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Abstract

The performance of wireless communication systems is largely governed by the wireless
channel environment. Usually, transmission that are carried out on mobile radio channel
are selective in time and frequency. To overcome the channel selectivity and allow high
transmission data rate, new approaches for synchronization, equalization and channel
estimation are needed.

The use of Support Vector Machines (SVMs) has shown several advantages in re-
gression, prediction and estimation over some of the classical approaches due to its
improved generalization capabilities. Moreover, the introduction of complex algebra in
the SVM formulation can provide us with a more natural and flexible framework when
dealing with complex symbols and constellations.

The current thesis work focuses on the study and development of efficient channel
estimation algorithms based on complex Support Vector Machines Regression (SVR)
that are specifically adapted to pilot-aided OFDM (Orthogonal Frequency Division Mul-
tiplexing) structure and applied to Long Term Evolution (LTE) downlink system. The
mathematical model of the LTE mobile radio channel is described and simulated for
various scenarios based on 3GPP specifications. According to this model, a nonlinear
complex SVR is proposed for SISO-OFDM system. The principle of the proposed kernel-
based learning algorithm is to exploit the information provided by the reference signals
to estimate the channel frequency response. The proposed approach is based on two
separate phases: learning phase and estimation phase. In learning phase, we estimate
first the subchannels pilot symbols and in estimation phase, frequency responses of data
subchannels are determined by means of SVM interpolation mechanism. In addition,
a nonlinear complex Multiple Support Vector Machines Regression (M-SVR) algorithm
adapted to MIMO (Multiple Input Multiple Output) architecture is proposed to esti-
mate the multipath fading channel in MIMO-OFDM system with both STBC (Space
Time Bloc Coding) and V-BLAST (Vertical Bell Laboratories layered Space Time)
schemes.

The feasibility of our approaches is confirmed by computer simulation results achieved
for LTE downlink model. This experiments allow to analyze the performance of the SVR
technique and the suitability of the ε-Huber cost function in the mobile radio multipath
fading channel presenting non-Gaussian impulsive noise interfering with OFDM refer-
ence symbols under high mobility conditions.

Keywords: SVM, Nonlinear complex SVR, kernels, OFDM, MIMO, LTE.
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Résumé

La performance des systèmes de communication sans fils dépend largement des car-
actéristiques du canal radio mobile. Généralement, la plupart des transmissions sont
réalisés sur des canaux sans fils sélectifs en temps et en fréquence. Afin de surmonter la
sélectivité du canal et permettre un débit de transmission de données élevé, de nouvelles
approches pour la synchronisation, l’égalisation et l’estimation de canaux sont néces-
saires. L’utilisation des machines à vecteur support (SVM) a montré plusieurs avantages
dans les domaines de régression, estimation et prédiction par rapport à certaines ap-
proches classiques grâce à ses capacités de généralisation. En outre, l’introduction de
l’algèbre complexe dans la formulation des SVMs a fourni un cadre plus souple et naturel
lorsqu’on traite des constellations et symboles complexes.

Les travaux de recherche introduits dans cette thèse portent sur l’étude et le développe-
ment des algorithmes d’estimation de canal efficaces et robustes basés sur les machines
à vecteur support pour la régression (SVR) particulièrement adaptés à la structure
OFDM (Orthogonal Frequency Division Multiplexing) avec des symboles pilotes. Ces
algorithmes seront ensuite appliqués à un système LTE (Long Term Evolution). Le
modèle mathématique du canal radio mobile LTE est décrit et simulé pour différents
scénarios basés sur les spécifications 3GPP. Selon ce modèle, l’estimateur SVR non
linéaire complexe est proposé pour le système SISO-OFDM. Le principe de cet al-
gorithme d’apprentissage basé sur les fonctions noyaux est d’exploiter les informa-
tions fournies par les symboles pilotes pour estimer la réponse fréquentielle du canal.
L’approche proposée repose sur deux phases distinctes: la phase d’apprentissage et la
phase d’estimation. Dans la phase d’apprentissage, nous estimons d’abord les sous-
canaux des symboles pilotes, puis dans la phase d’estimation, les réponses fréquentielles
des sous-canaux de données seront déterminées par le mécanisme d’interpolation SVM.
En outre, un algorithme non linéaire complexe basé sur les machines à vecteur support
pour la régression multiple (M-SVR ) adapté à l’architecture MIMO (Multiple Input
Multiple Output) est proposé pour estimer le canal dans les systèmes MIMO-OFDM
exploitant les techniques STBC (Space Time Bloc Coding) et V-BLAST (Vertical Bell
Laboratories layered Space Time). La faisabilité de nos approches est assistée par
des résultats de simulation obtenus pour le modèle LTE. Ces expériences permettent
d’analyser les performances de la technique SVR et la pertinence de la fonction coût
ε-Huber dans un canal radio mobile à trajets multiples présentant un bruit impulsionnel
non-Gaussian interférant avec les symboles pilots sous des conditions de haute mobilité.
Mots-clés: SVM, SVR non linéaire complexe, fonctions noyaux, OFDM, MIMO, LTE.
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Introduction

Wireless communications have evolved very speedily. The rapid growth in the devel-
opment of wireless standards and different global technologies, the demand on the new
better quality, high data rates as well as lower cost services are the major motivations
for the evolution in the wireless communications.

The presence of interference, fading and mobility makes the design of wireless com-
munication systems challenging. The appropriate design focusing on the reliability of the
connection needs to mitigate fading and multipath effects. Modern wireless system de-
sign focus on the spectral efficiency gain from the rich multipath environment by means
of utilizing spatial diversity through the Multiple-Input Multiple-Output (MIMO) com-
munication systems. While high spectral efficiency can be obtained through spatial
multiplexing, many other MIMO system benefits such as improved signal coverage and
quality can be achieved via space time coding.

Multicarrier modulation such as Orthogonal Frequency Division Multiplexing (OFDM)
is at present the most famous technology for spectrum efficient transmission, since it is
enhancing system capacity and mitigating intersymbol interference (ISI). Furthermore,
it facilitates using simple equalization.

By combining MIMO system with OFDM technique, we can satisfy the desired
system requirements such as high peak data rates, high spectral efficiency as well as
reliable transmission. Multicarrier wireless transmission has been already standardized
in 3GPP Long Term Evolution (LTE) which is the key transmission technology for the
future 4G wireless communication networks. By implementing this new technique in
the context of mobile broadband transmission, new approaches for time and frequency
synchronization, channel estimation and equalization are required.

This thesis work focuses on the study and development of new efficient mobile radio
channel estimation technique based on Support Vector Machines Regression (SVR)
applied to LTE systems.

In carried out literature, there has been an important activity in the theoretical
development and applications of Support Vector Machines (SVMs) since 1990s [1, 2, 3,
4, 5]. The theory of SVMs is based on the combination of statistical learning theory,
optimization theory, kernel theory and algorithmic. So far, machine learning has largely
been affected to solving problems relating to data mining [6], biomedical problems [7],
biophysical parameters estimation [8, 9], hyperspectral remote sensing images [10, 11,
12, 13, 14, 15, 16, 17], text categorization [18], magnetic resonance imaging [19, 20],
time series processing [21, 22, 23], speech recognition [24, 25], linear signal processing
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[26] and image processing [27, 28, 29, 30, 31, 32, 33].
Recently, support vector machines have successfully been applied to wireless com-

munication problems [34, 35, 36], notably channel equalization [37], spread spectrum
receiver design [38, 39, 40], adaptive modulation and coding [41, 42, 43] and direction
of arrival estimation [44]. The learning abilities of support vectors can also be applied
to solve complex optimization problems in electromagnetics in the area of microwave,
radars and antennas [45].

To the best of our knowledge, nonlinear complex support vector machines regression
(SVR) using kernel functions in the Reproducing Kernel Hilbert Space (RKHS) has
not been studied yet in OFDM systems with comb-type pilot structure for fast fading
channel. In addition, there is no existing work that deals with the channel estimation
for real LTE downlink system using nonlinear complex SVR.

The aim of our work is to introduce the subject of complex SVR in its nonlinear
form and then to show how it can be applied to LTE channel estimation in SISO-OFDM
and MIMO-OFDM systems with the presence of nonlinear impulsive noise under high
mobility conditions.

The outline of the thesis are as follows:
In the first chapter, we provide a historical overview on support vector machines.

We also present the theories for which SVMs are based on, such that linear learning
theory, generalization theory, optimization theory and kernel theory. Then, we give a
comparison between SVMs and neural networks and precisely we outline the particular
advantages of SVMs.

The second chapter is devoted to the study of support vector machines. In fact,
SVMs are a system for efficiently training the linear learning machines in the kernel-
induced feature space, while respecting the theory of generalization and statistical learn-
ing and exploiting the optimization theory. The linear support vector machines for
classification and regression are described in details. The kernel functions necessary to
project the nonlinear data in the original space into a high dimensional space where
the data become represented linearly are also presented. Finally, the nonlinear support
vector machines for classification and regression based on these kernel functions are
described.

In the third chapter, multipath propagation characteristics of mobile radio chan-
nel for LTE communication system are analyzed and investigated. A mathematical
framework of multipath Rayleigh channel is developed. An overview of the nonlinear
impulsive noise which can frequently occur in communication systems is also presented.
In order to evaluate the performance of the developed channel estimation techniques for
LTE system, the realized simulations are based on several propagation scenarios with
different mobile speed.

In the fourth chapter, we propose a complex robust support vector regression (SVR)
formulation particularly adopted to a pilot-based OFDM signal for SISO system in the
presence of nonlinear impulsive noise. The feasibility of this technique is validated by
computer simulation results obtained for LTE channel model. We also introduce some
traditional channel estimation techniques for performance evaluation purposes with the
nonlinear complex SVR-OFDM approach.
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The fifth chapter introduces an efficient nonlinear complex Multiple Support Vector
Machines Regression (M-SVR) approach to track the frequency selective time varying
multipath fading channel in mobile wireless MIMO-OFDM system with the presence
of Gaussian and non-Gaussian impulsive noise. The M-SVR estimation technique is
developed and applied to MIMO LTE downlink.
Different scenarios are simulated and discussed in the case of SIMO and MIMO systems
with both STBC and V-BLAST schemes.
Finally, a general conclusion and perspectives are drown.



Chapter 1

Preliminaries

1.1 Introduction

Classical regression and statistical techniques of Bayesian classification are based on
the strict assumption that the fundamental probability distribution must be known.
However, in real life, we are often faced with problems of regression or classification
with unknown distributions. The support vector machines (SVMs) are one of relatively
new and promising method to learn separating functions in the case of classification, or
to produce an estimation function in regression case. SVMs were derived from statis-
tical learning theory (SLT) by Vapnik in 1995 for "learning without data distribution
(distribution free )".

In this chapter, a historical overview on support vector machines was first described.
Since SVMs are based on different theories such as statistical learning theory, optimiza-
tion theory and kernel theory, it is therefore necessary to present these theories to
understand the SVMs technique. Thus, learning methodology and linear learning ma-
chine, statistical learning theory and optimization theory are presented. Finally, we
give a comparison between SVMs and neural networks and we outline the particular
advantages of SVMs.

1.2 Historical Overview

Vladimir Vapnik and Alexey Chervonenkis developed the theory of Vapnik - Chervo-
nenkis (also known as the VC theory) in 1971 [3]. VC theory is a learning theory related
to the statistical learning theory without data distribution. This was the starting point
for the support vector machines and the techniques of supervised learning for classifi-
cation and regression. Although Vapnik introduced the topics of linear classifiers and
optimum separating hyperplane in 1960, these subjects did not have that much attention
until the 1992, when Bernhard Boser, Isabelle Guyon and Vapnik showed how to create
nonlinear classifiers by applying kernel methods with maximum margin hyperplanes [3].
The kernel technique is a method of converting the linear classification algorithm into
a nonlinear classification one by means of nonlinear function that projects the origi-
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nal observations into a high dimension space, initially proposed by Aizerman in 1964
[3]. Thus, SVMs have been applied successfully in various applications of classification.
In 1996, Vapnik, Harris Drucker, Chris Burges, Linda Kaufman and Alex Smola have
proposed a version of SVMs for solving regression problems. This version is known by
support vector regression (SVR).

On the other hand, support vector machines include various theories such that VC
theory, statistical learning theory, optimization theory, kernel theory, etc. This is why
SVMs are particularly strong compared to other methods based on minimizing the
empirical risk such traditional neural networks.

1.3 Learning Methodology

The construction of a machine which is capable to learn from experience was the subject
of a philosophical and technical debate for a long time. The technical aspect received a
huge success with the arrival of electronic computers. They demonstrated that machines
can have a significant level of learning ability.
The availability of consistent learning systems has a strategic importance because there
are many tasks that can not be resolved by classical programming techniques, since no
mathematical model of the problem is available.

Next, we will present the major components of the learning methodology by giving
an overview of the supervised learning and linear learning machines.

1.3.1 Supervised learning

Use observations to synthesize programs is an approach known as learning methodol-
ogy. If these observations are pairs of input/output, then this approach will be called
supervised learning. These observations are called training data. When a fundamental
function linking inputs to outputs exists, then it is called target function. The solution
of the learning problem consists of estimating the target function which is learned by
the learning algorithm. In the case of classification, this function is designated by the
name of decision function.

The solution is selected from a set of candidate functions that map the input space
to the output domain. Generally, we use a particular set of candidate functions known
as hypotheses before we start learning the correct function. The choice of the set of
assumptions (hypothesis space) is the main ingredient of the learning strategy. The
algorithm that uses the training data as input to select a hypothesis in the hypothesis
space is the second important ingredient. It is called the learning algorithm.

If the outputs of a learning problem are binary, then the problem is a binary classi-
fication problem. The problem is called multi-classes classification problem for outputs
with a finite number of categories, while for the real-valued outputs the problem be-
comes known as regression problem.

The purpose of learning for the classification case consists of finding a hypothesis that
performs a correct data classification. Thus, learning algorithms have been designed to
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find an accurate data adaptation. Such hypothesis that provides a good adaptation is
called coherent.

Two problems lead not to generate a coherent hypothesis:

• The function to be learned can have a complex representation.

• Frequently, the training data are noisy, therefore there is no guarantee that there
is a fundamental function that adapts the training data correctly.

The ability of a hypothesis to correctly classify data outside the training set is known
as generalization. Indeed, this property that we aim to optimize. The generalization is
described in details in section 1.4.

1.3.2 Linear learning

In supervised learning, the learning machine is given by a set of training examples (or
inputs) associated with outputs. Generally, the examples have the form of attributed
vectors, so that the input space is a subset of Rn. Once the attributed vectors are
available, a number of hypotheses could be selected for the problem under consideration.
Linear functions are the best hypotheses to learn and the simplest to apply. Traditional
statistics and classical literature of neural networks have developed many methods to
distinguish between two classes of examples using linear functions. These techniques
include both iterative procedures and theoretical analysis of generalization properties.
That is why they provide the framework for building complex systems. We will refer
to learning machine using hypotheses that are linear combinations of input variables by
linear learning machines.

We will see that in most cases, these machines can be represented as a particularly
useful form called dual representation. In addition, the important concepts of margin
and margin distribution will be introduced in the next chapter with algorithms for
classification and regression.

1.4 Statistical Learning Theory

1.4.1 Generalization

The aim of modeling is to choose a model (function) from the hypothesis space, which
is the closest (with some degree of error) to the fundamental function in the objective
space. Thus, the learning machine can be formulated as a function f(x ) of the form
f : Rn 7−→ R that associates every input vector x to a scalar y. We assume that this
function is one among a set of parametric functions f(w , x ). We want to estimate the
parameter vector w to obtain the best estimation of the scalar y from the vector x .
We assume that the pairs {x , y} are given with probability distribution P(x , y). Thus,
we obtain the loss function L(f(w , x ), y) between the estimation f(w , x ) and the desired
output y. Practically, a common loss function is used, which is the quadratic loss
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function (squared loss). Our purpose is to find the function f that minimizes the mean
error risk given by [46]

R[f(w)] =

∫
X×Y

L(y, f(w , x ))P(x , y)dxdy. (1.1)

However, in practice P(x , y) is unknown. Nevertheless, it is possible to find an approxi-
mation which can be expressed by the average loss of all the learning pairs {x , y}. This
principle is often called Empirical Risk Minimization (ERM):

Remp[f ] =
1

l

l∑
i=1

L(yi, f(w i, x i)). (1.2)

The empirical risk minimization is effective if the number of samples tends to infinity,

lim
l→∞

Remp[f ] = R[f ]. (1.3)

For a small set of samples, the difference between the actual error risk and the empirical
risk can be large. However, the empirical risk must also satisfy:

lim
l→∞

min
f∈Hn

Remp[f ] = min
f∈Hn

R[f ]. (1.4)

This relationship is valid if Hn is small enough. This condition requires the convergence
of the minimum. The following limit is obtained with probability (1− δ) [46]:

R[f ] ≤ Remp[f ] +

√
h ln(2lh + 1)− ln( δ4)

l
. (1.5)

Note that this expression of risk is independent on the probability distribution.
As the actual risk can not be measured, the measurement of operating performance

for the learning network is determined by the measurement of the error of future data
outside the training set. This error is known by generalization error. This error can
sometimes be large, such as in the case where the size of the available training set is
very small compared to the size of the network parameters set.

In fact, the generalization error results from two types of error:

• The approximation error : is a consequence of the difference between the hypoth-
esis and the objective function. A bad choice of the hypothesis space results in a
large approximation error.

• The estimation error : is the error caused by the learning procedure, and results
from the technique that chooses an optimal hypothesis of the hypothesis space.

In practice, it has been shown that the direct minimization of learning error, for a
given training set obtained by using learning algorithm, does not necessarily imply the
minimization of the generalization error.
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In the literature of neural networks, this phenomenon is called overfitting [47]. An
intuitive method to reduce overfitting is to minimize the complexity of learning machine.
The rule is as follows: Choose the simplest possible function which expresses the data in
a satisfied manner. This is the classic rule of Occam razor [48].

Thus, the optimization of our learning machine (for the case of classification or
regression) implies the selection of a model that measures and minimizes the complexity
of the machine. If one chooses a machine as a classifier or as a regressor, then this
function will be able to adapt itself with the training data. Therefore it will reduce
the empirical error. But if the data used in learning does not represent the statistics
of the problem, then the solution will be bad. The solution which consists of reducing
the test error (or generalization error) consists really to reduce the machine complexity,
and therefore it will have less degree of freedom to express the solution. The problem of
reducing the complexity of learning machine is achieved by introducing a regularization
term in the function to be optimized. This term is used to penalize the complexity of
the machine [49]. The particular method that introduces the penalty of complexity is
given by the VC theory.

1.4.2 Dimension of Vapnik Chervonenkis (VC)

The VC dimension is a scalar value that measures the ability of a set of functions.

Definition 1.1 (Vapnik-Chervonenkis)
The VC dimension of a set of functions is equal to p if and only if there exists a set of
points

{
xi
}p
i=1

such that these points can be separated in all 2p possible configurations,
and there is no set

{
xi
}q
i=1

for q > p satisfying this property.�

1.4.3 Structural risk minimization (SRM)

Let Sh be a hypothesis space of VC dimension equal to h, then S1 ⊂ S2 ⊂ . . . S∞.
The SRM consists of solving the following problem:

min
Sh

Remp[f ] +

√
h ln(2lh + 1)− ln( δ4)

l
. (1.6)

Problems with multiple outputs can be reduced to a set of problems with a single output
that can be considered independently. Therefore, it is appropriate to consider processes
with multiple entries for which we wish provide a single output.

1.5 Optimization Theory

The function hypothesis must be chosen in order to minimize (or maximize) a certain
criterion. In the case where learning machine is linear, the problem amounts to search a
vector of parameters that minimizes (or maximizes) some cost function typically under
some constraints.
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Optimization theory is the branch of mathematics concerned with the characteri-
zation of solutions of some of these problem classes and develop efficient algorithms to
search solutions. Indeed, the problem of learning machine is formulated into a form
that can be analyzed within the framework of optimization theory. According to the
specificity of the cost function and the nature of constraints, we can distinguish a num-
ber of well-formulated classes of optimization problems which have effective resolution
methods.

We will focus on the case of convex and quadratic cost functions with linear con-
straints. These classes of optimization problems are known as convex quadratic pro-
grams. It was proved that these classes are adequate for the case of SVMs learning.
Optimization theory defines the necessary and sufficient conditions for that a given
function be a solution. The duality theory also produces a natural interpretation of
the dual representations of learning machines. In addition, a deep understanding of
mathematical structures of solutions can inspire several specific heuristic algorithms
and implementation techniques.

1.5.1 Primal problem

The general form of the problem is to find the minimum (or the maximum) of a func-
tion under some constraints. The general problem of optimization can be described as
follows:

Definition 1.2 (Primal optimization problem)
Given functions f , gi (i = 1, · · · , k) and hj (j = 1, · · · ,m) defined in the domain
Ω ⊆ Rn,

minimize f(w), w ∈ Ω (1.7)
subject to gi(w) ≤ 0, i = 1, · · · , k,

hj(w) = 0, j = 1, · · · ,m, (1.8)

where f(w) is called the objective function, and the remaining relationships are called
respectively, the inequality and equality constraints. The optimal value of the objective
function is called the value of the optimization problem. To simplify the notation, we
write g(w) ≤ 0 to indicate gi(w) ≤ 0, i = 1, · · · , k. The term h(w) = 0 has a similar
meaning as the equality constraints. As the maximization problems can be converted
to minimization problems by reversing the sign of f(w), the choice of the minimization
is not a restriction. Similarly, any constraint can be represented by the form described
above. The region of the domain where the objective function is defined and in which
all constraints are satisfied is called feasible region that we denote by

R = {w ∈ Ω : g(w) ≤ 0, h(w) = 0} . (1.9)

The solution of the optimization problem is the point w∗ ∈ R for which there is no
other point w ∈ R such that f(w) < f(w∗). Such a point is known as global min-
imum. The point w∗ ∈ Ω is called local minimum of f(w) if ∃ ϵ > 0 such that
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f(w) ≥ f(w∗) ∀ w ∈ Ω, |w −w∗ < ϵ|.�

Depending on the nature of the objective function and constraints, we can create
different optimization problems.

Definition 1.3
An optimization problem in which the objective function, equality and inequality con-
straints are all linear functions, is called linear program. If the objective function is
quadratic and constraints are all linear, the optimization problem is called quadratic
program. An inequality constraint gi(w) ≤ 0 is called active if the solution w∗ satisfies
gi(w) = 0, otherwise it is called inactive. In this sense, the equality constraints are all
active.
Sometimes, some amounts called slack variables and denoted by ξ are introduced to
transform inequality constraints into equality constraints as follows:

gi(w) ≤ 0⇔ gi(w) + ξi = 0. (1.10)

with ξi ≥ 0.�

1.5.2 Lagrangian theory

The purpose of the Lagrangian theory is to characterize the solution of an optimization
problem, initially when there is no inequality constraints. The basic elements of this
theory are the Lagrange multipliers and the Lagrangian function. This method was
developed by Lagrange in 1797 for mechanical problems. In 1951, Kuhn and Tucker
extended this method for inequality constraints, which became known by the Kuhn-
Tucker theory [3]. These three concepts produce all that is needed to develop effective
solutions for SVMs optimization problems.

Theorem 1.1 (Fermat) A necessary condition for w∗ to be the minimum of f(w), f ∈
C1, is δf(w∗)

δw = 0. This condition, with the convexity of f present a sufficient conditions.
In problems with constraints, we need to define a function, known as Lagrangian, which
contains information about the objective function and the various constraints. Thus, its
stationarity can be used to find solutions. Specifically, Lagrangian is defined as the ob-
jective function plus a linear combination of the constraints. The coefficients of this
combination are called Lagrange multipliers.

Definition 1.4 Given an optimization problem with objective function f(w) and
equality constraints hi(w) = 0, i = 1, · · · ,m. We define the Lagrangian function as

L(w , β) = f(w) +

m∑
i=1

βi hi(w), (1.11)

where the coefficients βi are called Lagrange multipliers.�
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If the point w∗ is a local minimum for an optimization problem with only equality
constraints, then it is possible that δf(w∗)

δw ̸= 0, but by moving directions to reduce f ,
we can violate one or more constraints. To respect the equality constraints hi, we must
move perpendicular to δhi(w∗)

δw . To respect all the constraints, we must move perpen-
dicular to the subspace V spanned by δhi(w∗)

δw .
This observation forms the basis of the second optimization result concerning optimiza-
tion problems with equality constraints.

Theorem 1.2 (Lagrange) A necessary condition for the point w∗ to be a minimum
of f(w) subject to constraints hi(w) = 0, i = 1, · · · ,m with f, hi ∈ C1 is

δL(w∗, β∗)

δw
= 0, (1.12)

δL(w∗, β∗)

δβ
= 0, (1.13)

for some values β∗. These conditions are sufficient to prove that L(w, β∗) is a convex
function of w.
Note that if the constraints are zero, then the value of the Lagrangian at the optimal
point is equal to the value of the objective function L(w∗, β∗) = f(w∗).

Now, we consider the more general case where the optimization problem contains
both equality and inequality constraints. First, we give the definition of the generalized
Lagrangian.

Definition 1.5 Consider the optimization problem in the domain Ω ⊆ Rn,

minimize f(w), w ∈ Ω (1.14)
subject to gi(w) ≤ 0, i = 1, · · · , k,

hj(w) = 0, j = 1, · · · ,m. (1.15)

We define the generalized Lagrangian function as

L(w, α, β) = f(w) +

k∑
i=1

αi gi(w) +

m∑
j=1

βj hj(w)

= f(w) + α
′
g(w) + β

′
h(w). � (1.16)

We can now define the Lagrangian dual problem.

Definition 1.6 The Lagrangian dual problem corresponding to the primal problem is

maximize θ(α, β)

subject to α ≥ 0, (1.17)

where θ(α, β) = infw∈ΩL(w , α, β).
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The value of the objective function at the optimal solution is called the value of the
problem. �

Now we quote the theorem of strong duality which guarantees that the primal and
dual problems have the same value of the considered optimization problems.

Theorem 1.3 (Strong duality theorem) Given an optimization problem with the convex
domain Ω ⊆ Rn,

minimize f(w), w ∈ Ω (1.18)
subject to gi(w) ≤ 0, i = 1, · · · , k,

hj(w) = 0, j = 1, · · · ,m, (1.19)

where gi and hi are affine functions, thus is h(w) = Aw − b. For some matrix A and
vector b, the interval of duality (duality gap) is zero.

We are now able to give the theorem of Kuhn-Tucker giving the conditions for that
a solution is optimal for a general optimization problem.

Theorem 1.4 (Kuhn-Tucker) Given an optimization problem with the convex domain
Ω ⊆ Rn,

minimize f(w), w ∈ Ω (1.20)
subject to gi(w) ≤ 0, i = 1, · · · , k,

hj(w) = 0, j = 1, · · · ,m, (1.21)

where f ∈ C1 is convex and gi, hi are affine functions. The necessary and sufficient
condition for that the point w∗ be optimal is the existence of α∗, β∗ such that

δL(w∗, α∗, β∗)

δw
= 0, (1.22)

δL(w∗, α∗, β∗)

δβ
= 0, (1.23)

αi
∗gi(w∗) = 0, i = 1, · · · , k (1.24)

gi(w∗) ≤ 0, i = 1, · · · , k (1.25)

αi
∗ ≥ 0, i = 1, · · · , k. (1.26)

The relation (1.24) is known as the KKT (Karush-Kuhn-Tucker) complementarity
condition. It implies that for active constraints, we will have αi

∗ ≥ 0. While for
inactive constraints, αi

∗ = 0. The Lagrange multiplier represents the sensitivity of the
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optimal value with respect to the constraint. Disruption of inactive constraints has no
effect on the solution of the optimization problem.

On the other hand, KKT conditions state that if a constraint is active, then gi(w∗) =
0 or the correspondent multiplier will be zero (αi = 0). This is summarized in the
equation gi(w∗)αi

∗ = 0.

1.5.3 Duality

The Lagrangian treatment of convex optimization problems leads to a dual description
easier to solve than the primal problems. This is due to the difficulty of handling the
inequality constraints directly. The dual problem is obtained by introducing Lagrange
multipliers, also called dual variables. The dual methods are based on the idea that
only the dual variables are the basic unknown of the problem.

We can transform the primal problem into a dual problem by making simply the
derivatives of the Lagrangian with respect to primal variables to zero, and substituting
the obtained relations into the Lagrangian. Therefore, we eliminate the dependence on
primal variables. This corresponds to explicitly calculate the function

θ(α, β) = infw∈ΩL(w , α, β). (1.27)

The resulting function contains only dual variables and should be maximized under
simpler constraints. This strategy will be adopted later as one of the standard techniques
in the theory of support vector machines. The use of dual representations in the theory
of SVMs allows us not only to work in spaces of higher dimensions, but also to use
algorithmic techniques derived from optimization theory.

The KKT complementarity conditions imply that only the active constraints will
have non-zero dual variables. This means that for some optimization problems, the real
number of variables can be significantly lower than the size of the training set.
We will see in the next chapter that the support vector term refers to those examples
for which the dual variables are non-zero.

1.6 SVMs and Neural Networks

1.6.1 Similarities between SVMs and neural networks

• SVMs and neural networks perform learning from experimental data, for which
the fundamental probability distribution is often unknown .

• Both are universal approximators in the sense that they can approximate any
function of any desired degree of accuracy.

• After training, they are given with the same mathematical model.
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1.6.2 Differences between SVMs and neural networks

• Neural networks are based on the principle of minimization of empirical error,
starting with an appropriate structure to minimize the error. SVMs are based on
the principle of minimization of structural error, starting with the error to achieve
an optimal structure.

• SVMs and neural networks follow different learning methods. Neural networks
typically use the back-propagation algorithm or other algorithms such as gradient
descent and methods based on linear algebra. By cons, SVMs are learned by
solving a linear and quadratic programming problem.

1.6.3 Advantages of SVMs compared to neural networks

• SVMs can achieve a compromise between the positive errors and negative errors
using asymmetric soft margin.

• SVMs converge always to the same solution for a given set of data independent
on initial conditions.

• SVMs ensure convergence to the global minimum.

• SVMs avoid the problem of overfitting.

1.7 Conclusion

In this chapter, we saw a historical overview on support vector machines, especially the
founding papers of Vapnik and Chervonenkis described in [3]. Then, we have presented
the learning methodology and the linear learning machines which lead to a simplicity and
flexibility of learning. Also, we have introduced generalization and statistical learning
theory. It is this theory which limits the generalization error, not only for data from the
training set, but also for future data. In addition, we have presented the optimization
theory. This theory forms the basis of optimization problems, particularly the convex
quadratic optimization problems which are used in the case of SVMs. Finally, we
have described the differences between SVMs and neural networks. Indeed, the main
advantage of SVMs is the convergence to a unique solution.

SVMs will be presented in details in the next chapter, especially the support vec-
tor machines for regression (SVR) in their linear and nonlinear version using kernel
functions.



Chapter 2

State of the Art of Support Vector
Machines

2.1 Introduction

The different theories presented in the previous chapter gave us the basis on which the
support vector machines have been founded. Indeed, SVMs are a system for efficiently
training the linear learning machines in the kernel-induced feature space, while respect-
ing the theory of generalization and statistical learning and exploiting the optimization
theory.

This chapter is devoted to the study of support vector machines. At first, we present
the linear support vector classification and regression. Then, we describe the theory of
kernel functions, those functions necessary to project the nonlinear data in the original
space into a high dimensional space where the data become represented linearly. Finally,
we present the nonlinear support vector machines for classification and regression based
on these kernel functions.

2.2 Linear Support Vector Machines

We begin this chapter with a description of the basic concepts of support vector classi-
fication (SVC) and support vector regression (SVR) in their linear versions.

2.2.1 Linear support vector classification

Suppose that we have two classes of points x i located in different areas in space, so they
can be classified (or separated) using a separating hyperplane. Let as further assume
that these data are located in such a way that the hyperplane passes through the origin
(see Fig. 2.1). The expression of this hyperplane is then wTx = 0. To identify the
class of a point x i, we must determine the angle between this sample and the vector
w . If this angle is less than π/2, then the sample is classified in class A. Otherwise, the
class will be B. In other terms, to determine the class of each sample, we must calculate

15
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the dot product between the vector w and the corresponding vector of sample. If this
dot product is positive (the angle is less than π/2), then the class will be A. Otherwise,
the dot product will be negative and the class will be B. In addition, a sample located
on the plane is orthogonal to w , so the dot product is zero, consequently we can not
determine its class.

If the data are not centralized around the origin, then the hyperplane must be biased
from it, and its expression will be wTx + b = 0.

2.2.1.1 Adjustment of the separating hyperplane

The main idea of the classification problem is how to determine the separating hyper-
plane which classifies the data optimally. The solution is to minimize the probability
of misclassification in the classification of a set of samples different from that used to
adjust the parameters w and b of the hyperplane. This concept is called generalization
ability.

Indeed, classification is measured as a binary quantity, where 0 indicates a correct
classification and 1 indicates a misclassification. Instead of using these quantities di-
rectly, we use the approximate quantities since the function is not differentiable [50].
Thus, the optimal separating hyperplane is a hyperplane that minimizes the MMSE
(Minimum Mean Square Error) between the desired results (+1 for samples of class A
and −1 for samples of class B) and actual results obtained by the classification.

Figure 2.1: A classifier in vector space.

This criterion is optimal when the statistical properties of the data are Gaussian. But if
the data are not Gaussian, the result will be biased. In addition, if the data are Gaus-
sian and including outliers (samples far from the set), then the statistical properties of
the set will be biased as well.
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2.2.1.2 SVM approach

To deal with these situations, we apply a procedure that uses a linear hyperplane, while
assuming that the data are linearly separable. Therefore, the optimality criterion will
be: put the hyperplane as far as possible from the nearest samples, while ensuring that
all samples are in their correct side. In other words, it corresponds to maximize the
margin between the separating hyperplane and the closest samples (see Fig. 2.2). The
SVM criterion can be reformulated as: maximize the distance d between the separating
hyperplane and the closest samples subject to the constraints

yi
[
wTx i + b

]
≥ 1, (2.1)

where yi ∈ {+1,−1} is the scalar associated to the sample x i. This constraint means
that the sign of the output of the classifier and the sign of the corresponding scalar
must be equal in all cases.

The distance d between the separating hyperplane and the margin hyperplane is
equal to 1

∥w∥ [3]. Thus, maximizing d is equivalent to minimizing the norm of the
weight vector w , which provides a most useful expression of the SVM criterion

minimizew ,b LP = 1
2∥w∥

2 (2.2)
s.t yi

[
wTx i + b

]
≥ 1. (2.3)

Figure 2.2: Placement of the hyperplanes.

In practice, samples are not always linearly separable, and hence the constraint (2.2)
can not be satisfied. For that reason, slack variables should be introduced to account
for the nonseparable samples. Then, the optimization criterion consists of minimizing
the following primal problem [46]:

minimizew ,b,ξ LP = 1
2∥w∥

2 + C
∑N

i=1 ξi (2.4)
s.t yi (⟨w · x i⟩+ b) ≥ 1− ξi

ξi ≥ 0. (2.5)
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Figure 2.3: Hyperplane for the nonseparable case.

If a sample x i is correctly classified and it is outside the margin, then its slack value
ξi will be zero. If it is correctly classified but its position is between the margin, then
0 < ξi < 1. And if it is misclassified, then ξi > 1 (see Fig. 2.3).

The term C is a tradeoff between the maximization of the margin and the mini-
mization of the empirical error. A low value of C leads to a less complex machine and
very low values lead to a poor expression of data. However, very large values of C lead
to a low generalization ability. The value of C is often adjusted heuristically.

2.2.1.3 Optimization of LSVC

The optimization problem in equation (2.4) is a classic optimization problem under
constraints. To solve this problem, we must exploit the Lagrange optimization procedure
which consist to apply the Lagrange multipliers αi to different constraints [51]. In
addition, Lagrangian optimization procedure is based on the soft margin optimization
methods which are of two types:

• 1-Norm Soft Margin - Box Constraint.

• 2-Norm Soft Margin - Weighting the Diagonal.

We used in this LSVC case the 1-Norm Soft Margin Lagrangian which is applied to
the optimization problem described by expression (2.4) as follows:

Lpd(w , b, ξ, α, β) =
1

2
∥w∥2 + C

N∑
i=1

ξi −
N∑
i=1

αi

[
yi(wTx i + b− 1 + ξi

]
−

N∑
i=1

βiξi, (2.6)

with αi, βi ≥ 0.
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The corresponding dual is obtained by differentiating with respect to w , ξ and b

δLpd(w , b, ξ, α, β)
δw

= w −
N∑
i=1

yiαix i = 0, (2.7)

δLpd(w , b, ξ, α, β)
δb

=

N∑
i=1

yiαi = 0, (2.8)

δLpd(w , b, ξ, α, β)
δξi

= C − αi − βi = 0. (2.9)

By substituting the obtained relations in equation (2.6), we obtain the following
adaptation of the dual objective function:

Ld(α) =

N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

yiyjαiαjx i
Tx j , (2.10)

with constraints
0 ≤ αi ≤ C. (2.11)

The constraints C − αi − βi = 0 and βi ≥ 0 require that αi ≤ C. In addition, ξi ̸= 0
only if βi = 0 yields that αi = C.
The KKT complementarity conditions are then given by

αi

[
yi(wTx i + b− 1 + ξi

]
= 0, ξi(αi − C) = 0, i = 1, · · · , N. (2.12)

The important result of this derivation is the expression of the weight vector w expressed
as

w =
N∑
i=1

yiαixi. (2.13)

On the other hand, the expression (2.10) can be rewritten in a matrix format as follows:

Ld = −1

2
αTYRY α+ α, (2.14)

where α =

 α1
...
αN

 is a column vector containing all Lagrange multipliers αi,

Y =

 y1 · · · 0
...

. . .
...

0 · · · yN

 is a diagonal matrix with Y ii = yi and

R =

 R11 · · · R1N
...

. . .
...

RN1 · · · RNN

 represents the dot product matrix, where

Rij = x i
Tx j . (2.15)
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Note that the condition βiξi = 0 eliminates the last term of the expression (2.6). As
we saw, it is evident to verify from this condition and the condition (2.9) that:

0 ≤ αi ≤ C, (2.16)

if αi ≤ C, then ξi = 0 βi ̸= 0
if ξi > 0 , then αi = C βi = 0.

Slack variables do not appear in the dual formulation because the terms C
∑N

i=1 ξi
and C

∑N
i=1 αiξi are null. This quadratic formulation can be solved using quadratic

programming method presented in [47].
KKT conditions ensure that if yiwTx i ≥ 1 (ξi = 0), then (αi = 0). In other words,

only a subset of Lagrange multipliers will have nonzero values in the solution, while
other multipliers disappear. Thus, the solution will be unique. The associated samples
(those for which αi ̸= 0) are called support vectors.

The value of b can be calculated by considering that if αi < C, then ξi = 0. This
leads to the following condition:

yi(wTx i + b)− 1 = 0, (2.17)

for any sample x i for which αi < C.
In practice, it is numerically convenient to calculate b by averaging all samples

having 0 ≤ αi ≤ C.
Some eigenvectors of R may have low eigenvalues which leads to an ill-conditioned

problem. This drawback is solved by adding a small identity matrix. Therefore, the
dual to be solved becomes

Ld = −1

2
αTY [R + γI ]Y α+ α. (2.18)

The addition of an identity matrix is equivalent to applying a quadratic loss function
to slack variables whose values are less than γC [50].

Fig. 2.4 shows two sets of linearly separable data, properly separated (classified)
by a linear hyperplane. The dotted lines describe the area of the margin. Note that
support vectors are all on the margin.

2.2.2 Linear support vector regression

A linear regressor is a function wTx + b which establishes a relationship between a set
of vectors x in Rn and a set of scalar y in R. Indeed, the regressor function achieves a
hyperplane that provides a minimum mean square error between it and the data.

Linear regression was traditionally treated by Least Squares (LS) approaches, and it
is widely used in many fields such as estimation models, linear prediction [48], equaliza-
tion [52], etc. Conventional approaches use MSE criterion for processing data corrupted
by Additive White Gaussian Noise (AWGN). The best approach is the Maximum Like-
lihood (ML) one. Nevertheless, we can not directly minimize the actual LS function
because the noise distribution is unknown.
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Figure 2.4: Solution of LSVC for C =∞.

The basic idea of SVR is to find a function that represents pairs of data (x i, yi)
with a small error, less than or equal to a given amount ε. This function should ensure
a minimum norm ∥w∥. In addition, SVR does not minimize errors less than ε, but
only errors above, allowing us to build a machine whose parameter vector is a linear
combination of samples with an error greater than or equal to ε. This leads to a unique
solution as in the case of LSVC.

The adjustment of the linear regressor can be formulated by the following primal
problem:

minimizew ,b,ξ,ξ∗ LP = 1
2∥w∥

2 +
∑N

i=1 l (ξi, ξ∗i ) (2.19)
s.t ⟨w · x i⟩+ b− yi ≤ ξi + ε

yi − ⟨w · x i⟩ − b ≤ ξ∗i + ε

ξi, ξ
∗
i ≥ 0, (2.20)

where both constraints were applied to positive and negative errors, respectively.
Obviously, for each sample x i, only one slack variable is non-zero. The constraints

in (2.19) imply that for every sample with a positive error (respectively negative) of
absolute value greater than ε, this absolute value will be forced to be less than ξi + ε
(respectively ξ∗i + ε ). This is the lowest value that can take these slack variables.

So, the parameter ε is used to remove samples whose errors are inferior to ε. All
Lagrange multipliers associated with samples having ξi, ξ∗i < ε will be zero.

Choose a cost function l (ξi, ξ∗i ) = ξi + ξ∗i in the primal problem (2.19) is equivalent
to apply a linear ε− insensitive function given by [52] (see Fig. 2.6)

l(ei) =

{
0, |ei| ≤ ε
|ei| − ε, |ei| ≥ ε

(2.21)

for ei = ξi + ε or ei = −ξi∗ − ε.
To solve our optimization problem under constraints, we must apply Lagrange op-

timization to make the problem without constraints. The optimization is performed in
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Figure 2.5: ε− insensitivity concept.

Figure 2.6: Linear ε−insensitive cost function.
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terms of minimizing the weight vector and the norm of slack variable. We apply two
techniques of loss for the ε−insensitive function, which are respectively:

• Linear ε− insensitive loss: uses 1-dimensional norm of slack variables with l (ξi, ξ∗i ) =
ξi + ξ∗i (see Fig. 2.6).

• Quadratic ε− insensitive loss : uses 2-dimensional norm of slack variables with
l (ξi, ξ∗i ) = ξi

2 + ξ∗i
2 (see Fig. 2.7).

2.2.2.1 Optimization with linear ε− insensitive loss function

The corresponding primal problem is expressed as

minimizew ,b,ξ,ξ∗
1
2∥w∥

2 + C
∑N

i=1(ξi + ξ∗i ) (2.22)
s.t (⟨w · x i⟩+ b)− yi ≤ ε+ ξi

yi − (⟨w · x i⟩+ b) ≤ ε+ ξ∗i
ξi, ξ

∗
i ≥ 0. (2.23)

The Lagrangian of this optimization problem is then

Lpd(w , b, ξ, ξ∗, α, α∗, β, β∗) =
1

2
∥w∥2 + C

N∑
i=1

(ξi + ξi
∗)

+

N∑
i=1

αi(wTx i + b− yi − ε− ξi)

+
N∑
i=1

αi
∗(yi −wTx i − b− ε− ξi∗)

−
N∑
i=1

βiξi −
N∑
i=1

βi
∗ξi

∗, (2.24)

with αi, αi
∗, βi, βi

∗ ≥ 0.

The corresponding dual is obtained by differentiating with respect to w , ξ and b,

δLpd(w , b, ξ, ξ∗, α, α∗, β, β∗)

δw
= w +

N∑
i=1

αix i −
N∑
i=1

αi
∗x i = 0, (2.25)

which implies that

w =

N∑
i=1

(αi
∗ − αi) x i, (2.26)

δLpd(w , b, ξ, ξ∗, α, α∗, β, β∗)

δb
=

N∑
i=1

αi −
N∑
i=1

αi
∗ = 0, (2.27)
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implying that

N∑
i=1

(αi
∗ − αi) = 0, (2.28)

δLpd(w , b, ξ, ξ∗, α, α∗, β, β∗)

δξi
= C − αi − βi = 0, (2.29)

δLpd(w , b, ξ, ξ∗, α, α∗, β, β∗)

δξi
∗ = C − αi

∗ − βi∗ = 0. (2.30)

Substituting the obtained relations in the primal-dual Lagrangian, we obtain the fol-
lowing adaptation of the dual objective function:

maximizeα,α∗ Ld(α, α
∗) =

N∑
i=1

(αi
∗ − αi)yi − ε

N∑
i=1

(αi
∗ + αi)

− 1

2

N∑
i=1

N∑
j=1

(αi
∗ − αi)(αj

∗ − αj)x i
Tx j (2.31)

s.t 0 ≤ αi, αi
∗ ≤ C

0 =

N∑
i=1

(αi
∗ − αi). (2.32)

Indeed, the constraints C −αi− βi = 0 and C −αi
∗− βi∗ = 0 together with βi, βi∗ ≥ 0

required that 0 ≤ αi, αi
∗ ≤ C.

The complementarity KKT conditions are as follows:

αi(wTx i + b− yi − ε− ξi) = 0, (2.33)
αi

∗(yi −wTx i − b− ε− ξi∗) = 0, (2.34)
ξiξi

∗ = 0 , αiαi
∗ = 0, (2.35)

ξi(αi − C) = 0 , ξi
∗(αi

∗ − C) = 0. (2.36)

2.2.2.2 Optimization with quadratic ε− insensitive loss function

The primal problem corresponding to the quadratic ε− insensitive loss is

minimizew ,b,ξ,ξ∗ ∥w∥2 + C
∑N

i=1(ξi
2 + ξ∗i

2) (2.37)
s.t (⟨w · x i⟩+ b)− yi ≤ ε+ ξi

yi − (⟨w · x i⟩+ b) ≤ ε+ ξ∗i
ξi, ξ

∗
i ≥ 0 i = 1, · · · , N. (2.38)
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Figure 2.7: Quadratic ε−insensitive cost function.

The Lagrangian is calculated by

Lpd(w , b, ξ, ξ∗, α, α∗) =
1

2
∥w∥2 + C

2

N∑
i=1

(ξi
2 + ξi

∗2)

+

N∑
i=1

αi(wTx i + b− yi − ε− ξi)

+

N∑
i=1

αi
∗(yi −wTx i − b− ε− ξi∗). (2.39)

Note that ξiξi∗ = 0 and αiαi
∗ = 0.

The corresponding dual is obtained by applying KKT conditions as follows

δLpd(w , b, ξ, ξ∗, α, α∗)

δw
= w +

N∑
i=1

αix i −
N∑
i=1

αi
∗x i = 0, (2.40)

implying that

w =
N∑
i=1

(αi
∗ − αi)x i, (2.41)

δLpd(w , b, ξ, ξ∗, α, α∗)

δb
=

N∑
i=1

αi −
N∑
i=1

αi
∗ =

N∑
i=1

(αi
∗ − αi) = 0, (2.42)

δLpd(w , b, ξ, ξ∗, α, α∗)

δξi
= Cξi − αi = 0, (2.43)
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so

ξi =
αi

C
, (2.44)

δLpd(w , b, ξ, ξ∗, α, α∗)

δξi
∗ = Cξi

∗ − αi
∗ = 0, (2.45)

implying that

ξi
∗ =

αi
∗

C
. (2.46)

Substituting the obtained relations in (2.39), we obtain the following dual:

Ld(α, α
∗) =

1

2

N∑
i=1

N∑
j=1

(αi
∗ − αi)(αj

∗ − αj)x i
Tx j +

1

2C

N∑
i=1

(αi
2 + αi

∗2)

+

N∑
i=1

N∑
j=1

αj(αi
∗ − αi)x i

Tx j + b

N∑
i=1

αi −
N∑
i=1

αiyi − ε
N∑
i=1

αi

− 1

C

N∑
i=1

αi
2 +

N∑
i=1

αi
∗yi −

N∑
i=1

N∑
j=1

αj
∗(αi

∗ − αi)x i
Tx j

− b

N∑
i=1

αi
∗ − ε

N∑
i=1

αi
∗ − 1

C

N∑
i=1

αi
∗2

Ld(α, α
∗) = −1

2

N∑
i=1

N∑
j=1

(αi
∗ − αi)(αj

∗ − αj)x i
Tx j − ε

N∑
i=1

(αi
∗ + αi)

+ yi

N∑
i=1

(αi
∗ − αi) + b

N∑
i=1

(αi − αi
∗)− 1

2C

N∑
i=1

(αi
2 + αi

∗2). (2.47)

The dual problem is then

maximizeα,α∗ Ld(α, α
∗) = −1

2

N∑
i=1

N∑
j=1

(αi
∗ − αi)(αj

∗ − αj)(x i
Tx j +

1

C
δij)

+
N∑
i=1

(αi
∗ − αi)yi − ε

N∑
i=1

(αi
∗ + αi) (2.48)

s.t 0 =

N∑
i=1

(αi
∗ − αi) (2.49)

0 ≤ αi, αi
∗.

The KKT complementarity conditions are resulting

αi(wTx i + b− yi − ε− ξi) = 0, (2.50)
αi

∗(yi −wTx i − b− ε− ξi∗) = 0, (2.51)
ξiξi

∗ = 0 , αiαi
∗ = 0 i = 1, · · · , N. (2.52)
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2.2.2.3 Optimization with robust loss function

A robust loss function that combines both linear and quadratic techniques can also be
applied [46]. This loss function has the following form:

Figure 2.8: ε−insensitive cost function with quadratic and linear losses.

Lε(ξ) =


0, |ξ| ≤ ε
1
2γ (|ξ| − ε)

2, ε ≤ |ξ| ≤ eC ,

C(|ξ| − ε)− 1
2γC

2, eC ≤ |ξ|
(2.53)

where eC = ε+ γC; ε is the insensitivity parameter, and γ and C control the tradeoff
between regularization and losses.

Three different regions yield to distinguish different types of noise (see Fig. 2.8):

• ε− insensitivity zone: ignores errors less than ε.

• zone with quadratic cost : uses the 2-dimension norm of the errors, which is suitable
for the Gaussian noise.

• zone with linear cost : limits the effects of the outliers.

Note that (2.53) is the Vapnik ε−insensitive cost function when γ is small enough. The
parameter γ plays the role of numeric regulation in the quadratic problem.

The primal problem corresponding to (2.53) is as follows:

minimizew ,b,ξ,ξ∗ Lp =
1

2
∥w∥2 + 1

2γ

∑
i∈I1

(ξi
2 + ξi

∗2) (2.54)

+ C
∑
i∈I2

(ξi + ξi
∗ − γC

2
)

s.t − yi + (⟨w · x i⟩+ b) ≤ ε+ ξi

yi − (⟨w · x i⟩+ b) ≤ ε+ ξ∗i (2.55)
0 ≤ ξi, ξ

∗
i .
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I1 and I2 are the sets of samples for which the losses have quadratic and linear cost,
respectively. The constraints are the same as (2.25).

The corresponding Lagrangian is then

Lpd(w , b, ξ, ξ∗, α, α∗) =
1

2
∥w∥2 + 1

2γ

∑
i∈I1

(ξi
2 + ξi

∗2) + C
∑
i∈I2

(ξi + ξi
∗ − γC

2
)

+

N∑
i=1

αi(wTx i + b− yi − ξi − ε)

+

N∑
i=1

αi
∗(yi −wTx i − b− ξi∗ − ε)

−
N∑
i=1

βiξi −
N∑
i=1

βi
∗ξi

∗. (2.56)

The KKT conditions are

δLpd(w , b, ξ, ξ∗, α, α∗)

δw
= w +

N∑
i=1

αix i −
N∑
i=1

αi
∗x i = 0, (2.57)

so

w =

N∑
i=1

(αi
∗ − αi)x i, (2.58)

and

δLpd(w , b, ξ, ξ∗, α, α∗)

δb
=

N∑
i=1

αi −
N∑
i=1

αi
∗ =

N∑
i=1

(αi
∗ − αi) = 0, (2.59)

δLpd(w , b, ξ, ξ∗, α, α∗)

δξi
=

1

γ
ξi − αi − βi = 0, i ∈ I1 (2.60)

δLpd(w , b, ξ, ξ∗, α, α∗)

δξi
= C − αi − βi = 0, i ∈ I2 (2.61)

δLpd(w , b, ξ, ξ∗, α, α∗)

δξi
∗ =

1

γ
ξi

∗ − αi
∗ − βi∗ = 0, i ∈ I1 (2.62)

δLpd(w , b, ξ, ξ∗, α, α∗)

δξi
∗ = C − αi

∗ − βi∗ = 0, i ∈ I2 (2.63)

with αi, αi
∗, βi, βi

∗ ≥ 0.

The KKT complementarity conditions imply that

αi(wTx i + b− yi − ε− ξi) = 0, (2.64)
αi

∗(yi −wTx i − b− ε− ξi∗) = 0, (2.65)
βiξi = 0 , βi

∗ξi
∗ = 0. (2.66)
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The result (2.58) represents the solution for the vector of parameters w . In addition,
βi is null in the intervals I1 and I2 since ξi > 0 in these intervals.

From previous expressions, we obtain the following equality of Lagrange multipliers
αi (equivalently for αi

∗):

αi =


C, ξi ≥ ε+ γC
ξi
γ , ε ≤ ξi ≤ ε+ γC .

0, 0 ≤ ξi ≤ ε
(2.67)

We can now apply the obtained expressions to the Lagrangian (2.56) to obtain the
following dual:

Ld(α, α
∗) = −1

2

N∑
i=1

N∑
j=1

(αi
∗ − αi)(αj

∗ − αj) x i
Tx j

+

N∑
i=1

((αi
∗ − αi)yi − (αi

∗ + αi)ε)

−
∑
i∈I1

γ

2
(αi

2 + αi
∗2)−

∑
i∈I2

γC2

2
. (2.68)

We must also take into account that in the interval I2, we have αi and α∗
i = C. There-

fore, we can change the last term of (2.68) by
∑

i∈I2
γ
2 (αi

2 + αi
∗2).

The expression becomes:

Ld(α, α
∗) = −1

2

N∑
i=1

N∑
j=1

(αi
∗ − αi)(αj

∗ − αj) x i
Tx j

+

N∑
i=1

((αi
∗ − αi)yi − (αi

∗ + αi)ε−
γ

2
(αi

2 + αi
∗2)). (2.69)

In matrix notation, we obtain

Ld = −1

2
(α− α∗)T R (α− α∗) + (α− α∗)T y − (α+ α∗) 1 ε. (2.70)

This function can be maximized by using the same procedure as for the case of LSVC.
Very small eigenvalues can possibly appear, so it is suitable to adjust them numerically
by adding a diagonal matrix of low value. The function becomes:

Ld = −1

2
(α− α∗)T [R+ γI] (α− α∗) + (α− α∗)T y − (α+ α∗) 1 ε. (2.71)

This numerical regularization is equivalent to apply a modified version of cost function.
In this equation, the numerical regularization term is γ. The application of this term
is equivalent to apply a cost function having a quadratic interval between ε and ε+ γC
(see Fig. 2.8).
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Figure 2.9: ε−insensitive Linear regression with ε = .05 and C = 10.

We show an example of one-dimensional regression problem which represents linear
data. The solution of this LSVR for the linear ε−insensitive loss function with ε = 0.05
and C = 10 is shown in Fig. 2.9. The support vectors are the circled data.

After studying and analyzing the case of linear classification and regression, we
examine the case of nonlinear machine. In practice, the linear solution does not perform
well for classification and regression problems. Therefore, the nonlinear approach is
required. Indeed, a linear machine can be built in a high dimensional space, but still
nonlinear in the input space. This is possible thanks to kernel functions that can be
interpreted geometrically as a products between the characteristics of learning examples
in a feature space different to the input space: this is the kernel trick.

2.3 Kernel Functions

The limit of calculation of the linear learning machine has been highlighted in 1960
by Minsky and Papert [49]. Thus, complex real applications require hypothesis spaces
more expressive than linear functions.

Kernel representations provide an alternative solution by the projection of data in a
high dimension feature space. Therefore, the computational power of the linear learning
machines increases. This increase can be achieved in an implicit way by using the dual
representation of linear machines. The advantage of using the dual form derives from
the fact that the number of parameters to be set does not depend on the number of
the used attributes. Replace the dot product by a well chosen kernel function allows to
carry out a nonlinear projection into a high dimension feature space without increasing
the number of parameters to be set. In this section, we discuss the kernel technique
that represents a major block of nonlinear SVM.
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2.3.1 Learning in the feature space

The complexity and difficulty of learning depends on the representation of the objective
function. Ideally, this representation must be chosen to express the specifics of the
considered learning problem. For that reason, we use a preprocessing strategy of learning
machine that transform the data representation as follows:

x = (x1, · · · , xn) 7−→ ϕ(x ) = (ϕ1(x ), · · · , ϕN (x )) . (2.72)

This step is equivalent to project the original space X into a new space F = {ϕ(x )/x ∈ F}.
The projection of data into another space simplifies greatly the task of learning machine.
The quantities introduced to characterize the data are called features while the original
quantities are called attributes. Choose the most suitable representation is known by
the name feature selection. The space X is the input space while the space F represents
the feature space.

Fig. 2.10 shows an example of projection of a two-dimensional input space into a
two dimensional feature space. The data can not be separated by a linear function in
the input space, but may be in the feature space. The purpose of this section is to show
how such projections can be made in high dimensional spaces where linear separation
becomes easier.

Figure 2.10: Feature space.

Several approaches to select features exist. We always try to identify the smallest
set of features that keep the essential information contained in the original attributes.
This is known as dimensionality reduction:

x = (x1, · · · , xn) 7−→ ϕ(x ) = (ϕ1(x ), · · · , ϕd(x )) , d < n (2.73)
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The selection of characteristics is considered as a part of the learning process itself. In-
deed, theoretical learning models consider that the use of a large range of characteristics
can create problems of overfitting.

So, by dimensionality reduction, problems of generalization will be avoided. Com-
putational problems will be also avoided through the use of implicit projection.

2.3.2 Implicit projection in the feature space

In order to learn nonlinear relationships to learning machines, we must first select a
set of nonlinear characteristics, and then rewrite the data in this new representation.
This is equivalent to applying a fixed nonlinear projection of data in the feature space,
wherein the linear machines may be used. Therefore, the hypothesis set will consist of
functions of the form

f(x ) =
N∑
i=1

w iϕi(x ) + b, (2.74)

where ϕ : X 7−→ F is a nonlinear projection of the original space X in such a feature
space F .

This means that we will build nonlinear machines in two steps:

• choose a fixed nonlinear projection that transforms data into a feature space F
then,

• classify these data in this feature space by a linear machine.

An important property of linear learning machine is that these machines can be repre-
sented in dual form. Implying that the hypothesis can be expressed as a linear combina-
tion of learning points. The decision rule can be then evaluated using the dot product
between the test points and learning points as follows:

f(x ) =
N∑
i=1

αi yi < ϕ(x i) · ϕ(x ) > +b. (2.75)

If we can directly calculate the dot product < ϕ(x i) ·ϕ(x ) > in the feature space, it will
be possible to combine these two steps to build the nonlinear learning machine. This
direct calculation method is called kernel function.

Definition 2.1:
The kernel is a function K , such that for all x , z ∈ X

K (x , z ) =< ϕ(x ) · ϕ(z ) >, (2.76)

where ϕ is a projection of an original space X into a feature space (dot product) F .�

The word kernel is derived from the theory of integral operator that describes the
relationships between cores and their corresponding characteristics spaces [49]. The use
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of kernels allows the projection of data in a feature space implicitly, and then learning
linear machine in this space. The only information used for the training samples is the
Gram matrix. This matrix is also called kernel matrix noted by K .

The objective of this approach is to find a kernel function that can be evaluated
efficiently. Once this function is found, the evaluation of the decision rule can be
achieved by N evaluations of the kernel:

f(x ) =
N∑
i=1

αi yiK (x i, x ) + b. (2.77)

An important property of the use of kernels is that we do not need to know the projection
of characteristics in order to learn the linear machine in the feature space.

On the other hand, it is clear that kernel theory generalizes the standard dot product
in the input space since this dot product is an example of kernel when we put the
projection of characteristics equal to the identity.

K (x , z ) =< x , z > . (2.78)

2.3.3 Kernel construction

It appears in the approach of construction of the kernels that we need first to create a
complicated feature space, then calculate the dot product in this space, and finally find
a direct calculation method based on original inputs. In practice, the construction of
kernels occurs by defining a kernel function directly, and thus implicitly define a feature
space.

Define a kernel function in the input space is more natural than create a complicated
feature space. Mercer’s theorem is concerned with the construction of kernels for the case
of nonlinear machine. The basic idea is to project the vector x of a finite dimensional
space (input space) into a high dimensional Hilbert space (possibly infinite) through a
nonlinear transformation ϕ(·). The Hilbert space is presented in details in appendix A.
The linear machine can be built in a high dimensional space (feature space), but still
nonlinear in the input space.

Most transformations ϕ(·) are unknown, but their dot product in feature space can
be expressed as a function of the input vectors as follows:

ϕ(x i)
Tϕ(x j) = K (x i, x j). (2.79)

In the literature, these spaces are called reproducing kernel Hilbert spaces (RKHS),
and their dot products K (x i, x j) are often called Mercer kernel. An explicit represen-
tation of these vectors in the feature space is not necessary since the SVM formulation
presents only dot products of these vectors.

Mercer’s theorem gives the condition for which the kernel K (x i, x j) must satisfy to
be a dot product of the Hilbert space.
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Theorem 2.1 (Mercer) Let X be a compact subspace of Rn. Suppose that K is a
continuous symmetric function such that the integral operator TX : L2(X) 7−→ L2(X),

(TXf) (·) =
∫
X

K(·, x)f(x)dx, (2.80)

is positive, then ∫
X×X

K(x, z)f(x)f(z)dxdz ≥ 0, (2.81)

for all f ∈ L2(X). One can then extend K(x, z) to a uniformly convergent series (on
X ×X) in terms of eigen-functions ϕj ∈ L2(X), normalized such that ∥ϕj∥L2(X) = 1,
with positive associated eigenvalues λj ≥ 0,

K(x, z) =
∞∑
j=1

λjϕj(x)ϕj(z). (2.82)

Note that the positivity condition:∫
X×X

K(x, z)f(x)f(z)dxdz ≥ 0, ∀f ∈ L2(X) (2.83)

implies that for any subset of X, the corresponding matrix is semi-definite positive (hav-
ing non-negative eigenvalues).

It is not always easy to prove the positivity condition for any function. The first
proved kernels satisfying Mercer’s theorem are the homogeneous polynomial kernels

K(x i, x j) = (x i
T + x j)

p
, (2.84)

and the heterogeneous polynomial kernels

K(x i, x j) = (x i
T + x j + 1)

p
. (2.85)

The Gaussian kernel is also another important type of kernels, since it is widely used
in several applications. It is expressed as

K(x i, x j) = e−
∥xi−xj∥2

2σ2 . (2.86)

Sigmoid and Dirichlet kernels are other types of kernel expressed respectively as

K(x i, x j) = tanh(γx i
Tx j + µ), (2.87)

and

K(x i, x j) =
sin((n+ 1/2) (x i − x j))

2 sin((x i − x j)/2)
. (2.88)

After presenting the kernel functions and their main characteristics, especially their
ability to transform a set of nonlinear data in the input space into a set of linear data
in the feature space of higher dimension through an implicit projection, we proceed to
describe the SVC and SVR in their nonlinear versions.
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2.4 Nonlinear Support Vector Machines

2.4.1 Nonlinear SVC

The solution of LSVC is given by

w =

N∑
i=1

yiαix i. (2.89)

In the nonlinear case, the data are projected in the Hilbert space and the solution will
be

w =
N∑
i=1

yiαiϕ(x i), (2.90)

where ϕ (·) denotes the projection function. The vector of parameters w represents a
linear combination of the input vectors in the Hilbert space. However, as several trans-
formations ϕ (·) are unknown, we can not have an explicit form of these transformations.
Yet, the problem can be solved as the machine uses just the dot products of vectors
and not the explicit form of transformation. Therefore, we can not use the following
expression since no explicit expression of w exists:

yj = wTϕ(x j) + b. (2.91)

However, by substituting equation (2.90) in (2.91), we obtain the following expression:

yj =

N∑
i=1

yiαiϕ(x i)
Tϕ(x j) + b =

N∑
i=1

yiαiK(x i, x j) + b. (2.92)

The resulting machine can be expressed directly in terms of Lagrange multipliers
and dot product of kernels. To determine the Lagrange multipliers by solving the corre-
sponding dual problem, we need only the Gram matrix K such that K ij = K(x i, x j).
To calculate the bias b, we use the expression (2.17) which becomes for the nonlinear
SVC case as follows:

yj

(
N∑
i=1

yiαiϕ(x i)
Tϕ(x j) + b

)
− 1 = 0, (2.93)

yj

(
N∑
i=1

yiαiK(x i, x j) + b

)
− 1 = 0, (2.94)

for all samples x i having αi < C.
The SVC solution for the case of nonlinear separable data is illustrated in Fig. 2.11.

This solution is obtained using the polynomial kernel of degree 2 with some tolerance
of error classification for C = 10.
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Figure 2.11: Data separation with polynomial kernel of degree 2.

To see the effect of the misclassification error tolerance on the topology of the boundaries
of classification, Fig. 2.12 shows the results of the nonlinear SVC with the Gaussian
RBF (Radial Basis Function) kernel for different values of C. The width σ of the RBF
kernel is calculated from data by σ =

√
maxij ∥x i − x j∥ /2 [53, 54]. The values C = 1

and C = 1000 offer good solutions, depending on the topology of the most appropriate
boundary (open such 2.12 (a) or closed such 2.12 (c). From that reason, we deduce
that the parameter C should be chosen after knowledge of the considered problem for
determining the final solution.

2.4.2 Nonlinear SVR

The solution of linear SVR is expressed by

w =

N∑
i=1

(αi − αi
∗)x i. (2.95)

As in the case of nonlinear SVC, the solution of the nonlinear SVR has the following
form:

w =

N∑
i=1

(αi − αi
∗)ϕ(x i). (2.96)

Therefore, the expression of the nonlinear SVR is as follows:

yj =

N∑
i=1

(αi − αi
∗)ϕ(x i)

Tϕ(x j) + b =

N∑
i=1

(αi − αi
∗)K(x i, x j) + b. (2.97)

The construction of the nonlinear SVR is almost identical to the construction of the
nonlinear SVC.



Nonlinear Support Vector Machines 37

(a)

(b)

(c)

Figure 2.12: Data separation with RBF kernel for different values of C (a) C = 1, (b)
C = 10 and (c) C = 1000.
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(a)

(b)

(c)

Figure 2.13: Nonlinear regression using RBF kernel with ε = .05 for (a) C = .1, (b)
C = 1 and (c) C = 10.
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The dual problem for the corresponding nonlinear SVR with ε−insensitive loss func-
tion is equivalent to the LSVR in (2.31) except that the dot product < x i ·x j >= x i

Tx j

is replaced by the kernel K(x i, x j):

maximizeα,α∗ Ld(α, α
∗) =

N∑
i=1

(αi
∗ − αi)yi − ε

N∑
i=1

(αi
∗ + αi)

− 1

2

N∑
i=1

N∑
j=1

(αi
∗ − αi)(αj

∗ − αj)K(x i, x j) (2.98)

s.t 0 ≤ αi, αi
∗ ≤ C

0 =

N∑
i=1

(αi
∗ − αi). (2.99)

The dual problem of the nonlinear SVR corresponding to the quadratic ε−insensitive
loss function is as follows:

maximizeα,α∗ Ld(α, α
∗) =

N∑
i=1

(αi
∗ − αi)yi − ε

N∑
i=1

(αi
∗ + αi)

− 1

2

N∑
i=1

N∑
j=1

(αi
∗ − αi)(αj

∗ − αj)(K(x i, x j)

+
1

C
δij) (2.100)

s.t 0 ≤ αi, αi
∗ ≤ C

0 =
N∑
i=1

(αi
∗ − αi). (2.101)

The KKT complementarity conditions are the same as LSVR.
The examples given in Fig. 2.13 are illustrative examples that present a regression

problem with nonlinear data. To illustrate some solutions of the nonlinear SVR, we used
several values of C to model the nonlinear data. The ε−insensitive function (ε = .05)
with linear loss is used with RBF kernel. Fig. 2.13(a) shows the solution for C = .1.
Obviously the solution is unable to model data for this value of C. Fig. 2.13(b) illustrates
the solution for C = 1. It is remarkable that the solution is unable to correctly model
the data summit. Fig. 2.13(c) with C = 10 correctly models data and the solution
is in the ε−insensitivity area. Typically, a selection of the capacity with methods
such as cross validation is recommended. Generally, in the regression technique, it is
necessary to select the representative loss function and the optimum value of capacity.
These considerations should be based on the knowledge of the problem and the noise
distribution. In the absence of these information, the robust loss function presented in
Fig. 2.8 has shown good performance [46].
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2.5 Conclusion

This chapter shows how the results of learning theory can be used to avoid the difficulties
of applying linear functions in high dimension features spaces with induced kernels. We
have also shown how optimization problems can be transformed under a quadratic
convex dual form for each adapted approaches for classification and regression in their
linear and nonlinear versions. In the case of regression, the loss function penalizes errors
only above the threshold ε. Such a loss function typically leads to a fine representation
of the decision rule giving significant advantages.

In this chapter, we have described the linear support vector machine for classification
and regression. Also, the theory of kernel functions associated with SVM was analyzed.
Finally, we have presented classification and regression support vector machine in their
nonlinear version. Nonlinear support vector regression applied to channel estimation in
the OFDM-LTE communication system will be developed later.



Chapter 3

Mobile Radio Channel in OFDM
Communication System

3.1 Introduction

The objective of this chapter is modeling and simulation of mobile radio channel for
LTE communication system. We introduce first the principle of Orthogonal Frequency
Division Multiplexing (OFDM) transmission scheme. Then, we explore a mathematical
framework of multipath Rayleigh channel. After that, we present an overview of the
nonlinear impulsive noise which can frequently occur in communication systems. In
addition, the LTE-3GPP standardized power delay profiles are presented. Then, in
order to evaluate the performance of the channel estimation techniques, the mobile
radio channels based on several scenarios are simulated.

3.2 OFDM Communication System

Multiple carriers can be used for high data rate transmission to overcome the frequency
selectivity of the wideband channel experienced by single-carrier transmission. Indeed,
the wideband signal can be considered as several narrowband signals. So that the
frequency-selective wideband channel can be approximated by multiple frequency-flat
narrowband channels. Thus, the complexity of the equalizer for each subchannel can
be reduced by the frequency-nonselectivity of narrowband channels. As long as the
orthogonality among the subchannels is maintained, the inter-carrier interference (ICI)
can be suppressed, leading to distortionless transmission [55].

3.2.1 OFDM transmission scheme

Orthogonality

OFDM transmission scheme is a type of a multichannel system which employs mul-
tiple orthogonal subcarriers. These orthogonal signals are overlapped in spectrum.

41
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In practice, Discrete Fourier Transform (DFT) and inverse DFT (IDFT) processes are
useful for implementing these orthogonal signals. These DFT and IDFT can be im-
plemented efficiently by using Fast Fourier Transform (FFT) and inverse FFT (IFFT),
respectively.

Let
{
ej2πfkt

}N−1

k=0
be the time-limited complex exponential signals which represent

different subcarriers at fk = k/T in the OFDM signal, where 0 ≤ t ≤ T .
If the integral of the products for the common period of signals T is zero, then these

signals are defined to be orthogonal, that is

1

T

∫ T

0
ej2πfkte−j2πfit dt =

1

T

∫ T

0
ej2π

k
T
te−j2π i

T
t dt

=
1

T

∫ T

0
ej2π

(k−i)
T

t dt

=

{
1, ∀ k = i
0, otherwise.

(3.1)

Equation (3.1) can be written in the discrete time domain, by tacking the discrete
samples at the sampling instances t = n Ts = n T

N for n = 0, 1, · · · , N − 1, where Ts
denotes the subcarrier duration, as follows:

1

N

N−1∑
n=0

ej2π
k
T
nTse−j2π i

T
nTs =

1

N

N−1∑
n=0

ej2π
k
T

nT
N e−j2π i

T
nT
N

=
1

N

N−1∑
n=0

ej2π
(k−i)
N

n

=

{
1, ∀ k = i
0, otherwise.

(3.2)

So, the OFDM signal is ICI-free if the above orthogonality condition is satisfied.

OFDM modulation and demodulation techniques

The OFDM transmitter maps the message bits into a sequence of QAM symbols which
will be converted into N parallel streams by serial-to-parallel (S/P) conversion. Each
of these N symbols is carried out by a different subcarrier.

Let Xl[k] be the lth transmit symbol at the kth subcarrier, where l = 0, 1, · · · ,∞
and k = 0, 1, · · · , N − 1. The transmission duration of N symbols is extended to NTs,
which forms a single OFDM symbol with a length of T (T = NTs) due to the S/P
conversion.

Let Υl,k(t) be the lth OFDM signal at the kth subcarrier, expressed as

Υl,k(t) =

{
ej2πfk(t−lT ), 0 < t ≤ T
0, elsewhere.

(3.3)
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In continuous-time domain, the passband and baseband OFDM signals can be repre-
sented respectively as [56]

xl(t) = ℜ

{
1

T

∞∑
l=0

{
N−1∑
k=0

Xl[k]Υl,k(t)

}}
(3.4)

and

xl(t) =

∞∑
l=0

N−1∑
k=0

Xl[k]e
j2πfk(t−lT ). (3.5)

Equation (3.5) presents the continuous-time baseband OFDM signal which can be sam-
pled at t = lT + nTs with Ts = T/N and fk = k/T to yield the following discrete-time
OFDM symbol:

xl[n] =

N−1∑
k=0

Xl[k]e
j2πkn/N , n = 0, 1, · · · , N − 1. (3.6)

Equation (3.6) presents theN -point IDFT of QAM data symbolsXl[k], k = 0, · · · , N−1
which can be well computed by the IFFT algorithm.

Consider now the received baseband OFDM symbol yl(t) =
∑N−1

k=0 Xl[k]e
j2πfk(t−lT )

with lT < t ≤ lT+nTs, where the noise and channel effects are not taken into account.
The transmitted symbol Xl[k] can be reconstructed from yl(t) using the orthogonality
among the subcarriers described in equation (3.1) as follows:

Yl[k] =
1

T

∫ ∞

−∞
yl(t)e

−j2πfk(t−lT ) dt

=
1

T

∫ ∞

−∞

{
N−1∑
i=0

Xl[i]e
j2πfi(t−lT )

}
e−j2πfk(t−lT ) dt

=
N−1∑
i=0

Xl[i]

{
1

T

∫ T

0
ej2π(fi−fk)(t−lT ) dt

}
= Xl[k]. (3.7)

Let {yl[n]}N−1
n=0 be the sample values of the received OFDM symbol yl(t) at t =

lT + nTs. So, the integration in modulation process presented in equation (3.7) can be
represented in discrete time domain as

Yl[k] =
N−1∑
n=0

yl[n]e
−j2πkn/N

=

N−1∑
n=0

{
1

N

N−1∑
i=0

Xl[i]e
j2πin/N

}
e−j2πkn/N

=
1

N

N−1∑
n=0

N−1∑
i=0

Xl[i]e
j2π(i−k)n/N = Xl[k]. (3.8)
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Equation (3.8) is the N -point DFT of yl[n], n = 0, · · · , N − 1 which can be well
computed by the FFT algorithm.

3.2.2 Guard interval

Multipath channel effect on OFDM symbol

Let xl(t) =
∑N−1

k=0 Xl[k]e
j2πfk(t−lT ), lT < t ≤ lT + nTs, be the lth OFDM signal.

The received signal for a channel with an impulse response hl(t) is given by

yl(t) = xl(t) ∗ hl(t) + zl(t)

=

∫ ∞

0
hl(τ)xl(t− τ) dt+ zl(t), lT < t ≤ lT + nTs (3.9)

where zl(t) denotes the additive white Gaussian noise (AWGN) process.
Equation (3.9) can be represented in discrete time domain by taking the samples at

nTs = nT/N as follows:

yl[n] = xl[n] ∗ hl[n] + zl[n]

=

∞∑
m=0

hl[m]xl[n−m] + zl[n], (3.10)

where yl[n] = yl(nTs), xl[n] = xl(nTs), hl[n] = hl(nTs) and zl[n] = zl(nTs).

The frequency domain symbol X[k] modulates the subcarrier with a frequency fk =
k/T , and can be demodulated by using the orthogonality among the subcarriers at the
receiver. The original symbol X[k] has a duration equal to Ts, however its length has
been extended to become T = NTs by transmitting N symbols in parallel since the
OFDM symbol is a composite signal of N symbols transmitted in parallel form which
has a duration equal to T . Let Tu denotes the effective OFDM symbol duration without
guard interval. Note that the frequency spacing between subcarriers is △f = 1/Tu. By
extending the symbol duration by N times, the multipath fading channel effect can be
deeply reduced on the OFDM symbol. Yet, its effect still remains as a destructive factor
that may rupture the orthogonality among the subcarriers in the OFDM system.

Inter-Symbol Interference (ISI) can occur when a first received symbol is mixed up
with a second received symbol. It is then evident that all subcarriers are no longer or-
thogonal over the duration of each OFDM symbol. So that, there must be some means
to deal with the ISI effect over the multipath channel to guarantee the performance of
transmission. A guard interval between two consecutive OFDM symbols will be neces-
sary, as discussed in the sequel.

Cyclic Prefix

Two different techniques can explain the OFDM guard interval insertion. The first
one is the zero padding (ZP) technique that pads the guard interval with zeros. The
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other one is the cyclic extension of the OFDM symbol by a cyclic prefix (CP) for as-
suring some continuity. The CP consists of extending the OFDM symbol by copying
its last samples into its front. Let Tcp be the length of the CP. Then, the duration of
the extended OFDM symbol becomes T = Tu + Tcp. Note that the length of the cyclic
prefix must be set equal to or longer than the maximum delay of the multipath channel.
This is for assuring that the cyclic prefix confines the effect of the ISI of an OFDM
symbol on the next OFDM symbol. Consequently, the orthogonality among the sub-
carriers will be maintained. Indeed, the orthogonality of each delayed subcarrier with
all other subcarriers is maintained over Tu because its continuity has been warranted
by the cyclic prefix, such that

1

Tu

∫ Tu

0
ej2πfk(t−t0)e−j2πfi(t−t0) dt = 0, k ̸= i (3.11)

for the first OFDM signal that comes with a delay of t0, and

1

Tu

∫ Tu

0
ej2πfk(t−t0)e−j2πfi(t−t0−T ) dt = 0, k ̸= i (3.12)

for the second OFDM signal that comes with a delay of t0 + T .
Now, at the receiver side, suppose that the CP length is set longer than the maximum

delay of the channel, then the FFT of the received samples {yl[n]}N−1
n=0 is taken by the

OFDM receiver to yield

Yl[k] =

N−1∑
n=0

yl[n]e
−j2πkn/N

=
N−1∑
n=0

{ ∞∑
m=0

hl[m]xl[n−m] + zl[n]

}
e−j2πkn/N

=

N−1∑
n=0

{ ∞∑
m=0

hl[m]

{
1

N

N−1∑
i=0

Xl[i]e
j2πi(n−m)/N

}}
e−j2πkn/N + Zl[k]

=
1

N

N−1∑
i=0

{{ ∞∑
m=0

hl[m]e−j2πim/N

}
Xl[i]

N−1∑
n=0

e−j2π(k−i)n/N

}
+ Zl[k]

= Hl[k]Xl[k] + Zl[k], (3.13)

where Yl[k], Xl[k],Hl[k] and Zl[k] are the kth subcarrier frequency component of the lth

received symbol, transmitted symbol, channel frequency response and noise, respectively
in the frequency domain.

Equation (3.13) implies that the OFDM system can be considered as a multiplication
between the input symbol and the channel frequency response in the frequency domain.
Therefore, it can be easily seen that the transmitted symbol can be detected by one
tap equalization since Yl[k] = Hl[k]Xl[k], which just divides the received symbol by the
channel response (Xl[k] = Yl[k]/Hl[k]).
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We notice that Yl[k] = Hl[k]Xl[k] only when yl[n] = xl[n] ⊗ hl[n] where ⊗ is the
operation of the circular convolution. Indeed, Yl[k] = Hl[k]Xl[k] is obtained in the
receiver side thanks to CP insertion in the transmitter which makes the input samples
circularly-convolved with the channel samples.

3.3 Radio Channel in Mobile Communication System

3.3.1 Multipath Rayleigh channel model

Multipath Rayleigh channel consists of a reasonable model when there are a lot of objects
that scatter the radio signal in the environment before it arrives at the receiver. If there
is sufficiently much scatters, the central limit theorem holds that the channel impulse
response will be well-modeled as a Gaussian process respective to the distribution of
the single component. Such a process will have zero mean and phase evenly distributed
between 0 and 2π radians if there is no dominant component to the scatter. Therefore,
the envelope of the channel response will be Rayleigh distributed. Rician fading may
be applied if there is a dominant line of sight.

A mathematical representation of the real part of the channel is provided by the
modeling of the transmission channel. Let s(t) be a signal with carrier frequency fc,
then s(t) has the general representation

s(t) = ℜ
{
sb(t)e

j2π(fct+ϕ)
}
, (3.14)

where sb(t) and ϕ represent the baseband signal of s(t) and the initial phase of the local
oscillator at the transmitter, respectively.

The signal s(t) emitted into wireless channel undergoes reflections, diffractions and
scattering on different obstacles to generate M replicas having diverse paths. Each
path is diffracted into NM under-paths. According to the law of superposition [57], the
received signal r(t) can be expressed as

r(t) = ℜ

{
M−1∑
m=0

NM−1∑
n=0

am,n sb(t− τm,n)e
j(2π(fc+fm,n)(t−τm,n)+ϕ)

}
, (3.15)

where am,n, τm,n and fm,n represent attenuation, delay and Doppler shift for the nth

under-path from the mth path, respectively.
On the other hand, under-paths in the same path m can be considered as very

similar, so that it is possible to approximate the delays τm,n by the average delay of the
path m as follows:

τm =
1

NM

NM−1∑
n=0

τm,n. (3.16)

The expression of the received signal r(t) becomes after using equation (3.16) as follows:

r(t) = ℜ

{
M−1∑
m=0

NM−1∑
n=0

am,n sb(t− τm)ej(2π(fc+fm,n)(t−τm)+ϕ)

}
. (3.17)



Radio Channel in Mobile Communication System 47

The above expression can be rewritten as

r(t) = ℜ

{
M−1∑
m=0

(
NM−1∑
n=0

am,ne
j(2πfct+2πfm,nt−2π(fc+fm,n)τm+ϕ)

)
sb(t− τm)

}
(3.18)

The simplified expression of the baseband received signal is equal to

rb(t) =

M−1∑
m=0

hm(t)sb(t− τm), (3.19)

where hm(t) is given by

hm(t) =

NM−1∑
n=0

cm,n(t), (3.20)

with cm,n(t) = am,ne
j(2πfm,nt+θm,n+ϕ) and θm,n = −2π(fc + fm,n)τm.

When the propagation environment is changing over time or when the receiver or
transmitter is moving, the impulse response of the propagation channel h(t, τ) represents
a function of two dimensions: time and delay spread. It can be expressed as [57]

h(t, τ) =

M−1∑
m=0

hm(t)δ(t− τm). (3.21)

We notice that the term hm(t) can be interpreted as the channel impulse response of
the mth path.

3.3.2 Generation of a single path impulse response hm(t)

The method of generating the impulse response hm(t) is based on the expression (3.20)
where hm(t) is varying according to the following parameters:

• θm,n: is a random phase. This phase is caused by rays reflection, and obtained by
selection of a uniform random variables from [0, 2π[ .

• am,n: represents attenuation, and it can be obtained by selection of a uniform

random variables from ]0,
√

σm
2

NM
[, where σm2 is the variance of the mth path.

• According to Jakes model, scatters are assumed to be uniformly distributed around
a circle at angles nδθ with n under-paths emerging from each scatter. The Doppler
shift on the nth under-path of the mth path is fm,n = fd cos(nδθ) where fd
represents the maximum Doppler frequency and δθ = 2π

NM
[58].
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Figure 3.1: Generation of hm(t) of a single path.

Figure 3.2: Diagram of multi-path channel simulation.
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3.3.3 Generation of the channel frequency response

We can generate the equivalent (total) channel impulse response according to the ex-
pression given by [57] which is based on the impulse response hm(t) of a single path as
follows:

heqk (t) =

M−1∑
m=0

hm(t, τm)sinc(
τm
Te
− k), (3.22)

where Te represents the average delay related to the used channel type.
We present the diagram of a channel impulse response simulator of the kth subcar-

rier in Fig. 3.3.
After the generation of hm(t) and its equivalent channel, we can get the channel fre-
quency response as following, where we define heqk,i(t) as

heqk,i(t) = heqk (t), t ∈ [iTu, (i+ 1)Tu [. (3.23)

Therefore, the channel frequency response during the ith OFDM symbol can be ex-
pressed as (

Heq
0,iH

eq
1,i · · ·H

eq
N−1,i

)
= DFT

(
heq0,ih

eq
1,i · · ·h

eq
N−1,i

)
. (3.24)

Then, the input/output relation that summarizes the discrete model simulator for an
OFDM system is given by

Yk,i = Heq
k,iXk,i + Zk,i. (3.25)

Fig. 3.4 presents a simplified simulation diagram for an OFDM transmission system
operating in a multipath environment.

3.4 Impulsive Noise

The noise can be considered as an unwanted signal that interferes with the communi-
cation signal. Noise can be present in different degrees in almost all environments. In
digital communication, there may be several varieties of types and sources of noise such
that:

• electronic noise (such as thermal noise)

• acoustic noise (caused by moving vehicle)

• electrostatic noise (caused by the presence of voltage)

• electromagnetic noise (caused by interference between transmission and reception
signals over radio frequency spectrum)

• communication channel fading and signal distortion.
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Figure 3.3: Diagram of a channel impulse response simulator of the kth subcarrier.

Figure 3.4: Simulation diagram for an OFDM transmission system.
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Signal distortion describes the undesirable changes in a signal due to multipath effects
and signal fading impact. Distortion and noise are the major factors that limit the
precision of results in signal measurement systems and the capacity of data transmission.
Thus, the modeling and removal of the effects of distortion and noise are important
problems in many applications such as digital cellular mobile communication.

On the other hand, depending on its time characteristics or frequency spectrum, a
noise process can be classified into several categories such as, white noise, narrow band
noise, colored noise, impulsive noise, etc.

We will interest in this section to describe the nonlinear impulsive noise which
will be exploited later in our simulations. Indeed, impulsive noise consists of random
short duration noise pulses caused by a channel effects and interfering sources, such as
electromagnetic interference, switching noise, adverse channel environments in a com-
munication system, signal dropouts, data packet loss, etc [59].

Fig. 3.5 shows an example of impulsive noise combined with additive Gaussian noise
represented in time domain.

Figure 3.5: Impulsive noise with Gaussian noise in time domain [60].

3.4.1 Theoretical impulse function

In continuous time domain, the formulation of the mathematical concept of an impulse
is described in Fig. 3.6.

Let p(t) be a unit-area pulse. The pulse tends to an impulse with infinite power,
energy and amplitude as the pulse width ∆ tends to zero while the area under the pulse
remains equal to unity.

δ(t) = lim
∆→0

p(t) =

{
1
∆ , |t| ≤ ∆/2
0, |t| > ∆/2.

(3.26)
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(a) (b) (c)

Figure 3.6: The impulse representation: (a) A unit-area pulse, (b) The pulse becomes
an impulse as ∆→ 0 and (c) The spectrum of the impulse function.

The integral of the impulse function is expressed as∫ ∞

−∞
δ(t)dt = ∆× 1

∆
= 1. (3.27)

The Fourier transform of the impulse function is given by

∆(f) =

∫ ∞

−∞
δ(t)e−j2πftdt = 1. (3.28)

In discrete-time domain, the impulse δ(n) can be represented by a signal with an
‘on’ duration of one sample as follows:

δ(n) =

{
1, n = 0
0, otherwise

(3.29)

where n is the discrete-time index. This function is known by the Kronecker delta
function.

The frequency spectrum of a digital impulse can be derived using the Fourier trans-
form relation as

∆(f) =
∞∑

n=−∞
δ(n)e−j2πfn = 1 −∞ < f <∞. (3.30)

3.4.2 The response of a communication system to an impulse

Because the realization of a theoretical impulse would require immeasurable power as
energy would be delivered in infinitesimally small time, theoretical impulses of infinites-
imal duration don’t exist in real-life engineering systems. Real impulsive-type noise in
communication systems has a finite non-zero duration, that is usually more than one
sample long in sampled discrete-time form [59].

The impulse response is defined as the response of a system to an impulse. An
impulsive noise begins at some point in space and time and then propagates through
the channel to the receiver. Thus, the temporal-spectral shape of the received noise is
affected by the channel. Generally, the response of a communication channel may be
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stationary or time varying, linear or nonlinear. Moreover, many communication systems
exhibit nonlinear characteristics in response to a large amplitude impulse.

The choice of an appropriate domain for signal representation (time domain or fre-
quency domain) has a significant consideration in the development of a noise processing
system. The choice should be determined according to the special objective of the
system.

• In signal classification and parameter estimation, the objective is to compensate
the average effects of the noise over a number of samples, and in many cases, it
is more appropriate to use frequency domain signal processing for the impulsive
noise since the mean of the power spectrum of the signal is changed by the noise
effect.

• In signal restoration, the objective consists of separating the noise from the signal.
Impulsive noise is usually more detectable and distinct in the time domain, so it
is appropriate to process the impulsive noise in time domain.

3.4.3 Power spectrum of impulsive noise

Impulsive noise represents a non-stationary, binary-state sequence of impulses with
random times of occurrence and random amplitudes. The non-stationary nature of
impulsive noise can be evaluated by the power spectrum of an impulsive noise process.
In fact, when an impulse is present, the noise power represents the power of the impulse,
and when the noise is absent the process has zero power.
Thus, the power spectrum and the autocorrelation functions of an impulse noise are
time-varying binary state processes.

An impulsive noise sequence can be modeled as a binary-state amplitude-modulated
sequence, and expressed as follows:

i(m) = n(m)b(m), (3.31)

where n(m) is a random noise process and b(m) is a state function which represents a
random binary sequence of ones and zeros.

Suppose that impulsive noise is an uncorrelated random process, then the autocor-
relation function of impulsive noise can be defined as a binary-state process as follows:

rii(k,m) = E[i(m)i(m+ k)] = σi
2δ(k)b(m). (3.32)

Since the impulsive noise is assumed to be uncorrelated, the autocorrelation is equal
to zero for k ̸= 0, thus equation (3.32) can be expressed as

rii(0,m) = σi
2b(m). (3.33)

By taking the Fourier transform of the autocorrelation function, the power spectrum of
an impulsive noise sequence can be given by

PII(f,m) = σi
2b(m). (3.34)

The autocorrelation and power spectrum expressions are represented as binary-state
functions that at time m, depend on the ‘on/off’ state of impulsive noise.
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3.4.4 Probability models of impulsive noise

In this section, two statistical processes for characterization and modeling of an im-
pulsive noise as a binary-state amplitude-modulated sequence are considered. These
processes are Bernoulli-Gaussian process and Poisson-Gaussian process.

3.4.4.1 Bernoulli-Gaussian model of impulsive noise

In a Bernoulli-Gaussian model of impulsive noise, the amplitude of the impulses is
modeled by a Gaussian process g(m) and the random time of occurrence of the impulses
is modeled by a binary Bernoulli process b(m). A Bernoulli process b(m) represents a
binary-valued process that takes a value of ‘0’ with a probability of 1 − p and a value
of ‘1’ with a probability p. Thus, b(m) = 0 signals the absence of an impulse whereas
b(m) = 1 signals the presence of an impulse.
The probability function of a Bernoulli random process is represented by

Pr(b(m)) =

{
p, b(m) = 1
1− p, b(m) = 0.

(3.35)

The mean of a Bernoulli process is given by

E[b(m)] = p× 1 + (1− p)× 0

= p, (3.36)

and its variance is expressed as

σb
2 = E

{
[b(m)− E(b(m))]2

}
= E[(b(m)− p)2]

= p(1− p). (3.37)

A zero-mean Gaussian probability density function (pdf) model of the random ampli-
tudes of an impulsive noise has the following expression:

fN (i(m)) =
1√
2πσi

exp − i
2(m)

2σi2
, (3.38)

where σi2 represents the variance of the noise amplitude.
The probability density function of an impulsive noise i(m) in a Bernoulli-Gaussian

model is given by a mixture of two probabilities as

fBG
N (i(m)) = (1− p) δ(i(m)) + p fN (i(m)), (3.39)

where δ(i(m)) denotes the Kronecker delta pdf that models the absence of noise.
Note that the function fBG

N (i(m)) represents a combination of a discrete probability
function δ(i(m)) and a continuous probability density function fN (i(m)).
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3.4.4.2 Poisson-Gaussian model of impulsive noise

In a Poisson-Gaussian model, the distribution of the random amplitude of impulsive
noise is modeled by a Gaussian process, whereas the probability of occurrence of number
of impulsive noise events in a time interval of T seconds is modeled by a Poisson process.

The Poisson process is considered as a random event-counting process. The proba-
bility of occurrence of n impulsive noise in a time interval T is represented by

P (n, T ) =
(λT )n

n!
exp(−λT ), (3.40)

where the parameter λ designates a rate function with properties as follows:

Pr(one impulse in a small time interval ∆t) = λ∆t (3.41)
Pr(zero impulse in a small time interval ∆t) = 1− λ∆t. (3.42)

It should be noted that λT is the mean value of the process that represents the average
number of impulses that occurs in a time interval T .

We supposed that, in a time interval ∆t, no more than one impulsive noise can
occur.

The pdf of an impulsive noise i(m) in a small time interval ∆t with a Poisson-
Gaussian model can be written as

fPG
N (i(m)) = (1− λ∆t) δ(i(m)) + λ∆t fN (i(m)), (3.43)

where fN (i(m)) is the Gaussian pdf presented by equation (3.38).
It can be also shown from equation (3.40) that the mean and variance of the number

of impulses in a time T are as follows:

Expected number of impulses in T seconds = λT (3.44)
Variance of number of occurrence of impulses in T seconds = λT. (3.45)

3.5 Radio Channel Representation Functions

3.5.1 Bello functions

Because of the high complexity of the physical interactions, including diffractions, re-
flections, refractions and scattering, the most suitable model for the impulse response
is, from a stochastic point of view, a multivariate random process given by h(t, τ). How-
ever, based on the physically significant parameters such as delays and Doppler shifts,
a parametric approach of the random process may be obtained.

A general assumption is that h(t, τ) represents a wide-sense stationary processes,
where statistical properties of the channel don’t change with uncorrelated scatters, and
with time. These assumptions are jointly called Wide-Sense-Stationary-Uncorrelated-
Scattering (WSSUS), where time delays and Doppler shifts are uncorrelated.

In [61], Bello defines the relationships between functions of the channel characteris-
tics. Indeed, he named h(t, τ) as the input delay spread function, defined as the response
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of the channel to a unit impulse function input at some time t and some previous time
τ seconds. The output of the channel r(t) can be expressed by the convolution between
the input signal s(t) and h(t, τ) integrated over the variable τ as follows:

r(t) = s(t) ∗ h(t, τ) =
∫ ∞

−∞
h(t, τ)s(t− τ) dτ. (3.46)

We can perform the Fourier transformation with respect to either or both of t
and τ since the impulse response of a time-variant system h(t, τ) depends on these two
variables. This results four equivalent representations which are represented in Fig. 3.7.

Time-varying impulse response

The impulse response h(t, τ) varies with time t and propagation delay τ and it rep-
resents the starting point for characterizing the time-variant channel.

Time-varying transfer function

The time-varying transfer function H(t, f) is the Fourier transform of the impulse re-
sponse h(t, τ) with respect to τ :

H(t, f) =

∫ ∞

−∞
h(t, τ)e−j2πfτ dτ. (3.47)

Delay Doppler-spread function

Fourier-transforming with respect to t results the delay Doppler-spread function S(v, τ)
which describes the spreading of the impulse signal in the delay and Doppler domain:

S(v, τ) =

∫ ∞

−∞
h(t, τ)e−j2πtv dt. (3.48)

Doppler-variant transfer function

The Doppler-variant transfer function B(v, f) is the Fourier transform of S(v, τ) with
respect to the variable τ :

B(v, f) =

∫ ∞

−∞
S(v, τ)e−j2πfτ dτ. (3.49)

This function represents the frequency variations induced by the channel due to the
mobility.

It is possible to obtain the different parameters of the channel from the previous
functions, such that maximum delay τmax, the Doppler spread Bd, time coherence Tc
and the bandwidth coherence Bc.
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Figure 3.7: The Bello functions: Interrelations between different system functions.

3.5.2 Multipath intensity profile

The autocorrelation function can be calculated for a given channel impulse h(t, τ) as
follows:

S(t1, t2; τ) =
1

2
E {h∗(t1, τ)h(t2, τ)} , (3.50)

where h(t1, τ) and h(t2, τ) are the channel impulse responses at instants t1 and t2,
and E(·) represents the expectation operator. Assume that the channel is wide sense
stationary, then equation (3.50) can be expressed as

S(∆t; τ) =
1

2
E {h∗(t, τ)h(t+∆t, τ)} . (3.51)

It can be noted that S(∆t; τ) gives the average power output of the channel as a
function of the difference ∆t in time observation and delay spread τ .

If ∆t = 0, then we obtain the function S(0; τ) = S(τ) which called the multipath
intensity profile. S(τ) represents the average power output of the channel as a function
of the delay spread τ .

The delay spread is defined as the signal propagation delay that exceeds the delay
of the first signal arrival at the receiver. The delay spread values can be quantified by
two types:

• τmax (maximum excess delay): represents the time between the first and the last
received path of a transmitted pulse.
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• µτ (average delay): represents the mean of the multipath channel delay and given
by

µτ =

∫ +∞
0 τS(τ)dτ∫ +∞
0 S(τ)dτ

. (3.52)

3.5.3 Spaced-time correlation function

Let S(t; τ) be the autocorrelation function of the channel impulse response, then the
spaced-time correlation function can be expressed as [62]

R(∆t) =

∫ +∞

−∞
S(∆t; τ) dτ. (3.53)

The autocorrelation function R(∆t) gives the coherence of the channel in time domain.
In addition, time coherence Tc is defined as the measure of the expected time duration
over which the channel response is invariant. It should be noted that Doppler spread Bd

and coherence time Tc are reciprocally related due to the Fourier relationship between
spaced-time correlation function and Doppler power spectrum as follows:

Bd ∝
1

Tc
. (3.54)

The coherence time and the spaced-time correlation function provide a measure of the
channel variation rapidity. If the coherence time is superior to symbol duration, then the
channel is said slow fading and if the coherence time is inferior to symbol duration, the
channel is said fast fading. The channel fading characteristics remain almost constant
during slow fading, while in fast fading the channel fading characteristics vary multiple
times.

3.5.4 Spaced-frequency correlation function

The autocorrelation function R(t1, t2;∆f) of the channel impulse response can be ex-
pressed as [62]

R(t1, t2;∆f) =
1

2
E {H∗(t1, f1)H(t2, f2)} , (3.55)

with H(t1, f1) and H(t2, f2) are the channel frequency responses at time-frequency pairs
(t1, f1) and (t2, f2) respectively, and ∆f = (f2−f1) is the frequency difference. It can be
assumed that the channel is wide sense stationary, so equation (3.55) can be represented
in the following form:

R(∆t;∆f) =
1

2
E {H∗(t, f1)H(t+∆t, f2)} , (3.56)

where ∆t represents the time difference between channel transfer function observations,
and R(∆t;∆f) is called spaced-time-spaced-frequency correlation function of the chan-
nel [62]. If we take ∆t = 0 in equation (3.56), then we will get the spaced-frequency
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correlation function R(0;∆f) = R(∆f). This function offers a correlation measure of
the channel frequency response as a function of ∆f . Note that the spaced-frequency
function is the Fourier transform of the multipath intensity profile S(τ) and it is given
by

R(∆f) =

∫ +∞

−∞
S(τ) e−j2π∆fτ dτ. (3.57)

The autocorrelation function R(∆f) gives the coherence of the channel in frequency
domain. It provides a measure of the channel coherence bandwidth which represents
a statistical measure of the frequency range over which all spectral components pass
through the channel with equal gain and linear phases approximately.

The delay spread and the coherence bandwidth are related due to the Fourier trans-
form relationship between S(τ) and R(∆f) as follows:

Bc ∝
1

τmax
. (3.58)

The relationship between the transmitted signal bandwidth Bs and the coherence band-
width Bc determines the nature of the fading. The channel is flat fading or frequency
non-selective fading when Bc > Bs, whereas it is said frequency selective when Bc < Bs.

3.5.5 Doppler power spectrum

The Doppler power spectrum S(v) gives knowledge of spectral enlargement of the fre-
quency impulse which passes through a channel. It can be derived using the Fourier
transform of the time-spaced correlation function given in equation (3.53) as follows:

S(v) =

∫ +∞

−∞
R(∆t) e−j2πv∆t d∆t, (3.59)

with v represents the frequency shift relative to the carrier frequency. Note that, the
Doppler spread measures the width of the Doppler power spectrum.

3.6 Simulation of Mobile Radio Channels in LTE Commu-
nication System

Basing on the standardized power delay profile given by 3GPP specifications, we simu-
late an LTE mobile radio channel. Indeed, 3GPP describes three discrete power delay
profiles for investigating wireless communication performance at 2.15 GHz ± 5 MHz:

• Extended Pedestrian A (EPA) model

• Extended Vehicular A (EVA) model, and

• Extended Typical Urban (ETU) model.
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Table 3.1: Power delay profile for LTE-3GPP channels.

EPA EVA ETU
ETD [ns] RPT [dB] ETD [ns] RPT [dB] ETD [ns] RPT [dB]

0 0.0 0 0.0 0 -1.0
30 -1.0 30 -1.5 50 -1.0
70 -2.0 150 -1.4 120 -1.0
90 -3.0 310 -3.6 200 0.0
110 -8.0 370 -0.6 230 0.0
190 -17.2 710 -9.1 500 0.0
410 -20.8 1090 -7.0 1600 -3.0

1730 -12.0 2300 -5.0
2510 -16.9 5000 -7.0

The excess tap delay (ETD) and relative power of taps (RPT) can be shown in table
3.1 [58].

In our work, we are focusing on the Extended Vehicular A (EVA) channel which
provides us a possibility to investigate our contribution in highly selective mobile radio
channel estimation.

3.7 Conclusion

In this chapter, we have presented the principle of OFDM transmission scheme. Then,
we have presented a mathematical framework for multipath Rayleigh channel. An
overview of nonlinear impulsive noise which can often appears in communication system
is also presented. In addition, the main LTE-3GPP standardized power delay profiles
are enumerated. Finally, we have simulated LTE channels based on 3GPP specifications
according to the channel model presented in this chapter. In the next chapter, we will
present the SVR channel estimation technique for SISO-LTE system.
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Figure 3.8: Variations in time and in frequency of the channel frequency response for
mobile speed = 30 Km/h.
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Figure 3.9: Variations in time and in frequency of the channel frequency response for
mobile speed = 60 Km/h.
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Figure 3.10: Variations in time and in frequency of the channel frequency response for
mobile speed = 120 Km/h.
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Figure 3.11: Variations in time and in frequency of the channel frequency response for
mobile speed = 350 Km/h.



Chapter 4

SVR Channel Estimation in
SISO-OFDM System

4.1 Introduction

Several digital communication applications using support vector machines depend on
the traditional SVM classification and regression. Nevertheless, the introduction of
complex algebra in the SVM algorithms can give us with a more natural and flexible
framework when dealing with symbols and complex constellations.

In this chapter, a complex robust support vector regression (SVR) formulation par-
ticularly adopted to a pilot-based OFDM signal is presented. The feasibility of this
technique is validated by computer simulation results obtained for Long Term Evolu-
tion (LTE) channel model. These experiments let us to analyze the performance of the
SVM-OFDM system in the presence of impulsive noise interfering with OFDM reference
symbols .

This chapter is organized as follows. In the second section, we present the complex
SVR approach. In the third section, the OFDM system model is described. In the
fourth section, some standard channel estimation techniques such as LS, MMSE and
Decision Feedback are described. In the fifth section, the nonlinear complex SVR-
OFDM formulation is developed. Finally, simulation results are analyzed and discussed.

4.2 Complex SVR Approach

In practice, most SVM-based solutions corresponding to complex-valued problems have
been solved by reformulating complex single-dimensional vector space into real two-
dimensional vector spaces. Nevertheless, an explicit complex-valued SVM algorithm
can be achievable since complex-variable algebra in SVM regression gives a constrained
optimization problem that is formally similar to the real-variable problem formulation.

Thus, in problems such as array processing and digital communication systems where
complex numbers are often used for computation, complex-algebra representations are
suitable.

65
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In this section, a detailed version of the complex algorithm for support vector re-
gression is presented.

4.2.1 Primal optimization functional

Consider a set of M pairs of observations
{
xm ∈ CK , ym ∈ C

}
with m = 1, · · · ,M that

are related by a linear complex-coefficients regression model as follows:

ym =

K∑
k=1

wkxkm + em = wHxm + em, (4.1)

where ym and xm =
[
x1m, · · · , xKm

]T are the mth complex output and input data, respec-
tively, w =

[
w1, · · · , wK

]T represents a K−complex regression vector, and em denotes
the residual noise (or complex error).

The risk of an estimator can be represented in two terms:

• empirical risk: which is measured directly on the residuals by using an appropriate
cost function,

• structural risk: which includes a bound on the complexity of the resulting model.

It should be noted that minimizing the structural risk term stands for maximizing the
estimator generalization capabilities when the empirical risk is reduced to zero. For
linear machines, the procedure is reduced to finding the maximal margin solution by
minimizing the norm of the model coefficients w. Thus, we have to minimize in equation
(4.1)

1

2
∥w∥2 (4.2)

constrained to

ℜ(ym −wHxm) ≤ ε
ℑ(ym −wHxm) ≤ ε
ℜ(−ym +wHxm) ≤ ε
ℑ(−ym +wHxm) ≤ ε, (4.3)

where ε denotes the error-tolerance parameter, and ℜ and ℑ are the real and imaginary
parts of the complex number, respectively.

Note that not all of the samples will satisfy the conditions in equation (4.3), and
some of them will generate errors above ε. In this case, empirical error terms have to
be introduced by using a suitable cost function of the model residuals. The ε− Huber
cost function (4.4) is a general cost function which considers a linear and quadratic
cost zones. This residual cost function is appropriate for communication environments,
where additive white Gaussian noise is not the only type of noise presented in the input
signals.
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Figure 4.1: ε−insensitivity zone and relationship between errors and losses for the
complex-valued observation ym.

Equation (4.4) can be viewed as an approximation to the maximum likelihood cost
function for sub-Gaussian noise such as impulsive or multiuser noise. At high noise
level, Gaussian-noise contribution will be negligible and other noise will predominate,
and then a linear cost function will perform better. At a low noise level, other noise
sources will be negligible and Gaussian noise will predominate, so that the quadratic
part of the function will be the optimal one. In this case, a reasonable choice for the
value of γC + ε is to be equal to the Gaussian-noise variance.

Lε(em, ε, γ, C) =


0, |em| ≤ ε
1
2γ (|em| − ε)

2, ε ≤ |em| ≤ γC + ε .

C(|em| − ε)− 1
2γC

2, γC + ε ≤ |em|
(4.4)

Hence, when losses are considered as presented in Fig. 4.1, the problem consists of
minimizing

1

2
∥w∥2 +

M∑
m=1

(Lε(ℜ(em), ε, γ, C) + Lε(ℑ(em), ε, γ, C)). (4.5)
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Equivalently, we can state the problem as minimizing

1

2
∥w∥2 +

1

2γ

∑
m∈I1

(ξm + ξ∗m)2 + C
∑
m∈I2

(ξm + ξ∗m)

+
1

2γ

∑
m∈I3

(ζm + ζ∗m)2 + C
∑
m∈I4

(ζm + ζ∗m)

− 1

2

∑
m∈I2,I4

γC2 (4.6)

constrained to

ℜ(ym −wHxm) ≤ ε+ ξm

ℑ(ym −wHxm) ≤ ε+ ζm

ℜ(−ym +wHxm) ≤ ε+ ξ∗m

ℑ(−ym +wHxm) ≤ ε+ ζ∗m

ξm, ξ
∗
m, ζm, ζ

∗
m ≥ 0, (4.7)

where data have been distributed according to the sets of indices as follows:

I1 = {m; ε ≤ ξm, ξ∗m ≤ ε+ γC}
I2 = {m; ξm, ξ

∗
m ≥ ε+ γC}

I3 = {m; ε ≤ ζm, ζ∗m ≤ ε+ γC}
I4 = {m; ζm, ζ

∗
m ≥ ε+ γC} , (4.8)

where ξm and ξ∗m are slack variables which stand for positive and negative errors in the
real part, respectively. ζm and ζ∗m are the errors for the imaginary parts.

We notice that errors are either positive or negative, and hence at most one of the
losses takes a nonzero value, so (ξm or ξ∗m) either (ζm or ζ∗m) is null. If we are in the
ε− insensitivity zone, both are null. For that reason, this constraint can be written as
ξmξ

∗
m = 0 (ζmζ

∗
m = 0).

4.2.2 Primal-Dual problem

In SVM methodology, as we saw in chapter 2, it is usually possible to transform the
minimization of the primal optimization functional presented in equation (4.6), subject
to constraints in (4.7) into an optimization of a dual problem.

Firstly, we introduce the constraints into the primal representation by means of
Lagrange multipliers.
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We obtain the primal-dual functional as follows:

LPd =
1

2
∥w∥2 + 1

2γ

∑
m∈I1

(ξm + ξ∗m)2 + C
∑
m∈I2

(ξm + ξ∗m)

+
1

2γ

∑
m∈I3

(ζm + ζ∗m)2 + C
∑
m∈I4

(ζm + ζ∗m)− 1

2

∑
m∈I2,I4

γC2

−
M∑

m=0

(βmξm + β∗mξ
∗
m)−

M∑
m=0

(λmζm + λ∗mζ
∗
m)

+

M∑
m=0

αR,m[ℜ(ym −wHxm)− ε− ξm]

+
M∑

m=0

αI,m[ℑ(ym −wHxm)− jε− jζm]

+

M∑
m=0

α∗
R,m[ℜ(−ym +wHxm)− ε− ξ∗m]

+
M∑

m=0

α∗
I,m[ℑ(−ym +wHxm)− jε− jζ∗m], (4.9)

with the Lagrange multipliers constrained to αR,m, αI,m, βm, λm, α
∗
R,m, α

∗
I,m, β

∗
m, λ

∗
m ≥ 0

and ξm, ζm, ξ∗m, ζ∗m ≥ 0. In addition, the Karush-Kuhn-Tucker (KKT) complementarity
conditions yield that

βmξm = 0, β∗mξ
∗
m = 0 and λmζm = 0, λ∗mζ

∗
m = 0. (4.10)

Functional presented in equation (4.9) has to be minimized with respect to the primal
variables and maximized with respect to Lagrange multipliers. By making zero the
primal-dual functional gradient with respect to each ωi, we obtain an optimal solution
of the weights

w =
M∑

m=1

ψm xm, (4.11)

where ψm = (αR,m − α∗
R,m) + j(αI,m − α∗

I,m) with αR,m, α
∗
R,m, αI,m, α

∗
I,m are Lagrange

multipliers for real and imaginary parts of the residuals.
It should be noted that the solution in (4.11) is a linear combination of the input

samples with complex coefficients, and certainly samples whose coefficients are nonzero
will be the support vectors.



OFDM System Model 70

4.2.3 Dual representation

We can write the norm of the complex coefficients as

∥w∥2 = wHw =
M∑

n,m=1

ψ∗
n ψm x ∗

n xm

=

K∑
k=1

M∑
n,m=1

ψ∗
n ψm x k

n
∗
x k
m. (4.12)

The Gram matrix of the dot products in equation (4.12) can be denoted by

G(n,m) = xH
n xm =

K∑
k=1

x k
n
∗
x k
m. (4.13)

Therefore, we can write the norm of the coefficients as

∥w∥2 = ψH G ψ, (4.14)

where ψ = [ψ0, · · · , ψM−1]
T . By placing equation (4.14) into equation (4.9) and re-

grouping terms, the dual functional to be maximized can be written into a compact
form as follows:

−1

2
ψH(G + γI)ψ + ℜ(ψHy)− (αR +α∗

R +αI +α
∗
I )1ε, (4.15)

where I and 1 are the identity matrix and the all-ones column vector, respectively; αR

is the vector which contains the corresponding dual variables, with other subsets being
similarly represented. Expression (4.15) represents a more appropriate description for
complex-valued problems as it will be shown later where the complex SVR method for
comb type pilot arrangement will be proposed for SISO-OFDM system.

4.3 OFDM System Model

The considered OFDM system model consists firstly of mapping binary data streams
into complex symbols by means of QAM modulation. Then data are transmitted in
frames by means of serial-to-parallel conversion. Some pilot symbols are inserted into
each data frame which is modulated to subcarriers through IDFT. Thus, these pilot
symbols are inserted for channel estimation purposes, and the IDFT is used to transform
the data sequence X(k) into time domain signal as follows:

x(n) = IDFTN {X(k)} =
N−1∑
k=0

X(k) e j 2π
N

kn, n = 0, · · · , N − 1. (4.16)

One guard interval is inserted between every two OFDM symbols in order to eliminate
inter-symbol interference (ISI). It is well known that if the channel impulse response
has a maximum of L resolvable paths, then the GI must be at least equal to L [63].
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Accordingly, the OFDM system comprises N subcarriers which occupy a bandwidth
B. Each OFDM symbol is transmitted in time T and includes a cyclic prefix of duration
Tcp. Therefore, the duration of each OFDM symbol is Tu = T−Tcp. Every two adjacent
subcarriers are spaced by δf = 1/Tu [64]. The output signal of the OFDM system is
converted into serial signal by parallel to serial converter. A complex white Gaussian
noise process N(0, σw

2
g) with power spectral density N0/2 is added through a frequency

selective time varying multipath fading channel.
In a practical environment, impulsive noise can be present, and then the channel

becomes nonlinear with non Gaussian impulsive noise. The impulsive noise can signifi-
cantly influence the performance of the OFDM communication system for many reasons.
First, the time of the arrival of an impulse is unpredictable and shapes of the impulses
are not known and they vary considerably. Moreover, impulses usually have very high
amplitude, and thus high energy, which can be much greater than the energy of the
useful signal [65] [66].

In our thesis, we treat two models of impulsive noise as described in the previ-
ous chapter: Bernoulli-Gaussian process and Poisson-Gaussian process. The Bernoulli-
Gaussian process was generated with the Bernoulli-Gaussian process function i(n) =
v(n)µ(n) where v(n) is a random process with Gaussian distribution and power σ2BG,
and µ(n) is a Bernoulli process, as presented in equation (3.35). Whereas, the Poisson-
Gaussian process was generated with the Poisson-Gaussian process function i(n) =
u(n)λ(n) where u(n) is a random process with Gaussian distribution and power σ2PG,
and λ(n) is a Poisson process, as presented in equation (3.41).

At the receiver side, and after removing guard interval, the discrete-time baseband
OFDM signal for the system including impulsive noise is

y(n) =

N−1∑
k=0

X(k)H(k) e j 2π
N

kn + wg(n) + i(n), n = 0, · · · , N − 1. (4.17)

where y(n) are time domain samples and H(k) = DFTN {h(n)} is the channel’s fre-
quency response at the kth frequency. The sum of both terms of the AWGN noise and
impulsive noise constitutes the total noise given by z(n) = wg(n) + i(n).

Let ΩP be the subset of NP pilot subcarriers and ∆P be the pilot interval in fre-
quency domain. Over this subset, channel’s frequency response can be estimated, and
then interpolated over other subcarriers (N − NP ). These remaining subchannels are
interpolated by the nonlinear complex SVR algorithm.

The OFDM system can be expressed as [67] [68]

y(n) = yP (n) + yD(n) + z(n)

=
∑
k∈ΩP

XP (k)H(k) e j 2π
N

kn +
∑
k/∈ΩP

XD(k)H(k) e j 2π
N

kn + z(n), (4.18)

where XP (k) and XD(k) are complex pilot and data symbol respectively, transmitted
at the kth subcarrier.
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After DFT transformation, y(n) becomes

Y (k) = DFTN {y(n)} =
1

N

N−1∑
n=0

y(n) e −j 2π
N

kn, k = 0, · · · , N − 1. (4.19)

Assuming that ISI are eliminated after DFT transformation, therefore y(n) becomes

Y (k) = X(k)H(k) +WG(k) + I(k)

= X(k)H(k) + Z(k), k = 0, · · · , N − 1 (4.20)

where Z(k) is the residual noise which represents the sum of the AWGN noise WG(k)
and impulsive noise I(k) in the frequency domain, respectively.
Equation (4.20) may be represented in matrix notation

Y = XFh+WG + I = XH + Z, (4.21)

where

X = diag(X(0), X(1), · · · , X(N − 1))

Y = [Y (0), · · · , Y (N − 1)]T

WG = [WG(0), · · · ,WG(N − 1)]T

I = [I(0), · · · , I(N − 1)]T

H = [H(0), · · · , H(N − 1)]T

Z = [Z(0), · · · , Z(N − 1)]T

F =


FN

00 · · · FN
0(N−1)

FN
10 · · · FN

1(N−1)

...
. . .

...
FN

(N−1)0 · · · FN
(N−1)(N−1)


and F i,k

N = (
1√
N

) exp(−j2π( ik
N

)). (4.22)

4.4 Standard Channel Estimation Techniques

4.4.1 LS channel estimation

The principal of the channel least squares estimator is minimizing the square distance
between the received signal Y and the original signal X as follows:

min
HH

J(H) = min
HH

{
|Y −XH|2

}
= min

HH

{
(Y −XH)H(Y −XH)

}
, (4.23)

where, (·)H is the conjugate transpose operator. By differentiating expression (4.23)
with respect to HH and finding the minima, we obtain the LS channel estimation given
by

ĤLS = X−1Y. (4.24)
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LS channel estimation method for OFDM system has low complexity but it suffers
generally from a high mean square error.

4.4.2 MMSE channel estimation

The MMSE estimator uses the second-order statistics of the channel in order to minimize
the mean square error. Let Rhh, RHH and RY Y be the autocorrelation matrix of h, H
and Y respectively, and RhY be the cross-correlation matrix between h and Y . Let σ2z
denotes the noise variance of

{
|Z̄|2

}
, and assume that h and Z are uncorrelated. Then,

we have the following relations:

RHH = E
{
H HH

}
= E

{
(F h)(F h)H

}
= F Rhh FH , (4.25)

RhY = E
{
h Y H

}
= E

{
h (X F h+ Z)H

}
= Rhh FH XH , (4.26)

RY Y = E
{
Y Y H

}
= X F Rhh FH XH + σ2z IN . (4.27)

Assuming that Rhh and σ2z are known at the receiver, the MMSE estimator of h can be
given by [69]

ĥMMSE = RhY RY Y
−1 Y. (4.28)

So, the ĤMMSE can be obtained as [69]

ĤMMSE = F ĥMMSE = F [(FH XH)−1 Rhh
−1 σ2z + X F]−1 Y

= F Rhh [(FH XH X F)−1 σ2z + Rhh] F−1 ĤLS

= RHH [RHH + σ2z (X XH)−1]−1 ĤLS . (4.29)

4.4.3 Estimation with decision feedback

OFDM channel estimation with decision feedback uses the reference symbols to estimate
the channel response using LS algorithm. For each coming symbol i and for each
subcarrier k for k = 0, · · · , N − 1, the estimated transmitted symbol is found from the
previous H(i, k) according to the formula

X̂(i+ 1, k) = Y (i+ 1, k)/Ĥ(i, k). (4.30)

The estimated received symbols X̂(i + 1, k) are used to make the decision about the
real transmitted symbol values X̃(i+1, k). The estimated channel response is updated
by

Ĥ(i+ 1, k) = Y (i+ 1, k)/X̃(i+ 1, k). (4.31)

Therefore, Ĥ(i + 1, k) is used as a reference in the next symbol for the channel equal-
ization.
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4.5 Nonlinear Complex SVR-OFDM Approach

4.5.1 Principle

Let the OFDM frame contains Ns OFDM symbols which every symbol includes N sub-
carriers. The transmitting pilot symbols are XP = diag(X(i,m∆P )),m = 0, 1, · · ·NP−
1, where i and m are labels in time domain and frequency domain respectively, and ∆P
is the pilot interval in frequency domain. Note that, pilot insertion in the subcarriers
of every OFDM symbol must satisfy the demand of the sampling theory and uniform
distribution [70].

The proposed channel estimation method is based on nonlinear complex SVR algo-
rithm which has two separate phases: training phase and estimation phase. In training
phase, we estimate first the subchannels pilot symbols according to LS criterion to strike
min

[
(Y P −XPFh)(Y P −XPFh)H

]
[71], as

ĤP = XP−1
Y P , (4.32)

where Y P = Y (i,m∆P ) and ĤP = Ĥ(i,m∆P ) are the received pilot symbols and
the estimated frequency responses for the ith OFDM symbol at pilot positions m∆P ,
respectively.

Then, in the estimation phase and by the interpolation mechanism, frequency re-
sponses of data subchannels can be determined. Therefore, frequency responses of all
the OFDM subcarriers are [72]

Ĥ(i, q) = f(ĤP (i,m∆P )), (4.33)

where q = 0, · · · , N − 1, and f(·) is the interpolating function, which is determined by
the nonlinear SVR approach.

4.5.2 SVR estimator formulation

In high mobility environments, where the fading channels present very complicated
nonlinearities especially in deep fading case, linear approaches cannot achieve high esti-
mation precision. Therefore, we adapt a nonlinear complex SVR technique since SVM
is superior in solving nonlinear, small samples and high dimensional pattern recogni-
tion [70]. Therefore, we map the input vectors to a higher dimensional feature space
H (possibly infinity) by means of nonlinear transformation φ. Thus, the regularization
term is referred to the regression vector in the RKHS. The following linear regression
function is then

Ĥ(m∆P ) = wHφ(m∆P ) + b+ em, m = 0, · · · , NP − 1 (4.34)

where w is the weight vector, b is the bias term well known in the SVM literature and
residuals {em} account for the effect of both approximation errors and noise.

In the SVM framework, the optimality criterion is a regularized and constrained
version of the regularized least squares criterion. In general, SVM algorithms minimize
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a regularized cost function of the residuals, usually the Vapnik’s ε-insensitivity cost
function [73].

A robust cost function is introduced to improve the performance of the estimation
algorithm which is ε-Huber robust cost function, presented by (4.4) as

Lε(em) =


0, |em| ≤ ε
1
2γ (|em| − ε)

2, ε ≤ |em| ≤ eC
C(|em| − ε)− 1

2γC
2, eC ≤ |em|

(4.35)

where eC = ε+γC, ε is the insensitive parameter which is positive scalar that represents
the insensitivity to a low noise level, parameters γ and C control essentially the trade-off
between the regularization and the losses, and represent the relevance of the residuals
that are in the linear or in the quadratic cost zone, respectively. The cost function is
linear for errors above eC , and quadratic for errors between ε and eC . Note that, errors
lower than ε are ignored in the ε-insensitivite zone. The quadratic cost zone uses the
L2 − norm of errors, which is appropriate for Gaussian noise, and the linear cost zone
limits the effect of sub-Gaussian noise [34]. Therefore, the ε-Huber robust cost function
can be adapted to different types of noise.

Let Lε(em) = Lε(ℜ(em)) +Lε(ℑ(em)) since {em} are complex, where ℜ(·) and ℑ(·)
represent real and imaginary parts, respectively.
Now, we can state the primal problem as minimizing

1

2
∥w∥2 +

1

2γ

∑
m∈I1

(ξm + ξ∗m)2 + C
∑
m∈I2

(ξm + ξ∗m)

+
1

2γ

∑
m∈I3

(ζm + ζ∗m)2 + C
∑
m∈I4

(ζm + ζ∗m)

− 1

2

∑
m∈I2,I4

γC2 (4.36)

constrained to

ℜ(Ĥ(m∆P )−wHφ(m∆P )− b) ≤ ε+ ξm

ℑ(Ĥ(m∆P )−wHφ(m∆P )− b) ≤ ε+ ζm

ℜ(−Ĥ(m∆P ) + wHφ(m∆P ) + b) ≤ ε+ ξ∗m

ℑ(−Ĥ(m∆P ) + wHφ(m∆P ) + b) ≤ ε+ ζ∗m

ξ(∗)m , ζ(∗)m ≥ 0, (4.37)

for m = 0, · · · , NP − 1, where ξm and ξ∗m are slack variables which stand for positive,
and negative errors in the real part, respectively. ζm and ζ∗m are the errors for the
imaginary parts. I1, I2, I3 and I4 are the set of samples for which:
I1 : real part of the residuals are in the quadratic zone;
I2 : real part of the residuals are in the linear zone;
I3 : imaginary part of the residuals are in the quadratic zone;
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I4 : imaginary part of the residuals are in the linear zone.

To transform the minimization of the primal functional (4.36) subject to constraints
in (4.37), into an optimization of the dual functional, we must first introduce the con-
straints into the primal functional to obtain the primal-dual functional as follows:

LPd =
1

2
∥w∥2 + 1

2γ

∑
m∈I1

(ξm + ξ∗m)2 + C
∑
m∈I2

(ξm + ξ∗m)

+
1

2γ

∑
m∈I3

(ζm + ζ∗m)2 + C
∑
m∈I4

(ζm + ζ∗m)− 1

2

∑
m∈I2,I4

γC2

−
NP−1∑
m=0

(βmξm + β∗mξ
∗
m)−

NP−1∑
m=0

(λmζm + λ∗mζ
∗
m)

+

NP−1∑
m=0

αR,m[ℜ(Ĥ(m∆P )−wHφ(m∆P )− b)− ε− ξm]

+

NP−1∑
m=0

αI,m[ℑ(Ĥ(m∆P )−wHφ(m∆P )− b)− jε− jζm]

+

NP−1∑
m=0

α∗
R,m[ℜ(−Ĥ(m∆P ) + wHφ(m∆P ) + b)− ε− ξ∗m]

+

NP−1∑
m=0

α∗
I,m[ℑ(−Ĥ(m∆P ) + wHφ(m∆P ) + b)− jε− jζ∗m], (4.38)

with the dual variables constrained to ξm, ζm, ξ∗m, ζ∗m ≥ 0 and αR,m, αI,m, βm, λm, α∗
R,m,

α∗
I,m, β∗m, λ∗m ≥ 0.

According to Karush-Kuhn-Tucker (KKT) complementarity conditions [74]

βmξm = 0, β∗mξ
∗
m = 0 and λmζm = 0, λ∗mζ

∗
m = 0. (4.39)

Then, by making zero the primal-dual functional gradient with respect to ωi, we obtain
an optimal solution for the weights

w =

NP−1∑
m=0

ψmφ(m∆P ) =

NP−1∑
m=0

ψmφ(Pm), (4.40)

where ψm = (αR,m − α∗
R,m) + j(αI,m − α∗

I,m) with αR,m, α
∗
R,m, αI,m, α

∗
I,m are the La-

grange multipliers for real and imaginary parts of the residuals and Pm = (m∆P ),m =
0, · · · , NP − 1 are the pilot positions.



Determination of Hyperparameters 77

We define the Gram matrix as

G(u, v) =< φ(Pu),φ(Pv) >= K(Pu, Pv), (4.41)

where K(Pu, Pv) is a Mercer’s kernel which represents in this thesis the RBF kernel
matrix which allows obviating the explicit knowledge of the nonlinear mapping φ(·).
A compact form of the functional problem can be stated in matrix format by placing
optimal solution w into the primal dual functional and grouping terms.

Then, the dual problem consists of maximizing [72],[75]

−1

2
ψH(G + γI)ψ + ℜ(ψHY P )− (αR +α∗

R +αI +α
∗
I )1ε, (4.42)

constrained to 0 ≤ αR,m, α
∗
R,m, αI,m, α

∗
I,m ≤ C, where ψ = [ψ0, · · · , ψNP−1]

T ; I and 1
are the identity matrix and the all-ones column vector, respectively; αR is the vector
which contains the corresponding dual variables, with the other subsets being similarly
represented. The weight vector can be obtained by optimizing (4.42) with respect to
αR,m, α

∗
R,m, αI,m, α

∗
I,m and then substituting into (4.40).

Therefore, and after training phase, frequency responses at all subcarriers in each
OFDM symbol can be obtained by SVM interpolation

Ĥ(k) =

Np−1∑
m=0

ψmK(Pm, k) + b, (4.43)

for k = 1, · · · , N . Note that, the obtained subset of Lagrange multipliers which are
nonzero will provide with a sparse solution. As usual in the SVM framework, the free
parameter of the kernel and the free parameters of the cost function have to be fixed by
some a priori knowledge of the problem, or by using some validation set of observations
[73].

4.6 Determination of Hyperparameters

In this section, we consider some methods for determining suitable combinations of the
hyperparameters for SVMs. Here, we will only consider a few aspects of how to choose
such hyperparameters for regression problems.

The quality of the estimator for the unknown risk and the precision of prediction for
the unknown values depend not only on the data set used for learning purposes, the loss
function and the kernel but also on the choice of the hyperparameters such as kernel
parameter, regularizing parameter and loss function. Choosing these hyperparameters
in an optimal way usually requires computing the predictions for many combinations
of the hyperparameters. In other words, it is necessary to solve not just one convex
problem but a series of them, which increases the computational effort for the use of
SVMs in practice [76].
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The determination of a suitable combination of hyperparameters is an optimiza-
tion problem. Thus, we will present some different numerical methods to solve this
optimization problem.

A practical choice of the hyperparameters depends on the criteria used to measure
their quality. One helpful criteria is the accuracy. In classification problems, the accu-
racy is often measured by the empirical misclassification rate. Whereas, in regression
problems, the empirical risk based on a suitable calibrated loss function is often used
as accuracy criteria.

In addition, as the target functions on the hyperparameters are usually unknown,
the optimal parameters have to be found numerically [76]. The following six methods
are often used to determine suitable hyperparameters:

• Random search: a random point of the parameter space is chosen, and the value
of the objective function is evaluated. This operation is repeated M times and
the best point is taken as the result.

• Grid search: after the search space is specified, each search dimension is split into
P parts. The intersections of the splits which form a multi-dimensional grid are
the trial points for which the objective function is evaluated. Then, the best point
is taken as the result.

• Nelder-Mead search: the algorithm constructs a simplex of l + 1 points for an
l−dimensional optimization problem. The functional values are calculated for the
vertices of the simplex, and the worst point is reflected through the opposite side
of the simplex. So, if this trial point is best, the new simplex is expanded further
out. If the function value is worse, then the second-worst point of the simplex is
contracted.

• Cross-validation: The data set is randomly divided into m disjoint subsets of
equal size, and each subset is used once as a validation set, whereas the other
m − 1 subsets are put together to form a training set. The average accuracy of
the m validation sets is used as an estimator for the accuracy of the method.

• Heuristic search: This approach was proposed by Cherkassky and Ma in 2004
[76]. Their proposal is based on both theoretical considerations and empirical
results. This technique is suited for all input variables scaled to the interval [0, 1].
The regularization parameter C should be chosen according to the range of the
values of the response variable in the training data. Cherkassky and Ma propose
ε ← 3σ

√
(lnn)/n and C ← max {|ȳ − 3σy| , |ȳ + 3σy|} where ȳ and σy denote

the mean and the standard deviation of the responses yi in the training data set
of size n, respectively. Note that σy is determined by accomplishing a nearest-
neighbor regression with 3 to 7 neighbors, and then the noise will be estimated
using the residuals of this regression [76]. The RBF kernel parameter σ is chosen
as σ =

√
2c1/q, where c represents some constant between .1 and .5 and q is the

number of input variables of the regression problem. This heuristic technique has
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the advantage that the choice of the hyperparameters can be accessed directly
from the data. The heuristic choice of (C, ε, σ) is always suitable when applied to
real-life data [76].

• Pattern search: This method was proposed by Momma and Bennett in 2002. It
is a directed search technique which examines points in the parameter space that
are arranged in a pattern around the actual optimal point. Pattern search works
similar to the grid search, but it only makes calculations for a subset of the grid
points.

To the best of our knowledge, there is currently no practical method known that
chooses the hyperparameters of SVMs in an optimal manner for all data sets and is
applicable for sample sizes of any size. Typically, there is no single optimal choice of
the hyperparameters but a connected region of close to optimal values [76]. Note that
it is often helpful to scale all input variables to increase numerical stability.

4.7 Simulation Results

We consider the channel impulse response of the frequency-selective fading multipath
channel model described by (3.21). We used the specification parameters presented in
table 3.1 of an extended vehicular A model (EVA) for downlink LTE system with the
excess tap delay and the relative power for each path of the channel. These parameters
are defined by 3GPP standard [58].

In order to demonstrate the effectiveness of our proposed technique and evaluate
the performance, two objective criteria are used: the signal-to-noise ratio (SNR) and
signal-to-impulse ratio (SIR). The SNR and SIR are given by [73]

SNRdB = 10 log10 (
E
{
|y(n)− wg(n)− i(n)|2

}
σ2wg

), (4.44)

and

SIRdB = 10 log10 (
E
{
|y(n)− wg(n)− i(n)|2

}
σ2i

), (4.45)

where σ2i represents the variance of the impulsive noise which takes the values of σ2BG or
σ2PG for Bernoulli Gaussian model impulsive noise or Poisson Gaussian model impulsive
noise, respectively.

Then, we simulate the OFDM downlink LTE system with parameters presented
in table 4.1 [77],[78],[79]. The nonlinear complex SVR estimates a number of OFDM
symbols in the range of 1400 symbols, corresponding to ten radio frame LTE. Note that,
the LTE radio frame duration is 10 ms [77], which is divided into 10 subframes. Each
subframe is further divided into two slots, each of 0.5 ms duration.

The complex SVR algorithm parameters used in the simulation are set as: C =
100, γ = 10−5, ε = .001.
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Table 4.1: Parameters of simulations.

Parameters Specifications
OFDM System LTE/Downlink
Constellation 16-QAM
Mobile Speed (Km/h) 120/350
Ts(µs) 72
fc(GHz) 2.15
δf(KHz) 15
B(MHz) 5
Size of DFT/IDFT 512
Number of paths 9

Figure 4.2: Time varying channel frequency response for mobile speed = 120 Km/h.

Figure 4.3: Time varying channel frequency response for mobile speed = 350 Km/h.
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For the purpose of evaluation the performance of the nonlinear complex SVR algo-
rithm under high mobility conditions, we consider a scenario for downlink LTE system
for a mobile speed equal to 120 Km/h and 350 Km/h. Fig. 4.2 presents the variations
in time and in frequency of the channel frequency response under a mobile speed equal
to 120 Km/h, while Fig. 4.3 presents the variations in time and in frequency of the
channel frequency response under a mobile speed equal to 350 Km/h. We remark from
these two scenarios that the channel variations are significant in the presence of high
channel selectivity and frequency shifting. Therefore, robust algorithms for channel es-
timation are required.

4.7.1 Simulation without impulsive noise

The performance of the proposed nonlinear complex SVR estimator is compared with
other well-known estimation methods. In this part of analysis, we are interested in com-
paring the proposed approach with the well-defined LS [80], MMSE [69] and Decision
Feedback [37].
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Figure 4.4: BER as a function of SNR for a mobile speed at (a) 120 Km/h and (b) 350
Km/h without impulsive noise.

Fig. 4.4 (a) shows the variation of BER as a function of SNR. Noticeably, the
proposed complex SVR method outperforms all other estimators. At high mobility, the
same results are confirmed by Fig. 4.4 (b), for example at SNR = 25 dB, the complex
SVR estimator achieves a BER near to 10−2 while the MMSE estimator achieves a BER
equal to 10−1.

An example of the proposed channel tracking and the nonlinear time variant channel
frequency response simulated at the given multipath channel parameters is presented
in Fig. 4.5. The channel response is tracked by the proposed nonlinear complex SVR
method at SNR = 30 dB. Fig. 4.5 shows that the nonlinear channel response is well
tracked by the proposed complex SVR method for both mobile speed 120 and 350 Km/h.
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Figure 4.5: An example of the proposed channel tracking and the nonlinear time variant
channel frequency response simulated at SNR = 30 dB without impulsive noise for a
mobile speed at (a) 120 Km/h and (b) 350 Km/h.

4.7.2 Simulation with impulsive noise

In this section, we denote by BG and PG the Bernoulli-Gaussian and Poisson-Gaussian
impulsive noises, respectively.

4.7.2.1 BER vs. SNR evaluation

• BG Process

In Fig. 4.6 (a) we study the performance of the complex SVR estimator for a mobile
speed at 120 Km/h in terms of BER evaluation in the presence of BG process impulsive
noise with SIR = -5 dB and p = .05. The performance of our complex SVR estimator
is compared to the aforementioned techniques for estimating the channel coefficients
for different SNR values. We notice that the complex SVR approach outperforms LS,
MMSE and Decision Feedback estimators especially for high SNR values.
In Fig. 4.6 (b) the complex SVR approach have almost the same behavior compared to
others estimation techniques for a mobile speed at 350 Km/h.

We notice that estimators are sensitive to p variation in the case of the presence of
BG impulsive noise. Fig. 4.7 shows the impact of p variation on the SVR estimation.
In fact, the nonlinear complex SVR estimator achieves a significantly better estimation
for small p values (p = .05 in our simulation case), for both higher mobile speed envi-
ronments.
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Figure 4.6: BER as a function of SNR for a mobile speed at (a) 120 Km/h and (b) 350
Km/h with SIR = -5 dB and p = .05.

0 5 10 15 20 25 30
10

−2

10
−1

10
0

SNR (dB)

B
E

R

 

 

SVR Estimation (p = .3)
SVR Estimation (p = .2)
SVR Estimation (p = .15)
SVR Estimation (p = .1)
SVR Estimation (p = .05)

0 5 10 15 20 25 30
10

−2

10
−1

10
0

SNR (dB)

B
E

R

 

 

SVR Estimation (p = .3)
SVR Estimation (p = .2)
SVR Estimation (p = .15)
SVR Estimation (p = .1)
SVR Estimation (p = .05)

(a) (b)

Figure 4.7: BER as a function of SNR for a mobile speed at (a) 120 Km/h and (b) 350
Km/h with SIR = - 5 dB at different p values.
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• PG Process

In Fig. 4.8 we compare the performance of the complex SVR estimator for a mobile
speed at 120 Km/h to the LS, MMSE and Decision Feedback approaches in the presence
of PG process impulsive noise with SIR = -5 dB and λ = .1. We notice here that
the complex SVR estimator achieves a much better performance compared to other
estimators for both high mobile speed 120 Km/h and 350 Km/h.
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Figure 4.8: BER as a function of SNR for a mobile speed at (a) 120 Km/h and (b) 350
Km/h with SIR = -5 dB and λ = .1.

We notice also that estimators are sensitive to λ variation where PG impulsive noise
is present. Fig. 4.9 shows the SVR estimation at different λ values.
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Figure 4.9: BER as a function of SNR for a mobile speed at (a) 120 Km/h and (b) 350
Km/h with SIR = - 5 dB at different λ values.

We notice here that with PG impulsive noise model, the nonlinear complex SVR
approach achieves a considerably better estimation for small values of λ (λ = .01) at
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low SIR value (SIR = -5 dB) under high mobility conditions.

4.7.2.2 BER vs. SIR evaluation

• BG Process

In Fig. 4.10, we study the performance of the complex SVR estimator for a mobile
speed at 120 Km/h and 350 Km/h in terms of BER evaluation for different SIR values
with SNR = 20 dB and p = .1. The performance of our complex SVR estimator is
compared to LS and Decision Feedback techniques for estimating the channel coefficients
in the presence of BG impulsive noise.

We notice that our complex SVR approach has a better accuracy than LS and
Decision Feedback estimators for both considered scenarios especially for low SIR values
where nonlinearities improve.
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Figure 4.10: BER as a function of SIR for a mobile speed at (a) 120 Km/h and (b) 350
Km/h for SNR = 20 dB with p = .1.

As we are mentioned above, estimators are sensitive to the variation of the parameter
p of the BG process. Fig. 4.11 (a) shows the evolution of BER as a function of SIR for
a mobile speed equal to 120 Km/h at different p values .

As we can see, the complex SVR method achieves a better accuracy especially for
small SIR values (SIR < 0 dB) where the amount of nonlinear impulsive noise increases.
Whereas for high SIR values (SIR > 0 dB) the evolution of BER still almost constant.
This is due to the use of kernel-induced feature space with the exploitation of the
optimization theory under nonlinear regression.

We notice that with BG impulsive noise model, the nonlinear complex SVR estima-
tor achieves a significantly better estimation for small p values (p = .05 in our simulation
case).

In Fig. 4.11 (b) the simulation results corroborate with the one obtained in Fig. 4.11
(a) for a mobile speed at 120 Km/h and 350 Km/h, respectively. Indeed, complex SVR
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estimator still have better accuracy particularly for low SIR values where nonlinearities
increase.
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Figure 4.11: BER as a function of SIR for a mobile speed at (a) 120 Km/h and (b) 350
Km/h for SNR = 30 dB at different p values.

Fig. 4.12 shows an example of the proposed channel tracking and the nonlinear
time variant channel frequency response simulated at SNR = 30 dB and SIR = -5 dB
with p = .1 for both mobile speed at (a) 120 Km/h and (b) 350 Km/h. The channel
response is tracked by the proposed nonlinear complex SVR method in the presence of
BG impulsive noise.

Fig. 4.12 demonstrates that the nonlinear channel response is well tracked by the
proposed complex SVR method under high mobility conditions in the presence of BG
impulsive noise.
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Figure 4.12: An example of the proposed channel tracking and the nonlinear time
variant channel frequency response simulated at SNR = 30 dB and SIR = -5dB with
p = .1 for a mobile speed at (a) 120 Km/h and (b) 350 Km/h.
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• PG Process

In Fig. 4.13, we analyze the performance of the complex SVR estimator for different
SIR values with SNR = 20 dB and λ = .1. The performance of the complex SVR esti-
mator is compared to LS and Decision Feedback techniques for estimating the channel
coefficients in the presence of PG impulsive noise.
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Figure 4.13: BER as a function of SIR for a mobile speed at (a) 120 Km/h and (b) 350
Km/h for SNR = 20 dB with λ = .1.

We notice that our complex SVR approach has a better accuracy than LS and
Decision Feedback estimators for both different mobile speed especially for low SIR
values as in the case of BG impulsive noise. This is prove the power of the nonlinear
SVR in the presence of significant nonlinearities.
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Figure 4.14: BER as a function of SIR for a mobile speed at (a) 120 Km/h and (b) 350
Km/h for SNR = 30 dB at different λ values.
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In the presence of PG impulsive noise, estimators are sensitive to the variation of the
parameter λ of the PG process. Fig. 4.14 explains the evolution of BER as a function
of SIR for both mobile speed 120 Km/h and 350 Km/h at different λ values for SNR =
30 dB.

We notice that the complex SVR approach achieves a slightly better estimation for
different λ values for high SIR values (SIR > 0 dB), whereas the accuracy of the complex
SVR approach increases for smaller SIR (SIR < 0 dB) . The nonlinear complex SVR
estimator achieves a significantly better estimation for small λ values (λ = .01 in our
simulation case) for both mobile speed cases.

Fig. 4.15 shows an example of the proposed channel tracking and the nonlinear
time variant channel frequency response simulated at SNR = 30 dB and SIR = -5 dB
with λ = .05 for both mobile speed at (a) 120 Km/h and (b) 350 Km/h. The channel
response is tracked by the proposed nonlinear complex SVR method in the presence of
PG impulsive noise. This figure confirms that the nonlinear channel response is well
tracked by the proposed complex SVR method in spite of the presence of nonlinear PG
impulsive noise joint with high mobility conditions.
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Figure 4.15: An example of the proposed channel tracking and the nonlinear time
variant channel frequency response simulated at SNR = 30 dB and SIR = -5dB with
λ = .05 for a mobile speed at (a) 120 Km/h and (b) 350 Km/h.

4.7.3 Simulation results with mixed impulsive noises

In the presence of both BG and PG impulsive noises, nonlinear complex SVR estima-
tor becomes sensitive to both parameters p and λ simultaneously of the BG and PG
processes, respectively.

In Fig. 4.16, we explain the evolution of BER as a function of SNR for a mobile
speed at 120 Km/h in the presence of BG process impulsive noise joint with PG process
impulsive noise with different SIR values (SIR = -10, -5 and 0 dB) for various values of
p (p = .05 and .1) and various values of λ (λ = .01, .1, .15 and .2).
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We notice that the complex SVR approach achieves a better performance for low
values of p and λ especially for high SNR values.

In Fig. 4.17 the complex SVR approach has almost the same behavior compared to
Fig. 4.16 for a mobile speed equal to 350 Km/h.

In Fig. 4.18, we examine the evolution of BER as a function of SIR for a mobile
speed at 120 Km/h in the presence of BG process impulsive noise joint with PG process
impulsive noise with different SNR values (SNR = 10, 20 and 30 dB) for various values
of p (p = .05 and .1) and various values of λ (λ = .01, .1, .15 and .2).

We notice that the complex SVR approach has a better accuracy for small values of
p and λ. Also, the complex SVR approach achieves a better estimation especially for
smaller SIR (SIR < 0 dB) where nonlinearities increase as analyzed above.

In Fig. 4.19 the simulation results corroborate with one obtained in Fig. 4.18 for a
high mobile speed equal to 350 Km/h.

Our nonlinear complex SVR estimator provides an accurate estimation for the chan-
nel coefficients and gives a prediction of the unknown coefficients by means of SVR in-
terpolation. Indeed, our complex SVR approach is efficient in the presence of impulsive
noises at very high mobile speed environment for different scenarios of nonlinearities,
as it has been verified and depicted in Fig. 4.16 to Fig. 4.19.

Regarding the complexity of these estimators, LS is the least complex estimator
because it contains only one matrix inversion operation. However, the Decision Feedback
estimator contains two operations of matrix inversion and two operations of matrix
multiplication. On the other hand, our SVR estimator uses quadratic programming
(quadprog function in Optimization MATLAB Toolbox) with the functions Buffer and
kron for fast computation of kernel matrix using the Kronecker product, and thus the
algorithm becomes faster.

4.8 Conclusion

In this chapter, we have presented a nonlinear complex SVR based channel estimation
technique for a highly selective downlink LTE system. The proposed method is based
on learning process that uses training sequence to estimate the channel variations. Our
formulation is based on complex SVR specifically developed for pilot-based OFDM
systems. Simulations have confirmed the capabilities of the proposed nonlinear complex
SVR estimator in the presence of both Gaussian and impulsive noises interfering with the
pilot symbols when compared to LS, MMSE and Decision Feedback standard methods.
The proposal takes into account the temporal-spectral relationship of the OFDM signal
for a highly selective channels. The Gram matrix using RBF kernel provides a natural
nonlinear extension of the complex linear SVR which leads to a significant benefit for
OFDM communications especially in those scenarios in which deep fading is present.
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Figure 4.16: BER as a function of SNR for a mobile speed at 120 Km/h with (a) SIR
= -10 dB, (b) SIR = -5 dB and (c) SIR = 0 dB with different values of p and λ.
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Figure 4.17: BER as a function of SNR for a mobile speed at 350 Km/h with (a) SIR
= -10 dB, (b) SIR = -5 dB and (c) SIR = 0 dB with different values of p and λ.
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Figure 4.18: BER as a function of SIR for a mobile speed at 120 Km/h with (a) SNR
= 10 dB, (b) SNR = 20 dB and (c) SNR = 30 dB with different values of p and λ.
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Figure 4.19: BER as a function of SIR for a mobile speed at 350 Km/h with (a) SNR
= 10 dB, (b) SNR = 20 dB and (c) SNR = 30 dB with different values of p and λ.



Chapter 5

M-SVR Channel Estimation in
MIMO-OFDM System

5.1 Introduction

The combination of Multiple-Input Multiple-Output (MIMO) and OFDM techniques
in the same system helps to improve the link of frequency selective channels. Indeed,
the transmission of multiple data streams enables multipath signals to carry more in-
formation over the same frequency channel. For that reason, MIMO-OFDM is widely
adopted as the transmission scheme for almost all broadband wireless standards such
as LTE, WiMAX and WLAN [81].

In fact, channel estimation for MIMO-OFDM systems have been developed by var-
ious researches intending to especially high-speed wireless transmission and diversity
gain. These researches concern notably, semiblind [82, 83] and blind techniques [84],
neural networks approaches [85, 86, 87, 88] and even multi-classification by support
vector machines [89].

We propose in this chapter an efficient nonlinear complex Multiple Support Vector
Machines Regression (M-SVR) approach to track the frequency selective time varying
multipath fading channel in mobile wireless MIMO-OFDM system with the presence
of Gaussian and non-Gaussian impulsive noise. The M-SVR estimation technique is
developed and applied to MIMO Long Term Evolution (LTE) downlink.

This chapter is organized as follows. First, we introduce an overview of MIMO
technology which is based on the diversity and spatial multiplexing. The nonlinear
complex M-SVR method is presented in the third section. Finally, different scenarios
are simulated and discussed in the case of SIMO and MIMO systems with both STBC
and V-BLAST schemes.

94
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5.2 An Overview of MIMO System Technology

5.2.1 Diversity

Diversity techniques are used to mitigate degradation in the error performance and
combat fading presented in the unstable wireless channels. The basic principle consists
of transmitting multiple replicas of the same information on multiple channels with
similar power and independent fading. Thus, the probability that multiple independent
fading channels simultaneously realize deep fading is very low. So, it is highly likely that
at least one of the received signal replicas is not attenuated, making a good transmission
quality. Two categories of diversity exist: the implied class and the explicit class. The
first class consists of sending only one copy, but to rely on the multipath concept where
several versions of the same signal arrives at the receiver front-end. Whereas, the second
class is to transmit several replicas of the same message.
There are several ways of realizing diversity gain, including the following ones:

• Space diversity (or antenna diversity): multiple antennas are used to implement
independent wireless channels. The goal is sending the same signal from various
antennas separated by sufficient distance for channel decorrelation (more than 10
lambda) [90].

• Polarization diversity: independent channels are implemented using the fact that
horizontally and vertically polarized paths are independent. Thus, the number of
antennas required is reduced as a single dual-polarized antenna. The advantage
of this technique is that one does not need much space between antennas, which
is attractive to mobile equipment.

• Time diversity: the same information is repeatedly transmitted at sufficiently sep-
arated time instances (more than coherence time) . Indeed, when the transmission
of the same signal is separated by the channel coherence time, it is possible to
take advantage of time diversity [91].

• Frequency diversity: the same information is repeatedly transmitted at sufficiently
separated frequency bands (more than coherence bandwidth). The principle of this
method consists of sending the same signal at different carriers frequency which
will confront different multipath fading [92]. The carriers should be separated
by at least the coherence bandwidth. Note that, the required frequency spacing
depends on mobile speed, channel delay spread, used frequency, etc.

• Angle diversity: this technique is largely related to the spatial diversity where
multiple receive antennas with different directivity are employed to receive the
same information-bearing signal at different angles. It proposes that when the
beams emitted by the antennas are adequately separated angularly, it is possible
that the correlation level will be low enough to benefit from diversity. This tech-
nique is largely used for domestic wireless Internet networks to increase capacity
in network throughput [93].
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• Space time diversity: Alamouti was the first how develops space time block coding
technique in [94]. Indeed, this technique consists of sending two versions of signal
delayed in time via two transmit antennas.

5.2.2 Spatial multiplexing

The major goal in developing new wireless communication systems is improving the
spectrum efficiency and increasing the transmission capacity. The exploitation of the
spatial dimension by using the space division multiplexing (SDM) technique is a promis-
ing solution for significant increase of bandwidth efficiency and performance under fad-
ing channels. Latest information theory researches show that the multipath wireless
channel is capable of huge capacities [95, 96, 97].

Fundamentally, the SDM method transmits different data streams on different trans-
mit antennas simultaneously, which increase the signal to noise ratio and capacity. Spa-
tial multiplexing allows to transmit min(NT , NR) different data streams in parallel in
the case of good channel conditions [98]. The number of spatially multiplexing streams
can be determined as a rank of MIMO channel matrix.

By using multiple antennas at the receiver side, these different mixed data streams
can be recovered by SDM approaches like ZF [99] or V-BLAST [100].

5.2.3 MIMO with Alamouti space-time coding

The very first and well-known Space Time Block Code (STBC) is the Alamouti code
which offers a simple technique for achieving spatial diversity with two transmit antenna.
The Alamouti coding scheme is as follows:
Consider the transmission sequence {X1, X2, · · · , Xn}. In normal transmission, we will
be sending in the first time slot X1, then X2 in the second time slot and so on. Alamouti
proposed that we group the symbols into groups of two. In the first time slot, sendingX1

and X2 from the first and second antenna, respectively. In the second time slot, sending
−X∗

2 andX∗
1 from the first and second antenna, respectively. Note that, although we are

grouping two symbols, we still need two time slots to send two symbols. Therefore, there
is no change in the data rate. This represents a simple description of the transmission
technique with Alamouti space time block coding.
The received signal of the first time slot can be given by[

Y 1
1

Y 1
2

]
=

[
H1,1 H1,2

H2,1 H2,2

] [
X1

X2

]
+

[
Z1
1

Z1
2

]
. (5.1)

By assuming that the channel remains constant for the second time slot, the received
signal can be obtained as[

Y 2
1

Y 2
2

]
=

[
H1,1 H1,2

H2,1 H2,2

] [
−X∗

2

X∗
1

]
+

[
Z2
1

Z2
2

]
, (5.2)

where Y 1
1 and Y 1

2 are the received information at time slot 1 on the receive antenna
1 and 2, respectively. Y 2

1 and Y 2
2 represent the received information at time slot 2 on
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the receive antenna 1 and 2, respectively. Hi,j denotes the channel response from the
ith transmit antenna to the jth receive antenna with i, j ∈ {1, 2}. X1 and X2 are the
transmitted symbols. Z1

1 and Z1
2 represent noise at time slot 1 on the receive antennas

1 and 2, respectively, however Z2
1 and Z2

2 represent noise at time slot 2 on the receive
antennas 1 and 2, respectively. By combining equations (5.1) and (5.2), we can derive
the following expression:

Y 1
1

Y 1
2

Y 2∗
1

Y 2∗
2

 =


H1,1 H1,2

H2,1 H2,2

H∗
1,2 −H∗

1,1

H∗
2,2 −H∗

2,1

 [ X1

X2

]
+


Z1
1

Z1
2

Z2∗
1

Z2∗
2

 . (5.3)

Let us define the transmitted signal by X, the received signal by Y , the matrix of the
channel response by H and the noise vector by Z as follows:

Y =


Y 1
1

Y 1
2

Y 2∗
1

Y 2∗
2

 , H =


H1,1 H1,2

H2,1 H2,2

H∗
1,2 −H∗

1,1

H∗
2,2 −H∗

2,1

 , X =

[
X1

X2

]
and Z =


Z1
1

Z1
2

Z2∗
1

Z2∗
2

 .
Therefore, equation (5.3) can be rewritten as

Y = H X + Z. (5.4)

To resolve the above equation for X, we need to find the inverse of H. For that reason,
we apply the following pseudo-inverse identity for a general matrix of size (m×n) [101]

H† = (HHH)−1HH . (5.5)

The term HHH can be expressed as

HHH = diag(2×2)

 2∑
i=1

2∑
j=1

|Hij |2
 , (5.6)

where diag(2×2) [·] denotes a diagonal matrix of order 2. Since the inverse of a diagonal
matrix is just the inverse of the diagonal elements, we obtain

(HHH)−1 = diag(2×2)

1/( 2∑
i=1

2∑
j=1

|Hij |2)

 . (5.7)

Thus, the estimate of the transmitted symbol can be expressed as follows:

ˆ[
X1

X2

]
= H†


Y 1
1

Y 1
2

Y 2∗
1

Y 2∗
2

 = (HHH)−1HH


Y 1
1

Y 1
2

Y 2∗
1

Y 2∗
2

 (5.8)

X̂ = (HHH)−1HH Y. (5.9)
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5.2.4 MIMO with ZF equalizer

Consider the transmission sequence {X1, X2, · · · , Xn}. In normal transmission, we will
be sending X1 in the first time slot, X2 in the second time slot, X3 and so on. Now,
as we have 2 transmit antennas, symbols can be grouped into groups of two. In the
first time slot, sending X1 and X2 from the first and second antenna. In the second
time slot sending X3 and X4 from the first and second antenna, then X5 and X6 in
the third time slot and so on. Note that, we need only n/2 time slots to accomplish
the transmission since we are grouping two symbols and sending them in one time slot.
Let us now explain how to extract two symbols which interfered with each other. The
received signal of the first time slot is given by[

Y 1
1

Y 1
2

]
=

[
H1,1 H1,2

H2,1 H2,2

] [
X1

X2

]
+

[
Z1
1

Z1
2

]
. (5.10)

Let us define the transmitted signal by X, the matrix of the channel response by H,
the received signal by Y and the noise vector by Z as follows:

Y =

[
Y 1
1

Y 1
2

]
, H =

[
H1,1 H1,2

H2,1 H2,2

]
, X =

[
X1

X2

]
and Z =

[
Z1
1

Z1
2

]
.

Thus, equation (5.10) can be rewritten as

Y = H X + Z. (5.11)

We assume that the receiver knows Y 1
1 , Y 1

2 and Hi,j . To solve equation (5.11) for X,
we need to find the matrix M which satisfies MH = I. This matrix represents the
pseudo-inverse for a general (m × n) matrix. For satisfying this constraint, the ZF
linear detector is given by [102]

M = (HHH)−1HH . (5.12)

The term HHH can be represented as

HHH =

[
H∗

1,1 H∗
2,1

H∗
1,2 H∗

2,2

] [
H1,1 H1,2

H2,1 H2,2

]
=

[
|H1,1|2 + |H2,1|2 H∗

1,1H1,2 +H∗
2,1H2,2

H∗
1,2H1,1 +H∗

2,2H2,1 |H1,2|2 + |H2,2|2

]
. (5.13)

It should be noted that diagonal elements in the matrix HHH are not zero. When
performing the equalization, the ZF equalizer tries to null out the interfering terms,
i.e when solving for X1, the interference from X2 tries to be canceled and vice versa.
As a consequence, amplification of noise can occur. Thus, ZF equalizer is not the best
possible equalizer, however, it is simple and practically easy to implement.
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5.2.5 MIMO with MMSE equalizer

Let us consider the same MIMO system as with ZF equalizer. The MMSE method tries
to find a coefficient M which minimizes the following criteria:

E
{
[MY −X] [MY −X]H

}
. (5.14)

According to [102], solving the above equation leads to

M = (HHH +N0I2)−1HH . (5.15)

In fact, the MMSE equalizer is reduced to ZF equalizer when the noise term N0I2 is
null.

5.3 Nonlinear Complex M-SVR Approach

We note first that the index i and j throughout this section denotes the ith and jth

antenna at the transmitter and receiver side of the MIMO system, respectively.

5.3.1 Principle

The MIMO-OFDM channel estimation approach is based on nonlinear complex M-SVR
algorithm adapted to MIMO systems which is a generalized form of the SISO-SVR
algorithm described in the previous chapter.

The M-SVR algorithm has two separate phases: learning phase and estimation
phase. In learning phase, we estimate first the subchannels pilot symbols according to
LS criterion to strike min

[
(Y P

j −XP
i Fhi,j)(Y P

j −XP
i Fhi,j)H

]
, as

ĤP
i,j = XP

i
−1
Y P
j , (5.16)

where YjP = Yj(l,m∆P ) and ĤP
i,j = Ĥi,j(l,m∆P ) are the received pilot symbols and

the estimated frequency responses for the lth OFDM symbol at pilot positions m∆P ,
respectively.

Then, in the estimation phase and by SVM interpolation mechanism, frequency
responses of data subchannels can be determined. Therefore, frequency responses of all
the OFDM subcarriers can be expressed as

Ĥi,j(l, k) = fi,j(Ĥ
P
i,j(l,m∆P )), (5.17)

where k = 0, · · · , N − 1, and fi,j(·) is the interpolating function, which is determined
by the nonlinear complex M-SVR approach.
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5.3.2 M-SVR estimator formulation

The M-SVR estimator formulation is designed to be adapted to the MIMO-OFDM
architecture. In fact, the regression function is represented as

Ĥi,j(m∆P ) = wH
i,jφi,j(m∆P ) + bi,j + emi,j , (5.18)

for m = 0, · · · , NP − 1 and wi,j is the weight vector, bi,j is the bias term and residuals{
emi,j

}
account for the effect of both approximation errors and noise.

In addition, we used ε-Huber robust cost function

Lε(emi,j) =


0,

∣∣∣emi,j∣∣∣ ≤ ε
1
2γ (|e

m
i,j | − ε)2, ε ≤ |emi,j | ≤ eC .

C(|emi,j | − ε)− 1
2γC

2, eC ≤ |emi,j |
(5.19)

Let Lε(emi,j) = Lε(ℜ(emi,j)) + Lε(ℑ(emi,j)), the primal problem can be stated as follows:

min 1
2 ∥wi,j∥2 +

1

2γ

∑
m∈I1

(ξmi,j + ξm∗
i,j )

2

+ C
∑
m∈I2

(ξmi,j + ξm∗
i,j ) +

1

2γ

∑
m∈I3

(ζmi,j + ζm∗
i,j )

2

+ C
∑
m∈I4

(ζmi,j + ζm∗
i,j )−

1

2

∑
m∈I2,I4

γC2 (5.20)

constrained to

ℜ(Ĥi,j(m∆P )−wH
i,jφi,j(m∆P )− bi,j) ≤ ε+ ξmi,j

ℑ(Ĥi,j(m∆P )−wH
i,jφi,j(m∆P )− bi,j) ≤ ε+ ζmi,j

ℜ(−Ĥi,j(m∆P ) + wH
i,jφi,j(m∆P ) + bi,j) ≤ ε+ ξm∗

i,j

ℑ(−Ĥi,j(m∆P ) + wH
i,jφi,j(m∆P ) + bi,j) ≤ ε+ ζm∗

i,j

ξmi,j
(∗), ζmi,j

(∗) ≥ 0, (5.21)

for m = 0, · · · , NP − 1, where ξmi,j and ξmi,j
∗ are slack variables which stand for positive,

and negative errors in the real part, respectively. ζmi,j and ζm∗
i,j are the errors for the

imaginary parts.
The primal-dual functional can be derived from the primal functional (5.20) subject

to constraints (5.21) as follows:
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LPd =
1

2
∥wi,j∥2 +

1

2γ

∑
m∈I1

(ξmi,j + ξmi,j
∗)2 + C

∑
m∈I2

(ξmi,j + ξmi,j
∗)

+
1

2γ

∑
m∈I3

(ζmi,j + ζmi,j
∗)2 + C

∑
m∈I4

(ζmi,j + ζmi,j
∗)− 1

2

∑
m∈I2,I4

γC2

−
NP−1∑
m=0

(βmi,jξ
m
i,j + βmi,j

∗ξmi,j
∗)−

NP−1∑
m=0

(λmi,jζ
m
i,j + λmi,j

∗ζmi,j
∗)

+

NP−1∑
m=0

αR,m,i,j [ℜ(Ĥi,j(m∆P )−wH
i,jφi,j(m∆P )− bi,j)− ε− ξmi,j ]

+

NP−1∑
m=0

αI,m,i,j [ℑ(Ĥi,j(m∆P )−wH
i,jφi,j(m∆P )− bi,j)−

√
−1ε−

√
−1ζmi,j ]

+

NP−1∑
m=0

α∗
R,m,i,j [ℜ(−Ĥi,j(m∆P ) + wH

i,jφi,j(m∆P ) + bi,j)− ε− ξmi,j∗]

+

NP−1∑
m=0

α∗
I,m,i,j [ℑ(−Ĥi,j(m∆P ) + wH

i,jφi,j(m∆P ) + bi,j)−
√
−1ε−

√
−1ζmi,j∗],

(5.23)

with the dual variables constrained to αR,m,i,j , αI,m,i,j , βmi,j , λ
m
i,j ≥ 0, α∗

R,m,i,j , α
∗
I,m,i,j ,

βmi,j
∗, λmi,j

∗ ≥ 0 and ξmi,j ,ζ
m
i,j , ξ

m
i,j

∗, ζmi,j
∗ ≥ 0.

According to KKT complementarity conditions, we have

βmi,jξ
m
i,j = 0, βmi,j

∗ξmi,j
∗ = 0 and λmi,jζ

m
i,j = 0, λmi,j

∗ζmi,j
∗ = 0. (5.24)

Then, by making zero the primal-dual functional gradient with respect to ωi,j , we
obtain an optimal solution of the weights

wi,j =

NP−1∑
m=0

ψm
i,jφi,j(m∆P ) =

NP−1∑
m=0

ψm
i,jφi,j(Pm), (5.25)

where ψm
i,j = (αR,m,i,j − α∗

R,m,i,j) + j(αI,m,i,j − α∗
I,m,i,j) with αR,m,i,j , α∗

R,m,i,j , αI,m,i,j ,
α∗
I,m,i,j are the Lagrange multipliers for real and imaginary parts of the residuals and
Pm = (m∆P ),m = 0, · · · , NP − 1 are the pilot positions.
Let the Gram matrix defined by

Gi,j(u, v) =< φi,j(Pu),φi,j(Pv) >= Ki,j(Pu, Pv), (5.26)

where Ki,j(Pu, Pv) is a Mercer’s kernel which represents the RBF kernel matrix. A
compact form of the functional problem can be stated in matrix format by placing
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optimal solution wi,j into the primal dual functional and grouping terms. Therefore,
the dual problem consists of

max − 1

2
ψH

i,j(Gi,j + γI)ψi,j + ℜ(ψH
i,jY

P
j )

− (αRi,j +αR
∗
i,j +αIi,j +αI

∗
i,j)1ε (5.27)

constrained to
0 ≤ αR,m,i,j , α

∗
R,m,i,j , αI,m,i,j , α

∗
I,m,i,j ≤ C, (5.28)

where ψi,j = [ψ0
i,j , · · · , ψ

NP−1
i,j ]T ; I and 1 are the identity matrix and the all-ones col-

umn vector, respectively; αRi,j is the vector which contains the corresponding dual
variables, with other subsets being similarly represented. The weight vector can be ob-
tained by optimizing (5.27) with respect to αR,m,i,j , α∗

R,m,i,j , αI,m,i,j , α∗
I,m,i,j and then

substituting into (5.25).

Therefore, and after learning phase, frequency responses at all subcarriers in each
OFDM symbol corresponding to the ith transmitter and jth receiver can be obtained
by SVM interpolation

Ĥi,j(k) =

Np−1∑
m=0

ψm
i,jKi,j(Pm, k) + bi,j , (5.29)

for k = 1, · · · , N . Note that, the obtained subset of dual multipliers which are nonzero
will provide with a sparse solution.

The free parameter of the kernel and the cost function have to be fixed by some
a priori knowledge of the problem or by using one of the hyperparameters selection
techniques.

5.4 Simulation Scenarios

LTE MIMO-OFDM downlink system with parameters shown in table 5.1 is simulated.
These parameters are based on downlink LTE system. Note that, in LTE system the
eNBs and UEs can have 2 or 4 antennas. When two or more transmitter antennas
are applied, the pilot symbols are transmitted orthogonally in space. Indeed, these
orthogonality in space is obtained by letting all other antennas be silent in the resource
element in which one antenna transmits a pilot symbol [103].

For the purpose of evaluation the performance of the nonlinear M-SVR algorithm,
we consider three scenarios for downlink LTE system. First, we deal with a scenario for
downlink LTE SIMO system for a mobile speed equal to 120 Km/h. Then we treat the
MIMO case. In the first part, we discuss MIMO diversity for space time block coding
including Alamouti coding scheme. Here, we assume that the channel is constant during
the period of Alamouti codeword transmission, so that the mobile speed used in the
simulation is equal to 30 Km/h. In the second part, we discuss the performance of a
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Figure 5.1: Time-varying channel frequency response for mobile speed = 30 Km/h.

Figure 5.2: Time-varying channel frequency response for mobile speed = 120 Km/h.

Figure 5.3: Time-varying channel frequency response for mobile speed = 350 Km/h.
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Table 5.1: LTE transmission parameters.

Parameters Specifications
MIMO-OFDM System LTE/Downlink
LTE channel type EVA
Constellation 16-QAM
Ts(µs) 72
fc(GHz) 2.15
δf(KHz) 15
B(MHz) 5

spatially multiplexed MIMO system at higher speed (120 and 350 Km/h) by an ordered
successive interference cancellation (OSIC) called also VBLAST.

The performance of the proposed M-SVR estimator is compared to other estimation
techniques like LS, MMSE and Decision Feedback. Most simulations in this section
are realized in the presence of nonlinear impulsive noise modeled as Bernoulli Gaussian
process. Figs. 5.1, 5.2 and 5.3 present the time-varying channel frequency responses of
the three different mobile speed of simulation 30, 120 and 350 Km/h.

5.5 Performance Analysis and Discussion

5.5.1 SIMO case: M-SVR-MRC evaluation

In SIMO systems, receivers extract multiple signal branches of the same signal received
from different channels and apply gain combining techniques such as Maximum Ratio
Combining (MRC) which gives better performance than Equal Gain Combining (EGC)
or Selective Combining (SC) [65] [104].

0 5 10 15 20 25 30
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR (dB)

B
E

R

 

 

LS Estimation
MMSE Estimation
Feedback Estimation
M−SVR Estimation
known channel

Figure 5.4: BER as a function of SNR for a SIMO system 1 × 2 for a mobile speed at
120 Km/h without impulsive noise.
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Fig. 5.4 shows the performance of the LS, MMSE, Decision Feedback and nonlinear
complex M-SVR algorithms applied on a SIMO system with two receive antennas in the
presence of additive Gaussian noise as a function of SNR without impulsive noise. A
poor performance is noticeably exhibited by LS, MMSE and Decision Feedback, whereas
better performance is observed with our nonlinear complex M-SVR estimator.

Then, the performance of the nonlinear M-SVR with MRC scheme is compared to
SVR SISO-OFDM and evaluated with the variation of the number of receive antennas.

Fig. 5.5 shows the variation of BER as a function of SNR in the presence of additive
Gaussian noise with impulsive noise (SIR = -5 and -10 dB with p = .05 and .1) for a
mobile speed equal to 120 Km/h.

M-SVR-MRC performs better than SVR SISO-OFDM case. For example, at BER
= 10−3 a gain of 18 dB is obtained for NR = 4 with SIR = -5 dB and p = .05. This is
thanks to the increase of diversity at the receiver side. The same results are confirmed
with SIR = -10 dB and p = .1.
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Figure 5.5: The performance of M-SVR-MRC for a mobile speed at 120 Km/h with (a)
SIR = -5 dB and (b) SIR = -10 dB as a function of SNR for p = .05 and .1.

We can remark that BER decreases and good performance is obtained when the
number of receive antennas increases. Fig. 5.6 presents the performance of the M-SVR-
MRC as a function of SIR in the presence of AWGN and impulsive noise interfering with
pilot signals for a mobile speed at 120 and 350 Km/h for SNR = 30 dB and p =.05 and
.1. The comparison between M-SVR estimator in SIMO system and SVR estimator
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in SISO system reveals that M-SVR outperforms SVR estimator. Indeed, for SIMO
system, good performance is realized when the number of receive antennas increases
which improves the receive diversity.
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Figure 5.6: The performance of M-SVR-MRC for a mobile speed at (a) 120 Km/h and
(b) 350 Km/h as a function of SIR with SNR = 30 dB and p = .05 and .1.

5.5.2 MIMO case

5.5.2.1 M-SVR-STBC evaluation

• BER vs. SNR evaluation

In Fig. 5.7 we study the performance of the nonlinear complex M-SVR estimator for
a MIMO system with Alamouti 2× 2 encoding scheme for a mobile speed at 30 Km/h
in terms of BER evaluation without impulsive noise. The performance of our nonlinear
complex M-SVR estimator is compared to the aforementioned techniques for estimating
the channel coefficients for different SNR values. As we can see, the complex M-SVR
approach outperforms LS, MMSE and Decision Feedback estimators for all SNR values.

Fig. 5.8 presents the performance of the M-SVR estimator with Alamouti encoding
scheme (2 × 1 and 2 × 2) and STBC encoding scheme (3 × 4 and 4 × 4) as a function
of SNR in the presence of impulsive noise (SIR = -5 and -10 dB with p = .05 and .1).
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Figure 5.7: BER as a function of SNR for a MIMO system with Alamouti 2×2 encoding
scheme for a mobile speed at 30 Km/h without impulsive noise.
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Figure 5.8: BER performance of M-SVR with Alamouti encoding and STBC encoding
schemes for a mobile speed at 30 Km/h with (a) SIR = -5 dB and (b) SIR = -10 dB as
a function of SNR for p = .05 and .1.
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We notice here that with STBC (4 × 4) encoding scheme, the nonlinear complex
M-SVR approach achieves a considerably better accuracy for all simulated cases due to
the increase of transmit and receive diversity.

• BER vs. SIR evaluation

In Fig. 5.9 we study the performance of the nonlinear complex M-SVR estimator for
a MIMO system with Alamouti and STBC encoding schemes for a mobile speed at 30
Km/h in the presence of impulsive noise as a function of SIR with SNR = 20 and 30
dB with p = .05 and .1.

As we can see, the complex M-SVR method performs better for small SIR values
(SIR < 0 dB) where the amount of nonlinear impulsive noise increases. We notice that
with high SNR (SNR = 30 dB in our case), the nonlinear complex M-SVR estimator
achieves a significantly better estimation, especially for small value of p (p = .05 in our
case).

−20 −15 −10 −5 0 5 10 15 20
10

−5

10
−4

10
−3

10
−2

10
−1

p = .05

SIR (dB)

B
E

R

 

 
Alamouti 2 × 2 (SNR = 20 dB)
Alamouti 2 × 2 (SNR = 30 dB)
STBC 3 × 4 (SNR = 20 dB)
STBC 3 × 4 (SNR = 30 dB)
STBC 4 × 4 (SNR = 20 dB)
STBC 4 × 4 (SNR = 30 dB)

−20 −15 −10 −5 0 5 10 15 20
10

−5

10
−4

10
−3

10
−2

10
−1

p = .1

SIR (dB)

B
E

R

 

 
Alamouti 2 × 2 (SNR = 20 dB)
Alamouti 2 × 2 (SNR = 30 dB)
STBC 3 × 4 (SNR = 20 dB)
STBC 3 × 4 (SNR = 30 dB) 
STBC 4 × 4 (SNR = 20 dB)
STBC 4 × 4 (SNR = 30 dB)

(a) (b)

Figure 5.9: BER performance of M-SVR with Alamouti encoding and STBC encoding
schemes for a mobile speed at 30 Km/h as a function of SIR for SNR = 20 and 30 dB
with (a) p = .05 and (b) p = .1.

5.5.2.2 M-SVR-VBLAST evaluation

• BER vs. SNR evaluation

Fig. 5.10 shows the performance of M-SVR-VBLAST in terms of BER evaluation for a
MIMO system (2 × 3) and (2 × 4) with V-BLAST decoding scheme in the presence of
impulsive noise (SIR = -5 dB and SIR = -10 dB) with p = .05 and .1. The simulation
is performed for a mobile speed at 120 Km/h (Fig. 5.10 (a)) and 350 Km/h (Fig. 5.10
(b)).

It is clear that the complex M-SVR scheme achieves a better accuracy with high
number of receive antennas (NR = 4 in our case). This result is expected since the
increase of number of receive antennas implies the increase of receive diversity.
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We notice that better accuracy is also achieved for low values of p.
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Figure 5.10: BER performance of M-SVR-VBLAST as a function of SNR for a mobile
speed at (a) 120 Km/h and (b) 350 Km/h with SIR = -5 dB and -10 dB for p = .05
and .1.

• BER vs. SIR evaluation

In Fig. 5.11 we study the performance of the nonlinear complex M-SVR estimator
for a MIMO system with V-BLAST decoding scheme for a mobile speed at 350 Km/h
in the presence of impulsive noise as a function of SIR with SNR = 10, 20 and 30 dB
with p = .05 and .1.

As we can see, the complex M-SVR method achieves a better accuracy for high SIR
values, but it is clear that for (SIR < 0 dB) the M-SVR technique performs better since
for (SIR > 0 dB), the BER is almost constant for each case of simulation.

Note that with high number of receive antennas (NR = 4) and high SNR (SNR
= 30 dB) in our simulation case, the nonlinear complex M-SVR estimator achieves a
significantly better estimation, especially for low value of p (p = .05).
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Figure 5.11: BER performance of M-SVR-VBLAST as a function of SIR for a mobile
speed at (a) 120 Km/h and (b) 350 Km/h with SNR = 10, 20 and 30 dB for p = .05
and .1.



Conclusion 111

5.6 Conclusion

In this chapter, we proposed a new approach to estimate the MIMO-OFDM mobile
radio channel based on nonlinear complex M-SVR technique. Then, we applied this M-
SVR channel estimator to a downlink MIMO-LTE system in the presence of impulsive
noise interfering with OFDM pilot symbols in several mobility environments.

In fact, the proposed method is based on training process that uses learning sequence
to estimate the channel variations. Pilot symbols are inserted into different subcarriers
and transmitted over different antennas of the LTE system in order to increase the
convergence rate and estimation accuracy. Through simulation, results have confirmed
the capabilities of the proposed nonlinear complex M-SVR estimator when compared
to other standard methods in the presence of various nonlinearities.



Conclusion

In this thesis, we developed new algorithms based on nonlinear complex Support Vector
Machines Regression (SVR) to estimate mobile radio channel coefficients for pilot-aided
SISO-OFDM and MIMO-OFDM LTE systems. This kernel-based algorithms involved
in pattern analysis which is considered as the process of finding general relations in a
set of data. Indeed, the SVR channel estimation algorithm uses knowledge of the pilot
signals to estimate the total frequency response of the channel.

In highly selective multipath fading channel, where complicated nonlinearities can
be present, the estimation precision can be lowed by using linear methods. So, we adapt
the nonlinear complex SVR algorithm since it transforms the nonlinear estimation in
low dimensional space into linear estimation in high dimensional space improving thus
the estimation precision.

The 3GPP-LTE has been taken as a study case. The Ph.D thesis has been structured
in five chapters:

In the first chapter, we have presented a historical overview on support vector
machines, especially the founding papers of Vapnik and Chervonenkis. The learning
methodology and the linear learning machine have been also presented. These linear
learning machine leads to a simplicity and flexibility of learning. We have also intro-
duced generalization and statistical learning theory. It is this theory which limits the
generalization error, not only for data from the training set, but also for future data.
The optimization theory has been also presented. In fact, this theory forms the basis of
optimization problems, particularly the convex quadratic optimization problems which
are used in the case of SVMs. We have described in this chapter the differences between
SVMs and neural networks. Indeed, the main advantage of SVMs is the convergence to
a unique solution.

In the second chapter, we have studied the support vector machines. We have shown
how learning theory can be used to avoid the difficulties of applying linear functions
in high dimension feature spaces with induced kernels. We have also presented the
transformation approach of primal optimization problems into quadratic convex dual
forms for classification and regression. In the case of regression, the loss function pe-
nalizes errors only above the threshold ε. Such a loss function typically leads to a fine
representation of the decision rule giving significant advantages. Thus, in this chapter
we have described first the linear support vector machines for classification and regres-
sion. Then, the theory of kernel functions associated with SVMs has been analyzed.
Finally, we have presented classification and regression support vector machines in their
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nonlinear versions.
In the third chapter, we have analyzed the multipath propagation aspects of the

mobile radio channel as well as its mathematical model. An overview of nonlinear
impulsive noise which can often appear in communication systems is also presented.
Moreover, we have simulated LTE channels based on 3GPP specifications and several
scenarios of propagation that are considered in our work to evaluate the performance
of channel estimation techniques.

We have presented in the fourth chapter the nonlinear complex SVR based channel
estimation technique for a highly selective downlink LTE system. The proposed chan-
nel estimation method has used pilot signals to estimate the channel variations. As
the main goal of the machine learning is to estimate a function based on some training
data, our method is based on a learning process that has used a training sequence for
adaptation to achieve a desired performance. Comparative study with some traditional
techniques such as the LS, MMSE and decision feedback have been conducted. Simu-
lation results have shown clearly the high performance of the proposed nonlinear SVR
channel estimation technique when compared to the aforementioned standard methods
especially in the presence of nonlinear impulsive noise under high mobility conditions.
The proposal takes into account the temporal-spectral relationship of the OFDM signal
for a highly selective channels. The Gram matrix using RBF kernel provides a natural
nonlinear extension of the complex linear SVR which leads to a significant benefit for
OFDM communications especially in those scenarios in which deep fading is present.

In the last chapter, we have proposed an efficient nonlinear complex Multiple Sup-
port Vector Machines Regression (M-SVR) approach to track the multipath fading
channel in mobile wireless MIMO-OFDM system with the presence of Gaussian and
non-Gaussian impulsive noise. The M-SVR estimation technique is developed and ap-
plied to MIMO LTE downlink. Different scenarios are simulated and discussed in the
case of SIMO and MIMO systems with both STBC and V-BLAST schemes. Simula-
tion results have confirmed the capabilities of the proposed nonlinear complex M-SVR
estimator when compared to other standard methods in the presence of various nonlin-
earities.

In future work, we can estimate other wireless parameters such as the mean Angle of
Arrival (AoA), the Angle Spread (AS), the Doppler Spread (DS), the Ricean K-factor,
the SNR, etc, all using SVR. Also we can apply SVR to solve mobile location problems
in NLOS propagation environment. Moreover, modulation recognition can be developed
for OFDM signals by means of SVM classification in order to identify modulation in
multipath environments.

We can extend the introduced methods to be applied on the LTE advanced system
which is an enhancement of LTE standard and evaluate them using our background in
SVM.

Finally, because SVM are based on sound theoretical foundation and the solution it
produces are global and unique in nature, nowadays they are the most popular prediction
modeling techniques in the data mining arena. Their use and popularity will increase as
the popular commercial data mining tools start to incorporate them into their modeling
arsenal [6].



Appendix A

Hilbert Spaces

Definition A.1
A space H is separable if there exists a countable subset E ⊆ H, such that every element
of H is the limit of a sequence of elements of E. A Hilbert space is a complete separable
inner product space.�

Finite dimensional vector spaces such as Rn are Hilbert spaces.

Theorem A.1
Let H be a Hilbert space, D a closed subspace of H and x ∈ H. There is a unique vector
d0 ∈ D, known as the projection of x onto D, such that

∥x− d0∥ ≤ inf {∥x− d∥ ,d ∈ D} . (A.1)

A necessary and sufficient condition for d0 ∈ D to be the projection of x onto D is that
the vector x− d0 be orthogonal to vectors in D.

A consequence of this theorem is that the best approximation to x in the subspace
D generated by the orthonormal vectors {e1, · · · , en} is given by its Fourier series

n∑
i=1

< x · e i > e i. (A.2)

This leads naturally to studying the properties of series like the case of infinite bases.

Definition A.2
If S is an orthonormal set in a Hilbert space H and no other orthonormal set contains
S as a proper subset, that is S is maximal, then S is called a complete orthonormal
system or an orthonormal basis for H.�

Theorem A.2
Every Hilbert space H has an orthonormal basis. Suppose that S = {xα}α∈A is an
orthonormal basis for a Hilbert space H. So, ∀ y ∈ H,

y =
∑
α∈A

< y · xα > xα. (A.3)
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and ∥y∥2 =
∑

α∈A |< y · xα >|2.

This theorem states that, as in the finite dimensional case, every element of a Hilbert
space H can be expressed as a linear combination of (possibly infinite) basis elements.

The coefficients y · xα are often called the Fourier coefficients of y with respect to
the basis S = {xα}α∈A.

Example A.1
Consider countable sequences of real numbers. The Hilbert space L2 is the set of se-
quences z = {z1, z2, · · · , zi, · · · } such that

∥z∥22 =
∞∑
i=1

zi
2 <∞, (A.4)

where the inner product of sequences x and z is defined by

< x · z >=
∞∑
i=1

xizi. (A.5)

If µ = {µ1, µ2, · · · , µi, · · · } is a countable sequence of positive real numbers, the Hilbert
space L2(µ) is the set of sequences z = {z1, z2, · · · , zi, · · · } such that

∥z∥22 =
∞∑
i=1

µizi
2 <∞, (A.6)

where the inner product of sequences x and z is defined by

< x · z >=
∞∑
i=1

µixizi. (A.7)

The normed space L1 is the set of sequences z = {z1, z2, · · · , zi, · · · } for which

∥z∥1 =
∞∑
i=1

|zi| <∞. (A.8)

Example A.2
Consider the set of continuous real-valued functions on a subset X of Rn. The Hilbert
space L2(X) is the set of functions f for which

∥f∥L2
=

∫
X
f(x)2dx <∞, (A.9)

where the inner product of functions f and g is defined by

< f · g >=
∫
X
f(x)g(x)dx. (A.10)

The normed space L∞(X) is the set of functions for which

∥f∥L∞
= sup

x∈X
|f(x)| <∞. (A.11)



Appendix B

LTE Downlink Data Transmission

Downlink resource grid

The transmitted signal in each LTE slot is described by a resource grid of NBW sub-
carriers and Nsym OFDM symbols. The bandwidth is allocated to the UEs in terms
of resource blocks in order to achieve multiple access. A physical resource block, NRB

consists of Nsym consecutive OFDM symbols in the time domain and 12 consecutive
subcarriers in the frequency domain.

The number of available physical resource blocks depends on the bandwidth since
the resource block size is the same for all bandwidths. Each UE can be assigned one or
more resource block in each transmission time interval of 1 ms depending on the required
data rate. Note that the scheduling decision is done at the NodeB and the user data is
carried on the Physical Downlink Shared Channel (PDSCH). The scheduling decisions
are transported by the Physical Downlink Control Channel (PDCCH) to individual UEs
[105].

According to Release 8, the transmitted bits are modulated using Quadrature Am-
plitude Modulation (QAM), and the available modulation schemes are 4-QAM, 16-QAM
and 64-QAM [78].

Figure B.1: Downlink resource grid.
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Downlink reference signal structure

The downlink reference signal structure is important for channel estimation and cell
search. Resource elements in the time-frequency domain are carrying the pilot signal
sequence, which is predefined for each cell. The pilot symbols are placed in the first
OFDM symbol of one slot and on the third last OFDM symbol. The spacing between
the pilot symbols is 6 subcarriers.

In the LTE system, the NodeBs and UEs can have 2 or 4 antennas. When two
or more transmitter antennas are applied, the pilot symbols are transmitted such that
they are orthogonal in space. The orthogonality in space is obtained by letting all other
antennas be silent in the resource element in which one antenna transmits a pilot symbol
[106], [105]. Fig. B.2 put on view the positions of the pilot symbols for transmission
with two antennas as an example. Antenna 2 is silent when antenna 1 transmits a pilot
symbol and vice versa.

Figure B.2: The pilot symbol structure for one slot with 6 OFDM symbols using two
antennas.
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