k−1 sk+1,k

sk+1,2 sk+1,2 · · · sk,k−1 sk+1,k

...
... . . . ...

sk,k−1 sk,k−1 · · · sk,k−1 sk,k−1

sk+1,k sk+1,k · · · sk+1,k sk+1,k





=



 sk+1,kJk−1 + Σk sk+1,k1Ik−1

sk+1,k1I�
k−1 sk+1,k





where Jk−1 is a (k − 1) × (k − 1) unit matrix. Using the block representation of Σk+1 and
applying Schur’s decomposition leads to

Σ−1

k+1
=

�
Jk−1 0

−1I�
k−1 1

� 

Σ−1

k
0

0 1

sk+1,k




�
Jk−1 −1Ik−1

0 1

�

=



 Σ−1

k
0

−1I�
k−1Σ−1

k

1

sk+1,k




�
Jk−1 −1Ik−1

0 1

�

=



 Σ−1

k
−Σ−1

k
1Ik−1

−1I�
k−1Σ−1

k
1I�

k−1Σ−1

k
1Ik−1 + 1

sk+1,k



 .
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Using the induction hypothesis H�
k we find

−1I�
k−1Σk−1

k
=

�

0, . . . , 0, − 1
sk,k−1

�

a row vector of length (k − 1) and

1I�
k−1Σ−1

k
1Ik−1 + 1

sk+1,k

= 1
sk,k−1

+ 1
sk+1,k

= sk+1,k−1

sk+1,ksk,k−1

.

Consequently we finally obtain

Σ−1

k+1
=





0

Σ−1

k

...
0

− 1

sk,k−1

0 · · · 0 −1

sk,k−1
sk+1,k−1

sk+1,ksk,k−1





which proves H�
n true for all n ≥ 2. The second hypothesis to verify is the following,

Hn :






Det(Σ1) =
�

n−1

i=1
si+1,i

tn,1 − 2u1 + u�
n Σ−1

1
un =

�
n−2

i=1

�
ui−ui+1−si+1,i

s
1/2
i+1,i

�2

+
�

un−1−sn,n−1
s

1/2
n,n−1

�2 (C.8)

where un = (u1, . . . , un−1). and we can now do another induction to prove Hn.

Let n = 2, then

H2 :






Det(s2,1) = s2,1

s2,1 − 2u1 + u2
1s−1

2,1
=

�
u1−s2,1

s
1/2
2,1

�2 .

Let n = 3, then

H3 :






Det
�

s3,1 s3,2

s3,2 s3,2

�

= s3,2s2,1

s3,1 − 2u1 + (u1, u2)�




1

s2,1
− 1

s2,1

− 1

s2,1
s3,1

s3,2s2,1



 (u1, u2) =
�

u1−u2−t2,1
t
1/2
2,1

�2

+
�

u2−t3,2
t
1/2
3,2

�2
.

Assume Hn true for all k, 2 ≤ k ≤ n and consider the case k + 1.

Hk+1 :






Det(Σk+1) =
�

k

i=1 si+1,i

sk+1,1 − 2u1 + u�
k+1

Σ−1

k+1
uk+1 =

�
k−1

i=1

�
ui−ui+1−si+1,i

s
1/2
i+1,i

�2

+
�

uk−sk+1,k

s
1/2
k+1,k

�2 .
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If we focus on the first element of Hk+1, using once again Schur’s decomposition we have

Σ−1

k+1
=

�
Jk−1 0

−1I�
k−1 1

� �
Σ−1

k
0

0 s−1

k+1,k

� �
Jk−1 −1Ik−1

0 1

�

which leads to,

Det
�
Σ−1

k+1

�
= Det

�
Jk−1 0

−1I�
k−1 1

�

× Det
�

Σ−1

k
0

0 s−1

k+1,k

�

× Det
�

Jk−1 −1Ik−1

0 1

�

= 1 × Det
�
Σ−1

k

�
× s−1

k+1,k
× 1

= (Det(Σk)sk+1,k)−1

= (sk+1,ksk,k−1 . . . s2,1)−1,

and consequently the assertion Det(Σk+1) =
�

k

i=1 si+1,i is proved.

If we look at the second element of Hk+1, applying the induction hypothesis gives

sk+1,1 − 2u1 + u�
k+1Σ−1

k+1
uk+1

= sk+1,k + sk,1 − 2u1 + u�
k Σ−1

k
uk − 2uk−1uk

sk,k−1

+ u2
k

sk+1,k−1

sk+1,ksk,k−1

=
k−2�

i=1



ui − ui+1 − si+1,i

s1/2

i+1,i




2

+



uk−1 − sk,k−1

s1/2

k,k−1




2

− 2uk−1uk

sk,k−1

+ u2
k

sk,k−1

+ u2
k

sk+1,k

+ sk+1,k

=
k−1�

i=1



ui − ui+1 − si+1,i

s1/2

i+1,i




2

+



uk − sk+1,k

s1/2

k+1,k




2

which proves that Hn is true for all n ≥ 2.

Going back to the first term of (C.6), considering also the change of variable u�
i

= −ui, i =
1, . . . , n − 1 we now have

I1 =
�

xn−1,n− 1

2
sn,n−1

−∞
· · ·

�
x1,n− 1

2
sn,1

−∞
(2π)− (n−1)

2

n−1�

i=1

s−1/2

i+1,i

× exp





−1

2




n−2�

i=1



ui − ui+1 + si+1,i

t1/2

i+1,i




2

+



un−1 + sn,n−1

s1/2

n,n−1




2








du1 · · · dun−1. (C.9)

The substitution vi = ui−ui+1+si+1,i

s
1/2
i+1,i

for i = 1, . . . , n − 2 and vn−1 = un−1+sn,n−1
s

1/2
i+1,i

gives

uj =
n−j�

i=1

��
vn−is

1/2

n−i+1,n−i

�
− sn−i+1,n−i

�
, 1 ≤ j ≤ d − 1,
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and

dv1 · · · dvn−1

du2 · · · dun−1

=

��������������������

s−1/2

2,1
−s−1/2

2,1
0 · · · 0 0 0

−s−1/2

2,1
s−1/2

3,2
−s−1/2

3,2
· · · 0 0 0

0 −s−1/2

3,2
s−1/2

4,3
· · · 0 0 0

...
...

... . . . ...
...

...
0 0 0 · · · s−1/2

n−2,n−3
−s−1/2

n−2,n−3
0

0 0 0 · · · −s−1/2

n−2,n−3
s−1/2

n−1,n−2
−s−1/2

n−1,n−2

0 0 0 · · · 0 −s−1/2

n−1,n−2
s−1/2

n,n−1

��������������������

=
n−1�

i=1

s−1/2

i+1,i
.

Moreover the new bounds of integration are given by

−∞ ≤ vj ≤



xj,n + sn,j

2 −
n−j−1�

l=1

vn−ls
1/2

n−l+1,n−l



 s−1/2

j+1,j
, 1 ≤ j ≤ n − 2,

and
−∞ ≤

�
vn−1 ≤ xn−1,n + tn,n−1

2

�
t−1/2

d,d−1
.

Thus following from (C.9),

I1 =
�

xn−1,ns
−1/2
n,n−1+s

1/2
n,n−1/2

−∞

�
(xn−2,n+sn,n−2/2−vn−1sn,n−1)s

−1/2
n−1,n−2

−∞
· · ·

�
(x1,n+sn,1/2−

�n−j−1
l=1 vn−ls

1/2
n−l+1,n−l)s

−1/2
2,1

−∞
(2π)− (n−1)

2 exp
�

−
(v2

1 + · · · + v2
n−1)

2

�

dv1 · · · dvn−1,

and we can prove by induction the following hypothesis

H ��
n : I1 = Φn−1

��
x1,ns−1/2

n,1
+ s1/2

n,1
/2, . . . , xn−1,ns−1/2

n,n−1
+ s1/2

n,n−1
/2

��
; R1

�
, ∀n ≥ 2,

where R1 is the correlation matrix coming from the covariance matrix Σ1 and is defined by

R1 =





1 (sn,2/sn,1)1/2 · · · (sn,n−1/sn,1)1/2

(sn,2/sn,1)1/2 1 · · · (sn,n−1/sn,2)1/2

...
... . . . ...

(sn,n−1/sn,1)1/2 (sn,n−1/sn,2)1/2 · · · 1




.

For n = 2, then H ��
2 :

I1 =
�

x1,2s
−1/2
2,1 +s

1/2
2,1 /2

−∞
φ(v1)dv1 = Φ

�
x1,2s−1/2

2,1
+ s1/2

2,1
/2

�
.
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For n = 3, then H ��
3 :

I1 =
�

x2,3s
−1/2
3,2 +s

1/2
3,2 /2

−∞

�
(x1,3+s3,1/2−v2s3,2)t

1/2
2,1

−∞
2π−1 exp

�

−(v2
1 + v2

2)
2

�

dv1dv2

=
�

x2,3s
−1/2
3,2 +s

1/2
3,2 /2

−∞
(2π)−1/2 exp

�

−v2
2

2

�

Φ
�
(x1,3 + s3,1/2 − v2s3,2)s−1/2

2,1

�
dv2

= Φ2

��
x2,3s−1/2

3,2
+ s1/2

3,2
/2, x1,3s−1/2

3,1
+ s1/2

3,1
/2

��
; (s3,2/s3,1)1/2

�
.

Assume our hypothesis true for all 2 ≤ k ≤ n. Note that our hypothesis H ��
k

can re-considered
as

I1 =
�

xk−1,ks
−1/2
k,k−1+s

1/2
k,k−1/2

−∞
φ(vk−1)

× Φk−2









x1,k + sk,1/2 − vk−1s1/2

k,k−1

s1/2

k−1,1

, · · · ,
xk−2,k + sk,k−2/2 − vk−1s1/2

k,k−1

s1/2

k−1,k−2






�

; Rk−1



 dvk−1

where the components of the correlation matrix Rk−1 are (sk−1,j/sk−1,i)1/2, i, j = 1, . . . , k − 2.

For H ��
k+1

we have,

I1 =
�

xk,k+1s
−1/2
k+1,k+s

1/2
k+1,k/2

−∞

�
(xk−1,k+1+sk+1,k−1/2−vksk+1,k)s

−1/2
k,k−1

−∞
· · ·

�
(x1,k+1+sk+1,1/2−

�k−1
l=1 vk+1−ls

1/2
k−l+2,k+1−l)s

−1/2
2,1

−∞
(2π)− k

2 exp
�

−(v2
1 + · · · + v2

k
)

2

�

dv1 · · · dvk.

For the integrations w.r.t. v1 up to vk−2, denoting the constants by ci = xi,k+1 + sk+1,i/2 −
vks1/2

k+1,k
, i = 1, . . . , k − 2 and using the induction hypothesis leads to

I1 =
�

xk,k+1s
−1/2
k+1,k+s

1/2
k+1,k/2

−∞

�
(xk−1,k+1+sk+1,k−1/2−vksk+1,k)s

−1/2
k,k−1

−∞
(2π)−1 exp

�
−1

2(v2
k−1 + v2

k)
�

× Φk−2

���
c1 − vks1/2

k,k−1

�
s−1/2

k−1,1
, . . . ,

�
ck−2 − vks1/2

k,k−1

�
s−1/2

k−1,k−2

��
; Rk−1

�
dvk−1dvk.

Applying Lemma 3.3 a first time yields to

I1 =
�

xk,k+1s
−1/2
k+1,k+s

1/2
k+1,k/2

−∞
φ(vk)

× Φk−2

��
c1s−1/2

k,1
, . . . , ck−2s−1/2

k,k−2
,
�
xk−1,k+1 + sk+1,k−1/2 − vks1/2

k+1,k

�
s−1/2

k,k−1

��
; Rk

�
dvk,

where the components of the correlation matrix Rk are (sk,j/sk,i)1/2, i, j = 1, . . . , k − 1. Next, a
second application of Lemma 3.3 completes the induction proof as it reduces to

I1 = Φk

��
x1,k+1s−1/2

k+1,1
+ s1/2

k+1,1
/2, . . . , xk,k+1s−1/2

k+1,k
+ s1/2

k+1,k
/2

��
; Rk+1

�
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where the components of the correlation matrix Rk+1 are (sk+1,j/sk+1,i)1/2, i, j = 1, . . . , k. Con-
sequently our hypothesis is true for all n ≥ 2 and hence

I1 = Φn−1

��
x1,ns−1/2

n,1
+ s1/2

n,1
/2, . . . , xn−1,ns−1/2

n,n−1
+ s1/2

n,n−1
/2

��
; Rn

�
, (C.10)

where Rn corresponds with the definition of R1 given earlier. For the second part of (C.6) it is
easy to see that

I2 = Φp−n

��
xn+1,ns−1/2

n+1,n
+ s1/2

n+1,n
/2, · · · , xp,ns−1/2

p,n + s1/2
p,n /2

��
; R2

�
,

where R2 is the correlation matrix, coming from Σ2, with coefficients (sn+j,n/sn+i,n)1/2, i, j =
1, . . . , p − n. Furthermore, let x−i = x\{xi} and s−i = s\{si} we can conclude that there
equivalence between (C.6) and

E[Z] = e−xnΦp−1

��
(x−n − xn)|s−n − sn|−1/2 + |s−n − sn|1/2/2

��
; R

�

where

R =



 R1 0
0 R2



 ,

is a (p − 1) × (p − 1) correlation matrix. Clearly it is also equivalent to

E[Z] = e−xnPr ( �n,1 ≤ x1,n + 1

2
sn,1, · · · , �n,n−1 ≤ xn−1,n + 1

2
sn,n−1,

�n+1,n ≤ xn+1,n + 1

2
sn+1,n, · · · , �p,n ≤ xp,n + 1

2
sp,n

�
,

which completes the proof.

C.3 Proof of Theorem 3.7

Identically as in Appendix C.1, we use the notations �i,j = �(βsi) − �(βsj) and xi,j =
xi−xj ∀i, j. Moreover, for conveniency we will suppose here that the si’s are ordered increasingly.
Applying Lemma 2.7 gives

− log Pr(η�(s1) ≤ ex1 , . . . , η�(sn) ≤ exn)

= E
�
exp

�
max

�
�(βs1) − β

2
s1 − x1, . . . , �(βsn) − β

2
sn − xn

���

= E
�
exp

�
�(βs1) − β

2
s1

�
exp

�
max

�
−x1, �2,1 − 1

2
a2

2,1 − x2, . . . , �n,1 − 1

2
a2

n,1 − xn

���

= E
�
exp

�
max

�
−x1, �2,1 − 1

2
a2

2,1 − x2, . . . , �n,1 − 1

2
a2

n,1 − xn

���
,
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where ai,j = (β|sj − si|)1/2. Let us define

Y = max
�
exp{−x1}, exp

�
�2,1 − 1

2
a2

2,1 − x2

�
, . . . , exp

�
�n,1 − 1

2
a2

n,1 − xn

��
.

Then it is easily shown that Y takes the value exp{−x1} with probability

Pr
�
�2,1 ≤ x2,1 + 1

2
a2

2,1, · · · , �n,1 ≤ xn,1 + 1

2
a2

n,1

�

and, for j = 2, . . . , n, the value, exp{�j,1 − 1

2
a2

j,1
− xj} with probability

Pr
�
�j,1 ≥ xj,1 + 1

2
a2

j,1, . . . , �j,j−1 ≥xj,j−1 + 1

2
a2

j,j−1,

�j+1,j ≤ xj+1,j + 1

2
a2

j+1,j , . . . , �n,j ≤ xn,j + 1

2
a2

n,j

�
.

Hence the calculation of the expected value of Y can be considered as the sum of n expectations.
The first one is straightforward, if we consider Y1 = exp{−x1} that occurs with probability
Pr

�
�2,1 ≤ x2,1 + 1

2
a2

2,1, . . . , �n,1 ≤ xn,1 + 1

2
a2

n,1

�
then

E[Y1] = e−x1Φn−1

��
x2,1a−1

2,1
+ a2,1/2, . . . , xn,1a−1

n,1
+ an,1/2

��
; R(1)

�

where

R(1) =





1 a2,1/a3,1 · · · a2,1/an,1

a2,1/a3,1 1 · · · a3,1/an,1

...
... . . . ...

a2,1/an,1 a3,1/an,1 · · · 1




.

For the expected value of the n − 1 others terms, we only need to apply Lemma 3.6 to obtain
the result. Note that �j,j = 0, ∀j so when j = n the probability of occurrence of Yn is

Pr
�
�n,1 ≥ xn,1 + 1

2
a2

n,1, . . . , �n,n−1 ≥ xn,n−1 + 1

2
a2

n,n−1

�
.

For example, for the cases j = 2 and j = n we respectively get

E[Y2] = e−x2Φn−1

��
x1,2a−1

2,1
+ a2,1/2, . . . , xn,2a−1

n,2
+ an,2/2

��
; R(2)

�

and
E[Yn] = e−xnΦn−1

��
x1,na−1

n,1
+ an,1/2, . . . , xn−1,na−1

n,n−1
+ an,n−1/2

��
; R(n)

�
,
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where

R(2) =





1 0 0 · · · 0
0 1 a3,2/a4,2 · · · a3,2/an,2

0 a3,2/a4,2 1 · · · a4,2/an,2

...
...

... . . . ...
0 a3,2/an,2 a4,2/an,2 · · · 1





and

R(n) =





1 an,2/an,1 · · · an,n−1/an,1

an,2/an,1 1 · · · an,n−1/an,2

...
... . . . ...

an,n−1/an,1 an,n−1/an,2 · · · 1




.

C.4 Proof of Lemma 3.8

(i) Suppose �1 and �2 are standard normally distributed and respectively independent of �

and ��, then

Ee�−u/2Φ2

��
a� + b, c�� + d

�� ; ρ
�

= E�,��E
�
e�−u/21I{�1≤a�+b,�2≤c��+d}|�, ��

�

= E e�−u/21I{�1≤a�+b,�2≤c��+d}.

Noting that the joint density of (�, ��) is

f�,��(x, y) = (2π)−1(v(u − v))−1/2 exp
�

−1
2

�
(x − y)2

u − v
+ y2

v

��

,

hence by Fubini’s Theorem and Lemma 3.3

E e�−u/21I{�1≤a�+b,�2≤c��+d}

= E�1,�2E
�
e�−u/21I{�1≤a�+b,�2≤c��+d}|�1, �2

�

= E�1,�2

� ∞

�2−d
c

� ∞

�1−b
a

(2π)−1(v(u − v))−1/2 exp
�

−1
2

�
(x − y − (u − v))2

u − v
+ (y − v)2

v

��

dxdy

= E�1,�2

� d−�2
c

−∞

� b−�1
a

√
u−v

−∞
(2π)−1v−1/2 exp

�

−1
2

�
(x

√
u − v − y + (u − v))2

u − v
+ (y + v)2

v

��

dxdy

= E�1,�2

� d−�2
c

−∞
(2πv)−1/2 exp

�

−(y + v)2

2v

�

Φ
�

b−�1
a

− y + u − v√
u − v

�

dy

= E�1,�2

� d−�2
c +

√
v

−∞
φ(y)Φ

�
b−�1

a
− y

√
v + u − v√

u − v

�

dy

= E�1,�2Φ2

��
b − �1 + au

a
√

u
,
d − �2 + cv

c
√

v

��
;
�

u

v

�

.
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Let �3 and �4 be mutually independent of �1 and �2, we can now finish the proof of the lemma
by a similar trick as above

E�1,�2Φ2

��
b − �1 + au

a
√

u
,
d − �2 + cv

c
√

v

��
;
�

u

v

�

= E�1,�2E
�

1I{�3≤ b−�1+au

a
√

u
,�4≤ d−�2+cv

c
√

v
}|�1, �2

�

= E 1I{�3≤ b−�1+au

a
√

u
,�4≤ d−�2+cv

c
√

v
}

= Pr
�

�3 ≤ b − �1 + au

a
√

u
, �4 ≤ d − �2 + cv

c
√

v

�

= Pr
�
a
√

u�3 + �1 ≤ b + au, c
√

v�4 + �2 ≤ d + cv
�

Moreover a
√

u�3 + �1 ∼ N (0, 1 + a2u) and c
√

v�4 + �2 ∼ N (0, 1 + c2v) and their covariance is

Cov(a
√

u�3 + �1, c
√

v�4 + �2) = ac
√

u
√

v Cov(�3, �4) + Cov(�1, �2) = acv + ρ,

and correlation

ρ∗ ≡ Corr(a
√

u�3 + �1, c
√

v�4 + �2) = (acv + ρ)((1 + a2u)(1 + c2v))−1/2.

Hence the proof is completed as

Pr(a
√

u�3 + �1 ≤ b + au, c
√

v�4 + �2 ≤ d + cv) = Φ2

��
au + b√
1 + a2u

,
cv + d√
1 + c2d

��
; ρ∗

�

.

(ii) The scheme of the proof is identical to (i) when considering the joint density of (�, ��) to
be

f�,��(x, y) = (2π)−1(uv)−1/2 exp
�

−1
2

�
x2

u
+ y2

v

��

.

C.5 Proof of Lemma 3.9

Note that because � is independent of both �� and ���

Ee�−u/2Φ2

��
a� + b�� + c, d� + e��� + f

�� ; ρ
�

= E�e
�−u/2E��,���Φ2

��
a� + b�� + c, d� + e��� + f

�� ; ρ
�

.

Furthermore, considering �1 and �2 two standard normally distributed random variables such
that �1 is independent of � and �� while �2 is independent of � and ���, then

E��,���Φ2

��
a� + b�� + c, d� + e��� + f

�� ; ρ
�

= Pr
�
�1 ≤ a� + b�� + c, �2 ≤ d� + e��� + f

�

= Pr
�
�1 − b�� ≤ a� + c, �2 − e�� ≤ d�� + f

�
,
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where �1 − b�� ∼ N (0, 1 + b2v), �2 − e��� ∼ N (0, 1 + e2w) and

Cov(�1 − b��, �2 − e���) = Cov(�1, �2) + be Cov(��, �� + ����) = ρ + bev.

Hence

Pr(�1 − b�� ≤ a� + c, �2 − e�� ≤ d�� + f) = Φ2

��
a� + c√
1 + b2v

,
d� + f√
1 + e2w

��
; ρ�

�

where ρ� = ρ+bev√
1+b2v

√
1+e2w

and using Lemma 3.3, it leads to

E�e
�−u/2E��,���Φ2

��
a� + b�� + c, d� + e��� + f

�� ; ρ
�

= Φ2

��
a� + c√
1 + b2v

,
d� + f√
1 + e2w

��
; ρ�

�

=
� ∞

−∞
ex− u

2 Φ2

��
ax + c√
1 + b2v

,
dx + f√
1 + e2w

��
; ρ�

�

(2πu)−1/2 exp
�

− x2

2u

�

dx

=
� ∞

−∞
(2πu)−1/2 exp

�

−(x − u)2

2u

�

Φ2

��
ax + c√
1 + b2v

,
dx + f√
1 + e2w

��
; ρ�

�

dx

=
� ∞

−∞
φ(x)Φ2




�

ax
√

u + au + c√
1 + b2v

,
dx

√
u + du + f√
1 + e2w

��

; ρ�



 dx

= Φ2

��
au + c√

1 + a2u + b2v
,

du + f√
1 + d2u + e2w

��
; ρ∗

�

,

where ρ∗ = (ρ + adu + bev)((1 + a2u + b2v)(1 + d2u + e2w))−1/2.

C.6 Proof of Lemma 3.10

The property of mutual independence between �, �� and ��� allows to write

E e�+�
�−(u+v)/2Φ2

�
{a� + b�� + c��� + d,e� + f}�; ρ

�

= E�e
�−u/2E��e�

�−v/2E���Φ2

��
{a� + b�� + c��� + d, e� + f

�� ; ρ
�

.

When introducing �1 and �2 two standard normal random variable, �1 independent of �, �� and
��� while �2 is independent of �, the expectation with respect to ��� is given by

E��� e�+�
�−(u+v)/2Φ2

�
{a� + b�� + c��� + d, e� + f}�; ρ

�

= Pr(�1 ≤ a� + b�� + c��� + d, �2 ≤ e� + f)

= Pr(�1 − c��� ≤ a� + b�� + d, �2 ≤ e� + f)

= Φ2

��
a� + b�� + d√

1 + c2w
, e� + f

��
; ρ√

1 + c2w

�

.
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as �1 − c��� ∼ N (0, 1 + c2w), �2 ∼ N (0, 1) and Cov(�1 − c���, �2) = Cov(�1, �2) = ρ.

Now a second step consist in calculating the expected value with respect to ��, using Lemma
3.3 it leads to,

E��e�
�−v/2Φ2

��
a� + b�� + d√

1 + c2w
, e� + f

��
; ρ√

1 + c2w

�

=
� ∞

−∞
ex−v/2Φ2

��
a� + bx + d√

1 + c2w
, e� + f

��
; ρ√

1 + c2w

�

(2πv)−1/2 exp
�

−x2

2v

�

dx

=
� ∞

−∞
φ(x)Φ2




�

a� + bx
√

v + bv + d√
1 + c2w

, e� + f

��

; ρ√
1 + c2w



 dx

=Φ2

��
au + bv + d√

1 + a2u + b2v + c2w
,

eu + f√
1 + e2u

��
; ρ√

1 + b2v + c2w

�

.

And finally for the expectation with respect to � we repeat the same method and use Lemma
3.3 again, we get

E�e
�−u/2Φ2

��
a� + bv + d√
1 + b2v + c2w

, e� + f
��

; ρ√
1 + b2v + c2w

�

=
� ∞

−∞
(2πu)−1/2 exp

�

−(y − u)2

2u

�

Φ2

��
ay + bv + d√
1 + b2v + c2w

, ey + f
��

; ρ√
1 + b2v + c2w

�

dy

=
� ∞

−∞
φ(y)Φ2




�

ay
√

u + au + bv + d√
1 + b2v + c2w

, ey
√

u + eu + f

��

; ρ√
1 + b2v + c2w



 dy

=Φ2

��
au + bv + d√

1 + a2u + b2v + c2w
,

eu + f√
1 + e2u

��
; ρ + aeu√

1 + a2u + b2v + c2w
√

1 + e2u

�

.

C.7 Proof of Theorem 3.11

The scheme of the proof is similar to de Haan and Ferreira (2006, Proposition 2.1). Results
for the univariate processes presented in Theorem 3.5 will also be used. For clarity purposes
βs(j)

i
will simply be denoted by s(j)

i
, for i, = 1, 2, 3; j = 1, 2. Again, based on Lemma 2.7 we can

give the following decomposition:

− log Pr(η(s1) ≤ ex1 , η(s2) ≤ ex2 , η(s3) ≤ ex3)

= E



max



e
�1

�
s

(1)
1

�
+�2

�
s

(2)
1

�
−

��s
(1)
1

��+
��s

(2)
1

��
2 −x1

, e
�1

�
s

(1)
2

�
+�2

�
s

(2)
2

�
−

��s
(1)
2

��+
��s

(2)
2

��
2 −x2

,

e
�1

�
s

(1)
3

�
+�2

�
s

(2)
3

�
−

��s
(1)
3

��+
��s

(2)
3

��
2 −x3









= P1 + P2 + P3,
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where this three components are

P1 = E�1



e
�1

�
s

(1)
1

�
−

���s(1)
1

���/2−x1E�2



max



e
�1

�
s

(1)
3

�
−�1

�
s

(1)
1

�
+�2

�
s

(2)
3

�
−

��s
(1)
3

��−
��s

(1)
1

��+
��s

(2)
3

��
2 −x3+x1

,

e
�1

�
s

(1)
2

�
−�1

�
s

(1)
1

�
+�2

�
s

(2)
2

�
−

��s
(1)
2

��−
��s

(1)
1

��+
��s

(2)
2

��
2 −x2+x1

, e
�2

�
s

(2)
1

�
−

���s(2)
1

���/2









������1





= E�1



e
�1

�
s

(1)
1

�
−

���s(1)
1

���/2−x1Φ2










�
h(2)

1,2

2 +
x2 − x1 + �1

�
s(1)

1

�
− �1

�
s(1)

2

�
−

���s(1)
1

���−
���s(1)

2

���
2�

h(2)

1,2

,

�
h(2)

1,3

2 +
x3 − x1 + �1

�
s(1)

1

�
− �1

�
s(1)

3

�
−

���s(1)
1

���−
���s(1)

3

���
2�

h(2)

1,3






�

; ρ(1)

2,3








, (C.11)

P2 = E�1



e
�1

�
s

(1)
2

�
−

���s(1)
2

���/2−x2E�2


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��s
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��s
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
, (C.12)
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and

P3 = E�1
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. (C.13)

Note that the correlation coefficients ρi

j,k
, i, j, k = 1, 2, 3, are defined in Theorem 3.5 when

replacing ai,j by
�

βh(2)

i,j
. In order to evaluate P1, P2 and P3 different scenarios, depending on

the on the values of s(1)

1
, s(1)

2
and s(1)

3
, need to be investigated. Each of them are considered

below.

Case 1: 0 ≤ s(1)

1 ≤ s(1)

2 ≤ s(1)

3 .

First of all, using the notation introduced earlier on, we recall that here u(1)

j
− u(1)

i
can be

replaced by h(1)

i,j
. In (C.11), we remark that e
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�
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1 /2−x1 , is independent of the other part

and furthermore we know that E
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= 1. Thus (C.11) is equal to
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(C.14)
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Suppose N1 and N2 are two standard normal random variables independent of �1

�
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�
−�1

�
s(1)

2

�

and �1

�
s(1)

1

�
− �1

�
s(1)

3

�
such that
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.

Moreover, it is easy to show that
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,

which allows us to conclude that
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


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��
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 , (C.15)

where

ρ∗
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



h(1)
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(g1,2g1,3)−1 if s(2)

2
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1
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3
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�
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(C.16)

Note that because E
�

e
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�
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Then applying Lemma 3.8 (ii), we get

P2 = e−x2Φ2
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
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where

ρ∗
2 =
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


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2
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1
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3
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. (C.18)

Finally, as �1

�
s(1)

1

�
is independent of both �1
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s(1)
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�
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�
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�
s(1)

3

�
− �1

�
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, then
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Then applying Lemma 3.8 (i), we get

P3 = e−x3Φ2




�

g1,3

2 + x1 − x3

g1,3

,
g2,3

2 + x2 − x3

g2,3

�
T

; ρ∗
3



 , (C.19)

where
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(C.20)

Case 2: 0 ≤ s(1)

1 ≤ s(1)

3 ≤ s(1)

2 .

Observe that here s(1)

2
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1
can be replaced by h(1)
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leading to the equality between P1 and (C.14). Identical calculations as in Case 1 leads to the
conclusion that here P1 is equal to (C.15) with
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Note that E
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e
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Applying Lemma 3.8 (i) leads to (C.17) where
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
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(C.22)

Finally as �1
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Applying Lemma 3.8 (ii) leads to (C.19) with
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. (C.23)

Case 3: 0 ≤ s(1)

2 ≤ s(1)

1 ≤ s(1)

3 .

Here we observe that s(1)

1
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2
can be replaced by h(1)
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, s(1)

3
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1
by h(1)

1,3
and s(1)

3
− s(1)

2

by h(1)

2,3
. Note that E

�

e
�1

�
s

(1)
2

�
−s

(1)
2 /2

�

= 1 and using the fact that �1

�
s(1)

2

�
, �1

�
s(1)

1

�
− �1

�
s(1)

2

�



C.7. Proof of Theorem 3.11 163
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Applying Lemma 3.8 (ii) leads to (C.15) with
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In the current setup �1
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An identical method to the calculations of P1 in Case 1 and Case 2 leads to the conclusion that
P2 is here equal to (C.17) where
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(C.26)

Noting that �1
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Then applying Lemma 3.8 (i) leads to the equality between P3 and (C.19) where
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Case 4: 0 ≤ s(1)
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Applying Lemma 3.8 (i) leads to (C.15) with ρ∗
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Then applying Lemma 3.8 (ii) we get that P3 is equal to (C.19) where ρ∗
3 is defined as in (C.23).
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1,3

2 +
x3 − x1 + �1

�
s(1)

1

�
− �1

�
s(1)

3

�
− h

(1)
1,3
2�

h(2)

1,3






�

; ρ(1)

2,3







 .

Applying Lemma 3.8 (ii) leads to (C.15) where ρ∗
1 is defined as in (C.24).

We also know that �1

�
s(1)

3

�
is independent of both �1

�
s(1)

2

�
−�1

�
s(1)

1

�
and �1

�
s(1)

2

�
−�1

�
s(1)

3

�
.

Thus we have

P2 = E�1



e
�1

�
s

(1)
2

�
−�1

�
s

(1)
3

�
−

h
(1)
1,3
2 −x2Φ2










�
h(2)

1,2

2 +
x1 − x2 + �1

�
s(1)

2

�
− �1

�
s(1)

1

�
− h

(1)
1,2
2�

h(2)

1,2

,

�
h(2)

2,3

2 +
x3 − x2 + �1

�
s(1)

2

�
− �1

�
s(1)

3

�
− h

(1)
2,3
2�

h(2)

2,3






�

; ρ(2)

1,3







 ,

to which we can apply Lemma 3.8 (i). It yields to (C.17) where ρ∗
2 is defined as in (C.26).

Finally noting that �1

�
s(1)

3

�
is independent of both �1

�
s(1)

1

�
−�1

�
s(1)

3

�
and �1

�
s(1)

2

�
−�1

�
s(1)

3

�

and E
�

e
�1

�
s

(1)
3

�
−s

(1)
3 /2

�

= 1, it leads that

P3 = E�1



e−x3Φ2










�
h(2)

1,3

2 +
x1 − x3 + �1

�
s(1)

3

�
− �1

�
s(1)

1

�
+

2
h(1)

1,3
�

h(2)

1,3

,

�
h(2)

2,3

2 +
x2 − x3 + �1

�
s(1)

3

�
− �1

�
s(1)

2

�
+ h

(1)
2,3
2�

h(2)

2,3






�

; ρ(3)

1,2







 . (C.28)

The method used here is similar to the one of P1 in Case 1. We obtain (C.19) where ρ∗
3 is defined

as in (C.27).
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Case 6: 0 ≤ s(1)

3 ≤ s(1)

2 ≤ s(1)

1 .

Observe that here s(1)

1
−s(1)

2
can be replaced by h(1)

1,2
, s(1)

1
−s(1)

3
by h(1)

1,3
and s(1)

2
−s(1)

3
by h(1)

2,3
.

Moreover �1

�
s(1)

3

�
is independent of both �1

�
s(1)

1

�
− �1

�
s(1)

2

�
and �1

�
s(1)

1

�
− �1

�
s(1)

3

�
. Then

P1 = e
�1

�
s

(1)
1

�
−�1

�
s

(1)
3

�
− 2 h

(1)
1,3−x1E�1



Φ2










�
h(2)

1,2

2 +
x2 − x1 + �1

�
s(1)

1

�
− �1

�
s(1)

2

�
− h

(1)
1,2
2�

h(2)

1,2

,

�
h(2)

1,3

2 +
x3 − x1 + �1

�
s(1)

1

�
− �1

�
s(1)

3

�
− h

(1)
1,3
2�

h(2)

1,3






�

; ρ(1)

2,3







 .

Applying Lemma 3.8 (i) leads to (C.15) where ρ∗
1 is defined as in (C.16). Note that also �1

�
s(1)

3

�
,

�1

�
s(1)

1

�
− �1

�
s(1)

2

�
and �1

�
s(1)

2

�
− �1

�
s(1)

3

�
are mutually independent, leading to

P2 = E�1



e
�1

�
s

(1)
2

�
−�1

�
s

(1)
3

�
−

h
(1)
1,3
2 −x2Φ2










�
h(2)

1,2

2 +
x1 − x2 + �1

�
s(1)

2

�
− �1

�
s(1)

1

�
+ h

(1)
1,2
2�

h(2)

1,2

,

�
h(2)

2,3

2 +
x3 − x2 + �1

�
s(1)

2

�
− �1

�
s(1)

3

�
− h

(1)
2,3
2�

h(2)

2,3






�

; ρ(2)

1,3







 .

Applying Lemma 3.8 (ii) leads to (C.17) where ρ∗
2 is defined as in (C.18).

Finally �1

�
s(1)

3

�
is independent of both �1

�
s(1)

1

�
− �1

�
s(1)

3

�
and �1

�
s(1)

2

�
− �1

�
s(1)

3

�
and also

E
�

e
�1

�
s

(1)
3

�
−s

(1)
3 /2

�

= 1. This yields to the quality between P3 and (C.28). The method is then

similar than in Case 5 and produces (C.19) with ρ∗
3 defined as in (C.20).

Case 7: s(1)

1 ≤ 0 ≤ s(1)

2 ≤ s(1)

3 .

Applying Lemma 3.9 to (C.11) and (C.12) and Lemma 3.10 to (C.13), proves that P1, P2

and P3 are respectively equal to (C.15), (C.17) and (C.19) where ρ∗
1, ρ∗

2 and ρ∗
3 are defined as in

Case 1.

Case 8: s(1)

1 ≤ 0 ≤ s(1)

3 ≤ s(1)

2 .

Applying Lemma 3.9 to (C.11) and (C.13) and Lemma 3.10 to (C.12), proves that P1, P2

and P3 are respectively equal to (C.15), (C.17) and (C.19) where ρ∗
1, ρ∗

2 and ρ∗
3 are defined as in

Case 2.
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Case 9: s(1)

2 ≤ 0 ≤ s(1)

1 ≤ s(1)

3 .

Here we observe that s(1)

1
− s(1)

2
can be replaced by h(1)

1,2
, s(1)

3
− s(1)

1
by h(1)

1,3
and s(1)

3
− s(1)

2
by

h(1)

2,3
. Applying Lemma 3.9 to (C.11) and (C.12) and Lemma 3.10 to (C.13), proves that P1, P2

and P3 are respectively equal to (C.15), (C.17) and (C.19) where ρ∗
1, ρ∗

2 and ρ∗
3 are defined as in

Case 3.

Case 10: s(1)

2 ≤ 0 ≤ s(1)

3 ≤ s(1)

1 .

Applying Lemma 3.9 to (C.12) and (C.13) and Lemma 3.10 to (C.11), proves that P1, P2

and P3 are respectively equal to (C.15), (C.17) and (C.19) where ρ∗
1, ρ∗

2 and ρ∗
3 are defined as in

Case 2.

Case 11: s(1)

3 ≤ 0 ≤ s(1)

1 ≤ s(1)

2 .

Applying Lemma 3.9 to (C.11) and (C.13) and Lemma 3.10 to (C.12), proves that P1, P2

and P3 are respectively equal to (C.15), (C.17) and (C.19) where ρ∗
1, ρ∗

2 and ρ∗
3 are defined as in

Case 3.

Case 12: s(1)

3 ≤ 0 ≤ s(1)

2 ≤ s(1)

1 .

Applying Lemma 3.9 to (C.12) and (C.13) and Lemma 3.10 to (C.11), proves that P1, P2

and P3 are respectively equal to (C.15), (C.17) and (C.19) where ρ∗
1, ρ∗

2 and ρ∗
3 are defined as in

Case 1.
There are 4! = 24 cases to be treated, however the remaining twelve cases can be calculated

by symmetry. Actually, looking at the first twelve cases detailed here, it can be seen that there
are only three different possible expressions for each correlation coefficient. Merging them into
a single expression gives Theorem 3.11.





Appendix D

Chapter 4: proofs and
computational details

D.1 Proofs

D.1.1 Proof of Proposition 4.2

Items (1)–(3) are easily derived following the proof of Propositions (1)–(4) of Arellano-Valle
and Genton (2010) and taking into account the next result.

Lemma D.1. Let Y = (Y �
1 , Y �

2 )� ∼ Td(µ, Ω, κ, ν), where Y1 ∈ R and Y2 ∈ Rd−1 with the
corresponding partition of the parameters (µ, Ω, ν) and κ = (κ1, 0�)� with κ1 ∈ R. Then,

(Y1|Y2 = y2) ∼ T (µ1·2, Ω11·2, κ1·2, ν1·2), y2 ∈ Rd−1

where µ1·2 = µ1 + Ω12Ω−1

22
(y2 − µ2), Ω1·2 = ζ2Ω11·2, ζ2 = {ν + Q

Ω
−1
22

(z2)}/(ν + d2), z2 =
ω−1

2
(y2 − µ2)/Ω2, ω2 = diag(Ω22)1/2, Ω11·2 = Ω11 − Ω12Ω−1

22
Ω21, κ1·2 = ζ−1/2

2
κ, ν1·2 = ν + d − 1

Proof of Lemma D.1. The marginal density of Y2 is equal to

fY2(y2) =
� ∞

0

vν/2−1e−v

Γ(ν/2) φd−1



y2 − µ2�
ν

2v

; Ω22




�2v

ν

�(d−1)/2

dv = ψd−1(y2; µ2, Ω22, ν),
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namely it is a (d − 1)-dimensional central t pdf. The joint density of Y is equal to

fY2(y2)fY1|Y2=y2(y1)

= ψd−1(y2; µ2, Ω22, ν)
� ∞

0

v(ν+d−1)/2−1e−v

Γ(ν+d−1

2
)

φ

�

(Ω1·2)−1/2(y1 − µ1·2)
�

2v

ν + d − 1 − (Ω11·2)−1/2κ1

�

dv

=
� ∞

0

(Ω11·2)−1/2vν/2−1e−v

Γ(ν

2
)

�2v

ν

�
d/2

φd−1



y2 − µ2�
ν

2v



 φ

�

(Ω11·2)1/2 (y1 − µ1·2)
�

2v

ν
− κ1

�

dv

=
� ∞

0

vν/2−1e−v

Γ(ν

2
) φd








 y1 − µ1 − κ1

�
ν

2v

y2 − µ2



 ;
�

ν

2v
Ω




 dv

D.1.2 Proof of Proposition 4.5

Let Zs(h) = Z(s + h) − Z(s), with s, h ∈ R. From Azzalini (e.g. 2013, Ch. 5) it follows that
Zs(h) ∼ SN (ω2

s(h), αs(h), τ), where

ω2
s(h) = 2(1 − δ(s + h)δ(s) − ρ(h)[{1 − δ2(s + h)}{1 − δ2(s)}]1/2)

and

α2
s(h) = δ(s + h) − δ(s)

{2(1 − {δ(s + h) + δ(s)}/2 − ρ(h)[{1 − δ2(s + h)}{1 − δ2(s)}]1/2)}1/2
.

Therefore, it follows that Var{Zs(h)} = 2{1 − rs(h)} ≡ σ2
s(h), where

rs(h) = r/2{δ(s + h) − δ(s)}2 + δ(s + h)δ(s) + ρ(h)[{1 − δ2(s + h)}{1 − δ2(s)}]1/2

and r is as in (4.9). By the assumption on δ(s) we have that rs(h) = ρ(h)+δ2(s)(1−ρ(h))+o(1),
as h → 0. Using this and the assumption on ρ(h) we obtain 1−rs(h) = O(| log |h||−a), as h → 0.
Now, if Z ∼ SN (α, τ), then Pr(|Z| > z) ≤ 2{1 − Φ(z; |α|, τ)}. Furthermore, for α > 0 the tail
behavior of the skew-normal distribution satisfies the condition

1 − Φ(z; α, τ) ≤ K−1{1 − Φ(z)}, x > 0,

where K = Φ{τ/(1 + α2)1/2}. Putting these two results together we obtain that for a non-
decreasing function g(h), the following inequality

Pr{|Zs(h)| > g(h)} ≤ 2K−1[1 − Φ{g(h)/σs(h)}],

holds. Note that we obtained then the same inequality of Lindgren (2012, page 48) apart from
the constant K. Therefore, the remaining part of the proof follows in the same way as the proof
provided therein.
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D.1.3 Proof of Proposition 4.6

Recall that if Z ∼ SN2(Ω̄, α), then Zj ∼ SN (α∗
j
) and Zj |Z3−j ∼ SN (αj·3−j) for j=1,2 (e.g.

Azzalini (2013, Ch. 2) or Proposition 4.2), where

α∗
j = αj + ωα3−j�

1 + α2
3−j

(1 − ω2)
, αj·3−j = αj

�
1 − ω2.

Define xj(u) = Φ←(1 − u; α∗
j
), for any u ∈ [0, 1], where Φ←(·; α∗

j
) is the inverse of the marginal

distribution function Φ(·; α∗
j
), j = 1, 2. The asymptotic behaviour of xj(u) as u → 0 is

xj(u) =
�

x(u), if α∗
j

≥ 0
x(u)/ᾱj − {2 log(1/u)}−1/2 log(

√
πα∗

j
), if α∗

j
< 0

(D.1)

for j = 1, 2, where ᾱj = {1+α∗2
j

}1/2 and x(u) ≈ {2 log(1/u)}1/2−{2 log(1/u)}−1/2{log log(1/u)+
log(2

√
π)} (Padoan, 2011). The limiting behaviour of the joint survivor function of the bivariate

skew-normal distribution is described by

p(u) = Pr{Z1 > x1(u), Z2 > x2(u)}, u → 0. (D.2)

For case (a), when α1, α2 > 0, then x1(u) = x2(u) = x(u), and the joint upper tail (D.2) behaves
as

p(u) =
� ∞

x(u)

�
1 − Φ

�
y(u) − ωv√

1 − ω2
; α1·2

��
φ(v; α∗

2)dv

≈
√

1 − ω2

x(u)

� ∞

0

φ2(x(u), x(u) + t/x(u); Ω̄, α)
x(u)(1 − ω) − ωt/x(u) dt

≈ e−x
2(u)/(1+ω)

π(1 − ω)x2(u)

�� ∞

0

e−t/(1+ω)dt − e−x
2(u)(α1+α2)2

/2

√
2π(α1 + α2)x(u)

� ∞

0

e−t{1/(1+ω)+α2(α1+α2)}dt

�

= e−x
2(u)/(1+ω)(1 + ω)
π(1 − ω)x(u)2

�

1 − e−x
2(u)(α1+α2)2

/2

√
2π(α1 + α2){1 + α2(α1 + α2)(1 + ω)}x(u)

�

, (D.3)

as u → 0. The first approximation is obtained by using 1 − Φ(x; α) ≈ φ(x; α)/x as x → +∞,
when α > 0 (Padoan, 2011). The second approximation uses 1 − Φ(x) ≈ φ(x)/x as x → +∞
(Feller, 1968). Let Xj = {−1/ log Φ(Zj ; α∗

j
)}, j = 1, 2. Substituting x(u) into (D.3) substituting

and using the approximation 1 − Pr(Xj > x) ≈ 1/x as x → ∞, j = 1, 2, we obtain that (D.2)
with common unit Fréchet margins behaves asymptotically as L (x) x−2/(1+ω), as x → +∞,

where

L (x) = 2(1 + ω)(4π log x)−ω/(1+ω)

1 − ω

�

1 − (4π log x){(α1+α2)2−1}/2 x−(α1+α2)2

(α1 + α2){1 + α2(α1 + α2)(1 + ω)}

�

. (D.4)

As the second term in the parentheses in (D.4) is o(x(α1+α2)), then the quantity inside the
parentheses → 1 rapidly as x → ∞, and so L (x) is well approximated by the first term in
(D.4). When α2 < 0 and α1 ≥ −α2/ω, then α∗

1, α∗
2 > 0 and we obtain the same outcome.
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For case (b), when α2 < 0 and −ω, α2 ≤ α1 < −ω−1α2, then α∗
1 ≥ 0 and α∗

2 < 0 and hence
x1(u) = x(u) and x2(u) ≈ x(u)/ᾱ2 as u → 0. When α1 > −ᾱ2α2, then following a similar
derivation to those in (D.3), we obtain that

p(u) ≈ ᾱ2
2(1 − ω2)(1 − ωᾱ2)−1

π(ᾱ2 − ω)x2(u) exp
�

−x2(u)
2

�
1 − ω2 + (ᾱ2 − ω)2

(1 − ω2)ᾱ2
2

��

, as u → 0.

Similarly, when α1 < −ᾱ2α2, and noting that Φ(x) ≈ −φ(−x)/x as x → −∞, then

p(u) ≈ −ᾱ2
2{1 − ωᾱ2 + α2(α2 + α1ᾱ2)(1 − ω2)}−1

π(ᾱ2 − ω)(1 − ω2)−1(α1 + α2/ᾱ2)x3(u) e
− x2(u)

2

�
1−ω2+(ᾱ2−ω)2

(1−ω2)ᾱ2
2

+

�
α1+

α2
ᾱ2

�2
�

, as u → 0.

For case (c), when α2 < 0 and 0 < α1 < −ωα2, then α∗
1, α∗

2 < 0 and hence x1(u) ≈ x(u)/ᾱ1 and
x2(u) ≈ x(u)/ᾱ2 as u → 0. Then as u → 0 we have

p(u) ≈ −ᾱ3/2

2
ᾱ2

1(1 − ω2)(ᾱ2 − ωᾱ1)−1(α1ᾱ2 + α2ᾱ1)−1

π{1 − ωᾱ2 + α2(α2 + α1ᾱ2/ᾱ1)(1 − ω2)}x3(u)

× exp
�

− x2(u)
2(1 − ω2)

�
α2

1(1 − ω2) + 1
ᾱ2

1

+ α2
2(1 − ω2) + 1

ᾱ2
2

+ 2(α1α2(1 − ω2) − ω)
ᾱ1ᾱ2

��

u → 0.

When α1, α2 < 0 and ω−1

2
α2 ≤ α1 < 0 the same argument holds. Finally, interchanging α1 with

α2 produces the same results but substituting αj and ᾱj with α3−j and ᾱ3−j respectively, for
j = 1, 2.

D.1.4 Proof of Proposition 4.3

Let Z ∼ ST (α, τ, κ, ν). Then 1−Ψ(x; α, τ, ν) ≈ x−νL (x; α, τ, ν) as x → +∞, for any ν > 1,
where

L (x; α, τ, κ, ν) = Γ{(ν + 1)/2}Ψ(α
√

ν + 1; ν + 1)
Γ(ν/2)

√
πν3/2Ψ(τ/

√
1 + α2; κ/

√
1 + α2, ν)

� 1
x2

+ 1
ν

�−(ν+1)/2

is a slowly varying function (e.g de Haan and Ferreira, 2006, Appendix B). From Corollary
1.2.4 in de Haan and Ferreira (2006), it follows that the normalisation constants are an =
Ψ←(1 − 1/n; α, τ, κ, ν), where Ψ← is the inverse function of Ψ, and bn = 0, and therefore
an = {nL (α, τ, κ, ν)}1/ν , where L (α, τ, κ, ν) ≡ L (∞; α, τ, κ, ν). Applying Theorem 1.2.1 in
de Haan and Ferreira (2006) we obtain that Mn/an ⇒ U , where U has ν-Fréchet univariate
marginal distributions.

Let Z ∼ STd(Ω̄, α, τ, κ, ν). For any j ∈ {1, . . . , d} consider the partition Z = (Zj , Z�
Ij

)�,
where Ij = {1, . . . , d}\j and Zj = Z{j}, and the respective partition of (Ω̄, α). Define an =
(an,1, . . . , an,d), where an,j = {nL (α∗

j
, τ∗

j
, κ∗

j
, ν)}1/ν and α∗

j
= α∗

{j}, τ∗
j

= τ∗
{j} and κ∗

j
= κ∗

{j} are
the marginal parameters (4.5) under Proposition 4.2(1). From Theorem 6.1.1 and Corollary 6.1.3
in de Haan and Ferreira (2006), Mn/an ⇒ U , where the distribution of U is G(x) = exp{−V (x)}
with V (x) = limn→+∞ n{1 − Pr(Z1 ≤ an,1x1, . . . , Zd ≤ an,dxd)} for all x = (x1, . . . , xd)� ∈ Rd

+.
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Applying the conditional tail dependence function framework of Nikoloulopoulos et al. (2009) it
follows that

V (xj , i ∈ I) = lim
n→∞

d�

j=1

x−ν

j
Pr(Zi ≤ an,ixi, i ∈ Ij |Zj = an,jxj).

From the conditional distribution in Proposition 4.2(1) we have that





�
Zi − an,jxj

{ζn,j(1 − ω2
i,j

)}1/2
, i ∈ Ij

��

|Zj = an,jxj




 ∼ STd−1

�
Ω̄+

j
, α+

j
, τn,j , κn,j , ν + 1

�
,

for j ∈ . . . 1, . . . , d, where Ω̄+

j
= ω−1

IjIj ·jΩIjIj ·jω−1

IjIj ·j , ωIjIj ·j = diag(ΩIjIj ·j)1/2, Ω̄IjIj ·j = Ω̄IjIj −
Ω̄IjjΩ̄jIj , α+

j
= Ω̄IjIj ·jαIj ζn,j = [ν + (an,jxj)2]/(ν + 1), τn,j = [(Ω̄jIj αIj + αj)an,jxj + τ ]/ζ1/2

n,j

and κn,j = κ/ζ1/2

n,j
. Now, for any j ∈ {1, . . . , d} and all i ∈ Ij

an,ixi − an,jxj

{ζn,j(1 − ω2
i,j

)}1/2
→

(x∗
i
/x∗

j
− ωi,j)(ν + 1)1/2

{(1 − ωi,j)}1/2
as n → +∞,

where ωi,j is the (i, j)-th element of Ω̄, x+

j
= xjL 1/ν(α∗

j
, τ∗

j
, κ∗

j
, ν) and τn,j → τ+

j
= (Ω̄jIj αIj +

αj)(ν + 1)1/2, and κn,j → 0 as n → +∞. As a consequence

V (xj , j ∈ I) =
d�

j=1

x−ν

j
Ψd−1




��

ν + 1
1 − ω2

i,j

�
x+

i

x+

j

− ωi,j

�

, i ∈ Ij

��

; Ω̄+

j
, α+

j
, τ+

j
, ν + 1



 .

D.1.5 Proof of Theorem 4.7

Let Y (s) be a skew-normal process with finite dimensional distribution SNd(Ω̄, α, τ). For
any j ∈ I = {1, . . . , d} consider the partition Y = (Yj , Y �

Ij
)�, where Ij = I\j, Yj = Y{j} = Y (sj)

and YIj = (Yi, i ∈ Ij)�, and the respective partition of (Ω̄, α). The exponent function (4.14) is

V (xj , j ∈ I) = E
�

max
j

�
(Y +

j
/xj)ξ

m+

j

��

=
�

Rd
max

j

�
(yj/xj)ξ

m+

j

, 0
�

φd(y; Ω̄; α, τ)dy,

where xj ≡ x(sj), yj ≡ y(sj) and m+

j
≡ m+(sj). Then

V (xj , j ∈ I) =
d�

j=1

Vj , Vj = 1
m+

j

� ∞

0

�
yj

xj

�
ν �

yjxIj
/xj

−∞
φd(y; Ω̄; α, τ)dyIj dyj , (D.5)

where xIj = (xi, i ∈ Ij)� and yIj = (yi, i ∈ Ij)�. As Yj ∼ SN (α∗
j
, τ∗

j
), where α∗

j
= α∗

{j} and
τ∗

j
= τ∗

{j} are the marginal parameters derived from Proposition 4.2(1), then

m+

j
=

� ∞

0

yν

j φ(yj ; α∗
j , τ∗

j )dyj = 1
Φ{τ∗

j
(1 + α∗2

j
)−1/2}

� ∞

0

yν

j φ(yj)Φ(α∗
j yj + τ∗

j )dyj

=
2(ν−2)/2Γ{(ν + 1)/2}Ψ(α∗

j

√
ν + 1; −τ∗

j
, ν + 1)

√
πΦ[τ{1 + Q

Ω̄
(α)}−1/2]
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by observing that τ∗
j
{1 + α∗2

j
}1/2 = τ{1 + Q

Ω̄
(α)}−1/2.

For j = 1, . . . , d define x◦
j

= xj(m+

j
)1/ν and m+

j
= m̄+

j
/Φ[τ{1 + Q

Ω̄
(α)}−1/2], where m̄+

j
=

(π)1/22(ν−2)/2Γ{(ν + 1)/2}Ψ(α∗
j

√
ν + 1; −τ∗

j
, ν + 1). Then, for any j = 1, . . . , d

Vj = 1
m+

j

� ∞

0

�
yj

xj

�
ν �

yjxIj
/xj

−∞
φd(y; Ω̄, α, τ)dyIj dyj

= 1
m̄+

j

� ∞

0

�
yj

xj

�
ν �

yjxIj
/xj

−∞
φd(y; Ω)Φ(α�y + τ)dyIj dyj

= 1
m̄+

j

� ∞

0

�
yj

xj

�
ν

φ(yj)
�

yjxIj
/xj

−∞
φd−1(yIj − yjΩ̄j,Ij ; Ω̄◦

j )Φ(α�y + τ)dyIj dyj

= 1
m̄+

j

� ∞

0

�
yj

xj

�
ν

φ(yj)Φd

�
y◦

j ; Ω◦◦
j

�
dyj ,

where

y◦
j =



 yj ω−1

IjIj ·j(x◦
Ij

/x◦
j

− Ω̄Ijj)
yjα∗

j
+ τ∗

j



 ,

with ωIjIj ·j = diag(Ω̄IjIj ·j)1/2, Ω̄IjIj ·j = Ω̄IjIj − Ω̄IjjΩ̄jIj , yjα∗
j

+ τ∗
j

=
yj(αj+Ω̄

−1
jj Ω̄jIj

αIj
)+τ

{1+QΩ̄Ij Ij ·j
(αIj

)}1/2 and

Ω◦◦
j =





Ω̄◦
j

−
Ω̄Ij Ij ·jω

−1
Ij Ij ·jαIj

{1+QΩ̄Ij Ij ·j
(αIj

)}1/2

−
�

Ω̄Ij Ij ·jω
−1
Ij Ij ·jαIj

{1+QΩ̄Ij Ij ·j
(αIj

)}1/2

��

1




,

where Ω̄◦
j

= ω−1

IjIj ·j Ω̄IjIj ·j ω−1

IjIj ·j and
ΩIj Ij ·jω

−1
Ij Ij ·jαIj

{1+QΩIj Ij ·j (αIj
)}1/2 =

Ω◦
j ωIj Ij ·j αIj

{1+QΩ̄◦
j

(ωIj Ij ·jαIj
)}1/2 .

Applying Dutt’s (Dutt, 1973) probability integrals we obtain

Vj = 1
m̄+

j

� ∞

0

�
yj

xj

�
ν

φ(yj)Φd

�
y◦

j ; Ω◦◦
j

�
dyj ,

= 1
xν

j

Ψd+1




���

ν+1

1−ω
2
i,j

�
x

◦
i

x
◦
j

− ωi,j

�
, i ∈ Ij

�

, α∗
j

√
ν + 1

��

; Ω◦◦
j

,
�
0, −τ∗

j

��
, ν + 1





Ψ(α∗
j

√
ν + 1; −τ∗

j
, ν + 1)

.

This is recognised as the form of a (d − 1)-dimensional non-central extended skew-t distribution
with ν + 1 degrees of freedom (Jamalizadeh et al., 2009), from which Vj can be expressed as

Vj = 1
xν

j

Ψd−1




��

ν + 1
1 − ω2

i,j

�
x◦

i

x◦
j

− ωi,j

�

, i ∈ Ij

��

; Ω̄◦
j , α◦

j , τ◦
j , κ◦

j , ν + 1





for j = 1, . . . , d where α◦
j

= ωIjIj ·j αIj , τ◦
j

= (Ω̄jIj αIj + αj)(ν + 1)1/2 and κ◦
j

= −{1 +
Q

Ω̄Ij Ij ·j
(αIj )}−1/2τ. Substituting the expression for Vj into (D.5) then gives the required the
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exponent function.

D.2 Computational details

D.2.1 Computation of d-dimensional extremal-skew-t density for d = 2, 3, 4.

For clarity of exposition we focus on the finite dimensional distribution G of the extremal-t
process. We initially assume that α = 0 and τ = 0, and relax this assumption later. For brevity
the exponent function is written as

V (xj , j ∈ I) =
�

j∈I

x−1

j
Tj , Tj = Ψd−1

�
uj ; Ω̄◦

j , ν + 1
�

where I = {1, . . . , d}, uj =
��

ν+1

1−ω
2
i,j

��
xi
xj

�1/ν

− ωi,j

�
, i ∈ Ij

��

and where Ij = I\{j}. By

successive differentiations the 2-dimensional density (d = 2) is

f(x) = (−V12 + V1V2)G(x), x ∈ R2
+,

the 3-dimensional density (d = 3) is

f(x) = (−V123 + V1V23 + V2V13 + V3V12 − V1V2V3)G(x), x ∈ R3
+

and the 4-dimensional density (d = 4) is

f(x) = (−V1234 + V1V234 + V2V134 + V3V124 + V12V34 + V13V24 + V14V23

− V1V2V34 − V1V3V24 − V1V4V23 − V2V3V14 − V2V4V13 − V3V4V12

+ V1V2V3V4)G(x), x ∈ R4
+

where Vi1,...,im := d
m

V (xj ,j∈I)

dxi1 ···dxim
for ik ∈ I. The derivatives of the exponent function are given by

Vi1,...,im =
d�

k=1

x−1

ik

dmTik

dxi1 · · · dxim

−
m�

�=1

x−2

i�

dm−1Ti�

dxi1 · · · dxi�−1dxi�+1 · · · dxim

. (D.6)

In particular, when m = d it follows that {i1, . . . , id} = {1, . . . , d} and that

V1···d = −(νx1)−(d+1)ψd−1

�
u1; Ω̄◦

1, ν + 1
� d�

i=2

�
ν + 1

1 − ω2
i,1

�
xi

x1

� 1
ν −1

.

When d = 2 or 3, the derivatives of Tj , for j ∈ I are given by

dTj

dxi1
=

d−1�

p=1

d
dup,j

Ψd−1

�
uj ; Ω̄◦

j , ν + 1
� dup,j

dxi1
, (D.7)
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d2Tj

dxi1dxi2
=

d−1�

p=1

�
d

dup,j

Ψd−1

�
uj ; Ω̄◦

j , ν + 1
� d2up,j

dxi1dxi2
+ d2

du2
p,j

Ψd−1

�
uj ; Ω̄◦

j , ν + 1
� dup,j

dxi1

dup,j

dxi2

�

+
d−2�

p=1

d−1�

q=p+1

d2

dup,jduq,j

Ψd−1

�
uj ; Ω̄◦

j , ν + 1
� �dup,j

dxi1

duq,j

dxi2
+ dup,j

dxi2

duq,j

dxi1

�
. (D.8)

where up,j is the p-th element of uj , and when d = 3

d3Tj

dxi1dxi2dxi3
=

2�

p=1

3�

q=2




d2

dup,jduq,j

Ψd−1

�
uj ; Ω̄◦

j , ν + 1
� �

r,s,t∈I

r �=s�=t

dup,j

dxir

d2uq,j

dxisdxit

+ duq,j

dxir

d2up,j

dxisdxit





+
3�

p=1

3�

q=1

q �=p

d3

du2
p,j

duq,j

Ψd−1

�
uj ; Ω̄◦

j , ν + 1
� �

r,s,t∈I

r �=s�=t

dup,j

dxir

dup,j

dxis

duq,j

dxit

+ d3

du1,jdu2,jdu3,j

Ψd−1

�
uj ; Ω̄◦

j , ν + 1
� �

r,s,t∈I

r �=s�=t

du1,j

dxir

du2,j

dxis

du3,j

dxit

. (D.9)

We provide the derivatives of the d-dimensional t cdf below. When d = 1 and for all x ∈ R+

d
dx

Ψ(x; ν) = ψ(x; ν), d2

dx2
Ψ(x; ν) = −(ν + 1)x

ν + x2
ψ(x; ν),

d3

dx3
Ψ(x; ν) = (ν + 1)(x2 − ν + (ν + 1)x2)

(ν + x2)2
ψ(x; ν).

When d=2 and for all x ∈ R2
+,

d
dx1

Ψ2(x; Ω̄, ν) = ψ(x1; ν)Ψ (v2·1; ν + 1) ,

d2

dx2
1

Ψ2(x; Ω̄, ν) = −ψ(x1; ν)
�

(ν + 1)x1

ν + x2
1

Ψ (v2·1; ν + 1) +
�

ν + 1
1 − ω2

�
ων + x2x1

(ν + x2
1
)3/2

�

ψ (v2·1; ν + 1)
�

,

d2

dx1dx2

Ψ2(x; Ω̄, ν) = ψ2(x; Ω̄, ν),

where vi·j =
�

ν+1

ν+x
2
j

xi−ωi,jx1�
1−ω

2
i,j

, j ∈ I, j ∈ Ij ,

d3

dx3
1

Ψ2(x; Ω̄, ν) = Ψ (v2·1; ν + 1) ψ(x1; ν)
�

(ν + 1)2x2
1 − (ν + 1)(ν − x2

1)
(ν + x2

1
)2

�

+ ψ (v2·1; ν + 1) ψ(x1; ν)
�

ν + 1
1 − ω2

1
(ν + x2

1
)5/2

×
�

x1(ων + x2x1)(2ν − 1) − x2(ν + x2
1)

−
�
ω(ν + x2

1) + (x2 − ωx1)x1

�
(ν + 2)(x2 − ωx1)(ων + x2x1)

(ν + x2
1
)(1 − ω2) + (x2 − ωx1)2

�

,
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d3

dx2
1
dx2

Ψ2(x; Ω̄, ν) = −(ν + 2)(x1 − ωx2)
2πν(1 − ω2)3/2

�
1 + x2

1 − 2ωx1x2 + x2
2

ν(1 − ω2)

�−(
ν
2 +1)

.

When d=3 and for all x ∈ R3
+,

d
dx1

Ψ3(x; Ω̄, ν) = ψ(x; ν)Ψ2

�
(v2·1, v3·1)�; Ω̄◦

1, ν + 1
�

,
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dx2
1

Ψ3(x; Ω̄, ν) = −ψ(x1; ν)
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�
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1

× Ψ
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
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�

��
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1
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) − (ω23 − ω12ω13)2

� ; ν + 2





+ ψ (v3·1; ν + 1)
�

ν + 1
1 − ω2

13

x3x1 + ω13ν
�

ν + x2
1

× Ψ




√

ν + 2
�
(x2 − ω12x1)(1 − ω2

13) − (ω23 − ω12ω13)(x3 − ω13x1)
�

��
(1 − ω2

13
)(ν + x2

1
) + (x3 − ω13x1)2

� �
(1 − ω2

12
)(1 − ω2

13
) − (ω23 − ω12ω13)2

� ; ν + 2









d2

dx1dx2
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d3

dx3
1

Ψ3(x; Ω̄, ν) = − ψ(x1; ν)
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1
)

��
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Combining the derivatives of the t cdf with equations (D.6)-(D.9) provides the full d-dimensional
densities of the extremal-t process. Returning to the extremal skew-t case (i.e. when α �= 0 and
τ �= 0), it is sufficient to consider the following changes. Firstly, rewrite

Tj =
Ψd

��
uj
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�

;
�
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j

−δj

−δ�
j

1

�

, ν + 1
�

Ψ1 (τ̄j ; ν + 1) , j ∈ I,
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, following Definition 4.1 . It can then be

shown that
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1

following Theorem 4.7. Note that equations (D.6)–(D.9) are still valid in this case, through the
redefinition of d ← d + 1 and uj ← (uj , τ̄j)�. This in combination with the above derivatives of
the t cdfs leads to the d-dimensional densities of the extremal-skew-t process.

D.3 Efficiency study: comparison between pairwise and triple-
wise extremal-t likelihood

We compare the efficiency of the maximum triplewise composite likelihood estimator with
that based on the pairwise composite likelihood, discussed in Section 4 of the paper, when
data are drawn from an extremal-t process. We generate 300 replicate samples of size n =
20, 50 and 70 from the extremal-t process with correlation function (4.10) in Section 4.2.2, with
varying parameters, over 20 random spatial points on S = [0, 100]2. Table D.1 presents the
resulting relative efficiencies REξ/REλ/RE(λ,ξ) (×100), where REξ = �var(ξ̂3)/�var(ξ̂2), REλ =
�var(λ̂3)/�var(λ̂2) and RE(λ,ξ) = �cov(λ̂3, ξ̂3)/�cov(λ̂2, ξ̂2), where (λ̂p, ξ̂p) are the p-wise maximum
composite likelihood estimates (p = 2, 3), and �var and �cov denote sample variance and covariance
over replicates. Perhaps unsurprisingly, the triplewise estimates are at worst just as efficient as
the pairwise estimates (RE ≤ 100) but are frequently much more efficient. However this is
balanced computationally as there is a corresponding increase in the number of components in
the triplewise composite likelihood function. For each ν, there is a general gain in efficiency
when the smoothing parameter ξ increases for each fixed scale parameter λ. There is a similar
gain when increasing λ for fixed ξ. These gains become progressively pronounced with increasing
sample size n, and when there is stronger dependence present (i.e. smaller degrees of freedom
ν). However, we note that there are a number of instances where the efficiency gain goes against
this general trend, which indicates that there are some subtleties involved.
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ν = 1
n = 20
λ\ξ 0.5 1 1.5 1.9 2
14 89/94/89 84/97/93 83/69/79 81/82/84 78/64/72
28 76/100/98 59/100/69 73/86/73 74/66/75 34/75/26
42 81/100/100 51/96/89 51/80/88 43/63/79 33/51/72

n = 50
λ\ξ 0.5 1 1.5 1.9 2
14 85/81/84 87/78/86 76/67/78 66/56/72 52/47/62
28 64/100/81 81/79/82 73/72/78 72/66/74 34/68/24
42 71/100/97 33/61/59 17/42/40 17/34/37 2/18/7

n = 70
λ\ξ 0.5 1 1.5 1.9 2
14 80/87/83 81/76/80 74/65/77 62/57/70 47/42/60
28 51/100/68 82/82/84 72/72/77 71/66/73 54/53/62
42 56/93/89 28/52/48 13/40/14 12/28/27 8/23/26

ν = 3
n = 20
λ\ξ 0.5 1 1.5 1.9 2
14 93/100/96 93/96/91 88/84/83 84/83/84 78/77/82
28 86/100/100 72/97/75 90/91/89 87/85/86 39/78/50
42 78/100/100 72/97/100 58/71/74 51/68/95 44/58/84

n = 50
λ\ξ 0.5 1 1.5 1.9 2
14 91/85/89 92/89/92 86/81/88 82/78/86 64/64/74
28 70/100/81 74/87/63 83/81/84 80/74/82 77/75/81
42 69/100/100 47/70/75 36/53/64 30/40/61 38/32/33

n = 70
λ\ξ 0.5 1 1.5 1.9 2
14 93/93/94 89/88/87 81/77/85 81/74/84 58/58/71
28 94/94/94 85/87/89 81/77/86 79/75/82 81/77/84
42 65/94/95 44/57/62 29/45/49 25/35/50 20/28/38

Table D.1: Efficiency of maximum triplewise likelihood estimators relative to maximum pairwise like-
lihood estimators for the Extremal-t process, based on 300 replicate simulations. Simulated datasets
of size n = 20, 50, 70 are generated at 20 random sites in S = [0, 100]2, given power exponential de-
pendence function parameters ϑ = (λ, ξ). Relative efficiencies are REξ/REλ/RE(λ,ξ) (×100) where
REξ = �var(ξ̂3)/ �var(ξ̂2), REλ = �var(λ̂3)/ �var(λ̂2) and RE(λ,ξ) = �cov(λ̂3, ξ̂3)/�cov(λ̂2, ξ̂2), where (λ̂p, ξ̂p) are
the p-wise maximum composite likelihood estimates (p = 2, 3), and �var and �cov denote sample variance
and covariance over replicates.



Appendix E

Chapter 5: Proofs

E.1 Preliminaries

The assumptions which will be used to establish the optimality properties of these kernel
estimators are stated below. They are usually expressed for random variables with unbounded
support, which in our case is the transformed variable Y . This set of conditions do not form a
minimal set, but they serve as a convenient starting point to state our results.

(A1) The d-variate density fY admits continuous, square integrable and ultimately monotone
for all element-wise partial second derivatives.

(A2) The d-variate kernel is a positive, symmetric, square integrable p.d.f. such that
�
Rd yyT K(y)dy =

m2(K)Id where m2(K) is finite and Id is the d × d identity matrix.

(A3) The bandwidth matrix H = H(n) forms a sequence of symmetric and positive definite
matrices such that n−1|H|−1/2 and every element of H approaches zero as n → ∞.

The proof of Theorem 5.1 requires Lemma E.1 which establishes the minimal rate of MISE
convergence of f̂Y . This theorem has already been established, e.g. Wand (1992), but we include
the details of a proof using an alternative notation for fourth order derivatives of a multivariate
function as four-fold Kronecker product, see Holmquist (1996).

Lemma E.1. Suppose that the conditions (A1–A3) hold. The minimal MISE of the transformed
kernel density estimator f̂Y (·; H) is

inf
H∈F

MISE f̂Y (·; H) =
�

1

4
m2

2(K)(vecT H∗)⊗2ψY ,4 + n−1|H∗|−1/2R(K)
�
{1 + o(1)}

= O(n−4/(d+4))

where ψY ,4 =
�
Rd D⊗4fY (y)fY (y)dy.

Proof of Lemma E.1. The expected value of f̂Y is

E f̂Y (y; H) = EKH(y − Y ) =
�

Rd
KH(y − w)f (y) dw = KH ∗ fY (x)
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where ∗ is the convolution operator between two functions. Asymptotically, using a Taylor series
expansion and the usual rearrangement wT H1/2D2F (x)H1/2 = tr(wwT HD2F (x)),

E f̂Y (y; H) =
�

Rd
|H|−1/2K(H−1/2(y − w))fY (y)dw

=
�

Rd
K(w)f(y − H1/2w)dw

=
�

Rd
K(w)[f(y) − wT H1/2Df(x) + 1

2
wT H1/2D2f(y)H1/2w]{1 + o(1)} dw

= [f(y) + 1

2

�
K(w) tr(wwT HD2f(y)) dw]{1 + o(1)}

= [f(y) + 1

2
m2(K) tr(HD2f(y))]{1 + o(1)}.

This allows us to write the bias of f̂Y (y; H) as

E f̂Y (y; H) − f(y) = 1

2
m2(K) tr(HD2f(y)){1 + o(1)}.

For the variance, we have Var f̂Y (y; H) = n−1 E[KH(y − Y )2] − n−1[EKH(y − Y )]2. The
second term is the same as above, so it leaves us to evaluate

E f̂Y (y; H)2 = E[KH(y − Y )2] =
�

Rd
KH(y − w)2fY (w) dw

=
�

Rd
|H|−1K(H−1/2(y − w))2fY (w) dw

=
�

Rd
|H|−1/2K(w)2fY (y − H−1/2w)dw

= |H|−1/2fY (y)
�

Rd
K(w)2dw{1 + o(1)}

= |H|−1/2fY (y)R(K){1 + o(1)}.

Thus the variance term is

Var f̂(y; H) = n−1{|H|−1/2fY (y)R(K) − [fY (y) + 1

2
m2(K) tr(HD2fY (y))]2}{1 + o(1)}.

Since H → 0 then |H|−1/2 dominates both the constant term fY (y) and the tr(H) term so we
can write

Var f̂Y (y; H) = n−1|H|−1/2fY (y)R(K){1 + o(1)}.

The integrated square bias (ISB) is

ISB f̂Y (·; H) =
�

Rd
Bias2 f̂Y (y; H)dy =

�

Rd

1

4
m2

2(K) tr2(HD2f(y))dy{1 + o(1)}

= 1

4
m2

2(K)
�

Rd
tr2(HD2f(y))dy{1 + o(1)}

= 1

4
m2

2(K)(vecT H ⊗ vecT H)ψY ,4{1 + o(1)},
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and similarly the integrated variance (IV) is

IV f̂Y (·; H) =
�

Rd
n−1|H|−1/2fY (y)R(K)dy{1 + o(1)}

= n−1|H|−1/2R(K)
�

Rd
fY (y)dy{1 + o(1)}

= n−1|H|−1/2R(K){1 + o(1)}.

using the integrability assumptions in conditions (A1) and (A2). Hence we obtain

MISE f̂Y (·; H) = ISB f̂Y (·; H) + IV f̂Y (·; H)

=
�

1

4
m2

2(K)(vecT H ⊗ vecT H)ψY ,4 + n−1|H|−1/2R(K)
�
{1 + o(1)}.

The optimiser of this MISE requires that the order of the squared bias and the variance are the
same, so then H∗ = O(n−2/(d+4)), and so

inf
H∈F

MISE f̂Y (·; H) = MISE f̂Y (·; H∗)

=
�

1

4
m2

2(K)(vecT H∗ ⊗ vecT H∗)ψY ,4 + n−1|H∗|−1/2R(K)
�
{1 + o(1)}

= O(n−4/(d+4)).

E.2 Proof of Theorem 5.1

Firstly using the definition of f̂X[u] given in (5.1), its expected value is E f̂X[u](x; H) =
|Jt(x)|E f̂Y (t(x); H) and its associated bias is

Bias f̂X[u](x; H) = E f̂X[u](x; H) − fX[u](x) = |Jt(x)| Bias f̂Y (t(x); H).

Similarly we have E f̂X[u](x; H)2 = |Jt(x)|2 E f̂Y (t(x); H)2, leading to

Var f̂X[u](x; H) = E f̂X[u](x; H)2 −
�
E f̂X[u](x; H)

�2 = |Jt(x)|2 Var f̂Y (t(x); H).

The integrated square bias (ISB) is

ISB f̂X[u](x; H) =
�

(u,∞)

|Jt(x)|2 Bias2 f̂Y (t(x); H)dx

=
�

Rd
|Jt(t−1(y))|2 Bias2 f̂Y (t(t−1(y)); H)dy.

given the change of variable y = t(x). Similarly the integrated variance (IV) is

IV f̂X[u](x; H) =
�

(u,∞)

|Jt(x)|2 Var f̂Y (t(x); H)dx =
�

Rd
|Jt(t−1(y))|2 Var f̂Y (y; H)dx.
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As a consequence, the MISE of f̂X[u] can be written as

MISE f̂X[u](·; H) =
�

Rd
|Jt(t−1(y))| MSE f̂Y (·; H)dy.

Since the |Jt(t−1(y))| term does not involve the sample size n or the bandwidth matrix H, it
has no influence on the rate of convergence, thus the MISE of f̂X[u] and f̂Y are asymptotically
equivalent, which we summarize by

MISE f̂X[u](·; H) = {MISE f̂Y (·; H)}{1 + o(1)}.

Since H∗ and H∗[u] = argminH∈F MISE f̂X[u](·; H) are of the same asymptotic n−2/(d+4) order,
and using Lemma E.1, we then have

inf
H∈F

MISE f̂X[u](·; H) −
�

inf
H∈F

MISE f̂Y (·; H)
�

= MISE f̂X[u](·; H∗[u]) − MISE f̂Y (·; H∗)

=
�

1

4
m2

2(K)[(vecT H∗[u])⊗2ψX[u]
,4

− (vecT H∗)⊗2ψY ,4]

+ n−1(|H∗[u]|−1/2 − |H∗|−1/2)R(K)
�
{1 + o(1)} = O(n−4/(d+4)).
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mators of the observed data, using the L2 and χ2 errors, for the 24 AR4 climate models
for maximum temperatures. The selected models with the three minimal criteria values
are in bold. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.4 Histogram T̃ and kernel T̂ based indices for histogram g̃ and kernel ĝ estimators
of the observed data, for the 24 AR4 climate models for (maximum, minimum)
temperatures. The selected models with the three minimal criteria values are in
bold. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124



190 List of Tables

D.1 Efficiency of maximum triplewise likelihood estimators relative to maximum pairwise like-
lihood estimators for the Extremal-t process, based on 300 replicate simulations. Sim-
ulated datasets of size n = 20, 50, 70 are generated at 20 random sites in S = [0, 100]2,
given power exponential dependence function parameters ϑ = (λ, ξ). Relative efficiencies
are REξ/REλ/RE(λ,ξ) (×100) where REξ = �var(ξ̂3)/ �var(ξ̂2), REλ = �var(λ̂3)/ �var(λ̂2)
and RE(λ,ξ) = �cov(λ̂3, ξ̂3)/�cov(λ̂2, ξ̂2), where (λ̂p, ξ̂p) are the p-wise maximum composite
likelihood estimates (p = 2, 3), and �var and �cov denote sample variance and covariance
over replicates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180



Bibliography

Abramowitz, M. and Stegun, I. A. (1964), Handbook of mathematical functions with formulas,
graphs, and mathematical tables, vol. 55 of National Bureau of Standards Applied Mathemat-
ics Series, For sale by the Superintendent of Documents, U.S. Government Printing Office,
Washington, D.C.

Apputhurai, P. and Stephenson, A. (2011), “Accounting for uncertainty in extremal dependence
modeling using bayesian model averaging techniques,” Journal of Statistical Planning and
Inference, 141, 1800–1807.

Arellano-Valle, R. B. and Azzalini, A. (2006), “On the unification of families of skew-normal
distributions,” Scandinavian Journal of Statistics, 561–574.

Arellano-Valle, R. B. and Genton, M. G. (2010), “Multivariate extended skew-t distributions
and related families,” Metron, 68, 201–234.

Azzalini, A. (1985), “A class of distributions which includes the normal ones,” Scandinavian
journal of statistics, 171–178.

— (2005), “The skew-normal distribution and related multivariate families,” Scand. J. Statist.,
32, 159–200, with discussion by Marc G. Genton and a rejoinder by the author.

— (2013), The skew-normal and related families, vol. 3, Cambridge University Press.

Azzalini, A. and Dalla Valle, A. (1996), “The multivariate skew-normal distribution,”
Biometrika, 83, 715–726.

Balkema, A. A. and de Haan, L. (1974), “Residual life time at great age,” Ann. Probability, 2,
792–804.

Beirlant, J., Goegebeur, Y., Segers, J., and Teugels, J. (2006), Statistics of extremes: theory and
applications, John Wiley &amp; Sons.

Beirlant, J., Goegebeur, Y., Teugels, J., and Segers, J. (2004), Statistics of extremes, Wiley Series
in Probability and Statistics, John Wiley & Sons, Ltd., Chichester, theory and applications,
With contributions from Daniel De Waal and Chris Ferro.

Beranger, B., Marcon, G., and Padoan, S. (2015), ExtremalDep: Extremal Dependence Modeling,
r package version 0.1-2/r76.



192 Bibliography

Beranger, B. and Padoan, S. A. (2015), “Extreme Dependence Models,” ArXiv e-prints.

Beranger, B., Padoan, S. A., and Sisson, S. A. (2015), “Models for extremal dependence derived
from skew-symmetric families,” ArXiv e-prints.

Billingsley, P. (1968), Convergence of probability measures, John Wiley & Sons, Inc., New York-
London-Sydney.

— (1971), Weak convergence of measures: Applications in probability, Society for Industrial
and Applied Mathematics, Philadelphia, Pa., conference Board of the Mathematical Sciences
Regional Conference Series in Applied Mathematics, No. 5.

Blanchet, J. and Davison, A. C. (2011), “Spatial modeling of extreme snow depth,” Ann. Appl.
Stat., 5, 1699–1725.

Boldi, M.-O. and Davison, A. C. (2007), “A mixture model for multivariate extremes,” J. R.
Stat. Soc. Ser. B Stat. Methodol., 69, 217–229.

Bortot, P. (2010), “Tail dependence in bivariate skew-normal and skew-t distributions,” .

Bowman, A. W., Hall, P., and Titterington, D. M. (1984), “Cross-validation in nonparametric
estimation of probabilities and probability densities,” Biometrika, 71, 341–351.

Brown, B. M. and Resnick, S. I. (1977), “Extreme values of independent stochastic processes,”
Journal of Applied Probability, 732–739.

Buishand, T. (1984), “Bivariate extreme-value data and the station-year method,” Journal of
Hydrology, 69, 77 – 95.

Buishand, T. A., de Haan, L., and Zhou, C. (2008), “On spatial extremes: with application to
a rainfall problem,” Ann. Appl. Stat., 2, 624–642.

Capéraà, P. and Fougères, A.-L. (2000), “Estimation of a bivariate extreme value distribution,”
Extremes, 3, 311–329 (2001).

Capitanio, A., Azzalini, A., and Stanghellini, E. (2003), “Graphical models for skew-normal
variates,” Scand. J. Statist., 30, 129–144.

Chan, G. and Wood, A. T. (1997), “Algorithm AS 312: An Algorithm for simulating stationary
Gaussian random fields,” Journal of the Royal Statistical Society: Series C (Applied Statistics),
46, 171–181.

Chang, S.-M. and Genton, M. G. (2007), “Extreme value distributions for the skew-symmetric
family of distributions,” Communications in Statistics—Theory and Methods, 36, 1705–1717.

Chen, S. X. (1999), “Beta kernel estimators for density functions,” Comput. Statist. Data Anal.,
31, 131–145.



Bibliography 193

Cheng, R. C. H. and Amin, N. A. K. (1983), “Estimating parameters in continuous univariate
distributions with a shifted origin,” J. Roy. Statist. Soc. Ser. B, 45, 394–403.

Chilès, J.-P. and Delfiner, P. (1999), Geostatistics, Wiley Series in Probability and Statistics:
Applied Probability and Statistics, John Wiley & Sons, Inc., New York, modeling spatial
uncertainty, A Wiley-Interscience Publication.

Christopeit, N. (1994), “Estimating parameters of an extreme value distribution by the method
of moments,” J. Statist. Plann. Inference, 41, 173–186.

Coles, S. (2001), An introduction to statistical modeling of extreme values, Springer Series in
Statistics, Springer-Verlag London, Ltd., London.

Coles, S. G. and Tawn, J. A. (1991), “Modelling Extreme Multivariate Events,” Journal of the
Royal Statistical Society. Series B (Methodological), 53, pp. 377–392.

— (1994), “Statistical Methods for Multivariate Extremes: An Application to Structural De-
sign,” Journal of the Royal Statistical Society. Series C (Applied Statistics), 43, pp. 1–48.

Cooley, D., Davis, R. A., and Naveau, P. (2010), “The pairwise beta distribution: a flexible
parametric multivariate model for extremes,” J. Multivariate Anal., 101, 2103–2117.

Cooley, D., Naveau, P., and Poncet, P. (2006), “Variograms for spatial max-stable random
fields,” in Dependence in probability and statistics, New York: Springer, vol. 187 of Lecture
Notes in Statist., pp. 373–390.

Daley, D. J. and Vere-Jones, D. (1988), An introduction to the theory of point processes, Springer
Series in Statistics, Springer-Verlag, New York.

Davison, A. C. (2003), Statistical Models, Cambridge.

Davison, A. C. and Gholamrezaee, M. M. (2012), “Geostatistics of extremes,” Proceedings of
the Royal Society of London Series A: Mathematical and Physical Sciences, 468, 581–608.

Davison, A. C., Padoan, S. A., and Ribatet, M. (2012), “Statistical Modeling of Spatial Ex-
tremes,” Statistical Science, 27, 161–186.

de Carvalho, M., Oumow, B., Segers, J., and Warchoł, M. (2013), “A Euclidean likelihood
estimator for bivariate tail dependence,” Comm. Statist. Theory Methods, 42, 1176–1192.

de Haan, L. (1984), “A spectral representation for max-stable processes,” Ann. Probab., 12,
1194–1204.

de Haan, L. and Ferreira, A. (2006), Extreme value theory, Springer Series in Operations Re-
search and Financial Engineering, Springer, New York, an introduction.

de Haan, L. and Pereira, T. T. (2006), “Spatial extremes: models for the stationary case,” Ann.
Statist., 34, 146–168.



194 Bibliography

de Haan, L. and Resnick, S. I. (1977), “Limit theory for multivariate sample extremes,” Z.
Wahrscheinlichkeitstheorie und Verw. Gebiete, 40, 317–337.

de Haan, L. and Zhou, C. (2008), “On extreme value analysis of a spatial process,” REVSTAT,
6, 71–81.

De Haan, L. and Zhou, C. (2011), “Extreme residual dependence for random vectors and pro-
cesses,” Advances in Applied Probability, 43, 217–242.

Demarta, S. and McNeil, A. J. (2005), “The t Copula and Related Copulas,” International
Statistical Review, 73, 111–129.

Devroye, L. and Györfi, L. (1985), Nonparametric Density Estimation: the L1 View, New York:
John Wiley and Sons.

Dieker, A. and Mikosch, T. (2015), “Exact simulation of Brown-Resnick random fields at a finite
number of locations,” Extremes, 18, 301–314.

Dombry, C. and Eyi-Minko, F. (2013), “Regular conditional distributions of continuous max-
infinitely divisible random fields,” Electron. J. Probab., 18, no. 7, 21.

Dombry, C., Éyi-Minko, F., and Ribatet, M. (2013), “Conditional simulation of max-stable
processes,” Biometrika, 100, 111–124.

Drees, H. and Huang, X. (1998), “Best attainable rates of convergence for estimators of the
stable tail dependence function,” J. Multivariate Anal., 64, 25–47.

Duong, T. and Hazelton, M. L. (2003), “Plug-in bandwidth matrices for bivariate kernel density
estimation,” J. Nonparametr. Stat., 15, 17–30.

— (2005), “Cross-validation bandwidth matrices for multivariate kernel density estimation,”
Scand. J. Statist., 32, 485–506.

Dutt, J. E. (1973), “A representation of multivariate normal probability integrals by integral
transforms,” Biometrika, 60, 637–645.

Einmahl, J. H. J., de Haan, L., and Piterbarg, V. I. (2001), “Nonparametric estimation of the
spectral measure of an extreme value distribution,” Ann. Statist., 29, 1401–1423.

Einmahl, J. H. J., Krajina, A., and Segers, J. (2008), “A method of moments estimator of tail
dependence,” Bernoulli, 14, 1003–1026.

— (2012), “An M -estimator for tail dependence in arbitrary dimensions,” Ann. Statist., 40,
1764–1793.

Einmahl, J. H. J. and Segers, J. (2009), “Maximum empirical likelihood estimation of the spectral
measure of an extreme-value distribution,” Ann. Statist., 37, 2953–2989.



Bibliography 195

Embrechts, P., Klüppelberg, C., and Mikosch, T. (1997), Modelling extremal events, vol. 33 of
Applications of Mathematics (New York), Springer-Verlag, Berlin, for insurance and finance.

Engelke, S., Malinowski, A., Kabluchko, Z., and Schlather, M. (2012), “Estimation of Huesler-
Reiss distributions and Brown-Resnick processes,” ArXiv e-prints.

Erhardt, R. J. and Smith, R. L. (2012), “Approximate Bayesian computing for spatial extremes,”
Comput. Statist. Data Anal., 56, 1468–1481.

Falk, M. and Guillou, A. (2008), “Peaks-over-threshold stability of multivariate generalized
Pareto distributions,” J. Multivariate Anal., 99, 715–734.

Falk, M., Hüsler, J., and Reiss, R.-D. (2011), Laws of small numbers: extremes and rare events,
Birkhäuser/Springer Basel AG, Basel, extended ed.

Feller, W. (1968), “An Introduction to Probability Theory, Vol. 1,” .

Ferreira, A. and de Haan, L. (2014), “The generalized Pareto process; with a view towards
application and simulation,” Bernoulli, 20, 1717–1737.

Fisher, R. A. and Tippett, L. H. C. (1928), “Limiting forms of the frequency distribution of
the largest or smallest member of a sample,” Mathematical Proceedings of the Cambridge
Philosophical Society, 24, 180–190.

Flato, G., Marotzke, J., Abiodun, B., Braconnot, P., Chou, S., Collins, W., Cox, P., Driouech,
F., Emori, S., Eyring, V., Forest, C., Gleckler, P., Guilyardi, E., Jakob, C., Kattsov, V.,
Reason, C., and Rummukainen, M. (2013), Evaluation of Climate Models, Cambridge, United
Kingdom and New York, NY, USA: Cambridge University Press, book section 9, pp. 741–866.

Gasser, T. and Müller, H.-G. (1979), “Kernel estimation of regression functions,” in Smoothing
Techniques for Curve Estimation, eds. Gasser, T. and Rosenblatt, M., Berlin: Springer, pp.
23–68.

Geenens, G. (2014), “Probit Transformation for Kernel Density Estimation on the Unit Interval,”
J. Amer. Statist. Assoc., 109, 346–358.

Gelfand, A. E., Diggle, P., Guttorp, P., and Fuentes, M. (2010), Handbook of spatial statistics,
CRC press.

Genton, M. (2004), Skew-elliptical distributions and their applications, Chapman & Hall/CRC,
Boca Raton, FL, a journey beyond normality, Edited by Marc G. Genton.

Genton, M. G., Ma, Y., and Sang, H. (2011), “On the likelihood function of Gaussian max-stable
processes,” Biometrika, 98, 481–488.

Genton, M. G., Padoan, S. A., and Sang, H. (2015), “Multivariate max-stable spatial processes,”
Biometrika, 102, 215–230.



196 Bibliography

Geweke, J. (1992), Evaluating the accuracy of sampling-based approaches to the calculation of
posterior moments, vol. Bayesian Statistics, University Press.

Giné, E., Hahn, M. G., and Vatan, P. (1990), “Max-infinitely divisible and max-stable sample
continuous processes,” Probab. Theory Related Fields, 87, 139–165.

Gnedenko, B. (1943), “Sur la distribution limite du terme maximum d’une série aléatoire,” Ann.
of Math. (2), 44, 423–453.

Gudendorf, G. and Segers, J. (2011), “Nonparametric estimation of an extreme-value copula in
arbitrary dimensions,” Journal of Multivariate Analysis, 102.

— (2012), “Nonparametric estimation of multivariate extreme-value copula,” Journal of Statis-
tical Planning and Inference, 142.

Gumbel, E. J. (1960), “Distributions des valeurs extremes en plusieurs dimensions,” Publ. Inst.
Statist. Univ. Paris, 9.

Hall, P., Marron, J. S., and Park, B. U. (1992), “Smoothed cross-validation,” Probab. Theory
Related Fields, 92, 1–20.

Hall, P. and Tajvidi, N. (2000), “Distribution and dependence-function estimation for bivariate
extreme-value distributions,” Bernoulli, 6, 835–844.

Hastings, W. K. (1970), “Monte Carlo Sampling Methods Using Markov Chains and Their
Applications,” Biometrika, 57, pp. 97–109.

Heffernan, J. E. and Tawn, J. A. (2004), “A conditional approach for multivariate extreme
values,” J. R. Stat. Soc. Ser. B Stat. Methodol., 66, 497–546, with discussions and reply by
the authors.

Heidelberger, P. and Welch, P. D. (1981), “A Spectral Method for Confidence Interval Generation
and Run Length Control in Simulations,” Commun. ACM, 24, 233–245.

Hill, B. M. (1975), “A simple general approach to inference about the tail of a distribution,”
Ann. Statist., 3, 1163–1174.

Holmquist, B. (1996), “The d-variate vector Hermite polynomial of order k,” Linear Algebra and
Its Applications, 237/238, 155–190.

Hosking, J. R. M. (1985), “Algorithm AS 215: Maximum-Likelihood Estimation of the Pa-
rameters of the Generalized Extreme-Value Distribution,” J. Roy. Stat. Soc. Ser. C, 34, pp.
301–310.

Hosking, J. R. M., Wallis, J. R., and Wood, E. F. (1985), “Estimation of the generalized extreme-
value distribution by the method of probability-weighted moments,” Technometrics, 27, 251–
261.



Bibliography 197

Huang, X. (1992), “Statistics of bivariate extreme values,” Dissertation, thesis, zugl.: Rotterdam,
Univ., Diss., 1991.

Huser, R. and Davison, A. C. (2013), “Composite likelihood estimation for the Brown-Resnick
process,” Biometrika, 100, 511–518.

Huser, R. and Genton, M. (2015), “Non-stationary dependence structures for spatial extremes,”
arXiv:1411.3174v1.

Hüsler, J. and Reiss, R.-D. (1989), “Maxima of normal random vectors: between independence
and complete dependence,” Statist. Probab. Lett., 7, 283–286.

Jamalizadeh, A., Mehrali, Y., and Balakrishnan, N. (2009), “Recurrence relations for bivariate
t and extended skew-t distributions and an application to order statistics from bivariate t,”
Computational Statistics &amp; Data Analysis, 53, 4018–4027.

Jenkinson, A. F. (1955), “The frequency distribution of the annual maximum (or minimum)
values of meteorological elements,” Quarterly Journal of the Royal Meteorological Society, 81,
158–171.

Joe, H. (1990), “Families of min-stable multivariate exponential and multivariate extreme value
distributions,” Statist. Probab. Lett., 9, 75–81.

— (1997), Multivariate models and dependence concepts, vol. 73 of Monographs on Statistics and
Applied Probability, Chapman & Hall, London.

Johansen, S. S. (2004), “Bivariate frequency analysis of flood characteristics in Glomma and
Gudbrandsdalslagen,” Ph.D. thesis, University of Oslo Department of Geosciences Section of
Geohazards and Hydrology.

Jones, D. A., Wang, W., and Fawcett, R. (2009), “High-quality spatial climate data-sets for
Australia,” Australian Meteorological and Oceanographic Journal, 58, 233–1026.

Kabluchko, Z., Schlather, M., and de Haan, L. (2009), “Stationary max-stable fields associated
to negative definite functions,” Ann. Probab., 37, 2042–2065.

Kotz, S. and Nadarajah, S. (2000), Extreme value distributions, London: Imperial College Press,
theory and applications.

Ledford, A. W. and Tawn, J. A. (1996), “Statistics for near independence in multivariate extreme
values,” Biometrika, 83, 169–187.

— (1997), “Modelling dependence within joint tail regions,” Journal of the Royal Statistical
Society: Series B (Statistical Methodology), 59, 475–499.

Li, H. (2009), “Orthant tail dependence of multivariate extreme value distributions,” Journal of
Multivariate Analysis, 100, 243–256.



198 Bibliography

Lindgren, G. (2012), Stationary Stochastic Processes: Theory and Applications, CRC Press.

Lindsay, B. G. (1988), “Composite likelihood methods,” in Statistical inference from stochastic
processes (Ithaca, NY, 1987), Amer. Math. Soc., Providence, RI, vol. 80 of Contemp. Math.,
pp. 221–239.

Lye, L., Hapuarachchi, K., and Ryan, S. (1993), “Bayes estimation of the extreme-value relia-
bility function,” IEEE Trans. Reliab., 42, 641–644.

Lysenko, N., Roy, P., and Waeber, R. (2009), “Multivariate extremes of generalized skew-normal
distributions,” Statist. Probab. Lett., 79, 525–533.

Macleod, A. J. (1989), “Remark AS R76: A Remark on Algorithm AS 215: Maximum-Likelihood
Estimation of the Parameters of the Generalized Extreme-Value Distribution,” J. Roy. Statist.
Soc. Ser. C, 38, 198–199.

Mandelbrot, B. B. and Van Ness, J. W. (1968), “Fractional Brownian motions, fractional noises
and applications,” SIAM review, 10, 422–437.

Marcon, G., Padoan, S. A., Naveau, P., and Muliere, P. (2014), “Multivariate Nonparametric
Estimation of the Pickands Dependence Function using Bernstein Polynomials,” Under review.

Maritz, J. S. and Munro, A. H. (1967), “On the use of the generalised extreme-value distribution
in estimating extreme percentiles,” Biometrics, 23, 79–103.

Markovich, N. (2007), Nonparametric Analysis of Univariate Heavy-tailed Data: Research and
Practice, Chichester: John Wiley & Sons.

Marshall, J. C. and Hazelton, M. L. (2010), “Boundary kernels for adaptive density estimators
on regions with irregular boundaries,” J. Multivariate Anal., 101, 949–963.

Minozzo, M. and Ferracuti, L. (2012), “On the existence of some skew-normal stationary pro-
cesses,” Chilean Journal of Statistics, 3, 157–170.

Misés, R. D. (1936), “Les lois de probabilité pour les fonctions statistiques,” Ann. Inst. H.
Poincaré, 6, 185–212.

Molchanov, I. and Stucki, K. (2013), “Stationarity of multivariate particle systems,” Stochastic
Processes and their Applications, 123, 2272 – 2285.

Naveau, P., Guillou, A., Cooley, D., and Diebolt, J. (2009), “Modelling pairwise dependence of
maxima in space,” Biometrika, 96, 1–17.

Nikoloulopoulos, A. K., Joe, H., and Li, H. (2009), “Extreme value properties of multivariate t

copulas,” Extremes, 12, 129–148.

Nolan, J. (2003), Stable distributions: models for heavy-tailed data, Birkhauser.



Bibliography 199

Oesting, M., Kabluchko, Z., and Schlather, M. (2012), “Simulation of Brown-Resnick processes,”
Extremes, 15, 89–107.

Oesting, M. and Schlather, M. (2014), “Conditional sampling for max-stable processes with a
mixed moving maxima representation,” Extremes, 17, 157–192.

Oesting, M., Schlather, M., and Zhou, C. (2013), “On the Normalized Spectral Representation
of Max-Stable Processes on a Compact Set,” ArXiv e-prints.

Opitz, T. (2013), “Extremal t processes: Elliptical domain of attraction and a spectral repre-
sentation,” Journal of Multivariate Analysis, 122, 409 – 413.

Padoan, S. A. (2011), “Multivariate extreme models based on underlying skew- and skew-normal
distributions,” Journal of Multivariate Analysis, 102, 977 – 991.

— (2013a), Encyclopedia of Environmetrics, John Wiley & Sons, Ltd., Chichester, chap. Max-
Stable Processes, no. 4.

— (2013b), Encyclopedia of Environmetrics, John Wiley & Sons, Ltd., Chichester, chap. Extreme
Value Analysis, no. 2.

— (2013c), “Extreme Dependence Models Based on Event Magnitude,” Journal of Multivariate
Analysis, 122, 1–19.

Padoan, S. A., Ribatet, M., and Sisson, S. A. (2010), “Likelihood-Based Inference for Max-Stable
Processes,” Journal of the American Statistical Association, 105, 263–277.

Penrose, M. D. (1992), “Semi-min-stable processes,” Ann. Probab., 20, 1450–1463.

Perkins, S. E., Moise, A., Whetton, P., and Katzfey, J. (2014), “Regional changes of climate
extremes over Australia Ð a comparison of regional dynamical downscaling and global climate
model simulations,” International Journal of Climatology, 34, 3456–3478.

Perkins, S. E., Pitman, A. J., Holbrook, N. J., and McAneney, J. (2007), “Evaluation of the
AR4 Climate Models’ Simulated Daily Maximum Temperature, Minimum Temperature, and
Precipitation over Australia Using Probability Density Functions,” J. Climate, 20, 4356–4376.

Perkins, S. E., Pitman, A. J., and Sisson, S. A. (2013), “Systematic differences in future 20 year
temperature extremes in AR4 model projections over Australia as a function of model skill,”
Int. J. Climatol., 33, 1153–1167.

Pickands, III, J. (1975), “Statistical inference using extreme order statistics,” Ann. Statist., 3,
119–131.

— (1981), “Multivariate extreme value distributions,” in Proceedings of the 43rd session of the
International Statistical Institute, Vol. 2 (Buenos Aires, 1981), vol. 49, pp. 859–878, 894–902,
with a discussion.



200 Bibliography

Prescott, P. and Walden, A. T. (1980), “Maximum likelihood estimation of the parameters of
the generalized extreme-value distribution,” Biometrika, 67, 723–724.

Resnick, S. I. (1987), Extreme values, regular variation, and point processes, vol. 4 of Applied
Probability. A Series of the Applied Probability Trust, New York: Springer-Verlag.

— (2007), Extreme values, regular variation, and point processes, Springer.

Ribatet, M. (2013), “Spatial extremes: Max-stable processes at work,” Journal de la Société
Francaise de Statistique, 154, 156–177.

Ribatet, M., Cooley, D., and Davison, A. C. (2012), “Bayesian inference from composite likeli-
hoods, with an application to spatial extremes,” Statist. Sinica, 22, 813–845.

Ribatet, M. and Sedki, M. (2013), “Extreme value copulas and max-stable processes,” J. SFdS,
154, 138–150.

Ribatet, M., Singleton, R., and team, R. C. (2013), SpatialExtremes: Modelling Spatial Extremes,
r package version 2.0-0.

Rootzén, H. and Tajvidi, N. (2006), “Multivariate generalized Pareto distributions,” Bernoulli,
12, 917–930.

Rudemo, M. (1982), “Empirical choice of histograms and kernel density estimators,” Scand. J.
Statist., 9, 65–78.

Ruppert, D. and Cline, D. B. H. (1994), “Transformation kernel density estimation – bias
reduction by empirical transformations,” Ann. Statist., 22, 185–210.

Ruppert, D. and Wand, M. P. (1992), “Correcting for kurtosis in density estimation,” Austral.
J. Statist., 34, 19–29.

Sabourin, A. and Naveau, P. (2014), “Bayesian Dirichlet mixture model for multivariate ex-
tremes: a re-parametrization,” Comput. Statist. Data Anal., 71, 542–567.

Sabourin, A., Naveau, P., and Fougères, A.-L. (2013), “Bayesian model averaging for multivariate
extremes,” Extremes, 16, 325–350.

Sakamoto, Y., Ishiguro, M., and Kitagawa, G. (1986), Akaike Information Criterion Statistics,
D. Reidel Publishing Company.

Samorodnitsky, G. and Taqqu, M. S. (1994), Stable non-Gaussian random processes, Stochastic
Modeling, Chapman & Hall, New York, stochastic models with infinite variance.

Sang, H. and Gelfand, A. E. (2010), “Continuous spatial process models for spatial extreme
values,” J. Agric. Biol. Environ. Stat., 15, 49–65.

Sang, H. and Genton, M. G. (2014), “Tapered composite likelihood for spatial max-stable mod-
els,” Spat. Stat., 8, 86–103.



Bibliography 201

Schilling, R. L. (2005), Measures, integrals and martingales, Cambridge University Press, New
York.

Schlather, M. (2002), “Models for stationary max-stable random fields,” Extremes, 5, 33–44.

Schlather, M., Malinowski, A., Oesting, M., Boecker, D., Strokorb, K., Engelke, S., Martini,
J., Ballani, F., Menck, P. J., Gross, S., Ober, U., Burmeister, K., Manitz, J., Ribeiro, P.,
Singleton, R., Pfaff, B., and R Core Team (2015), RandomFields: Simulation and Analysis of
Random Fields, r package version 3.0.62.

Schlather, M. and Tawn, J. A. (2003), “A dependence measure for multivariate and spatial
extreme values: properties and inference,” Biometrika, 90, 139–156.

Scott, D. W. (2015), Multivariate Density Estimation: Theory, Practice, and Visualization,
Hoboken, NJ: John Wiley & Sons, 2nd ed.

Seneviratne, S., Nicholls, N., Easterling, D., Goodess, C., Kanae, S., Kossin, J., Luo, Y.,
Marengo, J., McInnes, K., Rahimi, M., Reichstein, M., Sorteberg, A., Vera, C., and Zhang, X.
(2012), Changes in Climate Extremes and their Impacts on the Natural Physical Environment,
Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, book
section 3, pp. 190–230.

Sheather, S. J. and Jones, M. C. (1991), “A reliable data-based bandwidth selection method for
kernel density estimation,” J. Roy. Statist. Soc. Ser. B, 53, 683–690.

Sillmann, J., Kharin, V. V., Zhang, X., Zwiers, F. W., and Bronaugh, D. (2013a), “Climate
extremes indices in the CMIP5 multimodel ensemble: Part 1. Model evaluation in the present
climate,” Journal of Geophysical Research: Atmospheres, 118, 1716–1733.

Sillmann, J., Kharin, V. V., Zwiers, F. W., Zhang, X., and Bronaugh, D. (2013b), “Climate
extremes indices in the CMIP5 multimodel ensemble: Part 2. Future climate projections,”
Journal of Geophysical Research: Atmospheres, 118, 2473–2493.

Silverman, B. W. (1986), Density Estimation for Statistics and Data Analysis, London: Chap-
man and Hall.

Simonoff, J. S. (1996), Smoothing Methods in Statistics, New York: Springer-Verlag.

Smith, E. L. and Stephenson, A. G. (2009), “An extended Gaussian max-stable process model
for spatial extremes,” J. Statist. Plann. Inference, 139, 1266–1275.

Smith, R. L. (1985), “Maximum likelihood estimation in a class of nonregular cases,” Biometrika,
72, 67–90.

— (1990), “Max-stable processes and spatial extremes,” Tech. rep., University of Surrey.

Smith, R. L., Tawn, J. A., and Yuen, H. K. (1990), “Statistics of Multivariate Extremes,” Int.
Statist. Rev., 58, 47–58.



202 Bibliography

Stoev, S. A. and Taqqu, M. S. (2005), “Extremal stochastic integrals: a parallel between max-
stable processes and α-stable processes,” Extremes, 8, 237–266 (2006).

Tawn, J. A. (1990), “Modelling Multivariate Extreme Value Distributions,” Biometrika, 77, pp.
245–253.

Taylor, K. E., Stouffer, R. J., and Meehl, G. A. (2012), “An Overview of CMIP5 and the
Experiment Design,” Bulletin of the American Meteorological Society, 93, 485–498.

Team, R. D. C. (2013), R: a Language and Environment for Statistical Computing.

Varin, C., Reid, N., and Firth, D. (2011), “An overview of composite likelihood methods,”
Statist. Sinica, 21, 5–42.

Vautard, R., Gobiet, A., Jacob, D., Belda, M., Colette, A., Déqué, M., Fernández, J., García-
Díez, M., Goergen, K., Güttler, I., Halenka, T., Karacostas, T., Katragkou, E., Keuler, K.,
Kotlarski, S., Mayer, S., van Meijgaard, E., Nikulin, G., Patarcić, M., Scinocca, J., Sobolowski,
S., Suklitsch, M., Teichmann, C., Warrach-Sagi, K., Wulfmeyer, V., and Yiou, P. (2013), “The
simulation of European heat waves from an ensemble of regional climate models within the
EURO-CORDEX project,” Climate Dynamics, 41, 2555–2575.

Wadsworth, J. L. and Tawn, J. A. (2012), “Dependence modelling for spatial extremes,”
Biometrika, 1, 1–20.

— (2014), “Efficient inference for spatial extreme value processes associated to log-Gaussian
random functions,” Biometrika, 101, 1–15.

Wand, M. P. (1992), “Error analysis for general multivariate kernel estimators,” J. Nonparamtr.
Statist., 2, 1–15.

Wand, M. P. and Jones, M. C. (1994), “Multivariate plug-in bandwidth selection,” Comput.
Statist., 9, 97–116.

— (1995), Kernel Smoothing, vol. 60, London: Chapman and Hall.

Wang, Y. and Stoev, S. A. (2010), “On the structure and representations of max-stable pro-
cesses,” Adv. in Appl. Probab., 42, 855–877.

Wood, A. T. and Chan, G. (1994), “Simulation of stationary Gaussian processes in [0, 1] d,”
Journal of computational and graphical statistics, 3, 409–432.

Zhang, H. and El-Shaarawi, A. (2010), “On spatial skew-Gaussian processes and applications,”
Environmetrics, 21, 33–47.

Zhu, X., Bowman, K. P., and Genton, M. G. (2014), “Incorporating geostrophic wind information
for improved space-time short-term wind speed forecasting,” Ann. Appl. Stat., 8, 1782–1799.


