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Résumé

Cette thèse a conduit à la mise au point de deux nouvelles approches statistiques pour
l’identification automatique de populations cellulaires en cytométrie de flux multiparamétrique,
et ceci pour le traitement d’un grand nombre d’échantillons, chaque échantillon étant
prélevé sur un donneur particulier. Ces deux approches répondent à des besoins ex-
primés dans le cadre du projet Labex "Milieu Intérieur"(ci-après étude MI). Dix panels
cytométriques de 8 marqueurs ont été sélectionnés pour la quantification des populations
principales et secondaires présentes dans le sang périphérique. Sur la base de ces panels,
les données ont été acquises et analysées sur une cohorte de 1000 donneurs sains.

Tout d’abord, nous avons recherché une quantification robuste des principales composantes
cellulaires du système immunitaire. Nous décrivons une procédure computationnelle, ap-
pelée FlowGM, qui minimise l’intervention de l’utilisateur. Le cœur statistique est fondé
sur le modèle classique de mélange de lois gaussiennes. Ce modèle est tout d’abord util-
isé pour obtenir une classification initiale, le nombre de classes étant déterminé par le
critère d’information BIC. Après cela, une méta-classification, qui consiste en l’étiquetage
des classes et la fusion de celles qui ont la même étiquette au regard de la référence, a
permis l’identification automatique de 24 populations cellulaires sur quatre panels. Ces
identifications ont ensuite été intégrées dans les fichiers de cytométrie de flux standard
(FCS), permettant ainsi la comparaison avec l’analyse manuelle opérée par les experts.
Nous montrons que la qualité est similaire entre FlowGM et l’analyse manuelle classique
pour les lymphocytes, mais notamment que FlowGM montre une meilleure discrimination
des sous-populations de monocytes et de cellules dendritiques (DC), qui sont difficiles à
obtenir manuellement. FlowGM fournit ainsi une analyse rapide de phénotypes cellulaires
et se prête à des études de cohortes.

A des fins d’évaluation, de diagnostic et de recherche, une analyse tenant compte de
l’influence de facteurs, comme par exemple les effets du protocole, l’effet de l’âge et du
sexe, a été menée. Dans le contexte du projet MI, les 1000 donneurs sains ont été strat-
ifiés selon le sexe et l’âge. Les résultats de l’analyse quantitative faite avec FlowGM
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ont été jugés concordants avec l’analyse manuelle qui est considérée comme l’état de
l’art. On note surtout une augmentation de la précision pour les populations CD16+ 1 et
cDC1, où les sous-populations CD14loCD16hi et HLA-DRhi cDC1 ont été systématique-
ment identifiées. Nous démontrons que les effectifs de ces deux populations présentent une
corrélation significative avec l’âge. En ce qui concerne les populations qui sont connues
pour être associées à l’âge, un modèle de régression linéaire multiple a été considéré qui
fournit un coefficient de régression renforcé. Ces résultats établissent une base efficace
pour l’évaluation de notre procédure FlowGM.

Lors de l’utilisation de FlowGM pour la caractérisation détaillée de certaines sous-populations
présentant de fortes variations au travers des différents échantillons, par exemple les cel-
lules T, nous avons constaté que FlowGM était en difficulté. En effet, dans ce cas,
l’algorithme EM classique initialisé avec la classification de l’échantillon de référence est
insuffisant pour garantir l’alignement et donc l’identification des différentes classes en-
tre tous les échantillons. Nous avons donc amélioré FlowGM en une nouvelle procédure
FlowGMP. Pour ce faire, nous avons ajouté au modèle de mélange, une distribution a pri-
ori sur les paramètres de composantes, conduisant à un algorithme EM contraint. Enfin,
l’évaluation de FlowGMP sur un panel difficile de cellules T a été réalisée, en effectuant
une comparaison avec l’analyse manuelle. Cette comparaison montre que notre procédure
Bayésienne fournit une identification fiable et efficace des onze sous-populations de cel-
lules T à travers un grand nombre d’échantillons.

1CD16 est le nom d’un molécule de cluster de difféfenciation présent à la surface de nombreuses
cellules de l’immunité, donc CD16+ indique les celluses portant CD16. Pareil pour CD14, cDC1, HLA-
DR mentionnés ici. Nous allons discuter en détail les CD moléculaires dans Section 1.2.1.
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Abstract

In the course of my Ph.D. work, I have developed and applied two new computational
approaches for automatic identification of cell populations in multi-parameter flow cy-
tometry across a large number of samples. Both approaches were motivated and taken by
the LabEX "Milieu Intérieur" study (hereafter MI study). In this project, ten 8-color flow
cytometry panels were standardized for assessment of the major and minor cell popula-
tions present in peripheral whole blood, and data were collected and analyzed from 1,000
cohorts of healthy donors.

First, we aim at robust characterization of major cellular components of the immune
system. We report a computational pipeline, called FlowGM, which minimizes operator
input, is insensitive to compensation settings, and can be adapted to different analytic
panels. A Gaussian Mixture Model (GMM) - based approach was utilized for initial
clustering, with the number of clusters determined using Bayesian Information Criterion.
Meta-clustering in a reference donor, by which we mean labeling clusters and merging
those with the same label in a pre-selected representative donor, permitted automated
identification of 24 cell populations across four panels. Cluster labels were then integrated
into Flow Cytometry Standard (FCS) files, thus permitting comparisons to human ex-
pert manual analysis. We show that cell numbers and coefficient of variation (CV) are
similar between FlowGM and conventional manual analysis of lymphocyte populations,
but notably FlowGM provided improved discrimination of "hard-to-gate" monocyte and
dendritic cell (DC) subsets. FlowGM thus provides rapid, high-dimensional analysis of
cell phenotypes and is amenable to cohort studies.

After having cell counts across a large number of cohort donors, some further analysis (for
example, the agreement with other methods, the age and gender effect, etc.) are required
naturally for the purpose of comprehensive evaluation, diagnosis and discovery. In the
context of the MI project, the 1,000 healthy donors were stratified across gender (50%
women and 50% men) and age (20-69 years of age). Analysis was streamlined using our
established approach FlowGM, the results were highly concordant with the state-of-art
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Abstract

gold standard manual gating. More important, further precision of the CD16+ 2 mono-
cytes and cDC1 population was achieved using FlowGM, CD14loCD16hi monocytes and
HLA-DRhi cDC1 cells were consistently identified. We demonstrate that the counts of
these two populations show a significant correlation with age. As for the cell populations
that are well-known to be related to age, a multiple linear regression model was consid-
ered, and it is shown that our results provided higher regression coefficient. These findings
establish a strong foundation for comprehensive evaluation of our previous work.

When extending this FlowGM method for detailed characterization of certain subpopu-
lations where more variations are revealed across a large number of samples, for example
the T cells, we find that the conventional EM algorithm initiated with reference clus-
tering is insufficient to guarantee the alignment of clusters between all samples due to
the presence of technical and biological variations. We then improved FlowGM and pre-
sented FlowGMP pipeline to address this specific panel. We introduce a Bayesian mixture
model by assuming a prior distribution of component parameters and derive a penalized
EM algorithm. Finally the performance of FlowGMP on this difficult T cell panel with a
comparison between automated and manual analysis shows that our method provides a
reliable and efficient identification of eleven T cell subpopulations across a large number
of samples.

2CD16 is the name of a cluster of differentiation molecule found on the surface of several cell types,
thus CD16+ indicates those cells carrying CD16. The same for CD14, cDC1, HLA-DR mentioned here.
We will discuss with more details the CD molecular in Section 1.2.1
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Chapter 1

Introduction

1.1 Overview

One central task of immunology is to determine the number and function of various
immune cells, to further the understanding of how humans defend themselves against nu-
merous pathogenic microorganisms. As immune cells display a huge diversity, hundreds
of subsets can be theoretically distinguished according to their different surface marker
proteins, however, in practice, the detailed identification of the immune cell population is
challenging. Flow cytometry is a key technology for characterization of the cellular com-
ponent of the immune system. It allows simultaneous multi-parametric analysis of up to
thousands of cells per second, which makes it a powerful tool and commonly used in basic
research, clinical practice and clinical trials. Although recent technical advances have
enabled comprehensive immunoprofiling of larger cohorts, computational techniques and
data analysis tools capable of quantifying multiple cell types across many samples do not
yet exist. This thesis presents a pipeline for automated flow cytometry (FCM) analysis
across a large number of samples, including the development of a computational method
for identification of numerous cell types, the evaluation of the automated flow cytometry
analysis, and the improvement of the method for addressing a difficult situation.

With the goal of learning the basics of flow cytometry and sequentially drawing the com-
putational modeling, this chapter supplies a brief introduction of FCM analysis. Each of
the following aspects will be described: the principle, instruments, data, and applications.
We will give an overview of the flow cytometry technology, then introduce the applica-
tions in immunology, highlighting the LabEX MI project, which provided the motivation
of my work. Finally, we will discuss previous works in this field. Chapter 2 describes in
detail a computational method for FCM data analysis across a large number of samples
and cell types. Chapter 3 discusses the comprehensive evaluation study on 600 healthy
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Chapter 1 1.2. Determination of immunophenotypes

donors. Chapter 4 describes a difficult case for automated flow cytometry data analysis,
introduces an improvement of the method, and discusses the validation. Finally, chapter
5 provides a brief discussion of the implications of the thesis work and suggests some steps
for extending this research.

1.2 Determination of immunophenotypes

Different immune cells are distinct in form and function, but in basic science research
and laboratory diagnosis, we could not identify them by observing the form or testing
the function. Immunophenotyping is a technique used to quantify cell population by
classifying cells on the basis of the proteins expressed on their surface.

1.2.1 Immunophenotype group

The protein located on the cell surface is a key feature for distinguishing cell populations
of different types and functions. Each surface molecule which could be bound by two
specific monoclonal antibodies1 is then assigned a CD (cluster of differentiation) number.
Cell populations are usually defined using a "+" or a "-" symbol to indicate whether a cer-
tain cell fraction expresses or lacks a CD molecule. Some populations can also be defined
as hi, int or low (alternatively bright, mid or dim), indicating an overall level in CD expres-
sion. More than 300 surface molecules have been named. Based on what combination of
CD molecules and how many of each CD molecule are present on the cell surface, very
specific cell types are distinguished. This procedure is called as "immunophenotyping".
An example is shown in Figure 1.1. The cells carrying CD45, noted as "CD45+", corre-
spond to leukocytes. Within this population, the cells which carry also CD3 molecules are
identified as T cells ("CD45+CD3+"), and we could further classify T cells into "CD4+"
and "CD8+" subpopulations, based on whether CD4 or CD8 are present on their surface.
Similarly, "CD45+CD19+", "CD45+CD14+" and "CD45+CD56+" correspond to B lympho-
cytes, monocytes and NK cells, respectively.

1Monoclonal antibodies are monospecific antibodies that are made by identical immune cells, in con-
trast to polyclonal antibodies which are made from several different immune cells. Monoclonal antibodies
bind to the same specific substance, they can then serve to detect that substance.
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CD45 

Leukocyte 

CD3 
T Cell 

CD45 

CD19 
B Cell 

CD45 

CD14 
Monocyte 

CD45 

CD56 
NK cell 

CD45 

CD3CD4 
T Cell 

CD4 CD45 

CD3CD8 
T Cell 

CD8 CD45 

Figure 1.1: The cells carrying CD45, noted as "CD45+", correspond to leukocytes,
within this population, the cells which carry also CD3 molecules are identified as T
cells("CD45+CD3+"), and we could further classify T cells into "CD4+" and "CD8+"
subpopulations based on whether CD4 or CD8 are present on their surface. Simi-
larly, "CD45+CD19+", "CD45+CD14+" and "CD45+CD56+" correspond to B lymphocytes,
monocytes and NK cells respectively.

1.2.2 Flow cytometer

Immunophenotyping is commonly performed using a flow cytometer, which is a laser-
based instrument capable of analyzing thousands of cells per second. By suspending cells
in the fluid, passed one by one through the optical and electronic detectors and then mea-
suring the photoelectric signals, flow cytometry enables to quantify different parameters
of single cells and allows a high-speed, and multi-dimensional quantitative analysis.

The instrument described by Andew Moldavan in 1934 is generally acknowledged to be
an early flow cytometer [Givan, 2011]. Following work by Coulter in 1953 disclosed
the first impedance-based flow cytometry device [Coulter, 1956]. In 1968 the work by
Fulwyler, Dittrich and Göhde led to significant changes in the overall design and resulted
in a first fluorescence-based flow cytometry device, which was largely similar to today’s
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cytometers [Dittrich and Göhde, 1969]. Modern widely used flow cytometers have three
main components [Biosciences, 2000]:

• The fluidics system transports cells in a stream of liquid droplets to the laser beam,
so that they pass one by one through the light beam for sensing;

• The optics system consists of light sources and the beam collection system;

• The electronics system includes an Analogue-to-Digital Conversion (ADC) system
and a data processing system.

In the flow cytometer, suspended cells are labeled with antibodies specific for cell surface
CD molecules. The antibodies are tagged with fluorescent dyes of different colors. The
labeled cells form a stream of droplets each containing one cell. A beam of laser light is
directed onto the stream of fluid. A number of detectors are aimed at the point where
the stream passes through the light beam: one in the line of the light beam (called For-
ward Scatter or FSC), one perpendicular to it (called Side Scatter or SSC) and several
fluorescence detectors. The FSC reflects the cell volume, the SSC depends on the inner
complexity of the cell (i.e., the shape of the nucleus, the amount and type of cytoplasmic
granules or the membrane roughness), and the fluorescence detectors could detect fluo-
rescence chemicals attached to the cell surface, which reflects the quantity of surface CD
molecules. By analyzing the fluctuation in brightness at each detector, it is then possible
to derive various types of information about the physical and chemical structure of each
cell (Figure 1.2A).

For more than 30 years, the fluorescence-based technique of flow cytometry has been
widely used by clinicians and researchers. From its early beginning, it has been associated
with monoclonal antibodies to identify immunocompetent cells, to quantify changes in
expression of surface determinants, and to separate cell subsets prior to the test of their
functional properties.

From relative cell counting to absolute cell counting The main advantage of FCM
is the identification and enumeration of cell subset in a mixed cell population, for example,
the lymphocyte population consists, according to their surface markers, of T lymphocytes
(CD3+), B lymphocytes (CD19+) and Natural Killer lymphocytes (CD56+CD3−CD19−),
and each of these populations could be further subdivided, e.g., within T lymphocytes,
there are CD4+ T lymphocytes, CD8+ T lymphocytes, etc. In the past the cell counts
of these subsets are mostly expressed as a proportion in a mixed cell population, and do
not reflect the absolute number per unit volume of blood. But in the clinical diagnosis
of some diseases, such as AIDS, the absolute count needs to be considered: for example,
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Figure 1.2: Schematic representation of a flow cytometer and flow cytometry data analysis
(A) Flow cytometer (B) Flow cytometry data analysis with one-dimensional histogram:
the left group of cells which express CD3 are selected. (C) Flow cytometry data analysis
with two-dimensional scatter plot: the CD4+ population and CD8β+ population are
identified by drawing rectangles containing a homogeneous group of cells.

in a healthy, HIV-negative adult, the CD4 count ranges from 500 and 1200 per μL of
5
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blood, then it is recommended to start the treatment if one’s CD4 count is around 350,
and if it drops below 200, there is increased risk of serious infections. So it is all about the
numbers - one’s CD4 count is the most important indicator of how the immune system is
working and deciding the best way and time to treat the HIV disease [U.S. Department
of Health & Human Services, 2014].

From single color to multiple color fluorescence analysis In some work of the
1960s, like during the early stages of Kamentsky’s studies on cell classification, peo-
ple’s experience led them to anticipate having to use multiple parameters to develop a
discriminant function to identify abnormal cells [Shapiro, 2005]. With the advent of im-
munofluorescence technique, flow cytometry has developed rapidly from initial indirect
immunofluorescence staining to four to six-colored fluorescence analysis. The increased
number of lasers and detectors allows for labeling with multiple antibodies [O’Neill et al.,
2013], and can identify a target population by their phenotypic markers with better pre-
cision. Recent technological advancements have enabled the flow cytometry measurement
of 45 parameters on millions of cells.

1.2.3 Flow cytometry data

With the above knowledge, we could clarify several definitions, which is very important
for describing formally the flow cytometry data and the problem later.

Although the number of parameters that can be measured at the same time has been
increased, it is still limited, given that there are hundreds of CD unique clusters and
subclusters that can be distinguished. In practice, one needs to choose appropriate an-
tibodies, limited to the number of markers allowed by the instrument, to determine the
differentiation of some cell type of interest. The combination of those chosen antibodies
is commonly called a "panel".

As contemporary flow cytometers can measure objects other than cells, including bacteria,
sperm, plankton, even viruses, etc [Givan, 2011], "particle" can be used as a more general
term for any of the objects flowing through a flow cytometer. "Event" is a term that is
used to indicate anything that has been interpreted by the instrument, rightly or wrongly,
to be a single particle. For example, two cells close together may actually be detected
as one event, called "doublet". Because most of the particles passed through cytometers
and detected as events are in fact single cells, those words will be used here somewhat
interchangeably.
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Now we could define formally the flow cytometry dataset and the analysis problems.

Definition 1.2.1. We denote by N the number of events in a flow cytometry data sample,
m the number of markers (or interchangeably number of antibodies, number of colors)
in one panel, the data x = {x1, · · · , xi, · · · , xN} is N quantitative m-measurements,
each xi is an m-measurement of one event, and each measurement corresponds to one
marker, then xij is the fluorescence intensity of the jth marker measured on the ith cell,
1 ≤ i ≤ N , 1 ≤ j ≤ m.

The data set here x consists of N m-dimensional vectors, the dimension m is usually
around 10, which is limited by the instrument. The number N of data points can be
often on the order of 106, which is the number of cells in one blood sample.

Problem 1.2.1. We aim: (1) to partition x = {x1, · · · , xi, · · · , xN} into K groups, i.e.
to associate for each vector xi, a scalar zi, 1 ≤ zi ≤ K, indicating which group the ith cell
belongs to; (2) to assign a cell type to each group, then obtain for each population the
relevant statistics, which include cell counts nk, cell proportions nk

N
, and mean fluorescence

intensities (MFIs), which is 1
nk

∑
i:zi=k xi; (3) for further diagnosis, discovery or other

biomedical analysis.

The gold standard for the analysis of raw flow cytometry data has until now remained
"hand gating" [Aghaeepour et al., 2013a] [Fienberg and Nolan, 2014], where the term
"gating" means the extraction of regions in a series of one- or two-dimensional projections
of the data x containing homogeneous groups of cells. The regions can be intervals on a
histogram, or rectangles, polygons or ellipses on a bi-variate scatter plots. Figure 1.2B
shows a gate (an interval region of CD3 histogram) for CD3+ population, and Figure 1.2C
shows two gates (two rectangles on the CD4/CD8β scatter plot) for two different CD3+

subpopulations.

It is obvious that the manual operation is laborious and subject to biased visual inspection
and gate adjustment [Bashashati and Brinkman, 2009] [Lugli et al., 2010]. The concerns
grow with increasing numbers m of measured phenotypic markers, as the number of two-
dimensional projections that need to be analyzed grows quadratically with m. Moreover,
there is a major limitation on that information critical for accurate gating may not be
present in the selected (or any) two-dimensional projections, but in higher-dimensional
space. As a conclusion, the manual analysis requires an inordinate amount of time and is
error-prone, non-reproducible, non-standardized, and not open for re-evaluation, making
it the most limiting aspects of flow cytometry technology [Bashashati and Brinkman,
2009].
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1.3 Application in immunology

1.3.1 Immune system, immune cell and cell population identifi-
cation

Immunology is the study of the physiological mechanisms that humans use to defend their
bodies from invasion by other organisms. Numerous pathogenic microorganisms, includ-
ing bacteria, viruses, some members of the fungi and so on, live everywhere around or
inhabit healthy human bodies and have the potential to cause disease. Although the skin
and mucosal surfaces form physical barriers that separate the body from its external en-
vironment and prevent most pathogens from gaining access to the cells and tissues of the
body, when the barrier is breached, the immune system is then brought into play [Parham,
2009]. The cells of the immune system that are involved in defending the body against
both infectious disease and foreign invaders are principally the white blood cells or leuko-
cytes, and the tissue cells related to them. Different from any other tissue in the body,
the cells of the immune system display a huge diversity and hundreds of subsets can be
identified even within the same lineage, this could only be technically achieved through
flow cytometry which allows the analysis of multiple surface and intracellular markers at
the level of single cell [Lugli et al., 2010]. Determining the number and function of subsets
of leukocyte is an important means to observe the immune status of organism.

1.3.2 MI project

My work was motivated by the MI project, which is a population-based study coordinated
by Institut Pasteur, Paris. It is part of a larger French Governmental Initiative called
Investissement d’Avenir - Laboratoire d’Excellence (LabEX). This project is named after
the French physiologist Claude Bernard’s concept of milieu intérieur and aims to establish
the determinants of a healthy immune response by identifying genetic and environmental
factors that contribute to the observed heterogeneity of immune responses. Restoring the
’personal’ in medical care is a major challenge for medicine, and the driving vision of the
project [Thomas et al., 2015]. These efforts will establish parameters for stratifying indi-
viduals within a population, thus making it possible to glean meaningful interpretation
from measurements of stress-induced host response. In achieving this goal, the project
will provide a foundation for defining perturbations in an individual’s immune response,
thus laying the foundation for personalized medicine.

In order to realize the promise of personalized medicine, one pending challenge is to
8
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establish the boundaries of a healthy immune response, and to correlate this information
with human genome variation and environmental factors. To that end, the MI Con-
sortium initiated in September 2012 a 1000-person population-based study in order to
assess the determinants of immunologic variance within the general healthy population
"Genetic & Environmental Determinants Of Immune Phenotype variance: Establishing
A Path Towards Personalized Medicine (ID-RCB Number: 2012-A00238-35)". A de novo
study-group of 1,000 healthy individuals (1:1 sex ratio) stratified across five-decades of
life (age 20-70) from French-descent and recruited as per a detailed medical questionnaire
has been recruited between September 2012 and August 2013. Whole blood was collected
for immunologic phenotyping, functional immune stimulation and preparation of DNA for
genomic analysis. Fecal samples and nasal swabs were obtained for metagenomic studies.
Punch biopsies of the skin were taken and primary fibroblast lines were generated for
future mechanistic investigation (Figure 1.3).

Figure 1.3: Schematic representation of clinical protocol for MI project: This figure was
taken from the MI website: http://www.milieuinterieur.fr

Cell phenotyping constitutes one of the major datasets to be integrated into the data
9



Chapter 1 1.4. Background of automated flow cytometry data analysis

warehouse, and as such efforts were made to standardize each step of the sample collec-
tion, technical procedures and data analysis. Each pre-analytical aspect of flow cytometry
analysis, such as the selection of reagents, the instrumentation, semi-automated staining
procedure, quality control and manual gating strategy, were described in [Hasan et al.,
2015]. The flow cytometry data of the LabEX MI project consist of 10 different 8-color
panels, concerning tens of different cell types. The manual analysis comprises two phases,
the first phase is to define a gating strategy specifically for the given panel on selected
reference samples, and the second one is to apply the gating strategy to each other cohort
samples, visually verify and adjust the gate positions. In order to minimize bias intro-
duced by subjective analysis by different individuals, one panel is commonly required to
be analyzed by the same individual for all samples. Thus it could take months to complete
the analysis for all cohort donors for one given panel. Moreover, the results obtained from
two individuals could be sometime very different.

To address these difficulties, an automated, rapid and un-biased analysis approach for
large cohort data set is required. It is critical to this LabEX MI project, and expectantly
could be used in other population-based studies and clinical trial settings.

We can formally describe the new and more complicated problem as follows (more details,
see Chapter 4 section 4.1):

Problem 1.3.1. Note D the number of samples for a given panel, the objective is to
partition each sample x(d) = {x

(d)
1 , · · · , x

(d)
i , · · · , x

(d)
N(d)} into K groups, d = 1, 2, · · · , D,

i.e. to associate with each vector x
(d)
i from dth sample, a scalar z

(d)
i , 1 ≤ z

(d)
i ≤ K,

indicating which group the ith cell belongs to, 1 ≤ i ≤ N (d), and to align automatically
cell populations across all samples, which means to ensure that the identical value of z

(d)
i

from different donor sample d is of the same cell type, such that the counts, proportions,
MFIs or other statistics from different cohort samples are comparable.

1.4 Background of automated flow cytometry data
analysis

In a statistical learning framework, the cell population identification problem can be
viewed as a clustering problem. Clustering is the grouping of a set of objects into subsets or
"clusters", such that those within each cluster are more closely related to one another than
objects assigned to different clusters [Hastie et al., 2009]. Here we group cells into clusters,
such that cells within each cluster are from the same immunophenotype group. There is
no delicate objective function, thus a validation by comparison with reference solutions
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on given examples, which are usually from manual gating analysis, or comprehensive
evaluation are often considered.

1.4.1 Computational approaches for individual samples

A large number of computational approaches have been developed for automated cell
population identification, most of which are focused on Problem 1.2.1, i.e. clustering a
single sample x or very few samples independently.

When considering such a large sample, connectivity-based clustering algorithms, like hi-
erarchical clustering and graph-theoretic clustering methods, often fail. Hierarchical clus-
tering approaches become infeasible and space-inefficient because such algorithms require
the continuous storage of the whole dataset to maintain a similarity matrix of size O(N2)
among all possible point pairs. The same argument also applies to graph-theoretic clus-
tering methods, where all possible pairs of points have to be connected via arcs, in a way
the set of points forms a fully connected graph, and an adjacency matrix of all pairwise
distances has to be continuously stored during the clustering process [Lakoumentas et al.,
2009]. Other typical clustering algorithms including density-based clustering, centroid-
based clustering, distribution-based clustering, etc, have been discussed in FCM field.

Density clustering

In density-based clustering [Ester et al., 1996] [Kriegel et al., 2011], clusters are defined
as connected dense regions in the data space. [Sugár and Sealfon, 2010] have described
a unsupervised density contour clustering algorithm, called Misty Mountain, and [Ge
and Sealfon, 2012] have developed FlowPeaks which combines K-means and local peaks
searching by exploring the density function. This class of algorithms does not use a
large similarity matrix, but often require manually calibrated smoothing parameter and
threshold to define a "high density region", moreover it is expensive for high-dimensional
datasets. Therefore, Misty Mountain and FlowPeaks are all limited to a validation in
three or even fewer dimensions.

Centroid-based clustering

In centroid-based clustering, clusters are represented by a central vector, which may not
necessarily be one of the data points. K-means clustering is the most typical algorithm of
this class, which gives a formal definition as an optimization problem: find the K cluster
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centers and assign the data points to the nearest cluster, such that the squared distances
from the cluster are minimized. [Aghaeepour et al., 2011] have developed flowMeans for
automated identification of cell populations in FCM based on K-means clustering. By
modeling a single population with multiple clusters, it can identify also concave cell pop-
ulations. [Wilkins et al., 2001] have discussed the Fuzzy C-means clustering method in
FCM field, which is a soft version of K-means allowing each data point having a fuzzy
degree of belonging to each cluster.

Distribution-based clustering

In distribution-based clustering, clusters are defined as points belonging most likely to
the same distribution. One prominent method is known as mixture models, where the
data set is usually modeled with a fixed number of distributions. Once the parameters
of each multivariate distribution are estimated, every data point will be assigned to the
component (cluster) with maximum posterior probability. FlowClust [Lo et al., 2008] [Lo
et al., 2009] models cell populations using mixtures of t-distributions. FLAME [Pyne
et al., 2009] uses a mixture of skew-t-distribution to make the model more flexible to
skewed cell populations.

1.4.2 Consideration for large cohorts

During and after the initialization of our project, there are several works that treat the
clustering Problem 1.3.1 in the context of large cohorts.

The recent X-Cyt approach [Hu et al., 2013] was designed explicitly to efficiently address
the problem of a large number of samples. However, X-Cyt focuses on few very specific
cell types and still requires the definition of a "partitioning schema", a series of mixture
models whose sequence and parameters have to be manually configured and calibrated
for each cell type of interest in any given analytic panel.

There are also several attempts addressing a large number of samples and the alignment
issue with regard to phenotypic relevant clusters despite technical and biological varia-
tion. [Cron et al., 2013] and [Dundar et al., 2014] consider Bayesian mixture modeling
and Markov chain Monte Carlo algorithms. The main limitation of these two approaches
is that there are too many ad hoc parameters. Moreover it takes too long for the com-
putation. [Pyne et al., 2014] improved FlowClust method by introducing a second layer
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modeling. For all these three publications, FlowCAP [Aghaeepour et al., 2013a] compe-
tition datasets are used as the basis for parameter and method calibration, which is of a
much smaller scale than our case.
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Chapter 2

Method development - Automated
flow cytometry analysis across a
large number of samples and cell
types (FlowGM)

This chapter is originally appeared in Clinical Immunology 157(2): 249-260 (2015). Xi-
aoyi Chen, Milena Hasan, Valentina Libri, Alejandra Urrutia, Benoit Beitz, Vincent
Rouilly, Darragh Duffy, Etienne Patin, Bernard Chalmond, Lars Rogge, Lluis Quintana-
Murci, Matthew L.Albert, Benno Schwikowski for The Milieu Intérieur Consortium

Highlights

• The novel FlowGM flow cytometry workflow targets a large number of samples

• Largely automated analysis with minimal operator guidance

• Quantification of 24 cell types across 115 samples and 4 panels

• Embedding of results in FCS files permits inspection and validation in FlowJo

• Validated performance is as good as, or even better than manual gating

2.1 Introduction

Flow cytometry is a key technology for the characterization of the cellular component of
the immune system. Flow cytometers are able to simultaneously quantify different surface
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markers of single cells, allowing the identification and quantification of different immune
cell subpopulations. In recent years, improvements in measurement speed and experi-
mental automation have enabled comprehensive immunoprofiling of larger cohorts [Orrù
et al., 2013].
The gold standard for the analysis of raw flow cytometry data has until now remained
"hand gating" (i.e., analysis through computer-assisted procedures for the classification of
cells into single cell types using software tools such as FlowJo [Tree Star, 2014]). Each
sample is analyzed by successively separating cell types by successive "gating" in a series
of one- or two-dimensional projections. However, the manual operation is laborious and
subject to biased visual inspection and gate adjustment. These concerns grow with in-
creased numbers of measured phenotypic markers. Moreover, there is a major limitation
on that information critical for accurate gating may not be present in the selected two-
dimensional projections.
Here, we report a new method for analyzing multi-parametric flow cytometry, the need
for which was motivated by the MI study. This project aims at defining the genetic
and environmental determinants of variable immunologic phenotypes in a healthy popu-
lation [Thomas et al., 2015]. Cell phenotyping constitutes one of the major datasets to
be integrated into the data warehouse, and as such efforts were made to standardize each
step of the sample collection, technical procedures and data analysis. A Companion paper
highlights the pre-analytical, semi-automated measures put in place for labeling and data
generation [Hasan et al., 2015]. This manuscript details the automated analytic workflow
developed for the identification and analysis of 24 cell types across four 8-color cytometry
panels.
Our work follows from a large number of computational approaches that have been de-
veloped for automated flow cytometry analysis. Recently, the FlowCAP study evaluated
a range of approaches [Hu et al., 2013]. In all cases, however, the datasets used by these
investigators were on a smaller scale than the ones in our study, in terms of samples
studied (FlowCAP: up to 30 samples; here: 115 samples × 4 panels), and the number of
events per experiment (FlowCAP: up to approximately 100,000 events; here: on average
300,000 events per FCS file). Due to these differences, we found that the top-ranked
FlowCAP approaches were inadequate to address the needs of our data sets. For exam-
ple, the ADICyt approach [Adinis, 2014] required more than 6 hours for the analysis of a
single sample. The flowMeans software [Aghaeepour et al., 2011] was faster, but required
manual assignment of cell types to each cluster in every single sample. The recent X-Cyt
approach [Hu et al., 2013] was designed explicitly to efficiently address the problem of
large numbers of samples. However, X-Cyt still requires the definition of a "partitioning
scheme", a series of mixture models whose sequence and parameters have to be manually
configured and calibrated for each cell type of interest in any given analytic panel.
To support the analysis of the MI cohort data set, we developed a novel high-dimensional
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data analysis approach, which we refer to as FlowGM, utilizing fast algorithms that en-
able the standardized analysis of a large number of samples. We describe its application
to two representative 8-color panels with up to 11 cell populations classified per panel.
Its principal feature is that, after the definition of global parameters in a reference sample
(i.e., a one-time manual assignment of cell type labels to clusters), it is possible to auto-
matically position and identify cell populations across the entire dataset. This approach
will enable analysis of our large healthy donor cohort.

2.2 Materials and Methods

2.2.1 Dataset

Four 8-color cytometry panels that are targeting major leukocyte populations across 115
individuals from different age groups and genders were designed to characterize the major
immune cell populations (T cells, B cells, NK cells and monocytes), as well as sub-
populations of T cells, dendritic cells (DC) and polymorphonuclear leukocytes (PMN).
The standardized procedure for collection and treatment of the whole blood sample is
described in [Hasan et al., 2015]. For each of the four panels, technical replicates per-
formed by five parallel blood samples obtained from three donors ("repeatability" studies
from [Hasan et al., 2015]) were generated to examine the robustness of the experimental
and computational protocols.

2.2.2 FlowGM cluster model

The input to FlowGM is a set of m sets of N quantitative measurements ("events"), for-
mally, m N -dimensional vectors. Clustering is based on a multivariate Gaussian Mixture
Model (GMM) [McLachlan and Peel, 2004], which has the form

p(x|θ) =
K∑

k=1
αkN (x|μk,Σk)

A GMM thus corresponds to a set of K clusters, each described by a cluster weight αk

and an n-dimensional Gaussian (normal) probability distribution, whose parameters θ are
its centroid μk, and its extent and orientation, Σk in m dimensions. The weight of each
cluster corresponds to the proportion of all cells assigned to it. Gaussian mixture models
have been used for flow cytometry, but a particularity of FlowGM is that several such
clusters can be used to model cells of one type that may not adequately be modeled by a
single normal distribution.
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2.2.3 Clustering cells using Expectation Maximization (EM)

Starting from an initial configuration, the degree of fit between the clusters and the data
is quantified by a likelihood function. Each stage of an iterative optimization process
(Expectation maximization, EM) improves the likelihood in two steps [Dempster et al.,
1977] [Bilmes et al., 1998]. In an E (Expectation) step, each event is assigned to (poten-
tially, multiple) clusters whose location is close to the event. In an M (Maximization)
step, the cluster parameters are optimized to fit the events assigned to it.

2.2.4 FlowGM workflow

Step 1: Define pre-processing parameters (manual)

To initialize automatic processing of Phase I, FlowGM requires the input of a few param-
eters, such as the choice of a reference sample, and the selection of potential pre-filtering
and post-filtering parameters.

Step 2: Perform pre-filtering (automatic)

Automated pre-filtering helps eliminate noise (such as doublets) and/or "uninteresting"
cells (i.e., Dump populations), which is of importance when the cell types of interest are
rare. Two filters have been pre-configured: A doublet filter and a filter that eliminates cells
that are negative relative to user-definable markers (based on two-component one- or two-
dimensional GMMs). The filter eliminates the 95th percentile of the cluster corresponding
to the "uninteresting" cells.

Step 3: Determine the number of clusters (automatic)

The number of clustersK used to model the reference sample is determined by minimizing
the Bayesian Information Criterion (BIC) [Schwarz et al., 1978]. The BIC represents a
tradeoff maximizing the degree of fit between the cluster model and the data on one
hand (expressed by the likelihood p(x|θ)), and, minimizing, on the other hand, model
complexity (based on the number of clusters k):

BICK = −2 ln(p(x|θ)) + P ln(N)

where P = K ∗m+K ∗m∗ (m+1)/2+(K −1) is the number of parameters. Specifically,
we chooseK that minimizes the average of BICK under 20 EM runs starting with random
initial configurations.
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Step 4: Establish the reference clustering (automatic)

Once the number K of clusters has been determined, FlowGM determines 100 random
initial configurations of K clusters as starting points, and performs clustering using Ex-
pectation Maximization, as described in Section 2.2.3. The resulting clustering with the
highest likelihood is selected as the reference clustering in the second FlowGM phase.

Step 5: Label reference clusters with cell types (manual)

An operator defines the cell types of interest, and assigns one or more corresponding
clusters to each such cell type (labeling). Thus, each cell type of interest corresponds to
a set of clusters (meta-cluster).

Step 6: Perform post-filtering (automatic, optional)

This optional step offers the possibility to eliminate additional "uninteresting" events that
remain in the clusters determined in Step 5 (analogous to a "dump" gate for conventional
approaches and useful in focusing the clustering analysis). Two filters have been pre-
configured: A dead cell filter (based on the Viability channel), and a "dump" filter that
eliminates selected cells in specified meta-clusters. In both instances, the cells above or
below a defined threshold are removed. This threshold is automatically determined as
the 95th/99th percentile of a fitted one-dimensional Gaussian distribution of a reference
population along a pre-defined channel. The reference population may either be the
meta-cluster itself, or a negative control that has been removed in the pre-filtering (Step
2).

Step 7: Cohort samples: Pre-filter and cluster by adjusting labeled reference
clustering (automated)

After the reference sample has been processed in Steps 1-5, FlowGM processes all other
samples in a fully automated manner. Pre-filtering proceeds as described for the refer-
ence donor (Step 2). FlowGM then determines the clustering using EM, as described in
Section 2.2.3, starting with the labeled reference clustering (from Step 5) as the initial
configuration. Finally, post-filtering is applied (if selected), as in Step 6.

2.2.5 Visualization of the resulting clusters in FlowJo

One innovation incorporated into FlowGM included the embedding of labels for each
cluster and meta-cluster as additional attributes (numerical identifiers) for each cell in
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the FCS data file. This allows inspection of the different clusters in FlowJo [Tree Star,
2014] or other software that can analyze FCS data files.

2.2.6 Software implementation

FlowGM was implemented using Matlab and Statistics Toolbox Release 2012b [The Math-
Works, 2014] and R (version 3.0.1) [Ihaka and Gentleman, 1996] flowCore package [Ellis
et al., 2009]. The visualization graphs were prepared with FlowJo software version 9.7.5.

2.3 Results

2.3.1 FlowGM workflow

Motivated by the need for high-quality analysis of a large flow cytometry data set, we
developed the novel, and largely automated FlowGM data analysis approach. Its compu-
tational high-dimensional clustering approach avoids the limitations inherent to analysis
based on two-dimensional projections (Figure 2.1).
Experimental data is modeled as a mixture of normal distributions (See Material &
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Figure 2.1: Four simulated clusters in 3D space that cannot be separated in any 2D
projection.

Methods, Section 2.2.3) and employs Expectation Maximization (EM) to iteratively adapt
model parameters (Figure 2.2 and see Section 2.2.3 ).
The overall operation of the FlowGM workflow can be understood on the basis of its sim-
ilarities and differences relative to the current ’gold standard’ manual FlowJo workflow
(Figure 2.3). For both approaches, two phases can be distinguished. In the first phase,
method parameters are calibrated on selected reference samples. In a second phase, all
other samples are processed on the basis of the calibrated parameters. To be suitable for
large cohort studies, FlowGM was designed to minimize the manual per-sample effort in
the second phase.
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Figure 2.2: Illustration of the expectation-maximization (EM) clustering algorithm using
Gaussian mixture model (GMM) clusters, when applied to this data. Points are colored
according to their posterior likelihood, the ellipsoid reflects cluster shape, ’+’ indicates
the cluster centroid, transparency of each ellipsoid reflects cluster weight. Five phases are
shown: initial random parameter values, updated parameters after the first M-step, after
two iterations, after ten iterations, and final solution.

2.3.2 Identification of the major cell lineages by FlowGM

We first applied FlowGM to the lineage panel dataset [Hasan et al., 2015]. Cells were
stained with the markers CD45, CD3, CD4, CD8β, CD14, CD16, CD19, and CD56. Fol-
lowing the approach of the manual analysis by Hasan et al., we used forward and side
scatter (FSC/SSC) solely to exclude doublets; the remainder of our data analysis is per-
formed on the dimensions of the indicated eight markers. The number of events in the
data files ranged from 106000 to 787000. After filtering out doublets, FlowGM estimated
the optimal number of clusters K to be 36, using the BIC (see Materials & Methods,
Section 2.2.4) on the reference donor (Figure 2.4).
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Figure 2.3: FlowJo and FlowGM workflows
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Figure 2.4: The number of clusters K is determined with the minimum average Bayesian
Information Criterion (BIC) when evaluated on 20 random initial solutions for each choice
of K. For the lineage panel, K = 36 is optimal.
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Figure 2.5: User-based aggregation of FlowGM clusters into meta-clusters for immune
cell type characterization with cluster centroid heat map (normalized coordinates). B
cells are identified as CD19+, T cells are identified as CD3+ with two subsets: CD4+

(T-1) and CD8β+ (T-2), NK cells are identified as CD56+ with two subsets: CD16hi

(NK-1) and CD56hi (NK-2), monocytes are identified as three subsets: CD14hi (Mono-1),
CD14hiCD16hi (Mono-2) and CD14loCD16hi (Mono-3). The manually assigned cell types
are indicated on the right.
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Once K was determined, FlowGM performed EM clustering 100 times, starting with dif-
ferent random initial configurations of k clusters. The clustering solution with the highest
likelihood p(x|θ) constitutes the reference clustering, whose clusters were then manually
labeled with the different cell types of interest (i.e., leukocyte subpopulations). The cor-
responding cluster centroids are represented as a heat map, with the assigned cell types
indicated (Figure 2.5).

Note that only 24 of the 36 clusters corresponded to cell types of interest, and the color
coding is chosen independently for each marker to resolve the entire spectrum of expres-
sion across these cell types (using the Matlab HeatMap function). For example, as CD45−

cell populations were not of interest in this study, all selected cells were CD45+ and as
indicated by the normalization, the lowest and highest levels of CD45 expression were
observed in monocytes and T cells, respectively (Figure 2.6).
To facilitate the understanding of our findings and permit user cross-validation, FlowGM
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Figure 2.6: Distribution of CD45 intensity for different cell types of interest in the reference
donor.

allows the embedding of cluster IDs and meta-cluster IDs as additional channels (desig-
nated "C-ID" and "MC-ID", respectively) into the FCS input file, permitting importation
of all data into FlowJo (or other FCS-compatible software). FlowJo visualizations of the
labeled FlowGM lineage clusters confirmed our GMM-based assignments (Figure 2.7).
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Figure 2.7: Visualization of labeled meta-clusters in FlowJo Cluster IDs are incorporated
into the FlowJo input file. Shown are meta-clusters with all principal manual gating
steps, starting with SSC-A/Meta-Cluster ID (MC-ID). (A) The identified CD19+ B cells
(red) and CD4+ (green) and CD8β+ (yellow) subsets of CD3+ T cells. (B) CD56hi (light
blue) and CD16hi (dark blue) NK cell sub-populations. (C) CD14hi monocytes (Mono-
1, mauve), CD14hiCD16hi monocytes (Mono-2, lavender) and CD14loCD16hi monocytes
(Mono-3, light purple).
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By gating on MC-ID to select one FlowGMmeta-cluster, it is possible to view the clustered
cells in 2D projections that correspond to manual gating strategies. FlowJo visualizations
of all 36 FlowGM clusters are shown in Figure S1. Backgating is also possible: starting
with manual gated data and examining where the captured events cluster in C-ID or
MC-ID space (data not depicted).

2.3.3 Pre-filtering supports clustering of rare dendritic cell

We next evaluated the performance of the method on rare subsets of cells (< 1% of the
total cell events). In addition to the elimination of doublets (Figure 2.8) early in the
analysis, we identified the need for pre-filtering of cells considered by the user as uninter-
esting - similar to the use of a "Dump" gate - only in the case of FlowGM the procedure
is automated and thus removes operator bias. Pre-filtering of the DC panel was based
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Figure 2.8: Pre-filtering of doublet using FSC/SSC

on a two-component, two-dimensional GMM that utilized data from CD14 and HLA-DR
markers. Thresholds were automatically set at 95th percentiles of the CD14/HLA-DR
double-negative population (represented by the red line, Figure 2.9). The resultant cells
were investigated using the FCS embedding feature of FlowGM, and inspection of repre-
sentative files revealed accurate retention of desired HLA-DR+ and/or CD14+ cells.
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Figure 2.9: Pre-filtering for analysis of rare cell populations (A) Pre-filtering in dendritic
cells (DC) by low expression of CD14 and HLA-DR. Red lines indicate the thresholds that
were automatically determined using GMM. (B) Validation of pre-filtering using FlowJo
visualization.
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Next, we estimated K using the BIC and defined a clustering solution using data from a
reference donor (Figure 2.10).
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Figure 2.10: The number of clusters K is determined as the minimum average Bayesian
information criterion (BIC) when evaluated on 20 random initial solutions for each choice
of K. For the DC panel, K = 40 is optimal.
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Figure 2.11: User-based aggregation of FlowGM clusters into meta-clusters for im-
mune cell type characterization with cluster centroid heat map (normalized coordi-
nates). Plasmacytoid dendritic cells (pDCs), BDCA-1+ and BDCA-3+ conventional den-
dritic cells (herein referred to as cDC1 and cDC3) were identified as BDCA4+BDCA2+

(CD304+CD303+), BDCA1+ (CD1c+) and BDCA3+ (CD141+), respectively. Monocytes
could be identified as two subsets: CD14hi and CD14lo. The manually assigned cell types
are indicated on the right.
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Figure 2.12: Distribution of HLA-DR intensity for different DC cells and subsets of mono-
cytes in the reference donor.
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Of the 40 clusters defined as the optimal fit, 22 were of interest and manual labeling
of the meta-clustered data captured five myeloid cell subsets: cDC1, identified by their
high BDCA2 MFI and low expression of CD14; pDCs, identified by the highest BDCA2
and BDCA4 MFIs; cDC3, identified by their expression of BDCA3; CD14lo monocytes,
identified by the intermediate expression of CD14; and CD14hi monocytes, by the high
CD14 MFI (Figure 2.11). Again, we highlight that the data represented in the heat map
has been normalized, and in instances where all cell populations are positive for a given
marker (i.e., HLA-DR), the normalization will scale values to span the range of marker
expression. To illustrate the distributions of HLA-DR intensity, histogram plots for DCs
and monocytes are shown (Figure 2.12).
Next, an initial post-filter removed dead cells from each meta-cluster, based on the Dump
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Figure 2.13: (A) MFI of filtered (grey) and remaining (red) cells. Pre-filtered cells display
a lower MFI in all channels except Dump. (B) Standard deviation of fluorescence intensity
for the same cell population. Filtered cells display less variation.

channel. A second post-filter removed cells from cDC1 and cDC3 populations based on
expression of BDCA1 and BDCA3 respectively, of the CD14/HLA-DR double-negative
population that was previously filtered out.
As a final validation step, we compared the level of marker expression between retained
cells and events that were removed by the filtering process. Across all dimensions of the
data set, we confirmed the efficacy of the pre-filtering approach (Figure 2.13).
Additional visual confirmation can be found in the FlowJo-projected data, where meta-
clustered data is overlaid on the total cell events in a representative file (Figure 2.14).
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Figure 2.14: Visualization of assigned meta-clusters in FlowJo in DC panel. Cluster IDs
are incorporated into the FlowJo input file. Shown are meta-clusters identified as pDC,
cDC1 and cDC3.

2.3.4 FlowGM is robust to selection of reference donor and may
be applied to uncompensated data

One potential concern with the FlowGM approach is the sensitivity of the clustering result
to the choice of the reference sample in Step 1 (cf. Section 2.2.4). This is an important
issue, as the resulting reference clustering will be used as the basis to cluster the data
from all other samples. While practitioners may have a good intuition about which one
of the input samples is "representative", the degree of sensitivity to this choice could, in
principle, be large.
We therefore investigated whether a more representative reference clustering based on a
larger group of samples would be needed. To this end, we constructed 11 different clus-
terings: the originally chosen reference clustering (which we denote here by 1*), and ten
alternative reference clusterings (1, · · · , 10) of increasing complexity, which were obtained
by selecting a series of 10 samples from randomly chosen donors, and then merging the
samples 1, · · · , d for each d = 1, · · · , 10. Merging different samples without alignment can
be expected to create reference clusterings that contain technical shifts, and thus could
translate into significant variation in the clustering result.
For each possible pair of these 11 reference clusterings, we then determined the similarity
of the two outcomes after clustering, using the F-measure [van Rijsbergen, 1979] (Figure
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2.15 A). Notably, the F-measure values were close to 1, independently, for all pairs of
reference clusterings, indicating that the different reference clusterings did not translate
into significantly different clustering outcomes. The locations of the resulting cell types
for the different reference clusterings were further represented in parallel coordinate plots
(Figure 2.15 B). Except for the Mono-2 and Mono-3 populations, all coordinates match
extremely well among the different reference clusterings across all dimensions. Together,
these observations suggest that the choice of the initial reference clustering may not have
a large impact on the resulting outcome.
We also investigated the impact of compensation. Routinely, automatic hardware com-
pensation [Hasan et al., 2015] is employed. Here, we compare the results of our ap-
proach on the same input data in an uncompensated state; machine-compensated; or
machine-compensated and FlowJo-corrected. The computational analysis on these three
datasets were initialized with the re-estimated parameters from the reference clustering
on machine-compensated data. The counts for three repeatability samples obtained from
different dataset are shown (Figure 2.16), and indicate that FlowGM is insensitive to
instrument compensation, and therefore resistant to potential compensation error in the
context of large datasets.

2.3.5 Benchmarking of FlowGM demonstrates its reliability and
utility

To directly compare FlowGM clusters to manually gated data sets, we first calculated,
for each hand-gated cluster in the reference donor, the percentage of its events present
in every other FlowGM cluster (Figure 2.17). The values indicated that, overall, the two
approaches group events similarly. The one exception were monocytes, where FlowGM
supported easy segregation of the CD14hiCD16hi sub-population of monocytes (Mono-2)
from CD14loCD16hi sub-monocytes (Mono-3), despite the lack of additional monocyte-
specific markers (e.g., MCSF-1, CX3CR1, CCR2 [Cros et al., 2010]). We also studied
the variability of manual and FlowGM-derived cell counts across the repeatability sam-
ples studied in Hasan et al. [Hasan et al., 2015] (Figure 2.18). We find that FlowGM
results showed good agreement with the results from manual analysis. The slight bias for
higher numbers from FlowGM may stem from the need for high-dimensional information
to confidently assign certain events to cell types (as in the schematic example shown,
Figure 2.1). Coefficients of variation (CVs), which represent variation of data analysis
and experimental variation, were at similar levels, further indicating the high accuracy of
FlowGM analysis. Absolute counts and CVs for the repeatability data from all four pan-
els are provided (Table 2.1). The estimation of the number of clusters and the resulting
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cluster positions, and assignments to cell types for the T cell and PMN panels are shown
in Figure S5 and Figure S6 respectively. For the observed cell types, absolute counts were
highly reproducible, with most CVs <15%. Compared to results of Hasan et al. [Hasan
et al., 2015], the level of reproducibility of FlowGM was similar to the manual gating
results across all four panels.

Finally, we used FlowGM-generated absolute cell counts of the lineage panel across 115
donors from the MI cohort [Thomas et al., 2015], comparing results to those obtained by
manual gating. Again, results were highly concordant (Figure 2.19). The running time
of the computational analysis for a single panel depends on the number n of measured
events in each sample and the number k of clusters. For the panels analyzed here, the
computation required 0.5 hours (DC panel) and ∼ 4 hours (lineage panels) on a standard
laptop PC.
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Table 2.1: Repeatability

Donor†: #1 #2 #3

Lineage

CD4+ T cells 16870 (4.4)� 77306 (9.9) 28838 (4.4)
CD8β+ T cells 6986 (3.8) 19408 (10.6) 21416 (4.0)
CD19+ B cells 5983 (5.3) 23679 (9.8) 3325 (4.1)
Monocytes 27615 (3.0) 42233 (11.0) 26894 (3.5)
CD14hiCD16lo mono 22269 (3.2) 34969 (10.9) 22872 (3.2)
CD14hiCD16hi mono 3196 (4.2) 3759 (11.7) 1436 (8.9)
CD14loCD16hi mono 2058 (3.3) 3505 (10.9) 2907 (5.3)

NK cells 9803 (5.1) 15989 (12.9) 12534 (4.0)
CD16hi NK 8633 (4.9) 15424 (13.0) 11632 (3.7)
CD56hi NK 1171 (7.4) 565 (11.2) 902 (8.9)

T cell

CD4+ T cells 13172 (4.5) 64809 (16.4) 23450 (0.7)
CD4+ Tnaïve 3043 (4.8) 23398 (13.8) 8961 (8.1)
CD4+ TCM 8973 (4.4) 39350 (18.2) 13044 (3.6)
CD4+ TEM 1044 (6.7) 3329 (18.3) 1250 (11.4)

CD8β+ T cells 5245 (5.7) 14847 (16.8) 15283 (3)
CD8β+ Tnaïve 553 (8.2) 5692 (16.8) 5903 (2.3)
CD8β+ TCM 2297 (6.2) 5737 (13.6) 5996 (7.7)
CD8β+ TEM 548 (10.2) 1181 (15) 1092 (21.2)
CD8β+ TEMRA 717 (5.1) 1206 (46.8) 954 (16)
CD8β+ 27int 1036 (8.7) 1096 (23.3) 1516 (11.7)

CD4+CD8α+ T cells 153 (11.4) 770 (19.3) 539 (28)

DC

CD14+ monocytes 25232 (12.2) 29764 (4.4) 21287 (8.4)
pDC 304 (18.5) 409 (4.1) 438 (5.0)
cDC1 2159 (12.1) 5188 (3.9) 1677 (10.4)
cDC3 42 (30) 87 (16) 44 (8.1)

PMN
Neutrophils 96062 (14.3) 188428 (13.0) 119529 (12.0)
Basophils 1751 (11.4) 5878 (7.2) 2323 (11.6)
Eosinophils 10483 (13.2) 18539 (10.6) 22329 (6.2)

† Fresh blood samples from three healthy donors were divided in five aliquots
each and immediately stained using four antibody panels.

� Median absolute cell counts per 1mL of blood in five independent analysis is
represented for each cell population, as well as the corresponding coefficient of
variation(CV).
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2.4 Discussion

The FlowGM flow cytometry approach was developed to address the need for fast, ro-
bust and high-quality analysis for the MI study. Our comprehensive validation study has
shown that FlowGM has produced user-validated results whose quality is on par with,
and in some cases, exceeds, the hand-gating approach. This is an exciting finding, as
its simple computational approach does not require the expert knowledge and experience
that is available to human operators. One important difference lies in the systemati-
cally higher number of events assigned to cell types by FlowGM, which suggests that the
full dimensionality of the data, instead of two-dimensional views, allows to assign cells
that are unassigned in manual two-dimensional analysis due to the lacking dimensionality
and user-bias. Another facet of this fundamental difference may be the observed ability
of FlowGM to segregate subpopulations of monocytes without the need for an additional
specific marker. Notably, separation of CD14loCD16hi monocytes from NK cells and other
cell populations was achieved by integrating information from all eight dimensions.
When comparing the design of FlowGM workflow to other computational clustering ap-
proaches, a characteristic difference lies in the choice to computationally model single cell
types as mixtures of Gaussians, as opposed to single Gaussians, or other distributions,
coupled with the incorporation of knowledge and experience of a human operator to define
which clusters belong to the same cell type (referred to herein as meta-clusters). This
design may constitute a ’sweet spot’ in cytometry workflow design: A fast and efficient
overall workflow, combined with a mathematical model that is flexible enough to model
experimental data well, the solution of a hard core problem (the assignment of cell types
to clusters) using operator intervention, and the limitation of this intervention to a single
reference sample, as the transposition of this knowledge to all other samples can be au-
tomated with high accuracy.
The minimization of operator intervention means not only significant savings in terms of
manual effort, but also the elimination of variability between different samples introduced
by subjective decisions, and a considerable improvement in transparency and reproducibil-
ity of the path from the samples to the absolute and relative cell counts. Furthermore, the
facility with which results are accessible for human inspection using conventional tools,
and the relative simplicity of the FlowGM approach itself imply a high level of accessi-
bility to non-specialists that - we believe - will continue to play an important role in the
evolution of the approach.
We believe that the FlowGM workflow is applicable to most other flow cytometry datasets,
and anticipate that the need for fast, robust, and high-quality analysis of large cytometry
datasets will only increase. Adaptations of the method may be required for heterogeneous
samples, in which no single reference sample may be representative for all others (e.g.,

35



Chapter 2 2.4. Discussion

disease populations). We believe that there are relatively straightforward approaches to
extend FlowGM to automatically detect cases of inadequate fit, for example, through the
introduction of additional reference donors (with recursive iteration of the manual Step
5). The increased availability of experimental datasets that have been acquired under
standardized conditions may facilitate comparison and integration, which may lead to
the necessary insights and technical developments to fully automate flow cytometry data
analysis.
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Figure 2.15: Different reference clusterings are generated by merging data from one to
ten randomly selected donors; solutions are then applied to 115 cohort donors. (A)
Pairwise average similarity (F-measure) of solutions over 115 cohort donors after using
different reference clusterings. (B) Mean fluorescence intensity (MFI) of each identified
cell population from different reference clusterings.
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Figure 2.16: FlowGM counts of each cell type for three donors with five replicates, ob-
tained from three different datasets: uncompensated, machine-compensated and FlowJo-
corrected. The results suggests that FlowGM is insensitive to instrument compensation
errors.
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Figure 2.17: Comparison of manually counting and FlowGM analysis - Performance on
reference donor: percentage of events in FlowJo cluster present in FlowGM clusters.
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Figure 2.18: Comparison of manually counting and FlowGM analysis - Performance on
repeatability data: counts of each cell type for three donors with five replicates. The
FlowGM results show a comparable CV with manually counting.
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Figure 2.19: Comparison of manually counting and FlowGM analysis for lineage panel
on D = 600 cohort donors. The X-axis is the counts from FlowJo, and the Y-axis is
the counts from FlowGM. The counts obtained by these two methods highly agree on
D = 600 cohort donors, with average correlation equal to 0.944 across all 9 identified
population in lineage panel.
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Chapter 3

Evaluation - A 600-person healthy
donor study

This chapter was made possible by Alejandra Urrutia, Vincent Rouilly, Milena Hasan,
Molly Ingersoll, Philip De Jager and Benno Schwikowski.

Highlights

• High concordance between FlowGM and FlowJo counts of 15 cell types across 600
samples

• Significant effect of age on FlowGM exclusively segregated CD14loCD16hi monocytes
and HLA-DRhi cDC1 cells

3.1 Introduction

The central task of flow cytometry analysis is to identify cell populations of interest and
obtain the relevant statistics for each population, including cell counts, cell proportions,
and mean fluorescence intensities (MFIs). These statistics are regularly used as diagnos-
tic criteria for many diseases, such as acquired immune deficiency syndromes (AIDS) and
hematological malignancies. They can also help in discovery from large cohort analysis of
new correlates between immune cell populations and diseases [Jaye et al., 2012] [Aghaeep-
our and Brinkman, 2014].

As we discussed in previous chapters, the flow cytometry data can be analyzed manually
or automatically. The conventional manual analysis is based on visualization in 1D his-
tograms or 2D scatter plots of the data. The use of new techniques for sample preparation
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Chapter 3 3.1. Introduction

and more stringent pre-analytical procedures have improved the reproducibility and the
quality of the results. The main limitations of manual analysis are that the analysis is
subjective and it takes too much time. During recent years, more than 20 computational
methods have been developed based on statistical models to automate the identification
of cell populations. Cells are assigned to different clusters according to their expression
level of antibodies, and then related statistics are obtained. However, how to evaluate the
results is always challenging.

In the framework of data mining, two types of considerations are commonly taken for
the evaluation of clustering results. One is based on the data itself, where the standard
of evaluation consists of the similarity within the clusters and the dissimilarity between
different clusters. Its main limitation for cell population identification is that, the resulted
cluster might not necessarily represent a cell type. Therefore, in the field of FCM analysis,
people usually consider another type of evaluation, which is based on the comparison with
known class label. Due to the lack of ground truth, a benchmark which is manually built
by experts is often considered as a gold standard, although people have a consensus that
it is not a gold standard, but only a reference. In the analysis of small scale, for exam-
ple, in the study of FlowCAP [Aghaeepour et al., 2013b], the idea of constructing a gold
standard is realized by taking a consensus of 8 manual operators, which can undoubtedly
reduce the subjectivity, but is obviously impractical in real applications, especially for
those involving large cohort.

In the context of the MI Consortium, four 8-color panels were standardized for assess-
ment of the major and minor cell populations present in peripheral whole blood collec-
tions. Data was collected and analyzed for D = 600 healthy donors in parallel by human
experts and with our newly established software that employs Gaussian Mixture Model
(FlowGM). Major leukocyte population statistics were obtained from both methods, which
allowed a comparison between manual and automated analysis in a large number of sam-
ples.

The 600 healthy donors were stratified across gender (50% men and 50% women) and age
(120 individuals from each decade of life between 20 to 70 years), demographics, including
as well metabolism score, CMV infection status, smoking history and other lifestyle factors
were recorded, which made the further comprehensive evaluation possible. For example,
age has been shown to have an important influence on certain immune cell populations:
the decline in plasmacytoid dendritic cells (pDCs) numbers with age has been reported.
This type of observation has important implications for understanding immunosenescence.
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Chapter 3 3.2. Materials and Methods

In this chapter, we focus on the lineage panel and the dentritic cell panel to examine the
quality of FlowGM results and the level of agreement with manual results. Furthermore,
we concentrate on the influence of age on cell populations. Using a linear regression model,
we test whether previously reported correlations can be confirmed by either manual or
automatic FlowGM analsis.

3.2 Materials and Methods

3.2.1 Data

The 600 healthy donors were selected based on a stringent inclusion and exclusion criteria
[Thomas et al., 2015]. Whole blood samples were collected from each donor and were
stained with a lineage panel targeting T cells, B cells, NK cells, monocytes and PMN, and
a dendritic cell panel targeting cDC1, cDC3 and pDC subpopulations. Flow cytometry
data were manually analyzed using FlowJo (version 9.0 Treestar), and automatically
analyzed with FlowGM. The FlowJo and FlowGM counts were obtained for in total 14
cell populations across all 600 donors.

3.2.2 Standard statistical analysis of the countings

All the statistical analysis discussing in this chapter for the evaluation of the results is
standard, but they are straightforward and routine in FCM study involving large cohorts,
and the results are biologically valuable. For these reasons we will introduce briefly the
related statistical tools and explain how they are adapted to our problems. In order to
evaluate FlowGM counts, we first use the Pearson’s correlation to quantify the agreement
of counts from manual and automated methods, then we employ the classical linear re-
gression model to analyze the aging effect on all identified cell populations.

• Let Y1 and Y2 be the random variables representing the counting of a particular cell
type computed by the FlowJo and FlowGM, respectively, for the same experiment. For
D = 600 donors, the occurrences of Y1 and Y2 are denoted y1 = {y

(1)
1 , · · · , y

(D)
1 }T and

y2 = {y
(1)
2 , · · · , y

(D)
2 }T . To quantify the eventual linear dependence between Y1 and Y2,

we consider the classical Pearson’s correlation:

corr(Y1, Y2) =
cov(Y1, Y2)

σY1σY2

.
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For our D-sample, the empirical correlation is

ry1,y2 =
∑D

d=1(y
(d)
1 − ȳ1)(y(d)

2 − ȳ2)√∑D
d=1(y

(d)
1 − ȳ1)2

√∑D
d=1(y

(d)
2 − ȳ2)2

, (3.1)

where ȳ1 and ȳ2 are the empirical means. The correlation r is computed independently
for each cell type.

• We are now interested in testing the effect of age on the counting in order to infer its
effect on circulating immune cell populations.

Consider the random counts Y (Y1 or Y2) and the random variable A of a donor’s age.
We would like to verify whether there is a significant linear relationship between Y and
A as it is suggested in Figure 3.4. We consider the linear model:

Y = β0 + β1 A+ ε,

where E(ε) = 0, var(ε) = σ2.
(3.2)

The conventional hypothesis testing technique is used to study the significance of deviation
from age-independence. We consider the null hypothesis that the coefficient β1 is equal
to zero, which means that the age has no effect on the count of this cell population:

H0 : β1 = 0, which implies (M0) : Y = β0 + ε

H1 : β1 �= 0, which implies (M1) : Y = β0 + β1 A+ ε
(3.3)

For deciding between these two hypotheses, one uses the classical F statistics:

F = (RSS0 − RSS1)/p

RSS1/(D − p − 1) ∼ Fisher(p, D − p − 1),

where p = 1 is the number of parameters in model (M0), and RSS0 = ‖y − ȳ1‖2 and
RSS1 = ‖y − ŷ‖2, are the residual sum of squares for the least squares fit of the model
(M0) and (M1) respectively. The statistics F has a Fisher distribution only under H0.
The decision is made as follows: given a risk of type I (i.e. the probability to decide
H1 whereas H0 is true), the Fisher distribution returns the critical value fα such that
p [ Fisher(1, D − 2) > fα] = α. We have chosen α = 0.05. Finally H0 is rejected if the
observed F is greater than fα.

• Instead of performing two independent tests (for Y1 and then for Y2), one can perform
a single test. In this case, Y represents both Y1 and Y2 as it is formalized by the following
linear model:

Y = β0 + β1 A+ β2 M + β3 A M + ε, (3.4)
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where the dependant variable M represents the method type: M = 0 for FlowJo and
M = 1 for FlowGM:

M = 0 ⇒ Y = β0 + β1A+ ε,

M = 1 ⇒ Y = [ (β0 + β2) + (β1 + β3)A ] + ε.

To test the influence of M and A on Y , we consider the null and alternative hypotheses

H0 : β2 = β3 = 0, which implies (M0) : Y = β0 + β1A+ ε,

H1 : H0 is not true, which implies (M1) : Y = β0 + β1 A+ β2 M + β3 A M + ε,
(3.5)

H0 states that M has no effect on the cell counting in model (3.4). Similarly,

F = (RSS0 − RSS1)/q

RSS1/(2D − p − 1) ∼ Fisher(q, 2D − p − 1),

where q = 2 is the number of regression coefficients restricted to zero, p = 3 is the number
of no zero regression coefficients, RSS0 and RSS1 are the residual sum of squares for the
least squares fit of the model (M0) and (M1) respectively.

If H0 is rejected, which means that the two methods give different results, we further test
only for β3 to check which method is better:

H0 : β3 = 0
H1 : β3 > 0, i.e. FlowGM counts provide stronger effect on age.

(3.6)

This unilateral test is performed using the t-test, because it is symmetric around 0.

3.3 Results

3.3.1 Mean fluorescence intensities

Before comparing directly the cell counts obtained from manual method and FlowGM,
we would like to examine the quality of cell population identification across 600 donors.
The MFIs of all 8 markers for each cell type and each donor are shown in Figure 3.1.
Every circle represents the MFI of one donor, different colors correspond different cell
types. The descriptions of the populations (e.g., CD3+CD4+ for the first line) confirm
our labeling (e.g. as T cells for the first line). The compactness of donor’s MFI shows a
high quality of the results.
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3.3.2 Counting correlation

We have shown at the end of Chapter 2, that the FlowGM and FlowJo counts correlation
across 115 donors (Figure 2.19), here we extend our analysis to all 600 donors. Again,
the results were highly concordant. Among all 14 identified cell populations (10 from the
lineage panel and 4 from the DC panel), 11 of them have a correlation larger than 0.9
(Figure 3.2 and Figure 3.3), where the correlation r is computed by (3.1). More precisely,
the average correlation r̄ = 0.938 for lineage panel and r̄ = 0.864 for DC panel.

CD4+ / T-1 CD8β+ / T-2 CD19+ / B Monocyte

CD14hi / Mono-1 CD16hi / Mono-2&3 NK CD16hi / NK-1

CD56hi / NK-2 CD16+++ / PMN

Fl
ow

GM

FlowJo

Figure 3.2: Comparison of manually counting and FlowGM analysis for lineage panel on
D = 600 cohort donors. In this panel, we have identified 10 cell populations, for each of
them, the X-axis is the counts from FlowJo, and the Y-axis is the counts from FlowGM.
The counts obtained by these two methods highly agree on D = 600 cohort donors, with
average correlation equal to 0.938 across all 10 identified cell populations.
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Figure 3.3: Comparison of manually counting and FlowGM analysis for lineage panel on
D = 600 cohort donors. In this panel, we have identified 4 cell populations, for each of
them, the X-axis is the counts from FlowJo, and the Y-axis is the counts from FlowGM.
The counts obtained by these two methods highly agree on D = 600 cohort donors, with
average correlation equal to 0.864 across all 4 identified cell populations.

3.3.3 Aging effect

Age is known to affect a number of different immune cell populations, both in terms of
counts and function. We applied the test (3.3) to cell counts from manual and FlowGM
analysis, we identified 12 cell types where the counts have a significant effect of age, and
for 5 of them, which are CD4+ T cells, CD8β+ T cells, B cells, monocytes and CD14hi

monocyte subpopulation, the counts from FlowJo and FlowGM are from the same linear
regression model using statistic test (3.5). We plotted the FlowJo and FlowGM numbers
of these cells against age and fitted a regression model separately for men (blue) and
women (red) (Figure 3.4). The counts from FlowJo and FlowGM are from the same lin-
ear regression model, i.e. H0 of test (3.5) is accepted for these 5 populations (Table 3.3.3).
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The exceptions include CD16hi subpopulation of monocytes and dendritic cells. The dis-
crepancies between FlowJo and FlowGM in the identification of monocyte subpopulations
have been discussed in Chapter 2: FlowGM segregated the CD14hiCD16hi sub-population
of monocytes (Mono-2) from CD14loCD16hi sub-monocytes (Mono-3) despite the lack of
additional monocyte-specific markers (e.g., MCSF-1, CX3CR1, CCR2), and the result was
user-validated. In this study, we find that a clear decline with age is evident for CD14hi

subpopulation of monocytes (Mono-1) for both two methods, the manually identified
CD16hi subpopulation of monocytes (Mono-2&3) has no remarkable effect of age, how-
ever, the FlowGM identified CD14loCD16hi sub-monocytes (Mono-3) showed a significant
increase in the counts with increasing age (Figure 3.5). The immunology literature offers
several possible explanations for this observations. First, levels of CD16hi monocytes in-
crease with new infection/inflammation [Pinke et al., 2013], thus aging people carry more
CD16hi monocytes than young people. Second, artherosclerosis increases CD16hi lev-
els [Tacke and Randolph, 2006] [Tacke et al., 2007], which is more common in the elderly.
The compatibility of our observation with the literature suggests that our segregation,
based on FlowGM, is valid. As for dendritic cells, it has been largely reported that the
pDC count is decreasing with age. In our case, both methods give a confirmatory result.
We evaluated whether manual or FlowGM analysis resulted in the stranger statistical
evidence using (3.6). Figure 3.6A shows that the FlowGM result is less noisy, thus with
stronger regression coefficient. More interesting, further precision of the cDC1 population
is achieved using FlowGM, identifying three independent clusters that were segregated
based on CD86 and HLA-DR expression. By focusing on cDC1 subsets, it was possible
to demonstrate that the number of HLA-DRhi cDC1 cells significantly decreases with age
(Figure 3.6B).

We analyzed as well the effect of gender, CMV infection, smoking history, and other
available information on more than 20 circulating immune cell populations. To have
confidence in the stability of our phenotypes of circulating immune cells, we performed
a second sampling on our healthy donors (Visit 2, one month after the initial analysis of
Visit 1). Whole blood was collected, processed, analyzed, and cell counts were generated
using FlowJo and FlowGM in exactly the same manner as for the first time. We also
performed for all cell populations an outlier analysis to identify donors with counts more
than 3 standard deviations from the mean. We revealed interesting outliers, individuals
with > 15× the upper limit of normal for cDC1 or pDC numbers. We integrated our
results with induced protein signatures and find that decreased pDC numbers in older
individuals correlate to reduced levels of TLR7 and TLR9 induced cytokines. As the
space constraints, detailed reports are not included here.
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Figure 3.4: Effect of age on lymphocyte and monocyte populations. For CD4+ T cells,
CD8β+ T cells, B cells, monocytes and CD14hi monocyte subpopulation, which corre-
spond to the first 5 lines of Table 3.3.3, the FlowJo (right column) and FlowGM (left
column) counts against age are plotted separately for men (blue) and women (red), where
the X-axis is age and Y-axis is cell count. The performed regression model are plotted
as well, the slope and p-value are given on the top-right of each plot, which suggest that
there is a significant effect of age on the count of these cell populations.
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Figure 3.5: Aging effect on the counting of monocyte subpopulations. FlowGM identi-
fied CD14hi monocytes (Mono-1, mauve) has an evident decline with age, CD14hiCD16hi

monocytes (Mono-2, lavender) has no remarkable effect on age, and CD14loCD16hi mono-
cytes (Mono-3, light purple) showed a significant increase in the counts. On the other
hand, manual analysis by FlowJo could not separate Mono-2 and Mono-3, and Mono-2&3
together shows no significant effect on age.
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Figure 3.6: Aging effect on the counting of DC subpopulations (A) Both FlowGM and
FlowJo methods give a pDC count significantly decreasing with age, for men (blue) and
women (red). (B) Further precision of the cDC1 population is achieved using FlowGM,
identifying three subpopulations (green, blue and orange) that were segregated based on
HLA-DR and CD86 expression. The number of HLA-DRhi cDC1 cells (cDC1-1, activated
cDC1, green) show a significant decrease with age.
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Chapter 4

Improvement of the FlowGM
method by Bayesian Gaussian
mixture modeling (FlowGMP)

Highlights

• The novel FlowGMP flow cytometry method targets a large number of samples
where technological and biological variations are more relevant

• Largely automated and high quality analysis with consideration of prior information

• Quantification of 11 T cell subpopulations across 115 MI sample

• Validated performance is as good as, or even better than manual gating

4.1 Introduction and motivation

Let X denote a random vector in Rm, and x = {x1, · · · , xN} denote a sample of N

m-dimensional independent observations of X, N � m. With the goal of clustering
these observations, we consider a mixture model by assuming that each observation xi is
generated by a mixture of K multivariate distributions. Letting Z denote the latent vari-
able indicating the mixture component that each observation belongs to, the probability
distribution of an observation set x can be written as

pθ(x) =
K∑

k=1
p(Z = k)pθk

(x|Z = k),

where θk is the unknown parameter describing the distribution of the kth component, and
θ = {θk}K

k=1.
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We aim to assign a component k to each observation xi, i.e. to estimate the occurrence
zi of Z by the value ẑi that maximizes the posterior probability:

ẑi = argmax
k

pθ(Z = k|xi). (4.1)

By denoting ζ̆k the indicator function of the kthe estimated cluster, this cluster is defined
by:

ζ̆k(x) = {xi| ẑi = k},

the clustering is then defined as

Z(x) = {ζ̆1(x), · · · , ζ̆K(x)},

or simply if there is no confusion

Z = {ζ̆1, · · · , ζ̆K}.

The number of points in every cluster is denoted nk = |ζ̆k| = ∑
i 1(ẑi = k).

We consider an application in flow cytometry, where the goal is the characterization of
the cellular component of the immune system. In one flow cytometry experiment, we
measure simultaneously the expression level of m antibodies for each of the N cells, then
we cluster the N cells into different groups based on their m-measurements, and finally
we assign a cell type to each group with the help of experts. This process is referred as
"Cell population identification". In fact, in the analysis of flow cytometry data, which
motivates this work, the observations come from multiple experiments. Let D be the
number of experiments, and denote the set of the D samples by

X = {x(1), · · · , x(D)}.

The observed sample x(d) of X generated by the dth experiment is a N (d)-tuple of points
in Rm:

x(d) = {x
(d)
1 , · · · , x

(d)
N(d)}, d = 1, · · · , D.

Theoretically, this writing implies that each sample x(d) comes from the same random
vector X. In practice, this assumption is perturbed by exogenous factors.

Recent technical advances have encouraged the studies involving cohorts with large num-
bers D of patients, replicates, or experiments with different stimulation conditions [Pyne
et al., 2014]. Therefore, the difficulty in the analysis of such large number of experiments
lies in the presence of technical and biological variations. Technical variations arise from
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varying experimental conditions, instrument settings, or laboratory operations. Biological
variations are, for example, the age and gender effect as we discussed in chapter 3. In
flow cytometry analysis, the size cluster nk is of main importance since it is used for cell
identification. The exogenous factors can perturb the clustering and therefore nk too.
Therefore, we must take into account the effects of these factors in our analysis.

Challenge The need to assign an immunological cell type implies that we have to not
only to identify cell populations in an individual experiment or in several experiments
independently, but we also have to "align" cell populations across all experiments, i.e.,
identify those populations corresponding to the same cell type. Figure 4.1 illustrates this
problem. Once such an alignment is established for all populations, and we know the cell
type of one population in one experiment, say, in experiment d = 0, then this allows us
to infer the cell type in all other experiments.
Formally speaking, we deal with two specific properties: (1) the latent variable Z has

Figure 4.1: Alignment of clusters across experiments. Three clusters are identified in the
reference experiment d = 0, presenting three different phenotypes. The phenotype of all
other estimated clusters ζ̆

(d)
k , d = 1, · · · , D is the same, thanks to the alignment on the

reference sample.
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some common phenotypic interpretation across all experiments, which means that, for
any k = 1, · · · , K, each estimated cluster ζ̆

(d)
k represents the same cell type, regardless of

d; (2) the parameter (α(d)
k , θ

(d)
k ) depends on the experiment and varies from one to another

due to the variations, which is in contradiction with the property (1).

Automated analysis methods therefore need to be able to partition observed data from
each experiment into "proper" clusters, and to characterize at the same time the intrinsic
variation systematically, where the "proper" quality refers to the "cell type" interpretation.
It is shown that, for clustering analysis, an algorithm designed for some kind of models
cannot perform well if the dataset contains a radically different set of models, or if the
evaluation consists of a radically different criterion [Estivill-Castro, 2002]. Concrete to
our case, the variation across all experiment datasets can be sometimes very large (for
example, different age groups follow different models), moreover, the "cell type" inter-
pretation, as the evaluation criteria, consists often much complicated situation than in a
simple modeling. Therefore, a model which doesn’t take into account of these considera-
tions will fail.

There has been a number of approaches to address this situation in model-based cluster-
ing within the Bayesian framework [Pan and Shen, 2007]. In the field of flow cytometry,
there are also several attempts considering a large number of samples and the alignment
issue with regard to phenotypic relevant clusters despite technical and biological varia-
tion [Pyne et al., 2014] [Cron et al., 2013] [Dundar et al., 2014]. For these publications,
FlowCAP [Aghaeepour et al., 2013a] competition datasets are commonly used as the
basis for parameters and method calibration. Here, we present a mixture model-based
approach for multi-parameter clustering analysis across a large number of samples, where
the variations are prominent. It is motivated by the needs of the MI project [Thomas
et al., 2015], where flow cytometry data is on a larger scale (thousands of samples) and
has more a complicated structure than the FlowCAP datasets.

In the following part of this chapter, we propose in Section 4.2 a Bayesian mixture model
that assumes a prior distribution on the component parameter θk with respect to the
phenotypic (cell type) interpretation of each component. In fact, this prior distribution
is limited to the class center μk in θk. Then we derive the corresponding penalized EM
algorithm. The computation is restricted to the Gaussian case. Finally, we discuss the
application on MI flow cytometry analysis in Section 4.3.
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4.2 Models and method

4.2.1 Conventional mixture model

Let X denote a random vector in Rm, x = {x1, · · · , xN} denote N m-dimensional in-
dependent observations of X, and zi, taking value k in {1, · · · , K}, which denotes the
cluster labels. The mixture model has the form

p(xi|φ) =
K∑

k=1
p(Zi = k)p(xi|Zi = k)

=
K∑

k=1
αkPθk

(xi|Zi = k) ,

where φ = {αk, θk}K
k=1 .

(4.2)

The vector α = {α1, · · · , αK} denotes the mixing proportions. If the xi are independent
observations of X, the log likelihood is

l(φ|x) =
N∑

i=1
log p(xi|φ) =

N∑
i=1
log(

K∑
k=1

αkPθk
(xi|Zi = k)),

and the conventional maximum likelihood estimate (MLE) is

φ̂ML(x) = argmax
φ

l(φ|x). (4.3)

4.2.2 Bayesian mixture model

The challenge described in Section 4.1 appears when we consider a large set of experi-
ments X = {x(d)}1≤d≤D, where D is the number of experiments. The identical value of
z

(d)
i through d must lead to the same phenotypic interpretation of the clusters, so that the
counts n

(d)
k , the parameter θ

(d)
k and other statistics from different experiment are compa-

rable, in order to allow the characterization of scientific variations in further studies as it
will be detailed below.

With this consideration, we propose a second layer of model by assuming a prior dis-
tribution on every θk, i.e. for a given k, each θk is an occurrence of a probability
distribution modeling fluctuation, as illustrated in Figure 4.1. In the Gaussian case,
xi|(Zi = k) ∼ N (μk, Vk), then θk = {μk, Vk}. We only assume μk to be a random
variable, and use the following prior distribution:

μk ∼ N (τk, δΓk),

where τk defines the prior location of μk, Γk describes the shape and orientation of the
distribution, and δ > 0 controls the spread, which rules the importance of the prior. This
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parameter is called hyper-parameter. No specific prior is assumed on other parameters
Consequently, due to the focus on μk and the independence assumption between the
parameters, we have

p(φ) = p(α) p(θ) = p(α) p(μ) p(V ) = p(μ) =
K∏

k=1
p(μk),

where μ = {μ1, · · · , μK}. Within this Bayesian framework, the prior distribution leads
the posterior probability distribution

p(φ|x) = p(x|φ)p(φ)
p(x) =

p(x|φ)p(μ)
p(x) .

The log-posterior probability is then

lp(φ|x) =
N∑

i=1
log p(xi|φ)p(μ) =

N∑
i=1
log(

K∑
k=1

αkpθk
(xi|zi = k)) + log p(μ). (4.4)

It can be interpreted as a log penalized likelihood whose penalization is log p(μ). With
the Gaussian prior assumption, the last term of (4.4) is

log p(μ) = log
K∏

k=1
p(μk) =

K∑
k=1
(−12(μk − τk)′(δΓk)−1(μk − τk)− m

2 log(2π)−
1
2 log |(δΓk)|),

thus (4.4) could be written as

−lp(φ|x) = −l(φ|x) +
K∑

k=1
(12(μk − τk)′(δΓk)−1(μk − τk) + const.

The maximum a posterior estimate (MAP) is

φ̂MAP(x) = argmax
φ

lp(φ|x).

When maximizing lp(φ|x) or minimizing −lp(φ|x), it is to minimize the negative log
likelihood −l(φ|x) penalized with a sum of Mahalanobis distances between each point μk

and its prior distribution N (τk, δΓk). The Mahalanobis distance between a point μk and
a distribution N (τk, δΓk) has the form

‖μk − τk‖2
δΓk
= 12(μk − τk)′(δΓk)−1(μk − τk) =

1
δ

‖μk − τk‖2
Γk

.

Then

−lp(φ|x) =− l(φ|x) + 1
δ

K∑
k=1

‖μk − τk‖2
Γk

.

Big value of δ means a large spread of the distribution of μk, which indicates a weak belief
in the prior, therefore a small penalization; while small value of δ means a little spread,
which can be interpreted as a strong belief in the prior, therefore a big penalization.
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4.2.3 Penalized-EM algorithm

For a conventional mixture model (4.2) and maximum likelihood estimation (4.3), an
expectation-maximization (EM) algorithm is commonly used. Starting from an initial
guess for the parameters, each stage of an iterative optimization process improves the
likelihood in two steps: in an E (Expectation) step, the expectation of log-likelihood is
evaluated using the current estimate for the parameters, and in an M (Maximization)
step, the parameters are optimized by maximizing the expected log-likelihood.

Since the EM algorithm will converge to a local optimum, the result is, in general, sen-
sitive to the starting values of the parameters. This local property could be sometimes
a defect for certain cases, but we can here take advantage of it to enable the automated
alignment of clusters across all experiments. We propose to build a reference clustering
that contains one cluster for each target component, and to then use the parameters of
this reference clustering as an initialization for all experiments. A penalized EM algo-
rithm is described here, which indexes each cluster in new experiment according to the
reference, which allows automated alignment of clusters across all experiments.

Like in the standard EM algorithm for (4.3), we consider the expectation of the log
penalized likelihood with respect to the random variables (Zi|Xi) whose distribution are
p(zi|xi, φ′), φ′ denoting a previous estimated parameter:

Qp(φ, φ′) =EZ|X, φ′

[
log

N∏
i=1

p(xi, Zi|φ)p(φ)
]

=EZ|X, φ′

[
N∑

i=1
log[p(xi, Zi|φ)p(φ)]

]

=
N∑

i=1
EZ|X, φ′ [log[p(xi, Zi|φ)p(φ)]]

=
N∑

i=1

K∑
k=1

p(Zi = k|xi, φ′) log(αkp(xi|θk)p(μk)),

(4.5)

By denoting

p(Zi = k|xi, φ′) = γ
′
ik,

(4.5) could be written as

Qp(φ, φ′) =
N∑

i=1

K∑
k=1

γ
′
ik logαk +

N∑
i=1

K∑
k=1

γ
′
ik log p(xi|θk) +

N∑
i=1

K∑
k=1

γ
′
ikδ log p(μk).
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Then the Bayesian estimate φ̂ = {α̂k, θ̂k}K
k=1 is the solution of

∂Qp(φ, φ′)
∂αk

∣∣∣∣∣
φ=φ̂

= 0 and ∂Qp(φ, φ′)
∂θk

∣∣∣∣∣
φ=φ̂

= 0.

As the penalization is independent of αk, the re-estimation of αk remains the same with
that in standard situation. Now we get

∂Qp(φ, φ′)
∂μk

∣∣∣∣∣
φ=φ̂

= 0 implies
∑

i

γ
′
ikV̂ −1

k (xi − μ̂k)− (δΓk)−1(μ̂k − τk) = 0,

thus
μ̂k = (−

∑
i

γ
′
ikV̂ −1

k + (δΓk)−1)−1(− ∑
i

γ
′
ikV̂ −1

k xi + (δΓk)−1τk) (4.6)

As we don’t have any prior on Vk, the new estimate of Vk has the standard form [Bilmes
et al., 1998], which depends to the new μ̂k:

V̂k =

∑
i

γ
′
ik(xi − μ̂k)′(xi − μ̂k)∑

i
γ

′
ik

.

The difficulty here is that (4.6) depends to the new V̂k, and solving simultaneity the
system on these two parameters is too complicate. An optimization of coordinate by
coordinate [Friedman et al., 2007] within each EM iteration is then proposed here:

Iteration (1):

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

μ̂
(1)
k ← (− ∑

i
γ

′
ik(V

′
k )−1 + (δΓk)−1)−1(− ∑

i
γ

′
ik(V

′
k )−1xi + (δΓk)−1τk),

V̂
(1)

k ←
∑
i

γ
′
ik(xi − μ̂

(1)
k )′(xi − μ̂

(1)
k )∑

i
γ

′
ik

;

Iteration (t+1):

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

μ̂
(t+1)
k ← (− ∑

i
γ

′
ik(V̂

(t)
k )−1 + (δΓk)−1)−1(− ∑

i
γ

′
ik(V̂

(t)
k )−1xi + (δΓk)−1τk),

V̂
(t+1)

k ←
∑
i

γ
′
ik(xi − μ̂

(t+1)
k )′(xi − μ̂

(t+1)
k )∑

i
γ

′
ik

;

where φ′ indicates the current guess of appropriate parameters in each EM iteration, and
within this iteration, a second loop for coordinate optimization of estimated parameters
is noted as φ̂(t), t = 1, 2, · · · .
The penalized version of EM algorithm described here owns also the property: the like-
lihood pθ̂(x) increases at each iteration of the EM algorithm. The proof is given in
Appendix.

4.2.4 Model calibration

To estimate the hyper-parameter δ, we use a measure of similarity between two clusterings
performed on a N -sample x = {x1, · · · , xN} . The first clustering is here considered as
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"ground truth", where the clusters are called "classes". These classes, denoted here by
c̆k(x), represent a benchmark, which has been created by human experts. The second
clustering, where clusters are denoted by ζ̆k(x), are the output of the penalized-EM
algorithm, which depend on δ. The similarity measure is therefore a real function of c̆k

and ζ̆k, which is high if the clusters are similar to the classes, and close to zero otherwise.

Similarity measure for the comparison of two clusterings

Here we consider a similarity related to the F -measure [van Rijsbergen, 1979], which is
well-known in the Data mining literature, and has proven to be successful to evaluate
the performance of automated cell population identification algorithms [Rosenberg and
Hirschberg, 2007] [Aghaeepour et al., 2011]. Our choice of similarity measure is motivated
by the goal to align different flow cytometry samples.

Let C = {c̆1, · · · , c̆K1} be the set of human expert labeled classes, and Z = {ζ̆1, · · · , ζ̆K2}
the set of clusters assigned by an algorithm, where K1 and K2 are total number of class-
es/clusters in C and Z respectively, and they are not forced to be the same.

Let us consider two conditional probabilities: P (i, j) = p(Z = j|C = i) and R(i, j) =
p(C = i|Z = j), where C denotes the variable indicating the class that each observation
belongs to. In the data mining literature, these probabilities are referred as "Precision" and
"Recall", respectively. Their estimations are straightforward. By denoting ni; j = |c̆i

⋂
z̆j|

the number of co-occurrences in class c̆i and cluster z̆j, and ni = |c̆i|, nj = |z̆j|, then

P̂ (i, j) = ni; j

nj

, R̂(i, j) = ni; j

ni

are the estimations of these probabilities. Figure 4.2 shows some examples of poor or
imperfect similarities.

The F -measure between class c̆i and cluster ζ̆j is defined as the harmonic mean of precision
and recall:

f(i, j) = 2 · P̂ (i, j) · R̂(i, j)
P̂ (i, j) + R̂(i, j)

, (4.7)

Intuitively, high precision means that cluster ζ̆j includes more points in class c̆i than those
are not, while high recall means that cluster ζ̆j includes most of the points in class c̆i.
Therefore, f(i, j) ∈ [0, 1], high value of f(i, j) means a high similarity between class c̆i

and cluster ζ̆j.
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Figure 4.2: Comparison of a cluster with a class. The class c̆, colored in green, is considered
as a "ground truth", and the cluster ζ̆, colored in red, is the output of an algorithm.
Scenario 1-3 show examples of pool similarities between class c̆ and cluster ζ̆.

Then the F -measure between two clusterings C and Z is defined as a weighted sum of
f(i, j) between class c̆i and its best matching cluster ζ̆j for all classes:

F (C, Z) = ∑
c̆i∈C

ni

N
max
ζ̆j∈Z

f(i, j). (4.8)

One can easily prove that F ∈ [0, 1]. High value of F (C, Z) means that all classes in C have
a highly matching clusters in C, taking into account of different contributions of class sizes.

For our application, we modify the F measure as follows. We assume that clusters Z are
ordered corresponding to classes in C, which is to say K1 = K2, and i = j implies class
c̆i and cluster z̆j correspond. Now, to deal with the alignment task, we define here the
Fp-measure, which looks for the similarity of corresponding cluster instead of the best
matching cluster for each class c̆i:

Fp(C, Z) = ∑
c̆i∈C

ni

N
f(i, i). (4.9)

Similarly, Fp ∈ [0, 1], and we have always Fp(C, Z) ≤ F (C, Z). High value of Fp(C, Z)
means that each class c̆i in C have a high similarity with clusters ζ̆i in Z, taking into
account of different contributions of class sizes.

In some applications, there may exist some rare but important populations. To address
to this situation and to reveal the contribution of rare classes, one could consider an
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unweighted F -measure by assuming that all classes contribute equally to the quality of
clustering, irrespective of class size.

Estimation of the tuning parameter

Given δ, the penalized-EM algorithm described in Section 4.2.3 provides a clustering set
Z(d)[δ] for each experiment d, thus permit a prediction of classes. If the ground truth
C(d) is available, the estimation of prediction error could be achieved through F -measure
or Fp-measure as proposed in Section 4.2.4. Therefore, we have to estimate the tuning
parameter δ.

The estimation procedure that we propose here bears some resemblance with conventional
cross-validation. Consider a small subset of experiments D = {x(1), · · · , x(S)}, D ⊂ X ,
where the ground truths {C(1), · · · , C(S)} are available. Define the leave-one-out subsets
D−s = D/x(s), s = 1, · · · , S. For a given s, D−s is seen as a training data set and x(s) as
a test data set, which is used to estimate the prediction error. In the conventional cross-
validation procedure, all samples in D−s constitute a unique sample. For every δ, this big
sample is used to estimate a unique φ̂(δ), which is therefore common to all the samples
in D−s. This estimate allows to define a partitioning of the space Rm with respect to the
decision rule (4.1). In particular, this partitioning is tested on x(s) and the prediction
error ERR(s, φ̂(δ)) is computed. Finally, the mean error ERR(φ̂(δ)) is used to estimated δ.

In our context, the samples in D−s cannot be gathered into a unique sample, since φ

depends on each sample. In other words, we cannot estimate a unique partitioning of Rm

for every δ. In fact, due to the availability of C(s), our clustering task on D is a super-
vised problem, therefore, the prediction error can be revised. We propose the following
learning/test procedure.

The clustering sets {Z(1), · · · , Z(S)} are obtained independently on each data set x(s)

for every δ ∈ Δ, where Δ is a given finite set of values of δ. We write Z(s)[δ] these
clusters. Instead to estimate the best partitioning of Rm for every δ, we directly estimate
δ on D−s. The estimation of δ from the training set is given by maximization of the
Fp-measure mean:

δ̂ D−s = argmax
δ∈Δ

1
S − 1

∑
r∈{1,··· ,S}/s

Fp(C(r), Z(r)[δ]),

which is the one in Δ performing the best mean similarity on the training set. The loss
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function quantifying the mismatching on the test set x(s) is defined as

loss(s, δ) = F (C(s), Z(s) [δ̂ D−s ]) − Fp(C(s), Z(s)[δ]),

where the first term is the best similarity on the test set x(s) achieved with δ̂ D−s , and the
second term is the similarity with any δ, taking count of mismatching penalization. Then
the estimate of tuning parameter δ is given by minimization of mean error:

δ̂ = argmin
δ∈Δ

1
S

S∑
s=1
loss(s, δ). (4.10)

4.3 Application on flow cytometry analysis

4.3.1 Background

Concrete to the MI project, a 8-color "T cell" panel was designed (m=8) to identify T
cell subpopulations. For ones who are not familiar with flow cytometry, we would first
like to recall what is a "panel". A panel is a combination of m antibodies selected to
targeting certain cell types of interest, where m depends on the flow cytometer that are
used in the experiment (for more details, see page 6 Section 1.2.3). Here in this panel,
we combine CD3, CD4, CD8β, CD8α, CD27, CD45RA, CCR7 and HLA-DR to classify
T cell subpopulations (Figure 4.3A). The CD3 marker is utilized to identify all T cells
(CD3+). Within CD3+, two big groups of cells CD4+ T cells and CD8β+ T cells can be
identified based on the expression of CD4 and CD8β. For each of the two groups, naive
(Tnaive), central memory (TCM), effector memory (TEM) and EMRA+ (TEMRA) T cells
subsets can be characterized, utilizing the relative expression levels of CD27, CD45RA and
CCR7 [Hasan et al., 2015]. By including CD8α, we were able to distinguish CD4+CD8α+

T cells. The early thymocytes that express neither CD4 nor CD8 are classed as double-
negative (CD4−CD8β−) cells, and the next maturational stage where cells express both
CD4 and CD8 are classed as double-positive (CD4−CD8β−) cells. The surface expression
of HLA-DR is utilized to quantify the activation status of T cells. All the eight markers
and related cell types are listed in Figure 4.3A and Figure 4.3B, respectively.

The related cell types in this panel can be represented by a dependency tree as shown in
Figure 4.3C. Note that not every marker defines directly a cell type, for example, CCR7
is highly correlated with CD27, but in this study we use CD27 for identification of naive
and central memory cells, and CCR7 only for control; and HLA-DR is a marker indicating
the activation level. Thus, these two markers are not present in Figure 4.3B and Figure
4.3C.
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The object of automatic analysis is to identify all these cell types. As we model this
problem as a clustering problem, we only need to identify the cell types that are repre-
sented as leaves of the tree, then the cell types on an upper level of the hierarchy can
be obtained directly. Therefore, we consider eleven cell types of interest (Figure 4.3B),
which correspond eleven leaves in Figure 4.3C.

Note that C = 11 is the number of cell types of interest, but not the number of clusters
K. For the same reasons discussed in Chapter 2, and similarly with FlowGM and many
other mixture model based automatic flow cytometry analysis methods, we allow multiple
gaussian clusters to describe one cell type. Therefore, K is larger than eleven, and to be
determined later. Then the automatic cell population identification consists of partition-
ing cells presented in a blood sample into K clusters based on the measurements of the
eight markers, and assigning one of the eleven cell types to each cluster.

The differentiation of naive T cells into effector and memory subsets represents one of
the most fundamental facets of T cell mediated immunity [Appay et al., 2008], but the
detailed characterization of the phenotype and function of distinct T cell sub-populations
in human remains lacking of global consensus [Appay et al., 2008]. There are two rea-
sons for this. First, the T cell population can be divided into distinct subsets based on
their expression of diverse cell surface receptors, including the receptors involved in ac-
tivation (e.g., CD45RA), costimulation(e.g., CD27) and some chemokine receptors (e.g.
CCR7). Second, the expression levels of these receptors often cannot be defined simply as
"positive/negative" or "high/low", but in a continuous fashion. Therefore, no clear bound-
aries exist between distinct subsets, and the existence of overlapping groups and regions
of transition between cell types make the manual analysis, even for individual samples,
difficult (Figure 4.4). When considering large cohorts, the phenotypes of distinct T cell
sub-populations vary a lot in terms of expression levels of diverse receptors and population
sizes with regard to their age, gender, infection history, activation of antigenic stimula-
tion and many other aspects, all of which represent also major challenges for automated
approaches.

4.3.2 Results

As flow cytometry analysis is intricate and difficult to understand without some basic
knowledge of immune cell populations, we generate here a simulated data set, which is
a simplification of the real data. In this section, we will first discuss the results on the
simulation and then a subset of MI project T cell panel data.
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Fluorochrome Marker

X1 eF450 CD3

X2 APC-H7 CD4

X3 PE-Cy7 CD8β

X4 PE CD8α

X5 PerCP-Ef710 CD27

X6 FITC CD45RA

X7 APC CCR7

X8 V500 HLA-DR

Index Cell type Immunophenotype

CD4+ T cells CD3+CD4

c=1 CD4+ naïve CD3+CD4+CD27+CD45RA+

c=2 CD4+ CM CD3+CD4+CD27+CD45RA-

c=3 CD4+ EM CD3+CD4+CD27-CD45RA-

c=4 CD4+ EMRA CD3+CD4+CD27-CD45RA+

CD8β+ T cells CD3+CD8β+

c=5 CD8β+ naive CD3+CD8β+CD27+CD45RA+

c=6 CD8β+ CM CD3+CD8β+CD27+CD45RA-

c=7 CD8β+ EM CD3+CD8β+CD27-CD45RA-

c=8 CD8β+ EMRA CD3+CD8β+CD27-CD45RA+

c=9 CD4+CD8β+ CD3+CD4+CD8β+

c=10 CD4+CD8α+ CD3+CD4+CD8α+

c=11 CD4-CD8β- CD3+CD4-CD8β-

A B

C CD3+

CD4+
CD8β-

CD4+
CD8β+

CD4-
CD8β+

CD4-
CD8β-

CD4+
CD8α+

CD27+
CD45RA+

c=1
Naïve

CD27+
CD45RA-

c=2
CM

CD27-
CD45RA-

c=3
EM

CD27-
CD45RA+

c=4
EMRA

CD27+
CD45RA+

c=5
Naïve

CD27+
CD45RA-

c=6
CM

CD27-
CD45RA-

c=7
EM

CD27-
CD45RA+

c=8
EMRA

c=10

c=9 c=11

Figure 4.3: Markers and cell types of interest in the T cell panel. (A) shows the eight
fluorochromes and markers. (B) shows the eleven target cell types and their immunophe-
notypes. (C) shows a partial panel tree with eleven cell types on the leaves for the MI T
cell panel.

Simulated data

The dimension of the simulated data is set to four, with the markers CD4, CD8β, CD27
and CD45RA, which makes a simplified T cell panel (Figure 4.5). We use C = 8 la-
tent classes, presenting CD4+ and CD8β+ naive, central memory, effector memory and
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EMRA+ populations. In other words, we select X2, X3, X5 and X6 from the real MI T
cell panel, focus on the 8 first cell types, c = 1, · · · , 8, and we omit the rest. Two flow
cytometry samples, one reference sample and another special sample (referred as "donor
1") were simulated.

A synthetic example is shown in Figure 4.6. The eight cell populations are presented
in eight colors with the same color code as in Figure 4.5. For both two samples, two
groups of cells could be separated in CD4/CD8 projection, each group could be further
separated into four sub-groups using CD27/CD45RA, which are CD27+CD45RA+ naive
cells, CD27+CD45R− central memory cells, CD27−CD45RA− effector memory cells and
CD27−CD45RA+ effector memory cells expressing CD45RA, which makes in total 8 cell
populations. When we compare donor 1 with the reference sample, the CD4+ populations
express higher CD45RA, and the CD8+ populations have a lower expression level on both
CD27 and CD45RA, but as the subsets are identified with the relative expression levels,
they could stilled be well separated visually. But when applying FlowGM [Chen et al.,
2015], the standard gaussian mixture model on donor 1 data with the reference settings,
a proportion of CD4+ T naive cells are misclassified as CD8β+ T naive cells, and within
CD8β+ population, the naive group is wrongly labeled as central memory, central memory
is wrongly labeled as effector memory, and effector memory cells are included in EMRA+.

By introducing a prior for cluster means, more clearly, by indicating a prior belief of the
location and restricting the spread direction and size of each cluster centroid, FlowGMP
is applied to donor 1 data. We allow the reference clusters spread larger on CD27 and
CD45RA dimensions than on CD4 and CD8β, in order to avoid the misclassification of
CD4+ and CD8β+ populations. For the identification of sub-populations, the prior belief
of the location help the algorithm to capture correspondent population.

The outputs of FlowGMP on simulated donor 1 data after the first, fifth and ninth iter-
ation are shown in Figure 4.7. Points are colored according to their posterior likelihood,
the ellipsoid reflects the cluster shape, in a size of three times the standard deviation,
covering over 90% of the total probability mass. We could see that the algorithm is very
efficient, all the eight populations are correctly identified with only one single misclassifi-
cation. It is even invisible from the figure, which is a CD8β+ central memory cell (light
red) labels as a CD8β+ EMRA+ cell (deep red), and is marked in the right bottom of the
figure.
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LabEX MI T cell panel data

Overview As shown in Figure 4.3, the eight-color cytometry panel targeting distinct T
cell sub-populations across 100 healthy individuals from different age groups and genders
was designed to characterize CD4+ and CD8β+ Tnaive, TCM, TEM and TEMRA subsets, as
well as CD4+CD8β+, CD4+CD8α+, and CD4−CD8β− T cells.

The overall operation of the FlowGMP workflow is shown in Figure 4.8. The first phase
is the same with FlowGM, where method parameters are calibrated on selected reference
samples. In a second phase, the distributions of the centers of C cell types are esitmated
on selected training samples, and then considered as the prior distribution of all corre-
sponding clusters. In a third phase, all other cohort samples are processed on the basis of
the calibrated parameters. Similar with FlowGM, this workflow as designed to minimize
the manual effort in the cohort treatment phase.

Reference clustering First, we utilized the FCS data from the reference donor to
build a reference clustering. The same pre-processing steps as described earlier for
FlowGM [Chen et al., 2015] were taken. Here we repeat briefly these steps, which are
identical for the reference donor and in the following for all other donors. After the elim-
ination of doublets based on Forward Scatter (FSC) and Side Scatter (SSC), pre-filtering
of the T cell panel was based on a two-component, one-dimensional GMM that utilized
the measurement of the CD3 marker. Thresholds were automatically set at the 95th
percentiles of CD3− populations. Next, we estimated the number of clusters K with the
BIC. The optimal fit is K = 32, each of the 32 cluster mean, covariance matrix and
proportion were determined. We then manually assigned a cell type to each cluster with
the help of experts. Of the 32 clusters, 24 were of interest and thus mapped to eleven
cell populations, called meta-clusters. Other 8 clusters were mapped to a meta-cluster 0
(dump). Explictly, k = 1, · · · , 32 are mapped to mk = 0, 1, · · · , 11 (mk for meta-cluster
index), which correspond to dump and eleven cell types. The 24 cluster centroids are
represented as a heatmap, which is shown in Figure 4.9, with their manually assigned cell
type indicated on the right.

Choice of the prior The idea for the choice of the prior is to use the empirical dis-
tribution of each cell population of interest from a small subset of samples as a prior
distribution of the corresponding clusters. We randomly selected a subset of S samples
(S = 10) from LabEX MI T cell panel data, where FlowGM failed, to set the prior dis-
tribution for applying our proposed method FlowGMP. There are around a third to half
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of those cohort samples, and FlowGM failed because the cluster positions, shapes or pro-
portions are different with the reference. Therefore, in order to quantify the variation, we
selected the "outliers" rather than the samples where FlowGM worked. Manual analysis
was carefully performed by an expert, C = 11 cell populations were manually identified
and visually confirmed in every sample of the subset, which is then considered as a "ground
truth". The coordinates of all gates were recorded, and cell labels and important statis-
tics, including population counts and mean fluorescent intensities (MFIs) were obtained.
The cells that were not included in any class by manual gating, for example, outliers and
biologically irrelevant populations, were labeled as c = 0, while other eleven interesting
cell populations were labeled from c = 1 to c = 11, presenting eleven cell types as shown
in Figure 4.3B. The manually gated CD4+ and CD8β+ sub-populations for each of the ten
sample from the training set are shown in Figure 4.10, where each ellipsis corresponds to
one of the ten samples, and the same colored ones represent the same cell type. With the
manual identification for the ten selected samples, we obtain the empirical distribution of
each cell population of interest.

Note that the manual gating yields the estimated distribution of the C class centers, but
not that of the K cluster centers. The merging of K clusters into eleven meta-clusters
allows one to one correspondence between meta-clusters and cell types.

For each cell population obtained from manual analysis, the mean and covariance matrix
θ(d)

c = {μ(d)
c , V (d)

c }, c = {1, · · · , 11} were computed for each sample d, the empirical dis-
tribution of μc was used as a prior distribution for each mapped cluster; all clusters that
represented the same population share the same prior. For example, in Figure 4.9, the
last two lines (in green) correspond to two of the 32 clusters, which are manually mapped
to CD4+ naive cells, then the empirical distribution of CD4+ naive cell centers from the
ten samples are used as the prior distribution for both of these two clusters. Similarly,
the seven clusters just above (in orange) that are mapped to CD4+ CM cells share the
same prior. Note that the initial position, shape and size of each cluster are different, but
as the clusters corresponding to a same cell type have the same prior, which means that
they are iteratively built around τc, this constraint allows the cell type assignment and
thus the alignment.

For other unmapped clusters, which are not shown in Figure 4.9, as we don’t know which
cell type they represent, or the cell types are not of our interest (dump), these pop-
ulations are impossible to access, let alone their empirical distributions. Therefore the
prior parameters are set to τk = μ

(0)
k ,Γk = V

(0)
k /100, which come from the reference donor.
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Estimation of tuning parameter using cross-validation The role of the tuning
parameter δ is to balance likelihood and penalization terms, where a small value of δ

indicates strong penalization. The Fp-measure between FlowGMP resulted meta-clusters
and manual gating resulted classes for each donor under different values of δ are shown
in Figure 4.11, and the estimate δ̂, determined by minimization of mean error (4.10), is
shown in Figure 4.12. For Δ = {10−3, 10−2, · · · , 105}, δ̂ = 100 is obtained.

Comparison of FlowGMP with FlowGM and manual gating analysis To eval-
uate the improvement of FlowGMP, we compare directly FlowGM and FlowGMP against
manual analysis. The Fp-measures calculated for each donor in the training set were
shown in Table 4.1. The values indicated that, overall, FlowGMP performed better than
FlowGM.

Donor ID FlowGM, Fp FlowGMP, Fp

Donor 23 0.7735 0.8768
Donor 34 0.8344 0.8746
Donor 44 0.8828 0.8919
Donor 45 0.8625 0.8858
Donor 428 0.7978 0.8307
Donor 429 0.7708 0.8449
Donor 482 0.8262 0.8296
Donor 629 0.8045 0.8404
Donor 665 0.8250 0.8165
Donor D 0.8732 0.8795

Table 4.1: Fp-measure for FlowGM and FlowGMP approaches. FlowGMP results a high-
quality clustering (improved Fp-measure compared to FlowGM).

The counts resulting from FlowGM and FlowGMP analysis were compared with manual
gating analysis. Figure 4.13 shows that, in addition to the Fp-measure, the overall agree-
ment of population counts is also improved for all cell types. The average correlation
increases from 0.728 to 0.863, especially for CD8β+ memory cells, which were considered
as the most big challenge of this data set.

Finally, we applied FlowGMP to 115 donors from MI cohort, using estimated tuning pa-
rameter from the training set. Absolute cell counts were compared with manual analysis.
Again, the results were highly concordant with average correlation r = 0.940, compared
to FlowGM where the average correlation was r = 0.783.
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In terms of running time, FlowGMP is more efficient. Briefly, the computation required
8 minutes for 115 cohort donors on a standard laptop PC, while FlowGM required 24
minutes on the same data set and the same machine.

4.4 Conclusion

The FlowGMP approach was developed out of the original FlowGM approach to address
the need for robust and high-quality analysis for the MI T cell panel study. Our evaluation
study on our training data set has shown that FlowGMP has produced better identification
of different cell populations. The comprehensive evaluation study on the cohort data
set has shown that FlowGMP has produced a user-validated results. Using a prior on
the cluster position constrains the local optimization in the EM algorithm, reduced the
mislabeling of clusters, and made the automated analysis more efficient.
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Figure 4.4: Manual gating strategy for the MI T cell panel. CD3+ cells were identi-
fied. Subsequent phenotypic analysis identified CD4+ and CD8β+ T cell subsets based
on CD4 and CD8β expression, respectively. Tnaive (CD27+CD45RA+ cells, and red
shaded histograms), TCM (CD27+CD45RA− cells, and green shaded histograms), TEM

(CD27−CD45RA− cells, and blue shaded histograms) and TEMRA (CD27−CD45RA+ cells,
and violet shaded histograms) were based on surface expression of CD27 and CD45RA.
On each of the eight respective populations, CCR7 and HLA-DR expression was analyzed
and plotted as a histogram. The CD4+CD8β− cells expressing CD8α were identified (gray
gate).
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Figure 4.5: A partial panel tree with cell types on the leaves for the simulated data.
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Figure 4.6: Simulated example showing the difficulties of cell population identification
using the classical approach. Columns 1 and 2 show all events in CD4/CD8β and
CD27/CD45RA projections, column 2 is split into column 3 and column 4 according to
CD4+ and CD8β+, respectively, as it is indicated at the top of the figure. (A) shows the
reference sample. Two groups of cells could be separated in CD4/CD8 projection, depicted
as group "blue" and group "red-green". Each group could be further separated into four
subsets using CD27/CD45RA, which are CD27+CD45RA+ naive cells, CD27+CD45RA−

central memory cells, CD27−CD45RA− effector memory cells and CD27−CD45RA+ effec-
tor memory cells expressing RA. (B) shows an independent simulated sample, the colors
indicate the "ground truth". (C) shows the simulated data and reference cluster centroids.
(D) shows the use of reference clustering to classify events in the simulated sample. Re-
sults are described in the text. FlowGM clustered some CD4+ naive cells as CD8+ naive
cells, and CD8+ naive as CM, CM as EM, and EM cells are included in EMRA+.
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All events CD4+ CD8β+

One misclassification

Figure 4.7: The results of FlowGMP on simulated donor 1 data after the first, fifth and
ninth iteration. The first row (Iteration 0) corresponds to the first row in Figure 4.6.
Points are colored according to their posterior likelihood, the ellipsoid reflects cluster
shape, in a size of three times of the standard deviation, covering over 90% of the total
probability mass.
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Define pre-processing parameters

Perform pre-filtering

Determine the number of clusters K

Establish the reference clustering

Label K reference clusters with C cell types

Raw cytometry data

Reference 
clustering

Perform manual gating

Estimate distribution of C class centers

Set up the same prior for all the clusters 
corresponding to the same cell type

Prior 
estimation

from
training

set

Perform pre-filtering

Cluster using estimated prior

Merge all the clusters corresponding to the 
same cell type

Cohort 
treatment

Cell counts, MFIs, etc.

Manual Automated

Figure 4.8: Overview of the FlowGMP workflow. Three phases can be distinguished. The
manual steps are colored in light red, while the automated steps are in white.
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Figure 4.9: User-based aggregation of clusters into meta-clusters for immune cell type
characterization with cluster centroid heat map (normalized coordinates). Each line cor-
responds to one cluster, and the manually assigned cell types are indicated on the right.

Figure 4.10: Manual gated populations for 10 samples of training set. Cell populations
are colored the same as for the simulation. For every population, each ellipsis correspond
to one of the 10 samples.
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Figure 4.11: FlowGMP was applied on each sample of our training set with different
values of δ. The resulting clustering assignment was compared with manual labeling.
The relative Fp-measure is shown.

Figure 4.12: Cross-validation error for different δ. The estimate was obtained by mini-
mization of cross-validation error, then the analysis was applied to cohort samples using
δ̂ = 100.
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CD4+ naive CD4+ CM CD4+ EM CD4+ EMRA
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Figure 4.13: Comparison of manually counting with FlowGM and FlowGMP analysis on
ten donors. In this T cell panel, we have identified eleven T cell subpopulations, for each
of them, the X-axis is the counts from FlowJo, and the Y-axis is the counts from FlowGM
(red) or FlowGMP (blue). The counts obtained by FlowGMP (average correlation 0.863)
agrees better than FlowGM (average correlation 0.728) with manual gated data on these
ten donors.
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Figure 4.14: Comparison of manually counting with FlowGM and FlowGMP analysis on
D = 115 cohort donors. In this T cell panel, we have identified 11 T cell subpopulations,
for each of them, the X-axis is the counts from FlowJo, and the Y-axis is the counts
from FlowGM (red) or FlowGMP (blue). The counts obtained by FlowGMP (average
correlation 0.923) agrees better than FlowGM (average correlation 0.783) with FlowJo
counts on 115 cohort donor.
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Appendix

We know that, for standard EM algorithm, L(φ(s+1)) ≥ L(φ(s)), where L(φ) = pφ(x)
is the likelihood, and s is the index of EM iteration. For our case, given Lp(φ) =∏N

i=1 (pφ (xi) p(φ)) = pφ(x)p(φ)N , we would like to demonstrate that Lp(φ(s+1)) ≥ Lp(φ(s))
holds true as well, which means that the likelihood increases at each iteration of the pro-
posed EM algorithm.

Proof By noting φ̂ = φ(s+1), φ′ = φ(s), p̂ = p(φ̂)n, p′ = p(φ′)n and using Jensen’s
inequality, i.e. f (E(z)) ≥ E (f(z)) if f is a concave function, we thus obtain

log Lp(φ(s+1))
Lp(φ(s)) = log

pφ̂(x)p̂
pφ′(x)p′ = log

[
1

pφ′(x)p′
∑

z

pφ̂(z, x)p̂
]

= log
[∑

z

pφ′(z|x)
pφ′(z, x)p′ pφ̂(z, x)p̂

]

= logE
[

pφ̂(Z, x)p̂
pφ′(Z, x)p′

∣∣∣∣∣φ′
]

≥E

[
log

pφ̂(Z, x)p̂
pφ′(Z, x)p′

∣∣∣∣∣φ′
]

=E
[
log pφ̂(Z, x)p̂|φ′] − E [log pφ′(Z, x)p′|φ′]

=Qp(φ̂, φ′)− Qp(φ′, φ′)

As we maximize Qp in each step with φ̂ = argmaxφ̂ Qp(φ, φ′), then log Lp(φ(s+1))
Lp(φ(s)) ≥ 0,

Lp(φ(s+1)) ≥ Lp(φ(s)).
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Chapter 5

Conclusions and future work

5.1 Discussion

This thesis presents two novel methods for flow cytometry data analysis across a large
number of samples and large number of cell types. In Chapter 2, we described a workflow,
named FlowGM, for automated cell population identification. We were able to reliably
quantify 24 cell types across 115 MI samples and 4 panels. We showed intuitively and
simply that our performance is on par with, or exceeding the quality of manual gating on
a subset of 115 donors, and concluded that it is amenable to whole cohort studies.

In Chapter 3, I applied this method to all cohort data, and demonstrated the global
agreement of the results with manual analysis in terms of cell counts. Correlating analy-
sis results with donor age allowed other interesting conclusions. We discussed the effect
of age on circulating immune cell populations, highlighting more particular discoveries of
aging effects on newly identified CD14loCD16hi monocyte subpopulation and HLA-DRhi

activated cDC1 population using our FlowGM method. Correlations of other factors with
gender, CMV infection, smoking history and metabolism score on all identified cell pop-
ulations are also analyzed in exactly the same manner. We performed as well as "Visit
2" control analysis, cross-panel analysis and outlier analysis. Our results suggest that the
systematic, high-quality analysis of cell counts, which our methodology enables, can be
expected to create numerous opportunities for the discovery of new correlations in bio-
logical data.

In chapter 4, I dealt with a specific situation of cell population identification in flow cytom-
etry analysis, where the presence of technical and biological variation made the automatic
alignment of populations challenging. I developed a novel method FlowGMP, which was
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able to identify cell populations across a large number of samples despite the presence
of variability. It was demonstrated that FlowGMP reduced the mislabeling of clusters,
and improved the efficiency of automated analysis on a training set of MI samples. I
then applied this method to 115 cohort donors, and showed the improved agreement with
manual analysis.

5.2 Future work

This thesis was mostly focused on exploratory analysis of FCM data in the context of the
LabEX MI project. However, the pipeline presented here can be modified for other appli-
cations. During the course of my thesis, I applied this pipeline to other datasets or other
research projects, for example, for studying CMV infections, for studying SpA patients
before and after treatment, for identifying rare ILC populations etc. My collaboration
experience with biologists and immunologists made me believe that it is indispensable to
build a user-friendly interface of our proposed FCM analysis pipeline, and it is essential to
keep working closely with the new technologies, to access complex datasets and problems,
which permits continuously technology/data-driven improvement of computational tools.

Our experience of analyzing huge amounts of FCM data in various real biological problems
made us believe that it will be interesting to be able to simultaneously characterize the
dependencies between markers for a given population and identify the population with
the consideration of different marker dependencies. This type of study could potentially
provide some idea for integrating FCS data from different panels and help in panel design
for better immunophenotyping.
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