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Introduction

The aim of statistical mechanics is to describe the properties of macroscopic sys-
tems from the sole knowledge of their microscopic constituents and of their inter-
actions. The predictions of statistical mechanics offer the opportunity to compare
a wide range of systems by using a reduced number of macroscopic quantities.
Equilibrium systems are characterized by very specific properties both at the dy-
namical and stationary levels. An important feature of equilibrium systems is the
time reversibility of their dynamics. It constrains the relaxation after a (small)
perturbation to be fully encoded in the spontaneous stationary fluctuations. More-
over, fluctuations in equilibrium are entirely controlled by only two parameters: the
temperature and the friction coefficient with the surrounding thermostat, which
endow these fluctuations with a strong sense of universality. No further details
from the thermostat are at play.

Waiving the constraints of equilibrium opens the door to a wide variety of
nonequilibrium dynamics. The first nonequilibium systems that come to mind are
systems caught during their relaxation towards equilibrium. Others can be main-
tained out-of-equilibrium by applying an external field enforcing a steady flux, such
as a particle or charge current, or an energy flux. Yet another class of nonequi-
librium systems comprises systems in which energy is injected and dissipated at
the microscopic level of their individual components [1]. These are called active
systems, and they are the main focus of the present study. The energy stored in
the environment, most often in a chemical form, is converted into mechanical work
to produce directed forces and thus directed motion.

By contrast to equilibrium settings, the breakdown of equilibrium laws in ac-
tive systems can be used to extract quantitative information about the microscopic
active processes making up the energy reservoir. One can access the kinetic de-
tails of the fluctuations, to be characterized in terms of time, length and energy
scales. In equilibrium, the reversibility of the dynamics is enforced by the detailed
balance principle: the forward and reverse transitions between microstates are
equally probable in a steady state. The existence of an arrow of time only emerges
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at the macroscopic level as a result of a coarse graining of the dynamics [2]. By
contrast, the arrow of time is already defined at the microscopic level in active
systems because of the irreversibility of the dynamics. Recent methods of stochas-
tic thermodynamics have been proposed to extend thermodynamic concepts when
fluctuations are of paramount importance [3]. They provide a powerful framework
to relate the breakdown of time reversal to the microscopic energy conversion at
the basis of the nonequilibrium dynamics. We will discuss some of the most fruitful
ideas of this developping field in Chapter 1.

From individual tracers in living systems ...

A paradigm of active systems are living systems. In living cells, it is the contin-
uous injection of energy provided by adenosine triphosphate (ATP) which initially
triggers the activity of intracelullar nonequilibrium processes. For instance, the
molecular motors can convert the chemical energy provided by ATP hydrolysis
into a mechanical work to exert forces within the cell. The ensuing fluctuations
are referred to as active fluctuations, distinct from the thermal fluctuations already
present in the absence of nonequilibrium activity. The effect of these fluctuations
is apparent in a large variety of living systems, from individual crawling cells to
cell aggregates and epithelial tissues. They drive the dynamics of intracellular
components, such as proteins, organelles and cytoskeletal filaments [4, 5]. Tracer
particles are injected in living cells to probe these fluctuations. Alternatively,
the intracellular environment is reconstituted in vitro as minimal model systems.
Recent progress in tracking methods allow one to gather a large amount of statis-
tics to analyze the tracer displacement. Moreover, the tracer can be manipulated
to measure the response of the system: it reveals the viscoelastic properties of
the intracellular medium [6–8]. These techniques, known as microrheology, are
presented in our overview in Chapter 2. Combining measurements of the sponta-
neous fluctuations and of the response, the departure from equilibrium is generally
quantified by a frequency dependent effective temperature [9]. Yet, its physical
interpretation is at best limited. Not only does it lack any microscopic interpre-
tation, unlike the kinetic energy of thermal agitation, but it also depends on the
measured observables.

To go beyond this characterization of the intracellular nonequilibrium proper-
ties, one has to rely on a modeling of the tracer dynamics. Based on experimental
observations, we propose a phenomenological picture for the constant remodeling
of the intracellular environment in terms of an active cage subjected to random
hops. Our minimal model, which we present in Chapter 3, reproduces qualitatively
and quantitatively the fluctuations and the departure from equilibrium reported
experimentally. It provides a useful framework to analyze fluctuations and re-
sponse in actual living systems, allowing one to extract information about the
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intracellular activity. These applied quantitative aspects come in the subsequent
Chapters 4, 5 and 6.

To test our predictions with experimental data, we consider three different liv-
ing systems. First, we treat the dynamics of tracers injected in living melanoma
cells under three conditions: motor inhibited cells, ATP depleted cells, and un-
treated cells as a control. We demonstrate that our predictions are consistent with
a series of measurements, supporting the validity of our phenomenological picture.
We provide a quantitative characterization of active fluctuations in terms of time,
length and energy scales (Chapter 4). Second, we propose a detailed analysis of
fluctuations in living oocytes as probed by intracellular vesicles. We estimate the
energy fluxes between the active processes, the tracer and the thermostat. In par-
ticular, we reveal that the efficiency of energy transduction from the cytoskeleton
remodeling to the tracer motion is very low (Chapter 5). Eventually, we investigate
the dynamics of epithelial tissues through the fluctuations of tricellular junctions,
named as vertices. The analysis of vertex fluctuations provides a synthetic read-
out of the effect of inhibitors acting on the molecular pathway regulating motor
activity (Chapter 6).

... to interacting self-propelled particles

Another canonical example of active systems are the ones made of interact-
ing self-propelled constituents. The first experimental studies of such systems
were concerned with biological systems in which the emerging phenomenology
results from various complex ingredients. As an example, the interplay of the
self-propulsion, of the alignment interaction, and of the hydrodynamics interac-
tion drive the dynamics in dense swarms of bacteria [10]. To create minimal
biomimetic systems, motile colloids with well-controlled properties have been syn-
thesized in the past decades. As an example, Janus particles have two different
sides with distinct physical and/or chemical properties [11]. Such a symmetry
breaking induces a local gradient in the surrounding environment, of either ther-
mal, electric or chemical origin, which results in a self-propelled motion. Inspired
by such experimental systems, recent theoretical works have focused on simple
models of interacting active particles. These have shed light on the mechanism of
the transition to collective motion in the presence of aligning interactions [12], and
shown the possibility of a motility-induced phase separation (MIPS) even when
the pair interaction between particles is purely repulsive [13, 14].

Despite the nonequilibrium nature of active particles, it is often difficult to
precisely pinpoint the truly nonequilibrium signature in their emerging properties.
For instance, MIPS is not associated with the emergence of steady-state mass cur-
rents. Even for systems with steady currents, the connection to equilibrium physics
can sometime be maintained – the transition to collective motion amounts in some
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cases to a liquid-gas phase transition [15, 16]. It is an open question whether, and
to what extent, the concepts of equilibrium physics are useful to describe active
matter. Building a thermodynamic approach for active matter first requires under-
standing how active systems depart from equilibrium. We investigate in Chapter 7
the nonequilibrium properties of a specific dynamics for which the self-propulsion
is embodied by a persistent noise. We report on existing approximated treatments
of such dynamics, and we determine the steady state distribution within a system-
atic approximation scheme. It allows us to quantify the time reversal breakdown
of the dynamics and to delineate a bona fide effective equilibrium regime.
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Outline

• Chapter 1 – Review of nonequilibrium statistical mechanics: Langevin equa-
tion, fluctuation-dissipation relation, entropy production, Harada-Sasa rela-
tion, stochastic thermodynamics.

• Chapter 2 – Review of the biological framework: mechanics and dynamics
at the subcellular scale, microrheology techniques, previous modeling of the
intracellular environment.

• Chapter 3 – Minimal model of tracer dynamics in living cells: phenomenolog-
ical motivations, analytic and numerical predictions for the tracer statistics,
departure from equilibrium, energetics of nonequilibrium fluctuations (pa-
per A).

• Chapter 4 – Insight into the dynamics within living melanoma cells: anal-
ysis of tracer fluctuations, extracting an active temperature three orders of
magnitude smaller than the bath temperature, quantifying the amplitude of
active forces and their time scales (paper B).

• Chapter 5 – Analyzing fluctuations inside living mouse oocytes: including
memory effects in the modeling, extracting force and time scales in line with
estimations from single motor experiments, quantifying dissipation of energy,
estimating the very low efficiency of power transmission from the intracellular
network rearrangement to the tracer dynamics (papers C and D).

• Chapter 6 – Understanding the regulation of fluctuations in epithelial tissues
by molecular motors: extracting active parameters from the statistics of ver-
tex fluctuations (energy, time, and length scales), establishing a correlation
between the hierarchy in the molecular pathway controlling motor activity
and the mesoscopic fluctuations of the tissue (paper E).

• Chapter 7 – Collective dynamics of interacting self-propelled particles: re-
view of the phenomenology and existing approximate treatments of the
dynamics, derivation of the steady state based on a systematic perturba-
tion scheme, existence of an effective equilibrium regime and the associ-
ated fluctuation-dissipation relation, hydrodynamic equations and collective
modes (paper F).
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Chapter 1

Modeling the fluctuations of
passive tracers

In this introductory Chapter, we first present the modeling of the dynamics of
a passive particle subjected to equilibrium fluctuations. We introduce the phe-
nomenological description proposed by Paul Langevin after the seminal experi-
ment by Jean Perrin. We highlight the importance of the fluctuation-dissipation
theorem (FDT), as well as its practical consequences for the characterization of a
thermal bath. Second, we discuss the case of a nonequilibrium dynamics driven by
active fluctuations. We report on methods used to extract qualitative and quan-
titative information from the violation of the FDT, with a view to analyzing the
nonequilibrium source of the dynamics.
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1.1 Tracer in a thermal bath
The seminal experiment performed by the Jean Perrin in the early twentieth cen-
tury was one of the first attempts to extract quantitative information from the
dynamics of tracers immersed in a thermal bath [17]. Thanks to the development
of optical tools, he could resolve the trajectories of colloidal grains suspended in
water with unprecedented accuracy, yielding the picture reported in Fig. 1.1. In
his observations, Perrin noticed that the trajectories were so erratic that one could
not quantify properly the velocity of the grains. The discontinuity in the trajectory
between two successive measurements led to wrong estimates. Both the direction
and the norm of velocities did not converge to any limit as the accuracy of mea-
surement was increased. Indeed, the individual collisions between the colloidal
grains and the solvent molecules were by far beyond experimental resolution, so
that the variations of velocity observed by Perrin already resulted from a large
number of such collisions.

Langevin dynamics
These experiments motivated the theoretical description developed by Paul

Langevin at the same period [18]. In his approach, Langevin deliberately avoids
a kinetic description of the collisions between the tracer particle and the bath
particles. He postulated that the effect of these collisions could be rationalized by
two forces. A viscous friction force −γv opposed to the displacement of the tracer,
where v and γ respectively denote the tracer velocity and the friction coefficient,
and a stochastic force ξ. According to the second Newton law, the dynamics
follows as

mv̇ = −∇U − γv + ξ, (1.1)
where m is the particle’s mass, and −∇U is the force deriving from an arbitrary
potential U . When inertial effects can be neglected, the dynamics is simplified as

γṙ = −∇U + ξ. (1.2)

This is the Langevin dynamics in its overdamped formulation. Stokes law states
that the friction coefficient reads γ = 6πηa for spherical tracers of radius a, where
η denotes the fluid’s viscosity. The stochastic force ξ is a Gaussian white noise
with correlations 〈ξα(t)ξβ(0)〉 = 2γTδαβδ(t), where T is the temperature of the
surrounding bath, and the Greek indices refer to the spatial components.

Based on this phenomenological approach, one can predict the time evolution
of a number of observables. Perhaps the most intuitive observable to consider
is the mean-square displacement (MSD) defined as 〈∆r2(t, s)〉 = 〈[r(t)− r(s)]2〉,
which only depends on the time difference t− s at large times. From the dynam-
ics (1.1), one can deduce that, for a free particle, the MSD behaves at large times
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Figure 1.1 – Pictures of Jean Perrin (left), and Paul Langevin (right).
Middle: Three trajectories of colloidal particles of radius 0.53 µm where
measurements are taken every 30 s. Reproduced from the book Les Atomes
of Jean Perrin. Mesh size 3.2 µm.

as 〈∆r2(t)〉 ∼ 2dDt, where we have introduced the diffusion coefficient D = T/γ,
and d refers to the space dimension. Another observable of interest is the autocor-
relation function of velocity 〈v(t) · v(s)〉. It only depends on the time difference
t− s at large times, and it is related to the diffusion coefficient as

D = 1
d

∫ ∞
0
〈v(t) · v(0)〉 dt. (1.3)

This definition connects the amplitude of the thermal fluctuations to the relax-
ation of the velocity, which is driven by the dissipation of energy from the tracer
to the thermostat.

Fokker-Planck equation

Beyond the relaxation of the dynamics, some specific features of equilibrium
can also be found in the stationary properties of the tracer. These properties
are encoded in the steady state distribution of velocity and position. To obtain
such a distribution from the underdamped dynamics (1.1), we first express the
time evolution for the probability P (v, r, t) of finding the tracer at position r with
velocity v at time t. It is given by the following Fokker-Planck equation [19]:

∂P

∂t
= −vα

∂P

∂rα
+ 1
m

∂U

∂rα

∂P

∂vα
+ γ

m

∂

∂vα

[(
vα + T

m

∂

∂vα

)
P

]
, (1.4)

where we have used the convention of summation over repeated indices, as for the
following Chapters. The stationary distribution, known as the Maxwell-Boltzmann
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distribution, follows as

PS(v, r) ∼ exp
[
−U(r)

T
− mv2

2T

]
. (1.5)

It can be split into a potential and a kinetic part as a property of equilibrium.
In particular, we deduce that 〈v2〉 = dT/m, which is known as the equipartition
theorem for the velocities. Integrating over the velocities yields the Boltzmann dis-
tribution PS(r) ∼ e−U(r)/T . Alternatively, the Fokker-Planck equation associated
with the overdamped dynamics (1.2) reads

∂P

∂t
= 1
γ

∂

∂rα

[(
∂U

∂rα
+ T

∂

∂rα

)
P

]
. (1.6)

The stationary distribution directly follows, and coincides with the Boltzmann
distribution, as it should.

Fluctuation-dissipation theorem
To probe the equilibrium properties of the dynamics, an external operator can

perturb the dynamics and measure the relaxation of the system. We consider that
the underdamped dynamics (1.1) is perturbed by applying a force f(t) of small
amplitude to the tracer:

mv̇ = −∇U + f− γv + ξ. (1.7)

The response function R quantifies how the average position is affected by the
perturbation:

Rαβ(t, s) = δ 〈rα(t)〉
δfβ(s)

∣∣∣∣∣
f=0

. (1.8)

Causality enforces that it vanishes when t 6 s, and it only depends on the time
difference t − s provided that the dynamics has reached a steady state. For an
equilibrium dynamics, the response function can be related to correlations in the
absence of the perturbation Cαβ(t) = 〈rα(t)rβ(0)〉 as

Rαβ(t) = − 1
T

dCαβ
dt . (1.9)

This is the dynamic version of the FDT. It formally expresses the fact that the
thermal fluctuations and the damping force originate from the same microscopic
process, namely the collision between the tracer and the bath particles. Introduc-
ing the Fourier transform of an arbitrary function F (t) as F (ω) =

∫
eiωtF (t)dt =
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F ′(ω) + iF ′′(ω), where F ′(ω) and F ′′(ω) denote its real and imaginary parts,
respectively, the FDT can be expressed in the Fourier domain as

T = ωCαβ(ω)
2R′′αβ(ω) . (1.10)

A major consequence of the FDT is that one can independently measure the re-
sponse function and the position autocorrelation, by perturbing the dynamics and
tracking the spontaneous fluctuations of the tracer, respectively, to evaluate the
temperature of an equilibrium bath. Such a method can be extended to an arbi-
trary perturbation defined by U → U −h(t)B(r,v), where h is the strength of the
perturbation. Introducing the generalized response for an arbitrary observable A
as

RG(t) = δ 〈A(t)〉
δh(0)

∣∣∣∣∣
h=0

, (1.11)

the FDT states that [20]

RG(t) = − 1
T

d
dt 〈A(t)B(0)〉 . (1.12)

It is an important property of equilibrium that the only information that one can
extract from the comparison between response and correlations is the bath tem-
perature.

Generalized dynamics: memory effects
When considering short enough time scales to probe the collisions at the origin

of the thermal forces [21], the details of the interactions between the tracer and
the bath affect the Langevin dynamics. When integrating out these interactions,
some memory effect appear in the dynamics [22]. Such effects are accounted for
by including a memory kernel γ in the damping force:

mv̇ = −∇U −
∫ t

0
γ(t− s)v(s)ds+ ξ. (1.13)

The correlations of the stochastic force are also modified as

〈ξα(t)ξβ(0)〉 = Tδαβγ (|t|) . (1.14)

The FDT (1.12) is still valid, as a property of an equilibrium bath. The relation
between the damping kernel and the noise correlations is a direct consequence of
the FDT [23]. Some hydrodynamic effects may also yield a memory kernel [24].
Moreover, memory effect can arise when considering a complex bath beyond the
simple case of water, such as a gel of polymers [25, 26]. As an example, power-law
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kernels are reported in gels of cytoskeletal filaments, thus affecting the dynamics
at every time scale [6]. In general, the memory effects lead to anomalous diffusion
of the tracers, either superdiffusive or subdiffusive behavior depending on the
properties of the kernel.

1.2 Nonequilibrium dynamics driven by active
fluctuations

We now consider the dynamics of a tracer subjected to thermal and active fluctua-
tions. We take the equilibrium Langevin dynamics in its overdamped formulation
as a passive reference:

γṙ = −∇U + ξ + fA, (1.15)

where we have introduced the active force fA. We want to investigate the effect
of this force on the dynamics of the tracer. To this aim, we report on methods
used to reveal the nonequilibrium properties of the dynamics from the violation of
equilibrium laws, and to relate such violations to the microscopic features of the
active force.

Effective temperature and extended fluctuation-dissipation relation
Though one can always define correlations and response in the presence of

an active force, there is no reason for the specific relation given by the FDT to
hold anymore. As a consequence, any method based on comparing response and
correlations at every time scale to measure the bath temperature is no longer valid.
Then, one can wonder if such a method can be extended far from equilibrium
to assess asymptotic regimes where temperatures can be defined. These may a
priori differ from the bath temperature, and are to be related to the energy scales
involved in the active force. An early attempt to get an insight these issues has
been to define a frequency-dependent effective temperature, by analogy with the
FDT (1.10), as [9]

Teff(ω) = ωCαβ(ω)
2R′′αβ(ω) . (1.16)

It reduces to the bath temperature at large frequencies provided that the colli-
sions at the origin of thermal fluctuations occur on time scales shorter than any
of the microscopic processes powering active fluctuations. In that respect, the
typical frequency at which the effective temperature departs from the equilibrium
prediction provides information about the shortest time scale involved in these
fluctuations. Alternatively, the definition of a time-dependent effective tempera-
ture can also provide some insight into the nonequilibrium dynamics. It has been
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used in sheared fluids to propose the existence of two distinct temperatures as-
sociated with different time scales [27, 28]. However, the physical interpretation
of the effective temperature is at best limited. It does not contain the universal
meaning of a temperature, since the violation of the FDT is different for each
type of perturbation. Besides, there is no clear connection with any underlying
microscopic processes driving the dynamics far from equilibrium.

Though the FDT is violated out-of-equilibrium, the response can still be related
to additional correlations which involves the potential and the active force [29, 30]:

Rαβ(t) = − 1
2T

dCαβ
dt + 1

2γT
〈
rα(t) (fA −∇U)β (0)

〉
, (1.17)

Measuring the temperature from response and correlations now requires the knowl-
edge of the potential and the active force by contrast to equilibrium. Moreover,
the additional correlations of the extended fluctuation-dissipation relation (FDR)
in Eq. (1.17) depend on the type of perturbation, thereby breaking the universal
formulation of the FDT in Eq. (1.12). From a practical perspective, the FDR
can be used to deduce the correlation between tracer position and non-thermal
forces [31, 32]. The FDR can be cast in the following form:

Rαβ(t) = − 1
T

dCαβ
dt + 1

2γT
[〈
rα(t) (fA −∇U)β (0)

〉
−
〈
rα(0) (fA −∇U)β (t)

〉]
.

(1.18)
In the equilibrium case for which the dynamics is invariant under a time reversal,
the second term in Eq. (1.18) vanishes at all times, and the FDR reduces to the
FDT as it should. This writing explicitly connects the violation of the FDT with
the time reversal breakdown.

Entropy production
It has been shown in the last decades that the breakdown of time reversibility, as

a hallmark of nonequilibrium, can be quantified by the rate of entropy production.
It is defined in terms of the weights for a given time realization of the forward and
backward processes, provided that the backward one exists, respectively denoted
by P and PR, as [33]

σ = lim
t→∞

1
t

ln P
PR

. (1.19)

It characterizes the irreversible properties of the dynamics, and it satisfies a fluc-
tuation theorem. Given that the thermal noise term in the dynamics (7.1) is
Gaussian, the probability weight can be written as P ∼ e−A, where the dynamic
action A reads [34]

A = 1
4γT

∫ t

0
(γṙ +∇U − fA)2 ds. (1.20)
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The reversed dynamics is defined in terms of the forward one as rR(t) = r(−t) and
ṙR(t) = −ṙ(−t), so that PR is simply obtained by substituting these expressions
into Eq. (1.20). The entropy production rate follows as

σ = 1
T

lim
t→∞

1
t

∫ t

0
ṙ · (fA −∇U)ds. (1.21)

We identify the time and ensemble averages under the ergodic assumption. The
contribution from the potential 〈ṙ · ∇U〉 = d 〈U〉 /dt vanishes in the steady state,
yielding

σ = 1
T
〈ṙ · fA〉 . (1.22)

As a result, the entropy production rate coincides with the power of the active
force divided by the bath temperature. One can use the violation of the FDT to
evaluate the entropy production rate. An important result is that σ can explicitly
be written in terms of such a violation as [35, 36]

σ = γ

T
lim
t→0

d
dt

[
TRαα(t) + dCαα

dt

]
. (1.23)

It is written in the Fourier domain as

σ = γ

T

∫ dω
2π ω [ωCαα(ω)− 2TR′′αα(ω)] . (1.24)

This is the Harada-Sasa relation. It provides a simple way to estimate the entropy
production rate by independently measuring response and correlations. In that
respect, it does not require any information about the details of the potential and
the active force. Moreover, it shows that the violation of the FDT can be related to
the microscopic active processes. Considering a generalized overdamped dynamics
with memory effects as∫ t

0
γ(t− s)ṙ(s)ds = −∇U + ξ + fA, (1.25)

where 〈ξα(t)ξβ(0)〉 = Tδαβγ (|t|), the Harada-Sasa relation is extended as [37]

σ = 1
T

∫ dω
2π ωγ

′(ω) [ωCαα(ω)− 2TR′′αα(ω)] , (1.26)

where γ′(ω) denotes the real part of the damping kernel in the Fourier domain.

Energy exchanges with the thermostat
A more physical interpretation of the entropy production rate is based on

energy exchanges between the tracer and the surrounding thermostat. According
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to the action-reaction principle, the force exerted by the tracer on the heat bath
is opposed to the thermal forces. As a result, the work done by the tracer on the
heat bath per unit time is given by ṙ · (γṙ− ξ). This is also the power transferred
from the tracer to the thermostat, as introduced by Sekimoto [38, 39]. These
energetic observables are fluctuating quantities, by contrast to the ones defined in
standard thermodynamics. They are at the basis of stochastic thermodynamics [3,
40], which aims at extending thermodynamic concepts to small systems, for which
fluctuations are of paramount importance.

In equilibrium, the average power transferred to the thermostat is zero. This
is because, on average, the power injected by the thermal fluctuations, which
drives the tracer’s motion, is balanced by the power dissipated through the drag
force. For a nonequilibrium dynamics, there is an extra source of energy due to
the active force. More energy is released into the bath through the drag force
compared with the one injected by the thermal fluctuations only. As a result, the
power transferred to the thermostat is positive. From the expression in Eq. (1.22),
it follows that the entropy production rate is simply related to the average power
as σ = 〈ṙ · (γṙ− ξ)〉 /T . Hence, the entropy production rate is of direct physical
relevance to quantify energy exchanges with the heat bath.
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Chapter 2

Living matter: a paradigm of
nonequilibrium systems

In this Chapter, we review the biological framework which controls the dynamics
and mechanics in living systems. Then, we present the experimental techniques
used to investigate the fluctuations of the intracellular components as well as the
mechanical properties at the subcellular scale, known as microrheology methods.
We present typical microrheology data, leading us to discuss the complex rheologi-
cal properties of the intracellular environment, and to highlight the nonequilibrium
features apparent in the tracer statistics. For completeness, we present previous
models of the intracellular fluctuations and mechanics.
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2.1 Structure and dynamics of the intracellular
environment

Cytoskeleton: architecture of the cell

The structure of the cell is supported by a network of polymer filaments named
the cytoskeleton [41]. This network is a dynamic entity in constant remodelling.
There are three types of filaments: two of them are polar, namely the actin fila-
ments and the microtubules, and the third ones, known as the intermediate fila-
ments, are apolar. Each kind of filament has different mechanical properties and
is made of different subunits. Thousands of these subunits agglomerate to form
a strand of protein that can extend all along the cell. Intermediate filaments are
fibers with a diameter of approximately 10 nm which are able to deform under a
mechanical stress. The main function of intermediate filaments is to enable the
cells to bear external stress. Microtubules are empty tubes with a diameter of
about 25 nm. They are stiffer than both intermediate and actin filaments, and
they can rupture when stretched. They are crucial in the regulation of the intra-
cellular transport. Actin filaments are helical polymers with a diameter of about
7 nm which are more flexible than the microtubules. They are more abundant in
the cell than both intermediate filaments and microtubules. They can be found
generally in bundles or entangled networks, with connectivity controlled by binding
proteins such as cross-linkers. The assembly and disassembly of actin filaments is
controlled by the hydrolysis of ATP through treadmilling. The properties of actin
networks have received a lot of attention, since they are believed to be the main
filaments controlling the mechanical properties and the motility of the cell.

Molecular motors

Some proteins known as the molecular motors can exert forces on these fila-
ments. These forces result from the conversion of the chemical energy provided
by ATP hydrolysis, which provides around 50 kBT/mol in normal physiologic con-
ditions, into mechanical work. Each type of motors is associated with specific
filaments. The intermediate filaments being apolar, there is no corresponding mo-
tor. The kinesin and dynein motors are moving along the microtubules in opposite
directions. They carry organelles and vesicles throughout the cell, thereby regu-
lating the intracellular transport at large scales. Similarly, the myosin-I motors
can transport various kinds of cargos along the actin filaments. These motors
can also bind separately to an actin filament and the cell membrane to pull the
membrane into a new shape. Another important type of motors acting on actin
filaments are the myosin-II motors, whose power stroke time is about 10 s. Many
of these motors can bind together to form a myosin filament: a double-headed
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Figure 2.1 – Schematic picture of a myosin filament pulling two actin fila-
ment past each other. The resulting modification of the actin network affects
the dynamics of intracellular components, represented in grey circles. Taken
from [42].

strand with the two heads pointing in opposite directions. Such filaments can at-
tach to different actin filaments to slide them past each other, as shown in Fig. 2.2.
The forces produced by these filaments lead to constantly modify the structure of
the actin network. Therefore, motor activity affects the dynamics of intracellular
components not only through directed transport, but also via the remodeling of
the surrounding cytoskeletal network.

Reconstituted in vitro systems

Understanding the mechanical properties of the complex intracellular structure
and predicting the effect of active forces in the cell is largely a challenge to physical
interpretation. As a result, the cytoskeleton is reconstituted in vitro to investigate
its properties in simplified model systems. First experiments have been carried
out in the absence of molecular motors, specifically to study actin filaments [43–
45]: the corresponding network is referred to as a passive gel. These experiments
aimed at characterizing the mechanics and the dynamics of passive gels under
strictly thermal fluctuations. The effect of motor activity was then investigated
by adding myosin filaments in the actin network. Recent studies have studied the
coarsening of the network driven by the motors [46, 47]. In particular, they have
shown that such a collapse into a reduced number of points in the gel can provide
insight into the connectivity of the network, as controlled by cross-linkers [48, 49].

Control parameters

To investigate the role of the different intracellular components in the mechan-
ics and dynamics within the cell, the system can be subjected to various treat-
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Figure 2.2 – Time evolution of acto-myosin networks with different concen-
tration of cross-linkers. From left to right, the molar ratio of cross-linker over
actin concentration varies as 0.01, 0.05, and 0.1. The system collapses into
a reduced number of points as this ratio increases. Scalebar 1 mm. Taken
from [48].

ments. For living cells, polyethylene glycol can be added to modify the mechanics
by inducing an osmotic compression [50]. The addition of blebbistatin is largely
used to inhibit the activity of myosin-II motors. Besides, the whole cell can also
be depleted in ATP, thus providing an equilibrium-like reference [51]. The effects
of the drugs depend on both the cell conditions and the concentration added to
it, and it may affect different components of the cells beyond the targeted one.
Alternatively, mutant cells provide efficient ways to act precisely on specific com-
ponents. Yet, inhibiting one component, such as one type of molecular motors
or cytoskeletal filaments, alters both the mechanics and the dynamics in general,
as discussed below. In contrast, the properties of the reconstituted actin gels are
better controlled, thus providing the opportunity to decipher the role of the differ-
ent constituents of the gels. The concentration of motors, filaments, cross-linkers,
and ATP can be varied independently to study the dynamical and mechanical
properties of these model systems.

2.2 Measuring fluctuations and response
Fluctuations and mechanical properties of the intracellular environment are mea-
sured with microrheology techniques [7]. They rely on tracking and manipulating
tracer particles, known respectively as passive and active microrheology methods.
These tracers can be either injected in the system [42, 51], or attached to the
cell cortex [31, 52–54]. Alternatively, components already present in the system,
such as vesicles in living cells, can also serve as such probes [51]. Acto-myosin
gels represent controlled systems for which the motor activity can be regulated
externally through the concentration of ATP. It provides a useful tool to investi-
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Figure 2.3 – Typical trajectories of micro-size tracers in living systems.
Left: Beads attached to the cell cortex. Scalebar 10 nm. Taken from [53].
Right: Beads injected in an acto-myosin gel. Arrows indicate displacements
of large amplitude. Taken from [42].

gate the effect of such an activity in both the fluctuations and the mechanics. In
living cells, the system can also be depleted in ATP, though the properties of the
whole cell get significantly altered by such a treatment. Alternatively, the activ-
ity of some motors can be inhibited via specific drugs, or by considering mutant
cells. Finally, when considering tracers bound to the cell cortex, some tracers are
generally glued to the cortex to provide an equilibrium-like reference sensitive to
thermal fluctuations only.

2.2.1 Statistics of tracer displacement
The trajectories of the tracers probing the dynamics of either the intracellular
environment or reconstituted acto-myosin gels show a similar behavior [42, 53].
Typically, one tracer exhibits locally confined fluctuations, and also experiences
rapid directed motions until it reaches a new position around which it fluctuates
again [Fig. 2.3]. This suggests that the dynamics are made of intermittent transi-
tions between locally stable positions.

Mean-square displacement
The statistics of spontaneous displacement is extracted from the particle track-

ing. The time evolution of the MSD provides an intuitive characterization of the
typical excursion of the tracer as a function of time [8]. The large time diffusion of
the tracer is controlled by active fluctuations, since thermal diffusion alone is not
efficient enough to regulate the large scale transport across the cell. By contrast
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Figure 2.4 – Typical measurements of the mean-square displacement for
tracers injected in living cells showing transient superdiffusive behavior.
Taken from [55] and [57] in left and right, respectively.

with the dynamics of a tracer immersed in water, it can also exhibit subdiffusive
behavior because of crowding effects in the intracellular environment and inter-
actions with the surrounding cytoskeletal network. Moreover, transient superdif-
fusive behaviors are also assessed and associated with motor activity [55–57], as
shown in Fig. 2.4. Overall, a large variety of exponents for the anomalous diffusion
have been assessed. Such a variability has two main origins. First, the different
types of tracers used as probes, either attached to the cortex or injected in the
cell, without various protocols of injection, lead to different interactions with the
intracellular environment. Second, the mechanical properties are modified across
cell types, thus modifying the dynamics even in regimes where thermal fluctua-
tions are predominant. In that respect, a crucial issue is to consider observables
independent of the mechanical properties with a view to analyzing and comparing
fluctuations in different living systems.

Distribution of displacement

Recent improvements in tracking methods also allow one to gather sufficient
statistics to study the time evolution of the whole distribution of displacement.
In a large variety of living systems, ranging from crawling cells to reconstituted
acto-myosin gels [8, 42, 53, 58], it typically exhibits a central Gaussian part with
exponential tails [Fig. 2.5]. As for the MSD, the variance of the central Gaussian
and the extension of the tails are system dependent. In acto-myosin gels, the com-
parison between results of active and passive gels provides an insight into effects of
the motors. The passive distribution is always Gaussian, as expected for an equi-
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Figure 2.5 – Typical measurements of the displacement distribution for
tracers injected in acto-myosin gels. It is Gaussian for passive gels, and
exponential tails are present in active gels for which molecular motors are
added. Left: Passive and active gels in dotted lines and open circles, respec-
tively, at same lag time. Taken from [42]. Right: Passive and active gels in
small and large symbols, respectively, at same lag time. Taken from [58].

librium system. It is reported that the variance of the central Gaussian is enhanced
in the active case compared with its passive counterpart [58, 59]. Therefore, motor
activity also affects the fluctuations of small amplitude. Besides, the mechanical
properties of the surrounding environment controls these fluctuations: motor ac-
tivity also modifies the mechanical properties, as discussed below. The tails get
more pronounced as time increases. Note that the exponential tails are usually
measured within a decade or less, thereby being indistinguishable from power-law
tails. A striking feature of the distribution is the scale invariance reported in
some systems. When scaling the displacement by the variance of either the central
Gaussian part or the whole distribution, which are hardly different provided that
the tails are not so pronounced, both the central part and the tails fall onto a mas-
ter curve [8, 53]. Note that such a scale invariance is also reported in a different
context of tracers immersed in bath made of bacteria [60]. This is of particular
interest since it provides the opportunity to compare observables insensitive of the
dynamics, independently of the exponents characterizing the time evolution of the
MSD. In that respect, the deviation from the central scaled Gaussian is perhaps
the simplest feature to be analyzed through different cell types.
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Non-Gaussian parameter
To capture the non-Gaussian features with a single observable, the non-Gaussian

parameter is commonly introduced as the scaled kurtosis of the distribution [61]:

NGP = 〈∆x4〉
3 〈∆x2〉2

− 1, (2.1)

where ∆x is the one-dimensional projection of the displacement. The NGP van-
ishes when the distribution is Gaussian. It takes positive and negative values when
the distribution is respectively smaller and broader than Gaussian. The main
drawback of measuring the NGP experimentally is that the noise is enhanced with
respect to measurements of the MSD. The NGP reported experimentally usually
exhibits a transient regime of positive values [8, 42, 53], as shown in Fig. 2.6. It
corresponds to the time scales at which exponential tails are reported aside the
central Gaussian part of the displacement distribution. At short and large times,
the NGP vanishes, showing that the tracer statistics is asymptotically Gaussian in
these regimes. Note that the NGP shrinks towards negative values at very large
times. This is not due to motor activity, since it is also observed in passive gels
without motors.

2.2.2 Mechanical properties at the subcellular scale
Measurements in living cells
The mechanical properties of the intracellular environment are probed by mea-

suring the response of the tracer to an external perturbation. By contrast to
experiments which investigate the cellular rheology by applying a stress to the
whole cell [62], the aim of active microrheology is to characterize the mechanics
at the subcellular scale. Perhaps the main drawback of such methods is the high
variability of the measurements. First, the intracellular environment is a non-
homogeneous medium, so that tracers can experience very different interactions
with the surrounding environment when evolving in various locations in the cell.
Second, the cytoskeleton being a dynamic structure, the local mechanical prop-
erties also vary in time. When comparing response and fluctuations, it is then
crucial to consider active and passive microrheology measurements performed on
the same tracer and with a reduced delay between the two measurements.

The perturbation is commonly applied by means of either optical [63, 64] or
magnetic tweezers [52, 65, 66]. A simple protocol consists in applying a step-
like force, in which case the response is quantified by the relaxation of the tracer
position. Another type of perturbation relies on applying a time-oscillating force.
As a result, the tracer position oscillates with an amplitude and a phase delay
with respect to the perturbation which are characteristic of the mechanics of the
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Figure 2.6 – Typical measurements of the non-Gaussian parameters defined
in Eq. (2.1). Up: Beads attached to the cell cortex. Taken from [53]. Bottom
left: Beads injected in an acto-myosin gel. Taken from [42]. Bottom right:
Beads injected in living cells. Taken from [8] .
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surrounding medium. The corresponding average displacement of the tracer 〈δx〉
is related to the perturbation force f through the response R as

〈δx(t)〉 =
∫ t

−∞
R(t− s)f(s)ds. (2.2)

The average is taken over realizations of the perturbation, so that the intracellular
fluctuations, both thermal and active, do not affect measurements of the response.
It follows that the response can be extracted by comparing the time series of the
tracer displacement and the perturbation for different frequencies of the perturba-
tion oscillations.

Viscoelastic behavior

Measurements of the response are generally reported through the complex mod-
ulus G∗. Considering spherical particles of radius a, it is related to the Fourier
response as G∗(ω) = [6πaR(ω)]−1. Its real part G′ is named the storage or elas-
tic modulus, the imaginary part G′′ is referred to as the loss or viscous modulus.
The origin of this naming can be understood by considering two simple cases of
rheology. For a purely elastic material associated with a Young modulus E, the
complex modulus is real and equal to E. It follows that the tracer displacement
is in phase with the perturbation when applying a oscillatory force. The Young
modulus is deduced by comparing the amplitude of oscillations between displace-
ment and forcing. For a purely viscous material with a viscosity η, the complex
modulus has only a non-vanishing imaginary part equal to iωη. In such a case,
there is a phase delay between displacement and forcing.

The intracellular environment is a viscoelastic material [65, 67, 68]. Its mechan-
ical properties can not simply be described in terms of a purely elastic or viscous
behavior, but rather as an interplay between these two. An important feature of
such materials is that the response depends on the time scale of the applied force,
namely on the frequency of oscillations for an oscillatory perturbation. As a result,
one can distinguish several regimes in the frequency dependence of the complex
modulus. In particular, some viscoelastic materials can be regarded as elastic or
viscous asymptotically. In living cells, a large variety of power law behaviors for
the complex modulus is reported depending both on the cell type and the probing
methods [6, 69, 70]. By contrast, the measurements in reconstituted systems are
more reproducible, since these synthetic systems are much more controlled than
the in vivo cytoskeleton [44, 45, 71, 72]. In particular, recent studies have inves-
tigated the role of motor activity in the mechanics of reconstituted network [58].
They show that the motors not only add an extra source of the fluctuations in
the system, they also change its rheological properties. As a result, motor activity
affects the properties of thermal forces applied on the tracers, since these forces
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depend on the details of the mechanics of the cytoskeletal network. For instance,
some studies have shed light on the ability of myosin motors to “fluidize” the cy-
toskeletal network [73]. Others have shown that motor activity can also lead to a
stiffening of the network [74, 75].

Departure from equilibrium
When motor activity modifies the structure of the cytoskeletal network, by

adding an extra source of fluctuations and affecting the network mechanics, the
FDT is no longer valid. To quantify the departure from equilibrium, the measure-
ments from passive and active microrheology are gathered in a frequency dependent
effective temperature, which has already been defined in Eq. (1.16) of Chapter 1.
This observable is of particular interest since it provides the opportunity to com-
pare a large variety of living systems with different rheological properties. At large
frequencies, experiments in different cell types report that the effective tempera-
ture converges towards a constant value close to the bath temperature [54, 63, 64,
74, 76], expressing that the thermal fluctuations are predominant in this regime,
as expected. Moreover, some works have brought forth a power-law behavior of
the effective temperature [77]. The authors relate this power-law to the exponent
characterizing the mechanics and to the one describing the anomalous diffusion of
the tracers.

2.3 Models for the intracellular mechanics and
dynamics

While the mechanisms of force generation are well understood at the level of indi-
vidual motors, understanding the details of the ensuing fluctuations at the subcel-
lular scale is still a challenge to physical interpretation. Therefore, studying the
role of active fluctuations in the intracellular dynamics requires to develop specific
models.

Modeling motor-induced deformations of the cytoskeleton
A first type of approach has consisted in investigating the effect of the motors

on the mechanical properties and the fluctuations of the cytoskeletal network [78,
79]. The corresponding studies are based on regarding the myosin filaments as
force dipoles able to generate contractile stresses. Through a continuum descrip-
tion of the network, it is possible to predict the mechanical deformation induced
by the motors and its effect on both mechanics and fluctuations. A related set
of works has described the active deformation of the cytoskeletal network via a
random force [80–83]. They are based on taking the active force as a fluctuat-
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Figure 2.7 – Experimental measurements of the FDT violation. Upper
left: Comparison between spontaneous fluctuations and response for beads
injected in acto-myosin gel. Taken from [74]. Upper right: Effective tem-
perature extracted from response and fluctuations of tracers attached the
membrane of living cells. Taken from [54]. Bottom: Comparison between
spontaneous fluctuations and response for the membrane of red blood cells.
Taken from [64].
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ing term with exponentially decaying correlations. Such a specific form emerges
when considering that the motors exert forces on the filaments over random times
drawn from a Poisson process. In particular, these works provide predictions for
the frequency behavior of the effective temperature in line with experimental mea-
surements. Other studies have investigated the dependence of the mechanics on
the structural organization of the cytoskeletal network, such as the concentra-
tion of filaments and cross-linkers. Using the tools of polymer physics, they aim
at understanding the properties of entangled solutions and disordered networks
starting from the mechanics of individual components [84]. Force propagation in
these structures is a crucial issue to understand their stability when motors are
added [85, 86].

A coarse-grained description of the intracellular environment
A second type of approach is based on a coarse-grained treatment of the contin-

uous remodeling of the cytoskeleton induced by motor activity. They do not rely
on the specific modes of deformation of the filaments. Following this approach, a
set of works has described the active behavior of the cytoskeleton by considering
gel-like constitutive relations [87–89]. They have led to predict instabilities and
transitions in the spontaneous flow of actin [90, 91], and they have provided a
new insight into the kinetics of cell division [92]. When considering the dynamics
of a tracer, the validity of the continuum description is supported by a separa-
tion of scales between the network mesh size and the tracer radius, despite the
heterogeneous nature of the intracellular environment. The effect of the network
remodelling on the tracers is taken into account via a noise term. Therefore, a
Langevin description is generally used, for which the details of the network struc-
ture and dynamics are gathered into thermal and active forces. As an example,
such an approach has led to predict the power-law behavior of the fluctuating
force spectrum, in agreement with measurements extracted from tracers attached
to the cell cortex [93]. As another example, a minimal model has described the
interactions between such tracers and the underlying cytoskeletal network [94–96].
The transmembrane interactions are regarded as an effective caging of the tracer.
The location of the cage is fluctuating as a result of the network rearrangement.
The transition from anti-persistent to persistent motion observed experimentally
is captured by using a specific form of the forces driving the cage center. In the
Langevin framework, the viscoelastic properties of the material are accounted for
by including memory effects in the dynamics. The expression of the memory kernel
is enforced by the generalized Stokes-Einstein relation: γ(ω) = 6πaG(ω)/(iω) [97,
98]. The correlations of the thermal noise term are related to γ, as given by
Eq. (1.14) in Chapter 1.
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Chapter 3

Active cage model of fluctuations
in living cells

In this Chapter, we propose a minimal model to describe the fluctuations of trac-
ers in living cells. On the basis of experimental observations, we propose that
such dynamics can be viewed as made of intermittent transitions between locally
stable positions. After discussing the details of our modeling, we bring forth pre-
dictions for the tracer statistics and the departure from equilibrium dynamics to
be tested against experimental results. Eventually, we offer specific protocols of
ours, based on the external manipulation of the tracers, that aim at characterizing
the intracellular activity.
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3.1 Caging dynamics

Previous modeling has described the fluctuations of tracer in living cells in line
with experimental observations. Yet, a unified picture able to capture the statistics
of both the tracer displacement and the active force for a large variety of mechanics
is still lacking. As discussed in Chapter 2, the fluctuations of the stochastic forces
can be measured from a combination of response and fluctuations of the tracers.
Extracting the active component of this spectrum requires to disentangle the equi-
librium and nonequilibrium contributions of the stochastic forces acting on the
tracer. In that respect, our model is built on a passive reference, corresponding to
the dynamics in absence of active forces, on top which we add a specific source of
nonequilibrium fluctuations: the thermal and active forces are clearly separated.
This allows us to relate the departure from equilibrium to the features of the active
forces. Overall, our aim is to provide a consistent framework able to reproduce
existing experimental data, with a view to characterizing the active component of
the fluctuations independently of their passive counterpart.

Tracer dynamics

We regard the dynamics of tracers in living systems, either living cells or recon-
stituted gels, as made of intermittent transitions between locally stable positions.
Our phenomenological model is based on a common picture which has emerged
to describe the tracer dynamics [99]. The tracers experience fluctuations of small
amplitude in a cage formed by the cytoskeletal filaments. The effect of motor
activity is to “open” the cage as a result of the remodeling of the surrounding cy-
toskeletal network. Based on this picture, we assume that each tracer is confined
in a cage, taken as a harmonic potential in first approximation, corresponding to
the local minimum of the complex energy landscape imposed by the network. As
a result, a spring force drives the tracer position r towards the center of the cage
r0. The fluctuations around the cage position r0 are powered by thermal noise.
We first consider the case where memory effects are irrelevant in the dynamics.
Given that inertial effects can be neglected, the dynamics is then simply given by
a force balance:

γṙ = −k(r− r0) + ξ. (3.1)

The forces generated by the motors rearrange the network structure. Therefore,
the form of the potential in which the tracer evolves gets modified, and the position
of the resulting local minimum may be translated. It leads us to assume that the
only effect of motor activity is to shift the cage center by a random amount. This is
implemented by endowing the cage center with a dynamics of its own independent
of the tracer position. We express it in terms of a stochastic process vA, referred



3.1. Caging dynamics 33

to as an active burst, as
ṙ0 = vA. (3.2)

Since the thermal and active fluctuations originate from two separated sources,
we assume that the thermal noise term and the active burst are uncorrelated pro-
cesses. Comparing our phenomenological picture with the framework presented in
Chapter 1, the active force fA = kr0 which is applied on the tracers results from
the random hops of the cage. In that respect, we assume that the forces induced
by the motors are not directly applied to the tracers, they are mediated by the
network remodeling. In actual living systems, the tracer motion is driven by both
direct interactions with neighbouring motors and indirect interactions which can
propagate over large distances via the surrounding network.

Active burst statistics
To mimic the experimental trajectories, the dynamics of the cage center should

be made of transitions between a quiescent state, during which the tracer fluctuates
in a confined volume of the system, and an active state, when the cage gets trans-
lated. This is achieved by enforcing that vA alternates between a zero value during
a random quiescence time, and a value vn̂ during a random persistence time, where
n̂ is a random direction [Fig. 3.1]. We assume that both the persistence and wait-
ing times are Poisson processes with mean values τ and τ0, respectively. We take
the burst amplitude v as a constant value, and we consider that n̂ is uniformly dis-
tributed in space. To compute the correlations of the active burst one-dimensional
projection vA, we introduce Pon and Poff as the transition probabilities to the state
where vA is zero, and the one to the state where vA = pv. We denote by p the
projection of n̂, defined in [−1, 1]d, whose distribution Pd depends on the spatial
dimension d:

Pd(p) =



δ(p− 1) + δ(p+ 1)
2 for d = 1,

1
π
√

1− p2 for d = 2,
1
2 for d = 3.

(3.3)

The equations ruling the time evolution of the transition probabilities read

Ṗoff = 1
τ
− Poff

(1
τ

+ 1
τ0

)
,

Ṗon = PdPoff

τ0
− Pon

τ
.

(3.4)

We derive the explicit form of Pon and Poff from these equations. For symmetry
reasons, only the even-time correlation functions of vA are non-zero. They can be
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Figure 3.1 – (a) Schematic representation of the network remodelling in-
duced by motor activity. (b) Typical realization of the active burst. (c) Dis-
tribution Pd of the one-dimensional projection p of a random direction in d
dimensions for d = {1, 2, 3} in dot blue, green solid, and red dashed line,
respectively. Taken from paper A.
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expressed in terms of the transition probabilities in the steady state as

〈vA(t1) · · · vA(t2n)〉 =
∫
p1Pon,S(p1)

2n∏
i=2

piPon(ti − ti−1, pi|pi−1)dp1 · · · dp2n, (3.5)

where Pon(t, p1|p0) denotes the transition probability from p0 to p1 within a time
t, and Pon,S is the stationary probability. It can be written explicitly as

〈vA(t1) · · · vA(t2n)〉 = φ(t1 − t2)
n−2∏
i=1

ψ(t2i − t2i+1)φ(t2i+1 − t2i+2). (3.6)

The functions φ and ψ are defined in terms of the active diffusion coefficient
DA = (vτ)2/d/(τ + τ0) and the time scales {τ, τ0} as

φ(t) = DAe−|t|/τ/τ,

ψ(t) = 1 + e−|t|/τ
[
cd

(
1 + τ0

τ

)
+ τ0

τ
e−|t|/τ0

]
.

(3.7)

The two-time correlation function is given by φ. The active burst is both a colored
and non-Gaussian noise. In the limit of vanishing τ , it reduces to a white noise,
yet it remains non-Gaussian. The coefficient cd depends on spatial dimension d:
it equals {0, 1/2, 4/5} for d = {1, 2, 3}, respectively.

This specific form of the active burst statistics may appear artificial as it re-
lies on the phenomenological picture that we use to describe the cage dynamics.
The detachment of the myosin heads from the actin filaments, which controls the
network remodelling, is often modelled as a Poisson process [42]. In that respect,
assuming that the persistence and waiting times are Poisson distributed amounts
to considering that only a few nearby motors control the local rearrangement of
the network surrounding the tracer. To support the validity of our approach, we
will show in what follows that our picture is sufficient to quantitatively capture the
observed tracer statistics in living systems. One can consider extended forms of the
active burst process. For instance, considering that the active bursts result from
the cooperative action of several motors, the active times scales could be taken as
the sum of Poisson variables to model the net effect of a few myosin detachment
and attachment on the network. As a result, the distribution of these time scales
would be given by a Gamma law with power-law tails. Another possible extension
would rely on considering a distributed burst amplitude. Such extensions would
lead to introducing additional parameters as a more complex description of the un-
derlying processes. Our aim is to propose a minimal model for the dynamics with
a reduced number of parameters. In that respect, the active burst statistics only
depend on three independent parameters: the active burst amplitude, the mean
persistence time, and the mean waiting time. Note that the second moment of
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the statistics is controlled by only two parameters: the active diffusion coefficient
and the persistence time. Considering the three additional passive parameters, the
spring constant, the friction coefficient, and the bath temperature, our modeling
is finally made of five independent parameters in total. In what follows, we will
show that the two passive parameters γ and k can be independently characterized,
through measurements of the mechanics for instance, so that the analysis of the
tracer fluctuations is used to extract only the active burst features.

3.2 Model predictions

3.2.1 Statistics of tracer displacement
We compute the statistics of the tracer displacement projected onto one spatial
direction. Given that the dynamics is linear, we can express the projected tracer
position at a time t as

x(t) =
∫ ∞

0
R(t− s) (ξ + fA) (s)ds. (3.8)

where the active force is given by fA = kx0. The contribution from the initial
position is irrelevant at large times, so that we take x(0) = 0 to facilitate the ana-
lytic derivations. The response reads R(t) = γ−1e−t/τRΘ(t), where Θ denotes the
Heaviside step function, and we have introduced a relaxation time τR associated
with the caging harmonic potential.

Mean square displacement
The first observable that we consider is the one-dimensional MSD. The thermal

noise term and the active burst are uncorrelated, so that we can separate the
MSD into two terms: 〈∆x2〉 = 〈∆x2〉T + 〈∆x2〉A, where the subscripts T and A
respectively refer to the thermal and active contributions. From the dynamics (3.1)
and the specific form of the active burst, we obtain

〈∆x2(t)〉T = 2DτR

(
1− e−t/τR

)
,

〈∆x2(t)〉A = 2DAτR

1− (τ/τR)2

[(
τ

τR

)2 (
1− e−t/τ − t

τ

)
+ e−t/τR + t

τR
− 1

]
.

(3.9)

In the absence of active forces, the MSD saturates to the equilibrium value 2T/k
within a time τR, showing that the tracer is confined in a volume of the system.
In the presence of active forces, the tracers can escape from the local confinement
to visit a larger volume in the system, as a result of the cage activity. The large
time behavior is diffusive with diffusion coefficient DA. It reflects the free diffusion
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of the cage with the same coefficient. At short times, the dynamics is similar to
the one in the passive case: the tracer diffuses with diffusion coefficient D. In
the intermediate regime, there are different types of behavior depending on the
ratios of diffusion coefficients DA/D and of time scales τ/τR. When τ � τR and
DA � D, the MSD exhibits a transient plateau regime to the equilibrium value,
and it departs from the plateau at a time τ . When DA/D increases, a superdiffu-
sive regime with exponent between one and two sets in between the two diffusions,
as a signature of the ballistic motion of the cage, as shown in Fig. 3.2.

Non-Gaussian parameter
As a first insight into the non-Gaussian properties of the tracer statistics, we

compute analytically the time evolution of the non-Gaussian parameter. To this
aim, we derive the one-dimensional mean-quartic displacement (MQD) defined as
〈∆x4(t, s)〉 = 〈[x(t)− x(s)]4〉, which only depends on the time difference t − s at
large times. It can be separated into three contributions:

〈∆x4〉 = 〈∆x4〉T + 〈∆x4〉A + 6〈∆x2〉T〈∆x2〉A. (3.10)

The thermal MQD is related to the thermal MSD as 〈∆x4〉T = 3 〈∆x2〉2T, since the
statistics is Gaussian in the absence of active force. To obtain the active MQD,
we express the displacement in the absence of thermal noise as ∆x = ∆xa + ∆xb,
where

∆xa(t, s) =
[
e−(t−s)/τR − 1

] ∫ ∞
0

e−(s−u)/τRvA(u)du,

∆xb(t, s) =
∫ ∞
s

[
1− e−(t−u)/τR

]
vA(u)du,

(3.11)

so that

〈∆x4〉A = 〈∆x4
a〉+ 3〈∆x3

a∆xb〉+ 6〈∆x2
a∆x2

b〉+ 3〈∆xa∆x3
b〉+ 〈∆x4

b〉. (3.12)

We explicitly compute each term of the active MQD, and we take the limit of large
s at fixed t−s, corresponding to the regime invariant under a time translation. The
advantage of the separation into the two terms (3.11) is that every contribution to
〈∆x4〉A converges in this limit. Eventually, substituting this result in Eq. (3.10),
and by using the expression of the MSD, we deduce the time evolution of the
MQD. The NGP directly follows.

The NGP vanishes at short and large times, and it takes positive values in the
intermediate regime, as shown in Fig. 3.2. This is in qualitative agreement with
the experiments. As a result, the short and large time diffusions are Gaussian
regimes. Besides, the intermediate regime, be it either superdiffusive or subdif-
fusive, contains all the interesting physics: the tails of the distribution should be
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mostly apparent in this regime. The large time NGP is entirely under the control
of the active burst parameters:

NGP(t) ∼
t→∞

2
t

[
(1 + cd)(τ + τ0) + τ

(
τ

τ + τ0
− 3

)]
. (3.13)

Given that the full expression of the NGP is rather complicated, this asymp-
totic regime provides a simplified form to fit experimental data. In that respect,
measurements of the large time behavior of the NGP can be combined with mea-
surements of the MSD to fully characterize the active burst statistics, namely to
quantify τ , τ0 and v.

Distribution of displacement
To provide a complete characterization of the tracer statistics, we investigate

the time evolution of the whole distribution of displacement via numerical simu-
lations. The central part is Gaussian, and some tails develop in the intermediate
regime as reported experimentally. When the MSD exhibits a transient plateau
regime, the distribution evolves in time as follows. The short time distribution is
Gaussian with variance given by the thermal MSD, which saturates to the equi-
librium value. After the saturation, the tails start to develop next to the central
Gaussian, and another Gaussian distribution sets in at large displacement. The
variance of the large scale Gaussian increases with time, and is given by the MSD
at long times, while the relative proportion of the central Gaussian shrinks, as
shown in Fig. 3.2. In experiments, the presence of active fluctuations is assessed
by exponential tails, yet the large scale Gaussian is generally not reported. One
may suggest that the experimental window of measured displacement is not ex-
tended enough to observe the large Gaussian. We will show in what follows that
our model is able to capture the existence of transient exponential tails as a cross
over between the central and large Gaussian parts, provided that they are well
separated. Within our model, the central part accounts for fluctuations of small
amplitude, whereas the exponential tails are a signature of directed motion events
in the trajectories, namely excursions of the tracer with a larger amplitude.

3.2.2 Energetics of active fluctuations
Departure from equilibrium
To provide a further insight into the departure from equilibrium induced by

the active fluctuations, we compute the effective temperature as

Teff(ω) = T + 1
(ωτR)2

TA

1 + (ωτ)2 , (3.14)
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where we have introduced the active temperature TA = γDA. The effective tem-
perature converges towards the bath temperature at large frequency, in agreement
with experiments. The divergence at small frequency can be understood as follows.
The behavior of the thermal MSD is encoded in the response function. Therefore,
the effective temperature can be regarded as a comparison between the thermal
and the actual MSDs in the Fourier domain. In that respect, the divergence of Teff
stems from the thermal MSD saturating at large times whereas the actual MSD
diffuses.

The additional correlation function appearing in the extended fluctuation-
dissipation relation (1.17) involves the spring force −k(x − x0) = −kx + fA, and
the tracer position:

R(t) = − 1
2T

dC
dt −

k

2γT 〈x(t)k(x− x0)(0)〉 . (3.15)

We compute it explicitly as

− 〈x(t)k(x− x0)(0)〉 = −T e−t/τR + TA

1− (τ/τR)2

[
1− e−t/τR −

(
τ

τR

)2 (
1− e−t/τ

)]
.

(3.16)
It is negative at short times and saturates at large times towards TA. The short
time regime corresponds to anticorrelation between the spring force and the tracer
position, as an evidence of the tracer transient confinement. The transition to
positive values is a signature of the tracer escaping from the local confinement.
It agrees with experimental evidence [31], yet the large time saturation has not
been observed yet. Observing this saturation experimentally would provide an
interesting test for our minimal model, since the extracted value for TA could be
compared to the one deduced from the large time diffusion.

Using the Harada-Sasa relation recalled in Chapter 1, the average power trans-
ferred from the tracer to the thermostat, defined as 〈ẋ(γẋ− ξ)〉, can be computed
from the violation of the FDT. We determine the explicit expression of its spectral
density I(ω) as

I(ω) = 1
1 + (ωτR)2

2TA

1 + (ωτ)2 . (3.17)

Integrating over all frequencies, we deduce

〈ẋ(γẋ− ξ)〉 =
∫
I(ω)dω2π = TA

τ + τR
. (3.18)

The overall power transmitted to the thermostat depends on both active and pas-
sive parameters. In our phenomenological picture, the energy injected by motor
activity into the tracer is mediated by the network remodeling. The forces gener-
ated by the motors do not act directly on the tracers, they serve to randomly shift
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Figure 3.3 – Experimental realization of a quartic potential with two op-
tical tweezers. Taken from [100]. Right: Schematic representation of a
circular protocol in parameter space for an external potential of the form
U = kPx

2/2 + bPx
4/4. Taken from paper A.

the cage in which each tracer is confined. As a result, the power of the active force
fA = kx0, which coincides with the power transferred to the thermostat, depends
on parameters of the thermostat, namely the relaxation time τR in the present case.

Alternative protocols: extracting work from an external potential

We want to propose alternative protocols based on extracting work from an
external potential with a view to characterizing the active fluctuations. The use
of optical and magnetic tweezers has become increasingly standard with the de-
velopment of microrheology methods. They enable one to confine and manipulate
the tracers. The effect of an optical tweezer is well approximated by a harmonic
potential. Combining two of them can lead to design a more complex energetic
landscape such as double-well potentials [100], as shown in Fig. 3.3. The parame-
ters of the potential can be varied in time. We first consider the case of a harmonic
potential whose spring constant is changed in a quasistatic way, and derive the cor-
responding extracted work. In particular, we show that no work can be extracted
from a cyclic protocol in such a case, in line with previous studies [101]. Second,
we build a cyclic protocol with a double-well potential for which a non-vanishing
work can be extracted. Since work can not be extracted from such a cyclic protocol
in equilibrium, the extracted work only characterizes the active component of the
fluctuations independently of its thermal counterpart.

In the present formulation of the model, the active force always leads to over-
come the transient confinement, no matter if it stems from the cage potential or
from an external potential. This is because we have not taken into account the ef-
fect of the tracer in the cage dynamics, resulting from the action-reaction principle.
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To reproduce the confinement by an external potential, we propose an extended
version of the active cage model which accounts for the force exerted by the tracer
on the cage, referred to as the back action force. Given that the length scale of
the cage and the tracers are well separated, the effect of the back action force in
absence of external potential is of second order. Yet, an important consequence of
this new ingredient is that the tracer eventually escapes the confinement at large
time even in the absence of active force: this can be related to the spontaneous
flow of reconstituted actin gels in the absence of motors, as a result of the slow
structural relaxation of the network. Finally, we demonstrate that this additional
coupling between cage and tracer is sufficient to result in an effective tracer con-
finement in the presence of an external potential. The cage can no longer freely
diffuse in the medium since it is now bound to the tracer.

The results presented in this section are derived and discussed in details in
paper A reproduced below.
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The nonequilibrium activity taking place in a living cell can be monitored with a tracer embedded in the medium.
While microrheology experiments based on optical manipulation of such probes have become increasingly
standard, we put forward a number of experiments with alternative protocols that, we claim, will provide insight
into the energetics of active fluctuations. These are based on either performing thermodynamiclike cycles in
control-parameter space or determining response to external perturbations of the confining trap beyond simple
translation. We illustrate our proposals on an active itinerant Brownian oscillator modeling the dynamics of a
probe embedded in a living medium.
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I. INTRODUCTION

A living cell is a nonequilibrium system which needs
to constantly maintain its activity to preserve an organized
structure. Major contributors to this activity are the molecular
motors which generate forces of the order of a piconewton
within the cell. This force generation is an essential process
for life as it is the basis of cell motility, wound healing, and
cell division. It is fueled by adenosine triphosphate hydrolysis,
thus being a nonequilibrium process commonly named an
active process. The force is applied by the motors on some
polar self-assembled filaments, such as the actin filaments for
myosin motors. The polarity of these filaments added to the
force generation enable the motors to perform a stochastic
directed motion. These phenomena have been experimentally
explored in vivo with living cells [1,2] and in vitro, with
reconstituted actin gels in which molecular motors density
can be externally controlled [3,4].

One of the major experimental techniques which has
uncovered the nonequilibrium behavior of living cells and
active gels is microrheology [2–6]. Thanks to the progress
of high resolution microscopy, it is now possible to track
micron sized probes injected into complex fluids, including
living organisms. In addition, by means of optical or magnetic
tweezers, one can apply a controlled force on these probes
and measure rheological properties such as complex shear
modulus [7–9] or creep function [10]. By combining these
two measurements, it has been possible to quantify the extent
to which the fluctuation-dissipation theorem (FDT) is violated
these systems [5,11]. So far, the central quantity that has been
investigated is a frequency-dependent effective temperature
[12–16], which serves as an all-purpose measurement of the
distance from thermal equilibrium.

Our aim in this paper is to put forward other quantities that
can reveal interesting properties of nonequilibrium activity and
that can be measured with the same experimental toolbox of
microrheology. In order to render the presentation of these
methods more concrete, their predictions are illustrated on a

*Corresponding author: etienne.fodor@univ-paris-diderot.fr

recent theoretical model [1] describing the dynamics of a probe
in an active medium.

We begin with giving the basic physical ingredients of our
model in Sec. II. We then discuss the simplest protocols in
which the spring constant of a harmonic external potential is
changed with time in Sec. III. In Sec. IV, we use a quartic
potential for which two parameters are changed in time to
mimic a thermodynamic cycle [17]. In Sec. V, we review an
already proposed method of extracting correlations between
active force and position [18] by exploiting the extended
fluctuation-dissipation relations [19]. In Sec. VI, we apply the
Harada-Sasa relation to quantify the dissipation rate arising
from the nonequilibrium behavior of the probe [20].

II. MODEL

We model the dynamics of the tracer’s position r by means
of an overdamped Langevin equation as described in [1].
From a physical viewpoint, the active medium has a complex
polymer cross-linked reticulated structure, surrounded by a
viscous Newtonian fluid. The complex structure of the network
confines the particle, and we model this as a harmonic
potential acting on the probe, centered at position r0. Active
forces which originate from surrounding molecular motors
continuously modify the network structure, thus spatially
translating the minimum of this potential. However, the bead
itself modifies the internal network dynamics: Arbitrarily
large local deformations are unlikely. To account for this
feedback mechanism, we introduce a small backaction force
on the potential location. Since the harmonic trap models
the confinement by the network, the characteristic size of
the trap is much larger than the particle size to avoid any
escape of the particle as shown in Fig. 1(a). The backaction
force is then necessarily small compared to the force applied
on the particle, a feature which we will have to verify in
actual experiments. In other words, the tracer dynamics has
only a small effect on the r0 dynamics, and was, in fact,
neglected in [1]. Moreover, the thermal fluctuations applied on
the potential center position r0 must be taken into account, and
the corresponding fluctuation amplitude should be negligible
compared with the ones of thermal force applied on the
tracers. Introducing a dimensionless parameter ε � 1, which,
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FIG. 1. (Color online) (a) Schematic representation of the en-
ergetic landscape rearrangement due to motor activity and its
modeling using the active burst applied on the local minimum.
In the passive case without motors, the tracer is confined within
a harmonic potential. When motors are introduced, their activity
modifies the network structure, thus leading to a displacement vAτ of
the potential local minimum x0. (b) Example trajectory of the active
burst projection vA. It equals zero over a random duration of average
τ0 and is a random value between −v and v during a random time of
order τ .

we anticipate, will be small, we arrive at the coupled set of
equations

dr
dt

= − 1

τd
(r − r0) +

√
2DTξ , (1a)

dr0

dt
= − ε

τd
(r0 − r) + vA +

√
2εDTξ 0, (1b)

where T is the bath temperature, γ is the friction coefficient of
the tracer particle with the surrounding environment, k is the
spring constant of the harmonic trap, DT = T/γ is a thermal
diffusion coefficient, and τd = γ /k is a microscopic time scale.
The Gaussian white noises ξ and ξ 0 accounting for thermal
fluctuations are uncorrelated, and vA is another noise term,
referred to as an active burst, describing the effect of molecular
motors on the network structure. It denotes the velocity at
which the potential is moving, and we model it as a stochastic
process inspired from the dynamics of individual motors:
There are quiescent periods of random duration of average
time τ0 alternating with active bursts of typical velocity v in a
random direction and for a random time of average τ . In the
absence of active forces, this is the itinerant oscillator model

introduced by Hill [21] and Sears [22] within the framework
of simple liquids dynamics (see [23] for a review) which has
equilibrium dynamics. Such dynamics for the tracer particles
is associated with a complex modulus of the form [24,25]

G∗(ω) = iωη
1 + ε + iωτd

ε + iωτd
. (2)

The viscosity η is related to the friction coefficient γ via
Stokes’ law: γ = 6πaη, where a is the tracers’ radius. Within
this minimal rheology, we assume the material behaves like a
fluid at short and large time scales, with associated viscosity
η and η/ε, respectively, to leading order in ε. Thus, this
material behaves like a much more viscous fluid at large
time scale compared with the short time scale behavior. In
experimental measurements, one has direct access to one
dimensional projections of the position. We shall thus look
at the one dimensional projection of Eq. (1) on the scalar
position x,

dx

dt
= − 1

τd
(x − x0) +

√
2DTξ, (3a)

dx0

dt
= − ε

τd
(x0 − x) + vA +

√
2εDTξ0, (3b)

where 〈ξ (t)ξ (t ′)〉 = δ(t − t ′) = 〈ξ0(t)ξ0(t ′)〉 are still Gaussian
noises, and vA equals 0 over a random duration of order
τ0 and is a uniform random value between −v and v over
the duration of average τ , as depicted in Fig. 1(b). The
active burst projection vA is a non-Gaussian process [26,27],
and the two-time correlation function reads 〈vA(t)vA(0)〉 =
TAe−|t |/τ /(τγ ). The energy scale TA defines an effective active
temperature in terms of the duty ratio pon = τ/(τ + τ0):

TA = γ v2τpon

3
. (4)

This temperature is frequency independent, and we describe
in this paper several methods to measure this quantity. It
quantifies the amplitude of the active fluctuations, as defined
by the active force correlations, and we will see later that
it characterizes the tracer’s statistics at large time scale.
We postpone to Appendix A the derivation of the n-time
correlation function of the active burst vA. We derive the
analytic expressions of the physical observables to leading
order in ε.

To describe the phenomenology of this model, we focus
on the mean square displacement (MSD) 〈
x2〉(ti,tf) =
〈(x(ti) − x(tf))2〉. Even though the MSD depends on two
time variables, in the limit where the initial time ti is large
enough compared to the microscopic relaxation time scale
τd it becomes effectively a function of the only time lag
t = tf − ti. This is the case we consider in this paper, as we
only consider quasistatic transformations. Using the Fourier
transform of Eq. (3), we compute the position autocorrelation
function C(t) = 〈x(t)x(0)〉, from which we deduce the MSD
as 〈
x2〉(t) = 2[C(0) − C(t)]. We denote the thermal contri-
bution to the MSD by 〈
x2

T〉 and the MSD when the particle is
only subjected to motor activity by 〈
x2

A〉. We compute these
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two contributions to leading order in ε:

〈

x2

T

〉
(t) = 2T

k

(
1 − e−t/τd + ε

t

τd

)
, (5a)

〈

x2

A

〉
(t) = 2TA/k

1 − (τ/τd)2

[
e−t/τd + t

τd
− 1

+
(

τ

τd

)3 (
1 − e−t/τ − t

τ

)]
. (5b)

The expression without any assumption made on ε is presented
in Appendix B 1. In the active case, the time evolution of
the MSD exhibits a two step growth with an intermediate
plateau. The first growth and saturation correspond to the
equilibriumlike behavior of a probe caged in a fixed trap.
The initial growth is diffusive with a standard diffusion
coefficient DT, and the plateau value is given by 2T/k. The
evolution of the MSD at larger time scales, reflecting the
nonequilibrium features of the system, is a diffusive growth
with a diffusion coefficient εDT + DA, where DA = TA/γ is
an “active” diffusion coefficient. In the passive case, the tracer
particle can also escape the confinement at time scales larger
τd/ε, and the large time scale diffusion coefficient εDT is small
compared to the short time scale one, as shown in Fig. 2(a).

×

FIG. 2. (Color online) (a) Mean square displacement as a func-
tion of the scaled time t/τ for active (red solid line) and passive
(blue dot-dashed line) systems. (b) Mean square displacement as
a function of the scaled time t/τ with (green dashed line) and
without (red solid line) an external potential, in this case a harmonic
optical trap. The evolution is qualitatively similar for time scale
smaller than τt/ε. At large time scale, there is a plateau due to the
confinement within the optical trap, which value diverges with ε.
{T ,ε,k,τd,τt,TA,τ } = {102,10−4,2,10−2,2×102,1,1}.

The expression of the thermal diffusion coefficient at large time
scale agrees with the fluidlike behavior of the material with the
associated viscosity η/ε. The backaction reflects the ability of
the particle to modify its environment. The local minimum
motion is not only affected by activity within the network, but
also by the interaction of the bead with the network. The large
time scale diffusion in the passive case is in agreement with
experimental observations of tracers embedded in living cells
[1,3]. Assuming τd � 1 ms and given that a large time scale
diffusion appears for t > 10 s in [1], we deduce ε � 10−4 in
agreement with ε � 1.

III. VARYING THE SPRING CONSTANT

One of the most fruitful approaches to gather information
in living cells has been achieved by applying external forces to
probe particles. This has been carried out by different methods,
such as optical or magnetic tweezers [5,28], resulting in an
effective external potential UP acting on the probe. To our
knowledge, the general protocol has always been to apply the
potential and then to execute a space translation, typically with
an oscillation, to measure quantities such as the complex shear
modulus. Here we would like to pursue a different route, where,
instead of translating the potential well, we consider a time-
dependent change in other parameters of the external potential.
Our main goal is to design a protocol with time-dependent
parameters and to estimate the work extracted over the whole
protocol. Optical tweezers effects are well approximated by
a harmonic potential, though more complex energy landscape
can be crafted [29].

The simplest protocol is thus to slowly vary the spring
constant kP in time (this is sometimes called a “capture
experiment” [30]). We consider that an external potential
UP = kPx

2/2 is applied to the tracer as presented in Fig. 3,
so that an additional term −kPx/γ is to be inserted in the
x dynamics in Eq. (3a). We postpone the derivation of the
MSD to Appendix B 2. Within our model, when we apply this
external force, the evolution of the MSD for time scales smaller
than τt/ε, where τt = γ (k + kP)/(kkP) to leading order in ε, is
qualitatively similar to the case without optical trap. At large
time scale, the MSD saturates, meaning the tracer is confined
within the optical trap. After a relaxation time τt/ε, the system
reaches a steady state characterized by active fluctuations,
the optical trap stiffness, and the properties of the network
via k as presented in Fig. 2(b). Note that the plateau value

Optical trap
Confinement by
actin networks

x0x

Optical Confinement
potential potential

FIG. 3. (Color online) Schematic representation of the energetic
landscape when a quadratic optical trap is applied on the tracers, in
addition to the harmonic confinement potential.

042724-3

45



FODOR, KANAZAWA, HAYAKAWA, VISCO, AND VAN WIJLAND PHYSICAL REVIEW E 90, 042724 (2014)

2TAk/[εkP(k + kP)] does not depend on the bath temperature
T to leading order in ε, and it diverges with ε so that the
backaction is necessary to model the confinement of the bead
by the optical trap. We show that the stationary displacement
probability density function is a Gaussian distribution to
leading order in ε, so that the non-Gaussian nature of the active
process vA does not affect the steady-state tracer’s distribution
to that order of the calculation. Likewise, the leading term
in ε of the tracer’s stationary distribution is unchanged when
considering a white noise for vA, be it Gaussian or not. The
time scales τ and τ0 do appear to the next orders in ε of the
steady-state distribution, though. To quantify the deviation of
the stationary distribution from a Gaussian distribution, we
determine the non-Gaussian parameter (NGP),

κ = 〈x4〉SS

3〈x2〉2
SS

− 1, (6)

where 〈·〉SS denotes the steady-state average. The NGP is
zero for a Gaussian distribution and is often used to quantify
deviations to the Gaussian distribution [31]. We compute this
quantity to leading order in ε, as presented in Appendix B 2:

κ = 2ε

5(1 + k/kP)

9τ 2
0 + 3ττ0 − τ 2

(τ + τ0)τd
. (7)

The NGP is proportional to ε, as another evidence that the
tracer’s statistics is Gaussian to leading order in ε. As far as
the active temperature TA is concerned, it can be determined
independently of the active time scales by applying a quadratic
external potential on the tracer and by measuring its stationary
distribution of displacement. It can also be measured from the
large time scale diffusion in the absence of external potential.
The method we propose is more convenient because the tracer
does not experience large excursions, which would otherwise
make it hard to keep in focus, as it remains confined within the
optical trap.

The backaction reflects the ability of the tracer to act on the
surrounding network, thus affecting the dynamics of the local
minimum. In the present case, it exerts a force on the network
which compensates the driving force due to the active burst,
so that a work is applied by the tracer on the network. We see
that the measurement of this work enables one to characterize
activity within the system. We consider a protocol where kP is
slowly varied from ki to kf ; that is, the time evolution of the
protocol is much longer than τt/ε and the time variation of kP is
negligible compared to the inverse duration of the protocol in
terms of ε. The average quasistatic work WH done by applying
the external potential to the probe is [32,33]

WH = 1

2

∫
dkP〈x2〉SS, (8)

where the 〈·〉SS means that the average is taken in the
steady state with a fixed optical trap, in the present case a
harmonic trap of constant kP. We determine the expression
of this quasistatic work in Appendix B 2. It takes the form

WH = EH(kf) − EH(ki), where EH reads

EH(kP) = TA

2ε
ln

[
kP

k + kP

]
− kTA

2(k + kP)
+ T

2
ln [kP]

+ TA

2

(
τ

τd

)2

ln

[
kPτ + k(τ + τd)

k + kP

]

− TA

2
ln

[
kP

k + kP

]
+ O(ε). (9)

This energy scale is defined up to a constant which should
render the argument of the logarithms dimensionless. It
diverges with ε, meaning that if the backaction mechanism
were neglected it would take an infinite work to confine the
tracer in a harmonic well. This result does not depend on
the non-Gaussian nature of the active noise, since WH is only
affected by the second moment of the tracers’ statistics, and
the dynamics of the tracer’s position x is linear in x. We have
run numerical simulations to determine the accuracy of the
above formula. There is perfect agreement with our prediction
for small values of ε. When ε � 0.15, the term of order ε in
Eq. (9) is no longer negligible. We compute the expression of
the O(ε) correction term, and we show it indeed explains for
the deviation of numerical results with Eq. (9), as presented
in Fig. 4. Note that in the passive case, without active bursts,
the work does not vanish but reduces to the difference of
the Helmholtz free energies, as it should for an isothermal
transformation. This contribution enters in the O(1) term of
the above formula. An interesting feature of formula (9) is that
the work is independent of T to leading order in ε, meaning
that it should be possible to directly access TA with a rather
simple protocol. For example, one could measure the average

FIG. 4. (Color online) Study of the influence of the O(ε) cor-
rection term in Eq. (9). The quasistatic work WH is obtained
numerically from simulations of the dynamics in Eq. (3), where
ε = {0.3,0.25,0.2,0.15}. We extract the correction term as WH −
W

(−1)
H − W

(0)
H , where the expression of W

(n)
H = O(εn) is given by

Eq. (9). The analytic expression of the O(ε) correction term is
plotted in a cyan dotted line as a function of kf , and it agrees with
numerical simulations for ε = 0.15. For larger values of ε, the next
order terms should be taken into account to explain the deviation
of the simulated quasistatic work from the prediction in Eq. (9).
{T ,k,ki,γ,τ0,τ,v} = {0,1,1,1,5,0.6,4}.
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work with different values of ki and kf to deduce values for
k, ε, and TA. However, one should be aware that the protocol
has to be operated over large time scales to remain quasistatic.
If the operator reduces the volume accessible by the bead by
setting kf > ki, the work is positive, in agreement with the fact
that the probe “cools down” when kP increases. Considering a
circular protocol for which kf = ki, the extracted work is zero
as for an equilibrium process. The nonequilibrium properties
remain hidden for a circular protocol when a harmonic trap is
applied to a tracer.

IV. THERMODYNAMIC CYCLES
WITH QUARTIC POTENTIALS

By combining multiple optical tweezers it is possible
to confine the tracer in a more complex potential such as
a double well [29]. The corresponding quartic optical trap
UP = kPx

2/2 + bPx
4/4 depends on two parameters that are

both tunable by the operator. In particular, the parameter kP

can take negative values, as long as the condition k + kP > 0
is fulfilled. We regard the potential anharmonicity as a small
perturbation with respect to the harmonic case: bP = O (εn).
Our picture is that ε is a material-dependent quantity, but the
shape of the trap, namely the parameter n, is fully controlled
by the operator. We consider a quasistatic protocol where kP

varies as before and bP is set constant. The associated work is
expressed as WQ = ∫

dkP〈x2〉SS/2. The steady-state average
is different from the value presented before due to the quartic
term in the optical trap. By using a perturbation method with
respect to bP, we derive the expression of this steady-state
average to order bP. It follows that the average quasistatic
work from an initial value ki to a final one kf is expressed as
WQ = WH + EQ1(kf,bP) − EQ1(ki,bP) + O(b2

P), where EQ1 is
linear in bP. We compute the expression of EQ1 to leading
order in ε, as presented in Appendix B 3:

EQ1(kP,bP)

bP
=

(
TA

2kε

)2 {
2k4

k2
P(k + kP)2

+ 3k2τ

k2
P(τ + τd)

− 6kτ

[
3τ + 2τd

kP(τ + τd)2
+ 1

τd(k + kP)

]

+ 6τ 5

τ 2
d (τ + τd)3

ln [k(τ + τd) + kPτ ]

− 6τ
(
6τ 2 + 8ττd + 3τ 2

d

)
(τ + τd)3

ln [kP]

− 6τ (τ − 3τd)

τ 2
d

ln [k + kP]

}
+ O(1/ε). (10)

As for EH, it is defined up to constant. The contribution EQ1

of the quartic term in the quasistatic work is of order εn−2

to leading order in ε. Given that this contribution should
be negligible with respect to WH, we deduce that n should
fulfill the condition n > 1. The energy scale EQ1 is affected
by the non-Gaussian statistics of the active noise. Given that
the tracers’ dynamics is nonlinear in x, the second moment
of the tracers’ statistics now depends on higher moments of
the active noise which reveal the non-Gaussian nature of the
dynamics.

FIG. 5. (Color online) Schematic representation of cycle C. The
optical trap parameters undergo the transformations (A) to (D):

{bi,ki} (A)−→ {bi,kf} (B)−→ {bf,kf} (C)−→ {βf,ki} (D)−→ {bi,ki}. The shape
of the external potential tuned by the operator is depicted as a function
of the position for the four parameter sets, where kf = 2ki < 0 and
bf = 2bi.

We consider a circular protocol C where both kP and bP

are modified in time. The simplest protocol is then given
by four elementary transformations during which a single
parameter is varied, the other one remaining constant. The
cycle is illustrated in Fig. 5. It connects four points in the
{kP,bP} plane:

{bi,ki} (A)→ {bi,kf} (B)→ {bf,kf} (C)→ {bf,ki} (D)→ {bi,ki}. (11)

The associated average quasistatic work is defined as

WC = 1

2

∮
C
dkP〈x2〉SS + 1

4

∮
C
dbP〈x4〉SS. (12)

To leading order in bP, the steady-state average 〈x4〉SS in the
above formula is evaluated for a quadratic optical trap, as we
compute it in Appendix B 2. It follows the quasistatic work
associated with the protocol C is expressed to leading order in
bi and bf as

WC = EQ1(kf,bi) − EQ1(ki,bi) + EQ2(kf,bf ) − EQ2(kf,bi)

+ EQ1(ki,bf ) − EQ1(kf,bf )

+ EQ2(ki,bi) − EQ2(ki,bf ), (13)

where EQ2 is linear in bP:

EQ2(kP,bP)

bP
= 3

[
kTA

2kP(k + kP)ε

]2

+ O(1/ε). (14)

The formula (13) reveals that one can measure some work
for a circular protocol if the external potential applied on
the tracer contains an anharmonic component [17]. The
equilibrium counterpart of this work vanishes, namely, for
the itinerant oscillator case when TA = 0, and a nonzero
work can thus be regarded as a signature of nonequilibrium
activity within the system. The work applied during such
a protocol is of order εn−2 to leading order in ε. Being n

necessarily greater than 1, we deduce this work is negligible
compared with the work associated to the protocol presented
in Sec. III. Thus, the anharmonicity of the external potential
leads to a nonzero quasistatic work for a circular protocol,
but its small value may be hard to measure experimentally.
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Assuming an experimental apparatus can actually detect such
a work, the active temperature can then be extracted from
this measurement, given that the backaction strength ε has
been estimated by another method and the parameter n is
controlled by the operator. A simple method to fix n is to tune
the anharmonicity so that it gives a nonzero contribution to
WQ − TA ln [kf(k + ki)/ki/(k + kf)] /(2ε) by detecting when
the value of this work differs from the order ε0 in WH. In such
a case, the contribution of EQ1 is to be taken into account,
so that it corresponds to the case n = 2. Note that neither
EQ1 nor EQ2 depends on τ0 to leading order in ε. Then,
the expressions we present would remain unchanged in the
limit τ0 → 0, where the active noise is a symmetric two-state
process usually referred to as a random telegraphic noise
[34]. The waiting time scale τ0 affects the next order in ε

of the work associated with the cycle C. Moreover, the work
applied during such a protocol does not vanish in the limit
where the active process vA becomes a white noise, namely
when {τ,τ0,v} → {0,0,∞} with fixed TA. In such a limit and
assuming T = 0, the dynamics presented in Eq. (3) describes
the evolution of a particle subjected to a white non-Gaussian
noise, so that one can indeed extract work from a cycle as
already noticed in [17].

V. EFFECTIVE TEMPERATURE AND
FORCE-POSITION CORRELATIONS

Active microrheology experiments on living cells measure
the response χ to an external stress, and its temporal Fourier
transform χ̃(ω) = ∫

dte−iωtχ (t). The latter is, up to a constant,
the inverse of the complex modulus G∗ [35]: G∗ = 1/ [6πaχ̃ ],
where χ̃ is the response function in the Fourier domain. We
assume that motor activity does not affect the rheological
properties of the network, so that we deduce the response
function from the expression of the complex modulus in a
passive system as presented in Eq. (2). Following Lau et al.
[36], the tracer’s evolution in a viscous fluid is modeled as

γ
dx

dt
= Fcell(t), (15)

where Fcell describes all the forces arising from the medium.
Within this minimal assumption several works have measured
the nonequilibrium properties of the force Fcell [11,16].
These were quantified by looking at the deviation from such
equilibrium relations as the FDT. For example, the correlation-
to-response ratio leads to a frequency-dependent “effective
temperature” as [12–14] Teff(ω) = −ωC̃(ω)/[2χ̃ ′′(ω)], where
χ̃ ′′ is the imaginary part of the response Fourier transform
and C̃ is the position autocorrelation function in the Fourier
domain. Of course, this effective temperature is not a bona
fide temperature, in the sense that even in a stationary
regime it is generally observable-dependent, but the fact that
its high frequency value collapses to the bath temperature
in the absence of nonequilibrium processes constitutes a
useful benchmark. This is the simplest manner to evaluate
the distance from equilibrium. In the absence of external
potential as described in Eq. (3), we compute analytically this
temperature to leading order in ε:

Teff(ω) = T + 1

ε + (ωτd)2

TA

1 + (ωτ )2 . (16)

FIG. 6. (Color online) (a) Effective temperature as a function of
the scaled frequency ωτ . The plateau value at low frequency equals
T + TA/ε (red solid line), and it equals T at high frequency as for
the passive case (blue dot-dashed line). Between the two saturations,
it scales successively like 1/ω2 and 1/ω4, provided the time scales
τ and τd/

√
ε are well separated. (b) Evolution of the force-position

correlation function with the scaled time t/τ in the passive (blue dot-
dashed line) and active (red solid line) cases. The correlation function
is negative at short time scale with an initial value −T . It remains
negative in the passive case. There is a linear growth regime in the
active case (black dashed line), and the correlation function saturates
to a plateau value TA. (a) {T ,ε,τd,TA,τ } = {1,10−8,1,102,102}. (b)
{T ,τd,TA,τ } = {5,0.2,10,5×102}.

At high frequencies, the effective temperature coincides with
the bath temperature T , meaning thermal fluctuations are
predominant with respect to motor activity in this regime,
in agreement with the MSD short time behavior. The plateau
value T + TA/ε at low frequency represents an alternative
measurement of the active fluctuation amplitude. Between the
two plateaus, the effective temperature successively scales
like 1/ω4 and 1/ω2 given that the two time scales τ and
τd/

√
ε are well separated as shown in Fig. 6(a), thus providing

a way to determine these time scale values from the slope
variation. When we neglect the backaction effect, the effective
temperature diverges at low frequencies. It results from the
fact that the active MSD diffuses at large time scale, whereas
it saturates to the equilibrium value for a passive system. The
introduction of the backaction changes the rheology of the
material, so that the passive MSD also diffuses at a large
time scale, from which we deduce the effective temperature
saturates at low frequency.

A generalization of usual microrheology measurements
relies on applying an arbitrary perturbation on the tracers and
measuring their response function. The external stimulus is
generally a homogeneous force. We address here the case
where an arbitrary potential VP = −aP(t)V (x(t)) is applied
on the tracers. The generalized tracers’ response χG quantifies
the effect of the perturbation on an arbitrary observable A:

χG(s,u) = δ 〈A(s)〉
δaP(u)

∣∣∣∣
aP=0

. (17)

Causality ensures that the response function is zero when the
measurement is performed before the perturbation, at u < s.
Since the thermal noise has Gaussian statistics, the probability
weight P associated with a given realization of the thermal
noise is defined as P [ξ ] ∝ e−S[ξ ], where S [ξ ] = ∫

dt ′ξ 2(t ′)/2
is the Onsager-Machlup (or action) functional, in which ξ
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determines the dynamics of the probe [18,19]. The application
of the external potential VP results in a variation δS of the
action functional, so that the response function is expressed as

χG(s,u) = −
〈
A(s)

δS
δaP(u)

∣∣∣∣
aP=0

〉
. (18)

To determine the response function, we only need to compute
the action functional to leading order in aP,

S = −
∫

dt ′
aP(t ′)
2γ T

[
γ

dx

dt ′
− FN(t ′)

]
dV (x(t ′))

dx
+ O

(
a2

P

)
,

(19)

where FN = −k(x − x0) is the force reflecting the interaction
of the tracer with the surrounding actin network. We deduce
the response function in terms of the probe’s statistics and the
network force,

χG(s,u) = 1

2γ T

[
γ

∂CAV(s,u)

∂u
−

〈
A(s)

dV (x(u))
dx

FN(u)

〉 ]
,

(20)

where CAV(s,u) = 〈A(s)V (u)〉. This expression reveals that
one can gain information about the correlation between the
network force and the tracers’ statistics by independently
measuring χG and CAV.

In the case where aP is a homogeneous force, when
VP = −aPx, the response function is measured by usual
microrheology methods. If we choose the observable A to be
the tracers’ position x, it is possible to access the force-position
correlation 〈x(s)FN(u)〉 [18]. After an exponentially fast initial
transient regime which we neglect, this correlation function
depends only on the lag time t = s − u. The expression for
this correlation is not invariant under time reversal, and we
compute it for the case t > 0 to leading order in ε:

〈x(t)FN(0)〉 = −T e−t/τd + TA

1 − (τ/τd)2

×
[

1 − e−t/τd −
(

τ

τd

)2

(1 − e−t/τ )

]
. (21)

The initial value −T is negative and equals the thermal fluc-
tuation amplitude in agreement with [18]. This anticorrelation
between the network force and the tracers’ displacement is
another evidence of the short time scale confinement. In the
active case, the correlation function can take positive values,
showing that the active burst allows the tracer to overcome
the short time scale confinement. When τ � τd, there is a
linear growth with coefficient TA/τ/[1 − (τd/τ )2], and then it
reaches a plateau value TA as presented in Fig. 6(b). The linear
regime is observed in [18], but the plateau is not present. We
speculate that a larger time window would allow one to observe
the saturation of the correlation function. The existence of
the plateau calls for new experiments as it would provide yet
another way of measuring the amplitude of active fluctuations.
Note that this amplitude is also accessible via the linear growth
coefficient if τ and τd are already known. Moreover, a positive
value of the force-position correlation function is a signature of
nonequilibrium activity within the system as it would remain
negative for an equilibrium process.

VI. ENERGY DISSIPATION AND
HARADA-SASA RELATIONS

The dissipation within the system is the work applied by the
tracer on the surrounding environment regarded as a heat bath
[33]. It has already been measured in colloidal systems [37,38]
and should be a good criterion to characterize nonequilibrium
activity in biological systems. We adopt a natural definition for
the mean rate of energy dissipation [32,33]: J = 〈ẋ(γ ẋ − ξ )〉,
where ẋ is the velocity of the tracer. It is the difference between
the mean power given by the particle to the heat bath via
the drag force γ ẋ and the one provided in average by the
thermostat to the particle via the thermal force ξ . It has been
demonstrated by Harada and Sasa that this quantity is related
to the correlation and response functions defined previously
[20]: J = γ

∫
dω[ωC̃(ω) + 2T χ̃ ′′(ω)]ω/(2π ). This relation

presents the heat current J as a quantification of the deviation
from the FDT valid for an equilibrium process. Within our
model, the energy dissipation rate equals the average power of
the network force: J = 〈ẋFN〉. We compute it in terms of the
microscopic ingredients:

J = TA

τ + τd
. (22)

It is not affected by the backaction to leading order in ε.
The energy dissipation rate is zero when no activity occurs
in the medium for an arbitrary value of ε, as expected for
an equilibrium process. The dissipation rate depends on the
coupling between the probe and its environment via τd. To
minimize the dissipation rate, the time scale of the quiescent
periods τ0 should be as large as possible, whereas the time scale
of the ballistic jumps τ should be very small, in agreement with
observations in biological systems for which τ0 > τ [3,11]. As
in the previous section, the definition and the expression of J

show that one can access the microscopic features of motor
activity via independent measurements of the correlation and
response functions.

The main drawback of this approach is that one should
measure C̃ and χ̃ over a large range of frequencies to
access the energy dissipation rate. Thus, it is interesting to
focus on the spectral density of the energy dissipation rate,
Ĩ (ω) = γω[ωC̃(ω) + 2T χ̃ ′′(ω)], which, when integrated over
the whole frequency range, equals the energy dissipation rate
[20,37]: J = ∫

dωĨ (ω)/(2π ). To give a physical interpretation
of this quantity, we introduce the operators θ± the effect of
which on an arbitrary function f (t) is to extract its even/odd
component: θ±[f (t)] = [f (t) ± f (−t)]/2. The Fourier trans-
form of the symmetrized force-velocity correlation function
is Ĩ [20,39], so that I (t) = θ+[〈ẋ(t)FN(0)〉]. This relation is
a reformulation of Eq. (21) when V = x = A, and we see in
which sense it enables one to easily access the characteristics
of motor activity. Note that the antisymmetrized force-position
correlation function defined previously is also related to
this quantity: I (t) = dθ−[〈x(t)FN(0)〉]/dt . We compute the
dissipation rate spectrum analytically to leading order in ε:

Ĩ (ω) = 1

1 + (ωτd)2

2TA

1 + (ωτ )2
. (23)

The low frequency plateau provides a direct measurement of
the active fluctuation amplitude TA. At high frequency, it scales
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FIG. 7. (Color online) (a) Evolution of the Fourier transform of
the spectral density of the energy dissipation rate with the scaled
frequency ωτ when τ � τd. The plateau value at low frequency
equals 2TA. It scales like 1/ω4 at high frequency, and there is a
crossover regime 1/τd � ω � 1/τ with another power law 1/ω2.
(b) Antisymmetric force-position correlation function as a function
of the scaled time t/τ . It is linear in time at short time scale with a
growth coefficient J and saturates to the value TA at large time scale.
{TA,τ,τd} = {2,10,0.1}.

like 1/ω4, and there is a crossover regime ω1 � ω � ω2,
where ω1,ω2 ∈ {1/τ,1/τd}, with a power law behavior 1/ω2.
Thus, one can determine τ and τd from the variation of the
slope, provided the two time scales are well separated, as
presented in Fig. 7(a). We derive the antisymmetric force-
position correlation function from Ĩ to leading order in ε:

θ− [〈x(t)FN(0)〉]

= TA

1 − (τ/τd)2

[
1 − e−t/τd −

(
τ

τd

)2

(1 − e−t/τ )

]
. (24)

It equals the force-position correlation function in Eq. (21)
when T = 0. At short time scale, growth is linear with a
coefficient J . Hence, it is possible to estimate the energy
dissipation rate by measuring its spectral density only in
the high frequency domain, which mostly facilitates the
experimental task with respect to the procedure proposed in
[20]. The correlation function saturates to a plateau value
TA at large time scale as presented in Fig. 7(b), showing
that it provides an alternative to directly measuring both the
energy dissipation rate and the amplitude of the tracer’s active
fluctuations.

VII. CONCLUSION

We offer theoretical predictions for energetic observables of
a system where both thermal fluctuations and nonequilibrium
activity coexist. We also propose a set of concrete experimental
methods and protocols so that our predictions may be tested
with existing experimental techniques. These new methods end
up in more stringent constraints on the theoretical modeling
which is employed in the studies of tracer dynamics, and
thus they should also be a crucial test for the robustness
of our own model. By applying such methods, we find that
one can access the microscopic features of motor activity
and fully characterize the nonequilibrium process arising in
the medium. The most natural step forward is to address the
analytic computation of the finite time extracted work, for
which one should find an optimal protocol maximizing the

extracted power [40]. Another interesting issue is the excess
heat and housekeeping heat produced by such a protocol, the
computation of which requires the determination of the steady-
state distribution of the process [41]. The bath temperature
could be regarded as another tunable parameter provided its
variation does not modify the microscopic features of the
system [42], which is not the case in biological systems but
could be conceivable in colloidal systems. Finally, the rheology
of living matter can be more complex than we propose in
this paper [43,44]. Memory effects arise from the interaction
of the particle with the environment, due to the integration
of some additional degrees of freedom, leading to a power
law behavior for the complex modulus. Dressing the tracers’
dynamics with a more realistic rheology should be included in
a future elaboration of the model.
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APPENDIX A: ACTIVE BURST STATISTICS

We denote Poff the transition probability to the state in
which vA is zero, and Pon the transition probability to the state
vA = pv, where p is a uniform random value between −1 and
1. The set of master equations describing the evolution of the
active burst one dimensional projection is

dtPoff(t) = 1

τ
− Poff(t)

(
1

τ
+ 1

τ0

)
, (A1a)

∂tPon(t,p) = Poff(t)

2τ0
− Pon(t,p)

τ
. (A1b)

We derive the expression of the transition probability Pon from
these equations. For symmetry reasons, only the 2n-time cor-
relation functions of the active burst are nonzero. Given that the
active burst is in the steady state at the initial time, the 2n-time
correlation function KA ({ti}) = 〈vA(t2n)vA(t2n−1) . . . vA(t1)〉
reads

KA({ti})
v2n

=
∫

d2npP ss
on(p1)p1

2n∏
i=2

Pon(ti − ti−1,pi |pi−1)pi,

(A2)

where Pon(t,pb|pa) is the transition probability from pa to pb,
and P ss

on is the steady-state transition probability. We deduce
the explicit expression of KA,

KA ({ti}) = φ(t2 − t1)
n−2∏
i=1

φ(t2i+2 − t2i+1)ψ(t2i+1 − t2i),

(A3)
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where t2n � t2n−1 � · · · � t1. The functions φ and ψ are
defined as

φ(t) = v2pon

3
e−|t |/τ , (A4a)

ψ(t) = 1 + 4

5

(
1 + τ0

τ

)
e−|t |/τ + τ0

τ
e−|t |(1/τ+1/τ0). (A4b)

APPENDIX B: TRACER STATISTICS

1. Without optical trap

We compute the expression of the MSD for the dynamics
without optical trap in Eq. (3) for an arbitrary value of ε,

〈

x2

T

〉
(t) = 2T/k

(1 + ε)2

(
1 − e−t/τε + ε

t

τε

)
, (B1a)

〈

x2

A

〉
(t) = 2TA/[k(1 + ε)3]

1 − (τ/τε)2

[
e−t/τε + t

τε

− 1

+
(

τ

τε

)3 (
1 − e−t/τ − t

τ

) ]
, (B1b)

where τε = τd/(1 + ε).

2. Quadratic optical trap

The dynamics of x and x0 is given by the set of equations

dx

dt
= − 1

τd
(x − x0) − 1

τP
x +

√
2DTξ, (B2a)

dx0

dt
= − ε

τd
(x0 − x) + vA +

√
2εDTξ0, (B2b)

where τP = γ /kP. Given that we are interested in the regime
where the dynamics is time translational invariant, it should
not depend on initial condition, so that we can choose
x(0) = 0 = x0(0). Using the Fourier transform of Eq. (B2), we
express the tracer’s position in terms of the stochastic noises
in the Fourier domain as

x̃ = γ [χ̃
√

2DTξ̃ + χ̃A(ṽA +
√

2εDTξ̃0)], (B3)

where the functions χ̃ and χ̃A are defined as

χ̃(ω) = (ε + iωτd)/k

iωτd (1 + ε + iωτd) + kP (ε + iωτd) /k
, (B4a)

χ̃A(ω) = 1/k

iωτd (1 + ε + iωτd) + kP (ε + iωτd) /k
. (B4b)

Alternatively, the tracer’s position is expressed in the time
domain as

x(t) = γ

∫ t

dt ′{χ (t − t ′)
√

2DTξ (t ′)

+ χA(t − t ′)[vA(t ′) +
√

2εDTξ0(t ′)]}. (B5)

By using the residue theorem, we compute from Eq. (B4) the
expression of χ and χA in the time domain,

χ (t) = 1

γ (c+ − c−)
(c+e−t/τ+ − c−e−t/τ− ), (B6a)

χA(t) = 1

γ (c+ − c−)
(e−t/τ+ − e−t/τ− ), (B6b)

where τ± = τd/(ε − c±), and the coefficients c± read

c± = ε − 1 − kP/k

2

[
1 ±

√
1 + 4ε

(ε − 1 − kP/k)2

]
. (B7)

We determine the position autocorrelation function in the
Fourier domain for an arbitrary ε:

C̃(ω) = 2(τ+τ−)2
/(

kτ 3
d

)
[1 + (τ+ω)2][1 + (τ−ω)2]

×
{

[ε + ε2 + (ωτd)2]T + TA

1 + (ωτ )2

}
. (B8)

We then deduce the expression of the MSD, without any
assumption made on ε,

〈

x2

T

〉
(t) = 2T/k

(c+ − c−)(c− + c+ − 2ε)

×
[
c2
− − ε(1 + 2c−)

c− − ε
(1 − e−t/τ− )

−c2
+ − ε(1 + 2c+)

c+ − ε
(1 − e−t/τ+ )

]
, (B9a)

〈

x2

A

〉
(t) = 2TA/k

[(τ/τ−)2 − 1][(τ/τ+)2 − 1](c+ − c−)

×
[

(c+ − c−)(1 − e−t/τ )

(
τ

τd

)3

+ (τ/τ+)2 − 1

c+ + c− − 2ε
(1 − e−t/τ− )

− (τ/τ−)2 − 1

c− + c+ − 2ε
(1 − e−t/τ+ )

]
. (B9b)

From the saturation value of the MSD at large time scale, we
deduce the expression of the steady-state average:

〈x2〉SS = TAk

εkP(k + kP)

+ T

kP
− TAk

(k + kP)2

[
τ

τd
+ k2(τ + τd)

kP(k + kP)τ + kkPτd

]
+O(ε). (B10)

The expression of EH is given by the primitive of the above
formula with respect to kP, thus being defined up to a constant.
To determine the non-Gaussian parameter, we compute the
steady-state average 〈x4〉SS. Given that the tracer’s statistics is
Gaussian to leading order in ε, we can easily deduce 〈x4〉SS to
first order in ε from the above formula:

〈x4〉SS = 3

[
kTA

εkP(k + kP)

]2

+ O(1/ε). (B11)
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The computation of the next order requires to develop the expression of x4 in terms of χ and χA. From Eq. (B5), we split the
steady-state average in two contributions:

〈x4〉SS = lim
t→∞(κ1 + 6κ2)(t). (B12)

The functions κ1 and κ2 read

κ1(u) =
∫ u∫∫∫

du1du2du3du4
[
χA1χA2χA3χA4 〈vA(u1)vA(u2)vA(u3)vA(u4)〉

+ 4(εDT)2χA1χA2χA3χA4 〈ξ0(u1)ξ0(u2)ξ0(u3)ξ0(u4)〉 + 4D2
Tχ1χ2χ3χ4〈ξ (u1)ξ (u2)ξ (u3)ξ (u4)〉], (B13a)

κ2(u) =
∫ u∫∫∫

du1du2du3du4
[
2εDTχA1χA2χA3χA4 〈vA(u1)vA(u2)〉 〈ξ0(u3)ξ0(u4)〉

+ 2DTχA1χA2χ3χ4 〈vA(u1)vA(u2)〉 〈ξ (u3)ξ (u4)〉 + 4εD2
TχA1χA2χ3χ4 〈ξ0(u1)ξ0(u2)〉 〈ξ (u3)ξ (u4)〉], (B13b)

where χi = χ (u − ui), χAi = χA(u − ui), and i ∈ {1,2,3,4}.
The non-Gaussianity of the active bursts plays a role in the
first term in the bracket of Eq. (B13a). Being ξ and ξ0 thermal
noises, their four-time correlation function is expressed in
terms of their two-time correlation function as

〈ξ (ta)ξ (tb)ξ (tc)ξ (td)〉 = 〈ξ (ta)ξ (tb)〉 〈ξ (tc)ξ (td)〉
+ 〈ξ (ta)ξ (tc)〉 〈ξ (td)ξ (tb)〉
+ 〈ξ (ta)ξ (td)〉 〈ξ (tc)ξ (tb)〉, (B14)

and the same property holds for the correlations of ξ0. By using
Eqs. (A3) and (B14), we finally deduce the next orders in the
expression of 〈x4〉SS.

3. Quartic optical trap

To compute the steady-state average 〈x2〉SS, we expand the
positions x and x0 in terms of bP as x = x(0) + x(1) + O(b2

P)
and x0 = x

(0)
0 + x

(1)
0 + O(b2

P), where x(1) and x
(1)
0 are of order

bP. The steady-state average is expressed as

〈x2〉SS = 〈(x(0))2〉SS + 2
〈
x(0)x(1)

〉
SS + O

(
b2

P

)
. (B15)

The leading order in bP equals the steady-state average
without quartic term in the optical trap, as we compute
it in Sec. III. Thus, we write the work associated with
the quasistatic protocol as WQ = WH + WP + O(b2

P), where
WP = ∫

dkP〈x(0)x(1)〉SS. The positions x(0) and x
(0)
0 follow the

dynamics in Eq. (B2), so that the expression of x(0) is given by
Eq. (B5). The positions x(1) and x

(1)
0 follow the coupled set of

equations

dx(1)

dt
= − 1

τd

(
x(1) − x

(1)
0

) − 1

τP
x(1) − bP

γ
(x(0))3, (B16a)

dx
(1)
0

dt
= − ε

τd

(
x

(1)
0 − x(1)

)
, (B16b)

from which we deduce

x(1)(t) = −bP

∫ t

dt ′χ (t − t ′)(x(0))3(t ′). (B17)

We split the correlation function in the definition of WP in
three contributions,

〈
x(0)x(1)

〉
SS = −γ bP lim

t→∞ (C1 + C2 + C3) (t), (B18)

where the functions C1, C2, and C3 read

C1(t) =
∫ t∫

dudsχ (t − u)χA(t − s)〈vA(s)(x(0))3(u)〉,
(B19a)

C2(t) =
∫ t∫

dudsχ (t−u)χA(t−s)
√

2εDT〈ξ0(s)(x(0))3(u)〉,
(B19b)

C3(t) =
∫ t∫

dudsχ (t − u)χ (t − s)
√

2DT〈ξ (s)(x(0))3(u)〉.
(B19c)

By using Eq. (B5), we deduce

C1(t) = γ 3
∫ t∫

duds

∫ u∫∫
du1du2du3χ (t − u)χA(t − s)

× [
χA1χA2χA3 〈vA(s)vA(u1)vA(u2)vA(u3)〉

+ 6εDTχA1χA2χA3 〈vA(s)vA(u1)〉 〈ξ0(u2)ξ0(u3)〉
+ 6DTχA1χ2χ3 〈vA(s)vA(u1)〉 〈ξ (u2)ξ (u3)〉 ]

,

(B20a)

C2(t) = γ 3
∫ t∫

duds

∫ u∫∫
du1du2du3χ (t − u)χA(t − s)

× [4 (εDT)2 χA1χA2χA3 〈ξ0(s)ξ0(u1)ξ0(u2)ξ0(u3)〉
+ 6εDTχA1χA2χA3 〈ξ0(s)ξ0(u1)〉 〈vA(u2)vA(u3)〉
+ 12εD2

TχA1χ2χ3 〈ξ0(s)ξ0(u1)〉 〈ξ (u2)ξ (u3)〉],
(B20b)
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C3(t) = γ 3
∫ t∫

duds

∫ u∫∫
du1du2du3χ (t − u)χ (t − s)

× [
4D2

Tχ1χ2χ3 〈ξ (s)ξ (u1)ξ (u2)ξ (u3)〉
+ 6DTχ1χA2χA3 〈ξ (s)ξ (u1)〉 〈vA(u2)vA(u3)〉
+ 12εD2

Tχ1χA2χ3 〈ξ (s)ξ (u1)〉 〈ξ0(u2)ξ0(u3)〉 ]
.

(B20c)

The non-Gaussianity of the active bursts plays a role in the
first term in the bracket of Eq. (B20a). From Eqs. (A3) and
(B14), we compute the three contributions of 〈x(0)x(1)〉SS,

and we deduce the expression of this steady-state average to
leading order in ε:

〈x(0)x(1)〉SS = −
(

TA

ε

)2
bPk

2τ

kP(k + kP)3[kPτ + k(τ + τd)]

×
[

2 +
(

k

kP

)2 5τ + 2τd

2τ
+ k

kP

9τ + 4τd

2τ

]
.

(B21)

Finally, the expression of EQ1 is given by the primitive of the
above formula with respect to kP, thus being defined up to a
constant.
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Chapter 4

Colloidal tracers in living
melanoma cells

We present in this Chapter measurements of the spontaneous fluctuations and
response of sub-micron colloidal tracers injected in living melanoma cells. On the
basis of the minimal model presented in Chapter 3, we are able to recapitulate
the observed fluctuations at the level of the whole distribution of displacement.
Besides, we demonstrate that our model is consistent with the measured spectrum
of the active forces stemming from the intracellular nonequilibrium processes. It
allows us to characterize the ensuing nonequilibrium fluctuations in terms of time
and energy scales, and to assess quantitatively the effect of various cell treatments
on theses fluctuations.
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Activity-driven fluctuations in living cells

We investigate the regulation of nonequilibrium fluctuations by active intracel-
lular components by considering cells in three different conditions. First, we use
untreated cells as a control. Second, a specific type of motor, the myosin-II motors
which gather into double headed myosin filaments, is inhibited by the addition of
blebbistatin. Third, the whole cell is depleted in ATP, thereby depleting the main
fuel of nonequilibrium fluctuations in the system. We present in Fig. 4.1 typical
trajectories of colloidal tracers injected in the cells for the three conditions. The
tracer trajectories in control and blebbistatin treated cells exhibit large displace-
ments on top of the fluctuations of small amplitude. Yet, the amplitude of the
directed events is reduced in blebbistatin treated cells with respect to control. By
contrast, the tracers remain confined in a local volume of the cell in the ATP de-
pleted case. To provide a clear relation between the existence of large displacement
and the nonequilibrium nature of the dynamics, we compute the effective tempera-
ture in each condition. It coincides with the bath temperature at large frequencies
in the three cases, as expected. It diverges at small frequencies for control and
blebbistatin treated cells, showing that the nonequilibrium fluctuations drive the
dynamics far from equilibrium in this regime. By contrast, it stays approximately
constant at every frequency in the ATP depleted case, showing that the cell can
not be distinguished from an equilibrium system for this condition. As a result, it
leads us to regard the ATP depleted case as an equilibrium reference.

The response function is measured at the subcellular scale by using optical
tweezers. In the three cases, the elastic modulus exhibits a weak dependence on
frequency, and it has a higher value compared with the viscous modulus at every
frequency. It follows that we approximate the cell as a purely elastic material in
the frequency window of measurement. In that respect, the active cage model
presented in Chapter 3, for which memory effects are neglected, can be used to
recapitulate the measured fluctuations. The MSD is constant at short times for the
three conditions, as a signature of the short time confinement. A diffusive regime
sets in at large times for control and blebbistatin treated cells, with a reduced
diffusion coefficient in the blebbistatin treated case, whereas it stays approximately
constant in the ATP depleted case. When comparing this result with the prediction
of our model, as presented in Chapter 3, it appears that the short time thermal
diffusion is out of the measurement window. We use the analytic MSD to extract
two active parameters: the mean persistence time, and the active temperature.
Both in the control and blebbistatin treated case, the active temperature is lower
than bath temperature. This result may appear contradictory with the active
fluctuations powering displacement over larger distances compared with the motion
under purely thermal fluctuations. Yet, the active and bath temperature control
two distinct processes: the former quantifies the free diffusion at large times, the
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Figure 4.1 – Top: Typical trajectories of colloidal tracers in living
melanoma cells under three conditions: ATP depleted cells, blebbistatin
treated cells for which the activity of myosin-II motors is inhibited, and un-
treated cells as a control. Bottom: Mean square displacement as a function
of time for the three conditions. Taken from paper B.
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latter is associated with the confined motion at short times. In that respect,
a nonzero value of the active temperature, even small compared with the bath
temperature, is sufficient to overcome the local confinement.

With the same parameters as the one extracted from the MSD, we reproduce
theoretically the measured spectrum of the active force. This spectrum is extracted
from the combination of spontaneous fluctuations and response measurements. As
a result, the agreement with our prediction without any free parameters supports
the validity of the simplified intracellular mechanics. Besides, it demonstrates
that the main contribution of the active force is indeed mediated by the network,
as accounted for by the active cage motion in our model. This in contrast with
previous works which considered that the active force was acting directly on the
tracer, for which the predicted active force spectrum did not exhibit any diver-
gence at low frequency [51, 83]. Overall, the good agreement of the MSD and active
spectrum data with our prediction corroborates the consistency of the underlying
phenomenological picture, in which the active temperature not only characterizes
tracer statistics at large times, it also quantifies the typical amplitude of fluctu-
ations ensuing from the intracellular activity. Eventually, we demonstrate that
our model is sufficient to reproduce the time evolution of the whole distribution
of displacement. It leads us to quantify the mean waiting time between active
bursts, thus providing a complete characterization of these fluctuations in control
and blebbistatin treated cells within our model.

The data analysis is presented in details and discussed in paper B reproduced
below.
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Abstract – We propose a model for the dynamics of a probe embedded in a living cell, where
both thermal fluctuations and nonequilibrium activity coexist. The model is based on a confining
harmonic potential describing the elastic cytoskeletal matrix, which undergoes random active hops
as a result of the nonequilibrium rearrangements within the cell. We describe the probe’s statis-
tics and we bring forth quantities affected by the nonequilibrium activity. We find an excellent
agreement between the predictions of our model and experimental results for tracers inside living
cells. Finally, we exploit our model to arrive at quantitative predictions for the parameters char-
acterizing nonequilibrium activity, such as the typical time scale of the activity and the amplitude
of the active fluctuations.

editor’s  choice Copyright c© EPLA, 2015

Actin filaments are involved in a number of functions
including cell motility, adhesion, gene expression, and sig-
nalling. When fueled by ATP supply, myosin motors
advance along these filaments by performing a directed
stochastic motion. By tracking the trajectory of a micron-
size probe embedded within the cytoskeletal network, and
by subjecting it to microrheology experiments, one can
hope to access and understand some of the properties of
the nonequilibrium activity inside the cytoskeletal net-
work. Experiments were first carried out in actin gels
without molecular motors, known as passive gels [1–5].
Some progress in the experimental field has provided
new results for tracers attached to the cortex of living
cells [6], and also for in vitro actin gels [7,8]. In such
gels, called active gels, the tracer dynamics exhibits large
excursions corresponding to directed motion events, in ad-
dition to the thermal fluctuations already observed in pas-
sive gels. Due to the active processes, the actin network
fluctuations comprise a strongly nonequilibrium compo-
nent. Experimentally, the out-of-equilibrium nature of
such activity has been evidenced by the violation of the
fluctuation dissipation theorem (FDT) [9–11]. To account

(a)These authors contributed equally to this work.
(b)E-mail: paolo.visco@univ-paris-diderot.fr (correspondig

author)

for nonequilibrium activity, a generalization of the FDT
has been developed introducing a frequency-dependent ef-
fective temperature [12–14]. This generalization is based
on a description of tracers dynamics at a mesoscopic scale,
which can be described using a generalized Langevin equa-
tion [15–17]. At a macroscopic scale, the dynamics of acto-
myosin networks have been described via hydrodynamic
treatments [18] or polymer theory [19,20].

In what follows, we present results of microrheology ex-
periments in the cytoplasm of living cells, which are char-
acterized by a highly nonequilibrium activity. Along with
experiments, we propose a model which mixes simple but
nontrivial rheology with random fluctuations due to active
processes inside the cell. We carry out a comparison with
experimental data, which allows us to directly determine
some microscopic mechanisms that drive active fluctua-
tions inside the cell. We demonstrate that our quantitive
estimation of the nonequilibrium active features is consis-
tent with different kinds of experimental measurements,
thus supporting the overall consistency of our model.

We inject sub-micron colloidal tracers in the cytoplasm
of living A7 cells, and track a two-dimensional projec-
tion of their fluctuating (3-D) motion with confocal mi-
croscopy [21]. We observe some directed motion events
in the tracers’ trajectories in addition to the thermal
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Fig. 1: (Color online) Top: typical trajectories of 200 nm PEG
coated beads in A7 cells under three conditions: control, 10 µM
blebbistatin treatment, ATP depletion. The trajectory length
is about 2 min. Bottom: elastic storage modulus G′ (+) and
loss modulus G′′ (◦) from active microrheology experiments
in untreated (red), blebbistatin treated (orange), and ATP
depleted (blue) A7 cells.

fluctuations of small amplitudes (fig. 1), as already re-
ported in synthetic active gels [7]. To investigate the
role of biological activity in the intracellular mechanics,
we subject cells to two treatments. We inhibit myosin II
motors by adding 10µM of blebbistatin to the culture
medium, and we deplete cells of ATP through addition
of 2mM sodium azide and 10mM of 2-deoxyglucose. We
extract the one-dimensional mean square displacement
(MSD) from the spontaneous motion of tracers for dif-
ferent radius sizes a = {50, 100, 250}nm. We present
the MSD multiplied by a for the control, blebbistatin
and ATP depleted conditions in fig. 2(a), showing that
the MSD scales like 1/a. The small time MSD is con-
stant in the three conditions, while the large time be-
havior is diffusive, apart for ATP depleted cells, where
it remains almost constant. Since the time evolution of
the MSD is qualitatively similar for tracers of different
sizes, we deduce that the tracers are bigger than the mesh
size of the cytoskeletal network, thus allowing us to con-
sider that they evolve in a continuous medium in the first
approximation.

We measure the mechanical properties of the cytoplasm
via active microrheology method by using optical tweez-
ers [22]. We impose a sinusoidal oscillation on a particle
with diameter 0.5µm within the cytoplasm. From the
resultant displacement of the bead, we extract the com-
plex modulus G∗ = 1/(6πaχ), where χ is the Fourier
response function. It reveals that it weakly depends on
frequency, and that the elastic contribution is significantly
larger than the dissipative one (fig. 1), in agreement with
previous results [22,23]. Moreover, we do not observe a
significant change in the cytoplasmic mechanical prop-
erty according to active processes. The cytoplasm is still

Fig. 2: (Color online) (a) Time evolution of the one-
dimensional mean square displacement scaled with the tracer
radius a = 50 (+), 100 (◦) and 250 nm (small dots) for control
(red), blebbistatin treated (orange), and ATP depleted (blue)
cells, and the corresponding best-fitting curves (eq. (2)): solid,
dashed, and dot-dashed line, respectively. Inset: FDT-ratio as
a function of frequency. It equals 1 in ATP depleted cells as
for an equilibrium system, and it deviates from it in the two
other conditions at small frequency showing that nonequilib-
rium processes drive the dynamics in this regime. (b) Time
evolution of the MSD scaled with G′ measured with tracers of
radius a = 100 nm in control cells. The G′ value increases with
the percentage of PEG introduced in the cell: 0% (yellow •),
3% (light green ◦), and 6% (dark green +). The best-fit curves
are shown as solid, dashed, and dot-dashed lines, respectively.
The short-time scale plateau scales like 1/G′. (c) Time evolu-
tion of the MSD times G′2. The large-time diffusive part scales
as 1/G′2.

mainly elastic in blebbistatin treated and ATP depleted
cells, with a storage modulus being twice as small as in
untreated cells where it equals approximately 2Pa.

To quantify the departure from equilibrium, we extract
the FDT-ratio which compares the active microrheology
measurement with the random intracellular motion visu-
alized by tracer particles [9–11]. It is defined in terms of
the position power spectrum C̃ and the imaginary part
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of the Fourier response function χ′′ as FDT-ratio(ω) =
−ωC̃(ω)/[2χ′′(ω)kBT ], where T is the bath temperature.
It equals 1 for an equilibrium system, and deviates from it
otherwise. The control and blebbistatin treated cells are
out-of-equilibrium, whereas the effect of the nonequilib-
rium processes are negligible in ATP depleted cells (inset
in fig. 2(a)). This supports that the nonequilibrium pro-
cesses hibernate in the latter as long as no ATP supply
is provided, suggesting that there is an equilibrium refer-
ence state where the tracer particle is trapped in an elastic
cytoskeletal network. Given that we cannot rely on equi-
librium physics to describe the tracer’s dynamics in the
two other conditions, we offer a new model to characterize
its nonequilibrium properties.

We vary experimentally the elastic modulus G′ by
adding various amount of 300 dalton polyethylene gly-
col (PEG) into the cell culture medium1. This results
in an osmotic compression on the cell, so that G′ in-
creases with the amount of PEG applied [24]. We report
in figs. 2(b), (c) the MSD data multiplied by G′ and G′2

for different values of G′. It appears the value of the small
time plateau scales as 1/G′ while the long-time diffusion
constant scales as 1/G′2.

The cytoskeleton acts as a thermostat for the tracer par-
ticle. Provided that inertial effects are negligible in the
intracellular environment, we model the dynamics of the
tracer’s position r by means of an overdamped Langevin
equation. We use a harmonic approximation to account
for the interaction of the tracer with the surrounding
network. The main new ingredient of our model lies in
expressing the effect of nonequilibrium activity. We pos-
tulate that the underlying action of the active processes
induces local rearrangements of the network, resulting in
an active force applied on the tracers. As an example of
such nonequilibrium processes, the activity of myosin II
motors can slide cytoskeletal filaments past each other
leading to a local deformation of the network [7]. To ac-
count for the directed motion events observed in our ex-
perimental trajectories, we consider that the active force
proceeds by a sequence of rapid ballistic jumps followed
by quiescent periods. It remains constant during inter-
vals of average quiescence time τ0, when the tracer is
only subjected to thermal fluctuations, and it varies dur-
ing a persistence time of order τ by a quantity fA = f n̂,
where n̂ is a random direction in the three-dimensional
space. We assume that the persistence and quiescence
times are exponentially distributed variables as observed
in synthetic active gels [7,8,25], and that they do not de-
pend on the network and tracer properties. Putting these
ingredients together, we arrive at the equation for x, the
one-dimensional projection of r,

γ
dx

dt
= −kx + ξ + fA, (1)

1After the stress, cells are allowed to equilibrate for 10 min at
37 ◦C and 5% CO2, before we perform the imaging or optical-tweezer
measurement. The cell size and mechanics equilibrate in 2min after
adding PEG based on our imaging and previous studies [24].

Fig. 3: (Color online) Typical realization of (a) the active force
fA, and (b) the corresponding active bursts vA. fA is constant
over a quiescence time of typical value τ0, and varies linearly
with a slope uniformly distributed in [−f, f ] during a persis-
tence time of order τ . vA is proportional to the time derivative
of fA. (c) Schematic representation of the energetic landscape
rearrangement due to nonequilibrium activity and its model-
ing using the active burst applied on the local minimum. We
depict the network potential with a black solid line, the har-
monic approximation with a dashed red line, and the tracer
particle with a filled blue circle. Nonequilibrium activity leads
to a displacement vτ of the potential, resulting in an energy
gain E ≃ k(vτ)2 for the tracer.

where ξ is a zero mean Gaussian white noise with correla-
tions 〈ξ(t)ξ(t′)〉 = 2γkBTδ(t−t′), and fA is a random force
with typical realization described in fig. 3(a). The spring
constant of the surrounding network is k, and γ is the
friction coefficient of the environment. Our model is asso-
ciated with a Fourier response function χ = 1/(k + iωγ),
from which we deduce that the complex modulus is of the
form G∗ = 1/(6πaχ) = k/(6πa) + iωη, where η is the
viscosity of the fluid surrounding the tracer [17,26]. We
neglect the weak frequency dependence of the real part G′

as determined from active microrheology measurements,
so that the spring constant is directly given by k = 6πaG′,
as already reported in other complex fluids with similar
elastic behavior [26]. Stokes’ law ensures that γ is inde-
pendent of G′, and γ ∝ a.

To illustrate our model with an immediate physical pic-
ture, we introduce the variable r0 = fA/k which we regard
as the position of the local minimum of the potential in
which the tracer is trapped. The local rearrangements
of the network due to nonequilibrium activity result in a
shift of the local minimum the tracer sits in. Thus, this
position has a dynamics of its own given by a random
active burst vA in which a burst vn̂ is felt during the per-
sistence time, while it equals zero during the quiescence
time (fig. 3(b)). The active force projection is simply re-
lated to the active burst projection as dfA/dt = kvA. We
assume that the typical variation f of the active force is
independent of the network properties, whereas the active
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burst amplitude v = f/(kτ) depends on the properties of
the cytoskeletal network via k.

From the Fourier transform of eq. (1), we compute the
position autocorrelation function C(t) = 〈x(t)x(0)〉, and
then deduce the one-dimensional MSD as

〈
∆x2

〉
(t) =

2(C(0) − C(t)). We denote the thermal contribution to
the MSD by

〈
∆x2

T

〉
, and the MSD when the particle

is only subjected to motor activity by
〈
∆x2

A

〉
, so that:〈

∆x2
〉

=
〈
∆x2

T

〉
+

〈
∆x2

A

〉
. The thermal MSD is the same

as for the Ornstein-Uhlenbeck process, and we compute
the active contribution in terms of the parameters charac-
terizing the active force:

〈
∆x2

T

〉
(t) =

2kBT

k

(
1 − e−t/τr

)
, (2a)

〈
∆x2

A

〉
(t) =

2kBT A/k

1 − (τ/τr)2

[(
τ

τr

)3(
1 − e−t/τ − t

τ

)

+ e−t/τr +
t

τr
− 1

]
, (2b)

where τr = γ/k is a microscopic relaxation time scale.
In the passive case, i.e. when TA = 0, it saturates to
the value 2kBT/k within a time τr as predicted by the
equipartition theorem, meaning that the tracer is con-
fined in the cytoskeleton. The active force represents
the random fluctuations of the cytoskeletal network in-
duced by the nonequilibrium activity. With such a force,
the MSD exhibits a plateau at the equilibrium value cor-
responding to a transient elastic confinement at times
τr ≪ t ≪ τ , and then has a diffusion-like growth on
longer times with coefficient 2kBTA/γ. Provided that
k ∝ G′, it follows that the equilibrium plateau scales like
1/G′, as we observe experimentally (fig. 2(b)). The en-
ergy scale kBTA = γ(vτ)2/[3(τ + τ0)] defines an active
temperature, which is related to the amplitude of the ac-
tive fluctuations as defined by the active burst correlations
〈vA(t)vA(0)〉 = kBTAe−|t|/τ/(τγ). The independence of f
and τ with respect to G′ yields v ∝ 1/G′, from which
we deduce that the long-time diffusion coefficient scales as
1/G′2, in agreement with our measurements (fig. 2(c)).

On the basis of our phenomenological picture where the
nonequilibrium dynamics is driven by an active remod-
elling of the cytoskeletal network, we propose a physical
argument for the scaling of the MSD with the tracers’ size
a presented in fig. 2(a). As presented above, we first as-
sume that k and γ scale like a. Within our model, the
active burst represents the activity-driven network defor-
mation and reorganization, which result in a change of the
tracer’s local energetic landscape. During a burst event,
the local minimum is shifted by a random amount. Re-
garding this event as instantaneous, the tracer finds itself
at a distance of order vτ from the new local minimum
position after each burst. It follows that the typical en-
ergy provided by nonequilibrium activity to the particle is
E ≃ k(vτ)2, as depicted in fig. 3(c). We assume that it
does not depend on the particle properties, just as τ and
τ0, thus being independent of the tracer’s typical size a.

Since k ∝ a, we deduce v ∝ 1/
√

a, implying that TA is
independent of a. Finally, the relaxation time τr is also
independent of a, leading to a scaling of the MSD like 1/a
which agrees with our observation.

We use our analytic expression to fit the MSD data mul-
tiplied by a for the three conditions described above. We
assume the viscosity of the fluid surrounding the tracer is
the cytoplasm viscosity η ∼ 10−3 Pa · s [27], and we de-
duce the damping coefficient from Stokes’ law: γ = 6πaη.
We estimate the k value from the small time plateau.
The only remaining parameters are the ones characteriz-
ing nonequilibrium activity: TA/T = {2.8, 0.9} × 10−3,
τ = {0.16 ± 0.03, 0.39 ± 0.09} s, in control and bleb-
bistatin treated cells, respectively. The estimation error
made on TA/T is of the order of 1% in control, and 0.1%
in blebbistatin treated cells.

The amplitude of the active fluctuations is smaller in
blebbistatin treated cells, meaning that the inhibition of
myosin II motors reduces the proportion of nonequilib-
rium fluctuations with respect to the thermal ones as
expected. Other nonequilibrium processes drive the out-
of-equilibrium dynamics in this condition. The typical
time scale τ of the persistent motion events is enhanced in
blebbistatin treated cells. Assuming that each active burst
persists until the stress that accumulates in the network
causes the network to locally fail, weaker motors due to the
addition of blebbistatin will contract for a longer duration
until such a critical stress builds up. Provided that 1/τ is
the typical frequency below which the nonequilibrium pro-
cesses affect the dynamics, this supports that the active
fluctuations take over the thermal ones at larger frequen-
cies in the control cells compared with the blebbistatin
treated ones. Notice that TA represents the ability of the
tracer to diffuse on long times, and T quantifies here only
the motion of the bead at short times when it is trapped
within the elastic cytoskeletal network. The fact that we
find TA small compared to T does not mean that the ac-
tive processes are negligible, as they control entirely the
long-time and long-distance diffusion of the tracer. In the
absence of activity, the tracer does not diffuse at all and
remains trapped in the elastic network.

To characterize the properties of the active force, we
focus on the power spectrum of the stress fluctuations,
i.e. the Fourier transform of the time correlation function
〈fA(0)fA(t)〉 [9,11,15]. We extract the power spectrum
of the overall force fA + ξ as the power spectrum of the
position times (6πa|G∗|)2 [15]. Provided that the ATP
depleted condition is in an equilibrium state, the active
force fA is negligible in these cells and the overall force
reduces to the ξ, thus providing a direct measurement
of the thermal force spectrum. We remove this equilib-
rium contribution to the overall spectrum to deduce the
active force spectrum in the two other conditions. We
observe a 1/ω2 behavior at low frequency as already ac-
counted for on general grounds [9,14,15,28], and the large-
frequency curvature hints a crossover to another power
law (figs. 4(a), (b)). Our analytic prediction for the active
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Fig. 4: (Color online) Top: active force spectrum SA as a func-
tion of frequency measured with tracers of radius a = 250 nm
in (a) control, and (b) blebbistatin treated cells. The experi-
mental data are in black small dots, and the dashed lines cor-
respond to eq. (3) with the parameter values deduced from
the best fit of the MSD data. Bottom: probability distri-
bution function of the tracer displacement (DPDF) at two
different times: 1 (◦), and 5 s (small dots). The DPDF is
measured with tracers of radius a = 250 nm in (c) control,
and (b) blebbistatin treated cells. We present the correspond-
ing results from numerical simulations of eq. (1) in solid and
dashed lines, respectively. The blue dot-dashed line is the
corresponding equilibrium Gaussian. The parameter values
are the same for the two lag times: (b) {TA/T, τ, τ0, k, γ} =
{2.8 × 10−3, 0.16 s, 2.5 s, 8.5 pN/µm, 4.7 × 10−3 pN · s/µm},
(c) {TA/T, τ, τ0, k, γ} = {9×10−4, 0.39 s, 2.8 s, 8.2 pN/µm, 4.7×
10−3 pN · s/µm}.

force spectrum reads

SA(ω) =
1

(ωτr)
2

2γkBTA

1 + (ωτ)
2 . (3)

It combines properties of the network and parameters
characterizing the active force, since the effect of nonequi-
librium activity on the tracer is mediated by the network
within our model. We recover the divergence as 1/ω2 at
low frequency, and we predict a power law behavior 1/ω4

at high frequency, the crossover between the two regimes
appearing at 1/τ . We compare our prediction with the
experimental data by using the best-fit parameters esti-
mated from the MSD data. Without any free parameter,
we reproduce the measured spectra (figs. 4(a), (b)). This
result is a strong support for our model, in which TA not
only quantifies the long-time diffusion coefficient of the
tracers, it is also related to the typical amplitude of the
fluctuations generated by the nonequilibrium active force.
The study of the high-frequency spectrum calls for new

experiments as it would confirm the validity of our phe-
nomenological picture.

To study in more detail the properties of the active
force, we analyze the probability distribution function of
the tracer displacement (DPDF). It exhibits a Gaussian
behavior at short and long times. In the intermediate
regime, we observe a central Gaussian part which matches
our equilibrium prediction in the absence of activity, and
exponential tails accounting for directed motion events
consistent with previous observations in synthetic active
gels [7]. Within our model, the non-Gaussian behavior
of the DPDF is a direct and unique consequence of the
non-Gaussianity of the active force. We ran numerical
simulations of the dynamics in eq. (1) to reproduce the
time evolution of the DPDF. We set the different parame-
ter values to the one estimated previously, letting us with
only one free parameter: the average quiescence time τ0.
It quantifies the average time between two successive di-
rected motion events, thus controlling the relative impor-
tance of the exponential tails with respect to the Gaussian
central part. We adjust this parameter by matching the
exponential tails observed at different times.

With a fixed τ0 value, we manage to reproduce the evo-
lution in time of the whole experimental DPDF. This
shows that the specific form we choose for the active
process is sufficient to reproduce not only the MSD and
force spectrum data, but also to account quantitatively for
the dynamic non-Gaussian properties of the distribution
(figs. 4(c), (d)). We estimate τ0 = {2.5, 2.8} s in control
and blebbistatin treated cells, respectively. The extracted
values are very similar for the two conditions, showing
that the addition of blebbistatin does not affect the typical
time over which the tracers are only subjected to thermal
fluctuations. It suggests that this time scale is related to
the recovery of the network following a large reorganiza-
tion, thus being barely independent of the activity of the
nonequilibrium processes. Notice that the corresponding
duty ratio pon = τ/(τ + τ0) is smaller in control than
in the blebbistatin treated cells: pon = {6, 15}%, respec-
tively. It is a quantitative evidence that the exponential
tails are more pronounced in the control condition, namely
the proportion of directed motion events is increased. We
deduce the value of the typical active burst amplitude:
v = {0.86, 0.22}µm/s in control and blebbistatin treated
cells for a = 250 nm, which are compatible with velocity
scales observed in [29].

Microrheology methods have become a standard tech-
nique to explore cellular activity in living organisms [30].
In this work, we introduce a new model for characterizing
the motion of a tracer in a living cell. This model explicitly
accounts for the elastic behavior of the cytoskeletal net-
work and successfully combines it with a description of the
cellular active force —a well-defined non-Gaussian colored
process. By analyzing the MSD data, we quantify two es-
sential features of this force: its strength, and the typical
time scale over which it is felt. Our model goes beyond pre-
vious modeling which treated the nonequilibrium activity
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É. Fodor et al.

as a random noise with unprescribed characteristics [15].
In a previous work, activity was modeled as a trichoto-
mous noise acting directly on the particle [12], whereas
such activity is mediated by the surrounding network
within our new proposal. The present model combines the
short-time confined behavior with a long-time free diffu-
sion which is driven by the active force, and recovers all the
main experimental results. The model applies as long as
we are in the regime of simple viscoelastic behavior. Dress-
ing our model with a more realistic rheology, e.g., with a
power law behavior for the complex modulus, usually ob-
served in cell rheology [31], is conceptually straightforward
as a future elaboration of the model. Further generaliza-
tion of our model could be used to describe active fluc-
tuations in other nonequilibrium (living or mechanically
driven) systems that exhibit similar behavior [7,32,33].
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Future directions
Recent methods have been developed to investigate the nonequilibrium fluctu-

ations in living cells by injecting micro-size wires. As for spherical tracers, they
can serve as probes of the intracellular mechanical properties, and their spon-
taneous fluctuations reflects the intracellular dynamics. The ability to measure
the response by applying a magnetic torque has been proven both in model sys-
tems [102, 103] and living cells [66, 70, 104]. Typical realizations of the angular
position in living cells exhibit small fluctuations around a preferred orientation,
followed by a larger rotation towards a new locally stable orientation, as shown
in Fig. 4.2. Overall, such dynamics leads to angular diffusion, as assessed by the
mean angular displacement. In that respect, the angular dynamics is reminiscent
of the intermittent dynamics already reported at the translational level. To re-
produce these observations, one could consider an extended version of the active
cage model which would account for the transitions between different orientations
of the wire. Such transitions seem to result from the local reorganizations of the
surrounding network triggered by motor activity. Moreover, it would be interest-
ing to investigate the coupling between the translational and rotational dynamics
of wires injected in living cells on the basis of such a model.
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Figure 4.2 – (a-e) Snapshots of wires of size 3.6 µm in living cell. Time
delay between each picture 30 s. (f) Typical realization of the angular dy-
namics. (g) Mean-square angular displacement as a function of time. Taken
from [104].



Chapter 5

Vesicle dynamics in living mouse
oocytes

In this Chapter, we present a detailed analysis of fluctuations inside living mouse
oocytes. Vesicles that are already present in the cytoplasm serve as probes of
the intracellular dynamics. By contrast to the case of living melanoma cells re-
ported in Chapter 4, the viscoelastic behavior of the mechanics is now crucial to
describe the intracellular fluctuations. We now include strong memory effects in
the dynamics. We first calibrate the passive parameters of our modeling from
active mircorheology measurements. Then, we analyze the tracer statistics to ex-
tract the features of active fluctuations, to be compared with the kinetics of forces
exerted by the molecular motors. Finally, using stochastic thermodynamics, we
provide a quantitative insight into the energy fluxes between the nonequilibrium
intracellular processes, the vesicles, and the thermostat.
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Living mouse oocytes

Oocytes are immature female gametes. They are meant to be fertilized and
to grow into a fully functioning state. A number of recent studies have investi-
gated the active transport of the meiotic spindle during cell division [105–108].
They have shed light on the coordination between the cytoskeleton and the motor
dynamics during such a process. In that respect, a specific type of motors, the
myosin-V motors, have been identified to play a crucial role in the intracellular
activity of mouse oocytes. Mouse oocytes are spherical in shape and of typical size
a hundred of microns, as shown in Fig. 5.1. They are much bigger than many of
the usual cell types which are commonly used for microrheology experiments, such
as the living melanoma cells presented in Chapter 4. This represents an advantage
with respect to previous studies in several ways. First, one can perform measure-
ments in a region where the interaction between the tracers and the nucleus or the
cortex is negligible. This is in contrast with usual cell types for which such interac-
tions, which are both uncontrolled and not characterized, can explain for the high
variability of measurements. Second, it allows one to investigate the variability
of both the mechanics and the fluctuations across the oocytes. Moreover, oocytes
are a rare example of living cells that remain steady up to hours, thus allowing for
a large number of repeated measurements in the same system. Furthermore, the
use of vesicles already present in the cytoplasm as tracer particles is another asset,
since it enables one to probe the intracellular dynamics and mechanics without
any invasive treatment which may modify the local environment.

Intracellular mechanics: the role of molecular motors

To explore the regulation of the mechanics and the dynamics by the intra-
cellular components, we consider two types of mutants: oocytes for which the
actin filaments nucleated by formin-2 are lacking, and oocytes for which myosin-V
motors are de-activated, respectively refered to as Fmn -/- and MyoV(-). Mea-
surements of the mechanics exhibit a strong frequency dependence in contrast with
the rheological properties of living melanoma cells discussed in Chapter 4. The
viscous modulus behaves as a power-law with an exponent 0.6 which is approxi-
mately constant in the frequency window of measurement. The elastic modulus
has a similar power-law dependence at large frequencies, and it levels off at small
frequencies, as shown in Fig. 5.2. Surprisingly, the mechanics is barely changed in
Fmn -/- with respect to control. Likewise, the inhibition of microtubules by noco-
dazole treatment does not significantly affect rheological properties. By contrast,
the viscous and elastic moduli are systematically higher when myosin-V motors
are not activated, yet the frequency behavior remains the same. This illustrates
the crucial role of molecular motors in the mechanical properties.
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Figure 5.1 – Left: Snapshot of living mouse oocytes. Scalebar 20 µm.
Middle: Schematic representation of the intracellular environment and the
manipulation of vesicles using optical tweezers. Right: Vizualisation of the
intracellular actin network. Scalebar 5 µm. Taken from paper C.

Generalized active cage model: memory effects
The nontrivial frequency dependence of the mechanics suggests that memory

effects can not be neglected when describing the intracellular dynamics of living
oocytes. To account for such effects, the tracer dynamics is modified following
the generalized Langevin approach presented in Chapter 1. The drag force now
contains a memory kernel, and the correlations of the thermal fluctuating terms
are modified accordingly, as enforced by the FDT. The memory effects arise from
the interaction between the tracer and its complex surrounding environment, the
cytoskeletal network in the present case. Given that the cage also interacts with
the surrounding network, memory effects should also appear in the cage dynamics.
Provided that the tracer and the cage interact with the same local environment,
we assume that the memory kernel in the cage dynamics is also the one appearing
in the tracer dynamics:∫ t

0
γ(t− s)ṙ(s)ds = −k(r− r0) + ξ,∫ t

0
γ(t− s)ṙ0(s)ds = kταvA.

(5.1)

The spectrum of the fluctuating thermal force is entirely determined by the me-
chanical properties of the system:

〈ξα(ω)ξβ(−ω)〉 = 2Tδαβ
6πaG′′(ω)

ω
, (5.2)

where we have used the generalized Stokes-Einstein relation: γ(ω) = 6πaG(ω)/(iω).
On the basis of the mechanical measurements in Fig. 5.2, we choose the memory
kernel to take a power-law form as γ(t) = k(τα/t)α/Γ(1−α), where Γ is the Gamma
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Figure 5.2 – Intracellular rheological properties of living mouse oocytes
when microtubules are depolymerized (Noc), when myosin-V motors are de-
activated (MyoV (-)), when actin filaments are lacking (Fmn-/-), and wild
type as a control. Elastic (left) and viscous (right) modulus as functions of
frequency. Taken from paper C.
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function and α < 1. We have introduced the passive time scale τα that charac-
terizes the dynamics in the absence of active forces. The corresponding complex
modulus reads G∗(ω) = G0 [1 + (iωτα)α], where G0 = k/(6πa) for spherical tracers
of radius a. We recover the case of a simple viscous fluid in the limit α→ 1. Such
an expression for the complex modulus is sufficient to reproduce the measured me-
chanics. One could consider more complex forms, by including several power-law
dependence for instance, to propose a more precise description of the rheology.
Yet, it would lead to introducing additional parameters, as opposed to our will
to retaining a minimal description of the intracellular dynamics. We argue that
three independent parameters, namely {k, α, τα}, already provide us with a good
agreement with experimental data. The generalization to other type of mechanics
beyond power law behavior is straightforward, as the rheological properties are an
input in the dynamics (5.1).

We derive the corresponding evolution in time of the MSD. The thermal MSD
can be computed as

〈∆x2(t)〉T = 2T
k

{
1− Eα

[
−
(
t

τα

)α]}
, (5.3)

where we have introduced the Mittag Leffler function defined as

Eα(z) =
∞∑
n=0

zn

Γ(1 + nα) . (5.4)

The thermal MSD relaxes within a time τα to the equilibrium value 2T/k, and
it has a subdiffusive behavior at short times with exponent α. We obtain the
active component of the position autocorrelation CA(t) = 〈x(t)x(0)〉A in the Fourier
domain as

CA(ω) = ταk
−1(ωτα)−2α

1 + 2(ωτα)α cos(πα/2) + (ωτα)2α
2TA

1 + (ωτ)2 . (5.5)

We deduce that the large time MSD behaves as t2α−1: it can be either a superdif-
fusive or a subdiffusive regime depending on the value of α. Provided that τ and
τR are well separated, a transient regime with exponent 2α appears between the
two anomalous diffusions, as shown in Fig. 5.3. To quantify the departure from
equilibrium, we compute the effective temperature as

Teff(ω) = T + (ωτα)1−3α

sin(πα/2)
TA

1 + (ωτ)2 . (5.6)

To recover the bath temperature at large frequencies, as observed experimentally,
the condition α > 1/3 is to be satisfied. It follows that the effective temperature



72 Chapter 5. Vesicle dynamics in living mouse oocytes

10−4 10−3 10−2 10−1 100 101 102 103 104

t

10−1

100

101

102

103

104

M
S

D

2T/kα

2α

2α− 1(a)

TA = 10−2

10
0

100

102

104

106

T
ef

f/
T

(b)

1− 3α

10−4 10−3 10−2 10−1 100 101 102 103

ω

10−4

10−2

100

102

104

106

S
to

t/
T

(c)−2α

α− 1

Figure 5.3 – Statistics of tracer displacement in the generalized active cage
model with memory effects. (a) Mean-square displacement as a function of
time. (b) Effective temperature and (c) total force spectrum as functions of
frequencies. Parameters: {T, α, τα, k, τ} = {1, 3/4, 10−2, 1, 1}.
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Figure 5.4 – Total and thermal force spectrum (top), and active force spec-
trum (bottom) extracted from the dynamics of vesicles inside living mouse
oocytes. Taken from paper C.
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diverges at small frequencies with a negative exponent 1− 3α. In the case of the
oocytes, the experimental data does not allow us to access this power-law regime.
We only obtain measurements in a cross-over regime. To assess experimentally
the existence of power-law regimes related to the exponent α of the mechanics, we
turn to the power spectrum of the stochastic force applied to the vesicles. It can
be split into thermal and active contributions. The thermal spectrum is entirely
determined by the mechanical properties, as apparent in Eq. 5.2, yielding

ST(ω) = 2kτα(ωτα)α−1 sin
(
πα

2

)
. (5.7)

The active spectrum depends on both the mechanics and the active burst statistics.
This is because, in our phenomenological picture, the forces stemming from the
nonequilibrium processes are not directly applied to the tracers, they are mediated
by the motion of the cage. Given that the cage dynamics is affected by the local
rheological properties, as embodied by the memory kernel, the active force fA = kr0
acting on the tracers also depends on these properties. The active spectrum follows
as

SA(ω) = 2kτα
(ωτα)2α

TA

1 + (ωτ)2 . (5.8)

It diverges faster than the thermal spectrum at low frequencies with exponent
−2α. By contrast to the case of the effective temperature, the power law behavior
of the active force spectrum is measured over two decades, as shown in Fig. 5.4.
It provides a stringent test of our phenomenological picture. We demonstrate
that our predictions for the effective temperature and the force spectra reproduce
the experimental data. We use the rheological measurements to calibrate the
three independent parameters of the complex modulus. It leaves us with only two
free parameters to fit the effective temperature and active force spectrum: the
mean persistence time and the active temperature. Moreover, we show that we
also reproduce the experimental distribution of displacement, thus allowing us to
estimate the mean waiting time of active fluctuations. The extracted parameters
for the active burst statistics are in close agreement with the one deduced from
single motor experiments. It supports the major role of myosin-V motors in the
force generation at the basis of active fluctuations in living mouse oocytes.

The data analysis and the interpretation of the extracted parameters is pre-
sented in details in paper C reproduced below.
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Abstract

Unlike traditional materials, living cells actively generate forces at the molecular scale that change
their structure and mechanical properties. This nonequilibrium activity is essential for cellular function,
and drives processes such as cell division. Single molecule studies have uncovered the detailed force
kinetics of isolated motor proteins in-vitro, however their behavior in-vivo has been elusive due to the
complex environment inside the cell. Here, we quantify active force generation in living oocytes using
in-vivo optical trapping and laser interferometry of endogenous vesicles. We integrate an experimental
and theoretical framework to connect mesoscopic measurements of nonequilibrium properties to the un-
derlying molecular-scale force kinetics. Our results show that force generation by myosin-V drives the
cytoplasmic-skeleton out-of-equilibrium (at frequencies below 300 Hz) and actively softens the environ-
ment. In vivo myosin-V activity generates a force of F ∼ 0.4 pN, with a power-stroke of length ∆x ∼ 20
nm and duration τ ∼ 300 µs, that drives vesicle motion at vv ∼ 320 nm/s. This framework is widely
applicable to quantify nonequilibrium properties of living cells and other soft active materials.

1 Introduction

Living cells utilize motor proteins to actively generate force at the molecular scale to drive motion and
organization in the crowded intracellular environment [1, 2, 3, 4]. For example, force generation is critical to
facilitate the basic tasks of living cells such as spatial organization, motility, division, and vesicle transport.
Non-living systems in thermal equilibrium also self-organize, which can often be explained by minimization
of energy [5]. However, self-organization is also observed in far-from-equilibrium systems such as driven
colloids [6], molecular motors [7], and living cells [8], but the underlying physics is not well understood.
Biology is full of many striking examples of far-from-equilibrium self-organization [9, 10].

An interesting example occurs during early vertebrate development, namely oocyte meiosis. Oocytes
are immature female gametes that are destined to be fertilized and grow into a fully functioning organism.
They are very large cells (80 µm in diameter) of spherical geometry with a thick cortex and a well separated
cytoplasmic-skeleton (Fig. 1A). The cytoplasmic-skeleton of a mouse oocyte is a composite material that
includes actin filaments, microtubules, and intermediate filaments. The actin network is composed of long
unbranched filaments polymerized from the surface of vesicles that harbor actin nucleating factors [11]. These
vesicles act as nodes to create an inter-connected actin network that is uniform in density throughout the
cytoplasm and not polarized [12]; Microtubules are organized in small seeds and do not form long filaments
during prophase I [13]; And while it is probable that intermediate filaments are present [14], little is known
about their structure or function in mouse oocytes.

The interior of the oocyte is highly dynamic due mainly to an active F-actin network, nucleated by Formin-
2 [15, 12]. During their development, oocytes must move large intracellular structures such as the meiotic
spindle in preparation for fertilization [16, 17]. When oocytes undergo asymmetric division they actively
transport their meiotic spindle to one side of the cell to facilitate splitting of chromosomes while retaining
sufficient storage material for development [18]. This requires precise spatial and temporal coordination
of the cytoskeleton and molecular motors [19, 12]. Recent work has shown the importance of mechanical
processes in oocyte development [19, 12, 20]. Proper spindle positioning requires the oocyte cortex to soften
and exhibit plastic deformation [19], and motion of the cytoplasmic actin network is closely regulated by
myosin-V motors [12]. Motion of large objects, such as positioning of the spindle[19] or nucleus [20], must
be driven by a physical force. In this study, we directly quantify the nonequilibrium activity and extract the
molecular-scale forces generated by the actin-myosin-V network that drive cytoplasmic vesicle motion.

From the material science point-of-view, oocytes are an encapsulated polymer droplet filled with colloidal
particles actively driven by their surrounding medium. This forms an active soft material that is maintained
in a far-from-equilibrium state, providing a well-suited system to study nonequilibrium physics. From the
biological point-of-view, oocytes are the precursor for development of all complex organisms, but much of
their inner-workings remain a mystery due to lack of quantitative measurements of activity and behavior.

To investigate the nonequilibrium mechanical activity in living cells, it is necessary to independently mea-
sure the active molecular force generation and the mechanical properties of the local area to understand how
objects navigate the complex intracellular environment. This methodology was introduced to study active
processes in hair bundles [21] and stress fluctuations in cells [22]. Subsequent studies utilized this concept to
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investigate cross-linked actin-myosin-II networks in reconstituted systems [23] and beads embedded in living
cells [24, 25, 26, 27].

We measure the out-of-equilibrium motion (activity) of endogenous vesicles in the largely unexplored
cytoplasmic-skeleton of in-vivo mouse oocytes and develop a theoretical model to account for strong vis-
coelastic effects that quantifies the driving forces. We combine optical tweezer based active microrheology
(AMR) and laser-tracking interferometry with our theoretical framework to quantify the in-vivo active me-
chanics and relate them to the underlying force kinetics. To study the activity of the actin-myosin-V network,
we examine the cytoplasmic-skeleton of mouse oocytes in prophase-I. While this network is the key element in
nuclear positioning [20], the underlying physical processes are not well understood. By using statistical meso-
scopic measurements on in-situ vesicles, and theoretical modeling, we are able to extract the molecular-scale
force kinetics (power-stroke duration and length, force, and velocity) of myosin-V. Our results demonstrate
that nonequilibrium activity of the actin-myosin-V network is the dominant mechanism that drives active
motion and determines the mechanical properties in the oocyte.

2 Results

2.1 Intracellular mechanics of the cytoplasmic-skeleton

To measure the local mechanical properties, we optically trap an endogenous vesicle embedded in the
cytoplasmic-skeleton, apply an oscillatory force while measuring its displacement (Fig 1B), and calculate
the shear modulus via the Generalized Stokes-Einstein relation [28]. Since vesicles serve as integrated nodes
in the cytoplasmic-skeleton, they accurately reflect the mechanics and fluctuations of the network [29]. To
calibrate the force on the vesicles we exploit the established observation that high-frequency fluctuations
are thermal in origin [30, 24, 31]. AMR directly measures the complex modulus (G∗) characterizing the
viscous and elastic resistance of the composite cytoplasmic-skeleton including any contribution from actin,
intermediate filaments, microtubules, and other structures present. We find that the cytoplasmic-skeleton of
oocytes has strongly viscoelastic properties similar to semiflexible biopolymer networks [32, 33], exhibiting
the high-frequency power-law behavior (G∗ ∝ fα, where α ∼ 0.75). This mechanical behavior is similar
to that of reconstituted networks of entangled actin filaments, but significantly stiffer (Fig 1C). Thus, the
cytoplasmic-skeleton in oocytes is strongly frequency dependent, which must be accounted for when modeling
its mechanical behavior.

To dissect the mechanical contributions of cytoskeletal filaments in oocytes we first perform AMR on
oocytes that lack cytoplasmic actin filaments nucleated by formin-2 (Fmn -/-). We find that the mechanical
properties do not change compared to WT, indicating that the actin network does not provide significant
mechanical resistance in the oocyte (Fig 2A, B). This behavior is presumably because the actin network in
WT oocytes is sparse (Fig 1A, right and Fig. S3) with a mesh size of 5.7 ± 1.9µm [17]. To check this, we
examine in-vitro reconstituted actin networks with a mesh size of ∼ 200 nm [34], which were found to be an
order of magnitude softer than the oocyte (Fig 1C), thus supporting the result that WT oocyte mechanics is
not dominated by the actin cytoskeleton. Depolymerizing the microtubules by nocodazole treatment (1 µM)
does not significantly affect the mechanical properties (Fig. 2A, B). Indicating that microtubules also do not
provide significant mechanical resistance in the cytoplasmic-skeleton. This result is expected since prophase
I microtubules form small seeds instead of long force-bearing tubule structures [13]. These combined results
suggest that there are other force-bearing structures in the cytoplasm of mouse oocytes.

While our results show that actin does not contribute significantly to the mechanical resistance, it is known
that the actin-myosin-V meshwork activity plays a critical role for self-organization such as positioning of
the meiotic spindle [16, 17] and nucleus centering in mouse oocytes [20]. To independently probe the activity
of this network we impaired the myosin-V motor force generation by de-activating it via microinjection of a
dominant negative construct (MyoV(-))[11, 20] (see Materials and Methods). The MyoV(-) construct targets
the dimerization domain of endogenous myosin-Vb, which is still able to bind vesicles and actin, but no longer
allows dimerization and active force generation. When myosin-V activity is absent, the mechanical properties
of the cytoplasmic-skeleton stiffens significantly as evidenced by the shift upwards in the elastic and viscous
moduli (Fig 2A, B). This increased mechanical stiffness correlates with a higher density actin meshwork that
is observed in the absence of myosin-V activity (Fig. S3 in SI) and could be related to increased cross-linking
[12]. This result highlights how cellular activity can be used to tune mechanical properties.
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The overall behavior of the cytosplasmic-skeleton in oocytes is strongly viscoelastic where neither the
elastic or viscous components dominate by a large margin. At lower frequencies the behavior is slightly more
elastic with a crossover (∼ 10− 20 Hz) to more viscous at higher frequencies. However both components of
the shear moduli are always within a factor of two at the observed frequencies (Fig. 2C).

2.2 Quantifying nonequilibrium mechanical activity

To quantify nonequilibrium activity we use laser-tracking to precisely measure the spontaneous motion of
vesicles in the cytoplasmic-skeleton with high spatio-temporal resolution [35, 36, 37] (see Materials and
Methods). Both the spontaneous motion and the local mechanics are measured for each individual vesicle.
This allows direct comparison between the local environment experienced by the vesicle and the motor
activity that is driving its motion. This is critical in order to extract information about the molecular-scale
processes. In the absence of biochemical activity the motion of the vesicles would be due to purely thermal
agitation, which is fully determined by the mechanical properties of the system. This basic relation is given
by a fundamental theorem of statistical mechanics known as the fluctuation-dissipation theorem (FDT) [38].
The FDT relates the small fluctuating motion of the vesicles to the mechanical properties of the surrounding
environment by, χ̃′′ = πfC̃/kBT , where χ̃′′ is the dissipative part of the mechanical response, C̃ is the power
spectral density of vesicle motion, f is frequency, and kBT is thermal energy. However, in living cells the
presence of biochemical activity gives rise to active forces (e.g. a nonequilibrium process) driven by energy
consuming processes [21, 22, 39]. In other words, the force driving the motion of particles in a living cell
(e.g. the oocyte) has two contributions: (1) a passive (purely thermal) contribution described by classical
equilibrium physics; (2) an active contribution that is biochemically regulated and cannot be understood via
equilibrium physics.

We quantify and explain both the passive and active contributions driving intracellular fluctuations, by
independently measuring each side of the FDT. We use AMR to measure χ̃ and laser-tracking to measure C̃,
and use this information to check for violation of FDT [23, 21, 40], which indicates active force generation. In
oocytes, at high-frequencies the mechanical response (χ̃′′) and the spontaneous vesicle motion (πfC̃/kBT )
are equal as expected for thermal fluctuations [30, 24] (Fig. 3A). At frequencies below ∼ 300 Hz, the observed
motion of vesicles is dominated by an active energy consuming process (highlighted by the pink shaded region
between the two curves in Fig 3A).

To quantify the nonequilibrium activity in an active soft material it is instructive to consider the effective
energy [21, 41, 42, 43], Eeff = πfC̃/χ̃′′, which is a measure of how far the system is from thermal equilibrium.
WT oocytes exhibit the strongest departure from equilibrium due to the actin-myosin-V network activity.
Accordingly, the deviation is reduced when either actin is absent (Fmn -/-) or myosin-V is inactivated
(MyoV (-)) (Fig 3B). This is quantitative confirmation that the dynamic actin-myosin-V meshwork drives
vesicle dynamics out-of-equilibrium in the cytoplasmic-skeleton of mouse oocytes [12, 20]. Additionally, this
demonstrates that other sources of activity remain in the living oocyte since non-thermal activity is still
evident.

To develop a more intuitive picture of the activity we quantify the forces generated in the cell by cal-
culating the cell force spectrum (Scell) [22, 24, 25, 40]. Scell directly represents the total forces on vesicles
from all stochastic sources (active and thermal) inside the cell. In analogy to the force on a simple spring,
where the force is the stiffness × displacement (F = κ∆x, where κ is stiffness and ∆x is displacement), we
calculate Scell ∝ |G∗|2C̃ where |G∗|2 is the stiffness of the cytoplasmic-skeleton and C̃ is the spontaneous
displacement of the vesicle [24, 25, 44]. In our framework we separate the total force spectrum in the cell to
be the sum of thermal forces and active forces (Scell = Stherm + Sactive) [45, 40]. As an illustration of this
separation of thermal and active forces we show a representative trajectory of a vesicle (Fig. 3E, black).
Based on our measured violation of FDT (Fig. 3A), we isolate the low-frequency vesicle motion which is due
to active processes and the high-frequency motion that is dominated by thermal motion (Fig. 3E green, F
respectively). The resulting force spectrum is shown in Fig 3C where at high frequencies the cell force spec-
trum (Scell) is dominated by thermal forces (where Sactive � Sthermal) as expected, but at lower frequencies
(f < 300 Hz) active forces exist (Sactive � Sthermal) which result in higher total force experienced by vesicles
in the cytoplasm over thermal equilibrium (lines represent theoretical model). The cell force spectrum, Scell

quantifies the average stochastic force experienced by a vesicle in the cytoplasmic-skeleton.
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2.3 Modeling active force fluctuations

Myosin-V is typically considered a cargo transport motor. However, in prophase-I mouse oocytes, myosin-V
drives vesicle motion in a non-directed fashion as evidenced by its sub-linear scaling of the mean-squared-
displacement (Fig. 3D, blue). Previous work has also showed that myosin-V drives random motion of
vesicles (active diffusion) on longer timecales of minutes [20]. To further illustrate this point, Fig. 4A(left)
shows vesicles and actin filaments embedded in the oocyte interior. The complex mechanical environment is
represented by a generic continuum (gray background). When myosin-V is attached to a vesicle and applies
force on an actin filament, this force is transduced through the actin filament to a neighboring vesicle where
it is bound by formin-2 (e.g. black arrows in Fig. 4A, right). This process occurs frequently throughout the
oocyte interior resulting in randomly distributed force-dipoles (similar to myosin-II in some systems [30, 23]).
Thus, each vesicle experiences forces in random directions due to the action of myosin-V throughout the
network. This is represented by many actin filaments under force as shown in magenta in Fig. 4A(right).
Therefore, due to the unique network connectivity in the cytoplasmic-skeleton, myosin-V motors drive active
random motion in prophase-I mouse oocytes reminiscent of cytoplasmic stirring observed previously that
was driven by myosin-II [30].

To gain access to the molecular-scale kinetics of the active processes driving the polymeric interior of
oocytes we developed a quantitative model describing vesicles embedded in a viscoelastic environment that
are subjected to thermal and active forces. Here, the nonequilibrium processes, such as molecular motor
activity, provide the active forces that reorganize the polymer cytoskeleton and drive motion of the vesicles.
Our theoretical framework extends previous approaches for near-elastic networks [46, 44, 40] to include the
complex mechanical properties measured experimentally (Fig 2). The model describes a vesicle that is freely
fluctuating in the viscoelastic continuum due to thermal forces, experiencing a local confinement illustrated
by the harmonic potential, with stiffness κ, in Fig. 4B(left) and governed by the dynamics described in
equation 1. The molecular motor activity injects random forces into the network, which results in an active
force fA on the vesicle that drives it to a new equilibrium position x0 as in Fig. 4B(right) described by
equation 2. These coupled equations of motion written in the Generalized Langevin approach describe
vesicle motion in the active viscoelastic environment of the cytoplasmic-skeleton,

∫ t

dt′γ(t− t′)dx

dt
= −κ(x− x0) + ξ (1)

∫ t

dt′γ(t− t′)dx0

dt
= κζαvA (2)

where ξ is Gaussian colored noise representing thermal forces, κ is the local confinement, γ is the memory
kernel, ζα is the microscopic timescale describing the mechanical properties of the cytoplasmic-skeleton, vA

is the velocity of the stochastic active force, and x is the vesicle position. To account for the mechanical
behavior of the cytoplasmic-skeleton that was measured by AMR, a power-law form of the memory kernel is
utilized to describe the viscoelastic properties (details in SI). This model can directly separate the passive
forces that originate from the thermal fluctuations of the medium and the active forces that depend on
the the energy consuming processes in the active material. Note that if the active force (fA = κζαvA)
is zero, then equation 2 is zero, and the equation of motion simplifies to the usual viscoelastic Brownian
motion (equation 1). If the active force is not zero, then it originates from molecular motor activity that
has step-like velocity kinetics (Fig 4B, right inset). Endogenous vesicles experience an effective force kick of
average duration τ followed by a quiescent period of average duration τ0 [44, 40]. These force kicks drive the
nonequilibrium fluctuations in our model.

2.4 Extracting molecular-scale force kinetics

By combining our model and experimental measurements, we can extract the force kinetics driving nonequi-
librium mechanical processes in the oocyte. The active force spectrum represents the average force experi-
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enced by the vesicles due only to active processes, and can be expressed as

Sactive =
1

(2πfζα)2α

︸ ︷︷ ︸
mechanics

1

1 + (2πfτ)2

2(Fζα)2

3(τ + τ0)︸ ︷︷ ︸
motor activity

(3)

where ζα and α reflect the viscoelastic material properties of timescale and frequency dependence, F is
the apparent active force amplitude, τ is the average time of force application, and τ0 is the average time
between force kicks (Fig. 4B, right inset). The first term in equation 3 depends on the mechanical properties
of the cytoplasmic-skeleton and the second term is related to the kinetic properties of the active processes.
This illustrates that the active force spectrum is dependent on the force generation by molecular motors
as well as the mechanics of the environment that they must push against. The power-law scaling of the
active force spectrum contains information about the underlying physics. At lower frequencies the active
force spectrum scales as f−2α reflecting the active forces pushing against the viscoelastic environment. At
higher frequencies the active force spectrum provides information on the molecular kinetics of the active
force generation process which scales as f−(2α+2). Our predicted active force spectrum exhibits power-law
scaling that is dependent on the mechanical properties of the system (α), in contrast to previous studies
[46, 22, 47]. Previous theoretical developments predict an active force spectrum with slope of -2 that is
independent of the mechanical properties [22] and a plateau (slope of 0) below a critical frequency (equation
2 in [30] and equation S1 in [24]). It is worth noting that in the near-elastic case (α ∼ 0), our model
recovers the behavior observed in previous work [24, 30]. The divergence of the active force spectrum at low
frequencies is consistent with our experimental measurements, and others, where a low-frequency plateau is
not observed [27, 25, 48, 24, 49].

The experimental measurements for the active force spectrum (Sactive = Scell − Stherm) and theoretical
model are compared in Fig 4C. The low frequency power-law behavior is clearly seen, while at higher
frequencies the active forces drop off rapidly which reflects the molecular motor statistics [50]. This drop-
off of the active force spectrum allows extraction of τ , the timescale of active force application. Without
additional assumptions, all subsequent molecular-scale force kinetics are now constrained by our model and
can be calculated, such as the apparent active force amplitude,

F = [3κkBTA(τ + τ0)/ζα]
1/2

(4)

where kBTA defines the active energy scale (see SI for details). The apparent force amplitude, F , is the
average active force that the endogenous vesicle feels that drives its motion. Once this force is known it is
straight-forward to calculate the expected average vesicle velocity,

vv =
F

κζα
(5)

which is a ratio of the driving force, F , and the resistance provided by the surrounding environment, κζα.
Following this argument an approximate step-size of the force kick can be computed by ∆x = F/κ. Thus,
once the timescale of the force kick (τ) is extracted from equation 3, the apparent force felt by the vesicle
(F ), the expected vesicle velocity (vv), and the step-size ∆x can be deduced directly.

A main result of our combined experimental and theoretical framework is access to the molecular-scale
kinetics via mesoscopic measurements of the active force spectrum. In living oocytes we find that endogenous
vesicles experience a force of F ∼ 0.4 pN during a power-stroke of τ ∼ 300 µs duration, with a step-
size of ∆x ∼ 20 nm, which is strikingly similar to single molecule myosin-V kinetics measured in-vitro
[51, 52, 50, 53, 54, 55, 56]. In addition, we find that the predicted average vesicle velocity due to molecular
motors is vv ∼ 320 nm/s which is in agreement with myosin-V velocity in vitro [51, 53, 54], as well as the
velocity of myosin-V driven vesicles measured in in-vivo oocytes [20, 11]. Together, our results reveal that
force kinetics of myosin-V motors are remarkably similar in in-vitro single-molecule studies and in in-vivo
oocytes where they drive the composite cytoplasmic-skeleton out-of-equilibrium.

The agreement between our experiments and analytic theory indicate that the model is able to capture
the nonequilibrium force fluctuations of endogenous vesicles in the cytoplasmic-skeleton of living oocytes.
However, this does not guarantee that it adequately describes the overall motion of the vesicles (including
higher-order statistics). To further compare our experiments and theory we use the measured parameters
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(mechanics, kinetics, etc.) extracted from the force spectrum to simulate vesicle dynamics via a stochas-
tic equation of motion (see SI). These simulations of vesicle motion use exclusively values measured from
experiment, without any free parameters. We find that the statistics of the simulated vesicle motion is in
excellent agreement with the measured spontaneous motion of vesicles in living oocytes as is shown by their
displacement correlations (Fig 4D). Measured and simulated motion of vesicles is nearly identical including
the central Gaussian region and the non-Gaussian tails (shaded red in Fig 4D) at short timescales which are
indicative of molecular motor activity [57]. While our analytic model describes the mean values of the exper-
imental measurements, these simulations exploit the full range of data by capturing the entire distribution
of displacement correlations. Hence, the agreement found between simulations and experiment is non-trivial
and can be considered a predictive test of the model. These results show that our model of step-like active
forces is able to capture the overall motion of vesicles (including higher-order statistics) embedded in the
cytoplasmic-skeleton of living oocytes.

3 Discussion

3.1 The cytoplasmic-skeleton is softened by nonequilibrium fluctuations

Our mechanical measurements (AMR) indicate that myosin-V driven nonequilibrium fluctuations maintain
a softer cytoplasmic-skeleton in oocytes. The mechanism of how this occurs is not yet clear but is likely
related to the structural connectivity of the actin-myosin-V network. The sparsely connected network of long
unbranched actin filaments connected by myosin-V positive vesicles in oocytes exhibits a unique architec-
ture. This active actin-myosin-V network drives random nonequilibrium fluctuations of the entire composite
cytoskeleton. Repeated deformation of the composite cytoskeleton may lead to breakages resulting in soften-
ing of the overall mechanical properties. In polymer physics this behavior is known as the classical Mullins
effect [58], where small amplitude cyclic strain application leads to softening. This effect has been observed
in actin networks with low cross-linking density [59] and motor-mediated breakage of actin filaments has
been observed in-vitro [60]. Thus, it is possible that repeated deformation due to myosin-V force generation
causes the observed difference in actin density between WT and MyoV(-) (Figure S3 in SI) due to rupture
or breakage of filaments/cross-links [60, 61, 62]. The motor-mediated softening reported here has also been
observed due to myosin-II in suspended cells in-vitro [63], which is in constrast to the stiffening reported in
adherent cells [24, 64]. The origin of softening/stiffening behavior in cells is not yet understood, but may be
related to adhesion with the surrounding environment.

3.2 Nonequilibrium activity dominates below 300 Hz

In mouse oocytes, nonequilibrium activity emerges at higher frequencies (f < 300 Hz) than observed previ-
ously in other active systems (f < 10 Hz)[23, 24, 30]. This observation is not surprising since the timescale
of FDT violation depends on both the mechanical properties and the typical timescale of the nonequilibrium
activity of the system. The cytoplasmic-skeleton in oocytes is softer than previous systems [23, 65], and thus
it is expected for the crossover to thermal motion to occur at higher frequencies (Fig S2 in SI). Addition-
ally, myosin-V kinetics are known to be faster than myosin-II [66], which was the driving force in previous
experiments [23, 24, 30].

3.3 Active force spectrum reveals molecular-scale kinetics

A significant advance represented by this work is the connection between mesoscopic measurement of
nonequilibrium vesicle motion and the underlying molecular-scale driving forces in a strongly viscoelas-
tic in-vivo system. A global fit of our theoretical model to the ensemble averaged active force spectrum
reveals molecular-scale kinetics in agreement for myosin-V measured in single molecule in-vitro experiments
[50, 51, 52, 53, 55, 56, 54]. It is striking that our in-vivo measurements are in such close agreement with
single-molecule studies given that the crowded in-vivo environment is far more complex. To capture this
behavior it was necessary to extend our theoretical framework to account for strong viscoelastic memory
effects. This is most clearly seen in the low-frequency power-law scaling of the active force spectrum. Pre-
vious models predict that the active force spectrum is proportional to f−2 [22, 46, 40] which is able to
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predict measurements made in nearly elastic systems [24, 30]. However, this behavior is not consistent with
our measurements in oocytes where we observe a scaling of f−4/3 (Fig. 4B). Our model, predicts a low-
frequency behavior of Sactive ∝ f−2α which agrees with our experimental measurement α ∼ 2/3. This shows
that including the strong viscoelastic memory effects of the mechanical properties is necessary to capture
the nonequilibrium properties of the cytoplasmic-skeleton in mouse oocytes. This is likely the case for any
cells that cannot be considered near-elastic.

Our model allows extracts the molecular-scale force kinetics directly from fitting the active force spectrum.
As a result, we are able to capture the short timescale power-stroke of the active process, which is not be
possible from fitting the long timescale plateau of the MSD as done previously [24, 30]. Furthermore,
we predict the force, step-size, and velocity without any further model assumptions. All resulting kinetics
extracted from in-vivo oocytes are in striking agreement with single-molecule kinetics measured in-vitro as
summarized in Table 1. Our approach is a versatile method to access the molecular-scale force dynamics in
living cells and other soft active materials.

[Table 1 about here.]

4 Conclusion

We have demonstrated the quantification of nonequilibrium properties and molecular-scale kinetics inside
the cytoplasmic-skeleton of in-vivo mouse oocytes via experiments, theory, and simulation. We find that
active forces can tune the mechanical properties and the nonequilibrium fluctuations of the active polymeric
interior of oocytes. Through our theoretical model we access the molecular-scale force kinetics that are
driving activity in the cytoplasmic-skeleton. From the material science perspective, this is a striking example
of how active materials fundamentally differ from passive materials, since their microscopic dynamics are
actively tuned. From a biological perspective, nonequilibrium fluctuations are important to maintain cell
functionality and mesoscopic measurements provide access to molecular-scale kinetics. Our results combine
concepts from equilibrium and nonequilibrium physics to reveal that myosin-V activity is remarkably similar
in-vivo as in-vitro, and that their kinetics can be extracted via measurements of cytoplasmic fluctuations.

5 Materials and Methods

5.1 Oocyte Preparation

Oocytes were collected from 11 week old mice OF1, 13 week old C57BL6 (WT) or 15 week old Fmn2 -/- female
mice as previously described [67] and maintained in Prophase I arrest in M2+BSA medium supplemented
with 1 µM Milrinone [68]. Live oocytes were embedded in a collagen gel to stop movement of the overall
cell during measurements. Collagen gel was made by mixing M2 medium (33.5µL), 1X PBS (10 µL), NaOH
(1M, 0.9 µL), collagen (3.6 mg/mL, 55.6 µL) to obtain 100 µL of the final collagen solution at 2 mg/mL with
a pH∼ 7.4. 20 µL of the collagen solution was deposited on a coverslip and live oocytes were added. The
droplet was covered with another glass coverslip using Dow Corning vacuum grease to minimize evaporation.
The collagen gel containing oocytes was polymerized in a humid environment at 37◦ C for 30 minutes.

5.2 Fmn2-/- and Myosin-V dominant negative

To study the effect of the actin-myosin-V network we utilize two conditions to independently perturb the
actin cytoskeleton (Fmn-/-) and the myosin-V activity (MyoV(-)). Fmn-/- mouse oocytes lack cytoplasmic
actin filaments, as confirmed by several independent studies [16, 17, 69, 19]. The absence of actin filaments
has also been confirmed via cytochalasin-D treated mouse oocytes which exhibit the same phenotype as
Fmn-/- [70]. For myosin-V dominant negative experiments (MyoV(-)), oocytes were injected with cRNAs
using an Eppendorf Femtoject microinjector as published previously [20]. Oocytes were kept in prophase-I
arrest for 1-3 hours to allow expression of fusion proteins. The myosin-Vb dominant negative construct
corresponds to a portion of the coiled-coil region of the myosin-Vb that mediates dimerization of the motor
[11]. We believe this construct binds to the coiled-coil region of endogenous myosin-Vb resulting in impaired
motor dimerization. Thus, myosin-Vb is still able to bind to vesicles and actin filaments but cannot actively
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generate force. It is specific to myosin-Vb and has been shown to stop vesicle motion in mouse oocytes as
efficiently as brefeldin A (BFA), which is a general traffic inhibitor [20].

5.3 In-vitro Actin Network Preparation

A bulk solution of actin monomers 120 µM (Cytoskeleton Inc.) was stored overnight in depolymerization
buffer (200 µM CaCl2, 500 µM DTT, 2mM Tris, 200 µM ATP). It was then polymerized at a final concen-
tration of 24 µM actin in polymerization buffer (25 mM Imidazol, 50 mM KCl, 1mM Tris, 2 mM MgCl2, 1
mM DTT, 1 mM ATP). The actin gel was polymerized between two glass coverslips at room temperature.
Polystyrene beads (1 µm) were embedded for optical tweezer measurements.

5.4 Optical Tweezer Setup

The optical tweezer system utilizes a near infrared fiber laser (λ = 1064 nm, YLM-1-1064-LP, IPG, Ger-
many) that passes through a pair of acousto-optical modulators (AA-Optoelectronics, France) to control the
intensity and deflection of the trapping beam. The laser is coupled into the beam path via dichroic mirrors
(ThorLabs) and focused into the object plane by a water immersion objective (60x, 1.2 NA, Olympus). The
condenser is replaced by a long distance water immersion objective (40x , 0.9 NA, Olympus) to collect the
light and imaged by a 1:4 telescope on a InGaAs quadrant photodiode (QPD) (G6849, Hamamatsu). The
resulting signal is amplified by a custom built amplifier system (Oeffner Electronics, Germany) and digitized
at a 500 kHz sampling rate and 16 bit using an analog input card (6353, National Instruments, Austin, TX,
USA). All control of the experimental hardware is executed using LabVIEW (National Instruments). Optical
trapping of endogenous vesicles was calibrated similarly as in [31, 71], where the high-frequency fluctuations
(f > 500 Hz) are thermal in origin [24, 30]. For direct measurement of violation of the fluctuation dissipa-
tion theorem (FDT), laser tracking interferometry is used first to measure the spontaneous fluctuations of
the vesicle, followed immediately by active microrheology to measure the mechanical properties of the local
environment surrounding the vesicle.

5.5 Laser Interferometry Tracking

The position of the endogenous particle is measured by back focal plane interferometry [35]. It should be
noted that deformable objects (e.g., giant unilamellar vesicles 10− 100µm) undergo shape fluctuations that
will manifest in the voltage measured by the QPD [72]. For small endogenous particles (∼ 1µm), it has been
confirmed that shape fluctuations are small and laser interferometry can be used to track their position with
nanometer precision. This has been verified by several independent studies on mammalian cells [36], yeast
[37], and hair bundles [21]. We also compare our QPD measurements and show that endogenous vesicles in
mouse oocytes are indistinguishable from both: polystyrene beads in living cells, and in an index-matched
50:50 water:glycerol solution in the central linear region used for position measurement (see Fig. S4 in SI).
Additionally, since the endogenous vesicles serve as nodes integrated in the cytoplasmic meshwork, they are
accurate reporters of the network mechanics and fluctuations [29].

5.6 Data Analysis

In the active microrheology (AMR) experiments we apply a known force, F , to an endogenous vesicle and
measure the resulting displacement, u. Using linear response theory, these are related to the material response
by, u(t) =

∫ t
−∞ χ(t− t′)F (t′)dt′. In Fourier space we can directly calculate the complex response as χ̃(ω) =

ũ(ω)/F̃ (ω). To translate the response function into a shear modulus we use the Generalized Stokes-Einstein
relation, G∗ = 1/[6πRχ̃(ω)], to calculate the elastic and viscous shear moduli (G′, G′′ respectively). For
AMR measurements the laser power exiting the objective was ∼ 120 mW. For the spontaneous fluctuations
we measure the motion, u(t), of endogenous vesicles via laser interferometry (without trapping the vesicle)
and calculate the power spectral density (PSD), C(ω) =

∫
〈u(t)u(0)〉 exp(iωt)dt, as described previously [72].

Briefly, we calculate the PSD by using MATLAB (The Mathworks, USA) to take the Fast Fourier Transform
(FFT) of the vesicle position, ũ = FFT(u). Then the PSD is calculated as, PSD = ũ×ũ∗

p×s , where ∗ denotes
complex conjugate, p is the number of measurement points, and s is the sampling frequency. In systems at
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thermal equilibrium the response function can be calculated from the PSD via the FDT as is done for passive
microrheology (PMR) [38]. For PMR measurements the laser power exiting the objective was ∼ 1 mW. Due
to the particle size and linear range of the QPD measurement our PMR measurements are restricted to a
range of approximately 500 nm.
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[37] Iva Marija Tolić-Nørrelykke, Emilia-Laura Munteanu, Genevieve Thon, Lene Oddershede, and Kirstine
Berg-Sørensen. Anomalous Diffusion in Living Yeast Cells. Phys. Rev. Lett., 93(7), aug 2004.

[38] R Kubo. The fluctuation-dissipation theorem. Rep. Prog. Phys., 29(1):255–284, jan 1966.
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List of Figures

1 Intracellular mechanics surrounding endogenous vesicles in living oocytes. (A)
Mouse oocytes are large spherical cells that have a well separated cortex and cytoplasmic-
skeleton composed of biopolymer filaments (brightfield image, left)(scalebar = 20 µm). Dur-
ing prophase-I it contains a dynamic actin-myosin-V meshwork that drives vesicle motion
(schematic shown in center and fluorescent image of actin filaments on right)(scalebar = 5
µm). Endogenous vesicles embedded in the cytoplasmic-skeleton are trapped using optical
tweezers(zoomed inset). (B) Once a vesicle is trapped, the mechanical properties of the local
environment can be measured by active microrheology (AMR) where a sinusoidal oscillating
force is applied to the vesicle (blue) and the resulting displacement of the vesicle is mea-
sured (green). The viscoelastic shear modulus (G∗) is calculated from this force-displacement
measurement via the Generalized Stokes-Einstein relation. (C) The mechanical properties sur-
rounding vesicles in the cytoplasmic-skeleton of oocytes (blue) exhibits power-law behavior
similar to reconstituted actin gels (gray) with frequency scaling G∗ ∝ f0.75 except significantly
stiffer. This shows that the cytoplasmic-skeleton in oocytes can be modeled as a semi-flexible
polymer network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 The cytoplasmic-skeleton of mouse oocytes is viscoelastic. (A, B) Insets indicate
that G′ quantifies the elasticity and G′′ quantifies the viscous dissipation of the cytoplasmic-
skeleton. The local mechanical properties (elastic and viscous) surrounding vesicles does
not change from WT (blue, ◦) when actin (red �) or microtubules (magenta *) are absent.
However, when myosin-V is inactivated (gray4), the cytoplasmic-skeleton stiffens significantly
(Kolmolgorov-Smirnov test, p < 1× 10−7), showing that the activity driven dynamics of the
actin-myosin-V meshwork maintains the soft mechanical environment surrounding vesicles in
oocytes. (C) The ratio of the elastic and viscous moduli (G′/G′′) in all oocytes shows that the
cytoplasmic-skeleton is more elastic at lower frequencies and more viscous at higher frequencies
with a crossover around ∼ 10−20 Hz. This shows the highly viscoelastic nature of the oocyte
cytoplasmic-skeleton. (sample size = WT: 11 cells, 32 vesicles; Fmn2: 10 cells, 33 vesicles;
MyoV(-): 23 cells, 69 vesicles; Noc(1µM): 8 cells, 52 vesicles; shaded region indicates SEM)
(note: data at 10 Hz in panel A and B are presented in a different context in [20]) . . . . . . 18

3 Active force generation by myosin-V drives the cytoplasmic-skeleton out-of-equilibrium.
(A) The spontaneous motion of vesicles in oocytes (green circles) is larger than expected at
thermal equilibrium (blue circles) at frequencies below 300 Hz showing that active forces are
contributing to vesicle motion as highlighted by the red shaded region. This is direct evi-
dence of nonequilibrium behavior in the cytoplasmic-skeleton (via violation of the fluctuation-
dissipation theorem (FDT)). At high frequencies the observed vesicle motion resembles thermal
motion indicated by the blue shaded region. (B) WT oocytes (blue) are the furthest from
equilibrium as shown by their higher effective energy. In the absence of actin (red) or when
myosin-V is inactivated (black) the dynamic actin-myosin-V meshwork is compromised and
oocytes have lower effective energy. Solid lines are theoretical fits (equations in SI, error bars
= SEM). (C) The cell force spectrum (Scell) experienced by vesicles is the sum of thermal
forces (Stherm) and active forces (Sactive) generated by molecular motors. At high frequencies
Scell (green) is dominated by Stherm (blue) and the two spectra coincide (blue shaded region).
At lower frequencies Scell is larger than Stherm showing the existence of additional active
forces. Solid lines are theoretical predictions (equations in SI), low-frequency deviation is due
to simple power-law model. (D) The mean-squared-displacement (MSD) of vesicles indicates
they undergo random-confined motion in the oocyte cytoplasmic-skeleton at short timescales.
This behavior transitions to active diffusion at longer times [20], and is reminiscent of cyto-
plasmic stirring [30]. (E) When a representative trajectory (black) is filtered to remove the
high-frequency thermal fluctuations the result is a smoothed trajectory (green) that represents
actively driven motion. The difference between the true trajectory (gray) and the smoothed
trajectory (green) recovers the high-frequency thermal fluctuations (blue) shown in (F). . . . 19
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4 A theoretical model of active mechanics connects in vivo measurements to molec-
ular force kinetics. (A) Vesicles (dark gray) are embedded in the complex mechanical
continuum (gray background) of the oocyte interior. Actin filaments emanate from the the
surface of vesicles creating an entangled network (green, left). Myosin-V motors generate
force on actin (magenta, right) giving rise to forces throughout the network driving vesicles
in random directions. (B) We model vesicles embedded in a mechanical continuum with local
stiffness (κ) represented by the blue harmonic potential, viscoelastic dissipation (ζα, α), and
thermal fluctuations (ξ) (left). Molecular motor activity generates an active force (fA) through
bursts of motion (vA) and drive motion of vesicles (inset indicates motor kinetics). (C) The
active force spectrum (Sactive) quantifies the forces on vesicles due to only active processes.
Combined with our quantitative model we find that the vesicles are subject to 0.4 pN of force,
during a power-stroke of length ∆x ∼ 20 nm and duration 300 µs, resulting in a vesicle velocity
of 320 nm/s, which is strikingly similar to the kinetics measured for single molecule myosin-
V in-vitro and the in-vivo vesicle velocity. The solid line is the theoretical fit (equation 3),
and the dotted line is a −4/3 power-law consistent with the cytoplasmic-skeleton mechanics.
(D) Simulated vesicle motion (green squares) agrees with experimental data (blue circles) for
a wide range of timescales as shown by the probability distribution of displacements. This
includes long timescale (tpdf = 1 s) Gaussian behavior and short timescale (tpdf = 0.01 s)
non-Gaussian tails (indicated by red-shaded regions) that are indicative of molecular motor
behavior, where tpdf is the time-lag for calculation of the displacement correlations. Gaus-
sian distributions shown in black. These results show that molecular level kinetics of active
processes can be extracted from mesoscopic in-vivo measurements. . . . . . . . . . . . . . . . 20
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Figure 1: Intracellular mechanics surrounding endogenous vesicles in living oocytes. (A) Mouse
oocytes are large spherical cells that have a well separated cortex and cytoplasmic-skeleton composed of
biopolymer filaments (brightfield image, left)(scalebar = 20 µm). During prophase-I it contains a dynamic
actin-myosin-V meshwork that drives vesicle motion (schematic shown in center and fluorescent image of
actin filaments on right)(scalebar = 5 µm). Endogenous vesicles embedded in the cytoplasmic-skeleton are
trapped using optical tweezers(zoomed inset). (B) Once a vesicle is trapped, the mechanical properties
of the local environment can be measured by active microrheology (AMR) where a sinusoidal oscillating
force is applied to the vesicle (blue) and the resulting displacement of the vesicle is measured (green). The
viscoelastic shear modulus (G∗) is calculated from this force-displacement measurement via the Generalized
Stokes-Einstein relation. (C) The mechanical properties surrounding vesicles in the cytoplasmic-skeleton of
oocytes (blue) exhibits power-law behavior similar to reconstituted actin gels (gray) with frequency scaling
G∗ ∝ f0.75 except significantly stiffer. This shows that the cytoplasmic-skeleton in oocytes can be modeled
as a semi-flexible polymer network.

17

91



Figure 2: The cytoplasmic-skeleton of mouse oocytes is viscoelastic. (A, B) Insets indicate that
G′ quantifies the elasticity and G′′ quantifies the viscous dissipation of the cytoplasmic-skeleton. The local
mechanical properties (elastic and viscous) surrounding vesicles does not change from WT (blue, ◦) when
actin (red �) or microtubules (magenta *) are absent. However, when myosin-V is inactivated (gray 4), the
cytoplasmic-skeleton stiffens significantly (Kolmolgorov-Smirnov test, p < 1×10−7), showing that the activity
driven dynamics of the actin-myosin-V meshwork maintains the soft mechanical environment surrounding
vesicles in oocytes. (C) The ratio of the elastic and viscous moduli (G′/G′′) in all oocytes shows that
the cytoplasmic-skeleton is more elastic at lower frequencies and more viscous at higher frequencies with a
crossover around ∼ 10−20 Hz. This shows the highly viscoelastic nature of the oocyte cytoplasmic-skeleton.
(sample size = WT: 11 cells, 32 vesicles; Fmn2: 10 cells, 33 vesicles; MyoV(-): 23 cells, 69 vesicles; Noc(1µM):
8 cells, 52 vesicles; shaded region indicates SEM) (note: data at 10 Hz in panel A and B are presented in a
different context in [20])
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Figure 3: Active force generation by myosin-V drives the cytoplasmic-skeleton out-of-
equilibrium. (A) The spontaneous motion of vesicles in oocytes (green circles) is larger than expected
at thermal equilibrium (blue circles) at frequencies below 300 Hz showing that active forces are contributing
to vesicle motion as highlighted by the red shaded region. This is direct evidence of nonequilibrium behavior
in the cytoplasmic-skeleton (via violation of the fluctuation-dissipation theorem (FDT)). At high frequencies
the observed vesicle motion resembles thermal motion indicated by the blue shaded region. (B) WT oocytes
(blue) are the furthest from equilibrium as shown by their higher effective energy. In the absence of actin
(red) or when myosin-V is inactivated (black) the dynamic actin-myosin-V meshwork is compromised and
oocytes have lower effective energy. Solid lines are theoretical fits (equations in SI, error bars = SEM). (C)
The cell force spectrum (Scell) experienced by vesicles is the sum of thermal forces (Stherm) and active forces
(Sactive) generated by molecular motors. At high frequencies Scell (green) is dominated by Stherm (blue) and
the two spectra coincide (blue shaded region). At lower frequencies Scell is larger than Stherm showing the
existence of additional active forces. Solid lines are theoretical predictions (equations in SI), low-frequency
deviation is due to simple power-law model. (D) The mean-squared-displacement (MSD) of vesicles indicates
they undergo random-confined motion in the oocyte cytoplasmic-skeleton at short timescales. This behavior
transitions to active diffusion at longer times [20], and is reminiscent of cytoplasmic stirring [30]. (E) When
a representative trajectory (black) is filtered to remove the high-frequency thermal fluctuations the result is
a smoothed trajectory (green) that represents actively driven motion. The difference between the true tra-
jectory (gray) and the smoothed trajectory (green) recovers the high-frequency thermal fluctuations (blue)
shown in (F).
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Figure 4: A theoretical model of active mechanics connects in vivo measurements to molec-
ular force kinetics. (A) Vesicles (dark gray) are embedded in the complex mechanical continuum (gray
background) of the oocyte interior. Actin filaments emanate from the the surface of vesicles creating an
entangled network (green, left). Myosin-V motors generate force on actin (magenta, right) giving rise to
forces throughout the network driving vesicles in random directions. (B) We model vesicles embedded in a
mechanical continuum with local stiffness (κ) represented by the blue harmonic potential, viscoelastic dissi-
pation (ζα, α), and thermal fluctuations (ξ) (left). Molecular motor activity generates an active force (fA)
through bursts of motion (vA) and drive motion of vesicles (inset indicates motor kinetics). (C) The active
force spectrum (Sactive) quantifies the forces on vesicles due to only active processes. Combined with our
quantitative model we find that the vesicles are subject to 0.4 pN of force, during a power-stroke of length
∆x ∼ 20 nm and duration 300 µs, resulting in a vesicle velocity of 320 nm/s, which is strikingly similar to the
kinetics measured for single molecule myosin-V in-vitro and the in-vivo vesicle velocity. The solid line is the
theoretical fit (equation 3), and the dotted line is a −4/3 power-law consistent with the cytoplasmic-skeleton
mechanics. (D) Simulated vesicle motion (green squares) agrees with experimental data (blue circles) for
a wide range of timescales as shown by the probability distribution of displacements. This includes long
timescale (tpdf = 1 s) Gaussian behavior and short timescale (tpdf = 0.01 s) non-Gaussian tails (indicated by
red-shaded regions) that are indicative of molecular motor behavior, where tpdf is the time-lag for calculation
of the displacement correlations. Gaussian distributions shown in black. These results show that molecular
level kinetics of active processes can be extracted from mesoscopic in-vivo measurements.
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Table 1: Myosin-V force kinetics in-vivo and in-vitro

in-vivo oocytes single molecule myosin-V reference
F (pN) 0.4 0-4 [50, 52, 51, 53]
τ(µs) 300 160-1000 [52, 55, 54]

∆x(nm) 20 15-25 [52, 56, 55, 54]
vv(µm/s) 320 270-480 [51, 53, 54]
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Theoretical Model

General: The motion of vesicles in the oocytes is modeled as tracer particles locally confined in the vis-
coelastic cytoplasm that is subjected to active force kicks. An active force kick is generated by a burst of
motion which reorganizes the cytoskeleton and pushes the vesicle to a new position. The dynamics of the
particle’s position, x, under the influence of active force kicks can be described in the overdamped Langevin
framework as,

ˆ t

dt0�(t � t0)
dx

dt
= �(x � x0) + ⇠ (1)

ˆ t

dt0�(t � t0)
dx0

dt
= ⇣↵vA (2)

where ⇠ is Gaussian colored noise with correlations h⇠(t)⇠(t0)i = kBT�(|t�t0|), as provided by the Fluctuation
Dissipation Theorem[1], kB is the Boltzmann constant, and T is the bath temperature of the environment.
The viscoelastic material properties are described by, , the harmonic trap stiffness with center x0, and
the memory kernel, �(t) = �↵t�↵/�(1 � ↵), where � is the Gamma function, and ⇣↵ = (�↵/)1/↵ is the
microscopic timescale of the material. The active forces result from generation of the active burst velocity
of molecular motors, vA, which is a stochastic process consisting of alternating active and quiescent periods.
During an active phase the active burst velocity, vA, takes on a constant non-zero value, v, for a random
exponentially distributed time of average value ⌧ . During a quiescent phase the active burst velocity is 0 for
an exponentially distributed random time ⌧0. The active burst velocity is a zero mean non-Gaussian colored
noise process with correlations hvA(t)vA(0)i = kBTA exp(�|t|/⌧)/(⇣↵⌧), where kBTA = ⇣↵(v⌧)2/[3(⌧ +⌧0)]
defines an active energy scale. Note that the dynamics of the joint process {x, x0} is not Markovian because
of the memory kernel in the equations of motion.

From the generalized Stokes-Einstein relation, �̃(!) = 6⇡R⌘̃(!), where ! = 2⇡f is the frequency in
radians/sec, R is the tracer’s radius, the memory kernel can be associated with a complex modulus G⇤ =
G0 + iG00 of the form,

G0(!) =
1

6⇡R

h
�↵!

↵ cos
⇣⇡↵

2

⌘
+ 

i
(3)

G00(!) =
�↵

6⇡R
!↵ sin

⇣⇡↵
2

⌘
(4)

where G0 is the real component of the complex modulus, and G00is the imaginary component.
The nonequilibrium properties of the motor activity are quantified by the deviation from the Fluctuation-

Dissipation Theorem defined by a frequency dependent effective energy: Ee↵(!) = �!C̃(!)/ (2�̃00(!)), where
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↵ ⇣↵ (s)  (pN · µm�1) TA/T ⌧ (ms)
WT 0.64 0.0657 20 5.5 0.30

Fmn2 -/- 0.6 0.103 18 5.0 0.15
Myo V(-) 0.57 0.163 27 3.8 0.1

Table 1: Theoretical fit parameters.

�̃00 is the imaginary part of the response Fourier Transform, and C̃ is the position autocorrelation function
in the Fourier Domain. We compute it in terms of the microscopic ingredients:

Ee↵(!) = kBT +
1

(!⇣↵)3↵�1 sin(⇡↵/2)

kBTA

1 + (!⌧)2
(5)

where kBTA is the energy scale associated with the active process. The dynamics of the tracer can be written
as: x(t) =

´ t dt0�(t � t0)Fcell(t
0), where Fcell = ⇠ + x0 is the cell force which describes the thermal forces

arising in the cell and the effect of the active forces via x0. This expression reveals one can access the cell
force power spectrum Scell by combining measurements of G⇤ and C̃: Scell = (6⇡R)2|G⇤|2C̃. Within our
model, this expression can be separated into two contributions: Scell = Stherm + Sactive, where Stherm is the
thermal force spectrum, and Sactive is the active force spectrum. From the definition of the thermal force
correlations, we deduce the thermal force spectrum: Stherm = 12⇡RG00kBT/!. We compute the explicit
expression of the two contributions of the cell force spectrum:

Stherm(!) = 2�↵kBT!↵�1 sin
⇣⇡↵

2

⌘
(6)

Sactive =
2⇣↵

(!⇣↵)2↵
kBTA

1 + (!⌧)2
(7)

If we define an apparent typical active force generated by the motor activity to be F = v⌧ then we can
substitute this directly into the definition for the active temperature (kBTA) and rewrite the active force
spectrum in a more intuitive way as,

Sactive =
1

(!⇣↵)2↵| {z }
mechanics

1

1 + (!⌧)2
2(F⇣↵)2

3(⌧ + ⌧0)| {z }
motor kinetics

(8)

as seen in the main text (recall that ! = 2⇡f). When looking at the active force spectrum (Figure 1) the power
law dependence of equation 8 becomes very clear. At low frequencies there is a power-law dependence of -4/3
consistent with the mechanics (↵ ⇡ 2/3) and at high frequencies the power-law dependence is approximately
-10/3 consistent with motor kinetics and mechanics. The crossover between these two regimes occurs at 1/⌧
as shown approximately by the purple dotted line in Figure 1.

When applying the theoretical model to the experimental data, first the mechanical measurements from
AMR was used to fit equations 3 and 4 to determine the mechanical parameters: ↵, �↵,  from the data
shown in Figure 2C, and D of the main text. Once the mechanics is determined, the remaining equations are
largely constrained. The best fit of the data for effective energy (Fig 3B of main text) is used to determine
kBTA in equation 5, where the fit is independent of ⌧ when ⌧ < 10 ms. From fitting the active force spectrum
we find that ⌧ = 0.3 ms to capture the high-frequency drop-off (Figure 4B of main text). The fit parameters
for the theoretical model are shown in Table 1. To summarize: ↵, ⇣↵,  are obtained from fitting AMR
measurements of the mechanics (G0, G00), TA/T is obtained from fitting the effective energy data (Eeff), and
⌧ is obtained from fitting the active force spectrum (Sactive). Then combining the apparent typical active
force, F , and the active energy scale, kBTA, we can calculate, F = [3kBTA(⌧ + ⌧0)/⇣↵]

1/2 which is the
active force felt by the vesicles due to the motor activity. Once the force, F , is known the step-size can be
deduced as �x = F/. Similarly, to estimate the velocity of a vesicle we calculate, vv = F/(⇣↵) , where F
is the average active force and ⇣↵ is the resistance provided by the surrounding mechanical environment.
These parameters (F, ⌧, vv,�x) are the molecular force kinetics reported in Figure 4B of the main text.
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Figure 1: The active force spectrum shows two distinct power-law (PL) behaviors at low and high frequency.

Simulations To simulate the dynamics of the vesicles, we first approximate the power law memory kernel
�(t) / t�↵ as a finite sum of exponential functions (Prony series): �(t) =

P
i cie�t/�i/�i. Following the

methods developed in [2], it is possible, with N exponential terms, to accurately approximate a power law
decay over N decades. Parameters ci and �i are then given by,

�i =
10i

↵
, ci =

⇣↵↵
�(1 � ↵)

10�i(↵�1)

↵
P

j 10�j↵e�↵/10j (9)

We approximate the power law kernel in the time window
⇥
10N� , 10N+�1

⇤
, where N� < 0 < N+, and

N = N+ � N� + 1. Then, the index in the Prony series goes from i = N� to i = N+.
With � a sum of N exponential functions, it is possible to turn equations 1 and 2 into a (2N + 2)-

dimensional Markovian process for the variables
�
x, x0, yN� , . . . , yN+

, zN� , . . . , zN+

 
[3]:

N+X

i=N�

ci

�i
(x � yi) = �(x � x0),

N+X

i=N�

ci

�i
(x0 � zi) = ⇣↵vA, (10)

ci
dyi

dt
= � ci

�i
(yi � x) + ⇠i,

dzi

dt
= �zi � x0

�i
, (11)

where the {⇠i}i are the zero mean Gaussian noises with correlations h⇠i(t)⇠j(t
0)i = 2kBTci�ij�(t � t0). By

using Euler’s methods to simulate this set of equations, the iterative equations take the following form in
terms of the sampling time �t,

yi(t + �t) = yi(t) �
�t

�i
(yi(t) � x(t)) +

r
2kBT�t

ci
⌘, zi(t + �t) = zi(t) �

�t

�i
(zi(t) � x0(t)) (12)

x0(t + �t) =
⌧↵vA(t + �t) +

P
i cizi(t + �t)/�iP

i ci/�i
, x(t + �t) =

x0(t + �t) +
P

i ciyi(t + �t)/�i

 +
P

i ci/�i
(13)

where ⌘ is random Gaussian variable with zero mean and variance equal to 1, and vA is the stochastic process
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described earlier, which is computed according to the following rules:

vA(t + �t) =

8
>>><
>>>:

vA(t) if vA(t) 6= 0with Pr. 1 ��t/⌧

vA(t) if vA(t) = 0with Pr. 1 ��t/⌧0

0 if vA(t) 6= 0with Pr. �t/⌧

U[�v,v] if vA(t) = 0with Pr. �t/⌧0

(14)

where U[�v,v] is a uniform random number between �v and v and ⌧0 = ⌧(1� pon)/pon is the timescale over
which the active burst is 0.

In order to mimic the experimental condition, we chose a sampling time �t = 104 s, and we aimed to
simulate our process up to 10 s. Then, we have set {N�, N+} = {4,�2}, so that the power law memory kernel
is well approximated in the time window[10�4, 10] s, with parameter values {↵, ⇣↵↵ , N�, N+} = {0.6, 1,�4, 2}

Other parameters in the simulation were chosen according to the numerical fits over experimental data,
and as listed in Table 1 where pon = 4% and v = 60µm · s�1 where pon = ⌧/(⌧ + ⌧0) where (⌧ + ⌧0) is the
total myosin-V step duration [4, 5] and v is the active burst velocity of the myosin-V motor itself calculated
from v = F/(⌧). We also took kBT = 4 ⇥ 10�21 J.

We started the simulation with all variables set to 0 and waited for thermalization by running the sim-
ulation for 103 time steps. We then start collecting position data x in order to build the histogram for the
probability distribution function of the position. A total of approximately 105 samples were collected to
arrive at the histogram in Fig 4 of the main text.

Crossover to thermally dominated forces

The relative balance between intracellular mechanical properties and active forces determines the frequency
at which nonequilibrium activity becomes evident (Scell > Stherm). To illustrate this we explore how
mechanical properties change the force spectrum (equation 6 and 7). The total force spectrum is the sum of
contributions from active forces and thermal forces, (Scell = Sactive+Stherm). Fig 2A shows the theoretical
curves for the force spectrum measured in the present study. Here, we can observe that the magnitude of
thermal and active forces is equal at 20 Hz (denoted by the purple diamond) and that thermal forces dominate
the spectrum (Scell ⇡ Stherm) at approximately 300 Hz (gray star). This also highlights that the active forces
still contribute to the total force spectrum even when they are much smaller than the thermal forces. Now if
the system is made softer by decreasing the coefficient of the viscoelastic memory kernel, �↵ = 0.2 · �↵(WT),
we see that thermal forces do not dominate until 1000 Hz (Fig 2B). Alternatively, if the system is made stiffer
(�↵ = 5 · �↵(WT))(Fig 2C), then thermal forces begin to dominate at much lower frequency (25 Hz, gray
star). Therefore, by only changing the mechanical properties of the system by a small amount, the frequency
at which thermal forces dominate can be changed dramatically.
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Figure 2: Force spectrum depends on the mechanical properties of the system. (A) The theoretical curves
for the force spectrum measured in the experiments in this study where the coefficient of the memory kernal
is �↵ = �↵(WT) and the thermal forces dominate at around 300 Hz. (B) The mechanical properties are
softened by �↵ = 0.2 · �↵(WT) and the frequency where thermal forces dominate is shifted up to 1000 Hz.
(C) The mechanical properties are stiffened by �↵ = 5 · �↵(WT) and the thermal forces dominate at 25 Hz.
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Figure 3: The actin meshwork was visualized with GFP-UtrCH to show the actin meshwork. WT oocytes
exhibit a network of actin positive vesicles connected by actin filaments to create a meshwork. Fmn2 -/-
exhibited punctate actin but no visible meshwork. MyoV(-) exhibit an increased density actin meshwork
relative to WT. Images were captured at 37 degrees Celsius using a 40x objective (1.25NA) on a Leica
DMI6000B microscope enclosed in a thermostatic chamber (Life Imaging Service) equipped with a CoolSnap
HQ2/CCD-camera (Princeton Instruments) coupled to a Sutter filter wheel (Roper Scientific) and a Yokogawa
CSU-X1-M1 spinning disc. (oocyte diameter is 80 µm)
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Figure 4: QPD voltage vs. laser position for various conditions. The slope of the central linear region is
indistinguishable between a vesicle in an oocyte (green), a 1 micron colloidal bead in a Hela cell (magenta),
and a 1 micron colloidal bead in an index matched solution of 50:50 water:glycerol. For comparison, the
slope of a 1 micron colloidal bead in pure water is significantly steeper due to the higher difference in index
of refraction.
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Nonequilibrium dissipation in living oocytes
As a first insight into the energetics of the active fluctuations with memory

effects, we estimate the average power transferred from the tracer to the thermostat
〈ṙ · (γ ∗ ṙ− ξ)〉, where ∗ denotes the convolution in time. The spectral density I(ω)
of this power reads

I(ω) = (ωτα)α−1 sin(πα/2)
1 + 2(ωτα)α cos(πα/2) + (ωτα)2α

TA

1 + (ωτ)2 . (5.9)

It exhibits several power-law regimes with exponents depending on the mechanics
via α. When integrating over the whole spectra, we deduce the average power
dissipated by the tracer in the thermostat. From the best fit parameters, we
estimate 〈ṙ · (γ ∗ ṙ− ξ)〉 ∼ 360 kBT/s. This is to be compared with the typical
power dissipated by one myosin-V motor. Provided that one of such motors do a
work of about 3 kBT during a power stroke of approximately 0.3 ms, we deduce
that the corresponding work is of the order of 104 kBT/s. Therefore, the power
dissipated by the tracer is approximately three times smaller than the one injected
by a single motor. This apparent contradiction is due to the fact that, in our
phenomenological picture, the forces exerted by the motors do not act directly
on the tracers, they serve to remodel the cytoskeleton network. Consequently,
the power dissipated by the tracer accounts for the transmission of forces from
the local rearrangement of the surrounding network into the tracer displacement,
which is mediated by the dynamics of the active cage.

To provide a quantitative estimation of the efficiency of power transmission
from the cage motion to the tracer motion, we compare the power of two distinct
forces. As discussed in Chapter 1, the power transferred from the tracer to the
thermostat reduces to the power of the active force acting directly on the tracers
〈ṙ · fA〉, where fA = kr0 for the active cage model. We introduce the power of
the force kταvA which describes the active bursts driving the cage dynamics as
〈ṙ0 · kταvA〉. Taking into account the back action force and the thermal noise
acting on the cage, as done in Chapter 3, this power acquires the interpretation of
a balance between damping and thermal fluctuations at the level of the cage. We
derive its analytic expression as

〈ṙ0 · kταvA〉 = TA

τ

(
τα
τ

)1−α
. (5.10)

It leads us to define an efficiency of power transduction as

ρ = 〈ṙ · r0〉
〈ṙ0 · ταvA〉

. (5.11)

It only depends on the time scales τ and τα. Using the values extracted from the
best fits of the effective temperature and the spectral density I(ω), we deduce that
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the efficiency ρ is very low: ρ ∼ 10−3. This suggests that only a small proportion
of the power injected by the motors in the oocytes is dedicated to displace the
vesicles: the main contribution goes into the network remodeling without affecting
the vesicle dynamics.

We present the details of the analytic derivations along with the data analysis
in paper D reproduced below.
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Living organisms are inherently out-of-equilibrium systems. We employ new developments in stochas-
tic energetics and rely on a minimal microscopic model to predict the amount of mechanical energy dissi-
pated by such dynamics. Our model includes complex rheological effects and nonequilibrium stochastic
forces. By performing active microrheology and tracking micron-sized vesicles in the cytoplasm of living
oocytes, we provide unprecedented measurements of the spectrum of dissipated energy. We show that our
model is fully consistent with the experimental data, and we use it to offer predictions for the injection
and dissipation energy scales involved in active fluctuations.
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Perrin’s century old picture [1] where the Brownian mo-
tion of a colloid results from the many collisions exerted
by the solvent’s molecules is a cornerstone of soft-matter
physics. Langevin [2] modeled the ensuing energy ex-
changes between the solvent and the colloidal particle in
terms of a dissipation channel and energy injection kicks.
The key ingredient in the success of that theory was to com-
pletely integrate out the "uninteresting" degrees of free-
dom of the solvent whose properties are gathered in a fric-
tion constant and a temperature. In this work we take ex-
actly the reverse stance and ask how, by observing the mo-
tion of a tracer embedded in a living medium, one can in-
fer the amount of energy exchange and dissipation with
the surrounding medium. The main goal is to quantify
the energetic properties of the medium, both injection and
dissipation-wise.

This is a stimulating question because there are of course
striking differences between a living cell and its equi-
librium polymer gel counterpart, to which newly devel-
oped [3, 4] methods of nonequilibrium statistical mechan-
ics apply. Beyond thermal exchanges that fall within the
scope of a Langevin approach, ATP consumption fuels
molecular motor activity and drives relentless rearrange-
ment of the cytoskeleton. This chemically driven continu-
ous injection and dissipation of energy adds a nonequilib-
rium channel that eludes straightforward quantitative anal-
ysis. In short, a living cell is not only a fertile playground
for testing new ideas from nonequilibrium physics, but also
one in which these ideas can lead to a quantitative eval-
uation of an otherwise ill-understood activity which is of
intrinsic biophysical interest. Our work addresses both as-
pects by a combination of active microrheology, tracking
experiments, and theoretical modeling.

One experimental way to access nonequilibrium physics

in the intracellular medium is to focus on the deviation
from thermal equilibrium behavior of the tracer’s position
statistics: forming the ratio of the response of the tracer’s
position to an infinitesimal external perturbation to its un-
perturbed mean-square displacement leads to a quantity
that only reduces to the inverse temperature when in equi-
librium, by virtue of the fluctuation-dissipation theorem
(FDT). Earlier tracking experiments supplemented by mi-
crorheology techniques have allowed the departure from
equilibrium to be analyzed in terms of this ratio in a vari-
ety of contexts [5–10] ranging from reconstituted actin gels
to single cells. However the limitations inherent to this ef-
fective temperature are well-known: it bears no universal
meaning as it depends on the observable under scrutiny,
thus it cannot be equated to a bona fide temperature, and
hence it does not connect to the underlying microscopic
dynamics.

Here we exploit a body of theoretical methods that have
been developed over the last ten years to infer quantita-
tive information about the nonequilibrium processes driv-
ing intracellular dynamics. Within the realm of stochas-
tic thermodynamics [3, 4] –as it strives to extend concepts
of macroscopic thermodynamics to small and highly fluc-
tuating systems [11–13], the Harada-Sasa equality stands
out as being particularly suited to our goal. Nonequilib-
rium systems are characterized by the dissipation of en-
ergy, which is absorbed by the surrounding thermostat
via a transfer from the system to the bath. The Harada-
Sasa equality connects the rate of dissipated energy to the
spatial fluctuations in a nonequilibrium steady-state sys-
tem [14, 15]. The feasibility of measuring the various in-
gredients in the Harada-Sasa framework was demonstrated
in model systems such as a micron-sized colloidal particle
in a viscous fluid [16, 17], and then later generalized to a
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viscoelastic medium [18]. It has also been used to quantify
the efficiency of an isolated molecular motor [19].

The systems to which we apply this equality are micron-
sized vesicles that are present in the cytoplasm of mouse
unfertilized eggs, known as oocytes. Their motion in the
cell is mainly regulated by myosin-V motors on the actin
network [20–22]. The use of such vesicles allows us to
capture the intrinsic intracellular dynamics without using
artificial external particles that may alter the environment.
From a physics perspective, oocytes are also major assets
since they constitute a rare example of a living cell that
remains steady on the timescales of hours. They are spher-
ical in shape, with typical radius of about 40 µm, and their
nucleus is centrally located at the end of Prophase I [23].

In this paper, we directly access nonequilibrium dissipa-
tion within the cell. We first characterize the intrinsic rhe-
ology of the medium experienced by the vesicles. Then, we
present a minimal microscopic model for the dynamics of
the vesicles which is driven by the nonequilibrium reorga-
nization of the cytoskeleton by molecular motor generated
forces. We use our theoretical modeling and the Harada-
Sasa equality to predict and quantify the rate of nonequilib-
rium dissipated energy in our experimental system. Finally,
we employ this new prediction to evaluate how nonequilib-
rium activity varies across the cell, and we offer interpreta-
tions about the role of molecular motors in vesicle motion.

Experimental setup.—Mouse oocytes are collected from
13 week old mice and embedded in a collagen gel between
two glass coverslips [24, 25]. We measure the local me-
chanical environment surrounding vesicles in living mouse
oocytes using active microrheology [5, 26]. We use an opti-
cal tweezer to trap vesicles and apply a sinusoidal oscillat-
ing force [Fig. 1]. The resulting displacement of the vesicle
due to the applied force reflects the mechanical response of
the system. We deduce the complex modulus of the intra-
cellular environment surrounding the vesicle from the gen-
eralized Stokes-Einstein relation G∗ = 1/(6πaχ̃), where
χ̃ is the Fourier response function, and a is the vesicle’s
average radius.

We find that the intracellular mechanics exhibits a power
law rheology at high frequencies, and levels off at lower
frequencies, as seen in the real and imaginary parts of
G∗, respectively denoted by G′ and G′′ [Fig. 1(c)]. We
fit the experimental data with the function G∗(ω) =
G0(1 + (iωτα)α), where τα is a thermal relaxation time
scale [25, 27, 28]. To experimentally quantify nonequilib-
rium dissipation, we must also measure the spontaneous
motion of the vesicles by laser interferometry, and extract
the power spectral density of the vesicles’ position [29], as
is done for passive microrheology [30] [Fig. 1(d)]. These
spontaneous fluctuations entangle information about the
thermal and nonequilibrium forces applied on vesicles in
the oocyte cytoskeleton [26].

Caging model.—We propose a model for the vesicle dy-
namics the surrounding fluctuating actin mesh that takes
the observed power law behavior of G∗ into account. The
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FIG. 1: (Color online) Experimental setup for measuring oocyte
microrheology. (a) We embed oocytes in a collagen matrix be-
tween two glass coverslips to prevent rolling during measure-
ment. (b) We use optical tweezers to trap intracellular vesicles
and perform active microrheology to measure local mechanical
properties [5]. (c) Real (G′) and imaginary (G′′) part of the
complex modulus, measured from active microrheology. Data
at 10 Hz is used in [22]. (d) We use laser tracking interferome-
try to track spontaneous vesicle motion with high spatiotemporal
resolution (10 nm, 1 kHz) [29].

model has itself been previously introduced in [31], but
it is generalized here to encompass strong memory ef-
fects [32]. The underlying physical picture is that the vesi-
cle is caged in the cytoskeleton [Fig. 1(b)], modeled as a
harmonic trap of constant k, while nonequilibrium activity
induces rearrangements of the cytoskeletal network result-
ing in a displacement of the cage. In a medium charac-
terized by a memory kernel ζ , we then describe the one
dimensional position x of a vesicle with two coupled gen-
eralized Langevin-like equations involving the center of the
cage x0:

ζ ∗ dx
dt

= −k(x− x0) + ξ , ζ ∗ dx0

dt
= kταvA , (1)

where ∗ denotes the convolution product, ξ is a zero mean
Gaussian colored noise with correlations 〈ξ(t)ξ(t′)〉 =
kBTζ(|t− t′|) as provided by the FDT [33], and T is the
bath temperature.

The cage motion is given by the active burst vA: a zero
mean stochastic process representing the random vesicle
motion driven by cellular activity [22, 32]. In our fur-
ther analysis, we consider that this process has a single
timescale τ that governs its decorrelation: 〈vA(t)vA(0)〉 =
kBTAe−|t|/τ/(kτατ), where, by analogy with standard
Langevin equation, we have defined an active tempera-
ture TA associated to the amplitude of this process. No-
tice that TA is a scalar quantity which quantifies the am-
plitude of the active fluctuations. We choose the mem-
ory kernel ζ to recover the observed behavior of the
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measured G∗ by adopting a power law decay ζ(t) =
k (τα/t)

α
Θ(t)/Γ(1 − α), where Γ is the Gamma func-

tion, Θ is the Heaviside function, and α < 1. From
the generalized Stokes-Einstein relation, we derive that
G∗(ω) =

[
k + iωζ̃(ω)

]
/(6πa) [34], where the super-

script tilde denotes a Fourier transform [25]. This expres-
sion has exactly the same structure as the phenomenolog-
ical function we use to fit G∗ with k = 6πaG0. Our
approach can be extended in a straightforward manner to
other kinds of rheology.

Effective temperature.—We define a frequency
dependent “effective temperature” Teff(ω) =

−ωC̃(ω)/ [2kBχ̃
′′(ω)], where C̃ and χ̃′′ are the Fourier

position autocorrelation function and the imaginary part of
the response function, respectively [8, 9, 35]. We compute
it in terms of the microscopic parameters as [25]

Teff(ω) = T +
1

(ωτα)3α−1 sin
(
πα
2

) TA

1 + (ωτ)2
. (2)

The high frequency value collapses to the bath tempera-
ture as for an equilibrium behaviour and constitutes a use-
ful benchmark [8]. It also diverges at low frequency as a
result of nonequilibrium activity, with a coefficient depend-
ing on both the material properties {α, τα} and the active
temperature TA. This interplay between mechanics and ac-
tivity reflects the fact that the nonequilibrium processes op-
erating in the system drive motion of the cytoskeletal cage,
which in turn affects the vesicle dynamics.

Dissipation spectrum.—A quantification of direct physi-
cal relevance is the work done by the vesicle on the thermo-
stat [36], which is the dissipated mechanical energy. The
mean rate of energy dissipation Jdiss is the power of the
forces exerted by the vesicle on the heat bath, namely the
forces opposed to the thermal forces acting on the vesi-
cle by virtue of the action-reaction principle. The ther-
mal forces comprise both the drag force −ζ ∗ ẋ and the
Gaussian noise ξ. Therefore, the dissipation rate reads
Jdiss = 〈ẋ(ζ ∗ ẋ− ξ)〉, where ẋ = dx/dt is the vesicle’s
velocity [36, 37]. It is proportional to the rate at which
the vesicle exchanges energy with the surrounding environ-
ment [38]. In equilibrium Jdiss would vanish, thus express-
ing the fact that the vesicle releases and absorbs on average
the same amount of energy from the thermostat. The dis-
sipation rate can be shown to be equal to the mean rate
of entropy production times the bath temperature T [25].
Thereby, it directly characterizes the irreversible properties
of the dynamics stemming from the active fluctuations.

The Harada-Sasa equality connects the spectral density
I of mechanical energy dissipation to C̃ and χ̃′′ in a vis-
cous fluid [14, 15]. In the case of a complex rheology, we
express it as I = 2kB(Teff−T )/ [1 + (G′/G′′)2] [25, 39].
This relation allows us to precisely identify the dissipation
rate with the nonequilibrium properties of the vesicles’ dy-
namics, since I vanishes at equilibrium. Within our model,

the dissipation spectrum is [25]

I(ω) =
(ωτα)

1−α
sin
(
πα
2

)

1 + 2 (ωτα)
α

cos
(
πα
2

)
+ (ωτα)

2α

2kBTA

1 + (ωτ)
2 .

(3)
There is no nonequilibrium dissipation when TA = 0 as ex-
pected, while in general it depends on both mechanics and
activity as for Teff. By integrating the dissipation spectrum
over the whole frequency range, we can deduce the total
dissipation rate Jdiss =

∫
dωI(ω)/(2π). By contrast to

Teff, the dissipation spectrum not only quantifies the devi-
ation from equilibrium properties, it is also related to the
energy injected by the nonequilibrium processes.

In our theoretical framework, the nonequilibrium drive is
embodied by the kx0 force applied on the vesicle. The dis-
sipation rate precisely equals the mean power of this force:
Jdiss = 〈ẋkx0〉, reflecting the fact that the mechanical en-
ergy dissipated by the vesicle is also the energy provided
by the nonequilibrium processes driving the vesicle’s mo-
tion [25]. In addition, the dissipation spectrum I equals
the Fourier transform of the time symmetric correlation be-
tween the vesicle velocity ẋ and the driving force kx0 [25].

Energy conversion.—The vesicle motion results from
the displacement of the confining cytoskeletal cage, which
is due to the active reorganization of the local environment.
We denote by Jenv the power of the random force driving
the cage’s motion. This is the rate of energy injected by
the nonequilibrium processes into the environment lead-
ing to the cytoskeleton rearrangement. In our model, it is
given by the mean power injected by the force kταvA to
the cage: Jenv = 〈ẋ0kταvA〉, where ẋ0 = dx0/dt. This
can be computed in terms of the microscopic parameters
Jenv = kBTA/τ(τα/τ)1−α [25]. Note that Jenv can also be
regarded as the work per unit time done by the cage on the
thermostat [25]. This interpretation stems from the fact that
our model is the limit version of one that features a reac-
tion force of the vesicle upon the cage (for which mechan-
ical interpretations are ambiguity-free), along with thermal
fluctuations acting directly on the cage [39].

In our phenomenological picture, the energy Jenv in-
jected by the intracellular active processes serves to relent-
lessly remodel the cytoskeleton network. This energy is
then transduced into the vesicles confined in such network,
which is embodied by Jdiss, thus driving their active mo-
tion. To quantify the efficiency of this energy transduction
we introduce the dimensionless ratio ρ = Jdiss/Jenv of the
energy effectively dissipated through active motion of the
vesicles over that injected by the nonequilibrium processes
into the cage. The energetic efficiency ρ is independent
of TA, and is thus controlled by the time scales τ and τα.
We understand such energy transduction as the conversion
of the active stirring of the cytoskeleton network into the
active dynamics of the intracellular components.

Quantification of the activity.—We exploit our theoreti-
cal predictions to quantify the experimental measurements
of nonequilibrium dissipation inside living oocytes. We ex-
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FIG. 2: (Color online) (a) Effective temperature Teff and (b) dissi-
pation spectrum I as functions of frequency (◦), best fits in solid
lines. The horizontal dashed line in (a) is the prediction for a
thermal equilibrium system in the absence of activity, for which
the dissipation spectrum equals zero. The experimental data is
averaged over the whole oocyte. (c) Active temperature, (d) dis-
sipation rate, and (c) power conversion rate estimated from the
best fits of Teff and I at three locations within the cytoplasm:
near the nucleus (Nuc), near the cortex (Cor), and in the region in
between (Mid).

tract the data for the effective temperature and the dissi-
pation spectrum from a combination of active and passive
microrheology. We observe that the experimental effec-
tive temperature diverges at low frequency, as a clear evi-
dence that nonequilibrium processes drive the intracellular
dynamics in this regime [Fig. 2(a)]. It reaches the equi-
librium plateau at high frequency as expected. Deviation
from thermal equilibrium was already reported in other liv-
ing systems [7, 10, 32]. We use our analytic prediction in
Eq. (3) to fit the dissipation spectrum data. As we have al-
ready quantified the viscoelastic properties, the remaining
two free parameters are the ones characterizing the prop-
erties of the nonequilibrium processes, namely the active
temperature TA, and the mean persistence time τ . Our best
fit is in very good agreement with the measured dissipation
spectrum [Fig. 2(b)].

The extracted value of the active temperature TA =
(6.2 ± 0.5)T is larger than the bath temperature T . By
contrast to Teff, the active temperature is frequency inde-
pendent, and it quantifies the amplitude of the active fluc-
tuations. Hence, our estimation reveals that the fluctuations
due to the nonequilibrium rearrangement of the cytoskele-
ton have a larger amplitude than the equilibrium thermal
fluctuations dominating the short time dynamics. The time
scale τ = (0.34 ± 0.04) ms that we obtain is of the or-
der of the power stroke time of a single myosin-V mo-
tor [32, 40]. This teaches us that the nonequilibrium pro-
cesses driving the vesicle dynamics are related to the mi-
croscopic kinetics of the molecular motors. It is consis-

tent with the fact that nonequilibrium processes are dom-
inant at a higher frequency in our system than in others
which were mainly driven by myosin-II [5, 7], for which
the power stroke time is about 0.1 s [41]. Our analytic pre-
diction for Teff in Eq. (2), for which we use the parameter
values {α, τα, TA, τ} extracted from the previous fits ofG∗

[Fig. 1(c)] and I(ω) [Fig. 2(b)], is in consistent agreement
with the experimental data [Fig. 2(a)].

From the best fit parameters, we directly estimate the
dissipation rate Jdiss = (360± 110) kBT/s, as well as the
power conversion rate ρ = (1.7 ± 0.8)10−3. We find that
the conversion of energy from the cytoskeletal network to
the vesicle is very low. This suggests that a major propor-
tion of the nonequilibrium injected power is dedicated to
the network rearrangement, and not necessarily to vesicle
dynamics per se. In other words, the injected energy tends
to go mostly into elastic stresses, and only a small fraction
ends up in kinetic energy [42].

It has been reported that a single myosin-V motor
does about 3 kBT of work during one power stroke [43],
from which we deduce that it dissipates approximately
104 kBT/s into the intracellular environment. This re-
sult is to be compared with our estimation of Jenv =
(2.0 ± 0.5)105 kBT/s. We infer that the power injected
by the nonequilibrium processes into the environment rep-
resents approximately the activity provided by 20 myosin-
V motors. Assuming that the nonequilibrium processes in
oocytes are indeed mainly regulated by myosin-V activity,
we infer that 20 is the typical number of motors involved in
the nonequilibrium reorganization of the cytoskeletal cage
in the vicinity of a vesicle.

Variability across the oocyte.—One of the main advan-
tages of our energetic approach lies in the ability to com-
pare the same physical quantities across a large variety of
living systems, or in different locations of the same sys-
tem. We consider three concentric shells within the oocyte
cytoplasm located near the nucleus, near the cortex, and
in between these two regions. Each shell has a radial ex-
tension of about 10 µm. We use our analysis to quantify
TA, Jdiss, and ρ in the three regions [25]. Our results hint
that nonequilibrium activity is increased near the middle of
the cell, and slightly decreased near the nucleus, as quan-
tified by TA and Jdiss [Figs. 2(c-d)]. This suggests that
living oocytes locally regulate the nonequilibrium activity
throughout their cytoplasm by injecting different amounts
of energy. Note that the relative variation of J and TA are
similar, showing the close relation between these quantities
as highlighted in Eq. (3). In comparison, the variation of ρ
does not exhibit a clear trend across the oocyte [Fig. 2(e)].

Conclusion.—We quantified the amount of mechanical
energy dissipated by the intracellular dynamics. Our anal-
ysis utilizes a minimal model describing the effect of the
nonequilibrium stochastic forces in living systems with
complex rheology. We find the predictions of our model
to be in excellent agreement with the experimental results
for vesicles in living mouse oocytes, thus allowing us to
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quantify the main properties of the nonequilibrium dynam-
ics: the amplitude and typical time scale of active fluctua-
tions, the amount of dissipated energy, and the rate of en-
ergy transmitted from the cytoskeletal network to the in-
tracellular components. The extracted parameters provide
a quantitative support to the experimental picture that the
nonequilibrium processes are mainly driven by myosin-
V activity [20–22, 32]. The use of general principles in
stochastic energetics, together with a minimal microscopic
model, makes the results of our study highly relevant to a
large variety of active processes in biology and soft matter.

We warmly thank Gavin Crooks for a critical reading
of the manuscript and FvW acknowledges the support of
the UC Berkeley Pitzer Center for Theoretical Chemistry.
WWA thanks the PGG Fondation and Marie Curie Actions.
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I. EXPERIMENTAL MATERIALS AND METHODS

Mouse oocytes are collected from 13 week old mice and
maintained in Prophase 1 in M2+BSA medium [1]. Live
oocytes are embedded in a collagen gel to stop movement
of the overall cell during measurements. Collagen gels are
made by mixing M2 medium (33.5 µL), 1X PBS (10 µL),
NaOH (1 M, 0.9 µL), collagen (3.6 mg/mL, 55.6 µL) to ob-
tain 100 µL of the final collagen solution at 2 mg/mL with
a pH about 7.4. Then, 20 µL of the collagen solution is
deposited on a coverslip and live oocytes were added. The
droplet is covered with another glass coverslip using Dow
Corning vacuum grease as spacers and to minimize evapo-
ration. The collagen gel containing oocytes is polymerized
in a humid environment at 37◦ C for 30 min. The optical
tweezers setup consist of a 1064 nm laser (IPG, Germany)
controlled by acousto-optic modulators (AA-Optoelectronics,
France) and focused into the object plane of a water immer-
sion objective (60x, 1.2 NA, Olympus) [2]. We calibrate the
optical trap stiffness using high frequency thermal fluctuations
(ω > 300 Hz) [3, 4].

II. CAGING MODEL

A. Presentation

We consider the following equation for the projected vesi-
cle dynamics in terms of the one dimensional position x

ζ ∗ dx
dt

= −k(x− x0) + ξ, ζ ∗ dx0
dt

= kταvA, (S1)

where ∗ denotes the convolution product, ξ is a zero-mean
Gaussian colored noise with correlations

〈ξ(t)ξ(0)〉 = kBTζ (|t|) ≡ Cξ(t), (S2)

as enforced by the fluctuation-dissipation theorem (FDT) [5],
and T is the bath temperature. We assume that the process vA

∗ These authors contributed equally to this work

has a single time scale τ that governs its decorrelation:

〈vA(t)vA(0)〉 = kBTAe−|t|/τ/(kτατ) ≡ CA(t), (S3)

where, by analogy with standard Langevin equation, we have
defined an active temperature TA associated to the amplitude
of this process.

The generalized Stokes-Einstein relation expresses the
complex modulus G∗ in terms of the Fourier response func-
tion χ̃ as

G∗ ≡ 1/(6πaχ̃), (S4)

where a is the average radius of the vesicles regarded as spher-
ical particles. Our model is associated with the following
complex modulus:

G∗(ω) =
[
k + iωζ̃(ω)

]
/(6πa). (S5)

Following the choice of the memory kernel presented in the
main text

ζ(t) ≡ k (τα/t)
α

Θ(t)/Γ(1− α), (S6)

where Γ is the Gamma function, and Θ is the Heaviside func-
tion, we deduce

ζ̃(ω) = k (iωτα)
α−1

. (S7)

As a result, we express G∗ in terms of its real and imaginary
parts, respectively denoted by G′ and G′′, as

G′(ω) = G0 [1 + (ωτα)α cos (πα/2)] , (S8a)
G′′(ω) = G0(ωτα)α sin (πα/2) , (S8b)

where G0 ≡ k/(6πa).

B. Effective temperature

The effective temperature Teff is defined as

Teff(ω) ≡ −ωC̃(ω)/ [2kBχ̃
′′(ω)] , (S9)
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where C̃ and χ̃′′ are the position autocorrelation function and
the imaginary part of the response function in the Fourier do-
main, respectively. From the generalized Stokes-Einstein re-
lation in Sec. II A, and by using Eq. (S8), we deduce

χ̃′′(ω) = − (ωτα)α sin (πα/2) /k

1 + 2 (ωτα)
α

cos (πα/2) + (ωτα)
2α . (S10)

The Fourier transform of Eq. (S1) in the body of the text gives

x̃ = χ̃
(
ξ̃ + kx̃0

)
, iωζ̃(ω)x̃0(ω) = kταṽA(ω). (S11)

From Eqs. (S2) and (S3), we deduce

C̃ξ = 2kBT ζ̃
′, C̃A(ω) =

2kBTA

kτα [1 + (ωτ)2)]
, (S12)

where ζ̃ ′ is the real part of the Fourier memory kernel. By
using Eq. (S8), C̃ follows as

C̃(ω) =
2τα(ωτα)α−1/k

1 + 2 (ωτα)
α

cos (πα/2) + (ωτα)
2α

×
[

sin
(πα

2

)
kBT +

kBTA (ωτα)
1−3α

1 + (ωτ)
2

]
,(S13)

from which we deduce the analytic expression of Teff in
Eq. (2) of the body of the text.

III. DISSIPATION AND INJECTION OF ENERGY

A. Dissipation spectrum

The mean rate of energy dissipation Jdiss is defined as

Jdiss ≡ 〈ẋ(ζ ∗ ẋ− ξ)〉 , (S14)

where ẋ ≡ dx/dt is the vesicle velocity, and ∗ denotes the
convolution product. From the dynamics in Eq. (S1), we de-
duce

Jdiss = k 〈ẋ(x0 − x)〉 , (S15)

The product appearing in Jdiss is defined in the Stratonovich
sense. It follows

〈ẋx〉 =
1

2
lim
t→0

[〈ẋ(t)x(0)〉+ 〈ẋ(0)x(t)〉] = 0, (S16)

leading to

Jdiss = k 〈ẋx0〉 . (S17)

We express Jdiss as

Jdiss ≡
∫

dω
2π
I(ω), (S18)

where the spectral density I , also referred to as the dissipation
spectrum, is given by

I(ω) = ω2C̃(ω)ζ̃(ω)− iωC̃xξ(ω), (S19)

and

Cxξ(t) ≡ 〈x(t)ξ(0)〉 . (S20)

From Eqs. (S11) and (S12), and since the thermal force ξ and
the process vA are uncorrelated, we deduce

C̃xξ = 2kBT χ̃ζ̃
′. (S21)

Owing to the causality of the response function χ and the
memory kernel ζ, the imaginary and real parts of their Fourier
transform are odd and even in ω, respectively. Since C̃ is even
in ω, we deduce

I(ω) =
[
ωC̃(ω)− 2kBT χ̃

′′(ω)
]
ωζ̃ ′(ω). (S22)

Finally, we use the definition of Teff in Sec. II B, together with
the relations

χ̃′′ = −G′′/(6πa |G∗|2), ζ̃ ′(ω) = 6πaG′′(ω)/ω, (S23)

to deduce the expression of I in terms of Teff as provided in
the body of the text.

B. Force-velocity correlation

From Eq. (S17), we express Jdiss as

Jdiss =
k

2
lim
t→0

[〈ẋ(t)x0(0)〉+ 〈ẋ(0)x0(t)〉] . (S24)

Moreover, we can write Eq. (S18) as

Jdiss = lim
t→0

∫
dω
2π

eiωtI(ω), (S25)

from which we deduce

I(ω) =
k

2

∫
dte−iωt [〈ẋ(t)x0(0)〉+ 〈ẋ(0)x0(t)〉] . (S26)

As a result, the dissipation spectrum I exactly equals the
Fourier transform of the time-symmetric correlation between
the vesicle velocity ẋ and the active force kx0 which is di-
rectly acting on the vesicle. It vanishes when the dynamics is
invariant under a time reversal, in which case 〈ẋ(t)x0(0)〉 =
−〈ẋ(0)x0(t)〉. Therefore, it can be regarded as a measure-
ment of the time-reversal breakdown arising in the vesicle dy-
namics due to the nonequilibrium fluctuations powered by the
active force kx0.

C. Entropy production rate

Provided that the thermal noise is Gaussian, the probability
weight P associated with a given realization of this noise is
defined as P ∝ e−A, where the dynamic action A reads

A ≡
∫∫

duds
2

Γ(u− s)ξ(u)ξ(s). (S27)
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The expression of ξ in this formula is determined by the vesi-
cle’s dynamics in Eq. (S1), and Γ is related to the thermal
correlations as

∫
dtΓ(u− t) 〈ξ(t)ξ(s)〉 ≡ δ(u− s). (S28)

Note that Γ is symmetric, as deduced from Eq. (S2). For the
sake of simplicity, we consider a trajectory with initial and
final times−t and t, respectively, associated with a probability
P expressed as

A =

∫∫
duds

2
Γ(u− s)D(u)D(s), (S29)

where

D(t) ≡ k [x(t)− x0(t)] +

∫
duζ(t− u)ẋ(u). (S30)

The mean rate of entropy production σ is defined in terms
of the probability P for the forward trajectory {x}t−t and the
probability P R for the backward one {xR}−tt as [7–9]

σ ≡ kB lim
t→∞

ln (P/P R) /t = kB lim
t→∞

(AR −A) /t. (S31)

The backward trajectory consists in the reversed realization of
the forward dynamics, such as

xR(t) ≡ x(−t), ẋR(t) ≡ −ẋ(−t). (S32)

We deduce

AR =

∫∫ −t

t

duds
2

Γ(u− s)DR(u)DR(s), (S33)

where

DR(t) ≡ k [x(−t)− x0(−t)]−
∫

duζ(t− u)ẋ(−u). (S34)

We perform the change of variables {u, s} → {−u,−s} in
Eq. (S33), leading to

AR =

∫∫ t

−t
dt1dt2Γ(t1 − t2)DRR(t1)DRR(t2) , (S35)

where

DRR(t) ≡ k [x(t)− x0(t)]−
∫

duζ(u− t)ẋ(u). (S36)

It follows the entropy production rate can be separated in two
terms σ = σ1 + σ2 as [7]

σ1 ≡ lim
t→∞

kB

t

∫∫ t

−t
dudsΓ(u− s)k(x0 − x)(u)

×
∫

dwζ (|s− w|) ẋ(w), (S37a)

σ2 ≡ lim
t→∞

kB

t

∫∫ t

−t
dudsΓ(u− s)

∫∫
du′ds′ẋ(u′)ẋ(s′)

× [ζ(u− u′)ζ(s− s′)− ζ(u′ − u)ζ(s′ − s)] ,
(S37b)

where we have used ζ(t)+ ζ(−t) = ζ (|t|), since ζ is a causal
function. By using Eq. (S28), we deduce σ2 = 0 [7], and

σ1 = lim
t→∞

1

t

∫ t

−t
duk(x0 − x)(u)

ẋ(u)

T
=
〈ẋk(x0 − x)〉

T
,

(S38)
yielding

σ = 〈ẋ(ζ ∗ ẋ− ξ)〉 /T = Jdiss/T. (S39)

The mean rate of energy dissipation is a direct measurement
of the entropy production rate.

D. Rate of injected energy

From the definition of the energy rate Jenv provided to the
cage

Jenv ≡ kτα 〈ẋ0vA〉 , (S40)

where ẋ0 ≡ dx0/dt is the cage velocity, we deduce

Jenv =

∫
dω
2π
C̃0(ω)ζ̃ ′(ω)ω2, (S41)

where C̃0 is the Fourier autocorrelation function of the cage
local minimum position. This leads to

Jenv =

∫
dω
2π

(ωτα)
1−α

sin
(πα

2

) 2kBTA

1 + (ωτ)
2 , (S42)

yielding

Jenv = kBTA/τ(τα/τ)1−α, (S43)

as stated in the body of the text.
We now discuss the interpretation of Jenv in terms of the

work down by the cage into the thermostat. To this aim, we
present an extended formulation of the model which contains
a back action term in the dynamic equation for x0, in the same
spirit as in [10]. From the action-reaction principle, a force
opposed to the spring force applied on x should be exerted into
x0. Given that the spring force accounts force the vesicle con-
finement by the cytoskeletal network, the characteristic cage
size should be much larger than the vesicle size to avoid any
escape of the vesicle. Therefore, the back action force is then
necessarily small compared to the caging force acting on the
vesicle. Moreover, thermal fluctuations also affects the x0 dy-
namics, which amplitude should be negligible compared with
the ones of thermal force applied on the x. An experimen-
tal signature of a large back action would be that the tracer’s
MSD would be diffusive also in the equilibrium limit, which
is not observed within the time scale of experiment.

It follows that the dynamics can be written as

ζ ∗ dx
dt

= − k(x− x0) + ξ, (S44a)

ζ ∗ dx0
dt

= kταvA − εk(x0 − x) + ξ0, (S44b)
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FIG. S1. (Color online) (a) We distinguish three concentric shells around the central nucleus (black) with a radial extension of about 10 µm
each: near nucleus (blue), middle (yellow), and cortex (red). (b) Real and (c) imaginary parts of the complex modulus, denoted by G′ and G′′

respectively, as functions of frequency in three locations (symbols), and their best fitting curves [Eq. (S8)]: dot dashed, solid, and dashed lines,
near nucleus, middle, and cortex, respectively. The complex modulus exhibits a power law behavior at large frequency. The low frequency
curvature also hints a low frequency saturation for the real part. Data at 10 Hz is used in [6]. (d) Effective temperature and (e) dissipation
spectrum as functions of frequency in three different regions (symbols) and their best fitting curves (Eqs. (2) and (3) in the body of the text).

where ε� 1 is a small parameter, and

〈ξ0(t)ξ0(t′)〉 ≡ ε 〈ξ(t)ξ(t′)〉 . (S45)

The dynamics is not affected by ε at leading order, as was
demonstrated for the case of a simple mechanics in [10]. The
generalization to the rheology considered here is straightfor-
ward. In particular, the expression of I is not modified for a
small ε.

Therefore, we can express Jenv at leading order in ε as

Jenv = 〈ẋ0 (ζ ∗ ẋ0 − ξ0)〉 , (S46)

given that it simplifies as

Jenv = 〈ẋ0 (kταvA − εk(x− x0))〉 = kτα 〈ẋ0vA〉+O (ε) .
(S47)

As a result, Jenv has a clear mechanical interpretation, namely
it is the work applied by the cage on the heat bath.

IV. DATA ANALYSIS OF THE LOCAL

NONEQUILIBRIUM PROPERTIES

To investigate how the nonequilibrium properties differ spa-
tially in the oocyte cytoplasm, we divide it into three concen-
tric shells around the nucleus extending to the cortex, each
region having a radial extension of about 10 µm. We refer to
these locations as near nucleus, near cortex, and the region in
between as near middle. We perform a simultaneous fit of the
rheological data, together with the effective temperature and
dissipation spectrum data [Fig. S1].

We deduce the best fit values of the rheological parameters
in each region:

α = {0.60, 0.58, 0.58} ± 0.07, (S48)
G0 = {1.7, 1.3, 1.5} ± 0.2 Pa, (S49)
τα = {0.09, 0.13, 0.17} ± 0.04 s, (S50)

near nucleus, middle, and cortex, respectively. The best fit
values of TA, together with the corresponding values of Jdiss
and ρ, are reported in Fig. 2 of the body of the text. The
extracted mean persistence times are

τ = {0.25, 0.27, 0.29} ± 0.07 ms, (S51)

near nucleus, middle, and cortex, respectively.
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Future directions
The mechanical properties of the intracellular environment is generally char-

acterized by power-law behaviors, with several distinct regimes depending on fre-
quency in some cases [73]. The statistics of probes of the intracellular dynamics
is also characterized by power-laws, as given by the anomalous diffusion reported
in the MSD for instance [8]. In equilibrium, the exponents of the mechanics and
of the tracer statistics are related, since the thermal fluctuations are dictated by
the mechanics, as enforced by the FDT. Given that the motor activity is involved
in the structure of the cytoskeletal network and in the force generation at the
basis of nonequilibrium fluctuations, one could speculate that there would be an
interplay between the mechanical properties of the cell and the spontaneous fluc-
tuations of the tracers. As a result, the exponents of the mechanics and of the
fluctuations would still be related beyond equilibrium. To assess such a relation,
one would need to define an observable from the combination of response and fluc-
tuations that would exhibit an universal power-law regime for various cell types
with different rheologies and intracellular fluctuations.

For the case of living mouse oocytes presented in this Chapter, the exponent of
the power-law behavior of the effective temperature at low frequency is given by
1 − 3α ∼ −0.8. Such a value has also been reported for tracers injected in living
cells with power-law mechanics ωα, where α was about 0.5− 0.6, namely close to
the one of the oocytes [77]. Besides, the divergence of the effective temperature for
the tracers in living melanoma cells presented in Chapter 3 is also with exponent
close to 0.8. Yet, the mechanics was nearly elastic in such a case. This is an
appealing hint that the effective temperature may represent the good observable
to shed light on a universal power-law scaling. It calls for a deeper test based on
further investigations in various cell types.

Such an observation goes beyond the predictions of the active cage model with
memory effects in its present form. To account for this, we consider a power-
law decay of the active burst correlations 〈vA(t)vA(0)〉 = v2

0(τ/t)β/Γ(1 − β), with
exponent β related to the one of the mechanics. This type of correlations emerges
when considering that the time scales of the active bursts is controlled by several
processes, each one of them described by a Poisson statistics. The corresponding
effective temperature would read

Teff(ω) = T + TA
(ωτ)β sin(πβ/2)

(ωτα)3α sin(πα/2) . (5.12)

As a result, the exponent of the power-law behavior of the effective temperature at
small frequencies β−3α is a combination of the ones characterizing the mechanics
and the active burst statistics. Therefore, regarding this value as constant would
fix the relation between the active burst statistics and the mechanics.
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Chapter 6

Vertex fluctuations in epithelial
layers

In this Chapter, we investigate the dynamics of epithelial layers through the fluc-
tuations of tricellular junctions. We shed light on the non-Gaussian features of
the displacement statistics reminiscent of the ones observed for the intermittent
dynamics of tracers in living cells. It leads us to analyze the vertex fluctuations on
the basis of the active cage model presented in Chapter 2 to quantify key parame-
ters of the nonequilibrium activity. On this basis, we provide a synthetic read-out
to understand how inhibitors in the molecular pathway controlling the activation
of motor activity affect the monolayer dynamics.
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Epithelial tissues: model systems of developing embryos

Epithelial tissues consist in one or more layers of cells which are interconnected
through junctions [109]. There exists several types of epithelia, whose complexity
can be classified on the basis of the number of layers and the shape of the cells.
They can be found in a large variety of organs in the body, ranging from the skin
to the the lungs and the kidney. One of the primary functions of an epithelium is
to protect the underlying tissue. In that respect, the tight joining of its individual
cells is a key property. Yet, these junctions being dynamic entities, they can also
allow passage of substances between neighboring cells. A large number of recent
studies have investigated the dramatic rearrangements occurring in the tissues of
developing embryos [110–112]. The epithelial tissues undergo a series of morpho-
logical changes which lead to the formation of distinct organs: such a process
is named as morphogenesis. During morphogenesis, the internal reorganization
of the tissues is driven by topological transitions [113]. Two main types of such
transitions are identified [Fig. 6.1]. The T1 transitions correspond to exchange of
neighbors between cells, similar to the ones observed in sheared foams: two tricel-
lular junctions merge into a single junction involving four cells, and then separate
into another two tricellular junctions different from the previous ones. The T2
transitions corresponds to the merging of three or more tricellular junctions: a cell
of the tissue is lost and new contacts between the cells surrounding the lost one
are created. The remodeling of cell-cell contacts is made possible through dynamic
intercellular adhesion. The E-cadherin molecules are known to play a major role
in both the mobility and the stabilization of interfaces between cells [114, 115].

To understand the large scale reorganization occurring during the morphogen-
esis, minimal systems of epithelial tissues and cellular aggregates are studied in
vitro. The mechanics of cellular aggregates has been investigated by compress-
ing them with plates [116, 117], or alternatively via micro-pipette aspiration [118,
119]. These experiments have shed light on the possible quantification of an effec-
tive viscosity as controlled by the internal reorganization between cells. Modeling
based on a continuum description of the medium relates such a viscosity to the
rate of cell division and cell death occurring in the system [120]. A series of stud-
ies focused on the collective dynamics of cells in cell monolayers. Because of the
dense packing of the tissue, both glassy-like behavior and jamming effects can be
observed [121–123]. Interactions between neighboring cells have been modelled by
a specific form of the potential energy, as controlled by the shape parameters such
as the perimeter and the area of the cells. This is known as the vertex model [124].
On this basis, some works have quantified the distribution of energy barriers in
tissues, which controls the migration of the cells and the transition between fluid-
like and solid-like behaviors of the tissue [125, 126]. The stochastic dynamics of
individual cells in the tissues has been modeled as interacting self-propelled par-
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Figure 6.1 – Schematic representation of T1 (green and blue cells) and T2
(yellow and red cells) transitions. Taken from [113].

ticles, thus showing that the solid-liquid transition was only controlled by the cell
motility and the cell shape independently of the density of the tissues [127].

Regulation of activity in epithelium through signaling pathway
Previous studies have investigated the role of fluctuations in the collective

dynamics of tissues. Yet, the relation between the nonequilibrium fluctuations
and the underlying processes which power directed forces, such as motor activity,
is still lacking. It is our aim to provide a quantitative analysis of the fluctuations
at the mesoscopic scale of individual cells, and to understand the regulation of
these fluctuations by the molecular motors.

We consider Madin-Darby Canine Kidney (MDCK) cells for which intercellular
junctions are labelled by E-cadherin fused with green fluorescent protein [128]. We
focus in tricellular junctions, referred to as vertices, which we view as faithful rep-
resentatives of the underlying motor activity. Typical trajectories of vertices are
made of fluctuations of small amplitude in a confined volume and large displace-
ments, as reported in Fig. 6.2. This is reminiscent of the intermittent dynamics
observed for tracers in the intracellular environment. It leads us to using the
phenomenological model of caging dynamics presented in Chapter 3 to analyze
the vertex fluctuations. To investigate the regulation of the nonequilibrium fluc-
tuations by the molecular motors, we use inhibitors in the molecular pathway
controlling the motor activity, namely the Rho pathway. We consider inhibition
of three different targets of the pathway named as Rho, Rho kinase (ROCK),
and myosin-II. They build up a hierarchy in the pathway: Rho directly activates
ROCK, ROCK directly activates myosin-II and also de-activates myosin-II in an
indirect way. Even though this is a simplified picture of the Rho pathway, these
ingredients are sufficient to understand the effect of the three different inhibitors
on the activation of myosin motors. In addition, we also consider the condition
where the polymerization of microtubules is inhibited, and we use untreated cells
as a control.

The MSD extracted from the vertex trajectories is subdiffusive at short times
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1 µm

Figure 6.2 – Left: MDCK cell monolayer vizualized by GFP E-cadherin.
Scalebar 30 µm. (Inset) Tricellular junction named as vertex. Scalebar
4 µm. Right: Typical trajectory of a vertex. Time between two successive
measurements 5 min. Taken from paper E.

for all conditions. There is a transition towards superdiffusion or normal diffusion
at large times depending on the conditions, except for myosin inhibitors which
remains subdiffusive. We reproduce this transition with our analytic prediction.
It yields a quantification of the active diffusion coefficient and the mean persis-
tence time. Moreover, we analyze the time evolution of the whole distribution
of displacement. It exhibits a central Gaussian part and exponential tails, whose
extension increases with time. Besides, we demonstrate that we can reproduce the
distribution measured at different times by using only one free parameter for each
condition: the mean waiting time. It leads us to correlate the hierarchy in the
Rho pathway to the active fluctuations of the vertices, as controlled by the active
diffusion coefficient, the mean persistence time, and the mean persistence length.
These parameters are increased when going upstream in the pathway. Overall,
our analysis provides a synthetic read-out to quantitatively assess the effect of the
molecular pathway inhibitors onto the mesoscopic fluctuations of the tissue.

The detailed analysis of the fluctuations and the interpretation of the extracted
parameters are presented in paper E reproduced below.
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Molecular motors power spatial fluctuations in epithelial tissues. We evaluate these fluctuations in
MDCK monolayers by tracking tricellular junctions, leading us to highlight the non-Gaussian statistics
of the junction displacement. Using a mesoscopic framework which separates the thermal fluctuations
originating from the heat bath and the athermal ones generated by myosin-II motors, we quantify key
parameters of the junction activity such as diffusion coefficient, persistence time and persistence length.
When inhibiting specific targets along the molecular pathway which regulates the motors activity, we
report modifications of these parameters: surprisingly, the order relation in the regulation corresponds to
larger active fluctuations at vertices. Our study shows that signaling pathways regulating molecular motors
have to be taken into account to capture mesoscopic dynamics in cells.
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Living and non-living matter show a variety of fluctua-
tions at different length and timescales. Measuring these
fluctuations is an effective way to study nonequilibrium
systems. In living cells, the continuous supply of en-
ergy from ATP/GTP hydrolysis takes the system out-of-
equilibrium. New models have been proposed to describe
this nonequilibrium dynamics [1–9], yielding a proper def-
inition of energy dissipation as related to spatial fluctua-
tions [10–13]. One class of models exploits the similarities
and differences between foams and living tissues, where
cells form a connected network of straight edges and ver-
tices [14–17]. In living tissues, the spontaneous rearrange-
ments between vertices reveal the nonequilibrium nature of
their dynamics [16, 18] involving contractile tissues dur-
ing development [18–21]. The molecular origin of such
nonequilibrium dynamics is associated with acto-myosin
molecular motors [22, 23], which power spatial fluctua-
tions. Yet, quantitative studies are lacking to understand
their regulations. It is our aim in this paper to investigate
the mechanism driving the spatial fluctuations of the cell
monolayer vertices [Inset of Fig. 1(d)], using specific inhi-
bitions of the molecular pathway controlling myosin.

In this paper, we explore the nonequilibrium active prop-
erties of epithelial monolayers by directly accessing the
fluctuations of vertices. We first report the experimental
methods and extraction of the data. We then present a
model for the vertex dynamics, on the basis of which we
characterize the vertex fluctuations in terms of time, length,
and energy scales. Surprisingly, the order relation in the
molecular pathway regulating the myosin motors shows an
inverted relation with the active fluctuations of vertices.

Vertex tracking and inhibitors.—We use Madin-Darby

Canine Kidney (MDCK) cells stably transfected with E-
cadherin fused with the Green Fluorescent Protein (GFP)
as a paradigm for epithelial tissues dynamics [25]. This al-
lows us to study live cells while interacting with each other.
We seek to identify spatial points primarily involved in tis-
sue transformations. The meeting points between three
cells are involved in the exchanges between neighbouring
cells, thus serving as hallmark of the tissue dynamics. We
extract the vertex trajectories by tracking them as long as
they are visible and in the absence of neighboring cell di-
vision, until a maximum of 8 hours [Fig. 1].

Vertex dynamics are driven by both thermal fluctuations
produced by the heat bath, and the active fluctuations pow-
ered by the molecular motors. The myosin-II motors are
localized in dense contractile units present in the apical sur-
face of the tissue [22, 26] [Figs. 1(a-c)]. The Rho signalling
pathway controls the acto-myosin activity inside cells (see
Fig. 9 in [27]). Upstream and downstream targets install
a hierarchy in the activation of myosin. To assess the rele-
vance of the various ingredients of this pathway, we specif-
ically inhibit different targets: Rho, Rho kinase (ROCK)
and myosin-II [Fig. 1(f)]. The level of phosphorylation of
the regulatory light chain (RLC) of myosin-II is a signa-
ture of myosin activity: myosin-II is active when RLC is
phosphorylated, and inactive when RLC is dephosphory-
lated. The different layers of activation/inhibition in the
Rho pathway lead to different phosphorylation levels of
myosin. Moreover, we investigate the roles of microtubules
(MTs) by promoting their depolymerization, and we con-
sider untreated cells as a control [24]. Altogether, we probe
five conditions on the same system.

We investigate the effect of the different inhibitors on
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FIG. 1. (Color online) Study of vertex fluctuations. (a) Actin
(red) and myosin (green) structures at the apical surface of a
MDCK cell (scale bar 3 µm). The myosin is concentrated in
dense contractile units (yellow arrow) referred to as myosin clus-
ters. (b) Actin structure alone. (c) Myosin structure alone. (d) We
visualise MDCK cell monolayer by GFP E-cadherin (scale bar
30 µm). (Inset) We identify the meeting points between three
cells as the privileged point for our analysis (scale bar 4 µm).
(e) Extraction of a typical transition between two locally stable
positions in the vertex trajectory (total time 8 hours). (f) Sim-
plified diagram of the Rho pathway installing a order relation
in myosin activation; in red the specific inhibitors and their tar-
gets. (g) Area of individual cells in each condition. C: Control;
My: Myosin inhibitor; Rk: Rho kinase (ROCK) inhibitor; R:
Rho inhibitor; MT: Depolymerised microtubules. (h) Mean GFP
E-cadherin intensity of individual cell-cell contacts. (i) Area of
myosin clusters [24].

both the architecture and the contractile forces of tissues
by measuring single cell area, E-cadherin intensity and
myosin cluster area in each condition. Single cell area is
not strongly affected by the inhibitors, except for slightly
reduced values in the Rho kinase inhibitor case, showing
that the tissue architecture is barely affected by external
inhibitors [Fig. 1(g)]. This is also true for the polygonic-
ity distribution (Fig. S1 in [24]). For what concerns E-
cadherin intensity, we observe an increase which supports
that cell-cell adhesion is enhanced the more upstream along
the Rho pathway [Fig. 1(h)]. MT depolymerization does
not affect the E-cadherin intensity with respect to control.

The mean density value of myosin clusters for control is
larger than in the inhibited cases (see Fig. S2(b) in [24]),
suggesting a decrease in force generation for the same
level of myosin per cell. In addition, the area of each
myosin cluster is smaller in control than in other conditions
[Fig. 1(i)]. Besides, this area decreases the more upstream

along the Rho pathway inhibition, suggesting a relaxation
of the pool of myosin in the apical side, consistently with
the notion that myosin force is reduced. MT depolymeriza-
tion yields larger myosin cluster area compared to control.
Overall, we deduce that the myosin activity is decreased
the more upstream along the Rho pathway.

Because of the complexity of the processes driving tis-
sue dynamics, anticipating the response in the vertex fluc-
tuations to the different inhibitors is largely a challenge to
physical interpretation. Our goal is to understand how the
hierarchy in the Rho pathway is transferred to the cell-cell
junction dynamics. We propose a synthetic read-out of this
pathway captured by the vertex fluctuations extracted from
the individual trajectories.

Statistics of the vertex fluctuations.—First, we compute
the projected one-dimensional mean square displacement
(MSD) within the five different conditions [Fig. 2(a)]. For
each condition, the short time MSD exhibits a power-law
behavior with exponent close to 0.7 over about one decade.
The large time MSD depends on conditions and exhibits a
behavior that, for simplicity, we have characterized by a
power–law. The corresponding exponent is typically larger
than 1, except for MT depolymerization where it is close to
1, and myosin inhibitor where it is smaller. The crossover
between the two regimes appears between 20 and 60 min.
The fluctuations are reduced in the myosin inhibited case,
which has the lowest MSD, and they are enhanced for the
Rho inhibitor, where the long time MSD is the largest.

In addition, we explore the full statistics of vertex dis-
placement by measuring the probability distribution func-
tion (PDF) for each condition, as shown in Figs. 2(b-f). At
short time the PDF is Gaussian, while it exhibits broader
tails at large time. As equilibrium fluctuations are usu-
ally associated with Gaussian statistics, we interpret the
non-Gaussian tails as a signature of nonequilibrium fluc-
tuations, driven by the cellular activity. These tails re-
veal large displacements of the vertex, and were already
observed for tracer particles in active gels [28] and living
cells [3, 29, 30]. They are more pronounced in Rho in-
hibitor and MT depolymerization cases, as a signature of
larger fluctuations possibly due to directed motion events.

Caging model.—To quantitatively discriminate between
the different conditions, we test our measurements on this
multicellular system with a nonequilibrium model, previ-
ously introduced in [3] to describe tracer fluctuations inside
living cells. We regard the vertex as a virtual particle which
dynamics is prescribed by two coupled equations: (i) an
equilibrium diffusion of the vertex in a cage, modelled
as a harmonic potential of stiffness k—the displacement
is driven by a Gaussian white noise of variance 2γkBT
with a drag force of coefficient γ; (ii) a non-Gaussian col-
ored diffusion equation for the center of the cage, mim-
icking nonequilibrium activity [24]. Inspired by the large
ballistic-like displacements that we observe in experimen-
tal trajectories, we model this active noise as a two-state
Poisson process: the cage has a constant velocity v in a
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random uniformly sampled two-dimensional direction dur-
ing a random persistence time of average τ , and it remains
fixed during a random quiescence time of mean τ0.

We understand the confinement as an elastic mechanical
stress resulting from the cells surrounding each vertex, and
the nonequilibrium motion of the cage as an active stress.
The effect of this active stress is to reorganize the structure
of the monolayer, and therefore to spatially redistribute the
elastic mechanical stress. It is worth noting that this model
would be compatible with considering that each cell junc-
tion acts as a spring on the vertex [31, 32]. By adding an
active stress to these junctions, one would get a similar be-
havior for the vertex dynamics [24].

In the absence of activity, this model predicts a short time
diffusion, and then a large time plateau expressing the elas-
tic confinement [24]. Such dynamics is entirely under the
control of equilibrium thermal fluctuations. In an active
system, nonequilibrium processes enhance the vertex dis-
placement via the cage motion, yielding a free diffusion
of the vertex with coefficient DA = (vτ)2/[2(τ + τ0)].
The large time dynamics is fully determined by the ac-
tive parameters {v, τ, τ0}, whereas thermal fluctuations
control the short times via {k, γ, T}. A sub-diffusive
transient regime appears between the two diffusions, as a
crossover towards a plateau, and a super-diffusive regime
can also precede the large time diffusion, as a signature of
the ballistic motion involved in the active noise. In such
a case thermal effects are negligible at times larger than
τs =

√
τkBT/(kDA), a timescale quantifying the transi-

tion from the short time equilibrium-like dynamics to the
large time active diffusion. Simulated trajectories exhibit
clusters of similar size accounting for the transient confine-
ment of the vertex. Occasionally large displacements of or-
der vτ appear. The vertices do not only fluctuate around a
local equilibrium position, they also undergo rapid directed
jumps [compare Fig. 1(e) and Fig. 3(a)].

Active diffusion coefficient and persistence length.—We
fit the MSD data to estimate the parameters characteriz-
ing nonequilibrium activity by using our analytic predic-
tion [24]. Our fits convincingly capture the transient sub-
diffusive and super-diffusive regimes [Fig. 2(a)]. We report
clear quantitative variations of both the active diffusion co-
efficient DA and the persistence length τ for all conditions,
except for the MT depolymerization case [Figs. 3(b,c)]. It
establishes that our model, based on separating the purely
active fluctuations from the equilibrium thermal ones, is a
reliable framework to capture the effects of our inhibitors
on tissue dynamics. In that respect, DA and τ are relevant
parameters to characterize the vertex fluctuations. There-
fore, our analysis indeed enables one to identify the role of
each regulatory stage at a mesoscopic level.

Strikingly, DA and τ are larger for Rho inhibitor than
for Rho kinase inhibitor, and than for direct myosin inhi-
bition [Figs. 3(b,c)]. This demonstrates that active fluctua-
tions driving vertex dynamics are under the control of the
Rho pathway: surprisingly, the more upstream the inhibi-
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FIG. 2. (Color online) Statistics of the vertex fluctuations.
(a) Mean square displacement as a function of time in five con-
ditions: control (black), myosin inhibitor (blue), Rho kinase in-
hibitor (orange), Rho inhibitor (red), and microtubule depolymer-
ization (green). The corresponding best fitting curves are in solid
lines (Eq. (S5) [24]). The blue and red dashed lines report the
large time behaviors. (b-f) Distribution of displacement for the
five conditions at three times: 5 (•), 25 (+), and 60 min (◦). Ex-
ponential tails appear at long times as a consequence of directed
motion events in the vertex dynamics. Results of the simulated
dynamics are in solid lines.

tion along the pathway, the larger the amplitude of fluc-
tuations and the more persistent the ensuing displacement.
The myosin inhibitor condition directly targets the myosin-
II by maintaining the corresponding RLC in the dephos-
phorylated state [Fig. 1(f)]. It leads to the smallest DA and
τ values, showing that the mesoscopic activity of vertices
is strongly affected. The Rho kinase directly activates the
myosin RLC. It also inhibits the myosin light chain phos-
phatase (MLCP) which inhibits the myosin RLC. The net
result on the phosphorylation of the myosin RLC can not
a priori be anticipated. Our analysis shows that activity of
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vertices is less affected than for the myosin inhibitor case.
The corresponding value of DA is close to the one of con-
trol, as a signature of net compensation between activation
and de-activation of myosin. The MT condition illustrates
the effect of a cellular scaffold on the regulation of fluctu-
ations at a mesoscopic level. The associated values for DA

and τ are close to control, hence the effect of MT depoly-
merization cannot be observed from these parameters.

Eventually, our estimation of τs is to be compared with
timescales quantifying the transition from elastic to fluid-
like behavior of the material [Fig. 3(c)]. In that respect, it
is of the same order as the Maxwell time reported in three-
dimensional cell agregates, i.e. about 40 min [33–36].

Distribution of vertex displacement.—To gain further in-
sight into the active component of the dynamics, we com-
pare the displacement PDF extracted from the simulated
trajectories of vertex dynamics with experimental distribu-
tions [24]. The distribution at short time is Gaussian and
entirely controlled by the passive parameters, as confirmed
by simulations in the absence of active fluctuations where
we use the passive parameters estimated from the fit of
MSD data (see Fig. S6 in [24]). Including the active com-
ponent of the dynamics leaves us with one remaining free
parameter: the average persistence length vτ of large dis-
placements. The short time Gaussian remains unchanged,
whereas exponential tails develop at large times in the sim-
ulated PDF. The tails are more pronounced as time in-
creases, while the central Gaussian part barely changes.
We adjust the vτ value by matching the tails appearing in
numerical results and experimental data.

The simulated PDFs compare very well with experi-
ments at large times, showing that our simulations repro-
duce the evolution of experimental distributions at all times
[Figs. 2(b-f)]. The order of magnitude of the extracted
mean persistence length vτ is consistent with our measure-
ments [Fig. 3(d)]. We report again the same order relation
within the Rho pathway, i.e. an increase of vτ from myosin
inhibitor to Rho kinase inhibitor, and from Rho kinase in-
hibitor to Rho inhibitor, as a signature of enhanced directed
motion. The source of this enhanced motion in this lat-
ter condition could be actin polymerization, promoted by
other signaling pathways such as cdc42 and Rac [37]. PDF
fitting then enables us to assess a clear effect of MT de-
polymerization on the vertex dynamics: vτ is increased by
a factor of about 2 with respect to control.

Dissipation.—The mean rate of energy dissipation is
defined as the difference between the power injected by
the thermostat and the one that the moving vertex gives
back to the surrounding environment via the drag force:
J =

〈
ẋ(γẋ−√2γkBTξ)

〉
, where ẋ is the vertex veloc-

ity, and ξ is a zero-mean Gaussian white noise [10, 11]. It
vanishes for systems in a thermodynamic equilibrium state.
The active nonequilibrium fluctuations lead to a non zero
dissipation rate J = kDA/(1 + τk/γ) [12]. This allows
us to predict the energy dissipated by the motor activity
in the tissue. When computing the dissipation rate in the
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FIG. 3. (Color online) Active parameters of the vertex fluctua-
tions. (a) Typical trajectory obtained from simulations of the ver-
tex dynamics in control condition (scale bar 1 µm) [24]. Isotropic
blobs reveal equilibrium-like transient confinement during a typi-
cal time τs (dashed blue box), and large displacements of order vτ
occur due to nonequilibrium activity (orange arrows). (b) Best fit
values of the active diffusion coefficient, (c) the persistence time
and the typical confinement time, (d) the persistence length, and
(e) the energy dissipation rate [24].

five conditions, it appears as approximately constant ex-
cept for the depolymerized MT case [Fig. 3(e)]. This sug-
gests that there may be an underlying coupling between
mechanical properties of the tissue controlled by the pas-
sive parameters {γ, k}, and motor activity quantified by
{DA, τ}. Our result supports that the same amount of en-
ergy is dissipated in such events within all the conditions,
except in MT depolymerization. In this case, the lower
value of J would be consistent with a reduced activity of
endocytosis/exocytosis of cadherin, and with functions al-
ready reported for focal contact dynamics [38], yielding
more stable cell-cell interfaces.

Discussion.—The parameters extracted from our model
reveal the hierarchy in the pathway controlling the myosin
activation of the vertex fluctuations: the more upstream the
inhibition, the larger the active fluctuations. This approach
bridges in vivo mechanical fluctuations to biochemical sig-
naling pathways. We believe that our work which focuses
on fluctuations localized at potential neighbor exchanges
could also pave the way towards a better understanding
of spontaneous topological transformations within tissues.
Along this line, we have extracted the MSD from a pair of
vertices undergoing a T1 transition, revealing that the tran-
sition is correlated to superdiffusive behavior (see Fig. S5
in [24], and movie 1 in [39]). It suggests that active fluctua-
tions, powered by acto-myosin motors and experienced by
vertices, may play a key role in structural rearrangements
of tissues.
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I. MATERIALS AND METHODS

A. Cell culture and tracking method

We culture cells in DMEM containing 10% Fetal Calf
Serum (FCS) and antibiotics. We replate them on glass cov-
erslips (CS) of 25 mm diameter for live cell imaging. When
the cell monolayer covered 70% of the CS area, we firmly
place the sample at the bottom of a custom made metallic
holder. For acquisition, we change the medium to L15, 10%
FCS and antibiotics. We use the following inhibitors from
myosin up to Rho: inhibition of acto-myosin by ML7 (Sigma-
Aldrich, 10 µM), inhibition of Rho kinase (ROCK) by Y-
27632 (Sigma-Aldrich, 10 µM), and inhibition of Rho by C3
Transferase (Cytoskeleton, 0.04 µM). Microtubules are de-
polymerised with nocodazole (Sigma-Aldrich, 10 µM). For
observation, we use a motorized inverted microscope (Nikon
Eclipse Ti), equipped with a 12 bit CCD camera (Photomet-
ric CoolSNAP HQ2). The setup is temperature controlled at
37◦C (Life Imaging Services). We check with fluorescent
beads (4 µm, TetraSpeck) grafted on CS surface that no drift
appears during 24 hours of live imaging after 2 hour stabiliza-
tion. We take pictures of the monolayer every 5 min during
the next 8 hours with multiple z-stacks 1 µm apart. They span
3 µm depth of the cell monolayer. We merge the z-stacks into
one image by using the maximum intensity projection. We
then extract the vertex positions from the sequence of merged
images by manually clicking in each frame as long as they
are visible. For each condition, we check that the average cell
area was always about 180 ± 15 µm2, and we consider more
than 20 vertices for at least 3 biological repeats.

B. Myosin cluster area and mean intensity

The immunostaining for actin and myosin was performed
on wild type MDCK monolayers. The monolayer was incu-
bated with respective cytoskeletal inhibitor drug for 2 hours
and fixed with 3% paraformaldehyde (PFA). After fixation,

∗ These authors contributed equally to this work

the cells were permeabilized with 0.5% Triton in blocking so-
lution (5% BSA solution). The permeabilized samples were
treated with 50 mM ammonium chloride solution for 10 min-
utes at room temperature to quench the auto-fluorescence of
PFA. For myosin staining, the samples were incubated in rab-
bit myosin IIA non-muscle antibody (Sigma-Aldrich M8064)
(1:1000 diluted in blocking solution) for 1 hour. For co-
staining actin, the samples were then incubated in a cocktail
of Alexa fluor 488 labelled goat anti-rabbit antibody (Molec-
ular Probes A-11034) and Alexa fluor 546 labelled phalloidin
(Molecular Probes A-22283) for 1h. Finally the samples were
mounted on microscope slide with glycerol-PBS (1:1) mixture
for imaging. Fluorescence images of actin and myosin were
acquired through z-stacks by using a CoolSnap HQ2 camera
mounted on a Nikon Ti epifluorescence microscope with a x60
oil objective. Apical myosin structures were identified, their
area and mean intensity were measured using Image J. Values
were normalized to the mean cluster intensity of control con-
dition from each biological repeat. Statistics (N: number of
experiments, n: number of clusters): (i) control N=2, n=312;
(ii) Myosin inhibitor N=2, n=186; (iii) Rho kinase inhibitor
N=2, n=197; (iv) Rho inhibitor N=2, n=257; (v) Depolymer-
ized microtubules N=2, n=111.

C. Cell area measurement and E-cadherin intensity

Cell boundaries were identified and cell area was measured.
A polygon was assigned to the area and the boundary of each
cell using Packing Analyzer software [1–4]. Statistics (N:
number of experiments, n: number of cells): (i) control N=4,
n=235; (ii) Myosin inhibitor N=4, n=246; (iii) Rho kinase in-
hibitor N=3, n=249; (iv) Rho inhibitor N=3, n=148; (v) De-
polymerized microtubules N=4, n=243. Afterwards, the seg-
mented images identifying cell boundaries were used as mask
for E-cadherin intensity. The boundaries were dilated up to
7 pixels using Image J. The resulting image was applied as
mask on the original GFP-E-cadherin image. Statistics (N:
number of experiments, n: number of contacts): (i) control
N=4, n=311; (ii) Myosin inhibitor N=4, n=566; (iii) Rho ki-
nase inhibitor N=4, n=555; (iv) Rho inhibitor N=2, n=339; (v)
Depolymerized microtubules N=4, n=357.
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FIG. S1. (Color online) Monolayer architecture. (a) Snapshots of cell-cell contacts (GFP-E-cadherin) for each condition after 4 hours. Scale
bar 20 µm. (b) Histograms of single cell area after 4 hours for each condition. (c) Polygon approximation of (a). (d) Distribution of polygons
at 0, 2 and 4 hours.
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D. Statistical Analysis

The results presented in the main text are the mean value
and the standard error of the mean of data sets from at least
three independent experiments. Analysis of Variance (1-way
ANOVA) tests were performed on Cell Area, E-cadherin in-
tensity, Myosin Cluster Area and Myosin Cluster Intensity.
Normality (Kolmogorof-Smirnov) and Bimodality (Hartigans
Dip Statistic) tests were performed on Myosin Cluster Inten-
sity results. Finally, t-test was used to determine the signifi-
cance for the fitting parameters: Active Diffusion Coefficient,
Persistence time, Confinement time, Persistence length, and
Energy Disipation rate with significance levels p below 0.05
(not significant above). All the tests were performed using
MATLAB (The MathWorks, Natick, MAA).

II. CAGING MODEL

A. Presentation

We consider the following set of equations for the two-
dimensional positions of the vertex r and the cage center r0

γ
dr
dt

= −k(r− r0) +
√

2γkBTξ,
dr0
dt

= vA, (S1)

where ξ is a zero mean isotropic Gaussian white noise, and vA

is a stochastic process consisting in alternating active phases
with quiescent periods. The bath temperature is denoted by
T , and γ is the friction coefficient. In the active phase, vA has
a constant value v over a random direction uniformly sam-
pled in the two-dimensional space during an exponentially
distributed time of average τ . In the quiescent phase, vA = 0
during an exponentially distributed time of mean value τ0.

The projection of the process vA on one dimension defines
the process vA. We denote P2D and P1D the distributions
of a two-dimensional unit vector n̂, and of nx = n̂ · x̂ in
the x-axis, respectively. They are related as P2D(θ) |dθ| =
P1D(nx) |dnx|, where n̂ = (cos θ, sin θ) in the (x, y) basis.
Given P2D = 1/(2π) is uniform and nx = cos θ, we deduce
P1D = |d arccos(nx)/dnx| /(2π). It follows that the active
phase of vA is now characterized by a random velocity in the
interval [−v, v] distributed as

P (vA) =
1

πv
√

1− (vA/v)2
. (S2)

The time distribution of each phase remains unchanged in
the projected process. From this result, we arrive at the equa-
tions for the projected positions x and x0

γ
dx
dt

= −k(x− x0) +
√

2γkBTξ,
dx0
dt

= vA, (S3)

where ξ is still a zero mean Gaussian noise such as
〈ξ(t)ξ(t′)〉 = δ(t − t′), and now vA is the random process
depicted in Fig. S3. It is a zero mean non-Gaussian col-
ored noise with correlations 〈vA(t)vA(t′)〉 = DAe−|t−t′|/τ/τ ,
where DA = (vτ)2/[2(τ + τ0)] defines an active diffusion
coefficient in terms of the active parameters.

B. Analogy with active cell-cell junctions

We consider that a cell-cell junction acts as a spring on the
vertex. We treat the fluctuations of theses junctions with an
active noise regulating the dynamics of the rest length of the
associated spring. We account for the interaction with the sur-
rounding bath by means of a white noise term and a damping
force, and we discard inertial effects. It follows that the dy-
namics of the vertex position r obeys

γ
dr
dt

= −k(3r− r1 − r2 − r3) + ξ,
dri
dt

= vAi, (S4)

where ri denotes the position of each neighboring vertex and
where each noise term vAi has the same properties as vA

defined above, with zero cross-correlations. By projecting
Eq. (S4) on one dimension, we end up with a dynamics sim-
ilar to Eq. (S3), where the correlations of the noise term vA

exhibit the same exponential decay.

C. Mean square displacement

From the Fourier transform of Eq. (S3), we compute the
position autocorrelation function C(t) = 〈x(t)x(0)〉, and
then deduce the one-dimensional mean square displacement
(MSD) as

〈
∆x2

〉
(t) = 2(C(0)− C(t)). We denote the ther-

mal contribution to the MSD by
〈
∆x2T

〉
, and the MSD when

the particle is only subjected to motor activity by
〈
∆x2A

〉
, so

that:
〈
∆x2

〉
=
〈
∆x2T

〉
+
〈
∆x2A

〉
. The thermal MSD is the

same as for an Ornstein-Uhlenbeck process, and we compute
the active contribution in terms of the parameters characteriz-
ing the active force

〈
∆x2T

〉
(t) = 2DTτr

(
1− e−t/τr

)
, (S5a)

〈
∆x2A

〉
(t) =

2DAτr

1− (τ/τr)2

[(
τ

τr

)3(
1− e−t/τ − t

τ

)

+e−t/τr +
t

τr
− 1

]
, (S5b)

where DT = kBT/γ is the thermal diffusion coefficient, and
τr = γ/k is a microscopic relaxation time scale. It appears the
MSD depends on four independent parameters, two of them
characterizing active fluctuations {DA, τ}, and the two others
being associated with equilibrium thermal properties {DT, τr}.

III. DATA ANALYSIS

A. Mean square displacement

We extract the experimental MSD from individual trajec-
tories in each condition. We compute the value of the MSD
at each time t by performing a sliding time average on every
trajectory, and an ensemble average over the different trajec-
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FIG. S2. (Color online) Acto-myosin cytoskeleton. (a) Actin (red) and myosin (green) structures (left), and myosin structure alone at the apical
surface of MDCK cells for the different experimental conditions (right). Scale bar is 5 µm. The Lookup Table (LUT) were unaltered to show
the differences in actin and myosin intensities. Insets in (right) show zooms on typical myosin clusters with increased contrast for clarity. (b)
Distributions of myosin clusters mean intensity for each condition after 2 hours of the beginning of the experiment. Values were normalized
to the mean cluster intensity of control condition from each biological repeat. The dashed red lines indicate the mean value.
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t

v

0

−v

v A

τ

τ0

FIG. S3. Example trajectory of the active burst projection vA. It
equals zero over a random duration of average τ0, and is a random
value between −v and v during a random time of order τ .

tories

MSD(t) =
∆t

N(tm − t)
N∑

j=1

tm−t
∆t∑

i=1

[xj(t+ i∆t)− xj(i∆t)]2 ,

(S6)
where N is the number of experimental trajectories, tm =
8 hours is the longest measurement time, and ∆t = 5 min
is the experimental sampling time. The error bars for the esti-
mated active parameters shown in Fig. 2 of the main text ac-
count for the standard error of the experimental points. These
errors are used as weights associated with each point in the av-
erage MSD when fitting the experimental data. Moreover, we
report a systematic error due to the spatial resolution, which
we estimate as 0.2 µm.

We present in Fig. S4 the MSD data for the five conditions
along with the best fit curves for which we have extended the
time window with respect to Fig. 2(a) in the main text, thus
highlighting the predicted large time diffusive regime.

B. T1 transition

We analyse a vertex trajectory which contains a T1 transi-
tion, that is for which two neighbouring vertices merge during
the trajectory (Fig. S5). To provide a quantitative probe of
the merging event, we compute the vertex interdistance as a
function of time. We identify the time interval of the T1 tran-
sition as the time needed for the two vertices to gather and
then separate. In that respect, we assume that the transition
ends when the vertex interdistance increases again. The inter-
distance fluctuates around 15 µm until about 300 min when it
starts to drop off, and it increases again at ∼ 600 min.

We extract the MSD of the trajectory by performing an
ensemble average only over the neighbouring vertices. The
MSD exponent is close to 1 at short and large times, that is
before and after the transition. During the transition, the ex-
ponent first increases rapidly, and then decreases to reach a
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FIG. S4. (Color online) Mean square displacement as a function of
time in five conditions: control (black), myosin inhibitor (blue), Rho
kinase inhibitor (orange), Rho inhibitor (red), and microtubule de-
polymerization (green). The corresponding best fitting curves are in
solid lines. The best fit curves are extended beyond the experimental
time window to highlight the predicted large time diffusive regime.

ballistic regime until the end of the transition. This behavior
supports the hypothesis that T1 transitions correspond to su-
perdiffusive events in the vertex trajectory, which are triggered
by active fluctuations within our model.
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FIG. S5. (Color online) (a) Snapshots of a vertex undergoing a
T1 transition, visualized by GFP-E-Cadherin. Red and green lines
describe the trajectories of triple points during a T1 transition. Time
in hh:mm. Scale bar 10 µm (see movie 1 in [5]). (b) Plot of the
evolution of the mean square displacement (MSD) and vertex inter-
distance for the T1 transition shown in (a). Black lines are guides to
eyes for the diffusive and superdiffusive regimes. Vertical red lines
correspond to the time points of snapshots in (a).
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IV. NUMERICAL SIMULATIONS

A. Methods

We use Euler’s method to simulate Eq. (S3). The iterative
equations take the following form in terms of the sampling
time ∆t

x(t+ ∆t) = x(t)− ∆t

τr
(x(t)− x0(t)) +

√
2DT∆tη,

(S7a)
x0(t+ ∆t) = x0(t) + vA(t)∆t, (S7b)

where η is a random Gaussian variable with zero mean and
variance 1. The iterative equation for the active burst vA obeys

vA(t+ ∆t) =





vA(t) if vA(t) 6= 0 prob. 1−∆t/τ,

vA(t) if vA(t) = 0 prob. 1−∆t/τ0,

0 if vA(t) 6= 0 prob. ∆t/τ,

χ[−v,v] if vA(t) = 0 prob. ∆t/τ0,
(S8)

where χ[−v,v] is a random number between −v and v with
probability given by Eq. (S2).

B. Results: Short-time dynamics

We extract the probability distribution function (PDF) of
displacement from the simulated trajectories, to be compared

with the experimental distributions. The short time dynamics
is Gaussian and entirely controlled by the passive parameters
{DT, τr}. First, we run simulations with the best values esti-
mated from the fit of the experimental MSD, as reported in
Tab. I, without any active noise, namely vA = 0. The corre-
sponding PDFs reproduce the experimental data, as shown in
Fig. S6(a-e). Then, we include the active nonequilibrium fluc-
tuations. The short time PDF is still Gaussian as expected, and
we adjust the value of vτ by matching the exponentials tails
between numerical results and experimental data (Fig. 2(b-f)
of the main text). We present in Fig. S6(f) the comparison be-
tween the analytic MSD in Eq. (S5) and the MSD extracted
from simulated trajectories, showing a good agreement. This
confirms that there is a well defined time scale which separates
equilibrium fluctuations from active nonequilibrium fluctua-
tions.

TABLE I. Best fit value of DT and τr estimated from the fit of the
experimental MSD presented in Fig. 2(a) of the main text.

DT (10−2 µm2/min) τr (min)
Control 2.4± 0.2 13± 2

Myosin inh. 1.8± 0.1 13± 3

Rho kinase inh. 3.2± 0.2 10± 1

Rho inh. 2.8± 0.2 24± 6

Depolym. MT 4.6± 0.7 15± 4
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Current Biology 17, 2095 (2007).

[3] B. Aigouy, R. Farhadifar, D. B. Staple, A. Sagner, J.-C. Röper,
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time is in hh:mm; red and blue points record vertex trajectories.
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FIG. S6. (Color online) (a-e) Probability distribution function of
displacement for the five conditions at two times: 5 (yellow •), and
15 min (orange ×). We present the results of simulations without
active noise of the vertex dynamics in solid lines. (f) Mean square
displacement as a function of time in five conditions: control (black),
myosin inhibitor (blue), Rho kinase inhibitor (orange), Rho inhibitor
(red), and microtubule depolymerization (green). Results of simula-
tions with active noise are shown in ◦, and the corresponding analytic
curves are in solid lines.

134



135

Future directions
As discussed in paper E, it would be interesting to investigate the connec-

tion between nonequilibrium fluctuations and topological transition, such as T1
transitions, in epithelial tissues. Indeed, it has been reported that fluctuations
of vertices facilitate such transitions [110]. For instance, one could relate the di-
rected motion periods in the vertex trajectory to the merging events starting a T1
transition to demonstrate that fluctuations of large amplitude are able to trigger
topological transitions. Moreover, the insight that we provide into the time scales
involved in these fluctuations could motivate the possibility to trigger topological
transitions from an external perturbation. One could investigate if applying an
oscillatory shear, either to the whole tissue or at a given location inside it, with a
well tuned frequency would activate such transitions. Eventually, measuring the
response from an external perturbation, to be compared with the spontaneous
fluctuations, would provide a better insight into the nonequilibrium component of
the dynamics, as a crucial test for the robustness of our minimal description.
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Chapter 7

Nonequilibrium properties of
persistent self-propelled particles

This Chapter, unlike the previous ones, addresses collective effects stemming from
interactions between a large number of self-propelled particles. We first present
the phenomenology of such systems. Then, we motivate the study of a specific
dynamics for which the self-propulsion stems from a noise term with persistent
correlations. We discuss the success and limitations of previous approximation
schemes used to describe such dynamics. We determine the steady state for the
many-body distribution within a controlled and systematic perturbation theory.
Moreover, we quantify the breakdown of the irreversibility of the dynamics to shed
light on the existence of an effective equilibrium regime. Eventually, we derive the
collective modes of the dynamics.
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7.1 Self-propelled particles as an active matter
system

Phenomenology of active matter

A widely studied class of active matter systems is given by interacting self-
propelled particles. In such systems, energy is injected at the level of the individual
particles to power self-propelled motion, thus producing a microscopic energy flux.
By contrast with systems driven far from equilibrium by an external field, no large
scale current is observed. Self-propelled particles can undergo a phase separation
even when interactions are purely repulsive. This phenomenon is known as the
motility-induced phase separation (MIPS) [13, 14]. The formation of clusters has
been reported experimentally, using Janus particles in a solution of hydrogen per-
oxyde for instance [11, 129, 130], as shown in Fig. 7.1. These particles are made of
two sides with physical properties associated with different chemical reactions. As
a result, chemical gradients develop and power the motion of the particles. In such
experimental systems, the details of the interactions are neither well understood
nor well controlled in general. To gain a better understanding of the role of inter-
actions in the emerging collective physics, numerical simulations of active particles
have been performed for minimal models of self-propulsion [131–134]. They have
studied in detail the phase diagram, the structure of the dense phase, as well as
the kinetics of the phase separation. Another characteristic of active particles is
the accumulation at the boundaries of an external potential [135–140]. The un-
expected density profiles under confinement is the signature of a non-Boltzmann
stationary distribution, which is sometimes regarded as the hallmark of nonequi-
librium in active systems. The sedimentation of active particles has also been
described theoretically in line with experimental results [141, 142]. Other numer-
ical studies have explored the shift of the usual glass transition in dense systems
of self-propelled particles [143–147].

Existing models of self-propulsion

The theoretical investigations of interacting active particles rely on minimal
models of self-propulsion. Among the many descriptions of self-propulsion, two of
them have received special attention: run-and-tumble particles (RTPs), and active
Brownian particles (ABPs). The motion of RTPs is made of periods with constant
speed whose direction varies instantaneously in a random manner. This model has
been used to describe the erratic motion of bacteria such as Escherichia coli [13,
148]. Concerning ABPs, the velocity of self-propulsion has also a fixed norm, yet
the direction now varies through angular diffusion [Fig. 7.2]. The dynamics of
these two models can be cast in the following form. Provided that inertial effects
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Figure 7.1 – Clusters of photoactivated colloidal particles (left, taken
from [11]), and simulated active particles (right, taken from [132]).

are negligible, the velocity ṙi of the particle i is given by the sum of a deterministic
and a stochastic contribution as

ṙi = −∇iΦ + vi, (7.1)

where we have set the friction coefficient to one, and we have introduced the po-
tential Φ. This potential can account for interactions between the particles as well
as the effect of an external force field. The self-propulsion vi is a noise term which
is uncorrelated between the particles. In the case of RTPs, it corresponds to the
active burst process presented in Chapter 3 in the limit of vanishing waiting time.
Therefore, it is both a colored and non-Gaussian noise. In the case of ABPs, the
self-propulsion noise term is also colored and non-Gaussian, though it has been
shown that non-Gaussian effects can be neglected for some regimes in three di-
mensions [149]. Considering free particles, the large time and large scale dynamics
is purely diffusive for both ABPs and RTPs. The diffusion coefficient is defined
in terms of the amplitude of the velocity, as well as the rate of directional vari-
ation and the rotational diffusion coefficient, for ABPs and RTPs respectively [14].

Questions of interest
Recent developments have strived to build a unified description of interact-

ing self-propelled particles based on what can be saved of thermodynamics con-
cepts. They are led by the search for an equation of state by analogy with
equilibrium [150]. In that respect, a crucial issue is to extend the definition of
temperature [140, 151–154] and pressure [155, 156] beyond equilibrium. Another
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Figure 7.2 – Typical trajectories of (a) run-and-tumble particles, and (b)
active Brownian particles. Taken from [14].

important question concerns the emergence of MIPS. This phenomenon has been
studied through hydrodynamic coarse graining of the dynamics [130, 131, 134,
157–159], yielding mean-field descriptions of the phase separation in terms of a
free energy density functional. A related question is whether this unexpected
phase separation can be understood at the microscopic level as stemming from an
effective interaction between the particles. Following this route, it may be possible
to anticipate the phase diagram from the stationary distribution of the interact-
ing particles, as suggested by recent studies [149, 160]. Eventually, understanding
how the structural relaxation of a dense suspension of colloids is affected by the
self-propulsion is an open issue, though recent methods based on extending mode-
coupling approximations have been proposed to capture results from numerical
simulations [161–163].

7.2 Interacting particles under persistent fluctu-
ations

Previous models, such as ABPs and RTPs, have encoded the self-propulsion in a
fluctuating noise term with exponential correlations and non-Gaussian statistics.
Yet, the non-Gaussian properties may not be crucial in the description of ABPs in
three dimensions [149]. Based on this observation, our aim is to provide an exten-
sive description of the dynamics of active particles for which the self-propulsion
reduces to a Gaussian noise. Building on the case of ABPs and RTPs, we consider
that the correlations are exponentially decaying as

〈viα(t)vjβ(0)〉 = Tδijδαβ
e−|t|/τ
τ

, (7.2)
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where T is a temperature controlling the amplitude of the noise, and τ is a per-
sistence time. By contrast to ABPs and RTPs, the self-propulsion no longer has a
fixed norm. Such dynamics have been shown to successfully reproduce the behavior
of passive tracers in an active bath of bacteria [164]. Within this formulation, the
self-propulsion is an Ornstein-Ulhenbeck process, whose dynamics can be written
in terms of a Gaussian white noise ξi, with correlations 〈ξiα(t)ξjβ(0)〉 = δijδαβδ(t),
as

τ v̇i = −vi + (2T )1/2ξi. (7.3)
If we were to describe equilibrium dynamics, the drag force in the dynamics (7.1)
would contain a memory kernel related to the noise correlations, as discussed in
Chapter 1. The relation between the noise correlations and the drag force being
different from the thermal one, the fluctuations of the internal self-propulsion drive
the dynamics out-of-equilibrium. One recovers equilibrium dynamics in the limit
of vanishing τ for which the self-propulsion reduces to a Gaussian white noise.
The dynamics given by Eqs. (7.1) and (7.3) can be written in terms of the particle
velocity, denoted by pi, as

τ ṗi = −pi − (1 + τpk · ∇k)∇iΦ + (2T )1/2ξi. (7.4)

The effect of the self-propulsion leads us to expressing the dynamics in an under-
damped form for which the damping force is affected by the potential.

Approximate dynamics
Two different approximate treatments of the dynamics (7.4) have been proposed

based on extending previous approximation schemes to interacting particles. Con-
sidering non-interacting particles, they are referred to as the unified colored-noise
approximation (UCNA) [165, 166] and the Fox theory [167, 168]. Such approxi-
mations were first motivated by the description of the fluctuations of the radiation
in the dye laser [166, 169]. They have led to provide results for the stationary
distribution and for mean first-passage times [170–172].

The UCNA consists in neglecting the left-hand side in Eq. (7.4):

Miα,jβ ṙjβ = −∂iαΦ + (2T )1/2ξiα. (7.5)

where ∂iα = ∂/∂riα, and we have introduced the tensor Miα,jβ = δijδαβ + τ∂2
iα,jβΦ.

As a result, the dynamics is now Markovian for the particle positions. The prod-
uct appearing in the left-hand side of Eq. (7.5) is to be understood with the
Stratonovitch convention, since we have used the common rules of differential cal-
culus to obtain it. It follows that the associated Fokker-Planck equation for the
set of positions P ({ri} , t) reads

∂tP = ∂iα
(
PM−1

iα,jβ∂jβΦ
)

+ T∂iα
[
M−1

iα,jβ∂kγ
(
M−1

kγ,jβP
)]
, (7.6)
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where M−1 denotes the inverse of M. The corresponding stationary measure can
be exactly determined

PS ∼ exp
[
−Φ
T
− τ (∇iΦ)2

2T

]
|detM| . (7.7)

This is a straightforward generalization of the one-dimensional case presented
in [173]. As a result, the stationary distribution differs from the equilibrium Boltz-
mann distribution e−Φ/T . The equilibrium distribution is recovered in the limit of
vanishing persistence time, as it should. Numerical results have been tested against
this prediction in the case of a one-dimensional system for two interacting parti-
cles. They support the validity of the UCNA in the small τ regime, as shown in
Fig. 7.3. In such a regime, the distribution can be simplified as

PS ∼ exp
[
−Φ
T
− τ (∇iΦ)2

2T + τ∇2
iΦ +O

(
τ 2
)]
. (7.8)

One can identify an effective potential Φeff = −T lnPS from this expression by
analogy with the Boltzmann distribution. In the case where the bare potential
Φ is an external confining potential, minimizing Φeff provides information about
the favored particle positions under confinement, which may differ from the ones
for the original potential. The correction term τ(∇iΦ)2/2 is always positive, thus
driving the system away from regions of large forces. The second correction term
−Tτ∇2

iΦ is dominant for large values of T , and it can take both signs. It selects
local extrema of Φ, whether minima or maxima when being negative or positive,
respectively. Considering that the bare potential describes pair-wise interactions,
the corresponding effective potential contains three-body interactions stemming
from the term τ(∇iΦ)2/2. Moreover, when Φ corresponds to repulsive interac-
tions only, the associated Φeff combines repulsive and attractive interactions. This
may explain why the self-propulsion produces attractive effects from a genuine
repulsion, as reported experimentally in clustering colloidal systems [11, 129, 130].
Furthermore, the form of the first order correction of the effective potential ap-
pears in a different context. The quantum mapping of the dynamics of Brownian
particles displays an effective potential which is related to the bare potential in
the same way as the first order correction of Φeff [174–176].

The Fox theory uses functional calculus applied on the weight of a given time
realization of the particle trajectories to propose an approximate Fokker-Planck
equation. It has been generalized to interacting particles in [149], yet this deriva-
tion is erroneous. We demonstrate in Appendix A that the correct Fokker-Planck
equation takes the following form:

∂tP = ∂iα (P∂iαΦ) + T∂2
iα,jβ

(
M−1

iα,jβP
)
. (7.9)
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Figure 7.3 – Left: Stationary distribution for two self-propelled particles
interacting via a potential r−12. Taken from [173]. Right: Effective pair
potential (red) deduced from a bare repulsive potential of the form r−12

(black) for different values of the Péclet number, as a function of the inter-
particle distance scaled by the typical particle size. The Péclet number is
proportional to the amplitude of the self-propulsion. Taken from [149].

Comparing this result with the one for the UCNA in Eq. (7.6), it appears that
the probability currents of UCNA and the Fox theory are proportional to each
other with coefficient given by M−1. It follows that the Fox theory shares the
same stationary distribution as the UCNA. This result is different from the one
presented in [149], yet the stationary distribution of [149] coincides in the small τ
regime with ours in Eq. (7.8). This is supported by the good comparison between
numerical simulations and analytic predictions of [149] in this regime. From this
stationary distribution, one can explicitly predict the form of the attractive part
in the effective potential, when considering a pair-wise bare potential, by retaining
only the two-body part in the effective potential. For a bare repulsion of the form
r−12, the effective potential exhibits a minimum as a balance between attractive
and repulsive effects, the depth of which increases with the amplitude of the self-
propulsion, as shown in Fig. 7.3.

Stationary distribution in position-velocity space: perturbative treatment

The two approximation schemes presented above yield some Markovian dy-
namics for the particle positions. In that respect, they both lead to discard the
inertia-like effects inherent to the original dynamics. In particular, they do not
provide any prediction about the distribution of velocity in the steady state. It has
been shown recently that the conditional distribution of velocity PS ({ri} | {pi}) as-
sociated with the UCNA position distribution has a Gaussian form [177]. Yet, such
a distribution can not account for the existence of a particle current in a ratchet
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experiment, namely when the particles are put in a potential made of a asymmet-
ric energy barriers [178]. Therefore, an approximate form of the position-velocity
distribution able to predict such effect is still lacking.

Our goal is to perturbatively determine the steady state of the dynamics (7.4)
in the limit of small persistence time. Previous attempts to obtain the steady
state are neither based on a systematic scheme, nor well controlled. We will
account for the effect of the self-propulsion in both the inertia-like term and the
modified damping term. To this aim, we scale time as t → τ 1/2t and we use the
scaled velocities as pi → τ−1/2pi, following [165, 179]. As a result, the stationary
distribution satisfies LPS({ri,pi}) = 0, where the operator L reads

L = −piα
∂

∂riα
+ τ−1/2 ∂

∂piα

(
Miα,jβpjβ + τ 1/2∂iαΦ + T

∂

∂piα

)
. (7.10)

The equation LPS = 0 is invariant under the transformation {τ,pi} → −{τ,pi}.
It follows that the stationary distribution displays the same symmetry. We use
the following ansatz:

PS ∼ exp
[
−Φ
T
− p2

i

2T +
∞∑
n=2

τn/2ψn({ri,pi})
]
. (7.11)

Substituting this ansatz in the equation LPS = 0, we obtain a set of recursive
equations for the ψn to every order in τ 1/2. They all take the following form:(

piα
∂

∂piα
− T ∂2

∂piαpiα

)
ψn = fn ({ri,pi}) . (7.12)

It follows that each ψn is solved up to a function gn({ri}) which only depends on
the particle positions. Using the symmetry of the evolution operator, we deduce
that the functions ψn have the same parity in n and pi. It follows that gn is zero
for odd n. At leading order, the first equation to be solved reads

f2 =
[
∇2
i −

1
T

(pi · ∇i)2
]

Φ, (7.13)

yielding
ψ2 = − 1

2T (pi · ∇i)2Φ + g2. (7.14)

In order to determine the expression for g2, we need to solve the higher orders of
the expansion. to the next order, we obtain

f3 = 1
2T

[
(pi · ∇i)3Φ− (pi · ∇i)(∇jΦ)2

]
− pi · ∇ig2, (7.15)
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from which we deduce ψ3 as

ψ3 = 1
2T

{[1
3(pi · ∇i)3 + T (pi · ∇i)∇2

j

]
Φ− (pi · ∇i)(∇jΦ)2

}
− pi · ∇ig2. (7.16)

This solution does not enforce any condition on g2, leading us to go to the next
order:

f4 =− (pi · ∇i)2
[
∇2
j + 1

6T (pj · ∇j)2
]

Φ + 1
2T (pi · ∇i)2Φ

[ 1
T

(pj · ∇j)2 −∇2
j

]
Φ

+∇iΦ · ∇i

[
∇2
j + 3

2T (pj · ∇j)2
]

Φ− 1
T

(∇iΦ · ∇i)2Φ

+ g2

[
∇2
i −

1
T

(pi · ∇i)2
]

Φ +
[
(pi · ∇i)2 −∇iΦ · ∇i

]
g2.

(7.17)
When solving the corresponding equation for ψ4, the normalization condition en-
forces the expression of g2:

g2 = 3
2∇

2
iΦ−

(∇iΦ)2

2T . (7.18)

Eventually, the full solution at order τ 3/2 can be cast in the form

PS ∼ e−
Φ+p2

i
/2

T

{
1− τ

2T
{

(∇iΦ)2 +
[
(pi · ∇i)2 − 3T∇2

i

]
Φ
}

+τ
3/2

6T (pi · ∇i)
[
(pj · ∇j)2 − 3T∇2

j

]
Φ +O

(
τ 2
)}

.

(7.19)

The velocity distribution obtained by integrating over the particle position is Gaus-
sian at first order in τ , with the same variance as in [177]. Yet, the order τ 3/2 shows
that the distribution is non-Gaussian, which was not captured in [177]. An impor-
tant feature of the full distribution is the coupling between position and velocity,
in contrast with equilibrium for which it can be split into kinetic and potential
parts. In particular, it leads to a modified equipartition theorem:〈

p2
iα

〉
= T − τ

〈
(∇iΦ)2

〉
B

+O
(
τ 2
)
, (7.20)

where 〈· · ·〉B denotes the average with respect to the Boltzmann distribution e−Φ/T .
Moreover, we can also obtain the probability current in position space Ji from the
full distribution. It is defined by ∂tP ({ri} , t) = −∇i · Ji. From the expression
of the operator L, we deduce Ji = τ−1/2 〈pi〉, where the velocity is expressed in
scaled units whereas the current is in the original ones. By using the stationary
distribution in position and velocity, we estimate that the average velocity is at
least of order τ 5/2, since the order τ 2 of the distribution is even in velocity. It
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follows that the current is at least of order τ 2, in line with previous works which
highlighted that the increase of the current with the persistence time was faster
than linear for a ratchet [180, 181]. Integrating the full distribution over the
velocities yields the position distribution at order τ . It coincides with the UCNA
and Fox predictions to this order, as was already confirmed by the good agreement
with numerical simulations in the small τ regime [149, 173].

7.3 Effective equilibrium regime
Breakdown of the time reversal
To explore the nonequilibrium properties of the dynamics (7.4), we focus on the

time irreversibility of this dynamics. As introduced in Chapter 1, the breakdown
of the time reversal invariance is quantified by the entropy production rate. It is
defined in terms of the weights for a given time realization of the forward and back-
ward processes. It vanishes for the two approximate dynamics presented above,
showing that they are unable to capture any of the genuine nonequilibrium feature
of the original dynamics. Introducing the reversed dynamics as rR

i (t) = ri(−t) and
pR
i (t) = −pi(−t) , we demonstrate that the entropy production rate reads

σ = τ 1/2

2T
〈
(pi · ∇i)3Φ

〉
, (7.21)

where the velocities are expressed in scaled unit, as discussed above. When com-
paring this expression with Eq. (1.22) in Chapter 1, it seems that there entropy
production no longer coincides with the power of an active force. This because the
nonequilibrium nature of the dynamics now stems from the mismatch between the
noise correlations and the memory kernel. To provide a deeper insight into the
physics associated with the entropy production (7.21), we introduce the kernel K
defined in terms of the self-propulsion correlations as∫

K(t− u) 〈viα(s)vjβ(u)〉 du = δ(t− s)δijδαβ. (7.22)

Multiplying the left and right hand sides of the dynamics (7.1), we get an equivalent
dynamics written as∫

K(t− s)ṙi(s)ds = ηi −
∫
K(t− s)∇iΦ({ri(s)})ds, (7.23)

where the noise term ηi is Gaussian with correlations 〈ηiα(t)ηjβ(0)〉 = δijδαβK(t).
The correlations of the noise term now coincide with the memory kernel as for an
equilibrium thermal bath. Within this formulation, it appears that the dynamics
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of self-propelled particles with a viscous drag can be mapped into the one of
Brownian particles in contact with a viscoelastic equilibrium bath and subjected to
a nonequilibrium forcing fA = −K∗∇iΦ, where ∗ denotes the convolution product.
Therefore, using Eq. (1.22), the entropy production rate is readily deduced as

σ = 〈pi · K ∗ ∇iΦ〉
T

. (7.24)

This result is independent of the specific form of the self-propulsion correlations,
encoded in the kernel K. In the case where the correlations of self-propulsion are
exponentially decaying, the kernel reads K(t) = [1− τ 2(d/dt)2] δ(t), from which we
recover the first expression of the entropy production rate in Eq. (7.21). Moreover,
we can use the full stationary distribution in position-velocity space to estimate
the correlation function appearing in the entropy production rate. Given that this
correlation is odd in the velocities, the leading order in the entropy production
rate comes from the second order correction in the steady state, yielding

σ = Tτ 2

2 〈(∇i∇j∇kΦ)2〉B +O
(
τ 3
)
. (7.25)

An important feature of this result is that it is independent of the first order cor-
rection in the stationary measure. Therefore, we claim that there exists a regime
where the self-propulsion affects the steady state, yet it provides a negligible con-
tribution to the entropy production rate. We refer to such a regime as an effective
equilibrium regime, distinct from the thermal equilibrium regime for a vanishing
τ which is associated with a Boltzmann steady state.

Fluctuation-dissipation relation
To probe the existence of the effective equilibrium regime, we propose a pro-

tocol based on a new fluctuation-dissipation relation (FDR). We consider that an
external operator perturbs the dynamics with a force fj applied on the particle j:

ṙi = −∇iΦ + δijfj + vi. (7.26)

Such a perturbed dynamics can be written in the underdamped version as

τ ṗi = −pi − (1 + τpk · ∇k)∇iΦ + δij
(
fj + τ ḟj

)
+ (2T )1/2ξi. (7.27)

Perturbing the original dynamics does not simply result in adding the same per-
turbation force in the corresponding underdamped formulation. We introduce the
response as

Riα,jβ(t) = δ 〈riα(t)〉
δfjβ(0)

∣∣∣∣∣
f=0

. (7.28)
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In the regime where time reversal holds, we demonstrate that it can be written as

Riα,jβ(t) = − 1
T

d
dt
〈
riα(t)rjβ(0) + τ 2piα(t)pjβ(0)

〉
, (7.29)

where the velocities are expressed in real units. This result is different from the
one for the UCNA and the Fox theory, as discussed in Appendix A. The FDR
now involves the position autocorrelation function as in the FDT, along with the
velocity autocorrelation function, by contrast to equilibrium. Yet, this additional
correlation function is independent of the potential Φ, similarly to the equilibrium
case. This property is robust with respect to any form of the self-propulsion
correlations. Considering an arbitrary perturbation by modifying the potential as
Φ → Φ − h(t)B({ri,pi}), we express the generalized response RG introduced in
Chapter 1 in the effective equilibrium regime as

RG(t) = − 1
T

d
dt 〈A(t)B(0)〉 − τ 2

T
〈A(t) [(p̈i · ∇i)B] (0)〉 . (7.30)

In contrast with thermal equilibrium, the correlation functions of the right hand
side can not be written as a total time derivative. The FDT is often used to assess
the existence of several temperatures associated with different time scales in models
of sheared fluids [28, 182], self-propelled particles [151, 183, 184], and biological
systems [185]. Our result suggests that, in the effective equilibrium regime, one
can define a single temperature at all times from the response-correlation diagram
when considering the appropriate correlation function.

The results described above are presented and discussed in details in paper F
reproduced below.
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Active matter systems are driven out of thermal equilibrium by a lack of generalized Stokes-Einstein
relation between injection and dissipation of energy at the microscopic scale. We consider such a system of
interacting particles, propelled by persistent noises, and show that, at small but finite persistence time, their
dynamics still satisfy a time-reversal symmetry. To do so, we compute perturbatively their steady-state
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Active matter systems comprise large assemblies of
individual units that dissipate energy, often stored in
the environment, to produce mechanical work [1]. From
the collective motion of self-propelled particles [2,3] to the
existence of a liquid phase in the absence of attractive
forces [4–6], many intriguing phenomena have generated a
continuously growing interest for active matter over the
past decades [1]. Since active systems break detailed
balance at the microscopic scale, they cannot be described
by equilibrium statistical mechanics. However, it is often
difficult to pinpoint precisely the signature of nonequili-
brium physics in their emerging properties. For instance,
motility-induced phase separation (MIPS), which leads to
the liquid-gas coexistence of repulsive self-propelled par-
ticles, is not associated to the emergence of steady-state
mass currents. A number of works have actually proposed
that its large scale physics can be captured by an equilib-
rium theory [4,7–9], the limits of which are heavily debated
[10–12]. Even for systems where steady currents arise, the
connection to equilibrium physics can sometimes be
maintained, as for the transition to collective motion which
amounts, for simple systems, to a liquid-gas phase tran-
sition [13,14]. More and more approaches to active matter
thus partly rely on the intuition built for equilibrium
systems [4,7,8,12,15–18].
Building a thermodynamic approach for active matter

thus first requires understanding how active systems depart
from thermal equilibrium. Insight into this question was
gained by studying how the fluctuation dissipation theorem
(FDT) breaks down in active matter [19–22]. At short time
and space scales, the persistent motion of active particles
typically precludes the existence of effective temperatures,
while at larger scales, FDTs can sometimes be recovered. In
living systems, the violation of FDT is used to characterize

the forces generated by intracellular active processes
[23–28]. The information extracted from violations of
the FDT is however rather limited and nonequilibrium
statistical mechanics offers more elaborate tools to quantify
the departure from equilibrium. In particular, the entropy
production rate quantifies the breakdown of time-reversal
symmetry, whence probing the irreversibility of the particle
trajectories [29]. Hard to compute, and even harder to
measure experimentally, it has been little studied in active
systems [30,31], hence the need for “simple but not
simpler” systems which offer a natural way to establish
theoretical frameworks.
In this Letter, we study a model system of active matter

which has recently attracted lots of interest [9,32–34].
It comprises overdamped “self-propelled” particles evolv-
ing as

_ri ¼ −μ∇iΦþ vi; ð1Þ

where i refers to the particle label, μ to their mobility, andΦ
is an interaction potential. The self-propulsion velocities vi,
rather than having fixed norms as in models of active
Brownian particles [5] (ABPs) or run-and-tumble particles
[35] (RTPs), are zero-mean persistent Gaussian noises of
correlations hviαðtÞvjβð0Þi ¼ δijδαβΓðtÞ, with greek indices
corresponding to spatial components. In the simplest of
cases, the vi’s are Ornstein-Uhlenbeck processes, solutions
of τ _vi ¼ −vi þ

ffiffiffiffiffiffiffi
2D

p
ηi, with ηi’s zero-mean unit-variance

Gaussian white noises, so that ΓðtÞ ¼ De−jtj=τ=τ. Here, D
controls the amplitude of the noise and τ its persistence
time.
Since the temporal correlations of the noise are not

matched by similar correlations for the drag, this system
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does not satisfy the standard generalization of the
Stokes-Einstein relation to systems with memory [36].
Consequently, the system is out of thermal equilibrium,
and its stationary measure is not the Boltzmann weight
PB ≡ Z−1 expð−βΦÞ. This model, to which we refer
in the following as active-Ornstein-Uhlenbeck particles
(AOUPs), shares the essential features of active systems: it
correctly reproduces the behavior of passive tracers in
bacterial baths [32,37], leads to the standard accumulation
of active particles close to confining walls [33], and shows
a shifted onset of the glass transition [34]. As for many
other self-propelled particles [21,38], the limit of vanishing
persistence time of AOUPs correspond to an equilibrium
Brownian dynamics, since vi reduces to a Gaussian
white noise.
In the following, we characterize how the AOUPs depart

from thermal equilibrium. First, we compute perturbatively
their steady state at small but finite persistence time τ.
Surprisingly, we show that the small τ limit yields a non-
Boltzmann distribution with which the particle dynamics
still respects detailed balance: the entropy production,
which we compute, can indeed be shown to vanish at order
τ. In this regime, to which we refer as effective equilibrium,
we also show that AOUPs satisfy a generalized FDT.
Finally, we close this Letter by providing an energetic
interpretation of the breakdown of detailed balance for
AOUPs.
We consider N particles, propelled by Ornstein-

Uhlenbeck processes, interacting through a potential Φ.
For illustration purposes, we use pairwise repulsive forces
in 2D

Φ¼ 1

2

X
i;j

Vðri − rjÞ; VðrÞ ¼ A exp

�
−

1

1− ðr=aÞ2
�
; ð2Þ

for which Fig. 1 shows that AOUPs exhibit motility-
induced phase separation [4,6], extending this phenomenon

beyond the reported cases of RTPs [4,22] and ABPs
[5,9,39]. Our analytical results, however, are valid beyond
this example and hold for general potentials and dimen-
sions. Introducing the velocities pi ¼ _ri and taking the time
derivative of (1) yields

τ _pi ¼ −pi − ð1þ τpk ·∇kÞ∇iΦ −
ffiffiffiffiffiffi
2T

p
ηi; ð3Þ

where the mobility μ is set to one. Here and in what follows,
repeated indices are implicitly summed over.
We have introduced T ≡D=μ so that taking τ ¼ 0 in

Eq. (3) directly maps the dynamics onto an equilibrium
overdamped Langevin equation at temperature T.
Surprisingly, there exist other equilibrium approximations
of Eq. (3). First, taking τ ¼ 0 in the rhs maps AOUPs onto
an underdamped Kramers-Langevin equation. Conversely,
taking τ ¼ 0 in the lhs corresponds to the unified colored
noise approximation [33,40] which has been shown to
satisfy detailed balance [33]. Here, we propose to deter-
mine perturbatively the steady state of AOUPs in the small
τ limit, retaining both contributions of τ in Eq. (3).
Rescaling time as t ¼ ffiffiffi

τ
p

~t and introducing the rescaled
velocities ~pi ¼

ffiffiffi
τ

p
pi, the probability distribution satisfies

the Fokker-Planck equation _Pðfri; ~pigÞ ¼ LPðfri; ~pigÞ,
where the operator L reads

L ¼ − ~piα
∂

∂riα þ
1ffiffiffi
τ

p ∂
∂ ~piα

�
~piα þ τ

∂2Φ
∂riαrjβ ~pjβ

�

þ ∂
∂ ~piα

∂Φ
∂riα þ

Tffiffiffi
τ

p ∂2

∂ ~p2
iα
: ð4Þ

In steady state, we propose the following ansatz for small τ:

P ∝ exp

�
−
Φ
T
−

~p2
i

2T
þ
X∞
n¼2

τn=2ψnðfri; ~pigÞ
�
: ð5Þ

Solving for LP ¼ 0 then leads to a consistent set of
equations at every order in

ffiffiffi
τ

p
, which recursively yield

P ∝ e−½ðΦþ ~p2
i =2Þ=T�

�
1−

τ

2T
½ð∇iΦÞ2 þ ð ~pi ·∇iÞ2Φ− 3T∇2

iΦ�

þ τ3=2

6T
ð ~pi ·∇iÞ3Φ−

τ3=2

2
ð ~pi ·∇iÞ∇2

jΦþOðτ2Þ
�
: ð6Þ

The distribution of positions can then be deduced by
integrating (6) over velocities; this leads to a Boltzmann-
like measure, PðfrigÞ ∝ expð− ~Φ=TÞ, with an effective
potential,

~Φ≡ Φþ τ½ð∇iΦÞ2=2 − T∇2
iΦ� þOðτ2Þ: ð7Þ

In the limit of vanishing τ, one recovers the standard
Maxwell-Boltzmann distribution. The joint distribution of

FIG. 1. AOUPs interacting via the potential (2) exhibit MIPS in
a 2D box of size L with periodic boundary conditions. Param-
eters: A ¼ 100, a ¼ 2, N ¼ 10000, L ¼ 250, D ¼ 100, τ ¼ 20.
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position and velocities (6) beyond this regime is our first
important result. First, it shows how, for finite τ, positions
and velocities are correlated, in agreement with the UCNA
approximation [41] but at contrast to thermal equilibrium
where the energy can be separated between kinetic and
potential parts. In particular, this leads to a modified
equipartition theorem,

h ~p2
iαi ¼ T − τhð∇iΦÞ2iB þOðτ2Þ; ð8Þ

where the average h� � �iB is taken with respect to the
Boltzmann weight PB. Second, the effective potential ~Φ
predicts that repulsive pairwise potentials lead to effective
attractive interactions, consistently with other approxima-
tion schemes [9,33]. This explains why purely repulsive
interactions can trigger MIPS. Note also how a pairwise
potential leads to effective three-body interactions through
the term ð∇iΦÞ2. At this stage, our controlled expansion
allows us to describe the static properties of AOUPs in
terms of an effective Boltzmann weight (7). Interestingly,
for the evolution operator (4), the asymmetry in ~pi of the
steady-state measure (4) implies that the dynamics is out of
equilibrium [42]. This asymmetry is not captured by the
UCNA approximation [41] which cannot describe the
nonequilibrium properties of AOUPs.
To better measure the degree of irreversibility of the

dynamics, we derive its entropy production rate σ [29]. It is
obtained by comparing the probability weights associated
with a given trajectory riðtÞ and its time-reversed counter-
part, respectively, denoted by P and PR,

σ ≡ lim
t→∞

1

t
ln

P
PR : ð9Þ

To keep the scaling in τ explicit, we work for now with the
rescaled variables ~t and ~pi and use the fact that σ is
intensive in time. Using standard path-integral formalism
[43], the trajectory weight can be written as P½frið~tÞg� ∼
expð−S½frið~tÞg�Þ with

S ¼
ffiffiffi
τ

p
4T

Z
~t

0

du

�
_~pi þ

~piffiffiffi
τ

p þ ð1þ ffiffiffi
τ

p
~pk · ∇kÞ∇iΦ

�
2

: ð10Þ

The time-reversed trajectories are then given by tR ¼ −t,
rRi ðtÞ≡ rið−tÞ. For rRi ðtÞ to be a solution of the equation of
motion (1), one then needs pR

i ðtÞ ¼ −pið−tÞ. The proba-
bility PR is then simply obtained by injecting these
expressions into (10). The entropy production rate is thus
given by σ ∼ δS=t, where δS is the difference between the
forward and backward actions [44]. All in all, the entropy
production rate reads

σ ¼ − lim
~t→∞

ffiffiffi
τ

p
T~t

Z
~t

0

duð _~pi ·∇iÞð ~pj · ∇jÞΦ

¼
ffiffiffi
τ

p
2T

hð ~pi ·∇iÞ3Φi; ð11Þ

where the last equality follows from integrating by parts
[45] and using the equality between time and ensemble
averages in steady state [46]. Interestingly, the entropy
production rate exactly vanishes when Φ is quadratic in
the particle displacements, hence showing that AOUPs are
in this case an equilibrium model. Their steady state is
however not the Boltzmann measure PB, which explains
the difficulty of defining a temperature in this case [21]. As
a result, the anharmonicity of the potential acts as a control
parameter for the nonequilibrium nature of AOUPs.
The entropy production rate can also be computed in the

small τ limit, using the stationary distribution (6) to
evaluate the correlation function appearing in Eq. (11).
Going back to the initial variables, the entropy production
rate is given by

σ ¼ Tτ2

2
hð∇i∇j∇kΦÞ2iB þOðτ3Þ: ð12Þ

The first nonvanishing contribution to σ comes from the
τ3=2 correction in the steady state measure (6). At order τ,
we thus have a non-Boltzmann steady state given by the
first line of (6), or equivalently by (7) in position space,
with a vanishing entropy production rate. In such a regime,
the AOUPs are effectively a nonthermal equilibriummodel,
which is the central result of this Letter.
Let us now discuss the practical consequences of this

effective equilibrium dynamics. Oscillatory shear experi-
ments have become an increasingly standard procedure to
sample the microrheology of active systems [23,24,47,48].
In this context, the violation of the equilibrium FDT has
proven a natural measure of the distance to equilibrium
[19,20,49]. Let us consider that an external operator
perturbs the dynamics by applying a small constant force
fj on the particle j, hence modifying the potential Φ as
Φ → Φ − fi · ri. We define the response function R as

Riαjβðt; sÞ≡ δhriαðtÞi
δfjβðsÞ

����
f¼0

: ð13Þ

Following standard procedures [50], we can use the
dynamic action formalism and the fact that δP ¼ −δS:P
to rewrite the response as

Riαjβðt; sÞ ¼ −
�
riαðtÞ

δS
δfjβðsÞ

����
f¼0

	
: ð14Þ

The perturbed dynamics of the AOUPs is readily given by
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τ _pi ¼−pi− ð1þ τpk ·∇kÞ∇iΦþ fiþ τ_fi−
ffiffiffiffiffiffi
2T

p
ηi; ð15Þ

so that the dynamical action S becomes

S ¼ 1

4T

Z
t

0

du

�

1þ τ

d
du

�
ðpi þ∇iΦ − fiÞ

�
2

: ð16Þ

The response function is then given by

Riαjβðt; sÞ ¼


1 − τ2

d2

dt2

��
−
1

T
d
dt

hriαðtÞrjβðsÞi

þ 1

2T
ðhriαðtÞ∇jβΦjt¼si − hriαðsÞ∇jβΦjtiÞ

�
:

ð17Þ

In the effective equilibrium regime, the vanishing entropy
production tells us that the dynamics is symmetric under
time reversal so that the second line of Eq. (17) vanishes
and the response function finally reads

Riαjβðt; sÞ ¼ −
1

T
d
dt
hriαðtÞrjβðsÞ þ τ2piαðtÞpjβðsÞi: ð18Þ

We have thus derived a generalized FDT, which holds in the
small τ limit where the AOUPs are effectively in equilib-
rium, though not with respect to the Boltzmann measure
PB. This explains the atypical form of the correlation
function entering, which involves the position autocorre-
lation function, as in thermal equilibrium, along with the
velocity autocorrelation function. Note that, as in equilib-
rium, this FDT is completely independent of the interaction
potential Φ, so that it should be measurable without
knowledge of the intimate details of particle interactions.
To test whether a finite τ regime exists where our

generalized FDT can indeed be measured, we consider a
perturbation Φ → Φ − fεixi, where εi is a random variable
equal to �1 with equal probability [49]. We measure the
susceptibility χðtÞ≡ R

t
0 dsRixixðt; sÞ=N in simulations of

AOUPs interacting with the repulsive potential (2). Our
modified FDT predicts that

NTχðtÞ ¼ h½xið0Þ − xiðtÞ�xiðtÞi þ τ2h½_xið0Þ − _xiðtÞ�_xiðtÞi;
ð19Þ

which is shown to be valid at small τ in Fig. 2(a). (See [51]
for simulation details).
Note that an entropy production rate σ of order τ2 means

that trajectories of length ∝ τ−2 lead to an overall entropy
production of order one. Since we are working in the small-
τ-but-finite-D limit, diffusive equilibration times l2=D
remain of order one, which legitimates the claim of an
effective equilibrium regime. Nevertheless, we expect our
FDT to break down in the long time limit. The connection
between σ and the breakdown of the FDT can be

rationalized through a simple generalization of the
Harada-Sasa relation [53,54]

σ ¼ 1

T

Z
dω
2π

ω

μ
½2TR00

iαiαðωÞ þ ωCðωÞKðωÞ�; ð20Þ

where R00ðωÞ is the imaginary part of the response in
Fourier space, KðωÞ≡ 1þ ðωτÞ2 is the inverse of the noise
correlator ΓðtÞ in Fourier space and CðtÞ≡ hriðtÞ · rið0Þi.
Interestingly, the measurement of σ through (20) no longer
requires the knowledge of the interaction potential Φ, at
variance with the use of Eq. (11).
To get more physical insight into our effective equilib-

rium regime and its breakdown as τ increases, let us now
discuss the energetics of AOUPs. Active matter is tradi-
tionally regarded as a nonequilibrium medium because
injection and dissipation of energy are uncorrelated. Indeed
the former stems from the conversion of some form of
stored energy while the latter results from the friction with
the surrounding medium. Consequently, fluctuations and
dissipations are not constrained by any form of Stokes-
Einstein relations. For driven Langevin processes, the
nonequilibrium nature of the dynamics can be measured
as a mean heat transfer between particles and thermostat
[55,56]. This leads to a standard definition of dissipation J
as the imbalance between the power injected by the thermal
noise and the one dissipated via the drag force. This
definition furthermore provides an energetic interpretation
of the entropy production since J ¼ Tσ [56]. A naive
generalization of this reasoning to AOUPs would lead to
the definition of dissipation through

J ¼ μ−1hpi · ðpi − viÞi: ð21Þ

It is however straightforward to see that J ¼
hpi ·∇iΦi ¼ dhΦi=dt, which necessarily vanishes in
steady state.

FIG. 2. Parametric plot between the susceptibility χðtÞ
and the correlation function CeffðtÞ ¼ hxiðtÞ½xiðtÞ − xið0Þ� þ
τ2 _xiðtÞ½_xiðtÞ − _xið0Þ�i for N AOUPs interacting via the potential
(2). The particles experience a stiff harmonic potential when
they try to exit a box of linear size L. Parameters: L ¼ 30,
N ¼ 720, τ ¼ 0.01, A ¼ 20. Blue, red, and cyan dots correspond
to T ¼ 2, 1, 0.25 and the solid line correspond to the theoretical
prediction (19).
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The breakdown of detailed balance for AOUPs is indeed
not linked to a mean heat flux extracted from an equili-
brated bath but from the apparent lack of generalized FDT
between damping and fluctuations in (1). To get more
insight on the entropy production rate σ, we remark that this
dynamics is equivalent to

K � _ri ¼ ξi − μK �∇iΦ; ð22Þ

where KðtÞ ¼ ½1 − τ2ðd=dtÞ2�δðtÞ, � denotes time convo-
lution, and we have introduced the noise term ξi ≡ K � vi.
The lhs of (22) corresponds to the damping of a viscoelastic
fluid with memory kernel K. The first term on the rhs is a
fluctuating force whose variance is

hξiαðtÞξjβð0Þi ¼ δijδαβKðtÞ; ð23Þ

since by definition ðK � ΓÞðtÞ ¼ δðtÞ. The damping and
fluctuating forces appearing in (22) thus satisfy a gener-
alized Stokes-Einstein relation [36]. They correspond to the
connection of particles with an equilibrated viscoelastic
bath, for which the standard definition of the dissipation
applies

J ¼ μ−1hpi · ðK � pi − ξiÞi: ð24Þ

From there, simple algebra shows that J ¼ Tσ, which
yields a physical interpretation to σ as the dissipation in an
equilibrated bath for the dynamics (22).
Interestingly, this shows that the breakdown of detailed

balance in AOUPs can be seen equivalently as resulting
from a lack of generalized Stokes-Einstein relation between
damping and fluctuations or from the fact that K �∇iΦ is
not a conservative force. In this second interpretation, the
entropy production rate now has a standard energetic
interpretation. The existence of an effective equilibrium
regime for small τ is then due to the fact that K �∇iΦ
behaves as a conservative force ∇i

~Φ in this limit. The
dynamics (22) with K �∇iΦ replaced by ∇i

~Φ can be
regarded as a dynamical equilibrium approximation of
AOUPs; one indeed checks, for instance, that h ~Φi−hK �
Φi¼Oðτ2Þ or that our generalized FDT corresponds to
perturbing this equilibrium dynamics as ~Φ → ~Φ − ri·
ðK � fiÞ.
In this Letter, we have thus shown that, as their

persistence time increases, active Ornstein-Uhlenbeck
particles do not immediately leave the realm of
equilibrium physics. At short persistent time, they behave
as an equilibrated viscoelastic medium with effective
Boltzmann weight P ∝ expð− ~Φ=TÞ which differs from
the thermal equilibrium PB ∝ expð−Φ=TÞ. In this regime,
the fact that repulsive forces lead to effective attractive
interactions can directly be read in ~Φ. Beyond this static
result, the existence of an effective equilibrium regime

enforces a generalized fluctuation dissipation theorem, akin
to its thermal counterpart though different correlators are
involved. The breakdown of this FDT for larger persistence
times can be linked to a nonzero entropy production rate
whose expression we have computed analytically. Last, we
have shown how to extend the notion of dissipation to
understand the breakdown of detailed balance in AOUPs.
Most of the results presented in this Letter have been

derived for the particular choice of noise correlator
ΓðtÞ ¼ De−jtj=τ=τ. Many of our results, such as Eq. (20)
or the discussion on dissipation, however extends to more
general correlators. Furthermore, it has recently been
shown that static approximations derived for the steady
state of AOUPs capture very well the physics of ABPs [9].
It would thus be very interesting to know whether our
effective equilibrium regime also extends to this system.
More generally, our study suggests that when systems are
driven out of thermal equilibrium by the conversion of
some form of stored energy, an effective equilibrium
regime may remain when the drive is moderate. This
would be a first step towards a thermodynamics of active
matter.
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NUMERICAL SIMULATIONS

We use Euler time-stepping to simulate the dynamics of
AOUPs:

ṙi = −µ∇iΦ + vi; τ v̇i = −vi +
√

2Dηi (1)

To observe the MIPS reported in Fig. 1 of the main text, we
use periodic boundary conditions and the repulsive potential
given by Eq.(2) of the main text. The figure is obtained by
starting from a random homogenous configuration, integrat-
ing the dynamics (1) with a time-step dt = 10−3 and taking a
snapshot of the particle positions after a time t = 104.

To test the validity of our modified FDT, we consider
AOUPs in R2, confined by a harmonic potential

VW (x, y) =
λ

2
θ(x− L)(x− L)2 +

λ

2
θ(−x)x2

+
λ

2
θ(−y)y2 +

λ

2
θ(y − L)(y − L)2,

(2)

where θ(u) is the Heaviside function. In the simulations re-
ported on Fig. 2 of the main text, we use λ = 10. We integrate
the dynamics of AOUPs using dt = 5. 10−4. We first let the
system relax to its steady-state by simulating its dynamics for
a time 50.

To measure the correlation function Ceff(t), we choose a
given value of t0 and store xi(t0) and ẋi(t0). We then com-
pute [xi(t0) − xi(t0 + t)]xi(t0 + t) and [ẋi(t0) − ẋi(t0 +
t)]ẋi(t0 + t) for t ∈ [0, 2]. We finally average over 20 000
values of t0 to obtain the correlation function plotted in Fig. 2
of the main text.

To measure the susceptibility χ(t), we create a copy of the
system at a given time t0. This copy evolves with a perturbed
dynamics in which Φ → Φ − fεixi where the εi are chosen
at random in {−1, 1}. The original system evolves with the
unperturbed dynamics and we use the same noise realisations
ηi for the two systems [1]. We then deduce the susceptibility
as

χ(t) =
∑

i

εi
xc
i(t+ t0)− xi(t+ t0)

f
. (3)

for t ∈ [0, 2], where xc
i are the abscissa of the perturbed sys-

tem. We finally average over 20 000 values of t0 to obtain
χ(t).

[1] D. Villamaina, A. Puglisi, and A. Vulpiani, J. Stat. Mech. 2008,
L10001 (2008).
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7.4 Collective modes

To gain insight into the collective modes of the interacting self-propelled particles,
we investigate the dynamics of the densities of position and velocity. They are
fluctuating quantities, respectively denoted by ρ and g, and defined as

ρ(r, t) =
N∑
i=1

δ [r− ri(t)] , gα(r, t) =
N∑
i=1

piαδ [r− ri(t)] . (7.31)

In the case of Brownian particles with pair-wise interactions, it has been shown
that an exact closed dynamics could be obtained for the position density, referred
to as the Dean-Kawasaki equation [186, 187]. It is written as a multiplicative
Langevin equation with a collective mobility depending on the density. Such dy-
namics are consistent with the definition of a free-energy density functional split
into an entropic and interaction parts. Concerning inertial Brownian particles, no
closed form can be obtained for the fluctuating densities of position and velocity.
Several closure have been proposed, some of them on the basis of a local steady
state assumption [188–191]. A recent attempt has been made to close the dynam-
ics by only relying on a discernibility condition: no particles can share the same
position at the same time [192]. All these closures lead to a coupled dynamics for
ρ and g, which we refer to as the fluctuating hydrodynamics.

Fluctuating hydrodynamics

We first derive the set of equations ruling the coupled dynamics of ρ and g.
The time derivative of the position density reads

∂tρ(r, t) = −∂α
N∑
i=1

ṙiαδ [r− ri(t)] = −∂αgα(r, t). (7.32)

This is the conservation law for the number of particles. The time derivative of
the velocity density is given by

∂tgα(r, t) = −∂β
N∑
i=1

piαpiβδ [r− ri(t)] +
N∑
i=1

ṗiαδ [r− ri(t)] . (7.33)

To proceed further, we assume that the particle interact through pair-wise inter-
actions only:

Φ = 1
2

N∑
{i,j}=1

V (ri − rj). (7.34)
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When substituting the microscopic dynamics (7.4) in the expression for the time
derivative of g, a term of the following form appears:

N∑
{i,j}=1

pjβ∂iα∂jβΦδ [r− ri(t)] =
N∑

{i,j,k}=1
pjβ∂iα∂jβV (ri − rk)δ [r− ri(t)]

=
N∑

{i,k}=1
(piβ∂iβ + pkβ∂kβ) ∂iαV (ri − rk)δ [r− ri(t)]

=
[
gβ∂

2
αβ (V∗ρ)− ρ∂2

αβ (V∗gβ)
]

(r, t).
(7.35)

Following standard procedures [187], the dynamic equation for the density of ve-
locity follows as

τ∂tgα + ∂βκαβ = −gα − τ
[
gβ∂

2
αβ (V∗ρ) + ρ∂2

αβ (V∗gβ)
]
− ρ∂α (V∗ρ) + (2Tρ)1/2 Λα,

(7.36)
where ∗ now denotes a convolution in space. The noise term Λα is Gaussian with
correlations 〈Λα(r, t)Λβ (x, s)〉 = δαβδ(t− s)δ(r− x), and we have introduced the
fluctuating density of kinetic-like energy κ defined as

καβ(r, t) = τ
N∑
i=1

piαpiβδ [r− ri(t)] . (7.37)

It can be also written in terms of the fluctuating density of position and velocity
Ψ(r,p, t) = ∑

i δ [r− ri(t)] δ [p− pi(t)] as καβ(r, t) = τ
∫
pαpβΨ(r,p, t)dp. To

close the dynamical equations, we propose an estimation for the density of kinetic-
like energy based on a local steady state approximation. Following [177], we assume
that Ψ can be approximated by a Gaussian distribution, whose variance is affected
by the interactions:

Ψlss(p|ρ,g) ∼ ρ exp

− τ

2T
[
δαβ + τ∂2

αβ (V∗ρ)
] (

p− g
ρ

)
α

(
p− g

ρ

)
β

 , (7.38)

yielding
καβ = τ

gαgβ
ρ

+ Tρ
[
δαβ + τ∂2

αβ (V∗ρ)
]−1

. (7.39)

As a result, the fluctuating hydrodynamics reads

τ

[
∂tgα + ∂β

(
gαgβ
ρ

)]
=− geffα − ρ∂α (V∗ρ) + (2Tρ)1/2 Λα

− T∂β
{
ρ
[
δαβ + τ∂2

αβ (V∗ρ)
]−1

}
,

(7.40)
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where the effective damping term geffα is given by

geffα = gα + τ
[
gβ∂

2
αβ (V∗ρ)− ρ∂2

αβ (V∗gβ)
]
. (7.41)

Concerning inertial Brownian particles, a similar closure can be used: the local
steady state approximation amounts to considering a form similar to the Maxwell-
Boltzmann distribution for Ψlss. As a result, the damping term reduces to gα, and
he last term in Eq. (7.40), which controls the diffusion of the density, is simply given
by −T∂αρ [191]. We detail below the practical consequences of these differences.

To investigate the propagation of density waves in the fluid, we consider a
perturbation around the homogeneous steady position density as ρ(r, t) = ρ0 +
δρ(r, t), and gα(r, t) = δgα(r, t). The linearized dynamics for the velocity density
reads

τ∂tδgα =− T∂α
[
δρ+ τρ0∂

2
ββ (V∗δρ)

]
− δgα + τρ0∂

2
αβ (V∗δgβ)− ρ0∂α (V∗δρ)

+ (2Tρ0)1/2 Λα.
(7.42)

By using the conservation law ∂tδρ = −∂αδgα, we obtain a closed equation for the
linearized position density. The time evolution of the mode k of density, defined
as δρk(t) =

∫
eikαrαδρ(r, t)dr, is given by

τ∂2
ttδρk =−

(
1 + τρ0k

2
αVk

)
∂tδρk − k2

α

[
ρ0Vk + T

(
1 + τρ0k

2
βVk

)]
δρk

+ i (2Tρ0)1/2 kαΛα
k .

(7.43)

To shed light on the equilibrium nature of this dynamics, we write it as

∂tδρk(t) = −k2
α

[
ρ0Vk + T

(
1 + τρ0k

2
βVk

)] ∫ t

0
Kk(t−s)δρk(s)ds+i (2Tρ0)1/2 kαζ

α
k (t),

(7.44)
where the memory kernel Kk is given by

Kk(t) = 1
τ
e−t(1+τρ0k2

αVk)/τ , (7.45)

and the noise term ζαk is Gaussian with correlations 〈ζαk (t)ζβq (s)〉 = (2π)dδαβδ(k +
q)Kk (|t− s|). This relation is the same as the one enforced by the FDT, as dis-
cussed in Chapter 1, thus showing that the linearized dynamics is in equilibrium.
Yet, the linearized dynamics is different from the one of inertial Brownian par-
ticles. First, the factor multiplying the kernel in Eq. (7.44) now depends on the
persistence time, which can be viewed as a modification of the interactions due to
the self-propulsion. Second, the correlation time of the kernel is renormalized by
the interactions for self-propelled particles, which is the main qualitative differ-
ence with respect to inertial Brownian particles. Formally, it stems from the fact
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that the damping term in the fluctuating hydrodynamics (7.40) depends on these
interactions. We consider a density wave of the form δρ(r, t) = εei(qαrα+ωt), where
|q| = k + iλ−1, and the amplitude ε is small compared with the bulk density ρ0.
The speed of density waves is given by c = ω/k, and λ is the attenuation length.
Substituting this expression in Eq. (7.43), and equating real and imaginary parts,
we obtain

c2 = 1
τ

[
ρ0Vk + T

(
1 + τρ0k

2Vk
)]
, λ = 2ω

k

τ

1 + τρ0k2Vk
, (7.46)

where we have assumed kλ � 1. Comparing with the case of inertial Brownian
particles, the modification of the interactions only affect the wave speed, whereas
the renormalization of correlation time has only an effect on the attenuation length.
The speed of sound corresponds to the long wavelength limit: c2 = τ−1 (ρ0V0 + T ),
and it is the same as for inertial Brownian particles [188].

Dean-Kawasaki equation
We want now to obtain a closed dynamics for the position density. To this aim,

we regard the velocity density as a fast variable which we eliminate adiabatically in
the limit of small persistence. We then deduce the corresponding Dean-Kawasaki
equation at first order in τ . Introducing a collective drift velocity να and a collective
diffusivity matrix Dαβ as

να = −∂β (V∗ρ)
[
δαβ − τ∂2

αβ (V∗ρ)
]
− τ∂2

αβ [V∗ρ∂β (V∗ρ)] ,

Dαβ = T
[
δαβ − 2τ∂2

αβ (V∗ρ)
]
,

(7.47)

we demonstrate in Appendix B that the dynamics for ρ can be written as

∂tρ = ∂α (−ρνα + Dαβ∂βρ+ Γα) . (7.48)

The noise term Γα is Gaussian with correlations

〈Γα(r, t)Γβ(x, s)〉 =2δ(t− s) (Dαβρ) (r, t)δ(r− x)
+ 4Tτδ(t− s)ρ(r, t)ρ(x, s)∂2

rαrβ
V (r− x). (7.49)

Comparing with the coarse grained dynamics for the position density of ABPs
and RTPs, the main qualitative difference is that the correlations of the noise
term now contains a non-local contribution [134, 140]. In the case of ABPs, the
coarse graining procedures are based in a expansion in terms of the moments
and the gradients of the full distribution of position and self-propulsion angular
direction [131, 157, 193]. A major consequence of the unusual noise correlations
for the collective dynamics of persistent self-propelled particles is that one can not
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directly identify a free-energy density functional from the deterministic part of the
Dean-Kawasaki equation. Yet, it is possible to deduce the form of the free-energy
at the level of the functional Fokker-Planck equation, as discussed below.

Recent attempts have strived to infer the expression of the free-energy den-
sity functional from the many-body stationary distribution [160, 194, 195]. They
consider the distribution (7.7) obtained from the two approximate microscopic dy-
namics, which coincides with our prediction at first order in the persistence time,
as a starting point. Yet, these approaches are at best limited to the simple case of
two interacting particles, the main difficulty lying in the analytic treatment of the
determinant appearing in the distribution. To go beyond these studies, we propose
an explicit expression of the free-energy at the first order in the persistence time
inspired by the corresponding many-body distribution (7.8):

F =T
∫
ρ (ln ρ− 1) dr + 1

2

∫
ρ(r)ρ(x)

(
1− 2Tτ∂2

rαrα

)
V (r− x)drdx

+ τ

2

∫
ρ(r)ρ(x)ρ(y)∂rαV (r− x)∂rαV (r− y)drdxdy.

(7.50)

The first term corresponds to the entropic part, which is already present in the
absence of interactions. We want to show that such a specific form is consistent
with the dynamic (7.48) for the position density. The functional Fokker-Planck
equation for the distribution of density P ([ρ] , t) associated with this dynamics
reads

∂tP =
∫ δ

δρ

{
∂α

[
−ρνα + Dαβ

(
∂βρ+ ρ∂β

δ

δρ

)]
P

}
dr

− 2Tτ
∫ δ

δρ(r)

{
∂rα

[
ρ(r)ρ(x)∂2

rαxβ
V (r− x)

]
∂xβ

δP

δρ(x)

}
drdx.

(7.51)

To demonstrate that PS ∼ e−F/T is a stationary solution at first order in the
persistence time, it is sufficient to show that the corresponding steady probability
current vanishes at this order. We split the steady current into two contributions:
Jα = J (a)

α + J (b)
α , such as

J (a)
α (r) =

[
ρνα −Dαβ

(
∂βρ+ ρ∂β

δ

δρ

)]
(r)PS [ρ(r)] ,

J (b)
α (r) = 2Tτρ(r)∂rα

∫
ρ(x)∂xβV (r− x)∂xβ

δPS

δρ(x)dx.
(7.52)

From the expression of the free-energy in Eq. (7.50), we deduce

−T δ ln PS

δρ
= T ln ρ+

(
1− 2Tτ∂2

αα

)
(V∗ρ) + τ

2 (V∗ρ)2− τ∂α [V∗ρ∂α (V∗ρ)] , (7.53)
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yielding

−ρDαβ∂β
δ ln PS

δρ
=Dαβ∂βρ+ ρ∂α

(
1− 2Tτ∂2

ββ

)
(V∗ρ)− τρ∂β (V∗ρ) ∂2

αβ (V∗ρ)

− τρ∂2
αβ [V∗ρ∂α (V∗ρ)] +O

(
τ 2
)
.

(7.54)
The current J (a)

α follows as

J (a)
α = −2τρPS

{
T∂3

αββ (V∗ρ) + ∂2
αβ [V∗ρ∂β (V∗ρ)]

}
+O

(
τ 2
)
. (7.55)

To obtain the current J (b)
α , we note that

T
∫

x
ρ(x)∂xβV (r− x)∂xβ

δ ln PS

δρ(x)

= −
∫ [

T∂xβρ+ ρ∂xβ (V∗ρ)
]

(x)∂xβV (r− x)dx +O(τ)

= T∂2
ββ (V∗ρ) (r) + ∂β [V∗ρ∂β (V∗ρ)] (r) +O(τ),

(7.56)
where we have integrated by part the first term to get the second line. We directly
deduce J (b)

α = −J (a)
α . As a consequence, the free-energy (7.50) can be regarded

as a sound basis to develop a density dynamic functional theory for the persis-
tent self-propelled particles. In particular, it could provide a better insight in to
the phase separation observed numerically, as reported in paper F. Following this
route, the main difficulty would rely in developing an appropriate treatment of the
three-body interactions arising from the self-propulsion.

Future directions
Rheological properties of a bath made of interacting Brownian particles have

been recently investigated, both in the overdamped and underdamped cases [191,
196]. For inertial Brownian particles, the existence of a shear thickening regime
controlled by the inertial time has emerged. Since self-propelled particles also ex-
hibit inertia-like effects, it would be interesting to determine whether such a shear
thickening also exists, even in the overdamped regime. From a broader perspective,
these studies offer an explicit form of the Langevin dynamics of a passive tracer
immersed in the bath. The noise and damping terms hold the signature of the
interactions with the constituents of the bath. It would be interesting to extend
this approach to the case of a bath made of persistent self-propelled particles. In
particular, one would expect that the equilibrium relation between the noise cor-
relations and the damping kernel would no longer be valid. As a result, the usual
FDT would no longer hold. Predicting the new relation between response and cor-
relations could provide an explicit way to access the microscopic nonequilibrium
features of the bath from the dynamics of a passive tracer.
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Main results and outlook

Present day imaging techniques allow for particle tracking in living cells with un-
precedented statistics. They can be coupled to active microrheology experiments
to measure the response in such systems. Accessing the characteristics of the mo-
tion, either free or driven, is exploited in a variety of experimental living media,
ranging from isolated cells to cell aggregates. While the experimental data are
now of very high statistical quality and abundant, the original motivation, namely
quantitatively understanding the role of active processes in shaping fluctuations
in these living media, has remained an elusive goal. To address the frustrating
contrast, to our taste, between experimental progress and physical understanding
of the intracellular environment, we have proposed in Chapter 3 a minimal phe-
nomenological model for the dynamics of tracers embedded in living cells. It is
based on a confining potential, describing the interaction with the surrounding
cytoskeletal network, which undergoes random hops as a result of the intracellu-
lar activity. Our modeling has successfully been tested against a series of data
extracted from three different living systems.

First, we have quantified an active temperature inside living melanoma cells
which controls both the statistics of the tracers at large times and the ampli-
tude of the fluctuations powered by the nonequilibrium processes. We have shown
that it is smaller than the bath temperature by three orders of magnitude, which
does not contradict the major role of active fluctuations in large scale intracellu-
lar transport within our phenomenological picture (Chapter 4). Second, we have
investigated the fluctuations in living mouse oocytes as probed by vesicles already
present in the cytoplasm. We have generalized our model to account for a more
complex rheology. We have estimated force and time scales associated with the
active fluctuations which are comparable with the one reported from single mo-
tor experiments. Moreover, we have shown that the transduction of energy from
the cytoskeletal remodeling to the the tracer dynamics operates with a very low
efficiency (Chapter 5). Third, we have demonstrated that our picture can also
be regarded as a fruitful approach to describe the dynamics of dense multicellular
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systems. By analyzing the fluctuations of tricellular junctions in epithelial tissues,
we have established a correlation between the hierarchy in the molecular path-
way regulating motor activity and the features of nonequilibrium fluctuations at
a mesoscopic scale (Chapter 6).

Eventually, we have investigated in Chapter 7 the nonequilibrium properties
of interacting self-propelled systems. Over the past decades, a large number of
studies have strived to determine to which extent such systems differ from equi-
librium ones, showing that intuition gained from equilibrium can still be useful in
some cases. Inspired by existing minimal models, we have focused on a specific
dynamics for which the self-propulsion stems from persistent fluctuations. First,
we have used a systematic scheme to determine perturbatively the steady state.
Second, we have quantified the breakdown of the time reversal, as the hallmark
of genuine nonequilibrium. It has led us to reveal the existence of an effective
equilibrium regime distinct from thermal equilibrium. Our insight into this regime
is based on the analysis of the fluctuation and response. Last, we have derived the
collective modes of the dynamics using a coarse graining procedure.

Whether the protocols that we have offered in paper A can be used either in
living cells or reconstituted in vitro systems is an open question. While we have
built our protocols on the basis of existing and available microrheology techniques,
the implementation of these within an actual experimental system still remains a
challenge. From a general standpoint, we believe that the ability to extract work
from a single source of fluctuations, provided that its statistics is non-Gaussian,
can be regarded as a stimulating perspective for future experimental realizations.
It would stand out as a decisive asset with respect to equilibrium, with a view to
crafting active materials with unprecedented properties.

The canonical dynamics of active matter comprise fluctuations which are non-
Gaussian with temporal correlations. We have investigated in Chapter 7 such
dynamics when fluctuations are Gaussian with temporal correlations. The natural
complement of this approach consists in exploring whether the active phenomenol-
ogy is maintained when considering non-Gaussian fluctuations without any time
correlations. Recent studies have shown that non-Gaussian fluctuations are of
paramount importance when the dissipation and injection of energy are mediated
by two different heat baths [101, 197]. They have also shown the possibility to infer
the statistics of a non-Gaussian bath from the dynamics of a passive tracer [198].
Moreover, the collective modes of the active particles could be investigated by
extending standard coarse graining procedures to non-Gaussian fluctuations [186,
187, 199].

Another broader research axis that could be explored is to derive from a first
principle standpoint the emergence of an active thermostat, that is a heat bath
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which does not fulfil the common equilibrium requirements. Systematic projection
methods developed by Zwanzig and Mori have been successful in describing the
relaxation in an equilibrium bath [22]. An interesting route would be to extend
these methods for a bath made of active particles. Starting from the microscopic
dynamics of the individual components, one could derive an exact dynamics for
the tracer containing a damping force and a fluctuating term. This is motivated
by several experimental studies of tracer dynamics in suspensions of bacteria and
swimming microrganisms [60, 200–202].
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Appendix A

Persistent self-propelled particles:
approximate dynamics

We present in this Appendix two approximate forms of the dynamics of interact-
ing persistent self-propelled particles. They are inspired by approximation schemes
which were originally proposed for non-interacting particles: the unified colored-
noise approximation [165, 166], and the Fox theory [167, 168].

Unified colored-noise approximation
We derive the stationary distribution of the unified colored-noise approximation

(UCNA). To this aim, we turn the multiplicative Langevin equation, written with
the Stratonovich convention in Eq. (7.5), into an additive one by introducing the
following change of variables:

qiα =
∫
Miα,jβdrjβ, (A.1)

so that the Jacobian between qi and ri is given by |detM|. The corresponding
Langevin equation reads

q̇iα = − ∂Φ
∂riα

+ (2T )1/2ξiα. (A.2)

It is straightforward to write the corresponding Fokker-Planck equation, from
which we deduce the stationary distribution as

PS({qi}) ∼ exp
(
− 1
T

∫ ∂Φ
∂riα

dqiα
)
, (A.3)
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leading to

PS({ri}) ∼ exp
(
− 1
T

∫ ∂Φ
∂riα

Miα,jβdrjβ
)
|detM| . (A.4)

Using Miα,jβ = δijδαβ + τ∂2
iα,jβΦ, the explicit expression of the stationary distri-

bution (7.7) follows directly.
The dynamics for the unified colored-noise approximation (UCNA) is written

in the Itô convention as:

ṙiα = M−1
iα,jβ

[
−∂jβΦ + (2T )1/2ξjβ

]
+ TM−1

jβ,kγ∂jβM−1
iα,kγ. (A.5)

We use the dynamics in the Itô convention to derive the corresponding dynamic
action, since the Jacobian between realizations of the noise terms and the particle
trajectories does not give any contribution in this convention [203, 204]:

A = 1
4T

∫ t

0
M2

iα,jβ

(
ṙiα + M−1

iα,kγ∂kγΦ− TM−1
lλ,kγ∂lλM−1

iα,kγ

)
×
(
ṙjβ + M−1

jβ,kγ∂kγΦ− TM−1
lλ,kγ∂lλM−1

jβ,kγ

)
du.

(A.6)

To obtain the response for UCNA, we start from the following perturbed dynamics:

ṙiα = M−1
iα,jβ

[
−∂jβΦ + fjβ + (2T )1/2ξjβ

]
+ TM−1

jβ,kγ∂jβM−1
iα,kγ. (A.7)

The variation of the weight for a given time realization of the dynamics induced
by the perturbation can be written as δP = −P .δA, so that the response is be
expressed in terms of the variation of the dynamic action as

Riα,jβ(t) = −
〈
riα(t) δA

δfjβ(0)

∣∣∣∣∣
f=0

〉
. (A.8)

It follows that we only need to compute the dynamic action at linear order in the
perturbation to determine the response:

δA = − 1
2T

∫ t

0
M2

iα,jβM−1
jβ,mµfmµ

(
ṙiα + M−1

iα,kγ∂kγΦ− TM−1
lλ,kγ∂lλM−1

iα,kγ

)
du+O

(
f 2
)

= − 1
2T

∫ t

0
fmµ

(
Miα,mµṙiα + ∂mµΦ− TMiα,mµM−1

lλ,kγ∂lλM−1
iα,kγ

)
du+O

(
f 2
)
.

(A.9)
The response follows as

Riα,jβ(t) = 1
2T

〈
riα(t)

(
Mjβ,mµṙmµ + ∂jβΦ− TMjβ,mµM−1

lλ,kγ∂lλM−1
mµ,kγ

)
(0)
〉
.

(A.10)
To express the response in terms of the time derivative of a correlation function,
we consider the time antisymmetric form of the response R(t)−R(−t). It contains



169

time antisymmetric correlation functions. The dynamics is invariant under a time
reversal, since the entropy production rate vanishes. From this property, we deduce〈

riα(t)
(
∂jβΦ−TMjβ,mµM−1

lλ,kγ∂lλM−1
mµ,kγ

)
(0)
〉

=
〈
riα(0)

(
∂jβΦ− TMjβ,mµM−1

lλ,kγ∂lλM−1
mµ,kγ

)
(t)
〉
,

〈riα(t) (Mjβ,mµṙmµ) (0)〉 = −〈riα(0) (Mjβ,mµṙmµ) (t)〉 .
(A.11)

Causality provides that R(−t) = 0 for t > 0, yielding

Riα,jβ(t) = − 1
T

d
dt 〈riα(t) (rjβ + τ∂jβΦ) (0)〉 . (A.12)

This fluctuation-dissipation relation is different from both the FDT and the one
for the original dynamics in the effective equilibrium regime.

Fox theory
Another approximate dynamics can be derived by using functional calculus on

the weight P of a given time realization of the noises. Introducing the kernel K
defined in terms of the self-propulsion correlations as∫

K(t− u) 〈viα(s)vjβ(u)〉 du = δ(t− s)δijδαβ, (A.13)

we write the probability weight P as

P = exp
[
−1

2

∫∫ t

0
K(u− s)viα(u)viα(s)duds

]
. (A.14)

The distribution of position at given t can be expressed in terms of this probability
weight as

P ({ri} , t) =
∫
P

N∏
k=1

δ [rk − qk(t)]Dvk, (A.15)

where the positions qk satisfy the dynamics q̇k = −∇kΦ + vk. It follows that the
time derivative of this distribution reads

∂tP = ∇i ·
{∫
P [∇iΦ− vi]

N∏
k=1

δ [rk − qk(t)]Dvk
}

= ∇i · (P∇iΦ)−∇i ·
{∫
Pvi

N∏
k=1

δ [rk − qk(t)]Dvk
}
.

(A.16)

To proceed further, we note that

viα(t)P = P
∫
δ(t− s)viα(s)ds = −

∫ t

0
〈viα(t)viα(s)〉 δP

δviα(s)ds, (A.17)
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where we have used Eqs. (A.13) and (A.14). It leads to∫
Pviα

N∏
k=1

δ [rk − qk(t)]Dvk

= −
∫ t

0
〈viα(s)viα(t)〉 ds

∫ δP
δviα(s)

N∏
k=1

δ [rk − qk(t)]Dvk

= −∇j ·
{∫ t

0
〈viα(s)viα(t)〉 ds

∫
P
δqj(t)
δviα(s)

N∏
k=1

δ [rk − qk(t)]Dvk
}
,

(A.18)
where we have integrated by parts with respect to viα to get the second line. From
the dynamics q̇i = −∇iΦ + vi, we obtain the following identity

d
dt
δqjβ(t)
δviα(s) = − δqjβ(t)

δviα(s)
∂2Φ

∂qiαqjβ
+ δijδαβδ(t− s). (A.19)

This equation contains a sum which was omitted in [149]. Introducing the Hessian
H with elements Hiα,jβ = ∂2Φ/∂qiαqjβ, the solution can be written for t > s as

δqjβ(t)
δviα(s) =

[
e−
∫ t
s
H(w)dw

]
iα,jβ

. (A.20)

Substituting this result in Eq. (A.18) and using 〈viα(t)viα(s)〉 = T e−|t−s|/τ , we get∫
Pviα

N∏
k=1

δ [rk − qk(t)]Dvk

= T

τ
∂jβ

{∫
P
∫ t

0
e−(t−s)/τ

[
e−
∫ t
s
H(w)dw

]
iα,jβ

ds
N∏
k=1

δ [rk − qk(t)]Dvk
}

= T∂jβ (PDiα,jβ) ,
(A.21)

where we have introduced the diffusion tensor D as

D(t) =
∫ t

0
e−(t−s)/τe−

∫ t
s
H(w)dwds =

∫ t

0
e−u/τe−

∫ t
t−u H(w)dwdu. (A.22)

This is valid for all values of τ , since we have not used any approximation at this
stage of the derivation. To get rid of the kernel in D, we assume that H varies
slowly in time, in the same spirit as the original Fox theory [167, 168]:∫ t

t−u
H(w)dw ∼ uH(t), (A.23)

yielding
D(t) ∼

∫ t

0
e−u/τe−uH(t)du =

∫ t

0
e−uM(t)/τdu, (A.24)
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where we have used the definition of M as Miα,jβ = δijδαβ + τHiα,jβ. Integrating
and performing the same approximation as Fox gives

D(t) ∼ τM−1(t)
[
1− e−tM(t)/τ

]
∼ τM−1(t). (A.25)

The Fokker-Planck equation (7.9) follows directly.
The corresponding set of Langevin equations is written in the Itô convention

as
ṙiα = −∂iαΦ + (2T )1/2N−1

iα,jβξjβ, (A.26)

where we have introduced the tensor N defined by N2 = M. The Fox theory
amounts to proposing an approximate Markovian form for the noise term, yet the
deterministic part is unchanged. The corresponding dynamic action reads

A = 1
4T

∫ t

0
Miα,jβ (ṙiα + ∂iαΦ) (ṙjβ + ∂jβΦ) du. (A.27)

We consider the perturbed dynamics as

ṙiα = −∂iαΦ + δijfjα + (2T )1/2N−1
iα,jβξjβ. (A.28)

The corresponding dynamic action is written at linear order in the perturbation
as

δA = − 1
2T

∫ t

0
fiαMiα,jβ (ṙjβ + ∂jβΦ) du+O

(
f 2
)
, (A.29)

from which we deduce the response, following the same procedure as the one used
for UCNA, as

Riα,jβ(t) = − 1
T

d
dt 〈riα(t) (rjβ + τ∂jβΦ) (0)〉 . (A.30)

This is the same relation as for the UCNA.
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Appendix B

Persistent self-propelled particles:
Dean-Kawasaki equation

In this Appendix, we present the derivation of the closed dynamics for the position
density of interacting persistent self-propelled particles. It is based on the discerni-
bility condition previsouly introduced in [192]. We assume that two particles can
not share the same position at the same time:

δ [r− ri(t)] δ [r− rj(t)] = δijδ [r− ri(t)] δ [r− rj(t)] . (B.1)

It amounts to considering that one can detect the particle positions with an infinite
precision to be able to distinguish each one of them at every time. This becomes
relevant when considering soft-core interactions between the particles, for which
they can overlap with a finite cost of energy, in contrast with hard-core interactions.
As a consequence, the density of kinetic-like energy is simplified

καβ(r, t) =
N∑

{i,j}=1
piαpjβδ [r− ri(t)] δ [r− rj(t)]

{
N∑
k=1

δ [r− rk(t)]
}−1

=
(
gαgβ
ρ

)
(r, t).

(B.2)

It follows that the dynamics for the velocity density is written as

τ

[
∂tgα + ∂β

(
gαgβ
ρ

)]
=− gα − τ

[
gβ∂

2
αβ (V∗ρ)− ρ∂2

αβ (V∗gβ)
]
− ρ∂α (V∗ρ)

+ (2Tρ)1/2 Λα.

(B.3)
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This result is formally distinct from the fluctuating hydrodynamics (7.40). We
understand this difference as follows. The local steady state approximation used
to obtain Eq. (7.40) can be regarded as a coarse graining of the dynamics. The
fluctuating fields g and ρ appearing in these equations are smoothed functions:
they result from an average over the positions and the velocities of the local mi-
croscopic particles. Consequently, the discernibility condition is no longer valid,
since the details of the particle coordinates are lost by the coarse graining. In
contrast, the densities of position and velocity appearing in Eq. (B.3) still contain
the microscopic information about the self-propelled particles, in which case the
discernibility remains valid.

To obtain a closed dynamics for the position density at first order in the per-
sistence time, we eliminate the velocity density in the small τ regime. First, we
note that the position density can be expressed as

∂tρ(r, t) = −∂α lim
∆t→0

1
∆t

∫ t+∆t

t
gα(r, s)ds. (B.4)

Therefore, we need to evaluate the integral only at first order in ∆t to obtain the
dynamics for ρ. From Eq. (B.3), we split the expression of the velocity density
into four contributions

gα = Υα + Ξα + Πα + Σα, (B.5)
where

Υα(r, t) = −
∫ t

0
χαβ(r, t− s)ρ∂β (V∗ρ) (r, s)ds,

Ξα(r, t) =
∫ t

0
χαβ(r, t− s) (2Tρ)1/2 Λβ(r, s)ds,

Πα(r, t) = −τ
∫ t

0
χαβ(r, t− s)∂γ

(
gβgγ
ρ

)
(r, s)ds,

Σα(r, t) = τ
∫ t

0
χαβ(r, t− s)

[
ρ∂2

βγ (V∗gγ)
]

(r, s)ds.

(B.6)

The response matrix χαβ reads

χαβ(r, t) = 1
τ

[
e−tL(r,t)/τ

]
αβ
, (B.7)

where Lαβ = δαβ + τ∂2
αβ (V∗ρ). In what follows, we use the property∫ t

0
χαβ(r, t− s)Aβ(r, s)ds = Aβ(r, t)

[
δαβ − τ∂2

αβ (V∗ρ)
]

(r, t) +O
(
τ 2
)
. (B.8)

We deduce the contribution from Υα and Ξα as

lim
∆t→0

∫ t+∆t

t
(Υα + Ξα)(r, s)ds

=
[
δαβ − τ∂2

αβ (V∗ρ)
] [
−ρ∂β (V∗ρ) + (2Tρ)1/2 Λβ

]
(r, t) +O

(
τ 2
)
.

(B.9)
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In the limit of small τ , one should recover the Dean-Kawasaki equation for Brow-
nian particles:

gα = −ρ∂α (V∗ρ)− T∂αρ+ (2Tρ)1/2 Λα +O (τ) . (B.10)

The contribution from Σα follows as

lim
∆t→0

∫ t+∆t

t
Σα(r, s)ds

= τρ∂2
αβ

{
V∗
[
−ρ∂β (V∗ρ)− T∂βρ+ (2Tρ)1/2 Λβ

]}
(r, t) +O

(
τ 2
)
.

(B.11)
Following [192], we express the contribution from Πα as
∫ t+∆t

t
Πα(r, s)ds = −τ

∫ t+∆t

t
ds
∫ s

0
χαβ(r, s− u)∂γ

(
ΞβΞγ

ρ

)
(r, u)du+O

(
∆t2

)
.

(B.12)
To compute explicitly this contribution, we need to estimate the following product:

(ΞβΞγ)(r, u) =2T
∫∫ u

w1,w2=0
χβµ(r, u− w1)χγν(r, u− w2)

× ρ1/2(r, w1)ρ1/2(r, w2)dΛµ(r, w1)dΛν(r, w2).
(B.13)

Given that Λα is a Gaussian noise delta correlated in space and time, we use Itô’s
rule to obtain dΛµ(r, w1)dΛν(r, w2) = δµνδ(w1 − w2)dw1δ(r − r). Moreover, the
discernibility condition (B.1) provides the identity δ(r− r)ρ(r, w) = ρ2(r, w). The
product ΞβΞγ follows as

(ΞβΞγ)(r, u) = 2T
∫ u

0
χ2
βγ(r, u− w)ρ2(r, w)dw

= T

τ

[
δβγ − τ∂2

βγ (V∗ρ) (r, u)
]
ρ2(r, u) +O(τ),

(B.14)

yielding

∂γ

(
ΞβΞγ

ρ

)
= T

τ

[
δβγ − τ∂2

βγ (V∗ρ)
]
∂γρ− Tρ∂3

βγγ (V∗ρ) +O(τ). (B.15)

Substituting this expression in Eq. (B.12), we deduce

lim
∆t→0

∫ t+∆t

t
Πα(r, s)ds

=
{
Tτρ∂3

αββ (V∗ρ)− T
[
δαβ − 2τ∂2

αβ (V∗ρ)
]
∂βρ

}
(r, t) +O

(
τ 2
)
.

(B.16)
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Finally, substituting Eqs. (B.9), (B.11) and (B.16) in Eq. (B.4), we obtain the
Dean-Kawasaki equation (7.48) to first order in τ .

The noise term Γα can be split into two contributions: Γα = Γ(0)
α +τΓ(1)

α , where

Γ(0)
α = (2Tρ)1/2 Λα, Γ(1)

α = ρ∂2
αβ

[
V∗(2Tρ)1/2Λβ

]
− (2Tρ)1/2 Λβ∂

2
αβ (V∗ρ) . (B.17)

The noise term is Gaussian, since it is a linear combination of Gaussian variables,
with correlations

〈Γα(r, t)Γβ(x, s)〉 =
〈
Γ(0)
α (r, t)Γ(0)

β (x, s)
〉

+ τ
[〈

Γ(1)
α (r, t)Γ(0)

β (x, s)
〉

+
〈
Γ(0)
α (r, t)Γ(1)

β (x, s)
〉]

+O
(
τ 2
)
.

(B.18)
From the correlations 〈Λα(r, t)Λα(x, s)〉 = δαβδ(t− s)δ(r− x), we deduce〈

Γ(0)
α (r, t)Γ(0)

β (x, s)
〉

=2Tρ(r, t)δαβδ(t− s)δ(r− x),〈
Γ(1)
α (r, t)Γ(0)

β (x, s)
〉

=2Tδ(t− s)ρ(r, t)ρ(x, s)∂2
rαrβ

V (r− x)

− 2Tδ(t− s)
[
ρ∂2

αβ (V∗ρ)
]

(r, t)δ(r− x).

(B.19)

The noise correlations (7.49) follow directly.
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a b s t r a c t

We review equilibrium properties for the dynamics of a single particle evolving in a visco-
elasticmediumunder the effect of hydrodynamic backflowwhich includes addedmass and
Basset force. Arbitrary equilibrium forces acting upon the particle are also included. We
discuss the derivation of the explicit expression for the thermal noise correlation function
that is consistent with the fluctuation–dissipation theorem. We rely on general time-
reversal arguments that apply irrespective of the external potential acting on the particle,
but also allow one to retrieve existing results derived for free particles and particles in a
harmonic trap. Some consequences for the analysis and interpretation of single-particle
tracking experiments are briefly discussed.
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1. Introduction

Single-particle tracking experiments can access dynamical, structural andmicrorheological properties of complex visco-
elasticmedia such as polymer gels or living cells [1,2]. Randomdisplacements of a tracer are often analyzedwith the help of a
generalized Langevin equation which incorporates all relevant interactions of the tracer, e.g., viscous or visco-elastic Stokes
force, inertial and hydrodynamic effects, active pulling bymotor proteins, and eventual optical trapping [3–10]. Since several
different mechanisms interplay in a complex medium, the correct formulation of the underlying phenomenological model
can be sophisticated. For instance, the correlation function of the thermal noise has to be related, at equilibrium, to themem-
ory kernels of the generalized Stokes and Basset forces according to the fluctuation–dissipation theorem. A recent experi-
ment by Kheifets et al. [11] trackingmicrometer-sized glass beads in water or acetone reveals that equipartition is broken in
equilibrium by a contribution involving themass of the displaced fluid. This raises the question of which ingredients relating
to the surrounding fluid will appear in other manifestations of equilibrium, such as the fluctuation–dissipation theorem.

In this paper, we investigate the equilibrium properties of a generalized Langevin equation with hydrodynamic interac-
tions and we provide the correct noise correlation function, consistent with the fluctuation–dissipation theorem. The role
of the acceleration of the displaced fluid is sorted out, thus justifying the assumption made in Ref. [12] and amending that
of Refs. [9,10]. Our analysis goes along the lines of that of Baiesi et al. [13]. Some consequences for the analysis and inter-
pretation of single-particle tracking experiments are briefly discussed.
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2. Model

We are interested in the short time-scale motion of a tracer with mass m the displacement of which takes place in a
complex visco-elastic medium, such as a gel. For simplicity, we restrict here to the one dimensional case, although gener-
alization to two and three dimensions is straightforward. We denote by x(t) the tracer’s position, and we assume the tracer
is subjected to an external force Fext and we further allow ourselves the possibility to apply a small perturbation force fP.
Newton’s equation for the tracer reads

mẍ = FS + FB + Fext + fP + ξ, (1)
where ẍ is the tracer’s acceleration. In Eq. (1), in addition to the deterministic forces Fext and fP, we have included a Gaussian
colored noise ξ(t) accounting for the interaction of the tracer with the heat bath.We have also included a generalized Stokes
force FS, which expresses the viscous friction exerted by the fluid on the tracer. The latter force, when coarse-graining out
the degrees of freedom of the surrounding medium, can be cast in the form [14,15]

FS(t) = −


∞

t0
dt ′γ (t − t ′)ẋ(t ′), (2)

where the memory kernel γ (τ) is causal (i.e., γ (τ) = 0 for τ < 0), and the starting time t0 is typically set either to −∞ or
to 0. A number of experiments [16–19] in living cells or in synthetic polymer solutions point to γ being accurately described
by a power law [4,6], thereby expressing that a hierarchy of time-scales is involved in viscous friction for these complex
media. Much less studied in a visco-elastic medium is the Basset force FB which we have also included in Eq. (1) following
Refs. [9,10]. As much as the usual inertia contribution mẍ, the Basset force is usually negligible at the macroscopic obser-
vation time scales considered in standard tracking experiments, but its effects have been shown to be prominent at short
time-scales in Refs. [20,21,7–10]. This force is related to the inertia of the boundary layer surrounding the tracer. While the
initial derivation for the expression of the Basset force in terms of the tracer’s position dates back to Boussinesq for Newto-
nian fluids, Zwanzig and Bixon [22,23] provided a derivation of that force for a visco-elastic fluid characterized by amemory
kernel γ as in Eq. (2). The generalized Basset force then reads

FB(t) = −
mf

2
ẍ(t) −


∞

t0
dt ′ζB(t − t ′)ẍ(t ′), (3)

where mf is the mass of the fluid displaced by the tracer. The memory kernel ζB is causal as well, and can be argued to be
related to γ in the following fashion:

ζ̂B(ω) = 3


mfγ̂ (ω)

2iω
, ζ̃B(s) = 3


mfγ̃ (s)

2s
(4)

where the hat and the tilde stand for the Fourier and the Laplace transforms, respectively. In order to arrive at Eq. (4), the
argument put forward in Ref. [22] goes as follows: for a Newtonian fluid, one has ζ̂B(ω) = 6πa2


ρfη
iω , where a is the tracer’s

radius. For a visco-elastic medium, the viscosity is to be replaced with its frequency-dependent expression η̂(ω), thus lead-

ing to ζ̂B(ω) = 6πa2


ρfη̂
iω . Finally, with the generalized Stokes law γ̂ = 6πη̂a for spherical tracers, we obtain Eq. (4). Note

that the following derivation does not rely on relation (4) between memory kernels γ (t) and ζB(t), and it is thus valid in a
more general situation.

The question we now ask regards to thermal noise correlations σ(t − t ′) = ⟨ξ(t)ξ(t ′)⟩ that we must impose to ensure
that in the absence of a perturbing force (fP = 0) and for a conservative external force Fext that derives from a potential,
the tracer undergoes equilibrium and reversible dynamics, in agreement with, e.g., the fluctuation–dissipation theorem. In
the absence of the Basset force, this issue has been settled in the seminal paper by Kubo [24] and further discussed in the
nice reviews by Mainardi et al. [25] or by Hänggi [26]. We begin by recalling the expression of the fluctuation–dissipation
theorem.

3. Stating the fluctuation–dissipation theorem

The response of a position-dependent observable A to an infinitesimal external perturbation fP(t ′) is denoted by χ and
it is defined by

χ(t, t ′) =
δ ⟨A(t)⟩
δfP(t ′)


fP=0

. (5)

Equilibrium first requires stationarity, namely time-translation invariance, so that χ(t, t ′) = χ(t − t ′) in the regime of
interest. Causality ensures the response function vanishes if the measurement is performed before the perturbation, when
t ≤ t ′. The fluctuation–dissipation theorem (FDT) states that in equilibrium the response is related to the correlation
between the observable and the perturbation as [27]:

χ(t − t ′) = β
∂


A(t)x(t ′)


∂t ′

Θ(t − t ′), (6)
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whereβ = 1/(kBT ), T is the bath temperature, andΘ denotes the Heaviside function. Stationarity also leads to

A(t)x(t ′)


=

A(t − t ′)x(0)

. The FDT can be written without enforcing explicit causality as

χ(τ) − χ(−τ) = −β
d ⟨x(τ )A(0)⟩

dτ
. (7)

In single-particle tracking experiments the observable A is the tracer’s position x(t) and

A(t)x(t ′)


=


x(t)x(t ′)


= Cx(t, t ′)

is the position auto-correlation function, which, in equilibrium, is a function of t − t ′ only, Cx(t, t ′) = Cx(t − t ′). The FDT in
Eq. (7) has the equivalent Fourier formulation

kBT =
−ωĈx(ω)

2χ̂ ′′(ω)
, (8)

where χ̂ ′′ denotes the imaginary part of the response Fourier transform (andwhere our convention for the Fourier transform
is f̂ (ω) =


∞

−∞
dt e−iωt f (t)). Alternatively, the FDT can be stated in the Laplace domain in terms of the mean square

displacement (MSD)

1x2


(t) = 2(Cx(0) − Cx(t)) as:

kBT =

s

1̃x2


(s)

2χ̃(s)
(9)

where the Laplace transform is defined by f̃ (s) =


∞

0 dt e−st f (t).
In systems with a very small Reynolds number such as living cells, that is when inertial effects are negligible – which

includes the Basset force – the response function is simply related to the Stokes memory kernel in the Laplace domain by
χ̃(s) = 1/(sγ̃ (s)). The FDT is then usually stated in terms of the complex modulus G∗(s) = sη̃(s) as [28–30]:

1̃x2

(s) =

kBT
3πasG∗(s)

. (10)

4. Noise correlations in equilibrium

Our goal is now to explicitly derive the expression of the thermal noise correlations

ξ(t)ξ(t ′)


= σ(t−t ′), as imposed by

the FDT in the presence of inertial effects. By definition, the function σ is even, σ(t) = σ(−t). Here we follow the approach
presented in Refs. [31,32]. Since the thermal noise has Gaussian statistics, the probability weight P associated with a given
realization of the thermal noise is P [ξ ] ∝ e−S[ξ ], where S [ξ ] =

1
2


∞

t0
dt1dt2ξ(t1)Γ (t1 − t2)ξ(t2). The expression of ξ in

this formula is determined by the tracer’s dynamics in Eq. (1), and the symmetric function Γ is related to the thermal noise
correlations by


∞

t0
dt1σ(t − t1)Γ (t1 − t ′) = δ(t − t ′). The application of the external perturbation fP results in a variation

δS of S, so that the response function is expressed as:

χ(t, t ′) = −


A(t)

δS

δfP(t ′)


fP=0


. (11)

Substituting ξ fromEq. (1) intoS [ξ ] and calculating the functional derivative in Eq. (11) yields the expression of the response
function χ = χin + χext + χS + χB, with four contributions:

χin(t, t ′) = m∗


∞

t0
dt1Γ (t1 − t ′) ⟨ẍ(t1)A(t)⟩ , (12a)

χext(t, t ′) = −


∞

t0
dt1Γ (t1 − t ′) ⟨Fext(t1)A(t)⟩ , (12b)

χS(t, t ′) =


∞

t0
dt1dt2Γ (t1 − t ′)γ (t1 − t2) ⟨ẋ(t2)A(t)⟩ , (12c)

χB(t, t ′) =


∞

t0
dt1dt2Γ (t1 − t ′)ζB(t1 − t2) ⟨ẍ(t2)A(t)⟩ , (12d)

wherem∗
= m+mf/2. In order to compare this prediction with the FDT, we focus on the regime where the system reaches

an equilibrium state, namely when the dynamics does no longer depend on initial conditions, by setting t0 → −∞. In this
regime, the correlation functions are time-translational invariant, and the response functions depends only on the time lag
τ = t − t ′. We split the difference χ(τ)−χ(−τ) into four contributions corresponding to the functions defined in Eq. (12).
The first contribution is expressed as:

χin(τ ) − χin(−τ) = m∗


∞

−∞

dt1

Γ (t1 − τ) ⟨ẍ(t1)A(0)⟩ − Γ (t1 + τ) ⟨ẍ(t1)A(0)⟩


. (13)
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We perform the change of variable t1 → −t1 in the second integral. The key trademark of equilibrium that we now make
use of is time reversibility, which implies, ⟨ẍ(t1)A(0)⟩ = ⟨ẍ(−t1)A(t)⟩. Given thatΓ is even, it followsχin(τ ) = χin(−τ), and
we show similarly that χext(τ ) = χext(−τ). We perform the changes of variable t1 → −t1 and t2 → −t2 in the expression
of χS and χB, and given the parity of the observables in the correlation functions of Eqs. (12c) and (12d), we deduce:

χS(τ ) − χS(−τ) =


∞

−∞

dt1dt2Γ (t1 − τ) ⟨ẋ(t2)A(0)⟩ (γ (t1 − t2) + γ (t2 − t1)) , (14a)

χB(τ ) − χB(−τ) =


∞

−∞

dt1dt2Γ (t1 − τ) ⟨ẍ(t2)A(0)⟩ (ζB(t1 − t2) − ζB(t2 − t1)) . (14b)

As a result, we finally obtain the expression of the difference χ(τ) − χ(−τ) in terms of the kernels appearing in the
generalized Stokes force and theBasset force. For an equilibriumprocess, this expression should be identical to the prediction
of the FDT in Eq. (7), which enforces that

β ⟨ẋ(τ )A(0)⟩ =


∞

−∞

dt1dt2Γ (t1 − τ)

(γ (t1 − t2) + γ (t2 − t1)) ⟨ẋ(t2)A(0)⟩

+ (ζB(t1 − t2) − ζB(t2 − t1)) ⟨ẍ(t2)A(0)⟩

. (15)

This relation is independent of the parity of the observable we consider for the response function. In the case where a more
general perturbation force fP(x) = −aP(t)U ′(x(t)) is applied to the tracer, it is also possible to define the response function
with respect to the parameter aP:

χU(t, t ′) =
δ ⟨A(t)⟩
δaP(t ′)


aP=0

. (16)

We then recover the standard FDT (analogous to Eq. (6)):

χU(t − t ′) = β
∂


A(t)U(x(t ′))


∂t ′

Θ(t − t ′). (17)

In the Fourier domain, and since the Fourier transform of thermal correlations is related to Γ̂ as: σ̂ (ω) = 1/Γ̂ (ω), we obtain
from Eq. (15)

σ̂ (ω) = 2kBT

γ̂ ′(ω) − ωζ̂ ′′

B (ω)


, (18)

where γ̂ ′ and ζ̂ ′′

B denote the real part of the γ Fourier transform and the imaginary part of the ζB Fourier transform,
respectively. Hence, we deduce the thermal noise correlations read:

ξ(t)ξ(t ′)

= kBT


γ

t − t ′
 +

dζB
dt

t − t ′
 . (19)

This result can be decoded as an effective visco-elastic memory kernel γ ∗
= γ +dζB/dt , which could have been guessed by

integrating by parts the Basset memory term. In that case however integration by parts involves a ζB(0) term which at best
is not well defined, while our derivation encompasses this problem by using an anti-symmetric function ζB(t) − ζB(−t).
Note that mf does not appear in this expression, so that only the terms with memory kernels in the Basset force and the
generalized Stokes force contribute to the dissipation of the tracer with the heat bath as expressed by the FDT. This is in fully
consistent with the free-particle situation considered by Felderhof [33] (his Eq. (2.10)) or by Indei et al. [8] (their Eqs. (64)
and (65)). In the Laplace domain, the thermal correlation function is expressed as:

ξ̃ (s)ξ̃ (s′)

= kBT


γ̃ (s) + γ̃ (s′)

s + s′
+

sζ̃B(s) + s′ζ̃B(s′)
s + s′


. (20)

The equipartition theorem represents an alternative method to characterize equilibrium properties. It relates the initial
value of the velocity autocorrelation function Cv(t − t ′) =


ẋ(t)ẋ(t ′)


to the bath temperature as: Cv(0) = kBT/m. By using

the FDT prediction in Eq. (9), and given the velocity autocorrelation function is simply related to the MSD in the Laplace
domain as: C̃v(s) =

1
2 s

2

1̃x2


(s), we deduce: C̃v(s) = kBTsG̃(s), where G denotes the ‘‘usual’’ response function [4,6].

Considering the dynamics described by Eq. (1) with an external force Fext = −kx, we compute the response function in the
Laplace domain, and we use Eq. (4) to obtain:

G̃(s) =
1

s2m∗ + 3s3/2

mfγ̃ (s)/2 + sγ̃ (s) + k

. (21)
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From the initial value theorem, we finally deduce:

Cv(0)
kBT

= lim
s→∞

1

m∗ + 3

mfγ̃ (s)/(2s) + γ̃ (s)/s + k/s2

. (22)

As discussed in Section 2, the Laplace transform of the Stokesmemory kernel in the high frequency regime behaves like sα−1,
where α < 2, so that: γ̃ (s)/s−→

s→∞
0. It follows that the initial value of the velocity autocorrelation function


ẋ2


= kBT/m∗ is

different from the ‘‘usual’’ equipartition theorem prediction, as already noticed in Ref. [12]. Earlier works on this subject, like
those of Widom [34] or Case [35] used to determine correlation functions by assuming the ‘‘usual’’ equipartition, leading to
slightly wrong results. Here we show that using the FDT as starting point avoids such issues. We also note that this result
remains the same if we consider a constant value for the viscosity coefficient in the expression of the Basset force memory
kernel. When an arbitrary external force Fext is applied to the tracer, the initial value of the velocity autocorrelation function
satisfies Eq. (22) under the modification k → k(s) = −C̃ext(s)/C̃x(s), where Cext(t) = ⟨x(t)Fext(0)⟩. This roughly means that
in the s → ∞ limit k can be replaced by− ⟨xFext⟩eq /


x2


eq = kBT/


x2


eq. Given the process defined in Eq. (1) has a Gaussian

statistics, an experimental method to verify the validity of this result lies in measuring the stationary distribution of the
tracer’s velocity [11], for which the variance should equal the initial value of the velocity autocorrelation function. For an
overdamped system in the absence of external force, the condition


1x2


(0) = 0 associatedwith the FDTprediction in Eq. (9)

imposes α is positive, meaning the Stokes kernel necessarily diverges in the short time limit for such a system.
In summary, we have revised some equilibrium properties of generalized Langevin equation with hydrodynamic

interactions. Under the fluctuation–dissipation theorem, thememory kernelsγ (t) and ζB(t) of generalized Stokes andBasset
forces have been related to the noise correlation function


ξ(t)ξ(t ′)


according to Eq. (19). The derivation is valid in both

Fourier and Laplace domains. This relation allows one to refine phenomenological models that are used for the analysis and
interpretation of single-particle tracking experiments in complex visco-elastic media, notably in living cells. In particular,
we showed that the noise correlation function in Refs. [9,10] should not contain the term mfs/2 which came from a naive
extension of the fluctuation–dissipation theorem to the Basset force (since this term could alter tracer’s dynamics only at
very short time scales, its presence does not affect the results reported in Refs. [9,10]). Note also that relation (4) between
the memory kernels of the generalized Stokes and Basset forces allows one to reduce the number of model parameters in
Refs. [9,10] yielding potentially more robust fits. Future optical tweezers single-particle tracking experiments at short time
scales can further clarify hydrodynamic interactions between the tracer, the solvent, and semi-flexible polymers such as,
e.g., actin filaments.
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Living cells are activemechanical systems that are able to generate forces. Their structure and shape are primarily
determined by biopolymer filaments and molecular motors that form the cytoskeleton. Active force generation
requires constant consumption of energy to maintain the nonequilibrium activity to drive organization and
transport processes necessary for their function. To understand this activity it is necessary to develop new ap-
proaches to probe the underlying physical processes. Active cell mechanics incorporates active molecular-scale
force generation into the traditional framework of mechanics of materials. This review highlights recent experi-
mental and theoretical developments towards understanding active cell mechanics.We focus primarily on intra-
cellularmechanicalmeasurements and theoretical advances utilizing the Langevin framework. These developing
approaches allowa quantitative understanding of nonequilibriummechanical activity in living cells. This article is
part of a Special Issue entitled: Mechanobiology.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Living cells are complex machines that constantly consume energy
to maintain their spatial and temporal organization [1,2]. This energy
consumption is required to overcome the tendency to maximize entro-
pic disorder, and is used to self-organize the cell. From the statistical
mechanics point of view, a cell represents a system far away from
thermodynamic equilibrium. This non-equilibrium behavior allows
the organization and operation of complex mechanical processes at
themolecular scale. The current interest in buildingnanoscalemachines
can greatly profit from such strategies as typical engineering methods
break down at the small scale where thermal fluctuations dominate
over directed and controlled movement. Furthermore, the study of
working principles used by living cells provides interesting insight on
how active mechanical forces can modify or even control the mechani-
cal properties of a polymer network [3–5]. An interesting example is
provided by strain stiffening [5], where the active contraction of molec-
ular motors can increase the mechanical stiffness of a material by more
than an order of magnitude.

The effect of active forces on self organization and material proper-
ties is a highly active research field [6–10]. Typical experimental
approaches combine active mechanical measurements, with detailed

analysis of the intracellular movement [4,11,131,132,134]. Further-
more, in recent years active gel theories have been successfully applied
to describe and quantify flows and deformation within cells [10,12,13–
16]. These active gel models have been recently reviewed [9,17]. Here
we focus on experimental and theoretical approaches that allow local
measurement and modeling of active systems. We define the term ‘ac-
tivemechanics’ that integrates active components in themechanical de-
scription of a material. A main part of this article describes Langevin-
equation based approaches to derive the experimentally accessible
quantities such as effective energy and force spectra using molecular
properties of theunderlyingprocesses. This approach separates the con-
tributions from thermal fluctuations and active forces to provide a
framework to interpret and analyze activity measurements. Additional-
ly, this approach does not rely on a hydrodynamic analysis as typically
done in active gel theories. These active gel theories are optimal to
describe active behavior on long timescales, where most biological
material is considered fluid. In contrast, both the experimental and
theoretical aspects of this work focus on a description of processes at
intermediate and short timescales, where the viscoelastic material
properties are dominant.

2. Experimental approaches

2.1. Principle of measurement

Advanced methods are used in materials science to determine the
mechanical properties of a material, well known under the keyword
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rheology [18,19]. Rheology exploits the constitutive relation between
stress (force per unit area) and strain (relative deformation) which is
commonly known as Hooke's law, illustrated in Fig. 1a. The simplest
form of this law (F = kx) describes how a force F, applied to an object
with elastic constant k leads to a deformation x. This simplified law
applies for 1D objects such as springs or rubber bands. To capture the
geometric parameters of a 3D object the general form of Hooke's law
σ = E × u is commonly used. Here the stress σ = F/A is defined as the
force F acting on a unit area A of thematerial. The strain u= x/x0 corre-
sponds to the relative deformation (Fig. 1a). Since the force direction
with respect to the surface can be decomposed into normal or parallel
components, the resulting deformation is found to be a tensile or
shear deformation respectively. Depending on the type of deformation
the mechanical properties are described by the Young's modulus E
(normal deformation), the shear modulus G (shear deformation), or
the bulk modulus K (uniform compression), as illustrated in Fig. 1a. In
the case of linear elasticity, these different moduli are simple scalar
numbers, related to each other by the Poisson's ratio v, that quantifies
compressibility [20]. As we describe later, these moduli can become
time, or frequency dependent to describe biological materials that are
typically viscoelastic. In themore complex case of anisotropic materials,
the introduced constitutive equation requires tensors, where the
mechanical modulus becomes a fourth order tensor. In the following
we only consider the case of isotropic material for simplicity, however,
the described reasoning can be directly extended to a tensor notation.

In the context of living cells, the actual mechanical properties
depend on the timescale of force application, and hence are described
within the framework of viscoelastic materials. Here, the mechanical
properties are decomposed into an elastic and a dissipative (viscous)
component, where both may depend on the timescale investigated.
The extreme case of pure elastic or purely viscous material is illustrated
in Fig. 1b. The viscoelastic moduli are not scalars as in the pure elastic
case, but functions of time or frequency. There are twomain experimen-
tal strategies to determine the viscoelastic properties, namely the appli-
cation of a step stress/strain, and the application of periodic stress/
strain. A typical example of the first strategy is a creep experiment,
where a step stress is applied resulting in a deformation of the material
over time. Similarly, stress relaxation experiments can be used to apply
a step deformation while measuring the stress in the system. The corre-
sponding constitutive equation isσ tð Þ ¼ ∫t−∞E t−t0ð Þ � du

dt

��
t0dt0. Here, the

timedependent viscoelasticmodulus E(t) is replacing the scalar Young's
modulus. If a step deformation is applied, the strain rate becomes a delta

function that annihilates the integral, thus directly giving the viscoelas-
tic properties as illustrated in Fig. 1c. While giving direct access to all
timescales in one single experiment, practically this approach suffers
from a low signal to noise ratio.

Modern rheometers avoid this problem by applying an oscillating
stress and measuring the resulting time dependent strain. This results
in a complex elastic modulus G* (ω) = G′(ω) + iG′′(ω) where the
real part G′(ω) corresponds to the elastic energy stored in the material
at timescales corresponding to the frequency ω (hence storage modu-
lus) and the imaginary part G′′(ω) corresponds to the energy dissipated
by the viscous deformation (hence loss modulus) [18].

For measurement on the micron-scale, as relevant for living cells,
typically a known force F(t) is applied and the resulting absolute
deformation x(t) is monitored as a function of time [21–23]. Such
experimental approaches, called active micro-rheology (AMR), give
direct access to the mechanical response function χ that links
an applied time dependent force to the resulting deformation via:
x(t) = ∫−∞

t χ(t − t′) × F(t′)dt′. This is equivalent to a convolution of
the force with the time dependent response function. In the frequency
domain it can hence be expressed as a multiplication of the Fourier
transforms: ~x ωð Þ ¼ ~χ ωð Þ � ~F ωð Þ , where the tilde denotes for the
Fourier transform of the corresponding variable. The transition from
the response function to the shear modulus is provided by the
Generalized Stokes–Einstein relation [21]: G� ωð Þ ¼ 1= 6πR~χ ωð Þð Þ,
where R is the radius of the probe particle. This last step assumes a
homogenous and isotropic environment, which was already used
when omitting the tensor notation.

The AMR methods directly probe the mechanical properties of the
material. In contrast, passive microrheology approaches use the
thermally driven particle fluctuations to access the dissipative part of
the response function using the fluctuation dissipation theorem (FDT)
~C ωð Þ ¼ 2kBT

ω
~χ′′ ωð Þ . Here ~C ωð Þ is the power spectral density that is

calculated based on the particle trajectories by taking the square of
the absolute value of the Fourier transform. Implicitly, this method as-
sumes that the particle movement is driven purely by thermal move-
ment and that the system is in thermodynamic equilibrium [24,25].
This assumption is known to be wrong in active systems such as living
cells that are constantly consuming energy and are therefore non-
equilibrium systems. For this reason, passive microrheology should
only be used with care in living cells. Typically, in the high frequency
regions fluctuations do not exhibit violation of the FDT [4,11].
Experimentally, 100 ms has been shown to be a typical timescale at

Fig. 1. Introduction of themechanical principles to determine mechanics. (a) A force acting on a material applies a stress that will then create a strain. Depending on the deformation, the
mechanical properties are described by a Young's modulus E, a shear modulus G or a bulk modulus K. (b) For viscoelastic materials the response can be separated into a purely elastic
deformation that is in phase with an applied sinusoidal force, or a purely viscous deformation that has a 90° phase shift with the applied force. (c) Both combined give the information
necessary to describe a viscoelastic material. The time dependent elastic moduli can be measured using step stress or strain experiments, as well as oscillating force application that
gives information about the mechanics at the frequency of the applied force.
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which active contributions emerge, both in reconstituted [4] and living
systems [11]. However, this characteristic timescale should indeed de-
pend on the cycling time of the active mechanical process, and might
also be a function of the mechanical properties of the cell. On the
other hand testing the validity of the FDT by comparing the directly
measured response from AMR with the expected response calculated
from spontaneous fluctuations is an elegant and direct way to deter-
mine the regimes of active and passive movements. For the study of ac-
tive cell mechanics, the ideal experimental access is by a simultaneous
measurement of both, the material properties such as the response
function and/or the shear modulus by stress–strain measurements as
well as the free particle motion via particle tracking. In the following
we will briefly review the main techniques used for both of these mea-
surements, with a special focus on the experimental setups that allow
easy access to both the material properties and the free fluctuations.

2.2. Active measurement of mechanical properties

The direct measurement of the mechanical material properties
requires both, a well defined force application and a precise measure-
ment of the resulting deformation. On the cell level, the most common
techniques providing this information are optical tweezers, magnetic
tweezers and atomic force microscopy. Each of these methods has
their technical advantages and limitations.

2.2.1. Optical tweezers (OT)
Optical tweezers use the gradient forces that act on polarizable

materials in the center of a highly focused laser beam [26] (Fig. 2a).
Typically, a high numerical aperture objective is used for both imaging
and focusing of the laser. To provide stable 3D trapping a high numerical
aperture objective is necessary to create sufficient axial gradient forces,
which is required to balance scattering forces that push the particle out
of the trap in the axial direction. To create a sufficient gradient force,
high numerical apertures are required, and hence typically either oil
or water immersion objectives with numerical apertures (NA) N1 are
used [27]. While oil immersion objectives can provide higher NAs, and
hence better 3D trapping they suffer from spherical aberration effects

when the tweezers are used more than 10 μm away from the glass
surface. These effects can be compensated in some objectives. Water
immersion objectives do not have this inherent problem as long as the
buffer solution in the experiment has a refractive index close to water.
Therefore water immersion objectives allow optical tweezing up to
working distances of hundreds of μm; however, with a slightly reduced
trap stiffness due to the lower NA.When the experiment is done in close
proximity to the coverslip, oil immersion objectives offer more advan-
tages, while experiments in bulk should be performed using water
immersion objectives. An interesting alternative is a double OT, where
two counter-propagating lasers are focused on the same spot in 3D
[28]. In such setups, the scattering force compensates and a small
numerical aperture is sufficient for stable trapping. In consequence,
long working distances up to mm can be realized [29].

Optical tweezers must be calibrated to determine the trap stiffness
to calculate the force acting on the trapped particle as a function of
the distance from the trap center. Calibration methods use the power
spectral density of free particle fluctuations via the fluctuation dissipa-
tion theorem [30,31], the drag force method using the known viscosity
of the medium [32] or Boltzmann distribution approach where the
variance of the average particle position is associated to the trap stiff-
ness of the tweezers [33]. These methods have been reviewed else-
where [34]. A further elegant method is to directly infer the force by
measuring the asymmetry of the scattered photons to directly deter-
mine the force using the conservation of momentum. This method,
however, requires that all photons are collected after interaction with
the sample which is achieved using a condenser with a higher NA
than the objective [35].

To perform mechanical measurements either the laser focus or the
sample itself must be displaced. Tomove the laser, piezo controlledmir-
rors [36] or acousto optical deflectors (AOD) [37,38] are commonly
used. The mirrors have the advantage that the transverse laser mode
is not influenced and the laser focus is continuously moving. The disad-
vantage of current piezo mirrors is their limited speed with maximal
movements in the order of 1 kHz, and a limited angular travel of 1–
10 mrad. Acousto optical deflectors exploit photon–phonon scattering,
where both the intensity and the deflection angle can be controlled by

Fig. 2.Overviewof the commonly used experimentalmethods to determine the local cell mechanics and the spontaneous particlemovements. (a) Activemicrorheologymethods provide
detailed and local viscoelastic material properties. Commonly optical tweezers, magnetic tweezers, and optical magnetic twisting cytometry are used to assess intracellular and surface
properties, while AFM typically measures the mechanics on the cell surface. (b) To determine the position of beads or organelles within cells, single particle methods image the
fluorescence or bright field image, and then fit the expected intensity distribution to the image. This allows spatial precision down to several nm, with a time resolution depending on
the image acquisition rate. Alternatively, back focal plane interferometry images the back focal plane of the condenser on a detector. After calibrating the detector response to the bead
position, this can be used to gain sub-nm precision and high-speed (up to several hundred kHz) position information.
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the intensity and frequency of aHFwave in a special birefringent crystal.
AODs allow the trap to jump to arbitrary positionswithin a couple of μs,
hence allowing for high speed measurements. The speed of the AODs is
physically only limited by the time the acoustic wave needs to cross the
laser beam size in the AOD. This high speed can be used to create
multiple traps by rapid switching between multiple positions. If the
switching frequency is an order of magnitude faster than the corner fre-
quency of thepower spectral density of theparticlemotion in the trap, it
can be considered to be permanent for the particle despite the tempo-
rary absence. Downsides of the AODs are that during the switching,
the laser focus is not well defined. Furthermore, if operating multiple
tweezers via time-sharing, the actual calibration has to be done careful-
ly in the same conditions as the final experiments are performed.
Alternatively to switching, multiple traps can also be generated by
superimposing several acoustic frequencies in the AOD. In optical twee-
zers, bead position is either detected using videomicroscopy or position
sensitive detectors [39,40].

The response function can be measured by applying either an
oscillating or a step force to intracellular particles such as endogenous
vesicles or beads [11,41]. A step force protocol rapidly moves the laser
or the stage and records the movement of the bead relaxing back into
the laser focus. Step displacements probe the temporal dependence of
the response function that can be translated to the frequency domain
by a Fourier transform. In an oscillating force protocol, either the laser
or the stage is moved with a sinusoidal function. The amplitude of this
movement depends on the actual system, however, it has to be ensured
that the applied movement is not exceeding the linear regime of the
trap, which is determined by the bead size and the laser focus. To access
different timescales, the same protocol is repeated for a series of
frequencies. By observing the bead movement relative to the laser
trap, both the applied forces, and the bead movement in the reference
frame of the cell are determined. Dividing the Fourier transforms of
the force and the displacement gives direct access to the real and imag-
inary part of the frequency dependent response function. The advantage
of the oscillating force protocol is that by modulating a sine function
with a well defined frequency, experimental and measurement noise
can be filtered out by using lock-in amplifiers [4], or during post-
processing of the data. The resulting response functions are very precise
and the accuracy can be even increased by includingmore oscillations in
themeasurement. In contrast, the advantage of the step function is that
the experiment does in parallel access all the different timescales, hence
the experimental time is largely reduced, at the price of increased noise
in the measurements.

2.2.2. Magnetic tweezers (MT) and optical magnetic twisting cytometry
(OMTC)

An alternative method to apply well defined local forces is the
magnetic tweezers [42,43]. Here either magnetic gradient forces create
a well defined force on a paramagnetic particle [44], or oscillating
magnetic fields create a torque on magnetic particles that are typically
attached to the surface of a cell [43] (Fig. 2a). Magnetic tweezers and
OMTC have the advantage of higher forces (up to 100 nN, [45]) and
the absence of interaction between the magnetic field and the cell.
The setup requires a strong magnetic gradient that can be generated
by a variety of coil alignments [46]. Depending on the actual coil design,
open cell culture dishes are often necessary to achieve high forces [45].

In the case of OMTC, ferromagnetic beads are incubated with the
cells and attached to the surface either by specific receptors or byunspe-
cific binding. A short, strong field (b1 s, N0.1 T) induces a horizontal
magnetization in the beads. This is followed by a probe field that is
applied vertically to the cells, hence applying a torque on the beads.
This vertical field is typically weaker than the magnetization field
(b0.01 T) and can be varied with a sinusoidal function, or a step force.
With OMTC, high frequencies (N1 kHz) can be measured by controlling
the applied oscillation frequency. The analysis of the frequency

dependent measurements follows the same signal processing methods
as described for the optical tweezers [47].

In bothmagnetic techniques, the beadmovement is typically detected
using video microscopy, where a precise trigger of the force application
and the frame acquisition is important. Using single particle tracking
algorithms, the position sensitivity of the bead motion measurement
can be in the order of several nm.While the analysis of the response func-
tion and the shear modulus for magnetic tweezers is similar to optical
tweezers, OMTC requires a model that connects the magnetic torque
driven rotational movement to the elasticity of the underlying substrate.
In this model the actual attachment area is an important parameter that
is either taken from literature or is assessed via finite element modeling
[48]. Errors in this factor will influence the absolute results, but not the
relative comparisons.

Magnetic tweezers and OMTC have the advantage that they allow
higher forces, and parallel application for forces on multiple particles,
thus improving the possible applications and the throughput of the
measurements.

2.2.3. Atomic force microscopy (AFM)
A third, commonly used method to locally measure the mechanical

properties of living cells is atomic forcemicroscopy. A flexible cantilever
is used to indent the cell or object of interest [49–51]. The deflection of
the cantilever ismeasured using a laser that is reflected off the surface of
the cantilever tip and illuminates a quadrant photodiode as illustrated
in Fig. 2a. To measure the mechanical properties of cells, the cantilever
tip is typically spherical. This allows to use an analysis model such as
the Hertz [52] or the Sneddon [53] model that describes the force as a
function of indentation depth, using the mechanical properties of the
substrate. These models are more complex compared to intracellular
particles as the interaction area increases while the cantilever indents
the cell. To asses the viscoelastic properties of the cells, a slow approach
protocol can be added to a well defined oscillation. Using lock-in ampli-
fiers this was demonstrated to access the localized frequency depen-
dent viscoelastic properties of living cells [54,55]. Big advantages of
the AFM are the large range of accessible forces, well developed com-
mercial microscopes, and a large range of possible cantilever geome-
tries. On the other hand, AFM measurements typically probe the
cellular surface and not intracellular properties. It is possible to infer
bulk properties with large indentation depths, however, interpretation
is more difficult. Also, as cell chambers are open to allow cantilever
access, special care for the correct conditions of the cells such as pH,
temperature and osmolarity must be taken. Finally, AFMs do not allow
parallel data acquisition. Still, AFMs are a main method to determine
the mechanical properties of cells.

2.3. Measuring spontaneous fluctuations

In the absence of active mechanical forces, passive techniques have
been used to successfully determine the mechanical properties of
viscoelastic materials [21,56,57,133]. These techniques rely on precise
measurement of the particle position, ideally in 3D. The trajectories of
single particles are then used to either determine the mean square
displacement (MSD), the autocorrelation, or the power spectral density,
that are used to calculate the mechanical response function using equi-
librium thermodynamic assumptions, such as the FDT. This method has
been recently reviewed in detail [58].

In the presence of active forces, the measurement of spontaneous
fluctuations provides information about both, the mechanical proper-
ties of the material but also the active forces that move the particle. In
the absence of any additional access to themechanical properties, how-
ever, it remains complicated to distinguish between the fluctuations
that are due to the thermal agitation of the particle and the active forces
[23]. This is especially truewhen the active forces act in an uncorrelated
and isotropic way [59], hence showing statistical properties similar to
thermal movement. The measurement of particle fluctuations is
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typically done using either of the two main techniques: single particle
tracking and laser interferometry (Fig. 2b).

2.3.1. Single particle tracking
Single particle tracking is a well established technique that has been

introduced to determine diffusion coefficients from videomicroscopy
[60–62]. This image based technique requires the acquisition of images
either in bright field [63], or fluorescencemicroscopy, where the advan-
tage of fluorescence microscopy is a high signal-to-noise ratio that al-
lows for a better position measurement [64,65]. A downside of the
fluorescence acquisition is that the sample often bleaches, thus limiting
the total acquisition time. Bright field images are typically used if the
particle to be tracked provides a strong contrast, such as optically
trapped beads or magnetic beads, but can also be used on intracellular
particles [63]. The tracking can be done by a number of open source pro-
grams, that vary in complexity, and which have been recently critically
compared [39]. For the highest positional detection, modern algorithms
fit the predicted function using the microscope specific point spread
function to obtain subpixel resolution down to several nm. The big ad-
vantage of single particle trackingmethods is the possibility to obtain si-
multaneously several particle traces. However, the particle tracking
may require time intensive image processing and the temporal resolu-
tion depends on the image acquisition rate. This method is typically
used in combination with magnetic tweezers, but also in many cases
for optical tweezers [11,66].

2.3.2. Laser interferometry
An alternative tracking method uses a laser that is focused on the

particle to be tracked [67–71]. After interacting with the particle, the
scattered light and unscattered light create an interference pattern in
the Fourier plane of the laser focus. This plane is imaged on either a
position sensitive detector or a quadrant photodiode, that directly
determines any asymmetry in the light illuminating the detector.
These detectors then convert the photocurrent to a voltage that is mea-
sured using modern data acquisition boards. This voltage measures the
illumination asymmetry in Δx and Δy, as well as the sum signal that
corresponds to the total amount of light detected. After recording a
calibration curve that maps the voltage difference to the distance of
the particle from the laser focus, the movement of the particle can be
followed with very high spatial (bnm) and temporal (b 10 μs) resolu-
tions [37]. This technique is directly compatible with an optical twee-
zers setup, where the laser power is simply reduced to the μW range
to prevent an influence of the particle due to optical trapping effects
[72]. Using the sum signal or an additional detector, 3D tracking is also
possible [73]. However, in case the particle moves out of the linear
regime of the calibration curve the laser or the particle needs to be re-
centered in the laser focus. This limits the method to shorter tracks,
typically of length smaller 400 nm, unless an automated repositioning
is used. The advantage of this method is that it gives directly the 3D
coordinates of the tracked particle with high spatial–temporal resolu-
tion while avoiding complex post-processing or data analysis. The
laser tracking method is commonly used in optical tweezers as the
setup requires only the addition of a position detector in the Fourier
plane of the laser focus. Recently, laser tracking has even been used to
track the complex shape fluctuations of helical bacteria [74].

2.4. Quantifying active mechanics

To get direct experimental access to the active contribution in the
movement of an intracellular particle, detailed knowledge about the
local mechanical properties is indispensable. Hence, the currently used
methods to quantify the active mechanics in living cells measure both,
the viscoelastic properties as well as the spontaneous fluctuations. It is
important that these measurements are done on the same probe
particle and without large time delay, as cellular systems vary both in
time and space. In principle, the mechanics measurement itself might

change the mechanical properties as it may trigger mechanosensing
pathways that result in a restructuring of the cytoskeleton or an activa-
tion of motor proteins [75–77].

3. Theoretical models

3.1. Purpose and types of models

To get a deeper understanding of this nonequilibrium activity it is
necessary to develop models to interpret the experimental measure-
ments. For active cellmechanics,we focus onmodels that seek to under-
stand what is happening at the level of the cytoskeleton and molecular
motors. Hydrodynamic theories have made significant progress to-
wards our understanding of active matter systems. These theories are
based mainly on symmetries and do not involve specific microscopic
details, and thus are applicable to a wide range of systems over varying
scales. For extensive reviews of these approaches see [9,13,17,78]. These
frameworks build on traditional hydrodynamics [79] by adding non-
equilibrium forces and are primarily used for systems that are viscous
at long time-scales. Recent theoretical advancements of active matter
built upon previous theories have been applied to systems ranging
from bacterial swarms [80,81] to large groups of organisms [82–85]. In
this review, we focus on the Langevin framework for models of active
mechanics which describes the motion of particles via a stochastic
differential equation.We use this approach because it provides intuitive
access to themodel components. The Langevin approach introduces the
activity via the active nonthermal noise which requires a microscopic
description of the active process. Thus this approach is not generic like
the hydrodynamic approach, but it offers straightforward coupling
to molecular models. The purpose of this section is to do a simple
walkthrough of the Langevin framework to provide a basis for readers
unfamiliar with this topic to understand and develop their own simple
models.

3.2. Langevin approach

The Langevin approach is the application of Newton's second law to
a Brownian particle. It was the first example of a stochastic differential
equation leading to the development of new fields in mathematics
and physics [86]. Let's begin by describing Brownianmotion in a purely
viscous liquid using the Langevin framework. If we apply Newton's law
(F = ma) to a Brownian particle we have the following equation of
motion,

m€x ¼ −γ x
� þ ξ tð Þ ð1Þ

wherem is themass of the particle, x(t) is its position andx
�
; €x represents

the first and second time derivatives respectively, γ is the constant
coefficient of friction, and ξ(t) is the stochastic force that comes from
thermal motion. In biological systems at the cell and molecular level
the inertia is typically negligible (we can ignore themass of the particle)
and we have the overdamped form of the Langevin equation,

γ x
� ¼ ξ tð Þ ð2Þ

If we solve this equation for the particle trajectory,

x tð Þ ¼ 1
γ

Z t

0
ξ t0ð Þdt0 þ x0 ð3Þ

we see that the position of the particle, x(t), depends on the entire history
of the stochastic force, ξ(t). Thismeans that each time you solve Eq. (3) for
the position of the particle itwill be different depending on the specific re-
alization of the stochastic force, ξ(t), giving rise to the variation in trajec-
tories of Brownian particles (Fig. 3a). For pure Brownian motion of a
particle in a viscous liquid the stochastic force has the properties of
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Gaussian white noise where the average force is zero, 〈ξ(t)〉=0, and the
forces are uncorrelated in time, 〈ξ(t)ξ(t′)〉=Aδ(t− t′),whereA is the am-
plitude of the thermal forces, and δ is the Dirac delta function. Now that
we have the properties of the stochastic force, we can derive some prop-
erties of particle motion. First let's calculate the mean position of the par-
ticle over several realizations of the stochastic force,

x tð Þh i ¼ 1
γ

Z t

0
ξ t0ð Þh idt0 þ x0 ð4Þ

¼ x0 ð5Þ

because 〈ξ(t)〉=0. Thus, on average a particle stays at its original starting
pointwhenaveragedovermany realizations of the stochastic force (as ex-
pected). This is not very exciting. A more exciting metric is the mean
squared displacement (MSD) of the particle which should resemble per-
fect diffusion in a purely viscous liquid. To calculate the MSD let us first
take the square of the position in Eq. (3) to get,

x tð Þ2 ¼ 1
γ2

Z t

0

Z t

0
ξ t1ð Þξ t2ð Þdt1dt2 þ x20 þ

2
γ
x0

Z t

0
ξ t0ð Þdt0 ð6Þ

and by taking the properties of the stochastic force we have,

x tð Þ2
D E

−x20 ¼ 1
γ2

Z t

0
Adt1 ð7Þ

¼ A
γ2 t ð8Þ

which is the familiar result that theMSD is proportional to time for a par-
ticle undergoing thermal diffusion in a purely viscous liquid.We can com-
pare this to the original result derived by Einstein [87] that 〈x(t)2〉= 2Dt

where D ¼ kBT
γ is the diffusion coefficient. This comparison also allows us

to equate the amplitude of thermal force to the diffusion coefficient to
find the fluctuation–dissipation theorem of the second kind,

A ¼ 2γkBT ð9Þ

showing that the amplitude of the thermal forces is directly related to the
friction coefficient and the temperature. This example shows how the
Langevin framework can be used in a straight-forward fashion to
describe stochastic motion in an intuitive way.

3.3. Models of mechanics

Once the equation of motion, x(t), is known it is possible to derive
the mechanical behavior of medium in thermal equilibrium in
two steps. First we apply linear-response theory (LRT), x(t) =
∫−∞
t χ(t − t′)F(t′)dt′, to calculate the response of the system x(t) to a
force, F(t). Second,we apply the Generalized Stokes–Einstein (GSE) equa-
tion [88,89] to calculate the complex shearmoduluswhich represents the
mechanical behavior of the system.

Let's first describe the mechanics of the purely viscous liquid
described in the previous section. Often times in mechanics it is more
intuitive (and mathematically tractable) to work in the frequency
domain. Eq. (2) written in the Fourier domain is,

iωγ ~x ¼ ~ξ ð10Þ

Now if we apply linear response theory, ~x ¼ ~χ~F , where we know

that the force acting on the particle is the thermal force ~Fthermal ¼ ~ξ
� �

then we can deduce the response function,

~χ ¼ 1
iωγ

ð11Þ

To get the complex shearmodulus we use the GSE,G� ¼ 1
6πR~χ

, to find

G�
liquid ¼ iωγ

6πR
ð12Þ

where R is the radius of the particle. Notice if we separate the complex
modulus into its elastic (G′) and viscous (G″) components thenwe have,

G0
liquid ¼ 0 ð13Þ

G
00
liquid ¼ ωγ

6πR
ð14Þ

andwe can see that a purely viscous liquid provides no elastic resistance
and its viscous resistance scales linearlywith frequency as shown by the
open circles in Fig. 3b.

The complex shear modulus of a purely elastic solid can be derived
similarly as above. If we represent the elasticity of the material using a
simple harmonic potential (E ¼ 1

2 κx
2) then the equation of motion is,

κ ~x ¼ ~ξ ð15Þ

where κ is the stiffness of the harmonic potential. Applying LRT and GSE
we have,

G
0
solid ¼ κ

6πR
ð16Þ

G
00
solid ¼ 0 ð17Þ

where for a simple harmonic spring the shearmodulus is not dependent
on frequency (see Fig. 3b, closed circles). This result is consistent with
the sketched representation as shown in Fig. 1, where purely elastic
response is fully in phase of an oscillating force, while a purely viscous
response is out-of phase.

Since most biological materials are not purely viscous or purely
elastic it is typically necessary to describe them as viscoelastic. Incorpo-
rating both of these effects leads to an equation of motion for a particle
that contains both viscous and elastic terms,

iω~γ~x ¼ − κ ~xþ ~ξ ð18Þ

These terms ~γ; κð Þ can take on various forms to describe different
viscoelastic systems. The cytoskeleton is often described as a semi-
flexible polymer network which exhibits power-law rheology at high
frequencies with a low frequency elastic plateau [90–92]. A simple

way to describe this is to adopt a power-law memory kernel for γ tð Þ ¼
κ τα=tð Þα
Γ 1−αð Þ , where 0 b α b 1 is the power-law scaling, τα is the viscoelastic

time constant, and Γ is the Gamma function. Taking the Fourier trans-

form yields ~γ ¼ κ τα iωταð Þα−1. Following the same procedure as before
and applying LRT and GSE gives us,

G
0
viscoelastic ¼

1
6πR

κ τααω
αcos πα=2ð Þ þ κ

� � ð19Þ

G
00
viscoelastic ¼

1
6πR

κ τααω
αsin πα=2ð Þ� � ð20Þ

as shown in Fig. 3b (squares).

3.4. Models of activity

Now that we have derived themechanical response of the system in
the Langevin framework, we can turn to the purpose of this review
which is adding nonequilibrium forces. In the previous section on
mechanics, notice that the only stochastic force involved is thermal in
nature because the systems are in thermal equilibrium. This is because
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material properties are typically defined for materials in thermal
equilibrium. For systems that are out-of-equilibrium, such as biological
systems, there are additional forces coming from processes occurring
inside the cell (e.g. molecular motors and polymerization). The advan-
tage of the Langevin framework is that additional forces can be intui-
tively incorporated into the equation of motion of the particle [131].
As an example, let us add a stochastic force that is non-thermal in origin
to the right side of the equation of motion for a viscoelastic material.
Thus we have,

iω~γ~x ¼ − κ ~xþ ~ξþ ~f A ð21Þ

where fA is the stochastic active force. The active force can bemodeled in
many ways to account for different physical systems. Using this
approach, a molecular scale model of the active force can be developed
and incorporated into the Langevin framework. Additionally, if the form
of the active force is too complex to be solved analytically, it can
straightforwardly be explored via simulations. Thus predictions for the
average dynamics of objects inside the cell can be calculated, allowing
close comparison between experiments and theory. As an example,
we will present a simple minimal model for the active force, fA, that
has been described previously [93,94] and is illustrated in Fig. 4a. This
model describes the force contribution from molecular motors that
actively kick the particle and cause it to move around randomly. The
force due to this motion can be expressed as, fA = κ∫vA(t′)dt′ where vA
is the active velocity described by a random process that equals 0 for
an average duration of τ0 and is a uniform random value over [−v, v]
for an average duration of τ. The statistics of vA reflect molecular
motor statistics and are a zero mean non-Gaussian process with corre-

lations: 〈vA(t)vA(t′)〉 = kBTAexp(−|t|/τ)/(τγ) where kBTA ¼ γ vτð Þ2
3 τþτ0ð Þ is

the effective active energy scale [93,94]. A representative realization of
the motor force kinetics is shown in Fig. 4b.

Now that we have the equation of motion for a particle in a
viscoelastic material subjected to an active stochastic force we can
explore some of the system properties. A common way to quantify the
nonequilibriumproperties of a system is to calculate its effective energy,
which quantifies deviation from equilibrium. This requires combining

information from themechanical response, ~χ
00
ωð Þ, and the spontaneous

fluctuations, ~C ωð Þ , of the particle motion where ~C ωð Þ ¼
∫ x tð Þx 0ð Þh iexp iωtð Þdt is the power spectral density of position fluctua-

tions. The effective energy is basically the ratio of these two, Eeff ¼
ω~C ωð Þ
2~χ″ ωð Þ, in units of kBT. In the experimental measurements the response

is calculated from active rheology and the spontaneous fluctuations
are from particle tracking. For our example theoretical model this can
be calculated as,

Eeff ωð Þ ¼ kBT þ 1

ωτrð Þ2
kBTA

1þ ωτð Þ2
ð22Þ

where τr= γ/κ is the relaxation time of the surroundingmaterial, and it
is clear if TA is zero the system is in thermal equilibrium (Fig. 4c). While
the effective energy provides a way to quantify the deviation from
equilibrium, it does not directly provide insight into the active forces
generated in the system. To gain insight into the active mechanics we
must look at the force correlations. First, let us note that the total force
driving the system is the sum of the active force and thermal force,
~Ftot ¼ ~f A þ ~ξ . Following the derivation above we can find that the
mechanical properties of the system are, G� ¼ 1

6πR κ þ iωγð Þ, where κ
and γ are constants for simplicity that are related to the elastic and
viscous properties of the system. This framework now allows direct
access to the active force spectrum that is generated exclusively from
nonequilibrium sources. To look at the active forces we calculate
its power spectrum (i.e. the Fourier transform of the time correlation
function 〈 fA(0)fA(t′)〉),

Sactive ωð Þ ¼ 1

ωτrð Þ2
2γkBTA

1þ ωτð Þ2
ð23Þ

as is shown in Fig. 4d [93]. Thus it is clear that themechanical properties
of the surrounding material also contribute to the active forces. Again,
notice that if the system is in equilibrium, TA = 0, then the active force
spectrum would be zero. The analytical expression of the active force
spectrum can be fitted to the experimental measurements to extract
the characteristic timescale, τ, of themolecular process driving the non-
equilibrium behavior. This provides a connection between the observ-
able motion of a tracer particle and the underlying stochastic driving
forces.

Recent developments in stochastic thermodynamics leverage the
Langevin framework to allow quantification of the rate of energy dissi-
pation [95]. Energy dissipation is a fundamental property that charac-
terizes non-equilibrium steady-state systems and allows comparison
between different model systems. The Harada–Sasa equality relates
the violation of the FDT to the amount of energy dissipated in the
system. Therefore, if violation of FDT can be measured and modeled,
the energy dissipation can be directly calculated and related to a

Fig. 3. (a) One realization of the stochastic thermal force is shown to illustrate the time course of a zero-mean Gaussian process (ξ1, top panel). The trajectory of a particle, x(t), is found by in-
tegrating the random thermal force, ξ(t), over time as shown in 3 separate realizations (lower panel). (b) The complex shearmodulus is shown for three differentmodels ofmechanics. A purely
viscous liquid has dissipative modulus, G′′, that scales linearly with frequency (open circles). A purely elastic solid has an elastic modulus, G′, that is frequency independent (closed circles). A
viscoelastic material exhibits intermediate behavior with frequency dependent elastic and dissipative moduli.
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molecular scale model. In this framework the dissipation in the system
is the work done by the particle on the surrounding environment. The
mean rate of energy dissipation is,

Jdiss ¼ x
�

γ x
�
−ξ

� �	 
 ð24Þ

where x
�
is the particle velocity. Jdiss can be thought of as the difference

between the power dissipated by the particle drag force (γx
�
) and the

power injected by the thermal force (ξ). In an equilibrium process,
these two powers are equal as a consequence of FDT, and thus Jdiss
would be zero. Harada and Sasa showed that the dissipated power
in a nonequilibrium steady state system can be calculated from the
correlation and response functions [95],

Jdiss ¼ γ
Z

dω ω~C ωð Þ þ 2T ~χ″ ωð Þ
h i

ω=2π ð25Þ

where ~C ωð Þ is the power spectral density of the position fluctuations

and ~χ
00
ωð Þ is the imaginary part of the response function. Since all the

terms in the Harada–Sasa relation can be measured experimentally
and modeled theoretically, it provides a direct way to compare experi-
mental and theoretical results of local power dissipation in nonequilib-
rium steady-state systems. Since power dissipation is a fundamental
thermodynamic quantity it is possible to relate these measurements
to the mechanical efficiency of a process.

4. Nonequilibrium biopolymer mechanics

The theoretical tools in the previous section provide a useful
framework to understand the complex mechanics of nonequilibri-
um biopolymers and reconstituted in-vitro networks provide a
simple experimental system to probe their behavior. It is known that
external stress/strain applied to reconstituted biopolymer gels can
lead to both softening and stiffening. Complex interactions at the local
molecular scale can give rise to bulk changes in behavior even without
active forces. Stress-softening has been attributed to local buckling of
actin filaments [96], force induced rupture of cross-links [97], and non-
linear force response and filament turnover [98]. Stress stiffening has
been shown to be due to network structure [99,100], dynamic re-
binding of cross-links [101,102], and cyclic-loading [103].

4.1. Softening

An entangled polymer solution naturally exhibits viscoelastic
mechanical behavior. If molecular motors are added to the entangled
polymer, its properties can be actively modulated. Myosin-II motor
activity in a solution of entangled actin filaments will significantly
shorten the stress relaxation time leading to fluidization of thematerial
[3] (Fig. 5a). Myosin-II motors interact with the actin and allow fila-
ments to slide longitudinally past each other leading to bulkfluidization.
A theoretical model shows that the active forces generate directed
reptation of the polymers leading to fluidization [104]. Together, these
studies indicate a way that internally generated active forces can tune
the bulk mechanical properties of the material without physically
changing its building blocks. A similar study showed that adding
cross-linking can increase the energy dissipation in active actin net-
works at short timescales while still allowing fluidization at longer
times [105]. This points to the high sensitivity of biopolymer network
mechanics to motor activity and cross-linking which can provide a
way to tune thematerial properties [106]. In addition to tuningmaterial
properties, myosin-II motors have been shown to buckle, fragment, and
depolymerize actin filaments, directly changing the network and lead-
ing to stress relaxation [107–109]. These controlled in-vitro studies
show possible mechanisms that living cells could utilize to tune their
mechanical behavior. In living cells it has been reported that force appli-
cation fluidizes the cell mechanical properties [110] as measured by

magnetic twisting cytometry. Direct measurement in living cells is
sparse, however some studies have shown that applied deformation
may also lead to decreased cytoplasmic resistance [111,112]. And met-
abolic activitywas shown to fluidize the cytoplasm and facilitatemotion
of larger components in bacteria cells [113]. Another recent study has
used several different measurement techniques to show that myosin-
II activity softens cells in suspension [114]. Further measurements and
theories are necessary to understand these processes at the molecular
level.

4.2. Stiffening

Stiffening due to motor activity is also a common observation. A
landmark study of nonequilibriummechanics in active actin–myosin
gels showed that cross-linked networks stiffen (by up to 100×) due
to the action of molecular motors [4] (Fig. 5b). A theoretical model
showed that even small forces generated by molecular motors in a
semi-flexible gel (exhibiting nonlinear elasticity) lead to a strong
stiffening of the network [115,116]. It has been suggested that cells
operate in this highly sensitive nonlinear regime such that small
changes in motor activity allow them to modulate their mechanical
response greatly [5]. Interestingly, a recent study created an active
gel using noncytoskeletal components (DNA and FtsK50C) and
found similar results, highlighting that the observed behavior is not
specific to actin and myosin [118]. Similar behavior has been ob-
served indirectly in living cells. Single platelet cells increase their
bulk stiffness when allowed to contract between two rigid surfaces
[119]. In living oocytes the stiffness of the cortex is maintained by
myosin-II activity, and it dramatically softens if these motors are ex-
cluded [120]. And in the cytoplasm of cultured cells the stiffness has
also been shown to decrease when myosin-II motors are deactivated
via blebbistatin [11]. It is important to mention that the studies
discussed here in living cells make direct force measurements,
which allow direct access to the mechanical properties. Generally,
it should be noted that studies in living cells must be interpreted
carefully since their response to pharmacological treatment and ge-
netic tools is often highly sensitive to dosage and recovery time.

4.3. Active organization

In addition to nonequilibriummechanics, an interesting property
of active matter is its ability to dynamically self-organize. High-
density motility assays of actin filaments, myosin-II motors, and
cross-linking proteins have shown a wide range of self-
organization phenomena ranging from large-scale polar structures
to contracting networks [121]. Collective motion emerges from the
random molecular motor activity on polar actin filaments leading
to coherent moving structures with clusters, swirls, and intercon-
nected bands due to hydrodynamic coupling between filaments
[122,123]. These complex interactions also give rise to frozen
steady-states and giant fluctuations in density [124,125]. Beyond
these dynamic moving structures, active actin-gel networks can
also form quasi-static heterogeneous structures in the form of clus-
ters of different sizes [126]. Interestingly, studies of active matter
consisting of microtubules and kinesin also show active organization
that is quite different from actin–myosin gels. Bundles of microtu-
bules containing hundreds of kinesin motors spontaneously syn-
chronize their motion and generate large-scale oscillations [127],
suggesting that only two-components are sufficient to create cilia-
like beating. When the microtubule–kinesin network is assembled
inside an emulsion droplet, it exhibits internally driven chaotic
flows leading to fractures and self-healing of microtubules and also
drives autonomous motility of the droplet [128]. To mimic cellular
structures the microtubule–kinesin network was encapsulated in a
lipid vesicle where it exhibited periodically oscillating active ne-
matic defects and shape-changing dynamics with filopodia-like
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protrusions [129]. These reconstituted active matter systems bring us
closer to understanding how cells utilize activity to organize their func-
tional structures. A recent example was observed in living oocytes
where coordinated molecular motor activity generates a gradient
force to center the nucleus at the cell center [130].

5. Outlook

Nonequilibrium activity is required for the maintenance of life.
Without it, all systems decay to their lowest energy state corre-
sponding to maximum disorder. For living cells to maintain their

Fig. 4. (a) A schematic diagram of the viscoelastic material with motor-driven activity. The surroundingmedium provides local confinement of particles modeled as a harmonic potential.
Particles embedded in the material undergo thermal fluctuations with a mean position of x0. In addition, molecular motors inject nonequilibrium activity into the system and push the
particle further from the equilibrium position giving rise to additional forces that are nonthermal in origin. (b) Molecular motor statistics are modeled as an active burst where they
have a velocity vA, which is a random value between−v and v for a random duration of order τ followed by a velocity of 0 for average duration τ0 (top panel). The example realization
of active burst activity results in the active forces shown in the lower panel. (c) The effective energy quantifies how far the system is from equilibrium. The activity is determined by
the motor kinetics, where faster τ results in deviation from equilibrium at higher frequencies. (d) The active force spectrum quantifies the forces generated by the motor-driven activity.
In the presented model faster motor kinetics, τ, result in higher active forces.
(b) Reprinted with permission from [94] Copyright (2014) by the American Physical Society.

Fig. 5. (a) Un-crosslinked actin–myosin networks exhibit significantly smaller shear moduli when myosin is active. This is an example of activity-induced softening of an active material.
(b) Conversely, cross-linked actin–myosin networks exhibit significantly larger shear moduli when myosin is active, an example of activity-induced stiffening.
(a) Adapted by permission from Macmillan Publishers Ltd: [3], Copyright (2002). (b) From reference [4]. Reprinted with permission from AAAS.
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cytoskeletal structure, organization, and dynamic behavior they
must constantly consume and dissipate energy. By understanding
how this nonequilibrium activity drives self-organization we will
gain a deeper understanding of biophysical processes at the molecu-
lar scale. The emerging experimental and theoretical frameworks to
probe nonequilibrium mechanics will allow direct quantification of
activity in living cells and allow us to dissect the complex underlying
processes. These same techniques can also be applied to synthetic or
reconstituted systems to understand fundamental processes in non-
equilibrium physics. This interface between living cells and synthetic
systems will undoubtedly lead to the design and engineering of new
bio-inspired materials with advanced functionalities.
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The internal dynamics of active gels both in artificial (in vitro) model systems and inside the cytoskeleton
of living cells has been extensively studied with experiments of recent years. These dynamics are probed using
tracer particles embedded in the network of biopolymers together with molecular motors, and distinct nonthermal
behavior is observed. We present a theoretical model of the dynamics of a trapped active particle, which allows
us to quantify the deviations from equilibrium behavior, using both analytic and numerical calculations. We
map the different regimes of dynamics in this system and highlight the different manifestations of activity:
breakdown of the virial theorem and equipartition, different elasticity-dependent “effective temperatures,” and
distinct non-Gaussian distributions. Our results shed light on puzzling observations in active gel experiments and
provide physical interpretation of existing observations, as well as predictions for future studies.

DOI: 10.1103/PhysRevE.92.012716 PACS number(s): 87.10.Ca, 05.40.−a, 87.10.Mn

I. INTRODUCTION

In vitro experiments have probed the nonthermal (active)
fluctuations in an “active gel,” which is most commonly
realized as a network composed of cross-linked filaments (such
as actin) and molecular motors (such as myosin-II) [1–4].
The fluctuations inside the active gel were measured using the
tracking of individual tracer particles and used to demonstrate
the active (nonequilibrium) nature of these systems through the
breaking of the Fluctuation-Dissipation theorem (FDT) [2]. In
these active gels, myosin-II molecular motors generate relative
motion between the actin filaments, through consumption of
ATP, and thus drive the athermal random motion of the probe
particles dispersed throughout the network. This tracking
technique was also implemented in living cells [5–7]. The
motion of these tracers in cells was also shown to deviate from
simple thermal Brownian diffusion.

There are several puzzling observations of the dynamics
of the tracer particles inside the active gels, for example, the
distinct non-Gaussianity of the displacement correlations and
their time dependence [1,4,8]. We propose here a simple model
for the random active motion of a tracer particle within a
(linearly) elastic active gel, and we use our model to resolve
their distinct nonequilibrium dynamics. On long time scales
the tracer particles are observed to perform hopping-like
diffusion, which is beyond the regime of the present model and
will be treated in following work, as will be the introduction
of nonlinear elasticity [9]. The activity is modeled through
colored shot noise [10,11], and the elastic gel is described by
a confining harmonic potential. We use the model to derive
expressions directly related to the experimentally accessible
observations, such as the position and velocity distributions
and their deviations from the thermal Gaussian form. Our
model allows us to offer a physical interpretation to existing
experiments, to characterize the microscopic active processes
in the active gel, and to make specific predictions for future
exploration of the limits of the active forces and elasticity.
The simplicity of this model makes this model applicable to a
wide range of systems and allows us to gain analytic solutions,
intuition, and understanding of the dynamics, which is usually

lacking in out-of-equilibrium systems. This would be more
difficult to obtain with a more complex description of the gel,
such as visco-elastic that has more intrinsic time scales.

II. MODEL

Our model treats a particle in a harmonic potential, kicked
randomly by thermal and active forces (active noise) [11]. The
corresponding Langevin equation for the particle velocity v (in
one dimension or one component in higher dimensions, with
the mass set to m = 1) is

v̇ = −λv + fa + fT − ∂U (x)

∂x
, (1)

where λ is the effective friction coefficient and the harmonic
potential is U (x) = kx2/2, with k proportional to the bulk
modulus of the gel (related to the gel density, cross-linker
density, and other structural factors). The thermal force fT is an
uncorrelated Gaussian white noise: 〈fT (t)fT (t ′)〉 = 2λT δ(t −
t ′), with T the ambient temperature, and Boltzmann’s constant
set to kB = 1.

We model the active force fa as arising from the indepen-
dent action of Nm molecular motors, each motor producing
pulses of a given fixed force ±f0, for a duration �τ (either a
constant or drawn from a Poissonian process with an average
value �τ , i.e., shot noise), with a random direction (sign). The
active pulses turn on randomly as a Poisson process with an
average waiting time τ (during which the active force is zero),
which determines the “duty ratio” of the motor (the probability
to be turned “on”): pon = �τ/(τ + �τ ).

III. RESULTS: MEAN KINETIC AND
POTENTIAL ENERGIES

The mean-square velocity and position fluctuations of the
trapped particle, essentially the mean kinetic (Tv = 〈v2〉) and
potential (Tx = k〈x2〉) energies, can be calculated for the
case of shot noise force correlations [details given in the
Appendices, Eqs. (A1a)–(C4), and Figs. 3–4]. Note that the
mean 〈·〉 is over many realizations of the system or over a long
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time. In the limit of vanishing trapping potential the position
fluctuations 〈x2〉 diverge, but the potential energy approaches a
constant: Tx |k→0 → f 2

0 �τ/λ. The kinetic energy approaches
the constant value for a free particle [11]: Tv|k→0 → Tx/(1 +
λ�τ ). We therefore find that the virial theorem is in general not
satisfied in this active system, which in a harmonic potential
gives Tv|eq = Tx |eq , even in the limit of weak trapping. The
virial theorem, and equipartition, breaks down due to the strong
correlations between the particle position and the applied
active force: In the limit of perfect correlations, the particle
is stationary at x = ±x0 when the force is turned on (the
stationary position in the trap where the potential balances the
active force: x0 = f0/k), and at x = 0 when it is off. In this
extreme case the potential energy is finite while the kinetic
energy is zero.

In the limit of strong trapping k → ∞,k/λ2 � 1, the
potential energy behaves as Tx ∝ k−1 [Eqs. (B6) and (B9)],
while the kinetic energy decays faster as Tv ∝ k−3/2 [Eq. (D2)].
One can understand this limit as follows: When the trapping is
very strong, the shortest time scale in the problem is the natural
oscillation frequency in the trap, ωk ∼ √

k. In this regime
of k�τ 2 � 1 we find that during the active pulse �τ , the
particle reaches x0, and the mean potential energy is therefore
proportional to Tx ∼ kx2

0 ∝ 1/k. The kinetic energy in this
limit decays faster, since the fraction of time that the particle
is moving is only during the acceleration phase determined
by the time scale ω−1

k ∼ √
k. We therefore find that in the

presence of strong elastic restoring forces the potential energy
will be much larger than the kinetic energy, in an active system
(Tx � Tv). This was recently found in the study of active
semiflexible polymers [12].

Note that in a real active gel the different parameters maybe
coupled: larger local density of the network filaments increases
the local value of the elastic stiffness parameter k but may also
increase locally the density of motors and their ability to exert
an effective force, thereby increasing Nm and f0. The tracer
bead behavior as expressed by Tv and Tx can therefore be a
complex function of the local network parameters.

IV. RESULTS: VELOCITY AND POSITION
DISTRIBUTIONS

The distributions of the velocity and position in the different
regimes are shown in Fig. 1 for the case of a single active
motor. The simulations of the model were carried out using
explicit Euler integration of Eq. (1) (see also the Appendices
for details). We study this case in order to highlight the
deviations from Gaussian (equilibrium-like) behavior, which is
restored by many simultaneous motors [11]. In an infinite gel,
with a constant density of motors, we may therefore treat the
distant (and numerous) motors as giving rise to an additional
thermal-like contribution to the tracer dynamics [Eqs. (D1)
and (D2)], while the nonequilibrium behavior is dominated by
a single proximal motor [1].

In the limit of weak damping, λ�τ � 1, both the posi-
tion and velocity distributions are very close to Gaussian,
with the width of the Gaussian distributions given by Tv

and Tx [Figs. 1(b) and 1(d), Eqs. (B4) and (C1)]: P (v) ∝
exp [−v2/(2Tv)], P (x) ∝ exp [−kx2/(2Tx)].

FIG. 1. (Color online) Distribution of position and velocity for
particle trapped within a harmonic trap of various stiffness (k =
1,1000 for a, b and c, d, respectively) and for different regimes of
friction (λ = 50,0.1 for a, c and b, d, respectively). The time scale
of the active bursts is �τ = 0.1, the amplitude of the active force
f0 = 1, and the waiting time τ = 1 (so that pon ≈ 0.1). For simplicity
we plot the behavior for the case of a single motor with a constant
burst duration. The insets compare the simulated distribution (blue
line) to the analytic approximation (red dashed line), in log-linear
scale, as simple Gaussians or as a sum of shifted thermal Gaussians.

In the highly damped limit, λ�τ � 1, the distributions
become highly non-Gaussian [Figs. 1(a) and 1(c)]. We can
make a useful approximation in this limit, by neglecting the
inertial term in Eq. (1) and get the following equation for the
particle position x inside the potential well:

λv = −kx + fa + fT (2)

⇒ ẋ = −λ̃x + fa + fT

λ
, (3)

where λ̃ = k/λ. This equation is now analogous to the equation
for the velocity v of a free particle [Eq. (1) when U (x) = 0].
Due to this analogy we can use the analytic solutions for
the free particle [11] to describe the particle position in the
well. For weak trapping [Fig. 1(a)], we therefore expect the
position distribution to be roughly Gaussian, since we are in
the limit of λ̃�τ � 1 of Eq. (3), with a width given by [from
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FIG. 2. (Color online) (a) Distribution of particle displacements P [�x(τω)], for various lag time duration τω (blue lines), for a single motor
and constant burst duration. The traces correspond to increasing time lag durations (black arrow), in the range 1 > τω > 5 × 10−4. The red
dashed line denotes the spatial distribution P (x), and the black dashed lines denote P (�x(∞)) [Eq. (6)] for the approximation of P (x) as a sum
of three Gaussians. Inset shows the displacement distribution for very short lag times τω. Parameters as in Fig. 1(c). (b) Calculated NGP for the
P [�x(τω)], for various number of motors (Nm), and confinement strength. The short horizontal black lines denote (left) the NGP of P (x), and
(right) of P [�x(∞)] [Eq. (6)], for the k = 1000,Nm = 1 case. (c) Displacement distributions [as in (a)] for a calculation without the inertia term
[Eq. (2), using k = 1000, Poissonian 〈�τ 〉 = 0.1, and increasing lag time indicated by the arrow τω = 10−3, 2.5 × 10−3, 5 × 10−3, 10−2, 1],
and (d) the corresponding NGP, comparing the simulation (solid gray lines) to the analytical result (see Appendix for details, dashed lines), for
k = 300,1000 (top, bottom). The NGP with inertia is given by the solid black lines.

Eq. (3) and (B6)]

T ′
x = ponNmλ(λ̃�τ + e−λ̃�τ − 1)

k2�τ
f 2

0 , (4)

Tx = 2
ponNm〈�τ 〉

λ
(
1 + λ̃〈�τ 〉)f 2

0 , (5)

where T ′
x describes the case of a constant �τ and Tx the

case of a Poissonian burst distribution and fits well the
calculated distribution [inset of Fig. 1(a)]. In the limit of weak
confinement we expect the velocity distribution to approach
the behavior of the free damped particle [11], which is well
approximated as a sum of thermal Gaussians, centered at v =
0, ± v0 (v0 = F0/λ). This is indeed a good approximation, as
shown in the inset of Fig. 1(a).

For strong potentials [λ̃�τ � 1, Fig. 1(c)] we expect from
the analogy given in Eq. (3) that the spatial distribution is
now well described by the sum of shifted thermal Gaussians
[Fig. 1(c)] [11], centered at x = 0, ± x0. The velocity distri-
bution in this regime is also non-Gaussian: the maximal active
velocity is of order v0 at the origin of the potential, but since
the particle immediately slows due to the confinement (up to a

complete stop at ±x0), the peaks of the distribution are located
at roughly ±v0/2.

V. RESULTS: NON-GAUSSIANITY OF THE
DISPLACEMENT DISTRIBUTION

The distribution of relative particle displacements
(Van Hove correlation function) P [�x(τω)], where
�x(τω) = x(t + τω) − x(t) (τω is the lag-time duration),
is a useful measure for the particle dynamics. We plot it in
Fig. 2(a) for the interesting regime of strong confinement
and damping and compared to the distribution of particle
positions P (x) [Fig. 1(c)]. We see that P [�x(τω)] has double
the number of peaks of P (x) and is distinctly non-Gaussian
for all τω. In Fig. 2(c) we show that the same qualitative
behavior is obtained for Poissonian burst duration.

The deviations from Gaussianity are quantified in Fig. 2(b)
using the Non-Gaussianity Parameter (NGP) of the displace-
ment distributions: κ = 〈�x4〉/3〈�x2〉2 − 1. This deviation
of the kurtosis from the value for a Gaussian is an established
measure for studying distributions [13]. We find that the NGP
has a finite value for τω → 0. This is as a consequence of the
periods during which the particle is accelerated by the active
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force, and the result is a finite probability for displacements of
the order of �x � v0τω [inset of Fig. 2(a)]. With increasing
τω the NGP reaches a maximum, at lag times that are of order
�τ , where the full effect of the active bursts is observed.

We find that the maximal value of the NGP for P [�x(τω)]
is close to the NGP of P (x) [Fig. 2(b)], which is a function for
which we have a good analytic approximation [11] [Eqs. (F1)
and (F2)]. In the limit of τω → ∞ the calculated NGP remains
finite and can be calculated analytically since the displacement
distribution becomes

P [�x(∞)] =
∫ ∞

−∞
P (x)P (x + �x) dx, (6)

and the P (x) in this regime is well approximated by the sum of
shifted thermal Gaussians [inset of Fig. 1(c)]. This calculation
fits well the simulated result [Fig. 2(b)]. For a larger number
of motors, the distribution P [�x(τω)] approach a Gaussian
[Figs. 2(b) and 6)].

In the limit where we discard inertia from the equations
of motion [Eq. (2)], we can calculate the NGP analytically
(see details in the Appendices). In Fig. 2(c) we plot the
displacement distributions for this case, and in Fig. 2(d) we
show that indeed the analytical calculation describes exactly
the simulation results. We find that this treatment captures
correctly the qualitative features of the full system, such as the
position of the peak, followed by a constant value at long lag
times. The large discrepancy is in the limit of τω → 0, where
the inertial effects of the oscillations inside the trap are missing
from Eq. (2).

VI. RESULTS: FDT

An alternative method to characterize the nonequilibrium
dynamics is through the deviations from the FDT [2]. We can
quantify these deviations by defining an effective temperature,
using the Fourier transform of the position fluctuations
[Sxx(ω)] and linear response [susceptibility of the position to
an external force χ (ω)] of the system. We can calculate both
for our trapped particle position using Eq. (3) for the λ̃�τ � 1
limit, to get [for Poissonian burst duration �τ , see details in
Appendix G, Eqs. (G1)–(G3)]

TFDT (ω) = ωSxx(ω)

2Im[χ (ω)]
= Nmponf

2
0 〈�τ 〉

λ[1 + (ω〈�τ 〉)2]
+ T . (7)

Note that TFDT (ω) is independent of the shape of the harmonic
potential (k) and is identical to the result for a free active
particle [11]. This result highlights the fact that while different
“effective temperatures” in an active system [Tv and Tx ,
Eqs. (4) and (5)] give a measure of the activity, they can have
very different properties.

VII. DISCUSSION

We now use our results to interpret several experiments
on active gels in vitro and extract the values that characterize
these active systems. In Ref. [2] the breakdown of the FDT
was measured. Comparing to our TFDT [Eq. (G3)] we find
that the onset of the deviation from equilibrium occurs for
frequencies ω � �τ−1, from which we find that �τ ≈ 100
ms, which is the scale of the release time of the myosin-II-
induced stress [2] in this system. The measured deviation from

the FDT was found to increase with decreasing frequency [2]
and at the lowest measured frequencies the ratio was found to
be TFDT (ω → 0)/T ≈ 20–100. This number fixes for us the
combination of the parameters given in Eq. (G3).

Recent experiments shed more detail on the active motion
in this system [1], and it was found that the tracer particle
performs random confined motion interspersed by periods of
large excursions. The confined motion part can be directly
related to the mean-square displacement in our model Tx

[Eq. (5)] and is observed to be a factor of Tx/T ≈ 10 − 50
larger than in the inert system (not containing myosins) [1].
These values are in general agreement with the values extracted
above for TFDT from Ref. [2], and note that we predict [Eqs. (5)
and (G3)]: TFDT (ω → 0)/Tx = 1 + λ̃〈�τ 〉 > 1.

Furthermore, in these experiments [1] it was observed that
the distribution of relative particle displacements P [�x(τω)]
is highly non-Gaussian. Comparing this to Fig. 2(b) we note
that both the experiments and in our calculations the NGP has
a finite value for τω → 0. With increasing τω the NGP reaches
a maximum, both in the experiments and in our calculations
[Figs. 2(b) and 2(d)]. By comparing to our model we expect
the peak to appear at τω ≈ �τ , so the observations [1] suggest
the burst duration is of order �τ ≈ 1–10, in agreement with
similar studies [4,8]. Note that very similar NGP time scales
were observed in living cells [14,15] Our model predicts that
the maximal value of the NGP is a nonmonotonous function
of pon, and this may be explored by varying the concentration
of ATP in the system. Furthermore, from our model we
predict that the NGP decrease with decreasing active force, and
increasing stiffness of the confining network [Figs. 2(b) and
2(d), Eq. (F2)]. These predictions can be related to the observed
activity dependence of the NGP in cells [15] and the decay of
the NGP during the aging and coarsening of an active gel [4].

The large observed deviations from Gaussianity indicate
that the particle is in the strong confinement regime:
λ̃〈�τ 〉 > 1. The maximal value of the observed NGP ≈2–4
can be used to get an estimate of Tx , by taking it to be equal
to NGPmax [Eq. (F2)]. This gives us Tx ≈ 10–30kBT and
pon ≈ 2%–3%. This value of Tx is in good agreement with the
estimate made above. The value of pon is in agreement with
the observation that the waiting-time between bursts is much
longer than the burst duration [2], and with the measured duty
ratio of myosin-II [16].

In the limit of τω → ∞ the observed NGP of the dis-
placement distribution P [�x(τω)] decays to zero [1], while
for the calculated confined particle the NGP remains finite
[Figs. 2(b) and 2(d)]. At long times (�10 s) the observed
trajectory has large excursions [1], which we interpret as
the escape of the particle from the confining potential. The
ensuing hopping-type diffusion causes the NGP to vanish,
as for free diffusion [17]. Within our model we therefore
interpret the observed time scale of the vanishing of the NGP,
τω ≈ 10–100 s, as the time scale, which corresponds to the
mean trapping time of the bead within the confining actin
gel. Beyond this time scale the bead has a large chance to
escape the confinement, and hop to a new trapping site, which
corresponds to a reorganization of the actin network. The real
actin-myosin gel undergoes irreversible processes that make
its properties time-dependent and render it inhomogeneous
[4,18–20]. Such effects make the comparison to the model
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much more challenging. Large deviations from Gaussianity
were also observed for the Van Hove correlations in other
forms of active gels [21].

VIII. CONCLUSION

We investigated here the dynamics of a trapped active
particle, with several interesting results: (i) The activity leads
to strong deviations from equilibrium, such as the breakdown
of the virial theorem and equipartition. We find that in the
presence of elastic restoring forces the activity is mostly
“stored” in the potential energy of the system. (ii) Different
“effective temperatures” give a measure of the activity, and
some are dependent on the stiffness of the elastic confinement.
(iii) The displacement, position, and velocity distributions of
the particle are highly non-Gaussian in the regime of strong
elastic confinement and small number of dominant motors.
These distributions can be used, together with our simple
model, to extract information about the microscopic properties
of the active motors. Note that in our model the activity affects
the motion and position distributions of the trapped particle,
which is complementary to models where the activity drives
only the large-scale reorganization that moves the particle
between trapping sites [22,23] or leads to network collapse
[24]. The results of this model are in good agreement with
observations of the dynamics of tracer beads inside active gels,
and the simplicity of the model may make it applicable for a
wide range of systems. More complex viscoelastic relations
can be used in place of the simple elasticity presented here to
describe the dynamics inside living cells [25,26], as well as
nonlinear elasticity [9]. Note that in most current experiments
on actin-myosin gels, the myosin-driven activity is strong
enough to lead to large-scale reorganization of the actin
network, eventually leading to the network collapse [4,18–20].
In order to observe the active motion for the elastically trapped
tracer in the intact network, which we have calculated, much
weaker active forces will be needed. Our work can therefore
give motivation for such future studied.
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APPENDIX A: NUMERICAL SIMULATIONS

The simulations of the dynamics of the particle inside the
one-dimensional harmonic potential were carried out using
explicit Euler integration of Eq. (1). We were careful to use
a small time step �t , such that it was always an order of
magnitude smaller than the smallest time scale in the problem.
The time scales in the problem are τ,�τ and

√
2/k, where

the last time scale is that of the oscillation frequency of the
particle inside the harmonic potential.

The iterative equations take the following form in terms of
the sampling time �t :

v(t + �t) = v(t) + [−λv(t) − kx(t)+fa(t)]�t+
√

2λT �tη,

(A1a)

x(t + �t) = x(t) + v(t)�t, (A1b)

where η is a random Gaussian variable with zero mean
and variance 1. Considering that both the waiting time and
the persistence time are exponentially distributed with mean
values τ and �τ , respectively, the iterative equation for the
active force fa obeys

fa(t + �t)=

⎧⎪⎨⎪⎩
fa(t) if fa(t) �= 0 prob. 1 − �t/�τ,

fa(t) if fa(t) = 0 prob. 1 − �t/τ,

0 if fa(t) �= 0 prob. �t/�τ,

ε{−f,f } if fa(t) = 0 prob. �t/τ,

(A2)

where ε{−f,f } = {f, − f } with same probability.

APPENDIX B: POSITION FLUCTUATIONS
OF A TRAPPED PARTICLE

From the model equations of motion [Eq. (1)], we can
calculate the mean-square fluctuations in the particle position
for a shot noise force correlations with average burst duration
�τ . We begin by Fourier transforming Eq. (1) to get

− ω2x̃ = iωλx̃ + f̃a + f̃T − kx̃, (B1)

where thẽ denotes the FT. From Eq. (B1) we get

x̃(ω) = f̃a(ω) + f̃T (ω)

−ω2 − iωλ + k
. (B2)

The fluctuations (correlations) are therefore

〈x2〉(ω) = 〈̃x(ω)̃x∗(ω)〉 =
〈
f̃ 2

a

〉
(ω) + 〈

f̃ 2
T

〉
(ω)

(k − ω2)2 + (ωλ)2
, (B3)

where we have 〈f̃ 2
a 〉(ω) = Nmponf

2
0

�τ
1+(ω�τ )2 (Poissonian shot

noise with mean burst length �τ ), and 〈f̃ 2
T 〉(ω) = 2λT

(thermal white noise) [11].
For the active part alone, we get

〈x2〉 = Nmponf
2
0

2π

∫ ∞

0

1

(ω2 − k)2 + (ωλ)2

�τ

1 + (ω�τ )2
dω.

(B4)
The solution for this integral is quite lengthy. In the limit
of weak trapping, k → 0, we get that the mean-square
displacement diverges,

〈x2〉 → 2
Nmponf

2
0 �τ

k(k�τ + λ)
, (B5)

such that the mean potential energy in this limit approaches a
constant value

T ′
x � k〈x2〉 → 2

Nmponf
2
0 �τ

(k�τ + λ)
. (B6)

In the limit of large k, we can expand the integrand of
Eq. (B4) in powers of k−1 to get the integral

〈x2〉 = 2Nmponf
2
0

π

∫ √
k

0

�τ

k2[1 + (ω�τ )2]
dω, (B7)

which is also bound with a maximal frequency corresponding
to the natural frequency of the harmonic trap. This integral
gives a simple expression, which gives a good fit description

012716-5

199



BEN-ISAAC, FODOR, VISCO, VAN WIJLAND, AND GOV PHYSICAL REVIEW E 92, 012716 (2015)

FIG. 3. (Color online) Calculated mean-square position fluctuations (plotted as a mean potential energy) for the trapped particle: Brown
line, full solution; purple line, approximate solution [Eq. (B8)]; blue line, approximate expression T ′

x for the limit λ�τ � 1 [Eq. (B9)]. In
both panels we used �τ = 1, and (a) λ = 10, (b) λ = 0.01. In (a) the blue line agrees perfectly with the full solution, while in (b) it has a
discrepancy at intermediate confinements.

as long as k � λ2 (Fig. 3):

〈x2〉k = 2Nmponf
2
0

πk2
arctan [

√
k/2�τ ]. (B8)

Finding the value of k for which the scaling changes from
〈x2〉 ∼ k−3/2 to 〈x2〉 ∼ k−2, is simply by equating the large
and small k limits of 〈x2〉k [Eq. (B8)].

In the limit of λ�τ � 1 we find the simple approximate
expression (Fig. 3)

T ′
x � k〈x2〉 � �τNmponf

2
0

8λ2(k�τ/2λ + 1)
. (B9)

The numerical simulations, in the highly damped limit
(λ�τ � 1) indicate the k−1 and k−2 limits [Fig. 4(a)].

APPENDIX C: VELOCITY FLUCTUATIONS
OF A TRAPPED PARTICLE

Similar to the procedure for the position fluctuations
described above, we can calculate the velocity fluctuations.
The mean-square fluctuations in the particle velocity are given

simply from Eq. (B4) by

〈v2〉 = Nmponf
2
0

2π

∫ ∞

0

ω2

(ω2 − k)2 + (ωλ)2

�τ

1 + (ω�τ )2
dω.

(C1)

The solution for this integral is again quite lengthy. As for
the position distribution, we can find an approximation for the
large k limit, using

〈v2〉 = 2Nmponf
2
0

π

∫ √
k

0

ω2�τ

k2[1 + (ω�τ )2]
dω, (C2)

which is also bound with a maximal frequency corresponding
to the natural frequency of the harmonic trap. This integral
gives a simple expression, which gives a good fit description
as long as k � λ2:

〈v2〉k = 2Nmponf
2
0

πk2�τ 2
(
√

k/2�τ − arctan [
√

k/2�τ ]). (C3)

The scaling of 〈v2〉k changes from 〈v2〉 ∼ k−0.5 to 〈v2〉 ∼ k−3/2

as k increases [Fig. 5(b)].

FIG. 4. (Color online) Simulated mean-square particle displacements (a) and velocity (b) in the limit of λ�τ � 1, using �τ = 1, λ = 50,
f0 = 1, pon = 0.1. The dashed lines indicate the power laws with exponents −1, − 2 in (a) and −3/2 in (b).
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FIG. 5. (Color online) Calculated mean-square velocity fluctuations for the trapped particle: brown line, full solution; purple line,
approximate solution [Eq. (C3)]; blue line, highly damped limit [Eq. (C4)]; and the dashed blue line is the free-particle value [11]. In
both panels we used �τ = 1 and (a) λ = 10, (b) λ = 0.01.

In the limit of λ�τ � 1 we have the simple approximate
expression

〈v2〉 � �τNmponf
2
0

4[λ(1 + �τλ) + π�τ 2
√

k3/8]
, (C4)

which fits quite well the full expression in Fig. 5(a).
The numerical simulations, in the highly damped limit

(λ�τ � 1) indicate the k0 and k−3/2 limits [Fig. 4(b)].

APPENDIX D: EFFECTIVE TEMPERATURE DUE TO
FORCES FROM DISTANT (AND NUMEROUS) MOTORS

In a linear elastic medium, the displacements and stresses
decay from a point source (at least) as 1/r2. Since there are
numerous distant motors affecting the bead, their cumulative
random forces are most likely to give rise to Gaussian
distribution of position and velocities for the trapped particle.
Each shell (of thickness dr) at radius r from the tracer beads
has Nm(r) = 4πr2ρ dr motors (at constant density ρ), and
therefore they contribute to the mean-square velocity the fol-
lowing contribution [in the limit of λ�τ � 1, using Eq. (C4)]:

〈v2〉 � Nm(r)

(
Nmponf0

a2

r2

)2
�τ

4[λ(1 + �τλ) + π�τ 2
√

k3]

∝ 1

r2
, (D1)

where we isolated the number of motors and the r dependence
of the active forces and introduced a length scale a beyond
which the far-field calculation holds. Integrating this
expression we get

〈v2〉f ar � 〈v2〉0(4πρa3), (D2)

where 〈v2〉0 is the value for the single proximal motor given in
Eq. (C4). We find that the far-field contribution of the distant
motors is proportional to their density ρ.

APPENDIX E: DISPLACEMENT DISTRIBUTION
FOR NUMEROUS MOTORS

As the number of motors kicking the particle (Nm)
increases, we find that the distribution of the particle position
becomes more Gaussian, even in the limit of larger damping
λ�τ � 1 and strong confinement λ̃�τ � 1. We demonstrate
this in Fig. 6, which shows that the position distributions
P (x) and the displacement distributions P [�x(τω)] approach
a Gaussian for Nm larger than ∼10.

APPENDIX F: NGP FOR THE HIGHLY DAMPED LIMIT

We find that the maximal value of the NGP for P [�x(τω)]
is close to the NGP of P (x) [Fig. 2(b)], which is a function for
which we have a good analytic approximation [11], given by

FIG. 6. (Color online) Simulated particle position distribution P (x) (red lines) and displacement distributions P (�x(τω)) (blue lines), for
increasing number of motors: Nm = 5,10,20 (left to right), using �τ = 1, λ = 50, f0 = 1, pon = 0.1.
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(for a single motor)

NGP (Nm = 1) = 4(1 − 3pon)p3
onT

2
x,1

3(1 + 2p2
onTx,1)2

, (F1)

where Tx,1 is the effective temperature of the spatial distribu-
tion [Eqs. (4) and (5)] for pon = 1. The maximal value of the
NGP for a single motor, as a function of pon is obtained from
Eq. (F1) at pon = α/(2 + 6α) and is given by

NGPmax = (1 + 3α)2

3α(2 + 3α)
− 1, (F2)

where α = kBT /Tx,1. This is a monotonously decreasing
function of the stiffness k, due to the decrease in Tx,1 in stiffer
gels [Eqs. (4) and (5)].

APPENDIX G: EFFECTIVE TEMPERATURE
FROM THE FDT, TF DT

Following Ref. [11], and using Eq. (3), we can write for the
λ̃�τ � 1 limit (when T = 0)

Response : χxx(ω) = 1

γ (iω − λ̃)
, (G1)

Fluctuations : Sxx(ω) = f 2
0

λ(λ̃2 + ω2)

〈�τ 〉
1 + (ω〈�τ 〉)2

, (G2)

⇒ TFDT (ω) = ωSxx(ω)

2Im[χ (ω)]
= Nmponf

2
0 〈�τ 〉

λ[1 + (ω〈�τ 〉)2]
, (G3)

resulting in Eq. (G3).

APPENDIX H: ANALYTIC CALCULATION OF THE NGP
WITHOUT INERTIAs

To compute the expression of the NGP, we derive the mean
quartic displacement (MQD) 〈�x4〉 in the regime where it is

time translational invariant:

〈�x4〉 = 〈
�x4

T

〉 + 〈
�x4

A

〉 + 6
〈
�x2

T

〉〈
�x2

A

〉
, (H1)

where the subscripts T and A refer, respectively, to the thermal
and active contributions. The expression of the MSD is given
by

〈
�x2

T

〉
(t) = 2kBT

k
(1 − e−t/τr ),

〈
�x2

A

〉
(t) = 2kBTA/k

(τ/τr)2 − 1

[
τ

τr

(
1 − e−t/τ

) + e−t/τr − 1

]
, (H2)

where τr = λ/k is a thermal relaxation time scale. The
MQD under purely thermal conditions is related to the
thermal MSD since the thermal process is Gaussian 〈�x4

T〉 =
3〈�x2

T〉2
. To compute the active MQD, we separate the

position displacement �xA(ti,tf) = xA(tf) − xA(ti) in several
contributions, such that 〈�x4

A〉 is a power law combination
of these contributions. We compute each term using the
active force statistics and take the limit of large ti at fixed t

corresponding to the time translational regime. The advantage
of the separation we propose is that each term of the active
MQD converges in such limit. The appropriate separation is

�xA,a(ti,tf) = (e−t/τr − 1)
∫ ti

dt ′χ (ti − t ′)fA(t ′), (H3a)

�xA,b(ti,tf) =
∫ t

dt ′χ (t − t ′)fA(ti + t ′), (H3b)

where χ (t) = e−t/τr/λ is the noncausal response function, and
t = tf − ti is the time lag. In the time translational regime, we
compute

〈
�x4

A,a

〉
(t) = T 2

A
3τ 4

r (2τ0 + τr)(τ0 + τ )e− 4t
τr (et/τr − 1)4

λ2(τr + τ )(τr + 3τ )[τr(τ0 + τ ) + 2τ0τ ]
, (H4a)

〈
�x3

A,a�xA,b
〉
(t) = T 2

A
3τ 4

r τ (2τ0 + τr)(τ0 + τ )e− 4t
τr (et/τr − 1)3(et( 1

τr
− 1

τ
) − 1)

λ2(τr − τ )(τr + τ )(τr + 3τ )[τr(τ0 + τ ) + 2τ0τ ]
, (H4b)

〈
�x2

A,a�x2
A,b

〉
(t) = T 2

A
τ 4

r (et/τr − 1)2e− 4t
τr

− t
τ

λ2(τr − τ0)(τ − τr)(τr + τ )2[τr(τ0 + τ ) − 2τ0τ ][τr(τ0 + τ ) + 2τ0τ ]

× {
4τ 4

0 (τ − τr)(τr + τ )e
2t
τr

− t
τ0 + (τr − τ0)(τ − τr)

[
τ 2

r (τ0 + τ )2 − 4τ 2
0 τ 2]et( 2

τr
+ 1

τ
)

+ (τ0 − τr)(τ0 + τ )(τr + τ )et/τ
[
4τ 2

0 τ − τ 2
r (τ0 + τ )

]
− 2(τ0 + τ )et/τr

[
2τ 2

0 τr + τ (τ0 − τr)(2τ0 + τr)
]
[2τ0τ − τr(τ0 + τ )]

}
, (H4c)

〈
�xA,a�x3

A,b

〉
(t) = −T 2

A
3τ 4

r e− 4t
τr (et/τr − 1)

λ2τ (τr + τ )

{
τ 2(2τ0 − τr)(τ0 + τ )

(τr − 3τ )(τr − τ )[τ0(τr − 2τ ) + τrτ ]
+ 2τ 4

0 e
−t( 1

τ0
− 2

τr
+ 1

τ
)

(τ0 − τr)(τ0 + τr)[τr(τ0 + τ ) − 2τ0τ ]

+ (τ0 + τ )[τ0(τr + τ ) − τrτ ]et( 1
τr

− 1
τ

)

(τr − τ0)
(
τ 2

r − τ 2
) + (τ0 + τ )[τ (τ0 + τr) − τ0τr]e

3t
τr

− t
τ

(τ0 + τr)
(
τ 2

r − 4τrτ + 3τ 2
) + τ 2e

2t
τr

τ 2
r − τ 2

}
, (H4d)
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〈
�x4

A,b

〉
(t) = T 2

A
3τ 4

r e− 4t
τr

λ2τ (τr + τ )

{
− τ (2τ0 − τr)(τ0 + τ )(τr + τ )

(τr − 3τ )(τr − τ )[τ0(τr − 2τ ) + τrτ ]

+ 8τ 5
0 (τr + τ )et(− 1

τ0
+ 2

τr
− 1

τ
)

(τr − τ0)(τ0 + τr)[τr(τ0 + τ ) − 2τ0τ ]]τr(τ0 + τ ) + 2τ0τ ]
− 4(τ0 + τ )[τ (τ0 + τr) − τ0τr]e

3t
τr

− t
τ

(τ0 + τr)
(
τ 2

r − 4τrτ + 3τ 2
)

+ 4(τ0 + τ )[τ0(τr + τ ) − τrτ ]et( 1
τr

− 1
τ

)

(τ0 − τr)(τr − τ )(τr + 3τ )
+ τ (2τ0 + τr)(τ0 + τ )e

4t
τr

(τr + 3τ )[τr(τ0 + τ ) + 2τ0τ ]
+ 2τe

2t
τr

τ − τr

}
, (H4e)

from which we deduce 〈
�x4

A

〉 = 〈
�x4

A,a

〉 + 3
〈
�x4

A,a�xA,b
〉 + 6

〈
�x2

A,a�x2
A,b

〉 + 3
〈
�xA,a�x3

A,b

〉 + 〈
�x4

A,b

〉
. (H5)
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We build up a phenomenological picture in terms of the effective dynamics of a tracer confined in a cage
experiencing random hops to capture some characteristics of glassy systems. This minimal description exhibits
scale invariance properties for the small-displacement distribution that echo experimental observations. We predict
the existence of exponential tails as a crossover between two Gaussian regimes. Moreover, we demonstrate that
the onset of glassy behavior is controlled only by two dimensionless numbers: the number of hops occurring
during the relaxation of the particle within a local cage and the ratio of the hopping length to the cage size.

DOI: 10.1103/PhysRevE.94.012610

I. INTRODUCTION

Time-dependent density correlations in an atomic or col-
loidal glass former exhibit, as temperature is decreased (or
as density is increased), a two-step relaxation. The short-
time β relaxation is associated with localized motion of the
particles while the longer-time α relaxation is associated with
cooperatively rearranging regions (CRR). This behavior of
the dynamic structure factor is well accounted for [1], at
sufficiently high temperatures, by the mode-coupling theory
(MCT) [2]. MCT being an approximate theory it does have
its share of pitfalls, but these are well-documented, and it
is fair to say that they are not fully understood, let alone
on intuitive grounds. One such prediction is the existence
of a critical temperature below which the α-relaxation stage
extends to arbitrary large times. This is often connected to the
difficulty of capturing the dynamics of the CRRs, which is
built from rare and intermittent events. One recent research
direction has been to brute-force improve the theoretical
basis of the MCT, and recent promising results [3] seem
to indicate that this may pay off to eliminate some of its
unpleasant features. Regarding the dynamics (diffusive versus
arrested) of an individual tracer [4,5], similar efforts are being
made at looking beyond the existing MCT. The most recent
experiments, instead of focusing on the relaxation of collective
density modes, are based on the observation of individual
tracers. Tracking experiments have been conducted by many
different groups, both in actual colloidal systems [6–11] as well
as in silico [12,13]. The increasing accuracy of these methods
allows one to measure the probability distribution function of
the tracer displacement with unprecedented statistics [14].

To analyze and interpret tracking experiments, minimal
phenomenological models have been developed. By using a
continuous-time random walk (CTRW) description, glassy
systems have been studied numerically [15,16], and exact an-
alytic results have been obtained for the Van Hove correlation
function [13]. The CTRW considers instantaneous transitions
between locally stable positions, thus decoupling the diffusion
in a confined environment from the cage jumps [17]. Some
model variations include the existence of a multiplicity of
timescales in the cage dynamics [18–21], whereas others,
which include a single waiting timescale, successfully re-
produce many features of the dynamics of tracers in glassy

systems [13,22]. Despite the success of these minimal models,
the existence of a scale invariant regime for the displacement
distribution, as observed experimentally [6,8,10], is still an
open issue. The main purpose of this work is to show that this
scale invariance feature can emerge from a phenomenological
description.

Note that systems other than glasses fall within the scope
of our study, such as sheared fluids [23–26] or interacting self-
propelled particles [27–31]. For these systems glassy behavior
is generally investigated through the self-intermediate scat-
tering function (sISF). In the case of self-propelled particles
it has been observed that the onset of glassy behavior is
progressively shifted when self-propulsion increases. Even
though a direct extension of MCT is enough to account for
this phenomenon [32–34], an effective one-body dynamics
that clearly determines how self propulsion affects the glassy
behavior is still missing. We present here a minimal model
that describes such one-body dynamics. By investigating the
displacement distribution, we show that it displays scale
invariance for small displacement, and we determine how the
onset of glassy behavior is linked to self propulsion. Finally,
we introduce an effective mean-field potential to bridge over
back to a system of interacting particles.

II. MODEL

Our model is based on a common picture that has emerged
for glassy and granular systems connecting the slowing down
of the dynamics to the cage effect [13,18,20,36,37]. The
escape of the particle from the local confinement stems from
structural rearrangements of the system. The activation of such
sudden and irreversible reorganization can be of three types:
spontaneous thermal fluctuations, external shear, or internal
self-propulsion. In what follows, we refer to such a process
as a directed event, by contrast to the passive diffusion of the
particle within the cage, whose precise structure is given by
collective many-body effects of the global system.

We consider a particle confined within a harmonic cage
of typical size σ . We introduce the timescale τR quantifying
the time needed by the particle to explore the cage. The
fluctuations of the particle in the cage are driven by a
noise of amplitude D = σ 2/τR. To account for structural

2470-0045/2016/94(1)/012610(8) 012610-1 ©2016 American Physical Society

204



FODOR, HAYAKAWA, VISCO, AND VAN WIJLAND PHYSICAL REVIEW E 94, 012610 (2016)

rearrangements, we assume that the central position of the
cage is subjected to random shifts. This is to mimic the mod-
ification of the metastable state explored by the particle. The
cage hops instantaneously by a random distance, which is
exponentially distributed with a characteristic hopping length
ε. The time between two consecutive hops is also exponentially
distributed, with a mean value τ0. After a cage rearrangement,
the particle relaxes toward the new cage position. We regard
such relaxation as an equilibrium process. The fluctuation-
dissipation theorem enforces that the relaxation time should
equal the typical time of exploration τR. We end up describing
the one-dimensional dynamics of the particle position x as

dx

dt
= −x(t) − x0(t)

τR
+ ξG(t),

dx0

dt
= ξNG(t), (1)

where ξG is a zero-mean Gaussian white noise with cor-
relations 〈ξG(t)ξG(t ′)〉 = 2Dδ(t − t ′). More realistic higher-
dimensional generalizations do not induce any physical differ-
ence with the one-dimensional modeling we adopt here.

Our motivations for the explicit form of the noise ξNG acting
on the cage are twofold. One the one hand, we expect the rare
intermittent events behind the α relaxation to be unable to
build up uncorrelated Gaussian statistics. On the other hand,
we choose a specific form that has the advantage of allowing for
a closed-form analytic solution that will ease the subsequent
analysis. It leads us to consider a zero-mean non-Gaussian
white noise with cumulants,

〈ξNG(t1) . . . ξNG(t2n)〉C = (2n)!
ε2n

τ0
δ2n(t1, . . . ,t2n). (2)

We decouple caging and hopping dynamics, so that ξG and ξNG

are uncorrelated processes. For symmetry reasons, only the
2n-time correlation functions of ξNG are nonzero. Additional
arguments on the robustness of our results with a generic-time
symmetric non-Gaussian white noise is given in Appendix A.
We will explicitly demonstrate that the scale invariance of
the small-displacement distribution is indeed insensitive to the
specifics of the hop distribution, but the exponential crossover
regime to a Gaussian rests on a typical exponential distribution
of cage hops.

We distinguish the passive and active fluctuations of the
particle. The former are associated with the confined motion
of the particle in a steady cage, as measured by D. The latter
are induced by the cage hops, thus describing the motion
in a nonconfined environment characterized by the diffusion
coefficient DA = ε2/τ0. The coexistence of both Gaussian
and non-Gaussian noises is crucially important to enhance
non-Gaussian nature [38].

III. STATISTICS OF DISPLACEMENT

A. Fourier distribution of displacement

We are interested in the fluctuations of the displacement
	x(t,ti) = x(t + ti) − x(ti), which no longer depends on the
initial time of measurement ti in the limit ti → ∞. We define
the probability distribution of displacement in the Fourier
domain as

P̃ (q,t) = lim
ti→∞〈eiq	x(t,ti )〉. (3)

Since the passive and active processes are uncorrelated, we
separate the displacement distribution as P̃ = P̃PP̃A, where
the subscripts P and A refer, respectively, to passive and active
contributions. The passive distribution is Gaussian, thus being
entirely determined by the passive mean-square displacement,

P̃P(q,t) = e−(qσ )2ft , (4)

where ft = 1 − e−t/τR . We express the active distribution as

P̃A(q,t) = lim
ti→∞

〈
exp

[
iq

∫ ∞

0
dsh(s)ξNG(s)

]〉
, (5)

where

h(s) = [1 − e−(ti+t−s)/τR ]
(ti + t − s)
(s − ti)

+ e−(ti−s)/τR [1 − e−t/τR ]
(ti − s), (6)

with 
 being the Heaviside step function. We evaluate the
average in Eq. (5) with the expression of the characteristic
functional of the white non-Gaussian noise ξNG [39–41],

P̃A(q,t) = lim
ti→∞ exp

{ ∞∑
n=1

(iqε)2n

τ0

∫ ∞

0
ds[h(s)]2n

}
(7)

= lim
ti→∞ exp

{
− 1

τ0

∫ ∞

0
ds

[qεh(s)]2

1 + [qεh(s)]2

}
, (8)

where we have used the explicit form of the noise cumulants
in Eq. (2). We compute the integral in Eq. (8) by using the
explicit expression of h in Eq. (6), and we take the limit of
large ti after the integration. From this, we arrive at the result:

P̃ (q,t) = exp

{
− τRqε/τ0

1 + (qε)2

[
qεt

τR
− arctan(qεft )

]}

× [1 + (qεft )
2]

− τR
2τ0

(qε)2

1+(qε)2 e−(qσ )2ft . (9)

This result contains all the statistical information related to the
displacement 	x(t). In particular, all the moments are defined
as

〈	xn(t)〉 = lim
ti→∞〈	xn(t,ti)〉 = ∂nP̃

∂(iq)n

∣∣∣∣
q=0

. (10)

B. Mean-square displacement and non-Gaussianity

As a first insight into the dynamics of our model, we
study the time evolution of the second moment 〈	x2(t)〉, i.e.,
the mean-square displacement (MSD). Its expression can be
computed from Eq. (10):

MSD = 2(D − DA)τRft + 2DAt, (11)

The behavior of the MSD is controlled by three independent
parameters {D,DA,τR}. It is diffusive at short and long times
with diffusion coefficients D and DA, respectively [Fig. 1(a)].
The predictions for a steady and a hopping cage coincide at
times shorter than t∗ = τRD/DA = τ0(σ/ε)2, referred to as
the passive regime. This shows that the effect of the active
fluctuations is hidden as long as the typical distance covered
by the cage ε

√
t/τ0 is smaller than the cage size σ . Between

the two diffusions, a plateau regime appears when DA 	 D,
as an evidence of the cage effect, and we observe a transient
superdiffusion if DA 
 D. The time when the MSD deviates
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FIG. 1. Time-evolution of (a) the mean-square displacement (MSD), and (b) the non-Gaussian parameter (NGP). The MSD saturates
for a steady cage (solid black line), corresponding to a vanishing NGP. (c) Comparison of the theoretical prediction of the distribution of
displacement with that of colloidal particles at density ϕ = 0.429 taken from Ref. [10]. (d) Theoretical distribution of displacement scaled by
the standard deviation of the central Gaussian part corresponding to a binary Lennard-Jones glass-forming mixture for different temperatures
at the α relaxation time [35]. See the details in Appendix B.

from the plateau, equal to t∗, can be shifted to an arbitrary
large value. Conversely, the time when superdiffusion arises,
also equal to t∗, can be arbitrarily short [30]. Our model
contains the existence of ballistic directed events, as assessed
by the superdiffusion, even if there is no persistence time in
its formulation. The asymptotic behaviors of the MSD are
summarized in Table I.

Beyond MSD, the fourth moment is generally investigated
to identify non-Gaussian features of the displacement
statistics. More precisely, the deviation of the displacement
distribution from Gaussian is quantified by the non-Gaussian
parameter:

NGP = 〈	x4〉
3〈	x2〉2

− 1. (12)

In our model, deviations from Gaussian behavior are governed
by atypical events in which rare but important excursions
occur. In that respect, the NGP characterizes the amount of
directed events in the particle trajectory, probing the structural
rearrangements of the system. Again using Eq. (10), its
calculation is straightforward:

NGP = τ0

3τR

2e
− 3t

τR − 9e
− 2t

τR + 18e
− t

τR − 11 + 6t
τR

[(D/DA − 1)ft + t/τR]2
. (13)

Its evolution is determined by {DA/D,τR,τ0}, where τ0 only
affects the amplitude. The NGP vanishes at short and long time,
corresponding to the passive and active Gaussian regimes,

TABLE I. Different regimes in the time evolution of the MSD
and the NGP.

DA 	 D t 	 τR τR 	 t 	 τR
√

D/DA τRD/DA 	 t

MSD 2Dt 2DτR 2DAt

NGP τ0
2τR

(
DA t

DτR

)2
2tτ0

(
DA
DτR

)2 2τ0
t

DA 
 D t 	 τRD/DA τRD/DA 	 t 	 τR τR 	 t

MSD 2Dt
2DAt2

τR
2DAt

NGP τ0
2τR

(
DA t

DτR

)2 2τ0
τR

2τ0
t

respectively. It takes positive values in the transient regime,
for which the distribution is broader than Gaussian [Fig. 1(b)].
When DA 	 D, the peak time equals t∗, namely the time
when the MSD deviates from the transient plateau, as observed
in colloidal systems [6,8,10,42,43], and the peak value reads
(ε/σ )2/2. When DA 
 D, there is a plateau regime around
the peak value, equal to 2τ0/τR. In both cases, the NGP starts
to decrease when the long-time diffusive regime sets in. These
asymptotic behaviors are also summarized in Table I.

C. Distribution of displacement

To characterize further the non-Gaussian behavior of the
displacement fluctuations, we have to deal with the complete
form of the spatial Fourier transform Eq. (9). Even though
a complete Fourier inversion is not possible analytically, we
can deduce several useful informations by looking at limiting
cases, where approximations make calculations easier.

First, we observe that the active part of distribution in Eq. (9)
can be simplified in the small and large q limits:

P̃A(q,t) ∼
qε	1

exp

[
−(qε)2 τR

τ0

(
t

τR
− ft

)]
, (14)

P̃A(q,t) ∼
qε
1

e−t/τ0 (|q|εft )
−τR/τ0 . (15)

Taking q = 1/σ , it follows that the total distribution P̃ is
Gaussian at all times when ε 	 σ , whereas the non-Gaussian
features affect the large-time relaxation when ε � σ , as
reported in Table II.

TABLE II. Different regimes in the time evolution of the Fourier-
displacement distribution at q = 1/σ . It is always Gaussian at times
shorter than the terminal relaxation time t∗ = τRD/DA, and some
non-Gaussian features appear at later times if ε � σ .

P̃ (1/σ,t) ε 	 σ ε � σ

t 	 t∗ e−(qσ )2ft e−(qσ )2ft

t 
 t∗ e−q2DAt e−(qσ )2ft −t/τ0 (|q|εft )
−τR/τ0
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The displacement distribution is also always Gaussian at
asymptotically short and long times, corresponding, respec-
tively, to the passive and active diffusions. In the intermediate
transient regime, it is Gaussian for small and large displace-
ments, with a non-Gaussian crossover in between.

The active distribution PA has a Gaussian behavior for
large displacements and large times, as a signature of the
central limit theorem. It behaves like a power law for
small displacements with an exponential cutoff of the form
e−|	x|/(εft ). Mathematically, the exponential tails are due from
the pole in the last term of Eq. (9). Therefore, the total
distribution P̃ is Gaussian at short and large displacement
with exponential tails in between. The power-law behavior is
only observed in the deviation from the central Gaussian part,
as discussed below. To determine the deviation from the large
Gaussian part, we expand ln P̃ for small q as

ln P̃ (q,t) = −〈	x2(t)〉
2

q2 + 〈	x4(t)〉 − 3〈	x2(t)〉2

4
q4

+O(q6). (16)

It follows that the transition between the large Gaus-
sian part and non-Gaussian features appears at 	x ∼
[(〈	x4(t)〉/〈	x2(t)〉 − 3〈	x2(t)〉)/2]

1/2
.

The accessible range of displacements for experimental and
simulated systems does not always allow one to observe the
large Gaussian part of the distribution (they can clearly be
seen, though, in Ref. [10]). The existence of directed events is
quantified through the deviation from the central Gaussian, that
is via the crossover between the two Gaussian parts. Within our
model, it is given by exponential tails, as commonly reported in
glassy systems [13], of the form e−|	x|/(εft ). To quantitatively
test the predictions of our model with experiments and
computer simulations, we have compared our results with
existing data for a dense suspension of colloidal particles [10]
and a binary Lennard-Jones mixture [13,35]. Our model
perfectly fits these results, as shown in Figs. 1(c) and 1(d). For
the colloidal system, we reproduce the time evolution of the
distribution with parameters {τ0/τR,ε/σ } = {25,6} [Fig. 1(c)].
In the Lennard-Jones mixture, the measurements are taken for
four temperatures at the α relaxation time, corresponding to
t∗ within our model (see below). The central Gaussian part
barely varies, whereas the tails decrease with temperature.
We identify the temperature with the diffusion coefficient
D of the confined motion, and we adjust the corresponding
exponential tails with ε = {0.2,0.25,0.29,0.33} from left to
right in Fig. 1(d). Available data supporting our choice
of an exponential cage-hop distribution, however, extend
over a single decade, and it is likely that other choices of
distribution could fit the data. More detail on the analysis on the
experimental and numerical data is provided in Appendix B.

To further characterize the departure from the central
Gaussian, we investigate the transition between the central
Gaussian part and the tails by looking at the intermediate-
displacement part of the distribution Pint, which does not
include the exponential tails. We focus on the case τ0 >

τR, namely when the time needed for the particle to relax
within the cage is shorter than two successive cage hops. We
start considering the Fourier distribution of displacement at
large wave number. From Eqs. (4) and (15), we deduce the

expression of this distribution in the limit qε 
 1:

P̃ (q,t) ∼
qε
1

e−(qσ )2ft−t/τ0 (|q|εft )
−τR/τ0 . (17)

We perform the inverse Fourier transform of Eq. (17) to obtain

P (x,t) ∼
x	ε

1F1

[
τ0 − τR

2τ0
,
1

2
; − (x/σ )2

4ft

]
≡ Pint(x,t), (18)

where 1F1 is the confluent hypergeometric function of the
first kind. It depends on the hopping statistics only via the
typical waiting time τ0 between two successive cage hops,
thus being independent of the hopping length ε. Besides,
this result remains unchanged for any hopping distribution.
This suggests that the intermediate-displacement distribution
is an appropriate probe to reveal universal behavior in glassy
systems.

The asymptotic behaviors of Pint are given by

Pint(x,t) ∼
x→0

e
−(1− τR

τ0
) (x/σ )2

4ft , (19)

Pint(x,t) ∼
x→∞

[(
1 − τR

τ0

)
(x/σ )2

4ft

] τR−τ0
2τ0

gτ0/τR , (20)

where

gu = 1√
π

�

(
1 − 1

2u

)
sin

(
π

2u

)
. (21)

Therefore, the central part is Gaussian with standard deviation
σ
√

2ft/(1 − τR/τ0), and the departure from this Gaussian is
given by power-law tails with exponent τR/τ0 − 1 [Fig. 2].
Note that Pint only characterizes the deviation from the central
Gaussian part, so that it does contain the exponential tails
appearing for larger displacement. The typical length scale X

of the crossover between the Gaussian central part of this distri-
bution and the power-law tails can be obtained by considering
the small-displacement distribution for displacements scaled
by x∗(t) = σ

√
2ft/(1 − τR/τ0). From Eqs. (19) and (20), we
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FIG. 2. Distribution of small displacement scaled by x∗(t) =
σ
√

2ft/(1 − τR/τ0) in Eq. (18). The central part is Gaussian (solid
black line) with power-law tails (dashed lines). (Inset) Crossover
value X between the central Gaussian part and the tails of the
distribution as a function of τ0/τR.
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determine its expression as

X(u) =
√

1 − u

u
W

[ − 2(gu)
2u

u−1
]
, (22)

where W is the principal branch of the Lambert W function
defined by

z = W (z)eW (z). (23)

We plot X as a function of τ0/τR in the inset of Fig. 2.

IV. SCATTERING FUNCTION

The comparison with glassy dynamics can be extended
further by investigating the time evolution of the Fourier-
displacement distribution P̃ (q,t) at some fixed wave number,
yet to be determined. To this end,we can regard P̃ (q,t) as an
approximation for the sISF in a N -body system,

FS(q,t) = 1

N

N∑
i=1

〈eiq[xi (t)−xi (0)]〉. (24)

In that case, the relevant choice for q would be the value at
the first peak of the structure factor, which corresponds to
the inverse of the typical interparticle distance. Provided that
caging stems from the steric hindrance, the typical distance
between particles should be encoded in the cage size. This
leads us to choose 1/σ as the appropriate wave number.

There is a transition from a single to a two-step relaxation
of the sISF as DA/D decreases [Fig. 3]. This is typical
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FIG. 3. Flow curves of the Fourier-displacement distribution at
q = 1/σ . (a) The transition from a single to a two-step relaxation
as DA/D decreases is the hallmark of glassy systems. There is no
terminal relaxation for a steady cage (solid black line). The curves
are Gaussian at all times when ε 	 σ (dotted lines). (Inset) For
the two-step dynamics, we scale the time by the terminal relaxation
time to reveal an exponential master curve (dot-dashed line). (b) The
non-Gaussian statistics affects the relaxation when ε � σ (dashed
lines). (c) The curves such as ε � σ fall into the left wall e−t/τ0+ft

(dashed line), reflecting the dynamical slowing down as the cage hops
become less frequent.

of the behavior observed in glasses, the two-step dynamics
being reminiscent of the β and α relaxations. The sISF for
a steady cage relaxes within a time τR to a nonzero value,
equal to the transient plateau value of the sISF for a hopping
cage. Such behavior is similar to the kinetic arrest reported
in glasses, when the particle evolves in a metastable state
for an infinite long time. The plateau value reads e−(qσ )2

for
an arbitrary wave number. Cage rearrangements occur in the
active case; then the particle overcomes the local confinement.
The terminal relaxation for single and two-step dynamics
starts at time t∗, namely when the passive regime ends. For
a two-step dynamics, the terminal relaxation occurs when the
NGP reaches its peak value [10,43–47], and it can be shifted
to an arbitrary long time [27].

The sISF is Gaussian at all times when ε 	 σ , the structural
relaxation thus being entirely determined by the MSD. In
such a case, the long-time behavior is independent of DA

when scaling the time by t∗. For a two-step relaxation, the
corresponding master curve e−(1+t/t∗) is exponential [Inset of
Fig. 3(a)]. A stretched exponential is usually reported, with
an exponent close to one [24,25]. Our result suggests that
one would clearly observe exponential behavior when the
terminal relaxation time t∗ is large compared with the time
τR of the first relaxation. The non-Gaussian fluctuations play
a role in the dynamics if ε � σ , the higher-order statistics of
the displacement thereby affecting the relaxation of the system
[Fig. 3(b)].

A left wall appears in the flow curves if τR 	 τ0, namely
all the flow curves such that ε � σ fall onto a master curve
[Fig. 3(c)]. The expression of the left wall reads e−t/τ0−ft , the
associated terminal relaxation time being τ0. The existence of
a left wall is reminiscent of the dynamics for in silico shear
glasses [26]. The sheared region close to the left wall reflects
the slowing down of the relaxation as the cage hops become
less frequent, that is when τ0 increases. On the opposite, the
particle does not relax toward the center of the cage between
two successive hops when τR � τ0, in which case there is no
left wall because the transient caging does not lead to any
dynamical slowing down.

V. RELATION WITH MANY-BODY SYSTEMS

We now try to understand how our one-body approach
can be connected with multicomponent systems. Using the
expression of the Fourier-displacement distribution in Eq. (9),
we can deduce its time evolution:

∂t P̃ (q,t) = −q2

[
De−t/τR + DAft

1 + (qεft )2

]
P̃ (q,t). (25)

It follows that the displacement distribution obeys the follow-
ing master equation:

∂tP (x,t) = ρref

ζ
∂2
xx

∫
dyVeff(x − y,t)P (y,t)

+Deff(t)∂
2
xxP (x,t), (26)

where for later convenience we have introduced a reference
density ρref and a friction coefficient ζ . The time-dependent
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diffusion coefficient Deff and effective potential Veff read

Deff(t) = De−t/τR , (27)

Veff(x,t) = ζε

2ρrefτ0
exp

(
−|x|

εft

)
. (28)

Our aim is to establish that the one-body problem can be
mapped into a system of N particles with diffusion coefficient
Deff and interaction potential Veff, which are time-dependent.
The corresponding dynamics of a particle i reads

dxi

dt
= − 1

ζ

N∑
j=1

∂xi
Veff(xi − xj (t),t) +

√
2Deff(t)ξi(t), (29)

where ξi is a zero-mean Gaussian noise with correlations
〈ξi(t)ξj (t ′)〉 = δij δ(t − t ′). Note that Eq. (29) describes a
nonequilibrium dynamics since the correlations of the noise
are different from the prediction of the fluctuation-dissipation
theorem. The self-intermediate scattering function FS(q,t) is
defined as

FS(q,t) = 1

N

N∑
i=1

〈eiq(xi (t)−xi (0))〉. (30)

The inverse Fourier transform of FS(q,t) is the self-part of the
Van Hove correlation function GS(x,t)

GS(x,t) = 1

N

N∑
i=1

〈δ[x + xi(0) − xi(t)]〉. (31)

The n-body correlation functions of the density are generally
connected via a hierarchy of equations. The simplest closure
scheme, referred to as the random phase approximation (RPA),
consists in truncating this hierarchy at the Gaussian order,

∂tGS(x,t) = ρ0

ζ
∂2
xx

∫
dyVeff(x − y,t)GS(y,t)

+Deff(t)∂
2
xxGS(x,t), (32)

where ρ0 = N/L is defined in terms of the system size L. We
identify the density of particle ρ0 with the reference density
ρref introduced earlier, and we choose Deff and Veff to obey
Eqs. (27) and (28), respectively. It follows that Eqs. (32) and
(A5) describe the same dynamics, from which we deduce that
the distribution of displacement for the one-body dynamics
equals the Van Hove correlation function for interacting
particles within the RPA. Likely, the Fourier-displacement
distribution corresponds to the self-intermediate scattering
function. The effective potential arising from the non-Gaussian
statistics of the cage’s dynamics can be regarded as a mean-
field potential resulting from the interaction between many
particles. Such potential describes repulsive interactions with
a very soft core, thus allowing the overlap of the particles
with a finite cost of energy [48]. The range of interaction
increases with time as ft , namely it saturates within a time τR

to ε. Therefore, there is a transition between: (i) a diffusive
dynamics with very short interaction, (ii) a dynamics with a
very small diffusion coefficient and a larger interaction range,
corresponding, respectively, to times shorter and longer than
τR. The existence of interactions is a direct consequence of
the cage rearrangements within our model. The explicit form

of the potential is determined by the statistics of the cage
hops, which are exponentially distributed in the present case.
This suggests that the non-Gaussian properties of the particle
dynamics hold information about the details of interaction
between the particles.

VI. DISCUSSION

We have presented a minimal model of a particle immersed
in a glassy system, based on an active cage with non-
Gaussian dynamics. By focusing on a single particle we
are able to decouple complex phenomena that arise from
collective effects from the sole dynamics of the particle. Of
course, this approach is not intended in understanding how
collective phenomena emerge but rather to provide a vivid
picture explaining experiments on glassy systems. Despite
the simplicity of this model, we have demonstrated that
its dynamics encompasses the complex behaviors arising
in glassy systems and that the onset of glassy behavior is
shifted by the active component of the dynamics, in line
with numerical evidence [27,28,30,31]. Moreover, we have
highlighted the scale invariance of the small-displacement
distribution. The dynamics of tracers in living systems shares
common features with the glassy dynamics [49,50]. The
tracers can be either attached or embedded in a network of
filaments, whose rearrangement is induced by nonequilibrium
processes, thus monitoring transitions between locally stable
configurations [51,52]. The minimal approach of intermittent
dynamics that we offer in the present paper should also be
relevant for a large variety of biological systems [53–60], as
a useful tool to understand the existence of a scale-invariant
regime in the tracer displacement [49,61,62].
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APPENDIX A: GENERALIZATION TO AN ARBITRARY
HOPPING DISTRIBUTION

We introduce the distribution W , which prescribes the
distance of the instantaneous hops experienced by the cage.
We assume that the waiting time between two consecutive
jumps remains exponentially distributed with mean value τ0.
Hence, the cumulants of ξNG read

〈ξNG(t1) . . . ξNG(tn)〉C = Knδn(t1, . . . ,tn), (A1)

where

Kn = 1

τ0

∫
dx0W(x0)xn

0 . (A2)

Note that we recover Eq. (2) for an exponential distribu-
tion W(x0) = e−|x0|/ε/ε, as expected. We express the active

012610-6

209



ACTIVE CAGE MODEL OF GLASSY DYNAMICS PHYSICAL REVIEW E 94, 012610 (2016)

distribution in terms of the cumulant coefficients Kn as

P̃A(q,t) = exp

[ ∞∑
n=1

(iq)nKn

n!

(
f n

t

n
+

∫ t

0
dsf n

t−s

)]
. (A3)

We deduce the time-derivative of the total distribution,

∂t P̃ (q,t) = −q2Deff(t)P̃ (q,t) +
∞∑

n=1

(iq)nKn

n!

d

dt

×
(

f n
t

n
+

∫ t

0
dsf n

t−s

)
P̃ (q,t), (A4)

where

d

dt

(
f n

t

n
+

∫ t

0
dsf n

t−s

)
= e−t/τRf n−1

t + f n
t = f n−1

t . (A5)

By using Eqs. (A2) and (A5), we write the second term in the
righthand side of Eq. (A4) in terms of the hopping distribution
W as

[∂t + q2Deff]P̃ = 1

τ0ft

∫
dx0W(x0)

∞∑
n=1

(iqx0)n

n!
f n

t P̃

(A6)

= 1

τ0ft

∫
dx0W(x0)

[
eiqx0ft − 1

]
P̃ (A7)

= 1

τ0ft

[W̃(qft ) − 1]P̃ , (A8)

where we have used
∫

dx0W(x0) = 1. Our aim lies in deriving
the distribution for small displacements. To this end, we
consider Eq. (A8) in the large-q limit. Provided that the
hopping distribution W is not a δ function, its Fourier
transform should decay to zero for wave numbers sufficiently
large compared with the inverse typical hopping length 1/ε.

In this limit, we express Eq. (A8) as

∂t P̃ (q,t) ∼
qε
1

−
[
q2Deff(t) + 1

τ0ft

]
P̃ (q,t). (A9)

The solution of the above equation is consistent with Eq. (17).
However, the power-law prefactor in q in Eq. (17) can only be
obtained after a careful analysis of the asymptotics of W̃(qft )
(and it shows up only if W decays exponentially or slower at
large distances).

APPENDIX B: DATA ANALYSIS

We present in this appendix the analysis of the distribution
of displacement obtained from two different systems: (i) a
binary Lennard-Jones glass-forming mixture [13,35] and (ii) a
dense suspension of colloid particles [10]. In the two systems,
we can reproduce both the central Gaussian part and the
exponential tails as reported in Figs. 1(c) and 1(d).

For the Lennard-Jones mixture, we scale the displacement
distribution by the standard deviation of the Gaussian central
part. The measurements are taken for four temperatures at
the α relaxation time, corresponding to t∗ = τRD/DA within
our model. We identify the temperature with the diffusion
coefficient D of the confined motion, leaving us with three free
parameters {τR,τ0,ε}. The timescales {τR,τ0} = {0.05,1.05}
are taken as the same for all temperatures, and we adjust the
corresponding exponential tails with ε.

For the colloidal system, the measurements are taken at
five different times. We fix the ratio τR/τ0 from the deviation
of the central Gaussian part, and we determine {σ,τR,τ0} =
{0.05 μm,103 s,25 × 103 s} by fitting the central Gaussian
parts of the distribution. Eventually, we adjust the exponential
tails with ε = 0.3 μm. The time evolution of the distribution
is reproduced with the same set of parameters.
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Résumé

Les systèmes vivants évoluent hors de l’équilibre par l’injection permanente d’énergie
fournie par l’ATP. La dynamique des composants intracellulaires, tels que les protéines,
organelles et filaments du cytosquelette, est contrôlée par des fluctuations thermiques
d’équilibre ainsi que des forces actives aléatoires produites par les moteurs moléculaires.
Des traceurs sont injectés dans les cellules pour étudier ces fluctuations. Pour distinguer
les fluctuations hors de l’équilibre des effets purement thermiques, des mesures de fluc-
tuations spontanées et de réponse sont combinées. Nous récapitulons théoriquement les
fluctuations observées à l’aide d’un modèle phénoménologique. Cela nous permet de quan-
tifier les échelles de temps, de longueur, et d’énergie des fluctuations actives dans trois
systèmes expérimentaux : des mélanomes, des ovocytes de souris, et des tissus épithéliaux.

Les particules auto-propulsées extraient de l’énergie de leur environnement pour ef-
fectuer un mouvement dirigé. Une telle dynamique conduit à une riche phénoménologie
qui ne peut être capturée par la physique d’équilibre. Un exemple frappant est la pos-
sibilité pour des particules répulsives de subir une séparation de phase. Pour un modèle
spécifique d’auto-propulsion, nous explorons à quelle distance de l’équilibre opère la dy-
namique. Nous quantifions la rupture du renversement temporel, et nous délimitons un
régime d’équilibre effectif. L’identification de ce régime est basée sur l’analyse des fluctu-
ations et réponse des particules.

Abstract

Living systems operate far from equilibrium due to the continuous injection of energy
provided by ATP supply. The dynamics of the intracellular components, such as proteins,
organelles and cytoskeletal filaments, are driven by both thermal equilibrium fluctuations,
and active stochastic forces generated by the molecular motors. Tracer particles are
injected in living cells to study these fluctuations. To sort out genuine nonequilibrium
fluctuations from purely thermal effects, measurements of spontaneous tracer fluctuations
and of response are combined. We theoretically rationalize the observed fluctuations with
a phenomenological model. This model, in turn, allows us to quantify the time, length
and energy scales of the active fluctuations in three different experimental systems: living
melanoma cells, living mouse oocytes and epithelial tissues.

Self-propelled particles are able to extract energy from their environment to perform a
directed motion. Such a dynamics lead to a rich phenomenology that cannot be accounted
for by equilibrium physics arguments. A striking example is the possibility for repulsive
particles to undergo a phase separation, as reported in both experimental and numerical
realizations. On a specific model of self-propulsion, we explore how far from equilibrium
the dynamics operate. We quantify the breakdown of the irreversibility of the dynamics,
and we delineate a bona fide effective equilibrium regime. Our insight into this regime is
based on the analysis of fluctuations and response of the particles.
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