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Abstract

In this thesis, following F. Brown’s point of view, we look at the Hopf algebra structure
of motivic cyclotomic multiple zeta values, which are motivic periods of the fundamen-
tal groupoid of P!\ {0, un,cc}. By application of a surjective period map (which, under
Grothendieck’s period conjecture, is an isomorphism), we deduce results (such as generating
families, identities, etc.) on cyclotomic multiple zeta values, which are complex numbers.
The coaction of this Hopf algebra (explicitly given by a combinatorial formula from A. Gon-
charov and F. Brown’s works) is the dual of the action of a so-called motivic Galois group
on these specific motivic periods. This entire study was actually motivated by the hope
of a Galois theory for periods, which should extend the usual Galois theory for algebraic
numbers.

In the first part, we focus on the case of motivic multiple zeta values (N = 1) and Euler
sums (N = 2). In particular, we present new bases for motivic multiple zeta values: one via
motivic Euler sums, and another (depending on an analytic conjecture) which is known in
the literature as the Hoffman x basis; under a general motivic identity that we conjecture,
these bases are identical.

In the second part, we apply some Galois descents ideas to the study of these periods,
and examine how periods of the fundamental groupoid of P\ {0, jun, o0} are embedded
into periods of w1 (P'\{0, un,0}), when N’ | N. After giving some general criteria for
any N, we focus on the cases N = 2,3,4,°6’,8, for which the motivic fundamental group
generates the category of mixed Tate motives on On[+] (unramified if N = 6). For those
N, we are able to construct Galois descents explicitly, and extend P. Deligne’s results.

Key words: Periods, Polylogarithms, multiple zeta values, Mized Tate Motives, cyclotomic
field, Hopf algebra, Motivic fundamental group, Galois Descent.

Résumé.

A travers ce manuscrit, en s’inspirant du point de vue adopté par F. Brown, nous examinons
la structure d’algébre de Hopf des multizétas motiviques cyclotomiques, qui sont des périodes
motiviques du groupoide fondamental de P\ {0, un,o0}. Par application d’'un morphisme
période surjectif (isomorphisme sous la conjecture de Grothendieck), nous pouvons déduire
des résultats (tels des familles génératrices, des identités, etc.) sur ces nombres complexes
que sont les multizétas cyclotomiques. La coaction de cette algébre de Hopf (explicite par une
formule combinatoire due aux travaux de A.B. Goncharov et F. Brown) est duale a laction
d’un dénommé groupe de Galois motivique sur ces périodes motiviques. Ces recherches sont
ainsi motivées par ’espoir d’une théorie de Galois pour les périodes, étendant la théorie de
Galois usuelle pour les nombres algébriques.

Dans un premier temps, nous nous concentrons sur les multizétas (N = 1) et les sommes
d’Euler (N = 2) motiviques. En particulier, de nouvelles bases pour les multizetas mo-
tiviques sont présentées: une via les sommes d’Euler motiviques, et une seconde (sous une
conjecture analytique) qui est connue sous le nom de Hoffman *; soulignons que sous une
identité motivique générale que nous conjecturons également, ces bases sont identiques.

Dans un second temps, nous appliquons des idées de descentes galoisiennes a ’étude
de ces périodes, en regardant notamment comment les périodes du groupoide fondamental
de PN\ {0, un7, 0} se plongent dans les périodes de 71 (P\{0, uxn,c}), lorsque N’ | N.
Apreés avoir fourni des critéres généraux (quel que soit N), nous nous tournons vers les cas
N = 2,3,4,6", 8, pour lesquels le groupoide fondamental motivique engendre la catégorie
des motifs de Tate mixtes sur O[] (non ramifié si N = 6). Pour ces valeurs, nous sommes
en mesure d’expliciter les descentes galoisiennes, et d’étendre les résultats de P. Deligne.

Mots clés: Périodes, Polylogarithmes, multizétas, corps cyclotomiques, Motifs de Tate
Mizxtes, algebre de Hopf, groupe motivique fondamental, descente galoisienne.
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Chapter 1

Introduction

‘Qui est-ce ? Ah, trés bien, faites entrer linfini.’
Aragon

1.1 Motivation

1.1.1 Periods

A period [l denotes a complex number that can be expressed as an integral of an algebraic
function over an algebraic domain[T] They form the algebra of periods P, fundamental class
of numbers between algebraic numbers Q and complex numbers.

The study of these integrals is behind a large part of algebraic geometry, and its connection
with number theory, notably via L-functions ; and many of the constants which arise in
mathematics, transcendental number theory or in physics turn out to be periods, which
motivates the study of these particular numbers.

Examples:

- The following numbers are periods:

z d _
V2 = dzx , ﬁ:/ dxdy and log(z):/ —x,z>1,z€Q.
x2+y2<1 1 X

222<1

- Famous -alleged transcendental- numbers which conjecturally are not periods:

= li 1+1n =1l l()Jril !
o=t (1ry) =l (e g fer 2
It can be more useful to consider the ring of extended periods, by inverting :

ﬁ:PH.

IFor an enlightening survey, see the reference article [59].
T'We can equivalently restrict to integral of rational functions over a domain in R™ given by polynomial inequal-
ities with rational coefficients, by introducing more variables.
" One can associate a L— function to many arithmetic objects such as a number field, a modular form, an elliptic
curve, or a Galois representation. It encodes its properties, and has wonderful (often conjectural) meromorphic
continuation, functional equations, special values, and non-trivial zeros (Riemann hypothesis).
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- Multiple polylogarithms at algebraic arguments (in particular cyclotomic multiple zeta
values), by their representation as iterated integral given below, are periods. Similarly,
special values of Dedekind zeta function (r(s) of a number field, of L-functions, of
hypergeometric series, modular forms, etc. are (conjecturally at least) periods or
extended periods.

- Periods also appear as Feynman integrals: Feynman amplitudes I(D) can be written
as a product of Gamma functions and meromorphic functions whose coefficients of
its Laurent series expansion at any integer D are periods (cf. [7]), where D is the
dimension of spacetime.

Although most periods are transcendental, they are constructible; hence, the algebra P is
countable, and any period contains ounly a finite amount of information. Conjecturally (by
Grothendieck’s conjecture), the only relations between periods comes from the following
rules of elementary integral calculuﬁ:

(i) Additivity (of the integrand and of the integration domain)
(#4) Invertible changes of variables

(i4i) Stokes’s formula.

Another way of viewing a period fv w is via a comparison between two cohomology

theories: the algebraic De Rham cohomology, and the singular (Betti) cohomology. More
precisely, let X a smooth algebraic variety defined over Q and Y a closed subvariety over Q.

- On the one hand, the algebraic De Rham cohomology Hj(X) is the hypercohomology
of the sheaf of algebraic (Kéhler) differentials on X. If X is affine, it is defined from the
de Rham complex Q°*(X) which is the cochain complex of global algebraic (Kéhler)
differential forms on X, with the exterior derivative as differential. Recall that the
classical k™ de Rham cohomology group is the quotient of smooth closed k-forms on
the manifold X ¢ modulo the exact k-forms on X.

Given w a closed algebraic n-form on X whose restriction on Y is zero, it defines an
equivalence class [w] in the relative de Rham cohomology groups H}(X,Y), which
are finite-dimensional Q— vector space.

- On the other hand, the Betti homology HZ(X) is the homology of the chain complex
induced by the boundary operation of singular chains on the manifold X (C); Betti
cohomology groups H%(X,Y) = HB(X,Y) are the dual Q vector spaces (taking here
coefficients in Q, not Z).

Given ~ a singular n chain on X (C) with boundary in Y'(C), it defines an equivalence
class [y] in the relative Betti homology groups HZ(X,Y) = H3(X, Y)v

Furthermore, there is a comparison isomorphism between relative de Rham and relative
Betti cohomology (due to Grothendieck, coming from the integration of algebraic differential
forms on singular chains):

compp 4p Hin(X,)Y)®0C — Hp(X,Y) ®q C.

"However, finding an algorithm to determine if a real number is a period, or if two periods are equal seems
currently out of reach; whereas checking if a number is algebraic, or if two algebraic numbers are equal is rather
“easy” (with “LLL”-type reduction algorithm, resp. by calculating the g.c.d of two vanishing polynomials associated
to each).

Relative homology can be calculated using the following long exact sequence:

o> Hpy(Y) > Hy(X) > Ho(X,Y) > Hyp 1 (Y) — -+ - .

12



By pairing a basis of Betti homology to a basis of de Rham cohomology, we obtain the matriz
of periods, which is a square matrix with entries in P and determinant in /Q*(2im)Y; i.e.
its inverse matrix has its coefficients in PP. Then, up to the choice of these two basis:

The period f,y w is the coefficient of this pairing ([v], compp 4r([w]))-

Example: Let X = P\ {0,000}, Y = () and v the counterclockwise loop around 0:

Q ifi=0 , Q ifi =0
HP(X)=< Q] ifi=1 and Hiz(X)=< Q[L] ifi=1
0 else . 0 else .

Since f dz — 9ir, 2im is a period; as we will see below, it is a period of the Lefschetz
Yo T
motive L := Q(-1).

Viewing periods from this cohomological point of view naturally leads to the definition
of motivic periods given below E, which form an algebra P™, equipped with a period
homomorphism:

per : P™ — P.

A variant of Grothendieck’s conjecture, which is a presently inaccessible conjecture in tran-
scendental number theory, predicts that it is an isomorphism.
There is an action of a so-called motivic Galois group G on these motivic periods as we will
see below in §2.1. If Grothendieck’s period conjecture holds, this would hence extend the
usual Galois theory for algebraic numbers to periods (cf. [2]).

In this thesis, we will focus on motivic (cyclotomic) multiple zeta values, defined in §2.3,
which are motivic periods of the motivic (cyclotomic) fundamental group, defined in §2.2.
Their images under this period morphism are the (cyclotomic) multiple zeta values; these
are fascinating examples of periods, which are introduced in the next section (see also [3]).

1.1.2 Multiple zeta values

The Zeta function is known at least since Euler, and finds itself nowadays, in its various gen-
eralized forms (multiple zeta values, Polylogarithms, Dedekind zeta function, L-functions,
etc), at the crossroad of many different fields as algebraic geometry (with periods and mo-
tives), number theory (notably with modular forms), topology, perturbative quantum field
theory (with Feynman diagrams, cf. [60]), string theory, etc. Zeta values at even integers
are known since Euler to be rational multiples of even powers of 7:

Lemma.

| Ban | (27m)*" , th ,
Forn>1, ((2n)= W, where Ba, is the 2n' Bernoulli number.
n)!

However, the zeta values at odd integers already turn out to be quite interesting periods:

Conjecture. 7,((3),((5),((7), - are algebraically independent.

IThe definition of a motivic period is given in §2.4 in the context of a category of Mixed Tate Motives. In
general, one can do with Hodge theory to define P™, which is not strictly speaking motivic, once we specify that
the mixed Hodge structures considered come from the cohomology of algebraic varieties.
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This conjecture raises difficult transcendental questions, rather out of reach; currently
we only know ((3) ¢ Q (Apéry), infinitely many odd zeta values are irrational (Rivoal), or
other quite partial results (Zudilin, Rivoal, etc.); recently, F. Brown paved the way for a
pursuit of these results, in [23].

Multiple zeta values relative to the N*® roots of unity p, which we shall denote
by MZV ,,, are defined by: [|

kl... kp
g("l’“""P); Yoo L e i €N, (my,) # (1,1). (L)

LI e
0<ki<ko-<kp 1 p

The weight, often denoted w below, is defined as > n;, the depth is the length p, whereas

the height, usually denoted h, is the number of n; greater than 1. The weight is conjecturally
a grading, whereas the depth is only a filtration. Denote also by Z¥ the Q-vector space
spanned by these multiple zeta values relative to un.
These MZV ,,, satisfy both shuffle LU relation (coming from the integral representation be-
low) and stuffle * relation (coming from this sum expression), which turns Z¥ into an
algebra. These relations, for N = 1, are conjectured to generate all the relations between
MZV if we add the so-called Hoffman (regularized double shuffle) relation; cf. [25], [77]
for a good introduction to this aspect. However, the literature is full of other relations
among these (cyclotomic) multiple zeta values: cf. [4], [38], [(2], [68], [70], [85], [86]. Among
these, we shall require the so-called pentagon resp. hexagon relations (for N = 1, cf. [39]),
coming from the geometry of moduli space of genus 0 curves with 5 ordered marked points
X = Mg resp. with 4 marked points X = Mg 4 = P!\ {0,1,00} and corresponding to a
contractible path in X; hexagon relation (cf. Figure E]) is turned into an octagon relation
(cf. Figure 2) for N > 1 (cf. [38]) and is used below in §4.2.

One crucial point about multiple zeta values, is their integral representatiow@, which
makes them clearly periods in the sense of Kontsevich-Zagier. Let us define first the following
iterated integrals and differential forms, with a; € {0, un}:

dty - - - dt, /1 .
I(0;a1,...,an;1 ::/ = Way - - - Wa,,, With w, = .
(03 a1, »ani 1) O<ti<ctn<t (1 —@1) < (tn — an) 0 “ o ¢ t—a

(1.2)

In this setting, with 7; := (&;...€,) ™' € pun, n; € NAT:

Nyy...,N ny— n2— p T
C(fl Ep) :(_1)1)[(07771’0 15772’0 1""’7717’0 P 171)' (13)
1y+-+5€p

REMARKS:

IBeware, there is no consensus on the order for the arguments of these MZV: sometimes the summation order
is reversed.
Obtained by differentiating, considering there variables z; € C, since:

1 ny,.-np—1 .
d C( ni,...,Np )7 Zp (zl ,,,,, 2p_1,2p ifnp #1
- 1 N yenns Moy s —
dzp Z1,...,2p—1,2p 7<<zl P 1p) if np = 1.

MThe use of bold in the iterated integral writing indicates a repetition of the corresponding number, as 0 here.
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- Multiple zeta values can be seen as special values of generalized multiple polyloga-
rithms, when ¢; are considered in dl. First, notice that in weight 2, Lii(z) := ¢ (i)
is the logarithm —log(1 — z). Already the dilogarithm, in weight 2, Lis(z) := ¢ (i) =
> 50 i—z, satisfies nice functional equation and arises in many places such as in the
Dedekind zeta value (r(2) for F an imaginary quadratic field, in the Borel regulator in
algebraic K-theory, in the volume of hyperbolic manifolds, etc.; cf. [40]; some of these
connections can be generalized to higher weights.

- Recall that an iterated integral of closed (real or complex) differential 1—forms w; along
a path v on a l-dimensional (real or complex) differential manifold M is homotopy
invariant, cf. [27]. If M = C\{a1, . ..,an} [ and w; are meromorphic closed 1—forms,
with at most simple poles in a;, and v(0) = aq, the iterated integral I = f,y W1 Wy 18
divergent. The divergence being polynomial in log € (¢ < 1) , we define the iterated
integral I as the constant term, which only depends on ~/(0). This process is called
reqularization, we need to choose the tangential base points to properly define the
integral. Later, we will consider the straight path dch from 0 to 1, with tangential
base point ? at 0 and j at 1, denoted also 1y, jl or simply (ﬁ for both.

Notations: In the case of multiple zeta values (i.e. N = 1) resp. of Euler sums (i.e. N = 2),
since €; € {£1}, the notation is simplified, using z; € Z*:

L nyy..., N . n; o |Z’L|
C(#z1,..-,2p) .<<€1,...,6:> with (61) = <szgn(zz)) . (1.4)

Another common notation in the literature is the use of overlines instead of negative argu-
ments. ie.: z = d ¥ ife; =1
e n_z ifGZ:_l

1.2 Contents

In this thesis, we mainly consider the motivic versions of these multiple zeta values, denoted
¢™(-) and shortened MMZV ,,, and defined in §2.3. They span a Q-vector space H™N of
motivic multiple zetas relative to puy. There is a surjective homomorphism, called the
period map, which is conjectured to be an isomorphism (this is a special case of the period
conjecture):

per:w: HY = ZN (™M)= C(). (1.5)

Working on the motivic side, besides being conjecturally identical to the complex num-
bers side, turns out to be somehow simpler, since motivic theory provides a Hopf Algebra
structure as we will see throughout this thesis. Notably, each identity between motivic
MZV,,, implies an identity for their periods; a motivic basis for MMZVyuy is hence a
generating family (conjecturally basis) for MZV .

Indeed, on the side of motivic multiple zeta values, there is an action of a motivic Galois
group glﬂ which, passing to the dual, factorizes through a coaction A as we will see in

IThe series is absolutely convergent for | €; |< 1, converges also for | ¢; |= 1 if n, > 1. Cf. [73] for an
introduction.

T As the functional equations with Lig (1) or Liz (1 — 2) or the famous five terms relation, for its sibling, the
Bloch Wigner function D(z) := I'm (Li2(z) + log(] z |) log(1 — 2)):

D(z) + D(y) + D (11:2,) +D(1-=zy)+D (;:i,) =o.

HIAs for cyclotomic MZV, with a; € uny U {0}; such an I = f,y w1 ...wn is a multivalued function on M.

IVMore precisely, we can prove that f: Y (w1) -y (wn) =D, ile) log® (€), with c;(€) holomorphic in € = 0;
ao(€e) depends only on ~/(0).

VLater, we will define a category of Mixed Tate Motives, which will be a tannakian category: consequently
equivalent to a category of representation of a group G; cf. §2.1.
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§2.4. This coaction, which is given by an explicit combinatorial formula (Theorem (2.4.2)),
[Goncharov, Brown]), is the keystone of this PhD. In particular, it enables us to prove linear
independence of MMZV, as in the theorem stated below (instead of adding yet another
identity to the existing zoo of relations between MZV), and to study Galois descents. From
this, we deduce results about numbers by applying the period map.

This thesis is structured as follows:

Chapter 2 sketches the background necessary to understand this work, from Mixed Tate
Motives to the Hopf algebra of motivic multiple zeta values at py, with some specifi-
cations according the values of N, and results used throughout the rest of this work.
The combinatorial expression of the coaction (or of the weight graded derivation oper-
ators D, extracted from it, (2.40)) is the cornerstone of this work. We shall also bear
in mind Theorem 2.4.4 stating which elements are in the kernel of these derivations),
which sometimes allows to lift identities from MZV to motivic MZV, up to rational
coefficients, as we will see throughout this work.

Nota Bene: A motivic relation is indeed stronger; it may hence require several rela-
tions between MZV in order to lift an identity to motivic MZV. An example of such a
behaviour occurs with some Hoffman x elements, in Lemma

Chapter 3 explains the main results of this PhD, ending with a wider perspective and
possible future paths.

Chapter 4 focuses on the cases N = 1, i.e. multiple zeta values and N = 2, i.e. Euler
sums, providing some new bases:

(4)

(i)

(iid)

First, we introduce FEuler § sums, variants of Euler sums, defined in §2.3 as in
(C3), replacing each w1 by w4y = 2wi1 — wo, except for the first one and prove:

Theorem. Motivic FEuler § sums with only positive odd and negative even integers
as arguments are unramified: i.e. motivic multiple zeta values.

By application of the period map above:

Corollary. FEach FEuler § sums with only positive odd and negative even integers
as arguments is unramified, i.e. Q linear combination of multiple zeta values.

Moreover, we can extract a basis from this family:

Theorem. {¢*™ (2a0 + 1,2a1 +3,...,2a,-1 + 3, —(2a, + 2)),a; > 0} is a graded
basis of the space of motivic multiple zeta values.

By application of the period map:

Corollary. Each multiple zeta value is a Q linear combination of elements of the
same weight in {C* (2a0 + 1,2a1 +3,...,2a,-1 + 3, —(2a, + 2)) ,a; > 0}.

We also prove the following, where Euler x sums are defined (cf. §2.3) as in (L3]),
replacing each w41 by w4y := wi1 — wp, except the first:

Theorem. If the analytic conjecture (4] holds, then the motivic Hoffman
family {¢*™({2,3}%)} is a basis of H, the space of MMZYV.

Conjecturally, the two previous basis, namely the Hoffman * family and the Euler?
family, are the same. Indeed, we conjecture a generalized motivic Linebarger-Zhao
equality (Conjecture E5.T]) which expresses each motivic multiple zeta * value as
a motivic Euler § sum. It extends the Two One formula [Ohno-Zudilin|, the Three
One Formula [Zagier], and Linebarger Zhao formula, and applies to motivic MZV.
If this conjecture holds, then () implies that the Hoffman* family is a basis.
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Such results on linear independence of a family of motivic MZV are proved recursively,
once we have found the appropriate level filtration on the elements; ideally, the family
considered is stable under the derivations E; the filtration, as we will see below, should
correspond to the motivic depth defined in §2.4.3, and decrease under the derivations
; if the derivations, modulo some spaces, act as a deconcatenation on these elements,
linear independence follows naturally from this recursion. Nevertheless, to start this
procedure, we need an analytic identit, which is left here as a conjecture in the
case of the Hoffman x basis. This conjecture is of an entirely different nature from the
techniques developed in this thesis. We expect that it could be proved using analytic
methods along the lines of [82], [63].

Chapter 5 applies ideas of Galois descents on the motivic side. Originally, the notion of
Galois descent was inspired by the question: which linear combinations of Euler sums
are unramified, i.e. multiple zeta valuesT™ More generally, looking at the motivic side,
one can ask which linear combinations of MMZV,,; lie in MMZV, , for N’ dividing
N. This is what we call descent (the first level of a descent) and can be answered by
exploiting the motivic Galois group action. General descent criteria are given; in the
particular case of N = 2,3,4,6’, 8", Galois descents are made explicit and our results
lead to new bases of MMZV relative to uy+ in terms of a basis of MMZV relative to
N, and in particular, a new proof of P. Deligne’s results [31].

Going further, we define ramification spaces which constitute a tower of intermediate
spaces between the elements in MMZV . and the whole space of MMZV This is
summed up in §3.2 and studied in detail Chapter 5 or article [42].

Moreover, as we will see below, these methods enable us to construct the motivic
periods of categories of mixed Tate motives which cannot be reached by standard
methods: i.e. are not simply generated by a motivic fundamental group.

KN’

Chapter 6 gathers some applications of the coaction, from maximal depth terms, to mo-
tivic identities, via unramified motivic Euler sums; other potential applications of these
Galois ideas to the study of these periods are still waiting to be further investigated.

Consistency:

Chapter 2 is fundamental to understand the tools and the proofs of both Chapter 4, 5 and
6 (which are independent between them), but could be skimmed through before the reading
of the main results in Chapter 3. The proofs of Chapter 4 are based on the results of Annexe
A.1, but could be read independently.

'If the family is not a priori stable under the coaction, we need to incorporate in the recursion an hypothesis
on the coefficients which appear when we express the right side with the elements of the family.

n the case of Hoffman basis ([20]), or Hoffman * basis (Theorem 4.4.1) it is the number of 3, whereas in the
case of Euler f sums basis (Theorems 4.3.2), it is the depth minus one; for the Deligne basis given in Chapter 5 for
N = 2,3,4,6’, 8, it is the usual depth. The filtration by the level has to be stable under the coaction, and more
precisely, the derivations D, decrease the level on the elements of the conjectured basis, which allows a recursion.

\Where F. Brown in [20], for the Hoffman basis, used the analytic identity proved by Zagier in [82], or [63].

VThis was already a established question, studied by Broadhurst (which uses the terminology honorary) among
others. Notice that this issue surfaces also for motivic Euler sums in some results in Chapter 3 and 5.

Viota Bene: N = ‘6’ is a special case; the quotation marks indicate here that we restrict to unramified MMZV
of. §2.1.1.

17



Chapter 2

Background

2.1 Motives and Periods

Here we sketch the motivic background where the motivic iterated integrals (and hence this
work) mainly take place; although most of it can be taken as a black box. Nevertheless,
some of the results coming from this rich theory are fundamental to our proofs.

2.1.1 Mixed Tate Motives

Motives in a nutshell. Motives are supposed to play the role of a universal (and algebraic)
cohomology theory (see [I]). This hope is partly nourished by the fact that, between all the
classical cohomology theories (de Rham, Betti, I-adique, crystalline), we have comparison
isomorphisms in characteristic 0 M. More precisely, the hope is that there should exist a
tannakian (in particular abelian, tensor) category of motives M(k), and a functor Vary LN
M(k) such that:

For each Weil cohomology@: Vary, EiR Vecy, there exists a realization map wy such that the
following commutes:

Var, —> M(K) ,

A

Veck

where h satisfy properties such as h(X xY) = h(X) @ h(Y), h(X]]Y) = h(X) ® h(Y).
The realizations functors are conjectured to be full and faithful (conjecture of periods of
Grothendieck, Hodge conjecture, Tate conjecture, etc..

To this end, Voedvosky (cf. [76]) constructed a triangulated category of Mixed Motives
DM*%(k)g, with rational coefficients, equipped with tensor product and a functor:

Mg, : Schp, — DM satisfying some properties such as:
Kunneth Mg, (X xXY) = My (X) @ Mg (Y).
Al-invariance My, (X x A') = My, (X).

!Even in positive characteristic, dim H*(X) does not depend on the cohomology chosen among these.
" This functor should verify some properties, such as Kunneth formula, Poincare duality, etc. as the classic
cohomology theories.
If we restrict to smooth projective varieties, SmProj,, we can construct such a category, the category of pure
motives MP""¢(k) starting from the category of correspondence of degree 0. For more details, cf. [57].
L the case of Mixed Tate Motives over number fields as seen below, Goncharov proved it for Hodge and
l-adique Tate realizations, from results of Borel and Soule.
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Mayer Vietoris M, (UNV) — Mgm(Uﬁ@) Mym(V) = Mgm(UUV) = Mg, (UNV)[1],
U,V open, is a distinguished triangle

Gysin Mg, (X\Z) = My (X) = Mgm(Z)(c)[2¢] = Mgm(X\Z)[1], X smooth, Z smooth,
closed, of codimension ¢, is a distinguished triangle.

We would like to extract from the triangulated category DM eﬂ(kz)Q an abelian category of
Mixed Tate Motives over K. However, we still are not able to do it in the general case,
but it is possible for some triangulated tensor subcategory of type Tate, generated by Q(n)
with some properties.

REMARK: L = Q(—1) = HY(Gn) = H'(P'\{0,00}) which is referred to as the Lef-
schetz motive, is a pure motive, and has period (2i7). Its dual is the so-called Tate motive
T := Q(1) = LY. More generally, let us define Q(—n) := Q(—1)®" resp. Q(n) := Q(1)®"
whose periods are in (2im)"Q resp. (%)”@, hence extended periods in ]3; we have the
decomposition of the motive of the projective line: h(P") = @}_,Q(—k).

Mixed Tate Motives over a number field. Let first define, for k¥ a number field, the
category DM (k)q from DM (k) by formally “inverting” the Tate motive Q(1), and then
DMT (k)g as the smallest triangulated full subcategory of DM (k)q containing Q(n),n € Z
and stable by extension.

By the vanishing theorem of Beilinson-Soule, and results from Levine (cf. [61]), there

exists

A tannakian category of Mized Tate motives over k with rational coeflicients,
MT (k)g and equipped with a weight filtration W, indexed by even integers such that
gr™,,. (M) is a sum of copies of Q(r) for M € MT(k), i.e.,

Every object M € MT (k)g is an iterated extension of Tate motives Q(n),n € Z.

such that (by the works of Voedvodsky, Levine [61], Bloch, Borel (and K-theory), cf.
3):

k*®,Q ifn=1.
EXt}v{T(k) (Q(0),Q(n)) = Kapn—1(k)o ® Q = Qritrz if n > 1 odd
_ Qr if n > 1 even
EXtZ/\/lT(k) (Q(0),Q(n)) =0 ifi>1orn<O0.

Here, r; resp r2 stand for the number of real resp. complex (and non real, up to conjugate)
embeddings from k to C.
In particular, the weight defines a canonical fiber functor:

w: MT(k) — Vecg
‘= Hom r), gr’".
M +— Gw, (M) with { C?.Te(.M ) é;KVi(MA)AZ(% ((%((ga i&\?)(,M )

The category of Mixed Tate Motives over k, since tannakian, is equivalent to the category
of representations of the so-called motivic Galois group GM7 of MT (k) [M:

!Distinguished triangles in DMTeH(k)7 i.e. of type Tate, become exact sequences in MT (k).
A way would be to define a t structure on this category, and the heart of the t-structure, by Bernstein,
Beilinson, Deligne theorem is a full admissible abelian sub-category.
A tannakian category is abelian, k-linear, tensor rigid (autoduality), has an exact faithful fiber functor,
compatible with ® structures, etc. Cf. [33] about Tannakian categories.
VWith the equivalence of category between A Comodules and Representations of the affine group scheme
Spec(A), for A a Hopf algebra. Note that Rep(G,,) is the category of k-vector space Z-graded of finite dimension.
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MT(E)g = Rep,G™M7 2 Comod (O(GMT))  where GM7 1= Aut®w. (2.1)

The motivic Galois group GM7 decomposes as, since w graded:
GMT =G, x UMT | ie. 1 —-UMT 5 GMT S G,, =1 s an exact sequence,

where UMT is a pro-unipotent group scheme defined over Q.

The action of G,, is a grading, and U™M7 acts trivially on the graded pieces w(Q(n)).

Let u denote the completion of the pro-nilpotent graded Lie algebra of ™7 (defined by a
limit); u is free and graded with negative degrees from the G,,-action. Furthermord!:

uet = @ Ext(Q(0),Q(n))" in degree n. (2.2)
Hence the fundamental Hopf algebra is [
AMT = OUMT) 2= (UM ())Y = T(1Exthyr, (Q(0),Q(n))). (2:3)

Hence, by the Tannakian dictionary @I)): MT (k)g = Rep? UM7 = Comod?” AMT .

Once an embedding ¢ : k — C fixed, Betti cohomology leads to a functor Betti realiza-
tion:
wp, : MT (k) = Vecg, M — M,.

De Rham cohomology leads similarly to the functor de Rham realization:
WdR - MT(]{I) — Veck, M — Magr , Mar Weight graded.

Beware, the de Rham functor wqypr here is not defined over Q but over k and wqr = w ®q k,
so the de Rham realization of an object M is Mgr = w(M) ®q k-
Between all these realizations, we have comparison isomorphisms, such as:

M, ®qC ORI, Mg ®r,o C with its inverse comp,, ;5.

~

comp,, g, e
M, ®qC — M, ®q C with its inverse comppg_,,.

~

ISince Exti/lT(Q(O), Q(n)) = 0, which implies VM, H?(u, M) = 0, hence u free. Moreover, (uab) = (u/[u,u]) =
Hy(u;Q), then, for U unipotent:

(“ab),vn,,n 2 Extpep (Q(n), Q(m)).

Recall the anti-equivalence of Category, between Hopf Algebra and Affine Group Schemes:

k— Alg?? ——— = > k — AffSch
k — HopfAlg®? ——~ > k — AFGpSch
Al Spec A

O(G) =<—— G : R~ Homy (O(G), R)

It comes from the fully faithful Yoneda functor C°? — Fonct(C, Set), leading to an equivalence of Category if
we restrict to Representable Functors: k — AffGpSch 22 RepFonct (Alg °?, Gp). Properties for Hopf algebra are
obtained from Affine Group Scheme properties by 'reversing the arrows’ in each diagram.

Remark that G is unipotent if and only if A is commutative, finite type, connected and filtered.
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Define also, looking at tensor-preserving isomorphisms:

Gp = Aut®(wp), resp. Gar := Aut®(war)
P, 5 = Isom®(wp,w), resp. Pp, :=Isom®(w,wp), (GM7,Gp) resp. (Gg,GM7) bitorsors .

Comparison isomorphisms above define C points of these schemes: comp,, 5 € Pp,(C).

REMARKS: By (I

A Mixed Tate motive over a number field is uniquely defined by its de Rham real-
ization, a vector space Myr, with an action of the motivic Galois group GM7 .

Example: For instance Q(n), as a Tate motive, can be seen as the vector space Q with
the action A -z := A"z, for A € Q* = Aut(Q) = G,,,(Q).

Mixed Tate Motives over Os. Before, let’s recall for £ a number field and O its ring of
integers, archimedian values of k are associated to an embedding k N C, such that:
| x |:=| o(x) | , where |-|o is the usual absolute value,
and non archimedian values are associated to non-zero prime ideals of A
vp 1 kX — Z, wy(x) is the integer such that 20, = p*** O, for z € k*.

For S a finite set of absolute values in k containing all archimedian values, the ring of
S-integers:
Og :={z € k| v(zx) >0 for all valuations v ¢ S}.

Dirichlet unit’s theorem generalizes for OF, abelian group of type finite:
; ~ (K) %7 card (S)—l-
Examples:

- Taking S as the set of the archimedian values leads to the usual ring of integers O, and
would lead to the unramified category of motives M7 (O) below.

- For k = Q, p prime, with S = {v,,| - |}, we obtain Z [%] Note that the definition

does not allow to choose S = {Ugprime g, | - |00}, Which would lead to the localization
aF#p
Zpy = 1{x € Q| vp(x) > 0}.
Now, let us define the categories of Mixed Tate Motives which interest us here:

Definition. MTr: For I' sub-vector space of EZL’t}V[T(k) (Q(0),Q(1)) 2 k*2Q:

MTr : the tannakian subcategory formed by objects M such that each subquotient E
of M :

0-Qn+1)>E—=Qn) -0 = [E] €l C Eatyrq(Q0), Q1)

IThe different cohomologies should be viewed as interchangeable realizations. Etale chomology, with the action
of the absolute Galois group Gal(Q,/ Q) (cf [3]) is related to the number N, of points of reduction modulo p. For
Mixed Tate Motives (and conjecturally only for those) N, are polynomials modulo p, which is quite restrictive.

1O is a Dedekind domain, O, a discrete valuation ring whose prime ideals are prime ideals of O which are
included in (p)Oy.

M 1t will be used below, for dimensions, in 31 Here, card (S) =71+ r2+ card (non-archimedian places); as
usual, 71, r2 standing for the number of real resp. complex (and non real, and up to conjugate) embeddings from
k to C; p(K) is the finite cyclic group of roots of unity in K.

VExt L7 k) (Q0), Q1)) = Extly 71y (Qn), Q(n + 1)).
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MT (Og): The category of mized Tate motives unramified in each finite place v ¢ S:

MT(Og) :=MTrp, forT =05Q.

Extension groups for these categories are then identical to those of MT (k) except:

Ext) 7, (Q(0),Q(1)) =T, resp.  Extlr(o,)(Q(0),Q(1)) = Ki(0s) ® Q = O ®(Q- )
2.4

Cyclotomic Mixed Tate Motives. In this thesis, we focus on the cyclotomic case and
consider the following categories, and sub-categories, for kx the N*® cyclotomic field, Oy =
Z[¢n] its ring of integers, with &y a primitive N root of unity:

MT Ny =MT (On [])-
MTr,,  with Iy the Q-sub vector space of (O[] )* ®Q
generated by {1 — (% }o<a<n (modulo torsion).

Hence:

MT (On) € MTry € MT (ON [%D

The second inclusion is an equality if and only if N has all its prime factors inertﬂ, since:

(O[ﬂ)*@(@ i N = pr

Ty =
(02 Q) & (@i ) ©Q)  else.

(2.5)

The motivic cyclotomic MZV lie in the subcategory M7, , as we will see more precisely
in §2.3.

Notations: We may sometimes drop the M (or even N), to lighten the notations{J:

MTnn if N=2348

MT oy = { MTe1 if N =6

2.1.2 Motivic periods

Let M a tannakian category of mixed Tate motives. Its algebra of motivic periods is defined
as (cf. [32], [24], and [22], §2):

P = O(Isom;%l(w,wg)) = O(Pp ).

A motivic period denoted as a triplet [M, v, o]™, element of Py, is constructed
from a motive M € Ind (M), and classes v € w(M), 0 € wp(M)V. It is a function
Pp., — A, which, on its rational points, is given by:

P ,(Q) = Q, aw— {(a(v),o). (2.6)

1.e. each prime p dividing N, generates (Z/mZ)*, for m such as N = p*» ™) m_ It could occur only in the
following cases: N = p°,2p~, élps,psqk7 with extra conditions in most of these cases such as: 2 is a primitive root
modulo p° etc.

"For instance, MT3 is the category MT (05 [3])-
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Its period is obtained by the evaluation on the complex point compg ;p:

P, - C

[M,v,0]™ = (compp 4p(v®1),0). (2.7)

Example: The first example is the Lefschetz motivic period: L™ := [H'(G,), [£], [yo]]™,
period of the Lefschetz motive LL; it can be seen as the motivic (2im)™; this notation appears
below.

This construction can be generalized for any pair of fiber functors wy, ws leading to:
Motivic periods of type (w1,w2), which are in the following algebra of motivic periods:
Por? i= O (P, ;) = O (Isom® (wa, w1)) .

REMARKS:

- The groupoid structure (composition) on the isomorphisms of fiber functors on M, by
dualizing, leads to a coalgebroid structure on the spaces of motivic periods:

Pj‘f}l’w:‘ — Pj‘f}l’w & Pﬁ’w.
- Any structure carried by these fiber functors (weight grading on wqg, complex conju-
gation on wp, etc.) is transmitted to the corresponding ring of periods.
Examples:

For (w,wp), it comes down to (our main interest) P}, as defined in (2.6]). By the last
remark, P} inherits a weight grading and we can define (cf. [22], §2.6):

'Pr,ﬁ C PRy, the ring of geometric periods, is generated by periods of motives
with non-negative weights: {[M,v,0]™ € PRy | W_1M =0}.

- The ring of periods of type (w,w) is PY, := O (Aut®(w)) =0 (QMT)E
Unipotent variants of these periods are defined when restricting to the unipotent part
UMT of GMT | and intervene below (in 2.25)):

P =0 (Z/IMT) = AM7T | the fundamental Hopf algebra.

They correspond to the notion of framed objects in mixed Tate categories, cf. [44]. By
restriction, there is a map:
Py — Piu-

By the remark above, there is a coaction:
A™Y PY = Py @ Py

Moreover, composing this coaction by the augmentation map e : Pf\m/[’Jr — (PR’A’*)O ~ Q,
leads to the morphism (details in [22], §2.6):

Tam: Phi — P (2.8)

! In the case of a mixed Tate category over Q, as MT(Z), this is equivalent to the De Rham periods in
P/DVSIR =0 (Aut®(w(“q))7 defined in [22]; however, for other cyclotomic fields k considered later (N > 2), we have
to consider the canonical fiber functor, since it is defined over k.
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which is, on periods of a motive M such that W_1M =0: [M,v,0]™ = [M,v,! c(0)]",

comppg ,

where c is defined as the composition: M, — grg W, = WoM, ——— WoMp — Mp.

Bear in mind also the non-canonical isomorphisms, compatible with weight and coaction
([22], Corollary 2.11) between those Q algebras:

PR =Pl @ QL™ LL™], and Pyt =Pl ®QL"]. (2.9)

In particular, mq mw is obtained by sending L™ to 0.

In the case of a category of mixed Tate motive M defined over Q, [ the complex con-
jugation defines the real Frobenius Fo : Mp — Mp, and induces an involution on motivic
periods Fo : Py — P},. Furthermore, L™ is anti invariant by Fo (i.e. Foo(L™) = —L™).
Then, let us define:

777\1,;:% the subset of PR’A’JF invariant under the real Frobenius F.,, which, by (23]
satisfies :

Pt = PL L e PyRL™ and Pk =Pl eqQ[L™)?]. (2.10)

Motivic Galois theory. The ring of motivic periods P}, is a bitorsor under Tannaka groups
(GMT  Gp). If Grothendieck conjecture holds, via the period isomorphism, there is therefore
a (left) action of the motivic Galois group G*7 on periods.

More precisely, for each period p there would exist:

(1) well defined conjugates: elements in the orbit of GM7 (Q).

(i3) an algebraic group over Q, G, = GM7 /Stab(p), where Stab(p) is the stabilizer of p;
Gp, the Galois group of p, transitively permutes the conjugates.

Examples:

- For 7 for instance, the Galois group corresponds to G,,. Conjugates of m are in fact
Q*m, and the associated motive would be the Lefschetz motive L, motive of G, =
P\ {0, 00}, as seen above.

- Forlogt, t > 0,t € Q\{—1,0,1}, this is a period of the Kummer motive in degree 10
Ky := Mg (X, {1,}) € Ext)y7(0)(Q(0),Q(1)) , where X :=P"\ {0, co}.

Since a basis of HZ (X, {1,t}) is |
a basis of Hjp(X,{1,t}) is [da],

Qs im0 )-

The conjugates of logt are Q* logt + Q, and its Galois group is Q* x Q.

ol, [71,¢] with ~; the straight path from 1 to ¢, and
} the period matrix is:

& |&~Q

IAs7 in our concerns, M7 n above with N = 1,2; in these exceptional (real) cases, we want to keep track of
only even Tate twists.
'Remark the short exact sequence: 0 — Q(1) — Hy (X, {1,t}) — Q(0) — 0.
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- Similarly for zeta values ((n), n odd in N*\ {1} which are periods of a mixed Tate
motive over Z (cf. below): its conjugates are Q*((n)+Q, and its Galois group is Q* x Q.
Grothendieck’s conjecture implies that m,((3),(5),... are algebraically independent.
More precisely, ((n) is a period of E, € MT(Q), where:

0— Q(n) — E, —» Q(0) — 0.

Notice that for even n, by Borel’s result, EXt}VlT(Q) (Q(0),Q(n)) = 0, which implies
E, =Q(0)® Q(n), and hence ((n) € (2ir)"Q.

- More generally, multiple zeta values at roots of unity puy occur as periods of mixed
Tate motives over Z[¢ ] [%} , &n primitive N*® root of unity. The motivic Galois group
associated to the algebra HY generated by MMZV,,, is conjectured to be a quotient
of the motivic Galois group GM7~ equal for some values of N: N = 1,2,3,4,8 for
instance, as seen below. We expect MZV to be simple examples in the conjectural
Galois theory for transcendental numbers.

REMARK: By K-theory results above, non-zero Ext groups for M7 (Q) are:

* = rime if =1
Bxther( (@O), Q) = { § “2@F= Frmm@ T

Generators of these extension groups correspond exactly to periods log(p), p prime in degree
1 and ((odd) in degree odd > 1, which are periods of MT(Q).

2.2 Motivic fundamental group

Prounipotent completion. Let II be a group freely generated by ~o,...,yn. The com-
pleted Hopf algebra II is defined by:

I:= @@[H]/I", where I := (y — 1,7 € II) is the augmentation ideal.

Equipped with the completed coproduct A such that elements of II are primitive, it is
isomorphic to the Hopf algebra of non commutative formal series{l

ﬁ — Q((eo, - ,€N>>.
~yirrexp(e;)

The prounipotent completion of 11 is an affine group scheme IT*":

Im“™(R) ={x € &R | Az =z ®x} 2{S € R{{eg,...,en))" | AS =5® S5,¢(5) =1},
(2.11)
i.e. the set of non-commutative formal series with N + 1 generators which are group-like for
the completed coproduct for which e; are primitive.
It is dual to the shuffle LUl relation between the coefficients of the series S Its affine ring
of regular functions, is the Hopf algebra (filtered, connected) for the shuffle product, and
deconcatenation coproduct:

O(Hun) :H_I>D(Q[H]/In+1)v §@<€0,...,€N>. (2_12)

IWell defined inverse since the log converges in ﬁ; exp(e;) are then group-like for A. Notice that the Lie
Algebra of the group of group-like elements is formed by the primitive elements and conversely; besides, the
universal enveloping algebra of primitive elements is the whole Hopf algebra.

U1t is a straightforward verification that the relation AS = S ® S implies the shuffle L relation between the
coefficients of S.
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Motivic Fundamental pro-unipotent groupoid. E The previous construction can be ap-
plied to 71 (X, x), resp. m1 (X, xz,y), if assumed free, the fundamental group resp. groupoid
of X with base point x, resp. x,y, rational points of X, an algebraic variety over Q; the
groupoid 71 (X, z,y), is a bitorsor formed by the homotopy classes of path from z to y.

From now, let’s turn to the case Xy := P\ {0, 00, un}. There, the group m1(Xy,z) is
freely generated by 7o and (v )neuy, the loops around 0 resp. n € uy 1]
Chen’s theorem implies here that we have a perfect pairing:

Clm(Xn,2,y))/I"" ® Clwo, (Wy)nepun)<n — C. (2.13)
In order to define the motivic 7¥™, let us introduce (cf. [45], Theorem 4.1):

Yo = {a} x X!
Y™ = U;Y;, where  Y;i= X1 x Ax X" 1 A C X x X the diagonal . (2.14)
Y, = X" ! x{y}

Then, by Beilinson theorem ([45], Theorem 4.1), coming from v — [y(A,)]:

n oo o [ Qmi(X,z,9)] /It fork=n
Hi(X™, Y )):{0[1( ) for k <n

The left side defines a mixed Tate motive and:

O(mi™ (X, z,y)) = lig H™(X", Y ™). (2.15)

n

By [ZI8), O (7{"™(X,x,y)) defines an Ind object [1] in the category of Mixed Tate Motives
over k, since Yl(n) = OY;(n) is the complement of hyperplanes, hence of type Tate:

O (7™ (P'\{0, 00, un}, 2, y)) € Ind MT (k). (2.16)

We denote it O (TI'?(X, m,y)), and O (n¥ (X, z,y)), O (wfR(X,z,y)), o (ﬁlB(X,:c,y))
its realizations, resp. 7j*(X) for the corresponding M7 (k)-groupoid scheme, called the
motivic fundamental groupoid, with the composition of path.

REMARK: The pairing (2.13]) can be thought in terms of a perfect pairing between homol-
ogy and de Rham cohomology, since (Wojtkowiak [80]):

Hip(X™, Y™ 2 ky(w, ..., wn) <n-

The construction of the prounipotent completion and then the motivic fundamental groupoid
would still work for the case of tangential base points , cf. [34], §. Let us denote Ay the

! “Esquisse d’un programme”[50], by Grothendieck, vaguely suggests to study the action of the absolute Galois
group of the rational numbers Gal(Q,/Q) on the étale fundamental group 7rft(./\/lg,n)7 where My ,, is the moduli
space of curves of genus g and n ordered marked points. In the case of Mg 4 = Pl\{O, 1, 00}, Deligne proposed
to look instead (analogous) at the pro-unipotent fundamental group =™ (P*\ {0, 1, c0}). This motivates also the
study of multiple zeta values, which arose as periods of this fundamental group.

IBeware, since m1 (X, z,y) is not a group, we have to pass first to the dual in the previous construction:

" (X, ,9) 1= Spec (lig (O] 171) ).

lim
—
MInd objects of a category C are inductive filtered limit of objects in C.

IVI.e. here non-zero tangent vectors in a point of {0, un, 00} are seen as “base points at infinite”. Deligne
explained how to replace ordinary base points with tangential base points.
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straight path between 0 and £y, a primitive root of unity. In the following, we will partic-
ularly consider the tangential base points ()§—>N = (?0, j&v), defined as (N (0), =My (1));
but similarly for each z,y € uy U{0, 00}, such that ;)\, the straight path between z,y in in
P! (C\{0, un, 00}), we associate the tangential base points 3 := (23 (0), =2 Ay (1)), Since
the motivic torsor of path associated to such tangential basepoints depends only on z,y (cf.
[34], §5) we will denote it ,ITj'. This leads to a groupoid structure via I} x, TIT" —, TIT*:
cf. Figure 2] and [34].

In fact, by Goncharov’s theorem, in case of these tangential base points, the motivic torsor
of path corresponding has good reduction outside N and (cf. [34],§4.11):

O (,IT}) € Ind MTr, C Ind MT (ON [%D : (2.17)

The case of ordinary base points, lying in Ind M7 (k), has no such good reduction.
In summary, from now, we consider, for z,y € uy U {0:

The motivic bitorsors of path .11} = ﬁlm(XN,@) on Xy =P — {0, un, 00} with
tangential basepoints given by z7 := (XN (0), —\(1)) where X is the straight path from
x toy, x # —y.

Let us denote ,II, :=; I, resp. IHZR, sz its w, resp. de Rham resp. Betti realizations.

In particular, Chen’s theorem implies that we have an isomorphism:

P eC 5 oI ®C.

Therefore, the motivic fundamental group above boils down to:

(1) The affine group schemes me, z,y € uny U{0,00}, with a groupoid structure. The
Betti fundamental groupoid is the pro-unipotent completion of the ordinary topological
fundamental groupoid, i.e. corresponds to 7}"*(X,x,y) above.

(i) II(X) = 74 (X), the affine group scheme over Q. It does not depend on z,y since the
existence of a canonical de Rham path between x and y implies a canonical isomorphism
II(X) =, II(X),; however, the action of the motivic Galois group G is sensitive to the
tangential base points x, y.

(4ii) a canonical comparison isomorphism of schemes over C, compy .

=5%
3

ollo G 0 >15.m

~_,.

Figure 2.1: Part of the Fundamental groupoid II.
This picture however does not represent accurately the tangential base points.

In order that the path does not pass by 0, we have to exclude the case where z = —y if N even.

I1 mo: . m m
mHy is a bitorsor under (,II}',, Hy ).
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Moreover, the dihedral groupﬂ Din = 7,27 x uy acts on Xy = PINJ0, un,00}: the
group with two elements corresponding to the action x + z~! and the cyclic group py
acting by x — nz. Notice that for N = 1,2,4, the group of projective transformations
Xn — Xy is larger than Diy, because of special symmetries, and detailed in A.3.

The dihedral group Diy acts then on the motivic fundamental groupoid 7" (X, z,y), x,y €
{0} Upy by permuting the tangential base points (and its action is respected by the motivic
Galois group):

For o€ Din, Il =5, 15,y

The group scheme V of automorphisms on these groupoids ,II,, respecting their struc-
ture, i.e.:

- groupoid structure, i.e. the compositions ,II, x, II, —; IL,
- pn-equivariance as above,
- inertia: the action fixes exp(e,) €, I1,(Q),

is isomorphic to (cf. [34], §5 for the detailed version):

VgO Hz

tal, (2.18)

In particular, the Thara action defined in ([242) corresponds via this identification to the
composition law for these automorphisms, and then can be computed explicitly. Its dual

would be the combinatorial coaction A used through all this work.

In consequence of these equivariances, we can restrict our attention to:

s
ollg, = 71" (Xn,0&n) or equivalently at oI17".

Keep in mind, for the following, that II; is the functor:

oll; : R a Q — algebra > {S € R{(eo, (ey)neun)) |AS =55 €(S) =1}, (2.19)
whose affine ring of regular functions is the graded (Hopf) algebra for the shuffle product:

O(oll1) = Q (e’ (€Mnepn ) - (2.20)

The Lie algebra of oIl (R) would naturally be the primitive series (AS =18 5+ S ®1).

Let us denote dehf; =o 17, the image of the straight path (droit chemin) in oIIf(Q), and
dchgﬁ" or Pz, the corresponding element in (II; (C) via the Betti-De Rham comparison
isomorphism:

Przy = dchgff = CodeR,B(Ol?) = Z Cu(w)w € C{(eo, (677)77€HN>>a
We{eﬂv(en)néuN}X
(2.21)

ISymmetry group of a regular polygon with N sides.
"TEach homography ¢ defines isomorphisms:

¢
allp —  s@Usw)

v
and, passing to the dual O(ga)ew)) RN O(a1lp).
fleo,e1,...,en) Fleg(oys €o(1ys -+ €h(n)) ~
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where the correspondence between MZV and words in eg, e, is similar to the iterated integral
representation (L3]), with n;. It is known as the Drinfeld’s associator and arises also from
the monodromy of the famous Knizhnik—Zamolodchikov differential equationﬂ

Category generated by n«*. Denote by:

MT' the full Tannakian subcategory of M7y generated by the fundamental
groupoid,

(i.e. generated by O(n*( Xy, (ﬁ)) by sub-objects, quotients, ®, @, duals) and let:
-GN =G,, x UV its motivic Galois group defined over Q,
- AN = OUN) its fundamental Hopf algebra,

LN = AN /ALY, - AY, the Lie coalgebra of indecomposable elements.
Nota Bene: UYN is the quotient of UM7 by the kernel of the action on II;: i.e. UN acts
faithfully on oII;.

REMARK: In the case of N =1 (by F. Brown in [20]), or N = 2,3,4,°6’,8 (by P. Deligne, in
[31], proven in a dual point of view in Chapter 5), these categories M7y and MT (On [+])
are equal. More precisely, for {5 € un a fixed primitive root, the following motivic torsors
of path are sufficient to generate the category:

N = 2,3,4: II"(P\{0, 1,00}, 06n) generates MT (O [L]).
N =6’ 1 1™ (PN {0, 1, oo},()—gg) generates MT (Og).

N = 8: TI™(P'\ {0, 1,00}, 0&) generates MT(Os [1]).

However, if N has a prime factor which is non inert, the motivic fundamental group, is in
the proper subcategory M7, and hence can not generate MT (Oy [%} ).

2.3 DMotivic Iterated Integrals

Taking from now M = M7y, M = O(x™(P' — {0, un, 00}, 77)), the definition of motivic
periods (2.6) leads to motivic iterated integrals relative to py. Indeed:

A motivic  iterated  integral is  the  triplet I™(x;w;y) =
(O 1m (XN, Z0))  Wye dchyB}m where w € w(M), ydch] is the image of the straight
path from x to y in wp(M)Y and whose period is:

Yy
per(I™(z;w;y)) = I(x;w;y) = / w = (CompBﬂdR(w ®1),, dchyB> e C. (2.22)

x

Indeed, for N = 1, Drinfeld associator is equal to G;lGo, where G, G1 are solutions, with certain asymptotic
behavior at 0 and 1 of the Knizhnik—Zamolodchikov differential equation:

4G = (%"Jr o )G(Z).

dz 1—=2

"The quotation marks around 6 underlines that we consider the unramified category in this case.
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REMARKS:

- There, w € w(O(,I1}})) = Q (wo, (Wy)neuy) Where wy, 1= td_—tn. Similarly to [[2 let:

I™(ap;a1, ... an;ant1) = I™(ao;wa;ant1), where wg = we, ** - wq, , for a; € {0}Uun
(2.23)

- The Betti realization functor wp depends on the embedding o : & — C. Here, by
choosing a root of unity, we fixed the embedding o.

For M a category of Mixed Tate Motives among MT n, MTt, resp. MT 'y, let introduce
the graded AM-comodule, with trivial coaction on L™ (degree 1):

W= AT { 8[[1%:;)2] NZY co@t = AMeaLn, LY. (224)

Nota Bene: For N > 2, it corresponds to the geometric motivic periods, Pf\m/[’Jr whereas for
N =1,2, it is the subset 7)7\1/[:]% invariant by the real Frobenius; cf. (29), 2I0).
For M = MTy, we will simply denote it H := HMT~. Moreover:

HN C /HMTFN C fHMTN_

Cyclotomic iterated integrals of weight n are periods of 7" (of X relative to Y (™)): [

Any motivic iterated integral I™ relative to py is an element of H™, which is the
graded A" — comodule generated by these motivic iterated integrals relative to px.

In a similar vein, define:
I*: A motivic period of type (w,w), in O(G):

w € w(O (,I13))

1y Ew(M)” =0 (oT1y) " (2.25)

IY(z;wyy) = [(9 (mH‘;) W, 1;"]w ,  where {

where ;1 € O (2I1,)" is defined by the augmentation map ¢ : Q(e°, (e"),ecun) — Q,
corresponding to the unit element in ,II,. This defines a function on G = Aut®(w),
given on the rational points by g € G(Q) — (gw, €) € Q.

J%: the image of I¥ in A = O(U), by the projection O(G) — OU). These unipotent
motivic periods are the objects studied by Goncharov, which he called motivic iterated
integrals; for instance, ¢*(2) = 0.

I': the image of I® in the coalgebra of indecomposables £ := A>0/A>0..A>o
REMARK: It is similar (cf. [20]) to define HY, as O(oIly),/J , with:

- J C O(plly) is the biggest graded ideal C kerper closed by the coaction A€, corre-
sponding to the ideal of motivic relations, i.e.:

A°(J) CA® J+ JA® O(IL).

INotations of ZId). Cf. also (ZIZ). The case of tangential base points requires blowing up to get rid of
singularities. Most interesting periods are often those whose integration domain meets the singularities of the
differential form.

\Well defined since A = O(U) is graded with positive degrees.
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- the W-homomorphism: per : O(pII1) — C , e ---e% — I(0;aq,...,a,;1) := fdchw'

Once the motivic iterated integrals are defined, motivic cyclotomic multiple zeta values
follows, as usual (cf. [L2)):

Motivic multiple zeta values relative to uy are defined by, for €; € un, k> 0,n; >0

C;Cu (nl’ . ’np) = (71)}7[“1 (0’ Okv (61 e ep)ilv Onlila Ty (ei T ep)ila Oniilv to 76;;17 Onpil; 1)
€ly...4€p
(2.26)
An admissible (motivic) MZV is such that (n,,€,) # (1,1); otherwise, they are defined by
shuffle regularization, cf. (Z28) below; the versions (g (---), or {5(---) are defined similarly,
from I° resp. I' above. The roots of unity in the iterated integral will often be denoted by

=€)}

From (28], there is a surjective homomorphism called the period map, conjectured to
be isomorphism:

per:Haz,gm(”l""’”p)Hg("l""’"?’). (2.27)

€1,...,€p €1,...,€p

Nota Bene: Each identity between motivic cyclotomic multiple zeta values is then true for
cyclotomic multiple zeta values and in particular each result about a basis with motivic
MZV implies the corresponding result about a generating family of MZV by application of
the period map.

Conversely, we can sometimes lift an identity between MZV to an identity between motivic
MZV, via the coaction (as in [20], Theorem 3.3); this is discussed below, and illustrated
throughout this work in different examples or counterexamples, as in Lemma 43 It is
similar in the case of motivic Euler sums (N = 2). We will see (Theorem 2.4.4) that for
other roots of unity there are several rational coefficients which appear at each step (of the
coaction calculus) and prevent us from concluding by identification.

Properties. Motivic iterated integrals satisfy the following properties:
(i) I™(ap;a1) = 1.
(i) I™(ap; a1, an;ant1) = 0if ag = ap41.
(iii) Shuffle product{]
nNyy..., N
@ ( ) -
€1y, Ep
ip — 1 iy — 1 i1y ]
(—1)F Z <n1 +‘Z1 ) <np +‘zp ><m <n1 +it, . np + zp)  (228)
. L 11 ip €1,---,€p
i1+ Fip=k

iv) Path composition:
( )
n

Vo € uyU{0}, I™(ag; a1, ..., an;ant1) = Zlm(ao;al, ceny @ )T i1y ey Qs A1)
i=1

!Product rule for iterated integral in general is:
/¢1"'¢7"/¢T+1"‘¢T+s: Z /¢a*1(1)‘”¢a*1(T+s)’
v Y geShT,S Y

where Sh, s C &, is the subset of permutations which respect the order of {1,...,7} and {r+1,...,7 + s}.
Here, to define the non convergent case, (i¢i) is sufficient, paired with the other rules.
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(v) Path reversal: I™(ag;a1,...,an;an4+1) = (—=1)"I™(apt1; an, - - ., 013 a0).

(vi) Homothety: Vo € un, I™(0; aaq, . . ., aan; aanr1) = I™(05a1, ..., an; Gpgl)-

REMARK: These relations, for the multiple zeta values relative to py, and for the iterated
integrals I(ag; a1, - an;an+1) (L3), are obviously all easily checked.

It has been proven that motivic iterated integrals verify stuffle x relations, but also pen-
tagon, and hexagon (resp. octagon for N > 1) ones, as iterated integral at uy. In depth 1,
by Deligne and Goncharov, the only relations satisfied by the motivic iterated integrals are
distributions and conjugation relations, stated in §2.4.3.

Motivic Euler %, §f sums. Here, assume that N = 1 or 2] In the motivic iterated integrals
above, I™(--- ,a;,---), a; were in {0,4+1}. We can extend by linearity to a; € {%x, £4},
which corresponds to a w4, resp. w4y in the iterated integral, with the differential forms:

dt (t+1)dt

Wy ‘= W1 — Wy = m and w:tﬂ = 2w:|:1 — Wy = m

It means that, by linearity, for A, B sequences in {0, £1, -, ££}:

I™(A, 4+, B) = I™(A4, +1, B)—I™(A,0, B), and I™(A, +4, B) = 2I™(A, +1, B)—I"™(A,0, B).
(2.29)

¢*™:  Motivic Euler x Sums are defined by a similar integral representation as MES (I3]),
with w4, replacing the w41, except the first one, which stays a w41.
Their periods, Euler x sums, which are already common in the literature, can be written
as a summation similar than for Euler sums replacing strict inequalities by large ones:

k1 kp
N 61 ...Ep . . *
C (nl,...,np): E m, €; — szgn(ni), nZEZ ,Tlp#l.
0<k1<ko<---<kp kl o 'kp

¢H™: Motivic Euler § Sums are defined by a similar integral representation as MES (L3),
with w4y replacing the w41, except the first one, which stays a w41.

They are both Q-linear combinations of multiple Euler sums, and appear in Chapter 4, via
new bases for motivic MZV (Hoffman %, or with Euler  sums) and in the Conjecture 571

Dimensions. Algebraic K-theory provides an upper bound for the dimensions of motivic
cyclotomic iterated integrals, since:

Ext g7y, (Q0),Q(1)) = (Ory[37))* © Q

Extqry., (Q0),Q(1)) =Tn

Extry o (Q(0),Q(n)) = EXt}VlTF (Q(0),Q(n)) = Kop—1(kn) ®Q  for n > 1.
EXti\/lTN,M (Q(0),Q(n)) = Extly+.(Q(0),Q(n)) =0 fori >1orn <O0.

(2.30)
Let ny,, denote the number of different prime ideals above the primes dividing M, vy the
number of primes dividing N and ¢ Euler’s indicator function. For M|N (cf. [8]), using

Detailed definitions of these * and # versions are given in §4.1.
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Dirichlet S-unit theorem when n = 1:

1 if N=1or2, and n odd ,(n,N) # (1,1).
dim K. O /M 0 if N=1or2, and n even .
im Kon—1(Oky [1/M])®Q = <P(2N) +npy —1 ifN>2n=1.
eV if N >2n> 1.
(2.31)

The numbers of generators in each degree, corresponding to the categories M7 n s resp.
MTr,, differ only in degree 1:

In degree >1: by :=bny =bry = WTN)
In degree 1 : aN,M ‘= @ +np,, —1  whereas ary = _90(21\/) +v(N) — 1.

(2.32)
Nota Bene: The following formulas in this paragraph can be applied for the categories
MT N v resp. MTr,, replacing any by an ar resp. ary.

In degree 1, for MT as, N, only the units modulo torsion matters whereas for the category
MTr,, only the cyclotomic units modulo torsion matters in degree 1, cf. §2.4.3. Recall
that cyclotomic units form a subgroup of finite index in the group of units, and generating
families for cyclotomic units modulo torsion are (cf. [5]

For N = p®: {}:g%,a/\p: 1}, where a A b := ged(a,b).
For N = [.p" =] : {1:2:,Mpi=1}u{1—5;, and=1,d| N,d#q}

Results on cyclotomic units determine depth 1 weight 1 results for MMZV, (cf. §.2.4.3).

Knowing dimensions, we lift (Z.2]) to a non-canonical isomorphism with the free Lie algebra:

n.c

WMT = = Lg <(a{) ,(ag') i > 1> o; in degree — i. (2.33)
1<j<an 1<j<bn

The generators af of the graded Lie algebra u are indeed non-canonical, only their classes
in the abelianization are[l] For the fundamental Hopf algebra, with [} = (a])¥ in degree j:

AMT 7;:\; A=Q <(ff)1<j<aN ) (fij)1§j§bN 0> 1> . (2.35)

AMT is a cofree commutative graded Hopf algebra cogenerated by ay elements f}

in degree 1, and by elements f in degree r > 1.

The comodule HY C O(pI1;) embeds, non—canonicall7 into HM7~ and hence:

HY fj—N> HY :=Q <(ff) () e > ®Q[g1]- (2.36)

1<j<an 1<j<by

'If we consider cyclotomic units in Z[En] [47], with M = []r;, ; prime power, we have to add {1 — &, }.

"Tn other terms, this means:
MT ~ J B, MT .
5N P elle HwMT;Q) =0fori> 1. (2.34)
i,j as above
We can fix the image of algebraically independent elements with trivial coaction.

For instance, for N = 3, we can choose to send: ¢™ (;) & frs and (24m)™ >i) g1-
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Nota Bene: This comodule embedding is an isomorphism for N = 1,2,3,4,‘6’,8 (by F.
Brown [20] for N = 1, by Deligne [31] for the other cases; new proof in Chapter 5), since
the categories MT 'y, MT(O [+]) and MTr, are equivalent. However, for some other N,
such as N prime greater than 5, it is not an isomorphism.

Looking at the dimensions d? := dim HM7~:

Lemma 2.3.1. For N > 2, dY satisfies two (equivalent) recursive formulaﬂ:
drly = 1l+4+and,—1+byn Z?:Q dp_;

dY = (ay +1)du_y + (by — an)dn_z  with { do =1

di=any+1

Hence the Hilbert series for the dimensions of HM7 is:

1
hy(t) =Y dith = .
() ; F 1— (an + 1)t + (an — by)22

In particular, these dimensions (for ’H,MTFN) are an upper bound for the dimensions of
motivic MZV,,, (i.e. of HN), and hence of MZV,, by the period map. In the case N = p",
p > 5 prime, this upper bound is conjectured to be not reached; for other N however, this
bound is still conjectured to be sharp (cf. §3.4).

Examples:

- For the unramified category M7 (On):
N
d, = %dn—l +dy2.

- For M | N such that all primes dividing M are inert, n,,, = v(IV). In particular, it is

the case if N =p":
For MT (Opr H) Cd, = (@ + 1) .
p

Let us detail the cases N = 2,3,4,‘6’,8 considered in Chapter 5:

N\ d¥ A Dimension relation d | Hilbert series
N - U 1 generator in each odd degree > 1 dp = dp—3 + dn—2, 1
Q<f37f57f7;"'> d2:17 dl =0 1-t2-¢3
N _ ollI 1 generator in each odd degree > 1 dp =dp1+dn o 1
Q<f17f37f5a"'> d():dl:l 1—=t—t
1 generator in each degree > 1 & 1
N =3,4 dp, = 2dg_1 =2 —
Q(f1, f2, f3,---) k k=1 -2
2 generators in each degree > 1 & 1
N =38 di, = 3dp—1 =3 —
Q<f115f12)f215f227> i ol 1-3t
N=6 1 in each degree > 1, 2 in degree 1 dr, = 3di—1 — di—2, 1
MT(OG [%}) Q<f117f127f2;f35"'> dl =3 1-3t+12
N =6 1 generator in each degree > 1 de =1+ 50 dk—i 1
MT(Os) Q(f2, f3, fa,-+) =dp_1 +dp_2 1=t

IThose two recursive formulas, although equivalent, leads to two different perspective for counting dimensions.
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2.4 Motivic Hopf algebra

2.4.1 Motivic Lie algebra.

Let g the free graded Lie algebra generated by eq, (ey)neuy in degree —1. Then, the com-
pleted Lie algebra g” is the Lie algebra of ¢II;(Q) and the universal enveloping algebra Ug
is the cocomutative Hopf algebra which is the graded dual of O(oIl4):

(Ug)n = (@60 @UEHN Qen)®n = (O(Onl)v)n- (238)

The product is the concatenation, and the coproduct is such that eg, e, are primitive.

Considering the motivic version of the Drinfeld associator:

™ — ng(w)w € H ({eo, en)) , where : (2.39)
1
Mg el g eeTly _ m (nl""’nl’) with = .
" (egen €g €’ ) =Gn €Lyenes€p € = 0 i

Nota Bene: This motivic Drinfeld associator satisfies the double shuffle relations, and, for
N =1, the associator equations defined by Drinfeld (pentagon and hexagon), replacing 27
by the Lefschetz motivic period L™; for N > 1, an octagon relation generalizes this hexagon
relation, as we will see in §4.2.2.

Moreover, it defines a map:

®H,, — Ug  which induces a map: @ L) — Ug.
Define g™, the Lie algebra of motivic elements as the image of GLY in UgE
@ L, = g™ Ug. (2.40)

The Lie algebra g™ is equipped with the Ihara bracket given precisely below. Notice that
for the cases N =1,2,3,4,6",8, g™ is non-canonically isomorphic to the free Lie algebra L
defined in (Z33)), generated by (0;)’s.

Ihara action. As said above, the group scheme V of automorphisms of ,II,,z,y € {0, un}
is isomorphic to ¢I1; ([ZI8), and the group law of automorphisms leads to the Thara action.
More precisely, for a €9 II; (cf. [34]):

The action on ollp : <a>0 o ollp —  ollp

exp(eg) — exp(eo)

exp(ey) = ([n]-a)exp(ey)([n]-a)~" (2.41)
Then, the action on (II; : (a) : oIy — oIy

b —  {a)o(b)-a

HFor N = 1, Broadhurst and Kreimer made a more precise conjecture for dimensions of multiple zeta values
graded by the depth, which transposes to motivic ones:

2
. E(s) := liT
dim(gr2 ! )s™ = ° . where O(s) = —= 2.37
Z im(gry H,,)s 1—0(s)t + S(s)¢% —S(s)i" where (s) 1—s2 s ( )
S() = a=dia=s

where E(s), resp. O(s), resp. S(s) are the generating series of even resp. odd simple zeta values resp. of the space
of cusp forms for the full modular group PSL2(Z). The coefficient S(s) of t> can be understood via the relation
between double zetas and cusp forms in [41]; The coefficient S(s) of t*, underlying exceptional generators in depth
4, is now also understood by the recent work of F. Brown [21I], who gave an interpretation of this conjecture via
the homology of an explicit Lie algebra.
WEor N = 2, the dimensions are Fibonacci numbers.
IThe action of the Galois group UM7T turns £ into a coalgebra, and hence g™ into a Lie algebra.
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This action is called the Thara action:

o: oll; xgII; — oIl

(a,b) — aob:={a)y(b)-a. (2.42)
At the Lie algebra level, it defines the Ihara bracket on Lie(pIl;):
{a,b} :==aob—boa. (2.43)

Nota Bene: The dual point of view leads to a combinatorial coaction A€, which is the
keystone of this work.

2.4.2 Coaction

The motivic Galois group GM7~ and hence UM7 acts on the de Rham realization oII; of
the motivic fundamental groupoid (cf. [34],§4.12). It is fundamental, since the action of
UMT is compatible with the structure of ,II, (groupoid, uy equivariance and inertia), that
this action factorizes through the Thara action, using the isomorphism V 2y II; (2ZIS):

Z/[MT X0 Hl —— 0H1

L

o
oll; xo Iy ——oII4

Since AM7 = OUMT), this action gives rise by duality to a coaction: AM7 compatible
with the grading, represented below. By the previous diagram, the combinatorial coaction
A€ (on words on 0,1 € puy), which is explicit (the formula being given below), factorizes
through AM7 . Remark that AM7 factorizes through A, since I is the quotient of UYM7 by
the kernel of its action on ogII;. By passing to the quotient, it induces a coaction A on H:

O(oIly) — 2% A®g O(I1;)

| |

O(OHl) —AiATAMT ®Q O(Onl)

! l

H ARH.

The coaction for motivic iterated integrals is given by the following formula, due to A. B.
Goncharov (cf. [44]) for A and extended by F. Brown to H (cf. [20]):

Theorem. The coaction A : H — A®q H is given by the combinatorial coaction A°:

AT™(ag; a1, - Qp;Apt1) =

k
a . . m . .
§ ( I (aizﬂaip‘f‘l""aip+1—17aip+1)> QI (a07ai1a"'aik7a’n+1)'
p=0

kyio=0<i1 < <ip <igp1=n+1

REMARK: It has a nice geometric formulation, considering the a; as vertices on a half-circle:

arc between consecutive vertices
crm . . — a
AT™(ag; a1, - Gn; Apt1) = g | |I <

) ) ®I™( vertices ).
polygons on circle P rom aip tO a/ip+1
with vertices (“ip)
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Example: In the reduced coactionf] of ¢™(-1,3) =I™(0;—1,1,0,0;1), there are 3 non zero

cuts: .. Hence:

A'(I™(0; ~1,1,0,0; 1))
=71%0;-1;1)®I™(0;1,0,0; )+I%(—-1;1;0)®I™(0; —1,0,0; 1)+1%(—1;1,0,0; 1)@I™(0; —1;1)

Le, in terms of motivic Euler sums, using the properties of motivic iterated integrals (§2.3)):

A'(C"(=1,3)) = ¢ (=) @™ (3) = ¢*(=1) @ (™ (=3) + (¢(3) = ¢"(=3)) ® ("(~1).

Define for r > 1, the derivation operators:
D, :H— L, ®qH, (2.44)

composite of A’ = A¢ — 1 ® id with 7, ® id, where m, is the projection A — L — L,.

Nota Bene: It is sufficient to consider these weight-graded derivation operators to keep
track of all the information of the coaction.

According to the previous theorem, the action of D, on I"™(ag; a1, - ap; any1) is:
D, I™(ap; a1, ap;apy1) = (2.45)
n—1
[
Z I'(ap; apt1, -+ Aptr; Gpirt1) @ 1™ (03 a1, -+ Apy Qppr1 * -+ A Ang1).
p=0
REMARKS

- Geometrically, it is equivalent to keep in the previous coaction only the polygons
corresponding to an unique cut of (interior) length r between two elements of the
iterated integral.

- These maps D, are derivations:

D (XY)=(1®X)D.(Y)+ (1®Y)D,(X).

- This formula is linked with the equation differential satisfied by the iterated integral
I(ag;- -+ ;an+1) when the ajs vary (cf. [44]@:

dI(ag; -+ ;ant1) = > dI(ai—1;ai;aig1)I(aos- @+ ans1).
Example: By the previous example:

Dy(¢™(=1,3)) = (¢*(3) = ¢*(=3)) @ ("(=1)
Di(¢"(=1,3)) = ¢ (=) @ (€"(3) = ¢™(=3))

IA/(z) =Ax) -1z —z®1
USince I(ai—1;ai;ai+1) = log(ait1 — a;) — log(ai—1 — a;).
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2.4.3 Depth filtration

The inclusion of P\ {0, un, 00} € PN\{0,00} implies the surjection for the de Rham
realizations of fundamental groupoid:

oIl — 7R (Gy, 01). (2.46)
Looking at the dual, it corresponds to the inclusion of:
O (iR (Gpn, 01)) 2 Q () —— O (oI11) = Q (e, (¢"),) (2.47)

This leads to the definition of an increasing depth filtration F® on O(Oﬂl)ﬂ such that:

.7:1?(’)(01'[1) = < words w in €, e”,n € uy such that Z degenw < p> . (2.48)
Q

NeEUN

This filtration is preserved by the coaction and thus descends to H (cf. [21I]), on which:

FOH = <§m ("1""’"’“),rgp> . (2.49)
Q

€1y...,€p

In the same way, we define ]-"1? A and ]-"1? L. Beware, the corresponding grading on O(oII;)
is not motivic and the depth is not a grading on HO. The graded spaces gr;D are defined as
the quotient F°/F) .

Similarly, there is an increasing depth filtration on Ug, considering the degree in {e;;}nepy,
which passes to the motivic Lie algebra g™(240) such that the graded pieces gryg™ are
dual to grP L.

In depth 1, there are canonical elements{T]

.= (ad o) " (ey) € grg™. (2.50)

They satisfy the distribution and conjugation relations stated below.

Depth 1. In depth 1, it is known for A (cf. [34] Theorem 6.8):

Lemma 2.4.1 (Deligne, Goncharov). The elements (® (r;n) are subject only to the following
relations in A:

Distribution

VN ey ) 0 (D) =t e (7).

()= (L)

1t is the filtration dual to the filtration given by the descending central series of the kernel of the map [Z48} it
can be defined also from the cokernel of [Z47] via the decontatenation coproduct.
I For instance: ¢™(3) = ¢™ (1, 2). )
"For N = 1, there are only the Ta2;41 := (adeg)**(e1) € grhg™, i > 0 and the subLie algebra generated by
them is not free, which means also there are other “exceptional” generators in higher depth, cf. [20].
(4

7

ed=n

Conjugation

For N = 2,3,4,°6’,8, when keeping 7; as in Lemma 5.2.1, (7 )) then generate a free Lie algebra in grog.
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REMARK: More generally, distribution relations for MZV relative to uy are:

vd|N, Vei €y | §<n1,...,np) — g ni-p Z Z C(nh'“,m))'

€1,-.-,€p My--+5Mp

They are deduced from the following identity:
n __
For d|N,6€/L% , Z "t =

ni=e
These relations are obviously the analogues of those satisfied by the cyclotomic units modulo

torsion.

In weight » > 1, a basis for grP A is formed by depth 1 MMZV at primitive roots up

to conjugation. However, MMZV . of weight 1, ¢™ (ga ) = —log(1 — &%), are more subtle.
N

For instance (already in [29]):

Lemma. A Z-basis for Ay is hence:
N =p": {C“(;k) aANp=1 1§a§172;1}.
N = pq: With p < q primes:

(le) rmrisesi) U e (o))

a€(Z/qZ)* / (—1,p)
U oo e (o))
a€(Z/pZ)* /{—1,9)

- Indeed, for N = pq, a phenomenon of loops occurs: orbits via the action of p and —1
on (Z/qZ)*, resp. of ¢ and —1 on (Z/pZ)*. Consequently, for each loop we have to

REMARKS:

remove a primitive root ¢ ( £1a) and add the non primitive ¢ gip) to the basisf] The

situation for N a product of primes would be analogue, considering different orbits
associated to each prime; we just have to pay more attention when orbits intersect,
for the choice of the representatives a: avoid to withdraw or add an element already
chosen for previous orbits.

- Depth 1 results also highlight a nice behavior in the cases N = 2,3,4, ‘6", 8: primitive
roots of unity modulo conjugation form a basis (as in the case of prime powers) and if
we restrict (for dimension reasons) for non primitive roots to 1 (or 1 for N = 8), it
is annihilated in weight 1 and in weight > 1 modulo p.

- In weight 1, there always exists a Z- basis[
Example: For N = 34, relations in depth 1, weight 1 lead to two orbits, with (a) := (¢ (5}1 ):

(2) = (16) + (1) (6) = (3) + (14)
(16) = (8) + (9) (14) = (7) + (10)
(8) = (4) + (13) (10) = (5) + (12) ~
(4) = (2) + (19) (12) = (11) + (6)

ICardinal of an orbit {#ap® mod N} is either the order of p modulo g, if odd, or half of the order of p modulo
q, if even.

Conrad and Zhao conjectured (|29]) there exists a basis of MZV,, for the Z-module spanned by MZV ,  for
each N and fixed weight w, except N =1, w =6, 7.
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Hence a basis could be:

1
{g“( ),k:e{5,7,9,11,13,15,2,6}}.

k
534

Motivic depth. The motivic depth of an element in HM7~ is defined, via the correspon-
dence (2.30)), as the degree of the polynomial in the (f;). [l 1t can also be defined recursively
as, for 3 € HV:

3 of motivic depth 1 if and only if 3 € FPHN.
3 of motivic depth <p if and only if (Vr < n, D,(3) of motivic depth <p—1). "

For 3 =¢™ (’;11 Z) € HY of motivic depth py, we clearly have the inequalities:
depth p > p. > pm motivic depth,  where p. is the smallest 7 such that 3 € f? HN.

Nota Bene: For N = 2,3,4,6’, 8, pn always coincide with p., whereas for N = 1, they may
differ.

2.4.4 Derivation space

Translating (2Z244]) for cyclotomic MZV:

Lemma 2.4.2.
D, H,— L QH,—r

ny,...,n Ny, Ny Nix1,° -, N

m ’ ) VP [ ) m +1 s op

DT <§ ( )> - 5T*n1+~~~+ni§ < ) & C ( )
61,...,6p €1,...,6; 6i+1,...,6p

DS

1<i<j<p
{r<Sd_, np—1}

€itly---5€5

J
Co M= €ky

AN s
®<m < ’ k:?' ng T, ) (251)

Proof. Straightforward from (2.44)), passing to MZV ,, notation. O

A key point is that the Galois action and hence the coaction respects the weight grading
and the depth filtration:
D,(Hn) C Ly @ Hp—r-
D D

D (Fy Hn) C Ly @q Fp1Hn—r.
Indeed, the depth filtration is motivic, i.e.:

AFIH)C Y FRAQFIH.

ptq=n

Furthermore, 75 A = FP L = 0. Therefore, the right side of A(e) is in .7:,?7-[, with ¢ < n.
This feature of the derivations D, (decreasing the depth) will enable us to do some recursion
on depth through this work.

Passing to the depth-graded, define:
gr? D, : grf?—[ =L, ® grf_ﬂ-[, as the composition (id ® gr?_l) o DTWPDH.

By Lemma 2.4.7] all the terms appearing in the left side of grf;) Do,y have depth 1. Hence,
let consider from now the derivations D, p:

!Beware, ¢ is non-canonical, but the degree is well defined.
"Notice that (Fy L = 0.
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Lemma 2.4.3.
D,,: gr?’H — grlg L, ® gr?fl’H

D, (Cm (nl,...,np)) — (AO) By, C,(T) g (m (ng,...)
€1,...,€p €1 €2, "

p—1
e [T —1 T I N U U IS I SR
(A> + ZéniST<"i+ni—1—1(_1) ’ (7’ . nz) gl (61) ®¢ ( . ' )

i—2 . ;fiflei;"'

p—1
(r—1 r e My Ny — T
B) = Gn<renitn._1(—=1)" ! m ’ ’
®) =S nsrnnn (- (Yot (oo (e e

%

iy n, [ T — 1 [ r ni—1—1 r—1 of "
() "';‘ST::%:Z;{I ((_1) (nil)c (e{ﬂ) (=1 (m1 1)C (61))
®<m< P TR >
€16y

(D) + 5npgr<np+np71,1(—1)rfnp < r—1 ><‘ ( r > ® Cm ( c ;.T.Lpfl + np — 7’)

©y Ep—1€p

, —_— r—11Y\ , r 7 r—1 of T m |
(D) JF(ST:::;Z];;IA (-1) <<7”Lp _ 1>< <6p_11> (np—l _ 1)C <€p)>®< ( N 6p—1€p) .

REMARKS:

- The terms of type (D, D’), corresponding to a deconcatenation, play a particular role
since modulo some congruences (using depth 1 result for the left side of the coaction),
we will get rid of the other terms in the cases N = 2, 3,4, ‘6’, 8 for the elements in the
basis. In the dual point of view of Lie algebra, like in Deligne article [31] or Wojtkowiak
[79], this corresponds to showing that the Ihara bracket {, } on these elements modulo
some vector space reduces to the usual bracket [,]. More generally, in other case of
basis, as Hoffman one’s for N = 1, the idea is still to find an appropriate filtration on
the conjectural basis, such that the coaction in the graded space acts on this family,
modulo some space, as the deconcatenation, as for the f; alphabet. Indeed, on H
[236)), the weight graded part of the coaction, D, is defined by:

D,: H, — L,®H,_, such that : (2.52)
JL ik ;jll® z-j;,..., ZJ: if i1 =7
" B 0 else .

- One fundamental feature for a family of motivic multiple zeta values (which makes it
“natural” and simple) is the stability under the coaction. For instance, if we look at
the following families which appears in Chapter 5:

Cm (nla o Mp—1,Tp

> with €, € uy  primitive and (€;)i<, non primitive.
€1,---,€p—1,€p

If N is a power of a prime, this family is stable via the coaction. M 1t is also stable via
the Galois action if we only need to take 1 as a non primitive (1-dimensional case), as

for MT(OG)

ISince in this case, (non primitive) - ( non primitive) = non primitive and non primitive - primitive = primitive
root. Note also, for dimensions reasons, if we are looking for a basis in this form, we should have N —¢(N) > w s

which comes down here to the case where N is a power of 2 or 3.
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Proof. Straightforward from Z4.2] using the properties of motivic iterated integrals previ-
ously listed (§2.3). Terms of type (A) correspond to cuts from a 0 (possibly the very first
one) to a root of unity, (B) terms from a root of unity to a 0, (C) terms between two roots of
unity and (D,D’) terms are the cuts ending by the last 1, called deconcatenation terms. O

Derivation space. By Lemma 2.4.1 (depth 1 results), once we have chosen a basis for
gr? L., composed by some (®(r;;7;), we can well define:

(1) For each (r;,m;):
D:]?',p : gr??—[ — gr?,lfH, (2.53)

%

as the composition of D,, , followed by the projection:
i grP L, ® gr?_lH — gr?_ﬂ-[, C"(rie) @ X = cperX,
with ¢, ¢, € Q the coefficient of (™(r;n) in the decomposition of (™ (r;€) in the basis.
(i)
Dr,p as the set of Di | for (™(r;,n;) in the chosen basis of gr? A, (2.54)
(i4i) The derivation set 2 as the (disjoint) union: 2 := U,~o{%-}.
REMARKS:

- In the case N = 2,3,4,6’, the cardinal of %, is one (or 0 if r even and N = 2,
or if (r,N) = (1,6)), whereas for N = 8 the space generated by these derivations is
2-dimensional, generated by DS and D¢ for instance.

- Doing the same procedure for the n.c. Hopf comodule H defined in (236, isomor-
phic to HM7~ | since the coproduct on H is the deconcatenation ([2.52), leads to the
following derivations operators:

Dz: H, — H"—T ‘
. . j j e . _
JLoLL R i;""a i: 1f]1—]and21—7".
" Zk 0 else .

Now, consider the following application, depth graded version of the derivations above,
fundamental for several linear independence results in §4.3 and Chapter 5:

@ card D,
a”l,P =® rn D grngn — DBr<n (grflen—T) !

DeDr,p

(2.55)

Kernel of D.,,. A key point for the use of these derivations is the ability to prove some
relations (and possibly lift some from MZV to motivic MZV) up to rational coefficients.
This comes from the following theorem, looking at primitive elements:

Theorem 2.4.4. Let Do, := &<, D;, and fiz a basis {¢® (" )} of gr2 A,. Then:

n;
Q¢™ (T) for N=1,2 and n # 1.
ker Doy NHY = ©QT™ Dy <jcq, QCT (,}]) : Jor N>2,n=1.
SQ(T™)" D1<j<p, Q™ (,Z) . for N>2n>1.

IWithout passing to the depth-graded, we could also define D] as D, : H — ga"lD L, ® H followed by 7] ® id
where 7" : ga"lD L, — Q is the projection on ¢™ (;), once we have fixed a basis for grl9 L,; and define as above

2, as the set of the D7 | for ¢™(r,n) in the basis of gr} A,.

TP’
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Proof. Tt comes from the injective morphism of graded Hopf comodule ([2.30]), isomorphism
for N =1,2,3,4,6, 8:

¢ HN =5 HY ::Q<(ff)> ®q Qlg1]-
Indeed, for HV, the analogue statement is obviously true, for A’ =1® A + A® 1:

ker A'NH, = @, fl @ g}

Corollary 2.4.5. Let D, := EBT<nDTE Then:

Q¢ (711) for N =1,2.
ker Do NHY = ¢ Q™)™ & QC™ g;) for N = 3,4,6.
Qe (&) eqem () for N =8,

In particular, by this result (for N = 1,2), proving an identity between motivic MZV
(resp. motivic Euler sums), amounts to:

1. Prove that the coaction is identical on both sides, computing D, for r > 0 smaller than
the weight. If the families are not stable under the coaction, this step would require
other identities.

2. Use the analytic corresponding result for MZV (resp. Euler sums) to deduce the
remaining rational coefficient; if the analytic equivalent is unknown, we can at least
evaluate numerically this rational coefficient.

Some examples are given in §6.3 and §4.4.3.

Another important use of this corollary, is the decomposition of (motivic) multiple zeta
values into a conjectured basis, which has been explained by F. Brown in [19]

However, for greater IV, several rational coefficients appear at each step, and we would need
linear independence results before concluding.

For N = 1, we restrict to » odd > 1; for N = 2 we restrict to r odd; for N = ‘6’ we restrict to r > 1.

"UHe gave an exact numerical algorithm for this decomposition, where, at each step, a rational coefficient has
to be evaluated; hence, for other roots of unity, the generalization, albeit easily stated, is harder for numerical
experiments.
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Chapter 3

Results

3.1 Euler x,{ sums [Chapter 4]

In Chapter 4, we focus on motivic Euler sums (N = 2), shortened ES, and motivic multiple
zeta values (N = 1), with in particular some new bases for the vector space of MMZV: one
with Euler § sums and, under an analytic conjecture, the so-called Hoffman * family. These
two variants of Euler sums are (cf. Definition 4.1.1):

Euler x sums corresponds to the analogue multiple sums of ES with < instead of strict
inequalities. It verifies:

C*(na,..mp) = > ((naio---omy). (3.1)

o=‘4"or,

Notation: This ‘ + ’ operation on n; € Z, is a summation of absolute values, while
signs are multiplied.
These have already been studied in many papers: [9], [56], [58], [65], [69], [S6].

Euler # sums are, similarly, linear combinations of MZV but with 2-power coefficients:

Fny, ..o ny) = Z 27" ((nyo---onp), with ny the number of +. (3.2)

g
o=‘4’"or ,

We also pave the way for a motivic version of a generalization of a Linebarger and Zhao’s
equality (Conjecture [£5.1]) which expresses each motivic multiple zeta % as a motivic Euler
f sums; under this conjecture, Hoffman + family is a basis, identical to the one presented
with Euler sums §.

The first (naive) idea, when looking for a basis for the space of multiple zeta values, is
to choose:
{¢(2n1 +1,2n2 +1,...,2n, + 1) (2im)**,n; € N*, s € N}.

However, considering Broadhurst-Kreimer conjecture ([2.37), the depth filtration clearly does
not behave so nicely in the case of MZV [l and already in weight 12, they are not linearly

independent:

28¢(9,3) + 150((7,5) + 168((5,7) = %9174“(12).

IRemark, as we will see in Chapter 5, or as we can see in [31] that for N = 2,3,4,‘6’, 8, the depth filtration is
dual of the descending central series of U, and, in that sense, does behave well. For instance, the following family
is indeed a basis of motivic Euler sums:

{¢™(2n1+1,2na4+1,...,2np 1 + 1,—(2n, + 1)) (L™)?**,n; € N, s € N}.
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Consequently, in order to find a basis of motivic MZV, we have to:

Either: Allow higher depths, as the Hoffman basis (proved by F Brown in [20]), or the *
analogue version:

Hoffman + : {¢{™™(2%,3,2% ...,3,2%) a; > 0}.

The analogous real family Hoffman x was also conjectured (in [56], Conjecture 1) to be
a basis of the space of MZV. Up to an analytic conjecture (£44]), we prove (in §4.4)
that the motivic Hoffman * family is a basis of H1!, the space of motivic MZVI]. In this
case, the notion of motivic depth (explained in §2.4.3) is the number of 3, and is here
in general much smaller than the depth.

Or: Pass by motivic Euler sums, as the Euler f basis given below; it is also another illus-
tration of the descent idea of Chapter 5: roughly, it enables to reach motivic periods
in #Y' coming from above, i.e. via motivic periods in H¥, for N’ | N.

More precisely, let look at the following motivic Euler § sums:

Theorem. The motivic Euler sums (*™ ({Even, odd }*) are motivic geometric periods of
MT(Z). Hence, they are Q linear combinations of motivic multiple zeta values

Notations: Recall that an overline = corresponds to a negative sign, i.e. —x in the
argument. Here, the family considered is a family of Euler #§ sums with only positive odd
and negative even integers for arguments.

This motivic family is even a generating family of motivic MZV from which we are able to
extract a basis:

Theorem. A basis of ,Pr/i_J/_'(Z),R =H', the space of motivic multiple zeta values is:

{¢P™ (2a0 + 1,2a1 +3,- -+ ,2ap_1 +3,2a, + 2) , a; > 0}.

The proof is based on the good behaviour of this family with respect to the coaction
and the depth filtration; the suitable filtration corresponding to the motivic depth for this
family is the usual depth minus 1.

By application of the period map, combining these results:

Corollary. Each Euler sum (' ({€ven, odd }*) (i.e. with positive odd and negative even
integers for arguments) is a Q linear combination of multiple zeta values of the same weight.
Conversely, each multiple zeta value of depth < d is a Q linear combination of elements
¢t (2@0 +1,2a1 +3,---,2a,-1 + 3,2a, + 2), of the same weight with a; > 0, p < d.

REMARKS:

- Finding a good basis for the space of motivic multiple zeta values is a fundamental
question. Hoffman basis may be unsatisfactory for various reasons, while this basis
with Euler sums (linear combinations with 2 power coefficients) may appear slightly
more natural, in particular since the motivic depth is here the depth minus 1. However,
both of those two basis are not basis of the Z module and the primes appearing in the
determinant of the passage matridd] are growing rather fast

1Up to this analytic statement, B4l the Hoffman * family is then a generating family for MZV.
Since, by [20], we know that Frobenius invariant geometric motivic periods of MT (Z) are Q linear combinations
of motivic multiple zeta values.
M The inverse of the matrix expressing the considered basis in term of a Z basis.
VDon Zagier has checked this for small weights with high precision; he suggested that the primes involved in
the case of this basis could have some predictable features, such as being divisor of 2™ — 1.
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- Looking at how periods of M7 (Z) embeds into periods of MT(Z[3]), is a fragment of
the Galois descent ideas of Chapter 5.
Euler sums which belong to the Q-vector space of multiple zeta values, sometimes
called honorary, have been studied notably by D. Broadhurst (cf. [11]) among others.
We define then unramified motivic Euler sums as motivic ES which are Q-linear combi-
nation of motivic MZV, i.e. in #'. Being unramified for a motivic period implies that
its period is unramified, i.e. honorary; some examples of unramified motivic ES are
given in §6.2, or with the family above. In Chapter 5, we give a criterion for motivic
Euler sums to be unramified (.1.3] which generalizes for some other roots of unity; by
the period map, this criterion also applies to Euler sums.

- For these two theorems, in order to simplify the coaction, we crucially need a motivic
identity in the coalgebra L, proved in §4.2, coming from the octagon relation pictured
in Figure More precisely, we need to consider the linearized version of the anti-
invariant part by the Frobenius at infinity of this relation, in order to prove this hybrid
relation (Theorem EL.2.3)), for n; € N* ¢; € +1:

(T, 5 Np [ ni,...,Np _ w1 1 [ Mpy---5,10 [ Np—1,---
Ck ( )+Cno+k ( = (_1) Ck + Ck-i—np
€0y---5€p €1,...,€p €py -5 €0 €p—1,-

Thanks to this hybrid relation, and the antipodal relations presented in §4.2.1, the
coaction expression is considerably simplified in Appendix A.1.

Theorem. If the analytic conjecture (E44) holds, then the motivic Hoffman x family
{¢o™({2,3}%)} is a basis of H!, the space of MMZV.

Nota Bene: A MMZV x, in the depth graded, is obviously equal to the corresponding
MMZV. However, the motivic Hoffman (i.e. with only 2 and 3) multiple zeta (%) values are
almost all zero in the depth graded (the motivic depth there being the number of 3). Hence,
the analogous result for the non * casdl, proved by F. Brown, does not make the result in
the x case anyhow simpler.

Denote by H?? the Q-vector space spanned by the motivic Hoffman * family. The idea
of the proof is similar as in the non-star case done by Francis Brown. We define an increas-
ing filtration FY on H?3, called the level, such that{

FEH?3 is spanned by ¢*™(2%, 3, ,3,2%), with less than “I” 3.

One key feature is that the vector space flLH2’3 is stable under the action of G.

The linear independence is then proved thanks to a recursion on the level and on the weight,
using the injectivity of a map 0 where 0 came out of the level and weight-graded part of the
coaction A (cf. §4.4.1). The injectivity is proved via 2-adic properties of some coeflicients
with Conjecture .44

One noteworthy difference is that, when computing the coaction on the motivic MZV*,
some motivic MZV** arise, which are a non convergent analogue of MZV* and have to be
renormalized. Therefore, where F. Brown in the non-star case needed an analytic formula
proven by Don Zagier ([82]), we need some slightly more complicated identities (in Lemma
ZA3) because the elements involved, such as ¢**™(2%, 3, 2%) for instance, are not of depth
1 but are linear combinations of products of depth 1 motivic MZV times a power of 7.

These two bases for motivic multiple zeta values turn to be identical, when considering
this conjectural motivic identity, more generally:

l.e. that the motivic Hoffman family is a basis of the space of MMZV, cf [19].

Beware, this notion of level is different than the level associated to a descent in Chapter 5. It is similar as the
level notion for the Hoffman basis, in F. Brown paper’s [20]. It corresponds to the motivic depth, as we will see
through the proof.
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Conjecture. For a;,c; € N*, ¢; # 2,
oM (2%, ¢1,0 -0, 0p, 297) = (3.3)
(1) E™ (£(2a0 + 1 — 6ey ), 1973, 1973 £(2a; + 3 — 6, — Oeipy)s -5 £(2ap +2—4¢,)) -

where the sign + 1s always — for an even argument, + for an odd one, d. = d.=1, Kronecker
symbol, and 1" := 1m0n) s ¢ sequence of n 1ifn € N, an empty sequence else.

This conjecture expresses each motivic MZV* as a linear combination of motivic Euler
sums, which gives another illustration of the Galois descent between the Hopf algebra of
motivic MZV and the Hopf algebra of motivic Euler sums.

Nota Bene: Such a motivic relation between MMZV ,, is stronger than its analogue be-
tween MZV,,, since it contains more information; it implies many other relations because of
its Galois conjugates. This explain why its is not always simple to lift an identity from MZV
to MMZV from the Theorem If the family concerned is not stable via the coaction,
such as (iv) in Lemma 43, we may need other analytic equalities before concluding.

This conjecture implies in particular the following motivic identities, whose analogue for
real Euler sums are proved as indicated in the bracketl:

Two-One [For ¢; = 1, Ohno Zudilin: [69]]:
™29, 1,0, 1,2%) = —¢P™ (2ag,2a1 + 1. .., 2ap—1 + 1,20, + 1) . (3.4)

Three-One [For ¢; alternatively 1 and 3, Zagier conjecture, proved in [9]]

C*,m(zao, 1’ 2111’3 SRR 1, 211p—1’3, Zap) — —Cﬁvm (2_0/0, 20/1 + 2, ey 2ap_1 + 2, 2ap + 2) .
(3.5)

Linebarger-Zhao x [With ¢; > 3, Linebarger Zhao in [65]]:

C*ym (2a03 Cl,- acpa 2ap) = _Cﬂym (20/0 + 13 161733 Ty 161‘73) 20/7; + Sa ey 2ap + 2)
(3.6)
In particular, restricting to all ¢; = 3:

¢o™ (20,3, ,3,2%) = —(P™ (200 + 1,2a1 +3,...,2ap—1 +3,2a, + 2) . (3.7)

Nota Bene: Hence the previous conjecture ([A37)) implies that the motivic Hoffman « is a
basis, since we proved the right side of [@37) is a basis:

Conjecture 5.1 =  Hoffman x is a basis of MMZV.

Examples: The previous conjecture would give such relations:

g*,m(2, 2a 3) 3? 2) = _Cmm(Sa Sa _4) C*7m(5a 6a 2) = _Cmm(la 1; 1a 3; 1a 1; 1a _4)
¢o™(1,6) = ¢P™(—2,1,1,1,-2)  (*™(2,4,1,2,2,3) = —¢¥™(3,1, -2, -6, —2).

!Beware, only the identity for real Euler sums is proved; the motivic analogue stays a conjecture.
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3.2 Galois Descents [Chapter 5]

There, we study Galois descents for categories of mixed Tate motives M7, , and how
periods of 74" (X /) are embedded into periods of 7" (X ) for N’ | N. Indeed, for each
N, N’ with N’|N there are the motivic Galois group GM7~ acting on M7~ and a Galois
descent between HM7~" and HMT~ | such that:

(HMTN )G g MT
Since for N = 2,3,4,6",8, the categories MT 5 and MT'y are equal, this Galois descent
has a parallel for the motivic fundamental group side; we will mostly neglect the difference

in this chapter:

N ~ s MT N
H n.c H
GgN/N' g]f\‘;l/g,

N'¢ ~ MT N
H n.c H

Y uN’ yMT nr GMTN
Qir"|——— Q[in™]
Gm Gm
Q Q

Figure 3.1: Galois descents, N = 2,3,4,°6", 8 (level 0)]]

Nota Bene: For N’ =1 or 2, i7™ has to be replaced by (™(2) or (7™)2, since we con-
sider, in HN ' only periods invariant by the Frobenius F.,. In the descent between H™V and
HN ,, we require hence invariance by the Frobenius in order to keep only those periods; this
condition get rid of odd powers of inr™.

The first section of Chapter 5 gives an overview for the Galois descents valid for any N:
a criterion for the descent between MMZV,, ., and MMZV,, (Theorem 5.1.1), a criterion
for being unramified (Theorem 5.1.2); and their corollaries. The conditions are expressed
in terms of the derivations D, since they reflect the Galois action. Indeed, looking at the
descent between MT n pr and MT y a7, sometimes denoted ([) = (kny/kn/, M/M'), it has
possibly two components:

- The change of cyclotomic fields kx/kn+; there, the criterion has to be formulated in
the depth graded.

- The change of ramification M/M’, which is measured by the 1 graded part of the
coaction i.e. Dy with the notations of §2.4.

The second section specifies the descents for N € {2,3,4,6’,8} [ represented in Figure
B3 and B4l In particular, this gives a basis of motivic multiple zeta values relative to
v via motivic multiple zeta values relative to u, for these descents considered, N’ | N.
It also gives a new proof of Deligne’s results ([31]): the category of mixed Tate motives
over O\ [1/N], for N € {2,3,4,°6’,8} is spanned by the motivic fundamental groupoid of
P\ {0, un, o0} with an explicit basis; as claimed in §2.2, we can even restrict to a smaller

IThe (non-canonical) horizontal isomorphisms have to be chosen in a compatible way.
T As above, the quotation marks underline that we consider the unramified category for N = “6’.
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fundamental groupoid.

Let us present our results further and fix a descent ([) = (kn/kn/, M/M') among these
considered (in Figures B3] B.4)), between the category of mixed Tate motives of On[1/M]
and On/[1/M’][] Each descent ([) is associated to a subset 2 C 2 of derivations, which
represents the action of the Galois group GV/N Tt defines, recursively on ¢, an increasing

motivic filtration }“j on HY called motivic level, stable under the action of GgMTn.

FLuN =0

Motivic level: [ N P N o 1.
F; the largest submodule of #" such that F, HN /F,_H" is killed by 2.

The 0" level ]-'O[’HN , corresponds to invariants under the group GN/N' while the it level

]-'j, can be seen as the " ramification space in generalized Galois descents. Indeed, they

correspond to a decreasing filtration of i*" ramification Galois groups G;, which are the
subgroups of GN/N" which acts trivially on FiHY

(HM)9 = FoHN
gN/N/:go oG Dor DG (3,9)

HY = FHN cRHY coo CEHN .

Figure 3.2: Representation of a Galois descent.

Those ramification spaces constitute a tower of intermediate spaces between the elements
in MMZV,,, and the whole space of MMZV

Knre
Let define the quotients associated to the motivic level:

HZ=H/FiaH, HO=7.

!Usually, the indication of the descent (in the exponent) is omitted when we look at a specific descent.
T On ramification groups in usual Galois theory: let L/K a Galois extension of local fields. By Hensel’s
lemma, O, = Ok [a] and the i*? ramification group is defined as:
v is the valuation on L

Gi:={g € Gal(L/K) | v(g(a) — @) > i}, where { p={z€L|uv(z) >0} maximal ideal for L

(3.8)

Equivalently, this condition means g acts trivially on O /p*t?, ie. g(z) = = (mod pi*t1). This decreasing
filtration of normal subgroups corresponds, by the Galois fundamental theorem, to an increasing filtration of
Galois extensions:
Go= Gal(L/K) DG1 DG2D - DG+
K=KoCKiCKyC---CK;---

G, the inertia subgroup, corresponds to the subextension of minimal ramification.
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The descents considered are illustrated by the following diagrams:

_7::8/@2/1
1
HMTO[3]
_7:58/’043/2]\
. ]__k‘4/k4,2/1
HMT(©Oa[3]) 70 2 MT(Pa)
Fha/Q2/1 \

Fha /@,2/2T

yMTEE]) g MT@),
F/02/1

Figure 3.3: THE cases N =1,2,4,8.

HMT (O6)

k3 /k3,3/1
T G I

Fhe/01/1
e Fha/Qs/1 E_
;03/@3/3

HMT(Z[%]) YMT (2)

Figure 3.4: THE cases N =1,3,‘6’.

REMARKS:

- The vertical arrows represent the change of field and the horizontal arrows the change
of ramification. The full arrows are the descents made explicit in Chapter 5.

More precisely, for each arrow A %2 B in the above diagrams, we give a basis Bf of
H, and a basis of HE = FyH2 in terms of the elements of BZ; similarly for the higher
level of these filtrations.

- The framed spaces H'~ appearing in these diagrams are not known to be associated
to a fundamental group and there is presently no other known way to reach these

(motivic) periods. For instance, we obtain by descent, a basis for H,,

MT(Z[L
@[3] in terms

M (©3[3])

of the basis of H,, .

Example:

Descent between Euler sums and MZV. The comodule H! embeds, non-canonically,

into H?. Let first point out thatl D1 (H') = 0; the Galois descent between H? and H' is
precisely measured by Dq:

Theorem. Let 3 € H?, a motivic Euler sum. Then:

3 e HY, e is a motivic MZV <~ D1(3) =0 and D2,41(3) € H

ISince all the motivic iterated integrals with only 0,1 of length 1 are zero by properties stated in §23] hence
the left side of Dy, defined in (Z45]), would always cancel.
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This is a useful recursive criterion to determine if a (motivic) Euler sum is in fact a
(motivic) multiple zeta value. It can be generalized for other roots of unity, as we state more
precisely in §5.1. These unramified motivic Euler sums are the 0*"-level of the filtration by
the motivic level here defined as:

F;H? is the largest sub-module such that F;/F;_; is killed by D;.

Results. More precisely, for N € {2,3,4,°6’,8}, we define a particular family B of motivic
multiple zeta values relative to uy with different notions of level on the basis elements, one
for each Galois descent considered above:

r; >1lodd, e =1and sevenif N =2
r;>1,¢=1if N=3,4
r;>1,¢,=1if N=6
r;>1,6=x21if N=8

(3.10)

L1, Tp_1,T .
BN = ¢™ ( ’ p=hp ) (2mi)>™ | x; € N* s >0,
615"'76p7176p§N

Denote by B,, p.; the subset of elements with weight n, depth p and level i.

Examples:
-N = 2: The basis for motivic Euler sums: B2 := {Qm (21/1;3{5::;1273@1“) ¢™(2)%,y; > 0,5 > 0}
. The level for the descent from H? to H! is defined as the number of y/s equal to 0.

N =4: The basis is: B* 1= {gm (1f11@j) 2mi)™™, s > 0,2; > 0}.

- the number of even z/s for the descent from H* to H?

The level is: 1 number of even z} s+ the number of /s equal to 1 for the descent from H?* to H!

‘N = 8: the level includes the number of €;s equal to —1, etc.

The quotients H=?, respectively filtrations J; associated to the descent [, will match with
the sub-families (level restricted) By, p. >4, respectively B, , <i. Indeed, we prove: o

. ) o ) 2 for N =248
Theorem. With Zy(p) := {W,a,b c Z} where P = { 3 TN 30
- Bn,<p,>i is a basis of ff?’-ﬂ%i and By,,. > a basis of ’H%i.

- Bnp,>i 15 a basis of gT?fH%i on which it defines a Zp)-structure:

Each ™ (2;‘:) decomposes in gr??—[%i as a Zyp)-linear combination of By, p >i

elements.
- We have the two split exact sequences in bijection:
0 — FiHy — Hp S 42 0
0— (Bn,.<i)o = (Bn)o = (Bn,. >it+1)0 — 0.
- A basis for the filtration spaces FiHy:
Up {3 + Cln,§p72i+1(3)a € Bn,péi} )
where clp <p>i : (Bnp.<i—1)Q = (Bn,<p,>i)q such that 3+ cly <p >i(3) € Fic1Hnp.

ICf. Theorem 5.2.4 slightly more precise.
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- A basis for the graded space gr;Hy:
Up {3 + cln,<p,>i+1(3), 3 € Bup,i}-
Nota Bene: The morphism ¢, <p >i4+1 satisfying those conditions is unique.

The linear independence is obtained first in the depth graded, and the proof relies on the
bijectivity of the following map 83{72 by an argument involving 2 or 3 adic propertiesﬁ

GBCL . @cy
L grPHE = @ cy (gr  HE 1) Bren (grf?_l?-tfir) sl el eN,  (3.11)

which is obtained from the depth and weight graded part of the coaction, followed by a
projection for the left side (by depth 1 results), and by passing to the level quotients ((5.7])).
Once the freeness obtained, the generating property is obtained from counting dimensions,
since K-theory gives an upper bound for the dimensions.

This main theorem generalizes in particular a result of P. Deligne ([31]), which we could
formulate by different ways:

Corollary. - The map GMT — GMT s an isomorphism.

- The motivic fundamental group wi* (]P’l\{(),,uN,oo},OfN) generates the category of
mized Tate motives MT n.

- By, is a basis of HY , the space of motivic MZV relative to py .

- The geometric (and Frobenius invariant if N = 2) motivic periods of MT n are Q-
linear combinations of motivic MZV relative to un (unramified for N = ‘6’).

REMARKS:

- For N = ‘6’ the result remains true if we restrict to iterated integrals relative not to
all 6*" roots of unity but only to these relative to primitive roots.

7 (PIN{0, 1,00}, 0&n) for N =2,3,4,6’
m(PIN{0, £1,00},0¢N) for N =38
The previous theorem also provides the Galois descent from HMT~N to HMT~7:

Corollary. A basis for MMZV,, ., is formed by MMZV,,, < BN of level 0 each corrected
by a Q-linear combination of MMZV . of level greater than or equal to 1:

- We could even restrict to:

Basis of H,]ZV, : {3 +cly,.>1(3),3 € B,]X ,0}

REMARK: Descent can be calculated explicitly in small depth, less than or equal to 3, as
we explain in the Appendix A.2. In the general case, we could make the part of maximal
depth of ¢l(3) explicit (by inverting a matrix with binomial coefficients) but motivic meth-
ods do not enable us to describe the other coefficients for terms of lower depth.

IThe first ci components of 6:1”,; correspond to the derivations in 2! associated to the descent, which hence
decrease the motivic level.

'The basis B, in the cases where N € {3,4,8} is identical to P. Deligne’s in [31]. For N = 2 (resp. N = ‘6’
unramified) it is a linear basis analogous to his algebraic basis which is formed by Lyndon words in the odd (resp.
> 2) positive integers (with ...5 < 3 < 1); a Lyndon word being strictly smaller in lexicographic order than all of
the words formed by permutation of its letters. Deligne’s method is roughly dual to this point of view, working
in Lie algebras, showing the action is faithful and that the descending central series of U is dual to the depth
filtration.
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Example, N = 2: A basis for motivic multiple zeta values is formed by:

™ (21 41,22, F1)CNR) D k™21, 2y, DCN(2)T, @i > 0,05 €Q
=
Starting from a motivic Euler sum with odds greater than 1, we add some corrections terms,
in order to get an element in H', the space of MMZV. At this level, correction terms are
motivic Euler sums with odds, and at least one 1 in the arguments; i.e. they are of level > 1
with the previous terminology. For instance, the following linear combination is a motivic

MZV:

- 774 - 804 - - 450 —
m m m m + —C™

3.3 Miscellaneous Results [Chapter 6]

Chapter 6 is devoted on the Hopf algebra structure of motivic multiple zeta values relative
to upn, particularly for N = 1,2, presenting various uses of the coaction, and divided into
sections as follows:

1. An important use of the coaction, is the decomposition of (motivic) multiple zeta values
into a conjectured basis, as explained in [19]. It is noteworthy to point out that the
coaction always enables us to determine the coefficients of the maximal depth terms.

We consider in §6.1 two simple cases, in which the space gr? . H, is 1 dimensional:

(i) For N = 1, when the weight is a multiple of 3 (w = 3d), such that the depth
p> il
gr??’-lgd =Q¢™(3)%

(i¢) For N = 2,3, 4, when weight equals depth:

1 p
grfﬂp:(@cm <§N> .

The corresponding Lie algebra, called the diagonal Lie algebra, has been studied
by Goncharov in [45], [46].

In these cases, we are able to determine the projection:

9 gr® ’Hfj%(@,

max

either via the linearized Thara action o, or via the dual point of view of infinitesimal
derivations D,. For instance, for (i) (N =1, w = 3d), it boils down to look at:

od
D3

i or  exp,(ds3), where Go; 41 = (fl)i(adeo)%(el)@.

In general, the space gr> . 1Y is more than 1-dimensional; nevertheless, these methods
could be generalized.

IThis was a question asked for by D. Broadhurst: an algorithm, or a formula for the coefficient of C(B)d of such
a MZV, when decomposed in Deligne basis.
I These 2,41 are the generators of gry g™, the depth 1 graded part of the motivic Lie algebra; cf. (Z50).
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2. Using criterion B.1.3] we provide in the second section infinite families of honorary
motivic multiple zeta values up to depth 5, with specified alternating odd or even
integers. It was inspired by some isolated examples of honorary multiple zeta values
found by D. Broadhurstﬁ, such as ((8,5,8),((8,3,10),¢(3,6,3,6,3), where we already
could observe some patterns of even and odd. Investigating this trail in a systematic
way, looking for any general families of unramified (motivic) Euler sums (without linear
combinations first), we arrive at the families presented in §6.2, which unfortunately,
stop in depth 5. However, this investigation does not cover the unramified Q-linear
combinations of motivic Euler sums, such as those presented in Chapter 4, Theorem
3T (motivic Euler § sums with positive odds and negative even integers).

3. By Corollary 245 we can lift some identities between MZV to motivic MZV (as in
[20], Theorem 4.4), and similarly in the case of Euler sums. Remark that, as we will see
for depth 1 Hoffman x elements (Lemma[.43)), the lifting may not be straightforward,
if the family is not stable under the coaction. In this section §6.3, we list some identities
that we are able to lift to motivic versions, in particular some Galois trivial elementd]
or product of simple zetas, and sum identities.

REMARK: The stability of a family on the coaction is a precious feature that allows to

prove easily (by recursion) properties such as linear independenc, Galois descent features
(unramified for instance), identities (§6.3), etc.

3.4 And Beyond?

For most of N values, the situation concerning the periods of M7, C MT(On[%]) is
still hazy, although it has been studied in several articles, notably by Goncharov ([45],[46],
[47) and Zhao: some bounds on dimensions, tables in small weight, and other results and
thoughts on cyclotomic MZV can be seen in [85], [84], [29].

Nota Bene: As already pointed out, as soon as N has a non inert prime factor ﬂ, MTry €
MT(On [+]). Hence, some motivic periods of MT (On [3;]) are not motivic iterated inte-
grals on P\ {0, un, 00} as considered above; already in weight 1, there are more generators
than the logarithms of cyclotomic units log™ (1 — £%).

Nevertheless, we can a priori split the situation (of M7, ) into two main schemes:

(i) As soon as N has two distinct prime factors, or N power of 2 or 3, it is commonly be-
lieved that the motivic fundamental group 7™ (P*\ {0, oo, un}, 07) generates M7Tr,,

I Those emerged when looking at the depth drop phenomena, cf. [14].

" Galois trivial here means that the unipotent part of the Galois group acts trivially, not G,,; hence not strictly
speaking Galois trivial.

M1f we find an appropriate filtration respected by the coaction, and such as the 0 level elements are Galois-
trivial, it corresponds then to the motivic depth filtration; for the Hoffman (x) basis it is the number of 3; for the
Euler #f sums basis, it is the number of odds, also equal to the depth minus 1; for Deligne basis relative to un,
N = 2,3,4,‘6", 8, it is the usual depth.

IV Goncharov studied the structure of the fundamental group of Gm\ pn and made some parallels with the
topology of some modular variety for GL,, ,q, m > 1 notably. He also proved, for N = p > 5, that the following
morphism, given by the Ihara bracket, is not injective:

2 dim A? ga"lD gt = 7(‘;71)8(”73)
D m D .m dim ker 3 =1
: I — gr and 24
B /\9 1 91 gry 82 dim I'mj _ dimg’rzg‘; _ (pfligpffs)
: o) (p—5)(p=—2p—11)
dim gr™ g3 > iE br .

Note that gr29 g™ corresponds to the space generated by ¢™ (611’12 ) quotiented by dilogarithms ¢™ (f), modulo
torsion.

Vin particular, as soon as N # p°, 2p®, 4p°, p°¢” for p, ¢ odd prime since (Z,/mZ)* is cyclic & m = 2,4, p", 2p".
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even though no suitable basis has been found. Also, in these cases, Zhao conjectured
there were non standard relationd. Nevertheless, in the case of N power of 2 or power
of 3, there seems to be a candidate for a basis (B12) and some linearly independent
families were exhibited:

o (nl,---np_l,np

) with €, € uy primitive and (¢;);<, non primitive.
€1,--.,€p—1,€p

(3.12)
Indeed, when N is a power of 2 or 3, linearly independent subfamilies of [3.12] keeping
% resp. % generators in degree 1, and all generators in degree r > 1 are presented in
[79] (in a dual point of view of the one developed here).

Nota Bene: Some subfamilies of BI2] restricting to {¢; = 1,z; > 2} (here ¢, still
as above) can be easily proven (via the coaction, by recursion on depth) to be linearly
independent for any N; if N is a prime power, we can widen to x; > 1, and for N even
to €; € {£1}; nevertheless, these families are considerably small.

(ii) For N = p*, p prime greater than 5, there are missing periods: i.e. it is conjectured
that the motivic fundamental group 7 (P*\ {0, 0o, un}, 07) does not generate M7, .
For N = p > 5, it can already be seen in weight 2, depth 2. More precisely, (taking
the dual point of view of Goncharov in [46]), the following map is not surjective:

Dy: gryAs - A1 A . (1

(L) = @ 0)+ burgol®) — @) @ (atp) T (D= (&)

(3.13)

These missing periods were a motivation for instance to introduce Aomoto polyloga-
rithms (in [36] ).

Another idea, in order to reach these missing periods would be to use Galois descents:

coming from a category above, in order to arrive at the category underneath, in the

manner of Chapter 5. For instance, missing periods for N = p prime > 5, could be

reached via a Galois descent from the category MTr,, [, First, let point out that

this category has the same dimensions than M7, in degree > 1, and has one more

generator in degree 1, corresponding to ¢ ( glp ) Furthermore, for p prime, the descent

between H?? and H? is measured by DY, the component of D; associated to ¢* ( Elp ):

Di(3)=0

2p P
Let 3 € H°P, then 3 € H @{ D,(3) € HP

The situation is pictured by:

2420 — TanC -~ HMT(On[35]) (3.14)
ot
WP = KT = YMT(O5[3]) gy MT(02[3])
{(D¥-DiY,_, o
YMT(Op) 4 MT(0s)

INon standard relations are these which do not come from distribution, conjugation, and regularised double
shuffle relation, cf. [84]
T Aomoto polylogarithms generalize the previous iterated integrals, with notably differential forms such as
#ﬁl*ai; there is also a coaction acting on them.
M This category is equal to MT(OQP([%])) iff 2 is a primitive root modulo p. Some conditions on p necessary
or sufficient are known: this implies that p = 3,5+ mod 8; besides, if p = 3,11 mod 16, it is true, etc.
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Example, for N=5: A basis of grgAl corresponds to the logarithms of the roots of
umty &1, €2; here, € = & is a primitive fifth root of unity. Moreover, the image of

A = A1 ® Ap on ¢° (ga Eb) is (cf. BI3):
Vecg (1) @ (1),(2)®(2),(1) @ (2) + (2) @ (1))

We notice that one dimension is missing (3 instead of 4). Allowing the use of tenth

roots of unity, adding for instance here in depth 2, (¢ ( ) recovers the surjection

1,1
&lo-&3o
for Dy. Since we have at our disposal criterion to determine if a MMZV ,,, is in H?,
we could imagine constructing a base of #° from tenth roots of unity.

Nota Bene: More precisely, we have the following spaces, descents and dimensions:

HMT (910 % HFm (315)
HMT(On]5]) — yMT(0s[3]) — 4T dp = 2dp—1 + 3dp_2 = 3dp_1
Di‘+Df]
HMT(Os) _ /HMT(Ow) d;z — 2d;zfl + d;l72

REMARKS:

- Recently (in [15]), Broadhurst made some conjectures about multiple Landen values,
i.e. periods associated to the ring of integers of the real subfield of Q(&5), i.e. Z[p],
with p = 12—\/5, the golden ratid]. Methods presented through this thesis could be
transposed in such context.

- It also worth noticing that, for N = p > 5, modular forms obstruct the freeness of the
Lie algebra grog™, as in the case of N = 1 (cf. [21]). Indeed, for N = 1 one can
associate, to each cuspidal form of weight n, a relation between weight n double and
simple multiple zeta values, cf. [4I]. Notice that, on the contrary, for N = 2,3,4,8,
grog™ is free. This fascinating connection with modular forms still waits to be ex-
plored for cyclotomic MZV.

- In these cases where grog™ is not free, since we have to turn towards other basis (than
BI2), we may remember the Hoffman basis (of H}, cf [20]): {¢™ ({2,3}%)} weight n’
whose dimensions verify d,, = d,,—2 + d,—3. Looking at dimensions in Lemma 2.3.1,
two cases bring to mind a basis in the Hoffman’s way:

(i) For MT(Oy), since d,, = W(QN) dp_1 + dp_o, this suggests to look for a basis with
1 (with M choices of N'*! roots of unity) and 2 (1 choice of N*® roots of unity).

(1) For MT( [ D where p | N and p inert, since d, (M + 1) this sug-

gests a basis with only 1 above, and ( o) 4 1) choices of N*® roots of unity; in
particular if N = pF.

THe also looked at the case of the real subfield of Q(£7) in his latest article: [16]
" Goncharov proved that the subspace of cuspidal forms of weight 2 on the modular curve X; (p) (associated to
T'1(p)), of dimension % embeds into ker 3, for N = p > 11 which leaves another part of dimension prg.
e could hope also for an interpretation, in these cyclotomic cases, of exceptional generators and relations in
the Lie algebra, in the way of [2I] for N = 1.
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Example: For N = 2, the recursion relation for dimensions d,, = d,,—1 + d,,—2 of ’HTQL
suggests, in the Hoffman’s way, a basis composed of motivic Euler sums with only 1
and 2. For instance, the following are candidates conjectured to be a basis, supported
by numerical computations:

{Cm (nli,'::f?f,_l}np) ;i € {2,1}}, OR {C"‘ (15_11> (™(2)* s € {{1},{1,1}}*}.

However, there is not a nice suitable filtrationl corresponding to the motivic depth
which would allow a recursive proof .

In the second case, it appears that we could proceed as follows to show the linear independence of these
elements, where p equals 14 the number of 1 in the E, element: Prove that, for x € E,, , there exists a linear

combination cl(z) € Ey, >p such that z + cl(z) € ]-"FDHn, and then that {z + cl(z),xz € E, ,} is precisely a basis
for grp9 Hnp, considering, for 2r < n — p:

) )
Dary1:gr, Hn = gr,_ 1 Hn—2r—1.

A suitable filtration, whose level 0 would be the power of 7, level 1 would be linear combinations of ¢(odd)-¢(2)®,
etc.; as in proofs in §4.5.1.
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Chapter 4

MZV * and Euler f sums

Contents: After introducing motivic Euler %, and § sums, with some useful motivic relations
(antipodal and hybrid), the third section focuses on some specific Euler # sums, starting by
a broad subfamily of unramified elements (i.e. which are motivic MZV) and extracting
from it a new basis for !. The fourth section deals with the Hoffman star family, proving
it is a basis of H!, up to an analytic conjecture ([EZ4). In Appendix §4.7, some missing
coefficients in Lemma [£.4.3] although not needed for the proof of the Hoffman * Theorem
4T are discussed. The last section presents a conjectured motivic equality (£5.1]) which
turns each motivic MZV x into a motivic Euler § sums of the previous honorary family; in
particular, under this conjecture, the two previous bases are identical. The proofs here are
partly based on results of Annexe §A.1, which themselves use relations presented in §4.2.

4.1 Star, Sharp versions

Here are the different variants of motivic Euler sums (MES) used in this chapter, where a
+* resp. %4 in the notation below I(- - -) stands for a w4, resp. w44 in the iterated integralﬂ

Definition 4.1.1. Using the expression in terms of motivic iterated integrals (L3)), motivic
Euler sums are, with n; € Z*, €; 1= sign(n;):

Cr (n1,...,mp) == (—1)PI™ (O;Ok,el . ~ep,0|"1|_1, cee € ~~ep,0‘7”‘_1, e ,ep,()l"’"_l; 1) .

(4.1)

dt t+1)dt

With the differentials: wiy = wi1 —wp = e Wiy = 2w — wo = (t(t :F)l) 7
MES x are defined similarly than (@) with wy, (instead of wi1), wo and a wyi at the

beginning:
G (n, ..., mp) == (—1)PI™ (0; 0% €y - - - €ps olml=1 ey . €pk, olm2l=1 Ep*k, olnel=1. 1) .

MES xx similarly with only wi,,wo (including the first):

*%,m R m . Nk ni|—1 na|—1 np|—1.
M (0L ny) = (—1)PT (0,0,61---ep*,0| L e Ny L] ,1).

MES § with wiy,wo and a wt1 at the beginning:

™ (ny, L my) = 2(—1)PI™ (o;ok,el cep, ML e e 0l =L g plnel 1) .

IPossibly regularized with z23).
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MES 8t similarly with only wiy,wo (including the first):

Qﬁﬁ’m (n1,...,np) = (=1)PI™ (0; 0%, e

REMARKS:

ni|—1
"G;Dﬁao‘ 1 , €2

oo, 0m2l=t e glnel=1 1) .

- The Lie algebra of the fundamental group m¢%(P1\{0,1,00}) = 7#(Mo4) is gener-

ated by eg, e1, o with the only condition than ey 4+ €1 + €5 =

. If we keep ey and

€~ as generators, instead of the usual eg, e, it leads towards MMZV ** up to a sign,
instead of MMZV since —wg + w1 — w, = 0. We could also choose e; and e, as gen-
erators, which leads to another version of MMZV that has not been much studied yet.
These versions are equivalent since each one can be expressed as Q linear combination

of another one.

- By linearity and L-regularisation (2.28]), all these versions (, xx, § or fi) are Q-linear
combination of motivic Euler sums. Indeed, with ny the number of + among o:

¢™(na, ..., np)
C™(n1,...,np)
B (ng, ... )
™(na, ..., np)
™ (na, ..., np)
Cw7m(nl 7”}9)
¢™(na,...,np)
Qu’m(nl, ce M)

Zo:‘-}-’ or ,

ZO:‘JH or 7(_1)n+
ZO:‘-P or 2p7n
Zo:‘-‘,—’ or 7(71)n+2

Ep_l
Zof + or '

Z’H
Zo* + or, 2p7i7n+

™ (na, .., np)

Cw(nl,...,nz,)

C** ,m

[ma]

g, m
Clm\

(n2,...,np)

( -anp)

(™(nio---ony)
o omy)
(™(nio---ony)

-p Cﬂvm(nlo...onp)
C;;T\J,-mﬂni\ (ni-i-la T anp)
C\Tll\erH"i\ (niy1 0= 0my)
C\an +|"i\(ni+1’ o ’np)
Cla g (P10 0 1)

Notation: Beware, the ‘4’ here is on n; € Z* is a summation of absolute values while

signs are multiplied:

n1¢+7...¢

Examples: Expressing them as Q linear combinations of motivic Euler sums:

¢"™(2,1,3) —1"(0;

¢F™(2,1,3)

(M(2,T,3) + C™(3,3) + (M2,
—2I™(0; —1,

+ 'n; — sign(ny

—=1,0,=%,%,0,0;1)
4) +

0,—4,4,0,0;1)

ni)([nal + -

¢™(6)

+ [nil).

= 84‘“(2,T,3)+4<m(3
—I™(0; —,0, —
Cm.13) 4 G,
(m(2,1,3) + ¢ 3,
11¢™(6) +2¢™(3,3)

¢em(2,1,3)

3) +4¢"(2,

*,0,0;1)

+ 6™ (
30,

3)
3)
¢™(2,4) +

3)
2

4) +2¢™(6)

4) +6¢*™(1,5) — 10¢*™(6)

™(2,1,3) +3¢™(2,4) +6¢™(1,5) — 10¢™(6)

! For the case of motivic Euler sums, it is the Lie algebra generated by eg, e1,e_1, esc With the only condition

than eg + e1 + e_1 + ecx = 0; similarly for other roots of unity with e,.

the residue around i in H}z(P*\ {0, un,00})".

Note that e; corresponds to the class of

o get rid of the 0 in front of the MZV, as in the last example, we use the shuffle regularisation [2.28]
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Stuffle. One of the most famous relations between cyclotomic MZV, the stuffle relation,
coming from the multiplication of series, has been proven to be motivic i.e. true for cyclo-

tomic MMZV, which was a priori non obvious. 0 n particular:

Lemma 4.1.2.

m A1y...,0p m bl,...,bs o m Cly...
¢ (ala---aar>< <ﬁ1,---,ﬁs) Z ¢ <71,---

ci\_{( a; bs [ aitby
(52)=Ca) () o ()

order (a;),(b;) preserved

C*7m<a17"'7ar><*1m(blﬂ"'7b5)
Aly.e..,Qp ﬁla---aﬁs - .
(2)=Cao) () or (2

order (a;),(b;) preserved

r+s—m

WL > (-1

(cj' ): @it Sy aiprtbig g (b Sy aiqrtb g,
i ai Iy @ipiBy 4y By TIF_y @iq1Byr gy
k>0, order (a;),(b;) preserved

REMARKS:

,cm)
)

S apmn (S

/71)""/7777/

Cﬁ’m (Cl,...
iy

- In the depth graded, stuffle corresponds to shuffle the sequences (Z) and ( g)

- Other identities mixing the two versions could also be stated, such as

C*ym(al,...,ar><m<b1,...,bs) 3
Ay, Qp ﬁl;---aﬁs =k )+b
N[ a, b. =1 i+l i/
(s)=(a0)- (5 ) o ( T arpon, )

k>1,0order (a;),(b;) preserved

4.2 Relations in £

4.2.1 Antipode relation

Cly.-.yCm
e (
’yla-'-a’)/’m

In this part, we are interested in some Antipodal relations for motivic Euler sums in the
coalgebra L, i.e. modulo products. To explain quickly where they come from, let’s go back

to two combinatorial Hopf algebra structures.

First recall that if A is a graded connected bialgebra, there exists an unique antipode S

(leading to a Hopf algebra structure7 which is the graded map defined by:
S(x) = —x =Y S(zq) 2@),
where - is the product and using Sweedler notations for the coaction:
Al@)=1@z+2R1+ Y @z =A(@)+1or+re1
Hence, in the quotient A/A~q - Aso:
S(z) = —=.

(4.2)

IThe stuffle for these motivic iterated integrals can be deduced from works by Goncharov on mixed Hodge
structures, but was also proved in a direct way by G. Racinet, in his thesis, or I. Souderes in [75] via blow-ups.

Remark that shuffle relation, coming from the iterated integral representation is clearly motivic.

1Tt comes from the usual required relation for the antipode in a Hopf algebra, but because it is graded and

connected, we can apply the formula recursively to construct it, in an unique way.
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4.2.1.1 The W Hopf algebra

Let X = {a1, -+ ,a,} an alphabet and A, := Q(X*) the Q-vector space generated by
words on X, i.e. non commutative polynomials in a;. It is easy to see that A, is a Hopf
algebra with the L shuffle product, the deconcatenation coproduct Ap and antipode S\;:

n
AD(ail~~-ain):2ail~~-aik®aik+l--~ain. (43)
k=0

Suw(ai -+ a;,) = (=1)"a;, -+ a;. (4.4)

A, is even a connected graded Hopf algebra, called the shuffle Hopf algebra; the grading
coming from the degree of polynomial. By the equivalence of category between Q-Hopf
algebra and Q-Affine Group Scheme, it corresponds to:

G = SpecAy, : R — Hom(Q(X), R) = {S € R{{a;)) | A,S = S®S,e(S) =1},  (4.5)
where A, is the coproduct dual to the product Lu:
Am(ail ---ain) = (1®ai1 + ai, ®1)---(1®ain + a;, ®1)-

Let restrict now to X = {0, un}; our main interest in this Chapter is N = 2, but it can be
extended to other roots of unity. The shuffle relation for motivic iterated integral relative
to un:

I™(0;-;1) is a morphism of Hopf algebra from A, to (R, X) : (4.6)

I™(0;w; HI™(0;w';1) = I™(0; w ww'; 1) with w, w” words in X.

Lemma 4.2.1 (Antipode ). In the coalgebra L, with w the weight, e standing for
MMZV,, or +x (N =2) resp. fi-version (N =2):

ol ni,...,Np o w41 el Np—1,y...,M1,N L
ooy < =(-1) -1 | -1 1 where € 1= €1 - ... €p.

€1,.--,€p €p1r---1€1 4 €

This formula stated for any N is slightly simpler in the case N = 1,2 since n; € Z*:

C:lfl (N1y...,np) = (—1)”“("7;;‘71 (Np—1...,n1,sign(ny - np)n)

ANTIPODE LU
IY0; X ¢) = (=1)*I'(e; X;0) = (—1)TLIY(0; X ; ¢)
(4.7)

Here X is any word in 0,+1 or 0, +x or 0,+4, and X denotes the reversed word.
Proof. For motivic iterated integrals, as said above:
Su(I™0;a1,...,a,;1)) = (=1)"I™(0; ap,...,a1;1),

which, in terms of the MMZV ,,, notation is:

ol Ny, ..., Nyp o w el Np—1,...,N1,N L
Su (Cnl < =(-D"CG-1 | =y 3 where e := €1 ... - €p.
€155 €p €pt1r--es € H€

Then, if we look at the antipode recursive formula ([£2]) in the coalgebra £, for a; € {0, un}:
Su(I'05a1,...,an;1)) = =105 a1, ..., an;1).

This leads to the lemma above. The LU-antipode relation can also be seen at the level of
iterated integrals as the path composition modulo products followed by a reverse of path. [
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4.2.1.2 The *x Hopf algebra

Let Y ={+ ,y—n,---,¥-1,Y1, " ,Yn, -+t an infinite alphabet and A, := Q(Y*) the non
commutative polynomials in y; with rational coefficients, with yo = 1 the empty word.
Similarly, it is a graded connected Hopf algebra called the stuffle Hopf algebra, with the
stuffle * product and the following coproduct

AD:k(ynlynp)zzynlynZ ®yni+1a---aynpa niEZ*- (48)

Nota Bene: Remark that here we restricted to Euler sums, N = 2, but it could be extended
for other roots of unity, for which stuffle relation has been stated in §4.1.
The completed dual is the Hopf algebra of series Q ((Y')) with the coproduct:

In|

A* (yn) = Z Ye k ®y62(n—k)'

k=0
sgn(n)=cqeg

Now, let introduce the notations{

* .
(Yny *Yn,)" 1= Ynio '+ i -1 " Yna 40y U Yng e
1 » io ip—1 i ijp1—1 i i1
1=ig<iq<-<if_1<ipi1=p
k>0

f._ k+1
(Yny - ynp) = 2 Ynig ++nig—1 "7 Yng 0y
1=ig<ip<---<ip_1<ipy1=p
k>0

e P
11 Yniy + T g0

where n; € Z* and the operation ‘ + ’ indicates that signs are multiplied whereas absolute
values are summed. It is straightforward to check that:

Ap.(w*) = (Ap.(w))*, and Ap.(w') = (Ap.(w))*. (4.9)
As said above, the relation stuffle is motivic:

¢™(-) is a morphism of Hopf algebra from A, to (R, X).
Lemma 4.2.2 (Antipode x). In the coalgebra L, with n; € Z*

C:zfl(nla cee 7”?) = (71)p+1<rt£1(npa R 7”1)'

Cﬁ’il(nl, Co ) = (—1)p+1dl’£1(np, ceeyny).
Proof. By recursion, using the formula ([£2), and the following identity (left to the reader):

p—1

Z(_l)i(ym T 'yn1)* * (yn¢+1 T ynp) = _(_1)p(ynp T 'yn1)*’
=0

we deduce the antipode S,:

SeWny = Yn,) = (=1 (Yn,, - yni)"-
Similarly:

n—1

Sy Yn)D) = =D Sl Wy = Yn))) * Wi -+ Y, )

=0

IFor the LW algebra, we had to use the notation in terms of iterated integrals, with 0, +1, but for the * stuffle
relation, it is more natural with the Euler sums notation, which corresponds to yn,,n; € Z.

"Here * resp. f refers naturally to the Euler % resp. #, sums, as we see in the next lemma. Beware, it is not a *
homomorphism.
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= i(_l)z(ynw T ynl)ﬂ * (yni+1 T ynp)ﬁ = (_1)p(ynp T ynl)ﬂ
=0

Then, we deduce the lemma, since (™(-) is a morphism of Hopf algebra. Moreover, the
formula ([@.2)) in the coalgebra L gives that:

4.2.2 Hybrid relation in £

In this part, we look at a new relation called hybrid relation between motivic Euler sums in
the coalgebra L, i.e. modulo products, which comes from the motivic version of the octagon
relation (for N > 1, cf. [?SJ)E

én
°
00
0 odchi m
° °
Figure 4.2: Octagon relation, N > 1:
2imeq 2iTe 2ime 2ime
2imey _1 2imeco 2imep _1 2imeq
D(eo,e1,...,en)e" N P(eoc,€1,€n,...,62) e N P(ecc,€n,...,e1)e N P(eg,en,€1,...,6n—1) € N
=1

This relation is motivic, and hence valid for the motivic Drinfeld associator ®™ (239, re-
placing 2im by the Lefschetz motivic period L™.

Let focus on the case N = 2 and recall that the space of motivic periods of MT (Z[31])
decomposes as (cf. 2.I0):

H? is Foo invariant

m 2 27m
= L 1 : 1-1 1 ’
H DH o WRETE 92 1m g Foo anti-invariant

T (zd) (4.10)

For the motivic Drinfeld associator, seeing the path in the Riemann sphere, it becomes:

o3

0 1
°

Figure 4.1: For N = 1, Hexagon relation: ™0 ®(eq, €9)e’ ™ ®(e1, eoo)e' ™1 d(eg, e1) = 1.
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SIS SN0

Figure 4.3: Octagon relation, N = 2 with eg +e1 +e_1 + €0c =0:

Lm

1 LMeoo

1 LMeq L™Meq
e 2 P"(eg,e—1,e1) e 2 P"(eg,e1,e—1)e 2 DM (eoo,€1,6-1) € 2 DP"(eoo,e—1,€1) = 1.

Let X = P\ {0,£1,00}. The action of the real Frobenius Foo on X(C) is induced
by complex conjugation. The real Frobenius acts on the Betti realization w5 (X ((C))E, and
induces an involution on motivic periods, compatible with the Galois action:

Foo : Pharaiy = Phariaiy:
The Lefschetz motivic period L™ is anti-invariant by Fuo:

Fool™ = L™

)

whereas terms corresponding to real paths in Figure 3] such as Drinfeld associator terms,
are obviously invariant by F.

The linearized Foo-anti-invariant part of this octagon relation leads to the following hy-
brid relation.

Theorem 4.2.3. In the coalgebra L£?, with n; € Z*, w the weight:
Cllc (nO’nh te np)+c\lng|+k (nl’ s ’np) = (_1)w+1 (C}lc (npa oo anlano) + Cllc+|np| (np—la oo anlano)) P

Equivalently, in terms of motivic iterated integrals, for X any word in {0, £1}, with X the
reversed word, we obtain both:

105 0%, %, X;1) = I'(0; X, %, 0% 1) = (1)1 1'(0; 0%, %, X 1),
TY0; 0%, —%, X:1) = I'(0; — X, —*,0%:1) = (=1)“F11'(0; 0%, —x, — X; 1)

The proof is given below, firstly for k& = 0, using octagon relation (Figure [£3]). The
generalization for any k > 0 is deduced directly from the shuffle regularization (228]).

REMARKS:

- This theorem implies notably the famous depth-drop phenomena when weight and
depth have not the same parity (cf. Corollary [£.2.4).

- Equivalently, this statement is true for X any word in {0, =x}. Recall that ([229), by
linearity:
I k) =T £, ) = I™(...,0,...).

- The point of view adopted by Francis Brown in [21], and its use of commutative poly-
nomials (also seen in Ecalle work) can be applied in the coalgebra £ and leads to a new
proof of Theorem in the case of MMZV, i.e. N = 1, sketched in Appendix A.4;
it uses the stuffle relation and the antipode shuffle. Unfortunately, generalization for
motivic Euler sums of this proof is not clear, because of this commutative polynomial
setting.

Since Antipode x relation expresses ¢! _;(n1,...,n,) + (=1)P¢}_1(np,...,n1) in terms of
smaller depth (cf. Lemma 4.2.2), when weight and depth have not the same parity, it turns
out that a (motivic) Euler sum can be expressed by smaller depth

I'It is compatible with the groupoid structure of 7rB, and the local monodromy.
IErik Panzer recently found a new proof of this depth drop result for MZV at roots of unity, which appear as
a special case of some functional equations of polylogarithms in several variables.
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Corollary 4.2.4. If w+ p odd, a motivic Euler sum in L is reducible in smaller depth:
2¢, 1 (n1,. .. np)

G112 1)+ (CDPG 1 (o) Y (SD)PERG (o oma).

o=+ or,

at least one +

Proof of Theorem 23] First, the octagon relation (Figure 3] is equivalent to:

Lemma 4.2.5. In P;T(Z[é]) ({eo,€1,e-1)), with eg + e1 +e_1 + ex = 0:

LMeq LMe_q LMeoo L™

d™(ep,e1,e—1)e 2 DM(e_1,e0,ex0)e 2 PM(enp,e-1,€1)e 2 DPM(e1,en0,€p)e e

=1,
(4.11)

Hence, the linearized octagon relation is:
—eo®' (1, €0, o)+ (e_1, €0, eoo)eot(eote—1)P (€nns e—1, 1) =P (€no, 61, 1) (e0+e—1)
—e1®'(e1, o0, €0) + P'(e1, €00, €0)er = 0. (4.12)
Proof. - Let’s first remark that:
®m(€0; €1, 671) = ®m(617 €0, 600)71-

Indeed, the coefficient in the series @™ (e, €9, €0 ) of a word eg®e,, eq' - - - ey,.€5”, where
n; € {£1} is (cf. §4.6):

a a a . —x if P = 1
I™ (03 (w1 — w—1)* (—wp, ) (w1 —w—1)* -+ (—wp, ) (W1 —w-1)"; 1) with p; = { 1 if Z -1

Let introduce the following homography ¢, = ¢,o—1 (cf. Annexe (A3)):

—Wy Wy
—W1 = W_x
gl 1ot
¢T<7— TU.tHl—H. W_1 — W1 = —Wwo

W_1 = —wW_1
Wy = —W1

If we apply ¢, to the motivic iterated integral above, it gives: I™ (1; wy®wy, wi' - - - wy,wi™; 0).
Hence, summing over words w in eg, e1,€e_1:

D™ (e1, €0, €00) = ZI‘“(l;w;O)w
Therefore:

D™ (eg, e1,e—1)P™(e1, €0, €00) = Z I™(0;u; 1)I™(1;u;0)w = 1.

w,W=uv

We used the composition formula for iterated integral to conclude, since for w non
empty, > o I™(0;u; 1)I™(1;4;0) = I™(0; w; 0) = 0.
Similarly:

®™(eg,e—1,€1) = P™(e—1,€0,€00) ',  and O™ (ewo,e1,e-1) = P™(e1,€00,€0) L

The identity E.IT] follows from [£.3]
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- Let consider both paths on the Riemann sphere v and 7, its conjugate: U

1 00 -1 0 v
° ° ° °

NI N A NN

Y
Applying (id — F) to the octagon identity ZITM leads to:

Lm LMeoo LMey

L™ _
D™ (eg, e1,e_1)€ 2€0<I>m(e_1,eo,eoo)e glq)m(eoo,e_l,el)e = dM(e1,en0,€0)€ 2

. CLMe LMe_y n _L™eoo _LTey
—®M(eg,e1,e—1)e” 2 DM(e_q,ep,e00)e” 2 DPM(eso,e-1,e1)e” 2 DT(e1,en,e9)e” 2 =0.
(4.13)
By (EI0), the left side of (#I3)), being anti-invariant by Fo, lies in H2-L™ ({(eg, e1,e_1)).
Consequently, we can divide it by L™ and consider its projection 7% in the coalgebra
L {{eg, e1,e_1)), which gives firstly:
LM, LMe_ 1 oLm LM LM Lm e_1 Lm LMe
@‘(60,61,671)7#: <(Lm)1 [e e T e Toe Z o—e Zoe T e Toe 2.
_ LMeg LMe_1 LMeg LMey _LMeq _LMe 1 LMey, _ LT
47t ((L‘“) ez dl(e_1,e0,e00)e 2 € 2 e 2 —e 2 Dle_j,ep,ea0)e” 2 e 2 e
_ [ Lmey LMe_y LMeoe LMey CLMeq  LMe_g CLMeso Lm
+7~ ((L‘“) e em 2 d'ex,e r,e1)e 2 e 2 —e 2 e 2 ®ex,e_1,e1)e” 2 e
_ [ Lmeq LMe_y pme LMeq CLMeq  LMe_3 LMey _LMey
47~ <(Lm) e em = e 2 ®leg,ennren)e 2 —e 2 e 2 e 2 ®er, e e0)e” 2

The first line is zero (since ey + €1 + e_1 + €5, = 0) whereas each other line will
contribute by two terms, in order to give (ZI2)). Indeed, the projection 7°(z), when
seeing z as a polynomial (with only even powers) in L™, only keep the constant term;
hence, for each term, only one of the exponentials above e contributes by its linear
term i.e. x, while the others contribute simply by 1. For instance, if we examine
carefully the second line of (@TI4]), we get:

= ep®'(e_1,€0,e00) + P'(e—1, €0, €00) (€1 + €00 + €1)
—(—eg)®'(e_1,€0,e00) — P (e_1,€0,00)(—€_1 — €00 — €1) .
= 2 [60(1)[(6715605600) - (I)[(e*heo;eoo)eo

Similarly, the third line of [@I4]) is equal to (eg+e—1)®' (eno, €—1,€1)—P' (€00, €—1, €1)(€0+
e_1) and the last line is equal to —e1®'(e1, €oo, €9) + @' (€1, €00, €0)e1. Therefore, [@I4)
is equivalent to ([I2), as claimed.

[l

This linearized octagon relation[4.12] while looking at the coefficient of a specific word in
{eo,e1,e_1}, provides an identity between some (**'(e) and ('(e) in the coalgebra £. The
different identities obtained in this way are detailed in the §4.6. In the following proof of
Theorem 23] two of those identities are used.

IPath ~ corresponds to the cycle o, 1 = oo +— —1 + 0 +— 1 (cf. in Annexe[A3). Beware, in the figure, the
position of both path is not completely accurate in order to distinguish them.

"The identity BT corresponds to the path v whereas applying Foo to the path ~ corresponds to the path 7
represented.
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Proof of Theorem 423 The identity with MMZV,, is equivalent to, in terms of motivic
iterated integralsE

I'(0;0%,%, X;1) = I'(0; X, %,0%;1) and I'(0;0%, —, X;1) = I'(0; = X, —%,0%; 1).

Furthermore, by shuffle regularization formula (2.28)), spreading the first 0 further inside the
iterated integrals, the identity I'(0; 0% %, X;1) = (—=1)“*+11'(0; 0%, *, )~(; 1) boils down to the
case k = 0.

The notations are as usual: ¢; = sign(n;), €; = M:Ni+1,6p = Mp, N = €;(a; + 1).

(1) In @I2), if we look at the coefficient of a specific word in {eg,e1,e_1} ending and
beginning with e_; (as in §4.6), only two terms contribute, i.e.:

6_1@K(€OO,€_1,€1) — @‘(eoo,e_l,el)e_l (4.15)

The coefficient of ef°ey, €5 - - - e €q” in ®™ (eno, €—1, €1) is (—=1)" PN (ny, -+, np_1, —n,) M

’nofl

. . . a .
Hence, the coefficient in {@.I5) (as in (£I2) of the word e_1eg°ey, - - - €y, ep"e—1 is:

P
)L ) _ ; —
Cmo‘il(nl, s, =g, 1) = 7 (ng, i, -+ npo1, —np) = 0, WlthHEi =1.
=0

In terms of iterated integrals, reversing the first one with Antipode LU, it is:
I'(0; =X, %;1) = I'(0;%, —X; 1), with X := 0™ty 0™~ ...y, 0" L,

Therefore, since X can be any word in {0,+x}, by linearity this is also true for any
word X in {0, £1}: I'(0; X, %;1) = I' (0; %, X; 1).

(i) Now, let look at the coefficient of a specific word in {eg, e1,e_1} beginning by e;, and
ending by e_;. Only two terms in the left side of (£I2) contribute, i.e.:

761(1)[(617600760) f¢[(eoo,e,1,el)e,1 (4.16)

. . . . a .
The coefficient in this expression of the word eleg"em ceeep,eple 1 s

P
Cltz*(;l[—l(nl’ e mp, —1) = Y ng,ny, oy my) =0, WithHei =-1.
i=0

In terms of iterated integrals, reversing the first one with Antipode L, it is:
I' (0; =X, —%;1) =T (0; —%, X;1).

Therefore, since X can be any word in {0, £*}, by linearity this is also true for any
word X in {0, £1}.

O
For Euler xx sums.
Corollary 4.2.6. In the coalgebra L2, with n; € Z*, n > 1:
G (nayemp) = ()G (g, ). (4.17)
Motivic Euler xx sums of depth p in L form a dihedral group of order p+ 1:

(SHIFT) Cf:l’il(nl, ce ) = Ql*;’l[_l(ng, ..y Mp,n)  where sgn(n) = Hsgn(ni).

Indeed, if Hf:o e; = 1, it corresponds to the first case, whereas if Hf:o €;, we need the second case.
"'The expressions of those associators are more detailed in the proof of Lemma E 611
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Indeed, these two identities lead to a dihedral group structure of order p+ 1: (@I7), respec-
tively SHIFT, correspond to the action of a reflection resp. of a cycle of order p on motivic
Euler xx sums of depth p in L.

Proof. Writing ¢**™ as a sum of Euler sums:

p
Gty 1) = 3 st ey (R0 0m) = S ( L Ar A Y ay (Aes AT)) :

=1 T
A

where the last sum is over (4;); such that each A; is a non empty “sum” of consecutive
(n;)'s, preserving the order; the absolute value being summed whereas the sign of the n;
involved are multiplied; moreover, | Ay |>| ny | resp. | A, |>| n, |.

Using Theorem ([£.23]) in the coalgebra £, the previous equality turns into:

(—1)w+t Z ( L (A, A+ (7‘1_1+|AT|(AT,1, . ,Al)) = (=DM M (ny, ..., ).

The identity SHIFT is obtained as the composition of Antipode L1 ([£1) and the first identity
of the corollary. O

For Euler #ff sums.

Corollary 4.2.7. In the coalgebra L, for n € N, n; € Z*, €; := sgn(n;):

REVERSE
Cﬁﬂ,[(n n )+ (71>wa’[(n n ): 0 z'fw—i—p even .
T WU M= iy, ny) i w e p odd
SHIFT fﬁ_"l(nl, ceMp) = <|u7§71[|71(n2’ My €1-c-€pen), for w+ p even.

Cur  (Hl(ny,--- M) = | (N1, ynp_1), forw+p odd.

"+|"p|
B — Ay i w+p odd
MiINus ¢, (nq, ) = B (g, =1, €p(| mp | —1)), for i < min(n, | ny |) °
SIGN  (Bl(ng, - np_1,mp) = B ng, o np_1, —ny), for w+p odd.

This identity, in terms of motivic iterated integral implies that for X any sequence of
0, 1, such that w + p odd:
I'(-1;X;1) = 0.

REMARK: In the coaction of Euler sums, terms with 1 can appealﬁ, which are clearly not
motivic multiple zeta values. The left side corresponding to such a term in the coaction
part Do, 11(-) is I'(1; X; —1), X odd weight with 0, +f. It is worth underlying that, for the
# family with {€ven, odd}, these terms disappear by SIGN, since by constraint on parity,
X will always be of even depth for such a cut. This § family is then more suitable for an
unramified criterion, cf. §4.3.

Proof. These are consequences of the hybrid relation in Theorem [£.2.3

- REVERSE: Writing (! as a sum of Euler sums:

C}gmm(nlv e 7”?) + (*1)wdiﬁ7m(npa e ,TLl)

IMore precisely, using the notations of Lemma [A11] a 1 can appear in terms of the type T. _. for a cut
between ¢ and —e.
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=30 jopmitlene g, (R0 o) + (_1)w2i—n+€£1+np+m+ni+l(ni o---omy)

=3 22N A A) 201 (A A G, (Ao Ag) (<1 (A

where the sum is over (A;) such that each A; is a non empty “sum” of consecutive
(n;)'s, preserving the order; i.e. absolute values of n; are summed whereas signs are
multiplied; moreover, A; resp. A, are no less than n; resp. np.

By Theorem .2.3] the previous equality turns into, in L:

D27 (G AL, Ar) + (D) G(Ar - , Ar))

=27 (o) + (21)7CE (g 1)) =270 () (1 (1))

By the Antipode * relation applied to ¢®', it implies the result stated, splitting the
cases w + p even and w + p odd.

- SHIFT: Obtained when combining REVERSE and ANTIPODE LI, when w + p even.

- CuTt: Reverse in the case w + p odd implies:
)l , —
giﬁ-‘rlnﬂ(n% ) F (_1)w§£ﬂ [(npﬂ omp) =0,

Which, reversing the variables, gives the Cut rule.

- MiNus follows from CUT since, by CUT both sides are equal to Ciu—’lz'+|np| (N1, np—1).

- In Cur, the sign of n, does not matter, hence, using CUT in both directions, with
different signs leads to SIGN:

— N = )
G ) = G (s mea) = G ).

Note that, translating in terms of iterated integrals, it leads to, for X any sequence of
0, +f, with w + p odd:
I'0; X;1) = 1'(0; —X; 1),

where —X is obtained from X after exchanging # and —f. Moreover, I'(0; —X;1) =
I'(0; X; —1) = —I'(—1; X;0). Hence, we obtain, using the composition rule of iterated
integrals modulo product:

I'0; X5 1) + I'(—1; X;0) = I'(—-1; X;1) =0,

4.3 Euler § sums

Let’s consider more precisely the following family, appearing in Conjecture 511 ith only
positive odd and negative even integers for arguments:

¢*™ ({evenm, odd }*).
In the iterated integral, this condition means that we see only the following sequences:
€0%%, or €0%tl —¢  with €€ {£t}.

Theorem 4.3.1. The motivic Euler sums ¢*™({even , odd }*) are motivic geometrict pe-
riods of MT(Z).

Hence, they are Q linear combinations of motivic multiple zeta values.

The proof, in §4.3.2, relies mainly upon the stability under the coaction of this family.
This motivic family is even a generating family of motivic MZV:
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Theorem 4.3.2. The following family is a basis of H':
B = {("™(2a0 + 1,2a1 +3,- -+ ,2ap—1 +3,2a, + 2) , a; > 0}.

First, it is worth noticing that this subfamily is also stable under the coaction.

REMARK: It is conjecturally the same family as the Hoffman star family ¢*(2%°,3,--- ,3,2%),

by Conjecture ([@51]).

For that purpose, we use the increasing depth filtration F® on H? such that (cf. §2.4.3):
]-"}? H? is generated by Euler sums of depth smaller than p.

Note that it is not a grading, but we define the associated graded as the quotient gr?,3 =
f? / .7-“1?_1. The vector space ]-"1? ‘H is stable under the action of G. The linear independence
of this f family is proved below thanks to a recursion on the depth and on the weight, using
the injectivity of a map @ where d came out of the depth and weight-graded part of the
coaction A.

4.3.1 Depth graded Coaction

In Chapter 2, we defined the depth graded derivations D,.;, (cf. Z43), and D} ([Z53) after
the projection on the right side, using depth 1 results:

911 Lor1 = QC'(2r 4 1).
Let look at the following maps, whose injectivity is fundamental to the Theorem [£.3.2
D;rl-i-l,p : ng@Hn — grp@len—Qr—l-

.7 -1
a<n,p = @2r+1<nD2T+17p-
Their explicit expression is:

Lemma 4.3.3. I

Dy, (CP™(2a0 +1,2a1 + 3, -+, 2a,1 + 3,2a, + 2)) =

22T+1 2 -
5r:aoﬁ <2T n 2> Ctiﬂn(Qal +3,- - ,2&p T 2)
22r+1 2r 579
- Bm. 2a,_1 4 3,20+ 3, 2a; 3,2 2
+O<i<p; o 1_22T<2ai+1+2>< ( , 20 1+ ) o+ ) a+2+ ) ) ap+ )
r;(;;+14:ai+1:a1
22r+1 2r Sy ———
+ Z W(?a'_1 +2>Cﬂ,m(“. :20i—2 + 3,200+ 3, 20511 + 3, -+, 2ap +2)

1<i<p—1, a<a;
r=a;_jta;tl-o

2 _
+ (DECONCATENATION) > 2(2 : 1)&7‘“(- 20y 1 + 3,20+ 2). (4.18)
Gp

a<ap
r=ap_i+ap+l-a

"To be accurate, the term i = 0 in the first sum has to be understood as:

227 +1 2r fom S
w(2al+2)c (2a +3,2a2 + 3, -+, 2a, + 2).
Meanwhile the terms 4 = 1, resp. ¢ = p in the second sum have to be understood as:
221 2r S 22+t 2r -
#,m . gm
1 (gag 4 o) 6" "G B 202 130 B0y ¥ D) vesn g (o, )G 22 43,20 4 2).
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Proof. Looking at the Annexe A.1 expression for Da,1, we obtain for Da, 1, keeping only
the cuts of depth one (removing exactly one non zero element):

Dayi1,p¢P™ (200 +1,2a1 43, -, 2a, 1 + 3,20, + 2) =
Z 2€£ai72a(2ai+1 + 3) & gﬁ,m(. o ,2@1'_1 + 3; 200 + 3? 2ai+2 + 3; Tty 20’17 + 2)

i,a<a;
r=a;y1ta;+1-a

+ Z 24%%72&(2@1'—1 +3) ®Cﬁ7m( : ,2@1'_2 +332a+352ai+1 +Sa . 52ap+2)

i,a<la;
r=a;_j+ta;+l—a

+ Yo 2, 20410 F2)©T(-- 201 43,20 F 2).

oy ditia
To lighten the result, some cases at the borders (i = 0, or i = p) have been included in the
sum, being fundamentally similar (despite some index problems). These are clarified in the
previous footnote!.
In particular, with notations of the Lemma [AT1] Ty terms can be neglected as they
decrease the depth by at least 2; same for the Ty and 7, for cuts between € and +e. To
obtain the lemma, it remains to check the coefficient of ¢'(2r + 1) for each term in the left
side thanks to the known identities:

_227‘
22r — 1

2r

[ _
C@2r+1)= w1

@ FI)  and <;T+1a<a>=<—1>a+l( )<‘<2r+1>.

4.3.2 Proofs of Theorem 4.3.1 and 4.3.2
Proof of Theorem 4.3.1. By Corollary 5.1.2, we can prove it in two steps:

- First, checking that D1 (-) = 0 for this family, which is rather obvious by Lemma (.28
since there is no sequence of the type {0, ¢, —€} or {¢, —¢,0} in the iterated integral.

- Secondly, we can use a recursion on weight to prove that Day,41(-), for r > 0, are
unramified. Consequently, using recursion, this follows from the following statement:

The family ¢#™ ({even, +odd }*) is stable under Dg, .

This is proved in Lemma A.1.3, using the relations of §4.2 in order to simplify the
unstable cuts, i.e. the cuts where a sequence of type €,02%*! € or €,0%?, —e appears;
indeed, these cuts give rise to a even or to a odd in the § Euler sum.

One fundamental observation about this family, used in Lemma A.1.3 is: for a subsequence
of odd length from the iterated integral, because of these patterns of €,0%¢, ¢, or €, 0%t —¢,
we can put in relation the depth p, the weight w and s the number of sign changes among
the +4:

w=p—s (mod 2).

It means that if we have a cut €, - - - €541 of odd weight, then:
EITHER: Depth p is odd, s even, g = €p41, OR: Depth p is even, s odd, €g = —€p41.

O

Proof of Theorem 4.3.2. By a cardinality argument, it is sufficient to prove the linear
independence of the family, which is based on the injectivity of O« . Let us define: o

ISub—Q) vector space of H' by previous Theorem.
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Hodd%: Q-vector space generated by ¢#™(2ag + 1,2a1 + 3, ,2a,_1 + 3,2a, + 2).

The first thing to remark is that 7% is stable under these derivations, by the expression
obtained in Lemma A.1.4.:

Doyt (HO) C Lopir @ HOYS .,

Now, let consider the restriction on H°4 of d_,, , and prove:

. 3 dd D odd . .. .
Dcnyp t gry Hy fo @2r+1<n97"p,17-1n,2ﬁ%1 is bijective.

The formula ([I])]) gives the explicit expression of this map. Let us prove more precisely:

MSP the matrix of d,, , on {Cﬁ’m@ao +1,2a1 4+ 3, ,2ap—1 + 3,2a, + 2)} in terms of
{¢#™(2bo + 1,201 + 3, -+ ,2b,_2 + 3,2b,_1 + 2)} is invertible.

Nota Bene: The matrix Mf;?p is well (uniquely) defined provided that the ¢*™ of the second
line are linearly independent. So first, we have to consider the formal matrix associated Mfyp
defined explicitly (combinatorially) by the formula for the derivations given, and prove Mﬁp
is invertible. Afterwards, we could state that Mfip is well defined and invertible too since
equal to Mfyp.

Proof. The invertibility comes from the fact that the (strictly) smallest terms 2-adically in
(#I]) are the deconcatenation ones, which is an injective operation. More precisely, let
Mn@ be the matrix M, , where we have multiplied each line corresponding to D41 by
(275%). Then, order elements on both sides by lexicographical order on (ay, ..., ag), resp.
(rybp—1,...,bo), such that the diagonal corresponds to r = a, +1 and b; = a, for i < p. The
2 -adic valuation of all the terms in ([@IR) (once divided by 227) is at least 1, except for the
deconcatenation terms since:

—2r+1 2r 2r
vy | 2 <0< vy < 2r—1.
2a, +1 2a, +1

Then, modulo 2, only the deconcatenation terms remains, so the matrix pr is triangular
with 1 on the diagonal. This implies that det(M,?,p) =1 (mod 2), and in particular is non

zero: the matrix M,?p is invertible, and so does M> . g

This allows us to complete the proof since it implies:

The elements of B are linearly independent.

Proof. First, let prove the linear independence of this family of the same depth and weight,
by recursion on p. For depth 0, this is obvious since (™(2n) is a rational multiple of 72",
Assuming by recursion on the depth that the elements of weight n and depth p — 1 are
linearly independent, since Mfip is invertible, this means both that the ¢#™(2ao + 1, 2a; +
3, ,2ap_1 + 3,2a, + 2) of weight n are linearly independent and that 0« , is bijective,
as announced before.

The last step is just to realize that the bijectivity of J<,; also implies that elements of
different depths are also linearly independent. The proof could be done by contradiction:
by applying O« on a linear combination where p is the maximal depth appearing, we
arrive at an equality between same level elements. O

O
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4.4 Hoffman

Theorem 4.4.1. If the analytic conjecture @A) holds, then the motivic Hoffman * family
{¢*™({2,3}*)} is a basis of H1, the space of MMZV.

For that purpose, we define an increasing filtration FZ on H??3, called level, such that:
FEH?3 is spanned by ¢*™(2%,3, -+ ,3,2%), with less than "I’ 3. (4.19)

It corresponds to the motivic depth for this family, as we see through the proof below and
the coaction calculus.

Sketch. The vector space FLH?3 is stable under the action of G (@ZI). The linear in-
dependence of the Hoffman * family is proved below (§4.4.2) thanks to a recursion on the
level and on the weight, using the injectivity of a map 0% where 0% came out of the level
and weight-graded part of the coaction A (cf. 4.4.2). The injectivity is proved via 2-adic
properties of some coefficients conjectured in [£.4.4

Indeed, when computing the level graded coaction (cf. Lemma 4.4.2) on the Hoffman x
elements, looking at the left side, some elements appear, such as (**™(29, 3, 2b) but also
¢**™(2%,3,2%). These are not always of depth 1 as we could expect,& but at least are
abelians: product of motivic simple zeta values, as proved in Lemma

To prove the linear independence of Hoffman x elements, we will then need to know some
coefficients appearing in LemmaZ.Z.3] (or at least the 2-adic valuation) of ¢(weight) for each
of these terms, conjectured in [f£4.4] which is the only missing part of the proof, and can be
solved at the analytic level.

4.4.1 Level graded coaction
Let use the following form for a MMZV*, gathering the 2:
C*,m(zaoacla"' acpazap)a CiEN*aci#Q-

This writing is suitable for the Galois action (and coaction) calculus, since by the antipode
relations (§4.2), much of the cuts from a 2 to a 2 get simplified (cf. Annexe §A.1).
For the Hoffman family, with only 2 and 3, the expression obtained is{

D2r+1C*’m(2a°, 3,---.3, 2%)
( : 73,21+ai+§aj737.“)
( : 73,21+aj+§a,-,37.“)
C*’m(' -3, 2<ai73’ 2%i+1 3 .. )
(- 73,2%‘—173,2<%,37...)

+ C;*%[(2Qi+173,... 73,2§a1)
- C;*»[(zgai,:}’.“ 7372%.71)
- 52T+1Z + C;*,[(2ai+173a"' 72aj73)+C;*7[<2<aia37"' ’211]"3))
i<j
— C;**[(2‘1j+173, e 3) + Cl**’[(2<aj73, . 73))

+ 52r+1 (C*,[(2a073,,,, ’3,2§a,~) 7<**’[(2Sai737"' 73,2a0))
+ 62’r+1 C**,[(zﬁa]’ ) 3a e a37 2(1;,)

*1

(259%.3,...)
(-++,3, 2§aj).
(4.20)

m
m

)

2o ® ® ®®

¢
C*

In particular, the coaction on the Hoffman x elements is stable.
By the previous expression ([£20)), we see that each cut (of odd length) removes at least one
3. It means that the level filtration is stable under the action of G and:

Dopiy (FEH?®) C Lopsy @ FE HEE, L. (4.21)

! As for the Hoffman non * case done by Francis Brown, using a result of Don Zagier for level 1.
"Cf. Lemma A.1.2; where 82,11 means here that the left side has to be of weigh 27 + 1.
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Then, let consider the level graded derivation:
gri Doy s griHy® = Lopn ® gri 12, . (4.22)

If we restrict ourselves to the cuts in the coaction that remove exactly one 3 in the right
side, the formula ([@20) leads to:

ngLD2r+1C*’m(2a°7 3,--,3, 2%) =

_6a0<r§a0+a1+2 C;*"(Tw, 3, 2r—ao—2) ® C*,m(zao-‘ral-‘rl—r’ 3,--- )

Or<as Cl**ﬂ(zr) ® (C*,m(. 0,320 tai—rtl 3 ) — (-3, 2uiitai—rtl g ))

Z + 6T:ai+2cg*7[(2ai7 3) + 57‘<ai+ai—1+3Cf*7[(27ﬂ_ai_37 35 2% ) 3) & C*Tm(' Ty 35 2a¢+a¢,1—r+1, 37 2%i+1 5 37 te
**7[(2111'7 3) + 57‘<ai+ai+1+3Cf*7[(2’r_ai_37 35 2% ) 3) ® C*7m(' B 35 2%i-1 ’ 37 2ai+ai+1_r+17 37 e

I = (Or=ait26)
(D) 400, 11<r<ayta, 141 Cel(2rmael 3 9%) @ (om(... 3 2arTa-1rly (4 93)
By the antipode LU relation (cf. E7):

Cf*’l(zaa 3’ 2b’ 3) — C;*,l(zb’ 3, 2a+1) — C**,r(2b+1, 3’ 2a+1) _ C*’[(2b+1, 3, 2a+1)_

Then, by Lemma {43 all the terms appearing in the left side of grf Da,11 are product of
simple MZV, which turns into, in the coalgebra £ a rational multiple of ¢'(2r + 1):

g1 Doy (griHZ®) C Q' (2r+1) @ ngL—lH?LE%‘—l'

Sending ¢'(2r + 1) to 1 with the projection 7 : Q¢'(2r + 1) — Q, we can then consider:
671,:[ DgriHES — grlL_lHi’EQT_l, defined as the composition
Ofy = gri Oas1 = mo(x®id) (gr{ Dy) = griHy® = Quogri HyZy, ) = gri Hyy, .

L R L
8<n,l T @2T+1<n87«7[-

The injectivity of this map is the keystone of the Hoffman* proof. Its explicit expression is:

Lemma 4.4.2. 8TLJ(C*’“‘(2“°,3, e, 3,20)) =

53 1,r—ag—2 1—
75a0<r§a0+a1+2Ba0+ ,r—ag C*,m(2a0+a1+ 7‘, 37 L. )

+ iy (0r<a, Cr ( Com (..., 3,20 1taimrtl 3y exm(oL L 3 gaiitai—rtl 3

Da: r—a;— ’ = 1 )
+5ai+2§T§ai+ai,1+QBal+l'T ai—2 C*7m(' o 73,2a,+a1 o 73,2a,+1,37 o )

Raitl,r—a;—2 i itait1—r+1
_5ai+29§ai+ai+1+23az+ r—ag ¢om(---,3,2%1 3,20 tait1—r+ 73’...))

(D) + 6‘1p+1§7'§‘1p+‘1p—1+1BT_ap_17ap <*7m(' o ’37 2ap+ap7177“+1)7
with B := B*C — Aab
. a+b+1 .

Proof. Using Lemma [4.4.3] for the left side of grzf Da, 41, and keeping just the coefficients of
¢?"*t1, we obtain easily this formula. In particular:

C;*,[(za, 3, 2b) _ C**,[(za-i-l7 3, 2b) _ C*’[(2a+1, 3, 2b) = E““*bc[(Qa + 2b+5).
¢'(27,3,2,3) = ¢7(2°,3,20%1) = B (2a £ 20 4 7).
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4.4.2 Proof of Theorem 4.4.1

Since the cardinal of the Hoffman * family in weight n is equal to the dimension of H?, i
it remains to prove that the Hoffman x elements are linearly independent. We will use a

recursion on the level and the map defined above, 8£n, .-

Let prove the following statement:
Gﬁnﬁl CgriHE - @27~+1<ngrll;1ﬂi’327,_1 is bijective. (4.24)

Using the Conjecture (assumed for this theorem) 4.4 regarding the 2-adic valuation of
these coefficients, with r = a + b + 1

C, =25 = v5(C,) = 2r + 1.

B*! = B**C, — A®b = 22r+1 (2;1 - Qgi“)l) = vp(B™) > 2r 4+ 1.

B*C, = Cp —2(,27)) = vp(BY"1C,) = 2 4 va(r) < v2(B*PCp) < 2r + 1.
(4.25)

The deconcatenation terms in 82717[, which correspond to the terms with B**C, are then

the smallest 2-adically, which is crucial for the injectivity.

Now, define a matrix M, ; as the matrix of 82717[ on ¢»™(2% 3 -..,3,2%) in terms of
¢om (2b°,3, -, 3, 2bl*1); even if up to now, we do not know that these families are linearly
independent. We order the elements on both sides by lexicographical order on (ay, ..., ag),
resp. (r,b;—1,...,bp), such that the diagonal corresponds to r = a; and b; = a; for i < [ and
claim:

The matrix M, ; of aﬁn,l on the Hoffman * elements is invertible.

Proof. Indeed, let ]T/[/nyl be the matrix M,, ; where we have multiplied each line corresponding
to Day11 by (27%2(W=2). Then modulo 2, because of the previous computations on the 2-
adic valuations of the coefficients, only the deconcatenations terms remains. Hence, with
the previous order, the matrix is, modulo 2, triangular with 1 on the diagonal; the diagonal
being the case where B®"~1(, appears. This implies that det(M, ;) = 1 (mod 2), and in

particular is non zero. Consequently, the matrix M,,; is invertible and so does M, ;. [l
The Hoffman x elements are linearly independent.

Proof. Let first prove it for the Hoffman x elements of a same level and weight.

Level 0 is obvious: ¢*™(2)" is a rational multiple of (7™)2".

Assuming by recursion on the level that the Hoffman x elements of weight n and level [—1 are
linearly independent, since M, ; is invertible, this means both that the Hoffman x elements
of weight n and level [ are linearly independent and that 827% ; is bijective, as announced in
@Z3).

The last step is to realize that the bijectivity of 82717 ; also implies that Hoffman % elements
of different levels are linearly independent. Indeed, proof can be done by contradiction:
applying aﬁn, ; to a linear combination of Hoffman x elements, [ being the maximal number
of 3, we arrive at an equality between same level elements, and at a contradiction. ([l

IObviously same recursive relation: d,, = d,_2 + dn_3
" The last inequality comes from the fact that ’Uz((zfll)) < 2r.
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4.4.3 Analytic conjecture

Here are the equalities needed for Theorem 4.4.1, known up to some rational coefficients:

Lemma 4.4.3. With w, resp. d and ht denoting the weight, resp. the depth and the height.
Let’s recall first:

)= @21 M)
(M(2n) = BeZL3 mg)n,

(i) ¢v™(2") = —20™ (2n) = E 52 BolC™(2)".

(i) CP™(2") = =2 0, (™ (2r + 1) (20,

(ii7)

(4.26)

g**,m(zn) _ Z Z 22n72d§m(m) (427)

d<n w(m)=2n
ht(m)=d(m)=d

P C§k -
> I =%¢m@i+1)™ ) Ds¢™(2)%,
2n=3 s, (2i+1)+25 \k=1 Sk

i Fiy
GmEn == Y 2N (m) (4.28)

d<n w(m)=2n+1
ht(m)=d(m)=d

p Cék 7
3 [[ @t D™ | Dscm(2)°
2n+122§k;2ik+1)+25 k=1 °F

lk Zj

(i) ¢*™(2°,3,2") = £ APHCN @ T T)C™ (2",
(v)

P Sk
C:x _
§**’m(2a,3,2b) = Z B‘ff,.,,ip (H L’“'Cm(%k + 1)5k> DS§‘“(2)S.
w=Y s (20 +1)+25 VTP \f=1 k-
i Fy
(4.29)
p C?k
G(*,m(za,g’zb) _ Da,bgm(2)5 + Z B?{I,)-»-,ip H ik m(im-k T 1)sk DSCm(Q)S-
51008 Sk'
w=Y s, (2ig +1)+25 P k=1
i #ig
(4.30)
Where:
- Cr = %, Dg ezpliciﬂ and with the following constraint:
Ag,b _ Ag,r—a—l +C, (Br—b—l,b _ pgr-e—la Or<t — (5T§a) . (4.31)

- The recursive formula for B-coefficients, where B*Y := B7Y ., andr <a+b+1:
1

a,b o _ r—b—1,b pa-r—1b 2(22b+1_1)6b+1‘B2b+2‘
BI = 5r§b 5r<a + B + atb—r+1 + 5r:a (2612)1Dy 1 .
i1—b—1,b a—i1—1,b
Siy<b — Oiy<a + BHTPTHO L BYI T for 3 sy odd
Ba,b _ s1—1,...,5p
= . 1y
[y iv<b — 0jy<q + B707LE 4 BOTIY else .
s1—1,...,8p
(4.32)
ICf. Proof.
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Before giving the proof, here is the (analytic) conjecture remaining on some of these coeffi-
cients, sufficient to complete the Hoffman % basis proof (cf. Theorem [£.4.7)):

Conjecture 4.4.4. The equalities (v) are satisfied for real MZV, with:

2 (2a+2b+2)

Bt — 1 —
2b+1

CaerJr 1
REMARKS:

- This conjecture is of an entirely different nature from the techniques developed in
this thesis. We can expect that it can proved using analytic methods as the usual
techniques of identifying hypergeometric series, as in [82], or [63].

- The equality (iv) is already proven in the analytic case by Ohno-Zagier (cf.[50], [82]),
with the values of the coefficient A% given below. Nevertheless, as we will see through
the proofs below, to explicit the coefficients for the (stronger) motivic identity (iv), we
need to prove the other identities in (v).

- We will use below a result of Ohno and Zagier on sums of MZV of fixed weight, depth
and height to conclude for the coefficients for (7).

Theorem 4.4.5. If the analytic conjecture @A) holds, the equalities (iv), (v) are true in
the motivic case, with the same values of the coefficients. In particular:

2r 22r 2r
A%Y =2 —6,—, — 2 :
v ( = +<2a)) 22r — 1 (2b+1)

Proof. Remind that if we know a motivic equality up to one unknown coefficient (of (weight)),
the analytic result analogue enables us to conclude on its value by Corollary [2.4.5
Let assume now, in a recursion on n, that we know {Bavb, Db, B‘j’ll?,.,_-p Yatb+1<n and con-

51" Sp

sider (a,b) such that a + b+ 1 = n. Then, by [@32), we are able to compute the B%?

with (s,7) # (1,n). Using the analytic (v) equality, and Corollary [2.4.5] we deduce the onsly
remaining unknown coefficient B%® resp. D% in (v).

Lastly, by recursion on n we deduce the A%" coefficients: let assume they are known for
a+b+1<mn,and take (a,b) with a +b+ 1 = n. By the constraint [@3T]), since we already
know B and C coefficients, we deduce A%’ for r < n. The remaining coefficient, A%°, is
obtained using the analytic (iv) equality and Corollary 2.4.5 O

Proof of Lemma 443l

Proof. Computing the coaction on these elements, by a recursive procedure, we are able to
prove these identities up to some rational coefficients, with the Corollary When the
analytic analogue of the equality is known (such as (4), (i), (¢i7)) for MZV, we may conclude
on the value of the remaining rational coefficient of (™ (w) by identification.

However, if the family is not stable under the coaction (as for (iv)), knowing the analytic
case (by Ohno-Zagier) will not be enough.

The following proof refers to the formulation of Dy, 11 of Lemmal[A 11} cuts of length 2741
among the sequence of 0,1, or x corresponding to the iterated integral writing; there are
different kind of cuts (according their extremities), and a cut may bring out two terms (g o
and Tp , etc.), as in the Lemma [AT1.1]

The simplifications are illustrated by the diagrams, where some arrows (term of a cut) of
the same color get simplified together, by rules specified in Annexe §A.1.
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(4)

(iid)

The corresponding iterated integral:
I"™(0;1,0,%,0--- ,%,0;1).

The only possible cuts of odd length are between two x (Tp . and Ty ) or 11 from
the first 1 to a x, or Tp1 from a % to the last 1. By SHIFT (A.2), these cuts get
simplified two by two. Since Daq41(-), for 2r + 1 < 2n are all zero, it belongs to

Q¢™(2n) (Corollary 224.H).

Using the (known) analytic equality, we conclude about the value of the coefficient.

It is very similar to the previous case: using SHIFT ([A.2)), it remains only the cut:

Do (¢1™(27) = (27 @ ¢7™(2" ) = =2 @r F D) @ ¢V (2.

The last equality being deduced from the recursive hypothesis (smaller weight). The
analytic equality (coming from the Zagier-Ohno formula, and the LU regulation) enables
us to conclude on the value of the remaining coefficient of (™ (2n + 1).

By L regularisation, we can express each Euler sum x% as a linear combination of
Euler sums. For both Euler sums considered in (i4i), it is:

**m 2n Z CQn Sk kl,' .,kp)zz Z (Zi_i)(ZZ_i) Cm(nla"'

k; even ni>2 k; even
ki<ng

Using the multi-binomial formula:

== 3 ()= o (T a- =t (T (1),

l l l
l1§m1 1 d lj<m; d

Thus:

**m 2n 22n—2d<—m m).
=2 > (m)

d<n  w(m)=2n
ht(m)=d(m)=d

Similarly for (4.27), since:

GrtEen) = Z Cont1— ki (k- kp) = Z Z 22n—2de(m)_

k; even d<n  w(m)=2n
ht(m)=d(m)=d

Now, using still only SHIFT ([A2]), it remains the following cuts:

(426)0; « 0 -+ x 0 -+ * 0 ;1.

Tos

(427)0; 0 * 0 -+ % 0 * 0 - % 0 ;1.

With a recursion on n for both (4.26), (4.27), we deduce:
Dayra (C™™(27) = (2N @ UI2M ) = G r T D @ (2.

Darin(GF™(2™) = (72 @ ¢HM (27T = O @ F D) @ ¢ (20T,
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To find the remaining coefficients, we need the analytic result corresponding, which is
a consequence of the sum relation for MZV of fixed weight, depth and height, by Ohno
and Zagier ([68], Theorem 1), via the hypergeometric functions.

zt+yt+/(z+y)2—4z .
— !

Using [68], the generating series of these sums is, with «, 8 =

Go(w,y,2) 0 = 2 ez (T ((K))ar Tyt
T z(lfexp(zzlo 5 (g‘)(x +y™ fﬂm))).
From this, let express the generating series of both (**(2") and (}*(2"):

o(x) == Z Z 2“’72d§(k) 7% = ¢o (2,0, 2%).

w ht(k)=d(k)=d
w>2d

Using the result of Ohno and Don Zagier:

o) = = <exp (Z - 2<<m>xm> - 1) .

Consequently, both ¢**(2") and (;*(2") can be written explicitly as polynomials in
simple zetas. For (**(2™), by taking the coefficient of 22"~2 in ¢(z):

(2 = Z H< < h.2>8i>.

S mgsi=2n i=1 g
miF#Em

Gathering the zetas at even arguments, it turns into:

22ik+1 —9 Sk s
(2™ = (2 1) —— ds((2
¢ (2") E ||( ( lk+)22.k+1))sC(),
2(21k+1);k+2s 2n =1
in

_ 35938 | Bom, | (2271 =1\
where dg := 3" -2 Z H (s ' ( Sy 2] . (4.33)

Ymysi=8 i=1
m; ¢WL

It remains to turn ¢(odd) into ¢(odd) by 28] to fit the expression of the Lemma:

22r+1

¢*(2m) = > H <_. ¢, C(2i, +1)) > 450, where o = 2r+ 1’

(24 +1)sp+25=2n =1
Zk#'”

It is completely similar for (;*(2™): by taking the coefficient of x2"=3 in ¢(z), we
obtained the analytic analogue of (4.25), with the same coefficients dg and ¢;.

Now, using these analytic results for (4.26), (4.27), by recursion on the weight, we can
identify the coefficient Dg and C, with resp. dg and c,, since there is one unknown
coefficient at each step of the recursion.

(tv) After some simplifications by Antipodes rules (§4.1), only the following cuts remain:
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This leads to the formula:

D27‘+1(C*’m(2a 3, Zb)) = (C*vm(za’3,27‘—a—1)+
(3rzp = Bra) 7 (27) 4 €0 (@71 8,20) - (@ 3,2%) @ 0!,

In particular, the Hoffman x family is not stable under the coaction, so we need first
to prove (v), and then:

D2T+1(<*,m(2a73, 2b)) — (Ag,rfafl + C’r (Brfbfl,b o Brfafl,a + 5r§b o 6r§a)) C[(2T T 1)®<*,m(2n7r).

It leads to the constraint (£31]) given above for A coefficients. To specify the values of
A coefficients, we would need not only the analytic Ohno Zagier formula (known) but
also the analogue of (v) formulas for the analytic case; as stated in Conjecture 44

(v) By Annexe rules, the following cuts get simplified (colors by colors), above with below]

Indeed, cyan arrows get simplified by ANTIPODE LU, Ty o resp. Ty, above with Tp o
resp. T below; magenta ones by SHIFT (A.2)), term above with the term below
shifted by two on the left. It remains the following cuts for (4.28):

ﬁ

(4.28) * 0)?

In a very similar way, the simplifications lead to the following remaining terms:

(4.29) (* 0)“ !

Then, the derivations reduce to:
D2r+1(<**’m(2a7 3, 2b)) _ ((5r§b - 5r§a) C;*J(zr) + (<)~T>b<-a<*,m—[(27"—17—17 3, 2b)) ®C**,m(2n—r)+

For<a-1G(27) @ (20T 3,2%) 4 6, (27 @ G(20).

IThe vertical arrows indicates a cut from the * to a * of the same group.
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Darsa(Gi™(2,3,2") = ((Grep — drea) G1(27) + ¢ (27771,3,27) J @G (277 +

+Cf*’l(2r) ® g**,m (2a7r’ 3, 21;).
With a recursion on w for both:
Dapia(¢*™(2%,3,2°) = C('(2r +1)®
((Or<b = Orca + Br0710) Cm(2777) 4+ (1™ (297771,3,2°) + 0,0 (™ (25F1))
Doyr (G777 (2%,3,2) = G @r+ 1) @ ((Jrep — Sra + By P 7H0) (V™ (2777) + ¢ (2077, 3,2"))

This leads to the recursive formula ([@32]) for B.

4.5 Motivic generalized Linebarger Zhao Conjecture
We conjecture the following motivic identities, which express each motivic MZV % as a
motivic Euler # sum:

Conjecture 4.5.1. For a;,c; € N*, ¢; # 2,
C*7m (2@0, Ciy 5 Cps 2ap) = (_1)1+6C1 Cﬁ,m (BOa 161_33 Ty 1Ci_3a Bia RN Bp) ;

BQ = i(2a0 +1-— 661)

where By = %(2a; + 3 — ¢, — 0¢,py) , with+ = {
By = %(2ap +2 —6,)

and 1™ := 1m0 4g o sequence of n 1ifn €N, an empty sequence else.

— if | B;i| even J Oc i= 0c=1,
+if | Bi| odd ’ W% the Kronecker symbol.

REMARKS:

- Motivic Euler § sums appearing on the right side have already been proven to be
unramified in §4.3, i.e. MMZV.

- This conjecture implies that the motivic Hoffman * family is a basis, since it corre-
sponds here to the motivic Euler # sum family proved to be a basis in Theorem [4.3.2]

cf. ([@37).
- The number of sequences of consecutive 1 in (*, n; is linked with the number of even
in ¢*, n., here by the following formula:
ne =1+ 2n; — 26, — 6, .

In particular, when there is no 1 in the MMZV x, there is only one even (at the end)
in the Euler sum #. There are always at least one even in the Euler sums.

Special cases of this conjecture, which are already proven for real Euler sums (references
indicated in the braket), but remain conjectures in the motivic case:

Two-One [Ohno Zudilin, [69].]
¢om™(2%,1, -+ ,1,29%) = =M™ (2a0,2a1 + 1,...,2a,-1 + 1,2a, + 1) (4.34)

Three-One [Broadhurst et alii, [9].] 0

¢o™(2%0,1,2,3- -+ ,1,2%1,3,2%) = —(*™ (2a9,2a1 + 2,...,2a,_1 + 2,20, + 2) .
(4.35)

IThe Three-One formula was conjectured for real Euler sums by Zagier, proved by Broadhurst et alii in [9].
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Linebarger-Zhaox [Linebarger Zhao, [65]] With ¢; > 3:

o™ (270 ¢y, e, 270) = _Cﬁvm (an +1,1973 ... 1973 24, + 3,.. ., 2a, + 2)
(4.36)
In particular, when all ¢; = 3:

¢o™ (270,38, ,3,2%) = —C"™ (2a0 + 1,241 +3,..., 20,1 + 3,20, + 2) . (4.37)

Examples: Particular identities implied by the previous conjecture, sometimes known for
MZV and which could then be proven for motivic Euler sums directly with the coaction:

S ™1 {2)7) = 20 (2n 4 1).
S (L {2}, L, {2)) = ¢ (20 + 1,204 1) = 4C™(2a + 1,26+ 1) + 2C™ (2a 4 2b + 2).
S (M(n) = =1} =2) = =3 wi=n 2P0 (Ra, . Rpo1, —hy).

kadmissible
({2 = S+ <) = ~20(-20),
We paved the way for the proof of Conjecture [£5.1] bringing it back to an identity in L:
Theorem 4.5.2. Let assume:
(i) The analytic version of 51l is true.
(ii) In the coalgebra L, i.e. modulo products, for odd weights:
¢yl m,- 1w By =20 ey, e, 27) = (V27,0 - 1, ., 2%), (4.38)

30:2(104*17561
with ¢1 >3, a0 >0, vi =¢; — 3+ 20, and { B; =2a; +3 — ., — 9,
Bp:2ap—|—3—5cp

Ci+1

Then:

1. Conjecture 511 is true, for motivic Euler sums.
II. In the coalgebra L, for odd weights, with ¢y > 3 and the previous motations:
Cﬂv[(l'}’l’ Ty 17177 Bp) = 7(;?[(01 - 17 2(117027 c0, Cp, 2ap)' (439)

ADDENDUM: The hypothesis (¢) is proved: J. Zhao deduced it from its Theorem 1.4 in [86].

REMARK: The (i7) hypothesis should be proven either directly via the various relations
in £ proven in §4.2 (as for €39, or using the coaction, which would require the analytic
identity corresponding. Beware, (ii) would only be true in £2, not in H2.

Proof. To prove this equality 1. at a motivic level by recursion, we would need to proof
that the coaction is equal on both side, and use the conjecture analytic version of the same
equality. We prove I and I successively, in a same recursion on the weight:

I. Using the formulas of the coactions D, for these families (Lemma A.1.2 and A.1.4), we
can gather terms in both sides according to the right side, which leads to three types:

(a) C*’m(--- ,2“i,a,2ﬁ,cj+1,---) —> Cﬁ’m(BO--- ,Bi,l"f’.B,NHl,...,Bp)
(b) C*’m("' ,zai—l,ci’zﬁ,cj+1,...) PRI Cﬁ,m(BO... ,Bi_1,17, ,1'Yj+1’_._’Bp) ,
(¢) ¢o™(--- ,ci,25,04,2‘”,~~~) s (BB, 17 B 17, Bjt1,...,Bp)

with vy =a -3 and B =26+ 3 — d,,,, or B=2+3 — ., — I, for (b).

The third case, antisymmetric of the first case, may be omitted below. By recur-
sive hypothesis, these right sides are equal and it remains to compare the left sides
associated:
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(a)

On the one hand, by lemma A.1.2, the left side corresponding;:

x*, [ a;—pf3 i1
53Sa§6i+1*1 c.;+17a - (2 ’ yoos 20 )
Ugﬂa]‘

On the other hand (Lemma A.1.4), the left side is:
5 acnen, BBy~ B4 LTV, 1)

0<y<7vjt1-1

They are both equal, by £.39] where ¢;+1 — «a + 2 corresponds to ¢; and is greater
than 3.

By lemma A.1.2, the left side corresponding for (*:

- 50i>3€5*7[(2ai5'"azajiﬁil) + (Scj>3C;*’K(2aj,...,2‘1"'7[371)
- 5&;:1(**1‘(2%_'65 ceey 2ai) + 5cj+1:1<**"(2ai_’6, ceey 2‘”)
b B i@, g R
a; aj
5“1’<ﬁ§ai+aj+1<:;,—l2(2aj71 yeeey 2a¢+aj—,6’+1) + 5ai<ﬁ§a]‘+ai+1c;:7§_2(2ai+1, ey 2‘“*‘”_[3“).

It should correspond to (using still lemma A.1.4), with B, = 2a5+3 — ., — ¢
Ve = cp — 3+ 20, and B=25+43 —d;;, — 0

Ck41

Cjt1-

! j i N ; .
(6Bi<BCgii+Bj—B(1% L] 17 +1) - 5BJ<BC§Z,+BJ_B(1'Y *1, ey 1’“)

FCEL (0L By) = (L (1, .,Bi)) .
The first line has even depth, while the second line has odd d(ﬂyth, as noticed in

Lemma A.1.4. Let distinguish three cases, and assume a; < a;

(¢) When 8 < a; < aj, we should have:
Cgii’K_B(N”l, .., Bj) — Cgij?K_B(lw, ..., B;) equal to: (4.40)
*5c-;>3 C;*7[(2aj_’6_15 LR 2(“) 7561':1 C**y[(zaj_ﬁv ) 2a¢>
Foepams GUN2UTAT L 29) 45,2 CN2u AL 2%)

- Let first look at the case where ¢; > 3,¢j41 > 3. Renumbering the indices,
using SHIFT for odd depth for the second line, it is equivalent to, with
a=p03+1, B, =2a,+3,By =2ap+ 3:

C;*,K(2a07aacla"' acpazap) - C;*vl(zao,cl,.” acpazapia)
= g{;LB(lw,... 17, By) _ g’[,B(Bo,l"“,'“ ,177)
_ N it
= ??—1(BO*B+L1“,“'717P) — zB?_B(BO’lm’...vl'yp)
= B;p71(30 —B+4+1,1m ... 17) — B’pr(BOalwa"' ,177).

This boils down to ([&38) applied to each (3*, since by SHIFT (A.2) the
two terms of the type (7* get simplified.

- Let now look at the case where¢; = 1, ¢j41 > 3; hence B; = 2a;+2—9,
B =28+ 2. In a first hand, we have to consider:

Ci419

[ 5 ) o )
C;*7 (2011 p 1vc’i+1a"' 7Cj72a])7<**?[(2a] ﬂacjv"' 7C'L+172a1)~

IThe case aj < a; is anti-symmetric, hence analogue.
"The case cj+1 = 1,¢; > 3 being analogue, by symmetry.
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By renumbering indices in .40, the correspondence boils down here to the
following ¢ =X, where By = 2ap + 3 — 0.,, Bi = 2a; +3 — 0., — 0
B=23+2:

(<>) C;*,K(zao—ﬂ’ Cly 5 Cpy zap) _ C**,K(zao-i-l’ Ly Cp ZaP_B)

Cit1

(M) ¢l (1 12, B = (R (10,17, By £ 1).

Turning in (¢) the second term into a ¢*'(2,---)+¢™*'(--+), and applying
the identity {38) for both terms ¢*'(---) leads to

+Cf*7[(2a0_5+15 1 — 17 ct, Cp,y zap) C** [(2a0+17 C1 — 17 c,Cp,y 2(1;;—,(3)

(0) +Cg[§_B+1(1V17"' a]-vpop) CBO 1(1V15"' alvpaBP - B+2)

7C*7[(2a0+17 C1, " ,Cp, 2(17;—5)

The first line, (¢1) by SHIFT is zero. We apply ANTIPODE * on the terms
of the second line, then turn each into a difference ¢&(m, - - ) — ¥ +m( o)
the terms of the type Cn +m( -+ ), are identical and get simplified:

= Cﬁﬁ» pa1(Bp, 177, 1) m ' piiis, (17, ... 1)

[
(02) éﬁo 1(Bp=B+2,1%,...,1M) +<Bo 145, (1775, 17)
= Cﬁﬁ, pa1(Bp, 177, 1) }igﬁ[;fl(B —B—|—2,17P,---

Furthermore, applying the recursion hypothesis (I.), i.e. conjecture [L.5.1]
n (¢3), and turn it into a difference of ¢*:

_C*7[<2a0+17 Ciy 0, Cps 20‘1)7&)
(03) = 7<ﬁ,[(Bp7B+1,1’Yp,“, 7171730)
—C*YB, = B+1,1%,... 171 By) Jng;[,BH(l%,“' 17, By)

When adding (¢2) and (¢3) to get (¢), the two last terms (odd depth)
being simplified by SHIFT, it remains:

(¢) C?gﬁ’ B+1< I RETRPRIS RE)) —CM’[(BP —B+1,17% ... 17 By).
This, applying ANTIPODE * to the first term, CUT and SHIFT to the sec-
ond, corresponds to ().
(#4) When 8 > a; > a;, we should have:
. **7[2 (2% v 2ai+aj—6+1) +<**,[ (2a,-+1 e 2a¢+aj—5+1)
_ . i S .
= +CB +B B(l’h,“.,l"{wl) - g¢+Bj—B(1’Y+17"'71%)'

Using SHIFT ([(A2)) for the first line, and renumbering the indices, it is equiv-
alent to, with ¢i,¢, > 3 and ag > 0:

G @ e~ 1) @ e - 1) (441)

=l () = R () = L3 1),

The last equality comes from Corollary 4.2.7, since depth is even. By (£42)
applied on each term of the first line

C;*,[(2a0701 -1, 7Cp) _ <f*,[(2a0,cl,. ce,Cp — 1)

).

—~~

&

—
M
~—

<

<

[y
~

= <5*7[(2a071’ C1,- )+C2a0 <3a 1’)/13’ T 71V1)_C;*,[(Cpa TG, 2a071)_<§ﬁ7[(2a0+1, 1’\/}77 e
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II.

By Antipode L, the ¢** get simplified, and by the definition of ¢*#, the previous
equality is equal to:

_ [ [ [ —
= _C§a0+3(1%a"' ,1%) +C§g0(3’ 1%’"' ’171) +C§io+4(1% 1"" ’171)

_ 511‘(2(10 + 1,17, 1) 4 ng[0+3(1'vr7 C 1,
Then, by SHIFT (A.2]), the second and fourth term get simplified while the
third and fifth term get simplified by CuT (A.3). It remains:
fgg;fwg(l%, <+, 1) which leads straight to 41l

(#4i) When a; < S < a;, we should have:
— 2%, 29T R (20 20t A

= Cgi’iijB(lw’ 1) Cgi;iB(lw’ L B)).

Using resp. ANTIPODE SHIFT (A.2) for the first line, and re-ordering the
indices, it is equivalent to, with ¢; > 3, By = 2a¢9 + 1 — dc¢1 here:

C;*,[(zao—l7 C1, ", Cp, 2ap) _ C;*,[(2ao7 ¢ — 17 e Cpy 2ap) (442)
_ W N . 1
= G (Bo, 1, 1) =Gl (U, 1) = ChL (M, 1, By,

This matches with the identity [.38} the last equality coming from SHIFT since
depth is odd.

(¢) Antisymmetric of the first case.

Let us denote the sequences X =2%,....2% and Y =1""1 By, ... 177,
We want to prove that:

¢'(1,Y,By) =~ (e — 1,X) (4.43)
Relations used are mostly these stated in §4.2. Using the definition of {**:
—G (e = 1,X) +¢(X)

c1

Mo — 1,X) 4+ ¢ e — 1,X) + ey, X) — ¢4 e, X)
C*’[(lv C1 — 17X) - C*,[(Clvx) - C*,[(Cl - 17X7 1)

74;,[(01 - 17 X)

(4.44)
There, the first and third term in the second line, after applying SHIFT, have given the
last ¢* in the last line.
Using then Conjecture 5,11 in terms of MMZV#, then MMZV# | it gives:
¢'2,Y, B, - 1)+ (M1 LY, B, — 1)+ ¢(M(LY, B, — 1,1)
=2, Y, B, — 1) — (Y, B, — 1) + ¢*'(1,1,Y, B, — 1)
— LY, B, — 1) + ¢, Y, B, — 1,1) — ¢PYY, B, — 1,1)  (4.45)

First term (odd depth)ﬁ is simplified with the last, by SCHIFT. Fifth term (even depth)
get simplified by CUT with the fourth term. Hence it remains two terms of even depth:

= —(3"N(Y, B, — 1)+ %111, Y, B, — 1) = (Y. B,) + (5L, (1,1,Y),
where MINUS resp. CUT have been applied. This matches with (£43]) since, by SHIFT :
= _dm’[(Y»Bp) + Cm[(laY»Bp) = Cﬁ’[(l,Y, By).

ISince weight is odd, we know also depth parity of these terms.
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The case ¢; = 3 slightly differs since ([£.44]) gives, by recursion hypothesis I.[@5.T):
—'2,X) =" (B +1,Y,B, — 1)+ ¢*'(1,B,, Y, B, — 1) + ¢*'(B1, Y, B, — 1,1),
where Y =172 ... 17 odd depth. Turning into MES*, and using identities of §4.2

in the same way than above, leads to the result. Indeed, from:

=B +1,Y,B, - 1)+ ¢ (1, B, Y, B, — 1) + ¢*Y(By, Y, B, — 1,1)

(Y, B, — 1) - (B, Y, B, — 1) - (HN(Y, B, — 1,1)

First and last terms get simplified via SHIFT, while third and fifth term get simplified
by CuT; besides, we apply MINUS for second term, and MINUS for the fourth term,
which are both of even depth. This leads to [£.39] using again SHIFT for the first term:

_ N N
=L (L BLY) = (Y, By)
= gmi’[(Ble//aBp) - giil(YlaBp)
= gﬁﬁr(BlaY 7Bp)'

4.6 Appendix 1: From the linearized octagon relation

The identities in the coalgebra L obtained from the linearized octagon relation [£.12}
Lemma 4.6.1. In the coalgebra L, n; € Z*:

(1) ¢ (o, -+, mp) = (1)1 (np, -+, o).
(”’) C[(no, T 7”?) + (71)’w+p<**[(n0, e 7”?) + (71)}’(’;:[(”?*15 RO TL()) =0.
(#44)

C'r[m—l(nlﬂ T ’np) - C:zo(nlﬂ T anp—laep(l np | +1)) =

(=1 (Gt atn o mp) = G (s mporseplI mp | 1)) -

Proof. The sign of n; is denoted ¢; as usual. First, we remark that, with n; = +1, n;, =

€i(ai + 1), and € = n;mi41:

D™ (ecose—1,01) = 2 I™ (03 (—w0) ™ (—w—pyu)(—w0) ™ -+ (—w—p, ) (—w0) 5 1) €€y, €5" - e, €0"
= Z(*UnerC;:Lml (nl’ Ty Np—1, 7”?) 6806771 681 e enpegp
Similarly, with u; = 1 ifop=—1" applying the homography ¢,, to get the second
;= —
line:
D™ (e—1,€0,00) = 20" (05 (w1 — wo1)wp, (W1 —w-1)" - wy, (W1 —wo1)5 1) €g’en et e, ep”
Dle_1,e0,e00) = 2o (=1)PI™ (0;0%w_py, 09 -+ w_, 09;1) efep eft - - - ey, €07
=2 Grpr (nay e+ mpe1, —np) €0 €51 - e, €
. . . o *x if N = 1 .
Lastly, still using ¢,,, with here p; := { 1 if =1
D™ (e1,e00,e0) = 2o I™ (05 (Wt — wi)Pwp (Wor = w1)™ - wy, (Wor —wi)51) gt eg - eq, €0
D'(er,e00,€0) = Do (=1) ™ (0;0%0w;, 0% - - - wyy 0975 1) €60, €5t -+ - 5, €07
= Z(*l)n+p+1cv*zzln11 (n1,- s np—1,mp) €5’ €n e0" - 'enpegp
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(¢) This case is the one used in Theorem .23 This identity is equivalent to, in terms of
iterated integrals, for X any sequence of {0, £1} or of {0, £x}:

I'0;0% %, X;1) = IY0;X,%,0%1) if [[Lpe=1en=1
IN0;0%, —, X;1) = I'0;—X,—x,0%1) if [0 je=—-1emn =-1

The first case is deduced from .12 when looking at the coefficient of a word beginning
and ending by e_; (or beginning and ending by e;), whereas the second case is obtained
from the coefficient of a word beginning by e_; and ending by e, or beginning by ey
and ending by e_;.

(#4) Let split into two cases, according to the sign of []€;:

- In [£12], when looking at the coefficient of a word beginning by e; and ending by
ep, only these three terms contribute:

(I)[(eflv €0, 600)60 - ®‘(€OO; €_1, 61)60 - el@‘(ela €00, 60)'
Moreover, the coefficient of e_1eg°ey, - ~enpeg”+1 is, using the expressions above
for ®'(-):
(—=1)P1'(0; =1, = X; 1) 4+ (=) 1Y0; —x, = X,; 1) + (=1)“T(0; X, 0; 1) = 0,
X 1= wywy, + Wy, Wy

where a0 »
X 1= Wo Wiy - Wiyatp

In terms of motivic Euler sums, it is, with [Je; = 1:
C[(TLOa ) _np)""(_l)wﬂog**[(nm R _np)+(_1)w+pg;:[—l(n1a T Mp—1, 61?(' np | +1)) =0.

Changing n,, into —n,, and applying Antipode LU to the last term, it gives, with
now [Je; = —1:

Cl(n()a e ,Tlp) + (71)w+p€‘**[(n07 e 5”1’) =+ (71> ;:[(np*h e 7n17n0) =0.

- Similarly,for the coefficient of a word beginning by e_; and ending by eg, only
these three terms contribute:

D'(e_1, €0, €00)€0 — ' (€ns, -1, €1)e0 + 61D (€0s, -1, €1).
Similarly than above, it leads to the identity, with []e; = —1:
CK(TLOa ) _np)+(_1)w+pg**[(n0’ R _np)'i_(_l)w-’_pg::[—l(nla T Mp—1, _617(| np | +1)) = 0.

Changing n,, into —n,, and applying Antipode LU to the last term, it gives, with
now [[e; = 1:

¢(no, -+ mp) + (1) (g, ) + (=1)PC (p—1, -+, n1,m0) = 0.

(i4i) When looking at the coefficient of a word beginning by ey and ending by eq in 12
only these three terms contribute:

—eo®'(e—1, €0, e00) + D' (€1, €0, e00)e0 + 0P (€c0, €—1,€1) — P (€00, €1, €1)e0.

ap+1 +1

If we identify the coefficient of the word ef®™'e_,, ---e_, eg”
the identity (#i).

, it leads straight to

REMARK: Looking at the coefficient of words beginning by eg and ending by e; or e_; in
4.12] would lead to the same identity than the second case. |
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4.7 Appendix 2: Missing coefficients

In LemmalZ3 the coefficients D, ; appearing (in (v)) are (the only one which are) not con-
jectured. These values are not required for the proof of Theorem 4.4.1. However, let present
here a table of values in small weights for them. Let consider, the coefficient corresponding
to ¢*(2") instead of ¢*(2)™, which is (by (¢) in Lemma L43), with n =a+ b+ 1:

(2n)! b (2n)!
D* d D,
6" | Bay | (22" — 2) an T 67 | Bap | (227 — 2)

D*b = D,. (4.46)

We have an expression (£33)) for D,,, albeit not very elegant, which would give:

b, 2 G (P ) ) e

S mys;=n 3=1
miEm

Here is a table of values for Bn and DFm=*=1 in small weights:

" 2 3 4 5
D 19 275 11813 783
n 231 251 3(27-1) 7
D —12 —84 160 1064 —1680 —9584 | 189624 —137104 —49488 —17664
kn—1—k 7 31 ’ 31 127 » 127 ° 381 2555 ° 2555 ° 511 ° 511
N7 6 7 8 9
5 581444793 263101079 6807311830555 124889801445461
n 691(21T—1) | 21(213—-1) 3617(215—1) 43867(217—1)

The denominators of bvn,ﬁk_,n,l,k can be written as (22"~! — 1) times the numerator
of the Bernoulli number Bs,,. No formula has been found yet for their numerators, that
should involve binomial coefficients. These coefficients are related since, by shuffle:

GRME2M) + nso G (2R, 3 2n_k_1> =0
Hence : C** m(2n+1) C* m(2n+1) k o g(* m(zk7 3, znfkfl) =0.

Identifying the coefficients of {*(2") in formulas (i), (v) in Lemma 43 leads to:

n—1
~Dp=> Din-1-k (4.48)
k=0
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Chapter 5

(Galois Descents

Contents: The first section gives the general picture (for any N), sketching the Galois de-
scent ideas. The second section focuses on the cases N = 2,3, 4,67, 8, defining the filtrations
by the motivic level associated to each descent, and displays both results and proofs. Some
examples in small depth for are given in the Annexe §A4.2.

Notations: For a fixed N, let ky := Q(£n), where £y € px is a primitive N*™® root of
unity, and Oy is the ring of integers of ky. The subscript or exponent N will be omit-
ted when it is not ambiguous. For the general case, the decomposition of N is denoted

N:qu' :Hp?-

5.1 Overview

Change of field. As said in Chapter 3, for each N, N' with N’|N, the Galois action on
Hy and Hpy: is determined by the coaction A. More precisely, let consider the following
descentﬂ, assuming ¢pn/ is an isomorphism of graded Hopf comodule:

@
HNC nj\; 5 HMTFN

TQN/N/ g}./\\]/l/z\’]/T
DNt
HN’( H HMTI‘N/
n.c

Let choose a basis for grlﬁfa\/lTN " and extend it into a basis of grlﬁi\/‘TN :

{¢m(rsmi )}, c{Cmtrimi ) U™ (i) b,

where ¢, = aN*aN':MﬁLP(N)*p(N') ifr=1
bN*bN/:M 1

Then, once this basis fixed, let split the set of derivations 2% into two parts (cf. §2.4.4),
one corresponding to H :

\[ = gN' .— i,
9N = 9\w 91 where 7 77 UT{DT }193@

9! =y, {DI" o4

}1§i§cT

1 MT (0 [
More generally, there are Galois descents ([) = (kn/kys, M/M') from HMT(O’“N [M]), to H < kns [5r7 D
with N’ | N, M’ | M, with a set of derivations 2/ ¢ 2" associated.

Conjecturally as soon as N’ # p”, p > 5. Proven for N’ = 1,2, 3,4, 6", 8.
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Examples:

- For the descent from M7T3 to MT: Pks/Q3/1) = {D;l, DS, r > 0}.
- For the descent from MT to MTy4: @ks/ks:2/2) = { D& — D=&s r > 0},
- For the descent from M7 g to MT3: @ke/k33/3) — {D§9 — D;gg,ng — D;Egr > O}E

Theorem 5.1.1. Let N’ | N such that HY = HMTrx |

Let 3 € gr??—[ﬁ[, depth graded MMZV relative to pup.

Then 3 € grngN/, i.e. 3 is a depth graded MMZYV relative to puyn: modulo smaller depth if
and only if:

(w <n,VDyp € D!, D, ,(3) = o) and (Vr <n,VD,p, € 2N, D, ,(3) € gr;{lHN’) :

Proof. In the (f;) side, the analogue of this theorem is pretty obvious, and the result can
be transported via ¢, and back since ¢y isomorphism by assumption. [l

This is a very useful recursive criterion (derivation strictly decreasing weight and depth)
to determine if a (motivic) multiple zeta value at py is in fact a (motivic) multiple zeta
value at pn/, modulo smaller depth terms; applying it recursively, it could also take care of
smaller depth terms. This criterion applies for motivic MZV ., and by period morphism is
deduced for MZV,, .

Change of Ramification. If the descent has just a ramified part, the criterion can be
stated in a non depth graded version. Indeed, there, since only weight 1 matters, to define

the derivation space DI as above (5.I)), we need to choose a basis for O% ® Q, which we
N

complete with { N } into a basis for I'y. Then, with N = [[p" =[] a:
iel

Theorem 5.1.2. Let 3 € HY C HMTon | MMZV relative to .
Then 3 € HMTON) unramified if and only if:

(\ﬁ e I,D" (3) = o> and (vr <n,¥D, e 2N, D,.(3) € HMT<0N>) .

Nota Bene: Intermediate descents and change of ramification, keeping part of some of
N

the weight 1 elements { X;} could also be stated.
Examples:

N = 2: As claimed in the introduction, the descent between H? and H' is precisely mea-
sured by D1

Corollary 5.1.3. Let 3 € H2 = HM7 2, a motivic Euler sum.
Then 3 € H' = HMT1 j.e. 3 is a motivic multiple zeta value if and only if:

Dy (3) =0 and D2T+1(3) S Hl.

IBy the relations in depth 1, since:

()= (e (G) e (g)re(g) o
&/ 3 & & '

T pQ/Q,2/1) = {Dfl} with the above notations; and Dfl is here simply denoted Dy .
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N = 3,4,6:

Corollary 5.1.4. Let N € {3,4,6} and 3 € HMTONXD o motivie M2V, .
Then 3 is unramified, 3 € HMTON) if and only if:

Di(3) =0 and D,(3) e HMT(Ox),

N = p": A basis for ON @ Q is formed by: {11__5; } rap_1 » Which corresponds to

N
0<k< 5

a basis of AfAT(ON) : {Cm <§1k) - (2)} KAp=1

It can be completed in a basis of AY with ¢™ ( 511). L However, if we consider the

basis of AY formed by primitive roots of unity up to conjugates, the criterion for the
descent could also be stated as follows:

Corollary 5.1.5. Let N =p" and 3 € HMTr~y = HMT(ON[%]), relative to ,u.
Then 3 is unramified, 3 € HMTON) if and only if:

k r>1 X
ST DIY3) =0 and V{ 1<k<E | DiV(3) e HMTON),
kAp=1 k /\p -1

< N
o<k<y

5.2 Descents for N = 2,3,4,°6°, 8.

5.2.1 Depth 1

Let start with depth 1 results, deduced from Lemma 2.4.1 (from [31]), fundamental to
initiate the recursion later.

Lemma 5.2.1. The basis for grP A is:

r>1odd if N=1

@ r odd if N =2
¢t (r;€) such that "> 0 N = 3.4
r>1 if N=6

For N =8, the basis for grY A, is two dimensional, for all v > 0:

{¢8(r;6), ¢ (rs =)}

Let explicit these relations in depth 1 for N = 2,3,4,°6’,8, since we would use some
p-adic properties of the basis elements in our proof:

For N = 2: The distribution relation in depth 1 is:

o (2r+1 _ o—2r af2r+1
e () =erene ().

k k
IWith the previous theorem notations, D = {Df} whereas DN = {Df - Di} kAp=1 Ur>1 {Df } kAp=1
1<k< N o<k<

where Df has to be understood as the projection of the left side over (¢ (2) in respect to the basis above of

7_Li‘/lT(ON) 1

more (% <£ ) This leads to a criterion equivalent to (E13).
"For instance a MMZV relative to uN . Beware, for p > 5, there could be other periods.

91



For N = 3:

(e (1Y) )0 el

For N =4:
C(a-2h) = 2t () forr 1 ¢ = 0
¢ () = gt () ¢(z) = cota ().
For N =6:
(-2 = 27 (n) frrAl () = () =0
¢ (! = 2 (T ¢ a) = =E5=< (i)
¢ () | - (1)“1(4‘25)1) ¢t Z)) _ (g ((_i)l).

For N =8:

¢(7) = (1?211)4‘(_Tl) for r # 1 ¢ (h _ C‘(EZ)ZO
o) = o) () - mhee
¢ (L) = e (un) ¢ = ()

5.2.2 Motivic Level filtration

1

Let fix a descent ([) = (kn/kn/, M/M’) from HMT(Orx[3])| to #MT(Oxn[3r]) | with
N’ | N, M’ | M, among these considered in this section, represented in Figures B.3[3.4l
Let us define a motivic level increasing filtration F! associated, from the set of derivations
associated to this descent, 2/ C 2V, defined in (5.1).

Definition 5.2.2. The filtration by the motivic level associated to a descent (]) is defined
recursively on H™ by:

- FLHN —o.
. fi(HN is the largest submodule of HY such that fi(HN/fi(_lﬂN is killed by 9,
i.e. 1s in the kernel of ®pcgyrD.
It’s a graded Hopf algebra’s filtration:
FHFMHCFijH, AFH)C Y, FAFH.
i+j=n
[

The associated graded is denoted: gr; and the quotients, coalgebras compatible with A:
HZO =, HZE = H/F;—1H with the projections : Vj>d, m HZ = HZT, (5.2)
Note that, via the isomorphism ¢, the motivic filtration on HM7~ corresponds tdl:

]'—i[/HMTN — <:c € HY | Degl(z) < i>@, (5.3)

where Deg! is the degree in {{f{}bN,ngN 7{fij}aN/<jSaN}’ which are the images of the
r>1

complementary part of gri L7~ in the basis of gri LM7~.

'In particular, remark that dim fi’—HnMTN are known.
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Example: For the descent between H72 and HM7+ | since gri £M72 = (¢(™(—1), {¢™(2r +1)},-0):

FiHMT2 T¢> ( € Q(f1, f3,--+) ® Q[f2] | Degy, () <) , where Degy, = degree in fi.

By definition of these filtrations:

fif n—r f D7 ‘@7[
Dy, (FiHn) C T 1 o € \T (5.4)
FiHp—r if D;’ﬁp € 9,
Similarly, looking at 0, (cf. [Z5H):
card @) card @T\(
On p(Fic1Hn) C Bren (grf_lfi727-[nfr) Dren (97}?_1]'—1'717'[7170 . (5.5)
This allows us to pass to quotients, and define DZ’,Z,',’[ and 83{72:
D g1 [
A D0 gro_1H . it D, € Dy
D’:’L,pl— : g?“p Hﬁ — % 1 i ] np \I_ (56)
grp_l/}'{n_,,‘ lf an € @T
. . . card @T( . card @T\(
6:{,2, : grf?—[%z — Oran (grf,ﬂ-[fjl) Dr<n (grf;’,lHEir) (5.7)

The bijectivity of this map is essential to the results stated below.

5.2.3 General Results

In the following results, the filtration considered F; is the filtration by the motivic level
associated to the (fixed) descent [ while the index i, in B, ,; refers to the level notion for
elements in B associated to the descent [E

We first obtain the following result on the depth graded quotients, for all ¢ > 0, with:

Z a . P=2 for N=2438
Zl[p].—1+PZ—{1+bP,a,bEZ} with pP—3 fOI“N:3,6 .

Lemma 5.2.3.

D

By p,>i is a linearly free family of gr, /H%i and defines a Zy[p) structure :

Each element 3 = (™ (zl"”’z") € B,y decomposes in a Zyjpj-linear combination of

€1,.-€p

By p,>i elements, denoted cly, p >i(3) in gr??—[%i, which defines, in an unique way:

Cln,p,>i  {Bnp,<i—1)a0 = (Bnp,>i)o-

- The following map 8,1-{,2, 1s bijective:

)GB card DT’- @ card Dy

afz’,gv : Wz? (Bn,>i)o = ®ren (9T§—1<Bn—1,2i—1>(@ Dr<n (gr§71<8n—2r—1,2i>(@)

Before giving the proof, in the next section, let present its consequences such as bases
for the quotient, the filtration and the graded spaces for each descent considered:

IPrecisely defined, for each descent in §5.2.5.
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Theorem 5.2.4. (i) By, <p,>i is a basis of ]:,?’H%i - ]:;DH%LMT_

(i7) - Bpp,>i 15 a basis of gr??—[%i = gr??—[%i’MT on which it defines a Zy[p)-structure:
Each element 3 = (™ (2,72) decomposes in a Zypj-linear combination of

By p,>i elements, denoted cl,, , >i(3) in gr??—[%i, which defines in an unique way:
Cln,p,Zi : <Bn,p,§i71>Q — <Bn7p72i>Q such that 3+Cln7p72i(3) c Fi_1Hn +f1?_17{n.
- The following map is bijective:

>i—1

. . ® card D[
i,[ . D>t D > i
anJ;) : g?“p Hn — @7‘<n (g?“p_lﬂn_l )

- (grf_lﬂfir)aa card DN |
- By, >i is a basis of HZ' = HZWMT .
(1it) We have the two split exact sequences in bijection:
0 — Fity — Hy S HZH — 0
0= (Bn,..<i)og = (Bn)g = (Bn,.>it1)Q = 0.
The following map, defined in an unique way:

Cln,<p,>i: <Bn,p,§i71>(@ — <Bn,§p,2i>(@ such that 3 + Cln,gp,Zi(B) € Fi_1Hn.-

(iv) A basis for the filtration spaces FiHMT = FiH,:
Up {3+ cln,<p,2i41(3),3 € Bnp,<i} -

(v) A basis for the graded space griHNT = griH,:
Up {3+ cln<p>i+1(3),3 € Brpi}-

The proof is given in §5.2.4, and the notion of level resp. motivic level, some conse-
quences and specifications for N = 2,3,4,6’,8 individually are provided in §5.2.5. Some
examples in small depth are displayed in Appendice A.2.

Consequences, level ¢ =0:

- The level 0 of the basis elements BY forms a basis of HY = HMT~, for N =
2,3,4,6’,8. This gives a new proof (dual) of Deligne’s result (in [31]).
The level 0 of this filtration is hence isomorphic to the following algebrasﬂ

ng/kN/vM/M/%MTN — ng/kN/7M/M/HN — HMTN’,M’ — u/]_LN’,M/u .
Hence the inclusions in the following diagram are here isomorphisms:

fécN/kN/,M/M/HMTN HMTN/ .

J

féCN/kNuM/M//HN fHN/

IThe equalities of the kind HMTN = HN are consequences of the previous theorem for N = 2,3,4,‘6’,8, and
kn/kay,M/M'
by F. Brown for N = 1 (cf. [Z0]). Moreover, we have inclusions of the kind M7~/ C FaN/FNo-M/M g mT

and we deduce the equality from dimensions at fixed weight.
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- It gives, considering such a descent (ky/ky/, M/M’), a basis for FOHN = HMTn7.a
in terms of the basis of H” . For instance, it leads to a new basis for motivic multiple
zeta values in terms of motivic Euler sums, or motivic MZV .

Some others 0-level such as F kn /b P/L = 3,4 which should reflect the descent from
MT(On [$ }) to MT(Oy) are not known to be associated to a fundamental group,
but the previous result enables to reach them. We obtain a basis for:

° ’HMT(Z[%]) in terms of the basis of HM7(Osl3]),

o HMT(Os) i terms of the basis of HMT (Osl5]),
o HMT(O4) i terms of the basis of HM7 (Oali]),

5.2.4 Proofs
As proved below, Theorem 5.2.4 boils down to the Lemma 5.2.3. Remind the map 8,2’,;:

>

card @F
) @r<n (ng 17-[71 r

card 2
D> >i—1 r
az n,p ° gT H = Dr<n (gr 1H )

We will look at its image on B, ;, >; and prove both the injectivity of 83,2, as considered in
Lemma 5.2.3, and the linear independence of these elements B,, p, >;.

Proof of Lemma 5.2.3 for N = 2: The formula 243) for D, on B elements]]

2r+1 D

Dy, (ChQ2ey + 1,20, + 1)) =

227" -
@67‘:;31 M2z +1,...,2x,+ 1)
22r p:2 0. . 2r
— 5 Zz_; 1ﬂﬂz+1§r<m+mz+1 (211+1) O“ ( <, 2w + 1, Q(xi + Xip1 — T) +1,2%i40 + 1,
1-2 Z = 5:Ei§’l“<mi+xi+1 (QI )

2r
2z

(D) + 6s <oy s ( ) Lm ( 28y g+ 1,2(zy 1 t Ty — 1) F 1) (5.8)
Terms of type (D) play a particular role since they correspond to deconcatenation for the
coaction, and will be the terms of minimal 2-adic valuation.

Dy ; acts as a deconcatenation on this family:

= [0 if 2, # 0
Dy (C"(2e1 41,22, +1)) —{ "2 1. T D) ife, =0, 9
For N =2, 5};4, G20 is simply:
alp 97©H>l—>97"p 1Hn 1 EB1<2r+1<n —p+1 grp 17—[" o1~ (5.10)

Let prove all statements of Lemma 5.2.3, recursively on the weight, and then recursively on
depth and on the level, from ¢ = 0.

Proof. By recursion hypothesis, weight being strictly smaller, we assume that:
Br—1p—1,>i-1 Pr1<2r+1<n—p+1 Bn—2r—1,p—1,> is a basis of

D >i—1,B >i,B
grp—1Hy 17" Br<zr+1<n—p+1 grp VR Zar 1

1Using identity: ¢®(2r + 1) = (2727 — 1)¢(2r + 1). Projection on ¢'(2r + 1) for the left side.
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CrAamM: The matrix M} p of (a;@,(z)) 5 on these spaces is invertible.
’ 2€Ln,p, >4

Nota Bene: Here D;'(z), resp. DQ_TI_|r1 »(2) are expressed in terms of By, —1 1 >i—1 resp.

Bn727"71,p71,2i-

It will prove both the bijectivity of 8:{,2, as considered in the lemma and the linear indepen-
dence of B, ,, >;. Let divide M,?'L,p into four blocks, with the first column corresponding to
elements of B, ;, >; ending by 1:

=0 | 2, >0
Dy, M1 M2
D-ip M3 M4

According to (&9, Dy 11) is zero on the elements not ending by 1, and acts as a deconcate-
nation on the others. Therefore, M3 = 0, so Mflyp is lower triangular by blocks, and the
left-upper-block M1 is diagonal invertible. It remains to prove the invertibility of the right-
lower-block M := M4, corresponding to DJ ip and to the elements of B,, ;, >; not ending by
1.

Notice that in the formula (5.8) of Do, 415, applied to an element of B, , >;, most of terms
appearing have a number of 1 greater than i but there are also terms in By _2,—1,p—1,i—1,
with exactly (¢ — 1) “1” for type A,B,C only. We will make disappear the latter modulo 2,
since they are 2-adically greater.

More precisely, using recursion hypothesis (in weight strictly smaller), we can replace them
in grp,l’l-[fi%fl by a Zgaq-linear combination of elements in B, _2,_1 p—1,>;, which does
not lower the 2-adic valuation. It is worth noticing that the type D elements considered are
now always in By, _2,-1,p—1,>, since we removed the case z, = 0.

Once done, we can construct the matrix M and examine its entries.
Order elements of B on both sides by lexicographic order of its “reversed” elements:

(xp, Tp—1,- -+ ,x1) for the colums, (r,yp—1,--- ,y1) for the rows.

Remark that, with such an order, the diagonal corresponds to the deconcatenation terms:
r =, and z; = y;.

Referring to (B.8), and by the previous remark, we see that M has all its entries of 2-adic
valuation positive or equal to zero, since the coefficients in (5.8) are in 22" Z,qq (for types
A,B,C) or of the form Zy,qq for types D,D’. If we look only at the terms with 2-adic valuation

zero, (which comes to consider M modulo 2), it only remains in (5.8]) the terms of type
(D,D’), that is:

2r

Dari1p(C" (221 +1,...,20p + 1)) = br—z 42, (230
p

><m(21'1 + 1, . '72'1}7*2 + 1,T)

2r
2z,

+ 5mp§r<zp+mp71 ( ><m(2$1 + 1, ceey 2$p72 + 17 2(:0}771 + Tp — T) + 1) (mOd 2)

Therefore, modulo 2, with the order previously defined, it remains only an upper triangular
matrix (d,,<,), with 1 on the diagonal (0;,—,, deconcatenation terms). Thus, det M has

a 2-adic valuation equal to zero, and in particular can not be zero, that’s why M is invertible.
The Zoqq structure is easily deduced from the fact that the determinant of M is odd, and

the observation that if we consider Do, y1.,(¢™(21,...,2p)), all the coefficients are integers.
([l
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Proof of Lemma 5.2.3 for other IN. These cases can be handled in a rather similar
way than the case N = 2, except that the number of generators is different and that several
descents are possible, hence there will be several notions of level and filtrations by the
motivic level, one for each descent. Let fix a descent [ and underline the differences in the
proof:

Proof. In the same way, we prove by recursion on weight, depth and level, that the following
map is bijective:

d 9] @® card @)
)eacar i ) n

0yl 915 (Bu>ida = ®ran (975-1(Bn—1,>i-1)0 Dren (g1 (Bnzr-1,2i)0

card @7[

card @T\( E .
n—r,p—1,>i—1 18

Le the matrix M, , of (a;yp(z))zegn ., on DOrenB Gran B p 1>

invertible.

As before, by recursive hypothesis, we replace elements of level < i appearing in Dim, r>1
>i

by Zp)-linear combinations of elements of level > i in the quotient gr?_lHn_T, which does
not decrease the P-adic valuation.
Now looking at the expression for D, , in Lemma 2.4.3, we see that on the elements consid-

ered, [ the left side is:
Either ¢ (;) for type A,B,C Or ¢® (2) for Deconcatenation terms.

Using results in depth 1 of Deligne and Goncharov (cf. §2.4.3), the deconcatenation terms
are P-adically smaller.
For instance, for N = ‘6’, r odd:

2.67‘—1 - 2'6T_1
(172T71)(173r71)£ (T,E), and U3((1 727«,1)(1737«,1)

¢'(r;1) = ) > 0.

Nota Bene: For N = 8, D, has two independent components, D& and D;"¢. We have to

distinguish them, but the statement remains similar since the terms appearing in the left
side are either ¢() (irl), or deconcatenation terms, ¢V (iTg)v 2-adically smaller by §4.1.

Thanks to congruences modulo P, only the deconcatenation terms remain:

L1y...,T
oufe ()
T’p( 615"'76p7176p§
_ r—1 r Tlyeooy Tp_9,Lp_1+Tp—T
5 (=1 r—Ip, [ ® m ’ » P » P P Od P).
IPSTSIP“FI]J*I 1( ) (wp _ 1>< <€p§> C ( 61, . ,6p-2, 6p-1€p€ (m )
As in the previous case, the matrix being modulo P triangular with 1 on the diagonal, has

a determinant congruent at 1 modulo P, and then, in particular, is invertible.
O

EXAMPLE for IN = 2: Let us illustrate the previous proof by an example, for weight
n =9, depth p = 3, level ¢ = 0, with the previous notations.
Instead of By 3 >0, we will restrict to the subfamily (corresponding to A):

BY s >0 :={C™(2a+1,2b+ 1,2¢ + 1) of weight 9} C

Bos,>0 :={¢™(2a+1,2b+1,2¢c + 1)(™(2)° of weight 9}

!Elements in arrival space are linearly independent by recursion hypothesis.

Hie. of the form ¢™ ( Tl TP ), with €; € &1 for N = 8, ¢; = 1 else.
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Note that (™(2) being trivial under the coaction, the matrix Mg 3 is diagonal by blocks
following the different values of s and we can prove the invertibility of each block separately;
here we restrict to the block s = 0. The matrix M considered represents the coefficients of:

C"2r+1)@¢™2er+1,2y+1) in  Dyi13(¢M(2a+ 1,20+ 1,2¢+ 1)).

The chosen order for the columns, resp. for the rows [l is the lexicographic order applied to
(¢,b,a) resp. to (r,y,z). Modulo 2, it only remains the terms of type D,D’, that is:

_ 2 —
D2r+1,3(§m(2a + 1; 2b+ 17 2c+ 1)) = 6c§T§b+c (22) <m(2a + 17 2(b +c— T) + 1) (mOd 2)'

With the previous order, ]/\2/973 is then, modulo off

D, ¢\¢ |71,7]5371]351]1,71]51,3]3,33][153]3,1,5|1,35][1,1,7
D, ¢"(7,T) | 1 0 0 0 0 0 0 0 0 0
D1,¢™(5,3) | 0 1 0 0 0 0 0 0 0 0
D1, ¢™(3,5) | 0 0 1 0 0 0 0 0 0 0
D,¢™(L7) | 0 0 0 1 0 0 0 0 0 0
D3, ¢™(5,7) | 0 0 0 0 1 0 0 0 0 0
D3,(™(3,3) | 0 0 0 0 0 1 0 0 0 0
D3, ¢™(1,5) | 0 0 0 0 0 0 1 0 0 0
D5, (™3, 1) | 0 0 0 0 0 ;) 0 1 0 0
Ds,¢™(1,3) | 0 0 0 0 0 0 G) 0 1 0
D7, ¢™(1,T) | 0 0 0 0 0 0 (é) 0 %) 1

As announced, M modulo 2 is triangular with 1 on the diagonal, thus obviously invertible.

Proof of the Theorem 5.2.4.

Proof. This Theorem comes down to the Lemma 5.2.3 proving the freeness of B, , >; in
grf’;’-[%i defining a Z,qq-structure:

(4)

(i)

By this Lemma, By, ;, >; is linearly free in the depth graded, and 8;’&,, which decreases
strictly the depth, is bijective on B,, p >;. The family B, <p >s, all depth mixed is then
linearly independent on .7-'5‘) H=E C .7:? HZHMT ' easily proved by application of 63{72.
By a dimension argument, since dim ]-?H?’MT = card B, <p,>i, we deduce the
generating property.

By the lemma, this family is linearly independent, and by () applied to depth p — 1,
grf?—[? C ger%i’MT.

Then, by a dimension argument, since dim gr? HZPMT = card By, p,>i we conclude on
the generating property. The Z,qq structure has been proven in the previous lemma.
By the bijectivity of af;_ﬂ, (still previous lemma), which decreases the depth, and using
the freeness of the elements of a same depth in the depth graded, there is no linear
relation between elements of By, . >; of different depths in HZ* C HZ*M7. The family
considered is then linearly independent in HzZ*. Since card B, . >; = dim HZ*M7 | we
conclude on the equality of the previous inclusions.

Me. for ¢™(2a +1,2b+1,2¢c+ 1) resp. for (Dary1.3, ™2z + 1,2y + 1)).
"Notice that the first four rows are exact: no need of congruences modulo 2 for D; because it acts as a
deconcatenation on the base.
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(731) The second exact sequence is obviously split since By, >i+1 is a subset of B,. We
already know that B,, is a basis of H,, and B,, . >;+1 is a basis of ’H%”l. Therefore, it
gives a map H,, < HZ'T! and split the first exact sequence.

The construction of ¢l,, <p >i(z), obtained from cl,, , >;(x) applied repeatedly, is the
following:

T € By, <i—1 is sent on T € HZ" = (B,, <p >i)g by the projection 7y ; and so
r—T € F;_1H.

Notice that the problem of making cl(z) explicit boils down to the problem of describing
the map mg; in the bases B.

(iv) By the previous statements, these elements are linearly independent in F;HMT. More-
over, their cardinal is equal to the dimension of F;HM7T. It gives the basis announced,
composed of elements = € B, . <;, each corrected by an element denoted cl(z) of

(Bn,.>it+1)0-

(v) By the previous statements, these elements are linearly independent in gr;H,,, and by
a dimension argument, we can conclude.

O

5.2.5 Specified Results
5.2.5.1 THE CASE N =2.

Here, since there is only one Galois descent from H? to H!, the previous exponents for level
filtrations can be omitted, as the exponent 2 for H the space of motivic Euler sums. Set
Ziodd = {% ,a € Z,be27 + 1}, rationals having a 2-adic valuation positive or infinite. Let
us define particular families of motivic Euler sums, a notion of level and of motivic level.

Definition 5.2.5. C B2 ={(™ (2w + 1, 231 + 1,22, + 1)((2)™F, 2; > 0,k € N}.
Here, the level is defined as the number of x; equal to zero.

- The filtration by the motivic (Q/Q,2/1)-level,
FiH :={3 €H, suchthat D{'3 € F;_yH ,Vr>0,D3, 3 € FiH}.

Le. F; is the largest submodule such that F;/F;—1 is killed by D;.
This level filtration commutes with the increasing depth filtration.
REMARKS: The increasing or decreasing filtration defined from the number of 1 appear-

ing in the motivic multiple zeta values is not preserved by the coproduct, since the number
of 1 can either decrease or increase (by at the most 1) and is therefore not motivic.

Let list some consequences of the results in §5.2.3, which generalize in particular a result
similar to P. Deligne’s one (cf. [31]):

Corollary 5.2.6. The map M7 — GMT" s an isomorphism.
The elements of By, (™ (2z1+1, ..., 2z, + 1)((2)* of weight n, form a basis of motivic Euler
sums of weight n, H2 = HM72 and define a Zoqq-structure on the motivic Euler sums.

The period map, per : H — C, induces the following result for the Euler sums:

Each Euler sum is a Z,44-linear combination of Euler sums
C(2z1 +1,...,2x, + 1)((2)*, k > 0,2; > 0 of the same weight.
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Here is the result on the 0t level of the Galois descent from H! to H2:

Corollary 5.2.7.
]_-OHMTQ — ]_-OHQ _ HMTI — Hl.

A basis of motivic multiple zeta values in weight n, is formed by terms of B, with 0-level
each corrected by linear combinations of elements of B, of level 1:

Bl = ¢M2r 41,22, T DCM@2)° + D ey (™20t 1., 2y, + DEN(2)

y; 20
at least one y; =0

> BaalM2z+ 1., 22 T 1C™(2)%, 30 > 0,0y, Bz € Q,

lower depth q<p,z; >0

at least one z; =0 E II:E 9122 2= ngp s
Honorary. About the first condition in [5.1.3] to be honorary:
Lemma 5.2.8. Let (™(n1, - ,n,) € H?, a motivic Buler sum, with n; € Z*, n, # 1.
Then:

V1 , Mg 7& -1 = Dl(gm(nl,"' ,np)) =0

Proof. Looking at all iterated integrals of length 1 in £, I'(a;b;c), a,b,c € {0,£1}: the
only non zero ones are these with a consecutive {1,—1} or {—1,1} sequence in the iterated
integral, with the condition that extremities are different, that is:

I(0;1; 1), 1(0; =151), I(1; =1;0), I(—=1;+1;0), I (—1; £1; 1), I (1; 415 —1).

Moreover, they are all equal to +1log”(2) in the Hopf algebra A. Consequently, if there is
no —1 in the Euler sums notation, it implies that D; would be zero. O

Comparison with Hoffman’s basis. Let compare:

(i) The Hoffman basis of H! formed by motivic MZV with only 2 and 3 ([20])
B = {¢(™(x1,...,x1), where z; € {2,3}}.

(i1) B!, the base of H! previously obtained (Corollary 5.2.7).

Beware, the index p for B¥ indicates the number of 3 among the x;, whereas for B!, it
still indicates the depth; in both case, it can be seen as the motivic depth (cf. §2.4.3):

Corollary 5.2.9. B} p 18 a basis of grd

7 » <Bﬁp>(@ and defines a Zoqq4-structure.
Le. each element of the Hoffman basis of weight n and with p three, p > 0, decomposes into

a Zogq-linear combination of B}W elements plus terms of depth strictly less than p.

Proof. Deduced from the previous results, with the Z,44 structure of the basis for Euler
sums. |

5.2.5.2 THE cAses N =3,4.

For N = 3,4 there are a generator in each degree > 1 and two Galois descents.

Definition 5.2.10. - Family: B := {(m (””11115‘) (2im)>™ x; > 1,8 > 0}.
- Level:
The (kn/kn,P/1)-level s defined as  the number of z; equal to 1
The (kn/Q, P/P)-level the number of x; even
The (kn/Q, P/1)-level the number of even x; or equal to 1
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. Filtrations by the motivic level: F' \HN =0 and F] M1 is the largest submodule
of HN such that F/HN JFL_ 1N is killed by 97, where

{D}} for [ = (kn/kn, P/1)
7" = {(D5,)r>0} for [ = (kn/Q, P/P)
(D§, (D, )rs0}  for [ = (kn/Q, P/1)

REMARKS:

- As before, the increasing, or decreasing, filtration that we could define by the number of
1 (resp. number of even) appearing in the motivic multiple zeta values is not preserved
by the coproduct, since the number of 1 can either diminish or increase (at most 1),
so is not motivic.

- An effective way of seeing those motivic level filtrations, giving a recursive criterion:

FiNIQPIPay {3 €H, s t.¥r>0,D5.(3) e FNO U v >0, D5, (3) € ]-“fN/Q’P/PH} .

We deduce from the result in §5.2.3 a result of P. Deligne (i = 0, cf. [31]):

Corollary 5.2.11. The elements of B:Xp,Zi form a basis of gr?%n/.ﬁ-_l?—[n.

In particular the map GMT~ — GMTN s an isomorphism. The elements of BY, form a
basis of motivic multiple zeta value relative to puy, HY .
The level 0 of the filtrations considered for N'|N € {3,4} gives the Galois descents:
Corollary 5.2.12. A basis of/H,Jy/ is formed by elements of BY of level O each corrected by

linear combination of elements BY of level > 1. In particular, with £ primitive:

- Galois descent from N' =1 to N = 3,4: A basis of motivic multiple zeta values:

. 201 +1,..., 22, + 1 Ylyevos Y
BI,N:: m ’ ’ p m(9)s - m ’ »IpP m(9)s
¢ ( T L Z O S L)
at least onely; even or =1

Zlyeey R
+ Z ﬂw,sz <1 , ,1 q> Cm(2)s y Ti > Oaaw,yaﬂw,z cQ
lower depth q<p, yrtt ’E
at least one even or =1

- Galois descent from N' =2 to N = 4: A basis of motivic Euler sums:

) 201 +1,..., 2z, + 1 Yy ool
B2’42: m( ’ ’ P )m25+ g m< ’ ’p>m2s
¢ L...,1,& ) Z> v L...,1,& @

at least one even

Zlyees 2 s

lower depth q<p
2;>0,at least one even

- Simalarly, replacing &4 by &3 in B%4, this gives a basis of:

]_-53/@,3/37_[7% _ anMT(Z[%]).
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- A basis of f(lfN/kN’P/lH,]y = ’HnMT(ON), with N = 3,4:

Ty, T , Yty Y :
BNunram:: m p m9ys z m p m(9)s
¢ (1,...,1,5)C &+ Z> Gt (1,...,1,5 <@

at least one 1

Zlyeee9 R
+ Z ﬁl’,zgm (1 ’ ’1 qf) gm(2)s , i >0, gy B2 € Q
lower depth q<p rrrto
z;>0,at least one 1

1
Nota Bene: Notice that for the last two level 0 spaces, H#T(ON), N = 3,4 and H{;AT(Z[SD,
we still do not have another way to reach them, since those categories of mixed Tate motives
are not simply generated by a motivic fundamental group.

5.2.5.3 THE cAsg N =28.

For N = 8 there are two generators in each degree > 1 and three possible Galois descents:

with H*, H2 or H'.

Definition 5.2.13. - Family: B := {(‘“ (617.9?.1,’6'1;11:6?5) (2im)>™ x; > 1,¢; € {£1} s > 0}.
- Level, denoted i:

The (ks/k4,2/2)-level  is the number of  €; equal to —1
The (ks/Q,2/2)-level €; equal to —1 + even z;
The (ks/Q,2/1)-level €; equal to —1, + even x; + x; equal to 1.

. Filtrations by the motivic level: F' \H® = 0 and F|H® is the largest submodule
of M8 such that F)H3/F|_ 18 is killed by D', where
(D% = Dy %)rs0} for [ = (ks/k4,2/2)
gl = (D54 *Dir’il)rzm(D§T)T>o,(DEf)r>o} for [ = (ks/Q,2/2)
(Dgr-i-l - D2_r£+1)T>0’ Dfa Dl_fa (Dgr)T>0’ (D2_r£)7“>0} fOT’ |— = (k8/Qa 2/1)

Corollary 5.2.14. A basis of/H,Jy/ is formed by elements of BY of level O each corrected by
linear combination of elements BY of level > 1. In particular, with & primitive:

8 — 1: A basis of MMZV:

. 201 +1,...,2z, + 1 Ylse-or Y
31,8:: m( ’ ’ P )m25+ a m( ’ s JIp m(9)s
C 17”"175 C ( ) yi@llﬂaﬁt?&evenor:l w7yC 61""76p7176p§ C ( )
oronee;=—1
Zlyenny 2
+ Z ﬂz,sz (Ell qu) Cm(Q)S , Tj > Oaaw,yv ﬂm,z cQ
yo ey €q

q<p lower depth, level >1

8 — 2: A basis of motivic Euler sums:

. 201 +1,..., 22, + 1 Ylyeoos Y )
82,8:: m( ’ ’ p )m25+ § a m( ’ s JIp m(9ys
C 17'."175 C ( ) y; at least one even w7yc 61""76p7176p§ C ( )
or one e;=—1

€1,..

Zlyeeey R
+ E : ﬁw,zgm <~ ’ ang) Cm(2)s » Lg Z Oaaw,yaﬁw,y S Q
lower depthq<p ° Eq
with level>1
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8 — 4: A basis of MMZV relative to piy:

64;8 i m (zlv"'7$}7> 2i7)° + Qg m( Y, -5 Yp > 2i7)s
{C 1,...,1,¢ (2im) Z w6 €1y €p—1,€p€ (2im)

at least one e;=—1

Zlyeeesy R . .
+ Z ﬁz,sz (~ ’ ,~q ) (QZﬂ)éam,yaﬁm,z €Q
lower de €1y- - qu
pth, level >1

5.2.5.4 THE CASE N = ‘6.

For the unramified category M7 (Og), there is one generator in each degree > 1 and one
Galois descent with #1.

First, let us point out this sufficient condition for a MMZV ,; to be unramified:

Lemma 5.2.15.

Let (™ (nl’ o ,np> € HMT(O6[%]) a motivic MZV,,s,  such that : I
€1,-.-,€p
Eachme{l 66} Ny, Ny MT(O¢
I T m ( 6)
OR  Eachm; € {1,&'} hen, ¢ €1,...,€p <A

Proof. Immediate, by Corollary, 1.4l and with the expression of the derivations ([2:4.2)

since these families are stable under the coaction. O
Definition 5.2.16. - Family: B:={¢™ (7773 ) (2im)*™, 2 > 1,5 > 0}.

- Level: The (k¢/Q,1/1)-level, denoted i, is defined as the number of even x;.
- Filtration by the motivic (k¢/Q,1/1)-level:
Fe/@UN916 — 0 gnd FF/C VS s the largest submodule of HS such that
F/QU g6 ) 700/ 06 4o filed by 9ke/QL/Y) — { DS, r> o}.
Corollary 5.2.17. Galois descent from N’ =1 to N = ‘6’ unramified. A basis of MMZV:
g den (Bt B Y g S e (U ey

y; at least one even

ARRRREE
+ Z ﬂw,zcm <1 1 Z) Cm(Q)S ’ am,yvﬂm,z S Q;zi >0
lower depth, level >1 i
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Chapter 6

Miscellaneous uses of the
coaction

6.1 Maximal depth terms, gr>_ #,

max

The coaction enables us to compute, by a recursive procedure, the coefficients of the terms
of mazximal depth, i.e. the projection on the graded grflax’Hn. In particular, let look at:

- For N =1, when weight is a multiple of 3 (w = 3d), such as depth p > d:
g Hsa = QC™(3)".

- Another simple case is for N = 2, 3,4, when weight equals depth, which is referred to
as the diagonal comodule:

1 p
gr?’H,p =Q¢™ <§N) )

)
The space g7 .«

could generalize.

HN is usually more than 1 dimensional, but the methods presented below

6.1.1 MMZV, weight 3d.

Preliminaries: Linearized Thara action. The linearisation of the map o: Ug® Ug — Ug
induced by Ihara action (cf. §2.4) can be defined recursively on words by, with 7 € puy:

o: Uge®Ug—Ug: acel =ega (6.1)
acege,w = ef([n].a)eyw + effe,([n].a) w + efe,(acw), '
where * stands for the following involution:

(a1 -an)* == (—1)"an - -a1.

For this paragraph, from now, let N = 1 and let use the commutative polynomial setting,
introducing the isomorphism:

p:Ug— Q) :=Qyo, Y1, ¥ns ) (6.2)
eplerel’ - -ereq” > Yoyt T

Remind that if ® € Ug satisfies the linearized LU relation, it means that ® is primitive for
Ay, and equivalently that ¢y, = 0, with ¢,, the coefficient of w in ®. In particular, this
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is verified for ® in the motivic Lie algebra g™.
This property implies for f = p(®) a translation invariance (cf. 6.2 in [21])

f(yanla"'ayp):f(oayl_yoa"'ayp_yo)' (63)
Let consider the map:
f'—>7 Wheref(xl,-u,zp) = f(O,SCl,"',SCp)-

If f is translation invariant, f(yo,y1,...,¥p) = f(¥1 — Y0, ", Yp — Yo)-
The image of g™ under p is contained in the subspace of polynomial in y; invariant by
translation. Hence we can consider alternatively in the following ¢ € g™, f = p(¢) or f.

Since the linearized action o respects the D-grading, it defines, via the isomorphism p :
gr5Ug — Qlyo, . . ., yr), graded version of (6.2), a map:

°: Qlyo, .-,y ]®Qyo, - - -, ¥s] = Qlyo, - -, Yr+s] , which in the polynomial representation is:
S
fgg(y()v cee 7yT+S) = Z f(yza R ayi+r)g(y05 e YisYidr41, .- 7y7“+s)
i=0

+ (_1)degf+T Z f(yi-i-Ta SRR yi)g(?JOa e Yi—1, Yikrs - ’yT-i-S)' (65)
=1

Or via the isomorphism 5 : gryUg — Q[z1, ..., x,], graded version of ([6.4) o (G.2):
S
fog(z, ... arys) = Z f(@ig1 = @i Biger — 20)9(Y1, - -+, Ty Tigr 15+ -+, Trges)
=0

S
+ (_1)degf+r Z f($i+,~_1 — Lidryeey Ly — xH_T)g(acD ey Li—1y Ly o o - ,$T+s). (66)
=1

Coefficient of ¢(3)?¢. If the weight w is divisible by 3, for motivic multiple zeta values,
it boils down to compute the coefficient of ¢(™(3)% and a recursive procedure is given in
Lemma 6.1.1.

Since gr?’l—[%d is one dimensional, generated by ¢™(3)?, we can consider the projection:

9 greHi, — Q. (6.7)
Giving a motivic multiple zeta value (™ (n1,...,nq), of depth d and weight w = 3d, there
exists a rational an = 9(¢(n1,...,n4)) such that:
¢™(ny,...,ng) = %Cm(ii)d + terms of depth strictly smaller than d.! (6.8)

In the depth graded in depth 1, 0g}*, the generators are:
Tair1 = (—1)"(adeg)* (e1).

We are looking at, in the depth graded:

exp, (73) = Z %0_3 0---003 = Z i!(ad(eO)Q(el))gn. (6.9)
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In the commutative polynomial representation, via p, since p(G2,11) = 237, it becomes:
1
2 (.2 2 2
S ato(edol - (sheat) )
n=0

Lemma 6.1.1. The coefficient of (™ (3)? in (™ (n1,...,np) of weight 3p is given recursively:

Unq,ny = 5np:304n1,...,np,1
p
+ E (5nk—123an17~»7nk—1727"164»17»»»7”13 - 5nk+123an11---1nk—17nk+1721---7np)
np=1

+2 E nk 123001, ng_1—2,nk41,.,np +6nk+123a"17~-7"k71,nk+1—27~~,np)' (610)

nk:2
REMARKS:

- This is proved for motivic multiple zeta values, and by the period map, it also applies
to multiple zeta values.

- This lemma (as the next one, more precise) could be generalized for unramified motivic
Euler sums.

- All the coefficients « are all integers.
Proof. Recursively, let consider:

Pogi(@1, - xng1) 1= zioPu(@1, -, 2n). (6.11)
By the definition of the linearized Thara action ([G.3):

n
Pn+1(.’1]1, e ;xn-',-l) = Z(xi-‘,-l - ‘Ti)2Pn($1) Ly L2y - - - ’-Tn-‘,-l)
i=0
n
— Z(%‘H —2i)2Po(T1, i1, Tig 1y e ey Tg1)
i=1
= ($n+1—xn)2Pn(ac1, T —|—Z —Zi2) (@i T2 —2Ti41) Pr (X1, iy Tigay e oy Tng1)-

Turning now towards the coefficients ¢' defined by:

Py(x1,-- ,zp) = g c'zy' ---xp,  we deduce:

L1 yeeesl —2,83,..., ) _ vy lp—2,tp—1—2 01 yereslp—2,0p—1—1
ctrotr = —5i1:00 43 ’Zp+5ip:20“ i 1+5 in=0 crnte-2,ip-172__ 9§ ip=1 ottt
ig>2 ip-122 122

+ E (8i_122Cin iy 21y — Oi 1 22Cin i ingr—2riy)

i =0

+2 E 1k 121G i1 — 2,041, + 5ik+1Zlcilvwv»ik—l77;k+172-,---77;p) )

'Lk—l

which gives the recursive formula of the lemma. O
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Generalization. Another proof of the previous lemma is possible using the dual point of

view with the depth-graded derivations D3 j, looking at cuts of length 3 and depth 10

A motivic multiple zeta value of weight 3d and of depth p > d could also be expressed as:

Qn

(N1, np) = "

However, to compute this coefficient oy, we could not work as before in the depth graded,;

i.e. this time, we have to consider all the possible cuts of length 3. Then, the coefficient

emerges when computing (D3)°%.

Lemma 6.1.2. The coefficient of (™(3)¢ in (™(na,...,n,) of weight 3d such that p > d, is
given recursively:

™(3) 4+ terms of depth strictly smaller than d. (6.12)

an17"'1np = 6"p:3anla---7"p—1
p
+ E (67%123 Qnyyng 1 =20k 41,00 6"k+123 an17~-~,nk1,nk+1—27~--,np)
k1 k#p
k=1
nkzl
p
+2 E 75"16—12304"17»»»77116—1727”164»17»»»1”;0 + 5"'k+123 Qny,np—1,npp1—2,0.,np
k=1 k#p
n,k:‘z
p—1
+ (_6"136#123 Ony,npo1—1nggo,ny T 6nk+223a"17-~7"klank+2_17-~~7"p>
1
k=1

np=1,np41=1

p—1
+ E (6"&1ZS Qny,np_1 nigznp T 26"k+222a"17~~177/k11”k+21---7"p)

k=1 or k=1 k#p—1
np=1,np41=2

p—1
+ E (_267%122 Qnyyng_1,mkq2,.mp 6"k+223 O‘"17~~-,nk1,nk+2,---7np) :

P or k=1 k#p—1
np=2,np41=1

(6.13)

Proof. Let list first all the possible cuts of length 3 and depth 1 in a iterated integral with

{0,1}:

CONTRIBUTION OF A 2: '

)

CONTRIBUTION OF A 1:

1.0 1 0 0 - 0 0 1 0 1 -
1 1.0 0 0 - S0 00 0 1 1 -
)
CONTRIBUTION OF A 3: Lo o0 0 100t
The coefficient above the arrow is the coefficient of (™(3) in I™(cut), using that:

C{n(2) = 72<m(3)ﬂ Cm(lﬂ 2) = Cm('?))ﬂ Cm(Qﬂ 1) = 72§m(3)7 C{n(lv 1) = Cm(g)

Therefore, when there is a 1 followed or preceded by something greater than 4, the contri-
bution is 1, while when there is a 2 followed or preceded by something greater than 3, the
contribution is +2 as claimed in the lemma above. The contributions of a 3 in the third line

IThe coefficient « indeed emerges when computing (D3 ;,)°P.
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when followed of preceded by something greater than 2 get simplified (except if there is a 3
at the very end); when a 3 is followed resp. preceded by a 1 however, we assimilate it to the
contribution of a 1 preceded resp. followed by a 3; which leads exactly to the penultimate
lemma.

Additionally to the cuts listed above:

+

o o0 1 1 1 - 1 1 1 0 0O -
WiITH A 11: ,

.0 1 0 1 1 - .1 0 1 1 0 -
WITH A 21: ,
WITH A 12: 0o 1 1 0 1 . 1 1 0 1 0 -

This analysis leads to the given formula.
O

In particular, a sequence of the type Y12X resp. X21Y (X > 2,Y > 3) will imply a
(3) resp. (—3) times the coefficient of the same sequence without 12, resp. 21.

Examples: Let list a few families of multiple zeta values for which we have computed
explicitly the coefficient « of maximal depth:

Family Recursion relation Coefficient «
"({3}7) agsyr = agzpe 1
¢™({1,2}) aqrap = Qg2 1
¢™(2,4,3{3}7) Q2.4,{3)p = Qg4 (3}p—1 + 20 3}pt1 2(p+1)
™(4,2,{3}7) Q2 {3}p = Q42 (3}p-1 — 20¢3}p+1 =3Pt 41
Cn({-?)}p,ll, 2) Oé{g}p74,2 = 720&{3};&1 —2
¢C"({3}7,2,4) Qsir 2,4 = 20(310-12 4 — 20 {3}p+1 (—2)P5 + 3
¢™(2,{3}7,4) Q3 (3)p,4 = 2003 (31014 ortt
¢™(4,{3}7,2) Qg (3yp,2 = —204 [3yp-12 (—2)Ptt
¢™(1,5,{3}") Q15,33 = Q15 31 — 1 —-(p+1)
¢m({2)7, {4}7) aye {4y = A2y (ayr 1 221
({217, {31{4}?) Qgoyr (3ya{a}r = 2%Qqoyp (4}p 2021
"({2}7,p +3) a2} pt3 = 20 2)p-1 py1 2v
Cm@a 3,4, {3}p) Q234 {3}p = Q23 4 {3}p—1 T 2042,4,{3}? 2(17 + 1)(17 +2)
¢ (2, 1,5,4, {3}p) (21,54,{3}r = ¥21,54 {3}p—-1 — (X234 {3}p *w
¢™ ({2} a+3,{3}") Qasp = 200136 + Qasp—1 20 (*7%)
¢"™({5,1}") with 3" | a= Z?ﬁ;l(*l)iﬂa{m}v or p—lwith 3 1

FOR INSTANCE, for the coefficient av.p.. associated to (™({3}¢,2, {3}?, 4, {3}°), the recursive
relation is:

Qgsbie = Olgsbie—1 + 20g:b—1:c — 20q—130:¢; ~ Which leads to the formula: (6.14)

TAny ¢™({5,1}?) where we have inserted some 3 in the subsequence.

UEither a 3 has been removed, either a 5, 1 resp. 1,5 has been converted into a 3 (with a sign coming from if we
consider the elements before or after a 1). If it ends with 3, the contribution of a 3 cancel with the contribution of
the last 1.
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S a—1 c—1
_ a [a+l+m—1) (btktm—1)
Qahie = (—2) Z Z 2 (@ — Dlilm! i Q0 tie—m+2 Z Waa,k;o;km
o k=0m= 0
b—1la—1 (k+l+c_1)'
_2 k2l—. et
+;;§( ) Kll(c — 1)1 Cerkib=ho

Besides, we can also obtain very easily:

4 2 b+c+1
ag;00 = (—2) 3 + 30 ko= 2" agoe=2(c+1), and  agpe = 2b+1( c )
Indeed, using 3" p_, (“1%) = ("Eer), and 3o (n — k) (¥) = (2F5), we deduce:

Qo = 200p-1ic + Qopze—1 = 207! 2;3) (ngﬁl 1) (c—k+1)+ Z (Ctkl 1))
__ob b+c+1 b+c—1 b+c—1 __ob b+c+1
=2 () = (5 + (U >)—2+l< o).
Conjectured examples:
Family Conjectured coefficient o
p+1,.2p
C™({2,4}7) ayp such that 1 — /cos(2z) = %
¢™({1,5}7) Euler numbers: cos}ll(m) > a(gi), i
¢™({1,5}7,3) | (—1)PEuler ZigZag numbers Es, 1 = 22PT2(22+2 1)t

6.1.2 N > 1, The diagonal algebra.

For N =2,3,4, grdng is 1 dimensional, generated by C“(é), where £ € uy primitive fixed,
which allows us to consider the pro jection:

Giving a motivic multiple zeta value relative to upy, of weight d, depth d, there exists a
rational such that:

d

1,...,1 e 1 .

< E = O‘—gm + terms of depth strictly smaller than d.  (6.16)
€1y...,€4 n! 13

The coefficient « being calculated recursively, using depth 1 results:

Lemma 6.1.3.
1 if N € {2,3}.
(0% = .
homcd Z k ?ﬁll ﬂek ( €n—16kF1 e, € 1€k €Rt1,€d 5%4%162#1 eq, o €h—1,€k+ 1€k, Ed ZfN =4.
€k <
. 2 ) €L — -1
with Be, = { 1 eJ;se .

Proof. In regards to redundancy, the proof being in the same spirit than the previous section
(N =1,w = 3d), is left to the reader]] O

IThe cases N = 2, 3 correspond to the case N = 4 with 8 always equal to 1.

109



REMARKS:

- For the following categories, the space grdng is also one dimensional:

MT<(96 B]) MT<(96 B]) MT (05), MT (O10), MT (O12).

d
The recursive method to compute the coefficient of (™ (717) would be similar, except

that we do not know a proper basis for these spaces.

D

- For N =1, and w = 2 mod 3 for instance, gr ., Hn is generated by the elements of

the Euler § sums basis:
¢™(1, s,2) with s composed of 3’s and one 5, ¢¥™(3,3,...,3,2) and ¢*™(1,3,...,3,4).

6.2 Families of unramified Euler sums.

The proof relies upon the criterion [5.1.3] which enables us to construct families of honorary
multiple zeta values by iteration on the depth, with parity patterns up to depth 5.

Notations: The occurrences of the symbols F or O can denote arbitrary even or odd inte-
gers, whereas every repeated occurrence of symbols E; (respectively O;) denotes the same
positive even (resp. odd) integer. Beware, here, O, must be different from I, whereas O
and n may be 1. The bracket {-,...,-} means that every permutation of the listed elements
is allowed.

Theorem 6.2.1. The following motivic Euler sums are motivic multiple zeta values:

o DEPTH 1: All the depth-one Euler sums except (™(1)..

o DEPTH 2: All the depth-two Euler sums with odd weight (without 1).

In even weight: o o

¢™(0,0),(™(E, E)
And some linear combinations:
¢(™(n1,m2) + (" (z,n1), (" (n1,M2) + " (1, n2), (™ (01, M2) — (™ (n2, 7).
(2" = 1)¢™ (1, 1) + (2" 71 = 1)¢C™ (T, ma).

o DEPTH 3: In even weight:

gm({Eaaab})7 Cm(O,E, 6)3 Cm(b’ Ea O)a Cm(O_la Ea O_l)a gm(OlaEa Ol)a Cm(E_la Ea E)

In odd weight: L o o
("({E,E,0}),(™(E,0,E),(™(E,O,E).

And some linear combinations:
¢"™(n1,m2,M3) + (=1) (™ (M3, n2,ma) with ny + n3 odd .
o DEPTH 4: In even weight:
¢™(E,0,0,E),(™(0,E,0,E),(™O,E,E,0),(™(E,O, E,0),
(™(E,01,E,01),(™(01,E,01,E),(™(E1, B2, F1, Es).

o DEPTH 5: In odd weight: . o
Cm(OlaElaOlaElaol)-
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Examples: These motivic Euler sums are motivic multiple zeta values:
grn(%7 ]‘45 ﬁ)? grn(]‘?? ﬁ’ 17)7 grn(ﬂ’ 147 ﬂ)’ Cm(65 2_37 ﬁ? 10)’ Cm(]‘B’ ﬂ’ 137 ﬂ’ 13)'
REMARKS:

- This result is true for motivic Euler sums, and implies the analogue statement for Euler
sums.

- Notice that for each honorary MZV above, the reverse sum is honorary too, which was
not, obvious a priori, since the condition C1 below is not symmetric.

- For instance, for a motivic Euler sum in depth 2, weight n, 3 is unramified if and only
if D1(3) =0 and Dn,1(3) =0.

Sufficient condition. Let present the sufficient criterion used here to verify that a motivic
Euler sum is unramified.

Nota Bene: This criterion is not completely necessary since it does not cover the unramified
Q-linear combinations of motivic Euler sums, such as those presented in Chapter 4 (mo-
tivic Euler # sums with odd and —even), neither some isolated symmetric examples where
the unramified terms appearing in Da,41 could cancel between them. However, it embrace
general families of Euler sums which are unramified.

Let 3 an Euler sum. These four conditions are sufficient for 3 to be unramified:

cl : NoTin 3.
[Tmplies that D1(3) =0.]

©2 : For each beginning (n1, . ..,n;) of odd weight, the remaining Euler sums ¢(n;+1, ..., np)
is a MZV.
[For terms of Type A0 in ([@IT)/.

c3 : If a cut removes an odd-weight part (such that there is no symmetric cut possible),
the remaining Euler sums (right side in Type A,B), is a MZV.

[For terms of Type A,B in (G17).]

c4 : Each sub-sequence (n;, ...,n;) in 3, of even weight such that Hi:l € # 1 is symmetric.
[To cancel terms of Type C in (617).]

These conditions refers to the expression of the derivations Da,41 (from Lemma 2:4.2):
D2'r+1 (Cm (nla cee anp)) = (AO) 627‘-1,-1:2;‘;:1‘71“([(”1; e ani) b2y Cm(ni'i‘l) e np)

[
(A B) Z *52gyg|nj\qnj‘_y(nj—1v cees M1, nz)
) [
1<% Foasy<inil Gy -y (i 157w+ 5 15-1,75)

2r41=Y"7 _Ingl—y

+<[ . (n'-‘rla"' an’—lan’) =
() + Z 4 g;ig,ﬁgl{ el =10 ! T ®C™ (. mimn, Ty, ).

k=1

[
1<i<j<p 7C|nj\—1(nj*1"” ’n”l’ni)

2r42=3"7 _ . Ingl

(6.17)

Proof of Theorem 6.2.1. The proof is done by recursion on the depth, and using the previous
criterion. D; is obviously 0 for all these elements, which validates already the condition
(c1). Tt is sufficient then to prove that all the Euler sums appearing in the right side when
computing Da,41(+), 7 > 0 are unramified (i.e. multiple zeta values); it corresponds to the
conditions (¢2),(¢3), (¢4), according which term we consider.
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Terms C Since Euler sums with an 1 can not be unramified, we have to cancel terms of
type €. The symmetry condition (C4), obviously true for the elements in the theorem,
get rid of these terms. Beware, for the few linear combinations of MES given in the
theorem, the cuts of type (C) get simplified together (left to the reader).

Terms A,B Checking that the right side are unramified is straightforward once we have
listed these right side (cf. the table below), using recursion hypothesis (since Da;41

decreases the depth).

REMARK: No need to write when the right side of A,B has depth 1, since it would be
obviously a multiple zeta value. In particular, depth 2 Euler sums claimed (odd weight

or (0,0),(E,E)) are directly proved. Idem for depth 3 Euler sums of even weight
since the corresponding right sides (in A0,A,B terms) have depth < 2 and odd weights,

which by recursion hypothesis, is a MZV.

Therefore, let list now the possible right sides of a cut (such that there is not a sym-
metric cut in (617) that would cancel it) for Euler sums (up to reversal symmetry) of

depth > 3, or depth 3, odd weight:

Terms AQ Terms A,B
(O,E,E) (E,E) ,(0,0)
(E,O,E) / (E,E)
(E,0,E) / (E.E),(E,E)
(E,0,0,FE) (O, F) (E,O,E),(E,O,E),(E,O,F),(E,0),(0,E)
(O,E,O,E) (E,0,E),(0,E) | (E,O,F),(O,E,E),(O,E,E), (O, E)
(O,E,E,0) (E,E,0),(E,0) | (E,FE,0),(0,0,0),(0,E,E),(0,E),(E,O)
(E,0.,E,0, (E,0) (E,E,0),(E,O,E),(E,0),(E,0)
(E_I)_E_27 E)_E_Q) /_ _ (9’ E’ E_)’ (E’ O’ E) iELE’ O)’ (E’ Q)’ (_’_E)
(O1,FE1,01,E1,0q) (El,Ql,El,Ol), (E,Ql,E,Ol),_(O_l,E,E,Ol),(Ol,E,Ol,E),
(01, FE,01) (O,FE,0),(0,E,0),(0,0)
The verification that these terms are unramified is straightforward by recursion.

Complying with [Conditions ¢ 1 — 4]

Moreover, under these conditions, the only general unramified families of motivic Euler
sums that we can obtain in this way (without linear combinations), are the one listed in
Theorem 6.2.1, as proved below.

Sketch of the proof. Notice first that the condition ¢4 implies in particular that there are
no consecutive sequences of the type (since it would create type C terms):

SEQUENCES NOT ALLOWED : 00,00, EE, FE.

It implies, from depth 3, that we can’t have the sequences (otherwise one of the non allowed
depth 2 sequences above will appear in A,B terms):

SEQUENCES NOT ALLOWED : EEO, EEEO, EEOE, EOE, EEO,OEE, EOE,EOE, 0OO.

Going on in this recursive way, carefully, leads to the previous theorem.

For instance, let 3 is a motivic Euler sum 3 with no 1, and let detail two cases:

Depth 3, Even weight: The right side of D, 1 has odd weight and depth smaller than 2,
hence is always MZV if there is no 1 by depth 2 results. It boils down to the condition
c4: 3 must be either symmetric (such as O1FEO; or Ey EE; with possibly one or three
overlines) either have exactly two overlines. Using the analysis above of the allowed
sequences in depth 2 and 3 for condition 3,4 leads to the following:

(Eaav 6)5 (67 67 E)a (OaEa 6)7 (65 Ev 0)7 (67 E55)5 (O_la Ev 0_1)7 (Olvﬁa 01)7 (Ev Fa E_l)
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Depth 4, Even weight: Let 3 = (™ ("1 """ "4). To avoid terms of type ¢ with a right

€1,...,€4
side of depth 1: if ejese3 # 1, either ny + no + n3 is odd, or ny = n3 and e = —1;
if egegeq # 1, either ngy + ng + ny is odd, or ng = ny and e3 = —1. The following

sequences are then not allowed:

(E,0,0,E),(E,0.0,F),(E.0,E,0),(E,E,0,0),(0,0,E,E).

6.3 Motivic Identities

As we have seen above, in particular in Lemma [£4.3] the coaction enables us to prove some
identities between MMZV or MES, by recursion on the depth, up to one rational coefficient
at each step. This coefficient can be deduced then, if we know the analogue identity for
MZV, resp. Euler sums. Nevertheless, a motivic identity between MMZV (resp. MES)
is stronger than the corresponding relation between real MZV (resp. Euler sums); it may
hence require several relations between MZV in order to lift an identity to motivic MZV. An
example of such a behaviour occurs with some Hoffman * elements, ((iv) in Lemma [L.Z43]).

In this section, we list a few examples of identities, picked from the zoo of existing identi-
ties, that we are able to lift easily from Euler sums to motivic Euler sums: Galois trivial
elements (action of the unipotent part of the Galois group being trivial), sums identities, etc.

Nota Bene: For other cyclotomic MMZV, we could somehow generalize this idea, but there
would be several unknown coefficients at each step, as stated in Theorem 2.4.4. For N = 3
or 4, we have to counsider all D,,0 < r < n, and there would be one resp. two (if weight
even) unknown coefficients at each step ; for N = ‘6’, if unramified, considering D,,r > 1,
there would be also one or two unknown coefficients at each step.

Example: Here is an identity known for Euler sums, proven at the motivic level by re-
cursion on n via the coaction for motivic Euler sums (and using the analytic identity):

({31 = ¢"({1,2}") = 8"¢™({1,2}"). (6.18)
Proof. These three families are stable under the coaction:
Dora(C"({3}7") = d2r11=3sC"({3}°) @ ("({3}"7%).

Dora(C"({1,2})) = dar1=3:¢"({1,2}°) © (T({1,2}"77).
Dora(C"({1,2}7)) = darp1=s:¢"({1,2}7) @ ("({1,2}"77).
Indeed, in both case, in the diagrams below, cuts (3) and (4) are symmetric and get simpli-
fied by reversal, as cuts (1) and (2), except for last cut of type (1) which remains alone:

(1) (2) 4) 3)

cmfapm: 0L 000 00 ey gy 0 LD OO L

Similarly for ¢™({1,2}"): cuts of type (3), (4) resp. (1), (2) get simplified together, except
the first one, when € = ¢ in the diagram below. The other possible cuts of odd length would
be (5) and (6) below, when € = —€’, but each is null since antisymmetric.

", where o alternates between +1.
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Galois trivial. The Galois action of the unipotent group U is trivial on Q[L™?2"] =
Q[¢™(2)"]. To prove an element of Ha, is a rational multiple of L™2" it is equivalent
to check it is in the kernel of the derivations Da,11, for 1 < 2r+1 < 2n, by Corollary 2.4.5
We have to use the (known) analogue identities for MZV to conclude on the value of such
a rational.

Example:

- Summing on all the possible ways to insert n 2’s.

2p+n 7r4p+2n,m
> (2n+1)(4p+2n+ 1)1

(6.19)

¢™({1, 3} with n 2 inserted ) = ( "

- More generally, with fixed (a;) such that 3" a; = n: [I

Z (™(200 1,200 3,2%@) 1,20 Cr-1 3 2%Cn) c QrirtIm  (6.20)
€Sy,

Proof. In order to justify why all the derivations Do,11 cancel, the possible cuts of odd
length are, with X = {01}e2i+2F1{10}2i+at1 ... f01}a2i-2{10}2i-1:

(0 1)a2i+1 (1 0)0r2i+1+1 X (0 1)(12;‘4»1 (1 0)02]+1+1
All the cuts get simplified by ANTIPODE LU 7] which proves the result, as follows:

- Cut (1) for (ao, ey (J,Qp) with Cut (2) for (0,0, ceey 25—1,Q2541 0, 24, 02542, ,a2p).

- Similarly between (3) and (4), which get simplified considering the sequence where
(a2i+1, ceey a2j) is reversed.

O

Polynomial in simple zetas. A way to prove that a family of (motivic) MZV are polyno-
mial in simple (motivic) zetas, by recursion on depth:

Lemma 6.3.1. Let 3 € H. a motivic multiple zeta value of depth p.
If the following conditions hold, ¥V 1<2r4+1<mn, m:=[%|—1:

(i) Dary1p(3) = B3(C™(3),¢™(5), ..., C™(2m +1),(™(2)),
with PTS(X1,"' X, Y) = Z r myinh...Xg{”YS.

25+ (2k+1)-ar=n—2r—1

(i) For ag,a, >0 : === Ltmes e fk e Im2
Then, 3 is a polynomial in depth 1 MMZV:

3=al™m)+ D apansCtB) M Em+ 1) ¢ (2) [

254> (2k+1)ar=n

"Both appears also in Charlton’s article.[26].

1 . ay,... ar—1,...,am,s
In particular, g, = o n@r— e n@me® for q,. £ 0.
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Proof. Immediate with Corollary [2.4.5] since:
Dory1p (CT(3)* -+ C™(2m + 1)*(M(2)°) = ar (™ (3)" - (T (2r+1)" -+ - M (2m41)"m (™ (2)°.
O

Example: Some examples were given in the proof of Lemma 43 the following family is
polynomial in zetas Ll:
¢CM({1,m).

Sum formulas. Here are listed a few examples of the numerous sum identitiecs known for
Euler sumd which we can lift to motivic Euler sums, via the coaction. For these identities,
as we see through the proof, the action of the Galois group is trivial;, the families being
stable under the derivations, we are able to lift the identity to its motivic version via a
simple recursion.

Theorem 6.3.2. Summations, if not precised are done over the admissible multi-indices,
with w(-), resp. d(-), resp. h(-) indicating the weight, resp. the depth, resp. the height:

(i) With fized even (possibly negative) {a;}, <, of sum 2n
Z C™(Ao(1)s - -5 Qo(p)) € QE™M™,
oeS,

In particular
¢™({2n}"),¢"({2n}") € Qm"P ™,
More precisely, with Hoffman [5] V1

Z Cm (2n17"'72nk>:

S n;=2n
1 2k —1
92(k—1) ( k >Cm(2n) -

(ii) With Granville [/9], or Zagier [83 V!

Yo =M.

w(k)=n,d(k)=d

L54)

1 2k =25 =1\ movm )
Z 22k—3(2j+1)B2j< k] >C (25)C™(2n —27).

j=1

(iii) With Aoki, Ohno [Z]VT 11

> emw= (7))o,

w(k)=n,d(k)=d

> emm=2(y a2 e,

w(k)=n,h(k)=s

IProof method: with recursion hypothesis on coefficients, using:

min(n—1,2r—1)

Dar1 (€™ ({1}, m)) = — > CHWY 2r+1-5) @ ¢ {1} T m —2r + ).

j=max(0,2r+2—m)

"Usually proved considering the generating function, and expressing it as a hypergeometric function.
M This would be clearly also true for MMZV*.
VThe precise coefficient is given in [T1], (48) and can then be deduced also for the motivic identity.
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(iv) With Le, Murakami|67]""

0 if n odd.
Z (_1)d(k)cm(k) = (=Dzg™" g pmn =S (n+1 2%k .
Zk o (U2 =22%)Bye if n even.

w(k)=n,h(k)=s BCES 2k

(v) With S. Belcher (?)V1

Zw( =2 ¢™(odd,odd > 1,0dd, ..., odd,odd > 1) = a™P{™(2)", a™ e Q
d(-)=2p .

S emis (™ (odd, odd > 1,0dd, .., odd > 1,0dd) = S, BUPCR(2i 4+ 1)C™(2)"~, B € Q
d(-)=2p+1 .

S wiy=2nt1 (™(odd > 1,0dd, ..., odd, odd > 1) = S rPCm™M2i4+ 1) @) P e

d(-)=2p+1

REMARK: The permutation identity (i) would in particular imply that all sum of MZV at
even arguments times a symmetric function of these same arguments are rational multiple
of power of ™.

Many specific identities, in small depth have been already found (as Machide in [66], resp.
Zhao, Guo, Lei in [51], etc.), and can be directly deduced for motivic MZV, such as:

n—1 1 = BC(QTL) N
> C(2k,2n — 2k) ¢ 4F 447k = (n + 4+ 45¢(2n)
k=1 2k —1)(2n—2k—1) = 3(n—3)¢(2n)
1 = §<(2n) — 1¢(2n - 2) (2)
> C(26,25,2n - 2i = 2j) § ij+jk+ki = 232((2n) + (4n — {5)C(2n — 2)¢(2)
ijk = 155(n —3)¢(2n) — 55¢(2n — 2)(2) + 252((2n — 4)¢(4)

Proof. We refer to the formula of the derivations D, in Lemma [A.1l For many of these
equalities, when summing over all the permutations of a certain subset, most of the cuts
will get simplified two by two as followed:

C™ (K1, .oy kiskivt,s -y kj kjyn, - ka) @ 0;---10F7 110k =1 g ml gk =1 ok =l

(6.21)
Cm(k/’l, s kg kj, e ki, k?j+1, ey k/’d) 2 0;--- 10k =110k =1 ... pkir2 =1 ki~ 1 gk =1L ;1.

(6.22)
It remains only the first cuts, beginning with the first 0, such as:

52”1:23:1 K ¢™ (k1y. oo ki) @ C™(kig1, -y ka) (6.23)
and possibly the cuts from a k; = 1 to kg, if the sum is over admissible MMZV: U
d—1 d
~ppraxa kS | R ke 20+ 1 - S ki |@C™ ko kica, Y Ry —2r
j=it1 j=it1
(6.24)

(i) From the terms above in Da,11, (621), and ([6.22]) get simplified together, and there are
no terms ([6.23)) since the a; are all even. Therefore, it is in the kernel of Go,11<2nDa2ry1
with even weight, hence Galois trivial.

For instance, for ¢™({2n}"), with €, ¢’ € {£1}:

ViThe person(s) at the origin of the analytic equality for MZV, used in the proof for motivic MZV.
!There, beware, the MZV at the left side can end by 1.
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e 02 0 X 0 0 ¢ -, X=0"9"2{£e0 1} — €022 alternated sign in X.

Either, e = ¢’ and X is symmetric, and by reversal of path (cf. §4.1.1), cuts above get
simplified, or ¢ = —¢ and X is antisymmetric, and the cuts above still get simplified
since I™(€; 091 X;0) = —I™(0; X0%F s €) = —I™(0; X0%FL; —e).

(ii) Let us denote this sum G(n,d), and G;(n,d) the corresponding sum where a 1 at the
end is allowed. As explained in the proof’s preamble, the remaining cuts being the
first ones and the one from a k; = 1 to the last kg:

d—1 d—1
Dsr1(G(n,d)) = G (2r+1,1)@G(n—2r—1,d—i)=» G} (2r+1,1)@G(n—2r—1,d—i) = 0.
1=0 1=0

(iii) This can be proven also computing the coaction, or noticing that it can be deduced
from Euler relation above, turning a MZV™* into a sum of MZV of smaller depth, it

turns to be:
n—1i—1\ .,
k).
oy (0 )ew
i=1 w(k)=n,d(k)=1
For the Aoki-Ohno identity, using the formula for MZV %, and with recursion hypoth-
esis, we could similarly prove that the coaction is zero on these elements, and conclude

with the result for MZV.

(iv) Let us denote this sum G'_(n,s) and G_ (1)(n, s) resp. G_ 1(n,s) the analogue sums
with possibly a 1 at the end resp. with necessarily a 1 at the end. Looking at
the derivations, since we sum over all the permutations of the admissible indices, all
the cuts get simplified with its symmetric cut as said above, and it remains only the
beginning cut (with the first 0), and the cut from a k; = 1 to the last kq, which leads
to:

|
—

S

Dovir(G_(n, 5)) = (G[ﬁ(l)(w +1,0) = GL@2r+1,i+1) - G, (2r + 1,i))®G_(n—2r—1, s5—i)

@.
o HM
[}

s—

(G (2r+1,i) =G (2r +1,i+ 1)) @ G_(n — 2r — 1,5 —i).

(=)

1=
Using recursion hypothesis, it cancels, and thus, Gu(n,s) € Q¢™(n). Using the
analogue analytic equality, we conclude.

(v) For odd sequences with alternating constraints (> 1 or > 1 for instance), cuts between
k; and k; will get simplified with some symmetric terms in the sum, except possibly
(when odd length), the first (i.e. from the first 1 to a first 0) and the last (i.e. from
a last 0 to the very last 1) one. More precisely, with O any odd integer, possibly all
different:

Dari1 > ¢™0,0>1,---,0,0>1)
w(-)=2n
d(-)=2p

p—1

— +C[(O7O>1770>170) m —

_E E 0.0 5 1.....0>1,0) ® E ¢MO0,0>1,...,0,0>1)=0.
i=0 | w()=2r+1 w(-)=2n—2r—1

d(-)=2i+1 d(-)=2p—2i—1
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Dori1 > ¢™0>1,0,...,0,0>1)

w(-)=2n+1
d(-)=2p+1

p—1
=> | > <o>n0...,0>n|le > MO0>1,-,0,0>1).
=0 w(-)=2r+1 w(-)=2n—27r
d(-)=2i+1 d(-)=2p—2i—1

By the previous identity, the right side is in Q@?”~2", which proves the result
claimed; it gives also the recursion for the coefficients: 5P = Zf;ol Brtan TP,

Dayt1 S ™0,0>1,...,0>1,0) | =

w(-)=2n+1
d(-)=2p+1
+Zf:_01 (Z w(-)=2r+1 Cm(O’O > 17 .. 70)) ® Z w(-)=2n—27 Cm(ovo > 17 e 70 > 1)
d(-)=2i+1 d(-)=2p—2i—1

-1 +¢™(0,0>1,...,0
+Zf:0 Zw(-):2T+1, —CmEO,O>1,---,Og )

d()=2i+1

® Z w(-)=2n—2r Cm(o >1,0,---,0> 170)

d(-)=2p—2i—1

As above, by recursion hypothesis, the right side of the first sum is in Qm2"~2",

which proves the result claimed, the second sum being 0; the rational coefficients
~ are given by a recursive relation.

O
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Appendix A

A.1 Coaction

The coaction formula given by Goncharov and extended by Brown for motivic iterated
integrals applies to the %, *x, f or #ff version by linearity [l. Here is the version obtained for
MMZV «,%*, £ or #4{1

Lemma A.1.1. L being a sequence in {0, £x} resp. {0, L4}, with possibly 1 at the beginning,
€ € {£x} resp. € {£f}, and sc := sign(e).

D I™(0;L;1) = S r=acn I} (0; A; 50) @ I™  (0; 5, B 1)

w(A)=r

+ Y I'"ssBi0)® | IM(0;4,€,0,C:1) + IM(0; 4,0,0,C31)

L=AecBOC
w(B)=r Te,0 To,0

+ Y I'(0;B,s) @ | IM(0;4,0,6,C;1) + I7(0; 4,0,0,C;1)

L=A0BeC
w(B)=r To,e To,0

+ > I'Y(0;B,s0) ® | IT(0;4,€,0,C51) — I™ (0; A,0,¢,C; 1)

L=AcBeC
w(B)=r Te,0 To,e

+ Z I'(0;B; —s¢) @ I™(0; A, €,0,C;1) +1" (5, B;0) ® I™(0; A,0, —¢, C; 1)

L=AcB—eC
w(B)=r Te0

To,e

I[ (567 B7 756) ® I;n (05 A7 €, —€, C? 1)

Te,—e

TRecall the identities 2229 to turn a % (resp. #) into a 1 (resp. two times a 1) minus a 0.

" For purpose of stability: if there is a +1 at the beginning, as for x or f versions, the cut with this first +1
will be let as a T+1,0 term (and not converted into a T¢ o less a Tp,0), in order to still have a 1 at the beginning;
whereas, if there is no +1 at the beginning, as for xx or #ff version even the first cut (first line) has to be converted
into a Ty, less a Tp,0, in order to still have a € at the beginning.
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REMARKS:

- We will refer to these different terms T for each cut in the whole appendix when using
the coaction.

- The expression of D, for specific MMZV x and Euler f sums is simplified below thanks
to antipodal and hybrid relations, and is fundamentally used in the proofs of Chapter
4.

Proof. The proof is straightforward from (2743)), using the linearity (with [Z29) in both
directions:

(i) First, to turn e into a difference of £1 minus 0 in order to use (Z.45]).

(7) Then, in the right side, a £1 appeared inside the iterated integral when looking at
the usual coaction formula which is turned into a sum of a term with e (denoted T o
or Tp ) and a term with 0 (denoted Ty ) by linearity of the iterated integrals and in
order to end up only with 0, € in the right side.

Listing now the different cuts leads to the expression of the lemma, since:

- The first line corresponds to the initial cut (from the s + 1 first 0).
- The second line corresponds to a cut either from =4e¢ to 0; the +¢ being +1.
- The third line corresponds to a cut from 0 to +e.

- The fourth line corresponds to cut from € to e, with two choices: a ¢ being fixed to 0,
the other one fixed to 1. Replacing 1 by (¢) + (0), this leads to a Ty, a T¢ o and two
Tb,0 terms which get simplified together.

- The last lines correspond to cuts from € to —e, with three possibilities: one being fixed
to 0, the other one fixed to £1, or the first being 1, the second —1. This leads to a
Teo,aTy—c and a T, ., since the Tp ¢ terms get simplified.

O

A.1.1 Simplification rules

This section is devoted on the simplification of the coaction, in the case of motivic Euler
sums: we gather terms in Da,41 according to their right side, using relations (§4.2) between
motivic iterated integrals I' € £ to simplify the left side.

Notations: We use the notation of the iterated integrals inner sequences and represent
a term of a cut in Da,41 (referring to Lemma 4.4.2) by arrows between two elements of
this sequence. The weight of the cut (which is the length of the subsequence in the iterated
integral) would always be considered odd herell The diagrams show which terms get sim-
plified together: i.e. these which have same right side, but opposite left side, by the relation
considered in the coalgebra L.

COMPOSITION : The composition rule (cf. §1.6) in the coalgebra £ boils down to:
I'(a; X;b) = —I'(b; X;a), with X any sequence of 0, £1, +x, 44. (A1)

Hence, when considering a cut, we can exchange the extremities of the integral if we
change of sign; this exchange is considerably used in this section, without mentioning.

ISince we are here only interested in motivic Euler sums, the non zero weight graded parts in the coaction are
these corresponding to odd weights: Da,11, 7 > 0.
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ANTIPODE LW: L7 1t corresponds to a reversal of path for iterated integrals:
I'a; X;b) = (=1)*1'(b; X; a) for any X sequence of 0,41, +*, +f. Hence:
- If X symmetric, i.e. X=X , these cuts get simplified, since they have same right

side (I™(-+-0eiT10---)) while their left side are opposite

0 {e}' € X e {& o0

N

~ X -
- If X antisymmetric, i.e. X = —X, the following cut is zerd: ¢ ‘.

SHIFT For MES *x and, when weight and depth odd for Euler fif sums:

(SHIFT) (5 _y(n1,--- ,np) = Chy_1(n2, -+ ,np, 1) (A.2)

0 0 e X e 0% eo. e 0% e X e 0* 0.

or
The index e, and e5 means they can have different sign, otherwise e is fixed in +x, +4.

Cut For ES #4, with even depth™, odd weight:

To,+4 Ty
To.o 0.4 +£,0

0 0" 0 X 4 0 oz 0° iﬁxooao(AB)

Cut SHIFTED I For ES #, with even depth™!, odd weight:

Tap0 To, 44 Ty To.ty

44 0% 4+ X 0 0% 4t 4 00 0 X £ 0% Lf

or
(A.4)
Minus For ES #, with even depth, odd weight:
+f O 0 X 0 0 +f (A5)

TIe XeMth0) = —1'(0; €11 X e) = —1'(0; €T X5 6).
T Since: I'(e; X;—€) = I'(¢; X;0) 4+ I'(0; X;—¢) = I'(e; X;0) — I'(—¢; X;0) = I'(e; X;0) — I'(—e; —X;0) = 0.
" Note that the depth considered here needed to be even is the depth of the bigger cut.
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S1GN For Euler #f sums with even depth, odd weight, i.e. X € 0, +4{}*:

I'(0; X;€) = I'(0; X; —¢).  Hence this cut is zero : ¢ X e . (A.6)

SIGN hence also means that the 4 sign at one end of a cut does not matter.

A.1.2 MMZV x
Let express each MMZV™* as:

C*’m(anacla cr, Cp, 2(11))-
As we will see below, this writing is suitable for the coaction expression, since most of the
cuts from a 2 to another 2 get simplified by the rules above. The iterated integral corre-
sponding:
I (0; 1,0, (6,001 s 0971 (%0)% %, ..., 0971 (x0) Y %, ..., 0% (x0)% ;1) . (AT
Considering Ds,41 after some simpliﬁcationsﬂ

Lemma A.1.2.
D2T+1 (C*’m(an,Cl, c, Cpy 20”))) = (AS)

5, Z |:53Sa56i+11C:;i1a(2aj_ﬂ’ 2% @ C*,m(, c, 2%, QB’ Cit1, )

— 0<B<a;
1<] -
(oG @9 TPTE L2500 ) 8y s (2%, 20 T

756i+1:1<**,[(2a]‘7ﬁ, ceey 2ai+1) + 65]‘+1:1C**7[(2ai+17ﬁ7 AR 2aj)
F8 o=t RN QUtEITE | gairey gy pol(Quinitai—B | gaie)

B>a;yq B>ay
*k, [ a;r1+a;—pB+1 a; *ok, [ a;r1+a;—pB+1 a;_
+5ﬁ>ai+1<ci+272(2 o i=h [ 2 ﬂb+2) - 5ﬂ>a]‘ ch72(2 o i=h 9y 2% 1)

®C*7m(. .. 72(1",Cl'+1, 2ﬁ,cj+17 o )

—Bscace, 1 (0L (24P 2% ) @ ¢RM(- - ,ci,Qﬂ,oz,Q“f,'--)].

Cj—Q
0<p<a;

Proof. We look at cuts of odd interior length between two elements of the sequence inside
By SHIFT, the following cuts get simplified:

More precisely, Tp,o resp. 1o« above get simplified with Ty ¢ resp. T4 below (shifted by

"Here 6, underlines that the left side must have a weight equal to 2r + 1.
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one at the right), by colors, two by two. The dotted arrows mean that in the particular case
where ¢; = 1 resp. ¢; = 1, only Ty ¢ get simplified.
The following arrows get simplified by SHIFT [A.2]), still above with below and by colors:

It remains: - - -

Cyan arrows above resp. below are Ty , resp. Ty, terms; magenta ones above resp. below
stand for Tp,0 and T, resp. for Tp o and Ty o terms.

If ¢; = 1 (the case ¢; = 1, antisymmetric, is omitted), it remains also the following cuts
(T, for black ones or Ty . for cyan ones):
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x x 0 ( 0O"' % . 0 0972 % 0 (* 0)
Gathering the remaining cuts in this diagram, according the right side:

*,m ; . .
1. For ¢*™(---,2% a, 2P, cjqq, - ):
. x| Qit1 a;j—pB ¢ ) *k, [ ait1 a;—B—1
(e a2 (b 40 ) a2 )
=Psaj SPsaj

Using SHIFT ([A2)) for the first term and then using the definition of ¢* it turns into:

Os<aceiis (({““‘(q+1 —a+ 1,20 2% ATy ot (20 2“1“B—1))

0<B<a;

*, [ i ._B3—-1
:63Sa<ci+1C1 (Ci+1—0é+1,2a +1,...,2a] B )
0<B<a;

Applying antipodes A, 0 A, 0 Ay

_ *,1 a;—p @it1
- 53§a<ci+1 Ci’+1—0¢(2 J PR 2 ¢ ),
0<B<a;

which gives the first line in (A.g]).

2. For ¢*™(---,2%, a,2%,¢jt1,- - - ), the corresponding left sides are:

N *%, [ it a;i_1
— (5(’f‘7+2§u§(’4+1 +(><\*v'{7l ) CCI_JF’IJFC],?&(Q L, 2%
cip1>c;

N *k, [ i i
+ <(Scl+1+2<a<c‘,j + 0a=ciyq+1 ) Cc’i+1+cj—0¢(2aj 1,29 +1)

cj>cit1
H3<ace Gt (27 0g) — B3cace, (N (2970, cig)
Using Antipode * and turning some ¢ into 1 + 0':
= F03<acer Gt o (2,1, 0)) = G3gace, (W (2970, Cit1)
+(71)Cj<Ci+15min(cj7ci+1)<a§max(cj7Ci+1)<:;:r’i+cj_a(2ai+l, ., 201
= 53§0¢<Ci+1czi74[r17a(cj’ R 2ai+1) - 63Sa<6j C:;La(ci+17 SRR 2(1]‘71)

This gives exactly the same expression than the first and fourth case for 8 = a; or aj,
and are integrated to them in (A.g]).

3. For ¢*™(- - ,Ci+1,2ﬂ,cj+1,"')5ﬁ

N . —(B— . x| . . —B—
—(Sci+1>3 ;* (20’] s 1,...,2%*1)4—5 cj+1>3 Go (20’1,...,20’”1 B 1)
0§ﬂ<aj 0<B<a;41
Hok, [ aiy1+a;—B+1 aiy2 okl roaip1+a;—p+1 aj_1
FBamais (1, o (20O L g0E) g (Il (b OEL L g0y
Cit1
*x, [ i— i *x, [ i+1— i
o= CRNQWTP 2% 1§ o OO 2%)
1<B<ay 1<B<a;t1
*x,lroa;+a;1—p a; **,Lgai1+a;—fB aj—
B erpamt (N QUTOIB | gaisa) g, (Fnl(ainita =B gaj-1.
B>aj4q B>aj

Tt includes the case a = 2.
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4. For ¢*™ (- ,¢;, 28, 0, 2%, -+ ):

((52<a<,;,| :j*;[a(Qajfl, cee 2ai7ﬁ> + <(S4<(w<::]+l +0  a=s > C:;LKQJFQ(Q%*I, ceey 2aiﬁ1))
- 0< B+ i 1

0<B<a; 0<B<a;—1 sa

Antisymmetric to 1.

This leads to the lemma, with the second case incorporated in the first and last line. [l

A.1.3 Euler § sums with even, odd

Let us consider the following family:
¢hm ({even, odd}x) ,1.e. negative even and positive odd integers

which, in terms of iterated integrals corresponds to, with e € {£#}:

m . 1’00dda_ﬂ GaOOdda_G .
I (0, { 1’ Oeven’ ﬁ Y ? 6, Oe'ljen’ € Y ) 1 * (A'g)
Lemma A.1.3. The family ('™ ({evem, odd}*) is stable under the coaction.

Proof. Looking at the possible kinds of cuts, and gathering them according the right side:

- € 00’71 €11 X €51 ()b71 €5 - 6i+1)( A (y17y27-~-~,yn)7

X =097 1e0% 1. g, 00T
with .
where y; = t+a; according to the sign of €

These cuts have the same form for the right side in the coaction:
I™(0;--- ,€,0%;,---;1).

Notice there would be no term 7, _. in a cut from € to —e because of SIGN (A.0) identity,
therefore you have there all the possible cuts pictured.

A priori, cuts can create in the right side a sequence {e,0°"*", —e} or {6, 0044, e} inside the
iterated integral; these cuts are the unstable ones, since they are out of the considered fam-
ily. However, by coupling these cuts two by two, and using the rules listed at the beginning
of the Annexe, the unstable cuts would all get simplified.

Indeed, let examine each of the terms (1 — 6)@:

IThere is no remaining cuts between e and e. Notice also that the left sides of the remaining terms have an
even depth.
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Term Left side Unstable if | Simplified with
diﬁ_’ll_a(al, cooyap,b), | neven the previous cut:
(1) with a < a. either (6) by MINUS
or (5) by Cur
or (3) by Cur!
gﬂ(an, cea,a1) €it1 = €j the previous cut:
(2) with o = a. either with (5) by SHIFT
or with (6) by CUT SHIFTED
or with (3) by SHIFT.
fggu_a_l(al, .o.yap) | nodd the following cut:
(3) with a > b. either (1) by CuT
or (2) by SHIFT
or (4) by SHIFT.
Q&Z_Q_l(an, ...,a1) | nodd the previous cut:
(4) with o > a . either (6) by CuT SHIFTED
or with (5) by SHIFT
or with (3) by SHIFT.
fdiﬁ_’ll(al, ceyQp) € = €51 the following cut:
(5) with o = b. either with (1) by Cur,
or with (2) by SHIFT,
or with (4) by SHIFT.
- gﬂﬂl(an, -+-aj,a) | meven the following cut:
(6) either (1) by MINuUs
or with (2) by CUT SHIFTED
or with (4) by CUT SHIFTED
([l
Derivations. Let use the writing of the Conjecture .44
¢H™(By,171,...,17  B,) with B; < 0 if and only if B; even . (A.10)
Nota Bene: Beware, for instance B; may be equal to 1, which implies that v; = v;11 = 0.
Indeed, we look at the indices corresponding to a sequence (2%°,¢1,...,cp,2%) as in the
Conjecture 4. 4.4
Bi=2a;+3 b — b0, Z%ESC,#Q
By =2a9+1-46, ,vii=c¢i —3+20.,, where ¢ P
' ¢ 1 ife=1
By =2a,+2— 0, 56'{0 olse |
Lemma A.1.4.
Doyi1 (¢F™(Bo, 17,...,177,B,)) =1 (A.11)

Op | =08 2<p<n41 CPY(B; — B41,1%, ... 1777 @ (B™(By... | B;, 17, B, 1%+ ... B)

0<y<7vit1-1

N v v
+5Bi+1<B<gi’+l+BjiB(1’Yj goeey 171+2)
_5BJ<BC§;LI+Bj_B(1’Yi+2, e, 179) ®§ﬁ,m(BO coo By, 10 BN B

L , 1 ,
+§gi+173(1%“a o, Bj) — gjfg(l”% ooy Biy1)

1t depends on the sign of b4+ 1 — « here for instance.
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51§B§Bi+1+1 Cu,K(Bi-‘rl - B+ 13 1’Yi+23 SRR 1Vj+1—’Y_1) ® Cmm(BO ) 1’Yi+la Bf l“'aBj-‘rla XN Bp) )

0<y<7vj41-1
where B is positive if odd, negative if even.
Proof. Nota Bene: For the left side, we only look at odd weight w, and the parity of the
depth d is fundamental since the relations stated above depend on the parity of w — d.

For instance, for such a sequence (17, B;,...,B;_1,1%) (with the previous notations),
weight — depth has the same parity than d., + dc;.

The following cuts get simplified, with SHIFT, since depth is odd (B; odd if ¢;, ¢;41 # 1):

Yit1—1 Bit1—-3 B;—3 Vi+1—1
© €41 €11 €it1 07+t 0 0 v €; 0 0 0% €541 Eji,-l e

It remains, where all the unstable cuts are simplified by the Lemma A.1.4, cuts that we can
gather into four groups, according to the right side of the coaction:

(i) ¢*™(Bg--+, B, 17, B, 1%+ ... B,).
(i) ¢*™(Bo--+,Bi, ,Bj,...,Bp).
(iid) C*™(Bo- -+, By, 1Vi+1, B 1%+ B).
(iv) ¢*™(Bo---, 17+, B, 17, Bjy1,...,Bp).

It remains, where (iv) terms, antisymmetric of (¢) ones, are omitted to lighten the diagrams:

THere 4, indicates that left side has to be of weight 2r + 1.
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-1 — — -1
© €i41 E;-Y:rll €i4+1 OB‘+1 3 0 0 e €j 0 0 OB] 3 €j+1 E’YH—I te

We just have to list the terms remaining in these two diagrams. Gathering all the terms of
the coaction according to the right side as above gives:

(¢) Looking at the magenta terms, with2 < B < Bj—lor B=Bj+1and 0 <y < ;41 —1:

N i 1= — )l j i+1—Y) — ; j 1=y —
gj*B+1(1’Y1""51’Y+1 v 1)_4‘%]_73(17]’-“’174@ ’y)__Cﬁ[(Bj_B+1’1’YJa"'51V+1 v 1)

With even depth for the first term and odd for the second since otherwise the cuts
would be unstable and simplified by CuUT; here also ¢; 11 # 1.
(#3) These match exactly with the left side of (i) for B = B; and (iv) terms for B = B;.
(i4i) The following cuts:

6Bi+1234§-;117B(1%+2’ .. .,Bj) — (SszBcgj’iB(le, .. .,Bi+1)+

5Bi+1<BCgii7i1+ijB(1’yj7 Ce 1%‘*2) — 6Bj<BCgii1+ijB(1w+27 Ce 1%).
The parity of weight — depth for the first line is equal to the parity of o, , +9c, , + B.
Notice that if this is even, the first line has odd depth whereas the second line has even
depth, and by CUT and ANTIPODEx, all terms got simplified. Hence, we can restrict
to B written as 28 + 3 — 6 -9, the first line being of even depth, the second
line of odd depth.

Ci+1 Cj+1

(tv) Antisymmetric of (7).
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A.2 (Galois descent in small depths, N = 2,3,4,6’,8

A.2.1 N = 2: Depth 2,3

Here we have to consider only one Galois descent, from H? to H'.
In depth 1 all the (™(3), s > 1 are MMZV. Let us detail the case of depth 2 and 3 as an
application of the results of Chapter 5. In depth 2, coefficients are explicit:

Lemma A.2.1. The depth 2 part of the basis of the motivic multiple zeta values is:

{ema1.357m) - () e 2@ H B D00 > 0}

Proof. Indeed, we have if a,b > 0, D1(¢™(2a + 1,20+ 1)) = 0 and for r > 0:

Dory12(C™(2a+ 1,20+ 1)) =¢'2r+ 1) @™ (2(a+b—17) + 1)

2r 2r —op —op 2(a+b
<5a<r<a+b <2a) + 0r=q + Ob<r<atb <2b) (272 — 1) + Srmapp (272 — 2)( ( o0 )>) .

There is only the case r = a+b where a term (™ (1)) which does not belong to FoH appears:

2(a+0)

D2T+112(§m(2a+1, 2b + 1)) = 5T_a+b(22r2)< 2b

)g[(2r+1)®(m(T) in the quotient H=",

Referring to the previous results, we can correct (™(2a + 1,2b + 1) with terms of the same

weight, same depth, and with at least one 1 (not at the end), which here corresponds only

to ¢™(1,2(a+b) +1).

Furthermore, the last equality being true in the quotient HZ1:

Dor12(C™(1,2(a +0) + 1)) = ¢'(2r + 1) ® (=6r<ast + Ormatp(272 = 2))C™(2(a + b — 1) + 1)
= 5T:a+b(272r - 2)§[(27’ +1)® CH(T)

According to these calculations of infinitesimal coactions:

(a+0b)

/2
m —
¢™(2a+1,2b+ 1) ( .

)g‘“(l, 2(a +b) + 1) belongs to FoH , i.e. is a MMZV.

O

Examples: Here are some motivic multiple zeta values:

Cm(gvg) - 6<m(175) ) Cm(’?’ag) - 15§m(177) ) Cn(5a§) - 15§m(177) ) Cn(5a7) - 21()@»111(17_1)
REMARKS:
- The corresponding Euler sums {C(Qa +1,2b4+1) — (2<‘12jb>)§(1, 2(a+b)+1),a,b > 0}
are a generating family of MZV in depth 2.

- Similarly, we can prove that the following elements are (resp. motivic) MZV, if no 1:

((A,B) C(A,B)+((4,B) if A, B odd

gg%z g; if A+ Bodd | ¢(A,B)+(-DA(ME )1, A+ B 1) if A+ B even
T.1) = 1¢(1)2 _ e [ A+B

EELT; - %2:82 C(A,B) — (-D)A(*EE7)C, AT B-T) if { A,—; e

Lemma A.2.2. The depth 2 part of the basis of F1'H is:
{¢™(2a+1,2b+ 1), (a,b) # (0,0)} .
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Proof. No need of correction (B, 2 >2 is empty for n # 2), these elements belong to F1H. O

Lemma A.2.3. The depth 3 part of the basis of motivic multiple zeta values is:

a+b+c
{g‘“(za+ 1,264+ 1,2¢+1) = > ap®¢™(1,2(a+b+c—k)+1,2k+1)
k=1

B (Q(b;cr c)) (™(2a+1,1,2(b+¢) + 1),a,b,c > o} . (A12)

where aZ’b’C € Zogq are solutions of M3 X = A%bc. With A%Y¢ such that r*"— coefficient is:

v (P00 ) (2) s (0 ) () = (2 (2)

~Orsa (22((7; v Z))) (2@; C)> orabte (2(n2; r)) (2(b2ch C)) Foesrehe @Z) (2(n2; r)) @D,

M3 the matriz whose (r, k)™ coefficient is:

Zor o2n 2r —2r 1\ _ 2(77,—7‘) _ 2r
(Sr:a+b+c(2 2)(2]{3 +5k§7"<n 2% (2 1) 6T<"_k 2k 6n—k§r<n 2(n71€) -

Proof. Let (™(2a + 1,2b+ 1,2¢+ 1), a,b,c > 0 fixed, and substract elements of the same
weight, of depth 3 until it belongs to grsFoH.

Let calculate infinitesimal coproducts referring to the formula (5.8) in the quotient #=! and
use previous results for depth 2, with n=a+ b+ c:

Dori13(C™(2a+ 1,264+ 1,2c+ 1)) =¢'2r + 1) ® [5T:b+c(2(b2t c)) (272" — 2)¢™(2a + 1, 1)
@3 = 1) (80me (U ) #brrcann () (U ) darcann () (U )

_5b§r<b+c (22) (2(712(1— 7’)) + 5c§r<b+c (22) (2(n2a_ T)> (272T - 1)>:| .

At first, let substract (2(172420))((20, +1,1,2(b+¢) + l)fuch that the D;;D%HM are equal
to zero, which comes to eliminate the term (™(2a + 1,1) appearing (case r = b+ ¢).
So, we are left to substract a linear combination

a+b+c N
> it (L2a+bte— k) + 1,2k +1)
k=1

b,c

such that the coefficients «;’”“ are solutions of the system M3sX = A®be where A%0¢ =

(A®be), satisfying in H=":
2(b+c)
2c )

Dari13 (g“‘(za +1,264+1,2c+1) — ( C(a+1,1,2(b+c) + 1)) =

Apbectr +1) @ (™1, 2(n — ) + 1),
and M3 = (my i )rr matrix such that:
Dory13(C™(1,2(a+b+c—k)+ 1,2k + 1)) = m 1" 2r +1) @ C™(1,2(n —r) + 1).
This system has solutions since, according to Chapter 5 results, the matrix M3 is invertible[l

Then, the following linear combination will be in FoH:

a+b+c
C"(2a+1,2b+1,2cF )~ Y a‘;’b’c(“‘(l,2(a+b+cfk)+1,2k+1)7(
k=1

Q(b; c>>((2a+ 1,1,2(+c) +1).

Indeed, modulo 2, Ms is an upper triangular matrix with 1 on diagonal.
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The coefficients aZ’b’c belong to Zoaq since coefficients are integers, and det(M3) is odd.
Referring to the calculus of infinitesimal coactions, A%%¢ and Ms are as claimed in lemma.
O
Examples:
- By applying this lemma, with a = b = ¢ = 1 we obtain the following MMZV:
T4 . = 804 - 450
m m
— — ™1

Indeed, in this case, with the previous notations:

—(™(1,1,7) — 6¢™(3,1,5).

27 -1 -1 51
My = _4%3 111 1 AL (2)
_1dbs 1585 1 0
64 64
- Similarly, we obtain the following motivic multiple zeta value:
= 850920 = 838338 -, 3673590 = 20351100
m m m m m 1 1 m 1
¢"(3,3,5)+ 203117C (L,7,3)+ 203117§ (1,5,5)— 203117§ (1,3,7)+ 203117 ¢"(1,1,9)-15¢"(3,1,7).
-8 15 -1 -1 210
943 31 —6 -1 387
There: Ms=| 1fo 1865 102 1| ALL2 = 8
Tt ks a8 X
64 128 64 256

Lemma A.2.4. The depth 3 part of the basis of F1'H is:

(2(a+b+c)

{Cm(2a+1,2b+ 1,2¢+1) — 8 a=o (—1)%=0 o

or ¢c=0

)Cm(1,1,2(a+b+c)+1)

2 b _
_50_0( (a2—l|)— ))C(l,Q(a +b)+1,1), at most one of a,b, c equals zero } .

Proof. Let (™(2a+ 1,2b+4 1,2¢+ 1) with at most one 1.

Our goal is to annihilate Dl_é and {Dl_é o D}, 1 }r>0, in the quotient H=1.

Let first cancel D;é: if ¢ # 0, it is already zero; otherwise, for ¢ = 0, in HZ?, according to
the results in depth 2 for Fy, we can substract (Q(Zjlrb))((l, 2(a +b) + 1,1) since:

2(a +b)

2(a +b)
2a . )

D13(¢™(1,2(a+b) + 1,1)).
2a

Dis(C™(20+1,20+1,T) = ( Y2+ + 1) = (
Furthermore, with = standing for an equality in H=!:
DIAD 414" 20+ 1,20+ 1, 26 1)) = Gy (5 ) (272 — 2" (@a 1)
= Grmnie ( (b;cr C)) (272(+e) _gyem(T),
Dy 3D311,3(C™(1,1,2(a +5+0) + 1)) = rmapppe(2 2@ HH) —2)¢7 (1)

D;;D%r-l»l,?)(cm(lv 2(0’ +b+ C) + lvi)) = 5r:a+b+c(2_2(a+b+0) - 2)Cm(T)
Therefore, to cancel D; 5 0 D3, 5
- If a = 0 we substract (2(172‘20))(‘“(1, 1,2(b+c¢)+1).

SIfe=0,weadd (*OF9)¢™(1,1,2(a +b) + 1).
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DEpPTH 4. The simplest example in depth 4 of MMZV obtained by this way, with «; € Q:

—(m(3.3,8,5)~ SOTSOTOSTON m(1,1,1,)4 SO TODIOT0 m () 1,3, 7y o000 m1,1,5.5)

*%C‘“(LM,?) + %M@(L&L?H %gmu,&&g)

*%C‘“(L&&?) + %ﬁ;’gﬁgmu@ 1,5) — %gmu@&ﬁ)
_‘1*_3(1)@(3, 1,1,7) + 513_8‘11@(3, 1,3,5) %Cm(g’ 15.3) 1 60°(3,3,1,5)

a1 ™ (1, —11)+aal™ (1, —9)¢™(2)+asC™ (1, =7)¢™(2) 2 +aaC™ (1, =5)C™(2)3 +as¢™ (1, —3)¢™(2)*.

A.2.2 N = 3,4: Depth 2

Let us detail the case of depth 2 as an application of the results in Chapter 5 and start by
defining some coefficients appearing in the next examples:

Definition A.2.5. Set aZ’b € Z such that M(aZ’b)b+1gkgg—1 = A% withn =2(a+b+1):

a-+b
2r—1 2r—1 n—2
(G (O3
2k =1} ) pi1<rren 26 ) ) pi1<r<za 2b k:zb;rl

Nota Bene: The matrix M having integers as entries and determinant equal to 1, and A
having integer components, the coefficients aZ’b are obviously integers; the matrix M and
its inverse are lower triangular with 1 on the diagonal. Furthermoredl:

(20+21—1
a,b 1
oy = (=1) ( 9% — 1 )Cia

. . 2%+ 3 . 2+ 5 . 2+ 7
apl = —(2b+1), abf22< 5 > abf316< 5 ) abf4272< . )

Lemma A.2.6. The depth 2 part of the basis of MMZV, for even weight n =2(a+b+1),

18
n_g
m 2a+1,2b+1)_ a’bm(l,n—l)_ E aybm(n—2k72k) B> 0
{c () gt (e )= 2 et (U)o
Proof. 11 Let Z = (™(2a + 1,2b+ 1) fixed, with a,b > 0.

First we substract a linear combination of (™ ("_12’2%) in order to cancel {Das,.}. Tt is

possible since in depth 2, because (' (21T) =0
n L e 2r — 1\ [ 2r m [ TL+T2—T
Dy (¢ (@1, 79) = racarenrsmans (172 (2 TNt () mem (M),
Hence it is sufficient to choose ay, such that Ma®® = A%? as in Definition A.2.5.
Now, it remains to satisfy D1 o Day41(-) = 0 (for r = n — 1 only) in order to have an
element of fng/Q’P/lHn. In that purpose, let substract 3%*¢™(1,n —1;1,¢) with 3%? as in
Definition A.2.5) according to the calculation of Dy o Da,41(-), left to the reader.
([l

IThere ¢; € N does not depend neither on b nor on a.
T'We omit the exponent ¢ indicating the projection on the second factor of the derivations D,., to lighten the
notations.
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Examples: The following are motivic multiple zeta values:
on (1) o (17) acm (1) -2 (32)

22 s (1) +5em (32)).

ve) —ssocm (12) 4+ 5¢m (1) - Tocm (3%)).

T2 azstocm (L) 4 sem (§8) - 7ocm (18) + 2016¢m (317).

s

Lemma A.2.7. The depth 2 part of the basis of ffN/Q’P/l’H,n is for even n:
21
e (TRET) - S apten (T ) bz 0w £ 0.0 ¢

For odd n, the part in depth 2 of the basis of ffN/Q’P/lHn 18:

-2 I,n—1
{Cm (xi:zQ) + (—1)”2+1<:2 3 1)("‘ ( ’;L,f ) ,T1,22 > 1, one even, the other odd }

Proof. - For even n, we need to cancel Dy, (else Dag 0 Da,(-) # 0), so we substract the
same linear combination than in the previous lemma.

- For odd n, we need to cancel D0 Ds,.. Since D10 D, (Z) = (—1)*2 (;12121), we substract
(D= ()1, n = 1).

xo—1
O
Lemma A.2.8. The depth 2 part of the basis of ng/Q’P/Pan (= HMT2 if N =4) is:
n_q
w (204 1,20+ 1Y 3 a’bm(n72k,2k) b>0
{C ( 1¢ ) kzzbﬂa’“ ¢ Le )TN
Proof. To cancel Ds,., we substract the same linear combination than above. O
Lemma A.2.9. The depth 2 part of the basis of ffN/Q’P/P’Hn is for even n:
n_g
m(20+1,264+1\ 3 aybm(n72k,2k) b>0
{C ( 1,¢ ) k;bﬂa’“ ¢ Le )T
And for odd n, the part in depth 2 of the basis of ffN/Q’P/P’Hn is:
{C"‘ (xi’zQ) ,x1,x2 > 1, one even, the other odd }
Proof. If n is even, to cancel {Da,}, we use the same linear combination than above.
If n is odd, we already have (™ (z1,22;1,€) € ffN/Q’P/P’Hn.
O
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A.2.3 N = 8: Depth 2

Let us explicit the results for the depth 2; proofs being similar (albeit longer) as in the
previous sections are left to the reader; same notations than the previous case.

Lemma A.2.10. - The depth 2 part of the basis of MMZV,, is:
m [ T1,T2 m [ 1,72 m [ T1,T2 m [ T1,T2 .
- The depth 2 part of the basis of motivic Euler sums is:

w(20+1,2041\ L (20+1,2b+1\ . (2a+1,26+1\ . (2a+1,2b+1
{C( 1e )H( 1, )“( 1 )+<( 1 )

- ab [ om (1 — 2k, 2K ) ) W [ — 2k, 2k
S IR Gl () R (i) B () R G
a,b>0

k=b+1

©f3

- The depth 2 part of the basis of MMZYV is:

o 2a+1,2b+ 1 Lem 2a 4+ 1,2b+ 1 Lem 2a+1,2b+1 L 2a+1,2b+1
17£ 71776 1775 7175

n_1
2 ab(m(n—Zk,Qk) m(n—Qk,Qk) m(n—Qk,zk) m(n—Qk,zk))
- : + + +
2 e (O e Tl )P0 e )Tl L
_pab m (Ln—1 m(Lin—1 m(Lin—1 m(Ln—1
(e (M) e () e (N5 ) v (15)) o]
Lemma A.2.11. - The depth 2 part of the basis of ffS/k4’2/2Hn is, for even n:
m [T, 22 m [ %172 m(T22) 71,72 m [ T1,22 m [ %172 ‘
{C ( 175 )+< ( 17 5) C (1775) C (71776),4 (7176)4"»( (71776)’33121}.
- The depth 2 part of the basis of ffg/Q’2/2Hn is for odd n:
{Cm (361722) +C™ (fi’g[ff) +C™ (?7_22) +¢m (x_lixg) , exactly one even xl}
The depth 2 part of the basis of F- kS/Q 2/2Hn is for even n:

z_1
m(2a+1,2b+1 m(2a+1,2b+1 2 ab n — 2k, 2k m [ n— 2k, 2k
{C ( 7176 ) +C ( 71776 ) a Z ak (C ( 7176 )JFC ( 71775 ))}

k=b+1

a,b>0
Z_1
ol 2a+1,2b+ 1 Cm 2a+1,2b+1Y 22: ot (¢m n — 2k, 2k Cm n — 2k, 2k
1,-¢ -1,-¢ W " 1,—¢ —1,-¢
= a,b>0

- The depth 2 part of the basis of ffg/Q’2/1Hn is for odd n:
m [ T1,T2 m [ %122 m [T, 22 m [T, 22
(e (M) e () re () ren (1)) et one cenn
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In even weight n, depth 2 part of the basis of ffS/Q’Q/l’Hn 18:
m(1n—1 m [ Ln—1 m [ 1Ln—1 m(1n—1
(e ) () e (V) we (M)
m(n—11 m(n—11 m(n—11 m(n—11
U{C ( 175 )JFC (7177£)+< ( 1776 )JFC ( 7175 )+

0,21 n — 2k, 2k n — 2k, 2k n — 2k, 2k n — 2k, 2k
SRt (e () e () e (M) e (U5F))
=k 1,¢ —1,-¢ 1,—¢ —1,¢
w(20+1,20+1 m (20412041 (L (-1 w(1n—1
A R G B G G R Gy )

n_
2 — 2k, 2 — 2k, 2
- >t (Cm (n b k)+E2Cm (n 1k’§k))7a7b>0,€i€{i1}761—62}.

€1, €28

C
—
e

Where y*1%2 = (—1)%2 ( 2r—1 )

2r—xo

A.2.4 N =6’ Depth 2
In depth 2, coefficients are explicit as previously:

Lemma A.2.12. The depth 2 part of the basis of MMZV, for even weight n is:

21
2a+1,2b+1 % b n — 2k, 2k
m ) _ a,b om ) b
¢ < 1,6 ) k,zbﬂak ¢ < 1,6 )’a’ =00

Proof. Proof being similar than the cases N = 3,4 is left to the reader.

A.3 Homographies of P\ {0, un, oo}

The homographies of the projective line P! which permutes {0, ux, o0}, induce automor-
phisms P\ {0, un, 00} — PIN\{0, un,0}. The projective space P\ {0, un, oo} has a di-
hedral symmetry, the dihedral group Diy = Z 27 x pin acting with  — 2~ and 2 — na.
In the special case of N = 1,2,4, and for these only, the group of homographies is bigger
than the dihedral group, due to particular symmetries of the points py U {0,00} on the
Riemann sphere. Let precise these cases:

For N =1: The homography group is the anharmonic group generated by z +— % and z— 1 — 2z,
and corresponds to the permutation group &3. Precisely, projective transformations
of P\ {0, 1,00} are:

(0,1,00) + (1,0, 00)
(WO,Wl,W*,Wﬁ) — (wlawO) Wy, Wo — W*).
O—=1—o0c0—0

¢r: t—1—t:

. 1

¢C ' b 1=t (WO,Wl,W*,Wﬁ) — (W*,_WO,_CUl,_wO_CUl)
) b (0,1,00) — (0,00,1)

¢TC ’ b= =1 (WO,Wl,w*) = (*w*; —Wwi, 7(*]0)

¢ . t’—)l (071500)'_)(007150)

e t (WO,Wl,W*,Wﬁ) = (_wOaw*)wlawﬁ)
0—o0o—=1~0
¢C2 ’ b t (WO,Wl,w*) = (7(*]1; 7&)*,&)0)

Remark that hexagon relation (@) corresponds to a cycle ¢ whereas the reflection
relation corresponds to a transposition 7, and :

G3={c,7 | =id, % crc=71)={1,¢,é%,7,7¢, et}
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For N =2: Here, (0,00,1,—1) has a cross ratio —1 (harmonic conjugates) and there are 8 per-
mutations of (0,00,1, —1) preserving its cross ratio. The homography group corre-
sponds indeed to the group of automorphisms of a square with consecutive vertices
(0,1,00,—1), i.e. the dihedral group of degree four Di4 defined by the presentation
(o,7 | 0* =72 =id,oT0 = T):

b, : P 1=+l 04 o0
T t (Wos W15 Wiy Wo1, Wiy W) > (— W0, Way W15 Wiy W1, Wetf)
—1—»0—1—o0——1

(w07w17w*;w717w7*> — (wfl — W1, —W_1, W1, —W_x, 7(*]*)

(wﬁvw*w = (7(*]1 —Wo1, —Wx — w**)

H
N

b : t— =

|
~

11

2,0t —1
¢G' T (wO)wlaw—lawi*)wiﬁ) = (WO)W—lawlaw:F*)wq:ﬁ)

2 t— =
¢G ¢ (WO;wlvw*awflawf*vwﬂ:ﬁ> = (7&)0,&},*, 7w71;w*7w17w$ﬁ>
O— —-1—oco—1—0
(ba'*l ot % (w07w17w717w*7w7*> = (wfl — W1y T Wy, —W1, — W, 70}71)
(Wi, w—g) > (—we — Wy, —W1 —W_1)
-1 00 061
Gro: L T (W0, W1, W, W_1, W) > (W1 — W1, =Wy, —W, —W_1, —W1)

|
i
|
) {OHw 11
i
i

(Wi, w—g) = (—ws — Wy, —wW1 — W_1)

—10 1+
¢a"r : t— 1T+f : (CUO,CUl,w*,W_l,w_*) — (wl — W1, —W1, —W-_1, —Wx, _w—*)
(Wi, w—g) = (—w1 —W_1, —Ws — W_y)

o~

Remark that the octagon relation (2] comes from the cycle o of order 4; the other
permutations above could also leads to relations.

For N =4: P\{0,1, 1,4, —i,00} has an octahedral symmetry, and the homography group is the
group of automorphisms of this octahedron placed on the Riemann sphere of vertices
(0,1,i,—1, —i, oo)H It is composed by 48 transformations, corresponding to 24 rota-
tional symmetries, and a reflection.

We could also look at other projective transformations: P*\{0, un, 00} = P'N{0, w7, 00} vv|wv-

Examples:
- PINJ0, —1,00} — PINJ{0, +1,00} , t = 1+t

- PIN{0, =1, 00} = P'N{0, +1,00} , t = 135

- PINJ0, 41,00} — PINJ0, 1,00} , ¢ t2.

!Zhao showed this octahedral symmetry allows to reach the “non standard” relations which appeared in weight
3, 4 for N = 4; non standard relations are these which do not come from distribution, conjugation, and regularised
double shuffle relation, cf. [84].
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A.4 Hybrid relation for MMZV

The commutative polynomial setting is briefly introduced in §6.1.1.
Let consider the following involution, which represents the Antipode LU as seen in §4.2.1:

(o Q<Y> _>@<Y> ) f(yanla"' ayp) = (_1)wf(ypayp—1a"' ayl)a (A13)

with w the weight, equal to the degree of f plus p. In particular, for f € p(g™):
ANTIPODE W : f+o(f)=0. (A.14)

Note that f®) denotes the part of f involving g, - - - ,Yp- We can also consider:
T QX)) TP ey o ()T (). (A.15)

The Antipode stuffle corresponds to T(T*), where f* is defined by:

T ('rlv ) ZL'p) = Z f({zl}ila AR {zS}is)(il)dil H z;;k_l' (A16)
s<p,ig k=1
p=2 i

It corresponds naturally to the Euler sums % version. Then, for f € p(g™):

ANTIPODE *: f+7(f) =0. (A.17)

The hybrid relation (Theorem[L.23)) for motivic multiple zeta values is equivalent to, in this
setting of commutative polynomials to the following, already in some notes of F. Brown:

Theorem (F. BROWN). For f € p(g™), the 6 terms relation holds:

—(p—1) —(d—1)
—(p) f (xo — 21, . cyxp—x1) — f (22, ap)
f (zl,...,zp)+ p p P
FP=1) —=(p—1)
= (=1 w+1 —(P) f (xpflfl'p,...,l'lf.fcp)ff (:Cpfly"',l'l) '
( ) (f (zp7 ;1'1) + xp

Before giving the proof, to be convinced these statements are equivalent, let just write f as:

v _ ni—1 ne—1
I= E Ony,...,np T ol

Then:
?(pil)(frzfxl vvvvv $p7$1)—?(p71)(121"'11p)
Tl
- ni—1 o np—1 _ ,ni1—1 np—1
Z (z2 — 1) e (xp — 1) ) o Tp
= anl ..... Np—1
Z1
=1
_ k, k-1 (2 ki—1
= E Ony,ngp 1 E (—1)%zy H ((k 1)$i+1 )
1<k;<n; i=1 ’

k=3 n; —k; >0

ki+i1—1 kp1+i,1—1 E k1 ki—1 [

= Z ak1+i1’___7kp1+ip1( b1 ) ( P L Pf . (_1) ok .T21 ...xppﬂ 1
2=k ! pt

This, according to the shuffle regularization (2:28), matches exactly with the definition of
G (ky, . kpo1).
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Proof of the previous theorem. The proof combines the shuffle relation (using that f is trans-
lation invariant notably), the linearized stuffle relation (giving a relation between depth p
and depth p — 1) and the antipode LL.

Let’s take f in p(g™) and let consider the difference

IWo,y1, -+ 9p) = FP (Yo, v1, - ) + (1) FP (o, yp, -+ ,91) (A.18)

= f(p)(yo,yl,"' ,yp) _f(p)(yla"' aypa:UO)'

Consider also the relation given by the linearized stuffle relation (in £), between depth p
and depth p — 1, defining St:

St(yo, y1 Wy2 -+ yp) i= f(p)(y07y1 Wy2 - Yp), (A.19)
Where St can then be expressed by f®~1 using stuffle:

1
Yi — U1

St(yo, yilllys -+ yp) = Z (f(pfl)(yoaym Y1 YL it Up) — FPT ) (o, v, - ayp)) :

(A.20)
The theorem is then equivalent to the following identity
() I(y0, Y1, p) = (= 1) TSt (Yp, Yo W yp—1 - y1) — St(Y1, 90 Wya -~ Yp)-

Indeed, looking at the previous definition (A20 ), most of the terms of St in the right side
of (X) get simplified together, and it remains only:

(_1)w+1 f(p_l)(ypa ceey y2’y0) - f(p—l) (ypa e )yl) _f(p_l)(yla DR ayp—layo) - f(p_l)(yla e ayp)

Y1 — Yo Yp — Yo

Passing to the z; variables, we conclude that (X) is equivalent to the theorem’s statement;
let now prove (X). By definition:

St(yr, yolys - yp) = FP (y1,yoly2 - yp) = FP (Y1, oty - Yp—1, Yp) L P (Y1, Y2, - - -+ Yps Y0)-

Doing a right shift, using the definition of I:
St(y1,yo Wy2 - yp) (A.21)

= P (Yo g1 yollyz - yp—1) =1 (Y, Y1, yollyz -~ Yp—1)+F P (o, y1,y2 - 9p) =1 (Y0, Y1, y2 -+ 1 yp)-

Since:
FP (yp, y1, 0 Wyz - Yp1) = StWUp, Yo W Y12+ Yp-1) — f P WYpo Yo, Y1, Y20 - - - Yp—1)
f(p)(y()ayla Y2 - ayp) = _I(ypa:UOa Yi,Y2, ... ayp—l) + f(p)(yp’:UOa Yi,Y92,--- ayp—l)'
Then, (A.21]) becomes:

St(y1, o Wy2 - Yp) — St(Yp, Yo W y1y2 - - Yp—1)
= 7I(yp7y0; Y1,Y92,- .. 7yp71) - I(ypa Y1, Yo Wy - -+ ypfl) - I(yOa Y1, Y2 ayp)'
The sum of the first two I is I(yp, yo L Y1 - - - Yp—1) which gives:
I(yo,y1,92 -+, yp) = —St(y1, Yolliya - - - Yp) +St(Yp, Yolly1y2 - - Yp—1)—1 (Yp, YolUy1 - - - Yp—1)
= =Sty yoWyz - yp) + (1) St(yp, yo Wyp—1---y1). (A.22)

The identity (X) holds, and the identity of the theorem follows. |
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