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 Les magnétomètres à pompage optique souffrent de problèmes d’anisotropie liés aux zones 

d’ombre et d’erreurs directionnelles qui limitent leur précision. Ces problèmes sont directement liés à 

leur principe de fonctionnement. Afin de pouvoir répondre aux besoins des applications mobiles, les 

magnétomètres atomiques utilisent des architectures complexes reposant par exemple sur l’utilisation 

de trois capteurs orthogonaux ou de plusieurs résonances (cas des magnétomètres CPT). Le CEA-

LETI a conçu un magnétomètre isotrope à pompage optique de l’hélium-4. Ce capteur est caractérisé 

par une sensibilité de 1 pT/�Hz (DC-100 Hz) et une précision meilleure que 45 pT. Son isotropie est 

assurée par un moteur piézoélectrique qui maintient l’axe de la polarisation rectiligne du faisceau 

pompe à angle droit avec le champ magnétique à mesurer. 

 Cette thèse se focalise sur la miniaturisation de ce magnétomètre. Elle est une continuation des 

travaux réalisés par le CEA-LETI et le CNES dans le cadre du projet SWARM de l’Agence Spatiale 

Européenne. 

 La miniaturisation nécessite une étude détaillée des lois d’échelle qui décrivent le comportement du 

capteur et ses caractéristiques. Pour ce faire, un modèle numérique a été développé. Les mesures 

expérimentales des caractéristiques les plus importantes (densité des atomes métastables et temps de 

relaxation) confirment la pertinence du modèle théorique. Le modèle permet de prévoir la gamme de 

pression  optimale de remplissage des cellules d’hélium et la limite théorique du bruit du capteur. 

 Le processus de miniaturisation nécessite également une redéfinition de l’architecture globale du 

système. Un rotateur de polarisation à cristaux liquides a été identifié pour remplacer le moteur 

piézoélectrique, utilisé dans le projet SWARM. Ce composant a un grand potentiel de miniaturisation 

et est parfaitement compatible avec les techniques de fabrication collective. Les premiers rotateurs à 

cristaux liquides ont été fabriqués et caractérisés. Ce composant permet d’effectuer une rotation de la 

polarisation dans la gamme entre 0 et plus que 300 degrés avec des temps de réponse compatibles avec 

les applications mobiles et spatiales. Les résultats montrent que la construction du rotateur et son 

pilotage électrique sont amagnétiques et peuvent par conséquence être appliqués dans la construction 

d’un magnétomètre isotrope à pompage optique de l’hélium-4.  

 Suite à ces étapes, un premier démonstrateur d’un magnétomètre isotrope miniature à l’hélium-4 a 

été conçu et caractérisé. La valeur maximale de la sensibilité, obtenue avec une cellule d’hélium de 

100 mm3 de volume et un rotateur de polarisation à cristaux liquides, est voisine de 8 pT/�Hz. Cette 

valeur peut encore être optimisée. 

 En parallèle, les briques de base d’un magnétomètre tout intégré ont été étudiées individuellement. 

Des VCSELs ont été réalisés pour remplacer le laser à fibre.  Une architecture de magnétomètre tout 

optique a été proposée. Enfin, des premières cellules d’hélium micro-fabriquées en verre-silicium-

verre ont été réalisées. Les premiers résultats expérimentaux montrent qu’il est possible de confiner de 

l’hélium dans une structure de ce type, ce qui ouvre la voie à un processus de fabrication collective.



8

�������


 Optically pumped magnetometers suffer from dead zones and heading errors that limit their 

accuracy. These problems are inherently related to their operating principle. In order to meet the 

isotropy requirements of mobile applications, atomic sensors use complex architectures, for example 

three orthogonally mounted sensors or multiple resonances (case of CPT sensors). CEA-LETI has 

successfully designed and manufactured an isotropic 4He magnetometer with a 1 pT/�Hz resolution 

(DC-100 Hz) and an accuracy better than 45 pT. Its isotropy is obtained thanks to a non-magnetic 

servo-driven piezoelectric motor which fixes the axis of linear polarization of pumping light at right 

angle with respect to the magnetic field to be measured. 

 This thesis concentrates on the miniaturization of the isotropic helium-4 magnetometer. It is a 

continuation of the work realized by the CEA-LETI and CNES within the SWARM project of the 

European Space Agency. 

 Miniaturization requires a study of the scaling laws, which describe the behavior of the sensor and 

its characteristics during the miniaturization process. To this end, a theoretical model whas been 

developed. Experimental measurements of key characteristics (metastable atom density and their 

relaxation time) show a reasonably good agreement with theoretical expectations. The model allows to 

predict the optimal value of pressure, with which the glass cells of the miniature magnetometer have to 

be filled as well as the theoretical shot noise level of the miniature sensor. 

 The miniaturization process needs the system architecture to be redefined. Some of the components 

used in the macroscopic version should be replaced with ones allowing easy integration. 

 A polarization rotator based on liquid crystals has been identified as a replacement of the 

piezoelectric motor, used to provide isotropic measurements in the SWARM magnetometer. This 

device has a large miniaturization potential and is fully compatible with semiconductor batch 

processing. Sample structures of this type have been fabricated and characterized. The device allows a 

continuous polarization rotation from 0° to more than 300° with response times sufficient for mobile 

or space applications. Results have shown that the construction of the developed liquid crystal 

polarization rotator as well as its electrical driving scheme are non-magnetic and therefore can be 

successfully applied in the construction of a miniature isotropic Earth’s field helium-4 magnetometer.  

 In the next step, a first demonstrator of a miniature isotropic 4He magnetometer has been designed 

and characterized. An overall magnetic field sensitivity around 8 pT/�Hz has been obtained  using a 

100 mm3 glassblown gas cell and the liquid crystal rotator. This sensitivity could be further optimized. 

 Furthermore, first steps towards a “chip-scale” physics package of the sensor have been realized. A 

batch of microfabricated helium cells has been fabricated. Experimental tests gave promising results 

since the possibility of confinement of helium inside glass-silicon-glass microfabricated cells has been 

confirmed.
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 Since the discovery of nuclear magnetic resonance (NMR) by Bloch and Purcell in 1946 high-

precision atomic magnetometers have found numerous applications in science and technology. One of 

their first applications concerns magnetic anomaly detection (MAD) used in military airborne 

submarine detection systems and geophysical prospecting. As such, they allow the detection of very 

weak magnetic signals originating from ferromagnetic materials used in submarines or mineral 

deposits located deep underground. Applications developed up to date also include space exploration, 

where such sensors help to map the magnetic field of Earth as well as other planets. 

 The development of high precision magnetic field sensors has been one of the fields of interest of 

the Laboratory of Electronics and Information Technology (LETI) of the French Alternative Energies 

and Atomic Energy Commission (CEA1) for over 50 years. During that time various magnetometers 

have been developed. From 1960 to 1990 CEA-LETI designed Nuclear Magnetic Resonance (NMR) 

Overhauser magnetometers. Those instruments, designed to be placed in orbit, were used in the 

Oersted (1999) and CHAMP (2000) space missions. Commercial development of LETI’s NMR 

sensors was ensured by SAFARE-CROUZET (now THALES-SAFARE S.A.), which successfully 

brought NMR-based MAD systems for airborne platforms like helicopters or maritime patrol aircrafts 

to market. Commercialization in the field of geophysical applications was done by IXSEA. 

 In order to overcome the limitations on the NMR technology (like gyroscopic effects and low 

bandwidth), LETI has designed, developed and characterized an Absolute Scalar Magnetometer 

(ASM) based on Electron Spin Resonance (ESR) of helium-4 23S1 metastable state. The isotropy of 

measurement provided by this sensor is the key feature which distinguishes it from the current state-

of-the-art. This isotropic optically pumped sensor (c.f. Fig. 1) uses a non-magnetic piezo-electric 

motor to set the polarization of the pumping beam at 90º with respect to the ambient magnetic field. 

The work on the present form of the sensor began at LETI in 2001. Since 2005 its further development 

was realized under cooperation with the French National Center for Space Studies (CNES) in the 

course of the SWARM project of the European Space Agency (ESA). 

Figure 1. ASM SWARM. a) Sensor head and electronics unit. b) Placement of the sensor at the tip of SWARM’s satellite 
boom. 

 The device reached the ESA’s 8th stage of Technology Readiness Level (TRL), which means that it 

is a complete “flight qualified” ready-to-use system. The technology behind it is sufficiently mature 

                                                     
1

CEA - Commissariat à l'Energie Atomique et aux énergies alternatives.
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for an industrial transfer, although its applications are currently limited to very specialized niche 

markets. 

 Benefiting from its large experience in magnetometry and system integration, LETI started a 

development program (named MiniMag) which aims at the reduction of size of the developed 

optically pumped isotropic helium-4 magnetometer. Miniaturization (and associated unit cost 

reduction) is one of the most important steps in addressing a wider spectrum of applications, such as 

medical imaging, non-destructive testing and magnetic impurity detection. The desired set of 

specifications for the miniature magnetometer is presented in table 1 as referred to the ASM SWARM 

performances. 

 Table 1. Desired set of specifications for a miniature magnetometer, as compared to ASM SWARM characteristics. 

SWARM - performance 
Miniature sensor - 

specifications 

Sensitivity 1 pT/�Hz 

Accuracy 50 pT 

Bandwidth DC – 100 Hz 

Size 

Electronics 72x248x300 mm3 
No constraint 

(at the time being) 

Sensor head 460 cm3 a few cm3

Helium cell 32 cm3 Between 1 mm3 and 1 cm3 

Power consumption 7 W < 1 W 

Magnetic field dynamic 

range 
20 – 80 µT 

Isotropy 
Full – provided by a 

piezoelectric motor 

Full – technical solution to be 

identified 

 Work on miniaturization of atomic magnetometers has been largely inspired by the recent 

developments made in the field of miniature atomic clocks [1], closely related in principle to atomic 

magnetometers.  For the last ten years, enormous progress has been done in this matter, in particular at 

the National Institute of Standards and Technology (NIST) in the USA. Thanks to the use of 

microfabrication technology along with a better understanding of their physics and its scaling laws, 

sensor heads with characteristic dimensions of less than a centimeter have been obtained [2]. The 

benefits of technologies originating from the semiconductor industry (MEMS technologies) include 

not only size reduction but also unit cost reduction due to their compatibility with automated batch 

processing and packaging. The constructions presented up to date rely on alkali metal vapours (Rb, Cs 

or K) as the sensitive medium. 

 Due to their physical principle of operation, all optically pumped magnetometers suffer from 

anisotropy, which limits their accuracy. It manifests itself as a dependence of the resonance signal 

amplitude on the orientation of the sensor with respect to the magnetic field direction, with an extreme 

case of “dead zones” (signal extinction) for certain configurations. Such behavior makes it difficult to 
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use them in applications where the direction of the field to be measured is unknown, which is in 

general the case in mobile applications. In order to meet the isotropy/accuracy requirements of mobile 

and space applications, atomic magnetometers usually rely on various complex architectures, as listed 

below. 

• The use of several separate, orthogonally mounted sensors in order to cover each axis. 

• The use of mechanical systems which align the sensor head in a dead zone-free orientation. 

• The use of a magnetometer based on Coherent Population Trapping (CPT) with multiple CPT 

resonances monitored simultaneously [3]. 

• The use of a servo-mechanism to control the polarization axis of the pumping light. CEA-

LETI has successfully realized an isotropic atomic magnetometer, based on a non-magnetic 

piezoelectric motor driven by a feedback loop in order to set the angle of the linear 

polarization of the pumping light at 90º with respect to the field to be measured. However, this 

system is difficult to downscale and it generates micro vibrations (which are difficult to damp 

on space platforms). 

 All miniaturized atomic magnetometer constructions reported up to date present problems related 

with anisotropy, dead zones and heading errors. On the other hand, all state of the art isotropic atomic 

magnetometer systems are quite bulky and expensive.

 The objective of this thesis is to develop a high-performance miniature version of a scalar, isotropic 

optically pumped helium-4 magnetometer. This Ph.D. thesis is realized as a part of the MiniMag 

project, supported by the French National Research Agency (ANR) through Carnot funding. The work 

needs to address several physical and technological challenges, of which the most important are: 

• operation of the magnetometer with a miniature helium cell and thus a limited number of 

metastable atoms, 

• identification and characterization of a technological solution that ensures the isotropy of the 

measurement, 

• design of the optical architecture as well as packaging considerations, 

• characterization of sensitivity, accuracy and anisotropy of the developed demonstrator. 

The developments to be done are summarized in table 2. The solutions used by the SWARM 

magnetometer are given as a reference. 

 Table 2. Developments to be done in comparison to ASM SWARM. 

 SWARM MiniMag 

Active medium 

confinement. 
Glass-blown helium cell 

Miniature glass-blown or a 

microfabricated glass-silicon-glass 

structure 

Light source Diode-pumped fiber laser To be identified 

Resonance excitation 

mechanism 

RF magnetic field obtained with 

coils – magnetically driven spin 

precession. 

All-optical excitation by modulation 

of the pumping beam or 

magnetically driven spin precession 
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 Table 2. Continued. 

 SWARM MiniMag 

Isotropy-providing 

polarization control 

mechanism 

Non-magnetic piezoelectric step 

motor which rotates a linear 

polarizer 

To be identified 

Optics assembly Classical optics 

Miniature optics, eventually 

including gradient-index (GRIN) 

optics. 

Packaging Dedicated precision mechanics 
Dedicated precision mechanics, 

eventually LTCC2 packaging. 

 The first chapter of this thesis describes the operation principle of helium magnetometers and 

presents the state-of-the-art on miniature atomic magnetometers, with examples of isotropic and 

anisotropic constructions. 

 Chapter two deals with the electrical and optical characterization of the discharge ignited inside the 

cell in order to create 23S1 metastable atoms. It presents a numerical model used to predict the 

behavior of the sensor with respect to the helium cell size reduction and to determine the optimal value 

of helium pressure in order to maximize the performance of the sensor.  

 The third chapter presents the architecture of the miniaturized sensor and the path chosen for the 

downscaling of the basic key elements of the macroscopic sensor. 

 The last chapter focuses on the developed demonstrator, its construction, performance and possible 

further miniaturization developments. 

                                                     
2 Low Temperature Co-fired Ceramic (LTCC) – microsystem packaging technique used in small and medium-scale 
production. 
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The aim of this chapter is to explain the physics which underlays the operation principle of helium 

atomic magnetometers. The second part of the chapter focuses on the state-of-the-art technological 

solutions used to obtain miniature atomic magnetometers. 
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 This section presents a phenomenological description of the operating principle of atomic 

magnetometers as applied to the case of a helium-4 magnetometer. It is partially based on the 

descriptions presented in ref. [4] and [5]. A detailed analytical description, using the density matrix 

formalism can be found in ref. [5] and [6]. 

 Optically pumped helium-4 magnetometers developed at CEA-LETI use the phenomenon of 

paramagnetic resonance, induced in helium atoms excited to the 23S1 metastable state by means of a 

weak high frequency (HF) discharge. Their sensitive element comprises high-purity helium contained 

in a cylindrical glass cell. The HF power is capacitively coupled to the gas with copper electrodes 

glued on the sides of the cylinder. Figure 2 shows the energy band diagram of helium-4. 

Figure 2. Helium-4 energy band diagram. Not to scale. 

 The lifetime of a helium-4 atom in the 23S1 state is quite long (0.1 up to 1 ms) because of the fact 

that a radiative transition back to the fundamental state (11S0) is forbidden. Thus metastable atoms may 

be destroyed only by collisions or excitation to other states. Under the influence of an external 

magnetic field, the 23S1 level splits into three Zeeman sublevels which represent the three possible 

orientations of the electron spin angular momentum (+1, 0, -1). Since helium has no nuclear spin and 
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therefore no hyperfine structure, the energetic separation of Zeeman sublevels can be expressed as a 

linear function of the applied magnetic field with Eq. 1. 
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BgE Bj ==∆  (1) 

Where: gj – Landé factor of the metastable state 

µB – Bohr magneton 

γ – gyromagnetic ratio of helium (γ/2π = 28.04 GHz/T) 
h -  Planck’s constant 
B0 – magnetic field 

 Resonant transitions between Zeeman sublevels are induced by applying a weak RF field which 

tends to equalize their population. At thermal equilibrium their populations follow the Boltzmann 

distribution (c.f. Eq. 2)[5], therefore they are almost equally populated. The occurrence of resonance is 

undetectable. 
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Where: Νi, Νj – populations of the Zeeman sublevels, 

Τ – temperature – 300 K, 

 ∆Ε – sublevel separation (calculated for B0 = 45 µT), 
kB – Boltzmann constant. 

 In order to detect the resonance a dissymmetry of populations has to be induced. Selective optical 

pumping on the D0 line (c.f. Fig. 2) creates such a dissymmetry by emptying selectively some of the 

sublevels, which results in the appearance of a non-zero macroscopic magnetic moment and an 

amplification of the resonance signal. 

 Helium magnetometers have several advantages over their alkali counterparts. These features are 

listed below. 

• Helium has no nuclear spin (and therefore no hyperfine structure) which results in a linear 

dependence of the Zeeman splitting with respect to the external magnetic field. The non-

linearity due to hyperfine structure is a limiting factor for the accuracy of alkali-vapor 

magnetometers. 

• Metastable (23S1) helium species, which are the magnetically-sensitive media, are relatively 

short-lived (10-4 – 10-3 s) which makes the sensor’s response quite fast in transient magnetic 

fields [4]. 

• Negligible gyroscopic effects due to the high gyromagnetic ratio. 

• No need to control the cell temperature. 

Miniaturized helium-4 magnetometers could thus be a very competitive alternative to currently 

developed alkali-vapor based solutions. 

The operating principle of the helium-4 magnetometer developed at LETI can be divided into three 

separate phenomena: 

• optical pumping, used to polarize the atoms, 

• magnetic resonance induced by the weak oscillating RF field, 
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• detection of resonance, which in the case of the designed magnetometer is done by 

observation of  the absorption of the pumping light transmitted through the helium cell. 
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 The mechanism of optical pumping was first described by A. Kastler [8]. In the case of the 

described magnetometer, the cell containing helium-4 atoms in the 23S metastable state is irradiated 

with light at a wavelength corresponding to the 23S1 � 23P0 transition (D0 line – c.f. Fig. 2). The 

probabilities of absorption of the different Zeeman sublevels of the 23S1 state obey the quantum 

selection rules (angular momentum conservation). Since the angular momentum of a photon depends 

on its polarization (m = ±1 for circular and 0 for linear) the quantum selection rules differ for linearly 

and circularly polarized beams. The absorption probabilities for linearly polarized light have angular 

dependences presented in table 3. 

 Table 3. Probabilities of absorption of light by different Zeeman sublevels – linear polarization [5]. 

m -1 0 +1 

Absorption 

probability (Am) 
sin2 �P/2 cos2 �P sin2 �P/2 

The optical pumping depletes diversely the Zeeman sublevels, depending on the optical polarization. 

The excited 23P0 atoms spontaneously decay non-selectively to each of the Zeeman sublevels of the 

23S metastable state. Thus the optical pumping establishes a macroscopic magnetic polarization of the 

gas which allows the detection of the resonance signal. 
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A metastable 4He atom has a nonzero magnetic moment which is related with its total angular 

momentum ( J
�

) by Eq. 3. 
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An external magnetic field exerts a torque on this magnetic moment (eq. 4) 
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Following the angular momentum theorem, the magnetic moment performs a precession motion 

(Larmor precession) around 0B
�

 (c.f. Fig. 3a). This movement is described by Bloch’s equation (c.f. 

Eq. 5). 
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The principle of measurement of magnetic field with atomic magnetometers is to determine the 

frequency of this precession which, for the case of helium-4, is linearly dependent on magnetic field 

(c.f. Eq. 6). 

  0�2

�
Bf L = (6) 

In order to measure the Larmor frequency fL a small RF magnetic field ( 1B
�

) is imposed on the 

precessing atoms thus subjecting them to a resultant oscillating magnetic field vector 10 BBB
���

+=

with: 10 BB
��

⊥ . The best way of presenting this problem is to introduce a reference frame rotating at 

an angular frequency ω (with ω = 2πfL). Such a situation is presented in Fig. 3b. 

Figure 3. a) Larmor precession. b) Magnetic moment subjected to a constant DC magnetic field B0 and a rotating RF 

magnetic field B1 presented in a frame of reference rotating at an angular frequency ω [4]. 

In the rotating reference frame the resulting magnetic field influencing the movement of the magnetic 

moment is ( ) '10 ˆˆ�/
' Yz uBuBB +−=
�

 (with zyxu ,,ˆ - unit vector and ',','ˆ zyxu - unit vector in the rotating 

frame of reference). Therefore the Bloch’s equation describing the movement of the magnetic moment 

takes the form of eq. 7. 
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Taking relaxation processes into account and assuming 00 // BM
��

, the solution of this equation 

provides the three components of the magnetic moment, expressed in the rotating system of 

coordinates ( 'ˆ xu , 'ˆYu  and zz uu ˆˆ ' = ) [4] (eq. 8). 
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Where: Μ´x and Μ´y – transverse components of the magnetic moment in the rotating reference frame, 

Μz – longitudinal component of the magnetic moment, 

Μ0 – stationary value of the magnetic moment, 

∆ω –detuning of the RF signal from Larmor frequency (∆ω =ωL - ω), 

Τ1, Τ2 – longitudinal and transversal relaxation time constants. 

By going back to the laboratory reference frame, a set of equations describing the transverse 

(perpendicular to 0B
�

) evolution of the magnetic moment can be obtained (cf. Eq. 9). 

  ( ) )
sin('
cos' tMtMM yxx −=  (9) 

  ( ) )
cos('
sin' tMtMM yxy +=

The longitudinal component in the laboratory reference frame takes the same form as in the rotating 

frame (c.f. Eq. 10) 

  zz MM '= (10) 

At resonance (i.e. when ∆ω = 0), the y component (Μ´y) disappears, thus the magnetic moment 

precesses in-quadrature to the oscillating field '11
ˆ

YuBB =
�

 (90° phase shift between 'M
�

 and '1 ˆYuB ). 
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 Once the imposed RF magnetic field frequency matches Larmor frequency (resonance condition) 

the atomic system enters resonance. At resonance the opacity of helium changes and additional optical 

absorption appears on the pumping light because the sublevels susceptible of absorbing the pumping 

light are repopulated. Therefore resonance can be monitored by observation of the optical power 

(PT(t)) transmitted through the helium cell [9]. At resonance, the voltage on the photodetector can be 

described by Eq. 11. 

  ( ) ( ) ( ) ( ) ( )[ ]tLAtLAtLAtPtV Td 2101 −−−∝  (11) 

Where: LA0 – continuous (mean) part of the absorption signal,
 LA1 and LA2 – modulations of absorption at �L and 2�L respectively. 
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LA0 is the continuous absorption signal (null frequency). It reflects the evolution of the populations 

of the Zeeman sublevels. 
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The use of LA0 as a detection signal is not possible directly, since the signal is symmetric and 

reaches a maximum value at resonance. In order to make it anti-symmetric a low frequency 

modulation (
mod) is imposed on the RF magnetic signal (fig. 4a). 

This way the response of the system at 
mod is anti-symmetric (fig. 4b) and passes through zero at 

resonance. Such a signal can be used as a command for a voltage controlled oscillator (VCO), 

generally used as a source of the RF signal. 

Figure 4. a) LA0 signal and the low frequency modulation of the RF magnetic field. b) Resulting anti-symmetric signal. 
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 LA1 and LA2 are alternating signals at �L and 2�L respectively. They may be decomposed into in-

phase and in-quadrature components by means of phase sensitive detection (c.f. Fig 5 and 6). These 

two signals show the evolution of coherences of the atomic system. The two antisymmetric 

components (LA1 in-phase and LA2 in-quadrature) can be used to lock the VCO frequency at the 

Larmor frequency (�L ). 

Figure 5. The lineshapes of in-phase and in-quadrature components of the LA1 signal. 
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Figure 6. lineshapes of in-phase and in-quadrature components of the LA2 signal. 
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 By construction all atomic magnetometers suffer from isotropy related problems. In general, their 

physical principle of operation imposes the fact that their sensitivity depends on the angular 

relationship between the sensor and the measured magnetic field. Helium magnetometers are not an 

exception. This section describes several sources of their anisotropy and solutions which allow to 

minimize their influence on the accuracy of the designed magnetometer. The vector convention used 

throughout the thesis is presented in Fig. 7. 

Figure 7. The vector convention used throughout the thesis. The angle between lk  and 
0

B is arbitrary. 
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 A slight detuning of wavelength of the pumping light from the center of the absorption line 

degrades significantly the sensors parameters. Apart from increasing the resonance linewidth and 

signal amplitude, it introduces additional error to the measurement due to a shift in the energy splitting 

of the Zeeman sublevels. This error originates from two phenomena:  real and virtual light shifts. 
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 Real light shifts are caused by coherence transfer from optically excited states. It is a factor which 

limits the accuracy at high values of helium pressure due to P-level mixing [4]. In 4He, this shift can be 

completely suppressed by applying optical pumping on the D0 line, instead of D1 and D2 (c.f. Fig. 2). 
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 A small deviation of wavelength of the pumping light from the absorption line center results in a 

slight displacement of the energy of the Zeeman sublevels which changes the frequency of the 

transitions. This energy shift has the same angular dependence on the �P angle as the absorption 

probabilities for each Zeeman sublevel [5] [10] (c.f. table 3 and Eq. 12). 

  lmmm vIAEAE �'�� ∝=  (12) 

Where: Am – absorption probability (c.f. table 3), 
�v – wavelength detuning of the laser, 
Il – Intensity of the laser beam. 

This situation is schematically presented in Fig. 8. 

Figure 8. Shift of Zeeman energy levels of the triplet metastable state. Not to scale. 

 The application of linearly polarized light suppresses the influence of virtual shift on the resonance 

frequency since sublevels m = ±1, which are equally populated, exhibit the same energy shift [10]. 
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 Magnetic resonance is driven by the component of 1B
�

, which is perpendicular to 0B
�

. The 

influence of this linear driving field on the measurement of 0B
�

 is known as the Bloch-Siegert shift, 

which imposes an error on the measurement of magnetic field. The shift in resonance frequency can be 

expressed by Eq. 13 [5]. 
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Where: 01⊥B
�

 - component of 1B
�

 which is perpendicular to 0B
�

. 

 For a constant value of 0B
�

, the error introduced by the Bloch-Siegert shift depends on �RF thus it 

introduces anisotropy to the measurement. The only solution to obtain an isotropic measurement in 
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this situation is to maintain a constant value of �RF. This angle is fixed at 90º, since only the part of 1B
�

perpendicular to 0B
�

 induces resonance. 

 In such a configuration, the maximal value of error introduced by the Bloch-Siegert shift for 

B1 = 0.1 �T and B0 = 46 �T is around 54 pT. This value is is greater than the desired accuracy 

specification (c.f. table 1). Since the Bloch-Siegert shift has a constant value (for a fixed �RF.) it may 

be corrected using a postprocessing algorithm [11].

!$!$'$+$ ��	������
	�����
�� ������
���	���� �


 Signal amplitude anisotropy is common to all optically pumped atomic magnetometers. It is caused 

by two phenomena.  

 First of which is the angular dependence of the probability of transition between sublevels of 

interest. In the case of the designed helium-4 magnetometer, which uses the mechanism of 

magnetically driven spin precession (resonance induced by RF magnetic field) and linearly polarized 

pumping light, this means a dead zone for �P � 55°. This is caused by the fact that transition 

probabilities (c.f. table 3) become the same for all three Zeeman sublevels therefore pumping does not 

redistribute their populations and therefore no resonance signal amplification occurs. 

 The second mechanism is related with the detection method used. In the discussed case, resonance 

is observed in the pumping light transmitted through the cell. The angular characteristics of the three 

resonance signals detected this way are presented in Fig. 9. 

Figure 9. Angular characteristics of the designed helium magnetometer. 

 The solution developed at LETI, allowing an isotropic measurement, consists of fixing this angle at 

90°. In the SWARM project, this is done with a servo-driven piezoelectric motor which fixes the 

transmission axis of a linear polarizer at �P = 90° and the RF saddle coil to obtain �RF = 90°.  The 

servomechanism uses LA1 as error signal to adjust the position. 
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 The influence of the materials used in the construction of the sensor head is of dual nature. All 

materials have a remanent and an induced magnetization. Both should be reduced to an absolute 

minimum since they influence the measurement. 

 The magnetic field related with the remanent magnetization of the sensor head materials is 

superimposed on the measured value (B0). What is more, the superposition depends on the angle 

between the sensor and 0B
�

 therefore it is a source of anisotropy. Remanent magnetization can be 

significantly reduced by selecting non-ferromagnetic materials (diamagnetic or paramagnetic). 

Additional attention should be paid to machining processes to which the elements of the sensor head 

are subjected. Some tools (e.g. drills or polishing disks) may leave a ferromagnetic residue on the 

samples (e.g. cobalt or iron). 

 The induced magnetization of the materials is related with their magnetic susceptibility and the 

external magnetic field. Every mechanical design which differs from a perfectly spherical geometry 

(which in practice is impossible to realize) is subject to introduce heading errors to the measurement. 

These problems are generally addressed by the use materials with very low magnetic susceptibility 

(e.g. PEEK) and the use of cylindrical geometry, which is much easier to realize in practice. 

 The problems described above can never be resolved perfectly. They can be minimized to some 

extent but the sensor head will always have some residual magnetic signature. However this signature 

can be measured and subtracted from the actual measurement [11]. 
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 A block diagram of a practical realization of a helium magnetometer, based on the above 

description is presented in Fig. 10. 

 The discharge is ignited inside the helium cell by a capacitively coupled HF signal. A Voltage 

Controlled Oscillator (VCO) provides the RF signal to a saddle coil wrapped around the cell. The RF 

magnetic field induces resonant transitions between the Zeeman sublevels. The VCO is driven by the 

resulting absorption signal (LA0 or LA2 signals). 

 Isotropy is provided by a servo-driven piezoelectric motor which fixes the polarization axis of the 

pumping light (�P) and the direction of the RF magnetic field (�RF) at right angle with the ambient 

magnetic field. LA1 is used as error signal for the servomechanism (this signal is null at �P = 90° - c.f. 

Fig. 9). The angle between 1B
�

 and 0E
�

 is fixed at 0º by construction, so as to maintain �RF at 90°. 

 The SWARM magnetometer provides absolute scalar magnetic field measurements with a 

1 pT/�Hz resolution over a bandwidth from DC to 100 Hz. An in-depth theoretical and experimental 

analysis of the various factors affecting the magnetometer accuracy (like residual magnetism and 

Bloch-Siegert shift) made it possible to create a correction algorithm [11]. The correction allows for an 

overall precision better than 45 pT (1 �). 
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Figure 10. Block diagram presenting the operating principle of the SWARM magnetometer developed at LETI.
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 The reduction of size of atomic magnetometers opens a new broad range of applications which can 

benefit from their high sensitivity. There is a constantly rising scientific interest in the physical and 

technological aspects of their construction. Figure 11 presents the number of papers published in the 

field of atomic magnetometry per year. 

 A large increase of interest seems to start around the year 2000 which can be explained by the 

beginning of work on their miniaturization at the NIST institute, a leading research and development 

organization in the field.  

 This section will present the most recent achievements reported up to date with a particular focus 

on miniaturized sensors. Present state of the art is largely dominated by constructions based on alkali-

vapours. Their technology exhibits a much faster scaling-down trend. Several research groups 

worldwide employ intensive scientific and technological efforts in order to obtain compact versions of 

such sensors. Their large development benefits from previous interest in miniaturized atomic clocks 
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and frequency references because all their key elements, like lasers and physics packages, are the 

same. 

Figure 11. Number of publications per year in the domain of atomic magnetometry. Data collected with SciVerse Scopus 
database. 

  

 In order to allow a better understanding of the state of the art, it is important to introduce a short 

classification of atomic magnetometers. These sensors generally use circularly polarized light. Based 

on the resonance excitation and detection scheme used in their construction, we can distinguish three 

types of sensors. 

• Mx/Mz magnetometers 

These sensors use a RF magnetic field, introduced by a coil system, to induce resonance in the 

atomic media (magnetically driven spin precession). The detection can be done by observing 

the longitudinal (Mz) or transverse (Mx) component of the magnetic moment. Mz

magnetometers have an equatorial dead-zone, while those using the Mx signal have both polar 

and equatorial dead zones. 

• Bell-Bloom magnetometers 

In the Bell-Bloom regime the resonance is induced by modulating the intensity (IM), 

frequency (FM) or polarisation of the pumping beam (optically driven spin precession). 

Therefore there is no RF magnetic field applied. These sensors suffer from a polar dead-zone. 

• CPT magnetometers 

This class of sensors uses an indirect measurement of the Larmor frequency by measuring the 

energy separation of two magnetically sensitive hyperfine states and referencing them to a 

magnetically insensitive state. By using multiple CPT resonances an isotropic measurement 

can be provided. These sensors use complex control electronics and data processing units. 

 Those three types of sensors have their advantages and drawbacks, which make them more or less 

convenient for use in specific applications. 

!$)$!$ ( �������
 �� ��
������
������������
#
%��������
���$


 Since the first magnetometer of this type was presented in 1961 [12], not much progress towards its 

miniaturization has been reported. The smallest construction presented up to date was developed by 

Polatomic Inc. [13]. It comprises a 6 cm3 glass-blown helium cell filled to 1.5 Torr of pure 4He, thus 

forming a sensor head 6x6x12 cm3 large. Its relatively small size results mainly from the development 
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of a new light source used for pumping: the classically used helium discharge lamp was replaced with 

an InGaAs diode laser. Both constructions are presented in Fig. 12a. 

Figure 12. a) Compact version of a helium magnetometer developed by Polatomic Inc. As compared to a lamp-pumped 
sensor [13]. b) Noise spectral density of the miniature version [14]. 

 Light emitted by a helium lamp contains D0, D1 and D2 lines. Since the D2 line polarizes the atoms 

in opposite direction than D0 and D1 lines, the pumping is less efficient. The finesse of light emitted by 

a laser allows a selective pumping on the D0 line which in terms allows to miniaturize the helium cell 

while maintaining the overall sensor performance. A smaller cell allows to use smaller optics. What is 

more, a pigtailed diode laser can be separated from the sensor head by an optical fiber. All these 

aspects influence the final sensor’s dimensions, making it smaller. The sensor reaches a sensitivity 

below 10 pT/�Hz under earth’s field operation (c.f. Fig. 12b). The magnetometer operates in the Bell-

Bloom regime. 
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 CPT magnetometers use a pump beam which is frequency modulated (FM) in the microwave 

range. Resonance occurs when the frequency separation of the 1st order sidebands, resulting from FM, 

matches the field-dependant hyperfine structure energy levels. At resonance the normally opaque 

alkali media become transparent because they cannot absorb more radiation. By the use of multiple 

hyperfine levels (multiple resonances), the measurement becomes isotropic [2]. Two compact 

constructions of this type have been reported in literature. 
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 Scientists from the Technical University of Graz, reported a CPT sensor based on a glassblown 

rubidium cell (c.f. Fig. 13a). The device is dedicated for space applications.  

 The dimensions of the assembled sensor head are: 5 cm in diameter and 7 cm of length. The sensor 

reached 70 pT/�Hz (c.f. Fig 13b) in the frequency range of 0.1 - 3 Hz. It provides an isotropic 

measurement with a dynamic range up to 1 mT. Its alkali-vapor cell has a volume of 1 cm3. 
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Figure 13. a) Alkali-vapour cell of the presented magnetometer [15],  b) Sensitivity of the presented magnetometer [15]. 
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 NIST institute reported a sensor of the CPT type made using microfabrication techniques (fig. 14a). 

In fact, at first, the whole construction was designed to be an atomic clock. 

  

Figure 14. a) Structure ot the NIST’s CPT magnetometer [3]. b) Noise density of the presented magnetometer [3]. 

 The sensor consists of a VCSEL laser (1), an optics package (2), a glass-silicon-glass rubidium cell 

(3) and a photodiode (4) stacked together to form a 3.9 mm high structure. By changing the excitation 

frequency to address magnetically sensitive hyperfine levels and applying specific signal processing a 

magnetometer was obtained with similar characteristics to the previously described (fig. 14b), 

although much smaller in size. The sensor occupies a volume of 12 mm3. It reaches a sensitivity of 

50 pT/�Hz in the frequency range of 10 - 50 Hz. Its cell volume is 1 mm3. 

!$)$+$ *9
��
���&�� ��
������������	


 The operating principle of Mx magnetometers imposes anisotropy on the measurement. Mx

magnetometers have generally higher sensitivity than CPT sensors. They are also generally simpler to 

implement in practice. 
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 This Mx-type magnetometer is also made using microfabrication technologies. Its construction is 

presented in Fig. 15a.  

Figure 15. a) Structure of the NIST’s Mx magnetometer [16]. b) Noise density of the presented magnetometer [16]. 

It is also composed of several microfabricated parts stacked on top of each other: a VCSEL laser (1); a 

polyimide spacer (2); optics package (3); Indium tin oxide heater (4); glass-silicon-glass rubidium cell 

(5); heater and photodiode assembly (6). The sensor reached a sensitivity of 5 pT/�Hz in the frequency 

range of 1-100 Hz (c.f. Fig. 15b). 
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 An array consisting of four cesium cells was presented by IPHT. The volume of individual cells is 

50 mm3. The structure (c.f. Fig. 16a) consists of a glass-silicon-glass cesium cell sandwiched between 

two PCB’s (PCB). The assembly also allows Mx-type operation by the use of coils on the two PCB 

boards (B1). The vapor cells are heated on the sides by a laser beam provided by two optical fibers (F). 

Only two out of four cells were used (R and M).  

Figure 16. a) Sensor developed at IPHT  [17]. b) Comparison between Mx and Bell-Bloom IM type operation  [17]. Red and 
green traces illustrate a gradiometer mode – subtraction of signals obtained with both cells. 
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 The sensor was operated in the Mx and Bell-Bloom modes. The noise density obtained with both 

configurations is presented in Fig. 16b. For frequencies below 100 Hz the noise of the IM 

magnetometer in Fig. 16b is dominated by 1/f noise. In the Mx magnetometer configuration the 1/f 

noise dominates the complete spectrum up to several kHz. 
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 Bell-bloom type magnetometers have different angular characteristics of the resonance signal 

amplitude as compared to Mx-type sensors. Such magnetometers experience only one, polar dead 

zone, contrary to Mx magnetometers which have polar and equatorial dead zones. 

 There is a particular interest in developing such magnetometers when it comes to array operation, 

since Mx magnetometers, which use RF magnetic field to induce resonance, can suffer from crosstalk 

problems. 
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 In this configuration the resonances are induced optically by means of a frequency modulated 

pump beam (Bell-Bloom configuration). The structure of the sensor is presented in Fig. 17a. 

 The construction comprises a microfabricated 87Rb-filled glass-silicon-glass cell suspended on 

polyimide tethers. The heating laser is collimated on the side of the structure. The probing signal is 

collected by an optical fiber and sent to a photodiode which is separated from the sensor head.  

Figure 17. All optical alkali-vapour atomic magnetometer presented by NIST [18]. a) Structure. b) Noise density of the 
presented magnetometer [18]. 

The sensor was operated at an ambient magnetic field of 7 µT and reached a sensitivity of 2.7 pT/�Hz 

in the frequency range [20 Hz; 60 Hz] (c.f. Fig. 17b). Noise level increases for lower frequencies and 

reaches 25 pT/�Hz at 1Hz. 
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 This construction is also a microfabricated Bell-Bloom type magnetometer although operating with 

intensity modulation of the probe beam instead of frequency modulation. It uses an array of four glass-
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silicon-glass caesium cells, similar to the one presented in 1.2.3.2. Its cell structure is presented in 

Fig. 18a.  

Figure 18. Miniature alkali-vapour magnetometer sensor array presented by IPHT [19]. a) Cell structure. b) Optical assembly. 
c) Noise density of the presented magnetometer. 

 The sensor array (c.f. Fig. 18a) consists of a central caesium reservoir which, heated from both 

sides, provides alkali vapours to adjacent cells (M1,M2...). This structure is used inside an optics 

mount (c.f. Fig. 18b), containing mirrors (MIR) to direct the pump (P) and heating (H) beams. 

Temperature is controlled by a sensor (TP) connected to an electronic circuit (PCB). The 

magnetometer is operated in an ambient field of 50 µT and reaches a sensitivity of 500 fT/�Hz for 

frequencies above 50 Hz (c.f. Fig. 18c) and 6 pT/�Hz at 1 Hz. 
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 The SERF magnetometer, developed for the first time at Princeton University, benefits from the 

fact that at very high alkali vapor densities (and thus high temperatures) and near-zero ambient 

magnetic fields, the spin relaxation due to collisions between excited alkali atoms is largely 

suppressed. By the use of this effect, sensitivities can be lowered by nearly three orders of magnitude, 

down to 1-10 fT/�Hz. Highly sensitive SERF-based sensors can only be operated inside passive 

magnetic shields. Unshielded SERF magnetometers, using Helmholtz coils to cancel out the external 

field, were reported [20]. Nevertheless their sensitivity is significantly degraded (1-10 pT/�Hz) due to 

ambient magnetic noise and field gradients. 

 In general SERF magnetometers are excluded from mobile applications that require the sensor to 

operate in the Earth’s magnetic field. This class of sensors is widely used in medical applications, to 

record very weak bio-magnetic fields (MagnetoEncephaloGraphy MEG and MagnetoCardioGraphy 

MCG).

 Since this thesis is dedicated to the realization of an Earth’s-field magnetometer, a complete state 

of the art on SERF magnetometers is beyond its scope. However two miniature SERF-based 

constructions will be presented here since all the building blocks of SERF and non-SERF 

magnetometers are basically the same. Both of which are low-field magnetometers. No miniaturized 

Earth’s-field SERF-based magnetometers (using coils to cancel out the external field) have been

reported up to date.
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 This construction, presented by the group of Walker et al. at the University of Wisconsin-Madison 

[21] uses a 1x1x5 cm3 rectangular vapor cell filled with 87Rb. The assembled sensor is presented in 

Fig. 19a. 

Figure 19. Sensor developed at the University of Wisconsin-Madison [21]. a) Sensor head and four-sensor array arrangement. 
b) Noise density of the presented magnetometer. 

 The magnetometer uses an orthogonal pump-probe beam arrangement. The probe beam is linearly 

polarized; its polarization rotation (Nonlinear Magneto-Optic Rotation - NMOR) is detected as a 

measure of the magnetic field. It is designed in order to allow array operation (c.f. Fig. 19a) for 

medical use. In near-zero magnetic field and for frequencies above 20 Hz the sensor reaches 6 fT/�Hz 

sensitivity (c.f. Fig. 19b). 
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 The most advanced construction of a miniature atomic magnetometer presented by the NIST 

institute [2] is shown in Fig. 20a. It consists of a microfabricated Glass-Silicon-Glass cell filled with 
87Rb (C in Fig. 20a). Light absorbing filters are glued on the optical aperture of the cell (F). This 

structure in enclosed in a vacuum package (VAC) and suspended on polyimide threats (S) which limit 

conductive heat loss. The probe light is provided by a polarization-maintaining fiber (PM), collimated 

by a lens (L1) and reflected by a reflecting prism (P). A quarter-wave plate (QWP) is used to produce 

a circularly polarized beam. The absorption signal is reflected by a dichroic mirror and detected by a 

photodiode (PD). Another laser beam, used for heating, is supplied by a multimode fiber (MM) it is 

absorbed by the filters thus heating the cell. 
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Figure 20. a) Miniature atomic magnetometer presented by NIST (using magnetically driven spin precession) and its building 
blocks [2], b) Noise spectral density of the sensor [2]. 

 The vapour cell was heated to 150oC and the magnetometer was operated in low ambient magnetic 

field. The RF magnetic field was supplied by externally mounted Helmholtz coils (c.f. Fig. 20a). The 

sensor head’s volume is 0.36 cm3. It reaches a sensitivity of 20 fT/�Hz for frequencies above 5 Hz 

(c.f. Fig. 20b). 
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 Twinleaf Inc, a start-up created by scientists from Princeton University, claims to commercialize 

miniature atomic magnetometers operating in the SERF regime (c.f. Fig. 21). 

Figure 21. SERF-2 magnetometer commercialized by Twinleaf Inc. [22]. 

 Neither technical data concerning its construction nor technological solutions employed are 

available. The external dimensions of the sensor head are 16x27x60 mm3. It is specified to reach 

sensitivities below 5 fT/�Hz at low ambient magnetic field. The unit cost of a system of this type is 

presently around 30k USD. 
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 The ten presented constructions are, to the author’s knowledge, the only ready-to-use examples of 

miniaturized atomic magnetometers reported in the literature. The group at NIST institute presented 

several other solutions, the ones presented in 1.2.2.2, 1.2.3.1 and 1.2.5.2 are the most recent. Several 

other groups in China and Japan reported bench-top systems using miniaturized alkali atom vapour 

cells although they don’t seem to have reached a level of maturity allowing to obtain a stand-alone 
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device. A brief summary of the performance of reported miniaturized atomic magnetometers is 

presented in Table 4. SERF magnetometers are neglected because they don’t fit in the scope of this 

thesis. 

Table 4. Summary of performance of the presented magnetometers. 

Group 
Type of 

sensor 

Active 

medium 

Cell 

dimensions 

Sensor head 

dimensions 
Sensitivity Isotropy 

Ambient 

magnetic 

field 

R
ef. 

P
o

lato
m

ic 

In
c. 

He4

optically 

pumped 

He4 6 cm3 432 cm3 10 pT/�Hz 
Single 

axis 

Earth’s 

field 

[1
3

] 

TU 

Graz 
CPT 87Rb 1 cm3 137 cm3 70 pT/�Hz Isotropic up to 1 mT 

[1
5

] 

NIST CPT 87Rb 1 mm3 12 mm3 50 pT/�Hz 

at 10 Hz 
Isotropic up to 1 mT 

[3
] 

NIST Mx
87Rb 2 mm3 ~ 17 mm3 5 pT/�Hz 

Single 

axis 

up to 10 

µT 

[1
6

] 

IPHT Mx Cs 50 mm3 ?
15 pT/�Hz 

at 10 Hz 

Single 

axis 

Earth’s 

field 

[1
7

] 

NIST 

Bell-

Bloom 

(FM*) 

87Rb < 1 mm3 < 1 cm3 2.7 

pT/�Hz 

Single 

axis 
7 µT 

[1
8

] 

IPHT 

Bell-

Bloom 

(IM**) 

Cs 50 mm3 ? 0,5 fT/�Hz 
Single 

axis 
50 µT 

[1
9

] 

* Frequency-modulated pump beam. 

** Intensity-modulated pump beam. 

All of the presented constructions are still at research stage although most of them are mature 

enough for a technology transfer. Twinleaf Inc. issued from the work of T. Kornack at Princeton 

University, is the only organism, which mentions future commercialization of Earth’s-field scalar 

magnetometers. Its claimed sensitivity is 10 pT/�Hz in a bandwidth of 100 Hz [23]. Nevertheless, like 

for their SERF magnetometer (1.2.5.3) no information is available on its construction. 

Between 2007 and 2011 another American company, Geometrics Inc, obtained SERDP3 funding for 

a project aimed at miniaturisation of a scalar atomic magnetometer. Tables 5 and 6, issued from the 

project final report [24], summarize the performances which can be obtained for the moment with 

miniature alkali-based sensors and problems related with different architectures, especially dead-zones 

and heading errors.  

                                                     
3
 SERDP – Strategic Environmental Research and Development Program. Research and development funding program 

established by the United States Department of Defense 
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Table 5. Comparison of performance of different types of scalar atomic magnetometers. Extracted from SERDP project 
report, Geometrics Inc. [24]. 

Method Sensitivity (pT) Dynamic range (nT) Dead zones Implementation 

CPT 10-100 100,000 None**** 
Small heading error, difficult 

signal processing 

FMNMOR* 50-100 100,000 Equatorial Very complicated optics 

Mx 6 100,000 
Polar and 

equatorial 

Wire coil needed, crosstalk in 

arrays 

Bell-Bloom 

(FLF**) 
10-15 100,000 Polar Extraneous resonances 

Bell-Bloom 

(HLF***) 
15-20 100,000 Polar Easy 

* Frequency Modulated NMOR. 

** Full Larmor Frequency – one of operation modes of Bell-Bloom magnetometers. 

*** Half Larmor Frequency - one of operation modes of Bell-Bloom magnetometers. 

**** Not all designs allow a complete elimination of dead-zones. 

 Table 6 presents the results obtained during the project, including heading error, which is a rarely 

published result in the state-of-the-art. The minimal value of heading error of 2 nT is almost two 

orders of magnitude higher as compared to the one obtained by the SWARM magnetometer (50 pT) 

and aimed at by the present thesis. Anisotropy of measurement is of key importance in all mobile 

applications including spatial and military systems. 

Table 6. Performance of different demonstrators obtained by Geometrics Inc. Extracted from SERDP project report, 
Geometrics Inc. [24]. 

Prototype 1 Prototype 2 
Commercial 

version 1 

Commercial 

version 2 

Physics package size (cm3) 10 10 10 1 

Sensor power consumption (mW) 50 400 200 50 

Electronics size (cm2) 200 100 100 30 

Electronics power consumption (W) 5 2 2 0.5 

Cell size (cm3) 0.001 2 2 0.001 

Attainable sensitivity (pT/�Hz) 6 1 1 6 

Measured sensitivity (pT/�Hz) 75 15 5 10 

Heading error (nT) 40 30 2 40 

!$)$<$ ������	���


 In conclusion, it can be stated that the main advantage of the developed sensor, as related to the 

state-of-the-art constructions presented in this section, is its unprecedented accuracy. It allows to limit 

heading errors to below 50 pT (case of the SWARM magnetometer) and thus to obtain an isotropic 

measurement. This feature is of key importance in all mobile applications which will be addressed by 

the miniature version of the sensor. 
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Chapter highlights 

• The problem of matching the impedance of the cell and the discharge to the generator is 

discussed. 

• The value of pressure with which the helium cells can be filled is bounded from the low side 

by the breakdown mechanism. Below a certain value it becomes impossible to ignite a 

discharge. Discharge ignited near this critical value is very unstable. 

• From the high-side the value of pressure is bounded by the decreasing electron temperature in 

the discharge and the destruction of metastable atoms by three-body collisions. 

• A simple numerical model, describing the scaling of metastable density and relaxation time 

with pressure and size is developed. It is experimentally validated. 

• Maximum values of sensitivity of 3.5 and 8 pT/�Hz are obtained for 20 Torr �10x10 mm and 

40 Torr �5x5 mm glassblown cells respectively. 
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 Helium-4 magnetometers use capacitively-coupled plasma sources as a mean to create triplet 

metastable helium atoms whose quantum properties underlay their operation principle. Sensors of this 

type, developed up to date, are based on glassblown helium cells a few centimetres in size, filled with 

high-purity helium-4 to a pressure of about 1 Torr, which is an empirically determined value. To the 

author’s knowledge no theoretical studies have been done up to date on the effects of miniaturization 

of such plasma sources as related to magnetometry. 

 The fundamental sensitivity limit of atomic magnetometers depends on the number of sensitive 

species (triplet metastables in this case) and their transverse relaxation time. Size reduction of the 

active element triggers an inevitable decrease of both. 

 In order to compensate for this effect, the number of sensitive atoms has to be increased. The 

development of miniature alkali vapour magnetometers followed the path of increasing the pressure 

inside the cell, which in their context means increasing its internal temperature. When it comes to 

helium magnetometers, the problem is largely more complex. The two important parameters – 23S1

metastable atom density and their relaxation time are a consequence of complex phenomena taking 

place in the discharge. Moreover, the physics behind miniature plasma sources is still not fully 

understood, although it is an area of constantly growing interest in plasma physics for many years. 

What is more, the predicted pressure range (tens of Torrs) is considered useless for most of the other 

applications, which adds to the difficulty of the problem since not much experimental work has been 

done in the subject and plasma behaviour is said to vary significantly with pressure. 

 Scientists working in the domain of plasma physics have generally the convenience of a direct 

access to the plasma, provided by the construction of their reactors. This allows a direct measurement 

of many parameters, using Langmuir probes for example. The discharge, discussed here, is 

hermetically confined inside a Pyrex cell therefore electrically speaking this amounts to a “black box” 

problem. It is only possible to measure the voltage or current flowing through and, having this 

information, draw some conclusions on its behavior.

 The object of this chapter is to identify a reasonable helium pressure range with which it is possible 

to create a miniature helium magnetometer and find an optimal value within this range allowing to 

maintain high performance characteristics of the miniaturized sensor. The desired set of specifications 

is presented in §2.1. 

 On one hand, a small value of the product of pressure and helium cell dimensions (electrode 

separation) results in very high values of power necessary to ignite the discharge and its afterward 

instability which imposes a lower limit on the possible pressure value used in miniature cells. This 

aspect is discussed in §2.5. 

 On the other hand, multiple phenomenon leading to the instability of the discharge and the 

destruction of the 23S1 metastable state impose an upper limit on the value of pressure. This problem is 

addressed in §2.6  and §2.7. 
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 The key constraints on the gas cell, the behaviour of the HF discharge and resulting properties of 

the triplet metastable population, which allow to obtain a high performance helium-4 magnetometer 

can be expressed with the following points. 
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• Internal atmosphere – the cells are filled with high-purity helium-4 (grade 6 – 99.9999% of 

purity). The amount of impurities should be limited to an absolute minimum since they tend to 

quench metastable atoms thus causing a decrease in their relaxation time and degrading the 

performance of the sensor 

• Power consumption – the discharge should consume a reasonably small amount of power. In 

practice, the power required for ignition is at least an order of magnitude higher than the 

minimal power necessary for the maintenance of the discharge. The ignition power should 

have a reasonably small value compatible with “handheld” applications aimed by the 

miniaturization process. Attention should be paid at this stage to the ElectroMagnetic 

Interference (EMI) emissivity levels required by the standards relevant for the application of 

interest. 

• Stability – once ignited, the discharge should be stable and easy to maintain at the limit of 

extinction, which is in general the optimal operating point of the magnetometer. The power at 

the limit of extinction should be in the range of few miliwatts. 

• Sensitivity – the sensitivity of atomic magnetometers depends on the number of magnetically 

sensitive species and their transverse relaxation time. Both of these values are determined by 

the pressure of helium inside the cell therefore an optimal value must be found in order to 

maximize the sensitivity. 

• Uniformity – the radial distribution of metastable atoms inside the discharge is never perfectly 

uniform. In the simplest case, the maximum value of metastable atom density is in the middle 

of the cell and decreases towards the walls. This occurs when the majority of metastable atom 

creation mechanisms take place in the center of the discharge and atoms experience a diffusive 

loss towards the walls of the cell. The need for such a distribution is dictated by the fact that 

the majority of pumping light power passes through the center of the cell (Gaussian beam). 

 The internal atmosphere of the cells will be analyzed by means of emission spectroscopy in §2.3. 

The power consumption and discharge stability criteria will be monitored by experimental 

measurements backed by literature information. Finally, the last two criteria will be addressed by 

developing a numerical model which will be validated experimentally in §2.7.1.2. 
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 Fifteen glassblown helium cells were fabricated for the needs of this study. All of which are 

cylindrical cells. Ten cells were fabricated with an internal diameter of 5 mm and 5 mm length, and 

five cells with an internal diameter of 10 mm and 10 mm length (c.f. table 7). The cells were made by 

two different suppliers: the French glassblower Verre Equipement (named VE thereafter) and the 

NIST supplier Precision Glassblowing (subsequently cited as GB). The quality of the cells from these 

two manufacturers will also be investigated in this thesis. 

 Figure 22 presents a comparison between a cell used for the SWARM project and a miniature �5x5 

mm glassblown cell. 
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Figure 22. �5x5 mm glassblown cell compared to the cell 
used for the SWARM project (�30x45 mm).  

Table 7.  Glassblown cells fabricated for the need of the 
study 

Size 

(mm) 

Pressure 

(Torr) 
Supplier 

Fabrication 

date 

�5x5 5 GB 09/2010 

�5x5 10 GB 09/2010 

�5x5 10 GB 11/2012 

�5x5 20 VE 20/06/2011 

�5x5 20 GB 09/2010 

�5x5 20 GB 11/2012 

�5x5 30 GB 11/2012 

�5x5 40 GB 11/2012 

�5x5 50 GB 09/2010 

�5x5 150 GB 11/2012 

�10x10 2 VE 14/04/2011 

�10x10 12 VE 16/11/2010 

�10x10 20 VE 2013 

�10x10 20 VE 2013 

�10x10 30 VE 9/06/2011 
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 The main advantage of the VE glassblown cells is that they are filled with helium at the CEA 

following an internal procedure, which results in a high repetability and reliability of the process. The 

cells are initially fabricated with a small capillary (evacuation pipe) on the side (cf. Fig. 23) which 

ends with a glass-metal high vacuum connector. This setup is connected to a dedicated vacuum system 

containing a turbo-molecular pump [5].  

Figure 23. a) Glassblown helium cells – sketch. b) �5x5 mm cell with a capillary.  
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The filling procedure consists of several steps [5]: 

• evacuation of the gas (10-7 mbar of vacuum), 

• annealing at 500ºC, 

• filling with helium, 

• establishing and maintaining a microwave discharge inside the cell, 

• high vacuum evacuation of the gas (10-7 mbar). 

 These steps are cycled several times in order to obtain a complete desorption of the glass. The 

impurities present in its structure are replaced by helium atoms which results in a clean atmosphere 

inside the cell. In the final step the evacuation pipe is cut off using a burner. This process leaves a 

small glass tip (fill stem) on the side of the cell. 

 The inconvenience of American cells is that they are filled by the manufacturer, whose filling 

process does not allow for the microwave discharge step. Nevertheless GB cells are a lot cheaper 

(450$ as compared to about 2000€) which makes them an interesting alternative. The majority of cells 

used in this study were produced by GB. The purity of both types of cells has been inspected by 

emission spectroscopy of the discharge. Figure 24 presents a comparison of spectra of cells 

manufactured by both suppliers. 

 Some oxygen lines are clearly visible in the spectrum of GB cells. The presence of small amounts 

of oxygen is known to have a significant influence on the density of 23S1 metastable atoms in a helium 

plasma. Literature suggests that an addition of 500 ppm of O2 may decrease the metastable density by 

a factor of five [25]. Unfortunately it is not possible to predict exactly the concentration of oxygen 

from the emission spectra. This problem will be addressed later in this chapter, where some additional 

attention will be paid to the influence of impurities present inside those cells since it is potentially a 

factor directly influencing the sensitivity of the designed magnetometer. 

Figure 24. Comparison of emission spectra of 20 Torr 5x5 mm cells from different manufacturers. 
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 In order to realize the capacitive coupling of power into the discharge, an impedance matching 

network has to be used. It adapts the impedance of the helium cell and the discharge (once it is ignited) 

to the 50 Ω impedance of the generator and thus maximizes the power transfer. 

 This section describes the helium discharge in electrical terms. It presents the solutions used to 

match the impedance of the discharge and a simplified analysis of the circuit. 
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 Capacitively coupled plasma is a mixture of charged, uncharged and neutral particles which are in 

constant movement resulting from diffusion and drift (due to electric field). Since the exciting signal is 

periodic we can expect that charged particles will perform an oscillatory motion. Figure 25a presents 

this movement in different phases of the HF cycle. 

Figure 25. a) Oscillatory movement of electrons [26]; b) Simple equivalent electrical circuit of the discharge. 

As electron mobility is nearly two orders of magnitude higher than ion mobility, ions can be 

considered as immobile. In such a description, the electron concentration will always be the highest in 

the centre of the cell. Consequently, to a first approximation, such a situation can be described in 

electrical terms with an equivalent circuit shown in Fig. 25 b where Csh represents the ion-rich area 

(called sheath) and Rb the electron-rich area (bulk plasma). 
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 The resonant character of an impedance matching network allows to “amplify” the voltage across 

the cell in order to reach the breakdown (ex. normally 1 W of power over 50 Ω gives about 7 V which 

in not enough to cause a breakdown). Figure 26 shows a matching network used for the SWARM 

project. It uses a pair of identical inductors (L1 and L2) to match the impedance and another pair (L3

and L4) forming a rotating transformer to provide a convenient rotating joint (the impedance matching 

network moved along with the polarizer c.f. §1.1.5). 
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Figure 26. Impedance matching network for the SWARM macroscopic magnetometer. 

It should be noted that the coupling of the transformer is not ideal; it is estimated to about 50%. In 

order to facilitate the analysis, lower the power consumption and make the circuit smaller (there is no 

need for a rotating transformer in the miniature sensor) a modified version presented in Fig. 27 was 

designed in the course of this thesis. 

Figure 27. Impedance matching network for the miniature magnetometer. 

 The 50 Ω matching is provided by the parasitic resistance (R1 and R2) of the inductors (L1 and L2) 

which is related to skin and proximity effects. It can be estimated numerically [27] to about 50 Ω per 

inductor at the circuit resonance frequency, which is a sufficiently close value. 

 The capacitance of the cell (Ccell) cannot be determined by a simple parallel plate formula because 

the distance between the electrodes is comparable to their characteristic size (5x5 mm2) therefore 

fringing is no longer negligible. It is often assumed that self-capacitance of a metal plate is equal to 

1 pF times its largest characteristic dimension in cm. The capacitance of the cell, calculated with this 

approximate assumption, should be of the order of 0.35 pF (two electrodes in series), which makes it 

an order of magnitude larger compared to the one given by the parallel plate formula.  

 When the capacitive (due to Ccell) and inductive (due to L1 and L2) reactances become equal to each 

other, the circuit enters resonance (the imaginary part disappears). The most difficult task is to design 

the circuit so that resonance condition and the 50 Ω matching occurr at the same frequency. Due to 

stray capacitances and inductances the circuit is never ideal. 

 At resonance the voltage rises very rapidly, reaching the breakdown value. Once the discharge is 

established the characteristics of the circuit change due to the discharge impedance (c.f. Fig. 28). The 

circuit becomes slightly detuned from resonance (influence of the capacitive part Csh) and the ratio of 

reflected to forward power, measured by the power meter, rises due to the resistive part Rb (c.f. Fig. 

28b). 
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Figure 28. a) Equivalent circuits before and after discharge ignition. b) The ratio of reflected to forward power (PR/PF), 
measured with a bidirectional power meter as a function of frequency. 
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 The vamount of power which is actually dissipated into the discharge allows to obtain important 

information about the plasma. It will be used as input data in a numerical description of the discharge 

which helps to predict the optimal value of helium pressure for the designed magnetometer. 

 The value of absorbed power measured at the input of the matching network by the bi-directional 

power meter (c.f. Fig. 27) is not the actual value consumed by the discharge. The matching inductors 

(L1 and L2) consume a significant part of it due to their series resistance. In order to quantify the 

generator-discharge power transfer, an estimate of the discharge impedance is necessary. 

 The discharge impedance can determined approximately from the ratio of reflected to forward 

power (PR/PF) measured by the power meter. Results obtained this way are rough estimates rather than 

precise measurements which would require much more precise experimental methods and instruments. 

 The PR/PF ratio is a measure of detuning of the circuit impedance (ZCirc) from the generator 

impedance (50 Ω). It can be expressed by Eq. 14. 
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The equivalent circuit of the matching network before the discharge is ignited is presented in Fig. 29. 

It contains additional parasitic components: coil capacitance (CL1 and CL2) and series resistance (RS) 

related with wires and solder (few ohms). It can be simplified using coils and cell impedances (ZL1, 

ZL2 and ZC). 

The impedance of a coil can be expressed with Eq. 15. 
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This simplifies the expression of the circuit impedance before the ignition of the discharge to Eq. 16. 

  SCLLCirc RZZZZ +++= 21  (16) 

Figure 29. Equivalent circuit of the matching network before the ignition of the discharge 

The inductance of the inductors was measured using a precision LCR bridge. Values of 38.6 and 39.1 

�H were obtained. In order to determine the missing parameters a measurement of the PR/PF ratio was 

done for several values of frequency close to the resonance frequency using a power inferior to the 

breakdown power (discharge “off”). The obtained values were fit with the above set of equations (Eq. 

14 to 16). Results are presented in Fig.  30 and table 8. 

Figure 30. Experimental values of PR/PF for two �10x10 mm cells vs. computed fits. 

Once the discharge is ignited, the resonance frequency shifts towards lower values and the 

corresponding maximal value of PR/PF increases (c.f. Fig. 28b) due to the appearing discharge 

impedance (Zdis). This situation is presented in Fig. 31. 
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Figure 31. Equivalent circuit of the matching network after the ignition of the discharge 

The equivalent impedance (ZLoad) in this case is composed of a parallel connection of the cell 

impedance (Zcell) and discharge impedance (Zdis – c.f. Fig. 28a). Assuming that at resonance the 

reactive part disappears, the resistive part of ZLoad can be expressed by Eq. 17. 

  ( ) ( ) ( )[ ]SLL

F

R

F

R

equivLoad RZZ

P

P

P

P

RZ ++−

−

�
�

�

�

�
�

�

�
+

== 21 ReRe

1

150

Re  (17)

The reactive part (XLoad) of the load impedance is equal to the reactance of the inductors (resonance 

condition, c.f. Eq. 18). 

  ( ) ( )[ ]21 ImIm)Im( LLLoadload ZZXZ +−==  (18) 

Finally, the discharge impedance can be calculated using Eq. 19. 
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The results obtained for two helium cells are presented in table 8. Once ignited, the discharge was 

operated at the limit of extinction in both cases. 

Table 8. Obtained parameters.  

Helium 

cell 

Discharge “off” Discharge “on” 

frez

(MHz) 
ZL1 (ΩΩΩΩ) ZL2 (ΩΩΩΩ) 

Ccell

(pF) 

frez

(MHz) 
ZLoad (ΩΩΩΩ) 

Zdis

(ΩΩΩΩ) 

RB

(ΩΩΩΩ) 

Csh 

(fF) 

2 Torr 25.611 65+j7.6k 56+j6.8k 0.434 25.102 187-j14.0k 84k-j283k 84k 45 

30 Torr 25.558 78+j8.4k 43+j6.2k 0.429 25.566 155-j14.6k 121k-j440k 121k 30 

Active power is only absorbed by the resistive parts of ZL1, ZL2 and ZLoad. This means that roughly half 

of the power absorbed by the matching network is actually transferred to the discharge. 

 An ideal matching network would consist of a variable impedance element, for which the 

resistance would change from 50 to 0 
 after ignition. This is basically the concept of automatic 

impedance matching networks widely used in the plasma processing industry where even a slight 

detuning from the generator impedance may cause a power loss of several Watts. In a future 

perspective, the development of such a circuit for a miniature version of a helium magnetometer seems 

very beneficial. Apart from the obvious ease of use (especially in a sensor array), miniature sensors are 
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increasingly subjected to very strict power consumption requirements therefore all means to decrease 

it are of key importance. 
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 The value of helium pressure, which can be used to fill the cell of a helium magnetometer, is 

bounded from the low side by the power consumption and discharge stability criteria (c.f. §2.1). 

 In the simplest case of a DC discharge, the processes leading to the development of plasma are 

described by Paschen’s law which expresses the dependence of breakdown voltage on the product of 

pressure and electrode separation (c.f. Eq. 20). 
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Where: BHe – molecular constant. BHe = 5.3�103 (Torr�m)-1 [28] 
AHe – molecular constant. AHe = 80 (Torr�m)-1 [28] 
p – pressure (Torr) 
d – electrode separation (m) 
� – secondary electron emission coefficient. � = 0.23 [29] 

 Calculated DC breakdown voltages for three values of electrode separation are presented in Fig. 

32a. It can be seen that below a certain threshold, which depends on the electrode separation (size of 

the helium cell), this power starts to increase exponentially and the ignition of the discharge becomes 

impossible. 

Figure 32. a) Paschen curves, DC breakdown voltage in helium.  b) RF breakdown in hydrogen [30]. 

 Paschen’s law applies for the case of DC discharges therefore it fails to fully describe the 

breakdown used in helium magnetometers, which use HF excitation (11-25 MHz). In order to predict 
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the limiting value of helium pressure for the designed magnetometer an understanding of the 

mechanism of HF breakdown is necessary. 

 The description of the HF breakdown is more complex due to the presence of another degree of 

freedom, namely the frequency of the applied field. The easiest way to present it is in terms of 

dependence of E� on p� and p�, where � stands for the characteristic diffusion length4 and � is the 

wavelength of the applied HF field E. A representation like this is shown in Fig. 32b for the case of 

hydrogen. Similar literature data for helium discharges have not been found in the range of pressure 

and electrode spacing of interest. 
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 The discussion of HF gas breakdown will be largely based on the studies of Brown [30] and Park et 

al. [31] who studied this phenomenon in detail for helium-mercury and helium-nitrogen plasmas 

respectively.  

 The simplest case of HF capacitively-coupled plasma (CCP) breakdown is presented in Fig. 33. It 

consists of two parallel plate electrodes. One of the electrodes is powered by an RF electric field 

source and the other one is grounded. The imposed electric field has a sinusoidal waveform 

(E0exp(j�t) with E0 - amplitude). The initial ionization (Iinit) originates either from the interaction with 

cosmic rays or some external radiation source with the inert gas and has a very small value. 

Figure 33. Basic CCP excitation scheme. 

 In vacuum, an electron accelerated by the external electric field oscillates 90 degrees out of phase 

and thus gains no energy from the field. If the space between the electrodes is filled by a gas, its 

oscillations are damped by the collisions with inert particles which can be considered as the only mean 

of energy transfer from the field to the electron. 

 Electric breakdown occurs when a balance is reached between the creation of free electrons 

through ionizing collisions and their loss due to wall collisions. Wall collisions happen either due to 

their chaotic movement caused by diffusion or due to acceleration by electric field (drift). Therefore 

we can distinguish two types of breakdown: diffusion-controlled (c.f. Fig. 34a) and drift-controlled 

(c.f. Fig. 34b).  

                                                     

4 In a parallel plate configuration 
�

�
d

= , with d – electrode separation. For a cylindrical geometry 
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, with 

r – radius and l – length.  
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Diffusion 
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Drift term Electron 

creation rate 

Figure 34. a) Diffusion controlled breakdown. b) Drift controlled breakdown. 

• In the drift-controlled breakdown the amplitude Ae of drift oscillations becomes comparable to 

the electrode separation d (c.f. Fig. 34b) and the breakdown becomes drift-controlled rather 

than diffusion controlled. This in terms means that electrons will be lost during one HF cycle. 

This process is known to largely increase the amplitude of the field necessary to cause a 

breakdown [30][31] and cause its instability. Drift-controlled discharges behave similarly to 

DC discharges (basically the same mechanism) and their breakdown voltage can be described 

by the Paschen’s law (c.f. Eq. 20 and Fig. 32).  

• In the diffusion-controlled breakdown the “confinement” of electrons by the rapidly changing 

HF field effectively limits the electron loss to the walls and therefore lowers the value of 

electric field necessary for the breakdown. This is a very favourable phenomenon, when it 

comes to magnetometry applications, since it largely limits the power which needs to be 

applied to the matching network in order to ignite and maintain the discharge. 

 In order to predict the limits of the diffusion-driven breakdown it is necessary to derive an 

approximate analytical formula which expresses the amplitude of oscillation. Following [31] this can 

be done by using the drift-diffusion equation (Eq. 21) which expresses the balance between the 

creation of electrons through ionising collisions and loss through drift and diffusion. This balance is 

the breakdown condition. 

  eeBeeee vnEnnD =−∇− µ  (21) 

Where:  De – electron diffusion coefficient, 
 ne – electron density, 

µe – electron mobility, 
EB – electric field at breakdown, 
�e – electron drift velocity. 

In order to characterize the amplitude of the drift oscillations, it has to be considered that diffusion is 

negligible, therefore: 0=∇ ee nD . This way Eq. 22 is obtained. 
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  BeeBeeee EvEnnv µµ −=�−=  (22) 

Since EB is an oscillating field, the amplitude of electron oscillation Ae can be expressed with Eq. 23. 
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Where:  xe – displacement, 
VB – breakdown voltage, 
Ae – electron oscillation amplitude, 

ω – angular frequency of the applied field, 

 <µe> – mean electron mobility, <µe> = 1.132�10-1(760/p) m
2/Vs, with p – pressure in Torr. 

 To sum up the description, it is important to note that the boundary determined by Ae is not 

stepwise. The breakdown voltage increases quite sharply but there exists a certain intermediate region 

where both mechanisms have a pronounced influence. 
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 The possibility to ignite the discharge with a relatively small amount of power is of key importance 

for a helium magnetometer. The low pressure limit for which it is still possible is a function of the 

electron loss mechanism which governs the gas breakdown. For instance, if the breakdown is drift-

controlled (therefore described by the Pashen curves – c.f. Fig. 32a), its ignition may become 

impossible in a �5x5 mm cell filled to 4 Torrs.  

 The major electron loss mechanism is determined by the dimensions of the cell, pressure and 

frequency of the applied field. In order to estimate a reasonable low pressure limit, a measurement of 

breakdown voltage as a function of those three parameters has to be done. The major electron loss 

mechanism can be then determined by comparing the value of Ae calculated using Eq. 23 with the 

dimensions of the cell. 
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 The measurement of voltage in HF resonance circuits is a complex task. The small value of 

capacitance of the helium cell makes such measurements impossible using impedance matching 

networks presented in §2.4.2. The circuit becomes detuned far from resonance immediately after 

connecting a voltage probe.  

 Previous work [5] suggests a measurement of current using a current probe and, given all the 

impedances in the circuit, afterward calculation of voltage. This approach was tested, unfortunately it 

failed since the current probe incorporated additional impedance to the circuit which was very hard to 

estimate accurately enough to obtain reliable measurements.  

 Another approach was chosen instead. Three dedicated matching circuits, operating at different 

frequencies, were designed to compensate for the capacitance of the voltage probe. These circuits are 

not intended to be used in the construction of a magnetometer (due to large power consumption) but as 

a measurement tool developed to allow for the necessary characterisations. The circuits are presented 

in Fig. 35, 36 and 37 along with a brief description. 
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Figure 35. Impedance matching network used for the breakdown voltage measurement at 2.64 MHz. 

Figure 36. Impedance matching network used for the breakdown voltage measurement at 7.83 MHz. 

Figure 37. Impedance matching network used for the breakdown voltage measurement at 10.8 MHz. 

 The operation principle of these matching networks is basically the same as described in §2.4.2. 

Commercially available inductors were used; the capacitors tune the resonant response of the circuit in 

order to adapt it to the parasitic resistance of the inductors. 

 The fine tuning of the circuits was done with trimmer capacitors. Once the circuit was tuned, 

trimmer capacitors were desoldered. Their capacitance was measured using a network analyser and 

they were replaced with high voltage ceramic capacitors of the same value (trimmer capacitors are 

rated 50 V). 
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 The maximal voltage which could be measured using the circuits from Fig. 35 and 37 was limited 

by the voltage rating of the probe to approximately 400 VRMS. For the circuit from Fig. 36 a lower 

limit of 260 VRMS was imposed by the voltage rating of the capacitors used.  

)$1$)$)$ ��	���	


 Experimental values of the breakdown voltage as a function of pressure are presented in Fig. 38 to 

40. These figures also present the applicable limits of the diffusion-driven breakdown, calculated 

using Eq. 23, assuming Ae = 0.5d (blue curve) and the Paschen curves which provide the values for a 

purely drift-driven discharge (red curves). All the experimental data are gathered in Fig. 41, where 

they are presented as a function of frequency. 

Figure 38. Experimental values of the breakdown voltage for �5x5 and �10x10 mm cells at 2.64 MHz. 

Figure 39. Experimental values of the breakdown voltage for �5x5 and �10x10 mm cells at 7.83 MHz. 
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Figure 40. Experimental values of the breakdown voltage for �5x5 and �10x10 mm cells at 10.8 MHz. 

Figure 41. Experimental values of the breakdown voltage for �5x5 and �10x10 mm cells as a function of excitation signal 
frequency. Data points connected for clarity. 
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 The gathered experimental data show clearly the evolution of the dominating electron loss 

mechanism with frequency. 

 The value of the breakdown voltage for �5x5 mm 5 Torr and �10x10 mm 2 Torr cells occurred 

higher than the maximal value which could be measured by the experimental setups (limit imposed by 

the voltage rating of the probe ~400 VRMS). The ignition of a discharge in these two cells is also 

difficult using the matching network from Fig. 27. The power necessary to ignite the discharge is 

nearly an order of magnitude higher than for the rest of the cells. Consequently, this means that 

electron drift largely dominates diffusion and their breakdown may be approximately described by the 

Paschen law, similarily to the �5x5 mm 10 Torr cell for which VB seems to match the Paschen curve 

(c.f. Fig. 38 and 40). This gives very large VB values due to the asymptotic limit of the Paschen curves. 
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The ignition of a discharge below these pressures would be most probably impossible because the use 

of higher voltages would rather cause sparking between the electrodes around the helium cell. 

 The breakdown voltage can be increased by oxygen impurities, although the fraction of oxygen in 

helium necessary for this mechanism to have a visible influence is quite high (0.1%)[31]. 

 The power absorbed at breakdown by the matching network which is actually used in the 

construction of a magnetometer (c.f. Fig. 27) is a good qualitative illustration of the impact of the 

described phenomena on the sensor’s power consumption. It is presented in Fig. 42. 

 In conclusion, some limiting values of pressures may be estimated for a stable and low power 

operation of the discharge for the designed helium magnetometer. Taken the described characteristics, 

it is convenient do distinguish two such boundaries, mentioned below. 

• “Absolute limit” after which the breakdown voltage starts to increase very rapidly and the 

ignition of a discharge becomes impossible. When approaching this limit, the power necessary 

for breakdown increases and the discharge becomes unstable (difficult to maintain). 

• “Safe operation limit” which allows a stable and low power. operation of the discharge. 

Figure 42. Power absorbed (Pabs = PForward - PReflected) by the matching network of the magnetometer at breakdown (fRF �
20 MHz). Data points connected for clarity. 

Such limits for the frequency range used (11-25 MHz) are presented in table 9. Those values are 

subject to decrease if the frequency range is increased. 

 Table 9. Low-pressure limits for helium magnetometer cells. 

Helium cell dimensions Absolute limit Safe operation limit 

�10x10 mm 6 Torr 10-12 Torr 

�5x5 mm 10 Torr 20 Torr 
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 There are two distinct modes of a HF discharge which can be distinguished, based on the 

mechanism responsible for its maintenance. In weak current (�) mode the plasma is maintained by 

electrons originating from ionizing collisions whereas in the high-current (�) mode secondary emission 
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from the vessel’s walls becomes dominant. When the voltage across the cell reaches a certain value an 

abrupt transition occurs which is followed by a large increase in the current consumed by the 

discharge (about one order of magnitude). The discharge contracts and the distribution of emitted light 

changes (c.f. Fig. 43). 

 Macroscopically this can be explained by the fact that the voltage across the capacitance of the 

sheaths (c.f. Fig. 25) reaches a value high enough to cause a secondary discharge in their region. The 

high-current mode is said to be unstable [26]. Right after the � to � transition the current consumed by 

the plasma rises by an order of magnitude. 

Figure 43.  a) Light intensity distribution in � and �-modes, data from [26]. b) �-mode discharge in a 12 Torr 1x1 cm cell at 
about 200 mW of forward HF power. c) �-mode discharge in a 12 Torr 1x1 cm cell at about 600 mW of forward HF power. 

 Both modes were observed in miniature glassblown cells (c.f. Fig. 43b and 43c). The � mode was 

found unstable and power consuming. Having in mind the required specifications in terms of stability 

and power consumption (c.f. §2.1) it is desirable to operate the discharge in the weak current (�) 

mode. 

 Literature predicts that for certain values of helium pressure and electrode separation, the ignition 

of the discharge in the �-mode becomes impossible (c.f. Fig. 44). 

Figure 44. Boundary of the �-mode discharge. Red curve taken from [26]. 

In order to stay in the region where the �-mode is still present, proper pressure and dimension range 

must be chosen. The presence of �-mode was confirmed in the area of interest for miniature 

magnetometers (c.f. Fig. 44) by visual inspection of the light emitted by the discharge in a wide power 
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range. The �-mode was found to appear at relatively high power levels (between ~0.6 and 2 W) in all 

of the cells. This leaves a wide power margin for a stable operation of the discharge in the �-mode 

because the powers of interest in magnetometry lie near the limit of extinction of the discharge (~ tens 

of mW). 
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 The two main parameters which influence the fundamental sensitivity limit of an atomic 

magnetometer are the density of magnetically sensitive species and their relaxation time. Size 

reduction of the active element triggers an inevitable decrease of both. In the case of alkali-vapour 

magnetometers these two parameters are relatively easy to predict. The species density can be 

estimated from the alkali vapour pressure (determined using an approximate logarithmic function 

[32]). By adding literature values of rate constants describing spin relaxation processes simple 

approximate models, describing the scaling of the maximum sensitivity with size, can be assembled. 

Such an analysis is more complicated when it comes to helium magnetometers since the two important 

parameters - 23S1 metastable atom density and their relaxation time - are a consequence of multiple 

complex phenomenons taking place in the discharge. The cells used in the macroscopic version of the 

sensor (cf. Fig. 22) were filled to 2 Torr of high-purity helium, which was an empirically determined 

value. In order to maximize the sensitivity of the developed sensor while decreasing the volume of the 

gas cell, an optimal value of helium pressure needs to be found. In order to determine a reasonable 

pressure range, an approximate numerical model based on literature was assembled. 
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 A very short time after the breakdown a steady state discharge is formed. The number density and 

physical properties of the metastable population are a result of balance between the mechanisms of 

their creation and destruction. Here, He* stands for helium triplet metastable, He+ - helium ion, e – 

electron, He2
+ - ionized helium dimer and He2* - helium excimer. The three main mechanisms 

responsible for the creation of atoms in the metastable state are as follows. 

• Electron impact collision with a fundamental state helium atom, according to: e+He�e+He*. 

The threshold for this reaction is 19.8 eV, which along with its relatively large cross section 

makes it the most powerful creation mechanism. 

• Electron impact collision with an ionised helium dimer, according to: e+He2
+�He+He*

. The 

influence of this mechanism rises with pressure. The presence of dimers is distinctive to high 

pressure discharges. The influence of this mechanism is neglected in further analysis. 

• Radiative decay from the upper triplet states, the influence of this mechanism is small 

(relaxation time very short) and thus will be neglected in this study. 

 The density of metastable species is also determined by the relative influence of the mechanisms 

leading to the destruction of metastables, summatized below. 

• Collisions with walls due to diffusion (drift has no direct influence since metastable atoms 

have no charge). The probability of reflection upon such collisions is small therefore in this 

study it will be assumed that all wall collisions destroy 23S1 atoms. 

• Loss due to collisions with electrons (stepwise ionization) according to: e+He*�2e+He+. The 

higher becomes the electron density, the higher is the loss. Since electron density depends 
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proportionally on pressure, the influence of this mechanism is subject to increase in miniature 

helium cells. 

• Penning ionization – collisions between two metastable atoms resulting in the ionization of 

one of the atoms and de-excitaion of the other according to: He*+He*�He+e+He+. The 

influence of this term also increases with pressure. 

• Three body collisions [33] of a metastable atom with two atoms in the fundamental state, 

according to: 2He+He*� He2*+He. Two body collisions are neglected, since they do not 

influence the triplet metastable population [34]. 

• Excitation to upper state due to the absorption of pumping light. As discussed in the first 

chapter the effect of magnetic resonance is amplified by selective optical pumping on the D0

line. The optical power used in this process is a compromise between two facts: the possibility 

to detect resonance with appropriate resolution and the destruction of metastables through 

excitation to upper states which degrades the sensitivity of the magnetometer. The influence of 

pumping light on metastable density is smallsince lifetime in the excited state is much smaller 

to the liferime in the metastable state (~ 10-7 s compared to ~10-3 s). Therefore this effect will 

be neglected in the numerical analysis. 

)$<$!$!$ 8��������
��	��� ����


 A very reliable picture of all interrelationships in the discharge can be obtained using particle-in-

cell or fluid numerical models. Nevertheless, such models, conventionally used in plasma physics, are 

difficult to assemble and require relatively big computational expense. Since the analysis of optimal 

pressure value for the sensor does not need to be that much exhaustive, it was chosen to proceed with a 

simplified zero-dimensional description presented in [35]. It is based on an approximate solution of 

partial differential equations which describe the mechanism of power dissipation in an HF discharge. 

It allows to estimate the electron density and temperature at the center of the cell as a function of 

power absorbed by the discharge. Figure 45 presents a block diagram showing the input data necessary 

for the calculation. 

 The metastable density is calculated similarly to ref. [36], although the solution of metastable 

balance equation is extended to account for three-body collisions. 

Figure 45. Block diagram presenting the input data necessary for the calculation. 
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• The model describes a capacitively coupled helium plasma source at a pressure range of 5 – 

200 Torr. The electrode separation (d) is between 5 and 10 mm. 

• The discussed discharge is highly collisional since the condition expressed by Eq. 24 is 

satisfied. 
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where:  �i – ion mean free path, defined as �i = 1/
ming  � (3.1�10-5 – 8�10-7 m) [37], 
Ti – ion temperature, Ti  = 300 K � 0.026 eV, 
Te – electron temperature, Te = (4 – 2 eV), 
d – electrode spacing. 

• The sheaths are considered collisional [38]. 

• The distribution of metastable density is identical to the distribution of electron density. 

• The rate constants used in the calculation are presented in table 10. 

     

Table 10. Rate constants of reactions included in the model. Te is in eV units. 

Reaction 
k (cm

3
/s) Ref. 

Formula Type 

kel e+He�e+He Elastic 5.02�10-8�Te [39] 

k1 e+He�2e+He+ Ionisation 1.50�10-9Te
0.31exp(-24.56/Te) [40] 

k2 e+He�e+He* Excitation 4.20�10-9Te
0.31exp(-19.80/Te) [40] 

k3 e+He*�2e+He+ Stepwise ionisation 1.28�10-7Te
0.6exp(-4.78/Te) [41] 

k6 He*+He*� He+e+He+
Penning ionisation 2.70�10-10 [42] 

k7 2He+ He*� He2*+ He Three-body 2.00�10-34 (cm6/s) [40] 

The transport properties used are collected in table 11. 

  Table 11. Transport properties used in the calculation. D – diffusion coefficient. � - mobility. p– pressure in Torr. 

x Particle Symbol Dx (m
2
/s) µx (m

2
/Vs) Reference 

e Electron e 1.737�10-1(Te/17406)(
760/p)

$ 1.132�10-1(760/p) 

[38] i Ion He+ 5.026�10-5(760/p) 1.482�10-3(760/p) 

m Metastable(23S) He* 4.70�10-2/p - (no charge) 

  $Te in Kelvin units. 
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 The set of equations presented below is implemented in MATLAB®. The program uses several 

constant parameters taken from literature (c.f. tables 10 and 11). Apart from that, the values of the 

electron density at the sheath edge (ns) and the sheath thickness (ds) are necessary in order to carry out 

the calculation. An approach suggested in ref. [35] is used, consisting of setting an initial value of both 
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and iterating the solving algorithm. The number of iterations needed to obtain a steady solution (a one 

which does not change from one iteration to another) depends on how close the initial guess is to the 

real value. Using a properly chosen value, the number of iterations can be limited to four which 

significantly accelerates the algorithm. 

 The values of power at the limit of extinction of the discharge were used. Since the values of 

extinction power vary slightly with pressure, mean values of 5 mW and 4 mW for �5x5 mm and 

�10x10 mm cells respectively were used. These values take into account the 50% power transfer from 

the generator to the discharge (c.f. §2.4.3). 

���������� ��� �����������������

 The first parameter to calculate is the electron temperature, which is a thermodynamic equivalent 

of the electron energy, used in plasma physics. It is expressed in electron-volt (eV) units and 

comprised between 4 and 1.5 eV. Electron temperature at the center of the bulk plasma can be 

described with Eq. 25 [35], where k1 and us are functions of Te. 

  
lnu

kk

gs

mi �1
=  (25) 

where: kmi - ion-neutral atom collision rate coefficient, kmi = 1�10-17, 
 k1 – ionization rate coefficient, 

ng – neutral atom density, ng = 3.2�1022�p (m-3), with p – pressure in Torr. 

The velocity of an ion entering the sheath (us) is defined with Eq. 26. Since the sheath is considered 

collisional us will decrease strongly with pressure. 
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where: mHe – helium atom mass, mHe = 6.647�10-27 kg. 

The Debye length at sheath edge (�Ds) is defined by Eq. 27: 
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where: ns – electron density at sheath edge, 
�0 – vacuum permittivity. 

The bulk plasma thickness (l) is defined by Eq. 28: 

  s2d-dl = (28) 

where: d – electrode separation, 
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ds – sheath thickness. 

The sheath thickness (ds) is expressed by Eq. 29: 

  ( ) 3/12� ld Des =  (29) 

with �De being the Debye length in the bulk plasma, expressed as (Te in eV): 
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where: ne – electron density at the center of the discharge.

The above set of equations is numerically solved for Te for given values of ngl. As suggested in 

ref. [35], equations are iterated several times in order to obtain more accurate value of ds (initial 

estimate of ~1 mm). 
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 Electron density is calculated from the power dissipated into the discharge. This power can be 

expressed approximately with Eq. 31 [35]. 
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where: Sabs - density of power dissipated into the discharge, 
 Vs -  voltage across the sheath capacitance, 

�c - collisional energy loss expressed with Eq. 32. 
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ohmS  and StocS  represent the two mechanisms of electron heating, respectively : 

• Ohmic – heating in the bulk plasma due to collisions between electrons and neutral He atoms. 

It accounts for the resistive part of the discharge electrical equivalent model (c.f. Fig. 25). 

• Stochastic – heating at the bulk/sheath edge, it represents the reflection of electrons from the 

sheath due to its large decelerating electric field (c.f. the capacitance Csh in Fig. 25). This 

mechanism is negligible at the pressure range of interest. 

Those mechanisms are expressed by Eq. 33 and 34. 
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where: cos(�l/2) = ns/ne, 
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The ratio of ns/ne is given by Eq. 35. 
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with: Da – ambipolar diffusion coefficient, 
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The value of Vs is evaluated numerically from Eq. 31, once the power absorbed into the discharge is 

known. Finally, the electron density at the center of the discharge is calculated using Eq. 36 [35]. 
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The resulting values of ne are in the range of 109 (cm-3). 
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 The value of metastable density is a result of a balance between the processes of their creation and 

destruction. It is described by Eq. 37. 
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where: nm – metastable density, 
ng – fundamental-state helium atom density. 

 This equation is solved for nm using a numerical algorithm presented in ref. [36]. Equation 38 is a 

simplified form of the numerical solution obtained.
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where: r – radius of the cell. 
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 At this point it is necessary to compare the theoretical values, obtained with the previous set of 

equations with experimental values. Metastable atom density was measured by means of absorption 

spectroscopy. After a short presentation of the experimental methods, the measured values will be 

compared with theoretical ones, calculated using Eq. 38. 
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 Metastable density can be measured by means of absorption spectroscopy, where a laser beam with 

wavelength exactly matching the Do line (c.f. Fig. 2) is passed through the discharge ignited inside the 

cell (c.f. Fig. 46). In such a setup, absorption is defined as: 

  
0

0

I

II
Abs T−

=  (39) 

where: I0 – intensity of light transmitted through the cell with the discharge “off”, 
IT – intensity of light transmitted through the cell with the discharge “on”. 

Figure 46. Absorption measurement setup.

The intensity of light transmitted through the discharge can be described by the Beer-Lambert law (c.f. 

Eq. 40). 

  ( )optvT lkII −= exp0  (40) 

where: lopt – effective optical path, lopt = 1.22r [43] , with r – radius of the cell, 
 kv – absorption coefficient. 

The value of the absorption coefficient (kv) depends on the relative detuning of wavelength of light 

from the value corresponding to the energy separation of interest (He D0 line). This dependence is 

shown in Fig. 47a. 

 As a consequence the absorption is highly dependent on the detuning (c.f. Fig. 47b). During the 

measurement, the temperature of the laser diode (and thus the emitted wavelength) was adjusted to 

obtain a maximum of absorption. Therefore, taking into account the small linewidth of the emitted 

light (2 MHz), it can be considered that the absorption is always at its maximum (kv = kmax). 
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Figure 47. a) The dependence of the absorption coefficient on the frequency (wavelength) of light based on [44]. b) 
Transmitted light as a function of frequency (wavelength), based on [44]. 

 In such case, under the assumption that the linewidth of the absorption is only broadened by 

Doppler effect, the absorption coefficient can be expressed by Eq. 41 [44]. 
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where: ke – Coulomb constant, ke = 8.987�109 (m/F), 
fT – oscillator strength of the transition, fT = 0.06 for the D0 transition, 

C – speed of light. 

The linewidth of the absorption line (�va) can be expressed by Eq. 42 [44]. 
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where: T – temperature, T = 300 K, 
�D0 – wavelength of the Do transition, �D0  = 1083 nm. 

Therefore by rearranging Eq. 41, the following expression (Eq. 43) can be obtained, which allows to 

calculate the metastable atom density from the absorption measurement. 
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The parameter kmaxlopt can be determined from the Ladenbourg-Reiche curve as a function of 

absorption. Such curves are plotted using the � parameter, which is the ratio of the linewidth of the 

optical source used to the linewidth of the absorption curve. Since a laser diode is used it may be 

considered that � = 0. The curve is presented in Fig. 48. 



Chapter 2: Helium gas cells 

71

Figure 48. Ladenburg and Reiche curve and a linear fit. 

The linear fit from Fig. 48 allows to express Eq. 43 directly in terms of absorption (Abs) with Eq. 44, 

which will be valid in the range of absorption from 0 to 40%. 
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For higher values of absorption the Ladenburg-Reiche curve has to be used. 
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 Optical absorption of the discharge was measured using the setup presented in Fig. 46, and the 

impedance matching network from the SWARM project (c.f. Fig. 26). The absorbed power is 

measured with a bidirectional power meter at the input of the matching network. As discussed in 

§2.4.2 and §2.4.3, the power actually dissipated into the discharge is approximately 25% of power 

measured in this configuration.  

 Figure 49a presents the results of the absorption measurement as a function of total absorbed power 

for �5x5 mm cells. 

Figure 49. Absorption measurement results �5x5 mm cells. a) Absorption as a function of power absorbed by the discharge. 
Data points connected for clarity. b) Values of metastable density at the extinction limit as a function of pressure. Solid curve 
– issued from the previously described model for 5 mW of power dissipated into the discharge.
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The metastable densities were calculated from the values of absorption at the limit of extinction of the 

cells (the area of actual interest in magnetometry) using Eq. 44. Results are presented in Fig. 49b. The 

solid curve is issued from the previously described numerical model (c.f. §2.7.1.1). The same set of 

results for �10x10 mm cells is presented in Fig. 50a and 50b. 

Figure 50. Absorption measurement results �10x10 mm cells. a) Absorption as a function of power absorbed by the 
discharge. Data points conneted for clarity. b) Values of metastable density at the extinction limit as a function of pressure. 
Solid curve – issued from the previously described model for 4 mW of power dissipated into the discharge. 

The numerical values of the metastable density measured at the limit of extinction are presented in 

table 12. 

 Table 12. Numerical values of the metastable densities calculated from absorption measurements. 

Dimensions 
Helium pressure 

(Torr) 
Supplier 

Absorption 

(%) 

Metastable 

density (cm
-3

) 

φ10x10 mm 2 VE 11 2.6x1011

φ10x10 mm 12 VE 15 3.6x1011

φ10x10 mm 30 VE 5 1.2x1010

φ5x5 mm 5 GB 12 5.7x1011

φ5x5 mm 10 GB 14 6.7x1011

φ5x5 mm 20 GB 18 8.6x1011

φ5x5 mm 30 GB 11 5.2 x1011

φ5x5 mm 40 GB 7 3.3x1011

φ5x5 mm 50 GB 9 4.3x1011

φ5x5 mm 20 VE 27 1.3.x1012
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The decrease in metastable density above 20 Torr for 5 mm cells and above 10 Torr for 10 mm cells 

(see Fig. 49b and 50b respectively) predicted by the theoretical model is related with the electron 

temperature in the discharge which decreases with pressure. Unfortunately the theoretical model, 
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which describes the center of the discharge, is not capable to fully reflect the complexity of the 

problem, since electron temperature has in fact a spatial distribution. It generally reaches the highest 

value at the sheath-bulk boundary [45], where the majority of ionization and excitation occurs. 

Metastable density exhibits similar behavior after certain values of pressure and electrode separation. 

Figure 51 presents such a behavior for a He/O2/N2 plasma at atmospheric pressure (780 Torr) [45]. 

Figure 51. Metastable density distribution in an atmospheric pressure He/O2.N2 plasma for various electrode separation (gap-
size) values [45]. 

In order to inspect the metastable density distribution, the profile of optical absorption on the D0 line 

was measured. The principle of measurement is presented in Fig. 52. 

Figure 52. Metastable density profile measurement setup. 

A laser beam profiler (Thorlabs BC106-VIS) is used in order to measure the profile. Profiles of the 

beam with and without the discharge were captured and processed under Matlab to give absorption 

profiles (c.f. Eq. 39). 
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The obtained profiles are quite noisy due to the noise of the CCD matrix used in the beam profiler, 

therefore they were filtered with a Savitzky-Golay filter. The resulting characteristics are presented in 

Fig. 53. 

Figure 53. Measured metastable density profiles for a �5x 5 mm GB cells. a) 20 Torr. b) 40 Torr. c) 50 Torr. d) 150 Torr. 

 A similar tendency to the one suggested by the state of the art (c.f. Fig. 51) is clearly visible. The 

metastable density profile seems to change with the applied HF power while maintaining its maximum 

at the center for powers close to the extinction limit of the cell (which is not the case for the 150 Torr 

cell in the detection limit). 
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 The distribution of light, emitted by the discharge was found to change in a manner similar to the 

previously described metastable density. For higher values of pressure (or power) the emitted light is 

more intense near the electrodes. This situation is much more clearly visible in larger cells. It is 

presented in Fig. 54 for the case of the �10x10 mm 12 Torr cell.  

Figure 54. Discharge ignited in a �10x10 mm 12 Torr helium cell. a) Near the extinction limit (~20 mW of forward power). 
b) At about 150 mW of forward power. 

 Since the measurement described in §2.7.1.3 was impossible for �10x10 mm cells due to the small 

aperture of the beam profiler, it was chosen to study the relationship between the two distributions 

(absorption at the D0 line and distribution of light emitted by the discharge) at the example of the 

�5x5 mm 40 Torr cell. For this purpose the emitted light intensity needs to be measured. Because of 

the small dimensions of the cell, it was chosen to recover the intensity distribution from a high-

resolution photograph of the discharge rather than developing a dedicated measurement setup 

(focusing optics). This procedure is presented in Fig. 55. 

Figure 55. The procedure used to determine the distribution of intensity of light emitted by the discharge. a) discharge 
maintained in a �5x5 mm 40 Torr cell with 8 mW of absorbed power. b) The same discharge at 85 mW of absorbed power. 

The results of the comparison of these distributions with the absorption profiles (c.f. Fig. 53) are 

presented in Fig. 56. A clear relationship is visible between the two, which leads to suggest that a 
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visual inspection of the discharge (of the emitted light intensity distribution) may provide some 

information on the metastable population distribution inside the cell. 

 This comparison is not intended to draw any far-reaching physical conclusions, since those would 

require more precise experimental methods. It provides a simple method of approximate determination 

of the topology of the metastable population inside the cell. 

Figure 56. Comparison between the profile of metastable density and the distribution of light emitted by the discharge for a 
�5x5 mm 40 Torr cell. a) 8 mW of absorbed power. b) 85 mW of absorbed power.  
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 A numerical description of metastable density as a function of helium cell dimensions, pressure and 

power dissipated into the discharge has been presented. The agreement between the theoretical 

description and experiment is quite good. The predicted pressure ranges in which the metastable 

density starts to decrease correspond fairly well to the gathered data. However the decrease predicted 

theoretically is much sharper to the one given by experiment. This can be attributed to the changing 

profile of the metastable atom distribution. For higher values of pressure the metastable density 

becomes higher near the electrodes and decreases towards the center of the discharge. 

 The metastable densities obtained at the limit of extinction for two φ5x5 mm 20 Torr cells provided 

by different suppliers show quite different values. For the GB the metastable density is approximately 

30 % lower as compared to the VE cell. This is attributed to the oxygen impurity resulting from the 

filling process (c.f. §2.3).  
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 The relaxation time of metastable atoms is the second most important parameter, resulting from the 

physics of the discharge, which directly influences the sensitivity of helium magnetometers. This 

section is dedicated to its analytical description, which will be backed by experimental measurements.
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Collisional relaxation time describes the lifetime of helium atoms in the metastable state. Therefore it 

is a sum over all processes leading to its destruction, which take place in the plasma. It includes three 

fundamental mechanisms. 

• Diffusion loss – related to the gradient of concentration and collisions with the walls of the 

glass cell. 

• Loss due to collisions with other species present in the plasma, like electrons, fundamental 

state helium atoms and other metastable atoms. 

• Quenching by impurities – this mechanism is very difficult to describe analytically since their 

exact composition and concentration is unknown. It will not be taken into account by the 

theoretical description although its influence will be illustrated in the experimental part of this 

section. 

Given the above definition, the collisional relaxation time of 23S1 metastable helium-4 atoms can be 

described by Eq. 45. 
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The transverse relaxation time �2 of actual interest in magnetometry describes the spin relaxation 

processes. It is related with the collisional relaxation time with Eq. 46. 
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Where: �in – incident photon flux, 
QA – absorption cross section, QA � 8.4�10-13 (cm2) in the domain of validity of Eq. 44, 
r – radius of the cell. 

The second term in Eq. 46 accounts for the influence of pumping light on the resonance linewidth. The 

light broadening cross section (QB2) can be expressed with Eq. 47. for the pumping conditions of 

interest (pumping on the D0 line with linearly polarized light, 00 EB ⊥ ) [46][7][6]. 
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Where: a0 – Bohr radius. 
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Literature [5][33] suggests a measurement scheme consisting of a “pulsed discharge”, where the HF 

signal driving the plasma is amplitude modulated with a square thus giving a discharge which is 

ignited and extinguished alternately. Using this method the measurement cannot be done for powers 

smaller than the value of power required for the ignition of the discharge. The powers of practical 

interest for magnetometry lie close to the smallest power necessary to maintain the plasma (which is in 

general a lot smaller than the breakdown power). For that reason a modified measurement procedure 
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was adopted. Its principle is presented in Fig. 57. It uses an amplified HF signal to ignite and maintain 

a stable discharge in the helium cell. Once all the parameters are fixed the oscilloscope is set into 

single sequence mode. When the signal is cut off with the use of a relay switch, a rising curve is 

caught by the oscilloscope (c.f. Fig. 57). The method of cutting off the signal is quite important in this 

case, since it must allow a fast and repetitive disconnection of the circuit so as not to introduce 

additional errors to the measurement. The simplest solution consists of cutting off the signal with the 

use of an electrically operated relay. Moreover, these devices suffer from a phenomenon called 

“contact bounce”. Due to elastic force, disconnected contacts bounce back and forth short after they 

have been disconnected. This may produce a distortion in the output signal. Such distortions were 

found in the electrical signal measured directly after the relay switch yet no noticeable influence was 

found on the photodiode signal. 

Figure 57. Measurement setup. Measurement of collisional relaxation time in the afterglow of a helium discharge. 

In the afterglow of the discharge, the evolution of the metastable density can be described with Eq. 48. 

  ( ) ( )Rmm tntn �/exp0 −=  (48) 

where: nm0 – initial metastable density (at t = 0). 

In the domain of validity of Eq. 44, it can be expressed in terms of absorption using Eq. 49. 

  ( ) ( )RtAbstAbs �/exp0 −=  (49) 

where: Abs0 – initial value of absorption density (at t = 0).

The experimental curves, measured in the setup from Fig. 57, represent the evolution of light 

intensity with time. They were recalculated using Eq. 39 to give absorption evolution profiles. These 

profiles were fitted with Eq, 49 in order to determine the values of 	R. This procedure is presented in 

Fig. 58. 
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Figure 58. The measured evolution of absorption in the afterglow of a helium discharge and fitted function. 

 The collisional relaxation time measurements, gathered for several values of initial HF power 

(before cut off) are presented in Fig. 59a and 60a for �10x10 mm and �5x5 mm cells respectively.  

Figure 59. a) Relaxation time measured in the afterglow of discharges in three φ10x10 mm VE cells. Data points connected 
for clarity. b) Values of relaxation frequency at the extinction limit as a function of pressure. Solid curve – issued from the 
previously described model for 4 mW of power dissipated into the discharge. 

Figure 60. a) Relaxation time measured in the afterglow of discharges in φ5x5 mm cells. Data points connected for clarity. b) 
Values of relaxation frequency at the extinction limit as a function of pressure. Solid curve – issued from the previously 
described model for 5 mW of power dissipated into the discharge. 
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A comparison between values measured at the extinction limit and ones calculated with the numerical 

model using Eq. 45 are presented in Fig. 59b and 60b for �10x10 mm and �5x5 mm cells 

respectively. 

 The contributions of the four metastable atom destruction mechanisms (c.f. Eq. 45) to the value of 

collision frequency calculated by the numerical model are presented for �5x5 mm and �10x10 mm 

cells in Fig. 61a and 61b respectively. 

 Two main mechanisms responsible for the destruction of metastable atoms can be identified. 

Namely the diffusion and quenching to the walls, which is dominant at low pressures and three-body 

collisions with neutral helium atoms at higher values of pressure. The influence of other terms seems 

less pronounced. 

Figure 61. Contributions of four metastable atom destruction mechanisms to the value of the collisional relaxation time 

calculated by the numerical model. a) φ5x5 mm cells. b) φ10x10 mm cells. 
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 The transverse relaxation times were calculated from the width of the resonance curve. The 

measurement of the width of the resonance curves was carried out in an arrangement presented in 

Fig. 62 and 63.  

Figure 62. Block scheme of the experimental setup used to measure the width of the resonance lines. 
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Figure 63. The setup used to measure the width of the resonance lines. 

  

Since magnetic field gradients broaden the resonance curve, this measurement has been carried out in 

a magnetically clean environment at the CEA-LETI magnetic measurement facilities in Herbeys 

(wooden cabins). A sample resonance curve for a 20 Torr �5x5 mm VE cell, obtained by sweeping 

the frequency of the RF magnetic field, is presented in Fig. 64. 

  

Figure 64. Sample resonance curve for the 20 Torr �5x5 mm VE cell. 

In order to decrease the influence of the pumping light on the measured resonance linewidth, its power 

was set to an absolute minimum (Popt = 200 µW, which gives ~100 µW after passing through the 

linear polarizer) allowing a reliable measurement. 

 The influence of the RF (B1) field provided by the saddle coils was eliminated by applying a 

measurement scheme presented in ref. [5]. It consists of measuring the resonance linewith (FWHMres) 

for multiple, small values of B1. The resulting data sets are interpolated to obtain the value of FWHMres

at B1 = 0 (c.f. Fig. 65a). The transverse relaxation time is calculated using Eq. 50. 

  
resFWHM�
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Figure 65. a) Example of a linear interpolation of the measured resonance linewiths. φ5x5 mm 30 Torr cell from GB.  b) 
Transverse relaxation frequencies, compared with theory. 

 The resulting transverse relaxation frequencies, calculated apart from the measurements of 

resonance linewidth are presented in Fig. 65b, compared width values obtained theoretically from Eq. 

46. A comparison between the measured values of transverse and collisional frequencies is presented 

in Fig. 66. 

Figure 66. Comparison of transverse and collisional relaxation frequencies. a) �5x5 mm cells. b) �10x10 mm cells. 

 The comparison of experimental values of collisional and transverse relaxation times (c.f. Fig. 66) 

reveals a significant deviation from theory. Transverse relaxation time was expected to be smaller than 

the collisional relaxation time, which is not the case at low pressure values. This deviation seems to be 

more pronounced for smaller helium cells. Its exact physical origin is unclear at the moment. 
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 The fundamental physical sensitivity of atomic magnetometers is related with spin projection noise. 

It can be expressed with Eq. 51 [47]. 
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where: V – volume inside the cell irradiated with pumping light. 

 The optimal value of pressure, for the designed helium magnetometer is the one which maximizes 

its sensitivity and provides an optimum between the maximums of nm and 	2. This value can be found 

by numerical evaluation of Eq. 51 (c.f. Fig. 67). 

Figure 67. The maximal theoretical values of sensitivity, limited by spin projection noise, for two types of helium cells. 

 The optimal value of pressure, determined using Eq. 51 was found to be around 10 and 20 Torr for 

�10x10 mm and �5x5 mm helium cells respectively (c.f. Fig. 67). The corresponding sensitivity 

limits presented in Fig. 67 are purely theoretical values which do not include various degradation 

mechanisms like magnetic field gradients, laser and electronics noise, which will be discussed in the 

subsequent chapters. In practice the maximal sensitivities, which were obtained were around 8 and 3.5 

pT/�Hz for �5x5 mm and �10x10 mm cells respectively. These results are presented in Fig. 68. 

 The tests of sensitivity, conducted for all the available cells, revealed an unfavourable phenomenon 

which occurs only in the GB cells. The maximal sensitivity which can be obtained with those cells 

fluctuates in time. It reaches its maximum after a certain “warm-up” period which consists of 

maintaining a very intense discharge for a short time. This phenomenon is most probably related with 

the presence of impurities in the cells due to a different filling procedure used by the American 

manufacturer, although its exact physical origin is unclear. This phenomenon is unacceptable which 

means that these cells cannot be used in the construction of a high resolution magnetometer. 
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Figure 68. Results of sensitivity measurements. Datapoints connected for clarity. 
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 The resistive part of the discharge impedance was experimentally determined to be in the range of 

tens of kilo ohms, which seems a reasonable value since along with the sheath and the cell capacitance 

this gives a load resistance in the order of ~100 Ω. The efficiency of the matching network used with 

the miniature magnetometer is estimated to about 50%, which is a sufficiently good result. 

 The value of pressure with which the magnetometer’s cells are filled is limited from the low side 

by the physics behind the breakdown process. Below a certain limit, the ignition of a discharge 

becomes very difficult or impossible. This limit value increases inversely to the characteristic size of 

the helium cell (electrode separation) and the frequency of the HF field. The limits for �5x5 mm and 

�10x10 mm cells are experimentally found to be around 10 and 6 Torr respectively. 

 Experimental values of metastable density are lower than the ones predicted theoretically (c.f. Fig. 

49 and 50). This is likely to be caused by the fact that the numerical model calculates the value of 

metastable density at the center of the discharge and therefore neglects the spatial  distribution of all of 

the computed parameters. 

 The values of collisional relaxation frequency measured in the afterglow of the discharge 

(c.f. §2.7.2.2) seem to follow the theoretical curves fairly well. At small values of pressure the 

dominant metastable atom destruction mechanism is found to be diffusion and quenching on the walls 

of the cell (c.f. Fig. 61). In this pressure range the destruction of metastables by electron collisions 

(stepwise ionization) and collisions between pairs of metastable atoms (Penning ionization) reach their 

maximum but are never the main contributor. At higher values of pressure the metastables are rather 

destroyed by three-body collisions. This the increasing number of neutral helium atoms is also the 

major cause of the sharp metastable density decrease at higher pressures. 

 The transverse relaxation frequencies show a significant deviation from theoretical predictions at 

lower pressures. The origin of this deviation is quite difficult to identify. It could be related with the 

presence of impurities or the influence of selective optical pumping on the cross sections of the 

considered collisions, both of which were not addressed by the numerical model. 

 The experimentally determined optimal values of helium pressure for �5x5 mm and �10x10 mm 

cells are 40 and 20 Torr respectively, with corresponding maximal values of sensitivity of 8 and 

3.5 pT/�Hz. The optimal values of pressure determined by the developed numerical model are slightly 
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smaller. This could be due to the fact that its zero-dimensional character fails to accurately reflect all 

the phenomena in the discharge. In order to address this problem, an attempt was made to assemble a 

one-dimensional fluid model of the discharge (using Comsol Multiphysics), which would provide a 

better description. This model consisted of a set of drift-diffusion equations solved for all of the 

species present in the plasma and the energy of electrons. These equations were coupled with 

Poisson’s equation to account for the distribution of electric field inside the plasma and solved in a 

one-dimensional geometry with appropriate boundary conditions. Unfortunately due to several 

problems with the numerical implementation of the highly nonlinear electron energy balance equation, 

this solution was abandoned. 
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Chapter highlights 

• The application of a commercial DFB laser diode with an optical isolator as pumping source 

poses significant problems due to the temporal instability of its noise characteristics. During a 

stable period it allows to obtain similar sensitivity as the SWARM’s fiber laser, nevertheless it 

is not suitable for magnetometry applications. 

• A batch of VCSEL lasers operating at the wavelength of helium D0 transition is developed and 

characterized. 

• A liquid crystal polarization rotator is found to be an optimal replacement for the piezoelectric 

motor, allowing easy miniaturization and integration with other sensor’s components. 

• Sample structures of liquid crystal polarization rotators are developed, characterizations show 

that they are compatible with magnetometry applications. 

• A system architecture of an isotropic helium-4 magnetometer is proposed. 
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 The miniaturization of the designed helium magnetometer imposes significant modifications in the 

architecture of the sensor as compared with the macroscopic version. Some of these modifications 

may be considered as application-specific, e.g. the change of excitation mode from the resonance 

induced by a RF magnetic field (MSP) to an all-optical scheme (OSP) which is very favourable in 

applications requiring array operation (e.g. detection of unexploded ordinance - UXO), where the MSP 

architecture may suffer from crosstalk. Other modifications are rather technology-related, since some 

of the components become an obstacle to miniaturization at a certain level (e.g. the piezoelectric motor 

used to provide isotropy to the measurement). 

 This chapter presents an analysis of the miniaturization potential of the key elements of the 

magnetometer. It shows some problems associated with the scaling-down process and several possible 

solutions. Finally, an optimal system architecture of the sensor is presented. 
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 The main requirements which can be stated for the architecture of a miniature, isotropic helium-4 

magnetometer can be summarized in the following points. 

• Large miniaturization potential – the solutions chosen to be developed at this stage should still 

allow further miniaturization in the future. 

• Relatively low cost – from the economical point of view, miniaturization of the sensor can be 

justified if it reduces its unit cost. Therefore ideally, most of the elements of the sensor should 

be compatible with batch processing. 

• Non-magnetic construction – all the elements of the sensor head should be free of any 

ferromagnetic materials (as discussed in §1.1.4.4). Their operation should not perturb the 

measurement. 

• Isotropy of measurement – the architecture must allow for an isotropic measurement of  

magnetic field 
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 As discussed earlier in §1.2, magnetic resonance can also be induced by optical excitation through 

modulated optical pumping (intensity, frequency or polarization). Those so called Bell-Bloom 

magnetometers are said to reach performances similar to those of their RF-excited counterparts [48]. 

One big advantage of this solution is the elimination of RF coils in the construction of the sensor, 

which is particularly important for array operation (crosstalk). What is more it simplifies the whole 

system since only the alignment of polarization is necessary, if an isotropy-providing system similar to 

the one described in §1.1.5 is to be used. Therefore the alignment of �RF at 90°, specific to the MSP 

scheme, can be eliminated. 

 Optically excited helium-4 magnetometers have different angular behavior than sensors using RF 

magnetic field. In order to apply the isotropy-providing mechanism developed for the SWARM 

magnetometer to an all-optical helium-4 magnetometer, a configuration (similar to the one presented 

in Fig. 9) would have to be found in which one of the resonance signals becomes extinct (error signal 

for the alignment of pump beam polarization) while another allows the measurement. 
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  A part of this section concerning the experimental results obtained in the OSP mode as well as 

some conclusions on the architecture of an isotropic all-optical helium-4 magnetometer have been 

removed from the manuscript. This is imposed by a patenting procedure which is currently under 

progress. This part will be inserted to the manuscript once the procedure comes to an end. This fact 

does not affect the integrity and overall understanding of the text since this was only a preliminary 

study and a detailed characterization of the sensitivity and heading errors present in the OSP mode will 

be carried out in the future. 
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This method of resonance excitation was first described by W. Bell and A. Bloom [49]. It consists of 

passing a frequency, intensity or polarization modulated optical beam through an atomic media. In 

what follows, OSP mechanism is explained [49], [50]. 

• If the light is not modulated, the overall polarization is near-zero and individual atoms precess 
with random phases. 

• Modulation takes place at Larmor frequency therefore atoms are pumped at the exact moment 

of completing a precession resulting from the previous cycle. 

• The modulation of the beam causes the phases to “synchronise” and atoms to precess 
coherently since they are pumped simultaneously. 
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 Intensity Modulation (IM) consists of varying the optical power of the signal. It is realized with an 

external intensity modulator according to Eq. 52. 

  ( ) ( )[ ]tItI modmod0 
sin�1 +=  (52) 

where:  I0 – intensity of an unmodulated beam 

mod – modulation frequency (Larmor frequency or one of its harmonics) 
�mod – modulation depth 

In the simplest description, we can consider a square modulation of the optical signal at Larmor 

frequency (c.f. Fig. 69). Then, there are two states, during one pumping cycle: 

• pumping “on” state, during which the atoms are pumped simultaneously, 

• pumping “off” state, during which the spins carry out one precession. 

Figure 69. The principle of the IM OSP scheme, based on [50]. 
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Spins are always pumped in the same direction, inducing phase coherence. 

 It should be noted that a practical realization of this modulation requires an intensity modulator. If 

an operation of several magnetometers in an array arrangement is envisaged, this means that one 

modulator is necessary for each node (each separate magnetometer). What is more the magnetic 

signature and size of the modulator are subject to impose its separation from the sensor head.  
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 This method of resonance excitation consists of modulating the wavelength (frequency) of the 

pumping light. Equation 53 expresses the frequency of the resulting optical signal. 

  ( ) ( )tf
v

vvtv ms �2cos
2

�
� mod

0 ++=  (53) 

where:  v0 – frequency at the center of the absorption line (corresponding to the D0 transition) 
�vs – separation between the carrier frequency of the optical signal and v0

�vmod – modulation depth 
fm – modulation frequency,  fm � fL (with fL – Larmor frequency) 

When the modulation depth is larger than half of the width of the D0 absorption line (�va), resonance 

is clearly detectable as a modulation in the transmitted beam. 

 Based on the value of frequency separation (�vs) between the carrier and v0, two FM excitation 

schemes can be distinguished. 

• Half Larmor Frequency (HLF) – for which the carrier is centered on the absorption line 

(�vs = 0) (c.f. Fig. 70). In this scheme the laser frequency passes the entire absorption line 

width two times per cycle (1/fm) and the modulation frequency is half the Larmor Frequency 

(fm= fL /2). 

Figure 70. Frequency modulation schemes - Half Larmor Frequency and Full Larmor Frequency. Based on [24]. 
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• Full Larmor Frequency (FLF) – for which the carrier is centered on the side of the absorption 

line (c.f. Fig. 70) and modulation depth adjusted in order for the laser frequency to pass 

through the center of the absorption line one time per cycle (2�/�L). The modulation 

frequency is equal to the larmor frequency. 

The advantage of this method lies in the fact that no additional optical elements are necessary (like 

an intensity modulator), since the frequency (wavelength) of light emitted by a laser diode can be 

modulated by adding an AC component to its injection current.  
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 The modulation of polarization, which is another optical mean to induce resonance in the atomic 

media, was excluded from this study. Its practical implementation would need the incorporation of a 

polarization modulator very close to the sensitive element which is not possible due to its large 

magnetic signature and big size. 

 At this stage it was chosen to proceed with the miniaturization of the sensor using the “classical” 

MSP mode. The technological solutions developed during this process are compatible with both MSP 

and OSP modes. This approach allows to concentrate solely on the scaling of the sensor, since all the 

electronics constraints and isotropy characteristics of the MSP mode are well known. 
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This section describes all the elements present in the optical path of the developed sensor. 

Chapter 1.2 provided several state of the art technological solutions, applied in the construction of 

miniaturized alkali-based atomic magnetometers. In order to obtain a compact and easily 

manufacturable sensor head, several aspects specific to 4He magnetometers have to be taken into 

account. At the end of the section, some conclusions are made on the global architecture of the 

designed isotropic helium-4 magnetometer. 
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 Early constructions of helium-4 magnetometers used electrodeless discharge lamps as optical 

source. This solution had several disadvantages, apart from its large dimensions, lamp pumping 

excites all three transitions (D0, D1 and D2), which is an inefficient way of pumping since D2 line tends 

to polarize the atoms in the opposite direction than D0 and D1 [46]. 

 The advent of lasers emitting at the wavelength of the D0 transition significantly improved the 

efficiency of pumping and thus the sensitivity. First lasers of this type used diode-pumped LNA 

crystals and a selective optical filter [51] which proved this principle. The first 1083 nm diode lasers 

where developed by General Optronics Corp. in 1988 as a result of a SBIR project. Such lasers were 

later commercialized by Spectra Diode Labs Inc. and widely used in helium optical pumping. 

 The SWARM project uses a specially developed, low-noise fiber laser, based on a diode-pumped 

Ytterbium-doped optical fiber [52]. The reason behind this is that at the time the project begun no 

applicable commercial 1083 nm diode lasers were available. This solution is quite bulky, expensive 

and impossible to implement in mass production. The cost of the optical source used in the 
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construction of a miniature helum-4 magnetometer is of key importance, especially if array operation 

is to be considered (in case of FM Bell-Bloom magnetometers this means one laser per array node). 

Thus the most convenient solution would consist of applying a single mode semiconductor diode 

operating at 1083 nm. Two types of such diodes were tested: an edge-emitting DFB diode 

(manufactured by Eagleyard Photonics GmbH) and a VCSEL laser specially developed at the CEA-

LETI’s optronics department. 
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 The intensity noise of light emitted by semiconductor lasers is one of the key factors which limit 

the performance of atomic magnetometers. This noise is a result of several phenomena related with the 

construction of the laser and its operating conditions. There are various origins of intensity noise in 

semiconductor lasers. Most important ones will be presented in this section. 

 Relative intensity noise (RIN) is a measure of instability of optical power generated by a laser. In 

the simplest case it can be measured with an arrangement presented in Fig. 71. 

Figure 71. RIN measurement. DUT – Device Under Test.

The value of RIN is determined as the signal to noise ratio of power emitted by the diode, which may 

be also expressed in terms of voltage measured by the spectrum analyser (c.f. Eq. 54).  

  ( )VN

Laser

Noise UU
P

P
dBRIN log20log10][ −=�

�
�

�
�
�
�

�
=  (54) 

where: PLaser – power emitted by the laser, 
PNoise – power of noise present in the optical signal, 
UV – voltage measured by the voltmeter, 
UN – noise voltage measured by the spectrum analyser.
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 Shot noise is a fundamental quantum noise related to the discrete character of electrons and 

photons. The RIN due to shot noise in the laser light is indistinguishable from the shot noise of the 

photodiode. It can be described by Eq. 55. 

  Lavgs hvPN =  (55) 

Where: h – Planck constant, 
vL – laser frequency, 
Pavg – average light power. 
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Shot noise is frequency independent. In general the noise of semiconductor lasers is much larger than 

the shot noise value. 
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The noise of current supplies used with laser diodes is directly translated to RIN present in the 

emitted light. This noise has to be characterized in order to exclude it as a limiting factor. This can be 

done by connecting the current source to a spectrum analyzer through a shunt resistor. For the 

available current sources it is typically below the noise of laser diodes used (not the case for LDD200 

at HF). Figure 72 presents the injection current noise for three commercially available current supplies 

at low (c.f. Fig. 72a) and high (c.f. Fig. 72b) frequencies which correspond to the detection of 

resonance using the LA0 (continuous) and LA2 (at 2ωL) signals respectively. 

Figure 72. Injection current noise of three commercially available laser current supplies. Data points connected for clarity. 

Since the LDX-3412 laser current supply shows the best noise characteristics, it was used throughout 

the rest of the measurements. 
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The length of a laser cavity allows the presence of multiple longitudinal modes. The lasing mode is 

the one closest to the maximum of cavity gain curve. The wavelength of light emitted by a 

semiconductor diode is determined by its temperature in two ways. 

• By shifting the modes wavelengths due to the change of refractive index and thermal 

expansion of the cavity. This shift is of about 0.06 nm/K5. 

• By shifting the maximum of gain due to a slight change in bandgap of the semiconductor 

material. This shift is of about 0.25 nm/K5. 

The tuning curve (wavelength vs. temperature) of a semiconductor diode is shown in Fig. 73a. Its 

stepwise character is caused by the separation of different modes. 
                                                     
5
 Values for AlGaAs lasers [53]. 1083 nm lasers described later are based on GaAs for which those values may be slightly 

different. 
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Mode hopping occurs when the temperature is fixed at a point where the maximum of gain occurs 

between two different modes (c.f. Fig. 73b). Those wavelength “hops” are followed by very small 

intensity fluctuations. Emitted wavelength switches back and forth between two stable values 

corresponding to the two modes. At the moment of switching RIN rises abruptly for a very short 

moment. 

 Mode hopping significantly degrades the performance of the designed sensor therefore attention 

should be paid to the specifications provided by the manufacturer. The diode used in this study is 

specified to be “mode-hopping free”. 

Figure 73. a) Tuning curve of a semiconductor laser [43]. b) Mode hopping mechanism, based on [43]. 
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 Semiconductor lasers are particularly sensitive to light fed back into their active region. Such 

feedback is generally caused by back reflections from optical elements including optical fibers used to 

pigtail laser diodes.  

 The influence of optical feedback manifests itself as instability of the emitted wavelength. This 

instability increases with the value of optical power fed back to the diode [54], with an extreme case 

called “coherence collapse” where the emitted linewidth becomes drastically broadened. 

A proper use of a semiconductor diode as applied to magnetometry should consist of application of 

an optical isolator to suppress the feedback. An alternative solution would be to characterize the 

feedback effects for the diode of interest and and control rigorously feedback in the optical chain (e. g. 

anti-reflection coating, the use of PM fibers, etc.). The second solution is very difficult to realize in 

practice. 
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 The SWARM magnetometer uses a custom-designed, high performance space-qualified fiber laser. 

A block diagram presenting its construction is presented in Fig. 74. 

 Its operating principle is based on an Ytterbium-doped optical fiber, pumped by a 980 nm lased 

diode. Bragg gratings diffused along the fiber form the laser’s cavity. The wavelength is tuned by 

piezoelectric actuators which induce strain in the fiber and thus finely tune the cavity mode. A part of 

the output light (20%) is used by the custom-designed noise reduction feedback system, which lowers 

the effective value of RIN by adding a correction signal to the pumping diode’s current. 
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Figure 74. Fiber laser developed for the SWARM project. 

  

 One big advantage of this system is that wavelength and output light power are independent 

parameters, which can be controlled electrically, which is not the case in diode lasers. 

 As said before, this solution is impossible to miniaturize and implement in large–scale production. 

Nevertheless its high-performance makes it a very good reference pumping source, which will be used 

throughout the thesis. 
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 Edge-emitting Distributed Feedback (DFB) diodes are relatively simple to produce at small 

quantities, which makes them commercially available at the wavelength of interest (1083 nm – the D0

line). The tested diodes were manufactured by Eagleyard Photonics GmbH under the serial number 

EYP-DFB-1083.   
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 The RIN was measured on a laboratory testbench, in the arrangement from Fig. 71. The results are 

presented in Fig. 75a for two frequency ranges of interest.  

Figure 75. a) RIN noise as a function of current during a stable period. Diode EYP-DFB-1083, S/N: 645. b) Noise 
characteristics measured with a spectrum analyzer in the arrangement from Fig. 71 without an optical isolator (pink curve). 
The “jump” in the characteristic - blue curve. The orange curve is the noise of the measurement chain.
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The diode was tuned to the D0 transition for every injection current value by adjusting its temperature. 

 Noise “jumps” were identified in the RIN characteristic of all of the tested diodes. It manifested 

itself as a sudden “jump” of the noise spectral characteristic, measured on an electrical spectrum 

analyser, towards higher values. Figure 75b presents this behaviour. The pink curve represents the 

RIN of the diode. The “jump” of the characteristic is presented by the blue curve. The frequency of 

this phenomenon was completely random. It varied from one per 10 seconds to one per minute. 
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 In order to characterize the influence of the optical noise on the performance of the sensor the 

diode was used as a pumping source in the arrangement from Fig. 76.  

Figure 76. Measurement of sensitivity of a diode-pumped magnetometer. 

The sensitivity of the sensor obtained in this arrangement was limited to 1 nT/�Hz, mainly due to laser 

noise. The signal observed at the oscilloscope (c.f. Fig. 77a) showed significant intensity noise.  

Figure 77. Noise in the output optical signal observed with an oscilloscope. a) without an optical isolator, b) with an optical 
isolator. 
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The noise is much more pronounced when the discharge is “on”. This can be explained by the fact that 

the discharge behaves as an extremely selective bandpass optical filter and the laser emission line 

broadening, due to wavelength instabilities, becomes clearly visible as intensity noise. This behaviour 

is attributed to the feedback caused by back reflections from the interfaces present in the optical chain. 

 The incorporation of an optical isolator increased the sensitivity of the magnetometer and 

decreased significantly the intensity noise in the output signal (c.f. Fig. 77b). A comparison of noise 

spectral density of the setup with the use of the described Eagleyard DFB diode with an optical 

isolator and a fiber laser developed for the SWARM project is presented in Fig. 78 for two different 

helium cells. 

Figure 78. Comparison of noise spectral density of a diode-pumped and fiber laser-pumped magnetometer. a) Measurement 
done with the SWARM helium cell. b) Measurement done with the �5x5 mm 20 Torr GB cell. 

 Similar sensitivity was obtained using both laser sources which means that the incorporation of an 

optical isolator decreased significantly the noise of the diode laser. Nevertheless, some noise “jumps” 

are still present in its output. The characteristics presented in Fig. 78 were measured during a period 

when the laser noise level was stable. During the sudden “jump” the sensitivity becomes degraded by 

10-15 pT/�Hz. This suggests that a small part of this noise is intrinsic to the diode, most probably due 

to feedback caused by pigtailing. 

 In conclusion, the presented DFB diode does not seem suitable for magnetometry applications “as 

is”. Its application would require the development of a mean (optical or electronic) to improve its 

noise characteristics. 
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 Vertical cavity surface emitting lasers (VCSELs) have several advantages over edge emitting 

lasers, especially when it comes to low unit cost during mass production. Most important ones are 

mentioned below. 

• Low supply current and small dimensions result in small magnetic signature and allow the 

laser to be placed close to the sensitive element. 
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• Because of their vertical construction such lasers can be tested after each fabrication step, 

contrary to edge emitting diodes which can be only tested after dicing. 

• The circular profile of the output beam makes its shaping (and pigtailing) relatively easy. 

• Vertical emission allows wafer level optics integration and automatized packaging. 

• Low power consumption. 

• Much smaller sensitivity to optical feedback as compared to DFB diodes due to smaller size of 

the laser cavity. 

 The lower unit cost is particularly important for array operation of the magnetometer, where Bell-

Bloom type resonance excitation is preferred because of crosstalk between adjacent excitation coils. In 

such a system one diode is needed per sensor therefore the laser cost becomes a limiting factor for its 

development. 

 Two batches of 1083 nm VCSELS was designed and realized by the CEA-LETI’s optronics 

department (DOPT) in the course of the MiniMag project. Delivered VCSEL structures were 

characterized by the system integration department (DSIS). 
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 Two batches of VCSELs were developed. The first was a test run. It served to verify whether the 

structure lases at the proper wavelength (1083 nm) with an output power higher than 1 mW. These two 

specifications were fulfilled. The output power varied between 1 and 5 mW, depending on the 

diameter of the active zone and injection current. The VCSELs emitted light at wavelengths comprised 

between 1080 and 1083 nm, which confirms that quantum dots present in the active region are well 

designed and that the laser cavity is properly tuned. Nevertheless lasers issued from the first batch 

were multimode (c.f. Fig 79a). 

Figure 79. Emission spectra of the developed VCSELs. a) First batch. b) Second batch. 

In order to make them single mode, their top Bragg reflectors were micro-structured in the second 

batch. The micro-structure acts as a photonic crystal, giving a photonic bandgap.  Several different 

patterns of the micro-structure were tested. One of them is presented in Fig. 80a. VCSELs of several 
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different diameters of the active region were made. The structures were tested on an optics bench (c.f. 

Fig. 80b). 

Figure 80. Developed VCSEL laser from the second batch. a) Structure; b) Chip mounted on an optical bench. 
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 A first proof of concept of a VCSEL emitting at 1083 nm has been obtained. Ten structures issued 

from the second batch were conformant with the desired specifications, mentioned below. 

• Side Mode Suppression Ratio (SMSR) of 30 dB was obtained. 

• No sudden increases of RIN have been found in the noise characteristics. 

• Output power was superior to 1 mW. 

• RIN of about 100 dB/�Hz. In order to obtain the desired magnetometer sensitivity, a noise 

reduction feedback circuit, as for the SWARM’s fiber laser, would have to be added (to 

decrease the RIN to the desired 140 dB/�Hz). 

• Threshold current was smaller than 1 mA. 

• Stable linear output polarization was obtained. 

 In conclusion, it was found that square and hexagonal micro-structure types gave statistically better 

results than circular ones and that the SMSR increased with decreasing size of the VCSEL structure.  

 Nevertheless several problems with pigtailing have been identified. The backscattering from the 

face of the pigtailing fiber caused the VCSEL’s to become multimode (optical feedback). What is 

more, it was not possibleto pigtail the VCSEL with polarization-maintaining (PM) fibers due to the 

poor optical coupling after polymerization of glue. In order to test the VCSELs as a laser source for 

the developed atomic magnetometer, these problems need to be resolved. 
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 The collimation of the pumping beam is very important for the final performance of the sensor, 

since it determines the optical loss and thus the obtained signal amplitude. There are several 

requirements for a beam-shaping system, mentioned below. 
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• Good collimation of light passing through the cell.

• No aberrations in the beam (ideally a perfectly Gaussian shape of the wavefront). 

• Good optical coupling. 

• Compact and easy to manipulate assembly. 

• Non-magnetic construction – since the optics assembly is in proximity of the sensing element. 

 In practice, very few commercially available collimators fulfill all these requirements. For that 

reason a custom-made solution was developed. Collimators developed for miniature glassblown cells 

use a concave + convex lens tandem. Figure 81 presents a computer simulation of the system. 

Figure 81. Computer simulation of the lens system used in the construction of a collimator dedicated for miniature 
glassblown cells. 

The concave lens is used in order to spread the beam before it enters the convex lens and becomes 

collimated. This way the collimator can be made shorter at an expense of small additional insertion 

loss. The whole assembly is presented in Fig. 82. 

Figure 82. Collimator. a) 3D drawing of the assembly. b) Assembled component. 

The structure consists of a pigtailed ferrule and both lenses mounted in a PEEK sleeve. After 

adjustment of the optical system, all elements are fixed by a UV curable adhesive. The overall length 

of the collimator is 18.5 mm, it produces a beam of ~ 4 mm in diameter. 
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 The optical pumping is done by passing the laser beam through the majority of the cell diameter 

(c.f. Fig.  83a). 

Figure 83. Two possible electrode geometries. a) The “classical” geometry where the pumping beam propagation is 
perpendicular to the HF electric field maintaining the discharge. b) Modified geometry used to determine the influence of the 
metastable atom distribution on the performance of the sensor. 

Therefore the amplitude of the obtained signal is an average over the metastable atom distribution. 

Taking into account that the pumping beam has a Gaussian profile, it can be assumed that this is a 

weighted average. This distribution was found to vary along with the value of helium pressure and 

power absorbed by the discharge (c.f. §2.7.1.3). This leads to suggest that a simple change in the 

geometry of the system, consisting of passing the laser beam in parallel with the electric field 

maintaining the discharge could slightly change the sensor’s characteristics at higher helium pressures 

and possibly increase the overall sensitivity. 

 The easiest way to a practical realization of such a geometry is to use transparent electrodes. 

Figure 83b presents this approach. Two Indium-Tin-Oxide (ITO) glass sheets were used to ignite and 

maintain the discharge in the cell and the pumping light was passed through them. The rest of the 

experimental setup is identical to the one presented earlier (c.f. Fig. 62 and 63). The optimal values of 

sensitivity for two �5x5 mm helium cells, using the two described electrode geometries are presented 

in Fig. 84. No significant difference, neither in sensitivity nor in other characteristics of the sensor was 

found between the two approaches. 

 This leads to a conclusion that both geometries can be successfully used in this pressure and power 

range. Consequently, the much simpler perpendicular electrode geometry from Fig. 83a will be used in 

the architecture of the miniature sensor, using glassblown helium cells. 

 Nevertheless the parallel configuration seems a very good solution, when it comes to further 

miniaturization of the sensor, since it is fully compatible with semiconductor batch processing 

techlologies and allows vertical integration (ITO deposition on glass). This solution will be used to 

demonstrate a proof of principle of a microfabricated helium cell towards the end of the thesis. 
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Figure 84. Noise spectral density curves obtaines using different electrode geometries. a) 20 Torr �5x5 mm GB cell. b) 
50 Torr �5x5 mm GB cell. 
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 Most of the applications aimed at by the miniaturization of the present sensor (mobile and space 

applications) require the measurement to be isotropic. The solution developed by LETI up to date 

(presented in 1.1.5) has limited scaling-down potential (piezoelectric motor) and is not perfectly non-

magnetic. A different solution had to be adopted instead which would allow easy integration with the 

rest of the miniature sensor’s components. 
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 In order to find a suitable polarization rotation technique, a brief literature study was carried out. 

Several commercial solutions have been identified. Table 13 provides a summary of the study. 

Table 13. Identified polarization rotation solutions. 

Polarization 

rotation 

solution 

Physical 

mechanism 
Driving 

Integration 

potential 
Remarks Ref. 

Mechanical 

rotation 

Mechanical 

rotation of a 

polarizer 

Electro-

mechanical 
Limited 

Already in use (the 

SWARM magnetometer). 

Not perfectly non-

magnetic. 

[55] 

Faraday 

rotator 
Faraday rotation Magnetic None 

Not applicable in the 

construction of a 

magnetometer. Enormous 

magnetic signature. 

- 
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Table 13. Continued. 

Polarization 

rotation 

solution 

Physical 

mechanism 
Driving 

Integration 

potential 
Remarks Ref. 

Fiber squeezer 

Mechanical 

strain of an 

optical fiber 

using a 

piezoelectric 

Electrical – DC 

(0~70 V) 
Limited 

Fiber-optic solution 

driven by DC voltages. 

Potentially large magnetic 

signature. 

[56] 

Ferroelectric 

ceramic 

rotator 

Electro-optic 

effect in  PLZT 

ceramics 

Electrical – DC 

(0~180 V) 
Good 

High DC Voltage, output 

beam divergence. 

Potentially large magnetic 

signature. 

[57] 

Electro-optic 

rotator 

Electro-optic 

effect in lithium 

niobate crystal 

Electrical – DC 

(0~30 V) 
Excellent 

Complicated driving, high 

cost. Magnetic signature 

unknown. 

[58] 

Liquid crystal 

polarization 

rotator 

Variation of 

birefringence of 

liquid crystals. 

Electrical  - AC 

(1~10 kHz, 

0~10 VRMS) 

Excellent 

Slight drift of dynamic 

characteristics with 

temperature. Very small 

magnetic signature. 

[59] 

 Ideally, the solution applied in a helium magnetometer should allow a free-space (rather than fiber-

optic) operation. This is related with the fact that the Polarization Extinction Ratio (PER) decreases 

significantly when the beam passes through an optical fiber, with an extreme case of elliptical 

polarization at the end. As such, this system should be placed very close to the active element, which 

consequently imposes very strict requirements on its magnetic compatibility. 

 Only a polarization rotator based on liquid crystals fulfills all the required specifications reasonably 

well. What is more it has several important advantages compared to the piezoelectric servomechanism 

used in the SWARM magnetometer. These advantages include: 

• large miniaturization potential, 

• full compatibility with semiconductor processing, 

• no magnetic materials, 

• no moving parts, 

• no mechanical vibrations induced during operation (important for space applications where 

they are difficult to damp). 

 As a result, the liquid crystal polarization was chosen as the replacement of a piezoelectric motor in 

the isotropy-providing system of the miniature version of the magnetometer. This solution is subject of 

a patent (FR1262014). 

 This section covers the operating principle of a Liquid Crystal (LC) polarization rotator. It 

describes a construction of this type, designed and realized in cooperation with the CEA-LETI’s 

optronics department. Static and dynamic characteristics of the developed rotator are presented at the 

end of this section. 
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 The operating principle is schematically presented in Fig. 85. The liquid crystal layer is sandwiched 

between two quarter-wave plates and a linear polarizer. The polarization rotation is determined by the 

birefringence of the LC layer which is varied by applying an AC square signal (0.5-5 VRMS) whose 

frequency (1-10 kHz) does not interfere with the detection electronics (for the LA0 signal a modulation 

at 1 kHz is used). Its amplitude causes the LC molecules to change their position and thus the phase 

retardation of the system. 

 The developed polarization rotator is designed to operate at the wavelength of helium D0 transition 

(1083 nm). 

Figure 85. LC polarization rotator operating principle. 

 LC rotators are made using well known technologies issued from the LCD industry. Two indium-

tin-oxide (ITO) coated glass wafers are spin-coated with a polyimide (PI) alignment layer (SE7492 

diluted with 2M solvent). The PI layer is rubbed in order to assure proper LC anchoring. Both wafers 

are bonded with a screen printed adhesive. Substrates are laser-cut into separate LC sells. They are 

filled with LC material (MLC 2062) and sealed hermetically. The structure of the rotator (c.f. Fig. 86a) 

consists of two LC cells assembled in series. 

Figure 86. a) The LC polarization rotator structure and electrical driving scheme. b) Sample structure.

The thickness of the LC layer determines the range of polarization rotation which can be obtained with 

the rotator. However the increase of thickness reduces the response time of the device. An optimal 
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solution consists of the use of two LC cells in series, this allows to increase the rotation range while 

maintaining a fast response of the rotator. Fast response is of key importance in portable applications 

(rapidly changing directions of the magnetic field). The two LC cells, the quarter-wave plates and a 

linear polarizer are assembled together using optical bonding. Angular precision with which the 

elements are positioned during bonding is crucial since it determines the polarization quality at the 

output of the rotator. The solution developed to realize this alignement is the subject of a patent 

application. 

 The dimensions of the assembled structure are: 10x10x7 mm3. It is shown in Fig. 86b. Its optical 

aperture is of 50% of the surface and can still be optimized, while further miniaturization is possible 

and relatively simple. 
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Polarization rotation versus applied voltage transfer function has been measured using a laboratory 

optical bench. The state of polarization is analyzed by the polarizer/analyzer technique (c.f. Fig. 87a). 

Figure 87. Setup used during the characterisation of the LC rotator. a) PER and angle/voltage characteristic measurement. b) 
Rise time measurement consisting of observation of the response of the rotator during a “switch on” of the driving signal. 

Polarization Extinction Ratio (PER) is an essential parameter when it comes to the reduction of 

heading errors. Measured characteristics are presented in Fig. 88a. PER of about 20 dB was obtained 

in a polarization rotation range of more than 300º. These results are temperature independent in the 

measured range of temperatures (10-40ºC). 

 Dynamic measurements carried out using the setup presented in Fig. 87b, have shown that the 

response times are relatively short. Figure 88b presents the temperature dependence of rise time for 

rotation steps of 5º for three initial positions of the polarization (response times depend on the initial 

voltage applied across the liquid crystal). Fall times had similar values and temperature behaviour. 
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Figure 88. Characteristics of the LC polarization rotator. a) Polarization rotation angle and PER as a function of the applied 
voltage for a driving frequency of 10 kHz at room temperature. b) Temperature dependence of the rise time for rotation steps 
of 5º. Driving signal at 10 kHz. Datapoints connected for clarity. 

 For larger rotation steps of 180º there appears a difference between rise and fall times (c.f. Fig. 89a 

and 89b), which is inversely proportional to temperature. This fact is related with the changing 

viscosity of the liquid crystal solution. 

Figure 89. a) Temperature dependence of the rise and fall times for rotation steps of 180º. Driving signal at 10 kHz. Initial 
rotation of 204º. b) Temperature dependence of the rise and fall times for rotation steps of 180º. Driving signal at 10 kHz. 
Initial rotation of 150º. Datapoints in both figures connected for clarity. 

The static magnetic signature of the rotator has been measured using the macroscopic SWARM 

magnetometer. The LC rotator and its electrical driving were found to be non-magnetic which enables 

a positioning very close to the 4He cell. 

 All the conducted characterizations show that the developed liquid crystal polarization rotator is 

fully compatible with the application in an atomic magnetometer. 
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 The basic idea behind the system architecture of the developed miniature isotropic helium-4 

magnetometer is similar to the one presented in 1.1.5, although the specific driving scheme and 

characteristics of the LC polarization rotator impose some modifications. The described system is a 

subject of a patent (FR1262014). Some issues, like the discontinuity of polarization rotation (once the 

maximal value is reached a return to the initial value is necessary), are still to be addressed. Therefore 

the presented explanation is only a general description of the system, while many of its building 

blocks would still require some developement. 

 The architecture is schematically presented in Fig. 90. It consists of three separate feedback loops. 

The first is the RF frequency adjust feedback (marked green), which locks itself on the Larmor 

frequency.  

Figure 90. Block scheme of the isotropy-providing system.  

The second is the polarization tuning loop (marked red), which fixes the polarization at 90º with 

respect to the ambient magnetic field B0.The third, marked grey, is used to set the RF excitation field 

parallel with the polarization vector so as to fix the direction of the radio-frequency field at right angle 

with the external magnetic field. 

The polarization angle is maintained at 90º with respect to the ambient magnetic field. In such a 

configuration the amplitude of LA1 signal is null (c.f. Fig. 9). Therefore it is used as error signal to set 

the polarization angle. LA0 or LA2 signals are used to measure the magnetic field. A logic circuit 

consisting of a comparator and a gate is used to prevent the loop from locking on 0 or 55º (two other 

minimums in the angular characteristics – c.f. Fig. 9). If the value of the measured LA0 or LA2 signals 

are higher than the given threshold value, the voltage issued from the variable amplitude oscillator is 

validated. Simultaneously, the angle of the RF excitation field imposed on the 4He cell is maintained 

parallel to the polarization vector. This is realized with a look-up table which contains calibration 
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curves of the rotator (angle/voltage) and corresponding coefficients to apply to the multipliers. This 

way different RF amplitudes are applied to two separate Helmholtz coils orthogonally mounted around 

the cell. 

 This electronic servomechanism still needs to be carefully designed, realized and tested. During 

preliminary characterisations, presented in the next chapter, both the polarization rotation and the 

angle of the RF field are tuned manually. 
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 A study on applicability of different components and solutions in the construction of a miniature 

isotropic helium-4 magnetometer has been presented. It allows to define a functional architecture, 

which will be used in the final demonstrator, with the following points. 

• Resonance induced in the atomic media by application of a RF magnetic field (the MSP 

sheme). 

• �5x5 or �10x10 mm glassblown helium cell. 

• Fiber laser (c.f. §3.3.1.2) used as optical pumping source. 

• Liquid crystal polarization rotator used to fix the angle of polarization of pumping light at 

right angle with the external magnetic field (the voltage applied to the rotator adjusted 

manually). 

• Control electronics dedicated to the macroscopic version of the sensor. 

 In a future perspective, the work on dedicated VCSEL lasers will be continued in order to 

overcome the identified problems with packaging. Some attention will be also dedicated to the 

possibility of stabilization of noise characteristics of the tested commercial DFB lasers. 

 Further development will concentrate on the implementation of the polarization control architecture 

(c.f. Fig. 90). A dedicated electronic system will be developed in this purpouse. 

 Depending on the future application fields, addressed by the sensor, the all-optical architecture will 

be studied in more detail. Possibly a new polarization driving scheme and control electronics will be 

developed as well. 
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Chapter highlights 

• Optimal results obtained with �10x10 and �5x5 mm cells are presented in detail. GB cells are 

found to obtain poor results in term of long term stability of signal, which is attributed to the 

presence of oxygen impurities. 

• The presence developed liquid crystal polarization rotator as well as its electrical driving do 

not change the sensitivity of the magnetometer. 

• A demonstrator of a miniature isotropic helium magnetometer, using a liquid crystal 

polarization rotator is presented. This system obtains a sensitivity of 10 pT/�Hz. 

• Magnetic properties of key components, envisaged in the construction of a chip-scale helium 

magnetometer were measured. Most of the components are applicable in magnetometry. 

• A proof-of-concept of helium confinement in a microfabricated glass-silicon-glass cell is 

given. 
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 This chapter describes the final results obtained during the thesis. It presents the optimal results 

obtained with selected glassblown helium cells and concludes on differences between two cell 

manufacturers. All measurements presented in this chapter were carried out in a magnetically “clean” 

environment at the CEA-LETI’s magnetic test facility at Herbeys. 

 The developed demonstrator of a miniature isotropic helium-4 magnetometer is presented. After a 

brief description of the mechanical part of the sensor, a detailed characterization is done. The 

demonstrator uses a liquid crystal polarization rotator which fixes the axis of linear polarization of 

pumping light at right angle with the ambient magnetic field and thus provides isotropy to the 

measurement. The demonstrator uses a �5x5 mm glassblown helium cell. 

 The last part of the chapter presents further perspectives of miniaturization. It presents first results 

obtained with microfabricated helium cells, developed in cooperation with FEMTO-ST. Moreover it 

presents an experimental evaluation of magnetic compatibility of several possible materials and 

solutions which can be applied in the future development of a chip-scale helium atomic magnetometer. 

'$!$ B��	�
��	���	
��������
����
���		�����
����	


 At the design stage of the demonstrator, performances which could be obtained with all available 

helium cells were characterized. This allowed to determine the optimal size and pressure value for the 

final demonstrator of a miniature isotropic helium-4 magnetometer. The results of this study were 

already partially presented in §2.7.3, this section presents the best results in more detail and concludes 

on the optimal solutions. 

 A prototype demonstrator was developed for the needs of this study (c.f. Fig. 91). It is a convenient 

measurement platform allowing easy handling of different helium cells and eliminating the need to 

adjust the optical system each time a cell is replaced. 

Figure 91. Prototype demonstrator used to determine the optimal size and pressure of helium cells for the final demonstrator. 

 Two parameters of key importance for the final demonstrator, which are characterized, are the 

sensitivity and long term stability of measurement. The latter is measured in the gradiometer 

configuration. This is realized using two reference NMR magnetometers (c.f. Fig. 92). 
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Figure 92. The gradiometer setup used to study the long term stability of measurement. 

The results obtained with the reference NMR magnetometers are subtracted from the ones obtained 

with the helium magnetometer. This way the common mode Earth’s fiels variations are rejected and 

soely the measurement stability, intrinsic to the helium sensor is observed. 
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 The maximal value of sensitivity obtained with the �10x10 20 Torr VE cell was around 4 pT/�Hz 

(c.f. Fig. 93a). This value is very close to the one obtained with the macroscopic cell used by the 

SWARM magnetometer (~1 pT/�Hz). 

Figure 93. Results obtained with the �10x10 mm 20 Torr VE cell. a) Magnetic noise density. b) Long term stability. 

 The long term measurements, conducted with this cell (c.f. Fig. 93b) gave excellent results. The 

signal is very stable over 14 hours. It exhibits variations of ±10 pT over long periods. 
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 The best value of sensitivity obtained with the �5x5 20 Torr VE cell is in the order of 8 pT/�Hz 

(c.f. Fig. 94a). Long term measurements (c.f. Fig. 94b) seem to have similar stability as for the 

previously described �10x10 20 Torr VE cell. 
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Figure 94. Results obtained with the �5x5 mm 20 Torr VE cell. a) Magnetic noise density. b) Long term stability. 

 The steep fall marked in Fig. 94b is caused by the HF discharge electrodes which slightly changed 

their position during the measurement. This is related with the geometry of the cell, which is not 

perfectly cylindrical and therefore makes it easy for the glued copper electrodes to come off. 
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 Maximal value of sensitivity obtained with the �5x5 20 Torr GB was around 10 pT/�Hz 

(c.f. Fig. 95a). Long term measurements (c.f. Fig. 95b) showed significant instabilities compared to its 

VE counterpart. 

Figure 95. Results obtained with the �5x5 mm 20 Torr GB cell. a) Magnetic noise density. b) Long term stability. 

These instabilities are attributed to the presence of oxygen impurities in the internal atmosphere of the 

GB cells. 
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 The long term measurement for the �5x5 40 and 50 Torr GB cells was very unstable. The maximal 

sensitivity obtained with these cells was around 8 and 10 pT/�Hz. An influence of a “warm-up” step 

on the sensitivity has been identified (c.f. Fig. 96). 

Figure 96. Sensitivity results obtained with the �5x5 mm 40 Torr GB cell, presenting the influence of the “warm-up”. 

This “warm-up” consists of maintaining a high-intensity (in terms of absorbed power) discharge in the 

cell for some period of time. After this period the HF discharge power is decreased to the extinction 

limit (area of power generally used in magnetometry). After this procedure the sensitivity is increased 

although it slowly degrades back with time. This problem seems to be more pronounced for cells filled 

at higher pressures, e.g. for the 50 Torr cell the difference in sensitivity reached as much as 

15-25 pT/�Hz (c.f. Fig. 96b compared to Fig. 96a). 

'$!$1$ ������	���
#
DA
���	�	
50
����	


 Problems with long term stability are identified as a common feature of GB cells. VE cells showed 

largely better characteristics in this matter. 

 A short term increase in sensitivity in GB cells after a high-power “warm-up” was found, which 

seems to be more pronounced at higher pressures. 

 The exact physical origin of these two phenomena is unclear. It is attributed to the presence of 

oxygen impurities in the GB cells. As such these cells are not applicable in magnetometry. 

Nevertheless they allow to make some conclusions on the dependence of maximal sensitiviy of the 

sensor with pressure. Given their largely lower price, much more experimental points can be verified, 

thus providing a better experimental estimate of the optimal value of pressure for the magnetometer. 

 Due to the fact that VE cells were not available at the moment of preparation of the final 

demonstrator, it was decided to use the �5x5 20 Torr GB cell in its construction. Potentially the 

performance of the demonstrator could be increased by the use of a 40 Torr �5x5 mm VE cell, which 

will be fabricated in the future. 
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 The mechanical packaging of the final demonstrator was designed using the guidelines for the 

global architecture of the sensor, presented in the previous chapter (c.f. §3). The final packaging of the 

demonstrator in presented in Fig. 97. 

Figure 97. Mechanical packaging of the demonstrator. 

As discussed in §1.1.4.4, special attention was paid to the magnetic compatibility of the mechanical 

parts of the sensor head. The packaging was fabricated by stereolithography. The structural material is 

a semi-transparent epoxy. The saddle coils are wound manually and fixed using epoxy glue inside the 

wire guides. 

 The architecture of the demonstrator is presented in Fig. 98. The pumping light originating from 

the fiber laser (c.f. §3.3.1.2) is passed by a single mode optical fiber, ending with a pigtailed 

collimator (c.f. §3.3.2) fixed inside the collimator slot.  

Figure 98. System architecture of the demonstrator.
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After passing through the liquid crystal polarization rotator (c.f. §3.5) and the helium cell, the light is 

collected by another pigtailed collimator and passed on the photodetector. The optical pumping is 

done in the “single-pass” configuration, which means that the sensor head has collimators and optical 

fibers on both sides. This solution is rather inconvenient in many applications (e.g. array operation), 

nevertheless it is the most straightforward way to provide a reliable proof of principle. 

 The developed sensor itself is presented in Fig. 99, compared to the SWARM sensor. The volume 

of the sensor head was decreased by more than an order of magnitude. 

Figure 99. The developed demonstrator compared to the SWARM sensor. 
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 The tests were carried out in the configuration presented in Fig. 98. LA2 signal was used to 

measure the magnetic field whereas LA1 served as an error signal in order to manually tune the 

polarization angle. The amplitude of signal applied across the LC cell is adjusted manually, knowing 

the direction of the ambient magnetic field B0 and the LC rotator calibration curve. 

 The demonstrator attained a sensitivity of 10 pT/�Hz in the frequency range from DC to 100 Hz. 

The sensitivity of the sensor was also measured without the polarization rotator by manually tuning a 

linear polarizer (c.f. Fig. 100).  
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Figure 100. Noise spectral density of the sensor with the LC polarization rotator and with a linear polarizer. 
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Both measurements gave similar results, which leads to a conclusion that the presence of the 

polarization rotator does not influence the sensor noise level. These results were obtained with a 

digital processing unit dedicated to the macroscopic sensor and can be further optimized by 

developing dedicated electronics, which was out of the scope of this thesis. The performance can 

possibly be also improved by the use of a 40 Torr �5x5 mm VE cell. 
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 The study on further miniaturisation of a helium magnetometer was performed in the course of the 

European project on miniaturisation of atomic clocks (MAC-TFC - a FP7 project). The key elements 

of a helium magnetometer are identical, in principle, to those of an atomic clock. This section presents 

a study on the applicability of certain technological solutions used by the MAC-TFC atomic clock to 

the future development of a chip-scale helium-4 atomic magnetometer. 

 Cooperation with FEMTO-ST institute has been established in order to fabricate a glass-silicon-

glass microfabricated helium cell structure and validate its applicability for the construction of a 

miniature helium magnetometer. The key challenge of this study is to verify the possibility of 

confinement of high-purity helium in a microfabricated structure. 
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 Experimental characterization of magnetic properties has been carried out on five key elements 

used in the construction of a MEMS atomic clock. It provides some conclusions on the possibility of 

their application in the construction of a chip-scale helium-4 magnetometer. The tested samples, 

provided by the MAC-TFC consortium, are presented in table 14 along with a brief description. 

Table 14. Components characterized in the study. Samples provided by the MAC-TFC consortium. 

Name Photo 
Number of 

samples 
Description 

Microfabricated 

cells 
2 

The physics package - glass-silicon-glass 

vapour cells 

LTCC package 1 Packaging solution. 

VCSEL lasers 2 

Two types of VCSEL laser dies, with 

different amounts of chromium in the 

bondpad metallization. 
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Table 14. Continued. 

Name Photo 
Number of 

samples 
Description 

Getter film 1 

Silicon wafer with a deposited layer of getter 

material. Getters are used to improve the 

internal atmosphere purity inside the cells. 

Photodiode 1 Silicon photodetector. 
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 The aim of the magnetic characterization of a component is to quantify its minimal separation from 

the sensing element within which it does not cause significant perturbations to the measurement. The 

components are positioned as close to the magnetometer as possible (~ 2 mm in practice). Scalar 

sensor measures the projection of the field emitted by the sample onto the Earth’s magnetic field. By 

repeating the measurement in several orthogonal positions, three components of the sample’s magnetic 

moment can be determined. Given the small size of the samples, it was chosen to carry out the 

measurement with the use of the �5x5 mm 20 Torr GB cell. 

 The Earth’s magnetic field (close to 50 µT in France) can vary up to a few tens of nT in ten 

minutes. This variation is much higher than the accuracy required for this characterization. To reject 

these magnetic field variations, it was chosen to use a differential mode of measurement: the 

gradiometer configuration (c.f. Fig. 101). Both magnetometers see the same Earth’s field variation 

whereas only one of them measures the magnetic field produced by the component. 

Figure 101. The gradiometer configuration used during the measurement. 

 The assembled setup used for the measurement is presented in Fig. 102. It consists of a non-

magnetic support containing RF coils, two collimators (c.f.  §3.3.2), a resonant discharge circuit with 

an impedance adapting transformer (c.f. Fig. 26) and a non-magnetic sample mount. It is a bench-top 

setup which allows to place the samples very close to the helium cell. The samples to be measured 

were placed at the tip of wooden tweezers attached to the sample mount and were approached as close 

to the helium cell as possible. In practice a distance of about 2 mm was used. 
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Figure 102. Setup used to characterize the magnetic properties of components. 

This distance is imposed by the fact that conductive objects placed closer to the cell caused the 

discharge to extinguish (due to a short circuit between the electrodes). 
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 The constraints on magnetic properties of the solutions applied for atomic magnetometers are much 

stricter compared to those for atomic clocks. Any magnetic default of a component applied in the 

construction of a magnetometer can lead to degradation of accuracy. Therefore to achieve the specified 

accuracy of 50 pT, the choice of materials at the conception stage is mandatory. Its practical 

realization needs a detailed characterization of the available solutions. The actual confidence interval 

obtained in this measurement was limited to 20 pT. This value is sufficient to allow some preliminary 

conclusions and to define a general architecture for the chip-scale sensor. 

 The results of measurements, carried out on the samples are presented in table 15. The 

corresponding minimal spacing of the components, allowing to obtain a value of magnetic fields 

inferior to 20 pT at the sensing element is presented in Fig. 103. 

 Table 15. Measurement results 

Component 
B
�

 at 2 mm 

(pT) 

Microfabricated cell < 20 

LTCC package < 20 

VCSEL die (600 µm thick Ni layer in the bondpad 

metallization) 
210 

VCSEL die (250 µm thick Ni layer in the bondpad 

metallization) 
< 20 

Getter film 50 

Photodiode 110 
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Figure 103. Minimal spacing of the components of the MAC-TFC atomic clock as applied in the construction of a 
magnetometer. 
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 The results obtained in this section give some preliminary conclusions on the general architecture 

of a micro-scale helium-4 magnetometer and clearly show some directions for further development. 

 The microfabricated glass-silicon-glass cells tested in the study were demonstrated to be 

completely non-magnetic, which along with other advantages like compatibility with batch processing 

makes them a good candidate for a replacement of traditional glassblown helium cells. This solution 

will be studied further in the next section. 

 The magnetic properties of VCSEL dies strongly depend on the content of ferromagnetic materials 

in its structure. Even though the actual size of the dies is very small compared to the dimensions of the 

helium cell used during the measurement, the influence of nickel is clearly visible. The VCSELs were 

characterized statically i.e. without passing electrical current through the structure. This current 

(typically tens of mA DC) can have a significant influence on the measurement. Along with the fact 

that the characterized photodetector also has a non-negligible magnetic signature, it seems reasonable 

to separate the laser source and the photodetector from the sensor head. This solution is employed in 

most of the state of the art constructions (c.f. §1.2). It is mandatory if the measurement accuracy is an 

important factor in a given application. 

 The relatively small magnetic signature of the getter film is most probably related with the large 

dimensions of the sample, which consisted of a whole silicon wafer with the getter deposited on top. 

The amount practically used in the construction of a physics package shouldn’t cause significant 

magnetic perturbations. 

 As for the packaging solution, used by the MAC-TFC atomic clock, LTCC seems to be very well 

adapted also for the needs of a helium magnetometer. The characterized sample had a negligible 

magnetic signature. Taking into account the fact that this technology is cheap and very well adapted to 

small and medium-scale production, it seems a very good candidate for a micro-scale packaging 

solution for the future version of the sensor. 
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 Microfabricated glass-silicon-glass helium cells have been prepared in cooperation with FEMTO-

ST institute. Their application in the construction of a miniature helium magnetometer will be verified 

experimentally. The key challenge of this study is to validate the possibility of confinement of high-

purity helium in a microfabricated structure. 
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 Apart from the high cost of production and limited miniaturization potential, miniature glassblown 

cells suffer from several technological problems, which make their practical use somewhat more 

difficult than macroscopic ones. The first problem arises during the packaging of the sensor. The glass 

tip, which is left after cutting off the cells from the vacuum system (c.f. Fig. 104a), has a random 

geometry. This imposes a custom design of packaging, in order to adapt it to each individual cell. 

Figure 104. a) Four sample �5x5 mm helium cells, presenting different geometries of the tip (marked red). b) Angular 
misalignment between the optical faces of the cell. c) Distortion of the optical faces. 

 The second very important problem is related with the coupling of pumping light into the cell. 

There are several types of defects, which often occur in the optical faces of the cells, like angular 

misalignment (c.f. Fig. 104b) or distortion of the whole face (c.f. Fig. 104c). Another type of defect, 

identified in some of the cells is related with gas bubbles trapped inside the glass (c.f. Fig.105). 

Figure 105. Gas bubbles trapped inside the glass of the optical face of the �5x5 mm 20 Torr VE cell. 

All of these defects degrade the light transmission through the cell and therefore increase the optical 

power necessary at the input in order to obtain appropriate signal amplitude. 

 The disadvantages presented above are inherently related with the manual character of the 

fabrication of cells. What is more, the smaller the dimensions of the cell, the more time-consuming, 

laborious and uncertain the outcome of the fabrication process becomes. An ideal solution to this 
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problem consists of applying batch processing techniques issued from the semiconductor industry. 

These techniques allow a predictable yield and perfect repeatability of the fabrication process. 
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 A batch of microfabricated glass-silicon-glass helium-filled cells has been fabricated. The 

technology of their fabrication is identical to the one developed and presented by the FEMTO-ST 

institute [60][61]. It is presented schematically in Fig. 106. 

Figure 106. Processing steps used to prepare the microfabricated helium cells. 

 In the first step, through-wafer cavities of 2 mm in diameter are dry etched in a 1.3 mm thick, 4” 

(100)-oriented silicon substrate. In order to eliminate the defects and fluorocarbon deposits left on the 

sidewalls of the structure after the DRIE process, the substrate is immersed in an aqueous KOH 

solution for 30 min [61]. 

 After cleaning, this silicon wafer is anodically bonded to a first 500 µm borosilicate substrate in the 

second step.  

 In the final step the cells are filled with helium-4 at the desired pressure and sealed hermetically 

with a second borosilicate substrate. Due to a relatively small breakdown voltage inside the vacuum 

chamber filled with helium, this step is rather complex [61]. Its process flow is presented in table 16. 

Table 16. Process flow of the hermetic sealing step, based on [61]. 

Order Process 

1 Annealing of wafers (350°C, in vacuum) 

2 Cooling to room temperature 

3 Introduction of gas at the appropriate pressure (helium-4) 

4 
Removal of separation flags – the second glass substrate is brought into direct contact with the 

glass-silicon perform. 

5 Application of contact force on the triple-stacked structure. 

6 Heating (to 350°C) 

7 Pre-sealing – anodic bonding in helium atmosphere (bonding voltage < breakdown voltage) 

8 Backfilling of the chamber with air 

9 Reinforcing sealing – anodic bonding in air (600 and 900 V) 

First, the triple-stacked structure (glass-silicon-glass) is pre-sealed by anodic bonding in a chamber 

filled with helium-4 gas at the desired pressure (50 Torr). The bonding voltage has to be lower than 

the breakdown voltage of the gas atmosphere inside the chamber. This process does not allow to 
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obtain a reliable bond between the substrates (voltage too low) therefore the vacuum chamber is 

backfilled with air and a reinforcing sealing process is applied. It consists of anodic bonding carried 

out in air. At first the bonding voltage of 600 V is applied for 5 min, afterwards the voltage in 

increased to 900 V and maintained for 20 min. This process allows a proper hermetization of the cells.

 The resulting structures are presented in Fig. 107 compared to a miniature �5x5 mm version of a 

glassblown cell. 

Figure 107. Microfabricated helium-4 cells compared to a miniature �5x5 mm glassblown cell. 
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 The presence of helium inside microfabricated cells and internal gas purity have been inspected by 

optical emission spectroscopy. This was done by establishing a discharge inside the cells with two 

ITO-coated glass electrodes brought into direct contact with the structure (c.f. Fig. 108a and 108b). 

Figure 108. a) Discharge excitation scheme. b) Discharge ignited in a microfabricated helium cell. 

 They are symmetrically driven with a HF signal supplied by an RF amplifier followed by a 

resonant impedance matching network (c.f. §2.4.2). The impedance matching is slightly worse than in 

the case of glassblown cells (c.f. Fig. 109a) which is caused by the additional impedance of ITO and a 

conductive polymer used to form an electrical contact between the leads and the ITO layer. 

 The emitted light is coupled into an optical fiber and sent to a spectrometer. Spectral characteristics 

for each cell are analyzed using the NIST Spectral Database (c.f. Fig. 109b). Hermetic confinement of 

helium inside those microfabricated cells is confirmed. 
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 Unfortunately spectroscopy measurements have also revealed the presence of oxygen inside the 

cells. This is likely related to an insufficient vacuum level inside the bonding chamber before filling 

with helium. This problem could be resolved with the use of a turbo-molecular vacuum pump and the 

incorporation of a getter film into the physics package. 

Figure 109. a) Smith’s chart showing the impedance matching of the circuit. b) Emission spectrum of the discharge proving 
the presence of helium-4 inside the microfabricated cells. 
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 The discharge ignited in microfabricated cells is very unstable and difficult to maintain. What is 

more, the amount of absorbed power necessary for the ignition of plasma ranged between 1 and 2 W. 

This value is an order of magnitude higher than the power used to obtain stable helium plasma with 

larger glassblown cells. The influence of silicon layer on the electric field distribution, which was 

initially suspected to have caused this problem, was modelled numerically. The distribution in case of 

an all glass cell is presented in Fig. 110a. The difference in distribution as compared with the glass-

silicon-glass cell (c.f. Fig. 110b) is not very pronounced, yet has a non-negligible influence. 

Figure 110. Finite element simulation of the electric field distribution (with Comsol Multiphysics). 100 V is applied on the 
top boundary, the bottom boundary is grounded. a) Case of an all-glass cell. b) Case of a glass-silicon-glass cell. 
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 The high breakdown power is probably a resultant of two phenomena. The first of which is the 

presence of oxygen atoms inside the microfabricated cells. Indeed, Park et al. [31] have shown that the 

breakdown voltage increases very rapidly when a substantial fraction of oxygen is added to helium. 

The second could be related to scaling effects occurring in the plasma physics. Breakdown voltage 

increases when diffusion is not the dominant electron loss mechanism, as described earlier (c.f. §2.5). 

 In order to obtain an estimate of metastable density in the discharge ignited in the presented 

microfabricated cells a numerical simulation was done, using the algorithm presented in §2.7.1.1. The 

power dissipated into the discharge was assumed to be the same as for �5x5 mm cells (5 mW). The 

electrode separation is set to 1.3 mm (the thickness of the silicon wafer). Results, obtained for the 

value of pressure used in the cells (50 Torr), suggest a value of metastable atom density in the order of 

1·1012 cm-3 (c.f. Fig. 111a). 

Figure 111. Results of a numetical simulation (c.f. §2.7.1.1) of discharge parameters for the case of the presented 
microfabricated helium cell. a) Metastable density and relaxation frequencies. b) Spin projection noise sensitivity limit. 

This value would result in ~8% absorption of light (at the D0 line) passing through the cell. The 

optimal value of pressure is estimated to lie in the 60 – 90 Torr range (c.f. Fig. 111b). 

 The value of absorption was investigated experimentally. The measurement was realized with a 

dedicated polymer mount (c.f. Fig. 112), which was used to align the ITO electrodes and input/output 

collimators. 



Chapter 4: First demonstrator of an isotropic miniature scalar magnetometer 

128

Figure 112. Polymer mount dedicated for absorption measurements in microfabricated helium cells. 

Unfortunately the absorption (and thus metastable atom density) was found to have a value below the 

detection limit of the system used (~0.5%). This fact is most probably related to the destruction of 23S1

metastable atoms by excited oxygen atoms. 

 Further experimental work on the technology of microfabricated helium cells should resolve two 

problems. First of which is the improvement of the internal atmosphere purity, which is essential for 

the development of the sensor, since for the moment the value of metastable density in the discharge is 

below the detection limit. 

 The second problem, which needs to be addressed, is the high power consumption. The first 

attempt to resolve this issue would be to increase the internal pressure inside the samples, which 

would eliminate the possibility that the high power consumption is related with the fact that the 

breakdown process is drift-driven. 
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 Although the technology behind microfabricated helium-4 cells still needs a lot of development, 

first proof-of-principle has been presented. The results obtained up to date allow to draw some 

guidelines on a general architecture of a future micro-scale isotropic helium-4 magnetometer. 
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 The optical aperture of microfabricated cells is a lot smaller compared to glassblown ones. 

Consequently, this creates a need for further miniaturization of the optical architecture. A solution well 

adapted to this issue is the use of gradient-index (GRIN) optics in the collimator construction. Three 

possible configurations of this type can be distinguished. They are presented in Fig. 113. 
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Figure 113. Optical architecture using GRIN lens. a) In-line configuration, using single-fiber GRIN lens collimators. b) 
Folded configuration, using single-fiber GRIN lens collimators. c) Reflective configuration, using a double-fiber GRIN lens 
collimator. d) Comparison of three collimator types.

 In-line (c.f. Fig. 113a) and folded (c.f. Fig. 113b) configurations use two single-fiber GRIN lens 

collimators whereas the reflective configuration (c.f. Fig. 113c) is composed of a single double-fiber 

GRIN lens collimator. Both elements are presented in Fig. 113d, compared to a microfabricated 

helium cell and a previously discussed concave+convex lens collimator (c.f. §3.3.2). 

 The application of GRIN optics in the construction of miniature, high-sensitivity atomic 

magnetometers has already been reported several times in literature, which means that this solution is 

compatible with the construction of a chip-scale helium magnetometer. 
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 The construction of the liquid crystal polarization rotator and its fabrication technology are fully 

compatible with batch processing. This allows to integrate the rotator with a microfabricated helium-4 

cell, once its fabrication technology reaches sufficient maturity. A concept of such an integrated 

structure is presented in Fig. 114. In this construction the discharge would be ignited by means of ITO 

electrodes deposited on glass. The LC rotator and helium cell are integrated into one structure, which 

can be packaged along with other optical components (of one of the proposed optical architectures - 

c.f. Fig. 113) using thick-film LTCC technology. 
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Figure 114. Concept of a microfabricated helium cell integrated with a liquid crystal (LC) polarization rotator. 
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 A first demonstrator of an isotropic helium-4 atomic magnetometer has been presented. The sensor 

reaches a sensitivity of 10 pT/�Hz, which is subject to further optimization. Another possible 

improvement in terms of sensitivity and stability of measurement could be obtained by using a �5x5 

mm 40 Torr VE cell, which will be done during the further development of the sensor. 

 The isotropy of measurement of the demonstrator is provided by a liquid crystal polarization 

rotator, a solution which is proven non-magnetic and thus suitable for magnetometry applications. 

Although a detailed characterization of accuracy of the sensor is still to be done, the results obtained 

up to date show that all the developed building blocks can be successfully applied in the construction 

of a high-performance isotropic helium-4 magnetometer. 

 A concept of further miniaturization of the sensor is provided. Most of the key elements used 

previously in the construction of an atomic clock (developed by the MAC-TFC consortium) are found 

to be compatible with the requirements of an atomic magnetometer. First proof-of-principle of helium 

confinement in a microfabricated glass-silicon-glass structure is given. This paves the way for future 

development of a chip-scale isotropic helium-4 magnetometer. 
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 The miniaturization of an isotropic helium-4 atomic magnetometer is a complex task which 

requires a multidisciplinary approach. It involves plasma physics and optics as well as electrical and 

mechanical engineering. The SWARM magnetometer developed at the laboratory was referenced as 

the starting point for this process. 

 The most important task is to determine how the behavior and characteristics of the sensor change 

along with its decreasing dimensions. The optimal value of helium pressure, with which the sensor’s 

cells are filled, is bounded from the low and high-pressure side by phenomena taking place in the 

discharge. If this value is too low, the discharge is difficult to ignite and unstable. From the high-

pressure side this value is limited by the decreasing electron temperature and collisions between 

metastable and neutral helium atoms. Optimal values of pressure of 20 and 40 Torr were 

experimentally found for �10x10 mm and �5x5 mm cells respectively. 

 Some applications, like unexploded ordnance detection, need array operation of magnetometers. 

Magnetometers using RF magnetic field to induce resonance in the atomic media are known to suffer 

from crosstalk. All-optical magnetometers do not experience such problems. For this purpose a study 

of angular characteristics of optically excited resonance signals has been done (the OSP scheme). A 

convenient operating point for the isotropy-providing mechanism is found for a frequency-modulated 

all-optical helium magnetometer. 

 Economic aspects, like unit cost reduction, inherently related with the miniaturization process, are 

also of great concern. The most expensive element of the sensor is the pumping source. The fiber laser 

used by the SWARM magnetometer is a very sophisticated construction. Its high performance and 

reliability come at the expense of high cost, complexity and large size. What is more, in practice this 

solution is impossible to miniaturize. An ideal replacement consists of a single mode semiconductor 

diode. The applicability of two types of diodes was tested. First of which is a commercial edge 

emitting DFB laser. Unfortunately its noise characteristics cause instabilities in the long term 

performance of the sensor. Several problems still need to be addressed like the elimination of optical 

feedback and electronic noise reduction. A solution which is even more appealing, in terms of low unit 

cost, is the application of VCSEL lasers. Dedicated VCSELs were developed and characterized. 

Obtained results are very promising although this solution still needs a long path of development. 

 Miniaturization of the sensitive element triggers the need to miniaturize all of its surrounding 

components. The most problematic element is the polarization rotation system, used to enable an 

isotropic measurement of magnetic field. It was found that a polarization rotator based on liquid 

crystals is a very good replacement of the piezoelectric motor used in the construction of the SWARM 

magnetometer. Contrary to the former solution, it does not contain any mechanical parts, allows 

integration and relatively easy further miniaturization. What is more, it was confirmed that the 

application of this element in the construction of a magnetometer does not change the the sensitivity of 

the sensor. This leads to conclude that this solution as well as its electrical driving scheme are non-

magnetic and thus adapted to magnetometry applications. 

 The maximal values of sensitivity, obtained with miniature helium cells were around 3.5 and 

8 pT�Hz for 20 Torr �10x10 mm VE and 40 Torr �5x5 mm GB cells respectively. In terms of 

stability, excellent results were obtained with a 20 Torr �10x10 mm VE cell, for which the 

fluctuations were in the range of ±10 pT over very long periods of time. A significant influence of 

trace impurities of oxygen present in the internal atmosphere of GB cells on the stability of 

measurement has been found. This proves that much attention should be paid to the filling process and 

validates the filling procedure developed at CEA-LETI. This tends to suggest that  the sensitivity 
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obtained with �5x5 mm cells can be improved by the use of a 40 Torr cell filled according to this 

procedure. 

 A demonstrator of a miniature isotropic helium-4 magnetometer has been presented. The sensor 

uses a �5x5 mm glassblown cell and reaches a sensitivity of 10 pT/�Hz. Its isotropy is provided by a 

liquid crystal polarization rotator. The sensor head is more than an order of magnitude smaller 

compared to the SWARM sensor. These results are subject to further optimization by the development 

of dedicated electronics. Further work on the demonstrator will concern a detailed characterization of 

its anisotropy and accuracy, although all of the building blocks of the demonstrator are proven to be 

well adapted to the application in a high performance isotropic helium-4 magnetometer.  

 Finally, a concept of a chip-scale helium magnetometer is presented. The applicability of several 

key technological solutions used in an earlier construction of a microfabricated atomic clock has been 

validated. Furthermore a batch of microfabricated helium cells has been tested. A proof-of-principle of 

a microfabricated helium cell is provided. Even though there still remain several important 

technological challenges, which need to be addressed, this work lays the groundwork for further 

miniaturization of the sensor. 
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