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Abstract

In this thesis, following F. Brown’s point of view, we look at the Hopf algebra structure
of motivic cyclotomic multiple zeta values, which are motivic periods of the fundamen-
tal groupoid of P1�{0, µN ,∞}. By application of a surjective period map (which, under
Grothendieck’s period conjecture, is an isomorphism), we deduce results (such as generating
families, identities, etc.) on cyclotomic multiple zeta values, which are complex numbers.
The coaction of this Hopf algebra (explicitly given by a combinatorial formula from A. Gon-
charov and F. Brown’s works) is the dual of the action of a so-called motivic Galois group
on these specific motivic periods. This entire study was actually motivated by the hope
of a Galois theory for periods, which should extend the usual Galois theory for algebraic
numbers.

In the first part, we focus on the case of motivic multiple zeta values (N = 1) and Euler
sums (N = 2). In particular, we present new bases for motivic multiple zeta values: one via
motivic Euler sums, and another (depending on an analytic conjecture) which is known in
the literature as the Hoffman ⋆ basis; under a general motivic identity that we conjecture,
these bases are identical.

In the second part, we apply some Galois descents ideas to the study of these periods,
and examine how periods of the fundamental groupoid of P1�{0, µN ′,∞} are embedded
into periods of π1(P

1�{0, µN ,∞}), when N ′ | N . After giving some general criteria for
any N , we focus on the cases N = 2, 3, 4, ‘6’, 8, for which the motivic fundamental group
generates the category of mixed Tate motives on ON [ 1N ] (unramified if N = 6). For those
N , we are able to construct Galois descents explicitly, and extend P. Deligne’s results.

Key words: Periods, Polylogarithms, multiple zeta values, Mixed Tate Motives, cyclotomic
field, Hopf algebra, Motivic fundamental group, Galois Descent.

Résumé.

A travers ce manuscrit, en s’inspirant du point de vue adopté par F. Brown, nous examinons
la structure d’algèbre de Hopf des multizêtas motiviques cyclotomiques, qui sont des périodes
motiviques du groupoïde fondamental de P1�{0, µN ,∞}. Par application d’un morphisme
période surjectif (isomorphisme sous la conjecture de Grothendieck), nous pouvons déduire
des résultats (tels des familles génératrices, des identités, etc.) sur ces nombres complexes
que sont les multizêtas cyclotomiques. La coaction de cette algèbre de Hopf (explicite par une
formule combinatoire due aux travaux de A.B. Goncharov et F. Brown) est duale à l’action
d’un dénommé groupe de Galois motivique sur ces périodes motiviques. Ces recherches sont
ainsi motivées par l’espoir d’une théorie de Galois pour les périodes, étendant la théorie de
Galois usuelle pour les nombres algébriques.

Dans un premier temps, nous nous concentrons sur les multizêtas (N = 1) et les sommes
d’Euler (N = 2) motiviques. En particulier, de nouvelles bases pour les multizetas mo-
tiviques sont présentées: une via les sommes d’Euler motiviques, et une seconde (sous une
conjecture analytique) qui est connue sous le nom de Hoffman ⋆; soulignons que sous une
identité motivique générale que nous conjecturons également, ces bases sont identiques.

Dans un second temps, nous appliquons des idées de descentes galoisiennes à l’étude
de ces périodes, en regardant notamment comment les périodes du groupoïde fondamental
de P1�{0, µN ′,∞} se plongent dans les périodes de π1(P

1�{0, µN ,∞}), lorsque N ′ | N .
Après avoir fourni des critères généraux (quel que soit N), nous nous tournons vers les cas
N = 2, 3, 4, ‘6’, 8, pour lesquels le groupoïde fondamental motivique engendre la catégorie
des motifs de Tate mixtes sur ON [ 1N ] (non ramifié si N = 6). Pour ces valeurs, nous sommes
en mesure d’expliciter les descentes galoisiennes, et d’étendre les résultats de P. Deligne.

Mots clés: Périodes, Polylogarithmes, multizêtas, corps cyclotomiques, Motifs de Tate
Mixtes, algèbre de Hopf, groupe motivique fondamental, descente galoisienne.
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Chapter 1

Introduction

‘Qui est-ce ? Ah, très bien, faites entrer l’infini.’

Aragon

1.1 Motivation

1.1.1 Periods

A period I denotes a complex number that can be expressed as an integral of an algebraic
function over an algebraic domain.II They form the algebra of periods P , fundamental class
of numbers between algebraic numbers Q and complex numbers.
The study of these integrals is behind a large part of algebraic geometry, and its connection
with number theory, notably via L-functions III; and many of the constants which arise in
mathematics, transcendental number theory or in physics turn out to be periods, which
motivates the study of these particular numbers.

Examples:

· The following numbers are periods:

√
2 =

∫

2x2≤1

dx , π =

∫

x2+y2≤1

dxdy and log(z) =

∫ z

1

dx

x
, z > 1, z ∈ Q.

· Famous -alleged transcendental- numbers which conjecturally are not periods:

e = lim
n→∞

(
1 +

1

n

)n

, γ = lim
n→∞

(
−ln(n) +

n∑

k=1

1

k

)
or

1

π
.

It can be more useful to consider the ring of extended periods, by inverting π:

P̂ := P
[
1

π

]
.

IFor an enlightening survey, see the reference article [59].
IIWe can equivalently restrict to integral of rational functions over a domain in Rn given by polynomial inequal-

ities with rational coefficients, by introducing more variables.
IIIOne can associate a L− function to many arithmetic objects such as a number field, a modular form, an elliptic

curve, or a Galois representation. It encodes its properties, and has wonderful (often conjectural) meromorphic
continuation, functional equations, special values, and non-trivial zeros (Riemann hypothesis).

11



· Multiple polylogarithms at algebraic arguments (in particular cyclotomic multiple zeta
values), by their representation as iterated integral given below, are periods. Similarly,
special values of Dedekind zeta function ζF (s) of a number field, of L-functions, of
hypergeometric series, modular forms, etc. are (conjecturally at least) periods or
extended periods.

· Periods also appear as Feynman integrals: Feynman amplitudes I(D) can be written
as a product of Gamma functions and meromorphic functions whose coefficients of
its Laurent series expansion at any integer D are periods (cf. [7]), where D is the
dimension of spacetime.

Although most periods are transcendental, they are constructible; hence, the algebra P is
countable, and any period contains only a finite amount of information. Conjecturally (by
Grothendieck’s conjecture), the only relations between periods comes from the following
rules of elementary integral calculusI:

(i) Additivity (of the integrand and of the integration domain)

(ii) Invertible changes of variables

(iii) Stokes’s formula.

Another way of viewing a period
∫
γ
ω is via a comparison between two cohomology

theories: the algebraic De Rham cohomology, and the singular (Betti) cohomology. More
precisely, let X a smooth algebraic variety defined over Q and Y a closed subvariety over Q.

· On the one hand, the algebraic De Rham cohomology H•
dR(X) is the hypercohomology

of the sheaf of algebraic (Kähler) differentials on X . If X is affine, it is defined from the
de Rham complex Ω•(X) which is the cochain complex of global algebraic (Kähler)
differential forms on X, with the exterior derivative as differential. Recall that the
classical kth de Rham cohomology group is the quotient of smooth closed k-forms on
the manifold X�C modulo the exact k-forms on X .
Given ω a closed algebraic n-form on X whose restriction on Y is zero, it defines an
equivalence class [ω] in the relative de Rham cohomology groups Hn

dR(X,Y ), which
are finite-dimensional Q− vector space.

· On the other hand, the Betti homology HB
• (X) is the homology of the chain complex

induced by the boundary operation of singular chains on the manifold X(C); Betti
cohomology groups Hn

B(X,Y ) = HB
n (X,Y )∨ are the dual Q vector spaces (taking here

coefficients in Q, not Z).
Given γ a singular n chain on X(C) with boundary in Y (C), it defines an equivalence
class [γ] in the relative Betti homology groups HB

n (X,Y ) = Hn
B(X,Y )∨.II

Furthermore, there is a comparison isomorphism between relative de Rham and relative
Betti cohomology (due to Grothendieck, coming from the integration of algebraic differential
forms on singular chains):

compB,dR : H•
dR(X,Y )⊗Q C→ H•

B(X,Y )⊗Q C.

IHowever, finding an algorithm to determine if a real number is a period, or if two periods are equal seems
currently out of reach; whereas checking if a number is algebraic, or if two algebraic numbers are equal is rather
“easy” (with “LLL”-type reduction algorithm, resp. by calculating the g.c.d of two vanishing polynomials associated
to each).

IIRelative homology can be calculated using the following long exact sequence:

· · · → Hn(Y ) → Hn(X) → Hn(X, Y ) → Hn−1(Y ) → · · · .

12



By pairing a basis of Betti homology to a basis of de Rham cohomology, we obtain the matrix
of periods, which is a square matrix with entries in P and determinant in

√
Q∗(2iπ)N

∗

; i.e.
its inverse matrix has its coefficients in P̂. Then, up to the choice of these two basis:

The period
∫
γ
ω is the coefficient of this pairing 〈[γ], compB,dR([ω])〉.

Example: Let X = P1�{0,∞}, Y = ∅ and γ0 the counterclockwise loop around 0:

HB
i (X) =





Q if i = 0
Q [γ0] if i = 1
0 else .

and Hi
dR(X) =





Q if i = 0
Q
[

d
dx

]
if i = 1

0 else .

Since
∫
γ0

dx
x = 2iπ, 2iπ is a period; as we will see below, it is a period of the Lefschetz

motive L := Q(−1).

Viewing periods from this cohomological point of view naturally leads to the definition
of motivic periods given below I, which form an algebra Pm, equipped with a period
homomorphism:

per : Pm → P .
A variant of Grothendieck’s conjecture, which is a presently inaccessible conjecture in tran-
scendental number theory, predicts that it is an isomorphism.
There is an action of a so-called motivic Galois group G on these motivic periods as we will
see below in §2.1. If Grothendieck’s period conjecture holds, this would hence extend the
usual Galois theory for algebraic numbers to periods (cf. [2]).

In this thesis, we will focus on motivic (cyclotomic) multiple zeta values, defined in §2.3,
which are motivic periods of the motivic (cyclotomic) fundamental group, defined in §2.2.
Their images under this period morphism are the (cyclotomic) multiple zeta values; these
are fascinating examples of periods, which are introduced in the next section (see also [3]).

1.1.2 Multiple zeta values

The Zeta function is known at least since Euler, and finds itself nowadays, in its various gen-
eralized forms (multiple zeta values, Polylogarithms, Dedekind zeta function, L-functions,
etc), at the crossroad of many different fields as algebraic geometry (with periods and mo-
tives), number theory (notably with modular forms), topology, perturbative quantum field
theory (with Feynman diagrams, cf. [60]), string theory, etc. Zeta values at even integers
are known since Euler to be rational multiples of even powers of π:

Lemma.

For n ≥ 1, ζ(2n) =
| B2n | (2π)2n

2(2n)!
, where B2n is the 2nth Bernoulli number.

However, the zeta values at odd integers already turn out to be quite interesting periods:

Conjecture. π, ζ(3), ζ(5), ζ(7), · · · are algebraically independent.

IThe definition of a motivic period is given in §2.4 in the context of a category of Mixed Tate Motives. In
general, one can do with Hodge theory to define Pm, which is not strictly speaking motivic, once we specify that
the mixed Hodge structures considered come from the cohomology of algebraic varieties.
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This conjecture raises difficult transcendental questions, rather out of reach; currently
we only know ζ(3) /∈ Q (Apéry), infinitely many odd zeta values are irrational (Rivoal), or
other quite partial results (Zudilin, Rivoal, etc.); recently, F. Brown paved the way for a
pursuit of these results, in [23].

Multiple zeta values relative to the N th roots of unity µN , which we shall denote
by MZVµN

are defined by: I

ζ

(
n1, . . . , np

ǫ1, . . . , ǫp

)
:=

∑

0<k1<k2···<kp

ǫk1
1 · · · ǫ

kp
p

kn1
1 · · · k

np
p

, ǫi ∈ µN , ni ∈ N∗, (np, ǫp) 6= (1, 1). (1.1)

The weight, often denoted w below, is defined as
∑

ni, the depth is the length p, whereas
the height, usually denoted h, is the number of ni greater than 1. The weight is conjecturally
a grading, whereas the depth is only a filtration. Denote also by ZN the Q-vector space
spanned by these multiple zeta values relative to µN .
These MZVµN satisfy both shuffle � relation (coming from the integral representation be-
low) and stuffle ∗ relation (coming from this sum expression), which turns ZN into an
algebra. These relations, for N = 1, are conjectured to generate all the relations between
MZV if we add the so-called Hoffman (regularized double shuffle) relation; cf. [25], [77]
for a good introduction to this aspect. However, the literature is full of other relations
among these (cyclotomic) multiple zeta values: cf. [4], [38], [72], [68], [70], [85], [86]. Among
these, we shall require the so-called pentagon resp. hexagon relations (for N = 1, cf. [39]),
coming from the geometry of moduli space of genus 0 curves with 5 ordered marked points
X =M0,5 resp. with 4 marked points X =M0,4 = P1�{0, 1,∞} and corresponding to a
contractible path in X; hexagon relation (cf. Figure 4.1) is turned into an octagon relation
(cf. Figure 4.2) for N > 1 (cf. [38]) and is used below in §4.2.

One crucial point about multiple zeta values, is their integral representationII, which
makes them clearly periods in the sense of Kontsevich-Zagier. Let us define first the following
iterated integrals and differential forms, with ai ∈ {0, µN}:

I(0; a1, . . . , an; 1) :=

∫

0<t1<···<tn<1

dt1 · · · dtn
(t1 − a1) · · · (tn − an)

=

∫ 1

0

ωa1 . . . ωan , with ωa :=
dt

t− a
.

(1.2)
In this setting, with ηi := (ǫi . . . ǫp)

−1 ∈ µN , ni ∈ N∗III:

ζ

(
n1, . . . , np

ǫ1, . . . , ǫp

)
= (−1)pI(0; η1,0n1−1, η2,0

n2−1, . . . , ηp,0
np−1; 1). (1.3)

Remarks:

IBeware, there is no consensus on the order for the arguments of these MZV: sometimes the summation order
is reversed.

IIObtained by differentiating, considering there variables zi ∈ C, since:

d

dzp
ζ

(
n1, . . . , np

z1, . . . , zp−1, zp

)
=






1
zp

ζ
(

n1,...,np−1
z1,...,zp−1,zp

)
if np 6= 1

1
1−zp

ζ
(

n1,...,np−1
z1,...,zp−1zp

)
if np = 1.

IIIThe use of bold in the iterated integral writing indicates a repetition of the corresponding number, as 0 here.
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· Multiple zeta values can be seen as special values of generalized multiple polyloga-
rithms, when ǫi are considered in CI. First, notice that in weight 2, Li1(z) := ζ

(
1
z

)

is the logarithm − log(1− z). Already the dilogarithm, in weight 2, Li2(z) := ζ
(
2
z

)
=∑

k>0
zk

k2 , satisfies nice functional equationsII and arises in many places such as in the
Dedekind zeta value ζF (2) for F an imaginary quadratic field, in the Borel regulator in
algebraic K-theory, in the volume of hyperbolic manifolds, etc.; cf. [40]; some of these
connections can be generalized to higher weights.

· Recall that an iterated integral of closed (real or complex) differential 1−forms ωi along
a path γ on a 1-dimensional (real or complex) differential manifold M is homotopy
invariant, cf. [27]. If M = C�{a1, . . . , aN} III and ωi are meromorphic closed 1−forms,
with at most simple poles in ai, and γ(0) = a1, the iterated integral I =

∫
γ ω1 · · ·ωn is

divergent. The divergence being polynomial in log ǫ (ǫ≪ 1) IV, we define the iterated
integral I as the constant term, which only depends on γ′(0). This process is called
regularization, we need to choose the tangential base points to properly define the
integral. Later, we will consider the straight path dch from 0 to 1, with tangential
base point

−→
1 at 0 and

−→−1 at 1, denoted also
−→
1 0,
−→−11 or simply

−→
01 for both.

Notations: In the case of multiple zeta values (i.e. N = 1) resp. of Euler sums (i.e. N = 2),
since ǫi ∈ {±1}, the notation is simplified, using zi ∈ Z∗:

ζ (z1, . . . , zp) := ζ

(
n1, . . . , np

ǫ1, . . . , ǫp

)
with

(
ni

ǫi

)
:=

( | zi |
sign(zi)

)
. (1.4)

Another common notation in the literature is the use of overlines instead of negative argu-

ments, i.e.: zi :=

{
ni if ǫi = 1
ni if ǫi = −1 .

1.2 Contents

In this thesis, we mainly consider the motivic versions of these multiple zeta values, denoted
ζm(·) and shortened MMZVµN

and defined in §2.3. They span a Q-vector space HN of
motivic multiple zetas relative to µN . There is a surjective homomorphism, called the
period map, which is conjectured to be an isomorphism (this is a special case of the period
conjecture):

per : w : HN → ZN , ζm(·) 7→ ζ(·). (1.5)

Working on the motivic side, besides being conjecturally identical to the complex num-
bers side, turns out to be somehow simpler, since motivic theory provides a Hopf Algebra
structure as we will see throughout this thesis. Notably, each identity between motivic
MZVµN implies an identity for their periods; a motivic basis for MMZVµN is hence a
generating family (conjecturally basis) for MZVµN .

Indeed, on the side of motivic multiple zeta values, there is an action of a motivic Galois
group GV, which, passing to the dual, factorizes through a coaction ∆ as we will see in

IThe series is absolutely convergent for | ǫi |< 1, converges also for | ǫi |= 1 if np > 1. Cf. [73] for an
introduction.

IIAs the functional equations with Li2
(

1
z

)
or Li2 (1 − z) or the famous five terms relation, for its sibling, the

Bloch Wigner function D(z) := Im (Li2(z) + log(| z |) log(1 − z)):

D(x) + D(y) + D

(
1 − x

1 − xy

)
+ D (1 − xy) + D

(
1 − y

1 − xy

)
= 0.

IIIAs for cyclotomic MZV, with ai ∈ µN ∪ {0}; such an I =
∫
γ
ω1 . . . ωn is a multivalued function on M .

IVMore precisely, we can prove that
∫ 1
ǫ
γ∗(ω1) · · · γ∗(ωn) =

∑
i=0 αi(ǫ) log

i(ǫ), with αi(ǫ) holomorphic in ǫ = 0;

α0(ǫ) depends only on γ′(0).
VLater, we will define a category of Mixed Tate Motives, which will be a tannakian category: consequently

equivalent to a category of representation of a group G; cf. §2.1.
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§2.4. This coaction, which is given by an explicit combinatorial formula (Theorem (2.4.2),
[Goncharov, Brown]), is the keystone of this PhD. In particular, it enables us to prove linear
independence of MMZV, as in the theorem stated below (instead of adding yet another
identity to the existing zoo of relations between MZV), and to study Galois descents. From
this, we deduce results about numbers by applying the period map.

This thesis is structured as follows:

Chapter 2 sketches the background necessary to understand this work, from Mixed Tate
Motives to the Hopf algebra of motivic multiple zeta values at µN , with some specifi-
cations according the values of N , and results used throughout the rest of this work.
The combinatorial expression of the coaction (or of the weight graded derivation oper-
ators Dr extracted from it, (2.45)) is the cornerstone of this work. We shall also bear
in mind Theorem 2.4.4 stating which elements are in the kernel of these derivations),
which sometimes allows to lift identities from MZV to motivic MZV, up to rational
coefficients, as we will see throughout this work.
Nota Bene: A motivic relation is indeed stronger; it may hence require several rela-
tions between MZV in order to lift an identity to motivic MZV. An example of such a
behaviour occurs with some Hoffman ⋆ elements, in Lemma 4.4.3.

Chapter 3 explains the main results of this PhD, ending with a wider perspective and
possible future paths.

Chapter 4 focuses on the cases N = 1, i.e. multiple zeta values and N = 2, i.e. Euler
sums, providing some new bases:

(i) First, we introduce Euler ♯ sums, variants of Euler sums, defined in §2.3 as in
(1.3), replacing each ω±1 by ω±♯ := 2ω±1−ω0, except for the first one and prove:

Theorem. Motivic Euler ♯ sums with only positive odd and negative even integers
as arguments are unramified: i.e. motivic multiple zeta values.

By application of the period map above:

Corollary. Each Euler ♯ sums with only positive odd and negative even integers
as arguments is unramified, i.e. Q linear combination of multiple zeta values.

Moreover, we can extract a basis from this family:

Theorem. {ζ♯,m (2a0 + 1, 2a1 + 3, . . . , 2ap−1 + 3,−(2ap + 2)) , ai ≥ 0} is a graded
basis of the space of motivic multiple zeta values.

By application of the period map:

Corollary. Each multiple zeta value is a Q linear combination of elements of the
same weight in {ζ♯ (2a0 + 1, 2a1 + 3, . . . , 2ap−1 + 3,−(2ap + 2)) , ai ≥ 0}.

(ii) We also prove the following, where Euler ⋆ sums are defined (cf. §2.3) as in (1.3),
replacing each ω±1 by ω±⋆ := ω±1 − ω0, except the first:

Theorem. If the analytic conjecture (4.4.4) holds, then the motivic Hoffman ⋆
family {ζ⋆,m({2, 3}×)} is a basis of H1, the space of MMZV.

(iii) Conjecturally, the two previous basis, namely the Hoffman ⋆ family and the Euler♯

family, are the same. Indeed, we conjecture a generalized motivic Linebarger-Zhao
equality (Conjecture 4.5.1) which expresses each motivic multiple zeta ⋆ value as
a motivic Euler ♯ sum. It extends the Two One formula [Ohno-Zudilin], the Three
One Formula [Zagier], and Linebarger Zhao formula, and applies to motivic MZV.
If this conjecture holds, then (i) implies that the Hoffman⋆ family is a basis.
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Such results on linear independence of a family of motivic MZV are proved recursively,
once we have found the appropriate level filtration on the elements; ideally, the family
considered is stable under the derivations I; the filtration, as we will see below, should
correspond to the motivic depth defined in §2.4.3, and decrease under the derivations
II; if the derivations, modulo some spaces, act as a deconcatenation on these elements,
linear independence follows naturally from this recursion. Nevertheless, to start this
procedure, we need an analytic identityIII, which is left here as a conjecture in the
case of the Hoffman ⋆ basis. This conjecture is of an entirely different nature from the
techniques developed in this thesis. We expect that it could be proved using analytic
methods along the lines of [82], [63].

Chapter 5 applies ideas of Galois descents on the motivic side. Originally, the notion of
Galois descent was inspired by the question: which linear combinations of Euler sums
are unramified, i.e. multiple zeta values?IV More generally, looking at the motivic side,
one can ask which linear combinations of MMZVµN lie in MMZVµN′ for N ′ dividing
N . This is what we call descent (the first level of a descent) and can be answered by
exploiting the motivic Galois group action. General descent criteria are given; in the
particular case of N = 2, 3, 4, ‘6’, 8V, Galois descents are made explicit and our results
lead to new bases of MMZV relative to µN ′ in terms of a basis of MMZV relative to
µN , and in particular, a new proof of P. Deligne’s results [31].
Going further, we define ramification spaces which constitute a tower of intermediate
spaces between the elements in MMZVµN and the whole space of MMZVµN′ . This is
summed up in §3.2 and studied in detail Chapter 5 or article [42].
Moreover, as we will see below, these methods enable us to construct the motivic
periods of categories of mixed Tate motives which cannot be reached by standard
methods: i.e. are not simply generated by a motivic fundamental group.

Chapter 6 gathers some applications of the coaction, from maximal depth terms, to mo-
tivic identities, via unramified motivic Euler sums; other potential applications of these
Galois ideas to the study of these periods are still waiting to be further investigated.

Consistency:

Chapter 2 is fundamental to understand the tools and the proofs of both Chapter 4, 5 and
6 (which are independent between them), but could be skimmed through before the reading
of the main results in Chapter 3. The proofs of Chapter 4 are based on the results of Annexe
A.1, but could be read independently.

IIf the family is not a priori stable under the coaction, we need to incorporate in the recursion an hypothesis
on the coefficients which appear when we express the right side with the elements of the family.

IIIn the case of Hoffman basis ([20]), or Hoffman ⋆ basis (Theorem 4.4.1) it is the number of 3, whereas in the
case of Euler ♯ sums basis (Theorems 4.3.2), it is the depth minus one; for the Deligne basis given in Chapter 5 for
N = 2, 3, 4, ‘6’, 8, it is the usual depth. The filtration by the level has to be stable under the coaction, and more
precisely, the derivations Dr decrease the level on the elements of the conjectured basis, which allows a recursion.

IIIWhere F. Brown in [20], for the Hoffman basis, used the analytic identity proved by Zagier in [82], or [63].
IVThis was already a established question, studied by Broadhurst (which uses the terminology honorary) among

others. Notice that this issue surfaces also for motivic Euler sums in some results in Chapter 3 and 5.
V
Nota Bene: N = ‘6’ is a special case; the quotation marks indicate here that we restrict to unramified MMZV

cf. §2.1.1.
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Chapter 2

Background

2.1 Motives and Periods

Here we sketch the motivic background where the motivic iterated integrals (and hence this
work) mainly take place; although most of it can be taken as a black box. Nevertheless,
some of the results coming from this rich theory are fundamental to our proofs.

2.1.1 Mixed Tate Motives

Motives in a nutshell. Motives are supposed to play the role of a universal (and algebraic)
cohomology theory (see [1]). This hope is partly nourished by the fact that, between all the
classical cohomology theories (de Rham, Betti, l-adique, crystalline), we have comparison
isomorphisms in characteristic 0 I. More precisely, the hope is that there should exist a

tannakian (in particular abelian, tensor) category of motivesM(k), and a functor Vark
h−→

M(k) such that:

For each Weil cohomologyII: Vark
H−→ Veck, there exists a realization map wH such that the

following commutes :

Vark

∀H
��

h //M(k)

∃wH{{✈✈✈
✈✈
✈✈
✈✈

VecK

,

where h satisfy properties such as h(X × Y ) = h(X) ⊕ h(Y ), h(X
∐

Y ) = h(X) ⊗ h(Y ).
The realizations functors are conjectured to be full and faithful (conjecture of periods of
Grothendieck, Hodge conjecture, Tate conjecture, etc.)III.
To this end, Voedvosky (cf. [76]) constructed a triangulated category of Mixed Motives
DM eff(k)Q, with rational coefficients, equipped with tensor product and a functor:

Mgm : Sch�k → DM eff satisfying some properties such as:

Kunneth Mgm(X × Y ) = Mgm(X)⊗Mgm(Y ).

A1-invariance Mgm(X × A1) = Mgm(X).

IEven in positive characteristic, dimHi(X) does not depend on the cohomology chosen among these.
IIThis functor should verify some properties, such as Kunneth formula, Poincare duality, etc. as the classic

cohomology theories.
If we restrict to smooth projective varieties, SmProjk, we can construct such a category, the category of pure
motives Mpure(k) starting from the category of correspondence of degree 0. For more details, cf. [57].

IIIIn the case of Mixed Tate Motives over number fields as seen below, Goncharov proved it for Hodge and
l-adique Tate realizations, from results of Borel and Soule.
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Mayer Vietoris Mgm(U ∩ V )→Mgm(U) ⊗Mgm(V )→ Mgm(U ∪ V )→ Mgm(U ∩ V )[1],
U, V open, is a distinguished triangle.I

Gysin Mgm(X�Z)→Mgm(X)→Mgm(Z)(c)[2c]→Mgm(X�Z)[1], X smooth, Z smooth,
closed, of codimension c, is a distinguished triangle.

We would like to extract from the triangulated category DM eff(k)Q an abelian category of
Mixed Tate Motives over kII. However, we still are not able to do it in the general case,
but it is possible for some triangulated tensor subcategory of type Tate, generated by Q(n)
with some properties.

Remark: L := Q(−1) = H1(Gm) = H1(P1�{0,∞}) which is referred to as the Lef-
schetz motive, is a pure motive, and has period (2iπ). Its dual is the so-called Tate motive
T := Q(1) = L∨. More generally, let us define Q(−n) := Q(−1)⊗n resp. Q(n) := Q(1)⊗n

whose periods are in (2iπ)nQ resp. ( 1
2iπ )

nQ, hence extended periods in P̂ ; we have the
decomposition of the motive of the projective line: h(Pn) = ⊕n

k=0Q(−k).

Mixed Tate Motives over a number field. Let first define, for k a number field, the
category DM(k)Q from DMeff(k)Q by formally “inverting” the Tate motive Q(1), and then
DMT (k)Q as the smallest triangulated full subcategory of DM(k)Q containing Q(n), n ∈ Z

and stable by extension.
By the vanishing theorem of Beilinson-Soule, and results from Levine (cf. [61]), there
exists:III

A tannakian category of Mixed Tate motives over k with rational coefficients,
MT (k)Q and equipped with a weight filtration Wr indexed by even integers such that
grW−2r(M) is a sum of copies of Q(r) for M ∈ MT (k), i.e.,
Every object M ∈MT (k)Q is an iterated extension of Tate motives Q(n), n ∈ Z.

such that (by the works of Voedvodsky, Levine [61], Bloch, Borel (and K-theory), cf.
[34]):

Ext1MT (k)(Q(0),Q(n)) ∼= K2n−1(k)Q ⊗Q ∼=





k∗ ⊗Z Q if n = 1.
Qr1+r2 if n > 1 odd
Qr2 if n > 1 even

.

ExtiMT (k)(Q(0),Q(n)) ∼= 0 if i > 1 or n ≤ 0.

Here, r1 resp r2 stand for the number of real resp. complex (and non real, up to conjugate)
embeddings from k to C.
In particular, the weight defines a canonical fiber functor:

ω : MT (k)→ VecQ

M 7→ ⊕ωr(M) with
{

ωr(M) := HomMT (k)(Q(r), grW−2r(M))
i.e. grW−2r(M) = Q(r)⊗ ωr(M).

The category of Mixed Tate Motives over k, since tannakian, is equivalent to the category
of representations of the so-called motivic Galois group GMT ofMT (k) IV:

IDistinguished triangles in DMT eff(k), i.e. of type Tate, become exact sequences in MT (k).
II A way would be to define a t structure on this category, and the heart of the t-structure, by Bernstein,

Beilinson, Deligne theorem is a full admissible abelian sub-category.
IIIA tannakian category is abelian, k-linear, tensor rigid (autoduality), has an exact faithful fiber functor,

compatible with ⊗ structures, etc. Cf. [33] about Tannakian categories.
IVWith the equivalence of category between A Comodules and Representations of the affine group scheme

Spec(A), for A a Hopf algebra. Note that Rep(Gm) is the category of k-vector space Z-graded of finite dimension.

19



MT (k)Q ∼= RepkGMT ∼= Comod (O(GMT )) where GMT := Aut⊗ω. (2.1)

The motivic Galois group GMT decomposes as, since ω graded:

GMT = Gm ⋉ UMT , i.e. 1→ UMT → GMT
⇆ Gm → 1 is an exact sequence,

where UMT is a pro-unipotent group scheme defined over Q.

The action of Gm is a grading, and UMT acts trivially on the graded pieces ω(Q(n)).

Let u denote the completion of the pro-nilpotent graded Lie algebra of UMT (defined by a
limit); u is free and graded with negative degrees from the Gm-action. FurthermoreI:

uab ∼=
⊕

Ext1MT (Q(0),Q(n))∨ in degree n. (2.2)

Hence the fundamental Hopf algebra is II:

AMT := O(UMT ) ∼= (U∧(u))∨ ∼= T (⊕n≥1Ext1MT N
(Q(0),Q(n))∨). (2.3)

Hence, by the Tannakian dictionary (2.1): MT (k)Q ∼= RepgrUMT ∼= ComodgrAMT .

Once an embedding σ : k →֒ C fixed, Betti cohomology leads to a functor Betti realiza-
tion:

ωBσ :MT (k)→ VecQ, M 7→Mσ.

De Rham cohomology leads similarly to the functor de Rham realization:

ωdR :MT (k)→ Veck, M 7→MdR , MdR weight graded.

Beware, the de Rham functor ωdR here is not defined over Q but over k and ωdR = ω⊗Q k,
so the de Rham realization of an object M is MdR = ω(M)⊗Q k.
Between all these realizations, we have comparison isomorphisms, such as:

Mσ ⊗Q C
compdR,σ−−−−−−→

∼
MdR ⊗k,σ C with its inverse compσ,dR.

Mσ ⊗Q C
compω,Bσ−−−−−−→

∼
Mω ⊗Q C with its inverse compBσ,ω.

ISince Ext2MT (Q(0),Q(n)) = 0, which implies ∀M , H2(u,M) = 0, hence u free. Moreover, (uab) = (u�[u, u]) =
H1(u;Q), then, for U unipotent: (

u
ab
)∨

m−n

∼= Ext1RepQ
(Q(n),Q(m)).

IIRecall the anti-equivalence of Category, between Hopf Algebra and Affine Group Schemes:

k − Algop ∼ // k − AffSch

k − HopfAlgop
?�

OO

∼ // k − AffGpSch
?�

OO

A
✤ // Spec A

O(G) G : R 7→ Homk(O(G),R)
✤oo

.

It comes from the fully faithful Yoneda functor Cop → Fonct(C, Set), leading to an equivalence of Category if
we restrict to Representable Functors: k − AffGpSch ∼= RepFonct (Alg op, Gp). Properties for Hopf algebra are
obtained from Affine Group Scheme properties by ’reversing the arrows’ in each diagram.
Remark that G is unipotent if and only if A is commutative, finite type, connected and filtered.
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Define also, looking at tensor-preserving isomorphisms:

GB := Aut⊗(ωB), resp. GdR := Aut⊗(ωdR)
Pω,B := Isom⊗(ωB, ω), resp. PB,ω := Isom⊗(ω, ωB), (GMT ,GB) resp. (GB ,GMT ) bitorsors .

Comparison isomorphisms above define C points of these schemes: compω,B ∈ PB,ω(C).

Remarks: By (2.1):I

A Mixed Tate motive over a number field is uniquely defined by its de Rham real-
ization, a vector space MdR, with an action of the motivic Galois group GMT .

Example: For instance Q(n), as a Tate motive, can be seen as the vector space Q with
the action λ · x := λnx, for λ ∈ Q∗ = Aut(Q) = Gm(Q).

Mixed Tate Motives over OS. Before, let’s recall for k a number field and O its ring of
integers, archimedian values of k are associated to an embedding k

σ−֒→ C, such that:

| x |:=| σ(x) |∞ , where | · |∞ is the usual absolute value,

and non archimedian values are associated to non-zero prime ideals of OII:

vp : k× → Z, vp(x) is the integer such that xOp = pvp(x)Op for x ∈ k×.

For S a finite set of absolute values in k containing all archimedian values, the ring of
S-integers :

OS := {x ∈ k | v(x) ≥ 0 for all valuations v /∈ S} .
Dirichlet unit’s theorem generalizes for O×

S , abelian group of type finite: III

O×
S
∼= µ(K)× Z card (S)−1.

Examples:

· Taking S as the set of the archimedian values leads to the usual ring of integers O, and
would lead to the unramified category of motivesMT (O) below.

· For k = Q, p prime, with S = {vp, | · |∞}, we obtain Z
[
1
p

]
. Note that the definition

does not allow to choose S = {∪ qprime

q 6=p
vq, | · |∞}, which would lead to the localization

Z(p) := {x ∈ Q | vp(x) ≥ 0}.
Now, let us define the categories of Mixed Tate Motives which interest us here:

Definition. MT Γ: For Γ sub-vector space of Ext1MT (k)(Q(0),Q(1)) ∼= k∗ ⊗Q:

MT Γ : the tannakian subcategory formed by objects M such that each subquotient E
of M :

0→ Q(n+ 1)→ E → Q(n)→ 0 ⇒ [E] ∈ Γ ⊂ Ext1MT (k)(Q(0),Q(1))IV.

IThe different cohomologies should be viewed as interchangeable realizations. Etale chomology, with the action
of the absolute Galois group Gal(Q�Q) (cf [3]) is related to the number Np of points of reduction modulo p. For
Mixed Tate Motives (and conjecturally only for those) Np are polynomials modulo p, which is quite restrictive.

IIO is a Dedekind domain, Op a discrete valuation ring whose prime ideals are prime ideals of O which are
included in (p)Op.

III It will be used below, for dimensions, in 2.31. Here, card (S) = r1 + r2 + card (non-archimedian places); as
usual, r1, r2 standing for the number of real resp. complex (and non real, and up to conjugate) embeddings from
k to C; µ(K) is the finite cyclic group of roots of unity in K.

IVExt1MT (k)(Q(0),Q(1)) ∼= Ext1MT (k)(Q(n),Q(n + 1)).
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MT (OS): The category of mixed Tate motives unramified in each finite place v /∈ S:

MT (OS) :=MT Γ, for Γ = O∗
S ⊗Q.

Extension groups for these categories are then identical to those ofMT (k) except:

Ext1MT Γ
(Q(0),Q(1)) = Γ, resp. Ext1MT (OS)(Q(0),Q(1)) = K1(OS)⊗Q = O∗

S ⊗Q.
(2.4)

Cyclotomic Mixed Tate Motives. In this thesis, we focus on the cyclotomic case and
consider the following categories, and sub-categories, for kN the N th cyclotomic field, ON :=
Z[ξN ] its ring of integers, with ξN a primitive N th root of unity:

MT N,M :=MT
(
ON

[
1
M

])
.

MT ΓN
, with ΓN the Q-sub vector space of

(
O
[
1
N

])∗ ⊗Q

generated by {1− ζaN}0<a<N (modulo torsion).

Hence:

MT (ON ) (MT ΓN ⊂MT
(
ON

[
1

N

])

The second inclusion is an equality if and only if N has all its prime factors inertI, since:

ΓN :=





(
O
[
1
p

])∗
⊗Q if N = pr

(O∗ ⊗Q)⊕
(
⊕ p prime

p|N
〈p〉 ⊗Q

)
else .

. (2.5)

The motivic cyclotomic MZV lie in the subcategory MT ΓN , as we will see more precisely
in §2.3.

Notations: We may sometimes drop the M (or even N), to lighten the notations:II:

MT N :=

{
MT N,N if N = 2, 3, 4, 8
MT 6,1 if N = ‘6’.

2.1.2 Motivic periods

LetM a tannakian category of mixed Tate motives. Its algebra of motivic periods is defined
as (cf. [32], [24], and [22], §2):

Pm

M := O(Isom⊗
M(ω, ωB)) = O(PB,ω).

A motivic period denoted as a triplet [M, v, σ]
m, element of Pm

M, is constructed
from a motive M ∈ Ind (M), and classes v ∈ ω(M), σ ∈ ωB(M)∨. It is a function
PB,ω → A1, which, on its rational points, is given by:

PB,ω(Q)→ Q , α 7→ 〈α(v), σ〉. (2.6)

II.e. each prime p dividing N , generates (Z/mZ)∗, for m such as N = pvp(N)m. It could occur only in the

following cases: N = ps, 2ps, 4ps, psqk, with extra conditions in most of these cases such as: 2 is a primitive root
modulo ps etc.

IIFor instance, MT 3 is the category MT
(
O3

[
1
3

])
.
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Its period is obtained by the evaluation on the complex point compB,dR:

Pm
M → C

[M, v, σ]
m 7→ 〈compB,dR(v ⊗ 1), σ〉. (2.7)

Example: The first example is the Lefschetz motivic period : Lm := [H1(Gm), [dxx ], [γ0]]
m,

period of the Lefschetz motive L; it can be seen as the motivic (2iπ)m; this notation appears
below.

This construction can be generalized for any pair of fiber functors ω1, ω2 leading to:

Motivic periods of type (ω1, ω2), which are in the following algebra of motivic periods:

Pω1,ω2

M := O (Pω1,ω2) = O
(
Isom⊗(ω2, ω1)

)
.

Remarks:

· The groupoid structure (composition) on the isomorphisms of fiber functors onM, by
dualizing, leads to a coalgebroid structure on the spaces of motivic periods:

Pω1,ω3

M → Pω1,ω2

M ⊗ Pω2,ω3

M .

· Any structure carried by these fiber functors (weight grading on ωdR, complex conju-
gation on ωB, etc.) is transmitted to the corresponding ring of periods.

Examples:

· For (ω, ωB), it comes down to (our main interest) Pm
M as defined in (2.6). By the last

remark, Pm
M inherits a weight grading and we can define (cf. [22], §2.6):

Pm,+
M ⊂ Pm

M, the ring of geometric periods, is generated by periods of motives
with non-negative weights:

{
[M, v, σ]m ∈ Pm

M |W−1M = 0
}
.

· The ring of periods of type (ω, ω) is Pω
M := O

(
Aut⊗(ω)

)
= O

(
GMT ).I

Unipotent variants of these periods are defined when restricting to the unipotent part
UMT of GMT , and intervene below (in 2.25):

Pa

M := O
(
UMT ) = AMT , the fundamental Hopf algebra.

They correspond to the notion of framed objects in mixed Tate categories, cf. [44]. By
restriction, there is a map:

Pω
M → Pa

M.

By the remark above, there is a coaction:

∆m,ω : Pm
M → Pω

M ⊗ Pm
M.

Moreover, composing this coaction by the augmentation map ǫ : Pm,+
M → (Pm,+

M )0 ∼= Q,
leads to the morphism (details in [22], §2.6):

πa,m : Pm,+
M → Pa

M, (2.8)

I In the case of a mixed Tate category over Q, as MT (Z), this is equivalent to the De Rham periods in

PdR
M := O

(
Aut⊗(ωdR)

)
, defined in [22]; however, for other cyclotomic fields k considered later (N > 2), we have

to consider the canonical fiber functor, since it is defined over k.
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which is, on periods of a motive M such that W−1M = 0: [M, v, σ]
m → [M, v,t c(σ)]

a
,

where c is defined as the composition : Mω ։ grW0 Mω = W0Mω

compB,ω−−−−−→ W0MB →֒MB.

Bear in mind also the non-canonical isomorphisms, compatible with weight and coaction
([22], Corollary 2.11) between those Q algebras:

Pm
M ∼= Pa

M ⊗Q Q
[
(Lm)−1,Lm

]
, and Pm,+

M
∼= Pa

M ⊗Q Q [Lm] . (2.9)

In particular, πa,m is obtained by sending Lm to 0.

In the case of a category of mixed Tate motive M defined over Q, I the complex con-
jugation defines the real Frobenius F∞ : MB → MB, and induces an involution on motivic
periods F∞ : Pm

M → Pm
M. Furthermore, Lm is anti invariant by F∞ (i.e. F∞(Lm) = −Lm).

Then, let us define:

Pm,+
M,R the subset of Pm,+

M invariant under the real Frobenius F∞, which, by (2.9)
satisfies :

Pm,+
M
∼= Pm,+

M,R ⊕ Pm,+
M,R.L

m and Pm,+
M,R

∼= Pa
M ⊗Q Q

[
(Lm)2

]
. (2.10)

Motivic Galois theory. The ring of motivic periods Pm
M is a bitorsor under Tannaka groups

(GMT ,GB). If Grothendieck conjecture holds, via the period isomorphism, there is therefore
a (left) action of the motivic Galois group GMT on periods.
More precisely, for each period p there would exist:

(i) well defined conjugates: elements in the orbit of GMT (Q).

(ii) an algebraic group over Q, Gp = GMT �Stab(p), where Stab(p) is the stabilizer of p;
Gp, the Galois group of p, transitively permutes the conjugates.

Examples:

· For π for instance, the Galois group corresponds to Gm. Conjugates of π are in fact
Q∗π, and the associated motive would be the Lefschetz motive L, motive of Gm =
P1�{0,∞}, as seen above.

· For log t, t > 0, t ∈ Q�{−1, 0, 1}, this is a period of the Kummer motive in degree 1:II

Kt := Mgm(X, {1, t}) ∈ Ext1MT (Q)(Q(0),Q(1)) , where X := P1�{0,∞}.

Since a basis of HB
1 (X, {1, t}) is [γ0], [γ1,t] with γt the straight path from 1 to t, and

a basis of H1
dR(X, {1, t}) is [dx],

[
dx
x

]
, the period matrix is:

(
Q 0
Q log(t) 2iπQ

)
.

The conjugates of log t are Q∗ log t+Q, and its Galois group is Q∗ ⋉Q.

IAs, in our concerns, MT N above with N = 1, 2; in these exceptional (real) cases, we want to keep track of
only even Tate twists.

IIRemark the short exact sequence: 0 → Q(1) → H1(X, {1, t}) → Q(0) → 0.
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· Similarly for zeta values ζ(n), n odd in N∗�{1} which are periods of a mixed Tate
motive over Z (cf. below): its conjugates are Q∗ζ(n)+Q, and its Galois group is Q∗⋉Q.
Grothendieck’s conjecture implies that π, ζ(3), ζ(5), . . . are algebraically independent.
More precisely, ζ(n) is a period of En ∈ MT (Q), where:

0→ Q(n)→ En → Q(0)→ 0.

Notice that for even n, by Borel’s result, Ext1MT (Q)(Q(0),Q(n)) = 0, which implies
En = Q(0)⊕ Q(n), and hence ζ(n) ∈ (2iπ)nQ.

· More generally, multiple zeta values at roots of unity µN occur as periods of mixed
Tate motives over Z[ξN ]

[
1
N

]
, ξN primitive N th root of unity. The motivic Galois group

associated to the algebra HN generated by MMZVµN is conjectured to be a quotient
of the motivic Galois group GMT N , equal for some values of N : N = 1, 2, 3, 4, 8 for
instance, as seen below. We expect MZV to be simple examples in the conjectural
Galois theory for transcendental numbers.

Remark: By K-theory results above, non-zero Ext groups forMT (Q) are:

Ext1MT (Q)(Q(0),Q(n)) ∼=
{

Q∗ ⊗Z Q ∼= ⊕p primeQ if n = 1
Q if n odd > 1.

Generators of these extension groups correspond exactly to periods log(p), p prime in degree
1 and ζ(odd) in degree odd > 1, which are periods of MT (Q).

2.2 Motivic fundamental group

Prounipotent completion. Let Π be a group freely generated by γ0, . . . , γN . The com-
pleted Hopf algebra Π̂ is defined by:

Π̂ := lim←−Q[Π]�In, where I := 〈γ − 1, γ ∈ Π〉 is the augmentation ideal.

Equipped with the completed coproduct ∆ such that elements of Π are primitive, it is
isomorphic to the Hopf algebra of non commutative formal series:I

Π̂
∼−−−−−−−→

γi 7→exp(ei)
Q〈〈e0, . . . , eN 〉〉.

The prounipotent completion of Π is an affine group scheme Πun:

Πun(R) = {x ∈ Π̂⊗̂R | ∆x = x⊗ x} ∼= {S ∈ R〈〈e0, . . . , eN 〉〉× | ∆S = S ⊗ S, ǫ(S) = 1},
(2.11)

i.e. the set of non-commutative formal series with N +1 generators which are group-like for
the completed coproduct for which ei are primitive.
It is dual to the shuffle � relation between the coefficients of the series SII. Its affine ring
of regular functions, is the Hopf algebra (filtered, connected) for the shuffle product, and
deconcatenation coproduct:

O(Πun) = lim−→
(
Q[Π]�In+1

)∨ ∼= Q
〈
e0, . . . , eN

〉
. (2.12)

IWell defined inverse since the log converges in Π̂; exp(ei) are then group-like for ∆. Notice that the Lie
Algebra of the group of group-like elements is formed by the primitive elements and conversely; besides, the
universal enveloping algebra of primitive elements is the whole Hopf algebra.

IIIt is a straightforward verification that the relation ∆S = S ⊗ S implies the shuffle � relation between the
coefficients of S.
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Motivic Fundamental pro-unipotent groupoid. I The previous construction can be ap-
plied to π1(X, x), resp. π1(X, x, y), if assumed free, the fundamental group resp. groupoid
of X with base point x, resp. x, y, rational points of X , an algebraic variety over Q; the
groupoid π1(X, x, y), is a bitorsor formed by the homotopy classes of path from x to y.

From now, let’s turn to the case XN := P1�{0,∞, µN}. There, the group π1(XN , x) is
freely generated by γ0 and (γη)η∈µN , the loops around 0 resp. η ∈ µN .II

Chen’s theorem implies here that we have a perfect pairing:

C[π1(XN , x, y)]�In+1 ⊗ C〈ω0, (ωη)η∈µN 〉≤n → C. (2.13)

In order to define the motivic πun
1 , let us introduce (cf. [45], Theorem 4.1):

Y (n) := ∪iYi, where
Y0 := {x} ×Xn−1

Yi := X i−1 ×∆×Xn−i−1, ∆ ⊂ X ×X the diagonal
Yn := Xn−1 × {y}

. (2.14)

Then, by Beilinson theorem ([45], Theorem 4.1), coming from γ 7→ [γ(∆n)]:

Hk(X
n, Y (n)) ∼=

{
Q[π1(X, x, y)]�In+1 for k = n
0 for k < n

.

The left side defines a mixed Tate motive and:

O(πun
1 (X, x, y))

∼−→ lim−→
n

Hn(Xn, Y (n)). (2.15)

By (2.15), O (πun
1 (X, x, y)) defines an Ind object III in the category of Mixed Tate Motives

over k, since Y
(n)
I := ∩Y (n)

i is the complement of hyperplanes, hence of type Tate:

O
(
πun
1 (P1�{0,∞, µN}, x, y)

)
∈ Ind MT (k). (2.16)

We denote it O
(
πm

1 (X, x, y)
)
, and O (πω

1 (X, x, y)), O
(
πdR
1 (X, x, y)

)
, O

(
πB
1 (X, x, y)

)

its realizations, resp. πm

1 (X) for the corresponding MT (k)-groupoid scheme, called the
motivic fundamental groupoid, with the composition of path.

Remark: The pairing (2.13) can be thought in terms of a perfect pairing between homol-
ogy and de Rham cohomology, since (Wojtkowiak [80]):

Hn
dR(X

n, Y (n)) ∼= kN 〈ω0, . . . , ωN 〉≤n.

The construction of the prounipotent completion and then the motivic fundamental groupoid
would still work for the case of tangential base points , cf. [34], §3IV. Let us denote λN the

I “Esquisse d’un programme”[50], by Grothendieck, vaguely suggests to study the action of the absolute Galois

group of the rational numbers Gal(Q�Q) on the étale fundamental group πet
1 (Mg,n), where Mg,n is the moduli

space of curves of genus g and n ordered marked points. In the case of M0,4 = P1�{0, 1,∞}, Deligne proposed

to look instead (analogous) at the pro-unipotent fundamental group πun
1 (P1�{0, 1,∞}). This motivates also the

study of multiple zeta values, which arose as periods of this fundamental group.
IIBeware, since π1(X, x, y) is not a group, we have to pass first to the dual in the previous construction:

πun
1 (X, x, y) := Spec

(
lim−→
(
Q[π1]�In+1

)∨)
.

IIIInd objects of a category C are inductive filtered limit of objects in C.
IVI.e. here non-zero tangent vectors in a point of {0, µN ,∞} are seen as “base points at infinite”. Deligne

explained how to replace ordinary base points with tangential base points.
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straight path between 0 and ξN , a primitive root of unity. In the following, we will partic-
ularly consider the tangential base points

−−→
0ξN := (

−→
1 0,
−→−1ξN ), defined as (λ′

N (0),−λ′
N (1));

but similarly for each x, y ∈ µN ∪{0,∞}, such that xλy the straight path between x, y in in
P1(C�{0, µN ,∞}), we associate the tangential base points −→xy := (xλ

′
y(0),−xλ

′
y(1))

I. Since
the motivic torsor of path associated to such tangential basepoints depends only on x, y (cf.
[34], §5) we will denote it xΠ

m
y . This leads to a groupoid structure via xΠ

m
y ×y Π

m
z →x Πm

z :
cf. Figure 2.1 and [34].
In fact, by Goncharov’s theorem, in case of these tangential base points, the motivic torsor
of path corresponding has good reduction outside N and (cf. [34], §4.11):

O
(
xΠ

m
y

)
∈ Ind MT ΓN ⊂ Ind MT

(
ON

[
1

N

])
. (2.17)

The case of ordinary base points, lying in Ind MT (k), has no such good reduction.
In summary, from now, we consider, for x, y ∈ µN ∪ {0}II:

The motivic bitorsors of path xΠ
m
y := πm

1 (XN ,−→xy) on XN := P1 − {0, µN ,∞} with
tangential basepoints given by −→xy := (λ′(0),−λ′(1)) where λ is the straight path from
x to y, x 6= −y.

Let us denote xΠy :=x Πω
y , resp. xΠ

dR
y , xΠ

B
y its ω, resp. de Rham resp. Betti realizations.

In particular, Chen’s theorem implies that we have an isomorphism:

0Π
B
1 ⊗ C

∼−→ 0Π1 ⊗ C.

Therefore, the motivic fundamental group above boils down to:

(i) The affine group schemes xΠ
B
y , x, y ∈ µN ∪ {0,∞}, with a groupoid structure. The

Betti fundamental groupoid is the pro-unipotent completion of the ordinary topological
fundamental groupoid, i.e. corresponds to πun

1 (X, x, y) above.

(ii) Π(X) = πω
1 (X), the affine group scheme over Q. It does not depend on x, y since the

existence of a canonical de Rham path between x and y implies a canonical isomorphism
Π(X) ∼=x Π(X)y; however, the action of the motivic Galois group G is sensitive to the
tangential base points x, y.

(iii) a canonical comparison isomorphism of schemes over C, compB,ω.

η

0 1

ηΠ1

ηΠ0

ηΠη

0Πη

0Π1
0Π0 1Π1

1Πη

1Π0

Figure 2.1: Part of the Fundamental groupoid Π.
This picture however does not represent accurately the tangential base points.

IIn order that the path does not pass by 0, we have to exclude the case where x = −y if N even.
II

xΠ
m
y is a bitorsor under (xΠ

m
x ,y Πm

y ).
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Moreover, the dihedral groupI DiN = Z�2Z ⋉ µN acts on XN = P1�{0, µN ,∞}: the
group with two elements corresponding to the action x 7→ x−1 and the cyclic group µN

acting by x 7→ ηx. Notice that for N = 1, 2, 4, the group of projective transformations
XN → XN is larger than DiN , because of special symmetries, and detailed in A.3. II

The dihedral group DiN acts then on the motivic fundamental groupoid πm
1 (X, x, y), x, y ∈

{0}∪µN by permuting the tangential base points (and its action is respected by the motivic
Galois group):

For σ ∈ DiN , xΠy →σ.x Πσ.y

The group scheme V of automorphisms on these groupoids xΠy, respecting their struc-
ture, i.e.:

· groupoid structure, i.e. the compositions xΠy ×y Πz →x Πz,

· µN -equivariance as above,

· inertia: the action fixes exp(ex) ∈x Πx(Q),

is isomorphic to (cf. [34], §5 for the detailed version):

V ∼=0 Πx

a 7→ a ·0 1x . (2.18)

In particular, the Ihara action defined in (2.42) corresponds via this identification to the
composition law for these automorphisms, and then can be computed explicitly. Its dual
would be the combinatorial coaction ∆ used through all this work.

In consequence of these equivariances, we can restrict our attention to:

0Π
m
ξN

:= πm
1 (XN ,

−−→
0ξN) or equivalently at 0Π

m
1 .

Keep in mind, for the following, that 0Π1 is the functor:

0Π1 : R a Q− algebra 7→
{
S ∈ R〈〈e0, (eη)η∈µN 〉〉×|∆S = S ⊗ S ǫ(S) = 1

}
, (2.19)

whose affine ring of regular functions is the graded (Hopf) algebra for the shuffle product:

O(0Π1) ∼= Q
〈
e0, (eη)η∈µN

〉
. (2.20)

The Lie algebra of 0Π1(R) would naturally be the primitive series (∆S = 1⊗ S + S ⊗ 1).

Let us denote dchB
0,1 =0 1B1 , the image of the straight path (droit chemin) in 0Π

B
1 (Q), and

dchdR
0,1 or ΦKZN the corresponding element in 0Π1(C) via the Betti-De Rham comparison

isomorphism:

ΦKZN
:= dchdR

0,1 := compdR,B(01
B
1 ) =

∑

W∈{e0,(eη)η∈µN
}×

ζ
�

(w)w ∈ C〈〈e0, (eη)η∈µN 〉〉,

(2.21)

ISymmetry group of a regular polygon with N sides.
IIEach homography φ defines isomorphisms:

aΠb
φ−→
∼

φ(a)Πφ(b)

f(e0, e1, . . . , en) 7→ f(eφ(0), eφ(1), . . . , eφ(n))
and, passing to the dual O(φ(a)Πφ(b))

φ∨

−−→
∼

O(aΠb).
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where the correspondence between MZV and words in e0, eη is similar to the iterated integral
representation (1.3), with ηi. It is known as the Drinfeld’s associator and arises also from
the monodromy of the famous Knizhnik−Zamolodchikov differential equation.I

Category generated by πm

1
. Denote by:

MT ′
N the full Tannakian subcategory of MT N generated by the fundamental

groupoid,

(i.e. generated by O(πm
1 (XN ,

−→
01)) by sub-objects, quotients, ⊗, ⊕, duals) and let:

· GN = Gm ⋉ UN its motivic Galois group defined over Q,

· AN = O(UN ) its fundamental Hopf algebra,

· LN := AN
>0/AN

>0 · AN
>0 the Lie coalgebra of indecomposable elements.

Nota Bene: UN is the quotient of UMT by the kernel of the action on 0Π1: i.e. UN acts
faithfully on 0Π1.

Remark: In the case of N = 1 (by F. Brown in [20]), or N = 2, 3, 4, ‘6’, 8 (by P. Deligne, in
[31], proven in a dual point of view in Chapter 5), these categoriesMT ′

N andMT (ON

[
1
N

]
)

are equal. More precisely, for ξN ∈ µN a fixed primitive root, the following motivic torsors
of path are sufficient to generate the category:

N = 2, 3, 4: Πm(P1�{0, 1,∞},−−→0ξN) generatesMT (ON

[
1
N

]
).

N = ‘6’: II Πm(P1�{0, 1,∞},−→0ξ6) generatesMT (O6).

N = 8: Πm(P1�{0,±1,∞},−→0ξ6) generatesMT (O8

[
1
2

]
).

However, if N has a prime factor which is non inert, the motivic fundamental group, is in
the proper subcategoryMT ΓN and hence can not generateMT (ON

[
1
N

]
).

2.3 Motivic Iterated Integrals

Taking from now M =MT ′
N , M = O(πm

1 (P1 − {0, µN ,∞},−→xy)), the definition of motivic
periods (2.6) leads to motivic iterated integrals relative to µN . Indeed:

A motivic iterated integral is the triplet Im(x;w; y) :=[
O (Πm (XN ,−→xy)) , w,x dchB

y

]m
where w ∈ ω(M), xdch

B
y is the image of the straight

path from x to y in ωB(M)∨ and whose period is:

per(Im(x;w; y)) = I(x;w; y) =

∫ y

x

w = 〈compB,dR(w ⊗ 1),x dch
B
y 〉 ∈ C. (2.22)

IIndeed, for N = 1, Drinfeld associator is equal to G−1
1 G0, where G0, G1 are solutions, with certain asymptotic

behavior at 0 and 1 of the Knizhnik−Zamolodchikov differential equation:

d

dz
G(z) =

(
e0

z
+

e1

1 − z

)
G(z).

IIThe quotation marks around 6 underlines that we consider the unramified category in this case.
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Remarks:

· There, w ∈ ω(O(xΠm
y ))
∼= Q 〈ω0, (ωη)η∈µN 〉 where ωη := dt

t−η . Similarly to 1.2, let:

Im(a0; a1, . . . , an; an+1) := Im(a0;ωa; an+1), where ωa := ωa1 · · ·ωan , for ai ∈ {0}∪µN

(2.23)

· The Betti realization functor ωB depends on the embedding σ : k →֒ C. Here, by
choosing a root of unity, we fixed the embedding σ.

ForM a category of Mixed Tate Motives amongMT N ,MT ΓN resp. MT ′
N , let introduce

the graded AM-comodule, with trivial coaction on Lm (degree 1):

HM := AM ⊗
{

Q
[
(Lm)2

]
for N = 1, 2

Q [Lm] for N > 2.
⊂ O(GM) = AM ⊗Q[Lm, (Lm)−1]. (2.24)

Nota Bene: For N > 2, it corresponds to the geometric motivic periods, Pm,+
M whereas for

N = 1, 2, it is the subset Pm,+
M,R invariant by the real Frobenius; cf. (2.9), (2.10).

ForM =MT ′
N , we will simply denote it HN := HMT ′

N . Moreover:

HN ⊂ HMT ΓN ⊂ HMT N .

Cyclotomic iterated integrals of weight n are periods of πun
1 (of Xn relative to Y (n)): I

Any motivic iterated integral Im relative to µN is an element of HN , which is the
graded AN− comodule generated by these motivic iterated integrals relative to µN .

In a similar vein, define:

·Iω : A motivic period of type (ω, ω), in O(G):

Iω(x;w; y) =
[
O
(
xΠ

m
y

)
, w,x 1

ω
y

]ω
, where

{
w ∈ ω(O

(
xΠ

m
y

)
)

x1
ω
y ∈ ω(M)∨ = O (xΠy)

∨ . (2.25)

where x1
ω
y ∈ O (xΠy)

∨ is defined by the augmentation map ǫ : Q〈e0, (eη)η∈µN 〉 → Q,
corresponding to the unit element in xΠy. This defines a function on G = Aut⊗(ω),
given on the rational points by g ∈ G(Q) 7→ 〈gω, ǫ〉 ∈ Q.

·Ia: the image of Iω in A = O(U), by the projection O(G) ։ O(U). These unipotent
motivic periods are the objects studied by Goncharov, which he called motivic iterated
integrals; for instance, ζa(2) = 0.

·Il: the image of Ia in the coalgebra of indecomposables L := A>0�A>0.A>0.II

Remark: It is similar (cf. [20]) to define HN , as O(0Π1)�J , with:

· J ⊂ O(0Π1) is the biggest graded ideal ⊂ ker per closed by the coaction ∆c, corre-
sponding to the ideal of motivic relations, i.e.:

∆c(J) ⊂ A⊗ J + JA⊗O(0Π1).

INotations of (2.14). Cf. also (2.17). The case of tangential base points requires blowing up to get rid of
singularities. Most interesting periods are often those whose integration domain meets the singularities of the
differential form.

IIWell defined since A = O(U) is graded with positive degrees.
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· the �-homomorphism: per : O(0Π1)→ C , ea1 · · · ean 7→ I(0; a1, . . . , an; 1) :=
∫
dch ω.

Once the motivic iterated integrals are defined, motivic cyclotomic multiple zeta values
follows, as usual (cf. 1.2):

Motivic multiple zeta values relative to µN are defined by, for ǫi ∈ µN , k ≥ 0, ni > 0

ζm

k

(
n1, . . . , np

ǫ1, . . . , ǫp

)
:= (−1)pIm

(
0;0k, (ǫ1 · · · ǫp)−1,0n1−1, · · · , (ǫi · · · ǫp)−1,0ni−1, · · · , ǫ−1

p ,0np−1; 1
)

(2.26)

An admissible (motivic) MZV is such that (np, ǫp) 6= (1, 1); otherwise, they are defined by
shuffle regularization, cf. (2.28) below; the versions ζa

k(· · · ), or ζl

k(· · · ) are defined similarly,
from Ia resp. I l above. The roots of unity in the iterated integral will often be denoted by
ηi := (ǫi · · · ǫp)−1

From (2.8), there is a surjective homomorphism called the period map , conjectured to
be isomorphism:

per : H → Z , ζm
(
n1, . . . , np

ǫ1, . . . , ǫp

)
7→ ζ

(
n1, . . . , np

ǫ1, . . . , ǫp

)
. (2.27)

Nota Bene: Each identity between motivic cyclotomic multiple zeta values is then true for
cyclotomic multiple zeta values and in particular each result about a basis with motivic
MZV implies the corresponding result about a generating family of MZV by application of
the period map.
Conversely, we can sometimes lift an identity between MZV to an identity between motivic
MZV, via the coaction (as in [20], Theorem 3.3); this is discussed below, and illustrated
throughout this work in different examples or counterexamples, as in Lemma 4.4.3. It is
similar in the case of motivic Euler sums (N = 2). We will see (Theorem 2.4.4) that for
other roots of unity there are several rational coefficients which appear at each step (of the
coaction calculus) and prevent us from concluding by identification.

Properties. Motivic iterated integrals satisfy the following properties:

(i) Im(a0; a1) = 1.

(ii) Im(a0; a1, · · · an; an+1) = 0 if a0 = an+1.

(iii) Shuffle product:I

ζmk

(
n1, . . . , np

ǫ1, . . . , ǫp

)
=

(−1)k
∑

i1+···+ip=k

(
n1 + i1 − 1

i1

)
· · ·
(
np + ip − 1

ip

)
ζm
(
n1 + i1, . . . , np + ip

ǫ1, . . . , ǫp

)
. (2.28)

(iv) Path composition:

∀x ∈ µN∪{0} , Im(a0; a1, . . . , an; an+1) =

n∑

i=1

Im(a0; a1, . . . , ai;x)I
m(x; ai+1, . . . , an; an+1).

IProduct rule for iterated integral in general is:
∫

γ

φ1 · · ·φr ·
∫

γ

φr+1 · · ·φr+s =
∑

σ∈Shr,s

∫

γ

φσ−1(1) · · ·φσ−1(r+s),

where Shr,s ⊂ Sr+s is the subset of permutations which respect the order of {1, . . . , r} and {r + 1, . . . , r + s}.
Here, to define the non convergent case, (iii) is sufficient, paired with the other rules.
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(v) Path reversal: Im(a0; a1, . . . , an; an+1) = (−1)nIm(an+1; an, . . . , a1; a0).

(vi) Homothety: ∀α ∈ µN , Im(0;αa1, . . . , αan;αan+1) = Im(0; a1, . . . , an; an+1).

Remark: These relations, for the multiple zeta values relative to µN , and for the iterated
integrals I(a0; a1, · · ·an; an+1) (1.3), are obviously all easily checked.

It has been proven that motivic iterated integrals verify stuffle ∗ relations, but also pen-
tagon, and hexagon (resp. octagon for N > 1) ones, as iterated integral at µN . In depth 1,
by Deligne and Goncharov, the only relations satisfied by the motivic iterated integrals are
distributions and conjugation relations, stated in §2.4.3.

Motivic Euler ⋆, ♯ sums. Here, assume that N = 1 or 2.I In the motivic iterated integrals
above, Im(· · · , ai, · · · ), ai were in {0,±1}. We can extend by linearity to ai ∈ {±⋆,±♯},
which corresponds to a ω±⋆, resp. ω±♯ in the iterated integral, with the differential forms:

ω±⋆ := ω±1 − ω0 =
dt

t(±t− 1)
and ω±♯ := 2ω±1 − ω0 =

(t± 1)dt

t(t∓ 1)
.

It means that, by linearity, for A,B sequences in {0,±1,±⋆,±♯}:

Im(A,±⋆,B) = Im(A,±1, B)−Im(A, 0, B), and Im(A,±♯, B) = 2Im(A,±1, B)−Im(A, 0, B).
(2.29)

ζ⋆,m: Motivic Euler ⋆ Sums are defined by a similar integral representation as MES (1.3),
with ω±⋆ replacing the ω±1, except the first one, which stays a ω±1.
Their periods, Euler ⋆ sums, which are already common in the literature, can be written
as a summation similar than for Euler sums replacing strict inequalities by large ones:

ζ⋆ (n1, . . . , np) =
∑

0<k1≤k2≤···≤kp

ǫk1
1 · · · ǫ

kp
p

k
|n1|
1 · · · k|np|

p

, ǫi := sign(ni), ni ∈ Z∗, np 6= 1.

ζ♯,m: Motivic Euler ♯ Sums are defined by a similar integral representation as MES (1.3),
with ω±♯ replacing the ω±1, except the first one, which stays a ω±1.

They are both Q-linear combinations of multiple Euler sums, and appear in Chapter 4, via
new bases for motivic MZV (Hoffman ⋆, or with Euler ♯ sums) and in the Conjecture 4.5.1.

Dimensions. Algebraic K-theory provides an upper bound for the dimensions of motivic
cyclotomic iterated integrals, since:

Ext1MT N,M
(Q(0),Q(1)) = (OkN [ 1

M ])∗ ⊗Q

Ext1MT ΓN
(Q(0),Q(1)) = ΓN

Ext1MT N,M
(Q(0),Q(n)) = Ext1MT Γ

(Q(0),Q(n)) = K2n−1(kN )⊗Q for n > 1.

ExtiMT N,M
(Q(0),Q(n)) = ExtiMT Γ

(Q(0),Q(n)) = 0 for i > 1 or n ≤ 0.

(2.30)
Let npM denote the number of different prime ideals above the primes dividing M , νN the
number of primes dividing N and ϕ Euler’s indicator function. For M |N (cf. [8]), using

IDetailed definitions of these ⋆ and ♯ versions are given in §4.1.
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Dirichlet S-unit theorem when n = 1:

dimK2n−1(OkN [1/M ])⊗Q =





1 if N = 1 or 2, and n odd , (n,N) 6= (1, 1).
0 if N = 1 or 2, and n even .
ϕ(N)

2 + npM − 1 if N > 2, n = 1.
ϕ(N)

2 if N > 2, n > 1.
(2.31)

The numbers of generators in each degree, corresponding to the categories MT N,M resp.
MT ΓN , differ only in degree 1:

In degree > 1 : bN := bN,M = bΓN = ϕ(N)
2

In degree 1 : aN,M := ϕ(N)
2 + npM − 1 whereas aΓN

:= ϕ(N)
2 + ν(N)− 1.

(2.32)
Nota Bene: The following formulas in this paragraph can be applied for the categories
MT N,M resp. MT ΓN , replacing aN by aN,M resp. aΓN .

In degree 1, for MT M,N , only the units modulo torsion matters whereas for the category
MT ΓN , only the cyclotomic units modulo torsion matters in degree 1, cf. §2.4.3. Recall
that cyclotomic units form a subgroup of finite index in the group of units, and generating
families for cyclotomic units modulo torsion are (cf. [5])I:

For N = ps :
{

1−ξaN
1−ξN

, a ∧ p = 1
}
, where a ∧ b := gcd(a, b).

For N =
∏

i p
si
i =

∏
qi :

{
1−ξaqi
1−ξqi

, a ∧ pi = 1
}
∪ {1− ξad , a ∧ d = 1, d | N, d 6= qi}

.

Results on cyclotomic units determine depth 1 weight 1 results for MMZVµN (cf. §.2.4.3).

Knowing dimensions, we lift (2.2) to a non-canonical isomorphism with the free Lie algebra:

uMT ∼=
n.c

L := LQ

〈(
σj
1

)
1≤j≤aN

,
(
σj
i

)
1≤j≤bN

, i > 1

〉
σi in degree − i. (2.33)

The generators σj
i of the graded Lie algebra u are indeed non-canonical, only their classes

in the abelianization are.II For the fundamental Hopf algebra, with f j
i = (σj

i )
∨ in degree j:

AMT ∼=
n.c

A := Q

〈(
f j
1

)
1≤j≤aN

,
(
f j
i

)
1≤j≤bN

, i > 1

〉
. (2.35)

AMT is a cofree commutative graded Hopf algebra cogenerated by aN elements f•
1

in degree 1, and bN elements f•
r in degree r > 1.

The comodule HN ⊆ O(0Π1) embeds, non-canonicallyIII, into HMT N and hence:

HN φN

−֒−−−−→
n.c.

HN := Q

〈(
f j
1

)
1≤j≤aN

,
(
f j
r

)
r>1

1≤j≤bN

〉
⊗Q [g1] . (2.36)

IIf we consider cyclotomic units in Z[ξN ]
[

1
M

]
, with M =

∏
ri, ri prime power, we have to add {1 − ξri}.

IIIn other terms, this means:

H1(u
MT

;Q) ∼=
⊕

i,j as above

[σ
j
i ]Q, H

B
i (u

MT
;Q) = 0 for i > 1. (2.34)

IIIWe can fix the image of algebraically independent elements with trivial coaction.

For instance, for N = 3, we can choose to send: ζm
(

r
j

)
φ7−→ fr, and (2iπ)m

φ7−→ g1.
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Nota Bene: This comodule embedding is an isomorphism for N = 1, 2, 3, 4, ‘6’, 8 (by F.
Brown [20] for N = 1, by Deligne [31] for the other cases; new proof in Chapter 5), since
the categoriesMT ′

N ,MT (O
[
1
N

]
) andMT ΓN are equivalent. However, for some other N ,

such as N prime greater than 5, it is not an isomorphism.
Looking at the dimensions dNn := dimHMT N

n :

Lemma 2.3.1. For N > 2, dNn satisfies two (equivalent) recursive formulasI:

dNn = 1 + aNdn−1 + bN
∑n

i=2 dn−i

dNn = (aN + 1)dn−1 + (bN − aN )dn−2 with

{
d0 = 1
d1 = aN + 1

.

Hence the Hilbert series for the dimensions of HMT is:

hN (t) :=
∑

k

dNk tk =
1

1− (aN + 1)t+ (aN − bN)t2
.

In particular, these dimensions (for HMT ΓN ) are an upper bound for the dimensions of
motivic MZVµN (i.e. of HN ), and hence of MZVµN by the period map. In the case N = pr,
p ≥ 5 prime, this upper bound is conjectured to be not reached; for other N however, this
bound is still conjectured to be sharp (cf. §3.4).

Examples:

· For the unramified categoryMT (ON ):

dn =
ϕ(N)

2
dn−1 + dn−2.

· For M | N such that all primes dividing M are inert, npM = ν(N). In particular, it is
the case if N = pr:

ForMT
(
Opr

[
1

p

])
, dn =

(
ϕ(N)

2
+ 1

)n

.

Let us detail the cases N = 2, 3, 4, ‘6’, 8 considered in Chapter 5:

N\ dNn A Dimension relation dNn Hilbert series

N = 1II 1 generator in each odd degree > 1
Q〈f3, f5, f7, · · · 〉

dn = dn−3 + dn−2,
d2 = 1, d1 = 0

1
1−t2−t3

N = 2III 1 generator in each odd degree ≥ 1
Q〈f1, f3, f5, · · · 〉

dn = dn−1 + dn−2

d0 = d1 = 1
1

1−t−t2

N = 3, 4
1 generator in each degree ≥ 1

Q〈f1, f2, f3, · · · 〉 dk = 2dk−1 = 2k 1
1−2t

N = 8
2 generators in each degree ≥ 1

Q〈f1
1 , f

2
1 , f

1
2 , f

2
2 , · · · 〉

dk = 3dk−1 = 3k 1
1−3t

N = 6
MT (O6

[
1
6

]
)

1 in each degree > 1, 2 in degree 1
Q〈f1

1 , f
2
1 , f2, f3, · · · 〉

dk = 3dk−1 − dk−2,
d1 = 3

1
1−3t+t2

N = 6
MT (O6)

1 generator in each degree > 1
Q〈f2, f3, f4, · · · 〉

dk = 1 +
∑

i≥2 dk−i

= dk−1 + dk−2

1
1−t−t2

IThose two recursive formulas, although equivalent, leads to two different perspective for counting dimensions.
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2.4 Motivic Hopf algebra

2.4.1 Motivic Lie algebra.

Let g the free graded Lie algebra generated by e0, (eη)η∈µN in degree −1. Then, the com-
pleted Lie algebra g∧ is the Lie algebra of 0Π1(Q) and the universal enveloping algebra Ug

is the cocomutative Hopf algebra which is the graded dual of O(0Π1):

(Ug)n = (Qe0 ⊕η∈µN Qeη)
⊗n

= (O(0Π1)
∨)n. (2.38)

The product is the concatenation, and the coproduct is such that e0, eη are primitive.

Considering the motivic version of the Drinfeld associator:

Φm :=
∑

w

ζm(w)w ∈ H 〈〈e0, eη〉〉 , where : (2.39)

ζm(en0 eη1e
n1−1
0 · · · eηpe

np−1
0 ) = ζmn

(
n1, . . . , np

ǫ1, . . . , ǫp

)
with

ǫp := η−1
p

ǫi := η−1
i ηi+1

.

Nota Bene: This motivic Drinfeld associator satisfies the double shuffle relations, and, for
N = 1, the associator equations defined by Drinfeld (pentagon and hexagon), replacing 2πi
by the Lefschetz motivic period Lm; for N > 1, an octagon relation generalizes this hexagon
relation, as we will see in §4.2.2.
Moreover, it defines a map:

⊕H∨
n → Ug which induces a map: ⊕ L∨n → Ug.

Define gm, the Lie algebra of motivic elements as the image of ⊕L∨n in Ug:I

⊕ L∨n
∼−→ gm →֒ Ug. (2.40)

The Lie algebra gm is equipped with the Ihara bracket given precisely below. Notice that
for the cases N = 1, 2, 3, 4, ‘6’, 8, gm is non-canonically isomorphic to the free Lie algebra L
defined in (2.33), generated by (σi)

′s.

Ihara action. As said above, the group scheme V of automorphisms of xΠy , x, y ∈ {0, µN}
is isomorphic to 0Π1 (2.18), and the group law of automorphisms leads to the Ihara action.
More precisely, for a ∈0 Π1 (cf. [34]):

The action on 0Π0 : 〈a〉0 : 0Π0 → 0Π0

exp(e0) 7→ exp(e0)
exp(eη) 7→ ([η] · a) exp(eη)([η] · a)−1

Then, the action on 0Π1 : 〈a〉 : 0Π1 → 0Π1

b 7→ 〈a〉0(b) · a

(2.41)

IIFor N = 1, Broadhurst and Kreimer made a more precise conjecture for dimensions of multiple zeta values
graded by the depth, which transposes to motivic ones:

∑
dim(grDd H1

n)s
ntd =

1 + E(s)t

1 − O(s)t + S(s)t2 − S(s)t4
, where

E(s) := s2

1−s2

O(s) := s3

1−s2

S(s) := s12

(1−s4)(1−s6)

(2.37)

where E(s), resp. O(s), resp. S(s) are the generating series of even resp. odd simple zeta values resp. of the space
of cusp forms for the full modular group PSL2(Z). The coefficient S(s) of t2 can be understood via the relation
between double zetas and cusp forms in [41]; The coefficient S(s) of t4, underlying exceptional generators in depth
4, is now also understood by the recent work of F. Brown [21], who gave an interpretation of this conjecture via
the homology of an explicit Lie algebra.

IIIFor N = 2, the dimensions are Fibonacci numbers.
IThe action of the Galois group UMT turns L into a coalgebra, and hence gm into a Lie algebra.
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This action is called the Ihara action :

◦ : 0Π1 ×0 Π1 → 0Π1

(a, b) 7→ a ◦ b := 〈a〉0(b) · a. (2.42)

At the Lie algebra level, it defines the Ihara bracket on Lie(0Π1):

{a, b} := a ◦ b− b ◦ a. (2.43)

Nota Bene: The dual point of view leads to a combinatorial coaction ∆c, which is the
keystone of this work.

2.4.2 Coaction

The motivic Galois group GMT N and hence UMT acts on the de Rham realization 0Π1 of
the motivic fundamental groupoid (cf. [34], §4.12). It is fundamental, since the action of
UMT is compatible with the structure of xΠy (groupoid, µN equivariance and inertia), that
this action factorizes through the Ihara action, using the isomorphism V ∼=0 Π1 (2.18):

UMT ×0 Π1
//

��

0Π1

∼
��

0Π1 ×0 Π1
◦ //

0Π1

Since AMT = O(UMT ), this action gives rise by duality to a coaction: ∆MT , compatible
with the grading, represented below. By the previous diagram, the combinatorial coaction
∆c (on words on 0, η ∈ µN ), which is explicit (the formula being given below), factorizes
through ∆MT . Remark that ∆MT factorizes through A, since U is the quotient of UMT by
the kernel of its action on 0Π1. By passing to the quotient, it induces a coaction ∆ on H:

O(0Π1)
∆c

//

∼
��

A⊗Q O(0Π1)

��
O(0Π1)

��

∆MT
// AMT ⊗Q O(0Π1)

��
H ∆ // A⊗H.

The coaction for motivic iterated integrals is given by the following formula, due to A. B.
Goncharov (cf. [44]) for A and extended by F. Brown to H (cf. [20]):

Theorem. The coaction ∆ : H → A⊗Q H is given by the combinatorial coaction ∆c:

∆cIm(a0; a1, · · ·an; an+1) =

∑

k;i0=0<i1<···<ik<ik+1=n+1

(
k∏

p=0

Ia(aip ; aip+1, · · ·aip+1−1; aip+1)

)
⊗ Im(a0; ai1 , · · · aik ; an+1).

Remark: It has a nice geometric formulation, considering the ai as vertices on a half-circle:

∆cIm(a0; a1, · · · an; an+1) =
∑

polygons on circle
with vertices (aip

)

∏

p

Ia
(

arc between consecutive vertices
from aip to aip+1

)
⊗Im( vertices ).
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Example: In the reduced coactionI of ζm(−1, 3) = Im(0;−1, 1, 0, 0; 1), there are 3 non zero

cuts:

0 −1 1 0 0 1

.. Hence:

∆′(Im(0;−1, 1, 0, 0; 1))
= Ia(0;−1; 1)⊗Im(0; 1, 0, 0; 1)+Ia(−1; 1; 0)⊗Im(0;−1, 0, 0; 1)+Ia(−1; 1, 0, 0; 1)⊗Im(0;−1; 1)

I.e, in terms of motivic Euler sums, using the properties of motivic iterated integrals (§2.3):

∆′(ζm(−1, 3)) = ζa(−1)⊗ ζm(3)− ζa(−1)⊗ ζm(−3) + (ζa(3)− ζa(−3))⊗ ζm(−1).

Define for r ≥ 1, the derivation operators:

Dr : H → Lr ⊗Q H, (2.44)

composite of ∆′ = ∆c − 1⊗ id with πr ⊗ id, where πr is the projection A → L → Lr.

Nota Bene: It is sufficient to consider these weight-graded derivation operators to keep
track of all the information of the coaction.

According to the previous theorem, the action of Dr on Im(a0; a1, · · · an; an+1) is:

DrI
m(a0; a1, · · ·an; an+1) = (2.45)

n−1∑

p=0

I l(ap; ap+1, · · · ap+r; ap+r+1)⊗ Im(a0; a1, · · · ap, ap+r+1 · · · an; an+1).

Remarks

· Geometrically, it is equivalent to keep in the previous coaction only the polygons
corresponding to an unique cut of (interior) length r between two elements of the
iterated integral.

· These maps Dr are derivations:

Dr(XY ) = (1⊗X)Dr(Y ) + (1⊗ Y )Dr(X).

· This formula is linked with the equation differential satisfied by the iterated integral
I(a0; · · · ; an+1) when the a′is vary (cf. [44])II:

dI(a0; · · · ; an+1) =
∑

dI(ai−1; ai; ai+1)I(a0; · · · âi · · · ; an+1).

Example: By the previous example:

D3(ζ
m(−1, 3)) = (ζa(3)− ζa(−3))⊗ ζm(−1)

D1(ζ
m(−1, 3)) = ζa(−1)⊗ (ζm(3)− ζm(−3))

I∆′(x) := ∆(x) − 1 ⊗ x − x⊗ 1
IISince I(ai−1; ai; ai+1) = log(ai+1 − ai) − log(ai−1 − ai).
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2.4.3 Depth filtration

The inclusion of P1�{0, µN ,∞} ⊂ P1�{0,∞} implies the surjection for the de Rham
realizations of fundamental groupoid:

0Π1 → πdR
1 (Gm,

−→
01). (2.46)

Looking at the dual, it corresponds to the inclusion of:

O
(
πdR
1 (Gm,

−→
01)
)
∼= Q

〈
e0
〉
−֒−−→ O (0Π1) ∼= Q

〈
e0, (eη)η

〉
. (2.47)

This leads to the definition of an increasing depth filtration FD on O(0Π1)
I such that:

FD

p O(0Π1) :=

〈
words w in e0, eη, η ∈ µN such that

∑

η∈µN

degeηw ≤ p

〉

Q

. (2.48)

This filtration is preserved by the coaction and thus descends to H (cf. [21]), on which:

FD
p H :=

〈
ζm
(
n1, . . . , nr

ǫ1, . . . , ǫr

)
, r ≤ p

〉

Q

. (2.49)

In the same way, we define FD
p A and FD

p L. Beware, the corresponding grading on O(0Π1)

is not motivic and the depth is not a grading on HII. The graded spaces grDp are defined as
the quotient FD

p /FD
p−1.

Similarly, there is an increasing depth filtration on Ug, considering the degree in {eη}η∈µN ,
which passes to the motivic Lie algebra gm(2.40) such that the graded pieces grrDgm are
dual to grDr L.
In depth 1, there are canonical elements:III

σ
(η)
i := (ad e0)

i−1(eη) ∈ gr1Dgm. (2.50)

They satisfy the distribution and conjugation relations stated below.

Depth 1. In depth 1, it is known for A (cf. [34] Theorem 6.8):

Lemma 2.4.1 (Deligne, Goncharov). The elements ζa (r; η) are subject only to the following
relations in A:

Distribution

∀d|N , ∀η ∈ µN
d

, (η, r) 6= (1, 1) , ζa
(
r

η

)
= dr−1

∑

ǫd=η

ζa
(r
ǫ

)
.

Conjugation

ζa
(
r

η

)
= (−1)r−1ζa

(
r

η−1

)
.

IIt is the filtration dual to the filtration given by the descending central series of the kernel of the map 2.46; it
can be defined also from the cokernel of 2.47, via the decontatenation coproduct.

II For instance: ζm(3) = ζm(1, 2).
IIIFor N = 1, there are only the σ2i+1 := (ade0)

2i(e1) ∈ gr1Dgm, i > 0 and the subLie algebra generated by
them is not free, which means also there are other “exceptional” generators in higher depth, cf. [20].

For N = 2, 3, 4, ‘6’, 8, when keeping ηi as in Lemma 5.2.1, (σ
(ηi)

i ) then generate a free Lie algebra in grDg.
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Remark: More generally, distribution relations for MZV relative to µN are:

∀d|N, ∀ǫi ∈ µN
d

, ζ

(
n1, . . . , np

ǫ1, . . . , ǫp

)
= d

∑
ni−p

∑

ηd
1=ǫ1

· · ·
∑

ηd
p=ǫp

ζ

(
n1, . . . , np

η1, . . . , ηp

)
.

They are deduced from the following identity:

For d|N, ǫ ∈ µN
d

,
∑

ηd=ǫ

ηn =

{
dǫ

n
d if d|n

0 else .

These relations are obviously the analogues of those satisfied by the cyclotomic units modulo
torsion.

In weight r > 1, a basis for grD1 A is formed by depth 1 MMZV at primitive roots up

to conjugation. However, MMZVµN of weight 1, ζm
(

1
ξaN

)
= − log(1− ξaN), are more subtle.

For instance (already in [29]):

Lemma. A Z-basis for A1 is hence:

N = pr:
{
ζa
(

1
ξk

)
a ∧ p = 1 1 ≤ a ≤ p−1

2

}
.

N = pq: With p < q primes:




{
ζa
(

1

ξk

)
a ∧ p = 1 1 ≤ a ≤ p− 1

2

} ⋃

a∈(Z/qZ)∗�〈−1,p〉

{
ζa
(

1

ξap

)}
�

{
ζa
(

1

ξa

)}

⋃

a∈(Z/pZ)∗�〈−1,q〉

{
ζa
(

1

ξaq

)}
�

{
ζa
(

1

ξa

)}


Remarks:

· Indeed, for N = pq, a phenomenon of loops occurs: orbits via the action of p and −1
on (Z/qZ)∗, resp. of q and −1 on (Z/pZ)∗. Consequently, for each loop we have to

remove a primitive root ζ
(

1
ξa

)
and add the non primitive ζ

(
1

ξap

)
to the basis.I The

situation for N a product of primes would be analogue, considering different orbits
associated to each prime; we just have to pay more attention when orbits intersect,
for the choice of the representatives a: avoid to withdraw or add an element already
chosen for previous orbits.

· Depth 1 results also highlight a nice behavior in the cases N = 2, 3, 4, ‘6’, 8: primitive
roots of unity modulo conjugation form a basis (as in the case of prime powers) and if
we restrict (for dimension reasons) for non primitive roots to 1 (or ±1 for N = 8), it
is annihilated in weight 1 and in weight > 1 modulo p.

· In weight 1, there always exists a Z- basis.II

Example: For N = 34, relations in depth 1, weight 1 lead to two orbits, with (a) := ζa
(

1
ξaN

)
:

(2) = (16) + (1) (6) = (3) + (14)
(16) = (8) + (9) (14) = (7) + (10)
(8) = (4) + (13) (10) = (5) + (12)
(4) = (2) + (15) (12) = (11) + (6)

,

ICardinal of an orbit {±api mod N} is either the order of p modulo q, if odd, or half of the order of p modulo
q, if even.

IIConrad and Zhao conjectured ([29]) there exists a basis of MZVµN
for the Z-module spanned by MZVµN

for
each N and fixed weight w, except N = 1, w = 6, 7.
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Hence a basis could be: {
ζa
(

1

ξk34

)
, k ∈ {5, 7, 9, 11, 13, 15,2,6}

}
.

Motivic depth. The motivic depth of an element in HMT N is defined, via the correspon-
dence (2.36), as the degree of the polynomial in the (fi). I It can also be defined recursively
as, for Z ∈ HN :

Z of motivic depth 1 if and only if Z ∈ FD
1 HN .

Z of motivic depth ≤ p if and only if (∀r < n,Dr(Z) of motivic depth ≤ p− 1) .
.

For Z = ζm
(

n1,...,ǫp
ǫ1,...,ǫp

)
∈ HN of motivic depth pm, we clearly have the inequalities:

depth p ≥ pc ≥ pm motivic depth, where pc is the smallest i such that Z ∈ FD
i HN .

Nota Bene: For N = 2, 3, 4, ‘6’, 8, pm always coincide with pc, whereas for N = 1, they may
differ.

2.4.4 Derivation space

Translating (2.44) for cyclotomic MZV:

Lemma 2.4.2.

Dr : Hn → Lr ⊗Hn−r

Dr

(
ζm
(
n1, . . . , np

ǫ1, . . . , ǫp

))
= δr=n1+···+niζ

l

(
n1, · · ·ni

ǫ1, . . . , ǫi

)
⊗ ζm

(
ni+1, · · · , np

ǫi+1, . . . , ǫp

)

+
∑

1≤i<j≤p

{r≤
∑j

k=i
nk−1}

[
δ∑j

k=i+1 nk≤rζ
l

r−∑j
k=i+1 nk

(
ni+1, . . . , nj

ǫi+1, . . . , ǫj

)
+ (−1)rδ∑j−1

k=i nk≤rζ
l

r−∑j−1
k=i nk

(
nj−1, · · ·ni,

ǫ−1
j−1, . . . , ǫ

−1
i

)]

⊗ ζm

(
· · · ,∑j

k=i nk − r, · · ·
· · · ,∏j

k=i ǫk, · · ·

)
(2.51)

Proof. Straightforward from (2.44), passing to MZVµN notation.

A key point is that the Galois action and hence the coaction respects the weight grading
and the depth filtrationII:

Dr(Hn) ⊂ Lr ⊗Q Hn−r.

Dr(FD
p Hn) ⊂ Lr ⊗Q FD

p−1Hn−r.

Indeed, the depth filtration is motivic, i.e.:

∆(FD
n H) ⊂

∑

p+q=n

FD
p A⊗FD

q H.

Furthermore, FD
0 A = FD

0 L = 0. Therefore, the right side of ∆(•) is in FD
q H, with q < n.

This feature of the derivations Dr (decreasing the depth) will enable us to do some recursion
on depth through this work.

Passing to the depth-graded, define:

grDp Dr : gr
D
p H → Lr ⊗ grDp−1H, as the composition (id⊗ grDp−1) ◦Dr|grDp H.

By Lemma 2.4.2, all the terms appearing in the left side of grDp D2r+1 have depth 1. Hence,
let consider from now the derivations Dr,p:

IBeware, φ is non-canonical, but the degree is well defined.
IINotice that (FD

0 L = 0.
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Lemma 2.4.3.

Dr,p : grDp H → grD1 Lr ⊗ grDp−1H

Dr,p

(
ζm
(
n1, . . . , np

ǫ1, . . . , ǫp

))
= (a0) δr=n1 ζl

(
r

ǫ1

)
⊗ ζm

(
n2, · · ·
ǫ2, · · ·

)

(a) +

p−1∑

i=2

δni≤r<ni+ni−1−1(−1)r−ni

(
r − 1

r − ni

)
ζl
(
r

ǫi

)
⊗ ζm

( · · · , ni + ni−1 − r, · · ·
· · · , ǫi−1ǫi, · · ·

)

(b) −
p−1∑

i=1

δni≤r<ni+ni+1−1(−1)ni

(
r − 1

r − ni

)
ζl
(

r

ǫ−1
i

)
⊗ ζm

( · · · , ni + ni+1 − r, · · ·
· · · , ǫi+1ǫi, · · ·

)

(c) +

p−1∑

i=2

δ r=ni+ni−1−1

ǫi−1ǫi 6=1

(
(−1)ni

(
r − 1

ni − 1

)
ζl
(

r

ǫ−1
i−1

)
+ (−1)ni−1−1

(
r − 1

ni−1 − 1

)
ζl
(
r

ǫi

))

⊗ζm
( · · · , 1, · · ·
· · · , ǫi−1ǫi, · · ·

)

(d) + δnp≤r<np+np−1−1(−1)r−np

(
r − 1

r − np

)
ζl
(

r

ǫp

)
⊗ ζm

( · · · , np−1 + np − r

· · · , ǫp−1ǫp

)

(d’) +δ r=np+np−1−1

ǫp−1ǫp 6=1

(−1)np−1

((
r − 1

np − 1

)
ζl

(
r

ǫ−1
p−1

)
−
(

r − 1

np−1 − 1

)
ζl
(

r

ǫp

))
⊗ζm

( · · · , 1
· · · ǫp−1ǫp

)
.

Remarks:

· The terms of type (d, d’), corresponding to a deconcatenation, play a particular role
since modulo some congruences (using depth 1 result for the left side of the coaction),
we will get rid of the other terms in the cases N = 2, 3, 4, ‘6’, 8 for the elements in the
basis. In the dual point of view of Lie algebra, like in Deligne article [31] or Wojtkowiak
[79], this corresponds to showing that the Ihara bracket {, } on these elements modulo
some vector space reduces to the usual bracket [, ]. More generally, in other case of
basis, as Hoffman one’s for N = 1, the idea is still to find an appropriate filtration on
the conjectural basis, such that the coaction in the graded space acts on this family,
modulo some space, as the deconcatenation, as for the fi alphabet. Indeed, on H
(2.36), the weight graded part of the coaction, Dr is defined by:

Dr : Hn −→ Lr ⊗Hn−r such that : (2.52)

f j1
i1
· · · f jk

ik
7−→

{
f j1
i1
⊗ f j2

i2
, . . . , f jk

ik
if i1 = r.

0 else .

· One fundamental feature for a family of motivic multiple zeta values (which makes it
“natural” and simple) is the stability under the coaction. For instance, if we look at
the following families which appears in Chapter 5:

ζm
(
n1, · · ·np−1, np

ǫ1, . . . , ǫp−1, ǫp

)
with ǫp ∈ µN primitive and (ǫi)i<p non primitive.

If N is a power of a prime, this family is stable via the coaction. I It is also stable via
the Galois action if we only need to take 1 as a non primitive (1-dimensional case), as
forMT (O6).

ISince in this case, (non primitive) · ( non primitive) = non primitive and non primitive · primitive = primitive

root. Note also, for dimensions reasons, if we are looking for a basis in this form, we should have N−ϕ(N) ≥ ϕ(N)
2 ,

which comes down here to the case where N is a power of 2 or 3.
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Proof. Straightforward from 2.4.2, using the properties of motivic iterated integrals previ-
ously listed (§2.3). Terms of type (a) correspond to cuts from a 0 (possibly the very first
one) to a root of unity, (b) terms from a root of unity to a 0, (c) terms between two roots of
unity and (d,d’) terms are the cuts ending by the last 1, called deconcatenation terms.

Derivation space. By Lemma 2.4.1 (depth 1 results), once we have chosen a basis for
grD1 Lr, composed by some ζa(ri; ηi), we can well define: I

(i) For each (ri, ηi):
Dηi

ri,p
: grDp H → grDp−1H, (2.53)

as the composition of Dri,p followed by the projection:

πη : grD1 Lr ⊗ grDp−1H → grDp−1H, ζm(r; ǫ) ⊗X 7→ cη,ǫ,rX,

with cη,ǫ,r ∈ Q the coefficient of ζm(r; η) in the decomposition of ζm(r; ǫ) in the basis.

(ii)
Dr,p as the set of Dηi

ri,p for ζm(ri, ηi) in the chosen basis of grD1 Ar. (2.54)

(iii) The derivation set D as the (disjoint) union: D := ⊔r>0 {Dr}.
Remarks:

· In the case N = 2, 3, 4, ‘6’, the cardinal of Dr,p is one (or 0 if r even and N = 2,
or if (r,N) = (1, 6)), whereas for N = 8 the space generated by these derivations is
2-dimensional, generated by Dξ8

r and D−ξ8
r for instance.

· Doing the same procedure for the n.c. Hopf comodule H defined in (2.36), isomor-
phic to HMT N , since the coproduct on H is the deconcatenation (2.52), leads to the
following derivations operators:

Dj
r : Hn → Hn−r

f j1
i1
· · · f jk

ik
7→

{
f j2
i2
, . . . , f jk

ik
if j1 = j and i1 = r.

0 else .

.

Now, consider the following application, depth graded version of the derivations above,
fundamental for several linear independence results in §4.3 and Chapter 5:

∂n,p := ⊕ r<n
D∈Dr,p

D : grDp Hn → ⊕r<n

(
grDp−1Hn−r

)⊕ card Dr,p (2.55)

Kernel of D<n. A key point for the use of these derivations is the ability to prove some
relations (and possibly lift some from MZV to motivic MZV) up to rational coefficients.
This comes from the following theorem, looking at primitive elements:

Theorem 2.4.4. Let D<n := ⊕r<nDr, and fix a basis {ζa
(

n
ηj

)
} of grD1 An. Then:

kerD<n ∩HN
n =





Qζm
(
n
1

)
for N = 1, 2 and n 6= 1.

⊕Qπm
⊕

1≤j≤aN
Qζm

(
1
ηj

)
. for N > 2, n = 1.

⊕Q(πm)n
⊕

1≤j≤bN
Qζm

(
n
ηj

)
. for N > 2, n > 1.

.

IWithout passing to the depth-graded, we could also define Dη
r as Dr : H → grD1 Lr ⊗ H followed by πη

r ⊗ id

where πη : grD1 Lr → Q is the projection on ζm
(

r
η

)
, once we have fixed a basis for grD1 Lr; and define as above

Dr as the set of the Dη
r,p, for ζm(r, η) in the basis of grD1 Ar.
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Proof. It comes from the injective morphism of graded Hopf comodule (2.36), isomorphism
for N = 1, 2, 3, 4, ‘6’, 8:

φ : HN n.c−−→
∼

HN := Q
〈(

f j
i

)〉
⊗Q Q [g1] .

Indeed, for HN , the analogue statement is obviously true, for ∆′ = 1⊗∆+∆⊗ 1:

ker∆′ ∩Hn = ⊕jf
j
n ⊕ gn1 .

Corollary 2.4.5. Let D<n := ⊕r<nDr.
I Then:

kerD<n ∩HN
n =





Qζm
(
n
1

)
for N = 1, 2.

Q(πm)n ⊕Qζm
(

n
ξN

)
for N = 3, 4, ‘6’.

Q(πm)n ⊕Qζm
(

n
ξ8

)
⊕Qζm

(
n

−ξ8

)
for N = 8.

.

In particular, by this result (for N = 1, 2), proving an identity between motivic MZV
(resp. motivic Euler sums), amounts to:

1. Prove that the coaction is identical on both sides, computing Dr for r > 0 smaller than
the weight. If the families are not stable under the coaction, this step would require
other identities.

2. Use the analytic corresponding result for MZV (resp. Euler sums) to deduce the
remaining rational coefficient; if the analytic equivalent is unknown, we can at least
evaluate numerically this rational coefficient.

Some examples are given in §6.3 and §4.4.3.
Another important use of this corollary, is the decomposition of (motivic) multiple zeta
values into a conjectured basis, which has been explained by F. Brown in [19].II

However, for greater N , several rational coefficients appear at each step, and we would need
linear independence results before concluding.

IFor N = 1, we restrict to r odd > 1; for N = 2 we restrict to r odd; for N = ‘6’ we restrict to r > 1.
IIHe gave an exact numerical algorithm for this decomposition, where, at each step, a rational coefficient has

to be evaluated; hence, for other roots of unity, the generalization, albeit easily stated, is harder for numerical
experiments.
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Chapter 3

Results

3.1 Euler ⋆, ♯ sums [Chapter 4]

In Chapter 4, we focus on motivic Euler sums (N = 2), shortened ES, and motivic multiple
zeta values (N = 1), with in particular some new bases for the vector space of MMZV: one
with Euler ♯ sums and, under an analytic conjecture, the so-called Hoffman ⋆ family. These
two variants of Euler sums are (cf. Definition 4.1.1):

Euler ⋆ sums corresponds to the analogue multiple sums of ES with ≤ instead of strict
inequalities. It verifies:

ζ⋆(n1, . . . , np) =
∑

◦=‘+’ or ,

ζ(n1 ◦ · · · ◦ np). (3.1)

Notation: This ‘ + ’ operation on ni ∈ Z, is a summation of absolute values, while
signs are multiplied.
These have already been studied in many papers: [9], [56], [58], [65], [69], [86].

Euler ♯ sums are, similarly, linear combinations of MZV but with 2-power coefficients:

ζ♯(n1, . . . , np) =
∑

◦=‘+’ or ,

2p−n+ζ(n1 ◦ · · · ◦ np), with n+ the number of + . (3.2)

We also pave the way for a motivic version of a generalization of a Linebarger and Zhao’s
equality (Conjecture 4.5.1) which expresses each motivic multiple zeta ⋆ as a motivic Euler
♯ sums; under this conjecture, Hoffman ⋆ family is a basis, identical to the one presented
with Euler sums ♯.

The first (naive) idea, when looking for a basis for the space of multiple zeta values, is
to choose:

{ζ (2n1 + 1, 2n2 + 1, . . . , 2np + 1) (2iπ)2s, ni ∈ N∗, s ∈ N}.
However, considering Broadhurst-Kreimer conjecture (2.37), the depth filtration clearly does
not behave so nicely in the case of MZV I and already in weight 12, they are not linearly
independent:

28ζ(9, 3) + 150ζ(7, 5) + 168ζ(5, 7) =
5197

691
ζ(12).

IRemark, as we will see in Chapter 5, or as we can see in [31] that for N = 2, 3, 4, ‘6’, 8, the depth filtration is
dual of the descending central series of U , and, in that sense, does behave well. For instance, the following family
is indeed a basis of motivic Euler sums:

{ζm (2n1 + 1, 2n2 + 1, . . . , 2np−1 + 1,−(2np + 1)) (Lm)2s, ni ∈ N, s ∈ N}.
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Consequently, in order to find a basis of motivic MZV, we have to:

Either: Allow higher depths, as the Hoffman basis (proved by F Brown in [20]), or the ⋆
analogue version:

Hoffman ⋆ : {ζ⋆,m (2a0 , 3,2a1 , . . . , 3,2ap) , ai ≥ 0} .

The analogous real family Hoffman ⋆ was also conjectured (in [56], Conjecture 1) to be
a basis of the space of MZV. Up to an analytic conjecture (4.4.4), we prove (in §4.4)
that the motivic Hoffman ⋆ family is a basis of H1, the space of motivic MZVI. In this
case, the notion of motivic depth (explained in §2.4.3) is the number of 3, and is here
in general much smaller than the depth.

Or: Pass by motivic Euler sums, as the Euler ♯ basis given below; it is also another illus-
tration of the descent idea of Chapter 5: roughly, it enables to reach motivic periods
in HN ′

coming from above, i.e. via motivic periods in HN , for N ′ | N .

More precisely, let look at the following motivic Euler ♯ sums:

Theorem. The motivic Euler sums ζ♯,m ({even , odd }×) are motivic geometric periods of
MT (Z). Hence, they are Q linear combinations of motivic multiple zeta values.II

Notations: Recall that an overline x corresponds to a negative sign, i.e. −x in the
argument. Here, the family considered is a family of Euler ♯ sums with only positive odd
and negative even integers for arguments.
This motivic family is even a generating family of motivic MZV from which we are able to
extract a basis:

Theorem. A basis of Pm,+
MT (Z),R = H1, the space of motivic multiple zeta values is:

{ζ♯,m
(
2a0 + 1, 2a1 + 3, · · · , 2ap−1 + 3, 2ap + 2

)
, ai ≥ 0}.

The proof is based on the good behaviour of this family with respect to the coaction
and the depth filtration; the suitable filtration corresponding to the motivic depth for this
family is the usual depth minus 1.
By application of the period map, combining these results:

Corollary. Each Euler sum ζ♯ ({even , odd }×) (i.e. with positive odd and negative even
integers for arguments) is a Q linear combination of multiple zeta values of the same weight.
Conversely, each multiple zeta value of depth < d is a Q linear combination of elements
ζ♯
(
2a0 + 1, 2a1 + 3, · · · , 2ap−1 + 3, 2ap + 2

)
, of the same weight with ai ≥ 0, p ≤ d.

Remarks:

· Finding a good basis for the space of motivic multiple zeta values is a fundamental
question. Hoffman basis may be unsatisfactory for various reasons, while this basis
with Euler sums (linear combinations with 2 power coefficients) may appear slightly
more natural, in particular since the motivic depth is here the depth minus 1. However,
both of those two basis are not basis of the Z module and the primes appearing in the
determinant of the passage matrix III are growing rather fast.IV

IUp to this analytic statement, 4.4.4, the Hoffman ⋆ family is then a generating family for MZV.
IISince, by [20], we know that Frobenius invariant geometric motivic periods of MT (Z) are Q linear combinations

of motivic multiple zeta values.
IIIThe inverse of the matrix expressing the considered basis in term of a Z basis.
IVDon Zagier has checked this for small weights with high precision; he suggested that the primes involved in

the case of this basis could have some predictable features, such as being divisor of 2n − 1.
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· Looking at how periods ofMT (Z) embeds into periods ofMT (Z[ 12 ]), is a fragment of
the Galois descent ideas of Chapter 5.
Euler sums which belong to the Q-vector space of multiple zeta values, sometimes
called honorary, have been studied notably by D. Broadhurst (cf. [11]) among others.
We define then unramified motivic Euler sums as motivic ES which are Q-linear combi-
nation of motivic MZV, i.e. in H1. Being unramified for a motivic period implies that
its period is unramified, i.e. honorary; some examples of unramified motivic ES are
given in §6.2, or with the family above. In Chapter 5, we give a criterion for motivic
Euler sums to be unramified 5.1.3, which generalizes for some other roots of unity; by
the period map, this criterion also applies to Euler sums.

· For these two theorems, in order to simplify the coaction, we crucially need a motivic
identity in the coalgebra L, proved in §4.2, coming from the octagon relation pictured
in Figure 4.3. More precisely, we need to consider the linearized version of the anti-
invariant part by the Frobenius at infinity of this relation, in order to prove this hybrid
relation (Theorem 4.2.3), for ni ∈ N∗, ǫi ∈ ±1:

ζlk

(
n0, · · · , np

ǫ0, . . . , ǫp

)
+ζln0+k

(
n1, . . . , np

ǫ1, . . . , ǫp

)
≡ (−1)w+1

(
ζlk

(
np, . . . , n0

ǫp, . . . , ǫ0

)
+ ζlk+np

(
np−1, . . . , n0

ǫp−1, . . . , ǫ0

))
.

Thanks to this hybrid relation, and the antipodal relations presented in §4.2.1, the
coaction expression is considerably simplified in Appendix A.1.

Theorem. If the analytic conjecture (4.4.4) holds, then the motivic Hoffman ⋆ family
{ζ⋆,m({2, 3}×)} is a basis of H1, the space of MMZV.

Nota Bene: A MMZV ⋆, in the depth graded, is obviously equal to the corresponding
MMZV. However, the motivic Hoffman (i.e. with only 2 and 3) multiple zeta (⋆) values are
almost all zero in the depth graded (the motivic depth there being the number of 3). Hence,
the analogous result for the non ⋆ caseI, proved by F. Brown, does not make the result in
the ⋆ case anyhow simpler.

Denote by H2,3 the Q-vector space spanned by the motivic Hoffman ⋆ family. The idea
of the proof is similar as in the non-star case done by Francis Brown. We define an increas-
ing filtration FL

• on H2,3, called the level, such that:II

FL
l H2,3 is spanned by ζ⋆,m(2a0 , 3, · · · , 3,2al), with less than “l” 3.

One key feature is that the vector space FL
l H2,3 is stable under the action of G.

The linear independence is then proved thanks to a recursion on the level and on the weight,
using the injectivity of a map ∂ where ∂ came out of the level and weight-graded part of the
coaction ∆ (cf. §4.4.1). The injectivity is proved via 2-adic properties of some coefficients
with Conjecture 4.4.4.
One noteworthy difference is that, when computing the coaction on the motivic MZV⋆,
some motivic MZV⋆⋆ arise, which are a non convergent analogue of MZV⋆ and have to be
renormalized. Therefore, where F. Brown in the non-star case needed an analytic formula
proven by Don Zagier ([82]), we need some slightly more complicated identities (in Lemma
4.4.3) because the elements involved, such as ζ⋆⋆,m(2a, 3,2b) for instance, are not of depth
1 but are linear combinations of products of depth 1 motivic MZV times a power of π.

These two bases for motivic multiple zeta values turn to be identical, when considering
this conjectural motivic identity, more generally:

II.e. that the motivic Hoffman family is a basis of the space of MMZV, cf [19].
IIBeware, this notion of level is different than the level associated to a descent in Chapter 5. It is similar as the

level notion for the Hoffman basis, in F. Brown paper’s [20]. It corresponds to the motivic depth, as we will see
through the proof.
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Conjecture. For ai, ci ∈ N∗, ci 6= 2,

ζ⋆,m (2a0 , c1, · · · , cp,2ap) = (3.3)

(−1)1+δc1 ζ♯,m
(
±(2a0 + 1− δc1),1

c1−3, · · · ,1ci−3,±(2ai + 3− δci − δci+1), . . . ,±(2ap + 2− δcp)
)
.

where the sign ± is always − for an even argument, + for an odd one, δc = δc=1, Kronecker
symbol, and 1n := 1min(0,n) is a sequence of n 1 if n ∈ N, an empty sequence else.

This conjecture expresses each motivic MZV⋆ as a linear combination of motivic Euler
sums, which gives another illustration of the Galois descent between the Hopf algebra of
motivic MZV and the Hopf algebra of motivic Euler sums.

Nota Bene: Such a motivic relation between MMZVµN is stronger than its analogue be-
tween MZVµN since it contains more information; it implies many other relations because of
its Galois conjugates. This explain why its is not always simple to lift an identity from MZV
to MMZV from the Theorem 2.4.5. If the family concerned is not stable via the coaction,
such as (iv) in Lemma 4.4.3, we may need other analytic equalities before concluding.

This conjecture implies in particular the following motivic identities, whose analogue for
real Euler sums are proved as indicated in the bracketsI:

Two-One [For ci = 1, Ohno Zudilin: [69]]:

ζ⋆,m(2a0 , 1, · · · , 1,2ap) = −ζ♯,m
(
2a0, 2a1 + 1, . . . , 2ap−1 + 1, 2ap + 1

)
. (3.4)

Three-One [For ci alternatively 1 and 3, Zagier conjecture, proved in [9]]

ζ⋆,m(2a0 , 1,2a1 , 3 · · · , 1,2ap−1 , 3,2ap) = −ζ♯,m
(
2a0, 2a1 + 2, . . . , 2ap−1 + 2, 2ap + 2

)
.

(3.5)

Linebarger-Zhao ⋆ [With ci ≥ 3, Linebarger Zhao in [65]]:

ζ⋆,m (2a0 , c1, · · · , cp,2ap) = −ζ♯,m
(
2a0 + 1,1c1−3, · · · ,1ci−3, 2ai + 3, . . . , 2ap + 2

)

(3.6)
In particular, restricting to all ci = 3:

ζ⋆,m (2a0 , 3, · · · , 3,2ap) = −ζ♯,m
(
2a0 + 1, 2a1 + 3, . . . , 2ap−1 + 3, 2ap + 2

)
. (3.7)

Nota Bene: Hence the previous conjecture (4.37) implies that the motivic Hoffman ⋆ is a
basis, since we proved the right side of (4.37) is a basis:

Conjecture 4.5.1 =⇒ Hoffman ⋆ is a basis of MMZV.

Examples: The previous conjecture would give such relations:

ζ⋆,m(2, 2, 3, 3, 2) = −ζ♯,m(5, 3,−4) ζ⋆,m(5, 6, 2) = −ζ♯,m(1, 1, 1, 3, 1, 1, 1,−4)
ζ⋆,m(1, 6) = ζ♯,m(−2, 1, 1, 1,−2) ζ⋆,m(2, 4, 1, 2, 2, 3) = −ζ♯,m(3, 1,−2,−6,−2).

IBeware, only the identity for real Euler sums is proved; the motivic analogue stays a conjecture.
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3.2 Galois Descents [Chapter 5]

There, we study Galois descents for categories of mixed Tate motives MT ΓN , and how
periods of πun

1 (XN ′) are embedded into periods of πun
1 (XN ) for N ′ | N . Indeed, for each

N,N ′ with N ′|N there are the motivic Galois group GMT N acting on HMT N and a Galois
descent between HMT N′ and HMT N , such that:

(HMT N )G
N/N′

= HMT N′ .

Since for N = 2, 3, 4, ‘6’, 8, the categories MT N and MT ′
N are equal, this Galois descent

has a parallel for the motivic fundamental group side; we will mostly neglect the difference
in this chapter:

H
N � � ∼

n.c
// HMT N

H
N′

GN/N′

OO

� �

n.c

∼ // HMT N′

GMT
N/N′

OO

Q[iπm]

UN′

OO

� � ∼ // Q[iπm]

U
MT

N′

OO

Q

Gm

OO

GN

CC

Q

Gm

OO

GMT N

[[

Figure 3.1: Galois descents, N = 2, 3, 4, ‘6’, 8 (level 0).I

Nota Bene: For N ′ = 1 or 2, iπm has to be replaced by ζm(2) or (πm)2, since we con-
sider, in HN ′

only periods invariant by the Frobenius F∞. In the descent between HN and
HN ′

, we require hence invariance by the Frobenius in order to keep only those periods; this
condition get rid of odd powers of iπm.

The first section of Chapter 5 gives an overview for the Galois descents valid for any N :
a criterion for the descent between MMZVµN′ and MMZVµN (Theorem 5.1.1), a criterion
for being unramified (Theorem 5.1.2), and their corollaries. The conditions are expressed
in terms of the derivations Dr, since they reflect the Galois action. Indeed, looking at the
descent betweenMT N,M andMT N ′,M ′ , sometimes denoted (⌈) = (kN/kN ′ ,M/M ′), it has
possibly two components:

· The change of cyclotomic fields kN/kN ′ ; there, the criterion has to be formulated in
the depth graded.

· The change of ramification M/M ′, which is measured by the 1 graded part of the
coaction i.e. D1 with the notations of §2.4.

The second section specifies the descents for N ∈ {2, 3, 4, ‘6’, 8} II represented in Figure
3.3, and 3.4. In particular, this gives a basis of motivic multiple zeta values relative to
µN ′ via motivic multiple zeta values relative to µN , for these descents considered, N ′ | N .
It also gives a new proof of Deligne’s results ([31]): the category of mixed Tate motives
over OkN [1/N ], for N ∈ {2, 3, 4, ‘6’, 8} is spanned by the motivic fundamental groupoid of
P1 \ {0, µN ,∞} with an explicit basis; as claimed in §2.2, we can even restrict to a smaller

IThe (non-canonical) horizontal isomorphisms have to be chosen in a compatible way.
IIAs above, the quotation marks underline that we consider the unramified category for N = ‘6’.
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fundamental groupoid.
Let us present our results further and fix a descent (⌈) = (kN/kN ′ ,M/M ′) among these
considered (in Figures 3.3, 3.4), between the category of mixed Tate motives of ON [1/M ]
and ON ′ [1/M ′].I Each descent (⌈) is associated to a subset D⌈ ⊂ D of derivations, which
represents the action of the Galois group GN/N ′

. It defines, recursively on i, an increasing
motivic filtration F⌈

i on HN called motivic level, stable under the action of GMT N :

Motivic level:

{
F⌈

−1HN := 0

F
⌈
i the largest submodule of HN such that F⌈

iHN/F⌈
i−1HN is killed by D⌈.

.

The 0th level F⌈
0HN , corresponds to invariants under the group GN/N ′

while the ith level
F⌈

i , can be seen as the ith ramification space in generalized Galois descents. Indeed, they
correspond to a decreasing filtration of ith ramification Galois groups Gi, which are the
subgroups of GN/N ′

which acts trivially on F iHN .II

H
N

FiH
N

Gi

OO

F0H
N = H

N′

G0=GN/N′

>>

OO

Q

GN′

OO

GN

[[

(HN )Gi = FiH
N

G
N/N′

= G0 ⊃ G1 ⊃ · · · ⊃ Gi · · ·

H
N′

= F0H
N

⊂ F1H
N

⊂ · · · ⊂ FiH
N
· · · .

(3.9)

Figure 3.2: Representation of a Galois descent.

Those ramification spaces constitute a tower of intermediate spaces between the elements
in MMZVµN and the whole space of MMZVµN′ .

Let define the quotients associated to the motivic level:

H≥i := H/Fi−1H , H≥0 = H.

IUsually, the indication of the descent (in the exponent) is omitted when we look at a specific descent.
IIOn ramification groups in usual Galois theory: let L/K a Galois extension of local fields. By Hensel’s

lemma, OL = OK [α] and the ith ramification group is defined as:

Gi := {g ∈ Gal(L/K) | v(g(α) − α) > i} , where

{
v is the valuation on L
p = {x ∈ L | v(x) > 0} maximal ideal for L

. (3.8)

Equivalently, this condition means g acts trivially on OL�pi+1, i.e. g(x) ≡ x (mod pi+1). This decreasing
filtration of normal subgroups corresponds, by the Galois fundamental theorem, to an increasing filtration of
Galois extensions:

G0 = Gal(L/K) ⊃ G1 ⊃ G2 ⊃ · · · ⊃ Gi · · ·
K = K0 ⊂ K1 ⊂ K2 ⊂ · · · ⊂ Ki · · ·

G1, the inertia subgroup, corresponds to the subextension of minimal ramification.
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The descents considered are illustrated by the following diagrams:

H
MT (O8[ 12 ])

H
MT (O4[ 12 ])

F
k8/k4,2/2
0

OO

H
MT (O4)

F
k4/k4,2/1
0oo

H
MT (Z[ 12 ])

F
k4/Q,2/2
0

OO

H
MT (Z),

F
Q/Q,2/1
0

oo

F
k4/Q,2/1
0

ii❙❙❙❙❙❙❙❙❙❙❙❙❙❙❙❙❙

YY

F
k8/Q,2/1
0ww

Figure 3.3: The cases N = 1, 2, 4, 8.

H
MT (O6)

H
MT (O3[ 13 ]) H

MT (O3)
F

k3/k3,3/1
0oo

H
MT (Z[ 13 ])

F
k3/Q,3/3
0

OO

H
MT (Z)

F
k3/Q,3/1
0

hh❘❘❘❘❘❘❘❘❘❘❘❘❘❘❘❘❘❘

YY F
k6/Q,1/1
0

dd

Figure 3.4: The cases N = 1, 3, ‘6’.

Remarks:

· The vertical arrows represent the change of field and the horizontal arrows the change
of ramification. The full arrows are the descents made explicit in Chapter 5.

More precisely, for each arrow A
F0← B in the above diagrams, we give a basis BA

n of
HA

n , and a basis of HB
n = F0HA

n in terms of the elements of BA
n ; similarly for the higher

level of these filtrations.

· The framed spaces H··· appearing in these diagrams are not known to be associated
to a fundamental group and there is presently no other known way to reach these

(motivic) periods. For instance, we obtain by descent, a basis for HMT (Z[ 13 ])
n in terms

of the basis of HMT (O3[ 13 ])
n .

Example: Descent between Euler sums and MZV.The comoduleH1 embeds, non-canonically,
into H2. Let first point out that:I D1(H1) = 0; the Galois descent between H2 and H1 is
precisely measured by D1:

Theorem. Let Z ∈ H2, a motivic Euler sum. Then:

Z ∈ H1, i.e. is a motivic MZV ⇐⇒ D1(Z) = 0 and D2r+1(Z) ∈ H1.

ISince all the motivic iterated integrals with only 0, 1 of length 1 are zero by properties stated in §2.3, hence
the left side of D1, defined in (2.45), would always cancel.
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This is a useful recursive criterion to determine if a (motivic) Euler sum is in fact a
(motivic) multiple zeta value. It can be generalized for other roots of unity, as we state more
precisely in §5.1. These unramified motivic Euler sums are the 0th-level of the filtration by
the motivic level here defined as:

FiH2 is the largest sub-module such that Fi/Fi−1 is killed by D1.

Results. More precisely, for N ∈ {2, 3, 4, ‘6’, 8}, we define a particular family BN of motivic
multiple zeta values relative to µN with different notions of level on the basis elements, one
for each Galois descent considered above:

BN :=




ζm
(

x1, · · ·xp−1, xp

ǫ1, . . . , ǫp−1, ǫpξN

)
(2πi)s,m , xi ∈ N∗, s ≥ 0,





xi ≥ 1 odd , ǫi = 1 and s even if N = 2
xi ≥ 1 , ǫi = 1 if N = 3, 4
xi > 1 , ǫi = 1 if N = 6
xi ≥ 1 , ǫi = ±1 if N = 8

.





(3.10)
Denote by Bn,p,i the subset of elements with weight n, depth p and level i.

Examples:

·N = 2: The basis for motivic Euler sums: B2 :=
{
ζm
(

2y1+1,...,2yp+1
1,1,...,1,−1

)
ζm(2)s, yi ≥ 0, s ≥ 0

}

. The level for the descent from H2 to H1 is defined as the number of y′is equal to 0.

·N = 4: The basis is: B4 :=
{
ζm
(

x1,...,xp

1,1,...,1,
√
−1

)
(2πi)s,m, s ≥ 0, xi > 0

}
.

The level is:
· the number of even x′

is for the descent from H4 to H2

· the number of even x′
is+ the number of x′

is equal to 1 for the descent from H4 to H1 .

·N = 8: the level includes the number of ǫ′is equal to −1, etc.

The quotients H≥i, respectively filtrations Fi associated to the descent ⌈, will match with
the sub-families (level restricted) Bn,p,≥i, respectively Bn,p,≤i. Indeed, we prove: I

Theorem. With Z1[P ] :=
{

a
1+bP , a, b ∈ Z

}
where P :=

{
2 for N = 2, 4, 8
3 for N = 3, ‘6’

.

· Bn,≤p,≥i is a basis of FD
p H≥i

n and Bn,·,≥i a basis of H≥i
n .

· Bn,p,≥i is a basis of grDp H≥i
n on which it defines a Z1[P ]-structure:

Each ζm
(

z1,...,zp
ǫ1,...,ǫp

)
decomposes in grDp H≥i

n as a Z1[P ]-linear combination of Bn,p,≥i

elements.

· We have the two split exact sequences in bijection:

0 −→ FiHn −→ Hn
π0,i+1→ H≥i+1

n −→ 0

0→ 〈Bn,·,≤i〉Q → 〈Bn〉Q → 〈Bn,·,≥i+1〉Q → 0.

· A basis for the filtration spaces FiHn:

∪p {Z+ cln,≤p,≥i+1(Z),Z ∈ Bn,p,≤i} ,

where cln,≤p,≥i : 〈Bn,p,≤i−1〉Q → 〈Bn,≤p,≥i〉Q such that Z+ cln,≤p,≥i(Z) ∈ Fi−1Hn.

ICf. Theorem 5.2.4 slightly more precise.
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· A basis for the graded space griHn:

∪p {Z+ cln,≤p,≥i+1(Z),Z ∈ Bn,p,i} .

Nota Bene: The morphism cln,≤p,≥i+1 satisfying those conditions is unique.

The linear independence is obtained first in the depth graded, and the proof relies on the
bijectivity of the following map ∂

i,⌈
n,p by an argument involving 2 or 3 adic properties:I

∂i,⌈
n,p : grDp H≥i

n → ⊕r<n

(
grDp−1H≥i−1

n−r

)⊕c⌈r ⊕r<n

(
grDp−1H≥i

n−r

)⊕c\⌈r
, c⌈r, c

\⌈
r ∈ N, (3.11)

which is obtained from the depth and weight graded part of the coaction, followed by a
projection for the left side (by depth 1 results), and by passing to the level quotients ((5.7)).
Once the freeness obtained, the generating property is obtained from counting dimensions,
since K-theory gives an upper bound for the dimensions.

This main theorem generalizes in particular a result of P. Deligne ([31]), which we could
formulate by different ways: II

Corollary. · The map GMT → GMT ′

is an isomorphism.

· The motivic fundamental group πm
1

(
P1�{0, µN ,∞}, 0ξN

)
generates the category of

mixed Tate motives MT N .

· Bn is a basis of HN
n , the space of motivic MZV relative to µN .

· The geometric (and Frobenius invariant if N = 2) motivic periods of MT N are Q-
linear combinations of motivic MZV relative to µN (unramified for N = ‘6’).

Remarks:

· For N = ‘6’ the result remains true if we restrict to iterated integrals relative not to
all 6th roots of unity but only to these relative to primitive roots.

· We could even restrict to:
πm
1

(
P1�{0, 1,∞}, 0ξN

)
for N = 2, 3, 4, ‘6’

πm
1

(
P1�{0,±1,∞}, 0ξN

)
for N = 8

.

The previous theorem also provides the Galois descent from HMT N to HMT N′ :

Corollary. A basis for MMZVµN′
is formed by MMZVµN

∈ BN of level 0 each corrected
by a Q-linear combination of MMZV µN

of level greater than or equal to 1:

Basis of HN ′

n :
{
Z+ cln,·,≥1(Z),Z ∈ BN

n,·,0
}
.

Remark: Descent can be calculated explicitly in small depth, less than or equal to 3, as
we explain in the Appendix A.2. In the general case, we could make the part of maximal
depth of cl(Z) explicit (by inverting a matrix with binomial coefficients) but motivic meth-
ods do not enable us to describe the other coefficients for terms of lower depth.

IThe first c⌈r components of ∂i,⌈
n,p correspond to the derivations in D

⌈ associated to the descent, which hence
decrease the motivic level.

IIThe basis B, in the cases where N ∈ {3, 4, 8} is identical to P. Deligne’s in [31]. For N = 2 (resp. N = ‘6’
unramified) it is a linear basis analogous to his algebraic basis which is formed by Lyndon words in the odd (resp.
≥ 2) positive integers (with . . . 5 ≤ 3 ≤ 1); a Lyndon word being strictly smaller in lexicographic order than all of
the words formed by permutation of its letters. Deligne’s method is roughly dual to this point of view, working
in Lie algebras, showing the action is faithful and that the descending central series of U is dual to the depth
filtration.
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Example, N = 2: A basis for motivic multiple zeta values is formed by:



ζm
(
2x1 + 1, . . . , 2xp + 1

)
ζm(2)s +

∑

∃i,yi=0

q≤p

αx
yζ

m(2y1 + 1, . . . , 2yq + 1)ζm(2)s , xi > 0, αx
y ∈ Q





.

Starting from a motivic Euler sum with odds greater than 1, we add some corrections terms,
in order to get an element in H1, the space of MMZV. At this level, correction terms are
motivic Euler sums with odds, and at least one 1 in the arguments; i.e. they are of level ≥ 1
with the previous terminology. For instance, the following linear combination is a motivic
MZV:

ζm(3, 3, 3) +
774

191
ζm(1, 5, 3)− 804

191
ζm(1, 3, 5)− 6ζm(3, 1, 5) +

450

191
ζm(1, 1, 7).

3.3 Miscellaneous Results [Chapter 6]

Chapter 6 is devoted on the Hopf algebra structure of motivic multiple zeta values relative
to µN , particularly for N = 1, 2, presenting various uses of the coaction, and divided into
sections as follows:

1. An important use of the coaction, is the decomposition of (motivic) multiple zeta values
into a conjectured basis, as explained in [19]. It is noteworthy to point out that the
coaction always enables us to determine the coefficients of the maximal depth terms.
We consider in §6.1 two simple cases, in which the space grDmaxHn is 1 dimensional:

(i) For N = 1, when the weight is a multiple of 3 (w = 3d), such that the depth
p > d:I

grDp H3d = Qζm(3)d.

(ii) For N = 2, 3, 4, when weight equals depth:

grDp Hp = Qζm
(

1

ξN

)p

.

The corresponding Lie algebra, called the diagonal Lie algebra, has been studied
by Goncharov in [45], [46].

In these cases, we are able to determine the projection:

ϑ : grDmaxHN
n → Q,

either via the linearized Ihara action ◦, or via the dual point of view of infinitesimal
derivations Dr. For instance, for (i) (N = 1, w = 3d), it boils down to look at:

D◦d
3

d!
or exp◦(σ3), where σ2i+1 = (−1)i(ade0)2i(e1)II.

In general, the space grDmaxHN
n is more than 1-dimensional; nevertheless, these methods

could be generalized.

IThis was a question asked for by D. Broadhurst: an algorithm, or a formula for the coefficient of ζ(3)d of such
a MZV, when decomposed in Deligne basis.

II These σ2i+1 are the generators of grD1 gm, the depth 1 graded part of the motivic Lie algebra; cf. (2.50).
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2. Using criterion 5.1.3, we provide in the second section infinite families of honorary
motivic multiple zeta values up to depth 5, with specified alternating odd or even
integers. It was inspired by some isolated examples of honorary multiple zeta values
found by D. BroadhurstI, such as ζ(8, 5, 8), ζ(8, 3, 10), ζ(3, 6, 3, 6, 3), where we already
could observe some patterns of even and odd. Investigating this trail in a systematic
way, looking for any general families of unramified (motivic) Euler sums (without linear
combinations first), we arrive at the families presented in §6.2, which unfortunately,
stop in depth 5. However, this investigation does not cover the unramified Q-linear
combinations of motivic Euler sums, such as those presented in Chapter 4, Theorem
4.3.1 (motivic Euler ♯ sums with positive odds and negative even integers).

3. By Corollary 2.4.5, we can lift some identities between MZV to motivic MZV (as in
[20], Theorem 4.4), and similarly in the case of Euler sums. Remark that, as we will see
for depth 1 Hoffman ⋆ elements (Lemma 4.4.3), the lifting may not be straightforward,
if the family is not stable under the coaction. In this section §6.3, we list some identities
that we are able to lift to motivic versions, in particular some Galois trivial elementsII

or product of simple zetas, and sum identities.

Remark: The stability of a family on the coaction is a precious feature that allows to
prove easily (by recursion) properties such as linear independenceIII, Galois descent features
(unramified for instance), identities (§6.3), etc.

3.4 And Beyond?

For most of N values, the situation concerning the periods of MT ΓN ⊂ MT (ON [ 1N ]) is
still hazy, although it has been studied in several articles, notably by Goncharov ([45],[46],
[47]IV) and Zhao: some bounds on dimensions, tables in small weight, and other results and
thoughts on cyclotomic MZV can be seen in [85], [84], [29].

Nota Bene: As already pointed out, as soon as N has a non inert prime factor pV,MT ΓN (

MT (ON

[
1
N

]
). Hence, some motivic periods ofMT (ON

[
1
N

]
) are not motivic iterated inte-

grals on P1�{0, µN ,∞} as considered above; already in weight 1, there are more generators
than the logarithms of cyclotomic units logm(1− ξaN ).

Nevertheless, we can a priori split the situation (ofMT ΓN ) into two main schemes:

(i) As soon as N has two distinct prime factors, or N power of 2 or 3, it is commonly be-
lieved that the motivic fundamental group πm

1 (P
1�{0,∞, µN},

−→
01) generates MT ΓN ,

I Those emerged when looking at the depth drop phenomena, cf. [14].
IIGalois trivial here means that the unipotent part of the Galois group acts trivially, not Gm; hence not strictly

speaking Galois trivial.
IIIIf we find an appropriate filtration respected by the coaction, and such as the 0 level elements are Galois-

trivial, it corresponds then to the motivic depth filtration; for the Hoffman (⋆) basis it is the number of 3; for the
Euler ♯ sums basis, it is the number of odds, also equal to the depth minus 1; for Deligne basis relative to µN ,
N = 2, 3, 4, ‘6’, 8, it is the usual depth.

IVGoncharov studied the structure of the fundamental group of Gm�µN and made some parallels with the
topology of some modular variety for GLm,�Q, m > 1 notably. He also proved, for N = p ≥ 5, that the following
morphism, given by the Ihara bracket, is not injective:

β :
2∧

grD1 g
m
1 → grD2 g

m
2 and

dim
∧2 grD1 gm

1 = (p−1)(p−3)
8

dim kerβ = p2−1
24

dim Imβ = dim grDgm
2 = (p−1)(p−5)

12

dim grDgm
3 ≥ (p−5)(p2−2p−11)

48 .

Note that grD2 gm corresponds to the space generated by ζm
(

1,1
ǫ1,ǫ2

)
quotiented by dilogarithms ζm

(
2
ǫ

)
, modulo

torsion.
VIn particular, as soon as N 6= ps, 2ps, 4ps, psqk for p, q odd prime since (Z�mZ)∗ is cyclic ⇔ m = 2, 4, pk, 2pk.
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even though no suitable basis has been found. Also, in these cases, Zhao conjectured
there were non standard relationsI. Nevertheless, in the case of N power of 2 or power
of 3, there seems to be a candidate for a basis (3.12) and some linearly independent
families were exhibited:

ζm
(
n1, · · ·np−1, np

ǫ1, . . . , ǫp−1, ǫp

)
with ǫp ∈ µN primitive and (ǫi)i<p non primitive.

(3.12)
Indeed, when N is a power of 2 or 3, linearly independent subfamilies of 3.12, keeping
3
4 resp. 2

3 generators in degree 1, and all generators in degree r > 1 are presented in
[79] (in a dual point of view of the one developed here).

Nota Bene: Some subfamilies of 3.12, restricting to {ǫi = 1, xi ≥ 2} (here ǫp still
as above) can be easily proven (via the coaction, by recursion on depth) to be linearly
independent for any N ; if N is a prime power, we can widen to xi ≥ 1, and for N even
to ǫi ∈ {±1}; nevertheless, these families are considerably small.

(ii) For N = ps, p prime greater than 5, there are missing periods: i.e. it is conjectured
that the motivic fundamental group πm

1 (P
1�{0,∞, µN},

−→
01) does not generateMT ΓN .

For N = p ≥ 5, it can already be seen in weight 2, depth 2. More precisely, (taking
the dual point of view of Goncharov in [46]), the following map is not surjective:

D1 : grD2 A2 → A1 ⊗A1

ζa
(

1,1
ξa,ξb

)
7→ (a)⊗ (b) + δa+b6=0((b)− (a))⊗ (a+ b)

, where (a) := ζa
(

1

ξa

)
.

(3.13)
These missing periods were a motivation for instance to introduce Aomoto polyloga-
rithms (in [36])II.
Another idea, in order to reach these missing periods would be to use Galois descents:
coming from a category above, in order to arrive at the category underneath, in the
manner of Chapter 5. For instance, missing periods for N = p prime > 5, could be
reached via a Galois descent from the category MT Γ2p

III. First, let point out that
this category has the same dimensions than MT p in degree > 1, and has one more

generator in degree 1, corresponding to ζa
(

1
ξp

)
. Furthermore, for p prime, the descent

between H2p and Hp is measured by Dp
1 , the component of D1 associated to ζa

(
1
ξp

)
:

Let Z ∈ H2p, then Z ∈ Hp ⇔
{

Dp
1(Z) = 0

Dr(Z) ∈ Hp

The situation is pictured by:

H2p := HΓ2p �
� // HMT (O2p[ 1

2p ])

Hp := HΓp = HMT (Op[ 1p ])

Dp
1

OO

HMT (O2p[ 1p ])

HMT (Op)

{D2a
1 −Da

1}2≤a≤ p−1
2

OO

HMT (O2p)

. (3.14)

INon standard relations are these which do not come from distribution, conjugation, and regularised double
shuffle relation, cf. [84]

IIAomoto polylogarithms generalize the previous iterated integrals, with notably differential forms such as
dti

ti−ti+1−ai
; there is also a coaction acting on them.

IIIThis category is equal to MT (O2p([
1
2p ])) iff 2 is a primitive root modulo p. Some conditions on p necessary

or sufficient are known: this implies that p ≡ 3, 5 ± mod 8; besides, if p ≡ 3, 11 mod 16, it is true, etc.
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Example, for N=5: A basis of grDp A1 corresponds to the logarithms of the roots of
unity ξ1, ξ2; here, ξ = ξ5 is a primitive fifth root of unity. Moreover, the image of
D1 : A2 → A1 ⊗A1 on ζa

(
1,1

ξa5 ,ξ
b
5

)
is (cf. 3.13):

VecQ 〈(1)⊗ (1), (2)⊗ (2), (1)⊗ (2) + (2)⊗ (1)〉 .
We notice that one dimension is missing (3 instead of 4). Allowing the use of tenth

roots of unity, adding for instance here in depth 2, ζa
(

1,1
ξ110,ξ

2
10

)
recovers the surjection

for D1. Since we have at our disposal criterion to determine if a MMZVµ10 is in H5,
we could imagine constructing a base of H5 from tenth roots of unity.
Nota Bene: More precisely, we have the following spaces, descents and dimensions:

HMT (O10[ 1
10 ]) = HΓ10

HMT (O10[ 15 ]) = HMT (O5[ 15 ]) = HΓ5

D5
1

OO

dn = 2dn−1 + 3dn−2 = 3dn−1

HMT (O5) = HMT (O10)

D4
1+D2

1

OO

d′n = 2d′n−1 + d′n−2

(3.15)

Remarks:

· Recently (in [15]), Broadhurst made some conjectures about multiple Landen values,
i.e. periods associated to the ring of integers of the real subfield of Q(ξ5), i.e. Z [ρ],
with ρ := 1+

√
5

2 , the golden ratioI. Methods presented through this thesis could be
transposed in such context.

· It also worth noticing that, for N = p > 5, modular forms obstruct the freeness of the
Lie algebra grDgmII, as in the case of N = 1 (cf. [21]). Indeed, for N = 1 one can
associate, to each cuspidal form of weight n, a relation between weight n double and
simple multiple zeta values, cf. [41]. Notice that, on the contrary, for N = 2, 3, 4, 8,
grDgm is free. This fascinating connection with modular forms still waits to be ex-
plored for cyclotomic MZV. III

· In these cases where grDgm is not free, since we have to turn towards other basis (than
3.12), we may remember the Hoffman basis (of H1

n, cf [20]): {ζm ({2, 3}×)} weight n,
whose dimensions verify dn = dn−2 + dn−3. Looking at dimensions in Lemma 2.3.1,
two cases bring to mind a basis in the Hoffman’s way :

(i) ForMT (ON ), since dn = ϕ(N)
2 dn−1 + dn−2, this suggests to look for a basis with

1 (with ϕ(N)
2 choices of N th roots of unity) and 2 (1 choice of N th roots of unity).

(ii) For MT
(
Opr

[
1
p

])
, where p | N and p inert, since dn =

(
ϕ(N)

2 + 1
)n

, this sug-

gests a basis with only 1 above, and (ϕ(N)
2 + 1) choices of N th roots of unity; in

particular if N = pk.

IHe also looked at the case of the real subfield of Q(ξ7) in his latest article: [16]
IIGoncharov proved that the subspace of cuspidal forms of weight 2 on the modular curve X1(p) (associated to

Γ1(p)), of dimension (p−5)(p−7)
24 embeds into kerβ, for N = p ≥ 11 which leaves another part of dimension p−3

2 .
IIIWe could hope also for an interpretation, in these cyclotomic cases, of exceptional generators and relations in

the Lie algebra, in the way of [21] for N = 1.
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Example: For N = 2, the recursion relation for dimensions dn = dn−1 + dn−2 of H2
n

suggests, in the Hoffman’s way, a basis composed of motivic Euler sums with only 1
and 2. For instance, the following are candidates conjectured to be a basis, supported
by numerical computations:
{
ζm
(
n1, . . . , np−1, np

1, . . . , 1,−1

)
, ni ∈ {2, 1}

}
, or

{
ζm
(
1, · · · 1,
s,−1

)
ζm(2)•, s ∈ {{1}, {−1,−1}}∗

}
.

However, there is not a nice suitable filtrationI corresponding to the motivic depth
which would allow a recursive proof II.

IIn the second case, it appears that we could proceed as follows to show the linear independence of these
elements, where p equals 1+ the number of 1 in the En element: Prove that, for x ∈ En,p there exists a linear

combination cl(x) ∈ En,>p such that x + cl(x) ∈ FD
p Hn, and then that {x + cl(x), x ∈ En,p} is precisely a basis

for grDp Hn, considering, for 2r ≤ n − p:

D2r+1 : gr
D
p Hn → gr

D
p−1Hn−2r−1.

IIA suitable filtration, whose level 0 would be the power of π, level 1 would be linear combinations of ζ(odd)·ζ(2)•,
etc.; as in proofs in §4.5.1.
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Chapter 4

MZV ⋆ and Euler ♯ sums

Contents: After introducing motivic Euler ⋆, and ♯ sums, with some useful motivic relations
(antipodal and hybrid), the third section focuses on some specific Euler ♯ sums, starting by
a broad subfamily of unramified elements (i.e. which are motivic MZV) and extracting
from it a new basis for H1. The fourth section deals with the Hoffman star family, proving
it is a basis of H1, up to an analytic conjecture (4.4.4). In Appendix §4.7, some missing
coefficients in Lemma 4.4.3, although not needed for the proof of the Hoffman ⋆ Theorem
4.4.1, are discussed. The last section presents a conjectured motivic equality (4.5.1) which
turns each motivic MZV ⋆ into a motivic Euler ♯ sums of the previous honorary family; in
particular, under this conjecture, the two previous bases are identical. The proofs here are
partly based on results of Annexe §A.1, which themselves use relations presented in §4.2.

4.1 Star, Sharp versions

Here are the different variants of motivic Euler sums (MES) used in this chapter, where a
±⋆ resp. ±♯ in the notation below I(· · · ) stands for a ω±⋆ resp. ω±♯ in the iterated integral:I

Definition 4.1.1. Using the expression in terms of motivic iterated integrals (1.3), motivic
Euler sums are, with ni ∈ Z∗, ǫi := sign(ni):

ζmk (n1, . . . , np) := (−1)pIm
(
0; 0k, ǫ1 · · · ǫp, 0|n1|−1, . . . , ǫi · · · ǫp, 0|ni|−1, . . . , ǫp, 0

|np|−1; 1
)
.

(4.1)

With the differentials: ω±⋆ := ω±1 − ω0 =
dt

t(±t− 1)
, ω±♯ := 2ω±1 − ω0 =

(t± 1)dt

t(t∓ 1)
,

MES ⋆ are defined similarly than (4.1) with ω±⋆ (instead of ω±1), ω0 and a ω±1 at the
beginning:

ζ⋆,mk (n1, . . . , np) := (−1)pIm
(
0; 0k, ǫ1 · · · ǫp, 0|n1|−1, ǫ2 · · · ǫp⋆, 0|n2|−1, . . . , ǫp⋆, 0

|np|−1; 1
)
.

MES ⋆⋆ similarly with only ω±⋆, ω0 (including the first):

ζ⋆⋆,mk (n1, . . . , np) := (−1)pIm
(
0; 0k, ǫ1 · · · ǫp⋆, 0|n1|−1, ǫ2 · · · ǫp⋆, 0|n2|−1, . . . , ǫp⋆, 0

|np|−1; 1
)
.

MES ♯ with ω±♯, ω0 and a ω±1 at the beginning:

ζ♯,mk (n1, . . . , np) := 2(−1)pIm
(
0; 0k, ǫ1 · · · ǫp, 0|n1|−1, ǫ2 · · · ǫp♯, 0|n2|−1, . . . , ǫp♯, 0

|np|−1; 1
)
.

IPossibly regularized with (2.28).
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MES ♯♯ similarly with only ω±♯, ω0 (including the first):

ζ♯♯,mk (n1, . . . , np) := (−1)pIm
(
0; 0k, ǫ1 · · · ǫp♯, 0|n1|−1, ǫ2 · · · ǫp♯, 0|n2|−1, . . . , ǫp♯, 0

|np|−1; 1
)
.

Remarks:

· The Lie algebra of the fundamental group πdR
1 (P1�{0, 1,∞}) = πdR

1 (M0,4) is gener-
ated by e0, e1, e∞ with the only condition than e0 + e1 + e∞ = 0I. If we keep e0 and
e∞ as generators, instead of the usual e0, e1, it leads towards MMZV ⋆⋆ up to a sign,
instead of MMZV since −ω0 + ω1 − ω⋆ = 0. We could also choose e1 and e∞ as gen-
erators, which leads to another version of MMZV that has not been much studied yet.
These versions are equivalent since each one can be expressed as Q linear combination
of another one.

· By linearity and �-regularisation (2.28), all these versions (⋆, ⋆⋆, ♯ or ♯♯) are Q-linear
combination of motivic Euler sums. Indeed, with n+ the number of + among ◦:

ζ⋆,m(n1, . . . , np) =
∑

◦=‘+’ or , ζm(n1 ◦ · · · ◦ np)

ζm(n1, . . . , np) =
∑

◦=‘+’ or ,(−1)n+ ζ⋆,m(n1 ◦ · · · ◦ np)

ζ♯,m(n1, . . . , np) =
∑

◦=‘+’ or , 2
p−n+ ζm(n1 ◦ · · · ◦ np)

ζm(n1, . . . , np) =
∑

◦=‘+’ or ,(−1)n+2−p ζ♯,m(n1 ◦ · · · ◦ np)

ζ⋆⋆,m(n1, . . . , np) =
∑p−1

i=0 ζ⋆,m|n1|+···+|ni|(ni+1, · · · , np)

=
∑p−1

◦=‘+’ or ,
i=0

ζm|n1|+···+|ni|(ni+1 ◦ · · · ◦ np)

ζ♯♯,m(n1, . . . , np) =
∑p−1

i=0 ζ♯,m|n1|+···+|ni|(ni+1, · · · , np)

=
∑p−1

◦=‘+’ or ,
i=0

2p−i−n+ ζm|n1|+···+|ni|(ni+1 ◦ · · · ◦ np)

ζ⋆,m(n1, . . . , np) = ζ⋆⋆,m(n1, . . . , np) −ζ⋆⋆,m|n1| (n2, . . . , np)

ζ♯,m(n1, . . . , np) = ζ♯♯(n1, . . . , np) −ζ♯♯,m|n1| (n2, . . . , np)

Notation: Beware, the ‘+ ’ here is on ni ∈ Z∗ is a summation of absolute values while
signs are multiplied:

n1‘ + ’ · · · ‘ + ’ni → sign(n1 · · ·ni)(|n1|+ · · ·+ |ni|).

Examples: Expressing them as Q linear combinations of motivic Euler sumsII:

ζ⋆,m(2, 1, 3) = −Im(0;−1, 0,−⋆, ⋆, 0, 0; 1)
= ζm(2, 1, 3) + ζm(3, 3) + ζm(2, 4) + ζm(6)

ζ♯,m(2, 1, 3) = −2Im(0;−1, 0,−♯, ♯, 0, 0; 1)
= 8ζm(2, 1, 3) + 4ζm(3, 3) + 4ζm(2, 4) + 2ζm(6)

ζ⋆⋆,m(2, 1, 3) = −Im(0;−⋆, 0,−⋆, ⋆, 0, 0; 1)
= ζ⋆,m(2, 1, 3) + ζ⋆,m2 (1, 3) + ζ⋆,m3 (3)
= ζ⋆,m(2, 1, 3) + ζ⋆,m(3, 3) + 3ζ⋆,m(2, 4) + 6ζ⋆,m(1, 5)− 10ζ⋆,m(6)
= 11ζm(6) + 2ζm(3, 3) + ζm(2, 4) + ζm(2, 1, 3) + 3ζm(2, 4) + 6ζm(1, 5)− 10ζm(6)

I For the case of motivic Euler sums, it is the Lie algebra generated by e0, e1, e−1, e∞ with the only condition
than e0 + e1 + e−1 + e∞ = 0; similarly for other roots of unity with eη . Note that ei corresponds to the class of

the residue around i in H1
dR(P1�{0, µN ,∞})∨.

IITo get rid of the 0 in front of the MZV, as in the last example, we use the shuffle regularisation 2.28.
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Stuffle. One of the most famous relations between cyclotomic MZV, the stuffle relation,
coming from the multiplication of series, has been proven to be motivic i.e. true for cyclo-
tomic MMZV, which was a priori non obvious. I In particular:

Lemma 4.1.2.

ζm
(
a1, . . . , ar
α1, . . . , αr

)
ζm
(
b1, . . . , bs
β1, . . . , βs

)
=

∑
(

cj
γj

)
=( ai

αi
),
(

b
i′

β
i′

)
or

(
ai+b

i′
αiβi′

)

order (ai),(bi) preserved

ζm
(
c1, . . . , cm
γ1, . . . , γm

)
.

ζ⋆,m
(
a1, . . . , ar
α1, . . . , αr

)
ζ⋆,m

(
b1, . . . , bs
β1, . . . , βs

)
=

∑
(

cj
γj

)
=( ai

αi
),
(

bi
βi

)
or

(
ai+b

i′
αiβi′

)

order (ai),(bi) preserved

(−1)r+s+mζ⋆,m
(
c1, . . . , cm
γ1, . . . , γm

)
.

ζ♯,m
( a

α

)
ζ♯,m

(
b

β

)
=

∑

(
cj
γj

)
=




ai+

∑k
l=1

ai+l+b
i′+l

αi
∏k

l=1
αi+lβi′+l



 or




b
i′+

∑k
l=1

ai+l+b
i′+l

β
i′
∏k

l=1
αi+lβi′+l





k≥0, order (ai),(bi) preserved

(−1) r+s−m
2 ζ♯,m

(
c1, . . . , cm
γ1, . . . , γm

)
.

Remarks:

· In the depth graded, stuffle corresponds to shuffle the sequences
(
a
α

)
and

(
b
β

)
.

· Other identities mixing the two versions could also be stated, such as

ζ⋆,m
(
a1, . . . , ar
α1, . . . , αr

)
ζm
(
b1, . . . , bs
β1, . . . , βs

)
=

∑

(
cj
γj

)
=( ai

αi
),
(

b
i′

β
i′

)
or



 (
∑k

l=1
ai+l)+b

i′

(
∏k

l=1
αi+l)βi′





k≥1,order (ai),(bi) preserved

ζm
(
c1, . . . , cm
γ1, . . . , γm

)
.

4.2 Relations in L

4.2.1 Antipode relation

In this part, we are interested in some Antipodal relations for motivic Euler sums in the
coalgebra L, i.e. modulo products. To explain quickly where they come from, let’s go back
to two combinatorial Hopf algebra structures.

First recall that if A is a graded connected bialgebra, there exists an unique antipode S
(leading to a Hopf algebra structure)II, which is the graded map defined by:

S(x) = −x−
∑

S(x(1)) · x(2), (4.2)

where · is the product and using Sweedler notations for the coaction:

∆(x) = 1⊗ x+ x⊗ 1 +
∑

x(1) ⊗ x(2) = ∆′(x) + 1⊗ x+ x⊗ 1.

Hence, in the quotient A/A>0 · A>0:

S(x) ≡ −x.

IThe stuffle for these motivic iterated integrals can be deduced from works by Goncharov on mixed Hodge
structures, but was also proved in a direct way by G. Racinet, in his thesis, or I. Souderes in [75] via blow-ups.
Remark that shuffle relation, coming from the iterated integral representation is clearly motivic.

IIIt comes from the usual required relation for the antipode in a Hopf algebra, but because it is graded and
connected, we can apply the formula recursively to construct it, in an unique way.
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4.2.1.1 The � Hopf algebra

Let X = {a1, · · · , an} an alphabet and A
�

:= Q〈X×〉 the Q-vector space generated by
words on X, i.e. non commutative polynomials in ai. It is easy to see that A

�

is a Hopf
algebra with the � shuffle product, the deconcatenation coproduct ∆D and antipode S

�

:

∆D(ai1 · · ·ain) =
n∑

k=0

ai1 · · · aik ⊗ aik+1
· · · ain . (4.3)

S
�

(ai1 · · ·ain) = (−1)nain · · · ai1 . (4.4)

A
�

is even a connected graded Hopf algebra, called the shuffle Hopf algebra; the grading
coming from the degree of polynomial. By the equivalence of category between Q-Hopf
algebra and Q-Affine Group Scheme, it corresponds to:

G = SpecA
�

: R→ Hom(Q〈X〉, R) = {S ∈ R〈〈ai〉〉 | ∆�S = S⊗̂S, ǫ(S) = 1}, (4.5)

where ∆
�

is the coproduct dual to the product �:

∆
�

(ai1 · · ·ain) = (1⊗ ai1 + ai1 ⊗ 1) · · · (1⊗ ain + ain ⊗ 1) .

Let restrict now to X = {0, µN}; our main interest in this Chapter is N = 2, but it can be
extended to other roots of unity. The shuffle relation for motivic iterated integral relative
to µN :

Im(0; ·; 1) is a morphism of Hopf algebra from A
�

to (R,×) : (4.6)

Im(0;w; 1)Im(0;w′; 1) = Im(0;w� w′; 1) with w,w′ words in X.

Lemma 4.2.1 (Antipode �). In the coalgebra L, with w the weight, • standing for
MMZVµN , or ⋆⋆ (N = 2) resp. ♯♯-version (N = 2):

ζ•,ln−1

(
n1, . . . , np

ǫ1, . . . , ǫp

)
≡ (−1)w+1ζ•,lnp−1

(
np−1, . . . , n1, n

ǫ−1
p−1, . . . , ǫ

−1
1 , ǫ

)
where ǫ := ǫ1 · . . . · ǫp.

This formula stated for any N is slightly simpler in the case N = 1, 2 since ni ∈ Z∗:

Antipode � :

ζ•,ln−1 (n1, . . . , np) ≡ (−1)w+1ζ•,l|np|−1 (np−1, . . . , n1, sign(n1 · · ·np)n)

I l(0;X ; ǫ) ≡ (−1)wI l(ǫ; X̃; 0) ≡ (−1)w+1I l(0; X̃; ǫ)

.

(4.7)

Here X is any word in 0,±1 or 0,±⋆ or 0,±♯, and X̃ denotes the reversed word.

Proof. For motivic iterated integrals, as said above:

S
�

(Im(0; a1, . . . , an; 1)) = (−1)nIm(0; an, . . . , a1; 1),

which, in terms of the MMZVµN notation is:

S
�

(
ζ•,ln−1

(
n1, . . . , np

ǫ1, . . . , ǫp

))
≡ (−1)wζ•,lnp−1

(
np−1, . . . , n1, n

ǫ−1
p−1, . . . , ǫ

−1
1 , ǫ

)
where ǫ := ǫ1 · . . . · ǫp.

Then, if we look at the antipode recursive formula (4.2) in the coalgebra L, for ai ∈ {0, µN}:

S
�

(I l(0; a1, . . . , an; 1)) ≡ −I l(0; a1, . . . , an; 1).

This leads to the lemma above. The �-antipode relation can also be seen at the level of
iterated integrals as the path composition modulo products followed by a reverse of path.
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4.2.1.2 The ∗ Hopf algebra

Let Y = {· · · , y−n, . . . , y−1, y1, · · · , yn, · · · } an infinite alphabet and A∗ := Q〈Y ×〉 the non
commutative polynomials in yi with rational coefficients, with y0 = 1 the empty word.
Similarly, it is a graded connected Hopf algebra called the stuffle Hopf algebra, with the
stuffle ∗ product and the following coproduct:I

∆D∗(yn1 · · · ynp) =
∑

yn1 · · · yni ⊗ yni+1 , . . . , ynp , ni ∈ Z∗. (4.8)

Nota Bene: Remark that here we restricted to Euler sums, N = 2, but it could be extended
for other roots of unity, for which stuffle relation has been stated in §4.1.
The completed dual is the Hopf algebra of series Q 〈〈Y 〉〉 with the coproduct:

∆∗(yn) =

|n|∑

k=0
sgn(n)=ǫ1ǫ2

yǫ1k ⊗ yǫ2(n−k).

Now, let introduce the notations:II

(yn1 · · · ynp)
⋆ :=

∑

1=i0<i1<···<ik−1≤ik+1=p

k≥0

yni0 ‘+’···‘+’ni1−1 · · · ynij
‘+’···‘+’nij+1−1 · · · ynik

‘+’···‘+’nik+1
.

(yn1 · · · ynp)
♯ :=

∑

1=i0<i1<···<ik−1≤ik+1=p

k≥0

2k+1yni0 ‘+’···‘+’ni1−1 · · · ynij
‘+’···‘+’nij+1−1 · · · ynik

‘+’···‘+’nik+1
,

where ni ∈ Z∗ and the operation ‘ + ’ indicates that signs are multiplied whereas absolute
values are summed. It is straightforward to check that:

∆D∗(w
⋆) = (∆D∗(w))

⋆, and ∆D∗(w
♯) = (∆D∗(w))

♯. (4.9)

As said above, the relation stuffle is motivic:

ζm(·) is a morphism of Hopf algebra from A∗ to (R,×).
Lemma 4.2.2 (Antipode ∗). In the coalgebra L, with ni ∈ Z∗

ζln−1(n1, . . . , np) ≡ (−1)p+1ζ⋆,ln−1(np, . . . , n1).

ζ♯,ln−1(n1, . . . , np) ≡ (−1)p+1ζ♯,ln−1(np, . . . , n1).

Proof. By recursion, using the formula (4.2), and the following identity (left to the reader):

p−1∑

i=0

(−1)i(yni · · · yn1)
⋆ ∗ (yni+1 · · · ynp) = −(−1)p(ynp · · · yn1)

⋆,

we deduce the antipode S∗:

S∗(yn1 · · · ynp) = (−1)p(ynp · · · yn1)
⋆.

Similarly:

S∗((yn1 · · · ynp)
♯) = −

n−1∑

i=0

S∗((yn1 · · · yni)
♯) ∗ (yni+1 · · · ynp)

♯

IFor the � algebra, we had to use the notation in terms of iterated integrals, with 0,±1, but for the ∗ stuffle
relation, it is more natural with the Euler sums notation, which corresponds to yni

, ni ∈ Z.
IIHere ⋆ resp. ♯ refers naturally to the Euler ⋆ resp. ♯, sums, as we see in the next lemma. Beware, it is not a ∗

homomorphism.
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= −
n−1∑

i=0

(−1)i(yni · · · yn1)
♯ ∗ (yni+1 · · · ynp)

♯ = (−1)p(ynp · · · yn1)
♯.

Then, we deduce the lemma, since ζm(·) is a morphism of Hopf algebra. Moreover, the
formula (4.2) in the coalgebra L gives that:

S(ζl(s)) ≡ −ζl(s).

4.2.2 Hybrid relation in L
In this part, we look at a new relation called hybrid relation between motivic Euler sums in
the coalgebra L, i.e. modulo products, which comes from the motivic version of the octagon
relation (for N > 1, cf. [38]) I

0dch10 1

ξN

∞

Figure 4.2: Octagon relation, N > 1:

Φ(e0, e1, . . . , en)e
2iπe1

N Φ(e∞, e1, en, . . . , e2)
−1e

2iπe∞
N Φ(e∞, en, . . . , e1)e

2iπen
N Φ(e0, en, e1, . . . , en−1)

−1e
2iπe0

N

= 1

This relation is motivic, and hence valid for the motivic Drinfeld associator Φm (2.39), re-
placing 2iπ by the Lefschetz motivic period Lm.

Let focus on the case N = 2 and recall that the space of motivic periods of MT
(
Z[ 12 ]

)

decomposes as (cf. 2.10):

Pm

MT (Z[ 12 ])
= H2 ⊕H2.Lm, where

H2 is F∞ invariant
H2.Lm is F∞ anti-invariant

. (4.10)

For the motivic Drinfeld associator, seeing the path in the Riemann sphere, it becomes:

I

0dch10 1

∞

Figure 4.1: For N = 1, Hexagon relation: eiπe0Φ(e∞, e0)e
iπe∞Φ(e1, e∞)eiπe1Φ(e0, e1) = 1.
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−1 0 1 ∞ γ

Figure 4.3: Octagon relation, N = 2 with e0 + e1 + e−1 + e∞ = 0:

e
Lme−1

2 Φm(e0, e−1, e1)
−1e

Lme0
2 Φm(e0, e1, e−1)e

Lme1
2 Φm(e∞, e1, e−1)

−1e
Lme∞

2 Φm(e∞, e−1, e1) = 1.

Let X = P1� {0,±1,∞}. The action of the real Frobenius F∞ on X(C) is induced
by complex conjugation. The real Frobenius acts on the Betti realization πB(X(C))I, and
induces an involution on motivic periods, compatible with the Galois action:

F∞ : Pm
MT (Z[ 12 ])

→ Pm
MT (Z[ 12 ])

.

The Lefschetz motivic period Lm is anti-invariant by F∞:

F∞Lm = −Lm,

whereas terms corresponding to real paths in Figure 4.3, such as Drinfeld associator terms,
are obviously invariant by F∞.

The linearized F∞-anti-invariant part of this octagon relation leads to the following hy-
brid relation.

Theorem 4.2.3. In the coalgebra L2, with ni ∈ Z∗, w the weight:

ζlk (n0, n1, . . . , np)+ζl|n0|+k (n1, . . . , np) ≡ (−1)w+1
(
ζlk (np, . . . , n1, n0) + ζlk+|np| (np−1, . . . , n1, n0)

)
,

Equivalently, in terms of motivic iterated integrals, for X any word in {0,±1}, with X̃ the
reversed word, we obtain both:

I l(0; 0k, ⋆,X ; 1) ≡ I l(0;X, ⋆, 0k; 1) ≡ (−1)w+1I l(0; 0k, ⋆, X̃; 1),

I l(0; 0k,−⋆,X ; 1) ≡ I l(0;−X,−⋆, 0k; 1) ≡ (−1)w+1I l(0; 0k,−⋆,−X̃; 1)

The proof is given below, firstly for k = 0, using octagon relation (Figure 4.3). The
generalization for any k > 0 is deduced directly from the shuffle regularization (2.28).

Remarks:

· This theorem implies notably the famous depth-drop phenomena when weight and
depth have not the same parity (cf. Corollary 4.2.4).

· Equivalently, this statement is true for X any word in {0,±⋆}. Recall that (2.29), by
linearity:

Im(. . . ,±⋆, . . .) := Im(. . . ,±1, . . .)− Im(. . . , 0, . . .).

· The point of view adopted by Francis Brown in [21], and its use of commutative poly-
nomials (also seen in Ecalle work) can be applied in the coalgebra L and leads to a new
proof of Theorem 4.2.3 in the case of MMZV, i.e. N = 1, sketched in Appendix A.4;
it uses the stuffle relation and the antipode shuffle. Unfortunately, generalization for
motivic Euler sums of this proof is not clear, because of this commutative polynomial
setting.

Since Antipode ∗ relation expresses ζln−1(n1, . . . , np) + (−1)pζln−1(np, . . . , n1) in terms of
smaller depth (cf. Lemma 4.2.2), when weight and depth have not the same parity, it turns
out that a (motivic) Euler sum can be expressed by smaller depth:II

I It is compatible with the groupoid structure of πB , and the local monodromy.
IIErik Panzer recently found a new proof of this depth drop result for MZV at roots of unity, which appear as

a special case of some functional equations of polylogarithms in several variables.
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Corollary 4.2.4. If w + p odd, a motivic Euler sum in L is reducible in smaller depth:

2ζln−1(n1, . . . , np) ≡

−ζln+|n1|−1(n2, . . . , np)+(−1)pζln+|np|−1(np−1, . . . , n1)+
∑

◦=+ or ,
at least one +

(−1)p+1ζln−1(np ◦· · ·◦n1).

Proof of Theorem 4.2.3 First, the octagon relation (Figure 4.3) is equivalent to:

Lemma 4.2.5. In Pm

MT (Z[ 12 ])
〈〈e0, e1, e−1〉〉, with e0 + e1 + e−1 + e∞ = 0:

Φm(e0, e1, e−1)e
Lme0

2 Φm(e−1, e0, e∞)e
Lme−1

2 Φm(e∞, e−1, e1)e
Lme∞

2 Φm(e1, e∞, e0)e
Lme1

2 = 1,
(4.11)

Hence, the linearized octagon relation is:

−e0Φl(e−1, e0, e∞)+Φl(e−1, e0, e∞)e0+(e0+e−1)Φ
l(e∞, e−1, e1)−Φl(e∞, e−1, e1)(e0+e−1)

− e1Φ
l(e1, e∞, e0) + Φl(e1, e∞, e0)e1 ≡ 0. (4.12)

Proof. · Let’s first remark that:

Φm(e0, e1, e−1) = Φm(e1, e0, e∞)−1.

Indeed, the coefficient in the series Φm(e1, e0, e∞) of a word ea0

0 eη1e
a1

0 · · · eηre
ar

0 , where
ηi ∈ {±1} is (cf. §4.6):

Im (0; (ω1 − ω−1)
a0(−ωµ1)(ω1 − ω−1)

a1 · · · (−ωµr )(ω1 − ω−1)
ar ; 1) with µi :=

{
−⋆ if ηi = 1
−1 if ηi = −1 .

Let introduce the following homography φτσ = φτσ−1 (cf. Annexe (A.3)):

φτσ = φ−1
τσ : t 7→ 1− t

1 + t
:





−ω⋆ 7→ ω⋆

−ω1 7→ ω−⋆

ω−1 − ω1 7→ −ω0

ω−1 7→ −ω−1

ω−⋆ 7→ −ω1

.

If we apply φτσ to the motivic iterated integral above, it gives: Im (1;ωa0
0 ωη1ω

a1
0 · · ·ωηrω

ar
0 ; 0).

Hence, summing over words w in e0, e1, e−1:

Φm(e1, e0, e∞) =
∑

Im(1;w; 0)w

Therefore:

Φm(e0, e1, e−1)Φ
m(e1, e0, e∞) =

∑

w,w=uv

Im(0;u; 1)Im(1;u; 0)w = 1.

We used the composition formula for iterated integral to conclude, since for w non
empty,

∑
w=uv I

m(0;u; 1)Im(1;u; 0) = Im(0;w; 0) = 0.
Similarly:

Φm(e0, e−1, e1) = Φm(e−1, e0, e∞)−1, and Φm(e∞, e1, e−1) = Φm(e1, e∞, e0)
−1.

The identity 4.11 follows from 4.3.
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· Let consider both paths on the Riemann sphere γ and γ, its conjugate: I

1 ∞ −1 0 γ

γ

Applying (id−F∞) to the octagon identity 4.11 II leads to:

Φm(e0, e1, e−1)e
Lme0

2 Φm(e−1, e0, e∞)e
Lme−1

2 Φm(e∞, e−1, e1)e
Lme∞

2 Φm(e1, e∞, e0)e
Lme1

2

−Φm(e0, e1, e−1)e
− Lme0

2 Φm(e−1, e0, e∞)e−
Lme−1

2 Φm(e∞, e−1, e1)e
− Lme∞

2 Φm(e1, e∞, e0)e
− Lme1

2 = 0.
(4.13)

By (4.10), the left side of (4.13), being anti-invariant by F∞, lies inH2·Lm 〈〈e0, e1, e−1〉〉.
Consequently, we can divide it by Lm and consider its projection πL in the coalgebra
L 〈〈e0, e1, e−1〉〉, which gives firstly:

Φl(e0, e1, e−1)π
L
(
(Lm)−1

[
e

Lme0
2 e

Lme−1
2 e

Lme∞
2 e

Lme1
2 − e−

Lme0
2 e−

Lme−1
2 e−

Lme∞
2 e−

Lme1
2

])

+πL
(
(Lm)−1

[
e

Lme0
2 Φl(e−1, e0, e∞)e

Lme−1
2 e

Lme∞
2 e

Lme1
2 − e−

Lme0
2 Φl(e−1, e0, e∞)e−

Lme−1
2 e−

Lme∞
2 e−

Lme1
2

])

+πL
(
(Lm)−1

[
e

Lme0
2 e

Lme−1
2 Φl(e∞, e−1, e1)e

Lme∞
2 e

Lme1
2 − e−

Lme0
2 e−

Lme−1
2 Φl(e∞, e−1, e1)e

− Lme∞
2 e−

Lme1
2

])

+πL
(
(Lm)−1

[
e

Lme0
2 e

Lme−1
2 e

Lme∞
2 Φl(e1, e∞, e0)e

Lme1
2 − e−

Lme0
2 e−

Lme−1
2 e−

Lme∞
2 Φl(e1, e∞, e0)e

− Lme1
2

])
= 0

(4.14)

The first line is zero (since e0 + e1 + e−1 + e∞ = 0) whereas each other line will
contribute by two terms, in order to give (4.12). Indeed, the projection πL(x), when
seeing x as a polynomial (with only even powers) in Lm, only keep the constant term;
hence, for each term, only one of the exponentials above ex contributes by its linear
term i.e. x, while the others contribute simply by 1. For instance, if we examine
carefully the second line of (4.14), we get:

= e0Φ
l(e−1, e0, e∞) + Φl(e−1, e0, e∞)(e−1 + e∞ + e1)

−(−e0)Φl(e−1, e0, e∞)− Φl(e−1, e0, e∞)(−e−1 − e∞ − e1)
= 2

[
e0Φ

l(e−1, e0, e∞)− Φl(e−1, e0, e∞)e0
] .

Similarly, the third line of (4.14) is equal to (e0+e−1)Φ
l(e∞, e−1, e1)−Φl(e∞, e−1, e1)(e0+

e−1) and the last line is equal to −e1Φl(e1, e∞, e0)+Φl(e1, e∞, e0)e1. Therefore, (4.14)
is equivalent to (4.12), as claimed.

This linearized octagon relation 4.12, while looking at the coefficient of a specific word in
{e0, e1, e−1}, provides an identity between some ζ⋆⋆,l(•) and ζl(•) in the coalgebra L. The
different identities obtained in this way are detailed in the §4.6. In the following proof of
Theorem 4.2.3, two of those identities are used.

IPath γ corresponds to the cycle σ, 1 7→ ∞ 7→ −1 7→ 0 7→ 1 (cf. in Annexe A.3). Beware, in the figure, the
position of both path is not completely accurate in order to distinguish them.

IIThe identity 4.11 corresponds to the path γ whereas applying F∞ to the path γ corresponds to the path γ
represented.
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Proof of Theorem 4.2.3. The identity with MMZVµ2 is equivalent to, in terms of motivic
iterated integrals:I

I l(0; 0k, ⋆,X ; 1) ≡ I l(0;X, ⋆, 0k; 1) and I l(0; 0k,−⋆,X ; 1) ≡ I l(0;−X,−⋆, 0k; 1).

Furthermore, by shuffle regularization formula (2.28), spreading the first 0 further inside the
iterated integrals, the identity I l(0;0k, ⋆,X ; 1) ≡ (−1)w+1I l(0;0k, ⋆, X̃; 1) boils down to the
case k = 0.
The notations are as usual: ǫi = sign(ni), ǫi = ηiηi+1,ǫp = ηp, ni = ǫi(ai + 1).

(i) In (4.12), if we look at the coefficient of a specific word in {e0, e1, e−1} ending and
beginning with e−1 (as in §4.6), only two terms contribute, i.e.:

e−1Φ
l(e∞, e−1, e1)− Φl(e∞, e−1, e1)e−1 (4.15)

The coefficient of ea0
0 eη1e

a1
0 · · · eηpe

ap

0 in Φm(e∞, e−1, e1) is (−1)n+pζ⋆⋆,mn0−1 (n1, · · · , np−1,−np).II

Hence, the coefficient in (4.15) (as in (4.12)) of the word e−1e
a0
0 eη1 · · · eηpe

ap

0 e−1 is:

ζ⋆⋆,l|n0|−1(n1, · · · ,−np, 1)− ζ⋆⋆,l(n0, n1, · · · , np−1,−np) = 0, with
p∏

i=0

ǫi = 1.

In terms of iterated integrals, reversing the first one with Antipode �, it is:

I l (0;−X, ⋆; 1) ≡ I l (0; ⋆,−X ; 1) , with X := 0n0−1η10
n1−1 · · · ηp0np−1.

Therefore, since X can be any word in {0,±⋆}, by linearity this is also true for any
word X in {0,±1}: I l (0;X, ⋆; 1) ≡ I l (0; ⋆,X ; 1).

(ii) Now, let look at the coefficient of a specific word in {e0, e1, e−1} beginning by e1, and
ending by e−1. Only two terms in the left side of (4.12) contribute, i.e.:

− e1Φ
l(e1, e∞, e0)− Φl(e∞, e−1, e1)e−1 (4.16)

The coefficient in this expression of the word e1e
a0
0 eη1 · · · eηpe

ap

0 e−1 is:

ζ⋆⋆,l|n0|−1(n1, · · · , np,−1)− ζ⋆⋆,l(n0, n1, · · · , np) = 0, with
p∏

i=0

ǫi = −1.

In terms of iterated integrals, reversing the first one with Antipode �, it is:

I l (0;−X,−⋆; 1) ≡ I l (0;−⋆,X ; 1) .

Therefore, since X can be any word in {0,±⋆}, by linearity this is also true for any
word X in {0,±1}.

For Euler ⋆⋆ sums.

Corollary 4.2.6. In the coalgebra L2, with ni ∈ Z∗, n ≥ 1:

ζ⋆⋆,ln−1(n1, . . . , np) ≡ (−1)w+1ζ⋆⋆,ln−1(np, . . . , n1). (4.17)

Motivic Euler ⋆⋆ sums of depth p in L form a dihedral group of order p+ 1:

(Shift) ζ⋆⋆,l|n|−1(n1, . . . , np) ≡ ζ⋆⋆,l|n1|−1(n2, . . . , np, n) where sgn(n) :=
∏

i

sgn(ni).

IIndeed, if
∏p

i=0 ǫi = 1, it corresponds to the first case, whereas if
∏p

i=0 ǫi, we need the second case.
IIThe expressions of those associators are more detailed in the proof of Lemma 4.6.1.
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Indeed, these two identities lead to a dihedral group structure of order p+1: (4.17), respec-
tively Shift, correspond to the action of a reflection resp. of a cycle of order p on motivic
Euler ⋆⋆ sums of depth p in L.

Proof. Writing ζ⋆⋆,m as a sum of Euler sums:

ζ⋆⋆,mn−1 (n1, . . . , np) =

p∑

i=1

ζmn−1+|n1|+···+|ni−1|(ni◦· · ·◦np) =
∑

r
Ai

(
ζmn−1(A1, . . . , Ar) + ζmn−1+|A1|(A2, . . . , Ar)

)
,

where the last sum is over (Ai)i such that each Ai is a non empty “sum” of consecutive
(nj)

′s, preserving the order; the absolute value being summed whereas the sign of the ni

involved are multiplied; moreover, | A1 |≥| n1 | resp. | Ar |≥| np |.
Using Theorem (4.2.3) in the coalgebra L, the previous equality turns into:

(−1)w+1
∑

r
Ai

(
ζln−1(Ar , . . . , A1) + ζln−1+|Ar |(Ar−1, . . . , A1)

)
≡ (−1)w+1ζ⋆⋆,mn−1 (np, . . . , n1).

The identity Shift is obtained as the composition of Antipode � (4.7) and the first identity
of the corollary.

For Euler ♯♯ sums.

Corollary 4.2.7. In the coalgebra L, for n ∈ N, ni ∈ Z∗, ǫi := sgn(ni):

Reverse

ζ♯♯,ln (n1, . . . , np) + (−1)wζ♯♯,ln (np, . . . , n1) ≡
{

0 if w + p even .
ζ♯,ln (n1, . . . , np) if w + p odd

.

Shift ζ♯♯,ln−1(n1, . . . , np) ≡ ζ♯♯,l|n1|−1(n2, . . . , np, ǫ1 · · · ǫp · n), for w + p even.

Cut ζ♯♯,ln (n1, · · · , np) ≡ ζ♯♯,ln+|np|(n1, · · · , np−1), for w + p odd.

Minus ζ♯♯,ln−i(n1, · · · , np) ≡ ζ♯♯,ln (n1, · · · , np−1, ǫp(| np | −i)), for
w + p odd
i ≤ min(n, | np |) .

Sign ζ♯♯,ln (n1, · · · , np−1, np) ≡ ζ♯♯,ln (n1, · · · , np−1,−np), for w + p odd.
This identity, in terms of motivic iterated integral implies that for X any sequence of
0,±♯, such that w + p odd:

I l(−1;X ; 1) ≡ 0.

Remark: In the coaction of Euler sums, terms with 1 can appearI, which are clearly not
motivic multiple zeta values. The left side corresponding to such a term in the coaction
part D2r+1(·) is I l(1;X ;−1), X odd weight with 0,±♯. It is worth underlying that, for the
♯ family with {even, odd}, these terms disappear by Sign, since by constraint on parity,
X will always be of even depth for such a cut. This ♯ family is then more suitable for an
unramified criterion, cf. §4.3.

Proof. These are consequences of the hybrid relation in Theorem 4.2.3.

· Reverse: Writing ζ♯♯,l as a sum of Euler sums:

ζ♯♯,mk (n1, . . . , np) + (−1)wζ♯♯,mk (np, . . . , n1)

IMore precisely, using the notations of Lemma A.1.1, a 1 can appear in terms of the type Tǫ,−ǫ for a cut
between ǫ and −ǫ.
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=
∑p

i=1 2
p−i+1−n+ζmk+n1+···+ni−1

(ni ◦ · · · ◦ np) + (−1)w2i−n+ζmk+np+···+ni+1
(ni ◦ · · · ◦ n1)

=
∑

r
Ai

2r−1 ( 2ζmk (A1, . . . , Ar) + 2(−1)wζmk (Ar , . . . , A1) + ζmk+A1
(A2, . . . , Ar) + (−1)wζmk+Ar

(Ar−1, . . . , A1) )

where the sum is over (Ai) such that each Ai is a non empty “sum” of consecutive
(nj)

′s, preserving the order; i.e. absolute values of ni are summed whereas signs are
multiplied; moreover, A1 resp. Ar are no less than n1 resp. np.
By Theorem 4.2.3, the previous equality turns into, in L:

∑

r
Ai

2r−1
(
ζlk(A1, . . . , Ar) + (−1)wζlk(Ar, . . . , A1)

)

≡ 2−1
(
ζ♯,lk (n1, . . . , np) + (−1)wζ♯,lk (np, . . . , n1)

)
≡ 2−1ζ♯,lk (n1, . . . , np)

(
1 + (−1)w+p+1

)
.

By the Antipode ⋆ relation applied to ζ♯,l, it implies the result stated, splitting the
cases w + p even and w + p odd.

· Shift: Obtained when combining Reverse and Antipode �, when w + p even.

· Cut: Reverse in the case w + p odd implies:

ζ♯♯,ln+|n1|(n2, . . . , np) + (−1)wζ♯♯,ln (np, . . . , n1) ≡ 0,

Which, reversing the variables, gives the Cut rule.

· Minus follows from Cut since, by Cut both sides are equal to ζ♯♯,ln−i+|np|(n1, · · · , np−1).

· In Cut, the sign of np does not matter, hence, using Cut in both directions, with
different signs leads to Sign:

ζ♯♯,ln (n1, . . . , np) ≡ ζ♯♯,ln+|np|(n1, . . . , np−1) ≡ ζ♯♯,ln (n1, . . . ,−np).

Note that, translating in terms of iterated integrals, it leads to, for X any sequence of
0,±♯, with w + p odd:

I l(0;X ; 1) ≡ I l(0;−X ; 1),

where −X is obtained from X after exchanging ♯ and −♯. Moreover, I l(0;−X ; 1) ≡
I l(0;X ;−1) ≡ −I l(−1;X ; 0). Hence, we obtain, using the composition rule of iterated
integrals modulo product:

I l(0;X ; 1) + I l(−1;X ; 0) ≡ I l(−1;X ; 1) ≡ 0.

4.3 Euler ♯ sums

Let’s consider more precisely the following family, appearing in Conjecture 4.5.1, ith only
positive odd and negative even integers for arguments:

ζ♯,m
(
{even , odd }×

)
.

In the iterated integral, this condition means that we see only the following sequences:

ǫ02aǫ, or ǫ02a+1 − ǫ, with ǫ ∈ {±♯}.
Theorem 4.3.1. The motivic Euler sums ζ♯,m({even , odd }×) are motivic geometric+ pe-
riods of MT (Z).
Hence, they are Q linear combinations of motivic multiple zeta values.

The proof, in §4.3.2, relies mainly upon the stability under the coaction of this family.
This motivic family is even a generating family of motivic MZV:
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Theorem 4.3.2. The following family is a basis of H1:

B♯ :=
{
ζ♯,m(2a0 + 1, 2a1 + 3, · · · , 2ap−1 + 3, 2ap + 2) , ai ≥ 0

}
.

First, it is worth noticing that this subfamily is also stable under the coaction.

Remark: It is conjecturally the same family as the Hoffman star family ζ⋆(2a0 , 3, · · · , 3,2ap),
by Conjecture (4.5.1).

For that purpose, we use the increasing depth filtration FD on H2 such that (cf. §2.4.3):
FD

p H2 is generated by Euler sums of depth smaller than p.

Note that it is not a grading, but we define the associated graded as the quotient grDp :=

FD
p �FD

p−1. The vector space FD
p H is stable under the action of G. The linear independence

of this ♯ family is proved below thanks to a recursion on the depth and on the weight, using
the injectivity of a map ∂ where ∂ came out of the depth and weight-graded part of the
coaction ∆.

4.3.1 Depth graded Coaction

In Chapter 2, we defined the depth graded derivations Dr,p (cf. 2.4.3), and D−1
r,p (2.53) after

the projection on the right side, using depth 1 results:

grD1 L2r+1 = Qζl(2r + 1).

Let look at the following maps, whose injectivity is fundamental to the Theorem 4.3.2:

D−1
2r+1,p : grDp Hn → grDp−1Hn−2r−1.

∂<n,p := ⊕2r+1<nD
−1
2r+1,p.

Their explicit expression is:

Lemma 4.3.3. II

D−1
2r+1,p

(
ζ♯,m(2a0 + 1, 2a1 + 3, · · · , 2ap−1 + 3, 2ap + 2)

)
=

δr=a0

22r+1

1− 22r

(
2r

2r + 2

)
ζ♯,m(2a1 + 3, · · · , 2ap + 2)

+
∑

0≤i≤p−2, α≤ai
r=ai+1+ai+1−α

22r+1

1− 22r

(
2r

2ai+1 + 2

)
ζ♯,m(· · · , 2ai−1 + 3, 2α+ 3, 2ai+2 + 3, · · · , 2ap + 2)

+
∑

1≤i≤p−1, α≤ai
r=ai−1+ai+1−α

22r+1

1− 22r

(
2r

2ai−1 + 2

)
ζ♯,m(· · · , 2ai−2 + 3, 2α+ 3, 2ai+1 + 3, · · · , 2ap + 2)

+ (Deconcatenation)
∑

α≤ap
r=ap−1+ap+1−α

2

(
2r

2ap + 1

)
ζ♯,m(· · · , 2ap−1 + 3, 2α+ 2). (4.18)

IITo be accurate, the term i = 0 in the first sum has to be understood as:

22r+1

1 − 22r

( 2r

2a1 + 2

)
ζ♯,m(2α + 3, 2a2 + 3, · · · , 2ap + 2).

Meanwhile the terms i = 1, resp. i = p in the second sum have to be understood as:

22r+1

1 − 22r

( 2r

2a0 + 2

)
ζ
♯,m

(2α + 3, 2a2 + 3, · · · , 2ap + 2) resp.
22r+1

1 − 22r

( 2r

2ap−1 + 2

)
ζ
♯,m

(· · · , 2ap−2 + 3, 2α + 2).
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Proof. Looking at the Annexe A.1 expression for D2r+1, we obtain for D2r+1,p keeping only
the cuts of depth one (removing exactly one non zero element):

D2r+1,pζ
♯,m(2a0 + 1, 2a1 + 3, · · · , 2ap−1 + 3, 2ap + 2) =

∑

i,α≤ai
r=ai+1+ai+1−α

2ζl2ai−2α(2ai+1 + 3)⊗ ζ♯,m(· · · , 2ai−1 + 3, 2α+ 3, 2ai+2 + 3, · · · , 2ap + 2)

+
∑

i,α≤ai
r=ai−1+ai+1−α

2ζl2ai−2α(2ai−1 + 3)⊗ ζ♯,m(· · · , 2ai−2 + 3, 2α+ 3, 2ai+1 + 3, · · · , 2ap + 2)

+
∑

α≤ap
r=ap−1+ap+1−α

2ζl2ap−1−2α+1(2ap + 2)⊗ ζ♯,m(· · · , 2ap−1 + 3, 2α+ 2).

To lighten the result, some cases at the borders (i = 0, or i = p) have been included in the
sum, being fundamentally similar (despite some index problems). These are clarified in the
previous footnoteII.
In particular, with notations of the Lemma A.1.1, T0,0 terms can be neglected as they
decrease the depth by at least 2; same for the T0,ǫ and Tǫ,0 for cuts between ǫ and ±ǫ. To
obtain the lemma, it remains to check the coefficient of ζl(2r + 1) for each term in the left
side thanks to the known identities:

ζl(2r + 1) =
−22r
22r − 1

ζl(2r + 1) and ζl2r+1−a(a) = (−1)a+1

(
2r

a− 1

)
ζl(2r + 1).

4.3.2 Proofs of Theorem 4.3.1 and 4.3.2

Proof of Theorem 4.3.1. By Corollary 5.1.2, we can prove it in two steps:

· First, checking that D1(·) = 0 for this family, which is rather obvious by Lemma 5.2.8
since there is no sequence of the type {0, ǫ,−ǫ} or {ǫ,−ǫ, 0} in the iterated integral.

· Secondly, we can use a recursion on weight to prove that D2r+1(·), for r > 0, are
unramified. Consequently, using recursion, this follows from the following statement:

The family ζ♯,m ({even ,+odd }×) is stable under D2r+1.

This is proved in Lemma A.1.3, using the relations of §4.2 in order to simplify the
unstable cuts, i.e. the cuts where a sequence of type ǫ, 02a+1, ǫ or ǫ, 02a,−ǫ appears;
indeed, these cuts give rise to a even or to a odd in the ♯ Euler sum.

One fundamental observation about this family, used in Lemma A.1.3 is: for a subsequence
of odd length from the iterated integral, because of these patterns of ǫ,02a, ǫ, or ǫ,02a+1,−ǫ,
we can put in relation the depth p, the weight w and s the number of sign changes among
the ±♯:

w ≡ p− s (mod 2).

It means that if we have a cut ǫ0, · · · ǫp+1 of odd weight, then:

Either: Depth p is odd, s even, ǫ0 = ǫp+1, Or: Depth p is even, s odd, ǫ0 = −ǫp+1.

Proof of Theorem 4.3.2. By a cardinality argument, it is sufficient to prove the linear
independence of the family, which is based on the injectivity of ∂<n,p. Let us define: I

ISub-Q vector space of H1 by previous Theorem.
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Hodd♯: Q-vector space generated by ζ♯,m(2a0 + 1, 2a1 + 3, · · · , 2ap−1 + 3, 2ap + 2).

The first thing to remark is that Hodd♯ is stable under these derivations, by the expression
obtained in Lemma A.1.4.:

D2r+1(Hodd♯
n ) ⊂ L2r+1 ⊗Hodd♯

n−2r−1,

Now, let consider the restriction on Hodd♯ of ∂<n,p and prove:

∂<n,p : grDp Hodd♯
n → ⊕2r+1<ngr

D
p−1Hodd♯

n−2r−1 is bijective.

The formula (4.18) gives the explicit expression of this map. Let us prove more precisely:

MD
n,p the matrix of ∂<n,p on

{
ζ♯,m(2a0 + 1, 2a1 + 3, · · · , 2ap−1 + 3, 2ap + 2)

}
in terms of{

ζ♯,m(2b0 + 1, 2b1 + 3, · · · , 2bp−2 + 3, 2bp−1 + 2)
}

is invertible.

Nota Bene: The matrix MD
n,p is well (uniquely) defined provided that the ζ♯,m of the second

line are linearly independent. So first, we have to consider the formal matrix associated MD
n,p

defined explicitly (combinatorially) by the formula for the derivations given, and prove MD
n,p

is invertible. Afterwards, we could state that MD
n,p is well defined and invertible too since

equal to MD
n,p.

Proof. The invertibility comes from the fact that the (strictly) smallest terms 2-adically in
(4.18) are the deconcatenation ones, which is an injective operation. More precisely, let
M̃D

n,p be the matrix Mn,p where we have multiplied each line corresponding to D2r+1 by
(2−2r). Then, order elements on both sides by lexicographical order on (ap, . . . , a0), resp.
(r, bp−1, . . . , b0), such that the diagonal corresponds to r = ap+1 and bi = ai for i < p. The
2 -adic valuation of all the terms in (4.18) (once divided by 22r) is at least 1, except for the
deconcatenation terms since:

v2

(
2−2r+1

(
2r

2ap + 1

))
≤ 0⇐⇒ v2

((
2r

2ap + 1

))
≤ 2r − 1.

Then, modulo 2, only the deconcatenation terms remains, so the matrix M̃D
n,p is triangular

with 1 on the diagonal. This implies that det(M̃D
n,p) ≡ 1 (mod 2), and in particular is non

zero: the matrix M̃D
n,p is invertible, and so does MD

n,p.

This allows us to complete the proof since it implies:

The elements of B♯ are linearly independent.

Proof. First, let prove the linear independence of this family of the same depth and weight,
by recursion on p. For depth 0, this is obvious since ζm(2n) is a rational multiple of π2n.
Assuming by recursion on the depth that the elements of weight n and depth p − 1 are
linearly independent, since MD

n,p is invertible, this means both that the ζ♯,m(2a0 + 1, 2a1 +

3, · · · , 2ap−1 + 3, 2ap + 2) of weight n are linearly independent and that ∂<n,p is bijective,
as announced before.
The last step is just to realize that the bijectivity of ∂<n,l also implies that elements of
different depths are also linearly independent. The proof could be done by contradiction:
by applying ∂<n,p on a linear combination where p is the maximal depth appearing, we
arrive at an equality between same level elements.
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4.4 Hoffman ⋆

Theorem 4.4.1. If the analytic conjecture (4.4.4) holds, then the motivic Hoffman ⋆ family
{ζ⋆,m({2, 3}×)} is a basis of H1, the space of MMZV.

For that purpose, we define an increasing filtration FL
• on H2,3, called level, such that:

FL
l H2,3 is spanned by ζ⋆,m(2a0 , 3, · · · , 3,2ap), with less than ’l’ 3. (4.19)

It corresponds to the motivic depth for this family, as we see through the proof below and
the coaction calculus.

Sketch. The vector space FL
l H2,3 is stable under the action of G (4.21). The linear in-

dependence of the Hoffman ⋆ family is proved below (§4.4.2) thanks to a recursion on the
level and on the weight, using the injectivity of a map ∂L where ∂L came out of the level
and weight-graded part of the coaction ∆ (cf. 4.4.2). The injectivity is proved via 2-adic
properties of some coefficients conjectured in 4.4.4.
Indeed, when computing the level graded coaction (cf. Lemma 4.4.2) on the Hoffman ⋆
elements, looking at the left side, some elements appear, such as ζ⋆⋆,m(2a, 3,2b) but also
ζ⋆⋆,m(2a, 3,2b). These are not always of depth 1 as we could expect,I but at least are
abelians: product of motivic simple zeta values, as proved in Lemma 4.4.3.
To prove the linear independence of Hoffman ⋆ elements, we will then need to know some
coefficients appearing in Lemma 4.4.3 (or at least the 2-adic valuation) of ζ(weight) for each
of these terms, conjectured in 4.4.4, which is the only missing part of the proof, and can be
solved at the analytic level.

4.4.1 Level graded coaction

Let use the following form for a MMZV⋆, gathering the 2:

ζ⋆,m(2a0 , c1, · · · , cp,2ap), ci ∈ N∗, ci 6= 2.

This writing is suitable for the Galois action (and coaction) calculus, since by the antipode
relations (§4.2), much of the cuts from a 2 to a 2 get simplified (cf. Annexe §A.1).
For the Hoffman family, with only 2 and 3, the expression obtained is:II

D2r+1ζ
⋆,m(2a0 , 3, · · · , 3,2ap)

= δ2r+1

∑

i<j




+ ζ⋆⋆,l1 (2ai+1 , 3, · · · , 3,2≤aj ) ⊗ ζ⋆,m(· · · , 3,21+ai+≤aj , 3, · · · )
− ζ⋆⋆,l1 (2≤ai , 3, · · · , 3,2aj−1 ) ⊗ ζ⋆,m(· · · , 3,21+aj+≤ai , 3, · · · )
+
(
ζ⋆⋆,l2 (2ai+1 , 3, · · · ,2aj , 3) + ζ⋆⋆,l1 (2<ai , 3, · · · ,2aj , 3)

)
⊗ ζ⋆,m(· · · , 3,2<ai , 3,2aj+1 , 3, · · · )

−
(
ζ⋆⋆,l2 (2aj+1 , 3, · · · , 3) + ζ⋆⋆,l1 (2<aj , 3, · · · , 3)

)
⊗ ζ⋆,m(· · · , 3,2ai−1 , 3,2<aj , 3, · · · )




+ δ2r+1

(
ζ⋆,l(2a0 , 3, · · · , 3,2≤ai)− ζ⋆⋆,l(2≤ai , 3, · · · , 3,2a0)

)
⊗ ζ⋆,m(2≤ai , 3, · · · )

+ δ2r+1 ζ⋆⋆,l(2≤aj , 3, · · · , 3,2ap) ⊗ ζ⋆,m(· · · , 3,2≤aj ).

(4.20)

In particular, the coaction on the Hoffman ⋆ elements is stable.
By the previous expression (4.20), we see that each cut (of odd length) removes at least one
3. It means that the level filtration is stable under the action of G and:

D2r+1(FL
l H2,3) ⊂ L2r+1 ⊗FL

l−1H2,3
n−2r−1. (4.21)

IAs for the Hoffman non ⋆ case done by Francis Brown, using a result of Don Zagier for level 1.
IICf. Lemma A.1.2; where δ2r+1 means here that the left side has to be of weigh 2r + 1.
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Then, let consider the level graded derivation:

grLl D2r+1 : grLl H2,3
n → L2r+1 ⊗ grLl−1H2,3

n−2r−1. (4.22)

If we restrict ourselves to the cuts in the coaction that remove exactly one 3 in the right
side, the formula (4.20) leads to:

grLl D2r+1ζ
⋆,m(2a0 , 3, · · · , 3,2ap) =

−δa0<r≤a0+a1+2 ζ⋆⋆,l2 (2a0 , 3,2r−a0−2) ⊗ ζ⋆,m(2a0+a1+1−r, 3, · · · )

∑

i<j




δr≤ai ζ⋆⋆,l1 (2r) ⊗
(
ζ⋆,m(· · · , 3,2ai−1+ai−r+1, 3, · · · )− ζ⋆,m(· · · , 3,2ai+1+ai−r+1, 3, · · · )

)

+
(
δr=ai+2ζ

⋆⋆,l
2 (2ai , 3) + δr<ai+ai−1+3ζ

⋆⋆,l
1 (2r−ai−3, 3,2ai , 3)

)
⊗ ζ⋆,m(· · · , 3,2ai+ai−1−r+1, 3,2ai+1 , 3, · · · )

−
(
δr=ai+2ζ

⋆⋆,l
2 (2ai , 3) + δr<ai+ai+1+3ζ

⋆⋆,l
1 (2r−ai−3, 3,2ai , 3)

)
⊗ ζ⋆,m(· · · , 3,2ai−1 , 3,2ai+ai+1−r+1, 3, · · · )




(D) +δap+1≤r≤ap+ap−1+1 ζ⋆⋆,l(2r−ap−1, 3,2ap) ⊗ ζ⋆,m(· · · , 3,2ap+ap−1−r+1). (4.23)

By the antipode � relation (cf. 4.7):

ζ⋆⋆,l1 (2a, 3,2b, 3) = ζ⋆⋆,l2 (2b, 3,2a+1) = ζ⋆⋆,l(2b+1, 3,2a+1)− ζ⋆,l(2b+1, 3,2a+1).

Then, by Lemma 4.4.3, all the terms appearing in the left side of grLl D2r+1 are product of
simple MZV, which turns into, in the coalgebra L a rational multiple of ζl(2r + 1):

grLl D2r+1(gr
L
l H2,3

n ) ⊂ Qζl(2r + 1)⊗ grLl−1H2,3
n−2r−1.

Sending ζl(2r + 1) to 1 with the projection π : Qζl(2r + 1)→ Q, we can then consider:

· ∂L
r,l : grLl H2,3

n → grLl−1H2,3
n−2r−1, defined as the composition

∂L
r,l := grLl ∂2r+1 := m◦(π⊗id)(grLl Dr) : grLl H2,3

n → Q⊗Qgr
L
l−1H2,3

n−2r−1 → grLl−1H2,3
n−2r−1.

· ∂L
<n,l

:= ⊕2r+1<n∂
L
r,l.

The injectivity of this map is the keystone of the Hoffman⋆ proof. Its explicit expression is:

Lemma 4.4.2. ∂L
r,l(ζ

⋆,m(2a0 , 3, · · · , 3,2ap)) =

−δa0<r≤a0+a1+2B̃
a0+1,r−a0−2 ζ⋆,m(2a0+a1+1−r, 3, · · · )

+
∑

i<j (δr≤aiCr ( ζ⋆,m(· · · , 3,2ai−1+ai−r+1, 3, · · · )− ζ⋆,m(· · · , 3,2ai+1+ai−r+1, 3, · · · )
)

+δai+2≤r≤ai+ai−1+2B̃
ai+1,r−ai−2 ζ⋆,m(· · · , 3,2ai+ai−1−r+1, 3,2ai+1 , 3, · · · )

−δai+2≤r≤ai+ai+1+2B̃
ai+1,r−ai−2 ζ⋆,m(· · · , 3,2ai−1 , 3,2ai+ai+1−r+1, 3, · · · )

)

(D)+ δap+1≤r≤ap+ap−1+1B
r−ap−1,ap ζ⋆,m(· · · , 3,2ap+ap−1−r+1),

with B̃a,b := Ba,bCa+b+1 −Aa,b.

Proof. Using Lemma 4.4.3 for the left side of grLp D2r+1, and keeping just the coefficients of
ζ2r+1, we obtain easily this formula. In particular:

ζ⋆⋆,l2 (2a, 3,2b) = ζ⋆⋆,l(2a+1, 3,2b)− ζ⋆,l(2a+1, 3,2b) = B̃a+1,bζl(2a+ 2b+ 5).

ζ⋆⋆,l1 (2a, 3,2b, 3) = ζ⋆⋆,l2 (2b, 3,2a+1) = B̃b+1,a+1ζl(2a+ 2b+ 7).
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4.4.2 Proof of Theorem 4.4.1

Since the cardinal of the Hoffman ⋆ family in weight n is equal to the dimension of H1
n, I

it remains to prove that the Hoffman ⋆ elements are linearly independent. We will use a
recursion on the level and the map defined above, ∂L

<n,l.

Let prove the following statement:

∂L
<n,l : gr

L
l H2,3

n → ⊕2r+1<ngr
L
l−1H2,3

n−2r−1 is bijective. (4.24)

Using the Conjecture (assumed for this theorem) 4.4.4, regarding the 2-adic valuation of
these coefficients, with r = a+ b+ 1:II





Cr = 22r+1

2r+1 ⇒ v2(Cr) = 2r + 1.

B̃a,b := Ba,bCr −Aa,b = 22r+1

(
1

2r+1 −
(2r2a)
22r−1

)
⇒ v2(B̃

a,b) ≥ 2r + 1.

Ba,bCr = Cr − 2
(

2r
2b+1

)
⇒ v2(B

0,r−1Cr) = 2 + v2(r) ≤ v2(B
a,bCr) < 2r + 1.

(4.25)
The deconcatenation terms in ∂L

<n,l, which correspond to the terms with Ba,bCr are then
the smallest 2-adically, which is crucial for the injectivity.

Now, define a matrix Mn,l as the matrix of ∂L
<n,l on ζ⋆,m(2a0 , 3, · · · , 3,2al) in terms of

ζ⋆,m(2b0 , 3, · · · , 3,2bl−1); even if up to now, we do not know that these families are linearly
independent. We order the elements on both sides by lexicographical order on (al, . . . , a0),
resp. (r, bl−1, . . . , b0), such that the diagonal corresponds to r = al and bi = ai for i < l and
claim:

The matrix Mn,l of ∂L
<n,l on the Hoffman ⋆ elements is invertible.

Proof. Indeed, let M̃n,l be the matrix Mn,l where we have multiplied each line corresponding
to D2r+1 by (2−v2(r)−2). Then modulo 2, because of the previous computations on the 2-
adic valuations of the coefficients, only the deconcatenations terms remains. Hence, with
the previous order, the matrix is, modulo 2, triangular with 1 on the diagonal; the diagonal
being the case where B0,r−1Cr appears. This implies that det(M̃n,l) ≡ 1 (mod 2), and in
particular is non zero. Consequently, the matrix M̃n,l is invertible and so does Mn,l.

The Hoffman ⋆ elements are linearly independent.

Proof. Let first prove it for the Hoffman ⋆ elements of a same level and weight.
Level 0 is obvious: ζ⋆,m(2)n is a rational multiple of (πm)2n.
Assuming by recursion on the level that the Hoffman ⋆ elements of weight n and level l−1 are
linearly independent, since Mn,l is invertible, this means both that the Hoffman ⋆ elements
of weight n and level l are linearly independent and that ∂L

<n,l is bijective, as announced in
(4.24).
The last step is to realize that the bijectivity of ∂L

<n,l also implies that Hoffman ⋆ elements
of different levels are linearly independent. Indeed, proof can be done by contradiction:
applying ∂L

<n,l to a linear combination of Hoffman ⋆ elements, l being the maximal number
of 3, we arrive at an equality between same level elements, and at a contradiction.

IObviously same recursive relation: dn = dn−2 + dn−3
IIThe last inequality comes from the fact that v2(

( 2r
2b+1

)
) < 2r.
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4.4.3 Analytic conjecture

Here are the equalities needed for Theorem 4.4.1, known up to some rational coefficients:

Lemma 4.4.3. With w, resp. d and ht denoting the weight, resp. the depth and the height.
Let’s recall first:

ζm(r) = (21−r − 1) ζm(r).

ζm(2n) = |Bn|23n−13n

(2n)! ζm(2)n.
(4.26)

(i) ζ⋆,m(2n) = −2ζm(2n) = (22n−2)6n

(2n)! |B2n|ζm(2)n.

(ii) ζ⋆,m1 (2n) = −2∑n
r=1 ζ

m(2r + 1)ζ⋆,m(2n−r).

(iii)

ζ⋆⋆,m(2n) =
∑

d≤n

∑

w(m)=2n
ht(m)=d(m)=d

22n−2dζm(m) (4.27)

=
∑

2n=
∑

sk(2ik+1)+2S

ik 6=ij

(
p∏

k=1

Csk
ik

sk!
ζm(2ik + 1)sk

)
DSζ

m(2)S .

ζ⋆⋆,m1 (2n) = −
∑

d≤n

∑

w(m)=2n+1
ht(m)=d(m)=d

22n+1−2dζm(m) (4.28)

=
∑

2n+1=
∑

sk(2ik+1)+2S

ik 6=ij

(
p∏

k=1

Csk
ik

sk!
ζm(2ik + 1)sk

)
DSζ

m(2)S

(iv) ζ⋆,m(2a, 3,2b) =
∑

Aa,b
r ζm(2r + 1)ζ⋆,m(2n−r).

(v)

ζ⋆⋆,m(2a, 3,2b) =
∑

w=
∑

sk(2ik+1)+2S
ik 6=ij

Ba,b
i1,··· ,ip
s1···sp

(
p∏

k=1

Csk
ik

sk!
ζm(2ik + 1)sk

)
DSζ

m(2)S .

(4.29)

ζ⋆⋆,m1 (2a, 3,2b) = Da,bζm(2)
w
2 +

∑

w=
∑

sk(2ik+1)+2S

ik 6=ij

Ba,b
i1,··· ,ip
s1···sp

(
p∏

k=1

Csk
ik

sk!
ζm(2ik + 1)sk

)
DSζ

m(2)S .

(4.30)

Where:

· Cr = 22r+1

2r+1 , DS explicitI and with the following constraint:

Aa,b
r = Aa,r−a−1

r + Cr

(
Br−b−1,b −Br−a−1,a + δr≤b − δr≤a

)
. (4.31)

· The recursive formula for B-coefficients, where Bx,y := Bx,y
x+y+1

1

and r < a+ b+ 1:

Ba,b
r
1

= δr≤b − δr<a +Br−b−1,b + Da−r−1,b

a+b−r+1 + δr=a
2(22b+1−1)6b+1|B2b+2|

(2b+2)!Db+1
.

Ba,b
i1,··· ,ip
s1···sp

=





δi1≤b − δi1<a +Bi1−b−1,b +Ba−i1−1,b
i1,...,ip

s1−1,...,sp

for
∑

sk odd

δi1≤b − δi1≤a +Bi1−b−1,b +Ba−i1,b
i1,...,ip

s1−1,...,sp

else .

(4.32)

ICf. Proof.
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Before giving the proof, here is the (analytic) conjecture remaining on some of these coeffi-
cients, sufficient to complete the Hoffman ⋆ basis proof (cf. Theorem 4.4.1):

Conjecture 4.4.4. The equalities (v) are satisfied for real MZV, with:

Ba,b = 1− 2

Ca+b+1

(
2a+ 2b+ 2

2b+ 1

)
.

Remarks:

· This conjecture is of an entirely different nature from the techniques developed in
this thesis. We can expect that it can proved using analytic methods as the usual
techniques of identifying hypergeometric series, as in [82], or [63].

· The equality (iv) is already proven in the analytic case by Ohno-Zagier (cf.[56], [82]),
with the values of the coefficient Aa,b

r given below. Nevertheless, as we will see through
the proofs below, to explicit the coefficients for the (stronger) motivic identity (iv), we
need to prove the other identities in (v).

· We will use below a result of Ohno and Zagier on sums of MZV of fixed weight, depth
and height to conclude for the coefficients for (iii).

Theorem 4.4.5. If the analytic conjecture (4.4.4) holds, the equalities (iv), (v) are true in
the motivic case, with the same values of the coefficients. In particular:

Aa,b
r = 2

(
−δr=a +

(
2r

2a

))
22r

22r − 1
− 2

(
2r

2b+ 1

)
.

Proof. Remind that if we know a motivic equality up to one unknown coefficient (of ζ(weight)),
the analytic result analogue enables us to conclude on its value by Corollary 2.4.5.
Let assume now, in a recursion on n, that we know {Ba,b, Da,b, Ba,b

i1···ip
s1···sp

}a+b+1<n and con-

sider (a, b) such that a + b + 1 = n. Then, by (4.32), we are able to compute the Ba,b
i

s

with (s, i) 6= (1, n). Using the analytic (v) equality, and Corollary 2.4.5, we deduce the only
remaining unknown coefficient Ba,b resp. Da,b in (v).
Lastly, by recursion on n we deduce the Aa,b

r coefficients: let assume they are known for
a+ b+1 < n, and take (a, b) with a+ b+1 = n. By the constraint (4.31), since we already
know B and C coefficients, we deduce Aa,b

r for r < n. The remaining coefficient, Aa,b
n , is

obtained using the analytic (iv) equality and Corollary 2.4.5.

Proof of Lemma 4.4.3. :

Proof. Computing the coaction on these elements, by a recursive procedure, we are able to
prove these identities up to some rational coefficients, with the Corollary 2.4.5. When the
analytic analogue of the equality is known (such as (i), (ii), (iii)) for MZV, we may conclude
on the value of the remaining rational coefficient of ζm(ω) by identification.
However, if the family is not stable under the coaction (as for (iv)), knowing the analytic
case (by Ohno-Zagier) will not be enough.
The following proof refers to the formulation of D2r+1 of Lemma A.1.1: cuts of length 2r+1
among the sequence of 0, 1, or ⋆ corresponding to the iterated integral writing; there are
different kind of cuts (according their extremities), and a cut may bring out two terms (T0,0

and T0,⋆ etc.), as in the Lemma A.1.1.
The simplifications are illustrated by the diagrams, where some arrows (term of a cut) of
the same color get simplified together, by rules specified in Annexe §A.1.
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(i) The corresponding iterated integral:

Im(0; 1, 0, ⋆, 0 · · · , ⋆, 0; 1).

The only possible cuts of odd length are between two ⋆ (T0,⋆ and T⋆,0) or T1,0 from
the first 1 to a ⋆, or T0,1 from a ⋆ to the last 1. By Shift (A.2), these cuts get
simplified two by two. Since D2r+1(·), for 2r + 1 < 2n are all zero, it belongs to
Qζm(2n) (Corollary 2.4.5).
Using the (known) analytic equality, we conclude about the value of the coefficient.

(ii) It is very similar to the previous case: using Shift (A.2), it remains only the cut:

0; 0 1 0 ⋆ 0 · · · ⋆ 0 · · · ⋆ 0 ; 1 .

T0,1

D2r+1(ζ
⋆,m
1 (2n)) = ζl,⋆1 (2r)⊗ ζ⋆,m(2n−r) = −2ζl(2r + 1)⊗ ζ⋆,m(2n−r).

The last equality being deduced from the recursive hypothesis (smaller weight). The
analytic equality (coming from the Zagier-Ohno formula, and the� regulation) enables
us to conclude on the value of the remaining coefficient of ζm(2n+ 1).

(iii) By � regularisation, we can express each Euler sum ⋆⋆ as a linear combination of
Euler sums. For both Euler sums considered in (iii), it is:

ζ⋆⋆,m(2n) =
∑

ki even

ζm2n−
∑

ki
(k1, · · · , kp) =

∑

ni≥2



∑

ki even

ki≤ni

(
n1 − 1

k1 − 1

)
· · ·
(
nd − 1

kd − 1

)

 ζm(n1, · · · , nd).

Using the multi-binomial formula:

2
∑

mi =
∑

li≤mi

(
m1

l1

)
(1− (−1))l1 · · ·

(
md

ld

)
(1− (−1))ld = 2d

∑

li≤mi
li odd

(
m1

l1

)
· · ·
(
md

ld

)
.

Thus:
ζ⋆⋆,m(2n) =

∑

d≤n

∑

w(m)=2n
ht(m)=d(m)=d

22n−2dζm(m).

Similarly for (4.27), since:

ζ⋆⋆,m1 (2n) =
∑

ki even

ζm2n+1−
∑

ki
(k1, · · · , kp) =

∑

d≤n

∑

w(m)=2n
ht(m)=d(m)=d

22n−2dζm(m).

Now, using still only Shift (A.2), it remains the following cuts:

(4.26) 0; ⋆ 0 · · · ⋆ 0 · · · ⋆ 0 ; 1 .

T0,⋆

.

(4.27) 0; 0 ⋆ 0 · · · ⋆ 0 ⋆ 0 · · · ⋆ 0 ; 1 .

T0,1
T0,⋆

With a recursion on n for both (4.26), (4.27), we deduce:

D2r+1(ζ
⋆⋆,m(2n)) = ζ⋆⋆,m1 (2r)⊗ ζ⋆⋆,l1 (2n−r) = Crζ

l(2r + 1)⊗ ζ⋆⋆,m1 (2n−r−1).

D2r+1(ζ
⋆⋆,m
1 (2n)) = ζ⋆⋆,l1 (2r)⊗ ζ⋆⋆,m(2n−r) = Crζ

l(2r + 1)⊗ ζ⋆⋆,m(2n−r).
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To find the remaining coefficients, we need the analytic result corresponding, which is
a consequence of the sum relation for MZV of fixed weight, depth and height, by Ohno
and Zagier ([68], Theorem 1), via the hypergeometric functions.

Using [68], the generating series of these sums is, with α, β =
x+y±

√
(x+y)2−4z

2 :

φ0(x, y, z) : =
∑

s≤d
w≥d+s

(
∑

ζ(k)) xw−d−syd−szs−1

= 1
xy−z

(
1− exp

(∑∞
m=2

ζ(m)
m (xm + ym − αm − βm)

))
.

From this, let express the generating series of both ζ⋆⋆(2n) and ζ⋆⋆1 (2n):

φ(x) :=
∑

w




∑

ht(k)=d(k)=d
w≥2d

2w−2dζ(k)


 xw−2 = φ0(2x, 0, x

2).

Using the result of Ohno and Don Zagier:

φ(x) =
1

x2

(
exp

( ∞∑

m=2

2m − 2

m
ζ(m)xm

)
− 1

)
.

Consequently, both ζ⋆⋆(2n) and ζ⋆⋆1 (2n) can be written explicitly as polynomials in
simple zetas. For ζ⋆⋆(2n), by taking the coefficient of x2n−2 in φ(x):

ζ⋆⋆(2n) =
∑

∑
misi=2n
mi 6=mj

k∏

i=1

(
1

si!

(
ζ(mi)

2mi − 2

mi

)si)
.

Gathering the zetas at even arguments, it turns into:

ζ⋆⋆(2n) =
∑

∑
(2ik+1)sk+2S=2n

ik 6=ij

p∏

i=1

(
1

sk!

(
ζ(2ik + 1)

22ik+1 − 2

2ik + 1

)sk)
dSζ(2)

S ,

where dS := 3S · 23S
∑

∑
misi=S

mi 6=mj

k∏

i=1

(
1

si!

( | B2mi | (22mi−1 − 1)

2mi(2mi)!

)si)
. (4.33)

It remains to turn ζ(odd) into ζ(odd) by 4.26 to fit the expression of the Lemma:

ζ⋆⋆(2n) =
∑

∑
(2ik+1)sk+2S=2n

ik 6=ij

p∏

i=1

(
1

sk!

(
cikζ(2ik + 1)

)sk
)
dSζ(2)

S , where cr =
22r+1

2r + 1
.

It is completely similar for ζ⋆⋆1 (2n): by taking the coefficient of x2n−3 in φ(x), we
obtained the analytic analogue of (4.25), with the same coefficients dS and cr.
Now, using these analytic results for (4.26), (4.27), by recursion on the weight, we can
identify the coefficient DS and Cr with resp. dS and cr, since there is one unknown
coefficient at each step of the recursion.

(iv) After some simplifications by Antipodes rules (§A.1), only the following cuts remain:

0; 1 0 (⋆ 0)
a−1

⋆ 0 0 (⋆ 0)
b ; 1 .

T0,1

T1,0

T1,0

T0,1

T0,1

T0,1

T⋆,0

T0,⋆
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This leads to the formula:

D2r+1(ζ
⋆,m(2a, 3,2b)) =

(
ζ⋆,m(2a, 3,2r−a−1)+

(δr≤b − δr≤a) ζ
⋆⋆,m
1 (2r) + ζ⋆⋆,m(2r−b−1, 3,2b)− ζ⋆⋆,m(2r−a−1, 3,2a)

)
⊗ ζ⋆,m(2n−r).

In particular, the Hoffman ⋆ family is not stable under the coaction, so we need first
to prove (v), and then:

D2r+1(ζ
⋆,m(2a, 3,2b)) =

(
Aa,r−a−1

r + Cr

(
Br−b−1,b −Br−a−1,a + δr≤b − δr≤a

))
ζl(2r + 1)⊗ζ⋆,m(2n−r).

It leads to the constraint (4.31) given above for A coefficients. To specify the values of
A coefficients, we would need not only the analytic Ohno Zagier formula (known) but
also the analogue of (v) formulas for the analytic case; as stated in Conjecture 4.4.4.

(v) By Annexe rules, the following cuts get simplified (colors by colors), above with below-I

0; ⋆ 0 (⋆ 0)a−1 ⋆ 0 0 (⋆ 0)b ; 1 .

T0,⋆

T0,1

T⋆,0

T0,⋆

T0,⋆

T⋆,0

T⋆,0

T⋆,0

T⋆,0

T0,0

T0,0

Indeed, cyan arrows get simplified by Antipode �, T0,0 resp. T0,⋆ above with T0,0

resp. T⋆,0 below; magenta ones by Shift (A.2), term above with the term below
shifted by two on the left. It remains the following cuts for (4.28):

(4.28) 0; ⋆ 0 (⋆ 0)
a−1

⋆ 0 0 (⋆ 0)
b ; 1 .

T0,1

T0,1

T0,0 T⋆,0

T0,1

T0,1

T0,1

T⋆,0

T0,⋆

In a very similar way, the simplifications lead to the following remaining terms:

(4.29) 0; 0 ⋆ 0 (⋆ 0)
a−1

⋆ 0 0 (⋆ 0)
b ; 1 .

T0,1

T0,1
T0,⋆

T0,⋆

T0,1

T0,1

T0,1

T⋆,0

T⋆,0, T0,0

T0,⋆

Then, the derivations reduce to:

D2r+1(ζ
⋆⋆,m(2a, 3,2b)) =

(
(δr≤b − δr≤a) ζ

⋆⋆,l
1 (2r) + δr>bζ

⋆⋆,m−l(2r−b−1, 3,2b)
)
⊗ζ⋆⋆,m(2n−r)+

+δr≤a−1ζ
⋆⋆,l
1 (2r)⊗ ζ⋆⋆,m1 (2a−r−1, 3,2b) + δr=aζ

⋆⋆,l
1 (2a)⊗ ζ⋆⋆,m2 (2b).

IThe vertical arrows indicates a cut from the ⋆ to a ⋆ of the same group.
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D2r+1(ζ
⋆⋆,m
1 (2a, 3,2b)) =

(
(δr≤b − δr≤a) ζ

⋆⋆,l
1 (2r) + ζ⋆⋆,l(2r−b−1, 3,2b)

)
⊗ζ⋆⋆,m1 (2n−r)+

+ζ⋆⋆,l1 (2r)⊗ ζ⋆⋆,m(2a−r, 3,2b).

With a recursion on w for both:

D2r+1(ζ
⋆⋆,m(2a, 3,2b)) = Crζ

l(2r + 1)⊗((
δr≤b − δr<a +Br−b−1,b

r

)
ζ⋆⋆,m(2n−r) + ζ⋆⋆,m1 (2a−r−1,3,2b) + δr=aζ

⋆,m(2b+1)
)
.

D2r+1(ζ
⋆⋆,m
1 (2a, 3,2b)) = Crζ

l(2r + 1)⊗
((
δr≤b − δr≤a +Br−b−1,b

r

)
ζ⋆⋆,m1 (2n−r) + ζ⋆⋆,m(2a−r, 3,2b)

)
.

This leads to the recursive formula (4.32) for B.

4.5 Motivic generalized Linebarger Zhao Conjecture

We conjecture the following motivic identities, which express each motivic MZV ⋆ as a
motivic Euler ♯ sum:

Conjecture 4.5.1. For ai, ci ∈ N∗, ci 6= 2,

ζ⋆,m (2a0 , c1, · · · , cp,2ap) = (−1)1+δc1 ζ♯,m
(
B0,1

c1−3, · · · ,1ci−3, Bi, . . . , Bp

)
,

where





B0 := ±(2a0 + 1− δc1)
Bi := ±(2ai + 3− δci − δci+1)
Bp := ±(2ap + 2− δcp)

, with ± :=

{
− if | Bi | even
+ if | Bi | odd

, and
δc := δc=1,
the Kronecker symbol.

and 1n := 1min(0,n) is a sequence of n 1 if n ∈ N, an empty sequence else.

Remarks:

· Motivic Euler ♯ sums appearing on the right side have already been proven to be
unramified in §4.3, i.e. MMZV.

· This conjecture implies that the motivic Hoffman ⋆ family is a basis, since it corre-
sponds here to the motivic Euler ♯ sum family proved to be a basis in Theorem 4.3.2:
cf. (4.37).

· The number of sequences of consecutive 1 in ζ⋆, n1 is linked with the number of even
in ζ♯, ne, here by the following formula:

ne = 1+ 2n1 − 2δcp − δc1 .

In particular, when there is no 1 in the MMZV ⋆, there is only one even (at the end)
in the Euler sum ♯. There are always at least one even in the Euler sums.

Special cases of this conjecture, which are already proven for real Euler sums (references
indicated in the braket), but remain conjectures in the motivic case:

Two-One [Ohno Zudilin, [69].]

ζ⋆,m(2a0 , 1, · · · , 1,2ap) = −ζ♯,m
(
2a0, 2a1 + 1, . . . , 2ap−1 + 1, 2ap + 1

)
. (4.34)

Three-One [Broadhurst et alii, [9].] I

ζ⋆,m(2a0 , 1,2a1 , 3 · · · , 1,2ap−1 , 3,2ap) = −ζ♯,m
(
2a0, 2a1 + 2, . . . , 2ap−1 + 2, 2ap + 2

)
.

(4.35)

IThe Three-One formula was conjectured for real Euler sums by Zagier, proved by Broadhurst et alii in [9].
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Linebarger-Zhao⋆ [Linebarger Zhao, [65]] With ci ≥ 3:

ζ⋆,m (2a0 , c1, · · · , cp,2ap) = −ζ♯,m
(
2a0 + 1,1c1−3, · · · ,1ci−3, 2ai + 3, . . . , 2ap + 2

)

(4.36)
In particular, when all ci = 3:

ζ⋆,m (2a0 , 3, · · · , 3,2ap) = −ζ♯,m
(
2a0 + 1, 2a1 + 3, . . . , 2ap−1 + 3, 2ap + 2

)
. (4.37)

Examples: Particular identities implied by the previous conjecture, sometimes known for
MZV and which could then be proven for motivic Euler sums directly with the coaction:

· ζ⋆,m(1, {2}n) = 2ζm(2n+ 1).

· ζ⋆,m(1, {2}a , 1, {2}b) = ζ♯m(2a+ 1, 2b+ 1) = 4ζm(2a+ 1, 2b+ 1) + 2ζm(2a+ 2b+ 2).

· ζm(n) = −ζ♯,m({1}n−2,−2) = −∑ w(k)=n
kadmissible

2pζm(k1, . . . , kp−1,−kp).

· ζ⋆,m({2}n) =∑ k∈{ even }×

w(k)=2n

ζm(k) = −2ζm(−2n).

We paved the way for the proof of Conjecture 4.5.1, bringing it back to an identity in L:

Theorem 4.5.2. Let assume:

(i) The analytic version of 4.5.1 is true.

(ii) In the coalgebra L, i.e. modulo products, for odd weights:

ζ♯,lB0−1(1
γ1 , · · · ,1γp , Bp) ≡ ζ⋆⋆,l2 (2a0−1, c1, · · · ,2ap)− ζ⋆⋆,l1 (2a0 , c1−1, . . . ,2ap), (4.38)

with c1 ≥ 3, a0 > 0, γi = ci − 3 + 2δci and





B0 = 2a0 + 1− δc1
Bi = 2ai + 3− δci − δci+1

Bp = 2ap + 3− δcp

.

Then:

I. Conjecture 4.5.1 is true, for motivic Euler sums.

II. In the coalgebra L, for odd weights, with c1 ≥ 3 and the previous notations:

ζ♯,l(1γ1 , · · · ,1γp , Bp) ≡ −ζ⋆,l1 (c1 − 1,2a1 , c2, · · · , cp,2ap). (4.39)

ADDENDUM: The hypothesis (i) is proved: J. Zhao deduced it from its Theorem 1.4 in [86].

Remark: The (ii) hypothesis should be proven either directly via the various relations
in L proven in §4.2 (as for 4.39), or using the coaction, which would require the analytic
identity corresponding. Beware, (ii) would only be true in L2, not in H2.

Proof. To prove this equality 1. at a motivic level by recursion, we would need to proof
that the coaction is equal on both side, and use the conjecture analytic version of the same
equality. We prove I and II successively, in a same recursion on the weight:

I. Using the formulas of the coactions Dr for these families (Lemma A.1.2 and A.1.4), we
can gather terms in both sides according to the right side, which leads to three types:

(a) ζ⋆,m(· · · ,2ai , α,2β , cj+1, · · · ) ←→ ζ♯,m(B0 · · · , Bi, 1
γ , B, 1γj+1 , . . . , Bp)

(b) ζ⋆,m(· · · ,2ai−1 , ci,2
β , cj+1, · · · ) ←→ ζ♯,m(B0 · · · , Bi−1, 1

γi , B, 1γj+1 , . . . , Bp)
(c) ζ⋆,m(· · · , ci,2β , α,2aj , · · · ) ←→ ζ♯,m(B0 · · · , 1γi+1, B, 1γ , Bj+1, . . . , Bp)

,

with γ = α− 3 and B = 2β + 3− δcj+1 , or B = 2β + 3− δci − δcj+1 for (b).
The third case, antisymmetric of the first case, may be omitted below. By recur-
sive hypothesis, these right sides are equal and it remains to compare the left sides
associated:
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(a) On the one hand, by lemma A.1.2, the left side corresponding:

δ 3≤α≤ci+1−1

0≤βaj

ζ⋆,lci+1−α − (2aj−β, . . . ,2ai+1).

On the other hand (Lemma A.1.4), the left side is:

−δ 2≤B≤Bj
0≤γ≤γi+1−1

ζ♯,l(Bj −B + 1, 1γj , . . . , 1γi+1−γ−1).

They are both equal, by 4.39, where ci+1 −α+2 corresponds to c1 and is greater
than 3.

(b) By lemma A.1.2, the left side corresponding for ζ⋆:

− δci>3ζ
⋆⋆,l
2 (2ai , . . . ,2aj−β−1) + δcj>3ζ

⋆⋆,l
2 (2aj , . . . ,2ai−β−1)

− δci=1ζ
⋆⋆,l(2aj−β, . . . ,2ai) + δcj+1=1ζ

⋆⋆,l(2ai−β , . . . ,2aj )

+ δ ci+1=1

β>ai

ζ⋆⋆,l1 (2ai+aj−β , . . . ,2ai+1) − δ cj=1

β>aj

ζ⋆⋆,l1 (2ai+aj−β, . . . ,2aj−1 )

− δaj<β≤ai+aj+1ζ
⋆⋆,l
cj−2(2

aj−1 , . . . ,2ai+aj−β+1) + δai<β≤aj+ai+1ζ
⋆⋆,l
ci+1−2(2

ai+1 , . . . ,2ai+aj−β+1).

It should correspond to (using still lemma A.1.4), with Bk = 2ak+3− δck− δck+1
,

γk = ck − 3 + 2δck and B = 2β + 3− δci − δcj+1 :
(
δBi<Bζ

♯♯,l
Bi+Bj−B(1

γj , . . . , 1γi+1)− δBj<Bζ
♯♯,l
Bi+Bj−B(1

γi+1 , . . . , 1γj)

+ζ♯♯,lBi−B(1
γi+1 , . . . , Bj)− ζ♯♯,lBj−B(1

γj , . . . , Bi)
)
.

The first line has even depth, while the second line has odd depth, as noticed in
Lemma A.1.4. Let distinguish three cases, and assume ai < aj :I

(i) When β < ai < aj , we should have:

ζ♯♯,lBi−B(1
γi+1 , . . . , Bj)− ζ♯♯,lBj−B(1

γj , . . . , Bi) equal to: (4.40)

−δci>3 ζ⋆⋆,l2 (2aj−β−1, . . . ,2ai) −δci=1 ζ⋆⋆,l(2aj−β, . . . ,2ai)

+δcj+1>3 ζ⋆⋆,l2 (2ai−β−1, . . . ,2aj ) +δcj+1=1 ζ⋆⋆,l(2ai−β , . . . ,2aj )

· Let first look at the case where ci > 3, cj+1 > 3. Renumbering the indices,
using Shift for odd depth for the second line, it is equivalent to, with
α = β + 1, Bp = 2ap + 3, B0 = 2a0 + 3:

ζ⋆⋆,l2 (2a0−α, c1, · · · , cp,2ap) − ζ⋆⋆,l2 (2a0 , c1, · · · , cp,2ap−α)

≡ ζ♯♯,lB0−B(1
γ1 , · · · , 1γp , Bp) − ζ♯♯,lBp−B(B0, 1

γ1 , · · · , 1γp)

≡ ζ♯♯,lBp−1(B0 −B + 1, 1γ1 , · · · , 1γp) − ζ♯♯,lBp−B(B0, 1
γ1 , · · · , 1γp)

≡ ζ♯,lBp−1(B0 −B + 1, 1γ1 , · · · , 1γp) − ζ♯,lBp−B(B0, 1
γ1 , · · · , 1γp).

This boils down to (4.38) applied to each ζ⋆⋆2 , since by Shift (A.2) the
two terms of the type ζ⋆⋆1 get simplified.

· Let now look at the case where ci = 1, cj+1 > 3 II; hence Bi = 2ai+2−δci+1,
B = 2β + 2. In a first hand, we have to consider:

ζ⋆⋆,l2 (2ai−β−1, ci+1, · · · , cj ,2aj )− ζ⋆⋆,l(2aj−β , cj, · · · , ci+1,2
ai).

IThe case aj < ai is anti-symmetric, hence analogue.
IIThe case cj+1 = 1, ci > 3 being analogue, by symmetry.
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By renumbering indices in 4.40, the correspondence boils down here to the
following ⋄ =✶, where B0 = 2a0 + 3 − δc1 , Bi = 2ai + 3 − δci − δci+1 ,
B = 2β + 2:

(⋄) ζ⋆⋆,l2 (2a0−β , c1, · · · , cp,2ap)− ζ⋆⋆,l(2a0+1, c1, · · · , cp,2ap−β)

(✶) ζ♯♯,lB0−B+1(1
γ1 , . . . , 1γp , Bp)− ζ♯♯,lBp−B(1

γp , . . . , 1γ1 , B0 + 1).

Turning in (⋄) the second term into a ζ⋆,l(2, · · · )+ζ⋆⋆,l2 (· · · ), and applying
the identity (4.38) for both terms ζ⋆⋆,l2 (· · · ) leads to

(⋄)





+ζ⋆⋆,l1 (2a0−β+1, c1 − 1, · · · , cp,2ap) −ζ⋆⋆,l1 (2a0+1, c1 − 1, · · · , cp,2ap−β) (⋄1)

+ζ♯,lB0−B+1(1
γ1 , · · · ,1γp , Bp) −ζ♯,lB0−1(1

γ1 , · · · ,1γp , Bp −B + 2) (⋄2)

−ζ⋆,l(2a0+1, c1, · · · , cp,2ap−β) (⋄3)

The first line, (⋄1) by Shift is zero. We apply Antipode ∗ on the terms
of the second line, then turn each into a difference ζ♯♯n (m, · · · )−ζ♯♯n+m(· · · );
the terms of the type ζ♯♯n+m(· · · ), are identical and get simplified:

(⋄2)

≡ ζ♯♯,lB0−B+1(Bp,1
γp , · · · ,1γ1) −ζ♯♯,lB0−B+1+Bp

(1γp , · · · ,1γ1)

−ζ♯♯,lB0−1(Bp −B + 2,1γp , · · · ,1γ1) +ζ♯♯,lB0−B+1+Bp
(1γp , · · · ,1γ1)

≡ ζ♯♯,lB0−B+1(Bp,1
γp , · · · ,1γ1) −ζ♯♯,lB0−1(Bp −B + 2,1γp , · · · ,1γ1).

Furthermore, applying the recursion hypothesis (I.), i.e. conjecture 4.5.1
on (⋄3), and turn it into a difference of ζ♯♯:

(⋄3)

−ζ⋆,l(2a0+1, c1, · · · , cp,2ap−β)
≡ −ζ♯,l(Bp −B + 1,1γp , · · · ,1γ1 , B0)

≡ −ζ♯♯,l(Bp −B + 1,1γp , · · · ,1γ1 , B0) + ζ♯♯,lBp−B+1(1
γp , · · · ,1γ1 , B0)

When adding (⋄2) and (⋄3) to get (⋄), the two last terms (odd depth)
being simplified by Shift, it remains:

(⋄) ζ♯♯,lB0−B+1(Bp,1
γp , · · · ,1γ1)− ζ♯♯,l(Bp −B + 1,1γp , · · · ,1γ1 , B0).

This, applying Antipode ∗ to the first term, Cut and Shift to the sec-
ond, corresponds to (✶).

(ii) When β > aj > ai, we should have:

−ζ⋆⋆,lcj−2(2
aj−1 , . . . ,2ai+aj−β+1) +ζ⋆⋆,lci+1−2(2

ai+1 , . . . ,2ai+aj−β+1)

≡ +ζ♯♯,lBi+Bj−B(1
γj , . . . , 1γi+1) −ζ♯♯,lBi+Bj−B(1

γi+1 , . . . , 1γj ).

Using Shift (A.2) for the first line, and renumbering the indices, it is equiv-
alent to, with c1, cp ≥ 3 and a0 > 0:

ζ⋆⋆,l1 (2a0 , c1 − 1, · · · , cp)− ζ⋆⋆,l1 (2a0 , c1, · · · , cp − 1) (4.41)

≡ ζ♯♯,lB0+2(1
γ1 , · · · , 1γp)− ζ♯♯,lB0+2(1

γp , · · · , 1γ1) ≡ ζ♯,lB0+2(1
γ1 , . . . , 1γp).

The last equality comes from Corollary 4.2.7, since depth is even. By (4.42)
applied on each term of the first line

ζ⋆⋆,l1 (2a0 , c1 − 1, · · · , cp)− ζ⋆⋆,l1 (2a0 , c1, · · · , cp − 1)

≡ ζ⋆⋆,l2 (2a0−1, c1, · · · , cp)+ζ♯l2a0
(3, 1γp , · · · , 1γ1)−ζ⋆⋆,l2 (cp, · · · , c1,2a0−1)−ζ♯♯,l2 (2a0+1, 1γp , · · · , 1γ1).
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By Antipode�, the ζ⋆⋆ get simplified, and by the definition of ζ♯♯, the previous
equality is equal to:

≡ −ζ♯l2a0+3(1
γp , · · · , 1γ1) + ζ♯♯l2a0

(3, 1γp , · · · , 1γ1) + ζ♯♯l2a0+4(1
γp−1, · · · , 1γ1)

−ζ♯♯l2 (2a0 + 1, 1γp , · · · , 1γ1) + ζ♯♯l2a0+3(1
γr , · · · , 1γ1).

Then, by Shift (A.2), the second and fourth term get simplified while the
third and fifth term get simplified by Cut (A.3). It remains:

−ζ♯,l2a0+3(1
γp , · · · , 1γ1), which leads straight to 4.41.

(iii) When ai < β < aj , we should have:

− ζ⋆⋆,l2 (2ai , . . . ,2aj−β−1) + ζ⋆⋆,lci+1−2(2
ai+1 , . . . ,2ai+aj−β+1)

≡ ζ♯♯,lBi+Bj−B(1
γj , . . . , 1γi+1)− ζ♯♯,lBj−B(1

γj , . . . , Bi).

Using resp. Antipode Shift (A.2) for the first line, and re-ordering the
indices, it is equivalent to, with c1 ≥ 3, B0 = 2a0 + 1− δc1 here:

ζ⋆⋆,l2 (2a0−1, c1, · · · , cp,2ap)− ζ⋆⋆,l1 (2a0 , c1 − 1, · · · , cp,2ap) (4.42)

≡ ζ♯♯,lBp−1(B0, 1
γ1 , · · · , 1γp)−ζ♯♯,lB0+Bp−1(1

γp , · · · , 1γ1) ≡ ζ♯,lB0−1(1
γ1 , · · · , 1γp , Bp).

This matches with the identity 4.38; the last equality coming from Shift since
depth is odd.

(c) Antisymmetric of the first case.

II. Let us denote the sequences X = 2a1 , . . . ,2ap and Y = 1γ1−1, B1, · · · ,1γp .
We want to prove that:

ζ♯,l(1,Y, Bp) ≡ −ζ⋆,l1 (c1 − 1,X) (4.43)

Relations used are mostly these stated in §4.2. Using the definition of ζ⋆⋆:

−ζ⋆,l1 (c1 − 1,X) ≡ −ζ⋆⋆,l1 (c1 − 1,X) + ζ⋆⋆,lc1 (X)
≡ −ζ⋆⋆,l(1, c1 − 1,X) + ζ⋆,l(1, c1 − 1,X) + ζ⋆⋆,l(c1,X)− ζ⋆,l(c1,X)
≡ ζ⋆,l(1, c1 − 1,X)− ζ⋆,l(c1,X)− ζ⋆,l(c1 − 1,X, 1).

(4.44)
There, the first and third term in the second line, after applying Shift, have given the
last ζ⋆ in the last line.
Using then Conjecture 4.5.1, in terms of MMZV♯, then MMZV♯♯, it gives:

ζ♯,l(2,Y, Bp − 1) + ζ♯,l(1, 1,Y, Bp − 1) + ζ♯,l(1,Y, Bp − 1, 1)

≡ ζ♯♯,l(2,Y, Bp − 1)− ζ♯♯,l2 (Y, Bp − 1) + ζ♯♯,l(1, 1,Y, Bp − 1)

− ζ♯♯,l1 (1,Y, Bp − 1) + ζ♯♯,l(1,Y, Bp − 1, 1)− ζ♯♯,l1 (Y, Bp − 1, 1) (4.45)

First term (odd depth)I is simplified with the last, by Schift. Fifth term (even depth)
get simplified by Cut with the fourth term. Hence it remains two terms of even depth:

≡ −ζ♯♯,l2 (Y, Bp − 1) + ζ♯♯,l(1, 1,Y, Bp − 1) ≡ −ζ♯♯,l1 (Y, Bp) + ζ♯♯,lBp−1(1, 1,Y),

where Minus resp. Cut have been applied. This matches with (4.43) since, by Shift :

≡ −ζ♯♯,l1 (Y, Bp) + ζ♯♯,l(1,Y, Bp) ≡ ζ♯,l(1,Y, Bp).

ISince weight is odd, we know also depth parity of these terms.
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The case c1 = 3 slightly differs since (4.44) gives, by recursion hypothesis I.(4.5.1):

−ζ⋆,l1 (2,X) ≡ ζ♯,l(B1 + 1,Y′, Bp − 1) + ζ♯,l(1, B1,Y
′, Bp − 1) + ζ♯,l(B1,Y

′, Bp − 1, 1),

where Y′ = 1γ2 , · · · ,1γp , odd depth. Turning into MES♯♯, and using identities of §4.2
in the same way than above, leads to the result. Indeed, from:

≡ ζ♯♯,l(B1 + 1,Y′, Bp − 1) + ζ♯♯,l(1, B1,Y
′, Bp − 1) + ζ♯♯,l(B1,Y

′, Bp − 1, 1)

−ζ♯♯,lB1+1(Y
′, Bp − 1)− ζ♯♯,l1 (B1,Y

′, Bp − 1)− ζ♯♯,lB1
(Y′, Bp − 1, 1)

First and last terms get simplified via Shift, while third and fifth term get simplified
by Cut; besides, we apply minus for second term, and minus for the fourth term,
which are both of even depth. This leads to 4.39, using again Shift for the first term:

≡ ζ♯♯,lBp−1(1, B1,Y
′)− ζ♯♯,lB1

(Y′, Bp)

≡ ζ♯♯,l(B1,Y
′, Bp)− ζ♯♯,lB1

(Y′, Bp)
≡ ζ♯,l(B1,Y

′, Bp).

4.6 Appendix 1: From the linearized octagon relation

The identities in the coalgebra L obtained from the linearized octagon relation 4.12:

Lemma 4.6.1. In the coalgebra L, ni ∈ Z∗:

(i) ζ⋆⋆,l(n0, · · · , np) = (−1)w+1ζ⋆⋆,l(np, · · · , n0).

(ii) ζl(n0, · · · , np) + (−1)w+pζ⋆⋆l(n0, · · · , np) + (−1)pζ⋆⋆lnp
(np−1, · · · , n1, n0) = 0.

(iii)

ζln0−1(n1, · · · , np)− ζln0
(n1, · · · , np−1, ǫp(| np | +1)) =

(−1)w
[
ζ⋆⋆,ln0−1(n1, · · · , np)− ζ⋆⋆,ln0

(n1, · · · , np−1, ǫp(| np | +1))
]
.

Proof. The sign of ni is denoted ǫi as usual. First, we remark that, with ηi = ±1, ni =
ǫi(ai + 1), and ǫi = ηiηi+1:

Φm(e∞, e−1, e1) =
∑

Im
(
0; (−ω0)

a0(−ω−η1⋆)(−ω0)
a1 · · · (−ω−ηp⋆)(−ω0)

ap ; 1
)
ea0
0 eη1e

a1
0 · · · eηpe

ap

0

=
∑

(−1)n+pζ⋆⋆,mn0−1 (n1, · · · , np−1,−np) e
a0
0 eη1e

a1
0 · · · eηpe

ap

0

Similarly, with µi :=

{
⋆ if ηi = 1
1 if ηi = −1 , applying the homography φτσ to get the second

line:

Φm(e−1, e0, e∞) =
∑

Im
(
0; (ω1 − ω−1)

a0ωµ1(ω1 − ω−1)
a1 · · ·ωµp(ω1 − ω−1)

ap ; 1
)
ea0
0 eη1e

a1
0 · · · eηpe

ap

0

Φl(e−1, e0, e∞) =
∑

(−1)pIm
(
0; 0a0ω−η10

a1 · · ·ω−ηp0
ap ; 1

)
ea0
0 eη1e

a1
0 · · · eηpe

ap

0

=
∑

ζmn0−1 (n1, · · · , np−1,−np) e
a0
0 eη1e

a1
0 · · · eηpe

ap

0

.

Lastly, still using φτσ, with here µi :=

{
⋆ if ηi = 1
1 if ηi = −1 :

Φm(e1, e∞, e0) =
∑

Im
(
0; (ω−1 − ω1)

a0ωµ1(ω−1 − ω1)
a1 · · ·ωµp(ω−1 − ω1)

ap ; 1
)
ea0
0 eη1e

a1
0 · · · eηpe

ap

0

Φl(e1, e∞, e0) =
∑

(−1)w+1Im
(
0; 0a0ωη1⋆0

a1 · · ·ωηp⋆0
ap ; 1

)
ea0
0 eη1e

a1
0 · · · eηpe

ap

0

=
∑

(−1)n+p+1ζ⋆⋆,mn0−1 (n1, · · · , np−1, np) e
a0
0 eη1e

a1
0 · · · eηpe

ap

0

.
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(i) This case is the one used in Theorem 4.2.3. This identity is equivalent to, in terms of
iterated integrals, for X any sequence of {0,±1} or of {0,±⋆}:

{
I l(0; 0k, ⋆,X ; 1) = I l(0;X, ⋆, 0k; 1) if

∏p
i=0 ǫi = 1⇔ η0 = 1

I l(0; 0k,−⋆,X ; 1) = I l(0;−X,−⋆, 0k; 1) if
∏p

i=0 ǫi = −1⇔ η0 = −1

The first case is deduced from 4.12 when looking at the coefficient of a word beginning
and ending by e−1 (or beginning and ending by e1), whereas the second case is obtained
from the coefficient of a word beginning by e−1 and ending by e1, or beginning by e1
and ending by e−1.

(ii) Let split into two cases, according to the sign of
∏

ǫi:

· In 4.12, when looking at the coefficient of a word beginning by e1 and ending by
e0, only these three terms contribute:

Φl(e−1, e0, e∞)e0 − Φl(e∞, e−1, e1)e0 − e1Φ
l(e1, e∞, e0).

Moreover, the coefficient of e−1e
a0
0 eη1 · · · eηpe

ap+1
0 is, using the expressions above

for Φl(·):

(−1)pI l(0;−1,−X ; 1) + (−1)w+1I l(0;−⋆,−X⋆; 1) + (−1)wI l(0;X⋆, 0; 1) = 0,

where
X := ωa0

0 ωη1 · · ·ωηpω
ap

0

X⋆ := ωa0
0 ωη1⋆ · · ·ωηp⋆ω

ap

0
.

In terms of motivic Euler sums, it is, with
∏

ǫi = 1:

ζl(n0, · · · ,−np)+(−1)w+pζ⋆⋆l(n0, · · · ,−np)+(−1)w+pζ⋆⋆ln0−1(n1, · · · , np−1, ǫp(| np | +1)) = 0.

Changing np into −np, and applying Antipode � to the last term, it gives, with
now

∏
ǫi = −1:

ζl(n0, · · · , np) + (−1)w+pζ⋆⋆l(n0, · · · , np) + (−1)pζ⋆⋆lnp
(np−1, · · · , n1, n0) = 0.

· Similarly,for the coefficient of a word beginning by e−1 and ending by e0, only
these three terms contribute:

Φl(e−1, e0, e∞)e0 − Φl(e∞, e−1, e1)e0 + e−1Φ
l(e∞, e−1, e1).

Similarly than above, it leads to the identity, with
∏

ǫi = −1:

ζl(n0, · · · ,−np)+(−1)w+pζ⋆⋆l(n0, · · · ,−np)+(−1)w+pζ⋆⋆ln0−1(n1, · · · , np−1,−ǫp(| np | +1)) = 0.

Changing np into −np, and applying Antipode � to the last term, it gives, with
now

∏
ǫi = 1:

ζl(n0, · · · , np) + (−1)w+p+1ζ⋆⋆l(n0, · · · , np) + (−1)pζ⋆⋆lnp
(np−1, · · · , n1, n0) = 0.

(iii) When looking at the coefficient of a word beginning by e0 and ending by e0 in 4.12,
only these three terms contribute:

−e0Φl(e−1, e0, e∞) + Φl(e−1, e0, e∞)e0 + e0Φ
l(e∞, e−1, e1)− Φl(e∞, e−1, e1)e0.

If we identify the coefficient of the word ea0+1
0 e−η1 · · · e−ηpe

ap+1
0 , it leads straight to

the identity (iii).

Remark: Looking at the coefficient of words beginning by e0 and ending by e1 or e−1 in
4.12 would lead to the same identity than the second case.
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4.7 Appendix 2: Missing coefficients

In Lemma 4.4.3, the coefficients Da,b appearing (in (v)) are (the only one which are) not con-
jectured. These values are not required for the proof of Theorem 4.4.1. However, let present
here a table of values in small weights for them. Let consider, the coefficient corresponding
to ζ⋆(2n) instead of ζ⋆(2)n, which is (by (i) in Lemma 4.4.3), with n = a+ b+ 1:

D̃a,b :=
(2n)!

6n | B2n | (22n − 2)
Da,b and D̃n :=

(2n)!

6n | B2n | (22n − 2)
Dn. (4.46)

We have an expression (4.33) for Dn, albeit not very elegant, which would give:

D̃n =
22n(2n)!

(22n − 2) | B2n |
∑

∑
misi=n

mi 6=mj

k∏

i=1

(
1

si!

( | B2mi | (22mi−1 − 1)

2mi(2mi)!

)si)
. (4.47)

Here is a table of values for D̃n and D̃k,n−k−1 in small weights:

· �n 2 3 4 5

D̃n
19

23−1
275
25−1

11813
3(27−1)

783
7

D̃k,n−1−k
−12
7

−84
31 , 160

31
1064
127 ,

−1680
127 , −9584

381
189624
2555 ,−137104

2555 ,−49488
511 ,−17664

511

· �n 6 7 8 9

D̃n
581444793
691(211−1)

263101079
21(213−1)

6807311830555
3617(215−1)

124889801445461
43867(217−1)

The denominators of D̃n, D̃k,n−1−k can be written as (22n−1 − 1) times the numerator
of the Bernoulli number B2n. No formula has been found yet for their numerators, that
should involve binomial coefficients. These coefficients are related since, by shuffle:

ζ⋆⋆,m2 (2n) +
∑n−1

k=0 ζ
⋆⋆,m
1 (2k, 3,2n−k−1) = 0

Hence : ζ⋆⋆,m(2n+1)− ζ⋆,m(2n+1)
∑n−1

k=0 ζ
⋆⋆,m
1 (2k, 3,2n−k−1) = 0.

Identifying the coefficients of ζ⋆(2n) in formulas (iii), (v) in Lemma 4.4.3 leads to:

1− D̃n =

n−1∑

k=0

D̃k,n−1−k. (4.48)
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Chapter 5

Galois Descents

Contents: The first section gives the general picture (for any N), sketching the Galois de-
scent ideas. The second section focuses on the cases N = 2, 3, 4, ‘6’, 8, defining the filtrations
by the motivic level associated to each descent, and displays both results and proofs. Some
examples in small depth for are given in the Annexe §A.2.

Notations: For a fixed N , let kN := Q(ξN ), where ξN ∈ µN is a primitive N th root of
unity, and ON is the ring of integers of kN . The subscript or exponent N will be omit-
ted when it is not ambiguous. For the general case, the decomposition of N is denoted
N =

∏
qi =

∏
pαi .

5.1 Overview

Change of field. As said in Chapter 3, for each N,N ′ with N ′|N , the Galois action on
HN and HN ′ is determined by the coaction ∆. More precisely, let consider the following
descentI, assuming φN ′ is an isomorphism of graded Hopf comodule: II

HN � � φN

n.c
// HMT ΓN

HN ′

GN/N′

OO

� �

n.c

φ
N′
∼ // HMT Γ

N′

GMT
N/N′

OO

Let choose a basis for gr1LMT N′
r , and extend it into a basis of gr1LMT N

r :
{
ζm(r; η′i,r)

}
i
⊂
{
ζm(r; η′i,r)

}
∪ {ζm(r; ηi)}1≤i≤cr

,

where cr =

{
aN − aN ′ = ϕ(N)−ϕ(N ′)

2 + p(N)− p(N ′) if r = 1

bN − bN ′ = ϕ(N)−ϕ(N ′)
2 if r > 1

.

Then, once this basis fixed, let split the set of derivations DN into two parts (cf. §2.4.4),
one corresponding to HN ′

:

D
N = D

\⌈ ⊎D
⌈ where





D\⌈ = DN ′
:= ∪r

{
D

η′
i,r

r

}
1≤i≤cr

D⌈ := ∪r
{
D

ηi,r
r

}
1≤i≤cr

. (5.1)

IMore generally, there are Galois descents (⌈) = (kN/kN′ ,M/M ′) from HMT
(
OkN

[
1
M

])

, to H
MT

(
OkN′

[
1

M′

])

,

with N ′ | N , M ′ | M , with a set of derivations D
⌈ ⊂ D

N associated.
IIConjecturally as soon as N ′ 6= pr , p ≥ 5. Proven for N ′ = 1, 2, 3, 4, ‘6’, 8.
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Examples:

· For the descent from MT 3 toMT 1: D(k3/Q,3/1) =
{
D−1

1 , Dξ3
2r, r > 0

}
.

· For the descent from MT 8 toMT 4: D(k8/k4,2/2) =
{
Dξ8

r −D−ξ8
r , r > 0

}
.

· For the descent fromMT 9 toMT 3: D(k9/k3,3/3) =
{
Dξ9

r −D
−ξ49
r , Dξ9

r −D
−ξ79
r r > 0

}
.I

Theorem 5.1.1. Let N ′ | N such that HN ′ ∼= HMT ΓN .
Let Z ∈ grDp HN

n , depth graded MMZV relative to µN .

Then Z ∈ grDp HN ′

, i.e. Z is a depth graded MMZV relative to µN ′ modulo smaller depth if
and only if:
(
∀r < n, ∀Dr,p ∈ D

⌈
r , Dr,p(Z) = 0

)
and

(
∀r < n, ∀Dr,p ∈ D

�⌈, Dr,p(Z) ∈ grDp−1HN ′
)
.

Proof. In the (fi) side, the analogue of this theorem is pretty obvious, and the result can
be transported via φ, and back since φN ′ isomorphism by assumption.

This is a very useful recursive criterion (derivation strictly decreasing weight and depth)
to determine if a (motivic) multiple zeta value at µN is in fact a (motivic) multiple zeta
value at µN ′ , modulo smaller depth terms; applying it recursively, it could also take care of
smaller depth terms. This criterion applies for motivic MZVµN , and by period morphism is
deduced for MZVµN .

Change of Ramification. If the descent has just a ramified part, the criterion can be
stated in a non depth graded version. Indeed, there, since only weight 1 matters, to define
the derivation space D⌈ as above (5.1), we need to choose a basis for O∗

N ⊗ Q, which we

complete with
{
ξ

N
qi

N

}

i∈I

into a basis for ΓN . Then, with N =
∏

pαi

i =
∏

qi:

Theorem 5.1.2. Let Z ∈ HN
n ⊂ HMT ΓN , MMZV relative to µN .

Then Z ∈ HMT (ON ) unramified if and only if:
(
∀i ∈ I,Dξ

N
qi

1 (Z) = 0

)
and

(
∀r < n, ∀Dr ∈ D

�⌈, Dr(Z) ∈ HMT (ON )
)
.

Nota Bene: Intermediate descents and change of ramification, keeping part of some of

the weight 1 elements
{
ξ

N
qi

N

}
could also be stated.

Examples:

N = 2: As claimed in the introduction, the descent between H2 and H1 is precisely mea-
sured by D1:II

Corollary 5.1.3. Let Z ∈ H2 = HMT 2 , a motivic Euler sum.
Then Z ∈ H1 = HMT 1 , i.e. Z is a motivic multiple zeta value if and only if:

D1(Z) = 0 and D2r+1(Z) ∈ H1.

IBy the relations in depth 1, since:

ζa

(
r

ξ39

)
= 3r−1

(
ζa

(
r

ξ19

)
+ ζa

(
r

ξ49

)
+ ζa

(
r

ξ79

))
etc.

II
D

(Q/Q,2/1) =
{
D−1

1

}
with the above notations; and D−1

1 is here simply denoted D1 .
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N = 3, 4, 6:

Corollary 5.1.4. Let N ∈ {3, 4, 6} and Z ∈ HMT (ON [ 1
N ]), a motivic MZVµN .

Then Z is unramified, Z ∈ HMT (ON) if and only if:

D1(Z) = 0 and Dr(Z) ∈ HMT (ON ).

N = pr: A basis for ON ⊗Q is formed by:
{

1−ξk

1−ξ

}
k∧p=1

0<k≤ N
2

, which corresponds to

a basis of AMT (ON )
1 :

{
ζm
(

1

ξk

)
− ζm

(
1

ξ

)}

k∧p=1

0<k≤N
2

.

It can be completed in a basis of AN
1 with ζm

(
1
ξ1

)
. I However, if we consider the

basis of AN
1 formed by primitive roots of unity up to conjugates, the criterion for the

descent could also be stated as follows:

Corollary 5.1.5. Let N = pr and Z ∈ HMT ΓN = HMT (ON [ 1p ]), relative to µN
II.

Then Z is unramified, Z ∈ HMT (ON) if and only if:

∑

k∧p=1

0<k≤N
2

D
ξkN
1 (Z) = 0 and ∀





r > 1
1 < k ≤ N

2
k ∧ p = 1

, D
ξkN
r (Z) ∈ HMT (ON ).

5.2 Descents for N = 2, 3, 4, ‘6’, 8.

5.2.1 Depth 1

Let start with depth 1 results, deduced from Lemma 2.4.1 (from [31]), fundamental to
initiate the recursion later.

Lemma 5.2.1. The basis for grD1 A is:



ζa (r; ξ) such that





r > 1 odd if N = 1
r odd if N = 2
r > 0 if N = 3, 4
r > 1 if N = 6





For N = 8, the basis for grD1 Ar is two dimensional, for all r > 0:

{ζa (r; ξ) , ζa (r;−ξ)} .

Let explicit these relations in depth 1 for N = 2, 3, 4, ‘6’, 8, since we would use some
p-adic properties of the basis elements in our proof:

For N = 2: The distribution relation in depth 1 is:

ζa
(
2r + 1

1

)
= (2−2r − 1)ζa

(
2r + 1

−1

)
.

IWith the previous theorem notations, D⌈ = {Dξ
1} whereas D�⌈ = {Dξk

1 −Dξ
1} k∧p=1

1<k≤ N
2

∪r>1 {Dξk

r } k∧p=1

0<k≤N
2

;

where Dξ
1 has to be understood as the projection of the left side over ζa

(
1
ξ

)
in respect to the basis above of

HMT (ON )

1 more ζa
(

1
ξ

)
. This leads to a criterion equivalent to (5.1.5).

IIFor instance a MMZV relative to µN . Beware, for p > 5, there could be other periods.
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For N = 3:

ζl
(
2r + 1

1

)(
1− 32r

)
= 2·32rζl

(
2r + 1

ξ

)
ζl
(
2r

1

)
= 0 ζl

(
r

ξ

)
= (−1)r−1

ζl
(

r

ξ−1

)
.

For N = 4:

ζl
(
r
1

)
(1− 2r−1) = 2r−1 · ζl

(
r
−1

)
for r 6= 1 ζl

(
1
1

)
= ζl

(
2r
−1

)
= 0

ζl
(

2r+1
−1

)
= 22r+1ζl

(
2r+1

ξ

)
ζl
(

r
ξ

)
= (−1)r−1

ζl
(

r
ξ−1

)
.

For N = 6:

ζl
(
r
1

) (
1− 2r−1

)
= 2r−1ζl

(
r
−1

)
for r 6= 1 ζl

(
1
1

)
= ζl

(
2r
−1

)
= 0

ζl
(

2r+1
−1

)
= 2·32r

1−32r ζ
l
(

2r+1
ξ

)
ζl
(

r
ξ2

)
= 2r−1

1−(−2)r−1 ζ
l
(

r
ξ

)
.

ζl
(

r
ξ

)
= (−1)r−1 ζl

(
r

ξ−1

)
ζl
(

r
−ξ

)
= (−1)r−1 ζl

(
r

−ξ−1

)
.

For N = 8:

ζl
(
r
1

)
= 2r−1

(1−2r−1)ζ
l
(

r
−1

)
for r 6= 1 ζl

(
1
1

)
= ζl

(
2r
−1

)
= 0

ζl
(

r
−i

)
= 2r−1

(
ζl
(

r
ξ

)
+ ζl

(
r
−ξ

))
ζl
(

2r+1
−1

)
= 22r+1ζl

(
2r+1

i

)

ζl
(

r
±ξ

)
= (−1)r−1 ζl

(
r

±ξ−1

)
ζl
(
r
i

)
= (−1)r−1 ζl

(
r
−i

)

5.2.2 Motivic Level filtration

Let fix a descent (⌈) = (kN/kN ′ ,M/M ′) from HMT (OkN [
1
M ]), to HMT (Ok

N′ [ 1
M′ ]), with

N ′ | N , M ′ |M , among these considered in this section, represented in Figures 3.3, 3.4.
Let us define a motivic level increasing filtration F⌈ associated, from the set of derivations
associated to this descent, D⌈ ⊂ DN , defined in (5.1).

Definition 5.2.2. The filtration by the motivic level associated to a descent (⌈) is defined
recursively on HN by:

· F⌈
−1HN = 0.

· F⌈
iHN is the largest submodule of HN such that F⌈

iHN/F⌈
i−1HN is killed by D

⌈,
i.e. is in the kernel of ⊕D∈D⌈D.

It’s a graded Hopf algebra’s filtration:

FiH.FjH ⊂ Fi+jH , ∆(FnH) ⊂
∑

i+j=n

FiA⊗FjH.

The associated graded is denoted: gr
⌈
i and the quotients, coalgebras compatible with ∆:

H≥0 := H , H≥i := H/Fi−1H with the projections : ∀j ≥ i , πi,j : H≥i → H≥j . (5.2)

Note that, via the isomorphism φ, the motivic filtration on HMT N corresponds toI:

F⌈
iHMT N ←→

〈
x ∈ HN | Deg⌈(x) ≤ i

〉
Q
, (5.3)

where Deg⌈ is the degree in
{
{f j

r } b
N′<j≤bN

r>1

, {f j
1}aN′<j≤aN

}
, which are the images of the

complementary part of gr1LMT N′ in the basis of gr1LMT N .

IIn particular, remark that dimF⌈
i H

MT N
n are known.
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Example: For the descent betweenHMT 2 andHMT 1 , since gr1LMT 2 =
〈
ζm(−1), {ζm(2r + 1)}r>0

〉
:

FiHMT 2
φ−−−→

∼
〈x ∈ Q〈f1, f3, · · · 〉 ⊗Q[f2] | Degf1(x) ≤ i〉

Q
, where Degf1 = degree in f1.

By definition of these filtrations:

Dη
r,p (FiHn) ⊂

{
Fi−1Hn−r if Dη

r,p ∈ D
⌈
r

FiHn−r if Dη
r,p ∈ D

\⌈
r

. (5.4)

Similarly, looking at ∂n,p (cf. 2.55):

∂n,p(Fi−1Hn) ⊂ ⊕r<n

(
grDp−1Fi−2Hn−r

) card D
⌈
r ⊕r<n

(
grDp−1Fi−1Hn−r

) card D
\⌈
r . (5.5)

This allows us to pass to quotients, and define D
η,i,⌈
n,p and ∂

i,⌈
n,p:

Dη,i,⌈
n,p : grDp H≥i

n →
{

grDp−1H≥i−1
n−r if Dη

r,p ∈ D
⌈
r

grDp−1H≥i
n−r if Dη

r,p ∈ D
\⌈
r

(5.6)

∂i,⌈
n,p : grDp H≥i

n → ⊕r<n

(
grDp−1H≥i−1

n−r

) card D
⌈
r ⊕r<n

(
grDp−1H≥i

n−r

) card D
\⌈
r

. (5.7)

The bijectivity of this map is essential to the results stated below.

5.2.3 General Results

In the following results, the filtration considered Fi is the filtration by the motivic level
associated to the (fixed) descent ⌈ while the index i, in Bn,p,i refers to the level notion for
elements in B associated to the descent ⌈.I
We first obtain the following result on the depth graded quotients, for all i ≥ 0, with:

Z1[P ] :=
Z

1 + PZ
=

{
a

1 + bP
, a, b ∈ Z

}
with

P = 2 for N = 2, 4, 8
P = 3 for N = 3, 6

.

Lemma 5.2.3. ·

Bn,p,≥i is a linearly free family of grDp H≥i
n and defines a Z1[P ] structure :

Each element Z = ζm
(

z1,...,zp
ǫ1,...,ǫp

)
∈ Bn,p decomposes in a Z1[P ]-linear combination of

Bn,p,≥i elements, denoted cln,p,≥i(Z) in grDp H≥i
n , which defines, in an unique way:

cln,p,≥i : 〈Bn,p,≤i−1〉Q → 〈Bn,p,≥i〉Q.

· The following map ∂
i,⌈
n,p is bijective:

∂i,⌈
n,p : grDp 〈Bn,≥i〉Q → ⊕r<n

(
grDp−1〈Bn−1,≥i−1〉Q

)⊕ card D⌈
r⊕r<n

(
grDp−1〈Bn−2r−1,≥i〉Q

)⊕ card D\⌈
r .

Before giving the proof, in the next section, let present its consequences such as bases
for the quotient, the filtration and the graded spaces for each descent considered:

IPrecisely defined, for each descent in §5.2.5.
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Theorem 5.2.4. (i) Bn,≤p,≥i is a basis of FD
p H≥i

n = FD
p H≥i,MT

n .

(ii) · Bn,p,≥i is a basis of grDp H≥i
n = grDp H≥i,MT

n on which it defines a Z1[P ]-structure:

Each element Z = ζm
(

z1,...,zp
ǫ1,...,ǫp

)
decomposes in a Z1[P ]-linear combination of

Bn,p,≥i elements, denoted cln,p,≥i(Z) in grDp H≥i
n , which defines in an unique way:

cln,p,≥i : 〈Bn,p,≤i−1〉Q → 〈Bn,p,≥i〉Q such that Z+cln,p,≥i(Z) ∈ Fi−1Hn+FD
p−1Hn.

· The following map is bijective:

∂i,⌈
n,p : grDp H≥i

n → ⊕r<n

(
grDp−1H≥i−1

n−1

)⊕ card D⌈
r ⊕r<n

(
grDp−1H≥i

n−r

)⊕ card D\⌈
r

.

· Bn,·,≥i is a basis of H≥i
n = H≥i,MT

n .

(iii) We have the two split exact sequences in bijection:

0 −→ FiHn −→ Hn
π0,i+1→ H≥i+1

n −→ 0

0→ 〈Bn,·,≤i〉Q → 〈Bn〉Q → 〈Bn,·,≥i+1〉Q → 0.

The following map, defined in an unique way:

cln,≤p,≥i : 〈Bn,p,≤i−1〉Q → 〈Bn,≤p,≥i〉Q such that Z+ cln,≤p,≥i(Z) ∈ Fi−1Hn.

(iv) A basis for the filtration spaces FiHMT
n = FiHn:

∪p {Z+ cln,≤p,≥i+1(Z),Z ∈ Bn,p,≤i} .

(v) A basis for the graded space griHMT
n = griHn:

∪p {Z+ cln,≤p,≥i+1(Z),Z ∈ Bn,p,i} .

The proof is given in §5.2.4, and the notion of level resp. motivic level, some conse-
quences and specifications for N = 2, 3, 4, ‘6’, 8 individually are provided in §5.2.5. Some
examples in small depth are displayed in Appendice A.2.

Consequences, level i = 0:

· The level 0 of the basis elements BN forms a basis of HN = HMT N , for N =
2, 3, 4, ‘6’, 8. This gives a new proof (dual) of Deligne’s result (in [31]).
The level 0 of this filtration is hence isomorphic to the following algebras:I

FkN/kN′ ,M/M ′

0 HMT N = FkN/kN′ ,M/M ′

0 HN = HMT N′,M′ = ”HN ′,M ′

”.

Hence the inclusions in the following diagram are here isomorphisms:

FkN/kN′ ,M/M ′

0 HMT N HMT N′
_?

oo

FkN/kN′ ,M/M ′

0 HN
?�

OO

HN ′

_?
oo

?�

OO .

IThe equalities of the kind HMT N = HN are consequences of the previous theorem for N = 2, 3, 4, ‘6’, 8, and

by F. Brown for N = 1 (cf. [20]). Moreover, we have inclusions of the kind HMT
N′ ⊆ FkN/k

N′ ,M/M′

0 HMT N

and we deduce the equality from dimensions at fixed weight.
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· It gives, considering such a descent (kN/kN ′ ,M/M ′), a basis for F0HN = HMT N′,M′

in terms of the basis of HN . For instance, it leads to a new basis for motivic multiple
zeta values in terms of motivic Euler sums, or motivic MZVµ3 .
Some others 0-level such as FkN/kN ,P/1

0 , N = 3, 4 which should reflect the descent from
MT (ON

[
1
P

]
) to MT (ON ) are not known to be associated to a fundamental group,

but the previous result enables to reach them. We obtain a basis for:

• HMT (Z[ 1

3 ]) in terms of the basis of HMT (O3[
1
3 ]).

• HMT (O3) in terms of the basis of HMT (O3[
1
3 ]).

• HMT (O4) in terms of the basis of HMT (O4[
1
4 ]).

5.2.4 Proofs

As proved below, Theorem 5.2.4 boils down to the Lemma 5.2.3. Remind the map ∂
i,⌈
n,p:

∂i,⌈
n,p : grDp H≥i

n → ⊕r<n

(
grDp−1H≥i−1

n−r

) card D
⌈
r ⊕r<n

(
grDp−1H≥i

n−r

) card D
\⌈
r

.

We will look at its image on Bn,p,≥i and prove both the injectivity of ∂i,⌈
n,p as considered in

Lemma 5.2.3, and the linear independence of these elements Bn,p,≥i.

Proof of Lemma 5.2.3 for N = 2: The formula (2.4.3) for D−1
2r+1,p on B elements:I

D−1
2r+1,p

(
ζm(2x1 + 1, . . . , 2xp + 1)

)
=

22r

1− 22r
δr=x1 · ζm(2x2 + 1, . . . , 2xp + 1)

22r

1− 22r

{ ∑p−2
i=1 δxi+1≤r<xi+xi+1

(
2r

2xi+1

)

−∑p−1
i=1 δxi≤r<xi+xi+1

(
2r
2xi

) ·ζm (· · · , 2xi−1 + 1, 2(xi + xi+1 − r) + 1, 2xi+2 + 1, · · · )

(d) + δxp≤r≤xp+xp−1

(
2r

2xp

)
· ζm

(
· · · , 2xp−2 + 1, 2(xp−1 + xp − r) + 1

)
(5.8)

Terms of type (d) play a particular role since they correspond to deconcatenation for the
coaction, and will be the terms of minimal 2-adic valuation.
D−1

1,p acts as a deconcatenation on this family:

D−1
1,p

(
ζm(2x1 + 1, . . . , 2xp + 1)

)
=

{
0 if xp 6= 0
ζm(2x1 + 1, . . . , 2xp−1 + 1) if xp = 0.

(5.9)

For N = 2, ∂i
n,p (5.7) is simply:

∂i
n,p : grDp H≥i

n → grDp−1H≥i−1
n−1 ⊕1<2r+1≤n−p+1 gr

D
p−1H≥i

n−2r−1. (5.10)

Let prove all statements of Lemma 5.2.3, recursively on the weight, and then recursively on
depth and on the level, from i = 0.

Proof. By recursion hypothesis, weight being strictly smaller, we assume that:

Bn−1,p−1,≥i−1 ⊕1<2r+1≤n−p+1 Bn−2r−1,p−1,≥i is a basis of

grDp−1H≥i−1,B
n−1 ⊕1<2r+1≤n−p+1 gr

D
p−1H≥i,B

n−2r−1.

IUsing identity: ζa(2r + 1) = (2−2r − 1)ζa(2r + 1). Projection on ζl(2r + 1) for the left side.
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Claim: The matrix M i
n,p of

(
∂
i,⌈
n,p(z)

)
z∈Bn,p,≥i

on these spaces is invertible.

Nota Bene: Here D−1
1 (z), resp. D−1

2r+1,p(z) are expressed in terms of Bn−1,p−1,≥i−1 resp.
Bn−2r−1,p−1,≥i.
It will prove both the bijectivity of ∂i,⌈

n,p as considered in the lemma and the linear indepen-
dence of Bn,p,≥i. Let divide M i

n,p into four blocks, with the first column corresponding to
elements of Bn,p,≥i ending by 1:

xp = 0 xp > 0
D1,p M1 M2
D>1,p M3 M4

According to (5.9), D−1
1,p is zero on the elements not ending by 1, and acts as a deconcate-

nation on the others. Therefore, M3 = 0, so M i
n,p is lower triangular by blocks, and the

left-upper-block M1 is diagonal invertible. It remains to prove the invertibility of the right-
lower-block M̃ := M4, corresponding to D−1

>1,p and to the elements of Bn,p,≥i not ending by
1.

Notice that in the formula (5.8) of D2r+1,p, applied to an element of Bn,p,≥i, most of terms
appearing have a number of 1 greater than i but there are also terms in Bn−2r−1,p−1,i−1,
with exactly (i − 1) “1” for type a,b,c only. We will make disappear the latter modulo 2,
since they are 2-adically greater.
More precisely, using recursion hypothesis (in weight strictly smaller), we can replace them
in grp−1H≥i

n−2r−1 by a Zodd-linear combination of elements in Bn−2r−1,p−1,≥i, which does
not lower the 2-adic valuation. It is worth noticing that the type d elements considered are
now always in Bn−2r−1,p−1,≥i, since we removed the case xp = 0.

Once done, we can construct the matrix M̃ and examine its entries.
Order elements of B on both sides by lexicographic order of its “reversed” elements:

(xp, xp−1, · · · , x1) for the colums, (r, yp−1, · · · , y1) for the rows.

Remark that, with such an order, the diagonal corresponds to the deconcatenation terms:
r = xp and xi = yi.
Referring to (5.8), and by the previous remark, we see that M̃ has all its entries of 2-adic
valuation positive or equal to zero, since the coefficients in (5.8) are in 22rZodd (for types
a,b,c) or of the form Zodd for types d,d’. If we look only at the terms with 2-adic valuation
zero, (which comes to consider M̃ modulo 2), it only remains in (5.8) the terms of type
(d,d’), that is:

D2r+1,p(ζ
m(2x1 + 1, . . . , 2xp + 1)) ≡ δr=xp+xp−1

(
2r

2xp

)
ζm(2x1 + 1, . . . , 2xp−2 + 1, 1)

+ δxp≤r<xp+xp−1

(
2r

2xp

)
ζm(2x1 + 1, . . . , 2xp−2 + 1, 2(xp−1 + xp − r) + 1) (mod 2).

Therefore, modulo 2, with the order previously defined, it remains only an upper triangular
matrix (δxp≤r), with 1 on the diagonal (δxp=r, deconcatenation terms). Thus, det M̃ has

a 2-adic valuation equal to zero, and in particular can not be zero, that’s why M̃ is invertible.

The Zodd structure is easily deduced from the fact that the determinant of M̃ is odd, and
the observation that if we consider D2r+1,p(ζ

m(z1, . . . , zp)), all the coefficients are integers.
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Proof of Lemma 5.2.3 for other N . These cases can be handled in a rather similar
way than the case N = 2, except that the number of generators is different and that several
descents are possible, hence there will be several notions of level and filtrations by the
motivic level, one for each descent. Let fix a descent ⌈ and underline the differences in the
proof:

Proof. In the same way, we prove by recursion on weight, depth and level, that the following
map is bijective:

∂i,⌈
n,p : grDp 〈Bn,≥i〉Q → ⊕r<n

(
grDp−1〈Bn−1,≥i−1〉Q

)⊕ card D
⌈
r⊕r<n

(
grDp−1〈Bn−2r−1,≥i〉Q

)⊕ card D
\⌈
r .

I.e the matrix M i
n,p of

(
∂i
n,p(z)

)
z∈Bn,p,≥i

on ⊕r<nB card D
⌈
r

n−r,p−1,≥i−1 ⊕r<n B card D
\⌈
r

n−r,p−1,≥i
I is

invertible.

As before, by recursive hypothesis, we replace elements of level ≤ i appearing in Di
r,p, r ≥ 1

by Z1[P ]-linear combinations of elements of level ≥ i in the quotient grDp−1H≥i
n−r, which does

not decrease the P -adic valuation.
Now looking at the expression for Dr,p in Lemma 2.4.3, we see that on the elements consid-
ered, II the left side is:

Either ζ(l)
(
r
1

)
for type a,b,c Or ζ(l)

(
r
ξ

)
for Deconcatenation terms.

Using results in depth 1 of Deligne and Goncharov (cf. §2.4.3), the deconcatenation terms
are P -adically smaller.
For instance, for N = ‘6’, r odd:

ζl(r; 1) =
2 · 6r−1

(1− 2r−1)(1− 3r−1)
ζl(r; ξ), and v3(

2 · 6r−1

(1 − 2r−1)(1− 3r−1)
) > 0.

Nota Bene: For N = 8, Dr has two independent components, Dξ
r and D−ξ

r . We have to
distinguish them, but the statement remains similar since the terms appearing in the left
side are either ζ(l)

(
r
±1

)
, or deconcatenation terms, ζ(l)

(
r
±ξ

)
, 2-adically smaller by §4.1.

Thanks to congruences modulo P , only the deconcatenation terms remain:

Dr,p

(
ζm
(

x1, . . . , xp

ǫ1, . . . , ǫp−1, ǫpξ

))
=

δxp≤r≤xp+xp−1−1(−1)r−xp

(
r − 1

xp − 1

)
ζl
(

r

ǫpξ

)
⊗ζm

(
x1, . . . , xp−2, xp−1 + xp − r

ǫ1, · · · , ǫp−2, ǫp−1ǫpξ

)
(mod P ).

As in the previous case, the matrix being modulo P triangular with 1 on the diagonal, has
a determinant congruent at 1 modulo P , and then, in particular, is invertible.

EXAMPLE for N = 2: Let us illustrate the previous proof by an example, for weight
n = 9, depth p = 3, level i = 0, with the previous notations.
Instead of B9,3,≥0, we will restrict to the subfamily (corresponding to A):

B0
9,3,≥0 :=

{
ζm(2a+ 1, 2b+ 1, 2c+ 1) of weight 9

}
⊂

B9,3,≥0 :=
{
ζm(2a+ 1, 2b+ 1, 2c+ 1)ζm(2)s of weight 9

}

IElements in arrival space are linearly independent by recursion hypothesis.

IIi.e. of the form ζm

(
x1,...,xp

ǫ1,...,ǫp−1,ǫpξN

)
, with ǫi ∈ ±1 for N = 8, ǫi = 1 else.
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Note that ζm(2) being trivial under the coaction, the matrix M9,3 is diagonal by blocks
following the different values of s and we can prove the invertibility of each block separately;
here we restrict to the block s = 0. The matrix M̃ considered represents the coefficients of:

ζm(2r + 1)⊗ ζm(2x+ 1, 2y + 1) in D2r+1,3(ζ
m(2a+ 1, 2b+ 1, 2c+ 1)).

The chosen order for the columns, resp. for the rows I is the lexicographic order applied to
(c, b, a) resp. to (r, y, x). Modulo 2, it only remains the terms of type d,d’, that is:

D2r+1,3(ζ
m(2a+ 1, 2b+ 1, 2c+ 1)) ≡ δc≤r≤b+c

(
2r

2c

)
ζm(2a+ 1, 2(b+ c− r) + 1) (mod 2).

With the previous order, M̃9,3 is then, modulo 2:II

Dr, ζ\ ζ 7, 1, 1 5, 3, 1 3, 5, 1 1, 7, 1 5, 1, 3 3, 3, 3 1, 5, 3 3, 1, 5 1, 3, 5 1, 1, 7
D1, ζ

m(7, 1) 1 0 0 0 0 0 0 0 0 0
D1, ζ

m(5, 3) 0 1 0 0 0 0 0 0 0 0
D1, ζ

m(3, 5) 0 0 1 0 0 0 0 0 0 0
D1, ζ

m(1, 7) 0 0 0 1 0 0 0 0 0 0
D3, ζ

m(5, 7) 0 0 0 0 1 0 0 0 0 0
D3, ζ

m(3, 3) 0 0 0 0 0 1 0 0 0 0
D3, ζ

m(1, 5) 0 0 0 0 0 0 1 0 0 0

D5, ζ
m(3, 1) 0 0 0 0 0

(
4
2

)
0 1 0 0

D5, ζ
m(1, 3) 0 0 0 0 0 0

(
4
2

)
0 1 0

D7, ζ
m(1, 1) 0 0 0 0 0 0

(
6
2

)
0

(
6
4

)
1

.

As announced, M̃ modulo 2 is triangular with 1 on the diagonal, thus obviously invertible.

Proof of the Theorem 5.2.4.

Proof. This Theorem comes down to the Lemma 5.2.3 proving the freeness of Bn,p,≥i in
grDp H≥i

n defining a Zodd-structure:

(i) By this Lemma, Bn,p,≥i is linearly free in the depth graded, and ∂
i,⌈
n,p, which decreases

strictly the depth, is bijective on Bn,p,≥i. The family Bn,≤p,≥i, all depth mixed is then
linearly independent on FD

p H≥i
n ⊂ FD

p H≥i,MT
n : easily proved by application of ∂i,⌈

n,p.
By a dimension argument, since dimFD

p H≥i,MT
n = card Bn,≤p,≥i, we deduce the

generating property.

(ii) By the lemma, this family is linearly independent, and by (i) applied to depth p− 1,

grDp H≥i
n ⊂ grDp H≥i,MT

n .

Then, by a dimension argument, since dim grDp H≥i,MT
n = card Bn,p,≥i we conclude on

the generating property. The Zodd structure has been proven in the previous lemma.
By the bijectivity of ∂i,⌈

n,p (still previous lemma), which decreases the depth, and using
the freeness of the elements of a same depth in the depth graded, there is no linear
relation between elements of Bn,·,≥i of different depths in H≥i

n ⊂ H≥iMT
n . The family

considered is then linearly independent in H≥i
n . Since card Bn,·,≥i = dimH≥i,MT

n , we
conclude on the equality of the previous inclusions.

II.e. for ζm(2a + 1, 2b + 1, 2c + 1) resp. for (D2r+1,3, ζ
m(2x + 1, 2y + 1)).

IINotice that the first four rows are exact: no need of congruences modulo 2 for D1 because it acts as a
deconcatenation on the base.
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(iii) The second exact sequence is obviously split since Bn,·,≥i+1 is a subset of Bn. We
already know that Bn is a basis of Hn and Bn,·,≥i+1 is a basis of H≥i+1

n . Therefore, it
gives a map Hn ← H≥i+1

n and split the first exact sequence.
The construction of cln,≤p,≥i(x), obtained from cln,p,≥i(x) applied repeatedly, is the
following:

x ∈ Bn,·,≤i−1 is sent on x̄ ∈ H≥i
n
∼= 〈Bn,≤p,≥i〉Q by the projection π0,i and so

x− x̄ ∈ Fi−1H.

Notice that the problem of making cl(x) explicit boils down to the problem of describing
the map π0,i in the bases B.

(iv) By the previous statements, these elements are linearly independent in FiHMT
n . More-

over, their cardinal is equal to the dimension of FiHMT
n . It gives the basis announced,

composed of elements x ∈ Bn,·,≤i, each corrected by an element denoted cl(x) of
〈Bn,·,≥i+1〉Q.

(v) By the previous statements, these elements are linearly independent in griHn, and by
a dimension argument, we can conclude.

5.2.5 Specified Results

5.2.5.1 The case N = 2.

Here, since there is only one Galois descent from H2 to H1, the previous exponents for level
filtrations can be omitted, as the exponent 2 for H the space of motivic Euler sums. Set
Zodd =

{
a
b , a ∈ Z, b ∈ 2Z+ 1

}
, rationals having a 2-adic valuation positive or infinite. Let

us define particular families of motivic Euler sums, a notion of level and of motivic level.

Definition 5.2.5. · B2 :=
{
ζm(2x1 + 1, . . . , 2xp−1 + 1, 2xp + 1)ζ(2)m,k, xi ≥ 0, k ∈ N

}
.

Here, the level is defined as the number of xi equal to zero.

· The filtration by the motivic (Q/Q, 2/1)-level,

FiH :=
{
Z ∈ H, such that D−1

1 Z ∈ Fi−1H , ∀r > 0, D1
2r+1Z ∈ FiH

}
.

I.e. Fi is the largest submodule such that Fi/Fi−1 is killed by D1.

This level filtration commutes with the increasing depth filtration.

Remarks: The increasing or decreasing filtration defined from the number of 1 appear-
ing in the motivic multiple zeta values is not preserved by the coproduct, since the number
of 1 can either decrease or increase (by at the most 1) and is therefore not motivic.

Let list some consequences of the results in §5.2.3, which generalize in particular a result
similar to P. Deligne’s one (cf. [31]):

Corollary 5.2.6. The map GMT → GMT ′

is an isomorphism.
The elements of Bn, ζm(2x1+1, . . . , 2xp + 1)ζ(2)k of weight n, form a basis of motivic Euler
sums of weight n, H2

n = HMT 2
n , and define a Zodd-structure on the motivic Euler sums.

The period map, per : H → C, induces the following result for the Euler sums:

Each Euler sum is a Zodd-linear combination of Euler sums
ζ(2x1 + 1, . . . , 2xp + 1)ζ(2)k, k ≥ 0, xi ≥ 0 of the same weight.

99



Here is the result on the 0th level of the Galois descent from H1 to H2:

Corollary 5.2.7.

F0HMT 2 = F0H2 = HMT 1 = H1.

A basis of motivic multiple zeta values in weight n, is formed by terms of Bn with 0-level
each corrected by linear combinations of elements of Bn of level 1:

B1
n :=




ζm(2x1 + 1, . . . , 2xp + 1)ζm(2)s +

∑

yi≥0
at least one yi=0

αx,yζ
m(2y1 + 1, . . . , 2yp + 1)ζm(2)s+

∑

lower depth q<p,zi≥0
at least one zi=0

βx,zζ
m(2z1 + 1, . . . , 2zq + 1)ζm(2)s, xi > 0, αx,y, βx,z ∈ Q,




∑

xi=
∑

yi=
∑

zi=
n−p

2 −s

.

Honorary. About the first condition in 5.1.3 to be honorary:

Lemma 5.2.8. Let ζm(n1, · · · , np) ∈ H2, a motivic Euler sum, with ni ∈ Z∗, np 6= 1.
Then:

∀i , ni 6= −1⇒ D1(ζ
m(n1, · · · , np)) = 0

Proof. Looking at all iterated integrals of length 1 in L, I l(a; b; c), a, b, c ∈ {0,±1}: the
only non zero ones are these with a consecutive {1,−1} or {−1, 1} sequence in the iterated
integral, with the condition that extremities are different, that is:

I(0; 1;−1), I(0;−1; 1), I(1;−1; 0), I(−1;+1; 0), I(−1;±1; 1), I(1;±1;−1).
Moreover, they are all equal to ± loga(2) in the Hopf algebra A. Consequently, if there is
no −1 in the Euler sums notation, it implies that D1 would be zero.

Comparison with Hoffman’s basis. Let compare:

(i) The Hoffman basis of H1 formed by motivic MZV with only 2 and 3 ([20])

BH := {ζm(x1, . . . , xk), where xi ∈ {2, 3}} .

(ii) B1, the base of H1 previously obtained (Corollary 5.2.7).

Beware, the index p for BH indicates the number of 3 among the xi, whereas for B1, it
still indicates the depth; in both case, it can be seen as the motivic depth (cf. §2.4.3):
Corollary 5.2.9. B1

n,p is a basis of grDp 〈BH
n,p〉Q and defines a Zodd-structure.

I.e. each element of the Hoffman basis of weight n and with p three, p > 0, decomposes into
a Zodd-linear combination of B1

n,p elements plus terms of depth strictly less than p.

Proof. Deduced from the previous results, with the Zodd structure of the basis for Euler
sums.

5.2.5.2 The cases N = 3, 4.

For N = 3, 4 there are a generator in each degree ≥ 1 and two Galois descents.

Definition 5.2.10. · Family: B :=
{
ζm
(

x1,...,xp

1,...,1,ξ

)
(2iπ)s,m, xi ≥ 1, s ≥ 0

}
.

· Level:

The (kN/kN , P/1)-level is defined as the number of xi equal to 1
The (kN/Q, P/P )-level the number of xi even
The (kN/Q, P/1)-level the number of even xi or equal to 1
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· Filtrations by the motivic level: F⌈
−1HN = 0 and F⌈

iHN is the largest submodule

of HN such that F⌈
iHN/F⌈

i−1HN is killed by D⌈, where

D
⌈ =

{Dξ
1} for ⌈ = (kN/kN , P/1)

{(Dξ
2r)r>0} for ⌈ = (kN/Q, P/P )

{Dξ
1, (D

ξ
2r)r>0} for ⌈ = (kN/Q, P/1)

.

Remarks:

· As before, the increasing, or decreasing, filtration that we could define by the number of
1 (resp. number of even) appearing in the motivic multiple zeta values is not preserved
by the coproduct, since the number of 1 can either diminish or increase (at most 1),
so is not motivic.

· An effective way of seeing those motivic level filtrations, giving a recursive criterion:

FkN/Q,P/P
i H =

{
Z ∈ H, s. t. ∀r > 0 , Dξ

2r(Z) ∈ F
kN/Q,P/P
i−1 H , ∀r ≥ 0 , Dξ

2r+1(Z) ∈ F
kN/Q,P/P
i H

}
.

We deduce from the result in §5.2.3 a result of P. Deligne (i = 0, cf. [31]):

Corollary 5.2.11. The elements of BN
n,p,≥i form a basis of grDp Hn/Fi−1Hn.

In particular the map GMT N → GMT ′
N is an isomorphism. The elements of BN

n , form a
basis of motivic multiple zeta value relative to µN , HN

n .

The level 0 of the filtrations considered for N ′|N ∈ {3, 4} gives the Galois descents:

Corollary 5.2.12. A basis of HN ′

n is formed by elements of BN
n of level 0 each corrected by

linear combination of elements BN
n of level ≥ 1. In particular, with ξ primitive:

· Galois descent from N ′ = 1 to N = 3, 4: A basis of motivic multiple zeta values:

B1;N :=




ζm
(
2x1 + 1, . . . , 2xp + 1

1, . . . , 1, ξ

)
ζm(2)s +

∑

yi≥0
at least one yi even or =1

αx,yζ
m

(
y1, . . . , yp
1, . . . , 1, ξ

)
ζm(2)s

+
∑

lower depth q<p,
at least one even or =1

βx,zζ
m

(
z1, . . . , zq
1, . . . , 1, ξ

)
ζm(2)s , xi > 0, αx,y, βx,z ∈ Q



 .

· Galois descent from N ′ = 2 to N = 4: A basis of motivic Euler sums:

B2;4 :=



ζm

(
2x1 + 1, . . . , 2xp + 1

1, . . . , 1, ξ4

)
ζm(2)s +

∑

yi>0
at least one even

αx,yζ
m

(
y1, . . . , yp
1, . . . , 1, ξ4

)
ζm(2)s

+
∑

lower depth q<p
zi>0,at least one even

βx,zζ
m

(
z1, . . . , zq
1, . . . , 1, ξ4

)
ζm(2)s , xi ≥ 0, αx,y, βx,z ∈ Q





.

· Similarly, replacing ξ4 by ξ3 in B2;4, this gives a basis of:

Fk3/Q,3/3
0 H3

n = HMT (Z[ 1
3
])

n .
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· A basis of FkN/kN ,P/1
0 HN

n = HMT (ON )
n , with N = 3, 4:

BN unram :=



ζm

(
x1, . . . , xp

1, . . . , 1, ξ

)
ζm(2)s +

∑

yi>0
at least one 1

αx,yζ
m

(
y1, . . . , yp
1, . . . , 1, ξ

)
ζm(2)s

+
∑

lower depth q<p
zi>0,at least one 1

βx,zζ
m

(
z1, . . . , zq
1, . . . , 1, ξ

)
ζm(2)s , xi > 0, αx,y, βx,z ∈ Q





.

Nota Bene: Notice that for the last two level 0 spaces, HMT (ON )
n , N = 3, 4 and HMT (Z[ 13 ])

n ,
we still do not have another way to reach them, since those categories of mixed Tate motives
are not simply generated by a motivic fundamental group.

5.2.5.3 The case N = 8.

For N = 8 there are two generators in each degree ≥ 1 and three possible Galois descents:
with H4, H2 or H1.

Definition 5.2.13. · Family: B :=
{
ζm
(

x1,...,xp

ǫ1,...,ǫp−1,ǫpξ

)
(2iπ)s,m, xi ≥ 1, ǫi ∈ {±1} s ≥ 0

}
.

· Level, denoted i:

The (k8/k4, 2/2)-level is the number of ǫj equal to −1
The (k8/Q, 2/2)-level ǫj equal to −1 + even xj

The (k8/Q, 2/1)-level ǫj equal to −1, + even xj + xj equal to 1.

· Filtrations by the motivic level: F⌈
−1H8 = 0 and F⌈

iH8 is the largest submodule

of H8 such that F⌈
iH8/F⌈

i−1H8 is killed by D⌈, where

D
⌈ =

{
(Dξ

r −D−ξ
r )r>0

}
for ⌈ = (k8/k4, 2/2){

(Dξ
2r+1 −D−ξ

2r+1)r≥0, (D
ξ
2r)r>0, (D

−ξ
2r )r>0

}
for ⌈ = (k8/Q, 2/2){

(Dξ
2r+1 −D−ξ

2r+1)r>0, D
ξ
1, D

−ξ
1 , (Dξ

2r)r>0, (D
−ξ
2r )r>0

}
for ⌈ = (k8/Q, 2/1)

.

Corollary 5.2.14. A basis of HN ′

n is formed by elements of BN
n of level 0 each corrected by

linear combination of elements BN
n of level ≥ 1. In particular, with ξ primitive:

8 → 1: A basis of MMZV:

B1;8 :=




ζm
(
2x1 + 1, . . . , 2xp + 1

1, . . . , 1, ξ

)
ζm(2)s +

∑

yiat least one even or =1
oroneǫi=−1

αx,yζ
m

(
y1, . . . , yp

ǫ1, . . . , ǫp−1, ǫpξ

)
ζm(2)s

+
∑

q<p lower depth, level ≥1

βx,zζ
m

(
z1, . . . , zq
ǫ̃1, . . . , ǫ̃qξ

)
ζm(2)s , xi > 0, αx,y, βx,z ∈ Q



 .

8 → 2: A basis of motivic Euler sums:

B2;8 :=




ζm
(
2x1 + 1, . . . , 2xp + 1

1, . . . , 1, ξ

)
ζm(2)s +

∑

yi at least one even

or one ǫi=−1

α x,yζ
m

(
y1, . . . , yp

ǫ1, . . . , ǫp−1, ǫpξ

)
ζm(2)s

+
∑

lower depthq<p
with level≥1

βx,zζ
m

(
z1, . . . , zq
ǫ̃1, . . . , ǫ̃qξ

)
ζm(2)s , xi ≥ 0, αx,y, βx,y ∈ Q





.
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8 → 4: A basis of MMZV relative to µ4:

B4;8 :=

{
ζm
(
x1, . . . , xp

1, . . . , 1, ξ

)
(2iπ)s +

∑

at least one ǫi=−1

αx,yζ
m

(
y1, . . . , yp

ǫ1, . . . , ǫp−1, ǫpξ

)
(2iπ)s

+
∑

lower depth, level ≥1

βx,zζ
m

(
z1, . . . , zq
ǫ̃1, . . . , ǫ̃qξ

)
(2iπ)sαx,y, βx,z ∈ Q



 .

5.2.5.4 The case N = ‘6’.

For the unramified category MT (O6), there is one generator in each degree > 1 and one
Galois descent with H1.

First, let us point out this sufficient condition for a MMZVµ6 to be unramified:

Lemma 5.2.15.

Let ζm
(
n1, · · · , np

ǫ1, . . . , ǫp

)
∈ HMT (O6[ 16 ]) a motivic MZVµ6 , such that : I

Each ηi ∈ {1, ξ6}
or Each ηi ∈ {1, ξ−1

6 }
Then, ζm

(
n1, · · · , np

ǫ1, . . . , ǫp

)
∈ HMT (O6)

Proof. Immediate, by Corollary, 5.1.4, and with the expression of the derivations (2.4.2)
since these families are stable under the coaction.

Definition 5.2.16. · Family: B :=
{
ζm
(

x1,...,xp

1,...,1,ξ)

)
(2iπ)s,m, xi > 1, s ≥ 0

}
.

· Level: The (k6/Q, 1/1)-level, denoted i, is defined as the number of even xj.

· Filtration by the motivic (k6/Q, 1/1)-level:

F (k6/Q,1/1)
−1 H6 = 0 and F (k6/Q,1/1)

i H6 is the largest submodule of H6 such that

F (k6/Q,1/1)
i H6/F (k6/Q,1/1)

i−1 H6 is killed by D(k6/Q,1/1) =
{
Dξ

2r, r > 0
}
.

Corollary 5.2.17. Galois descent from N ′ = 1 to N = ‘6’ unramified. A basis of MMZV:

B1;6 :=



ζm

(
2x1 + 1, . . . , 2xp + 1

1, . . . , 1, ξ

)
ζm(2)s +

∑

yi at least one even

αx,yζ
m

(
y1, . . . , yp
1, . . . , 1, ξ

)
ζm(2)s

+
∑

lower depth, level ≥1

βx,zζ
m

(
z1, . . . , zq
1, . . . , 1, ξ

)
ζm(2)s , αx,y, βx,z ∈ Q, xi > 0



 .
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Chapter 6

Miscellaneous uses of the

coaction

6.1 Maximal depth terms, grD
max

Hn

The coaction enables us to compute, by a recursive procedure, the coefficients of the terms
of maximal depth, i.e. the projection on the graded grD

maxHn. In particular, let look at:

· For N = 1, when weight is a multiple of 3 (w = 3d), such as depth p > d:

grDp H3d = Qζm(3)d.

· Another simple case is for N = 2, 3, 4, when weight equals depth, which is referred to
as the diagonal comodule:

grDp Hp = Qζm
(

1

ξN

)p

.

The space grDmaxHN
n is usually more than 1 dimensional, but the methods presented below

could generalize.

6.1.1 MMZV, weight 3d.

Preliminaries: Linearized Ihara action. The linearisation of the map ◦ : Ug⊗ Ug→ Ug

induced by Ihara action (cf. §2.4) can be defined recursively on words by, with η ∈ µN :

◦ : Ug⊗ Ug→ Ug : a◦en0 = en0a
a◦en0 eηw = en0 ([η].a)eηw + en0 eη([η].a)

∗w + en0eη(a◦w),
(6.1)

where ∗ stands for the following involution:

(a1 · · · an)∗ := (−1)nan · · · a1.

For this paragraph, from now, let N = 1 and let use the commutative polynomial setting,
introducing the isomorphism:

ρ : Ug −→ Q〈Y 〉 := Q〈y0, y1, . . . , yn, · · · 〉 (6.2)

en0
0 e1e

n1
0 · · · e1e

np

0 7−→ yn0
0 yn1

1 · · · ynp
p

Remind that if Φ ∈ Ug satisfies the linearized � relation, it means that Φ is primitive for
∆
�

, and equivalently that φu�v = 0, with φw the coefficient of w in Φ. In particular, this
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is verified for Φ in the motivic Lie algebra gm.
This property implies for f = ρ(Φ) a translation invariance (cf. 6.2 in [21])

f(y0, y1, · · · , yp) = f(0, y1 − y0, . . . , yp − y0). (6.3)

Let consider the map:

Q〈Y 〉 −→ Q〈X〉 = Q〈x1, . . . , xn, · · · 〉, (6.4)

f 7−→ f where f(x1, · · · , xp) := f(0, x1, · · · , xp).

If f is translation invariant, f(y0, y1, . . . , yp) = f(y1 − y0, · · · , yp − y0).
The image of gm under ρ is contained in the subspace of polynomial in yi invariant by
translation. Hence we can consider alternatively in the following φ ∈ gm, f = ρ(φ) or f .

Since the linearized action ◦ respects the D-grading, it defines, via the isomorphism ρ :
grrDUg→ Q[y0, . . . , yr], graded version of (6.2), a map:

◦ : Q[y0, . . . , yr]⊗Q[y0, . . . , ys]→ Q[y0, . . . , yr+s] , which in the polynomial representation is:

f◦g(y0, . . . , yr+s) =
s∑

i=0

f(yi, . . . , yi+r)g(y0, . . . , yi, yi+r+1, . . . , yr+s)

+ (−1)deg f+r
s∑

i=1

f(yi+r, . . . , yi)g(y0, . . . , yi−1, yi+r, . . . , yr+s). (6.5)

Or via the isomorphism ρ : grrDUg→ Q[x1, . . . , xr], graded version of (6.4) ◦ (6.2):

f◦g(x1, . . . , xr+s) =

s∑

i=0

f(xi+1 − xi, . . . , xi+r − xi)g(y1, . . . , xi, xi+r+1, . . . , xr+s)

+ (−1)deg f+r
s∑

i=1

f(xi+r−1 − xi+r , . . . , xi − xi+r)g(x1, . . . , xi−1, xi+r, . . . , xr+s). (6.6)

Coefficient of ζ(3)d. If the weight w is divisible by 3, for motivic multiple zeta values,
it boils down to compute the coefficient of ζm(3)

w
3 and a recursive procedure is given in

Lemma 6.1.1.

Since grDd H1
3d is one dimensional, generated by ζm(3)d, we can consider the projection:

ϑ : grDd H1
3d → Q. (6.7)

Giving a motivic multiple zeta value ζm(n1, . . . , nd), of depth d and weight w = 3d, there
exists a rational αn = ϑ(ζ(n1, . . . , nd)) such that:

ζm(n1, . . . , nd) =
αn

d!
ζm(3)d + terms of depth strictly smaller than d.I (6.8)

In the depth graded in depth 1, ∂gm1 , the generators are:

σ2i+1 = (−1)i(ade0)2i(e1).

We are looking at, in the depth graded:

exp◦(σ3) :=

n∑

n=0

1

n!
σ3 ◦ · · · ◦ σ3 =

n∑

n=0

1

n!
(ad(e0)2(e1))◦n. (6.9)
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In the commutative polynomial representation, via ρ, since ρ(σ2n+1) = x2n
1 , it becomes:

n∑

n=0

1

n!
x2
1◦(x2

1◦(· · · (x2
1◦x2

1) · · · )).

Lemma 6.1.1. The coefficient of ζm(3)p in ζm(n1, . . . , np) of weight 3p is given recursively:

αn1,...,np = δnp=3αn1,...,np−1

+

p∑

k=1
nk=1

(
δnk−1≥3αn1,...,nk−1−2,nk+1,...,np − δnk+1≥3αn1,...,nk−1,nk+1−2,...,np

)

+ 2

p∑

k=1
nk=2

(
−δnk−1≥3αn1,...,nk−1−2,nk+1,...,np + δnk+1≥3αn1,...,nk−1,nk+1−2,...,np

)
. (6.10)

Remarks:

· This is proved for motivic multiple zeta values, and by the period map, it also applies
to multiple zeta values.

· This lemma (as the next one, more precise) could be generalized for unramified motivic
Euler sums.

· All the coefficients α are all integers.

Proof. Recursively, let consider:

Pn+1(x1, · · · , xn+1) := x2
1◦Pn(x1, · · · , xn). (6.11)

By the definition of the linearized Ihara action (6.5):

Pn+1(x1, · · · , xn+1) =
n∑

i=0

(xi+1 − xi)
2Pn(x1, · · · , xi, xi+2, . . . , xn+1)

−
n∑

i=1

(xi+1 − xi)
2Pn(x1, · · · , xi−1, xi+1, . . . , xn+1)

= (xn+1−xn)
2Pn(x1, . . . , xn)+

n−1∑

i=0

(xi−xi+2)(xi+xi+2−2xi+1)Pn(x1, · · · , xi, xi+2, . . . , xn+1).

Turning now towards the coefficients ci defined by:

Pp(x1, · · · , xp) =
∑

cixi1
1 · · ·xip

p , we deduce:

ci1,...,ip = −δ i1=0
i2≥2

ci2−2,i3,...,ip+δip=2c
i1,··· ,ip−1+δ in=0

ip−1≥2
ci1,...,ip−2,ip−1−2−2δ ip=1

ip−1≥2

ci1,...,ip−2,ip−1−1

+

p−1∑

k=2
ik=0

(
δik−1≥2ci1,...,ik−1−2,ik+1,...,ip − δik+1≥2ci1,...,ik−1,ik+1−2,...,ip

)

+ 2

p−1∑

k=2
ik=1

(
−δik−1≥1ci1,...,ik−1−2,ik+1,...,ip + δik+1≥1ci1,...,ik−1,ik+1−2,...,ip

)
,

which gives the recursive formula of the lemma.
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Generalization. Another proof of the previous lemma is possible using the dual point of
view with the depth-graded derivations D3,p, looking at cuts of length 3 and depth 1.I

A motivic multiple zeta value of weight 3d and of depth p > d could also be expressed as:

ζm(n1, . . . , np) =
αn

d!
ζm(3)d + terms of depth strictly smaller than d. (6.12)

However, to compute this coefficient αn, we could not work as before in the depth graded;
i.e. this time, we have to consider all the possible cuts of length 3. Then, the coefficient
emerges when computing (D3)

◦d.

Lemma 6.1.2. The coefficient of ζm(3)d in ζm(n1, . . . , np) of weight 3d such that p > d, is
given recursively:

αn1,...,np = δnp=3αn1,...,np−1

+

p∑

k=1
nk=1

(
δnk−1≥3

k 6=1

αn1,...,nk−1−2,nk+1,...,np − δnk+1≥3

k 6=p

αn1,...,nk−1,nk+1−2,...,np

)

+ 2

p∑

k=1
nk=2

(
−δnk−1≥3αn1,...,nk−1−2,nk+1,...,np + δnk+1≥3

k 6=p

αn1,...,nk−1,nk+1−2,...,np

)

+

p−1∑

k=1
nk=1,nk+1=1

(
−δnk−1≥3

k 6=1

αn1,...,nk−1−1,nk+2,...,np + δnk+2≥3αn1,...,nk−1,nk+2−1,...,np

)

+

p−1∑

k=1
nk=1,nk+1=2

(
δnk−1≥3

or k=1

αn1,...,nk−1,nk+2,...,np + 2δnk+2≥2

k 6=p−1

αn1,...,nk−1,nk+2,...,np

)

+

p−1∑

k=1
nk=2,nk+1=1

(
−2δnk−1≥2

or k=1

αn1,...,nk−1,nk+2,...,np − δnk+2≥3

k 6=p−1

αn1,...,nk−1,nk+2,...,np

)
.

(6.13)

Proof. Let list first all the possible cuts of length 3 and depth 1 in a iterated integral with
{0, 1}:

Contribution of a 2: · · · 1 0 1 0 0 · · ·

+2

, · · · 0 0 1 0 1 · · ·

−2

Contribution of a 1: · · · 1 1 0 0 0 · · ·

−1

, · · · 0 0 0 1 1 · · ·

+1

Contribution of a 3: · · · 1 0 0 1 0 · · ·

−1

, · · · 0 1 0 0 1 · · ·

+1

.
The coefficient above the arrow is the coefficient of ζm(3) in Im(cut), using that:

ζm1 (2) = −2ζm(3), ζm(1, 2) = ζm(3), ζm(2, 1) = −2ζm(3), ζm1 (1, 1) = ζm(3).

Therefore, when there is a 1 followed or preceded by something greater than 4, the contri-
bution is ±1, while when there is a 2 followed or preceded by something greater than 3, the
contribution is ±2 as claimed in the lemma above. The contributions of a 3 in the third line

IThe coefficient α indeed emerges when computing (D3,p)
◦p.
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when followed of preceded by something greater than 2 get simplified (except if there is a 3
at the very end); when a 3 is followed resp. preceded by a 1 however, we assimilate it to the
contribution of a 1 preceded resp. followed by a 3; which leads exactly to the penultimate
lemma.
Additionally to the cuts listed above:

With a 11: · · · 0 0 1 1 1 · · ·

+1

, · · · 1 1 1 0 0 · · ·

−1

With a 21: · · · 0 1 0 1 1 · · ·

−2

, · · · 1 0 1 1 0 · · ·

−1

With a 12: · · · 0 1 1 0 1 · · ·

+1

, · · · 1 1 0 1 0 · · ·

+2

.
This analysis leads to the given formula.

In particular, a sequence of the type Y 12X resp. X21Y (X ≥ 2, Y ≥ 3) will imply a
(3) resp. (−3) times the coefficient of the same sequence without 12, resp. 21.

Examples: Let list a few families of multiple zeta values for which we have computed
explicitly the coefficient α of maximal depth:

Family Recursion relation Coefficient α
ζm({3}p) α{3}p = α{3}p−1 1
ζm({1, 2}p) α{1,2}p = α{1,2}p−1 1

ζm(2, 4, 3{3}p) α2,4,{3}p = α2,4,{3}p−1 + 2α{3}p+1 2(p+ 1)
ζm(4, 2, {3}p) α4,2,{3}p = 3α4,2,{3}p−1 − 2α{3}p+1 −3p+1 + 1
ζm({3}p, 4, 2) α{3}p,4,2 = −2α{3}p+1 −2
ζm({3}p, 2, 4) α{3}p,2,4 = 2α{3}p−1,2,4 − 2α{3}p+1 (−2)p 4

3 + 2
3

ζm(2, {3}p, 4) α2,{3}p,4 = 2α2,{3}p−1,4 2p+1

ζm(4, {3}p, 2) α4,{3}p,2 = −2α4,{3}p−1,2 (−2)p+1

ζm(1, 5, {3}p) α1,5,{3}p = α1,5,{3}p−1 − 1 −(p+ 1)
ζm({2}p, {4}p) α{2}p,{4}p = 4α{2}p−1,{4}p−1 22p−1

ζm({2}p, {3}a{4}p) α{2}p,{3}a{4}p = 2aα{2}p,{4}p 2a+2p−1

ζm({2}p, p+ 3) α{2}p,p+3 = 2α{2}p−1,p+1 2p

ζm(2, 3, 4, {3}p) α2,3,4,{3}p = α2,3,4,{3}p−1 + 2α2,4,{3}p 2(p+ 1)(p+ 2)

ζm(2, 1, 5, 4, {3}p) α2,1,5,4,{3}p = α2,1,5,4,{3}p−1 − α2,3,4,{3}p − 2(p+1)(p+2)(p+3)
3

ζm({2}a, a+ 3, {3}b) αa;b = 2αa−1;b + αa;b−1 2a
(
a+b
a

)

ζm({5, 1}n) with 3I α =
∑2p−1

i=1 (−1)i−1α{5,1}p or p−1with 3
II 1

For instance, for the coefficient αa;b;c associated to ζm({3}a, 2, {3}b, 4, {3}c), the recursive
relation is:

αa;b;c = αa;b;c−1 + 2αa;b−1;c − 2αa−1;b;c, which leads to the formula: (6.14)

IAny ζm({5, 1}p) where we have inserted some 3 in the subsequence.
IIEither a 3 has been removed, either a 5, 1 resp. 1, 5 has been converted into a 3 (with a sign coming from if we

consider the elements before or after a 1). If it ends with 3, the contribution of a 3 cancel with the contribution of
the last 1.
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αa;b;c = (−2)a
b−1∑

l=0

c−1∑

m=0

2l
(a+ l +m− 1)!

(a− 1)!l!m!
α0;b−l;c−m+2b

a−1∑

k=0

c−1∑

m=0

(−2)k (b+ k +m− 1)!

k!(b − 1)!m!
αa−k;0;c−m

+
b−1∑

l=0

a−1∑

k=0

(−2)k2l (k + l + c− 1)!

k!l!(c− 1)!
αa−k;b−l;0.

Besides, we can also obtain very easily:

αa;0;0 = (−2)a 4
3
+

2

3
, α0;b;0 = 2b+1, α0;0;c = 2(c+ 1), and α0;b;c = 2b+1

(
b+ c+ 1

c

)

Indeed, using
∑n

k=0

(
a+k
a

)
=
(
n+a+1
a+1

)
, and

∑n
k=0(n− k)

(
k
a

)
=
(
n+1
a+2

)
, we deduce:

α0;b;c = 2α0;b−1;c + α0;b;c−1 = 2b+1
(∑c−1

k=0

(
b+k−1
b−1

)
(c− k + 1) +

∑b−1
k=0

(
c+k−1
c−1

))

= 2b+1
((

b+c+1
b+1

)
−
(
b+c−1
b−1

)
+
(
b+c−1
b−1

))
= 2b+1

(
b+c+1

c

)
.

Conjectured examples:

Family Conjectured coefficient α

ζm({2, 4}p) αp such that 1−
√
cos(2x) =

∑ αp(−1)p+1x2p

(2p)!

ζm({1, 5}p) Euler numbers: 1
cosh(x) =

∑ αpx
2p

(2p)!

ζm({1, 5}p, 3) (−1)pEuler ZigZag numbers E2p+1 = 22p+2(22p+2 − 1)
B2p+2

2p+2

6.1.2 N > 1, The diagonal algebra.

For N = 2, 3, 4, grDd Hd is 1 dimensional, generated by ζm(1ξ ), where ξ ∈ µN primitive fixed,
which allows us to consider the projection:

ϑN : grDd H1
d → Q. (6.15)

Giving a motivic multiple zeta value relative to µN , of weight d, depth d, there exists a
rational such that:

ζm
(

1, . . . , 1

ǫ1, . . . , ǫd

)
=

αǫ

n!
ζm
(
1

ξ

)d

+ terms of depth strictly smaller than d. (6.16)

The coefficient α being calculated recursively, using depth 1 results:

Lemma 6.1.3.

αǫ1,...,ǫd =





1 if N ∈ {2, 3}.
∑d

k=1
ǫk 6=1

βǫk

(
δǫk−1ǫk 6=1αǫ1,...,ǫk−1ǫk,ǫk+1,...,ǫd − δ ǫk+1ǫk 6=1

k<d

αǫ1,...,ǫk−1,ǫk+1ǫk,...,ǫd

)
if N = 4.

,

with βǫk =

{
2 if ǫk = −1
1 else

.

Proof. In regards to redundancy, the proof being in the same spirit than the previous section
(N = 1, w = 3d), is left to the reader.I

IThe cases N = 2, 3 correspond to the case N = 4 with β always equal to 1.
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Remarks:

· For the following categories, the space grDd Hd is also one dimensional:

MT
(
O6

[
1

2

])
, MT

(
O6

[
1

3

])
, MT (O5) ,MT (O10) , MT (O12) .

The recursive method to compute the coefficient of ζm
(

1
η

)d
would be similar, except

that we do not know a proper basis for these spaces.

· For N = 1, and w ≡ 2 mod 3 for instance, grDmaxHn is generated by the elements of
the Euler ♯ sums basis:
ζ♯,m(1, s, 2) with s composed of 3’s and one 5, ζ♯,m(3, 3, . . . , 3, 2) and ζ♯,m(1, 3, . . . , 3, 4).

6.2 Families of unramified Euler sums.

The proof relies upon the criterion 5.1.3, which enables us to construct families of honorary
multiple zeta values by iteration on the depth, with parity patterns up to depth 5.

Notations: The occurrences of the symbols E or O can denote arbitrary even or odd inte-
gers, whereas every repeated occurrence of symbols Ei (respectively Oi) denotes the same
positive even (resp. odd) integer. Beware, here, O, n must be different from 1, whereas O
and n may be 1. The bracket {·, . . . , ·} means that every permutation of the listed elements
is allowed.

Theorem 6.2.1. The following motivic Euler sums are motivic multiple zeta values:

⋄ Depth 1: All the depth-one Euler sums except ζm(1)..

⋄ Depth 2: All the depth-two Euler sums with odd weight (without 1).
In even weight:

ζm(O,O), ζm(E,E)

And some linear combinations:

ζm(n1, n2) + ζm(n2, n1), ζ
m(n1, n2) + ζm(n1, n2), ζ

m(n1, n2)− ζm(n2, n1).

(2n1 − 1)ζm(n1, 1) + (2n1−1 − 1)ζm(1, n1).

⋄ Depth 3: In even weight:

ζm(
{
E,O,O

}
), ζm(O,E,O), ζm(O,E,O), ζm(O1, E,O1), ζ

m(O1, E,O1), ζ
m(E1, E,E1).

In odd weight:
ζm(
{
E,E,O

}
), ζm(E,O,E), ζm(E,O,E).

And some linear combinations:

ζm(n1, n2, n3) + (−1)n1−1ζm(n3, n2, n1) with n2 + n3 odd .

⋄ Depth 4: In even weight:

ζm(E,O,O,E), ζm(O,E,O,E), ζm(O,E,E,O), ζm(E,O,E,O),

ζm(E,O1, E,O1), ζ
m(O1, E,O1, E), ζm(E1, E2, E1, E2).

⋄ Depth 5: In odd weight:
ζm(O1, E1, O1, E1, O1).
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Examples: These motivic Euler sums are motivic multiple zeta values:

ζm(25, 14, 17), ζm(17, 14, 17), ζm(24, 14, 24), ζm(6, 23, 17, 10), ζm(13, 24, 13, 24, 13).

Remarks:

· This result is true for motivic Euler sums, and implies the analogue statement for Euler
sums.

· Notice that for each honorary MZV above, the reverse sum is honorary too, which was
not obvious a priori, since the condition c1 below is not symmetric.

· For instance, for a motivic Euler sum in depth 2, weight n, Z is unramified if and only
if D1(Z) = 0 and Dn−1(Z) = 0.

Sufficient condition. Let present the sufficient criterion used here to verify that a motivic
Euler sum is unramified.
Nota Bene: This criterion is not completely necessary since it does not cover the unramified
Q-linear combinations of motivic Euler sums, such as those presented in Chapter 4 (mo-
tivic Euler ♯ sums with odd and −even), neither some isolated symmetric examples where
the unramified terms appearing in D2r+1 could cancel between them. However, it embrace
general families of Euler sums which are unramified.

Let Z an Euler sum. These four conditions are sufficient for Z to be unramified:

c1 : No 1 in Z.
[Implies that D1(Z) = 0.]

c2 : For each beginning (n1, . . . , ni) of odd weight, the remaining Euler sums ζ(ni+1, . . . , np)
is a MZV.
[For terms of Type a0 in (6.17)].

c3 : If a cut removes an odd-weight part (such that there is no symmetric cut possible),
the remaining Euler sums (right side in Type a,b), is a MZV.
[For terms of Type a,b in (6.17).]

c4 : Each sub-sequence (ni, . . . , nj) in Z, of even weight such that
∏j

k=i ǫk 6= 1 is symmetric.
[To cancel terms of Type c in (6.17).]

These conditions refers to the expression of the derivations D2r+1 (from Lemma 2.4.2):

D2r+1 (ζ
m (n1, . . . , np)) = (a0) δ2r+1=

∑
i
k=1|nk|ζ

l(n1, . . . , ni)⊗ ζm(ni+1, · · ·np)

(a,b)
∑

1≤i<j≤p

2r+1=
∑j

k=i
|nk|−y

{
−δ2≤y≤|nj|ζ

l
|nj |−y(nj−1, . . . , ni+1, ni)

+δ2≤y≤|ni|ζ
l
|ni|−y(ni+1, · · · , nj−1, nj)

⊗ζm(n1, . . . , ni−1,

j∏

k=i

ǫk·y, nj+1, · · ·np).

(c) +
∑

1≤i<j≤p

2r+2=
∑j

k=i
|nk|

δ∏j
k=i ǫk 6=1

{
+ζl|ni|−1(ni+1, · · · , nj−1, nj)

−ζl|nj|−1(nj−1, · · · , ni+1, ni)
⊗ζm(n1, . . . , ni−1, 1, nj+1, · · ·np).

(6.17)

Proof of Theorem 6.2.1. The proof is done by recursion on the depth, and using the previous
criterion. D1 is obviously 0 for all these elements, which validates already the condition
(c1). It is sufficient then to prove that all the Euler sums appearing in the right side when
computing D2r+1(·), r > 0 are unramified (i.e. multiple zeta values); it corresponds to the
conditions (c2),(c3), (c4), according which term we consider.
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Terms c Since Euler sums with an 1 can not be unramified, we have to cancel terms of
type c. The symmetry condition (c4), obviously true for the elements in the theorem,
get rid of these terms. Beware, for the few linear combinations of MES given in the
theorem, the cuts of type (c) get simplified together (left to the reader).

Terms a,b Checking that the right side are unramified is straightforward once we have
listed these right side (cf. the table below), using recursion hypothesis (since D2r+1

decreases the depth).
Remark: No need to write when the right side of a,b has depth 1, since it would be
obviously a multiple zeta value. In particular, depth 2 Euler sums claimed (odd weight
or (O,O), (E,E)) are directly proved. Idem for depth 3 Euler sums of even weight
since the corresponding right sides (in a0,a,b terms) have depth ≤ 2 and odd weights,
which by recursion hypothesis, is a MZV.
Therefore, let list now the possible right sides of a cut (such that there is not a sym-
metric cut in (6.17) that would cancel it) for Euler sums (up to reversal symmetry) of
depth > 3, or depth 3, odd weight:

Terms a0 Terms a,b

(O,E,E) (E,E) ,(O,O)
(E,O,E) / (E,E)

(E,O,E) / (E,E), (E,E)

(E,O,O,E) (O,E) (E,O,E), (E,O,E), (E,O,E), (E,O), (O,E)
(O,E,O,E) (E,O,E), (O,E) (E,O,E), (O,E,E), (O,E,E), (O,E)

(O,E,E,O) (E,E,O), (E,O) (E,E,O), (O,O,O), (O,E,E), (O,E), (E,O)
(E,O1, E,O1) (E,O) (E,E,O), (E,O,E), (E,O), (E,O)
(E1, E2, E1, E2) / (O,E,E), (E,O,E), (E,E,O), (E,O), (O,E)

(O1, E1, O1, E1, O1) (E1, O1, E1, O1), (E,O1, E,O1), (O1, E,E,O1), (O1, E,O1, E),
(O1, E,O1) (O,E,O), (O,E,O), (O,O)

The verification that these terms are unramified is straightforward by recursion.

Complying with Conditions c 1− 4.

Moreover, under these conditions, the only general unramified families of motivic Euler
sums that we can obtain in this way (without linear combinations), are the one listed in

Theorem 6.2.1, as proved below.

Sketch of the proof. Notice first that the condition c4 implies in particular that there are
no consecutive sequences of the type (since it would create type c terms):

Sequences not allowed : OO,OO,EE,EE.

It implies, from depth 3, that we can’t have the sequences (otherwise one of the non allowed
depth 2 sequences above will appear in a,b terms):

Sequences not allowed : EEO,EEEO,EEOE,EOE,EEO,OEE,EOE,EOE,OOO.

Going on in this recursive way, carefully, leads to the previous theorem.

For instance, let Z is a motivic Euler sum Z with no 1, and let detail two cases:

Depth 3, Even weight: The right side of D2r+1 has odd weight and depth smaller than 2,
hence is always MZV if there is no 1 by depth 2 results. It boils down to the condition
c4: Z must be either symmetric (such as O1EO1 or E1EE1 with possibly one or three
overlines) either have exactly two overlines. Using the analysis above of the allowed
sequences in depth 2 and 3 for condition c3,4 leads to the following:

(E,O,O), (O,O,E), (O,E,O), (O,E,O), (O,E,O), (O1, E,O1), (O1, E,O1), (E1, E,E1).
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Depth 4, Even weight: Let Z = ζm
(

n1,...,n4

ǫ1,...,ǫ4

)
. To avoid terms of type c with a right

side of depth 1: if ǫ1ǫ2ǫ3 6= 1, either n1 + n2 + n3 is odd, or n1 = n3 and ǫ2 = −1;
if ǫ2ǫ3ǫ4 6= 1, either n2 + n3 + n4 is odd, or n2 = n4 and ǫ3 = −1. The following
sequences are then not allowed:

(E,O,O,E), (E,O,O,E), (E,O,E,O), (E,E,O,O), (O,O,E,E).

6.3 Motivic Identities

As we have seen above, in particular in Lemma 4.4.3, the coaction enables us to prove some
identities between MMZV or MES, by recursion on the depth, up to one rational coefficient
at each step. This coefficient can be deduced then, if we know the analogue identity for
MZV, resp. Euler sums. Nevertheless, a motivic identity between MMZV (resp. MES)
is stronger than the corresponding relation between real MZV (resp. Euler sums); it may
hence require several relations between MZV in order to lift an identity to motivic MZV. An
example of such a behaviour occurs with some Hoffman ⋆ elements, ((iv) in Lemma 4.4.3).

In this section, we list a few examples of identities, picked from the zoo of existing identi-
ties, that we are able to lift easily from Euler sums to motivic Euler sums: Galois trivial
elements (action of the unipotent part of the Galois group being trivial), sums identities, etc.

Nota Bene: For other cyclotomic MMZV, we could somehow generalize this idea, but there
would be several unknown coefficients at each step, as stated in Theorem 2.4.4. For N = 3
or 4, we have to consider all Dr, 0 < r < n, and there would be one resp. two (if weight
even) unknown coefficients at each step ; for N = ‘6’, if unramified, considering Dr, r > 1,
there would be also one or two unknown coefficients at each step.

Example: Here is an identity known for Euler sums, proven at the motivic level by re-
cursion on n via the coaction for motivic Euler sums (and using the analytic identity):

ζm({3}n) = ζm({1, 2}n) = 8nζm({1, 2}n). (6.18)

Proof. These three families are stable under the coaction:

D2r+1(ζ
m({3}n)) = δ2r+1=3sζ

a({3}s) ⊗ ζm({3}n−s).
D2r+1(ζ

m({1, 2}n)) = δ2r+1=3sζ
a({1, 2}s) ⊗ ζm({1, 2}n−s).

D2r+1(ζ
m({1, 2}n)) = δ2r+1=3sζ

a({1, 2}s) ⊗ ζm({1, 2}n−s).

Indeed, in both case, in the diagrams below, cuts (3) and (4) are symmetric and get simpli-
fied by reversal, as cuts (1) and (2), except for last cut of type (1) which remains alone:

ζm({3}n): · · · 0 1 0 (010)i 0 1 0 · · ·

(1) (2)

(3) (4)

, ζm({1, 2}n) : · · · 0 1 1 (011)i0 1 1 0 · · ·

(1) (2)

(3)(4)

Similarly for ζm({1, 2}n): cuts of type (3), (4) resp. (1), (2) get simplified together, except
the first one, when ǫ = ǫ′ in the diagram below. The other possible cuts of odd length would
be (5) and (6) below, when ǫ = −ǫ′, but each is null since antisymmetric.

· · · 0 ǫ ǫ (0 • •)i0 ǫ′ ǫ′ 0 · · ·

(5)

(6)

, where • alternates between ±1.
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Galois trivial. The Galois action of the unipotent group U is trivial on Q[Lm,2n] =
Q[ζm(2)n]. To prove an element of H2n is a rational multiple of Lm,2n, it is equivalent
to check it is in the kernel of the derivations D2r+1, for 1 ≤ 2r+1 < 2n, by Corollary 2.4.5.
We have to use the (known) analogue identities for MZV to conclude on the value of such
a rational.

Example:

· Summing on all the possible ways to insert n 2’s.

ζm({1, 3}p with n 2 inserted ) =

(
2p+ n

n

)
π4p+2n,m

(2n+ 1)(4p+ 2n+ 1)!
. (6.19)

· More generally, with fixed (ai) such that
∑

ai = n: I

∑

σ∈S2p

ζm(2aσ(0)1, 2aσ(1) , 3, 2aσ(2) , . . . , 1, 2aσ(2p−1) , 3, 2aσ(2p)) ∈ Qπ4p+2n,m. (6.20)

Proof. In order to justify why all the derivations D2r+1 cancel, the possible cuts of odd
length are, with X = {01}a2i+2+1{10}a2i+3+1 · · · {01}a2j−2{10}a2j−1 :

· · · (0 1)a2i+1 (1 0)a2i+1+1 X (0 1)a2j+1 (1 0)a2j+1+1 · · ·

(1) (2)

(3) (4)

.

All the cuts get simplified by Antipode � 4.7, which proves the result, as follows:

· Cut (1) for (a0, . . . , a2p) with Cut (2) for (a0, . . . , a2i−1, a2j+1 · · · , a2i, a2j+2, · · · , a2p).

· Similarly between (3) and (4), which get simplified considering the sequence where
(a2i+1, . . . , a2j) is reversed.

Polynomial in simple zetas. A way to prove that a family of (motivic) MZV are polyno-
mial in simple (motivic) zetas, by recursion on depth:

Lemma 6.3.1. Let Z ∈ H1
n a motivic multiple zeta value of depth p.

If the following conditions hold, ∀ 1 < 2r + 1 < n, m := ⌊n2 ⌋ − 1:

(i) D2r+1,p(Z) = PZ
r (ζ

m(3), ζm(5), . . . , ζm(2m+ 1), ζm(2)),

with PZ
r (X1, · · · , Xm, Y ) =

∑

2s+
∑

(2k+1)·ak=n−2r−1

βr
a1,...,am,sX

a1
1 · · ·Xam

m Y s.

(ii) For ak, ar > 0 :
βr
a1,...,ar−1,··· ,am,s

ar+1 =
βk
a1,...,ak−1,...,am,s

ak
.

Then, Z is a polynomial in depth 1 MMZV:

Z = αζm(n) +
∑

2s+
∑

(2k+1)ak=n

αa1,...,am,sζ
m(3)a1 · · · ζm(2m+ 1)amζm(2)s.II

IBoth appears also in Charlton’s article.[26].

IIIn particular, αa1,...,am,s =
βr
a1,...,ar−1,...,am,s

ar
for ar 6= 0.
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Proof. Immediate with Corollary 2.4.5 since:

D2r+1,p (ζ
m(3)a1 · · · ζm(2m+ 1)amζm(2)s) = arζ

m(3)a1 · · · ζm(2r+1)ar · · · ζm(2m+1)amζm(2)s.

Example: Some examples were given in the proof of Lemma 4.4.3; the following family is
polynomial in zetas I:

ζm({1}n ,m).

Sum formulas. Here are listed a few examples of the numerous sum identities known for
Euler sumsII which we can lift to motivic Euler sums, via the coaction. For these identities,
as we see through the proof, the action of the Galois group is trivial; the families being
stable under the derivations, we are able to lift the identity to its motivic version via a
simple recursion.

Theorem 6.3.2. Summations, if not precised are done over the admissible multi-indices,
with w(·), resp. d(·), resp. h(·) indicating the weight, resp. the depth, resp. the height:

(i) With fixed even (possibly negative) {ai}1≤i≤p of sum 2n:III

∑

σ∈Sp

ζm(aσ(1), . . . , aσ(p)) ∈ Qπ2n,m.

In particular:IV

ζm({2n}p), ζm(
{
2n
}p

) ∈ Qπ2np,m.

More precisely, with Hoffman [54] VI

∑
∑

ni=2n

ζm (2n1, . . . , 2nk) =

1

22(k−1)

(
2k − 1

k

)
ζm(2n)−

⌊k−1
2 ⌋∑

j=1

1

22k−3(2j + 1)B2j

(
2k − 2j − 1

k

)
ζm(2j)ζm(2n−2j).

(ii) With Granville [49], or Zagier [83] VI

∑

w(k)=n,d(k)=d

ζm(k) = ζm(n).

(iii) With Aoki, Ohno [4]VI II

∑

w(k)=n,d(k)=d

ζ⋆,m(k) =

(
n− 1

d− 1

)
ζm(n).

∑

w(k)=n,h(k)=s

ζ⋆,m(k) = 2

(
n− 1

2s− 1

)
(1− 21−n)ζm(n).

IProof method: with recursion hypothesis on coefficients, using:

D2r+1(ζ
m({1}n ,m)) = −

min(n−1,2r−1)∑

j=max(0,2r+2−m)

ζl({1}j , 2r + 1 − j) ⊗ ζm({1}n−j−1 ,m − 2r + j).

IIUsually proved considering the generating function, and expressing it as a hypergeometric function.
IIIThis would be clearly also true for MMZV⋆.
IVThe precise coefficient is given in [11], (48) and can then be deduced also for the motivic identity.
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(iv) With Le, Murakami[64]VI

∑

w(k)=n,h(k)=s

(−1)d(k)ζm(k) =
{

0 if n odd.
(−1)

n
2 πm,n

(n+1)!

∑n
2 −s

k=0

(
n+1
2k

)
(2 − 22k)B2k if n even.

(v) With S. Belcher (?)VI

∑
w(·)=2n
d(·)=2p

ζm(odd, odd > 1, odd, . . . , odd, odd > 1) = αn,pζm(2)n, αn,p ∈ Q
∑

w(·)=2n+1
d(·)=2p+1

ζm(odd, odd > 1, odd, . . . , odd > 1, odd) =
∑n

i=1 β
n,p
i ζm(2i+ 1)ζm(2)n−i, βn,p

i ∈ Q
∑

w(·)=2n+1
d(·)=2p+1

ζm(odd > 1, odd, . . . , odd, odd > 1) =
∑n

i=1 γ
n,p
i ζm(2i+ 1)ζm(2)n−i, γn,p

i ∈ Q

Remark: The permutation identity (i) would in particular imply that all sum of MZV at
even arguments times a symmetric function of these same arguments are rational multiple
of power of Lm.
Many specific identities, in small depth have been already found (as Machide in [66], resp.
Zhao, Guo, Lei in [51], etc.), and can be directly deduced for motivic MZV, such as:

n−1∑

k=1

ζ(2k, 2n− 2k)





1 = 3
4ζ(2n)

4k + 4n−k = (n+ 4
3 + 4n

6 )ζ(2n)
(2k − 1)(2n− 2k − 1) = 3

4 (n− 3)ζ(2n)

∑
ζ(2i, 2j, 2n− 2i− 2j)





1 = 5
8ζ(2n)− 1

4ζ(2n− 2)ζ(2)
ij + jk + ki = 5n

64 ζ(2n) + (4n− 9
10 )ζ(2n− 2)ζ(2)

ijk = n
128 (n− 3)ζ(2n)− 1

32 ζ(2n− 2)ζ(2) + 2n−5
8 ζ(2n− 4)ζ(4)

Proof. We refer to the formula of the derivations Dr in Lemma A.1.1. For many of these
equalities, when summing over all the permutations of a certain subset, most of the cuts
will get simplified two by two as followed:

ζm (k1, . . . , ki, ki+1, . . . , kj , kj+1, · · · kd) : 0; · · · 10ki−110ki+1−1 · · · 0kj−1−110kj−110kj+1−1 · · · ; 1.
(6.21)

ζm(k1, · · · , ki, kj , · · · , ki+1, kj+1, . . . , kd) : 0; · · · 10ki−110kj−1 · · · 0ki+2−110ki+1−110kj+1−1 · · · ; 1.
(6.22)

It remains only the first cuts, beginning with the first 0, such as:

δ2r+1=
∑i

j=1 kj
ζm (k1, . . . , ki)⊗ ζm(ki+1, . . . , kd) , (6.23)

and possibly the cuts from a ki = 1 to kd, if the sum is over admissible MMZV: I

−δ2r+1<
∑d

j=i+1 kj
ζm


ki+1, . . . , kd−1, 2r + 1−

d−1∑

j=i+1

kj


⊗ζm


k1, . . . , ki−1,

d∑

j=i+1

kj − 2r


 .

(6.24)

(i) From the terms above in D2r+1, (6.21), and (6.22) get simplified together, and there are
no terms (6.23) since the ai are all even. Therefore, it is in the kernel of ⊕2r+1<2nD2r+1

with even weight, hence Galois trivial.
For instance, for ζm(

{
2n
}p

), with ǫ, ǫ′ ∈ {±1}:

VIThe person(s) at the origin of the analytic equality for MZV, used in the proof for motivic MZV.
IThere, beware, the MZV at the left side can end by 1.
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· · · ǫ 0a 0 X 0 0a ǫ′ · · · , X = 02n−a−2{±ǫ02n−1}i − ǫ′02n−a−2, alternated sign in X.

if ǫ′ = −ǫ

Either, ǫ = ǫ′ and X is symmetric, and by reversal of path (cf. §A.1.1), cuts above get
simplified, or ǫ = −ǫ′ and X is antisymmetric, and the cuts above still get simplified
since Im(ǫ; 0a+1X ; 0) = −Im(0; X̃0a+1; ǫ) = −Im(0;X0a+1;−ǫ).

(ii) Let us denote this sum G(n, d), and G1(n, d) the corresponding sum where a 1 at the
end is allowed. As explained in the proof’s preamble, the remaining cuts being the
first ones and the one from a ki = 1 to the last kd:

D2r+1(G(n, d)) =
d−1∑

i=0

Gl
1(2r+1, i)⊗G(n−2r−1, d−i)−

d−1∑

i=0

Gl
1(2r+1, i)⊗G(n−2r−1, d−i) = 0.

(iii) This can be proven also computing the coaction, or noticing that it can be deduced
from Euler relation above, turning a MZV⋆ into a sum of MZV of smaller depth, it
turns to be:

d∑

i=1

∑

w(k)=n,d(k)=i

(
n− i− 1

d− i

)
ζm(k).

For the Aoki-Ohno identity, using the formula for MZV ⋆, and with recursion hypoth-
esis, we could similarly prove that the coaction is zero on these elements, and conclude
with the result for MZV.

(iv) Let us denote this sum G−(n, s) and G−,(1)(n, s) resp. G−,1(n, s) the analogue sums
with possibly a 1 at the end, resp. with necessarily a 1 at the end. Looking at
the derivations, since we sum over all the permutations of the admissible indices, all
the cuts get simplified with its symmetric cut as said above, and it remains only the
beginning cut (with the first 0), and the cut from a kj = 1 to the last kd, which leads
to:

D2r+1(G−(n, s)) =
s−1∑

i=0

(
Gl

−,(1)(2r + 1, i)−Gl
−(2r + 1, i+ 1)−Gl

−,1(2r + 1, i)
)
⊗G−(n−2r−1, s−i)

=

s−1∑

i=0

(Gl
−(2r + 1, i)−Gl

−(2r + 1, i+ 1))⊗G−(n− 2r − 1, s− i).

Using recursion hypothesis, it cancels, and thus, Galt(n, s) ∈ Qζm(n). Using the
analogue analytic equality, we conclude.

(v) For odd sequences with alternating constraints (> 1 or ≥ 1 for instance), cuts between
ki and kj will get simplified with some symmetric terms in the sum, except possibly
(when odd length), the first (i.e. from the first 1 to a first 0) and the last (i.e. from
a last 0 to the very last 1) one. More precisely, with O any odd integer, possibly all
different:

·

D2r+1









∑

w(·)=2n
d(·)=2p

ζm(O,O > 1, · · · , O,O > 1)









=

p−1
∑

i=0









∑

w(·)=2r+1
d(·)=2i+1

+ζl(O,O > 1, · · · , O > 1, O)
−ζl(O,O > 1, . . . , O > 1, O)









⊗
∑

w(·)=2n−2r−1
d(·)=2p−2i−1

ζm(O,O > 1, . . . , O,O > 1) = 0.
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·

D2r+1









∑

w(·)=2n+1
d(·)=2p+1

ζm(O > 1, O, . . . , O,O > 1)









=

p−1
∑

i=0









∑

w(·)=2r+1
d(·)=2i+1

ζl(O > 1, O, . . . , O > 1)









⊗
∑

w(·)=2n−2r
d(·)=2p−2i−1

ζm(O,O > 1, · · · , O,O > 1).

By the previous identity, the right side is in Qπ2n−2r, which proves the result
claimed; it gives also the recursion for the coefficients: βn,p

r =
∑p−1

i=0 βr,i
r αn−r,p−i.

·

D2r+1









∑

w(·)=2n+1
d(·)=2p+1

ζm(O,O > 1, . . . , O > 1, O)









=

+
∑p−1

i=0

(

∑

w(·)=2r+1
d(·)=2i+1

ζm(O,O > 1, . . . , O)

)

⊗
∑

w(·)=2n−2r
d(·)=2p−2i−1

ζm(O,O > 1, · · · , O > 1)

+
∑p−1

i=0

(

∑

w(·)=2r+1,
d(·)=2i+1

+ζm(O,O > 1, . . . , O)
−ζm(O,O > 1, . . . , O)

)

⊗
∑

w(·)=2n−2r
d(·)=2p−2i−1

ζm(O > 1, O, · · · , O > 1, O)

As above, by recursion hypothesis, the right side of the first sum is in Qπ2n−2r,
which proves the result claimed, the second sum being 0; the rational coefficients
γ are given by a recursive relation.
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Appendix A

A.1 Coaction

The coaction formula given by Goncharov and extended by Brown for motivic iterated
integrals applies to the ⋆, ⋆⋆, ♯ or ♯♯ version by linearity I. Here is the version obtained for
MMZV ⋆, ⋆⋆, ♯ or ♯♯:II

Lemma A.1.1. L being a sequence in {0,±⋆} resp. {0,±♯}, with possibly 1 at the beginning,
ǫ ∈ {±⋆} resp. ∈ {±♯}, and sǫ := sign(ǫ).

DrI
m
s (0;L; 1) = δ L=AǫB

w(A)=r
I lk (0;A; sǫ)⊗ Ims−k (0; sǫ, B; 1)

+
∑

L=AǫB0C
w(B)=r

I l (sǫ;B; 0)⊗


Ims (0;A, ǫ, 0, C; 1)︸ ︷︷ ︸

Tǫ,0

+ Ims (0;A, 0, 0, C; 1)︸ ︷︷ ︸
T0,0




+
∑

L=A0BǫC
w(B)=r

I l (0;B, sǫ)⊗


Ims (0;A, 0, ǫ, C; 1)︸ ︷︷ ︸

T0,ǫ

+ Ims (0;A, 0, 0, C; 1)︸ ︷︷ ︸
T0,0




+
∑

L=AǫBǫC
w(B)=r

I l (0;B, sǫ)⊗


Ims (0;A, ǫ, 0, C; 1)︸ ︷︷ ︸

Tǫ,0

− Ims (0;A, 0, ǫ, C; 1)︸ ︷︷ ︸
T0,ǫ




+
∑

L=AǫB−ǫC
w(B)=r


I l (0;B;−sǫ)⊗ Ims (0;A, ǫ, 0, C; 1)︸ ︷︷ ︸

Tǫ,0

+I l (sǫ;B; 0)⊗ Ims (0;A, 0,−ǫ, C; 1)︸ ︷︷ ︸
T0,ǫ

I l (sǫ;B;−sǫ)⊗ Ims (0;A, ǫ,−ǫ, C; 1)︸ ︷︷ ︸
Tǫ,−ǫ


 .

IRecall the identities 2.29 to turn a ⋆ (resp. ♯) into a 1 (resp. two times a 1) minus a 0.
IIFor purpose of stability: if there is a ±1 at the beginning, as for ⋆ or ♯ versions, the cut with this first ±1

will be let as a T±1,0 term (and not converted into a Tǫ,0 less a T0,0), in order to still have a ±1 at the beginning;
whereas, if there is no ±1 at the beginning, as for ⋆⋆ or ♯♯ version even the first cut (first line) has to be converted
into a T0,ǫ less a T0,0, in order to still have a ǫ at the beginning.
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Remarks:

· We will refer to these different terms T for each cut in the whole appendix when using
the coaction.

· The expression of Dr for specific MMZV ⋆ and Euler ♯ sums is simplified below thanks
to antipodal and hybrid relations, and is fundamentally used in the proofs of Chapter
4.

Proof. The proof is straightforward from (2.45), using the linearity (with 2.29) in both
directions:

(i) First, to turn ǫ into a difference of ±1 minus 0 in order to use (2.45).

(ii) Then, in the right side, a ±1 appeared inside the iterated integral when looking at
the usual coaction formula which is turned into a sum of a term with ǫ (denoted Tǫ,0

or T0,ǫ) and a term with 0 (denoted T0,0) by linearity of the iterated integrals and in
order to end up only with 0, ǫ in the right side.

Listing now the different cuts leads to the expression of the lemma, since:

· The first line corresponds to the initial cut (from the s+ 1 first 0).

· The second line corresponds to a cut either from ±ǫ to 0; the ±ǫ being ±1.

· The third line corresponds to a cut from 0 to ±ǫ.

· The fourth line corresponds to cut from ǫ to ǫ, with two choices: a ǫ being fixed to 0,
the other one fixed to 1. Replacing 1 by (ǫ) + (0), this leads to a T0,ǫ, a Tǫ,0 and two
T0,0 terms which get simplified together.

· The last lines correspond to cuts from ǫ to −ǫ, with three possibilities: one being fixed
to 0, the other one fixed to ±1, or the first being 1, the second −1. This leads to a
Tǫ,0, a T0,−ǫ and a Tǫ,−ǫ, since the T0,0 terms get simplified.

A.1.1 Simplification rules

This section is devoted on the simplification of the coaction, in the case of motivic Euler
sums: we gather terms in D2r+1 according to their right side, using relations (§4.2) between
motivic iterated integrals I l ∈ L to simplify the left side.

Notations: We use the notation of the iterated integrals inner sequences and represent
a term of a cut in D2r+1 (referring to Lemma 4.4.2) by arrows between two elements of
this sequence. The weight of the cut (which is the length of the subsequence in the iterated
integral) would always be considered odd here.I The diagrams show which terms get sim-
plified together: i.e. these which have same right side, but opposite left side, by the relation
considered in the coalgebra L.

Composition : The composition rule (cf. §1.6) in the coalgebra L boils down to:

I l(a;X ; b) ≡ −I l(b;X ; a), with X any sequence of 0,±1,±⋆,±♯. (A.1)

Hence, when considering a cut, we can exchange the extremities of the integral if we
change of sign; this exchange is considerably used in this section, without mentioning.

ISince we are here only interested in motivic Euler sums, the non zero weight graded parts in the coaction are
these corresponding to odd weights: D2r+1, r ≥ 0.
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Antipode �: 4.7 It corresponds to a reversal of path for iterated integrals:

I l(a;X ; b) ≡ (−1)wI l(b; X̃; a) for any X sequence of 0,±1,±⋆,±♯. Hence:

· If X symmetric, i.e. X̃ = X , these cuts get simplified, since they have same right
side (Im(· · · 0ǫi+10 · · · )) while their left side are opposite:I

0 {ǫ}i ǫ X ǫ {ǫ}i 0

· If X antisymmetric, i.e. X̃ = −X , the following cut is zeroII:
ǫ X −ǫ

.

Shift For MES ⋆⋆ and, when weight and depth odd for Euler ♯♯ sums:

(Shift) ζ•n−1(n1, · · · , np) = ζ•n1−1(n2, · · · , np, n) (A.2)

0 0a • X • 0a 0

T0,0T0,0

,
0 • X • 0

T0,• T•,0

,
•1 0a •2 X •2 0a •1

T0,•T•,0

0 0a • X • 0a • .

T0,•T0,0

or
• 0a • X • 0a 0 .

T0,0T•,0

The index •1 and •2 means they can have different sign, otherwise • is fixed in ±⋆,±♯.

Cut For ES ♯♯, with even depthIII, odd weight:

0 0a 0 X ±♯ 0a ±♯

T0,0
T0,±♯

or
±♯ 0a ±♯ X 0 0a 0

T0,0
T±♯,0

(A.3)

Cut Shifted III For ES ♯♯, with even depthIII, odd weight:

±♯ 0a ±♯ X 0 0a ±♯

T±♯,0 T0,±♯

or
±♯ 0a 0 X ±♯ 0a ±♯

T±♯,0
T0,±♯

(A.4)

Minus For ES ♯♯, with even depth, odd weight:

±♯ 0a 0 X 0 0a ±♯

T±♯,0 T0,±♯

(A.5)

I Il(ǫ;Xǫi+1; 0) ≡ −Il(0; ǫi+1X̃; ǫ) ≡ −Il(0; ǫi+1X; ǫ).
II Since: Il(ǫ;X;−ǫ) ≡ Il(ǫ;X; 0) + Il(0;X;−ǫ) ≡ Il(ǫ;X; 0) − Il(−ǫ; X̃; 0) ≡ Il(ǫ;X; 0) − Il(−ǫ;−X; 0) ≡ 0.

IIINote that the depth considered here needed to be even is the depth of the bigger cut.
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Sign For Euler ♯♯ sums with even depth, odd weight, i.e. X ∈ 0,±♯{}×:

I l(0;X ; ǫ) = I l(0;X ;−ǫ). Hence this cut is zero :
ǫ X −ǫ

Tǫ,−ǫ

. (A.6)

Sign hence also means that the ± sign at one end of a cut does not matter.

A.1.2 MMZV ⋆

Let express each MMZV⋆ as:

ζ⋆,m(2a0 , c1, · · · , cp, 2ap).

As we will see below, this writing is suitable for the coaction expression, since most of the
cuts from a 2 to another 2 get simplified by the rules above. The iterated integral corre-
sponding:

I
(
0; 1, 0, (⋆, 0)

a0−1
, ⋆ · · · 0ci−1 (⋆0)

ai ⋆, . . . , 0cj−1 (⋆0)
aj ⋆, . . . , 0cp−1 (⋆0)

ap ; 1
)
. (A.7)

Considering D2r+1 after some simplifications:I

Lemma A.1.2.

D2r+1 (ζ
⋆,m(2a0 , c1, · · · , cp, 2ap)) = (A.8)

δr
∑

i<j

[
δ 3≤α≤ci+1−1

0≤β≤aj

ζ⋆,lci+1−α(2
aj−β , . . . , 2ai+1)⊗ ζ⋆,m(· · · , 2ai , α, 2β, cj+1, · · · )

(
−δci+1>3ζ

⋆⋆,l
2 (2aj−β−1, . . . , 2ai+1) + δcj+1>3ζ

⋆⋆,l
2 (2aj , . . . , 2ai+1−β−1)+

−δci+1=1ζ
⋆⋆,l(2aj−β , . . . , 2ai+1) + δcj+1=1ζ

⋆⋆,l(2ai+1−β , . . . , 2aj )

+δ ci+2=1

β>ai+1

ζ⋆⋆,l1 (2aj+ai+1−β, . . . , 2ai+2)− δ cj=1

β>aj

ζ⋆⋆,l1 (2ai+1+aj−β, . . . , 2aj−1).

+δβ>ai+1ζ
⋆⋆,l
ci+2−2(2

ai+1+aj−β+1, . . . , 2ai+2)− δβ>ajζ
⋆⋆,l
cj−2(2

ai+1+aj−β+1, . . . , 2aj−1)
)

⊗ζ⋆,m(· · · , 2ai , ci+1, 2
β, cj+1, · · · )

−δ 3≤α≤cj−1

0≤β≤ai

ζ⋆,lcj−α(2
ai−β , . . . , 2aj−1)⊗ ζ⋆,m(· · · , ci, 2β, α, 2aj , · · · )

]
.

Proof. We look at cuts of odd interior length between two elements of the sequence inside
A.7. By Shift, the following cuts get simplified:

· · · 0ci−3 0 0 ⋆ (0 ⋆)ai · · · 0 0 0cj−3 (⋆ 0)aj ⋆ · · ·

.
More precisely, T0,0 resp. T0,⋆ above get simplified with T0,0 resp. T⋆,0 below (shifted by

IHere δr underlines that the left side must have a weight equal to 2r + 1.
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one at the right), by colors, two by two. The dotted arrows mean that in the particular case
where ci = 1 resp. cj = 1, only T0,0 get simplified.
The following arrows get simplified by Shift (A.2), still above with below and by colors:

· · · 0ci−3 0 0 ⋆ 0 (⋆ 0)ai−1 ⋆ · · · 0 0 0cj−3 ⋆ 0 (⋆ 0)aj−1 ⋆ · · ·

T0,⋆T⋆,0

T0,⋆

T⋆,0

T0,0

T0,0

T0,0

T0,0

· · · 0ci−3 0 0 ⋆ 0 (⋆ 0)
ai−1

⋆ · · · 0 0 0cj−3 ⋆ 0 (⋆ 0)
aj−1

⋆ · · ·

T0,⋆ T0,⋆

T0,⋆

T0,⋆

T⋆,0

T⋆,0T⋆,0

T⋆,0

It remains: · · · 0ci−2 0 ⋆ 0 (⋆ 0)
ai−1

⋆ · · · 0 0cj−2 ⋆ 0 (⋆ 0)
aj−1

⋆ · · ·

Cyan arrows above resp. below are T0,⋆ resp. T0,⋆ terms; magenta ones above resp. below
stand for T0,0 and T0,⋆ resp. for T0,0 and T⋆,0 terms.
If ci = 1 (the case cj = 1, antisymmetric, is omitted), it remains also the following cuts
(T⋆,0 for black ones or T0,⋆ for cyan ones):
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· · · ⋆ ⋆ 0 (⋆ 0)
ai−1

⋆ · · · 0 0cj−2 ⋆ 0 (⋆ 0)
aj−1

⋆ · · ·

Gathering the remaining cuts in this diagram, according the right side:

1. For ζ⋆,m(· · · , 2ai ,α, 2β, cj+1, · · · ):
(
δ 3≤α<ci+1

0≤β<aj

ζ⋆⋆,lci+1−α(2
ai+1 , . . . , 2aj−β)−

(
δ 4≤α<ci+1

0≤β<aj

+ δ α=3
0≤β<aj

)
ζ⋆⋆,lci+1−α+2(2

ai+1 , . . . , 2aj−β−1)

)
.

Using Shift (A.2) for the first term and then using the definition of ζ⋆ it turns into:

δ 3≤α<ci+1
0≤β<aj

(
ζ⋆⋆,l1 (ci+1 − α+ 1, 2ai+1 , . . . , 2aj−β−1)− ζ⋆⋆,lci+1−α+2(2

ai+1 , . . . , 2aj−β−1)
)

= δ 3≤α<ci+1
0≤β<aj

ζ⋆,l1 (ci+1 − α+ 1, 2ai+1, . . . , 2aj−β−1).

Applying antipodes A
�

◦A∗ ◦A�:

= δ 3≤α<ci+1
0≤β<aj

ζ⋆,lci+1−α(2
aj−β, . . . , 2ai+1),

which gives the first line in (A.8).

2. For ζ⋆,m(· · · , 2ai ,α, 2aj , cj+1, · · · ), the corresponding left sides are:

−
(
δcj+2≤α≤ci+1 + δ α=cj+1

ci+1>cj

)
ζ⋆⋆,lci+1+cj−α(2

ai+1 , . . . , 2aj−1)

+

(
δci+1+2≤α≤cj + δα=ci+1+1

cj>ci+1

)
ζ⋆⋆,lci+1+cj−α(2

aj−1 , . . . , 2ai+1)

+δ3≤α<ci+1ζ
⋆⋆,l
ci+1−α(2

ai+1 , . . . , cj)− δ3≤α<cjζ
⋆⋆,l
cj−α(2

aj−1 , . . . , ci+1)

Using Antipode ∗ and turning some ǫ into ′1 + 0′:

= +δ3≤α<ci+1ζ
⋆⋆,l
ci+1−α(2

ai+1 , . . . , cj)− δ3≤α<cjζ
⋆⋆,l
cj−α(2

aj−1 , . . . , ci+1)

+(−1)cj<ci+1δmin(cj ,ci+1)<α≤max(cj,ci+1)ζ
⋆⋆,l
ci+1+cj−α(2

ai+1 , . . . , 2aj−1)

= δ3≤α<ci+1ζ
⋆,l
ci+1−α(cj , . . . , 2

ai+1)− δ3≤α<cjζ
⋆,l
cj−α(ci+1, . . . , 2

aj−1)

This gives exactly the same expression than the first and fourth case for β = ai or aj ,
and are integrated to them in (A.8).

3. For ζ⋆,m(· · · , ci+1,2
β, cj+1, · · · ): I

−δ ci+1>3

0≤β<aj

ζ⋆⋆,l2 (2aj−β−1, . . . , 2ai+1) + δ cj+1>3

0≤β<ai+1

ζ⋆⋆,l2 (2aj , . . . , 2ai+1−β−1)

+δ β>ai+1
ci+1>3

ζ⋆⋆,lci+2−2(2
ai+1+aj−β+1, . . . , 2ai+2)− δβ>ajζ

⋆⋆,l
cj−2(2

ai+1+aj−β+1, . . . , 2aj−1)

−δ ci+1=1

1≤β<aj

ζ⋆⋆,l(2aj−β , . . . , 2ai+1) + δ cj+1=1

1≤β<ai+1

ζ⋆⋆,l(2ai+1−β , . . . , 2aj )

+δ ci+2=1

β>ai+1

ζ⋆⋆,l1 (2aj+ai+1−β, . . . , 2ai+2)− δ cj=1

β>aj

ζ⋆⋆,l1 (2ai+1+aj−β, . . . , 2aj−1).

IIt includes the case α = 2.
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4. For ζ⋆,m(· · · , ci,2β, α, 2aj , · · · ):
(
−δ 2≤α≤cj−1

0≤β≤ai

ζ⋆⋆,lcj−α(2
aj−1 , . . . , 2ai−β) +

(
δ 4≤α≤cj+1

0≤β≤ai−1

+ δ α=3
0≤β≤ai−1

)
ζ⋆⋆,lcj−α+2(2

aj−1 , . . . , 2ai−β−1)

)

Antisymmetric to 1.

This leads to the lemma, with the second case incorporated in the first and last line.

A.1.3 Euler ♯ sums with even,odd

Let us consider the following family:

ζ♯,m
(
{even,odd}×

)
, i.e. negative even and positive odd integers

which, in terms of iterated integrals corresponds to, with ǫ ∈ {±♯}:

Im
(
0;

{
1,0odd,−♯
1,0even, ♯

}
, · · · ,

{
ǫ,0odd,−ǫ
ǫ,0even, ǫ

}
, · · · ; 1

)
. (A.9)

Lemma A.1.3. The family ζ♯m ({even, odd}×) is stable under the coaction.

Proof. Looking at the possible kinds of cuts, and gathering them according the right side:

· · · ǫi 0a−1 ǫi+1 X ǫj−1 0b−1 ǫj · · · with





X = 0a1−1ǫ20
a2−1 · · · ǫn0an−1,

ǫi+1X ↔ (y1, y2, . . . , yn),
where yi = ±ai according to the sign of ǫ

.

(1), T0,ǫ

(2), T0,ǫ

(3), T0,0

(4), T0,0

(5), Tǫ,0

(6), Tǫ,0

These cuts have the same form for the right side in the coaction:

Im(0; · · · , ǫi0αǫj , · · · ; 1).

Notice there would be no term Tǫ,−ǫ in a cut from ǫ to −ǫ because of Sign (A.6) identity,
therefore you have there all the possible cuts pictured.
A priori, cuts can create in the right side a sequence {ǫ,0even,−ǫ} or

{
ǫ,0odd, ǫ

}
inside the

iterated integral; these cuts are the unstable ones, since they are out of the considered fam-
ily. However, by coupling these cuts two by two, and using the rules listed at the beginning
of the Annexe, the unstable cuts would all get simplified.
Indeed, let examine each of the terms (1 − 6)I:

IThere is no remaining cuts between ǫ and ǫ. Notice also that the left sides of the remaining terms have an
even depth.
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Term Left side Unstable if Simplified with

(1)

ζ♯♯,la−1−α(a1, . . . , an, b), n even the previous cut:
with α < a. either (6) by Minus

or (5) by Cut
or (3) by Cut I

(2)

ζ♯♯,lb−1(an, . . . , a1) ǫi+1 = ǫj the previous cut:
with α = a. either with (5) by Shift

or with (6) by Cut Shifted
or with (3) by Shift.

(3)

−ζ♯♯,la+b−α−1(a1, . . . , an) n odd the following cut:
with α > b. either (1) by Cut

or (2) by Shift
or (4) by Shift.

(4)

ζ♯♯,la+b−α−1(an, . . . , a1) n odd the previous cut:
with α > a . either (6) by Cut Shifted

or with (5) by Shift
or with (3) by Shift.

(5)

−ζ♯♯,la−1(a1, . . . , an) ǫi = ǫj−1 the following cut:
with α = b. either with (1) by Cut,

or with (2) by Shift,
or with (4) by Shift.

(6)

−ζ♯♯,lb−1−α(an, · · · a1, a) n even the following cut:
either (1) by Minus
or with (2) by Cut Shifted
or with (4) by Cut Shifted

Derivations. Let use the writing of the Conjecture 4.4.4:

ζ♯,m(B0, 1
γ1 , . . . , 1γp , Bp) with Bi < 0 if and only if Bi even . (A.10)

Nota Bene: Beware, for instance Bi may be equal to 1, which implies that γi = γi+1 = 0.
Indeed, we look at the indices corresponding to a sequence (2a0 , c1, . . . , cp, 2

ap) as in the
Conjecture 4.4.4:

Bi = 2ai + 3− δci − δci+1

B0 = 2a0 + 1− δc1
Bp = 2ap + 2− δcp

, γi := ci − 3 + 2δci , where





ai ≥ 0
ci > 0, ci 6= 2

δc :=

{
1 if c = 1
0 else .

.

Lemma A.1.4.

D2r+1

(
ζ♯,m(B0, 1

γ1 , . . . , 1γp , Bp)
)
= II (A.11)

δr

[
−δ 2≤B≤Bj+1

0≤γ≤γi+1−1

ζ♯,l(Bj −B + 1, 1γj , . . . , 1γi+1−γ−1)⊗ ζ♯,m(B0 · · · , Bi, 1
γ , B, 1γj+1 , . . . , Bp)




+δBi+1<Bζ
♯♯,l
Bi+1+Bj−B(1

γj , . . . , 1γi+2)

−δBj<Bζ
♯♯,l
Bi+1+Bj−B(1

γi+2 , . . . , 1γj )

+ζ♯♯,lBi+1−B(1
γi+2 , . . . , Bj)− ζ♯♯,lBj−B(1

γj , . . . , Bi+1)


⊗ζ♯,m(B0 · · · , Bi, 1

γi+1 , B, 1γj+1 , . . . , Bp)

IIt depends on the sign of b + 1 − α here for instance.
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δ 1≤B≤Bi+1+1

0≤γ≤γj+1−1

ζ♯,l(Bi+1 −B + 1, 1γi+2, . . . , 1γj+1−γ−1)⊗ ζ♯,m(B0 · · · , 1γi+1, B, 1γ , Bj+1, . . . , Bp)

]
,

where B is positive if odd, negative if even.

Proof. Nota Bene: For the left side, we only look at odd weight w, and the parity of the
depth d is fundamental since the relations stated above depend on the parity of w − d.
For instance, for such a sequence (1γi , Bi, . . . , Bj−1,1

γj ) (with the previous notations),
weight− depth has the same parity than δci + δcj .

The following cuts get simplified, with Shift, since depth is odd (Bi odd if ci, ci+1 6= 1):

· · · ǫi+1 ǫ
γi+1−1
i+1 ǫi+1 0Bi+1−3 0 0 · · · ǫj 0 0 0Bj−3 ǫj+1 ǫ

γj+1−1
j+1 · · ·

T0,⋆

T0,⋆

T0,⋆

T0,⋆

T⋆,0

T⋆,0 T⋆,0

T⋆,0

It remains, where all the unstable cuts are simplified by the Lemma A.1.4, cuts that we can
gather into four groups, according to the right side of the coaction:

(i) ζ♯,m(B0 · · · , Bi, 1
γ , B, 1γj+1 , . . . , Bp).

(ii) ζ♯,m(B0 · · · , Bi, 1
γ , Bj , . . . , Bp).

(iii) ζ♯,m(B0 · · · , Bi, 1
γi+1 , B, 1γj+1 , . . . , Bp).

(iv) ζ♯,m(B0 · · · , 1γi+1 , B, 1γ , Bj+1, . . . , Bp).

It remains, where (iv) terms, antisymmetric of (i) ones, are omitted to lighten the diagrams:

IIHere δr indicates that left side has to be of weight 2r + 1.
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· · · ǫi+1 ǫ
γi+1−1
i+1 ǫi+1 0Bi+1−3 0 0 · · · ǫj 0 0 0Bj−3 ǫj+1 ǫ

γj+1−1
j+1 · · ·

T0,⋆

T0,⋆

T0,⋆

T0,⋆

T⋆,0

T⋆,0

T⋆,0

T⋆,0

T⋆,0

T0,⋆

· · · ǫi+1 ǫ
γi+1−1
i+1 ǫi+1 0Bi+1−3 0 0 · · · ǫj 0 0 0Bj−3 ǫj+1 ǫ

γj+1−1
j+1 · · ·

T0,0

T0,0

T0,0

T0,ǫ

T0,ǫ, T0,0

T0,ǫ

T0,0

T0,ǫ

Tǫ,0 , T0,0

Tǫ,0 , T0,0

Tǫ,0 , T0,0

Tǫ,0 , T0,0

Tǫ,0 , T0,0

Tǫ,0 , T0,0

Tǫ,0 , T0,0

Tǫ,0 , T0,0

Tǫ,0 , T0,0

We just have to list the terms remaining in these two diagrams. Gathering all the terms of
the coaction according to the right side as above gives:

(i) Looking at the magenta terms, with 2 ≤ B ≤ Bj−1 or B = Bj+1 and 0 ≤ γ ≤ γi+1−1:

ζ♯♯,lBj−B+1(1
γj , . . . , 1γi+1−γ−1)−ζ♯♯,lBj−B(1

γj , . . . , 1γi+1−γ) = −ζ♯,l(Bj−B+1, 1γj , . . . , 1γi+1−γ−1)

With even depth for the first term and odd for the second since otherwise the cuts
would be unstable and simplified by Cut; here also ci+1 6= 1.

(ii) These match exactly with the left side of (i) for B = Bj and (iv) terms for B = Bi.

(iii) The following cuts:

δBi+1≥Bζ
♯♯,l
Bi+1−B(1

γi+2 , . . . , Bj)− δBj≥Bζ
♯♯,l
Bj−B(1

γj , . . . , Bi+1)+

δBi+1<Bζ
♯♯,l
Bi+1+Bj−B(1

γj , . . . , 1γi+2)− δBj<Bζ
♯♯,l
Bi+1+Bj−B(1

γi+2 , . . . , 1γj ).

The parity of weight−depth for the first line is equal to the parity of δci+1 + δcj+1 +B.
Notice that if this is even, the first line has odd depth whereas the second line has even
depth, and by Cut and Antipode∗, all terms got simplified. Hence, we can restrict
to B written as 2β + 3 − δci+1 − δcj+1 , the first line being of even depth, the second
line of odd depth.

(iv) Antisymmetric of (i).
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A.2 Galois descent in small depths, N = 2, 3, 4, ‘6’, 8

A.2.1 N = 2: Depth 2, 3

Here we have to consider only one Galois descent, from H2 to H1.
In depth 1 all the ζm(s), s > 1 are MMZV. Let us detail the case of depth 2 and 3 as an
application of the results of Chapter 5. In depth 2, coefficients are explicit:

Lemma A.2.1. The depth 2 part of the basis of the motivic multiple zeta values is:
{
ζm(2a+ 1, 2b+ 1)−

(
2(a+ b)

2b

)
ζm(1, 2(a+ b) + 1), a, b > 0

}
.

Proof. Indeed, we have if a, b > 0, D1(ζ
m(2a+ 1, 2b+ 1)) = 0 and for r > 0:

D2r+1,2(ζ
m(2a+ 1, 2b+ 1)) = ζl(2r + 1)⊗ ζm(2(a+ b− r) + 1)

(
−δa≤r<a+b

(
2r

2a

)
+ δr=a + δb≤r<a+b

(
2r

2b

)
(2−2r − 1) + δr=a+b(2

−2r − 2)

(
2(a+ b)

2b

))
.

There is only the case r = a+b where a term (ζm(1)) which does not belong to F0H appears:

D2r+1,2(ζ
m(2a+1, 2b+ 1)) ≡ δr=a+b(2

−2r−2)
(
2(a+ b)

2b

)
ζl(2r+1)⊗ζm(1) in the quotient H≥1.

Referring to the previous results, we can correct ζm(2a+ 1, 2b+ 1) with terms of the same
weight, same depth, and with at least one 1 (not at the end), which here corresponds only
to ζm(1, 2(a+ b) + 1).
Furthermore, the last equality being true in the quotient H≥1:

D2r+1,2(ζ
m(1, 2(a+ b) + 1)) = ζl(2r + 1)⊗ (−δr<a+b + δr=a+b(2

−2r − 2))ζm(2(a+ b− r) + 1)

≡ δr=a+b(2
−2r − 2)ζl(2r + 1)⊗ ζm(1).

According to these calculations of infinitesimal coactions:

ζm(2a+ 1, 2b+ 1)−
(
2(a+ b)

2b

)
ζm(1, 2(a+ b) + 1) belongs to F0H , i.e. is a MMZV.

Examples: Here are some motivic multiple zeta values:

ζm(3, 3)− 6ζm(1, 5) , ζm(3, 5)− 15ζm(1, 7) , ζm(5, 3)− 15ζm(1, 7) , ζm(5, 7)− 210ζm(1, 11).

Remarks:

· The corresponding Euler sums
{
ζ(2a+ 1, 2b+ 1)−

(
2(a+b)

2b

)
ζ(1, 2(a+ b) + 1), a, b > 0

}

are a generating family of MZV in depth 2.

· Similarly, we can prove that the following elements are (resp. motivic) MZV, if no 1:

ζ(A,B) ζ(A,B) + ζ(A,B) if A,B odd
ζ(A,B)
ζ(A,B)

}
if A+B odd ζ(A,B) + (−1)A

(
A+B−2
A−1

)
ζ(1, A+B − 1) if A+B even

ζ(1, 1)− 1
2ζ(1)

2

ζ(1, 1)− 1
2ζ(1)

2 ζ(A,B)− (−1)A
(
A+B−2
A−1

)
ζ(1, A+B − 1) if

{
A+B even
A,B 6= 1

Lemma A.2.2. The depth 2 part of the basis of F1H is:
{
ζm(2a+ 1, 2b+ 1), (a, b) 6= (0, 0)

}
.
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Proof. No need of correction (Bn,2,≥2 is empty for n 6= 2), these elements belong to F1H.

Lemma A.2.3. The depth 3 part of the basis of motivic multiple zeta values is:

{
ζm(2a+ 1, 2b+ 1, 2c+ 1)−

a+b+c∑

k=1

αa,b,c
k ζm(1, 2(a+ b + c− k) + 1, 2k + 1)

−
(
2(b+ c)

2c

)
ζm(2a+ 1, 1, 2(b+ c) + 1), a, b, c > 0

}
. (A.12)

where αa,b,c
k ∈ Zodd are solutions of M3X = Aa,b,c. With Aa,b,c such that rth−coefficient is:

δb≤r<a+b

(
2(n− r)

2c

)(
2r

2b

)
− δa<r<a+b

(
2(n− r)

2c

)(
2r

2a

)
− δb≤r<b+c

(
2(n− r)

2a

)(
2r

2b

)

−δr≤a

(
2(n− r)

2(b+ c)

)(
2(b+ c)

2c

)
+δr<b+c

(
2(n− r)

2a

)(
2(b+ c)

2c

)
+δc≤r<b+c

(
2r

2c

)(
2(n− r)

2a

)
(2−2r−1).

M3 the matrix whose (r, k)th coefficient is:

δr=a+b+c(2
−2r−2)

(
2n

2k

)
+δk≤r<n

(
2r

2k

)
(2−2r−1)−δr<n−k

(
2(n− r)

2k

)
−δn−k≤r<n

(
2r

2(n− k)

)
.

Proof. Let ζm(2a + 1, 2b + 1, 2c+ 1), a, b, c > 0 fixed, and substract elements of the same
weight, of depth 3 until it belongs to gr3F0H.
Let calculate infinitesimal coproducts referring to the formula (5.8) in the quotient H≥1 and
use previous results for depth 2, with n = a+ b+ c:

D2r+1,3(ζ
m(2a + 1, 2b + 1, 2c+ 1)) ≡ ζl(2r + 1)⊗

[

δr=b+c

(2(b + c)

2c

)

(2−2r − 2)ζm(2a + 1, 1)

+ζm(1, 2(n− r) + 1)

(

δa=r

(2(n− r)

2c

)

+ δb≤r<a+b

(2r

2b

)(2(n− r)

2c

)

− δa≤r<a+b

(2r

2a

)(2(n− r)

2c

)

−δb≤r<b+c

(2r

2b

)(2(n − r)

2a

)

+ δc≤r<b+c

(2r

2c

)(2(n− r)

2a

)

(2−2r − 1)

)]

.

At first, let substract
(
2(b+c)

2c

)
ζ(2a+ 1, 1, 2(b+ c) + 1) such that the D−1

1,2D
1
2r+1,3 are equal

to zero, which comes to eliminate the term ζm(2a+ 1, 1) appearing (case r = b+ c).
So, we are left to substract a linear combination

a+b+c∑

k=1

αa,b,c
k ζm(1, 2(a+ b+ c− k) + 1, 2k + 1)

such that the coefficients αa,b,c
k are solutions of the system M3X = Aa,b,c where Aa,b,c =

(Aa,b,c
r )r satisfying in H≥1:

D2r+1,3

(

ζm(2a + 1, 2b + 1, 2c+ 1)−
(2(b + c)

2c

)

ζ(2a + 1, 1, 2(b+ c) + 1)

)

≡

Aa,b,c
r ζl(2r + 1)⊗ ζm(1, 2(n− r) + 1),

and M3 = (mr,k)r,k matrix such that:

D2r+1,3(ζ
m(1, 2(a+ b+ c− k) + 1, 2k + 1)) = mr,kζ

l(2r + 1)⊗ ζm(1, 2(n− r) + 1).

This system has solutions since, according to Chapter 5 results, the matrix M3 is invertible.I
Then, the following linear combination will be in F0H:

ζm(2a+1, 2b+1, 2c+ 1)−

a+b+c
∑

k=1

α
a,b,c
k ζm(1, 2(a+b+c−k)+1, 2k + 1)−

(2(b + c)

2c

)

ζ(2a+1, 1, 2(b+ c) + 1).

IIndeed, modulo 2, M3 is an upper triangular matrix with 1 on diagonal.
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The coefficients αa,b,c
k belong to Zodd since coefficients are integers, and det(M3) is odd.

Referring to the calculus of infinitesimal coactions, Aa,b,c and M3 are as claimed in lemma.

Examples:

· By applying this lemma, with a = b = c = 1 we obtain the following MMZV:

ζm(3, 3, 3) +
774

191
ζm(1, 5, 3)− 804

191
ζm(1, 3, 5) +

450

191
ζm(1, 1, 7)− 6ζm(3, 1, 5).

Indeed, in this case, with the previous notations:

M3 =




27
4 −1 −1
− 53

8 − 111
16 −1

− 1905
64 − 1905

64 − 127
64


 , A1,1,1 =




51
2
0
0


 .

· Similarly, we obtain the following motivic multiple zeta value:

ζm(3, 3, 5)+
850920

203117
ζm(1, 7, 3)+

838338

203117
ζm(1, 5, 5)−3673590

203117
ζm(1, 3, 7)+

20351100

203117
ζm(1, 1, 9)−15ζm(3, 1, 7).

There: M3 =




− 63
4 15 −1 −1

− 93
8 − 31

16 −6 −1
− 1009

64 − 1905
64 − 1023

64 −1
− 3577

64 − 17885
128 − 3577

64 − 511
256


 , A1,1,2 =




210
387
8
0
0


 .

Lemma A.2.4. The depth 3 part of the basis of F1H is:
{
ζm(2a+ 1, 2b+ 1, 2c+ 1)− δ a=0

or c=0
(−1)δc=0

(
2(a+ b+ c)

2b

)
ζm(1, 1, 2(a+ b+ c) + 1)

−δc=0

(
2(a+ b)

2b

)
ζ(1, 2(a+ b) + 1, 1), at most one of a, b, c equals zero

}
.

Proof. Let ζm(2a+ 1, 2b+ 1, 2c+ 1) with at most one 1.

Our goal is to annihilate D−1
1,3 and {D−1

1,3 ◦D1
2r+1}r>0, in the quotient H≥1.

Let first cancel D−1
1,3: if c 6= 0, it is already zero; otherwise, for c = 0, in H≥1, according to

the results in depth 2 for F0, we can substract
(
2(a+b)

2a

)
ζ(1, 2(a+ b) + 1, 1) since:

D1,3(ζ
m(2a + 1, 2b+ 1, 1)) ≡

(2(a + b)

2a

)

ζm(1, 2(a + b) + 1) ≡
(2(a+ b)

2a

)

D1,3(ζ
m(1, 2(a + b) + 1, 1)).

Furthermore, with ≡ standing for an equality in H≥1:

D−1
1,2D

1
2r+1,3(ζ

m(2a + 1, 2b+ 1, 2c+ 1)) = δr=b+c

(2r

2c

)

(2−2r − 2)ζm(2a + 1)

≡ δ r=b+c
a=0

(2(b + c)

2c

)

(2−2(b+c) − 2)ζm(1).

D−1
1,2D

1
2r+1,3(ζ

m(1, 1, 2(a + b+ c) + 1)) = δr=a+b+c(2
−2(a+b+c) − 2)ζm(1).

D−1
1,2D

1
2r+1,3(ζ

m(1, 2(a+ b+ c) + 1, 1)) = δr=a+b+c(2
−2(a+b+c) − 2)ζm(1).

Therefore, to cancel D−1
1,2 ◦D1

2r+1,3:

· If a = 0 we substract
(
2(b+c)

2c

)
ζm(1, 1, 2(b+ c) + 1).

· If c = 0, we add
(
2(b+c)

2c

)
ζm(1, 1, 2(a+ b) + 1).
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Depth 4. The simplest example in depth 4 of MMZV obtained by this way, with αi ∈ Q:

−ζm(3, 3, 3, 3)−3678667587000

4605143289541
ζm(1, 1, 1, 9)+

9187768536750

4605143289541
ζm(1, 1, 3, 7)+

41712466500

4605143289541
ζm(1, 1, 5, 5)

−9160668717750

4605143289541
ζm(1, 1, 7, 3) +

11861255103300

4605143289541
ζm(1, 3, 1, 7) +

202283196216

4605143289541
ζm(1, 3, 3, 5)

− 993033536436

4605143289541
ζm(1, 3, 5, 3) +

8928106562124

4605143289541
ζm(1, 5, 1, 5)− 1488017760354

4605143289541
ζm(1, 5, 3, 3)

−450

191
ζm(3, 1, 1, 7) +

804

191
ζm(3, 1, 3, 5)− 774

191
ζm(3, 1, 5, 3) + 6ζm(3, 3, 1, 5)

+α1ζ
m(1,−11)+α2ζ

m(1,−9)ζm(2)+α3ζ
m(1,−7)ζm(2)2+α4ζ

m(1,−5)ζm(2)3+α5ζ
m(1,−3)ζm(2)4.

A.2.2 N = 3, 4: Depth 2

Let us detail the case of depth 2 as an application of the results in Chapter 5 and start by
defining some coefficients appearing in the next examples:

Definition A.2.5. Set αa,b
k ∈ Z such that M(αa,b

k )b+1≤k≤ n
2
−1 = Aa,b with n = 2(a+ b+1):

M :=

((
2r − 1

2k − 1

))

b+1≤r,k≤ n
2 −1

;Aa,b :=

(
−
(
2r − 1

2b

))

b+1≤r≤n
2 −1

;βa,b :=

(
n− 2

2b

)
+

a+b∑

k=b+1

αk

(
n− 2

2k − 1

)
.

Nota Bene: The matrix M having integers as entries and determinant equal to 1, and A
having integer components, the coefficients αa,b

k are obviously integers; the matrix M and
its inverse are lower triangular with 1 on the diagonal. Furthermore:I:

αa,b
b+i = (−1)i

(
2b+ 2i− 1

2i− 1

)
ci,

αa,b
b+1 = −(2b+ 1), αa,b

b+2 = 2

(
2b+ 3

3

)
, αa,b

b+3 = −16
(
2b+ 5

5

)
, αa,b

b+4 = 272

(
2b+ 7

7

)
.

Lemma A.2.6. The depth 2 part of the basis of MMZV, for even weight n = 2(a+ b+ 1),
is:







ζm
(

2a+ 1, 2b+ 1

1, ξ

)

− βa,bζm
(

1, n− 1

1, ξ

)

−

n
2
−1

∑

k=b+1

α
a,b
k ζm

(

n− 2k, 2k

1, ξ

)

, a, b > 0







.

Proof. II Let Z = ζm(2a+ 1, 2b+ 1) fixed, with a, b > 0.

First we substract a linear combination of ζm
(

n−2k,2k
1,ξ

)
in order to cancel {D2r}. It is

possible since in depth 2, because ζl
(
2r
1

)
= 0:

D2r(ζ
m(x1, x2)) = δx2≤2r≤x1+x2−1(−1)x2

(2r − 1

x2 − 1

)

ζl
(

2r

ξ

)

⊗ ζm
(

x1 + x2 − r

ξ

)

.

Hence it is sufficient to choose αk such that Mαa,b = Aa,b as in Definition A.2.5.
Now, it remains to satisfy D1 ◦ D2r+1(·) = 0 (for r = n − 1 only) in order to have an
element of FkN/Q,P/1

0 Hn. In that purpose, let substract βa,bζm(1, n− 1; 1, ξ) with βa,b as in
Definition A.2.5) according to the calculation of D1 ◦D2r+1(·), left to the reader.

IThere ci ∈ N does not depend neither on b nor on a.
IIWe omit the exponent ξ indicating the projection on the second factor of the derivations Dr , to lighten the

notations.
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Examples: The following are motivic multiple zeta values:

· ζm
(

5,3
1,ξ

)
− 75ζm

(
1,7
1,ξ

)
+ 3ζm

(
4,4
1,ξ

)
− 20ζm

(
2,6
1,ξ

)
.

· ζm
(

3,5
1,ξ

)
+ 15ζm

(
1,7
1,ξ

)
+ 5ζm

(
6,2
1,ξ

)
.

· ζm
(

5,5
1,ξ

)
− 350ζm

(
1,9
1,ξ

)
+ 5ζm

(
4,6
1,ξ

)
− 70ζm

(
2,8
1,ξ

)
.

· ζm
(

7,5
1,ξ

)
+ 12810ζm

(
1,11
1,ξ

)
+ 5ζm

(
6,6
1,ξ

)
− 70ζm

(
4,8
1,ξ

)
+ 2016ζm

(
2,10
1,ξ

)
.

· ζm
(

9,5
1,ξ

)
−685575ζm

(
1,13
1,ξ

)
+5ζm

(
8,6
1,ξ

)
−70ζm

(
6,8
1,ξ

)
+2016ζm

(
4,10
1,ξ

)
−89760ζm

(
2,12
1,ξ

)
.

Lemma A.2.7. The depth 2 part of the basis of FkN/Q,P/1
1 Hn is for even n:







ζm
(

2a + 1, 2b+ 1

1, ξ

)

−

n
2
−1

∑

k=b+1

α
a,b
k ζm

(

n− 2k, 2k

1, ξ

)

, a, b ≥ 0, (a, b) 6= (0, 0)







,

For odd n, the part in depth 2 of the basis of FkN/Q,P/1
1 Hn is:

{

ζm
(

x1, x2

1, ξ

)

+ (−1)x2+1
( n− 2

x2 − 1

)

ζm
(

1, n− 1

1, ξ

)

, x1, x2 > 1, one even, the other odd

}

.

Proof. · For even n, we need to cancel D2r (else D2s ◦D2r(·) 6= 0), so we substract the
same linear combination than in the previous lemma.

· For odd n, we need to cancel D1◦D2r. Since D1◦D2r(Z) = (−1)x2
(
n−2
x2−1

)
, we substract

(−1)x2+1
(
n−2
x2−1

)
ζm(1, n− 1).

Lemma A.2.8. The depth 2 part of the basis of FkN/Q,P/P
0 Hn (= HMT 2

n if N = 4) is:






ζm
(

2a+ 1, 2b+ 1

1, ξ

)

−

n
2
−1

∑

k=b+1

α
a,b
k ζm

(

n− 2k, 2k

1, ξ

)

, a, b ≥ 0







.

Proof. To cancel D2r, we substract the same linear combination than above.

Lemma A.2.9. The depth 2 part of the basis of FkN/Q,P/P
1 Hn is for even n:







ζm
(

2a+ 1, 2b+ 1

1, ξ

)

−

n
2
−1

∑

k=b+1

α
a,b
k ζm

(

n− 2k, 2k

1, ξ

)

, a, b ≥ 0,







,

And for odd n, the part in depth 2 of the basis of FkN/Q,P/P
1 Hn is:

{

ζm
(

x1, x2

1, ξ

)

, x1, x2 ≥ 1, one even, the other odd

}

.

Proof. If n is even, to cancel {D2r}, we use the same linear combination than above.
If n is odd, we already have ζm(x1, x2; 1, ξ) ∈ FkN/Q,P/P

1 Hn.
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A.2.3 N = 8: Depth 2

Let us explicit the results for the depth 2; proofs being similar (albeit longer) as in the
previous sections are left to the reader; same notations than the previous case.

Lemma A.2.10. · The depth 2 part of the basis of MMZVµ4 is:
{

ζm
(

x1, x2

1, ξ

)

+ ζm
(

x1, x2

−1,−ξ

)

+ ζm
(

x1, x2

1,−ξ

)

+ ζm
(

x1, x2

−1, ξ

)

, xi ≥ 1

}

.

· The depth 2 part of the basis of motivic Euler sums is:
{

ζm
(

2a+ 1, 2b+ 1

1, ξ

)

+ ζm
(

2a + 1, 2b+ 1

−1,−ξ

)

+ ζm
(

2a+ 1, 2b+ 1

1,−ξ

)

+ ζm
(

2a+ 1, 2b+ 1

−1, ξ

)

−

n
2
−1

∑

k=b+1

α
a,b
k

(

ζm
(

n− 2k, 2k

1, ξ

)

+ ζm
(

n− 2k, 2k

−1,−ξ

)

+ ζm
(

n− 2k, 2k

1,−ξ

)

+ ζm
(

n− 2k, 2k

−1, ξ

))







a,b≥0

· The depth 2 part of the basis of MMZV is:
{

ζm
(

2a+ 1, 2b+ 1

1, ξ

)

+ ζm
(

2a + 1, 2b+ 1

−1,−ξ

)

+ ζm
(

2a+ 1, 2b+ 1

1,−ξ

)

+ ζm
(

2a+ 1, 2b+ 1

−1, ξ

)

−

n
2
−1

∑

k=b+1

α
a,b
k

(

ζm
(

n− 2k, 2k

1, ξ

)

+ ζm
(

n− 2k, 2k

−1,−ξ

)

+ ζm
(

n− 2k, 2k

1,−ξ

)

+ ζm
(

n− 2k, 2k

−1, ξ

))

−βa,b

(

ζm
(

1, n− 1

1, ξ

)

+ ζm
(

1, n− 1

−1, ξ

)

+ ζm
(

1, n− 1

1,−ξ

)

+ ζm
(

1, n− 1

−1,−ξ

))

, a, b > 0

}

Lemma A.2.11. · The depth 2 part of the basis of Fk8/k4,2/2
1 Hn is, for even n:

{

ζm
(

x1, x2

1, ξ

)

+ ζm
(

x1, x2

−1,−ξ

)

, ζm
(

x1, x2

1,−ξ

)

− ζm
(

x1, x2

−1,−ξ

)

, ζm
(

x1, x2

−1, ξ

)

+ ζm
(

x1, x2

−1,−ξ

)

, xi ≥ 1

}

.

· The depth 2 part of the basis of Fk8/Q,2/2
1 Hn is for odd n:

{

ζm
(

x1, x2

1, ξ

)

+ ζm
(

x1, x2

−1,−ξ

)

+ ζm
(

x1, x2

1,−ξ

)

+ ζm
(

x1, x2

−1, ξ

)

, exactly one even xi

}

.

The depth 2 part of the basis of Fk8/Q,2/2
1 Hn is for even n:







ζm
(

2a + 1, 2b+ 1

−1, ξ

)

+ ζm
(

2a+ 1, 2b + 1

−1,−ξ

)

−

n
2
−1

∑

k=b+1

α
a,b
k

(

ζm
(

n− 2k, 2k

−1, ξ

)

+ ζm
(

n− 2k, 2k

−1,−ξ

))







a,b≥0

∪







ζm
(

2a+ 1, 2b+ 1

1,−ξ

)

− ζm
(

2a + 1, 2b+ 1

−1,−ξ

)

−

n
2
−1

∑

k=b+1

α
a,b
k

(

ζm
(

n− 2k, 2k

1,−ξ

)

− ζm
(

n− 2k, 2k

−1,−ξ

))







a,b≥0

.

· The depth 2 part of the basis of Fk8/Q,2/1
1 Hn is for odd n:

{

ζm
(

x1, x2

1, ξ

)

+ ζm
(

x1, x2

−1,−ξ

)

+ ζm
(

x1, x2

1,−ξ

)

+ ζm
(

x1, x2

−1, ξ

)

−γx1,x2

(

ζm
(

1, n− 1

1, ξ

)

+ ζm
(

1, n− 1

−1,−ξ

)

+ ζm
(

1, n− 1

−1, ξ

)

+ ζm
(

1, n− 1

1,−ξ

))

, exactly one even xi

}

.
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In even weight n, depth 2 part of the basis of Fk8/Q,2/1
1 Hn is:

{

ζm
(

1, n− 1

1, ξ

)

+ ζm
(

1, n− 1

−1,−ξ

)

+ ζm
(

1, n− 1

1,−ξ

)

+ ζm
(

1, n− 1

−1, ξ

)}

∪

{

ζm
(

n− 1, 1

1, ξ

)

+ ζm
(

n− 1, 1

−1,−ξ

)

+ ζm
(

n− 1, 1

1,−ξ

)

+ ζm
(

n− 1, 1

−1, ξ

)

+

−

n
2
−1

∑

k=1

α
0, n

2
−1

k

(

ζm
(

n− 2k, 2k

1, ξ

)

+ ζm
(

n− 2k, 2k

−1,−ξ

)

+ ζm
(

n− 2k, 2k

1,−ξ

)

+ ζm
(

n− 2k, 2k

−1, ξ

))







∪

{

ζm
(

2a + 1, 2b+ 1

ǫ1, ǫ2ξ

)

+ ǫ2ζ
m

(

2a+ 1, 2b+ 1

−1,−ξ

)

− βa,b

(

ζm
(

1, n− 1

ǫ1, ǫ2ξ

)

+ ǫ2ζ
m

(

1, n− 1

−1,−ξ

))

−

n
2
−1

∑

k=b+1

α
a,b
k

(

ζm
(

n− 2k, 2k

ǫ1, ǫ2ξ

)

+ ǫ2ζ
m

(

n− 2k, 2k

−1,−ξ

))

, a, b > 0, ǫi ∈ {±1} , ǫ1 = −ǫ2







.

Where γx1,x2 = (−1)x2
(
2r−1
2r−x2

)
.

A.2.4 N = ‘6’: Depth 2

In depth 2, coefficients are explicit as previously:

Lemma A.2.12. The depth 2 part of the basis of MMZV, for even weight n is:


ζm

(
2a+ 1, 2b+ 1

1, ξ

)
−

n
2 −1∑

k=b+1

αa,b
k ζm

(
n− 2k, 2k

1, ξ

)
, a, b > 0



 ,

Proof. Proof being similar than the cases N = 3, 4 is left to the reader.

A.3 Homographies of P1�{0, µN ,∞}

The homographies of the projective line P1 which permutes {0, µN ,∞}, induce automor-
phisms P1�{0, µN ,∞} → P1�{0, µN ,∞}. The projective space P1�{0, µN ,∞} has a di-
hedral symmetry, the dihedral group DiN = Z�2Z⋉µN acting with x 7→ x−1 and x 7→ ηx.
In the special case of N = 1, 2, 4, and for these only, the group of homographies is bigger
than the dihedral group, due to particular symmetries of the points µN ∪ {0,∞} on the
Riemann sphere. Let precise these cases:

For N = 1 : The homography group is the anharmonic group generated by z 7→ 1
z and z 7→ 1 − z,

and corresponds to the permutation group S3. Precisely, projective transformations
of P1�{0, 1,∞} are:

φτ : t 7→ 1− t :

{
(0, 1,∞) 7→ (1, 0,∞)
(ω0, ω1, ω⋆, ω♯) 7→ (ω1, ω0,−ω⋆, ω0 − ω⋆).

φc : t 7→ 1
1−t :

{
0 7→ 1 7→ ∞ 7→ 0
(ω0, ω1, ω⋆, ω♯) 7→ (ω⋆,−ω0,−ω1,−ω0 − ω1)

φτc : t 7→ t
t−1 :

{
(0, 1,∞) 7→ (0,∞, 1)
(ω0, ω1, ω⋆) 7→ (−ω⋆,−ω1,−ω0)

φcτ : t 7→ 1
t :

{
(0, 1,∞) 7→ (∞, 1, 0)
(ω0, ω1, ω⋆, ω♯) 7→ (−ω0, ω⋆, ω1, ω♯)

φc2 : t 7→ t−1
t :

{
0 7→ ∞ 7→ 1 7→ 0
(ω0, ω1, ω⋆) 7→ (−ω1,−ω⋆, ω0)

Remark that hexagon relation (4.1) corresponds to a cycle c whereas the reflection
relation corresponds to a transposition τ , and :

S3 = 〈c, τ | c3 = id, τ2, cτc = τ〉 = {1, c, c2, τ, τc, cτ}.
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For N = 2 : Here, (0,∞, 1,−1) has a cross ratio −1 (harmonic conjugates) and there are 8 per-
mutations of (0,∞, 1,−1) preserving its cross ratio. The homography group corre-
sponds indeed to the group of automorphisms of a square with consecutive vertices
(0, 1,∞,−1), i.e. the dihedral group of degree four Di4 defined by the presentation
〈σ, τ | σ4 = τ2 = id, στσ = τ〉:

φτ : t 7→ 1
t :

{
±1 7→ ±1 0↔∞
(ω0, ω1, ω⋆, ω−1, ω−⋆, ω±♯) 7→ (−ω0, ω⋆, ω1, ω−⋆, ω−1, ω±♯)

φσ : t 7→ 1+t
1−t :




−1 7→ 0 7→ 1 7→ ∞ 7→ −1
(ω0, ω1, ω⋆, ω−1, ω−⋆) 7→ (ω−1 − ω1,−ω−1,−ω1,−ω−⋆,−ω⋆)
(ω♯, ω−♯) 7→ (−ω1 − ω−1,−ω⋆ − ω−⋆)

φσ2τ : t 7→ −t :
{
−1↔ 1
(ω0, ω1, ω−1, ω±∗, ω±♯) 7→ (ω0, ω−1, ω1, ω∓∗, ω∓♯)

φσ2 : t 7→ −1
t :

{
0↔∞ − 1↔ 1
(ω0, ω1, ω⋆, ω−1, ω−⋆, ω±♯) 7→ (−ω0, ω−⋆,−ω−1, ω⋆, ω1, ω∓♯)

φσ−1 : t 7→ t−1
1+t :





0 7→ −1 7→ ∞ 7→ 1 7→ 0
(ω0, ω1, ω−1, ω⋆, ω−⋆) 7→ (ω−1 − ω1,−ω⋆,−ω1,−ω−⋆,−ω−1)
(ω♯, ω−♯) 7→ (−ω⋆ − ω−⋆,−ω1 − ω−1)

φτσ : t 7→ 1−t
1+t :




−1↔∞ 0↔ 1
(ω0, ω1, ω⋆, ω−1, ω−⋆) 7→ (ω1 − ω−1,−ω−⋆,−ω⋆,−ω−1,−ω1)
(ω♯, ω−♯) 7→ (−ω⋆ − ω−⋆,−ω1 − ω−1)

φστ : t 7→ 1+t
t−1 :




−1↔ 0 1↔∞
(ω0, ω1, ω⋆, ω−1, ω−⋆) 7→ (ω1 − ω−1,−ω1,−ω−1,−ω⋆,−ω−⋆)
(ω♯, ω−♯) 7→ (−ω1 − ω−1,−ω⋆ − ω−⋆)

Remark that the octagon relation (4.2) comes from the cycle σ of order 4; the other
permutations above could also leads to relations.

For N = 4 : P1�{0, 1,−1, i,−i,∞} has an octahedral symmetry, and the homography group is the
group of automorphisms of this octahedron placed on the Riemann sphere of vertices
(0, 1, i,−1,−i,∞).I It is composed by 48 transformations, corresponding to 24 rota-
tional symmetries, and a reflection.

We could also look at other projective transformations: P1�{0, µN ,∞} → P1�{0, µN ′ ,∞}N ′|N .

Examples:

· P1�{0,−1,∞}→ P1�{0,+1,∞} , t 7→ 1 + t.

· P1�{0,−1,∞}→ P1�{0,+1,∞} , t 7→ 1
1+t .

· P1�{0,±1,∞}→ P1�{0, 1,∞} , t 7→ t2.

IZhao showed this octahedral symmetry allows to reach the “non standard” relations which appeared in weight
3, 4 for N = 4; non standard relations are these which do not come from distribution, conjugation, and regularised
double shuffle relation, cf. [84].
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A.4 Hybrid relation for MMZV

The commutative polynomial setting is briefly introduced in §6.1.1.
Let consider the following involution, which represents the Antipode � as seen in §4.2.1:

σ : Q〈Y 〉 → Q〈Y 〉 , f(y0, y1, · · · , yp) 7→ (−1)wf(yp, yp−1, · · · , y1), (A.13)

with w the weight, equal to the degree of f plus p. In particular, for f ∈ ρ(gm):

Antipode � : f + σ(f) = 0. (A.14)

Note that f (p) denotes the part of f involving y0, · · · , yp. We can also consider:

τ : Q〈X〉 → Q〈X〉 , f
(p)

(x1, · · · , xp) 7→ (−1)pf (p)
(xp · · · , x1). (A.15)

The Antipode stuffle corresponds to τ(f
⋆
), where f

⋆
is defined by:

f
⋆
(x1, . . . , xp) :=

∑

s≤p,ik
p=
∑

ik

f({x1}i1 , . . . , {xs}is)(−1)d−1
s∏

k=1

xik−1
k . (A.16)

It corresponds naturally to the Euler sums ⋆ version. Then, for f ∈ ρ(gm):

Antipode ∗ : f + τ(f
⋆
) = 0. (A.17)

The hybrid relation (Theorem 4.2.3) for motivic multiple zeta values is equivalent to, in this
setting of commutative polynomials to the following, already in some notes of F. Brown:

Theorem (F. Brown). For f ∈ ρ(gm), the 6 terms relation holds:

f
(p)

(x1, · · · , xp) +
f
(p−1)

(x2 − x1, . . . , xp − x1)− f
(d−1)

(x2, · · · , xp)

x1

= (−1)w+1

(
f
(p)

(xp, · · · , x1) +
f
(p−1)

(xp−1 − xp, . . . , x1 − xp)− f
(p−1)

(xp−1, · · · , x1)

xp

)
.

Before giving the proof, to be convinced these statements are equivalent, let just write f as:

f =
∑

αn1,...,nk
xn1−1
1 · · ·xnk−1

k .

Then:

f
(p−1)

(x2−x1,...,xp−x1)−f
(p−1)

(x2,··· ,xp)
x1

=
∑

αn1,...,np−1

(x2 − x1)
n1−1 · · · (xp − x1)

np−1 − xn1−1
2 · · ·xnp−1

p

x1

=
∑

αn1,...,np−1

∑

1≤ki≤ni
k:=

∑
ni−ki>0

(−1)kxk−1
1

d−1∏

i=1

((
ni − 1

ki − 1

)
xki−1
i+1

)

=
∑
∑

ij=k

αk1+i1,...,kp−1+ip−1

(
k1 + i1 − 1

k1 − 1

)
· · ·
(
kp−1 + ip−1 − 1

kp−1 − 1

)
(−1)kxk−1

1 xk1−1
2 · · ·xkp−1−1

p

This, according to the shuffle regularization (2.28), matches exactly with the definition of
ζmk (k1, . . . , kp−1).
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Proof of the previous theorem. The proof combines the shuffle relation (using that f is trans-
lation invariant notably), the linearized stuffle relation (giving a relation between depth p
and depth p− 1) and the antipode �.
Let’s take f in ρ(gm) and let consider the difference

I(y0, y1, · · · , yp) := f (p)(y0, y1, · · · , yp) + (−1)wf (p)(y0, yp, · · · , y1) (A.18)

= f (p)(y0, y1, · · · , yp)− f (p)(y1, · · · , yp, y0).
Consider also the relation given by the linearized stuffle relation (in L), between depth p
and depth p− 1, defining St:

St(y0, y1 � y2 · · · yp) := f (p)(y0, y1� y2 · · · yp), (A.19)

Where St can then be expressed by f (p−1) using stuffle:

St(y0, y1�y2 · · · yp) =
∑ 1

yi − y1

(
f (p−1)(y0, y2, , · · · yi−1, y1, yi+1, . . . , yp)− f (p−1)(y0, y2, · · · , yp)

)
.

(A.20)
The theorem is then equivalent to the following identity

(✶) I(y0, y1, · · · , yp) = (−1)w+1St(yp, y0 � yp−1 · · · y1)− St(y1, y0� y2 · · · yp).

Indeed, looking at the previous definition (A.20 ), most of the terms of St in the right side
of (✶) get simplified together, and it remains only:

(−1)w+1 f
(p−1)(yp, . . . , y2, y0)− f (p−1)(yp, · · · , y1)

y1 − y0
−f (p−1)(y1, . . . , yp−1, y0)− f (p−1)(y1, · · · , yp)

yp − y0
.

Passing to the xi variables, we conclude that (✶) is equivalent to the theorem’s statement;
let now prove (✶). By definition:

St(y1, y0�y2 · · · yp) = f (p)(y1, y0�y2 · · · yp) = f (p)(y1, y0�y2 · · · yp−1, yp)+f (p)(y1, y2, . . . , yp, y0).

Doing a right shift, using the definition of I:

St(y1, y0� y2 · · · yp) (A.21)

= f (p)(yp, y1, y0�y2 · · · yp−1)−I(yp, y1, y0�y2 · · · yp−1)+f (p)(y0, y1, y2 · · · , yp)−I(y0, y1, y2 · · · , yp).
Since:

f (p)(yp, y1, y0� y2 · · · yp−1) = St(yp, y0� y1y2 · · · yp−1)− f (p)(yp, y0, y1, y2, . . . , yp−1)

f (p)(y0, y1, y2 · · · , yp) = −I(yp, y0, y1, y2, . . . , yp−1) + f (p)(yp, y0, y1, y2, . . . , yp−1).

Then, (A.21) becomes:

St(y1, y0� y2 · · · yp)− St(yp, y0� y1y2 · · · yp−1)

= −I(yp, y0, y1, y2, . . . , yp−1)− I(yp, y1, y0� y2 · · · yp−1)− I(y0, y1, y2 · · · , yp).

The sum of the first two I is I(yp, y0� y1 · · · yp−1) which gives:

I(y0, y1, y2 · · · , yp) = −St(y1, y0�y2 · · · yp)+St(yp, y0�y1y2 · · · yp−1)−I(yp, y0�y1 · · · yp−1)

= −St(y1, y0� y2 · · · yp) + (−1)w+1St(yp, y0� yp−1 · · · y1). (A.22)

The identity (✶) holds, and the identity of the theorem follows.
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