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In order to address the problem of understanding impulsive vs. non-impulsive communications, the framework of investigation must include the following aspects: the different interference statistics directly following from the impulsive signal structure; the different interaction of the impulsive signal with the physical medium; the actual possibility for impulsive communications of coding information into the time structure, relaxing the implicit assumption made in continuous transmissions that time is a mere support. This thesis partially addresses a few of the above issues, and draws future lines of investigation.

The starting point of our analysis (Chapter 1) is a multiple access scheme where users adopt time-hopping spread-spectrum signals to communicate towards a common receiver. In time-hopping spread-spectrum, a symbol period is divided into chips, and just a subset of chips is actually used to transmit the radio signal; in other words, the spreading sequence is modeled with a sparse vector, with s nonzero entries. Different degrees of sparsity imply different degrees of impulsiveness. In particular, two regimes may be studied as grows to infinity, corresponding s finite or s . When s , we obtain directsequence spread-spectrum. The energy concentration in time-hopping is, therefore, achieved by the uneven use of the degrees of freedom in time. The analysis is conducted in terms of mutual information (with Gaussian inputs) or, whenever feasible, spectral efficiency, in the so-called "large-system limit," where the number of users is proportional to the number of dimensions of the spreading sequence, i.e., with fixed load as both and . In order to understand the role of multiuser interference, different receiver structures are considered, namely optimum and linear receivers. The key outcome of the analysis is the following. Spectral efficiency with optimum decoding is higher with directsequence than with time-hopping. We show that, in the large-system limit, spectral efficiency increases as s increases, even when s remains finite, and thus s . It does not matter that, as s increases, interference tends to be Gaussian, and, therefore, more detrimental-optimum multiuser detection shall cope with that. This is no longer true if we adopt a far simpler receiver, e.g. a bank of singleuser matched-filters or MMSE filters. In this case, the interference distribution plays a key role, and the case s (maximum energy concentration) shows the advantages of impulsive modulation formats: in particular, in a low load, high 0 setting, sparsity allows to achieve a spectral efficiency that is strictly higher than that achievable with direct-sequence.

In the above scheme, transmitted energy is concentrated in bursts, that is the basic idea of impulse-radio communications. Although this characteristic can be attained irrespectively of bandwidth, that defines the "effective duration" of the transmitted pulse, impulse-radio signals have been extensively applied with ultrawide bandwidths. In the opposite case, that is, with narrow bandwidths, the transmission rate would be, indeed, severely affected. The ultra-wideband characteristic of the transmitted signal makes the multipath components of the wireless channel resolvable, whereas the impulse-radio characteristic permits to use simple receiver structures since the signal format avoids intersymbol interference. To further simplify reception, without any performance loss, one must use prefiltering at the transmitter, and specifically a transmit matched filter, also known as time reversal in the ultra-wideband literature. Although prefiltering, and in general precoding, can be used with signals of any bandwidth, transmit matched filter was traditionally used in connection with ultrawide bandwidth. In Chapter 2, the main reason for this is traced back in the statistical behavior of wireless channels. Indeed, the energy of the effective channel, i.e., the channel formed by the cascade of the prefilter and the multipath channel, is monotonically increasing with the bandwidth with usual multipath channels. Since the prefiltering structure requires the knowledge of the multipath channel, Chapter 3 addresses the important issue of the impact of imperfect channel state information on rate and error probability with simple receiver structures, where each user is detected and decoded independently. The investigation links the accuracy needed for the channel estimation with the maximum mutual information achievable with Gaussian inputs. Extension to multiple antennas at the transmitter is considered in Chapter 4, where it is shown that the signal-to-noise ratio achieved with time reversal is not affected by the lack of correlation between channels relative to different antennas, and that multiple antennas increase the energy focusing of time reversal. Chapter 5 compares time reversal with other prefiltering schemes, as a function of the number of fingers of the Rake receiver.

Finally, Chapter 6 discusses interference patterns typically arising with impulsive signals. In particular, two interference distributions seen in Chapter 1 and 3 are shown to belong to a more general family, and a novel interference model arising from binary-valued signals is discussed.

As presented above, the general framework of our analysis permits to address several issues connected with, and implied by, the impulsiveness of transmitted signals. In particular, we are able to markedly separate two characteristics of impulsive signals, namely the time and amplitude statistics, and the bandwidth. On the one hand, the statistics may be measured in several ways; however, the key feature is the sparsity of the signal into the degrees of freedom occupied in time, i.e., impulsiveness. This peculiar statistics has several implications on fundamental limits of impulsive communications. Under this perspective, we address this issue for a flat-fading multiple access channel with random time-hopping, which implies sparsity of the single-user signal. Simple modifications of the model serve towards the analysis of interesting extensions: fading and multipath channels, non-uniform power constraint over users, frequency-hopping (time-hopping dual), and partial channel knowledge at receiver. On the other hand, the bandwidth has implication on the interaction with the medium where the signal propagates: for example, in the wireless communications setting analyzed, the more the bandwidth, the more the number of resolvable paths-up to the number of multipath components of the channel. We traced back to this interaction the reason for the traditional choice of the time reversal prefilter in connection with ultra-wideband communications. We set the basis for a thorough study of the interplay between the bandwidth of the signal, the multipath channel, the sparsity in time, and the transceiver structure, in both the coded and uncoded regimes, as well as for the robustness analysis of the communication system, that could also be regarded in the bigger picture where the net-ergodic rate of the network and the analog and digital feedback for the channel knowledge acquisition are optimized.

There are several topics that could be envisioned by, but are not specifically addressed in this thesis. In particular, two of the most promising areas of investigation comprises the role of compressive sampling, and in particular super-resolution theory, in the recovery of the sparse signal, and the possibility to encode information directly in time, for example in the interarrival time between pulses, or in their rate. We believe that both investigations may have considerable impact, in particular in the communication and neuroscience communities.

Résumé (français)

Une communication est impulsive chaque fois que le signal portant des informations est intermittent dans le temps et que la transmission se produit à rafales. Des exemples du concept impulsife sont : les signaux radio impulsifs, c'est-àdire des signaux très courts dans le temps; les signaux optiques utilisé dans les systèmes de télécommunications; certains signaux acoustiques et, en particulier, les impulsions produites par le système glottale; les signaux électriques modulés en position d'impulsions; une séquence d'événements dans une file d'attente; les trains de potentiels neuronaux dans le système neuronal. Ce paradigme de transmission est différent des communications continues traditionnelles et la compréhension des communications impulsives est donc essentielle. Afin d'affronter le problème des communications impulsives, le cadre de la recherche doit inclure les aspects suivants : la statistique d'interférence qui suit directement la structure des signaux impulsifs; l'interaction du signal impulsif avec le milieu physique; la possibilité pour les communications impulsives de coder l'information dans la structure temporelle. Cette thèse adresse une partie des questions précédentes et trace des lignes indicatives pour de futures recherches.

Chapitre 1

Le point de départ de notre analyse est un système d'accès multiple où les utilisateurs adoptent des signaux avec étalement de spectre par saut temporel (time-hopping spread spectrum) pour communiquer vers un récepteur commun. Dans l'étalement de spectre par saut de temps, une période de symbole est divisée en chips, et seulement un sous-ensemble des chips est effectivement utilisé pour transmettre le signal radio; en d'autres termes, la séquence d'étalement est modélisée avec un vecteur , avec s entrées non nulles. Deux régimes de faible densité sont étudiés quand tend vers l'infini, correspondant à s ou s finis. Lorsque s , nous avons un étalement du spectre à séquence directe. La concentration d'énergie dans le temps est donc obtenue par l'utilisation inégale des degrés de liberté disponibles. L'analyse est effectuée en termes d'information mutuelle avec entrées gaussiennes ou, lorsque cela est possible, l'efficacité spectrale, dans la dénommée limite de grand système, où le nombre d'utilisateurs est proportionnel au nombre de dimensions de la séquence d'étalement, c'est-àdire avec fixée avec et . Afin de comprendre le rôle de l'interférence, plusieurs structures de récepteur sont considérées, à savoir la structure optimale et les structures linéaires. Les principaux résultats de l'analyse sont les suivants: l'efficacité spectrale avec décodage optimal est supérieure avec séquence directe qu'avec saut temporel, en particulier pour 0 et . Peu importe que, quand s croît, l'interférence tend à être gaussienne et, par conséquent, plus nuisible : la détection optimale doit faire face à cela. Cela n'est plus vrai si les récepteurs sont linéaires. Dans ce cas, la distribution de l'interférence joue un rôle clé, et le cas s (concentration maximale d'énergie) montre pleinement les avantages des formats de modulation impulsive. En particulier, avec et haut 0 , la sparsité temporelle permet d'atteindre une efficacité spectrale qui est strictement supérieure à celle obtenue avec séquence directe.

Les résultats de cette section ont été publiés dans les articles suivants : Dans les étalements de spectre par saut temporelle ci-dessus, l'énergie transmise est concentrée en intervalles de courte durée, ce qui forme l'idée de base de communications radio impulsionnelle. Bien que cette propriété peut être vérifiée indépendamment de la bande, qui définit la "durée effective" de l'impulsion transmise, les communications radio d'impulsion ont été largement appliquées dans la bande ultra large. Dans le cas contraire, c'est-à-dire avec des bandes passantes étroites, le taux de transmission serait, en effet, fortement affectée. L'ultra large bande caractéristique du signal transmis permet la résolution de trajets multiples qui caractérise le canal, cette caractéristique impulsive permet l'utilisation des structures de réception simples car le format de signal évite l'interférence entre symboles. Pour simplifier la réception, sans perte de performance, un préfiltre à l'émetteur peut être utilisé, et plus précisément un transmit matched filter, également connu comme retournement temporel (time reversal) dans la littérature de systèmes à bande ultra large. Bien que le préfiltrage peut être appliqué à des signaux avec largeur de bande quelconque, le transmit matched filter a été traditionnellement utilisé dans le cadre de la bande ultra large. Dans le Chapitre 2, la principale raison de l'utilisation de ce filtre pour bande ultra large est reconduit à certaines propriéts statistiques du canal. En effet, l'énergie du canal indiqué comme efficace, c'est-à-dire le canal formé par la cascade du préfiltre et du canal à trajets multiples, est croissante de manière monotone avec la largeur de bande pour les canaux à trajets multiples ordinaires. Puisque le préfiltrage à besoin de connaître le canal à trajets multiples à l'émetteur, le Chapitre 3 aborde la question importante de l'impact de l'information imparfaite du canal sur le taux et la probabilité d'erreur avec des structures de réception simples, où chaque utilisateur est détecté et décodé indépendamment. Nous avons également étudié l'impact de la précision de l'estimation du canal sur l'information mutuelle maximale réalisable avec des entrées gaussiennes. L'extension à plusieurs antennes à l'émetteur est considérée dans le Chapitre 4, où il est montré que le rapport signal-sur-bruit obtenu avec time reversal n'est pas affecté par l'absence de corrélation entre les canaux de différentes antennes, et que les antennes multiples augmentent l'énergie concentrée Le cadre général de notre analyse permet de traiter plusieurs problèmes liés à l'impulsivité de signaux. En particulier, nous sommes maintenant en mesure de séparer nettement les deux caractéristiques principales des signaux impulsifs, à savoir faible densité dans le temps et largeur de bande. Nous avons modélisé la faible densité avec le codes des time-hopping, ce qui a plusieurs implications sur les limites fondamentales de communications impulsives. Grâce à de simples modifications, le modèle proposé peut être utilisé pour analyser certaines extensions intéressantes : fading et canaux à trajets multiples, contrainte de puissance non uniforme sur les utilisateurs, frequency-hopping, et connaissance partielle du canal au récepteur. La largeur de bande a des implications sur l'action réciproque avec le milieu dans laquelle le signal se propage : par exemple, dans le cadre analysé des communications sans fil, plus grande sera la bande, plus nombreux seront le chemins résolubles-jusqu'au nombre de chemins multiples composants le canal. Nous avons ainsi expliqué la raison du choix traditionnel du préfiltre time reversal dans le cadre de communications ultra large bande. Nous avons posé la base d'une étude approfondie de l'interaction entre la largeur de bande du signal, le canal à trajets multiples, la faible densité dans le temps, et la structure d'émetteur-récepteur, dans les deux régimes codés et non codés, ainsi que pour l'analyse de la robustesse du système de communication. Il y a plusieurs sujets qui pourraient être envisagées à la suite de notre étude, et ne sont pas abordées dans cette thèse. En particulier, deux des domaines les plus prometteurs sont : le rôle de la théorie de l'acquisition comprimée (compressed sensing) et la possibilité de coder l'information directement dans le temps, par exemple dans l'intervalle temporel entre deux impulsions. Ces deux enquêtes pourraient avoir un impact considérable, en particulier dans la compréhension des problèmes de base et la génération de modèles de phénomènes physiques qui sont typiques des domaines des communications et des neurosciences.

CHAPTER 1

Spectral Efficiency of Random Time-Hopping CDMA

Traditionally paired with impulsive communications, Time-Hopping CDMA (TH-CDMA) is a multiple access technique that separates users in time by coding their transmissions into pulses occupying a subset of s chips out of the total included in a symbol period, in contrast with traditional Direct-Sequence CDMA (DS-CDMA) where s . The object of this work was to analyze TH-CDMA with random coding, by determining whether peculiar theoretical limits were identifiable, with both optimal and sub-optimal receiver structures. Results indicate that TH-CDMA has a fundamentally different behavior than DS-CDMA, where the crucial role played by energy concentration, typical of time-hopping, directly relates with its intrinsic "uneven" use of degrees of freedom.

While Direct-Sequence CDMA (DS-CDMA) is widely adopted and thoroughly analyzed in the literature, Time-Hopping CDMA (TH-CDMA) remains a niche subject, often associated with impulsive ultra-wideband communications; as such, it has been poorly investigated in its information-theoretical limits. This paper attempts to fill the gap, by addressing a reference basic case of synchronous, powercontrolled systems, with random hopping. Time-hopping systems transmit pulses over a subset of chips of cardinality s out of the chips composing a symbol period. In contrast to common DS-CDMA, where each chip carries one pulse, and therefore the number of transmitted pulses per symbol is equal to the number of chips, i.e., s , time-hopping signals may contain much fewer chips in which pulses are effectively used, i.e., s . Asymptotically, if the number of used chips is fixed, as the number of chips in a symbol period grows, the fraction of filled-in chips in TH vanishes, i.e., s , making TH intrinsically different, the performance of which cannot be derived from that of DS. TH vs. DS reflect "sparse" vs. "dense" spreading, where degrees of freedom, that is, dimensions of the signal space, are "unevenly" vs.

"evenly" used [START_REF] Medard | Bandwidth scaling for fading multipath channels[END_REF][START_REF] Gallager | Bandwidth scaling for fading channels[END_REF][START_REF] Telatar | Capacity and mutual information of wideband multipath fading channels[END_REF][START_REF] Porrat | Channel uncertainty in ultra-wideband communication systems[END_REF][START_REF] Biglieri | Fading channels: information-theoretic and communications aspects[END_REF]. In our setting, as further explored in the paper, degrees of freedom coincide with chips; while DS "evenly" uses chips, TH adopts the opposite strategy. In this regard, it is evident that DS and TH represent two contrasting approaches, that will be compared, under the assumption of same bandwidth and same persymbol energy, in terms of spectral efficiency.

Although we will show that there exist peculiar theoretical limits for TH-CDMA, their derivation can be carried out within the framework developed by Verdú and Shamai [START_REF] Verdù | Spectral efficiency of CDMA with random spreading[END_REF] and Shamai and Verdú [START_REF] Shamai | The impact of frequency-flat fading on the spectral efficiency of CDMA[END_REF], providing a methodology that is valid for investigating general CDMA with random spreading in the so-called largesystem limit (LSL), where , , while finite; in particular, [START_REF] Verdù | Spectral efficiency of CDMA with random spreading[END_REF] provides expressions of spectral efficiency for DS power-controlled systems using optimum as well as linear receivers, while [START_REF] Shamai | The impact of frequency-flat fading on the spectral efficiency of CDMA[END_REF] removes the power-control assumption and introduces fading. Other seminal contributions towards the understanding of random DS-CDMA, although limited to linear receivers, are those of Tse and Hanly [START_REF] Tse | Linear multiuser receivers: effective interference, effective bandwidth and user capacity[END_REF], and Tse and Zeitouni [START_REF] Tse | Linear multiuser receivers in random environments[END_REF]. Aside from DS-CDMA, the same framework is aptly used for analyzing other CDMA channels, such as multi-carrier CDMA [START_REF] Tulino | Spectral efficiency of multicarrier CDMA[END_REF].

The analysis of optimum decoders relies, in general, on the study of the eigenvalue distribution of random matrices describing random spreading. Consolidated results on the statistical distribution of such eigenvalues of DS matrices [START_REF] Marcenko | Distribution of eigenvalues for some sets of random matrices[END_REF] form the basis for a tractable analysis of theoretical limits in terms of spectral efficiency. In particular, it is shown in [START_REF] Verdù | Spectral efficiency of CDMA with random spreading[END_REF] that a fixed loss, that depends upon the load, i.e., the ratio between the number of users and chips , is incurred with DS vs. orthogonal multiple-access. This loss becomes negligible with optimum decoding when while, for , even a linear receiver such as MMSE is sufficient for achieving this negligible loss; however, this is no longer the case for simpler linear receivers, such as the single-user matched filter (SUMF), that is shown to be limited in spectral efficiency at high SNR. As a matter of fact, the above findings on spectral efficiency of DS-CDMA strongly depend on the statistical properties of the eigenvalue distribution, and as such on the cross-correlation properties of the spreading sequences. By changing the spreading strategy from DS to TH, it can be predicted that different theoretical limits will hold, as will be investigated below. In particular, TH matrices, as rigorously defined in this paper, are a special subset of sparse matrices, where the number of nonzero entries is small compared to the total number of elements. Previous work on sparse CDMA relies on non-rigorous derivations based on replica methods, which are analytical tools borrowed from statistical physics, as pioneered by Tanaka [START_REF] Tanaka | A statistical-mechanics approach to large-system analysis of CDMA multiuser detectors[END_REF], who provides an expression of capacity when inputs are binary. Montanari and Tse [START_REF] Montanari | Analysis of belief propagation for non-linear problems: The example of CDMA (or: How to prove tanaka's formula)[END_REF] propose a rigorous argument for s , proving Tanaka's formula, that is valid up to a maximum load, called spinodal . Above the spinodal load, Tanaka's formula remains unproved. Binary sparse CDMA is also analyzed in terms of detection algorithms, in particular in the so-called belief propagation [START_REF] Montanari | Analysis of belief propagation for non-linear problems: The example of CDMA (or: How to prove tanaka's formula)[END_REF][START_REF] Guo | Multiuser detection of sparsely spread CDMA[END_REF][START_REF] Tanaka | Approximate belief propagation, density evolution, and statistical neurodynamics for CDMA multiuser detection[END_REF]. More recently, capacity bounds for binary sparse CDMA are derived in [START_REF] Alishahi | Bounds on the sum capacity of synchronous binary CDMA channels[END_REF][START_REF] Korada | Tight bounds on the capacity of binary input random CDMA systems[END_REF]. Still relying on replica methods, [START_REF] Raymond | Sparsely spread CDMA-a statistical mechanicsbased analysis[END_REF] and [START_REF] Yoshida | Analysis of sparsely-spread CDMA via statistical mechanics[END_REF] analyze two different regimes, where s is either finite or random with fixed mean.

The main contribution of the present work is to provide rigorous informationtheoretical limits of time-hopping communications, by inscribing this particular time-domain sparse multiple access scheme into the random matrix framework developed by Verdú and Shamai in [START_REF] Verdù | Spectral efficiency of CDMA with random spreading[END_REF], for analyzing random spreading. The present analysis allows comparing TH vs. DS with same energy per symbol and same bandwidth constraints, and, therefore, highlights the effect of the energy "concentration," that is typical of TH. A first contribution consists in providing a closed form expression for spectral efficiency of TH with optimum decoding when s . A second contribution is to prove that the spectral efficiency formula for a bank of single-user matched filter obtained by Verdú and Shamai in [START_REF] Verdù | Spectral efficiency of CDMA with random spreading[END_REF] for DS systems s remains valid if s , , and s . A third contribution is to provide understanding of when TH performs better than DS.

Based on the above contributions, we are able to present a novel interpretation of TH-CDMA against DS-CDMA, that offers a better understanding of the effect of sparsity in time.

The chapter is organized as follows: in Section 1.1 we describe the model of the synchronous CDMA channel adopted throughout the chapter, and particularized to the special case of time-hopping. Section 1.2 contains the derivation of spectral efficiency of TH-CDMA for different receiver structures, in particular optimum decoding as well as sub-optimal linear receivers, and a comparison with traditional DS-CDMA limits [START_REF] Verdù | Spectral efficiency of CDMA with random spreading[END_REF]. Conclusions are drawn in Section 4.4.

Reference Model

We consider the traditional complex-valued multiple access channel model with "no-fading" where the received signal y is:

y A b s n (1.1)
where is the number of users, b is the set of transmitted symbols, n the complex Additive White Gaussian Noise process with real and imaginary parts modeled as independent white Gaussian processes both characterized by double-side power spectral density 0 , and s is the unit-energy spreading waveform of user . Based on the "no-fading" hypothesis, coefficient A in (1.1) is common to all users and for simplicity normalized to one. Under the synchronous hypothesis, the above model that considers only one symbol b per user, is sufficient, that is, it can provide a sufficient statistic for optimum detection of b [START_REF] Verdù | Multiuser Detection[END_REF].

Each spreading waveform, s , can be written as the superposition of orthonormal functions , that is:

s s
Typically, a single unit-energy function generates the whole set of orthonormal functions by translation; In this case, denoting with s the symbol period, any waveform with autocorrelation function satisfying the Nyquist criterion for a time In the present analysis, is, for the sake of simplicity, the minimum bandwidth, that is, zero-excess bandwidth waveform, with unit-energy, and bandlimited to W W with W c . This choice is common although specific, since there may be infinite possible bandlimited waveforms exceeding the minimum bandwidth and still appropriate, vs. infinite possible unlimited bandwidth waveforms, time-limited with duration lower than c (see for example Pursley [START_REF] Pursley | Performance evaluation for phase-coded spread-spectrum multiple-access communication-Part I: System analysis[END_REF] in particular for DS-CDMA with time-limited chip waveforms). The choice of a minimum bandwidth waveform implies in our case that is not time-limited.

By projecting the received signal y onto the set of orthonormal functions , a sufficient statistic for optimum detection is obtained: In DS-CDMA, the spreading sequences are typically modeled as binary, where: s is drawn with uniform probability, or spherical, where is a Gaussian random vector with unit norm [START_REF] Verdù | Spectral efficiency of CDMA with random spreading[END_REF].

In order to cast TH-CDMA in the model described by eq. (1.2), let s h , that is the chips are divided into s subgroups, and each of these s subgroups is made of h contiguous chips. In this case, elements of the signature sequence can take the following values:

s s s
and the structure of the sequence is such that there is one and only one non-zero s within each of the s subgroups. Therefore, the number of non-zero elements of each signature sequence is fixed to s . Note that, for s , TH-CDMA reduces to DS-CDMA.

We formally introduce the new structure of spreading sequences by the two following definitions.

Definition 1 (Sparse vector ). A vector

T C is -sparse if the subset of its nonzero elements has cardinality , i.e., .

Definition 2 ( s h -sequence, TH and DS sequences and matrices). A vector

T C is a s h -sequence when:
1.

s h , with s N and h N;

2. for all s , the vector

h h
T is -sparse, where the nonzero element is either s or s with equal probability.

A s h -sequence with s is a Time-Hopping (TH) sequence; the special case s , i.e., -sequences corresponds to binary DS sequences, that will be referred to below simply as DS sequences. A matrix is called TH vs. DS matrix when its columns correspond to TH vs. DS sequences. The set of all possible TH vs. DS matrices is indicated as TH vs. DS ensemble. The unit-norm assumption on spreading sequences implies that comparison of TH-CDMA vs.

DS-CDMA is drawn under the constraint of same energy per sequence. Note that the s case models a strategy of maximum energy concentration in time, while maximum energy spreading in time corresponds to making s , as in DS. Also note that, the two systems operate under same bandwidth constraint given the hypothesis on .

Spectral Efficiency of TH-CDMA

In this section, spectral efficiency of TH-CDMA is derived for different receiver structures, and compared against consolidated results for DS-CDMA [START_REF] Verdù | Spectral efficiency of CDMA with random spreading[END_REF].

The section is organized as follows: we first analyze the case of optimum decoding (Section 1.2.1), then proceed to linear receivers in sections 1.2.2 and 1.2.3 for single-user matched filters (SUMF), and decorrelator/MMSE receivers, respectively. Finally, Section 1.2.4 contains a synposis.

Optimum decoding

Theoretical framework

In general terms, a key performance measure in the coded regime is spectral efficiency opt (b/s/Hz) as a function of either signal-to-noise ratio or energy per bit -to-noise-0 , 0 . Referring to model of eq. (1.2), where the dimension of the observed process is , spectral efficiency is indicated as opt and is the maximum mutual information between and knowing over distributions of , normalized to .

opt (b/s/Hz) is achieved with Gaussian distributed , and it is expressed by [START_REF] Verdù | Spectral efficiency of CDMA with random spreading[END_REF][START_REF] Tulino | Random matrix theory and wireless communications[END_REF][START_REF] Tulino | The Eta and Shannon transforms: a bridge between random matrices and wireless communications[END_REF][START_REF] Couillet | Random matrix methods for wireless communications[END_REF]:

opt T (1.3)
where noise has covariance 0 and is given by [START_REF] Verdú | Spectral efficiency in the wideband regime[END_REF]:

E E 0 E 0 opt (1.4)
where is the load, 0 , is the number of bits encoded in for a capacity-achieving system, and therefore coincides with spectral efficiency opt of eq. (1.3). Since is equal to the number of possible complex dimensions, spectral efficiency can, therefore, be interpreted as the maximum number of bits per each complex dimension. Note that the number of complex dimensions coincides in our setting with the degrees of freedom of the system, that is, with the dimension of the observed signal space.

Eq. (1.3) can be equivalently rewritten in terms of the set of eigenvalues T of the Gram matrix T as follows:

opt F T (1.5)
where F T is the so called empirical spectral distribution (ESD) defined as [START_REF] Tulino | Random matrix theory and wireless communications[END_REF]:

F T 1 T (1.6)
that counts the fraction of eigenvalues of T not larger than . Being random, so is the function F T , though the limit distribution F of the sequence F T , called limiting spectral distribution (LSD), is usually nonrandom [START_REF] Bai | Spectral Analysis of Large Dimensional Random Matrices[END_REF]. In particular, the regime of interest, referred to as large-system limit (LSL), is that of both and while keeping finite. Spectral efficiency in the LSL is:

opt F (1.7)
Therefore, finding the spectral efficiency of CDMA systems with random spreading in the LSL regime reduces to finding the LSD F , that depends on the spreading sequence family only; hence, in the rest of this section, we find the LSD of TH-CDMA with s , which corresponds to a maximum energy concentration in time, as well as asymptotic behaviors of TH-CDMA systems with generic s .

LSD and spectral efficiency of TH-CDMA systems with s

While for DS-CDMA, spectral efficiency can be computed directly from Marcenko and Pastur result on the ESD of matrices with i.i.d. elements [START_REF] Marcenko | Distribution of eigenvalues for some sets of random matrices[END_REF], it appears that no analog result is available for neither TH-CDMA matrices nor dual matrices describing frequency-hopping.

We hereby derive the LSD and properties of the ESD of synchronous TH-CDMA when s . The set of eigenvalues is equal to , and, therefore, eigenvalues belong to non-negative integers. The ESD F T can be written as follows:

F T 1 1
T (1.9) where it is intended that the upper bound of the last summation is . In general, when the th diagonal element of T is equal to , we say that users are in chip . Therefore, the last equality indicates that F T is the fraction of chips with at most users. We will find the generating function (GF) of: From elementary relations between -norms, one has , thus , and therefore: which verifies the Carleman condition.

In terms of measures, TH-CDMA is thus characterized by the purely atomic measure given by: . The above implies peculiar properties of TH-CDMA when compared against DS-CDMA. For convenience, we report here the Marcenko-Pastur law, that is the LSD of eigenvalues of DS-CDMA matrices (see Definition 2), which has measure:

DS DS ac (1.18)
where , and DS ac is the absolute continuous part of DS with density (Radon-Nikodym derivative with respect to the Lebesgue measure ):

DS ac 1 f MP (1.19) 
where . . The Poisson law has a purely atomic (also known as discrete, or counting) measure with point masses at nonnegative integers showed by dots with heights given by f (envelope showed in dashed line).

We use the Poisson LSD to find the spectral efficiency of TH-CDMA with s in the LSL, i.e. (see eq. (1.5)):

F T F (1.20)
It is important to remark that the above convergence in probability does not follow immediately; in fact, convergence in law does only imply convergence of bounded functionals, but is not bounded on the support of F . We prove eq. (1.20) in Appendix 1.A, and thus: The capacity of a TH-CDMA system with s can be interpreted as follows. Rewrite eq. (1.21) as follows:

opt f (1.22)
where . Hence, opt is a sum of channel capacities , N, weighted by probabilities f . Since is the capacity of a complex AWGN channel with signal-to-noise ratio , N, opt is equal to the capacity of an infinite set of complex AWGN channels with increasing signal-to-noise ratio paired with decreasing probability of being used f . Therefore, TH-CDMA has the same behavior of an access scheme that splits the multiaccess channel into independent channels, each corrupted by noise only, with power gain equal to , and excited with probability f . Since f is also the probability that signatures have their nonzero element in the same dimension, that is for TH-CDMA associated with the event of waveforms having their pulse over the same chip, for small , that is, , channels with high capacity (for a fixed ), that is, with , are less frequently used than channels with low capacity; in general, channels with in a neighborhood of are used most frequently.

One noticeable difference between DS and TH matrices is that in the former the maximum eigenvalue max a.s. [START_REF] Bai | No eigenvalues outside the support of the limiting spectral distribution of large dimensional sample covariance matrices[END_REF], and thus also max , while in the latter max .

Moreover, there exists a nonzero probability f such that, also for , the zero-capacity channel (

) is excited. This probability, that is the amplitude of the Dirac mass at , is equal to F ; it equals the probability that a chip is not chosen by any user or, equivalently, the average fraction of unused chips; and, finally, it equals the high-SNR slope penalty, as we will detail below.

It is interesting to analyze the behavior of

, that is a random variable for finite . Figure 1 

Asymptotics

In the following, spectral efficiency, when expressed as a function of 0 , will be indicated by1 C (b/s/Hz), as suggested in [START_REF] Verdú | Spectral efficiency in the wideband regime[END_REF], rather than (b/s/Hz), that denotes spectral efficiency as a function of . While an expression of can be found in terms of the LSD, the same is more difficult for C, given the nonlinear relation between and C: C C (c.f. eq. (1.4)).

In order to understand the asymptotic behavior of Cin the low-SNR and high-SNR regimes, i.e., as min C

C and , respectively, Shamai and Verdú [START_REF] Shamai | The impact of frequency-flat fading on the spectral efficiency of CDMA[END_REF] and Verdú [START_REF] Verdú | Spectral efficiency in the wideband regime[END_REF] introduced the following four relevant parameters: : the wideband slope (b/s/Hz/(3 dB));

0.
: the high-SNR slope (b/s/Hz/(3 dB));

: the high-SNR decibel offset.

In our setting, the low-SNR and high-SNR regimes also correspond to C (so called wideband regime [START_REF] Verdú | Spectral efficiency in the wideband regime[END_REF]) and C .

The minimum energy-per-bit min and the wideband slope (b/s/Hz/(3 dB)) characterize the affine approximation of C vs. dB as C : (1. [START_REF] Sedgewick | An Introduction to the Analysis of Algorithms[END_REF] where the last equality in eq. (1.27) is obtained by differentiating with respect to and applying the dominated convergence theorem to pass the limit under the integral sign. As a remark, in Appendix 1.C it is shown that F T , hence one should be able to prove that in some mode of convergence. We can verify this result in the s case, where F and , as shown by the above Theorem 3.

dB dB min C C C ( 
For TH-CDMA with s , it can be shown by direct computations that the four above parameters are given by:

min (1.29) (1.30) (1.31) (1.32)
For the generic case s , one can show that asymptotics in the wideband regime are the same as above (see eq. (1.29) is sufficient to significantly reduce the gap.

Single-User Matched Filter

The output of a bank of SUMF is given by eq. (1.2), that is, . Focusing on user , one has:

y T b b (1.33) b
where T . As shown in [START_REF] Verdù | Spectral efficiency of CDMA with random spreading[END_REF], spectral efficiency for binary or spherical DS-CDMA when each SUMF is followed by an independent single-user decoder knowing is [START_REF] Verdù | Spectral efficiency of CDMA with random spreading[END_REF][START_REF] Shamai | The impact of frequency-flat fading on the spectral efficiency of CDMA[END_REF]: This result is general, and in particular it does not assume that the PDF of neither inputs nor interference term is Gaussian. Note, however, that, in this case, Gaussian inputs are optimal. In fact, for long spreading sequences, by virtue of the strong laws of large numbers, one has a.s.

, and therefore the mutual information per user in bits per channel use is:

y b y b E a.s.
(1.35)

A similar result does hold for y b as well.

When interference is not Gaussian, we may expect spectral efficiency to assume a very different form than above. This will prove to be the case for the mutual information of TH-CDMA assuming Gaussian inputs, when s remains finite while , as investigated below.

Theorem 5. Suppose that R is a time-hopping matrix with generic s , and that the receiver is a bank of single-user matched filters followed by independent decoders, each knowing . Assuming Gaussian inputs, mutual information sumf TH (b/s/Hz) is given by: Proof. See Appendix 1.E.

In particular, for the s case, mutual information is:

sumf TH (1.37) that can be compared to, and interpreted as, eq. (1.21).

Note that eq. (1.37) provides the mutual information of TH-CDMA with s , and not the spectral efficiency, since Gaussian inputs, rather than optimal ones, are assumed. Hence, we know that spectral efficiency will be larger than or equal to sumf TH . This mutual information expression is, however, sufficient to catch a significant difference between DS-CDMA and TH-CDMA. By comparing eqs. (1.34) and (1.37), we can claim that, while spectral efficiency for DS is bounded at high , being:

sumf DS (1.38) spectral efficiency for TH is unbounded. We can indeed derive the below stronger result:

Corollary 1. Under the hypotheses of Theorem 5, the high-SNR slope of the mutual information (1.36) of TH is:

sumf TH s (1.39)
The maximum slope as a function of is achieved at s , for which sumf TH s . Since s , the global maximum is , and the optimum load is . This behavior directly provides an insight from a design standpoint: at high-SNR, the number of chips such that an increase in 0 yields a maximum increase in terms of mutual information is equal to the number of users. As a comparison, for optimum decoding, increases monotonically with , and its supremum is .

Differently from DS, when decoders have no knowledge about cross-correlations of signature sequences of other users, mutual information assumes a very different form, as derived in the following theorem. Theorem 6. Suppose that R is a time-hopping matrix with generic s , and that the receiver is a bank of single-user matched filters followed by independent decoders, each knowing the signature sequence of the user to decode only. Assuming Gaussian inputs, mutual information sumf TH s (bits/s/Hz) is given by: Based on eq. (1.42), it can be checked that the kurtosis of the interference-plusnoise , that we denote since it is independent of the user, is:

E E s (1.44)
that is always greater than , hence showing non-Gaussianity of for any , and s . This non-Gaussian nature is represented on Fig. 1.6, that shows the interference-plus-noise PDF sumf (solid blue line on figure), as given by eq. (1.42) when , dB and s , vs. a Gaussian distribution with same mean and variance (red dashed line on figure). As shown by figure, sumf , that is a linear combination, or "mixture," of Gaussian distributions with Poisson weights, cannot be reasonably approximated with a single Gaussian distribution; hence, the Standard Gaussian Approximation does not hold in general. This is the reason for the spectral efficiency gap between DS and TH.

The wideband regime is not affected by decoders' knowledge about crosscorrelations between signature sequences, as summarized by the below corollary, which proof is omitted for brevity. Differently from above, where s is finite and does not depend on , we now investigate the case s with , while . We show, using an approach similar to that developed in [START_REF] Verdù | Spectral efficiency of CDMA with random spreading[END_REF], that spectral efficiency of a TH channel with s , , is equal to that of a DS system, irrespectively of . Based on eq. (1.46), spectral efficiency coincides with that of DS sequences, as given by eq. (1.34). As a matter of fact, Theorem 7 is a generalization of the result of Verdú and Shamai [START_REF] Verdù | Spectral efficiency of CDMA with random spreading[END_REF], for TH matrices where the fraction of nonzero entries is , to which it reduces for .

Figure 1.7 shows spectral efficiency C sumf vs. mutual information I sumf (b/s/Hz) as a function of 0 (dB) for DS-CDMA (eq. (1.34), red solid line on figure), TH-CDMA knowning cross-correlations between users (eq. (1.37), blue large-dashed lines) and TH-CDMA without knowing cross-correlations between users, indicated as TH-CDMA (eq. (1.40), blue small-dashed line), with unit load . Spectral efficiency of TH-CDMA when s , , as , is equal to that of DS (c.f. eq. (1.46), red solid line). As previously, the orthogonal case (gray solid line) is shown for reference. Note that spectral efficiency is bounded in DS-CDMA and in TH-CDMA when s , , as ; the value of the limit is on figure (c.f. eq. (1.38)). On the contrary, mutual information is not bounded for both TH-CDMA and TH-CDMA ; in particular, when s , both TH-CDMA and TH-CDMA grow with similar slope as 0 increases. Mutual information of systems using multiple pulses per symbol is shown for TH-CDMA with s (small-dashed line) and for TH-CDMA with s (eq. (1.36), large-dashed line). These s cases show that mutual information decreases with respect to the one pulse per symbol case. interference becomes increasingly Gaussian, and mutual information of TH reduces to that of DS, tending to the same limit .

Decorrelator and MMSE

The output of a bank of decorrelators, following the discrete channel (c.f. eq. (1.2)), is given by:

(1.47)

where denotes the Moore-Penrose pseudoinverse; if

T is invertible, then T T
, otherwise , according to the Tikhonov regularization, exists and can be computed as the limit T T as .

In DS-CDMA, for any fixed , is almost surely full rank as , and therefore, is almost surely invertible, in which case eq. (1.47) becomes:

(1.48) where CN 0 . Assuming independent single-user decoders, spectral efficiency is [START_REF] Verdù | Spectral efficiency of CDMA with random spreading[END_REF]:

deco DS (1.49)
The output of a bank of MMSE filters observing (c.f. eq. (1.2)) is:

T T T (1.50)
where T is defined as follows:

T T T T T (1.51)
Note that, as well known, MMSE and decorrelator coincide as .

In DS-CDMA, for any fixed , it was shown in [START_REF] Verdù | Spectral efficiency of CDMA with random spreading[END_REF] that:

mmse DS (1.52) where: being as in eq. (1.19).

We can treat both decorrelator and MMSE as special cases of the linear operator:

T T T T T
for and , respectively. Similarly as eq. ( 1.50), one has:

T (1.53)
where dependence on is now made explicit, and the output for user is:

b b (1.54)
For s , a closed form expression for the generic element of is derived in Appendix 1.I, and reads as:

(1.55)
where is:

1 (1.56)
Denote with J the following set: J . Hence, J is the cardinality of J . Denote with J J . Since J , one has J . We can rewrite eq. (1.119) as follows:

b J b (1.57)
Note that b for is distributed as b , and given is complex Gaussian with zero mean and conditional variance: 0 Known , and given b are both complex Gaussian, hence mutual information expressed in bits per user per channel use is:

b b E 0 E Since
, in the LSL one has P . Therefore, we proved the following:

Theorem 8. Suppose that R is a time-hopping matrix with s
, and that the receiver is a bank of either decorrelators or MMSE filters followed by independent decoders, each knowing . Assuming Gaussian TH , thus we will write the above quantities interchangeably. With minor modifications of the above argument, it is possible to show that a similar result does hold for any linear receiver T , , under the assumption s . Therefore, results for SUMF can be extended verbatim to both decorrelator and MMSE receivers, when s . This result suggests a striking difference with respect to DS, where spectral efficiency depends on the adopted linear receiver: In TH with s , SUMF, decorrelator and MMSE all result in the same mutual information.

In order to compare DS and TH for decorrelator and MMSE, we separate the analysis for systems with and , to which we refer as underloaded and overloaded, respectively.

Underloaded system

. Decorrelation in DS allows to achieve the maximum high-SNR slope, deco DS , that is equal to that of orthogonal multiple access. On the contrary, TH does not fully exploit the capabilities of CDMA in the high-SNR regime, since deco TH sumf TH

. This behavior follows directly from cross-correlation properties of signature sequences of DS vs. TH: In DS, the almost sure linear independence of signature sequences, that holds for any , makes T almost sure invertible, and thus interference can be mostly removed, which is not the case of TH (c.f. Fig. 1.3 and Theorem 3). However, the optimal high-SNR slope in DS comes at the expense of a minimum 0 equal to , that can be much larger than that achieved by TH, namely ; in particular, as , the minimum energy-per-bit for DS with decorrelator grows without bound. Therefore, decorrelation with DS should to be considered in a very low load, high-SNR regime only: in this region, it outperforms TH. It can be shown, by comparing eqs. (1.52) and (1.49), that in DS spectral efficiency of MMSE is always larger than that of decorrelator. In particular, it achieves a minimum energy-per-bit equal to , which is optimal, and also an optimal high-SNR slope.

Overloaded system

.

Spectral efficiency of TH and DS with MMSE is similar in the low-SNR regime, with same minimum energy-per-bit and wideband slope. At high-SNR, mutual information of TH is unbounded, while spectral efficiency of DS is bounded, as in the SUMF case. In particular, while the high-SNR slope of TH is equal to

sumf TH
for any , the high-SNR slope of DS with MMSE is:

mmse DS 1 1 1
which implies that, as 0 , C mmse DS is infinite for , while it is finite for , and equal to (c.f. eq. (1.52)) [START_REF] Verdù | Spectral efficiency of CDMA with random spreading[END_REF]:

mmse DS (1.59)
By comparing this result with eq. (1.38), that refers to SUMF, one also notes that the two limits are different, although as both tend to . DS with MMSE outperforms linear receivers with TH: this is due to the particular choice of . dB. This figure shows that MMSE with DS is outperformed by TH for large : in particular, there exists a minimum value of , say , in general depending on 0 , beyond which the mutual information of TH is higher than the spectral efficiency of DS, although both tending to a same limit as , that is, . While it is difficult to study as a function of 0 , the above discussion on the high-SNR slope of DS suggest that marks a transition in DS behavior as , and at about quickly drops towards the limit value given by eq. (1.59), while spectral efficiency of TH remains smooth for any load in the neighborhood of and increases monotonically with dB . (blue dotted line). TH behavior is delimited by DS curves, with optimum decoding vs. SUMF (top and bottom red lines). Both upper and lower curves are approached by TH as s increases; in particular, we showed that the lower curve describes, in fact, TH when s , , as . In between these two extremes lie TH curves with optimum vs. linear receivers. In particular, for s (maximum energy concentration), mutual information of a receiver as simple as SUMF is not bounded, and also close to optimum decoding with s . Furthermore, a lack of knowledge in cross-correlations of spreading codes provokes a drop of performance that is, however, not sufficient to degrade mutual information to DS spectral efficiency, with any finite s . , for linear and optimum receivers. Irrespective of , spectral efficiency of DS with optimum decoding is larger than that achieved by TH, the gap being almost closed when s finite. Conversely, among linear receivers and access schemes, it is shown that DS with SUMF has the lowest spectral efficiency, which is equal to that of TH when the number of pulses is asymptotically a nonzero fraction of the number of chips. The largest spectral efficiency in DS is obtained with MMSE, which is greater than the mutual information of TH when load is lower than a threshold 0 , depending in general on 0 . At higher load, mutual information of TH is larger than spectral efficiency of DS. This analysis is intrinsically conservative, since spectral efficiency of TH will be, in general, larger than or equal to the mutual information obtained assuming Gaussian inputs. Therefore, one should expect that the gap in spectral efficiency between DS and TH with linear receivers is smaller and larger than that showed on figure when and , respectively.

Synopsis of the TH-CDMA case
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Conclusions

Verdú and Shamai showed in [START_REF] Verdù | Spectral efficiency of CDMA with random spreading[END_REF] that optimum decoding provides a substantial gain over linear decoding in DS-CDMA, with random spreading. In particular, a bank of single-user matched filters followed by independent decoders is bounded in spectral efficiency at high-SNR, and linear multiuser detectors are needed in order to recover a nonzero spectral efficiency high-SNR slope. This behavior is partly due to the "even" use of degrees of freedom-coinciding in our setting with chips-that is intrisic of DS-CDMA [START_REF] Medard | Bandwidth scaling for fading multipath channels[END_REF].

The object of this paper was to analyze TH-CDMA with random hopping, and compare its behavior against DS-CDMA; we interpreted time-hopping in the general framework developed in [START_REF] Verdù | Spectral efficiency of CDMA with random spreading[END_REF][START_REF] Shamai | The impact of frequency-flat fading on the spectral efficiency of CDMA[END_REF]. The present analysis allowed comparison of TH vs.

DS with same energy per symbol and same bandwidth constraints, and, therefore, showed the effect of the energy "concentration," that is typical of TH. The degree of "unevenness" in TH-CDMA is directly related to the number of pulses s representing each symbol. At one extreme, one has maximum "unevenness," where all energy is concentrated in one pulse ( s ), while the other extreme corresponds to maximum "evenness," s , where TH coincides with DS. Particular emphasis has been put on the archetypal case of "unevennes," that is s , and partial results showing the general behavior when s have been derived.

A first result of our analysis was to derive a closed form expression for spectral efficiency of TH-CDMA with optimum decoding when s , showing that, in this case, DS-CDMA outperforms TH-CDMA, in particular in the high-SNR regime. Same wideband behavior, but lower high-SNR slope, was observed for TH-CDMA vs. DS-CDMA, that is DS TH

. A closed form expression for generic s remains an open problem; results based on simulations suggested, however, that the spectral efficiency loss at high-SNR may be considerably reduced while maintaining the number of pulses finite, and we provided evidences that the gap is reduced to a very small value with as low as two pulses per symbol ( s ). This result indicates that the spectral efficiency gap may be substantially reduced while only using a fraction s of degrees of freedom per user, that asymptotically vanishes as grows.

A different behavior of TH-CDMA with respect to DS-CDMA was observed with linear receivers. Contrarily to DS, spectral efficiency of SUMF for TH with s was unbounded. As suggested, this asymptotic behavior may be traced back to the non-Gaussian distribution of the interference-plus-noise variable observed by each independent single-user decoder, that, in turn, depends on cross-correlation properties of spreading sequences. The same high-SNR slope sumf TH was achieved by TH irrespectively of the knowledge that each single-user decoder had about spreading sequences of all other users. It was interesting to note that the maximum slope for TH, providing a hint on greatest energy efficiency, was reached when the number of users was equal to the number of chips , i.e., , leading to sumf TH . On the contrary, for s , , same spectral efficiency as DS-CDMA (

) was obtained irrespectively of for .

The bounded nature of spectral efficiency with a SUMF bank in DS-CDMA is overcome, as well known, by using more complex linear receivers, that also account for interference, such as MMSE and decorrelator. Conversely, we showed that, in TH-CDMA, mutual information assuming Gaussian inputs has the same expression, irrespective of the linear receiver used, due to the peculiar structure of TH spreading sequences. TH sequences are indeed "more" likely to be linearly dependent than DS ones, in agreement with the intuition based on the cardinality of binary DS vs. TH codes, that is vs.

. This lack of independence led to the impossibility of removing interference, which is instead almost surely feasible for DS, e.g. with either decorrelator or MMSE receivers, as long as the load . Therefore, in a low load, high-SNR scenario, DS outperforms TH. The opposite is true when . In fact, while spectral efficiency in DS with MMSE rapidly drops, in particular with large 0 , as soon as becomes larger than one, mutual information of TH decays softly when one keeps overloading the system, and tends to the same MMSE DS limit. The absence of a spectral efficiency "transition" in the neighborhood of the unit load, that is typical of DS, allows TH to outperform DS with any load larger than for sufficiently high 0 . Beyond the natural extension of the present work to channels with fading, where the effect of an "uneven" use of degrees of freedom typical of TH should be investigated, we do stress that, from the single-user perspective, TH is a particular instance of impulsive signal. As such, the present theoretical setting, if appropriately adapted to asynchronous links, may serve as a basis for refining the understanding of the limits of impulsive communications.

.

User 1 User 2 ⌧2 User K ⌧K mT (m + 1)T N h Tc Tc . . . 1 2 • • • Ns Figure 1.14: Signal model: in picture, s , h , therefore s h
. Delays are considered with respect to the first User, therefore .

Asynchronous channel

Model

As for the asynchronous channel model, we adopt the model proposed in [START_REF] Verdù | Multiuser Detection[END_REF] for CDMA systems, where the received signal is:

y A b s n (1.60)
in which we introduce the possibility for the signature waveform to change from one symbol to the next, and propose the following straightforward generalization:

y A b s n (1.61)
where the codeword of length is considered for each user, the spreading waveform s of user in the th epoch may depend on , that is:

s s
is the th symbol of user , and indicates its delay. Users are ordered according to increasing , that is, , and is set to . As previously, A .

Note that in this case, the anaylis focuses on set of symbols per user vs. of the synchronous case since this has proved to be necessary in order to derive a sufficient statistic for b [START_REF] Verdù | Multiuser Detection[END_REF].

A procedure similar to the one adopted in [START_REF] Verdu | The capacity region of the symbol-asynchronous gaussian multipleaccess channel[END_REF] allows to derive a discrete channel model equivalent to the continuous-time channel of eq. (1.61); the equivalence is defined in terms of channel capacity, and also in terms of capability of producing sufficient statistics leading to optimum inference of .

To this end, define the th symbol vector This vector can be compactly written using the Kronecker product as follows:

(1.63)

where . Explicitly, the ( )-th component of is b . Note that, according to the above notation, the asynchronous channel with users and codewords length is equivalent to a synchronous channel with users and codeword length one.

Now consider projecting the continuous-time process y

onto the set of all spreading waveforms:

s (1.64)
that is, consider the inner product between y and the generic : y This is the output of a filter that is matched to the signature sequence of user at symbol sampled at the corresponding epoch, that is, at time .

Stacking these projections as for , one has:

(1.65)
that is, a vector showing that is symmetric.

Since symbols are transmitted for each user and given eqs. (1.62), (1.65) and (1.66), has the following block-matrix structure:

T (1.68)
where each block is with components:

Since is symmetric, one also has T . Given (1.68), the following relation holds for :

(1.69)

Compared to CDMA systems where signatures do not change across symbol periods, note that, as previously indicated, the proposed model releases this constraint, as reflected in the general block structure of . Note that the proposed model reduces to its traditional form [START_REF] Verdù | Multiuser Detection[END_REF] when signatures do not vary across symbol periods, for which one has: T having defined . In this case, is also block-Toeplitz.

Note that if the channel were synchronous, one would have T By construction, is block-Toeplitz with respect to blocks and also with respect to smaller blocks .The generic element of can be expressed by: R having defined:

c
which also shows that is symmetric.

We can express in terms of spreading sequences and matrix as follows:

T This model duly reduces to the synchronous model when delays are null, as can be derived in a straightforward way.

Note that a linear time-invariant, frequency-selective channel with impulse response might be taken into account by substituting with . In this case, would account for both asynchronicity and frequency-selectivity.

Note that the assumption of zero-excess bandwidth pulses was, as initially indicated, introduced for mere simplification, and any orthonormal family of pulses, as in particular time-limited waveforms, fit the model; UWB impulse-radio communications are appropriately modeled.

Impulsiveness

A non-impulsive system occupying frequency band W W (Hertz) and using a channel for (seconds) may transmit at most W orthogonal waveforms by transmitting a waveform that occupies a bandwidth W every W seconds for seconds. Symbol period is therefore W, and effective duration is W as well, that is in non-impulsive systems these two quantities coincide.

Conversely, in impulsive systems, that is, systems using pulses with bandwidth W W, while keeping fixed the symbol period, the channel may still used every W seconds but transmission occurs over bandwidth W ; effective duration is thus W . Impulsiveness can, therefore, be measured by ratio W W, that is, the ratio of transmission bandwidth over minimum Nyquist bandwidth. We call this ratio impulsiveness index i .

While spread-spectrum systems use a bandwidth larger than what is the minimum required to transmit at a given symbol rate, impulsive systems use a larger bandwidth than the minimum required to transmit at a given chip rate. Therefore, impulsiveness can be viewed as another way for spreading bandwidth. In non-impulsive spread-spectrum systems, bandwidth spreading is described by the number of chips in one symbol period, named spreading factor c N.

Similarly, impulsiveness index i specifies spreading as system bandwidth vs. chip rate; impulsive systems may use bandwidth W c , i.e., e↵ c , therefore transmitting pulses that are much shorter than the chip interval. The condition i N guarantees the Nyquist criterion to be satisfied.

In general, we propose to define impulsiveness resorting to the concept of effective duration akin to that of effective bandwidth as described in [START_REF] Benedetto | Principles of Digital Transmission: With Wireless Applications[END_REF]: where effective duration is defined as to satisfy: Note that for zero-excess bandwidth pulses occupying frequency band W W , as used throughout this chapter for the sake of simplicity, one has e↵ W, and therefore i c W. However, the impulsiveness index is well defined also for the opposite case of strictly time-limited pulses; for example, for rectangular pulses with duration (seconds), eq. (1.72) yields e↵ , as intuitive.

Figure 1.15 shows an example of a spreading waveform for non-impulsive communications (Fig. 1.15a), where pulse bandwidth is directly related to chip rate, vs. impulsive communications (Fig. 1.15b), where pulse effective duration is shorter than the chip interval, and thus bandwidth is larger than chip rate, specifically i times c . In the literature of the last fifteen years, the concept of peaky signaling arose (e.g. [START_REF] Medard | Bandwidth scaling for fading multipath channels[END_REF][START_REF] Biglieri | Fading channels: information-theoretic and communications aspects[END_REF][START_REF] Verdú | Spectral efficiency in the wideband regime[END_REF][START_REF] Lozano | Non-peaky signals in wideband fading channels: Achievable bit rates and optimal bandwidth[END_REF]). Although related, the concepts of impulsiveness and peakdeness are complementary, as we explain in the next section.

Impulsiveness vs. Peakedness

The notion of peakedness of a random variable is strictly related to the limitedness of its maximum absolute value or, in a relaxed sense, to the limitedness of its fourth moment and kurtosis [START_REF] Medard | Bandwidth scaling for fading multipath channels[END_REF][START_REF] Biglieri | Fading channels: information-theoretic and communications aspects[END_REF][START_REF] Lozano | Non-peaky signals in wideband fading channels: Achievable bit rates and optimal bandwidth[END_REF]. In general, a distribution with large kurtosis is indicated as "peaky" [START_REF] Medard | Bandwidth scaling for fading multipath channels[END_REF].

As example of non-peaky distribution, consider a discrete binary r.v.

uniformly distributed, A A ; has kurtosis . On the contrary, as example of "peaky" distribution, consider

A A ;
has kurtosis , that is increasingly "peaky" as . In general, a "peaky" distribution has the zero value, or nearly zero values compared to the standard deviation, with high probability with respect to the probability under the tails, that is, for values greater than the standard deviation; therefore, leptokurtic distributions are "peaky". A r.v. drawn from a "peaky" distribution is characterized by rare large and frequent mild deviations.

A communication system that transmits over bandwidth W W for seconds is characterized by W degrees of freedom indicating that the channel may carry W input symbols towards output; the capacity of the channel is the maximum number of bits, that can be encoded in these W symbols, with a vanishing error probability. Under fixed power constraint, the distribution of inputs over these degrees of freedom determines peakedness. In particular, if the kurtosis of inputs is "relatively" high, then the input distribution is "peaky".

Increasingly "peaky" inputs lead to reaching the wideband capacity, i.e.capacity for spectral efficiency tending to zero, for transmissions over fading channels when the receiver has no a priori knowledge on fading coefficients [START_REF] Richters | Communication over fading dispersive channels[END_REF][START_REF] Abou-Faycal | The capacity of discrete-time memoryless rayleigh-fading channels[END_REF][START_REF] Kennedy | Fading dispersive communication channels[END_REF]. Conversely, in the same context, Gallager and Médard [START_REF] Medard | Bandwidth scaling for fading multipath channels[END_REF][START_REF] Gallager | Bandwidth scaling for fading channels[END_REF] show that non-peaky inputs lead to zero mutual information. In particular, these authors highlight a "bandwidth scaling" property for multipath fading channels, that can be described as follows: assuming an infinite number of path scattering model, mutual information of spreadspectrum signals tends to zero as bandwidth grows if energy and fourth moment of inputs scale with W and W , respectively, that is, if degrees of freedom are used "evenly", in a typical non-peaky fashion. Finally, Verdú [START_REF] Verdú | Spectral efficiency in the wideband regime[END_REF] defines the family of input distributions, called flash, achieving capacity at the wideband regime. This family encompasses inputs that are distributed as the mixture of two probability distributions, the first tending to a Dirac mass in the origin, and the second that vanishes as the signal-to-noise ratio per degree of freedom tends to zero.

Degrees of freedom can be exploited in time only, in frequency only, or in both time and frequency.

As example of a system that is non-peaky neither in time nor in frequency, consider DS-CDMA as in [START_REF] Medard | Bandwidth scaling for fading multipath channels[END_REF][START_REF] Gallager | Bandwidth scaling for fading channels[END_REF]. As example of a system that is "peaky" in frequency, but not in time, consider -FSK with symbol duration and bandwidth W divided into equal slices of width , hence W . For transmitting a message with , one frequency slice only is used. Inputs present thus out of nonzero value occurences, and therefore are distributed as , with kurtosis . As example of a system that is "peaky" in both time and frequency, consider FSK with duty cycle, as in [START_REF] Telatar | Capacity and mutual information of wideband multipath fading channels[END_REF][START_REF] Biglieri | Fading channels: information-theoretic and communications aspects[END_REF]. As example of a system that is "peaky" in time, but not in frequency, consider -PPM with symbol effective-duration W, hence W . Inputs are distributed as above as in the case of -FSK.

The last example is particularly significant to draw an analogy between peaky inputs in time, that are those that present "many" occurrences of the zero value, and impulsiveness.

Impulsive systems are intrinsically "peaky" since a subset only of the available degrees of freedom is used; this is particularly evident in the time domain since many occurrences of the zero value can be observed. Impulsiveness reshapes indeed the input distribution of a non-impulsive signal with i by adding a Dirac mass at the origin as follows: i i . Therefore, the intuition may be that impulsiveness provides a mean that is complementary to duty-cycle in order to achieve capacity at the wideband regime; as impulsiveness grows, inputs become increasingly "peaky", and may flash at the limit i .

Moreover, TH-CDMA signals, as opposed to DS-CDMA, are "peaky"; also, for any fixed s , as grows, these signals are increasingly "peaky", while tending to flash at the limit .

Impulsive CDMA signals in general have increased peakedness with respect to non-impulsive CDMA signals; therefore, for DS-CDMA, impulsiveness is a mean towards peakedness, while for TH-CDMA signals it is a mean towards increased peakedness.

First results

Spectral efficiency of the asynchronous channel can be derived, similarly to the synchronous case, from the equivalent discrete channel model (c.f. eq. (1.66)) as: (b/s/Hz) Since the covariance of and the conditional covariance of given are, respectively:

0 E T 0 being E , then: (b/s/Hz) (1.73)
having denoted with 0 as previous. 47 When an impulsive communication is employed, then the bandwidth used is i times larger than the minimum required, therefore eq. (1.73) generalizes to:

i (b/s/Hz) (1.74)
Investigation of when either or for special families of random spreading signatures in an asynchronous setting is the major challange.

For non-varying signatures across symbol periods, a prior work of Verdú [START_REF] Verdu | The capacity region of the symbol-asynchronous gaussian multipleaccess channel[END_REF] reports the expression of capacity for asynchronous DS-CDMA channel with and finite, once signature sequences are fixed and nonrandom. For random DS-CDMA, Cottatellucci et al. [START_REF] Cottatellucci | Asynchronous CDMA systems with random spreading: Part i: Fundamental limits[END_REF] find the expression of the SINR achieved by an MMSE receiver using the REFORM method proposed by Girko [START_REF] Girko | Theory of Stochastic Canonical Equations: Volumes I and II, ser. Mathematics and Its Applications[END_REF] and exploit the celebrated relation between mutual information and mmse [START_REF] Guo | Mutual information and minimum meansquare error in gaussian channels[END_REF] in order to find capacity with the optimum receiver.

Cottatellucci's analysis of the DS-CDMA asynchronous channel in [START_REF] Cottatellucci | Asynchronous CDMA systems with random spreading: Part i: Fundamental limits[END_REF] proceeds in two steps. In the first step, it is assumed that the maximum delay between users is limited to a chip interval, that is c : the so obtained channel is called chip asynchronous, symbol quasi-synchronous channel. In the second step, it is shown that results obtained in the previous step continue to be valid also when s : this is called symbol asynchonous channel. In what follows, we limit our attention to the chip-asynchronous, symbol quasisynchronous TH-CDMA channel.

Chip asynchronous, symbol quasi-synchronous channel

As in [START_REF] Cottatellucci | Asynchronous CDMA systems with random spreading: Part i: Fundamental limits[END_REF], the assumption of limitedness of to c implies that, in the large system limit, ISI becomes negligible.

Therefore, we can study a channel where one symbol only is transmitted.

We further assume discrete delays, i.e., delays that are multiples of W: W with i . This kind of "discrete-asynchronism" effectively turns the channel into a set of i parallel channels, each populated by a number of users equal to the number of users with same delay: therefore, capacity of the discreteasynchronous channel is the sum of capacities of these parallel channels.

Intuition behind this result lies on orthogonality of users with different delays. When two users have indeed different delays, their waveforms are orthogonal irrespective of the signature sequences: this follows from the property of bandlimited pulses to be orthogonal if delayed by multiples of W. Therefore, dividing the set of users into equivalent classes where the equivalence is defined by having the same delay and calling the number of users with delay W, the original channel is decomposed into at most i orthogonal channels, since there are at most i delays, each channel having symbols of chips, using a bandwidth W, and being populated by users, hence having load equal to . This construction implies that i . Now let prove these intuitions in light of the asynchronous channel model developed in Section 1.4.1 and the general spectral efficiency expression given by eq. (1.74), both specialized to the case .

Consider a composition of into i parts, that is, i , where . If two users and have different delays, i.e., , then :

c c
Therefore, when , and is a block-diagonal matrix with at most i diagonal blocks of dimensions , , i i .

As defined in eq. (1.66), inherits this block-diagonal structure, with diagonal blocks of dimensions , , i i . Call these diagonal blocks , . . . , i . From eq. (1.74), we have:

i i i i i (b/s/Hz)
where each describes a multiple access channel with synchronous users and chips having capacity (b/s/chip) as found in Section 1.2. Ensemble average of is therefore:

E i i i i E
where the expectation is on , that is the number of users with delay equal to W. Assuming uniform i.i.d. delays, Binom with i , irrespective of , hence:

(b/s/Hz)
Assuming as previous spectral efficiency to be self-averaging, the large-system limit yields spectral efficiency :

F (b/s/Hz) (1.75)
where:

F F (1.76)
having denoted with F the e.s.d. of a synchronous CDMA channel with load averaged over the spreading sequences, and with F the large-system limit e.s.d. that is found by averaging F with respect to and let .

In general i is function of . There are, therefore, different ways we can approach the large-system limit depending on the behavior of as .

Case 1) i

This is case when , and i is constant, and thus also the bandwidth is constant. The load of the system is:

users DoF i (1.77) Case 2) i
When i grows as , the number of DoFs grows as ; therefore, also the number of users has to grow as in order to keep spectral efficiency nonzero. This is the case when i . For the sake of simplicity, consider:

i 50
Note that in this case, as the impulsiveness index, also the bandwidth tends to infinity in the large-system limit. The load of the system is:

users DoF i (1.78)
Therefore we can actually call the constant factor .

TH-CDMA with s .

We find closed form expression of (1.75) for TH-CDMA with s in the two cases specified above.

In general, spectral efficiency of TH-CDMA with s is given by:

E E x x (b/s/Hz)
where the inner expectation is over x Pois and the outer expectation is over Binom i .

Case 1) Quite surprisingly, although in this case the Binomial distribution does not tend to a Poisson distribution, we can anyway regard the (unconditioned) distribution of x as Poissonian:

f x f f x hence, asymptotically, x Pois .
Case 2) In this case, the Binomial distribution tends to a Poisson distribution as follows:

Pois , x Pois and x Pois .

Therefore, in both cases, spectral efficiency is given by:

E x (b/s/Hz) (1.79)
as in a synchronous channel with load given respectively by eqs. (1.77) and (1.78).

Future work

In this section, several proposal for extending the analysis of previous sections are presented in order to account:

(E1) non-uniform power constraints over users;

(E2) fading channels;

(E3) multipath channels;

(E4) frequency-hopping;

(E5) asynchronism.

E1. We call non-uniform power constraint a constraint E b that depends on , i.e., E b that, when symbols of different users are independent, leads to:

E (1.80)
where is diagonal. Spectral efficiency is, therefore, given by: For the sake of simplicity, it is common to assume (e.g. [START_REF] Tulino | Capacity of channels with frequency-selective and time-selective fading[END_REF]) that A are i.i.d. with unit variance, E A . This corresponds to channels having, on average, unit gain, that may be assumed w.l.o.g. (in the opposite case, the different gains may be included in a non-uniform power constraint, such as in E1 ). Spectral efficiency, when receiver has knowledge of the fading coefficients, is:

(1.83) and, therefore, the analysis reduces to that of finding the eigenvalue distribution of where the optimum is expected to be non-diagonal, thus requiring cooperating users, and follow a water-filling argument. It would be interesting to find a closed form expression of eq. (1.85) and compare the resulting spectral efficiency vs. a suboptimum uniform power constraint, as given by eq. (1.84) with diagonal .

E3. The multipath channel between user and the receiver may be modeled with a convolution matrix of dimensions , where is the length of the channel expressed in number of taps, corresponding to the delay spread W seconds. The channel model becomes:

b b (1.86)
where:

T Spectral efficiency is given again by eqs. (1.84) and (1.85) by formally replacing with . In the present case, however, we may exploit the convolutional structure of in order to attempt finding a closed form solution.

E4. Frequency-hopping may be regarded as the time-hopping dual modulation. We present in the following the basic time-hopping signaling scheme, and analogies and differences with frequency-hopping. Investigation of a further generalization is proposed. Strictly speaking, several expressions below are valid asymptotically only, as degrees of freedom in time and/or frequency tend to infinity; we do not account this specific issue here.

In time-hopping, a waveform strictly bandlimited to is transmitted with period for . By projecting onto the set , one has:

(1.87)

where is the vector symbol transmitted (or the set of transmitted symbols with time-hopping), CN 0 , and assumes a different form depending on the channel that is experienced. In particular, when the channel is time-selective, then A A , with typically i.i.d. diagonal elements [START_REF] Tulino | Capacity of channels with frequency-selective and time-selective fading[END_REF]; when the channel is frequency-selective, is a convolution matrix, such that , which is asymptotically circulant, and therefore diagonalizable with a Fourier basis, i.e., , where is diagonal with diagonal elements equal to the DFT of the first column of . In case where both time-and frequency-selective fading are present, one has: .

On the contrary, in frequency-hopping (e.g. [START_REF] Telatar | Capacity and mutual information of wideband multipath fading channels[END_REF]), transmitted signals belong to the orthonormal family 1

The presence of the term implies that . In presence of a frequency-selective channel, the signal projected onto the above family is:

, where is diagonal. On the other hand, in case of time-selective fading, is circulant, in a dual fashion with respect to frequency-selective fading in time. The relationship between signaling expressed in time or frequency domain is given by the Fourier matrix and its inverse .

A further generalization is not to divide the degrees of freedom available in "slices" that occupies the whole frequency resource for a short time (time-hopping) or the whole time resource in a narrow frequency band (frequencyhopping). For the sake of clarity, consider time and frequency as two coordinate axis on a plane: the time-frequency (TF) plane. Time vs. frequency resources are not independent-there exist a coupling expressed by an uncertainty principle. Indeed, one can divide the TF plane in rectangles with dimensions and , such that . This partition can be obtained, for example, by the Weyl-Heisenberg (WH) family. A suitable choice of and alongside WH signaling is able to diagonalize a given channel-under the rather technical assumption of being underspread, which is largely verified by most indoor and outdoor channels. Several investigations of TF signals in connection with wireless communications can be found in [START_REF] Hlawatsch | Wireless communications over rapidly timevarying channels[END_REF]. Future analyses may find closed-form expressions of spectral efficiency, by starting from relations similar to eq. (1.85), under the general perspective of a TF discretization, by further consider the effect of pratical impairments due to imperfect channel knowledge and correlations in channels coefficients.

E5. In symbol-asynchronous systems, where users may experience delay , the general formula for the spectral efficiency is given by eq. (1.73). Find a closed form as both and seems to be a formidable task in general; on the other hand, a success in this direction, that could maybe rely on Girko's methods [START_REF] Girko | Theory of Stochastic Canonical Equations: Volumes I and II, ser. Mathematics and Its Applications[END_REF], would probably uncover a way to address several issues related to asynchronism in spread-spectrum systems, as well as systems which can be formally reconducted to a spread-spectrum description.

Conclusion

Verdú and Shamai showed in [START_REF] Verdù | Spectral efficiency of CDMA with random spreading[END_REF] that optimum decoding provides a substantial gain over linear decoding in DS-CDMA, with random spreading. In particular, a bank of single-user matched-filters followed by independent decoders is limited in spectral efficiency at high SNR, and linear multiuser detectors are needed in order to recover a nonzero spectral efficiency high-SNR slope. This behavior is partly due to the "even" use of degrees of freedom -coinciding in our setting with chips -that is intrisic of DS-CDMA [START_REF] Medard | Bandwidth scaling for fading multipath channels[END_REF].

The object of this chapter was to analyze TH-CDMA with random hopping, and compare its behavior against DS-CDMA; we interpreted time-hopping in the general framework developed in [START_REF] Verdù | Spectral efficiency of CDMA with random spreading[END_REF][START_REF] Shamai | The impact of frequency-flat fading on the spectral efficiency of CDMA[END_REF]. The present analysis allowed comparison of TH vs. DS with same energy per symbol and same bandwidth constraints, and, therefore, showed the effect of the energy "concentration", that is typical of TH. The degree of "unevenness" in TH-CDMA is directly related to the number of pulses s representing each symbol. At one extreme, one has maximum "unevenness", where all energy is concentrated in one pulse ( s ); the other extreme corresponds to maximum "evenness", s

, where TH coincides with DS.

A first result of our analysis was to derive a closed form expression for spectral efficiency of TH-CDMA with optimum decoding in the archetypal case of "unevennes", that is s , showing that, in this case, DS-CDMA outperforms TH-CDMA; same wideband behavior, but lower high-SNR slope, was observed for TH-CDMA vs. DS-CDMA, that is DS TH

. A closed form expression for generic s remains an open problem; results based on simulations suggested, however, that the spectral efficiency loss may become negligible with as low as two pulses per symbol ( s ). This result indicates that the spectral efficiency gap between TH-CDMA and DS-CDMA may be substantially reduced to a very small value, although only using a fraction s of degrees of freedom per user, that asymptotically vanishes as grows. With respect to the non-asymptotic s generic case with finite, we developed a systematic method for finding approximations of spectral efficiency at the wideband regime (C ). In particular, for small values of (example ), 0 (dB) vs. C was independent of s , up to a second order approximation.

A different behavior of TH-CDMA with respect to DS-CDMA was observed with a SUMF linear receiver. Contrarily to DS, TH-CDMA spectral efficiency with s was unbounded for increasing SNR. As suggested, this asymptotic behavior may be traced back to the non-Gaussian distribution nature of the interferenceplus-noise variable observed by each independent single-user decoder, that, in turn, depends on cross-correlation properties of spreading sequences. The same high-SNR slope sumf TH was achieved by TH irrespectively of the knowledge that each single-user decoder had about spreading sequences of all other users. For generic s , we were able to show that, when s obeys the rule s , , same spectral efficiency as DS-CDMA ( ) was obtained irrespectively of for . The unstructured generic s case, where each single-user decoder had no knowledge on spreading sequences of other users, was analyzed by simulation, and results showed that, for increased s , the high-SNR slope decreased although never reaching zero (spectral efficiency tending but not reaching a horizontal asymptote). It was interesting to note that the maximum slope for TH, providing a hint on greatest energy efficiency, was reached when the number of users was equal to the number of chips , i.e., , leading to sumf TH .

The bounded nature of spectral efficiency with a SUMF bank in DS-CDMA is overcome, as well known, by using more complex linear receivers, that also account for interference, such as MMSE and decorrelator. Conversely, we showed that, in TH-CDMA, the introduction of complexity in the linear receiver led to only small gains over SUMF, due to the structure of spreading sequences; TH spreading sequences are "more" likely to be linearly dependent than DS ones, in agreement with the intuition based on the cardinality of binary DS vs. TH codes, that is vs.

. Reinforcing this argument, note that, for TH with generic finite s , we proved that same spectral efficiency was achieved with SUMF, decorrelator and MMSE, when decoders had knowledge on cross-correlations of spreading sequences.

Beyond natural extensions of the present work to channels with fading, multipath, and asynchronism, where the effect of an "uneven" use of degrees of freedom typical of TH should be investigated, we do stress that, from the single-user perspective, TH is a particular instance of impulsive signals. As such, the present theoretical setting, if appropriately adapted to asynchronous links, may serve as a basis for refining the understanding of impulsive communications bound laws. for all , that is:

P F T F (1.
88) It is useful to rewrite integrals with respect to measures. In particular, let TH be a measure such that F T TH , and denote by TH its expectation. Also, recall that TH is given by eq. (1.17). As already pointed out in the proof of Theorem 1, eigenvalues of T belong to non-negative integers, therefore both measures are discrete (i.e., purely atomic), and one has: where (c.f. eq. (1.14)):

TH TH
and, for ease of notation, we write TH and TH for TH and TH , respectively. It can be shown by elementary methods that, in the LSL, the last two terms in eq. (1.89) both tend to zero. Since: 

1.B Proof of Theorem 2

This appendix is split in two parts. In the first part, we will find average moments E for finite dimensional systems, where both and are finite. In the second part, we will prove convergence in probability of to the th moment of a Poisson distribution in the LSL, by showing that .

Part 1: Average Moments of TH-CDMA matrices with s .

The th moment of the ESD can be written as follows:

Tr T Tr T T T T T T T (1.90) 
where summations span over . By taking the expectation of eq. (1.90), the following expression for the th average moment is derived:

E E T T T P P 1 (1.91)
Sums in eq. (1.91) span over all possible -uple and . In order to derive a closed form expression, we partition the set as follows. Consider nonempty subsets of indeces ; hence, . Stirling numbers of the second kind enumerates the number of partitions of a set of elements into nonempty subsets, therefore there are possible partitions. Assign a (different) value in to each subset in the partition; the number of possible assignments is . For any fixed , there are free summations, hence each partition with parts is counted times.

Therefore, eq. (1.91) can be rewritten as:

E 1 (1.92)
In the LSL, one has:

E (1.93)
that is exactly the Bell polynomial B providing the th moment of a Poisson distribution with mean .

Remark 1. Interestingly, the th moment of the Marcenko-Pastur law (c.f. eq. (1.19)) can be expressed as follows (see e.g. [START_REF] Tulino | Random matrix theory and wireless communications[END_REF][START_REF] Bai | No eigenvalues outside the support of the limiting spectral distribution of large dimensional sample covariance matrices[END_REF]):

MP (1.94)
where is the number of non-crossing partitions of the set into blocks, also known as Narayana number. As a remark, the sum of Narayana numbers over is the th Catalan number, that has many combinatorial interpretations (see e.g. [START_REF] Stanley | Enumerative combinatorics[END_REF][START_REF]Enumerative combinatorics[END_REF]).

On the other hand, eq. (1.93) is formally similar to eq. (1.94), with Stirling number of the second kind in place of Narayana numbers. While the latter enumerate non-crossing partitions only, the former enumerate all partitions, both crossing and non-crossing ones. As a remark, the sum of Stirling numbers over , or, equivalently, the value of E with unit load, is equal to the th Bell number.

Part 2: .

We will find E , from which

E E

. Proceeding as for eq. (1.90) and (1.91), we have:

E E T T T T T T P (1.95) P (1.96)
and the number of zero eigenvalues is the geometric multiplicity of , that is equal to the dimension of the associated eigenspace, which is the nullity subspace of T . In general, from the Rank-Nullity Theorem, it results:

T T T
and, therefore:

F T F
from which can be obtained as F .

1.D Asymptotics in the wideband regime for s 1) Minimum energy-per-bit.

We will show that:

surely. In fact, while are RVs, is not, for any . This follows from: , and also:

E

We will now show that , proving convergence in probability of to . From eq. (1.100), one has:

E E E E hence .
1.E Mutual Information of SUMF when single-user decoders have knowledge on cross-correlations.

The SUMF channel for user , as given by eq. (1.33), is:

y b b
Assuming Gaussian inputs, b

CN

, the conditional mutual information on expressed in bits per channel use per user is:

y b E (1.102)
where expectation is over , and . We find below the PDF of in the LSL. The last expectation can be computed as:

E R R

1.F Proof of Theorem 6

Consider the output of the SUMF of user , that is given by eq. (1.33), divided by 0 :

where CN and we assume

CN

. The goal is to find mutual information , that reduces to find and , both of which easily follow from .

From eq. ( 1. 1.H Spectral Efficiency of SUMF for s , , As .

In this appendix we will show that spectral efficiency of the single-user SUMF channel:

y b b (1.33) b
for TH-CDMA with s , , is same as that of DS-CDMA, therefore generalizing a previous result of Verdú and Shamai [START_REF] Verdù | Spectral efficiency of CDMA with random spreading[END_REF] to which we reduce when . The argument below follows closely that developed in [START_REF] Verdù | Spectral efficiency of CDMA with random spreading[END_REF].

Part 1: Non-Gaussian capacity bounds.

Spectral efficiency of channel of eq. (1.33) is obtained by knowing crosscorrelations R and input distributions F f b . In general, is non-Gaussian, and depends on both R and F , i.e., R F . We denote with a Gaussian r.v. with same mean and variance as , and, for simplicity, R F by . A classic result [START_REF]On the capacity of channels with additive non-gaussian noise[END_REF] allows to bound as follows:

D (1.111)
where is the spectral efficiency of a Gaussian channel with noise variance given by:

R 0 that is, R (1.112)
and where D is the Kullback-Leibler divergence between the distribution of the interference-plus-noise term and a Gaussian distribution with same variance; we recall that the divergence D between two distributions and with densities and , respectively, is defined as follows:

D and D with equality when .

We will prove below that D a.s.

when s with by showing that is asymptotically Gaussian distributed.

We proceed by verifying the Lindeberg-Feller condition as proposed in [START_REF] Verdù | Spectral efficiency of CDMA with random spreading[END_REF]:

E b 1 b
for our purposes, it is sufficient to show that:

E b 1 b E b 1 b 1 (1.113)
where the inequality is true .

Part 2: Verification of the Lindeberg-Feller condition. The first term in the right-hand side of eq. (1.113) tends to zero, irrespective of s , since b is finite while for any and .

The second term, thanks to the law of large numbers, tends a.s. to: 1.I Closed form expression of eq. (1.53) for a General Class of Linear Receivers.

1 a.s. E 1 
The discrete synchronous multiple-access channel considered is (c.f. eq. (1.2)):

The output of a generic linear receiver T is as follows: . We consider the following linear receiver structure parametrized by and :

T T T ( 
T T T (1.118)
by setting , decorrelator and MMSE receivers are obtained as special cases for and , respectively; by setting and , one obtains SUMF.

By focusing on user , the output of channel of (1.117) can be written as eq. (1.119), which is reported here for reference:

b b (1.119)
As in the proof of Theorem 1, we say that users are in chip when the th diagonal element of T is equal to . Since T is diagonal, one can write:

T where is the number of users in chip ; since , one has a for some a and , and therefore can be formally expressed as . The generic element in eq. (1.119) is explicitly given by:

T T a T T a a a
where we denoted by , that is also equal to the number of spreading sequences equal to either or , i.e.:

With similar computations, the generic element of the conditional covariance matrix of the noise vector in eq. (1.117) given , and, therefore, given , is:

E T 0 T 0 69 CHAPTER 2 
Is A Large Bandwidth Mandatory to Maximally Exploit the Transmit Matched-Filter Structure?

Transmitted signals can be focused in time or space, i.e., at a particular receiver location, by introducing a prefilter in the transmitter. Prefiltering also allows to contain inter-symbol and multiuser interference. Performance bounds in terms of signal-to-noise ratio gain, achievable by prefiltering, depend on both transmitted signal bandwidth and channel characteristics. This chapter analyzes the above dependence for transmit matched-filters, also known as time-reversal prefilters, and channels with multipath.

Theoretical results show that single-cluster channels verify a condition by which the gain is monotonic non-decreasing with bandwidth. Multi-cluster channels, such as those described by the Saleh-Valenzuela model, seem to follow a similar behavior, as suggested by simulation of the IEEE 802.15.3a channel model. As such, the transmit matched-filter is particularly suitable for signals with large bandwidths, as in acoustics and ultra-wideband communications.

The interplay between transmitted signals, that are under designer's control, and channel, that is set by Nature, has an impact on system performance bounds. For systems with prefiltering, the dependence of performance bounds in terms of signal-to-noise ratio (SNR) on both bandwidth and channel has not been specifically addressed. For particular contexts, such as ultra-wideband (UWB) communications, the general claim is that the larger the bandwidth the higher the SNR. The intuition is that, while bandwidth grows, the prefilter can take advantage of an increased fraction of the channel; this intuition, however, has not been thoroughly investigated.

The goal of this paper is to address the above issue by investigating whether increased bandwidth implies increased SNR, when the channel is affected by multipath. To this end, two different transceiver structures are considered in the analysis. In the first structure, a simple pulse, i.e., a zero-excess bandwidth pulse as will be further defined, is transmitted. In the second structure, the same zero-excess bandwidth pulse is filtered by a transmit matched-filter [START_REF] Joham | On the equivalence of prerake and transmit matched filter[END_REF][START_REF]Linear transmit processing in MIMO communications systems[END_REF][START_REF] Joham | Transmit Wiener filter for the downlink of TDD DS-CDMA systems[END_REF], that has an impulse response proportional to the time-reversed version of the channel impulse response. In acoustics [START_REF] Derode | Robust acoustic time reversal with highorder multiple scattering[END_REF][START_REF] Fink | Time reversal acoustics[END_REF], and UWB [START_REF] Strohmer | Application of time-reversal with MMSE equalizer to UWB communications[END_REF], this prefilter is known as time-reversal, although its first appearence may go back to [START_REF] Esmailzadeh | Pre-rake diversity combination for direct sequence spread spectrum communications systems[END_REF][START_REF]Pre-rake diversity combination for direct sequence spread spectrum mobile communications systems[END_REF], where it was introduced as pre-Rake. These two structures are compared based on the SNR gain , that is achievable by introducing prefiltering.

The paper is organized as follows: Section 4.2 contains the two reference system models and defines the system performance measure. Results are presented and discussed in Section 2.2. Section 6.3 contains the conclusion.

System Model and Performance Measure

The two transceiver structures under analysis are shown in Fig. 2.1. No Inter-Symbol Interference (ISI) is assumed, e.g. either one symbol only, or symbol sequences with symbols modulating waveforms with vanishing crosscorrelations at the receiver, are transmitted.

In Structure 1, the transmitted signal is , where has unit energy and is the symbol to be transmitted, with E

. The noiseless received signal is, as a function of frequency, , where is the channel transfer function.

In Structure 2, the transmitted signal is . As a function of frequency, one has , where is a constant such that and have same energy . Structure 2 requires a perfect knowledge of the channel at the transmitter. The noiseless received signal is as a function of frequency: .

In the two structures, is a White Gaussian Noise process with spectrum height 0 , and the receiver is a matched-filter followed by a sampler. Based on the no-ISI hypothesis, the channel can be modeled as Additive White Gaussian Noise (AWGN). In the first structure, the received signal is projected onto a waveform proportional to . In the second structure, is projected onto a waveform proportional to . The projection of the generic received signal onto , , is:

R (2.1)
where is a real Gaussian random variable (r.v.) with . The SNR at the receiver, after the sampler, is:

SNR E (2.2)
With reference to Fig. 2.1, one has SNR and SNR .

Prefilter / ĉ⇤ (f ) Channel ĉ(f ) + n(t) Matched-filter ˆ (f )|ĉ(f )| 2 Sampler x1(t) x2(t) y2(t) r2(t) SNR2 Channel ĉ(f ) + n(t) Matched-filter ˆ (f )ĉ(f ) Sampler x1(t) = b (t) y1(t) r1(t) SNR1 ) G = SNR 2 SNR 1 (Structure 1) (Structure 2)
Effective Channel

Figure 2.1: The two reference system models. Structure 1 corresponds to a traditional transmission with no prefiltering at the transmitter and matched-filtering at the receiver. Structure 2 corresponds to prefiltering at the transmitter with transmit matched-filter, and matched-filtering at the receiver. In both structures, is a zero-excess bandwidth waveform. It is assumed that prefiltering does not alter energy, that is, and have same energy .

Gain allows comparison of the two structures and is defined as follows:

SNR SNR (2.3)
For the sake of simplicity, is assumed as a zero-excess bandwidth waveform with band , i.e., , where , for which SNR and SNR become:

SNR (2.4) SNR (2.5)
and gain is:

(2.6)
Gain also provides a hint on performance in the coded regime, as measured by maximal mutual information SNR , , nats/channel use. Since the system is baseband, the no-ISI hypothesis holds, for example, by making the symbol period greater than the channel delay spread , by which SNR nats/s. Similarly to the SNR gain , an information gain can be defined as follows:

SNR SNR SNR SNR

In the low-SNR regime (SNR , ) one has SNR SNR , hence reduces to . In the high-SNR regime (SNR ) one has SNR SNR SNR , and for channels with bounded , e.g. multipath channels, reduces to unity as SNR . is, therefore, the most important parameter to be analyzed to determine performance of systems in both uncoded and coded regimes, under the no-ISI hypothesis.

System Analysis Based on Gain

In this section, we find the lower bound of and the asymptotic value of as for multipath channels (section 2.2.1), and derive a necessary and sufficient condition for to be a monotonic non-decreasing function of , also showing examples and counterexamples of channels verifying the condition (section 2.2.2). 

Gain Limit Values

R

, as can also be directly shown by methods of variational calculus. The minimum gain is thus obtained when the magnitude of the channel transfer function is nonzero and flat, for frequency intervals where the amplitude of the spectrum of transmitted signals is nonzero. Typically, this is true when the channel is perfect (channel transfer function with constant amplitude) at least within the transmitted signal bandwidth. This condition easily holds for narrowband communications.

2) Asymptotic value of as .

Consider the following multipath channel:

(2.7)

where and R are delay and amplitude of ray . Eq. (2.7) also models realizations of channels with clusters. Supposing that a same interarrival time between two consecutive rays is not possible, 1 it can be shown that [START_REF] Ferrante | Time-reversal against optimum precoder over frequencyselective channels[END_REF], as , the gain is:

(2.8) and, therefore, irrespective of channel amplitudes.

1

This hypothesis often holds with probability one for random channels, since interarrival times are usually independent. for channel models CM1-CM4 of the IEEE 802.15.3a standard [START_REF] Foerster | Channel modeling sub-committee report final[END_REF], and single-cluster models SM1-SM3, that refers to channel of eq. (2.7), with parameters r equal to , and , respectively, where and are expressed in nanoseconds.

Slope of vs.

From above, is bounded as follows:

. In this section, the condition by which is a monotonic non-decreasing function is derived. For the sake of generality, the condition is derived for random channels, but it can be applied to nonrandom channels as well. Suppose that is random, with average E . The slope of E is nonnegative iff:

E (2.9)
where . obtained by means of Monte-Carlo simulations for UWB channels following the IEEE 802.15.3a standard model [START_REF] Foerster | Channel modeling sub-committee report final[END_REF], where is the average intra-cluster interarrival time between two rays, with values in the range nanoseconds. Figure 2.2 suggests that channel models valid for very large bandwidths, up to several gigahertz, verify eq. (2.9). Also shown in Fig. 2.2 is when a signal can be considered as narrowband, wideband or UWB, as a function of the statistical parameters of the channel it experiences. In a multipath channel, most of the power lies in , i.e., , where is the coherence bandwidth. When , there is about only one resolved path. may serve, therefore, to define narrowband signals, the condition being . Similarly, may define UWB signals, the condition being , for which a significant fraction of the multipath components can be resolved. For , the signal may be considered as wideband.

In general, a direct computation of E is a formidable task, even for simple models that do not account for clustering. Therefore, a condition, that does not require the explicit knowledge of E , for eq. (2.9) to hold, is derived below.

Proposition 1. Let be the frequency response of a realization of a random multipath channel, and denote by its squared magnitude. Then E is a monotonic non-decreasing function, i.e., condition of eq. (2.9) holds, iff:

E E (2.10)
Proof. Interchange differentiation and expectation operators in eq. (2.9), and compute ; then discard the denominator, since it is always positive, and interchange the order of expectations and integrations. Note on eq. (2.10) that is the derivative of E up to a positive factor depending on .

An example of a channel model that verifies eq. (2.10) is the "Single-cluster Model" (SM). This model is similar to the IEEE 802.15.3a-CM1 [START_REF] Foerster | Channel modeling sub-committee report final[END_REF] when restricted to the first cluster. In particular, the SM channel impulse response is given by eq. ( 2 , there are logical conditions, that are not reported here for brevity. Once the conditions are set, the closed form expression of E can be derived, since each inner expectation is equal to an even conditional moment with appropriate order. Figure 2.3 represents , normalized to its maximum, for different and r values, and shows that is positive for any relevant .

A channel that does not verify eq. (2.10) is as simple as a two-paths nonrandom channel with impulse response ,

R,

. Since the channel is nonrandom, E

. The channel frequency response squared magnitude is:

(2.12)

The limit case reduces to the channel with constant spectrum (c.f. Sec. 2.2.1). The value of as is , that is maximum for , for which . Figure 2.4 shows vs. for . Note that, for any fixed , there exists an optimum that maximizes (see dots on figure for and ). For example, for , the maximum gain is reached for , and is equal to . Figure 2.4 shows that is not monotonic non-decreasing with for any .

Future work

Three assumptions of the analysis thus far were: 1) no-ISI; 2) transmit matched filter precoding; 3) multipath channel. In this section, we set the basis for a future, general analysis, where all three assumptions are removed, and thus accounting for generic FIR channels, prefiltering schemes, and symbol rate . In particular, the latter is not restricted to be lower than, or equal to, the coherence bandwidth, given by .

Capacity of a deterministic channel with the following discrete representation:

Z (2.13)
is given by [START_REF] Cover | Elements of Information Theory[END_REF][START_REF] Kim | Feedback capacity of stationary gaussian channels[END_REF]:

nats/channel use where and are the spectra of the transmitted symbol sequence and noise, respectively, and is the squared magnitude of the DTFT of the sequence . When the channel is random and unknown at the encoder, capacity is averaged over the channel (see e.g. [START_REF] Tulino | Capacity of channels with frequency-selective and time-selective fading[END_REF]):

E nats/channel use

The above discrete representation can be derived from a continuous-time description as follows. Let the received signal be:

where is an AWGN with spectral height 0 , is the channel impulse response, and is the unit energy waveform associated with the -th symbol. A capacity gain can be defined as follows:

A careful analysis of the capacity gain in terms of (prefiltering) and (channel), which also depends on the two parameters and , represents a future line of investigation.

Let see how this reduces to the previous analysis in absence of ISI. Under the hypothesis of vanishing crosscorrelation of waveforms modulating symbols, the channel becomes an AWGN channel with multipath. This assumption holds, for example, by transmitting symbols farther apart than the channel delay spread , i.e., the symbol period is such that , i.e., such that:

There is, indeed, no ISI, and the channel can be represented (for ) by: Hereinafter, we will write instead of for notation simplicity.

Equivalently, optimum inference of is based on: Expressed in terms of nats/s, we have:

N 0 For Structure 1,
SNR nats/s
We adopted the notation and in place of and , respectively, to stress that the above are mutual informations rather than capacities, that are derived under the constraint of a symbol period larger than the minimum, i.e., .

Similarly to the capacity gain defined above, we can define the following (mutual) information gain:

SNR SNR SNR SNR

In the low-SNR regime, that is, when SNR , , one has:

SNR SNR and therefore the information gain is equal to the SNR gain studied in the paper.

In the high-SNR regime, that is, when SNR , one has:

SNR SNR SNR

In particular, for those channels (e.g. multipath channels) having bounded , for large SNR.

Conclusion

This chapter investigated whether a large bandwidth is mandatory to maximally exploit the potential benefits of the transmit matched-filter, in the absence of ISI. To this end, two transceiver structures, with and without prefiltering, were compared based on a parameter indicating the SNR gain achieved by introducing the prefilter. Performance depended on both transmitted signal bandwidth and channel frequency response squared magnitude. Limit values of when the channel is affected by multipath were derived, for and , and it was proven that for reaches the minimum, and is equal to one. A condition for to be a monotonic non-decreasing function of was also derived for generic random channels. This condition was then specified for single-cluster multipath channel models, and verified in the particular case of exponentially distributed interarrival times and absolute path amplitudes following a log-normal distribution. Simulation experiments of channels following the IEEE 802.15.3a standard channel model showed a monotonic non-decreasing gain in for the four models of the standard, suggesting that may also be monotonic non-decreasing for channels with clusters. However, the analysis of a channel with two paths only was shown to be a very simple counterexample, for which the gain was not a monotonic function of .

In conclusion, a large bandwidth is not mandatory to achieve a maximum gain with transmit matched filter, although this seems to be the case for models describing realistic channels, such as the IEEE 802.15.3a model.

Results were obtained in terms of SNR gain . As discussed in Section II, an information gain can be defined, similarly to , as the ratio between the mutual information achieved with and without prefiltering. It was proven that, under the no-ISI hypothesis, essentially reduces to . This would be no longer true if the no-ISI hypothesis were removed, in which case an achievable "capacity gain" should be analyzed. This will be the goal of future work together with two generalization: 1) channel models that expand beyond multipath; 2) prefilter structures that expand beyond transmit matched-filters. The former can be analyzed by specifying fairly general channel models and studying when eq. (2.10) holds with respect to Appendix 2.A Derivation of the case of eq. (2.11).

The goal is to evaluate E when the channel is:

Therefore:

Note that, in the previous expression, both and are random. Then:

Since the expectation E is on both and , but conditional moments of amplitudes are provided for fixed delays, we may split the expectation in the previous expression by conditioning first on delays :

E E E

(2.17)

Since amplitudes for different delays are uncorrelated, the inner expectation is nonzero when with both and even numbers, and . For the case under analysis, the conditions are: ; , ,

Therefore, explicitly, eq. (2.17) becomes: Time reversal, that is prefiltering of transmitted signals with time reversed channel impulse responses, may be used in single user communications in order to move complexity from the receiver to the transmitter, and in multiuser communications to also modify statistical properties of multiuser interference. Imperfect channel estimation may, however, affect pre-vs. post-filtering schemes in a different way. This issue is the object of this chapter; Robustness of time reversal (TR) vs. All-Rake (AR) transceivers, in multiple access communications, with respect to channel estimation errors, is investigated. Results of performance analyses in terms of symbol error probability and spectral efficiency when the receiver is structured either by a bank of matched filters or by 1Rake, followed by independent decoders, indicate that AR is slightly more robust than time reversal but requires in practice more complex channel estimation procedures since all channels must be simultaneously inferred in the multiuser communication setting.

E E E E E E E E E (2.
Field equivalence principles [START_REF] Schelkunoff | Some equivalence theorems of electromagnetics and their application to radiation problems[END_REF][START_REF]On diffraction and radiation of electromagnetic waves[END_REF][START_REF] Stratton | Diffraction theory of electromagnetic waves[END_REF][START_REF] Chen | A mathematical formulation of the equivalence principle[END_REF] state that the radiated field within a volume , with boundary , enclosing a source, can be computed by considering, in place of actual source, an infinity of equivalent virtual sources placed on .

Suppose the source is pointwise, impulsive, and located in a point . The electromagnetic problem of finding radiated field in can be solved based on the Green function.

From a communication perspective, knowing the channel at all points of would allow, in principle, to understand the nature of a source , that is, the location of a pointwise source within volume , that radiated the field observed on . Sensing the channel on would require a multiantenna system and a perfect knowledge of impulse responses of channels between and all points on .

Time reversal is a technique that takes advantage of the above physical phenomenon and that was also proposed in acoustics [START_REF] Derode | Robust acoustic time reversal with highorder multiple scattering[END_REF][START_REF] Fink | Time reversal acoustics[END_REF][START_REF] Fink | Time reversal of ultrasonic fields. i. basic principles[END_REF]. By prefiltering transmissions with a scaled version of the channel impulse response, reversed in time, allows simplification of receiver design, since the channel is compensated by precoding. Time reversal also focuses signals in space, given that there is only one "correct" location of the receiver that experiences the specific "time reversed" channel impulse response.

Pioneering work on single-antenna time reversal spread-spectrum communications dates back to the nineties, where the time reversal pre-filter was named pre-Rake [START_REF] Esmailzadeh | Pre-rake diversity combination for direct sequence spread spectrum communications systems[END_REF][START_REF]Pre-rake diversity combination for direct sequence spread spectrum mobile communications systems[END_REF]. The basic idea was to pre-filter the transmitted pulse with the channel impulse response reversed in time, therefore matching the transmitted signal with the subsequent channel.

Precoding techniques for multiuser spread-spectrum systems were developed along similar lines of receive filters: transmit Zero-Forcing (ZF) [START_REF] Tang | Interference cancellation for DS-CDMA systems over flat fading channels through pre-decorrelating[END_REF], that attempts to pre-equalize the channel by flattening the effective channel formed by the cascade of the pre-filter and the actual channel, is optimum in the high-SNR regime; transmit matched-filter (MF), that has been recognized to be equivalent to the pre-Rake filter in [START_REF] Joham | On the equivalence of prerake and transmit matched filter[END_REF], that conversely is optimum in the low-SNR regime; and finally, transmit MMSE (Wiener) filter minimizing the SINR was derived in [START_REF] Joham | Transmit Wiener filter for the downlink of TDD DS-CDMA systems[END_REF] following previous attempts [START_REF] Vojcic | Transmitter precoding in synchronous multiuser communications[END_REF][START_REF] Barreto | Capacity increase in the downlink of spread spectrum systems through joint signal precoding[END_REF].

In recent years, along with the fast developing of narrowband MIMO systems, pre-coding techniques using multiple antennas at the transmitter were thoroughly studied (for a complete overview on MIMO precoding see [START_REF] Vu | Mimo wireless linear precoding[END_REF]). Since the mathematical formulation of multiuser spread-spectrum is very close to that of MIMO communications (see [START_REF] Palomar | MIMO transceiver design via majorization theory[END_REF] for an overview of this analogy), MIMO linear precoders can be derived along similar techniques. Time reversal was proposed in connection to UWB communications in [START_REF] Strohmer | Application of time-reversal with MMSE equalizer to UWB communications[END_REF], that also addressed equalization through an MMSE receiver. In [START_REF] Akogun | Demonstrating time reversal in ultra-wideband communications using time domain measurements[END_REF], early experimental data, showing the feasibility of time reversal, were collected. Following, experimental investigations on multiple-antenna systems with time reversal [START_REF] Andersen | Time reversal in wireless communications: a measurement-based investigation[END_REF][START_REF] Qiu | Time reversal with MISO for ultrawideband communications: Experimental results[END_REF][START_REF] Zhou | Time-reversed ultra-wideband (UWB) multiple input multiple output (MIMO) based on measured spatial channels[END_REF], and performance analyses [START_REF] Guo | Reduced-complexity uwb time-reversal techniques and experimental results[END_REF], were also pursued. In [START_REF] Qiu | Detection of physics-based ultra-wideband signals using generalized rake with multiuser detection (MUD) and timereversal mirror[END_REF][START_REF] Qiu | Generalized time domain multipath channel and its application in ultra-wideband (UWB) wireless optimal receiver-Part III: system performance analysis[END_REF], compensation for pulse distortion in connection to time reversal was investigated. In [START_REF] Ferrante | Complexity reduction by combining time reversal and IR-UWB[END_REF], the trade-off between the complexity of transmitter vs. receiver in terms of number of paths was analyzed. In [START_REF]Time reversal beamforming in MISO-UWB channels[END_REF], the insensitivity of time reversal to the lack of correlation between channels in a MISO system was investigated. Finally, in [START_REF] De Nardis | Combining UWB with time reversal for improved communication and positioning[END_REF], the effect of time reversal on statistical properties of multiuser interference in communication vs. positioning was explored.

The above investigations were all carried out based on the hypothesis of perfect channel estimation. This hypothesis, however, is strong, since it is unrealistic, irrespectively of whether channel estimation is performed at the transmitter or at the receiver. While previous works addressed the comparison of pre-and postchannel filtering, the problem remains of realistic imperfect channel estimation and of how this affects performance for time reversed vs. receiver-based channel estimation schemes. This chapter addresses the above problem, by comparing single-antenna systems using time reversal, against receiver-based equalization schemes such as the exemplary case of an AR receiver. The adopted network model considers multiple access by user terminals (UTs) communicating to one basestation (BS), where both UTs and the BS have one antenna only, and communication between each UT and BS adopts ultra-wideband, impulse-radio signaling.

Performance comparison of TR vs. AR transceivers will be carried out in terms of effect of imperfect channel state information (CSI) on symbol error probability of a generic information-bearing symbol for a given UT (see [START_REF] Wang | Effect of imperfect channel estimation on transmit diversity in CDMA systems[END_REF] for a work on a close topic regarding CDMA systems). The analysis will further explore robustness of TR vs. AR, by finding the maximum achievable rate for the uplink channel. Finally, the maximum information rate, that takes into account channel estimation overhead, will be explored.

The chapter is organized as follows: Section 3.1 contains the system model; Section 3.2 is devoted to the performance analysis in terms of symbol error probability; Section 3.3 contains results of comparison in terms of uplink rate of the network; Section 3.4 suggests future works, and conclusions are drawn in Section 4.4.

Reference Model

Network Model

A multiple access channel where independent sources transmit informationbearing symbols to a common sink is considered (uplink communication channel). Borrowing the terminology from the cellular network field, sources of information are called user terminals (UTs) and the sink is called basestation (BS). However, UTs and BS are intendend to designate more than what the name implies. For example, in a typical WLAN, a BS is a fixed (e.g. desktop) or mobile receiver (e.g. tablet, laptop, mobile phone) and UTs are peripherals or other fixed vs. mobile devices. Figure 3.1 shows the adopted network model. Modulator 1 length of the block in terms of symbols will be linked below with the coherence time of the channel. Each block is transmitted by the following signal:

Channel 1 + n(t) b 1 s 1 (t) x 1 (t) Demodulator 1 y(t) b1 Modulator 2 Channel 2 b 2 s 2 (t) x 2 (t) . . . . . . Modulator K Channel K b K s K (t) x K (t)
s (3.1)
where s (sec) is the symbol period and is the unit energy waveform associated with the -th symbol of user . In general, is a spread-spectrum signal at user prefilter output, and has band W W , that is, its spectrum is nonzero for W . Assuming that s are orthonormal, or very mildly crosscorrelated, the energy of in eq. (3.1) is E

; Since the block has duration s , the average power is P E s . In the adopted model, demodulation at BS is performed on a block-by-block basis. Index , that specifies the block number, is thus dropped. Consider for the sake of simplicity in eq. (3.1):

(3.2) The received signal is:

(3.4)
where is a white Gaussian noise with flat power spectral density 0 (W/Hz). Throughout the chapter, the receiver estimates transmitted symbols of user , , on a symbol-by-symbol basis, by considering users as unknown interference over user ; for example, Fig. 4.1 shows the demodulation of user . As detailed below, transmissions are symbol-synchronous but not necessarily chip-synchronous, therefore the symbol-by-symbol demodulation does not imply any performance loss. In the adopted model, the receiver is a single user detector, and as such suboptimal, since it does not take into account the possibility of joint multiuser detection. How channel is estimated and how error affected estimated channels play a role in the model will be explained further down in this section in association with the different modulation and demodulation structures. 

Single User Channel

Since the system symbol-synchronous, analysis may refer to transmission of one generic symbol, that is chosen as symbol , , denoted by . If transmission does not foresee prefiltering, that is, a zero-excess bandwidth pulse with bandwidth W and unit energy is transmitted to modulate , the received signal is:

(a) s c (b) s i W c 91 (c) s i i W (3.8)
where in (a) the spreading sequence s s T and the chip period c are made explicit; (b) follows from , and therefore also , being bandlimited to W ; and (c) follows from assuming c i W, being i a positive integer called impulsiveness index, that introduces a model to account for a pulse duration shorter than chip duration, as common in UWB communications. In the following, time-hopping is considered, for which all s are zero, but one. therefore, is banded Toeplitz.

In general, for a system with prefiltering, with prefiltering impulse response , eq. (3.9) generalizes to (see e.g. [START_REF] Palomar | MIMO transceiver design via majorization theory[END_REF]):

(3.10)
where is a Toeplitz matrix with dimensions i i and elements W .

Prefiltering is introduced in order to compensate channel effects; in particular, prefiltering is based on an estimated version of the channel impulse response. In other words, imperfect prefiltering may be matched to channel estimation error patterns. If prefiltering is imperfect, as will be justified in Subsection 3.1.4, the error due to the estimation process can be modeled as a white Gaussian process , that is added to as follows:

(3.11)
where N , where accounts for estimation accuracy, and is such that .

No prefiltering, All-Rake receiver.

The traditional (or conventional) receiver is a matched-filter, i.e., an AR receiver in the case of a multipath channel. Knowing the time-hopping spreading sequence and the resolved channel , a sufficient statistic for is obtained by projecting the received signal onto , or, equivalently, onto :

T where N 0 .
As occurs in the prefiltering, also the AR receiver is affected by possible channel estimation errors. If the AR is provided with imperfect channel state information (CSI), that is, operates using an estimation of channel that is impaired by an error N i , then the AR combines paths through instead of , and inference of is based on:

T T T T (3.12)
where

T T T i T
, being the nonzero dimension of .

Time Reversal prefiltering, 1Rake receiver.

The time reversal prefilter is represented by i , where guarantees that prefiltered and non prefiltered transmitted waveforms have same energy. Time-hopping implies , and

i i
. A 1Rake receiver is given by i . Denoting by the time-reversal prefilter matrix, one has:

T i T i T i T i i (3.13) being i N 0 .
If the transmitter is provided with imperfect CSI, then model of eq. (3.11) holds, and eq. (3.13) becomes:

T i T i T i i (3.14)
AR vs. TR.

As well-known [START_REF] De Nardis | Combining UWB with time reversal for improved communication and positioning[END_REF], TR is equivalent to a system without prefiltering and AR in terms of the signal-to-noise ratio. From a single user perspective, there is no performance difference in both uncoded (symbol error probability) and coded (channel capacity) regimes between the two transceiver structures. Moreover, previous work [START_REF] Ferrante | Complexity reduction by combining time reversal and IR-UWB[END_REF] suggested that sets of equivalent systems can be obtained with partial Rakes compensating for partial time reversal transmitter structures. In the case of imperfect CSI, the comparison of the different structures is the object of this chapter.

Multiuser Channel

A straightforward extension of eq. (3.9) to users is as follows:

(3.15)

where i and i models the chip-asynchronism by making i.i.d.

according to a uniform distribution. This extension holds based on the hypothesis that all UTs are symbol-synchronous. This hypothesis is reasonable since, as further discussed in Subsection 3.1.4, the BS broadcasts in a link setup phase a known sequence to the UTs. Denoting by the spreading sequence after transition in the multipath channel, and by: T the spreading matrix, eq. (3.9) can also be rewritten as follows: where matrices and have same dimensions as and of eq. (3.10), respectively, and eq. (3.16) holds with . In the presence of imperfect CSI, in eq. (3.17) is substituted by , as defined in eq. (3.11), where estimation errors are independent with respect to .

No prefiltering, All-Rake receiver.

The decision variable following the matched filter of user is:

T T (3.18)
where , represents the MUI, and

T N 0 .
If the AR is provided with imperfect CSI, then signal is projected onto instead of , hence:

T T T (3.19)
where

T N 0 .
Time Reversal prefiltering, 1Rake receiver. With time reversal, the decision variable for user becomes:

Preamble Postamble 0 T 2T b k [0] b k [1] • • • • • •
T T T (3. 20 
)
where i is the delay (in samples) to which the 1Rake is synchronized. In the presence of imperfect CSI, the decision variable is:

T T T (3.21)
AR vs. TR.

As well-known [START_REF] De Nardis | Combining UWB with time reversal for improved communication and positioning[END_REF][START_REF] Fiorina | Impact of time reversal on multi-user interference in IR-UWB[END_REF], time reversal usually increases the kurtosis of the interference at the output of Rake receivers. This follows from the fact that the effective channel impulse response formed by the combination of prefilter and multipath channel has a peaked behavior, whereas without time reversal the behavior is non-peaked. While in the single user case the two schemes are equivalent, this equivalence does not hold in the multiuser case. The impact of estimation errors will be investigated below.

Channel Estimation and Data Transmission

For both AR and TR, the channel impulse response estimation takes place, at least partially, both in the transmitter and in the receiver.

Actual transmission of the set of information-bearing symbols requires, therefore, additional symbols to be sent either in a preamble or in a postamble of the block [START_REF] Larsson | Space-Time Block Coding for Wireless Communications[END_REF], as shown in Fig. 3.3.

Training is the simplest estimation process to evaluate the necessary channel state information. Time-Division Duplexing (TDD) is assumed as commonly witnessed in impulse-radio as well as common WLAN transmissions. Since precoding of UT does not depend on channels experienced by users , feedback is not a necessary feature, given that channel is reciprocal. Note that there is no dedicated training since precoding is supposed to be disjoint, that is, the precoding vector of each UT does uniquely depend on the channel between its transmitter and the BS and is in particular independent of channels and precoding vectors of other UTs (see [START_REF] Caire | Multiuser MIMO achievable rates with downlink training and channel state feedback[END_REF] for a thorough discussion).

Transmission follows a scheme that is shown at a glance in Fig. 3.4a and in more detail in Fig. 3.4b. Figure 3.4 summarizes the organization of the different links (downlink, i.e., broadcast, vs. uplinks) over time, where durations of data, preamble and postamble are indicated in terms of number of chips ( , , d , ). In particular, Fig. 3.4b shows an information exchange between the BS and each UT consisting in four phases: 

N DL t N UL t N d N UL g (a)
Transmission scheme: at a glance.

. This training sequence may be also used for network synchronization at symbol level. Phase 2 : Once the training sequence is received, each UT transmits its own training sequence of length i samples to the BS (preamble). By reciprocity, channels spread these sequences for i samples, therefore each UT remains idle for i samples. Phase 3 : Each UT transmits a sequence of information-bearing symbols for di i samples. Phase 4 : Each UT transmits a sequence of null symbols denoted with (postamble).

BS UT

In order to minimize the signal-plus-interference-to-noise ratio, UT may use an MMSE estimation of , where the cause of interference is due to multipath. However, the use of PN sequences as training sequences is very common, due to their good autocorrelation properties. In fact, PN sequences have periodic ACF of the following form [START_REF] Sarwate | Crosscorrelation properties of pseudorandom and related sequences[END_REF][START_REF]On pseudo-random and orthogonal binary spreading sequences[END_REF]: that is asymptotically impulse-like, as .

Asymptotically then, and dropping the superscript to unclutter notation, T , and MMSE reduces to a matched-filter, and estimation is as follows:

T T N N (3.24)
Dividing by the previous expression yields: (3.25) where N N . Note that, as well-known (e.g. [START_REF] Biglieri | Coding for Wireless Channels[END_REF]), the estimation can be made as accurate as desired by increasing . For antipodal sequences, say A A with A , the energy of the training sequence is A ; therefore, can be increased either by increasing power spent on training, that is, by increasing A , or by increasing time spent for training, that is, by increasing , or both.

In the uplink training, the BS receives the superposition of the sequences of users each filtered by the corresponding channel, that is: (3.26) having defined:

T (3.27)
As previously, the superscript is dropped to unclutter notation.

The goal of the BS is to linearly estimate by observing , knowing :

T T T (3.28)
where is the i vector of channel estimations, being the i vector representing estimate, and T is the i i matrix representing the estimator. All common linear estimators, that is ZF (Zero-Forcing), RZF (Regularized Zero-Forcing), MMSE (Minimum Mean Square Error) and MF (Matched Filter), can be described by the following expression, parametrized by and :

T T T (3.29)
Indeed, MMSE is obtained with N ; ZF with ; MF with ; RZF with .

In the simple case of ZF, the form assumed by eq. (3.28) is as follows:

T T N N T (3.30)
and, therefore, the -th tap of the channel of generic user is:

Here, is a correlated Gaussian random variable with variance coinciding with the i -th diagonal element of N

T

.

Assuming all UTs are transmitting the same power, i.e., is the same for each , the approximation T allows to assume uncorrelated estimation errors, since T , and thus:

N N (3.31)

Performance measures

In both system structures, the statistic for inferring the transmitted symbol of user can be written in the following form: where is a r.v. representing noise, and are r.vs. depending on multipath channels, random time-hopping codes, random delays, and estimation errors.

Two performance measures are considered.

In the uncoded regime, the probability of error as defined by: P P is considered.

In the coded regime, mutual information with Gaussian inputs and a bank of matched-filters followed by independent decoders is considered; for the generic user , this is given by: nats/channel use (3.32) where is the mutual information between the transmitted symbol and the decision variable . Since a channel use corresponds to 

Probability of Error

Single User

The main contribution of this subsection is to show that imperfect TR and AR achieves the same probability of error, and, therefore, that the same accuracy is needed for channel estimation at transmitter and receiver in order to achieve a given error probability.

With reference to decision variables of eq. (3.14) and of eq. (3.12), the probability of error, in both cases, is:

P A P A P A (3.35) 
where the first equality follows from belonging to A A with equal probability, and the second equality follows from the distribution of being an even function. For the power constraint, it results A . Equivalence of for the two cases is derived by showing that and have the same distribution.

To this end, rewrite the decision variable conditioned on A. Without loss of generality, and for the sake of simplicity, consider . Then:

A T A T A T A T

Similarly, the decision variable conditioned on

A is:

A T where N N .
By comparing the two expressions, is equivalent to , the equivalence being defined as producing the same , iff term T in is distributed as in . This is, indeed, the case; by choosing an orthogonal matrix such that , one has:

T T T T
where N N , hence the equivalence in terms of distributions, and, therefore, probability of error is verified.

Based on the described training algorithm, samples of the channel estimated by are: R (3.36) where is the channel length in terms of samples ( , being the delay spread of the channel);

T is the vector of samples of the channel impulse response, where:

N is a Gaussian random vector modeling the uncertainty of estimation, being N r where r is the energy of the training sequence received by during the Training Phase I [START_REF] Biglieri | Coding for Wireless Channels[END_REF].

Focus on transmission of one symbol only, that for the sake of simplicity is assumed binary, . Assume that the symbol period is formed of chips of duration ; therefore, the symbol period has duration . The sampled received signal is:

where is the trasmitted energy per symbol, is the convolution matrix describing the channel, is the transmitted waveform, and N N . In particular, for , and otherwise, where are the elements of as in eq. (3.36). A 1Rake yields to the following decision variable, upon which depends the decision on : 

The two performance measures analyzed are the signal-to-noise ratio SNR:

SNR N (3.40) 
where is the SNR loss, that is a r.v. since is a random vector, and the symbol error probability:

P (3.41)
As derived in Appendix 3.A, the PDF of is:

f f T (3.42)
where f T is the Student T-distribution with degrees of freedom and noncentral parameter . Figure 3.5 shows simulated histograms vs. f for different values of and . Values of corresponds, for example, to a channel with delay spread of ns, and a signal with a bandwidth of GHz. Values of depends on r , and, therefore, on the training sequence power and the duration of the training. By comparing Fig. 3.5(a) vs. (b), it is shown, as can be expected, that approaches when the estimation improves. It can be shown that, as , i.e., for vanishing estimation errors, the PDF tends to , and no loss in eq. (3.39) occurs. By comparing Fig. 3.5(a) vs. (c), it is shown that departs from as increases. This can be intuitively justified as follows: for a given accuracy, the total uncertainty on the channel increases with the number of resolved paths , and, therefore, as increases, the variance of the estimation error on each path must decrease to avoid reduced, or even worse, performance. Moreover, physical multipath channels become more and more sparse as bandwidth increases: the number of multipath components, that is, the number of resolvable paths, is indeed limited, and so is the energy gain that can be carried by the whole channel. Hence, as bandwidth increases, there are no multipath components in an increasing fraction of the taps composing the resolved channel, that, therefore, become a mere source of nuisance.

Note that, in eq. (3.42), is regarded as nonrandom since during each coherence time the channel remains constant. This allows to derive, for example, the symbol error probability that affects the system during a particular coherence time, as studied below. However, if average performance over multiple coherence time is of interest, then the PDF of must be regarded as the conditional pdf given . Nonetheless, although depends upon , f depends upon only via . Not the entire channel realization affects , but just its energy . Therefore, although in the following is regarded as nonrandom, it is just to be nonrandom, that is a fading coefficient.

There are two main detrimental effects that imperfect estimation implies on SNR and .

The first effect is a reduction in the SNR. The variance of the useful term in eq. (3.39) is, indeed, equal to : with perfect CSIT, , while with imperfect CSIT, , and therefore measures the loss of variance in the useful term, and thus in SNR (see eq. (3.40)), due to the imperfect knowledge of the channel.

The second effect is the presence of a symbol error probability floor depending on , irrespective of the amount of power spent in transmission (Data Transmission Phase), and only depending on the energy spent during the Training Phase I. Accuracy of estimation can bound, therefore, the achievability of low (uncoded) symbol error probability. The symbol error probability floor appears as N ; in this asymptotic case, the decision variable tends to:

T 1 0.5 0.5 1 1 2 3 z f ⇣ (z)
, .

1 0.5 0.5 1 1 2 3 z f ⇣ (z)
, .

1 0.5 0.5 1 1 2 3 z f ⇣ (z)
, . (b) shows performance of systems with i , and indicates that performance of TR is strongly limited by the presence of estimation errors, while when MUI is the limiting cause TR and AR have similar performance (see for example curves with and ). 

Mutual information, Sum-Rate, and Spectral Efficiency

In this section, mutual information (3.32) is derived for AR and TR. The other merit figures (3.33) and (3.34) follows directly, although all the elements for a comparison are already included in (3.32).

Derivation of Mutual Information

The decision variable for both the imperfect TR (c.f. eq. (3.21)) and AR (c.f. eq. (3.19)) can be cast in the following form: (3.44) where N 0 .

Let specify and give an interpretation of the terms , , for both TR and AR.

TR coupling coefficients.

For TR, the term is given by:

T T T
where R denotes a vector with same components of vector in reversed order, i.e., , . The term , , is:

T T T (3.45) 
where

T T T i
T being the i autocorrelation sequence of i , and, similarly,

T T T i
T with a Gaussian random vector with non-identity correlation.

In order to provide an interpretation of the above expressions, it is useful to start with the case of no estimation error. In general, the decision variable at the output of the matched filter of user is given by the -th sample of the sum of both intended and interference signals, plus noise. In the special case of no estimation errors, is the square root energy of channel , i.e., the maximum tap of the effective channel, while is either equal to zero if the effective channel of user , that occupies i out of i degrees of freedom in a symbol period, is not present at delay , or to a random resolved path of the effective channel of user , the randomness owing to random hopping and asynchronism. In presence of estimation errors, is smaller than, although in general in the neighbourhood of, the square root energy of channel due to the mismatch between and , and is either equal to zero if the perturbed effective channel of user , that occupies i out of i degrees of freedom in a symbol period, is not present at delay , or equal to a random path of the perturbed effective channel of user , the perturbation owing to the imperfect channel estimation of user .

AR coupling coefficients.

For AR, the set of coupling coefficients are:

T T (3.46) T (3.47) 
where , , and . We can think of as the perturbed direction along which the received signal is projected in order to decode user ; represents, therefore, the "mismatch" between the perturbed and unperturbed channels of user ;

represents the coupling between user , that is perturbed, and another user . As in the TR case, a channel impulse response occupies a fraction, that is approximately equal to , of the available degrees of freedom in a symbol period; Opposite of the TR case, where the perturbation affects user in , user is perturbed in the AR case (through ), user appearing with the true channel impulse response .

Derivation.

Being each term in the r.h.s. of eq. (3.44) independent from the other terms, mutual information can be derived once the distributions of and are known. The former depends on both the random channel impulse response and estimation errors of user , and the latter on the random channel impulse responses and estimation errors, and the random delays with respect to user . Hence, the final form assumed by strongly depends on the channel model; however, in the following, the effect of the time-hopping and random asynchronism will be enucleated, without enter in the computation of a mutual information when a particular channel model is adopted; this last task is addressed by simulations, where the IEEE 802.15.3a model [START_REF] Foerster | Channel modeling sub-committee report final[END_REF], that is valid for bandwidths up to several gigahertz, is selected.

As for TR, since the effective channel of user occupies a fraction i i , and user , due to the assumptions on independence and uniformity of hopping codes and asynchronism, selects uniformly at random one of the i samples available per symbol period, then , , is equal to zero with probability , and is distributed as the generic path of the effective channel with probability , that is:

(3.48)
where indicates the distribution of the generic path of the effective channel of user (that is independent of ). In presence of estimation errors, the above argument holds, that is, , , is equal to zero with probability , and is where indicates the distribution of the generic path of the perturbed effective channel of user (that is independent of ).

As for AR, let start by finding the distribution of , , i.e., the coupling coefficient between two users in absence of estimation error. Each channel spans a subspace of dimension i in a space with i dimensions 1 ; in other words, just i entries of are nonzero. From the hypotheses of independence and uniformity of delays due to asynchronism between users and time-hopping codes, there exists a probability such that the inner product T is nonzero, and the remaining probability that the inner product is zero. We may think of the "nonzero event" as the partial overlapping between two channels. As , it results i i , where the assumption allows to neglect border effects. Indicating with the distribution of conditioned on the nonzero event, one has:

(3.50)
In presence of estimation errors, the above discussion remains valid, since an error changes, in general, the direction of vector with respect to , i.e., and are, in general, not collinear, but it does not change the subspace spanned by the two channels, i.e., the subspace spanned by the true channel is equal to the subspace spanned by the perturbed channel. Indicating with the distribution of conditioned on the nonzero event, one has:

(3.51)
reduces to when the estimation error is nil. All simulations refer to a system with fixed chip duration c ns and bandwidth W c . Power control is assumed; in particular, for all users, . The delay spread of each channel impulse response is fixed at a value ns that includes most of the energy of typical CM1 channels. For a given bandwidth W, the length of the channel expressed in number of samples per channel is W, i.e., is a W vector.

Figures 3.9 (a) vs. (b) show the distributions of the coupling coefficient , , in case of no estimation errors, for AR and TR, respectively. As may be expected, the variance of the latter is larger than the variance of the former, as follows from the property of time reversal to increase the total energy of the effective channel; In the specific case, the while . In Fig. 3.9 (b)

1
The number of degrees of freedom in a symbol period is i ; in the large system limit, as , the difference between i and i due to the convolution is negligible.

it is highlighted the presence of a strong interference ( ) that is not present in the AR case; in the TR case, there is, indeed, among the i paths of the effective channel, one path with amplitude equal to the square-root energy of the channel, , that is, therefore, selected with probability i . is also more leptokurtic than , showing a kurtosis approximately equal to vs.

reached by the AR variable. Figures 3.9 , for AR and TR, respectively. Both variance and kurtosis of TR are still larger than those of AR; in particular, it results vs. , and vs.

. Figure 3.9 (e) shows the distribution of the term , that is the same for both TR and AR, and is represented for

. Note that all variables can be regarded as normalized cross-correlations, hence .

In terms of c.fs., eqs. 

E E

; therefore, the r.v. has c.f.:

E E

where the expectation is with respect N , and is independent of . Since with are independent, then has c.f.: i i that, in the large system limit, where , , ,

where i i is the effective load; without multipath ( ) and one pulse per chip (i ), reduces to the usual load as given by . The interference-plus-noise variable has thus c.f. given by: N dB, without and with estimation errors, respectively: simulations show that the interference-plus-noise variable is not significantly affected by estimation errors (c.f. and curves), although , as well as ,
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N (dB) show an interference-limited scenario, where SNR dB: in this case is far from Gaussian, and so is the interference-plus-noise PDF ; the effect of the estimation error is to decrease the kurtosis of , and so that of .
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Knowing the distribution of conditioned on , or equivalently its c.f., mutual information follows directly. Hence, the c.f. of given is: hence, the c.f. of is:

E E

where the expectation is over N . Explicitly, one has: R R and:

R R R
where denotes a Gaussian distribution with zero mean and variance , and:

R

The above derivation allows to find as a function of the distribution of , , and the distribution accounting for the loss of correlation incurred by the user to be decoded because of the estimation error. Both and accounts for the channel model and the estimation error, in particular its variance.

As baseline comparison, we also provide the following lower bound for , that is achieved when the interference is Gaussian: In each of these simulations, AR outperforms TR. However, note that the gap R R may be viewed as a measure of the non-Gaussianity of and , and is indeed higher in the TR case with respect to the AR case, because of the different distribution of the interference term, that is more leptokurtic in the TR case. There could be, therefore, a room for TR to outperform AR.

Future work

In order to generalize the analysis developed in this chapter, the following two assumptions may be relaxed:

1. single user detection: different receiver structures that use multiuser detection may be considered, in first place linear multiuser detection (RZF, MMSE), that can be obtained by leaving eq. (3.29) in the general form;

2. unit gain of channel impulse responses: a complete characterization of the wireless channel should include fading/shadowing.

The first generalization can proceed by projecting eq. (3.17) onto a filter as specified by eq. (3.29) in the general form. Results are envisioned to be very different with linear receivers that account for the interference, such as RZF and MMSE, in constrast to the simple MF bank that is used above.

The second generalization can be obtained by removing the constraint for each and every , that also implies that power transmitted by all users is identical. In this case, performance is not envisioned to differ qualitatively from the present analysis.

For both generalizations, a comparison of transceiver structures and fading statistics with different degrees of sparsity of the signal transmitted by each user, e.g. selecting DS-CDMA vs. TH-CDMA, will complete the above analysis. Furthermore, the mutual information analysis can be extended by considering the maximum net ergodic rate, is the rate achievable during that period. Since the latter depends on the former, i.e., , a maximum with respect to is expected, as also suggested in [START_REF] Caire | Multiuser MIMO achievable rates with downlink training and channel state feedback[END_REF] and confirmed by preliminary investigations. The analysis of net is important from a practical viewpoint since it suggests the optimal duration of training phases that maximize the data rate.

Conclusions

In this chapter, the problem of characterizing system performance for single antenna systems using time reversal in the case of imperfect channel estimation was addressed. The analyzed setting included one BS and several UTs, and the uplink communication channel was considered in the investigation. Each UT adopted impulse-radio ultra-wideband communication with prefiltering, and the receiving BS adopted a 1Rake; degrees of impulsiveness were reflected by an impulsiveness index that ranges from i to i for ideal impulsiveness. In order to evaluate time reversal behavior, this communication scheme was compared against a reference configuration with no prefiltering and AR at the receiver. The effect of imperfect channel estimation on both transceiver configurations was analyzed. Channel estimation error was modeled as an additive Gaussian noise based on the output of a training phase that was used to tune transmitter and receiver structures. The comparison was performed for both the single user channel and the multiuser channel with power control. Modeling of the channels was obtained based on the 802.15.3a CM1 model. The two communication schemes, TR and AR, were compared based on two different performance parameters: probability of error and mutual information as a function of signal-to-noise ratio.

Results highlighted that, for the single user channel, probability of error for TR and AR coincided, while for the multiuser channel, AR outperformed TR when imperfect CSI was the main cause of error, and the two schemes had similar performance when the load, as measured by the ratio between the number of terminals and the number of chips in a symbol period, , was the main cause of error, irrespectively of the degree of impulsiveness.

In terms of spectral efficiency, we provided lower and upper bound expressions, and analyzed the two structures with different impulsiveness index i and load . Results expressed by spectral efficiency R (nats/s/Hz) as a function of signal-tonoise ratio indicated that, for low-SNR, R was similar for the two systems, while for higher SNR values, AR outperforms TR. However, remind that, in practical scenarios, it would be simpler for a TR system to acquire a better estimation of the channel with respect to an AR system, since the estimation error variance depends on the energy of the training sequence only, and in the TR case the training sequence is transmitted by a basestation rather than a device, and may require weaker energy consumption constraints. Furthermore, in the presence of estimation errors, a reduction in R was observed, due to both a mismatch with the user to decode, and a reduced kurtosis of the interference term.

Both generalizations and extensions of the analysis developed in this chapter are presented. therefore depends only on the ratio . It is useful to define the following variable:

(3.54) in fact, is distributed according to a known distribution, that is the non-central Student T-distribution with degrees of freedom and non-central parameter [START_REF] Abramowitz | Handbook of mathematical functions: with formulas, graphs, and mathematical tables[END_REF], that we denote by T and has the following canonical form:

f T
where is the Hermite polynomial [START_REF] Abramowitz | Handbook of mathematical functions: with formulas, graphs, and mathematical tables[END_REF]. Then, since from eqs. (3.53) and (3.54), it results: the pdf of is obtained by a change of variables 2 as follows:

f f T
2) PDF of .

Write as follows:

having defined . The pdf of can be traced back to a known distribution. In fact, since and , depends on the ratio of two independent chi-square distributions. It is known as (non-central) F (ratio) distribution the pdf that describes the ratio of two independent chi-square distributions [START_REF] Abramowitz | Handbook of mathematical functions: with formulas, graphs, and mathematical tables[END_REF]. Precisely, if , , then has a doubly non-central F ratio distribution of orders and non-centrality parameters ,

F 2
The pdf of can be obtained from that of by guaranteeing that f T f .
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In the present case, , , and , hence:

F Since:
the pdf can be derived from that of by a change of variables from to , and assumes the following form:

f 1
where is the Beta function and is the Kummer confluent hypergeometric function [START_REF] Abramowitz | Handbook of mathematical functions: with formulas, graphs, and mathematical tables[END_REF].
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Some results on MISO Time Reversal

In this chapter, we investigate Multiple-Input Single-Output (MISO) UWB communications over a multipath channel. After introducing a tractable discretetime multipath MISO channel model accounting for correlation between multiple channels, analytical results for single-user transmissions are drawn in the following two cases: no precoding at transmitter with All-Rake receiver vs. time reversal (TR) at transmitter with 1-Rake receiver. Channel state information at both transmitter (CSIT) and receiver (CSIR) is assumed. Optimality of TR conditioned on 1-Rake receiver structure is proved. Robustness brought by TR combined with 1-Rake with respect to lack of correlation between channels vs. no precoding is shown. Simulations with realistic reference channels show that combining time reversal with multiple transmit antennas amplifies the performance improvement due to each technique when used alone.

Introduction

Time reversal is a signaling scheme that focuses a signal in both time and space. When transmitted signals have impulsive nature, as in Impulse Radio Ultra Wide Band (IR-UWB), time reversal further increases impulsiveness thanks to the many resolvable paths of UWB channels, even in the single-antenna setting [START_REF] Fiorina | Impact of time reversal on multi-user interference in IR-UWB[END_REF][START_REF] Saghir | Timereversal UWB wireless communication-based train control in tunnel[END_REF]. When multiple antennas at transmitter side are used, time reversal is a beamformer focusing the wideband signal at receiver. Early experimental results for MISO and MIMO time reversal are collected, respectively, in [START_REF] Akogun | Demonstrating time reversal in ultra-wideband communications using time domain measurements[END_REF] and in [START_REF] Andersen | Time reversal in wireless communications: a measurement-based investigation[END_REF][START_REF] Qiu | Time reversal with MISO for ultrawideband communications: Experimental results[END_REF][START_REF] Zhou | Time-reversed ultra-wideband (UWB) multiple input multiple output (MIMO) based on measured spatial channels[END_REF]. MISO beamforming with antennas in flat-fading channels provides SNR gain of [START_REF] Larsson | Space-Time Block Coding for Wireless Communications[END_REF]. On the other hand, in Single-Input Single-Output (SISO) multipath channels, a prefilter, i.e., a filter at transmitter side, matched to the realization of the channel impulse response (CIR), which corresponds to time reversal, can focus in time the signal received: a transceiver using time reversal and 1-Rake achieves same performance in terms of SNR as that obtained without time reversal and with All-Rake [START_REF] De Nardis | Combining UWB with time reversal for improved communication and positioning[END_REF]. This is useful when transmitter cost and complexity are not crucial as opposed to receiver simplicity. However, time reversal can also provide SNR gain when more complex receiver is used, that is when more than one finger is employed in Rake.

In this chapter we aim at providing theoretical results on MISO time reversal and extending known analyses proposed for SISO time reversal [START_REF] Ferrante | Complexity reduction by combining time reversal and IR-UWB[END_REF][START_REF] De Nardis | Combining UWB with time reversal for improved communication and positioning[END_REF][START_REF] Fiorina | Impact of time reversal on multi-user interference in IR-UWB[END_REF][START_REF] Panaitopol | Trade-off between the number of fingers in the prefilter and in the rake receiver in time reversal ir-uwb[END_REF] to MISO time reversal; in particular, we study the SNR gain due to time reversal beamforming and investigate the impact of the presence of more fingers in the Rake receiver when multiple antennas at transmitter are used.

The chapter is organized as follows. In Section 4.2 it is described the continuoustime system with realistic channel model and it is proposed a simplified tractable discrete-time channel model. In Section 4.3, analytical and simulation results are derived. Finally, conclusions and future work are drawn in Section 4.4.

System model

The basic equation of a binary PAM-UWB signal is the following:

Z b s (4.1)
where is the signal sent by the transmitter, is the pseudorandom user-specific time hopping code, b A , where A , is the -th symbol sent at time interval s , and is called chip period [START_REF] Di Benedetto | Understanding Ultra Wide Band radio fundamentals[END_REF]. We have used here Pulse Amplitude Modulation (PAM) but also Pulse Position Modulation [START_REF] Di Benedetto | Understanding Ultra Wide Band radio fundamentals[END_REF] can be adopted. When no time reversal is used, is a transmitted pulse of very short duration denoted in this chapter by , typically a Scholtz pulse or a bandlimited pulse. Conversely, when time reversal is used, is the output of a linear time-invariant filter called time reversal precoder or prefilter with input waveform .

Single-user MISO communication with antennas at transmitter side is considered. We focus on the reception of one symbol only, where each symbol is transmitted by amplitude modulating . Under this assumption, ISI is negligible since symbol period s is typically longer than channel delay spread and timehopping code can ensure a time guard. symbol period T s is typically longer than channel delay spread and time-hopping code can ensure a time guard. Received signal y(t) can be written as follows, where we omitted the time-hopping code because of the one-symbol assumption:

y(t) = b R h T (t ) p( ) d + n(t), (2) 
where h(t) and p(t) are the N t 1 channel impulse response (CIR) and transmitted signal real-valued vectors, n(t) is an partial time reversal prefilters can be als a subset of paths is considered [START_REF] Biglieri | Fading channels: information-theoretic and communications aspects[END_REF]. Finally, receiver is assumed to be projects y(t) onto the following templa

R h T (t ) p( ) d k 0 ã
where {ã k , t k : k 0} represents the s delays of fingers in the Rake. However, partial Rake receiver where only a subse known and used: when the strongest path the receiver is known as Selective-Ra paths are considered, it is known as All A. Channel Model: Continuous-Time

We consider for simulation results th [START_REF] Tse | Linear multiuser receivers: effective interference, effective bandwidth and user capacity[END_REF] that combines the standard SISO ch [START_REF] Shamai | The impact of frequency-flat fading on the spectral efficiency of CDMA[END_REF] with the Kronecker channel correlat We briefly summarize below this model MISO and uniform linear array.

Channel impulse response between th and the receiver is as follows: antennas are fed by time reversal prefilters, each of which is matched to the corresponding multipath channel. A correlation receiver is adopted in order to estimate the transmitted symbol. Partial TR and Rake can be used in order to reduce complexity of the transceiver. can be written as follows, where we omitted the timehopping code because of the one-symbol assumption:

b R T (4.2)
where and are the channel impulse response (CIR) and transmitted signal real-valued vectors, is an Additive White Gaussian Noise (AWGN) with power spectral density N , and b is the transmitted symbol. Note that all antennas transmit the same symbol during a symbol period. The -th component of and is denoted by and . Power constraint is intended as follows:

s R A s R A
where s is the symbol period and is the power spent by the antennas, and, therefore, by the transmitter.

Given the large bandwidth of UWB systems, the propagation channel is resolved into multiple paths. In general, knowledge of CIR realizations at transmitter side can be exploited for prefilter design; MISO TR design adopts a bank of prefilters, where each antenna element is fed by the output of a prefilter modulated by b and matched to the CIR between that antenna element and the receiver, hence: ; denoting by the maximum energy spent by the transmitter during a symbol period, power constraint reads as:

A R r s
Since the multipath channel can be written as: partial time reversal prefilters can be also designed, where just a subset of paths is considered [START_REF] Ferrante | Complexity reduction by combining time reversal and IR-UWB[END_REF].

Finally, receiver is assumed to be a matched filter that projects onto the following template: R T where represents the set of amplitudes and delays of fingers in the Rake. However, we can also consider a partial Rake receiver where only a subset of is known and used: when the strongest paths only are considered, the receiver is known as Selective-Rake, whereas when all paths are considered, it is known as All-Rake.

Channel Model: Continuous-Time

We consider for simulation results the channel proposed in [START_REF] Hong | Correlation-based doubledirectional stochastic channel model for multiple-antenna ultra-wideband systems[END_REF] that combines the standard SISO channel IEEE 802.15.3a [START_REF] Foerster | Channel modeling sub-committee report final[END_REF] with the Kronecker channel correlation model for MIMO. We briefly summarize below this model in the special case of MISO and uniform linear array.

Channel impulse response between the -th transmit antenna and the receiver is as follows:

t t r r
where is the signed amplitude of ray in cluster , is cluster delay, is the delay of ray in cluster with respect to , is the incremental delay due to antenna position where is the distance between two antennas and is the speed of light, and t and r are the angle-of-departure and angle-ofarrival of ray in cluster , respectively. Amplitude of ray in cluster for CIR has the form: , where is the equiprobable amplitude sign due to random reflections, and and are lognormal distributed cluster and ray fading, respectively. Amplitudes and delays statistics are in accordance with the standard IEEE 802.15.3a SISO channel. Multiple transmit antennas correlation is taken into account by assigning a correlation structure to T , that is by requiring that E T . Since only in depends on the antenna, we just need to assign a correlation structure to , and, in turn, to T . Since is Gaussian, then is a zero mean multivariate normal distribution with covariance matrix that can be derived once fixed . For further details refer to [START_REF] Hong | Correlation-based doubledirectional stochastic channel model for multiple-antenna ultra-wideband systems[END_REF].

Simplified Discrete-Time Channel Model

A more tractable channel model for analytical derivations is described below under the assumption of unit-energy, ideal baseband W-bandlimited pulse with band W W .

SISO model

Single-Input Single-Output frequency-selective continuous-time AWGN channels can be described by the relation: is the set of transmitted symbols, is the bandlimited waveform, s is the symbol period, is the channel impulse response, and is a realization of the continuous-time AWGN process with power spectral density N .

In impulse-radio ultra-wideband communications, adjacent symbols are separated in time by an interval much longer than W: in fact, W is shorter than the chip period and each symbol period counts usually tens of chips. . With prefiltering, transmitted vector is , therefore power constraint is E A , being the first column of . Since the prefilter is a linear timeinvariant system, is Toeplitz and is the vector containing projections of the prefilter impulse response onto W .

In order to provide a tractable model for the MISO channel, we propose first a simplified channel model for the SISO channel, which helps in illustrating the behavior of the system with and without TR. For SISO NLOS channels, it seems reasonable to consider independent, zero-mean Gaussian random variables with variance profile , i.e., . Therefore, the simplest model we propose is:

, where are i.i.d. unit variance Gaussian random variables. Furthermore, when the channel has also a LOS component, we propose a generalization that reads as follows:

where , similarly to the "Ricean factor" in flat-fading channels, accounts for the fraction of energy in the LOS component with respect to the NLOS component in the first path, and accounts for the fraction of energy of the first path with respect to the sum of the energy of all paths, namely G, where G is the total channel gain.

MISO model

The discrete-time model is as follows: T where is a vector where the -th element is the channel impulse response between the -th transmit antenna and the receiver projected onto W W, and b , where is a vector of ' '. Stacking in a vector, , the previous relation can be written as:

with b (4.4)
where is a vector of symbols and is a block-Toeplitz channel matrix structured as follows: where:

having denoted . In general, jointly precodes symbols for all antennas; in MISO TR prefilters are decoupled, that is, each antenna is fed by the output of a prefilter knowing the channel impulse response between that antenna and the receiver only. This structure implies that is diagonal, therefore also uniquely defined by a vector that we call , that is consistent with previous notation:

Power constraint reads:

E A (4.8) 
In order to derive analytical results, we propose the following tractable simplified channel model for MISO channel, that similarly to SISO channels is defined as:

T h T T
where matrix is introduced as in the Kronecker model in order to account correlation between channels of different antennas, h is a deterministic component that account for the line-of-sight path, and N . We want that

E

, therefore we set Tr and h . In this way, correlation matrix of is as follows:

E T h h T (4.9)
A generalization to MIMO would be straightforward, taking into account also correlations at receiver antennas with a matrix . However, since in this chapter we investigate MISO channels, we denote hereinafter by , being the subscript redundant.

Performance measure

The key performance measure that we are interested in is SNR. The problem is to estimate b from eq. (4.7) through a linear receiver, that is a vector onto which is projected. We want to compute the SNR of the decision variable T , that is: where expectations are taken conditioned on the channel realization. This quantity is, therefore, still a random variable, since the channel is a random process. We are primary interested in its mean value, E SNR .

Results

Analytical Derivations

We derive expressions of SNR in terms of channel correlation, receiver number of fingers and transmitter number of antennas. In particular, we compute the two opposed cases of strongly correlated and independent channels, characterized by T and , respectively.

All-Rake ( ), General Precoder

SNR A N A N T
intending that the sum is extended over .

All-Rake ( ), No Precoding

With no precoding, , therefore . According to the power constraint, it is sufficient to specialize the general relation for SNR to: Using the tractable proposed channel model, the average SNR is:

E SNR N T E
T that, using eq. (4.9), is: 

E SNR N h T T G N H ( 4 
E SNR G N 1-Rake, time reversal A 1-Rake is
, where in the case of time reversal . Time reversal is the use of the precoder: A r r where r and is the -th row of . We can prove that this precoder maximizes the SNR when 1-Rake is used.

In fact, consider 1-Rake , . Since T T , where is the -th row of , the problem is that of finding the precoding vector: SNR T subject to power constraint A . This problem is solved, using for instance the Cauchy-Schwarz inequality, by , that is time reversal. Each is sufficient for taking into account the whole delay spread of channels, therefore exploiting the whole gain offered. For the sake of simplicity, we choose .

With the time reversal precoder, achieved SNR is:

SNR N r N (4.12) 
A well-known result in SISO channels is that this SNR is equal to that obtained with All-Rake receiver and no precoding. This is no longer true with MISO, since eq. (4.12) is not equivalent to eq. (4.10).

Using the tractable proposed channel model, the average value of (4.12) is:

E SNR G N (4.13) 
The meaning of this relation is that time reversal is insensitive, on average and in terms of SNR, to many parameters characterizing the channel as in (4.11). In particular, time reversal is robust to the lack of correlation as opposed to All-Rake without precoding: in fact, 1-Rake, time reversal systems average SNR is larger than that achieved by systems with All-Rake receiver and without precoding, beiung equal only when channels between different transmit antennas and receiver are identical.

Simulation Results

In addition to analytical derivations and comparison of performance (in terms of SNR) of systems using time reversal with 1-Rake vs. All-Rake without prefiltering, we investigate through simulations performance dependence on number of antennas, type of receiver (1-Rake vs. All-Rake) and number of taps in the time reversal prefilter. In fact, transmitter may also select a subset of channel paths to form TR: when one tap only is employed, we have no prefiltering; when the whole channel impulse response is taken into account, we have full TR; between this two extrema, when the number of taps in the precoder is limited, we have in general partial TR, and paths are selected with decreasing amplitude. Simulations are performed with the realistic channel described in Subsection 4.2.1. Parameters used in simulations are reported in Table 4.1.

In Figs. 4.2a and 4.2b it is shown the energy collected by an All-Rake and by a 1-Rake, respectively, normalized to the average energy collected without time reversal with single antenna, as function of the number of paths considered in time reversal. In both cases, time reversal can be used for reducing the number of antennas while maintaining fixed the energy collected by the receiver. For instance, in Fig. 4.2a, a system with antennas without time reversal collects the same energy of a system with antennas employing time reversal with taps. Note that, moreover, energy gain due to time reversal remains roughly constant as function of the number of antennas, therefore the total gain due to multiple antennas and time reversal is roughly the product of each gain. A relative increase of focusing, although of small entity, is observed on Figs. 4.3 showing the percentage of collected energy as function of the number of fingers in the Rake receiver with time reversal. We confirmed by simulations the better performance of time reversal with 1-Rake with respect to no time reversal with All-Rake, as expected from the analyical derivation. 

Conclusion and Future work

In this chapter we studied combination of time reversal and multiple transmit antennas providing theoretical arguments for robustness of communications using TR and simulation results emphasizing focusing properties of TR and possible trade-offs in system design. In general, thanks to its focusing properties, time reversal allows to use a 1-Rake receiver in place of receivers requiring multiple fingers in systems without prefiltering. We proved that MISO TR is optimum when a 1-Rake receiver is used and that systems with no time reversal and All-Rake receiver are less robust to channels correlation with respect to systems with time reversal and 1-Rake receiver, which performance in terms of average SNR is better. Simulation results with realistic channel model and analytical derivations with a more tractable channel model we proposed were presented. We observed that combination of MISO and TR amplify performance of both techniques used independently as well as increased focusing of MISO TR with respect to SISO TR; we might expect higher gains with a channel model considering a more realistic propagation model.

A future generalization may consider multiuser beamforming, in particular relaxing the assumption on the bank of separate time reversal prefilters, one per antenna, and by studying a joint TR design. Another development may be towards understanding the broadcast time reversal channel: in its simplest form, two users have to be served simultaneously by a transmitter with multiple antennas using a time reversal prefilter. It may be studied how to optimally combine the two channel impulse responses in the joint time reversal prefilter, and compare these results against different prefiltering schemes, such as RZF, by taking into account the correlation between the two channels. Finally, we suggest to study how the antenna configuration, i.e., geometry, impacts the performance of TR-based transmitters, which may be relevant in distributed antenna setups.
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CHAPTER 5

Some results on SISO Time Reversal

In this chapter, a comparison between two optimum prefilters for frequency-selective SISO channels under different assumptions on the receiver is drawn. The first design foresees a jointly optimized transceiver (optimum prefilter and all-Rake receiver) while the second constrains the receiver to be minimum complex (1-Rake) and consequently uses the optimized prefilter, that is, time reversal. Assuming an 802.15.3a channel model, analytical results based on the description of the channel as a doubly stochastic point process are proposed for the latter case. Simulations provide performance comparison with the former design showing the maximum prefiltering gain gap and the minimum Rake complexity required by the optimum prefilter for a performance improvement. is the useful signal and the received signal corrupted by the AWGN with variance N . The receiver is implemented by a filter with impulse response followed by a sampler at .

System model

We consider a point-to-point communication through a frequency-selective channel.

The system is represented in block diagram form in Fig. 5.1. We model each block as a linear time-invariant system with impulse response shown in Fig. 5.2. We assume:

(a1) a signaling scheme based on the two normalized waveforms , being the information-bearing symbol;

(a2) a power constraint at the transmitter, that is, independent of the prefilter, the power of the transmitted signal is constant and equal to (w.l.o.g. we can set );

(a3) independent inter-arrival times between paths in the multipath channel.

For the sake of simplicity we consider PAM as the modulation technique, that is , where is the unit-energy pulse and is the informationbearing symbol, being the bit of information.

The optimum demodulator is the filter matched to the whole useful received signal . In the case of a multipath channel, it is known as Rake correlator [START_REF] Price | A communication technique for multipath channels[END_REF][START_REF] Proakis | Digital Communications[END_REF]. This is depicted in Fig. 5.2 that shows the continuous-time model of the system. We can derive an equivalent discrete-time model (see Fig. 5.3): the optimal decoder is the one that maximizes, having fixed , the SNR of the correlation metric, and it is the matched filter to the effective channel :

SNR E H E H H H N
The resulting SNR 

Time Reversal SNR in SISO Frequency-Selective Channels

We describe the SISO frequency-selective channel as where and are amplitude and delay of the th path, respectively.

Note 1. Delays are taken in ascending order, .

Note 2. In practice, we would take only a finite number of paths, say .

Given a channel realization, we can design the prefilter according to different criteria. One criterion is the maximization of the at the 1-Rake receiver. Under this assumption, the optimum filter is time reversal, represented by a special choice of , that is Proof. See Appendix 5.A.

Note 3. We do not address the issue of the causality of this filter; however, it is evident that in order to model a real system we need to introduce a delay of at least .

Remark 2. Normalization is required by the power constraint assumption (a2).

Definition 3. We call prefiltering gain the quantity .

Remark 3. The prefiltering gain is absent without prefiltering, that is when .

Proposition 2 (Prefiltering gain of time reversal). Assume that (a3) holds. Then, having fixed the continuous-time channel impulse response , it results almost surely (that is, with probability ) that (5.1) where .

Proof. See Appendix 5.B.

Remark 4. This result is no longer true in the discrete-time model. However, it is an excellent approximation if the discrete-time channel impulse response is represented by a sparse vector. In the case of multipath channel, the higher the bandwidth of the receiver, the better is the approximation.

Remark 5. This result is a property of the continuous-time channel impulse response (CIR) and it remains valid if and only if the temporal duration of the pulse is lower than the minimum distance between two paths, that is, . Conversely, due to the presence of inter-pulse interference (IPI), the wider the pulse, the worse is the approximation. Now, the aim is to bound . Since , a trivial upper bound of is given by . A lower bound follows from the Cauchy-Schwarz inequality once we accept a rather technical assumption verified numerically by simulations (see Fig. 5.3 for more details):

Lemma 2. Assume that E E E
then the following inequality holds: , that is one standard deviation, is represented by the filled region. As , tends to the expectation of (computed over discrete-time channels). Since Prop. 2 is valid only in continuous-time, we show a di erent curve for the average of the RHS of eq. (5.1), that is, a . The dashed curve shows the asymptotic value of a . This value is below the asymptotic value of , that means that, in discrete-time, the estimation of with a is conservative, at least asymptotically. The dot-dashed curve shows that it is conservative to replace the expectation of the ratio with the ratio of expectations, verifying the assumption of Lemma 2. Finally, the thick solid curve show the lower bound that derives from the Cauchy-Schwarz inequality.
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Optimum SNR in SISO Frequency-Selective Channels

The optimum prefilter is designed to maximize SNR under the power constraint: . This is also optimum from an information theoretic point of view as it maximizes the capacity of the link.

The solution of this optimization problem is given by the eigenvector of matrix H corresponding to the maximum eigenvalue , or equivalently by the right singular vector of matrix corresponding to the maximum singular value . In turn, it results that .

Remark 6. The optimum prefilter tries to focus the power at the neighbourhood of the channel spectrum peak frequency. We can justify informally this behavior noting that is a convolutional matrix, thus it is at least asymptotically diagonalized by a Fourier matrix (like a Toeplitz matrix): as the power spectrum of , H . Therefore, the maximum eigenvalue occurs at the discrete-frequency that maximizes the discrete power spectrum of the channel. Conversely, the optimum prefilter tries to focus the energy where the channel attenuation is the least, that is in the neighbourhood of . This behavior is shown in Fig. 5.4(d). 

The Case of IR-UWB Channels

In line with previous works on the topic [START_REF] Jakobsen | Analysis of the stochastic channel model by saleh & valenzuela via the theory of point processes[END_REF][START_REF] Gubner | A computable formula for the average bit error probability as a function of window size for the ieee 802.15.3a uwb channel model[END_REF][START_REF] Hao | The distribution of sums of path gains in the ieee 802.15.3a uwb channel model[END_REF], we use point process theory to model the channel impulse response. Hence, the channel is described as a doubly stochastic point process, that is formally derived from a Cox process (doubly stochastic Poisson point process).

The starting point is the channel model proposed by Saleh and Valenzuela in [START_REF] Saleh | A statistical model for indoor multipath propagation[END_REF] and further adapted to UWB by Foerster et al. in [START_REF] Foerster | Channel modeling sub-committee report final[END_REF]. The expression for the channel impulse response is where is the th cluster start time and is the delay of the th path in the th cluster relative to . According to the model in [START_REF] Foerster | Channel modeling sub-committee report final[END_REF] C

N is a Poisson process of intensity , and N is another independent Poisson process of intensity .

Therefore, defining R N , we have that R is a Poisson process of intensity R . The idea is now to model the (deterministic) presence of the first path of each cluster at the cluster start time using generalized functions in the intensity function. Thus, in order to model that (in LOS environment) and almost surely, we define: The impulse responses are obtained by maximizing numerically the SNR at the receiver. This is an empirical study, since there is no proof that each of these impulse responses actually maximize the SNR, but the prefilter optimized for the All-Rake receiver matches the theory.

C N that

Conclusion

In this chapter we compared optimum prefilters operating in SISO frequencyselective channels. The SISO channels are characterized by a complexity feature that we define in association with the number of fingers of the Rake receiver. The analysis is carried out in the absence of MUI. ), implying that a larger number of fingers is required in order to collect the same energy that would be collected with other prefilters. Eventually, further analysis is required in order to verify compliance with UWB masks.

A comparison of the gain of different prefiltering schemes is shown on Fig. 5.6. The prefiltering gain is the value that the curves tend to asymptotically, as the number of fingers grows to infinity. Other points on the curves show the energy normalized to the channel gain as a function of the number of fingers of the Rake receiver. For the simplest Rake receiver (one finger only), time reversal is optimum: it allows to collect the maximum energy with a -Rake, that is equal to . At the other extreme, the optimum prefilter, that is joint-optimized with the optimum receiver (All-Rake), allows to collect the maximum energy. Figure 5.6 further shows that the asymptotically optimum prefilter, i.e., optimum only when the receiver is an All-Rake, outperforms time reversal only if the receiver has a number of fingers larger than a threshold, that is a random variable whose pdf is estimated in Fig. 5.7. Conversely, this analysis suggests that it is mandatory to require receiver complexity if a prefilter that is optimum when the receiver is an All-Rake is employed.

Future work may investigate analytically optimum prefilters as a function of the number of fingers of the Rake receiver. In general, a deeper investigation of prefiltering techniques with multipath channels is of interest. Moreover, extension to multiuser communications is possible and may reveal peculiar properties of prefilters operating in time over multipath channels. The aim is to compute E

. This can be accomplished by applying the Campbell's formula that allows to determine expectations of functions evaluated on the point process. Precisely, given a point process R with measure , mean measure E and intensity , and a function R, it holds that:

E E

where the integral is extended over the domain of .

We recall that A In [START_REF] Foerster | Channel modeling sub-committee report final[END_REF] it is assumed that

D D
and is such that it is satisfied (c1). Therefore, having defined , they impose that E thus In this formulation, we have

E E E

From a pragmatic point of view, the paths within a cluster, prior to be affected by cluster fading, are thought with a (conditional) second moment lower than the second moment that they have to exhibit to be compliant with (c1), that is, after the cluster fading. Therefore, the cluster fading has the effect to rise the conditional second moment.

In general, we can write the moments as follows: In this formulation, we have

E E E

From a pragmatic point of view, the paths within a cluster, prior to be affected by cluster fading, are thought with a (conditional) second moment equal to the second moment that they have to exhibit to be compliant with (c1). Therefore, the cluster fading has no effect on the second moment.

In general, we can write the moments as follows:

E E E E
Note that the last equality holds either in A and B .

5.E Proof of Proposition 3: TR Gain Lower Bound.

Notation. For a given realization of C, we write and similarly for R. All summations over or are understood to be over C or R , respectively.

We want to compute

E E

with and , where is the amplitude of the path occurred at the time belonging to the cluster begun in . Let us start reducing the expectations only over the point process:

E E C E R C C E C C R C R C C E C E R C C E E R R E E C E R C C E
and further decomposing :

E E C E R C C E E E E C E R C C
Now we can rely on the independence of each cluster process to obtain:

E E E C E R
and the last expectation can be handled with the Campbell's formula. From Appendix 5.D, using the formulation B , we can explicitly write

E C E R E C E R
The process R has an intensity given by R , see Section 5. Closed Form Asymptotic Expression of a Random-Access Interference Measure

A model describing the cumulative effect of the independent access of users to a shared resource, formed by elements, is proposed, based on which an integer interference measure is defined. While traditional cases can be reconducted to reference well-known results, for which is either Gaussian or Poissonian (see, for example, Appendix 1.H and eq. (1.37), respectively, and also eq. (3.52) for a Poisson-mixture distribution), the proposed model provides a framework that offers the tool for understanding the different nature of . In particular, an asymptotic closed form expression ( , , ) for distribution is provided for systems presenting constructive vs. destructive interference, and as such is applicable to characterizing statistical properties of interference in a wide range of random multiple access channels.

System Model

When many users access a common resource independently, they may interfere with each other. A resource can be viewed, in general, as a set of elements that are used to transmit information. For example, at the physical layer, the resource is the set of degrees of freedom that carry the information-bearing signal: a system using bandwidth for time with antennas can access degrees of freedom belonging to time, frequency and space domains; at the medium access layer, the resource is usually time supporting either continuous or slotted packet transmission.

In the proposed model, the resource is a discrete set of elements 1 , i.e., slots. This description holds when the resource is discrete, or can be aptly discretized. Resource is shared independently by users: user chooses a subset

1
In this chapter, two common notations in combinatorics are used: the set is denoted by , and, when , it is simply written as .

K users

Resource of (irrespective of ) slots, ignoring the other users choice, and assigns a label to each accessed slot .

• • • 1 2 3 N • • •
Figure 6.1 illustrates the abstract setting, where a resource is made up of slots and users access randomly to a subset of slots, which is shown for .

Let for , and otherwise, that is, is zero for the non-accessed slots of user , while it is equal to the assigned labels for the accessed slots. Therefore, , where is the set of possible values that the label may assume, and

, where and may or may not be equal.

Let be the sum of labels assigned to slot by all users but user , that is:

(6.1)
By specifying and , the proposed model encompasses the problem of statistically describing multiple access interference for communication systems in which interference has a quantal nature, or can be reconducted to the model of eq. (6.1). Let present four examples: the first three address well-known problems, and are intended to clarify concepts and notations defined above, while the last addresses a novel problem, that is solved thanks to results proved in this chapter. Example 1. This example may refer to throughput of Slotted Aloha at the medium access layer [START_REF] Abramson | The throughput of packet broadcasting channels[END_REF]. Assume that resource is time, that is slotted in equal parts, and that users, each willing to transmit a single packet, independently choose one of the slots. In this setting, and can be interpreted as the binary variable indicating the presence or absence of packet of user within slot . The goal is to find the number of colliding packets with user packet, i.e., the number of packets in the slot selected by user . Given , it results

. Moreover, and . in eq. (6.1) indicates the number of packets in slot that are transmitted by all users but user , and, therefore, the goal is to find . In the large-system limit, that is, as , In order to obtain the asymptotic pdf, rewrite the previous relation as follows:

where this time the contribution to the amplitude of each Dirac mass is isolated in the term in parentheses, that is defined as . In the large-system limit, the Binomial distribution tends to a Poisson distribution with mean , , and the term in parentheses reduces to , being: Finally, becomes:

Z irrespective of . The theorem follows since when Z.

Second Proof.

As expressed by eq. ( 6.4), is a sum of the form:

where subscript is discarded. In order to find P , the number of ways can be obtained as sum of elements of a sequence is counted, and let . A Gaussian r.v. with same mean and variance (black dashed line) is reported for reference. As hinted by figures, the envelope of the distribution is increasingly Gaussian as increases. In particular, odd moments of are null, while the two first even moments are E and E , hence the kurtosis is . Since , is always leptokurtic, and as , suggesting that a Gaussian approximation may hold for .

Future work and Conclusion

In this chapter, a model describing systems where users access a resource independently was proposed. Each user assigns labels to accessed slots: the label is a numerical value with sign, i.e. accounting for polarity. Based on this model, an interference measure called for the generic user that considers the cumulative value of other users labels in terms of their sum was considered. In particular, the case where each user accesses one slot only and assigns a label or with equal probability to the accessed slot was addressed. A closed form expression of the distribution of this cumulative value was found in the large-system limit: it was shown that, if the cardinality of the population of users is a fraction of the number of available slots, then the distribution converges to a novel expression that is in general far from Gaussian, and may be approximated by a Gaussian distribution for . Two proofs, one probabilistic and the other based on analytic combinatorics, were provided.

The second proof presents a potentially fruitful framework that can be used to derive several generalizations. Firstly, the labels are restricted to be binary in this work: by removing this constraint, conditions under which the interference does not follow neither a Gaussian nor a Poisson distribution can be studied. Secondly, the number of slots accessed by each user is here constrained to one, as both the total number of slots and the population grows at the same rate . This constraint also can be removed, and the maximum number of slots, as a function of , that each user may access without reducing the interference to behave as a Gaussian random variable can be studied. Lastly, as a third generalization, the relation with so-called "stable distributions," that represent distributions describing the sum of an infinite number of properly scaled i.i.d. random variables, can be investigated.

Proof (sketch). Rewrite as follows:

where is a Laurent polynomial in where is the (possibly weighted) number of ways to reach the final altitude in steps. Since the only altitude reachable in steps is , then ; at step , the reachable altitudes are described by . In general , and therefore a summation over yields to eq. (6.8).

CHAPTER 7

Conclusion and Future works

Impulsive communications belong to the subset of communications that are sparse in time. Impulsiveness is, therefore, strictly related to both sparsity in time of the transmitted signal and properties of the physical medium that the signal passes through. Impulsive communications are those where the received signal occupies a fraction of the received signal space. The typical example in the wireless communication field is represented by impulse-radio ultra-wideband, where transmissions occur at bursts and the transmitted signal occupies a small fraction of the symbol period.

In this thesis we addressed several issues concerning impulsive communications and the effect of interference on their performance. In particular, we formalized essential characteristics of multiuser impulsive communications, namely sparsity and random hopping, and we identified their information-theoretical limits in multiple access channels with power-control. We then investigated the interplay between the transmitted signal bandwidth and the statistical properties of a multipath channel, when transmitter uses a prefiltering scheme called transmit matched-filter (also known as time reversal in ultra-wideband and speech communities). Several works on the analysis of performance of systems using time reversal is then presented, for both SISO and MISO systems, and in presence of imperfect knowledge of the channel. Finally, the interference of a general multiple access model accounting for constructive vs. destructive events is investigated: we showed that several systems can be described with this model, and a new asymptotic distribution formula for the interference is derived.

Conclusion

We summarize below the main conclusions that can be drawn from each chapter of this thesis.

In Chapter 1, information-theoretical limits are derived for impulsive vs. non-impulsive multiuser communications, represented by time-hopping vs. directsequence CDMA, that are prototypes of sparse vs. dense multiple access formats. We compared spectral efficiency of random time-hopping with consolidated results regarding direct-sequence. We found that there is a regime where time-hopping allows to achieve spectral efficiency higher than that achievable by direct-sequence, namely when the system is overloaded and the receiver is linear. This result provides a hint for and a partial justification to designing networks with nodes that transmit bursty signals in time: this signaling scheme is appropriate whenever the network load is high, , while keeping the receiver design simple, e.g. owing to very large bandwidths: the performance gain with respect to traditional direct-sequence networks is increasingly relevant as 0 increases. In Chapter 2, we investigated the interplay between transmitted signal bandwidth and statistical properties of a multipath channel, when transmitter uses a prefiltering scheme called transmit matched-filter (also known as time reversal in ultra-wideband and speech communities). We derived a necessary and sufficient condition for the performance of the system to increase as bandwidth increases. We showed that multipath channels that are described by or strictly related to the Saleh-Valenzuela model, satisfy the condition, therefore suggesting a theoretical justification for the wide adoption of time reversal in ultra-wideband communications.

Chapters 3-5 are dedicated to detailed study of time reversal in various settings. In Chapter 3, we analyzed performance of two different transceiver structures, namely transceivers with time reversal prefiltering and -Rake receiver vs. no prefiltering and All-Rake receiver. Performance is analyzed in terms of error probability in both single-user and multiuser settings; preliminary mutual information analyses has been also conducted. It was shown that in the single-user setting the two system designs are equivalent in terms of error probability and sensitivity to perturbations, while behaving differently in the multiuser setting, where the system using time reversal shows higher error probability. Partial results on mutual information do not change qualitatively the conclusion drawn from the comparison based on the error probability metric. In Chapter 4, we analyzed MISO ultra-wideband with time reversal, in particular showing that performance is not affected by the the lack of correlation between channels from each transmitting antenna to the receiver. In Chapter 5, we compared SISO time reversal with other prefilters, as a function of the number of fingers of a Rake receiver, and we showed the gain that can be obtained by the different transceiver structures.

Finally, in Chapter 6 we analyzed a general multiple access model where users can interfere with each other antipodally in either a constructive or destructive fashion. We detailed few settings of practical relevance that are described by this model, but several others, including queues in particular regimes, may be aptly described as well. We found the asymptotic distribution of the interference in closed form, that cannot be reduced to any known probability distribution.

Future works

In several chapters of this thesis, we already detailed future works that are related to the content of the chapter. The kind of detailed works aims at extending results obtained under certain sets of assumptions, and can form the basis for investigations that either complete or extend the scope of the works that are presented in the thesis. We hope also that several other works, different from the ones that we explicitly proposed, will be inspired by this thesis.

In this section we briefly discuss future works that necessitate models that are either more general or intrinsically different with respect to those presented in this thesis. Firstly, although this thesis is focused on impulsive communications, that are sparse in time, it is interesting to investigate more general cases of sparsity across dimensions of the signal space. Secondly, it is interesting to investigate the sum-rate of a random ad hoc network where each node uses sparse spreading, and compare results with those achieved with dense spreading. Different scaling laws are envisioned in the sparse case. Finally, we believe that the most ambitious future work lies in embracing a different perspective, namely the possibility to formalize impulsive communications as those that regard time not as a mere support of the communications, but as the resource within which coding information through interarrival times between events, such as signal receptions. In this regard, [START_REF] Anantharam | Bits through queues[END_REF][START_REF] Sundaresan | Robust decoding for timing channels[END_REF][START_REF] Sundaresan | Capacity of queues via point-process channels[END_REF] are seminal contributions that may form the basis for this ambitious project.
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Figure 1 . 1 :

 11 Figure 1.1: DS-CDMA vs. TH-CDMA time-axis structure. The symbol period is divided into chips in both figures. In DS-CDMA (Fig. 1.1a), each chip is used for transmitting one pulse, hence eight pulses are transmitted per symbol period. The signature sequence shown on figure isT . In TH-CDMA (Fig.1.1b) the symbol period is divided into s subgroups of h contiguous chips: one pulse only per subgroup is transmitted, that is four pulses in total. The signature sequence shown on figureisT . Total energy per symbol is identical in both cases, and equal to one.

  In addition, b b T C , andC is a circularly symmetric Gaussian vector with zero mean and covariance 0 . Since the spreading waveforms have unit-energy, the signature sequences have unit norm: . Matrix structure is appropriate for describing spread-spectrum systems in general.

Figure 1 .

 1 Figure 1.1 shows the organization of the time axis for DS-CDMA (Fig. 1.1a) and compares this time pattern against TH-CDMA (Fig. 1.1b).

Theorem 1 .

 1 Suppose that R is a time-hopping matrix, as specified in Definition 2, with s . Then, the ESD of T converges in probability to the distribution function F of a Poisson law with mean : Kronecker symbol. Hence, T is diagonal, and the th element on the diagonal, denoted T , is equal to:

  particular implies F T in the LSL, therefore proving convergence in probability of F T to F . In order to find the GF of A , we use the symbolic method of analytic combinatorics [27, 28]. In our setting, atoms are users, and we define the following combinatorial class: Seq Set Set where is the class containing a single atom, Seq and Set are two basic constructions in analytic combinatorics, and marks the number of chips with at most users, i.e., A . is mapped to the following bivariate GF: eqs. (1.11) and (1.12), one has: derive properties of the th moment of the ESD F closed form expression of E for TH matrices with s for finite and , and we prove convergence in probability to moments of a Poisson distribution with mean in the LSL. Theorem 2. Suppose that R is a time-hopping matrix with s . Then, the expectation of the th moment is: number of the second kind. In the LSL, converges in probability to the th moment of a Poisson distribution with mean , i.e.: that is . Proof. See Appendix 1.B. Lemma 1 (Verifying the Carleman condition). The sequence of moments verifies the Carleman condition, i.e., Proof. We upper bound as follows:

Fig. 1 .

 1 Fig. 1.2 shows Marcenko-Pastur and Poisson laws for . The Marcenko-Pastur law has, in general, an absolute continuous part with probability density function showed in solid line and an atomic part formed by a point mass at the origin showed with a cross at height. The Poisson law has a purely atomic (also known as discrete, or counting) measure with point masses at nonnegative integers showed by dots with heights given by f (envelope showed in dashed line).
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 12 Figure 1.2: Density function of the LSD for DS-CDMA in solide line, and infinitesimal masses of atomic measures of DS-CDMA and TH-CDMA (Poisson law) for in cross and dots, respectively. DS-CDMA and TH-CDMA with s are governed by Marcenko-Pastur and Poisson laws, respectively.

Corollary 3 .

 3 The wideband regime parameters derived from either eq. (1.37) or eq. (1.40) are min and:

O rt h o g o n a l Ns = 1 Ns = 2 Ns = 1 Ns = 2

 1212 Ns/N ! ↵ 2 (0, 1]

Figure 1 .

 1 Figure 1.7 shows spectral efficiency C sumf vs. mutual information I sumf (b/s/Hz) as a function of 0 (dB) for DS-CDMA (eq. (1.34), red solid line on figure), TH-CDMA knowning cross-correlations between users (eq. (1.37), blue large-dashed lines) and TH-CDMA without knowing cross-correlations between users, indicated as TH-CDMA (eq. (1.40), blue small-dashed line), with unit load. Spectral efficiency of TH-CDMA when s , , as , is equal to that of DS (c.f. eq. (1.46), red solid line). As previously, the orthogonal case (gray solid line) is shown for reference. Note that spectral efficiency is bounded in DS-CDMA and in TH-CDMA when s , , as ; the value of the limit is on figure (c.f. eq. (1.38)). On the contrary, mutual information is not bounded for both TH-CDMA and TH-CDMA ; in particular, when s , both TH-CDMA and TH-CDMA grow with similar slope as 0 increases. Mutual information of systems using multiple pulses per symbol is shown for TH-CDMA with s (small-dashed line) and for TH-CDMA with s (eq. (1.36), large-dashed line). These s cases show that mutual information decreases with respect to the one pulse per symbol case. Figure 1.8 shows spectral efficiency C sumf (b/s/Hz) as a function of for fixed 0 dB. Similarly as on fig. 1.7, TH with s outperforms other schemes, with and without complete knowledge of . As ,

5 EFigure 1 . 9 :

 519 Figure 1.9: Spectral efficiency C mmse vs. mutual information I mmse and C deco vs. I deco (b/s/Hz) as a function of 0 (dB) with load . Mutual information of TH-CDMA with s (blue dashed line) vs. spectral efficiency of DS-CDMA (red solid lines), for decorrelator and MMSE receivers, is shown. It is also shown orthogonal access (gray line) for reference.
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 1110 Figure 1.9 shows spectral efficiency C mmse and C deco vs. mutual information I mmse and I deco (b/s/Hz) as a function of 0 (dB) for DS (red solid lines) and TH (blue dashed line), when . Orthogonal access is also shown for reference (gray solid line). The choice of represents a scenario with high interference where eq. (1.49) is still valid, and DS with decorrelation still comparable. MMSE and decorrelator receivers achieve a same mutual information for TH: in the low-SNR regime, I mmse TH

Figure 1 .

 1 10 shows spectral efficiency C mmse DS and C deco DS (red solid lines) vs. mutual information I sumf TH I deco TH I mmse TH (blue dashed line) as a function of , when 0

0.Figure 1 .

 1 11 shows C mmse DS (red solid lines) and I sumf TH I deco TH I mmse TH (blue dashed line) as a function of , for different values of dB 0 . Figure shows that, as dB increases, spectral efficiency of DS grows linearly for

Figure 1 .Figure 1 . 11 :

 1111 Figure 1.12 shows spectral efficiency C or mutual information I (b/s/Hz) vs. 0 (dB) for the two extreme cases of optimum decoding and SUMF receivers, when . Curves derived from closed form expressions of spectral efficiency are shown for optimum decoding when s (top blue solid line), and SUMF when s as and (bottom blue solid line). Curves derived

Figure 1 .

 1 Figure 1.13 compares either spectral efficiency C or mutual information I (b/s/Hz), as a function of , for DS and TH, when 0 dB. Both DS and TH have similar behaviors when, for linear and optimum receivers. Irrespective of , spectral efficiency of DS with optimum decoding is larger than that achieved by TH, the gap being almost closed when s finite. Conversely, among linear receivers and access schemes, it is shown that DS with SUMF has the lowest spectral efficiency, which is equal to that of TH when the number of

  DS-CDMA and TH-CDMA with Ns/N ! ↵ 2 (0, 1) O p t i m u m , D S -

Figure 1 . 12 :

 112 Figure 1.12: Spectral efficiency C vs. mutual information I (b/s/Hz) as a function of 0 (dB) with load . Optimum vs. linear receivers are shown. Top curve shows C opt DS for optimum decoding in DS-CDMA (red solid line). Bottom curve shows C for SUMF, DS-CDMA (red solid line) coinciding with TH-CDMA when s goes to infinity proportionally to , i.e., s (red solid line). In between these two extremes: C opt TH curve for optimum decoding, TH-CDMA, s , simulated values (dotted blue line); C opt TH curve for optimum TH-CDMA, s (blue solid line); ITH curve for linear receivers, TH-CDMA, s (blue large-dashed line); I sumf TH curve for SUMF, TH-CDMA , s and s (blue small-dashed line).
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 113 Figure 1.13: Spectral efficiency C or mutual information I (b/s/Hz) as a function of for DS and TH, when 0 dB, with optimum and SUMF receivers. Orthogonal access and DS with MMSE receiver are reported for reference.

C

  providing a sufficient statistic for the optimum detection of .Based on eqs. (1.62) and (1.65), the equivalent discrete channel model can therefore be expressed by:

Figure 1 . 15 :

 115 Figure 1.15: Illustration of the impulsiveness index concept. A non-impulsive system, where i , and therefore c W, is shown in Fig. (a), while an impulsive system, where i , and therefore c W, is shown in Fig. (b).
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 116 Figure 1.16: Spectral efficiency as function of (dB) for the asynchronous channel with s

  The extension of model (1.2) to account channels with fading is straightforward. Denote with the diagonal matrix of the fading coefficients A A . The flat-fading channel model reads as: (1.82)

T

  , or equivalently T . In case a non-uniform power constraint is set, one has, similarly to eq. (1.85): 0 T (1.84) Suppose to set the maximum power consumption of the network, i.e., Tr . If each transmitter has knowledge of , one can find the spectral efficiency as follows:

Appendix 1 .

 1 A Proof of opt optIn order to prove eq. (1.20), we have to show that P opt opt

ET

  . Hence, the minimum energy-per-bit is: is an s h -sequence (seeDefinition 2). Indicate with T . The moment generating function (MGF) of is:

  From eq. (1.101), the characteristic function (CF) of the generic RV is:
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 22 Figure 2.2: Average gain E vs.for channel models CM1-CM4 of the IEEE 802.15.3a standard[START_REF] Foerster | Channel modeling sub-committee report final[END_REF], and single-cluster models SM1-SM3, that refers to channel of eq. (2.7), with parameters r equal to , and , respectively, where and are expressed in nanoseconds.

Figure 2 .

 2 Figure 2.2 shows E vs.obtained by means of Monte-Carlo simulations for UWB channels following the IEEE 802.15.3a standard model[START_REF] Foerster | Channel modeling sub-committee report final[END_REF], where is the average intra-cluster interarrival time between two rays, with values in the range nanoseconds. Figure2.2 suggests that channel models valid for very large bandwidths, up to several gigahertz, verify eq. (2.9).

A 1 FIG. 1 :

 11 FIG. 1: Network model: several user terminals (UTs) transmit information-bearing symbols to a common sink, i.e., basestation (BS).
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 31 Figure 3.1: Network model: several user terminals (UTs) transmit information-bearing symbols to a common sink, i.e., basestation (BS).

Figure 3 . 2 :

 32 Figure 3.2: System model. The transmitter is formed by modulators. Radiated signals are a eted by di erent channels and white gaussian noise at the receiver. Receveir consists in one demodulator shown on figure for the example case of user .

Figure 4 .

 4 Figure 4.1 shows the system model, including modulators producing transmitted signals, , , affected by propagation within different channels and corrupted at the receiver by white gaussian noise . The receiver consists in one demodulator.

  Expliciting signals for the symbol at time epoch , and denoting by , eqs. (3.2), (3.3) and (3.4) become:

.

  For systems with prefiltering, eq. (3.15) generalizes to:(3.17

  )

Figure 3 . 3 :

 33 Figure 3.3: Data transmission structured into blocks for UT .

  Detailed transmission scheme.

Figure 3 . 4 :

 34 Figure 3.4: Transmission schemes. In (a): transmission scheme at a glance. In (b): detailed transmission scheme. Phase 1 : the BS broadcasts a training sequence of length i samples (corresponding to i W seconds) that is received by each UT starting at time . Each multipath channel spreads the sequence for i samples, hence each UT listens from time to time i i samples.

Figure 3 . 5 :

 35 Figure 3.5: PDF of : simulated histograms vs. theoretical expression of eq. (3.42).Parameters: is the number of resolvable paths of the channel; is the variance of the estimation error.

Figure 3 . 6 :

 36 Figure 3.6: Symbol error probability vs. N for di erent values of the number of resolved paths and the estimation error variance .

Figure 3 . 7 :

 37 Figure 3.7: Probability of error vs. N (dB) for systems with i and . Figure (a) refers to TR while (b) to AR.
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 38 Figure 3.8: Probability of error vs. N (dB) for impulsive (i ) systems with .Figure (a) refers to TR while (b) to AR.

  Figure 3.8: Probability of error vs. N (dB) for impulsive (i ) systems with .Figure (a) refers to TR while (b) to AR.
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 39 Figure 3.9: PDFs and of the variables , , and , respectively. Distributions do not depend on the particular user . Figs. (a) and (b) correspond to a variable , , in systems without estimation errors; Figs. (c) and (d) correspond to a variable , , in systems with estimation errors with variance ; Fig. (e) corresponds to a variable in systems with a same error variance.

Figure 3

 3 Figure 3.9 shows the distributions , , and in eqs. (3.48), (3.49), (3.50) and (3.51), respectively, and the distribution of the term , assuming the Channel Model 1 (CM1) specified in the IEEE 802.15.3a standard.All simulations refer to a system with fixed chip duration c ns and bandwidth W c . Power control is assumed; in particular, for all users, . The delay spread of each channel impulse response is fixed at a value ns that includes most of the energy of typical CM1 channels. For a given bandwidth W, the length of the channel expressed in number of samples per channel is W, i.e., is a W vector.

  (c) vs. (d) show the distributions of the coupling coefficient , , in case of estimation error with per sample variance

  (3.51) and (3.49) becomes: E R being equal to either or in eqs. (3.51) and (3.49), respectively. In general, given two independent r.vs. and and their product , it results

Figure 3

 3 Figure 3.10 shows distributions , , , and , that correspond to c.fs. , , , and defined above, for different values of and SNR N , and fixed value of load . Figures 3.10(a) and (b) show a noise-limited scenario, where SNRdB, without and with estimation errors, respectively: simulations show that the interference-plus-noise variable is not significantly affected by estimation errors (c.f. and curves), although , as well as ,

  Figure 3.10 shows distributions , , , and , that correspond to c.fs. , , , and defined above, for different values of and SNR N , and fixed value of load . Figures 3.10(a) and (b) show a noise-limited scenario, where SNRdB, without and with estimation errors, respectively: simulations show that the interference-plus-noise variable is not significantly affected by estimation errors (c.f. and curves), although , as well as ,

Figure 3 . 11 :

 311 Figure 3.11: Spectral efficiency R (solid curve) and lower bound assuming Gaussian interference (dashed curve) vs. SNR N (dB) for di erent values of load and error variance . Impulsiveness index is fixed to i in Figs. from (a) to (d), and to i in Figs. (e) and (f).

  (a) and (b)

E

  where the expectation is over . The corresponding spectral efficiency lower bound is R i (c.f. eq. (3.34)).Results are shown on Fig. 3.11, where R (solid curve) and R (dashed curve) are presented as a function of N , for different values of and . The receiver structure shows a mutual information floor at high SNR. By comparing Figs. 3.11 (a) and (b), one observes that R increases sublinearly as increases, while by comparing Figs. 3.11 (a) and (c), or Figs. 3.11 (b) and (d), a reduction in spectral efficiency due to the presence of an estimation error is observed. R scales with i as shown on Figs. 3.11 (e) and (f).

  in paretheses, namely DL , accounts for the data transmission fraction of time, and

FIG. 1 :

 1 FIG.1: System model: MISO-TR. Nt antennas are fed by Nt time reversal prefilters, each of which is matched to the corresponding multipath channel. A correlation receiver is adopted in order to estimate the transmitted symbol. Partial TR and Rake can be used in order to reduce complexity of the transceiver.

Figure 4 . 1 :

 41 Figure 4.1: System model: MISO TR.antennas are fed by time reversal prefilters, each of which is matched to the corresponding multipath channel. A correlation receiver is adopted in order to estimate the transmitted symbol. Partial TR and Rake can be used in order to reduce complexity of the transceiver.

  Note that, in the SISO case, this reduces to the well-known result SNR N .

  Energy collected by a -Rake.

Figure 4 . 2 :

 42 Figure 4.2: Energy collected with two di erent receivers normalized to the average energy collected without time reversal, with single antenna, as a function of the number of taps of precoder.

Figure 4 . 3 :

 43 Figure 4.3: Fractional energy: time reversal

1 Figure 5 . 3 :

 153 Figure 5.3: System model (discrete-time): represents the symbol to be transmitted, R the prefilter sampled impulse response, the transmitted signal, R the linear convolution channel matrix, the received signal with useful component and AWGN R , and R the correlator.

  Received signal: amplitude spectrum.

Figure 5 . 4 :

 54 Figure 5.4: Example of (a) prefilter impulse response, and transmit and received signals (b)-(d) with a fixed channel realization drawn from the IEEE 802.15.3a standard.

1 Figure 5 . 5 :

 155 Figure 5.5: Prefilter impulse responses optimized with respect to the number of fingers ofRake receivers. The impulse responses are obtained by maximizing numerically the SNR at the receiver. This is an empirical study, since there is no proof that each of these impulse responses actually maximize the SNR, but the prefilter optimized for the All-Rake receiver matches the theory.

Figures 5. 4

 4 

  (a)-(d) showed the behavior in time and frequency of different prefilters. It is shown that the optimum prefilter focuses the energy in a neighbourhood of the frequency corresponding to the maximum channel gain (see Fig. 5.4(d)). A drawback is the spreading in time of both the impulse response of this filter (see Fig. 5.4(a)) and the received signal (see Fig. 5.4(b)

  Proof of Lemma 3: Channel Process Intensity Function.

  variation of the Normal r.v. associated with the ray fading, is the conversion factor from dB to Np, thus[dB] [Np].

C

  previous expression becomes E C whose expectation can be solved also recurring to the Campbell's formula, this time with C, see Section 5.5:We then arrive at the final expression of the expectation: required formulas to compute the ratio.157CHAPTER 6

Slots 1 2 KFigure 6 . 1 :

 261 Figure 6.1: Abstract setting: a resource composed on parts (slots) is randomly accessed by users. Each user assigns to the accessed slot a numerical value (label), randomly and independently from other users.

Figure 6 . 2 :

 62 Figure 6.2: Two simple lattice walks are shown. In the two cases,, and therefore the walk length is , and steps are , as shown in the box at the north-east corner. Both walks start from and end at : the darker corresponds to the sequence , while the lighter corresponds to .

Figure 6 . 3 :

 63 Figure 6.3: Theoretical envelope (red dashed line) vs. simulated histogram (filled circles) of for (subfig. (a)) and (subfig. (b)). A Gaussian PDF with same mean and variance is shown for reference.

Figure 6 .

 6 Figure 6.3 shows simulations (filled circles at integer values) vs. theoretical envelope , R (red solid line) of , for (Fig. 6.3(a)) and (Fig. 6.3(b)). Simulated values are drawn from Monte-Carlo simulations of finite dimensional systems with. A Gaussian r.v. with same mean and variance (black dashed line) is reported for reference. As hinted by figures, the envelope of the distribution is increasingly Gaussian as increases. In particular,

  Examples of the impulsive concept are: impulse-radio signals, that is, wireless signals occurring within short intervals of time; optical signals conveyed by photons; speech signals represented by sound pressure variations; pulse-position modulated electrical signals; a sequence of arrival/departure events in a queue; neural spike trains in the brain. Understanding impulsive communications requires to identify what is peculiar to this transmission paradigm, i.e., different from traditional continuous communications.

	.
	Synopsis
	A communication is impulsive whenever the information-bearing signal is burst-
	like in time.
	Bibliography
	xi

6 Closed Form Asymptotic Expression of a Random-Access Interference Measure 6.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.2 Main Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.3 Future work and Conclusion . . . . . . . . . . . . . . . . . . . . . . . Appendices 6.A Basics on Analytic Combinatorics of Lattice Paths . . . . . . . . . . 7 Conclusion and Future works 7.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.2 Future works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

  Spectral efficiency C sumf vs. mutual information I sumf as a function of for fixed

	3.5	C sumf vs. I sumf (b/s/Hz) C sumf vs. I sumf Corth 6 (b/s/Hz) I sumf TH ? I sumf TH C sumf 5		No spreading	Corth/ns I sumf TH ?
	3						I sumf TH
	2 2.5	3 4	O rt ho go na l	Ns = 1	Ns = 1	C sumf
		2				
	1 1.5	1	Ns = 2		Ns = 2	Ns/N ! ↵ 2 (0, 1]
				1		2	3	4	5	6
	0.5 Figure 1.8: 0 line, and represent the worst performance on figure. Dashed lines correponds to dB. DS and TH with s are shown in red solid E b /N 0 (dB)
	1.6	2 either TH knowing (large dashing) or TH where decoders know the spreading 4 6 8 10 12 14 16 18 20 22 24 26 28
	Figure 1.7: Spectral efficiency C sumf vs. sequence of the user to decode only (small dashing). Orthogonal access is I sumf (b/s/Hz) as a function of 0 (dB) with load . Closed form expressions of spectral efficiency vs. mutual reported for reference (gray solid line).
		information are plotted in solid vs.	dashed lines. Simulated mutual
		information is represented by dotted lines. On figure: SUMF, TH-CDMA,
		s	, s	and s		, blue dashed lines; SUMF, TH-CDMA , s	,
		blue dashed line; DS-CDMA, red solid line; TH-CDMA with s	when
			, blue solid line, coinciding with red solid line; TH-CDMA with s
		and s	, blue dotted lines. Note on figure the crossover of SUMF, TH-
		CDMA, s	and SUMF, TH-CDMA , s	, that shows an example of
		mutual information becoming greater than conditional mutual information.
		For reference, orthogonal multiple-access in gray line.
	Theorem 7. Suppose that	R	is a time-hopping matrix with s	,
		, and that the receiver is a bank of single-user matched filters followed
	by independent decoders knowing cross-correlations and input distributions of
	interfering users. Capacity sumf	b	b	of the single-user
	channel of eq. (1.33), expressed in bits per user per channel use, converges
	almost surely to:			
		sumf			b	b	a.s.	(1.46)
	irrespective of .			
	Proof. See Appendix 1.H.	

  To this end, note that the generic element of can be written in terms of matrices:

	block-diagonal structure:			
			. . .	. . .	. . .	. . .	(1.70)
	Therefore, is:				
			T		
			T		T
	We may express	in terms of chip-matched filter output sampled at epoch
			R		
	as defined in eq. (1.67). Note that			is Toeplitz and only depends
	on difference	rather than on	and	. Therefore, denoting by
	the block matrix obtained by grouping the		blocks
	, that is:				
				T	
	it results that	is block-Toeplitz. Finally, consider the matrix obtained by
	grouping the	blocks	as follows:	
	T , with is a block-diagonal matrix with the generic th diagonal block has the following

s for user and symbol .

  103), one can write the CF of each term as:Lower bound. It is easy to show via variational calculus that the solution of the following problem:

	Upper bound. Apply the elementary inequality x and, by direct computations, it follows that:	x	x	x	x	x
	x	x with x	and x	, aptly generalized to a denumerable number of
	summands, to the entropy of , that is:		
					w CN			w CN
			C				
					w CN		w CN
			C				
				w	w	w	CN		P	G
	E constant in , while G where CN	CN , that is a weighted sum of entropies , irrespective of s s CN	; P	is ,
	may depend on via	.			
	and, therefore, the CF of in the LSL is:	
						s	s		s	s	s
	which is the CF of:			R		is	, this result
	s being a generalization of the Gibbs' inequality to continuous functions. We can s CN s apply the above result for CN , from which is bounded from
	below as follows:					
	Therefore,	and	are distributed as:	
			w	C	CN	s	s CN	w CN	s	(1.105)
	and:							
					s	s CN		s	G	P	(1.106) , and
	Mutual information can be obtained as since P is constant in , one has:			.
								G	(1.107)
	provided that the limit on the LHS does exist. By specifying upper and lower 1.G Proof of Eq. (1.43) bounds to Poisson weights, w , and equal to either or as
	TH The goal is to find the quantity sumf given by eqs. (1.41) and (1.42), respectively, it results:	, where (nats/s/Hz) is
	given in Theorem 6. Assuming that a limit does exist, we will upper and lower bound with bounds having the same first derivative as . Here sumf TH
	is a generic linear combination of Gaussian distributions with possibly different moments and weighted by a real sequence w , that is, G G (1.108)
						w CN	

R s.t. R for sufficiently well-behaved functions w CN G Bounds. From above bounds, it follows that G G (1.109) G (1.110) hence sumf TH .

1 .

 1 Downlink Channel Training: the BS broadcasts a training sequence of length i samples, known by the set of UTs, followed by a zero-padding sequence of i samples (idle period), that allows each UT to receive the training sequence smeared by the channel; each UT estimates the channel based on the received samples and the knowledge of the transmitted training sequence, as further detailed in the remaining part of this section. This training sequence may be also used for network synchronization at symbol level.During the downlink training, the BS broadcasts its training sequence to the UTs. With reference to model of Section 3.1, and in particular to eq. (3.9) and impulsiveness index i , the received signal at UT is:

		Broadcast	0	BS				Time
		Uplink 1			Pre 1	Data 1	Post 1
		Uplink 2 . . .			Pre 2 . . .	Data 2 . . .	Post 2 . . .
		Uplink K			Pre K	Data K	Post K
	3. Data Transmission: each UT sends block, corresponding to d i i samples; information-bearing symbols of a
							i	(3.22)
	where i is the i	is the i Toeplitz channel matrix, i i vector of received samples, is the training sequence, is the i training sequence accounting for impulsiveness, and is the i i white Gaussian noise vector.
	Eq. (3.22) can be rewritten as follows:	
								(3.23)
	where now vector.	is a		i	i	i Toeplitz matrix and	is the i	channel

2. Uplink Channel Training: each UT transmits a training sequence of length

i samples, known by the BS, followed by a zero-padding sequence of length i samples; these training sequences are assumed pseudo-noise (PN) sequences rather than orthogonal given that each UT chooses its sequence independently from the others. The BS estimates channels through the observation of the superposition of training sequences, that have been distorted by respective channels.

4. Idle: each UT sends a zero-padded postamble of duration i samples.

  but -th element equal to . Note that b is equal to b of eq. (4.2), therefore hereinafter we will denote it with b. Power constraint is expressed as

	T T T , where	is	and	is	. Since	, we can neglect .
	Prefiltering can be accounted by a	matrix as follows:
								Therefore,
	called	s W, previous relation can be written as follows:
					b		W
	where b	b	for	, and b	when is not a multiple of .
	Since one symbol only is considered, the channel model is as follows:
					b		W
	At receiver, projecting this signal onto		W	Z yields the following
	discrete-time channel:				
					Z		
	where	b ,	Z is a set of i.i.d. Gaussian random variables with
	variance N , and					
					W R		W
	Typically, most of the energy is included in the first paths, say	. Without
	loss of generality,		since	can be made as large as needed. Since
	for	and		, then			
	and this relation can be written in vector form as follows:
	where	is a			Toeplitz matrix with first column equal to
				T ,	and	. One-shot communication
	implies that	b	, therefore	b	, where	is the	vector with
	all zero entries E A	.				
	Note that we can consider as the concatenation of two vectors, and , such
	that	T T T , where is	and is	. Similarly,	T T T and

Table 4 . 1 :

 41 Parameters used in simulations.

	Channel Model	IEEE 802.15.3a-CH1
	Pulse	Scholtz,	ps
	Antenna distance ( )	m	
	Angle spread ( )		

In this subsection, we drop the superscript "opt" for ease of notation.
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(1. [START_REF] Ferrante | Spectral efficiency of random timehopping CDMA[END_REF] where sums in eq. (1.96) and in eq. (1.97) are over indeces such that and , respectively. Suppose that . Hence:

where, akin to the previous section, and are the number of parts of a partition of and , respectively. Therefore, for disjoint subsets of indeces, eq. (1.96) reduces to: [START_REF]Basic analytic combinatorics of directed lattice paths[END_REF] which remains finite in the LSL. Suppose now that:

In this case, at least for one it happens that , and therefore there is only one long chain of equalities in eq. (1.95), i.e.,

P

where there are at most different RVs. Hence, for any fixed partition of into parts, the above probability is , and we can assign to each part a (different) value in in ways, similarly as in the previous section. Therefore, each part accounts for , and since the number of partitions remains finite, the overall sum in eq. (1.97) is .

Since eq. (1.99) is equal to E up to an term, we have in the LSL.

1.C Relationship between Rank and high-SNR slope

From the definition of ESD, one has:

the parameters specified in the channel model. The latter can be investigated by specifying a prefilter that is proportional to , that encompasses both transmit zero-forcing and transmit MMSE, for particular values of .

The setting used in this chapter, therefore, may serve towards a deeper understanding of prefiltering effects beyond the transmit matched-filter case in multipath channels. and decision on is made based on the sign of , hence:

The exact symbol error probability is (see eqs. (3.41) and (3.39)):

where the dependence on and (see eq. (3.42)) is explicited in f . Figure 3.6 shows vs.

N for different values of and , and compares the symbol error rate obtained through Monte-Carlo simulations (points with error bars on figure) with the analytical expression of (solid lines) given by eq. (3.43). Observe that, as expected, increased accuracy of the estimation yields to decreased floor . Furthermore, for fixed and N , increased yields to increased : increasing by a factor of two implies a loss of approximately dB for floor (see N dB on figure), while the floor does not depend on , hence same performance is reached for high SNR irrespective of the bandwidth.

Multiuser

In the multiuser setting, although the expression for the probability of error remains as in eq. (3.35), there are three sources of errors: thermal noise, imperfect CSI, and multiuser interference (MUI). In particular, as N increases, the last two factors both lead to a probability error floor, i.e., floor as N , being the load of the system.

Figures 3.7 and 3.8 show the probability of error vs. N (dB) for systems with i vs. i , respectively, and for different values of and , . In particular, in both figures, the left-hand side plot (Fig. 3.7a and 3.8a) refers to TR, while the r.h.s. plot (Fig. , AR is shown to outperform TR when imperfect CSI is the main cause of error, and vice versa when the load is the main cause of error: compare, for example, the two cases and . A similar behavior can be observed with impulsive systems (Fig. 3.8) with even more emphasis. Figure 3 An orthogonal transformation on greatly simplifies the expression of . We can think of as the -tuple of coordinates of a vector in R with respect to the canonical basis . A different orthonormal basis such that only the first coordinate of the vector is non-zero can be found, for example via the Gram-Schmidt orthogonalization. By denoting with the coordinates of the vector with respect to , it results

T

. For convenience, we choose the first vector of as , hence .

Call the matrix that changes coordinates from to ; then . It is a well-known result that , that is the matrix that changes coordinates of vectors between two orthogonal bases, is an orthogonal matrix, i.e., T . As a consequence, is also an isometry, that is, vectors transformed under the action of do not change their norm: .

We can rewrite as follows: 

Introduction

Communications over frequency-selective channels benefit from pre-equalization of transmitted waveforms. The optimum receiver in absence of interference is the Rake receiver, but its complexity grows with the required number of fingersthat is ideally equal to the number of paths-and the performance gain provided by adding a new finger is always below a prediction based on a linear improvement. Furthermore, prefiltering optimality is conditioned on the structure of the receiver. Therefore, much work [START_REF] Palomar | MIMO transceiver design via majorization theory[END_REF] has focused on finding sub-optimal receiver and transceiver joint optimum design.

When the receiver is constrained to one finger only, time reversal is the optimum prefilter (see Appendix 5.A for a simple proof). We compare the design composed of time reversal and 1-Rake with the joint optimum transceiver, assuming an 802.15.3a channel model. The channel is described as a doubly stochastic one-dimensional point process, that is a simplification of previous works on the topic [START_REF] Jakobsen | Analysis of the stochastic channel model by saleh & valenzuela via the theory of point processes[END_REF][START_REF] Gubner | A computable formula for the average bit error probability as a function of window size for the ieee 802.15.3a uwb channel model[END_REF][START_REF] Hao | The distribution of sums of path gains in the ieee 802.15.3a uwb channel model[END_REF]. We find the average prefiltering gain brought by time reversal, and compare it with the maximum gain reached with the optimum prefilter. Driven by the underlying motivation of simplifying the receiver, we compute the minimum number of fingers required by the Rake receiver to guarantee an average performance improvement with respect to time reversal.

The chapter is organized as follows: Section 5.2 is devoted to the description of the system model; Sections 5.3 and 5.4 present time reversal vs. Optimum Prefilter theoretical performance; Section 5.5 introduces the channel model and analyzes the performance of time reversal for this specific case. Finally, simulation results and conclusions are presented in Section 5.6. For clarity of presentation, complex analytical derivations and descriptions are included in Appendices. In particular, Appendix 5.A provides a proof of the optimality of time reversal when the receiver is constrained to one finger only. Appendix 5.B contains the derivation of an expression for the time reversal prefiltering gain. In Appendix 5.C and 5.D we describe the point process model of the channel and in Appendix 5.E we specialize the time reversal prefiltering gain to this channel family. 

The statistical properties of the channel amplitudes

N are described in [START_REF] Foerster | Channel modeling sub-committee report final[END_REF]. We recall them in Appendix 5.D and use them in Appendix 5.E in order to find the following result: This appendix aims at providing a quick proof of the optimality of time reversal when the receiver is constrained to one finger only. The problem can be stated in continuous-time as follows: Given the channel impulse response (CIR) , find the function solution of the problem:

We can constrain w.l.o.g. the solution to provide the maximum at ; the problem becomes

R

Defining

, the last integral is the inner product and the solution derives from the Cauchy-Schwarz inequality:

, that implies , that is, time reversal.

5.B Proof of Time Reversal Gain.

The received useful signal is as follows:

The assumption (a3) implies that with and , one has ; therefore, almost surely, all previous are located at different times. The energy of considering only the firsts paths tends

5.D Statistical Description of IEEE 802.15.3a Channel Path Amplitudes

Let us summarize the statistical properties of the channel amplitudes proposed in [START_REF] Foerster | Channel modeling sub-committee report final[END_REF] as the following three constraints:

(c1) exponential decay: E being and the intra-cluster and cluster decay factors, respectively;

(c2) independent cluster fading: each cluster is affected by a Log-Normal fading (cluster fading) independently from other clusters, that is, the paths within the th cluster, say N , are scaled by (the same) log-normal r.v. statistically independent from ;

(c3) independent ray fading: each path is affected by a Log-Normal fading (ray fading) independently from other paths, that is, the generic path is scaled by a r.v.

statistically independent from Remark 8. The generic , C, R can be viewed as the mark of the point located in .

In line with [START_REF] Foerster | Channel modeling sub-committee report final[END_REF], the generic channel amplitude can be decomposed as follows:

where D takes into account the path sign due to reflections and and follows from the natural extension of Remark 8 to and , respectively. We further decompose the term in a deterministic part, say , and a random part, say :

and call .

Remark 9. In this way and are i.i.d. while dealing with leads just to independence. Furthermore, if we were dealing with , we would only have conditional independence of with respect to , that is, the amplitudes are indepedent only once conditioned to the cluster. Constraints (c1)-(c3) uniquely define the channel process. Nevertheless, it remains a freedom in the formal description and we use it to slightly simplify the analytical formulation found in [START_REF] Foerster | Channel modeling sub-committee report final[END_REF]. We recap the latter in A and propose the former in B . Hereinafter, we use the following notation: stands for a Normal process such that D , is the standard variation of the Normal r.v. associated with the cluster fading, , and , both and are distributed according to a Poisson distribution with mean . Example 2. This example may describe demodulation of direct-sequence spreadspectrum (DSSS) signals with a single-user matched filter bank. Assume that resource is time, that is slotted in chips of duration , and supports transmission of synchronous random DSSS signals [START_REF] Verdù | Spectral efficiency of CDMA with random spreading[END_REF]. Let the received signal be (6.2) where is the number of users, is the set of unit energy transmitted spreading waveforms, is the set of transmitted antipodal symbols, and is a white Gaussian noise process with power spectrum N . Direct-sequence implies , where are i.i.d. r.v.s assuming values in with equal probability (see e.g. [START_REF] Verdù | Spectral efficiency of CDMA with random spreading[END_REF]). In this scenario, , , , , and is the signal interfering with that of user , within chip , at the output of a chip-matched filter. The goal is to find the distribution of , that can be used, for example, in order to find the capacity of the system. In the large-system limit, is Gaussian distributed with zero mean and unit variance. Generally, a Lindeberg condition suggests that if a fixed fraction, however small, of degrees of freedom is "uniformly" used, then is Gaussian distributed; otherwise, if few degrees of freedom are used in the large-system limit, e.g. a finite number, then the asymptotic distribution may be not Gaussian, as is usually the case. Example 3. This example may describe demodulation of binary PPM time-hopping spread-spectrum (THSS) signals with a single-user matched filter bank, where interference is at physical rather than medium access layer compared to Example 1, and can only be constructive. Assume that resource is time, that is divided in chips of duration , and supports transmission of synchronous binary PPM THSS signals (see e.g. [START_REF] Giancola | A novel approach for estimating multiuser interference in impulse radio UWB networks: The pulse collision model[END_REF]). Let the received signal be (6.3) where is the number of users, is uniformly distributed over assuming an integer, is the set of binary transmitted symbols, and, for the sake of simplicity, is a zero-excess bandwidth waveform with band , and . In this model, there are slots of duration , , , and may be regarded as the interference of the output of a filter slot-matched to slot . In the large-system limit, is distributed according to a Poisson distribution with mean , as in the first example.

Example 4. Example 4 is similar to Example 2, except for the random spreading sequences that now belong to the time-hopping family (see e.g. [START_REF] Ferrante | Spectral efficiency of random timehopping CDMA[END_REF][START_REF] Fiorina | On the asymptotic distribution of the correlation receiver output for time-hopped uwb signals[END_REF]), i.e., for any fixed , , with equal probability, for only one chip . In this case, is the interference, to which contribute both constructive and distructive terms for , at the output of a filter chip-matched to chip , , and . Moreover, is the interference at the output of the single-user matched filter of user . The distribution of is unknown, and can be found thanks to the result presented in this chapter.

As hinted by Example 4, this chapter finds, in the large-system limit, the closed form distribution of: (6.4) The chapter is organized as follows: in Section 6.2 the main result is presented and proved; essential analytic combinatorics are recapped in Appendix 6.A. Conclusions are drawn in Section 6.3.

Main Result

Theorem 9. Let be the number of slots of a resource, that is shared by users. The generic user selects one slot only , and assigns to this slot a label that is a r.v. taking value in with equal probability. Then, , as defined in eq. (6.4), is distributed in the large-system limit, that is, for , ,

irrespective of , where is the modified Bessel function of the first kind.

Proof. We provide two proofs. The first proof is probabilistic: is regarded as a r.v. and the pdf of is derived straightforwardly via algebraic manipulations. The second proof is based on results of analytic combinatorics: the probability P is derived by considering all the ways, and the associated probability, a particular value of can be obtained; the law of large numbers guarantees that the so obtained result holds with probability one in the large-system limit.

First Proof.

For fixed , is the sum of i.i.d. random variables , each of which is distributed according to: (6.6)

Denoting by

, one has:

the probability each that sequence appears be: (6.7)

Sequence can be regarded as an unconstrained, simple walk of length in the lattice Z Z (refer to Appendix 6.A for definitions and theorems of analytic combinatorics that are used in this chapter). Figure 6.2 shows two such walks with possible steps, , where notation for simple walks is adopted. Associated with these steps are weights and (see box at north-east corner of Fig. 6.2) such that the characteristic polynomial of is: Thanks to weights, the probability a particular point in Z Z is reached can be computed. In order to find P , summation in eq. (6.7) is over walks starting from and ending at , and the probability within the sum is that associated to each walk, that is the product of probabilities associated to steps composing the walk. The generating function of these walks is: the coefficient giving the probability to reach :

In the large-system limit, the quantity in brackets converges to: with . In order to find and therefore , Cauchy's integral formula can be used as follows:

Therefore, assumes the integer value with probability , hence the theorem.

Appendix

6.A Basics on Analytic Combinatorics of Lattice Paths

We refer mostly to the seminal work of Banderier and Flajolet [START_REF]Basic analytic combinatorics of directed lattice paths[END_REF].

Definition 4 (Lattice Path or Walk ). A lattice path (or walk) is a sequence where is the length of the path and Z Z

is the set of steps. A path is:

simple if (in this case the set of steps is written as );

We can assign a weight to each allowed step, that is R. The following definition is the starting point of the analytic approach:

Definition 5 (Characteristic Polynomial). Let be the set of steps of a simple walk and the weight associated to . The characteristic polynomial of is:

The ending point of a walk is that, for simple walks, assumes the form , where is called final altitude. Denote by the class of walks with length and final altitude , and let .

Definition 6 (Generating Function). The generating function of is defined as: where C is a mark for the length and C is a mark for the final altitude.

The following theorem links with :

Theorem 10. The generating function of a simple walk is: