N
N

N

HAL

open science

From Mobile to Cloud: Using Bio-Inspired Algorithms
for Collaborative Application Offloading

Roya Golchay

» To cite this version:

Roya Golchay. From Mobile to Cloud: Using Bio-Inspired Algorithms for Collaborative Application

Offloading. Mobile Computing. Université de Lyon, 2016. English. NNT: 2016LYSEI009 .

01346422

HAL Id: tel-01346422
https://theses.hal.science/tel-01346422
Submitted on 18 Jul 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://theses.hal.science/tel-01346422
https://hal.archives-ouvertes.fr

W
)

e
‘H-‘

INSTITUT NATIONAL
DES SCIENCES
APPLIQUEES

UNIV=RSIT= D= LYON C
= LYON

INSA

=
<

N° d’ordre NNT : 2016LYSEI009
THESE de DOCTORAT DE I’UNIVERSITE DE LYON

préparée au sein de

PINSA LYON

Ecole Doctorale N°512

Informatique et Mathématiques

Spécialité de doctorat : Informatique

Soutenue publiquement le 26/01/2016, par :

Roya Golchay

From Mobile to Cloud: Using Bio-Inspired Algorithms

for Collaborative Application Offloading

Devant le jury composé de

Président : Bernard Tourancheau, Professeur, Université Joseph Fourier
Rapporteurs : Philippe Roose, MCF HDR, Université de Pau et des Pays de I’Adour
Sophie Chabridon, MCF HDR, Télécom SudParis
Examinateur : Philippe Lalanda, Professeur, Université Joseph Fourier
Jean-Marc Pierson, Professeur, Université Paul Sabatier,Toulouse 3
Directeurs : Frédéric Le Mouél, MCF, INSA de Lyon
Stéphane Frénot, Professeur, INSA de Lyon

These effectuée au sein du Centre d’Innovation en Télécommunications et Intégration de Services (CITI) de 'INSA de Lyon,

équipe Dynamic Software and Distributed Systems (DynaMid)

Résumé

Actuellement les smartphones possedent un grand éventail de fonctionnalités. Ces objets tout en un, sont
constamment connectés. Il est I’appareil favori plébiscité par les utilisateurs, comme étant le plus efficace,
pratique et nécessaire parmi tous les dispositifs de communication existants. Les applications actuelles
développées pour les smartphones doivent donc faire face & une forte augmentation de la demande en termes
de fonctionnalités - de la part des utilisateurs, en données collectées et enregistrées - de la part des objets
IoT du voisinage, en ressources de calculs - pour I’analyse des données et le profilage des utilisateurs ; tandis
que - dans un méme temps - les smartphones doivent répondre a des criteres de compacité et de conception
qui les limitent en énergie et a un environnement d’exécution relativement pauvre en ressources. Utiliser
un systeéme riche en ressource est une solution classique introduite en informatique dans les nuages mobiles
(Mobile Cloud Computing), celle-ci permet de contourner les limites des appareils mobiles en exécutant a

distance, toutes ou certaines parties des applications dans ces environnements de nuage.

Cependant, l'exécution déportée (offloading) - mise en oeuvre dans des centres de données
géographiquement éloignés - introduit une grande latence du réseau, qui n’est pas acceptable pour les utilisa-
teurs de smartphone. De plus, une exécution déportée (offloading) massive sur une architecture centralisée,
crée un goulot d’étranglement, qui empéche 1’évolution requise par I’expansion du marché des dispositifs de
I'Internet des choses. L’informatique brumeuse (libre traduction du Fog Computing) a été introduite pour
ramener le stockage et la capacité de calcul dans le voisinage de I'utilisateur ou & proximité d’un emplace-
ment précis. Certaines architectures émergent, mais peu d’algorithmes existent pour traiter les propriétés

dynamiques de ces environnements.

Dans cette these, nous focalisons notre intérét sur la conception d’ACOMMA (Ant-inspired Collaborative
Offloading Middleware for Mobile Applications), un interlogiciel d’exécution déportée collaborative inspirée
par le comportement des fourmis, pour les applications mobiles. C’est une architecture orientée service
permettant de décharger dynamiquement des partitions d’applications, de maniére simultanée, sur plusieurs
clouds éloignés ou sur un cloud local créé spontanément, incluant les appareils du voisinage. Les principales
contributions de cette these sont doubles. Si beaucoup d’intergiciels traitent un ou plusieurs défis relatifs a
I’éxecution déportée, peu proposent une architecture ouverte basée sur des services qui serait facile & utiliser
sur n’'importe quel support mobile sans aucun exigence particuliere. Parmi les principaux défis il y a les
questions de quoi et quand décharger dans cet environnement changeant et tres dynamique, ou le profile et
le contexte du dispositif mobile, et les propriétés du serveur jouent un role considérable dans lefficacité. A
cette fin, nous développons des algorithmes de prises de décisions bio-inspirées : un processus de prise de
décision bi-objectif dynamique avec apprentissage et un processus de prise de décision en collaboration avec

les autres dispositifs mobiles du voisinage.

Nous définissons un mécanisme de dépot d’exécution avec une méthode de partitionnement grain fin de
son graphe d’appel. Nous utilisons les algorithmes des colonies de fourmis pour optimiser bi-objectivement
la consommation du CPU et le temps total d’exécution, en incluant la latence du réseau. Nous montrons que
les algorithmes des fourmis sont plus facilement re-adaptables face aux modifications du contexte, peuvent
étre tres efficaces en ajoutant des algorithmes de cache par comparaison de chaine (string matching caching)
et autorisent facilement la dissémination du profil de I'application afin de créer une exécution déportée

collaborative dans le voisinage.

Abstract

Not bounded by time and place, and having now a wide range of capabilities, smartphones are all-in-one
always connected devices - the favorite devices selected by users as the most effective, convenient and neces-
sary communication tools. Current applications developed for smartphones have to face a growing demand
in functionalities - from users, in data collecting and storage - from IoT device in vicinity, in computing
resources - for data analysis and user profiling; while - at the same time - they have to fit into a compact
and constrained design, limited energy savings, and a relatively resource-poor execution environment. Using
resource- rich systems is the classic solution introduced in Mobile Cloud Computing to overcome these mobile
device limitations by remotely executing all or part of applications to cloud environments. The technique is
known as application offloading.

Offloading to a cloud - implemented as geographically-distant data center - however introduces a great
network latency that is not acceptable to smartphone users. Hence, massive offloading to a centralized
architecture creates a bottleneck that prevents scalability required by the expanding market of IoT devices.
Fog Computing has been introduced to bring back the storage and computation capabilities in the user
vicinity or close to a needed location. Some architectures are emerging, but few algorithms exist to deal
with the dynamic properties of these environments.

In this thesis, we focus our interest on designing ACOMMA, an Ant-inspired Collaborative Offloading
Middleware for Mobile Applications that allowing to dynamically offload application partitions - at the same
time - to several remote clouds or to spontaneously-created local clouds including devices in the vicinity.
The main contributions of this thesis are twofold. If many middlewares dealt with one or more of offloading
challenges, few proposed an open architecture based on services which is easy to use for any mobile device
without any special requirement. Among the main challenges are the issues of what and when to offload
in a dynamically changing environment where mobile device profile, context, and server properties play
a considerable role in effectiveness. To this end, we develop bio-inspired decision-making algorithms: a
dynamic bi-objective decision-making process with learning, and a decision-making process in collaboration
with other mobile devices in the vicinity. We define an offloading mechanism with a fine-grained method-level
application partitioning on its call graph. We use ant colony algorithms to optimize bi-objectively the CPU

consumption and the total execution time - including the network latency.

iii

List of the acronyms

MC Mobile Computing

CC Cloud Computing

MCC | Mobile Cloud Computing
ACO | Ant Colony Optimization
IoT Internet of Things

SPC | Spontaneous Proximity Cloud
DS Distant Cloud

SM String Matching

SP Shortest Path

BSP | Bi-objective Shortest Path

Table 1: List of the acronyms

Acknowledgements

Getting a doctorate, undoubtedly, was a challenging process in my life. I would like to express my very
great appreciation to all those who helped me by their guidelines and supports to successfully complete this

course.

First, I would like to offer my special thanks to Stéphane for the opportunity he provided me to start
PhD and also for his availability. I wish to acknowledge my supervisor, Frédéric, who trusted me, helped me
grow as a researcher and gave me a new dimension to my way of thinking. I am grateful to all his personal
and academic comments and his different attitudes to life. He always gave me confidence that I would be

successful despite all obstacles and helped me get to the end.

My thanks also go to all Laboratory partners for the friendly atmosphere and great times we spent together.
My special thanks are extended to Fabrice and Florent for their support and attention and also to Marie

Ange because of her warm company and encouragement in the most difficult times.

Special thanks should be given to my good friends whose company energetized me to work hard, especially

Marie whose kindness cannot be reciprocated with words.

I am deeply grateful to my parents for their unconditional love, companionship and support at all stages of
my life. I wish to thank my Dad for reminding me of the importance of teaching and research and my Mom
for her immeasurable support and assistance. I would like to express my deep gratitude to my brothers,
Hamed and Behnood, for their encouragement and endless kindness. I would like to express my very great

appreciation to my dear husband, Hamidreza, for all encouragement and conditions provided for me.

And finally, T wish to thank my lovely daughters, Pania and Parmis, who have filled every moment of my
life with joy and indescribable sweetness. I would like to do apologize about all the hours and days they

spent without Mom or with a busy and bored Mom.

It should be noted that this list is not exhaustive and I really acknowledge every people who contributed

to my project.

vii

Contents

1.1 Mobile Device: From Personal Device to IoT Gateway|
1.2 From Mobile to Cloud: Mobile Cloud Computingf

1.3 Problem Statement: Application Offloading

L4 Thesis Outlinel e
2 Overview of the Application Offloading Middleware|
2.1 General Architecture of Mobile Cloud Computing.
[2.2 Architecture and Communication tor Cloud Application Engineeringl
2.2.1 Client-Server Based Architecturel
2.2.2 Virtualization Based Architecturel
[2.2.3 Mobile Agent Based Architecturel. o0 0L
2.3 Offloading Destination|
2.3.1 Distant Cloud Based Middlewarel
2.3.2 [Local Cloudlet Based Middlewarel.
2.3.3 Proximate Cloud Based Middlewarel
2.4 Middleware Classification Based on Decision Making Process|
[3 An Automated Application Offloading Middleware|
[3.1 Main Contributions of Designing Offloading Middleware|
3.2 An Overview of Mobile Applications from an Application Engineering Perspective| .
[3.2.1 Mobile Application Architecturel 0.
[3.2.2 Mobile Application Transformation|.
3.3 An Overview of Application Offloading Middleware from a Runtime Perspectivel .
[3.3.1 Design Objectives| e
[3.3.2 Service-oriented Architecture for ACOMMAI.
[3.3.2.1 Service Description|
I;i|;i'2‘2 :‘zg:l &ls:gz Illl g:li!s:llgzll{il --------------------------
[4 Individual Offloading Decision Making in ACOMMA|

4.1 An Introduction of Decision Making Process for Application Offloading|
[4.1.1 Difterent Aspects of Offloading Decision Makingl
[4.1.2 Application Partitioning Problem Considered as Shortest Path Problem| . . .
|4.1.3 Solving Shortest Path Problem Using Bio-Inspired Algorithms|

4.2 Decision Making Process of ACOMMA for Application Offloading]

X

13
13
15
16
20
23
24
25
29
31
33

37
38

42
44
47
47
50
50
52

4.2.1 Application Offloading Flow of ACOMMA|. 65
[4.2.2 Bi-Objective Offloading Decision Making Using Ant Colony Optimization |

Algorithm| 67
|4.2.3 Learning-Based Offloading Decision Making Using String Matching Algorithm| 71

[5 Collaborative Application Offloading| 75
.1 An Introduction of Collaboration-based Application Offloading] 75
5.2 Collaborative Offloading in ACOMMA| 79

[5.2.1 Collaboration-Based Resource Sharing in Application Offloading] 80
b.2.1.1 Creating Service Graph for Multi Destination Application Offloading| 82
5.2.1.2 Applying ACO for Multi Destination Decision Making/. 84

15.2.2 Collaboration-Based Decision Sharing in Application Offloading|. 86
b.2.2.1 Collaborative Decision Sharing| 86
5.2.2.2 Decision Cache Management| 87

[6 Implementation and Evaluation of ACOMMA| 91

[6.1 Validation Approachlo 91
6.1.1 Applications| 91
[6.1.2 Experimental Plattorm|. o000 93
6.1.3 Success Criterial. oo 94

6.2 Fvaluationl. 94
[6.2.1 Evaluation of Individual Decision Making for Single Destination Offloading] . 94

6.2.1.1 Ant Colony Optimization Pertormance] 95
[6.2.1.2 String Matching Pertormance|. 100

16.2.2 Evaluation of Collaborative Offloading| 101
[6.2.2.1 Decision Sharing| Lo oo 102
6.2.2.2 Resource Sharing| 104

(__Conclusion| 107
7.1 Summary| L 107

(7.2 Short and Long Term Perspectives| 109

List of Figures

X1

[1.1 Application offloading dimensions|. oo 9
[2.1 General architecture of Mobile Cloud Computing| 15
[2.2 Affecting factors in Mobile Cloud Computingl 16
2.3 The architecture of Cuckoo [69] 19
2.4 The architecture of MAUT 21
2.5 The architecture of ThinkAi 26
2.6 Fuzzy logic system| 28
2.7 VM synthesis| e 30
[2.8 Thematic taxonomy of application offloading middlewares| 34
[3.1 Mobile devices as Io'T gateway and SPC| 38
3.2 A sample call graph| 41
13.3 Mobile application architecture ot ACOMMA from application engineering point ot |
L VIEW « o e 44
13.4 Mobile application execution flow with servicization modifications| 46
3.5 A general execution flow of offloading middleware|. 49
13.6 Layered architecture of application offloading middleware| 50
3.7 DService interactions of middleware architecturel L 53
4.1 Transtorming call graph to be compatible to SP problem|. 61
4.2 A weighted call graph with local and remote paths| 63
4.3 An architectural view of offloading building blocks in ACOMMA| 66
4.4 Offloading process in ACOMMA| 67
4.5 Non dominated solutions for Shortest Path Probleml 69
4.6 Decision making process using String Matching| o000 72
4.7 A sample of String Matching Cache| 74
[5.1 A motivating scenario to make mobile devices collaborate| 7
5.2 Centralized client-server vs. decentralized peer-to peer communication| 79
5.3 Building blocks of ACOMMA for collaborative offloading] 81
5.4 General flow of collaborative offloading|. 82
5.5 Application partitioning for multi destination offloadingl 83
5.6 Call graph modification for multi destination offloadingl 84
5.7 A decision cache composed of decision trails and contextual information| 87
6.1 Local and ACO offloading execution time of micro benchmarks on Galaxy SII|. . . . 96

6.2 Local and ACO offloading execution time of micro benchmarks on Google Nexus 7 |

Tablettel e 97
6.3 Local and ACO offloading execution time of macro benchmarks on Galaxy SII} . . . 98
6.4 ACOMMA’s overhead running ACO for successtul runs of Determinant and Integrall 98
6.5 Local and ACO offloading CPU usage of micro benchmarks on Google Nexus 7 Tablette| 99
6.6 Nearby device discovery| e 102
[6.7 Execution time ot application offloading, using SM by local or collaborative cache | . 103

List of Tables

1 List of the acronyms| v
[2.1 A classification of application offloading middlewares| 35
6.1 Test inputs for individual decision making using ACO| 95
6.2 Summary of individual decision making using ACO on micro benchmarks| 100
6.3 Summary of individual decision making using ACO on macro benchmarks| 100
6.4 Execution time gained bye SM algorithm compared with ACO| 101
6.5 Test inputs for collaborative decision sharing using ACO|. 102
6.6 Execution time gained by SM using collaborative cache compared with local cache| . 103
6.7 Execution trace of Determinant for multi destination offloading 104
6.8 Execution trace of Integral for multi destination offloadng|. 104

xiii

Xiv

Chapter 1

Introduction

1.1 Mobile Device: From Personal Device to ol Gateway| 1
(1.2 From Mobile to Cloud: Mobile Cloud Computingf 5
[1.3 Problem Statement: Application Offloading| 9
[L4 Thesis Outlinel 11

The goal of this chapter is to highlight the challenges in computer system research raised
by Mobile Cloud Computing and put the light on new challenging problems, the management
of dynamic and scaling aspects in application offloading. We begin by examining the dual role
of mobile device and specially smartphone as a personal device and as a gateway of Internet of
Things. Then we mention the motivation of application offloading from mobile device to the cloud
to overcome its inherent resource limitations. We especially focus on two hot key research points
on Mobile Cloud Computing: dynamic decision making for offloading and collaboration between
mobile devices and IoT from offloading point of view. Finally, we outline the contributions of this

thesis and detail the chapter contents.

1.1 Mbobile Device: From Personal Device to IoT Gateway

The user tends to use more and more smartphones instead of portable computing and communica-
tion devices as all-in-one always-connected devices with custom-built personal productivity, social
media, and entertainment significantly increased so that becoming less of a luxury and more of a
necessity in human life. According to CISCO Visual Networking Index [30] average smartphone us-

age grew 50 percent in 2013. By the end of 2014, the number of mobile-connected devices exceeded

1

CHAPTER 1. INTRODUCTION

the number of people on earth, and by 2019 there will be nearly 1.5 mobile devices per capita.

Ubiquitous network connectivity, even for these small devices in addition to their mobility prop-
erty make users to rely on their mobile devices as their go-to devices and increasingly using them
for daily tasks such as Internet banking, emailing, and emergencies (such as viewing online traffic
map or using routing applications to find the best shopping way or connecting to a medical infor-
mation system to take a prescription urgently). The expansion of mobile devices usage offers large
number of features to users. Indeed, these platforms make services, applications and functionalities

available anywhere and any time.

Wide range of smartphones capabilities typically including 3G connectivity, GPS, WiFi, high
quality graphic, cameras,various sensors, gigabytes of storage and gigahertz speed processors beside
their compact design and miniature nature which make them dominant computing devices selected
by users highly motivate application market to develop wide range of resource constrained mo-
bile applications such as m-commerce, mobile telemedicine, multiplayer mobile gamming, machine
learning, natural language processing, pattern recognition, augmented reality service to satisfy high
users expectation. However the inherent limitations of smartphones make it difficult to exploit their
full potential to run these complex applications and have the best performance compared with the

same application running on powerful stationary computing devices.

However not bounded by time and place make the mobile devices become an essential part
of human life as the most effective and convenient communication tools but its more than just

connecting people. Mobile is about connecting everything.

Machine-to-machine (M2M) mobile connectivity represents the next great wave of what mobile
can make possible in our lives. Huawei [134] uses M2M also standing for Machine to Man, Man
to Machine, or Machine to Mobile. As wireless innovation continues, this M2M connectivity the
so-called “Internet of Things” intelligently connects humans, devices, and systems and will further
accelerate mobile opportunity and transform how people and our economy interact with the many
tools of modern life. Through mobile connectivity, the Internet can make virtually anything more
intelligent: holding great promise for our economy, our environment, our education and health care
systems, our safety and our standard of living. From a refrigerator and home thermostat to a car
or office whiteboard to a child’s textbook or doctor’s medical tablet, wireless technology is leaping

beyond the phone to connect the world around us to the Internet and this “Internet of Things”

CHAPTER 1. INTRODUCTION

will greatly improve our lives and our economy.

When embedded with chips and sensors, these objects(Things) can “think”, “feel”, and “talk”
with each other. Together with the infrastructure of the Internet and mobile networks, these objects
can communicate with humans, and enable us to monitor and control them anytime anywhere and

enjoy their intelligent service, making the idea of a “Smart Planet” a dream come true.

Exponentially augmented number of connected devices to IoT make an old science fiction history
comes true. According to Gartner' the IoT will reach 26 billion connected devices in 2020, with
an exponential growth of 30 times the installed base in 2009, when connected devices in the web
were just 900 million [90]. According to ABI Research? [89] more than 30 billion devices will be

wirelessly connected to the IoT (Internet of Everything) by 2020.

The smartphones brimming with sensors (an accelerometer, a compass, GPS, light, sound,
and altimeter) are becoming a universal interface and remote control for these things. In this
way, the smartphone is a gateway drug for you to enter the next level, in which the internet is
in your thermostat, lights, door locks, car and wristwatch. For instance, in order to reduce car
accidents and provide drivers with an easier and safer way of manipulating the navigation system,
[132] introduces a remote control framework that make remote person capable to control the car
navigation system on behalf of the driver. Using flexible home control and monitoring system
proposed in [9§], any Android based smartphone with built in support for Wi-Fi can be used to
access and control the devices at home. Another example is a thermostat system in a house that
could be controlled via the personal IoT platform using smart phone |128].

Smart homes, Internet-connected cars, and wearable devices which represent the next generation
of mobile gear beyond smartphones, are new systems that will coexist with phones for at least the
next few years.

Despite increasing usage of smartphones either for individual owner use as mini-computers that
travel with them and keep them connected 24 hours a day for running different mobile applica-
tions, or as the universal interface for IoT, exploiting their full potential is difficult due to their
inherent limitations. This often severely constrains hardware and software development for these

devices. |103| divides constraints raised by mobile computing into the three main categories of

! American information technology research and advisory firm headquartered in Stamford, Connecticut, United
States
2Market research and market intelligence firm based in New York

CHAPTER 1. INTRODUCTION

mobile device, network and mobility constraints. We do the same division but we consider mobile

device as a gateway for the loT as well as ordinary personal device.

e Mobile Device Constraints: Due to their small size and weight mobile devices are resource-
poor in terms of processor speed, storage space, display size and screen resolution compared
with stationary computers. This is what is mentioned in almost all researches done in Mobile
Computing domain. We believe that although mobile devices are not as powerful as stationary
computers, by the virtue of rapid and drastic progress in embedded technologies they are
strong enough to meet user requirements itself and the user rather suffers from short battery
life time. This battery shortage is more problematic while connecting to IoT as a gateway.
In addition, hardware resources of mobile device could not support new volume of processing
imposed by its new role. How to meet these constraints plus power limitation while satisfying

user is a great challenging point for developers [61].

e Network Constraints: Because of their mobility nature, mobile devices use wireless networks
instead of wired ones. Despite great improvement in wireless network they will still continue
to have limited bandwidth, high latency and frequent disconnections due to power limitations,

available spectrum and mobility.
e Mobility Constraints:

— Mobility is inherently hazardous [108]: While mobile devices are in move they are more
vulnerable to loss or misplace, damage or theft. Their mobility makes it difficult to
consider their availability. Security and privacy points are also much more important
than stationary computer. Mobile devices record various private data about user same
as location and this sensitive information should not be accessible to others without

owner authorisation.

— Mobile connectivity is highly variable in performance and reliability: Wireless network
coverage is varying in different geographical position. There maybe no network coverage
in some places. In addition network providers offer different bandwidth and connection
speed. Some buildings may offer reliable, high-bandwidth wireless connectivity while
others may only offer low-bandwidth connectivity. Outdoors, a mobile element may

surely have to rely on a low-bandwidth wireless network with gaps in coverage. If

4

CHAPTER 1. INTRODUCTION

the system does not recognize and adapt to these differences, it can impact the user
experience. For example, if a system sends high-quality video to a device with a very

limited wireless connection, the result is long loading times and a poor user experience.

— Mobile device is not accessible for a specific period of time: Mobility makes it difficult
to rely on a mobile device as an IoT gateway. At any movement, a mobile device should
rediscover its environment to know nearby mobile devices as well as IoT. In addition,
the availability of mobile device up to the end of IoT related processes is not guaranteed

because of its mobility.

Great and consecutive improvement in mobile devices and network communication is required
in order to overcome challenges raised by the aforementioned constraints. Augmentations in mobile
device side divided into hardware and software approaches. Hardware approaches focus to empower
mobile devices by exploiting powerful resources and long lasting battery.

Hardware solutions are not always feasible; generating powerful device caused additional heat,
size and weight, preparing last longing battery in small device with enlarged resources is not
possible with current technologies and finally equipping mobile device with high-end hardware will
noticeably increasing the price [14]. On the other hand, software development process is much
more faster than hardware development. There is a highly impressive development in software
domain in the last decades.

This is why we are interested in software level solutions to atone hardware limitation in mobile
computing. In the next section we introduce the most recent software approach named Mobile

Cloud Computing after presenting a brief history of software approaches and its categories.

1.2 From Mobile to Cloud: Mobile Cloud Computing

Empowering mobile devices using software solutions is not a new concept. Different approaches
including load sharing [95], remote execution [106], cyber foraging [109], and computation offload-
ing 75|, [76] try to improve performance and energy consumption of resource-poor mobile devices
by using the power of one or more resource-rich stations. Due to slight differences among their
concepts, researchers use the terms “remote execution”, “cyber foraging” and “computation of-

floading” interchangeably in the literature with similar principle and notion [14]. “Offloading” is

5

CHAPTER 1. INTRODUCTION

the term which we use in the rest of this dissertation for this concept.

The basic idea of code offloading is the core concept of different researches over the years
193,118} 21, |19] as one of the most practical solutions to alleviate resource limitation in smartphones.
A key area of application offloading is to make a resource-intensive device use remote execution to
improve performance and energy consumption. The surrogate can be a powerful stationary device
or a set of processors. Drastic evolution of wireless technologies that make network connectivity
ubiquitous and successful practices of Cloud Computing for stationary machines are motivating
factors to bring the cloud to the vicinity of a mobile from an offloading perspective. As result
Mobile Cloud Computing was introduced to enable rich mobile computing by extending the on
demand computing vision of CC and enrich smartphones and address their issues of computational
power and battery lifetime by executing complete mobile applications or identified resource intensive
components of a partitioned mobile application on cloud-based surrogates.

Although the offloading method is not a new concept, the term Mobile Cloud Computing was
introduced and used about the same time as generalization of CC. Then in 2010, Google CEO, Eric
Schmidt, explained MCC in an interview. Increasing use of mobile devices, especially smartphones,
on the one hand and the many benefits of using MCC on the other hand have attracted a lot of
attention to this new concept and prompted much research done in this area. The advantages of

MCC can be divided as follows:

e Strengthening the processing power: Sending all or part of computation intensive mobile
application to a reliable and strong resource can increase the prepossessing power and available

memory while reducing execution time.

e Prolonging the battery: Offloading process on a cloud-based device considerably decreases
energy consumption and increases mobile device battery life during the execution of the

energy-intensive application.

e Unlimited storage: Being connected to cloud and its almost unlimited storage compared with
the limited storage of mobile device results in an increase in the available storage capacity in

mobile device.

e Data Safety: By storing the sensitive data on secure and reliable resources of a cloud, it

reduces the possibility of these data being stolen, lost or physically damaged.

6

CHAPTER 1. INTRODUCTION

e Data sharing and ubiquitous access: Users of mobile devices will be able to access their stored

data on the cloud storage anytime, anywhere and through any device.

e Enriched user interface: Due to the inherent limitations of mobile devices, heavy and compact
2D and 3D screen rendering can be done in the cloud and the final image will be prepared

based on the features and screen size of the mobile device.

e Enhanced Application Generation: Distributed Mobile Applications can be implemented for

a variety of dissimilar mobile devices by using already developed components on the clouds.

The main objective of MCC is to exploit the above-mentioned benefits and provide a method
for fast and easy access to cloud resources. Naturally, there are some problems in achieving these
goals. Since MCC has arisen from a merger of Mobile Computing and CC, important factors that
affect the quality of MCC are challenges related to MC and CC and the relationship between these

two:

e Cloud side challenges

— Privacy: Although the protected state of data stored in the cloud avoids them being lost
or destroyed, the public part of cloud space can compromise the users privacy despite

the creation of separate virtual space for each user.

— Security: Protecting the security of the data during transmission to the cloud and vice
versa and during their residence on cloud is a noteworthy point in discussions on CC

and consequently in MCC.

— Cost: cloud is a non-free infrastructure and the user must meet its cost to be able to use
it. Estimating whether paying such a cost is effective for the user and when the user is

willing to pay it are other issues to be considered.
e Communication challenges

— Communication Protocol: Although communication protocols such as Hadoop [9] which
is implemented in distributed computing as well as open resource APIs of the cloud
itself like Dropbox [2], Azur [10] and OpenNebula [12] can be used in MCC, the lack of a
standard communication protocol especial(customized) for MCC is one of its drawbacks

that must be examined more.

CHAPTER 1. INTRODUCTION

— Infrastructure deployment: As an IoT gateway, a mobile device needs to communicate
with heterogeneous sensors. These sensors usually use private communication protocols
in their network that are known only within their network. How to deploy an infras-
tructure to communicate with these sensors on various communication networks while
having reasonable response time and how to connect them to the cloud is a challenging

point.
e Mobile side challenges

— Complexity of application implementation: Applications that can be transferred into
a cloud are more complex than normal applications and their implementation requires
more knowledge, skills and time. When some parts of the application need to be trans-
ferred to the cloud, the developer is responsible for detecting and annotating the portable

parts.

— Performance: Although the main goal of MCC is to overcome the problems caused by
restrictions of mobile device resources through offloading the entire application or costly
parts of it in order to increase efficiency, communication with cloud and sending and
receiving information require large amounts of resources and is costly. How to make an
efficient offloading decision to augment mobile device performance concerning offloading

costs and benefits is a challenging point while designing an offloading middleware.

— Mobility transparency and awareness: Mobility of mobile device itself as well as its
dynamic and highly changing environment also cause some challenges. Mobility may
interrupt mobile devices’ connection with the cloud during the execution of some parts of
the application on the cloud, therefore, it can lead to the impossibility of mobile devices’
access to the processing results. Making these issues transparent to mobile device is
important. On the other hand, mobile devices specially used as IoT gateway need to
be aware of their highly changing environment to be able to communicate with cloud
as well as IoT. This awareness may lead to making more efficient ofoading decisions.
Being mobility transparent and mobility aware at the same time depending on situation
is an important challenging point while offloading. Making users to agree to collaborate
with others using incentive methods is challenging. How to make this collaboration be

also beneficial for mobile device itself is a point of discussion.

CHAPTER 1. INTRODUCTION

How
|
r !
/, < 7]
,)
%0(; ,,/ ’b@
"}' ,/ \\Q
e Q <&
e 6\O 5
— & ,
Q\OOO/
4
Complete Application s — Where
/’ >
’ &Q’
-------------------------- C > .
o
7" 4
What — Application Partitioning ";);\.\\&
4
________ 3 S
""""""""" o) - OV
QPN
A\
VM Migration

Figure 1.1: Application offloading dimensions

In this thesis we focus on challenging points related to mobile device and introduce our offloading

middleware as a response to these issues.

1.3 Problem Statement: Application Offloading

How to make mobile devices benefit from CC using application offloading is an important research
point in MCC. There are different ways to delegate resource / computation-intensive parts of a mo-
bile application to more powerful machine that their choices based on the context and requirements
may result in different performance. Answering some key questions as follows leads to designing

an offloading middleware that meets performance goals in an efficient way.
e What to offload?
e Where to offload?
e How to offload?

Figure shows a summary of existing answers to these questions.
The proposed offloading solutions are generally to develop an architecture in which the mobile is
charged with the responsibility of defining what should be offloaded based on two main strategies:

entire application offloading and application partitioning. The virtual machine techniques used

9

CHAPTER 1. INTRODUCTION

to migrate the entire application process in first offloading form where code partition becomes
transparent to programmer [110], [28] while in application partitioning form the application is
partitioned either statically using basic implementation primitives (e.g. annotations) or dynamically
using component-based application partitioning techniques [84] and part of the code is outsourced
based on available resources, such as network availability, bandwidth and latency [32], [91], [55].

These portions could have different granularity same as OSGi bundles [32] or methods [73].

There are three main surrogate types for mobile device to offload the above mentioned parts.
The first one is the real cloud resources with static hardware infrastructure. Googles Gmail for
Mobile [8] is an example which uses rich Google servers while the mobile device uses 3G connection
to communicate with a remote server as a thin client. Facebooks’ location aware services [5] and
Twitter for mobile [13] are some other example of this type. The second surrogate type is a closer
network layer to mobile device called “Cloudlet” that was proposed in [110] and described as “data
center in a box”. Cloudlet is a set of several multi-core computers with connectivity to the remote
cloud servers. Mobile devices in local vicinity can also be considered as resource providers with
peer-to-peer communication. Other available stationary devices can be used in addition to these
collective devices of various mobile devices. Hyrax [83] is an example which uses this surrogate

type while offloading.

The total process of offloading can be done either statically while implementing or dynamically
at run time. In the first case, offloadable parts are defined at the beginning of an application and
they will not change during the execution. In the second case, the decision making engine will

decide for offload able portions based on the current situation at runtime.

To be adapted to the mobility of the mobile device itself and its environment while offloading, we
make a contribution on an offloading middleware with an open architecture which makes dynamic
offloading decisions at runtime considering the current situation of a mobile device and its context.
To perform an adaptable and scalable offloading, we apply fine-grain method level offloading. We

propose a bio-inspired algorithm to take offloading decisions in a dynamic way.

To benefit form physical proximity of an IoT to the mobile device compared with Cloudlet and
DS, we consider nearby devices as a cloud that constructs and destroys itself spontaneously. Then
we propose an approach to make these nearby devices to collaborate in the event of offloading. The

fine-granularity of offloadable parts makes it possible to execute on small nearby mobile devices.

10

CHAPTER 1. INTRODUCTION

1.4 Thesis Outline

In this the first chapter, we presented the concept of offloading in MCC and then we highlighted
new challenging points in the domain considering the dual role of a mobile device in its dynamic
environment as a personal device and as an IoT gateway at the same time. Finally, we shortly

mentioned how we address these issues. This manuscript is organized as follows:

e Chapter 2 provides a survey of existing application offloading middleware and brings out
drawbacks and limitations of currently existing solutions. A classification of these approaches

under new key research points is presented at the end of the section.

e Chapter 3 firstly exposes our main contributions of designing an offloading middleware. It
then describes how to make a mobile application be adapted to our offloading middleware.
Descriptions of service-based and open architecture of this middleware as well as a description

of the services and their interactions can be found in the last section of this chapter.

e Chapter 4 presents the decision making process for application offloading and explains our
proposed bio-inspired algorithm to make a dynamic offloading decision. Learning-based of-
floading decision making using past decisions and its string matching algorithm is also illus-

trated in this chapter.

e Chapter 5 describes our second contribution: making a collaborative offloading in cooper-
ation between nearby mobile devices. Decision sharing and resource sharing are introduced
as two different interests for making mobile devices to collaborate for offloading. How our
middleware operates to offload onto nearby devices or benefits from others’ decisions to make

its own is explained in this chapter.

e Chapter 6 is in fact a proof of concept. It explains our methodology for implementing
our offloading middleware. Micro and macro benchmarks, different test scenarios and the
results of several tests are presented in this chapter to show the performance of our proposed

middeware under different circumstances.

e Chapter 7 concludes and provides a summary of this work and presents the major perspec-

tives of this work.

11

CHAPTER 1.

INTRODUCTION

12

Chapter 2

Overview of the Application

Offloading Middleware

[2.1 General Architecture of Mobile Cloud Computingf. 13
[2.2 Architecture and Communication for Cloud Application Engineering| 15
- itecturelo 16

2.2.2 Virtualization Based Architecturd 20
[2.2.3 Mobile Agent Based Architecturel. L. 23

[2.3 Offloading Destination| 24
2.3.1 Distant Cloud Based Middlewarel 25
2.3.2 Tocal Cloudlet Based Middleware. 29
2.3.3 Proximate Cloud Based Middlewarel 31

[2.4 Middleware Classification Based on Decision Making Process| 33

To benefit from the advantages of MCC and to meet its challenges cited in Chapter 1, many
improvements are made regularly on design and development of application offloading middlewares.
In this chapter we prepare a state of the art of existing approaches considering the effects of
application nature, from application engineering perspective, as well as cloud type on middleware

design and offloading performance. We propose a thematic taxonomy of existing approaches and

also a classification of them.

2.1 General Architecture of Mobile Cloud Computing

Despite slight differences in dThifferent definitions of MCC which is sometimes referred to as the
future of mobile applications [101], offloading has been regarded to be the core of MCC in all defi-

13

CHAPTER 2. OVERVIEW OF THE APPLICATION OFFLOADING MIDDLEWARE

nitions. Therefore a lot of methods have been recently proposed in this regard for the code, compu-
tation or application offloading. Furthermore, there have recently been many programs in different
contexts which support CC. Among such programs, it can be referred to commerce [131],health-
care [43], [117],education [48], [133], social networks [4], file sharing [6], and searching [96] applica-

tions.

Various surveys have also tried to highlight the importance of MCC and offloading from different
points of view [107], [80], |[114], [111], [37]. The authors of [104], [86], [120], [111] examined the
challenges and problems in MCC and [100] gave also a perspective. [69], [33], [126] focused on MCC
applications. [33] presented a basic comparison of MCC applications and classified them and in [69]
mobile cloud application models and their strengths and weaknesses as well as the parameters that
influenced them were also reviewed. Unlike other surveys, [74] classified the methods of computation
offloading based on the year they were found. The authors of [14] did one of the most complete
surveys in this domain. In addition to providing a taxonomy of offloading methods that is called
Cloud based Mobile Augmentation, they evaluated different types of remote resources and their
impact on the quality of offloading. Items related to decision making, factors affecting efficiency
and existing challenges are among the other topics discussed in this survey. Offloading frameworks
entitled Distributed Application Processing Frameworks were explained and classified in [114] and

the challenges and issues of their development and implementation in MCC is also highlighted.

The figure shows the overall architecture of MCC. Mobile devices ranging from smartphone,
tablet, PDA, etc can be connected through the infrastructure network to the cloud. Depending
on the local conditions of a mobile device, this connection can be established via satellite, access
point or BT'S with the help of wifi / 3G / wi-max and LTE technologies. Amazon Elastic Compute
Cloud (EC2) [1], Google App Engine |7] and Microsoft Azure [10] are among famous public clouds.
There is also the possibility of using the Cloudlet or group of nearby mobile devices instead of a

DS.

Several factors influence the quality of achieving the main goal of offloading,i.e. reducing the
overall execution cost in mobile application. [69], [47], [112] analysed these factors and evaluated
their effect on the offloading decision and its result. These factors are derived from the properties
of mobile devices, application, environment and cloud as well as user dependent points(figure .

Although the connection, mobile device and user behavior influence the offloading process, they

14

CHAPTER 2. OVERVIEW OF THE APPLICATION OFFLOADING MIDDLEWARE

___Mobile NetworkA

&i “ Cloudlet J€<—> .nternet «— O Cloud

g &

Mobile NetworkB

/)

A
|
I
|
I
I
|
I
I
|

J

«

_____Mobile NetworkC
o 5
& @&

- Mobile Network D

Figure 2.1: General architecture of Mobile Cloud Computing

usually cannot be changed by the programmer and are less emphasized in the various solutions
offered in this regard. Application engineering and the way an application is made are among the
issues that are taken into consideration. Granularity and partitioning in offloading are functionali-
ties which have significant impact on the architecture, the manner of communicating with the server
and the results of offloading. In the next section of this chapter, we will examine the relationship
between the architecture and the relevancy of programs for cloud application engineering and then

we will explain some examples of middlewares available with different architectures.

2.2 Architecture and Communication for Cloud Application En-
gineering

As mentioned in the previous section, MCC focuses on transfer of all or parts of a mobile application

on machines that are more powerful than a mobile device and therefore, increases efficiency in mobile

device. One factor affecting the quality of the transfer and its outcome is application engineering

and the determination of what can be transferred and how. In fact, the process of offloading starts

15

CHAPTER 2. OVERVIEW OF THE APPLICATION OFFLOADING MIDDLEWARE

Resource availability Required QoS
Runtime support /" Preferences
Cost (UQ Budget
. ser
. Security Privacy
Cloud Distant Security

Communication technology
Network coverage
Available bandwidth

Connection DeIay
1!
& Available resources Architecture
& Mobility Type
"@ Communication ability —) Granularity
e Current load Application gj, ¢

Mobile device

Figure 2.2: Affecting factors in Mobile Cloud Computing

with an application that is running on a mobile device and comes to an end in the surrogate.
That’s why an architecture based on application requirements is very effective in determining
the transfer block. From the standpoint of applications engineering, the available architectures for
mobile application can be divided into three models, Client-server based architecture, Virtualization
based architecture and Mobile Agent based architecture. The following describes each of the three

architectural models and introduces frameworks that rely on them.

2.2.1 Client-Server Based Architecture

In client-server based architecture, at first the application is divided into parts that can be of-
floaded. The division can be fine-grained or coarse-grained and is usually performed with the help
of developer and by marking (annotating) the transferable parts. Then some of these parts will be
transferred to the surrogate or server. In this method, protocols such as Remote Procedure Call
(RPC) and Remote Method Invocation(RMI) are responsible for communication between the mo-

bile device and surrogate. Stability of the protocols is one of the advantages of this communication

16

CHAPTER 2. OVERVIEW OF THE APPLICATION OFFLOADING MIDDLEWARE

method. In addition, both of them well support APIs. RPC and RMI can be used only if these
services are pre-installed and since such services may not be available on adjacent cloud or mobile
device, the possibility of offloading may get limited. Spectra [49] and Chroma [21] are among the

frameworks that have used RPC in offloading.

Spectra [49)

Spectra is a remote execution system that automatically estimates where and how the compo-
nents should run. To that end, it monitors resource usage in small mobile device and resources
available in the environment, especially static compute servers and takes into account the efficiency,
energy consumption and the quality of the application. At first, the components that can be run
on a remote server are statically specified and then the future resource requirements are foretasted
and the manner of execution is proposed by resource monitor collection of Spectra at runtime with
a continuous view of supply and demand of remote and local sources and by building models of
resource consumption. Spectra forecasts the efficiency, energy consumption and the quality for
every proposal and balances the conflicting aims during the selection process. Spectra has one of

the earliest history based profiling cost models.

As for the Granularity, although fine-grained remote execution increases flexibility in spite of
having access to other offloading options, coarse-grained is used in Spectra due to the possibility of
increasing the efficiency with amortizing overhead over a larger unit of execution because overhead
decisions cannot be overlooked. As a result, Spectra is suitable for applications that perform the

coarse-grained operations, and therefore, not appropriate for applications with shorter operations.

For testing purpose, two main parts of the Spectra, the client and server, are run on a machine.
Application makes remote procedure calls (RPCs) to local and remote Spectra servers. When
Spectra is designing, the feasibility of using the service discovery protocol designed to identify
available servers are dynamically considered, but since this feature is not supported, the potential
servers are not statically stored in configuration file. When mobile device wants to offload a
program, the Spectra client refers to the configuration file to obtain Spectra server specifications
that are pre-installed with the application and act as a service. The Coda file system [72] is
used to make synchronous the changes of files in different remote and local performances. Coda

file system provides strong consistency when the network connection is appropriate and when the

17

CHAPTER 2. OVERVIEW OF THE APPLICATION OFFLOADING MIDDLEWARE

network connection is weak. In fact, Spectra interacts with Coda to assure the remote operations
would read the same data they read if they were run locally. Janus speech recognizer [124], Latex
document preparation system and Pangloss-Lite language translator [51] are programs that have

been modified to work with Spectra and evaluate the Spectra performance.

One of the advantages of Spectra is its good adaptability to the changes in the available resources
of remote execution. Furthermore, the best execution option is recommended to the application.
However, there are some points that can be improved in Spectra that include the lack of security
features in data transmission, dependence on the programmer to determine the remotable parts of
application, the lack of flexibility due to the fine-grain partitioning and overhead that are imposed
to the system due to the use of Coda. As the number of servers increases, the amount of overhead

increases too, but it is still an acceptable amount according to the results obtained with 5 servers.

Cuckoo [6§]

Cuckoo is a complete computation offloading framework for Android with RMI like communi-
cation method and is based on partial application offloading in which the decision to remote or
local execution of an application part is made at runtime. Cuckoo aims to simplify the task of
developer for implementing the program. Cuckoo’s integration with available development tools
that are familiar to developers and automaticity of a large part of the implementation process have
created a simple programming environment. Cuckoo is composed of a runtime system, a resource
manager application and a programming model for developers which have all been integrated with

Eclipse build system (figure .

The first stage of developing a program with Cuckoo is to develop a project and write the
source code. The next stage is the separation of computation intensive (services) and interactive
(activities) sectors with the help of existing activity/service model of Android via an interface
definition language AIDL which is in turn done by the developer. Then, the Cuckoo framework
generates an implementation of the same interface which includes a dummy method implementation
at the beginning and should replace real methods implementations. Furthermore, the Cuckoo
Service Rewriter CSR makes a stub/proxy for any AIDL interface. As a result, based on information
provided by Cuckoo Resource Manager, the methods can be called in a local or remote form. In

the end, the prepared code is compiled and the apk file is prepared and the user can install it on a

18

CHAPTER 2. OVERVIEW OF THE APPLICATION OFFLOADING MIDDLEWARE

smartphone. The program can use any source on which Java Virtual machine is running, whether
it is nearby infrastructure or cloud, as the destination of computation offloading. Of course, this
remote resource should register its address in a part of the Cuckoo framework called Resource
Manager that can be identified by smartphone. Cuckoo uses heuristics, context information and
history to investigate whether it is effective to ofload. The effectiveness can be adjusted to maximize

performance or minimize the energy. To communicate with a remote server, the Ibis communication

Developmeanm
Code
Smartphone Cloud
Applcaton Cloud Libraries
Container
AIDL
1L O S | S
Locsd | Remote Remole Service
i Sansca i\ Service g
BlSsam|| @@ |1 e e na s
CSR CRSD
Local Librarss
Cloud Resouces
Local Ramale
Service Senvice Resowrce Manager
Address Regstrar
Cuchkoo Resource Manager

Application (.apk)

Figure 2.3: The architecture of Cuckoo [69]

middleware [122] which offers a service similar to RMI has been used. Cuckoo’s performance has

been evaluated with the help of two applications: eyeDef and PhotoShoot.

One of the benefits of Cuckoo is using the famous tools for application development and support
of the partial offloading. Among its shortcomings, however, are a lack of Cuckoo’s support from
asynchronous callbacks and the state transferring from remote resources. Also, at switching time
between remote and local execution, no situation is stored. In addition, the lack of security features
for preventing the installation of malicious programs and controlling access to the server can be
seen while designing Cuckoo. And finally, the decision of offloading in cuckoo is static and context

unaware because the only thing considered in the context is the availability of the remote server.

19

CHAPTER 2. OVERVIEW OF THE APPLICATION OFFLOADING MIDDLEWARE

2.2.2 Virtualization Based Architecture

In VM- based architecture, the programmer is not involved with offloading and has no idea of what
is running on the mobile device and its surrogate and their management is undertaken by VM
middleware. A virtual image is what is transferred in this method and is much larger grain than
client-sever method, even in the case of coarse-grain. In a virtualization-based architecture, the
image of VM is copied at runtime from the source to the destination. Live migration of virtual
machines is a technique that is used to transfer the entire OS and its applications in mobile devices
in some frameworks. The use of this method does not require a change in the program at the time of
offloading. In addition, security needs increase due to the separated virtual spaces. But the transfer
of large volumes of VM are generally regarded as challenging point of this method with regard
with compatibility issues between overlays and bandwidth limitation. Most offloading frameworks
use complete VM migration or a combination of it with partitioning algorithms. MAUIT [32],
MobiCloud [59], COMET [57] and Odessa [102] are examples of such a middleware. We explain

below, the two most famous ones among them.

MAUTI [32]

Between two general remote executing methods, application partitioning and full VM /process
migration, MAUT [32] tried to benefit from both. It intends to decrease energy consumption in the

smartphone using code offloading as well as to reduce programmer’s interference.

Firstly, with the help of .NET programming environment features, two versions of the desired
program will be made ready: the former is to be used for running the smartphone and the latter for
being implemented on the infrastructure. MAUI makes offloading decisions at run time to do fine
grain class/method level offloading. Firstly, offloadable methods are marked by the programmer
in the programming environment provided by MAUI, and then remotable methods are determined

automatically by the middleware using a combination of reflection programming and type safety.

At each method invocation, the optimization framework decides to offload the method if there
is any server available. The cost of method offloading such as the number of states that must
be transferred and the advantages of performing it such as the rate of decline in CPU cycle are
among parameters that affect decision-making. Under server unavailability condition or for the

definitive events, the method is run locally. Hence, the control of connection to the server and the

20

CHAPTER 2. OVERVIEW OF THE APPLICATION OFFLOADING MIDDLEWARE

estimation of bandwidth and delay are performed continuously. All these parameters are considered
as variables of optimization problems that are formulated and solved as integer linear programming
to find the optimal solution. MAUI starts storing information after each method offload in order

to make better decisions in the next performs. As shown in the figure the main constituent

I
' Maui
Maui | Runtime

|

App
| Maui Controller
[]

Smartphone Maui server

Figure 2.4: The architecture of MAUI

parts of MAUI are as follows:

e MAUI profiler: Offloading decision making depends on smartphone, network and program

characteristics that are monitored and measured by MAUI profiler that includes three sections:

— Device profiling: that is related to the measurement of energy consumption of the smart-
phone on the basis of CPU cycles. For this purpose, a hardware tool called a power meter

is used.

— Program profiling :the number of calls of each method as well as the number of CPU
cycles required for implementation are the important parameters in the measurement of

energy consumption which is calculated in this section.

— Network profiling: used to profile the wireless networking environment to maximize
energy savings. Therefore, a network measurement tool is applied to measure the round

trip time and bandwidth.

21

CHAPTER 2. OVERVIEW OF THE APPLICATION OFFLOADING MIDDLEWARE

e MAUI Solver: data collected by MAUI Profiler are used as input values of optimization
problem in MAUTI solver. A call graph is considered here with nodes indicating the methods,
edges representing method calls and the consumed energy and runtime as the weight of edges.

Then MAUI solver begins to solve the Integer linear Programming.

The results of tests on a face-recognition application, a highly-interactive video, a chess game
and a real-time voice-based language showed that MAUI’s energy savings and performance are

impressive.

Odessa [102]

Odessa is a lightweight and adaptive runtime that aims to automatically and adaptively in-
crease the performance and accuracy of mobile interactive perception applications by offloading,
parallelism and pipelining. In fact, Odessa investigates the compliance of VM-based offloading and
the level of parallelism simultaneously. Because of some of their requirements such as crisp response
and continuous processing of high data rate sensors and also due to their being compute intensive,
mobile interactive perception applications that conduct perception tasks, such as face recognition or
object recognition by using the camera and other high-data rate sensors face some problems when
they are run on mobile devices. Makespan and Throughput are two measures of responsiveness and
accuracy of these programs. Offloading one or more compute-intensive application components on
an Internet-connected server and parallelism on multi-core systems are two techniques that can be
used to overcome this problem. Odessa aims to make optimal use of these techniques.

Tests show that changes in input variability, network bandwidth and device characteristics at
runtime cause dramatic changes in responsiveness and accuracy; therefore, both offloading decisions
and level of data or pipeline parallelism must be determined dynamically at runtime. Odessa is built
on a distributed stream processing system called Sprout that facilitates the implementation and
execution of parallel applications in addition to supporting the continuous, online processing of high
rate streaming data. Sprout [99] features, i.e. the use of the data flow graph in programming model,
automated data transfer and parallelism support are suitable to support Odessa runtime system.
Data flow graph vertices and edges display processing step (called stages) and data dependencies

between the stages, respectively.

22

CHAPTER 2. OVERVIEW OF THE APPLICATION OFFLOADING MIDDLEWARE

To obtain low makespan and high throughput, fast response to input, device and network
changes, as well as low computation and communication overhead are among the most important

objectives of designing Odessa.

Odessa is composed of an application profiler and a decision engine. The profiler maintains the
data related to the performance of applications such as execution time of each stage in the graph,
wait time on every connector, volume of data transferred on each connector, and transfer time
across the network connector edges. This section provides the data for decision engine without
affecting application performance. Odessa estimates the bottleneck using these data and with the
help of a greedy algorithm. Then the decision engine, based on a simple prediction and recent
measurements of the network, examines whether offloading or increasing the level of parallelism in
the bottleneck stage can be effective in increasing the efficiency. The decision engine functionality
is divided into two threads on the mobile device, the former manages the data parallelism and stage
offloading and the latter is responsible for the management of pipeline parallelism.

The costs for offloading and data parallelism are linearly estimated. Tests conducted on appli-
cations such as Face, Gesture, Object and Pose Recognition indicate the acceptable performance
of Odessa. One of Odessa’s positive points is the use of lightweight online profiler and simple ex-
ecution time predictors, as well as the use of parallelism and pipelining, in addition to offloading.
The other one is its rapid compliance with the scene complexity, compute resource availability, and
network bandwidth. Although the security points are not considered and its function is limited to

the perception applications.

2.2.3 Mobile Agent Based Architecture

A mobile agent is a software program with mobility, which can be sent out from a computer into
a network and roam among the computer nodes in the network [27]. In an agent based model,
the agents are not aware of the server, but know the locations towards which they themselves and
other agents can move. The use of mobile agent compensates the lack of a standard APIs in the
communication between different cloud infrastructures and heterogeneous mobile devices. In this
way, codes and data are encapsulated within an agent in order to be transferred. Mobile agent
places are virtual machines on which mobile agents run. The agents can also move between their

places and communicate with each other. The management of these agents as well as the security

23

CHAPTER 2. OVERVIEW OF THE APPLICATION OFFLOADING MIDDLEWARE

restrictions are among the weaknesses of this method.

Agent-based Optimization Framework [17]

In the offloading framework introduced in [17], offloading is done dynamically and at runtime
with the help of autonomous agent-based application partitions. The goal of this dynamic perfor-
mance optimization framework is an effective offloading that is done by enjoying the benefits of
mobile agent computing, such as providing good support for mobile clients, facilitation of real-time
interaction with server, ability of performing more robust queries/transactions and not required to
preserve the process state.

In [17], mobile agents are developed using the Java Agent Development Environment(JADE)
that supports multiple platforms such as Android OS. Each mobile application, statically and
before it is installed on a mobile device, is classified into a set of agent-based partitions that can be
offloaded on the cloud and components that must be run on mobile device due to their constraints.
Agent-based application partitions are autonomous, i.e. they can move transparently between the
cloud hosts without any need to be managed by the caller. Once the mobile application begins
to run, the execution manager receives a list of machine instances in the the cloud from cloud
directory service, and then having selected instances that establish the most powerful and fast
communication with mobile device, offers an execution plan including offloading decisions. To make
decisions, the execution manager uses a cost model and a static application profiler considering that
if a partition is offloaded, all of its sub partitions should also be offloaded and partitions with by
frequent communication should be kept together .

The results of the tests conducted on sudoko and NQueens Puzzle show that the proposed
framework is promising for improved performance in terms of application execution time and energy
consumption. Although this framework performs well and exploits the features of mobile agent, it
depends on the developer to divide the program. A lack of attention to security tips and static

profiling are among its weak points that can be improved.

2.3 Offloading Destination

Another factor that has a significant impact on the quality and outcome of offloading is its desti-

nation or its surrogate. As shown in the general architecture of MCC (figure [2.1)), the destinations

24

CHAPTER 2. OVERVIEW OF THE APPLICATION OFFLOADING MIDDLEWARE

of offloading can be divided into three different categories on the basis of the physical distance
from the mobile device: DS that has the maximum distance from mobile device, cloudlet that is in
the middle and a group of nearby mobile devices that are physically closest to mobile device. The
processing power of a surrogate is inversely proportional to its distance from the mobile device,
namely the closer is the surrogate to mobile device, the less it has processing power and vice versa.
Therefore, the selection of the appropriate destination based on processing power and its distance
from mobile device are of challenging points in MCC. The following section presents a brief expla-
nation of how each of these three offloading types performs and introduces some of the frameworks

in each category.

2.3.1 Distant Cloud Based Middleware

Sources used in this type of middleware are large collections of stationary servers that are located in
the vendor or the company and that are recognized as public or private clouds. These resources that
can be accessed via the Internet are highly available, elastic, scalable resources with high security
features. While the efficiency and effectiveness of the methods that use remote cloud resources are
strongly influenced by the long WAN latency caused by a long distance between the mobile client
and cloud data center. In the following, two examples of offloading middlewares that use remote

cloud for the implementation of remotable parts are discussed.

ThinkAir [73]

ThinkAir is an offloading framework that takes advantage of the smartphone virtualization in
the cloud and provides method level computation offloading to support smartphone applications.
Parallelizing method execution using multiple virtual machine images and focusing on the elasticity
and scalability of cloud are of notable features of ThinkAir. Kosta et al. [73] tried to make a
virtual image of the complete smartphone on the cloud and adopt online method level offloading
to overcome the problems that exist in other offloading middleware such as the lack of scalability
(in MAUI [32]) and the limitations of the program condition and of the environment (in Clone
Cloud [28]). Building, resuming and destroying VMs take place in the cloud, dynamically and

based on the needs. Consequently, ThinkAir can support parallelization.

As shown in the figure the execution environment, application server and profilers are the

25

CHAPTER 2. OVERVIEW OF THE APPLICATION OFFLOADING MIDDLEWARE

main components of the ThinkAir Framework which will be briefly explained in the following.

Application Server
{Cloud)

ThinkAir Framework

Loniro

tate

App Code &
Data

ThinkAir Framework

Android OS (Phone)

Figure 2.5: The architecture of ThinkAir

ThinkAir requires minor modifications to the code. Since the developer has indirect access to
the execution environment, it can easily mark offloadable methods using the environment provided
for him. Then, the ThinkAir code generator generates the new offloadable codes by using these
marks. Management of transferable methods as well as offloading decisions to local or remote
execution based on the current environment and the previous executions are undertaken by the
Execution Controller. Execution time and energy are parameters based on which four decision
policies are defined. The Application Server is responsible for managing the cloud of the offloaded
code. Communication protocol execution, connection management, reception and execution of
offloaded code and transfer of the results are all performed by the Client Handler. There are

six VM models with different specifications for offloading that are managed by VM manager. If

26

CHAPTER 2. OVERVIEW OF THE APPLICATION OFFLOADING MIDDLEWARE

necessary, more than one VM can be assigned to one task. The primary server is always online
while secondary servers can be powered-off, paused or running. Parallel executions are supported by
ThinkAir that is usually suitable for recursive algorithms and algorithms with heavy data volume.
The profiling part is also of the utmost importance and its accuracy can lead to better decisions
for offloading. Hardware profiler, software profiler and network profiler are three parts that deal
with collecting information such as CPU usage, connection type, the number of calling methods,
overall time of method execution and RTT in order to feed an Energy Estimation Model. ThinkAir

estimates energy consumption and based on its estimation make offloding decisions.

Among the advantages of ThinkAir, it can be referred to taking into account of the energy
consumption at the time of decision-making, supporting on demand resource allocation, and par-
allelizing implementation that reduces delays. In addition, ThinkAir compliance with the environ-
ment rapidly and effectively while environmental changes are taken into consideration at its design.
In order to show these cases, programs such as image merging, virus scanner, face detection and
N-Queens Puzzle are used for testing. Besides these positive aspects, changing the code with a
modicum of programming that can make mistakes in marking methods, and the overhead that

profile creates for a smartphone can be regarded as weaknesses of the framework.

Adaptive code offloading [50]

In order to benefit from the CC paradigm advantages including performance metrics, paralleliza-
tion of tasks and elasticity in offloading which have been neglected in some offloading middlewares,
[50] has introduced a fuzzy decision engine for thread level offloading on Android handset that con-
siders dynamic variables of cloud in addition to mobile device variables. Furthermore, the decision
making process has been strengthened with the help of evidence based learning methods based on
a general understanding of mobile cloud infrastructure. This learning code offloading approach is
able to turn raw code offloading traces into a knowledge that can be used to address the issues
such as device diversity, adaptive application execution and unpredictable code profiling. This
method uses fuzzy logic to determine when to offload. Therefore, with the use of variables derived
from the mobile cloud architecture, a degree of accuracy is assigned to an offloading decision that
can be analyzed on the basis of different intervals and rules. The information required to prepare

and define the rules are provided by a mobile profiler and a cloud analyser that are updated pe-

27

CHAPTER 2. OVERVIEW OF THE APPLICATION OFFLOADING MIDDLEWARE

riodically for local variables and asynchronously for external variables. Virtualization is a way to
run offloaded components and code offloading traces are restored along with device information,
application information and data component information. Figure [2.6] shows the fuzzy logic model
used for code offloading that is, according to the usual form of fuzzy logic system (FLS), composed

of four main sections of fuzzifier, rules, reasoning engine and deffuzzier.

I-then-else

Crisp inputs ~— Crisp outputs

Defuzzifier

Fuzzifier

L » Reasoning engine

Fuzzy input set Fuzzy output set

Figure 2.6: Fuzzy logic system

A crisp set is an input that is at first turned into a linguistic variable, and then analyzed in
linguistic terms that are assigned to a specific membership function. The reasoning engine uses the
input sets and builds an interface based on the rules and finally the output set is mapped on the
crisp set. On this middleware, fuzzy sets include bandwidth, data transfer, CPU instance and video
execution. For example, the network bandwidth can often be divided into intervals of low speed,
normal speed and high speed distributed. Remote processing = speed high AND data small is a
sample of the applied rules in [50]. It can be said that a Mobile Cloud Middleware framework covers
the problems of interoperability across multiple clouds, transparent delegation and asynchronous
execution of mobile tasks with the need to resource-intensive processing, a dynamic allocation
of cloud infrastructure and Android mobile cloud messaging framework (decision engine is used
in testing and it can be said that it is designed specifically for this task.) The delivery rate of
Google Cloud Messaging which is the enhanced notification service provided by Google for sending
asynchronous messages to Android devices is considered in the implementation of a video processing

request to review the performance of this middleware and the results show that the grade of truth

28

CHAPTER 2. OVERVIEW OF THE APPLICATION OFFLOADING MIDDLEWARE

is between 60 and 78 percent. The consideration of the strengths of the cloud in the process of
offloading, decision offloading at runtime and the possibility of learning from previous performances
are among the important points in this middleware. However with regard to the implementation
of only some parts the proposed solution, it is not possible to be sure of the quality of its full
implementation. Furthermore, the security of data transfer between mobile device and cloud is not

considered.

2.3.2 Local Cloudlet Based Middleware

The offloading destination used in local Cloudlet-based middlewares is a collection of one or more
resource-rich Ethernet-connected stationary computers that are usually located in public places.
This group, though less powerful than the remote cloud, reduces the latency and network traffic
because of the proximity to mobile device with a distance of generally one hop. “Cloudlet” is a
name proposed by Satyanarayanan [110] for the proximate immobile clouds. In the middlewares

such as [52] and MOCHA [42] Cloudlet is used.

VM-Based Cloudlets|110]

Cloudlet-based, resource-rich, mobile computing is the name given by Satyanarayanan et al. to
the strategy used in |[110] for the offloading process. In their proposed architecture, a resource-rich
computer or cluster of computers called Cloudlet is used. It is available for nearby mobile de-
vices and mobile device usually as a thin resource-intensive client, ofload its tasks on this Cloudlet.
Cloudlet physical proximity to the user in a 1-hop distance facilitates access to interactive response.
Another advantage is the availability of the Cloudlet through low-latency high-bandwidth wireless
connections. These features provide the opportunity of taking advantage of CC without the lim-
itations of WAN, i.e.delay and long response time if Cloudlet is used instead of DS. Of course,
when such Cloudlet may not be available near the mobile device, it can use a DS again to offload
resource-intensive tasks. Virtual machine migration and VM synthesis are two methods applied in
this article for computation offloading. However, the present article has focused on VM synthesis.
During VM migration, the application execution is suspended, the state of the processor, disk and
memory are stored and then the application execution is resumed exactly from the point where it

has been stopped. Using VM synthesis, a small VM overlay that is derived from mobile device is

29

CHAPTER 2. OVERVIEW OF THE APPLICATION OFFLOADING MIDDLEWARE

sent to Cloudlet. As shown in the figure VM overlay is used in base vm to start the execution
exactly from the point it has already been stopped. The feasibility of v synthesis is demonstrated

by the use of a prototype called prototype Kimberley. Among the advantages of Satyanarayanan’s

Mobile device Cloudlet
Preload base VM
Discover & negotiate .
use of cloudlet .

Private overlay~ (Base + overlay) — launch VM
Execute launch VM

Use .
cloudlet :
Finish use‘__“_\‘
Done Create VM residue
Discard VM
Depart VM residue

Figure 2.7: VM synthesis

model is the less fragility of vim-based model than alternatives such as process migration or soft-
ware virtualization. Furthermore, VM-based models have less limitation and more generality than
language-based virtualization approaches that require writing the programs in a specific language.
Despite these strong points, when the user relies on the use of Cloudlet, the speed of VM synthe-
sis becomes more important due to increased latency for service initiation. In addition, Cloudlet
hand off must be equal to WiFi access point hand off, fast, invisible and seamless. Unfortunately,
60 and 90 seconds that is needed for VM synthesis is not enough for real-time tasks. Also, the
power consumption and the amount of computation in mobile device increase when the overlay is
extracted and compressed. The lack of a solution to increase security and protect the user from
malicious VMs can also be seen. And finally, the proposed model is not scalable anywhere due to

lack of Cloudlets.

From Mobile Devices to Clouds [52]

The possibility of code/task offloading in order to reduce workflows’ energy costs is examined
by [52] when mobile devices cooperate in a network that is equipped with Cloudlets. To define the
problem, Gao et al. [52] have used two graphs. The first one is a directed acyclic graph that displays
mobile workflow as a series of tasks and their relationships. The second graph displays a hardware

platform on which the workflow runs in a way that vertices and edges denote processing nodes and

30

CHAPTER 2. OVERVIEW OF THE APPLICATION OFFLOADING MIDDLEWARE

data links between them, respectively. Using two mapping functions, the mobile workflow graph
is mapped on to a hardware graph. Once the objective functions have been modelled, a heuristic
algorithm is used to create statistical and dynamic offload plans.

The algorithm proposed in [52] consists of two parts, the first part that implements on the
smartphone helps to pick the best offload point, taking into account the environmental parameters
in real time. The second part is located on the server. The key point of the decision making process
is the trade-offs between time and energy. Every smartphone node is able to make decisions on
itself based on the environment in which it is located. It is also considered that ofloading two tasks
on a Cloudlet reduces power consumption in the communication between the tasks.

The effect of the pairs of communication size/network connectivity and computation size/-
Cloudlet processing speed on offloading decision is investigated using simulation. Different hard-
ware and communication characteristics are attended in experiments. The results show that when
the code repository is not available on the server, the large size of the executable parts has a neg-
ative impact on the ability to offload. The high volume of communication between the tasks also
makes the offloading less feasible. The saving obtained from offloading is also directly related to

hardware metrics.

2.3.3 Proximate Cloud Based Middleware

More recently, in some offloading approaches, mobile devices in the vicinity make their resources
to run resource-intensive tasks available to each other. In this case that is based on the principles
of CC, different mobile devices such as smartphones, tablets, notebooks or even IoT play the role
of server for executing remotable parts of the application. The main advantage of the method is
the physical proximity of resources to the mobile device, however the processing power is decreased
compared with DS. Also, since it is more likely that mobile devices in the role of servers are
damaged, lost or stolen, the method is less secure than the previous ones. Hyrax [83], virtual
cloud provider [60], VMCC [67] and MOMCC [29] are among the middlewares that benefit their

neighbours for offloading.

31

CHAPTER 2. OVERVIEW OF THE APPLICATION OFFLOADING MIDDLEWARE

Hyrax [83]

Hyrax is a platform that is derived from Hadoop [9] which allows CC to be used on Android
smartphones. Using Hyrax, client applications can easily apply a network of smatphones or het-
erogeneous phone and servers to perform their task. By changing the number of devices, Hyrax
allows applications to make an abstract use of the distributed resources, regardless of the physical
nature of the cloud. In fact, Hyrax makes it possible to use a cluster of smartphones as a resource

provider and shows that this proximate cloud is practical and operational.

Apache Hadoop is an open source implementation of MapReduce [34] that provides a virtualized
interface to a cluster of computers that have been randomly scaled. In Hyrax, a central server is
responsible for coordinating the data and jobs of mobile devices and the relationship between
smartphones is established via the isolated network of 802.11g. On the central server, just like a
typical implementation of Hadoop, a NameNode and a JobTracker that have access to each client
mobile devices are running. The central server only coordinates the data and jobs and does not
perform any processing. Each mobile device instance of the DataNode and the TaskTracker runs
the separate Android service. In addition, the threads which store the phones’ multimedia data
on the Hadoop Distributed File System(HDFS) and those which record sensor data run on the
smartphone. JobTracker and NameNode are called by TaskTrackers and DataNodes and their
response sent by Periodic heartbeat call and heartbeat response through RPC.

Sort, Random Writer, Pi Estimator, Grep, and Word Count which are derived from Hadoop
examples as well as a sample application called HyraxTube are benchmarks used to evaluate the
performance of Hyrax. HyraxTube is a simple distributed mobile multimedia search and sharing
program that allows users to browse the videos and pictures stored on the network of smartphones

and search them based on time, quality and location.

Among the strengths of Hyrax is that it can avoid the use of remote services to share data when
data is available on the local network. It also has an acceptable performance in local peer-to-peer
data sharing. Hadoop which is the base of Hyrax provides the features that are necessary for the
MCC infrastructure. It also helps Hyrax, with its mechanisms, to support fault-tolerance. After
all, due to high overhead imposed on the system as a result of running MapReduce, Hyrax is very
heavy for the current smartphones. In addition, it is applicable only for the smartphones that

are connected through TCP /IP sockets, while in real terms, all smartphones’ IP addresses are not

32

CHAPTER 2. OVERVIEW OF THE APPLICATION OFFLOADING MIDDLEWARE

without limitation or connected to a local network.

Virtual Cloud Provider [60)

Given to the fact that cloud resources are not always available or access to them is very ex-
pensive, Virtual Cloud Provider [60] suggests to build a virtual CC platform using nearby mobile
devices. This framework is designed so that offloading occurs when both the mobile device that
needs offloading and mobile devices in its vicinity are in the stable mode, i.e. they stay in the same
area or follow the same movement pattern.

The offloading manager sends and receives jobs from one node to the other adjacent mobile
device via the peer to peer connection and manages them, and in this regards, it enjoys the Ap-
plication manager, Resource manager and Context manager’s help. The first step of offloading is
to make the changes necessary to prepare the application to be offloaded. For example, adding
the capabilities of the proxy creation and RPC support which is done by the Application manager.
Profiling and resource monitoring is the responsibility of the resource manager. The profile of the
application is composed of the number of devices required for building the virtual cloud and the
resources needed for offloading. The Context manager synchronizes contextual information and
makes it available in some way for other processes. The context is the location and the number of
near devices.

The framework’s performance is assessed with the help of a prototype implemented in Java and
based on Hadoop. Taking advantages of the pervasiveness of mobile devices is the main advantage
of this framework but the inherent mobility is not taken into consideration. Given the dynamic
environment and high mobility, the need for stable mobile devices that are responsible for offloading
and mobile devices that produce the virtual cloud are of its limitations. The lack of attention to
security issues and in particular authentication in the interaction between mobile devices is also

one of its deficiencies.

2.4 Middleware Classification Based on Decision Making Process

In the previous sections, we classify application offloading middlewares based on the application
engineering architecture and the communication model with the remote resource as well as their

destination types. However, each of above mentioned categories has a significant impact on the per-

33

CHAPTER 2. OVERVIEW OF THE APPLICATION OFFLOADING MIDDLEWARE

formance of offloading regarding to their characteristics, their choice is usually done statically and
at middleware design time; where deciding for what and when to offload based on network connec-
tivity, available bandwidth, available resources of mobile device and cloud, partitioning granularity,
context or other affecting factors (figure is done at runtime. Identification of the remotable
parts that should be sent to the remote resource and its exact time is the most important part of
every offloading middleware and its responsibility is to the decision engine. Different approaches ap-
ply several decision making algorithms to make offloading decisions in order to augment application
performance in terms of energy consumption, execution time or resource consumption concerning

different criteria. Figure [2.8]illustrates a thematic taxonomy of existing offloading middlewares.

‘ Application Offloading Middlewares ‘

|
| | |

. . L Decision Maki
Offloading Nature Decision Making Granularity ObJecFlve ecision Making
Approach Function Nature
Entire
Li 1 Bundle E
g o T Pro rl';:]r;in] Consrlﬁ;g\:'ion] static
Offloading g g P
] Method
Virtual
— Machine — Fuzzy Logic — Execution Time — Dynamic
Migration B Class
R .] Thread
Application Genetic i
— — — M — Hybrid
Partitioning Algorithm emory yori
] Weblet
|| Bandwidth
— Task Usage
— Module
T CPU
— Component

Figure 2.8: Thematic taxonomy of application offloading middlewares

The offloading nature indicates the main mechanisms employed for application offloading. Mid-
dlewares that apply VM migration encapsulate the running application into a VM instance of the
mobile device and migrate it to cloud for execution. Entire application offloading means that the

middleware offloads the entire processing job to cloud servers. Using application partitioning, the

34

CHAPTER 2. OVERVIEW OF THE APPLICATION OFFLOADING MIDDLEWARE
Middleware Offloading Decision making | Granularity Objective Destination
nature approach function
Application Component Energy saving
Spectra Partioning - Reduce execution Cloud
time
Application Energy saving
Cuckoo partitioning - bundle Reduce execution Cloud
time
MAUI VM migration ILP method Save energy Cloud
Improve performance
VM Energy saving
Think Air migration - methods Reduce execution Cloud
time
VM-Based VM Migration VM Synthesis - Reduce end to end Cloudlet
Cloudlet response time
Distributed Reduce execution time Mobile
Hyrax - data processing job fault tolerant devices
Virtual Cloud Partitioning - job Execution time Mobile
provider devices
Clone Application save energy Cloud
Cloud partitioning ILP thread seduce execution
time
Calling Application All/k-step Minimize interaction Cloud
the cloud partitioning algorithm bundle latency
Chroma Application Tactic - Reduce execution Cloud
partioning based time

Table 2.1: A classification of application offloading middlewares

resource intensive partitions of an application offload to cloud servers. Application partitioning

could be performed statically either at compile time or runtime, or dynamically at runtime by fol-

lowing a dynamic evaluation of the current context and situation. These partitions that represent

the offloadable parts of an application could have different granularity levels. For instance, a class

level granularity indicate that classes of an application offload to cloud for execution. The primary

objective of an application offloading framework is shown by its objective function. Saving energy

and processing power are examples of the objective function. To meet these objectives, different

middlewares proposed approaches such as linear programming, fuzzy logic and genetic algorithms.

Offloading decisions could be made dynamically at run time, statically at development or a combi-

nation of these two. We compared some of the existing approaches based on the above mentioned

taxonomy. The result of this comparison is illustrated in table

In this thesis, we propose a fine-grain application offloading middleware that applies bio-inspired

35

CHAPTER 2. OVERVIEW OF THE APPLICATION OFFLOADING MIDDLEWARE

algorithms for making offloading decisions. The offloadable parts of the application could be exe-
cuted either on DS or nearby mobile devices. The design and implementation of this middleware

in explained in the following chapters.

36

Chapter 3

An Automated Application Offloading
Middleware

[3.1 Main Contributions of Designing Offloading Middleware| 38
[3.2 An Overview of Mobile Applications from an Application Engineering Perspective] 40
[3.2.1 Mobile Application Architecture] oL 42
[3.2.2 Mobile Application Transformation|. 44

[3.3 An Overview of Application Offloading Middleware from a Runtime Perspective| . 47
[3.3.1 Design Objectives] e 47
[3.3.2 Service-oriented Architecture for ACOMMAI. 50
[3.3.2.1 Service Description| 50

B.322 Service Interactiond 52

In this chapter, we propose the mobile device to be a gateway to connect the IoT with the
Cloud and a component of a Spontaneous Proximity Cloud at the same time. Like a DS, the
Spontaneous Proximity Cloud could be used to defeat resource and processing power limitations
of mobile devices via offloading. Our goal is to provide an application offloading middleware
that responds to the challenging points defined in the previous chapter. We explain our main
contributions for designing such a middleware and investigate mobile application and middleware
architecture as the two main parts involved in offloading process. We first present our mobile
application construction choices from an application engineering point of view as well as how to
transform a normal mobile application to be ready to be offloaded by our designed middleware.
Then, we introduce our middleware, explain its general service based architecture that makes it

an easy to use open middleware and show how it respects our objectives: Making individual bi-

37

CHAPTER 3. AN AUTOMATED APPLICATION OFFLOADING MIDDLEWARE

objective or collaborative decisions automatically to offload mobile application onto a DS or SPC

while benefiting from a learning feature.

3.1 Main Contributions of Designing Offloading Middleware

Nowadays, we face incredibly small computing with embedded sensors in our everyday objects,
that are close to user but suffer from a weak execution environment and greatly large with data
and service clouds accessible anytime, anywhere but far from user. In the middle, there are mobile
devices with the available resources and execution power neither weak as IoT nor powerful as cloud
(figure . We consider mobile devices are set to become the universal interface between the
IoT and CC worlds. Instead of their short battery life time, new generation of mobile devices are
usually powerful enough for personal usage but may not be enough to be a gateway to close DS
and IoT. We propose mobile devices to create a Spontaneous Proximity Cloud that could overcome
resource limitations of IoT and/or nearby devices as their offloading surrogate.

A SPC is a collaborative group of moving mobile devices in proximity that its members oc-
casionally join and leave. Geographically nearby mobile devices are in physical proximity while

mobile devices with the same interest such as printer discovery are in semantic proximity.

>
14

Cloud Computing
Environments

Virtual Environments

Mobile Device
Service Gateway
Environments

Internet of Things
Environments

Physical World

H Data flow

Figure 3.1: Mobile devices as IoT gateway and SPC

The main purpose of any offloading middleware is to use the capabilities of one or a group

38

CHAPTER 3. AN AUTOMATED APPLICATION OFFLOADING MIDDLEWARE

of resource-rich machines for overcoming the processing limitations of a resource-poor handheld
mobile device through delegating a mobile application totally or partially to execute on it. The

mobile device can use remote resources in three different ways:

e Extending mobile device’s access to cloud services: In this technique in which the cloud is
often considered in SaaS (Software as a Service) format, computation and data handling are
usually performed by the cloud. Software/applications as services provided by the cloud are

accessed and used by users via the mobile device and often by using the web processors.

e Increasing processing power of the mobile device by total or partial execution of mobile ap-
plication on the cloud: The cloud in this method is in the form of IaaS (Infrastructure as a
Service) or PaaS (Platform as a Service) that increases the power and capacity of the mobile
device by executing its resource-intensive or computation-intensive parts through code/appli-

cation/computation offloading.

e Making mobile devices collaborate to provide cloud-like services: In this method, which is
more appropriate for environments with ad-hoc networks with no access or limited access to
the Internet or the cloud, a set of mobile devices in the vicinity constitutes a virtual mobile

cloud in order to run their mobile applications with lower cost benefiting each other’s facilities.

We are interested in the second and third approaches where the mobile device is responsible
for its computation and data handling. We introduce ACOMMA, an Ant-inspired Collaborative
Offloading Middleware for Mobile Applications, that makes adaptive offloading decisions at runtime
using its bio-inspired algorithm. ACOMMA provides the possibility of classic offloading onto DS
as well as collaborative offloading onto SPC. It also could make learning based offloading decision
using already taken decisions either by the mobile device itself or its neighbour devices. Our main

contributions while designing ACOMMA are as follows:

e Our first contribution is designing and developing an automated offloading midddleware that
is easy to use for any mobile device without any special requirement by virtue of our proposed
open architecture based on services. To respond to the issue of what to offload in a dynamically
changing environment where the mobile device profile, context, and server properties play a

considerable role in offloading effectiveness we propose a bi-objective decision making process

39

CHAPTER 3. AN AUTOMATED APPLICATION OFFLOADING MIDDLEWARE

that easily re-adapts to environment modifications. We have also added a learning feature in
the decision making process to avoid re-execution of decision making algorithms when there

exists already taken offloading decisions in a similar situation.

e The second contribution is making collaborative offloading on a SPC. If many middlewares
dealing with the issues of offloading, few proposed an approach in response to what and where
to offload at the same time. In designing ACOMMA, we aim on offloading to the SPC and
we improve our decision making algorithms to be able to decide on where to offload exactly

between SPC nodes as well as what to offload in collaboration with other mobile devices.

The characteristics of a mobile application that needs offloading and the architecture of middle-
ware itself have a significant role in achieving such a middleware and its performance and quality
of offloading. In the next section, we explain how to model a mobile application firstly and then
while mentioning different existing options for mobile applications from an application engineering
point of view, we introduce and justify our selected options due to meet ACOMMA requirements.

The section 3.3.2 is devoted to ACOMMA architecture.

3.2 An Overview of Mobile Applications from an Application En-

gineering Perspective

The main objective of ACOMMA, such as any other offloading middleware is benefiting from
remote resource executing capabilities to overcome mobile device processing shortages. We are
interested in partial application offloading; executing the mobile application in a distributed form
between the mobile device and remote cloud resources. To this end, same as any other distributed
system the application should be partitioned. Application partitioning is the task of breaking up
the functionality of an application into distinct entities that can operate independently, usually in
a distributed setting [119], [77].

Depending on the usage of application partitioning, there are different manners of performing
it. For mobile application offloading in general, there are three models that could be used for
application partitioning: graph based model, linear-programming based model and hybrid based
model which is a combination of the previous ones, however there are some other approaches which

do not fit in these three categorise. |78]

40

CHAPTER 3. AN AUTOMATED APPLICATION OFFLOADING MIDDLEWARE

Remote method invocations

T iy Yy

Y Local method calls

Figure 3.2: A sample call graph

We use a graph to model a mobile application where the nodes represent the application com-
ponents and the edges show their relationships. Based on the interesting offloading granularity,
these components could be tasks, methods, objects, classes etc... .

Flexibility and lightweight are two essential characteristics for a collaborative offloading mid-
dleware. To add more flexibility and lightweight to our middleware, we apply fine-grain application
offloading at the method level so we consider mobile application modelled as a graph where vertices
and edges represent methods and their dependencies in term of method calls respectively. Such a
directed graph that shows a calling relationship between the procedures of a program is called a call
graph in which loops imply recursive calls. A sample call graph is shown in figure 3.2l The graph
partitions represent the executing environments of partition members. For instance in this graph
there is just one cut that breaks apart two partitions where all methods execute locally except
methods b and e that execute remotely on a distant execution environment.

Based on the main concept of application offloading in MCC the components of the application
which are the nodes in the graph model and application methods in our method-level graph, could
be executed either on the mobile device itself or a remote cloud. How an application is built from
an application engineering point of view defines the way that its components on different executing
machines should communicate, and following that the communication protocol and communication
data format will be specified. In the rest of this section, we explain existing application architec-
tures, communication protocols and data formats and their characteristics. Then we present our

choices for mobile applications highlighting the advantages based on them we did our choices.

41

CHAPTER 3. AN AUTOMATED APPLICATION OFFLOADING MIDDLEWARE

3.2.1 Mobile Application Architecture

The Choice of Application Architecture

Client-Server is the architecture style that we consider for designing mobile applications where
a mobile device acts as a client and the cloud bears the server role. Between client-server model
and virtual machine migration our main reason for choosing a client-server architecture is that it
makes fine-grain application offloading possible. Although the fine-grain application partitioning
is performed by some other approaches such as MAUI [32], offloading process based on virtual
machine migration architecture influences fine-grain offloading because what is transmitted to the
server is a virtual machine which is much bigger than mobile application partitions.

One of our contributions is making mobile application offloading possible between several collab-
orating mobile devices. These devices are limited in term of resources and there are also limitations
at the network communication level. Fin