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RESUMÉ ÉTENDU DU PROJET DE THÈSE 

 

De nombreux pathogènes sont neurotropes, posant un problème aigu de santé 

publique; on estime ainsi que près de la moitié des virus émergents peuvent causer 

des encéphalites ou d’autres atteintes neurologiques sévères. La compréhension 

des interactions qui sous-tendent le neurotropisme de ces pathogènes est d’une 

importance considérable, afin de guider les stratégies thérapeutiques et 

préventives pour limiter les conséquences de ces infections.  

Le genre Alphavirus compte plusieurs virus neuro-invasifs et inclut par exemple 

le virus de l’encéphalite équine occidentale (WEEV), causant une mortalité 

d’environ 10%, et le virus du Chikungunya (CHIKV), qui s’est récemment 

propagé aux Caraïbes et en Polynésie, et qui cause de graves encéphalites chez les 

nouveaux-nés.  

Le laboratoire où j’ai effectué une partie de ma thèse a décrit, par imagerie de 

l’organisme entier, la dissémination du CHIKV dans le modèle danio zébré 

(Danio rerio), pour mieux caractériser sa pathogènese ainsi que les reponses 

immunitaires activés chez le danio. Le danio zébré est un modèle bien établi pour 

étudier la biologie du développement des vertébrés. Ses larves petites, 

transparentes et faciles à anesthésier, sont favorables à des approches de 

microscopie non invasive, qui permettent de réaliser des observations à l’échelle 

d’un individu entier à des niveaux de résolution cellulaire et subcellulaire. De 

surcroît, les outils génétiques disponibles chez cette espèce ont permis le 

développement de nombreuses lignées transgéniques exprimant des protéines 

fluorescentes spécifiquement dans certaines cellules (e.g. neurones, cellules 

immunitaires). De telles lignées constituent des outils de choix pour évaluer la 

dynamique de la réponse immunitaire et la mort cellulaire neuronale au cours de 

l’infection virale. Ces atouts font du danio zébré un excellent modèle pour étudier 

les infections virales in vivo. 

Au cours de mon projet, j’ai etudié l’entrée et la colonisation du système nerveux 

central (SNC) par un Alphavirus de la même famille de CHIKV, le virus Sindbis 

(SINV) dans le modèle danio zébré. SINV est transmis chez l’homme par piqûre 
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de moustique et provoque une maladie avec des symptômes tels que fièvre, 

éruption cutanée, douleurs articulaires et musculaires. De plus, le virus induit une 

forte réponse de l’hôte, sous forme de production d’interféron de type I. Malgré 

toutes les études conduites jusqu'à présent, ni le mécanisme d'entrée ni la réponse 

induite par l’infection dans le cerveau n’ont pu être visualisés en temps réel à 

l’échelle d’un organisme entier. Mon projet présentait donc plusieurs axes: 1) 

développer un modèle d’infection du virus Sindbis chez le danio zébré, 2) 

caractériser l’invasion du SNC par le virus par des techniques d’imagerie à haute 

résolution, 3) définir la voie d’entrée du virus dans le SNC, 4) évaluer la 

dynamique de la réponse immunitaire innée par l’étude de la réponse IFN et, 

enfin, 5) établir les mécanismes de persistance du virus dans les cellules 

neuronales. 

Les études du virus SINV réalisées dans les modèles murins reposent 

essentiellement sur des injections par voie intracrâniale (IC), ce qui ne permet pas 

d’identifier la voie d’entrée dans le cerveau. Par conséquent, j’ai réalisé des 

injections par voie intraveineuse (IV) afin de pouvoir observer le passage de la 

périphérie au cerveau. Le suivi de la propagation du virus a été rendu possible par 

l’utilisation d’un ARN viral recombinant dans lequel est intégré la séquence de la 

protéine fluorescente verte ‘GFP’ exprimée dans les cellules cibles de l’infection 

lors de la réplication virale. L’utilisation de cette construction m’a permis de 

caractériser la progression de SINV chez le danio zébré et d’identifier les 

organes/tissus cibles que sont le vitellus, le foie, le cœur et enfin, le cerveau. De 

plus, j’ai pu montrer par des techniques de biologie moléculaire que SINV 

provoque une réponse interféron très forte dans les larves infectées, tout comme 

dans les modèles d’infection chez les mammifères. L’importance de cette réponse 

a été corroborée par la mortalité plus élevée que l’on observe dans les larves où la 

réponse interféron a été inactivée.    

Les données rassemblées jusqu'à présent m’ont aussi permis d’identifier le 

mécanisme par lequel SINV se propage vers le cerveau. J’ai pu constater que 

SINV ne détruit ni n’infecte la barrière hémato-encéphalique, après infection d’un 

lignée transgénique permettant l’étude du système vasculaire; j’ai aussi montré 

qu’il n’exploite pas l’entrée naturelle dans le cerveau des leucocytes circulant 

comme les macrophages (tactique du ‘Cheval de Troie’), puisque la progression 
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de l’infection est inchangée lors de la déplétion sélective des macrophages. La 

primo-infection des neurones périphériques notamment au niveau des ganglions 

trigéminés semble indiquer que le virus se propage par un transport axonal du 

system nerveux périphérique vers le SNC.  

Dans le cadre de la réponse immunitaire au niveau cellulaire, j’ai pu observer le 

rôle joué par les leucocytes, en particulier les neutrophiles, comme cellules 

productrices d’interféron: l’infection du cerveau, à partir d’une certaine taille du 

foyer, détermine le recrutement de ce type cellulaire. Cette réponse dans le 

système nerveux est particulièrement intéressante, si l’on considère que, chez le 

danio zébré tout comme chez les mammifères, les neutrophiles sont normalement 

exclus du cerveau. 

Enfin, le danio zébré est devenu un modèle de choix courant pour réaliser des 

criblages pharmacologiques, et ces travaux permettent d'identifier de nouvelles 

molécules antibactériennes, antivirales ou anti-inflammatoires. Mon modèle est 

donc maintenant exploité pour évaluer les propriétés antivirales d’une drogue 

spécifique sélectionnée par des approches in vitro, en collaboration avec l’Unité 

« Populations Virales et Pathogenèse » à l’Institut Pasteur.  

Compte tenu de la conservation entre les types cellulaires et les gènes de l’homme 

et du danio zébré, j’espère que ce travaille de thèse permettra d’identifier certains 

mécanismes généraux impliqués dans le neurotropisme, ce qui pourrait à plus long 

terme servir a la mise en place d’un prévention des encéphalites virales. 
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SUMMARY 

 

The zebrafish (Danio rerio) is an important model organism, particularly for 

studies of development, cancer, neuroscience and more recently host-pathogen 

interactions. As opposed to other vertebrate model organisms, its optical clarity 

and ease of genetic manipulations allow to visualize highly dynamic cellular 

processes in vivo at the whole-organism scale. These assets make the zebrafish a 

perfect model for the study of viral infections in vivo, such as those caused by 

neurotropic viruses. 

Viral infections that involve the Central Nervous System (CNS) are particularly 

serious, especially due to the limited number of effective treatments or 

prophylactic drugs. Moreover, the CNS is a particularly vulnerable region. 

Encephalitis and meningitis are among the worst complications that can arise 

from a viral infection. This can be due to strong inflammatory responses, which 

are especially deleterious in the CNS, and must therefore be tightly and 

specifically regulated.  

The aim of this project has been to gain insights in some of the interactions that 

determine encephalitis, by combining the optical properties offered by the 

zebrafish model with the neurotropic features of the widely-known Sindbis virus 

(SINV).   

SINV is a single-stranded positive-polarity RNA virus belonging to the 

Togaviridae family, genus Alphavirus. Together with other medically important 

viruses (such as Dengue and Nipah virus), it is an arbovirus, thus transmitted to 

humans by arthropods – mostly represented by mosquito vectors. SINV has been 

extensively used in the laboratory, especially in murine models, with some highly 

encephalitogenic strains being developed for that host. Despite extensive studies 

in this model, the exact mechanism of entry in the CNS has never been fully 

elucidated. This is due mainly to difficulties in assessing the distribution of the 

virus and following the progression of the infection in real time in live animals. 

This Thesis project has consisted therefore in: 1) the development of a SINV 

infection model in zebrafish larvae, 2) the characterization of SINV neuroinvasion 
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upon its inoculation in the bloodstream, thanks to the use of high-resolution 

microscopy, 3) the study of SINV mechanism of entry in the CNS, 4) the 

characterization of the innate immune response, both at the whole organism and 

organ-specific level, and 5) the characterization of SINV persistence mechanism 

in infected neuronal cells.  

Thanks to the use of a SINV recombinant strain, engineered to express the green 

fluorescent protein “GFP” in infected cells upon viral replication, we have been 

able to follow the onset and the progression of the infection. We have identified 

several organs targeted by the virus, including the yolk, the heart, the liver, and 

eventually, the brain. Moreover, we have investigated the mechanism through 

which SINV reaches and infects the CNS. We have excluded propagation from 

the blood-brain barrier as well as infection of circulating leucocytes (“Trojan 

horse” mechanism) and have suggested infection of peripheral neurons and 

subsequent axonal transport to the CNS as SINV entry mechanism. These results 

have been reported in the submitted article. Furthermore, the activation of the host 

response at early times post-infection as well as CNS-specific responses have 

been investigated. In particular, at the cellular level, we have identified 

neutrophils as the main IFN-producing cells and are currently investigating their 

recruitment to the brain, upon extensive CNS infection in zebrafish larvae.    

In addition to these in vivo analyses of infection, several tools have been 

developed for the project: production of various recombinant SINV viruses 

(leading to interesting findings of strain-dependent neuroinvasiveness), and in 

vitro culture of primary zebrafish neurons and glial cells.  

Finally, we initiated a collaboration with the “Viral population and Pathogenesis” 

Unit at Pasteur Institute, to evaluate the effect of antiviral compounds on 

SINV-infected larvae.  

Thanks to the conservation between zebrafish and human genes and cell types, we 

hope this project will shed more light on the mechanisms of viral neurotropism. 

This, in turn, will be helpful long-term to set up strategies for the prevention of 

viral-induced encephalitis.  
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INTRODUCTION  

 

CHAPTER I: Viral Infections of the Central Nervous System 

 
“Riper matter broke forth towards the ear. Subsequently, there were sweats 

 (lesions) on the head for a long time.”  
 

Hippocrates Volume VII, Epidemics II, Section 3 (v.112-113) 
Harvard University Press, 1994 

 

 

In this passage extracted from Epidemics II, the Greek physician Hippocrates 

describes a disease of unknown origin affecting one of his patients and causing 

lesions spreading on the head. It is the beginning of the 4th century BC when 

Hippocrates first reports a case of a herpes-induced brain infection.  

Despite being well known since ancient times, infectious diseases of the Central 

Nervous System (CNS) did not cease to pose a major health threat to the human 

population, as exemplified by the number of pathogens that can affect the CNS. 

Table 1 provides a general overview of neurotropic viruses, based on their 

classification and properties (Table I1.1). 

With the exception of a few specialized human viruses (e.g. Poliovirus and 

herpesviruses), persistent or “stable” neuroinvasion is generally rare. On the other 

hand, acute infections of the CNS are more often caused by zoonotic diseases, for 

which humans normally represent a “dead-end host” (Gubler, 2001).  

It has recently been estimated that nearly 50% of emerging viruses are 

characterized by serious neurological clinical manifestations (Olival and Daszak, 

2005). Contacts between humans and animals, especially wild ones, are an 

important factor for the onset and transmission of viral Emerging Infectious 

Diseases (EIDs), 75% of which are of zoonotic origin (Taylor et al., 2001). It has 
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been shown, for example, that bushmeat hunters in Africa are at high risk of 

contracting novel viral zoonoses (Wolfe et al., 2004).  

Table I1.1. Classification and CNS disease of neurotropic viruses. dsRNA, double-stranded 
RNA; ssRNA, single-stranded RNA; ssRNA-RT, RNA reverse transcribing. In bold, neurotropic 
arboviruses. Adapted from Koyuncu et al. (2013).  
 

Changes in ecological, environmental, and demographic factors also contribute to 

the spreading of these diseases. Moreover, of all viral EIDs 40% are arboviruses 

(Arthropod-Borne Viruses) – pathogens transmitted by arthropods. Increased 

exposure to mosquitoes and other arthropod vectors, adjustment of a vector to 

new ecological niches (Roche et al., 2015) or adaptation of a pathogen to new 

vectors greatly increase viral EIDs expansion. The adaptation of Chikungunya 

virus (CHIKV) to the mosquito Aedes albopictus since 2004, for example, greatly 
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contributed to its re-emergence in various parts of the world (Tsetsarkin and 

Weaver, 2011).  

Reducing vector prevalence and vector avoidance are certainly the first line of 

defense against arboviral nervous system infections. However, new outbreaks of 

both new and old pathogens are almost certain to occur in the future, and novel 

treatments – possibly with broad relevance to many viruses – should also be part 

of our global health strategy. To do so, a thorough understanding of the 

mechanisms of disease is necessary and animal models play a key role in 

deciphering virus-induced pathogenesis. 

The following sections include a brief overview of neurotropic arboviruses, the 

neurological pathogenesis they can induce, the several mechanisms of entry 

neurotropic viruses can employ to reach and spread in the CNS, and the defense 

mechanisms that are readily activated in the CNS upon infection. 

 

1.1. Neurotropic Arboviruses 

 

Arboviruses that can reach and affect the nervous system mostly include 

single-stranded RNA viruses belonging to various families. The DNA African 

Swine Fever virus represents the only exception. All other neurotropic arboviruses 

either belong to the Togaviridae, Flaviviridae (West Nile virus (WNV), Dengue 

virus (DENV)), Bunyaviridae (Hantavirus, Crimean-Congo Hemorrhagic Fever 

virus, Rift Valley Fever virus), Rhabdoviridae (Rabies virus (RV)), 

Orthomyxoviridae (Influenza virus), or to the Reoviridae (Colorado Tick Fever 

virus) families (Table I1.1).  

Neurotropic viruses of the Togaviridae family include Alphaviruses such as 

CHIKV, Sindbis virus (SINV), Eastern Equine Encephalitis virus (EEEV), 

Western Equine Encephalitis virus (WEEV), and Venezuelan Equine Encephalitis 

virus (VEEV). Their structure, life cycle, and pathology are further described in 

Chapter II.     

Arboviruses are found worldwide and can be transmitted to several vertebrate 

hosts by blood-feeding arthropods, including mosquitoes, biting flies, ticks, mites 
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and lice. They are normally maintained in complex life cycles involving 

vertebrate hosts and arthropod vectors (Figure I1.1).  

Figure I1.1. Vertebrate host and vector transmission cycles. (A) Enzootic, the natural 
transmission of virus between wild animals and primary vectors. (B) Epizootic, the transmission of 
virus between domestic animals and primary vectors. (C) Urban, the virus cycles between humans 
and insect vectors, due to high level of viremia. Adapted from Go et al. (2014). 
 

Epidemics in humans and domestic animals occur when the virus comes in close 

contact with a bridge vector. Nevertheless, humans are generally dead-end hosts. 

They do not in fact contribute to the distribution/spreading of the disease, since 

they do not normally develop sufficient levels of viremia to infect an arthropod, 

such as in the case of EEEV (Figure I1.2).  

 
Figure I1.2. Transmission cycle of Eastern Equine Encephalitis virus. The enzootic cyle 
occurs in hardwood swamps where the vector transmits the virus among passerine birds. Other 
vectors are believed to transmit the virus to humans and horses. These develop little viremia and 
do not contribute to amplification. Adapted from Weaver (2005). 
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Viruses such as DENV or CHIKV represent important exceptions to this rule. 

They can reach high levels of viremia and can be transmitted from humans to 

other humans by mosquitoes (urban cycle) (Weaver and Barrett, 2004).   

The incidence of arboviral-induced neuroinvasion varies annually depending on 

vector abundance, geographical location, climatic conditions, and human 

behavior. As disclosed by the Centers for Disease Control and Prevention (CDC), 

in 2013 over 2600 cases of arboviral diseases were notified in the United States, 

53% of which were reported as neuroinvasive. WNV was the most prevalent 

neuroinvasive arbovirus, with over 2400 reported cases (Lindsey et al., 2014). 

Preliminary data on WNV infection in 2015 are in accordance with previous 

reports, showing over 60% neuroinvasiveness (Figure I1.3). 

Figure I1.3. Incidence of human West Nile virus neuroinvasive disease by State as of 
November 2015 – United States. Ranging from 0.01 to greater than 1.00 per 100,000 population. 
Source: CDC.  
 

1.2. Arbovirus-Induced Neurological Pathogenesis  

 

As can be expected, morbidity and mortality from CNS arboviral infections are 

significantly high and, depending on the pathogen, can lead to fatality rates 

ranging between 1% and 70% (Hollidge et al., 2010). When not fatal, these 
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infections lead to long-term sequelae in 90% of affected patients and include 

conditions such as cognitive deficits, blindness, epilepsy, flaccid paralysis of 

limbs, focal neurologic deficits, and permanent vegetative state (Rust, 2012).  

The neurological manifestations that can arise upon infection of vector-borne 

viruses include myelitis, encephalomyelitis, neuritis, myositis, and more often 

meningitis or encephalitis. WNV, for example, most commonly induces 

encephalitis but can also lead, in some cases, to meningitis and/or acute flaccid 

paralysis (Tyler, 2009).  

While meningitis involves inflammation of the tissues lining the brain, 

encephalitis is an acute inflammation of the brain parenchyma, and myelitis an 

inflammation of the spinal cord, both typically due to the infection of neurons 

belonging to the CNS. This in turn leads to neuronal cell death. Human 

Enteroviruses and Alphaviruses are known to induce apoptosis in infected neurons 

(Kuo et al., 2002; Jan and Griffin, 1999). In the case of Flaviviruses, the induced 

cellular immune response upon CNS infection is instead considered to play a 

greater role in disease pathogenesis, such is the case of Japanese Encephalitis 

virus (JEV) (German et al., 2006). Other neurotropic viruses (not restricted to 

arboviruses) can cause damage by disrupting the blood-brain barrier (BBB), 

inducing autoimmune attack on specific cell types, altering gene expression, 

causing cell fusion, altering neuronal migration, reducing neural progenitor 

replication, and blocking cerebrospinal fluid (CSF) generation.  

Despite many years of study, it is still not completely understood why only a 

certain percentage of patients develop serious neurological symptoms after 

infection. A fundamental factor certainly involves the efficiency of one’s immune 

system in eliminating the pathogen from the whole body. It has been shown, for 

example, that mutations in the ccr5 gene (a chemokine receptor and co-receptor 

for Human Immunodeficiency virus (HIV)) increase the incidence of symptomatic 

WNV infection (Glass et al., 2006). Another important aspect to consider is the 

age of the patient at the time of infection. Intrauterine and newborn infections are 

generally more deleterious as opposed to those affecting adults, most probably 

due to the incomplete maturation of the BBB. Maturation of the innate and 

adaptive immune system is also an important aspect to consider (Kollmann et al., 

2012). Moreover certain viruses selectively target dividing neuronal precursors. In 
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a neuronal cell culture model of Alphavirus infection, it was shown for example 

that terminally differentiated, mature neurons express higher levels of 

immunoregulatory factors that help them mount a more rapid antiviral response in 

contrast to undifferentiated neurons (Schultz et al., 2015).  

 

1.3. Mechanisms of Viral Entry in the CNS 

 

Upon establishment of the infection at their entry site, most viruses spread locally 

in a cell-to-cell manner. After a first cycle of replication in target cells, the virus 

disseminates. Primary viremia – the presence of a virus in the blood – ensues. It is 

generally short-lived and of low titer and contributes to the spreading of the virus 

from peripheral tissues to other sites, such as to the lymphoid organs, leading to 

secondary viremia. This in turn lasts typically for longer periods of time and is 

higher in titer (Pekosz et al., 1995) (Figure I1.4). 

Figure I1.4. Primary viremia, after injection of La Crosse virus in weanling mice. Viremia 
appears as a sharp peak limited to the first 12 hrs. Even if transient, viremia is sufficient to initiate 
a lethal encephalitis after delivery of the virus to the target organ. Adapted from Pekosz et al. 
(1995). 
 

After the onset of viremia, neurotropic viruses must exit the bloodstream to be 

able to reach and invade the CNS. The detailed mechanisms of exit from the 

bloodstream are poorly understood, mostly due to the difficulty in following the 

progression of an infection in vivo. Nevertheless, neurotropic viruses have been 

shown to reach the CNS either via the hematogenous route or via infection of 

peripheral nerves. In the former case, they may travel free in the plasma (plasma 

viremia) or in association with cells (cell-associated viremia), before crossing the 
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BBB. On the other hand, infection through peripheral nerves generally occurs 

upon binding of the virus to specific receptors found on axonal termini of 

peripheral neurons. Each of these mechanisms will be described in more details in 

the following sections.      

One important aspect to consider when investigating mechanisms of viral entry in 

the CNS is the inoculation route used in experimental animal models. Certain 

viruses can in fact employ more than one mechanism; WNV, for example, has 

been shown to enter the CNS through infection of endothelial cells of the brain 

vasculature as well as through infection of olfactory neurons (Xu et al., 2012; 

Monath et al., 1983). Therefore, during sampling and analysis all cases should be 

taken into account and thoroughly investigated, to avoid missing important cues. 

 

1.3.1. Infection of Brain Microvascular Endothelium 

 

Several viruses are known to enter the CNS by infecting Brain Microvascular 

Endothelial Cells (BMVECs) of the BBB. Subsequently, they induce disruption of 

BBB integrity and unrestrained migration of cells of the immune system.  

Under physiological conditions, the BBB is principally constituted by an interface 

of glial and vascular cells tightly joined to restrict the movement of solutes and 

cells from the bloodstream to the brain parenchyma. The endothelial cells lining 

the microvasculature within the CNS are adjoined by tight and adherens junctions, 

and receive support from pericytes and astrocytes for their homeostasis. Together 

with perivascular macrophages, microglia, and neurons these structures constitute 

the neurovascular unit (Figure I1.5).  

Upon infection of BMVECs, several neurotropic viruses have been shown to alter 

junction expression and functionality as well as to induce expression of 

inflammatory mediators by other BBB cell types. Examples of these viruses 

include DNA viruses, such as John Cunningham virus (JCV), a human 

polyomavirus (Chapagain et al., 2007), Epstein-Barr virus (Casiraghi et al., 2011), 

Human Cytomegalovirus (Fish et al., 1998), and Mouse Adenovirus (Gralinski et 

al., 2009). RNA viruses, such as WNV (Xu et al., 2012), Hepatitis C virus 
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(Fletcher et al., 2012), and Human T cell leukemia virus (HTLV) (Afonso et al., 

2008), have also been shown to affect BBB integrity.  

In some cases, viruses can access the CNS by crossing areas where the BBB is not 

completely sealed. These include the choroid plexuses and the circumventricular 

organs1. Viruses can enter the CSF space and subsequently infect the underlying 

ependymal cells and surrounding brain tissues. Examples of such viruses are 

mumps virus (Herndon et al., 1974) and HIV (Falangola et al., 1995).   

Figure I1.5. Cellular components of the BBB. The barrier is formed by capillary endothelial 
cells, surrounded by basal lamina and astrocytic perivascular endfeet. Astrocytes provide the link 
to neurons. Adapted from McGavern and Kang (2011). 
 

1.3.2. Infection of Leukocytes: the “Trojan Horse” Strategy 

 

The second possible mechanism through which viruses can gain access to the 

CNS is the so-called “Trojan horse” strategy. Circulating leukocytes such as 

monocytes/macrophages become infected and are able to release the virus in the 

CNS after infiltrating the brain parenchyma, where they normally act as immune 

sentinels. Once they reach the CNS, they shed infectious virions that establish 

CNS infection. Examples of such viruses include HIV and HTLV (Kaul et al., 

2001). JCV has also been shown to employ this mechanism, although it rather 

infects B cells that infiltrate the CNS of immune suppressed patients, causing a 

                                                
1 Circumventricular Organs: Small structures bordering the subventricular spaces characterized by 
larger perivascular spaces and endothelial cells lacking tight junctions. They allow for greater 
exchange of fluids between the brain and the vasculature. From Johnson and Gross (1993).     
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fatal brain disease (Boothpur and Brennan, 2010). Moreover, in a previous report 

it was shown that human macrophages become infected by SINV in vitro 

(Assunção-Miranda et al., 2010). This has been however linked to the onset of 

arthritis in humans. To our knowledge, their contribution to SINV neuroinvasion 

in in vivo models has not yet been addressed. 

 

1.3.3. Infection of Peripheral Neurons   

 

Several pathogens infect and replicate in local nerve endings. These can either be 

sensory or motor neurons, extending outside the confinement of the CNS. 

Nevertheless, they are connected to neurons of the CNS (through neurochemical 

synapses) and act as springboard for efficient entry and replication in the brain. 

According to their specific receptor and entry route, neurotropic viruses will bind 

to either sensory or motor neurons and use anterograde and/or retrograde axonal 

transport systems to reach neurons in the CNS.  

RV (Ugolini, 2011) and Poliovirus (PV) (Racaniello, 2006) are well-known 

examples of viruses that infect peripheral motor neurons. Subsequently, they use 

dynein-based components to retrogradely move along the axons up to the CNS. 

On the other hand, herpesviruses use sensory-nerve endings as entry portal to the 

Peripheral Nervous System, where they maintain a quiescent state. Under certain 

conditions, such as stress stimuli, they can become reactivated and induce 

production of a large number of virus particles in a short amount of time 

(Camarena et al., 2010) that can reach the CNS via retrograde transport.  

Infection of the CNS can also occur from invasion of olfactory nerves, whose 

projections are found in the olfactory bulb of the CNS. Examples of such viruses 

include Influenza A virus, Herpes Simplex virus-1 (HSV-1), PV, Vesicular 

Stomatitis virus (VSV), RV, JEV, WNV, La Crosse virus (van Riel et al., 2015). 

Munster et al. showed that Nipah virus infects the olfactory system of hamsters 

after intranasal inoculation (Munster et al., 2012). CHIKV (Powers and Logue, 

2007) and VEEV (Schafer et al., 2011) have also been suggested to use this entry 

path, in a model where mice were inoculated intranasally. Additionally, SINV was 

shown to propagate along peripheral nerves from the foot to the nose or the spinal 
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cord prior to the brain of mice inoculated subcutaneously. This was determined by 

intravital imaging approaches using a luciferase-expressing recombinant SINV 

strain (Cook and Griffin, 2003). 

 

1.4. Mechanisms of Spreading in the CNS 

 

Localization of infection in the CNS, or viral neurotropism, is a direct 

consequence of cellular susceptibility and viral dissemination, which in turn is 

preceded by systemic spread (by viremia or the neural route). Upon entry in the 

CNS, cell-to-cell transmission ensues and the virus starts spreading. Neurotropic 

viruses may use more than one mechanism, although they generally exhibit cell 

tropism, by infecting one cell type more readily than others. Viral progression can 

develop in two prototypical ways:  

1. Sequential cellular infection, via axonal transport of virions from one 

neuron to the connected one  

2. Transit via periaxonal accessory cells that surround neurons  

Axonal transport is by far the best characterized. In this case, viruses employ 

cellular transport systems to move along axonal projections in an anterograde 

and/or retrograde manner (Figure I1.6).  

Figure I1.6. Viral axonal spread. (A) Anterograde spread involves movement of the virus from 
the soma to the synapse and infection of neighboring cells. (B’) Trans-synaptic spread allows 
movement from the synapse to the cell body (e.g. RV, PRV). (B’’) Microfusions between 
neighboring cells allow retrograde spreading of measles virus. Adapted from McGavern and Kang 
(2011). 
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Anterograde transport uses the kinesin motor proteins, to move cargo from the 

soma to the synapse. HSV-1, for example, undergoes anterograde transport to exit 

via axonal varicosities at axon termini and infect neighboring cells (Diefenbach et 

al., 2008). On the other hand, retrograde transport involves movement of cargo 

and viral particles from the synapse to the soma. This type of transport relies on 

proteins of the dynein family. RV interacts with the LC8 dynein light chain (Raux 

et al., 2000) and HSV-1 uses trans-synaptic release to reach connected neurons, 

while measles is thought to disseminate through microfusions between 

neighboring neurons (Young et al., 2009). 

 

1.5. Antiviral Immune Responses in the CNS 

 

The brain is generally considered an immunologically privileged site, as neuronal 

cells are normally protected from the dangerous side-effects of inflammatory and 

immune responses. Infected cells are normally spared from immunological 

effector mechanisms if they are located in the brain. This in turn might contribute 

to virus persistence the brain. Immune cell entry restriction exerted by the BBB 

and limited expression of Major Histocompatibility Complex2 (MHC) class I 

molecules from neurons – that renders them unable to activate virus-specific 

cytolytic T lymphocytes – also account for virus persistence in this organ. 

The brain must therefore employ virus-specific immune mechanisms for the 

clearance of the pathogen that do not involve cytolytic elimination of the infected 

cell and consequent CNS damage. While DNA viruses undergo replication in the 

nucleus and have the capacity to remain latent, most RNA viruses (such as 

neurotropic arboviruses) replicate in the cytoplasm and do not establish latency3. 

Unlike DNA viruses, they are therefore more susceptible to immune control 

mechanisms that are readily activated in the CNS upon detection of infected cells.  

                                                
2 Major Histocompatibility Complex: A set of cell surface proteins interacting with either CD4+ T 
cells or CD8+ T cells to mediate initiation of adaptive immunity. 
3 Viral Latency: The ability of a virus to remain dormant within the host cell, sometimes 
establishing lifelong occult infection. The viral genome can remain latent either integrated in the 
host chromosome or as an episome. Stress cellular signals are often promoters of viral genome 
reactivation, termination of viral latency and re-establishment of infection.  



 
 

15 

Production of type I Interferon (IFN) cytokines constitutes the first line of defense 

against viral infections and it is vital for the survival of the infected host. Mice 

lacking the IFN receptors (IFNAR-/-) show in fact a greater susceptibility to fatal 

disease, including to infections of the CNS (Muller et al., 1994). Nevertheless, 

basal IFN activity seems to be low within the CNS, likely due to the toxicity of 

this cytokine to the brain (A detailed description of the IFN signaling pathway 

will be given in Chapter III). 

Several studies have also shown the importance of molecules upstream or 

downstream of the IFN signaling pathways that become expressed in the CNS 

upon viral infection. In the case of upstream molecules, several Toll-like 

Receptors (TLRs) are widely expressed and have been shown to respond to 

neurotropic viruses (Carty and Bowie, 2011). Mutations in the endoplasmic 

reticulum UNC-93B protein (required for TLR3 signaling) (Casrouge et al., 2006) 

and in TLR3 (Zhang et al., 2007) have been in fact associated with onset of 

Herpes Simplex Encephalitis. Downstream of IFN expression, Interferon 

Stimulated Genes (ISGs) have been found to be either specifically expressed in 

the CNS (e.g. ISG54 in the case of VSV) or in specific regions of the CNS (e.g. 

Ifi27 and Rsad2/viperin/vig1, against WNV) (Fensterl et al., 2012; Cho et al., 

2013).  

Depending on the virus, IFN can be produced by several cell types. In the case of 

La Crosse virus infection, for example, neurons are mostly responsible for IFN 

production (Delhaye et al., 2006), while Mouse Hepatitis virus induces IFN 

production mainly in macrophages and/or microglial cells (Roth-Cross et al., 

2008).  

IFN production is fundamental to counteract viral replication and spread as well 

as for the subsequent induction of an adaptive immune response. The activation of 

the IFN signaling pathway in fact contributes to the upregulation of MHC class I 

molecules on the surface of microglial cells and of adhesion molecules by 

BMVECs. Subsequently, several induced cytokines (e.g. Interleukin-1 (IL-1), 

Interleukin-6 (IL-6), Interleukin-12 (IL-12), Tumor Necrosis Factor-α (TNF-α)) 

are transcytosed to the endothelial lumen, where they are presented to attract 

circulating leukocytes (Chang et al., 2000; Middleton et al., 2002). Infiltration of 

leukocytes begins at late stages of infection. Cells normally accumulate in 
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perivascular areas of the brain and later infiltrate the brain parenchyma in regions 

of virus infection, to subsequently induce the activation of the adaptive immune 

response. The peak of inflammatory cell accumulation generally occurs within 

two weeks after infection and, unless the virus persists, they are gradually 

eliminated (Rowell and Griffin, 1999). It has been shown, for example, in a 

mouse model of SINV infection that the virus can persist in the brain of mice that 

recovered from viral acute encephalitis for long periods of time in a 

non-productive form. Moreover, viral reactivation was associated with low levels 

of humoral immunity, suggesting the importance of antibody-mediated clearance 

(Levine and Griffin, 1992).      

 

Summary of Chapter I 

− The majority of EIDs are characterized by serious neurological 

manifestations and are mostly caused by zoonotic pathogens. 

− Neurotropic arboviruses are kept in complex enzoonotic cycles but can 

sometimes escape, due to adaptation to a different vector. When humans 

or other vertebrates become infected, they are generally dead-end hosts. 

− Neurotropic viruses often cause encephalitis, myelitis or meningitis. 

− They can reach the CNS either via the bloodstream (by disrupting the BBB 

or by hijacking leukocytes) or via infection of peripheral nerves. 

− Once in the CNS, they can spread via several mechanisms, including 

anterograde or retrograde transport along axons of infected neurons. 

− Antiviral immune responses activated in the CNS differ from those in the 

periphery due to the non-renewable features of neurons. IFNs are the first 

cytokines to be expressed, in order to induce the antiviral state.  
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CHAPTER II: Alphaviruses – A Public Health Threat 

 
“Chikungunya Hits U.S. Mainland… 
The first locally acquired cases of chikungunya were reported in Florida on 
July 17, 2014. These cases represent the first time that mosquitoes in the 
continental United States are thought to have spread the virus to non-travelers. 
Though CDC does not expect widespread cases this year, Americans infected 
when traveling to the Caribbean, South America, or the Pacific Islands may 
continue to return and bring the virus with them.” 
 

Centers for Disease Control and Prevention, USA   
 

 

Together with Rubiviruses, Alphaviruses are members of the Togaviridae family. 

As the etymology of the name suggests (from the Latin name for cape, toga), they 

are characterized by the presence of a lipid envelope, which is perfectly adherent 

to an icosahedral capsid, and containing a single-stranded positive-polarity RNA 

genome.    

While the Rubivirus genus only contains the agent responsible for rubella, rubella 

virus, the Alphavirus genus is divided into seven antigenic complexes based on 

serological cross-reactivity and contains 29 recognized species (Powers et al., 

2001) (Figure I2.1).  

Depending on where they occur, they have been classified as either belonging to 

Old World or New World types. Most Old World Alphaviruses are found in 

Africa, Europe, Asia, and Australia, and include Semliki Forest virus (SFV), Ross 

River virus (RRV), O’Nyong-Nyong virus (ONNV), Chikungunya virus 

(CHIKV), and Sindbis virus (SINV). New World Alphaviruses are generally 

found in the Americas, and include viruses such as Mayaro virus (MAYV), 

Eastern Equine Encephalitis virus (EEEV), Western Equine Encephalitis virus 

(WEEV), and Venezuelan Equine Encephalitis virus (VEEV). This geographic 

distinction, however, does not always correlate with similar disease symptoms. 

For example, MAYV is limited geographically to Latin America while ONNV 

virus has never been identified outside of Africa. Nevertheless, they cause almost 

identical clinical signs and symptoms. This raises interesting questions regarding 

the evolution and expansion of the genus. 
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New World Alphavirus infections result in a flu-like syndrome, that often 

progresses into encephalitis. Old World Alphaviruses are generally more benign, 

resulting in a disease characterized by arthralgia, fatigue and rash. However, 

RRV, CHIKV and SINV have sometimes been associated with encephalitis. 

Neurovirulence of these viruses is associated with rapid and efficient spread 

throughout neurons of the Central Nervous System (CNS), resulting in death of 

infected neuronal cells (Griffin, 2007).  

Figure I2.1. Phylogenetic tree of Alphaviruses from complete structural polyprotein amino 
acid sequences. From Powers et al. (2011). 
 

As can be expected, their pathogenicity, the global spread of the mosquito vectors 

as well as the lack of effective treatments and vaccines, make them a significant 

public health threat as both emerging infectious diseases and possible agents of 

bioterrorism (Weaver, 2005).   

This introductory Chapter includes an overview of the molecular biology of 

Alphaviruses. Subsequently, it focuses on several important aspects related to Old 

World Alphaviruses, including epidemiology, pathogenesis and immune 

responses. SINV, the pathogen used in this Thesis as a model to study 

viral-induced encephalitis in zebrafish embryos, is described in more details in the 
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last section. Its importance for the study of viral-induced pathogenesis is well 

exemplified by the number of articles in which it appears as a model – over 60 

articles published within the last year (e.g. ranging from studies on mechanisms of 

viral assembly and viral immune evasion, distinct immune responses, potential 

therapeutics). Nevertheless, many unanswered questions related to its 

neurotropism constitute the driving factor for the study presented in this Thesis. 

 

2.1. Alphavirus Structure, Genome Organization and Replication Cycle 

 

The virions of Alphaviruses are spherical and measure ~70 nm in diameter. They 

are composed of a host cell-derived lipid bilayer, two membrane-associated 

glycoproteins (E1 and E2) bound with E3, and a nucleocapsid enclosing the viral 

genome. 240 monomers of capsid protein are arranged together to form a T = 4 

icosahedral structure, studded with 80 heterotrimeric glycoprotein spikes.    

Figure I2.2. Alphavirus genome and virion structure. (A) The genome is single-stranded 
positive-sense RNA, encoding two Open Reading Frames. (B) Left, surface shaded view of SINV 
at 9Å resolution. Trimeric spikes are seen in blue, the small portions of the lipid bilayer are seen in 
green. Right, central cross-section of the virus showing in blue the glycoproteins, in turquoise the 
envelope, in green the lipid bilayer, in yellow the capsid, and the RNA region in red. Adapted 
from Jose et al. (2009). 
 

The genome is roughly 12 kb long, it includes a 5’ terminal cap and a 3’ terminal 

poly(A) tail, and it is divided into two Open Reading Frames (ORFs) separated by 

a well-conserved Untranslated Region (UTR) of ~120 nucleotides. Each ORF 

codes for multiple proteins generated by proteolytic cleavage. The 5’ ORF, which 
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is immediately translated upon virus entry, codes for four non-structural 

Polyproteins (nsP1-nsP4) required for transcription and replication. By contrast, 

the 3’ ORF is not translated from the full genome, but from the subgenomic 26S 

RNA, which is made later in the viral cycle; it codes for the structural proteins 

(sPs): the capsid (C), the three envelope proteins (E3, E2, and E1) and a 

membrane-associated protein, 6K (Figure I2.2). 

The Alphavirus nsP1 possesses both guanine-7-methyltransferase and guanylyl 

transferase activities, required for capping and methylation of newly synthesized 

genomes. nsP2 acts as triphosphatase and helicase on its N-terminal domain, and 

as protease for the nsPs on its C-terminal domain. nsP3 has been shown to act as 

phosphatase and is involved in modulation of pathogenicity in mice, while nsP4 is 

the RNA-dependent RNA-polymerase (RdRp).  

While E3 is required for efficient particle assembly, E2 is known to be responsible 

for receptor binding as well as a determinant of neurovirulence, as demonstrated 

by studies on amino acid changes (Ubol et al., 1994). 6K is essential for viral 

particle assembly at the plasma membrane and E1 is the Alphavirus fusion 

protein.    

Figure I2.3. Alphavirus life cycle. Upon receptor binding and clathrin-mediated endocytosis, the 
viral particle fuses with the endosomal membrane. The resulting nucleocapsid is transported to the 
cytoplasm, where the RNA is released after disassembly. Genomic RNA is used both for 
translation of proteins from the genomic and subgenomic RNA, as well as for transcription of 
nascent RNA. Lastly, the structural proteins are translated and encapsidate nascent genomic RNA 
before budding and release. Adapted from Leung et al. (2011).   
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Upon receptor-mediated binding to the cell surface and subsequent entry, viral 

particles undergo disassembly to release the genome into the cytoplasm (Figure 

I2.3). The viral genome is then translated to generate the nsPs and sPs. After 

complete cleavage of the nsPs, they form a stable complex for the synthesis of 

negative strand antigenomes, then used as a template for synthesis of 

positive-strand genomic and subgenomic RNAs. Except for E2-E3, cleavage of 

the sPs occurs simultaneously with their translation. The C protein subsequently 

associates with newly synthesized RNA genomes. The E1/(E2+E3) complexes are 

then transported from the endoplasmic reticulum; in the Golgi, furin cleaves the 

E2-E3 bond. At the plasma membrane, the mature E1-2-3 heterotrimers interact 

with the C protein and form an envelope around nucleocapsid-like particles. Thus, 

upon release from the infected cell, virions have acquired a membrane bilayer 

from the host cell plasma membrane  (Leung et al., 2011) (Figure I2.4). 

Figure I2.4. Schematic diagram of Alphavirus genome replication. Non structural proteins are 
translated and processed first. Later, after transcription of the subgenomic RNA, the structural 
proteins can be translated and processed. Adapted from Ryman and Klimstra (2008).   
 

2.2. Old World Alphaviruses: Epidemiology and Vector Distribution 

 

Alphaviruses are kept in enzootic and epizootic cycles between blood-feeding 

arthropods and vertebrates. Vertebrate hosts can be divided into two groups: 1. the 

natural vertebrate host acting as the primary source of mosquito infection in which 
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the virus replicates, but no symptomatic disease occurs and 2. vertebrate hosts that 

develop symptomatic disease.  

For encephalitic Alphaviruses such as SINV, SFV, EEEV, and WEEV, the 

primary host is typically avian. In epizootic or epidemic cycles, infected 

mosquitoes transmit the virus to a secondary host, usually human or equine. Large 

outbreaks of disease occur when infected secondary hosts reach a high titer 

viremia, permitting further infection of mosquitoes and host populations. 

Recurrent epidemics of both Old and New World Alphaviruses have been 

reported since the 20th century. WEEV was the first encephalitic Alphavirus 

isolated from the brain of an infected horse (Meyer et al., 1931).  

CHIKV was first isolated in 1953 in Tanzania, Africa and has since then caused 

frequent epidemics in Africa, Islands of the Indian Ocean, and Asia (Powers and 

Logue, 2007). Between 2004-2011, the largest epidemic of CHIKV ever recorded 

took place. It begun in Kenya, spread to Islands in the Indian Ocean, India, and 

South East Asia and was attributed to a new adaptation of the virus to the 

mosquito Aedes albopictus, a vector with a wide geographic distribution. In late 

2013, local transmission of CHIKV was reported for the first time in the 

Caribbean countries, and has ever since moved to the United States (Florida, 

Puerto Rico, and the U.S. Virgin Islands) and Polynesia.  

SINV was first isolated in 1952 in Cairo, Egypt and is most commonly found in 

Africa, the Philippines, and Australia. SINV is widespread also in Finland, 

Sweden, and Russia, where it has been associated with Pogosta, Ockelbo and 

Karelian fever diseases respectively. SINV epidemics in Finland have been 

reported in approximately seven-year cycles. Specific climatic conditions and 

density of the primary host, the black grouse (Tetrao tetrix), are considered 

important factors for the occurrence and incidence of SINV infections in humans, 

together with the presence of the primary vector (Jalava et al., 2013). This has 

been identified in members of the mosquito genera Culex and Culiseta. However 

also Aedes mosquitoes (Lvov et al., 1985) and, in a few cases, ticks have been 

found to carry and transmit the virus (Gresikova et al., 1978).  

A study conducted on the phylogeographic evolution of SINV has shown that 

over 50 different SINV strains exist (Lundström and Pfeffer, 2010) but only half 
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of them are pathogenic in humans. SINV strains have been grouped into five 

genotypes, based on E2 sequence divergence (Figure I2.5). 

Figure I2.5. Geography of SINV genotypes (I-V), and suggested route of ancient SINV 
dispersal from South America to East Asia. Other Aplhaviruses included: Aura, Aura virus; 
WEEV, Western Equine Encephalitis virus; HJV, Highland J virus; BCV, Buggy Creek virus; FM, 
Fort Morgan virus. From Lundström and Pfeffer (2010).  
 

Their geographic distribution has been attributed to major bird migration patterns, 

validating the hypothesis that migrating birds are involved in large-scale viral 

dissemination (Herrera, 1978). Moreover, SINV-associated disease outbreaks in 

South Africa, Sweden, Finland and Russia, are in accordance with the distribution 

of one of these five genotypes (Brummer-Korvenkontio et al., 2002).  

 

2.3. Pathogenesis of Old World Alphaviruses 

 

Old World Alphaviruses are generally associated with the development of 

long-lasting arthritis, as opposed to their New World counterparts, for which 

severe neuropathogenic diseases often result from the infection. After the 

2005-2006 epidemic of CHIKV, however, there has been much debate as to 

whether Old World viruses can induce neurological symptoms, due to reports of 
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severe cases of encephalitis, neuropathies, and deaths in infants and elderly 

patients (Economopoulou et al., 2009). Moreover, experimental models for other 

Alphaviruses, such as SFV, RRV, EEEV and SINV, have shown similar 

neurological signs reminiscent of those observed in CHIKV infected patients 

(Fazakerley et al., 2006; Mims et al., 1973; Deresiewicz et al., 1997). Among 

these, SINV is the best characterized and has been widely used in mice to perform 

studies on neural pathogenesis of Alphaviruses, upon which it has been shown 

that it replicates in neural tissues causing encephalitis (Lewis et al., 1996; Cook 

and Griffin, 2003).      

The disease progression in humans has been characterized as typically consisting 

of two phases: first, patients generally experience a mild, flu-like illness 

associated with replication at the primary site of infection, viremia, and initiation 

of the immune response. The second phase involves a second febrile episode 

directly linked with dissemination of the virus to other tissues (Zacks and 

Paessler, 2010). During the acute phase of the disease, several symptoms other 

than fever can occur, such as headache, eye pain, generalized myalgia, arthralgia, 

diarrhea, vomiting, and rash (Taubitz et al., 2007; Powers and Logue, 2007).  

During this phase, a number of patients develop neurological manifestations 

associated with mortality. Even though rare, Old World Alphavirus-induced 

neurological symptoms reported during the 2005-2006 CHIKV outbreak include 

encephalopathy associated with lymphopenia (Lemant et al., 2008), seizures, 

encephalitis, optic neuritis (Mittal et al., 2007), bilateral frontoparietal white 

matter lesions (which are considered as early signs of encephalitis), and 

lymphocyte infiltration in areas of demyelination and microglia activation in the 

gray matter with neuronal degeneration (Ganesan et al., 2008).  

Moreover in some cases, dual infections of Alphaviruses with other endemic 

viruses can occur. Co-circulation of CHIKV and Dengue virus (DENV), for 

example, was reported in various States of India in 1964 and more recently in 

2010. Data from the 2010 outbreak showed that many of the observed clinical 

symptoms were common in both monotypic and dual infections (Taraphdar et al., 

2012). This not only increases the chances of a wrong diagnosis but also reduces 

the likelihood for the patient to reach a full recovery.      
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2.4. Role of Innate Immunity against Alphaviruses 

 

Most of the data relative to the host response elicited from Alphavirus infections 

come from studies in small animal models and, in a few cases, non-human 

primates. It is general agreement that, upon onset of infection, type I Interferons 

(IFNs), mostly IFNα and IFNβ, are readily expressed and followed by production 

of virus-specific neutralizing antibodies at later time points.  

The protective role played by type I IFNs against Alphaviruses has been 

demonstrated in several studies. Ryman et al. showed that adult mice lacking the 

IFN receptors (IFNAR-/-) infected with a neurovirulent SINV strain (NSV) 

succumb to the infection, as opposed to wild-type (WT) mice. Moreover, they 

were able to show that the lack of a fully functional IFN signaling pathway 

modifies the viral cell and tissue tropism and renders more cell types susceptible 

to the infection (Ryman et al., 2000). Very similar results have been obtained in 

the case of CHIKV infection. Couderc et al. showed in fact that IFNAR-/- adult 

mice are highly susceptible to CHIKV infection and that the clinical signs 

observed were in accordance with the cell types and tissues infected (Couderc et 

al., 2008). Labadie et al. developed a cynomolgus macaque (Macaca fascicularis) 

model of CHIKV, in which infection was detected in several organs, such as in 

the liver, the spleen, the lymph nodes, the joints, the muscle, the skin and the 

meninges (Labadie et al., 2010). Moreover, the authors showed that macrophages 

can act as a CHIKV reservoir and suggested that viral persistence accounts for the 

chronic CHIKV infection symptoms that are often observed in patients.     

As can be expected, this group of viruses has developed evasive strategies to 

counteract the effects of IFNs. An in vitro study on SINV-infected cell cultures 

has shown that this role is played by nsP2 proteins, as they induce host cell 

transcription and translation shutoff (Frolova et al., 2002). Studies performed on 

CHIKV-infected Human Embryonic Kidney-293 cell cultures have shown that the 

virus promotes activation of the autophagy machinery to enhance its own 

replication (Krejbich-Trotot et al., 2011). In a comparative study between mouse 

and human cell cultures, it was shown that ubiquitinated capsids are bound to p62 

(in both human and mice cells) and transported to the autophagolysosomes, 

thereby protecting infected cells from virus-induced death (Judith et al., 2013). In 
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contrast, human (but not mice) NDP52 interacts with nsP2 and favors viral 

replication. In the case of SINV, on the other hand, it was shown that 

autophagy-mediated clearance of SINV proteins is cytoprotective in neuronal cell 

types, via p62 and Atg5 (Overdahl and Levine, 2008).  

 

2.5. Sindbis Virus  

 

Sindbis virus, the prototypical Alphavirus, has been studied mainly in mice and 

Drosophila. In particular, studies in Drosophila have been directed towards a 

better understanding of RNA interference (RNAi) upon viral infections. Even 

though mosquitoes develop infection upon virus inoculation, RNAi has been 

shown to protect the arthropod from an otherwise lethal infection (Cirimotich et 

al., 2009). In fact, the combined action of cellular reverse-transcriptase activity 

and RNAi was shown to inhibit viral replication in favor of viral persistence (Goic 

et al., 2013).           

On the other hand, the mouse model has helped in the characterization of 

virus-induced encephalitis. Despite its relatively low pathogenicity in humans, 

SINV is known to preferentially infect neurons and causes age-dependent 

encephalomyelitis in mice (Tucker et al., 1993). The increased survival of adult 

mice has been attributed, rather than to an incomplete maturation of the immune 

system, to a lower susceptibility of mature neurons to the virus. These have been 

found to express higher levels of IFN regulatory factors 3 (IRF3) and 7 (IRF7) 

molecules and to further induce them upon infection (Schultz et al., 2015). The 

genetic background of infected animal models has also been shown to determine 

different immune responses, which correlate with the different susceptibility 

observed between hosts (Kulcsar et al., 2015).  

SINV neurovirulence has been directly linked to specific amino acid changes in 

the E1 and E2 glycoproteins. In particular, Ala-72-Val and Asp-313-Gly of E1 

(from the NSV to a less virulent strain) and His-55-Gln in E2, have been shown to 

considerably decrease the associated virulence of the strain (Lustig et al., 1988). 

As a consequence, strains with specific E1 and E2 mutations have been shown to 
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induce significant levels of apoptosis in brains and spinal cord of weanling but 

also of older mice (Lewis et al., 1996).  

Studies on persistence of the virus after recovery from acute encephalitis have 

demonstrated that the virus can linger in a non-replicative form for long periods of 

time and reactivation is dependent on a decrease in the humoral response (Levine 

and Griffin, 1992). The mechanism through which the virus can be cleared from 

the CNS is not fully understood, although it has been suggested to be dependent 

on tissue injury and neuronal cell death induced by infiltrating 

macrophages/microglia and T helper cells (Kimura and Griffin, 2003).   

One important aspect to consider when studying SINV-associated neurovirulence 

involves the viral strain being used. The comparison of different strains can 

provide important information not only into the genetic determinants that control 

the virulence phenotype but also into the observed differences in pathogenesis. 

Different variants can exhibit great divergence in terms of organ, tissue and cell 

tropism as well as in the induced antiviral response. Brodie et al. showed that 

infection of mouse astrocytes with either a non-neurovirulent or with the NSV 

strains resulted in differential cell proliferation and expression of cytokines, which 

in the case of NSV were associated with changes characteristics of astrogliosis 

(Brodie et al., 1997).  

Moreover, several SINV laboratory strains have been derived over the years. 

These include for example the NSV strain used in the study of age-dependent 

virulence in mice (Tucker et al., 1993) as well as recombinant strains, in which 

fluorescent reporter proteins have been inserted to follow various aspects of the 

infection process in vitro or ex vivo. SINV genome is in fact suitable for the 

insertion and consequent expression of genes of interest (Geiss et al., 2007). In 

particular, two SINV strains have been employed in this Thesis: 1. 

pTE3’2J-eGFP, in which a second subgenomic promoter has been included at the 

3’ end for the insertion of specific genes of interest (i.e. GFP) (Hahn et al., 1992) 

and 2. pTR339-mCherry/2A, derived from the original African isolate AR339 

(Taylor et al., 1955) and modified to include the mCherry reporter gene between 

the capsid and the E3 genes. Their differences in terms of genomic sequence and 

associated virulence have been addressed in Chapter II of the Results.  

 



 
 
28 

 Summary of Chapter II 

− Alphaviruses are single-stranded RNA enveloped viruses, transmitted to 

humans after the bite of an infected mosquito. They are normally divided 

into “arthritogenic” Old World Alphaviruses and “encephalitic” New 

World Alphaviruses, although several reports indicate that Old World 

viruses can sometimes induce neurological manifestations. 

− Their genome is divided into two ORFs, coding for the non-structural 

proteins and structural proteins, respectively. Among the latter, several 

studies have identified specific amino-acid sequences of the E2 

glycoprotein as determinants of neurovirulence. 

− The geographical distribution of their vector is an important factor for the 

onset of an outbreak, as well as adaptation of the virus to new vectors. 

− A functional IFN signaling pathway is essential for the survival of 

Alphavirus-infected hosts, although these viruses have evolved evasion 

mechanisms to subvert the immune response. 

− SINV is encephalitogenic in mice and has therefore been employed as a 

model of Alphavirus-induced encephalitis.  

 



 
 

29 

 
CHAPTER III: Zebrafish – Host-Pathogen Interactions Unveiled  

 
“Seeing is believing.”  

John Clarke, from Parœmiologia Anglo-Latina (1639) 
 

“I wouldn’t have seen it, if I hadn’t believed it.”  
Marshall McLuhan (1911-1980) 

 

 

The zebrafish (Danio rerio) is well established for the study of developmental 

biology in vertebrates. Studies of embryogenesis in the zebrafish date back to the 

1930s and have been followed in the 1980s by works aimed at adapting this 

organism to forward genetic screens. It was thanks to the works of George 

Streisinger and Charles Kimmel that the zebrafish became recognized as a valid 

vertebrate model for the study of gene function and human genetic disease 

(Streisinger et al., 1981; Kimmel et al., 1989; Lieschke and Currie, 2007). 

Furthermore, the completion and release of the full zebrafish genome assembly in 

2002 and its comparison to the human genome in 2013 (Howe et al., 2013) have 

greatly expanded the possibility of understanding the role of human genes for 

which no function has yet been assigned.   

More recently, the zebrafish has emerged as an alternative vertebrate model to be 

used in a wide range of research fields including pharmacology and toxicology, 

cancer, neuroscience, and disease modeling (Davis et al., 2002; Neely et al., 2002; 

Phelan et al., 2005; Ludwig et al., 2011). Its main experimental advantage, 

beyond its genetic tractability, consists in its transparency during early life that 

considerably facilitates in vivo imaging. It is therefore relatively easy to follow the 

distribution of fluorescent-protein-tagged pathogens in the whole organism in real 

time. At the same time, small regions with subcellular details can be visualized 

with modern confocal microscopy techniques and very little invasiveness (Palha 

et al., 2013).  

Its small size, large number of eggs per clutch, and relatively low husbandry costs 

are also important factors that make zebrafish a valuable model organism. The 

following Chapter is therefore dedicated to some general aspect of zebrafish 

biology, with a particular focus on its Central Nervous System (CNS) 
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development. Subsequently, it discusses some important aspects regarding the 

development of the zebrafish immune system. Finally, it gives a brief overview of 

the advantages and disadvantages of the model.  

 

3.1. Zebrafish – General Aspects on Biology and Development 

 

The zebrafish belongs to the family Cyprinidae, infraclass Teleostei, class 

Actinopterygii. Teleost fish constitute a monophyletic, very successful group of 

vertebrates with more than 20,000 species, that likely originated 350 million years 

ago and underwent an additional event of whole-genome duplication, called 

teleost-specific genome duplication (Meyer and Schartl, 1999).  

Zebrafish is a tropical freshwater fish. It is indigenous to the south-eastern 

Himalayan region and is commonly found in India, Pakistan, Bangladesh, Nepal 

and Burma. In the wild, zebrafish are thought to be a largely annual species, 

although when kept in captivity they can survive up to 3.5-5 years. They normally 

feed on zooplankton and insects, and can breed all year round, although the main 

period of reproduction occurs just before the onset of the monsoon season (Spence 

et al., 2007). When kept in captivity, they can easily be led into mating by 

simulating night/day circadian cycles, with light onset being the trigger. This has 

become common practice in zebrafish facilities worldwide.  

Figure I3.1. Schematic of zebrafish life stages. Adapted from Levraud et al. (2014).  
 

The zebrafish is a fast-developing organism. By 3 days post-fertilization (dpf), the 

embryo has normally hatched and most organs have developed; circulation begins 

around 26 hours post-fertilization (hpf). Temperature is a very important factor to 
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assure the proper development of zebrafish. The acceptable range is between 23°C 

and 32°C and the optimal temperature is 28.5°C (83.3°F), used as the reference 

for staging (Kimmel et al., 1989). After 3 dpf, zebrafish are generally referred to 

as larvae; the swim bladder inflates shortly after and by 4-5 dpf, they exhibit 

autonomous feeding behaviour. At around 24 dpf, zebrafish are considered 

juvenile (coinciding with the development of scales) and reach sexual maturity 

around 3-5 months, depending on the environmental conditions, after which are 

considered adults (Parichy et al., 2009) (Figure I3.1). 

 

3.2. Zebrafish Central Nervous System: Organization and Development  

 

The small size and transparency of the zebrafish larva make it an attractive model 

to study the formation and function of the vertebrate brain. The fast-growing 

importance of the zebrafish for the neuroscience field is well exemplified by the 

increasing number of available bioinformatic resources. Recently, Ullmann et al. 

have developed a three-dimensional digital atlas of the zebrafish brain, which 

provides detailed spatial information of all neuronal structures (Ullmann et al., 

2010). Researchers from University College London and King’s College London, 

in the United Kingdom, have launched zebrafishbrain.org, a website with updated 

neuroanatomical data and resources for the zebrafish research community. Ahrens 

et al. showed that light-sheet microscopy is a powerful tool to detect single-cell 

neuronal activity while imaging the whole brain in vivo (Ahrens et al, 2013). 

These studies, together with the work performed by Wullimann et al., greatly 

contributed to our understanding of the zebrafish brain, its organization, and its 

development (Wullimann et al., 1996).  

 

3.2.1. Zebrafish Brain Anatomy 

 

The zebrafish brain is very similar in its general structures to that of higher 

animals and can be divided into five regions: the telencephalon, the 

diencephalons, the mesencephalon, the metencephalon, and the myelencephalon 

(Speare and Frasca, 2006; Roberts and Ellis, 2001) (Figure I3.3).  
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Together, the telencephalon and the diencephalon constitute the forebrain, the 

most anterior region of the brain. The midbrain or mesencephalon is the brain 

region between forebrain and hindbrain. Finally, the hindbrain, which includes the 

metencephalon and the myelencephalon, is the most posterior region of the brain. 

Figure I3.2. (Top) Lateral and (bottom) dorsal view of the adult zebrafish brain. CC, crista 
cerebellaris; CCe, corpus cerebelli; Ctec, commissura tecti; EG, eminentia granularis; Ha, 
habenula; IL, inferior lobe of hypothalamus; LL, lateral line nerves; LVII, facial lobe; LX, vagal 
lobe; MO, medulla oblongata; MS, medulla spinalis; OB, olfactory bulb; PG, preglomerular area; 
Pit, pituitary; PSp, parvocellular superficial pretectal nucleus; Tel, telencephalon; TeO, tectum 
opticum; TH, tuberal hypothalamus; TLa, torus lateralis; I, olfactory nerve; II, optic nerve; IV, 
trochlear nerve; V, trigeminal nerve; VII, facial nerve; VIII, octaval nerve; X, vagal nerve. From 
Roberts and Ellis (2001).   
 

− The telencephalon controls olfaction, memory, reproductive behavior, 

feeding behavior, and color vision. The olfactory organ is directly 

connected to the telencephalon via the olfactory bulb. 

− The diencephalon can be subdivided into three components: the 

epithalamus, the thalamus, and the hypothalamus. The thalamus and the 

hypothalamus act as correlation centers for sensory inputs such as 

olfaction and gestation; however, the complete function of the thalamic 
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region has not yet been identified. Several features of the mammalian 

thalamus, such as connection to the isocortex, are absent in zebrafish and 

more studies are needed in order to better define evolutionary differences 

(Mueller, 2012).   

− The mesencephalon is anatomically subdivided into the optic tectum, at 

the roof, and the tegmentum, at the floor. The optic tectum is relatively 

large and is divided longitudinally into two globular structures – the 

corpora bigemina – involved in the reception and the coordination of optic 

nerve inputs. The zebrafish eye is similar to that of all other vertebrates 

and consists of three regions: 1. the tunica fibrosa, which encompasses the 

cornea and the lens 2. the tunica vasculosa, 3. the retina. In the retina, 

several layers can be distinguished: a. the pigment epithelium, which 

contains photoreceptor cells, b. the external nuclear layer, with the nuclei 

of photoreceptor cells, c. the bipolar cells that connect photoreceptor cells 

to d. the retinal ganglion cells (RGCs). These send their axons through the 

optic fibers into the optic nerve (Diekmann et al., 2015).    

− The cerebellum, or metencephalon, is associated with reception and 

coordination of proprioceptive and balance stimuli.  

− The myelencephalon is the most posterior region of the brain, from which 

the medulla oblongata develops. The medulla connects the higher regions 

of the brain to the spinal cord. 

 

3.2.2 Zebrafish Neuronal and BBB Development 

 

The CNS of vertebrates develops from the neuroectoderm, a specialized region of 

the ectoderm that matures at the end of the gastrulation phase (~10 hpf in 

zebrafish embryos). Neurulation in zebrafish resembles the secondary neurulation 

observed in higher vertebrates, characterized by condensation of the mesenchyme 

to form a rod, which then undergoes an epithelial transition from the neural plate 

into the neural tube4 (Figure I3.3). 

                                                
4 As opposed to Primary neurulation: It involves columnarization of an existing epithelium, and 
then rolling or folding of the epithelium.  
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In zebrafish, the first neurons become post-mitotic in the neural plate shortly after 

gastrulation; therefore embryos start twitching as soon as 1 dpf (Eisen et al., 

1986). At 2 dpf, they start to respond to touch, thanks to the action of a few 

differentiated neurons and a simple scaffold of axons (Kimmel, 1993).  

Figure I3.3. Schematic representation of (A) neural crest development and (B) primary 
neurulation in zebrafish. In (B), mesodermal nuclei are in red, and neural nuclei in yellow. 
Adapted from Gammill and Bronner-Fraser (2003), and Araya et al. (2014).   
 

Early neurons are distributed in three longitudinal columns of the neural plate. 

Within these columns, only a subset of cells express the HuC marker, typical of 

differentiated neurons. Expression of the neurogenin1 (NGN1) transcription factor 

helps define the longitudinal proneuronal domains where cells have the potential 

to become neurons (Korzh et al., 1998). However, only a subset of cells maintains 

high levels of NGN1 (Haddon et al., 1998) that allows for the stable adoption of a 

neuronal fate. In the spinal cord, motor neurons occupy central and ventrolateral 

positions, interneurons are found at intermediate ones, and sensory neurons 

develop dorsally (Figure I3.5). Somatosensory neural circuits in the developing 
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hindbrain are constituted by different trigeminal sensory neurons. These are 

groups of ~60 neurons, all extending a single axon along the lateral line of the 

hindbrain and spinal cord. Later they form numerous branches that innervate 

nuclei along the anterio-posterior axis of the hindbrain and spinal cord (Pan et al., 

2012).     

Figure I3.4. Organization of the neural tube of a 24 hpf zebrafish embryo. Left panel, 
schematic cross-section, indicating: non-neural ectoderm, RP, roofplate; dorsal, inter- and motor 
neurons; FP, floorplate; notochord. Right panel, lateral view of a zebrafish embryo in two planes 
of focus. From Blader and Strähle (2000).  
 

With respect to the development and maturation of the blood-brain barrier (BBB) 

in zebrafish larvae, expression of tight junction proteins such as claudin-5 and 

ZO-1 has been detected in cerebral microvessels already at 2-3 dpf. Dye exclusion 

experiments have shown that high molecular weight dyes (> 900 Da) are excluded 

from the brain already at 3 dpf while low molecular weight compounds (> 350 

Da) start to be retained from 5 to 10 dpf, time at which the BBB is fully formed 

(Fleming et al., 2013).      

 

3.3. Zebrafish Antiviral Innate Immune System  

 

The following section is an extract from: “The Antiviral Innate Immune Response 

in Fish: Evolution and Conservation of the IFN System” (J. Mol. Biol., 2013). 

This review article represents a collaborative effort between the two groups in 

which I did my Thesis work.  The full article is included at the end of this Thesis in 

Annex 1.  
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Interferons (IFNs) represent the first line of defense against viral infections. Their 

vital role is testified by the conservation of their structure among vertebrates 

(Hamming et al., 2011). IFNs belong to the class II helical cytokine family and, in 

mammals, can be divided into three different groups based on biological and 

structural features as well as receptor usage (Pestka et al., 2004): mammalian 

IFNs have been classified as type I (α, β, ω, ε, and κ), type II (γ), and type III (λ) 

IFNs. Actually, only type I and type III IFNs (often grouped under the label 

“virus-induced IFNs”) are truly specialized as innate antiviral cytokines; IFNγ is 

rather a regulatory cytokine of innate and adaptive immunity, mostly active 

against intracellular bacteria.  

Zebrafish possess four IFN genes (IFNφ1-4) structurally similar to mammalian 

type I IFNs (Zou and Secombes, 2011; Aggad et al., 2009). This number is 

unlikely going to change considering the quality reached by the zebrafish genome 

assembly.  

At the cellular level, macrophages and neutrophils represent the first immune cell 

types activated at the larval stage in response to pathogens. In fact, it was shown 

that by 3 dpf the innate immune system is fully functional, with macrophages 

being able to phagocytose bacteria as early as 30 hpf (Herbomel et al., 1999) and 

neutrophils from 52 hpf (Le Guyader et al., 2008). Moreover, in the case of 

CHIKV infection in zebrafish, neutrophils (together with hepatocytes) were 

shown to be the main IFN-producing cell type (Palha et al., 2013).   

 

3.3.1. Upstream IFN Signaling Pathway 

 

The activation of the IFN system is dependent on the specific recognition of 

conserved pathogenic motifs – known as PAMPS, for pathogen-associated 

molecular patterns – by the numerous pathogen-recognition receptors (PRRs) 

found on intracellular vesicles (Kawai and Akira, 2011). Antiviral PRRs include 

for example RIG-I-like receptors (RLRs) and Toll-like receptors (TLRs). In silico 

analyses have revealed that they are highly conserved between mammals and 

teleost fish (Rajendran et al., 2012). Sequence analyses have also suggested a fair 

conservation of signaling pathways downstream of RLRs, with a critical role 
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played by the mitochondrial antiviral signaling protein (MAVS) (Zou et al., 2009; 

Biacchesi et al., 2009; Simora et al., 2010; Su et al., 2011, Xiang et al., 2011). 

Association of MAVS with TRAF3 (tumor necrosis factor (TNF) 

receptor-associated factor 3) and activation of the pathway by TBK1 (TANK 

binding kinase 1) via phosphorylation of IFN regulatory factor 3 (IRF3) and 7 

(IRF7) transcriptional factors have also been shown in fish (Xiang et al., 2011; 

Sun et al., 2010). Nuclear translocation of these factors induces the transcription 

of different cytokines including IFN genes (Figure I3.5). 

Figure I3.5. Schematic representation of upstream IFN signaling pathways in zebrafish. 
Adapted from Langevin et al. (2013). 
 

3.3.2. Downstream IFN Signaling Pathway 

 

In zebrafish, the two groups of IFNs signal via two different receptors. IFNφs of 

the first group (IFNφ1 and φ4) bind to the cytokine receptor family B (CRFB) 

CRFB1-CRFB5 complex while the receptor for group II (IFNφ2 and φ3) consists 

of the association between the CRFB5 and CRFB2 chains (Levraud et al., 2007; 

Aggad et al., 2009) (Figure I3.6). 
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In mammals, IFN binding to their membrane receptors (IFNAR) triggers 

recruitment and binding of the kinases TYK2 and JAK1 to IFNAR1 and IFNAR2, 

respectively. Subsequently, these kinases promote the phosphorylation of STAT1 

and STAT2 proteins preceding their oligomerization. Conjugation of cytoplasmic 

IRF9 to the STAT1/2 oligomers generates the complex ISGF3 (IFN-stimulated 

gene factor 3), which induces the transcription of IFN stimulated genes (ISGs) 

after binding nuclear IFN-stimulated responses elements on their promoter. The 

zebrafish genome encodes two different paralogues, stat1a and stat1b (Stein et al., 

2007). The kinases JAK1 and TYK2 as well as STAT2 and IRF9 are also present 

in fish genomes (Stein et al., 2007). 

Figure I3.6. Schematic representation of virus-induced IFNs and their receptors in zebrafish. 
Adapted from Aggad et al. (2009). 
 

Type I IFNs do not possess antiviral activity per se but rather interfere with viral 

infection through induction of a vast repertoire of ISGs via the JAK/STAT 

pathway. A few hundred ISGs have been identified in humans (Sadler and 

Williams, 2008; Schoggins et al., 2011), with a rich diversity of molecular 

functions. Some ISGs exert a direct antiviral activity such as MX, 

RSAD2/VIPERIN/VIG1, ISG15, PKR, and TRIM5. However, the connection of 
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most ISGs to antiviral mechanisms, and even their role in the biology of the cell, 

remain unknown. 

While ISGs are intrinsically located downstream of IFN in the antiviral pathways 

induced by viral infections, a number of them are able to up-regulate type I IFNs 

and are therefore involved in positive feedback regulatory loops (e.g. RSAD2) 

(Saitoh et al., 2011), while some also feedback negatively on IFN signaling (e.g. 

SOCS1 and 2). Furthermore, the recognition of viral compounds by cellular 

sensors can up-regulate some ISGs directly, that is, independently of IFN 

induction; such bypass has been shown for example for MX (Goetschy et al., 

1989; DeWitte-Orr et al., 2007) and for RSAD2 in humans and fish (Zhu et al., 

1997; Boudinot et al., 1999). 

In a recent study performed by our lab, zebrafish larvae were shown to possess 

~100 ISGs orthologs to human ISGs (Briolat et al., 2014), although their function 

has yet to be characterized. In this comparative study between the effects of 

Infectious Hematopoietic Necrosis virus (IHNV) and Chikungunya virus 

(CHIKV) on ISGs induction, it was shown that ISGs followed the same kinetics 

of IFNs while being expressed in a tissue-specific manner. Moreover, several 

were induced by CHIKV and repressed by IHNV, suggesting the presence of 

antagonist pathways.    

 

3.3.3. Models of Viral Infections in the Zebrafish 

 

Free-swimming larvae, which have to rely on innate immune defenses before 

maturation of adaptive immunity, are highly suited for the study of innate 

immunity and inflammation; as previously described, the overall similarity of the 

cytokine networks between fish and mammals as well as their immune cells 

(Traver et al., 2003) make their use relevant for many diseases. Moreover, 

characterization of IFNs and ISGs pathways in zebrafish larvae has been the focus 

of the aforementioned study, performed in our labs (Briolat et al., 2014). This has 

greatly contributed to our understanding of viral-specific immune responses and 

provides a useful reference for studies of host-virus interactions. 



 
 
40 

Several human viruses have already been studied in zebrafish, such as Hepatitis B 

and C viruses (Liu et al., 2012; Ding et al., 2011), Herpes simplex virus-1 

(HSV-1) (Antoine et al., 2014), and recently by our lab, CHIKV (Palha et al., 

2013). Fish virus models include for example Viral Hemorrhagic Septicemia virus 

(Novoa et al., 2006), Spring Viremia of Carp virus (Encinas et al., 2013), and 

IHNV (Ludwig et al., 2011).  

Moreover, a variety of tools including various transgenic reporter fluorescent lines 

have been developed to follow inflammatory cell types and responses in zebrafish. 

Among these, several were employed for this Thesis to follow in vivo the activity 

of macrophages (mpeg1:Gal4/UAS:NfsB-mCherry transgenic larvae (Ellett et al., 

2011)), neutrophils (LyZC:DsRed larvae (Hall et al., 2007)) and IFN-producing 

cells (ifnφ1:mCherry larvae (Palha et al., 2013)) in the context of SINV infection.  

 

3.4. Concluding Remarks  

 

Several factors have contributed to the considerable expansion of the zebrafish as 

an animal model in medical research, with its small size, its transparency, and the 

high similarity of its immune system to that of mammals being only a few 

(Renshaw et al., 2012).   

Thanks to the complete annotation of the zebrafish genome, several reverse 

genetics techniques have become available, such as retrovirus-mediated 

insertional mutagenesis (Chen et al., 2002), mutant identification using Targeting 

Induced Local Lesions In Genomes (TILLING) technology (Wienholds et al., 

2002) or the most recent one, CRISPR/Cas9-mediated knock-in approach for 

genome editing (Hwang et al., 2013; Auer and Del Bene, 2014). As previously 

mentioned, generation of new transgenic reporter lines has almost become routine, 

and gene knock-down is made easy by microinjection of antisense Morpholino 

Oligonucleotides (MOs) at the 1 to 4 cell stage. Zebrafish are also regularly used 

in chemical screens, since they allow for testing of a large number of compounds 

in vivo by simply adding these into the water (Baker, 2011). 

However, this model presents a few disadvantages as well. The maximum 

temperature at which zebrafish can be raised is 32°C (89.6°F), which impairs the 
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study of those pathogens that replicate at higher temperatures. The standard 

laboratory zebrafish lines are not fully inbred and the genetic background of 

mutants and transgenic lines is generally poorly characterized. There is a limited 

amount of available biochemical tools (i.e. antibodies) or of established in vitro 

cell lines, and it is extremely challenging to establish cell cultures. As a matter of 

fact, part of this Thesis has consisted in the development of a primary neuronal 

cell culture system from zebrafish brain homogenates. The work is still in its 

infancy but preliminary data have shown that this could be a valuable new tool to 

address questions such as neuronal survival and gene expression changes in 

response to pathogens.  

 

Summary of Chapter III 

− Zebrafish is a tropical freshwater fish, originally employed for studies of 

embryogenesis and more recently also in cancer, neuroscience, 

pharmacology, and disease modeling fields.  

− Its main advantage lies in the optical clarity of its embryos and larvae. 

Transgenic lines expressing fluorescent reporter proteins in cells or tissues 

of interest are now being developed routinely. 

− The zebrafish brain consists of five major regions: the telencephalon, the 

diencephalons, the mesencephalon, the metencephalon, and the 

myelencephalon, each one well-characterized anatomically, although 

functional knowledge is unequal. 

− The zebrafish antiviral immune system shares overall similarity with the 

human one, relying heavily on the expression of IFNs and ISGs. 

− The replication, tropism, and pathogenesis of several human and fish 

viruses have been characterized and/or are being currently characterized. 

− Despite a few disadvantages, the zebrafish is a very powerful model to 

visualize in real time at the whole-organism level events taking place at 

the cellular or sub-cellular level. 
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AIM OF THE WORK 

 
The laboratories where I worked during my PhD Thesis previously pioneered the 

use of zebrafish to study viral infections. The groups within the Units “Virology 

and Molecular Immunology” at INRA and “Macrophages and Development of 

Immunity” at Pasteur Institute led by Pierre Boudinot and Jean-Pierre Levraud 

respectively, have been able to follow the progression of the infection of a lethal 

fish rhabdovirus (Ludwig et al., 2011), and more recently of the human 

Alphavirus related to SINV – Chikungunya virus (CHIKV) (Palha et al., 2013). 

Moreover, they have developed various transgenic zebrafish lines to follow 

antiviral responses, such as the ifnφ1:mCherry that labels the main cell 

populations producing type I IFNs during the infection, and more recently the 

MxA:mCherry, that labels IFN-responding cells. It has thus been possible to 

image in real time the progression of the infection in the host, at cellular 

resolution in the whole body, while simultaneously imaging the host response to 

the virus.  

A notable finding in the study of the model of CHIKV infection in zebrafish was 

the entry of the virus in the brain, despite the fact that the virus is inoculated in the 

bloodstream at a stage where the blood-brain barrier is mature enough to prevent 

passive passage of proteins. Remarkably, this virus was then shown to persist in 

the brain much longer than in other tissues. Moreover, neutrophils appeared to be 

the main cell population activated in zebrafish larvae to clear the infection but 

they were excluded from the brain, suggesting other mechanisms are involved in 

the control of the infection in this particularly sensitive organ (Palha et al., 2013). 

These results laid the foundation for my project. 

The aim was in fact to gain better insights into the mechanism through which 

Alphaviruses persist longer in the CNS than in other infected organs. To do so, 

Sindbis virus was the obvious choice. The virus is markedly neurotropic in mice 

but is nevertheless regarded as a BSL2 pathogen, and as such allowed us to use 

our confocal microscopy equipment for both ex vivo and in vivo imaging, unlike 

CHIKV, which is classified as a BSL3 pathogen.  
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We therefore proceeded to characterize the general course of SINV infection in 

zebrafish larvae, with a special attention towards its possible mechanism of entry 

in the CNS. The data collected on this part of the project constitute the submitted 

article included in the first part of the Results section.  

At the same time, we surveyed the IFN-related immune response, from its onset to 

later times post-infection. The results are still very preliminary but indicate that 

depending on the level of brain infection – mild in the case of CHIKV and 

extended in the case of SINV – different responses may be activated in the CNS. 

This differential immune response has also been observed after the production and 

comparison of different SINV strains (2nd part of the Results section).    

Part of this Thesis project has also been devoted to the development of a protocol 

to obtain neuronal cell cultures from zebrafish larvae, with the aim to determine 

the mean survival rate of isolated neurons and glial cells upon SINV or CHIKV 

infection and to possibly visualize the spreading mechanism within infected 

neurons (anterograde and/or retrograde movement).  

Finally, we set up a collaboration with the group “Viral populations and 

Pathogenesis”, led by Marco Vignuzzi at Pasteur Institute, with the aim to exploit 

our SINV infection model to test potentially antiviral compounds.   
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RESULTS 

 
The results obtained during this Thesis have led to the characterization of the 

infection course of Sindbis virus (SINV) in zebrafish larvae, with a special 

attention towards its neurotropism. Thanks to the combined use of a green 

fluorescent protein (GFP)-recombinant SINV strain (SINV-GFP) and zebrafish 

transgenic larvae, we have been able to follow in vivo and at cellular resolution 

SINV infection course as well as the elicited immune response. Data collected on 

SINV mechanism of entry in the Central Nervous System (CNS) have been 

included in the submitted paper and constitute the 1st Chapter of this section.  

 

The 2nd Chapter of the Results involves the studies we performed on the 

differential immune responses observed in the periphery and in the CNS. 

Moreover, we have produced a second recombinant SINV strain 

(SINV2-mCherry) and have used it to characterize modulations in the antiviral 

Interferon (IFN)-mediated response by different virus strains. We have also set up 

a protocol to obtain zebrafish neuronal and glial cells in culture (Chapter 3). These 

will represent a valuable tool for the growing zebrafish research community, to 

study mechanisms of pathogenesis and cell survival under several stimuli, such as 

viral infections. 

 

The final Chapter of the Results includes preliminary data on the potential 

antiviral properties of difluoromethylornithine (DFMO) on the pathogenicity of 

SINV. These in turn could be useful in the future to screen for and identify other 

potential broad-spectrum antiviral drugs.   
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Summary 

 

Alphaviruses, such as Chikungunya virus (CHIKV) and Sindbis virus (SINV), are 

vector-borne pathogens that cause acute illnesses in humans and are sometimes 

associated with neuropathies, especially in infants and elderly patients. Little is 

known about their entry mechanism in the central nervous system (CNS). Here we 

used the optically transparent zebrafish larvae to image in vivo the onset and the 

progression of the infection caused by SINV. Testing the possible mechanisms of 

entry in the CNS, we excluded infection of brain endothelium or transport via 

macrophages, and identified axonal transport from the periphery as the most likely 

route of access to the CNS. We also found a prominent role of Interferon (IFN) in 

the control of SINV pathogenesis but not neuroinvasion. These results will 

facilitate testing therapeutics for the control and prevention of Alphavirus-induced 

encephalopathy. 
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Introduction 

 

The outcome of an infection critically depends on the organs reached by the 

invasive pathogen, which entails a precarious balance between the pathogen 

dissemination strategy and systemic and local host defenses. The central nervous 

system (CNS) is especially vulnerable, being highly susceptible to both virus 

induced cytopathic effects and to the inflammatory response itself (Swanson and 

McGavern, 2015). The CNS is however protected by specialized barriers, notably 

the blood-brain barrier (BBB). Neuroinvasion is generally rare but some viruses 

have evolved strategies to enter and spread within the CNS. Rabies virus is a 

well-known example of a neuroinvasive – and fatal – pathogen in nearly 100% of 

human cases (Dietzschold et al., 2008). Poliovirus can reach neurons in the spinal 

cord, brain stem or motor cortex, inducing characteristic paralysis, but only in 1-

2% of infected individuals (Racaniello, 2006). Herpesviruses reach the peripheral 

nervous system and establish a lifelong persistent infection. While generally 

quiescent, they can revert under certain stress stimuli to produce infectious 

particles and in rare cases reach the CNS (Tirabassi et al., 1998). Persistent or 

“stable” infection of the CNS is also a rare occurrence, except for some 

specialized viruses. On the other hand, acute CNS infections are more often 

caused by zoonotic pathogens, for which humans normally represent a “dead-end 

host” (Gubler, 2001). In particular, among the arboviruses – viruses transmitted 

by arthropod vectors – Alphaviruses constitute a major source of viral zoonotic 

diseases, and often induce encephalitis. Eastern (EEEV) and Western Equine 

Encephalitis virus (WEEV) but also Chikungunya virus (CHIKV) have been 

associated with serious neurological manifestations. 

Despite extensive studies in the field, the factors that determine the onset of 

neuroinvasion are not well understood. Infants are clearly more prone to CNS 

invasion than adults, generally attributed to an immature BBB. Among adults, 

genetic factors have been identified in a few cases. Mutations in the ccr5 gene (a 

chemokine receptor and co-receptor for Human Immunodeficiency Virus – HIV), 

for example, have been shown to increase the incidence of symptomatic West 

Nile virus (WNV) infection (Glass et al., 2006). With respect to cellular 

determinants, maturation of neurons has been shown to impair viral replication of 
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certain arboviruses in contrast to non-differentiated neurons (Schultz et al., 2015). 

As of today, some studies have addressed ways to limit neurological symptoms of 

encephalitis (e.g. Brison et al., 2014) but no strategy exists to specifically prevent 

CNS invasion during outbreaks of neurotropic viruses. 

The mechanisms of entry of viruses in the CNS have been characterized using a 

variety of approaches both in vitro and ex vivo, and fall within three categories. 

Some viruses are able to infect cells of the BBB (i.e. endothelial cells that form 

brain microvessels) or other components of the brain-periphery interface, such as 

epithelial cells of choroid plexuses. This allows their release in the brain 

parenchyma by the infected cells and/or disruption of the barrier causing leakage 

of blood-borne virions. Another strategy is known as the “Trojan horse” entry: 

viruses hide in monocytes/macrophages and exploit the ability of these cells to 

cross the barrier to enter the brain. Finally, various viruses travel within the 

numerous axons of motor or sensory neurons that connect the CNS to the 

periphery, using either anterograde or retrograde transport (Koyuncu et al., 2013). 

Despite the development of virus mutants built to express reporter genes (e.g. 

luciferase, GFP, mCherry), intravital imaging of virus infection in mammals is 

still a real challenge (Rameix-Welti et al., 2014). A major hindrance in detailed 

kinetic analyses of CNS viral invasion lies with observing these events in real 

time. The zebrafish larva offers a powerful system to follow such events in a 

vertebrate, being small, transparent, and tolerant for long anesthesia (Levraud et 

al., 2014). In a recent study, we performed real time imaging of zebrafish larvae 

inoculated with a green fluorescent protein (GFP) recombinant CHIKV (Palha et 

al., 2013). CHIKV is a re-emerging arbovirus, which has gained attention after the 

epidemic of 2005-2006 in Islands of the Indian Ocean (Powers and Logue, 2007) 

and, more recently, due to its spread to the Caribbean, the United States and 

Polynesia. In our previous study in zebrafish larvae, the majority of infected cells 

was found in various peripheral organs; however, infection of some brain cells 

always occurred. Remarkably, infected cells in the CNS survived much longer 

than cells infected in the periphery. Importantly, those experiments were 

performed at a developmental stage where the BBB of the zebrafish larva is 

mature enough to block the passage of proteins from the blood to the CNS 

(Fleming et al., 2013), excluding passive diffusion of viruses to the CNS. This 
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work demonstrated that it is possible to image neuroinvasion in zebrafish larvae 

from the earliest stages of the infection. However the BSL3 status of CHIKV 

limited our practical options for in vivo microscopy. 

To better characterize Alphavirus neuroinvasiveness, we decided to employ in this 

work Sindbis virus (SINV), the Alphaviridae prototype and a BSL2 pathogen 

markedly neurotropic in mice (Lewis et al., 1996; Lustig et al., 1988). SINV has 

often been used for studies of viral spreading in the CNS after intracerebral (ic) 

inoculation, rather than to understand its mechanism of neuroinvasion. However, 

its entry into the CNS has been suggested to occur from infection of peripheral 

nerves (Cook and Griffin, 2003), although the resolution achievable in mice did 

not permit to distinguish details below tissue or organ level, and alternative 

hypotheses were not tested.   

Here, we show that upon intravenous (iv) inoculation in zebrafish larvae SINV 

infects various cell types and replicates efficiently. Moreover, in a substantial 

fraction of infected larvae the virus reaches the CNS, where its progressive spread 

can be documented by in vivo imaging. We tested the different possible routes of 

invasion of the CNS and identified axonal transport via infected peripheral 

neurons as the most likely route of entry. In addition, we followed the elicited host 

response and highlighted the importance of type I interferons (IFN) in preventing 

spreading of the virus in the periphery, but not for neuroinvasion.  
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Results 

 

SINV shows a broad organ tropism in infected zebrafish larvae 

 

Wild type (WT) zebrafish larvae were inoculated intravenously (iv) at 3 days 

post-fertilization (dpf) (Figure 1A) with ~102 TCID50 of a recombinant SINV 

strain: SINV-GFP (hereon referred to as SINV), engineered to induce GFP 

expression in infected cells (Hahn et al., 1992). Viral growth was determined by 

qRT-PCR of the viral E1 gene from whole larvae lysates (Figure 1B). Intense 

viral replication occurred during the first 48 hours of the infection and 

subsequently leveled off and declined over time.  

We observed infected larvae with a dissecting stereomicroscope; relatively mild 

and usually transient signs of disease appeared as early as 2 days post-inoculation 

(dpi), including edema, irregular heartbeat, and yolk opacification. In a minority 

of larvae (~15%), these signs persisted and led to death around 4 dpi (Figure 1C). 

Live fluorescence microscopy revealed the presence of GFP-positive (GFP+) cells 

scattered or in clusters. These infected cells were mostly observed in peripheral 

organs including the liver, the heart and the yolk (Figure 1D). In addition, the 

infection often reached the CNS (Figure 1E).  

Fixation and whole-mount immunohistochemistry (WIHC) with anti-GFP and 

anti-SINV capsid antibodies confirmed that GFP+ cells were infected and actively 

undergoing viral protein translation and assembly (Figure S1A. Related to Figure 

1).  

These results indicate that SINV replicates efficiently in zebrafish larvae and that 

its spread through the whole organism can be monitored over time via in vivo 

imaging (Figure 1; Figure S1). 
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Figure 1. SINV replicates in zebrafish larvae and exhibits a broad organ tropism. (A) Scheme 
of a 72 hours post-fertilization (hpf) larva, showing the sites of injection: iv, intravenously in the 
dorsal aorta or in the caudal vein; ic, intracerebrally in the optic tectum; eye, in the retina. (B) 
Virus titers in iv infected zebrafish larvae. Data represent mean ± s.e.m. of 5 larvae per time-point, 
from 2 experiments pooled. Dotted line: treshold level from uninfected control larvae. (C) Survival 
curves of control uninfected (No V) and iv infected zebrafish larvae (SINV). Data pooled from 5 
independent experiments. N = 12 larvae per group. (D–E) Superposition of transmitted light and 
GFP fluorescence. (D) Confocal in vivo imaging of control uninfected (No V) and iv infected 
(SINV) larvae at 1 day post-infection (dpi). H, heart; L, liver; Y, yolk; white arrowhead: infection 
in the left pectoral muscle. (E) Confocal in vivo imaging of 3 infected larvae at 1 dpi, illustrating 
the pattern variability. (E’, E’’) Lateral views; (E’’’) Dorsal view; note that E’ is a magnification 
of D’’. White arrowheads point to sites of CNS infection. Scalebars: 50 µm. See also Figure S1. In 
this and all following figures, anterior to left, dorsal to top for lateral views. 
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SINV is neuroinvasive in zebrafish larvae 

 

Under the fluorescence microscope, a prominent feature of a number of SINV 

inoculated larvae was the presence of GFP+ cells in the brain or the spinal cord 

(Figure 1E). Approximately half of the larvae had obvious CNS infection by 3 to 

7 dpi, although this was less prominent at early time-points. The course of the 

infection was therefore evaluated every 24 hours by following individual larvae 

with confocal imaging during several consecutive days. Unlike infection foci in 

the periphery, those observed in the brain were either persisting or progressively 

increasing over time (Figure 2A). Co-immunolabeling to stain SINV-positive cells 

and axonal projections confirmed that CNS neurons were infected (Figure 2B). 

Peripheral neurons, such as trigeminal ganglion cells and retinal ganglion cells, 

were also targeted by the virus (Figure 2C; Figure S2A. Related to Figure 2). 

Although the pattern of brain infection was very variable between individuals, 

analysis of a large panel of samples revealed that infection foci were commonly 

found in the olfactory bulb, the optic tectum, the vestibulolateralis lobe of the 

corpus cerebelli and the medulla (Figure S2B and S2C. Related to Figure 2). 

To follow infection of neurons in vivo, we used elavl3:Gal4/5xUAS:RFP double-

transgenic larvae (from hereon called HuC:G/U:RFP), in which RFP is expressed 

in postmitotic neurons. Observations from early stages of infection (~8 hpi) 

showed that the first infected cells to appear after iv injection were in the 

periphery (e.g. muscle cells, cells in the heart and in the liver), followed at later 

time-points by neurons of the peripheral and the central nervous system (1dpi) 

(Figure 2D). 

To exclude the possibility that neurons may simply require longer to express GFP 

once infected, we performed intracranial (ic) inoculation of SINV in 

HuC:G/U:RFP larvae (Figure 1A). GFP+ neurons were detected as soon as 8 hpi 

(Figure 2D), indicating that late appearance of CNS infection in iv injected larvae 

is a result of late infection of neurons. Ic injection resulted in a more severe 

disease with over 50% of larvae dying between 5 and 7 dpi (Figure S2D. Related 

to Figure 2). Viral growth kinetics measured by viral transcripts from whole 

larvae homogenates was slightly higher in ic injected larvae than in iv inoculated 

ones (Figure S2E. Related to Figure 2). Many foci of GFP+ cells were 
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systematically found in various regions of the brain and spinal cord, but little 

spreading occurred at the periphery (e.g. eye) (Figure 2E). 

Overall, these results show that after inoculation of the virus in the bloodstream, 

peripheral cells are infected first, followed by invasion of the CNS (Figure 2; 

Figure S2). 

Figure 2. SINV is neurotropic in zebrafish larvae. (A’–A’’’’) Confocal in vivo imaging of the 
same infected larva from 1 to 4 dpi. Blue arrowheads: infected peripheral cells; white arrowheads: 
infected cells in the CNS. (B, C) Confocal images of whole-mount immunohistochemistry 
(WIHC) processed SINV-infected larvae, GFP staining (SINV-infected cells) in green, acetylated 
tubulin (axons) in red. (B) Dorsal view, with inset showing a wider field of the head; dotted square 
corresponds to the area imaged at higher magnification. (C) Lateral view. White arrowhead: 
neurons of the trigeminal ganglion. Blue arrowhead: axon from a trigeminal ganglion neuron 
reaching the optic tectum. (D) Quantification of appearance of infected cells in the periphery and 
in the CNS, from in vivo observation of HuC:G/U:RFP larvae, infected iv or ic. N = 12-24 from 2 
independent experiments pooled. In vivo confocal imaging at (E’) 1 dpi and (E’’) 2 dpi of a larva 
infected ic. White arrowheads: CNS infected cells; yellow arrowhead: spinal cord infection; blue 
arrowhead: infected cells in the eye. Scalebars in (A): 100 µm, in (B, C, E): 50 µm. See also Figure 
S2. 
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SINV does not target the blood-brain barrier endothelium 
 

We then proceeded to test the possible mechanism of SINV entry in the CNS. A 

number of DNA and RNA viruses have been shown to gain access through 

infection of endothelial cells of the BBB, including for example Epstein-Barr 

virus (Casiraghi et al., 2011), Hepatitis C virus (Fletcher et al., 2012), and WNV 

(Xu et al., 2012). Moreover, our laboratory previously established a zebrafish 

infection model of a fish rhabdovirus, Infectious Hematopoietic Necrosis Virus 

(IHNV), in which we demonstrated that IHNV primarily infects endothelial cells 

of the vasculature. Infection of these cells in turn causes a rapid disruption of 

blood vessels and virus dissemination to neighboring cells, including cells in the 

brain (Ludwig et al., 2011). It was therefore used as a positive control to visualize 

BBB disruption. 

To evaluate changes in the vascular endothelium, we inoculated 

fli1a:GAL4FF/5xUAS:RFP transgenic fish (hereafter referred to as fli:G/U:RFP), 

which express RFP in endothelial cells of the brain as well as of peripheral 

vessels. IHNV-infected fish were fixed at 1 and 2 dpi and immunolabeled using 

the 19B7 mAb directed against the G protein of IHNV. As opposed to control 

uninfected fish (Figure 3A), all stained fish showed disrupted vessels and 

scattered likely apoptotic RFP-positive cells (Figure 3B; Figure S3A; Movie S1. 

Related to Figure 3). On the other hand, we monitored SINV-infected 

fli:G/U:RFP fish over a period of 7 days and overall, the vasculature looked 

intact, even in larvae showing an extensive infection in the CNS (Figure 3C; 

Figure S3B; Movies S2 and S3. Related to Figure 3) and was comparable to 

control uninfected fish (Figure 3A).  

To ensure optimal imaging of even deep brain vessels, SINV-infected 

fli:G/U:RFP larvae were processed using the recently developed Clarity protocol 

and later imaged at high resolution. Imaging revealed no apparent disruption of 

brain microvasculature (Figure 3D). Infected cells were sometimes adjacent to 

cells of the vasculature, especially in the periphery, but no co-localization was 

ever observed (for 15 animals examined in the brain, in 3 independent 

experiments, and for 13 animals examined in the periphery) (Figure S3C; Movie 

S4. Related to Figure 3).  
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In conclusion, our data show that SINV does not infect nor disrupt the BBB 

endothelium to gain access to the CNS (Figure 3; Figure S3; Movie S1; Movie 

S2; Movie S3; Movie S4).   

Figure 3. SINV does not infect the brain microvascular endothelium. Confocal imaging of (A, 
B) fixed and (C) in vivo fli:G/U:RFP larvae at 2 dpi. (A) No V. (B) IHNV-infected larva. (C) 
SINV-infected larva. (A’, B’, C’) RFP staining (vasculature) in red. (A’’, B’’, C’’) Merge with 
transmitted light, vasculature in red, virus in green. (A’’’) No V in green. (B’’’) G protein of 
IHNV in green. (C’’’) SINV-infected cells in green. Scalebars: 50 µm. (D) Confocal imaging from 
a Clarity-treated fli:G/U:RFP SINV-infected larva at 3 dpi. Scalebar: 250 µm. See also Figure S3.  
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Macrophages do not become infected and are not required for SINV entry in the 
CNS  
 

A second possible mechanism through which viruses can enter the CNS is the 

so-called “Trojan horse” strategy, where viruses infect macrophage/monocytes 

and exploit their natural ability to cross the BBB. To test this possibility, we 

inoculated SINV in mpeg1:GAL4FF/UAS-E1b:Eco.NfsB-mCherry transgenic 

larvae (from hereon called mpeg:G/U:Nfsb-mCherry), in which macrophages 

(including microglia) express a cytosolic red fluorescent protein. Confocal 

microscopy showed no co-localization of cells displaying both green and red 

fluorescence (Figure 4A), thus macrophages were not productively infected by 

SINV. They displayed their characteristic shape with no evidence of apoptosis. 

In addition, we depleted them specifically through metronidazole treatment of 

mpeg:G/U:Nfsb-mCherry larvae, exploiting the catalytic ability of the 

NfsB-mCherry fusion protein as previously described (Davison et al., 2007) 

(Figure S4A and S4B. Related to Figure 4).  

Macrophage depleted SINV-infected larvae displayed a slight increase in disease 

severity – assessed using the scoring system previously developed (Palha et al., 

2013) – (5.2 ± 1.1 N=24 compared to 3.6 ± 1.0 N=24 in controls) but no 

significant increase in mortality (Figure 4B). By 7 dpi, both controls and treated 

fish displayed a similar rate of infection (~50%) in the CNS (Figure 4C; Figure 

S4C. Related to Figure 4), although treated fish showed a bigger variability in 

terms of appearance of infected cells in the CNS.  

We could therefore exclude entry of SINV in the CNS via infection of 

macrophages (Figure 4; Figure S4). 
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Figure 4. Macrophages are not targeted by SINV. (A) WIHC of SINV-infected 
mpeg:G/U:Nfsb-mCherry larva at 2 dpi. (A’) Representative zebrafish head, with inset showing 
imaged area. (A’’) Macrophages in red, SINV-infected cells in green, cell nuclei in blue (DAPI). 
(A’’’) SINV-infected cells. (A’’’’) Macrophages. Scalebars: 10 µm. (B, C) 
mpeg:G/U:Nfsb-mCherry were treated with DMSO (control) or Metronidazole (to deplete 
macrophages), before injection with SINV. (B) Survival curves and (C) Percentage of brain 
infected larvae in DMSO-treated and Metronidazole-treated larvae. N = 24 from 2 independent 
experiments pooled. ns - not significant (Log-rank test). See also Figure S4. 
 

An eye model of infection shows that SINV can be transported via axons to the 

CNS after infection of peripheral neurons  

 

Several viruses infect and replicate in peripheral nerves (Koyuncu et al., 2013). 

These are connected to neurons of the CNS and act as springboard for efficient 

entry and replication in the brain. In the case of SINV infection, we sometimes 

observed infection of peripheral sensory neurons such as trigeminal ganglion cells 

prior to infection in the CNS. Early infection of muscle cells followed by 

appearance of GFP+ cells among motor neurons at the corresponding level of the 

spinal cord was also a common occurrence (Figure 5A). These observations 

strongly suggest axonal spreading of the virus to the CNS. 

To directly test if axonal transport of SINV can occur, we exploited the 

well-known connectivity of the visual system (Grove, 2008). We injected the 
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virus in the retina, in an area comprised between the ganglion cell layer and the 

outer nuclear layer (Figure 1A). Fish injected in the eye did not show an increase 

in mortality rates and overall disease scores were comparable to those obtained in 

iv inoculated fish (data not shown). Injections in the dense retinal parenchyma is 

difficult and leakage of inoculum to other tissues probably occurred; however, 

leakage can be predicted to predominantly result in infection of areas close to the 

injected eye, while axonal transport should result in infection of the contralateral 

optic tectum (Figure 5B). All infected larvae displayed GFP in the retina at 1 dpi 

and 45% showed also infection of the contralateral optic tectum. 

Altogether, because we excluded alternative possibilities, these data indicate that 

infection of peripheral nerves and subsequent axonal transport is the major route 

of CNS access for SINV (Figure 5).  

Figure 5. SINV is transported to the CNS via peripheral neurons. (A) Infection of muscle cells 
and spinal cord neurons in the tail region. WIHC processed iv-infected larva at 2 dpi. Lateral view, 
with inset depicting the imaged area. Dotted lines: dorsal and ventral limits of the spinal cord; 
plain lines: limits of fins; blue arrow: muscle fiber; blue arrowhead: peripheral neuron; white 
arrowhead: neuron inside the spinal cord. (B) In vivo confocal imaging of SINV-infected larva at 2 
dpi, upon injection of the virus in the left eye. Dorsal view, with inset showing a scheme of the 
projection of the retinal neurons to the optic tectum.  White arrowhead: infected cell body in the 
optic tectum; yellow arrowhead: infected cell in the eye. Probable inoculum leakage indicated by 
blue arrowhead. Overlay of transmitted light (grayscale) and GFP fluorescence (green). Scalebars: 
50 µm. 
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SINV-infected larvae mount a strong IFN-mediated immune response 

 

In all vertebrates, type I interferons (IFNs) represent the first line of defense and 

the main cytokines involved in protection against viral infections. The type I IFN 

response of larval zebrafish is substantially mediated by IFNφ1 and IFNφ3 

(Aggad et al., 2009; Palha et al., 2013). qRT-PCR analyses of RNA extracted 

from SINV infected larvae revealed that the virus induces high mRNA levels of 

both ifnφ1 and ifnφ3 as well as of interferon stimulated genes (ISGs), such as 

rsad2 (also known as viperin or vig1). The peak of expression was observed at 1 

dpi and was followed by a slow (ifnφ1, vig1) or relatively rapid (ifnφ3) decrease 

in mRNA levels over time (Figure 6A–C). Fluorescence microscopy of 

ifnφ1:mCherry transgenic larvae (Palha et al., 2013) revealed two main IFN 

producing cell types during SINV infection: hepatocytes and motile leukocytes. 

Many mCherry-positive leukocytes were observed (Figure 6D) as early as 2 dpi 

and increased steadily over time (data not shown). To determine the relevance of 

the response, we knocked-down (kd) all type I IFN receptors (IFN-R) through 

injection of antisense Morpholino Oligonucleotides (MOs) directed against the 

CRFB1 and CRFB2 subunits (Aggad et al., 2009). The survival rate of IFN-R 

morphants dropped to about 50% after infection (Figure 6E) and the disease 

severity increased sharply, with respect to embryos injected with a control MO 

and later infected with SINV (Figure 6F). Surprisingly however, IFN-R 

morphants did not develop brain infection at earlier time-points or at higher 

frequency with respect to controls (Figure 6G). Nevertheless, we observed an 

extensive increase in the number of infected cells in IFN-R morphants (Figure 

6H-I) and more cell types became susceptible to SINV (e.g. chondrocytes, 

fibroblasts – data not shown).  

RNA interference (RNAi) is used by plants and many invertebrates as a major 

antiviral defense mechanism (Kemp and Imler, 2009), and whether an antiviral 

function for RNAi exists in mammals has been a long-standing debate (Umbach 

and Cullen, 2009). Thus, we tested whether zebrafish larvae show evidence of a 

RNAi mediated response against SINV, in parallel with the IFN response, by 

performing deep sequencing of small RNAs extracted from 1 dpi SINV-infected 

larvae. Unlike what happens in SINV-infected Drosophila (Saleh et al., 2009), no 
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SINV-specific small RNAs produced through the RNAi machinery could be 

detected in zebrafish (data not shown). These results show that zebrafish larvae 

mount a protective IFN response against SINV, which limits infection in the 

periphery but is not sufficient to prevent neuroinvasion (Figure 6).  
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Figure R1.6. A protective IFN-mediated immune response is induced upon SINV-infection. 
(A–C) Expression of zebrafish type I IFNs (A) ifnφ1, (B) ifnφ3, and (C) IFN-stimulated gene (A–
C) Expression of zebrafish type I IFNs (A) ifnφ1, (B) ifnφ3, and (C) IFN-stimulated gene 
rsad2/viperin. qRT-PCR, mean ± s.e.m. of 3 pools of 9 larvae from 1 representative experiment. 
(D) In vivo distribution of IFN-producing cells upon infection of ifnφ1:mCherry transgenic larvae 
at 3 dpi. (D’) No V and (D’’) SINV-infected larva, iv. White arrowheads: IFN-expressing cells 
close to infection foci; blue circle: liver; Y: the left part of the yolk was not imaged to reduce 
acquisition time and results in an incomplete pattern of infection. (E) Survival curves, (F) Disease 
score, and (E) Percentage of brain infected larvae in Control and IFN-R morphants infected larvae. 
(E, F) N = 36 from 3 independent experiments pooled. (G) N = 24 from 2 independent 
experiments pooled. ***P<0.001, *P<0.1, ns - not significant [(E, G) Log-rank; (F) two-tailed 
unpaired t-test]. (H, I) SINV infection pattern in (H) Control and (I) IFN-R morphants at 2 dpi. 
Confocal imaging of WIHC processed larvae, GFP in green, acetylated tubulin in red. (D, H, I) 
Scalebars: 50 µm. 
 

Supplemental Data Items 

 

Figure S1. Infection of neurons in the tail region. Related to Figure 1. (A’–A’’’’) Confocal 
imaging of WIHC processed infected larva. (A’’) Infected cells displaying both GFP (green) and 
viral capsid (red) staining. Infection of the cell body is indicated by arrows; infection of axons is 
indicated by arrowheads. (A’’’) GFP staining is present in both cells (blue and white arrows and 
arrowheads). (A’’’’) Capsid staining is present in the cell body of both cells (blue and white 
arrows) but only in the axon of one cell (white arrowhead). Scalebars: 10 µm. 
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Figure S2. SINV infection in iv and ic injected larvae. Related to Figure 2. (A) Confocal 
image of WIHC processed SINV-infected larva. GFP staining (SINV-infected cells) in green, 
acetylated tubulin (axons) in red. Magnification from Figure 2C. White arrowhead: neurons of the 
trigeminal ganglion. Blue arrowheads: axon from a trigeminal ganglion neuron reaching the optic 
tectum. (B) Schematic representation of brain areas most commonly infected upon SINV 
inoculation. Dorsal view of the general organization of the zebrafish brain. OB, olfactory bulb; 
TeO, optic tectum; CCe, corpus cerebelli; Me, medulla oblongata.  
(C’–C’’’’) Confocal images of WIHC processed SINV-infected larvae at 2 dpi, showing infection 
foci in different areas of the brain. GFP staining (SINV-infected cells) in green, acetylated tubulin 
(axons) in red. (C’, C’’) Representative iv-injected larvae, showing infection foci in different areas 
of the brain. (C’’’, C’’’’) Representative ic-injected larvae, showing widespread infection in the 
brain. (D, E) Effects on (D) Survival and (E) Viral replication upon iv or ic SINV inoculation. (D) 
Data pooled from 5 independent experiments. N = 12 per group. ***P<0.001 (Log-rank test). (E) 
Virus titers in iv and ic infected zebrafish larvae. Data represent mean ± s.e.m. of 5 larvae per 
time-point, from 2 experiments pooled. Dotted line: treshold level from uninfected control larvae. 
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Figure S3. SINV infection in fli:G/U:RFP larvae. Related to Figure 3. (A, B) Confocal imaging 
of (A) fixed and (B) in vivo fli:G/U:RFP larvae. Merge with transmitted light, vasculature in red, 
virus in green. (A) WIHC of IHNV-infected larva, at 2 dpi. (B’, B’’) In vivo imaging of the same 
SINV-infected larva, at (B’) 1 dpi and (B’’) 2 dpi. Scalebars: 50 µm. (C’–C’’’) Confocal imaging 
of Clarity-treated fli:G/U:RFP SINV-infected larva, at 2 dpi. (C’’) 3D rendering of the infected 
area. (C’’’) High magnification of the infected area in the tail region. White arrowheads: infected 
cells close to the vasculature. Scalebars: 150 µm. 
 

Figure S4. Efficiency of macrophage depletion. Related to Figure 4. 
In vivo confocal imaging of 5 dpf larvae (A) DMSO and (B) Metronidazole-treated. Macrophages 
are shown in red. (C) Confocal imaging of WIHC processed SINV-infected larva at 3 dpi, 
pretreated with metronidazole. GFP in green, macrophages in red. Scalebars: 50 µm. 
 

Supplemental Movies: 

S1. Movement through Z-stacks of fli:G/U:RFP IHNV-infected larva, at 2 dpi. 

Related to Figure S3A. 

S2. Movement through Z-stacks of fli:G/U:RFP SINV-infected larva, at 1 dpi. 

Related to Figure S3B’.  

S3. Movement through Z-stacks of fli:G/U:RFP SINV-infected larva, at 2 dpi. 

Related to Figure S3B’’.  

S4. 3D rendering of fli:G/U:RFP SINV-infected larva. Related to Figure S3C.  
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Discussion 

 

Invasion of the CNS is a key event during viral infections, and often a matter of 

life and death for the host. It is however quite difficult to observe this 

phenomenon in mammals, thereby hindering the design of preventive strategies.  

In the present study, we used zebrafish as a model to study the infection course of 

SINV, with a focus on its neuroinvasiveness. We found that the peak of viremia is 

at 48 hpi and it slowly declines over time. A similar kinetic was obtained for the 

IFN-mediated immune response. Observed clinical signs included edema, yolk 

opacification, and blood flow arrest. Thanks to in vivo imaging studies, we also 

assessed the progression of the infection. Infected cells appeared in the periphery 

as early as 8 hpi, always prior to infected neurons of the peripheral or the central 

nervous system. Overall, the disease signs and kinetic of SINV infection in 

zebrafish were quite similar to those previously observed in CHIKV-infected fish 

(Palha et al., 2013), suggesting that the mechanisms that determine disease onset 

are conserved between related Alphaviruses.  

While ic injections resulted in rapid onset of CNS infection in 100% of cases, iv 

injected larvae displayed a greater variability in terms of time of appearance and 

progression of CNS infection. This phenomenon was also observed in inbred mice 

injected with SINV subcutaneously (Cook and Griffin, 2003), and therefore 

suggests that the variability observed is not due to the higher genetic 

heterogeneity of zebrafish, which are not fully inbred. However, iv injections 

better represent the actual entry route of the virus upon bite from an infected 

mosquito and therefore allowed us to characterize the natural mechanism of SINV 

entry in the CNS.  

Fleming et al. showed that the maturation of the BBB in zebrafish larvae is 

progressive until 10 dpf. At 3 dpf, the time at which larvae were injected, high 

molecular weight molecules (~900 Da) are already excluded from the CNS 

(Fleming et al., 2013). We could therefore exclude passive transport of viral 

particles from the blood. In some cases, viruses have been shown to enter via the 

choroid plexus (ChP) (e.g. HIV, Falangola et al., 1995), the region of the brain 

where the cerebrospinal fluid is formed. Studies on morphogenesis formation 

have shown that in zebrafish the ChP develops at the dorsal midline on the fourth 
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ventricle and shifts towards the ear level at around 3 dpf (García-Lecea et al., 

2008). Here we found that commonly infected areas in the brain were rather 

lateral or distant from the ChP (e.g. olfactory bulb, optic tectum, medulla), which 

strongly suggests that SINV does not enter the brain via prior infection of the 

forming ChP. 

The vasculature was shown to remain intact and infection of endothelial cells of 

the brain microvessels was never observed. Moreover, ic injections revealed little 

or no infection of cells outside the CNS, thereby corroborating the observation 

that SINV does not compromise the integrity of the BBB.  

We also showed that the virus does not target macrophages. Macrophage 

depletion assays induced a slightly higher disease severity in treated fish, as in the 

CHIKV model, but did not prevent the virus from accessing the CNS. These 

results show that, even though macrophages may contribute in part to the control 

of SINV infection, they are not required for the virus to reach the CNS.  

The observations we collected from SINV-inoculated larvae therefore strongly 

support the hypothesis that viral entry in the CNS occurs after infection of 

peripheral nerves, such as infection of trigeminal ganglion cells prior to infection 

in the CNS or infection of muscle cells followed by infection of motor neurons. 

These results are in accordance with the aforementioned study of mice infected 

with a luciferase-recombinant SINV strain, where viral replication in the nose or 

the spinal cord was shown to always precede infection in the brain (Cook and 

Griffin, 2003). 

As previously observed in CHIKV-infected larvae, IFN was highly induced with 

the expression peaking at 24 hpi and slowly declining over time. Moreover, we 

showed that IFN-R kd induces changes in viral tropism and determines infection 

of several cell types not normally targeted by the virus in zebrafish. This is in 

accordance with a previous study conducted in mice by Ryman et al. (2000). 

Interestingly, while it did result in more infected cells, IFN-R kd did not cause an 

increase in occurrence of CNS invasion. Overall these data indicate that the 

IFN-mediated immune response is a major component involved in the protection 

against SINV infection and that IFNs limit SINV replication efficiency at early 

stages post-infection in the periphery, yet they do not prevent entry in the CNS. 

Other more complex immune mechanisms are probably involved in the response 
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against SINV once the virus reaches the CNS, which are worth investigating in 

the future.  

While IFN was clearly a major defense mechanism of zebrafish larvae against 

SINV, no evidence for a RNAi-mediated response could be detected. Our simple 

experiment does not rule out the existence of antiviral RNAi in fish. However, 

since it has been proposed that the RNAi response is restricted to undifferentiated 

stem cells in mammals, and therefore more prominent in the early life stages 

(Maillard et al., 2013), our use of zebrafish larvae reinforces our conclusions. 

Moreover, a recent study provided compelling evidence for the absence of an 

antiviral role of RNAi in mammals (Backes et al., 2014). Since antiviral RNAi 

exists in plants, insects, and nematodes, it is very likely to be ancestral, and thus 

would have been lost in the lineage leading to mammals. If, as we believe, teleost 

fish do not use antiviral RNAi, then this loss occurred more than 350 My ago – 

very possibly when the protein-based antiviral defense appeared in early 

vertebrates.   

Understanding the entry mechanism of a certain pathogen in the CNS has always 

been impaired by the difficulties in visualizing the progression of the infection. 

Moreover, a high number of animals and organ/tissue samples are generally 

needed at different time-points, to avoid missing important cues. The combined 

use of a recombinant SINV-GFP strain with fluorescent-reporter zebrafish lines, 

on the contrary, allowed us to gain single-cell resolution details at the whole 

organism level and with minimal invasiveness for the host. This in turn will be 

useful in the future for the study of neurotropic viruses and to test new antiviral 

therapeutics in vivo.  
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Experimental Procedures 
 

Ethical statement  

Animal experiments were conducted according to European Union guidelines for 

handling of laboratory animals 

(http://ec.europa.eu/environment/chemicals/lab_animals/home_en.htm). All 

protocols were approved by the Ethical Committee for Animal Experimentation of 

Institut Pasteur and French Ministry of Research and Education (permit 

#01265.03).  

 

Fish lines and husbandry 

Zebrafish embryos were raised according to standard procedures as previously 

described (Westerfield, 2000; Levraud et al., 2008). Wild-type AB zebrafish were 

initially obtained from ZIRC (Eugene, OR). The following transgenic and mutant 

lines were also used: Tg(elavl3:Gal4)zf349 (Akerboom et al., 2012), 

Tg(fli1a:Gal4FF)ubs4 (Zygmunt et al., 2011), Tg(5xUAS:RFP)nkuasrfp1a (Asakawa 

et al., 2008), Tg(mpeg:Gal4FF)gl25 (Ellett et al., 2011), 

Tg(UAS-E1b:Eco.NfsB-mCherry)c26 (Davison et al., 2007), 

Tg(ifnphi1:mCherry)ip2 (Palha et al., 2013). Because of silencing issues of 

UAS-driven transgenes – a rare occurrence with the UAS:RFPnkuasrfp1a allele – 

careful selection of fish expressing the complete brain and vasculature pattern was 

performed at 3 dpf before inoculation. 

Eggs obtained by natural spawning were bleached and raised at 28°C in Volvic 

source water. Eggs used for imaging purposes were raised in 

1-phenyl-2-thiourea/Volvic (Sigma-Aldrich, 0.003% final) from 24 hours 

post-fertilization (hpf) onwards to prevent melanin pigment formation. At 3 dpf, 

just before infections, larvae that had not hatched spontaneously were manually 

dechorionated. 

 

Viruses 

SINV-GFP was produced on BHK cells, according to (Hardwick and Levine, 

2000). The virus used corresponds to the pTE3’2J-eGFP strain (NC_001547.1), 

and was obtained by insertion of the eGFP gene under the control of a second 
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subgenomic promoter (Hahn et al., 1992). Heat adapted IHNV strain 25.70 was 

produced on EPC cells as described previously (Ludwig et al., 2011).  

 

Infection and disease scores 

Injections and handling of larvae were performed as described (Levraud et al., 

2008). Briefly, zebrafish larvae aged 70-72 hpf were inoculated by microinjection 

of ~102 TCID50 viral SINV particles (~1 nL of supernatant from infected BHK 

cells, diluted to 108 TCID50/mL). Injections were performed either in the caudal 

vein/aorta or in the left optic tectum or in the left retina. Larvae were then 

distributed in individual wells of 24-well culture plates with 1ml water, kept at 

28°C and regularly inspected with a stereomicroscope until 7 dpi. Clinical signs of 

infection were assessed first on aware animals, which were then anesthetized for 

better observation. Quantitative assessment of the clinical status was based on a 

precise list of criteria, as previously described (Palha et al., 2013). Briefly, clinical 

signs were assessed blindly, yielding a disease score ranging from 0 (no disease 

sign) to 15 (dead or terminally ill). For ethical reasons, all larvae used in the 

experiments were killed by anesthesia overdose at 7 dpi. IHNV infections were 

performed as described in (Ludwig et al., 2011). Briefly, larvae were injected iv 

with 102 PFU of IHNV25.70, distributed in individual 24-well plates and 

incubated at 24°C.  

 

qRT-PCR 

RNA extraction, cDNA synthesis and quantitative PCR were performed as 

previously described (Ludwig et al., 2011); externally quantified standards were 

included to provide absolute transcript amounts. The following pairs of primers 

(sense and antisense) were used: ef1a: GCTGATCGTTGGAGTCAACA and 

ACAGACTTGACCTCAGTGGT; SINV E1: GACAACATGCAATGCAGAATG 

and CTAGTCAGCATCATGCTGCA; ifnφ1 (secreted isoform): 

TGAGAACTCAAATGTGGACCT and GTCCTCCACCTTTGACTTGT; ifnφ3: 

GAGGATCAGGTTACTGGTGT and GTTCATGATGCATGTGCTGTA; rsad2: 

GCTGAAAGAAGCAGGAATGG and AAACACTGGAAGACCTTCCAA. To 

normalize cDNA amounts, we used the housekeeping gene ef1a transcripts.  
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Time-lapse in vivo imaging 

For in vivo time-lapse imaging, 5-10 larvae were anaesthetized with 112 mg/mL 

tricaine and immobilized in ~1% low melting-point agarose in the center of a 

35-mm glass bottom Ibidi® dish, then covered with ~2 mL water containing 

tricaine. Transmitted light/fluorescence imaging was performed using a Leica SPE 

inverted confocal microscope equipped with a 10X (NA 0.30) dry objective and 

16X (NA 0.5), 40X (NA 1.15), 63X (NA 1.30) oil immersion objectives. Imaging 

was typically performed at 26°C and Z-stacks with 2 µm steps were taken at least 

every 10 min. Fish were imaged every day beginning from 1 dpi up to 4-5 dpi 

with imaging sessions typically lasting 30 min; control uninfected larvae were 

always included.  

 

Whole-mount immunohistochemistry (WIHC) and imaging of fixed samples 

WIHC was performed as described (Svoboda et al., 2001). The following primary 

antibodies were used: chicken polyclonal to GFP (1:500, Abcam), mouse mAb to 

acetylated tubulin (1:1000, Sigma), rabbit polyclonal to DsRed (1:500, Clontech), 

which also labels the mCherry protein, 19B7 mouse mAb antibody specific 

against IHNV G protein (glycoprotein) (1:500) (Biacchesi et al., 2002), rabbit 

polyclonal to SINV capsid (1:200) (a kind gift from R. Kuhn). Secondary 

antibodies used were: Alexa 488-labeled goat anti-chicken (1:500, Invitrogen), 

Alexa Cy5-labeled goat anti-mouse (1:500, Jackson Immunoresearch), 

Cy3-labeled goat anti-rabbit IgG (1:500, Jackson Immunoresearch). Nuclei were 

stained for 45 min at room temperature with DAPI/PBT 1:20.000 (Sigma). Fixed 

embryos were progressively transferred into 80% glycerol before imaging. Images 

were acquired with the Leica SPE inverted confocal microscope, as described 

above and Z-stacks of maximum 150 µm with 2 µm steps were taken. Image 

processing (maximal projections and reconstruction of whole embryos) was 

carried out with Adobe Photoshop CS6 software.  

 

CLARITY procedure 

Zebrafish larvae from 4 dpf to 7 dpf were fixed in freshly prepared ice cold 

methanol free paraformaldehyde (PFA) 4% (wt/vol) in 0.01 M PBS (pH 7.4) 

overnight at 4°C. Samples were then infused in a pre-cooled solution of (4°C) 
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freshly prepared hydrogel monomers (0.01 M PBS, 0.25% VA-044 initiator 

(wt/vol), 5% dimethyl sulfoxide (vol/vol), 1% PFA (wt/vol), 4% acrylamide 

(wt/vol) and 0.0025% bis-acrylamide (wt/vol) for 2 days at 4°C. After degassing 

the samples, the hydrogel polymerization was triggered by replacing atmospheric 

oxygen with nitrogen in a desiccation chamber for 3 hours at 37°C. Samples were 

cleaned from superfluous hydrogel and transferred into embedding cassettes for 

lipid clearing. Passive lipid clearing was performed for 5 days at 40°C in the 

clearing solution (8% SDS (wt/vol), 0.2 M boric acid, pH adjusted to 8.5) under 

gentle agitation. Subsequently the samples were thoroughly washed in 0.01 M 

PBS, tween 0.1% (wt/vol) (PBSt) for 2 days at room temperature with gentle 

agitation. 

 

Immunostaining of clarified samples 

CLARITY processed larvae were incubated in blocking solution (0.01 M PBS, 

0.1% tween 20 (vol/vol), 1% TritonX100 (vol/vol), 10% dimethyl sulfoxide 

(vol/vol), 10% normal goat serum (vol/vol), 0.05 M glycine) overnight at 4°C. 

Subsequently samples were incubated in staining solution (0.01 M PBS, 0.1% 

tween 20 (vol/vol), 0.1% Triton X100 (vol/vol), 10% dimethyl sulfoxide (vol/vol), 

2% normal goat serum (vol/vol), 0.05% azide (vol/vol)) with primary antibody 

(chicken anti-GFP, 1:600 – Avès Labs) for 5 days at room temperature under 

gentle agitation. After four washing steps in PBSt, samples were incubated in 

staining solution with secondary antibody (goat anti-chicken Alexa Fluor 488, 

1:600 – Invitrogen) for 5 days at room temperature. Samples were washed for 2 

days in PBSt and stained with 1 µM DiIC18(3) solution (DiI Stain, Molecular 

Probes).   

 

Imaging in high refractive index solution 

A fructose based high refractive index solution (fbHRI) was prepared as follows: 

70% fructose (wt/vol), 20% DMSO (wt/vol) in 0.002 M PBS, 0.005% sodium 

azide (wt/vol). The refractive index of the solution was adjusted to 1.4571 using a 

refractometer (Kruss). In preparation for imaging, the samples were incubated in 

50% (vol/vol) fbHRI for 6 hours and finally incubated in fbHRI for at least 12 

hours. For imaging, samples were mounted in 1% (wt/vol) low melting-point 
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agarose and covered with fbHRI. Whole-mount larvae fluorescence was recorded 

with a Leica TCS SP8 two photon microscope equipped with a mode locked 

Ti:Sapphire laser (Chameleon, Coherent) at 770 nm and the Leica HC FLUOTAR 

L 25x/1.00 IMM motCorr objective.  

 

Macrophage depletion 

Metronidazole-mediated depletion was performed as described in Davison et al., 

2007. Briefly, Tg(mpeg:Gal4FF)gl25 fish (Ellett et al., 2011) were crossed to 

Tg(UAS-E1b:Eco.NfsB-mCherry)c26 (Davison et al., 2007), to generate 

double-positive transgenics and single-positive sibling controls. Embryos were 

placed from 48 hpf to 72 hpf in a 10 mM Metronidazole/0.1% DMSO solution to 

induce specific depletion of NfsB-mCherry-expressing macrophages. Embryos 

were then rinsed 3X with embryo water and subsequently injected with the virus.  

 

Morpholino injection 

Morpholino antisense oligonucleotides (Gene Tools) were injected into 1-2-cell 

stage embryos as previously described (Levraud et al., 2008). crfb1 splice 

morpholino (CGCCAAGATCATACCTGTAAAGTAA) (2 ng) was injected 

together with crfb2 splice morpholino 

(CTATGAATCCTCACCTAGGGTAAAC) (2 ng), knocking down all type I IFN 

receptors (Aggad et al., 2009). As control a morpholino with no target (NRP) was 

used: (GAAAGCATGGCATCTGGATCATCGA) (4 ng).  

 

Statistical analysis 

To evaluate difference between means, a two-tailed unpaired t-test or an analysis 

of variance (ANOVA) followed by Bonferroni’s multiple comparison test were 

used, when appropriate. Normal distributions were analyzed with the 

Kolmogorov-Smirnov test. Non-Gaussian data were analyzed with a 

Kruskal-Wallis test followed by Dunn’s multiple comparison test. P<0.05 was 

considered statistically significant (symbols: ***P<0.001; **P<0.01; *P<0.05; 

ns=not-significant). Survival data were plotted using the Kaplan-Meier estimator 

and log-rank tests were performed to assess differences between groups. 

Statistical analyses were performed using Prism 5 software.    
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Supplemental Information 

Supplemental information includes four figures and four movies. 
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CHAPTER II. CNS-Specific Immune Responses to SINV infection 

 

The results presented in the previous Chapter relative to the IFN-mediated 

immune response upon SINV infection have shown that 1. the IFN response, 

measured at the whole-body level, is readily activated and peaks at 24 hpi, which 

coincides with the peak of viremia, 2. the main IFN-producing cell populations 

are hepatocytes and motile leukocytes, most likely neutrophils, and 3. IFN 

knock-down results in changes in virus tropism, increased disease severity and 

mortality but no significant increase in brain infection frequency. In accordance 

with the results from Ryman et al., we have shown that the IFN response is 

crucial to contain virus spreading in the periphery at early times post-infection 

(Ryman et al., 2000). Our data also indicated that IFN production is not sufficient 

to prevent CNS invasion, and even less efficient to stop the progression of the 

infection in the CNS than in the periphery. Based on these results, we started a 

more detailed investigation of the immune responses activated in the CNS. In 

particular, the study of different SINV strains has given us insights into 

strain-specific modulations of host responses that determine from early time 

points the outcome of the infection (section 2.1). On the other hand, the further 

characterization of the ifnφ1:mCherry line has helped us shed light into the events 

occurring at later time points, after CNS invasion (section 2.2). Although 

preliminary, these data are nonetheless very promising and will continue to be 

explored in the future.    

 

2.1. Strain-dependent modulation of the IFN signaling pathway 

 

The outcome of an infection heavily depends upon a number of factors, including 

the genotype of the pathogen as well as the age and immune competence of the 

host, and is usually decided at the early stages. Rapid activation of the innate 

antiviral immune response is in fact crucial to block permissivity of uninfected 

cells to infection. In turn, subversion of the IFN response results in quick and 

generalized virus spread, even in cells not normally targeted by the virus. The 

characterization of different virus strains can therefore be helpful to determine 
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conserved virulence determinants between members of the same virus family as 

well as their specific interaction with the immune system.   

This was one of the reasons that lead us to produce a different SINV recombinant 

strain, SINV pTR339-mCherry/2A (obtained from the original African isolate 

AR339 and from hereon referred to as SINV2-mCherry), to compare its infectious 

course with that of our first SINV strain, pTE3’2J-eGFP (which we will now 

rename SINV1-GFP) (Hahn et al., 1992). The other obvious reason was the color 

complementarity between the two strains.  

SINV AR339 was originally isolated from a pool of Culex pipiens and Culex 

univittatus mosquitoes collected in Egypt (Taylor et al., 1955). From that strain, a 

full-length cDNA infectious clone (TR339) was generated (McKnight et al., 

1996). In contrast, the recombinant SINV strain TE3’2J was constructed from a 

chimeric mouse neurovirulent variant of AR339 called TE12 (Lustig et al., 1988). 

The genomes of the two strains differ by 16 mutations, 5 of which encode 

aminoacid changes (1 in the 5’ UTR, 3 in the ORF encoding NSP2 and NSP3, and 

2 in the ORF encoding E2) (Figure R2.1).  

Figure R2.1 Schematic representation of SINV1-GFP and SINV2-mCherry genome 
organization. Amino acid changes between SINV1-GFP and SINV2-mCherry sequences are 
indicated in red. 
 

The SINV2-mCherry strain, whose plasmid was kindly donated by Carla Saleh 

from Pasteur Institute, was produced at INRA according to Hardwick and Levine 

(2000) under the supervision of Corinne Torhy and Christelle Langevin. Injection 

of larvae with ~102 TCID50 of SINV2-mCherry (1 nL at a concentration of ~108 
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TCID50/mL) revealed that the strain was much more virulent than SINV1-GFP. 

Comparison of the two strains in terms of viral burden and IFN induction at 1 dpi 

showed that SINV2-mCherry replicates at higher levels (~6 times) while IFN 

expression was about 2 times lower than that measured in SINV1-GFP infected 

larvae. Moreover, SINV2-mCherry kills over 60% of injected larvae as opposed 

to SINV1-GFP, which instead shows ~20% mortality rate at 7 dpi, with a similar 

inoculum (Figure R2.2).  

Figure R2.2. Comparison between the two SINV strains, in terms of viral burden, induced 
host response at 24 hpi, and mortality rate. Left panel, qRT-PCR of SINV E1; Middle panel, 
qRT-PCR of IFNφ1. Mean + s.e.m. of 3 larvae from 1 representative experiment. ***P<0.001, 
*P<0.1; Right panel, survival of infected larvae. Data pooled from 5 independent experiments. N = 
12 per group. ***P<0.001 (Log-rank test). 
 

Imaging of fixed samples revealed that SINV1-GFP targets a restricted number of 

cell types as opposed to SINV2-mCherry, whose infection resembles that 

observed in IFN-R knock-down morphants (Figure R2.3).  

Nevertheless, both strains showed infection of neuronal cell types, such as 

trigeminal ganglion cells (Figure R2.4).  

In the case of SINV2-mCherry, however, infection in the CNS was observed in all 

injected larvae while SINV1-GFP reached the brain in only 40% of cases. To 

compare the two strains in terms of cell tropism, we performed injections of serial 

dilutions of SINV2-mCherry and found that 106 TCID50/mL was a concentration 

phenotypically comparable to that of SINV1-GFP. Finally, co-injection of 

SINV1-GFP (108 TCID50/mL) and SINV2-mCherry (106 TCID50/mL) showed 

increased replication of SINV1-GFP, probably helped by IFN expression shutoff 

induced by SINV2-mCherry (Figure R2.5). 
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Figure R2.3. Comparison between the effects of SINV2-mCherry and IFN-R knock-down. 
(A) SINV2-mCherry infected larva. Inset: virus in red, acetylated tubulin in green, with dotted line 
showing wider panel; high magnification panel: virus in grey, acetylated tubulin in red 
(pseudocolors). (B) IFN-R morphant infected with SINV1-GFP. Inset: virus in green, acetylated 
tubulin in red, with dotted line showing wider panel; high magnification panel: virus in grey, 
acetylated tubulin in red (pseudocolors). Blue arrowheads indicate areas of extensive infection. 
Scalebars: 25 µm.  
 

 

 
 
Figure R2.4. Comparison between SINV1-GFP and SINV2-mCherry. (A) SINV1-GFP in 
green, acetylated tubulin in red. (B) SINV2-mCherry in red, acetylated tubulin in green. White 
arrowheads indicate common areas of infection (neurons of the trigeminal ganglion). Scalebars: 50 
µm. 
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Figure R2.5. In vivo confocal imaging of a larva co-infected with SINV1-GFP and 
SINV2-mCherry. SINV1-GFP in green, SINV2-mCherry in red. White arrowhead indicates 
extensive infection of SINV1-GFP only; blue arrowheads indicate areas of co-infection. Scalebar: 
50 µm. 
 

2.2. Leukocyte recruitment in the CNS 

All experiments described in this and the following sections have only been 

performed with SINV1-GFP (SINV). 

To better characterize the role of IFN-producing cells in the control of 

SINV-induced CNS infection, we injected ifnφ1:mCherry transgenic larvae and 

performed in vivo imaging at daily intervals as previously described. Unlike what 

was previously reported in CHIKV infection in zebrafish (Palha et al., 2013), 

IFN-producing motile cells (80% of which were neutrophils in the CHIKV 

system) were not excluded from the CNS (from which neutrophils are excluded in 

healthy animals) but rather actively permeating into the brain, even when the 

infection was relatively contained to one or few infection foci (Figure R2.6).  

The morphology and motility of these cells indicated that they were most likely 

neutrophils; this has been formally verified by injecting SINV in LyZC:DsRed 

transgenic larvae (a red neutrophil reporter line) and observing the same response 

reported for ifnφ1:mCherry transgenic larvae. 
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IFN-expressing leukocytes were visible in the CNS already at 2 dpi, time at which 

most larvae begin to show CNS infection, and their number increased over time 

and later reached a plateau. Moreover, in the case of extended infection, they were 

shown to “uptake” SINV-infected cells in the brain (Movie R2.1; Movie R2.2; 

Movie R2.3).  

Figure R2.6. Progressive infection and IFN-producing cells recruitment in the CNS, upon 
SINV inoculation. In vivo confocal microscopy of an infected ifnφ1:mCherry larva at (A’) 1 dpi, 
(A’’) 2 dpi, and (A’’’) 3 dpi. Virus in green, IFN-producing leukocytes in red. White arrowheads 
indicate areas of progressive CNS infection. Scalebars: 50 µm. 
 

To determine if microglial macrophages were involved in IFN expression or 

neutrophil recruitment, we also fixed infected ifnφ1:mCherry larvae and stained 

them to label SINV-infected cells (anti-GFP Antibody (Ab)), IFN-expressing cells 

(anti-dsRed Ab) and microglia (4C4 Ab). Confocal imaging confirmed the 

presence of neutrophil-shaped IFN-expressing cells within the brain parenchyma. 

Remarkably, within some infection foci, infected neurons were also expressing 

the IFN reporter. We had not observed that in our previous in vivo experiments, 

probably due to the lower laser power used to avoid phototoxicity (Figure R2.7).  



 
 

89 

Figure R2.7. IFN expression in the CNS, upon SINV infection. (A–B’’’) In vivo confocal 
imaging of an infected ifnφ1:mCherry larva, at 2 dpi. Virus in green, IFN-producing leukocytes in 
red, transmitted light in grey. (A’) Dorsal view of the head, with dotted line showing high 
magnification in (B’–B’’’). (B’) Merge. (B’’) SINV-infected neurons. (B’’’) IFN-expressing cells. 
Blue arrowheads indicate IFN-expressing SINV-infected neurons, white arrowheads indicate 
IFN-expressing neutrophils. Scalebars: 25 µm.  
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By contrast, microglia did not express IFN; they were either close to the infection 

foci and with a rounded shape or distant from the infection sites and with a 

ramified shape (Figure R2.8). They were not observed interacting with 

IFN-expressing leukocytes. Thus although they probably phagocytose a lot of 

cellular debris generated at viral foci (hence their rounded shape, which can also 

indicate they are undergoing apoptosis), they do not seem to be activated or 

attracted by the infection, nor to contribute to the recruitment of IFN-making 

neutrophils.  

Figure R2.8. State of microglia, upon SINV infection. Confocal microscopy of IHC-processed 
(A’) No V and (A’’) SINV-infected larvae, at 2 dpi. GFP in green, microglia in purple. White 
arrowheads indicate ramified-shaped microglia, red arrowheads indicate rounded-shaped 
microglia. Scalebars: 100 µm. 
 

Finally, with the aim to improve the reproducibility and speed of data extraction 

from our in vivo imaging, we set up a collaboration with Prof. Reyes Aldasoro at 

City University London and Prof. Renshaw from the University of Sheffield, to 

use Matlab® for automatic image analyses. In fact, they recently developed an 

open source Matlab® package, PhagoSight, to analyse macrophages and 

neutrophils behavioral changes in response to a wound (Henry et al., 2013). 

Therefore, I spent two weeks in Sheffield, where I used a simplified version of 

this algorithm to analyse our data related to leukocyte behavior in SINV infected 

LyZC:DsRed larvae and have confirmed that neutrophils are important for the 

control of the infection in the CNS, by uptaking infected cells (Figure R2.9).  
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Figure R2.9. Image analysis performed with Matlab®. (A) Raw data. (B) Detection of cells 
based on fluorescence intensity. Red neutrophils are circled in yellow, green infected cells are 
circled in purple. (A–B) Yellow arrow indicates a GFP-high cell (included in the quantification), 
blue arrowhead indicates a low-GFP cell (erroneously excluded from the quantification). (C) 
Quantification of the number of neutrophils and infected cells over time, based on the analysis 
performed automatically by the algorithm.  
 

The quantification has shown that within 12 hrs the number of neutrophils close to 

a highly infected area does not change significantly. However, the number of 

infected neuronal cells decreases considerably. Additional analyses are needed to 

relate the number of events in which a neutrophil interacts with an infected cell to 

that in which an infected cell disappears, thereby proving that neutrophils are 

needed to clear the infection in the CNS. Despite being incomplete for our 

purposes, the algorithm shows great potentials and helped reducing considerably 

the time required to perform such an analysis manually. 
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CHAPTER III. SINV Spreading and Persistence Mechanisms 

 

Upon injection of SINV into zebrafish larvae, we showed that the virus enters the 

CNS most likely through infection of peripheral neurons and subsequent 

retrograde axonal transport (Chapter 1 of the Results). In a few larvae infected 

intracerebrally, infection of spinal cord neurons and muscle cells following brain 

infection was also observed. This strongly suggests that the virus can also use the 

anterograde transport machinery and reach areas distant from the first infection 

foci. Spreading within the CNS occurred mostly via long distance axonal 

transport, as evidenced by infection of Mauthner neurons. These are bilaterally 

symmetric reticulospinal neurons whose axonal projections are distributed from 

the caudal midbrain to the spinal cord (Zottoli and Faber, 2000).  

Unlike what occurs in CHIKV-infected zebrafish larvae (Palha et al., 2013), 

SINV-infected cells in the CNS did not all survive very long. In accordance with 

the results obtained in mice from Lewis et al. (1996), apoptotic cells were 

observed in several infected areas and correlated with the increasing number of 

circulating leukocytes in the brain (Movie R3.1).  

To better document viral persistence over neuronal cell death in the CNS, we 

started setting up a feeding protocol for the long-term maintenance of infected 

larvae. Larvae can begin to feed between 4-5 dpf, time at which they exit the 

chorion and the mouth begins to open. Larvae raised in the fish facility are 

normally kept in groups of 50 or 60 in 2 liter tanks, with 3 rounds of food per day 

and regular water changes. However, to monitor the progression of the infection 

in our injected larvae, we are obliged to keep them in separate wells and feed 

them regularly while avoiding contamination of the water from residual food. 

Adapting a method previously developed for the feeding of individual axenic 

larvae (Rendueles et al., 2012), we fed larvae daily with Tetrahymena 

thermophila and followed the progression of SINV infection in the CNS by daily 

observation at the fluorescent stereomicroscope. In a preliminary experiment, the 

majority of iv infected larvae succumbed within 4 to 5 dpi and only 20% survive 

until 21 dpi, end point of the experiment. However, only 8% of total infected 

larvae also retained infection in the CNS for the whole duration of the experiment. 

These experiments are so far inconclusive because the low surviving rates are 
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inconsistent with the results normally obtained with unfed larvae in short-term 

experiments (within 7 dpi). In all likelihood, there was a problem with the feeding 

procedure, which will need to be solved before a new test. Nevertheless, they 

showed that, in some cases, SINV infection can persist for at least three weeks in 

the CNS.  

With the aim to characterize the effect of SINV on survival and response of 

neuronal cells, we also established a protocol to obtain primary cultures of 

zebrafish brain cells. This consists in the dissection of 72 hpf zebrafish larvae, to 

isolate brain samples before enzymatic and mechanical dissociation. Cells are 

then plated on pre-coated coverslips and cultured in a modified version of 

Minimum Essential Medium at 24°C for at least one week. To determine the cell 

composition of our culture, we established primary cell cultures from transgenic 

lines expressing the GFP or the mCherry fluorescent proteins in neuronal or in 

glial cells, respectively (Figure R3.1).  

We hope that this newly developed tool will be helpful to identify the transport 

mechanism employed by SINV in neuronal cells, SINV effect on cell survival, 

role of autophagy, and cell responsiveness to IFN before and after the infection.  

Figure R3.1. Zebrafish primary neural cell cultures. In vivo fluorescence microscopy of (A) 
Huc:G/U:mCherry-derived neurons and (B) Gfap:eGFP-derived glial cells, 1 day post-plating 
(dpp). Scalebars: 20 µm.    
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CHAPTER IV. Tests on a Potential Broad-Spectrum Antiviral Drug  

 

In the context of a collaboration with the “Viral populations and Pathogenesis” 

Unit headed by Marco Vignuzzi at Pasteur Institute, we also recently started 

investigating the potential antiviral activity of Difluoromethylornithine (DFMO) 

against SINV infection in vivo.  

DFMO is a drug that irreversibly inhibits ornithine decarboxylase 1 (ODC1), a 

critical enzyme in polyamine biosynthesis (Metcalf et al., 1978). These are small 

positively-charged molecules derived from arginine, involved in several cellular 

processes, including cellular proliferation (Gerner and Meyskens, 2004), 

apoptosis (Schipper et al., 2000), ion channel regulation (Williams et al., 1997), 

DNA conformation (Thomas et al., 1995), transcription (Frugier et al., 1994; Law 

et al., 2001), and translation (Mandal et al., 2013) in both mammalian and 

non-mammalian cells; their exact mechanism of action, however, is generally 

unclear. In the case of Semliki Forest virus and other RNA viruses, they have also 

been shown to promote viral RNA synthesis (Tuomi et al., 1982).   

The experiments performed in vitro by our collaborator Bryan Mounce showed 

that DFMO has no toxicity on Baby Hamster Kidney-21 (BHK-21) cells and is 

capable of reducing titers of several different viruses, including Poliovirus, 

Coxsackievirus B3, Dengue virus and West Nile virus.  

Based on these results, we started testing whether DFMO could block viral 

synthesis and reduce viral titers in vivo in zebrafish larvae, while other labs 

performed few similar tests in mouse and in Drosophila. 

Initial experiments performed after placing 1-cell stage eggs in DFMO-containing 

water at different increasing concentrations showed that the compound can be 

toxic at early stages of development, as the majority of embryos showed 

developmental defects including a crooked spinal cord, slow blood flow, and 

edemas.  
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Figure R4.1. Quantification of polyamine depletion and viral replication in control 
non-treated and DFMO-treated infected larvae. (A) Polyamine quantitation. Inset shows 
representative chromatogram from each condition. Error bars represent + s.e.m. N = 3 from 1 
representative experiment. (B) Viral titers from single larvae homogenates, at 24 and 48 hpi. N = 5 
from 1 representative experiment. **P< 0.01. 
 

Therefore, we placed 24 hpf zebrafish embryos in 1 mM DFMO-containing water 

for three days, and later measured polyamine content from fish homogenates with 

thin layer chromatography. In this case, the embryos developed normally, and 

underwent a significant reduction in polyamines quantity, thereby showing that 

DFMO is active in larvae as well (Figure R4.1A). Three days after treatment, 

zebrafish were inoculated ic with ∼102 TCID50 SINV as previously described. 

Viral titers enumerated at 1 and 2 dpi were significantly reduced in DFMO-treated 

zebrafish (Figure R4.1B), showing the potential in vivo antiviral activity of 

DFMO.  

This was corroborated by tests in other species, and with other viruses, confirming 

the potential of DFMO as a broad-range inhibitor of RNA virus replication that 

could be useful during viral outbreaks. This work is currently being submitted for 

publication (Mounce et al., submitted). 

Future experiments will focus on the determination of the exact mechanism of 

action of DFMO in the context of suppression/reduction of viral replication in 

zebrafish infected larvae.  
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Supplemental Movies: 

R2.1: ifnφ1:mCherry infected larva at 3 dpi. 1 Z-stack. 30 min time-lapse. 

Acquired with Leica SP8 inverted confocal microscope. 

R2.2: LyZC:DsRed infected larva at 2 dpi. 1 Z-stack. 12 hrs time-lapse. Acquired 

with Leica SPE inverted confocal microscope. 

R2.3: LyZC:DsRed infected larva at 2 dpi. Maximal Projection. 12 hrs time-lapse. 

Acquired with Leica SPE inverted confocal microscope. 

R3.1: ifnφ1:mCherry infected larva at 2 dpi. Maximal Projection. 10 hrs 

time-lapse. Acquired with Nikon Biostation. 
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DISCUSSION 

 

The major results obtained during this PhD work have led to the characterization 

of the entry mechanism of Sindbis virus (SINV) into the Central Nervous System 

(CNS) of zebrafish larvae. We have shown that the virus neither disrupts the 

Blood-Brain Barrier (BBB) nor infects macrophages to reach the CNS. Instead, 

our data is consistent with axonal transport to the CNS after infection of 

peripheral neurons or nerve termini. 

In the submitted article, we have identified neurons as an important target of the 

virus, thanks to in vivo analyses of elavl3:Gal4/5xUAS:RFP infected larvae 

(HuC:G/U:RFP) and ex vivo after co-immunolabeling of infected cells and axonal 

projections. However, we have not been able so far to determine the precise 

composition of the cell subtypes infected in the CNS. Infection of our 

glia-specific transgenic line (Gfap:eGFP) (Bernardos and Raymond, 2006) was 

not possible as it is a GFP-expressing transgenic line, and at the time our SINV 

strain was only available as a GFP recombinant. Moreover, we have tested several 

antibodies directed against glial cells (anti-GFAP, anti-Glutamine Synthetase) but 

have failed to observe a specific staining in the CNS. This could be due to the fact 

that this cell type is not mature at the time of the infection and therefore does not 

express a yet usable marker (the same antibodies give a reproducible staining in 

adult zebrafish). We have encountered the same difficulties when trying to assess 

the percentage of post-mitotic over undifferentiated neurons, as our antibody 

directed against neurogenin (a marker of undifferentiated neurons) also resulted in 

non-specific signal. This represents a drawback for the use of zebrafish with 

respect to other model organisms, as fewer biochemistry tools have been set up to 

date. We hope, nevertheless, that the use of the Clarity protocol together with the 

neuroanatomy expertise provided by the group of Jean-Stéphane Joly in 

Gif-sur-Yvette will help us better characterize the specific neuronal subtypes 

targeted by the virus. In addition, we now have the isogenic non-GFP pTE3’2J 

strain, which can be used in GFP transgenic larvae; the infection cannot be 



 
 
100 

followed live but, in fixed larvae, infected cells can be detected with our 

anti-capsid antibody. 

At the same time, we have focused our attention on the IFN-mediated immune 

response both at the whole-organism as well as at the CNS-specific level and have 

identified a prominent role of IFN at early stages post-infection. However, we 

have shown that IFN alone is not sufficient to prevent the virus from reaching the 

CNS, as demonstrated by the knock-down of IFN receptors (IFN-R). The 

characterization of different SINV variants has also revealed how these can 

modulate the host response and determine very different outcomes for the infected 

host (section 1 of this Chapter includes a more detailed discussion). At later times 

post-infection and when the virus has reached the CNS, we have observed an 

infiltration of neutrophils probably involved in the clearance of the infection (see 

section 2 of the present Chapter).  

Despite some initial similarities with respect to the kinetic of replication and of 

the immune response, we observed many differences when comparing the 

infection course of SINV and Chikungunya virus (CHIKV) in zebrafish larvae. 

Unlike CHIKV, SINV exhibited a stronger neurotropism and induced recruitment 

of IFN-producing cells in the CNS upon infection (section 3 of the Discussion). 

However, the infection course described for SINV with respect to its entry 

mechanism in the CNS, its neurotropism, and the variability observed in different 

animals (section 4 of the Discussion) is in accordance with several important 

studies conducted in mice.  

 

1. Identification of Viral Factors of Neuroinvasion 

 

The results obtained from the study of different SINV variants in Chapter 2 

section 2.1 of the Results have shown that the two strains differ from each other in 

terms of: 

− Viral burden, with SINV2-mCherry replicating at higher levels  

− Type I Interferon (IFN) response, with SINV1-GFP inducing IFN at 

higher levels 

− Observed mortality rates, with SINV2-mCherry being more lethal  
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− Cell tropism, with SINV1-GFP infecting fewer cell types 

− Neuroinvasiveness, with SINV2-mCherry reaching the CNS in all larvae, 

while SINV1-GFP only in about half, when inoculated iv at the same 

concentration 

A clear difference between the two variants is their different fluorescent reporter 

proteins, which have been inserted at different locations in the viral genomes. A 

previous report by Furuta et al. has shown that replication defective SINV 

exhibits different properties (in terms of labeling capacity and movement within 

infected neurons) when expressing a palGFP or a palDsRed fluorescent reporter 

(Furuta et al., 2001). Therefore, in order to make certain that the observed 

differences are not linked to the insertion of the fluorescent protein, we will 

compare the infection of SINV1-GFP with that of SINV2-GFP. These 

experiments will be conducted soon, as SINV2-GFP has already been produced 

but requires a further concentration step. However, the two insertions encode 

proteins of comparable size with no plausible relevance to virulence. It seems 

quite unlikely that they would result in such significant differences; hence, we 

will assume they do not for the rest of the discussion.  

The differences observed between these two strains in terms of viral burden in 

zebrafish correlate with those observed in mosquitoes. Examination of SINV 

TR339 propagation (from which SINV2-mCherry was derived) in Aedes aegypti 

mosquitoes showed a greater than 90% midgut infection rate at 7 dpi (Myles et 

al., 2004). In contrast, SINV TE3’2J (SINV1-GFP progenitor) was shown to 

infect less than 15% of mosquitoes when analysed similarly (Pierro et al., 2003). 

This may be purely stochastic, since the virus can be expected to rely on distinct 

sets of host cellular components for its replication in different species. However, it 

is interesting to note that a common feature of the zebrafish and mosquito 

infections is their lower body temperature as compared to mammals. SINV 

shuttles between insects and birds and must be able to replicate from about 20 to 

42°C (68 to 107°F). Each strain probably has an optimal temperature and this 

suggest it may be closer to 28°C (82°F) for SINV2-mCherry than for 

SINV1-GFP. 

Moreover, the higher viral burden measured in SINV2-mCherry injected larvae 

could be related to its broadened cell tropism. In turn, this can be associated with 
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the lower IFN induction observed. SINV2-mCherry may induce host transcription 

and translation shutoff in infected cells, thereby blocking IFN and/or ISG 

expression. The disease signs and tropism observed in SINV2-mCherry infected 

larvae were indeed reminiscent of those observed in IFN-receptor (IFN-R) 

morphants injected with SINV1-GFP. Thus far we have not tested in vivo whether 

IFN producing cells are indeed infected with SINV2-mCherry and if this, in turn, 

results in decreased levels of IFN expression. However, the ability to modulate 

IFN expression has been reported also for several other SINV strains and 

recombinant mutants. Cruz et al. showed that mutations at the P3 cleavage site of 

SINV AR86 (another SINV isolates) determine a higher induction of IFN with 

respect to the wild type isolates (Cruz et al., 2010), although this modulation was 

independent from virus mediated host shutoff. Frolov et al. showed the 

importance of IFN induction early after infection (2-4 hpi), to block virus 

spreading and indicated mutations in nsP2 as the factors involved in host defense 

induction (Frolov et al., 2012). Indeed, one mutation resulting in an amino acid 

change in the NSP2 protein (Pro 978 Leu) is present in SINV2-mCherry as 

compared to SINV1-GFP.  

Interestingly, the higher neuroinvasiveness observed in SINV2-mCherry-infected 

larvae did not correlate with that measured in SINV1-GFP injected IFN-R 

morphants. This difference therefore must be linked to specific SINV2-mCherry 

determinants that are independent from its ability to modulate IFN. These 

determinants may be absent in SINV1-GFP, thereby explaining its unchanged 

neuroinvasiveness in IFN-R morphants. SINV neurovirulence has been directly 

linked to specific amino acid changes in the E1 and E2 genes and mutations 

present in either of the two can determine differences in the observed 

neurovirulence (Lustig et al., 1988; Tucker and Griffin, 1991). As a consequence, 

strains with specific E1 and E2 mutations have been shown to induce significant 

levels of apoptosis in brains and spinal cord of weanling but also of older mice 

(Lewis et al., 1996). Comparison of the genomic cDNA sequences of SINV1-GFP 

and SINV2-mCherry identified two amino acid changes in E2 (Arg 338 Cys; His 

383 Gln). In the future we will try to isolate the specific residues that determine 

SINV2-mCherry neuroinvasiveness by building various SINV1/SINV2 chimeras, 
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and using in vivo imaging of infected zebrafish larvae as readout for the 

neuroinvasive phenotype.  

 

2. Leukocyte Behavior in Response to SINV Infection in the CNS 

 

The data acquired on the cellular immune response against SINV infection 

suggest that neutrophils represent the main IFN producing cells, in accordance 

with the results obtained by Palha et al. in CHIKV infected larvae (Palha et al., 

2013).  

However, they were not excluded from the brain but rather accessing it rapidly, 

sometimes also in cases in which infection in the CNS was relatively contained. 

Moreover, they were observed directly interacting with infected cells in the brain. 

These were unexpected findings since neutrophils, which are strictly excluded 

from the brain of healthy vertebrates, had not been observed entering the brain of 

CHIKV-infected zebrafish larvae, despite persistent CNS infection (Palha et al., 

2013). Nevertheless, this “neutrophil invasion” phenotype may be quite relevant 

for the study of viral encephalitis, since neutrophils have been shown to invade 

the CNS during encephalitis caused by other viruses, such as Herpesviruses 

(Silverman et al., 1992) or West Nile virus (Davis et al., 2006). 

Future experiments will be directed towards the understanding of the exact role 

played by neutrophils during CNS invasion. In particular, we will deplete them 

specifically using the metronidazole-mediated depletion system (Davison et al., 

2007), to determine their importance in the control/eradication of SINV infected 

neuronal cell types. It may also be worth testing for possible deleterious side 

effects of the presence of neutrophils in the CNS, for instance using behavioral 

testing, some of which exist for zebrafish larvae (Lange et al., 2013), although 

this would require a setup compatible with the use of infected larvae. 

Another aspect that needs to be further addressed is the role of microglia in the 

control of SINV infection in the CNS. Our preliminary data suggest that microglia 

are not capable of restricting the infection in the CNS. Very few cells were 

observed close to infection sites and, according to their rounded shape, they were 

possibly undergoing apoptosis. These experiments were performed ex vivo on 
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fixed larvae; therefore, a more detailed analysis in vivo is necessary. Nevertheless, 

these observations are in accordance with the results obtained after macrophage 

depletion in the mpeg:G/U:Nfsb-mCherry larvae. We showed in fact that their 

absence did not result in increased mortality rates, thereby suggesting that this cell 

population plays a minor role, if any, in controlling SINV infection.  

Finally, we will perform comparative in vivo analyses on the expression patterns 

of ifnφ1 and ifnφ3, thanks to the newly generated ifnφ3:GAL4FF line. The 

transgene was generated in the laboratory of George Lutfalla in Montpellier and 

the line was produced by the AMAGEN transgenesis platform at Gif-sur-Yvette. 

The line will be crossed to UAS:GFP or UAS:RFP fish, and the resulting 

double-transgenic larvae will serve the purpose of characterizing IFNφ3 

producing cells in the context of both CHIKV and SINV infection. At the 

transcriptional level in fact we measured high expression levels of ifnφ3, which 

peaked at 24 hpi (like ifnφ1) and then quickly decreased (unlike ifnφ1). This new 

transgenic line will be useful to analyse cell population or tissue specific 

expression of IFNφ1 and IFNφ3. Our preliminary results indicate that IFNφ1 and 

IFNφ3 are expressed by non-overlapping cell populations. In the case of IFNφ1, 

we have been able to observe its expression not only in leukocytes and infected 

hepatocytes, but also in infected neurons. However, a more detailed quantification 

is required to determine the relative contributions of these expression patterns. At 

the same time, we will follow IFN-responding cells with the help of the 

MxA:mCherry line, also developed by George Lutfalla.  

 

3. SINV and CHIKV Infection in Zebrafish  

 

The characterization of the infection course of CHIKV in zebrafish larvae 

provided two important findings: 1) Several cell types are targeted by the virus, 

including cells of the brain parenchyma, but only brain cells remain infected for 

several days. 2) A potent IFN-mediated response is induced. IFN is mostly 

expressed by neutrophils, though these are excluded from the CNS, and 

knockdown of IFN receptors results in higher viral loads and dramatic increase in 

lethality following CHIKV infection (Palha et al., 2013). However, due to its 
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classification as a BSL3 pathogen, CHIKV could only be studied ex vivo on fixed 

samples or in vivo but under very restrictive conditions (BSL2+ facility, 

low-resolution microscopy). Therefore, in order to better characterize the viral 

infection course in the CNS and the relative immune response but with less 

security restrictions, we decided to employ the closely related SINV as a model 

virus with neurotropic activity. The initial characterization of its mortality rate, 

using the SINV1-GFP strain, and kinetic of infection gave comparable results 

with respect to those observed in CHIKV-infected larvae. Both viruses replicate 

efficiently, with replication peaking at 24 hpi, and show relatively low mortality 

rates (10% for CHIKV and 20% for SINV). The kinetic of the immune response is 

also comparable between CHIKV and SINV, and follows the kinetic of virus 

replication. However, while CHIKV targets predominantly muscle cells, 

fibroblasts, hepatocytes and endothelial cells, SINV rarely infects fibroblasts, it 

has never been observed in co-localization with cells of the vascular endothelium, 

and is predominantly neurotropic. Moreover, CHIKV infection of the CNS occurs 

in almost all infected larvae, but is self-limited to a few cells, while SINV reaches 

the CNS in ~50% of infected larvae, where it expands. These differences suggest 

that the two viruses may employ different mechanisms to enter the CNS. While 

CHIKV could possibly infect endothelial cells of the brain microvasculature, 

SINV is instead transported via axonal projections of peripheral neurons. 

However, a detailed characterization of CHIKV mode of entry is required in order 

to confirm this hypothesis. At the moment, CHIKV mechanism of neuroinfection 

remains largely ill-characterized, although it has been suggested to occur upon 

dissemination from the choroid plexus and the meninges in infected mice 

(Couderc et al., 2008). It would be interesting to test this hypothesis in zebrafish 

larvae, although it will have to be performed ex vivo. 

Another important difference between the two viruses lies in their effect on 

infected neuronal cells. While CHIKV-infected neurons have been shown to 

survive longer than other infected cell types (suggesting neurons could constitute 

a previously unknown CHIKV reservoir), SINV induces cell death in infected 

neurons (likely apoptosis), a phenomenon that was especially obvious in larvae 

with an extensive CNS infection. This in turn could be related with the observed 

infiltration of neutrophils in the brain upon SINV infection.  
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An important point that needs to be further characterized is the effect of IFN-R 

knock-down in SINV-infected larvae. Over 90% of CHIKV-injected IFN-R 

morphants succumb from the infection, demonstrating the protective role of IFN. 

In the case of SINV-injected morphants, on the other hand, only 50% of them die 

after infection and the number of larvae presenting CNS infection does not 

increase with respect to control morphants. This is in contrast with the observation 

that infected neurons produce IFN and require IFN-producing cells to contain the 

infection in the CNS, which suggests IFN plays a more prominent role than the 

one observed in IFN-R morphants. However, since morpholino mediated 

knock-down is transient, it is very possible that its effect can only be felt on 

peripheral infection, which occurs first, and has worn off by the time IFN is 

induced in the CNS. This should be re-evaluated when true IFN or IFN-R 

mutants, obtained using CRISPR or other technique, will have become available.   

Taken together, these observations suggest that SINV may be more closely related 

to other markedly neurotropic Alphaviruses than to CHIKV, and therefore a more 

detailed comparative analysis between the two is needed to identify conserved 

mechanisms of infection. 

 

4. SINV Infection in Mice and Zebrafish 

 

Despite its low pathogenicity in humans, SINV has been studied over several 

years in the mouse model to characterize virus-induced encephalitis. In particular, 

it was shown that SINV-induced lethality is dependent on its neurotropism as well 

as on the age of the infected host (Tucker et al., 1993). Moreover, it was shown 

that the NSV strain induces high mortality rates in both weanling and adult mice, 

showing how different strains can result in very different infectivity and lethality. 

This is also well exemplified by the comparison of our two SINV strains 

(SINV-1GFP and SINV-2mCherry).  

Importantly, even though it was reported that SINV persists in a non-replicative 

form in the CNS of mice that recovered from acute encephalitis (Levine and 

Griffin, 1992), it was also shown that SINV can induce apoptosis, and this 

correlates with its neurovirulence (Lewis et al., 1996). This phenomenon was also 
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observed in zebrafish larvae, in particular those displaying an extensive infection 

in the CNS. However, we will need to quantify precisely the level of apoptosis in 

correlation with the level of CNS infection, also with the help of our newly 

established zebrafish neuronal cell cultures. SINV-induced death of neurons has 

been shown to be limited by autophagy in a cell-autonomous manner, in elegant in 

vivo experiments in mice (Orvedahl et al., 2010). This is something that we could 

also tackle in zebrafish, in collaboration with Emma Colucci-Guyon who 

developed tools to manipulate autophagy in the context of bacterial infections 

(Mostowy et al., 2013 and unpublished results). 

Although in the majority of studies conducted in mice SINV is inoculated ic, 

Cook and Griffin have shown how the use of a luciferase-expressing SINV can be 

used to monitor infection after subcutaneous injection (Cook and Griffin, 2003), 

and have suggested entry in the CNS via retrograde axonal transport. Importantly, 

they have also shown how the variability of the infection between different mice 

is not exclusively dependent on the mouse strain. Different mice of the same 

strain developed in fact infection in different areas (nose, spinal cord, brain) and 

at different times post-inoculation. In our study, we have also observed a high 

variability in terms of number of larvae with CNS infection and patterns of 

infection in the brain. Therefore, these differences can be attributed to intrinsic 

characteristics of the virus rather than to the genetic heterogeneity of the 

zebrafish. 



 
 
108 

General Perspective: Pride and Prejudice of In Vivo Models  

 

“Remember that all models are wrong; the practical question is how wrong do 

they have to be to not be useful.”  

Box, G.E.P., Draper, N.R., (1987). Empirical Model Building and  

Response Surfaces. John Wiley and Sons, New York, NY., p. 74. 

 

According to the British mathematician George E.P. Box (1919-2013), all models 

are intrinsically wrong, being a simplified representation of an infinitely complex 

truth. Although perhaps discouraging at first, this concept should instead be the 

driving force leading researchers into finding the most appropriate model to 

answer their scientific question, thereby turning something “wrong” into 

something useful.  

Often no non-animal alternative is feasible (e.g. in vitro cell cultures, in silico 

modeling); therefore, we must carefully choose the appropriate animal model for 

the validity of our research. According to Davidson et al., the selection of animal 

models should be based on several considerations (Davidson et al., 1987):  

1. Appropriateness as an analog 

2. Genetic uniformity of organisms, where applicable  

3. Transferability of information, in particular in the case of disease 

modeling 

4. Generalizability of the results, in particular for pharmacological and 

toxicological modeling  

5. Background knowledge of biological properties  

6. Ethical implications, by justifying the use of animal models  

7. Ease of and adaptability to experimental manipulation  

8. Costs and availability  

9. Ecological consequences  

With all these criteria in mind, it seems natural that only a limited number of 

animal models is widely accepted and largely supported by funding agencies. The 

mouse (Mus musculus), the nematode worm (Caenorhabditis elegans), the fruitfly 

(Drosophila melanogaster) and the thale cress (Arabidopsis thaliana) represent 
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for many experimental biologists the only acceptable models. Often, submitting a 

grant proposal using a standard organism does not necessitate explaining the 

chosen model. In contrast, choosing a less common one requires detailed 

justifications to convince sceptical and more conservative colleagues.  

However, a usually widely accepted organism can turn out to be the wrong one, 

because of wrong initial assumptions. In the case of drug discovery, we find an 

increasing number of examples where potential drugs fail to pass Phase II clinical 

trials due to lack of efficacy or toxicity, despite being proven safe and effective in 

preclinical models. Inbred mice administered with an experimental treatment for 

multiple sclerosis, for example, were shown to improve from the induced disease 

while the same treatment in human patients gave unpredicted and/or adverse 

responses during Phase II trials (Kappos et al., 2000). It is clear that for certain 

immunological studies, inbred mice fail at mimicking the appropriate level of 

complexity and diversity of human genetics.   

In other cases, we fail at choosing the appropriate number of animals to detect a 

significant effect, either because of the costs, of the limited availability of the 

animals, of errors in experimental setup, or for the pressure of reducing the 

number of animals used. Although, one of the tasks of the Ethical Committees is 

to make sure that an appropriate number of animals is used (not too high, but not 

too low either as to become useless for statistical analyses).  

After these considerations, where does the zebrafish fit in the mayhem of accepted 

and acceptable model organisms? Its optical clarity, ease of genetic 

manipulations, and small size at the larval stage have always been regarded as 

major advantages over other vertebrate models. However, when used for drug 

screenings, we must keep in mind the differences in body size, stage of 

development and, potentially, in metabolic patterns between fish and humans to 

find the correct dose response curve.  

With these premises in mind, the high number of eggs per clutch, the ease of 

screening for specific phenotypes, and the small amount of compound needed, 

make the zebrafish a valuable model to test activity and toxicity of a large number 

of potential therapeutics, in a short time frame and with reduced costs. Our 

experiments to validate the antiviral effects of DFMO in zebrafish larvae are a 

clear example of a fast and relatively cheap in vivo drug test that was much more 
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difficult and limited in mouse due to the elevated costs. Moreover, behavioral 

studies in the context of compound toxicity investigations are also becoming 

common practice in zebrafish and could be included in disease modeling studies, 

to obtain more exhaustive data with respect to the observed clinical signs. Another 

major advantage consists in the possibility to use algorithms that extract 

meaningful data from images, which greatly help reducing the time required to 

screen the efficacy of a compound in hundreds of fish. All these points make the 

zebrafish a good model for translational research.   

In this work, we have shown how the combined use of fluorescent recombinant 

viral strains and zebrafish transgenic lines allow for the investigation of a virus 

infection course from early to late times post-infection. At the same time, we have 

been able to follow the elicited immune response and to correlate it with the levels 

of infection observed in single larvae. We have shown that the zebrafish and the 

mouse model can provide comparable information, suggesting we should apply 

inter-species approaches to validate our respective models of infection. We have 

shown how zebrafish larvae can be employed in drug screening tests, providing 

important results at reduced costs and with less time required for the analysis. I 

hope that with this and future works, we will continue to show how the zebrafish 

can represent a useful model to understand virus-induced pathogenesis and to find 

safe and valuable therapeutics.  
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MATERIALS AND METHODS 

 

This section provides a detailed description of the protocol used to produce SINV 

pTR339-mCherry/2A and SINV pTR339-GFP/2A, as well as the protocol set up to 

obtain zebrafish neuronal cells in culture. All other methods have been previously 

described or included in the “Materials and Methods” section of the submitted 

article, and therefore will not be described further. 

 

1. Sindbis Virus Production and Titration on BHK cells 

 

The following protocol was kindly provided by Benjamin Obadia and Carla Saleh 

and has been adapted from Hardwick and Levine (2000). It consists in the 

linearization, in vitro transcription and transfection of SINV plasmids, in order to 

produce new concentrated virus stocks.  

 

The following reagents are needed: 

 

SINV plasmid (linearizable with XhoI) 

mMessage mMachine SP6 Kit   (Ambion) (AM1340) 

GlycoBlueTM coprecipitant    (Ambion) (AM9515) 

RNase OUTTM (40 U.µL-1)    (Life Technologies) (10777-019) 

Ethanol Absolute (EtOH)   (VWR) (20820.362) 

Lipofectamine® 2000    (Life Technologies) (11668-027) 

Opti-MEM® (reduced serum medium)  (Life Technologies) (51985-042) 

DMEM (high glucose)    (Life Technologies) (61965-026) 

Ultra PureTM Agarose    (Life Technologies) (16500-500) 

BHK-21 cell line in DMEM/5% FBS  (ATCC) (CCL-10) 

DMEM +GlutaMAX (+Glucose 4.5 g/L,  

-Pyruvate)     (Life Technologies) (61965-026) 

Fetal Bovine Serum (FBS)   (GIBCO) (10270-106) 

L-Glutamine (L-Glu, 200 mM)  (Life Technologies) (25030-024) 
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Penicillin (Pen, 100 U/mL)    (Biovalley) (P0142.0100) 

Streptomycin (Strep, 100 µg/mL)   (Biovalley) (S09470) 

DMEM (powder) with Glucose (4.5 g/L) (Sigma-Aldrich) (D7777-1L) 

Methyl Cellulose (MC)   (Sigma-Aldrich) (M0512-100G) 

Sodium Bicarbonate (MW: 84.01 g/mol)  (Sigma-Aldrich) (S5761-500G) 

9.6% Sodium Hypochlorite    (commercial) 

Crystal Violet Solution (CV) (2.3% w/v) (Sigma-Aldrich) (HT90132-1L) 

D-PBS/Modified     (HyClone) (SH30028.02) 

37% Formaldehyde (MW: 30.03 g/mol) (Sigma-Aldrich) (15512) 

Filter Millex Express Plus (0.22 µm)  (Millipore) (SLGP033NS) 

Cell culture flask (162 cm2)   (Corning) (3151) 

6-well plate (9,62 cm2)   (Corning) (3516) 

 

The protocol is as follows: 

Plasmid Preparation  

1. Linearize 2 µg of plasmid with XhoI (Fermentas)  

2. Purify using phenol-chloroform extraction and ethanol precipitation, and 

resuspend in 20 µL of ddH2O  

3. Run 1 µL on a 0.7% agarose gel in 1× TAE 

 

In vitro Transcription  

1. Mix 1 µg of linearized plasmid (0.5 µg/µL in water) with: 

a. 10 µL of 2× NTP/Cap, 

b. 3 µL 20 mM GTP, 

c. 2 µL of 10× Rxn Buffer, 

d. 2 µL SP6 Enzyme Mix, 

e. up to 20 µL with ddH2O 

2. Incubate for 1-2 hrs at 37°C 

3. Add 1 µL TURBO DNase and incubate for 15 mn at 37°C 

 

Lithium Chloride Precipitation 

1. Add 30 µL ddH2O, 25 µL LiCl, 1 µL GlycoBlueTM, mix gently, and keep at 

least 1 hr at 20°C 
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2. Centrifuge at 4000 RCF for 15 mn (at least) at 4°C  

3. Carefully remove the supernatant and wash the pellet with 200 µL ice-cold 70% 

EtOH 

4. Centrifuge at 4000 RCF for 5 mn at 4°C 

5. Carefully remove ethanol and dissolve the RNA pellet in 11 µL ddH2O 

6. Optionally add 1 µL RNaseOUTTM. Store immediately at –80°C or proceed 

with transfection 

7. Run 1 µL on a RNase-free 0.7% agarose gel in 1× TAE 

 

BHK Cells Transfection  

1. One day prior to transfection, subculture BHK cells in DMEM/5% FBS in a 

162-cm2 flask. Cells must be at ~80% confluence  

2. In an eppendorf, mix 500 µL pure opti-MEM* with 60 µL lipofectamine, and 

incubate for 10 mn (sol.A) 

3. In an eppendorf, dilute ~30 µg viral RNA in 500 µL pure opti-MEM, mix with 

sol.A, and incubate for 20 mn at room temperature (sol. B) 

4. Remove the complete DMEM from cells and eventually rinse once with D-PBS 

5. Mix sol. B in 10 mL pure opti-MEM*, and add directly to the cells 

* DMEM can be used too 

6. Incubate the cells with the transfection complexes for 2 hrs at 37°C, 5% CO2 

7. Remove the transfection complexes from the flask and add fresh complete 

DMEM/5% FBS to the cells. 

8. Incubate for 18 to 24 hrs, or until complete cytopathic effect (CPE) has 

occurred 

9. Proceed to virus harvest 

 

Virus Harvest  

1. When CPE is observed, transfer medium from the flask to a 15-mL conical 

polypropylene tube 

2. Centrifuge at 1000 RCF for 10 mn at 4°C to remove cell debris 

3. Transfer virus-containing supernatant into eppendorf tubes, and store at –80°C 

4. Titer on BHK cells. In case the titer is too low for the specific need, the virus 

can be concentrated adding a centrifugation step. In this case, an Amicon® 
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Ultra-15 with a 10K (MW) cutoff should be used. Centrifugation should be 

performed at 4000 RCF for 15-20 mn at 4°C  

 

The following solutions are needed for the plaque assay, in order to determine the 

virus stock titer: 

 

DMEM/5% FBS: 500 mL DMEM, 25 mL FBS, 5 mL L-Glutamine, 5 mL 

PenStrep 

DMEM (2×): DMEM (powder), 3.7 g Sodium Bicarbonate, up to 460 mL ddH2O, 

filter (.22µm) and add 20 mL FBS, 10 mL of 100× L-Glutamine, 10 mL of 100× 

PenStrep. Store for less than 2 months at 4°C 

1.6% MC: 1.6 g of MC, up to 100 mL with H2O. Autoclave in 100 mL aliquots, 

store at 4°C. A 100 mL bottle is suitable for fifteen 6-well plates 

DMEM/0.8% MC: 6 mL of 1.6% MC in 6 mL of 2× DMEM (per 6-well plate)  

0.23% CV Solution: 180 mL H2O, 45 mL 100% Ethanol, 25 mL 2.3% CV 

Solution stock 

4% formaldehyde: 650 µL 37% formaldehyde, up to 6 mL with D-PBS (per 

6-well plate) 

2.6% bleach: 270 mL 9.6% sodium hypochlorite, up to 1L with H2O 

 

Cells and Virus Dilutions 

1. On the day prior to the plaque assay, split BHK-21 cells into 6-well plate at a 

concentration of 0.7-1 × 106 cells per well in 2 mL of 1× DMEM such that cells 

will be 70-90% confluent on the next day. A 162 cm2 flask gives ~32 × 106 BHK 

cells. Incubate overnight at 37°C, 5% CO2 

2. Thaw the virus to be titered on ice (~30 mn) and prepare serial virus dilutions in 

1.5 mL eppendorf tubes 

3. Recover the plate, observe cells, pour medium out of wells, and rinse once with 

2 mL D-PBS 

4. Infect each well with 250 µL of chosen virus dilution (or DMEM w/o FBS as a 

negative control) 

5. Incubate the plaque for 1 hr at 37°C, agitating every 10 mn 
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Plaque Assay 

1. While incubating, prepare DMEM/1% MC mixture (3 mL per well). Mix by 

adding MC to DMEM as MC is very viscous. Plan more, as a part of the mixture 

is lost in the pipette 

2. Remove the inoculum from each well, add 3 mL of DMEM/1% MC 

3. Incubate 2-3 days at 37°C, 5% CO2 

 

Revealing 

1. Add 1 mL 4% formaldehyde to cover wells, and incubate at least 30 mn 

2. Remove gently the DMEM/MC/formaldehyde solution, and gently rinse with 

H2O 

3. Cover each well with 0.23% CV solution for 5 mn to stain viable cells 

4. Empty out the 0.23% CV solution into a bleach-containing sink, and gently 

rinse with H2O 

5. Let dry, count plaques, and calculate titer in plaque forming units per milliliter 

(PFU/mL) 

 

2. Zebrafish Neuronal Cell Cultures  

 

The following protocol was developed at INRA in the group ‘Virologie et 

Immunologie Moléculaire’, under the invaluable guidance of Pierre Boudinot and 

Christelle Langevin. It has been adapted from Chen et al. (2013).  

It consists in the dissociation of dissected zebrafish embryos, to obtain a 

suspension enriched in neurons and glial cells that is then plated in complete 

medium on a suitable substrate. Preliminary experiments have shown that cells 

derived this way can be kept viable for 10-12 days and can be used for various 

purposes (viral infection studies, gene expression studies, drug screening tests). 

Several zebrafish lines have been used, including: wild-type (WT) AB, 

HuC:eGFP (Tg(elavl3:EGFP)knu3) with green neurons, HuC:GAL4 crossed to 

UAS:NfsB-mCherry (Tg(elavl3.1:GAL4-VP16)hd5 crossed to 

Tg(UAS-E1b:Eco.NfsB-mCherry)c264) with red neurons, GFAP:eGFP 

(Tg(gfap:EGFP)mi2001) with green glial cells.  
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The protocol is as follows:  

1. Four days prior to the dissociation, set up fish for spawning 

2. The following day, collect the eggs and wash them with regular/Volvic water 

3. Sort the fertilized eggs and discard the non-fertilized ones 

4. Wash again with regular/Volvic water and discard excess water. Add 30 µL of 

5.25% bleach in 50 mL of regular/Volvic water; gently rotate the falcon; do not 

leave the embryos in bleach for more than 5 minutes 

5. Wash 2x with regular/Volvic water 

6. Transfer the embryos in a petri dish with regular/Volvic water with methylene 

blue (4 mg/mL – 70 µL/L of water) and incubate them at 28.5°C until the day of 

the dissociation  

 

On the day prior to the dissociation:   

 

The following reagents and solutions are needed: 

 

Ethanol Absolute (EtOH)   (VWR) (20820.362) 

Tricaine (25x)     (SIGMA) (E10521) 

D-PBS/Modified     (HyClone) (SH30028.02) 

Poly-D-lysine (PDL, 1 mg/mL)   (SIGMA) (P7280-5MG)  

α-D-glucose (MW: 180.16 g/mol)   (Prolabo) (24 370.294) 

DifcoTM trypsin 250 (100 g)    (BD) (215240) 

DNase (10000 U)    (Roche) (10 776 785 001) 

MEM (500 mL)     (Eurobio) (CXXBHK00-01) 

Fetal bovine serum (FBS)    (GIBCO) (10270-106) 

L-glutamine (L-Glu, 200 mM)  (PAA) (M11-004) 

Tryptose (100 mL)     (SIGMA) (T8159) 

Penicillin (Pen, 100 U/mL)    (Biovalley) (P0142.0100) 

Streptomycin (Strep, 100 µg/mL)   (Biovalley) (S09470) 

Pasteur pipette (5 mL, sterile)  (VWR) (612-1686) 

Cell strainer filters (0.40 µm)   (BD Falcon) (352340) 

Cell strainer filters (0.20 µm)   (Minisart) (16534) 

Ibidi µ–Dish35 mm, high     (Biovalley) (81156) 
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Ibidi µ–Slide8 well    (Biovalley) (80826) 

Ibidi Hi-Q4     (Biovalley) (MZI00040) 

 

25 µg/mL PDL: 25 µL PDL 1 mg/mL, 975 µL D-PBS; PDL is fundamental to 

increase the adherence of cells to the support 

4% D-glucose: 2 g in 50 mL of D-PBS; dissolve carefully and filter the solution 

with a 0.20 µm cell strainer filter; store at 4°C 

EPC/10% FBS: 450 mL MEM, 50 mL FBS, 5 mL L-Glu, 5 mL Tryptose, 500 

µL PenStrep; if the culture is needed for viral infection studies, the 

virus-containing medium must be EPC/2 % FBS  

 

2. Add a solution of sterile PDL/PBS (25 µg/mL) in each well of the available 

incubation plate, such as for example, a glass-covered Ibidi dish and incubate ∼1 

hr at 37°C 

The volume is dependent on the Ibidi dish being used (1 mL/dish for the Ibidi 

µ-Dish35 mm, high and the Ibidi Hi-Q4, 150 µL/well for the Ibidi µ-Slide8 well)  

3. Remove PDL and wash 3x with PBS  

4. Remove PBS and store the dishes at room temperature 

 

On the day of the dissociation:  

 

The following passages must be performed under a laminar flow hood, to avoid 

contaminations of the cell culture  

 

Head Dissociation  

1. Place ∼100-150 72 hpf zebrafish embryos, still in their chorions, in EtOH 70% 

(5-10 sec) 

2. Quickly remove the embryos, using a sterile pipette and wash them 2x with 

sterile water with methylene blue  

3. Dechorionate the embryos and anesthetize them with tricaine (1x) 

4. Remove the head from the rest of the body, using fine forceps and a small 

cutter 
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Tissue Dissociation and Cell Cultures  

1. Transfer the heads in a 1.5 mL eppendorf tube, let them sediment and remove 

the supernatant  

2. Add 500 µL of trypsin, mix gently and incubate for 15 min at 37°C  

3. Add 100 µL of FBS to block the trypsin, mix gently and remove the 

supernatant, after sedimentation  

4. Add 1 mL of EPC medium to the eppendorf tube and transfer the content in a 

15 mL falcon tube already containing 4 mL of EPC medium mixed with DNAse 

(100 µL). DNase helps tissue dissociation but it is not essential   

5. Grind the tissues with a 5 mL pipette (do not grind more than 10 times); add a 

1 mL tip on the P5 pipette and repeat the grinding. At this step, the suspension 

should appear homogenous  

6. Filter the suspension through a 0.40 µm cell strainer  

7. Spin down the cells at 90 RCF for 5 min without brakes (at room temperature)  

8. Remove the supernatant and wash the cells once in EPC medium (∼4 mL)  

9. Spin down the cells at 90 RCF for 5 min without brakes  

10. Add 2 mL of EPC medium, resuspend the cells and measure the cell density, 

using a Bürker chamber. The cell density should be comprised between 5x105 and 

1x106 cells/mL; if a concentration step is needed, proceed again with passage 9. 

and resuspend the cells in the appropriate volume of EPC medium   

11. Plate the cells on coated Ibidi dishes, adding half of the final volume of 

medium+cells/well (depending on the Ibidi dish being used) and incubate them at 

24°C  

12. After 1 h (when cells have adhered), add the other half of the medium  

The medium should be changed every 2-3 days, depending on the state of the 

culture. It is advisable to change each time only half of the medium, in order to 

maintain cells viability 
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Abstract

Innate immunity constitutes the first line of the host defense after pathogen invasion. Viruses trigger the
expression of interferons (IFNs). These master antiviral cytokines induce in turn a large number of
interferon-stimulated genes, which possess diverse effector and regulatory functions. The IFN system is
conserved in all tetrapods as well as in fishes, but not in tunicates or in the lancelet, suggesting that it
originated in early vertebrates. Viral diseases are an important concern of fish aquaculture, which is why fish
viruses and antiviral responses have been studied mostly in species of commercial value, such as salmonids.
More recently, there has been an interest in the use of more tractable model fish species, notably the
zebrafish. Progress in genomics now makes it possible to get a relatively complete image of the genes
involved in innate antiviral responses in fish. In this review, by comparing the IFN system between teleosts and
mammals, we will focus on its evolution in vertebrates.

© 2013 Elsevier Ltd. All rights reserved.

Introduction

Teleosts, the largest and best-known clade of
ray-finned fish, constitute a highly successful and
diverse group, including half of vertebrate species.
Their line and ours diverged about 450 million
years ago. Several species within this group, both
commercial species and model organisms, have
been studied to some depth by immunologists,
and many details of their antiviral defenses are
now known. Although fish genomes have a
complex history of whole genome duplications
(WGDs) and contractions, the remarkable conser-
vation of the interferon (IFN) system underlines
the critical importance of innate antiviral immunity
in vertebrates.

Part 1. Architecture of Innate Immune
Response in Fish: IFNφ, Receptors,
General Structure of Pathways

Fish IFNs

Extensive studies performed in mammals in
various contexts of viral infection demonstrated the
importance of IFNs in antiviral responses. The name
of this group of cytokines originates in their ability to
“interfere” with the viral progression, as first de-
scribed in 1957 by Isaacs and Lindenmann [1]. IFNs
belong to class II helical cytokine family and, in
mammals, can be divided into three different groups

0022-2836/$ - see front matter © 2013 Elsevier Ltd. All rights reserved. J. Mol. Biol. (2013) 425, 4904–4920
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based on biological and structural features as well as
receptor usage [2]: mammalian IFNs have been
classified as type I (α, β, ω, ε, and κ), type II (γ), and
type III (λ) IFNs. Actually, only type I and type III IFNs
(often grouped under the label “virus-induced IFNs”)
are truly specialized as innate antiviral cytokines;
IFNγ is rather a regulatory cytokine of innate and
adaptive immunity, mostly active against intracellular
bacteria.
IFN-like antiviral activity has been reported in fish

40 years ago [3,4]. However, teleost IFN genes could
not be identified before the development of fish
genomics [5–8]. These virus-induced fish IFNs were
clearly responsible for a strong inducible activity
against a range of viruses [5–7]. Although some fish
species (e.g., fugu or medaka) appear to possess one
single virus-induced IFN gene, the number of identi-
fiedgenesgrew rapidly in other fish species. There are
four virus-induced IFN genes in zebrafish (aka IFNφ)
[9,10], a number unlikely to change much considering
the quality reached by the zebrafish genome assem-
bly. Salmonids, however, havemanymore IFNgenes;
the current record is 11 genes in Atlantic salmon [11].
Two main subsets could be distinguished among fish
virus-induced IFNs, corresponding to the number of
cysteine (C) residues predicted to be engaged in

disulfide bridges: two for IFNs of group I and four for
IFNs of group II [9,11], as was later confirmed by
three-dimensional crystallography [12]. The 4C con-
figuration is found in all tetrapod type I IFNs, with the
exception of mammalian IFNβ, which has only one
disulfide bridge. However, the cysteine pair of IFNβ is
different from the one of fish group I IFNs, and one
should emphasize that the two groups of fish IFNs do
not correspond to the alpha/beta subdivision of
mammalian type I IFNs, which occurred after the
divergence of avian and mammalian lineages.
Two different isoforms of some fish IFN transcripts,

resulting from the usage of alternative promoters,
show different levels of induction: upon viral infec-
tion, a short transcript encoding a protein with a
signal peptide is induced in addition to a constitu-
tively expressed isoform, which lacks signal peptide
[13]. This particularity has been observed in a
number of fish species, but not for all their IFN
genes [14–16]. No function of the presumably
non-secreted IFN isoform, unique to teleosts as far
as we know, has been reported.
Importantly, the two groups of IFNs were found to

signal via two different receptors in zebrafish (Fig. 1)
[10]. IFNφs of the first group (IFNφ1 and φ4) bind to
the cytokine receptor family B (CRFB)1–CRFB5

Fig. 1. Schematic representation of zebrafish IFNs and their receptors. Tridimensional representations of IFNs are from
the Protein Data Bank (accession numbers: 3PIV, zebrafish IFNφ1; 3PIW, zebrafish IFNφ2; 3HHC, human IFNλ3; 1AU1,
human IFNβ; 1HIG, human IFNγ).
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complex while the CRFB5 chain is associated to
CRFB2 to form the receptor for group II (IFNφ2 and
φ3) [13,10]. Interestingly, both zebrafish IFNφ4 and
salmon IFNd—which are possible orthologues—
seem to have lost antiviral activity and might be on
their way becoming pseudogenes. Alternatively,
they may even play a decoy role for other IFNs.
Do the two groups of fish virus-induced fish IFNs

play distinct or redundant roles? By injecting recom-
binant IFNs in adult zebrafish and challenging them
with different pathogens, Lopez-Munoz et al. found
that both types would protect against a virus, but only
the group I IFN would also protect against a bacteria
[17]; they also observed an induction of distinct gene
subsets. However, it is difficult to reach a firm
conclusion from this study, because untitered culture
supernatants were used as sources of recombinant
IFNs, and because the slow kinetics of induction of
most downstream genes (including the IFN them-
selves) suggests indirect effects. Most other studies
found quantitative but not clearly qualitative differ-
ences between the responses inducedby the different
IFNs (e.g., Ref. [18]), although this remains to be
analyzed in depth. Nevertheless, the distinct recep-
tors for the two IFN groups raise the possibility of
different target tissues; in addition, important differ-
ences in expression patterns of the different fish IFNs
have been demonstrated. The spatial differences of
IFN and interferon-stimulated gene (ISG) expression
will be reviewed in later sections.
Classification of virus-induced fish IFN genes,

relative to mammalian IFNs, has been controversial
for some time. Molecular phylogenies were uncer-
tain because the low overall similarity (b25%)
between mammalian and fish proteins resulted in
uncertain software-generated alignments. It was
thus not possible to claim with certainty that fish
virus-induced IFNs were closer to mammalian type I
or type III IFNs (or co-orthologous to both groups as
a set of paralogues), although some sequence
features, such as the CAWE sequence at the
beginning of the C-terminal helix, were noted by
some as characteristic of type I IFNs [9,11,19]. By
contrast, fish IFN genes are composed of five exons
and four introns [11,19], as are mammalian type III
IFN genes, while mammalian type I IFN genes
contain a single exon; additionally, when receptors
for IFNs were identified in zebrafish, their domain
organization had features of the receptor of human
IFN λ rather than type I IFN receptor, which has a
uniquely large extracellular region in one chain
(Fig. 1) [13]. However, the first argument was soon
dismissed when frogs were found to have both type I
and type III IFNs, all with five-exon structures,
indicating that single-exon type I IFN genes were
the result of a retrotransposition event in the amniote
lineage, not an ancestral feature [20]. Finally, crystal
structures revealed a characteristic type I IFN
architecture for both groups of IFNφs with a straight

F helix, as opposed to the remaining class II
cytokines, including IFN-λ, where helix F is bent [12].
Based on these considerations, different names

have been proposed for fish IFNs: type I IFNs,
virus-induced IFNs, IFNλ, or even simply IFNs.
Following Stein et al. [21], zebrafish IFNs are now
called IFNφ (φ for fish). While it is now demonstrated
that fish virus-induced IFNs are structurally type I
IFNs, a consensus about a consistent nomenclature
for these cytokines has still to be reached. The
current zebrafish nomenclature avoids orthology
assumptions but does not clearly distinguishes
group I and group II IFNs. The current nomenclature
for salmonid IFNs, which groups the genes into four
subgroups, IFNa, IFNb, IFNc, and IFNd [11,22], has
the same issue (group 1 includes IFNas and IFNds;
group 2 includes IFNbs and IFNcs) with the caveat
that unaware readers could wrongly assume that
IFNas are orthologous to mammalian IFNαs, and
IFNbs to IFNβ. A self-explanatory nomenclature
reflecting the phylogenetic relationships between
IFN genes remains to be established.
Fish also possess clear orthologues of mammali-

an type II IFNs (γ), with many fish species having two
type II ifn genes (ifnγ1 and ifnγ2) [15,23–25]. In
zebrafish, IFNγ1 and IFNγ2 bind to distinct recep-
tors: the IFNγ2 receptor includes Crfb6 together with
CRFB13 and CRFB17, while the IFNγ1 receptor
does not comprise CRFB6 or CRFB13 but includes
CRFB17 (Fig. 1) [26]. Genes encoding a trout
receptor of IFNγ have also been identified [27].
Infection studies show that IFNγ signaling is involved
in resistance against bacterial infections in the
zebrafish embryo, with a proper level required for
the fish to clear high doses of Escherichia coli or low
doses of the fish pathogen Yersinia ruckeri [24].
However, a potent antiviral activity of IFNγ was also
demonstrated in Atlantic salmon against infectious
pancreatic necrosis virus (IPNV) and infectious
salmon anemia virus (ISAV), which may partly
depend on the coexpression of type I IFN [28].
However, fish IFNγ are not always induced by viral
infections under conditions where type I IFNs are
[26], indicating that in fish as well as in mammals,
IFNγ are probably not specialized antiviral cytokines;
they will therefore not be discussed further.

Virus sensors in fish and their
signaling pathways

In mammals, viral infection is rapidly detected by
specialized PRRs (pattern recognition receptors)
such as RIG-I-like receptors (RLRs) and Toll-like
receptors (TLRs). These cellular sensors of invading
pathogens are directly involved in the activation of
the IFN system.
Three RLRs, that is, RNA helicases containing

canonical DExD/Hmotifs, have been identified to date
in humans: retinoic acid-inducible gene I (RIG-I, also
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known as DDX58), melanoma differentiation-asso-
ciated gene 5 (MDA5, or IFIH1), and laboratory of
genetics and physiology 2 (LGP2, or DHX58). In silico
analyses led to the identification of RLRs described in
many teleost fish including zebrafish, Atlantic salmon,
grass carp, Japanese flounder, rainbow trout, and
fathead minnow [22,29–36]. These sequences are
highly conserved between mammalian and fish
orthologues [37]. LGP2 and MDA5 seem to be
conserved in all fish species, while RIG-I has been
retrieved only in some groups including salmonids
and cyprinids [38]. Like theirmammalian counterparts,
expression of RLRs is modulated upon viral infection
[29,31,32,36,39,40] and IFN stimulation through polyI:
C treatment [33] or by ubiquitin-like ISG15 [41], which
also modulates RIG-I activity [42]. Interestingly, LGP2
appears to be a positive activator of the IFN pathway
in fish. Sequence analysis suggests a fair conserva-
tion of signaling pathways downstream of RLR
(Fig. 2), with a critical role of for the mitochondrial
antiviral signaling protein (MAVS, also known as
CARDIF, VISA, or IPS-1) [22,29,34,43,44]. Associa-
tion of MAVS with TRAF [tumor necrosis factor (TNF)
receptor-associated factor] 3 and activation of the
pathway by TBK1 (TANK binding kinase 1) via

phosphorylation of IFN regulatory factor (IRF)3/7
transcriptional factors have also been shown in fish
[44,45]. Nuclear translocation of these factors induced
the transcription of different cytokines including IFN
genes. The adaptor STING (aka “mediator of IRF3
activation” or MITA, ERIS, and MYPS), a transmem-
brane protein located in the endoplasmic reticulum,
links signaling between MAVS and downstream
cytosolic kinase TBK1 [46,47]. In mammals, STING
is also involved in the induction of IFNβ by DNA
viruses, connecting cytosolic DNA sensing to TBK1
and IRF3 activation [48]. STING has been identified
in fish and plays an important role in the RLR/
IRF3-dependent signaling [39,49]. The pathways
induced by DNA viruses are still poorly known in
fish, and the importance of STING in this signaling
remains to be established. Interestingly, the DNA
sensors AIM2 and IFI6-16 seem to be missing in fish.
A diverse TLR repertoire has been found in fish

[50,51]. Some TLRs have been described only in
lower vertebrates including TLR14 and TLR23 [50];
TLR18, TLR19, and TLR20 [52]; TLR21 and TLR22
[53]; TLR24 [54]; and TLR25 and TLR26 [55]. TLRs,
which are involved in the recognition of double-
stranded RNA (dsRNA) (TLR3) or single-stranded

Fig. 2. Schematic representation of IFN signaling pathways in fish. Adaptor molecules are represented in orange,
kinases are in green, TRAFs are in purple, transcription factors are in yellow, and IFNs are in red.
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RNA (TLR7 and 8) in mammals, have good
orthologues in fish [52,53,56]. Both structural and
functional evidence indicate that these TLR are also
involved in virus sensing in fish: all critical residues
for binding to dsRNA are conserved in fish TLR3
[55], and RTG-2 rainbow trout cells transfected with
TLR3 showed increased IFN response after poly(I:
C) stimulation [57]. Similarly, the leucin-rich repeats
of TLR7 are remarkably conserved between mam-
mals and fish [55,58], and a known ligand of TLR7
and TLR8 (R-848) induces a typical IFN response in
salmonid leukocytes [18,59]. Additionally, among
fish-specific TLRs, TLR22 is responsive to virus
infections, poly(I:C), and dsRNA [57,60]. Fugu
TLR22 recognizes long-sized dsRNA on the cell
surface, while TLR3 binds short-sized dsRNA in the
endoplasmic reticulum [57], which may represent a
dual pathway for RNA virus sensing in fish.
Upon ligand binding, TLRs dimerize and their

intracytoplasmic TIR (Toll-interleukin 1 receptor)
domains recruit adaptor molecules through homo-
typic TIR/TIR interactions. In mammals, most TLRs
signal through the Myd88 adaptor, which recruits
interleukin-1R-associated kinase (IRAK) (Fig. 2).
This protein then associates with TRAF6, subse-
quently involving TANK (TRAF family member-
associated NfkB activator kinase) and IKKi (inhibitor
of NFkB kinase) inducing NFκB nuclear transloca-
tion and type I IFN gene transcription. In contrast,
TLR3 (specific for dsRNA) signaling occurs inde-
pendently of Myd88 through the recruitment of TRIF
(TIR domain containing adaptor inducing IFNβ, also
known as TICAM-1 or Myd88-3), leading to TRAF3
signaling cascade, IRF3 phosphorylation preceding
nuclear translocation, and recognition of IFN-
stimulated responses elements on type I IFN pro-
moters. Viral infection alternatively activates IRF7 via
TLR7–9 in a TRAF6-dependentmanner [61]. Although
TLR families show distinct features among verte-
brates, the components of signaling pathways are well
conserved as suggested by the presence of kinase
and adaptor molecule orthologues in zebrafish and
pufferfish [21]. Myd88 and other TIR adaptors were
identified in zebrafish [56], andmorpholinoapproaches
as well as infectious models demonstrated the
functionality of Myd88 in the establishment of
TLR-mediated immune response [62]. Further studies
confirmed these observations using different stimula-
tions [poly(I:C), flagelin, or chemical treatments]
[63,64]. Since then, myd88 has been identified in
many fish species [64–68]. Zebrafish TRIF similarly
triggered activation of type I IFN. The TRIF-dependent
TLR pathway converges with the RLR pathway by
activating the TBK1 kinase, which is conserved in fish
as mentioned above. However, the TICAM1 signaling
pathway observed in zebrafish is apparently indepen-
dent of IRF3 and IRF7and doesnot require interaction
with TRAF6 [69]. Also, a gene coding for the IRAK2
kinase is missing from the genome of pufferfish,

zebrafish, medaka, and stickleback [21], while an
IRAK1 orthologue is present and can trigger innate
immune response [70].
Thus, IFN-inducing signaling pathways are overall

fairly well conserved between fish and mammals.
Regarding the sensors, RLRs are also remarkably well
conserved, while the fish TLR repertoire include a
variety of receptors absent in mammals—some of
which, at least, contribute to viral detection—in addition
to well-conserved ones such as TLR3 and TLR7.

Conserved signaling pathways downstream of
IFN receptors

In mammals, IFN binding to their membrane
receptors leads to the activation of the JAK-STAT
signaling pathway (Fig. 1). Type I IFN association to
its receptor triggers recruitment and binding of the
kinases TYK2 and JAK1 to IFNAR1 and IFNAR2,
respectively. Subsequently, these kinases promote
the phosphorylation of STAT1 and STAT2 proteins
preceding their oligomerization. Conjugation of
cytoplasmic IRF9 to the STAT1/2 oligomers gener-
ates the complex ISGF3 (IFN-stimulated gene
factor), which induces the transcription of ISGs
after binding nuclear IFN-stimulated responses
elements on their promoter. In fish, the stat1 gene
has been described in many species [67,71–73]; the
zebrafish genome encodes two different paralogues,
stat1a and stat1b [21]. Functional studies highlighted
their role in the regulation of the type I IFN pathway in
different species [67,71,73]. However, the respective
roles of the different STAT1s in IFN pathway
regulation remain unclear in zebrafish. Kinases
JAK1 and TyK2 as well as STAT2 and IRF9 are
also present in fish genomes [21]. Aggad et al.
proposed that TYK2 would be associated to CRFB5,
while JAK1 would be associated to CRFB1 and 2,
thus leading to the activation of the IFN signaling
pathway and to viperin transcription (Fig. 2) [10].
In contrast, type II IFNs signal after binding to

IFNGR1–2 by recruiting JAK1 and JAK2; these
kinases promote phosphorylation of STAT1 homo-
dimer, which directly translocates to the nucleus and
bind a GAS element (IFN gamma-activated site),
thus mediating up-regulation of a broad repertoire of
genes, partly overlapping with the type I IFN-me-
diated response. In zebrafish, IFN-γ1 and IFN-γ2
bind distinct receptors (CRFB6–CRFB13 and
CRFB17 for IFN-γ2 and CRFB17, plus unidentified
chains, for IFN-γ1) with conserved binding regions of
JAK1 and 2 kinases [26]. Two JAK2 kinases are
expressed in this species (JAK2a and b), and only
JAK2a has been involved in IFNγ signaling using
constitutively active mutants (Figs. 1 and 2) [26].
Future studies will be required to determine which of
the two STAT1 paralogues constitutes the active
protein involved in the signaling pathway of type I
and type II IFNs.
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Part 2. ISGs and Their Diverse
Evolutionary Patterns

Type I IFNsdonot possessantiviral activityper sebut
interfere with viral infection through induction of a vast
repertoire of ISGs via the JAK/STAT pathway. A few
hundred ISGs have been identified in human [74,75],
with a rich diversity of molecular functions. Some ISGs
exert a direct antiviral activity such as MX, VIPERIN/
VIG1, ISG15, PKR, and TRIM5. However, the connec-
tion of most ISGs to antiviral mechanisms, and even
their role in the biology of the cell, remain unknown.
While ISGs are intrinsically located downstream of

IFN in the antiviral pathways induced by viral
infections, a number of them are able to up-regulate
type I IFNs and are therefore involved in positive
feedback regulatory loops (e.g., trim25, rigI, stat1, irf7,
and viperin/vig1 [76–79], while some also feedback
negatively on IFN signaling (e.g., socs1 and 2).
Furthermore, the recognition of viral compounds by
cellular sensors can up-regulate some ISGs directly,
that is, independently of IFN induction; such bypass
has been shown for example for Mx [80,81] and for
viperin in human and fish [82,83]. Hence, while IFN
definitely plays a central role in the innate antiviral
response, a complex and redundant network of
regulatory loops and bypass mechanisms is also
involved, which makes the whole system more
resistant to subversion by viruses.
Orthologues of human ISGs involved in IFN

amplification have often been retrieved as ISGs in
fish, which may indicate that they belong to the
primordial IFN pathway: for example, trim25, rigI,
stat1, irf7, and viperin/vig1 are conserved in teleost
fish and are induced by type I IFN in these organisms
[84]. In fish, this list includes also irf3 [45,85], which is
not an ISG in mammals. Although their induction
pathways are partly unknown, IFN-independent
induction has been observed for some of them.
Whether regulatory loops of signaling pathways for
type I IFN and ISGs induction are ancestral, or have
been shaped independently during fish versus
tetrapod evolution, remains to be clarified.
The evolution of teleost fish wasmarked by an early

WGD event, followed by a gene loss phase, and as a
consequence, the fish genomes sequenced to date
do not contain more genes than humans, but
paralogous pairs that arose from this WGD are
frequent [86]. To further complicate things, additional
WGD episodes occurred in some branches among
teleosts—for example, in salmonids—while other fish
underwent strong genome contraction, such as the
tetraodon/fugu family. Of note, zebrafish has a
relatively large genome with many highly expanded
gene families, compared to other fish model species
[87]. Since genes involved in effector mechanisms of
immunity tend to diversify to escape subversion by
pathogens, one might expect that fish would have

retained many ISG duplicates and would possess
larger repertoires of ISGs.
In fact, this hypothesis is still difficult to validate,

since the diversity of fish ISGs is not fully defined. A
few typical ISGs were first identified using primers or
probes targeting conserved sequences such as Mx
[88–90] and genes of the MHC class I presentation
pathway [91]. Then, PCR-based approaches for
differential display of transcripts (differential display
PCR, subtractive suppressive hybridization, etc.) led
to the discovery of genes with high induction level;
for example, viperin/vig1 and 20 other viral hemor-
rhagic septicemia virus (VHSV)-induced genes (vig)
including isg15 and two chemokines were identified
in rainbow trout leukocytes by DDPCR and SSH
[83,84,92]. cd9 and isg15 were found induced by the
rhabdovirus infectious hematopoietic necrosis virus
(IHNV) in Atlantic salmon with the same methods
[93,94], which were applied to many fish species. In
grass carp (Carassius carassius), subtractive ap-
proaches showed that an irf-like [95], jak1 and stat1,
two Mx [96], two isg15 [96,97], and a number of
genes encoding tetratricopeptide-containing pro-
teins [96] are up-regulated by the grass carp
hemorrhage virus. In Atlantic cod (Gadus morhua),
SSH screening after poly(I:C) stimulation identified a
number of genes including those encoding ISG15;
IRF-1, IRF-7, and IRF-10; MHC class I; VIPERIN/
VIG1; and the ATP-dependent helicase LGP2 [98].
In the sea bass (Dicentrarchus labrax), brain
nodavirus-infected tissue was analyzed and C-type
lectins, pentraxin, and an anti-inflammatory galectin
were found [99,100]. A more comprehensive
representation of the fish transcriptional response
to viral infection came only with genome and EST
high-throughput sequencing, opening the way to the
microarray technology. Microarray analyses were
applied to characterize the response induced by
different viruses [64,101–105], IFN inducers
[106,107], or recombinant IFN itself [108]. These
transcriptome analyses from multiple cell types and
tissues suggested that a “core” set of 50–100 genes
is typically induced [109]. To get a more compre-
hensive repertoire of ISG in a whole fish, we recently
characterized the response of the zebrafish larva to
the Chikungunya virus (CHIKV), a virus that induces
a powerful type I IFN response [110]. A set of highly
induced ISGs was found, which is also typically
retrieved in human [75,111]: rsad2, CD9, isg12,
isg15, ifit and ifi44 family members, stat1, trim25,
socs1, irf1, and irf7. This gene set was concordant
with the major list of fish ISGs predicted from
different tissues of other species (see above,
reviewed in Ref. [109]). A list of zebrafish ortholo-
gues of human ISGs was similar to the repertoire of
genes up-regulated by CHIKV infection, which also
further confirmed the size of this core set [110].
The above-mentioned analysis of the zebrafish

orthologues of all human ISGs also revealed some
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important mammalian ISGs that are almost certainly
lacking an orthologue in the zebrafish genome [110].
Zebrafish (and apparently all teleosts) lacks the
APOBEC3, OAS, IFI16, and CLEC4 families alto-
gether. Among other notable absent genes, one may
cite bst2/tetherin; several trim such as trim5, trim22,
or pml/trim19; and isg20.
A significant antiviral activity was demonstrated in

fish for several of the ISGs. For example, overex-
pression of a Japanese flounder PKR homologue
increased eIF-2 phosphorylation and inhibited the
replication of the Scophthalmus maximus rhabdovi-
rus [112]; MX proteins blocked the birnavirus IPNV
[113], but not the rhabdovirus IHNV [89]; fish
ubiquitin-like ISG15 shares with its mammalian
homologues the anchor LRGG motifs and interacts
with cellular and viral proteins [114], and an
ISGylation-dependent activity of the zebrafish
ISG15 was recently demonstrated against different
RNA and DNA viruses [41]. A cytokine-like activity
was also reported for the ISG15 secreted form in the
tongue sole [115], as previously for mammals [116].
Altogether, these observations indicate that a

number of essential ISGs were already important
players of the IFN-mediated antiviral response rather
early in the vertebrate history, at least in the common
ancestor of tetrapods and fish. It starts to be possible
to assess the extent of functional conservation of this
core gene set, not only by direct comparison of the
functions of individual genes but also using global
comparative analyses. For example, some ISGs are
typically induced more than others. Do human ISGs
and their zebrafish homologues show similar re-
sponse patterns? Figure 3A shows a tentative
correlation of the response of zebrafish larva to
CHIKV with the response of human liver to IFNα
[117] and illustrates that orthologues of strongly
induced human ISGs tend to be strongly induced by
CHIKV infection in zebrafish as well.
Genes involved in immune responses typically

show high rates of evolution due to selection
pressures exerted by pathogen subversion. Under
this rule, ISGs should show a similar trend, and we
should observe a negative correlation between ISG
sequence similarity in fish and human and their
induction level. The relationship between induction
rate and sequencesimilarity/conservation is obviously
complex, and these two parameters are not merely
correlated (Fig. 3B). However, the global pattern may
suggest a loose negative correlation, and outliers
suchas rsad2/viperin, which are highly conserved and
well induced by IFN, constitute interesting exceptions.
Many ISGs are members of gene families, with

different evolutionary dynamics of expansion/
diversification during theevolution of tetrapods versus
that of fish. Among families containing ISGs, two
different patterns were observed: families that differ-
entiated in parallel in tetrapods and fishes from a single
common ancestor gene (“young” families) and families

that had already diversified in the common ancestor to
fishes and mammals (“old” families) [110]. Young
families (such as MX or IFIT) would likely bind viral
components and quickly diversify under strong selec-
tion pressure. On the contrary, old, stabilized families
typically contain regulatory factors or signal transduc-
tion components (i.e., IRFs, STATs, and SOCS) and
constitute key molecules in the conserved antiviral
machinery.
To illustrate how comparative analysis of human and

fish transcriptional responses might suggest important
new genes to be targeted in future studies, we will
focus on the subset of human ISGs that have a
one-to-one orthologue in zebrafish, because they are
the easiest to test experimentally, for example, by
morpholino knockdown assays. This list includes 178
human genes [110]. Strikingly, among these ISGs, 140
(80%) are not annotated as having a potential role in
antiviral defense in the current Ensembl GO classifi-
cation. Some of those genes surely play important, but
for the moment overlooked, roles in antiviral re-
sponses. Good candidates for further research would
be ancestral ISGs, identifiable within this list by having
a zebrafish orthologue induced by IFN. At least four
genes fulfill this criterion based on the microarray
analysis of the response to CHIKV: cmpk2, phf11,
upp2, and ftsjd2. The kinase CMPK2 participates in
dUTP and dCTP synthesis in mitochondria and may
play a role in monocyte differentiation, PHF11 is a
positive regulator of Th1-type cytokine gene expres-
sion, UPP2 is involved in nucleoside synthesis, and
FTSJD2 mediates mRNA cap1 2′-O-ribose methyla-
tion to the 5′-cap structure of mRNAs—a feature that,
remarkably, distinguishes host mRNAs from some
viral mRNAs [118]. More genes shall be added to this
list in the future as RNA-seq analysis and improved
stimulation protocols will yield amore exhaustive list of
zebrafish ISGs.

Part 3. IFN-Producing Cells

The current paradigm for type I IFN production in
mammals is that all cell types are able to produce IFNβ
upon sensing a virus, and in addition, some special-
ized sentinel cells suchasplasmacytoid dendritic cells
can produce very high levels of IFNα. The specialized
cells have a different array of sensing molecules (e.g.,
TLR7) and are poised for rapid IFN expression by
constitutive expression of some signal-transducing
molecules that need to be induced in other cell types
(e.g., IRF7). Is the situation similar in fish?
A few studies have addressed the tissue-specific

differences in expression of fish type I IFNs and
sometimes identified the cell types involved. Zou et al.
[9] found important differences between leukocytes
and fibroblasts upon poly(I:C) stimulation in vitro: thus,
head kidney cells would express all IFNs tested, while
RTG-2 fibroblasts would express the group I IFNs
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(IFN1 and IFN2) but not the group II IFN (IFN3). Ex
vivo analysis of tissues from infected trout suggested
a similar picture, with IFN3 being expressed in
lymphoid tissue (kidney and spleen) but much less
in liver [9]. In Atlantic salmon, Sun et al. [11] also found
a much more restricted expression of IFN subtype by
fibroblast-like TO cells, where only IFNa (a group I
IFN) was induced more than twofold, while head
kidney leukocytes would also express the group II
IFNb and IFNc [11]. In these cells, polyI:C would
induce IFNa and IFNc, while S-27609 (a TLR7
agonist) would preferentially induce IFNb. Similar
outcomes were found in vivo at early time points after

poly(I:C) or S-27609, but the pattern changed strongly
after a few days, likely as a result of complex feedback
loops [11]. More recently, Svingerud et al. published a
study that largely confirmed these findings (using
R848, a TLR7/8 agonist, instead of S-27609) and
added much spatial information, notably by perform-
ing in situ hybridization on tissue slices [18]. Quite
remarkably, in all tissues, expression of all tested IFNs
was restricted to a minority of cells. IFNa and IFNc
were sometimes coexpressed by the same cell in
poly(I:C)-injected animals, while IFNb and IFNc could
be coexpressed after R848 injection. Cell types
that could be identified as expressing IFNs were

Fig. 3. Assessment of the conservation of ISGs: comparison of induction levels and sequence similarity between
human ISGs and their zebrafish orthologues. (A) Induction levels of human ISGs (liver biopsy cells treated for 4 h with
IFNα, from Sarasin-Filipowicz et al. [117], GEO accession GSE11190) compared with induction levels of their zebrafish
orthologues (larvae infected for 48 h with the strong IFN-inducing CHIKV, GEO accession GSE47057). When homologous
genes from human and zebrafish were not linked by a one-to-one orthology relationship, they were linked by a colored
dotted line and set at the geometric average of the fold changes values of the other species. In these cases, the name of
the gene family is indicated in the corresponding color. (B) Level of induction by CHIKV of zebrafish genes orthologous to
human ISGs [same data set as for (a)], compared with their degree of similarity with their human orthologues (retrieved
from the Ensembl database).
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endothelial cells and gill pillar cells for IFNa and gill
pillar cells for IFNc. No IFNb-expressing cell could be
positively identified, but the data suggest that they
were distinct from IFNa-expressing cells. IgM-positive
B cells did not express any IFN; neither did
melanomacrophages [18].
More recently, this question has been addressed

in zebrafish using IFN-reporter transgenes. In larvae,
among the four zebrafish ifn genes, only ifnφ1 (a
group I ifn) and ifnφ3 (a group II ifn) are considered to
play a role, because ifnφ2 is expressed only at the
adult stage and ifnφ4 does not seem to exert a
significant antiviral effect [10]. An ifnφ1 reporter
transgene has been recently reported [119] and
analyzed in the context of CHIKV infection, which
induces a strong IFN response. The transgene was
mainly expressed in two cell populations: neutrophils
and hepatocytes—a pattern entirely consistent with
expression of the endogenous ifnφ1 gene as seen
by in situ hybridization, although the transgene
expression was somewhat delayed [119]. The
pathways inducing ifnφ1 in these two populations
are not yet unraveled but are likely to be different
since hepatocytes were a target of CHIKV while
neutrophils were not infected. A small macrophage-
like population also expressed the transgene.
Depletion studies demonstrated that neutrophils,
but neither hepatocytes nor macrophages, were
critical to control the infection. Interestingly, in control,
uninfected fish, a small population of neutrophils (10–
30 cells/larva) express the transgene at a weak level
[119]. An IFNφ3 reporter line has also been generated
(V. Briolat, N.P., G. Lutfalla, and J.-P.L., unpublished
results). The pattern of expression of this transgene
duringCHIKV infection is very different from that of the
ifnφ1 reporter and includes fibroblasts, endothelial
cells, hepatocytes, and muscle fibers, all cell types
that may be infected by CHIKV; however, expression
of the transgene was only observed in virus capsid-
negative cells (N.P., unpublished results).
As a general conclusion, fish IFNs generally appear

to be expressedby discrete, scattered cell populations
with little overlap between IFN subtypes. Some IFNs
are expressed in an “IFNβ” pattern, by fibroblasts and
other tissue cells that may be direct targets of the
viruses, while others are expressed in an “IFNα”
fashion by more specialized immune cells. Surpris-
ingly, however, while group II IFNs are those that are
preferentially expressed by hematopoietic cells in
salmonids, the reverse seems true in zebrafish: group
I is preferentially expressed by neutrophils.
There is so far no evidence for a cell type similar to

plasmacytoid dendritic cells in fish, but these studies
are still in their infancy. Neutrophils seem to play
such a role in zebrafish larvae, which came as a
surprise. It remains to be tested whether neutrophils
are also major IFN-producing cells in adult zebrafish,
in other fish species, and possibly during some viral
infections in tetrapods.

Part 4. Kinetics of the Different IFN
Responses in Fish

Early studies in fish cell lines described a quick and
early production of IFN-like activity after viral infection
or incubation with UV inactivated viruses [4,120]. IFN
production following a virus infection was also
demonstrated in vivo in rainbow trout, with higher
amount on day 1 post-VHSV infection and declines to
background level by day 14 post-infection [3]. In
keeping with this, in carp injected with 107 pfu of
virulent spring viremia of carp virus, the IFN-like
activity peaked as early as days 1 and 2, started to
decline at day 3, and had disappeared by day 14
[121].
In the 1990s, the kinetics of the antiviral response

was studied in further detail using (semi)Q RT-PCR to
assess expression of ISG transcripts. After the first
fish type I IFN genes were cloned in the 2000s, the
kinetics of the IFN mRNA itself could be measured in
various infection contexts. Different types of kinetics
were obtained, a few of which will be illustrated.
McBeath et al. compared the kinetics of type I IFN in
Atlantic salmon after infection by ISAV and IPNV
[122]. Type I IFN and Mx expression peaked twice on
days 3 and 6 after IPNV infection and declined
progressively. This biphasic response might rely on
a positive feedback loop depending on IRF induction
by the first burst of IFN production as described in
mammals [123]; however, the mechanisms underly-
ing the biphasic salmon IFN response to IPNV remain
unknown. In contrast to this kinetics, a later, mono-
phasic type I IFN response occurred after ISAV
infection; IFN shortly peaked on day 5 or 6, while Mx
peaked on day 6, declined to day 9, and remained
expressed until day 30 post-infection. These differ-
ences likely reflected that these viruses use different
mechanisms for dealing with the host response. Early
up-regulation of IFN and ISG like Mx by the IPNV
probably contributed to the good survival recorded
after this infection. In contrast, high mortality and late
response were observed after ISAV infection, which
could be due to viral anti-IFN mechanisms [124].
Transcriptome profiling of the response induced by
recombinant IFN in macrophage-like SHK1 cells
showed that Mx and other ISGs were induced after
6 h of incubation and peaked at 24 h [108], supporting
other observations reported for different tissues (e.g.,
trout kidney leukocytes in Ref. [84]).
However, these studies do not reflect the whole

complexity of the type I IFN response since (1) most
of the first QPCR and array systems did not take into
account the IFN alternative transcripts discovered in
zebrafish and in other species; hence, measures of
IFN up-regulation integrate both secreted and
non-secreted isoforms, which provides a partial
view of the kinetics of the effective response; (2)
fish genome and EST sequences revealed many
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type I IFN genes, especially in salmonids; (3) IFNγs
may also contribute to the induction of some ISGs
[28].
It is difficult to compare kinetics of IFN gene

induction by two different viruses; not only is there a
large range of antiviral mechanisms potentially at
play (as discussed later), but viral burden (and thus
signal) is likely to be different in both cases;
comparing induction of different genes in the same
context is more informative. For instance, in the
zebrafish CHIKV infection model, expression of
ifnφ1 was sustained, while ifnφ3 expression was
more transient [119]. This likely reflects the different
pathways (and cell types, as discussed above)
involved in their induction, consistently with results
of luciferase assays suggesting the variable contri-
bution of IRF3 and/or IRF7 to activate the promoters
of the various zebrafish IFNs [49].

Part 5. Tissue-Specific Responses

Expression of IFNs is induced upon detection of
viruses and is thus expected to be fairly organ specific,
depending on the tropism of the particular virus
considered. By contrast, since type I IFN receptors
are ubiquitously expressed in mammals and IFNs
diffuse via the blood, ISGs would be expressed in a
more uniform fashion. However, recent findings have
shown this idea to be simplistic. For instance, type III
IFNs induce the same set of ISGs than type I IFNs, but
their receptor is expressed in a tissue-restricted
fashion, allowing for targeted induction of ISGs,
notably in epithelia exposed to outer environment
such as the gut [125]. In addition, even upon systemic
type I IFN administration, ISG expression has been
found to be highly variable from tissue to tissue [126].
Do we find a similar situation in fish?
As mentioned above, fish also possess two groups

of virus-induced IFNs that signal via two distinct
receptors [10]. Although both groups are phyloge-
netically related to mammalian type I (rather than
type III) IFNs [12], it has been proposed that the
group I/group II and type I/type III dichotomies may
have evolved in a convergent manner in teleosts and
tetrapods, respectively [10]. A potential selective
advantage of the dichotomy would be that a response
restricted to external tissues may deal with most
viruses with few of the side effects associated with a
full-blown IFN response, which would be triggered
only upon the most severe viral infections. Unfortu-
nately, there are as yet no data published regarding
the tissue-specific expression of the receptors for the
two groups of IFNs. Both receptors share the CRFB5
chain, which is expressed ubiquitously at a relatively
high level, but the weak expression of the specific
CRFB1 and CRFB2 chains precluded their detection
by whole-mount in situ hybridization in zebrafish
embryos [13].

We also recently used whole-mount in situ
hybridization to establish the expression pattern of
four ISGs (isg15, rsad2/viperin, isg12.1, and irf7) in
zebrafish larvae, notably in the CHIKV infection
model, which results in a very strong endogenous
IFN expression [110]. Basal levels of expression
were below detection level, but upon infection,
strongly tissue-dependent induction was observed,
with an overall pattern of expression in liver, gut, and
blood vessels, with some gene-specific differences
(e.g., viperin was comparatively less induced in the
gut while isg12.1 was less induced in the liver). A
rather similar, if weaker, pattern was observed after
IHNV infection [110] or after intravenous injection of
recombinant zebrafish IFNs (J.-P.L., unpublished
results), suggesting that it mostly reflects the
differential susceptibility of organs to circulating
IFNs.
It is still unclear whether this pattern seen in

zebrafish larvae can be generalized, as tissue
variability in ISG expression has been addressed in
relatively few studies. Lymphoid organs constitute the
site for the activation of a proper immune response
and, therefore, the majority of the studies present in
literature focus their attention on the specific re-
sponses activated in those tissues. Responses have
also sometimes been analyzed in some tissues for
which viruseswereknown to haveapreferred tropism.
The following paragraphs focus on such studies.
One of the gateways of viral entry and replication in

fish is fin bases, for example, for novirhabdoviruses
[127]. In response to lethal VHSV infection of Pacific
herring (Clupea pallasii), Mx, psmb9, and an MHC
class I gene were found to be induced both in the
spleen and in the fin bases, with amoderately stronger
induction in the spleen attributed to the higher viral
burden in this organ [128]. Transcriptomic and
proteomic studies performed in adult zebrafish during
VHSV infection have shown that a number of
infection-related genes/proteins are overexpressed in
the fins but not in other organs. Among these are
complement components, interleukin genes, hmgb1
protein, mst1, and cd36 [129]. This does not seem to
reflect a typical ISG response, and indeed ifnφ1
transcripts were not identified in this study, possibly
because the low temperature required for VHSV
replication was suboptimal for induction of a response
in zebrafish. Infection of rainbow trout fin bases
with VHSV, on the other hand, determines the
up-regulation of the chemokines CK10 and CK12, as
opposed to those overexpressed in the gills (CK1,
CK3, CK9, and CK11). These expression variations
may be due to a different permissivity of the tissues
(fins or gills) to viral replication [130].
Several fish viruses are also known to have a

tropism for the heart. Fish alphaviruses and, more
recently, members of the Totiviridae family (e.g.,
piscine myocarditis virus) are associated with
cardiac and/or skeletal myopathies. In particular,
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alphaviruses, such as salmonid alphavirus sub-
type-1, are capable of causing acute heart lesions
with necrotic foci and hypertrophy of the cardiac
muscle. Unlike adult fish, smolts can replace
damaged cardiomyocytes by cell division and may,
therefore, be subjected to a decreased pathogenesis
and impact [131]. Recently, the determinants of
resistance of two strains of Atlantic salmon to
salmonid alphavirus have been investigated, com-
paring responses in heart, kidney, and gills (a
possible port of virus entry). The two strains
displayed significantly different basal expressions
of ifna1 and ISGs (Mx, viperin, and cxcl10); however,
the induction by viral infection was comparable in the
three organs [132]. Similar results were obtained
from Atlantic salmon infected with piscine myocar-
ditis virus [133].
Several fish viruses also have a preferred tropism

for the central nervous system. One of the most
serious viral diseases affecting marine fish is
represented by nodavirus encephalopathy. The
central nervous system and the eye constitute the
specific targets for nodavirus replication, leading to
mass mortality in larvae and juvenile fish. Numerous
studies have, therefore, been conducted to deter-
mine the immune responses activated in the brain
tissue upon infection, but comparison with other
tissues remain scarce. Infection of zebrafish larvae
with nervous necrosis virus (NNV), for example,
leads to mortality rates higher than 95%. This has
been linked to the lack of IFN and Mx expression, not
detectable in the larval stage but expressed by
infected adults [104]. A thorough transcriptomic
analysis conducted in Atlantic cod (G. morhua) has
revealed that NNV infection affects mainly neural
processes and their regulation and cellular differen-
tiation (down-regulated genes). Many ISGs were
found to be induced in the brain, but expression in
other tissues was not reported [104]. NNV infection
in turbot (S. maximus) is followed by overexpression
of Mx, irf-1, and tnf-α [134]. Finally, in European sea
bass (D. labrax), two different x genes (MxA and
MxB) were differentially expressed during NNV
infection. While MxA is highly up-regulated in the
brain, MxB expression does not differ substantially
from controls, thereby suggesting that the former is
the predominant isoform and that MxB may play a
different and independent functional role [135].

Part 6. Subversion Mechanisms by
Viruses in Fish

The complexity of antiviral signaling pathways
reflects the dynamic interactions between viruses
and their hosts and has been shaped by the highly
diverse strategies developed by these pathogens to
evade antiviral immunity. In mammals, a vast number
of strategies have beendiscovered, targeting immunity

(pattern recognition receptors, IFN signaling, MHC
class I presentation, cytokine or chemokine networks,
etc.) as well as basic mechanisms of virus–host
interactions (autophagy, cell cycle, protein synthesis,
etc.).
Such mechanisms are certainly used by fish

viruses as well, but remain poorly described.
Subversion of host immune response has been
mainly studied for novirhabdoviruses, birnaviruses,
and orthomyxoviruses.
Novirhabdoviruses are negative-sense single-

stranded RNA viruses infecting fishes. They have a
small genome encoding four structural proteins (N,
P, M, and G) plus a polymerase (L), like other
rhabdoviruses, and one specific nonstructural pro-
tein (NV), which is a good candidate for subversion
of immune pathways. Recombinant IHN and VHS
viruses lacking NV were able to replicate in cell
culture, although the growth of the IHNV-ΔNV was
severely impaired [136–138]. The importance of NV
protein for pathogenicity was also strongly sug-
gested by in vivo challenges with mutant viruses that
caused only 20% mortality, whereas the wild-type
control virus causes 100% mortality [136–138].
Although the sequence of the NV protein is not
highly similar between novirhabdoviruses, the atten-
uated phenotype of VHSV-ΔNV can be rescued by
re-introduction of NV from IHNV and vice versa
[137,139], suggesting that the function of NV during
infection is conserved. In fact, cells infected by
NV-deletion mutants express higher levels of type I
IFN transcripts, suggesting that NV is used to evade
the innate antiviral immune response [140]. More-
over, growth of IHNV-ΔNV was inhibited by poly(I:C)
treatment at 24 h post-infection, while the wild-type
virus was not blocked. The overexpression of VHSV
NV protein also reduced the TNFα-mediated activa-
tion of NFκB, which likely contributes to its impact on
the innate response [141].
“Multitask” properties are known for M and P

proteins of prototypical rhabdoviruses infecting
higher vertebrates, rabies virus (RV), and vesicular
stomatitis virus (VSV) [142]. RV was shown to
diminish IFNβ induction through the viral protein P,
which blocked IRF3 phosphorylation [143]. The P
protein of RV also inhibited IFN downstream
signaling by blocking the nuclear import of STAT1
[144] and has an impact on viral transcription and
nucleocapsid formation. In fish, such mechanisms
have not been reported yet, but the P protein of IHNV
(as well as NV) is targeted by ISG15, which may
represent a cell countermeasure [41]. Indeed,
overexpression of ISG15 in EPC cells is sufficient
to trigger antiviral activity against novirhabdoviruses
(IHNV, VHSV), birnavirus (IPNV), or iridovirus
(EHNV). ISGylation, which targets cellular proteins
such as TRIM25 and viral proteins such as the P and
NV of IHNV, is required for viral inhibition: the
ISG15LRAA mutant (incapable of functional ISGylation)
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does not afford any protection. Subversion of IFN
induction has also been demonstrated for fish birna-
viruses and orthomyxoviruses. The proteins VP4 and
VP5 of the birnavirus IPNV had antagonistic properties
towards an IFN reporter [145]; however, in vivo
comparison of IPNV field isolates with different levels
of pathogenicity did not clearly confirm the importance
of an intact VP5 protein for virulence [146]. Similarly,
two ISAV proteins encoded by the genomic segments
7 and 8—respectively named s7ORF1 and s8ORF2—
are involved in the modulation of the IFN signaling
[124,147]. While s7ORF1 expression is restricted to
the cytoplasm [147], s8ORF2 possesses two NLS
signals responsible for nuclear expression and binds
both dsRNA and polyA RNA [124]. The IFN antagonist
activity of s7ORF1 was shown by Mx-Luc reporter
assay or RT QPCR on Mx and IFN upon poly(I:C)
treatment [147]. Another study determined that
s7ORF1 and s8ORF2 expression down-regulates
the activity of a type I IFN promoter upon poly(I:C)
exposure [124].
Large DNA viruses often possess genes blocking

IFN pathways or inhibiting ISG function. For exam-
ple, the ranavirus RCV-Z (Rana catesbeiana virus
Z), a pathogen of fish and frogs, circumvents
host-induced transcriptional shutoff and apoptosis
by expressing a pseudosubstrate for PKR [148].
Other fish iridoviruses and herpesviruses can also
possess such “mimickry” genes: for example, the koi
herpesvirus encodes an IL-10 homologue [149], the
Singapore grouper iridovirus encodes IgSF mem-
bers, and another fish iridovirus encodes a B7-like
sequence [150].
Viruses also dysregulate a number of basic cellular

functions, which they use for their own replication and
to block intrinsic antiviral mechanisms. For instance,
IHNV has an acute life cycle during which it causes
global blockage of cellular transcription, very similarly
to the well-studied VSV [151,152]. The M protein of
VSV, in addition to repressing cellular transcription,
was shown to inhibit nuclear trafficking of RNA and
proteins, thereby also inhibiting antiviral responses
[153]. Both VSV and IHNV elicit cell rounding,
probably by interfering with cytoskeletal dynamics
[151,154]. Shutoff of basic cellular machinery eventu-
ally leads to apoptosis. Programmed cell death being
also one of the host's antiviral strategies, many
viruses developed strategies to delay apoptosis and
complete their infection cycles. In fish, VHSVwas able
to block experimentally induced apoptosis in EPC
cells in an NV-dependent manner [139].

Conclusion

Antiviral immunity has been studied only in a few
fish species, either aquaculture fishes or model
species. Fish are vertebrates and share with
humans and mice most of the key antiviral pathways.

However, fishes had a long and complex genome
history and developed a specific adaptation to the
aquatic environment (and to its pathogens). Hence,
the fish antiviral immunity represents an alternative
version of what could evolve upon highly selective
pressures of host–virus interactions, from the an-
cestral system present in the early vertebrates.
Comparison of mammalian and fish innate antiviral
mechanisms will be certainly beneficial to distinguish
the core system, which is resilient to the subversive
selective pressures exerted by the viral world, from
the specialized systems that emerged during the
evolution of each branch in response to particular
viral strategies. In addition, the imaging possibilities
offered by model fish species such as the zebrafish
will be instrumental, in the future, to unravel the
spatiotemporal dynamics of these core antiviral
responses shared by all vertebrates.
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