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On ne sait aujourd’hui comment gérer des faits
Lorsqu’ils sont inexacts ou qu’ils sont incomplets.
Les probabilités font que rien n’est faisable,
Et, sous le monde ouvert, tout est indécidable.
L’objet de cette thèse est de montrer comment
Les probabilités et le raisonnement
Sont à notre portée et à notre mesure
Si règles comme faits sont munis de structure.

On recherche d’abord quelle condition
Sur les faits donnés rend l’évaluation
De requêtes facile et rend la provenance
Aisément calculable étant donné l’instance.
Nous montrons, dans plusieurs des cadres existants,
Que c’est le cas des faits quasi-arborescents ;
Mais, réciproquement, la tâche est infaisable
Si l’instance n’est pas ainsi décomposable.

On étudie ensuite un monde indéfini,
Partiellement connu mais supposé fini,
Et l’on cherche à savoir si notre règle entraîne
Que, sous les faits donnés, la requête est certaine.
On montre que l’on peut, même en haute arité,
Chaque règle bornant la cardinalité
Ou bien ne propageant qu’une unique variable,
Prouver que ce nouveau problème est décidable.





Abstract

The management of data uncertainty can lead to intractability, in the case of
probabilistic databases, or even undecidability, in the case of open-world reasoning
under logical rules. My thesis studies how to mitigate these problems by restricting
the structure of uncertain data and rules.

My first contribution investigates conditions on probabilistic relational instances
that ensure the tractability of query evaluation and lineage computation. I show
that these tasks are tractable when we bound the treewidth of instances, for vari-
ous probabilistic frameworks and provenance representations. Conversely, I show
intractability under mild assumptions for any other condition on instances.

The second contribution concerns query evaluation on incomplete data under
logical rules, and under the finiteness assumption usually made in database theory.
I show that this task is decidable for unary inclusion dependencies and functional
dependencies. This establishes the first positive result for finite open-world query
answering on an arbitrary-arity language featuring both referential constraints and
number restrictions.

La gestion des données incertaines peut devenir infaisable, dans le cas des bases
de données probabilistes, ou même indécidable, dans le cas du raisonnement en
monde ouvert sous des contraintes logiques. Cette thèse étudie comment pallier ces
problèmes en limitant la structure des données incertaines et des règles.

La première contribution présentée s’intéresse aux conditions qui permettent
d’assurer la faisabilité de l’évaluation de requêtes et du calcul de lignage sur les
instances relationnelles probabilistes. Nous montrons que ces tâches sont faisables,
pour diverses représentations de la provenance et des probabilités, quand la largeur
d’arbre des instances est bornée. Réciproquement, sous des hypothèses faibles, nous
pouvons montrer leur infaisabilité pour toute autre condition imposée sur les instances.

La seconde contribution concerne l’évaluation de requêtes sur des données incom-
plètes et sous des contraintes logiques, sous l’hypothèse de finitude généralement
supposée en théorie des bases de données. Nous montrons la décidabilité de cette
tâche pour les dépendances d’inclusion unaires et les dépendances fonctionnelles.
Ceci constitue le premier résultat positif, sous l’hypothèse de la finitude, pour la
réponse aux requêtes en monde ouvert avec un langage d’arité arbitraire qui propose
à la fois des contraintes d’intégrité référentielle et des contraintes de cardinalité.
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General Introduction

The great success story of database research is the relational model [Codd 1970].
This model has spanned an entire field of theoretical research, and continues to have
tremendous practical impact. Relational database management systems now provide
a ubiquitous abstraction in computing, like compilers or filesystems: they offer a
high-level declarative interface for applications to use, and rely on a rich body of
clever but domain-agnostic optimizations implemented in database engines.

Yet, the relational model does not handle uncertainty over the data that it
manages. In particular, it cannot adequately represent:

Missing values. For instance, in a database of users, it is possible that some users
did not fill in some fields when registering, or that new fields were added since
they registered.

Incomplete data. The data that you have may not represent all available informa-
tion; for instance, in a database of information that you are extracting from the
Web, you may want to answer a query from what has already been extracted.

Outdated data. For instance, phone numbers or addresses in customer records
become incorrect over time.

Wrong data. Data may have been plain incorrect in the first place, for many
reasons, e.g., it was incorrectly entered, or relied on false assumptions.

Managing uncertain data, however, has become more and more crucial. Indeed,
data is nowadays extracted from natural-language text in random Web pages by
automated and error-prone extraction programs [Carlson et al. 2010]; integrated
from diverse sources through approximate mappings [Dong, Halevy, and Yu 2007];
contributed by untrustworthy users to collaboratively editable knowledge bases
[Vrandečić and Krötzsch 2014]; deduced from the imprecise answers of random
workers on crowdsourcing platforms [Amsterdamer, Grossman, Milo, and Senellart
2013; Parameswaran et al. 2012]; or more generally produced by data mining or
machine learning techniques. Unlike hand-curated databases, it is no longer possible
to assume that mistakes will not happen, or that you can fix all of them while you
find them. The data is incomplete and contains errors, and you have to deal with
that.

Yet, for now, the only uncertainty management issue widely addressed by main-
stream relational database implementations is that of missing values, with the notion
of NULLs in SQL. Unfortunately, as has been pointed out very early [Grant 1977] the
semantics of NULLs as defined by the SQL standard [ISO 2008] has many drawbacks:
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• NULLs can only represent missing values in a record, not missing records, or
uncertainty about whether an entire record is correct;

• NULLs cannot indicate that several unknown values are the same, or are con-
strained in a certain way, e.g., chosen among multiple possible values;

• NULL evaluation is based on three-valued logics, with very counter-intuitive
effects, e.g., the selection of values that are either equal to 42 or different
from 42 will not return NULL values, even though those values should be
selected no matter which actual value the NULL stands for.

Of course, research has investigated improved semantics for NULLs [Imieliński and
Lipski 1984], and the debate continues to this day [Libkin 2014]. For now, however,
applications have no generic solution that would allow them to perform general
uncertain data management tasks. For this reason, they rely on naive solutions:
e.g., set a confidence threshold, discard everything below the threshold, consider
everything above the threshold as certain. The main exception are domains where
uncertainty management is paramount, such as optical character recognition, au-
tomated speech recognition (ASR), computational biology, etc.: powerful solutions
have been developed in such contexts, such as weighted finite-state transducers
[Mohri, Pereira, and Riley 2002] for ASR, but they are domain-specific. The vision
of uncertain data management is therefore that principled and generic tools should
be available to manage noisy and incomplete data in all domains, in the same way
that relational databases today are both highly optimized and domain-agnostic.

The database research community has been hard at work to realize this vision, and
many theoretical models have been proposed, beyond NULLs, to manage uncertain data
in a powerful and generic way. For instance, to deal with the issue of incompleteness
in databases, the notion of open-world query answering has been put forward:
information not present in the database is unknown rather than false (the so-called
open-world semantics), and the answers that should be returned for the query are
those that are implied by the data and by logical rules provided along with the
data. To deal with tuples whose correctness is not certain, probabilistic formalisms
[Suciu, Olteanu, Ré, and Koch 2011] such as tuple-independent databases (TID) have
been proposed: TIDs are relational databases where tuples carry an independent
probability of existence. To represent correlations between tuples, or to represent
the result of queries evaluated over such databases, more expressive formalisms such
as pc-tables have been put forward. Other formalisms have been developed for other
kinds of uncertain data, such as probabilistic XML [Kimelfeld and Senellart 2013] for
XML documents.

Yet, these efforts still face many challenges. It is hard to define principled
frameworks to manage uncertainty and probabilities on unusual data structures,
and even harder to represent such information concisely. It is challenging to reason
efficiently in the presence of probabilities, as probabilistic query evaluation tends
to be much harder than non-probabilistic query evaluation [Dalvi and Suciu 2007].
Further, in the case of open-world query answering under rules, it may be even
undecidable to reason over the data, depending on the rule language.

My PhD research has attacked these challenges from a new angle. Rather than
developing techniques that can manage any kind of data, and studying which tasks
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can always be tractably performed (e.g., the safe queries [Dalvi and Suciu 2012] in
the TID formalism), I focus on assumptions on the structure of the data. This is
motivated by the notion that real-world data is not arbitrary, and may be tractable
even in cases where arbitrary data may not be. More specifically, my research
throughout my PhD has focused on three main axes:

1. I have investigated which structural conditions on instances ensure the tractabil-
ity of uncertain data management and probabilistic evaluation, in particular,
bounds on the instance treewidth.

2. I have studied new uncertainty representation frameworks for unusual data
structures, namely, uncertainty frameworks for ordered data tuples and values.

3. I have worked on open-world query answering for incomplete data, and shown
new settings where the structure of logical rules, and their precise language,
could ensure decidability for this problem, both in the finite and unrestricted
contexts.

The next three sections of this introduction propose a complete overview of my doctoral
work on these topics. The thesis itself only focuses on two of these contributions, as is
clarified throughout the introduction and summarized at the end. Part of this overview
was presented at the SIGMOD/PODS PhD Symposium [Amarilli 2015b].

1 Provenance and Probability on Treelike Instances
The first axis of my PhD research concerns the tractability of uncertain data management,
namely provenance computation and probability evaluation, in the setting of treelike
instances. This work is presented in Part I of this manuscript; it appeared at ICALP’15
[Amarilli, Bourhis, and Senellart 2015] and was accepted at PODS’16 [Amarilli, Bourhis,
and Senellart 2016].

It is surprising how probabilistic query evaluation is considerably harder than
regular query evaluation, even for the simple language of conjunctive queries (CQs),
and in the simple probabilistic model of tuple-independent instances (TIDs). Consider
for instance a dating website that manages a table of users, indicating their city of
residence, and a table indicating messages sent from one user to another. Consider a
conjunctive query asking for pairs of users that messaged each other and live in the
same city. The evaluation of this query is tractable w.r.t. the database (i.e., in data
complexity), more specifically it is AC0 [Abiteboul, Hull, and Vianu 1995], as is the
case for any first-order query.

Imagine now that the dating website uses the TID formalism to represent un-
certainty about whether a user is looking for a relationship or not, and whether
messages express a positive sentiment or not. This could be estimated, for each user
and for each message, by, e.g., machine learning or sentiment analysis, assuming
independence across users and messages. The dating website now wishes to use
this information to determine the probability that someone sent a positive message
to someone in the same city, and that both users were looking for a relationship,
according to this probabilistic data. As it turns out, this task is intractable, specifi-
cally, it is #P-hard. Intuitively, because of the correlations caused by the multiple
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occurrences of facts, in the worst case it is unlikely that one can do much better
than considering the exponential numbers of possible worlds.

In fact, a dichotomy result has been shown [Dalvi and Suciu 2012] that charac-
terises the queries for which probabilistic query evaluation is tractable on all input
TID instances. However, this result leaves open the question of whether more queries
could not be tractable on reasonable input instances, in a sense that we must define.
We think that this is an important direction because real datasets are not arbitrary, so
it may be possible to work around the intractability of probabilistic query evaluation
on arbitrary datasets. In fact, a result of this kind was already known: the equivalent
of TID for probabilistic XML, namely, the PrXMLmux,ind model, is known to enjoy
tractable probabilistic evaluation [Cohen, Kimelfeld, and Sagiv 2009], intuitively
thanks to the tree structure in which probabilistic choices only have a local effect.

The precise question that we ask is then: on which instance families is probabilistic
evaluation tractable, still in data complexity, for all queries in an expressive language?

We give a complete answer to this question in Part I of this manuscript, by
showing a new dichotomy result, centered on the structure of instances rather than
queries. More specifically, we show that, on bounded-treewidth TID instance families,
which are intuitively close to a tree, probabilistic query evaluation is tractable for all
queries in the expressive language of guarded second-order logic (GSO). Conversely,
we show that there are first-order queries such that, for any choice of instance
family of unbounded treewidth, probabilistic query evaluation is intractable in data
complexity, assuming arity-two signatures and a mild constructibility requirement.

The upper bound of our dichotomy is proven as a general efficient technique to
compute provenance representations, or lineages, on bounded-treewidth instances,
presented in Chapter 3 of this thesis. More specifically, we use the connection
originally shown by Courcelle between queries on treelike instances, and tree automata
on tree encodings [Courcelle 1990; Flum, Frick, and Grohe 2002]. We introduce
a general representation of the runs of a tree automaton on an uncertain tree, as
a provenance circuit [Deutch, Milo, Roy, and Tannen 2014], and we lift this to a
provenance computation scheme with linear data complexity for GSO queries on
treelike instances.

We then show how this provenance can be used to construct tractable lineage rep-
resentations, namely OBDDs [Bryant 1992; Olteanu and Huang 2008] and d-DNNFs
[Darwiche 2001]. We use this in Chapter 4 to show that probabilistic query evaluation
for GSO queries on TID instances of bounded treewidth has ra-linear-time data
complexity, i.e., linear time up to the cost of arithmetic operations. To extend these
results to more expressive formalisms, we introduce pcc-instances, a circuit-based vari-
ation of pc-tables [Huang, Antova, Koch, and Olteanu 2009; Green and Tannen 2006]
with a natural definition of treewidth covering both the instance and correlations.
We use this to derive bounded-treewidth tractability results for pc-tables, BID tables
[Barbará, Garcia-Molina, and Porter 1992; Ré and Suciu 2007], and probabilistic
XML, capturing in particular the result of [Cohen, Kimelfeld, and Sagiv 2009]. We
also show a connection to the results of [Dalvi and Suciu 2012], by explaining how
the tractability of inversion-free unions of conjunctive queries can be explained
by a lineage-preserving rewriting of their input instances to a bounded-pathwidth
instance.

We additionally derive results in Chapter 5 about the tractable computation
of provenance representations on treelike instances in expressive semirings, beyond
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Boolean lineages, via a connection to semiring provenance [Green, Karvounarakis, and
Tannen 2007]. Indeed, provenance representations have more uses than probabilistic
query evaluation: they allow us to keep track of the link between query result
and input instance, and can be used to solve many problems such as multiplicity
counting, access right management, view maintenance, etc. We thus extend our
definitions of provenance for trees and treelike instances to more general semirings
that capture these problems. We then show, by a variation of our techniques, that
provenance circuits for the universal semiring N[X] can be computed in linear time
data complexity on treelike instances for unions of conjunctive queries, down from
the polynomial-time complexity of computing them in the general case.

We show the lower bound of our dichotomy in Chapter 6, relying on recent
polynomial bounds [Chekuri and Chuzhoy 2014a] on the extraction of planar graphs
as minors of high-treewidth graphs, which we apply to arbitrary unbounded-treewidth
graph families provided they are constructible in a certain sense. This allows us to
show, on arity-two signatures, the #P-hardness under RP reductions of a specific
first-order (FO) query on any such family of input instances. In other words, any
condition on instances that ensures the tractability of probabilistic query evaluation
for FO must imply a bound on treewidth, or non-constructibility of the instances.
By contrast, in the context of non-probabilistic evaluation and match counting, we
show similar results with a monadic second-order query, revisiting and improving
earlier results [Kreutzer and Tazari 2010; Ganian, Hliněnỳ, et al. 2014].

We extend this result to a stronger dichotomy, for the more stringent requirement
of restricting instances to ensure that queries have tractable OBDD lineages. While
we again know that bounded-treewidth ensures this for all GSO queries, we show that
even a query in UCQ6=, a union of conjunctive queries with disequalities, can have no
tractable OBDD representations on any unbounded-treewidth, constructible, arity-
two instance family. We conclude our study by a characterization of the connected
UCQ6= queries that are thus intractable (in terms of OBDDs) on any such instance
family, in a query-centric meta-dichotomy result.

We see our dichotomy results as a foundation for a different study of probabilistic
query evaluation, that would be neither instance-centric, nor query-centric. Our
hope is that our tractable constructions for bounded treewidth instances can be
combined with techniques for safe query evaluation, and could thus achieve both
theoretical and practical tractability on probabilistic evaluation tasks where the
interaction between query and instance is tractable, even though neither of them
would be tractable in isolation.

2 Uncertainty on Ordered Data
The second axis of my PhD research concerns uncertainty on data with an order on
tuples or on numerical values. This work is not presented in this manuscript: the first
subsection is available as a preprint [Amarilli, Ba, Deutch, and Senellart 2016]; the second
is also available as a preprint [Amarilli, Amsterdamer, Milo, and Senellart 2016] and was
sketched at the UnCrowd workshop [Amarilli, Amsterdamer, and Milo 2014b].

There are many data management contexts where we must take into account an
order relation on data values (such as dates or numerical numbers), or on the tuples
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themselves (e.g., a list of log entries, or a ranked list of results). This section present
my work on uncertainty for order representation, first in a setting with uncertain
order on relational tuples, and then in a setting with partially ordered numerical
values.

2.1 Representing Order Uncertainty on Relational Tuples
To manage ordered tuples in the relational model, an interesting phenomenon is
that uncertainty on the order arises even when we apply the standard relational
algebra operators to input relations that are certain in terms of order. For a practical
example, consider a travel website where you can search for hotels and which ranks
them by quality. You are a party of four, and you want either two twin rooms, or
one room with four beds; but the website does not allow you to search for both
possibilities at once. So you perform one search, and then the other, and you obtain
two ordered lists of hotels, of which you want to compute the union. However, the
order on the union list is uncertain: it depends on the website’s estimation of quality,
which you do not control. It is not fully unspecified, however, because two hotels
that occurred only in the first list, or only in the second list, would probably keep
the same order in the union.

To address this phenomenon, our work [Amarilli, Ba, Deutch, and Senellart 2016]
proposes operators for the relational algebra that apply to partially ordered relations,
under the bag semantics, in the spirit of [Grumbach and Milo 1999]. This allows
us to combine totally and partially ordered relations with the relational algebra, to
integrate data and compute new ordered relations, representing all possible consistent
ordering choices. This resembles rank aggregation techniques [Fagin, Lotem, and Naor
2001; Jacob, Kimelfeld, and Stoyanovich 2014; Dwork, Kumar, Naor, and Sivakumar
2001] to reconcile ordered lists of results, but these methods are quantitative, i.e., if
something appears close to the top in most lists, then it should also do so in the result.
We focus instead on ways to represent all consistent ordering choices. Of course,
a straightforward approach for this would be to use existing relational uncertainty
frameworks, such as c-tables, to represent the uncertainty on tuple positions, but
this would not work well: if we know that a result must come before another one,
the dependency on numerical ranks becomes very tedious to represent.

The semantics that we define for relational algebra thus allows us to combine
ordered data in a principled way. However, order is maintained as implicit information,
and cannot be queried by our operators. To address this, we propose a general
order-dependent accumulation operator on relations with uncertain order, which
we can use to compute what we want to find out about the order. Accumulation
simply computes all possible concatenations of tuple values, for all possible orders,
in a given monoid. We can use it for queries on the order, e.g., “is it certain that all
hotels in this district are better than all hotels in that district?”

The main technical contribution of our work is to study the complexity of query
evaluation in this scheme, more specifically, the complexity of computing possible and
certain answers for instance possibility and certainty [Antova, Koch, and Olteanu
2007], and for aggregation. Surprisingly, it is already intractable, i.e., respectively
NP-hard and coNP-hard, to determine whether a query result (i.e., a full totally
ordered relation) is possible or certain, even for very simple queries, though certainty
(unlike possibility) is tractable in the absence of accumulation, and more generally
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when accumulating in a cancellative monoid.
We therefore show how hardness can be mitigated by restricting the structure of

the input ordered relations, using order-theoretic measures. We show tractability
of our problems, for some subset of the operators, when the input relations have
constant poset width [Brandstädt, Le, and Spinrad 1987]: we show how such bounds
are preserved on query results, and show the tractability of possible and certain
answers in this context, through a dynamic algorithm. We show a similar result
when the input relations are almost totally unordered, introducing the new poset
measure of ia-width to define this. We also extend our results under an additional
duplicate elimination operator, to go back from bag semantics to set semantics.

2.2 Completing Missing Numerical Values

In different work, I have focused [Amarilli, Amsterdamer, Milo, and Senellart 2016]
on top-k query evaluation on numerical values which are unknown, but for which we
know partial order constraints and some exact values.

This work is inspired by crowd data sourcing scenarios [Amsterdamer, Grossman,
Milo, and Senellart 2013; Parameswaran et al. 2012], where we wish to extract
information from a crowd of users by asking questions. It is often the case that we
wish to extract many interdependent numerical values from the crowd. For instance,
to consolidate the catalog of a Web store, we may wish to determine the compatibility
of each item in the catalog with each category of a taxonomy of products, where we
assume that compatibility scores are partially ordered following the taxonomy: the
“shirt” category is more specific than the “clothing” category, so if an item fits in the
“shirt” category, then it must also fit in the “clothing” category.

The simplest approach would be to query the crowd about each of the categories,
but in general we cannot afford to do that. Indeed, every crowd query that you
make introduces latency (you need to wait for the answers to arrive) and monetary
costs (you have to pay the workers). For this reason, we studied principled ways to
interpolate the values that we do not have, using the known partial order structure
on them, from those values that we have already obtained from the crowd. The goal
is to find the top-k items with the highest expected value (here, the top-k categories
in which our product can be filed) given the limited information that we have.

While completing a total order of values is well-understood and can be done with
linear interpolation, it appears that the general question of interpolating on a partial
order of unknown values had not been studied before. We propose a definition for
this problem as that of computing the expected value of each unknown variable in
the convex polytope induced by the partial order constraints, taking the uniform
distribution as our prior. We show an algorithm to solve the interpolation problem in
FP#P, and show that the task is #P-hard, based on results on partial order theory
[Brightwell and Winkler 1991]. We extend this to show that it is already hard to
simply decide which item has the highest expected value, even without computing
the value. We also show tractable approaches: we can design a fully polynomial
randomized approximation scheme for the interpolation problem, using a scheme to
sample convex polytopes [Kannan, Lovász, and Simonovits 1997], and we show that
interpolation (for our principled definition) is tractable for tree-shaped taxonomies,
using a dynamic algorithm.
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3 Decidability for Open-World Query Answering
The third axis of my PhD research concerns open-world query answering on incomplete
data whose structure is constrained by logical constraints, studying new logical fragments
for which this task is decidable. The work in the first subsection was published at IJCAI’15
[Amarilli and Benedikt 2015a] but is not presented in this manuscript. The work in the
second subsection is presented in Part II of this manuscript; it was published as an
extended abstract at LICS’15 [Amarilli and Benedikt 2015b] and an full version is currently
undergoing peer review [Amarilli and Benedikt 2016].

3.1 Bridging Approaches for Open-World Query Answering
The open-world query answering problem (OWQA) asks, given a database I, logical
constraints Σ, and a query q, to compute the answers to q that are certain under Σ
given I; in other words, it asks for the answers to q which are true on all possible
completions of I that satisfy the constraints Σ. The OWQA problem thus allows
us to reason about an incomplete database I, by constraining the structure of its
completions, following logical rules that we know about the world. OWQA is of
course undecidable if arbitrary logical rules are allowed in Σ, so there has been much
research on finding expressive logical languages for which OWQA remains decidable,
and hopefully has a reasonable complexity.

This research question has been studied in at least three different contexts:

Relational databases, originally under the equivalent rephrasing of query contain-
ment under constraints [Johnson and Klug 1984], and then in the context of
incomplete databases [Calì, Lembo, and Rosati 2003a].
This approach uses as logical rules the classical constraints of database theory,
e.g., tuple-generating and equality-generating dependencies [Abiteboul, Hull,
and Vianu 1995], but the interaction between both kinds of dependencies was
quickly seen to lead to undecidability [Mitchell 1983].

Description logics, or DLs, which focus on scalability in the instance I, and on
studying the precise complexity tradeoff when allowing more or less expressive
constraints in Σ.
DLs work on arity-two data, i.e., labeled graphs, which is less expressive
than relational databases; however, in this context, OWQA remains decidable
even with very expressive constraints, for instance disjunction, negation, and
functionality assertions (a form of equality-generating dependencies).

Existential rules, which essentially amount to tuple-generating dependencies, but
for which specific decidable classes have been identified, e.g., frontier-guarded
[Baget, Leclère, and Mugnier 2010].
Existential rules are not as expressive as DLs, and can only say that a conjunc-
tion of facts implies another conjunction of facts. However, unlike DL rules,
they can express constraints on arbitrary-arity facts.

My first contribution to the study of OWQA [Amarilli and Benedikt 2015a] is to
draw bridges between the approaches of DLs and existential rules. Specifically, the
goal is to design languages to reason about incomplete data where both existential
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rules and DL rules are allowed, so as to have the best of both worlds: expressive DL
rules on arity-two facts, and existential rules on higher-arity facts. In fact, as our
main focus is on the decidability of OWQA, we do not restrict to specific DLs, but
allow constraints expressed in GC2, the guarded two-variable fragment of first order
logic with counting quantifiers, an expressive arity-two logical formalism. Indeed,
OWQA for GC2 is known to be decidable [Pratt-Hartmann 2009], which covers the
decidability of OWQA for many description logics (see, e.g., [Kazakov 2004] for the
connection).

Our work pinpoints which features of these two language families are dangerous
and give an undecidable language when mixed. The main problematic feature of
DLs (or GC2) are functionality assertions (or counting quantifiers): being able to
say that, e.g., a person has only one place of birth. If we want to express such
constraints, we must disallow two problematic features of existential rules. The first
is exporting two variables, intuitively, e.g. “If someone was born in some country,
then that person has lived in that country”. Hence, we restrict to the frontier-one
fragment of existential rules [Baget, Leclère, Mugnier, and Salvat 2009], intuitively
requiring that each existential rule consequence should depend on only one variable
of the hypothesis: “If someone won a literary prize, then they wrote some book.”
The second problematic feature is the possibility to assert cyclic patterns in the
head of frontier-one rules, which causes undecidability; we introduce a fragment of
head-non-looping frontier-one rules to disallow this.

We can then show the decidability of OWQA for the combined language of GC2

constraints and head-non-looping frontier-one rules. The argument proceeds with a
treeification construction to rewrite the rules, eliminating bad cycles in their body if
there are any, and thus translating to the so-called fully-non-looping fragment. We
then show that the resulting rules can be shredded to GC2 on a fully binary signature.
We extend our results to allow the higher-arity functional dependencies (FDs) from
database theory, in addition to the GC2 constraints and existential rules, restricting
the interaction of FDs with the rules using the existing non-conflicting condition
[Calì, Gottlob, and Pieris 2012].

Our results suggest that combining the DL and existential rule approaches could
ensure the decidability (and maybe tractability) of OWQA for more expressive hybrid
logical languages.

3.2 Finite Open-World Query Answering
My second contribution to the study of OWQA concerns the standard context of
relational databases. In this setting, an important difference is that the underlying
world is often assumed to be finite. Specifically, we perform finite OWQA: instead
of considering all completions of the instance I that satisfy the constraints Σ, and
finding the certain answers to the query q over them, we restrict our attention to the
finite completions.

This slight difference in problem phrasing is motivated by the intuitive assumption
that databases should be finite. As it turns out, this assumption can make a difference.
Consider for instance the following information about an organization:

• The database I: “Jane advises John”

• A first constraint in Σ: “Each advisee is also the advisor of someone”. In
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database parlance, this is an inclusion dependency, a special kind of tuple-
generating dependency.

• A second constraint in Σ: “No advisee has two different advisors”. This is a
functional dependency, a special kind of equality-generating dependency.

Consider the OWQA problem for I, Σ, and the Boolean query q that asks whether
someone advises Jane. The first constraint allows us to deduce that John, as he is
advised by Jane, advises someone else, say Janice; Janice herself advises someone
else, say Jack. In general, this could go on indefinitely, and we cannot deduce that
someone advises Jane. However, if we also assume finiteness, then the chain has
to stop somewhere: someone along this chain (Jennifer, say) must advise someone
that we already know about. Using the rule that no one is advised by two different
people, we deduce that Jennifer must be advising Jane.

While this example is simple, the general impact of finiteness on OWQA is
currently very poorly understood. Indeed, OWQA is often studied via universal
models, obtained, e.g., by the chase; or by unraveling techniques. However, these
models are generally infinite, so these tools do not apply to finite OWQA.

What we do know is that, for some logical languages, finite and unrestricted
OWQA are equivalent; we then call these languages finitely controllable. Such a
result was first shown for inclusion dependencies in [Rosati 2006; Rosati 2011], and
later generalized [Bárány, Gottlob, and Otto 2010] to the guarded fragment. Another
such result was more recently shown in [Gogacz and Marcinkowski 2013] for the
sticky Datalog fragment of [Calì, Gottlob, and Pieris 2010]. All of these results have
highly technical proofs. None of them, however, allows functional dependencies, or
equality-generating dependencies of any kind, so they do not cover the previous
example.

Finite OWQA is better understood on arity-two signatures, because we know
that it is decidable even for languages where it is not finitely controllable, and
even for languages allowing functional dependencies. This is the case for GC2

by a specific argument [Pratt-Hartmann 2009], but it is also the case for some
description logics [Rosati 2008; Ibáñez-García, Lutz, and Schneider 2014], following
an interesting general method: complete the constraints by a finite closure procedure,
that deduces all consequences of the constraints that hold in the finite, and show
finite controllability of the resulting constraints. Thus, this context covers our
previous example, but only in the arity-two setting: if the advisor–advisee relation
also included more information (e.g., a rating), then we could no longer express it in
this context.

Our work [Amarilli and Benedikt 2015b; Amarilli and Benedikt 2016] reuses this
finite closure approach, but applies it to arbitrary-arity signatures, for database
constraints allowing both inclusion dependencies (IDs) and functional dependencies
(FDs). Hence, it captures the previous example no matter the arity of the predicates.
However, as OWQA is generally undecidable under IDs and FDs [Calì, Lembo, and
Rosati 2003a], we must make another restriction: we restrict to unary inclusion
dependencies (UIDs), i.e., those which are frontier-one rules: they export only a
single variable from the body to the head, as does the inclusion dependency in the
example. This avoids undecidability, and in fact a finite closure procedure for this
language is already known [Cosmadakis, Kanellakis, and Vardi 1990]. We thus show
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that UIDs and FDs are finitely controllable once this finite closure procedure has been
applied, which proves the first decidability result for finite OWQA on arbitrary-arity
signatures under a natural language featuring both IDs and FDs.

The proof of this result is highly technical, and adapts various techniques from
previous work:

• the use of k-bounded simulations to preserve small acyclic queries [Ibáñez-García,
Lutz, and Schneider 2014],

• a partition of UIDs into connected components that have limited interaction,
which we satisfy component-by-component [Cosmadakis, Kanellakis, and Vardi
1990; Ibáñez-García, Lutz, and Schneider 2014],

• a finite chase procedure that reuses sufficiently similar elements [Rosati 2011],

• a product construction using groups of large girth to blow up cycles [Otto
2002].

The proof is presented in Part II of the manuscript.

Structure of the Manuscript
I chose to limit the scope of this manuscript, and to focus on a subset of the
contributions surveyed above. Specifically:

• Part I of the manuscript corresponds to Section 1 above, published as [Amarilli,
Bourhis, and Senellart 2015] and [Amarilli, Bourhis, and Senellart 2016].

• Part II of the manuscript corresponds to Section 3.2 above, published as
[Amarilli and Benedikt 2015b] and submitted as [Amarilli and Benedikt 2016].

Both parts can be read independently. Further:

• Sections 2 and 3.1 above, while directly relevant to the topic of my thesis, are
not presented in the manuscript: they correspond to publications [Amarilli,
Amsterdamer, and Milo 2014b; Amarilli and Benedikt 2015a] and preprints
[Amarilli, Ba, Deutch, and Senellart 2016; Amarilli, Amsterdamer, Milo, and
Senellart 2016]

• Some additional work performed during my PhD, but which is not directly
related to my thesis topic, is surveyed in Appendix A.
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Provenance and Probability
on Treelike Instances





Chapter 1

Introduction

This first part of my thesis studies probabilistic query evaluation and provenance compu-
tation under the instance-based tractability requirement of bounded treewidth. It presents
my work with Pierre Bourhis and Pierre Senellart, published at ICALP’15 [Amarilli, Bourhis,
and Senellart 2015] and accepted for publication at PODS’16 [Amarilli, Bourhis, and
Senellart 2016]. The latter covers Sections 3.5, 3.6, and 4.5, as well as Chapter 6; the
former presents the other results.

To represent uncertain information in a relational database, a common need is
to insert tuples which have a probability of being wrong. The simplest possible
model to express this are tuple-independent databases (TID), where each tuple in
the database is annotated with an independent probability of being present. TID
instances are thus a concise representation of a probability distribution on possible
instances, namely, possible subsets of the tuples, with probability given according to
the product distribution.

However, in this simple model, and even for simple queries, we cannot hope
to have tractable query evaluation techniques. Indeed, for many simple Boolean
conjunctive queries, it is intractable to compute the probability that the query holds
on the possible worlds of the TID instance, even from the angle of data complexity, i.e.,
complexity in the input TID instance, with the query being fixed. The investigation
of this issue has culminated with the dichotomy result of [Dalvi and Suciu 2012]:
there is a tractable algorithm to evaluate some queries in PTIME, intuitively by
applying some simplification rules, and all queries for which this algorithm fails are
intractable over arbitrary TID instances.

During my thesis, I revisited this problem by studying it from the point of view
of instances. Indeed, the query-based result of [Dalvi and Suciu 2012] shows that,
when all instances can be given as input, some queries are easy and all others are
hard. This is motivated by the fact that the queries posed by users in real life are not
arbitrary, so it is interesting to find simple cases that are tractable. However, real-life
data is not arbitrary either, and it could be the case that even hard queries become
tractable when restricted to simple datasets. One hint in this direction was shown in
[Cohen, Kimelfeld, and Sagiv 2009]: on the XML analogue of TID instances, we can
tractably evaluate any query that we can represent as a tree automaton. Can this
be covered by a general result on tractable instances of a certain shape?

This part of my thesis presents our answer to this question: an instance-based
dichotomy result, formulated using the criterion of instance treewidth. Intuitively, the
treewidth of a relational instance measures how close it is to a tree: XML documents
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can be seen as a relational instance of treewidth 1. The main result on probability
evaluation given in this thesis (Theorem 6.1.2) is thus the following dichotomy:

• On families of input instances with treewidth bounded by a constant, the
probability evaluation problem is always tractable in data complexity. In fact,
this tractability extends beyond the simple TID formalism, and beyond the
unions of conjunctive queries studied in [Dalvi and Suciu 2012], all the way to
guarded second-order queries on relational and XML models with expressive
(but bounded-treewidth) correlations.

• On instances of unbounded treewidth, probability evaluation is intractable.
This is no surprise if arbitrary input instances are allowed, but we can in
fact show something much stronger: on arity-two signatures, and under mild
constructibility assumptions, there is a first-order query for which probabilistic
evaluation is intractable on any input instance family of unbounded treewidth,
no matter what other conditions we impose on the instances.

Instance treewidth thus appears to be the correct instance-based measure of the
tractability of probabilistic query evaluation. Bounding it ensures tractability (in data
complexity) for expressive query languages and probabilistic frameworks. Conversely,
on arity-two signatures, any condition on the underlying instances that ensures
tractability must imply a bound on treewidth, or inconstructibility in some sense.

Both directions of this dichotomy result are proven in this part of the thesis, and
are extended in several directions. The tractability results are proven in Chapters 3–5,
and the intractability results are proven in Chapter 6. Both kinds of results are proven
using very different techniques, so these two directions are mostly independent.

Tractability results. Our tractability results on bounded-treewidth instances are
shown using the connection to tree automata pioneered by the work of Courcelle
[Courcelle 1990]. We extend this connection from query evaluation to probability
evaluation, and in fact more generally to provenance computation, following the
general technique of computing query probability via a Boolean lineage of the
query. Our basic Boolean provenance construction for treelike instances is shown in
Chapter 3; we then present its consequences for probability evaluation in Chapter 4,
and its extension to semiring provenance in Chapter 5. These two chapters both
depend on Chapter 3 but are otherwise independent.

The general Boolean provenance construction in Chapter 3 is based on a new
notion of provenance for tree automata on trees, for which we show in Section 3.1 a
linear time construction of provenance circuits. We then review in Section 3.2 the
general translation from treelike instances to trees, and from guarded second-order
(GSO) queries to tree automata, identifying a property of subinstance-compatibility
that allows us to extend the translation to provenance computation. Section 3.3 relies
on this property to lift the previous results on trees and show that provenance circuits
can be tractably computed (in data complexity) for queries on treelike instances.

We conclude Chapter 3 by investigating which other kinds of provenance repre-
sentations can be computed using our methods. We first show in Section 3.4 that
monotone provenance circuits can be computed for monotone queries, which we will
reuse for more expressive provenance representations in Chapter 5. We then show in
Section 3.5 that we can compute polynomial-size OBDDs and linear-size d-DNNFs
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representations of the lineage, that we will use for probability evaluation in Chapter 4.
Last, in Section 3.6, we justify our focus on circuit representations of provenance,
showing that representations as Boolean formulae are necessarily less concise.

We use our provenance representations for two distinct purposes. First, in
Chapter 4, we apply them to our original focus of probabilistic query evaluation.

We first show in Section 4.1 that our d-DNNF representations of lineage imply that
probability evaluation for GSO queries is tractable in data complexity on bounded-
treewidth TID instances: in fact, it is linear-time, up to the cost of arithmetic
operations.

We then extend this tractability result to other probabilistic models that have
been studied in the literature [Suciu, Olteanu, Ré, and Koch 2011; Kimelfeld and
Senellart 2013], in particular those that allow correlations between probabilistic
events, which TID cannot capture. We do this by introducing our own model of
pcc-instances in Section 4.2, where correlations between tuples are represented as
a circuit annotation. We show the tractability of GSO query evaluation on treelike
pcc-instances, when the treewidth of the tuples and annotations are simultaneously
bounded: we do so by rewriting pcc-instances to TIDs, rewriting the query to evaluate
the annotation circuit, and applying our previous results.

We then leverage this model to show bounded-treewidth tractability results for
existing relational probabilistic models (Section 4.3), namely, pc-instances and block-
independent-disjoint instances. We also apply it to probabilistic XML (Section 4.4),
re-proving the tractability of PrXMLmux,ind (as already shown in [Cohen, Kimelfeld,
and Sagiv 2009]) and showing that the more general PrXMLfie model is tractable if
we impose a bounded event scopes condition.

We conclude Chapter 4 with two other applications of our results. The first one, in
Section 4.5, connects our approach to the query-based result of [Dalvi and Suciu 2012].
More specifically, we re-prove that probability evaluation for inversion-free UCQs is
tractable on all input instances [Jha and Suciu 2013]. We do so from an instance-
based perspective: given a query in this language, we can rewrite the input instance
to make it bounded-treewidth, without changing the lineage of the query, and we can
then apply our results. Our second application (Section 4.6) studies the problem of
counting query matches: we connect this task to the probabilistic evaluation problem,
and re-prove with our methods the bounded-treewidth tractability of GSO match
counting that had been shown in [Arnborg, Lagergren, and Seese 1991].

The second use of our provenance representations is to extend them to the
context of semiring provenance [Green, Karvounarakis, and Tannen 2007]. Indeed, it
is natural to ask whether our Boolean provenance constructions can be generalized to
more general semiring provenance representations, which capture many tasks beyond
probability evaluation [Cheney, Chiticariu, and Tan 2009; Karvounarakis and Green
2012]. In particular, our Boolean provenance circuits are reminiscent of the recently
introduced semiring provenance circuits [Deutch, Milo, Roy, and Tannen 2014].

We accordingly show in Chapter 5 how our constructions can be extended to
general semirings. We first present the basics of provenance semirings in Section 5.1,
explaining why our monotone provenance constructions in Section 3.4 already capture
provenance in the semiring of monotone Boolean functions. We then make the choice
of restricting the query language from GSO to unions of conjunctive queries with
disequalities (UCQ 6=), a choice that we justify in Section 5.4.
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Under this restriction, we revisit in Section 5.2 our constructions of provenance
for tree automata in Section 3.1, extending them to the universal N[X]-provenance.
To do this, we must capture the multiplicity of node uses, which we do by extending
the alphabet of trees beyond Boolean annotations, and the multiplicity of derivations,
which we count as the number of automaton runs. We then extend these results to
treelike instances in Section 5.3, generalizing Section 3.3, which allows us to show a
linear-time N[X]-provenance construction for UCQ 6= on treelike instances.

To summarize, when instance treewidth is bounded, our results show that the
Courcelle translation from treelike instances to trees, and from MSO and GSO to tree
automata, can be extended to support provenance computation, even in expressive
semirings (for UCQ6=), and implies tractable query evaluation on probabilistic models,
even under expressive bounded-treewidth correlations.

Intractability results. Our intractability results in Chapter 6 show a converse
to the above results: query evaluation for some first-order (FO) query is hard on any
family of probabilistic TID instances if their treewidth is unbounded. To prove this,
however, we must assume that the family is constructible, namely, that high-treewidth
instances in the family can be efficiently built. Further, we rely on technical tools
that apply only to graphs, not arbitrary arity instances, so we must restrict to
arity-two signatures. More specifically, we use a recent polynomial bound [Chekuri
and Chuzhoy 2014a] on the result of [Robertson and Seymour 1986] about extracting
arbitrary planar graphs as minors of high-treewidth families.

From our main lower bound on probabilistic query evaluation in Section 6.1, we
derive lower bounds using the same methods in Section 6.2 for non-probabilistic
query evaluation on subinstance-closed families. Thanks to our use of [Chekuri
and Chuzhoy 2014a], our results improve existing bounds for the same problem
[Kreutzer and Tazari 2010; Ganian, Hliněnỳ, et al. 2014]. We also study the problem
of counting query matches in Section 6.3.

Last, we show lower bounds for a more stringent notion of tractability, namely, the
existence of polynomial-size OBDD representations of query lineage. In Section 6.4,
we accordingly construct a UCQ6= query qp which we show to have no polynomial-size
OBDDs on any constructible arity-two unbounded-treewidth instance family. Of
course, this does not imply that probabilistic query evaluation for qp could not be
tractable for different reasons (see examples in [Jha and Suciu 2013]). However,
it gives us a dichotomy on the existence of polynomial-size OBDDs, even for the
restricted language of UCQ6=: while the UCQ 6= qp has no polynomial OBDDs (under
our assumptions) unless instance treewidth is bounded, we can always construct
polynomial OBDDs for queries on bounded-treewidth instances (see Section 3.5).
Further, for connected UCQ6= queries, we are able to show a query-based meta-
dichotomy (in Section 6.5) on the existence of polynomial OBDD representations:
the meta-dichotomy classifies connected UCQ 6= in intricate queries, that never have
polynomial-size OBDDs on unbounded-treewidth families under our assumptions,
and the other queries which are shown to have constant-width OBDDs on some
well-chosen unbounded-treewidth instance family.

We give preliminary notions in the next chapter, and then start with the tractabil-
ity results by showing our bounded-treewidth Boolean provenance construction in
Chapter 3.
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Chapter 2

Preliminaries

2.1 Trees and Tree Automata

Trees. Given a fixed alphabet Γ, we define a Γ-tree T = (V, L,R, λ) as a finite set
of nodes V , two partial mappings L,R : V → V that associate an internal node with
its left and right child, and a labeling function λ : V → Γ. Unless stated otherwise,
the trees that we consider are rooted, ordered (i.e., there is a total order on the
children on nodes), binary, and full (i.e., each node has either zero or two children).
We write n ∈ T to mean n ∈ V .

We say that two trees T1 and T2 are isomorphic if there is a bijection between
their node sets which preserves children and labels (we simply write it T1 = T2). We
say that two trees T1 and T2 have same skeleton if they are isomorphic except for
labels.

Tree automata. A bottom-up nondeterministic tree automaton on Γ-trees, or
Γ-bNTA, is a tuple A = (Q,F, ι, δ) of a finite set Q of states, a subset F ⊆ Q of
accepting states, an initial relation ι : Γ→ 2Q giving possible states for leaves from
their label, and a transition relation δ : Q2 × Γ→ 2Q determining possible states for
internal nodes from their label and the states of their children.

A run of A on a Γ-tree T = (V, L,R, λ) is a function ρ : V → Q such that
for each leaf n we have ρ(n) ∈ ι(λ(n)), and for every internal node n we have
ρ(n) ∈ δ(ρ(L(n)), ρ(R(n)), λ(n)). A run is accepting if, for the root nr of T , we have
ρ(nr) ∈ F . We say that A accepts T (written T |= A) if A has an accepting run on T .
Tree automata capture usual query languages on trees, such as MSO [Thatcher and
Wright 1968] and tree-pattern queries [Neven 2002].

A bottom-up deterministic tree automaton on Γ-trees, or Γ-bDTA, is a Γ-bNTA
A = (Q,F, ι, δ) such that ι(γ) and δ(q1, q2, γ) are singletons for all γ ∈ Γ and
q1, q2 ∈ Q. In this case, we abuse notation and see ι as an initial function ι : Γ→ Q
and δ as a transition function δ : Q2 × Γ→ Q. It is clear that, on any Γ-tree T , a
Γ-bDTA A has exactly one run, which may or may not be accepting.

It is well known that, given a Γ-bNTA A, we can construct a Γ-bDTA A′ that
accepts the same language, namely, T |= A iff T |= A′ for any Γ-tree T : see, for
instance, [Comon et al. 2007].
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2.2 Boolean Functions, Formulae, and Circuits
Boolean functions. A (Boolean) valuation of a set of variables X is a function
ν : X → {0, 1}. A Boolean function is a function from the set of valuations of X to
{0, 1}. We write ν 6 ν ′ whenever, for all x ∈ X, ν(x) = 1 implies ν(x′) = 1, and
we call a Boolean function ϕ monotone if for any two valuations ν 6 ν ′, if ϕ(ν) = 1
then ϕ(ν ′) = 1.

Boolean circuits. A Boolean circuit is a directed acyclic graph C = (G,W, g0, µ)
where G is a finite set of gates, W ⊆ G × G is a set of wires (edges), g0 ∈ G is a
distinguished output gate, and µ associates each gate g ∈ G with a type µ(g) that
can be inp (input gate, with no incoming wire in W ), ¬ (NOT-gate, with exactly one
incoming wire in W ), ∧ (AND-gate) or ∨ (OR-gate).

Each valuation ν of the input gates Cinp of C can inductively be extended to an
evaluation ν ′ : C → {0, 1} as follows: ν ′(g) is ν(g) if g ∈ Cinp (i.e., µ(g) = inp); it is
¬ν ′(g′) if µ(g) = ¬ (with (g′, g) ∈ W ); otherwise it is ⊙(g′,g)∈W ν ′(g′) where � is µ(g)
(hence, ∧ or ∨). We often abuse notation and identify valuations and evaluations,
and write ν(C) to mean ν(g0). We use 0-gates and 1-gates as syntactic sugar for
OR-gates and AND-gates with no inputs; they evaluate to 0 and 1 respectively.

The Boolean function captured by C is the one that maps any valuation ν of Cinp
to ν(C). It is clear that any Boolean function can be captured by a Boolean circuit.

A monotone circuit is one that has no NOT-gate. It is clear that the Boolean
function captured by a monotone circuit is a monotone Boolean function, and
conversely any monotone Boolean function can be captured by such a circuit.

Boolean formulae. A Boolean formula on variables X is an expression built using
the elements of X, the constants 0 and 1, the unary operator ¬, and the associative
operators ∨ and ∧. A formula is monotone if it has no ¬. We define in the standard
way the Boolean function expressed by a Boolean formula. We can equivalently see
formulae as circuits whose reverse DAG is a tree except that the input nodes may
have multiple parents; unlike circuits, formulae cannot share common subexpressions.

2.3 Instances and Graphs
We work in a signature σ, i.e., a finite set of relation names (e.g., R) with associated
arity |R| > 1. The arity of σ, written |σ|, is the maximum of |R| over R ∈ σ; we call
σ arity-k if |σ| = k.

Relational instances Fixing a countable domain D = {ak | k > 0}, a relational
instance I over σ (or σ-instance) is a finite set of ground facts of the form R(a)
with R ∈ σ, where a is a tuple of |R| elements of D. We follow the active domain
semantics, where the domain dom(I) ⊆ D of I is the finite set of elements of D used
in I. The size of I, denoted |I|, is its number of facts.

A class of instances, I, is just a (potentially infinite) set of instances on the
signature σ.

A homomorphism from a σ-instance I to a σ-instance I ′ is a function h : dom(I)→
dom(I ′) such that for all R(a1, . . . , ak) ∈ I we have R(h(a1), . . . , h(ak)) ∈ I ′. A homo-
morphism is an isomorphism if it is bijective and its inverse is also a homomorphism.
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We say that an instance I ′ is a subinstance of I, written I ′ ⊆ I, if I ′ is a subset of
the facts of I, which implies dom(I ′) ⊆ dom(I).

Graphs. Unless otherwise specified, a graph is undirected, simple, and unlabeled.
Formally, we can equivalently see a graph G as an instance of the graph signature
formed of a single predicate E of arity 2 and such that:

1. ∀xE(x, x) /∈ G; and

2. ∀xy E(x, y) ∈ G⇒ E(y, x) ∈ G.

As we follow the active domain semantics, this implies that we disallow isolated
vertices in graphs. The facts of G are called edges. The set of vertices (or nodes)
of a graph G, denoted V (G), is its domain. Two vertices x and y of a graph G are
adjacent if E(x, y) ∈ G, and x and y are then called the endpoints of the edge, and
the edge is incident to them. Two edges are incident if they share a vertex.

The degree of a vertex x is the number of its adjacent vertices. For k ∈ N, a
graph is k-regular if all vertices have degree k. More generally, it is K-regular, where
K is a finite set of integers, if every vertex has degree k for some k ∈ K. Finally,
a graph is degree-k if k is the maximum of the degree of all its vertices, i.e., if it is
{1, . . . , k}-regular. A graph is planar if it can be drawn on the plane without edge
crossings, in the standard sense [Diestel 2005].

A path of length n ∈ N>0 in a graph G is a set of edges {E(x0, x1), E(x1, x2), . . . ,
E(xn−1, xn)} that are all in G; the path is simple if all xi’s are distinct. A cycle is a
path of length n > 3 where all vertices are distinct except that x0 = xn; a graph is
cyclic if it has a cycle. A graph is connected if there is a path from every vertex to
every other vertex.

The Gaifman graph of an instance I is the graph on dom(I) where two elements
are connected if they co-occur in some fact, so that each fact of I induces a clique in
the Gaifman graph.

2.4 Tree Decompositions
A tree decomposition of an instance I is a T -tree T = (B,L,R, dom) where T is the
set of subsets of dom(I). The nodes of T are called bags and their label is written
dom(b). We require:

1. for every fact R(a) of I, there exists a bag ba ∈ B such that a ⊆ dom(ba);

2. for every a ∈ dom(I), letting Ba ··= {b ∈ B | a ∈ dom(b)}, for every two bags
b1, b2 ∈ Ba, all bags on the (unique) undirected path from b1 to b2 are also
in Ba.

The width of T is tw(T ) ··= maxb∈T |dom(b)| − 1. The treewidth (or width) of an
instance I, written tw(I), is the minimal width tw(T ) of a tree decomposition T of I.
For instance, the treewidth of a tree is 1, that of a cycle is 2, and that of a k-clique
or (k − 1)-grid is k − 1. It is immediate that we have tw(I ′) 6 tw(I) for any I ′ ⊆ I.

It is NP-hard, given an instance I, to determine tw(I). However, given a fixed
width k, one can compute in linear time in I a tree decomposition of width 6 k of
an input instance I if one exists [Bodlaender 1996].
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A tree decomposition of a graph G = (V,E), is defined as for instances, where we
replace dom(I) by the set of vertices V of G, and the requirement on every fact R(a)
of I is replaced by the analogous requirement on every edge {e, e′} ∈ E of G. A tree
decomposition of a circuit C = (G,W, g0, µ) is a tree decomposition of (G,W ), seen
as an undirected graph.

A path decomposition is a tree decomposition which is also a path. Formally,
following our requirement that tree decompositions are full binary trees, a path
decomposition is a tree decomposition where the right child of any internal node is a
leaf mapped by the labeling function dom to the empty set.

2.5 Queries
A query q is a logical formula in (function-free) first-order logic (FO) or second-order
logic (SO) on σ, without free second-order variables; a σ-instance I can satisfy it
(I |= q) or violate it (I 6|= q), with the standard definition. Remember that we follow
the active domain semantics, so that quantifiers are taken to range over the active
domain of instances. For simplicity, unless stated otherwise, we restrict to queries
which are Boolean, that is, that have no free variables, and which are constant-free.

MSO and GSO. We will not work with the entire second-order logic, but with
restrictions thereof:

• Monadic second-order logic (MSO), where second-order quantification is only
allowed over sets.

• Guarded second-order (GSO), where second-order quantification is allowed on
arbitrary-arity relations, but such quantification is semantically restricted to be
only about guarded tuples (i.e., tuples that already co-occur in some instance
fact); see [Grädel, Hirsch, and Otto 2002] for the formal definition.

CQ, UCQ, CQ 6=, UCQ 6=. As for FO, we will also be interested in specific
fragments which are frequently used in database theory:

• The language CQ of conjunctive queries, which are existentially quantified
conjunctions of atoms over σ;

• The language CQ6= of conjunctive queries where additional atoms of the form
x 6= y (called disequality atoms) are allowed, where x and y are variables
appearing in some regular atom;

• The language UCQ of union of conjunctive queries, i.e., disjunctions of CQs;

• The language UCQ6= of disjunctions of CQ6= queries.

We do not allow equality atoms in any of these languages (but of course we allow
disequality atoms in CQ6= and UCQ 6=). The size |q| of a UCQ6= query q is its total
number of atoms, i.e., the sum of the number of atoms in each CQ6=.

A homomorphism from a CQ q to an instance I is a mapping h from the variables of
q to dom(I) such that for each atom R(x1, . . . , xk) of q we have R(h(x1), . . . , h(xk)) ∈
I. For CQ6= queries, we require that h(x) 6= h(y) whenever q contains the disequality
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atom x 6= y. A homomorphism from a UCQ 6= q to I is a homomorphism from some
disjunct of q to I. A homomorphism is also called a match of q in I, as it witnesses
that I |= q; by a slight abuse, we also call match of q the facts of I in the image of
the homomorphism when no confusion may ensue.

Datalog. A Datalog query P over the signature σ consists of a signature σint of
intensional predicates with a special 0-ary relation Goal, and a finite set of rules of
the form R(x)← R1(y1), . . . , Rk(yk) where we have R ∈ σint and Ri ∈ σ t σint for
1 6 i 6 k (where t denotes disjoint union); further, we require that each variable in
the tuple x also occurs in some tuple yi. The left-hand (resp., right-hand) side of a
Datalog rule is called the head (resp., body) of the rule.

The query P is guarded [Grädel 2000; Gottlob, Grädel, and Veith 2002] if, for
each rule R(x)← R1(y1), . . . , Rk(yk), there is some atom A in the body of the rule
where all the variables y1, . . . ,yk of the body of the rule appear. The query P is
frontier-guarded [Baget, Leclère, and Mugnier 2010] if the same holds except that A
is only required to contain all the variables x that appear in the head of the rule.

A proof tree T of a Datalog query P over an instance I is a non-binary rooted
tree with nodes annotated by facts over σ ∪ σint on elements of dom(I), with internal
nodes further annotated by rules. We require that the fact of the root of T is Goal,
the facts of the leaf nodes are all facts of I, and, for every internal node n in T with
children n1, . . . , nm, the indicated rule R(x)← Ψ(y) on n in P is such that there is
a homomorphism h mapping R(x) to the fact of n and mapping Ψ(y) to the facts of
the ni, each child ni having exactly one preimage atom in Ψ(y) for its fact. Note
that this definition implies that internal nodes are necessarily annotated by a fact
of σint. We write I |= P if P has a proof tree on I.

Properties. A query is monotone if I |= q and I ⊆ I ′ imply I ′ |= q for any two
instances I, I ′. A query is closed under homomorphisms if we have I ′ |= q whenever
I |= q and I has a homomorphism to I ′, for any I and I ′. UCQ is an example of
query class that is both monotone and closed under homomorphisms, while UCQ 6=
is monotone but not closed under homomorphisms.

2.6 Query Evaluation and Probabilities
Query evaluation problem. The query evaluation problem for a classQ of queries
and I of instances is the problem, given a query q ∈ Q and an instance I ∈ I, of
deciding whether I |= q. Its combined complexity is the complexity as a function of I
and q, and its data complexity is the complexity when q is fixed and only I is given
as input.

Match counting problem. The match counting problem for an MSO formula
with free second-order variables q(X) on an instance family I is the problem, given
an instance I ∈ I, of counting how many vectors A of domain subsets are such that
I satisfies q(A).

The restriction to free second-order variables is without loss of generality: free
first-order variables can be rewritten to free second-order ones which are asserted to
be interpreted as singletons.
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Probabilities. All probabilities, indeed all numbers which are not integers, are
represented as rational numbers, given as the ratio of their integer numerator and
integer denominator. We say that an algorithm runs in ra-linear time if it runs in
linear time assuming that arithmetic operations over rational numbers take constant
time and rationals are stored in constant space, and runs in polynomial time without
this assumption.

A probability distribution is a pair (U ,Pr) of a finite universe U (whose elements
are called possible worlds) and a probability measure Pr : U → [0, 1] such that∑
I∈U Pr(I) = 1.
An uncertainty framework is a language CL of objects J , called uncertain instances,

and a semantics J·K that maps any J ∈ CL to a universe JJK. Likewise, a probabilistic
framework gives to any J ∈ CL, called a probabilistic instance, a semantics JJK which
is a probability distribution. A relational uncertainty framework is an uncertainty
framework whose semantics maps to universes of relational instances, and a relational
probabilistic framework is defined analogously.

The most important relational probabilistic framework used in the sequel is that of
tuple-independent databases (TID). Having fixed a signature σ, a probabilistic instance
in this model (called a TID instance) is a pair J = (I, π) of a σ-instance I, and a
probability annotation function that maps each fact F = R(a) of I to a probability
π(F ) ∈ [0, 1]. The probability distribution JJK is the one obtained by seeing each
fact as kept or discarded with the indicated probability, assuming independence
between facts. Formally, we have JJK = (UJ ,PrJ), where UJ ··= {I ′ | I ′ ⊆ I}, and
PrJ is defined as follows for I ′ ∈ UJ :

PrJ(I ′) ··=
∏

F∈I∩I′
π(F )

∏
F∈I\I′

(1− π(F ))

Probability evaluation problem. Given a fixed query q in SO and a relational
probabilistic framework, the probability evaluation problem is to determine, for an
input probabilistic instance J , the probability that q holds in a possible world of J ,
namely, writing (UJ ,PrJ) = JJK, we wish to compute:

PrJ(q) ··=
∑
I∈UJ
I|=q

PrJ(I)

It is known that for many queries, e.g., the fixed CQ ∃x R(x) ∧ S(x, y) ∧ T (y), the
probability evaluation problem for TID instances is #P-hard [Dalvi and Suciu 2007].
More specifically, the following dichotomy result is known: in the TID framework,
for any UCQ q, the probability evaluation problem for q is either in PTIME or it is
#P-hard [Dalvi and Suciu 2012]. In these results, #P denotes the class of counting
problems whose result can be computed as the number of accepting paths of some
polynomial-time nondeterministic Turing machine. We will also work with the class
FP#P of computation problems (whose output is not necessarily an integer) which
can be solved by a polynomial-time deterministic Turing machine with a #P-oracle.

When working in the framework of TID instances, we define, for any fixed query q
and instance class I, the probability evaluation problem for q and I, as the probability
evaluation problem for q where the input TID instances J = (I, π) are restricted by
requiring that I ∈ I. Note that I imposes no constraint on π.
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Chapter 3

Provenance for Treelike Instances

This chapter introduces our formalism for provenance constructions on trees and
treelike instances. We will use this formalism, or refinements thereof, as our basis to
obtain all upper bounds in the next two chapters.

We start with the case of trees in Section 3.1, and formalize the notion of a
provenance circuit of a tree automaton A on a tree, namely, a circuit that captures
how the query expressed by A depends on the labels of the input tree. The main
result is Theorem 3.1.4, stating that such circuits can be efficiently constructed in
the automaton and in the tree, and that they have bounded treewidth:

Theorem 3.1.4. For any alphabet Γ, letting Γ ··= Γ × {0, 1}, given a Γ-bNTA A
and a Γ-tree T , we can construct in time O(|A| · |T |) a provenance circuit C of A
on T that has treewidth O(|A|).

We then move on to treelike instances (i.e., bounded-treewidth instances). First,
in Section 3.2, we review the usual technique [Courcelle 1990; Flum, Frick, and Grohe
2002] of rewriting such instances to trees on a certain finite alphabet, and rewriting
queries to tree automata, in such a way that evaluating the query on the instance
amounts to evaluating the automaton on the tree. Then, in Section 3.3, we use this
to extend Theorem 3.1.4 to treelike instances rather than trees, and show:

Theorem 3.3.2. For any fixed k ∈ N and GSO query q, for any σ-instance I such
that tw(I) 6 k, we can construct a provenance circuit C of q on I in time O(|I|).
The treewidth of C only depends on k and q (not on I).

Unlike Theorem 3.1.4, this result only claims tractability in data complexity, i.e.,
the query is fixed and only the treelike instance is given as input.

In Section 3.4, we specialize these results to the setting of monotone queries and
monotone circuits, and show the analogue of Theorem 3.1.4 and Theorem 3.3.2, via
a notion of monotone tree automata. This will relate to our study of the connections
with semiring provenance in Chapter 5.

Theorem 3.4.2. For any fixed k ∈ N and monotone GSO query q, for any
σ-instance I such that tw(I) 6 k, one can construct in time O(|I|) a monotone
provenance circuit of q on I whose treewidth only depends on k and q (not on I).

In Section 3.5, we show how our construction of bounded-treewidth provenance
circuits implies the existence of other standard representations of provenance (or
lineage) which are often used in knowledge compilation [Jha and Suciu 2013], namely
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OBDDs and d-DNNFs. Last, we justify in Section 3.6 our choice of representing the
provenance as a circuit rather than as a Boolean formula, by showing queries for
which provenance representations on treelike instances are more concise as circuits
than as formulae.

3.1 Provenance Circuits for Trees
Let us thus start by studying a notion of provenance for tree automata, defined in
an uncertain tree framework. Fixing a finite alphabet Γ throughout this section,
we view a Γ-tree T as an uncertain tree, where each node carries an unknown
Boolean annotation in {0, 1}. We then consider all possible valuations that choose
an annotation for each node of T , calling Γ the alphabet of annotated trees:

Definition 3.1.1. We write Γ ··= Γ × {0, 1}. For any Γ-tree T = (V, L,R, λ) and
valuation ν : V → {0, 1}, we define ν(T ) to be the Γ-tree with same skeleton as T ,
where each node n is given the label (λ(n), ν(n)). C

We consider automata on annotated trees, namely, Γ-bNTAs, and define their
provenance on a Γ-tree T as a Boolean function that describes which valuations
of T are accepted by the automaton. Intuitively, provenance keeps track of the
dependence between Boolean annotations and acceptance or rejection of the tree.

Definition 3.1.2. The provenance of a Γ-bNTA A on a Γ-tree T = (V, L,R, λ) is
the Boolean function Prov(A, T ) mapping any valuation ν : V → {0, 1} to 1 or 0
depending on whether ν(T ) |= A or not. C

We now introduce the notion of a provenance circuit of A on a Γ-tree T , which is
a Boolean circuit that captures the provenance of A on T , i.e., Prov(A, T ). Formally:

Definition 3.1.3. Let A be a Γ-bNTA and T = (V, L,R, λ) be a Γ-tree. A prove-
nance circuit of A on T is a Boolean circuit C with Cinp = V that captures the
Boolean function Prov(A, T ). C

This section shows that we can construct provenance circuits for Γ-bNTAs on
Γ-trees in linear time, and that their treewidth only depends on the automaton, not
on the tree:

Theorem 3.1.4. For any alphabet Γ, letting Γ ··= Γ × {0, 1}, given a Γ-bNTA A
and a Γ-tree T , we can construct in time O(|A| · |T |) a provenance circuit C of A
on T that has treewidth O(|A|).

The intuition is that we create one gate in C per state of A per node of T , and
we write out in C all possible transitions of A at each node n of T , depending on
the input gate that indicates the annotation of n. The rest of this section gives a
formal proof of this result.

Proof of Theorem 3.1.4. Fix the Γ-tree T = (V, L,R, λ), the Γ-bNTAA = (Q,F, ι, δ),
and construct the provenance circuit C = (G,W, g0, µ). For each node n of T , create
the following gates:
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• one input gate gi
n in C (which we identify to n, so that we have Cinp = V );

• one NOT-gate g¬i
n which is a NOT-gate of gi

n;

• one gate gqn for every q ∈ Q, which we will explain how to define.

If n is a leaf node, for q ∈ Q, set gqn to be an OR-gate of:

• the gate g¬i
n if q ∈ ι(λ(n), 0), and a 0-gate otherwise;

• the gate gi
n if q ∈ ι(λ(n), 1), and a 0-gate otherwise;

If n is an internal node, for every pair qL, qR ∈ Q (that appears as input states of a
transition of δ), create the following three gates:

• gqL,qR
n which is an AND-gate of gqL

L(n) and g
qR
R(n);

• gqL,qR,i
n which is an AND-gate of gqL,qR

n and of gi
n;

• gqL,qR,¬i
n which is an AND-gate of gqL,qR

n and of g¬i
n .

Now, still assuming that n is an internal node, for q ∈ Q, set gqn to be an OR-gate of:

• all the gqL,qR,¬i
n such that q ∈ δ(qL, qR, (λ(n), 0));

• all the gqL,qR,i
n such that q ∈ δ(qL, qR, (λ(n), 1)).

Last, add gate g0 which is an OR-gate of all the gqr such that q ∈ F , where r is the
root node of T .

This construction is in time O(|A| · |T |): more precisely, for every node of the
tree T , we create a number of gates that is linear in the number of states in Q and
in the number of transitions of δ.

Now we show that C is indeed a provenance circuit of A on T . Let ν : V → {0, 1}
be a valuation that we extend to an evaluation of C. We show by induction on n ∈ T
that for any q ∈ Q, we have ν(gqn) = 1 iff, letting Tn be the subtree of T rooted at n,
there is a run ρ of A on Tn such that ρ(n) = q.

For a leaf node n, choosing q ∈ Q, for any b ∈ {0, 1}, if ν(n) = b then ν(gqn) = 1
iff q ∈ ι(λ(n), b), so we can define a run ρ as ρ(n) ··= q. Conversely, the existence of
a run clearly ensures that ν(gqn) = 1.

For an internal node n, choosing q ∈ Q, for any b ∈ {0, 1}, if ν(n) = b then,
ν(gqn) = 1 iff there are some qL, qR ∈ Q such that q ∈ δ(qL, qR, (λ(n), b)) and
ν(gqL

L(n)) = ν(gqR
R(n)) = 1. By induction hypothesis, this implies the existence of a

run ρL of A on TL(n) such that ρL(L(n)) = qL and a run ρR of A on TR(n) such that
ρR(R(n)) = qR, from which we construct a run ρ of A on Tn such that ρ(n) = q, by
setting ρ(n) ··= q and setting ρ(n′) either to ρL(n′) or to ρR(n′) depending on whether
n′ ∈ TL(n) or n′ ∈ TR(n). Conversely, the existence of such a run ρ implies the existence
of two such runs ρL and ρR, from which we deduce that ν(gqL

L(n)) = ν(gqR
R(n)) = 1, and

we conclude that ν(gqn) = 1 following the transition of A used in the run ρ at n.
The claim proven by induction clearly justifies that C is a provenance circuit,

as, applying it to the root of T , we deduce from the definition of g0 that, for any
valuation ν, we have ν(C) = 1 iff there is an accepting run of A on ν(T ).
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We last show that C has a tree decomposition of width 3 · |δ|+3 · |Q|+2. Consider
a tree T ′ that has same skeleton as T , and define a tree decomposition (T ′,L,R, dom)
as follows: for each bag b ∈ T ′, letting n be the corresponding node in T , we set
dom(b) to contain:

• gi
n, g¬i

n , and gqn for q ∈ Q;

• If n is an internal node, gqL
L(n), g

qR
R(n), gqL,qR

n , gqL,qR,i
n , and gqL,qR,¬i

n , for qL, qR ∈ Q;

• If n is the root node, the output gate g0.

This clearly ensures that |dom(b)| is at most 2 + |Q|+ 2 · |Q|+ 3 · |δ|+ 1, so the only
thing left to show is that we have indeed defined a tree decomposition of C.

For the first condition, we must show that whenever C = (G,W, g0, µ) contains
an edge (g1, g2) ∈ W , then there is a bag b of T ′ such that g1, g2 ∈ dom(b). If g2 is
the output gate g0, then, by construction of C, g1 must be a gate of the form gqr
where r is the root of T , so the root bag of T ′ witnesses that the condition is satisfied.
Otherwise, g2 is of the form g•n for some n ∈ T . Then, by construction of C, the
gate g1 must be either of the form g•n, or of the form gqL

L(n) for some qL ∈ Q, or of the
form gqR

R(n) for some qR ∈ Q. In either case, we can pick the bag b corresponding to n
in T to conclude.

For the second condition, we must show that for any gate g ∈ G, the subset
Tg of bags of T ′ such that g ∈ dom(b) form a connected subtree of T ′. For g = g0,
the claim is immediate as g0 only occurs in the root bag of T ′. Otherwise, for g
of the form g•n for some n ∈ T , letting b be the corresponding bag in T ′, it is clear
by construction of T ′ that g only occurs in dom(b) and possibly in dom(L(b)) and
dom(R(b)), so Tg is indeed a connected subtree.

Hence, we have shown that T ′ is a tree decomposition of C of width O(|A|), so
C has treewidth O(|A|). This concludes the proof.

3.2 Rewriting Queries on Treelike Instances to
Tree Automata

Our goal is now to extend Theorem 3.1.4 from trees to treelike instances. We do
this using the standard connection between query evaluation on bounded-treewidth
instances, and tree automaton evaluation on trees. The original result is by [Courcelle
1990], with an extension to relational instances (rather than graphs) given in [Flum,
Frick, and Grohe 2002].

We first introduce an abstraction of the mechanism that we use to encode queries
on treelike instances to automata on trees, called a tree interpretation scheme, and
claim the existence of such a scheme. The construction is standard but crucially
ensures a property, called subinstance-compatibility, which is what we rely on to
adapt the results of the previous section. This property is not hard to ensure, but
implies that we cannot directly use existing schemes such as the one of [Flum, Frick,
and Grohe 2002], and we must give the details of a suitable scheme.

We then give our formal construction of the tree interpretation scheme, and prove
its correctness. The proof of the correctness of the scheme is inspired by the proof in
[Flum, Frick, and Grohe 2002], but our scheme is different and inspired by an idea
of [Chaudhuri and Vardi 1992]. We give these details to show that our property of
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subinstance-compatibility is respected. However, it is possible to skip these proofs
on first reading, because the subinstance-compatible tree interpretation scheme thus
defined will be used as a black box until Chapter 5.

Definition 3.2.1. Let k ∈ N and let σ be a relational signature. Write Iσ6k for the
class of σ-instances of treewidth 6 k. A tree interpretation scheme for k and σ and
for a class Q of (Boolean constant-free) queries consists of:

• A finite alphabet Γσk , computable from k and σ;

• A computable translation function A that maps each query q in Q to a
Γσk -bNTA A(q);

• An encoding function E that maps in linear time each instance I of Iσ6k to a
Γσk -tree E(I);

• A decoding function 〈·〉 that maps each Γσk -tree E to an instance 〈E〉 in Iσ6k.

We require the following properties:

• For any I ∈ Iσ6k, the instance 〈E(I)〉 is isomorphic to I.

• For any q ∈ Q, the bNTA A(q) tests q, namely: for any Γσk -tree E, we have
E |= A(q) iff 〈E〉 |= q. C

The intuition of the scheme that we will define is that the alphabet Γσk describes
all possible facts, and the encoding function proceeds by constructing in linear time
a tree decomposition of the instance (for the fixed treewidth k), then converting it
to an Γσk -tree where each fact of I is coded in some node.

It is a standard result that, for any k ∈ N and signature σ, there is a tree
interpretation scheme for MSO queries, although the translation function may have
non-elementary complexity [Meyer 1975]. The result can in fact be extended from
MSO to guarded second-order (GSO), which captures more database languages,
e.g., guarded Datalog; indeed, GSO collapses to MSO on treelike instances [Grädel,
Hirsch, and Otto 2002].

The existence of a tree interpretation scheme clearly implies that the data
complexity of GSO query evaluation on bounded treewidth instances is linear-time:
we can translate the query (in a data-independent way) to a tree automaton A,
encode the instance in linear time to an encoding E, and evaluate A on E in linear
time in E.

However, our construction in the next section will rely on an additional property
of the scheme, of which we give an abstract definition:

Definition 3.2.2. Using the notations of Definition 3.2.1, a tree interpretation
scheme is subinstance-compatible if there is:

• a neutering mapping · 7→ · from Γσk to itself;

• for any instance I ∈ Iσ6k, an injective mapping ϕI from I to the nodes of the
tree E(I) which can be computed in linear time.

We require the following additional conditions:
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• For any Γσk -tree E and Γσk -tree E ′ with same skeleton, assume that, for any
node n of E and corresponding n′ of E ′, we have λ(n′) = λ(n) or λ(n′) = λ(n).
We then require for any such E and E ′ that 〈E ′〉 ⊆ 〈E〉.

• Specifically, for any subinstance I ′ ⊆ I, let E ′(I ′) be the Γσk -tree with same
skeleton as E(I), where each node n′ corresponding to n in E(I) has label λ(n)
if n ∈ ϕI(I ′) and λ(n) otherwise. We then require, for any I ′ ⊆ I, that 〈E ′(I ′)〉
is isomorphic to I ′. C

Intuitively, a tree interpretation scheme is subinstance-compatible if each fact
of the instance is encoded in one node of the encoding (pointed to by ϕI), and if
we can obtain a valid encoding of any subinstance by relabeling the nodes of the
missing facts according to the fixed neutering mapping, and more generally if any
relabeling of this kind decodes to a subinstance of the original decoding.

So the result that we will be using in the sequel is:

Theorem 3.2.3. For any k ∈ N and relational signature σ, there is a subinstance-
compatible tree interpretation scheme for GSO queries.

We will always use the notations Γσk , A, E , 〈·〉, ·, and ϕI , from Definitions 3.2.1
and 3.2.2, to refer to the tree interpretation scheme whose existence is claimed by
the theorem.

We prove the theorem in the rest of this section, following the standard ideas
of [Courcelle 1990; Flum, Frick, and Grohe 2002], though our actual construction
of the alphabet follows [Chaudhuri and Vardi 1992]. We start in Section 3.2.1 by
defining the alphabet, the encoding function E , and the decoding function 〈·〉. We
then define the injective mapping ϕI and the neutering mapping to show that the
scheme is subinstance-compatible. We then construct the translation function A in
Section 3.2.2.

3.2.1 Encoding Treelike Instances and Decoding Trees
Let us start by defining the alphabet that we will use to encode treelike instances.

Alphabet. Our finite alphabet Γσk is intuitively the set of possible facts on an
instance of domain size fixed to 2k + 2. The point is that we will use element
co-occurrence between a child and parent node in tree encodings to encode identities
between elements, following the definition of proof trees in [Chaudhuri and Vardi
1992].

Formally, we take Γσk to be the set defined as follows:

Definition 3.2.4. The set of k-facts of the signature σ, written Γσk , is the set of
pairs τ = (d, s) where:

• the domain d is a subset of size at most k + 1 of the first 2k + 2 elements of
the countable domain D, written a1, . . . , a2k+2;

• the structure s is a zero- or single-fact structure over σ for which we require
dom(s) ⊆ d. C
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It is clear that the alphabet Γσk is computable from σ and k. In fact, for nσ the
number of relations of σ and |σ| the arity of σ, we have:

|Γσk | =
k+1∑
i=0

(
2k + 2
i

)(
1 +

∑
R∈σ

i|R|
)

= O
(
22knσk

|σ|
)

We can now define the neutering mapping · 7→ · on the alphabet Γσk , which we
will use to show subinstance-compatibility:

Definition 3.2.5. For any k-fact τ = (d, s) ∈ Γσk , we define the neutered k-fact τ as
(d, ∅). In particular, if s = ∅ then τ = τ . C

Decoding. We call tree encoding (of width k) a Γσk -tree. We first explain how a
tree encoding E can be decoded to a structure I = 〈E〉 (defined up to isomorphism),
and to a tree decomposition T of width 6 k of I which has same skeleton as E,
justifying that I has indeed treewidth k.

Process E top-down. At each non-root node n of E with label λ(n) = (d, s),
whose parent node n′ has label λ(n′) = (d′, s′), pick fresh elements in D for the
elements of d\d′. Now, if s contains a fact F , let F ′ be F where each element in d\d′
is replaced by the corresponding fresh element of D, and each element a in d ∩ d′ is
replaced by the element of D used for a when processing n′. Add the fact F ′ to I,
and add a bag to the tree decomposition T containing the elements of I matching
those in d. At the root node, do the same process but picking fresh elements in D
for all elements of d rather than considering the parent node.

Note that we may attempt to create the same fact multiple times when we decode:
creating any copy beyond the first copy of the fact has no effect.

The result of this process is an instance I along with a tree T with same skeleton
as E. Let us check that T is a tree decomposition of I. Indeed:

1. For each fact F of I, all its elements occur in the bag which we created in T at
the same time that we created F in I.

2. As E and T have same skeleton, observe that the occurrences of any element
a ∈ dom(I) in T clearly match the connected subtree of contiguous occurrences
in E of the element of {a1, . . . , a2k+2} for which it was created.

This shows that T is indeed a tree decomposition of I, and it is immediate that T
has width at most k. This concludes the definition of the decoding operator.

Encoding and subinstance-compatibility. We now justify that one can com-
pute in linear time a tree encoding E(I) of width k of any instance I of treewidth
6 k. First, as k is constant, we can compute in linear time [Bodlaender 1996] in I a
tree decomposition T of I of width 6 k.

We now show that we can compute in linear time from T the tree encoding E(I)
of the instance I, defining the operator E (this result is implicit in [Chaudhuri and
Vardi 1992]). This is also how we compute the injective mapping ϕI required to show
subinstance-compatibility.

Lemma 3.2.6. From a tree decomposition T of width k of a σ-structure I, one can
compute in linear time in |I|+ |T |:
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• a tree encoding E ··= E(I) of width k of I (which is a Γσk-tree) such that 〈E〉 is
isomorphic to I;

• an injective mapping ϕI from I to E such that the neutering function · 7→ ·
and the mapping ϕI satisfy the conditions of subinstance-compatibility.

Proof. Fix the σ-structure I and its tree decomposition T of width k. We start by
precomputing a mapping that indicates, for every tuple a of I such that some fact
R(a) holds in I, the topmost bag node(a) of T such that a ⊆ dom(node(a)). This
can be performed in linear time by Lemma 3.1 of [Flum, Frick, and Grohe 2002].
Then, we label the tree decomposition T with the facts of I as follows: for each fact
F = R(a) of I, we add F to the label of node(a).

Informally, we now build E by walking through the decomposition T in a top-
down way, and encoding each node n of T as a chain of nodes in E, one for each fact
assigned to n, and define ϕI to map each fact to the node created in E for that fact.
We pick the labels of nodes in Γσk so that the elements shared between a bag and its
parent in T are retained, and the new elements are chosen so as not to overlap with
the parent node.

Formally, at any state of the top-down processing of the tree decomposition T ,
we process a bag b of T ; if it is not the root node, then we write b′ for its parent. We
write n′ for the node in E under which we are encoding b and the descendants of b,
and write the label λ(n′) as (d′, s′); at the root, n′ is undefined. When b is not the
root node, we denote by fb′ a bijection from dom(b′) to d′ that we will have defined
inductively.

To encode the bag b of T under the node n′ of E, if b is not the root bag, partition
dom(b) = do t dn where do ··= dom(b)∩ dom(b′) are the old elements already present
in dom(b′), and dn ··= dom(b′)\ dom(b) are the new elements that did not appear
in dom(b′). If b is the root bag, then we set do ··= ∅ and dn ··= dom(b). Now, if
b is not the root bag, letting (d′, s′) be the label of the node n′ in E under which
we are encoding, consider the bijection fb′ from dom(b′) to d′ that we have defined
inductively, restrict its domain to dom(b) ∩ dom(b′), and extend it to an injective
function fb from dom(b) to {a1, . . . , a2k+2} such that the newly defined fb(dn) is
disjoint from fb′(dom(b′)); this is possible, as there are 2k+2 elements to choose from
and |dom(b′)| and |dom(b)| are 6 k+1. At the root bag b, simply choose an arbitrary
injective function fb from dn = dom(b) to {a1, . . . , ak+2}. We set d ··= fb(dom(b)).

We encode b as a chain of nodes in E under n′ (or, at the root bag, as a chain
whose first node is the root of E), and set the label of each node to be (d, si) where
each si encodes one of the facts in the label of b. Define the mapping ϕI to map
each fact F in the label of b to the node ϕI(F ) in the chain that we create for F :
this is well-defined because each fact of I is assigned to exactly one bag in T , and it
is clearly injective because each node contains a single fact. If there are zero facts in
the label of b, create a (d, ∅) zero-fact node instead, rather than creating no node.

Now, recursively encode the children of b (if any) in T , under the lowest node n
of this chain of nodes in E, using the bijection fb when encoding them. Note that
fb is indeed a bijection from dom(b) to the first component d of the label of n, as
required for the induction.

We obtain the final result of the process by completing with zero-fact (∅, ∅) child
nodes so that each non-leaf node has exactly two children, and E is a full binary
tree. We assume that all arbitrary choices are done in a consistent manner so that
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the process is deterministic and defines E(I). As the process traverses T and the
number of steps for each bag b ∈ T is proportional in the number of facts assigned
to b ∈ T , and each fact of I is assigned to precisely one b ∈ T , the overall running
time is linear in |I|+ |T |.

We first verify that 〈E〉 is isomorphic to I. A straightforward induction shows
that, at any bag b of T , letting n be the highest node in E created for b, the result of
decoding the subtree of E rooted at n is isomorphic to the subinstance of I consisting
of the facts of I whose label assigned following the node mapping is in the subtree
rooted at b in T .

We now show that subinstance-compatibility is respected. We first show the
second condition. Observe that, for any subinstance I ′ ⊆ I, let E ′ be the result
of modifying the encoding E ··= E(I) to neuter everything but the facts that are
present in I ′. As E and E ′ have same skeleton and the first components of the labels
in E are the same as in E ′, it is clear that the decoding process will proceed in E ′
exactly as in E, except that it will only create the facts that are in I ′. Hence, the
tree interpretation scheme that we defined is indeed subinstance-compatible.

The first condition is shown in the same manner: neutering some nodes, i.e.,
removing the fact in this nodes, just implies that these facts are not created, but the
same facts are created for the other nodes.

This concludes our presentation of the alphabet Γσk of our tree interpretation
scheme, its encoding and decoding functions E and 〈·〉, and its functions · 7→ · and
ϕI for subinstance-compatibility.

The point of encoding treelike instances to Γσk -trees in this way is that GSO
queries on such instances can be translated to Γσk -bNTA on the encodings. The next
section explains how this translation operator is defined.

3.2.2 Translating Queries to Automata
The only thing left to do is to define the translation operator A, which we do in a
way inspired by [Flum, Frick, and Grohe 2002]. We start by defining A over Boolean
MSO queries. We will show at the end of the section how to extend the construction
from MSO to GSO following [Grädel, Hirsch, and Otto 2002].

We first take care of a subtlety regarding domain semantics. Remember that
we follow the active domain semantics. To avoid any problem with semantics
when performing the translation, we first rewrite the MSO query q to relativize all
quantifiers. Specifically, we define a unary predicate Occ(x) ··=

∨
R∈σ,16i6|R|OccR,i(x),

where OccR,i(x) ··= ∃y R(y1, . . . , yi−1, x, yi+1, . . . , yn). We then replace any first-
order universal quantification ∀x ϕ(X, x,y) in q by ∀x Occ(x) ⇒ ϕ(X, x,y), and
likewise replace any first-order existential quantification ∃x ϕ(X, x,y) by ∃x Occ(x)∧
ϕ(X, x,y). For second-order quantification, we do the same but using the Occ2(X)
unary predicate instead, which is defined by Occ2(X) ··= ∀x (x ∈ X ⇒ Occ(x)).
Letting q′ be the result of this relativization process, it is then clear that, for any
instance I, under our active domain semantics, we have I |= q iff I |= q′; and further
q′ is domain-independent, so its interpretation under the natural semantics (where
the domain may differ from the active domain) will always match its interpretation
under the active domain semantics. See [Abiteboul, Hull, and Vianu 1995] for details.

33



CHAPTER 3. PROVENANCE FOR TREELIKE INSTANCES

Hence, we assume that we are working with a domain-independent Boolean MSO
query q. We proceed by the standard technique [Flum, Frick, and Grohe 2002] of
translating q to a Boolean query ψ in the language of MSO queries over Γσk-trees,
whose signature features:

• binary predicates for the left child and right child relations;

• unary predicates that test the label of nodes.

Once this is done, we can translate ψ to a Γσk -bNTA using [Thatcher and Wright
1968].

To do this, we must introduce some terminology. Let us consider a Γσk -tree
E = (V, L,R, λ). We say that a node n ∈ V contains ai if, writing its label λ(n) as
(d, s), we have ai ∈ d. For 1 6 i 6 2k + 2, we say that n, n′ ∈ V are ai-connected
if every node n′′ on the undirected path in E from n to n′ (including n and n′)
contains ai. We say that n ∈ V is an ai-intro-node if it contains ai and either it
is the root of E or its parent in E does not contain ai. We further say that it is
a proper ai-intro-node if it is additionally ai-connected to some node n′ (possibly
itself) whose label (d′, s′) = λ(n′) is such that s′ 6= ∅ and ai occurs in s′.

We now introduce vocabulary to establish a correspondence between elements and
sets of elements on instances, and sets of nodes of a certain kind in tree encodings;
this is again inspired by [Flum, Frick, and Grohe 2002]. We write Ṽ for the set of
(2k + 2)-tuples of subsets of V , writing Ñ ∈ Ṽ as Ñ = N1, . . . , N2k+2; we will also
write X̃ = X1, . . . , X2k+2 for a (2k + 2)-tuple of second-order variables. We call
pseudo-element an element Ñ ∈ Ṽ such that exactly one of the N i is not empty,
that N i is a singleton, and the one node n that it contains is a proper ai-intro-node.
We write Ṽe for the subset of Ṽ consisting of the pseudo-elements (note that Ṽe
depends on E, even though this is not reflected in the notation). The intuition is
that each pseudo-element Ñ of Ṽe points to a node of E, namely the one node n that
it contains; and to a specific element in n, namely, the element ai such that n was
put in N i. By our requirement that n is ai-connected to a node where ai occurs in a
fact, we ensure that ai will indeed yield an actual element when decoding; and we
choose to pick the root node n for this copy of ai to avoid any ambiguity.

We call a pseudo-set an element Ñ ∈ Ṽ such that, for all 1 6 i 6 2k + 2, for
all n ∈ N i, considering Ñi,n ∈ Ṽ defined by N i

i,n = {n} and N j
i,n = ∅ for j 6= i,

then Ñi,n is a pseudo-element. We write Ṽs for the subset of Ṽ consisting of the
pseudo-sets. Note that Ṽe ⊆ Ṽs as a pseudo-element is identical to the singleton
pseudo-set containing exactly that element.

We continue with our definitions on E. Let I ··= 〈E〉. We define a mapping η
from dom(I) to Ṽ as follows. For any c ∈ dom(I), consider, among the facts of I
that contain c, the first one F that was created while decoding E. Let n be the node
in E that was being decoded and ai be the element in λ(n) that was mapped to c.
Consider the connected rooted subtree of ai-connected nodes in E that contains n,
and let n′ be its root (possibly n = n′). We set η(c) ··= Ñ where N i = {n′} and
N j = ∅ for j 6= i. It is easily seen that η(c) is then a pseudo-element, and that the
mapping η is actually a bijection from dom(I) to Ṽe. Let us extend η to a mapping θ
from the powerset of dom(I) to Ṽ by setting θ(A) for A ⊆ dom(I) to be Ñ defined
by N i ··=

⋃
c∈A(η(c))i; it is easily seen that this is actually a disjoint union and that

θ is a bijection from the powerset of dom(I) to Ṽs.
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We will now show that for for any non-Boolean MSO formula ϕ(X1, . . . , Xn,
x1, . . . , xm) with free first-order and second-order variables, there exists a non-Boolean
MSO formula on Γσk -trees ψ(Ỹ1, . . . , Ỹn, Z̃1, . . . , Z̃m) with free second-order variables
such that for any Γσk -tree E = (V, L,R, λ), writing I ··= 〈E〉, defining the bijections
η and θ as above, we have:

Forward: For any A1, . . . , An ⊆ dom(I) and c1, . . . , cm ∈ dom(I), if we have I |=
ϕ(A1, . . . , An, c1, . . . , cm), then E |= ψ(θ(A1), . . . , θ(An), η(c1), . . . , η(cm)).

Backward: For any V1, . . . , Vn,W1, . . . ,Wn ∈ Ṽ , if E |= ψ(V1, . . . , Vn,W1, . . . ,Wn),
then Vi ∈ Ṽs for all 1 6 i 6 n and Wj ∈ Ṽe for all 1 6 j 6 m, and, letting
Ai ··= θ−1(Vi) for all 1 6 i 6 n and cj ··= η−1(Wj) for all 1 6 j 6 m, we have
I |= ϕ(A1, . . . , An, c1, . . . , cn).

Once this claim is shown, it is clear that, in particular, for any Boolean MSO
formula ϕ, letting ψ be its translation according to the above, it is the case that,
for any Γσk -tree E, we have E |= ψ iff 〈E〉 |= ϕ. We can then use [Thatcher and
Wright 1968] to translate ψ to a Γσk -bNTA A that tests ψ: for any Γσk -tree E, we
have E |= ψ iff E |= A. We can thus set A(q) ··= A, and we have ensured that the
property required by a tree interpretation scheme is satisfied. Hence, all that remains
is to prove the claim above.

To do so, it suffices to show it for the atoms, as we can then simply build ψ
for non-atomic ϕ by substituting the atoms by their translations, and arguing by a
straightforward induction that the claim holds.

It is easy to see that we can express in MSO over Γσk -trees a formula PE(Z̃) that
tests whether Z̃ ∈ Ṽe. Indeed, make PE the disjunction of the PEi, each of which
tests the following: Zj is empty for all j 6= i, Zi is a singleton, and the only element
n of Zi is a proper ai-intro-node. This can clearly be expressed in MSO over trees.
From there, it is straightforward to define PS(Ỹ ) that tests whether Ỹ ∈ Ṽs.

We now have three kinds of atomic formulae to translate:

• If ϕ(x1, x2) is an equality atom x1 = x2, we define ψ(Z̃1, Z̃2) to be PE(Z̃1) ∧
PE(Z̃2)∧∧16i62k+2(∀x (x ∈ Zi

1)⇔ (x ∈ Zi
2)), and the properties are immediate.

• If ϕ(X, x) is a membership atom x ∈ X, we define ψ(Ỹ , Z̃) to be PS(Ỹ ) ∧
PE(Z̃)∧∨16i62k+2(∀x x ∈ Zi ⇒ x ∈ Yi), and it is easily seen that the required
properties are true.

• If ϕ(x1, . . . , xm) is an actual σ-atom A = R(xi1 , . . . , xip) where R has ar-
ity p and where 1 6 ij 6 m for all 1 6 j 6 p, we set ψ(Z̃1, . . . , Z̃m) to be
(∧16i6m PE(Zi)) ∧

∨
t∈{1,...,2k+2}p ψt(Z̃1, . . . , Z̃m), where each ψt(Z̃1, . . . , Z̃m) is

∃n LRt (n) ∧ ∧16j6p χ
tj(n, Z̃ij), where LRt (n) tests whether the second element

of the label of n is exactly R(at1 , . . . , atm), and χtj(n, Z̃ij) checks that Ztj
ij is

non-empty and that its one element n′ is such that n and n′ are atj -connected.
To see why this is correct, for the forward direction, observe that when a fact
R(c1, . . . , cp) is in 〈E〉, then it was created by decoding at a node n some fact
R(at1 , . . . , atm) for some t ∈ {1, . . . , 2k + 2}p, and then, for all 1 6 j 6 p, the
one node of η(cj) is tj-connected to n. Conversely, clearly ψ is only satisfied
by pseudo-elements, and when it is satisfied, decoding at a witnessing node n
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will indeed create an R-fact that satisfies ϕ on the elements of dom(I) that the
pseudo-elements represent.

This concludes the proof of the fact that we can translate Boolean MSO formulae
on σ-instances to Boolean MSO formulae on Γσk -trees in a way that satisfies the
constraints required of the tree interpretation scheme. Hence, we have finished the
proof for queries in MSO.

From MSO to GSO. To extend the result from MSO to GSO, we use the fact
that any Boolean GSO query q on signature σ can be rewritten to a Boolean MSO
query q∗ on the incidence signature [Grädel, Hirsch, and Otto 2002, Proposition 7.1].
Formally, for a signature σ, the incidence signature is an arity-two signature σ∗ that
contains, for each relation R ∈ σ and for all 1 6 i 6 |R|, a binary predicate R∗i ; and
an incidence instance for a σ-instance I is a σ∗-instance I∗ where we created one
fresh element aF in dom(I∗) for each F ∈ I and created the facts R∗i (aF , ai) for each
fact F = R(a) and 1 6 i 6 |R|.

Proposition 7.1 of [Grädel, Hirsch, and Otto 2002] then shows that for any
Boolean GSO query q over σ, there is a Boolean MSO query q∗ over σ∗ such that,
for any σ-instance I and incidence instance I∗ of I, we have I |= q iff I∗ |= q∗.

Hence, let q be a Boolean GSO query over σ, and let us define A(q) for q and
thus complete the description of our tree interpretation scheme. Let q∗ be the query
given by [Grädel, Hirsch, and Otto 2002]. Using our previous construction for MSO,
translate q∗ to a Γσ∗k+1-bNTA A that tests q∗: for any Γσ∗k+1-tree E ′, we have E ′ |= A∗

iff 〈E ′〉 |= q∗. Our goal is to define a Γσk -bNTA A for q. For this, it will prove
useful to define a notion of incidence Γσk -trees. Letting E be a Γσk -tree, define the
Γσ∗k+1-tree E∗ obtained by rewriting each node n of E as follows:

• if λ(n) = (d, s) is such that s = ∅, leave n unchanged;

• if λ(n) = (d, s) is such that s = {R(t)}, writing p ··= |R|, build a chain of
nodes n0, . . . , np+1 to replace n, where:

– the parent of np+1 in E∗ is the rewriting of the parent of n in E;

– ni is the left child of ni+1 for all 0 6 i 6 p;

– the right child of ni for 0 < i 6 p is a fresh dummy node labeled by (∅, ∅);

– the left and right children of n0 in E∗ are the rewriting of the left and
right children of n in E respectively;

– we set λ(n0) = λ(np+1) = (d, ∅);

– letting s∗ be an incidence instance of s, taking a2(k+1)+2 to be the one
element of dom(s∗)\ dom(s), enumerating the facts of s∗ as F ∗1 , . . . , F ∗p ,
we set λ(ni) = (d t {a2(k+1)+2}, {F ∗i }).

It is clear by construction that 〈E∗〉 is (up to isomorphism) an incidence instance
of 〈E〉. Note that this is not too surprising: if a relational instance I has treewidth `,
then it is known that any incidence instance of I has treewidth 6 ` + 1 [Grädel,
Hirsch, and Otto 2002].

We will now construct a Γσk -bNTA A so that, for any Γσk -tree E, we have E |= A
iff E∗ |= A∗. If we can do this, it is clear that A(q) ··= A tests q, namely: for any
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Γσk -tree E, we would then have E |= A(q) iff E∗ |= A∗ iff 〈E∗〉 |= q∗ iff 〈E〉 |= q. If
this is the case, then we are done defining our tree interpretation scheme.

It is in fact easy to define such a Γσk -bNTA A from A∗. Indeed, writing A∗ =
(Q,F, ι∗, δ∗), let A be the Γσk -bNTA (Q,F, ι, δ) defined by:

• For all (d, ∅) ∈ Γσk and q, q′ ∈ Q, set ι((d, ∅)) ··= ι∗((d, ∅)) and δ(q, q′, (d, ∅)) ··=
δ∗(q, q′, (d, ∅)).

• For all (d, s) ∈ Γσk with s 6= ∅, for all q, q′ ∈ Q, set ι((d, s)) to be the result of
reading the translation of such a node in E∗, and set δ(q, q′, (d, s)) to be the
result of reading the translation from states q and q′.
Formally, letting s∗ = {F ∗1 , . . . , F ∗p } be an incidence structure of s where
the additional element of dom(s∗)\ dom(d) is a2(k+1)+2, letting q⊥ = ι((∅, ∅))
and q0 = ι((d, ∅)), define a sequence qi = δ(qi−1, q⊥, (dom(s∗), {F ∗i })) for
1 6 i 6 n, and qn+1 = δ(qn, q⊥, (d, ∅)), and set ι((d, n)) ··= qn+1. Define likewise
δ(q, q′, (d, s)) for q, q′ ∈ Q as above but setting q0 = δ(q, q′, (d, ∅)) instead.

It is clear that, for any Γσk -tree E, A has an accepting run on E iff A∗ has an
accepting run on E∗, so that, by our previous reasoning, A tests q. Hence, we have
defined A(q) for any Boolean GSO query q in a way that satisfies the conditions of a
tree interpretation scheme. This concludes our definition of the tree interpretation
scheme.

3.3 Provenance Circuits for Treelike Instances
We have shown in the previous section the existence of a tree interpretation scheme
for GSO queries. We now leverage the construction of Section 3.1 through the tree
interpretation scheme, to make it apply to GSO queries on relational instances of
bounded treewidth, relying on subinstance-compatibility.

We fix the notations Γσk , E , 〈·〉, and A, to refer to the subinstance-compatible
tree interpretation scheme whose existence was shown in Theorem 3.2.3.

As before, we consider unknown Boolean annotations on the facts of an instance.
However, rather than annotating the facts, it is more natural to say that a fact
annotated by 1 is kept, and a fact annotated by 0 is deleted. Formally, given an
instance I, a valuation ν is a function from the facts of I to {0, 1}, and we define
ν(I) as the subinstance {F ∈ I | ν(F ) = 1} of I.

We can then define the provenance of a query on an instance, without restricting
yet to any specific query language:

Definition 3.3.1. The provenance of a query q on a σ-instance I is the function
Prov(q, I) mapping any valuation ν : I → {0, 1} to 0 or 1 depending on whether
ν(I) 6|= q or ν(I) |= q. A provenance circuit of q on I is a Boolean circuit C with
Cinp = I that captures Prov(q, I). C

We study provenance for treelike instances (i.e., bounded-treewidth instances)
and for GSO queries. Combining the results of the two previous sections, we claim
that provenance for GSO queries on treelike instances can be computed in linear time
data complexity, and that the resulting provenance circuit has treewidth independent
of the instance.
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Theorem 3.3.2. For any fixed k ∈ N and GSO query q, for any σ-instance I such
that tw(I) 6 k, we can construct a provenance circuit C of q on I in time O(|I|).
The treewidth of C only depends on k and q (not on I).

To use the results of Section 3.1 and prove the claim, the problem is that we need
to work with Γσk -bNTAs rather than Γσk -bNTAs. Intuitively, we need bNTAs that
read Boolean-annotated tree encodings, and the Boolean annotation of a node should
indicate whether the corresponding fact is kept or deleted. To work around this
technicality, we show how to lift a Γσk -bNTA A to a Γσk -bNTA such that 1-annotated
nodes are read like the original label without annotation, and 0-annotated nodes are
read like the neutering of the original label, relying on subinstance-compatibility:

Definition 3.3.3. For τ ∈ Γσk and b ∈ {0, 1}, we write τ[b] to be τ if b is 1 and τ if b
is 0.

Given a Γσk -tree E, we define its evaluation ε(E) as the Γσk -tree that has same
skeleton, where for every node n ∈ E with corresponding node n′ in ε(E), letting
λ(n) = (τ, b) ∈ Γσk × {0, 1}, we have λ(n′) = τ[b]. C

Lemma 3.3.4. For any Γσk-bNTA A, one can compute in linear time a Γσk-bNTA A′

such that, for any Γσk-tree E, we have E |= A′ iff ε(E) |= A.

Proof. Let A = (Q,F, ι, δ). We construct the bNTA A′ = (Q,F, ι′, δ′) according to
the following definition: ι′((τ, b)) ··= ι(τ[b]) and δ′((τ, b), q1, q2) ··= δ(τ[b], q1, q2) for all
b ∈ {0, 1}, τ ∈ Γσk , and q1, q2 ∈ Q. The process is clearly in linear time in A. Now,
it is immediate that E |= A′ iff ε(E) |= A, because a run of A′ on E is a run of A
on ε(E), and vice-versa.

The key point is now that we can describe any subinstance I ′ ⊆ I as a valuation
ν : I → {0, 1}, which we can apply to the tree encoding E(I) following the mapping ϕI ,
and this tree encoding decodes to I ′ when evaluated, so the provenance of the lifting
of A(q) on E(I) matches the provenance of q on I. We now give the formal proof of
the main result for this section:

Proof of Theorem 3.3.2. Fix k ∈ N and the GSO query q, and compute a Γσk -bNTA
A ··= A(q) that tests q on instances of treewidth 6 k. Let A′ be the Γσk -bNTA
obtained by lifting A using Lemma 3.3.4. All of this is performed in constant time
in the instance.

Now, given the input instance I such that tw(I) 6 k, we compute in linear time
its encoding E(I). We now use Theorem 3.1.4 to construct a provenance circuit C
of A′ on I. Using subinstance-compatibility, consider now the function ϕI that maps
the facts of I to the nodes of E where those facts are encoded, which we also compute
in linear time in I. We modify C to replace the input gate gi

n for any n ∈ E not
in the image of ϕI , setting it to be a 0-gate; and renaming the input gates gi

n for
any n ∈ ϕI(I) to identify them with the fact F such that ϕI(F ) = n. Let C ′ be
the result of this process. C ′ is thus a Boolean circuit such that C ′inp = I, it was
computed in linear time from I, and we know that its treewidth is at most that of C,
which only depends on A′. Hence, the width of C ′ only depends on A′, which only
depends on k and q, not on I.

The only thing left to do is to show that C ′ captures Prov(q, I). Let ν : I → {0, 1}
be a valuation of I. We show that ν(C ′) = 1 iff ν(I) |= q. Let ν ′ be the valuation
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of E defined by ν ′(n) = ν(ϕ−1
I (n)) if n is in the image of ϕI , and ν ′(n) = 0 otherwise.

We then know by subinstance-compatibility that 〈ε(ν ′(E))〉 is isomorphic to the
subinstance ν(I) of I. Having observed this, we know that, because A tests q,
we have ν(I) |= q iff ε(ν ′(E)) |= A. Now, by definition of Lemma 3.3.4, we have
ε(ν ′(E)) |= A iff ν ′(E) |= A′, which by definition of the provenance circuit C is the
case iff ν ′(C) = 1, which by definition of C ′ is the case iff ν(C ′) = 1. Hence, C ′ is
indeed a provenance circuit of q on I.

We conclude the section by two remarks on Theorem 3.3.2:

• Our definition of provenance is intrinsic to the query and does not depend on
the query’s formulation. Hence, the provenance that we capture by this result
does not depend on the choice of bNTA to translate the query, or on the choice
of tree decomposition.

• In contrast to Section 3.1, tractability holds only in data complexity. For
combined complexity, we incur the cost of translating the query to an au-
tomaton, which is nonelementary in general [Meyer 1975]. However, for some
restricted query classes, the translation phase has lower cost, for instance it is in
EXPTIME for UCQ queries [Amarilli, Bourhis, and Senellart 2015, Appendix
B.4].

3.4 Monotone Provenance Circuits
We now specialize the previous results to the case of monotone GSO queries, showing
that we can then construct monotone provenance circuits. This will be relevant for
our extensions to the setting of semiring provenance [Green, Karvounarakis, and
Tannen 2007], more specifically PosBool[X]-provenance, in Chapter 5.

It is easy to observe that if a query is monotone, then its provenance is monotone
as well:

Lemma 3.4.1. For any query q, if q is monotone, then Prov(q, I) is a monotone
Boolean function for any instance I.

Proof. Fix q and I and consider any two valuations ν 6 ν ′ of I. By definition of 6,
this implies ν(I) ⊆ ν ′(I). Hence, as q is monotone, if ν(I) |= q then ν ′(I) |= q.
Hence, letting ϕ ··= Prov(q, I), if ϕ(ν) = 1 then ϕ(ν ′) = 1.

Hence, it is natural to wonder whether Theorem 3.1.4 and Theorem 3.3.2 can be
used to create monotone provenance circuits for monotone queries, to capture this
monotone provenance. Indeed, in this section, we will show:

Theorem 3.4.2. For any fixed k ∈ N and monotone GSO query q, for any
σ-instance I such that tw(I) 6 k, one can construct in time O(|I|) a monotone
provenance circuit of q on I whose treewidth only depends on k and q (not on I).

The proof of this result relies on a natural notion of monotonicity for tree
automata on trees annotated by Boolean values. Intuitively, if a Γ-tree is accepted
by a monotone automaton, it will not be rejected when changing annotations from 0
to 1.
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Definition 3.4.3. Fix any alphabet Γ, and consider the partial order < on Γ defined
by (τ, 0) < (τ, 1) for all τ ∈ Γ.

We say that a Γ-bNTA A = (Q,F, ι, δ) is monotone if for every τ 6 τ ′ in Γ, we
have ι(τ) ⊆ ι(τ ′) and δ(q1, q2, τ) ⊆ δ(q1, q2, τ

′) for every q1, q2 ∈ Q. C

The definition of automaton monotonicity clearly ensures the following: for any
monotone Γ-bNTA A, for any Γ-tree T , for any valuations ν 6 ν ′ of T (according to
the order on Boolean functions defined in Section 2.2), if ν(T ) |= A, then ν ′(T ) |= A.
Indeed, monotonicity ensures that any run of A on ν(T ) is also a run of A on ν ′(T ).
This implies that the provenance Prov(A, T ) of A on T (recall Definition 3.1.2)
is then a monotone Boolean function: for any valuations ν 6 ν ′ of T , letting
ϕ ··= Prov(A, T )), if ϕ(ν) = 1 then ϕ(ν ′) = 1.

As it turns out, adapting Theorem 3.1.4, we can show that the provenance of a
monotone automaton can be tractably captured by a monotone circuit:

Theorem 3.4.4. Given a monotone Γ-bNTA A and a Γ-tree T , we can construct
in time O(|A| · |T |) a monotone provenance circuit C of A on T that has treewidth
O(|A|).

Proof. We do the same construction as in the proof of Theorem 3.1.4, but we replace
all NOT-gates, namely the gates g¬in for n ∈ T , by 1-gates. The running time and
treewidth are clearly unaffected, so the only thing to adapt is the correctness proof.
We do so for each valuation ν of T by proving by induction on n ∈ T the same
claim as before: for any q ∈ Q, we have ν(gqn) = 1 iff there is a run ρ of A on the
subtree Tn of T rooted at n such that ρ(n) = q.

For a leaf node n, for q ∈ Q, either ν(n) = 0 or ν(n) = 1. If ν(n) = 0, we show
the claim exactly as before. If ν(n) = 1, it is no longer the case that ν(gqn) = 1 iff
q ∈ ι(λ(n), ν(n)); we have instead ν(gqn) = 1 iff q ∈ ι(λ(n), 0)∪ ι(λ(n), 1). Now, as A
is monotone, we have ι(λ(n), 0) ⊆ ι(λ(n), 1), so we can in fact conclude as before.

For an internal node n, for q ∈ Q, we adapt the proof in the same way. If
ν(n) = 0, the proof is exactly the same. If ν(n) = 1, we have ν(gqn) = ν(n) iff there
are some qL, qR ∈ Q such that ν(gqL

L(n)) = 1, ν(gqR
R(n)) = 1, and q ∈ δ(qL, qR, (λ(n), 0))∪

δ(qL, qR, (λ(n), 1)). We again use the monotonicity of A to conclude in the same
manner as before.

This concludes the adaptation of the correctness proof, so that our claim holds.

We now adapt the results of Section 3.3 to show that we can translate monotone
GSO queries to monotone bNTAs. We can do this without relying on the internal
details of the translation: we simply show how to modify Lemma 3.3.4 to lift an
arbitrary bNTA that tests the query to a monotone Γσk -bNTAs.

Lemma 3.4.5. For any k ∈ N, for any Γσk-bNTA A that tests a monotone query q,
one can compute in linear time a monotone Γσk-bNTA A′′ such that, for any Γσk-tree
E, we have E |= A′′ iff ε(E) |= A.

Proof. Let A be the Γσk -bNTA that tests q, and let A′ = (Q′, F ′, ι′, δ′) be the Γσk -bNTA
that we constructed in Lemma 3.3.4, so that we have E |= A′ iff ε(E) |= A.

We build the bNTA A′′ = (Q′, F ′, ι′′, δ′′) by setting, for all (τ, i) ∈ Γσk and for all
q1, q2 ∈ Q, ι′′((τ, i)) ··=

⋃
06j6i ι

′((τ, j)) and δ′′(q1, q2, (τ, i)) ··=
⋃

06j6i δ
′(q1, q2, (τ, j)).
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Clearly A′′ is monotone by construction for Γσk ; it suffices to show that, for any
Γσk -tree E, we have E |= A′ iff E |= A′′. The forward implication is immediate, so it
suffices to prove the converse implication.

Let E be a Γσk -tree, and consider an accepting run ρ of A′′ on E. We build a new
tree E ′ whose skeleton is that of E and where for any leaf (resp. internal node) n′ ∈ E ′
with corresponding node n ∈ E with λ(n) = (τ, j), we set λ(n′) in E ′ to be (τ, i) for
some i ∈ {0, 1} such that ρ(n) ∈ ι((τ, i)) (resp. ρ(n) ∈ δ(ρ(L(n)), ρ(R(n)), (τ, i)));
the existence of such an i is guaranteed by the definition of ι′ (resp. δ′).

We now observe that, by construction, ρ is a run of A′ on E ′, and it is still
accepting, so that E ′ is accepted by A′. Hence, 〈ε(E ′)〉 |= q. But now we observe
that, once again by construction, for every node n′ of E ′ with label τ ′ and with
corresponding node n in E with label τ , it holds that τ ′ 6 τ . From this we see by
subinstance-compatibility that 〈ε(E ′)〉 ⊆ 〈ε(E)〉, and thus, by monotonicity of q, we
must have 〈E〉 |= q. Thus, as A′ tests q, we must have E |= A′, proving the desired
result.

We can then prove Theorem 3.4.2 similarly to our proof of Theorem 3.3.2,
applying Lemma 3.4.5 instead of Lemma 3.3.4, and applying Theorem 3.4.4 instead
of Theorem 3.1.4, relying on the fact that the bNTA created by Lemma 3.4.5 is
monotone. This concludes the adaptation of our result to monotone queries and
monotone circuits.

3.5 OBDD and d-DNNF Representations
We have shown that we can compute bounded-treewidth (monotone) provenance
circuits for bounded-treewidth instances and (monotone) GSO queries, in linear time
in the input instance. In this section and the next, we study what other forms of
provenance representations can be tractably computed for such queries and instances.
We specifically focus on the lineage representations such as OBDDs and d-DNNFs
commonly used in the field of knowledge compilation [Jha and Suciu 2013]. Our
results are summarized in the top part of Table 3.1.

To do this, we notice that the Boolean circuits that we compute are the same as
the expression DAGs of [Jha and Suciu 2012]. Hence, by a result of [Jha and Suciu
2012], we deduce that GSO queries on bounded-treewidth instances have polynomial-
size OBDD representations of their lineage [Bryant 1992; Olteanu and Huang 2008],
as we show in Section 3.5.1. Further, it is easy to notice that our construction
gives bounded-pathwidth provenance circuits for GSO queries on bounded-pathwidth
instances, so that they have constant-width OBDDs in this context: we show this in
Section 3.5.2. The results of [Jha and Suciu 2012] only claim the existence of these
tractable lineage representations, so we extend these results to show that they can
be computed efficiently.

We then show in Section 3.5.3, by a straightforward modification of our con-
struction, that we can ensure that our linear-size provenance circuits are d-DNNFs
[Darwiche 2001] if we compile queries to deterministic automata. As we will show in
the next chapter, this implies the tractability of probability evaluation on bounded-
treewidth TID instances (Theorem 4.1.1), and we will also use it to show tractability
in different probabilistic frameworks.
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As for formula-based representations of lineage, e.g., read-once formulae [Jha and
Suciu 2013], we will show in the next section that they cannot be as concise as our
linear-size Boolean circuits or d-DNNF representations, which justifies our decision
to use circuit-based representations of lineage.

3.5.1 OBDD
We start by defining OBDDs, a common tractable representation of Boolean functions
[Bryant 1992; Olteanu and Huang 2008]:

Definition 3.5.1. An ordered binary decision diagram (OBDD) is a rooted directed
acyclic graph (DAG) whose leaves are labeled 0 or 1, and whose non-leaf nodes are
labeled with a variable and have two outgoing edges labeled 0 and 1. We require
that there exists a total order Π on the variables such that, for every path from the
root to a leaf, no variable occurs in two different internal nodes on the path, and the
order in which the variables occur is compatible with Π.

An OBDD defines a Boolean function on its variables: each valuation is mapped
to the value of the leaf reached from the root by following the path given by the
valuation.

The size of an OBDD is its number of nodes, and its width is the maximum number
of nodes at every level, where a level is the set of nodes reachable by enumerating all
possible values of variables in a prefix of Π. C

Our result is that we can compute polynomial-size OBDDs for GSO queries on
bounded-treewidth instances in PTIME:

Theorem 3.5.2. For any fixed GSO query q and k ∈ N, there is c ∈ N such that,
given an input instance I of treewidth 6 k, one can compute in time O(|I|c) an
OBDD (of size O(|I|c)) capturing Prov(q, I).

We show this using [Jha and Suciu 2012, Corollary 2.14]: any bounded-treewidth
Boolean circuit can be represented by an equivalent OBDD of polynomial width. We
complete this result and show that the OBDD can also be computed in polynomial
time:

Lemma 3.5.3. For any k ∈ N, there is c ∈ N such that, given a Boolean circuit C
of treewidth k, we can compute an equivalent OBDD in time O(|C|c).

Combined with our Theorem 3.3.2, this lemma clearly implies Theorem 3.5.2, so
it suffices to prove the lemma. The overall idea is to construct in PTIME the variable
order used in [Jha and Suciu 2012]. We then build the corresponding tractable
OBDD level by level, testing the equivalence of partial valuations in PTIME thanks
to the fact that the circuit for C has bounded treewidth. Here is the formal proof:

Proof of Lemma 3.5.3. We rely on [Jha and Suciu 2012, Corollary 2.14]: there is a
doubly exponential function f such that, for any k ∈ N, there is c′ ··= f(k) ∈ N such
that, for any tree decomposition T of width 6 k of C, the OBDD O obtained for a
certain variable order ΠR has width c′.

The order ΠR on variables is defined following an in-order traversal of T where
children are ordered by the number of variables in this subtree; clearly this quantity
can be computed over the entire tree in PTIME, so the order ΠR can be computed
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in PTIME. We show that we can construct the OBDD O in PTIME as well, in a
level-wise manner inspired by [Jha and Suciu 2013].

Write ΠR = X1, . . . , Xn, and construct O level-by-level in the following way.
Assuming that we have constructed O up to level l − 1, create two children for
each node at level l − 1 (depending on the value of variable Xl), and then merge
all such children n and n′ that are equivalent. To define this, call equivalent two
partial valuations ν and ν ′ of variables X1, . . . , Xl if the Boolean function represented
by C on the other variables Xl+1, . . . , Xn under ν is the same as under ν ′. Now,
call n and n′ equivalent if, for any partial valuation ν leading to n (represented by
a path from the root of O to n) and any partial valuation ν ′ leading to n′, these
two partial valuations of X1, . . . , Xl are equivalent. As we will always ensure in
the construction, any paths leading to the parent node of n are equivalent partial
valuations of X1, . . . , Xl−1, so n and n′ are equivalent iff, picking any two valuations
ν for n and ν ′ for n′ by following a path from the root to n and to n′ respectively, ν
and ν ′ are equivalent.

Hence, it suffices to show that there is a function g such that we can test in
time O(|C|g(k)) whether two partial valuations are equivalent. Indeed, we can then
build O in the indicated time, because the maximal number of node pairs to test
at any level of the OBDD is 6 (2 · |C|f(k))2: we had at most |C|f(k) at the previous
level, and each of them creates two children, before we merge the equivalent children.
Hence, if we can test equivalence in the indicated time, then clearly we can construct
O in time O(|C|c) for c ··= 1 + 1 + 2 · f(k) + g(k) (the first term accounts for the
linear number of levels, and the second term accounts for the linear time required to
find a partial valuation for a node).

We thus show that the equivalence of partial valuations can be tested in time
O(|C|g(k)) for some function g. Considering two partial valuations ν and ν ′ of
the same set of variables X , let Cν and Cν′ be the two circuits obtained from C
by substituting the input gates for X with constant gates according to ν and ν ′

respectively. Note that Cν and Cν′ have the same set of input gates X ′, formed
precisely of the variables not in X . We rename the internal gates of Cν′ so that
the only gates shared between Cν and Cν′ are the input gates X ′. Now, C ′ be the
circuit obtained by taking the union of Cν and Cν′ (on the same set of variables), and
adding an output gate and a constant number of gates such that the output gate is
true iff the output gates of Cν and Cν′ carry different values (this can be done with 5
additional gates in total). It is easy to see that there is a valuation of X ′ that makes
the circuit C ′ evaluate to true iff the partial valuations ν and ν ′ are not equivalent.
Now, observe that we can immediately construct from T a tree decomposition T ′′ of
width 6 2k+ 5 of C ′. Indeed, it is obvious that T is a tree decomposition of Cν , and
we can rename gates to obtain from T a tree decomposition T ′ of Cν′ , such that T
and T ′′ both have the same width k and the same skeleton. Now, construct T ′′ that
has same skeleton as T and T ′, where each bag is the union of the corresponding
bags of T and T ′, adding the 5 intermediate gates to each bag. The result T ′′ clearly
has width 6 2k + 5 and it is immediate that it is a tree decomposition of C ′.

We can then use message-passing techniques [Lauritzen and Spiegelhalter 1988;
Huang and Darwiche 1996] to determine in time exponential in 2k+5 and polynomial
in C ′ whether the bounded-treewidth circuit C ′ has a satisfying assignment, from
which we deduce whether ν and ν ′ are equivalent. For details, see, e.g., [Amarilli,
Bourhis, and Senellart 2015, Theorem D.2].
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3.5.2 Bounded-Pathwidth
We now refine the previous result: in the case of bounded pathwidth instances, we
can compute constant-width OBDDs:

Theorem 3.5.4. For any fixed GSO query q and constant k ∈ N, given an input
instance I of pathwidth 6 k, one can compute in polynomial time an OBDD of
constant width capturing Prov(q, I).

To prove the result, we first observe that our results construct bounded-pathwidth
provenance circuits in linear time on bounded-pathwidth instances:

Proposition 3.5.5. For any fixed k ∈ N and (monotone) GSO query q, for any
σ-instance I of pathwidth 6 k, we can construct a (monotone) provenance circuit C
of q on I in time O(|I|). The pathwidth of C only depends on k and q (not on I).

Proof. Given a path decomposition of an instance I, which is a tree decomposition
with a linear tree, the resulting tree encoding E of I is clearly also a linear tree.
Hence, as the provenance circuit C constructed in Theorems 3.1.4 and Theorem 3.4.4
has a tree decomposition with same skeleton as E. As the result C ′ of Theorems 3.3.2
and 3.4.2 is the same circuit as C up to replacing some input gates by constant
gates and performing a bijective renaming of input gates, we conclude that C ′ is the
desired bounded-pathwidth circuit.

By [Jha and Suciu 2012, Corollary 2.13], this implies the existence of a constant-
width OBDD representation, which we again show to be computable, proving
Theorem 3.5.4.

Lemma 3.5.6. For any k ∈ N, for any Boolean circuit C of pathwidth 6 k, we can
compute in polynomial time in C an OBDD equivalent to C whose width depends
only on k.

Proof. As in the proof of Lemma 3.5.3, we can compute in PTIME the order ΠR

on variables, and we can compute the OBDD under this order in the same way.
This uses the fact that a path decomposition of circuit C is in particular a tree
decomposition of C.

3.5.3 d-DNNF
We now turn to the more expressive tractable lineage formalism of d-DNNFs, intro-
duced in [Darwiche 2001]; we follow the definitions of [Jha and Suciu 2013]:

Definition 3.5.7. A deterministic, decomposable negation normal form (d-DNNF)
is a Boolean circuit C = (G,W, g0, µ) that satisfies the following conditions:

1. Negation is only on input gates. Formally, for any gate g ∈ G with µ(g) = ¬,
the one gate g′ ∈ G such that (g′, g) ∈ W must be such that g′ ∈ Cinp.

2. The inputs of AND-gates depend on disjoint sets of input gates. Formally, for
any g with µ(g) = ∧, for any two gates g1 6= g2 in G such that (g1, g) ∈ W
and (g2, g) ∈ W , there is no input gate g′ ∈ Cinp such that both g1 and g2 are
reachable from g′ in the DAG (G,W );
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3. The inputs of OR-gates are mutually exclusive. Formally, for any g with
µ(g) = ∨, for any two gates g1 6= g2 in G such that (g1, g) ∈ W and (g2, g) ∈ W ,
there is no valuation ν of C such that g1 and g2 both evaluate to 1 under ν. C

We show a variant of Theorem 3.3.2 where we construct d-DNNFs instead of
general circuits.

Theorem 3.5.8. For any fixed GSO query q and constant k ∈ N, given an input
instance I of treewidth 6 k, one can compute in time O(|I|) a d-DNNF capturing
Prov(q, I).

We will use this result in the next chapter to derive the tractability of probability
evaluation, as this problem is tractable for d-DNNFs.

The idea of the proof is that we automatically obtain a d-DNNF if we choose to
translate queries to a deterministic automaton, that is, a bDTA rather than a bNTA.
Let us show this:

Proof of Theorem 3.5.8. We adapt Theorem 3.1.4 to show that a provenance d-DNNF
of a deterministic Γ-bDTA A on a Γ-tree E can be constructed in time O(|A| · |E|).
We construct the circuit exactly as in our previous proof of Theorem 3.1.4, and we
now show that it is a d-DNNF.

1. First, observe that the only NOT gates that we use are the g¬i
n , which are NOT

gates of the gi
n, which are input gates; so we only apply negation to leaf nodes.

2. Second, we show that the sets of leaves reachable from the children of any
AND gate are pairwise disjoint. The AND gates that we create and that have
multiple inputs are the following:

• The gqL,qRn , which are the AND of gqLL(n) and g
qL
R(n); now, g

qL
L(n) only depends

on the input gates gi
n′ for nodes n′ of the subtree of E rooted at L(n), and

likewise gqLR(n) only depends on input gates in the right subtree;

• The gqL,qR,in , which are the AND of gqL,qRn and gi
n; now, the gqL,qRn do not

depend on gi
n, only on input gates gi

n′ for n′ a strict descendant of n in E;

• The gqL,qR,¬i
n , which are the AND of gqL,qRn and g¬i

n ; now, the gqL,qRn do not
depend on the sole input gate under g¬i

n , i.e., gi
n, but only on input gates

gin′ for n′ a strict descendant of n in E.

3. Third, we show that the children of any OR gate are mutually exclusive. The
OR gates that we create and that have multiple inputs are the following:

• The gqn when n is a leaf node of E, for which the claim is immediate, as
the only two possible children are gi

n and g¬i
n which are clearly mutually

exclusive.

• The gqn when n is an internal node of E, which are the OR of gates of the
form gqL,qR,in or gqL,qR,¬i

n over several pairs qL, qR.
To observe that these gates are mutually exclusive, remember that, for
a valuation ν of the tree E, the gate gqn′ is true iff there is a run ρ of A
on the subtree of ν(E) rooted at n′ such that ρ(n′) = q. However, as A
is deterministic, for each n′, there is at most one state q for which this
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is possible. Hence, for any valuation ν ′ of the circuit C, for our node n,
there is at most one q′L such that gq

′
L

L(n) is true under valuation ν ′, and only
at most one q′R such that gq

′
R

R(n) is true under ν ′. Hence, by definition of the
gqL,qRn , there is at most one of them which can be true under valuation ν ′,
namely, gq

′
L,q
′
R

n , which also means that only the gate gq
′
L,q
′
R,i

n and the gate
g
q′L,q

′
R,¬i

n can be true under ν ′. But these two gates are clearly mutually
exclusive (only one can evaluate to true, depending on the value of ν(n)),
which proves the claim.

• The output gate g0 which is the OR of gates of the form gqr for r the
root node of E. Again, as the automaton A is deterministic, for any
valuation ν ′ of C, letting ν be the corresponding valuation of the Γ-tree
E, there is only one state q′ such that A has a run ρ on E with ρ(r) = q′,
so at most one state q′ such that gq′r is true under ν.

Having shown this variant of Theorem 3.1.4, we can clearly modify our tree inter-
pretation scheme to translate queries, not to a Γσk -bNTA, but to a Γσk -bDTA: just
construct the bDTA from the bNTA using standard techniques [Comon et al. 2007],
which is still instance-independent so it does not affect the data complexity. Now we
conclude the proof of Theorem 3.5.8 by constructing the d-DNNF as a provenance
circuit, just like in the original proof of Theorem 3.3.2, but using instead the variant
of Theorem 3.1.4 that we showed, noting that Lemma 3.3.4 preserves the fact that
the automaton is deterministic. We can then perform the same replacement of input
gates by constant gates and bijective renaming of the input gates, as in the original
proof of Theorem 3.3.2, which does not affect the fact that the result is a d-DNNF
(up to evaluating negations of constant gates as constant gates). This concludes the
proof.

3.6 Formula Representations
We have shown that GSO queries on bounded-treewidth instances have linear prove-
nance representations as bounded-treewidth circuits and as d-DNNFs. In this section,
we study whether we could obtain linear provenance representations as Boolean
formulae, e.g., as read-once formulae [Jha and Suciu 2013]. This question is natural
because most prior works on provenance (with the notable exception of [Deutch,
Milo, Roy, and Tannen 2014]) focus on formula representations of provenance, and
existing work on probabilistic data seldom represents query lineages as Boolean
circuits (rather than Boolean formulae, or other representations such as OBDDs,
FBDDs and d-DNNFs [Jha and Suciu 2013]).

Intuitively, an important difference between formula and circuit representations
is that circuits can share common subformulae whereas formulae cannot. We show in
this section that this difference matters: formula-based representations of provenance
for GSO queries on bounded-treewidth instances cannot be linear in general, because
of superlinear lower bounds. We derive these bounds from classical results [Wegener
1987] and summarize them in the lower part of Table 3.1.

We first show in Section 3.6.1 that, already in the setting of provenance for tree
automata, Theorem 3.1.4 cannot extend if we ask for a representation of provenance
as a Boolean formula, rather than as a Boolean circuit: we construct an automaton,
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intuitively capturing the parity function, for which there is a quadratic lower bound
on a representation of provenance as a Boolean formula. We translate this result in
Section 3.6.2 to show the same for MSO queries on treelike instances. By contrast, we
know that there are linear-size provenance representations as circuits in this context,
and that they can even be computed in linear time (Theorems 3.1.4 and 3.3.2). While
we do not know whether these bounds are tight, note that even an Ω(|I|3) lower
bound is probably out of reach without new developments in the study of Boolean
formulae. Indeed, the best currently known lower bound on formula size, for any
explicit function of n variables with linear circuits, is in Ω(n3−o(1)) [Håstad 1998].

We then show in Section 3.6.3 that a superlinear lower bound already holds for
formula provenance representations of even CQ6= queries, and on trivial instances;
more specifically, the bound is Ω(n log log n). We then show that this can be improved
to Ω(n log n) if we ask for a monotone provenance formula.

We note that formula-based and circuit-based representations of Boolean prove-
nance were already investigated in the recent work [Deutch, Milo, Roy, and Tannen
2014], whose Theorem 1 establishes a superpolynomial lower bound on the size of
formula provenance representations for Datalog queries. Their results, however, apply
to arbitrary instances; our results hold even on bounded-treewidth instances.

3.6.1 Tree Automata Lower Bounds
We start by studying provenance representations for tree automata, as in Section 3.1,
and show a quadratic lower bound on the size of Boolean formulae that capture the
provenance of a certain tree automata.

Proposition 3.6.1. There is a finite alphabet Γ and a Γ-bNTA A, such that, for
any Γ-tree T and Boolean formula ϕ capturing Prov(A, T ), we have |ϕ| = Ω(|T |2).

Proof. Consider Γ = {•}, so that all nodes have label •. Consider the Γ-bNTA
A = (Q,F, ι, δ) defined as follows:

• Q ··= {0, 1};

• F ··= {1};

• ι((•, b)) = b for all b ∈ {0, 1};

• δ(q1, q2, (•, b)) ··= q1 ⊕ q2 ⊕ b, where ⊕ denotes exclusive OR.

It is clear that, for any Γ-tree T , we have T |= A iff T has an odd number of nodes
annotated 1. Hence, Prov(A, Tn) for any tree Tn with n nodes is the parity function
over n variables.

Now, by [Wegener 1987, Chapter 8, Theorem 8.2], any Boolean formula using ∧,
∨, ¬ that expresses the parity function over n variables has a number of variable
occurrences that is at least n2. This implies the claimed lower bound.

3.6.2 MSO Lower Bounds on Treelike Instances
We can adapt the result of the previous section to show a quadratic lower bound for
formula-based representations of the provenance of MSO queries on treelike instances,
more specifically on trees:
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Proposition 3.6.2. There is an MSO query q, and a family I of relational instances
with treewidth 1, such that, for any I ∈ I, for any Boolean formula ψ capturing
Prov(q, I), we have |ψ| = Ω(|I|2).

We adapt the previous proof by testing the parity of the number of facts in a
unary predicate, using an auxiliary binary relation, and relying on the same lower
bound.

Proof. Consider the signature σ with a unary predicate L and binary predicate E.
We define the family I = (In) with In having domain {a1, . . . , an} and facts L(ai) for
each 1 6 i 6 n and E(ai, ai+1) for each 1 6 i < n. Clearly, all instances in I have
treewidth 1. We consider the MSO formula q that intuitively uses the E-facts to test
whether the number of L-facts is odd. Formally, we define q as follows, inspired by
the definition of the tree automaton in the proof of Proposition 3.6.1:

q ··= ∀X0X1 Part(X0, X1)∧Tr(X0, X1)∧Init(X0, X1)⇒ ∀x (¬∃y E(y, x)⇒ x ∈ X1)

where Part(X0, X1) asserts that X0 and X1 partition the domain (where ⊕ denotes
exclusive OR):

Part(X0, X1) ··= ∀x (x ∈ X0)⊕ (x ∈ X1)

Tr(X0, X1) is the conjunction of the following transition rules, for each b 6= b′ in
{0, 1}:

∀xy E(x, y) ∧ y ∈ Xb ∧ L(x)⇒ x ∈ Xb′

∀xy E(x, y) ∧ y ∈ Xb ∧ ¬L(x)⇒ x ∈ Xb

and Init(X0, X1) asserts the initial states:

∀x (¬∃y E(x, y)) ∧ ¬L(x)⇒ x ∈ X0

∀x (¬∃y E(x, y)) ∧ L(x)⇒ x ∈ X1

Intuitively, on any possible world of In where all E-facts are present, q is true
whenever the number of L-facts is odd. Indeed, it is clear that there is a unique
choice of X0 and X1 in such worlds, defined by putting an in X1 or X0 depending on
whether L(an) holds, and, for 1 6 i < n, letting b such that ai+1 ∈ Xb and b′ be 1
or 0 depending on whether L(ai) holds or not, putting ai in Xb⊕b′ . Hence, in worlds
containing all E-facts, there is a unique choice of X0 and X1 where we have ai ∈ X1
iff the number of facts L(aj) with i 6 j 6 n is odd. Hence, q is satisfied iff, in this
unique assignment, a1 (the only node with no incoming E-edge) is in X1, that is, if
the overall number of L-facts is odd.

Hence, pick I ∈ I and let ψ be a formula representation of Prov(q, I). Replacing
the input gates for the E-facts by constant 1-gates, we obtain a formula of the same
size that computes the parity function of the inputs corresponding to the L-gates,
the number of which is d|I| /2e. We conclude as in the proof of Proposition 3.6.1.

3.6.3 CQ 6= Lower Bounds on Treelike Instances
We now show that superlinear lower bounds still hold on formula-based representa-
tions of provenance when we restrict the query language to CQ 6=.
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Proposition 3.6.3. There is a CQ6= query q, and a family I of relational instances
with treewidth 0, such that, for any I ∈ I, for any Boolean formula ψ capturing
Prov(q, I), we have |ψ| = Ω(|I| log log |I|).

The idea is to express the threshold function over n variables, for which there is
a superlinear lower bound on the formula size [Wegener 1987].

Proof. Consider the signature with a single unary predicate R, and consider the
CQ 6= q : ∃xy R(x) ∧ R(y) ∧ x 6= y. Consider the family of instances I defined as
{R(a1), . . . , R(an)} for all n ∈ N. Clearly, for any I ∈ I, Prov(q, I) is the threshold
function checking whether at least two of its inputs are true.

By [Wegener 1987, Chapter 8, Theorem 5.2], any formula using ∧, ∨, ¬ expressing
the threshold function over n variables has size Ω(n log log n), the desired bound.

As CQ6= queries are monotone, we can also ask for monotone provenance rep-
resentations. From the previous section, we still have linear representations of the
provenance as a monotone circuit. By contrast, if we restrict to monotone Boolean
formulae, we obtain an improved lower bound:

Proposition 3.6.4. There is a CQ6= query q, and a family I of relational instances
with treewidth 0, such that, for any I ∈ I, for any monotone Boolean formula ψ
capturing Prov(q, I), we have |ψ| = Ω(|I| log |I|).

Proof. We use the same proof as for Proposition 3.6.3 but relying on [Hansel 1964]
(also [Wegener 1987, Chapter 8, Theorem 1.2]), which shows that, for ψ built over
the monotone basis ∧ and ∨, we have |ψ| = Ω(n log n).

Hence, our results in this section justify why we focus on circuit representations
of provenance.

This section concludes our study of Boolean provenance representations for
treelike instances, which we will use in the next chapter for probability evaluation in
various frameworks.
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Chapter 4

Applications to Probabilistic
Query Evaluation

In Chapter 3, we have seen how the provenance of queries on treelike instances could
be tractably computed, and how this implied the existence of other forms of lineages,
such as OBDDs and d-DNNFs, for which probability evaluation is tractable.

This section focuses on the problem of probabilistic evaluation, and studies the
consequences of our results for several probabilistic frameworks. We start with
the simplest such framework, the tuple-independent (TID) instances, and study
probability evaluation as defined in Section 2.6. We can then show, in Section 4.1:

Theorem 4.1.1. The probabilistic evaluation problem for GSO queries and treelike
TID instances is in ra-linear time: for any fixed GSO query q and constant k ∈ N,
given an input TID instance J = (I, π) with tw(I) 6 k, we can determine PrJ(q) in
ra-linear time in J .

This result contrasts sharply with the picture on arbitrary TID instances, where
many queries have #P-hard data complexity, even in the class CQ, and where a
dichotomy was shown by [Dalvi and Suciu 2012] between such unsafe queries, and
safe queries whose data complexity is PTIME. We show our result using the d-DNNF
representations of the lineage that we can compute in linear time (Theorem 3.5.8)
and the ra-tractability of probability evaluation for d-DNNF [Darwiche 2001]. As
we will show in Chapter 6, there is little hope that such a result extends to larger
instance classes than bounded-treewidth instances.

The rest of the chapter studies the tractability of other probabilistic frameworks,
beyond TID. To do so, we introduce our own framework of uncertain and probabilistic
instances in Section 4.2, namely, cc-instances and pcc-instances. They are inspired
by c-instances and pc-instances [Huang, Antova, Koch, and Olteanu 2009; Green and
Tannen 2006; Suciu, Olteanu, Ré, and Koch 2011], which allow complex correlations
between facts; the difference is that the annotations of facts in (p)cc-instances are
represented as a circuit, which makes it easier to define a notion of treewidth for
them. We then show that GSO queries have tractable lineages on bounded-treewidth
cc-instances, from which we deduce the tractability of probability evaluation.

We then use pcc-instances in Section 4.3 to deduce tractability results for the
existing relational probabilistic frameworks of pc-instances [Huang, Antova, Koch,
and Olteanu 2009; Green and Tannen 2006; Suciu, Olteanu, Ré, and Koch 2011]
and block-independent disjoint (BID) instances [Barbará, Garcia-Molina, and Porter
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1992; Ré and Suciu 2007; Suciu, Olteanu, Ré, and Koch 2011]. We first show
the tractability in data complexity of GSO query evaluation on bounded-treewidth
pc-instances introducing our own notion of treewidth for them:

Theorem 4.3.3. For any fixed GSO query q and constant k ∈ N, given an input
pc-instance J of treewidth 6 k, we can compute PrJ(q) in ra-linear time in J .

We then use this result to show that the same holds for bounded-treewidth
block-independent disjoint instances. The treewidth is simply defined as that of the
underlying relational instance, and we impose a mild requirement that the instances
are block-sorted.

Theorem 4.3.5. For any fixed GSO query q and constant k ∈ N, given an input
block-sorted BID instance J of treewidth 6 k, we can compute PrJ(q) in ra-linear
time in J .

Section 4.4 then moves to a non-relational probabilistic framework, namely,
probabilistic XML, where we show the tractability of MSO query evaluation on
PrXMLmux,ind (reproving a result of [Cohen, Kimelfeld, and Sagiv 2009]) and on
PrXMLfie assuming a condition on bounded event scopes.

We last show two other applications of our results in the last two sections. We
first re-prove in Section 4.5 that query evaluation is tractable for inversion-free
UCQ queries on any input instances, and that there are constant-width OBDD
representations of their lineage, a result known from [Jha and Suciu 2013]. We do
this by showing that the input instances to such queries can always be rewritten to a
bounded-rankwidth instance, in the sense of a general notion of unfolding which we
introduce, which preserves the lineage.

Second, in Section 4.6, we adapt our results from probability evaluation to the
match counting problem defined in Section 2.6. This allows us to give a new proof of
an existing result:

Theorem 4.6.1. [Arnborg, Lagergren, and Seese 1991] For any fixed GSO query
q(X,x) with free first- and second-order variables, for any constant k ∈ N, given an
input instance I of width 6 k, the match counting problem for q on I can be solved
in ra-linear data complexity.

4.1 Probability Evaluation on Treelike TID In-
stances

We start by showing the tractability of probability evaluation on bounded-treewidth
TID instances:

Theorem 4.1.1. The probabilistic evaluation problem for GSO queries and treelike
TID instances is in ra-linear time: for any fixed GSO query q and constant k ∈ N,
given an input TID instance J = (I, π) with tw(I) 6 k, we can determine PrJ(q) in
ra-linear time in J .

The result follows directly from the fact that we can compute a d-DNNF rep-
resentation of the lineage in linear time, using Theorem 3.5.8. It then suffices to
use the known fact that probability evaluation for d-DNNFs is tractable [Darwiche
2001]:
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Definition 4.1.2. Given a circuit C and a probability valuation π mapping each
input in Cinp to a value in [0, 1], the circuit probability evaluation problem for Cinp
and π is intuitively to determine the probability that C evaluates to 1 under π.
Formally, we wish to determine, for Val(Cinp) the set of valuations of Cinp, the
following probability:

π(C) ··=
∑

ν∈Val(Cinp)
ν(C)=1

PrC,π(ν)

where we define:
PrC,π(ν) ··=

∏
g∈Cinp
ν(g)=1

π(g)
∏

g∈Cinp
ν(g)=0

(1− π(g)). C

Theorem 4.1.3 ([Darwiche 2001]). The circuit probability evaluation problem for
d-DNNFs is ra-linear: given a d-DNNF C and a probability valuation π of C, we
can determine the probability π(C) in ra-linear time in C and π.

This directly implies Theorem 4.1.1. Indeed:

Proof of Theorem 4.1.1. Given a GSO query q and TID instance J = (I, π), compute
a d-DNNF representation C of Prov(q, I) in linear time using Theorem 3.5.8, and
use Theorem 4.1.3 to compute the probability π(C).

It is immediate to see that this indeed computes the correct probability, namely,
that PrJ(q) = π(C), because there is a bijection between valuations ν of I = Cinp
and subinstances of I, which maps ν to ν(I), such that ν(C) = 1 iff ν(I) |= q by
definition of C capturing Prov(q, I). Further, this bijection preserves probability, as
PrC,π(ν) = PrJ(ν(I)) for any valuation ν of I.

An alternative way to prove Theorem 4.1.1, which does not involve d-DNNFs,
is to use message-passing techniques [Lauritzen and Spiegelhalter 1988; Huang and
Darwiche 1996] to compute directly π(C) for the bounded-treewidth circuit C. We
do not give details here, and refer instead to [Amarilli, Bourhis, and Senellart 2015,
Theorem D.2].

4.2 CC-Instances
TID instances are the simplest probabilistic relational framework, but they do not
support correlations between facts. This section accordingly introduces our model
of cc-instances and pcc-instances, a more expressive model in which we can adapt
our bounded-treewidth construction. We will use pcc-instances to prove tractability
results for pc-instances and BID instances in the next section.

4.2.1 Defining the Frameworks
The notion of cc-instances and pcc-instances is inspired by the definition of c-instances
and pc-instances, which we now review:

Definition 4.2.1 ([Imieliński and Lipski 1984; Green and Tannen 2006; Huang,
Antova, Koch, and Olteanu 2009]). A c-instance J = (I,X, ψ) consists of:

• a relational instance I;
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• a set X of Boolean variables (or events);

• a labeling function ψ mapping each fact F of I to a Boolean formula ψ(F )
over X called the condition of F .

For a valuation ν of X mapping each variable to {0, 1}, the possible world ν(J) is
obtained by retaining exactly the tuples whose annotation evaluates to 1 under ν,
and JJK is the universe of all these possible worlds over all valuations ν. Note that
different valuations may yield the same possible world.

A pc-instance J = (I,X, ψ, π) is a 4-tuple where J ′ = (I,X, ψ) is a c-instance
and π is a probability valuation from X to [0, 1]. The probability distribution JJK
defined by J has universe JJ ′K and probability measure PrJ(I) ··=

∑
ν|ν(J ′)=I PrJ(ν)

with the product distribution on valuations:

PrJ(ν) ··=
∏
x∈X
ν(x)=1

π(x)
∏
x∈X
ν(x)=0

(1− π(x)). C

Our goal is to modify this definition to obtain a formalism where it is more
natural to define the treewidth of an instance. We do so using Boolean circuits
instead of Boolean formulae for the annotation. This is how we define cc-instances
and pcc-instances:

Definition 4.2.2. A cc-instance J = (I, C, ψ) consists of:

• a relational instance I;

• a Boolean circuit C, whose output gate is not relevant, and whose inputs Cinp
are also called the inputs (or events) of J and written Jinp;

• a labeling function ψ mapping each fact F of I to a gate ψ(F ) of Jinp.

For every valuation ν of Jinp, the possible world ν(J) is the subinstance of I that
contains the facts F of I such that, seeing ν as an evaluation of C, we have
ν(ψ(F )) = 1. Like for c-instances, the universe JJK is the set of possible worlds of J .

A pcc-instance is a 4-tuple J = (I, C, ψ, π) where J ′ = (I, C, ψ) is a cc-instance
(and Jinp ··= J ′inp) and π : Jinp → [0, 1] gives a probability to each input. As for pc-
instances, the probability distribution JJK has universe JJ ′K and probability measure
PrJ(I ′) = ∑

ν|ν(J)=I′ PrJ(ν) with the product distribution on valuations:

PrJ(ν) =
∏
g∈Jinp
ν(g)=1

π(g)
∏
g∈Jinp
ν(g)=0

(1− π(g)). C

It is straightforward that (p)cc-instances capture (p)c-instances:

Proposition 4.2.3. For any (p)c-instance J , one can compute in linear time a
(p)cc-instance J ′ whose inputs are the variables X of J , such that for any valuation
ν of X, ν(J) = ν(J ′) (and, for the probabilistic version, PrJ(ν) = PrJ ′(ν)).

Proof. We first show the result for c-instances. Create one input gate gx per variable x,
and create for each tuple a Boolean circuit that represents the formula that annotates
that tuple (in linear time in the annotation of the tuple). Map the tuple to the
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distinguished function gate of this circuit, and let C be the union of the circuits for
each tuple. It is clear that, for any valuation ν, the possible world of J and J ′ is the
same. The same argument applies to pc-instances, taking π′J(gx) ··= πJ(x) for every
variable x.

Of course, it is also the case that (p)c-instances capture (p)cc-instances, as (p)c-
instances can clearly represent any universe or probability distribution. However,
the naïve translation from cc-instances to c-instances leads to a blowup, intuitively
because c-instances cannot share common subexpressions between tuple annotations.
We leave open the question of whether (p)cc-instances can be shown to be more
compact than (p)c-instances.

Example 4.2.4. Fix n ∈ N and a universe Un whose possible worlds are ∅,
{R(a1, a2)}, {R(a1, a2), R(a2, a3)}, . . . , {R(a1, a2), . . . , R(an−1, an)}. For instance,
this could be a representation of the possible worlds of a chain in an uncertain
XML document (as in Section 4.4), where the removal of an edge implies that all
descendant edges are also removed.

It is easy to represent Un as a cc-instance J with underlying instance I ··=
{R(a1, a2), . . . , R(an−1, an)}, where C is defined by g1 = gi

1, and gj ··= gj−1 ∧ gi
j for

1 < j 6 n − 1, with the gi
j being inputs, and ψ(R(aj, aj+1)) = gj. This J has size

linear in n.
By contrast, it is harder to represent Un as a c-instance, as the annotation of

every fact “depends” on that of the previous fact in the chain. If we consider the
natural encoding J ′ where each fact R(aj, aj+1) is annotated by the conjunction
e1 ∧ · · · ∧ ej, we see that J ′ has size quadratic in n.

We will study treelike (p)cc-instances, where the treewidth of a (p)cc-instance
is defined through a straightforward relational encoding: we code (p)cc-instances
to ordinary relational instances on an augmented signature so that the wires of the
circuit and the mapping ψ are also represented.

Definition 4.2.5. Let σ be a relational signature. Let σ+ be the signature with
one relation R+ of arity |R|+ 1 for every relation R of σ, and with a fresh binary
relation RW.

The relational encoding IJ of a cc-instance J = (I, C, ψ) over signature σ, is
the σ+ instance with domain dom(IJ) ··= dom(I) t G (we assume without loss of
generality that G and dom(I) are disjoint) that contains:

• one fact R+(ψ(F ), a)) for every fact F = R(a);

• one fact RW(g, g′) for every wire (g, g′) ∈ W .

A tree decomposition of a cc-instance J is a tree decomposition of its relational
encoding IJ , and the width tw(J) of J is simply tw(IJ). We extend these definitions
from cc-instances to pcc-instances in the expected way, defining the relational encoding
of a pcc-instance as that of its underlying cc-instance. C

4.2.2 Provenance Circuits
We will show, for GSO queries, that we can tractably compute provenance circuits
on treelike cc-instances, so that probability evaluation for such queries on treelike
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pcc-instances is ra-linear. To do this, let us first define the provenance of a query q
on a cc-instance J . This provenance Prov(q, J) simply maps any valuation ν of the
inputs of J to a Boolean value indicating whether ν(J) |= q:

Definition 4.2.6. The provenance of a query q on a cc-instance J is the function
Prov(q, J) mapping any valuation ν : Jinp → {0, 1} to 0 or 1 depending on whether
ν(J) 6|= q or ν(J) |= q.

A provenance circuit of q on J is a Boolean circuit C with Cinp = Jinp that
captures Prov(q, J). C

We now show that treelike cc-instances, like treelike instances (by Theorem 3.3.2),
have linear-size provenance circuits:

Theorem 4.2.7. For any fixed k ∈ N and GSO query q, for any cc-instance J such
that tw(J) 6 k, we can construct a provenance circuit C of q on J in time O(|J |).
The treewidth of C only depends on k and q (not on J).

We prove this claim in the rest of this subsection in the following way: we rewrite
any GSO query q on a cc-instance J to a GSO query q′ on the full relational encoding
I ′J of J , defined by augmenting the relational encoding as follows:

Definition 4.2.8. Let σ be a signature. Let σ++ be the signature obtained by
completing σ+ with fresh unary relations Ri, R¬, R∧ and R∨ to indicate the type of
a gate, and R1 to indicate that a gate evaluates to 1.

The full relational encoding of a cc-instance J = (I, C, ψ), where we write
C = (G,W, g0, µ), is the σ++-instance I ′J obtained by adding to the relational
encoding IJ the following facts:

• the fact Rµ(g)(g) for each g ∈ G;

• a fact R1(g) for each g ∈ Cinp. C

Intuitively, we will design the query q′ on I ′J to be equivalent to q except that
q′ additionally performs the evaluation of the Boolean annotation circuit to know
which facts it can see, from the (tuple-independent) valuation of the input gates. We
then see a valuation of the cc-instance J as a valuation of I ′J which indicates whether
the input gates are assigned to 0 (represented by the absence of their R1-fact) or 1
(represented by the presence of that fact). Thus, a provenance circuit for q on J
can just be obtained as a provenance circuit of q′ on I ′J obtained by Theorem 3.3.2,
where we set all inputs to 1 except those that stand for the R1-facts.

Hence, let us show:

Proposition 4.2.9. For any GSO query q, there is a GSO query q′ such that, for
any cc-instance J with full relational encoding I ′J , for any valuation ν of Jinp, letting
ν ′ be the valuation of I ′J that maps each fact R1(g) to ν(g) for each g ∈ Jinp, and
maps the other facts to 1, we have ν(J) |= q iff ν ′(I ′J) |= q′.

Proof. Fix the (Boolean) GSO query q. Define the following predicate:

Rgate(g) ··= Ri(x) ∨R∧(x) ∨R∨(x) ∨R¬(x)

Let T be a fresh second-order variable. We define a GSO query q′′ by doing the
following:
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• Replace each σ-atom R(x) of q by ∃g R+(g,x) ∧ T (g), where g is a fresh
variable;

• Relativize all other quantifications to apply to elements x such that Rgate(x)
does not hold.
In other words, we replace ∃x ϕ(X, x,y) (except for the quantifications ∃g
that we introduced in the previous step) by ∃x ¬Rgate(x) ∧ ϕ(x,x), replace
∃X ϕ(X,Y,x) by ∃X (∀x (x ∈ X)⇒ ¬Rgate(x)) ∧ ϕ(X,Y,x), and translate
universal quantification in the analogous way.

We now define q′ as:
q′ : ∃T q′′(T ) ∧ qwf(T )

where we define qwf(T ) as follows. Intuitively, qwf(T ) imposes that the set T is the
set of the elements standing for the gates of C in I ′J that evaluate to 1, following the
evaluation of C described by setting the inputs to 1 or 0 depending on whether their
R1-fact is present or absent. Formally, the definition is at follows; remember that
RW is the binary relation of σ+ that codes the wires of the circuit.

qwf(T ) : qi(T ) ∧ q∧(T ) ∧ q∨(T ) ∧ q¬(T ) ∧ (∀x T (x)⇒ Rgate(x))
qi(T ) : ∀x Ri(x)⇒ (T (x)⇔ R1(x))
q∧(T ) : ∀x R∧(x)⇒ (T (x)⇔ (∀y RW(y, x)⇒ T (y)))
q∨(T ) : ∀x R∨(x)⇒ (T (x)⇔ (∃y RW(y, x)⇒ T (y)))
q¬(T ) : ∀x R¬(x)⇒ (T (x)⇔ (∀y RW(y, x)⇒ ¬T (y)))

Consider now a cc-instance J , let C be its annotation circuit, and let ν and ν ′ be two
valuations defined as in the proposition statement. We show that we have ν(J) |= q
iff ν ′(I ′J) |= q′, concluding the proof. Assuming that ν(J) |= q, it is clear that a
satisfying assignment of T is the set of gates of C which evaluate to true under ν:
this clearly satisfies qwf(T ), and it is clear that it satisfies q′′(T ) because ν(J) |= q,
so indeed ν ′(I ′J) |= q′. Conversely, assuming that ν ′(I ′J) |= q′, it is clear that the only
possible witness for T is defined in the same manner, whence we deduce that indeed
ν(J) |= q. This concludes the proof.

We are now ready to show that we can compute provenance circuits for GSO
queries on bounded-treewidth cc-instances:

Proof of Theorem 4.2.7. Fix the GSO query q and treewidth bound k ∈ N. Compute
the GSO query q′ given by Proposition 4.2.9 (this is instance-independent). Now,
given a cc-instance J , letting C be its annotation circuit, compute in linear time its
full relational encoding I ′J ; as I ′J is just the relational encoding IJ with additional
unary facts, we clearly have tw(I ′J) = tw(IJ), which is by definition tw(J), which
is 6 k. Hence, we can use Theorem 3.3.2 to compute in linear time a provenance
circuit C ′ of q′ on I ′J . Let C ′′ be obtained by identifying the input gates of C ′
corresponding to the facts R1(g) to the gate g itself for each g ∈ C, and replacing by
constant 1-gates all other inputs of C ′. By the property ensured by Proposition 4.2.9,
it is then clear that C ′′ is a provenance circuit for q on J . It is then clear that C ′′
captures Prov(q, J), as, for any valuation ν of J and corresponding valuation ν ′

of I ′J , we have ν(J) |= q iff ν ′(I ′J) |= q′ iff ν ′(C ′) = 1 iff ν(C ′′) = 1.
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4.2.3 Probability Evaluation
As in Section 4.1, we now now show that probability evaluation for GSO queries
on treelike pcc-instances is in ra-linear time. This is simply by adapting the proof
of Theorem 4.2.7, as in Theorem 3.5.8, to produce a d-DNNF representation of
the provenance. As circuit probability evaluation is tractable for d-DNNFs by
Theorem 4.1.3, we deduce the following:

Theorem 4.2.10. The probability evaluation problem for GSO queries on bounded-
treewidth pcc-instances has ra-linear data complexity: for any GSO query q and
k ∈ N, given an input pcc-instance J with tw(J) 6 k, we can compute in ra-linear
time in J the probability PrJ(q) that J satisfies q.

A similar result on probabilistic networks was shown in [Bodlaender 2012]: prob-
ability evaluation for MSO queries evaluated over bounded-treewidth probabilistic
networks is tractable.

We conclude the section by noticing that Theorem 4.2.10 would not hold if we
had defined the treewidth of (p)cc-instances as that of the underlying instance and
that of the annotation circuit taken separately. This justifies that the treewidth of
cc-instances should be defined by looking at the joint treewidth of the instance and
circuit, as we did. Indeed, we can show:

Proposition 4.2.11. There is a fixed CQ q such that probability evaluation for q
is #P-hard on pcc-instances, even when input pcc-instances J = (I, C, ψ, π) are
restricted by imposing tw(I) = 1 and tw(C) = 0.

Proof. We show a reduction from the problem of determining the probability π′(F )
of a Boolean formula F given as a monotone 2-DNF (disjunctive normal form with
only positive literals, and two variables per disjunct) under a probability valuation π′
mapping each variable of F to a probability in [0, 1]. This problem itself is indeed
#P-hard by an immediate reduction from #MONOTONE-2SAT, the same problem
for monotone 2-CNF formulae, which is #P-hard [Provan and Ball 1983]. Indeed, to
compute the probability of a monotone 2-CNF χ, build its 2-DNF negation using
de Morgan’s rule, replace each literal ¬x by x and change the probability of each
variable from p to 1− p. The resulting formula χ′ has probability 1− p′, where p′ is
the probability of the original formula χ, and χ′ is a 2-DNF of positive literals.

Hence, consider a monotone 2-DNF formula χ = ∨
16i6n(c1

i ∧ c2
i ) and a probability

valuation π′ mapping each variable of χ to a probability in [0, 1]. We let q be the
fixed CQ ∃xyz A(x, y) ∧B(y, z), and encode χ to a pcc-instance J = (I, C, ψ, π):

• We set dom(I) ··=
⋃

16i6n{ai, bi, ci}, and define I ··=
⋃

16i6n{A(ai, bi), B(bi, ci)}

• The circuit C consists only of input gates x for each variable x in χ

• We define π by setting π(x) ··= π′(x) for each variable x in χ

• We define ψ by setting ψ(A(ai, bi)) ··= c1
i and ψ(B(bi, ci)) ··= c2

i .

It is clear that C has treewidth 0, as it does not contain any wire, just input gates.
Further, I has treewidth 1 as it is a forest.

We now show that the reduction is correct. It is immediate that to each valuation ν
of the variables of χ corresponds a valuation ν ′ of Jinp with the same probability, and
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we have ν(χ) = 1 iff c1
i ∧ c2

i is true for some i, which happens iff both A(ai, bi) and
B(bi, ci) are in ν ′(Iχ) for some 1 6 i 6 n, i.e., iff ν ′(I) |= q. Hence, the probability
that q holds in J is exactly π′(χ). As the reduction is clearly in PTIME, this
concludes the hardness proof.

4.3 Applications to Probabilistic Relational
Frameworks

We have shown the tractability of probability evaluation on bounded-treewidth TID
instances (Theorem 4.1.1) in Section 4.1. We have introduced the richer model of
pcc-instances in the previous section, and shown that probability evaluation is also
tractable on then when we assume bounded-treewidth (Theorem 4.2.10).

In this section, we use this last result to show the tractability of probability
evaluation for GSO queries on existing probabilistic database formalisms, again under
bounded-treewidth assumptions. We first study pc-instances (Definition 4.2.1) in
Section 4.3.1, and then study BID instances in Section 4.3.2.

4.3.1 PC-Instances
To state the bounded-treewidth tractability of pc-instances, we first need to define a
notion of treewidth for them. Clearly it would not suffice to bound the treewidth of
the underlying instance, because probabilistic evaluation is clearly already hard with
a single fact with an arbitrarily complex Boolean formula as annotation. Conversely,
it does not suffice to impose that the Boolean annotations are simple, as probability
evaluation on TID instances is already #P-hard.

We thus introduce a notion of treewidth which allows us to restrict the complexity
of the underlying instance, of the annotations, and of the interaction between the
two, in the spirit of cc-instances:

Definition 4.3.1. Let σo = σ ∪ {Occ,Cooc}, where Occ and Cooc have arity two.
From a c-instance J = (I,X, ψ), assuming without loss of generality that X and
dom(I) are disjoint, we define the relational encoding IJ of J as the σo-instance I ′
with domain dom(I ′) ··= dom(I) tX where I ′ contains:

• all facts of I ′;

• a fact Occ(a, x) in IJ whenever a ∈ dom(I) occurs in a fact F ∈ I such that
ψ(F ) involves x ∈ X;

• a fact Cooc(x, y) for x, y ∈ X whenever there is a fact F in I such that x and y
both occur in ψ(F ).

The treewidth tw(J) of a c-instance J is the treewidth tw(IJ) of its relational
encoding IJ . The treewidth of a pc-instance is defined analogously as that of its
underlying c-instance. C

This notion of treewidth, through event occurrences and co-occurrences, can be
connected to treewidth for (p)cc-instances, as we now show:
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Proposition 4.3.2. For any fixed k, given a (p)c-instance J of width 6 k, we can
compute in linear time a (p)cc-instance J which is equivalent (has the same possible
worlds, with the same probabilities if applicable) and has treewidth depending only
on k and σ.

The only technicality in this proof is that we need to first rewrite the annotations
of facts in J so they have constant size. We now give the formal proof:

Proof. We first show the claim for a c-instance J = (I,X, ψ).
Let us first justify that we can compute in linear time from J a cc-instance J ′

with the same events such that for any valuation ν, we have ν(J) = ν(J ′), and the
annotations of J ′ have size depending only on k.

Indeed, we observe that, by our assumption that tw(J) 6 k, for any formula
ψ(F ), the number of distinct events occurring in ψ(F ) is at most k + 1. Indeed,
there is a Cooc-clique between such events in IJ ; now, as tw(IJ) 6 k, by Lemma 1
of [Gavril 1974], there is no clique of > k + 1 elements in IJ .

Now, we observe that any Boolean formula χ = ψ(F ) can be rewritten, in linear
time in χ, to an equivalent formula χ′ whose size depends only on k. Indeed, for
every valuation ν of the input events, which means at most 2k valuations by the
above, we can evaluate ν(χ) in linear time; then we can rewrite χ to the disjunction
of all valuations that satisfy it, each valuation being tested as the conjunction of the
corresponding events and negation of events. So we thus produce in linear time a
c-instance (I,X, ψ′) which is equivalent to J and where the size of Boolean formulae
in the image of ψ′ depends only on k. Let us assume that J has been preprocessed
in this way, so that the size of the annotations of J is bounded by a constant.

Let now J ′ = (I, C, ψ′) be the cc-instance which is the translation of the c-
instance J given in the proof of Proposition 4.2.3: remember that the inputs of C are
gx for all x ∈ X, and that, for each fact F ∈ I, we create in C a circuit representation
CF of the Boolean function ψ(F ) on X, whose inputs are some subset of Cinp and
whose internal gates are fresh, and we set ψ′(F ) to be the output gate of CF . By the
Proposition, J and J ′ are equivalent and J ′ is constructed in linear time from J ′.

Consider now the relational encoding IJ of the c-instance J and a tree decom-
position T of IJ of width k. We construct a tree decomposition T ′ of the relational
encoding IJ ′ of the cc-instance J ′ whose width depends only on k. Create T ′ to
have the same skeleton as T , and, for each bag b in T , letting b′ be the correspond-
ing bag in T ′, add to dom(b′) all elements of dom(b) ∩ dom(I), and add gx for all
x ∈ dom(b) ∩X.

Now, consider each fact F = R(a) of I. Let x be the set of events used in the
annotation ψ(F ) of F in J . Note that every pair of S = a t x co-occurs in some fact
of IJ : the elements of a co-occur in F , the elements of x co-occur in a Cooc fact, and
any pair of elements from a and x co-occur in some Occ fact. Hence, by Lemma 1
of [Gavril 1974] again, there is a representative bag bF ∈ T such that S ⊆ dom(bF ).
Add GF\Cinp to the domain of the corresponding bag b′F in T ′, where GF are the
gates of circuit CF ; by our assumption on J , the size |GF | depends only on k.

We check that T ′ thus defined is indeed a tree decomposition of the relational
encoding IJ ′ of J ′. For the first condition, observe that any fact R(g, a) of IJ ′ that
stands for a fact F = R(a) of I is covered in the bag b′F in T ′ that corresponds to the
representative bag bF in T chosen for F . Further, any fact RW(g, g′) in IJ ′ that stands
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for a wire of C, letting CF be the part of C where the wire occurs, is again covered in
the bag b′F . For the second condition, we check it for elements of dom(I) by relying
on the fact that their occurrences in T ′ exactly correspond to their occurrences of T ,
where they are a connected subtree because T is a tree decomposition. Likewise,
for elements of Cinp, we rely on the fact that the occurrences of the corresponding
element of X in T is also a connected subtree. The other elements of dom(IJ ′) are
precisely the GF for F ∈ I, which only occur in a single bag, so their occurrences
are clearly a connected subtree.

It is now clear that the width of T ′ only depends on k and σ. Indeed, for the
elements of dom(I) and Cinp added initially, there are at most k per bag. Now, for
the elements of C added subsequently, for each fact F of I, their number depends
only on k. Now, for each bag b of T , the number of distinct facts F of I such that we
choose b as the representative bag bF for F is bounded by a function that depends
only on k and σ, i.e., it is bounded by nσk|σ| where nσ is the number of relations
of σ. Hence, indeed, the width of T ′ only depends on k and σ. This concludes the
proof for c-instances.

Clearly, the same proof adapts to any pc-instance J by translating it to an
equivalent pcc-instance J ′ using Proposition 4.2.3. Hence, the same result holds for
pc-instances.

We can now combine the above with Theorem 4.2.10, and deduce the tractability
of query evaluation on bounded-treewidth pc-instances.
Theorem 4.3.3. For any fixed GSO query q and constant k ∈ N, given an input
pc-instance J of treewidth 6 k, we can compute PrJ(q) in ra-linear time in J .
Proof. Use Proposition 4.3.2 to compute in linear time a pcc-instance J ′ of bounded-
treewidth which is equivalent to the input pc-instance J . Now, use Theorem 4.2.10
to solve in ra-linear time the probability evaluation problem of q on J ′; its answer is
the same as that of the probability evaluation problem for q on J .

4.3.2 BID instances
We now study block-independent disjoint (BID) instances. Following [Barbará,
Garcia-Molina, and Porter 1992; Ré and Suciu 2007], we define:
Definition 4.3.4. A BID instance J = (I, π) is a relational instance with each
relation partitioned into key and value positions. A key of J is a pair (R, a) formed of
a relation R and a valuation of the key positions of R; the matching facts F1, . . . , Fn
of (R, a) are the R-facts whose values on the key positions match a: they form a
block. We require that ∑i π(Fi) 6 1 in each block.

The semantics JJK of J is defined as follows: instances are drawn at random
by choosing one or zero fact per block, independently across blocks. Within each
block, all facts of the block are mutually exclusive, and each fact is kept with the
probability indicated by π; so we have a non-zero probability of choosing no fact for
the block iff the probabilities of the facts of the block sum up to < 1.

We define the treewidth tw(J) of a BID instance J as that of the underlying
relational instance, forgetting about the probabilities.

To ensure ra-linear time complexity, we assume that BID instances are block-sorted,
namely, they are given with facts regrouped per blocks; otherwise our bounds are
PTIME rather than ra-linear as we first need to sort the facts. C
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We can then show that GSO query evaluation is tractable on bounded-treewidth
BID instances:

Theorem 4.3.5. For any fixed GSO query q and constant k ∈ N, given an input
block-sorted BID instance J of treewidth 6 k, we can compute PrJ(q) in ra-linear
time in J .

We again translate to a bounded-treewidth pcc-instance and use Theorem 4.2.10,
which is formally stated as follows:

Lemma 4.3.6. For any fixed k ∈ N, given a BID instance J with tw(J) 6 k, we
can compute in ra-linear time an equivalent pcc-instance J ′ where tw(J ′) depends
only on k and σ.

However, the proof of this result is not so trivial: we design J ′ by considering a
tree decomposition of J and designing a circuit to choose, for each block, a fact for
the block, in the subtree of occurrences of elements for that block.

Proof of Lemma 4.3.6. Fix k and J = (I, π). First, compute in linear time a tree
decomposition T of J of width tw(J) 6 k.

Without loss of generality, we can assume that the probabilities of facts within
each block of J are rationals with the same denominator (if this is not the case, we
normalize these probabilities in ra-linear time).

As in the proof of Lemma 3.2.6, we can assume that every fact F of J has been
assigned in linear time to a bag β(F ) of T where it is covered (i.e., writing F = R(a),
we have a ⊆ dom(β(F ))). Actually, still in the spirit of the proof of Lemma 3.2.6,
we can modify the decomposition T by copying nodes to create chains, so that we
can assume that at most one fact is assigned to each bag: in other words, β is an
injective mapping. This preprocessing can be performed in linear time.

We construct the pcc-instance J ′ = (I, C, ψ, π′) by building C, ψ, and π′, and
build a tree decomposition T ′ of the relational encoding IJ ′ of J ′. We initialize T ′ as
a copy of T , so it is a tree decomposition of I. We will add the gates of C to T ′ to
turn it into a tree decomposition of J ′.

Let K be the set of the keys of J , namely, the set of pairs (R, a) of a relation
symbol R and a tuple a that is a key in J for that relation. We write IR,a to refer to
the block of the facts of J that match the key (R, a), and we write |JR,a| to denote
the size of IR,a plus the size of π|IR,a) : i.e., the size of representing both the facts
of (R, a) and the associated probabilities. Hence, we have ∑(R,a)∈K |JR,a| = |J |, the
size of the original instance.

Now, for every (R, a) ∈ K, consider the subset of the bags Ta of T that cover a. It
is clear that Ta is a connected subtree of T , as it is the intersection for every element
a ∈ a of the occurrence subtree Ta of a, each Ta being a connected subtree because
T is a tree decomposition; further, Ta is not empty because the elements of a must
occur together in some fact of J , so they also do in some bag of T . What is more, we
can precompute in linear time the roots of all the Ta (by the same precomputation as
in the proof of Lemma 3.2.6). It is also clear that ∑(R,a)∈K |Ta| is of size linear in |J |,
as, for fixed σ and k, each bag of T can only occur in a constant number of Ta.

So we prove the result in the following way: for each (R, a) ∈ K, we compute
in time O(|JR,a| + |Ta|) a circuit CR,a to annotate the facts of IR,a in J ′, and we
add the gates of CR,a to T ′ to obtain a tree decomposition of J ′ as constructed so
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far, making sure that we add only a constant number of gates to each bag, and
only to bags in T ′ that correspond to bags in Ta. If we can manage this for every
(R, a) ∈ K, then the result follows, as we can process the blocks in J in order (as
they are provided); our final pcc-instance will have width that is still constant (for
each bag of T can only occur in a constant number of Ta, so the width increase in T ′
relative to T only depends on k and σ); and by the arguments about the sizes of the
sums, the overall running time of the algorithm is linear in J .

So in what follows we fix (R, a) ∈ K and describe the construction of CR,a and
how we complete T ′ for CR,a.

Using our preprocessed table to find the root of Ta, we can identify its nodes
by going over Ta top-down, in time linear in Ta. We now notice that for every fact
F = R(a,v) of IR,a, the bag β(F ) covers F so it must be in Ta. We write βR,a for
the restriction of the function β to the facts of JR,a.

We now say that a bag b ∈ Ta is an interesting bag when it is either in the image
of βR,a or when it is a lowest common ancestor of some subset of bags that are in the
image of βR,a. We now observe that the number of interesting bags of Ta is linear in
the number of facts of JR,a; indeed, the interesting bags form the internal nodes and
leaves of a binary tree whose leaves must all be in the image of βR,a, so the number
of leaves is at most the number of facts of JR,a, so the total number of nodes in the
tree is linear in the number of leaves.

We now define a weight function w on Ta by setting w(b) ··= 0 if b is not in the
image of βR,a and otherwise, letting F be the preimage of b in βR,a (remember that
β is injective), setting w(b) ··= π(F ). We then define bottom-up a cumulative weight
function w′ on all b ∈ Ta by setting w′(b) to be w(b), plus w′(L(b)) if L(b) ∈ Ta, plus
w′(R(b)) if R(b) ∈ Ta. For notational convenience we also extend w′ by w′(b) ··= 0
for any b such that b /∈ Ta or b does not exist. Clearly, by definition, for br the root
of Ta w′(br) is the total probability of the facts in the block IR,a.

Observe now that for any non-interesting bag b, we can represent w(b) and w′(b)
either as 0 or as a pointer to some w(b′) or w′(b′) for an interesting bag b′. Indeed, if b
is non-interesting then we must have w(b) = 0. Now we show that if b has a topmost
interesting descendant b′ then it is unique: indeed, the lowest common ancestor of
two interesting descendants of b is a descendant of b and it is also interesting, so
there is a unique topmost one. Now this means that either there is no interesting
descendant b′, and w′(b) = 0, or a topmost interesting descendent b′ does exist, and
all descendants of b that are in the image of βR,a are descendants of b′, so that
w′(b) = w′(b′) and we can just make w′(b) a pointer to w′(b′).

Now this justifies that we can compute w(b) and w′(b) for every b ∈ Ta, in a
bottom-up fashion, in time O(|Ta|+ |JR,a|): observe that we are working on rationals
with the same denominator, so the sums that we perform are sums of integers, whose
size always remains less than the common denominator. As the number of interesting
bags is linear in the number of facts of IR,a, and are the interesting bags are the only
bags for which a value needs to be written, which is a value whose size is that of the
probability of the corresponding fact in IR,a, then the computation is performed in
time O(|Ta|+ |JR,a|) overall.

We now explain how to create the circuit CR,a with the correct probabilities,
using the w and w′ functions. For each bag b ∈ Ta, we create a gate gi

b; for the root
bag br it is an input gate with probability π′(gi

br) ··= w′(br); for other bags it is a gate
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whose value is defined by the parent bag. Intuitively, gi
b describes whether to choose

a fact from JR,a within the subtree rooted at b.
For every interesting bag b, writing w′(b) = k′/d and w(b) = k/d with d the

common denominator for the block IR,a, create one input gate gh
b with probability

π′(gh
b ) ··= w(b)

w′(b) = k/k′, and one gate gh∧
b which is the AND of gh

b and gi
b. Intuitively,

the gate gh∧
b describes whether to generate the fact F with β(F ) = b, if any. If

there is such a fact F , set ψ(F ) ··= gh∧
b . Now if w′(b) > w(b) (intuitively: there is

still the possibility to generate fact at child nodes), we create one input gate g↔b
which has probability π′(g↔b ) ··= w′(L(b))

w′(b)−w(b) . Once again, this probability simplifies to
a rational whose numerator and denominator are < d. We create a gate gL

b to be
gi
b ∧ ¬gh

b ∧ g↔b (creating a constant number of intermediate gates as necessary), and
gR
b to be gi

b∧¬gh
b ∧¬g↔b , and we set gi

L(b) to be a gate equal to gL
b (e.g., an AND-gate

whose sole input is gL
b ) if L(b) exists and is in Ta, and set likewise gi

R(b) to be equal
to gR

b if R(b) exists and is in Ta.
For every non-interesting bag b, if L(b) is interesting or has an interesting

descendent we just set gi
L(b) to be equal to gi

b and set gi
R(b) to be 0. Otherwise, we

set gi
R(b) to be equal to gi

b and set gi
L(b) to be 0. Remember that only one of L(b)

and R(b) is interesting or has an interesting descendent, as otherwise b is the lowest
common ancestors of interesting bags and thus must be interesting itself.

We now observe that by construction the resulting circuit has a tree decompo-
sition that is compatible with Ta, so that we can add its gates to the nodes of T ′
corresponding to Ta, adding only constantly many nodes per bag, as required. It is
also easy to see that the circuit gives the correct distribution on the facts of JR,a,
with the following invariant: for any bag b ∈ Ta, the probability that gi

b is 1 is w′(b),
and gh∧

b , gL
b and gR

b are either all 0 if gi
b is 0 or, if gi

b is 1, exactly one is true and
they respectively have marginal probabilities w(b), w′(L(b)), and w′(R(b)). Now the
circuit construction is once again in time O(|JR,a| + |Ta|), noting that interesting
nodes are the only nodes where numbers need to be computed and written; and we
have performed the entire computation in time O(|JR,a|+ |Ta|), so the overall result
is proven.

Hence, we have shown Lemma 4.3.6, which, combined with Theorem 4.2.10,
allows us to prove Theorem 4.3.5. This concludes our study of relational probabilistic
frameworks.

4.4 Applications to Probabilistic XML
We now turn to the framework of probabilistic XML, a non-relational probabilistic
framework to represent probability distributions on tree-shaped documents. Specif-
ically, we use the PrXML framework [Kimelfeld and Senellart 2013], which allows
various probabilistic nodes in XML documents, and thus contains diverse fragments
of varying expressiveness.

We study how our tractability results for pcc-instances imply tractability results
on PrXML documents. Our first result concerns the PrXMLmux,ind fragment, for which
probabilistic choices are local, i.e., they are performed independently at various nodes
of the document. In this context, as the underlying structure is a tree and thus has
bounded-treewidth, we can show that probability evaluation for MSO over trees is
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always ra-linear. This re-proves a result that had already been shown in [Cohen,
Kimelfeld, and Sagiv 2009] using methods specific to probabilistic XML.

Theorem 4.4.21. [Cohen, Kimelfeld, and Sagiv 2009] MSO query evaluation on
PrXMLmux,ind has ra-linear data complexity.

Our next result applies to the more expressive PrXMLfie fragment, which allows
probabilistic nodes labeled with arbitrary formulae of independent events (hence the
name of fie). In this language, probability evaluation is not always tractable, even
though the XML structure is a tree: the probabilistic choices are no longer local
because the same events can be reused at arbitrary places in the document. What
we show is that query evaluation is tractable assuming that the number of events to
remember at any point in the tree is bounded by a constant.

Intuitively, we define the scope of event x in a document D as the smallest subtree
in the left-child-right-sibling encoding of D which covers the nodes whose parent edge
mentions x: intuitively, these are the places where we must remember x. The scope
size of a node n of D is then the number of events with n in their scope: intuitively,
this is the number of events to remember at n. We can then show:

Theorem 4.4.16. For any fixed k ∈ N, MSO query evaluation on PrXMLfie docu-
ments with scopes assumed to have size 6 k has ra-linear data complexity.

We will first prove the result on scopes (Theorem 4.4.16) and then use it to
prove the result on local models (Theorem 4.4.21). As the results are proven by
translating PrXML documents to pcc-instances (via pc-instances), we must first give
some prerequisites on relational translations of XML documents (Section 4.4.1), and
extend them to translate PrXML documents to pc-instances (Section 4.4.2). We then
show Theorem 4.4.16 in Section 4.4.3, and Theorem 4.4.21 in Section 4.4.4.

4.4.1 Relational Encodings of XML Documents
We first describe XML documents and their connections to relational models.

Definition 4.4.1. An XML document with label set Λ (or Λ-document) is an
unranked, rooted and ordered Λ-tree. C

We always assume that the label set Λ is fixed (not provided as input). As XML
documents are unranked, it is often more convenient to manipulate their binary
left-child-right-sibling representation:

Definition 4.4.2. The left-child-right-sibling (LCRS) representation of a Λ-document
T is the non-full Λ-tree T ′ defined as follows: each node n of T whose children are
the ordered sequence of siblings n1, . . . , nk is encoded as the node n′ with L(n′) = n′1,
R(n′1) = n′2, ..., R(n′k−1) = n′k, where each n′i is the encoding of ni. C

We now define how XML documents can be encoded to relational instances.

Definition 4.4.3. Given a Λ-document D, let σΛ be the relational signature with
two binary predicates FC and NS (for “first child” and “next sibling”), and unary
predicates Pλ for every λ ∈ Λ. The relational encoding ID of D is the σΛ-instance
whose domain dom(ID) is exactly the set of nodes of D, such that:
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• for any consecutive siblings (n, n′), NS(n, n′) holds;

• for every pair (n, n′) of a node n ∈ D and its first child n′ ∈ D following sibling
order, FC (n, n′) holds;

• for every node n ∈ D, the fact Pλ(n)(n) holds. C

Lemma 4.4.4. The relational encoding ID of an XML document D has treewidth 1
and can be computed in linear time.

Proof. Immediate: the relational encoding is clearly computable in linear time and
there is a width-1 tree decomposition of the relational encoding that has same
skeleton as the LCRS representation of the XML document.

We now define formally the language of MSO queries on XML documents [Neven
and Schwentick 2002], and show that it can be easily translated to MSO queries on
the relational encoding:

Definition 4.4.5. An MSO query on XML documents is a MSO formula where
first-order variables refer to nodes and where atoms are:

• λ(x), meaning that x has label λ;

• x→ y, meaning that x is the parent of y;

• x < y, meaning that x and y are siblings and x comes before y. C

Lemma 4.4.6. For any MSO query q on Λ-documents, one can compute in linear
time an MSO query q′ on σΛ such that for any Λ-document D, we have D |= q iff
ID |= q′.

Proof. We add a constant overhead to q by defining the predicates λ(x) for λ ∈ Λ as
Pλ(x), the predicate x < y to be the transitive closure of NS , namely:

x < y ··= ¬(x = y) ∧ ∀S (x ∈ S ∧ (∀zz′ (z ∈ S ∧ NS(z, z′))⇒ z′ ∈ S)⇒ y ∈ S)

and the predicate x→ y to be defined as follows, where z < y is encoded as above:

x→ y ··= ∃z FC (x, z) ∧ (z = y ∨ z < y)

It is clear that the semantics of those atoms on ID match that of the corresponding
atoms on D, so that a straightforward structural induction on the formula shows
that the resulting query q′ satisfies the desired properties.

As we will be working with probabilistic XML documents, where we can choose
to discard nodes, it is helpful to define a looser notion of relational encoding:

Definition 4.4.7. Given label set Λ and letting Λ′ ··= Λ t {⊥, det}, we say that a
Λ′-document D is a sparse representation of a Λ-document D′ if the root of D is
labeled with an element of Λ, and the XML document obtained from D by removing
every ⊥ node and their descendants, and replacing every det node by the collection
of its children, in order, is exactly D′.

We say that a σΛt{det,⊥} instance I is a weak relational encoding of an XML
document D with label set Λ if there exists a sparse representation D′ of D such
that I is isomorphic to the relational encoding ID′ of D′. C
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We show that we can still rewrite queries following this looser notion of encoding,
and strengthen Lemma 4.4.6:

Proposition 4.4.8. For any MSO query q on Λ-documents, one can compute in
linear time an MSO query q′ on σΛt{det,⊥} such that for any Λ-document D:

Forward: If D |= q then I |= q′ for any weak relational encoding I of D.

Backward: If D 6|= q then I 6|= q′ for any weak relational encoding I of D.

Proof. We show that any MSO query q on Λ-documents can be translated in linear
time to a MSO query q′ on Λ′-documents, where Λ′ ··= Λ t {det,⊥}, such that for
any Λ-document D:

Forward: If D |= q then D′ |= q′ for any sparse representation D′ of D.

Backward: If D 6|= q then D′ 6|= q′ for any sparse representation D′ of D.

The claimed result then follows by Lemma 4.4.6.
To explain how to design q′, consider a document D and a sparse representation

D′ of D. Define a mapping f from D to D′ witnessing this: f maps each node n of D
to the node f(n) of D′ that will be n when we evaluate D′ following Definition 4.4.7.
Let us consider a node n ∈ D with children n1, . . . , nk in order, and determine what
is the relationship between f(n) and the f(ni) in D′.

We say that a node in a Λ′-tree is regular if its label is in Λ. It is straightforward
to observe that f(n) is regular and the f(ni) are topmost regular descendants of f(n)
in D′. Further, for i < j, there is some node n′ in D′ (intuitively, the lowest common
ancestor of ni and nj, which is a descendant of f(n), possibly f(n) itself) such that
n′ is both an ancestor of f(ni) and f(nj), n′ is a descendant of f(n), and n′ has two
children n′1 and n′2 such that f(ni) is a descendant of n′1 (maybe f(ni) = n′1), f(nj)
is a descendant of n′2 (maybe f(nj) = n′2), and n′1 < n′2 in D′. Note that n′, n′1 and
n′2 are not necessarily regular nodes of D but can be det nodes. In addition, no ⊥
node can be traversed in any of the ancestor–descendant chains discussed in this
paragraph.

It is clear that we can define MSO predicates →′ and <′ in D′ following these
informal definitions (and not depending on D or D′), from the predicates →, < and
λ(·) on D′, such that for every D and sparse encoding D′ of D, for every nodes
n, n′ ∈ D, we have n→ n′ in D iff n and n′ are regular nodes of D′ and f(n)→ f(n′)
in D′, and likewise for <. Last, it is clear that the predicates λ(·) of D can be
encoded directly to the same predicates in D′.

This will prove useful when dealing with the possible worlds of probabilistic XML
documents (or relational representations thereof).

4.4.2 Probabilistic XML
We now introduce probabilistic XML documents. We start by PrXMLfie, i.e., PrXML
with formulae of independent events.

Definition 4.4.9. A PrXMLfie probabilistic XML document D = (D′, X, π) over
alphabet Λ is a triple of:
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• a set X of Boolean events;

• a (Λ t {fie})-document D′ where edges from fie nodes to their children are
labeled with a propositional formula over X;

• a probability valuation π mapping each x ∈ X used in D to an independent
probability π(x) ∈ [0, 1] of being true.

We require that the root node of D has a label in Λ.
The semantics JDK of D is obtained by extending π to a probability distribution

on valuations ν of X as usual, and defining ν(D) for ν to be D′ where all fie nodes are
replaced by the collection of their children with edge annotation Φ such that ν(Φ) = 1.
The other children of fie nodes, as well as their descendants, are discarded. C

We now define the probability evaluation problem on PrXMLfie documents:
Definition 4.4.10. The probability evaluation problem for a MSO query q over
Λ-trees and a PrXMLfie document over Λ is to determine the total probability in JDK
of the possible worlds of D that satisfy q; we study the data complexity of this
problem, i.e., its complexity as a function of D. C

We reduce probability evaluation for PrXMLfie documents to probability evaluation
in the relational setting, by encoding PrXMLfie documents to pc-instances:
Definition 4.4.11. The pc-encoding of a PrXMLfie document D = (D′, X, π) over
alphabet Λ is the pc-instance JD = (I ′D′ , X, ψ, π′) with same events, π′ = π, and:
• I ′D′ is the relational encoding ID′ of D′ seen as a Λ′-document for Λ′ ··= Λt{fie},
except that Pfie-facts are replaced by Pdet-facts, and one fact P⊥(n) is added
for all n ∈ D′; so I ′D′ is a σΛt{⊥,det}-instance.

• for any NS - or FC -fact F in I ′D′ , we set ψ(F ) ··= 1.

• for any Pλ(n)-fact F in I ′D′ with λ 6= ⊥, we set ψ(F ) to be the annotation χ of
the edge from the parent of n to n, if χ exists, and set ψ(F ) ··= 1 otherwise.

• for any P⊥(n)-fact F in I ′D′ , we set ψ(F ) ··= ¬ψ(F ′), where F ′ is the fact Pλ(n)
with λ 6= ⊥ that must exist in I ′D′ . C

Observe that in this definition of pc-encoding, the possible worlds of JD are not
relational encodings of the possible worlds of D; intuitively, they are weak relational
encodings. For instance, the fie nodes are retained (as det nodes), and FC - and NS -
facts are always retained even if the corresponding nodes are dropped (i.e., annotated
by ⊥). Intuitively again, having exactly the right facts in all possible worlds would
lead to a quadratic number of possible NS -facts in long sequences of siblings, which
is why we restrict to weak encodings (and rely on the query to perform the required
simplifications).

We now show how MSO queries can be translated from the setting of Λ-documents
to the relational setting in a way that preserves satisfaction of queries between
valuations of PrXMLfie documents and their pc-encodings:
Proposition 4.4.12. For any MSO query q on Λ-documents, letting Λ′ ··= Λ t
{det,⊥}, one can compute in linear time an MSO query q′ on σΛ′-instances such that
for any PrXMLfie XML document D, for any valuation ν of D, we have ν(D) |= q iff
ν(JD) |= q′.
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Proof. We prove that for any valuation ν of D, we have that ν(JD) is a weak encoding
of ν(D). The result then follows by Proposition 4.4.8, as we can just use q′ as defined
by that proposition.

Let ν be a valuation of D. Let D′ be the (Λ t {det,⊥})-document obtained
from D by replacing all nodes not kept in ν(D) by ⊥-nodes, relabeling all fie-nodes to
be det-nodes, and removing all edge annotations. It is then clear that D′ is a sparse
representation of ν(D) and that the relational encoding ID′ of D′ is isomorphic to
ν(JD). Hence, ν(JD) is a weak encoding of ν(D), which concludes the proof.

We have now introduced all the required preliminaries to study our tractability
conditions on PrXML documents.

4.4.3 Tractability for PrXMLfie Assuming Bounded Scopes
We cannot hope that the pc-encoding of a PrXMLfie document always has constant
treewidth, for it is known that the probability evaluation problem for MSO queries
on arbitrary PrXMLfie documents is #P -hard [Kimelfeld, Kosharovsky, and Sagiv
2008, Theorem 5.2].

However, a clear case where probability evaluation is tractable on PrXMLfie

documents D is when the pc-encoding of D has bounded treewidth (as defined in
Definition 4.3.1). Indeed, Proposition 4.4.12 and Theorem 4.3.3 clearly imply the
following:

Corollary 4.4.13. For PrXMLfie documents with bounded-treewidth pc-encoding, the
MSO probability evaluation problem can be solved in ra-linear time data complexity.

The notion of bounded scopes that we will define is a sufficient condition to ensure
this. We give its formal definition:

Definition 4.4.14. Consider a PrXMLfie document (D,X, π). We say that an event
x ∈ X occurs at a node n of D if x occurs in the annotation of the edge from the
parent of n to n. Let D′ be the LCRS representation of D, and define for every
x ∈ X the smallest connected subtree D′x of D′ that covers all nodes n of D′ such
that x occurs at n in D. The event scope S(n) of a node n ∈ D′ is {x ∈ X | n ∈ D′x}.
The event scope width of D is ws(D) ··= maxn∈D′ |S(n)|. C

We are now ready to prove the result on XML element scopes. The key point
is that the pc-encoding JD of bounded-scope PrXMLfie documents has bounded
treewidth, as is witnessed by the tree decomposition of JD that follows the structure
of D′ but adds the additional events as described by the scopes.

Proposition 4.4.15. For any PrXMLfie document D, we have tw(JD) 6 ws(D) + 1.

Proof. Write JD = (I,X, ψ, π), and let us define a tree decomposition T of JD. Start
by the tree decomposition T of I that is isomorphic to the LCRS encoding D′ of D:
the root node nr of D′ is coded to a bag bnr containing {nr}, and each node n of the
LCRS encoding with parent n′ is coded to a bag bn containing {n′, n}. It is clear that
T so far is such that, for any node n of D, the occurrences of n in T are connected
subtrees: each n occurs precisely in bn and bn′ for all children n′ of n in D.

We now add to T , for each bag bn corresponding to a node n, the events of S(n).
It is clear that T is of the prescribed width, and that the occurrences of all events are
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connected subtrees, because scopes are defined as connected subtrees of D′ containing
the events.

We now argue that T is a tree decomposition of the relational encoding of the
pc-instance JD, but this is easily seen: T covers all NS - and FC - facts represented
in JD, and covers all occurrences and co-occurrences by construction of the scopes.

Thanks to Corollary 4.4.13, we conclude our tractability result on PrXMLfie

documents:

Theorem 4.4.16. For any fixed k ∈ N, MSO query evaluation on PrXMLfie docu-
ments with scopes assumed to have size 6 k has ra-linear data complexity.

4.4.4 Tractability of PrXMLmux,ind

We now introduce the definitions and proofs for the local model, PrXMLmux,ind.

Definition 4.4.17. A PrXMLmux,ind probabilistic document is an XML document D
over Λt{ind,mux}, where edges from ind and mux nodes to their children are labeled
with a probability in [0, 1], the annotations of outgoing edges of every mux node
summing to 6 1. We require the root of D to have label in Λ.

The semantics JDK of D is defined as follows:

• for every ind node, decide to keep or discard each child according to the
indicated probability, and replace the node by the (possibly empty) collection
of its kept children;

• for every mux node, choose one child node to keep according to the indicated
probabilities (possibly keep no node if they sum to < 1), and replace the mux
node by the chosen child (or discard it if no child was chosen).

All probabilistic choices are performed independently. When a node is discarded, so
are its descendants.

We define the probability evaluation problem for MSO queries on PrXMLmux,ind

documents analogously to Definition 4.4.10. C

Our goal is to show the tractability of probability evaluation on arbitrary
PrXMLmux,ind-documents, thanks to the fact that probabilistic choices are “local” and
follow the tree structure. To do this, we first show that we can rewrite PrXMLmux,ind

documents to a simpler form:

Definition 4.4.18. We say that a PrXMLmux,ind is in binary form if it is a full binary
tree, and the sum of the outgoing probabilities of every mux node is equal to 1.

Two PrXMLmux,ind documents D1 and D2 are equivalent if for every XML docu-
ment D, we have PrD1(D) = PrD2(D). C

Lemma 4.4.19. From any PrXMLmux,ind document D, we can compute in ra-linear
time in D an equivalent PrXMLmux,ind document D′ which is in binary form.

Proof. In this proof, for brevity, we use det nodes to refer to ind nodes whose child
edges are all annotated with probability 1.

We rewrite each mux node n of D whose outgoing probabilities sum up to < 1 by
adding a single det child to n whose parent edge carries the remaining probability
for n. This operation is in ra-linear time.
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Next, add det nodes to rewrite the children of regular and ind nodes to a chain
so that all regular and ind nodes have at most 2 children. This only causes a
constant-factor blowup of the document, so it is in linear time.

Next, rewrite mux nodes with more than two children to a hierarchy of mux
nodes in the obvious way: considering a mux node n with k children n1, . . . , nk
and probabilities p1, . . . , pk summing to 1, we replace n by a hierarchy n′1, . . . , n′k−1
of mux nodes: the children of each n′i is ni with probability pi∑

j<i
pj

and n′i+1 with
probability 1− pi∑

j<i
pj
; except for n′k−1 whose children are nk−1 and nk (with these

same probabilities). This operation can be performed in ra-linear time.
Now, replace mux nodes with < 2 children by ind nodes (the probabilities are

unchanged).
Last, add det children to nodes so that the degree of every node is either 2 or 0.
It is thus clear that the process that we described can be performed in ra-linear

time overall, and that the resulting document is in binary form; equivalence has been
maintained through all steps.

Now, we can show:

Proposition 4.4.20. For any PrXMLmux,ind document D in binary form, one can
compute in linear time an equivalent PrXMLfie document whose scopes have size 6 1.

Proof. For every ind node n with two children n1 and n2 having probabilities p1
and p2, introduce two fresh events xind,1

n and xind,2
n with probabilities p1 and p2, and

replace n by a fie node so that its first and second outgoing edges are annotated
with xind,1

n and xind,2
n .

Likewise, for every mux node n with two children n1 and n2 with probabilities
p and 1− p, introduce a fresh event xmux

n with probability p and replace n by a fie
node so that its first and second outgoing edges are annotated with xmux

n and ¬xmux
n .

It is immediate that the resulting document D′ is equivalent to D. Now, consider
the scope of any node of this document. Only one event occurs at this node, and the
only events that occur more than one time in the document occur exactly twice, on
the edges of two direct sibling nodes, so they never occur in the scope of any other
node. Hence all scopes in D have size 6 1.

From this, we deduce the tractability of probability evaluation for MSO queries
on PrXMLmux,ind, as was already shown in [Cohen, Kimelfeld, and Sagiv 2009]:

Theorem 4.4.21. [Cohen, Kimelfeld, and Sagiv 2009] MSO query evaluation on
PrXMLmux,ind has ra-linear data complexity.

4.5 Connection to Safe Queries
We now leave the context of existing relational and XML probabilistic frameworks,
and show another consequence of our results, by connecting them to query-based
tractability conditions.

More specifically, we focus on UCQs that are tractable in the sense of having
polynomial OBDD representations of their lineage: by the results of [Jha and Suciu
2013], those are the inversion-free UCQs.
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As we will show, the tractability of such queries can also be explained by our
data-based tractability conditions: for any inversion-free UCQ, we can rewrite the
input instances to constant pathwidth instances in a provenance-preserving way.

To do this, we introduce a general notion of unfoldings in Section 4.5.1. We then
apply this notion to inversion-free UCQs in Section 4.5.2, and re-prove that they
have polynomial OBDDs on any input instance, intuitively because input instances
can be rewritten in PTIME to a bounded-pathwidth instance.

4.5.1 Unfoldings
Our results are based on instance rewritings of a general kind. We let I denote
an arbitrary instance in this subsection, and let q denote a query closed under
homomorphisms.

Definition 4.5.1. An unfolding of instance I is an instance I ′ with a homomorphism
h to I which is bijective on facts: for any fact F (a) of I, there is exactly one fact
F (a′) in I such that h(a′i) = ai for all i. C

The bijection defined by the homomorphism allows us to see the provenance
Prov(q, I ′) of q on an unfolding I ′ of I as a Boolean function on the same variables
as the provenance Prov(q, I) of q on I.

We use unfoldings as a tool to show lineage-preserving instance rewritings. Indeed,
we can immediately see from the homomorphism h from I ′ to I that any match of q
in I ′ is preserved in I through h. In other words:

Lemma 4.5.2. If I ′ is an unfolding of I, then for any valuation ν of the facts of I,
if ν(Prov(q, I ′)) = 1 then ν(Prov(q, I)) = 1.

The converse generally fails, but a sufficient condition is:

Definition 4.5.3. An unfolding I ′ of I respects q if, for any match M ⊆ I of q on I,
letting M ′ be its preimage in I ′, we have M ′ |= q. C

Intuitively, the unfolding does not “break” the matches of q. This ensures that
the lineage is preserved exactly:

Lemma 4.5.4. If I ′ is an unfolding of I that respects q, then Prov(q, I) and
Prov(q, I ′) are the same Boolean function.

Proof. By Lemma 4.5.2, it suffices to show that for any match M of q in I, the
preimage M ′ of M by the bijection on facts is also a match of q; but this is precisely
what is guaranteed by the fact that I respects q.

4.5.2 Inversion-Free UCQs
We use unfoldings to study Boolean constant-free inversion-free UCQ queries. I will
not restate their formal definition here, and refer the reader to [Jha and Suciu 2013,
Section 2]. The following is known:

Theorem 4.5.5. [Jha and Suciu 2013, Proposition 5] For any inversion-free UCQ q,
for any input instance I, the lineage of q on I has an OBDD of constant width (i.e.,
the width only depends on q).
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When studying inversion-free UCQs, it is convenient to assume that the ranking
transformation was applied to the query and instance [Dalvi, Schnaitter, and Suciu
2010; Dalvi and Suciu 2012]. A UCQ is ranked if, defining a binary relation on its
variables by setting x < y when x occurs before y in some atom, then < has no cycle.
In particular, in a ranked query, no variable occurs twice in an atom. An instance
is ranked if there is a total order < on its domain such that for any fact R(a) and
1 6 i < j 6 |R|, we have ai < aj. In particular, no element occurs twice in a fact.
Up to changing the signature, we can always rewrite a UCQ q to a ranked UCQ q′,
and rewrite separately any instance I to a ranked instance I ′, so that the lineage
of q on I is the same as that of q′ on I ′; see [Dalvi, Schnaitter, and Suciu 2010; Dalvi
and Suciu 2012] for details.

We will thus assume that the ranking transformation has been applied to the
query, and to the instance. Note that this can be performed in linear time in the
instance, and does not change its treewidth or pathwidth (the Gaifman graph is
unchanged by this operation).

Once this ranking transformation has been performed, we can show the following:

Theorem 4.5.6. For any ranked inversion-free UCQ q, for any ranked instance I,
there is an unfolding I ′ of I that respects q and has pathwidth 6 |σ|.

Hence, in particular, Prov(q, I) = Prov(q, I ′), as shown by Lemma 4.5.4. By
Theorem 3.5.4, this implies the result of Theorem 4.5.5, and (via Proposition 3.5.5)
generalizes it slightly: it shows that Prov(q, I) can even be represented by a bounded-
pathwidth circuit.

Theorem 4.5.6 thus suggests that the tractability of probability evaluation for
inversion-free UCQs can be understood in terms of bounded-pathwidth tractability:
what inversion-free UCQs “see” in an instance is a bounded pathwidth structure.
The rest of this section proves Theorem 4.5.6.

The roadmap of the proof is as follows. We use an inversion-free expression [Jha
and Suciu 2013] for q to define an order on relation attributes which is compatible
across relations. We then unfold each relation by distinguishing each element
depending on the tuple of elements on the preceding positions; this is inspired by
[Jha and Suciu 2013, Proposition 5]. The result preserves the inversion-free expression
and has a path decomposition that enumerates the facts lexicographically.

To follow this roadmap, we start by defining inversion-free expressions as in [Jha
and Suciu 2013]:

Definition 4.5.7. A hierarchical expression [Jha and Suciu 2013] is a logical sentence
built out of atoms, conjunction, disjunction, and existential quantification, where
each variable is a root variable, i.e., occurs in all atoms in the scope of its existential
quantifier.

An inversion-free expression is a hierarchical expression such that, for each
relation symbol R, we can define a total order <R on its positions {R1, . . . , R|R|},
such that, in every R-atom R(x), if Ri <R R

j then the quantifier ∃xj in the query is
in the scope of the quantifier ∃xi. C

By Proposition 2 of [Jha and Suciu 2013], a ranked UCQ is inversion-free iff it
can be written as an inversion-free expression, so it suffices to show Theorem 4.5.6
for inversion-free expressions.
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We first define our unfolding I ′ of an input instance I. For each fact R(a) of I,
we create the fact R(b) defined as follows. Writing Ri1 <R · · · <R R

in the positions
of R according to the total order <R, we define bi1 as the tuple (ai1), and define
bij as the tuple formed by concatenating bij−1 and (aij). We call fR the operation
thus defined, with b = fR(a). Clearly the operation h mapping each tuple to its last
element is a homomorphism from I ′ to I, and it is bijective on facts because it is the
inverse of the operation that we described. Hence, I ′ is an unfolding of I.

We must show that I ′ has bounded pathwidth. To do this, consider the sequence
A of the |σ|-tuples of elements of dom(I), ordered in lexicographic order, following
the ranking order on the domain of I. Consider a path decomposition whose sequence
of bags are obtained from those tuples (in this order) by taking all possible non-empty
truncations (as prefixes). We claim that this is indeed a path decomposition. Indeed:
• We show that any fact F ′ of I ′ is covered. Indeed, by definition of I ′, all its

facts contain an element such that all other elements of the facts are truncations
of that element. Letting a be this element for F , it is then clear that F is
covered at any node created for a tuple in A of which a is a prefix.

• We show that the occurrences of any element are consecutive. This is immediate:
the occurrences of any tuple a are precisely the subsequence of tuples of A of
which a is a prefix.

Further, this path decomposition clearly has width at most |σ|. Note that this
definition is similar to the construction used in the proof of Proposition 5 in [Jha
and Suciu 2013].

The only thing left to show is that I ′ respects q. For this, let us consider the
inversion-free expression Q of q. For any subexpression ϕ of Q with free variables x,
let us define the ordered free variables of ϕ, denoted ofv(ϕ), as follows. If ϕ contains
no atoms (i.e., it is the constant formula “true” or “false”), then x is empty and
so is ofv(ϕ). Otherwise, as Q is inversion-free, it is in particular hierarchical, so all
free variables of ϕ must occur in all atoms of ϕ: this is by definition, for any free
variable xi of ϕ, of the subexpression of Q that includes ϕ whose outermost operator
is ∃xi. Hence, consider any atom A = R(x), and, remembering that no variable
occurs twice in A (as Q is ranked), define ofv(ϕ) as the total order on x given by
xi < xj iff Ri <R R

j.
It is clear that ofv(ϕ) is well-defined, i.e., that does not depend on our choice of

atom in ϕ: this is because Q is an inversion-free expression, so the order of variables
in atoms must reflect the order in which the variables are quantified.

We now show the claim that I ′ respects Q:
Lemma 4.5.8. If I has a match M of Q, then, defining M ′ by mapping each fact
R(a) of M to the fact R(fR(a)) of I ′, M ′ is a match of Q in I ′.
Proof. Let f be defined on tuples of dom(I) by f(a) ··= (a1, (a1, a2), . . . , a). For
any subformula ϕ with n free variables and for any n-tuple a of dom(I), we write
I |= ϕ[ofv(ϕ) ··= a] to mean the Boolean formula with constants obtained by
substituting each variable in ofv(ϕ) by the corresponding element in a following the
order of a and ofv(ϕ).

We proceed by induction on the subformulae of Q, showing that if a subformula ϕ
and tuple a ∈ dom(M) is such that M |= ϕ[ofv(ϕ) ··= a], then M ′ |= ϕ[ofv(ϕ) ··=
f(a)].
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• For atoms, this is by definition of ofv and by definition of M ′.

• For ϕ ∧ ψ, we observe that we have ofv(ϕ) = ofv(ϕ ∧ ψ) = ofv(ψ): write
x to refer to these ordered free variables. If M |= (ϕ ∧ ψ)[x ··= a], then
M |= ϕ[x ··= a] and M |= ψ[x ··= a], as by induction M ′ |= ϕ[x ··= f(a)] and
M ′ |= ψ[x ··= f(a)], we deduce M ′ |= (ϕ ∧ ψ)[x ··= f(a)]

• For ϕ ∨ ψ, the reasoning is the same.

• For ϕ : ∃y ψ, writing x ··= ofv(ϕ), by definition of ofv, y is the last variable of
x′ ··= ofv(ψ). As M |= ϕ[x ··= a], by definition there is c ∈ dom(M) such that,
letting a′ be the concatenation of a and c, M |= ψ[x′ ··= a′]. By induction
hypothesis we have M ′ |= ψ[x′ ··= f(a′)], and as removing the last element of
f(a′) yields f(a), we deduce that M ′ |= (∃y ψ)[x ··= f(a)].

The outcome of this induction is thatM |= Q impliesM ′ |= Q, the desired claim.

This concludes the proof of Theorem 4.5.6, and concludes our study of inversion-
free queries. We now move to another application of our results.

4.6 Application to Match Counting
We conclude this chapter with a last application of our results, for the match counting
problem, as defined in Section 2.6. Note that match counting should not be confused
with model counting (counting how many subinstances satisfy a Boolean formula)
which is closely related1 to probability evaluation.

We show that we can solve in ra-linear time the match counting problem for
GSO queries with free variables. This proceeds via a reduction to the probability
evaluation problem, which we solve using our methods. This result was shown for
MSO in [Arnborg, Lagergren, and Seese 1991].

Theorem 4.6.1. [Arnborg, Lagergren, and Seese 1991] For any fixed GSO query
q(X,x) with free first- and second-order variables, for any constant k ∈ N, given an
input instance I of width 6 k, the match counting problem for q on I can be solved
in ra-linear data complexity.

Proof. We will show the result for GSO queries q(X) where all free variables are
second-order, as we can clearly rewrite any GSO query to replace each free first-order
variable x to a free monadic second-order variable X, adding a conjunct that asserts
that X contains exactly one element, and using quantification variable x in the query
to bind it to the one element of X.

Consider the input treelike instance I over signature σ, and augment the signature
to σ′ by adding an ni-ary relation Ai for each free second-order variable Xi of q of
arity ni. We then let I ′ be the instance obtained from I by adding, for each variable
Xi of arity ni, the fact Ai(a1, . . . , ani) to I, for each guarded tuple a of I. As each
fact of I guards a number of tuples whose number only depends on σ, the number of
guarded tuples of I is linear in I, and we can construct this instance I ′ in linear time

1The number of models of a query q in an instance of size n is 2n multiplied by the probability
of q under the valuation that gives probability 1/2 to each fact.
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in I. Let q′ be the Boolean GSO query obtained from q by replacing each occurrence
of each free variable Xi in an atom Xi(x) by the atom Ai(x).

Now construct in linear time in I a d-DNNF representation C of Prov(q, I ′) using
Theorem 3.5.8. Change C to C ′ by replacing by a 1-gate all input gates of C that
stand for a fact of I, so the inputs of C correspond exactly to the facts of I ′\I. It
is immediate that there is a bijection between assignments of X on dom(I) and
subinstances I ′′ of I ′ such that I ⊆ I ′′, from which we deduce that there is a bijection
from such assignments to the valuations of C ′: the bijection maps any assignment B
of X to the valuation νB of C ′inp obtained by setting the gate for each fact Ai(a) to 1
iff Bi contains the tuple a. Further, it is immediate that I |= q(Bi) iff ν(I ′) |= q′, that
is, iff ν(C ′) evaluates to 1. Hence, we have shown that the number N of matches of q
on I is exactly the number of valuations that satisfy C ′, that is, letting N ′ ··= 2|I′\I|,
we have N ··= N ′ · π(C ′) where π maps each g ∈ C ′inp to 1/2.

Hence, we compute in ra-linear time p ··= π(C ′) using Theorem 4.1.3, and, as N ′
is singly exponential in |I|, we can compute in ra-linear time from p the number N
of matches of q on I by the previous formula, concluding the proof.
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Chapter 5

Extending to General Semirings

We have shown in the previous chapter how our general construction of provenance on
treelike instances, described in Chapter 3, could be used to derive the tractability of
probability evaluation for many existing relational and XML probabilistic frameworks,
assuming that treewidth is bounded.

In this chapter, we extend the results of Chapter 3 in a different direction: we
show how they connect to the existing definitions of semiring provenance on arbitrary
relational instances [Green, Karvounarakis, and Tannen 2007].

We start in Section 5.1 by recalling the fundamental definitions of semiring
provenance [Green, Karvounarakis, and Tannen 2007]. We notice that our definitions
of Boolean provenance in themonotone case (Section 3.4) already capture PosBool[X]-
provenance, i.e., the provenance of queries in the semiring of positive Boolean
functions. We accordingly focus on provenance in the universal semiring N[X], for
which we limit our study to UCQ6= queries; the reason for this is presented at the
end of the chapter, in Section 5.4. Under this restriction, we can show:

Theorem 5.3.10. For any fixed k ∈ N and UCQ6= query q, for any σ-instance I
such that tw(I) 6 k, one can construct a N[X]-circuit that captures ProvN[X](q, I) in
time O(|I|). The treewidth of C only depends on k and q (not on I).

To prove this theorem, we start by extending our provenance constructions
for trees (Theorem 3.1.4) in Section 5.2, to support what is needed to compute
N[X]-provenance. We then generalize this result to treelike instances and UCQ
queries in Section 5.3, for which we must revisit our tree interpretation scheme, and
conclude the proof of the result.

5.1 Defining Semiring Provenance
We now review standard definitions of semiring provenance. We start by defining
and exemplifying semirings in Section 5.1.1. We then present in Section 5.1.2 the
semiring provenance of Datalog queries as defined in [Green, Karvounarakis, and
Tannen 2007]; we focus on N[X]-provenance as it captures all other semirings. In
particular, we show that the result of specializing N[X]-provenance for Datalog
programs matches the notion of provenance that we studied so far.

We then restrict to UCQ and UCQ6= queries in Section 5.1.3, for which we give a
simplified N[X]-provenance definition: for UCQs, which can be expressed in Datalog,
the definition matches that of [Green, Karvounarakis, and Tannen 2007]. We will use
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these definitions in the rest of this chapter to show how to extend our constructions
to capture N[X]-provenance for UCQ6= queries.

5.1.1 General Semiring Definitions
We start by recalling the definition of commutative semirings (all semirings that we
consider will be commutative):

Definition 5.1.1. A commutative semiring (K,⊕,⊗, 0K , 1K) is a set K with binary
operations ⊕ and ⊗ and distinguished elements 0K and 1K , such that (K,⊕) and
(K,⊗) are commutative monoids with identity element 0K and 1K , the operation ⊗
distributes over ⊕, and 0K ⊗ a = 0K for all a ∈ K. C

The provenance in a semiring K for positive relational algebra queries according
to [Green, Karvounarakis, and Tannen 2007] is defined on instances where each fact
is annotated with an element of K. The provenance of such a query on such an
instance is an element of K obtained by combining fact annotations when applying
each operator of the query, intuitively describing how the query output depends on
the annotations.

We will soon formalize this, but for now, let us consider a few examples of
semirings, along with the intuition of the provenance that we obtain if we use them:

Example 5.1.2. For any variable set X, we call PosBool[X] the monotone Boolean
functions over X. We can define a semiring structure (PosBool[X],∨,∧, 0, 1), where
∨ and ∧ denote the Boolean OR and AND operations on PosBool[X] (i.e., f ∨ g is
the Boolean function defined by ν(f ∨ g) ··= ν(f) ∨ ν(g), and likewise for ∧), and
0 and 1 denote the constant Boolean functions. Observe that ∨ is an associative
operation with identity element 0, that ∧ is an associative operation with identity 1,
that ∧ distributes over ∨, and that 0 is absorptive for ∧, i.e., 0 ∧ ϕ = 0 for all
ϕ ∈ PosBool[X].

The natural numbers N, with the usual sum + and product ×, and with 0, 1 ∈ N,
form a semiring. On instances where facts are all annotated with 1 ∈ N, the
N-provenance of a query describes its number of matches under the bag semantics.

The security semiring S [Foster, Green, and Tannen 2008] is defined on the
ordered set 1S < C < S < T < 0S (respectively: always available, confidential, secret,
top secret, never available) as ({1, C, S, T, 0},min,max, 0, 1). The S-provenance of a
query, on an instance where facts are labeled by their security clearance, denotes the
minimal clearance level required to see that the query holds.

The fuzzy semiring [Amsterdamer, Deutch, and Tannen 2011] is the semiring
([0, 1],max,min, 0, 1). On instances where facts are annotated with a fuzziness level
in [0, 1], the provenance of a query for this semiring is the minimal fuzziness value
that has to be tolerated for the facts used to witness that the query is satisfied.

The tropical semiring [Deutch, Milo, Roy, and Tannen 2014] is the semiring
(N t {∞},min,+,∞, 0). On instances where each fact is annotated by its cost, the
tropical provenance of a query is the minimal cost of the facts required to satisfy it,
with multiple uses of a fact being charged multiple times.

For any set of variables X, the polynomial semiring N[X] is the semiring of
polynomials with variables in X and coefficients in N, with the usual sum and
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product over polynomials, and with 0, 1 ∈ N. The N[X]-provenance of queries, as we
will see, captures the provenance for any other semiring.

5.1.2 N[X]N[X]N[X]-Provenance and PosBool[X]-Provenance
We define provenance for the Datalog query language (as defined in Section 2.5),
because it is the most expressive query language studied in [Green, Karvounarakis,
and Tannen 2007]. Here is the formal definition of semiring provenance for Datalog,
according to [Green, Karvounarakis, and Tannen 2007]:

Definition 5.1.3. [Green, Karvounarakis, and Tannen 2007] Given a semiringK and
an instance I where each fact F carries an annotation α(F ) ∈ K, the K-provenance
of a Datalog query P on I is:

ProvK(P, I) ··=
⊕

T proof
tree of P

⊗
n leaf
of T

α(n).

Note that this expression may not always be defined depending on the query, instance,
and semiring. In particular, the number of terms in the sum may be infinite, so that
the result cannot necessarily be represented in the semiring. C

N[X]N[X]N[X]-provenance. Instead of working in an arbitrary semiring K and with arbi-
trary instance annotations, it will be simpler to fix K to be the semiring N[X], and
fix instance annotations to give each fact its own variable.

Indeed, as shown by [Green, Karvounarakis, and Tannen 2007], the provenance
of any Datalog query P , for any semiring K, can be computed from the N[X]-
provenance of P on instances where each fact is annotated by its own variable in X.
Indeed, the provenance can then be specialized to K, by interpreting the resulting
expression as an expression in K, and the actual annotations in K of the instance
facts, once known, can be used to replace the variables in the expression, thanks to
a commutation with homomorphisms property.

Hence, except for the next paragraph about PosBool[X], the rest of this chapter
focuses on N[X]-provenance, and assumes each instance fact to be labeled by its
own element in X. This is without loss of generality, and covers all of the previous
examples.

PosBool[X]-provenance. We note, however, that specializing N[X]-provenance
to the semiring PosBool[X] of positive Boolean functions yields back the definition
of provenance that we have defined in Chapter 3.

Proposition 5.1.4. For any Datalog program P and instance I, the PosBool[X]-
provenance of P on I, i.e., the result of specializing ProvN[X](P, I) to PosBool[X],
is exactly Prov(q, I).

Proof. Let P be a Datalog program and I be an instance where each fact F of I is
labeled by its own variable α(F ) in X. Specializing the definition of Definition 5.1.3,
we obtain:

ProvPosBool[X](P, I) ··=
∨

T proof
tree of P

∧
n leaf
of T

α(n).
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Observe now that for any I ′ ⊆ I, which we can write I ′ = ν(I) for some valuation ν,
we have ν(ProvPosBool[X](P, I)) = 1 iff one of the disjuncts is satisfied, namely, iff I ′
contains all leaves of some derivation tree P , which is clearly equivalent to saying
that I ′ |= P . Hence, we have ν(ProvPosBool[X](P, I)) = 1 iff ν(I) |= P , which is
precisely the definition of Prov(P, I).

Therefore, the two definitions indeed match, which concludes the proof.

This implies that the results of Section 3.4 already apply to PosBool[X]-provenance,
for those Datalog queries that can be expressed in GSO. In particular, by Theo-
rem 3.4.2, we can compute PosBool[X]-provenance circuits, i.e., monotone Boolean
circuits, representing the PosBool[X]-provenance of such queries on treelike instances,
in linear time data complexity.

5.1.3 Restricting to UCQ 6=

We have explained why we can understand our previous sections as semiring prove-
nance constructions for monotone queries, in the specific semiring PosBool[X]. It is
then natural to try to extend them to N[X]-provenance constructions, which we do
in the rest of this chapter.

To do so, we will need to restrict the query language; we will revisit this restriction
in Section 5.4. Specifically, we will restrict to UCQ 6= queries, which are in particular
monotone. Importantly, throughout this chapter, we allow UCQ6= queries to contain
multiple occurrences of the same atom, e.g., we do not identify the queries ∃x R(x) and
∃x R(x) ∧R(x), intuitively because they will have different N[X]-provenances, even
though they are logically equivalent (and have the same PosBool[X]-provenance).

We first define the provenance of UCQ queries via the definition of provenance
for Datalog queries given above. We later give an equivalent restatement of this
definition, which we use in the sequel, which is also generalized to UCQ6=. Here is our
definition of the N[X]-provenance of UCQ queries through provenance for Datalog:

Definition 5.1.5. We assume that CQs and UCQs contain no equality atoms. The
Datalog query Pq associated to a CQ q has only one rule, Goal← q. The Datalog
query Pq associated to a UCQ q = ∨

i qi has rules Goal ← q1, ..., Goal ← qn. The
N[X]-provenance of a CQ or UCQ query q, on an instance where each fact is labeled
by its own variable in X, is ProvN[X](Pq, I) defined as in Definition 5.1.3.

Observe that in this case the provenance of Pq in the sense of Definition 5.1.3 is
always defined, no matter the semiring, as the number of possible derivation trees is
clearly finite. C

It will be simpler, however, to work with the following equivalent definition of
N[X]-provenance for UCQ, which we extend to UCQ 6=:

Definition 5.1.6. Let q = ∨n
i=1 ∃xi qi(xi) be a UCQ6= query, where each qi is a CQ6=.

The N[X]-provenance of q on an instance I is defined as:

ProvN[X](q, I) ··=
n⊕
i=1

⊕
f :xi→dom(I)

such that
I|=qi(f(xi))

⊗
A(xi)∈qi

A(f(xi))

In other words, we sum over each disjunct, and over each match of the disjunct
(which must in particular respect the disequality atoms); for each match, we take

80



Antoine Amarilli Leveraging the Structure of Uncertain Data

the product, over the atoms of the disjunct, of their image fact in I. Note that we
identify each fact to the one variable in X that annotates it. C

We show that the above definition, for the case of UCQ queries, is equivalent to
the Datalog-based one, so that we can indeed use it in the rest of this chapter:

Proposition 5.1.7. For any UCQ q, ProvN[X](q, I) (Definition 5.1.6) is exactly
ProvN[X](Pq, I) (Definition 5.1.3).

Proof. We first show the claim for any CQ q. The proof trees for Pq have a fixed
structure, the only unspecified part being the assignment of variables. It is then
clear that each variable assignment gives a proof tree, and this mapping is injective
because all variables in the assignment occur in the proof tree, so the sum in both
definitions of provenance is over the same set. Further, each term of the sum in
ProvN[X](Pq, I) is the leaves of the proof tree, which is how we defined ProvN[X](q, I).
So the claim is proven for any CQ.

To extend the claim to any UCQ q, notice that the set of proof trees of Pq is the
disjoint union of the set of proof trees of each CQ, which follows our definition of
ProvN[X](q, I).

We conclude with an example to illustrate N[X]-provenance and compare it to
PosBool[X]-provenance. This illustrates some of the challenges that we will have to
face in the rest of this chapter.

Example 5.1.8. Consider the instance I = {F1 ··= R(a, a), F2 ··= R(b, c), F3 ··=
R(c, b)} and the CQ q : ∃xy R(x, y) ∧R(y, x). We have ProvN[X](q, I) = F 2

1 + 2F2F3
and Prov(q, I) = F1 ∨ (F2 ∧ F3).

Unlike PosBool[X]-provenance, N[X]-provenance can describe that multiple atoms
of the query map to the same fact (here, F1), and that the same subinstance is
obtained with two different query matches (here, F2F3).

Evaluating the N[X]-provenance in the semiring N with facts annotated by 1, we
deduce that q has 12 + 2× 1× 1 = 3 matches.

5.2 Semiring Provenance Circuits for Trees
We now start to investigate how we can extend our results in Chapter 3 to capture
the N[X]-provenance ProvN[X](q, I) of a UCQ6= q on a treelike instance I, using the
definition of the previous section.

We start in this section by extending the results of Section 3.1, i.e., we work
with tree automata on uncertain trees. We will build on this in the next section to
generalize Section 3.3, i.e., our results on treelike instances. Our goal in this section
is thus to give a definition of N[X]-provenance for tree automata, and show how we
can compute provenance circuits for this definition.

First, our definition should capture the number of uses of each fact. To do this,
instead of considering Γ-trees, we consider Γp-trees for p ∈ N, whose label set is
Γ × {0, . . . , p} rather than Γ × {0, 1}. Intuitively, rather than uncertainty about
whether facts are present or missing, we represent uncertainty about the number of
available copies of facts, as UCQ matches may include the same fact multiple times.
We write Valp(T ) for the set of all p-valuations ν : V → {0, . . . , p} of a Γ-tree T .
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Second, we must capture the number of matches, which we do using the nondeter-
minism of our tree automata. We write |aruns(A, T )| for a Γp-tree T and Γp-bNTA A
to denote the number of accepting runs of A on T .

We can now define:

Definition 5.2.1. The N[X]-provenance of a Γp-bNTA A on a Γ-tree T for p ∈ N is

ProvN[X](A, T ) ··=
⊕

ν∈Valp(T )
|aruns(A, ν(T ))| ⊗

⊗
n∈T

nν(n)

where each node n ∈ T is identified with its own variable in X. Intuitively, we sum
over all valuations ν of T to {0, . . . , p}, and take the product of the tree nodes to
the power of their valuation in ν, with the number of accepting runs of A on ν(T ) as
coefficient; in particular, the term for ν is 0 if A rejects ν(T ). C

While this definition would specialize in PosBool[X] to our earlier definition of
Prov(A, T ), it extends that definition with the two features of N[X]: multiple copies
of the same nodes (represented as nν(n)) and multiple derivations (represented as
|aruns(A, ν(T ))|).

A subtlety is that the provenance of a bNTA, according to this definition, is
obtained by summing over all valuations where the automaton accepts, going from 0
to the maximal multiplicity p. Our eventual goal, however, is to compute provenance
for UCQ6= queries, for which provenance is defined (Definition 5.1.6) by looking at
matches of the query, not superinstances of query matches with useless additional
facts. The reason why this design alternative issue did not arise for PosBool[X]-
provenance is because PosBool[X] is an absorptive semiring [Deutch, Milo, Roy, and
Tannen 2014]. For this reason, we must introduce a variant of the previous definition,
that we will use in Section 5.3:

Definition 5.2.2. For a Γ-tree T and p ∈ N, we introduce for l ∈ N the set of
p-valuations that sum to l:

Valpl (T ) ··= {ν ∈ Valp(T ) |
∑
n∈T

ν(n) = l}

The N[X]-l-provenance of a Γp-bNTA A on a Γ-tree T is defined like ProvN[X](A, T )
but with Valpl (T ) instead of Valp(T ), namely:

ProvN[X](A, T, l) ··=
⊕

ν∈Valp
l
(T )
|aruns(A, ν(T ))| ⊗

⊗
n∈T

nν(n)

To make this definition capture Definition 5.2.1, and simplify further notation,
we also allow l = all, define Valpall(T ) ··= Valp(T ), so that ProvN[X](A, T, all) =
ProvN[X](A, T ). C

Intuitively, N[X]-l-provenance does not look at all valuations that make the bNTA
accept, but only those where the total number of node multiplicities sums up to a
fixed value. This will be useful for UCQ6= queries later.

We now generalize Theorem 3.4.4 to N[X]-l-provenance. To do this, we need
arithmetic circuits, which capture values in arbitrary semirings (here, N[X]) rather
than PosBool[X]:
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Definition 5.2.3. A K-circuit for semiring (K,⊕,⊗, 0K , 1K) is a circuit with ⊕-
and ⊗-gates instead of OR- and AND-gates (and no analogue of NOT-gates), whose
input gates stand for elements of K. As before, the constants 0K and 1K can be
written as ⊕- and ⊗-gates with no inputs. The element of K captured by a K-circuit
is the element captured by its distinguished gate, under the recursive definition that
⊕- and ⊗-gates capture the sum and product of the elements captured by their
operands, and input gates capture their own value. C

The main claim of this section is that we can efficiently construct provenance
circuits for N[X]-l-provenance of bNTAs, and hence for their N[X]-provenance:

Theorem 5.2.4. For any fixed p ∈ N and l ∈ N t {all}, given a Γp-bNTA A and
a Γ-tree T , we can construct a N[X]-l-provenance circuit C (i.e., a N[X]-circuit
capturing ProvN[X](A, T, l)) in time O(|A| · |T |). Further, C, has treewidth O(|A|).

We prove the theorem in the rest of this section. The correctness proof for the
N[X]-circuit that we construct is again inductive, and will rely on the following
identity that we prove separately:

Lemma 5.2.5. For any l, p ∈ N with l 6 p, for any non-singleton Γ-tree T written
as T = (V, L,R, λ), letting TL and TR be its left and right subtrees and nr be its root
node, for any Γp-bNTA A = (Q,F, ι, δ), calling Aq the bNTA obtained from A by
making q ∈ Q the only final state, we have:

ProvN[X](Aq, T, l) =
⊕

lL+lR+l′=l
qL,qR∈Q such that
q∈δ(qL,qR,(λ(nr),l′))

ProvN[X](AqL , TL, lL)⊗ ProvN[X](AqR , TR, lR)⊗ nl′r .

Proof. We first observe the following identity, for any ν ∈ Valpl (T ) and any q ∈ Q,
by definition of automaton runs:

|aruns(Aq, ν(T ))| =
∑

qL,qR∈Q such that
q∈δ(qL,qR,(λ(nr),ν(nr)))

|aruns(AqL , ν(TL))| · |aruns(AqR , ν(TR))|

We then observe that we can write:

Valpl (T ) =
⊔

lL+lR+l′=l
ValplL(TL)× ValplR(TR)× {nr 7→ l′}

as a valuation of T summing to l can be chosen as a valuation of its left and right
subtree and of nr by assigning the weights in all possible ways.

We thus rewrite ProvN[X](Aq, T, l) by splitting the product over n ∈ T in its
definition in a product on nr, on n ∈ TL and on n ∈ TR, and using the above
equalities:

ProvN[X](Aq, T, l) =
⊕

νL∈Valp
lL

(TL)
νR∈Valp

lR
(TR)

lL+lR+l′=l

⊕
qL,qR∈Q
q∈∆

mL⊗mR⊗

⊗
n∈TL

nνL(n)

⊗
⊗
n∈TR

nνR(n)

⊗nl′r

where we abbreviated mL ··= |aruns(AqL , νL(TL))|, mR ··= |aruns(AqR , νR(TR))|, and
∆ ··= δ(qL, qR, (λ(nr), l′)).

83



CHAPTER 5. EXTENDING TO GENERAL SEMIRINGS

Reordering sums and performing factorizations, we obtain the following expression
of ProvN[X](A, T, l) :

⊕
qL,qR∈Q
lL+lR+l′=l

q∈∆

 ⊕
νL∈Valp

lL
(TL)

mL ⊗
⊗
n∈TL

nνL(n)

⊗
 ⊕
νR∈Valp

lR
(TR)

mR ⊗
⊗
n∈TR

nνR(n)

⊗ nl′r .

Plugging back the definition of provenance yields the desired claim.

We are now ready to prove Theorem 5.2.4, which concludes the section. Intuitively,
we adapt the proof of Theorem 3.4.4; the main differences are that we replace AND-
and OR-gates by ⊗- and ⊕-gates, and that we must consider possible annotations in
{0, . . . , p} instead of {0, 1}.

Proof of Theorem 5.2.4. We modify the proof of Theorem 3.4.4.
We fix l0 to be the l provided as input. We will first assume l0 ∈ N, we explain

at the end of the proof how to handle the (simpler) case l0 = all.
For every node n of the tree T , we create one input gate gi

n in C (identified to n),
and for 0 6 j 6 p, we create a gate gi,j

n which is a ⊗-gate of j copies of the input
gate gi

n. (By “copies” we mean ⊗- or ⊕-gates whose sole input is gi
n, this being a

technical necessity as K-circuits are defined as graphs and not multigraphs.) In
particular, gi,0

n is always a 1-gate.
We create one gate gq,ln for n ∈ T , q ∈ Q, and 0 6 l 6 l0.
For leaf nodes n, for q ∈ Q and 0 6 l 6 l0, we set gq,ln to be gi,l

n if q ∈ ι(λ(n), l)
and a 0-gate otherwise.

For internal nodes n, for every pair qL, qR ∈ Q that appears as input states of a
transition of δ and 0 6 lL, lR 6 l0 such that lL + lR 6 l0, we create the gate gqL,lL,qR,lR

n

as a ⊗-gate of gqL,lL
L(n) and gqR,lR

R(n) , and, for 0 6 l′ 6 l0 such that lL + lR + l′ 6 l0, we
create one gate gqL,lL,qR,lR,l

′
n as the ⊗-gate of gqL,lL,qR,lR

n and gi,l′ . For 0 6 l 6 l0, we
set gq,ln to be a ⊕-gate of all the gqL,lL,qR,lR,l

′
n such that q ∈ δ(qL, qR, (λ(n), l′)) and

lL + lR + l′ = l.
We define the output gate g0 as a ⊗-gate of the gq,l0nr where nr is the root of T .

The construction is again in O(|A| · |T |) for fixed l and p.
To prove correctness, we show by induction that the element captured by gq,ln is

ProvN[X](Aq, Tn, l) where Aq is A with q as the only final state, and Tn is the subtree
of T rooted at n.

As a general property, note that for any node n, the value captured by gi,j
n for

0 6 j 6 p is nj.
For a leaf node n, we have ProvN[X](Aq, Tn, l) = nl if q ∈ ι(λ(n), l) and 0 otherwise,

which is the value captured by gq,ln .
For an internal node n, the claim follows immediately by Lemma 5.2.5, applying

the induction hypothesis to gqL,lLL(n) and gqR,lRR(n) .
We conclude because clearly we have ProvN[X](A, T, l0) = ⊕

q∈F ProvN[X](Aq, T, l0),
so the value captured by g0 is indeed correct.

Now, if l0 = all, we do the same construction, but we only need a single node gqn
for n ∈ T and q ∈ Q instead of l0 + 1 nodes gq,ln . For leaf nodes, gqn is the ⊕-
node of the gi,l

n ; for internal nodes, gqn is simply the ⊕-gate of all gqL,qR,ln gates with
q ∈ δ(qL, qR, (λ(n), l)), each of them being a ⊗-gate of gqL,qRn and gi,l, where gqL,qRn is
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a ⊗-gate of gqLL(n) and g
qR
R(n). Correctness is shown using a variant of Lemma 5.2.5 on

ProvN[X](A, T, all) which replaces lL + lR + l′ = l in the sum subscript by 0 6 l′ 6 p.
The reason why the resulting circuit has bounded treewidth is the same as in

Theorem 3.1.4.

5.3 Semiring Provenance Circuits for Instances
In this section, we move from trees to treelike instances, as we did in Section 3.3, but
relying on the results of the previous section. Remember that we restrict to UCQ 6=
queries, which are in particular monotone.

We first translate in Section 5.3.1 our UCQ6= queries to bag queries on bag
instances, i.e., queries that can test the multiplicity of facts. We then show in
Section 5.3.2 that UCQ6= queries, when seen as bag-queries, can be translated to
a bNTA that tests fact multiplicities as in the previous section. This takes care
of the issue of multiple fact uses, but not of multiple derivations. We conclude by
showing the main result for this chapter, Theorem 5.2.4, which takes care of the
issue of multiple derivations by ensuring that the number of accepting runs of the
automaton is correct, and produces the final provenance circuits using the results of
the previous section.

We fix in this section the tree interpretation scheme discussed in Section 3.2,
namely, the encoding operation E , the decoding 〈·〉, the translation A used in
Theorem 3.2.3, and the alphabet Γσk . This time, we do not abstract as subinstance-
compatibility the property that we require about the coding scheme, but we must
rely on the details of Definition 3.2.4.

5.3.1 Bag-instances and bag-queries
To study the provenance of UCQ 6= queries (Definition 5.1.6), and describe the number
of times a fact is used, we introduce bag-instances:

Definition 5.3.1. A multiset is a function M from a finite support supp(M) to N.
We define the relation M ⊆M ′ if supp(M) ⊆ supp(M ′) and for all s ∈ supp(M) we
have M(s) 6M ′(s). We write x ∈M to mean that M(x) > 0.

A bag-instance J is a multiset of facts on dom(J). Where necessary to avoid
confusion, we call the ordinary instances set-instances. The truncation to p of a
bag-instance J is J6p(F ) ··= min(J(F ), p) for all F ∈ supp(J). We call J p-bounded
if J = J6p, i.e., equivalently, if the multiplicity of all facts in J is 6 p.

A bag-homomorphism h from a bag-instance J to a bag-instance J ′ is a mapping
from supp(J) to supp(J ′) with the following condition: for each F ∈ supp(J ′),
letting F1, . . . , Fn be the facts of supp(J) such that h(Fi) = F for 1 6 i 6 n, we
have ∑n

i=1 J(Fi) 6 J ′(F ). C

We accordingly define bag-queries as queries on such bag-instances. Intuitively,
bag-queries are like regular Boolean queries on instances, except that they can “see”
the multiplicity of facts. This is crucial to talk about the required multiplicity of facts
in matches, which we need to talk about the N[X]-provenance of UCQ6=s. However,
note that it ignores the issue of the number of matches, which we will address directly
in the proof of the main result at the very end.
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Definition 5.3.2. A bag-query q is a query on bag-instances, i.e., simply a function
from bag-instances to {0, 1}. The bag-query q′ associated to a CQ6= ∃x q(x) is
defined as follows. A match of q in a bag-instance J is a bag-homomorphism from q
to J , seeing q as a bag-instance of facts over x (remember that q can contain multiple
times the same atom). We say that J |= q′ if q has a match in J .

The bag-query q′ associated to a UCQ6= q = ∨n
i=1 ∃xi qi(xi) is such that J |= q′

iff some qi has a match in J . C

An equivalent definition of J |= q′, for q′ the bag-query associated to a UCQ6= q
and J a bag-instance, is that J contains a bag of facts that can be used as the leaves
of a derivation tree for the Datalog query Pq associated to q.

We notice that the bag-query associated to a UCQ 6= q is bounded, namely, to
see whether it holds or not cannot, it suffices to look at the multiplicity of facts up
to a certain maximal value, namely, the maximal number of atoms in a disjunct of
the UCQ6=. This is crucial for the construction of the previous section to be usable.
Formally, boundedness of a bag-query is defined as follows:

Definition 5.3.3. A bag-query q is p-bounded for p ∈ N if, for any bag-instance J ,
if J |= q, then the truncation J6p of J is such that J6p |= q. A bag-query is bounded
if it is p-bounded for some p ∈ N. C

5.3.2 Translating Bag-Queries to Tree Automata
We now show in this subsection that UCQ6= queries can be translated to tree automata,
by showing that the associated bag-query can be translated to a Γσk

p-bNTA.

5.3.2.1 Preliminary Definitions

First, we generalize tree encodings to bag-instances as tree encodings annotated with
the multiplicities of facts, that is, Γσk

p-trees:

Definition 5.3.4. Let k, p ∈ N and let J be a p-bounded bag-instance. Let I ··=
supp(J) be the underlying instance of J , and let E ··= E(I) be its tree encoding (a
Γσk -tree). We define the (k, p)-tree-encoding E(J) of J as the Γσk

p-tree with same
skeleton as E where any node n encoding a fact F of I (formally, any node in the
image of ϕI) is given the label (λ(n), J(F )) and other nodes are given the label
(λ(n), 0).

We accordingly define 〈E〉 on any Γσk
p-tree E to yield a p-bounded bag-instance

in the expected way: the only subtlety is that, when two nodes of E cause the same
fact to be created, the multiplicity of that fact is set to the largest multiplicity for
this fact obtained over all individual nodes of E that code this fact – not to the sum
of its multiplicity across nodes of E that code that fact. C

We then define what it means for a Γσk
p-bNTA to test a bag-query q, like a

Γσk -bNTA could test a query q according to Definition 3.2.1. Note that the definition
implies that the automaton cannot “see” multiplicities beyond p, so we require that
the query be p-bounded so that this limitation does not matter. Notice that, again,
we do not require anything yet about the number of runs of the bNTA.

Definition 5.3.5. For q a bag-query and k, p ∈ N, a Γσk
p-bNTA A tests q for

treewidth k if q is p-bounded and for every Γσk
p-tree E, we have E |= A iff 〈E〉 |= q. C
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5.3.2.2 Translating Forced CQ6= to Automata

Our goal is then to show that the bag-query associated to any UCQ6= can be translated
to a tree automaton. We will first show this claim for CQ6= queries of a certain kind:
the forced queries.

Definition 5.3.6. A CQ 6= query q is forced if, for any distinct variables x and y
used in q, the disequality atom x 6= y is in q. C

We translate forced CQ6= queries to bNTAs reusing the translation from queries
to tree automata defined by our tree interpretation scheme (see Definition 3.2.1),
using a trick that allows us to handle the multiplicity of facts:

Proposition 5.3.7. Let q be a forced CQ6= and let q′ be its associated bag-query.
There is p ∈ N such that, for any k ∈ N, we can compute a Γσk

p-bNTA A that tests q′
for treewidth k.

Proof. Fix the forced CQ6= q and let q′ be the associated bag-query. Choose p to be
the number of atoms in q. Let σp be the signature obtained from σ by creating a
relation Ri for 1 6 i 6 p, with arity |R|, for every relation R of σ. Now, let q′′ be
the rewriting of q obtained by merging together duplicate atoms: we replace every
atom R(x) that occurs m times in q, with m > 1, by the disjunction ∨m6j6pRj(a);
the disequality atoms are left unchanged. We see the result of this process as a
UCQ6= over σp, where there are no longer any duplicate atoms, but which is still
forced in the sense that there are disequalities between any pair of variables.

We now claim that for any p-bounded bag-instance J on σ, letting I be the set-
instance obtained by replacing every fact F = R(a) of J with multiplicity m = J(F )
by the fact Rm(a), we have J |= q′ iff I |= q′′. To see why, observe that, as q is a
forced CQ6=, if q has a match h then every distinct atom A of q (regrouping copies
of the same atoms) must be mapped by h to a fact of J (written h(A)) and this
mapping must be injective (because h is, because q is forced), so that the necessary
and sufficient condition is that, for every atom A of q, we have J(h(A)) > pA where
pA is the multiplicity of A in q; and this is equivalent to I |= q′′ because pA 6 p.

Now, q′′ is a UCQ 6= on σp, so it is expressible in GSO. Hence, fixing k ∈ N, using
our tree interpretation scheme in Definition 3.2.1, we can compute a Γσpk -bNTA
A ··= A(q′′) that tests q′′ for width k on σp-instances. We write A = (Q,F, ι, δ)

We now build a Γσk
p-bNTA A′ = (Q,F, ι′, δ′) by relabeling A in the following

way. Recall the definition of Γσk (Definition 3.2.4). We define, for every τ = ((d, s), i)
in Γσk

p and for every qL, qR ∈ Q:

• ι′(((d, s), i)) to be ι((d, s′));

• δ′(qL, qR, ((d, s), i)) to be δ(qLqR, (d, s′));

where we define s′ as:

• s′ ··= s if s = ∅;

• s′ ··= {Ri(a)}, with i as above, if s = {R(a)}.

We now claim that A′ tests q′ for treewidth k on p-bounded bag-instances. To
see why, it suffices to observe that for any Γσk

p-tree E, letting E ′ be the Γσpk -tree
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obtained in the straightforward manner, then A′ accepts E iff A accepts E ′, which is
immediate by construction. Now indeed, as we know that A accepts E ′ iff 〈E ′〉 |= q′′

(as A tests q′′), and we have 〈E ′〉 |= q′′ iff 〈E〉 |= q′ (as immediately 〈E ′〉 is the
σp-instance corresponding to 〈E〉 as I corresponds to J above), so we deduce that,
for any Γσk

p-tree E, we have E |= A′ iff 〈E〉 |= q′, proving the desired equivalence.
The only thing left is to observe that A′ does not only correctly test q on p-

bounded instances, but on all bag-instances. But this is straightforward: as q matches
at most p fact occurrences in any bag-instance J , we have J |= q′ iff J6p |= q′. This
concludes the proof.

5.3.2.3 Translating UCQ 6= to Automata

We now extend our claim to arbitrary UCQ 6= queries. For this, we will use a standard
union construction on bNTAs:

Lemma 5.3.8. [Comon et al. 2007, Section 1.3] For any alphabet Γ and Γ-bNTAs
A1, . . . , An, we can construct a Γ-bNTA A∪ such that for any Γ-tree T , we have
T |= A∪ iff T |= Ai for some Ai.

We then show our claim: every bag-query corresponding to a UCQ 6= can be
translated to an automaton that tests it. We do so by enumerating each self-
homomorphism of the disjuncts to reduce them to forced CQ6=s.

Proposition 5.3.9. Let q be a UCQ6= and q′ be the associated bag-query. There is
p ∈ N such that, for any k ∈ N, we can compute a Γσk

p-bNTA A that tests q′ for
treewidth k.

Proof. We first observe that, writing the UCQ6= q as the disjunction of CQ6=s qi, if
we can show the claim for each qi with some pi ∈ N, then the result clearly follows
from q by computing one bNTA Ai for each qi that tests qi for treewidth k and uses
p ··= maxi pi, and constructing the union bNTA A∪ of these bNTAs with Lemma 5.3.8.
So it suffices to consider CQ6= queries.

Remember that we see a CQ6= q as an existentially quantified multiset of atoms
with some disequalities, where the same atom, i.e., the same relation name applied
to the same variables in the same order, can occur multiple times. Let Vars(q) be
the set of the variables of q (which are all existentially quantified, as q is Boolean).
We call Eq the set of all equivalence classes on Vars(q) such that, for each disequality
x 6= y, the variables x and y must be in different classes; Eq is of course finite. For
∼ ∈ Eq we let q/∼ be the query in CQ 6= obtained by choosing one representative
variable in Vars(q) for each equivalence class of ∼ and mapping every x ∈ Vars(q)
to the representative variable for the class of x (dropping in the result the useless
existential quantifications on variables that do not occur anymore), and adding
disequalities x 6= y between each pair of the remaining variables.

We rewrite a CQ6= q to the UCQ6= q′ ··=
∨
∼∈Eq q/∼. In other words, we are

considering all possible self-homomorphisms of the query, and for each of them we
impose disequalities between all variables. We claim that for every bag-instance I,
we have that I |= q iff I |= q′. For the forward implication, assuming that I |= q,
letting m be the witnessing match, we consider the ∼m relation defined by x ∼m y
iff m(x) = m(y), and it is easily seen that I |= q/∼m. For the backward implication,
if I |= q/∼ for some ∼ ∈ Eq, it is immediate that I |= q with the straightforward
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match. Hence, using again Lemma 5.3.8, it suffices to show the result for queries
in CQ6= which include disequality axioms between all their variables. But those are
precisely the forced CQ6=, so we can conclude using Proposition 5.3.7.

5.3.3 Putting it together: N[X]-provenance circuits for UCQs
We have shown in the previous subsection that UCQ6= queries could be translated to
Γσk

p-bNTAs that test them on bag-instances (Proposition 5.3.9), taking care of the
issue of fact multiplicities (but not yet of the number of derivations). Further, we
have shown in the previous section that we could compute provenance circuits for
Γσk

p-bNTAs (Theorem 5.2.4). We can now take care of the remaining difficulty and
combine these results to prove the main result of this chapter:

Theorem 5.3.10. For any fixed k ∈ N and UCQ 6= query q, for any σ-instance I
such that tw(I) 6 k, one can construct a N[X]-circuit that captures ProvN[X](q, I) in
time O(|I|). The treewidth of C only depends on k and q (not on I).

Remember that an N[X]-circuit can then be specialized to a circuit for an arbitrary
semiring (in particular, if the semiring has no variable, the circuit can be used to
evaluate directly the final annotation from the annotations of the instance facts); thus,
this provides provenance circuits for UCQs on treelike instances for any semiring.

We now prove this claim and conclude the section:

Proof of Theorem 5.3.10. We first prove the claim for CQ6=, and then extend to
UCQ6=.

Let k ∈ N and let q : ∃x q′(x) be the CQ6=. Let σadd be the signature where
we add a fresh unary predicate Px for each variable x in x. We rewrite q to the
CQ6= qadd on σadd defined as ∃x q′(x) ∧ ∧x∈x Px(x). Let p be the number of atoms
of qadd. We apply Proposition 5.3.9 to compute a Γσadd

k

p-bNTA that tests the bag-
query associated to qadd for treewidth k, and we then determinize this automaton
[Comon et al. 2007], letting A be the resulting Γσadd

k

p-bDTA that tests the bag query
associated to qadd.

Let I be the input instance, let I−add be the σadd-instance that contains one
fact Px(a) for all x ∈ x and a ∈ dom(I), and let Iadd ··= I t I−add. We can clearly
compute Iadd from I in linear time, and the treewidth of Iadd is clearly that of I.
Let Eadd ··= E(Iadd) be the tree encoding of Iadd as defined in Section 3.2, that is, a
Γσadd
k -tree, and let ϕ be the function that maps the facts of Iadd to the nodes of Eadd.
We now apply Theorem 5.2.4, taking l to be the number of atoms in qadd, and

obtain a N[X]-circuit C ′ that captures the N[X]-l-provenance of A on Eadd, namely:

ProvN[X](A,Eadd, l) ··=
⊕

ν∈Valp
l
(Eadd)

|aruns(A, ν(Eadd))| ⊗
⊗

n∈Eadd

nν(n)

We modify C ′ to fix to 1 all inputs not in the image of ϕ(I), and to rename the
remaining inputs to match the facts of I. The resulting circuit C has been computed
in linear time overall, and its treewidth only depends on k and q. So the only thing
left to show is that C indeed captures ProvN[X](q, I).

From the value captured by C ′, the circuit C captures by definition:⊕
ν∈Valp

l
(Eadd)

|aruns(A, ν(Eadd))| ⊗
⊗

n∈ϕ(I)
(ϕ−1(n))ν(n)
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We now notice that, as A tests qadd, the only possible way for A to accept ν(Eadd)
is if 〈ν(Eadd)〉 satisfies the bag-query associated to qadd. Writing l′ for the number of
atoms of q and l′′ for the number of variables of q, notice that the total multiplicity
of ν is l = l′ + l′′, so, by definition of qadd, we must have ∑n∈ϕ(I) ν(n) = l′ and∑
n∈ϕ(I−add) ν(n) = l′′. Hence, ∑n∈Eadd\ϕ(I) ν(n) = 0. We therefore split the sum over

ν ∈ Valpl (Eadd) above, so that C captures:⊕
νadd∈Valp

l′′ (ϕ(I−add))

⊕
ν∈Valp

l′ (ϕ(I))
|aruns(A, (ν t νadd)(Eadd))| ⊗

⊗
n∈ϕ(I)

(ϕ−1(n))ν(n)

where ν t νadd is the valuation of Eadd defined following ν on ϕ(I), following νadd
on ϕ(I−add), and mapping other nodes to 0.

At this point, let us write Valpl′(I) to denote the set of p-valuations of I that
sum to l′, and likewise for Valpl′′(I−add), and write ν t νadd for ν ∈ Valpl′(I) and
νadd ∈ Valpl′′(I−add) to mean the valuation of Eadd defined through ϕ in the expected
way. We can thus rewrite the value captured by C above as follows:⊕

νadd∈Valp
l′′ (I

−
add)

⊕
ν∈Valp

l′ (I)
|aruns(A, (ν t νadd)(Eadd))| ⊗

⊗
F∈I

F ν(ϕ(F ))

More specifically, again because A tests qadd, for A to accept (ν t νadd)(Eadd), the
valuation νadd that sums to l′′ must give valuation 1 to exactly one node corresponding
to a Px-fact, for each variable x. By definition of I−add, this allows us to rewrite the
value captured by C as:⊕

f :x→dom(I)

⊕
ν∈Valp

l′ (I)
|aruns(A, (ν t νf )(Eadd))| ⊗

⊗
F∈I

F ν(ϕ(F ))

where we define from a function f : x → dom(I) the valuation νf of ϕ(I−add) that
maps, for each fact F = Px(a) of I−add, the node ϕ(F ) of Eadd to 1 if f(x) = a and
to 0 otherwise.

More specifically still, once we have chosen a function f : x→ dom(I), for A to
accept (ν t νf)(Eadd), it must be the case that its decoding I ′ ··= 〈(ν t νf )(Eadd)〉
satisfies the bag-query associated to qadd. By definition of qadd, this means that I ′
satisfies the bag-query associated to q with a match that maps each variable x in x
to f(x). Clearly, such a match can only exist if I |= q′(f(x)) (remember that I is a
set-instance and q′ is a CQ6= in the usual sense). So we can rewrite what C captures
as: ⊕

f :xi→dom(I)
such that
I|=q′(f(xi))

⊕
ν∈Valp

l′ (I)
|aruns(A, (ν t νf )(Eadd))| ⊗

⊗
F∈I

F ν(ϕ(F ))

Now, when I |= q′(f(x)), from our observations on what the valuation ν must satisfy,
and from the fact that it must sum to l, it is clear that there is exactly one possible
valuation for each choice of f , namely, the valuation ν such that I ′ ··= 〈(ν t νf )(Eadd)〉
is exactly a match of the bag-query associated to q′ that maps each variable x to f(x).
In this case, for each fact F ∈ I, the value ν(ϕ(F )) is exactly the number of atoms
of q′ that map to F in this match. Further, in this case, as A is deterministic, we
have |aruns(A, (ν t νf )(Eadd))| = 1. So C actually captures:⊕

f :xi→dom(I)
such that
I|=q′(f(xi))

⊗
A(x)∈q′

A(f(x))
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and this is exactly the provenance ProvN[X](q, I).
For UCQ6=, observe that the provenance we need to compute (Definition 5.1.6) is

simply the sum of the provenance for each CQ6= disjunct. So we can just independently
build a circuit for each disjunct using the construction above, and combine the circuits
into one (merging the input gates), adding to the result an output gate which is the
⊕-sum of each output gate of the disjuncts. A tree decomposition for the resulting
circuit can be built from that of each circuit, because their tree decompositions have
same skeleton, i.e., the skeleton of the tree encoding of the instance; hence, treewidth
increases only by a constant factor.

This finishes the proof of the main result of this chapter. We conclude by
additional remarks about whether our results can extend beyond UCQ6=.

5.4 Going Beyond UCQ6=

One could hope that our results would extend, beyond UCQ 6=, to more expressive
languages that are Datalog-expressible and GSO-expressible, to which both our
constructions (Theorem 3.3.2) and semiring provenance (Definition 5.1.3) apply. The
main issue that prevents this is fact multiplicity: multiple uses of facts are easy to
describe for UCQ 6= (Definition 5.1.6), but for more expressive languages we do not
know how to define them and connect them to automata.

In fact, we can build a query P , in guarded Datalog (recall the definition in
Section 2.5), such that the smallest number of occurrences of a fact in a derivation
tree for P cannot be bounded independently from the instance, in the sense of
Definition 5.3.3:

Proposition 5.4.1. There is a guarded monadic Datalog query P whose associated
bag-query qP is not bounded.

Proof. Consider the Datalog query P consisting of the rules:

S(y)← S(x), R(x,w, y), A(w)
Goal← S(x), T (x)

For all n ∈ N, consider the instance In = {R(a1, a, a2), R(a2, a, a3), . . . , R(an−1, a, an),
S(a1), T (an), A(a)}. It is easily verified that the only proof tree of P on In has n− 1
leaves with the fact A(a). Hence, assuming that the bag-query qP captured by P is
bounded by p, considering the bag-instance J formed of the leaves of the sole proof
tree of P on Ip+2, it is not the case that J6p |= qP , contradicting boundedness.

Thus, we cannot rewrite P to a fixed finite bNTA testing multiplicities on all input
instances using our techniques. However, as guarded monadic Datalog is monotone
and MSO-expressible, note that we can still compute the PosBool[X]-provenance
of P with Theorem 3.4.2.
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Chapter 6

Lower Bounds

This chapter concludes Part I of this manuscript by studying whether the previous
results can be extended beyond bounded-treewidth instances. Indeed, more stringent
conditions (e.g., bounded clique-width [Courcelle, Engelfriet, and Rozenberg 1993])
sometimes suffice to ensure the tractability of some tasks (e.g., non-probabilistic
MSO query evaluation). For reasons that we will explain later, we assume throughout
this chapter that the signature is arity-two.

We first focus on tractable probability evaluation, namely, our Theorem 4.1.1,
according to which GSO probability evaluation is in ra-linear time on bounded-
treewidth TID instances. We show that this result cannot be generalized to a less
stringent requirement. Namely, there are even FO queries which are intractable
to evaluate on any class of input instances that does not have bounded-treewidth,
assuming a mild constructibility requirement, and under our assumption that the
signature is arity-two.

This result should not be mistaken for the well-known fact that probability
evaluation is known to be hard for some CQ queries when arbitrary input instances
are allowed: we are really showing that any other condition on instances that would
ensure the tractability of probability evaluation must imply that treewidth is bounded
(or that the constructibility requirement is violated): if it does not, then, by our
result, probability evaluation is intractable on any unbounded-treewidth subclass of
instances that satisfy the condition. We present this result as a dichotomy theorem,
together with our Theorem 4.1.1: assuming the constructibility requirement, any
instance family is either bounded-treewidth, and then probability evaluation is in
ra-linear data complexity for GSO queries by Chapter 3; or it is unbounded-treewidth,
and a fixed FO query is already hard for it. This dichotomy result is presented in
Section 6.1.

The lower bound of the dichotomy is proven by reducing a hard problem to the
evaluation of an FO query on the arbitrary instance family, by extracting the hard
problem instance as a topological minor of the family. For this to work, the instances
of the family must be graphs (hence our requirement on the signature); the problem
from which we reduce must be hard on restricted input graphs (namely, degree-3
planar graphs); and the FO query must test the problem under arbitrary subdivision,
a challenging task with FO. We use the problem of counting graph matchings, and
devise an appropriate FO query.

The specific extraction result that we use (as a black box) is the recent theorem
from [Chekuri and Chuzhoy 2014a], giving a polynomial bound on the extraction.
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This leads us to a digression to explain how a variation on our approach implies
dichotomies for non-probabilistic MSO query evaluation and MSO match counting
on subinstance-closed instance families. For non-probabilistic evaluation, we show
in Section 6.2.1 a result obtained by direct adaptation of our techniques, and we
show in Section 6.2.2 a variant of this result that improves existing lower bounds
[Kreutzer and Tazari 2010; Ganian, Hliněnỳ, et al. 2014] established before [Chekuri
and Chuzhoy 2014a]. Assuming similar complexity-theoretic assumptions as in
[Kreutzer and Tazari 2010], our result thus answers a conjecture of Grohe [Grohe
2007, Conjecture 8.3] for MSO, which [Kreutzer and Tazari 2010] had answered for
MSO2, and [Ganian, Hliněnỳ, et al. 2014] had also addressed but under the additional
assumption of closure under vertex labeling. For the problem of counting query
matches, for which we were not aware of analogous results, we show in Section 6.3 a
similar dichotomy.

Our second focus in this section is on tractable lineage computation, specifically,
OBDDs. We have shown (Theorem 3.5.2) that OBDDs for GSO queries on bounded-
treewidth instances can be computed in PTIME. As PTIME computation of OBDDs
implies that probability evaluation is tractable, asking for tractable OBDDs is more
demanding than asking for tractable probability evaluation as we did at first. As
we show in Section 6.4, a dichotomy on the existence of polynomial-width OBDDs
also holds, for the weaker language of UCQ6= (rather than MSO): there is a UCQ6=
that has no polynomial-width OBDDs on any unbounded-treewidth instance family,
assuming an even weaker constructibility requirement. This is again proven with
minor extraction techniques, and a lower bound on OBDD width based on extracting
sufficiently many independent matches from so-called skewed grid minors.

In the context of OBDDs, as it turns out, we can even classify connected UCQ6=
in two categories: those for which the previous dichotomy holds, so they have no
tractable OBDDs on all constructible unbounded-treewidth instance families, and
those which are tractable on some well-chosen instance family. We study this in
Section 6.5. Using a characterization of the first kind of queries (the intricate
queries), we show a meta-dichotomy theorem on connected UCQ6=. We also exhibit a
disconnected CQ6= for which this meta-dichotomy fails.

6.1 Dichotomy on Probability Evaluation
This section studies whether we can extend our tractability result for probability eval-
uation (Theorem 4.1.1). Specifically, can we lift the bounded-treewidth requirement?
We answer in the negative by a dichotomy result on arity-two signatures: there are
queries for which probabilistic evaluation is tractable on bounded-treewidth families
but is intractable on any efficiently constructible unbounded-treewidth family. The
notion of efficiently constructible that we use is formally the following:

Definition 6.1.1. Remember that a class of instances I is just a (possibly infinite)
set of instances. We say that I is treewidth-constructible if for all k ∈ N, if I contains
instances of treewidth > k, we can construct one in polynomial time given k written
in unary1. C

1The requirement that k be given in unary rather than in binary means that more instance
families are treewidth-constructible, so treewidth-constructibility in this sense is a weaker assumption
than if the input k could be written in binary.

94



Antoine Amarilli Leveraging the Structure of Uncertain Data

In particular, this implies that I must contain a subfamily of unbounded-treewidth
instances that are small, i.e., have size polynomial in their treewidth. We discuss the
impact of this choice of definition, and alternate definitions of efficiently constructible
instances, in Section 6.2.2.

Remember that the probability evaluation problem for a query q on an instance
class I asks, given an instance I ∈ I and a probability valuation π of I, to compute
the probability π(q, I) that q holds on I; and remember that we study this problem
in data complexity, namely, as a function of I and π. Recall that we denote by tw(I)
the width of an instance I. Our main result on probability evaluation is as follows:

Theorem 6.1.2. Let σ be an arbitrary arity-2 signature. Let I be a treewidth-
constructible class of σ-instances. Then the following dichotomy holds:

• If there is k ∈ N such that tw(I) 6 k for every I ∈ I, then for every GSO
query q, the probability evaluation problem for q on instances of I is solvable
in ra-linear time.

• Otherwise, there is an FO query qh (depending on σ but not on I) such that the
probability evaluation problem for qh on I is FP#P-complete under randomized
polynomial time (RP) reductions.

The first part of this result is precisely Theorem 4.1.1, so what must now prove
is the second part of the theorem. Pay close attention to the statement: while some
FO queries (in particular, unsafe CQs [Dalvi and Suciu 2012]) may have FP#P-hard
probability evaluation when all input instances are allowed, our goal here is to build
a query that is hard even when input instances are restricted to arbitrary families
satisfying our conditions, a much harder claim.

To prove the second part of the theorem, we first present in Section 6.1.1 the
general technique to extract degree-3 planar graphs as topological minors of any
treewidth-constructible unbounded-treewidth family in randomized polynomial time,
using [Chekuri and Chuzhoy 2014a]. We then formally construct in Section 6.1.2 the
FO query that we use to test our choice of hard problem, namely, counting matchings,
which is hard on degree-3 planar graphs by [Xia, Zhang, and Zhao 2007]. Last,
Section 6.1.3 shows the complete reduction. We conclude by discussing alternative
problems in Section 6.1.4.

6.1.1 Extracting Degree-3 Planar Graphs
We will reduce from the #P-hard problem of counting graph matchings, as explained
in the next section. This section explains how we will be able to extract any instance
of that problem as a topological minor of any treewidth-constructible unbounded-
treewidth family I. We give the formal definition:

Definition 6.1.3. A graph H is a minor of a graph G if there is a sequence of edge
removals, vertex removals, and edge contractions (merging both endpoints of an
edge into a single vertex adjacent to all neighbors of the two endpoints, not creating
self-loops) which, applied on G, yields H.

An embedding of a graph H in a graph G is an injective mapping f from the
vertices of H to the vertices of G and a mapping g that maps the edges (u, v) of H
to paths in G from f(u) to f(v), all paths being vertex-disjoint. A graph H is a
topological minor of a graph G if there is an embedding of H in G. C
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We use the following lemma, that rephrases the recent polynomial bound [Chekuri
and Chuzhoy 2014a] on Robertson and Seymour’s grid minor theorem [Robertson
and Seymour 1986] to the realm of topological minors:

Lemma 6.1.4. There is c ∈ N such that for any degree-3 planar graph H, for any
graph G of treewidth > |V (H)|c, H is a topological minor of G and an embedding
of H in G can be computed in randomized polynomial time in |G|.

Proof. Fix the graph H. By [Chekuri and Chuzhoy 2014a, Corollary 1.1], for some
c > 0, every graph of treewidth O(|V (H)|c) contains H as minor. Further, by
[Chekuri and Chuzhoy 2014a, Theorem 1.1], there is a randomized polynomial time
algorithm that computes, given G, a model ϕ of H in G (see Definition just before
Section 2.1 in [Chekuri and Chuzhoy 2014b]), in randomized polynomial time. We
explain how to obtain from this an embedding (f, g) of H in G, witnessing the fact
that H is a topological minor of G, in PTIME. In so doing, we will use the fact that
H is degree-3, which is why H being a minor of G implies that it is a topological
minor.

For each pair u, v of adjacent nodes in H, we pick one connecting edge that has
one endpoint in ϕ(u) and the other in ϕ(v). This can clearly be performed in PTIME.
Now, these edges are all distinct because the ϕ(w) are pairwise disjoint. All that
remains is to pick in PTIME, for each node v of H, its image by f in ϕ(v), and
construct disjoint paths from that image to the endpoints of the connecting edges in
ϕ(v): this allows us to define g and concludes the claim.

To show this, for every vertex v, consider ϕ(v) and the endpoints of connecting
edges in ϕ(v) (there are up to three). If a vertex is an endpoint for more than one
connecting edge, pick it as f(v), and, using the fact that ϕ(v) is connected, take a
path from f(v) to the third endpoint (if any). Otherwise, if there are no more than
two endpoints, pick any of them as f(v) and conclude in the same manner. If there
are three endpoints, as ϕ(v) is connected, pick a covering tree T of ϕ(v), and root it
at one endpoint. Take the lowest common ancestor of the two other endpoints as
f(v), with disjoint paths from f(v) to the root, and to its two descendent endpoints.

Hence, the above process being in PTIME, one can compute an embedding of H
in G in randomized polynomial time. This proves the claim.

6.1.2 Constructing the Hard FO Query
Having shown how to extract any input 3-regular planar graph G in RP as a
topological minor in any treewidth-constructible unbounded-treewidth family, we
formally define the #P-hard problem from which we reduce, namely, the problem of
counting matchings in a 3-regular planar graph, #3PM:

Definition 6.1.5. A matching of a graph is a subset of its edges such that no two
edges of the subset are incident, i.e., share an endpoint. The #3PM problem asks,
given an input 3-regular planar graph, how many matchings does it have. C

The following is shown in [Xia, Zhang, and Zhao 2007], Theorem 11 (#3PM is
#Pl-Pos-{F{0,1}}-SAT in their terminology):

Lemma 6.1.6 ([Xia, Zhang, and Zhao 2007]). #3PM is #P-complete.
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We accordingly construct our hard FO query qh that we will use on all families
of instances. We will explain in the next section how the query that we define now
relates to the #3PM problem.

We define the FO formula Adj with two free variables x and y, that tests whether
x and y co-occur in some fact:

Adj(x, y) ··=
∨
R∈σ
|R|=2

R(x, y) ∨R(y, x)

We use this to define FO formulae to test the degree of an element with respect to
the Adj relation:

Deg1(x) ··= ∃y Adj(x, y) ∧ (∀y′ Adj(x, y′)⇒ y = y′)
Deg3(x) ··= ∃y1y2y3 Adj(x, y1) ∧ Adj(x, y2) ∧ Adj(x, y3)

∧ y1 6= y2 ∧ y1 6= y3 ∧ y2 6= y3

∧ ∀y Adj(x, y)⇒ (y = y1 ∨ y = y2 ∨ y = y3)

We write a sentence testing that some element has degree 1 and its adjacent element
(there is exactly one) does not have degree 3:

1not3 ··= ∃x (Deg1(x) ∧ (∀y Adj(x, y)⇒ ¬Deg3(y)))

We finally write an FO sentence testing that some element has degree 3 and has two
distinct neighbors that do not have degree 1:

3twonot1 ··= ∃x (Deg3(x)∧(∃yz y 6= z∧Adj(x, y)∧Adj(x, z)∧¬Deg1(y)∧¬Deg1(z)))

We then define our FO query qh:

qh ··= ¬1not3 ∧ ¬3twonot1

The membership in FP#P of probability evaluation for qh is easy to establish, by
considering a Turing machine which nondeterministically chooses a subinstance of
the input instance, and deterministically tests in PTIME whether the query holds;
the number of accepting paths needs to be weighed by the probability of the instance,
which can be achieved by standard techniques (see Lemma 5.1 of [Abiteboul, Chan,
et al. 2011]). So what we have to do is to show hardness, which we do in the next
section.

6.1.3 Completing the Reduction
We will use the notion of subdivision, which we recall:

Definition 6.1.7. A subdivision of a graph G is a graph obtained by replacing each
edge by an arbitrary non-empty simple path (every node on this path being fresh
except the endpoints of the original edge).

The k-subdivision Gk for k ∈ N>0 is the subdivision where we take all paths
replacing an edge to be of length exactly k. C
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The statement that H is a topological minor of G can be equivalently stated as:
there is a subgraph of G which is isomorphic to a subdivision of H. Accordingly,
when extracting our input graph G to the hard problem as a topological minor, we
will use G3 instead of G to guarantee that each edge of G was subdivided to a path
of length at least 3.

The crucial lemma that connects qh to our hard problem is the following. We
first observe that if a graph G is planar and degree-3, then so is G3; further, the
nodes of G3 having degree 3 are exactly those corresponding to the nodes of G. We
now claim and show:

Lemma 6.1.8. Write q′h from qh by replacing Adj by the adjacency relation E in
the signature of graphs. Let G be a 3-regular planar graph. There is an algorithm
that, given a graph G′ with G3 as topological minor (witnessed by an embedding),
computes in PTIME a probability valuation π of G′ such that we can compute the
number of matchings of G in PTIME from G′ and π(q′h, G′).

Proof. Let (f, g) be an embedding of G in G′ computed straightforwardly from the
embedding of G3 in G′ and the obvious embedding of G in G3. (Intuitively, the only
point of using G3 rather than G is to ensure that G′ subdivides each edge of G to a
path of length at least 3.)

Let π be the probability valuation of G′ defined in PTIME by assigning:

• probability 0 to all edges not part of a path in the image of g;

• probability 1 to all other edges that are adjacent to a node in the image of f ;

• and probability 1
2 to all remaining edges.

First note that the image of any edge of G by g is a path of length > 3, whose edges
have probability 1

2 except the first and last one, which have probability 1; further,
these paths are disjoint when ranging over the edges of G. Consider a possible world
G′′ of G′, i.e., a subgraph with non-zero probability in π. We call an edge (u, v) of G
kept in G′′ if, considering its image in G′ by g, and removing the first and last edge,
all these edges are in G′′; we call (u, v) discarded in G′′ if none of these edges are in
G′′; and it is broken if some of these edges, but not all, are in G′′. We call G′′ broken
if some edge of G is broken in G′′.

Let n be the number of edges of G and m be the number of edges of G′ of non-zero
probability under π. The possible worlds of G′ under π are partitioned into broken
and non-broken worlds. We claim that the probability that a world is non-broken is
23n−m. To see why, observe that, as the edges of G′ corresponding to each edge of G
are disjoint sets, the events “e is non-broken in G′” and “e′ is non-broken in G′”, for
e 6= e′ two edges of G, are pairwise independent. Hence, the probability that a world
of G′ is non-broken is the product of the probabilities that each edge is non-broken.
For an edge e of G mapped by g (including the first and last edge) to a path of
length l in G′ (note that l > 3 by our use of G3), the probability that e is non-broken
in G′ is exactly 2/2l−2 = 23−l, because the edges (excluding the first and last one)
have 2l−2 possible worlds, only two of which are non-broken. So the probability that
a world is non-broken is 23n−m (remember that each edge of G′ is in the image of
exactly one edge of G).
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Now, observe that the conjunct 1not3 of q′h holds in a world of G′ iff it is broken.
Indeed, if a world G′′ is broken, there must be a path p of edges of G′ (corresponding
to an edge of G minus the first and last edges) where one edge was kept in G′′ and
one was discarded in G′′, and we can take two such edges to be adjacent: if there are
no two adjacent edges in p with one kept and one discarded, then either all edges
in p are kept or all are discarded. Calling u the common endpoint of these two edges,
u must have degree 2 in G′ (as a node on the path p), and it has degree 1 in G′′. Now
clearly its one adjacent vertex (the other endpoint of the kept edge) does not have
degree 3, as the only elements of degree 3 in G′ (hence in G′′) are those in the image
of f , and u is within a path in the image of g with the first and last edges removed.
Hence, 1not3 holds. Conversely, if 1not3 holds, then considering a witness vertex, it
can neither be in the image of f (those have degree 3 in G′ and in G′′ because their
adjacent edges are non-probabilistic), nor adjacent to such a vertex (because those
are always adjacent to a degree-3 vertex), nor among nodes not in the image of g (as
their incident edges have probability 0, such nodes have no incident edge). Therefore,
it must be strictly within a path of the image of g minus the first and last edges; and
it is clear that this can only happen in G′′ if the preimage edge of G is broken in G′′.

Now, we claim that the probability, given that a world is non-broken, that it
satisfies q′h, is exactly M/2n, where M is the number of matchings of G. To see
why, first note that q′h holds in non-broken worlds iff 1not3 does not hold, by the
previous paragraph. Now, observe that there is a clear bijection between subgraphs
of G and non-broken possible worlds of G′, and we claim that G′′′ ⊆ G is a matching
iff the corresponding possible world of G′ does not satisfy 3twonot1. Indeed, if G′′′
is not a matching then some vertex u of G has two neighbors in G′′′, and, in the
corresponding possible world G′′ of G′, u′ ··= f(u) has two neighbors with degree > 1
(they are adjacent to u′ and to the second edge of the path coding the corresponding
incident edge of u in G′′′), hence u′ witnesses that 3twonot1 holds in G′′. Conversely,
if a possible world G′′ of G′ satisfies 3twonot1, the witnessing vertex u′ has two
neighbors which are each adjacent to an edge, indicating that, letting u ··= f−1(u′),
the vertex u has two neighbors in the corresponding subgraph G′′′ of G, so that G′′′
is not a matching. Hence, among the 2n non-broken possible worlds of G′ (which all
have same probability), there are exactly M that do not satisfy 3twonot1, and thus
satisfy q′h.

It follows that the probability π(q′h, G′) is the probability that a world of G′
is non-broken and that, knowing that the world is non-broken, the corresponding
subgraph of G is a matching. Hence, we have:

π(q′h, G′) ··= 23n−m × M

2n
whence it follows that:

M = 2m−2n × π(q′h, G′)
As the values under consideration are in polynomial size in |G′| (i.e., the values
themselves are singly exponential in |G′|), we can indeed compute M from π(q′h, G′)
in PTIME, as claimed. This shows the desired result.

We now fix the treewidth-constructible family I of unbounded treewidth, and
call A the algorithm which, given a value k ∈ N in unary, computes in PTIME an
instance of I with treewidth > k. We can now prove the hardness direction of the
second part of Theorem 6.1.2:
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Proof of Theorem 6.1.2. We reduce in randomized polynomial time the #3PM prob-
lem, which is hard by Lemma 6.1.6, to the probability evaluation problem for qh
on I.

Consider an instance of #3PM, namely, a 3-regular planar graph G (clearly we
can assume without loss of generality that it has no isolated vertices). Construct
H ··= G3 from G in PTIME.

Let c be as in Lemma 6.1.4; letting n ··= |V (H)| = O(|V (G)|), the value nc is
polynomial in |G| and we can write it in unary in polynomial time (as n can be
written in unary in linear time in the input). Thanks to treewidth-constructibility,
we can apply algorithm A to nc to compute, in PTIME in |G|, an instance I in
I with treewidth > nc; its Gaifman graph G′ has the same treewidth, so that, by
Lemma 6.1.4, we can compute in randomized PTIME in I (hence in randomized
PTIME in |G|) an embedding (f, g) of H in G′.

Using Lemma 6.1.8, compute in PTIME the valuation π of G′ such that we can
compute in PTIME from G′ and π(q′h, G′) the number of matchings of G, which is
the quantity we are interested in. We define from π′ a probability valuation on I as
follows:

• For all facts of I that correspond to no edge in G′, i.e., facts of the form R(a)
and S(a, a), give them probability 0.

• For each edge (u, v) of the Gaifman graph G′, choose a single witness fact for
this edge, and give it probability π(u, v); give probability 0 to all other facts
for this edge.

There is now a clear bijection between the possible worlds of π′(I) with probability > 0
and those of π(G), which preserves probability, and it is immediate by construction
that the Gaifman graph of a possible world I ′ of π′(I) is exactly the graph which is
the corresponding possible world of π(G). We conclude because it is immediate that
an instance satisfies qh iff its Gaifman graph satisfies q′h, so that we can compute in
PTIME our desired number of matchings from G′ and π′(q′h, I); and the evaluation
of π′(q′h, I) is precisely the problem we are reducing to.

6.1.4 Discussion
We discuss our choice of hard queries and an alternate problem phrasing where
instance families are given with their probabilities.

6.1.4.1 Choice of Hard Query

Not only is our query qh independent from the class of instances I, but it is also an
FO query, so, in the non-probabilistic setting, its data complexity on any instance
is in AC0. In fact, our choice of qh has also linear-time data complexity: one can
determine in linear time in an input instance I whether I |= qh. This contrasts
sharply with the FP#P-completeness (under RP reductions) of probability evaluation
for qh on any unbounded-treewidth instance class (if it is treewidth-constructible).

The query qh, however, is not monotone. We will show in Section 6.5 a dichotomy
on OBDD representations which applies to a monotone FO query (actually a query
in UCQ6=). For Theorem 6.1.2, we do not know whether we can do the same, but
we know that we can use instead a monotone MSO query. More specifically, we
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show that we can use instead a query in C2RPQ6=, the class of conjunctive two-way
regular path queries [Calvanese, De Giacomo, Lenzerini, and Vardi 2000; Calvanese,
De Giacomo, and Vardi 2005] where we additionally allow disequalities between
variables.

Indeed, consider the query:

qRPQ ··= ∃xyz W (x0, x1, x2, x3) ∧W (y0, y1, y2, y3) ∧W (z0, z1, z2, z3)
∧ Adj∗(x0, y0) ∧ Adj∗(x0, z0) ∧ x0 6= y0 ∧ x0 6= z0 ∧ y0 6= z0

where Adj is as before a shorthand for the disjunction of all binary relations in the
signature and their inverses (definable in C2RPQ), and where W is:

W (x0, x1, x2, x3) ··= Adj(x0, x1) ∧ Adj(x0, x2) ∧ Adj(x0, x3) ∧
∧
i 6=j

xi 6= xj

Analogously to Lemma 6.1.8, we can show that for any 3-regular planar graph G and
graph G′ having G3 has a topological minor, there is a valuation π′′ such that the
number of matchings of G can be computed in PTIME from π′′(qRPQ, G

′). Indeed,
define the valuation π′′ as π in the proof of that lemma, but assigning probability
1/2 to one edge per path encoding an edge of G, and probability 1 to the others.
We show that π′′(qRPQ, G

′) is 1−M/2n, where M is the number of matchings of G
and n its number of edges. Indeed, we show there is an obvious bijection between
subgraphs of G and non-zero-probability valuations of G′ under π′′.

For a subgraph which is not a matching, qRPQ holds, as witnessed by mapping x0
to the node of G′ representing the node of G with two adjacent edges, mapping y0
and z0 to the nodes of G′ representing the two neighbors of x in G, mapping the
other xi, yi and zi to the neighbors of x0, y0, z0 in G3.

Conversely, whenever qRPQ holds, x0, y0 and z0 must be mapped to nodes
representing nodes of G (they are the only nodes with degree 3, and the images
of x0, y0 and z0 have degree 3, as evidenced by the disequalities); further, by the
disequalities, x0, y0 and z0 must be different. Further, y0 and z0 are accessible
from x0, which means that in the subgraph of G, there is a path from of node of G
to two different nodes of G; this means this subgraph is not a matching as, in a
matching, connected components have size at most 2.

We conclude that we can show Theorem 6.1.2 using qRPQ instead of qh, proceeding
exactly as in our original proof above.

6.1.4.2 Providing Valuations with the Instances

When we fix the instance family I, the probability valuation is not prescribed as
part of the family, but can be freely chosen. If the instances of I were provided with
their probability valuations, or if probability valuations were forced to be 1/2, then
it is unlikely that an equivalent to Theorem 6.1.2 would hold.

Indeed, fix any query q such that, given any instance I, it is in #P to count how
many subinstances of I satisfy q; e.g., let q be a CQ. Consider a family I of instances
with valuations such that there is only one instance in I per encoding length: e.g.,
take the class of R-grids with probability 1/2 on each edge, for some binary relation
R. Consider the problem, given the length of the encoding of an instance I (written
in unary), of computing how many subinstances of I satisfy q. This problem is in the
class #P1 Valiant 1979. Hence, the probability computation problem for q on I is in
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FP#P1 : rewrite the encoding of the input instance I to a word of the same length in
a unary alphabet, use the #P1-oracle to compute the number of subinstances, and
normalize the result by dividing by the number of possible worlds of I.

It thus seems unlikely that probabilistic evaluation of q on I with its valuations
is #P-hard, so that our dichotomy result probably does not adapt if input instance
families are provided with their valuations.

6.2 Dichotomy on Non-Probabilistic Evaluation
Our probability evaluation problem allows the valuation to set edges to have proba-
bility 0. We can thus restrict to any subinstance of an instance in the class I. In
other words, the freedom to choose valuations in probability evaluation gives us at
least the possibility of choosing subinstances for non-probabilistic query evaluation.

For this reason, in this section, we study the (non-probabilistic) query evaluation
problem (remember its definition in Section 2.6) on instance classes I which are
closed under taking subinstances (or subinstance-closed), namely, for any I ∈ I and
I ′ ⊆ I, we have I ′ ∈ I.

We will show dichotomy results for this problem on unbounded-treewidth instance
families as before, though we will use an MSO query rather than a FO query. We give
two phrasings of our results. The first one still requires treewidth-constructibility,
and shows hardness for every level of the polynomial hierarchy, again under RP
reductions: we show it in Section 6.2.1.

The second phrasing is inspired by the results of [Ganian, Hliněnỳ, et al. 2014]:
it relies on complexity assumptions (namely, the non-uniform exponential time
hypothesis) but works with a weaker notion of constructibility, namely, it requires
treewidth to be strongly unbounded poly-logarithmically. We present it, introduced
by a discussion of the connection between these phrasings, in Section 6.2.2.

6.2.1 Hardness Formulation
Our first dichotomy is as follows, phrased using treewidth-constructibility. In this
result, ΣP

i denotes the complexity class at the i-th existential level of the polynomial
hierarchy.

Theorem 6.2.1. Let σ be an arbitrary arity-2 signature. Let I be a class of σ-
instances which is treewidth-constructible and subinstance-closed. The following
dichotomy holds:

• If there exists k ∈ N such that tw(I) 6 k for every I ∈ I, then for every GSO
query q, the evaluation problem for q on I is solvable in linear time.

• Otherwise, for each i ∈ N, there is an MSO query qih (depending only on σ,
not on I) such that the evaluation problem for qih on I is ΣP

i -hard under RP
reductions.

The upper bound is by Courcelle’s results [Courcelle 1990; Flum, Frick, and
Grohe 2002], so our contribution is the hardness part, which we now prove. The only
thing to change relative to the proof of Theorem 6.1.2 is the hard problems from
which we reduce. We reduce from hard problems on planar {1, 3}-regular graphs,
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which we obtain from the alternating coloring problem as [Ganian, Hliněnỳ, et al.
2014; Ganian et al. 2010], restricted to such graphs using techniques shown there,
plus an additional construction to remove vertex labellings. Here is our formal claim
about the existence of such hard problems:

Lemma 6.2.2. For any i ∈ N, there exists an MSO formula ψi on the signature
of graphs such that the evaluation of ψi on planar {1, 3}-regular graphs is ΣP

i -hard.
Moreover, for any such graph G, we have G |= ψi iff G′ |= ψi for any subdivision G′
of G.

To prove this lemma, we will need an additional lemma that allows us to move
from labeled graphs (as in [Ganian, Hliněnỳ, et al. 2014]) to unlabeled graphs. We
focus on graphs labeled by a Boolean value, i.e., there is a set of nodes that are
labeled, and the others are unlabeled. We stress that this lemma would also apply in
the setting of [Ganian, Hliněnỳ, et al. 2014], and it is not thanks to this result that
we can do away with the vertex labels used in [Ganian, Hliněnỳ, et al. 2014]: their
use of vertex labels is required for deeper reasons, and it is our use of the polynomial
bounds of [Chekuri and Chuzhoy 2014a] that allows us to avoid them.

Lemma 6.2.3. For any MSO formula ϕ on labeled graphs (i.e., ϕ has a symmetric
binary predicate E to test edges and a unary predicate L to test for labeled vertices),
we can construct in PTIME an MSO formula ψ on unlabeled graphs, such that for
any labeled graph G, we can construct in PTIME a graph G′ such that G |= ϕ iff
G′ |= ψ.

Proof. We first define the PTIME translation τ of the labeled graph G = (V,E, L)
(where L ⊆ V is the set of labeled vertices) into a graph τ(G) = (V ′, E ′). We
set V ′ = V t {d1, a1, a2, b1, b2, b

′
1, b
′
2, l}, where the additional vertices are fresh and

pairwise distinct. We set E ′ to be E plus the following edges:

• An edge between a1 and every v ∈ V , and an edge between a2 and every v ∈ V .

• An edge between a1 and a2.

• An edge between ai and bi, and between ai and b′i, for i ∈ {1, 2}.

• An edge between b1 and b2, and an edge between b′1 and b′2.

• An edge between d1 and l.

• An edge between l and every labeled vertex v ∈ L.

Observe that the following claims hold about G′:

1. d1 and l are the only nodes of G′ that may have degree 1. Indeed, all nodes
in V are adjacent to a1 and a2, and the claim is clear for the ai, bi and b′i
(considering that each is connected to at least two of the new nodes)

2. The nodes of L are exactly those with a neighbor that has another neighbor
of degree 1. Indeed, all labeled nodes are adjacent to l, which is adjacent
to d1, which clearly always has degree 1. For the converse, let us distinguish
the case where L = ∅, in which case only d1 and l have degree 1, and they
form a separate connected component so no node has a neighbor with another
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neighbor of degree 1. Assuming L 6= ∅, l is adjacent to some labeled node and
to d1, so it has degree > 2. Hence, by point 1, the only node with degree 1
is d1, its only neighbor is l, and its other neighbors are the nodes of L, so
indeed only nodes of L satisfy the condition.

3. a1 and a2 are adjacent to all nodes of G′ except exactly four of them. This is
immediate: for ai, the missing nodes are d1, l, and b3−i and b′3−i.

4. All vertices of G′ except the ai have at least five nodes to which they are not
adjacent. Indeed, every v ∈ V is non-adjacent to d1 and bi and b′i for i ∈ {1, 2},
hence, 5 nodes. d1 and l are non-adjacent to the ai and b′i, so at least 6 nodes.
The bi are non-adjacent to d1, l, the two b′i, and a3−i, so at least 5 nodes. The
same argument works for the b′i.

5. a1 and a2 are exactly the nodes of G′ which are non-adjacent to exactly four
nodes. This follows immediately from the two previous points.

6. The bi and b′i are the only nodes adjacent to exactly one of a1, a2. It is
immediate by construction that each bi is adjacent to ai but not to a3−i, and
likewise for b′i. Now, d1 and l are adjacent to no ai, and the vertices in V are
adjacent to both a1 and a2.

We now write auxiliary MSO predicates. For any constant c ∈ N, it is clear that
we can write in MSO (actually, in FO) a formula degc(x) that tests whether x has
degree exactly c, and a formula degc(x) that tests whether the number of elements
that are not adjacent to x is exactly c. We write:

L(w) ··= ∃xy deg1(x) ∧ E(x, y) ∧ E(y, w) ∧ x 6= w

G1(x) ··= deg4(x)
G2(x) ··= ∃y G1(y) ∧ E(x, y) ∧ (∀y′ G1(y′) ∧ E(x, y′)⇒ y = y′)
G3(x) ··= deg1(x) ∨ (∃y E(x, y) ∧ deg1(y))
V (x) ··= ¬G1(x) ∧ ¬G2(x) ∧ ¬G3(x)

We now claim that for any labeled graph G = (V,E, L), writing τ(G) = (V ′, E ′):

• We have τ(G) |= L(w) iff w ∈ L. Indeed, we have τ(G) |= L(w) iff w has a
neighbor that has another neighbor of degree 1, so point 2 of the list of claims
concludes.

• We have τ(G) |= V (v) iff v ∈ V . Indeed, we have τ(G) |= G1(v) iff v has
exactly 4 non-adjacent elements in G′, so that point 5 of the list of claims
ensures that this is precisely the case for the ai. This implies that τ(G) |= G2(v)
iff v is adjacent to exactly one of the ai, i.e., by point 6 of the list of claims, iff
v is one of the bi or b′i. Now, τ(G) |= G3(v) iff v has degree 1 or is adjacent
to a degree 1 node, and by point 1 of the list of claims (noticing also that
whenever l has degree 1 then its one neighbor is d1), this is the case iff v is l
or d1. Hence, τ(G) |= G(v) iff v ∈ V .

We conclude that we can construct ψ in PTIME from ϕ by relativizing every quantified
formula of the form ∀x χ(x,y) into a formula ∀x V (x)→ χ(x,y), every quantified
formula of the form ∃x χ(x,y) into a formula ∃x V (x) ∧ χ(x,y), by replacing each
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occurrence of the unary predicate L by the subformula defined above, and by keeping
E unchanged. By construction, for any labeled graph G, we have G |= ϕ iff τ(G) |= ψ,
as we have shown that the interpretation of the subformulae in ψ on τ(G) is exactly
that of the predicates in ϕ on G. This concludes the proof.

We can now prove our lemma that states the existence of hard problems:

Proof of Lemma 6.2.2. We fix i ∈ N. Without loss of generality, we assume i to be
odd (if not, we will show ΣP

i+1-hardness, which implies ΣP
i -hardness). We reduce from

the alternating coloring problem or Σi3col problem defined in [Ganian, Hliněnỳ,
et al. 2014], which is complete for ΣP

i under polynomial-time reductions by [Ganian,
Hliněnỳ, et al. 2014, Theorem 5.2].

By [Ganian, Hliněnỳ, et al. 2014, Lemma 5.3], an instance of Σi3col can be
given as a graph with i+ 3 label predicates and such that, on such a labeled graph
structure, there exists a formula ϕi that expresses Σi3col.

By [Ganian, Hliněnỳ, et al. 2014, Lemma 5.4], we can construct in polynomial-
time from ϕi an MSO formula ϕ′i on labeled graphs with a single label predicate
such that any graph with i+ 3 label predicates G can be rewritten in polynomial
time to a graph G′ with a single label predicate such that G |= ϕi iff G′ |= ϕ′i.

By our Lemma 6.2.3, we can construct in polynomial-time from ϕ′i an MSO
formula ϕ′′i on unlabeled graphs such that any labeled graph G′ with a single label
predicate can be rewritten in polynomial time to an unlabeled graph G′′ such that
G |= ϕi iff G′′ |= ϕ′′i .

Finally, by [Ganian et al. 2016, Theorem 5.1], we can construct in polynomial-time
from ϕ′′i an MSO formula ψi such that any graph G′′ can be rewritten in polynomial
time to a {1, 3}-regular planar graph H such that H |= ψi iff G′′ |= ϕ′′i , and such
that ψi is invariant under subdivisions: for any graph H ′, we have H ′ |= ψi iff any
subdivision H ′′ of H ′ is such that H ′′ |= ψ. This means that the evaluation of ψi is
ΣP
i -hard on planar {1, 3}-regular graphs and that the additional properties that we

claimed are verified, which concludes the proof.

Thanks to this lemma, we can now prove the hardness part of our dichotomy
result:

Proof of Theorem 6.2.1. Once again, the first claim of the theorem is known (it is a
consequence of Courcelle’s results, [Courcelle 1990]), so we only prove the second
claim.

Fix i ∈ N. Using Lemma 6.2.2, we reduce from the evaluation of ψi on planar
{1, 3}-regular graphs. We take qih to be identical to ψi except that the E predicates
(which are symmetric) are replaced with the Adj subformula asserting adjacency in
the Gaifman graph, as in Section 6.1.

Fix the class I. Let G be a planar {1, 3}-regular graph. As in Section 6.1,
compute in randomized PTIME an embedding (f, g) of G in the Gaifman graph G′
of an instance I ′ of I, and let I ∈ I be the subinstance of I ′ obtained by keeping
exactly the facts that correspond to edges of G′ in the image of g, so the Gaifman
graph of I is a subdivision of G, i.e., each edge of G corresponds to a path in I. It
is clear that I satisfies qih iff G |= ψi, i.e., iff G |= ψi, by the property on ψi. This
completes the reduction.
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As a closing remark, note that Theorem 6.2.1 relies crucially on the class I being
subinstance-closed. Otherwise, considering the class I of cliques of a single binary
relation E, this class is clearly unbounded-treewidth and treewidth-constructible, yet
it has bounded clique-width so MSO query evaluation has linear data complexity on
this class [Courcelle, Makowsky, and Rotics 2000].

Further, the hypothesis of treewidth-constructibility is also crucial. Without this
assumption, [Makowsky and Marino 2003, Proposition 32] shows the existence of
graph families of unbounded treewidth which are subinstance-closed yet for which
MSO query evaluation is in PTIME.

6.2.2 Alternate Formulation
We now give an alternative phrasing of Theorem 6.2.1 which connects it to the
existing results of [Kreutzer and Tazari 2010; Ganian, Hliněnỳ, et al. 2014]. Table 6.1
tersely summarizes their results in comparison to our own results and other related
results. As [Kreutzer and Tazari 2010; Ganian, Hliněnỳ, et al. 2014] are phrased in
terms of graphs, and not arbitrary arity-2 relational instances, we do so as well in
this section.

[Kreutzer and Tazari 2010; Ganian, Hliněnỳ, et al. 2014] show the intractability
of MSO on any subgraph-closed unbounded-treewidth families of graphs, under finer
notions than our treewidth-constructibility. [Kreutzer and Tazari 2010] proposed the
notion of families of graphs with treewidth strongly unbounded poly-logarithmically
and showed that MSO2 (MSO with quantifications over both vertex- and edge-sets)
over any such graph families is not fixed-parameter tractable in a strong sense (it is
not in XP), unless the exponential-time hypothesis (ETH) fails. [Ganian, Hliněnỳ, et
al. 2014] proved a related result, introducing the weaker notion of densely unbounded
poly-logarithmically but requiring graph families to be closed under vertex relabeling;
in such a setting, [Ganian, Hliněnỳ, et al. 2014, Theorem 4.1] shows that MSO (with
vertex labels) cannot be fixed-parameter quasi-polynomial unless the non-uniform
exponential-time hypothesis fails.

These two results of [Kreutzer and Tazari 2010] and [Ganian, Hliněnỳ, et al. 2014]
are incomparable: [Kreutzer and Tazari 2010] requires a stronger unboundedness
notion (strongly unbounded vs densely unbounded) and a stronger query language
(MSO2 vs MSO), but it does not require vertex relabeling, and makes a weaker
complexity theory assumption (ETH vs non-uniform ETH). See the Introduction of
[Ganian, Hliněnỳ, et al. 2014] for a detailed comparison.

Our Theorem 6.2.1 uses MSO and no vertex labeling, but it requires treewidth-
constructibility, which is stronger than densely/strongly poly-logarithmic unbound-
edness: strongly unboundedness only requires constructibility in o(2n) and densely
unboundedness does not require constructibility at all. The advantage of treewidth-
constructibility is that we were able to show hardness of our problem (under RP
reductions), without making any complexity assumptions. However, if we make the
same complexity-theoretic hypotheses as [Ganian, Hliněnỳ, et al. 2014], we now show
that we can phrase our results in a similar way to theirs, and thus strengthen them.

We accordingly recall the definition of densely poly-logarithmic unboundedness:

Definition 6.2.4. [Ganian, Hliněnỳ, et al. 2014, Definition 3.3] A graph class G has
treewidth densely unbounded poly-logarithmically if for all c > 1, for all m ∈ N, there
exists a graph G ∈ G such that tw(G) > m and |V (G)| < O(2m1/c). C
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We now state our intractability result on densely unbounded poly-logarithmically
graph classes. It is identical to [Ganian, Hliněnỳ, et al. 2014, Theorem 5.5] but applies
to arbitrary MSO formulae, without a need for vertex relabeling: in the result, PH
denotes the polynomial hierarchy. This result answers [Grohe 2007, Conjecture 8.3],
as we claimed in the introduction to this chapter.

Theorem 6.2.5. Unless PH ⊆ DTIME(2o(n))/SubEXP, there is no graph class G
satisfying all three properties:

a) G is closed under taking subgraphs;

b) the treewidth of G is densely unbounded poly-logarithmically;

c) the evaluation problem for any MSO query q on G is quasi-polynomial, i.e., in
time O(nlogd n×f(|q|)) for n = |V (G)|, an arbitrary constant d > 1, and some
computable function f .

The proof technique is essentially the same as in [Ganian, Hliněnỳ, et al. 2014] up
to using the newer results of [Chekuri and Chuzhoy 2014a]. It is immediate that an
analogous result holds for probability query evaluation, as standard query evaluation
obviously reduces to it (take the valuation giving probability 1 to each fact).

Proof of Theorem 6.2.5. We start with a problem P in the polynomial hierarchy
PH, say in ΣP

i , and show that it can be solved in sub-exponential time with sub-
exponential advice if such a graph class G exists. The structure of the proof follows
that of Theorems 4.1 and 5.5 of [Ganian, Hliněnỳ, et al. 2014], except that we use the
polynomial bound from [Chekuri and Chuzhoy 2014a] (restated here as Lemma 6.1.4)
on the required treewidth as a function of the size of the desired topological minor.

Let F be a polynomial-time reduction from P to the problem ψi of Lemma 6.2.2,
which is hard for ΣP

i . Let x be an instance of P , and H ··= F (x); as F is polynomial-
time, we know that |H| 6 |x|l and |V (H)| 6 |x|l for some l. Let α be the constant c
of Lemma 6.1.4. Pose m ··= |x|.

Since G has treewidth densely unbounded poly-logarithmically, letting d be given
by our assumption on G, choose c ··= l · α · (d + 2), and take Gm ∈ G such that
tw(Gm) > ml·α and |V (Gm)| < O(2mβ), where β < 1 is defined as β ··= 1

d+2 .
Since tw(Gm) > mlα > |V (H)|α, by Lemma 6.1.4, H is a topological minor of

Gm. Let (fm, gm) be an embedding of H in Gm.
We consider the advice function A(m) ··= (Gm, fm, gm). As |Gm| 6 |V (Gm)|2 <

O(22mβ) and the size of a function is smaller than the product of the size of the
domain and range of that function, the size of the advice A(m) is < O(24mβ), which
is asymptotically sub-exponential in m because β < 1.

The embedding (fm, gm) maps H to a subgraph G′ of G such that H is isomorphic
to a subdivision of G′. As G is closed under taking subgraphs, and as ψi is not sensitive
to taking subdivisions by Lemma 6.2.2, we can decide ψi on H by evaluating ψi
on G′ in quasi-polynomial time, i.e., in time O(2mβmdβf(|ψi|)) for d, f given by the
assumptions on G.

As β = 1
d+2 , this gives us an algorithm to decide P on input x in time O(2o(|x|))

with advice of size asymptotically sub-exponential inm. This concludes the proof.
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6.3 Dichotomy on Match Counting
We now study a second non-probabilistic problem on subgraph-closed instances,
namely, the problem of match counting, i.e., counting how many assignments satisfy
a non-Boolean MSO formula (recall its definition in Section 2.6, and recall that it
should not be confused with the model counting problem). To our knowledge, no
dichotomy-like result on match counting for MSO queries was known before; we show
the following one in this section:
Theorem 6.3.1. Let σ be an arbitrary arity-2 signature. Let I be a subinstance-
closed and treewidth-constructible class of relational instances over σ. The following
dichotomy holds:
• If there is k ∈ N such that tw(I) 6 k for every I ∈ I, then for every MSO
query q(X) with free second-order variables, the counting problem for q on I is
solvable in ra-linear time.

• Otherwise, there is an MSO query q′h(X) (depending only on σ, not on I) with
one free second order variable such that the counting problem for q′h on I is
FP#P-complete under RP reductions.

The first claim is shown in [Arnborg, Lagergren, and Seese 1991]; we gave a proof
of it using our methods as Theorem 4.6.1. Hence, we focus again on the second part.
We reduce from the problem #3PCH of counting Hamiltonian cycles in an input
3-regular planar graph.
Definition 6.3.2. A Hamiltonian cycle in a graph G is a cycle E(x0, x1), . . . ,
E(xn−1, xn), with x0 = xn, such that x1, . . . , xn are precisely the vertices of G.

The #3PCH problem asks, given a planar 3-regular graph G, its number of
Hamiltonian cycles. C

Lemma 6.3.3. [Liskiewicz, Ogihara, and Toda 2003, Corollary 6] #3PCH is FP#P-
complete.

Let us define a query q′h(S) on graphs. It will apply to the result H of subdividing
each edge of an input 3-regular planar graph G exactly once, namely, H ··= G2, the
incidence graph of G. Note that the vertices of H have either degree 3 (in which case
they correspond to vertices of the 3-regular graph G) or degree 2 (in which case they
correspond to edges of G).

The query q′h(S) therefore asks that S is a subset of edges (intuitively, of H)
which is connected, which contains all degree-3 elements of the graph (so all original
vertices of G), and which ensures that each element of S is adjacent to precisely two
other elements of S (so it stands for a path of G).

Formally, we define:

Deg3(x) ··= ∃y1y2y3 E(x, y1) ∧ E(x, y2) ∧ E(x, y3) ∧ y1 6= y2 ∧ y1 6= y3 ∧ y2 6= y3

∧ ∀y E(x, y)⇒ (y = y1 ∨ y = y2 ∨ y = y3)
TwoN(x, S) ··= ∃y1y2 E(x, y1) ∧ E(x, y2) ∧ y1 6= y2 ∧ y1 ∈ S ∧ y2 ∈ S

∧ ∀y (E(x, y) ∧ y ∈ S)⇒ (y = y1 ∨ y = y2)
Conn(S) ··= ∀xy x ∈ S ∧ y ∈ S ⇒ ∀S ′ ((x ∈ S ′

∧ (∀zw z ∈ S ′ ∧ E(z, w) ∧ w ∈ S ⇒ w ∈ S ′))⇒ y ∈ S ′)
q′h(S) ··= Conn(S) ∧ (∀x Deg3(x)⇒ x ∈ S) ∧ (∀x x ∈ S ⇒ TwoN(x, S))
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We first show that q′h correctly tests Hamiltonian cycles:

Lemma 6.3.4. For any graph G, letting H ··= G2, for any subset S of vertices of H,
we have H |= q′h(S) iff S denotes a Hamiltonian cycle of G, namely, all vertices
originally from G are in S, and the additional vertices of S stand for edges of G
such that there is a Hamiltonian cycle that uses exactly these edges.

Proof. Fix G and H ··= G2. For the backward direction, let S denote a Hamiltonian
cycle of G. It is clear that S must be connected, that S must contain all degree-3
vertices of H (which stand precisely for the original vertices in the 3-regular G), and
that every vertex of S has precisely two neighbors in S (as each edge of the cycle
in G contains two edges, and each vertex is incident to precisely two edges). Hence,
we have H |= q′h(S).

For the forward direction, consider a subset S of vertices ofH such thatH |= q′h(S).
Choose any element v1 of S, any adjacent element v2 of S, and follow the sequence of
elements of S by taking, after each element vi, the adjacent element vi+1 in H which
is not vi−1. As all elements in S have exactly two adjacent elements in S, this process
is well-defined and it must loop back on v1, and as S is connected this enumerates all
elements of S, i.e., as S contains all degree-3 elements of H, it enumerates all vertices
of H that stand for vertices of G. The result of this process is thus a Hamiltonian
cycle in G that uses precisely the edges corresponding to the additional vertices
in S.

We now prove the lower bound of our dichotomy result on match counting:

Proof of Theorem 6.3.1. We use the query q′′h(S) obtained from q′h(S) by replacing
the relation E with the relation Adj defined in Section 6.1, that tests adjacency in
the Gaifman graph for the signature σ. Clearly the counting problem for q′′h is in
FP#P for any input instance, as can be seen by a PTIME nondeterministic Turing
machine that chooses a valuation for the free variable S in nondeterministic PTIME,
and then checks in deterministic PTIME whether the chosen S is satisfies q′′h(S). So
we only have to show the hardness claim.

Fix a 3-regular planar graph G = (V,E), let n ··= |V | be its number of vertices,
and let us reduce the problem of counting Hamiltonian cycles in G to the problem of
match counting of q′′h on H ··= G2.

Using the fact that I is subinstance-closed, unbounded-treewidth, and treewidth-
constructible, compute in randomized PTIME as in the previous sections an instance I
of I whose Gaifman graph is a subdivision of H. By Lemma 6.3.4, it is clear that
q′′h(S) holds iff S is the image in I of a Hamiltonian cycle of G. Further, it is
easily seen that each such image corresponds to exactly |V | Hamiltonian cycles
of G, namely, cycles that differ only by the choice of the starting vertex. Hence,
letting N ′ be the number of matches of q′′h on I, the number N of Hamiltonian cycles
of G, which is what we wish to compute, is such that N ′ = n ·N , so we can clearly
compute N in PTIME from N ′: remember that the number of Hamiltonian cycles is
a singly exponential value so its size is polynomial and arithmetic operations on it
are polynomial as well. Thus, the #3PCH instance reduces in randomized PTIME
to the query counting problem for q′′h. This shows FP#P-hardness and concludes the
proof.
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Unlike in Theorem 6.1.2, the query q′h does not have tractable model checking
(as opposed to probability evaluation). We do not know whether our dichotomy for
match counting could be shown with a tractable query.

6.4 Dichotomy for OBDD Representations
We now turn to our second main dichotomy result for this chapter: our Theorem 3.5.2
on the existence of tractable lineage representations as OBDDs is unlikely to extend to
milder conditions than bounded-treewidth, because there are even UCQ6= queries that
have no polynomial-width OBDDs on any unbounded-treewidth input instance with
treewidth densely unbounded poly-logarithmically, again on arity-two signatures.

This result can be compared to our first main dichotomy result (Theorem 6.1.2).
Our first result applied to the more general task of probability evaluation: if OBDDs
for the query on input instances of the family can be computed in PTIME, then
probability evaluation is in PTIME as well, but the converse does not hold: see [Jha
and Suciu 2013] for counterexamples. However, our first result applied to a query in
non-monotone FO, whereas our second result applies to a query in the more restricted
class UCQ6=. Further, as our second result is based on different techniques, it makes
a weaker constructibility requirement (but still relies on the minor extraction tools
of [Chekuri and Chuzhoy 2014a]).

Here is our dichotomy result on tractable OBDDs:

Theorem 6.4.1. There exists a constant d ∈ N such that the following holds. Let
σ be an arbitrary arity-2 signature and I be a class of σ-instances. Assume there
is a function f(k) = O(2k1/d) such that, for all k ∈ N, if I contains instances of
treewidth > k, one of them has size 6 f(k). We have the following dichotomy:

• If there is k ∈ N such that tw(I) 6 k for every I ∈ I, then for every GSO
query q, an OBDD of q on I can be computed in time polynomial in |I|.

• Otherwise, there is a UCQ 6= query qp (depending on σ but not on I) such
that the width of any OBDD of qp on I ∈ I (i.e., an OBDD representation of
Prov(qp, I)) cannot be bounded by any polynomial in |I|.

This does not require treewidth-constructibility, and imposes instead a slight
weakening2 of densely unbounded poly-logarithmic treewidth. It does not require I
to be subinstance-closed either, unlike in Sections 6.2 and 6.3.

The first part of the theorem is by Theorem 3.5.2, so we will only show the second
part. Our choice of UCQ 6= qp, which will be discussed in more depth in Section 6.5,
intuitively tests the existence of a path of length 2 in the Gaifman graph of the
instance, i.e., a violation of the fact that the possible world is a matching of the
original instance. Formally, we define:

qp ··= ∃xyz Adj(x, y) ∧ Adj(y, z) ∧ x 6= z

where we use the Adj predicate as in Section 6.1 to test the existence of an edge
in the Gaifman graph. It is important to observe that qp is a connected UCQ6=, for
which we give a formal definition:

2The condition is weaker because we require the subexponentiality to work for some fixed d, not
an arbitrary c.

111



CHAPTER 6. LOWER BOUNDS

Definition 6.4.2. A CQ 6= is connected if, building the graph G on its atoms that
connects those that share a variable (ignoring 6=-atoms), G is connected (in particular
it has no isolated vertices, unless it consists of a single isolated vertex). A UCQ6= is
connected if all its CQ 6= disjuncts are connected. C

Again, remember that, while we know that probability evaluation for qp is FP#P-
hard if we allow arbitrary input instances (as counting matchings reduces to it), our
task is to show that qp has no polynomial-width OBDDs when restricting to any
instance family, a much harder task.

To show this, we draw a link between treewidth and OBDD width for qp on
individual instances, with the following result (which is specific to qp):

Theorem 6.4.3. Let σ be an arity-2 signature. There exist constants d′, k0 ∈ N
such that for any instance I on σ of treewidth > k0, the width of an OBDD for qp

on I is > 2(tw(I))1/d′ .

Indeed, once this is shown, then the lower bound of Theorem 6.4.1 can be derived
as follows:

Proof of Theorem 6.4.1. Fix d ··= d′ + 1. Fix the signature σ, the family I and the
function f giving the size bound. Let β be such that f(k) 6 β · 2k1/d for all k ∈ N.

Assume by way of contradiction that we have a polynomial bound on the size of
OBDDs for qp on I: there are α and c ∈ N such that, for all I ∈ I, there is an OBDD
of width 6 α · |I|c for qp on I. For any k > k0 (with k0 given by Theorem 6.4.3), let
us build Ik ∈ I such that:

1. k 6 tw(I), using the fact that I has unbounded-treewidth;

2. |I| 6 f(tw(I)), using the hypothesis in Theorem 6.4.1.

Let wk the smallest width of an OBDD for qp on Ik: by our assumption, we
have wk 6 α · |Ik|c. By Theorem 6.4.3, we have wk > 2(tw(Ik))1/d′ ; and we have
|Ik| 6 β · 2(tw(Ik))1/d by the bound on f , so |Ik|c 6 βc · 2c·(tw(Ik))1/d , which means
wk 6 α · βc · 2c·(tw(Ik))1/d .

We conclude that 2(tw(Ik))1/d′
6 α ·βc ·2c·(tw(Ik))1/d . Recall that we have tw(Ik) > k

and that this holds for arbitrarily large k > k0. As d > d′, we reach a contradiction by
picking a sufficiently large k ∈ N. This proves the lower bound of Theorem 6.4.1.

Hence, in the rest of this section, we prove Theorem 6.4.3. The first step is to
show in Section 6.4.1 a lower bound on OBDD width based on a certain structure
on the prime implicants of a monotone Boolean function, called dncpi-sets. This
allows us to rephrase the proof of Theorem 6.4.3 as the proof of the existence of
such a pattern in the lineage of qp on arbitrary instance families. In Section 6.4.2,
we define a structure of matches of qp, called a dncm-set, which we show implies
the existence of a dncpi-set, so we can rephrase the proof of Theorem 6.4.3 again
to the proof of the existence of a dncm-set. In Section 6.4.3, we finally explain how
such a dncm-set can be obtained, using graph extraction techniques with a family
of high-treewidth degree-3 graphs, the skewed grids, whose structure allows us to
guarantee the existence of large dncm-sets.
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6.4.1 Lower Bounds on OBDD Width from DNCPI-Sets
This section shows a lower bound on OBDD width for general monotone Boolean
functions from the structure of the prime implicants of the function. We first give
the necessary definitions and notations:

Definition 6.4.4. Given a total order Π on a set X of variables, for any 0 6 p 6 |X|,
we write Π6p for the prefix of the first p variables of Π, and Π>p for the suffix that
enumerates the other variables, so that Π is the concatenation of Π6p and of Π>p.

Given a monotone Boolean function ϕ, a prime implicant P of ϕ is a minimal
subset of the variable set X of ϕ that makes ϕ evaluate to 1: in other words, defining
νP for all x ∈ X by νP (x) ··= 1 iff x ∈ P , we have νP (ϕ) = 1, but for any valuation
ν < νP (with the pointwise order on valuations), we have ν(ϕ) = 0. C

The following is immediate:

Lemma 6.4.5. For any monotone Boolean function ϕ on variables X, for any
valuation ν of X such that ν(ϕ) = 1, there is a prime implicant P of ϕ such that
P ⊆ {x ∈ X | ν(x) = 1}.

Our lower bound will be derived by considering sets of disjoint prime implicants
with an additional non-covering condition, which we call dncpi-sets. Here is the
formal definition:

Definition 6.4.6. Given a monotone Boolean function ϕ on variables X, a disjoint
non-covering prime implicant set (dncpi-set) of ϕ is a set S of prime implicants
which:

• are pairwise disjoint: for any P1 6= P2 in S, we have P1 ∩ P2 = ∅.

• are non-covering in the following sense: for any prime implicant P of ϕ, if
P ⊆ ⊔S, then P ∈ S.

The size of S is the number of prime implicants that it contains.
Given a total order Π of X, we say that Π shatters a dncpi-set S if there exists

1 6 p 6 |X| such that, for all P ∈ S, we have P ∩ Π6p 6= ∅ and P ∩ Π>p 6= ∅. C

We now show the following bound: informally, the width of an OBDD is expo-
nential in the size n that guarantees that every total order of variables shatters some
dncpi-set of that size.

Lemma 6.4.7. Let ϕ be a monotone Boolean function on variables X and n ∈ N.
Assume that, for every total order Π on X, there is some dncpi-set S of ϕ with
|S| > n, such that Π shatters S. Then any OBDD for ϕ has width > 2n.

Proof. Fix ϕ and n ∈ N. Consider the total order Π followed by an ODD of minimal
width for ϕ. Fix the dncpi-set S of ϕ of size > n such that Π shatters S; we write
S = {P1, . . . , Pn}. Let p be the prefix length that witnesses that Π shatters S.

As Π shatters S, write each Pi as XitYi, where Xi ··= Pi∩Π6p and Yi ··= Pi∩Π>p.
As each Xi is non-empty, choose an arbitrary xi ∈ Xi for all 1 6 i 6 n. Let
X0 = {x1, . . . , xn}.

To each valuation ν of X0, we consider a valuation ν ′ of the variables of Π6p
defined as follows:

113



CHAPTER 6. LOWER BOUNDS

• each xi is mapped to ν(xi),

• the other variables of ⊔iXi are mapped to 1,

• other variables of Π6p are mapped to 0.

For each of the 2n valuations ν of X0, we consider the node vν′ at level p of the
OBDD that we reach by following a path from the root according to ν ′. We will now
show that the mapping ν 7→ vν′ is injective, which implies that the number of nodes
at level p of the OBDD is > 2n, proving the claim.

To show this, consider two valuations ν1 6= ν2 of X0, and the corresponding ν ′1
and ν ′2, and let us prove that vν′1 6= vν′2 . We build a valuation ν ′′ of the variables of
Π>p such that, letting ν ′′1 be the valuation of the entire X obtained by combining ν ′′
and ν ′1, and defining analogously ν ′′2 from ν ′′ and ν ′2, we have ν ′′1 (ϕ) 6= ν ′′2 (ϕ). If we
show this, then it indeed implies that vν′1 6= vν′2 , as otherwise, if they were equal, then
following the path labeled by ν ′′ from them, we would reach a leaf labeled either 0
or 1, and for one of the ν ′′i this would be an inaccurate answer.

Let us thus define ν ′′. As ν ′1 6= ν ′2, there is x ∈ X such that ν ′1(x) 6= ν ′2(x).
Without loss of generality, say that ν1(x) = 0 and ν2(x) = 1. As ν ′1 and ν ′2 match
except on X0, it must be the case that x ∈ X0, so we have x = xj for some j.
Consider the valuation ν ′′ of Π>p defined as follows:

• ν ′′(y) = 1 for y ∈ Yj,

• ν ′′(y) = 0 otherwise.

We show that ν ′′1 and ν ′′2 , defined as before, are such that ν ′′1 (ϕ) = 0 but ν ′′2 (ϕ) = 1,
which proves the claim.

First observe that we have ν ′′2 (ϕ) = 1. Indeed, ν ′′2 sets all elements of Sj to 1: xj
is set to 1 by ν2 as we observed, Xj\{xj} is set to 1 by definition of ν ′2, and Yj is set
to 1 by definition of ν ′′.

Now observe that we have ν ′′1 (ϕ) = 0. Indeed, first observe that for any x ∈ X, if
ν ′′1 (x) = 1, then by definition we have x ∈ ⊔S. Hence, assuming to the contrary that
ν ′′1 (ϕ) = 1, by Lemma 6.4.5 there must be a prime implicant P of ϕ such that ν ′′1
sets all variables of P to 1, and as we observed we must have P ⊆ ⊔S. Now, as S is
non-covering, this means that P is one of the Si, say Sk. But as Yk is non-empty,
pick yk ∈ Yk. We must have yk ∈ Π>p by definition of Yk, and we know that ν ′′1 sets
yk to 1, but observe that the only variables set to true by ν ′′ are those of Yj. Hence,
as Sj and Sk are disjoint if j 6= k, we must have j = k. But this means we have a
contradiction, because Sj contains xj and we know that ν1(xj) = 0, contradicting
our claim that ν ′′1 sets all variables of Sj to 1. Hence indeed we have ν ′′1 (ϕ) = 0. This
concludes the proof.

6.4.2 Rephrasing to Disjoint Non-Covering Match Sets
We will prove Theorem 6.4.3 using Lemma 6.4.7, and we explain in this section how
this reduces to a search for matches of a certain structure.

Let I be any instance and q be a query. Let us define the following notion:

Definition 6.4.8. A minimal match of q in I is a subinstance I ′ ⊆ I such that
I ′ |= q but for any I ′′ ( I ′, we have I ′′ 6|= q. C
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If ϕ is a monotone Boolean function, the valuation induced by a prime implicant P
of ϕ is the valuation of the variables of ϕ setting variables in P to 1 and other variables
to 0. If I is a relational instance, the valuation corresponding to a subinstance I ′ of I
is the valuation setting all facts of I ′ to 1 and all other facts of I to 0. As any query q
in UCQ6= is monotone, the lineage Prov(q, I) of q on I (recall Definition 3.3.1) is a
monotone Boolean function (from Lemma 3.4.1), and the following is easily observed:

Lemma 6.4.9. Let q be a query in UCQ 6=, I an instance, and ϕ ··= Prov(q, I) the
lineage of q on I. The valuations induced by the prime implicants of ϕ are exactly
those corresponding to the minimal matches of q in I.

As we will use Lemma 6.4.7, we want to find dncpi-sets in ϕ. Let us see what
this means in terms of the instance I and query q.

Definition 6.4.10. A disjoint non-covering match set (or dncm-set) for q in I is a
set S of minimal matches of q such that the domains of the matches are pairwise
disjoint (no two facts from different matches share any common element). Its size is
its number of matches. C

We now consider a dncm-set S of a connected UCQ6= query q in an instance I. It
is easy to observe that to S corresponds a dncpi-set S ′ of ϕ of the same cardinality.
Indeed, the variables corresponding to each match are a prime implicant of ϕ by
Lemma 6.4.9, so we must show that S ′ satisfies the conditions of dncpi-sets. The
disjointness condition on S ′ is respected because the facts in each match must be
different as their domains are disjoint. To see why the non-covering condition is
respected, consider a prime implicant P covered by S ′ and assume it is not in S ′.
In terms of the instance, this means that there is a minimal match M0 of q whose
facts are all in ⊔S and that contains facts from two different minimal matches in
S, say a fact F in a match M and F ′ in a match M ′ with M 6= M ′. Now, as q is
connected, its minimal matches are connected, which implies that there must be a
path of facts F = F1, . . . , Fn = F ′ in M0, with Fi and Fi+1 sharing some element of
dom(I) for all i. Remembering that M0 ⊆

⊔
S, this implies that there must be some

Fi in a match of S and Fi+1 in a different match of S, but this is impossible because
we imposed disjointness of the domains.

This correspondence between dncm-sets and dncpi-sets encourages us to define
the following:

Definition 6.4.11. Letting Π be a total order on the facts of I and Π6p a prefix,
letting S be a dncm-set, we say Π shatters S if there exists 1 6 p 6 |I| such that
each match of S has a non-empty intersection both with Π6p and with Π>p.

It is immediate that this implies that the dncpi-set corresponding to S is shattered
by Π. C

Hence, using Lemma 6.4.7, the above implies that we can rephrase our goal,
Theorem 6.4.3, as the following result about dncm-sets for our connected UCQ6= qp:

Lemma 6.4.12. For any arity-two signature σ, there exist constants d′, k0 ∈ N such
that, for any σ-instance I with tw(I) > k0, for every total order Π on the facts of I,
there exists a dncm-set for qp in I of size > (tw(I))1/d′ that is shattered by Π.

So it suffices to prove Lemma 6.4.12 to conclude the proof of Theorem 6.4.3, and
hence of Theorem 6.4.1. We do this in the next section.
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Figure 6.1: The 4× 4 skewed grid, with horizontal (red) and vertical paths (thick
dashed blue) in the proof of Lemma 6.4.14

6.4.3 Finding DNCM-Sets in Skewed Grids
This section proves Lemma 6.4.12. Let us introduce the relevant concepts. Inspired
by the standard class of wall graphs [Dragan, Fomin, and Golovach 2011], we will
be interested in graphs that we call skewed grids (see Figure 6.1 for an illustration,
disregarding colors and line style for now):

Definition 6.4.13. The n× n skewed grid Gn is the graph on {(r, c) | 1 6 r 6 n,
1 6 c 6 3n− 1} defined by the edges:

• for all 1 6 r 6 n and 1 6 c < 3n− 1, vertices (r, c) and (r, c+ 1) are adjacent;

• for all 1 6 r < n and 1 6 j 6 n, letting c = 2j + r − 1, vertices (r, c) and
(r + 1, c) are adjacent. C

The point of skewed grids is the following lemma, which we will use to create
dncm-sets from a skewed grid extracted as a topological minor:

Lemma 6.4.14. Let Gn be the n× n skewed grid (with n a positive even integer),
and let G be an arbitrary subdivision of Gn. Let Π be a total order on the edges of G.
There exists 1 6 p 6 |Π| such that there is a set V of n/2 vertices with each v ∈ V
having one incident edge in Π6p and one incident edge in Π>p.

Proof. Fix G and Π. For 1 6 p 6 |Π| and π a simple path in G, we will call π:

• complete at p, if π ⊆ Π6p;

• empty at p, if π ⊆ Π>p;

• shattered at p, if π intersects both Π6p and Π>p.

We call a vertex of G shattered at p if it has an incident edge in Π6p and an incident
edge in Π>p. Hence, our goal is to show the existence of 1 6 p 6 |Π| such that there
are > n/2 vertices that are shattered at p.

We make a simple preliminary observation: if a simple path π is shattered at p,
then some vertex of π is shattered at p. Indeed, π being shattered means it has edges
in either set, so there must be some vertex adjacent to one edge of each set.

Consider the n horizontal paths π1, . . . , πn defined as the simple paths of G
corresponding to the paths, for 1 6 r 6 n, defined by (r, 1), (r, 2) . . . , (r, 3n − 2),
(r, 3n − 1), in Gn (see Figure 6.1 for an illustration). Define p to be the smallest
value such that there are at least n/2 of the πi which are complete at p. Indeed, the
existence of such a p follows from the fact that none of the πi are complete at p = 0,
all are complete at p = |Π|, and the number which are complete is a non-decreasing
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function of p. Further, this function varies continuously, because each additional
edge completes at most one of the πi (as they are edge-disjoint); so for our choice
of p, there are exactly n/2 of the πi which are complete.

Consider the vertical paths π′1, . . . , π′n which are the simple paths of G correspond-
ing, for 1 6 j 6 n, letting j′ ··= 2j − 1, to the paths defined by (1, j′), (1, j′ + 1),
(2, j′ + 1), (2, j′ + 2), (3, j′ + 2), . . . , (n, j′ + (n− 1)), (n, j′ + n) in Gn. Either no π′i is
complete at p, or some π′i is complete at p. In the first case, observe that each of
the π′i shares some edge with all of the πi, hence, as there is at least one πi which is
complete at p (indeed there are n/2 > 0 of them), none of the π′i can be empty at p.
Hence, each of the π′i is neither complete nor empty at p, so it must be shattered;
and we deduce from the preliminary observation that each of these n shattered π′i
has a vertex that is shattered at p, so as the π′i are simple, we can conclude the proof.

In the second case, let i0 be such that π′i0 is complete at p. Remember that
exactly n/2 of the πi are complete at p, and let us investigate the status of the n/2
other πi. They cannot be complete at p, by our choice of p. They cannot be empty,
because each of them shares an edge with π′i0 . Hence, those n/2 remaining πi are
shattered at p. By the preliminary observation again, we conclude that there are
n/2 vertices that are shattered at p. This concludes the proof.

We can finally prove Lemma 6.4.12. We will fix d′ and k0 later. Observe first
that skewed grids are degree-3 planar graphs, and |V (Gn)| = n(3n − 1). Fix the
instance I, let k be its treewidth, and let G be its Gaifman graph, whose treewidth
is also k. Letting c′ be the exponent of Lemma 6.1.4, letting n ··= 2b1

6 × k
1/(2c′)c,

letting H ··= Gn, we have |V (H)|c
′
6 (3n)2c′ 6 k. Hence, H is a topological minor

of G. We fix k0 to be large enough so that n > 2.
Let Π be any order on the facts of I. We define from Π a total order Π′ on the

edges of the skewed grid minor H ′ of H embedded in G in the following way: we go
through Π in order and add an edge to Π′ precisely when all witnessing facts for
this edge have been enumerated in Π (remember that G is the Gaifman graph of I
and that, therefore, several facts of I may correspond to the same edge in G). By
Lemma 6.4.14 applied to Π′ and H ′ (which is a subdivision of H = Gn), as n is even,
we deduce the existence of 1 6 p 6 |Π| such that there is a set A of n/2 elements of
the domain of I, with each a ∈ A occurring in a fact F6a of Π6p and occurring in
a fact F>

a of Π>p, the other element occurring in F>
a being different from the one

occurring in F6a (because the witnessing edges in H ′ were not the same), and both
facts F6a and F>

a being reflected as edges in H ′.
We will construct from these facts our desired dncm-set, which will conclude the

proof of Lemma 6.4.12. We construct a candidate dncm-set S ′ by taking, for each
a ∈ A, the match Ma of qp formed of {F6a , F>

a }. Ma is indeed a match of qp, as it
consists of two facts that connect one common element to two distinct elements.
Observe that by construction of A, each match has a different domain (of size 3)
since it corresponds to a different pair of edges in the Gaifman graph of I; however,
we have to ensure that the domains of the matches are disjoint, which is not true
on S ′ in general. But since the domain of each match is by construction a subset
of vertices of the minor H ′, whose degree is bounded by 3, there is a constant α
such that each vertex in some domain in S ′ occurs in at most α matches (α can
be bounded by 3 + 3 × 2 where 3 is the maximum number of matches with the
vertex in the middle, and 3× 2 the maximum number of matches with the vertex
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at an extreme point). In particular, each vertex occurs in at most α matches of S ′.
Hence, let us do the following: we pick one match M1 in S ′ and simply eliminate all
other matches where an element of dom(M1) co-occurs, i.e., we eliminate at most
|dom(M1)| · α− 1 matches, so at most 3α− 1 matches.

Hence, we can repeat the process and obtain a dncm-set S of size at least 1
3α ·

n
2 .

Recalling that n is defined to be Θ(k1/(2c′)), this means that, for sufficiently large k,
the dncm-set S has size > k1/(2c′+1). Hence, we can fix d′ to be 2c′ + 1 and pick a
sufficiently large k0 (which can be independent from I or Π, in particular we always
have α 6 9), and we have proven Lemma 6.4.12.

This concludes the proof of Theorem 6.4.3, and hence of Theorem 6.4.1, which
concludes the section.

6.5 Meta-Dichotomy for OBDD Representations
We conclude this chapter by studying whether our dichotomy on tractable OBDD
representations in the previous chapter (Theorem 6.4.1) could not apply to different
UCQ 6= queries, or to more restricted query languages.

Our main result in this section is a complete classification of connected UCQ6=
queries relative to Theorem 6.4.1, in a meta-dichotomy (Theorem 6.5.1). We char-
acterize the UCQ6= queries for which we can prove the analogue of Theorem 6.4.1,
such as qp; they are the intricate queries. For the others, we show that there is a
family of treewidth-constructible unbounded-treewidth instances where they have
tractable OBDDs; in fact, constant-width OBDDs. Hence, if a connected UCQ6= has
polynomial OBDDs on some unbounded-treewidth instance family, then there must
be such a family on which it has constant-width OBDDs.

We also classify other query classes. In Section 6.5.3, we classify connected CQ6=
queries, showing that neither of them are intricate, so that Theorem 6.4.1 cannot
be proven with a CQ6= query. In Section 6.5.4, we classify UCQ queries, and in fact
all queries closed under homomorphisms, showing that Theorem 6.4.1 cannot apply
to them either. Last, we study disconnected CQ6= queries. For them, we show in
Section 6.5.5 that our meta-dichotomy theorem does not hold: there is a disconnected
CQ 6= query qd that has no constant-width OBDDs on any unbounded-treewidth
treewidth-constructible family, but there is one such family where the OBDDs have
width linear in the treewidth, not exponential, so that neither of the cases of the
meta-dichotomy applies to qd.

6.5.1 Meta-Dichotomy Theorem
Our meta-dichotomy applies to connected UCQ6= (recall Definition 6.4.2). We first
give the meta-dichotomy result, without explaining yet what is our definition of an
intricate query (we will define this just afterwards):

Theorem 6.5.1. For any connected UCQ 6= q on an arity-2 signature:

• If q is not intricate, there is a treewidth-constructible and unbounded-treewidth
family I of instances such that q has constant-width OBDDs on I; the OBDDs
can be computed in PTIME from the input instance.
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• If q is intricate, then Theorem 6.4.1 applies to q: in particular, for any
unbounded-treewidth family I of instances satisfying the hypotheses, q does not
have polynomial-width OBDDs on I.

In other words, the analogue of the dichotomy of Theorem 6.4.1 holds for a
connected UCQ6= q if and only if it is intricate. Further, non-intricate queries, which
do not have a lower bound on OBDD width as a function of treewidth, must actually
have constant-width OBDD on some counterexample unbounded-treewidth family.

We now give our definition of intricate queries. We characterize them by looking
at line instances:

Definition 6.5.2. A line instance is an instance I of the following form: a domain
a1, . . . , an, and, for 1 6 i < n, one single binary fact between ai and ai+1: either
R(ai, ai+1) for some R ∈ σ or R(ai+1, ai) for some R ∈ σ. C

The intuition is that a query is intricate if, on any sufficiently long line instance,
it must have a minimal match that contains the two middle facts (i.e., the ones that
are incident to the middle element). Formally:

Definition 6.5.3. A UCQ6= q is n-intricate for n ∈ N if, for every line instance I
with |I| = 2n + 2, letting F and F ′ be the two facts of I incident to the middle
element an+2, there is a minimal match of q on I that includes both F and F ′.

We call q intricate if it is |q|-intricate. C

Observe that queries q with |q| < 2 clearly cannot be intricate. Further, if a query
has no matches that include only binary facts, then it cannot be intricate; in other
words, any disjunct that contains an atom for a unary relation can be ignored when
determining whether a query is intricate. By contrast, our query qp of Theorem 6.4.1
was designed to be intricate, in fact qp is 0-intricate. Note that, clearly, an n-intricate
query is always m-intricate for any m > n, by considering the restriction of any line
instance of size 2m+ 2 to a line instance of size 2n+ 2, and finding a match in the
restriction.

We note that we can decide whether UCQ 6= queries are intricate or not, by
enumerating line instances. We do not know the precise complexity of this task:

Lemma 6.5.4. Given a connected UCQ6= q, we can decide in PSPACE whether q is
intricate.

Proof. Enumerate all possible line instance of size 3 · |q|, and, for each such instance I,
compute all matches of q on I and check the condition.

What remains to do is to prove Theorem 6.5.1, which we do in the next section.
We then study the language of connected CQ 6= in Section 6.5.3, queries closed
under homomorphism (including UCQ) in Section 6.5.4, and non-connected CQ6= in
Section 6.5.5.

6.5.2 Proof of Theorem 6.5.1
We prove separately the two claims of the result. The first claim is about non-intricate
queries, and the second claim is about intricate queries.
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6.5.2.1 First Claim: Non-Intricate Queries

We first define the concatenation of line instances:

Definition 6.5.5. The concatenation I ◦ I ′ of two line instances I and I ′ is defined
in the expected way by identifying the right endpoint of I with the left endpoint
of I ′; it is a line instance of size |I| + |I ′|. The boundary element of I ◦ I ′ is the
element which is incident both to the last fact of I and the first fact of I ′. C

We will construct the tractable instance family for the query as a grid formed of
line instances that are counterexamples to intricacy. For this, we need to know how
to construct grids from a line instance:

Definition 6.5.6. Let I be a line instance. We define the n×n I-grid, written In×n,
as the grid whose edges are copies of I (in the top-to-bottom, left-to-right direction).

If I = I1 ◦ I2, the unfolded n× n I-grid is obtained from In×n by replacing every
copy in In×n of a boundary element I1 and I2 with two fresh domain elements, each
of which being used in one of the two facts where the boundary element occurs. C

Note that the operation that creates the unfolded grid is a particular kind of
unfolding, as defined in Section 4.5.

Now, let q be a non-intricate query. By definition there is a witness line instance I
decomposable as I = I1 ◦ I2 with |I1| , |I2| > |q| such that no minimal match of q
on I spans both I1 and I2. The class of I-grids is clearly unbounded-treewidth (its
Gaifman graphs are subdivisions of the grid graphs) and it is treewidth-constructible
because the size of I is constant. Now, we claim that the lineage of q on In×n is
exactly its lineage on the unfolded n×n I-grid, which we call I ′. Indeed, if this were
not the case, as |I1| , |I2| > |q|, and q is connected, a counterexample match on In×n
that would be broken in I ′ would entirely be within some copy of I in In×n; but no
match within some copy of I can span both I1 and I2.

Conversely, as q is connected, its matches are connected, so there can be no
matches on I ′ involving both copies of boundary element of In×n (the copies not
connected in the Gaifman graph of I ′), so all matches in I ′ must be matches in In×n.
Now, we conclude because the unfolded grid I ′ has bounded pathwidth (its connected
components have constant size), so we can apply Theorem 3.5.4.

6.5.2.2 Second Claim: Intricate Queries

We now attack the second claim. Fix an intricate query q. We proceed as in the proof
of the lower bound of Theorem 6.4.1, so, as q is a connected UCQ6=, it suffices to
show the analogue of Lemma 6.4.12 but with our choice of intricate query q instead
of qp.

We fix d′ as in the proof of Lemma 6.4.12 in Section 6.4.3, and, as before, we will
fix k0 later. As before, fix the instance I, let k be its treewidth, let c′ be the exponent
of Lemma 6.1.4, and, letting n be defined as before, let n′ ··= n+ 2 · |q|. Up to fixing
k0 to be sufficiently large, we can extract the skewed grid H = Gn′ as a topological
minor H ′ of the Gaifman graph G of I. Let H ′′ be the n× n skewed grid topological
minor of G by restricting H ′ following the embedding of the n× n skewed grid as a
topological minor of the n′ × n′ skewed grid, such that the horizontal paths 1, . . . , n
of H ′′ correspond to the horizontal paths |q|+ 1, . . . , |q|+ n of H ′, and likewise for
the vertical paths.
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Let us now fix the order Π on the facts of I, and define an order Π′ on the edges
of H ′′ exactly as before. By Lemma 6.4.14, as n′ is even, we deduce the existence of
1 6 p 6 |Π′| such that there are n/2 elements of I that occur in an edge of Π′6p and
occur in an edge of Π′>p.

We will construct from this our desired dncm-set, concluding the proof. We
construct a candidate set by considering, for each element a in the n/2 elements,
some simple path of H ′ of length 2 |q|+ 2 (not necessarily a horizontal or vertical
path) that includes the two edges incident to a; this is possible, by definition of H ′′
from H ′, because a is in H ′′. We then build from this path a line instance I ′a ⊆ I of
size 2 · |q|+ 2 of I where a is the middle element, and with one of the two incident
facts F6a occurring in Π6p and the other one F>

a occurring in Π>p. Now, as q is
intricate, there must be a minimal match I ′′a ⊆ I ′a of q′ in I ′ where F6a and F>

a occur,
and we take I ′′a as a candidate match for a. Thus, we obtain a candidate set S ′ of
minimal matches I ′′a for each of the n/2 elements a, which satisfies everything but
the disjointness condition, and where all facts are reflected by an edge of H ′.

Now, as before, we can ensure the disjointness condition by observing that, having
picked a match in S ′, we can simply eliminate everything at distance 6 2 |q| in H ′,
so a constant number of vertices (as the degree of H ′ is, again, bounded by 3). This
uses the fact that the matches in S ′ are connected and that their edges are reflected
in H ′. Hence, we conclude as before.

This concludes the proof of Theorem 6.5.1.

6.5.3 Connected CQ 6= Queries
Having proven Theorem 6.5.1, we give an example of what can be proven using the
notion of intricate queries, by showing that a CQ6= can never be intricate.

Proposition 6.5.7. A connected CQ6= is never intricate.

By Theorem 6.5.1, this implies that any CQ6= query q has an unbounded-treewidth,
treewidth-constructible family of instances I such that q has constant-width OBDDs
on I (that can be computed in PTIME); and it also implies that we could not have
proven Theorem 6.4.1 with a connected CQ 6= query.

To prove Proposition 6.5.7, we first exclude the case of signatures with more than
one binary relation. The argument for this is straightforward, and in fact does not
rely on connectedness of the query:

Proposition 6.5.8. On arity-2 signatures that contain more than one binary relation,
for any CQ6= query q, there is a treewidth-constructible instance family I which has
unbounded treewidth such that I 6|= q for all I ∈ I. This implies that the lineage of q
on I has trivial constant-width OBDD representations.

Proof. Fix such a query q. Pick a relation R in σ. If some other relation than R
occurs in q, then take for I the unbounded-treewidth, treewidth-constructible family
of grids with R-edges, and q is never satisfied on them. Hence, we can assume that q
only contains R-atoms. But as σ contains more than one binary relation, pick S 6= R,
and take for I the class of grids with S-edges. We conclude in the same way.

Hence, we can assume that the signature σ contains exactly one binary relation.
We can now show Proposition 6.5.7:
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Proof of Proposition 6.5.7. We can assume that σ contains a single binary relation R,
and it suffices to restrict our attention to CQ6= queries q with |q| > 2, as otherwise q
cannot be intricate.

If q contains two atoms A = R(x, y) and A′ = R(y, z) where x and z are two
different variables, then consider the line instance I defined by R(a1, a2), R(a3, a2),
R(a3, a4), R(a5, a4), R(a5, a6), R(a7, a6), . . ., until we reach a2·|q|+2. It is clear that q
has no match on I at all, by considering just A and A′, so in particular there is no
minimal match involving the two facts incident to the middle fact a|q|+2. Thus, I
witnesses that q is not intricate.

Now, if q does not contain two such atoms, consider the line instance I ′ =
{R(ai, ai+1) | 1 6 i < 2 · |q| + 2}. Assume by contradiction that it is not a
counterexample to intricacy, so there is a minimal match on q on I that includes the
two facts F = R(a|q|+1, a|q|+2) and F ′ = R(a|q|+2, a|q|+3). Thus, let x be a variable
of q mapped to a|q|+1 in this match, and y be a variable of q mapped to a|q|+3.

As q is connected, let x = z1, . . . , zl = y be a simple path of pairwise distinct
variables from x to y such that zi and zi+1 co-occur in some atom of q for all i. Now,
consider the sequence ai1 , . . . , ail of the images of the zi in I ′. Clearly we must have
ij 6= ij+1 for all 1 6 j < l, as otherwise q contains an atom A with two distinct
variables matched to the same element in I ′, but the result cannot be a match of A
in I ′, hence of q, by definition of I ′. Hence, the sequence i1, . . . , il is a sequence of
integers with i1 = |q|+ 1, il = |q|+ 3, any two consecutive values are different, and
any two consecutive values ij, ij+1 must have a difference with absolute value 1, as is
seen by considering the match in I ′ of the witness atom in q for zj and zj+1. It is
then obvious that there must be 1 < j0 < l such that ij0−1 = |q|+ 1, ij0 = |q|+ 2,
and ij0+1 = |q|+ 3.

Thus, consider the witness atoms A(zj0−1, zj0) and A′(zj0 , zj0+1). Their match in I ′
must be F and F ′. Hence, we deduce that A and A′ are of the form that we initially
excluded (remember that the path z1, . . . , zl is a simple path of pairwise distinct
variables, so zj0−1 and zj0+1 must be different). We have reached a contradiction.
Thus, we conclude that I ′ is a counterexample to the intricacy of q. Hence, q is not
intricate, which concludes the proof.

6.5.4 Homomorphism-Closed Queries
Second, we investigate the status of UCQ in our meta-dichotomy. We can in fact
show a result for all queries that are closed under homomorphisms, no matter whether
they are connected or not. Further, we can even choose a single class of instances
which is easy for all query closed under homomorphisms. (Remember that our
queries are always constant-free.)

Proposition 6.5.9. For any arity-2 signature, there is a treewidth-constructible
instance family I with unbounded treewidth and w ∈ N such that any query q closed
under homomorphisms has OBDDs of width w on I that can be computed in PTIME
in the input instance.

This implies by Theorem 6.5.1 the following:

Corollary 6.5.10. A connected UCQ is never intricate.
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It also implies that we could not have shown Theorem 6.4.1 with a UCQ query
rather than a UCQ6= query.

Again, this result should not be confused with those of [Jha and Suciu 2012; Jha
and Suciu 2013]. Of course, not all homomorphism-closed queries, or even UCQs,
have constant-width OBDDs on arbitrary instances. We are merely claiming the
existence of high-treewidth instance classes for which we have constant-width OBDDs
whatever the query.

Proof of Proposition 6.5.9. Pick any binary relation R ∈ σ. For any n ∈ N, let In
be the bipartite directed R-graph on {1, 2} × {1, . . . , n} formed of all facts of the
form {R((1, i), (2, j)) | 1 6 i, j 6 n}. Let I = (In)n∈N. The family I is unbounded-
treewidth and treewidth-constructible; we show that any homomorphism-closed q
has a constant-width OBDD on any instance of I that can be computed in PTIME.

Fix In ∈ I. Either q has no match on In, or it has some match on In, which
we can decide in PTIME in In. In the first case, there is a trivial constant-width
OBDD of q on In that can be computed in PTIME. In the second case, consider
a match I ′ ⊆ In of q, and let I ′′ be its image under the homomorphism from In
to I1 that maps (1, i) to (1, 1) and (2, j) to (2, 1) for all 1 6 i, j 6 n. As q is
closed under homomorphisms, q must hold on I ′′, and as I ′ is non-empty, we have
I ′′ = {R((1, 1), (2, 1))}, so we conclude that q holds on any subinstance of In iff
the subinstance is non-empty. Thus, we can construct in PTIME a constant-width
OBDD for q on In just by enumerating the facts of In in an arbitrary order, and
testing whether one of them is present.

Hence in either case q has constant-width OBDDs on I that can be computed in
PTIME, concluding the proof.

6.5.5 Beyond Connected Queries
We consider last whether our dichotomy in Theorem 6.4.1 could extend to disconnected
CQ6=, which are not covered by Proposition 6.5.7 or by the meta-dichotomy of
Theorem 6.5.1.

If the signature has more than one binary relation, this is hopeless: by the easy
argument of Proposition 6.5.8, any CQ6= then has constant-width OBDDs on the
family of R-grids for some binary R ∈ σ.

However, quite surprisingly, on signatures with a single binary relation (and
arbitrarily many unary ones) we can show a weakening of Theorem 6.4.1 for a discon-
nected CQ6=. The first part adapts (it holds for all MSO), so only the lower bound is
interesting, which we can rephrase as before to a lower bound on OBDD width on
individual input instances. We thus show the following variant of Theorem 6.4.3:

Proposition 6.5.11. Let σ be an arity-2 signature with only one binary relation.
There exists a disconnected CQ6= query qd, a constant d′ > 1 and integer n0 ∈ N such
that: for any instance I on σ of size > n0, letting k be the treewidth of I, the width
of any OBDD for qd is Ω(k1/d′).

Observe that the bound on the OBDD width is no longer exponential in the
instance treewidth; however, it is not constant, so this suffices to rule out that qd could
have constant-width OBDDs on any unbounded-treewidth, treewidth-constructible
instance family.
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To prove the result, let R be the only binary relation of the signature, and
consider the following query qd, which intuitively tests whether there are two R-facts
that do not share an element:

qd ··= ∃xyzw (x 6= y)∧(x 6= z)∧(x 6= w)∧(y 6= z)∧(y 6= w)∧(z 6= w)∧R(x, y)∧R(z, w)

We show our claim using qd:

Proof of Proposition 6.5.11. We proceed as in the proof of Lemma 6.4.12: we take
an arbitrary order Π on facts, we extract pairs of adjacent facts from a skewed grid
minor of the instance I where one fact is enumerated by an order prefix Π6p and one
is non-enumerated, for some prefix length p. As in that proof, we can obtain Ω(k1/d′)
such pairs of facts, with d′ defined identically. We can also impose that each pair
of facts has domain disjoint from every other pair of facts, in the same way as in
the original proof. We call S be the resulting set of pairs of facts; by our hypothesis
on σ, all these facts must be R-facts. To summarize, for n and α defined as in the
proof of Lemma 6.4.12, S is a set of 1

3α ·
n
2 pairs of R-facts, the pairs have pairwise

disjoint domains, but any pair contains an element shared by the two facts of the
pair; further, one fact of each pair is in Π6p and the other is in Π>p. Hence, S is
not a dncm-set for qd, because it precisely consist of fact pairs that are not matches
of qd: intuitively, we will instead consider the matches of qd on I formed of pairs of
facts of S that are not in the same pair.

We use S to prove a variant of Lemma 6.4.7. For each pair {F6, F>} ∈ S, with
F6 ∈ Π6p and F> ∈ Π>p, we consider the valuation νF6 that sets F6 to 1, and sets
all other facts of Π6P to 0, Every νF6 must yield a different node in an OBDD for qd:
indeed, the partial evaluation of Prov(qd, I) with νF6 does not evaluate to 1 when we
set the corresponding F> to 1 and all other facts to 0, whereas the same evaluation
for any other partial valuation νF ′6 would yield 1. From our definition of n and d′,
we conclude that an OBDD for q on I must have width Ω(k1/d′) at level p.

This implies that qd does not satisfy the first part of the meta-dichotomy of
Theorem 6.5.1. Surprisingly, however, we can show that the query qd has OBDDs
of width O(k) on some unbounded-treewidth and treewidth-constructible instance
class. Hence, qd does not satisfy the second part of the meta-dichotomy either, so qd
witnesses that there are disconnected CQ 6= which do not follow our meta-dichotomy
at all!

Lemma 6.5.12. There is a treewidth-constructible, unbounded treewidth class I of
instances on σ such that, for any I ∈ I, letting k be its treewidth, qd has OBDDs of
width O(k) on I.

Proof. Consider, for n ∈ N the n×n R-grid In: the vertices are { (i, j) | 1 6 i, j 6 n },
the horizontal edges are R((i, j), (i, j + 1)) for 1 6 i 6 n, 1 6 j < n, and the vertical
edges are R((i, j), (i + 1, j)) for 1 6 i < n, 1 6 j 6 n. This defines a family of
instances I = (In)n∈N that has unbounded treewidth (the treewidth of In is n), and
is treewidth-constructible.

For any In ∈ I, we choose the following enumeration order Π of the facts of In:

• First, enumerate all horizontal edges R((1, j), (1, j+ 1)) in ascending order of j;
we call this horizontal row 1;
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• Then, enumerate all vertical edges R((1, j), (2, j)) in ascending order of j; we
call this vertical row 1;

• Then, enumerate horizontal row 2, i.e., all horizontal edges R((2, j), (2, j + 1))
in ascending order of j;

• Then, enumerate vertical row 2, i.e., all vertical edges R((2, j), (3, j)) in as-
cending order of j;

• Continue this process, enumerating horizontal row i followed by vertical row i
for 3 6 i < n, finishing by horizontal row n.

An OBDD that follows Π has to determine, while enumerating horizontal row 1,
whether there are three edges or two non-adjacent edges in the row, in which case
the query must be true. Otherwise, once we have processed horizontal row 1, we
must further remember:

• If there was a single edge in the previous horizontal row, which one it was;

• If there were two adjacent edges in the previous horizontal row, which ones
they were.

This can be performed in width linear in n.
Now, we process vertical row 1. If there are two edges in vertical row 1, the

query is true. Otherwise, if there is a single one, the query is true unless that edge is
incident to the common vertex of the two adjacent edges of horizontal row i, or to
one of the two vertices of the only edge at horizontal row i, or there was no edge in
horizontal row i. Once we have processed the vertical row, we remember:

• Whether there was some edge in some strictly preceding horizontal or vertical
row (here, in horizontal row 1);

• If there was a single edge in the previous vertical row, and the query is not yet
true, which edge it is.

We then process horizontal row 2. If we have remembered that there was some
edge in a strictly preceding horizontal or vertical row, then our job is much easier,
as we can just succeed as soon as we see a single edge. If this was not the case,
then if there was no edge in the previous vertical row, we proceed as for horizontal
row 1. Otherwise, if we see an edge e in horizontal row 2 which is not adjacent to
the memorized vertical edge e′ in the previous vertical row, we succeed. Otherwise,
if e is adjacent to e′, we ignore e (it is easier to build a match with e′). At the
end of the horizontal row, we simply need to memorize if there was an edge in a
strictly preceding horizontal or vertical row, and, if not, the same information that
we needed to remember for horizontal row 1. All of this requires O(n) width.

We construct our OBDD by repeating this process, with the width remaining
linear as we process the following horizontal and vertical rows.
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Conclusion. This finishes our investigation of the limits of our meta-dichotomy result,
which concludes our study of the intractability of OBDD computation, and of probability
evaluation, on unbounded-treewidth instance families. Thus, we have presented our
results on instance-based tractability conditions for probabilistic query evaluation and
provenance computation.

The general conclusions and perspectives are given at the end of this manuscript,
after Part II; see in particular Section 1 of the Conclusion.
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Finite Open-World
Query Answering





Chapter 7

Introduction

In this second part of my thesis, we move on to the study of incomplete instances, and
query answering under logical rules that constrain the structure of instance completions.
This part presents the full version of my work on finite query answering with Michael
Benedikt: it was published as an extended abstract at LICS’15 [Amarilli and Benedikt
2015b], and the long version is currently under review [Amarilli and Benedikt 2016].

The fundamental problem in the setting of incomplete instances with logical
constraints is the open-world query answering problem, which asks: given a query q,
a conjunction of constraints Σ, and a finite instance I0, determine which answers to q
are certain to hold over any instance I that extends I0 and satisfies Σ. This problem
can be rephrased to query containment under constraints, querying in the presence
of ontologies, or reformulating queries under constraints. It has thus been the subject
of intense study within several communities for decades; see, e.g., [Johnson and Klug
1984; Calì, Lembo, and Rosati 2003a; Pratt-Hartmann 2009; Bárány, Gottlob, and
Otto 2010; Ibáñez-García, Lutz, and Schneider 2014].

In many settings, for instance in database theory, the instances I of interest are
the finite ones. We can thus define finite open-world query answering (denoted here
as FQA), which restricts the quantification to finite extensions I of I0. In contrast,
by unrestricted open-world query answering (UQA) we refer to the problem where
I can be either finite or infinite. Generally the class of queries is taken to be the
conjunctive queries (CQs), which are built up from relational atoms via existential
quantification and conjunction. This part of my thesis always uses CQs, and thus
we omit explicit mention of the query language.

The decidability of FQA and UQA clearly depends on the language of logical
constraints that we allow; a natural challenge is thus to design languages for which
FQA and UQA are decidable, but which are as expressive as possible, so that we can
model the constraints that we want to impose on instances. The results presented
here focus on the FQA problem, where decidability results have been traditionally
quite hard to obtain. Hence, let us start by reviewing known results about FQA.

A first constraint class known to have tractable open-world query answering
problems are inclusion dependencies (IDs) from database theory [Abiteboul, Hull,
and Vianu 1995], i.e., constraints of the form, e.g., ∀xyz R(x, y, z)→ ∃vw S(z, v, w, y).
The fundamental results of [Johnson and Klug 1984] and [Rosati 2011] show that
both FQA and UQA are decidable for ID and that, in fact, they coincide. We call
finitely controllable such constraints for which FQA and UQA always coincide. These
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results have been generalized in [Bárány, Gottlob, and Otto 2010] to a much richer
class of constraints, the guarded fragment of first-order logic.

However, those results do not cover an important kind of constraints, namely
number restrictions, which we can use to express, e.g., uniqueness: “for all x, there is
at most one y such that R(x, y) holds”. The number restrictions that we consider here
are functional dependencies (FDs), of the form ∀xy (R(x1, . . . , xn) ∧R(y1, . . . , yn) ∧∧
i∈L xi = yi)→ xr = yr, which have also been commonly studied in database theory

[Abiteboul, Hull, and Vianu 1995]. The FQA and UQA problems for FDs alone are
trivial (it suffices to check if the initial instance satisfies them), so they are decidable,
and coincide. What is interesting is to allow FDs in addition to other constraints,
for instance IDs. This allows us to assert the existence of missing information in
completions, e.g., “Every advisee is also the advisor of someone”, while restricting
what we can add, e.g., “No advisor advises two different people”.

Sadly, the interaction between IDs and FDs is severe enough that UQA and
FQA are undecidable in general when both are allowed [Calì, Lembo, and Rosati
2003a]. Some decidable cases have nevertheless been identified for UQA. For instance,
UQA is known to be decidable when the FDs and the IDs are non-conflicting [Calì,
Lembo, and Rosati 2003a; Calì, Gottlob, and Pieris 2012]. Intuitively, this condition
guarantees that the FDs can be ignored, as long as they hold on the initial instance I0,
and one can then solve the query answering problem by considering the IDs alone.
However, the non-conflicting condition only applies to UQA and not to FQA. In fact
it is known that even for very simple classes of IDs and FDs, including non-conflicting
classes, FQA and UQA do not coincide. Rosati [Rosati 2011] further showed that
FQA is generally undecidable for non-conflicting IDs and FDs.

Thus, we do not know to what what extent these classes, FDs and IDs, can be
combined while retaining decidable FQA. The only known decidable cases impose
severe requirements. For example, the constraint class of key-based dependencies,
generalized in [Rosati 2006] to single key dependencies (KDs) and foreign keys (FKs),
has decidable FQA, but such constraints cannot model, e.g., FDs which are not keys.
Further, in contrast with the general case of FDs and IDs, these languages are always
finitely controllable, which limits their expressiveness.

A second decidable case is where all relation symbols and all subformulae of the
constraints have arity at most two. In this context, the results of [Pratt-Hartmann
2009] imply the decidability of both FQA and UQA for a very rich non-finitely-
controllable sublogic of first-order logic. The complexity of FQA has recently been
isolated for some fragments of this arity-two logic [Ibáñez-García, Lutz, and Schneider
2014]. Yet these results do not apply to arbitrary arity signatures. In a nutshell, we
know of no tools to solve FQA for non-finitely-controllable constraints on signatures
of arbitrary arity.

This part of my thesis presents the first decidability result for finite query answer-
ing under non-finitely-controllable IDs and FDs over relations of arbitrary arity. As
the problem is undecidable in general, we must naturally make some restriction. Our
choice is to limit to Unary IDs (UIDs), which export only one variable: for instance,
the rule ∀xyz R(x, y, z) → ∃w S(w, x) is a UID. We study UIDs and FDs because
they are not finitely controllable (see, e.g., [Rosati 2006, Theorem 6]), and can be
used to model, e.g., single-attribute foreign keys, a common use case in database
systems. The decidability of UQA for UIDs and FDs is known because they are
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always non-conflicting, and [Johnson and Klug 1984] showed that UIDs in isolation
are finitely controllable. This part of my thesis shows that the FQA problem is
decidable for arbitrary UIDs and FDs, from which we deduce tight bounds on its
complexity.

The idea is to reduce the finite case to the unrestricted case, but in a more
complex way than by finite controllability. We make use of a technique originating
in [Cosmadakis, Kanellakis, and Vardi 1990] to study finite implication on UIDs and
FDs: the finite closure operation, which takes a conjunction of UIDs and FDs and
determines exactly which additional UIDs and FDs are implied over finite instances.
Indeed, other works [Rosati 2008; Ibáñez-García, Lutz, and Schneider 2014] have
used the finite closure operation in their study of constraint classes over schemas of
arity two. Such works showed that finite query answering for a query q, instance I0,
and constraints Σ reduces to unrestricted query answering for I0, q, and the finite
closure of Σ. In other words, the closure construction which is sound for implication
is also sound for query answering.

We show that the same approach applies to arbitrary arity signatures, for the
language of UIDs and FDs. Our main result thus reduces finite query answering to
unrestricted query answering, for UIDs and FDs in arbitrary arity:

Theorem 9.3 (Main theorem). Conjunctions of FDs and UIDs are finitely controllable
up to finite closure: for any finite instance I0, conjunctive query q, and constraints
Σ consisting of UIDs and FDs, the finite open-world query answering problem for I0
and q under Σ has the same answer as the unrestricted open-world query answering
problem for I0 and q under the finite closure of Σ.

Using the known results about the complexity of UQA for UIDs, we isolate the
precise complexity of FQA with respect to UIDs and FDs, showing that it matches
that of UQA:

Theorem 9.2. The combined complexity of the finite open-world query answering
problem for UIDs and FDs is NP-complete, and it is AC0 in data complexity (that is,
when the constraints and query are fixed).

The remaining chapters of the manuscript give the complete proof of Theorem 9.3.
The proof borrows and adapts a variety of techniques from prior work:

• using k-bounded simulations to preserve small acyclic CQs [Ibáñez-García,
Lutz, and Schneider 2014],

• partitioning UIDs into components that have limited interaction, and satisfying
the UIDs component-by-component [Cosmadakis, Kanellakis, and Vardi 1990;
Ibáñez-García, Lutz, and Schneider 2014],

• performing a chase that reuses sufficiently similar elements [Rosati 2011],

• taking the product with groups of large girth to blow up cycles [Otto 2002].

However, the proof must also face many new difficulties that do not arise in the arity-
two case (or in the case of IDs in isolation), to deal with number restrictions in our
arbitrary arity setting. For instance, our chase can only reuse elements at positions
(the non-dangerous positions) where this is permitted by the functional dependencies;
at other positions, it connects together elements that can be matched in a piecewise
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way, relying on the finite closure process to ensure that cardinalities match. These
connections must be done while preserving a k-bounded simulation, for which we
must perform preliminary chasing up to a sufficient distance before we can connect
elements, relying on a structural observation on the chase by UIDs (Theorem 12.4.3),
and on the component-wise decomposition of the constraints. Further, even when
element reuses are possible when chasing, we must make sure that we do not violate
the higher-arity FDs, which the finite closure process essentially does not restrict:
we do so by shuffling the reuses following a combinatorial construction of “dense”
models of FDs (Theorem 14.1.9). The group product operation to blow up cycles
must also be adjusted to preserve fact overlaps and avoid violating the FDs.

The next chapter presents the required preliminaries for this part. Chapter 9 then
gives more details about how to rephrase the result to a claim about the existence
of finite universal models, and gives a roadmap of the successive steps of the proof.
Each step of the proof is then presented in a separate chapter that builds on the
previous ones.
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Chapter 8

Preliminaries

8.1 Instances and Constraints
Instances. We assume an infinite countable set of elements (or values) a, b, c, . . .
and variable names x, y, z, . . .. A schema σ consists of relation names (e.g., R) with
an arity (e.g., |R|) which we assume is > 1: we write |σ| ··= maxR∈σ |R|. Following
the unnamed perspective, the set of positions of R is Pos(R) ··= {Ri | 1 6 i 6 |R|},
and we define Pos(σ) ··=

⊔
R∈σ Pos(R), where we use t to denote disjoint union. We

identify Ri and i when no confusion can result.
A relational instance I of σ is a set of ground facts of the form R(a) where R

is a relation name and a an |R|-tuple of values. The size |I| of a finite instance I
is its number of facts. The active domain dom(I) of I is the set of the elements
which appear in I. For any position Ri ∈ Pos(σ), we define the projection πRi(I)
of I to Ri as the set of the elements of dom(I) that occur at position Ri in I. For
L ⊆ Pos(R), the projection πL(I) is a set of |L|-tuples defined analogously; for
convenience, departing from the unnamed perspective, we index those tuples by the
positions of L rather than by {1, . . . , |L|}. A superinstance of I is a (not necessarily
finite) instance I ′ such that I ⊆ I ′.

A homomorphism from an instance I to an instance I ′ is a mapping h : dom(I)→
dom(I ′) such that, for every fact F = R(a) of I, the fact h(F ) ··= R(h(a1), . . . , h(a|R|))
is in I ′.

Constraints. We consider integrity constraints (or dependencies) which are special
sentences of first-order logic without function symbols. We write I |= Σ when
instance I satisfies constraints Σ, and we then call I a model of Σ.

An inclusion dependency ID is a sentence of the form τ : ∀x R(x1, . . . , xn) →
∃y S(z1, . . . , zm), where z ⊆ x ∪ y and no variable occurs at two different positions
of the same fact. The exported variables are the variables of x that occur in z.
This work only studies unary inclusion dependencies (UIDs) which are the IDs with
exactly one exported variable. We write a UID τ as Rp ⊆ Sq, where Rp and Sq are
the positions of R(x) and S(z) where the exported variable occurs. For instance,
the UID ∀xy R(x, y) → ∃z S(y, z) is written R2 ⊆ S1. We assume without loss of
generality that there are no trivial UIDs of the form Rp ⊆ Rp.

A functional dependency FD is a sentence of the form ϕ : ∀xy (R(x1, . . . , xn) ∧
R(y1, . . . , yn) ∧ ∧Rl∈L xl = yl)→ xr = yr, where L ⊆ Pos(R) and Rr ∈ Pos(R). For
brevity, we write ϕ as RL → Rr. We call ϕ a unary functional dependency UFD if
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|L| = 1; otherwise it is higher-arity. For instance, ∀xx′yy′R(x, x′) ∧R(y, y′) ∧ x′ =
y′ → x = y is a UFD, and we write it R2 → R1. We assume that |L| > 0, i.e., we
do not allow nonstandard or degenerate FDs. We call ϕ trivial if Rr ∈ RL, in which
case ϕ always holds; again we disallow trivial FDs. Two facts R(a) and R(b) violate
a non-trivial FD ϕ if πL(a) = πL(b) but ar 6= br.

For L,L′ ⊆ Pos(R), we write RL → RL′ the conjunction of FDs RL → Rl for
Rl ∈ L′. In particular, conjunctions of the form κ : RL → R (i.e., L′ = Pos(R)) are
called key dependencies. The key κ is unary if |L| = 1. If κ holds on a relation R,
we call L a key (or unary key) of R.

8.2 Implication and Finite Implication
We say that a conjunction of constraints Σ in a class CL finitely implies a constraint ϕ
if any finite instance that satisfies Σ also satisfies ϕ. We say that Σ implies ϕ if the
same holds even for infinite instances. The closure Σ∗ of Σ is the set of constraints
of CL which are implied by Σ, and the finite closure Σf∗ is the set of those which are
finitely implied.

An axiomatization of implication for CL is a set of deduction rules (which, given
dependencies in CL, deduce new dependencies in CL), with the following property:
for any conjunction Σ of dependencies in CL, letting Σ′ be the result of defining
Σ′ ··= Σ and applying iteratively the deduction rules while possible to inflate Σ′,
then Σ′ is exactly Σ∗. An axiomatization of finite implication is defined similarly but
for Σf∗.

Implication for ID. Given a set Σ of IDs, it is known [Casanova, Fagin, and
Papadimitriou 1984] that an ID τ is implied by Σ iff it is finitely implied. Further,
when Σ are UIDs, we can easily compute in PTIME the set of implied UIDs (from
which we exclude the trivial ones), by closing Σ under the transitivity rule [Casanova,
Fagin, and Papadimitriou 1984]: if Rp ⊆ Sq and Sq ⊆ T r hold in Σ, then so is
Rp ⊆ T r unless it is trivial. We call Σ transitively closed if it is thus closed.

Implication for FDs. Again, a set ΣFD of FDs implies an FD ϕ iff it finitely implies
it: see, e.g., [Cosmadakis, Kanellakis, and Vardi 1990]. The standard axiomatization
of FD implication is given in [Armstrong 1974], and includes the transitivity rule: for
any R ∈ σ and L,L′, L′′ ⊆ Pos(R), if RL → RL′ and RL′ → RL′′ hold in ΣFD, then
so does RL → RL′′ .

Implication for UIDs and FDs. It was shown in [Cosmadakis, Kanellakis, and
Vardi 1990] that implication for conjunctions ΣUID of UIDs and ΣFD of FDs can
be axiomatized by the above UID and FD rules in isolation. However, for finite
implication, we must add a cycle rule, which we now define.

Let Σ be a conjunction of dependencies formed of UIDs ΣUID and FDs ΣFD. Define
the reverse of an UFD ϕ : Rp → Rq as ϕ−1 ··= Rq → Rp, and the reverse of a UID
τ : Rp ⊆ Sq as τ−1 ··= Sq ⊆ Rp. A cycle in Σ is a sequence of UIDs and UFDs of
ΣUID and ΣFD of the following form: Rp1

1 ⊆ Rq2
2 , Rp2

2 → Rq2
2 , Rp2

2 ⊆ Rq3
3 , Rp3

3 → Rq3
3 ,

. . ., Rpn−1
n−1 ⊆ Rqn

n , Rpn
n → Rqn

n , Rpn
n ⊆ Rq1

1 , Rp1
1 → Rq1

1 . The cycle rule, out of such a
cycle, deduces the reverse of each UID and of each UFD in the cycle. We then have:
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Theorem 8.2.1 ([Cosmadakis, Kanellakis, and Vardi 1990], Theorem 4.1). The UID
and FD deduction rules and the cycle rule are an axiomatization of finite implication
for UIDs and FDs.

In terms of complexity, this implies:

Corollary 8.2.2 ([Cosmadakis, Kanellakis, and Vardi 1990], Corollary 4.4). Given
UIDs ΣUID and FDs ΣFD, and a UID or FD τ , we can check in PTIME whether τ is
finitely implied by ΣUID and ΣFD.

8.3 Queries and QA
Queries. An atom A = R(t) consists of a relation name R and an |R|-tuple t
of variables or constants. This work studies the conjunctive queries CQ, which
are existentially quantified conjunctions of atoms, such that each variable in the
quantification occurs in some atom. The size |q| of a CQ q is its number of atoms.
A CQ is Boolean if it has no free variables.

A Boolean CQ q holds in an instance I exactly when there is a homomorphism h
from the atoms of q to I such that h is the identity on the constants of q (we call
this a homomorphism from q to I). We call such an h a match of q in I, and by a
slight abuse of terminology we also call the image of h a match of q in I.

QA problems. We define the unrestricted open-world query answering problem
(UQA) as follows: given a finite instance I, a conjunction of constraints Σ, and a
Boolean CQ q, decide whether there is a superinstance of I that satisfies Σ and
violates q. If there is none, we say that I and Σ entail q and write (I,Σ) |=unr q. In
other words, UQA asks whether the first-order formula I ∧Σ∧¬q has some (possibly
infinite) model.

This work focuses on the finite query answering problem (FQA), which is the
variant of open-world query answering where we require the counterexample superin-
stance to be finite; if no such counterexample exists, we write (I,Σ) |=fin q. Of course
(I,Σ) |=unr q implies (I,Σ) |=fin q.

The combined complexity of the UQA and FQA problems, for a fixed class CL of
constraints, is the complexity of deciding it when all of I, Σ (in CL) and q are given
as input. The data complexity is defined by assuming that Σ and q are fixed, and
only I is given as input.

Assumptions on queries. Throughout this work, we will make three assumptions
about CQs, without loss of generality for UQA and FQA. First, we assume that CQs
are constant-free. Indeed, for each constant c ∈ dom(I0), we could otherwise do the
following: add a fresh relation Pc to the signature, add a fact Pc(c) to I0, replace c in
q by an existentially quantified variable xc, and add the atom Pc(xc) to q. It is then
clear that UQA with the rewritten instance and query is equivalent to UQA with the
original instance and query under any constraints (remember that our constraints
are constant-free); the same is true for FQA.

Second, we assume all CQs to be Boolean, unless otherwise specified. Indeed, to
perform UQA for non-Boolean queries (where the domain of the free variables is
that of the base instance I0), we can always enumerate all possible assignments, and
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solve our problem by solving polynomially many instances of the UQA problem with
Boolean queries. Again, the same is true of FQA.

Third, we assume all CQs to be connected. A CQ q is disconnected if there is
a partition of its atoms in two non-empty sets A and A′, such that no variable
occurs both in an atom of A and in one atom of A′. In this case, the query
q : ∃xyA(x)∧A(y) can be rewritten to q2∧q′2, for two CQs q2 and q′2 of strictly smaller
size. In this part of my thesis, we will show that, on finitely closed dependencies,
FQA and UQA coincide for connected queries. This clearly implies the same for
disconnected queries, by considering all their connected subqueries. Hence, we can
assume that queries are connected.

Chase. We say that a superinstance I ′ of an instance I is universal for constraints Σ
if I ′ |= Σ and if for any CQ q, I ′ |= q iff (I,Σ) |=unr q. We now recall the definition
of the chase [Abiteboul, Hull, and Vianu 1995; Onet 2013], a standard construction
of (generally infinite) universal superinstances. We assume that we have fixed an
infinite set N of nulls which is disjoint from dom(I). We only define the chase for
transitively closed UIDs, which we call the UID chase.

We say that a fact Fa = R(a) of an instance I is an active fact for a UID
τ : Rp ⊆ Sq if, writing τ : ∀x R(x)→ ∃y S(z), there is a homomorphism from R(x)
to Fa but no such homomorphism can be extended to a homomorphism from
{R(x), S(z)} to I. In this case we say that we want to apply the UID τ to ap,
written ap ∈ Wants(I, τ). Note that Wants(I, τ) = πRp(I)\πSq(I). For a conjunction
ΣUID of UIDs, we may also write a ∈ WantsΣUID(I, Sq) if there is τ ∈ ΣUID of the
form τ : U v ⊆ Sq such that a ∈ Wants(I, τ); we drop the subscript when there is no
ambiguity.

The result of a chase step on the active fact Fa = R(a) for τ : Rp ⊆ Sq in I (we
call this applying τ to Fa) is the superinstance I ′ of I obtained by adding a new fact
Fn = S(b) defined as follows: we set bq ··= ap, which we call the exported element
(and Sq the exported position of Fn), and use fresh nulls from N to instantiate the
existentially quantified variables of τ and complete Fn, using a different null at each
position; we say the corresponding elements are introduced at Fn. This ensures that
Fa is no longer an active fact in I ′ for τ .

A chase round of a conjunction ΣUID of UIDs on I is the result of applying
simultaneous chase steps on all active facts for all UIDs of ΣUID, using distinct fresh
elements. The UID chase Chase(I,ΣUID) of I by ΣUID is the (generally infinite)
fixpoint of applying chase rounds. It is a universal superinstance for ΣUID [Fagin,
Kolaitis, Miller, and Popa 2003].

As we are chasing by transitively closed UIDs, if we perform the core chase
[Deutsch, Nash, and Remmel 2008; Onet 2013] rather than the UID chase that we
just defined, we can ensure the following Unique Witness Property: for any element
a ∈ dom(Chase(I,ΣUID)) and position Rp of σ, if two different facts of Chase(I,ΣUID)
contain a at position Rp, then they are both facts of I. In our context, however, the
core chase matches the UID chase defined above, except at the first round. Thus,
modulo the first round, by Chase(I,ΣUID) we refer to the UID chase, which has the
Unique Witness Property. See Section 8.4 for details.

Finite controllability. We say a conjunction of constraints Σ is finitely controllable
for CQ if FQA and UQA coincide: for every finite instance I and every Boolean
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CQ q, (I,Σ) |=unr q iff (I,Σ) |=fin q.
It was shown in [Rosati 2006; Rosati 2011] that, while conjunctions of IDs are

finitely controllable, even conjunctions of UIDs and FDs may not be. It was later
shown in [Rosati 2008] that the finite closure process could be used to reduce UQA to
FQA for some constraints on relations of arity at most two. Following the same idea,
we say that a conjunction of constraints Σ is finitely controllable up to finite closure if
for every finite instance I, and Boolean CQ q, (I,Σ) |=fin q iff (I,Σf∗) |=unr q, where
Σf∗ is the finite closure defined by Theorem 8.2.1. If Σ is finitely controllable up to
finite closure, then we can reduce FQA to UQA, even if finite controllability does
not hold, by computing the finite closure Σf∗ of Σ and solving UQA on Σf∗.

8.4 Details about the UID Chase
Recall the Unique Witness Property:

For any element a ∈ dom(Chase(I,ΣUID)) and position Rp of σ, if two facts
of Chase(I,ΣUID) contain a at position Rp, then they are both facts of I.

We first give an example showing why this may not be guaranteed by the first
round of the UID chase. Consider the instance I = {R(a), S(a)} and the UIDs
τ1 : R1 ⊆ T 1 and τ2 : S1 ⊆ T 1, where T is a binary relation. Applying a round
of the UID chase creates the instance {R(a), S(a), T (a, b1), T (a, b2)}, with T (a, b1)
being created by applying τ1 to the active fact R(a), and T (a, b2) being created by
applying τ2 to the active fact S(a).

By contrast, the core chase would create only one of these two facts, because
it would consider that two new facts are equivalent: they have the same exported
element occurring at the same position. In general, the core chase keeps only one
fact within each class of facts that are equivalent in this sense.

However, after one chase round by the core chase, there is no longer any distinction
between the UID chase and the core chase, because the following property holds on
the result I ′ of a chase round (be it by the core chase or by the UID chase) on any
instance I ′′: (*) for any τ ∈ ΣUID and element a ∈ Wants(I ′, τ), a occurs in only one
fact of I ′. This is true because ΣUID is transitively closed, so we know that no UID
of ΣUID is applicable to an element of dom(I ′′) in I ′; hence the only elements that
witness violations occur in the one fact where they were introduced in I ′.

We now claim that (*) implies that the Unique Witness Property holds when we
chase by the core chase for the first round and the UID chase for subsequent rounds.
Indeed, assume to the contrary that a ∈ dom(Chase(I,ΣUID)) violates the Property.

If a ∈ dom(I), because ΣUID is transitively closed, after the first chase round
on I, we no longer create any fact that involves a. Hence, each one of F1 and F2 is
either a fact of I or a fact created in the first round of the chase (which is a chase
round by the core chase). However, if one of F1 and F2 is in I, then it witnesses
that we could not have a ∈ Wants(I, Rp), so it is not possible that the other fact was
created in the first chase round. It cannot be the case either that F1 and F2 were
both created in the first chase round, by definition of the core chase. Hence, F1 and
F2 are necessarily both facts of I.

If a ∈ dom(Chase(I,ΣUID))\ dom(I), assume that a occurs at position Rp in
two facts F1, F2. As a /∈ dom(I), none of them is a fact of I. We then show a
contradiction. It is not possible that one of those facts was created in a chase
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round before the other, as otherwise the second created fact could not have been
created because of the first created fact. Hence, both facts must have been created
in the same chase round. So there was a chase round from I ′′ to I ′ where we had
a ∈ Wants(I ′′, Rp) and both F1 and F2 were created respectively from active facts
F ′1 and F ′2 of I ′′ by UIDs τ1 : Sq ⊆ Rp and τ2 : T r ⊆ Rp. But then, by property (*),
a occurs in only one fact, so as it occurs in F ′1 and F ′2 we have F ′1 = F ′2. Further, as
a /∈ dom(I), F ′1 and F ′2 are not facts of I either, so by definition of the UID chase
and of the core chase, it is easy to see a occurs at only one position in F ′1 = F ′2. This
implies that τ1 = τ2. Hence, we must have F1 = F2, a contradiction. This concludes
the proof of the Unique Witness Property.

138



Chapter 9

Main Result
and Overall Approach

We study open-world query answering for FDs and UIDs. For UQA, the following is
already known:

Proposition 9.1. UQA for FDs and UIDs has AC0 data complexity and NP-complete
combined complexity.

Proof. UQA for UIDs in isolation is NP-complete in combined complexity. The lower
bound is immediate from query evaluation [Abiteboul, Hull, and Vianu 1995], and
[Johnson and Klug 1984] showed an NP upper bound for IDs with any fixed bound
on the number of exported variables (which they call “width”: in their terminology,
UIDs are IDs of width 1). For data complexity, the upper bound is from the first-order
rewritability of certain answers for arbitrary IDs, from [Calì, Lembo, and Rosati
2003b].

For UIDs and FDs, clearly the lower bound on combined complexity also applies.
The upper bounds are proved by observing that UIDs and FDs are separable, namely,
for any FDs ΣFD and UIDs ΣUID, for any instance I0 and CQ q, if I0 |= ΣFD then
we have (I0,ΣFD ∧ ΣUID) |=unr q iff (I0,ΣUID) |=unr q. Assuming separability, to
decide UQA for ΣUID and ΣFD, we first check whether I0 |= ΣFD, in PTIME
combined complexity, and AC0 data complexity as ΣFD is expressible in first-order
logic. If I0 6|= ΣFD, UQA is vacuously true. Otherwise, we then determine whether
(I0,ΣUID) |=unr q, using the upper bound for UQA for UIDs. By separability, the
answer to UQA under ΣUID is the same as the answer to UQA under ΣFD ∧ ΣUID.

Hence, all that remains to show is that UIDs and FDs are always separable. This
follows from the non-conflicting condition of [Calì, Lembo, and Rosati 2003a; Calì,
Gottlob, and Pieris 2012] but we give a simpler self-contained argument. Assume that
I0 satisfies ΣFD. It is obvious that (I0,ΣUID) |=unr q implies (I0,ΣFD ∧ ΣUID) |=unr q,
so let us prove the converse implication. We do it by noticing that the chase
Chase(I0,ΣUID) satisfies ΣFD. Indeed, assuming to the contrary the existence of F
and F ′ in Chase(I0,ΣUID) violating an FD of ΣFD, there must exist a position
Rp ∈ Pos(σ) such that πRp(F ) = πRp(F ′). Yet, by the Unique Witness Property, this
implies that F and F ′ are facts of I0, but we assumed that I0 |= ΣFD, a contradiction.

Hence, Chase(I0,ΣUID) satisfies ΣFD, so it is a superinstance of I0 that sat-
isfies ΣFD ∧ ΣUID. Hence, (I0,ΣFD ∧ ΣUID) |=unr q implies that we must have
Chase(I0,ΣUID) |= q. By universality of the chase, this implies (I0,ΣUID) |=unr q.
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Hence, the converse implication is proven, so the two UQA problems are equivalent,
which implies that ΣUID and ΣFD are separable.

In the finite case, however, even the decidability of FQA for FDs and UIDs was
not known. This part of my thesis shows that it is decidable, and that the complexity
matches that of UQA:

Theorem 9.2. The combined complexity of the finite open-world query answering
problem for UIDs and FDs is NP-complete, and it is AC0 in data complexity (that is,
when the constraints and query are fixed).

This result follows from our Main Theorem, which is proven in the rest of this
part of my thesis:

Theorem 9.3 (Main theorem). Conjunctions of FDs and UIDs are finitely controllable
up to finite closure: for any finite instance I0, conjunctive query q, and constraints
Σ consisting of UIDs and FDs, the finite open-world query answering problem for I0
and q under Σ has the same answer as the unrestricted open-world query answering
problem for I0 and q under the finite closure of Σ.

From the Main Theorem, we can prove Theorem 9.2, using the closure process of
[Cosmadakis, Kanellakis, and Vardi 1990]:

Proof of Theorem 9.2. Again, the NP-hardness lower bound is immediate from query
evaluation [Abiteboul, Hull, and Vianu 1995], so we only show the upper bounds.
Consider an instance of FQA for FDs and UIDs, consisting of an instance I0, a
conjunction Σ of IDs ΣUID and FDs ΣFD, and a CQ q. Let Σ∗FD be the FDs and Σ∗UID
the UIDs of the finite closure Σf∗. By our Main Theorem, we have (I0,Σ) |=fin q iff
(I0,Σf∗) |=unr q. As the computation of Σf∗ from Σ is data-independent, the data
complexity upper bounds follow from Proposition 9.1, so we need only show the
combined complexity upper bound.

Materializing Σf∗ from the input may take exponential time, which we cannot
afford, so we need a more clever approach. Remember from the proof of Proposition 9.1
that, as Σf∗ consists of UIDs and FDs, it is separable. Hence, to solve UQA for I0,
Σf∗ and q, as Σf∗ is separable, we need to perform two steps:

1. Check whether I0 |= Σ∗FD;

2. If yes, solve UQA for I0, Σ∗UID and q.

To perform step 1, compute in PTIME the set Σ∗UFD of the UFDs of Σf∗, using Corol-
lary 8.2.2. By [Cosmadakis, Kanellakis, and Vardi 1990] (remark above Corollary 4.4),
all non-unary FDs in Σ∗FD are implied by Σ∗UFD ∧ ΣFD under the axiomatization of
FD implication; hence, to check whether I0 |= Σ∗FD, it suffices to check whether
I0 |= Σ∗UFD and I0 |= ΣFD, which we do in PTIME.

To perform step 2, compute Σ∗UID in PTIME by considering each possible UID
(there are polynomially many) and determining in PTIME from Σ whether it is
in Σf∗, using Corollary 8.2.2. Then, solve UQA in NP combined complexity by
Proposition 9.1. The entire process takes NP combined complexity, and the answer
matches that of FQA by our Main Theorem, which proves the NP upper bound.
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In this chapter, we first explain how we can prove Theorem 9.3 from a different
statement, namely: we can construct finite universal models for finitely closed UIDs
and FDs. We conclude this chapter with the outline of the proof of this result
(Theorem 9.1.3) which will be developed in the rest of this part of my thesis.

9.1 Finite Universal Superinstances
Our Main Theorem claims that a certain class of constraints, namely finitely closed
UIDs and FDs, are finitely controllable for the class of conjunctive queries (CQ).
To prove this, it will be easier to work with a notion of k-sound and k-universal
instances.

Definition 9.1.1. For k ∈ N, we say that a superinstance I of an instance I0 is
k-sound for constraints Σ and CQs (and I0) if, for every CQ q of size 6 k such
that I |= q, we have (I0,Σ) |=unr q. We say it is k-universal if the converse also
holds: I |= q whenever (I0,Σ) |=unr q. For a subclass Q of CQs, we call I k-sound or
k-universal for Σ and Q if the same holds for all queries q of size 6 k that are in Q.

We say that a class CL of constraints has finite universal superinstances for a
class Q of CQs, if for any constraints Σ of CL, for any k ∈ N, for any instance I0, if
I0 has some superinstance that satisfies Σ, then it has a finite superinstance that
satisfies Σ and is k-sound for Σ and Q (and hence is also k-universal for Σ and Q). C

We will thus show that the class of finitely closed UIDs and FDs have finite
universal superinstances for CQs. We explain why this implies our Main Theorem:

Proposition 9.1.2. If constraint class CL has finite universal superinstances for
query class Q, then CL is finitely controllable for Q.

Proof. Let Σ be constraints in CL, I0 be a finite instance and q be a query in Q. We
show that (I0,Σ) |=unr q iff (I0,Σ) |=fin q. The forward implication is immediate: if
all superinstances of I0 that satisfy Σ must satisfy q, then so do the finite ones.

For the converse implication, assume that (I0,Σ) 6|=unr q. In particular, this
implies that I0 has some superinstance that satisfies Σ, as otherwise the entailment
would be vacuously true. As CL has finite universal superinstances for Q, let I be a
finite k-sound superinstance of I0 that satisfies Σ, where k ··= |q|. As I is k-sound, we
have I 6|= q, and as I |= Σ, I witnesses that (I0,Σ) 6|=fin q. This proves the converse
direction, so we have established finite controllability.

So, the rest of part of my thesis actually shows the following restatement of the
Main Theorem:

Theorem 9.1.3 (Universal models). The class of finitely closed UIDs and FDs has
finite universal models for CQ: for every conjunction Σ of FDs ΣFD and UIDs ΣUID
closed under finite implication, for any k ∈ N, for every finite instance I0 that
satisfies ΣFD, there exists a finite k-sound superinstance I of I0 that satisfies Σ.

Indeed, once we have shown this, we can easily deduce the Main Theorem, namely,
that any conjunction Σ of FDs and UIDs is finitely controllable up to finite closure.
Indeed, for any such Σ, for any instance I0 and CQ q, we have (I0,Σ) |=fin q iff
(I0,Σf∗) |=fin q: the forward statement is because any finite model of Σ is a model
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Table 9.1: Roadmap of intermediate results.

Signature Universality Constraints Query

Chapter 10: binary weakly-sound reversible UIDs, UFDs ACQ
Chapter 11: arbitrary weakly-sound reversible UIDs, UFDs ACQ
Chapter 12: arbitrary k-sound reversible UIDs, UFDs ACQ
Chapter 13: arbitrary k-sound finitely closed UIDs, UFDs ACQ
Chapter 14: arbitrary k-sound finitely closed UIDs, FDs ACQ
Chapter 15: arbitrary k-sound finitely closed UIDs, FDs CQ

of Σf∗, and the backward statement is tautological. Now, from the Universal Models
Theorem and Proposition 9.1.2, we know that Σf∗ is finitely controllable, so that
(I0,Σf∗) |=fin q iff (I0,Σf∗) |=unr q. We have thus shown that (I0,Σ) |=fin q iff
(I0,Σf∗) |=unr q, which concludes the proof of the Main Theorem.

Hence, we will show the Universal Models Theorem in the rest of this part of my
thesis. We proceed in incremental steps, following the plan that we outline next.

9.2 Proof Structure
We first make a simplifying assumption on the signature, without loss of generality,
to remove useless relations. Given an instance I0, UIDs ΣUID and FDs ΣFD, it
may the be case that the signature σ contains a relation R that does not occur in
Chase(I0,ΣUID), namely, it does not occur in I0 and the existence of an R-fact is
not implied by ΣUID. In this case, relation R is useless: a CQ q involving R will
never be entailed under Σ, neither on unrestricted nor on finite models, unless I0
has no completion at all satisfying the constraints. In any case, the query q can be
replaced by the trivial CQ False, which is only (vacuously) entailed if there are no
completions.

Hence, we can always remove useless relations from the signature, up to rewriting
the query to the false query. Thus, without loss of generality, we always assume that
the signature contains no useless relations in this sense: all relations of the signature
occur in the chase.

We now present several assumptions that we use to prove weakenings of the
Universal Models Theorem. The first one is on queries, which we require to be
acyclic. The second is on FDs, which we require to be unary, i.e., UFDs. The third
one is to replace k-soundness by the simpler notion of weak-soundness. Then we
present two additional assumptions: the first one, reversible, is on the constraints,
and requires that they have a certain special form; the second one, binary, is on the
constraints and signature, which we require to be binary. In the next chapter, we
show the Universal Models Theorem under all these assumptions, and then we lift
the assumptions one by one, in each chapter. See Table 9.1 for a synopsis.

Hence, let us present the assumptions that we will make (and later lift).

Acyclic queries. It will be helpful to focus first on the subset of acyclic CQs,
denoted ACQ, which are the queries that contain no Berge cycle. Formally:
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Definition 9.2.1. A Berge cycle in a CQ q is a sequence A1, x1, A2, x2, . . . , An, xn
with n > 2, where the Ai are pairwise distinct atoms of q, the xi are pairwise distinct
variables of q, and xi occurs in Ai and Ai+1 for 1 6 i 6 n (with addition modulo n,
so xn occurs in An and A1). A query q is in ACQ if q has no Berge cycle and if no
variable of q occurs more than once in the same atom.

Equivalently, consider the incidence multigraph of q, namely, the bipartite undi-
rected multigraph on variables and atoms obtained by putting one edge between
variable x and atom A for every time where x occurs in A (possibly multiple times).
Then q is in ACQ iff its incidence multigraph is acyclic in the standard sense. C

Example 9.2.2. The queries ∃x R(x, x), ∃xy R(x, y)∧ S(x, y), and ∃xyz R(x, y)∧
R(y, z) ∧R(z, x) are not in ACQ: the first one has an atom with two occurrences of
the same variable, the other two have a Berge cycle. The following query is in ACQ:
∃xyzw R(x, y, z) ∧ S(x) ∧ T (y, w) ∧ U(w).

Intuitively, in the chase, all query matches are acyclic unless they involve some
cycle in the initial instance I0. Hence, only acyclic CQs have matches, except those
that match on I0 or those whose cycles have self-homomorphic matches, so, in a
k-sound model, the CQs of size 6 k which hold are usually acyclic. For this reason,
we focus only on ACQ queries first. We will ensure in Chapter 15 that cyclic queries
of size 6 k have no matches.

Unary FDs. We will first show our result for unary FDs (UFDs); recall from
Chapter 8 that they are the FDs with exactly one determining attribute. We do this
because the finite closure construction of [Cosmadakis, Kanellakis, and Vardi 1990]
is not concerned with higher-arity FDs, except for the UFDs that they imply. Hence,
while the UFDs of the finite closure have a special structure that we can rely on, the
higher-arity FDs are essentially arbitrary. This is why we deal with them only in
Chapter 14, using a different approach.

k-soundness and weak-soundness. Rather than proving that UIDs and UFDs
have finite universal models for ACQ, it will be easier to prove first that they have
1-universal models. More specifically, we will construct weakly-sound superinstances,
which satisfy a sufficient condition for them to be 1-sound:

Definition 9.2.3. A superinstance I of an instance I0 is weakly-sound for a set of
UIDs ΣUID and for I0 if the following holds:

• For any a ∈ dom(I0) and Rp ∈ Pos(σ), if a ∈ πRp(I), then either a ∈ πRp(I0)
or a ∈ Wants(I0, R

p);

• For any a ∈ dom(I)\ dom(I0) and Rp, Sq ∈ Pos(σ), if a ∈ πRp(I) and a ∈ πSq(I)
then either we have Rp = Sq or Rp ⊆ Sq and Sq ⊆ Rp are in ΣUID. C

Thus, we first show that UFDs and UIDs have finite weakly-universal superinstances
for ACQ, defined analogously to Definition 9.1.1: for any constraints ΣU of UFDs
ΣUFD and UIDs ΣUID, for any query q in ACQ, for any instance I0, if I0 has a
superinstance that satisfies ΣU, then it has a finite superinstance that does and is
weakly-sound for ΣUID and I0. This restriction is lifted in Chapter 12.
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Assumption reversible. We will initially make a simplifying assumption on the
structure of the UIDs and UFDs, which we call reversible. This assumption is motivated
by the finite closure rules of Theorem 8.2.1; intuitively, it amounts to assuming that
a certain constraint graph defined from the dependencies has a single connected
component:

Definition 9.2.4. Let Σrev
UID be a set of UIDs and ΣUFD be a set of UFDs. We call

Σrev
UID and ΣUFD reversible if:

• Σrev
UID is closed under implication, and so is ΣUFD;

• All UIDs in Σrev
UID are reversible (i.e., their reverses are also in Σrev

UID);

• for any UFD ϕ : Rp → Rq in ΣUFD, if Rp occurs in some UID of Σrev
UID and Rq also

occurs in some UID of Σrev
UID, then ϕ is reversible, i.e., ϕ−1 is also in ΣUFD. C

Assumption reversible: The UIDs ΣUID and UFDs ΣUFD are reversible.

When assumption reversible is made, we will write the UIDs Σrev
UID rather than ΣUID.

Observe that Σrev
UID and ΣUFD are then finitely closed: they are closed under UID and

UFD implication, and the UIDs and UFDs of any cycle must be reversible. To lift
reversible and generalize to the general case, we will follow an SCC decomposition of
the constraint graph to manage each SCC separately. See Chapter 13 for details.

Second assumption. We will start our proof in Chapter 10 by introducing im-
portant notions in the much simpler case of a binary signature. For this, we will
initially make the following assumption binary on the signature and on Σ:

Assumption binary: Each relation R has arity 2 and the UFDs R1 → R2 and
R2 → R1 hold in Σ.

We will lift this assumption in Chapter 11.

Roadmap. Each of the next chapters will prove that a certain constraint class
has finite universal models for a certain query class in a certain sense, under certain
assumptions. Table 9.1 summarizes the results that are proved in each chapter.

The rest of Part II of this manuscript follows this roadmap: each chapter starts
by stating the result that it proves.
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Chapter 10

Weak Soundness
on Binary Signatures

Theorem 10.1. Reversible UIDs and UFDs have finite weakly-universal superin-
stances for ACQs under assumption binary.

We prove this result in this chapter. Fix an instance I0 and reversible constraints
Σrev

U formed of UIDs Σrev
UID and UFDs ΣUFD. Assume that I0 |= ΣUFD as the question

is vacuous otherwise, and make assumption binary.
Our goal is to construct a weakly-sound superinstance I of I0 that satisfies Σrev

U .
We do so by a completion process that adds new (binary) facts to connect elements
together. As all possible UFDs hold, if we extend I0 to I by adding a new fact
R(a1, a2), we must have ai /∈ πRi(I0) for i ∈ {1, 2}. Hence, by weak soundness, if
ai ∈ dom(I0) then we must have ai ∈ Wants(I0, R

i). Our task is this section is thus
to complete I0 to I by adding R-facts, for each relation R, that connect together
elements of Wants(I0, R

1) and Wants(I0, R
2).

10.1 Completing Balanced Instances
One easy situation to do this is when the instance I0 is balanced: for every relation R,
we can construct a bijection between the elements that want to be in R1 and those
that want to be in R2:

Definition 10.1.1. We call I0 balanced (for UIDs Σrev
UID) if, for every two positions Rp

and Rq such that Rp → Rq and Rq → Rp are in ΣUFD, we have
∣∣∣WantsΣrev

UID
(I0, R

p)
∣∣∣ =∣∣∣WantsΣrev

UID
(I0, R

q)
∣∣∣. C

If I0 is balanced, we can show Theorem 10.1 by constructing I with dom(I) =
dom(I0), adding new facts that pair together the existing elements:

Proposition 10.1.2. Assuming binary and reversible, any balanced finite instance
I0 satisfying ΣUFD has a finite weakly-sound superinstance I that satisfies Σrev

U , with
dom(I) = dom(I0).

We first exemplify this process:

Example 10.1.3. Consider four binary relations R, S, T , and U , with the UIDs
R2 ⊆ S1, S2 ⊆ T 1, T 2 ⊆ R1 and their reverses, and the FDs prescribed by assumption
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a b c d e

f g h

T 2 S1 R2 R1

T 1 S2

R U S T

S

R

T

RST

Figure 10.1: Balanced instances (see Example 10.1.3)

a b

h

T 2 S1

S2, T 1

R

ST

Figure 10.2: Balancing
(see Example 10.2.1)

binary. Consider I0 ··= {R(a, b), U(b, c), S(c, d), T (d, e), S(g, f), R(g, g), T (h, g)}, as
depicted by the black elements and solid black arrows in Figure 10.1.

We compute, for each element, the set of positions where it wants to be, and
write it in red under each element in Figure 10.1 (in this example, it is a singleton set
for each element). For instance, we have Wants(I0, T

1) = {f}. We observe that the
instance is balanced: we have |Wants(I0, R

1)| = |Wants(I0, R
2)|, and likewise for S,

T , and U .
We can construct a weakly-sound superinstance I of I0 as I ··= I0t{R(e, c), S(b, h),

T (f, a}: the additional facts are represented as dashed red arrows in Figure 10.1.
Intuitively, we just create new facts that connect together elements to want to occur
at the right positions.

We now give the formal proof of the result:

Proof of Proposition 10.1.2. Let us define a bijection fR for every relation R of σ
from Wants(I0, R

1) to Wants(I0, R
2); this is possible because I0 is balanced.

Consider the superinstance I of I0, with dom(I) = dom(I0), obtained by adding,
for every R of σ, the fact R(a, fR(a)) for every a ∈ Wants(I0, R

1). I is clearly a finite
weakly-sound superinstance of I0, because for every a ∈ dom(I), if a occurs at some
position Rp in some fact F of I, then either F is a fact of I0 and a ∈ πRp(I0), or F
is a new fact in I\I0 and by definition a ∈ Wants(I0, R

p).
Let us show that I |= ΣUFD. Assume to the contrary that two facts F = R(a1, a2)

and F ′ = R(a′1, a′2) in I witness a violation of a UFD ϕ : R1 → R2 of ΣUFD. As
I0 |= ΣUFD, one of F and F ′, say F , must be a new fact. By definition of the
new facts, we have a1 ∈ Wants(I0, R

p), so that a1 /∈ πR1(I0). Now, as {F, F ′} is
a violation, we must have πR1(F ) = πR1(F ′), so as a1 /∈ πR1(I0), F ′ must also be
a new fact. Hence, by definition of the new facts, we have a2 = a′2 = fR(a1), so
F = F ′, which contradicts the fact that F and F ′ violate ϕ. For UFDs ϕ of the form
R2 → R1, the proof is similar, but we have a1 = a′1 = f−1

R (a2).
Let us now show that I |= Σrev

UID. Assume to the contrary that there is an active
fact F = R(a1, a2) that witnesses the violation of a UID τ : Rp ⊆ Sq. If F is a
fact of I0, we had ap ∈ Wants(I0, S

q), so F cannot be an active fact in I as this
violation was solved in I. So we must have F ∈ I\I0. Hence, by definition of the
new facts, we had ap ∈ Wants(I0, R

p); so there must be τ ′ : T r ⊆ Rp in Σrev
UID such

that ap ∈ πT r(I0). Hence, because Σrev
UID is transitively closed, either T r = Sq or the

UID T r ⊆ Sq is in Σrev
UID. In the first case, as ap ∈ πT r(I0), F cannot be an active fact

for τ , a contradiction. In the second case, we had ap ∈ Wants(I0, S
q), so ap ∈ πSq(I)

by definition of I, so again F cannot be an active fact for τ .
Hence, I is a finite weakly-sound superinstance of I0 that satisfies Σrev

U and with
dom(I) = dom(I0), the desired claim.
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10.2 Adding Helper Elements
If our instance I0 is not balanced, we cannot use the construction that we just
presented. The idea is then to make I0 balanced, which we do by adding “helper”
elements that we assign to positions. The following example illustrates this:

Example 10.2.1. We use the same signature and dependencies as in Example 10.1.3.
Consider I0 ··= {R(a, b)}, as depicted in Figure 10.2. We have a ∈ Wants(I0, T

2) and
b ∈ Wants(I0, S

1); however Wants(I0, S
2) = Wants(I0, T

1) = ∅, so I0 is not balanced.
Still, we can construct the weakly-sound superinstance I ··= I0t{S(b, h), T (h, a)}

that satisfies the constraints. Intuitively, we have added a “helper” element h and
“assigned” it to the positions {S2, T 1}, so we could connect b to h with S and h to a
with T .

We will formalize this idea of augmenting the domain with helper elements, as a
partially-specified superinstance, namely, an instance that is augmented with helpers
assigned to positions. However, we first need to understand at which positions the
helpers can appear, without violating weak-soundness:

Definition 10.2.2. For any two positions Rp and Sq, we write Rp ∼ID Sq when
Rp = Sq or when Rp ⊆ Sq is in Σrev

UID (and hence Sq ⊆ Rp is in Σrev
UID by assumption

reversible). We write [Rp]ID the ∼ID-class of Rp. C

As Σrev
UID is transitively closed, ∼ID is indeed an equivalence relation. Our choice of

where to assign the helper elements will be represented as a mapping to an ∼ID-class.
We call the result a partially-specified superinstance, or pssinstance:

Definition 10.2.3. A pssinstance of an instance I is a triple P = (I,H, λ) where
H is a finite set of helpers and λ maps each h ∈ H to an ∼ID-class λ(h).

We define Wants(P,Rp) ··= Wants(I, Rp) t {h ∈ H | Rp ∈ λ(h)}. C

In other words, in the pssinstance, elements of I want to appear at the same
positions as before, and helper elements want to occur at their∼ID-class according to λ.
A realization of a pssinstance P is then a superinstance of its underlying instance I
which adds the helper elements, and whose additional facts respect Wants(P,Rp):

Definition 10.2.4. A realization of P = (I,H, λ) is a superinstance I ′ of I such
that dom(I ′) = dom(I) t H, and, for any fact R(a) of I ′\I and Rp ∈ Pos(R), we
have ap ∈ Wants(P,Rp). C

Example 10.2.5. In Example 10.2.1, a pssinstance of I0 is P ··= (I0, {h}, λ) where
λ(h) ··= {S2, T 1}. Further, it is balanced. For instance, Wants(P, S1) = {b} and
Wants(P, S2) = {h}. The instance I in Example 10.2.1 is a realization of P .

It is easy to see that realizations of pssinstances are weakly-sound:

Lemma 10.2.6 (Binary realizations are completions). If I ′ is a realization of a
pssinstance of I0 then it is a weakly-sound superinstance of I0.

Proof. Consider a ∈ dom(I ′) and Rp ∈ Pos(σ) such that a ∈ πRp(I ′). As I ′ is a
realization, we know that either a ∈ πRp(I) or a ∈ Wants(P,Rp). By definition of
Wants(P,Rp), and because H = dom(I ′)\ dom(I), this means that either a ∈ dom(I)
and a ∈ πRp(I) tWants(I, Rp), or a ∈ dom(I ′)\ dom(I) and Rp ∈ λ(a). Hence, let
us check from the definition that I ′ is weakly-sound, which concludes:
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• For any a ∈ dom(I) and Rp ∈ Pos(σ), we have established that a ∈ πRp(I ′)
implied that either a ∈ πRp(I) or a ∈ Wants(I, Rp).

• For any a ∈ dom(I ′)\ dom(I) and for any Rp, Sq ∈ Pos(σ), we have established
that a ∈ πRp(I ′) and a ∈ πSq(I ′) implies that Rp, Sq ∈ λ(a), so that Rp ∼ID S

q,
hence Rp = Sq or Rp ⊆ Sq is in Σrev

UID.

10.3 Putting it Together
What remains to show to conclude the proof of Theorem 10.1 is that we can construct
a balanced pssinstance of I0, even when I0 itself is not balanced. By a balanced
pssinstance, we mean the exact analogue of Definition 10.1.1 for pssinstances:
Definition 10.3.1. A pssinstance P = (I,H, λ) is balanced if for every two positions
Rp and Rq such that Rp → Rq and Rq → Rp are in ΣUFD, we have |Wants(P,Rp)| =
|Wants(P,Rq)|. C

If I0 is balanced, the empty pssinstance (I, ∅, λ), with λ the empty function, is a
balanced pssinstance of I0, and we could just complete I0 as we presented before.
We now show that, even if I0 is not balanced, we can always construct a balanced
pssinstance, thanks to the helpers:
Lemma 10.3.2 (Balancing). Any finite instance I satisfying ΣUFD has a balanced
pssinstance.

In fact, this lemma does not use assumption binary. We will accordingly reuse it
in the next chapter.

Proof. Let I be a finite instance. For any position Rp, define o(Rp) ··= Wants(I, Rp)t
πRp(I), i.e., the elements that either appear at Rp or want to appear there. We show
that o(Rp) = o(Sq) whenever Rp ∼ID Sq, which is obvious if Rp = Sq, so assume
Rp 6= Sq. First, we have πRp(I) ⊆ o(Sq): elements in πRp(I) want to appear at Sq
unless they already do, and in both cases they are in o(Sq). Second, elements of
Wants(I, Rp) either occur at Sq, or at some other position T r such that T r ⊆ Rp is a
UID of Σrev

UID, so that by transitivity T r = Sq or T r ⊆ Sq also is, and so they want to
be at Sq or they already are. Hence o(Rp) ⊆ o(Sq); and symmetrically o(Sq) ⊆ o(Rp).
Thus, the set o(Rp) only depends on the ∼ID-class of Rp.

Let N ··= maxRp∈Pos(σ) |o(Rp)|, which is finite. We define for each ∼ID-class [Rp]ID
a set p([Rp]ID) of N − |o(Rp)| fresh helpers. We let H be the disjoint union of the
p([Rp]ID) for all classes [Rp]ID, and set λ to map the elements of p([Rp]ID) to [Rp]ID.
We have thus defined a pssinstance P = (I,H, λ).

Let us now show that P is balanced. Consider now two positions Rp and Rq such
that ϕ : Rp → Rq and ϕ−1 : Rq → Rp are in ΣUFD, and show that |Wants(P,Rp)| =
|Wants(P,Rq)|. We have |Wants(P,Rp)| = |Wants(I, Rp)| + |p([Rp]ID)| = |o(Rp)| −
|πRp(I)|+N − |o(Rp)|, which simplifies to N − |πRp(I)|. Similarly |Wants(P,Rq)| =
N − |πRq(I)|. Since I |= ΣUFD and ϕ and ϕ−1 are in ΣUFD we know that |πRp(I)| =
|πRq(I)|. Hence, P is balanced, as we claimed.

We had seen in Proposition 10.1.2 that we could construct a weakly-sound
superinstance of a balanced I0 by pairing together elements. We now generalize this
claim to the balanced pssinstances that we constructed, showing that we can build
realizations of balanced pssinstances that satisfy Σrev

U , using a similar technique:
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Lemma 10.3.3 (Binary realizations). For any balanced pssinstance P of an in-
stance I which satisfies ΣUFD, we can construct a realization of P that satisfies
Σrev

U .

Proof. As in Proposition 10.1.2, for every relation R, construct a bijection fR between
Wants(P,R1) and Wants(P,R2): this is possible, as P is balanced. We then construct
our realization I ′ as in Proposition 10.1.2: we add to I the fact R(a, fR(a)) for every
R of σ and every a ∈ Wants(P,R1).

We prove that I ′ is a realization as in Proposition 10.1.2 by observing that
whenever we create a fact R(a, fR(a)), then we have a ∈ Wants(P,R1) and fR(a) ∈
Wants(P,R2). Similarly, we show that I ′ |= ΣUFD as in Proposition 10.1.2.

We now show that I ′ satisfies Σrev
UID. Assume to the contrary that there is an

active fact F = R(a1, a2) that witnesses the violation of a UID τ : Rp ⊆ Sq, so that
ap ∈ Wants(I ′, Rp). If ap ∈ dom(I), then the proof is exactly as for Proposition 10.1.2.
Otherwise, if ap ∈ H, clearly by construction of fR and I ′ we have ap ∈ πT r(I ′) iff
T r ∈ λ(ap). Hence, as ap ∈ πRp(I ′) and as τ witnesses by assumption reversible that
Rp ∼ID S

q , we have ap ∈ πSq(I ′), contradicting the fact that ap ∈ Wants(I ′, Sq).

We now conclude the proof of Theorem 10.1. Given the instance I0, construct a
balanced pssinstance P with the Balancing Lemma, construct a realization I ′ of P
that satisfies Σrev

U with the Binary Realizations Lemma, and conclude by the “Binary
Realizations are Completions” Lemma that I ′ is a weakly-sound superinstance of I0.
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Chapter 11

Weak Soundness
on Arbitrary Arity Signatures

We now lift assumption binary and extend the results to arbitrary arity signatures:

Theorem 11.1. Reversible UIDs and UFDs have finite weakly-universal models for
ACQs.

A first complication when lifting assumption binary is that realizations cannot be
created just by pairing two elements. To satisfy the UIDs we may have to create facts
that connect elements on more than two positions, so we may need more than the
bijections between two positions that we used before. A much more serious problem
is that the positions where we connect together elements may still be only a subset
of the positions of the relation, which means that the other positions must be filled
somehow.

We address these difficulties by defining first piecewise realizations, which create
partial facts on positions connected by UFDs, similarly to the previous section. We
show that we can get piecewise realizations by generalizing the Binary Realizations
Lemma. Second, to find elements to reuse at other positions, we define a notion of
saturation. We show that, by an initial saturation process, we can ensure that there
are existing elements that we can reuse at positions where this will not violate UFDs
(the non-dangerous positions). Third, we define a notion of thrifty chase step to solve
UID violations one by one. We last explain how to use thrifty chase steps to solve all
UID violations on saturated instances, using a piecewise realization as a template;
this is how we construct our weakly-sound completion.

11.1 Piecewise Realizations
Without assumption binary, we must define a new equivalence relation to reflect the
UFDs, in addition to ∼ID which reflects the UIDs:

Definition 11.1.1. For any two positionsRp andRq, we writeRp ↔FUN Rq whenever
Rp = Rq or Rp → Rq and Rq → Rp are both in ΣUFD. C

By transitivity of ΣUFD, ↔FUN is indeed an equivalence relation.
The definition of balanced instances (Definition 10.1.1) generalizes as-is to arbitrary

arity. We do not change the definition of pssinstance (Definition 10.2.3), and talk of
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them being balanced in the same way. Further, we know that the Balancing Lemma
(Lemma 10.3.2) holds even without assumption binary.

Our general scheme is the same: construct a balanced pssinstance of I0, and use
it to construct the completion I. What we need is to change the notion of realization.
We replace it by piecewise realizations, which are defined on ↔FUN-classes. We
number the ↔FUN-classes of Pos(σ) as Π1, . . . ,Πn and define piecewise instances by
their projections to the Πi:

Definition 11.1.2. A piecewise instance is an n-tuple PI = (K1, . . . , Kn), where
each Ki is a set of |Πi|-tuples, indexed by Πi for convenience. The domain of PI
is dom(PI) ··=

⋃
i dom(Ki). For 1 6 i 6 n and Rp ∈ Πi, we define πRp(PI) ··=

πRp(Ki). C

We will realize a pssinstance P , not as an instance as in the previous chapter,
but as a piecewise instance. The tuples in each Ki will be defined from P , and will
connect elements that want to occur at the corresponding position in Πi, generalizing
the ordered pairs constructed with bijections in the proof of the Binary Realizations
Lemma. Let us define accordingly the notion of a piecewise realization of a pssinstance
as a piecewise instance:

Definition 11.1.3. A piecewise instance PI = (K1, . . . , Kn) is a piecewise realization
of the pssinstance P = (I,H, λ) if:

• πΠi(I) ⊆ Ki for all 1 6 i 6 n,

• dom(PI) = dom(I) tH,

• for all 1 6 i 6 n, for all Rp ∈ Πi, for every tuple a ∈ Ki\πΠi(I), we have
ap ∈ Wants(P,Rp). C

Notice that the definition is similar to the conditions imposed on realizations
(Definition 10.2.4), although piecewise realizations are piecewise instances, not actual
instances; so we will need one extra step to make real instances out of them: this is
done in Section 11.4.

We must now generalize the Binary Realizations Lemma (Lemma 10.3.3) to
construct these piecewise realizations out of balanced pssinstances. For this, we need
to define what it means for a piecewise instance PI to “satisfy” Σrev

U . For ΣUFD, we
require that PI respects the UFDs within each ↔FUN-class. For Σrev

UID, we define it
directly from the projections of PI.

Definition 11.1.4. A piecewise instance PI is ΣUFD-compliant if, for all 1 6 i 6 n,
there are no two tuples a 6= b in Ki such that ap = bp for some Rp ∈ Πi.

PI is Σrev
UID-compliant if Wants(PI, τ) ··= πRp(PI)\πSq(PI) is empty for all τ :

Rp ⊆ Sq in Σrev
UID.

PI is Σrev
U -compliant if it is ΣUFD- and Σrev

UID-compliant. C

We can then state and prove the generalization of the Binary Realizations Lemma:

Lemma 11.1.5 (Realizations). For any balanced pssinstance P of an instance I that
satisfies ΣUFD, we can construct a piecewise realization of P which is Σrev

U -compliant.

Before we prove the Realizations Lemma, we show a simple example:
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Example 11.1.6. Consider a 4-ary relation R and the UIDs τ : R1 ⊆ R2, τ ′ :
R3 ⊆ R4 and their reverses, and the UFDs ϕ : R1 → R2, ϕ′ : R3 → R4 and
their reverses. We have Π1 = {R1, R2} and Π2 = {R3, R4}. Consider I0 ··=
{R(a, b, c, d)}, which is balanced, and the trivial balanced pssinstance P ··= (I0, ∅, λ),
where λ is the empty function. A Σrev

U -compliant piecewise realization of P is
PI ··= ({(a, b), (b, a)}, {(c, d), (d, c)}).

We conclude the section with the proof of the Realizations Lemma:

Proof of Lemma 11.1.5. Let P = (I,H, λ) be the balanced pssinstance. Recall that
the ↔FUN-classes of σ are numbered Π1, . . . ,Πn. By definition of P being balanced
(Definition 10.1.1 applied to arbitrary arity), for any ↔FUN-class Πi, for any two
positions Rp, Rq ∈ Πi, we have |Wants(P,Rp)| = |Wants(P,Rq)|. Hence, for all
1 6 i 6 n, we can define si as the value of |Wants(P,Rp)| for any Rp ∈ Πi.

For 1 6 i 6 n, we let mi be |Πi|, and number the positions of Πi as Rpi1 , . . . , Rpimi .
We choose for each 1 6 i 6 n and 1 6 j 6 mi an arbitrary bijection ϕij
from {1, . . . , si} to Wants(P,Rpij). We construct the piecewise realization PI =
(K1, . . . , Kn) by setting each Ki for 1 6 i 6 n to be πΠi(I) plus the tuples
(ϕi1(l), . . . , ϕimi(l)) for 1 6 l 6 si.

It is clear that PI is a piecewise realization. Indeed, the first two conditions are
immediate. Further, whenever we create a tuple a ∈ Πi for any 1 6 i 6 n, then, for
any Rp ∈ Πi, we have ap ∈ Wants(P,Rp).

Let us then show that PI is ΣUFD-compliant. Assume by contradiction that there
is 1 6 i 6 n and a, b ∈ Ki such that al = bl but ar 6= br for some Rl, Rr ∈ Πi. As I
satisfies ΣUFD, we assume without loss of generality that a ∈ Ki\πΠi(I). Now either
b ∈ πΠi(I) or b ∈ Ki\πΠi(I).
• If b ∈ πΠi(I), then bl ∈ πRl(I). Yet, we know by construction that, as

a ∈ Ki\πΠi(I), we have al ∈ Wants(P,Rl), so that by definition of Wants(P,Rl)
we have al ∈ Wants(I, Rl). But we have al = bl, so we have a contradiction.

• If b ∈ Ki\πΠi(I), then, writing Rl = Rpij and Rr = R
pi
j′ , the fact that al = bl

but ar 6= br contradicts the fact that ϕij ◦ (ϕij′)−1 is injective.
Hence, PI is ΣUFD-compliant.

Let us now show that PI is Σrev
UID-compliant. We must show that, for every

UID τ : Rp ⊆ Sq of Σrev
UID, we have Wants(PI, τ) = ∅, which means that we have

πRp(PI) ⊆ πSq(PI). Let Πi be the ↔FUN-class of Rp, and assume to the contrary
the existence of a tuple a of Ki such that ap /∈ πSq(PI). Either we have ap ∈ dom(I),
or we have ap ∈ H.

• If ap ∈ dom(I), as ap /∈ πSq(PI), in particular ap /∈ πSq(I), and as ap ∈ πRp(I),
τ witnesses that ap ∈ Wants(I, Sq). By construction of PI, then, letting Πi′ be
the ↔FUN-class of Sq and letting Sq = Sp

i′
j , as ϕi′j is surjective, we must have

ap ∈ πSq(Ki′), that is, ap ∈ πSq(PI), a contradiction.

• If ap ∈ H, clearly by construction we have ap ∈ πT r(PI) iff T r ∈ λ(ap), so
that, given that τ witnesses Rp ∼ID S

q, if ap ∈ πRp(PI) then ap ∈ πSq(PI), a
contradiction.

We conclude that PI is indeed a Σrev
U -compliant piecewise realization of P .
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11.2 Relation-Saturation
The Realizations Lemma gives us a Σrev

U -compliant piecewise realization which is a
piecewise instance. To construct an actual superinstance from it, we will have to
expand each tuple t of each Ki, defined on the ↔FUN-class Πi, to an entire fact Ft
of the corresponding relation.

However, to fill the other positions of Ft , we will need to reuse existing elements
of I0. To do this, it is easier to assume that I0 contains some R-fact for every relation
R of the signature.

Definition 11.2.1. A superinstance I of I0 is relation-saturated if for every R ∈ σ
there is an R-fact in I. C

We illustrate why it is easier to work with relation-saturated instances:

Example 11.2.2. Suppose our schema has two binary relations R and T and a
unary relation S, the UIDs τ : S1 ⊆ R1, τ ′ : R2 ⊆ T 1 and their reverses, and no
UFDs. Consider the non-relation-saturated instance I0 ··= {S(a)}. It is balanced, so
P ··= (I0, ∅, λ), with λ the empty function, is a pssinstance of I.

Now, a Σrev
U -compliant piecewise realization of P is PI = (K1, . . . , K5) with

K2 = K4 = K5 = ∅ and K1 = K3 = {a}, where Π1 and Π3 are the ↔FUN-classes
of R1 and S1. However, we cannot easily complete PI to an actual superinstance
of I0 satisfying τ and τ ′. Indeed, to create the fact R(a, •), as indicated by K1, we
need to fill position R2. Using an existing element would violate weak-soundness,
and using a fresh element would introduce a violation of τ ′, which P and PI would
not tell us how to solve.

Consider instead the relation-saturated instance I1 ··= I0 t{S(c), R(c, d), T (d, e)}.
We can complete I1 to a weakly-sound superinstance that satisfies τ and τ ′, by
adding the fact R(a, d). Observe how we reused d to fill position R2: this does not
violate weak-soundness or introduce new UID violations.

Relation-saturation can clearly be ensured by initial chasing, which does not
violate weak-soundness. We call this a saturation process to ensure relation-saturation:

Lemma 11.2.3 (Relation-saturated solutions). For any reversible UIDs Σrev
UID, UFDs

ΣUFD, and instance I0 satisfying ΣUFD, the result of performing sufficiently many
chase rounds on I0 by Σrev

UID is a weakly-sound relation-saturated superinstance of I0
that satisfies ΣUFD.

This allows us to assume that I0 was preprocessed with initial chasing if needed,
so we can assume it to be relation-saturated. To show the lemma, and also for further
use, we make a simple observation on weak-soundness:

Lemma 11.2.4 (Weak-soundness transitivity). If I ′ is a weakly-sound superin-
stance of I, and I is a weakly-sound superinstance of I0, then I ′ is a weakly-sound
superinstance of I0.

Proof. Let a ∈ dom(I ′), and let us show that it does not witness a violation of the
weak-soundness of I ′ for I0. We distinguish three cases:

154



Antoine Amarilli Leveraging the Structure of Uncertain Data

• If a ∈ dom(I0), then in particular a ∈ dom(I). Hence, letting Sq be any
position such that a ∈ πSq(I ′), as I ′ is a weakly-sound superinstance of I,
either a ∈ πSq(I) or we have a ∈ Wants(I, Sq). Let Rp be a position such
that a ∈ πRp(I), and such that Rp = Sq (in the first case) or Rp ⊆ Sq holds
in Σrev

UID (in the second case). As I is a weakly-sound superinstance of I0, either
a ∈ πRp(I0) or a ∈ Wants(I0, R

p). As Σrev
UID is transitively closed, we conclude

that a ∈ Wants(I0, S
q) or a ∈ πSq(I0). Hence, the fact that a occurs at position

Sq in I ′ does not cause a violation of weak-soundness in I ′ for I0.

• If a ∈ dom(I)\ dom(I0), we must show that for any two positions Rp, Sq where
a occurs in I ′, we have Rp ∼ID S

q. Let us fix two such positions, i.e., we have
a ∈ πRp(I ′) and a ∈ πSq(I ′). As I ′ is a weakly-sound superinstance of I, we
have either a ∈ πRp(I) or a ∈ Wants(I, Rp), and we have either a ∈ πSq(I) or
a ∈ Wants(I, Sq). As in the previous case, let T v and Uw be positions such
that a ∈ πT v(I) and a ∈ πUw(I), and T v = Rp or the UID τ : T v ⊆ Rp holds
in Σrev

UID, and Uw = Sq or the UID τ ′ : Uw ⊆ Sq holds in Σrev
UID. As I is a

weakly-sound superinstance of I0, and a /∈ dom(I0), we know that T v ∼ID U
w.

By assumption reversible and as Σrev
UID is transitively closed, we deduce (using τ

and τ ′ if necessary) that Rp ∼ID S
q, which is what we wanted to show. Hence,

the fact that a occurs at positions Rp and Sq in I ′ does not cause a violation
of weak-soundness in I ′ for I0.

• If a ∈ dom(I ′)\ dom(I), then from the fact that I ′ is a weakly-sound superin-
stance of I, we deduce immediately about a what is needed to show that it
does not witness a violation of the weak-soundness of I ′ for I0.

So we conclude that I ′ is a weakly-sound instance of I0, as desired.

We conclude the section by proving the Relation-Saturated Solutions Lemma:

Proof of Lemma 11.2.3. Remember that the signature σ was assumed without loss
of generality not to contain any useless relation. Hence, for every relation R ∈ σ,
there is an R-fact in Chase(I0,Σrev

UID), which was generated at the nR-th round of the
chase, for some nR ∈ N. Let n ··= maxR∈σ nR, which is finite because the number of
relations in σ is finite. We take I to be the result of applying n chase rounds to I0.

It is clear that I is relation-saturated. The fact that I is weakly-sound is by
the Weak-Soundness Transitivity Lemma, because each chase step clearly preserves
weak-soundness: the exported element occurs at a position where it wants to occur,
so we can use assumption reversible, and new elements only occur at one position.

11.3 Thrifty Chase Steps
We have explained why I0 can be assumed to be relation-saturated, and we know we
can build a Σrev

U -compliant piecewise realization PI of a balanced pssinstance. Our
goal is now to satisfy the UIDs using PI. We will do so by a completion process that
fixes each violation one by one, following PI. This section presents the tool that we
use for this, and the next section describes the actual process.

Our tool is a form of chase step, a thrifty chase step, which adds a new fact Fn to
satisfy a UID violation. For some of the positions, the elements of Fn will be defined
from the realization PI, using one of its tuples. For each of these elements, either
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Fn makes them occur at a position that they want to be (thus satisfying another
violation) or these elements are helpers that did not occur already in the domain.
At any other position Sr of Fn, we may either reuse an existing element (by relation
saturation, one can always reuse an element that already occurs in that position) or
create a fresh element (arguing that no UID will be violated on that element). This
depends on whether Sr is dangerous or non-dangerous:

Definition 11.3.1. We say a position Sr ∈ Pos(σ) is dangerous for the position
Sq 6= Sr if Sr → Sq is in ΣUFD, and write Sr ∈ Dng(Sq). Otherwise, still assuming
Sq 6= Sr Sr is non-dangerous for Sq, written Sr ∈ NDng(Sq). Note that {Sq} t
Dng(Sq) t NDng(Sq) = Pos(S). C

We can now define thrifty chase steps. The details of the definition are designed
for the completion process defined in the next section (Proposition 11.4.1), and for
the specialized notions that we will introduce later in this section as well as in the
following chapters.

Definition 11.3.2. Let I be a superinstance of I0, let τ : Rp ⊆ Sq be a UID of Σrev
UID,

and let Fa = R(a) be an active fact for τ in I. We call Sq the exported position, and
write Πi for its ↔FUN-class.

Applying a thrifty chase step to Fa (or a) in I by τ yields a superinstance I ′ of I0
which is I plus a single new fact Fn = S(b). We require the following on br for all
Sr ∈ Pos(S):

• For Sr = Sq, we require bq = ap and bq ∈ Wants(I, τ);

• For Sr ∈ Πi\{Sq}, we require that one of the following holds:

– br ∈ Wants(I, Sr);

– br /∈ dom(I) and for all Ss ∈ Πi, such that br = bs, we have Sr ∼ID S
s;

• For Sr ∈ Dng(Sq)\Πi, we require br to be fresh and occur only at that position;

• For Sr ∈ NDng(Sq), we require that br ∈ πSr(I). C

Thrifty chase steps eliminate UID violations on the element at the exported
position Sq of the new fact (which is why we call them “chase steps”), and also
eliminate violations on positions in the same↔FUN-class as Sq, unless a fresh element
is used there. The completion process that we will define in the next section will
only apply thrifty chase steps (namely, relation-thrifty steps, which we will define
shortly), and indeed this will be true of all completion processes used in this part of
my thesis.

For now, we can observe that thrifty chase steps cannot break weak-soundness:

Lemma 11.3.3 (Thrifty preserves weak-soundness). For any weakly-sound superin-
stance I of an instance I0, letting I ′ be the result of applying a thrifty chase step
on I, I ′ is a weakly-sound superinstance of I0.

Proof. By the Weak-Soundness Transitivity Lemma, it suffices to show that I ′ is a
weakly-sound superinstance of I. It suffices to check this for the elements occurring
in the one fact Fn = S(b) of I ′\I, as the other elements occur at the same positions
as before. Let us show for each br for Sr ∈ Pos(S) that br does not cause a violation
of weak-soundness:
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• For Sr = Sq, we have br ∈ Wants(I, Sr), so br does not violate weak-soundness;

• For Sr ∈ Πi\{Sq}, there are two possible cases:

– br ∈ Wants(I, Sr), so br does not violate weak-soundness;
– br /∈ dom(I) and br occurs only at positions related by ∼ID, so br does not

violate weak-soundness;

• For Sr ∈ Dng(Sq)\Πi, br is fresh and occurs at a single position in I ′, so br
does not violate weak-soundness;

• For Sr ∈ NDng(Sq), as br ∈ πSr(I), br does not violate weak-soundness.
Thrifty chase steps may introduce UFD violations. For this reason, we introduce

the special case of relation-thrifty chase steps, which can not introduce such violations.
(Relation-thrifty chase steps may still introduce FD violations; we will deal with this
in Chapter 14.)
Definition 11.3.4 (Relation-thrifty). A relation-thrifty chase step is a thrifty chase
step where we choose one fact Fr = S(c) of I, and use Fr to define br ··= cr for all
Sr ∈ NDng(Sq). C

Remember that relation-saturation ensures that such a fact S(c) can always be
found, so clearly any UID violation can be solved on a relation-saturated instance by
applying some relation-thrifty chase step. Further, we can show that relation-thrifty
chase steps, unlike thrifty chase steps, preserve UFDs:
Lemma 11.3.5 (Relation-thrifty preservation). For any superinstance I of an
instance I0 such that I satisfies ΣUFD, letting I ′ be the result of applying a relation-
thrifty chase step on I, then I ′ satisfies ΣUFD. Further, if I is relation-saturated,
then I ′ is relation-saturated.
Proof. Assume to the contrary the existence of two facts F = S(a) and F ′ = S(b)
in I ′ that witness a violation of some UFD ϕ : Sr → Sp of ΣUFD. As I |= ΣUFD, we
may assume without loss of generality that F ′ is Fn = S(b), the unique fact of I ′\I.
Write τ : Rp ⊆ Sq the UID of Σrev

UID applied in the relation-thrifty chase step.
We first note that we must have Sr in NDng(Sq). Indeed, assuming to the contrary

that Sr = Sq or Sr ∈ Dng(Sq), the definition of thrifty chase steps requires that
either br /∈ dom(I) or br ∈ Wants(I, Sr), so that in either case br /∈ πSr(I). Yet, as
ar = br, F witnesses that br ∈ πSr(I), a contradiction. Thus, Sr ∈ NDng(Sq).

Now, because ϕ holds in ΣUFD and ΣUFD is closed under the transitivity rule,
unwinding the definitions we can see that Sp ∈ NDng(Sq) as well. Now, let Fr = S(c)
be the chosen fact for the relation-thrifty chase step. Observe that we must have
F 6= Fr: this follows because we have πSr(Fr) = cq = bq but πSr(F ) = aq and aq 6= bq
by definition of a UFD violation. Hence, as bq = cq and br = cr by definition of Fn
from Fr, as F 6= Fr, F and Fr are also a violation of ϕ, which is in I, contradicting
that I |= ΣUFD.

The second part of the claim is immediate.

To summarize: we have defined the general tool used in our completion process,
thrifty chase steps, along with a special case that preserves UFDs, relation-thrifty
chase steps, which applies to relation-saturated instances. We now move to the last
part of this chapter, where we use this tool to satisfy UID violations, also using the
tools previously defined in this chapter.
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11.4 Relation-Thrifty Completions
To prove Theorem 11.1, let us start by taking our initial finite instance I0, which
satisfies ΣUFD, and use the Relation-Saturated Solutions Lemma to obtain a finite
weakly-sound superinstance I ′0 which is relation-saturated and still satisfies ΣUFD.
We now obtain our weakly-sound superinstance from I ′0 by performing a completion
process by relation-thrifty chase steps, which we phrase as follows:

Proposition 11.4.1 (Reversible relation-thrifty completion). For any reversible
ΣUFD and Σrev

UID, for any finite relation-saturated instance I ′0 that satisfies ΣUFD, we
can use relation-thrifty chase steps to construct a finite weakly-sound superinstance
If of I ′0 that satisfies Σrev

U = Σrev
UID ∪ ΣUFD.

Indeed, once this result is proven, we can immediately conclude the proof of
Theorem 11.1 with it, by applying it to I ′0 and obtaining If which is a weakly-sound
superinstance of I ′0, hence of I0 by the Weak-Soundness Transitivity Lemma. So we
conclude the chapter with the proof of this proposition.

Recall that we number Π1, . . . ,Πn the ↔FUN-classes of Pos(σ). Let us write
Πi → Πj to mean that all corresponding UFDs hold in ΣUFD for positions in Πi

and Πj . That is, equivalently, if one of them does (by definition of a ↔FUN-class and
the fact that ΣUFD is transitively closed). We first define the inner classes, where
creating elements may cause UID violations, and the outer classes, where this cannot
happen because no position of the class occurs in any UID:

Definition 11.4.2. We say that Πj is an inner ↔FUN-class if it contains a position
occurring in Σrev

UID; otherwise, it is an outer ↔FUN-class. C

The fundamental property is:

Lemma 11.4.3. For any 1 6 i, j 6 n with i 6= j, if Πi is inner and Πj → Πi then
Πj is outer.

Proof. Assume to the contrary that Πj is inner. This means that it contains a
position Rq that occurs in Σrev

UID. As Πi is inner, pick any Rp ∈ Πi that occurs
in Σrev

UID. As Πj → Πi, ϕ : Rq → Rp holds in ΣUFD. Hence, by assumption reversible,
ϕ−1 also does. But then we have Rp ↔FUN Rq, contradicting the maximality of
↔FUN-classes Πi and Πj.

Let us now start the actual proof of Proposition 11.4.1, and fix the finite relation-
saturated instance I ′0 that satisfies ΣUFD. We start by constructing a balanced
pssinstance P of I ′0 using the Balancing Lemma (Lemma 10.3.2), and a finite Σrev

U -
compliant piecewise realization PI = (K1, . . . , Kn) of P by the Realizations Lemma
(Lemma 11.1.5). Let F be an infinite set of fresh elements (not in dom(P )) from
which we will take the (finitely many) fresh elements that we will introduce (only at
dangerous positions, in outer classes) during the relation-thrifty chase steps.

We will use PI to construct a weakly-sound superinstance If by relation-thrifty
chase steps. We maintain the following invariant when doing so:

Definition 11.4.4. A superinstance I of the instance I ′0 follows the piecewise
realization PI = (K1, . . . , Kn) if for every inner ↔FUN-class Πi, we have πΠi(I) ⊆
Ki. C
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We prove the Reversible Relation-Thrifty Completion Proposition by satisfying
UID violations in I ′0 with relation-thrifty chase steps using the piecewise realization PI.
We call I the current state of our superinstance, starting at I ··= I ′0, and we perform
relation-thrifty chase steps on I to satisfy UID violations, until we reach a finite
weakly-sound superinstance If of I ′0 such that If satisfies Σrev

UID and If follows PI. This
If will be the final result of the Reversible Relation-Thrifty Completion Proposition.

Chasing by relation-thrifty chase steps preserves the following invariants:

sub: I ′0 ⊆ I (this is clearly monotone);

wsnd: I is weakly-sound (by Lemma 11.3.3);

fun: I |= ΣUFD (by Lemma 11.3.5);

rsat: I is relation-saturated (by Lemma 11.3.5).

Further, we maintain the following invariants:

fw: I follows PI;

help: For any position Rp of an outer class, πRp(I) and H are disjoint.

Let us show that any UID violation in I at any stage of the construction can be solved
by applying a relation-thrifty chase step that preserves these invariants. To show this,
let a ∈ Wants(I, τ) be an element to which some UID τ : Rp ⊆ Sq of Σrev

UID is applicable.
Let Fa = R(a) be the active fact, with a = ap. Let Πi denote the ↔FUN-classes
of Rp and Sq respectively. The UID τ witnesses that Πi is inner, so by invariant fw
we have a ∈ πRp(PI). As PI is Σrev

UID-compliant, we must have a ∈ πSq(PI), and
there is a |Πi|-tuple t ∈ Ki such that tq = a; in fact, by ΣUFD-compliance, there is
exactly one such tuple.

Let Fr = S(c) be an S-fact of I ′0, which is possible by invariant rsat. We create a
new fact Fn = S(b) with the relation-thrifty chase step defined as follows:

• For the exported position Sq, we set bq ··= ap.

• For any Sr ∈ Πi, we set br ··= tr.

• For any position Sr ∈ Dng(Sq)\Πi, we take br to be a fresh element fr from F .

• For any position Sr ∈ NDng(Sq), we set br ··= cr.

We first verify that this satisfies the conditions of thrifty chase steps. We have set
bq = a, and by definition of Fr it is immediate that br ∈ πSr(I) for Sr ∈ NDng(Sq).
For Sr ∈ Dng(Sq)\Πi, we use a fresh element fr from F which occurs only at
position Sr, as we should.

The last case to check is for Sr ∈ Πi\{Sq}. The first case is if br /∈ dom(I), in
which case we must show that all positions at which br occurs are ∼ID-equivalent.
Assume that br occurs at some other position Ss ∈ Πi. Now as br is in πSs(PI), by
definition of PI being a piecewise realization of P , we have br ∈ Wants(P, Ss). Now,
as br /∈ dom(I), by invariant sub we also have br /∈ dom(I ′0). But as br ∈ dom(PI),
we must have br ∈ H. So by definition of a pssinstance we have Ss ∈ λ(br). As
br ∈ Wants(P, Sr) also, we have Sr ∈ λ(br). By definition of λ(br) being an ∼ID-class,
this means that Sr ∼ID S

s, as required.
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The second case is br ∈ dom(I). We will show that we have br ∈ Wants(I, Sr).
Observe first that br /∈ πSr(I). Indeed, assuming to the contrary that br ∈ πSr(I), let
F = S(d) be a witnessing fact in I. As Πi is inner, by invariant fw, we deduce that
πΠi(d) ∈ πΠi(PI). Now, as dr = tr and PI is ΣUFD-compliant, we deduce that d = t,
so that F witnesses that dq is in πSq(I). As we have dq = tq = a, this contradicts
the applicability of τ to a. Hence, we have br /∈ πSr(I).

Second, observe that we have tr ∈ Wants(P, Sr). Indeed, we have br = tr which
is in πSr(PI), and we cannot have t ∈ πΠi(I), as otherwise this would contradict
the applicability of τ to a, as we showed; so in particular, by invariant sub, we
cannot have t ∈ πΠi(I ′0). Thus, by definition of a piecewise realization, we have
tr ∈ Wants(P, Sr).

Now, as tr ∈ Wants(P, Sr), by definition of Wants(P, Sr), there are two cases:

• We have tr ∈ dom(I ′0) and tr ∈ Wants(I ′0, Sr). In this case, as we have shown
that tr /∈ πSr(I), we conclude immediately that tr ∈ Wants(I, Sr).

• We have tr ∈ H and Sr ∈ λ(tr). In this case, consider a fact F ′ of I witnessing
tr ∈ dom(I), where tr occurs at a position T l; let Πi′ be the ↔FUN-class of T l.
As tr ∈ H, by invariant help, Πi′ is inner, so by invariant fw there is a tuple t ′
of Ki′ such that t′l = tr. Now, as tr ∈ H, by definition of piecewise realizations,
we have T l ∈ λ(tr). Hence, either the UID τ ′ : T l ⊆ Sr is in Σrev

UID or we have
T l = Sr. As tr ∈ πT l(I) and we have shown earlier that tr /∈ πSr(I), we know
that T l 6= Sr, so τ ′ is in Σrev

UID. Hence, as F ′ witnesses that tr ∈ πT l(I), and as
tr /∈ πSr(I), we conclude that tr ∈ Wants(I, Sr).

Hence, in either case we have tr ∈ Wants(I, Sr), as claimed. This concludes the
proof of the fact that we have indeed defined a thrifty chase step. Further, the
step is clearly relation-thrifty by construction. The last thing to do is to check that
invariants fw and help are preserved by the relation-thrifty chase step:

• For invariant fw, τ witnesses that the class Πi of Sq is inner. Hence, for any
Sr ∈ Dng(Sq)\Πi, by Lemma 11.4.3, the ↔FUN-class of Sr is outer. Thus, to
show that fw is preserved, it suffices to show it for the ↔FUN-class Πi and on
the ↔FUN-classes included in NDng(Sq) (clearly no ↔FUN-class includes both
a position of Dng(Sq) and a position of NDng(Sq)). For Πi, the new fact Fn
is defined following t; for the classes in NDng(Sq), it is defined following an
existing fact of I. Hence, invariant fw is preserved.

• Invariant help is preserved because the only new elements of Fn that may be
in H are those used at positions of Πi, which is inner.

Let If be the result of the process that we have described. It satisfies ΣUID by
definition, and it is a finite weakly-sound superinstance of I ′0 that satisfies ΣUID, by
invariants wsnd, sub, and fun. Further, it follows PI by invariant fw, and PI is
finite. This implies that If is finite, because we apply chase steps by Σrev

UID, so each
chase step makes an element of dom(PI) occur at a new position, so we only applied
finitely many chase steps. This concludes the proof of the Reversible Relation-Thrifty
Completion Proposition, and concludes the chapter.
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Chapter 12

Ensuring k-Universality

We build on the constructions of the previous chapter to replace weak-soundness by
k-soundness for acyclic queries in ACQ, for some k > 0 fixed in this chapter. That
is, we aim to prove:

Theorem 12.1. Reversible UIDs and UFDs have finite k-universal models for ACQs.

We first introduce the concept of aligned superinstances, which give us an invariant
that ensures k-soundness. We then give the fact-saturation process that generalizes
relation-saturation, and a related notion of fact-thrifty chase step. We then define
essentiality, which must additionally be ensured for us to be able to reuse the weakly-
sound completions of the previous chapter. We conclude by the construction of a
generalized completion process that uses these chase steps to repair UID violations
in the instance while preserving k-soundness.

In this chapter, we still make assumption reversible on Σrev
UID and ΣUFD. However,

we will also be considering a superset ΣUID of Σrev
UID, which we assume to be transitively

closed, but which may not satisfy assumption reversible. To prove Theorem 12.1,
it suffices to define ΣUID ··= Σrev

UID, so the distinction can be safely ignored on first
reading. The reason for the distinction will become apparent in the next chapter.

12.1 Aligned Superinstances
In this section, we only work with the superset ΣUID, and we do not use assumption
reversible. We ensure k-soundness relative to ΣUID by maintaining a k-bounded
simulation from our superinstance of I0 to the chase Chase(I0,ΣUID).

Definition 12.1.1. For I, I ′ two instances, a ∈ dom(I), b ∈ dom(I ′), and n ∈ N,
we write (I, a) 6n (I ′, b) if, for any fact R(a) of I with ap = a for some Rp ∈ Pos(R),
there exists a fact R(b) of I ′ such that bp = b, and (I, aq) 6n−1 (I ′, bq) for all Rq ∈
Pos(R) (note that this is tautological for Rq = Rp). The base case (I, a) 60 (I ′, b)
always holds.

An n-bounded simulation from I to I ′ is a mapping sim such that for all a ∈
dom(I), we have (I, a) 6n (I ′, sim(a)).

We write a 'n b for a, b ∈ dom(I) if both (I, a) 6n (I, b) and (I, b) 6n (I, a); this
is an equivalence relation on dom(I). C

Example 12.1.2. We illustrate in Figure 12.1 some examples of 2-bounded simula-
tions from one instance to another, on a binary signature. For any element a in a
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Figure 12.1: 2-bounded simulations (shown as dashed red lines): see Example 12.1.2

left instance I and image a′ of a in the right instance I ′ by the 2-bounded simulation
(represented by the dashed red arrows), we have (I, a) 62 (I ′, a′). This means that,
for any element b in I which is adjacent to a by some relation R, there must be an
element b′ in I ′ which is adjacent to a′ by R and satisfies (I, b) 61 (I ′, b′); however,
note that b′ need not be the image of b by the bounded simulation.

Figure 12.1a illustrates how a homomorphism is a special case of a 2-bounded
simulation (indeed, it is an n-bounded simulation for any n ∈ N).

Figure 12.1b illustrates how a 2-bounded simulation from I to I ′ does not
guarantee that any ACQ satisfied by I is also true in I ′: for this example, consider
the query ∃xyzuvw R(x, y)∧ S(y, z)∧ T (z, u)∧U(u, v)∧ V (v, w). However, we will
soon see that n-bounded simulations preserve ACQ of size 6 n (Lemma 12.1.3).

Figure 12.1c shows that a 2-bounded simulation does not preserve CQs that are
not ACQs, as witnessed by ∃xyz R(x, y) ∧ S(y, z) ∧ T (z, x).

The point of bounded simulations is that they preserve acyclic queries of size
smaller than the bound:

Lemma 12.1.3 (ACQ preservation). For any instance I and ACQ q of size 6 n
such that I |= q, if there is an n-bounded simulation from I to I ′, then I ′ |= q.

To show this lemma, we introduce a different way to write queries in ACQ.
Consider the following alternate query language:

Definition 12.1.4. We inductively define a special kind of query with at most one
free variable, a pointed query. The base case is that of a tautological query with no
atoms. Inductively, pointed queries include all queries of the form:

q(x) :
∧
i

(
∃yi

(
Ai(x,yi) ∧

∧
yij∈yi

qij(yij)
))

where the yi are vectors of pairwise distinct variables (also distinct from x), Ai are
atoms with free variables as indicated and with no repeated variables (each free
variable occurs at exactly one position), and the qij are pointed queries.

The size |q| of a pointed query q is the total number of atoms in q, including its
subqueries. C
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It is easily seen that, for any pointed query q′, the query q : ∃x q′(x) is an ACQ.
Conversely, we can show:

Lemma 12.1.5. For any (Boolean) ACQ q and variable x of q, we can rewrite q as
∃x q′(x) with q′ a pointed query such that |q| = |q′|.

Proof. We show the claim by induction on the size of q. It is clearly true for the
empty query.

Otherwise, let A = A1, . . . , Am be the atoms of q where x occurs. Because q is
an ACQ, x occurs exactly once in each of them, and each variable y occurring in
one of the Ai occurs exactly once in them overall: y cannot occur twice in the same
atom, nor can occur in two different atoms Ap and Aq (as in this case Ap, y, Aq, x
would be a Berge cycle of q). Let Y be the set of the variables occurring in A, not
including x.

Consider the incidence multigraph G of q (Definition 9.2.1). Remember that we
assume queries to be connected, so q is connected, and G is connected. Let Z be the
variables of q which are not in Y ∪ {x}. For each z ∈ Z, there must be a path pz
from x to z in G, written x = wz1, . . . , w

z
nz = z. Observe that, by definition of Y , we

must have wz2 ∈ Y for any such path. Further, for each z ∈ Z, we claim that there
is a single yz ∈ Y such that wz2 = yz for any such path. Indeed, assuming to the
contrary that there are yz 6= y′z in Y, a path pz whose second element is yz, and a
path p′z whose second element is y′z, we deduce from pz and p′z a Berge cycle in q.

Thus we can partition Z into sets of variables Zy for y ∈ Y, where Zy contains
all variables z of Z such that y is the variable used to reach z from x. Let Ay for
y ∈ Y be the atoms of q whose variables are a subset of Zy ∪ {y}. It is clear that A
and the Ay are a partition of the atoms of q: no atom A can include a variable z
from Zy and a variable z′ from Zy′ for y 6= y′ in Y , as otherwise a path from x to z
and a path from x to z′, together with A, imply that q has a Berge cycle.

Now, we form for each y ∈ Y a query qy as the set of atoms Zy, with all variables
existentially quantified except for y. As the queries ∃y qy(y) are connected queries in
ACQ which are strictly smaller than q, by induction we can rewrite qy to a pointed
query of the same size. Hence, we have shown that q can be rewritten as a pointed
query built from the Ai and, for each i, the qy for y ∈ Y .

We use this normal form to prove the ACQ Preservation Lemma:

Proof of Lemma 12.1.3. Fix the instances I and I ′, and the ACQ q. We show, by
induction on n ∈ N, the following claim: for any n ∈ N, for any pointed query q such
that |q| 6 n, for any a ∈ dom(I), if I |= q(a), then for any a′ ∈ dom(I ′) such that
(I, a) 6n (I ′, a′), we have I ′ |= q(a′). Clearly this claim implies the statement of the
Lemma, as by Lemma 12.1.5 any ACQ query can be written as ∃x q(x) with q a
pointed query. The case of the trivial query is immediate.

For the induction step, consider a pointed query q(x) of size n ··= |q|, n > 0,
written in the form of Definition 12.1.4, and fix a ∈ dom(I). Consider a match h of
q(a) on I, which must map x to a. Let a′ ∈ dom(I ′) be such that (I, a) 6n (I ′, a′).
We show that I ′ |= q′(a).

Using notation from Definition 12.1.4, write y the (disjoint) union of the yi , write
A = A1, . . . , An, and write qij(yij) the subqueries. Let bij ··= h(yij) for all yij ∈ y. We
show that there is a match hA of A on I ′ that maps x to a′ and such that every
yij ∈ y is mapped to some element (bij)′ of I ′ such that (I, bij) 6n−1 (I ′, (bij)′). Indeed,
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start by fixing hA(x) ··= a′. Now, for each atom Ai = R(x,yi) of A, x occurs at some
position, say Rp, and h(Ai) = R(bi) is a fact of I where h(x) = a occurs at position
Rp. As each variable in yi occurs at precisely one position of Ai, we index each of
these variables by the one position in Ai where it occurs. Now, as (I, a) 6n (I ′, a′),
there is a fact (Ai)′ = R((bi)′) of I ′ such that (bip)′ = a′ and, for all 1 6 j 6 |R| with
p 6= j, we have (I, bij) 6n−1 (I ′, (bij)′). We define hA(yij) ··= (bij)′ for all i and j. As
each variable of y occurs exactly once in A overall, there definitions cannot conflict,
so this correctly defines a function hA which is clearly indeed a match of A on I ′
with the claimed properties.

Now, each of the qij is a pointed query which is strictly smaller than q. Further,
the restriction of h to the variables of qij is a match of qij on I that maps each yij
(indexing the variables of yi in the same way as before) to bij ∈ dom(I). As we
have (I, bij) 6n−1 (I ′, (bij)′), then we can apply the induction hypothesis to show that
each of the qij has a match hi,j in I ′ that maps yij to (bij)′. As these queries have
disjoint sets of variables, the range of the hi,j is disjoint, and the range of each hi,j
overlaps with hA only on {yij}, where we have hA(yij) = hi,j(yij) = (bij)′. Thus, we
can combine the hi,j and the previously defined hA to obtain an overall match of
q in I ′ that matches x to a′. This concludes the proof of the induction step, and
proves our claim on pointed queries.

This implies that any superinstance of I0 that has a k-bounded simulation to
Chase(I0,ΣUID) must be k-sound for ΣU (no matter whether it satisfies ΣU or not).
Indeed, the chase is a universal model for ΣUID, and it satisfies ΣUFD (by the Unique
Witness Property, and because I0 does). Hence, the chase is in particular k-universal
for ΣU. Hence, by the ACQ preservation lemma, any superinstance with a k-bounded
simulation to the chase is k-sound.

We give a name to such superinstances. For convenience, we also require them to
be finite and satisfy ΣUFD. For technical reasons we require that the simulation is the
identity on I0, that it does not map other elements to I0, and that elements occur in
the superinstance at least at the position where their sim-image was introduced in
the chase (the directionality condition):

Definition 12.1.6. An aligned superinstance J = (I, sim) of I0 (for ΣUFD and ΣUID)
is a finite superinstance I of I0 that satisfies ΣUFD, and a k-bounded simulation
sim from I to Chase(I0,ΣUID) such that sim|I0 is the identity and sim|(I\I0) maps to
Chase(I0,ΣUID)\I0.

Further, for any a ∈ dom(I)\ dom(I0), letting Rp be the position where sim(a)
was introduced in Chase(I0,ΣUID), we require that a ∈ πRp(I). We call this the
directionality condition.

We write dom(J) to mean dom(I), and extend other existing notation in the
same manner when relevant, e.g., Wants(J, τ) means Wants(I, τ). C

12.2 Fact-Saturation
Before we perform the completion process that allows us to satisfy the UIDs Σrev

UID,
we need to perform a saturation process. Like aligned superinstances, this process
is defined with respect to the superset ΣUID, and does not depend on assumption
reversible. The process generalizes relation-saturation from the previous chapter:
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instead of achieving all relations, we want the aligned superinstance to achieve all
fact classes:

Definition 12.2.1. A fact class is a pair (Rp,C) of a position Rp ∈ Pos(σ) and a
|R|-tuple of 'k-classes of elements of Chase(I0,ΣUID), with 'k as in Definition 12.1.1.

The fact class of a fact F = R(a) of Chase(I0,ΣUID)\I0 is (Rp,C), where ap is
the exported element of F and Ci is the 'k-class of ai in Chase(I0,ΣUID) for all
Ri ∈ Pos(R).

A fact class (Rp,C) is achieved in Chase(I0,ΣUID) if NDng(Rp) 6= ∅ and if it is
the fact class of some fact of Chase(I0,ΣUID)\I0. Such a fact is an achiever of the
fact class. We write AFactCl for the set of all achieved fact classes.

For brevity, the dependence on I0, ΣUID, and k is omitted from this notation. C

The requirement that NDng(Rp) is non-empty is a technicality that will prove
useful in Chapter 14. The following is easy to see:

Lemma 12.2.2. For any initial instance I0, set ΣUID of UIDs, and k ∈ N, AFactCl
is finite.

Proof. We first show that 'k has only a finite number of equivalence classes on
Chase(I0,ΣUID). Indeed, for any element a ∈ dom(Chase(I0,ΣUID)), by the Unique
Witness Property, the number of facts in which a occurs is bounded by a constant
depending only on I0 and ΣUID. Hence, there is a constant M depending only on I0,
ΣUID, and k, such that, for any element a ∈ dom(Chase(I0,ΣUID)), the number of
elements of dom(Chase(I0,ΣUID)) which are relevant to determine the 'k-class of a
(that is, the elements whose distance to d in the Gaifman graph of Chase(I0,ΣUID)
is 6 k) is bounded by M .

This clearly implies that AFactCl is finite, because the number of m-tuples
of equivalence classes of 'k that occur in Chase(I0,ΣUID) is then finite for any
m 6 maxR∈σ |R|, and Pos(σ) is finite.

We define fact-saturated superinstances, which achieve all fact classes in AFactCl:

Definition 12.2.3. An aligned superinstance J = (I, sim) of I0 is fact-saturated if,
for any achieved fact class D = (Rp,C) in AFactCl, there is a fact FD = R(a) of I\I0
such that sim(ai) ∈ Ci for all Ri ∈ Pos(R). We say that FD achieves D in J .

Note that this definition does not depend on the position Rp of the fact class. C

The point of fact-saturation is that, when we perform thrifty chase steps, we
can reuse elements from a suitable achiever at the non-dangerous positions. With
relation-saturation, the facts were of the right relation; with fact-saturation, they
further achieve the right fact class, which will be important to maintain the bounded
simulation sim.

The fact-saturation completion process, which replaces the relation-saturation
process of the previous chapter, works in the same way.

Lemma 12.2.4 (Fact-saturated solutions). For any UIDs ΣUID, UFDs ΣUFD, and
instance I0, the result I of performing sufficiently many chase rounds on I0 is such
that J0 = (I, id) is a fact-saturated aligned superinstance of I0.
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Proof. For every D ∈ AFactCl, let nD ∈ N be such that D is achieved by a fact
of Chase(I0,ΣUID) created at round nD. As AFactCl is finite, n ··= maxD∈AFactCl nD is
finite. Hence, all classes of AFactCl are achieved after n chase rounds on I0.

Consider now I ′0 obtained from the aligned superinstance I0 by n rounds of the
UID chase, and J0 = (I ′0, id). It is clear that for any D ∈ AFactCl, considering an
achiever of D in Chase(I0,ΣUID), the corresponding fact in J0 is an achiever of D
in J0. Hence, J0 is indeed fact-saturated.

We thus obtain a fact-saturated aligned superinstance J0 of our initial instance I0,
which we now want to complete to one that satisfies the UIDs we are interested in,
namely Σrev

UID.

12.3 Fact-Thrifty Steps
In the previous chapter, we defined relation-thrifty chase steps, which reused non-
dangerous elements from any fact of the correct relation, assuming relation-saturation.
We now define fact-thrifty steps, which are thrifty steps that reuse elements from
a fact achieving the right fact class, thanks to fact-saturation. To do so, however,
we must first refine the notion of thrifty chase step, to make them apply to aligned
superinstances. We will always apply them to aligned superinstances for ΣUID
and ΣUFD; however, we will always chase by the UIDs of Σrev

UID.

Definition 12.3.1 (Thrifty chase steps). Let J = (I, sim) be an aligned superin-
stance of I0 for ΣUID and ΣUFD, let Rp ⊆ Sq be a UID of Σrev

UID, and let a ∈ Wants(J, τ ).
The result of applying a thrifty chase step to a in J by τ is a pair (I ′, sim′) where:

• The instance I ′ is the result of applying some thrifty step to a in I by τ , as in
Definition 11.3.2 (note that this only depends on Σrev

UID and ΣUFD, not on ΣUID).

• The mapping sim′ extends sim to elements of dom(I ′)\ dom(I) as follows.
Because sim is a k-bounded simulation and k > 0, it is in particular a 1-bounded
simulation, so we have sim(a) ∈ πRp(Chase(I0,ΣUID)). Hence, because τ ∈
Σrev

UID ⊆ ΣUID, there is a fact Fw = S(b′) in Chase(I0,ΣUID) with b′q = sim(a).
We call Fw the chase witness. For any b ∈ dom(I ′)\ dom(I), letting Sr be
some position of the new fact Fn where b appears (so b = br), we define
sim′(br) ··= b′r. C

We do not know yet whether the result (I ′, sim′) of a thrifty chase step on an
aligned superinstance (I, sim) is still an aligned superinstance; we will investigate
this later.

Now that we have defined thrifty chase steps on aligned superinstances, we can
clarify the role of the directionality condition. Its goal is to ensure, intuitively,
that as chase steps go “downwards” in the original chase, thrifty chase steps on
aligned superinstances makes the sim mapping go “downwards” in the chase as well.
Formally:

Lemma 12.3.2 (Directionality). Let J be an aligned superinstance of I0 for ΣUID
and ΣUFD, and consider the application of a thrifty chase step for a UID τ : Rp ⊆ Sq.
Consider the chase witness Fw = S(b′). Then b′q is the exported element of Fw.
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Proof. Let Fa = R(a) be the active fact in J , let Fn = S(b) be the new fact of J ′,
and let τ : Rp ⊆ Sq be the UID, so ap = bq is the exported element of this chase
step. Let Fw = S(b′) be the chase witness in Chase(I0,ΣUID). Assume by way of
contradiction that b′q was not the exported element in Fw, so that it was introduced
in Fw. In this case, as sim(ap) = sim(bq) = b′q, by the directionality condition in
the definition of aligned superinstances, we have ap ∈ πSq(J), which contradicts the
fact that ap ∈ Wants(J, τ). Hence, we have proved by contradiction that b′q was the
exported element in Fw.

This observation will be important to connect fact-saturation to the fact-thrifty
chase steps that we now define:

Definition 12.3.3. We define a fact-thrifty chase step, using the notation of Defini-
tion 11.3.2, as follows: if NDng(Sq) is non-empty, choose one fact Fr = S(c) of I\I0
that achieves the fact class of Fw = S(b′) (that is, sim(ci) 'k b′i for all i), and use Fr
to define br ··= cr for all Sr ∈ NDng(Sq).

We also call a fact-thrifty chase step fresh if for all Sr ∈ Dng(Sq), we take br to
be a fresh element only occurring at that position (and extend sim′ accordingly). C

We first show that, on fact-saturated instances, any UID violation can be repaired
by a fact-thrifty chase step; this uses Lemma 12.3.2. More specifically, we show that,
for any relation-thrifty chase step that we could want to apply, we could apply a
fact-thrifty chase step instead.

Lemma 12.3.4 (Fact-thrifty applicability). For any fact-saturated superinstance I
of an instance I0, for any UID τ : Rp ⊆ Sq of Σrev

UID, for any element a ∈ Wants(I, τ),
we can apply a fact-thrifty chase step on a with τ to satisfy this violation. Further,
for any new fact S(e) that we can create by chasing on a with τ with a relation-thrifty
chase step, we can instead apply a fact-thrifty chase step on a with τ to create a fact
S(b) with br = er for all Sr ∈ Pos(S)\NDng(Sr).

Proof. We prove the first part of the statement by justifying the existence of the
fact Fr, which only needs to be done if NDng(Sq) is non-empty. In this case,
considering the fact Fw = S(b′) in Chase(I0,ΣUID), we know by Lemma 12.3.2 that
b′q is the exported element in Fw. Hence, letting D be the fact class of Fw, we
have D = (Sq,C) for some C , and D is in AFactCl because NDng(Sq) is non-empty.
Hence, by definition of fact-saturation, there is a fact Fr = S(c) in J such that, for
all Sr ∈ Pos(R), we have sim(ci) ∈ Ci, i.e., sim(ci) 'k b′i in Chase(I0,ΣUID). This
proves the first part of the claim.

For the second part of the claim, observe that the definition of fact-thrifty chase
steps only imposes conditions on the non-dangerous positions, so considering any
new fact S(e) created by a relation-thrifty chase step, changing its non-dangerous
positions to follow the definition of fact-thrifty chase steps, we can create it with a
fact-thrifty chase step.

We now look at which properties are preserved on the result (I ′, sim′) of fact-thrifty
chase steps. First note that fact-thrifty chase steps are in particular relation-thrifty,
so I ′ is still weakly-sound and still satisfies ΣUFD (by Lemmas 11.3.3 and 11.3.5).
However, we do not know yet whether (I ′, sim′) is an aligned superinstance for ΣUFD
and ΣUID.

For now, we show that it is the case for fresh fact-thrifty chase steps:
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Lemma 12.3.5 (Fresh fact-thrifty preservation). For any fact-saturated aligned
superinstance J of I0 (for ΣUFD and ΣUID), the result J ′ of a fresh fact-thrifty chase
step on J is still a fact-saturated aligned superinstance of I0.

We prove this result in the rest of the section. For non-fresh fact-thrifty chase
steps, the analogous claim is not true in general: it requires us to introduce essentiality,
the focus of the next section, and relies on the assumption reversible that we made
on Σrev

UID and ΣUFD.
To prove the Fresh Fact-Thrifty Preservation Lemma, we first make a general

claim about how we can extend a superinstance by adding a fact, and preserve
bounded simulations.

Lemma 12.3.6. Let n ∈ N. Let I1 and I be instances and sim be a n-bounded
simulation from I1 to I. Let I2 be a superinstance of I1 defined by adding one fact
Fn = R(a) to I1, and let sim′ be a mapping from I2 to I such that sim′|I1 = sim.
Assume there is a fact Fw = R(b) in I such that, for all Ri ∈ Pos(R), sim′(ai) 'n bi.
Then sim′ is an n-bounded simulation from I2 to I.

Proof. We prove the claim by induction on n. The base case of n = 0 is immediate.
Let n > 0, assume that the claim holds for n− 1, and show that it holds for n.

As sim is an n-bounded simulation, it is an (n− 1)-bounded simulation, so we know
by the induction hypothesis that sim′ is an (n− 1)-bounded simulation.

Let us now show that it is an n-bounded simulation. Let a ∈ dom(I2) be an
element and show that (I2, a) 6n (I, sim′(a)). Hence, for any F = S(a) a fact of I2
with ap = a for some p, we must show that there exists a fact F ′ = S(a′) of I with
a′p = sim′(ap) and (I2, aq) 6n−1 (I, a′q) for all Sq ∈ Pos(S).

The first possibility is that F is the new fact Fn = R(a). In this case, as we have
(I, bp) 6n (I, sim′(ap)), considering Fw, we deduce the existence of a fact F ′w = R(c)
in I such that cp = sim′(ap) and (I, bq) 6n−1 (I, cq) for all 1 6 q 6 |R|. We take
F ′ = F ′w as our witness fact for F . By construction we have cp = sim′(ap). Fixing
1 6 q 6 |R|, to show that (I2, aq) 6n−1 (I, cq), we use the fact that sim′ is an
(n− 1)-bounded simulation to deduce that (I2, aq) 6n−1 (I, sim′(aq)). Now, we have
(I, sim′(aq)) 6n−1 (I, bq), and as we explained we have (I, bq) 6n−1 (I, cq), so we
conclude by transitivity.

If F is another fact, then it is a fact of I1, so its elements are in dom(I1), and as
sim′ coincides with sim on such elements, we conclude because sim is a n-bounded
simulation.

We now prove the Fresh Fact-Thrifty Preservation Lemma, which concludes the
section:

Proof of Lemma 12.3.5. It is immediate that, letting J ′ = (I ′, sim′) be the result of
the fact-thrifty chase step, I ′ is still a finite superinstance of I0, and it still satisfies
ΣUFD, because fact-thrifty chase steps are relation-thrifty chase steps, so we can still
apply Lemma 11.3.5.

To show that sim′ is still a k-bounded simulation, we apply Lemma 12.3.6 with
Fn = S(b) and Fw = S(b′). Indeed, letting τ : Rp ⊆ Sq be the applied UID in Σrev

UID,
we have sim′(bq) = b′q by definition, and have set sim′(br) ··= b′r for all Sr ∈ Dng(Sq)
(note that each such br occurs at only one position). For Sr ∈ NDng(Sq), we have
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Figure 12.3: UID Chase Similarity Theorem (see Example 12.5.1)

sim′(br) 'k b′r in Chase(I0,ΣUID) by definition of a fact-thrifty chase step. Hence,
by Lemma 12.3.6, sim′ is still a k-bounded simulation from I ′ to Chase(I0,ΣUID).

We now check the directionality condition on elements of dom(I ′)\ dom(I), namely,
we show: for Sr 6= Sq, if br ∈ dom(I ′)\ dom(I), then br occurs in J ′ at the position
where sim′(br) was introduced in Chase(I0,ΣUID). By the Directionality Lemma
(Lemma 12.3.2) we know that b′q was the exported element of Fw. Hence, as
sim′(br) ··= b′r, we know that b′r was introduced at position Sr in Fw in Chase(I0,ΣUID),
so the condition is respected.

Last, the preservation of fact-saturation is immediate, and the fact that sim′ is
the identity on I0 is immediate because sim′|I0 = sim|I0 . We show that sim′|I′\I0 maps
to Chase(I0,ΣUID)\I0, using the directionality condition. Indeed, for all elements
br ∈ dom(I ′)\ dom(I) (with Sr 6= Sq), which are clearly not in I0, we have fixed
sim′(br) ··= b′r, and as we explained b′r is introduced in Fw in Chase(I0,ΣUID) so it
cannot be an element of I0; hence b′r is indeed an element of Chase(I0,ΣUID)\I0.
This is the last point we had to verify.

12.4 Essentiality
The problem of non-fresh fact-thrifty chase steps is that, while they try to preserve
k-soundness on the non-dangerous positions, they may not preserve it overall:

Example 12.4.1. Consider the instance I0 = {U(a, u), R(a, b), V (v, b)} depicted as
the solid black elements and edges in Figure 12.2. Consider the UID τ : R1 ⊆ R2, and
the UFD ϕ : R1 → R2. We define Σrev

UID = ΣUID = {τ, τ−1} and ΣUFD = {ϕ, ϕ−1}, so
that ΣUFD and Σrev

UID are reversible. We have a ∈ Wants(I, τ−1) and b ∈ Wants(I, τ).
To satisfy these violations, we can apply a fact-thrifty chase step by τ−1 on a and
create F = R(b, a), noting that there are no non-dangerous positions. However,
the superinstance I0 t {F} is not a k-sound superinstance of I0 for k > 3. For
instance, it makes the following ACQ true, which is not true in Chase(I0,ΣUID):
∃xyzw V (x, y), R(y, z), U(z, w).

However, for any value of k, this problem can be avoided in the following
way. First, apply k fresh fact-thrifty chase steps by τ to create the chain R(b, b1),
R(b1, b2), . . . , R(bk−1, bk). Then apply k fresh fact-thrifty chase steps by τ−1 to create
R(a1, a), R(a2, a1), . . . , R(ak, ak−1). Now we can apply a non-fresh fact-thrifty chase
step by τ−1 on a and create R(bk, ak), and this does not make any new ACQ of size
6 k true. This process is illustrated with red elements and red dashed edges in
Figure 12.2 for k = 2.
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The intuition behind this example is that non-fresh fact-thrifty chase steps may
connect together elements at the dangerous positions, but their image by sim may
be too dissimilar, so the bounded simulation does not extend. This implies that, in
general, the result of a fact-thrifty chase step may not be an aligned superinstance.
As the example shows, however, we can avoid that problem if we chase for sufficiently
long, so that the “history” of elements no longer contains anything specific about
them.

We first formalize this notion for elements of the chase Chase(I0,ΣUID), which
we call essentiality. We will then define it for aligned superinstances using the sim
mapping.

Definition 12.4.2. We define a forest structure on the facts of Chase(I0,ΣUID): the
facts of I0 are the roots, and the parent of a fact F not in I0 is the fact F ′ that was
the active fact for which F was created, so that F ′ and F share the exported element
of F .

For a ∈ dom(Chase(I0,ΣUID)), if a was introduced at position Sr of an S-fact
F = S(a) created by applying the UID τ : Rp ⊆ Sq (with Sq 6= Sr) to its parent
fact F ′, we call τ the last UID of a. The last two UIDs of a are (τ, τ ′) where τ ′ is
the last UID of the exported element aq of F (which was introduced in F ′). For
n ∈ N, we define the last n UIDs in the same way, for elements of Chase(I0,ΣUID)
introduced after sufficiently many rounds.

We say that a is n-essential if its last n UIDs are reversible in ΣUID. This is in
particular the case if these last UIDs are in Σrev

UID: indeed, Σrev
UID satisfies assumption

reversible, so for any τ ∈ Σrev
UID, we have τ−1 ∈ Σrev

UID, so that τ−1 ∈ ΣUID. C

The point of this definition is the following result, which we state without proof
for now. We will prove it in Section 12.5:

Theorem 12.4.3 (UID chase similarity theorem). For any instance I0, transitively
closed set of UIDs ΣUID, and n ∈ N, for any two elements a and b respectively
introduced at positions Rp and Sq in Chase(I0,ΣUID), if a and b are n-essential, and
if Rp ⊆ Sq and Sq ⊆ Rp hold in ΣUID, then a 'n b.

In other words, in the chase, when your last n UIDs were reversible, then your
'n-class only depends on the position where you were introduced.

We use this to define a corresponding notion on aligned superinstances: an
aligned superinstance is n-essential if, for all elements that witness a violation of
the UIDs Σrev

UID that we wish to solve, their sim image is an n-essential element of
the chase, introduced at a suitable position. In fact, we introduce a more general
definition, which does not require the superinstance to be aligned, i.e., does not
require that sim is a k-bounded simulation.

Definition 12.4.4. Let J = (I, sim) be a pair of a superinstance I of I0 and a
mapping sim from I to Chase(I0,ΣUID). Let k ∈ N. We call a ∈ dom(I) n-essential
in J for Σrev

UID if for any position Sq ∈ Pos(σ) such that a ∈ WantsΣrev
UID

(I, Sq), then:

• sim(a) is an n-essential element of Chase(I0,ΣUID);

• the position T v where sim(a) was introduced in Chase(I0,ΣUID) is such that
T v ⊆ Sq and Sq ⊆ T v hold in Σrev

UID, which we write T v ∼ID S
q as in the previous

chapters.
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Note that if there is no UID of Σrev
UID applicable to a, then a is vacuously n-essential.

We call J n-essential for Σrev
UID if, for all a ∈ dom(J), a is n-essential in J for Σrev

UID. C
We now show that, as we assumed the UIDs of Σrev

UID to be reversible (assumption
reversible), fresh fact-thrifty chase steps by Σrev

UID never make essentiality decrease,
and even make it increase on new elements:
Lemma 12.4.5 (Thrifty steps and essentiality). For any n-essential aligned su-
perinstance J , letting J ′ = (I ′, sim′) be the result of a thrifty chase step on J by a
UID of Σrev

UID, J ′ is still n-essential. Further, all elements of dom(J ′)\ dom(J) are
(n+ 1)-essential in J ′.
Proof. Fix J and J ′; note that J ′ may not be an aligned superinstance. Consider
first the elements of dom(J) in J ′. For any a ∈ dom(J), by definition of thrifty
chase steps, we know that for any T v ∈ Pos(σ) such that a ∈ πT v(J ′), we have either
a ∈ πT v(J) or a ∈ WantsΣrev

UID
(J, T v). Hence, as Σrev

UID is transitively closed, for any
Uw ∈ Pos(σ) such that a ∈ WantsΣrev

UID
(J ′, Uw), we have also a ∈ WantsΣrev

UID
(J, Uw),

and as J is n-essential, we conclude that a is n-essential in J ′. Hence, it suffices to
show that any element in dom(J ′)\ dom(J) is (n+ 1)-essential in J ′.

To do this, write τ : Rp ⊆ Sq the UID applied in the chase step, and let Fn = S(b)
be the new fact. By definition of thrifty chase steps, we had bq ∈ WantsΣrev

UID
(J, Sq), so

that bq was n-essential because J was; hence, sim(bq) is n-essential in Chase(I0,ΣUID).
By the Directionality Lemma (Lemma 12.3.2), b′q ··= sim(bq) is also the exported
element of the chase witness Fw = S(b′). Now, the UID τ applied in the thrifty
chase step is also the one applied to create Fw in Chase(I0,ΣUID), and as τ ∈ Σrev

UID,
by assumption reversible, we have τ−1 ∈ Σrev

UID, hence τ−1 ∈ ΣUID. Hence, for all
Sr ∈ Pos(S)\{Sq}, b′r is (n + 1)-essential in Chase(I0,ΣUID), and is introduced at
position Sr.

Now, let a ∈ dom(J ′)\ dom(J), and let T v such that a ∈ WantsΣrev
UID

(J ′, T v). Let
Uw ∈ Pos(σ) and τ ′ : Uw ⊆ T v that witness this, i.e., τ ′ ∈ Σrev

UID and a ∈ πUw(J ′).
By assumption reversible, we have Uw ∼ID T

v in Σrev
UID. Now, by definition of thrifty

chase steps on aligned superinstances, we know that we defined sim′(a) ··= b′r for
some Sr where a occurred in Fn. Further, by definition of thrifty chase steps, we
know that all positions in which a occurs in Fn, and thus all positions where it occurs
in J ′, are ∼ID-equivalent in Σrev

UID; in particular Sr ∼ID Uw, hence by transitivity
Sr ∼ID T

v. By the previous paragraph, sim(a) = b′r is an (n+ 1)-reversible element
introduced in Chase(I0,ΣUID) at position Sr, and we have Sr ∼ID T

v. This shows
that a is (n+ 1)-reversible in J ′.

Hence, J ′ is indeed n-reversible, and the elements of dom(J ′)\ dom(J) are indeed
(n+ 1)-reversible, which concludes the proof.

In conjunction with the Fresh Fact-Thrifty Preservation Lemma, this implies
that applying sufficiently many fresh fact-thrifty chase rounds yields an n-essential
aligned superinstance:
Lemma 12.4.6 (Ensuring essentiality). For any n ∈ N, applying n+ 1 fresh fact-
thrifty chase rounds on a fact-saturated aligned superinstance J by the UIDs of Σrev

UID
yields an n-essential aligned superinstance J ′.
Proof. Fix the aligned superinstance J = (I, sim). We use the Fresh Fact-Thrifty
Preservation Lemma to show that the property of being aligned is preserved, so we
only show that the result is n-essential. We prove this claim by induction on n.
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For the base case, we must show that the result J ′ = (I ′, sim′) of a fresh
fact-thrifty chase round on J by Σrev

UID is 0-essential. Let Sq ∈ Pos(σ) and a ∈
WantsΣrev

UID
(J ′, Sq). As Σrev

UID is transitively closed, by definition of a chase round,
we have a ∈ dom(J ′)\ dom(J), because UID violations on elements of dom(J) must
have been solved in J ′; hence, a was created by a fact-thrifty chase step on J . By
similar reasoning as in the proof of Lemma 12.4.5, considering the chase witness
Fw for this chase step, we conclude that sim(a) was introduced at a position T v in
Chase(I0,ΣUID) such that T v ∼ID S

q in Σrev
UID. Further, sim(a) is vacuously 0-essential.

Hence, J ′ is indeed 0-essential.
For the induction step, let J ′ be the result of n + 1 fresh fact-thrifty chase

rounds on J , and show that it is n-essential. By induction hypothesis, the result
J ′′ = (I ′′, sim′′) of n fresh fact-thrifty chase rounds is (n−1)-essential. Now, again by
definition of a chase round, for any position Sq ∈ Pos(σ) and a ∈ WantsΣrev

UID
(J ′′, Sq),

we must have a ∈ dom(J ′)\ dom(J ′′), so that a was created by applying a fact-thrifty
chase step on an element a′′ in J ′′ which witnessed a violation of a UID of Σrev

UID. As
J ′′ is (n−1)-essential, a′ was (n−1)-essential in J ′′, so we conclude by Lemma 12.4.5
that a is n-essential in J ′. Hence, we conclude that J ′ is indeed n-essential.

Hence, we can ensure k-essentiality. The point of essentiality is to guarantee that
the result of non-fresh fact-thrifty chase steps on a k-essential aligned superinstance
is also an aligned superinstance.

Lemma 12.4.7 (Fact-thrifty preservation). For any fact-saturated k-essential aligned
superinstance J for ΣUID and ΣUFD, the result J ′ of any fact-thrifty chase step on J
by a UID of Σrev

UID is still a fact-saturated and k-essential aligned superinstance.

Proof. Fix J ′ = (I ′, sim′), the UID τ : Rp ⊆ Sq of Σrev
UID, which is reversible by

assumption reversible, and the element a ∈ dom(J) to which it is applied.
The fact that k-essentiality is preserved is by Lemma 12.4.5, and fact-saturation

is clearly preserved, so we must only show that J ′ is still an aligned superinstance.
The fact that J ′ is a finite superinstance of I0 is immediate, and it still satisfies
ΣUFD by Lemma 11.3.5 because fact-thrifty chase steps are relation-thrifty chase
steps. The directionality condition is clearly respected because any new element
in dom(J ′)\ dom(J) occurs at least at the position at which its sim′-image was
introduced in the chase (namely, the position where it occurs in Fw), and the
additional conditions on sim′|I0 and sim′|J ′\I0 are still verified.

The only thing to show is that sim′ is still a k-bounded simulation. Let Fn = S(b)
be the new fact and Fw = S(b′) be the chase witness. Now, as in the proof of the
Thrifty Steps And Essentiality Lemma, and using the Directionality Lemma, all
elements of Fw are n-essential (and, except for b′q, they were introduced at their
position of Fw).

Now, to show that sim′ is a k-bounded simulation, we use Lemma 12.3.6, so it
suffices to show that we have sim(br) 'k b′r for all r. This is the case whenever we
have sim(br) = b′r, which is guaranteed by definition for Sr = Sq and for elements in
Dng(Sq) such that Sr ↔FUN Sq does not hold. For non-dangerous elements, the fact
that sim(br) 'k b′r is by definition of fact-thrifty chase steps. For the other positions,
there are two cases:

• br ∈ dom(I), in which case br ∈ WantsΣrev
UID

(I, Sr). As J is n-essential, sim(br) is
an n-essential element of Chase(I0,ΣUID) introduced at a position T v such that
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T v ∼ID S
r holds in Σrev

UID. Now, b′r is an n-essential element of Chase(I0,ΣUID)
introduced at position Sr. By the UID Chase Similarity Theorem, we then
have sim′(br) 'k b′r in Chase(I0,ΣUID)

• br /∈ dom(I), in which case the claim is immediate unless it occurs at multiple
positions. However, by definition of thrifty chase steps, all positions at which
it occurs are related by ∼ID in Σrev

UID, so the corresponding elements of Fw
are also 'k-equivalent by the UID Chase Similarity Theorem: hence we have
sim′(br) 'k b′r.

We conclude by Lemma 12.3.6 that J ′ is indeed an aligned superinstance, which
concludes the proof.

We can now conclude the proof of Theorem 12.1. Let I0 be the initial instance,
and consider J0 = (I0, id) which is trivially an aligned superinstance of I0. Apply the
Fact-Saturated Solutions Lemma to obtain a fact-saturated aligned superinstance
J ′0 = (I ′0, sim′). We must now show that we can complete J ′0 to a superinstance
that satisfies Σrev

UID as well, which we do with the following variant of the Reversible
Relation-Thrifty Completion Proposition (see Proposition 11.4.1):

Proposition 12.4.8 (Reversible Fact-Thrifty Completion). For any reversible ΣUFD
and Σrev

UID, for any transitively closed UIDs ΣUID ⊇ Σrev
UID, for any fact-saturated

aligned superinstance J ′0 of I0 (for ΣUFD and ΣUID), we can use fact-thrifty chase
steps by UIDs of Σrev

UID to construct an aligned fact-saturated superinstance Jf of I0
(for ΣUFD and ΣUID) that satisfies Σrev

UID.

To prove this lemma, we first apply the Ensuring Essentiality Lemma with the
UIDs of Σrev

UID to make J ′0 k-essential. By the Fresh Fact-Thrifty Preservation Lemma,
the result J1 = (I1, sim1) is then a fact-saturated k-essential aligned superinstance
of I0 (for ΣUID and ΣUFD).

To prove the Reversible Fact-Thrifty Completion Proposition, we will now use
the Reversible Relation-Thrifty Completion Proposition (Proposition 11.4.1) on J1;
but we must refine it to a stronger claim. We do so using the following definition:

Definition 12.4.9. A thrifty sequence on an instance I for UIDs ΣUID and UFDs
ΣUFD is a sequence L defined inductively as follows, with an output L(I) which is a
superinstance of I that we also define inductively:

• The empty sequence L = () is a thrifty sequence, with L(I) = I

• Let L′ be a thrifty sequence, let I ′ = L′(I) be the output of L′, and let
t = (a, τ, b) be a triple formed of an element a ∈ dom(I ′), a UID τ : Rp ⊆ Sq

of ΣUID, and an |S|-tuple b. We require that the fact S(b) can be created in I ′
by applying a thrifty chase step to a in L′(I) by τ (Definition 11.3.2). Then
the concatenation L of L′ and t is a thrifty sequence, and its output L(I) is the
result of performing this chase step on L′(I), namely, L(I) ··= L′(I) t {S(b)}.

The length of L is written |L| and the elements of L are indexed by L1, . . . , L|L|. We
define a relation-thrifty sequence in the same way with relation-thrifty steps, and
likewise define a fact-thrifty sequence. C
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With this definition, the Reversible Relation-Thrifty Completion Proposition
(Proposition 11.4.1) implies that there is a relation-thrifty sequence L such that L(I ′0)
is a finite weakly-sound superinstance If of I0 that satisfies ΣUFD and Σrev

UID. Our
goal to prove the Reversible Fact-Thrifty Completion Proposition is to rewrite L
to a fact-thrifty sequence. To do this, we first need to show that any two thrifty
sequences that coincide on non-dangerous positions have the same effect in terms of
UID violations:

Definition 12.4.10. Let ΣUID be UIDs and ΣUFD be UFDs, let I0 be an instance, and
L and L′ be thrifty sequences on I0. We say that L and L′ non-dangerously match
if |L| = |L′| and that for all 1 6 i 6 |L|, writing Li = (a, τ, b) and L′i = (a′, τ ′, b′),
we have a = a′, τ = τ ′, and, writing τ : Rp ⊆ Sq, we have br = b′r for all
Sr ∈ Pos(S)\NDng(Sq). C

Lemma 12.4.11 (Thrifty sequence rewriting). Let ΣUID be UIDs and ΣUFD be UFDs,
let I0 be an instance, and let L and L′ be thrifty sequences on I0 that non-dangerously
match. Then L(I0) satisfies ΣUID iff L′(I0) satisfies ΣUID.

Proof. We prove by induction on the common length of L and L′ that, if L and L′
non-dangerously match, then, for all U v ∈ Pos(σ), we have πUv(L(I0)) = πUv(L′(I0)).
If both L and L′ have length 0, the claim is trivial. For the induction step, write
I ··= L(I0) and I ′ ··= L′(I0). Write L as the concatenation of L2 and its last tuple
t = (a, τ, b), and write similarly L′ as the concatenation of L′2 and the last tuple
t′ = (a′, τ ′, b′). Let U v ∈ Pos(σ) and show that πUv(L(I0)) = πUv(L′(I0)). Clearly L2
and L′2 non-dangerously match and are strictly shorter than L and L′, respectively,
so by the induction hypothesis, writing I2 ··= L2(I0) and I ′2 ··= L′2(I0), we have
πUv(I2) = πUv(I ′2). Further, we have τ = τ ′; write them as Rp ⊆ Sq. We then have
I = I2 t S(b), and I ′ = I ′2 t S(b′). As we must have br = b′r if U v /∈ NDng(Sq),
there is nothing to show unless we have U v ∈ NDng(Sq). However, in this case,
writing U v as Sr, then, by definition of thrifty chase steps, we have br ∈ πSr(I2), so
that πSr(I) = πSr(I2). Likewise, πSr(I ′) = πSr(I ′2), hence πSr(I) = πSr(I ′). This
concludes the induction proof.

We now prove the lemma. Fix τ : Rp ⊆ Sq in ΣUID. We have L(I0) |= τ iff
πRp(L(I0))\πSq(L(I0)) = ∅, and likewise for L′(I0). By the result proved in the
paragraph above, these conditions are equivalent, and thus we have L(I0) |= τ iff
L′(I0) |= τ .

Hence, considering our fact-saturated aligned superinstance J1 = (I1, sim1)
(for ΣUID and ΣUFD), use the rephrasing of the Reversible Relation-Thrifty Comple-
tion Proposition to obtain a relation-thrifty sequence L such that L(I1) satisfies ΣUID.
We modify L inductively to obtain a fact-thrifty sequence L′ that non-dangerously
matches L, in the following manner. Whenever L applies a relation-thrifty step
t = (a, τ, b) to the previous instance L2(I1), then observe that L2(I1) is fact-saturated,
because I1 was fact-saturated and fact-thrifty chase steps preserve fact-saturation,
by the Fact-Thrifty Preservation Lemma. Hence, by the Fact-Thrifty Applicability
Lemma, instead of applying the relation-thrifty step described by t, we can choose
to apply a fact-thrifty step on a with τ , defining the new fact using b except on the
non-dangerous positions. By Lemma 12.4.11, the resulting L′ also ensures that L′(I1)
satisfies ΣUID.
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Considering now the fact-thrifty sequence L′, as J1 is a fact-saturated k-essential
aligned superinstance of I0 (for ΣUID and ΣUFD), letting If ··= L′(I1), we can use the
Fact-Thrifty Preservation Lemma to define an aligned fact-saturated superinstance
Jf = (If , simf) (for ΣUID and ΣUFD), following each fact-thrifty step, and we have
shown that If satisfies ΣUID. Hence, we have proven the Reversible Fact-Thrifty
Completion Proposition.

To prove Theorem 12.1, we can simply apply the proposition with ΣUID = Σrev
UID,

and the resulting aligned superinstance Jf = (If , simf) of I0 satisfies ΣUID and is
k-sound for ΣU and ACQ. Further, it satisfies ΣUFD and is finite, by definition of
being an aligned superinstance. Hence, If is the desired k-universal model, which
proves Theorem 12.1.

12.5 UID Chase Similarity Theorem
We conclude the chapter by proving the UID Chase Similarity Theorem:

Theorem 12.4.3 (UID chase similarity theorem). For any instance I0, transitively
closed set of UIDs ΣUID, and n ∈ N, for any two elements a and b respectively
introduced at positions Rp and Sq in Chase(I0,ΣUID), if a and b are n-essential, and
if Rp ⊆ Sq and Sq ⊆ Rp hold in ΣUID, then a 'n b.

Note that this result does not involve FDs, and applies to any arbitrary transitively
closed set of UIDs, not relying on any finite closure properties, or on assumption
reversible. It only assumes that the last n dependencies used to create a and b were
reversible.

Example 12.5.1. Consider Figure 12.3 on page 169, which illustrates the neigh-
borhood of two elements, a and a′, in the UID chase by some UIDs. Each rectangle
represents a higher-arity fact, and edges represent the UIDs used in the chase, with
thick edges representing reversible UIDs.

The last UID applied to create a was S2 ⊆ R1, and the last UID for a′ is V 1 ⊆ U1;
they are reversible. Further, a is introduced at position R3 and a′ at position U3, and
R3 ⊆ U3 holds and is reversible. The theorem claims that a that a′ are 1-bounded-
bisimilar, which is easily verified; in fact, they are 2-bounded-bisimilar. This is
intuitively because all child facts of the R-fact at the left must occur at the right by
definition of the UID chase, and the parent fact must occur as well because of the
reverse of the last UID for a; a similar argument ensures that the facts at the right
must be reflected at the left.

However, note that a and a′ are not 3-bounded-bisimilar: the A-fact at the left is
not reflected at the right, and vice-versa for the B-fact, because these UIDs are not
reversible,

To prove the theorem, fix the instance I0 and the set ΣUID of UIDs. We first show
the following easy lemma:

Lemma 12.5.2. For any n > 0 and position Rp, for any two elements a, b of
Chase(I0,ΣUID) introduced at position Rp in two facts Fa and Fb, letting a′ and b′
be the exported elements of Fa and Fb, if a′ 'n−1 b

′, then a 'n b.
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Proof. We proceed by induction on n. By symmetry, it suffices to show that
(Chase(I0,ΣUID), a) 6n (Chase(I0,ΣUID), b).

For the base case n = 1, observe that, for every fact F of Chase(I0,ΣUID) where a
occurs at some position Sq, there are two cases. Either F = Fa, so we can pick Fb as
the representative fact, or the UID Rp ⊆ Sq is in ΣUID so we can pick a corresponding
fact for b by definition of the chase. Hence, the claim is shown for n = 1.

For the induction step, we proceed in the same way. If F = Fa, we pick Fb
as representative fact, and use either the hypothesis on a′ and b′ or the induction
hypothesis (for other elements of Fa and Fb) to justify that Fb is suitable. Otherwise,
we pick the corresponding fact for b which must exist by definition of the chase, and
apply the induction hypothesis to the other elements of the fact to conclude.

We now prove the UID Chase Similarity Theorem. Throughout the proof, we
write Rp ∼ID S

q as shorthand to mean that Rp ⊆ Sq and Sq ⊆ Rp are in ΣUID: it is
still the case that ∼ID is an equivalence relation, even without assumption reversible.

We prove the main claim by induction on n: for any positions Rp and Sq such
that Rp ∼ID S

q, for any two n-essential elements a and b respectively introduced at
positions Rp and Sq, we have a 'n b. By symmetry it suffices to show that a 6n b
in Chase(I0,ΣUID), formally, (Chase(I0,ΣUID), a) 6n (Chase(I0,ΣUID), b).

The base case of n = 0 is immediate.
For the induction step, fix n > 0, and assume that the result holds for n− 1. Fix

Rp and Sq such that Rp ∼ID S
q, and let a, b be two n-essential elements introduced

respectively at Rp and Sq in facts Fa and Fb. Note that by the induction hypothesis
we already know that a 6n−1 b in Chase(I0,ΣUID); we must show that this holds
for n.

First, observe that, as a and b are n-essential with n > 0, they are not elements
of I0. Hence, by definition of the chase, for each one of them, the following is true:
for each fact of the chase where the element occurs, it only occurs at one position,
and all other elements co-occurring with it in a fact of the chase occur only at one
position and in exactly one of these facts. Thus, to prove the claim, it suffices to
construct a mapping ϕ from the set N1(a) of the facts of Chase(I0,ΣUID) where a
occurs, to the set N1(b) of the facts where b occurs, such that the following holds:
for every fact F = T (a) of N1(a), letting T c be the one position of F such that
ac = a, the element b occurs at position T c in ϕ(F ) = T (b), and for every i, we have
ai 6n−1 bi.

By construction of the chase (using the Unique Witness Property), N1(a) consists
of exactly the following facts:

• The fact Fa = R(a), where ad = a′ is the exported element (for a certain
Rd 6= Rp) and ap = a was introduced at Rp in Fa. Further, for i /∈ {p, d}, the
element ai was introduced at Ri in Fa.

• For every UID τ : Rp ⊆ V g of ΣUID, a V -fact F τ
a where the element at position

V g is a. Further, for i 6= g, the element at position V i in F τ
a was introduced at

this position in that fact.

A similar characterization holds for b: we write the corresponding facts Fb and F τ
b .

We construct the mapping ϕ as follows:
• If Rp = Sq then set ϕ(Fa) ··= Fb; otherwise, as τ : Sq ⊆ Rp is in ΣUID, set
ϕ(Fa) ··= F τ

b .
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• For every UID τ : Rp ⊆ V g of ΣUID, as Rp ∼ID Sq, by transitivity, either
Sq = V g or the UID τ ′ : Sq ⊆ V g is in ΣUID. In the first case, set ϕ(F τ

a ) ··= Fb.
In the second case, set ϕ(F τ

a ) ··= F τ ′
b .

We must now show that this mapping ϕ from N1(a) to N1(b) satisfies the required
conditions. Verify that indeed, by construction, whenever a occurs at position T c
in F , then ϕ(F ) is a T -fact where b occurs at position T c. So we must show that
for any F ∈ N1(a), writing F = T (a) and ϕ(F ) = T (b), with ac = a and bc = b for
some c, we have indeed ai 6n−1 bi for all T i ∈ Pos(T ). If n = 1 there is nothing to
show and we are done, so we assume n > 2. If i = c then the claim is immediate by
the induction hypothesis; otherwise, we distinguish two cases:

1. F = Fa (so that T = R and c = p), or F = F τ
a such that the UID τ : Rp ⊆ T c

is reversible, meaning that τ−1 ∈ ΣUID. In this case, by construction, either
ϕ(F ) = Fb or ϕ(F ) = F τ ′

b for τ ′ : Sq ⊆ T c; τ ′ is then reversible, because
Rp ∼ID S

q and Rp ∼ID T
c.

We show that for all 1 6 i 6 |T | such that i 6= c, the element ai is (n − 1)-
essential and was introduced in Chase(I0,ΣUID) at a position in the ∼ID-class
of T i. Once we have proved this, we can show the same for all bi in a symmetric
way, so that we can conclude that ai 6n−1 bi by induction hypothesis. To see
why the claim holds, we distinguish two subcases. Either ai was introduced
in F , or we have F = Fa, i = d and ai is the exported element for a.
In the first subcase, ai was created by applying the reversible UID τ and the
exported element was a, which is n-essential, so ai is (n− 1)-essential (in fact
it is even (n+ 1)-essential), and ai is introduced at position T i.
In the second subcase, ai is the exported element used to create a, which is
n-essential, so ai is (n− 1)-essential; and as n > 2, the last dependency applied
to create ai is reversible, so that ai was introduced at a position in the same
∼ID-class as T i.
Hence, we have proved the desired claim for the first case.

2. F = F τ
a such that τ : Rp ⊆ T c is not reversible. In this case, we cannot have

T c = Sq (because we have Rp ∼ID Sq), so we must have ϕ(F ) = F τ ′
b with

τ ′ : Sq ⊆ T c. Now, all ai for i 6= c were introduced in F at position T i, and
likewise for the bi in ϕ(F ). Using Lemma 12.5.2, as a 'n−1 b, we conclude that
ai 'n bi, hence ai 6n−1 b.

This concludes the proof of the UID Chase Similarity Theorem, thus completing the
proof of Theorem 12.1.
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Chapter 13

Decomposing the Constraints

In this chapter, we lift assumption reversible, proving:

Theorem 13.1. Finitely-closed UIDs and UFDs have finite k-universal models for
ACQs.

13.1 Partitioning the UIDs
We write the UFDs as ΣUFD and the UIDs as ΣUID. We will proceed by partitioning
ΣUID into subsets of UIDs which are either reversible or are much simpler to deal
with.

Our desired notion of partition respects an order on UID, which we now define.
As we will show (Lemma 13.2.3), the order is also respected by thrifty chase steps.

Definition 13.1.1. For any τ, τ ′ ∈ ΣUID, we write τ � τ ′ when we can write
τ = Rp ⊆ Sq and τ ′ = Sr ⊆ T v with Sq 6= Sr, and the UFD Sr → Sq is in ΣUFD. An
ordered partition (P1, . . . , Pn) of ΣUID is a partition of ΣUID (i.e., ΣUID = ⊔

i Pi) such
that for any τ ∈ Pi, τ ′ ∈ Pj, if τ � τ ′ then i 6 j. C

The point of partitioning ΣUID is to be able to control the structure of the UIDs
in each class:

Definition 13.1.2. We call P ⊆ ΣUID reversible if P and ΣUFD are reversible
(Definition 9.2.4). We say P ⊆ ΣUID is trivial if we have P = {τ} for some τ ∈ ΣUID
such that τ 6� τ . A partition is manageable if it is ordered and all of its classes are
either reversible or trivial. C

As we will show in Section 13.3, we can always construct a manageable partition
of ΣUID:

Proposition 13.1.3. Any conjunction ΣUID of UIDs closed under finite implication
has a manageable partition.

Example 13.1.4. Consider two ternary relations R and S. Consider the UIDs
τR : R1 ⊆ R2, τS : S2 ⊆ S3, τRS : R3 ⊆ S1, and the UFDs ϕR : R1 → R2,
ϕS : S2 → S3, ϕ′R : R3 → R1, and ϕ′S : S3 → S1. The UIDs τ−1

R and τ−1
S , and the

UFDs ϕ−1
R , ϕ−1

S , and R3 → R2, S2 → S1, are finitely implied. The two relations R
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1 2 3 1 2 3R S

Figure 13.1: Manageable partition (see Example 13.1.4)

and S are illustrated in Figure 13.1, where UIDs as drawn as solid black edges, and
UFDs as dashed red edges that are reversed (this follows Definition 13.3.1).

A manageable partition of the UIDs of the finite closure is ({τR, τ−1
R }, {τRS},

{τS, τ−1
S }), where the first and third classes are reversible and the second is trivial.

The classes of the partition are drawn as green hatched rectangles in Figure 13.1;
they are intuitively related to a topological sort of the graph of the black and red
edges (see Definition 13.3.3).

13.2 Using Manageable Partitions
Fix the instance I0 and the finitely closed constraints ΣU formed of UIDs ΣUID and
UFDs ΣUFD. To prove Theorem 13.1, starting with the initial aligned superinstance
J0 = (I0, id) of I0 (for ΣUID and ΣUFD), we first note that the Fact-Saturated
Solutions Lemma (Lemma 12.2.4) does not use assumption reversible. Hence, we
apply it (with ΣUID) to obtain from I0 an aligned fact-saturated superinstance J1
of I0 (for ΣUFD and ΣUID). This is the saturation process.

The goal is now to apply a completion process to satisfy ΣUID, which we formalize
as the following proposition. Recall the definition of thrifty sequences (Defini-
tion 12.4.9). We refine the definition below.

Definition 13.2.1. We define a preserving fact-thrifty sequence L (for UIDs ΣUID
and UFDs ΣUFD) on any fact-saturated aligned superinstance J of I0 in the following
inductive way, with its output L(J) also being a fact-saturated aligned superinstance:

• The empty list L = () is a preserving fact-thrifty sequence, with output
L(J) ··= J .

• Let L be the concatenation of a preserving fact-thrifty sequence L′ and a triple
t = (a, τ, b). Let J ′ ··= L′(J) be the output of L′. We call L preserving, if one
of the following holds:

– t is a fresh fact-thrifty chase step. In this case, by the Fresh Fact-Thrifty
Preservation Lemma, J ′ is indeed a fact-saturated aligned superinstance
of I0.

– J ′ is k-essential for some subset Σrev
UID of ΣUID such that τ ∈ Σrev

UID and Σrev
UID

and ΣUFD are reversible. In this case, by the Fact-Thrifty Preservation
Lemma, J is a fact-saturated aligned superinstance of I0 (which is also
k-essential for the same subset).

In either case, the output of L is the aligned superinstance obtained as the
result of applying the fact-thrifty chase step represented by t on J ′. C

We can now state our intended result, which implies Theorem 13.1:
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Proposition 13.2.2 (Fact-thrifty completion). Let ΣU = ΣUFD t ΣUID be finitely
closed UFDs and UIDs, and let I0 be an instance that satisfies UFDs. For any fact-
saturated aligned superinstance J of I0 for ΣU, there is a preserving fact-thrifty
sequence L such that L(J) satisfies ΣUID.

We prove Proposition 13.2.2, and from it Theorem 13.1, in the rest of the
section. We construct a manageable partition P = (P1, . . . , Pn) of ΣUID using
Proposition 13.1.3. Now, for 1 6 i 6 n, we use fact-thrifty chase steps by UIDs
of Pi to extend the fact-saturated aligned superinstance Ji to a larger one Ji+1 that
satisfies Pi.

The crucial point is that we can apply fact-thrifty chase steps to satisfy Pi without
creating any new violations of Pj for j < i, and hence we can make progress following
the partition. The reason for this is the following easy fact about thrifty chase steps:

Lemma 13.2.3. Let J be an aligned superinstance of I0 and J ′ be the result of
applying a thrifty chase step on J for a UID τ of ΣUID. Assume that a UID τ ′

of ΣUID was satisfied by J but is not satisfied by J ′. Then τ � τ ′.

Proof. Fix J , J ′, τ : Rp ⊆ Sq and τ ′. As chase steps add a single fact, the only
new UID violations in J ′ relative to I are on elements in the newly created fact
Fn = S(b), As ΣUID is transitively closed, Fn can introduce no new violation on
the exported element bq. Now, as thrifty chase steps always reuse existing elements
at non-dangerous positions, we know that if Sr ∈ NDng(Sq) then no new UID can
be applicable to br. Hence, if a new UID is applicable to br for Sr ∈ Pos(S), then
necessarily Sr ∈ Dng(Sq). By definition of dangerous positions, the UFD Sr → Sq

is then in ΣUFD, and we have Sr 6= Sq. Hence, writing τ ′ : Sr ⊆ T r, we see that
τ � τ ′.

The lemma justifies our definition of ordered partition, since it will allow us to
do an inductive argument to prove Proposition 13.2.2. Using the fact that P is
ordered ensures that we can indeed apply fact-thrifty chase steps to satisfy each Pi
individually, dealing with them in the order of the partition.

Thus, to prove Proposition 13.2.2, consider each class Pi in order. As P is
manageable, there are two cases: either Pi is trivial or it is reversible.

First, if Pi is trivial, it can simply be satisfied by a preserving fact-thrifty sequence
Li of fresh fact-thrifty chase steps using the one UID of Pi, as follows immediately
from Lemma 13.2.3.

Lemma 13.2.4. For any trivial class {τ}, performing one chase round on an aligned
fact-saturated superinstance J of I0 by fresh fact-thrifty chase steps for τ yields an
aligned superinstance J ′ of I0 that satisfies τ .

Proof. Fix J , J ′ and τ . All violations of τ in J have been satisfied in J ′ by definition
of J ′, so we only have to show that no new violations of τ were introduced in J ′.
But by Lemma 13.2.3, as τ 6� τ , each fresh fact-thrifty chase step cannot introduce
such a violation, hence there is no new violation of τ in J ′. Hence, J ′ |= τ .

Second, returning to the proof of Proposition 13.2.2, the interesting case is that
of a reversible Pi, for which we have done the work of the last three chapters. We
satisfy a reversible Pi by a preserving fact-thrifty sequence Li obtained using the
Reversible Fact-Thrifty Completion Proposition (Proposition 12.4.8). Indeed, Ji is a
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fact-saturated aligned superinstance of I0 for ΣUFD and ΣUID, and by definition of
Pi being reversible, letting Σrev

UID ··= Pi, the constraints ΣUFD and Σrev
UID are reversible.

By the Reversible Fact-Thrifty Completion Proposition, we can thus construct a
fact-thrifty sequence Li (by UIDs of Σrev

UID) such that Ji+1 ··= Li(Ji) is a fact-saturated
aligned superinstance of I0 for ΣUFD and ΣUID that satisfies Pi. Further, from the
proof, it is clear that Li is preserving.

Hence, in either of the two cases, we construct a preserving fact-thrifty sequence Li
and Ji+1 ··= Li(Ji) satisfies Pi. Further, as Li only performs fact-thrifty chase steps
by UIDs of Pi, Ji+1 actually satisfies ⋃j6i Pj, thanks to Lemma 13.2.3.

The concatenation of the preserving fact-thrifty sequences Li for each Pi is thus a
preserving fact-thrifty sequence L whose final result L(J) = Jn+1 is thus an aligned
superinstance of I0 that satisfies ΣUID, which proves the Fact-Thrifty Completion
Proposition. As an aligned superinstance, Jn+1 is also finite, satisfies ΣUFD, and is
k-sound for ACQ; so it is k-universal for ΣU and ACQ. This concludes the proof of
Theorem 13.1.

13.3 Building Manageable Partitions
The only missing part is to show how manageable partitions are constructed (Propo-
sition 13.1.3), which we show in this section. We will construct the manageable
partition using a constraint graph defined from the dependencies, inspired by the
multigraph used in the proof of Theorem 8.2.1 in [Cosmadakis, Kanellakis, and Vardi
1990].

Definition 13.3.1. Given a set ΣU of finitely closed UIDs and UFDs on signature σ,
the constraint graph G(ΣU) is the directed graph with vertex set Pos(σ) and with
the following edges:

• For each UID Rp ⊆ Sq in ΣU, an edge from Rp to Sq

• For each UFD Ra → Rb in ΣU, an edge from Rb to Ra.

As we forbid trivial UIDs and UFDs, G(ΣU) has no self-loop, but it may contain
both the edge (Rp, Sq) and (Sq, Rp). However, we do not represent multiple edges in
G(ΣU): for instance, if the UID Ra ⊆ Rb and the UFD Rb → Ra hold in G(ΣU), we
only create a single copy of the edge (Ra, Rb). C

Hence, fix the finitely closed UIDs and UFDs ΣU ··= ΣUID ∧ ΣUFD, and construct
the graph G(ΣU). As observed by [Cosmadakis, Kanellakis, and Vardi 1990], the
graph G(ΣU) has the following property, which will be needed to show that classes
are reversible:

Lemma 13.3.2. For any edge e occurring in a cycle in G(ΣU), for any dependency
τ which caused the creation of e, the reverse τ−1 of τ is in ΣU.

Proof. Let e1 be the edge, and e1, . . . , en be the cycle (the first vertex of e1 is the
second vertex of en), and let τ be the dependency. Consider a cycle of dependencies
τ1, . . . , τn, with τ1 = τ , such that each τi caused the creation of edge ei in G(ΣU).
We must show that the reverse τ−1 of τ is in ΣU.
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If all the τi are UIDs, then, as ΣUID is closed under the transitivity rule, we apply
it to τ2, . . . , τn and deduce that τ−1

1 is in ΣUID. Likewise, if all the τi are UFDs, then
we proceed in the same way because ΣUFD is closed under the transitivity rule.

If the τi are of alternating types (alternatively UIDs and UFDs), then, recalling
that ΣU is closed under the cycle rule (see Section 8.2) we deduce that τ−1

i is in ΣU
for all i.

In the general case, consider the maximal subsequence τj, . . . , τn, τ1, . . . , τi (i < j)
of consecutive dependencies in the cycle that includes τ and where all dependencies
are of the same type. Let τm be the result of combining these dependencies by
the transitivity rule, and consider the cycle τm, τi+1, . . . , τn, τ1, . . . , τj−1. Collapsing
all other consecutive sequences of dependencies to a single dependency using the
transitivity rule, and applying the cycle rule as in the previous case, we deduce that
τ−1

m is in ΣU. Hence, the cycle τj, . . . , τn, τ1, . . . , τi, τ
−1
m is a cycle of dependencies of

the same type as τ , and it includes τ , so we conclude as in the first two cases that
τ−1 is in ΣU.

Hence, in all cases τ−1 is in ΣU. This concludes the proof.

Compute the strongly connected components of G(ΣU), ordered following a
topological sort: we label them V1, . . . , Vn. The order of the Vi guarantees that there
are no edges in G(ΣU) from Vi to Vj unless i 6 j.

We will build each class of the manageable partition, either as the set of UIDs
within the positions of an SCC (a reversible class), or as a singleton UID going from
a class Vi to a class Vj with j > i (a trivial class). Formally:

Definition 13.3.3. The topological sort of the SCCs of G(ΣU), written V1, . . . , Vn,
defines a partition P of the UIDs of ΣUID, in the following manner. For each Vi,
if there are any non-trivial UIDs of the form Rp ⊆ Sq with Rp, Sq ∈ Vi, create a
class of UIDs (the main class) containing all of them. Then, for each UID of the
form Rp ⊆ Sq with Rp ∈ Vi and Sq ∈ Vj with j > i, create a singleton class of UIDs
containing exactly that UID (a satellite class). The partition P is obtained by taking
the concatenation, for i from 1 to n, of the main class of Vi (if it exists) and then all
satellite classes of Vi (if any) in an arbitrary order. C

Remember that, while the constraint graph reflects both the UIDs and the UFDs,
the partition P that we define is a partition of ΣUID, that is, a partition of UIDs, and
does not contain UFDs. We first show that P is indeed a partition, and then that it
is an ordered partition.

Lemma 13.3.4. P is indeed a partition of ΣUID.

Proof. As the SCCs of G(ΣU) partition the vertex set of G(ΣU), it is clear by
construction that any UID occurs in at most a single class of the partition, which
must be a class for the SCC of its first position, and either a satellite class or the
main class depending on the SCC of its second position.

Conversely, each UID τ is reflected in some class of the partition, for the SCC Vi
of its first position: either the second position of τ is also in Vi, so τ is in the main
class for Vi; or the second position of τ is in an SCC Vj with i 6= j, in which case
i < j by definition of a topological sort, and τ is in some satellite class for Vi. Hence,
P is indeed a partition of ΣUID.

Lemma 13.3.5. P is an ordered partition.
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Proof. Assume by way of contradiction that there are two classes Pi and Pj and
τ ∈ Pi, τ ′ ∈ Pj , such that τ � τ ′ but i > j. Let Vp and Vq be the SCCs in which Pi
and Pj were created. We must have p > q, so there are two possibilities.

First, if p = q, then the first positions of τ and τ ′ must both be in Vp = Vq, and
as Pi is not the first class created for Vp = Vq, it must be a satellite class. Hence, the
second position of τ is in another SCC, say Vr, with r > p. Now, as τ � τ ′, there is
a UFD from the first position of τ ′ to the second position of τ , which implies that
there is an edge from Vr to Vp in G(ΣU). As r > p, this contradicts the fact that the
SCCs are ordered following a topological sort.

Second, if we have p > q, then again the first position of τ must be in Vp, and
the first position of τ ′ is in Vq. Let Vr be the SCC of the second position of τ . As
τ � τ ′, the UFD from the first position of τ ′ to the second position of τ witnesses
that there is an edge in G(ΣU) from Vr to Vq. Hence, we must have r 6 q. But τ
witnesses that there is an edge from p to r in G(ΣU), so that we must have p 6 r.
Hence, p 6 q, but we had assumed p > q, a contradiction.

We now show that P is manageable, by considering each class and showing that
it is either trivial or that it is reversible:

Lemma 13.3.6. Each satellite class in P is trivial.

Proof. Each satellite class consists by construction of a singleton dependency τ =
Rp ⊆ Sq, implying the existence of an edge in the constraint graph G(ΣU) from Rp

to Sq. Assume by way of contradiction that τ � τ . This implies that Rp → Sq holds
in ΣUFD, so there is an edge in G(ΣU) from Sq to Rp. Hence, {Rp, Sq} is strongly
connected, so Rp and Sq belong to the same SCC, which contradicts the definition
of a satellite class.

Lemma 13.3.7. Each main class in the partition is reversible.

Proof. Let Pi be the class and Vi be the corresponding SCC. We first show that Pi is
transitively closed. Consider two UIDs τ and τ ′ of Pi that would be combined by the
transitivity rule to the UID τ ′′. As ΣUID is transitively closed, we have τ ′′ ∈ ΣUID.
Now, if both τ and τ ′ have both positions in Vi, then so does τ ′′, so we also have
τ ′′ ∈ Pi.

Second, to see that every UID τ in Pi is reversible, consider a UID τ : Rp ⊆ Sq

of Pi, with Rp, Sq ∈ Vi. We forbid trivial UIDs, so Rp 6= Sq. As Vi is strongly
connected, consider a directed path π of edges of G(ΣU) from Sq to Rp. Combining
π with the edge created in G(ΣU) for the UID τ , we deduce the existence of a cycle
in G(ΣU). Hence, by Lemma 13.3.2, the UID τ−1 holds in ΣUID, and it also has both
positions in Vi, so τ−1 is in Pi.

Third, we prove the claim about UFDs. Consider a UFD ϕ : Rp → Rq of ΣUFD,
with Rp 6= Rq. Assume that Rp and Rq occur in a UID of Pi; this implies that
Rp, Rq ∈ Vi. By the same reasoning as before, we find a cycle in G(ΣU) that includes
the edge that corresponds to ϕ, and deduce that ϕ−1 holds in ΣUFD.

Hence, P is an ordered partition of ΣUID where each class is either reversible
or trivial, i.e., it is a manageable partition. This concludes the proof of Proposi-
tion 13.1.3.
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Chapter 14

Higher-Arity
Functional Dependencies

The goal of this chapter is to generalize our results to functional dependencies of
arbitrary arity:

Theorem 14.1. Finitely-closed UIDs and FDs have finite universal models for ACQs.

We fix the finitely-closed constraints Σ ··= ΣFD∧ΣUID, consisting of arbitrary-arity
FDs ΣFD and UIDs ΣUID. We denote by ΣUFD the unary FDs among ΣFD, and write
ΣU ··= ΣUFD ∧ ΣUID. From the definition of the finite closure (Section 8.2), it is clear
that ΣU is finitely closed as well, so the construction of the previous chapters applies
to ΣU.

The problem to address in this chapter is that our completion process to satisfy
ΣUID was defined with fact-thrifty chase steps. These chase steps may reuse elements
from the same facts at the same positions multiple times. This may violate ΣFD, and
it is in fact the only point where we do so in the construction.

Example 14.1. For simplicity, we work with instances rather than aligned superin-
stances. Consider I0 ··= {S(a), T (z)}, the UIDs τ : S1 ⊆ R1 and τ ′ : T 1 ⊆ R1 for
a 3-ary relation R, and the FD ϕ : R2R3 → R1. Consider I ··= I0 t {R(a, b, c)}
obtained by one chase step of τ on S(a). Figure 14.1a represents I in solid black,
using edges to highlight equalities between elements.

aS

a b cR

=

zT

z b cR

=

6= = =

(a) Example 14.1: an FD violation

aS

a b cR

=

zT

z b′ cR

=

a′S

a′ b′ c′R

=

z′T

z′ b c′R

=

= ==
=

(b) Example 14.2.2: a way to avoid the FD violation

Figure 14.1: Example of a higher-arity FD violation, and the proposed solution
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We can perform a fact-thrifty chase step of τ ′ on z to create R(z, b, c), reusing
(b, c) at NDng(R1) = {R2, R3}; this is illustrated in dashed red in Figure 14.1a.
However, the two R-facts would then be a violation of ϕ, as shown by the patterns
of equalities and inequalities illustrated as thick red edges.

The goal of this chapter is to define a new version of thrifty chase steps that
preserves ΣFD rather than just ΣUFD; we call them envelope-thrifty chase steps. We
first describe the new saturation process designed for them, which is much more
complex because we need to saturate sufficiently with respect to the completion
process that we do next. To saturate, we use a separate combinatorial result, of
possible independent interest: Theorem 14.1.9, proved in Section 14.3. Second, we
redefine the completion process of the previous chapter for this new notion of chase
step, and use this new completion process to prove Theorem 14.1.

14.1 Envelopes and Envelope-Saturation
We start by defining our new notion of saturated instances. Recall the notions of
fact classes (Definition 12.2.1) and thrifty chase steps (Definition 11.3.2). When
a fact-thrifty chase step creates a fact Fn whose chase witness Fw has fact class
(Rp,C), we need elements to reuse in Fn at positions of NDng(Rp), which need to
already occur at the positions where we reuse them. Further, the reused elements
must have sim-images of the right class.

Fact-thrifty chase steps reuse a tuple of elements from one fact Fr, and thus apply
to fact-saturated instances, where each fact class D which is achieved in the chase is
also achieved by some fact (recall Definitions 12.2.1 and 12.2.3). Our new notion of
envelope-thrifty chase steps will consider multiple tuples that achieve each class D,
that we call an envelope for D; with the difference, however, that not all tuples need
to actually occur in an achiever fact in the instance, though each individual element
needs to occur in some achiever fact. Formally:

Definition 14.1.1. Consider D = (Rp,C) in AFactCl, and write O ··= NDng(Rp).
Remember that O is then non-empty. An envelope E for D and for an aligned
superinstance J = (I, sim) of I0 is a non-empty set of |O|-tuples indexed by O, with
domain dom(I), such that:

1. for every FD ϕ : RL → Rr of ΣFD with RL ⊆ O and Rr ∈ O, for any t, t ′ ∈ E,
πRL(t) = πRL(t ′) implies tr = t′r;

2. for every FD ϕ : RL → Rr of ΣFD with RL ⊆ O and Rr /∈ O, for all t, t ′ ∈ E,
πRL(t) = πRL(t ′) implies t = t ′;

3. for every a ∈ dom(E), there is exactly one position Rq ∈ O such that a ∈
πRq(E), and then we also have a ∈ πRq(J);

4. for any fact F = R(a) of J and Rq ∈ O, if aq ∈ πRq(E), then F achieves D
in J and πO(a) ∈ E. C

Intuitively, the tuples in the envelope E satisfy the FDs of ΣFD within NDng(Rp)
(condition 1), and never overlap on positions that determine a position out of
NDng(Rp) (condition 2). Further, their elements already occur at the position where
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they will be reused, and we require for simplicity that there is exactly one such
position (condition 3). Last, the elements have the right sim-image for the fact
class D, and for simplicity, whenever a fact reuses an envelope element, we require
that it reuses a whole envelope tuple (condition 4).

We then extend this definition across all achieved fact classes in the natural way:
Definition 14.1.2. A global envelope E for an aligned superinstance J = (I, sim)
of I0 is a mapping from each D ∈ AFactCl to an envelope E(D) for D and J , such
that the envelopes have pairwise disjoint domains. C

It is not difficult to see that an aligned superinstance with a global envelope must
be fact-saturated, as for each D ∈ AFactCl, the envelope E(D) is a non-empty set of
non-empty tuples, and any element of this tuple must occur in a fact that achieves D,
by conditions 3 and 4. However, the point of envelopes is that they can contain more
than a single tuple, so we have multiple choices of elements to reuse.

For some fact classes (Rp,C) it is not useful for envelopes to contain more than
one tuple. This is the case if the position Rp is safe, meaning that no FD from
positions in O ··= NDng(Rp) determines a position outside of O. (Notice that by
definition of NDng(Rp), such an FD could never be a UFD.) Formally:
Definition 14.1.3. We call Rp ∈ Pos(σ) safe if there is no FD RL → Rr in ΣFD
with RL ⊆ NDng(Rp) and Rr /∈ NDng(Rp). Otherwise, Rp is unsafe.

We accordingly call a fact class (Rp,C) ∈ AFactCl safe or unsafe depending
on Rp. Observe that the second condition of Definition 14.1.1 is trivial for envelopes
on safe fact classes. C

It is not hard to see that when we apply a fact-thrifty (or even relation-thrifty)
chase step, and the exported position of the new fact is safe, then the problem
illustrated by Example 14.1 cannot arise. In fact, one could show that fact-thrifty or
relation-thrifty chase steps cannot introduce FD violations in this case. Because of
this, in envelopes for safe fact classes, we do not need more than one tuple, which
we can reuse as we did with fact-thrifty chase steps.

For unsafe fact classes, however, it will be important to have more tuples, and
to never reuse the same tuple twice. This motivates our definition of the remaining
tuples of an envelope, depending on whether the fact class is safe or not; and the
definition of envelope-saturation, which depends on the number of remaining tuples:
Definition 14.1.4. Letting E be an envelope for (Rp,C) ∈ AFactCl and J be an
aligned superinstance, the remaining tuples of E are E\πNDng(Rp)(J) if (Rp,C) is
unsafe, and just E if it is safe.

We call J n-envelope-saturated if it has a global envelope E such that E(D) has
> n remaining tuples for all unsafe D ∈ AFactCl. J is envelope-saturated if it is
n-envelope-saturated for some n > 0. C

In the rest of the section, inspired by the fact-saturation lemma, we will show that
we can construct envelope-saturated solutions. However, there are some complications
when doing so. First, we must show that we can construct sufficiently envelope-
saturated solutions, i.e., instances with sufficiently many remaining tuples. To do
this, we will need multiple copies of the chase, which explains the technical switch
from I0 to I ′0 in the statement of the next result. Second, for reasons that will become
clear later in this chapter, we need to ensure that the envelopes are large relative to
the resulting instance size. This makes the result substantially harder to show.
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Proposition 14.1.5 (Sufficiently envelope-saturated solutions). For any K ∈ N
and instance I0, we can construct an instance I ′0 formed of disjoint copies of I0, and
an aligned superinstance J of I ′0 that satisfies ΣFD and is (K · |J |)-envelope-saturated.

We prove the proposition in the rest of the section. It is not hard to see that I ′0
and J can be constructed separately for each fact class in AFactCl, and that this is
difficult only for unsafe classes. In other words, the crux of the matter is to prove
the following:

Lemma 14.1.6 (Single envelope). For any unsafe class D in AFactCl, instance I0
and constant factor K ∈ N, there exists N0 ∈ N such that, for any N > N0, we can
construct an instance I ′0 formed of disjoint copies of I0, and an aligned superinstance
J = (I, sim) of I ′0 that satisfies ΣFD, with an envelope E for D of size > K ·N , such
that |J | 6 N .

Indeed, let us prove Proposition 14.1.5 with this lemma, and we will prove the
lemma afterwards:

Proof of Proposition 14.1.5. Fix the constant K ∈ N and the initial instance I0,
and let us build I ′0 and the aligned superinstance J = (I, sim) of I ′0 that has a
global envelope E . As AFactCl is finite, we build one JD per D ∈ AFactCl with an
envelope ED for the class D, and we will define J ··=

⊔
D∈AFactCl JD and define E

by E(D) ··= ED for all D ∈ AFactCl. When D = (Rp,C) is safe, we proceed as
in the proof of the Fact-Saturated Solutions Lemma: take a single copy JD of the
truncated chase to achieve the class D, and take as the only fact of the envelope ED
the projection to NDng(Rp) of an achiever of D in JD. When D is unsafe, we use the
Single Envelope Lemma to obtain JD and the envelope ED. As AFactCl is finite and its
size does not depend on I0, we can ensure that that |ED| > (K+ 1) · |J | for all unsafe
D ∈ AFactCl by using the Single Envelope Lemma with K ′ ··= (K + 1) · |AFactCl|,
and taking N ∈ N which is larger than the largest N0 of that lemma across all
D ∈ AFactCl. Indeed, the resulting model J then ensures that |J | 6 |AFactCl| · N
and |ED| > (K + 1) · |AFactCl| ·N .

We now check that the resulting J and E satisfy the conditions. Each JD is an
aligned superinstance of an instance (I ′0)D which is formed of disjoint copies of I0 (for
unsafe classes) or which is exactly I0 (for safe classes), so J is an aligned superinstance
of I ′0 ··=

⊔
D∈AFactCl(I ′0)D, so I ′0 is also a union of disjoint copies of I0. There are no

violations of ΣFD in J because there are none in any of the JD. The disjointness of
domains of envelopes in the global envelope E is because the JD are disjoint. It is
easy to see that J is (K · |I|)-envelope-saturated, because |E(D)| > (K + 1) · |I| for
all unsafe D ∈ AFactCl, so the number of remaining facts of each envelope for an
unsafe class is > K · |I| because every fact of I eliminates at most one fact in each
envelope. Hence, the proposition is proven.

So the only thing left to do is to prove the Single Envelope Lemma. Let us
accordingly fix the unsafe class D = (Rp,C) in AFactCl. We will need to study more
precisely the FDs implied by the definition of an envelope for D (Definition 14.1.1).
We first introduce notation for them:

Definition 14.1.7. Given a set ΣFD of FDs on a relation R and O ⊆ Pos(R), the
FD projection ΣO

FD of ΣFD to O consists of the following FDs, which we close under
implication:
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1. the FDs RL → Rr of ΣFD such that RL ⊆ O and Rr ∈ O;

2. for every FD RL → Rr of ΣFD where RL ⊆ O and Rr /∈ O, the key dependency
RL → O. C

We will need to show that, as Rp is unsafe, ΣO
FD cannot have a unary key in O,

namely, there cannot be Rq ∈ O such that, for every Rr ∈ O, either Rq = Rr or the
UFD Rq → Rr holds in ΣO

FD. We show the contrapositive of this statement:

Lemma 14.1.8. For any Rp ∈ Pos(σ), letting O ··= NDng(Rp), if O has a unary
key in ΣO

FD, then Rp is safe.

Proof. Fix Rp ∈ Pos(σ) and let O ··= NDng(Rp). We first show that if O has a unary
key Rs ∈ O in the original FDs ΣFD, then Rp is safe. Indeed, assume the existence of
such an Rs ∈ O. Assume by way of contradiction that Rp is not safe, so there is an
FD RL → Rr in ΣFD with RL ⊆ O and Rr /∈ O. Then, as ΣFD is closed under the
transitivity rule, the UFD ϕ : Rs → Rr is in ΣUFD. Now, as Rr /∈ O, either Rr = Rp

or Rr ∈ Dng(Rp); in both cases, ϕ witnesses that Rs ∈ Dng(Rp), but we had Rs ∈ O,
a contradiction.

We must now show that if O has a unary key in O according to ΣO
FD, then O has

a unary key in O according to ΣFD. It suffices to show that for any two positions
Rq, Rs ∈ O, if the UFD ϕ′ : Rq → Rs holds in ΣO

FD then it also does in ΣFD. Hence,
fix Rq in O, and consider the set S of positions in O that Rq determines according
to ΣO

FD. Let Φ be the FDs in the list given in Definition 14.1.7, so that ΣO
FD is the

result of closing Φ under FD implication. We can compute S using the well-known
“attribute closure algorithm” [Abiteboul, Hull, and Vianu 1995], which starts at
S = {Rq} and iterates the following operation: whenever there is ϕ : RL → Rr such
that RL ⊆ S, add Rr to S.

Assume now that there is a position Rs in S such that ϕ′ : Rq → Rs does not
hold in ΣFD. This implies that, when computing S, we must have used some FD
RL → Rt from a key dependency κ in Φ, as they are the only FDs of Φ which are not
in ΣFD. The first time we did this, we had derived, using only FDs from ΣFD, that
RL ⊆ S, so that, in ΣFD, the key dependency Rq → RL holds. Now, κ witnesses
that there is an FD RL → Rr in ΣFD with Rr /∈ O, so that, as ΣFD is closed under
implication, we deduce that Rq → Rr holds in ΣFD with Rq in O and Rr /∈ O. As
before, this contradicts the definition of O ··= NDng(Rp). So indeed, there is no such
Rs in S.

Hence, if O has a unary key in O according to ΣO
FD, then it also does according

to ΣFD, and then, by the reasoning of the first paragraph, Rp is safe, which is the
desired claim.

We now know that O has no unary key in ΣO
FD. This allows us to introduce the

crucial tool needed to prove the Sufficiently Envelope-Saturated Solutions Proposition.
It is the following independent result, which is proved separately in Section 14.3
using a combinatorial construction.

Theorem 14.1.9 (Dense interpretations). For any set ΣFD of FDs over a relation R
with no unary key, for all K ∈ N, there exists N0 ∈ N such that for all N > N0,
we can construct a non-empty instance I of R that satisfies ΣFD and such that
|dom(I)| 6 N and |I| > K ·N .
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Further, we can impose a disjointness condition on the result I: we can
ensure that for all a ∈ dom(I), there exists exactly one Rp ∈ Pos(R) such that
a ∈ πRp(I).

We can now prove the Single Envelope Lemma and conclude the section. Choose
a fact Fach = R(b) of Chase(I0,ΣUID)\I0 that achieves the fact class D, and let I1
be obtained from I0 by applying UID chase steps on I0 to obtain a finite truncation
of Chase(I0,ΣUID) that includes Fach but no child fact of Fach. Consider the aligned
superinstance J1 = (I1, sim1) of I0, where sim1 is the identity.

Remember that we wrote D = (Rp,C), and O = NDng(Rp), which is non-empty.
Define a |O|-ary relation R|O (with positions indexed by O for convenience), define
ΣO

FD as in Definition 14.1.7, and consider ΣO
FD as FDs on R|O. Because D is unsafe,

by Lemma 14.1.8, R|O has no unary key in ΣO
FD. Letting K ∈ N be our target

constant for the Single Envelope Lemma, apply the Dense Interpretations Theorem
(Theorem 14.1.9) to R|O and ΣO

FD, taking K ′ ··= 2 ·K · |J1| as the constant. Define
N0 ∈ N for the Single Envelope Lemma as 2 ·max(|J1| , 1) ·max(N ′0, 1) where N ′0 is
obtained from the Dense Interpretations Theorem for K ′. Letting N ′ ∈ N be our
target size for the Single Envelope Lemma, using N ··= bN ′/ |J1|c as the target size
for the Dense Interpretations Theorem (which is > N ′0), we can build an instance
Idense ofR|O that satisfies ΣO

FD and such that |Idense| > N ·K ′ and |dom(Idense)| 6 N .
Let I ′dense ⊆ Idense be a subinstance of size exactly N of Idense such that we have

dom(I ′dense) = dom(Idense), that is, such that each element of dom(Idense) occurs
in some fact of I ′dense: we can clearly construct I ′dense by picking, for each element
of dom(Idense), one fact of Idense where it occurs, removing duplicate facts, and
completing with other arbitrary facts of Idense so the number of facts is exactly N .
Number the facts of I ′dense as F ′1, . . . , F ′N .

Let us now create N − 1 disjoint copies of J1, numbered J2 to JN . Let Ipre be the
disjoint union of the underlying instances of the Ji, let I ′0 be formed of the N disjoint
copies of I0 in Ipre, and define a mapping simpre from dom(Ipre) to Chase(I ′0,ΣUID)
following the simi in the expected way. It is clear that Jpre is an aligned superinstance
of I ′0. For 1 6 i 6 N , we call Fi = R(ai) the fact of Ii that corresponds to the
achiever Fach in Chase(I0,ΣUID). In particular, for all 1 6 i 6 N , we have that
sim(aij) = bj for all j, and aip is the only element of Fi that also occurs in other facts
of Ji, as Ji does not contain any descendent fact of Fi.

Intuitively, we will now identify elements in Jpre so that the restriction of the Fi
to O is exactly the F ′i , and this will allow us to use the instance Idense to define the
envelope. Formally, as the aij are pairwise distinct, we can define the function f that
maps each aij , for 1 6 i 6 N and Rj ∈ O, to πRj (F ′i ). In other words, f is a surjective
(but generally not injective) mapping, the domain of f is the projection to O of the Fi
in Ii, the range of f is dom(I ′dense), and f maps each element of the projection to the
corresponding element in F ′i . Extend f to a mapping f ′ with domain dom(Ipre) by
setting f ′(a) ··= f(a) when a is in the domain of f , and f ′(a) ··= a otherwise. Now,
let I ··= f ′(Ipre). In other words, I is Ipre except that elements in the projection to O
of the facts Fi are renamed, and some are identified, so that the projection to O of
{f ′(Fi) | 1 6 i 6 N}, seen as an instance of R|O-facts, is exactly I ′dense. Because aij
occurs only in Fi for all Rj 6= Rp, nd Rp /∈ O, this means that the elements identified
by f ′ only occurred in the Fi in Ipre.

We now build J = (I, sim) obtained by defining sim from simpre as follows: if a is
in the domain of f , then sim(a) ··= simpre(a′) for any preimage of a′ by f ′ (as we will
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see, the choice of preimage does not matter), and if a is not in the domain of f , then
sim(a) ··= simpre(a) because a is then the only preimage of a by f ′. We have now
defined the instance I ′0 formed of disjoint copies of I0 and the final J , and we define
E ··= Idense. We must now show that J is indeed an aligned superinstance of I ′0, and
that E is an envelope for I and D, and that they satisfy the required conditions.

We note that it is immediate that J = (I, sim) is a superinstance of I ′0. Indeed,
we have I ··= f(Ipre), and Ipre was a superinstance of I ′0, so it suffices to note that
dom(I ′0) is not in the domain of f : this is because the achiever Fach is not a fact of I0,
so the domain of f , namely, the projection of the Fi on O, does not intersect dom(I ′0).
Further, it is clear that J is finite and has N · |J1| facts, because this is the case of
Jpre by definition, and f ′ cannot have caused any facts of Jpre to be identified in J ,
because we have Rp /∈ O, so the projection of each Fi to Rp is a different element
which is mapped to itself by f ′. Hence, we have |J | = N · |J1| 6 N ′. Further, we
have |E| = |Idense| > N ·K ′ > bN ′/ |J1|c · 2 ·K · |J1|, and as N ′ > N0 > 2 · |J1| we
have bN ′/ |J1|c > (1/2) · (N ′/ |J1|). Hence, |E| > K ·N ′, so we have achieved the
required size bound.

We now show that J is indeed an aligned superinstance of I ′0. The technical
conditions on sim are clearly respected, because they were respected on Jpre, because
f ′ only identifies elements in Ipre\I0, and because the identified elements occur at
the same positions as their preimages so the directionality condition is respected.

We show that sim is a k-bounded simulation from J to Chase(I ′0,ΣUID) by showing
the stronger claim that it is actually a k′-bounded simulation for all k′ ∈ N, which we
show by induction on k′. The case of k′ = 0 is trivial. The induction case is trivial
for all facts except for the f ′(Fi), because the aij only occurred in Ipre in the facts Fi,
by our assumption that the Fi have no children in the Ii, and because the exported
position of Fach is Rp /∈ O. Hence, consider a fact F ′ = R(c) of I which is the image
by f ′ of some fact Fi. Choose 1 6 p 6 |R|. We wish to show that there exists a
fact F ′′ = R(d) of Chase(I ′0,ΣUID) such that sim(cp) = dp and for all 1 6 q 6 |R|
we have (I, cq) 6k′−1 (Chase(I ′0,ΣUID), dq). Let ai0j0 be the preimage of cp used to
define sim(cp); by the disjointness condition of the Dense Interpretations Theorem,
we must have j0 = p. Observe that Chase(I ′0,ΣUID) is formed of disjoint copies
of Chase(I0,ΣUID), so, recalling the definition of J ′i0 , consider the fact F ′′ = R(d)
of Chase(I ′0,ΣUID) corresponding to Fi0 in I. By definition, sim(cp) = sim(ai0j0) = dp.

We now show that for all 1 6 q 6 |R| we have (I, cq) 6k′−1 (Chase(I ′0,ΣUID), dq).
Fix 1 6 q 6 |R|. It suffices to show that sim(cq) 'k′ dq, as we can then use the
induction hypothesis to know that (I, cq) 6k′−1 (Chase(I ′0,ΣUID), sim(cq)), so that by
transitivity (I, cq) 6k′−1 (Chase(I ′0,ΣUID), dq). Hence, we show that sim(cq) 'k′ dq.
Let ai

′
0
j′0

be the preimage of cq used to define sim(cq). Again we must have j′0 = q by
the disjointness condition, and, considering the fact F ′′′ = R(e) of Chase(I ′0,ΣUID)
corresponding to Fi′0 in I, we have sim(cq) = eq. But as both F ′′′ and F ′′ are copies
in Chase(I ′0,ΣUID) of the same fact Fach of Chase(I0,ΣUID), it is indeed the case
that dq 'k′ eq. Hence, sim(cq) 'k′ dq, from which we conclude that F ′′ is a suitable
witness fact for F ′. By induction, we have shown that sim is indeed a k′-bounded
simulation from J to Chase(I ′0,ΣUID) for any k′ ∈ N, so that it is in particular a
k-bounded simulation.

We now show that J satisfies ΣFD. For this, it will be convenient to define the
overlap of two facts:
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Definition 14.1.10. The overlap OVL(F, F ′) between two facts F = R(a) and
F ′ = R(b) of the same relation R in an instance I is the subset O of Pos(R) such
that as = bs iff Rs ∈ O. If |O| > 0, we say that F and F ′ overlap. C

As Ipre satisfies ΣFD by the Unique Witness Property of the UID chase, any
new violation of ΣFD in I relative to Ipre must include some fact F = f ′(F ′i0), and
some fact F ′ 6= F that overlaps with F , so necessarily F ′ = f ′(F ′i1) for some i1 by
construction of I, and OVL(F, F ′) ⊆ O. If OVL(F, F ′) = O, then, by our definition
of f and of the F ′i , this implies that F ′i0 = F ′i1 , a contradiction because F 6= F ′. So
the only case to consider is when OVL(F, F ′) ( O, but we can also exclude this case:

Lemma 14.1.11. Let I be an instance, ΣFD be a conjunction of FDs, and F 6= F ′

be two facts of I. Assume there is a position Rp ∈ Pos(σ) such that, writing
O ··= NDng(Rp), we have OVL(F, F ′) ( O, and that {πO(F ), πO(F ′)} is not a
violation of ΣO

FD. Then {F, F ′} is not a violation of ΣFD.

Proof. Assume by way of contradiction that F and F ′ violate an FD ϕ : RL → Rr

of ΣFD, which implies that RL ⊆ OVL(F, F ′) ⊆ O and Rr /∈ OVL(F, F ′). Now, if
Rr ∈ O, then ϕ is in ΣO

FD, so that πO(F ) and πO(F ′) violate ΣO
FD, a contradiction.

Hence, Rr ∈ Pos(R)\O, and the key dependency κ : RL → O is in ΣO
FD, so that

πO(F ) and πO(F ′) must satisfy κ. Thus, because RL ⊆ OVL(F, F ′), we must have
OVL(F, F ′) = O, which is a contradiction because we assumed OVL(F, F ′) ( O.

Now, by by definition of I ′dense, we know that I ′dense satisfies ΣO
FD, so that

{πO(F ), πO(F ′)} is not a violation of ΣO
FD. Thus, we can conclude with Lemma 14.1.11

that {F, F ′} is not a violation of ΣFD, so that J satisfies ΣFD. We have thus shown
that J is an aligned superinstance of I ′0.

Last, we check that E is indeed an envelope for D and for J . Indeed, E
satisfies ΣO

FD by construction, so conditions 1 and 2 are respected. The first part of
condition 3 is ensured by the disjointness condition, and its second part follows from
our definition of I ′dense that ensures that any element in dom(E) occurs in a fact F ′i
of I ′dense, hence occurs in f ′(Fi) in J . Last, condition 4 is true because the elements
of dom(E) are only used in the f ′(Fi), and the sim-images of the f ′(Fi) are copies in
Chase(I ′0,ΣUID) of the same fact Fach in Chase(I0,ΣUID) that achieves D, so the Fi
are all achievers of D; further, by definition, their projection to O is a tuple of E
because it is a fact of I ′dense.

Hence, J is indeed an aligned superinstance of a disjoint union I ′0 of copies of I0,
J satisfies ΣFD, |J | 6 N ′, and J has an envelope E of size K · N ′ for D. This
concludes the proof of the Single Envelope Lemma, and hence of the Sufficiently
Envelope-Thrifty Solutions Proposition.

14.2 Envelope-Thrifty Chase Steps
We have shown that we can construct sufficiently envelope-saturated superinstances
of the input instance. The point of this notion is to introduce envelope-thrifty chase
steps, namely, thrifty chase steps that use remaining tuples from the envelope to fill
the non-dangerous positions:
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Definition 14.2.1. Envelope-thrifty chase steps are thrifty chase steps (Defini-
tion 11.3.2) which apply to envelope-saturated aligned superinstances. Following
Definitions 11.3.2 and 12.3.3, we write Sq for the exported position of the new fact Fn,
we write Fw = S(b′) for the chase witness, and we let D = (Sq,C) ∈ AFactCl be the
fact class of Fw. Analogously to Definition 11.3.2, we define an envelope-thrifty chase
step as follows: if NDng(Sq) is non-empty, choose one remaining tuple t of E(D),
and set br ··= tr for all Sr ∈ NDng(Sq).

We define a fresh envelope-thrifty step in the same way as a fresh fact-thrifty
step: all elements at dangerous positions are fresh elements only occurring at that
position. C

Example 14.2.2. Recall I0, τ , τ ′ and ϕ from Example 14.1. Now, consider
I ′0 ··= {S(a), T (z), S(a′), S(z′)} formed of two copies of I0, and I ′ ··= I ′0 t {R(a, b, c),
R(a′, b′, c′)} obtained by two chase steps: this is illustrated in solid black in Fig-
ure 14.1b on page 185. The two facts R(a, b, c) and R(a′, b′, c′) would achieve the
same fact class D, so we can define E(D) ··= {(b, c), (b′, c′), (b′, c), (b, c′)}.

We can now satisfy ΣUID on I ′ without violating ϕ, with two envelope-thrifty
chase steps that reuse the remaining tuples (b′, c) and (b, c′) of E(D): the new facts
and the pattern of equalities between them is illustrated in red in Figure 14.1b.

Recall that fact-thrifty chase steps apply to fact-saturated aligned superinstances
(Lemma 12.3.4). Similarly, envelope-thrifty chase steps apply to envelope-saturated
aligned superinstances:

Lemma 14.2.3 (Envelope-thrifty applicability). For any envelope-saturated superin-
stance I of an instance I0, UID τ : Rp ⊆ Sq and element a ∈ Wants(I, τ), we can
apply an envelope-thrifty chase step on a with τ to satisfy this violation.

Further, for any new fact S(e) that we can create by chasing on a with τ with
a fact-thrifty chase step, we can instead apply an envelope-thrifty chase step on a
with τ to create a fact S(b) with br = er for all Sr ∈ Pos(S)\NDng(Sr).

Proof. For the first part of the claim, as in the proof of the Fact-Thrifty Applicability
Lemma (Lemma 12.3.4), there is nothing to show unless NDng(Sq) is non-empty,
and the fact class D = (Sq,C) is then in AFactCl, where C is the tuple of the
'k-equivalence classes of the elements of the chase witness Fw. Hence, as J is
envelope-saturated, it has some remaining tuple for the class D that we can use to
define the non-dangerous positions of the new fact.

For the second part, again as in the proof of the Fact-Thrifty Applicability Lemma,
observe that the definition of envelope-thrifty chase steps only poses additional
conditions (relative to thrifty chase steps) on NDng(Sq), so that, for any fact that we
would create with a fact-thrifty chase step, we can change the elements at NDng(Sq) to
perform an envelope-thrifty chase step, using the fact that I is envelope-saturated.

Further, recall that we showed that relation-thrifty chase steps never violate ΣUFD
(Lemma 11.3.5). We now show that envelope-thrifty chase steps never violate ΣFD,
which is their intended purpose:

Lemma 14.2.4 (Envelope-thrifty FD preservation). For any n-envelope-saturated
aligned superinstance J that satisfies ΣFD, the result of an envelope-thrifty chase step
on J satisfies ΣFD.
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Proof. Fix J and its global envelope E . Let Fn = S(b) be the fact created by
the envelope-thrifty step, let τ : Rp ⊆ Sq be the UID, let J ′ = (I ′, sim′) be the
result of the chase step, let Fw be the chase witness, and let D be the fact class
of Fw. Write O ··= NDng(Sq). Assume by contradiction that I ′ 6|= ΣFD; as I |= ΣFD,
any violation of ΣFD in I ′ must be between the new fact Fn and an existing fact
F = S(c) of I. Recalling the definition of overlaps (Definition 14.1.10), note that
we only have br ∈ πSr(I) for Sr ∈ O by definition of thrifty chase steps, so we must
have OVL(Fn, F ) ⊆ O. Now, as πO(Fn) was defined using elements of dom(E(D)),
taking any Sr ∈ OVL(Fn, F ) ⊆ O (which is non-empty by definition of an FD
violation), we have cr = br ∈ πSr(E(D)), so that, by condition 4 of the definition
of the envelope E(D), we know that πO(c) is a tuple t ′ of E(D). Now, either
OVL(Fn, F ) ( O or OVL(Fn, F ) = O.

In the first case, we observe that, by conditions 1 and 2 of the definition of the
envelope E(D), we know that {πO(c), πO(b)} is not a violation of ΣO

FD. Together
with the fact that OVL(Fn, F ) ( O, this allows us to apply Lemma 14.1.11 and
deduce that {F, Fn} actually does not violate ΣFD, a contradiction.

In the second case, where OVL(Fn, F ) = O, we have t = t ′. Now, either D is safe
or D is unsafe. If D is unsafe, we have a contradiction because F witnesses that t
was not a remaining tuple of E(D), so we cannot have used t to define Fn. If D is
safe, then by definition there is no FD RL → Rr of ΣFD with RL ⊆ O and Rr /∈ O.
Now, as OVL(Fn, F ) = O, it is clear that F and Fn cannot violate any FD of ΣFD, a
contradiction again.

Last, recall that we showed that fresh fact-thrifty steps preserve the property of
being aligned (Lemma 12.3.5) and that non-fresh fact-thrifty steps also do when we
additionally assume k-essentiality, which they also preserve (Lemma 12.4.7). We now
prove the analogous claims for envelope-thrifty steps assuming envelope-saturation.
The only difference is that envelope-thrifty chase steps make envelope-saturation
decrease, unlike fact-thrifty steps which always preserved fact-saturation:

Lemma 14.2.5 (Envelope-thrifty preservation). For any n ∈ N, for any n-envelope-
saturated aligned superinstance J of I0, the result J ′ of a fresh envelope-thrifty chase
step on J is an (n− 1)-envelope-saturated aligned superinstance of I0. Further, if J
is k-essential, the claim holds even for non-fresh envelope-thrifty chase steps, and
the result J ′ is additionally k-essential.

Proof. We reuse notation from Lemma 14.2.4: considering an application of an
envelope-thrifty chase step: let J = (I, sim) be the aligned superinstance of I0, let
τ : Rp ⊆ Sq be the UID, write O ··= NDng(Sq), let Fw = S(b′) the chase witness, let
D = (Sq,C) be the fact class, let Fn = S(b) be the new fact to be created, and let
t be the remaining tuple of E(D) used to define Fn, and let J ′ = (I ′, sim′) be the
result.

We now prove that J ′ is still an aligned superinstance. We first adapt the Fresh
Fact-Thrifty Preservation Lemma (Lemma 12.3.5) to work with envelope-thrifty
chase steps. We can no longer use Lemma 11.3.5 to prove that J ′ |= ΣUFD, but
we have shown already that J ′ |= ΣFD in Lemma 14.2.4, so this point is already
covered. The only other point specific to fact-thriftiness is proving that sim′ is still
a k-bounded simulation, but it actually only relies on the fact that sim′(br) 'k b′r
in Chase(I0,ΣUID) for all Sr ∈ NDng(Sq), which is still ensured by envelope-thrifty
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chase steps: by conditions 3 and 4 of the definition of envelopes, we know that, for
any Sr ∈ NDng(Sq), the element tr already occurs at position Sr in a fact of I that
achieves D, so that sim(tr) 'k b′r.

Second, we adapt the Fact-Thrifty Preservation Lemma (Lemma 12.4.7) to
envelope-thrifty chase steps. Again, the only condition of fact-thrifty chase steps
used when proving that lemma is that sim′(br) 'k b′r in Chase(I0,ΣUID) for all
Sr ∈ NDng(Sq), which is still true. Hence, having adapted these two lemmas, we
conclude that J ′ has the required properties.

We now prove that E is still a global envelope of J ′ after performing an envelope-
thrifty chase step. The condition on the disjointness of the envelope domains only
concerns E itself, which is unchanged. Hence, we need only show that, for any
D′ ∈ AFactCl, E(D′) is still an envelope. All conditions of the definition of envelopes
except condition 4 are clearly true, because they were true in J , and they only
depend only on E(D′) or they are preserved when creating more facts. We now check
condition 4, which only needs to be verified on the new fact Fn.

Consider Su ∈ Pos(S) and St ∈ NDng(Su), and assume that bt ∈ πSt(E(D′)). As
E(D) is an envelope for J , by condition 3 of the definition, we have bt ∈ πSt(I) as
well, so that, by definition of thrifty chase steps, we must have St ∈ O. Now, as the
envelopes of E are pairwise disjoint, and as the br for Sr ∈ O are all in dom(E(D)),
we must have D = D′, and t witnesses that πO(b) ∈ E(D). Hence E is still a global
envelope of J ′.

Last, to see that the resulting J ′ is (n − 1)-envelope-saturated, it suffices to
observe that, for each unsafe class D ∈ AFactCl, the remaining tuples of E(D) for J ′
are those of E(D) for J minus at most one tuple (namely, some projection of Fn).
This concludes the proof.

Hence, we know that envelope-thrifty chase steps preserve being aligned and
also preserves ΣFD (rather than ΣUFD for fact-thrifty chase steps). Our goal is
then to modify the Fact-Thrifty Completion Proposition of the previous chapter
(Proposition 13.2.2) to use envelope-thrifty rather than fact-thrifty chase steps,
relying on the previous lemmas to preserve all invariants. The problem is that
unlike fact-saturation, envelope-saturation “runs out”; whenever we use a remaining
tuple t in a chase step to create Fn and obtain a new aligned superinstance J ′,
then we can no longer use the same t in J ′. This is why the result of an envelope-
thrifty chase step is less saturated than its input, and it is why we made sure in
the Sufficiently Envelope-Saturated Solutions Proposition that we could construct
arbitrarily saturated superinstances.

For this reason, before we modify the Fact-Thrifty Completion Proposition, we
need to account for the number of chase steps that the proposition performs. We
show that it is linear in the size of the input instance.

Lemma 14.2.6 (Accounting). There exists B ∈ N depending only on σ, k, and ΣU,
such that, for any aligned superinstance J = (I, sim) of I0, letting L be the preserving
fact-thrifty sequence constructed in the Fact-Thrifty Completion Proposition, we have
|L| < B · |I|.

Proof. It suffices to show that |L(J)| < B · |I|, because, as each chase step creates
one fact, we have |L| 6 |L(J)|.
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Remember that the fact-thrifty completion process starts by constructing an
ordered partition P = (P1, . . . , Pn) of ΣUID (Definition 13.1.1). This P does not
depend on I. Hence, as we satisfy the UIDs of each Pi in turn, if we can show that
the instance size only increases by a multiplicative constant for each class, then
the blow-up for the entire process is by a multiplicative constant (obtained as the
product of the constants for each Pi).

For trivial classes, we apply one chase round by fresh fact-thrifty chase steps
(Lemma 13.2.4), It is easy to see that applying a chase round by any form of thrifty
chase step on an aligned superinstance J1 = (I1, sim1) yield a result whose size
has only increased relative to J1 by a multiplicative constant. This is because
|dom(I1)| 6 |σ| · |I1|, and the number of facts created per element of I1 in a chase
round is at most |Pos(σ)|. Hence, for trivial classes, we only incur a blowup by a
constant multiplicative factor.

For non-trivial classes, we apply the Reversible Fact-Thrifty Completion Propo-
sition (Proposition 12.4.8). Remember that this lemma first ensures k-essentiality
by applying k + 1 fact-thrifty chase rounds (Lemma 12.4.6) and then makes the
result satisfy ΣUID using the sequence constructed by the Reversible Relation-Thrifty
Completion Proposition (Proposition 11.4.1). Ensuring k-essentiality only implies
a blow-up by a multiplicative constant, because it is performed by applying k + 1
fact-thrifty chase rounds, so we can use the same reasoning as for trivial classes.
Hence, we focus on the Reversible Relation-Thrifty Completion Proposition, and
show that it also causes only a blow-up by a multiplicative constant.

When we apply the Reversible Relation-Thrifty Completion Proposition to an
instance I, we start by constructing a balanced pssinstance P using the Balancing
Lemma (Lemma 10.3.2), and a ΣU-compliant piecewise realization PI of P by the
Realizations Lemma (Lemma 11.1.5), and we then apply fact-thrifty chase steps to
satisfy ΣUID following PI. We know that, whenever we apply a fact-thrifty chase
step to an element a, the element a occurs after the chase step at a new position
where it did not occur before. Hence, it suffices to show that |dom(P )| is within a
constant factor of |I|, because then we know that the final number of facts created
by the sequence of the Reversible Relation-Thrifty Completion Proposition will be
6 |dom(P )| · |Pos(σ)|.

To show this, remember that dom(P ) = dom(I) tH, where H is the helper set.
Hence, we only need to show that |H| is within a multiplicative constant factor
of |I|. From the proof of the Balancing Lemma, we know that H is a disjoint union
of 6 |Pos(σ)| sets whose size is linear in |dom(I)| which is itself 6 |σ| · |I|. Hence,
the Reversible Relation-Thrifty Completion Proposition only causes a blowup by a
constant factor. As we justified, this implies the same about the entire completion
process, and concludes the proof.

This allows us to deduce the minimal level of envelope-saturation required to
adapt the Fact-Thrifty Completion Proposition:

Proposition 14.2.7 (Envelope-thrifty completion). Let Σ = ΣFD ∧ ΣUID be finitely
closed FDs and UIDs, let B ∈ N be as in the Accounting Lemma, and let I0 be an
instance that satisfies ΣFD. For any (B · |J |)-envelope-saturated aligned superinstance
J of I0 that satisfies ΣFD, we can obtain by envelope-thrifty chase steps an aligned
superinstance Jf of I0 that satisfies Σ.
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Proof. We define envelope-thrifty sequences, and preserving envelope-thrifty se-
quences, analogously to (preserving) fact-thrifty sequences (Definition 12.4.9 and
Definition 13.2.1) in the expected manner, but further requiring that all intermediate
aligned superinstances remain envelope-saturated. This definition makes sense thanks
to the Envelope-Thrifty Preservation Lemma.

By the Fact-Thrifty Completion Proposition, there exists a preserving fact-thrifty
sequence L such that L(J) satisfies ΣUID, and |L| < B · |I|. Construct from L an
envelope-thrifty sequence L′ that non-dangerously matches L, by changing each
fact-thrifty chase step to an envelope-thrifty chase step, which we can do at each
individual step thanks to the Envelope-Thrifty Applicability Lemma. It is clear
that this is a preserving envelope-thrifty sequence, thanks to the Envelope-Thrifty
Preservation Lemma, and thanks to the fact that the Ensuring Essentiality Lemma
(Lemma 12.4.6) clearly adapts from fact-thrifty chase steps to envelope-thrifty chase
steps: again, it only relies on the fact that, letting Fn = S(b) be the new fact,
Fw = S(b′) the chase witness, and τ : Rp ⊆ Sq the UID, we have sim′(br) 'k b′r
in Chase(I0,ΣUID) for all Sr ∈ NDng(Sq). This also uses the fact that, by the
Accounting Lemma, we have |L| 6 B · |I|, so by the Envelope-Thrifty Preservation
Lemma, all intermediate aligned superinstances remain envelope-saturated.

Hence, Jf ··= L′(J) is an aligned superinstance of I0. Further, by the Thrifty
Sequence Rewriting Lemma (Lemma 12.4.11), as L(J) |= ΣUID, so does Jf . Last,
as J |= ΣFD, by the Envelope-Thrifty FD Preservation Lemma, so does Jf . This
concludes the proof.

We can now conclude the proof of Theorem 14.1. Start by applying the saturation
process of the Sufficiently Envelope-Saturated Solutions Proposition to obtain an
aligned superinstance J = (I, sim) of a disjoint union I ′0 of copies of I0, such that J
satisfies ΣFD and is (B · |I|)-envelope-saturated. Now, apply the Envelope-Thrifty
Completion Proposition to obtain an aligned superinstance Jf = (If , simf) of I ′0 that
satisfies Σ. We know that If satisfies Σ and is a k-sound superinstance of I ′0 for ACQ,
but clearly it is also a k-sound superinstance of I0, as is observed by the k-bounded
simulation from I ′ to Chase(I0,ΣUID) obtained by composing sim′ with the obvious
homomorphism from Chase(I ′0,ΣUID) to Chase(I0,ΣUID). This concludes the proof.

14.3 Constructing Dense Interpretations
All that remains is to show the Dense Interpretations Theorem:

Theorem 14.1.9 (Dense interpretations). For any set ΣFD of FDs over a relation R
with no unary key, for all K ∈ N, there exists N0 ∈ N such that for all N > N0,
we can construct a non-empty instance I of R that satisfies ΣFD and such that
|dom(I)| 6 N and |I| > K ·N .

Further, we can impose a disjointness condition on the result I: we can
ensure that for all a ∈ dom(I), there exists exactly one Rp ∈ Pos(R) such that
a ∈ πRp(I).

Fix the relation R, and let ΣFD be an arbitrary set of FDs which we assume
is closed under FD implication. Let ΣUFD be the UFDs implied by ΣFD; it is also
closed under FD implication. Recall the definition of OVL (Definition 14.1.10). We
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introduce a notion of tame overlaps for ΣUFD, which depends only on ΣUFD but is a
sufficient condition to satisfy ΣFD, as we will show.

Definition 14.3.1. We say a subset O ⊆ Pos(R) is tame for ΣUFD if O is empty or
for every Rp ∈ Pos(R)\O, there exists Rq ∈ Pos(R) such that:

• for all Rs ∈ O, the UFD Rq → Rs holds in ΣUFD,

• the UFD Rq → Rp does not hold in ΣUFD.

We say that an instance I has the tame overlaps property (for ΣUFD) if for every
F 6= F ′ of I, OVL(F, F ′) is tame. C

In particular, if an instance ensures that non-empty overlaps between pairs of
facts always have a unary key that determines precisely the overlap, then it has
tame overlaps; we will show a refinement of this as Lemma 14.3.5. We now claim
the following lemma, and its immediate corollary:

Lemma 14.3.2. If O ⊆ Pos(R) is tame for ΣUFD then there is no FD ϕ : RL → Rr

in ΣFD such that RL ⊆ O but Rr /∈ O.

Proof. If O is empty the claim is immediate. Otherwise, assume to the contrary the
existence of such an FD ϕ. As Rr /∈ O and O is tame, there is Rq ∈ Pos(R) such that
Rq → Rs holds in ΣUFD for all Rs ∈ O, but ϕ′ : Rq → Rr does not hold in ΣUFD.
Now, as RL ⊆ O, we know that Rq → Rs holds in ΣUFD for all Rs ∈ RL, so that, by
transitivity with ϕ, as ΣFD is closed by implication, ϕ′ holds in ΣFD. As ϕ′ is a UFD,
by definition of ΣUFD, ϕ′ holds in ΣUFD, a contradiction.

Corollary 14.3.3. For any instance I, if I has the tame overlaps property for ΣUFD,
then I satisfies ΣFD.

Proof. Considering any two facts F and F ′ in I, as O ··= OVL(F, F ′) is tame, we
know that for any FD ϕ : RL → Rr in ΣFD, we cannot have RL ⊆ O but Rr /∈ O.
Hence, F and F ′ cannot be a violation of ϕ.

We forget for now the disjointness condition in the Dense Interpretations Theorem,
which we will prove at the very end of the section (Corollary 14.3.6), and focus only
on the first part. We claim the following generalization of the result:

Theorem 14.3.4. Let R be a relation and ΣUFD be a set of UFDs over R. Let D
be the smallest possible cardinality of a key K of R (i.e., K ⊆ Pos(R) and for all
Rq ∈ Pos(R), there is Rp ∈ K such that Rp → Rq holds in ΣUFD). Let x be D

D−1 if
D > 1 and 1 otherwise.

For every N ∈ N, there exists a finite instance I of R such that |dom(I)| is O(N),
|I| is Ω(Nx), and I has the tame overlaps property for ΣUFD.

Observe that, thanks to the use of the tame overlaps, the result does not mention
higher-arity FDs, only UFDs; intuitively, tame overlaps ensures that the construction
works for any FDs that have the same consequences as UFDs.

It is clear that this theorem implies the first part of the Dense Interpretations
Theorem, because if R has no unary key for ΣFD then D > 1 and thus x > 1, which
implies that, for any K, by taking a sufficiently large N0, we can obtain for all
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N > N0 an instance I for R with 6 N elements and > K ·N facts that has the tame
overlaps property for ΣUFD; now, by Lemma 14.3.3, this implies that I satisfies ΣFD.

In the rest of this section, we prove Theorem 14.3.4, until the very end where
we additionally show that we can enforce the disjointness condition for the Dense
Interpretations Theorem. Fix the relation R and set of UFDs ΣUFD. The case ofD = 1
is vacuous and can be eliminated directly (consider the instance {R(ai, . . . , ai) | 1 6
i 6 N}). Hence, assume that D > 1, and let x ··= D

D−1 .

We first show the claim on a specific relation Rfull and set Σfull
UFD of UFDs. We will

then generalize the construction to arbitrary relations and UFDs. Let T ··= {1, . . . , D},
and consider a bijection ν : {1, . . . , 2D − 1} → P(T )\{∅}, where P(T ) denotes the
powerset of T . Let Rfull be a (2D − 1)-ary relation, and take Σfull

UFD ··= {Ri → Rj |
ν(i) ⊆ ν(j)}. Note that Σfull

UFD is clearly closed under implication of UFDs. Fix
N ∈ N, and let us construct an instance Ifull with O(N) elements and Ω(Nx) facts.

Fix n ··= bN1/(D−1)c. Let F be the set of partial functions from T to {1, . . . , n},
and write F = Ft t Fp, where Ft and Fp are respectively the total and the strictly
partial functions. We take Ifull to consist of one fact Ff for each f ∈ Ft, where
Ff = Rfull(af ) is defined as follows: for 1 6 i 6 2D − 1, afi ··= f|T\ν(i). In particular:

• afν−1(T ), the element of Ff at the position mapped by ν to T ∈ P(T )\{∅},
is the strictly partial function that is nowhere defined; note that Rν−1(T )

full is
determined by all positions in Σfull

UFD.

• afν−1({i}), the element of Ff at the position mapped by ν to {i} ∈ P(T )\{∅}, is
the strictly partial function equal to f except that it is undefined on i; note
that Rν−1({i})

full is determined by no other position of Rfull in Σfull
UFD.

Hence, dom(Ifull) = Fp (because ∅ is not in the image of ν), so that |dom(Ifull)| =∑
06i<D

(
D
i

)
ni. Remembering that D is a constant, this implies that |dom(Ifull)| is

O(nD−1), so it is O(N) by definition of n. Further, we claim that |Ifull| = |Ft| =
nD = Nx. To show this, consider two facts Ff and Fg. We show that Ff = Fg implies
f = g, so there are indeed |Ft| different facts in Ifull. As πν−1({1})(Ff ) = πν−1({1})(Fg),
we have f(t) = g(t) for all t ∈ T\{1}, and as D > 2, we can look at πν−1({2})(Ff)
and πν−1({2})(Fg) to conclude that f(1) = g(1), hence f = g as claimed. Hence, the
cardinalities of Ifull and of its domain are suitable.

We must now show that Ifull has the tame overlaps property for Σfull
UFD. For this

we first make the following general observation:

Lemma 14.3.5. Let ΣUFD be any conjunction of UFDs and I be an instance such
that I |= ΣUFD. Assume that, for any pair of facts F 6= F ′ of I that overlap, there
exists Rp ∈ OVL(F, F ′) which is a unary key for OVL(F, F ′). Then I has the tame
overlaps property for ΣUFD.

Proof. Consider F, F ′ ∈ I and O ··= OVL(F, F ′). If F = F ′, then O = Pos(R), and
O is vacuously tame. Otherwise, if F 6= F ′, let Rp ∈ Pos(R)\O. We take Rq ∈ O
to be the unary key of O. We know that Rq → Rs holds in ΣUFD for all Rs ∈ O, so
to show that O is tame it suffices to show that ϕ : Rq → Rp does not hold in ΣUFD.
However, if it did, then as Rq ∈ O and Rp /∈ O, F and F ′ would witness a violation
of ϕ, contradicting the fact that I satisfies ΣUFD.
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So we show that Ifull satisfies Σfull
UFD and that every non-empty overlap between

facts of Ifull has a unary key, so we can conclude by Lemma 14.3.5 that Ifull has tame
overlaps.

First, to show that Ifull satisfies Σfull
UFD, observe that (*) whenever ϕ : Ri

full → Rj
full

holds in Σfull
UFD, then ν(i) ⊆ ν(j), so that, for any fact F of Ifull, for any 1 6 t 6 D,

whenever (πj(F ))(t) is defined, so is (πi(F ))(t), and we have (πj(F ))(t) = (πi(F ))(t).
Further, by our construction, we easily see that (**) for any fact F of Ifull, for any
1 6 i 6 2D−1 and 1 6 t 6 D, the fact that (πi(F ))(t) is defined or not only depends
on i and t, not on F . Hence, consider a UFD ϕ : Ri

full → Rj
full in Σfull

UFD, let F and F ′
be two facts of Ifull such that πi(F ) = πi(F ′), and show that πj(F ) = πj(F ′). Take
1 6 t 6 D and show that either (πj(F ))(t) and (πj(F ′))(t) are both undefined, or
they are both defined and equal. By (**), either both are undefined or both are
defined, so it suffices to show that if they are defined then they are equal. But then, if
both are defined, by (*), we have (πj(F ′))(t) = (πi(F ′))(t) = (πi(F ))(t) = (πj(F ))(t).
So we conclude indeed that πj(F ) = πj(F ′), so that F and F ′ cannot witness a
violation of ϕ. Hence, Ifull |= Σfull

UFD.
Second, to show that non-empty overlaps in Ifull have unary keys, consider two

facts Ff = Rfull(af ) and Fg = Rfull(ag), with f 6= g so that Ff 6= Fg. Assume
that OVL(Ff , Fg) is non-empty, and let us show that it has a unary key. Let
O ··= {t ∈ T | f(t) = g(t)}, and let X = T\O; we have X 6= ∅, because otherwise
f = g, so we can define p ··= ν−1(X). We will show that

OVL(Ff , Fg) = {Ri ∈ Pos(Rfull) | X ⊆ ν(i)}

This implies that Rp ∈ OVL(Ff , Fg) and that Rp is a unary key of OVL(Ff , Fg),
because, for all Rq ∈ OVL(Ff , Fg), X ⊆ ν(q), so that Rp → Rq holds in Σfull

UFD.
To show the equality above, consider Ri such that X ⊆ ν(i). Then T\ν(i) ⊆ T\X.

Because afi = f|T\ν(I) and agi = g|T\ν(I), we have afi = agi by definition of O = T\X.
Thus Ri ∈ OVL(Ff , Fg). Conversely, if Ri ∈ OVL(Ff , Fg), then we have afi = agi , so
by definition of O we must have T\ν(i) ⊆ O = T\X, which implies X ⊆ ν(i).

Hence, Ifull is a finite instance of Σfull
UFD which satisfies the tame overlaps prop-

erty and contains O(N) elements and Ω(Nx) facts. This concludes the proof of
Theorem 14.3.4 for the specific case of Rfull and Σfull

UFD.

Let us now show Theorem 14.3.4 for an arbitrary relation R and set ΣUFD of
UFDs. Let K be a key of R of minimal cardinality, so that |K| = D. Let λ be a
bijection from K to T . Extend λ to a function µ such that, for all Rp ∈ Pos(R),
we set µ(Rp) ··= {λ(Rk) | Rk ∈ K such that Rk = Rp or Rk → Rp holds in ΣUFD};
note that this set is never empty.

Consider the instance Ifull for relation Rfull that we defined previously, and create
an instance I of R that contains, for every fact Rfull(a) of Ifull, a fact F = R(b) in I,
with bi = aν−1(µ(Ri)) for all 1 6 i 6 |R|.

We first show that |dom(I)| = O(N) and |I| = Ω(Nx). Indeed, for the first point,
we have dom(I) ⊆ dom(Ifull), and as we had |dom(Ifull)| = O(N), we deduce the
same of dom(I). For the second point, it suffices to show that we never create the
same fact twice in I for two different facts of Ifull. Assume that there are two facts
Ff = Rfull(a) and Fg = Rfull(a′) in Ifull for which we created the same fact F = R(b)
in I, and let us show that we then have f = g so that Ff = Fg. As |K| > 2, consider
Rk1 6= Rk2 in K. We have µ(Rk1) = {λ(Rk1)} and µ(Rk2) = {λ(Rk2)}. Hence,
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let ij ··= λ(Rkj) for j ∈ {1, 2}; as λ is bijective, we deduce from Rk1 6= Rk2 that
i1 6= i2. From the definition of bk1 we deduce that aν−1({i1}) = a′ν−1({i1}), and likewise
aν−1({i2}) = a′ν−1({i2}). Similarly to the proof of why Ifull has no duplicate facts, this
implies that f(t) = g(t) for all t ∈ T\{i1} and for all t ∈ T\{i2}. As i1 6= i2, we
conclude that f = g, so that Ff = Fg. Hence, we have |I| = |Ifull| = Ω(Nx).

Let us now show that I has tame overlaps for ΣUFD. Consider two facts F, F ′ of I
that overlap, and let O ··= OVL(F, F ′). We first claim that there exists ∅ ( K ′ ⊆ K,
such that, letting X ′ ··= {λ(Rk) | Rk ∈ K ′}, we have OVL(F, F ′) = {Ri ∈ Pos(R) |
X ′ ⊆ µ(Ri)}. Indeed, letting Ff and Fg be the facts of Ifull used to create F and F ′,
we previously showed the existence of ∅ ( X ⊆ T such that OVL(Ff , Fg) = {Ri ∈
Pos(Rfull) | X ⊆ ν(i)}. Our definition of F and F ′ from Ff and Fg makes it clear
that we can satisfy the condition by taking K ′ ··= λ−1(X), so that X ′ = X.

Consider now Rp ∈ Pos(R)\O. We cannot have X ′ ⊆ µ(Rp), otherwise Rp ∈ O.
Hence, there exists Rk ∈ K ′ such that λ(Rk) /∈ µ(Rp). This implies that Rk → Rp

does not hold in ΣUFD. However, as Rk ∈ K ′, we have λ(Rk) ∈ µ(Rq) for all Rq ∈ O,
so that Rk → O holds in ΣUFD. This proves that O = OVL(F, F ′) is tame. Hence, I
has the tame overlaps property, which concludes the proof of Theorem 14.3.4.

The only thing left is to show that we can enforce the disjointness condition in
the Dense Interpretations Theorem, namely:

Corollary 14.3.6. We can assume in the Dense Interpretations Theorem (Theo-
rem 14.1.9) the following disjointness condition on the resulting instance I: each
element occurs at exactly one position of the relation R. Formally, for all a ∈ dom(I),
there exists exactly one Rp ∈ Pos(R) such that a ∈ πRp(I).

Proof. Let I be the instance constructed in the proof of the Dense Interpreta-
tions Theorem, and consider the instance I ′ whose domain is {(a,Rp) | a ∈
dom(I), Rp ∈ Pos(σ)} and which contains for every fact F = R(a) of I a fact
F ′ = R(b) such that bp = (ap, Rp) for every Rp ∈ Pos(σ). Clearly this defines
a bijection ϕ from the facts of I to the facts of I ′, and for any facts F, F ′ of I ′,
OVL(F, F ′) = OVL(ϕ−1(F ), ϕ−1(F ′)). Thus any violation of the FDs ΣFD in I ′ would
witness one in I. Of course, |dom(I ′)| = |σ| · |dom(I)|, so to achieve a constant factor
of K between the domain size and instance size with the disjointness condition, we
need to use the proof of the Dense Interpretations Theorem with a constant factor
of K ′ ··= |σ| ·K.
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Chapter 15

Blowing Up Cycles

We are now ready to prove the Universal Models Theorem, which concludes the
proof of our Main Theorem (Theorem 9.3):

Theorem 9.1.3 (Universal models). The class of finitely closed UIDs and FDs has
finite universal models for CQ: for every conjunction Σ of FDs ΣFD and UIDs ΣUID
closed under finite implication, for any k ∈ N, for every finite instance I0 that
satisfies ΣFD, there exists a finite k-sound superinstance I of I0 that satisfies Σ.

To do this, we must ensure k-soundness for arbitrary Boolean CQs rather than
just acyclic CQs.

Intuitively, the only cyclic CQs that hold in Chase(I0,ΣUID) either have an
acyclic self-homomorphic match (so they are implied by an acyclic CQ that also
holds) or have all cycles matched to elements of I0. Hence, in a k-sound instance
for CQ, no other cyclic queries should be true. Our way to ensure this is by a cycle
blowup process: starting with the superinstance constructed by Theorem 14.1, which
satisfies Σ and is k-sound for ACQ, we build its product with a group of high girth.
The standard way to do so, inspired by [Otto 2002], is presented in Section 15.1.

The problem is that this blowup process may create FD violations. We work
around this problem using some additional properties ensured by our construction.
In Section 15.2, we accordingly show the Cautious Models Theorem, a variant of
Theorem 14.1 with additional properties. Section 15.2 is the only part of this chapter
that depends on the details of the previous chapters.

We then apply a slightly different blowup construction to that model, as described
in Section 15.3, which ensures that no FD violations are created. This blowup no
longer depends on the specifics of the construction, and does not depend on the
specific UIDs and FDs that hold; in particular, the blowup constructions do not even
require that the UIDs and FDs are finitely closed.

15.1 Simple Product
We first define a simple notion of product, which we can use to extend k-soundness
from ACQ to CQ, but which may introduce FD violations. Let us first introduce
preliminary notions:

Definition 15.1.1. A group G = (S, ·) over a finite set S consists of:

• an associative product law · : S × S → S;
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• a neutral element e ∈ S such that e · x = x · e = x for all x ∈ S;

• an inverse law ·−1 : S → S such that x · x−1 = x−1 · x = e for all x ∈ S.

We say that G is generated by X ⊆ S if all elements of S can be written as a product
of elements of X and X−1 ··= {x−1 | x ∈ X}.

Given a group G = (S, ·) generated by X, assuming |S| > 2, the girth of G under
X is the length of the shortest non-empty word w of elements of X and X−1 such
that w1 · · ·wn = e and wi 6= w−1

i+1 for all 1 6 i < n. C

The following result, originally from [Margulis 1982], is proven for |X| > 1 in,
e.g., [Otto 2012] (Section 2.1), and is straightforward for |X| = 1 (take Z/nZ):

Lemma 15.1.2. For all n ∈ N and finite non-empty set X, there is a finite group
G = (S, ·) generated by X with girth > n under X. We call G an n-acyclic group
generated by X.

In other words, in an n-acyclic group generated by X, there is no short product
of elements of X and their inverses which evaluates to e, except those that include a
factor x · x−1.

We now explain how to take the product of a superinstance I of I0 with such
a finite group G. This ensures that any cycles in the product instance are large,
because they project to cycles in G. We use a specific generator:

Definition 15.1.3. The fact labels of a superinstance I of I0 are Λ(I) ··= {lFi | F ∈
I\I0, 1 6 i 6 |F |}, where |F | is the arity of the relation for fact F . C

Now, we define the product of a superinstance I of I0 with a group generated
by Λ(I). We make sure not to blow up cycles in I0, so the result remains a
superinstance of I0:

Definition 15.1.4. Let I be a finite superinstance of I0 and G be a finite group
generated by Λ(I). The product of I by G preserving I0, written (I, I0)⊗G, is the
finite instance with domain dom(I) × G consisting of the following facts, for all
g ∈ G:

• For every fact R(a) of I0, the fact R((a1, g), . . . , (a|R|, g)).

• For every fact F = R(a) of I\I0, the fact R((a1, g · lF1 ), . . . , (a|R|, g · lF|R|)).

We identify (a, e) to a for a ∈ dom(I0), so (I, I0)⊗G is still a superinstance of I0. C

It will be simpler to reason about initial instances I0 where each element has
been individualized by the addition of a fresh fact that is unique to that element.
We give a name to this notion:

Definition 15.1.5. An individualizing instance I0 is such that, for each a ∈ dom(I0),
I0 contains a fact Pa(a) where Pa is a fresh unary predicate which does not occur in
queries, in UIDs or in FDs.

An individualizing superinstance of an instance I0 is a superinstance I1 of I0 that
adds precisely one unary fact Pa(a), for a fresh unary relation Pa, to each a ∈ dom(I0),
so that I1 is individualizing. In particular, we have dom(I0) = dom(I1), and I0 and
I1 match for all relations of σ that occur in the query q and the constraints Σ. C
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Figure 15.1: Product with a group of large girth (see Example 15.1.7)

We can now state the following property, which we will prove in the rest of this
section:

Lemma 15.1.6 (Simple product). Let Σ be finitely closed FDs and UIDs, let I be
a finite superinstance of an individualizing I0 and let G be a finite (2k + 1)-acyclic
group generated by Λ(I). If I is (k · (|σ| + 1))-sound for ACQ, I0, and Σ, then
(I, I0)⊗G is k-sound for CQ, I0, and Σ.

The following example illustrates the idea of taking the simple product of an
instance with a group of high girth:

Example 15.1.7. Consider F0 ··= R(a, b) and I0 ··= {F0}, illustrated in solid black
in the left part of Figure 15.1. Consider ΣUID consisting of τ : R2 ⊆ S1, τ ′ : S2 ⊆ R1,
τ−1, and (τ ′)−1. Let F ··= S(b, a), and I ··= I0t{F}, where F is a red dashed edge in
the drawing. I satisfies ΣUID and is sound for ACQ, but not for CQ: take for instance
q : ∃xy R(x, y) ∧ S(y, x), which is cyclic and holds in I while (I0,ΣUID) 6|=unr q.

We have Λ(I) = {lF1 , lF2 }. Identify lF1 and lF2 to 1 and 2 and consider the group
G ··= ({0, 1, 2},+) where + is addition modulo 3. The group G has girth 2 under
Λ(I).

The product Ip ··= (I, I0)⊗G, writing pairs as subscripts for brevity, is {R(a0, b0),
R(a1, b1), R(a2, b2), S(b1, a2), S(b2, a0), S(b0, a1)}. The right part of Figure 15.1 rep-
resents Ip. Here, Ip happens to be 5-sound for CQ.

We cannot directly use the simple product for our purposes, however, because
Ip ··= (If , I0)⊗G may violate ΣUFD even though our instance If satisfies ΣFD. Indeed,
there may be a relation R, a UFD ϕ : Rp → Rq in ΣUFD, and two R-facts F and F ′
in If\I0 with πRp,Rq(F ) = πRp,Rq(F ′). In Ip there will be images of F and F ′ that
overlap only on Rp, so they will violate ϕ.

Nevertheless, in the remainder of this section we prove the Simple Product Lemma,
as it will be useful for our purposes later. Remember that a match of a CQ in an
instance is witnessed by a homomorphism h, and that we also call the match the
image of h. We start by proving an easy lemma:

Lemma 15.1.8. For any CQ q and instance I, if I |= q with a witnessing homo-
morphism h that maps two different atoms of q to the same fact, then there is a CQ
q′ such that:

• |q′| < |q|

• q′ entails q, meaning that for any instance I, if I |= q′ then I |= q

• I |= q′
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Proof. Fix q, I, h, and let A = R(x) and A′ = R(y) be the two atoms of q mapped
to the same fact F by h. Necessarily A and A′ are atoms for the same relation R of
the fact F , and h(A) = h(A′) means that h(xi) = h(yi) for all Ri ∈ Pos(R).

Let dom(q) be the set of variables occurring in q. Consider the map f from dom(q)
to dom(q) defined by f(yi) = xi for all i, and f(x) = x if x does not occur in A′.
Observe that this ensures that h(x) = h(f(x)) for all x ∈ dom(q). Let q′ = f(q) be
the query obtained by replacing every variable x in q by f(x), and, as f(A′) = f(A),
removing one of those duplicate atoms so that |q′| < |q|. We claim that h′ ··= h|dom(q′)
is a match of q′ in I. Indeed, observe that any atom f(A′′) of q′ is homomorphically
mapped by h′ to h(A′′) because h′(f(x)) = h(x) for all x so h′(f(A′′)) = h(A′′).

To see why q′ entails q, observe that f defines a homomorphism from q to q′,
so that, for any instance I ′, if q′ has a match h′′ in I ′, then h′′ ◦ f is a match of q
in I ′.

Let us now prove the Simple Product Lemma. Fix the constraints Σ and the
superinstance I of the individualizing I0 such that I is ((|σ| + 1) · k)-sound for
ACQ, I0, and Σ. Fix the (2k + 1)-acyclic group G generated by Λ(I). Consider
Ip ··= (I, I0)⊗G, which is a superinstance of I0, up to our identification of (a, e) to
a for a ∈ dom(I0), where e is the neutral element of G. We must show that Ip is
k-sound for CQ, I0, and Σ.

We call a match h of a CQ q in Ip pure-instance-cyclic if every atom containing
two occurrences of the same variable is mapped by h to a fact of I0 ×G, and every
Berge cycle of q contains an atom mapped by h to a fact of I0 ×G. In particular,
if q is in ACQ then any match h of q in Ip is vacuously pure-instance-cyclic. Our
proof consists of two claims:

1. If a CQ q with |q| 6 k has a pure-instance-cyclic match h in Ip, then
Chase(I0,ΣUID) |= q.

2. If a CQ q with |q| 6 k has a match h in Ip which is not pure-instance-cyclic,
then there is a CQ q′ with |q′| < |q| such that q′ entails q and q′ has a match
in Ip.

The fact that Ip is k-sound for CQ clearly follows from the two claims: if a CQ q with
|q| 6 k has a match in Ip, then apply the second claim repeatedly until you obtain a
CQ q′ with |q′| < |q| 6 k, q′ entails q, and q′ has a pure-instance-cyclic match in Ip:
this must eventually occur because the empty query is in ACQ. Then use the first
claim to deduce that Chase(I0,ΣUID) |= q′, where it follows that Chase(I0,ΣUID) |= q.
So it suffices to prove these two claims.

We start by proving the first claim. Let q be a CQ with |q| 6 k that has a
pure-instance-cyclic match h in Ip.

We partition the atoms of q between the atoms A matched by h to I0 ×G and
the atoms A′ which are not: we can then write q as ∃x A(x)∧A′(x). Let A′′ consist
of the atom Pa(x) for each variable x occurring in A′ which is mapped by h to
an element a ∈ dom(I0 × G), and let q′ be the query ∃x A′(x) ∧ A′′(x). As I0 is
individualizing, it is immediate that h is a match of q′ in Ip.

We first claim that q′ is in ACQ. Indeed, no Berge cycle in q′ can use the
atoms of A′′ as they are unary, and for the same reason no atom in A′′ contains
two occurrences of the same variable. Further, A′ does not contain any Berge
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cycle or atom with two occurrences of the same variable, by definition of h being
pure-instance-cyclic. Hence, q′ is indeed in ACQ. Further, we have |q′| 6 k · (|σ|+ 1),
as |A′′| 6 |σ| · |A′| and we have |A′| 6 |q| 6 k, so that |q′| 6 k · (|σ| + 1). Now,
we know that I |= q′, as evidenced by the homomorphism pr from Ip to I defined
by pr : (a, g) 7→ a for all a ∈ dom(I) and g ∈ G. As I is (k · (|σ| + 1))-sound for
ACQ, and q′ is an ACQ query that holds in I with |q′| 6 k · (|σ|+ 1), we know that
Chase(I0,ΣUID) |= q′.

Now, as A′′ covers all variables of q′, by definition of I0 being individualizing,
the only possible match of q′ in the chase is the one that maps each variable x to
the a ∈ dom(I0) such that the atom Pa(x) is in A′′. Further, as h matched A to
facts of I0 such that h(x) = a where Pa(x) occurs in A′′, we can clearly extend the
match of q′ in Chase(I0,ΣUID) to a match of q in Chase(I0,ΣUID). This concludes
the proof of the first claim.

We now prove the second claim. Let q be a CQ with |q| 6 k that has a match
h in Ip which is not pure-instance-cyclic. Consider a Berge cycle C of q, of the
form A1, x1, A2, x2, . . . , An, xn, where the Ai are pairwise distinct atoms and the xi
pairwise distinct variables, where the Ai are mapped by h to facts not in I0×G, and
where for all 1 6 i 6 n, variable xi occurs at position qi of atom Ai and position
pi+1 of Ai+1, with addition modulo n ··= |C|. We assume without loss of generality
that pi 6= qi for all i. However, we do not assume that n > 2: either n > 2 and C is
really a Berge cycle according to our previous definition, or n = 1 and variable x1
occurs in atom A1 at positions p1 6= q1, which corresponds to the case where there
are multiple occurrences of the same variable in an atom.

For 1 6 i 6 n, we write Fi = Ri(ai) the image of Ai by h in Ip; by definition
of Ip, as Fi is not a fact of I0 × G, there is a fact F ′i = Ri(bi) of I and gi ∈ G

such that aij = (bij, gi · l
F ′i
j ) for Rj

i ∈ Pos(Ri). Now, for all 1 6 i 6 n, as h(xi) =
aiqi = ai+1

pi+1 for all 1 6 i 6 n, we deduce by projecting on the second component
that gi · l

F ′i
qi = gi+1 · l

F ′i+1
pi+1 , so that, by collapsing the equations of the cycle together,

lF
′
1
q1 · (l

F ′2
p2 )−1 · · · · · lF

′
n−1
qn−1 · (lF

′
n
pn )−1 · lF ′nqn · (l

F ′1
p1 )−1 = e.

As the girth of G under Λ(I) is > 2k + 1, and this product contains 2n 6 2k
elements, we must have either lF

′
i
qi = lF

′
i+1
pi+1 for some i, or lF

′
i
pi = lF

′
i
qi for some i. The

second case is impossible because we assumed that pi 6= qi for all 1 6 i 6 n. Hence,
necessarily lF

′
i
qi = lF

′
i+1
pi+1 , so in particular we must have n > 1 and F ′i = F ′i+1. Hence

the atoms Ai 6= Ai+1 of q are mapped by h to the same fact F ′i = F ′i+1. We conclude
by Lemma 15.1.8 that there is a strictly smaller q′ which entails q and has a match
in Ip, which is what we wanted to show. This concludes the proof of the second
claim, and of the Simple Product Lemma.

15.2 Cautiousness

As the simple product may cause FD violations, we will define a more refined notion
of product, which intuitively does not attempt to blow up cycles within fact overlaps.
In order to clarify this, however, we will first need to study in more detail the instance
If to which we will apply the process, namely, the one that we constructed to prove
Theorem 14.1. We will consider a quotient of If :
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Definition 15.2.1. The quotient I/∼ of an instance I by an equivalence relation ∼
on dom(I) is defined as follows:

• dom(I/∼) is the equivalence classes of ∼ on dom(I),

• I/∼ contains one fact R(A) for every fact R(a) of I, where Ai is the ∼-class
of ai for all Ri ∈ Pos(R).

The quotient homomorphism χ∼ is the homomorphism from I to I/∼ defined by
mapping each element of dom(I) to its ∼-class. C

We quotient If by the equivalence relation 'k (recall Definition 12.1.1). The
result may no longer satisfy Σ. However, it is still k-sound for ACQ, for the following
reason:

Lemma 15.2.2. Any k-bounded simulation from an instance I to an instance I ′
defines a k-bounded simulation from I/'k to I ′.

Proof. Fix the instance I and the k-bounded simulation sim to an instance I ′, and
consider I ′′ ··= I/'k. We show that there is a k-bounded simulation sim′ from I ′′

to I, because sim ◦ sim′ would then be a k-bounded simulation from I ′′ to I ′, the
desired claim. We define sim′(A) for all A ∈ I ′′ to be a for any member a ∈ A of
the equivalence class A in I, and show that sim′ thus defined is indeed a k-bounded
simulation.

We will show the stronger result that (I ′′, A) 6k (I, a) for all A ∈ dom(I ′′) and for
any a ∈ A. We do it by proving, by induction on 0 6 k′ 6 k, that (I ′′, A) 6k′ (I, a)
for all A ∈ dom(I ′′) and a ∈ A. The case k′ = 0 is trivial. Hence, fix 0 < k′ 6 k,
assume that (I ′′, A) 6k′−1 (I, a) for all A ∈ dom(I ′′) and a ∈ A, and show that this
is also true for k′. Choose A ∈ dom(I ′′), a ∈ A, we must show that (I ′′, A) 6k′ (I, a).
To do so, consider any fact F = R(A) of I ′′ such that Ap = A for some Rp ∈ Pos(R).
Let F ′ = R(a′) be a fact of I that is a preimage of F by χ'k , so that a′q ∈ Aq for
all Rq ∈ Pos(R). We have a′p ∈ A and a ∈ A, so that a′p 'k a holds in I. Hence, in
particular we have (I, a′p) 6k′ (I, a) because k′ 6 k, so there exists a fact F ′′ = R(a′′)
of I such that a′′p = a and (I, a′q) 6k′−1 (I, a′′q) for all Rq ∈ Pos(R). We show that
F ′′ is a witness fact for F . Indeed, we have a′′p = a. Let us now choose Rq ∈ Pos(R)
and show that (I ′′, Aq) 6k′−1 (I, a′′q). By induction hypothesis, as a′q ∈ Aq, we have
(I ′′, Aq) 6k′−1 (I, a′q), and as (I, a′q) 6k′−1 (I, a′′q), by transitivity we have indeed
(I ′′, Aq) 6k′−1 (I, a′′q). Hence, we have shown that (I ′′, A) 6k′ (I, a).

By induction, we conclude that (I ′′, A) 6k (I, a) for all A ∈ dom(I ′′) and a ∈ A,
so that there is indeed a k-bounded simulation from I ′′ to I, which, as we have
explained, implies the desired claim.

Let us thus consider I ′f ··= If/'k which is still k-sound for ACQ by the previous
lemma, and consider the homomorphism χ'k from If to I ′f . Our idea is to blow up
cycles in If by a mixed product that only distinguishes facts that have a different
image in I ′f by χ'k . This is sufficient to lift k-soundness from ACQ to CQ, and it
will not create FD violations on facts that have the same image by χ'k. Crucially,
however, we can show from our construction that all overlapping facts of If have the
same image by χ'k. Let us formalize this condition:
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Definition 15.2.3. Let I be an instance, let I1 ⊆ I, and let f be any mapping
with domain I. We say I is cautious for f and I1 if for any two overlapping facts,
namely, two facts F = R(a) and F ′ = R(b) of the same relation with ap = bp for
some Rp ∈ Pos(R), one of the following holds: F, F ′ ∈ I1, or f(ap) = f(bp) for all
Rp ∈ Pos(R). C

We conclude the section by presenting a strengthening of Theorem 14.1. This
is the only point in this chapter where we rely on the details of the process of the
previous chapters:

Theorem 15.2.4 (Cautious models). For any finitely closed Σ formed of UIDs ΣUID
and FDs ΣFD, instance I0, and k ∈ N, we can build a finite superinstance If of an
instance I1 such that:

• If satisfies Σ;

• If is k-sound for Σ, ACQ, and I1;

• I1 is an individualizing superinstance of a disjoint union of copies of I0;

• If is cautious for χ'k and I1.

We will use the Cautious Models Theorem in the next section. For now, let
us show how to prove it. Fix Σ, I0, and k ∈ N. Let I0,i be an individualizing
superinstance of I0, and apply k UID chase rounds with the UIDs of ΣUID to I0,i to
obtain I ′0,i. Apply the Sufficiently Envelope-Saturated Proposition to I ′0,i to obtain
an aligned superinstance J of a disjoint union I ′′0,i of copies of I ′0,i. Now, modify J to
J ′ and I ′′0,i to I ′1 by replacing the copies of the facts of I0,i\I0 by new individualizing
facts (i.e., make the individualizing facts unique across copies of I ′0,i). This ensures by
definition that I ′1 is the result of applying k UID chase rounds to an individualizing
superinstance of a disjoint union of copies of I0. Further, the modification to J ′
can be done so as to ensure that J ′ is an aligned superinstance of I ′1; the k chase
rounds applied when defining I ′0,i ensure that the sim mapping can still be defined
notwithstanding the change in the individualizing facts. Further, we have |J ′| = |J |,
so J ′ is still sufficiently envelope-saturated.

We now apply the Envelope-Thrifty Completion Proposition to the aligned
superinstance J ′ of I ′1 to obtain a superinstance Jf of I ′1 which is k-sound for Σ, ACQ,
and I ′1, and that satisfies Σ. Now, define I1 from I ′1 by removing the facts created in
the k UID chase rounds, so it is by definition an individualizing superinstance of a
disjoint union of copies of I0. As I ′1 is the result of applying chase rounds to I1, If is
also k-sound for Σ, ACQ and I1. Hence, If satisfies the first three conditions that
we have to show in the Cautious Models Theorem. The only thing left is to show
the last one, namely:

Lemma 15.2.5 (Cautiousness). If is cautious for χ'k and I1.

We show the Cautiousness Lemma in the rest of the section, which concludes the
proof of the Cautious Models Theorem.

We first show that overlapping facts in Jf = (If , simf) are cautious for the sim map-
ping that we construct, in terms of 'k-classes. Formally, let Ic ··= Chase(I1,ΣUID),
and let χ′'k be the homomorphism from Ic to Ic/'k. We claim:
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Lemma 15.2.6. If is cautious for χ′'k ◦ sim and I1.

In other words, whenever two facts F = R(a) and F ′ = R(b) have non-empty
overlap in If and are not both in I1, then, for any position Rp ∈ Pos(R), we have
sim(ap) 'k sim(bp) in Ic.

Proof. We first check that this claim holds on the result J ′ of the Sufficiently Envelope-
Saturated Proposition (with our modifications to the individualizing facts). J ′ is a
disjoint union of instances JD for each fact class D ∈ AFactCl. If D is safe, no facts
overlap in JD except possibly fact pairs in the copy of I0, hence, in I1. For unsafe D,
in Lemma 14.1.6, the only facts with non-empty overlap in JD are fact pairs in some
copy of I0, hence in I1, or they are the facts f ′(Fi), which all map to 'k-equivalent
sim-images by construction. So the claim holds on J ′.

Second, it suffices to show that the claim is preserved by envelope-thrifty chase
steps. By their definition, whenever we create a new fact Fn for a fact class D, the
only elements of Fn that can be part of an overlap between Fn and an existing fact
are envelope elements, appearing at the one position at which they appear in E(D).
Then, by condition 4 of the definition of envelopes (Definition 14.1.1), we deduce
that the two overlapping facts achieve the same fact class.

Returning to the proof of the Cautiousness Lemma, we now show that two elements
in Jf having 'k-equivalent sim images in Ic must themselves be 'k-equivalent in Jf .
We do it by showing that, in fact, for any a ∈ dom(If), not only do we have
(If , a) 6k (Ic, sim(a)), as required by the k-bounded simulation sim, but we also have
the reverse: (Ic, sim(a)) 6k (If , a); in fact, we even have a homomorphism from Ic
to If that maps sim(a) to a. The existence of this homomorphism is thanks to our
specific definition of sim, and on the directionality condition of aligned superinstances;
further, it only holds for the final result If , which satisfies ΣUID; it is not respected
at intermediate steps of the process.

To prove this, and conclude the proof of the Cautiousness Lemma, remember the
forest structure on the UID chase (Definition 12.4.2). We define the ancestry AF of a
fact F in Ic as I1 plus the facts of the path in the chase forest that leads to F ; if
F ∈ I1 then AF is just I1. The ancestry Aa of a ∈ dom(Ic) is that of the fact where
a was introduced.

We now claim the following lemma about Jf , which relies on the directionality
condition:

Lemma 15.2.7. For any a ∈ dom(If), there is a homomorphism ha from Asim(a)
to If such that ha(sim(a)) = a.

Proof. We prove that this property holds on If , by first showing that it is true of J ′
constructed by our modification of the Sufficiently Envelope-Saturated Solutions
Proposition. This is clearly the case because the instances created by Lemma 14.1.6
are just truncations of the chase where some elements are identified at the last level.

Second, we show that the property is maintained by envelope-thrifty steps; in
fact, by any thrifty chase steps (Definition 12.3.1) Consider a thrifty chase step
where, in a state J1 = (I1, sim1) of the construction of our aligned superinstance,
we apply a UID τ : Rp ⊆ Sq to a fact Fa = R(a) to create a fact Fn = S(b)
and obtain the aligned superinstance J2 = (I2, sim2). Consider the chase witness
Fw = S(b′). By Lemma 12.3.2, b′q is the exported element between Fw and its parent
in Chase(I0,ΣUID). So we know that for any Sr 6= Sq, we have Ab′r = Ab′q t {Fw}.
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We must build the desired homomorphism ha for all a ∈ dom(I2)\ dom(I1).
Indeed, for a ∈ dom(I1), by hypothesis on I1, there is a homomorphism ha from
Asim1(a) to I1 with ha(sim1(a)) = a, and as sim2(a) = sim1(a), we can use ha as the
desired homomorphism from Asim2(a) to I2. So let us pick b ∈ dom(I2)\ dom(I1) and
construct hb. By construction of I2, b must occur in the new fact Fn; further, by
definition of thrifty chase steps, we have defined sim2(b) ··= b′r for some Sr where
br = b. Now, as ap = bq is in dom(I1), we know that there is a homomorphism
hbq from Asim(bq) = Ab′q to I1 such that we have hbq(b′q) = bq. We extend hbq to the
homomorphism hb from Ab′r = Ab′q t {Fw} to I2 such that hb(b′r) = b, by setting
hb(Fw) ··= Fn and hb(F ) ··= h(F ) for any other F of Ab′r ; we can do this because, by
definition of the UID chase, Fw shares no element with the other facts of Ab′r (that is,
with Ab′q), except b′q for which our definition coincides with the existing image of b′q
by hbq . This proves the claim.

This allows us to deduce the following, which is specific to Jf , and relates to the
universality of the chase Ic:

Corollary 15.2.8. For any a ∈ dom(If), there is a homomorphism ha from Ic to If
such that ha(sim(a)) = a.

Proof. Choose a ∈ dom(If) and let us construct ha. Let h′a be the homomorphism
from Asim(a) to If with h′a(sim(a)) = a whose existence was proved in Lemma 15.2.7.
Now start by setting ha ··= h′a, and extend h′a to be the desired homomorphism, fact
by fact, using the property that If |= ΣUID: for any b ∈ dom(Ic) not in the domain
of h′a but which was introduced in a fact F whose exported element c is in the current
domain of h′a, let us extend h′a to the elements of F in the following way: consider
the parent fact F ′ of F in Ic and its match by h′a in If , let τ be the UID used to
create F ′ from F , and c′ ∈ dom(Ic) be the exported element between F and F ′ (so
h′a(c′) is defined). We know that c ··= h′a(c′) occurs in If at all positions where c′
occurs in Ic. Hence, because If |= τ , there must be a suitable fact F ′′ in If to extend
h′a to all elements of F by setting h′a(F ) ··= F ′′, which is consistent with the image
of c previously defined in h′a. The (generally infinite) result of this process is the
desired homomorphism ha.

We are now ready to show our desired claim:

Lemma 15.2.9. For any a, b ∈ dom(If), if sim(a) 'k sim(b) in Ic, then a 'k b in If .

Proof. Fix a, b ∈ dom(If). We have (If , a) 6k (Ic, sim(a)) because sim is a k-bounded
simulation; we have (Ic, sim(a)) 6k (Ic, sim(b)) because sim(a) 'k sim(b); and we
have (Ic, sim(b)) 6k (If , b) by Corollary 15.2.8 as witnessed by hb. By transitivity,
we have (If , a) 6k (If , b). The other direction is symmetric, so the desired claim
follows.

The Cautiousness Lemma (Lemma 15.2.5) follows immediately from Lemma 15.2.6
and Lemma 15.2.9. This concludes the proof of the Cautious Models Theorem.

15.3 Mixed Product
Using the Cautious Models Theorem, we now define the notion of mixed product,
which uses the same fact label for facts with the same image by h ··= χ'k :
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Definition 15.3.1. Let I be a finite superinstance of I1 with a homomorphism h to
another finite superinstance I ′ of I1 such that h|I1 is the identity and h|(I\I1) maps
to I ′\I1. Let G be a finite group generated by Λ(I ′).

The mixed product of I by G via h preserving I1, written (I, I1)⊗hG, is the finite
superinstance of I1 with domain dom(I) × G consisting of the following facts, for
every g ∈ G:

• For every fact R(a) of I1, the fact R((a1, g), . . . , (a|R|, g)).

• For every fact F = R(a) of I\I1, the fact R((a1, g ·lh(F )
1 ), . . . , (a|R|, g ·lh(F )

|R| )). C

We now show that the mixed product preserves UIDs and FDs when cautiousness
is assumed.

Lemma 15.3.2 (Mixed product preservation). For any UID or FD τ , if I |= τ and
I is cautious for h, then (I, I1)⊗h G |= τ .

Proof. Write Im ··= (I, I1)⊗h G and write I ′ for the range of h as before.
If τ is a UID, the claim is immediate even without the cautiousness hypothesis.

(In fact, the analogous claim could even be proven for the simple product.) Indeed,
for any a ∈ dom(I) and Rp ∈ Pos(σ), if a ∈ πRp(I) then (a, g) ∈ πRp(Im) for all
g ∈ G; conversely, if a /∈ πRp(I) then (a, g) /∈ πRp(Im) for all g ∈ G. Hence, letting
τ : Rp ⊆ Sq be a UID of ΣUID, if there is (a, g) ∈ dom(Im) such that (a, g) ∈ πRp(Im)
but (a, g) /∈ πSq(Im) then a ∈ πRp(I) but a /∈ πSq(I). Hence any violation of τ in Im
implies the existence of a violation of τ in I, so we conclude because I |= τ .

Assume now that τ is a FD ϕ : RL → Rr. Assume by contradiction that there
are two facts F1 = R(a) and F2 = R(b) in Im that violate ϕ, i.e., we have al = bl
for all l ∈ L, but ar 6= br. Write ai = (vi, fi) and bi = (wi, gi) for all Ri ∈ Pos(R).
Consider F ′1 ··= R(v) and F ′2 ··= R(w) the facts of I that are the images of F1 and F2
by the homomorphism from Im to I that projects on the first component. As I |= τ ,
F ′1 and F ′2 cannot violate ϕ, so as vl = wl for all l ∈ L, we must have vr = wr. Now,
as I is cautious for h and F ′1 and F ′2 overlap (take any Rl0 ∈ RL), either F ′1, F ′2 ∈ I1
or h(F ′1) = h(F ′2).

In the first case, by definition of the mixed product, there are f, g ∈ G such that
fi = f and gi = g for all Ri ∈ Pos(R). Thus, taking any l0 ∈ L, as we have al0 = bl0 ,
we have fl0 = gl0 , so f = g, which implies that fr = gr. Hence, as vr = wr, we have
(vr, fr) = (wr, gr), contradicting the fact that ar 6= br.

In the second case, as h is the identity on I1 and maps I\I1 to I ′\I1, h(F ′1) = h(F ′2)
implies that either F ′1 and F ′2 are both facts of I1 or they are both facts of I\I1; but
we have already excluded the former possibility in the first case, so we assume the
latter. By definition of the mixed product, there are f, g ∈ G such that fi = f · lh(F ′1)

i

and gi = g · lh(F ′2)
i for all Ri ∈ Pos(R). Picking any l0 ∈ L, from al0 = bl0 , we deduce

that f · lh(F ′1)
l0 = g · lh(F ′2)

l0 ; as h(F ′1) = h(F ′2), this simplifies to f = g. Hence, fr = gr
and we conclude like in the first case.

Second, we show that h : I → I ′ lifts to a homomorphism from the mixed product
to the simple product, so we can rely on the result of the Simple Product Lemma.

Lemma 15.3.3 (Mixed product homomorphism). There is a homomorphism from
(I, I1)⊗h G to (I, I1)⊗G.
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Proof. We use the homomorphism h : I → I1 to define the homomorphism h′

from Im ··= (I, I1) ⊗h G to Ip ··= (I, I1) ⊗ G by h′((a, g)) ··= (h(a), g) for every
(a, g) ∈ dom(I)×G.

Consider a fact F = R(a) of Im, with ai = (vi, gi) for all Ri ∈ Pos(R). Consider
its image F ′ = R(v) by the homomorphism from Im to I obtained by projecting
to the first component, and the image h(F ′) of F ′ by the homomorphism h. As
h|I1 is the identity and h|(I\I1) maps to I1\I1, h(F ′) is a fact of I1 iff F ′ is. Now by
definition of the simple product it is clear that Ip contains the fact h′(F ): it was
created in Ip from h(F ′) for the same choice of g ∈ G. This shows that h′ is indeed
a homomorphism, which concludes the proof.

We can now conclude our proof of the Universal Models Theorem (Theorem 9.1.3).
Let I1 be the individualizing union of disjoint copies of I0 and If be the superinstance
of I1 given by the Cautious Models Theorem applied to k′ ··= k · (|σ|+ 1). As I1 is
individualizing, we know that each element of I1 is alone in its 'k′-class in If , so
the restriction of If/'k′ to χ'k′ (I1) is actually I1 up to isomorphism; so we define I ′f
to be If/'k′ modified by identifying χ'k′ (I1) to I1; it is a finite superinstance of I1.
Let h be the homomorphism from If to I ′f obtained by modifying χ'k′ accordingly,
which ensures that h|I1 is the identity and h|If\I1 maps to I ′f\I1.

Let G be a (2k + 1)-acyclic group generated by Λ(I ′f), and consider Ip ··=
(I ′f , I1) ⊗ G. As If was k′-sound for ACQ, I1 and Σ, so is I ′f by Lemma 15.2.2,
so, as I1 is individualizing, Ip is k-sound for CQ, I1 and Σ by the Simple Product
Lemma. However, as we explained, it may be the case that Ip 6|= Σ. We therefore
construct Im ··= (If , I1)⊗h G. By the Mixed Product Homomorphism Lemma, Im
has a homomorphism to Ip, so it is also k-sound for CQ, I1 and Σ. Now, as I1
is an individualizing superinstance of a disjoint union of copies of I0, and as the
fresh relations in the individualizing superinstance I1 do not occur in queries or in
constraints, it is clear that Im is also k-sound for CQ, I0 and Σ. Further, by the
conditions ensured by the Cautious Models Theorem, If is cautious for h and I1. So,
by the Mixed Product Preservation Lemma, we have Im |= Σ because If |= Σ.

Hence, the mixed product Im is a finite k-universal instance for CQ, I0 and Σ.
This concludes the proof of the Universal Models Theorem, and hence of our main
theorem (Theorem 9.3).

Conclusion. We have thus shown that UIDs and FDs are finitely controllable up to finite
closure, which concludes the second part of the manuscript. To prove this result, we have
developed the first tools to build finite models on arbitrary arity schemas that satisfy both
referential constraints and number restrictions, while controlling which CQs are satisfied.

A general conclusion including perspectives for future work is given in the next chapter
of this manuscript; see in particular the second paragraph of Section 2 of the Conclusion.
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Conclusion and Perspectives

My PhD research has investigated the field of uncertain data management from
multiple angles. Its general principle was to leverage structure to work around
the intractability or undecidability of tasks such as probabilistic query evaluation,
open-world query answering, or possible and certain answer computation.

Specifically, I have followed three main axes. The first one, presented in Part I of
this manuscript, is the study of probabilistic query evaluation, under a structural
restriction on instances that bounds their treewidth. The second axis, not presented
here, was to investigate the structures needed to represent uncertainty on ordered
data, be it ordered facts or ordered numerical values. The third was the study of
open-world query answering, where we constrain the structure of possible completions
of an incomplete instance: I have studied the impact of assuming that structures are
finite for some constraint languages (Part II of this manuscript), and the decidability
in the infinite context of hybrid languages based on existential rules and description
logics (not presented here).

The first axis of my research integrates with the well-established line of research
on probabilistic databases [Suciu, Olteanu, Ré, and Koch 2011], in particular with the
well-known dichotomy result on queries [Dalvi and Suciu 2012], but I approached
the problem from the uncommon perspective of instance-based restrictions. For
this reason, my work is also connected to the field of algorithmic metatheorems
[Kreutzer 2008] pioneered by [Courcelle 1990]; but I have also tried to link it to the
different area of semiring provenance [Green and Tannen 2006]. The second axis of
my research is more prospective and does not follow an established research trend;
part of it [Amarilli, Amsterdamer, Milo, and Senellart 2016] relates to crowdsourcing,
which is one of the recent fields today where uncertainty management techniques
are needed; part of it [Amarilli, Ba, Deutch, and Senellart 2016] relates to the old
problem of possible and certain answers but in an unfamiliar order-based context.
The third axis relates to a long line of work on open-world query answering, which
I tried to investigate across community borders: I followed both the perspective
of description logics and existential rules [Amarilli and Benedikt 2015a], as well
as traditional database approaches in Part II of this manuscript. This latter result
connects to the specific line of works that has studied open-world query answering
in the finite (whose most recent representatives are [Bárány, Gottlob, and Otto 2010;
Rosati 2011; Gogacz and Marcinkowski 2013; Ibáñez-García, Lutz, and Schneider
2014]) and to the specific technical tools needed to address this.

I now conclude this thesis by presenting some remaining short-term challenges
for axes 1 and 3, and then presenting a long-term vision for provenance management
and reasoning.
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CONCLUSIONS AND PERSPECTIVES

1 Perspectives on Probabilistic Query Evaluation
There are many possible directions for future work about our instance-based di-
chotomy for tractable probabilistic query evaluation (presented in Part I), as well as
the other directions explored there.

Lower bounds. Our lower bounds (Chapter 6) show the intractability of prob-
abilistic query evaluation whenever instance treewidth is unbounded. The most
intriguing open question in this context is perhaps to understand whether the results
extend beyond arity-two signatures, i.e., whether minor extraction techniques can be
used on the primal graphs of arbitrary-arity instances. The main problem when doing
this is that multiple edges of the Gaifman graph may then be correlated, because they
correspond to the same higher-arity fact, so we cannot extract the exact minor that
we want. Maybe something can still be done, however, when the signature is fixed.
A related question is whether minor extraction can be derandomized, so as to show
#P-hardness in the usual sense and not under RP reductions (and without making
non-uniform complexity-theoretic assumptions), probably by modifying [Chekuri and
Chuzhoy 2014a].

Another question is about the language of queries needed to show hardness. I
use non-monotone first-order for probabilistic evaluation in Section 6.1, but maybe
the UCQ6= qp used in Section 6.4 would also be suitable for this, i.e., I suspect that
qp may really be intractable on arbitrary unbounded-treewidth families, not just in
the sense of not having polynomial-size OBDDs. I do not know how to show this,
however, under the arbitrary subdivisions caused by the minor extraction process.
In the same spirit, there could be more to do with the meta-dichotomy result, in
particular understanding the exact complexity of recognition for intricate queries,
and study their relationship with the safe and unsafe query classes of [Jha and Suciu
2013].

Still on the topic of lower bounds, I do not know whether the bounds on formula-
based representations (Section 3.6) can be improved, or whether superlinear lower
bounds can be shown for circuit representations of provenance when we do not
assume that treewidth is bounded. It seems very unlikely that much progress can
be done on this for now, however, as it is notoriously difficult to prove conciseness
gaps between Boolean circuits and formulae, and no supralinear bounds on Boolean
circuits are known at all for explicit functions [Iwama and Morizumi 2002].

Provenance semirings. The main question left open by our study of semiring
provenance on treelike instances (Chapter 5) is whether these constructions could
extend beyond UCQ 6=. Section 5.4 illustrates the problems that we face when doing
so, but I do not know whether they could not be addressed with more expressive
provenance representations, for instance using formal series [Green, Karvounarakis,
and Tannen 2007] or a circuit representation thereof; or drawing a connection with
weighted notions of tree automata or weighted versions of monadic second-order logic
[Droste and Gastin 2007; Kreutzer and Riveros 2013], where one could formalize an
intrinsic notion of the multiplicity of a fact. Alternatively, one could study more
expressive queries but in more restricted semirings, e.g., absorptive semirings [Deutch,
Milo, Roy, and Tannen 2014].
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Tractability in combined complexity. Turning to the question of extending
our upper bounds for probabilistic query evaluation, an important limitation of our
current results is that they only look at data complexity, namely, complexity in
the input instance. They do not account for combined complexity, which may be
exponential in the instance treewidth, and non-elementary in the GSO query [Meyer
1975]. It may be possible, however, to achieve lower combined complexities when
we restrict to more limited query languages. In particular, maybe this can be done
in the more recent formalism of monadic Datalog [Gottlob, Pichler, and Wei 2010],
which has been applied to counting and enumeration problems [Pichler, Rümmele,
and Woltran 2010], but not yet to provenance, as far as I know.

Query-based vs instance-based methods. We now know that probabilistic
query evaluation can be made tractable when the query is safe [Dalvi and Suciu 2012]
or when the instance has bounded-treewidth (Part I), and is intractable otherwise.
Is it possible to design probabilistic query evaluation techniques that would depend
both on the instance and query, and identify tractable cases where neither the query
nor the instance family would be tractable in isolation? Ideally, such a joint criterion
should imply both the tractability of safe queries and the tractability of bounded-
treewidth instances, while implying new tractability results when restricting both
the instances and queries.

The notion of unfolding introduced in Section 4.5 could be a first tool to develop
such a criterion, by understanding in which cases one can unfold the instance while
respecting the query, maybe connected to a notion of query-dependent treewidth, i.e.,
treewidth that only respects instance joins that matter for the query. One could
also investigate whether unfolding could not be a method for approximate query
evaluation, by unfolding the instance to be treelike even when breaking some matches;
it would be interesting to study how this idea relates to the notion of dissociation
[Gatterbauer and Suciu 2015] from the query-based perspective.

Last, to develop practical evaluation schemes in generally intractable cases, it
would be interesting to study how our exact methods, or approximations based on
them, can be combined with sampling-based techniques, which apply to any instances
and queries but are not exact. There have been initial efforts in this direction [Maniu,
Cheng, and Senellart 2014] but this approach could be further extended.

2 Perspectives on Open-World Query Answering
This section presents future direction for my work on open-world query answering,
both in the unrestricted case [Amarilli and Benedikt 2015a] and in the finite case
(Part II).

Expressive frontier-one constraints. I have shown with Michael Benedikt
[Amarilli and Benedikt 2015a] that open-world query answering (in the unrestricted
case) is decidable when we allow both frontier-one existential rules with a certain
restriction [Baget, Leclère, Mugnier, and Salvat 2009] and highly expressive rules
on arity-two predicates: namely, the guarded two-variable fragment of first order
logic with counting quantifiers, GC2 [Pratt-Hartmann 2009], which capture many
expressive description logics such as ALCQIb [Tobies 2001].
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The resulting language, however, is not very uniform, because its syntax only
allows constraints that are written in either formalism. One could then ask whether
there could be a general language with a unified syntax that would still enjoy decidable
open-world query answering, e.g., extending frontier-one rules with disjunction,
negation, etc., or alternatively extending GC2 to allow expressive “frontier-one”
formulae on higher-arity predicates, and non-conflicting functional dependencies in
some sense. We do not understand either whether our results could be extended to
cover some non-GC2 features that are decidable in the arity-two context, such as
transitivity [Glimm, Horrocks, Lutz, and Sattler 2008] or nominals [Calvanese, Eiter,
and Ortiz 2009; Rudolph and Glimm 2010].

Our study has also been mostly limited to the decidability of query answering,
and not on complexity. We do not know which fragments of existential rules can be
added to which fragments of description logics while ensuring that the complexity
remains tractable.

Finite query answering. For the specific question of finite query answering,
studied in Part II, the main question is whether our results could extend to more
expressive languages. We have chosen to remain in the database context of functional
dependencies and inclusion dependencies, but a natural question would be to study
whether the language used in [Ibáñez-García, Lutz, and Schneider 2014] could be
generalized to higher-arity, and whether we could show the decidability of finite
query answering for such a language, capturing both our current results and theirs.
In particular, could we generalize [Cosmadakis, Kanellakis, and Vardi 1990] to show
a finite closure procedure for such a generalized language?

Another interesting angle would be to go back to the arity-two context, where
our higher-arity functional dependencies translate to path functional dependencies
[Weddell 1989; Toman and Weddell 2005], and study the decidability of finite
implication and query answering for such dependencies. Maybe our decidability
result could be rephrased and generalized in this way.

More generally, our understanding of finite open-world query answering is still
quite unsatisfactory when compared to the unrestricted variant. In the unrestricted
case, for instance, we can use the non-conflicting condition [Calì, Lembo, and Rosati
2003a; Calì, Gottlob, and Pieris 2012] to show that query answering is decidable. For
finite query answering, we know that it does not suffice [Rosati 2006, Theorem 7],
intuitively because the finite closure of non-conflicting dependencies may not itself be
non-conflicting. However, could there be a requirement that would be stronger than
the non-conflicting condition, and ensures that the finite closure of dependencies can
be computed and still satisfies the condition? If yes, this would be a first step to
show the decidability of finite query answering for more expressive constraint classes.

3 Long-Term Plans: Keeping Track of Provenance
for Reasoning

I have presented several directions for future work suggested by my PhD research. I
conclude this manuscript with a brief description of a more general and ambitious
plan for future research: the problem of open-world query answering and reasoning
while maintaining provenance information.
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Many new structured data sources have appeared on the Web in the last few years:
general-purpose sources like DBpedia [Bizer et al. 2009], YAGO [Suchanek, Kasneci,
and Weikum 2007], or more recently Wikidata [Vrandečić and Krötzsch 2014]; domain-
specific sources like OpenStreetMaps [Haklay and Weber 2008]; datasets extracted
from semantic annotations such as Web Data Commons [Mühleisen and Bizer 2012];
open datasets such as https://data.gov/ [GSA 2015] or https://data.gouv.fr/
[Etalab 2015]. We can use open-world query answering to reason over such sources
and compute query results under logical constraints, but we need to account for
uncertainty: Web data is often incorrect, and the rules that we use to reason on such
data may be incorrect as well, e.g., they may come from data mining or machine
learning.

I believe that this problem should be addressed by extending open-world query
answering techniques to incorporate provenance management, to represent in a
generic and expressive way the initial facts and the deduction rules that were used.
Indeed, if the results of open-world query answering are annotated by provenance
information, we could use the annotations to estimate the reliability of results, for
instance with probabilistic methods as in Part I, or with coarser methods to work
around intractability issues. We could also use these annotations for the many other
applications of provenance (see Chapter 5).

However, there are many new challenges that must be faced to extend provenance
management techniques to the open-world query answering problem, where query
evaluation is performed by reasoning on the initial data and logical constraints.
How can we extend expressive provenance representations, such as semiring-based
provenance, and represent the possibly complex and numerous ways through which
an open-world query answer can be deduced from the initial facts and rules? Can
provenance defined on Datalog proof trees be extended to more general representations
of proofs for logical constraint languages, while preserving desirable properties such
as commutation with homomorphisms? Could such an expressive provenance be
computed efficiently, and which models (such as provenance circuits [Deutch, Milo,
Roy, and Tannen 2014]) can be used to represent it concisely? Could such a
provenance represent the dependence on missing values or NULLs, for incomplete data
sources, or indicate how query results would change if new facts were added to our
open-world sources?

There are also many challenges to address in order to use such provenance
annotations, for instance to determine which answers are correct and relevant.
Assume that the user gives us a coarse notion of preference, relevance, recency, or
reliability, by defining an order relation on initial facts to indicate which ones are
better than others. How can we propagate this order information to the complex
annotations of the query results, to determine which ones of the results are more
accurate? For probabilistic representations, can we define principled probabilistic
models in open-world contexts where an arbitrarily high number of new facts can be
derived, and can we perform probabilistic computations efficiently in such situations,
avoiding intractability? A natural question is also to generalize such methods to
cases where the reasoning rules themselves are probabilistic: repeated application of
rules should make our confidence in the results decrease, but multiple independent
derivations of an answer should make our confidence increase. Another extension
would be to ask for user feedback to verify query answers or solve inconsistencies:
which questions should we ask to the users, and how can we make sense of their
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feedback in terms of the original data?

My vision for uncertainty management for Web data is thus that it should be
attacked through general and expressive provenance representations, such as semiring-
based ones; that it should apply, beyond query evaluation, to open-world query
answering under expressive (yet decidable) logical constraints; and that it should be
used, beyond quantitative probability evaluation, to the many other applications of
provenance, in particular to avoid intractability.
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Unrelated Work

This appendix reviews some additional work that I have performed during my PhD,
but which is not directly relevant to the topic of my thesis. Please refer to the end
of the Introduction on page 11 for more details.

Complexity of Taxonomy-Based Crowd Mining
I have studied with Yael Amsterdamer and Tova Milo the problem of mining frequent
itemsets by asking questions to the crowd. This amounts to learning a monotone
predicate on a distributive lattice, using oracle queries. We studied the computational
complexity of this problem and proposed algorithms for this task.

This work was presented at the ICDT’14 conference [Amarilli, Amsterdamer, and
Milo 2014a].

Web Entity Extraction Using Unique Identifiers
I have collaborated with Fabian M. Suchanek to a research work by Aliaksandr
Talaika and Joanna Biega on the topic of Web entity extraction schemes relying
on unique identifiers with a fixed structure, such as ISBNs, GTINs, DOIs, email
addresses, etc. This comparatively simple approach, with some preprocessing steps,
was able to harvest millions of unique entities from a corpus of Web pages.

The work was presented at the WebDB’15 workshop of SIGMOD [Talaika, Biega,
Amarilli, and Suchanek 2015].

Possibility for Probabilistic XML
I have studied the tractability of the possibility problem for probabilistic XML docu-
ments in various formalisms, namely, determining whether a given XML document
is a possible world of a probabilistic XML document, and optionally computing the
probability of this outcome. My work established the tractability boundary between
tractable and intractable phrasings of this problem.

The work was presented at the AMW’14 workshop [Amarilli 2014], and an
extended version was published as a journal article [Amarilli 2015a].
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Recent Topics of Research around YAGO
I have collaborated with Luis Galárraga, Nicoleta Preda, and Fabian M. Suchanek,
to write an invited paper to APWEB’14 [Amarilli, Galárraga, Preda, and Suchanek
2014], presented by Fabian, on the topic of recent research around the YAGO
knowledge base [Suchanek, Kasneci, and Weikum 2007], to present my pre-doctoral
work on large-scale ontology alignment using YAGO.

XML Pricing Schemes
I have worked with Tang Ruiming, Stéphane Bressan, and Pierre Senellart on the
topic of pricing schemes for XML documents. The goal of these schemes is to allow
interested users to buy only a sample of the dataset, at a fraction of the cost, and
we studied efficient sampling schemes for trees to address this problem.

This work was published as [Tang, Amarilli, Senellart, and Bressan 2014; Tang,
Amarilli, Senellart, and Bressan 2016].

Uncertainty, Intensionality, and Structure
I have collaborated with Pierre Senellart and Silviu Maniu on an invited paper for
the SIGWEB Newsletter, presenting the topic of intensional data [Amarilli, Maniu,
and Senellart 2015].
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Résumé en français

This appendix is a summary in French of my main contributions during my PhD. It is a
translation of the General Introduction and of Appendix A. It also includes an English-
to-French lexicon which summarizes the French translations used for technical terms.
This appendix does not present any additional scientific content relative to the rest of the
thesis and may be safely skipped.

Ce résumé en français présente de manière synthétique les principales contributions
scientifiques exposées en détail dans notre manuscrit de thèse, et résume notre recherche
de doctorat en un sens plus large. Il suit le plan de l’introduction générale en anglais
située au début du manuscrit ainsi que l’annexe A, et se termine par un lexique qui
récapitule les traductions utilisées pour les termes techniques.

La plus grande réussite de la recherche en bases de données est le modèle relationnel
[Codd 1970]. Ce modèle a donné naissance à un domaine entier de recherche théorique,
tout en continuant à avoir aujourd’hui une importance pratique considérable. Les
systèmes de gestion de bases de données relationnelles constituent désormais une
abstraction omniprésente utilisée en informatique, au même titre que les compilateurs
ou les systèmes de fichiers : ils fournissent une interface déclarative de haut niveau
que les applications peuvent utiliser, et s’appuient sur de nombreuses optimisations
implantées dans les moteurs de base de données, qui sont efficaces et sont toutefois
suffisamment génériques pour ne pas dépendre du domaine d’application.

Malheureusement, le modèle relationnel ne permet pas de gérer l’incertitude
sur les données qu’il représente. En particulier, il ne peut pas exprimer les notions
suivantes de façon satisfaisante.

Valeurs manquantes. Dans une base de données d’utilisateurs, par exemple, il est
possible que certains utilisateurs n’aient pas rempli certains champs au moment
de leur inscription, ou que de nouveaux champs aient été ajoutés depuis qu’ils
se sont inscrits.

Données incomplètes. Les données dont on dispose ne représentent pas toujours
l’intégralité des informations disponibles ; par exemple, lors de l’extraction
d’une base de données à partir du Web, il peut s’avérer nécessaire de répondre
à une requête à partir du sous-ensemble des données qui ont déjà été extraites.

Données périmées. Les numéros de téléphone et les adresses, par exemple, de-
viennent souvent incorrects avec le temps.
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Données erronées. Les données peuvent être simplement inexactes en premier
lieu, pour diverses raisons : elles peuvent avoir été mal saisies, s’appuyer sur
des suppositions incorrectes, etc.

Pourtant, la gestion de données incertaines est un problème dont l’importance se
fait de plus en plus sentir. En effet, aujourd’hui, de nombreux jeux de données sont
extraits à partir du texte en langue naturelle disponible sur le Web, en utilisant des
méthodes d’extraction automatiques et faillibles [Carlson et al. 2010] ; d’autres sont
intégrés à partir de sources diverses à travers des appariements de schémas incertains
[Dong, Halevy, and Yu 2007] ; d’autres encore sont créés par des utilisateurs qui
contribuent à des bases de connaissances collaboratives sans être nécessairement
dignes de confiance [Vrandečić and Krötzsch 2014] ; d’autres encore sont inférés
à partir de réponses imprécises fournies par des utilisateurs sur les plateformes
d’externalisation ouverte à partir de la foule [Amsterdamer, Grossman, Milo, and
Senellart 2013; Parameswaran et al. 2012] ; plus généralement, d’autres données sont
produites par des techniques de fouille de données ou d’apprentissage. Contrairement
aux bases de données conçues à la main, il n’est plus possible de supposer que les
données ainsi obtenues ne contiennent pas d’erreurs, ou que l’on pourra corriger
manuellement chacune de leurs erreurs dès qu’on les aura identifiées. Les données
sont incomplètes et contiennent des inexactitudes, et c’est une réalité dont il faut
tenir compte quand on les utilise.

Pour l’instant, cependant, il n’y a guère qu’un seul aspect de la gestion de données
incertaines qui soit véritablement pris en compte par les systèmes de gestion de
bases de données couramment utilisés en pratique : il s’agit du problème des valeurs
manquantes, avec la notion de NULLs dans le langage SQL. Malheureusement, de
nombreuses difficultés se cachent dans la sémantique des NULLs ainsi que le standard
SQL la définit [ISO 2008], et certaines de ces difficultés ont été identifiées très tôt
[Grant 1977]. On peut notamment déplorer les problèmes suivants :

• Les NULLs peuvent uniquement représenter les valeurs manquantes dans les
enregistrements : ils ne peuvent pas représenter les enregistrements manquants,
ou indiquer qu’un enregistrement entier est susceptible d’être incorrect.

• Les NULLs ne peuvent pas indiquer que plusieurs valeurs inconnues sont les
mêmes, ou qu’elles doivent obéir à certaines contraintes, par exemple, qu’elles
sont choisies à partir de plusieurs valeurs possibles.

• L’évaluation des NULLs est fondée sur les logiques ternaires, dont la sémantique
n’est pas particulièrement intuitive. Par exemple, si l’on applique l’opérateur
relationnel de sélection pour retenir les valeurs qui sont soit égales à 42, soit
différentes de 42, les valeurs NULL ne seront pas sélectionnées, même si elles
devraient en principe être retenues quelle que soit la valeur réelle inconnue que
la valeur NULL représente.

Bien entendu, de nombreuses approches ont été proposées pour définir des séman-
tiques améliorées pour les NULLs [Imieliński and Lipski 1984], et la recherche d’une
solution satisfaisante se poursuit encore aujourd’hui [Libkin 2014]. Pour l’instant,
cependant, aucune méthode générique n’est disponible pour les applications qui
voudraient gérer des données incertaines au sens large. C’est pour cette raison que
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les approches actuelles de gestion de l’incertitude sont souvent très élémentaires :
une méthode fréquente en pratique consiste à définir un seuil de confiance, à éliminer
toutes les réponses dont la confiance est inférieure au seuil, et à considérer qu’une
réponse est certaine dès lors qu’elle atteint le seuil fixé. Des méthodes plus raffinées se
rencontrent néanmoins dans certains domaines où la gestion de l’incertitude est tout
à fait indispensable (la reconnaissance optique de caractères, la reconnaissance vocale,
la bioinformatique, etc.), où des solutions puissantes de gestion de l’incertitude ont
été développées (comme les transducteurs finis pondérés [Mohri, Pereira, and Riley
2002] pour la reconnaissance vocale). Malgré tout, ces méthodes ont le défaut d’être
spécifiques à un domaine d’application. La vision générale de la recherche en gestion
de données incertaines serait au contraire de développer des outils génériques pour la
gestion de données incomplètes et bruitées, qui pourraient être utilisés dans tous les
domaines, suivant des principes opérationnels bien définis ; cette vision est le prolon-
gement naturel des bases de données relationnelles actuelles, qui sont soigneusement
optimisées et pourtant utilisables pour d’innombrables applications.

La communauté de la recherche en base de données s’efforce aujourd’hui de
parvenir à atteindre cet objectif ambitieux. De nombreux modèles théoriques ont
ainsi été proposés pour généraliser les NULLs et gérer les données incertaines d’une
manière à la fois générique et puissante. Par exemple, la gestion de l’incomplétude
des bases de données a été formalisée comme le problème de réponse aux requêtes
en monde ouvert : lorsque l’on suit la sémantique du monde ouvert, les données qui
ne sont pas exprimées dans la base de données sont considérées comme inconnues
et non comme incorrectes, et la requête est évaluée en déterminant quelles réponses
sont impliquées par les données et par les règles logiques que l’on a imposé sur
celle-ci. D’une manière analogue, pour utiliser des tuples qui sont susceptibles d’être
incorrects, des formalismes de bases de données probabilistes [Suciu, Olteanu, Ré, and
Koch 2011] ont été proposés. Par exemple, les bases de données à tuples indépendants
(TID) sont des bases de données relationnelles dont les tuples sont annotés par une
valeur de probabilité : celle-ci indique quelles sont les chances que ce tuple existe
effectivement, indépendamment des autres tuples. Pour représenter des corrélations
entre tuples, ou pour représenter le résultat de l’évaluation d’une requête sur des
bases de données probabilistes, des formalismes plus expressifs ont été proposés,
comme les pc-tables. D’autres formalismes ont été proposés pour d’autres types de
données incertaines, comme les documents XML probabilistes [Kimelfeld and Senellart
2013].

Il reste cependant de nombreux défis à relever pour pouvoir réellement gérer
des données incertaines. Il est encore délicat de définir des formalismes bien-fondés
pour gérer des données incertaines ou probabilistes sur des structures de données
inhabituelles, et il est encore plus délicat d’en définir des représentations concises.
L’utilisation des probabilités pose des problèmes spécifiques d’efficacité, car l’évalua-
tion de requêtes sur des données probabilistes est souvent beaucoup plus complexe
sur des données probabilistes que sur des données déterministes [Dalvi and Suciu
2007]. Par ailleurs, dans le contexte de la réponse aux requêtes en monde ouvert avec
des règles logiques, le problème de raisonnement peut même devenir indécidable, en
fonction de l’expressivité du fragment logique dans lequel les règles sont exprimées.

Au cours de notre travail de doctorat, nous nous sommes intéressé à ces problèmes
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sous un angle nouveau. Plutôt que d’étudier la gestion de données arbitraires, en
cherchant à déterminer quelles tâches peuvent toujours être traitées efficacement sur
de telles données (par exemple, les requêtes prudentes [Dalvi and Suciu 2012] pour le
formalisme TID), nous avons étudié quelles sont les hypothèses que l’on pouvait faire
sur la structure des données. Cette approche est une direction naturelle si l’on désire
gérer des données probabilistes en pratique : les données utilisées dans le monde réel
ne sont pas quelconques, et on peut donc s’attendre à ce que de nombreuses tâches
soient faisables sur de telles données même si elles sont infaisables en général. Plus
spécifiquement, au cours de notre doctorat, notre recherche s’est effectuée suivant
trois axes principaux :

1. Nous avons étudié quelles conditions structurelles sur les instances relation-
nelles permettent d’assurer la faisabilité de la gestion de l’incertitude et des
probabilités ; nous nous sommes notamment intéressé à des bornes sur la largeur
d’arbre des données.

2. Nous avons étudié de nouveaux formalismes pour représenter l’incertitude sur
des structures de données inhabituelles, plus précisément, nous avons montré
comment gérer des ordres incertains sur des tuples et sur des valeurs.

3. Nous avons travaillé sur la réponse aux requêtes en monde ouvert pour les
données incomplètes, et identifié de nouveaux cas où la structure des règles
logiques, et le fragment logique précis utilisé, pouvait garantir la décidabilité
du problème de raisonnement ; nous avons étudié entre autres l’hypothèse de
finitude que l’on fait généralement dans le contexte des bases de données.

Dans les trois premières sections de ce résumé en français, nous présenterons le
travail que nous avons effectué sur ces trois thèmes pendant notre doctorat. Le manuscrit
de thèse lui-même se concentre sur deux de ces contributions : nous précisons cela au
fil des prochaines sections et le récapitulons à la fin. Certaines parties de cette synthèse
de notre travail de doctorat ont été publiées au congrès de doctorants SIGMOD/PODS
[Amarilli 2015b].

1 Provenance et probabilités sur les instances
quasi-arborescentes

Le premier axe de notre recherche concerne la faisabilité de certaines tâches de gestion
des données incertaines dans le contexte des bases de données quasi-arborescentes :
nous nous sommes en particulier intéressé au calcul de la provenance et à l’évaluation
probabiliste. Ce travail est présenté dans la partie I de notre manuscrit ; il a été égale-
ment présenté à ICALP’15 [Amarilli, Bourhis, and Senellart 2015] et a été accepté pour
présentation à PODS’16 [Amarilli, Bourhis, and Senellart 2016].

Une des principales surprises en matière de données incertaines est que l’évaluation
de requêtes sur des données probabilistes est considérablement plus délicate que
l’évaluation de requêtes sur des instances déterministes. Ce problème se pose même
pour des langages de requêtes relativement simples, comme les requêtes conjonctives

226



Antoine Amarilli Leveraging the Structure of Uncertain Data

(CQ), et même sur les modèles probabilistes les moins expressifs, comme le modèle
TID présenté plus haut.

Considérons par exemple un site Web de rencontres : le site dispose d’une table qui
représente ses utilisateurs et indique leur ville de résidence, et une table qui regroupe
les messages échangés par les utilisateurs. Considérons une requête conjonctive qui
demande de calculer les paires d’utilisateurs qui vivent dans la même ville et qui
se sont envoyé un message. L’évaluation de cette requête est une tâche faisable en
fonction de la base de données (ce que l’on appelle ici la complexité en fonction
des données) ; plus précisément, ce problème est dans la classe de complexité AC0

[Abiteboul, Hull, and Vianu 1995], et cette borne est en réalité valable pour n’importe
quelle requête qui peut être exprimée en logique du premier ordre.

Imaginons à présent que le site de rencontres utilise le formalisme TID pour
représenter des données incertaines à propos de ses utilisateurs : le site ne sait pas
déterminer quels utilisateurs sont véritablement à la recherche d’un partenaire, et
quels messages échangés expriment un ressenti positif. La probabilité de ces faits
pourrait par exemple être estimée, pour chaque utilisateur et pour chaque message,
par des approches à base d’apprentissage ou d’analyse de sentiments, en faisant
l’hypothèse que ces valeurs sont indépendantes entre utilisateurs et entre messages.
Le site de rencontres désire utiliser ces informations pour calculer la probabilité qu’un
utilisateur à la recherche d’un partenaire ait envoyé un message à un autre utilisateur
dans cette situation, en imposant que le message exprime un sentiment positif, et que
les deux utilisateurs habitent dans la même ville. Malheureusement, il s’avère que
cette tâche n’est pas faisable avec une complexité raisonnable : plus précisément, elle
est #P-difficile en général. Intuitivement, il est peu probable que cette tâche puisse
être résolue beaucoup plus efficacement qu’en considérant le nombre exponentiel de
mondes possibles ; ce problème provient des corrélations qui apparaissent entre les
occurrences multiples des faits dans les résultats possibles de la requête.

Ce problème a déjà été étudié par des travaux antérieurs [Dalvi and Suciu 2012],
qui ont abouti à un résultat de dichotomie. Ce résultat permet de caractériser
les requêtes pour lesquelles le problème d’évaluation sur des données probabilistes
(dans le formalisme TID) est faisable sur n’importe quelle instance fournie en entrée.
Toutefois, ce résultat n’exclut pas que des requêtes plus expressives soient efficacement
évaluables lorsque l’on impose que les instances d’entrée soient simples, en un sens à
définir. En conséquence, comme les jeux de données réels ne sont pas arbitraires, peut-
être pourrait-on interroger de telles données d’une autre manière, en contournant
les résultats généraux d’infaisabilité pour l’évaluation sur des bases de données
probabilistes quelconques. En fait, un résultat de ce type a déjà été démontré pour le
modèle de XML probabiliste qui correspond aux bases de données TID (c’est-à-dire le
modèle PrXMLmux,ind) : l’évaluation de requêtes est faisable dans ce contexte [Cohen,
Kimelfeld, and Sagiv 2009], l’intuition étant que les choix probabilistes n’ont qu’un
effet local dans la structure d’arbre.

Ceci nous conduit à la question précise que nous avons étudiée dans cette partie
de notre travail de thèse : sur quelles familles d’instances probabilistes peut-on
efficacement évaluer des requêtes expressives, lorsque l’on mesure la complexité en
fonction des données ?
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La partie I de notre manuscrit propose une réponse à cette question : nous y
démontrons un nouveau résultat de dichotomie qui porte sur la structure des instances
plutôt que sur celle des requêtes. Plus précisément, nous montrons que l’évaluation
de requêtes sur les instances TID de largeur d’arbre bornée (qui sont intuitivement
semblables à un arbre) est efficacement faisable : ce résultat s’applique à toutes les
requêtes qui peuvent être exprimées dans le fragment expressif de la logique gardée
du second ordre (GSO). À l’inverse, nous montrons l’existence de requêtes en logique
du premier ordre telles que, pour toute famille d’instances dont la largeur d’arbre
n’est pas bornée, l’évaluation de requêtes sous annotations de probabilité n’est pas
efficacement faisable en fonction des données : ce résultat s’applique si l’on suppose
que la signature est d’arité deux et que la famille d’instances d’entrée est efficacement
constructible en un certain sens.

La borne supérieure de notre dichotomie est obtenue à partir d’une technique
générale pour calculer efficacement des représentations de la provenance, ou du lignage,
sur des instances de largeur d’arbre bornée. Cette technique est présentée dans le
chapitre 3 de notre manuscrit. Notre résultat s’appuie sur la correspondance introduite
par Courcelle entre les requêtes évaluées sur les instances quasi-arborescentes, et les
automates d’arbres évalués sur des encodages en arbre [Courcelle 1990; Flum, Frick,
and Grohe 2002]. Nous proposons une représentation générale de l’ensemble des
exécutions possibles d’un automate d’arbres sur un arbre incertain, sous la forme d’un
circuit de provenance [Deutch, Milo, Roy, and Tannen 2014], et nous généralisons
cette représentation pour calculer la provenance de requêtes GSO sur les instances
quasi-arborescentes.

Nous montrons ensuite comment cette provenance peut être représentée sous
des formes compactes, à savoir des OBDD [Bryant 1992; Olteanu and Huang 2008]
et des d-DNNF [Darwiche 2001]. Nous utilisons ces résultats dans le chapitre 4
pour montrer que l’évaluation probabiliste de requêtes GSO sur des instances TID
de largeur d’arbre bornée peut être effectuée en temps ra-linéaire en fonction des
données, c’est-à-dire en temps linéaire au coût des opérations arithmétiques près.
Pour étendre ces résultats à des formalismes plus expressifs, nous définissons une
nouvelle notion de pcc-instances, une variante des pc-tables [Huang, Antova, Koch,
and Olteanu 2009; Green and Tannen 2006] à base de circuits, avec une définition
naturelle de largeur d’arbre qui couvre à la fois l’instance et les corrélations. Nous
utilisons cette notion pour obtenir des résultats de faisabilité à largeur d’arbre bornée
(en un certain sens) pour les pc-tables, les tables BID [Barbará, Garcia-Molina, and
Porter 1992; Ré and Suciu 2007] et le XML probabiliste, en généralisant en particulier
le résultat de [Cohen, Kimelfeld, and Sagiv 2009]. Nous pouvons également identifier
un lien avec les résultats de [Dalvi and Suciu 2012], en montrant que la faisabilité
des unions de requêtes conjonctives sans inversion peut être prouvée à l’aide d’une
récriture de leurs instances d’entrée qui préserve le lignage et assure que le résultat
de la transformation est de largeur linéaire bornée.

Le chapitre 5 démontre ensuite des résultats à propos du calcul efficace, sur les
instances quasi-arborescentes, de représentations de la provenance dans des semi-
anneaux expressifs, au-delà des lignages booléens. Nous établissons pour cela un
lien avec la provenance à base de semi-anneaux [Green, Karvounarakis, and Tannen
2007]. En effet, les représentations de la provenance ne servent pas uniquement à
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l’évaluation probabiliste de requêtes : elles nous permettent également de garder
trace du lien entre le résultat de la requête et l’instance de départ, et peut être
utilisée pour résoudre de nombreux autres problèmes : comptage, gestion de droit
d’accès, maintenance de vues, etc. À ces fins, nous généralisons nos définitions de la
provenance pour les arbres et les instances quasi-arborescentes, pour leur permettre
de s’appliquer à des semi-anneaux plus généraux dans lesquels nous pouvons résoudre
ces problèmes. Nous montrons ensuite, à l’aide d’une variante de nos techniques, que,
dans le cas des instances quasi-arborescentes et des unions de requêtes conjonctives,
il est possible de calculer des circuits de provenance pour le semi-anneau universel
N[X] en complexité linéaire en fonction des données : cette borne est meilleure que
celle obtenue dans le cas d’instances quelconques, où la complexité est polynomiale.

Nous montrons la borne inférieure de notre résultat de dichotomie au chapitre 6,
en exploitant les résultats récemment obtenus par [Chekuri and Chuzhoy 2014a]
à savoir, une borne polynomiale pour l’extraction de graphes planaires comme
mineurs de graphes de haute largeur d’arbre. Nous appliquons ce résultat à des
familles arbitraires de graphes dont la largeur d’arbre n’est pas bornée, à condition
qu’elles soient constructibles en un certain sens. Ceci nous permet de montrer, sur les
signatures d’arité deux, que l’évaluation probabiliste pour une requête spécifique de
la logique du premier ordre (FO) est #P-difficile sous réductions RP sur n’importe
quelle famille d’instances d’entrée qui satisfasse ces conditions. Autrement dit, si l’on
souhaite assurer la faisabilité de l’évaluation probabiliste de requêtes FO en imposant
des conditions sur les instances d’entrée, ces conditions doivent nécessairement
impliquer une borne sur la largeur d’arbre des instances, ou leur inconstructibilité.
Cette utilisation de FO contraste avec les résultats similaires que nous pouvons
obtenir pour l’évaluation non-probabiliste et le comptage de correspondances, où
nous utilisons une requête en logique monadique du second ordre : nous nous appuyons
pour ce faire sur les méthodes développées par [Kreutzer and Tazari 2010; Ganian,
Hliněnỳ, et al. 2014], et améliorons leurs résultats.

Nous étendons ensuite nos résultats à une dichotomie plus forte qui s’applique à
un contexte plus exigeant : nous souhaitons imposer une condition sur les instances
d’entrée qui assure que l’on pourra calculer une représentation du lignage des requêtes
sous la forme d’OBDD suffisamment concis. Nous savons déjà que borner la largeur
d’arbre suffit à ce que cette condition soit remplie pour toutes les requêtes GSO :
nous montrons cette fois que, pour une certaine requête dans la classe plus restreinte
UCQ6= (c’est-à-dire une union de requêtes conjonctives avec inégalités), il ne peut
pas y avoir de représentation concise sous forme d’OBDD du lignage de la requête
sur n’importe quelle famille d’instances d’entrée d’arité deux, du moment que la
largeur d’arbre n’est pas bornée et que la famille est constructible en un certain sens.
Nous terminons notre étude en caractérisant quelles requêtes UCQ6= connexes sont
infaisables (en termes d’OBDD) sur n’importe quelle famille d’instances d’entrée de
ce type, à travers une méta-dichotomie sur les requêtes.

Nous espérons que nos résultats de dichotomie pourront mener à une nouvelle
étude de l’évaluation probabiliste de requêtes, qui prenne en compte à la fois les
instances et les requêtes. L’objectif serait de combiner des constructions efficaces pour
les instances de largeur d’arbre bornée avec les techniques connues pour l’évaluation
de requêtes prudentes, et de parvenir à l’évaluation probabiliste efficace de requêtes
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(à la fois en théorie et en pratique), dans des situations où la faisabilité peut être
assurée en étudiant l’interaction entre la requête et l’instance, mais où il ne suffit
pas de considérer individuellement les instances ou la requête.

2 Incertitude sur les données ordonnées
Le deuxième axe de notre recherche de doctorat s’intéresse à l’incertitude sur des
données munies d’une relation d’ordre, qui porte sur les tuples ou sur des valeurs
numériques. Ce travail n’est pas détaillé dans notre manuscrit de thèse : le contenu
de la première sous-section est disponible sous la forme d’une prépublication [Amarilli,
Ba, Deutch, and Senellart 2016] ; le contenu de la seconde sous-section est également
disponible sous cette forme [Amarilli, Amsterdamer, Milo, and Senellart 2016] et a été
esquissé à UnCrowd [Amarilli, Amsterdamer, and Milo 2014b].

De nombreux contextes de gestion de données nous demandent de prendre en
compte une relation d’ordre sur les valeurs (par exemple des dates ou des entiers
naturels) ou sur les tuples eux-mêmes (par exemple une liste d’événements dans un
fichier journal). Dans cette section, nous présentons notre travail sur la représentation
de l’incertitude sur des informations d’ordre. Nous étudions en premier lieu un
contexte où l’incertitude porte sur l’ordre de tuples relationnels, pour nous intéresser
ensuite aux situations où l’on dispose d’une relation d’ordre partiel sur des valeurs
numériques.

2.1 Représentation de l’incertitude sur l’ordre de tuples re-
lationnels

Lorsque l’on souhaite gérer des tuples ordonnés dans le modèle relationnel, une diffi-
culté intéressante se pose : une forme d’incertitude sur l’ordre apparaît spontanément,
même lorsque l’on applique les opérateurs habituels de l’algèbre relationnelle sur
des relations d’entrée dont l’ordre est certain. Pour illustrer ce problème dans une
situation concrète, considérons un site Web qui permet de rechercher des hôtels et
de les trier par note. Un utilisateur souhaite réserver un hébergement pour quatre
personnes, qui devrait proposer une chambre avec quatre lits, ou deux chambres dis-
posant chacune de deux lits. Malheureusement, le site Web ne permet pas d’effectuer
une recherche portant simultanément sur ces deux types d’hébergement. L’utilisateur
va donc effectuer les deux recherches séparément, l’une après l’autre, et obtiendra
ainsi deux listes triées d’hôtels correspondant à chaque critère. L’utilisateur souhaite
donc intégrer ces listes, en calculant leur union au sens relationnel. Cependant, l’ordre
sur le résultat de cette union n’est pas certain : il dépend des critères exacts de
notation utilisés par le site Web, que l’utilisateur ne contrôle pas et ne connaît pas.
L’ordre n’est toutefois pas complètement inconnu, car deux hôtels qui n’apparais-
saient que dans les résultats de la première recherche (ou de la seconde) devraient
conserver le même ordre relatif dans la liste obtenue comme résultat de l’union.

Notre travail [Amarilli, Ba, Deutch, and Senellart 2016] permet de raisonner sur
de tels problèmes. Nous proposons ainsi des opérateurs pour l’algèbre relationnelle
qui s’appliquent à des relations partiellement ordonnées, avec une sémantique mul-
tiensembliste, dans l’esprit de travaux antérieurs [Grumbach and Milo 1999]. Ces
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opérateurs nous permettent de combiner des relations totalement ordonnées ou par-
tiellement ordonnées à l’aide de l’algèbre relationnelle, afin d’intégrer les données et
de calculer de nouvelles relations ordonnées, qui représentent tous les choix possibles
d’ordre sur le résultat de l’intégration qui sont compatibles avec l’ordre connu sur
les données d’entrée. Cette tâche ressemble au problème d’agrégation de rangs, qui
vise à réconcilier des ordres différents sur les mêmes résultats, et pour lequel de
nombreuses techniques sont déjà connues [Fagin, Lotem, and Naor 2001; Jacob,
Kimelfeld, and Stoyanovich 2014; Dwork, Kumar, Naor, and Sivakumar 2001] ; la
principale différence est que ces méthodes sont quantitatives, c’est-à-dire qu’elles
tendront à faire apparaître au début du résultat global les éléments qui apparaissent
fréquemment au début des ordres fournis en entrée. Nous souhaitons au contraire
obtenir une représentation de tous les ordres cohérents sur le résultat. Bien sûr, ce
problème pourrait en principe être résolu avec les formalismes existants de repré-
sentation de l’incertitude sur des données relationnelles, par exemple les c-tables,
qui permettraient de représenter l’incertitude sur la position des tuples du résultat.
Cependant, cette méthode ne serait pas commode, car ces formalismes ne permettent
pas de représenter aisément les dépendances entre les rangs numériques qui sont
induites par les relations de comparabilité dans l’ordre (si l’on sait, par exemple,
qu’un tuple doit apparaître avant un autre dans le résultat).

La sémantique que nous définissons pour l’algèbre relationnelle nous permet ainsi
de combiner des données ordonnées d’une façon générique et bien définie. Cependant,
l’ordre n’est propagé que comme une information implicite, et les opérateurs que
nous définissons ne permettent pas de l’interroger. Pour pallier cette lacune, nous
proposons un opérateur général d’accumulation sur les relations à ordre incertain. Le
résultat de cet opérateur dépend de l’ordre, et nous pouvons l’utiliser pour calculer ce
que nous désirons savoir à propos de l’ordre du résultat. L’opérateur d’accumulation
calcule simplement toutes les concaténations possibles des valeurs de tuples dans
un monoïde donné, suivant tous les ordres autorisés sur le résultat. Nous pouvons
utiliser cet opérateur pour répondre à des questions, par exemple, « est-il certain
que tous les hôtels d’un quartier donné sont préférables à tous les hôtels d’un autre
quartier ? ».

La contribution technique principale de notre travail est l’étude de la complexité
de l’évaluation de requêtes dans ce cadre. Plus spécifiquement, nous nous intéressons
à la complexité du calcul de réponses possibles et de réponses certaines en termes de
possibilité et de certitude des instances [Antova, Koch, and Olteanu 2007], y compris
pour des requêtes exprimées avec notre opérateur d’accumulation. Nous prouvons
d’abord un résultat relativement surprenant : il est déjà infaisable (c’est-à-dire,
respectivement, NP-difficile et coNP-difficile) de déterminer si un résultat complet
(à savoir, une relation totalement ordonnée) est possible (respectivement, s’il est
certain), et ce même pour des requêtes très simples. Nous montrons toutefois qu’il est
faisable de déterminer la certitude (au contraire de la possibilité) pour des requêtes
qui ne font pas appel à l’opérateur d’accumulation, ou qui calculent une accumulation
dans un monoïde cancellatif.

Nous montrons ensuite comment éviter l’infaisabilité en limitant la structure des
relations ordonnées fournies en entrée, pour des mesures de complexité définies à
partir de notions existantes de la théorie des ordres partiels. Nous montrons ainsi
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la faisabilité des problèmes de possibilité et de certitude que nous étudions, pour
un certain sous-ensemble des opérateurs que nous définissons, lorsque les relations
ordonnées d’entrée sont de largeur bornée au sens des ordres partiels [Brandstädt,
Le, and Spinrad 1987] : nous établissons que ces bornes sont maintenues sur les
résultats de l’évaluation de requêtes, et montrons la faisabilité des problèmes de
possibilité et de certitude dans ce contexte, en concevant un algorithme dynamique.
Nous montrons un résultat similaire lorsque les relations d’entrée ne sont presque pas
ordonnées, ce que nous formalisons comme une nouvelle notion sur les ordres partiels,
l’ia-largeur. Nous généralisons également nos résultats à un opérateur d’élimination
des doublons, afin de passer de la sémantique multiensembliste à une sémantique
ensembliste.

2.2 Complétion de valeurs numériques manquantes
Nous avons mené un autre travail [Amarilli, Amsterdamer, Milo, and Senellart 2016]
qui étudie l’évaluation de requêtes top-k sur des valeurs numériques inconnues que
l’on contraint par un ordre partiel et par certaines valeurs exactes connues.

Ce travail s’inspire de scénarios où l’on cherche à extraire de l’information à partir
de la foule [Amsterdamer, Grossman, Milo, and Senellart 2013; Parameswaran et al.
2012], en posant des questions aux utilisateurs. Dans de nombreux cas, l’information
que nous souhaitons obtenir peut être représentée comme des valeurs numériques avec
des dépendances mutuelles. Imaginons par exemple que l’on cherche à catégoriser les
produits du catalogue d’un site Web de vente en ligne, en déterminant la compatibilité
de chaque produit avec chacune des catégories répertoriées dans une taxonomie qui
nous est fournie. On suppose alors que les scores de compatibilité obéissent à un
ordre partiel défini suivant la taxonomie : la catégorie « chemises » est plus spécifique
que la catégorie « vêtements », donc si un objet est compatible avec la catégorie
« chemises », il doit être également compatible avec la catégorie « vêtements ».

L’approche la plus simple pour catégoriser un objet serait de demander à la
foule sa compatibilité avec chacune des catégories. Malheureusement, cette approche
n’est pas raisonnable en général. En effet, chaque requête adressée à la foule a un
coût, que ce soit en termes de latence (il faut attendre que les utilisateurs de la
foule fournissent leurs réponses) ou en termes d’argent (il faut payer les utilisateurs
pour chaque réponse). Cet écueil nous conduit à étudier des méthodes bien fondées
d’interpolation, afin de compléter les valeurs numériques qui nous font défaut : nous
pouvons utiliser à cette fin la structure d’ordre partiel que nous connaissons sur ces
valeurs grâce à la taxonomie, ainsi que les valeurs connues que l’on a déjà récoltées à
partir de la foule. L’objectif est de trouver les k éléments dont la valeur moyenne est
la plus élevée (ici, les k catégories les plus compatibles avec le produit demandé) en
exploitant l’information limitée dont on dispose.

Dans ce contexte, il est facile de compléter des valeurs numériques manquantes
lorsqu’elles suivent un ordre total, car il suffit de procéder par interpolation linéaire.
En revanche, la question d’interpoler suivant un ordre partiel sur les valeurs inconnues
n’avait pas encore été étudiée. Nous proposons ainsi une définition formelle pour ce
problème, qui consiste à calculer l’espérance de chaque variable inconnue, suivant
la distribution uniforme, dans le polytope convexe qui est induit par les relations
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de comparabilité de l’ordre partiel. Nous concevons un algorithme pour résoudre ce
problème d’interpolation en FP#P, et nous montrons que cette tâche est #P-difficile,
en utilisant des résultats connus de la théorie des ordres partiels [Brightwell and
Winkler 1991]. Nous montrons même un résultat plus fort : il est déjà infaisable de
déterminer quel objet a la plus grande espérance, même si on ne cherche pas à calculer
la valeur de cette dernière. Nous montrons cependant que notre problème est faisable
dans certaines situations. Nous concevons notamment un schéma d’approximation
randomisé entièrement en temps polynomial pour ce problème, en utilisant une
méthode connue d’échantillonnage dans les polytopes convexes [Kannan, Lovász,
and Simonovits 1997]. De plus, nous montrons que l’interpolation (suivant notre
définition formelle) est faisable pour les taxonomies en forme d’arbre, en concevant
un algorithme dynamique adapté à cette situation où la structure est restreinte.

3 Décidabilité de la réponse aux requêtes en
monde ouvert

Le troisième axe de notre recherche de doctorat étudie la réponse aux requêtes en monde
ouvert. Ce problème porte sur des données incomplètes dont la structure est guidée
par des contraintes logiques. Nous avons cherché à identifier de nouveaux fragments
logiques pour lesquels cette tâche de raisonnement est décidable. Le travail présenté
dans la première sous-section a été publié à IJCAI’15 [Amarilli and Benedikt 2015a]
mais n’est pas présenté plus en détail dans notre manuscrit. Le travail de la deuxième
sous-section est présenté dans la partie II de notre manuscrit ; il a été publié sous la forme
d’un résumé étendu à LICS’15 [Amarilli and Benedikt 2015b] et une version complète est
actuellement en cours de relecture par les pairs [Amarilli and Benedikt 2016].

3.1 Approches hybrides pour la réponse aux requêtes en
monde ouvert

Le problème de réponse aux requêtes en monde ouvert (OWQA) est défini de la
façon suivante : on considère une base de données I, des contraintes logiques Σ, et
une requête q, et on cherche à calculer les réponses de q qui sont certaines sous Σ
étant donné I. En d’autres termes, on cherche à déterminer quelles réponses à q
sont vraies sur toutes les complétions possibles de I qui satisfont les contraintes Σ.
Le problème OWQA nous permet ainsi de raisonner sur la base de données I en
considérant qu’elle est incomplète, et en contraignant la structure de ses complétions
suivant des règles logiques. Le problème OWQA est bien entendu indécidable si les
contraintes logiques Σ sont arbitraires, et de nombreux travaux ont identifié des
fragments logiques expressifs pour lesquels le problème OWQA était décidable, et
pouvait même parfois être résolu avec une faible complexité.

Cette question de recherche a notamment été étudiée dans les communautés de
recherche s’intéressant aux formalismes suivants :

Les bases de données relationnelles. Dans ce contexte, le problème OWQA a
d’abord été formulé de manière équivalente comme un problème d’inclusion
de requêtes sous contraintes [Johnson and Klug 1984], avant d’être étudié sous
l’angle des bases de données incomplètes [Calì, Lembo, and Rosati 2003a].
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Dans cette communauté, les règles logiques utilisées sont généralement les
contraintes d’intégrité classiques utilisées en bases de données, par exemple,
les dépendances génératrices de tuples (TGD) et les dépendances génératrices
d’égalités (EGD) [Abiteboul, Hull, and Vianu 1995]. Il est rapidement apparu
qu’il n’était pas décidable de combiner ces deux formes de dépendances [Mitchell
1983].

Les logiques de description. Ces formalismes logiques ont été définis afin de
pouvoir raisonner avec une faible complexité en l’instance I. Leur principal
objet est l’étude du compromis entre l’expressivité des contraintes logiques
autorisées dans Σ et la complexité computationnelle du raisonnement.
En revanche, les logiques de description ne fonctionnent que sur des don-
nées d’arité deux, c’est-à-dire des graphes étiquetés. Cette représentation est
moins expressive que les données relationnelles générales, mais elle permet
d’assurer que les logiques de description restent décidables même en autorisant
des contraintes logiques très expressives. Les logiques de description peuvent
ainsi exprimer, entre autres, la disjonction, la négation, et les assertions de
fonctionnalité (qui sont une forme de dépendances génératrices d’égalités).

Les règles existentielles. Ces règles reviennent essentiellement à exprimer des
dépendances génératrices de tuples, mais des classes décidables spécifiques ont
été étudiées pour elles, par exemple les règles à frontière gardée [Baget, Leclère,
and Mugnier 2010].
En termes d’opérateurs, les règles existentielles ne sont pas aussi expressives que
les logiques de description : elles peuvent seulement indiquer qu’une conjonction
de faits implique une autre conjonction de faits. En revanche, elles s’appliquent
à des faits d’arité arbitraire, au contraire des logiques de description.

Notre première contribution à l’étude du problème OWQA a été de tisser des liens
entre les résultats portant sur les logiques de description et ceux portant sur les
règles existentielles. Plus précisément, nous avons conçu des langages hybrides pour
le raisonnement sur les données incomplètes, qui autorisent à la fois des règles
existentielles et des contraintes exprimées en logique de description, afin d’obtenir
le meilleur des deux mondes : nos langages hybrides peuvent exprimer des règles
expressives sur les faits d’arité deux, et des règles existentielles portant sur les faits
d’arité supérieure. Nous nous concentrons sur la décidabilité du problème OWQA, et
choisissons ainsi de ne pas nous limiter à des logiques de description spécifiques : à la
place, nous autorisons toutes les contraintes en arité deux qui peuvent être exprimées
dans un formalisme logique très expressif. Ce formalisme est GC2, le fragment gardé
à deux variables de la logique du premier ordre avec quantificateurs à compteurs : il
a été prouvé [Pratt-Hartmann 2009] que le problème OWQA pour GC2 est décidable,
ce qui couvre la décidabilité de ce même problème pour de nombreuses logiques de
description (le lien entre GC2 et les logiques de description est présenté par exemple
dans [Kazakov 2004]).

Notre travail identifie quelles sont les fonctionnalités problématiques de ces deux
familles de langages qui mènent à l’indécidabilité si on les combine. La principale
fonctionnalité problématique en ce sens pour les logiques de description (respective-
ment, pour GC2) est son support des assertions de fonctionnalité (respectivement,
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des quantificateurs à compteurs), qui permettent d’exprimer, par exemple, qu’une
personne a un unique lieu de naissance. Si l’on souhaite autoriser de telles contraintes,
il faut renoncer à deux fonctionnalités problématiques des règles existentielles. La
première est l’export de variables multiples, dans des règles comme, par exemple,
« Si une personne est née dans un pays alors cette personne a vécu dans ce pays ».
C’est pour cette raison que nous nous limitons au fragment à frontière unaire des
règles existentielles [Baget, Leclère, Mugnier, and Salvat 2009], qui n’autorise que
des règles où la tête n’utilise qu’une seule variable du corps : par exemple, « Si
quelqu’un a gagné un prix littéraire alors cette personne a écrit un livre ». La seconde
fonctionnalité problématique des règles existentielles est la possibilité d’écrire des
motifs cycliques comme conséquence de règles à frontière unaire, qui mène également
à l’indécidabilité ; nous introduisons un fragment de règles à frontière unaire et à
tête sans boucles pour éviter cela.

Nous pouvons alors montrer que le problème OWQA est décidable pour le langage
hybride formé par les contraintes GC2 et les règles existentielles à frontière unaire
et à tête sans boucles. Le résultat est obtenu à l’aide d’un développement en arbre
pour récrire les règles, éliminer les boucles contenues dans leur corps s’il y en a, et
les ramener dans un fragment entièrement sans boucles que nous définissons. Nous
montrons ensuite que de telles règles peuvent être déchiquetées pour les traduire vers
GC2 sur une signature d’arité deux. Nous généralisons nos résultats pour exprimer
également des dépendances fonctionnelles (FD) en arité supérieure, un type de règles
génératrices d’égalités qui est courant en théorie des bases de données. Nous ajoutons
ces règles aux contraintes exprimées avec GC2 et avec les règles existentielles, et
prouvons que le problème OWQA est décidable lorsque l’interaction des FD avec les
règles est limitée suivant la condition existante d’absence de conflit [Calì, Gottlob,
and Pieris 2012].

Nos résultats nous laissent penser que la combinaison des approches des logiques
de description et des règles existentielles pourrait assurer la décidabilité (et peut-être
la faisabilité) du problème OWQA pour des langages logiques hybrides plus expressifs
encore.

3.2 Réponse aux requêtes en monde ouvert sous hypothèse
de finitude

Notre seconde contribution à l’étude du problème OWQA concerne le contexte plus
traditionnel des bases de données. Une différence importante dans ce cadre est que
l’on s’intéresse traditionnellement aux complétions finies des données incomplètes
dont on dispose : au lieu de considérer toutes les complétions de l’instance I qui
satisfont les contraintes Σ, et de trouver les réponses certaines à la requête q sur ces
complétions, on s’intéresse aux réponses (possiblement plus nombreuses) qui sont
certaines sur les complétions finies.

Cette formulation légèrement différente du problème est cependant plus naturelle
si l’on suppose, comme on voudrait généralement le faire, que les données sur lesquelles
on raisonne sont intrinsèquement finies. Du reste, il s’avère que l’hypothèse de finitude
peut effectivement avoir un impact sur les résultats de la requête. Imaginons par
exemple une organisation sur laquelle on désire exprimer les choses suivantes :
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• La base de données initiale I : « Jeanne conseille Jean. »

• Une première contrainte dans Σ : « Toute personne qui reçoit des conseils
prodigue également des conseils à quelqu’un. » Suivant la terminologie des
bases de données, il s’agit là d’une dépendance d’inclusion, un type particulier
de dépendance génératrice de tuples.

• Une seconde contrainte dans Σ : « Personne ne reçoit de conseils de deux per-
sonnes différentes. » Il s’agit d’une dépendance fonctionnelle, un type particulier
de dépendance génératrice d’égalités.

Considérons à présent le problème OWQA pour I, pour Σ, et pour la requête
booléenne q qui demande si quelqu’un conseille Jeanne. La première contrainte
nous permet de déduire que Jean, puisqu’il est conseillé par Jeanne, doit conseiller
quelqu’un, que nous appellerons Janus ; on déduit ensuite que Janus donne des
conseils à quelqu’un, par exemple Jacques. Ce processus de déduction pourrait se
poursuivre indéfiniment, sans qu’on ne parvienne jamais à déduire que quelqu’un
prodigue des conseils à Jeanne. En revanche, si l’on fait l’hypothèse de finitude, la
chaîne de déductions ne peut pas s’étendre à l’infini : quelqu’un dans cette chaîne,
que nous appellerons Jennifer, doit conseiller une personne que nous connaissons déjà.
Nous pouvons alors déduire que c’est nécessairement Jeanne qui est conseillée par
Jennifer, car tout autre choix enfreindrait nécessairement la seconde règle spécifiée
dans Σ.

Cet exemple est bien entendu très simple, mais l’impact général de l’hypothèse de
finitude sur le problème OWQA est encore très mal compris. En effet, les principales
techniques pour résoudre le problème OWQA font appel à des modèles universels,
obtenus par exemple à l’aide de la construction de poursuite, ou par des techniques de
dépliement. Malheureusement, les modèles ainsi construits sont généralement infinis,
ce qui explique pourquoi ces outils sont inopérants lorsque l’on fait l’hypothèse de
finitude.

Les résultats connus à ce jour montrent que, pour certains langages logiques, le
problème OWQA avec hypothèse de finitude est équivalent au problème OWQA dans
sa formulation habituelle. De tels langages sont qualifiés de finiment contrôlables.
Un résultat de ce type a été montré pour les dépendances d’inclusion dans [Rosati
2006; Rosati 2011], pour être ensuite généralisé [Bárány, Gottlob, and Otto 2010]
au fragment gardé. Un autre résultat de ce type a été montré plus récemment dans
[Gogacz and Marcinkowski 2013] pour le fragment de Datalog collant défini par [Calì,
Gottlob, and Pieris 2010]. La démonstration de chacun de ces résultats est hautement
technique. Pourtant, aucun d’entre eux n’autorise de dépendances fonctionnelles, ni
plus généralement de dépendances génératrices d’égalité ; ces résultats ne permettent
donc pas d’analyser l’exemple que nous avons développé précédemment.

Le problème OWQA sous hypothèse de finitude est mieux compris dans le cas
des signatures d’arité deux, parce que sa décidabilité est connue même pour des
langages qui ne sont pas finiment contrôlables, et même pour des langages qui
autorisent des dépendances fonctionnelles. C’est en particulier le cas de GC2, où la
décidabilité sous hypothèse de finitude est démontrée par le biais d’un argument
spécifique [Pratt-Hartmann 2009], mais c’est également le cas de certaines logiques de

236



Antoine Amarilli Leveraging the Structure of Uncertain Data

description [Rosati 2008; Ibáñez-García, Lutz, and Schneider 2014], où les résultats
sont obtenus suivant une méthode générale intéressante : compléter les contraintes
par un processus de clôture finie, qui permet de déduire toutes les conséquences
de ces contraintes sous implication finie, et démontrer ensuite que les contraintes
sont finiment contrôlables une fois ce processus de clôture finie effectué. Ainsi, ces
résultats permettent de comprendre l’exemple ci-dessus, mais uniquement dans le
contexte de l’arité deux ; on ne pourrait plus les invoquer si la relation entre donneur
et receveur de conseils incluait également des informations supplémentaires (par
exemple une évaluation).

Notre travail [Amarilli and Benedikt 2015b; Amarilli and Benedikt 2016] s’inspire
de cette approche, mais l’applique à des signatures d’arité arbitraire, pour des
contraintes d’intégrité qui incluent à la fois des dépendances d’inclusion (ID) et des
dépendances fonctionnelles (FD). Ainsi, notre résultat permet de couvrir l’exemple
décrit plus haut, quelle que soit l’arité des prédicats. Bien sûr, étant donné que le
problème OWQA est indécidable en général lorsque l’on autorise des ID et des FD
[Calì, Lembo, and Rosati 2003a], il est nécessaire de restreindre le langage autorisé.
Nous nous limitons ainsi aux dépendances d’inclusion unaires (UID), c’est-à-dire
à celles qui sont des règles à frontière unaire : comme la dépendance d’inclusion
de notre exemple, elles n’exportent qu’une unique variable entre le corps et la
tête de la règle. Ceci permet d’éviter l’indécidabilité, et permet en fait d’exploiter
une procédure existante de clôture finie pour le langage logique correspondant
[Cosmadakis, Kanellakis, and Vardi 1990]. Ainsi, notre travail montre que les UID et
les FD sont finiment contrôlables une fois que l’on a appliqué ce processus de clôture
finie. Ceci établit le premier résultat de décidabilité pour l’OWQA sous hypothèse
de finitude pour un langage naturel sur des signatures d’arité arbitraire qui inclut à
la fois des ID et des FD.

La démonstration de ce résultat est technique, et fait appel à diverses méthodes
introduites par des travaux antérieurs :

• L’usage de simulations k-bornées pour préserver les requêtes acycliques de taille
suffisamment faible [Ibáñez-García, Lutz, and Schneider 2014] ;

• Une partition des UID en composantes connexes qui n’interagissent que de
façon limitée, de sorte que l’on peut ensuite les satisfaire composante par
composante [Cosmadakis, Kanellakis, and Vardi 1990; Ibáñez-García, Lutz,
and Schneider 2014] ;

• Une procédure de poursuite finie qui réutilise des éléments suffisamment simi-
laires [Rosati 2011] ;

• Une construction de produit qui fait appel à des groupes à grande maille pour
élargir les cycles [Otto 2002].

Cette démonstration constitue la partie II de notre manuscrit.

Structure du manuscrit
Nous avons fait le choix de restreindre ce manuscrit de thèse à un sous-ensemble de
nos contributions telles que présentées plus haut. Plus précisément :
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• La partie I de notre manuscrit correspond à la section 1 ci-dessus, les publica-
tions correspondantes étant [Amarilli, Bourhis, and Senellart 2015] et [Amarilli,
Bourhis, and Senellart 2016] ;

• La partie II de notre manuscrit correspond à la section 3.2 ci-dessus, les
publications correspondantes étant [Amarilli and Benedikt 2015b] et [Amarilli
and Benedikt 2016] (en cours de relecture par les pairs).

Ces deux parties peuvent être lues indépendamment. Par ailleurs :

• Les sections 2 et 3.1 ci-dessus, même si elles concernent directement le sujet de
cette thèse, ne sont pas présentées dans le manuscrit ; les publications corres-
pondantes sont [Amarilli, Amsterdamer, and Milo 2014b; Amarilli and Benedikt
2015a] ainsi que les prépublications [Amarilli, Ba, Deutch, and Senellart 2016;
Amarilli, Amsterdamer, Milo, and Senellart 2016] ;

• Certains autres travaux que nous avons effectués parallèlement à notre travail
principal de thèse, sans qu’ils soient directement liés à la thématique de celui-ci,
sont résumés ci-après.
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Autres travaux
Cette section constitue une traduction en français de l’appendice A, et présente les autres
travaux que nous avons effectués parallèlement à notre travail principal de thèse.

Complexité de la fouille de données avec une taxonomie dans
le contexte de la foule
Avec Yael Amsterdamer et Tova Milo, nous avons étudié la fouille de données dans
une situation où les données sont obtenues en interrogeant la foule. Ceci revient
formellement à apprendre un prédicat monotone sur un treillis distributif, en utilisant
des requêtes à un oracle. Nous avons étudié la complexité computationnelle de ce
problème et proposé des algorithmes pour cette tâche.

Ce travail a été présenté à la conférence ICDT’14 [Amarilli, Amsterdamer, and
Milo 2014a].

Extraction d’entités sur le Web à l’aide d’identifiants uniques
Nous avons collaboré avec Fabian M. Suchanek sur un travail de recherche entrepris
par Aliaksandr Talaika et Joanna Biega. Celui-ci porte sur des méthodes d’extraction
d’entités sur le Web qui utilisent des identifiants uniques avec une structure fixée,
comme les ISBN, les GTIN, les DOI, les adresses de courrier électronique, etc. Cette
approche relativement simple, raffinée suivant certaines étapes de prétraitement, est
en mesure d’extraire des millions d’entités uniques à partir d’un corpus de pages
Web.

Ce travail a été présenté à WebDB’15 [Talaika, Biega, Amarilli, and Suchanek
2015].

Possibilité pour le XML probabiliste
Nous avons étudié la faisabilité du problème de possibilité pour les documents XML
probabilistes dans de nombreux formalismes. Le problème de possibilité consiste à
déterminer si un document XML non-probabiliste donné est un monde possible d’un
document XML probabiliste, et demande éventuellement quelle est la probabilité du
document non-probabiliste comme résultat de tirage sur le document probabiliste.
Notre travail a déterminé la frontière séparant les formulations faisables et les
formulations infaisables de ce problème.

Ce travail a été présenté à AMW’14 [Amarilli 2014], et une version étendue a été
publiée dans le journal Ingénierie des systèmes d’information [Amarilli 2015a].

Thématiques récentes de recherche portant sur YAGO
Nous avons collaboré avec Luis Galárraga, Nicoleta Preda et Fabian M. Suchanek
pour écrire un article invité à APWEB’14 [Amarilli, Galárraga, Preda, and Suchanek
2014], présenté par M. Suchanek, sur le thème de la recherche récente portant sur la
base de connaissances YAGO [Suchanek, Kasneci, and Weikum 2007].

Notre contribution porte sur l’étude de l’alignement à grande échelle de bases de
connaissances (notamment YAGO) que nous avons effectuée avant notre thèse.
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Politiques de tarification pour les documents XML
Nous avons travaillé avec Tang Ruiming, Stéphane Bressan et Pierre Senellart sur
le sujet des politiques de tarification pour les documents XML. L’objectif de ces
politiques est de permettre aux utilisateurs intéressés par un jeu de données de
n’en acheter qu’un échantillon, pour un prix plus modique. Nous avons ainsi étudié
des méthodes d’échantillonnage efficace sur les arbres, et les avons appliquées à ce
problème.

Ce travail a été publié à la conférence DEXA’14 [Tang, Amarilli, Senellart, and
Bressan 2014] et dans le journal TLDKS [Tang, Amarilli, Senellart, and Bressan
2016].

Incertitude, intensionalité et structure
Nous avons travaillé avec Pierre Senellart et Silviu Maniu sur un article que nous
avons été invité à soumettre à la lettre d’information SIGWEB.

Notre article porte sur les données intensionnelles [Amarilli, Maniu, and Senellart
2015].
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Lexique
Ce lexique résume les choix terminologiques effectués et les néologismes construits en
français pour traduire les concepts techniques utilisés dans le résumé qui précède.

Par souci de lisibilité, les acronymes et sigles ont été conservés sous leur forme
traditionnelle, et ne correspondent pas toujours à la forme française utilisée ici.

access right droit d’accès
acyclic query requête acyclique
arity arité
automated speech recognition (ASR)

reconnaissance vocale
bag semantics sémantique multiensembliste
bounded k-simulation simulation k-bornée
cancellative monoid monoïde cancellatif
certain answer réponse certaine
chase poursuite
confidence threshold seuil de confiance
conjunctive query (CQ) requête conjonctive
connected component composante connexe
connected query requête connexe
counting quantifier

quantificateur à compteur
crowd foule
crowdsourcing externalisation ouverte

à partir de la foule
data complexity complexité en fonction

des données
data mining fouille de données
data pricing scheme politique de tarification
database base de données
database engine moteur de base de données
database management system

système de gestion de bases de données
dataset jeu de données
description logics logiques de description
distributive lattice treillis distributif
duplicate elimination

élimination des doublons
entity extraction extraction d’entités
equality-generating dependency (EGD)

dépendance génératrice d’égalités
existential rule règle existentielle
expected value espérance
finite chase poursuite finie
finite closure clôture finie
finitely controllable finiment contrôlable
finiteness assumption hypothèse de finitude

first-order logic (FO)
logique du premier ordre

frontier-one rule règle à frontière unaire
frontier-guarded rule règle à frontière gardée
fully polynomial-time randomized
approximation scheme

schéma d’approximation randomisé
entièrement en temps polynomial

fully-non-looping rule
règle entièrement sans boucles

functional dependency
dépendance fonctionnelle

functionality assertion
assertion de fonctionnalité

girth maille
guarded fragment fragment gardé
guarded second-order logic (GSO)

logique gardée du second ordre
head-non-looping rule

règle à tête sans boucles
ia-width ia-largeur
inclusion dependency

dépendance d’inclusion
intensional data données intensionnelles
intractability infaisabilité
inversion-free query requête sans inversion
knowledge base base de connaissances
labeled graph graphe étiqueté
lineage lignage
log file fichier journal
logical constraint contrainte logique
machine learning apprentissage
match counting

comptage de correspondances
monadic second-order logic (MSO)

logique monadique du second ordre
non-conflicting condition

condition d’absence de conflit
NP-hard NP-difficile
open-world query answering (OWQA)

réponse aux requêtes en monde ouvert
open-world semantics

sémantique du monde ouvert
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optical character recognition
reconnaissance optique de caractères

#P-hard #P-difficile
partial order ordre partiel
pathwidth largeur linéaire
planar graph graphe planaire
possible answer réponse possible
preprocessing prétraitement
probabilistic database

base de données probabiliste
probabilistic XML XML probabiliste
probability valuation

annotations de probabilité
provenance circuit circuit de provenance
query containment under constraints

inclusion de requêtes sous contraintes
query requête
ra-linear ra-linéaire
rank aggregation agrégation de rangs
record enregistrement
relational algebra algèbre relationnelle
relational model modèle relationnel
rule body corps de règle
rule head tête de règle
safe query requête prudente
sampling échantillonnage
schema mapping appariement de schémas
second-order logic (SO)

logique du second ordre
semiring semi-anneau

semiring provenance
provenance à base de semi-anneaux

set semantics sémantique ensembliste
shredding déchiquetage
sticky Datalog Datalog collant
three-valued logic logique ternaire
top-k query requête top-k
total order ordre total
tractability faisabilité
tree automaton automate d’arbres
treeification développement en arbre
treelike quasi-arborescent
treewidth largeur d’arbre
tuple-generating dependency (TGD)

dépendance génératrice de tuples
tuple-independent database (TID)

base de données à tuples indépendants
two-variable guarded fragment
with counting quantifiers (GC2)

fragment gardé à deux variables
de la logique du premier ordre
avec quantificateurs à compteurs

unary inclusion dependency
dépendance d’inclusion unaire

union of conjunctive queries (UCQ)
union de requêtes conjonctives

universal model modèle universel
unraveling dépliement
view maintainance maintenance de vues
weighted finite-state transducer

transducteur fini pondéré
width largeur
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Leveraging the Structure of Uncertain Data
Antoine Amarilli

RÉSUMÉ : La gestion des données incertaines peut devenir infaisable, dans le cas des bases
de données probabilistes, ou même indécidable, dans le cas du raisonnement en monde
ouvert sous des contraintes logiques. Cette thèse étudie comment pallier ces problèmes en
limitant la structure des données incertaines et des règles.
La première contribution présentée s’intéresse aux conditions qui permettent d’assurer la
faisabilité de l’évaluation de requêtes et du calcul de lignage sur les instances relationnelles
probabilistes. Nous montrons que ces tâches sont faisables, pour diverses représentations
de la provenance et des probabilités, quand la largeur d’arbre des instances est bornée.
Réciproquement, sous des hypothèses faibles, nous pouvons montrer leur infaisabilité pour
toute autre condition imposée sur les instances.
La seconde contribution concerne l’évaluation de requêtes sur des données incomplètes
et sous des contraintes logiques, sous l’hypothèse de finitude généralement supposée
en théorie des bases de données. Nous montrons la décidabilité de cette tâche pour les
dépendances d’inclusion unaires et les dépendances fonctionnelles. Ceci constitue le premier
résultat positif, sous l’hypothèse de la finitude, pour la réponse aux requêtes en monde ouvert
avec un langage d’arité arbitraire qui propose à la fois des contraintes d’intégrité référentielle
et des contraintes de cardinalité.

MOTS-CLÉS : incertitude, probabilités, bases de données, réponse aux requêtes.

ABSTRACT: The management of data uncertainty can lead to intractability, in the case of
probabilistic databases, or even undecidability, in the case of open-world reasoning under
logical rules. My thesis studies how to mitigate these problems by restricting the structure of
uncertain data and rules.
My first contribution investigates conditions on probabilistic relational instances that ensure
the tractability of query evaluation and lineage computation. I show that these tasks are
tractable when we bound the treewidth of instances, for various probabilistic frameworks and
provenance representations. Conversely, I show intractability under mild assumptions for any
other condition on instances.
The second contribution concerns query evaluation on incomplete data under logical rules,
and under the finiteness assumption usually made in database theory. I show that this task is
decidable for unary inclusion dependencies and functional dependencies. This establishes
the first positive result for finite open-world query answering on an arbitrary-arity language
featuring both referential constraints and number restrictions.

KEYWORDS: uncertainty, probabilities, databases, query answering.
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